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Preface

MATRIX is Australia’s international and residential mathematical research institute.
It was established in 2015 and launched in 2016 as a joint partnership between
Monash University and The University of Melbourne, with seed funding from the
ARC Centre of Excellence for Mathematical and Statistical Frontiers. The purpose
of MATRIX is to facilitate new collaborations and mathematical advances through
intensive residential research programs, which are currently held in Creswick, a
small town nestled in the beautiful forests of the Macedon Ranges, 130 km west of
Melbourne.

This book is a scientific record of the eight programs held at MATRIX in 2017:

• Hypergeometric Motives and Calabi–Yau Differential Equations
• Computational Inverse Problems
• Integrability in Low-Dimensional Quantum Systems
• Elliptic Partial Differential Equations of Second Order: Celebrating 40 Years of

Gilbarg and Trudinger’s Book
• Combinatorics, Statistical Mechanics, and Conformal Field Theory
• Mathematics of Risk
• Tutte Centenary Retreat
• Geometric R-Matrices: from Geometry to Probability

The MATRIX Scientific Committee selected these programs based on scientific
excellence and the participation rate of high-profile international participants. This
committee consists of: Jan de Gier (Melbourne University, Chair), Ben Andrews
(Australian National University), Darren Crowdy (Imperial College London), Hans
De Sterck (Monash University), Alison Etheridge (University of Oxford), Gary
Froyland (University of New South Wales), Liza Levina (University of Michigan),
Kerrie Mengersen (Queensland University of Technology), Arun Ram (University
of Melbourne), Joshua Ross (University of Adelaide), Terence Tao (University of
California, Los Angeles), Ole Warnaar (University of Queensland), and David Wood
(Monash University).

These programs involved organisers from a variety of Australian universities,
including Australian National University, Monash University, Queensland Univer-
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vi Preface

sity of Technology, University of Newcastle, University of Melbourne, University
of Queensland, University of Sydney, University of Technology Sydney, and Uni-
versity of Western Australia, along with international organisers and participants.

Each program lasted 1–4 weeks, and included ample unstructured time to
encourage collaborative research. Some of the longer programs had an embedded
conference or lecture series. All participants were encouraged to submit articles to
the MATRIX Annals.

The articles were grouped into refereed contributions and other contributions.
Refereed articles contain original results or reviews on a topic related to the
MATRIX program. The other contributions are typically lecture notes or short
articles based on talks or activities at MATRIX. A guest editor organised appropriate
refereeing and ensured the scientific quality of submitted articles arising from each
program. The Editors (Jan de Gier, Cheryl E. Praeger, Terence Tao and myself)
finally evaluated and approved the papers.

Many thanks to the authors and to the guest editors for their wonderful work.

MATRIX is hosting eight programs in 2018, with more to come in 2019; see
www.matrix-inst.org.au. Our goal is to facilitate collaboration between researchers
in universities and industry, and increase the international impact of Australian
research in the mathematical sciences.

David R. Wood
MATRIX Book Series Editor-in-Chief

www.matrix-inst.org.au


Hypergeometric Motives and Calabi–Yau
Differential Equations

8–27 January 2017

Organisers
Ling Long
Louisiana State Uni

Masha Vlasenko
Institute of Mathematics of the
Polish Academy of Sciences

Wadim Zudilin
Uni Newcastle

The majority of the articles presented below are extended abstracts of the talks
given by program participants at the workshop that took place from January 16 to
20, 2017. Some of them present a new perspective or results that appeared due to
collaboration following the activity in Creswick.

The two main topics of the program, Calabi–Yau differential equations and
hypergeometric motives, provide an explicit approach and experimental ground
to such important themes in contemporary arithmetic geometry as the Langlands
program, motives and mirror symmetry. Hypergeometric motives are families of
motives whose periods are given by generalised hypergeometric functions. Their
L-functions are expected to cover a wide range of known L-functions. Due to the
recent work of researchers (many of whom were present in Creswick) it is now
possible to compute L-functions of hypergeometric motives efficiently. Thus one
can test the standard conjectures, e.g. on special values and modularity, for motives
of any degree and weight. Many algorithms for computing with the hypergeometric
motives are now implemented in the computer algebra system Magma.

Local factors of hypergeometricL-functions can be investigated by the means of
finite hypergeometric functions, another topic to which a few articles in this volume
are devoted. The techniques developed by the authors allow to transport classical
formulas to the finite field setting, count points on algebraic varieties over finite
fields, study their congruence properties and Galois representations. Importantly,
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viii Hypergeometric Motives and Calabi–Yau Differential Equations

finite hypergeometric functions can be viewed as periods of motives over finite
fields.

Periods over finite fields form a new angle of understanding the integrality phe-
nomenon arising in mirror symmetry. Originally discovered by physicists in the mid
1980s, mirror symmetry remains one of the central research themes binding string
theory and algebraic geometry. Numerous examples show that the expression of the
mirror map in so-called canonical coordinates possesses rich arithmetic properties.
This expression involves particular solutions to a Picard–Fuchs differential equation
of a family of Calabi–Yau manifolds near a singular point. Application of p-adic
methods to the study of Calabi–Yau differential equations gives a very promising
prospective, as it is announced in the final article by Duco van Straten.

The three weeks at the MATRIX institute were intense and fruitful. To illustrate
these words, there was a special lecture by Fernando Rodriguez Villegas scheduled
at the very last moment on Thursday afternoon of the workshop week, in which
he presented, jointly with David Roberts and Mark Watkins, a new conjecture on
motivic supercongruences that was invented in Creswick. This talk influenced what
happened in the last week of the workshop. David Broadhurst gave his two lectures
on the very first and very last days of the program, reporting in the second talk on
the tremendous progress achieved by him in collaboration with David Roberts over
the three weeks.

We are confident that ideas and projects that emerged during the program will
drive our field of research in the coming years.

Masha Vlasenko
Guest Editor
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Participants

James Wan (SUTD, Singapore), Fang-Ting Tu (Louisiana State), Yifan Yang
(National Chiao Tung University), Éric Delaygue (Institut Camille Jordan, Lyon),
John Voight (Dartmouth), Adriana Salerno (Bates College), Alex Ghitza (Mel-
bourne), Mark Watkins (Sydney), Piotr Achinger (IHES) with Helena, Jan de Gier
(Melbourne), David Broadhurst (Open University), Ole Warnaar (Queensland),
Ravi Ramakrishna (Cornell), Fernando Rodriguez Villegas (ICTP, Trieste), Sharon
Frechette (College of the Holy Cross), Robert Osburn (University College Dublin),
Frits Beukers (Utrecht), Paul Norbury (Melbourne), David Roberts (Minnesota
Morris), Duco van Straten (Johannes Gutenberg), Holly Swisher (Oregon State),
Abdellah Sebbar (Ottawa)



Computational Inverse Problems

11–23 June 2017

Organisers
Tiangang Cui
Monash Uni

Hans De Sterck
Monash Uni

Markus Hegland
Australian National Uni

Youssef Marzouk
Massachusetts Inst Tech

Ian Turner
Queensland Uni Tech

Karen Willcox
Massachusetts Inst Tech

The integration of complex data sets into large-scale computational models is one
of the central challenges of modern applied mathematics. This challenge is present
in almost every application area within science and engineering, e.g., geosciences,
biological systems, astrophysics, meteorology, aerospace, and subsurface flow. At
the heart of this challenge often lies an inverse problem: we seek to convert indirect
data into useful characterisations of the unknown model parameters including
source terms, initial or boundary conditions, model structure, physical coefficients,
etc. Solution of the inverse problem, along with model prediction and uncertainty
assessment, can be cast in a Bayesian setting and thus naturally characterised by the
posterior distribution over unknown parameters conditioned on the data. Unfortu-
nately, solution of such statistical inverse problems for systems governed by large-
scale, complex computational models has traditionally been intractable: models are
complicated and computationally expensive to evaluate; available indirect data are
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xii Computational Inverse Problems

often limited, noisy, and subject to natural variation; inversion algorithms often scale
poorly to high-dimensional, or in principle infinite- dimensional, model parameters.

Our program contributed to the active international research effort in computa-
tional mathematics to connect theoretical developments with algorithmic advance-
ments, buoyed by a range of cutting-edge applications. The program attracted a total
of 47 attendees from a diverse range of highly relevant fields. Our attendees include
renowned researchers in numerical analysis, scientific computing, optimisation,
and stochastic computation, as well as high profile domain experts working in
meteorology, super-resolution imaging, aerospace, and subsurface. The program
began with a week of mini-conference. Seven 45-min plenary presentations and
twenty 30-min invited presentations were scheduled during the mini-conference. In
the second week, we organised thirteen 45-min presentations in the mornings and
reserved afternoons for collaboration.

During the program, our attendees presented and extensively collaborated the
following key topics in computational inverse problems:

• Deterministic and statistical methods for inverse problems.
• Advanced Markov chain Monte Carlo and quasi Monte Carlo methods.
• Optimal transport theory and its current and potential applications in inverse

problems.
• Model reduction methods and multi-scale methods.
• Scalable experimental design methods.
• High performance numerical solvers, including multilevel methods.
• Applications in geothermal engineering, additive manufacturing, aeronautics,

remote sensing, and super-resolution imaging.

The articles in this proceedings represent different aspects of the program. For
example, Bardsley and Cui describe an optimisation-based methods for nonlinear
hierarchical Bayesian inverse problem, Fox et al. presents a novel methods for
sequential inverse problems using the Frobenius-Perron operator, MacNamara,
McLean and Burrage present an adaptive contour integration methods for solving
master equations, Guo, Loeper, and Wang present initial investigations of using opti-
mal transport to solve inverse problems in finance, Harrach and Rieger present a set
optimisation technique for reconstructing electrical impedance tomography image
using single-measurement, Haario et al. investigates new ideas on characterising
chaotic stochastic differential equations, Lamminpää et al. presents a case study on
the atmospheric remote sensing, Ye, Roosta-Khorasani, and Cui present an extensive
survey on optimisation methods used in inverse problems.

We would like to thank all of the authors who took the time to contribute to this
volume. We would also like to thank the MATRIX staff and officials for hosting and
facilitating this wonderful event and giving us the opportunity to share our work
with this volume.

Tiangang Cui and Hans De Sterck
Guest Editors
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Participants

Bart van Bloemen Waanders, Benjamin Peherstorfer, Colin Fox, Gregoire Loeper,
Habib N. Najm, Harriet LI, Heikki Haario, Janosch Rieger, Jinglai LI, John
Bardsley, Josef Dick, Kate Lee, Kody Law, Lutz Gross, Marko Laine, Nan Ye,
Oliver Maclaren, Olivier Zahm, Omar Ghattas, Qinian Jin, Tianhai Tan, Tim Garoni,
Zheng Wang, Elizabeth Qian, Gianluca Detommaso, Ruanui Nicholson, Elvar
Bjarkason, Fred Roosta, Shev MacNamara, Alessio Spantini, Amani Alahmadi,
Hoang Viet Ha, Mia (Xin) Shu, Carl (Ao) Shu, Thien Binh Nguyen, Oliver Krzysik,
Brad Marvin, Ellen B Le, Jesse Adams, Hongbo Xie, Hans Elmlund, Cyril Reboul



Integrability in Low-Dimensional
Quantum Systems

26 June–21 July 2017

Organisers
Murray Batchelor
Australian National Uni

Patrick Dorey
Uni Durham

Giuseppe Mussardo
SISSA Trieste

Paul Pearce
Uni Melbourne

Chaiho Rim
Sogang, Seoul

Clare Dunning
Uni Kent

This MATRIX program focused on aspects of integrability in low-dimensional
quantum systems and areas of application. It was organized around currently
active hot topics and open problems. The emphasis was on focused research
and interaction in small groups to achieve real collaboration. The research topics
included:

• AdS/CFT
• Bethe ansatz and quantum spin chains
• Bulk and boundary conformal and quantum field theory
• Cold atoms, strongly correlated systems
• Integrability in models of matter-light interaction
• Logarithmic CFT
• ODE/IM and its massive variants
• Quantum quenches and quantum entanglement
• Random matrix approach to CFT and integrability

xv



xvi Integrability in Low-Dimensional Quantum Systems

Among the integrability community, this workshop was a major event on the
international scene and enabled us to bring together scientists at the leading
edge of research in integrable quantum systems in low-dimensions. Indeed, with
59 participants over 3 weeks, a significant proportion of the active world-wide
community working on quantum integrability was in attendance.

Classical integrabilty of two-dimensional systems and the related quantum inte-
grability of one-dimensional systems are finding areas of application in statistical
physics, condensed matter physics and particle physics in addition to contributing to
highly mathematical topics such as Yang-Baxter algebras, quantum groups, cluster
algebras, affine Lie algebras and combinatorial representation theory. With a series
of Introductory Lectures on Hot Topics and advanced seminars, this workshop
offered extensive training to graduate students and Early Career Researchers
working in integrability and related topics.

Highlights, among many of the meeting, include the announcement of (1) the
analytic calculation of the conformal partition functions of two-dimensional critical
percolation, (2) the demonstration of the quantum toroidal integrability behind the
AGT correspondence as well as (3) some striking progress on the mathematical
description of fusion within the affine Temperly-Lieb algebra. Contributed articles
included in these MATRIX Annals cover the topics of (1) form factors, (2) the
combinatorics and generating functions of RNA structures, (3) supersymmetric
quantum chains and (4) proofs of factorization and sum-to-1 properties of the A(1)n
face models. During the program there were also several groups of collaborators
informally reporting rapid progress including (1) a collaboration explaining the
mysteries of Baxter’s Q-matrix for sl(2) models at roots of unity and (2) a col-
laboration deriving analytically the correlation functions and conformal weights of
critical dense polymers. Many physical applications to quantum quenches, ultracold
atoms and matter-light interaction were also showcased during the meeting. All of
these represent significant advancement in our discipline.

We gratefully acknowledge the generous support of our sponsors—MATRIX, the
Australian Mathematical Sciences Institute (AMSI), the Australian Mathematical
Society (AustMS) and the Asia Pacific Center for Theoretical Physics (APCTP).
We particularly thank Jan de Gier for his encouragement in bringing this program
together. We also thank the very helpful MATRIX staff at Melbourne and Creswick
campuses, as well as our outstanding chef Adam, for their many significant
contributions to the success of this meeting. Lastly, we thank the authors who kindly
took the time and made the effort to contribute to this volume.

Chaiho Rim and Paul Pearce
Guest Editors
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Participants

Changrim Ahn (Ewha, Seoul, Korea), Zoltan Bajnok (Wigner, Hungary), Jean-
Emile Bourgine (KIAS, Seoul, Korea), Daniel Braak (Augsburg, Germany), Jun-
peng Cao (CAS, Beijing, China), Sang Kwan Choi (Sichuan University, China), Ed
Corrigan (York, UK), György Fehér (Budapest, Hungary), Angela Foerster (Rio
Grande do Sul, Brazil), Holger Frahm (Hannover, Germany), Azat Gainutdinov
(Tours, France), Frank Gühmann (Wuppertal, Germany), Xiwen Guan (CAS,
Wuhan, China), Jesper Jacobsen (ENS, Paris, France), Shashank Kanade (Alberta,
Canada), Andreas Klümpe (Wuppertal, Germany), Karol Kozlowski (Lyon, France),
Atsuo Kuniba (Tokyo, Japan), Masahide Manabe (Warsaw, Poland), Chihiro Matsui
(Tokyo, Japan), Yutaka Matsuo (Tokyo, Japan), Jianin Mei (Dalian, China), Alexi
Morin-Duchesne (Louvain, Belgium), Rafael Nepomechie (Miami, USA), Ovidiu
Patu (Bucharest, Romania), Francesco Ravanini (Bologna, Italy), Yvan Saint-
Aubin (Montréal, Canada), Kareljan Schoutens (Amsterdam, Netherlands), Junji
Suzuki (Shizuoka, Japan), Gabor Takacs (Budapest, Hungary), Masato Wakayama
(Kyushu, Japan), Yupeng Wang (CAS, Beijing, China), Waltraut Wustmann (Mary-
land, USA), Wen-Li Yang (Xian, China), Hong Zhang (ITP, Beijing, China), Huan-
Xiang Zhou (Chongqing, China), Rui-Dong Zhu (Tokyo, Japan), Zeying Chen (Uni
Melbourne), Jan de Gier (Uni Melbourne), Omar Foda (Uni Melbourne), Alexandr
Garbali (Uni Melbourne), Phil Isaac (Uni Queensland), Kazuya Kawasetsu (Uni
Melbourne), Sergii Koval (Australian National Uni), Jon Links (Uni Queensland),
Tianshu Liu (Uni Melbourne), Vladimir Mangazeev (Australian National Uni),
Thomas Quella (Uni Melbourne), Jorgen Rasmussen (Uni Queensland), David Rid-
out (Uni Melbourne), Boris Runov (Australian National Uni), William Stewart (Uni
Melbourne), Michael Wheeler (Uni Melbourne), Paul Zinn-Justin (Uni Melbourne)



Elliptic Partial Differential Equations of
Second Order: Celebrating 40 Years of
Gilbarg and Trudinger’s Book

16–28 October 2017

Organisers
Lucio Boccardo
Sapienza Uni Roma

Florica-Corina Cirstea
Uni Sydney

Julie Clutterbuck
Monash Uni

L. Craig Evans
Uni California Berkeley

Enrico Valdinoci
Uni Melbourne

Paul Bryan
Macquarie Uni

Our program celebrated the 40th anniversary of the publication of Gilbarg and
Trudinger’s highly influential “Elliptic Partial Differential Equations of Second
Order”, one of the most highly cited texts in mathematics (over 10,000 citations).
We sought to link past research with future perspectives, by discussing what the
important developments in the area during these 40 years have been and what are
the new trends of contemporary research. Particular attention was given to some
of the topics in which the book served as a great source of inspiration, such as
fully nonlinear PDEs, viscosity solutions, Hessian equations, optimal transport,
stochastic point of view, geometric flows, and so on.

The first week of the program consisted of a series of introductory lectures
aimed at Ph.D. students and postdocs, featuring in particular lectures given by Neil
Trudinger himself. Special thanks go to Connor Mooney who gave a beautiful series
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xx Elliptic Partial Differential Equations of Second Order: Celebrating 40 Years of...

of lectures with only 24 h notice after a late cancellation by the original lecturer due
to illness. The lectures were:

• Estimates for fully nonlinear equations, Neil Trudinger
• Mean Curvature Flow with free boundary, Valentina Wheeler
• Optimal regularity in the Calculus of Variations, Connor Mooney

The second week was devoted to research. During this week, three to four
research lectures were held per day with the remainder of the time devoted
to research collaboration and the general enjoyment of the beautiful Australian
bushland surrounding the institute. Arising from the research workshop were several
submissions included in these proceedings. The papers deal with topics such as
variational problems, particularly non-linear geometric problems, optimal transport,
regularity properties and spectral properties of elliptic operators. Neil Trudinger,
one of the two authors for whom are program honoured is famous for his work on
such problems. As such, each submission represents a continuation of the legacy of
the book “Elliptic partial differential equations of second order” and its continuing
influence on mathematics.

• “Boundary regularity of mass-minimizing integral currents and a question of
Almgren” by Camillo De Lellis, Guido De Philippis, Jonas Hirsch and Annalisa
Massaccesi: This paper is an announcement of results to be published in detail in
a forthcoming article. The results describe boundary regularity of area minimis-
ing currents in high codimension ensuring that regular points are dense on the
boundary and leading to a structure theorem answering in particular a question
of Almgren, implying singular points on the boundary have low dimension,
and yielding a monotonicity formula. The announced results, representing a
continuation of Allard’s regularity theorem and the monumental “Big Regularity
Paper” of Almgren were completed during the second week of our program.

• “Optimal transport with discrete mean field interaction” by Jiakun Liu and
Grégoire Loeper: This paper is also an announcement of ongoing work motivated
by the motion of self-gravitating matter governed by the Euler-Poisson system.
Here the authors build on the first author’s formulation of the problem as a
variational problem which is then solved using optimal transport techniques
exploiting Monge-Kantorovich duality. The result considers a time-discretisation
of more general variational problems obtaining regularity results.

• “A sixth order curvature flow of plane curves with boundary conditions” by
James McCoy, Glen Wheeler and Yuhan Wu: This submission announces results
for a high order curvature flow. Curvature flows, particularly those arising via
variational principles have been extensively studied over the past 30 years.
A prototypical example is the Mean Curvature Flow, a second order gradient
flow, whilst the Wilmore flow is perhaps the most well known example of a
higher gradient flow. The author’s describe a sixth order gradient flow with free
boundary arising in elasticity theory. The maximum principle arguments that
feature heavily in second order flows are of no utility in higher order flows and
must be replaced by other techniques. The authors employ a Poincaré inequality
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and interpolation inequalities to develop suitable integral estimates leading to the
conclusion that the flow smoothly converges to the optimal configuration.

• “Quasilinear parabolic and elliptic equations with singular potentials” by Maria
Michaela Porzio: This paper considers quasilinear equations with singular, Hardy
potentials. A well known result is that solutions to the heat equation with positive
driving term and positive initial data do not exist for Hardy parameters larger
than the optimal constant in Hardy’s inequality. This particular paper considers
divergence form operators and in particular the asymptotic behaviour of solutions
to such equations provided the Hardy parameter is sufficiently small. Unique
global existence of solutions is obtained with decay estimates implying the
asymptotic behaviour as t → ∞ is independent of the initial data and hence
uniqueness of the associated elliptic problem is assured.

• “How to hear the corners of a drum” by Medet Nursultanov, Julie Rowlett, and
David Sher: This paper is a detailed announcement of ongoing work. A well
known question asks if one can “hear the shape of a drum?”. The answer in
general is no, there exists non-congruent domains for which the Laplacian has
the same spectrum. The result of this paper says that smooth domains may
be distinguished from domains with corners by the spectrum of the Laplacian.
More precisely, the spectrum of the Laplacian on a smooth domain with either
Neumann or Robin boundary conditions is never equal to that of the Laplacian
on a domain with corners and either Neumann or Robin boundary conditions.
The result hinges on a generalisation of Kac’s locality principle.

Special thanks go to Julie Clutterbuck for her wonderful depiction of a well worn
copy of Gilbarg’s and Trudinger’s book featured on our program materials.

Paul Bryan
Guest Editor



xxii Elliptic Partial Differential Equations of Second Order: Celebrating 40 Years of...

Participants

Yann Bernard (Monash Uni), Norman Dancer (Uni Sydney), Camillo De Lel-
lis (ETH Zurich), Guido de Philippis (SISSA Trieste), Serena Dipierro (Uni
Melbourne), Yihong Du (Uni New England), Nicola Fusco (Uni Napoli), Jesse
Gell-Redman (Uni Melbourne), Joseph Grotowski (Uni Queensland), Feida Jiang
(Tsinghua Uni), Gary Lieberman (Iowa State Uni), Jiakun Liu (Uni Wollongong),
Gregoire Loeper (Monash Uni), Connor Mooney (Uni Texas Austin), Aldo Pratelli
(Erlangen-Nürnberg), Maria Michaela Porzio (Roma), Frédéric Robert (Uni Lor-
raine), Julie Rowlett (Chalmers Uni), Mariel Sáez (Pontificia Uni, Chile), Neil
Trudinger (Australian National Uni), John Urbas (Australian National Uni), Jerome
Vetois (McGill Uni), Xu-Jia Wang (Australian National Uni), Valentina Wheeler
(Uni Wollongong), Bin Zhou (Australian National Uni), Graham Williams (Uni
Wollongong), James McCoy (Uni Wollongong)



Combinatorics, Statistical Mechanics,
and Conformal Field Theory

29 October–18 November 2017

Organisers
Vladimir Korepin
Stony Brook Uni

Vladimir Mangazeev
Australian National Uni

Bernard Nienhuis
Uni Amsterdam

Jorgen Rasmussen
Uni Queensland

This program brought together leading experts in and around the area where
statistical mechanics, integrability, conformal field theory, and combinatorics meet
and in some sense overlap. A primary goal was to encourage research collaborations
across the traditional divides between the research communities interested in the
separate disciplines. Significant recent developments stem from this kind of cross
fertilisation, and the aim was to cultivate further such collaborations and widen the
scope of their successes.

The scientific presentations and discussions were largely centred around Yang-
Baxter integrable models; the Razumov-Stroganov conjecture and generalisations
thereof; combinatorial points and the role of supersymmetry in integrable lattice
models and quantum chains; the combinatorics of spanning trees and pattern-
avoiding permutations; and logarithmic conformal field theory.

With the strong emphasis on collaborations and discussions, there were only a
couple of seminars per day in the first and third week. The embedded AMSI Work-
shop took place in the second week and included talks by Bazhanov, Guttmann,
Hagendorf, Mangazeev, Nienhuis, Pearce, Ridout, Ruelle, Tartaglia, Weston and
Wheeler. Sessions with informal and brief presentations were held throughout the
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program, with the aim to expand collaborative work on existing research projects
and to foster new ideas and collaborations.

The contribution to this volume by Bernard Nienhuis and Kayed Al Qasimi
was directly stimulated by discussions with Christian Hagendorf at the MATRIX
Workshop. It provides a proof of a conjecture on certain one-point functions related
to the Razumov-Stroganov conjecture.

Jorgen Rasmussen
Guest Editor

Participants

Georgy Feher (Budapest Uni Technology and Economics), Christian Hagendorf
(Catholic Uni Louvain), Philippe Ruelle (Catholic Uni Louvain), Elena Tartaglia
(SISSA Trieste), Murray Batchelor (Australian National Uni), Vladimir Bazhanov
(Australian National Uni), Zeying Chen (Uni Melbourne), Omar Foda (Uni Mel-
bourne), Jan de Gier (Uni Melbourne), Alexandr Garbali (Uni Melbourne), Tony
Guttmann (Uni Melbourne), Jon Links (Uni Queensland), Paul Pearce (Uni Mel-
bourne), Thomas Quella (Uni Melbourne), David Ridout (Uni Melbourne), Alessan-
dra Vittorini-Orgeas (Uni Melbourne), Michael Wheeler (Uni Melbourne), Paul
Zinn-Justin (Uni Melbourne), Robert Weston (Heriot-Watt Uni), Atsuo Kuniba
(Tokyo Uni)



Mathematics of Risk

20 November–8 December 2017

Organisers
Kostya Borovkov
Uni Melbourne

Kais Hamza
Monash Uni

Masaaki Kijima
Tokyo Metropolitan Uni

Alexander Novikov
Uni Technology Sydney

Peter Taylor
Uni Melbourne

The mathematical modelling of the various types of risk modern society encoun-
ters at different levels of its operation has become an important part of applied
mathematics as well as a source of challenging theoretical problems. The main
need in modelling risk is where the latter refers to a serious danger to society and
nature. As illustrated by the recent Global Financial Crisis of 2007–2008, the finance
industry is one of the most serious sources of risk. Since the finance industry tried
to (at least, partly) blame mathematical models for what had happened, it is all the
more important for mathematicians to address the issue of financial risk and use
mathematics to find ways to mitigate it.

The need for quantitative risk modelling has, in recent years, attracted enormous
worldwide attention. The risk related to both extreme and non-extreme events
is generating a vast research activity, which is international by its very nature.
Moreover, there is an international regulatory aspect concerning mathematical
modelling of financial risks. One of the key elements of the current versions
of the Basel accord (a global regulatory framework for bank capital adequacy,
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stress testing, and market liquidity risk) is the emphasis on responsible use of
mathematical models.

Our program mostly addressed various aspects of mathematical modelling and
subsequent analysis of risks related to activities in the finance industry and, more
generally, economics. Major attention was also paid to studying the mathematical
theory that can be used to model more general types of risk, related to chronic and
long-term hazards and extremes, as well as the interplay between them.

The key themes of the program included:

• the modelling of uncertainty and risk events using the theory of stochastic pro-
cesses, in particular, the evaluation of the distributions of boundary functionals of
random processes, including the computation of boundary crossing probabilities;

• new methods for and approaches to computing the prices of financial derivatives;
• the systemic risk, including the stability of national and world financial systems,

consequences for the markets from the wide use of algorithmic trading, network
modelling of relevant real-life systems;

• risk modelling and quantification, including risk measures;
• the analysis of model risk, i.e. the type of risk that arises due to using

inappropriate mathematical models for asset price dynamics etc.;
• mathematical modelling of extreme events due to factors such as natural disas-

ters, human errors, infrastructure and computer control systems’ failures.

Our program included two ‘embedded events’. In the first week of the program,
we ran four 5-h workshops for PhD students, research workers and industry
specialists on the following topics:

• Extreme Value Theory—Applications to risk analysis (M. Kratz);
• Financial measures of risk and performance (M. Zhitlukin);
• Ruin probabilities: exact and asymptotic results (Z. Palmowski);
• Clearing in financial networks (Yu. Kabanov).

In the second week of the program, we hosted a research conference where
about 20 talks were given. The slides used by both the workshop presenters and
conference speakers are available at the program web-site, https://www.matrix-inst.
org.au/events/mathematics-of-risk. For the present volume, two of the workshop
presenters (M. Kratz and M. Zhitlukhin) prepared more detailed expositions of the
material from their workshops. We are most grateful to them for their time and effort
required to write these very interesting and instructive papers. Our thanks also go to
the other program participants who took time to contribute to this volume. Finally,
we would like to thank the MATRIX and Creswick campus staff for facilitating and
hosting this event. The participants enjoyed it tremendously. We had an excellent
opportunity to engage in joint research work and exchange our ideas, both during
the conference week and outside it.

Alexander Novikov and Kostya Borovkov
Guest Editors
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The year 2017 marked the centenary of the birth of W.T. (Bill) Tutte (1917–
2002), the great Bletchley Park cryptologist and pioneering graph theorist. This
Retreat was part of a worldwide programme of Tutte Centenary events, see https://
billtuttememorial.org.uk/centenary/, including events at Bletchley Park, Water-
loo, Cambridge, and Monash. It was scheduled for the week preceding the 5th
International Combinatorics Conference (5ICC) (http://www.monash.edu/5icc/) at
Monash.

The Retreat programme focused on three topics that have grown out of seminal
contributions made by Tutte at the very start of his career:

Tutte-Whitney Polynomials. These count a wide variety of structures associated
with a graph, and are related to network reliability, coding theory, knot theory and
statistical physics. They were introduced by Whitney (1932) and Tutte (1947,

xxix
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1954), and now play a central role in enumerative graph theory. They extend
readily to matroids, which were the focus of the second topic.

Matroid Structure Theory. Many aspects of graph theory are especially nat-
ural and elegant when viewed in the broader setting of matroids, which are
combinatorial abstractions of sets of vectors under linear independence. Tutte
developed the theory of matroid connectivity, and characterised several important
matroid classes in terms of forbidden substructures (excluded minors). His work
continues to inspire developments in the field.

Symmetric Graphs. A lot of recent research on symmetric graphs builds on
ground-breaking theory by Tutte on the trivalent case. Tutte developed the theory
of arc-transitive graphs, and the techniques he used formed the foundations of a
large and growing branch of discrete mathematics.

The Retreat emphasised collaborative research supported by problem sessions.
There were three introductory talks: an overview of Tutte’s contributions to
mathematics, by James Oxley; Tutte-Whitney polynomials, by Gordon Royle; and
symmetric graphs, by Marston Conder and Michael Giudici. Oxley’s talk led to the
paper ‘The contributions of W.T. Tutte to matroid theory’ by Graham Farr and James
Oxley, included in this volume.

We had a total of 32 participants (including organisers). Participants found the
workshop to be an exceptionally stimulating event precisely because, instead of
hearing a long sequence of talks about the work of others, they got to work for
extended periods on interesting problems with a variety of collaborators. They
were able to develop new ideas and learn a lot about other recent work. A number
of questions were answered relatively quickly, simply through sharing knowledge
among participants. The more substantial research collaborations in each of the
three themes dealt with the following.

Tutte-Whitney Polynomials

• An old question of Hassler Whitney (1932) about an elegant extension of the
four-colour theorem using duality and Tutte-Whitney polynomials.

• Chromatic polynomial of hypergraphs (with the research having been done and
largely written up during the workshop).

• A notion of “rank function” for certain algebraic structures which exhibit a
pleasing duality, with the potential to generalise matroid representability and
shed light on Tutte polynomials of other combinatorial objects.

• One of the Merino-Welsh conjectures (correlation inequalities relating numbers
of acyclic orientations and totally cyclic orientations of a graph).

• The complexity of counting bases in binary matroids.

Matroid Structure Theory

• A problem of connectivity in frame matroids, a generalisation of the matroids
that arise from graphs.
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• A problem about the relationship between size and rank in matroids, inspired by
an old theorem of Edmonds.

• Analysis and generalisation of a distinctive property of wheels and whirls,
matroids Tutte identified as playing a fundamental role in his theory of 3-
connectivity for matroids.

• Characterisation of the members of a natural class of matroids where the interac-
tion of elements, circuits and cocircuits is particularly elegant and symmetric.

Symmetric Graphs

• Normal quotient analysis for finite edge-transitive oriented graphs of valency
four. This led to the paper ‘Biquasiprimitive oriented graphs of valency four’ by
Nemanja Poznanovic and Cheryl Praeger in this volume.

• A question of Caprace (at Groups St Andrews, Birmingham, August 2017) on
whether there exists a 2-transitive permutation group P such that only finitely
many simple groups act arc-transitively on a connected graphX with local action
P . Marston Conder gave a partial answer in his paper ‘Simple group actions on
arc-transitive graphs with prescribed transitive local action’ in this volume.

• Answer to a question by Folkman (1967) about (bipartite) semi-symmetric
graphs of order 2n and valency d � n/2, to be published by Marston Conder
and Gabriel Verret.

• Development of the theory of LR-structures, which in some sense extend Tutte’s
work on symmetric 3-valent graphs, and the answer to an open question on them.

• A question related to determining the “graph-type” of a larger number of
transitive groups. This proved quite difficult, but was solved soon after the Retreat
in joint work with someone who could not attend.

It is expected that about fifteen papers will result from research that began during
the workshop week, including the three in this volume of MATRIX Annals.

We gratefully acknowledge sponsorship by the Faculty of Information Technol-
ogy, Monash University.

Graham Farr, Marston Conder, Dillon Mayhew and Gordon Royle
Guest Editors
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The focus of this workshop was originally, as the title “Geometric R-matrices”
suggests, to discuss the interaction of quantum integrable systems, a topic in
mathematical physics, with algebraic geometry and representation theory. As the
subtitle “from geometry to probability” indicates, it was quickly expanded to include
interactions with other branches of mathematics, in particular combinatorics and
probability. Here is a brief sketch of these interactions:

Algebraic Geometry and Representation Theory In the 2000s, the idea emerged
that the theory of quantum integrable systems could be used to study the (quantum,
equivariant) cohomology of certain varieties that appear naturally in algebraic
geometry and representation theory, such as Grassmannians, flag varieties, and
related Schubert varieties, orbital varieties, etc. This was reformulated as a beautiful,
coherent program by Maulik and Okounkov in the early 2010s, combining ideas
from geometric representation theory and in particular Nakajima’s quiver varieties,
other ideas from geometry (Gromov–Witten invariants, etc.), with concepts coming
from the study of supersymmetric gauge theories (cf. the work of Nekrasov and
Shatashvili). The quantum integrable system is defined out of the geometry by
starting with its building block which is the R-matrix of our title.

xxxiii
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This area was represented during the week by the two mini-courses “Schubert
calculus and integrability” by A. Knutson and “Geometric representation theory
and quantum integrable systems” by A. Okounkov, as well by several talks.

Combinatorics and Probability Theory There is a large literature, which is still
rapidly expanding, on the use of quantum integrable methods to study problems of
a combinatorial or probabilistic nature. Some relevant milestones are:

• Kuperberg’s proof of the Alternating Sign Matrix conjecture using the integrabil-
ity of the six-vertex model in the late 90s, followed by numerous generalizations
and variations in the 2000s;

• the enumeration of Plane Partitions, and more the study of the related lozenge
tilings as a probabilistic model, using free fermionic techniques (the simplest
“integrable” model) in the 2000s, in particular in the work of R. Kenyon, and
their extension to non free-fermionic integrable models;

• the connection of integrability and cluster algebras, which remains partially
mysterious, though much progress has been done recently in that area; and

• the field of “integrable probability”, closely connected to the subject of this
workshop but which has become sufficiently wide in itself that it had its own
separate MATRIX program in January 2018.

These topics were all present during this workshop via talks of our participants.

The two contributions in this volume reflect this diversity of subjects. On the one
hand, Y. Yang and G. Zhao’s lecture notes “How to sheafify an elliptic quantum
group” belong to the first type of interaction, emphasizing the use of cohomoloical
Hall algebras to build geometrically the underlying “symmetry algebras” of quan-
tum integrable systems, namely quantum groups, and applying this construction to
elliptic cohomology. On the other hand, G. Koshevoy’s article “Cluster decorated
geometric crystals, generalized geometric RSK-correspondences, and Donaldson-
Thomas transformations” is of a more combinatorial nature, developing interesting
new concepts in the theory of cluster algebras and geometric crystals.

Paul Zinn-Justin
Guest Editor
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A Metropolis-Hastings-Within-Gibbs
Sampler for Nonlinear
Hierarchical-Bayesian Inverse Problems

Johnathan M. Bardsley and Tiangang Cui

Abstract We investigate the use of the randomize-then-optimize (RTO) method
as a proposal distribution for sampling posterior distributions arising in nonlinear,
hierarchical Bayesian inverse problems. Specifically, we extend the hierarchical
Gibbs sampler for linear inverse problems to nonlinear inverse problems by
embedding RTO-MH within the hierarchical Gibbs sampler. We test the method
on a nonlinear inverse problem arising in differential equations.

1 Introduction

In this paper, we focus on inverse problems of the form

y = F(u)+ e, e ∼ N (0, λ−1I), (1)

where y ∈ R
m is the observed data, u ∈ R

n is the unknown parameter, F : Rn →
R
m is the forward operator, and λ is known as the measurement precision parameter.

The likelihood function then has the form

p(y|u, λ) = (2π)−
m
2 λm/2 exp

(
−λ

2
‖F(u)− y‖2

)
. (2)
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Next, we assume that the prior is a zero-mean Gaussian random vector, u ∼
N (0, (δL)−1), which has distribution

p(u|δ) = (2π)−
n
2 δn/2 exp

(
− δ

2
uT Lu

)
, (3)

where L is defined via a Gaussian Markov random field (GMRF) [1], and n is the
rank of L. In the one-dimensional numerical example considered at the end of the
paper, we choose L to be a discretization of the negative-Laplacian operator. The
hyper-parameter δ, which is known as the prior precision parameter, provides the
relative weight given to the prior as compared to the likelihood function.

In keeping with the Bayesian paradigm, we assume hyper-priors p(λ) and p(δ)
on λ and δ, respectively. A standard choice in the linear Gaussian case is to choose
Gamma hyper-priors:

p(λ) ∝ λαλ−1 exp(−βλλ), (4)

p(δ) ∝ δαδ−1 exp(−βδδ). (5)

This is due to the fact that the conditional densities for λ and δ are then also Gamma-
distributed (a property known as conjugacy), and hence are easy to sample from.
We choose hyper-parameters αλ = αδ = 1 and βλ = βδ = 10−4, making the
hyper-priors exponentially distributed with small decay parameters βλ and βδ . In
the test cases we have considered, these hyper-priors work well, though they should
be chosen carefully in a particular situation. Specifically, it is important that they are
chosen to be relatively flat over the regions of high probability for λ and δ defined
by the posterior density function, so that they are not overly informative.

Taking into account the likelihood, the prior, and the hyper-priors, the posterior
probability density function over all of the unknown parameters is given, by Bayes’
law, as

p(u, λ, δ|y)
= p(y|u, λ)p(u|δ)p(λ)p(δ)/p(y)
∝λm/2+αλ−1δn/2+αδ−1 exp

(
−λ

2
‖F(u)− y‖2 − δ

2
uT Lu − βλλ− βδδ

)
, (6)

where p(y) is the normalizing constant for the posterior. Our focus in this paper is
to develop a Gibbs sampler for sampling from the full posterior (6). For this, we
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need the full conditionals, which are given by

p(λ|b,u, δ) ∝ λm/2+αλ−1 exp

([
−1

2
‖F(u)− y‖2 − βλ

]
λ

)
, (7)

p(δ|y,u, λ) ∝ δn/2+αδ−1 exp

([
−1

2
uT Lu − βδ

]
δ

)
, (8)

p(u|y, λ, δ) ∝ exp

(
−λ

2
‖F(u)− y‖2 − δ

2
uT Lu

)
. (9)

The Gamma-hyper priors are conjugate, and hence the conditional densities for λ
and δ are also Gamma-distributed:

λ|u, δ,b ∼ Γ

(
m/2 + αλ,

1

2
‖F(u)− b‖2 + βλ

)
, (10)

δ|u, λ,b ∼ Γ

(
n/2 + αδ,

1

2
uTLu + βδ

)
. (11)

The distributions (10) and (11) are independent so that p(λ, δ|b, x) =
p(λ|b, x)p(δ|b, x). Hence, computing independent samples from (10) and (11)
yields a sample from p(λ, δ|b, x). Moreover, in the linear case, F is a matrix and
the Gaussian prior is also conjugate, leading to a Gaussian conditional (9), which
can be equivalently expressed

u ∼ N
(
(λFT F + δL)−1λFT y, (λFT F + δL)−1

)
.

Taking these observations all together leads to the two-stage Gibbs sampler given
next, which is also presented in [1, 2].

The Hierarchical Gibbs Sampler, Linear Case

0. Initialize (λ0, δ0), u0 = (λ0FT F + δ0L)−1λ0FT y, set k = 1, define ktotal.
1. Compute (λk, δk) ∼ p(λ, δ|y,uk−1) as follows.

a. Compute λk ∼ Γ
(
m/2 + αλ,

1
2‖Fuk−1 − y‖2 + βλ

)
.

b. Compute δk ∼ Γ
(
n/2 + αδ,

1
2 (u

k−1)TLuk−1 + βδ

)
.

2. Compute uk ∼ N
(
(λkFT F + δkL)−1λkFT y, (λkFT F + δkL)−1

)
.

3. If k = ktotal stop, otherwise, set k = k + 1 and return to Step 1.

When F is nonlinear, the conditional density p(u|y, λ, δ), defined in (9), is no
longer Gaussian and cannot be sample from it directly. To overcome this, we embed
a Metropolis-Hastings (MH) step within step 2 of hierarchical Gibbs, as advocated
in [4, Algorithm A.43]. For the MH proposal, we use the randomize-then-optimize
(RTO) [3], and thus we begin in Sect. 2 by describing the RTO proposal. In Sect. 3,
we describe RTO-MH and its embedding within hierarchical Gibbs for sampling
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from the full posterior (6). Finally, we use RTO-MH-within-hierarchical Gibbs
to sample from (6) in a specific nonlinear inverse problem arising in differential
equations. Concluding remarks are provided in Sect. 5.

2 The Randomize-Then-Optimize Proposal Density

We first define the augmented forward model and observation taking the form

Fλ,δ(u)
def=
[
λ1/2F(u)
δ1/2L1/2x

]
and yλ,δ

def=
[
λ1/2y

0

]
.

For motivation, note that in the linear case, p(u|y, λ, δ) is Gaussian and can be
sampled by solving the stochastic least squares problem

u|y, λ, δ = arg min
ψ

‖Fλ,δψ − (yλ,δ + ε)‖2, ε ∼ N (0, I). (12)

This follows from the fact that if Fλ,δ = Qλ,δRλ,δ is the thin (or condensed) QR-
factorization of Fλ,δ, and Fλ,δ has full column rank, then Qλ,δ ∈ R

(M+N)×N has
orthonormal columns spanning the column space of Fλ,δ; Rλ,δ ∈ R

N×N is upper-
triangular and invertible; and the solution of (12) is unique and can be expressed

QT
λ,δFλ,δ(u|b, λ, δ) = QT

λ,δ(yλ,δ + ε), ε ∼ N (0, I). (13)

Note that in the linear case QT
λ,δFλ,δ = Rλ,δ , and it follows that (13) yields samples

from p(u|y, λ, δ).
In the nonlinear case, Eq. (13) can still be used, but the resulting samples do not

have distribution p(u|y, λ, δ). To derive the form of the distribution, we first define

rλ,δ(u)
def= Fλ,δ(u)− yλ,δ

and denote the Jacobian of Fλ,δ , evaluated at u, by Jλ,δ(u). Then, provided QT
λ,δFλ,δ

is a one-to-one function with continuous first partial derivatives, and its Jacobian,
QT
λ,δJλ,δ, is invertible, the probability density function for u|b, λ, δ defined by (13)

is

pRTO(u|b, λ, δ) ∝
∣∣∣det(QT

λ,δJλ,δ(u))
∣∣∣ exp

(
−1

2
‖QT

λ,δrλ,δ(u)‖2
)

= cλ,δ(x)p(u|b, λ, δ), (14)
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where

cλ,δ(u) =
∣∣∣det(QT

λ,δJλ,δ(u))
∣∣∣ exp

(
1

2
‖rλ,δ(u)‖2 − 1

2
‖QT

λ,δrλ,δ(u)‖2
)
. (15)

There is flexibility in how to choose Qλ,δ ∈ R
(M+N)×N, though QT

λ,δFλ,δ must
satisfy the conditions mentioned in the previous sentence. In our implementations
of RTO, we have used Qλ,δ from the thin QR-factorization Jλ,δ(uλ,δ) = Qλ,δRλ,δ ,
where uλ,δ is the MAP estimator, i.e., uλ,δ = arg minu ‖Fλ,δ(u)− yλ,δ‖2.

In practice, we compute samples from (13) by solving the stochastic optimization
problem

u∗ = arg min
ψ

1

2
‖QT

λ,δ(Fλ,δ(ψ)− (yλ,δ + ε∗))‖2, ε∗ ∼ N (0, I). (16)

The name randomize-then-optimize stems from (16), where yλ,δ is first ‘random-
ized’, by adding ε∗, and then ‘optimized’, by solving (16). Finally, we note that if
the cost function minimum in (16) is greater than zero, (13) has no solution, and we
must discard the corresponding sample. In practice, we discard solutions x∗ of (16)
with a cost function minimum greater than η = 10−8, though we have found this to
occur very rarely in practice.

3 RTO-Metropolis-Hastings and Its Embedding Within
Hiererichical Gibbs

Although RTO does not yield samples from p(u|y, λ, δ) for nonlinear problems,
it can be used as a proposal for MH. At step k of the MH algorithm, given the
current sample uk−1, one can use (16) to compute u∗ ∼ pRTO(u|b, λ, δ) and then
set uk = uk−1 with probability

rλ,δ = min

(
1,
p(u∗|y, λ, δ)pRTO(uk−1|y, λ, δ)
p(uk−1|y, λ, δ)pRTO(u∗|y, λ, δ)

)

= min

(
1,
p(u∗|y, λ, δ)cλ,δ(uk−1)p(uk−1|y, λ, δ)
p(uk−1|y, λ, δ)cλ,δ(u∗)p(u∗|y, λ, δ)

)

= min

(
1,
cλ,δ(uk−1)

cλ,δ(u∗)

)
. (17)

Note that it is often advantageous, for numerical reasons, to replace the ratio in (17)
by the equivalent expression

cλ,δ(uk−1)/cλ,δ(u∗) = exp
(

ln cλ,δ(uk−1)− ln cλ,δ(u∗)
)
,
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where

ln cλ,δ(u) 	 ln
∣∣∣QT

λ,δJλ,δ(u)
∣∣∣+ 1

2
‖rλ,δ(x)‖2 − 1

2
‖QT

λ,δrλ,δ(x)‖2,

and ‘	’ denotes ‘equal up to an additive, unimportant constant.’

The RTO-MH Algorithm

1. Choose initial vector u0, parameter 0 < η 
 0, and samples N . Set k = 1.
2. Compute u∗ ∼ pRTO(u|y, λ, δ) by solving (16) for a fixed realization ε∗ ∼

N (0, I). If

‖QT
λ,δ(Fλ,δ(u

∗)− (yλ,δ + ε∗))‖2 > η,

then repeat step 2.
3. Set uk = u∗ with probability rλ,δ defined by (17). Else, set uk = uk−1.
4. If k < N , set k = k + 1 and return to Step 2, otherwise stop.

The proposed sample u∗ is independent of uk−1, making RTO-MH an inde-
pendence MH method. Thus, we can apply [4, Theorem 7.8] to obtain the
result that RTO-MH will produce a uniformly ergodic chain that converges in
distribution to p(u|y, λ, δ) provided there exists M > 0 such that p(u|y, λ, δ) ≤
M · pRTO(u|y, λ, δ), for all u ∈ R

N . Given (14), this inequality holds if and only if
cλ,δ(u), defined by (15), is bounded away from zero for all u.

3.1 RTO-MH-Within-Hierarchical Gibbs

In the hierarchical setting, we embed a single RTO-MH step within the hierarchical
Gibbs sampler, to obtain the following MCMC method.

RTO-MH-Within-Hierarchical Gibbs

0. Initialize (λ0, δ0), set k = 1, define ktotal, and set

u0 = arg min
u

‖Fλ0,δ0(u)− yλ0,δ0‖2.

1. Simulate (λk, δk) ∼ p(λ, δ|y,uk−1) as follows.

a. Compute λk ∼ Γ
(
m/2 + αλ,

1
2‖F(xk−1)− y‖2 + βλ

)
.

b. Compute δk ∼ Γ
(
n/2 + αδ,

1
2 (x

k−1)TLxk−1 + βδ

)
.

2. Simulate ubk using RTO as follows.

a. Compute u∗ ∼ pRTO(u|y, λk, δk) by solving (16) with (λ, δ) = (λk, δk).
b. Set uk = u∗ with probability rλk,δk defined by (17), else set uk = uk−1.

3. If k = ktotal stop, otherwise, set k = k + 1 and return to Step 1.
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In step 2a, note that two optimization problems must be solved. First, the MAP
estimator uλk,δk is computed; then the QR-factorization J(uλk,δk) = Qλk,δkRλk,δk
is computed; and finally, the stochastic optimization problem (16) is solved, with
(λ, δ) = (λk, δk), to obtain the RTO sample u∗. One could take multiple RTO-MH
steps in Step 2, within each outer loop, to improve the chances of updating uk−1,
but we do not implement that here.

4 Numerical Experiment

To test RTO-MH-within-hierarchical Gibbs, we consider a nonlinear inverse prob-
lem from [1, Chapter 6]. The inverse problem is to estimate the diffusion coefficient
u(s) from measurements of the solution x(s) of the Poisson equation

− d

ds

(
u(s)

dx

ds

)
= f (s), 0 < s < 1, (18)

with zeros boundary conditions x(0) = x(1) = 0. Assuming a uniform mesh on
[0, 1], after numerical discretization, (18) takes the form

B(u)x = f, B(u)
def= DT diag(u)D, (19)

where u ∈ R
n and D ∈ R

n×n−1 is a discrete derivative matrix. To generate data,
we compute numerical solutions corrresponding to two discrete Dirac delta forcing
functions, f1(s) and f2(s), centered at s = 1/3 and s = 2/3, respectively. After
discretization, f1 and f2 become (n− 1)× 1 Kronecker delta vectors f1 and f2, and
the measurement model takes the form of (1) with

y def=
[

y1

y2

]
2n−2

and F(u) def=
[

B(u)−1f1

B(u)−1f2

]
2n−2,

so that m = 2n− 2. We generate data using (1) with n = 50 and utrue obtained by
discretizing

u(s) = min {1, 1 − 0.5 sin(2π(s − 0.25))} ,

and λ−1 chosen so that signal-to-noise ratio, ‖F(utrue)‖/
√
mλ−1, is 100. The data

vectors y1 and y2 are plotted in Fig. 1a together with the noise-free data B(x)−1f1
and B(x)−1f2.
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Fig. 1 (a) Plots of the
measured data b1 and b2, the
true state u, and the model
fits. (b) Plots of the true
diffusion coefficient x
together with the RTO-MH
sample median and the
element-wise 95% credibility
bounds
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With the measurements in hand, we implement RTO-MH-within-hierarchical
Gibbs for sampling from (6). The results are plotted in Figs. 1 and 2. In Fig. 1b, we
see the sample median together with 95% credibility intervals computed from the
u-chain generated by the MCMC method. In Fig. 2a, we plot the individual chains
for λ, δ, and a randomly chosen element of the u-chain. And finally, in Fig. 2b, we
plot the auto correlation functions and associated integrated autocorrelation times
(τint) for these three parameters [1].



A Metropolis-Hastings-Within-Gibbs Sampler 11

(a)

0

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500

2000

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.4

0.6

0.8
u

33

(b)
5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ACFs for , , and x

33

: 
 int

( )=1.4661

: 
 int

( )=4.769

x
33

: 
 int

(x
33

)=1.1125

Fig. 2 (a) Plots of the chains for three randomly selected elements of x. (b) Autocorrelation times
associated with these chains

5 Conclusions

In this paper, we have tackled the problem of sampling from the full posterior (6)
when F is a nonlinear function. To do this, we followed the same approach as
the hierarchical Gibbs algorithm of [2], however in that algorithm, F is linear, the
conditional density p(u|y, λ, δ) is Gaussian, and hence samples from p(u|y, λ, δ)
can be computed by solving a linear system of equations. In the nonlinear case,
p(u|y, λ, δ) is non-Gaussian, but we can use RTO-MH to obtain samples, as
described in [3]. We obtain a MH-within-Gibbs method for sampling from (6)
by embedding a single RTO-MH step with hierarchical Gibbs. We then tested the
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method on a nonlinear inverse problem arising in differential equations and found
that it worked well.
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Sequential Bayesian Inference for
Dynamical Systems Using the Finite
Volume Method

Colin Fox, Richard A. Norton, Malcolm E. K. Morrison,
and Timothy C. A. Molteno

Abstract Optimal Bayesian sequential inference, or filtering, for the state of
a deterministic dynamical system requires simulation of the Frobenius-Perron
operator, that can be formulated as the solution of an initial value problem in the
continuity equation on filtering distributions. For low-dimensional, smooth systems
the finite-volume method is an effective solver that conserves probability and
gives estimates that converge to the optimal continuous-time values. A Courant–
Friedrichs–Lewy condition assures that intermediate discretized solutions remain
positive density functions. We demonstrate this finite-volume filter (FVF) in a
simulated example of filtering for the state of a pendulum, including a case where
rank-deficient observations lead to multi-modal probability distributions.

1 Introduction

In 2011, one of us (TCAM) offered to improve the speed and accuracy of the
Tru-Test scales for ‘walk over weighing’ (WOW) of cattle, and wagered a beer
on the outcome [8]. Tru-Test is a company based in Auckland, New Zealand,
that manufactures measurement and productivity tools for the farming industry,
particularly for dairy. Tru-Test’s XR3000 WOW system was already in the market,
though they could see room for improvement in terms of on-farm usage, as well as
speed and accuracy. Indeed, advertising material for the XR3000 stated that WOW

requires that the animals pass the platform regularly and smoothly

which hinted at the existing processing requiring somewhat constrained movement
by the cows for it to deliver a weight.
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Fig. 1 A dairy cow walking
over a weigh bridge placed
near the milking shed
(photocredit: Wayne
Johnson/Pizzini Productions)

Figure 1 shows a cow walking over the weigh-bridge in the WOW system located
on the ground in the path from a milking shed. The weigh bridge consists of a
low platform with strain gauges beneath the platform, at each end, that are used to
measure a time series of downward force from which weight (more correctly, mass)
of the cow is derived.

The plan, for improving estimates of cow mass from strain-gauge time series,
was to apply Bayesian modeling and computational inference. Bayesian inference
allows uncertain measurements to be modeled in terms of probability distributions,
and interpreted in terms of physical models that describe how the data is produced.
This leads to estimates of parameters in the model, such as the mass of a cow, and
meaningful uncertainty quantification on those estimates. At the outset we devel-
oped dynamical-systems models for the moving cow, with some models looking
like one or more pogo sticks. Operation in real-time would require developing new
algorithms for performing the inference sequentially—as the data arrives—and new
hardware with sufficient computing speed to implement those algorithms. Figure 2
(right) shows hardware developed for this application, that includes strain-gauge
signal conditioning, digitization, and an embedded ARM processor, alongside the
XR3000 electronics and display (left).

This paper describes an algorithm for optimal sequential Bayesian inference
that we developed in response to this application in cow weighing. We first give
a stylized model of WOW, then a method for optimal filtering for tracking the state
of a nonlinear dynamical system, then present numerical examples for the stylized
model.



Sequential Inference Using the Finite Volume Method 15

Fig. 2 WOW hardware in 2016: existing commercial unit (left), and prototype with embedded
processing (right) (photocredit and hardware design: Phill Brown)

l

m

F

Fig. 3 A pendulum of length l with mass m, undergoing motion with angular displacement θ and
angular velocity ω. The force F in the string is measured

1.1 A Stylized Problem

A (very) stylized model of WOW is the problem of tracking a simple pendulum of
length l and mass m when only the force F in the string is measured, as depicted in
Fig. 3. For this system the kinematic variables are the angular displacement (from
the vertical downwards) θ and the angular velocity ω. The kinematic state (θ, ω)
evolves according to

d

dt
(θ, ω) =

(
ω,−g

l
sin θ

)

where g is the acceleration due to gravity, l the length of the pendulum.
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The force Fk is measured at times tk , k = 1, 2, 3, . . ., with the (noise free) value
related to the state variables by

Fk = mlω2(tk)+mg cos θ(tk).

Estimation of the parameter m may be performed by considering the augmented
system

d

dt
(θ, ω,m) =

(
ω,−g

l
sin θ, 0

)
.

See [7] for a computed example of parameter estimation in this system.

2 Sequential Bayesian Inference for Dynamical Systems

Consider now a general dynamical system that evolves according to the
(autonomous) differential equation

d

dt
x = f (x), (1)

where f is a known velocity field and x(t) is the state vector of the system at time
t . Given an initial state x(0) = x0 at t = 0, Eq. (1) may be solved to determine
the future state x(t), t > 0, that we also write x(t; x0) to denote this deterministic
solution.

At increasing discrete times tk , k = 1, 2, 3, . . ., the system is observed, returning
measurement zk that provides noisy and incomplete information about xk = x(tk).
We assume that we know the conditional distribution over observed value zk , given
the state xk ,

ρ (zk|xk) .

Let Zt = {zk : tk ≤ t} denote the set of observations up to time t , and let
(the random variable) xt = x(t) denote the unknown state at time t . The formal
Bayesian solution corresponds to determining the time-varying sequence of filtering
distributions

ρ (xt |Zt) (2)

over the state at time t conditioned on all available measurements to time t .
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Discrete-Time Formulation A standard approach [1] is to discretize the system
equation (1) and treat the discrete-time system [3]. When uncertainty in f is
included via ‘process noise’ vk , observation errors via ‘observation noise’ nk , the
discrete-time problem is written as

xk = fk (xk−1, vk)

zk = hk (xk,nk)

with functions fk and hk assumed known.
When the random processes vk and nk are independently distributed from the

current and previous states, the system equation defines a Markov process, as does
Eq. (1), while the observation equation defines the conditional probability ρ (zk|xk).

We will treat the continuous-time problem directly, defining a family of numer-
ical approximations that converge in distribution to the desired continuous-time
distributions.

Continuous-Time Bayesian Filtering Sequential Bayesian inference iterates two
steps to generate the filtering distributions in Eq. (2) [5].

Prediction Between measurements times tk and tk+1, Zt is constant and the
continuous-time evolution of the filtering distribution may be derived from the
(forward) Chapman-Kolmogorov equation

ρ (xt+Δt |Zt+Δt) = ρ (xt+Δt |Zt) =
∫
ρ (xt+Δt |xt , Zt ) ρ (xt |Zt) dxt

=
∫
δ(xt+Δt − x(Δt; xt ))ρ (xt |Zt) dxt ,

which defines a linear operator on the space of probability distributions,

SΔt : ρ (xt |Zt) → ρ (xt+Δt |Zt) . (3)

SΔt is the Frobenius-Perron (or Foias) operator for time incrementΔt .

Update At measurement times tk , Zt changes, from Zk−1 to Zk , and the filtering
distribution changes, typically discontinuously, as

ρ (xk|Zk) = ρ (zk|xk) ρ (xk|Zk−1)

ρ (zk|Zk−1)
, (4)

which is simply Bayes’ rule written at observation time tk . We have written xk = xtk
and Zk = Ztk , and used conditional independence of zk and Zk−1 given xk .
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Fig. 4 A schematic of probability flux in region (x, x+dx), and for time (t, t+dt). The schematic
shows greater flux exiting the region than entering, correspondingly the pdf at t + dt is decreased
with respect to the pdf at t

2.1 The Frobenius-Perron Operator is a PDE

The Frobenius-Perron operator in Eq. (3), that evolves the filtering density forward
in time, may be written as the solution of an initial value problem (IVP) in a partial
differential equation (PDE) for the probability density function (pdf).

For pdf ρ(x; t) over state x and depending on time t , the velocity field f (x)
implies a flux of probability equal to ρ(x; t)f (x). Figure 4 shows a schematic of the
pdf and probability flux in region (x, x + dx), and for the time interval (t, t + dt).
Equating the rate of change in the pdf with the rate at which probability mass enters
the region, and taking dx, dt → 0, gives the continuity equation

∂

∂t
ρ = −∇ · (ρf ). (5)

The Frobenius-Perron operator SΔt , for time interval Δt , may be simulated by
solving the PDE (5) with initial condition ρ (x; 0) = ρ (xt |Zt) to evaluate
ρ (x;Δt) = ρ (xt+Δt |Zt).

Equation (5) is a linear advection equation. When the state equation has additive
stochastic forcing, as is often used to represent model error, evolution of the filtering
pdf is governed by a linear advection-diffusion (Fokker-Planck) equation.

3 Finite Volume Solver

The finite volume method (FVM) discretizes the continuity equation in its integral
form, for each ‘cell’ K in a mesh,

∂

∂t

∫
K

ρ dx +
∮
∂K

ρ(f · n̂) dS = 0.
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Write L ∼ K if cells L andK share a common interface, denoted EKL, and denote
by n̂KL the unit normal on EKL directed from K to L. Define the initial vector of
cell values by P 0

K = 1
|K |
∫
K
ρ(x; 0) dx then form = 0, 1, . . . , r compute Pm+1 as

Pm+1
K − Pm

K

Δt
+ 1

|K|
∑
L∼K

fKLPm
KL = 0,

where

fKL =
∫
EKL

f · n̂KL dS and Pm
KL =

{
Pm
K if fKL ≥ 0

Pm
L if fKL < 0

is the normal velocity on EKL and first-order upwinding scheme, respectively.
In matrix form, the FVM step for time incrementΔt is

Pm+1 = (I −ΔtA)Pm,

where I is the identity matrix and A is a sparse matrix defined above. This formula
is essentially Euler’s famous formula for the (matrix) exponential.

Since fKL = −fLK , the FVM conserves probability at each step, i.e.,∑
K |K|Pm+1

K = ∑
K |K|Pm

K . The FVM also preserves positivity of the pdf when
the time step Δt is small enough that the matrix I − ΔtA has all non-negative
entries. It is straightforward to show that positive entries of the matrix A can occur
on the diagonal, only. Hence, the Courant–Friedrichs–Lewy (CFL) type condition,
that assures that the FVM iteration is positivity preserving, may be written

Δt ≤ 1

maxi Aii

. (6)

With this condition, the FVM both conserves probability and is positivity preserv-
ing, hence is a (discrete) Markov operator. In contrast, the numerical method for the
matrix exponential in MATLAB, for example, does not preserve positivity for the
class of matrices considered here.

4 Continuous-Time Frobenius-Perron Operator
and Convergence of the FVM Approximation

In this section we summarize results from [7], to develop some analytic properties
of the continuous-time solution, and establish properties and distributional conver-
gence of the numerical approximations produced by the FVM solver.
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Let X(·, t) : Rd → R
d denote the map from initial condition to the solution of

Eq. (1) at time t ≥ 0, and Y (·, t) = X(·, t)−1. IfX(·, t) is non-singular (|Y (E, t)| =
0 if |E| = 0 ∀ Borel subsetsE ⊂ R

d ), then ∀t ≥ 0, the associated Frobenius-Perron
operator [6] St : L1(Rd) → L1(Rd ) is defined by

∫
E

Stρ dx =
∫
Y (E,t)

ρ dx ∀ Borel subsets E ⊂ R
d .

Given an initial pdf p0, the pdf p(·; t) at some future time, t > 0, may be
computed by solving (see, e.g., [6, Def. 3.2.3 and §7.6])

∂
∂t
p + div(fp) = 0 ∀x ∈ R

d, t > 0
p(x; 0) = p0(x) ∀x ∈ R

d . (7)

Then, ∀t ≥ 0, the Frobenius-Perron operator St : L1(Rd) → L1(Rd ) is defined
such that for any ρ ∈ L1(Rd),

Stρ := p(·; t),

where p is a solution to the IVP (7) with p0 = ρ. Existence of a Frobenius-Perron
operator and (weak) solutions to the IVP depends on the regularity of f .

Definition 1 (Definition 3.1.1. in [6]) A linear operator S : L1(Rd ) → L1(Rd ) is
a Markov operator (or satisfies the Markov property) if for any f ∈ L1(Rd) such
that f ≥ 0,

Sf ≥ 0 and ‖Sf ‖L1(Rd) = ‖f ‖L1(Rd).

If f has continuous first order derivatives and solutions to Eq. (1) exist for all
initial points x0 ∈ R

d and all t ≥ 0 then the Frobenius-Perron operator is well-
defined, satisfies the Markov property, and {St : t ≥ 0} defines a continuous
semigroup of Frobenius-Perron operators.

FVM Approximation For computational purposes it is necessary to numerically
approximate the Frobenius-Perron operators. We use piece-wise constant function
approximations on a mesh and the FVM.

Define a mesh T on R
d as a family of bounded, open, connected, polygonal,

disjoint subsets of R
d such that Rd = ∪K∈T K . We assume that the common

interface between two cells is a subset of a hyperplane of R
d , and the mesh is

admissible, i.e.,

∃α > 0 :
{
αhd ≤ |K|
|∂K| ≤ 1

α
hd−1

∀K ∈ T
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where h = sup{diam(K) : K ∈ T }, |K| is the d-dimensional Lebesgue measure of
K , and |∂K| is the (d − 1)-dimensional Lebesgue measure of ∂K .

We will use superscript h to denote numerical approximations (though, strictly,
we should use T as h does not uniquely define the mesh).

The following gives the CFL condition for the (unstructured) mesh T . Suppose
that for some ξ ∈ [0, 1) and c0 ≥ 0, we say that Δt satisfies the CFL condition if

Δt
∑
L∼K

max{0, fKL} ≤ (1 − ξ)|K| ∀K ∈ T and Δt ≤ c0h. (8)

Lemma 1 If Δt satisfies the CFL condition in Eq. (8) and p0 ≥ 0 then

ph(x; t) ≥ 0 ∀x ∈ R
d, t > 0,

and Sht is a Markov operator.

The following theorems establish convergence of solutions of the FVM, and
convergence of expectations with respect to the filtering distributions.

Theorem 1 Suppose div f = 0, ρ ∈ BV (Rd ), and Δt satisfies the CFL condition
for some ξ ∈ (0, 1). Then ∀t ≥ 0,

‖Stρ − Sht ρ‖L1(Rd) ≤ Cξ−1‖ρ‖T V (t1/2h1/2 + ξ1/2th).

Convergence of expectations is a consequence of convergence of our FVM.

Theorem 2 Suppose H,T <∞. Under the same assumptions as previous Theo-
rem, if:

1. g ∈ L∞(Rd), or
2. g ∈ L∞

loc(R
d) and ρ has compact support,

then there exists a constant C independent of h and t such that

∣∣∣ESht ρ[g] − EStρ [g]
∣∣∣ ≤ Ch1/2 ∀t ∈ [0, T ], h ∈ (0,H ].

This guarantees convergence in distribution of the discrete approximation to the
continuous-time filtering pdfs in the limit h → 0.

In numerical tests [7] we found convergence to be O(h), which is twice the order
predicted by Theorem 2. Since the CFL condition requires the time step is also O(h),
the method is O(Δt) accurate. Thus the FVM method we use achieves the highest
order permitted by the meta theorem of Bolley and Crouzeix [2], that positivity-
preserving Runge-Kutta methods can be first order accurate, at most.
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5 Computed Examples

We now present a computed example of the finite volume filter (FVF) that uses the
FVM for implementing the Frobenius-Perron operator during the prediction phase,
and the update rule, Eq. (4) evaluated using mid-point quadrature.

Further details of these numerical experiments can be found in [4], including
comparison to filtering produced by the unscented Kalman filter (UKF).

5.1 FVF Tracking of a Pendulum from Measured Force

Figure 5 shows four snapshots of the filtering pdf for the stylized model of Sect. 1.1.
The ‘true’ pendulum was simulated with initial condition (θ0, ω0) = (0.2π, 0).
Eight measured values of the force were recorded, per 2π time, over time period
of 3π , with added Gaussian noise having σ = 0.2. The FVF was initialized with
N(0, 0.82I ).

Since the initial and filtering pdfs are symmetric about the origin, the means
of angular displacement and velocity are always identically zero. Hence, filtering
methods that such as the UKF, or any extension of the Kalman filter that assumes
Gaussian pdfs, or that focus on the mean as a ‘best’ estimate, will estimate the state
as identically zero, for all time. Clearly, this is uninformative.

In contrast, the FVF has localized the true state after 3π time (about 1.5 periods),
albeit with ambiguity in sign. Properties of the system that do not depend on the
sign of the state, such as the period, the length of the pendulum, or the mass of
the pendulum, can then be accurately estimated. The computed example in [7]

Fig. 5 Initial (t = 0) and
filtered pdfs in phase-space
after measurements at times
t = π/4, π , and 3π (left to
right, top to bottom)
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shows that the length of the pendulum is correctly determined after just 1.5, and that
the accuracy of the estimate improves with further measurements (and time). The
same feature holds for estimating mass. Hence, the FVM is successful in accurately
estimating the parameters in the stylized model, even when the measurements leave
ambiguity in the kinematic state.

6 Conclusions

Bayes-optimal filtering for a dynamical system requires solving a PDE. It is
interesting to view filters in terms of the properties of the implicit, or explicit, PDE
solver, such as the density function representation and technology used in the PDE
solver. This paper develops a FVM solver using the simplest-possible discretization
to implement a Bayes-optimal filter, that turned out to be computationally feasible
for low-dimensional smooth systems.

The reader may be interested to know that TCAM won his wager, and beer, with
new sequential inference algorithms now producing useful results on the farm. In
the interests of full disclosure we should also report that the original notion of
utilizing a simple dynamical-systems model for a walking cow did not perform
well, as the model ‘cow’ would eventually walk upside down, just as the pendulum
prefers to hang downwards. In response, we developed models for cow locomotion
based on energy conservation, that are beyond the scope of this paper. However,
the FVF has found immediate application in other dynamic estimation problems
where a dynamical model that evolves a state vector works well, such as estimating
the equilibrium temperature of milk during steaming as a tool for training coffee
baristas.
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Correlation Integral Likelihood
for Stochastic Differential Equations

Heikki Haario, Janne Hakkarainen, Ramona Maraia, and Sebastian Springer

Abstract A new approach was recently introduced for the task of estimation of
parameters of chaotic dynamical systems. Here we apply the method for stochastic
differential equation (SDE) systems. It turns out that the basic version of the
approach does not identify such systems. However, a modification is presented that
enables efficient parameter estimation of SDE models. We test the approach with
basic SDE examples, compare the results to those obtained by usual state-space
filtering methods, and apply it to more complex cases where the more traditional
methods are no more available.

1 Introduction

The difficulty of estimating parameters of chaotic dynamical models is related
to the fact that a fixed model parameter does not correspond to a unique model
integration, but to a set of quite different solutions as obtained by setting slightly
different initial values, selecting numerical solvers used to integrate the system, or
tolerances specified for a given solver. But while all such trajectories are different,
they approximate the same underlying attractor and should be considered in this
sense equivalent. In [4] we introduced a distance concept for chaotic systems based
on this insight. Modifying one of the fractal dimension definitions, the correlation
dimension, we calculate samples from the phase space of the system and map these
points onto a stochastic vector. The vector turns out to be Gaussian, providing a
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natural likelihood concept that quantifies the chaotic variability of points of a chaotic
system within a given setting of observations.

Stochastic differential equation (SDE) systems behave partly in a similar way:
each integration of a given system with fixed model parameters produces a different
realization. This calls for methods that can quantify the variability of the realiza-
tions. On the other hand, the stochastic nature of a SDE system is clearly different
from the chaotic variability of a deterministic chaotic system. Consequently, the
phase space behavior of each type of systems is different as well. The aim of
this work is to study to which extent the parameter estimation approach originally
developed for chaotic systems can be applied to SDE models.

The rest of the paper is organized as follows. In the Background section we
recall the correlation integral likelihood concept and outline the results obtained
for chaotic systems. In Numerical experiments we exhibit the performance of
the method for the Ornstein-Uhlenbeck model and extensions of it, together with
comparisons to more standard, Kalman filter based methods.

2 Background

The standard way of estimating parameters of dynamical systems is based on the
residuals between the data and the model responses, both given at the time points
of the measurements. Supposing the statistics of the measurement error is known,
a well defined likelihood function can be written. The maximum likelihood point
is typically considered as the best point estimator, and it coincides with the usual
least squares fit in the case of Gaussian noise. The full posterior distribution of
parameters can be sampled by Markov chain Monte Carlo (MCMC) methods. The
approach has become routine for the parameter estimation of deterministic models
in Bayesian inference.

The estimation of the parameters of stochastic models is not so straightforward.
A given model parameter does not correspond to a fixed solution, but a whole
range of possible realizations. Several methods have been proposed to overcome
this difficulty. State-based approaches estimate the joint distribution of the state
vector and the parameters. The likelihood for the parameter is obtained as a marginal
distribution, effectively by ‘integrating out’ the state space. This approach is routine
in the context of linear time series modeling, and implemented by the likelihood
obtained by application of the Kalman filter formulas, see [2, 7, 11].

Here we study a different way of characterizing the stochastic variability of the
state space. Supposing that a sufficient amount of data is available, we create a
mapping from it onto a feature vector. The mapping is based on averaging, and
the vector turns out to be asymptotically Gaussian. From real data, the mean and
covariance of this Gaussian distribution can be empirically estimated. Thus we have
a likelihood available, both for maximum likelihood parameter estimation and for
MCMC sampling of the parameter posterior. The idea is the same as that earlier
used for estimating parameters of chaotic models in [4], but certain modifications
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are needed for SDE systems. We discuss the basic setting of the approach below, as
well as the reasons behind the modifications needed.

2.1 Likelihood via Filtering

A standard way of estimating the parameters with stochastic models is to use
filtering methods for constructing the likelihood (see, e.g., [2, 7, 11] for basic
references and implementation, or [8] for recent variant). By using the Kalman filter,
the idea is to build the marginal filter likelihood from the prediction residual rk and
its error covariance matrix Cr

k at each filtering time step k.
The basic linear Kalman filter is written as a pair

xk = Mkxk−1 + ξ k, (1)

yk = Hkxk + εk, (2)

where xk is the state and yk is the measurement vector. Matrix Mk is the linear state-
space model, and matrix Hk is the observation operator that maps from the state
space to the observation space. The error terms ξ k and εk are typically assumed zero
mean and Gaussian: ξ k ∼ N(0,Qk) and εk ∼ N(0,Rk). This dynamical system is
solved using Kalman filter formulas (see, e.g., [11]).

Given a set of observation y1:K and the parameter vector θ , the marginal filter
likelihood is written as

p(y1:K |θ) = exp

(
−1

2

K∑
k=1

[
rT
k (C

r
k)

−1rk + log |Cr
k|
])
, (3)

where | · | denotes the matrix determinant. Here the prediction residual and its error
covariance matrix are calculated by the formulas

rk = yk − Hkx
prior
k , (4)

Cr
k = HkC

prior
k HT

k + Rk, (5)

where xprior
k is the prior estimate computed from the previous state xprior

k = Mkxest
k−1,

and Cprior
k = MkCest

k−1MT
k + Qk is the respective error covariance matrix. Note

that the normalizing “constant” |Cr
k| has to be included, since it depends on the

parameters via the prediction model.
This approach is well established in the framework of linear time series or linear

SDE systems, where the additive model noise is known or may be estimated, as
one of the unknowns in the vector θ . In case the drift part of the system (1) is
nonlinear, one still may use the approach in the extended Kalman filter (EKF)
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form, based on the approximation by linearization. Often the EKF approach is also
applied to filtering of deterministic systems. In that setting the model error term
is rather postulated and interpreted as a measure of bias. The covariances Q and
R represent then our trust on the model and data, respectively, previous work [5],
motivated by closure parameter estimation in climate research, is an example of this
approach. A related option is to employ ensemble filtering. In [12] this approach
was employed in order to tune the ensemble prediction system parameters. It was
observed, however, that the method resulted in a highly stochastic cost function that
prevented a successful application of parameter optimization algorithms. Moreover,
the tuning parameters of the filter itself may bias the model parameter estimation,
see [6]. Recently, some additional criticism toward using the filtering for estimating
the parameters in real-world applications (other than finance) has been presented
see [10].

Next, we present the method developed in [4] for deterministic chaotic systems.
While computationally more demanding, it is free of the pitfalls listed above, and
can be applied to stochastic systems more general than the class of additive noise
given by (1).

2.2 Correlation Integral Likelihood

In this section we briefly summarize the correlation integral likelihood method used
for creating a likelihood for complex patterns [4].

Let us use the notation s = s (θ , x) for a state vector s that depends on parameters
θ and other inputs x such as, e.g., the initial values of a dynamical system. We

consider two different trajectories, s = s (θ , x) and s̃ = s
(
θ̃, x̃

)
, evaluated atN ∈ N

time points ti , i = 1 : N, with explicit dependency on the respective initial and
parameter values. For R ∈ R, the modified correlation sum is defined as

C(R,N, θ , x, θ̃ , x̃) = 1

N2

∑
i,j

#
(∥∥si − s̃j

∥∥ < R
)
. (6)

In the case θ̃ = θ and x̃ = x the formula reduces to the well known definition
of correlation sum, the Correlation Integral is then defined as the limit C(R) =
limN→∞ C(R,N), and the Correlation Dimension ν as the limit

ν = lim
R→0

logC(R)/ log(R).

In numerical practice, the limit R → 0 is approximated by the small scale values
of the ratio above, by the log-log plot obtained by computing logC(R) at various
values of logR.
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However, we do not focus on the small-scale limit as in the above definition, but
rather use the expression (6) at all relevant scales R to characterize the distance
between two trajectories. For this purpose, a finite set of decreasing radii R =
(Rk) , k = 1, . . . ,M, is chosen. The radii values Rk are selected so as to involve
both small and large scale properties of the trajectory samples. Typically, the radii
are chosen as Rk = b−kR0, with R0 = maxi,j

∥∥si − s̃j
∥∥ or somewhat larger to

ensure that all the values are inside the largest radius. The values ofM and b should
be chosen in a way that RM is small enough. For more details see [4].

Consider now the case with given data si , which corresponds to the case of a
fixed but unknown model parameter vector, θ̃ = θ = θ0. We select two subsets s
and s̃ of size N from the data (see more details below). If we fix the radii values
R = (Rk), k = 1, . . . ,M the expression (6) defines a M dimensional vector
with components yk = C(Rk, θ0, x). A training set of these vectors is created by
repeatedly selecting the subsets s and s̃. The statistics of this vector can then be
estimated in a straightforward way.

Indeed, the expression (6) is an average of distances, so by the Central Limit
Theorem it might be expected to get Gaussian. More exactly, each expression y =
(yk) gives the empirical cumulative distribution function of the respective set of
distances. The basic form of the Donsker’s theorem tells that empirical distribution
functions asymptotically tend to a Brownian bridge. In a more general setting, close
to what we employ here, the Gaussianity was established by Borovkova et al. [1].

At a pseudo code level the procedure can be summarized as follow:

• Using the measured data, create a training set of the vectors y for fixed radii
values (Rk) by sampling data at measurement times (ti).

• Create the empirical statistical distribution of the training set y as a Gaussian
likelihood, by computing the mean μ and the covariance � of the training set
vectors.

• Find the maximum likelihood model parameter θ0 of the distribution

Pθ0(θ, x) ∼ exp −1

2
(μ− y(θ, x))T �−1(μ− y(θ, x))

• Sample the likelihood to find those model parameters θ for which the vector
y = C(θ0; x; θ; x̃) belongs to the distribution N(μ,�).

The first step will be discussed more in detail in the examples below. Note that in
[4] we assumed a parameter value θ0 given and created the training data by model
simulations, while here we start with given data, create the training set from subsets
of data, and proceed to estimate a maximum likelihood parameter value θ0.

Remark In all the cases the prior distribution is assumed to be flat uniform.
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3 Numerical Experiments

The main objective of this section is to modify the Correlation integral likelihood
(CIL) method for identifying SDE system parameters. The new version of the
method is compared with the filter likelihood results. After this validation the
approach is applied to a more complex case.

3.1 Ornstein-Uhlenbeck with Modification for Dynamics

We start with a basic SDE example, the Ornstein-Uhlenbeck (OU) process model.
We use it as a benchmark to verify that the CIL method is able to produce results
comparable to standard filter likelihood methods in a setting where these classical
methods perform perfectly well. The OU process equation is given by

dXt = −θXtdt + σdWt . (7)

In the numerical simulations, we use θ = 10 and σ = 1.5 as the ‘true’ values.
For simplicity, the mean value of the process is set to zero (but all the results and
conclusions are valid for a non-zero mean as well). We create a data signal of 3000
points on the time interval [0, 30], with initial value X = 0.

Figure 1 exhibits the signal used as data, obtained by integration of (7) using the
Euler-Maryama method, with a time step dt = 0.01 and using a fixed Gaussian
N(0, σ 2) as the diffusion part. The figure presents three different realizations.
Note that essentially the same results as those given below were obtained by any
realizations used.

Let us first apply the CIL method in the basic form. To create the sample sets si
we randomly select 1500 of the data points of the signal in Fig. 1 and use the rest
of the points as sj to get the set of distances needed in (6). This process is repeated
around 2000 times to get a representative set of the feature vectors y. The likelihood
is then obtained by computing the mean and covariance of the training vectors y,
and the Normality of the vectors can be verified by the usual χ2 test.

Next, we find the distribution of the model parameters θ, σ that follows this
distribution by creating a MCMC chain of length 20,000 using adaptive Metropolis
[3]. The result in Fig. 2 shows, however, that the model parameters are not identified
by this likelihood. This situation is different from those reported in [4], and several
unpublished cases, for chaotic systems, where the same likelihood construction is
able to identify the model parameters.

We conclude that too much information is lost in the mapping from data to
the feature vectors y. Indeed, this is not surprising in view of the fact that only
the distances between randomized data points is considered, while the order or
differences between consecutive points is lost. A trivial example is given by any



Correlation Integral Likelihood for Stochastic Differential Equations 31

0 500 1000 1500 2000 2500 3000

t

-1.5

-1

-0.5

0

0.5

1

1.5
x

Ornstein-Uhlenbeck with zero mean

Fig. 1 Ornstein-Uhlenbeck signal used for the experiments

vector or random points: sorting it in increasing order gives a definitely different
signal, but with just the same set of points and distances between them.

Intuitively, the mean reverting dynamics is lost here, so some additional modifi-
cation of the method is needed. The large posterior in Fig. 2 exhibits only what it is
programmed to do: signals whose distance distributions remain close, which in this
case does not characterize the signals. The feature vector can be modified in various
ways. Here we present the impact of extending it in the obvious way: we include the
differences between consecutive points. We create the feature vectors separately for
the signal and for the differences. The final feature vector is created by concatenating
the curves, and the Gaussianity of the combined vector can be tested by the χ2 test.
Figure 2 illustrates the posterior obtained using three different levels of information:
only the data signal, only difference between consecutive points, and both together.
We see how the first two are not enough, while the posterior of the extended case,
practically the intersection of the two other posteriors, significantly improves the
identification.

Next, we compare the Correlation Integral Likelihood results with that obtained
by filter likelihood estimation based on Kalman filtering. We use the same data
signal as above, using all the pointsXk, k = 1, . . . , 3000 as exact measurements (no
noise added) of the state vectors, and create MCMC samples of the likelihood given
by the expression (3). The comparison presented in Fig. 3. As expected, the filtering
method is more accurate with this amount of data (we use every Euler-Maryama
integration step as data for filtering), but the results by CIL are comparable.
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Fig. 2 The use of both state and difference information leads to a posterior (yellow) that is located
around the intersection of the posterior generated by the state information only (blue) and the one
generated using the difference only (orange)
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Fig. 3 Illustration of the results obtained by comparing CIL with the Filter likelihood method in
parameter estimation for a zero mean Ornstein-Uhlenbeck
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Remarks In the above examples we have used the known value of θ0 as the starting
point for the MCMC sampling. However, as the likelihood is created by the data
signal, we can equally well use it as the cost function to estimate θ0 first. We omit
here the details of this step.

Note that there is a difference in computational times of the two methods, in this
particular case they are approximately 20 min for CIL and around 6 min for KF. The
difference is basically due to the additional computation of the distances needed for
CIL.

Note that using a larger time step between data points would decrease the
accuracy of the KF estimate. However, it does not impact the CIL estimate, as it
is based on independent samplesXi in random order, not on predictingXi+1 byXi .

Finally, we note that the use of the present modification, including the system
‘dynamics’ by signal differences, is not limited to the OU example. Rather, it can
be used generally to improve the model parameter identification of both SDE and
deterministic chaotic systems. However, a more detailed discussion is outside the
scope of this work.

3.2 Stochastic Chaos

Here we study the CIL approach for chaotic dynamics, extended with stochastic
perturbations. Now the stochasticity is no more of the additive form (1) but is
contained in the model equations in a nonlinear way. The specific forms of the
perturbations discussed here come from meteorology. In the so called Ensemble
Prediction Systems (EPS) an ensemble of weather predictions, with carefully
perturbed initial values, is launched together with the main prediction. The motive
is to create probabilistic estimates for the uncertainty of the prediction. However,
it is difficult to create a spread of the ensemble predictions that would match the
observed uncertainty; the spread of the model simulations tends to bee too narrow.
To increase the spread the so called stochastic physics is employed: the right hand
side of the model differential equation is multiplied by a random factor (close to one)
at every integration step. More recently, so called stochastic parametrization is used
in addition: certain model parameters are randomized likewise at every integration
step of the system. For more details of these methods see [9].

As a case study for the parameter estimation with stochastic physic and stochastic
parametrization a classical chaotic attractor, the Rossler system, is chosen. We
give the Rossler system in the form where the stochastic physics is introduced by
the multiplicative factors 1 + ckε, and the model parameters α, β, γ are likewise
replaced by perturbed terms α + ckε, etc., k = 1 : 6, ε ∼ N(0, 1). The system
reads as

⎧⎨
⎩
Ẋ = (1 + c1ε1) (−Y − Z)

Ẏ = (1 + c2ε2) (X + (α + c3ε3) Y )

Ż = (1 + c4ε4) ((β + c5ε5)+ Z (X − (γ + c6ε6)))

(8)
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Fig. 4 The X component of the Rossler model with four different options for stochasticity

with ‘true’ parameters α = β = 0.2 and γ = 5.7. The magnitudes ck were chosen
so that the maximum relative error would not exceed 40% in any of the cases.

Figure 4 shows the time evolutions of one of the components, the values of X
for different combinations of added stochasticity. Each plot consists of 80 runs with
slightly perturbed initial values. We see that the interval of predictable behavior
shrinks to almost one half of that of deterministic chaos when both types of
perturbations are added.

The task of parameter estimation is now to try to find the distribution of the
mean value of each of the perturbed parameters. The construction of the likelihood
is performed via the standard procedure: from a long enough data signal (here,
produced by simulating (8)) we sample subsets to calculate the distances, and repeat
this for a number of times to be able to empirically determine the statistics of
the feature vectors. Again, the Gaussianity of the statistics can be verified. Both
a maximum likelihood parameter estimate, and the subsequent MCMC sampling
for the posterior can then be performed.

For the examples we create the data by simulating (8) over a total time interval
[0, 120,000] and select data points at frequency shown in Fig. 4 with the green
circles. To get one feature vector y we select two disjoint sets of 2000 consecutive
data points. To create the statistics for y we repeat this procedure for around 1800
times. The number of radius values used was 10.

The results of the runs for different setting of the perturbations are given in Fig. 5.
We can conclude that the approach performs as expected: the more stochasticity in
the model, the wider are the parameter posteriors. However, in all cases we get
bounded posteriors, and the algorithm performs without any technical issues.
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Fig. 5 Parameter posteriors for three different options of stochasticity for the Rossler model

4 Conclusions

In this work we have applied the recently developed Correlation Integral Likelihood
method to estimate parameters of stochastic differential equation systems. Certain
modifications are needed to get satisfactory results, comparable to those achieved
by standard filter likelihood methods for basic SDE systems. But the main focus is
on situations where the standard methods are not available, such as the stochastic
physics and parametrizations employed in meteorology for uncertainty quantifica-
tion. Several extensions of the approach are left for future work.
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A Set Optimization Technique
for Domain Reconstruction
from Single-Measurement Electrical
Impedance Tomography Data

Bastian Harrach and Janosch Rieger

Abstract We propose and test a numerical method for the computation of the
convex source support from single-measurement electrical impedance tomography
data. Our technique is based on the observation that the convex source support is the
unique minimum of an optimization problem in the space of all convex and compact
subsets of the imaged body.

1 Introduction

Electrical impedance tomography is a modern non-invasive imaging technology
with the potential to complement computerized tomography in treatments like
pulmonary function diagnostics and breast cancer screening. From a mathematical
perspective, the reconstruction of the exact conductivity within the imaged body
from electrical impedance tomography data amounts to solving a strongly ill-posed
inverse problem.

The difficulty of this problem can partly be avoided by noting that one is usually
not interested in the conductivity as such, but only in the domain where it differs
from the conductivity of healthy tissue. A technique introduced in [5] for scattering
problems and adapted to electrical impedance tomography later in [3] takes this
approach one step further by considering a convex set, called the convex source
support, which contains information on the desired domain, but can be computed
from a single measurement.
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We propose a numerical method for the computation of the convex source support
from electrical impedance tomography data. It is based on the observation that this
particular set is the unique minimum of an optimization problem in the space of
all convex and compact subsets of the imaged body. In Sect. 2, we recall the notion
of the convex source support, and in Sect. 3, we formulate the above-mentioned
optimization problem and manipulate its constraint into a convenient form. In
Sect. 4, we introduce Galerkin approximations, which are spaces of polytopes with
fixed outer normals, to the space of all convex and compact subsets of a given
Euclidean vector space. These spaces possess a sparse and unique representation
in terms of coordinates. In Sect. 5, we discuss how the derivatives of the objective
function and the constraint of our optimization problem can be computed efficiently.
In Sect. 6, we gather all the above ingredients and solve the optimization problem
numerically using a standard interior point method on the Galerkin approximation,
which yields a numerical approximation of the convex source support.

This paper is a report on work in progress, which aims to present ideas rather than
a complete solution of the problem. In particular, we assume that we can measure
the potential on the entire boundary of the imaged body, which is not possible in
real-world applications, and we neither include an error analysis nor stability results
for the proposed algorithm.

2 The Convex Source Support in Electrical Impedance
Tomography

We consider the following idealistic model of the EIT problem. LetΩ ⊂ Rd , d ≥ 2,
be a smoothly bounded domain describing the imaged body, let σ ∈ L∞(Ω) be the
conductivity within Ω , and let g ∈ L2�(∂Ω) be the electric current applied to ∂Ω ,
where L2�(∂Ω) denotes the subspace of L2(∂Ω) with vanishing integral mean on
∂Ω . Then the electrical potential u ∈ H 1� (Ω) solves

∇ · (σ (x)∇u(x)) = 0, x ∈ Ω,
σ∂νu|∂Ω(x) = g(x), x ∈ ∂Ω, (1)

where ν is the outer normal on ∂Ω , and H 1� (∂Ω) is the subspace of H 1(Ω)-
functions with vanishing integral mean on ∂Ω .

Our aim is to find inclusions or anomalies in Ω where the conductivity σ differs
from a reference conductivity value σ0 (e.g. that of healthy tissue) from measuring
the electric potential u|∂Ω on ∂Ω . To simplify our exposition we assume σ0 ≡ 1
throughout this work. More precisely, we aim to find information on supp(σ − σ0)

from the data (u − u0)|∂Ω , where u0 solves (1) with the same Neumann boundary
data g, and σ replaced by σ0. This is usually referred to as the problem of single
measurement EIT since only one current g is applied to the patient.
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Now we introduce the convex source support, following [3] and [5]. First note
that since u and u0 are solutions of (1) with conductivities σ and σ0 and identical
Neumann data g ∈ L2�(∂Ω), their difference w := u− u0 solves the equation

Δw = div((1 − σ)∇u) in Ω, ∂νw = 0 on ∂Ω, (2)

with a source term satisfying

supp((1 − σ)∇u) ⊂ supp(1 − σ). (3)

This motivates the following construction of the convex source support. Let us
define the virtual measurement operator

L : L2(Ω)d → L2�(∂Ω), F → w|∂Ω ,

where w ∈ H 1� (Ω) solves

Δw = divF in Ω, ∂νw = 0 on ∂Ω.

Given a measurement f = (u − u0)|∂Ω ∈ L2�(∂Ω), the convex source support of
problem (1) is defined by

C f :=
⋂
LF=f

co(supp(F )),

which is the intersection of the convex hulls of all supports of sources that could
possibly generate the measurement f . By Eqs. (2) and (3),

C (u− u0)|∂Ω ⊂ co(supp((1 − σ)∇u)) ⊂ co(supp(σ − σ0)),

which means that the convex source support provides coarse, but reliable informa-
tion about the position of the set supp(σ − σ0). In fact, much more is known. The
following theorem, e.g., can be found in [3].

Theorem 1 We have C f = ∅ if and only if f = 0, and for every ε > 0, there exists
Fε ∈ L2(Ω)d such that LFε = f and dist(co(supp(Fε)),C f ) < ε.

3 An Optimization Problem in Kc(R
d)

For given data f ∈ L2�(∂Ω), we recast the computation of the convex source support
as a minimization problem

vol(D) = min! subject to D ∈ Kc(R
d ), C f ⊂ D ⊂ Ω (4)
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in the space Kc(R
d) of all nonempty convex and compact subsets of Rd , which

obviously has the unique solution D∗ = C f . To solve the problem (4), we mainly
need a handy criterion to check whether C f ⊂ D.

By Theorem 1, we have C f ⊂ intD if and only if there exists F ∈ L2(Ω)d with
supp(F ) ⊂ D and LF = f . In other words, we have to check whether f ∈ R(LD),
i.e. whether f is in the range of the operator LD , where

LD : L2(D)d → L2�(∂Ω), F → w|∂Ω ,

and w ∈ H 1� (Ω) solves

Δw = divF in Ω, ∂νw = 0 on ∂Ω.

Proposition 1 If the interior of D ⊆ Ω is not empty, then LD is a compact linear
operator with dense range, and

f �∈ R(LD) if and only if lim
α→0

‖RDα f ‖ = ∞.

where RDα f := (L∗
DLD + αI)−1L∗

Df .

Proof LD is the concatenation of the linear bounded solution operator and the linear
compact trace operator from H 1� (Ω) to L2�(∂Ω) and thus linear and compact. The
adjoint of LD is given by (see [4, Lemma 2])

L∗
D : L2�(∂Ω)→ L2(D)n, ϕ → ∇v0|D,

where v0 ∈ H 1� (D) solves

Δv0 = 0 in Ω, ∂νv0|∂Ω = ϕ on ∂Ω.

By unique continuation, L∗
D is injective and thus LD has dense range. This also

implies that the domain of definition of the Moore-Penrose inverse L+
D (cf. [2,

Def. 2.2]) is given by

D(L+
D) = R(LD)+ R(LD)

⊥ = R(LD).

Since RDα is a linear regularization (the Tikhonov regularization, cf. [2, Section 5]),
and a simple computation shows that

sup
α>0

‖LDRDα ‖ ≤ 1,

it follows from standard regularization theory (cf., e.g., [2, Prop. 3.6]) that

lim
α→0

RDα f = L+
Df if f ∈ D(L+

D) = R(LD),
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and that

lim
α→0

‖RDα f ‖ = ∞ if f �∈ D(L+
D) = R(LD).

This proves the assertion.

To implement Proposition 1, we therefore have to check whether the quantity

‖RDα f ‖2 = ‖(L∗
DLD + αI)−1L∗

Df ‖2 = ‖L∗
D(LDL

∗
D + αI)−1f ‖2

= ((LDL
∗
D + αI)−1LDL

∗
D(LDL

∗
D + αI)−1f, f )

remains bounded as α → 0. Writing MD := LDL
∗
D : L2�(∂Ω) → L2�(∂Ω), we

obtain the convenient representation

‖RDα f ‖2 = ((MD + αI)−1MD(MD + αI)−1f, f ). (5)

Fix an orthonormal basis (ϕj )j of L2�(∂Ω). The characterization of L∗
D in [4,

Lemma 2] shows that

(MDϕj , ϕk) = (L∗
Dϕj , L

∗
Dϕk) =

∫
D

∇uj0 · ∇uk0 dx, (6)

where uj0 solves

Δu
j
0 = 0 in Ω, ∂νu

j
0 = ϕj on ∂Ω. (7)

Note that the integrands ∇uj0 · ∇uk0 do not depend on D and hence can be
precomputed. Since

∫
D

∇uj0 · ∇uk0 dx =
∫
∂D

∂νu
j

0 · uk0 ds

by the Gauß-Green theorem, even more computational effort can be shifted to the
offline phase, provided the sets under consideration possess essentially finitely many
different normals, which is the situation we consider in Sect. 4 and what follows.

Proposition 1 gives a mathematically rigorous criterion to check whether a set
D contains the convex source support. In the following we describe a heuristic
numerical implementation of this criterion and test it on a simple test example. Let
us stress that we do not have any theoretical results on convergence or stability of the
proposed numerical implementation, and that it is completely unclear whether such
an implementation exists. Checking whether a function lies in the dense range of
an infinite-dimensional operator seems intrinsically unstable to discretization errors
and errors in the function or the operator. Likewise, it is unclear how to numerically
check whether the sequence in Proposition 1 diverges or not.
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In other words, the following heuristic numerical algorithm is motivated by a
rigorous theoretical result but it is completely heuristic and we do not have any
theoretical justification for this algorithm. Since, to the knowledge of the authors,
no convergent numerical methods are known for the considered problem, we believe
that this algorithm might still be of interest and serve as a first step towards
mathematically rigorously justified algorithms.

To heuristically check, whether ‖RDα f ‖ → ∞, we fix suitable constants α,C >
0 and N ∈ N. Consider the finite-dimensional subspace VN := span(ϕ1, . . . , ϕN)

of L2�(∂Ω) and the corresponding L2 orthogonal projector PN : L2�(∂Ω) → VN .
Instead of MD , we consider the truncated operator MN

D := PNM|VN : VN → VN ,
which satisfies

(MN
Dϕj , ϕk) = (PNMDϕj , ϕk) = (MDϕj , ϕk) for 1 ≤ j, k ≤ N,

so that formula (6) holds for MN
D as well. We define

‖RDα,Nv‖2 := ((MN
D + αI)−1MN

D (M
N
D + αI)−1PNv, PNv) for all v ∈ L2�(∂Ω)

and note that

RDα,Nf → RDα f as N → ∞

follows from a discussion, which involves a variant of the Banach Lemma.
Therefore, the use of the criterion

‖RDα,Nf ‖2 ≤ C

instead of ‖RDα f ‖ → ∞ is well-motivated, and we solve

vol(D) = min! subject to D ∈ Kc(R
d ), D ⊂ Ω, ‖RDα,Nf ‖2 ≤ C. (8)

with, e.g., α = 10−4 and C = 106 instead of (4).

4 Galerkin Approximations to Kc(R
2)

We outline a setting for a first-discretize-then-optimize approach to numerical
optimization in the space Kc(R

2), which we use to solve problem (8). To this end,
we define Galerkin subspaces of Kc(R

2) in terms of polytopes with prescribed
sets of outer normals. These spaces have good global approximation properties (see
Proposition 2), they possess a unique representation in terms of few coordinates, and
their sets of admissible coordinates are characterized by sparse linear inequalities.
A theory of these spaces in arbitrary dimension is work in progress.
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Fix a matrix A ∈ Rm×2 with rows aTi , i = 1, . . . ,m, where ai ∈ R2, ‖ai‖2 = 1
for all i and ai �= aj for all i, j with i �= j . For every b ∈ Rm, we consider the
convex polyhedron

QA,b := {x ∈ R2 : Ax ≤ b},

and we define a space GA ⊂ Kc(R
2) of convex polyhedra by setting

GA := {QA,b : b ∈ Rm} \ {∅}.

The choice of these spaces is motivated by an approximation result from [8]. Recall
the definition of the one-sided Hausdorff distance

dist : Kc(R
2)× Kc(R

2) → R+, dist(D,D′) := sup
x∈D

inf
x ′∈D′ ‖x − x ′‖2.

Proposition 2 Assume that the matrix A ∈ Rm×2 satisfies

δ := max
x∈R2, ‖x‖2=1

dist({x}, {aT1 , . . . , aTm}) < 1. (9)

Then the associated space GA consists of convex polytopes, and for allD ∈ Kc(R
2),

there exists QA,b ∈ GA such that D ⊂ QA,b and

dist(QA,b,D) ≤ 2δ − δ2

1 − δ
dist(D, {0}).

Hence, if the matrix A is augmented in such a way that δ → 0 as m → ∞, then GA
converges to Kc(R

2) uniformly on every bounded subset of Kc(R
2).

It is, at present, not entirely clear how to represent the spaces GA in terms of
coordinates. There are b ∈ Rm with QA,b = ∅, and two different vectors b, b′ ∈
Rm may encode the same polytope QA,b = QA,b′ . In our concrete optimization
problem, the constraint C f ⊂ D will enforce QA,b �= ∅. For the time being, we
treat the second issue by forcing all hyperplanes {x ∈ R2 : aTk x = bk}, k =
1, . . . ,m, to possess at least one common point with QA,b. This approach will be
made rigorous in the future.

Definition 1 We call the set CA of all b ∈ Rm satisfying

p1

(
bm

b2

)
≥ b1, pk

(
bk−1

bk+1

)
≥ bk, k= 2, . . . ,m−1, and pm

(
bm−1

b1

)
≥ bm
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with

p1 := aT1

(
aTm
aT2

)−1

, pm := aTm

(
aTm−1
aT1

)−1

,

pk := aTk

(
aTk−1
aTk+1

)−1

, k = 2, . . . ,m− 1

the set of admissible coordinates.

Note that the inverse matrices above exist when δ < 1 as required in Proposi-
tion 2. Hence it is easy to assemble the sparse matrix

HA =

⎛
⎜⎜⎜⎜⎜⎝

1 −p1,2 −p1,1

−p2,1 1 −p2,2
. . .

. . .
. . .

−pm−1,1 1 −pm−1,2

−pm,2 −pm,1 1

⎞
⎟⎟⎟⎟⎟⎠
,

which gives rise to the following characterization of the set CA ⊂ Rm.

Lemma 1 The set of admissible coordinates can be written as

CA = {b ∈ Rm : HAb ≤ 0}.

All in all, we replaced the relatively inaccessible space Kc(R
2) with a Galerkin

subspace GA that is parametrized over a set CA ⊂ Rm of coordinates, which, in
turn, is described by a sparse linear inequality. For the practical computations in this
paper, we fix the matrix A = (a1, . . . , am)

T given by

ak = (cos(2kπ/m), sin(2kπ/m))T , k = 1, . . . ,m,

which is probably the best choice in the absence of detailed information on the set
to be approximated. As we will haveΩ = B1(0) in our computational example, we
will replace problem (4) with the fully discrete optimization problem

vol(QA,b) = min!
subject to b ∈ Rm, HAb ≤ 0, b ≤ 1, ‖RQA,bα,N f ‖2 ≤ C.

⎫⎬
⎭ (10)
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5 Gradients of Functions on GA

The objective function D → vol(D) and the constraint D → ‖RDα,Nf ‖2 are both
given in terms of integrals of a real-valued function over the set D. The evaluation
of these integrals is straight-forward and efficient. The efficient evaluations of the
gradients of both integrals with respect to coordinates requires some preparation.
We follow [6, Lemma 2.2] and [7, Theorem 1].

Proposition 3 Let b ∈ CA, let k ∈ {1, . . . ,m}, and let QkA,b be the facet

QkA,b := QA,b ∩ {x ∈ R2 : aTk x = bk}.

If we assume that vol2(QA,b) > 0 and vol1(QkA,b) > 0, then for any continuous

function h : R2 → R we have

d

dbk

∫
QA,b

h(x) dx =
∫
QkA,b

h(ξ)dξ.

The above proposition shows that wheneverQA,b is not degenerate, we have

∇bvol2(QA,b) = (vol1(Q1
A,b), . . . , vol1(QmA,b))

T .

To compute ∇b‖RQA,bα,N f ‖2, we need the following lemma. The construction of the
matrices P , S and U reduces the costs for the computation of the desired derivative.

Lemma 2 Let ε > 0, let M : (−ε, ε) → RN×N , γ → M(γ ), be differentiable
with M(γ ) symmetric and M(γ ) + αI invertible for all γ ∈ (−ε, ε). Using the
abbreviations

X := M + αI, Y := X−1M ′X−1 and Z := MX−1,

we find that

(X−1MX−1)′ = −YZ + Y − (YZ)T .

The proof is elementary and therefore omitted. An application of Lemma 2 to the
matrix representation of MN

QA,b
yields

d

dbk
‖RQA,bα,N f ‖2 = d

dbk
((MN

QA,b
+ αI)−1MN

QA,b
(MN

QA,b
+ αI)−1f, f )

= ((−YkZ + Yk − (YkZ)
T )f, f )
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with the abbreviations

X := MN
QA,b

+ αI, Yk := X−1(
d

dbk
MN
QA,b

)X−1 and Z := MN
QA,b

X−1,

where

[ d
dbk

MN
QA,b

]ij =
∫
QkA,b

∇ui0 · ∇uj0 dξ

by Proposition 3. Thus we obtain a formula for ∇b‖RQA,bα,N f ‖2 that is not only more
precise than a numerical approximation by finite differences, but also much cheaper
to compute, because the area of integration is just a lower-dimensional surface.

6 A First Numerical Simulation

We test our numerical algorithm on a simple 2d example, where all quantities are
known explicitly and the algorithm can be observed under controlled conditions. Let
Ω = B1(0) be the unit circle and let σ0 ≡ 1. We consider a point inhomogeneity
which leads to a difference potential (cf. [1])

w(x) = 1

π

〈z∗ − x, η〉
‖z∗ − x‖2

2

, x ∈ B1(0),

that solves the partial differential equation

Δw = η · ∇δz∗ in Ω, σ0∂νu|∂Ω = 0,

where z∗ is the location of the point inhomogeneity, and η ∈ R2, ‖η‖2 = 1 is a
dipole orientation vector depending on the applied current pattern. Using a standard
smoothing argument, it is easily checked (see, e.g., [4]) that for each open set O
containing z∗ there exists F ∈ L2(O)2 so that

Δw = divF.

Hence the convex source support of the difference measurement w|∂Ω is the
inhomogeneity location z∗. In our example we used z∗ = ( 3

10 ,
3

10 )
T and η =

(1, 0)T .
In the following computations, it is convenient to switch between standard

coordinates (x1, x2) and polar coordinates (r, ξ). Consider the basis

ϕ2j (ξ) = 1√
π

cos(jξ), ϕ2j+1(ξ) = 1√
π

sin(jξ), j ∈ N1,
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of L2�(∂Ω). Since the Laplace operator satisfies

ux1x1 + ux2x2 = urr + 1

r
ur + 1

r2 uξξ ,

it is easy to see that the corresponding solutions of problem (7) are

u
2j
0 (r, ξ) = 1

j
√
π

cos(jξ)rj , u
2j+1
0 (r, ξ) = 1

j
√
π

sin(jξ)rj , j ∈ N1.

Since the gradient satisfies

ux1 = cos ξ · ur + 1

r
sin ξ · uξ , ux2 = sin ξ · ur + 1

r
cos ξ · uξ ,

we have explicit representations

d

dx1
u

2j
0 = rj−1

√
π

cos((j + 1)ξ),
d

dx2
u

2j
0 = − r

j−1

√
π

sin((j − 1)ξ),

d

dx1
u

2j+1
0 = rj−1

√
π

sin((j + 1)ξ),
d

dx2
u

2j+1
0 = rj−1

√
π

cos((j − 1)ξ).

Now we fix the matrix A = (a1, . . . , a8)
T given by

ak = (cos(kπ/4), sin(kπ/4))T , k = 1, . . . , 8,

and solve optimization problem (4) approximately by applying Matlab’s interior
point method to problem (10) with initial value b0 = ( 4

5 , . . . ,
4
5 )
T and N = 6,

computing values and gradients of the objective b → vol2(QA,b) and the constraint

b → ‖RQA,bα,N w|∂Ω‖2 as in Sect. 5. The results and the computation times on an
ordinary desktop computer are displayed in Fig. 1.
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Fig. 1 Selected iterates of Matlab’s interior point optimization tool applied to (10) with data
specified in Sect. 6. The current iterate is highlighted in black. The position of the dipole is the
center of the red circle
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Local Volatility Calibration by Optimal
Transport

Ivan Guo, Grégoire Loeper, and Shiyi Wang

Abstract The calibration of volatility models from observable option prices is a
fundamental problem in quantitative finance. The most common approach among
industry practitioners is based on the celebrated Dupire’s formula, which requires
the knowledge of vanilla option prices for a continuum of strikes and maturities
that can only be obtained via some form of price interpolation. In this paper, we
propose a new local volatility calibration technique using the theory of optimal
transport. We formulate a time continuous martingale optimal transport problem,
which seeks a martingale diffusion process that matches the known densities of an
asset price at two different dates, while minimizing a chosen cost function. Inspired
by the seminal work of Benamou and Brenier, we formulate the problem as a convex
optimization problem, derive its dual formulation, and solve it numerically via an
augmented Lagrangian method and the alternative direction method of multipliers
(ADMM) algorithm. The solution effectively reconstructs the dynamic of the asset
price between the two dates by recovering the optimal local volatility function,
without requiring any time interpolation of the option prices.

1 Introduction

A fundamental assumption of the classical Black-Scholes option pricing framework
is that the underlying risky asset has a constant volatility. However, this assumption
can be easily dispelled by the option prices observed in the market, where the
implied volatility surfaces are known to exhibit “skews” or “smiles”. Over the
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years, many sophisticated volatility models have been introduced to explain this
phenomenon. One popular class of model is the local volatility models. In a local
volatility model, the volatility function σ(t, St ) is a function of time t as well as the
asset price St . The calibration of the local volatility function involves determining
σ from available option prices.

One of the most prominent approaches for calibrating local volatility is intro-
duced by the path-breaking work of Dupire [6], which provides a method to recover
the local volatility function σ(t, s) if the prices of European call options C(T ,K)
are known for a continuum of maturities T and strikes K . In particular, the famous
Dupire’s formula is given by

σ 2(T ,K) =
∂C(T ,K)
∂T

+ μtK
∂C(T ,K)
∂K

K2

2
∂2C(T ,K)

∂K2

, (1)

where μt is a deterministic function. However, in practice, option prices are only
available at discrete strikes and maturities, hence interpolation is required in both
variables to utilize this formula, leading to many inaccuracies. Furthermore, the
numerical evaluation of the second derivative in the denominator can potentially
cause instabilities in the volatility surface as well as singularities. Despite these
drawbacks, Dupire’s formula and its variants are still used prevalently in the
financial industry today.

In this paper, we introduce a new technique for the calibration of local volatility
functions that adopts a variational approach inspired by optimal transport. The
optimal transport problem was first proposed by Monge [10] in 1781 in the
context of civil engineering. The basic problem is to transfer material from one
site to another while minimizing transportation cost. In the 1940s, Kantorovich
[8] provided a modern treatment of the problem based on linear programming
techniques, leading to the so-called Monge-Kantorovich problem. Since then, the
theory of optimal transport has attracted considerable attention with applications
in many areas such as fluid dynamics, meteorology and econometrics (see, e.g.,
[7] and [14]). Recently, there have been a few studies extending optimal transport
to stochastic settings with applications in financial mathematics. For instance,
Tan and Touzi [13] studied an extension of the Monge-Kantorovich problem for
semimartingales, while Dolinsky and Soner [5] applied martingale optimal transport
to the problem of robust hedging.

In our approach, we begin by recovering the probability density of the underlying
asset at times t0 and t1 from the prices of European options expiring at t0 and t1.
Then, instead of interpolating between different maturities, we seek a martingale
diffusion process which transports the density from t0 to t1, while minimizing a
particular cost function. This is similar to the classical optimal transport problem,
with the additional constraint that the diffusion process must be a martingale driven
by a local volatility function. In the case where the cost function is convex, we find
that the problem can be reformulated as a convex optimization problem under linear
constraints. Theoretically, the stochastic control problem can be reformulated as an
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optimization problem which involves solving a non-linear PDE at each step, and the
PDE is closely connected with the ones studied in Bouchard et al.[2, 3] and Loeper
[9] in the context of option pricing with market impact. For this paper, we approach
the problem via the augmented Lagrangian method and the alternative direction
method of multipliers (ADMM) algorithm, which was also used in Benamou and
Brenier [1] for classical optimal transport problems.

The paper is organized as follows. In Sect. 2, we introduce the classical optimal
transport problem as formulated by Benamou and Brenier [1]. In Sect. 3, we
introduce the martingale optimal transport problem and its augmented Lagrangian.
The numerical method is detailed in Sect. 4 and numerical results are given in
Sect. 5.

2 Optimal Transport

In this section, we briefly outline the optimal transport problem as formulated by
Benamou and Brenier [1]. Given density functions ρ0, ρ1 : R

d → [0,∞) with
equal total mass

∫
Rd
ρ0(x)dx = ∫

Rd
ρ1(x)dx. We say that a map s : Rd → R

d is an
admissible transport plan if it satisfies

∫
x∈A

ρ1(x)dx =
∫
s(x)∈A

ρ0(x)dx, (2)

for all bounded subsetA ⊂ R
d . Let T denote the collection of all admissible maps.

Given a cost function c(x, y), which represents the transportation cost of moving
one unit of mass from x to y, the optimal transport problem is to find an optimal
map s∗ ∈ T that minimizes the total cost

inf
s∈T

∫
Rd
c(x, s(x))ρ0(x)dx. (3)

In particular, when c(x, y) = |y − x|2 where | · | denotes the Euclidean norm, this
problem is known as the L2 Monge-Kantorovich problem (MKP).

The L2 MKP is reformulated in [1] in a fluid mechanic framework. In the time
interval t ∈ [0, 1], consider all possible smooth, time-dependent, densities ρ(t, x) ≥
0 and velocity fields v(t, x) ∈ R

d , that satisfy the continuity equation

∂tρ(t, x)+ ∇ · (ρ(t, x)v(t, x)) = 0, ∀t ∈ [0, 1], ∀x ∈ R
d , (4)

and the initial and final conditions

ρ(0, x) = ρ0, ρ(1, x) = ρ1. (5)
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In [1], it is proven that the L2 MKP is equivalent to finding an optimal pair (ρ∗, v∗)
that minimizes

inf
ρ,v

∫
Rd

∫ 1

0
ρ(t, x)|v(t, x)|2dtdx, (6)

subject to the constraints (4) and (5). This problem is then solved numerically in
[1] via an augmented Lagrangian approach. The specific numerical algorithm used
is known as the alternative direction method of multipliers (ADMM), which has
applications in statistical learning and distributed optimization.

3 Formulation

3.1 The Martingale Problem

Let (Ω,F,Q) be a probability space, where Q is the risk-neutral measure. Suppose
the dynamic of an asset price Xt on t ∈ [0, 1] is given by the local volatility model

dXt = σ(t,Xt )dWt, t ∈ [0, 1], (7)

where σ(t, x) is a local volatility function and Wt is a one-dimensional Brownian
motion. For the sake of simplicity, suppose the interest and dividend rates are zero.
Denote by ρ(t, x) the density function of Xt and γ (t, x) = σ(t, x)2/2 the diffusion
coefficient. It is well known that ρ(t, x) follows the Fokker-Planck equation

∂tρ(t, x)− ∂xx(ρ(t, x)γ (t, x)) = 0. (8)

Suppose that the initial and the final densities are given by ρ0(x) and ρ1(x),
which are recovered from European option prices via the Breeden-Litzenberger [4]
formula,

ρT (K) = ∂2C(T ,K)

∂K2 .

Let F : R → R ∪ {+∞} be a convex cost function. We are interested in
minimizing the quantity

E

(∫ 1

0
F (γ (t,Xt )) dt

)
=
∫
D

∫ 1

0
ρ(t, x)F (γ (t,Xt )) dtdx,

where F(x) = +∞ if x < 0, and D ⊆ R is the support of {Xt, t ∈ [0, 1]}. Unlike
the classical optimal transport problem, the existence of a solution here requires an
additional condition: there exists a martingale transport plan if and only if ρ0 and ρ1
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satisfy:

∫
R

ϕ(x)ρ0(x)dx ≤
∫
R

ϕ(x)ρ1(x)dx,

for all convex function ϕ(x) : R → R. This is known as Strassen’s Theorem [12].
This condition is naturally satisfied by financial models in which the asset price
follows a martingale diffusion process.

Remark 1 The formulation here is actually quite general and it can be easily
adapted to a large family of models. For example, the case of a geometric Brownian
motion with local volatility can be recovered by substituting σ̃ (t, Xt )Xt = σ(t,Xt )

everywhere, including in the Fokker-Planck equation. The cost function F would
then also be dependent on x. The later arguments involving convex conjugates still
hold since F remains a convex function of σ̃ .

Since ρF(γ ) is not convex in (ρ, γ ) (which is crucial for our method), the
substitution m(t, x) := ρ(t, x)γ (t, x) is applied. So we obtain the following
martingale optimal transport problem:

inf
ρ,m

∫
D

∫ 1

0
ρ(t, x)F

(
m(t, x)

ρ(t, x)

)
dtdx, (9)

subject to the constraints:

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x), (10)

∂tρ(t, x)− ∂xxm(t, x) = 0. (11)

Using the convexity of F , the term ρF(m/ρ) can be easily verified to be convex in
(ρ,m). Also note that we have the natural restrictions of ρ > 0 and m ≥ 0. Note
thatm ≥ 0 is enforced by penalizing the cost functionF , and ρ > 0 will be encoded
in the convex conjugate formulation. (see Proposition 1)

Next, introduce a time-space dependent Lagrange multiplier φ(t, x) for the
constraints (10) and (11). Hence the associated Lagrangian is

L(φ, ρ,m) =
∫
R

∫ 1

0
ρ(t, x)F

(
m(t, x)

ρ(t, x)

)
+ φ(t, x)

(
∂tρ(x)− ∂xx(m(t, x))

)
dtdx.

(12)

Integrating (12) by parts and letting m = ργ vanish on the boundaries of D, the
martingale optimal transport problem can be reformulated as the following saddle
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point problem:

inf
ρ,m

sup
φ

L(φ, ρ,m) = inf
ρ,m

sup
φ

∫
D

∫ 1

0

(
ρF

(
m

ρ

)
− ρ∂tφ −m∂xxφ

)
dtdx

−
∫
D

(φ(0, x)ρ0 − φ(1, x)ρ1) dx. (13)

As shown by Theorem 3.6 in [13], (13) has an equivalent dual formulation which
leads to the following representation:

sup
φ

inf
ρ,m

L(φ, ρ,m) = sup
φ

inf
ρ

∫
D

∫ 1

0
−ρ (∂tφ + F ∗(∂xxφ)

)
dtdx

−
∫
D

(φ(0, x)ρ0 − φ(1, x)ρ1) dx. (14)

In particular, the optimal φ must satisfy the condition

∂tφ + F ∗(∂xxφ) = 0, (15)

where F ∗ is the convex conjugate of F (see (16) and Proposition 1). We will later
use (15) to check the optimality of our algorithm.

3.2 Augmented Lagrangian Approach

Similar to [1], we solve the martingale optimal transport problem using the
augmented Lagrangian approach. Let us begin by briefly recalling the well-known
definition and properties of the convex conjugate. For more details, the readers are
referred to Section 12 of Rockafellar [11].

Fix D ⊆ R
d , let f : R

d → R ∪ {+∞} be a proper convex and lower semi-
continuous function. Then the convex conjugate of f is the function f ∗ : Rd →
R ∪ {+∞} defined by

f ∗(y) := sup
x∈Rd

(x · y − f (x)). (16)

The convex conjugate is also often known as the Legendre-Fenchel transform.

Proposition 1 We have the following properties:

(i) f ∗ is a proper convex and lower semi-continuous function with f ∗∗ ≡ f ;
(ii) if f is differentiable, then f (x)+ f ∗(f ′(x)) = xf ′(x).
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Returning to the problem at hand, recall that G(x, y) := xF(y/x), x > 0 is
convex in (x, y). By adopting the convention of G(x, y) = ∞ whenever x ≤ 0,
it can be expressed in terms of the convex conjugate, as shown in the following
proposition.

Proposition 2 Denote by F ∗ the convex conjugate of F .

(i) Let G(x, y) = xF(y/x), the convex conjugate ofG is given by:

G∗(a, b) =
{

0, if a + F ∗(b) ≤ 0,

∞, otherwise.
(17)

(ii) For x > 0, We have the following equality,

xF
(y
x

)
= sup
(a,b)∈R2

{ax + by : a + F ∗(b) ≤ 0}. (18)

Proof

(i) By definition, the convex conjugate of G is given by

G∗(a, b) = sup
(x,y)∈R2

{
ax + by − xF

(y
x

)
: x > 0

}
(19)

= sup
(x,y)∈R2

{
ax + x

(
b
y

x
− F

(y
x

))
: x > 0

}
(20)

= sup
x>0

{
x(a + F ∗(b))

}
, (21)

If a + F ∗(b) ≤ 0, the supremum is achieved by limit x → 0, otherwise, G∗
becomes unbounded as x increases. This establishes part (i).

(ii) The required equality follows immediately from part (i) and the fact that

xF
(y
x

)
= sup
(a,b)∈R2

{ax + by −G∗(a, b) : a + F ∗(b) ≤ 0}.

"#
Now we are in a position to present the augmented Lagrangian. First, let us

introduce the following notations:

K =
{
(a, b) : R ×R → R ×R

∣∣∣ a + F ∗(b) ≤ 0
}
, (22)

μ = (ρ,m) = (ρ, ργ ), q = (a, b), 〈μ, q〉 =
∫
D

∫ 1

0
μ · q, (23)
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H(q) = G∗(a, b) =
{

0, if q ∈ K,
∞, otherwise,

(24)

J (φ) =
∫
D

[φ(0, x)ρ0 − φ(1, x)ρ1], (25)

∇t,xx = (∂t , ∂xx). (26)

By using the above notations, we can express the equality from Proposition 2 (ii) in
the following way,

ρF

(
m

ρ

)
= sup

{a,b}∈K
{aρ + bm} = sup

q∈K
{μ · q}. (27)

Since the restriction q ∈ K is checked point-wise for every (t, x), we can exchange
the supremum with the integrals in the following equality

∫
D

∫ 1

0
sup
q∈K

{μ·q} = sup
q

{
−H(q)+

∫
D

∫ 1

0
μ·q
}

= sup
q

{
−H(q)+〈μ, q〉

}
. (28)

Therefore, the saddle point problem specified by (13) can be rewritten as

sup
μ

inf
φ,q

{
H(q)+ J (φ)+ 〈μ,∇t,xxφ − q〉

}
. (29)

Note that in the new saddle point problem (29), μ is the Lagrange multiplier of the
new constraint ∇t,xxφ = q . In order to turn this into a convex problem, we define
the augmented Lagrangian as follows:

Lr(φ, q, μ) = H(q)+J (φ)+〈μ,∇t,xxφ−q〉+ r
2
〈∇t,xxφ−q,∇t,xxφ−q〉, (30)

where r > 0 is a penalization parameter. The saddle point problem then becomes

sup
μ

inf
φ,q
Lr(φ, q, μ), (31)

which has the same solution as (13).

4 Numerical Method

In this section, we describe in detail the alternative direction method of multipliers
(ADMM) algorithm for solving the saddle point problem given by (30) and (31). In
each iteration, using (φn−1, qn−1, μn−1) as a starting point, the ADMM algorithm
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performs the following three steps:

Step A: φn = arg min
φ

Lr(φ, q
n−1, μn−1), (32)

Step B: qn = arg min
q

Lr(φ
n, q, μn−1), (33)

Step C: μn = arg max
μ

Lr(φ
n, qn, μ). (34)

Step A: φn = arg minφ Lr(φ, q
n−1, μn−1)

To find the function φn that minimizes Lr(φ, qn−1, μn−1), we set the functional
derivative of Lr with respect to φ to zero:

J (φ)+ 〈μn−1,∇t,xxφ〉 + r〈∇t,xxφn − qn−1,∇t,xxφ〉 = 0. (35)

By integrating by parts, we arrive at the following variational equation

− r(∂ttφ
n − ∂xxxxφ

n) = ∂t (ρ
n−1 − ran−1)− ∂xx(m

n−1 − rbn−1), (36)

with Neumann boundary conditions in time ∀x ∈ D:

r∂tφ
n(0, x) = ρ0 − ρn−1(0, x)+ ran−1(0, x), (37)

r∂tφ
n(1, x) = ρ1 − ρn−1(1, x)+ ran−1(1, x). (38)

For the boundary conditions in space, let D = [D,D]. We give the following
boundary condition to the diffusion coefficient:

γ (t,D) = γ (t,D) = γ := arg min
γ∈R

F(γ ).

From (13) and (15), we know ∂xxφ is the dual variable of γ . Since γ minimizes F ,
the corresponding ∂xxφ must be zero. Therefore, we have the following boundary
conditions:

∂xxφ(t,D) = ∂xxφ(t,D) = 0, ∀t ∈ [0, 1]. (39)

In [1], periodic boundary conditions were used in the spatial dimension and a
perturbed equation was used to yield a unique solution. Since periodic boundary
conditions are inappropriate for martingale diffusion and we are dealing with a bi-
Laplacian term in space, we impose the following additional boundary conditions
in order to enforce a unique solution:

φ(t,D) = φ(t,D) = 0, ∀t ∈ [0, 1]. (40)
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Now, the 4th order linear PDE (36) can be numerically solved by the finite difference
method or the finite element method.

Step B: qn = arg minq Lr(φ
n, q, μn−1)

Since H(q) is not differentiable, we cannot differentiate Lr with respect to q .
Nevertheless, we can simply obtain qn by solving the minimization problem

inf
q
Lr(φ

n, q, μn−1). (41)

This is equivalent to solving

inf
q∈K

〈
∇t,xxφn + μn−1

r
− q,∇t,xxφn + μn−1

r
− q

〉
. (42)

Now, let us define

pn(t, x) = {αn(t, x), βn(t, x)} = ∇t,xxφn(t, x)+ μn−1(t, x)

r
, (43)

then we can find qn(t, x) = {an(t, x), bn(t, x)} by solving

inf{a,b}∈R×R

{
(a(t, x)− αn(t, x))2 + (b(t, x)− βn(t, x))2 : a + F ∗(b) ≤ 0

}
(44)

point-wise in space and time. This is a simple one-dimensional projection problem.
If {αn, βn} satisfies the constraint αn + F ∗(βn) ≤ 0, then it is also the minimum.
Otherwise, the minimum must occur on the boundary a + F ∗(b) = 0. In this case
we substitute the condition into (44) to obtain

inf
b∈R

{
(F ∗(b(t, x))+ α(t, x))2 + (b(t, x)− β(t, x))2

}
, (45)

which must be solved point-wise. The minimum of (45) can be found using standard
root finding methods such as Newton’s method. In some simple cases it is even
possible to compute the solution analytically.

Step C: μn = arg maxμ Lr(φ
n, qn, μ)

Begin by computing the gradient by differentiating the augmented Lagrangian Lr
respect to μ. Then, simply update μ by moving it point-wise along the gradient as
follows,

μn(t, x) = μn−1(t, x)+ r(∇t,xxφn(t, x)− qn(t, x)). (46)



Local Volatility Calibration by Optimal Transport 61

Stopping criteria:
Recall the HJB equation (15):

∂tφ + F ∗(∂xxφ) = 0. (47)

We use (47) to check for optimality. Define the residual:

resn = max
t∈[0,1],x∈Dρ

∣∣∂tφ + F ∗(∂xxφ)
∣∣ . (48)

This quantity converges to 0 when it approaches the optimal solution of the problem.
The residual is weighted by the density ρ to alleviate any potential issues caused by
small values of ρ.

5 Numerical Results

The algorithm was implemented and tested on the following simple example.
Consider the computational domain x ∈ [0, 1] and the time interval t ∈ [0, 1].
We set the initial and final distributions to be X0 ∼ N(0.5, 0.052) and X1 ∼
N(0.5, 0.12) respectively, where N(μ, σ 2) denotes the normal distribution. The
following cost function was chosen:

F (γ ) =
{
(γ − γ )2, γ ≥ 0,

+∞, otherwise,
(49)

where γ was set to 0.00375 so that the optimal value of variance is constant σ 2 =
0.12 − 0.052 = 0.0075. Then we discretized the space-time domain as a 128 × 128
lattice. The penalization parameter is set to r = 64. The results after 3000 iterations
are shown in Figs. 1 and 2, and the convergence of the residuals is shown in Fig. 3.
The convergence speed decays quickly, but we reach a good approximation after
about 500 iterations. The noisy tails in Fig. 2 correspond to regions where the density
ρ is close to zero. The diffusion process has a very low probability of reaching these
regions, so the value of σ 2 has little impact. In areas where ρ is not close to zero,
σ 2 remains constant which matches the analytical solution.

6 Summary

This paper focuses on a new approach for the calibration of local volatility models.
Given the distributions of the asset price at two fixed dates, the technique of
optimal transport is applied to interpolate the distributions and recover the local
volatility function, while maintaining the martingale property of the underlying
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Fig. 1 The density function ρ(t, x)

process. Inspired by Benamou and Brenier [1], the problem is first converted into
a saddle point problem, and then solved numerically by an augmented Lagrangian
approach and the alternative direction method of multipliers (ADMM) algorithm.
The algorithm performs well on a simple case in which the numerical solution
matches its analytical counterpart. The main drawback of this method is due to
the slow convergence rate of the ADMM algorithm. We observed that a higher
penalization parameter may lead to faster convergence. Further research is required
to conduct more numerical experiment, improve the efficiency of the algorithm and
apply it to more complex cases.
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Likelihood Informed Dimension
Reduction for Remote Sensing
of Atmospheric Constituent Profiles

Otto Lamminpää, Marko Laine, Simo Tukiainen, and Johanna Tamminen

Abstract We use likelihood informed dimension reduction (LIS) (Cui et al.
Inverse Prob 30(11):114015, 28, 2014) for inverting vertical profile information
of atmospheric methane from ground based Fourier transform infrared (FTIR)
measurements at Sodankylä, Northern Finland. The measurements belong to the
word wide TCCON network for greenhouse gas measurements and, in addition to
providing accurate greenhouse gas measurements, they are important for validating
satellite observations.

LIS allows construction of an efficient Markov chain Monte Carlo sampling
algorithm that explores only a reduced dimensional space but still produces a good
approximation of the original full dimensional Bayesian posterior distribution. This
in effect makes the statistical estimation problem independent of the discretization
of the inverse problem. In addition, we compare LIS to a dimension reduction
method based on prior covariance matrix truncation used earlier (Tukiainen et al., J
Geophys Res Atmos 121:10312–10327, 2016).

1 Introduction

Atmospheric composition measurements have an increasingly crucial role in mon-
itoring the green house gas concentrations in order to understand and predict
changes in climate. The warming effect of greenhouse gases, such as carbon
dioxide (CO2) and methane (CH4), is based on the absorption of electromagnetic
radiation originating from the sun by these trace gases. This mechanism has a strong
theoretical base and has been confirmed by recent observations [4].

Remote sensing measurements of atmospheric composition, and greenhouse
gases in particular, are carried out by ground-based Fourier transform infrared
(FTIR) spectrometers, and more recently by a growing number of satellites (for
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example SCIAMACHY, ACE-FTS, GOSAT, OCO-2). The advantage of satellite
measurements is that they provide global coverage. They are used for anthropogenic
emission monitoring, detecting trends in atmospheric composition and studying
the effects of biosphere, to name but a few examples. Accurate ground-based
measurements are crucial to satellite measurement validation, and the global
Total Carbon Column Observing Network (TCCON [17]) of FTIR spectrometers,
consisting of around 20 measurement sites around the world, is widely used as a
reference [3]. The FTIR instrument looks directly at sun, returning an absorption
spectrum as measured data.

Determining atmospheric gas density profiles, or retrieval, from the absorption
spectra is an ill-defined inverse problem as the measurement contains only a limited
amount of information about the state of the atmosphere. Based on prior knowledge
and using the Bayesian approach to regularize the problem, the profile retrieval
is possible, provided that our prior accurately describes the possible states that
may occur in the atmosphere. When retrieving a vertical atmospheric profile, the
dimension of the estimation problem depends on the discretization. For accurate
retrievals a high number of layers are needed, leading to a computationally costly
algorithms. However, fast methods are required for the operational algorithm. For
this purpose, different ways of reducing the dimension of the problem have been
developed. The official operational TCCON GGG algorithm [17] solves the inverse
problem by scaling the prior profile based on the measured data. This method is
robust and computationally efficient, but only retrieves one piece of information
and thus can give largely inaccurate results about the density profiles.

An improved dimension reduction method for the FTIR retrieval based on
reducing the rank of the prior covariance matrix was used by Tukiainen et al.
[16] using computational methods developed by Solonen et al. [13]. This method
confines the solution to a subspace spanned by the non-negligible eigenvectors of the
prior covariance matrix. This approach allows a retrieval using more basis functions
than the operational method and thus gives more accurate solutions. However, the
prior has to be hand tuned to have a number of non-zero singular values that
correspond to the number of degrees of freedom for the signal in the measurement.
Moreover, whatever information lies in the complement of this subspace remains
unused.

In this work, we introduce an analysis method for determining the number of
components the measurement can provide information from [12], as well as the
likelihood informed subspace dimension reduction method for non-linear statistical
inverse problems [2, 14]. We show that these two formulations are in fact equal.
We then proceed to implement a dimension reduction scheme for the FTIR inverse
problem using adaptive MCMC sampling [5, 6] to fully characterize the non-
linear posterior distribution, and show that this method gives an optimal result with
respect to Hellinger distance to the non-approximated full dimensional posterior
distribution. In contrast with the previously implemented prior reduction method,
the likelihood informed subspace method is also shown to give the user freedom to
use a prior derived directly from an ensemble of previously conducted atmospheric
composition measurements.
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2 Methodology

We consider the atmospheric composition measurement carried out at the FMI Arc-
tic Research Centre, Sodankylä, Finland [9]. The on-site Fourier transform infrared
spectrometer (FTIR) measures solar light arriving to the device directly from the
sun, or more precisely, the absorption of solar light at different wavelengths within
the atmosphere. From the absorption spectra of different trace gases (CO2,CH4,
. . .) we can compute the corresponding vertical density profiles, i.e. the fraction of
the trace gas in question as a function of height.

Let us consider the absorption spectrum with m separate wavelengths. The solar
light passing through the atmosphere and hitting the detector can be modeled
using the Beer-Lambert law, which gives, for wavelengths λj , j ∈ [1, . . . ,m], the
intensity of detected light as

I (λj ) = I0(λj ) exp

(
−

K∑
k=1

∫ ∞

0
Ck(λj , z)ρk(z)dz

)
(aλ2

j + bλj + c)+ d, (1)

where I0 is the intensity of solar light when it enters the atmosphere, the atmosphere
has K absorbing trace gases, Ck(λj , z) is the absorption coefficient of gas k, which
depends on height z and on the wavelength λj , and ρk(z) is the density of gas k at
height z. The second degree polynomial and the constant d in (1) are used to describe
instrument related features and the continuity properties of the spectrum. In reality,
solar light is scattered on the way by atmospheric particles. This phenomenon is
relatively weak in the wavelength band we are considering in this work, so it will be
ignored for simplicity.

The absorption in continuous atmosphere is modeled by discretizing the integral
in Eq. (1) into a sum over atmospheric layers and assuming a constant absorption
for each separate layer. This way, a discrete computational forward model can
be constructed, giving an absorption spectrum as data produced by applying the
forward model to a state vector x describing the discretized atmospheric density
profile for a certain trace gas. In this work, we limit ourselves to consider the
retrieval of atmospheric methane (CH4).

2.1 Bayesian Formulation of the Inverse Problem

Consider an inverse problem of estimating unknown parameter vector x ∈ R
n from

observation y ∈ R
m,

y = F(x)+ ε, (2)

where our physical model is describe by the forward model F : Rn → R
m and the

random variable ε ∈ R
m represents the observation error arising from instrument
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noise and forward model approximations. In the Bayesian approach to inverse
problems [7] our uncertainty about x is described by statistical distributions. The
solution to the problem is obtained as posterior distribution of x conditioned on
a realization of the data y and depending on our prior knowledge. By the Bayes’
formula, we have

π(x|y) ∝ π(y|x)πpr(x), (3)

where π(x|y) is the posterior distribution, π(y|x) the likelihood and πpr(x) the
prior distribution. The proportionality ∝ comes from a constant that does not depend
on the unknown x. In this work, we assume the prior to be Gaussian, N (x0,Σpr),
e.g.

πpr(x) ∝ exp

(
−1

2
(x − x0)

T Σ−1
pr (x − x0)

)
. (4)

Also, the additive noise is assumed to be zero-mean Gaussian with known covari-
ance matrix, ε ∼ N (0,Σobs), so the likelihood will have form

π(y|x) ∝ exp

(
−1

2
(y − F(x))T Σ−1

obs(y − F(x))

)
. (5)

When the forward model is non-linear, the posterior distribution can be explored
by Markov chain Monte Carlo (MCMC) sampling. When the dimension of the
unknown is hight, for example by discretization of the inverse problem, MCMC
is known to be inefficient. In this paper, we utilize dimension reduction to be able to
make MCMC more efficient in high dimensional and high CPU problems.

2.2 Prior Reduction

The operational GGG algorithm for the FTIR retrieval problem [17] is effectively
one dimensional as it only scales the prior mean profile. However, there are about
three degrees of freedom in the FTIR signal for the vertical profile information. To
construct basis functions that could utilize this information a method that uses prior
reduction was developed in [16]. It is based on the singular value decomposition on
the prior covariance matrix,

Σpr = UΛUT =
m∑
i=1

λiuiu
T
i , (6)

which allows further decomposition as

Σpr = PPT , with P =
(√
λ1u1 + · · · +√λmum

)
. (7)
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If the prior can be chosen so that most of the singular values are negligible, then the
rank of the prior covariance matrix can be reduced by considering only the first r
singular values and vectors:

Σ̃pr = PrP
T
r , with Pr =

(√
λ1u1 + · · · +√λrur

)
. (8)

The unknown x has an approximate representation by r basis vectors from the
columns of Pr and using a reduced dimensional parameter α ∈ R

r as

x ≈ x0 + Prα. (9)

By the construction, the random vector α has a simple Gaussian prior, α ∼ N (0, I),
which allow us to write the approximate posterior as

π(x|y) ≈ π̃ (α|y) ∝ exp

(
−1

2

(
(y − F(x0 + Prα))

T Σ−1
obs(y − F(x0 + Prα))+ αT α)

))
.

(10)

Now, instead running MCMC in the full space defined by x, we can sample the
low dimensional parameter α and retain the approximation of the full posterior by
Eq. (9).

2.3 Likelihood-Informed Subspace

The prior reduction approach depends on the ability to construct a realistic prior
that can be described by only a few principle components. For the FTIR retrieval
problem this is possible to some extent [16]. However, there are several possible
caveats. We have to manually manipulate the prior covariance matrix to have a lower
rank, which can lead to information loss as the solution will be limited to a subspace
defined by the reduced prior only.

In atmospheric remote sensing the information content of the measurement is an
important concept to be considered when designing the instruments and constructing
the retrieval methodology, we refer to book by Rodgers [12].

Consider a linearized version of the inverse problem in Eq. (2),

y = J (x − x0)+ ε, (11)

with Gaussian prior and noise. The forward model is assumed to be differentiable,
and J denotes the Jacobian matrix of the forward model with elements Jij = ∂

∂xj
Fi .

Using Cholesky factorizations for the known prior and error covariances,

Σpr = LprL
T
pr, Σobs = LobsL

T
obs, (12)
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we can perform pre-whitening of the problem by setting

ỹ = L −1
obsy, J̃ = L −1

obsJLpr, x̃ = L −1
pr (x − x0) and ε̃ = L −1

obs ε. (13)

Now the problem can be written as

ỹ = J̃ x̃ + ε̃, (14)

with ε̃ ∼ N (0, I) and a priori x̃ ∼ N (0, I).
As the unknown x and the error ε are assumed to be independent, the same holds

for the scaled versions. We can compare the prior variability of the observation
depending on x and that coming from the noise ε by

Σ̃y = E[ỹỹT ] = E[(J̃ x̃ + ε̃)(J̃ x̃ + ε̃)T ] = J̃ J̃ T + I. (15)

The variability in y that depends only on the parameter x depends itself on J̃ J̃ T

and it can be compared to the unit matrix I that has the contribution from the scaled
noise. The directions in J̃ J̃ T which are larger than unity are those dominated by
the signal. Formally this can be seen by diagonalizing the scaled problem by the
singular value decomposition,

J̃ = WΛV T , (16)

and setting

y ′ = WT ỹ = WT J̃ x̃ +WT ε̃ = ΛV T x̃ + ε̃′ = Λx̃ ′ + ε̃′. (17)

The transformations ε′ and x ′ conserve the unit covariance matrix. In other words,
y ′ is distributed with covarianceΛ2 + I. This is a diagonal matrix, and the elements
of vector y ′ that are not masked by the measurement error are those corresponding
to the singular values λi ≥ 1 of the pre-whitened Jacobian J̃ . Furthermore, degrees
of freedom for signal and noise are invariant under linear transformations [12], so
the same result is also valid for the original y.

Another way to compare the information content of the measurement relative to
the prior was used in [2]. This is to use the Rayleigh quotient

R(Lpra) = aTL T
prHLpra

aT a
, (18)

where a ∈ R
n and H = J T Σ−1

obsJ is the Gauss-Newton approximation of Hessian
matrix of the data misfit function

η(x) = 1

2

(
(y − F(x))T Σ−1

obs(y − F(x))
)
. (19)



Likelihood Informed Dimension Reduction for Remote Sensing 71

Directions for which R(Lpra) > 1 are the ones in which the likelihood contains
information relative to the prior. This follows from the fact that the ith eigenvector
vi of the prior-preconditioned Gauss-Newton Hessian

H̃ := L T
prHLpr (20)

maximizes the Rayleigh quotient over a subspace R
n \ span {v1, . . . , vi−1} and the

r directions vi for which R(Lprv) > 1 correspond to the first r eigenvalues of H̃ .
We call these vectors the informative directions of the measurement.

To see the correspondence for the two approaches for the informative directions
we notice that for H̃ (x) it holds that

L T
prH(x)Lpr = L T

prJ (x)
T Σ−1

obsJ (x)L
T
pr

= (L −1
obsJ (x)Lpr)

T (L −1
obsJ (x)Lpr)

= J̃ T (x)J̃ (x).

(21)

The eigenvalues λ2 of matrix H̃ (x) less than unity correspond to the singular values
λ less than unity of the scaled Jacobian J̃ (x). The corresponding eigenvectors are
the same as the right singular vectors v of J̃ . The informative and non-informative
directions for a simple 2-dimensional Gaussian case are illustrated in Fig. 1.

x
1

x 2

Informative directions
Prior

Likelihood

Posterior

Prior Mean

Posterior Mean

Fig. 1 Illustration of an informative direction xr and a non-informative direction x⊥ using a
2-dimensional Gaussian case. Here, the likelihood has only one informative component, so the
remaining direction for the posterior is obtained from the prior
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Next, we use the informative directions of the measurement to reduce the
dimension of the inverse problem. Consider approximations for the posterior of the
form

π̃(x|y) ∝ π(y|Πrx)πpr(x), (22)

whereΠr is rank r projection matrix. In [2] and [14] it was shown that for any given
r , there exists a unique optimal projectionΠr that minimizes the Hellinger distance
between the approximative rank r posterior and the full posterior. Furthermore,
using the connection to Rodgers’ formalism, the optimal projection can be obtained
explicitly with the following definition.

Definition 1 (LIS) Let Vr ∈ R
n×r be a matrix containing the first r left singular

vectors of the scaled Jacobian J̃ . Define

Φr := LprVr and Θr := L −T
pr Vr . (23)

The rank r LIS projection for the posterior approximation (22) is given by

Πr = ΦrΘ
T
r . (24)

The range Xr of projection Πr : R
n → Xr is a subspace of state space R

n

spanned by the column vectors of matrixΦr . We call the subspaceXr the likelihood-
informed subspace (LIS) for the linear inverse problem, and its complement Rn \Xr
the complement subspace (CS).

Definition 2 The matrix of singular vectors V = [VrV⊥] forms a complete
orthonormal system in R

n and we can define

Φ⊥ := LprV⊥ and Θ⊥ := L −T
pr V⊥ (25)

and the projection I −Πr can be written as

I −Πr = Φ⊥ΘT⊥ . (26)

Define the LIS-parameter xr ∈ R
r and the CS-parameter x⊥ ∈ R

n−r as

xr := ΘT
r x, x⊥ := ΘT⊥x. (27)

The parameter x can now be naturally decomposed as

x =Πrx + (I−Πr)x

=Φrxr +Φ⊥x⊥.
(28)
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Using this decomposition and properties of multivariate Gaussian distributions, we
can write the prior as

πpr(x) = πr(xr)π⊥(x⊥) (29)

and approximate the likelihood by using the r informative directions,

π(y|x) = π(y|Φrxr)π(y|Φ⊥x⊥) ≈ π(y|Φrxr), (30)

which leads us to the approximate posterior

π̃(x|y) = π(y|Φrxr)πr(xr)π⊥(x⊥). (31)

When the forward model is not linear, the Jacobian and Hessian matrices depend
on the parameter x and the criterion (18) only holds point wise. To extend this
local condition into a global one, we consider the expectation of the local Rayleigh
quotient R(Lprv; x) over the posterior,

E[R(Lprv; x)] = vT Ĵ T Ĵ v

vT v
, Ĵ =

∫
Rn
J̃ (x)π(x|y)dx. (32)

The expectation is with respect to the posterior distribution, which is not available
before the analysis. In practice, an estimate is obtained by Monte Carlo,

Ĵn = 1

n

n∑
k=1

J̃ (x(k)), (33)

where x(k) is a set of samples from some reference distribution which will be
discussed later in this work. We can now use the singular value decomposition
Ĵn = WΛV T to find a basis for the global LIS analogously to the linear case.

The advantage of LIS dimension reduction is that it is sufficient to use MCMC
to sample the low-dimensional xr from the reduced posterior π(y|Φrxr)πr(xr),
and form the full space approximation using the known analytic properties of the
Gaussian complement prior π⊥(x⊥).

3 Results

To solve the inverse problem related to the FTIR measurement [16], we use adaptive
MCMC [6, 10] and SWIRLAB [15] toolboxes for Matlab. The results from newly
implemented LIS-algorithm as well as from the previous prior reduction method are
compared against a full dimensional MCMC simulation using the Hellinger distance
of approximations to the full posterior. We use a prior derived from an ensemble of
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Fig. 2 The prior derived from an ensemble of ACE satellite measurements. Left: Full prior profile,
mean with dashed line and 95% probability limits in grey. Top right: covariance matrix derived
from the measurements. Bottom right: first 20 singular values of the prior covariance matrix

atmospheric composition measurements by the ACE satellite [1]. The vertical prior
distribution, prior covariance and prior singular values are illustrated in Fig. 2.

In Fig. 3, we show the results of our retrievals using full-space MCMC, compared
with LIS dimension reduction and prior reduction using four basis vectors in each
method. The retrievals are further compared against accurate in-situ measurements
made using AirCore balloon soundings [8] which are available for the selected
cases, also included in Fig. 3. In this example, the Monte-Carlo estimator (33)
for Ĵn in Eq. (33) was computed using 1000 samples drawn from the Laplace
approximation N (̂x, Σ̂post ), where x̂ and Σ̂post are the posterior MAP and
covariance, respectively, obtained using optimal estimation [12].

In order to compare the performance of MCMC methods, we define the sample
speed of a MCMC run as
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Fig. 3 Atmospheric CH4 density profile retrieval results. Retrieved posterior in green, prior in
gray, and in-situ AirCore measurement in red. The color shading indicates areas where 95% of the
profiles are. Right: MCMC with in full space. Middle: MCMC with LIS. Right: MCMC with prior
reduction

Definition 3 The effective sample size Neff of a MCMC chain is given by

Neff = NM

1 + s
∑∞
k=1 ρk(x)

, (34)

where NM is the length of the MCMC chain and ρk(x) is lag-k autocorrelation for
parameter x [11]. Define the sample speed of an MCMC chain as

V = Neff

tM
, (35)

where tM is the total computation time of the MCMC chain.

For the MCMC runs shown in Fig. 3, we get as corresponding sample speeds as
samples per second:

V(full) = 1.56 s−1, V(LIS) = 19.01 s−1, V(PriRed) = 19.66 s−1. (36)
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In order to compare the approximate posteriors obtained from prior reduction
and LIS-dimension reduction against the full posterior, we use the discrete Hellinger
distance,

H (P,Q) = 1√
2

√√√√ k∑
i=1

(
√
pi − √

qi)2, (37)

where P = (p1, . . . , pk) and Q = (q1, . . . , qi) are discrete representations
of the full and approximate posterior distributions obtained from histograms of
corresponding MCMC runs. The Hellinger distances of both approximations to the
full posterior can be seen in Fig. 4 together with the corresponding sample speeds,
both as a function of the number of singular vectors used. In Fig. 4 have also
visualized the first four singular vectors used in prior reduction and LIS method
for the example retrieval in Fig. 3.
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Fig. 4 Left: Hellinger distances to full posterior and sample speeds of corresponding MCMC runs
as functions of singular vectors used in the approximation. Top right: first four singular vectors
from prior reduction. Bottom right: first four singular vectors of J̃ forming the LIS basis
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4 Conclusions

Although both of the discussed dimension reduction methods provide roughly the
same computational gains in the performance of the MCMC sampler, we see from
Fig. 4 that while using an empirical prior, the prior reduction method requires a lot
more singular vectors to achieve the same Hellinger distance from the full posterior
as the LIS method, which gets really close already with four singular vectors. We
conclude that the LIS method gives an efficient MCMC sampling algorithm to solve
the inverse problem arising from the FTIR retrieval, with an additional improvement
of allowing the direct usage of an empirical prior.
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Wider Contours and Adaptive Contours

Shev MacNamara, William McLean, and Kevin Burrage

Abstract Contour integrals in the complex plane are the basis of effective numer-
ical methods for computing matrix functions, such as the matrix exponential and
the Mittag-Leffler function. These methods provide successful ways to solve partial
differential equations, such as convection–diffusion models. Part of the success
of these methods comes from exploiting the freedom to choose the contour, by
appealing to Cauchy’s theorem. However, the pseudospectra of non-normal matrices
or operators present a challenge for these methods: if the contour is too close to
regions where the norm of the resolvent matrix is large, then the accuracy suffers.
Important applications that involve non-normal matrices or operators include the
Black–Scholes equation of finance, and Fokker–Planck equations for stochastic
models arising in biology. Consequently, it is crucial to choose the contour carefully.
As a remedy, we discuss choosing a contour that is wider than it might otherwise
have been for a normal matrix or operator. We also suggest a semi-analytic approach
to adapting the contour, in the form of a parabolic bound that is derived by
estimating the field of values.
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To demonstrate the utility of the approaches that we advocate, we study
three models in biology: a monomolecular reaction, a bimolecular reaction and a
trimolecular reaction. Modelling and simulation of these reactions is done within
the framework of Markov processes. We also consider non-Markov generalisations
that have Mittag-Leffler waiting times instead of the usual exponential waiting times
of a Markov process.

1 Introduction

We begin with the Chapman–Kolmogorov forward equation, associated with a
Markov process on discrete states, for the evolution in continuous time of the
probability of being in state j at time t:

d

dt
p(j, t) = −|ajj |p(j, t)+

∑
i �=j

aj,ip(i, t). (1)

Here for j �= i, ai,j ≥ 0, and ai,jdt is approximately the probability to transition
from state j to state i in a small time dt . The diagonal entry of an associated matrix
A = {ai,j } is defined by the requirement that the matrix has columns that sum to
zero, namely ajj = −∑i �=j ai,j . This equation in the Markov setting (1) can be
generalised to a non-Markovian form:

d

dt
p(j, t) = −

∫ t

0
K(j, t − u)p(j, u)du+

∑
i �=j

aj,i

|ajj |
∫ t

0
K(i, t − u)p(i, u)du. (2)

Here the so-called memory functionK(i, t −u) is defined via its Laplace transform
K̂(j, s), as the ratio of the Laplace transform of the waiting time to the Laplace
transform of the survival time. The process is a Markov process if and only if the
waiting times are exponential random variables, in which case theK(j, t) appearing
in the convolutions in (2) are Dirac delta distributions and (2) reduces to the usual
equation in (1). In the special case of Mittag-Leffler waiting times, (2) can be re-
written as [12, 13]:

Dαt p = Ap with solution p(t) = Eα(At
α)p(0). (3)

Here Dαt denotes the Caputo fractional derivative, and where the Mittag-Leffler
function is

Eα(z) =
∞∑
k=0

zk

Γ (αk + 1)
. (4)
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Here 0 ≤ α ≤ 1. In Sect. 4, we provide a MATLAB code to simulate sample
paths of this stochastic process with Mittag-Leffler waiting times. When α = 1
the series (4) reduces to the usual exponential function, and the fractional equation
in (3) reduces to the original Markov process (1). In Sect. 5, we provide a MATLAB
code to compute the solution Eα(Atα)p(0) in (3) directly, via a contour integral.

Next, we introduce the (Markovian) Fokker–Planck partial differential equation
(sometimes also known as the forward Kolmogorov equation)

∂

∂t
p(x, t) = − ∂

∂x
(a(x)p(x, t))+ 1

2

∂2

∂x2 (b(x)p(x, t)) (5)

for a probability density p(x, t) in one space dimension and time, with suitable
boundary conditions, initial conditions, and smoothness assumptions on the coef-
ficients a(x), and on b(x) ≥ 0. Later in the work we will use complex-variable
methods, so it is worth noting at the outset that our coefficients a(x) and b(x) are
always real-valued. It is also worth noting that a(x) here in (5) is not the same as
ai,j appearing in the matrix above in (3), although there is a close relationship that
allows one to be deduced from the other. This PDE for the density corresponds to a
stochastic differential equation for sample paths

dX = a(X)dt +√b(X)dW. (6)

Both the PDE (5) and SDE (6) are continuous in the spatial variable. An introduction
to these models, and their connections with discrete versions, can be found in [1, 5].
Our discrete models do respect important properties such as non-negativity. How-
ever, there are issues with the Fokker–Planck PDE model, the Chemical Langevin
SDE model, and other diffusion approximations: often these approximations do
not maintain positivity. These issues are discussed by Williams in the Kolmogorov
Lecture and accompanying paper, where a method that maintains non-negativity is
proposed [11].

We do not simulate or solve either of the PDE (5) or the SDE (6). We do however
simulate and solve the closely related models that are discrete in space and that are
governed by master equations (1) or generalized master equations (2), which can be
thought of as finite difference discretizations of (5). In particular, the PDE (5) can
be thought of as a continuous-in-space analogue of the discrete process in (1) that
involves a matrixA. The utility of the PDE is that it is easier to find an estimate of the
field of values of the spatial differential operator on the right hand side of (5) than of
the corresponding matrix A. We can then use an estimate of one as an approximation
for the other.

Developing appropriate methods for modelling and simulation of these important
stochastic processes is a necessary first step for more advanced scientific endeavors.
A natural next step is an inverse problem, although we do not pursue that in this
article. For example, it is of great interest to estimate the rate constants in the models
described in Sect. 2, typically based on limited observations of samples resembling
the simulation displayed in Fig. 4. It is more challenging to estimate the parameter
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α in fractional models, or indeed to address the question of whether or not a single α
(the only case considered in this article) is appropriate. Interest in fractional models
is growing fast as they are finding wide applications including in cardiac modelling
[2], and this includes exciting new applications of Mittag-Leffler functions [3].

Section 2 introduces three models that can be cast in the form of (3) and Sect. 3
uses these models as vignettes to exhibit manifestations of pseudospectra. Next we
introduce two methods of simulation for these models. A Monte Carlo approach is
presented in Sect. 4. Section 5 presents an alternative method that directly computes
the solution of (3) as a probability vector via a contour integral. Finally we suggest
a bound on the field of values that is useful when designing contour methods.

To our knowledge Fig. 3 is the first visualization of the pseudospectra of the
Schlögl reactions. The estimate in (24) is also new. In fact (24) is the specialization
of our more general estimates appearing in (22) and (23) to the monomolecular
model, but it should be possible to likewise adapt our more general estimates to
other models such as bimolecular models.

2 Three Fundamental Models

All three models that we present are represented by tri-diagonal matrices: j /∈ {i −
1, i, i + 1} ⇒ Ai,j = 0. Since all other entries are zero, below, we only specify the
non-zero entries on the three main diagonals. In fact, an entry on the main diagonal
is determined by the requirement that columns sum to zero (which corresponds to
conservation of probability), so it would suffice to specify only the two non-zero
diagonals immediately below and above the main diagonal.

2.1 Monomolecular, Bimolecular and Trimolecular Models

A model of a monomolecular reaction

S1 � S2

such as arises in chemical isomerisation [5], or in models of ion channels in cardiac-
electrophysiology, or neuro-electrophysiology, can be represented by the following
N ×N matrix.
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Monomolecular model matrix

Ai,j =

⎧⎪⎪⎨
⎪⎪⎩
j − 1, i = j − 1,

−m, i = j,

m− j + 1, i = j + 1.

(7)

Here we have assumed that the rate constants are equal to unity, c1 = c2 = 1, and
we have assumed that m = N − 1 where m is the maximum number of molecules.
More details, including exact solutions, can be found in [8]. An instance of this
matrix when m = 5 is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−5 1
5 −5 2

4 −5 3
3 −5 4

2 −5 5
1 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

The model is two-dimensional, but the conservation law allows it to be treated
as effectively one-dimensional, by letting x represent S1, say. Then one possible
corresponding continuous model (5) has drift coefficient a(x) = −c1x+ c2(m− x)
and diffusion coefficient b(x) = c1x + c2(m − x), for 0 < x < m. In the discrete
Markov case, the exact solution is binomial. When c1 = c2 the stationary probability
density of the continuous Markov model is given by Gillespie [5] as a Gaussian,
which highlights the issues associated with the continuous models such as choosing
the domain, boundary conditions, and respecting positivity. To enforce positivity,
we might instead pose the PDE on the restricted domain 0 ≤ x ≤ m.

Next we introduce a model for the bimolecular reaction

S1 + S2 � S3,

via the following N ×N matrix.

Bimolecular model matrix

Ai,j =

⎧⎪⎪⎨
⎪⎪⎩
j − 1, i = j − 1,

−j + 1 − (m− j + 1)2 i = j,

(m− j + 1)2, i = j + 1.

(9)
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This matrix and the model are also introduced in [12], where more details can be
found. A small example with m = 5 is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−25 1
25 −17 2

16 −11 3
9 −7 4

4 −5 5
1 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

Here we have assumed that the rate constants are equal to unity, c1 = c2 = 1,
and that the initial condition is [S1, S2, S3] = [m,m, 0], so m is the maximum
number of molecules, and m = N − 1. The model is three-dimensional, but
the conservation law together with this initial condition allow it to be treated
as effectively one-dimensional, by letting x represent S3, say. Then a possible
corresponding continuous model (5) has drift coefficient a(x) = −c1x+c2(m−x)2
and diffusion coefficient b(x) = c1x + c2(m− x)2.

Finally, we introduce the Schlögl model [13], which consists of two reversible
reactions

B1 + 2X ←→ 3X, B2 ←→ X.

Here B1 = 1 × 105, B2 = 2 × 105. The associated matrix is given below, where
k1 = 3 × 10−7, k2 = 1 × 10−4, k3 = 1 × 10−3, and k4 = 3.5. In theory this matrix
is infinite but we truncate to a finite section for numerical computation.

Schlögl model matrix (an example of a trimolecular model scheme)

Ai,j =
{

1
6k2(j − 1)(j − 2)(j − 3)+ k4(j − 1), i = j − 1,

k3B2 + 1
2k1B1(j − 1)(j − 2), i = j + 1.

(11)

For i = j , the diagonal entry is −( 1
6k2(j−1)(j−2)(j−3)+k4(j−1)+k3B2 +

1
2k1B1(j − 1)(j − 2)). The first column is indexed by j = 1 and corresponds to a
state with 0 = j − 1 molecules. The corresponding continuous model (5) has drift
coefficient a(x) = k3B2 + 1

2k1B1x(x−1)− 1
6k2x(x−1)(x−2)−k4x and diffusion

coefficient b(x) = k3B2 + 1
2k1B1x(x − 1)+ 1

6k2x(x − 1)(x − 2)+ k4x.
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3 Pseudospectra Are Important for Stochastic Processes

All three matrices introduced in the previous section exhibit interesting pseudospec-
tra. As an illustration of the way that the pseudospectra manifest themselves, we will
now consider numerically computing eigenvalues of the three matrices. This is a first
demonstration that one must respect the pseudospectrum when crafting a numerical
method. That issue will be important again when we use numerical methods based
on contour integrals to compute Mittag-Leffler matrix functions.

The reader can readily verify that using any standard eigenvalue solver, such
as eig in MATLAB, leads to numerically computed eigenvalues that are complex
numbers. However, these numerically computed complex eigenvalues are wrong:
the true eigenvalues are purely real. It is the same story for all three models. See the
numerically computed eigenvalues displayed here in Figs. 1 and 2, for example. We
suggest this effect happens much more widely for models arising in computational
biology.

Figures 1 and 2 make use of the following method to create a diagonal scaling
matrix. Here is a MATLAB listing to create a diagonal matrix D that symmetrizes a

-350 -300 -250 -200 -150 -100 -50 0
-200

-150

-100

-50

0

50

100

150

200

Fig. 1 The field of values (solid line resembling an oval-like shape) for the discrete monomolec-
ular matrix in (7) when N = 200 (m = N − 1), as computed by Chebfun [4]. The crosses
mark numerically computed eigenvalues via eig, but complex eigenvalues are wrong. The true
eigenvalues are purely real and are marked on the real axis by dots (note that the dots are so
close together that they may seem to be almost a solid line). These correct values can come by
instead computing the eigenvalues of the symmetrized matrix, after using the diagonal scaling
matrix created by the MATLAB listing provided here
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104
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-1

0

1

2

3

4 104

Fig. 2 Same as Fig. 1, for the bimolecular model. The field of values for the discrete bimolecular
matrix in (9) when N = 200 is the solid line resembling an oval-like shape, as computed by
Chebfun [4]

tridiagonal matrix of dimension N of the form described in any of the three models
considered here:

d(1) = 1;
for i = 1:N-1

d(i+1) = sqrt(A(i,i+1)/A(i+1,i)) *d(i);
end
D = diag(d); Asym = D*A*inv(D);

This symmetrization by a diagonal matrix in a similarity transform is known to
physicists as a gauge transformation, and it is described by Trefethen and Embree
[15, Section 12]. A real symmetric matrix has real eigenvalues so the eigenvalues
of DAD−1 are purely real. The matrix DAD−1 and the matrix A share the same
eigenvalues because they are similar. This is one way to confirm that the true
eigenvalues of A are purely real. Numerical algorithms typically perform well on
real symmetric matrices, so it is better to numerically compute the eigenvalues of
DAD−1 than to compute eigenvalues of A directly.

The ε-pseudospectra [15] can be defined as the region of the complex plane
where the norm of the resolvent matrix is large: the set z ∈ C such that

||(zI− A)−1|| > 1

ε
. (12)
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Fig. 3 Pseudospectrum of a 2000 × 2000 finite section of the matrix in (11) representing
the Schlögl reactions, as computed by EigTool. Contours correspond to ε = 10−2, 10−4,

10−6, 10−8, 10−10 in (12). The contour closest to the real axis corresponds to 10−10

We use the 2-norm in this article. Equivalently, this is the region of the complex
plane for which z is an eigenvalue of (A+ E) for some perturbing matrix that has a
small norm: ||E|| < ε. Thus the wrong complex ‘eigenvalues’ appearing as crosses
in Figs. 1 and 2 offer a way to (crudely) visualise the pseudospectrum. Numerical
visualizations of the pseudospectra of the family of monomolecular matrices defined
by (7) can be found in [8], and the pseudospectra of the bimolecular reaction defined
by (9) can be found in [12]. Here, as an example of a trimolecular scheme, we
present in Fig. 3 the pseudopspectra for the Schlögl reactions (11), as computed by
EigTool. The resolvent norm is largest near the negative real axis, as we would
expect because that is where the true eigenvalues are located. The level curves are
not equally spaced in the figure, becoming bunched up together, suggesting a more
interesting structure that remains to be elucidated as the dimension of the matrix
grows. An interesting experiment is to vary the parameters, namely the product
k3B2, as is done in [14, Figure 10]. In experiments not shown here, we find that
when k3B2 is varied, the numerical computation of the eigenvalues becomes less
reliable (for example, when k3 = 1.4 × 10−3 and B2 is unchanged).

Figures 1 and 2 also display the numerical range of a matrix. That is also known
as the field of values, which we denote byW , and it is defined for a matrix A, as the
set of complex numbers that come from a quadratic form with the matrix

W(A) ≡ {x∗
Ax ∈ C : ||x||2 = 1}. (13)

The field of values always contains the eigenvalues. A simple algorithm [9] for
computing W(A) involves repeatedly ‘rotating’ the matrix and then finding the
numerical abscissa

1

2
max

(
eig
(
A + A

∗)) . (14)
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The ε-pseudospectrum of a matrix is contained in an ε-neighbourhood of the field
of values, in a sense that can be made a precise theorem [15]. We see an example of
this in Figs. 1 and 2.

4 A Mittag-Leffler Stochastic Simulation Algorithm

In this short section we provide a method for Monte Carlo simulation of the
solutions of the stochastic processes that we describe. This Monte Carlo method
can be considered an alternative to contour integral methods, that we describe later.
As the Monte Carlo methods do not seem to fail in the presence of non-normality,
they can be a useful cross-check on contour integral methods.

Here is a MATLAB listing to simulate Monte Carlo sample paths of the
monomolecular model of isomerization corresponding to the matrix in (7), with
Mittag-Leffler waiting times:

t_final = 100; m=10; c1=1; c2=1; v = [-1, 1; 1, -1];
initial_state = [m,0]’; alpha = 0.9; al1 = 1/alpha;
alpi=alpha*pi; sinalpi=sin(alpi); cosalpi=cos(alpi);
t = 0; x = initial_state; T = [0]; X = [initial_state];
while (t < t_final)

a(1) = c1*x(1); a(2) = c2*x(2); asum = sum(a);
r1=rand; r2=rand; z=sinalpi/tan(alpi*r2)-cosalpi;
tau = -(z/asum)^(al1)*log(r1);
r = rand*asum; j = find(r<cumsum(a),1,‘first’);
x = x + v(:,j); t =t+tau; T = [T t]; X = [X x];

end
if (t > t_final)

T(end) = t_final; X(:,end) = X(:,end-1);
end
figure(1); stairs(T, X(1,:), ‘LineWidth’, 2);
xlabel(‘Time’); ylabel(‘molecules of S_1’);
title({‘Isomerisation: a monomolecular model’; ...
‘Mittag-Leffler SSA’; [‘\alpha == ’, num2str(alpha)]})

This is a Markov process with exponential waiting times when α = 1, in
which case the program reduces to a version of the Gillespie Stochastic Simulation
Algorithm. Figure 4 shows a sample path simulated with this MATLAB listing.
A histogram of many such Monte Carlo samples is one way to approximate the
solution of (3). A different way to compute that solution is via a contour integral, as
we describe in the next section, and as displayed in Fig. 5.

A time-fractional diffusion equation in the form of (3) in two space dimensions
is solved by such a contour integral method in [16, Figure 16.2]. As an aside, we can
modify the code above to offer a method for Monte Carlo simulation of sample paths
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Fig. 4 A sample simulation of the monomolecular reaction, with the Mittag-Leffler SSA provided
here in the MATLAB listing. Parameters: α = 0.7, t = 1, and initial condition a Dirac delta
distribution on the state [S1, S2] = [m, 0] = [100, 0]. Compare with Fig. 5

0 10 20 30 40 50 60 70 80 90 100

Number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Pr
ob

ab
ilit

y

Fig. 5 A discrete probability mass function is the solution of a Mittag-Leffler master Eq. (3) for
the monomolecular reaction, and can be computed with the MATLAB listing provided here that uses
a hyperbolic contour. Parameters: α = 0.7, t = 1, and initial condition a Dirac delta distribution on
the state [S1, S2] = [m, 0] = [100, 0]. The x−axis shows the number of molecules of S2. Compare
with Fig. 4
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of a closely related stochastic process, as follows. Simplify to one space dimension
(it is also straight forward to simulate in two dimensions), and by supposing that the
governing (m+ 1)× (m+ 1) matrix is

A =

⎛
⎜⎜⎜⎜⎜⎝

−1 1
1 −2 1

. . .

1 −2 1
1 −1

⎞
⎟⎟⎟⎟⎟⎠

(15)

with initial vector p(0) being zero everywhere except the middle entry, i.e. the
round(m/2)th entry is one. Then (3) corresponds to a random walk on the integers
0, 1, . . . ,m, beginning in the middle. To simulate, modify the first few lines of the
above code segment to

t_final = 1; m=10; v = [-1, 1];
initial_state = round(m/2); ...

and also the first line in the while loop, to

a(1) = (x>0); a(2) = (x<m);

leaving the rest unchanged.

5 Computing a Mittag-Leffler Matrix Function

In this section we first establish the utility of contour integral methods by directly
computing the desired solution of (3). This is motivation for exploring bounds on
the pseudospectrum, so that informed choices can be made when designing contour
methods.

5.1 Computing Contour Integrals

Start with (3). Take the Laplace transform. Then take the inverse Laplace transform.
Of course those two steps arrive at the same solution we started with. The advantage
is the desired solution of (3) represented as a contour integral [12, 13, 16]:

p(t) = Eα(At
α)p(0) = 1

2πi

∫
Γ

exp(zt)
(
zI − z1−α

A

)−1
p(0)dz. (16)

The eigenvalues of A must lie to the left of the contour Γ . In all our examples,
they lie along the negative real axis. Also, we exploit symmetry when A is real.
Apart from those requirements, we are free to choose the contour. Typical choices
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Fig. 6 A parabolic contour (solid) as described in [16], and a hyperbolic contour (dashed, with
M = 16) used in the MATLAB listing provided here. Nodes for a quadrature rule as in (17) are also
marked on the contours

are displayed in Fig. 6. The exp(zt) factor is nearly zero when the real part of z
is sufficiently negative. This motivates choosing Γ to go into the left-half plane
because then we can neglect the infinite part of the contour that lies to the left of
say, −30, and still obtain high accuracy. To evaluate the integral on the remaining
finite part of the contour, we use quadrature. The trapezoidal rule is a good choice.
For a quadrature rule with M nodes zk on the contour, we approximate (16) by

p(t) ≈
M∑
k=1

wk(t)uk (17)

where we solve a linear system for the vector uk at each node k

(
zI − z1−α

A

)
uk = p(0).

The valueswk(t) (and note that we allow these numbers to depend on t) incorporate
both the usual weights coming from the quadrature rule on a line, and also any
scalings coming from parameterizing the contour. There are variations of this
quadrature scheme. When α = 1, this procedure simplifies to compute the familiar
matrix exponential solutions of the usual Markov systems.

Here is a MATLAB listing, adapted from Le et al. [10], to compute the Mittag-
Leffler solution by applying the quadrature recipe (17) on a hyperbolic contour.



92 S. MacNamara et al.

function p = hyperbola_MittagLeffler(t,A,v,alpha,M)
alpha1 = 1-alpha; n = length(v); Dxi = 1.08179214/M;
xi =[-M:M]*Dxi; delta=1.17210423; mu =4.49207528*M/t;
z = mu * ( 1 - sin(complex(delta,-xi)) );
dz = 1i * mu * cos(complex(delta,-xi)) ;
c = Dxi * dz .* exp(z*t) / (2*pi*1i);
I = speye(n); p = zeros(size(v));
for k = 1:M

p = p + c(k)*((z(k)*I-z(k)^(alpha1)*A)\v);
end
p = 2*real(p); k = M+1;
p = p + real(c(k)*((z(k)*I-z(k)^(alpha1)*A)\v));

We choose M = 16 quadrature points. An example of the hyperbolic contour
being used here is displayed in Fig. 6. Figure 5 shows a solution of (3) computed
with this MATLAB listing.

5.2 Estimating the Field of Values

One strategy to choose the contour, Γ , is to first compute a psedospectrum of
the matrix with EigTool [17] (as in Fig. 3 for example). Then choose Γ so
that ‖(zI − A)−1‖ is never too large for z ∈ Γ . For example, we might choose
the contour so that the bound ‖(zI − A)−1‖ < 103 holds (which corresponds to
ε = 10−3 in (12)). Arguably, the value 103 could be replaced by something smaller,
say O(1). The particular value would depend on the application. In numerical
experiments with these models, the issue seems to matter only when ‖(zI − A)−1‖
is significantly larger than, say, 100. Such an unfavourable situation can certainly
arise. It is demonstrated to happen on the parabolic contour displayed here in
Fig. 6 for bimolecular reactions [12]. The issue is also addressed by In’T Hout and
Weideman [7] for Black–Scholes models. Figure 6 compares a parabolic contour
used for a bimolecular model [12] with a hyperbolic contour used here. A similar
comparison of these contours and discussion can be found in a survey article by
Trefethen and Weideman [16, Figure 15.2].

However, a drawback of this procedure is that it is expensive to first compute the
pseudospectrum. It would therefore be preferable to instead find an estimate of the
region where the resolvent is large by some more efficient means. We find one such
estimate next.

Trefethen and Embree [15] discuss various ways to bound the pseudospectrum.
One approach uses the fact that if z is not inside the field of values of a matrix, then
the norm of the resolvent is bounded by the distance to the field of values:

‖(zI− A)−1‖2 <
1

dist
(
z,W(A)

) .
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This result suggests an idea for adapting the contour: choose the contour to be
outside of the field of values.

We now estimate the field of values of the spatial operator in the Fokker–Planck
PDE (5); a similar approach has been applied to the Black–Scholes equation of
finance [7, Theorem 3.1]. We focus on the particular example of the monomolecular
model, but we believe this approach will be extended to the other models in future
work.

Begin by writing the Fokker–Planck equation in the form of a conservation law,

ut + Au = 0 for 0 < x < m and t > 0,

where, using a dash for ∂/∂x,

Au = − 1
2 (bu)

′′+(au)′ = −( 1
2bu

′+Bu)′ and B(x) = −a(x)+ 1
2b

′(x). (18)

For the monomolecular model, the coefficients are

b(x) = c1x + c2(m− x) and a(x) = −c1x + c2(m− x).

Here, c1, c2 and m are positive constants. Note that A is uniformly elliptic because
b(x) ≥ min(c1,mc2) for 0 < x < m.

We impose either homogeneous Dirichlet boundary conditions,

u(0) = 0 = u(m), (19)

or else zero-flux boundary conditions,

1

2
bu′ + Bu = 0 for x ∈ {0,m}. (20)

The domain of A is then the complex vector space D(A) of C2 functions v :
[0,m] → C satisfying the chosen boundary conditions.

Denote the numerical range (field of values) of A by

W(A) = { 〈Au, u〉 : u ∈ D(A) with 〈u, u〉 = 1 }, (21)

where 〈u, v〉 = ∫ m
0 uv̄. Compare this definition of W(A) in the continuous setting

with the definition (13) in the discrete setting. For either (19) or (20), integration by
parts gives

〈Au, u〉 = 1

2

∫ m

0
b|u′|2 +

∫ m

0
Buū′.
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We write

X+ iY ≡ 〈Au, u〉 = 1
2P −Q where P =

∫ m

0
b|u′|2 and Q = −

∫ m

0
Buū′,

and assume that

B(x)2

b(x)
≤ K and 0 < β0 ≤ B ′(x)

2
≤ β1 for 0 ≤ x ≤ m.

In the case of zero-flux boundary conditions (20), we require the additional
assumption

B(0) ≤ 0 ≤ B(m).

Then we claim that for Dirichlet boundary conditions (19),

Y 2 ≤ 2K(X + β1)− β2
0 , (22)

whereas for zero-flux boundary conditions (20),

Y 2 ≤ 2K(X + β1). (23)

To derive these estimates, first observe that

2'Q = Q+Q̄ = −
∫ m

0
B(uū′+ūu′) = −

∫ m

0
B(uū)′ = −[B|u|2]m0 +

∫ m

0
B ′|u|2.

Assume that 〈u, u〉 = 1. The bounds on B ′ give

β0 − [ 1
2B|u|2]m0 ≤ 'Q ≤ β1 − [ 1

2B|u|2]m0 ,
and by the Cauchy–Schwarz inequality,

|Q|2 ≤
(∫ m

0
B2|u′|2

)(∫ m

0
|u|2
)

=
∫ m

0

B2

b
b|u′|2 ≤

(
max[0,m]

B2

b

)∫ m

0
b|u′|2 ≤ KP ;

thus,

Y 2 = (−(Q)2 = |Q|2 − ('Q)2 ≤ KP − ('Q)2.

For Dirichlet boundary conditions we have
[
B|u|2]m0 = 0, so β0 ≤ 'Q ≤ β1 and

hence

P = 2X + 2'Q ≤ 2X + 2β1 and Y 2 ≤ KP − β2
0 ,
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implying (22). For zero-flux boundary conditions, the extra assumptions on B

ensure that
[
B|u|2]m0 ≥ 0, so 'Q ≤ β1 and hence

P = 2X + 2'Q ≤ 2X + 2β1 and Y 2 ≤ KP,

implying (23).
In the simple case c1 = c2 = c we have

b(x) = cm and B(x) = −a(x) = c(2x −m)

and therefore

B(x)2

b(x)
= c

m
(2x −m)2 ≤ cm and B ′(x) = 2c for 0 ≤ x ≤ m,

giving K = cm and β0 = β1 = c. In addition, B(0) = −cm ≤ 0 and B(m) =
cm ≥ 0. Thus, for zero-flux boundary conditions,

Y 2 ≤ 2cm(X + c).

Note that the sign convention in the notation in (18) makes the operatorA positive
definite (though not symmetric), whereas our model matrices are negative definite,
so W(A) provides an approximation for W(−A) = −W(A). We therefore have to
flip signs in (22) and (23) to get estimates for W(A), as in the following bound.

Parabolic estimate of the field of values for the monomolecular model
matrix when c1 = c2 = c in (7):

Y 2 ≤ 2cm(c−X). (24)

This bound is displayed in Fig. 7. As in the figure, our matrix examples typically
have a unique zero eigenvalue, with all other eigenvalues having negative real part,
and the numerical abscissa (14) is typically strictly positive. Having derived a bound
in the continuous setting, we can only regard it as an approximation in the discrete
setting. Nonetheless, in these numerical experiments it does indeed seem to offer a
useful bound for the discrete case.

Discussion A natural next step is to incorporate this bound into the design of the
contour for methods such as the MATLAB listing provided in Sect. 5. That will
be pursued elsewhere. This article has thus laid the foundations for such attractive
future research.
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Fig. 7 The field of values for the discrete matrix in (7) when c1 = c2 = 1 and m = 100, as
computed by Chebfun. The dashed line is a parabolic bound in (24) for the field of values of
the corresponding continuous PDE (5). This parabolic bound is semi-analytic and requires some
analysis of the equation ‘by hand.’ Also displayed is a hyperbolic contour, as in Fig. 6 as used in
the MATLAB listing provided here

It is worth commenting that if a matrix is real symmetric (unlike the examples in
this article) then the pseudospectrum is not an issue so it would not be good to make
the contour wider (and thus also longer), and instead previously proposed (and often
optimized and shorter) contours such as surveyed in [16] would be good choices.
Making the contour wider and thus longer does impact the numerical method, but
this is unavoidable in applications where the behaviour of the pseudospectra is
an issue, such as the examples discussed here. It is also worth commenting on
numerical methods for computing the field of values. Here we used Chebfun,
which in turn is based on Johnson’s algorithm [9]. It is conceivable that a different
algorithm might be devised to estimate the field of values more cheaply for the
purposes of contour integrals, but we do not explore such an approach here.
However, we do observe in these numerical experiments, as displayed in the figures
for example, that the field of values—and therefore also the estimate that we derive
from it—seems to be too conservative. That is especially noticeable in regions where
the real part is large and negative. It might therefore also be worth considering
methods of more cheaply, directly, estimating the pseudospectra. We began with the
continuous PDE so using a coarse mesh in a PDE-solver, such as a finite difference
method, might be one way to obtain a cheap estimate of the pseudospectra.
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6 Conclusion

We have discussed, and illustrated by example, the significance of the pseudospectra
for stochastic models in biology, including both Markovian and non-Markovian
generalisations. Although we focused exclusively on the 2-norm, the pseudospectra
of these stochastic processes are perhaps more naturally addressed in the 1-norm.
In that regard, future work will explore ways to incorporate the 1-norm methods
described by Higham and Tisseur [6], to adaptively choosing the contour.

Numerical methods to compute the matrix exponential functions and matrix
Mittag-Leffler functions via contour integrals must take the pseudospectrum of the
matrix into account. In particular, such methods must choose contours that are wide
enough, and that adapt to avoid regions of the complex plane where the norm of
the resolvent matrix is too large. We have derived a simple, parabolic bound on
the field of values of an associated Fokker–Planck PDE, which can be used as an
approximation to the field of values of the corresponding discrete matrix model. We
believe this bound can help inform us when making a good choice for the contour.
Ultimately, how to devise contours in a truly adaptive fashion, so that they can
be efficiently computed, automatically and without a priori analysis, remains an
important open question.

Acknowledgements The authors thank the organisers of the Computational Inverse Problems
theme at the MATRIX, 2017.
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Bayesian Point Set Registration

Adam Spannaus, Vasileios Maroulas, David J. Keffer, and Kody J. H. Law

Abstract Point set registration involves identifying a smooth invertible trans-
formation between corresponding points in two point sets, one of which may
be smaller than the other and possibly corrupted by observation noise. This
problem is traditionally decomposed into two separate optimization problems: (1)
assignment or correspondence, and (2) identification of the optimal transformation
between the ordered point sets. In this work, we propose an approach solving
both problems simultaneously. In particular, a coherent Bayesian formulation of the
problem results in a marginal posterior distribution on the transformation, which
is explored within a Markov chain Monte Carlo scheme. Motivated by Atomic
Probe Tomography (APT), in the context of structure inference for high entropy
alloys (HEA), we focus on the registration of noisy sparse observations of rigid
transformations of a known reference configuration. Lastly, we test our method on
synthetic data sets.

1 Introduction

In recent years, a new class of materials has emerged, called High Entropy Alloys
(HEAs). The resulting HEAs possess unique mechanical properties and have shown
marked resistance to high-temperature, corrosion, fracture and fatigue [5, 18]. HEAs
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demonstrate a ‘cocktail’ effect [7], in which the mixing of many components
results in properties not possessed by any single component individually. Although
these metals hold great promise for a wide variety of applications, the greatest
impediment in tailoring the design of HEAs to specific applications is the inability
to accurately predict their atomic structure and chemical ordering. This prevents
Materials Science researchers from constructing structure-property relationships
necessary for targeted materials discovery.

An important experimental characterization technique used to determine local
structure of materials at the atomic level is Atomic Probe Tomography (APT)
[8, 10]. APT provides an identification of the atom type and its position in space
within the sample. APT has been successfully applied to the characterization of
the HEA, AlCoCrCuFeNi [16]. Typically, APT data sets consist of 106–107 atoms.
Sophisticated reconstruction techniques are employed to generate the coordinates
based upon the construction of the experimental apparatus. APT data has two main
drawbacks: (1) up to 66% of the data is missing and (2) the recovered data is
corrupted by noise. The challenge is to uncover the true atomic level structure
and chemical ordering amid the noise and missing data, thus giving material
scientists an unambiguous description of the atomic structure of these novel alloys.
Ultimately, our goal is to infer the correct spatial alignment and chemical ordering
of a dataset, herein referred to as a configuration, containing up to 107 atoms. This
configuration will be probed by individual registrations of the observed point sets in
a neighborhood around each atom.

In this paper we outline our approach to this unique registration problem of
finding the correct chemical ordering and atomic structure in a noisy and sparse
dataset. While we do not solve the problem in full generality here, we present
a Bayesian formulation of the model and a general algorithmic approach, which
allows us to confront the problem with a known reference, and can be readily
generalized to the full problem of an unknown reference.

In Sect. 2 we describe the problem and our Bayesian formulation of the statistical
model. In Sect. 3, we describe Hamiltonian Monte Carlo, a sophisticated Markov
chain Monte Carlo technique used to sample from multimodal densities, which we
use in our numerical experiments in Sect. 4. Lastly, we conclude with a summary of
the work presented here and directions for future research.

2 Problem Statement and Statistical Model

An alloy consists of a large configuration of atoms, henceforth “points”, which are
rotated and translated instances of a reference collection of points, denoted X =
(X1, . . . , XN),Xi ∈ R

d for 1 ≤ i ≤ N which is the matrix representation of
the reference points. The tomographic observation of this configuration is missing
some percentage of the points and is subject to noise, which is assumed additive and
Gaussian. The sample consists of a single point and its M nearest neighbors, where
M is of the order 10. If p ∈ [0, 1] is the percent observed, i.e. p = 1 means all points
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are observed and p = 0 means no points are observed, then the reference point set
will be comprised of N = )M/p* points. We write the matrix representation of the
noisy data point as Y = (Y1, . . . , YM), Yi ∈ R

d , for 1 ≤ i ≤ M .
The observed points have labels, but the reference points do not. We seek to

register these noisy and sparse point sets, onto the reference point set. The ultimate
goal is to identify the ordering of the labels of the points (types of atoms) in a
configuration. We will find the best assignment and rigid transformation between
the observed point set and the reference point set. Having completed the registration
process for all observations in the configuration, we may then construct a three
dimensional distribution of labeled points around each reference point, and the
distribution of atomic composition is readily obtained.

The point-set registration problem has two crucial elements. The first is the
correspondence, or assignment of each point in the observed set to the reference
set. The second is the identification of the optimal transformation from within an
appropriate class of transformations. If the transformation class is taken to be the
rigid transformations, then each of the individual problems is easily solved by
itself, and naive methods simply alternate the solution of each individually until
convergence.

One of the most frequently used point set registration algorithms is the iterative
closest point method, which alternates between identifying the optimal transfor-
mation for a given correspondence, and then corresponding closest points [1]. If
the transformation is rigid, then both problems are uniquely solvable. If instead we
replace the naive closest point strategy with the assignment problem, so that any
two observed points correspond to two different reference points, then again the
problem can solved with a linear program [9]. However, when these two solvable
problems are combined into one, the resulting problem is non-convex [14], and
no longer admits a unique solution, even for the case of rigid transformations as
considered here. The same strategy has been proposed with more general non-
rigid transformations [3], where identification of the optimal transformation is no
longer analytically solvable. The method in [11] minimizes an upper bound on
their objective function, and is thus also susceptible to getting stuck in a local
basin of attraction. We instead take a Bayesian formulation of the problem that
will simultaneously find the transformation and correspondence between point sets.
Most importantly, it is designed to avoid local basins of attraction and locate a global
minimum.

We will show how alternating between finding correspondences and minimizing
distances can lead to an incorrect registration. Consider now the setup in Fig. 1. If we
correspond closest points first, then all three green points would be assigned to the
blue ‘1’. Then, identifying the single rigid transformation to minimize the distances

Fig. 1 Setup for incorrect
registration; alternating
assignment and �2

minimization 1 2 3123
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between all three green and the blue ‘1’ would yield a local minimum, with no
correct assignments. If we consider instead assignments, so that no two observation
points can correspond to the same reference point, then again it is easy then to see
two equivalent solutions with the eye. The first is a pure translation, and the second
can be obtained for example by one of two equivalent rotations around the mid-
point between ‘1’s, by π or −π . The first only gets the assignment of ‘2’ correct,
while the second is correct. Note that in reality the reference labels are unknown,
so both are equivalent for us. Here it is clear what the solutions are, but once the
problem grows in scale, the answer is not always so clear. This simple illustration
of degenerate (equal energy) multi-modality of the registration objective function
arises from physical symmetry of the reference point-set. This will be an important
consideration for our reference point sets, which will arise as a unit cell of a lattice,
hence with appropriate symmetry. We will never be able to know the registration
beyond these symmetries, but this will nonetheless not be the cause of concern, as
symmetric solutions will be considered equivalent. The troublesome multi-modality
arises in the presence of noisy and partially observed point sets, where there may be
local minima with higher energy than the global minima.

The multi-modality of the combined problem, in addition to the limited infor-
mation in the noisy and sparse observations, motivates the need for a global
probabilistic notion of solution for this problem. It is illustrated in the following
subsection that the problem lends itself naturally to a flexible Bayesian formu-
lation which circumvents the intrinsic shortcomings of deterministic optimization
approaches for non-convex problems. Indeed at an additional computational cost,
we obtain a distribution of solutions, rather than a point estimate, so that general
quantities of interest are estimated and uncertainty is quantified. In case a single
point estimate is required we define an appropriate optimal one (for example the
global energy minimizer or probability maximizer).

2.1 Bayesian Formulation

We seek to compute the registration between the observation set and reference set.
We are concerned primarily with rigid transformations of the form

T (X; θ) = RθX + tθ , (1)

where Rθ ∈ R
d×d is a rotation and tθ ∈ R

d is a translation vector.
Write [T(X; θ)]ki = Tk(Xi) for 1 ≤ i ≤ N , 1 ≤ k ≤ d , and where Xi is the

ith column of X. Now let ξ ∈ R
d×M with entries ξij ∼ N(0, γ 2), and assume the

following statistical model

Y = T(X; θ)C + ξ, (2)

for ξ, θ and C independent.



Bayesian Point Set Registration 103

The matrix of correspondencesC ∈ {0, 1}N×M , is such that
∑N
i=1 Cij = 1, 1 ≤

j ≤ M , and each observation point corresponds to only one reference point. So if
Xi matches Yj then Cij = 1, otherwise, Cij = 0. We let C be endowed with a prior,
π0(Cij = 1) = πij for 1 ≤ i ≤ N and 1 ≤ j ≤ M . Furthermore, assume a prior
on the transformation parameter θ given by π0(θ). The posterior distribution then
takes the form

π(C, θ | X,Y ) ∝ L (Y | X, C, θ)π0(C)π0(θ), (3)

where L is the likelihood function associated with Eq. (1).
For a given θ̃ , an estimate Ĉ can be constructed a posteriori by letting Ĉi∗(j),j

= 1 for j = 1, . . . ,M and zero otherwise, where

i∗(j) = argmin
1≤i≤N

|Yj − T (Xi; θ̃ )|2 . (4)

For example, θ̃ may be taken as the maximum a posteriori (MAP) estimator or the
mean. We note that Ĉ can be constructed either with a closest point approach, or via
assignment to avoid multiple registered points assigned to the same reference.

Lastly, we assume the j th observation only depends on the j th column of the
correspondence matrix, and so Yi, Yj are conditionally independent with respect to
the matrix C for i �= j . This does not exclude the case where multiple observation
points are assigned to the same reference point, but as mentioned above such
scenario should have zero probability.

To that end, instead of considering the full joint posterior in Eq. (3) we will focus
on the marginal of the transformation

π(θ | X,Y ) ∝ L (Y | X, θ)π0(θ). (5)

Let Cj denote the j th column of C. Since Cj is completely determined by the
single index i at which it takes the value 1, the marginal likelihood takes the form

∑
C

p(Yj | X, θ, C)π0(C) =
N∑
i=1

p(Yj | X, θ, Cij = 1)π0(Cij = 1)

=
N∑
i=1

πijp(Yj | X, θ, Cij = 1)

∝ πij exp

{
− 1

2γ 2 |Yj − T (Xi; θ)|2
}
. (6)
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The above marginal together with the conditional independence assumption
allows us to construct the likelihood function of the marginal posterior (5) as follows

L (Y | X, θ) =
M∏
j=1

p(Yj | X, θ)

∝
M∏
j=1

N∑
i=1

πij exp

{
− 1

2γ 2 |Yj − T (Xi; θ)|2
}
. (7)

Thus the posterior in question is

π(θ | X,Y ) ∝ L (Y | X, θ)π0(θ)

=
M∏
j=1

N∑
i=1

πij exp

{
− 1

2γ 2 |Yj − T (Xi; θ)|2
}
π0(θ) . (8)

Consider a prior on θ such that π0(θ) ∝ exp(−λR(θ)), where λ > 0. Then we
have the following objective function

E(θ) = −
M∑
j=1

log
N∑
i=1

πij exp

{
− 1

2γ 2
|Yj − T (Xi; θ)|2

}
+ λR(θ) . (9)

The minimizer, θ∗, of the above, Eq. (9) is also the maximizer of a posteriori
probability under Eq. (8). It is called the maximum a posteriori estimator. This can
also be viewed as maximum likelihood estimation regularized by λR(θ).

By sampling consistently from the posterior, we may estimate quantities of
interest, such as moments, together with quantified uncertainty. Additionally, we
may recover other point estimators, such as local and global modes.

3 Hamiltonian Monte Carlo

Monte Carlo Markov chain (MCMC) methods are a natural choice for sampling
from distributions which can be evaluated pointwise up to a normalizing con-
stant, such as the posterior (8). Furthermore, MCMC comprises the workhorse of
Bayesian computation, often appearing as crucial components of more sophisticated
sampling algorithms. Formally, an MCMC simulates a distribution μ over a state
space Ω by producing an ergodic Markov chain {wk}k∈N that has μ as its invariant
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distribution, i.e.

1

K

K∑
k=1

g(wk) →
∫
Ω

g(w)μ(dw) = Eμg(w) , (10)

with probability 1, for g ∈ L1(Ω).
The Metropolis-Hastings method is a general MCMC method defined by choos-

ing θ0 ∈ supp(π) and iterating the following two steps for k ≥ 0

(1) Propose: θ∗ ∼ Q(θk, ·).
(2) Accept/reject: Let θk+1 = θ∗ with probability

α(θk, θ
∗) = min

{
1,
π(θ∗)Q(θ∗, θk)
π(θk)Q(θk, θ∗)

}
,

and θk+1 = θk otherwise.

In general, random-walk proposals Q can result in MCMC chains which
are slow to explore the state space and susceptible to getting stuck in local
basins of attraction. Hamiltonian Monte Carlo (HMC) is designed to improve this
shortcoming. HMC is a Metropolis-Hastings method [4, 13] which incorporates
gradient information of the log density with a simulation of Hamiltonian dynamics
to efficiently explore the state space and accept large moves of the Markov chain.
Heuristically, the gradient yields d pieces of information, for a R

d -valued variable
and scalar objective function, as compared with one piece of information from the
objective function alone. Our description here of the HMC algorithm follows that
of [2] and the necessary foundations of Hamiltonian dynamics for the method can
be found in [17].

Our objective here is to sample from a specific target density

π(θ) ∝ exp(−E(θ)) (11)

over θ , where E(θ) is as defined in Eq. (9) and π(θ) is of the form given by Eq. (8).
First, an artificial momentum variable p ∼ N(0, Γ ), independent of θ , is

included into Eq. (11), for a symmetric positive definite mass matrix Γ , that is
usually a scalar multiple of the identity matrix. Define a Hamiltonian now by

H(p, θ) = E(θ)+ 1

2
pT Γ −1p

where E(θ) is the “potential energy” and 1
2p

T Γ −1p is the “kinetic energy”.
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Hamilton’s equations of motion for p, θ ∈ R
d are, for i = 1, . . . , d :

dθi
dt

= ∂H

∂pi

dpi
dt

= −∂H
∂θi

In practice, the algorithm creates a Markov chain on the joint position-
momentum space R

2d , by alternating between independently sampling from the
marginal Gaussian on momentum p, and numerical integration of Hamiltonian
dynamics along an energy contour to update the position. If the initial condition
θ ∼ π and we were able to perfectly simulate the dynamics, this would give
samples from π because the Hamiltonian H remains constant along trajectories.
Due to errors in numerical approximation, the value of H will vary. To ensure
the samples are indeed drawn from the correct distribution, a Metropolis-Hastings
accept/reject step is incorporated into the method.

In particular, after a new momentum is sampled, suppose the chain is in the state
(p, θ). Provided the numerical integrator is reversible, the probability of accepting
the proposed point (p∗, θ∗) takes the form

α((p, θ), (p∗, θ∗)) = min
{
1, exp

{
H(p, θ)−H(p∗, θ∗)

}}
. (12)

If (p∗, θ∗) is rejected, the next state remains unchanged from the previous iteration.
However, note that a fresh momentum variable is drawn each step, so only θ

remains fixed. Indeed the momentum variables can be discarded, as they are only
auxiliary variables. To be concrete, the algorithm requires an initial state θ0, a
reversible numerical integrator, integration step-size h, and number of steps L.
Note that reversibility of the integrator is crucial such that the proposal integration
Q((p, θ), (p∗, θ∗)) is symmetric and drops out of the acceptance probability in
Eq. (12). The parameters h and L are tuning parameters, and are described in detail
[2, 13].

The HMC algorithm then proceeds as follows:

for k ≥ 0 do HMC:
pk ← ξ for ξ ∼ N (0, Γ )
function INTEGRATOR(pk, θk, h) return (p∗, θ∗)
end function
α ← min {1, exp {H(pk, θk)−H(p∗, θ∗)}}
θk+1 ← θ∗ with probability α otherwise
θk+1 ← θk

end for
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Under appropriate assumptions [13], this method will provide samples θk ∼ π ,
such that for bounded g : Rn → R

1

K

K∑
k=1

g(θk) →
∫
Rn
g(θ)dθ as K → ∞ .

4 Numerical Experiments

To illustrate our approach, we consider numerical experiments on synthetic datasets
in R

2 and R
3, with varying levels of noise and percentage of observed data. We

focus our attention to rigid transformations of the form Eq. (1).
For all examples here, the M observation points are simulated as Yi ∼ N

(RϕXj(i) + t, γ 2Id), for a rotation matrix Rϕ parameterized by ϕ, and some t
and γ . So, θ = (ϕ, t). To simulate the unknown correspondence between the
reference and observation points, for each i = 1, . . . ,M , the corresponding index
j (i) ∈ [1, . . . , N] is chosen randomly and without replacement. Recall that we
define percentage of observed points here as p = M

N
∈ [0, 1]. We tested various

percentages of observed data and noise γ on the observation set, then computed the
mean square error (MSE), given by Eq. (13), between the reference points and the
registered observed points,

E (θ) = 1

M

M∑
i=1

min
X∈X

|RTϕ (Yi − t)−X|2 . (13)

4.1 Two Dimensional Registration

First we consider noise-free data, i.e. γ = 0 (however in the reconstruction
some small γ > 0 is used). The completed registration for the 2-dimensional ‘fish’
set is shown in Figs. 2 and 3. The ‘fish’ set is a standard benchmark test case
for registration algorithms in R

2 [6, 12]. Our methodology, employing the HMC
sampler described in Sect. 3 allows for a correct registration, even in the case where
we have only 33% of the initial data, see Fig. 3.

As a final experiment with the ‘fish’ dataset, we took 25 i.i.d. realizations of
the reference, all having the same transformation, noise, and percent observed.
Since we have formulated the solution of our registration problem as a density,
we may compute moments, and find other quantities of interest. In this experiment
we evaluate θ̄ = 1

25

∑25
k=1 θ̂k , where θ̂ is our MAP estimator of θ from the HMC

algorithm. We then evaluated the transformation under θ̄ . The completed registration
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Fig. 3 33% Observed data

is shown in Fig. 4. With a relatively small number of configurations, we are able to
accurately reconstruct the data, despite the noisy observations.

4.2 Synthetic APT Data

The datasets from APT experiments are perturbed by additive noise on each of
the points. The variance of this additive noise is not known in general, and so in
practice it should be taken as a hyper-parameter, endowed with a hyper-prior, and
inferred or optimized. It is known that the size of the displacement on the order
of several Å (Angstroms), so that provides a good basis for choice of hyper prior.
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Fig. 4 Full data, γ = 0.5, average of 25 registrations

Fig. 5 Example APT data: Left: Hidden truth, Center: Noise added, Right: Missing atoms colored
grey

In order to simulate this uncertainty in our experiments, we incorporated additive
noise in the form of a truncated Gaussian, to keep all the mass within several Å. The
experiments consider a range of variances in order to measure the impact of noise
on our registration process.

In our initial experiments with synthetic data, we have chosen percentages of
observed data and additive noise similar to what Materials Scientist experimentalists
have reported in their APT datasets. The percent observed of these experimental
datasets is approximately 33%. The added noise of these APT datasets is harder
to quantify. Empirically, we expect the noise to be Gaussian in form, truncated to
be within 1–3 Å. The standard deviation of the added noise is less well-known,
so we will work with different values to assess the method’s performance. With
respect to the size of the cell, a displacement of 3 Å is significant. Consider the
cell representing the hidden truth in Fig. 5. The distance between the front left and
right corners is on the scale of 3 Å. Consequently a standard deviation of 0.5 for the
additive noise represents a significant displacement of the atoms.
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Table 1 E (θ) registration errors

Standard deviation Percent observed Registration error

0.0 75% 3.49368609883352e−11

0.0 45% 4.40071892313178e−11

0.25 75% 0.1702529649951198

0.25 45% 0.1221555853433331

0.5 75% 0.3445684328735114

0.5 45% 0.3643178111314804

As a visual example, the images in Fig. 5 are our synthetic test data used to
simulate the noise and missing data from the APT datasets. The leftmost image in
Fig. 5 is the hidden truth we seek to uncover. The middle image is the first with noise
added to the atom positions. Lastly, in the right-most image we have ‘ghosted’ some
atoms, by coloring them grey, to give a better visual representation of the missing
data. In these representations of HEAs, a color different from grey denotes a distinct
type of atom. What we seek is to infer the chemical ordering and atomic structure
of the left image, from transformed versions of the right, where γ = 0.5.

For our initial numerical experiments with simulated APT data, we choose a
single reference and observation, and consider two different percentages of observed
data, 75% and 45%. For both levels of observations in the data, we looked at
results with three different levels of added noise on the atomic positions: no noise,
and Gaussian noise with standard deviation of 0.25 and 0.5. The MSE of the
processes are shown in Table 1. We initially observe the method is able, within
an appreciably small tolerance, find the exact parameter θ in the case of no noise,
with both percentages of observed data. In the other cases, as expected, the error
scales with the noise. This follows from our model, as we are considering a rigid
transformation between the observation and reference, which is a volume preserving
transformation. If the exact transformation is used with an infinite number of points,
then the RMSE (square root of Eq. (13)) is γ .

Now we make the simplifying assumption that the entire configuration corre-
sponds to the same reference, and each observation in the configuration corresponds
to the same transformation applied to the reference, with independent, identically
distributed (i.i.d.) noise added to it. This enables us to approximate the mean and
variance of Eq. (13) over these observation realizations, i.e. we obtain a collection
{E l(θ l)}Ll=1 of errors, where E l (θ l) is the MSE corresponding to replacing Yl and
its estimated registration parameters θ l into Eq. (13), where L is the total number
of completed registrations. The statistics of this collection of values provide robust
estimates of the expected error for a single such registration, and the variance we
can expect over realizations of the observational noise. In other words

E
LE (θ) := 1

L

L∑
l=1

E l (θ l) and V
LE (θ) := 1

L

L∑
l=1

(E l (θ l)− E
LE (θ))2 . (14)
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Fig. 6 Blue: Full data, Red: Noiseless data
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Fig. 7 Blue: 90% Observed, Red: γ = 0.1

We have confidence intervals as well, corresponding to a central limit theorem
approximation based on these L samples.

In Figs. 6, 7, 8, and 9 we computed the registration for L = 125 i.i.d. observation
sets corresponding to the same reference, for each combination of noise and percent
observed data. We then averaged all 125 registration errors for a fixed noise/percent
observed combination, as in Eq. (14), and compared the values. What we observe in
Figs. 6, 7, 8, and 9 is the registration error scaling with the noise, which is expected.
What is interesting to note here is that the registration error is essentially constant
with respect to the percentage of observed data, for a fixed standard deviation
of the noise. More information will lead to a lower variance in the posterior on
the transformation θ , following from standard statistical intuition. However, the
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Fig. 8 Blue: 75% Observed, Red: γ = 0.25
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Fig. 9 Blue: 50% Observed, Red: γ = 0.5

important point to note is that, as mentioned above, for exact transformation, and
infinite points, (13) will equal γ 2. So, for sufficiently accurate transformation, one
can expect a sample approximation thereof. Sufficient accuracy is found here with
very few observed points, which is reasonable considering that in the zero noise case
2 points is sufficient to fit the 6 parameters exactly.

The MSE registration errors shown in Figs. 6, 7, 8, and 9, show the error remains
essentially constant with respect to the percent observed. Consequently, if we
consider only Fig. 7, we observe that the blue and red lines intersect, when the
blue has a standard deviation of 0.1, and the associated MSE is approximately 0.05.
This same error estimate holds for all tested percentages of observed data having a
standard deviation of 0.1. Similar results hold for other combinations of noise and
percent observed, when the noise is fixed.
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Fig. 10 Blue: Full data, Red: Noiseless data (MALA)
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Fig. 11 Blue: 90% Observed, Red: γ = 0.1 (MALA)

Furthermore, the results shown in Figs. 6, 7, 8, and 9 are independent of the
algorithm, as the plots in Figs. 10 and 11 show. For the latter, we ran a similar
experiment with 125 i.i.d. observation sets, but to compute the registration, we used
the Metropolis Adjusted Langevin Algorithm (MALA) [15], as opposed to HMC in
Figs. 6, 7, 8, and 9. Both algorithms solve the same problem and use information
from the gradient of the log density. In the plots shown in Figs. 6, 7, 8, and 9,
we see the same constant error with respect to the percent observed and the error
increasing with the noise, for a fixed percent observed. The MSE also appears to be
proportional to γ 2, which is expected, until some saturation threshold of γ ≥ 0.5
or so. This can be understood as a threshold beyond which the observed points will
tend to get assigned to the wrong reference point.
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To examine the contours of our posterior described by Eq. (8), we drew 105

samples from the density using the HMC methodology described previously. For
this simulation we set the noise to have standard deviation of 0.25 and the percent
observed was 35%, similar values to what we expect from real APT datasets.
The rotation matrix R is constructed via Euler angles denoted: ϕx, ϕy, ϕz, where
ϕx ∈ [0, 2π), ϕy ∈ [−π

2 ,
π
2 ] and ϕz ∈ [0, 2π). These parameters are especially

important to making the correct atomic identification, which is crucial to the success
of our method.

In Figs. 12, 13, and 14, we present marginal single variable histograms and
all combinations of marginal two-variable joint histograms for the individual
components of θ . We observe multiple modes in a number of the marginals. In
Figs. 15, 16, 17, 18, 19, and 20 we present autocorrelation and trace plots for the
rotation parameters from the same instance of the HMC algorithm as presented in
the histograms above in Figs. 12, 13, and 14. We focus specifically on the rotation
angles, to ensure efficient mixing of the Markov chain as these have thus far been
more difficult for the algorithm to optimize. We see the chain is mixing well with
respect to these parameters and appears not to become stuck in local basins of
attraction.
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Additionally, we consider the following. Define null sets A1, . . . , AN . For each
j = 1, . . . ,M and l = 1, . . . , L, let i∗(j, l) := argmini∈{1,...,N}|RTϕl (Y lj−t l)−Xi |2,

and increment Ai∗(j,l) = Ai∗(j,l) ∪ Y lj . This provides a distribution of registered
points for each index i, Ai , from which we estimate various statistics such as mean
and variance. However, note that the cardinality varies between |Ai | ∈ {0, . . . , L}.
We are only be concerned with statistics around reference points i such that
|Ai | > L/10 or so, assuming that the other reference points correspond to outliers
which were registered to by accident. Around each of theseN ′ ≤ N reference points
Xi , we have a distribution of some K ≤ L registered points. We then computed
the mean of these K points, denoted by X̄i and finally we compute the MSE
1
N ′
∑N ′
i=1 |Xi − X̄i |2. The RMSE is reported in Table 2. Here we note that a lower

percentage observed p is correlated with a larger error. Coupling correct inferences
about spatial alignment with an ability to find distributions of atoms around each
lattice point is a transformative tool for understanding High Entropy Alloys.
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5 Conclusion

We have presented a statistical model and methodology for point set registration.
We are able to recover a good estimate of the correspondence and spatial alignment
between point sets in R

2 and R
3 despite missing data and added noise. As a

continuation of this work, we will extend the Bayesian framework presented in
Sect. 2.1 to incorporate the case of an unknown reference. In such a setting, we will
seek not only the correct spatial alignment and correspondence, but the reference
point set, or crystal structure. The efficiency of our algorithm could be improved
through a tempering scheme, allowing for easier transitions between modes, or an
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adaptive HMC scheme, where the chain learns about the sample space in order to
make more efficient moves.

Being able to recover the alignment and correspondences with an unknown
reference will give Materials Science researchers an unprecedented tool in making
accurate predictions about High Entropy Alloys and allow them to develop the
necessary tools for classical interaction potentials. Researchers working in the
field will be able to determine the atomic level structure and chemical ordering
of High Entropy Alloys. From such information, the Material Scientists will have
the necessary tools to develop interaction potentials, which is crucial for molecular
dynamics simulations and designing these complex materials.
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Table 2 Errors for 125 completed registrations

Standard deviation Percent observed Error

0.25 75% 0.04909611134835241

0.5 75% 0.07934531875006196

0.25 45% 0.07460005923988245

0.5 45% 0.11978598998930728
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Optimization Methods for Inverse
Problems

Nan Ye, Farbod Roosta-Khorasani, and Tiangang Cui

Abstract Optimization plays an important role in solving many inverse problems.
Indeed, the task of inversion often either involves or is fully cast as a solution
of an optimization problem. In this light, the mere non-linear, non-convex, and
large-scale nature of many of these inversions gives rise to some very challenging
optimization problems. The inverse problem community has long been developing
various techniques for solving such optimization tasks. However, other, seemingly
disjoint communities, such as that of machine learning, have developed, almost in
parallel, interesting alternative methods which might have stayed under the radar of
the inverse problem community. In this survey, we aim to change that. In doing so,
we first discuss current state-of-the-art optimization methods widely used in inverse
problems. We then survey recent related advances in addressing similar challenges
in problems faced by the machine learning community, and discuss their potential
advantages for solving inverse problems. By highlighting the similarities among
the optimization challenges faced by the inverse problem and the machine learning
communities, we hope that this survey can serve as a bridge in bringing together
these two communities and encourage cross fertilization of ideas.

1 Introduction

Inverse problems arise in many applications in science and engineering. The term
“inverse problem” is generally understood as the problem of finding a specific
physical property, or properties, of the medium under investigation, using indirect
measurements. This is a highly important field of applied mathematics and scientific
computing, as to a great extent, it forms the backbone of modern science and
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engineering. Examples of inverse problems can be found in various fields within
medical imaging [6, 7, 12, 71, 95] and several areas of geophysics including mineral
and oil exploration [8, 18, 74, 96].

In general, an inverse problem aims at recovering the unknown underlying
parameters of a physical system which produces the available observa-
tions/measurements. Such problems are generally ill-posed [52]. This is often
solved via two approaches: a Bayesian approach which computes a posterior
distribution of the models given prior knowledge and the data, or a regularized data
fitting approach which chooses an optimal model by minimizing an objective that
takes into account both fitness to data and prior knowledge. The Bayesian approach
can be used for a variety of downstream inference tasks, such as credible intervals
for the parameters; it is generally more computationally expensive than the data
fitting approach. The computational attractiveness of data fitting comes at a cost: it
can only produce a “point” estimate of the unknown parameters. However, in many
applications, such a point estimate can be more than adequate.

In this review, we focus on the data fitting approach. The approach consists of the
four building blocks: a parametric model of the underlying physical phenomenon, a
forward solver that predicts the observation given the model parameters, an objec-
tive function measuring how well a model fits the observation, and an optimization
algorithm for finding model parameters optimizing the objective function. The first
three components together conceptually defines what an optimal model is, and
the optimization algorithm provides a computational means to find the optimal
model (usually requires solving the forward problem during optimization). Each
of these four building blocks is an active area of research. This paper focuses
on the optimization algorithms. While numerous works have been done on the
subject, there are still many challenges remaining, including scaling up to large-
scale problems, dealing with non-convexity. On the other hand, optimization also
constitutes a backbone of machine learning [17, 32]. Consequently, there are
many related developments in optimization from the machine learning community.
However, thus far and rather independently, the machine learning and the inverse
problems communities have largely developed their own sets of tools and algorithms
to address their respective optimization challenges. It only stands to reason that
many of the recent advances by machine learning can be potentially applicable
for addressing challenges in solving inverse problems. We aim to bring out this
connection and encourage permeation of ideas across these two communities.

In Sect. 2, we present general formulations for the inverse problem, some
typical inverse problems, and optimization algorithms commonly used to solve
the data fitting problem. We discuss recent advances in optimization in Sect. 3.
We then discuss areas in which cross-fertilization of optimization and inverse
problems can be beneficial in Sect. 4. We conclude in Sect. 5. We remark that our
review of these recent developments focus on iterative algorithms using gradient
and/or Hessian information to update current solution. We do not examine global
optimization methods, such as genetic algorithms, simulated annealing, particle
swarm optimization, which have also received increasing attention recently (e.g.
see [98]).
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2 Inverse Problems

An inverse problem can be seen as the reverse process of a forward problem, which
concerns with predicting the outcome of some measurements given a complete
description of a physical system. Mathematically, a physical system is often
specified using a set of model parameters m whose values completely characterize
the system. The model space M is the set of possible values of m. While m usually
arises as a function, in practice it is often discretized as a parameter vector for the
ease of computation, typically using the finite element method, the finite volume
method, or the finite difference method. The forward problem can be denoted as

m → d = f(m), (1)

where d are the error-free predictions, and the above notation is a shorthand for
d = (d1, . . . ,ds ) = (f1(m), . . . , fs(m)), with di ∈ R

l being the i-th measurement.
The function f represents the physical theory used for the prediction and is called
the forward operator. The observed outcomes contain noises and relate to the system
via the following the observation equation

d = f(m)+ η, (2)

where η are the noises occurred in the measurements. The inverse problem aims to
recover the model parameters m from such noisy measurements.

The inverse problem is almost always ill-posed, because the same measurements
can often be predicted by different models. There are two main approaches to deal
with this issue. The Bayesian approach assumes a prior distribution P(m) on the
model and a conditional distributionP(η | m) on noise given the model. The latter is
equivalent to a conditional distribution P(d | m) on measurements given the model.
Given some measurements d, a posterior distribution P(m | d) on the models is
then computed using the Bayes rule

P(m | d) ∝ P(m)P (d | m). (3)

Another approach sees the inverse problem as a data fitting problem that finds an
parameter vector m that gives predictions f(m) that best fit the observed outcomes
d in some sense. This is often cast as an optimization problem

min
m∈M

ψ(m,d), (4)

where the misfit function ψ measures how well the model m fits the data d.
When there is a probabilistic model of d given m, a typical choice of ψ(m,d)
is the negative log-likelihood. Regularization is often used to address the issue
of multiple solutions, and additionally has the benefit of stabilizing the solution,
that is, the solution is less likely to change significantly in the presence of outliers
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[5, 36, 111]. Regularization incorporates some a priori information on m in the form
of a regularizer R(m) and solves the regularized optimization problem

min
m∈M

ψR,α(m,d) := ψ(m,d) + αR(m), (5)

where α > 0 is a constant that controls the tradeoff between prior knowledge and
the fitness to data. The regularizer R(m) encodes a preference over the models,
with preferred models having smaller R values. The formulation in Eq. (5) can
often be given a maximum a posteriori (MAP) interpretation within the Bayesian
framework [97]. Implicit regularization also exists in which there is no explicit term
R(m) in the objective [53, 54, 86, 87, 107, 109].

The misfit function often has the form φ(f(m),d), which measures the difference
between the prediction f(m) and the observation d. For example,φ may be chosen to
be the Euclidean distance between f(m) and d. In this case, the regularized problem
takes the form

min
m∈M

φR,α(m,d) := φ(f(m),d)+ αR(m), (6)

This can also be equivalently formulated as choosing the most preferred model
satisfying constraints on its predictions

min
m∈M

R(m), s.t. φ(f(m),d) ≤ ρ. (7)

The constant ρ usually relates to noise and the maximum discrepancy between the
measured and the predicted data, and can be more intuitive than α.

2.1 PDE-Constrained Inverse Problems

For many inverse problems in science and engineering, the forward model is not
given explicitly via a forward operator f(m), but often conveniently specified via a
set of partial differential equations (PDEs). For such problems, Eq. (6) has the form

min
m∈M ,u

φ(P · u,d)+ αR(m), s.t. ci(m,ui ) = 0, i = 1, . . . , s, (8)

where P · u = (P1, . . . , Ps ) · (u1, . . . ,us ) = (P1u1, . . . , Psus) with ui being the
field in the i-th experiment, Pi being the projection operator that selects fields at
measurement locations in di (that is, Piui are the predicted values at locations
measured in di ), and ci(m,ui ) = 0 corresponds to the forward model in the i-th
experiment. In practice, the forward model can often be written as

Li (m)ui = qi , i = 1, . . . , s, (9)
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where Li (m) is a differential operator, and qi is a term that incorporates source
terms and boundary values.

The fields u1, . . . ,us in Eqs. (8) and (9) are generally functions in two or
three dimensional spaces, and finding closed-form solutions is usually not possible.
Instead, the PDE-constrained inverse problem is often solved numerically by
discretizing Eqs. (8) and (9) using the finite element method, the finite volume
method, or the finite difference method. Often the discretized PDE-constrained
inverse problem takes the form

min
m∈M ,u

φ(Pu,d) + αR(m), s.t. Li(m)ui = qi , i = 1, . . . , s, (10)

where P is a block-diagonal matrix consisting of diagonal blocks P1, . . . , Ps
representing the discretized projection operators, u is the concatenation of the
vectors u1, . . . ,us representing the discretized fields, and each Li(m) is a square,
non-singular matrix representing the differential operator Li (m). Each Li(m) is
typically large and sparse. We abuse the notations P , u to represent both functions
and their discretized versions, but the meanings of these notations will be clear from
context.

The constrained problem in Eq. (10) can be written in an unconstrained form by
eliminating u using ui = L−1

i qi ,

min
m∈M

φ(PL−1(m)q,d)+ αR(m), (11)

where L is the block-diagonal matrix with L1, . . . , Ls as the diagonal blocks, and
q is the concatenation of q1, . . . ,qs . Note that, as in the case of (6), here we have
f(m) = PL−1(m)q.

Both the constrained and unconstrained formulations are used in practice. The
constrained formulation can be solved using the method of Lagrangian multipliers.
This does not require explicitly solving the forward problem as in the unconstrained
formulation. However, the problem size increases, and the problem becomes one of
finding a saddle point of the Lagrangian, instead of finding a minimum as in the
constrained formulation.

2.2 Image Reconstruction

Image reconstruction studies the creation of 2-D and 3-D images from sets of
1-D projections. The 1-D projections are generally line integrals of a function
representing the image to be reconstructed. In the 2-D case, given an image function
f (x, y), the integral along the line at a distance of s away from the origin and having
a normal which forms an angle φ with the x-axis is given by the Radon transform

p(s, φ) =
∫ ∞

−∞
f (z sin φ + s cosφ,−z cosφ + s sinφ)dz. (12)
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Reconstruction is often done via back projection, filtered back projection, or iter-
ative methods [55, 77]. Back projection is the simplest but often results in a blurred
reconstruction. Filtered back projection (FBP) is the analytical inversion of the
Radon transform and generally yields reconstructions of much better quality than
back projection. However, FBP may be infeasible in the presence of discontinuities
or noise. Iterative methods take noise into account, by assuming a distribution for
the noise. The objective function is often chosen to be a regularized likelihood of the
observation, which is then iteratively optimized using the expectation maximization
(EM) algorithm.

2.3 Objective Function

One of the most commonly used objective function is the least squares criterion,
which uses a quadratic loss and a quadratic regularizer. Assume that the noise
for each experiment in (2) is independently but normally distributed, i.e., ηi ∼
N (0,Σi),∀i, where Σi ∈ R

l×l is the covariance matrix. Let Σ be the block-
diagonal matrix with Σ1, . . . ,Σs as the diagonal blocks. The standard maximum
likelihood (ML) approach [97], leads to minimizing the least squares (LS) misfit
function

φ(m) := ‖f(m)− d‖2
Σ−1 , (13)

where the norm ‖x‖A = √
x,Ax is a generalization of the Euclidean norm

(assuming the matrix A is positive definite, which is true in the case ofΣ−1
i ). In the

above equation, we simply write the general misfit function φ(f(m),d) as φ(m) by
taking the measurements d as fixed and omitting it from the notation. As previously
discussed, we often minimize a regularized misfit function

φR,α(m) := φ(m)+ αR(m). (14)

The prior R(m) is often chosen as a Gaussian regularizer R(m) = (m −
mprior)

,Σ−1
m (m − mprior). We can also write the above optimization problem as

minimizing R(m) under the constraints

s∑
i=1

‖fi (m)− di‖ ≤ ρ. (15)

The least-squares criterion belongs to the class of �p-norm criteria, which
contain two other commonly used criteria: the least-absolute-values criterion and
the minimax criterion [104]. These correspond to the use of the �1-norm and the
�∞-norm for the misfit function, while the least squares criterion uses the �2-norm.
Specifically, the least-absolute-values criterion takes φ(m) := ‖f(m)− d‖1, and the
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minimax criterion takes φ(m) := ‖f(m) − d‖∞. More generally, each coordinate
in the difference may be weighted. The �1 solution is more robust (that is, less
sensitive to outliers) than the �2 solution, which is in turn more robust than the �∞
solution [25]. The �∞ norm is desirable when outliers are uncommon but the data
are corrupted by uniform noise such as the quantization errors [26].

Besides the �2 regularizer discussed above, the �1-norm is often used too.
The �1 regularizer induces sparsity in the model parameters, that is, heavier �1
regularization leads to fewer non-zero model parameters.

2.4 Optimization Algorithms

Various optimization techniques can be used to solve the regularized data fitting
problem. We focus on iterative algorithms for nonlinear optimization below as
the objective functions are generally nonlinear. In some cases, the optimization
problem can be transformed to a linear program. For example, linear programming
can be used to solve the least-absolute-values criterion or the minimax criterion.
However, linear programming are considered to have no advantage over gradient-
based methods (see Section 4.4.2 in [104]), and thus we do not discuss such methods
here. Nevertheless, there are still many optimization algorithms that can be covered
here, and we refer the readers to [13, 80].

For simplicity of presentation, we consider the problem of minimizing a function
g(m). We consider iterative algorithms which start with an iterate m0, and compute
new iterates using

mk+1 = mk + λkpk, (16)

where pk is a search direction, and λk a step size. Unless otherwise stated, we
focus on unconstrained optimization. These algorithms can be used to directly solve
the inverse problem in Eq. (5). We only present a selected subset of the algorithms
available and have to omit many other interesting algorithms.

Newton-Type Methods The classical Newton’s method starts with an initial iterate
m0, and computes new iterates using

mk+1 = mk −
(
∇2g(mk)

)−1 ∇g(mk), (17)

that is, the search direction is pk = − (∇2g(mk)
)−1 ∇g(mk), and the step length

is λk = 1. The basic Newton’s method has quadratic local convergence rate at a
small neighborhood of a local minimum. However, computing the search direction
pk can be very expensive, and thus many variants have been developed. In addition,
in non-convex problems, classical Newton direction might not exist (if the Hessian
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matrix is not invertible) or it might not be an appropriate direction for descent (if
the Hessian matrix is not positive definite).

For non-linear least squares problems, where the objective function g(m) is a
sum of squares of nonlinear functions, the Gauss-Newton (GN) method is often
used [101]. Extensions to more general objective functions as in Eq. (13) with
covariance matrixΣ and arbitrary regularization as in Eq. (14) is considered in [94].
Without loss of generality, assume g(m) = ∑s

i=1(fi (m) − di )2. At iteration k, the
GN search direction pk is given by

(
s∑
i=1

J,
i Ji

)
pk = −∇g, (18)

where the sensitivity matrix Ji and the gradient ∇g are given by

Ji = ∂fi
∂m

(mk), i = 1, . . . , s, (19)

∇g = 2
s∑
i=1

J Ti (fi (mk)− di ), (20)

The Gauss-Newton method can be seen as an approximation of the basic Newton’s
method obtained by replacing ∇2g by

∑s
i=1 J

,
i Ji . The step length λk ∈ [0, 1] can

be determined by a weak line search [80] (using, say, the Armijo algorithm starting
with λk = 1) ensuring sufficient decrease in g(mk+1) as compared to g(mk).

Often several nontrivial modifications are required to adapt this prototype method
for different applications, e.g., dynamic regularization [53, 86, 87, 108] and more
general stabilized GN studied [30, 93]. This method replaces the solution of the
linear systems defining pk by r preconditioned conjugate gradient (PCG) inner
iterations, which costs 2r solutions of the forward problem per iteration, for a
moderate integer value r . Thus, if K outer iterations are required to obtain an
acceptable solution then the total work estimate (in terms of the number of PDE
solves) is approximated from below by 2(r + 1)Ks.

Though Gauss-Newton is arguable the method of choice within the inverse
problem community, other Newton-type methods exist which have been designed
to suitably deal with the non-convex nature of the underlying optimization problem
include Trust Region [27, 114] and the Cubic Regularization [23, 114]. These
methods have recently found applications in machine learning [115]. Studying
the advantages/disadvantages of these non-convex methods for solving inverse
problems can be indeed a useful undertaking.

Quasi-Newton Methods An alternative method to the above Newton-type meth-
ods is the quasi-Newton variants including the celebrated limited memory BFGS
(L-BFGS) [68, 79]. BFGS iteration is closely related to conjugate gradient (CG)
iteration. In particular, BFGS applied to a strongly convex quadratic objective, with
exact line search as well as initial Hessian P , is equivalent to preconditioned CG
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with preconditioner P . However, as the objective function departs from being a
simple quadratic, the number of iterations of L-BFGS could be significantly higher
than that of GN or trust region. In addition, it has been shown that the performance
of BFGS and its limited memory version is greatly negatively affected by the
high degree if ill-conditioning present in such problems [90, 91, 113]. These two
factor are among the main reasons why BFGS (and L-BFGS) can be less effective
compared with other Newton-type alternatives in many inversion applications [44].

Krylov Subspace Method A Krylov subspace method iteratively finds the optimal
solution to an optimization in a larger subspace by making use of the previous
solution in a smaller subspace. One of the most commonly used Krylov subspace
method is the conjugate gradient (CG) method. CG was originally designed to solve
convex quadratic minimization problems of the form g(m) = 1

2 m,Am − b,m.
Equivalently, this solves the positive definite linear system Am = b. It computes a
sequence of iterates m0,m1, . . . converging to the minimum through the following
two set of equations.

m0 = 0, r0 = b, p0 = r0, (21)

mk+1 = mk + ||rk ||22
p,
k Apk

pk, rk+1 = rk − ||rk ||22
p,
k Apk

Apk, pk+1 = rk+1 + ||rk+1||22
||rk ||22

pk, k ≥ 0.

(22)

This can be used to solve the forward problem of the form Li(m)ui = qi , provided
that Li(m) is positive definite, which is true in many cases.

CG can be used to solve the linear system for the basic Newton direction.
However, the Hessian is not necessarily positive definite and modification is needed
[80].

In general, CG can be generalized to minimize a nonlinear function g(m) [28,
39]. It starts with an arbitrary m0, and p1 = −∇g(m0), and computes a sequence
of iterates m1,m2, . . . using the equations below: for k ≥ 0,

mk+1 = arg min
m∈{mk+λpk,λ∈R}g(m), (23)

pk+1 = −∇g(mk+1)+ βkpk, where βk = ||∇g(mk+1)||22
||∇g(mk)||22

. (24)

The above formula for βk is known as the Fletcher-Reeves formula. Other choices of
βk exist. The following two formula are known as the Polak-Ribiere and Hestenes-
Stiefel formula respectively.

βk = 〈∇g(mk+1)− ∇g(mk),∇g(mk+1)〉
||∇g(mk)||22

, (25)

βk = 〈∇g(mk+1)− ∇g(mk),∇g(mk+1)〉
p,
k (∇g(mk+1)− ∇g(mk))

. (26)
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In practice, nonlinear CG does not seem to work well, and is mainly used together
with other methods, such as in the Newton CG method [80].

Lagrangian Method of Multipliers The above discussion focuses on uncon-
strained optimization algorithms, which are suitable for unconstrained formulations
of inverse problems, or unconstrained auxiliary optimization problems in methods
which solves the constrained formulations directly. The Lagrangian method of
multipliers is often used to directly solve the constrained version. Algorithms have
been developed to offset the heavier computational cost and slow convergence rates
of standard algorithms observed on the Lagrangian, which is a larger problem than
the constrained problem. For example, such algorithm may reduce the problem to
a smaller one, such as working with the reduced Hessian of the Lagrangian [47],
or preconditioning [10, 45]. These methods have shown some success in certain
PDE-constrained optimization problems.

Augmented Lagrangian methods have also been developed (e.g. [1, 57]). Such
method constructs a series of penalized Lagrangians with vanishing penalty, and
finds an optimizer of the Lagrangian by successively optimizing the penalized
Lagrangians.

2.5 Challenges

Scaling up to Large Problems The discretized version of an inverse problem is
usually of very large scale, and working with fine resolution or discretized problems
in high dimension is still an active area of research.

Another challenge is to scale up to large number of measurements, which is
widely believed to be helpful for quality reconstruction of the model in practice,
with some theoretical support. While recent technological advances makes many
big datasets available, existing algorithms cannot efficiently cope with such datasets.
Examples of such problems include electromagnetic data inversion in mining
exploration [33, 48, 78, 81], seismic data inversion in oil exploration [38, 56, 88],
diffuse optical tomography (DOT) [6, 14], quantitative photo-acoustic tomography
(QPAT) [42, 117], direct current (DC) resistivity [30, 49, 50, 83, 100], and electrical
impedance tomography (EIT) [16, 24, 110].

It has been suggested that many well-placed experiments yield practical advan-
tage in order to obtain reconstructions of acceptable quality. For the special case
where the measurement locations as well as the discretization matrices do not
change from one experiment to another, various approximation techniques have
been proposed to reduce the effective number of measurements, which in turn
implies a smaller scale optimization problem, under the unifying category of
“simultaneous sources inversion” [46, 63, 89, 93, 94]. Under certain circumstances,
even if the Pi ’s are different across experiments (but Li ’s are fixed), there are
methods to transform the existing data set into the one where all sources share the
same receivers, [92].
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Dealing with Non-convexity Another major source of difficulty in solving many
inverse problems, is the high-degree of non-linearity and non-convexity in (1). This
is most often encountered in problems involving PDE-constrained optimization
where each fi corresponds to the solution of a PDE. Even if the output of
the PDE model itself, i.e., the “right-hand side”, is linear in the sought-after
parameter, the solution of the PDE, i.e., the forward problem, shows a great deal
of non-linearity. This coupled with a great amount of non-convexity can have
significant consequences in the quality of inversion and the obtained parameter.
Indeed, in presence of non-convexity, the large-scale computational challenges are
exacerbated, multiple folds over, by the difficulty of avoiding (possibly degenerate)
saddle-points as well as finding (at least) a local minimum.

Dealing with Discontinuity While the parameter function of the model is often
smooth, the parameter function can be discontinuous in some cases. Such discon-
tinuities arise very naturally as a result of the physical properties of the underlying
physical system, e.g., EIT and DC resistivity, and require non-trivial modifications
to optimization algorithms, e.g., [30, 93]. Ignoring such discontinuities can lead
to unsatisfactory recovery results [30, 31, 103]. The level set method [82] is
often used to model discontinuous parameter function. This reparametrizes the
discontinuous parameter function as a differentiable one, and thus enabling more
stable optimization [31].

3 Recent Advances in Optimization

Recent successes in using machine learning to deal with challenging perception and
natural language understanding problems have spurred many advances in the study
of optimization algorithms as optimization is a building block in machine learning.
These new developments include efficient methods for large-scale optimization,
methods designed to handle non-convex problems, methods incorporating the
structural constraints, and finally the revival of second-order methods. While these
developments address a different set of applications in machine learning, they
address similar issues as encountered in inverse optimization and could be useful.
We highlight some of the works below. We keep the discussion brief because
numerous works have been done behind these developments and an indepth and
comprehensive discussion is beyond the scope of this review. Our objective is thus to
delineate the general trends and ideas, and provide references for interested readers
to dig on relevant topics.

Stochastic Optimization The development in large-scale optimization methods is
driven by the availability of many large datasets, which are made possible by the
rapid development and extensive use of computers and information technology. In
machine learning, a model is generally built by optimizing a sum of misfit on the
examples. This finite-sum structure naturally invites the application of stochastic
optimization algorithms. This is mainly due to the fact that stochastic algorithms
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recover the sought-after models more efficiently by employing small batches of data
in each iteration, as opposed to the whole data-set. The most well-known stochastic
gradient based algorithm is the stochastic gradient descent (SGD). To minimize a
finite-sum objective function

g(m) = 1

n

n∑
i=1

gi(m), (27)

in the big data regime where n - 1, the vanilla SGD performs an update

mk+1 = mk − λk∇gik (mk), (28)

where ik is randomly sampled from 1, . . . , n. As compared to gradient descent,
SGD replaces the full gradient ∇g(m) by a stochastic gradient gik (mk) with its
expectation being the full gradient. The batch version of SGD constructs a stochastic
gradient by taking the average of several stochastic gradients.

Vanilla SGD is inexpensive per iteration, but suffers from a slow rate of
convergence. For example, while full gradient descent achieves a linear convergence
rate for smooth strongly convex problems, SGD only converges at a sublinear
rate. The slow convergence rate can be partly accounted by the variance in the
stochastic gradient. Recently, variance reduction techniques have been developed,
e.g. SVRG [61] and SDCA [99]. Perhaps surprisingly, such variants can achieve
linear convergence rates on convex smooth problems as full gradient descent does,
instead of sublinear rates achieved by the vanilla SGD. There are also a number of
variants with no known linear rates but have fast convergence rates for non-convex
problems in practice, e.g., AdaGrad [34], RMSProp [105], ESGD [29], Adam [62],
and Adadelta [118]. Indeed, besides efficiency, stochastic optimization algorithms
also seem to be able to cope with the nonconvex objective functions well, and play
a key role in the revival of neural networks as deep learning [43, 60, 66].

Recently, it has also been shown that SGD can be used as a variational algorithm
for computing the posterior distribution of parameters given observations [72]. This
can be useful in the Bayesian approach for solving inverse problems.

Nonconvex Optimization There is also an increasing interest in non-convex
optimization in the machine learning community recently. Nonconvex objectives
not only naturally occur in deep learning, but also occur in problems such as tensor
decomposition, variable selection, low-rank matrix completion, e.g. see [43, 59, 73]
and references therein.

As discussed above, stochastic algorithms have been found to be capable of
effectively escaping local minima. There are also a number of studies which
adapt well-known acceleration techniques for convex optimization to accelerate the
convergence rates of both stochastic and non-stochastic optimization algorithms for
nonconvex problems, e.g., [4, 67, 85, 102].
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Dealing with Structural Constraints Many problems in machine learning come
with complex structural constraints. The Frank-Wolfe algorithm (a.k.a. conditional
gradient) [41] is an algorithm for optimizing over a convex domain. It has gained
a revived interest due to its ability to deal with many structural constraints
efficiently. It requires solving a linear minimization problem over the feasible set,
instead of a quadratic program as in the case of proximal gradient algorithms or
projected gradient descent. Domains suitable for the Frank-Wolfe algorithm include
simplices, �p-balls, matrix nuclear norm ball, matrix operator norm ball [58].

The Frank-Wolfe algorithm belongs to the class of linear-optimization-based
algorithms [64, 65]. These algorithms share with the Frank-Wolfe algorithm the
characteristic of requiring a first-order oracle for gradient computation and an oracle
for solving a linear optimization problem over the constraint set.

Second-Order Methods The great appeal of the second-order methods lies mainly
in the observed empirical performance as well as some very appealing theoretical
properties. For example, it has been shown that stochastic Newton-type methods
in general, and Gauss-Newton in particular, can not only be made scalable and
have low per-iteration cost [30, 47, 51, 92–94], but more importantly, and unlike
first-order methods, are very resilient to many adversarial effects such as ill-
conditioning [90, 91, 113]. As a result, for moderately to very ill-conditioned
problems, commonly found in scientific computing, while first-order methods make
effectively no progress at all, second-order counterparts are not affected by the
degree of ill-conditioning. A more subtle, yet potentially more severe draw-back in
using first-order methods, is that their success is tightly intertwined with fine-tuning
(often many) hyper-parameters, most importantly, the step-size [11]. In fact, it is
highly unlikely that many of these methods exhibit acceptable performance on first
try, and it often takes many trials and errors before one can see reasonable results. In
contrast, second-order optimization algorithms involve much less parameter tuning
and are less sensitive to the choice of hyper-parameters [11, 115].

Since for the finite-sum problem (27) with n - 1, the operations with the
Hessian/gradient constitute major computational bottlenecks, a rather more recent
line of research is to construct the inexact Hessian information using the applica-
tion of randomized methods. Specifically, for convex optimization, the stochastic
approximation of the full Hessian matrix in the classical Newton’s method has been
recently considered in [3, 11, 15, 19, 20, 35, 37, 75, 76, 84, 90, 91, 112, 113, 116]. In
addition to inexact Hessian, a few of these methods study the fully stochastic case in
which the gradient is also approximated, e.g., [15, 90, 91]. For non-convex problems,
however, the literature on methods that employ randomized Hessian approximation
is significantly less developed than that of convex problems. A few recent examples
include the stochastic trust region [114], stochastic cubic regularization [106, 114],
and noisy negative curvature method [69]. Empirical performance of many of these
methods for some non-convex machine learning applications has been considered
in [115].
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3.1 A Concrete Success Story

The development of optimization methods in the machine learning community
has been fueled by the need to obtain better generalization performance one
future “unseen” data. This is in contrast with typical inverse problem applications
where fitting the model to the observations on hand make up of all that matters.
These rather strikingly different goals have lead the ML community to develop
optimization methods that can address ML specific challenges. This, in part, has
given rise to scalable algorithms that can often deliver far beyond what the most
widely used optimization methods in the inverse problem community can.

As a concrete example, consider L-BFGS and Gauss-Newton, which are,
arguably, among the most popular optimization techniques used by the scientific
computing community in a variety of inverse problem applications. In fact, unlike
Gauss-Newton method, L-BFGS, due to its low per-iteration costs, has found
significant attraction within the machine learning community as well. Nevertheless,
due to the resurgence of non-convex deep learning problems in ML, there is an
increasing demand for scalable optimization algorithms that can avoid saddle
points and converge to a local minimum. This demand has driven the development
algorithms that can surpass the performance of L-BFGS and Gauss-Newton when
applied to deep learning applications, e.g., [115].

These results are not unexpected. Indeed, contrary to popular belief, BFGS
is not quite a “full-fledged” second-order method as it merely employs first-
order information, i.e. gradients, to approximate the curvature. Similar in spirit,
Gauss-Newton also does not fully utilize the Hessian information. In particular, in
exchange for obtaining a positive definite approximation matrix, GN completely
ignores the information from negative curvature, which is critical for allowing to
escape from regions with small gradient. Escaping saddle points and converging
to a local minimum with lower objective values have surprisingly not been a huge
concern for the inverse problem community. This is in sharp contrast to the machine
learning applications where obtaining lower training errors with deep learning
models typically translates to better generalization performance.

4 Discussion

Optimization is not only used in the data fitting approach to inverse problems, but
also used in the Bayesian approach. An important problem in the Bayesian approach
is the choice of the parameters for the prior. While these were often chosen in a
somewhat ad hoc way, there are studies which use sampling [2, 40], hierarchical
prior models [21, 22], and optimization [9, 70] methods to choose the parameters.
While choosing the prior parameters through optimization has found some success,
such optimization is hard and it remains a challenge to develop effective algorithms
to solve these problems.
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For inverse problems with large number of measurements, solving each forward
problem can be expensive, and the mere evaluation of the misfit function may
become computationally prohibitive. Stochastic optimization algorithms might be
beneficial in this case, because the objective function is often a sum of misfits over
different measurements.

The data fitting problem is generally non-convex and thus optimization algo-
rithms may be trapped in a local optimum. Stochastic optimization algorithms
also provide a means to escape the local optima. Recent results in nonconvex
optimization, such as those on accelerated methods, may provide more efficient
alternatives to solve the data fitting problem.

While box constraints are often used in inverse problems because they are easier
to deal with, simplex constraint can be beneficial. The Frank-Wolfe algorithm
provides a efficient way to deal with the simplex constraint, and can be a useful
tool to add on to the toolbox of an inverse problem researcher.

5 Conclusion

State-of-the-art optimization methods in the inverse problem community struggle to
cope with important issues such as large-scale problems and nonconvexity. At the
same time, many progresses in optimization have been made in the machine learning
community. Our discussion on the connections has been brief. Nevertheless, we
have highlighted the valuable potential synergies that are to be reaped by bringing
these two communities closer together.
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Diagonal Form Factors
from Non-diagonal Ones

Zoltan Bajnok and Chao Wu

Abstract We prove the asymptotic large volume expression of diagonal form
factors in integrable models by evaluating carefully the diagonal limit of a non-
diagonal form factor in which we send the rapidity of the extra particle to infinity.

1 Introduction

Two dimensional integrable quantum field theories are useful toy models of
statistical and particle physics as they provide many interesting observables, which
can be calculated exactly [12]. These models are first solved in infinite volume,
where the scattering matrix [4, 21], which connects asymptotic multiparticle states,
are determined together with the form factors which are the matrix elements of local
operators sandwiched between the same asymptotic states [19]. These form factors
then can be used to build up the correlation functions, which define the theory in the
Wightman sense [1].

In the relevant practical applications, however, quantum field theories are con-
fined to a finite volume and the calculation of finite size corrections is unavoidable.
Fortunately, all these finite size corrections can be expressed in terms of the
infinite volume characteristics, such as masses, scattering matrices and form factors
[10, 11, 15]. We can distinguish three domains in the volume according to the nature
of the corrections. The leading finite size corrections are polynomial in the inverse
power of the volume, while the sub-leading corrections are exponentially volume-
suppressed.

Concerning the finite volume energy spectrum the domain when only polynomial
corrections are kept is called the Bethe-Yang (BY) domain. We there merely
need to take into account the finite volume quantization of the momenta, which
originates from the periodicity requirement and explicitly includes the scattering
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phase-shifts [11]. The exponentially small corrections are due to virtual particles
traveling around the world and the domain in which we keep only the leading
exponential correction is called the Luscher domain [10]. In a small volume, when
all exponentials contribute the same way, we have to sum them up leading to a
description given by the Thermodynamic Bethe Ansatz (TBA) [20].

The situation for the form factors are not understood at the same level yet. The
BY domain was investigated in [15, 16]. It was proven for non-diagonal form factors
that all polynomial finite size effects come only from the finite volume (Kronecker-
delta) normalization of states. The authors also conjectured the BY form of diagonal
finite volume form factors, which they derived for two particle-states. The leading
exponential finite size corrections for generic form factors are not known, except
for the diagonal ones, for which exact conjectures exist. The LeClair-Mussardo
(LM) conjecture expresses the exact finite volume/temperature one-point functions
in terms of infinite volume diagonal connected form factors, and densities of mirror
states determined by the TBA equation [9]. Actually it was shown in [13, 14] that
the BY form of diagonal form factors implies the LM formula and vice versa.
Using analytical continuation a ’la [5] Pozsgay extended the LM formula for finite
volume diagonal matrix elements [17]. The aim of the present paper is to prove the
conjectured BY form of diagonal form factors [16, 18] from the already proven non-
diagonal BY form factors [15] by carefully calculating the diagonal limit, in which
we send one particle’s rapidity to infinity. By this way our result also leads to the
proof of the LM formula. Here we focus on theories with one type of particles.

The paper is organized such that in the next section we summarize the known
facts about the BY form of diagonal and non-diagonal form factors. We then in
Sect. 3 prove the diagonal conjecture and conclude in Sect. 4.

2 The Conjecture for Diagonal Large Volume Form Factors

In this section we introduce the infinite volume form factors and their properties and
use them later on to describe the finite volume form factors in the BY domain.

2.1 Infinite Volume Form Factors

Infinite volume form factors are the matrix elements of local operators sandwiched
between asymptotic states 〈θ ′

1, . . . , θ
′
m|O|θn, . . . , θ1〉. We use the rapidity θ to

parametrize the momenta as p = m sinh θ . The crossing formula

〈θ ′
1, . . . , θ

′
m|O|θn, . . . , θ1〉 = 〈θ ′

1, . . . , θ
′
m−1|O|θ̄ ′

m − iε, θn, . . . , θ1〉 + (1)

n∑
i=1

2πδ(θ ′
m − θi)

n∏
j=i+1

S(θj − θi)〈θ ′
1, . . . , θ

′
m−1|O|θn−1, . . . , θ1〉
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can be used to express every matrix element in terms of the elementary form factors

〈0|O|θn, . . . , θ1〉 = Fn(θn, . . . , θ1) (2)

where θ̄ = θ+iπ denotes the crossed rapidity and the two particle S-matrix satisfies
S(θ) = S(iπ − θ) = S(−θ)−1. Infinite volume states are normalized to Dirac
δ-functions: as 〈θ ′|θ〉 = 2πδ(θ − θ ′). The elementary form factor satisfies the
permutation and periodicity axiom

Fn(θ1, θ2, . . . , θi, θi+1 . . . , θn) = S(θi − θi+1)Fn(θ1, θ2, . . . , θi+1, θi . . . , θn)

= Fn(θ2, . . . , θi, θi+1 . . . , θn, θ1 − 2iπ) (3)

together with the kinematical singularity relation

−iResθ ′=θFn+2(θ
′+iπ, θ, θ1, . . . , θn) = (1−

n∏
i=1

S(θ−θi))Fn(θ1, . . . , θn) (4)

For scalar operators, when properly normalized, the form factor also satisfies the
cluster property

lim
Λ→∞Fn+m(θ1 +Λ, . . . , θn +Λ, θn+1, . . . , θn+m) = Fn(θ1, . . . , θn)Fm(θn+1, . . . , θn+m)

(5)

which will be used to analyze the diagonal limit of 〈θ, θ ′
1, . . . , θ

′
n|O|θn, . . . , θ1〉 via

θ → ∞ in finite volume.
The diagonal form factors 〈θ1, . . . , θn|O|θn, . . . , θ1〉 are singular due to the δ(θ)

terms coming from the normalization of the states and also from poles related to
the kinematical singularity axiom. Actually, F2n(θ̄1 +ε1, . . . , θ̄n+εn, θn, . . . , θ1) is
not singular when all εi go to zero simultaneously, but depends on the direction of
the limit. The connected diagonal form factor is defined as the finite ε-independent
part:

Fc2n(θ1, . . . , θk) = Fp
(
F2n(θ̄1 + ε1, . . . , θ̄n + εn, θn, . . . , θ1)

)
(6)

while the symmetric evaluation is simply

Fs2n(θ1, . . . , θk) = lim
ε→0

F2n(θ̄1 + ε, . . . , θ̄n + ε, θn, . . . , θ1) (7)

where Fp means the finite part, in order to understand the singularity structure of the
diagonal limit we note that the singular part can very nicely be visualized by graphs
[16]:

F2n(θ̄1 + ε1, . . . , θ̄n + εn, θn, . . . , θ1) =
∑

allowed graphs

F(graph)+O(εi) (8)
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where an allowed graph is an oriented tree-like (no-loop) graph in which at each
vertex there is at most one outgoing edge. The contribution of a graph, F(graph),
can be evaluated as follows: points (i1, . . . , ik) with no outgoing edges contribute
a factor, Fc2k(θi1, . . . , θik ), while for each edge from i to j we associate a factor
εj
εi
φ(θi − θj ), where φ(θ) = −i∂θ logS(θ) = −i S ′(θ)

S(θ)
. We recall the proof of (8)

from [16] as similar argumentations will be used later on. The proof goes in
induction in n and evaluates the residue at εn = 0 keeping all other εs finite. Clearly
such singular term can come only from graphs in which n has only an outgoing edge
and no incoming ones. The contributions of such terms are

1

εn
(ε1φ1n + · · · + εn−1φn−1n) F2n−2(θ̄1 + ε1, . . . , θ̄n−1 + εn−1, θn−1, . . . , θ1)

(9)

where φjk = φkj = φ(θi − θj ). Now comparing this expression to the kinematical
singularity axiom and using the definition of φ(θ) together with the properties of
the scattering matrix we can see that they completely agree. The formula (8) can be
used to define connected form factors recursively by subtracting the singular terms
and taking the diagonal limit. Observe also that taking all ε to be the same makes
the lhs. of (8) the symmetric form factor, which is expressed by (8) in terms of the
connected ones.

In particular, for the 2-particle form factor we have only three graphs:

1 2 1 2 1 2

which give

F4(θ̄1 + ε1, θ̄2 + ε2, θ2, θ1) = Fc4 (θ1, θ2)+ ε1

ε2
φ12F

c
2 (θ1)+ ε2

ε1
φ21F

c
2 (θ2)+O(εi)

(10)

This equation on the one hand can be used to define Fc4 (θ1, θ2), once Fc2 (θ) has
been already defined, and on the other hand, it connects the symmetric form factor
to the connected one:

Fs4 (θ1, θ2) = Fc4 (θ1, θ2)+ φ12F
c
2 (θ1)+ φ21F

c
2 (θ2) (11)

2.2 Finite Volume Form Factors in the BY Domain

In the BY domain we drop the exponentially suppressed O(e−mL) terms and keep
only theO(L−1) polynomial volume dependence. The quantization of the momenta
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is given by the BY equations

Qj ≡ p(θj )L− i
∑
k:k �=j

log S(θj − θk) = 2πIj (12)

An n-particle state is labeled by the integers Ij , which can be traded for the
momenta: |I1, . . . , In〉 ≡ |θ1, . . . , θn〉L. These states are normalized to Kronecker
delta functions 〈I ′|I 〉 = ∏

j δI ′
j Ij

. Since two point functions in finite and infinite

volume are equal up to exponentially small O(e−mL) terms, the finite and infinite
volume form factors differ only in the normalization of states [15]. In particular, this
implies the non-diagonal finite volume form factor formula

〈θ ′
1, . . . , θ

′
m|O|θn, . . . , θ1〉L = Fn+m(θ̄ ′

1, . . . , θ̄
′
m, θn, . . . , θ1)√

ρnρ′
m

+O(e−mL) (13)

where the densities of states are defined through the Bethe Ansatz equation via

ρn = det |Qij | ; Qij = ∂iQj ≡ ∂Qj

∂θi
(14)

The conjectured formula for diagonal form factors takes the form [18]:

〈θ1, . . . , θn|O|θn, . . . , θ1〉L =
∑
α∪ᾱ F cαρᾱ
ρn

+O(e−mL) (15)

where the index set I = {1, . . . , n} is split in all possible ways I = α ∪ ᾱ, Fcα =
Fc2k(θα1, . . . , θαk ) with |α| = k and ρᾱ is the shorthand for ρn−k(θᾱ1, . . . , θᾱn−k ),
which denotes the sub-determinant of the matrix, Qij , with indices only from ᾱ.
There is an analogous expression in terms of the symmetric form factors [16]

〈θ1, . . . , θn|O|θn, . . . , θ1〉L =
∑
α∪ᾱ F sαρsᾱ
ρn

+O(e−mL) (16)

where now ρsα is the density of states corresponding to the variables with labels in α.
The equivalence of the two formulas was shown in [16]. Let us note that for L = 0
the sum reduces to one single term

∑
α∪ᾱ F sαρsᾱ → Fsn as all other ρs factor vanish.

Let us spell out the details for two particles. The diagonal finite volume form
factor up to exponential correction is

〈θ1, θ2|O|θ2, θ1〉L = Fc4 (θ1, θ2)+ ρ1(θ1)F
c
2 (θ2)+ ρ1(θ2)F

c
2 (θ1)+ ρ2(θ1, θ2)F0

ρ2(θ1, θ2)
(17)
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where

ρ2(θ1, θ2) =
∣∣∣∣E1L+ φ12 −φ12

−φ21 E2L+ φ21

∣∣∣∣ ; ρ1(θi) = EiL+ φi3−i

where Ei = ∂ip(θi). The analogous formula with the symmetric evaluation reads
as

〈θ1, θ2|O|θ2, θ1〉L = Fs4 (θ1, θ2)+ ρs1(θ1)F
s
2 (θ2)+ ρs1(θ2)F

s
2 (θ1)+ ρs2(θ1, θ2)F

s
0

ρ2(θ1, θ2)

(18)

where

ρs2(θ1, θ2) = ρ2(θ1, θ2) ; ρs1(θi) = EiL

3 The Proof for Diagonal Large Volume Form Factors

The idea of the proof follows from the large θ behaviour of the scattering matrix,
namely S(θ) → 1, for θ → ∞. This also lies behind the cluster property of the form
factors. Thus by taking the non-diagonal form factor 〈θ, θ ′

1, . . . , θ
′
n|O|θn, . . . , θ1〉L

and sending θ → ∞, the extra particle decouples and we can approach the diagonal
form factor. This can be achieved by choosing the same quantization numbers for
both the θj and θ ′

j particles:

Q′
j ≡ p(θ ′

j )L− i
∑
k:k �=j

log S(θ ′
j − θ ′

k)− i log S(θ ′
j − θ) = 2πIj (19)

Indeed, by sending (the quantization number of) θ to infinity the BY equations,Q′
j ,

reduceQj . This means that in the limit considered θ ′
i → θi as εi → 0. In principle,

εi depends on {θi} and on the way how θ goes to infinity.
For finite θ , the form factor is non-diagonal and we can use

〈θ, θ ′
1, . . . , θ

′
n|O|θn, . . . , θ1〉L = F2n+1(θ̄ , θ̄

′
1, . . . , θ̄

′
n, θn, . . . , θ1)√

ρ′
n+1ρn

+O(e−mL)

(20)

The numerator is a finite quantity for any θ and has a finite θ → ∞ limit accord-
ingly. We can see in the limit that ρ′

n+1(θ, θ
′
1, . . . , θ

′
n) goes to ρ1(θ)ρn(θ1, . . . , θn).

Similarly, for the form factors F2n+1(θ̄, θ̄
′
1, . . . , θ̄

′
n, θn, . . . , θ1) the cluster property

guaranties the factorization F2n(θ̄
′
1, . . . , θ̄

′
n, θn, . . . , θ1)F1(θ̄ ), where additionally
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θ ′
i → θi . Actually the expression depends in the direction we take the limit in which

all εi go to zero and our main task is to calculate this limit explicitly. Fortunately,
the direction is dictated by the difference of the BY equations:

Q′
j −Qj = EjLεj +

∑
k:k �=j

φjk(εj − εk)− δj =
∑
k

Qjkεk − δj = 0 (21)

where we have used the notations δj = i log S(θj − θ).
Clearly δj s are small and so are the εj s. In the following we analyze the ε and

δ dependence of the form factor F2n+1(θ̄, θ̄
′
1, . . . , θ̄

′
n, θn, . . . , θ1). Similarly to the

diagonal limit of form factors we can describe the δ and ε dependence by graphs.
We claim that

F2n+1(θ̄ , θ̄
′
1, . . . , θ̄

′
k, θk, . . . , θ1) =

∑
allowed graphs,colorings

F(graph)+O(εi, δ)

(22)

where, additionally to the previous graphs in (8), we should allow the coloring of
those vertices, which do not have any outgoing edge, i.e. they can be either black
or white. For each black dot with label i we associate a factor δi

εi
. Note that in the

θ → ∞ limit we will have an overall F1(θ̄ ) factor, which we factor out.
Let us see how it works for n = 1: The single dot can be either black or white:

1 1

thus the two contributions are

F3(θ̄ , θ̄
′
1, θ1)F1(θ̄ )

−1 = δ1

ε1
+ Fc2 (θ1)+ . . . (23)

where ellipsis represents terms vanishing in the δ, ε → 0 limit. Let us show that
Fc2 (θ1) is not singular, i.e. the singularity of the lhs. is exactly δ1

ε1
. The kinematical

residue equation tells us that

F3(θ̄ , θ̄
′
1, θ1) = i

ε1
(1 − S(θ ′

1 − θ + iπ))F1(θ̄ )+O(1) = δ1

ε1
F1(θ̄ )+O(1) (24)
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Thus, once the singularity is subtracted, we can safely take the ε1 → 0 and the
δ → 0 limits leading to

lim
δ,ε1→0

(F3(θ̄ , θ̄
′
1, θ1)− δ1

ε1
F1(θ̄ )) = Fc2 (θ1)F1(θ̄ ) (25)

where we used the cluster property of form factors and the fact that the two particle
diagonal connected form factor is non-singular.

Now we adapt the proof in the induction step in (8) by noticing that the ε−1
n

singularity can come either from terms with only one outgoing edge or from being
black. Thus the residue is

1

εn
(δn+ε1φ1n + · · · + εn−1φn−1n) F2n−1(θ̄ , θ̄1 + ε1, . . . , θ̄n−1 + εn−1, θn−1, . . . , θ1)

(26)

Let us calculate the analogous term from the kinematical residue axiom:

F2n+1(θ̄ , θ̄
′
1, . . . , θ̄

′
n, θn, . . . , θ1) → i

εn

(
1 − S(θ ′n − θn−1) . . . S(θ

′
n − θ1)

S(θ ′n − θ ′
n−1) . . . S(θ

′
n − θ ′1)

1

S(θ ′n − θ)

)
×

F2n−1(θ̄ , θ̄
′
1, . . . , θ̄

′
n−1, θn−1, . . . , θ1) (27)

The bracket can be expanded as

() = −i(δn + φnn−1εn−1 + · · · + φn1ε1) (28)

which completes the induction.
In particular, for two particles we have the following diagrams:

1 2 1 2 1 2 1 2

1 2 1 2 1 21 2

which lead to the formula

F5(θ̄ , θ̄
′
1, θ̄

′
2, θ2, θ1)F

−1
1 = Fc4 (θ1, θ2)+ ε2

ε1
φ21

δ2

ε2
+ ε1

ε2
φ12

δ1

ε1
+ δ1

ε1

δ2

ε2
(29)

+ε1

ε2
φ12F

c
2 (θ1)+ δ2

ε2
Fc2 (θ1)+ ε2

ε1
φ21F

c
2 (θ2)+ δ1

ε1
Fc2 (θ2)
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It is interesting to check the coefficient of Fc2 (θ1) :
ε1φ12 + δ2

ε2
= E2L+ φ21 = ρ1(θ2) (30)

where we used the BY equations. Similarly

δ1

ε1

δ2

ε2
+ ε1

ε2
φ12

δ1

ε1
+ ε2

ε1
φ21

δ2

ε2
= ρ2(θ1, θ2) (31)

which leads to the sought for formula for n = 2:

F5(θ̄ , θ̄
′
1, θ̄

′
2, θ2, θ1)F

−1
1 = Fc4 (θ1, θ2)+ ρ1(θ2)F

c
2 (θ1)+ ρ1(θ1)F

c
2 (θ2)+ ρ2(θ1, θ2)

(32)

In the following we prove the form of the diagonal form factors in the general
case by induction. First we notice that once we use the BY equations to express δi
in terms of εk then all denominators of εs disappear. Focus on ε−1

n and observe that

δn + ε1φ1n + · · · + εn−1φn−1n = εn (EnL+ φn−1n + · · · + φ1n) (33)

This implies that the diagonal finite volume form factor is a polynomial in L and
linear in each EkL. We first check the L = 0 piece and then calculate the derivative
wrt. EnL as the full expression is symmetric in all variables. Note that the naively
singular term in εn at L = 0 takes the form:

1

εn
εn (EnL+ φn−1n + · · · + φ1n) |L=0 = 1

ε
(εφn−1n + · · · + εφ1n) (34)

which is exactly the same we would obtain if we had calculated the diagonal limit of
the form factor in the symmetric evaluation, i.e. for L = 0 we obtain the symmetric
n-particle form factor. We now check the linear term in EnL. In doing so we
differentiate the expression (22) wrt. EnL:

∂EnLF2n+1(θ̄ , θ̄
′
1, . . . , θ̄

′
n, θn, . . . , θ1) = F2n−1(θ̄ , θ̄

′
1, . . . , θ̄

′
n−1, θn−1, . . . , θ1)

(35)

since the term EnL can come only through the singularity at εn = 0. Note that on
the rhs. θk satisfies the original BY equations and not the one where θn is missing.
Let us now take a look at the expression we would like to prove:

F2n+1(θ̄, θ̄
′
1, . . . , θ̄

′
n, θn, . . . , θ1)F

−1
1 =

∑
α∪ᾱ=I

F cαρᾱ =
∑
α∪ᾱ=I

F sαρ
s
ᾱ (36)
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where I = {1, . . . , n}. Clearly the rhs. is also a polynomial in L, which is linear in
each EkL. To finish the proof, we note that the L = 0 constant part of the rhs. is
the symmetric form factor. Using that ∂EnLρα = ρα\{n} if n ∈ α and 0 otherwise we
can see that

∂EnL
∑
α∪ᾱ=I

F cαρᾱ =
∑

β∪β̄=I\{n}
Fcβρβ̄ = F2n−1(θ̄ , θ̄

′
1, . . . , θ̄

′
n−1, θn−1, . . . , θ1)F

−1
1

(37)

by the induction hypothesis, which completes the proof.

4 Conclusion

In this paper we proved the large volume expression for the diagonal form factors
by taking carefully the limit of a nondiagonal form factor. Our result completes the
proof of the LM formula, which describes exactly the one-point function in finite
volume.

Diagonal finite volume form factors are relevant in the AdS/CFT correspondence
as they are conjectured to describe the Heavy-Heavy-Light (HHL) type three point
functions of the maximally supersymmetric 4D gauge theory [3]. This conjecture
was first proved at weak coupling [6] then at strong coupling [2], finally for all
couplings in [7, 8]. We have profited from all of these proofs and used them in the
present paper.

There is a natural extension of our results for diagonal form factors in non-
diagonal theories. Clearly the same idea of adding one more particle and sending
its rapidity to infinity can be applied there too and we have an ongoing research into
this direction.
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Narayana Number, Chebyshev
Polynomial and Motzkin Path on RNA
Abstract Shapes

Sang Kwan Choi, Chaiho Rim, and Hwajin Um

Abstract We consider a certain abstract of RNA secondary structures, which is
closely related to so-called RNA shapes. The generating function counting the
number of the abstract structures is obtained in three different ways, namely, by
means of Narayana numbers, Chebyshev polynomials and Motzkin paths. We show
that a combinatorial interpretation on 2-Motzkin paths explains a relation between
Motzkin paths and RNA shapes and also provides an identity related to Narayana
numbers and Motzkin polynomial coefficients.

1 Introduction

Ribonucleic acid (RNA) is a single stranded molecule with a backbone of
nucleotides, each of which has one of the four bases, adenine (A), cytosine (C),
guanine (G) and uracil (U). Base pairs are formed intra-molecularly between A-U,
G-C or G-U, leading the sequence of bases to form helical regions. The primary
structure of a RNA is merely the sequence of bases and its three-dimensional
conformation by base pairs is called the tertiary structure. As an intermediate
structure between the primary and the tertiary, the secondary structure is a planar
structure allowing only nested base pairs. This is easy to see in its diagrammatic
representation, see Fig. 1. A sequence of n bases is that of labeled vertices
(1, 2, · · · , n) in a horizontal line and base pairs are drawn as arcs in the upper
half-plane. The condition of nested base pairs means non-crossing arcs: for two
arcs (i,j) and (k,l) where i < j , k < l and i < k, either i < j < k < l or
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Fig. 1 Representations of secondary structures. The RNA structure on the left hand side is
represented as the diagram (top right) and the dot-bracket string (bottom right)

i < k < l < i. Since the functional role of a RNA depends mainly on its 3D
conformation, prediction of RNA folding from the primary structure has long
been an important problem in molecular biology. The most common approach
for the prediction is free energy minimization and many algorithms to compute
the structures with minimum free energy has been developed (see for instance,
[13, 17, 21, 22]).

On the other hand, RNA structures are often considered as combinatorial objects
in terms of representations such as strings over finite alphabets, linear trees or the
diagrams. Combinatorial approaches enumerate the number of possible structures
under various kinds of constraints and observe its statistics to compare with
experimental findings [1, 4, 9, 16, 18]. They also provide classifications of structures
to advance prediction algorithms [8, 14, 15, 20].

In this paper, we consider a certain abstract of secondary structures under a
pure combinatorial point of view regardless of primary structures. The abstract
structure is, in fact, closely related to so-called RNA shapes [8, 10, 12], see Sect. 3.
Although we will consider it apart from prediction algorithms, let us review briefly
the background to RNA shapes in the context of prediction problem. In free
energy minimization scheme, the lowest free energy structures are not necessarily
native structures. One needs to search suboptimal foldings in a certain energy
bandwidth and, in general, obtains a huge set of suboptimal foldings. RNA shapes
classify the foldings according to their structural similarities and provide so-called
shape representatives such that native structures can be found among those shape
representatives. Consequently, it can greatly narrow down the huge set of suboptimal
foldings to probe in order to find native structures.

In the following preliminary, we introduce our combinatorial object, what
we call island diagrams and present basic definitions needed to describe the
diagrams. In Sect. 2, we find the generating function counting the number of island
diagrams in three different ways and through which, one may see the intertwining
relations between Narayana numbers, Chebyshev polynomials and Motzkin paths.
In particular, we find a combinatorial identity, see Eq. (15), which reproduces the
following two identities that Coker provided [5] (see also [3] for a combinatorial
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interpretation):

n∑
k=1

1

n

(
n

k

)(
n

k − 1

)
xk−1 =

. n−1
2 /∑
k=0

Ck

(
n− 1

2k

)
xk(1 + x)n−2k−1 (1)

n∑
k=1

1

n

(
n

k

)(
n

k − 1

)
x2(k−1)(1 + x)2(n−k) =

n∑
k=1

Ck

(
n− 1

k − 1

)
xk−1(1 + x)k−1

(2)

where Ck is the Catalan number defined by Ck = 1
k+1

(2k
k

)
for k ≥ 0. We also pro-

vide a combinatorial interpretation on 2-Motzkin paths to explain the identity (15).
The interpretation implies the bijection between π-shapes and Motzkin paths which
was shown in [7, 11].

1.1 Preliminary

A formal definition of secondary structures is given as follows:

Definition 1 (Waterman [20]) A secondary structure is a vertex-labeled graph on
n vertices with an adjacency matrix A = (aij ) (whose element aij = 1 if i and
j are adjacent, and aij = 0 otherwise with aii = 0) fulfilling the following three
conditions:

1. ai,i+1 = 1 for 1 ≤ i ≤ n− 1.
2. For each fixed i, there is at most one aij = 1 where j �= i ± 1
3. If aij = akl = 1, where i < k < j , then i ≤ l ≤ j .

An edge (i, j) with |i−j | �= 1 is said to be a base pair and a vertex i connected only
to i − 1 and i + 1 is called unpaired. We will call an edge (i, i + 1), 1 ≤ i ≤ n− 1,
a backbone edge. Note that a base pair between adjacent two vertices is not allowed
by definition and the second condition implies non-existence of base triples.

There are many other representations of secondary structures than the dia-
grammatic representation. In this paper, we often use the so-called dot-bracket
representation, see Fig. 1. A secondary structure can be represented as a string S
over the alphabet set {(, ), .} by the following rules [9]:

1. If vertex i is unpaired then Si =“.”.
2. If (i, j) is a base pair and i < j then Si = “(” and Sj =“)”.

In the following, we present the basic definitions of structure elements needed
for our investigations.
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hairpin

multi loop

island bulge tale

interior loop

join

stack

Fig. 2 Structure elements of secondary structures

Definition 2 A secondary structure on (1, 2, · · · , n) consists of the following
structure elements (cf. Fig. 2). By a base pair (i, j), we always assume i < j .

1. The sequence of unpaired vertices (i + 1, i + 2, · · · , j − 1) is a hairpin if (i, j)
is a base pair. The pair (i, j) is said to be the foundation of the hairpin.

2. The sequence of unpaired vertices (i + 1, i + 2, · · · , j − 1) is a bulge if either
(k, j), (k + 1, i) or (i, k + 1), (j, k) are base pairs.

3. The sequence of unpaired vertices (i + 1, i + 2, · · · , j − 1) is a join if (k, i) and
(j, l) are base pairs.

4. A tail is a sequence of unpaired vertices (1, 2, · · · , i − 1), resp. (j + 1, j +
2, · · · , n) such that i, resp. j is paired.

5. An interior loop is two sequences of unpaired vertices (i+1, i+2, · · · , j−1) and
(k+1, k+2, · · · , l−1) such that (i, l) and (j, k) are pairs, where i < j < k < l.

6. For any k ≥ 3 and 0 ≤ l,m ≤ k with l + m = k, a multi loop is l
sequences of unpaired vertices andm empty sequences (i1+1, · · · , j1−1), (i2+
1, · · · , j2 − 1), · · · , (ik + 1, · · · , jk − 1) such that (i1, jk), (j1, i2), · · · , (jk−1,

ik) are base pairs. Here, a sequence (i + 1, · · · , j − 1) is an empty sequence if
i + 1 = j .

7. A stack (or stem) consists of uninterrupted base pairs (i + 1, j − 1), (i + 2, j −
2), · · · , (i + k, j − k) such that neither (i, j) nor (i + k+ 1, j − k− 1) is a base
pair. Here the length of the stack is k.

Note that, while other structure elements consist of at least one vertex, a multiloop
does not necessarily have a vertex. In the diagrammatic representation, a multiloop
is a structure bounded by three or more base pairs and backbone edges.

Definition 3 An island is a sequence of paired vertices (i, i+1, · · · , j) such that

1. i − 1 and j + 1 are both unpaired, where 1 < i ≤ j < n.
2. j + 1 is unpaired, where i = 1 and 1 < j < n.
3. i − 1 is unpaired, where 1 < i < n and j = n.

Now we introduce the abstract structures to consider throughout this paper. From
here on, we will call the structures island diagrams for convenience. An island
diagram (cf. Fig. 3) is obtained from secondary structures by
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Fig. 3 An example of island diagrams. This island diagram is the abstract structure of the
secondary structure given in Fig. 2

1. Removing tails.
2. Representing a sequence of consecutive unpaired vertices between two islands

by a single blank.

Accordingly, we retain unpaired regions except for tails but do not account for the
number of unpaired vertices. In terms of the dot-bracket representation, we shall
use the underscore “ ” for the blank: for example, the island diagram “(( ) )”
abstracts the secondary structure “((. . .) . . . .)”. Since the abstraction preserves all
the structure elements (except for tails) in definition 7, we will use them to describe
island diagrams in such a way that, for instance, the blank is a hairpin if its left and
right vertices are paired to each other.

2 Generating Function

We enumerate the number of island diagrams g(h, I, �), filtered by the number of
hairpins(h), islands(I ) and basepairs(�). Let G(x, y, z) = ∑h,I,� g(h, I, �)x

h yI z�

denotes the corresponding generating function. We obtain the generating function in
three different ways, by means of Narayana numbers, Chebyshev polynomials and
Motzkin paths. In particular, we provide a bijection map between 2-Motzkin paths
and sequences of matching brackets.

2.1 Narayana Number

The easiest way to obtain the generating function G(x, y, z) is to use a combinato-
rial interpretation of the Narayana numbers, which are defined by

N(n, k) = 1

n

(
n

k

)(
n

k − 1

)
, 1 ≤ k ≤ n . (3)

The Narayana number N(n, k) counts the number of ways arranging n pairs of
brackets to be correctly matched and contain k pairs as “()”. For instance, the bracket
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representations for N(4, 2) = 6 are given as follows:

(()(())) ((()())) ((())()) ()((())) (())(()) ((()))()

It is easy to recover island diagrams from this representation.

Proposition 1 The generating function has the form

G(x, y, z) =
∑
�,h

N(�, h) xh yh+1 (1 + y)2�−1−h z� . (4)

Its closed form is

G(x, y, z) =
(

y

1 + y

)
1 − A(1 + B)−√1 − 2A(1 + B)+ A2(1 − B)2

2A
(5)

where A = z(1 + y)2 and B = xy/(1 + y).

Proof One may immediately associate bracket representations of the Narayana
numbers with island diagrams. Without regard to underscores, the pair of brackets is
associated with the basepair and the sub-pattern “()” corresponds to the foundation
of the hairpin. It clearly explains the factor N(�, h)xhz�. Now we consider the
insertions of underscores to recover the string representation of island diagrams.
Recall that, in secondary structures, a hairpin consists of at least one unpaired
vertices. Therefore, the foundation of the hairpin “()” must contain a underscore
“( )”. The number h of underscores are so inserted that we have the factor yh+1.
After the insertion of hairpin underscores, there are (2� − 1 − h) places left to
possibly insert underscores. The numbers of all possible insertions are summarized
by the factor (1 + y)2�−1−h. The generating function of the Narayana numbers is
well-known (see for instance [2]) so that one writes the closed form.

2.2 Chebyshev Polynomial

One can also count the number of island diagrams by using the Chebyshev
polynomials of the second kind, which are defined by the recurrence relation:

U0(ξ) = 1 , U1(ξ) = 2ξ , Un+1(ξ) = 2ξUn(ξ)− Un−1(ξ) . (6)

The product of the polynomials expands as

Um(ξ)Un(ξ) =
n∑
k=0

Um−n+2k(ξ) for n ≤ m . (7)
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The relation between island diagrams and Chebyshev polynomials are based on the
Feynman diagram of the Hermitian matrix model, refer to [4]. One may have an
insight from the simplest example:

U2 U2 U2 U0U4

The polynomial Uk corresponds to the island with k vertices. The product U2 U2
expands to U4(no basepair), U2(one basepair) and U0(all vertices are paired). The
island diagram is the one associated with U0 in the expansion of the product. In
general, we have the following theorem. See [4] for its proof.

Theorem 1 Suppose that there exist the number I of islands such that each of which
has ka ≥ 1 vertices for a ∈ {1, · · · , I }. The number of island diagrams one finds by
making base pairs is given by

〈 I∏
a=1

Uka , U0

〉
:= 2

π

∫ 1

−1

I∏
a=1

Uka (ξ)U0(ξ)

√
1 − ξ2dξ . (8)

where Uk(ξ) is the second kind Chebyshev polynomial of degree k.

The Chebyshev polynomials of the second kind are orthogonal with respect to the
weight

√
1 − ξ2: 〈Um,Un〉 = δm,n. Thus, Theorem 1 means that the number of

island diagrams is the coefficient ofU0 = 1 when the product
∏I
a=1Uka (ξ) expands

to the linear combination of Chebyshev polynomials.
In order to reproduce the generating function given in (4), we need to take

the number of hairpins into account as well. Let us first consider the case of
island diagrams in which every blank(underscore) is a hairpin. A hairpin is
accompanied with the foundation of the hairpin, that is, h basepairs are assigned
as the foundations. Since those basepairs are the most nested ones, the number

of the island diagrams is simply given by
〈
Uk1−1

∏h
j=2 Ukj−2 Ukh+1−1, U0

〉
. The

foundations of the hairpin take one vertex from the outermost islands and take two
vertices from the others. In fact, the island diagrams having only hairpins are no
different from strings of matching brackets which represents Narayana numbers as
shown in the previous subsection. By just putting ( ) → (), we recover the bracket
representations. Thus, we have the following corollary:

Corollary 1.1 For any � ∈ N and 1 ≤ h ≤ �,

N(�, h) =
∑

k1+···+kh+1=2(�−h)

〈 h+1∏
a=1

Uka , U0

〉
(9)

where ka for a ∈ {1, · · · , h+ 1} are non-negative integers.
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Now we find the generating function G(x, y, z). Note that a basepair must be
made across at least one hairpin. Conversely, no basepair can be made amongst
consecutive islands that do not have a hairpin inbetween. We regard a group of
maximally consecutive islands with no hairpin inbetween as one effective island.
Then, a backbone of island diagram can be seen as an alternate arrangement of
effective island and hairpin. This is nothing but the case that every blank is a hairpin.
One additional thing to consider is the number of ways to make an effective island
having ka vertices out of Ia islands, which is given by

(
ka−1
Ia−1

)
. Therefore, we find

g(h, I, �) =
∑

{ka,Ia}

h+1∏
a=1

(
ka − 1

Ia − 1

)〈
Uk1−1

h∏
j=2

Ukj−2 Ukh+1−1, U0

〉
(10)

where the summation runs over k1 + · · · + kh+1 = 2� and I1 + · · · + Ih+1 = I . By
means of Corollary 1.1, one can obtain the generating function (4).

We mention that one may also find the generating function by direct calculation
of the integral in (10). Using the generating function of the Chebyshev polynomial,

∑
k≥0

k∑
i=0

(
k

i

)
zk/2yiUk(ξ) = 1

1 − 2
√
z(1 + y)ξ + z(1 + y)2

, (11)

the integral is calculated to give

G(x, y, z) =
∑
h

xh zh yh+1 (1 + y)h−1
2F1(h+ 1, h; 2; z(1 + y)2) (12)

where 2F1(a, b; c; z) is the hypergeometric function. One may easily show that
2F1(h + 1, h; 2; z) = ∑

k≥0N(h + k, h)zk and therefore obtains the generating
function (4).

2.3 Motzkin Path

The generating function G(x, y, z) can also be written in terms of Motzkin
polynomial coefficients. The Motzkin numbers Mn and the Motzkin polynomial
coefficientsM(n, k) are defined as

Mn =
.n/2/∑
k=0

M(n, k) where M(n, k) =
(
n

2k

)
Ck . (13)
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Let us consider the combinatorial identity in the following theorem. It is easy to
prove using the generating function of the Motzkin polynomials:

∑
�≥1

.(�−1)/2/∑
p=0

M(�− 1, p)A�−1Bp = 1 − A−√(1 − A)2 − 4A2B

2A2B
. (14)

Theorem 2 For any integer � ≥ 1, there holds

y

1 + y

�∑
h=1

N(�, h) (x y)h (1 + y)2�−h

= x y2
. �−1

2 /∑
p=0

M(�− 1, p)
(
x y (1 + y)3

)p (
(1 + y)(1 + y + x y)

)�−2p−1
.

(15)

Proof The left hand side is [z�]G(x, y, z) given in (4). Multiplying z� and taking
the summation over � at each side, one can check that the right hand side is indeed
the generating functionG(x, y, z).

Note that the identity (15) reproduces the Coker’s two identities. When we substitute
x/y for x and then put y = 0, we get the identity (1). Furthermore, the substitution
x → y/(1 + y) leads to the identity (2).1

We will investigate how the right hand side in (15) represents island diagrams.
In order to do that, we need a combinatorial interpretation of 2-Motkzin paths.
Let us first introduce the Motzkin paths, that can also be called 1-Motkzin paths.
A Motzkin path of size n is a lattice path starting at (0, 0) and ending at (n, 0) in
the integer plane Z × Z, which satisfies two conditions: (1) It never passes below
the x-axis. (2) Its allowed steps are the up step (1, 1), the down step (1,−1) and
the horizontal step (1, 0). We denote by U , D and H an up step, a down step and
a horizontal step, respectively. The Motzkin polynomial coefficient M(n, k) is the
number of Motzkin paths of size n with k up steps. Since the Motkzin number Mn

is given by the sum of M(n, k) over the number of up steps, Mn is the number of
Motzkin paths of size n. See for instance, the following figure depicting a Motzkin
path ofM(7, 2):

1In order to deduce the identity, one may need the Touchard’s identity [19]: Cn =∑
k Ck

(
n−1
2k

)
2n−2k−1, which can be also derived from (1) when x = 1.
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On the other hand, 2-Motzkin paths allow two kinds of horizontal steps, which
often distinguish one from another by a color, let us say,R and B denoting a red and
a blue step, respectively. We provide a bijection map between 2-Motzkin paths and
strings of matching brackets.2 Suppose we have a 2-Motzkin path of size n given by
a string q1 q2 · · · qn over the set {U,D,R,B}. The corresponding string of brackets
Sn can be obtained by the following rules:

1. We begin with “()” : Let S0 = ().
2. For any 1 ≤ k ≤ n, suppose there exist a string of brackets S′ and a string

of matching brackets S′′ which are possibly empty such that Sk−1 has the form
S′(S′′). Then Sk is given by

S′((S′′)() if qk = U, S′(S′′)) if qk = D,

S′(S′′)() if qk = R, S′((S′′)) if qk = B.

For example, the string of matching brackets corresponding to the 2-Motzkin
path UBURDD is obtained as follows:

()
U−→ (()()

B−→(()(())
U−→ (()((())()

R−→ (()((())()()
D−→ (()((())()())

D−→ (()((())()()))

We remark here that only blue steps can make a stack. In other words, directly
nested structures such as “(())” never occur without blue steps. Therefore, a 1-
Motzkin path can be translated into a string of matching brackets without directly
nested brackets. This is one of the 14 interpretations of Motzkin numbers provided
by Donaghey and Shapiro in [7]. Later, in [11], it was also shown using context-
free grammars in the context of RNA shapes. We also remark that the Motzkin
polynomial coefficient M(� − 1, u) is the number of ways arranging � pairs of
brackets to be correctly matched and contain �− u pairs as “()” with no occurrence
of directly nested bracket.

Now we go back to the generating function on the right hand side in (15) and
rewrite it as

G(x, y, z) =
∑
�,u

M(�− 1, u) (xy2z)
(
(1 + y)

√
z
)u (

xy(1 + y)z
)u

× ((1 + y)
√
z
)d (

(1 + y)2z+ xy(1 + y)z
)s (16)

2Sequences of matching brackets are only Dyck paths. A bijection map between Dyck paths and
2-Motzkin paths was introduced by Delest and Viennot [6]. But here we present a different way of
mapping than the well-known one.
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where u, d and s stand for the number of up, down and horizontal steps, respectively
(u = d , u + d + s = � − 1). Let us explain each factor in detail by means of
the above rules. The term xy2z is merely the starting hairpin “( )” (recall that the
exponent of x, y and z are the number of hairpins, islands and basepairs, resp.).
At each up step, one has a left bracket and a hairpin to add. For a given non-
empty string S of island diagrams, suppose that we add a left bracket then there are
the two possibilities, “(S” and “( S” corresponding to

√
z and y

√
z, respectively.

Thus, we get the factor (1 + y)
√
z at every up step and, in the same manner, at

every down step. Likewise, adding a hairpin introduces the factor xy(1 + y)z since
“S( )” and “S ( )” corresponds to xyz and xy2z, respectively. On the other hand, a
horizontal step can be eitherR orB. A red step is to add a hairpin and corresponds to
xy(1 + y)z. A blue step is to add one basepair nesting the string “(S)” and there are
three possibilities: the stack “((S))” for z, the two bulges “( (S))” and “((S) )” for
yz and the interior loop “( (S) )” for y2z. Therefore, we get ((1+y)2z+xy(1+y)z)
at each horizontal step.

Note that the number of up steps is the number of multiloops since every up step
opens a new multiloop. Thus the generating function written in terms of Motzkin
polynomials can be said to classify island diagrams by the number of basepairs
and multiloops while the one written in terms of Narayana numbers classify island
diagrams by the number of basepairs and hairpins.

3 Single-Stack Diagrams and RNA Shapes

An island diagram is called a single-stack diagram if the length of each stack in
the diagram is 1 so that each basepair is a stem by itself. Let s(h, I, k) denotes the
number of single-stack diagrams classified by the number of hairpins(h), islands(I )
and stems(k) and let S(x, y, z) = ∑

h,I,k s(h, I, k)x
hyI zk denotes its generating

function. The island diagrams with k stems and � basepairs build on the single-stack
diagrams with k stems. The number of ways stacking �− k basepairs on k stems is(
�−1
k−1

)
and we have

g(h, I, �) =
�∑
k=1

(
�− 1

k − 1

)
s(h, I, k) . (17)

Multiplying xhyI z� at each side and summing over h, I , �, one finds the relation

G(x, y, z) = S
(
x, y,

z

1 − z

)
(18)
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and equivalently, S(x, y, z) = G(x, y, z/(1+z)). In terms of Motzkin polynomials,
the generating function S(x, y, z) expands to

S(x, y, z) =
∑
k,u

M(�− 1, u) (xy2z)
(
(1 + y)

√
z
)u (

xy(1 + y)z
)u

× ((1 + y)
√
z
)d (

(2y + y2)z+ xy(1 + y)z
)s (19)

where u, d and s stand for the number of up, down and horizontal steps, respectively
(u = d , u + d + s = k − 1). This is the same as (16) except for one thing.
Recall that only blue steps make a directly nested bracket and from which we get
three possibilities by putting underscores, i.e., a stack for z, two bulges for yz and
an interior loop for y2z. One obtains single-stack diagrams by getting rid of the
possibility of stacking and hence the one different thing is the factor z such that one
has (2y + y2)z instead of (1 + y)2z.

We mention that the single-stack diagram is closely related to the π ′-shape (or
type 1), which is one of the five RNA abstract shapes provided in [8] classifying sec-
ondary structures according to their structural similarities. π ′-shape is an abstraction
of secondary structures preserving their loop configurations and unpaired regions.
A stem is represented as one basepair and a sequence of maximally consecutive
unpaired vertices is considered as an unpaired region regardless of the number of
unpaired vertices in it. In terms of the dot-bracket representation, a length k stem
“(k· · · )k” is represented by a pair of squared brackets “[ · · · ]” and an unpaired
region is depicted by an underscore. For instance, the π ′-shape “ [[[ ] [ ]] ]” can
abstract from the secondary structure “ . . . ((((. . .)..((. . .))))..)”. The only difference
between single-stack diagrams and π ′-shapes is whether or not to retain tales.

On the other hand, π-shape (or type 5) ignores unpaired regions such that,
for example, the π ′-shape “ [[[ ] [ ]] ]” results in the π-shape “[[][]]”. Con-
sequently, π-shapes retain only hairpin and multiloop configurations. One may
immediately notice that the string representations of π-shapes are nothing but
the sequences of matching brackets without directly nested brackets. Therefore,
as was shown in the previous section, there is a bijection map between π-shapes
and 1-Motzkin paths. Accordingly, one finds the theorem 3.1 in [11] that the
number of π-shapes with � pairs of squared brackets is the Motzkin numberM�−1.
Furthermore, the Motzkin polynomial coefficient M(� − 1, u) is the number of π-
shapes with u multiloops and �− u hairpins.

Acknowledgements The authors acknowledge the support of this work by the National
Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (NRF-
2017R1A2A2A05001164). S.K. Choi is partially supported by the National Natural Science
Foundation of China under grant 11575119.



Narayana Number, Chebyshev Polynomial and Motzkin Path on RNA Abstract Shapes 165

References

1. Barrett, C.L., Li, T.J., Reidys, C.M.: RNA secondary structures having a compatible sequence
of certain nucleotide ratios. J. Comput. Biol. 23, 857–873 (2016)

2. Barry, P., Hennessy, A.: A note on Narayana triangles and related polynomials, Riordan arrays,
and MIMO capacity calculations. J. Integer Seq. 14(3), 1–26 (2011)

3. Chen, W.Y., Yan, S.H., Yang, L.L.: Identities from weighted Motzkin paths. Adv. Appl. Math.
41(3), 329–334 (2008). https://doi.org/10.1016/j.aam.2004.11.007. http://www.sciencedirect.
com/science/article/pii/S0196885808000158

4. Choi, S.K., Rim, C., Um, H.: RNA substructure as a random matrix ensemble.
arXiv:1612.07468 [q-bio.QM]

5. Coker, C.: Enumerating a class of lattice paths. Discrete Math. 271(1), 13–28 (2003). https://
doi.org/10.1016/S0012-365X(03)00037-2. http://www.sciencedirect.com/science/article/pii/
S0012365X03000372

6. Delest, M.P., Viennot, G.: Algebraic languages and polyominoes enumeration. Theor. Comput.
Sci. 34(1), 169–206 (1984). https://doi.org/10.1016/0304-3975(84)90116-6. http://www.
sciencedirect.com/science/article/pii/0304397584901166

7. Donaghey, R., Shapiro, L.W.: Motzkin numbers. J. Comb. Theory Ser. A 23(3), 291–
301 (1977). https://doi.org/10.1016/0097-3165(77)90020-6. http://www.sciencedirect.com/
science/article/pii/0097316577900206

8. Giegerich, R., Voss, B., Rehmsmeier, M.: Abstract shapes of RNA. Nucleic Acids Res. 32(16),
4843–4851 (2004). https://doi.org/10.1093/nar/gkh779

9. Hofacker, I.L., Schuster, P., Stadler, P.F.: Combinatorics of RNA secondary structures. Discrete
Appl. Math. 88(1–3), 207–237 (1998)

10. Janssen, S., Reeder, J., Giegerich, R.: Shape based indexing for faster search of RNA family
databases. BMC Bioinformatics 9(1), 131 (2008). https://doi.org/10.1186/1471-2105-9-131

11. Lorenz, W.A., Ponty, Y., Clote, P.: Asymptotics of RNA shapes. J. Comput. Biol. 15(1), 31–63
(2008)

12. Nebel, M.E., Scheid, A.: On quantitative effects of RNA shape abstraction. Theory Biosci.
128(4), 211–225 (2009). https://doi.org/10.1007/s12064-009-0074-z

13. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single-
stranded RNA. Proc. Natl. Acad. Sci. USA 77(11), 6309–13 (1980). https://doi.org/10.1073/
pnas.77.11.6309

14. Orland, H., Zee, A.: RNA folding and large N matrix theory. Nucl. Phys. B620, 456–476
(2002)

15. Reidys, C.M., Huang, F.W.D., Andersen, J.E., Penner, R.C., Stadler, P.F., Nebel, M.E.: Topol-
ogy and prediction of RNA pseudoknots. Bioinformatics 27(8), 1076–1085 (2011). https://doi.
org/10.1093/bioinformatics/btr090. https://academic.oup.com/bioinformatics/article-lookup/
doi/10.1093/bioinformatics/btr090

16. Schmitt, W.R., Waterman, M.S.: Linear trees and RNA secondary structure. Discrete Appl.
Math. 51(3), 317–323 (1994). https://doi.org/10.1016/0166-218X(92)00038-N. http://www.
sciencedirect.com/science/article/pii/0166218X9200038N

17. Schuster, P., Stadler, P.F., Renner, A.: RNA structures and folding: from conventional to
new issues in structure predictions. Curr. Opin. Struct. Biol. 7(2), 229–235 (1997). https://
doi.org/10.1016/S0959-440X(97)80030-9. http://www.sciencedirect.com/science/article/pii/
S0959440X97800309

18. Stein, P., Waterman, M.: On some new sequences generalizing the Catalan and Motzkin num-
bers. Discrete Math. 26(3), 261–272 (1979). https://doi.org/10.1016/0012-365X(79)90033-5.
http://www.sciencedirect.com/science/article/pii/0012365X79900335
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Abstract We present a unitary transformation relating two apparently different
supersymmetric lattice models in one dimension. The first (Fendley and Schoutens,
J Stat Mech, P02017, 2007) describes semionic particles on a 1D ladder, with
supersymmetry moving particles between the two legs. The second (de Gier et al.,
J Stat Mech, 023104, 2016) is a fermionic model with particle-hole symmetry and
with supersymmetry creating or annihilating pairs of domain walls. The mapping we
display features non-trivial phase factors that generalise the sign factors occurring
in the Jordan-Wigner transformation.
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1 Introduction

The concept of supersymmetry was conceived in the realm of (high-energy) particle
physics, where it expresses a fundamental symmetry between bosonic and fermionic
(elementary) particles or excitations in a quantum field theory or string theory. It
would seem that in the context of (low-energy) condensed matter systems a similar
concept is out of place as superpartners to, say, the electron, if such exist at all,
are far out of sight. Nevertheless, we have learned that supersymmetry can be a
useful ingredient in relatively simple model systems describing a condensed phase
of matter. As soon as the relevant degrees of freedom are not all bosonic, the notion
of a fermionic symmetry becomes feasible.

A particularly simple supersymmetric lattice model, commonly referred to as
the M1 model, was proposed in [1]. It features itinerant spin-less fermions on
a lattice (or graph), with supersymmetry adding or taking out a single fermion.
Denoting the supercharges as Q† and Q, the Hamiltonian of what is called N = 2
supersymmetric quantum mechanics [2] is defined as

H = {Q†,Q}. (1)

In the M1 model the non-trivial nature of H is induced by stipulating that fermions
are forbidden to occupy nearest neighbour sites on the lattice. These simple
definitions lead to surprisingly rich and diverse phenomena. On a 1D lattice, the M1
model was found to be critical, and described by the simplest unitary minimal model
of N = 2 superconformal field theory [1]. On 2D lattices, there is the remarkable
phenomenon of superfrustration: an extensive (in the area, that is to say the number
of sites) entropy for zero-energy supersymmetric ground states [3–5].

Additional features of the M1 model in 1D are integrability by Bethe Ansatz and
the existence of a mapping to the XXZ model at anisotropy Δ = −1/2 [6]. These
features were generalized to a class of models called Mk , where up to k fermions
are allowed on consecutive lattice sites [6]. At critical behaviour of these models
is captured by the k-th minimal model of N = 2 superconformal field theory,
while massive deformations give rise to integrable massive N = 2 QFT’s with
superpotentials taking the form of Chebyshev polynomials [7].

This paper is concerned with two other, and seemingly different, incarnations of
supersymmetry in one spatial dimension. The first is a model, proposed by Fendley
and Schoutens (FS) [7], where the superchargesQ and Q† move particles between
two legs of a zig-zag ladder. This would suggest that the particles on the two legs be
viewed as bosonic and fermionic, respectively, but the situation in the FS model is
different: the phases between the (fermionic) supercharges and the particles are such
that the particles on the two legs are naturally viewed as anyons with statistical angle
±π/2, that is, as semionic particles. Interestingly, pairs of semions on the two legs
can form zero-energy ‘Cooper pairs’ and the model allows multiple supersymmetric
groundstates that are entirely made up of such pairs. The FS model is integrable by
Bethe Ansatz and has a close-to-free-fermion spectrum: all energies agree with those
of free fermions on a single chain, but the degeneracies are different.
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The second model we discuss was introduced by Feher, de Gier, Nienhuis and
Ruzaczonek (FGNR) [8]. It can be viewed as a particle-hole symmetric version of
the M1 model, where the ‘exclusion’ constraint on the Hilbert space has been relaxed
and where the supercharges are now symmetric between particles and holes. In this
model fermion number conservation is violated as terms creating and annihilating
pairs of fermions are included in the Hamiltonian. The FGNR can be conveniently
described in terms of domain walls between particle and hole segments, as the
number of such walls is conserved. Also this model allows a Bethe Ansatz solution
and the spectrum of the periodic chain has been shown to have characteristic
degeneracies. Just as in the FS model, the degeneracies in the FGNR model can
be explained by the formation of zero-energy ‘Cooper pairs’.

The sole purpose of this contribution to the 2017 MATRIX Annals is to establish
a unitary transformation between the FS and FGNR models on an open chain. Based
on the similarity of the Bethe ansatz solutions and that of the physical properties the
existence of such a map is not too surprising. Nevertheless, the details are quite
intricate. This holds in particular for the phase factors involved in the mapping,
which achieve the task of transforming domain walls in the FGNR formulation to
particles which, in the FS formulation, are best interpreted as semions. The non-
local patterns of the phase factors can be compared to the ‘strings’ of minus signs
featuring in the Jordan-Wigner transformation from spins to (spin-less) fermions.

2 Models

In this section, we define the models [8, 9]. We refer to the model of [9] as FS model,
and the model of [8] as FGNR model. Both are spinless fermion models on a chain
of lengthLwith some boundary conditions. The fermionic creation and annihilation
operators ci , c

†
i (i = 1, . . . , L) satisfy the usual anticommutation relations

{c†
i , cj } = δij , {c†

i , c
†
j } = {ci, cj } = 0. (2)

Based on the fermionic creation operators, the on site fermion-number and hole-
number operators are defined as

ni = c
†
i ci pi = 1 − ni . (3)

These operators act in a fermionic Fock space spanned by ket vectors of the form

|τ 〉 =
L∏
i=1

(
c

†
i

)τi |0〉 , (4)

where the product is ordered such that c†
i with higher i act first. The label τ =

{τ1, . . . , τL}, with τi = 1 if there is a fermion at site i and τi = 0 if there is a hole.
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The vacuum state is defined as usual ci |0〉 = 0 for i = 1, . . . , L. Both models are
supersymmetric chain models where the nilpotent supercharges Q, Q† are built as
sums of local operators.

Originally, the FS model was considered with open boundary conditions [9] and
the FGNR model with periodic boundary conditions [8]. In this section we give a
short overview of [9] and [8]. In Sect. 3 we restrict ourselves to the open boundary
conditions for both models with even L and discuss the mapping between them.

2.1 FS Model Definition

In this section we give a short overview of the FS model [9]. Consider the following
supersymmetry generator

QFS = c
†
2c1 +

L/2−1∑
k=1

(
e

iπ2 α2k−2c
†
2k−1 + e

iπ2 α2k c
†
2k+1

)
c2k, (5)

where

αk =
k∑
j=1

(−1)jnj . (6)

This supersymmetry generator is nilpotent

Q2
FS =

(
Q

†
FS

)2 = 0. (7)

The Hamiltonian is built up in the usual way

HFS = {QFS, Q†
FS}

=
L−1∑
j=1

(c
†
j+1pjcj−1 + c

†
j−1pj cj+1 + ic†

j+1nj cj−1 − ic†
j−1njcj−1)

− 2
L−1∑
j=1

njnj+1 + 2F1 + 2F2 +Hbndry, (8)

where

F1 =
L/2∑
j=1

n2j−1, F2 =
L/2∑
j=1

n2j , Hbndry = −n1 − nL. (9)

This model describes an effective one-dimensional model where the fermions are
hopping on two chains. Conveniently, these chains are denoted with odd and even
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Fig. 1 Statistical interaction
between the two chains:
Filled dots represent
fermions, empty dots empty
sites. The hopping amplitudes
depend on the occupation of
the other chain

−i 1 1 i

1 i 1 1 i 1

site indices and they are coupled in a zig-zag fashion. The F1 and F2 operators
are counting the fermions on the two chains, and HFS is block diagonal in these
operators. The interaction between the chains is statistical: the hopping amplitude
picks up an extra i or −i factor, if the fermion “hops over” another fermion on
the other chain, see Fig. 1. There is a further attractive interaction between the two
chains.

The model is defined on an open chain, where the boundary interaction is
encoded in Hbndry . The model can be shown to be solvable by nested coordinate
Bethe Ansatz [9]. The spectrum of the model is of the same form as for the free
model which is defined by

Hfree = 2F1 + 2F2 +
L−1∑
j=2

(
c

†
j+1cj−1 + c

†
j−1cj+1

)
+Hbndry. (10)

The eigenenergies of HFS and Hfree are

E = 2
f1+f2∑
a=1

(1 + cos(2pa)) , (11)

pa = ma
π

L+ 1
, ma ∈ {1, 2, . . . , L/2}, (12)

where pa are called momenta, f1 and f2 are the number of fermions on the
respective chains, i.e. the eigenvalues of F1 and F2.

The difference between the free and the interacting model is the degeneracy of
the energy levels. For the free model the Pauli principle is realized by fermions
on the same chain not sharing the same momentum. The same momentum can be
shared by two fermions on the two chains. Hence for an eigenenergy characterized
by the set {ma}f1+f2

a=1 there are
(
L/2
f1

)(
L/2
f2

)
possible choices, giving the degeneracy for

the free model. For the interacting chain instead of thinking in terms of fermions it
worth to consider exclusons and Cooper pairs. Exclusons are fermionic excitations
satisfying quantization condition (12) with the further restriction that an excluson
prohibits any other particle to have the same momentum pa . A pair of fermions
located on different chains can form a Cooper pair. In this case, two of the momenta
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(say p1 and p2) do not satisfy quantization condition (12) and instead they obey

cos2 p1 = − cos2 p2. (13)

The net energy contribution of the Cooper pair to (11) is zero.
The spectrum of the FS model is built up as follows: there are f1 and f2 fermions

on the respective chains. Out of these fermions 2C form Cooper pairs and N1 =
f1 − C, N2 = f2 − C are exclusons on the respective chains. An energy level E is
characterized by the quantum numbers {ma}N1+N2

a=1 has the degeneracy

dE =
(
N1 +N2

N1

)(
L/2 − N1 −N2

C

)
. (14)

The first term counts the possible distributions of the exclusons (with fixed
{ma}N1+N2

a=1 quantum numbers) on the two chains. The second term counts the
degeneracy of the Cooper pairs. The interpretation of the second piece is that the
Cooper pairs can be thought of indistinguishable quasiparticles like the exclusons
and there is one possible Cooper pair for each allowed momentum. Moreover, the
presence of an excluson with a given momentum prohibits a Cooper pair from
occupying the corresponding level. This gives the spectrum and the degeneracy of
the FS model. For further details we suggest the original publication [9].

2.2 FGNR Model Definition

In this section we define the FGNR model [8]. We consider a one-dimensional
supersymmetric lattice model which is a fermion-hole symmetric extension of
the M1 model of [1]. For this purpose define the operators d†

i and ei by

d
†
i = pi−1c

†
i pi+1, ei = ni−1cini+1. (15)

Hence d†
i creates a fermion at position i provided all three of positions i − 1, i and

i + 1 are empty. Similarly, ei annihilates a fermion at position i provided i and its
neighbouring sites are occupied, i.e.

d
†
i |τ1 . . . τi−2 000 τi+2 . . . τL〉 = (−1)Ni−1 |τ1 . . . τi−2 010 τi+2 . . . τL〉 ,
ei |τ1 . . . τi−2 111 τi+2 . . . τL〉 = (−1)Ni−1 |τ1 . . . τi−2 101 τi+2 . . . τL〉 , (16)

while these operators nullify all other states. Here Ni is the number operator. It
counts the number of fermions to the left of site i.

Ni =
i∑

j=1

nj , NF = NL (17)

where NF is the total fermion number operator.
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We now define the nilpotent supersymmetric generators for the FGNR model

QFGNR =
L∑
i=1

(d
†
i + ei), Q2

FGNR = 0. (18)

The Hamiltonian is defined in the usual way

HFGNR = {Q†
FGNR,QFGNR}. (19)

The Hamiltonian splits up naturally as a sum of three terms. The first term consists
solely of d-type operators, the second solely of e-type operators and the third
contains mixed terms.

HFGNR = HI +HII +HIII , (20)

HI =
∑
i

(
d

†
i di + did

†
i

)
+
∑
i

(
d

†
i di+1 + d

†
i+1di

)

HII =
∑
i

(
eie

†
i + e

†
i ei

)
+
∑
i

(
eie

†
i+1 + ei+1e

†
i

)

HIII =
∑
i

(
e

†
i d

†
i+1 + di+1ei + e

†
i+1d

†
i + diei+1

)
, (21)

where we use periodic boundary conditions

c
†
i+L = c

†
i . (22)

Because the di’s and ei ’s are not simple fermion operators, they do not satisfy the
canonical anticommutation relations. As a result this bilinear Hamiltonian can not
be diagonalized by taking linear combinations of d , e, d† and e†.

The term HI alone is the Hamiltonian of the M1 model of [1]. The addition of
the operator ei introduces an obvious fermion-hole symmetry d†

i ↔ ei to the model.
It turns out that this symmetry results in a surprisingly large degeneracy across the
full spectrum of HFGNR .

Note that the Hamiltonians HI and HII each contain only number operators
and hopping terms and thus conserve the total number of fermions. The third
Hamiltonian HIII breaks this conservation law. For example, the term e

†
i d

†
i+1

sends the state |. . . 1000 . . .〉 to |. . . 1110 . . .〉, thus creating two fermions. Hence
the fermion number is not conserved and therefore is not a good quantum number.
However, the number of interfaces or domain walls between fermions and holes is
conserved and we shall therefore describe our states in terms of these.
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2.2.1 Domain Walls

We call an interface between a string of 0’s followed by a string of 1’s a 01-domain
wall and a string of 1’s followed by a string of 0’s, a 10-domain wall. For example,
assuming periodic boundary conditions the configuration

000
∣∣∣11
∣∣∣000

∣∣∣1∣∣∣0000
∣∣∣111

∣∣∣,
contains six domain walls, three of each type and starting with a 01-domain wall.
Let us consider the effect of various terms appearing in (21). As already discussed
in an example above, the terms in HIII correspond to hopping of domain walls and
map between the following states

∣∣∣. . . 1∣∣∣000 . . .
〉
↔
∣∣∣. . . 111

∣∣∣0 . . .〉 , ∣∣∣. . . 0∣∣∣111 . . .
〉
↔ −

∣∣∣. . . 000
∣∣∣1 . . .〉 ,

(23)

where the minus sign in the second case arises because of the fermionic nature of
the model. Hopping of a domain wall always takes place in steps of two hence the
parity of the positions of the domain walls is conserved. Aside from their diagonal
terms, HI and HII correspond to hopping of single fermions or holes and therefore
to hopping of pairs of domain walls. They give rise to transitions between the states

∣∣∣. . . 0
∣∣∣1
∣∣∣00 . . .

〉
↔
∣∣∣. . . 00

∣∣∣1
∣∣∣0 . . .〉 ,

∣∣∣. . . 1
∣∣∣0
∣∣∣11 . . .

〉
↔ −

∣∣∣. . . 11
∣∣∣0
∣∣∣1 . . .〉 .

(24)

Note that in these processes the total parity of positions of interfaces is again
conserved, i.e. all processes in HFGNR conserve the number of domain walls at
even and odd positions separately.

Finally, the diagonal term
∑
i (d

†
i di + did

†
i + e

†
i ei + eie

†
i ) in HI and HII counts

the number of 010, 000, 111 and 101 configurations. In other words they count the
number of pairs of second neighbour sites that are both empty or both occupied

∑
i

(d
†
i di + did

†
i + e

†
i ei + eie

†
i ) =

∑
i

(pi−1pi+1 + ni−1ni+1). (25)

This is equivalent to counting the total number of sites minus twice the number of
domain walls that do not separate a single fermion or hole, i.e. twice the number of
well separated domain walls.

Since the number of odd and even domain walls is conserved the Hilbert space
naturally breaks into sectors labeled by (m, k), where m is the total number of
domain walls, and k is the number of odd domain walls. Due to periodic boundary
conditionsm is even.
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2.2.2 Solution of the FGNR Model by Bethe ansatz

The FGNR model with periodic boundary conditions is solved by coordinate Bethe
Ansatz [8]. There are two kinds of conserved particles (even and odd domain walls),
and hence the model is solved by a nested version of the Bethe Ansatz. A solution
in the (m, k) sector (with m − k even and k odd domain walls) is characterized
by the Bethe roots {z1, . . . , zm; u1, . . . , uk}. In other words, z type Bethe roots are
associated with both kinds of domain walls, and u type of Bethe roots are associated
with odd domain walls. The complex numbers {z1, . . . , zm; u1, . . . , uk} satisfy the
following Bethe equations,

zLj = ±i−L/2
k∏
l=1

ul − (zj − 1/zj )2

ul + (zj − 1/zj )2
, j = 1, . . . ,m (m ∈ 2N), (26)

1 =
m∏
j=1

ul − (zj − 1/zj )2

ul + (zj − 1/zj )2
, l = 1, . . . , k, (27)

where the ± is the same for all j . Solutions corresponding to a nonzero Bethe vector
are such that

z2
i �= z2

j , ∀i, j ∈ {1, . . . ,m},
ui �= uj , ∀i, j ∈ {1, . . . , k}. (28)

Two solutions {z1, . . . , zm; u1, . . . , uk}, {z′1, . . . , z′m; u′
1, . . . , u

′
k} lead to the same

Bethe vector if there exist two permutations π ∈ Sm and σ ∈ Sk and a set of
Z2 numbers {εi}mi=1 (i.e. εj = ±1) such that zj = εj z

′
π(j) and ul = u′

σ(l). The
eigenenergy corresponding to the Bethe roots {z1, . . . , zm; u1, . . . , uk} is

Λ = L+
m∑
i=1

(z2
i + z−2

i − 2), (29)

which in fact depends only on the non-nested z Bethe roots. The Bethe equations
have free fermionic solutions in the following cases. When k = 0 there are no
Bethe equations at the nested level and the first set of equations simplifies to the
free fermionic case. When k = 1 the u = 0 solutions give the free fermionic part of
the spectrum. It is worth to note that the spectrum of the FGNR model with periodic
boundary conditions does have a non free fermionic part. This part will not transfer
to the open boundary case.
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2.2.3 Cooper Pairs

Consider a free fermionic solution

zj = i−1/2e2iπIj /L, j = 1, . . . ,m, (30)

where Ij is a (half-)integer. This solves the Bethe equations for the k = 0 case, or
the k = 1 case with u = 0. This same solution can be used to find a solution in the
sector with two more odd domain walls (with k = 2 and 3 in the respective cases).
Consider the k = 2 case. Bethe equations (26) with k = 2 are solved by (30) if the
nested Bethe roots u1, u2 satisfy

u2 = −u1 (31)

as in this case the two new terms in the first Bethe equations cancel each other

u1 − (zj − 1/zj )2

u1 + (zj − 1/zj )2
· u2 − (zj − 1/zj )2

u2 + (zj − 1/zj )2
=

u1 − (zj − 1/zj )2

u1 + (zj − 1/zj )2
· u1 + (zj − 1/zj )2

u1 − (zj − 1/zj )2
= 1. (32)

Hence the first Bethe equations (26) with solution (30) serve as a consistency
condition for u1, u2

1 =
m∏
j=1

ul − (zj − 1/zj )2

ul + (zj − 1/zj )2
, l = 1, 2. (33)

For a free fermionic solution there are always (purely imaginary) u2 = −u1 type
nested roots. As this solution has the same z type roots, a solution with the Cooper
pair has the same energyΛ as the original one. We can continue like this introducing
new Cooper pairs. The creation of Cooper pairs is limited by the number of domain
walls. For further details we suggest [8].

3 Mapping Between the Domain Wall and Particle
Representations

The definition of the open boundary version of the FGNR model is straightforward.
In the open boundary version with a system size L the operators di, d

†
i and e†

i , ei are
defined for i = 1, . . . , L − 1. When i = 1 we need to introduce the extra 0-th site



A Curious Mapping Between Supersymmetric Quantum Chains 177

and fix its state to be empty. With these definitions the open boundary supercharge

Q
(OBC)
FGNR =

L−1∑
i=1

(
d

†
i + ei

)
(34)

is well defined and nilpotent. In this section we would like to lighten the notation
for the supercharges and work with their conjugated counterparts. We also need to
introduce an intermediate model given in terms of the operators

gi = pi+1cini−1, fi = ni+1cipi−1.

Fix L to be even. We have the following supercharges

Q
†
L = (Q

(OBC)
FGNR)

† =
L−1∑
i=1

(
di + e

†
i

)
, (35)

Q̃
†
L = Q

†
FS = c

†
1c2 +

L/2−1∑
i=1

c
†
2i+1

(
c2ie

iα2i−1π/2 + c2i+2e
iα2iπ/2

)
, (36)

We also define two additional superchargesQ†
e,L andQ†

o,L which represent hopping
of domain walls and are required as an intermediate step of the mapping,

Q
†
e,L =

L/2−1∑
i=1

(
g2i + f

†
2i

)
, (37)

Q
†
o,L = g1 + f

†
1 +

L/2−1∑
i=1

(
g2i+1 + f

†
2i+1

)
, (38)

Notice that the first terms in the summations in the charges Q†
L and Q†

o,L contain
n0. As mentioned above, we need to fix the 0-th site to be unoccupied. Hence the
eigenvalue of n0 is always 0.

We would like to find the map betweenQ†
L and Q̃†

L. Assume that it is given by a
transformation T ,

Q̃
†
L = TQ

†
LT

†, T = PΓM, (39)

which itself consists of three terms. The first operator M turns creation and
annihilation of domain walls into hopping of domain walls. The second operator
Γ turns domain walls into particles and the third operator P fixes the phase factors
such that they match (36).

Now we turn to the discussion of the transformationsM , Γ and P .
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3.1 Transformation M

The first termM translates to the dynamics of domain walls, i.e. it transforms linear
combinations of the operators d, d† and e, e† into linear combinations of f, f † and
g, g† (see [8] for more details). More precisely:

M =
.(L−1)/4/∏

i=0

(c4i+1 − c
†
4i+1)(c4i+2 − c

†
4i+2), (40)

and for all even i we have

M(di + e
†
i )M

† = fi + g
†
i , M(di+1 + e

†
i+1)M

† = f
†
i+1 + gi+1. (41)

In other wordsM turnsQ† into a combination ofQe and Q†
o

MQ
†
LM

† = Qe,L +Q
†
o,L. (42)

Thus we get an intermediate model.

3.2 Transformation Γ

The next transformationΓ turns domain walls into particles. In fact, there is a family
of such transformations. We select Γ to be of the following form

ΓL =
L−1∏
i=1

(
pi + ni(c

†
i+1 + ci+1)

)
. (43)

This operator satisfies Γ Γ † = 1 and transforms the monomials in ci and c†
i of (42)

into those of Q̃† (36). More precisely, conjugation by Γ has the following effect

ΓL(Qe,L +Q
†
o,L)Γ

†
L = Q̂

†
L, (44)

where the new supercharge Q̂†
L differs from Q̃† only by phase factors. Let us take

Γ and act termwise on Qe +Q
†
o, i.e. on the combination

fi + g
†
i + f

†
i+1 + gi+1,

for the labels i > 0 and separately on the first term f
†
1 + g1. We find

ΓL

(
f

†
1 + g1

)
Γ

†
L = −c†

1c2 e
iπ
∑L/2−1
j=1 n2j+1 , (45)
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and

ΓL

(
fi + g

†
i + f

†
i+1 + gi+1

)
Γ

†
L

=
(
c

†
2i+1c2i e

iπ
∑2i−1
j=1 nj − c

†
2i+1c2i+2

)
e

iπ
∑L/2−1
j=i+1 n2j+1 . (46)

Therefore Q̂†
L as defined in (44) becomes

Q̂
†
L = −c†

1c2 e
iπ
∑L/2−1
j=1 n2j+1

+
L/2−1∑
i=1

(
c

†
2i+1c2ie

iπ
∑2i−1
j=1 nj − c

†
2i+1c2i+2

)
e

iπ
∑L/2−1
j=i+1 n2j+1 . (47)

This agrees with (36) up to the phase factors.

3.3 Transformation P

Let p(ν1, ν2, . . . , νL) be an unknown function of a binary string, νi = 0, 1. Write a
generic phase factor transformation PL

PL = ei π2 p̂(n1,n2,...,nL), (48)

and the function p introduced above denotes the eigenvalue of p̂ on the state
|ν1, . . . , νL〉. The commutation relations

p̂(n1, . . . , ni, . . . , nL)ci = cip̂(n1, . . . , ni − 1, . . . , nL), (49)

p̂(n1, . . . , ni , . . . , nL)c
†
i = c

†
i p̂(n1, . . . , ni + 1, . . . , nL), (50)

hold on all states of the Hilbert space. Let us find P such that

Q̃
†
L = PLQ̂

†
LP

−1
L . (51)

Commuting PL through each monomial of Q̂†
L and comparing it with the corre-

sponding monomial of Q̃†
L we find L − 1 conditions. Commuting PL with the first

monomial in (47) and acting on the state |ν1, . . . , νL〉 leads to the first condition

p(ν1 + 1, ν2 − 1, . . . , νL)− p(ν1, ν2, . . . , νL)+ 2
L/2−1∑
j=1

ν2j+1 + 2 = 0. (52)
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Commuting PL with the two bulk terms in (47) leads to

p(ν1, . . . , ν2i − 1, ν2i+1 + 1, . . . , νL)− p(ν1, . . . , νL)

+ 2
2i−1∑
j=1

νj + 2
L/2−1∑
j=i+1

ν2j+1 =
2i−1∑
j=1

(−1)jνj , (53)

and

p(ν1, . . . , ν2i+1 + 1, ν2i+2 − 1, . . . , νL)− p(ν1, . . . , νL)

+ 2
L/2−1∑
j=i+1

ν2j+1 + 2 =
2i∑
j=1

(−1)jνj . (54)

The second equation here with i = 0 reproduces (52). In the second equation we
can replace ν2i+1 with ν2i+1 − 1 and ν2i+2 with ν2i+2 + 1. As a result it becomes
of the same form as the first one. Hence (53) and (54) together define L equations
for k = 0, . . . , L − 1, where for even k one uses (54) and for odd k one uses (53).
These equations are valid modulo 4 and can be further simplified

p(ν1, . . . , ν2i − 1, ν2i+1 + 1, . . . , νL)− p(ν1, . . . , νL)

=
2i−1∑
j=1

(−1)j+1νj + 2
L/2−1∑
j=i+1

ν2j+1, (55)

and

p(ν1, . . . , ν2i+1 − 1, ν2i+2 + 1, . . . , νL)− p(ν1, . . . , νL)

=
2i∑
j=1

(−1)j+1νj + 2
L/2−1∑
j=i+1

ν2j+1 + 2. (56)

These two equations can be united into one equation using one index k which can
be odd or even

p(ν1, . . . , νk, νk+1, . . . , νL)− p(ν1, . . . , νk + 1, νk+1 − 1, . . . , νL)

= wk(ν1, . . . , ν2N), (57)
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where the right hand side is given by

wk(ν1, . . . , νL) = (1 − (−1)k)+
k−1∑
j=1

(−1)j+1νj +
L−1∑
j=k+2

(1 − (−1)j )νj . (58)

Therefore we find a set of recurrence relations for the functions p. Note that for a
given configuration with the binary string (ν1, . . . , νL) these equations are assumed
to hold for those values of k for which νk = 0 and νk+1 = 1. Hence the number of
such equations is equal to the number of domain walls of type 01.

3.4 Particle Position Coordinates

It is more natural to solve Eq. (57) in a basis where the vectors are labelled using
particle positions xk. The Hilbert spaces in both models are given by vectors labelled
by strings of L numbers τi = 0, 1

|τ1, . . . , τL〉n = |τ 〉 =
L∏
i=1

(
c

†
i

)τi |0〉 . (59)

We attached the subscript n in the above notation in order to distinguish it from
another labelling of the vectors in the same Hilbert space. Let m be the number
of particles in the system. Let us introduce a basis labelled by the positions of the
particles and let ρ denote the mapping between the two labellings

ρ : |ν1, . . . , νL〉n → |x1, . . . , xm〉x . (60)

The numbers xk are the eigenvalues of the operators x̂k which coincide with the
eigenvalues of the operators jnj with j = xk .

Fix m to be the total number of particles in the system and define two functions
p̃ and w̃ using the mapping ρ

ρ
(
p̂(n1, . . . , nL) |ν1, . . . , νL〉n

) = p̃(x1, . . . , xm) |x1, . . . , xm〉x ,
ρ
(
ŵk(n1, . . . , nL) |ν1, . . . , νL〉n

) = w̃k(x1, . . . , xm) |x1, . . . , xm〉x ,

with ŵk being the diagonal operator with the eigenvalues (58). We can now
rewrite (57) and (58) in the particle position basis

p̃(x1, . . . , xj , . . . , xm)− p̃(x1, . . . , xj − 1, . . . , xm) = w̃j (x1, . . . , xm), (61)
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with

w̃k(x1, . . . , xm) = (1 + (−1)xk )−
k−1∑
i=1

(−1)xi +
m∑

i=k+1

(1 − (−1)xi ). (62)

Once again this equation is considered to hold for j such that xj − xj−1 > 1. The
generic solution of (61) is

p̃(x1, . . . , xm) = p̃(1, 2, . . . ,m)+
m∑
k=1

xk∑
i=k+1

w̃k(1, 2, . . . , k − 1, i, xk+1, . . . , xm),

(63)

which can be checked by a direct calculation. Here p̃(1, 2, . . . ,m) is the initial
condition and can be chosen to be 0. Inserting w̃k we get

p̃(x1, . . . , xm) =
m∑
k=1

xk∑
i=k+1

⎛
⎝1 + (−1)i −

k∑
j=1

(−1)j +
m∑

j=k+1

(1 − (−1)xj )

⎞
⎠ .

(64)

The required phase transformation takes the form

PL = ei π2 (p̃(x̂1,...,x̂m)◦ρ). (65)

3.5 Examples

To illustrate the mapping, we show some examples of corresponding states between
the FS model (zig-zag ladder) and FGNR model states (up to phase factors ±1, ±i),

empty ladder : |0000 0000 0000〉FS ↔ 0|1100 1100 1100〉FGNR
single FS semion : |0000 1000 0000〉FS ↔ 0|1100 0011 0011〉FGNR
single FS pair : |0000 1100 0000〉FS ↔ 0|1100 0100 1100〉FGNR
lower leg filled : |1010 1010 1010〉FS ↔ 0|0000 0000 0000〉FGNR
single FGNR particle : |1010 0110 1010〉FS ↔ 0|0000 1000 0000〉FGNR
upper leg filled : |0101 0101 0101〉FS ↔ 0|1010 1010 1010〉FGNR
upper leg plus semion : |1101 0101 0101〉FS ↔ 0|0101 0101 0101〉FGNR
filled ladder : |1111 1111 1111〉FS ↔ 0|0110 0110 0110〉FGNR
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For L = 4 the phase factors take the explicit values

p̃(1) = 0, p̃(2) = 2, p̃(3) = 0, p̃(4) = 0

p̃(1, 2) = 0, p̃(1, 3) = 1, p̃(1, 4) = 0, p̃(2, 3) = 1, p̃(2, 4) = 2, p̃(3, 4) = 2

p̃(1, 2, 3) = 0, p̃(1, 2, 4) = 2, p̃(1, 3, 4) = 3, p̃(2, 3, 4) = 3

p̃(1, 2, 3, 4) = 0 (66)

Finally we provide an explicit example of all the steps in the mapping. Let us act
with both sides of (39) on the state |010101〉

Q̃
†
6 |010101〉 = PΓMQ

†
6M

†Γ †P−1 |010101〉 ,

The action of Q̃†
6 results in

Q̃
†
6 |010101〉 = |001101〉 + i |010011〉 − |010110〉 + i |011001〉 + |100101〉 ,

and the right hand side is computed as follows

PΓMQ
†
6M

†Γ †P−1 |010101〉 = −PΓMQ†
6M

†Γ † |010101〉
= PΓMQ

†
6M

† |011001〉 = PΓMQ
†
6 |101010〉

= PΓM
( |001010〉 − |100010〉 + |101000〉 + |101110〉 − |111010〉 )

= PΓ
( |001001〉 − |010001〉 + |011011〉 + |011101〉 + |111001〉 )

= P
( |001001〉 − |010001〉 + |011011〉 + |011101〉 + |111001〉 )

= |001101〉 + i |010011〉 − |010110〉 + i |011001〉 + |100101〉 .

4 Conclusion

We have established a unitary transformation between the FS and FGNR models
with open boundary conditions. We are confident that this map will be helpful for
unraveling the properties of these highly intriguing models. For example, in the FS
formulation it was not clear how to impose periodic boundary conditions without
losing the supersymmetry—this issue is now resolved.

It is a pleasure to dedicate this work to Bernard Nienhuis on the occasion of his
65th birthday. Bernard has always had a special eye for ingenious maps relating
apparently different models of statistical physics to one another. We can only hope
that dedicating this work to him finds some justification in our following a similar
strategy for one of the many integrable models that he has pioneered.
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Remarks on A
(1)
n Face Weights

Atsuo Kuniba

Abstract Elementary proofs are presented for the factorization of the elliptic
Boltzmann weights of the A(1)n face model, and for the sum-to-1 property in the
trigonometric limit, at a special point of the spectral parameter. They generalize
recent results obtained in the context of the corresponding trigonometric vertex
model.

1 Introduction

In the recent work [8], the quantumR matrix for the symmetric tensor representation
of the Drinfeld-Jimbo quantum affine algebra Uq(A

(1)
n ) was revisited. A new

factorized formula at a special value of the spectral parameter and a certain
sum rule called sum-to-1 were established. These properties have led to vertex
models that can be interpreted as integrable Markov processes on one-dimensional
lattice including several examples studied earlier [7, Fig. 1,2]. In this note we
report analogous properties of the Boltzmann weights for yet another class of
solvable lattice models known as IRF (interaction round face) models [2] or face
models for short. More specifically, we consider the elliptic fusion A(1)n face model
corresponding to the symmetric tensor representation [5, 6]. For n = 1, it reduces
to [1] and [4] when the fusion degree is 1 and general, respectively. There are
restricted and unrestricted versions of the model. The trigonometric case of the latter
reduces to the Uq(A

(1)
n ) vertex model when the site variables tend to infinity. See

Proposition 1. In this sense Theorems 1 and 2 given below, which are concerned
with the unrestricted version, provide generalizations of [8, Th. 2] and [8, eq. (30)]
so as to include finite site variables (and also to the elliptic case in the former). In
Sect. 3 we will also comment on the restricted version and difficulties to associate
integrable stochastic models.
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2 Results

Let θ1(u) = θ1(u, p) = 2p
1
4 sinπu

∏∞
k=1(1 − 2p2k cos 2πu + p4k)(1 − p2k) be

one of the Jacobi theta function (|p| < 1) enjoying the quasi-periodicity

θ1(u+ 1; eπiτ ) = −θ1(u; eπiτ ), θ1(u+ τ ; eπiτ ) = −e−πiτ−2πiuθ1(u; eπiτ ),
(1)

where Imτ > 0. We set

[u] = θ1(
u

L
, p), [u]k = [u][u− 1] · · · [u− k + 1],

[u
k

]
= [u]k

[k]k (k ∈ Z≥0),

(2)

with a nonzero parameter L. These are elliptic analogue of the q-factorial and the
q-binomial:

(z)m = (z; q)m =
m−1∏
i=0

(1 − zqi),

(
m

l

)
q

= (q)m

(q)l(q)m−l
.

For α = (α1, . . . , αk) with any k we write |α| = α1 + · · · + αk . The relation
β ≥ γ or equivalently γ ≤ β means βi ≥ γi for all i.

We take the set of local states as P̃ = η+Z
n+1 with a generic η ∈ C

n+1. Given
positive integers l and m, let a, b, c, d ∈ P̃ be the elements such that

α = d − a ∈ Bl, β = c − d ∈ Bm, γ = c − b ∈ Bl, δ = b − a ∈ Bm,
(3)

where Bm is defined by

Bm = {α = (α1, . . . , αn+1) ∈ Z
n+1
≥0 | |α| = m}. (4)

The relations (3) imply α + β = γ + δ. The situation is summarized as

a b

d c

δ

α γ

β
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To the above configuration round a face we assign a function of the spectral
parameter u called Boltzmann weight. Its unnormalized version, denoted by

Wl,m

(
a b
d c

∣∣∣u), is constructed from the l = 1 case as follows:

Wl,m

(a b

d c

∣∣∣u) =
∑ l−1∏

i=0

W 1,m

( a(i) b(i)

a(i+1) b(i+1)

∣∣∣u− i
)
, (5)

W 1,m

(a b

d c

∣∣∣u) =
[u+ bν − aμ]∏n+1

j=1 (j �=μ)[bν − aj + 1]∏n+1
j=1[cν − bj ]

(d = a + eμ, c = b + eν),

where ei = (0, . . . , 0,
ith
1 , 0, . . . , 0). In (5), a(0), . . . , a(l) ∈ P̃ is a path form a(0) =

a to a(l) = d such that a(i+1) − a(i) ∈ B1 (0 ≤ i < l). The sum is taken over
b(1), . . . , b(l−1) ∈ P̃ satisfying the conditions b(i+1) − b(i) ∈ B1 (0 ≤ i < l) with
b(0) = b and b(l) = c. It is independent of the choice of a(1), . . . , a(l−1) (cf. [4,

Fig. 2.4]). We understand that Wl,m

(
a b
d c

∣∣∣u) = 0 unless (3) is satisfied for some

α, β, γ, δ.
The normalized weight is defined by

Wl,m

(a b

d c

∣∣∣u) = Wl,m

(a b

d c

∣∣∣u) [1]l
[l]l
[m
l

]−1
. (6)

It satisfies [6] the (unrestricted) star-triangle relation (or dynamical Yang-Baxter
equation) [2]:

∑
g

Wk,m

( a b

f g

∣∣∣u)Wl,m

(f g

e d

∣∣∣v)Wk,l

( b c

g d

∣∣∣u− v
)

=
∑
g

Wk,l

( a g

f e

∣∣∣u− v
)
Wl,m

(a b

g c

∣∣∣v)Wk,m

(g c

e d

∣∣∣u),
(7)

where the sum extends over g ∈ P̃ giving nonzero weights. Under the same
setting (3) as in (6), we introduce the product

Sl,m

(a b

d c

)
=
[m
l

]−1 ∏
1≤i,j≤n+1

[ci − dj ]ci−bi
[ci − bj ]ci−bi

. (8)

Note that Sl,m
(
a b
d c

)
= 0 unless d ≤ b because of the factor

∏n+1
i=1 [ci−di]ci−bi . The

following result giving an explicit factorized formula of the weight Wl,m at special
value of the spectral parameter is the elliptic face model analogue of [8, Th. 2].
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Theorem 1 If l ≤ m, the following equality is valid:

Wl,m

(a b

d c

∣∣∣u = 0
)

= Sl,m

(a b

d c

)
. (9)

Proof We are to show

Wl,m

(a b

d c

∣∣∣0) = [l]l
[1]l

∏
i,j

[ci − dj ]ci−bi
[ci − bj ]ci−bi

. (10)

Here and in what follows unless otherwise stated, the sums and products are taken
always over 1, . . . , n + 1 under the condition (if any) written explicitly. We invoke
the induction on l. It is straightforward to check (10) for l = 1. By the definition (5)
the l + 1 case is expressed as

Wl+1,m

(a b

d c

∣∣∣0) =
∑
ν

Wl,m

( a b

d ′ c′
∣∣∣0)W1,m

(d ′ c′
d c

∣∣∣−l) (d ′ = d − eμ, c′ = c − eν)

for some fixed μ ∈ [1, n+1]. Due to the induction hypothesis onWl,m, the equality
to be shown becomes

∑
ν

[l]l
[1]l
(∏
i,j

[c′i − d ′
j ]c′i−bi

[c′i − bj ]c′i−bi
) [−l + c′ν − d ′

μ]
∏
k �=μ[c′ν − d ′

k + 1]∏
k[cν − c′k]

= [l + 1]l+1

[1]l+1

∏
i,j

[ci − dj ]ci−bi
[ci − bj ]ci−bi

.

(11)

After removing common factors using c′i = ci − δiν, d
′
i = di − δiμ, one finds

that (11) is equivalent to

∑
ν

[cν − dμ − l]
∏
i �=ν

[ci − dμ + 1]
[cν − ci]

∏
j

[cν − bj ] = [l + 1]
∏
i

[bi − dμ + 1]

with l determined by l + 1 = ∑
j (cj − bj ). One can eliminate dμ and rescale the

variables by (bj , cj ) → (Lbj + dμ,Lcj + dμ) for all j . The resulting equality
follows from Lemma 1.

Lemma 1 Let b1, . . . , bn, c1, . . . , cn ∈ C be generic and set s = ∑n
i=1(ci − bi).

Then for any n ∈ Z≥1 the following identity holds:

n∑
i=1

θ1(z+ ci − s)

n∏
j=1 (j �=i)

θ1(z + cj )

θ1(ci − cj )

n∏
j=1

θ1(ci − bj ) = θ1(s)

n∏
i=1

θ1(z+ bi).
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Proof Denote the LHS–RHS by f (z). From (1) we see that f (z) satisfies (12) with
B = n

2 , A1 = n(1+τ )
2 +∑n

j=1 bj and A2 = n. Moreover it is easily checked that
f (z) possesses zeros at z = −c1, . . . ,−cn. Therefore Lemma 2 claims −(c1 +
· · · + cn) − (Bτ + 1

2A2 − A1) ≡ 0 mod Z + Zτ . But this gives s ≡ 0 which is a
contradiction since bj , cj can be arbitrary. Therefore f (z) must vanish identically.

Lemma 2 Let Imτ > 0. Suppose an entire function f (z) �≡ 0 satisfies the quasi-
periodicity

f (z+ 1) = e−2πiBf (z), f (z+ τ ) = e−2πi(A1+A2z)f (z). (12)

Then A2 ∈ Z≥0 holds and f (z) has exactly A2 zeros z1, . . . , zA2 mod Z + Zτ .
Moreover z1 + · · · + zA2 ≡ Bτ + 1

2A2 − A1 mod Z + Zτ holds.

Proof Let C be a period rectangle (ξ, ξ + 1, ξ + 1 + τ, ξ + τ ) on which there is no
zero of f (z). From the Cauchy theorem the number of zeros of f (z) in C is equal to∫
C
f ′(z)
f (z)

dz
2πi . Calculating the integral by using (12) one gets A2. The latter assertion

can be shown similarly by considering the integral
∫
C
zf ′(z)
f (z)

dz
2πi .

From Theorem 1 and (7) it follows that Sl,m
(
a b
d c

)
also satisfies the (unrestricted)

star-triangle relation (7) without spectral parameter. The discrepancy of the factoriz-
ing points u = 0 in (9) and “u = l−m” in [8, Th. 2] is merely due to a conventional
difference in defining the face and the vertex weights.

Since (6) and (8) are homogeneous of degree 0 in the symbol [· · · ], the trigono-
metric limit p → 0 may be understood as replacing (2) by [u] = qu/2 − q−u/2 with
generic q = exp 2πi

L
. Under this prescription the elliptic binomial

[
m
l

]
from (2) is

replaced by ql(l−m)/2
(
m
l

)
q
, therefore the trigonometric limit of (8) becomes

Sl,m

(a b

d c

)
trig

=
(
m

l

)−1

q

∏
1≤i,j≤n+1

(qbi−dj+1)ci−bi
(qbi−bj+1)ci−bi

. (13)

The following result is a trigonometric face model analogue of [8, Th. 6].

Theorem 2 Suppose l ≤ m. Then the sum-to-1 holds in the trigonometric case:

∑
b

Sl,m

(a b

d c

)
trig

= 1, (14)

where the sum runs over those b satisfying c − d ∈ Bm and d − a ∈ Bl .
Proof The relation (14) is equivalent to

(
m

l

)
q

=
∑

γ∈Bl,γ≤β

∏
1≤i,j≤n+1

(qcij−γi+βj+1)γi

(qcij−γi+γj+1)γi
(cij = ci − cj ) (15)
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for any fixed β = (β1, . . . , βn+1) ∈ Bm, l ≤ m and the parameters c1, . . . , cn+1,
where the sum is taken over γ ∈ Bl (4) under the constraint γ ≤ β. In fact we are
going to show

(w−1
1 . . . w−1

n q−l+1)l

(q)l
=
∑
|γ |=l

∏
1≤i,j≤n

(
q−γi+1zi/(zjwj )

)
γi(

qγj−γi+1zi/zj
)
γi

(l ∈ Z≥0),

(16)

where the sum is over γ ∈ Z
n
≥0 such that |γ | = l, and w1, . . . , wn, z1, . . . , zn

are arbitrary parameters. The relation (15) is deduced from (16)|n→n+1 by setting
zi = qci , wi = q−βi and specializing βi ’s to nonnegative integers. In particular, the
constraint γ ≤ β automatically arises from the i = j factor

∏n
i=1(q

−γi+1+βi )γi in
the numerator. To show (16) we rewrite it slightly as

q
l2
2
(w1 . . . wn)l

(q)l
=
∑
|γ |=l

n∏
i=1

q
γ 2
i
2
(wi)γi

(q)γi

∏
1≤i �=j≤n

(zjwj/zi)γi

(q−γj zj /zi)γi
. (17)

Denote the RHS by Fn(w1, . . . , wn|z1, . . . , zn). We will suppress a part of the
arguments when they are kept unchanged in the formulas. It is easy to see

Fn(w1, w2|z1, z2) = Fn(w2, w1|z2, z1) = Fn(
z2w2

z1
,
z1w1

z2
|z1, z2).

Thus the coefficients in the expansion Fn(w1, w2|z1, z2) = ∑
0≤i,j≤l Ci,j (z1, z2)

wi1w
j
2 are rational functions in z1, . . . , zn obeying Ci,j (z1, z2) = Cj,i (z2, z1) =(

z1
z2

)i−j
Cj,i (z1, z2). On the other hand from the explicit formula (17), one also finds

that any Ci,j (z1, z2) remains finite in the either limit z1
z2
, z2
zi

→ ∞ or z1
z2
, z2
zi

→ 0 for
i ≥ 3. It follows that Ci,j (z1, z2) = 0 unless i = j , hence

Fn(w1, w2, . . . , wn|z1, . . . , zn) = Fn(1, w1w2, w3, . . . , wn|z1, . . . , zn).

Moreover it is easily seen

Fn(1, w1w2, w3, . . . , wn|z1, z2, . . . , zn) = Fn−1(w1w2, w3, . . . , wn|z2, . . . , zn).

Repeating this we reach F1(w1 · · ·wn|zn) giving the LHS of (17).

We note that the sum-to-1 (14) does not hold in the elliptic case. Remember that
our local states are taken from P̃ = η + Z

n+1 with a generic η ∈ C
n+1. So we set

a = η+ ã with ã ∈ Z
n+1 etc. in (4), and assume that it is valid also for ã, b̃, c̃, d̃ . It

is easy to check
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Proposition 1 Assume l ≤ m and |q| < 1. Then the following equality holds:

lim
η→∞ Sl,m

(η + ã η + b̃

η + d̃ η + c̃

)
trig

= q
∑
i<j (βi−γi )γj

(
m

l

)−1

q

n+1∏
i=1

(
βi

γi

)
q

, (18)

where the limit means ηi −ηi+1 → ∞ for all 1 ≤ i ≤ n, and the RHS is zero unless
0 ≤ γi ≤ βi, ∀i.
The limit reduces the unrestricted trigonometricA(1)n face model to the vertex model
at a special value of the spectral parameter in the sense that the RHS of (18)|q→q2

reproduces [8, eq. (23)] that was obtained as the special value of the quantum R

matrix associated with the symmetric tensor representation of Uq(A
(1)
n ).

3 Discussion

Since the weights Wl,m

(
a b
d c

∣∣∣u) remain unchanged by shifting a, b, c, d ∈ P̃ by

const · (1, . . . , 1), we regard them as elements from P := P̃/C(1, . . . , 1) in
the sequel. Given l,m1, . . . ,mM ∈ Z≥1 and u,w1, . . . , wM ∈ C, the transfer

matrix Tl(u) = Tl

(
u

∣∣∣m1,...,mM
w1,...,wM

)
of the unrestricted A(1)n face model with periodic

boundary condition is a linear map on the space of independent row configurations
on length M row

⊕
C|a(1), . . . a(M)〉 where the sum is taken over a(1), . . . a(M) ∈

P such that a(i+1) − a(i) ∈ Bmi (a
(M+1) = a(1)). Its action is specified as

Tl(u)|b(1), . . . b(M)〉 = ∑
a(1),...a(M) Tl(u)

a(1),...a(M)

b(1),...b(M)
|a(1), . . . a(M)〉 in terms of the

matrix elements

Tl(u)
a(1),...a(M)

b(1),...b(M)
=

M∏
i=1

Wl,mi

(a(i) a(i+1)

b(i) b(i+1)

∣∣∣u− wi

)
(a(M+1) = a(1), b(M+1) = b(1)).

(19)

Theorem 1 tells that Sl := Tl(u)u=w1=···=wM has a simple factorized matrix

elements. We write its elements as S a
(1),...a(M)

l,b(1),...b(M)
. The star-triangle relation (7) implies

the commutativity [Tl(u), Tl′(u′)] = [Sl, Sl′ ] = 0.
Let us consider whether X = Tl(u) or Sl admits an interpretation as a Markov

matrix of a discrete time stochastic process. The related issue was treated in [3]
for n = 1 and mainly when min(l,m1, . . . ,mM) = 1. One needs (i) sum-to-1

property
∑
a(1),...a(M) X

a(1),...a(M)

b(1),...b(M)
= 1 and (ii) nonnegativity ∀Xa(1),...a(M)

b(1),...b(M)
≥ 0. We

concentrate on the trigonometric case in what follows. From Theorem 1 and the fact

that Sl,m
(
a b
c d

)
trig

in (13) is independent of a, (i) indeed holds for Sl . On the other

hand (13) also indicates that (ii) is not valid in general without confining the site
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variables in a certain range. A typical such prescription is restriction [4–6], where
one takes L = �+ n+ 1 in (2) with some � ∈ Z≥1 and lets the site variables range
over the finite set of level � dominant integral weights {(L + an+1 − a1 − 1)Λ0 +∑n
i=1(ai − ai+1 − 1)Λi | L + an+1 > a1 > · · · > an+1, ai − aj ∈ Z}. They are

to obey a stronger adjacency condition [6, p. 546, (c-2)] than (3) which is actually
the fusion rule of the WZW conformal field theory. (The formal limit � → ∞
still works to restrict the site variables to the positive Weyl chamber and is called
“classically restricted”.) Then the star-triangle relation remains valid by virtue of
nontrivial cancellation of unwanted terms. However, discarding the contribution to
the sum (14) from those b not satisfying the adjacency condition spoils the sum-to-1
property. For example when (n, l,m) = (2, 1, 2), a = (2, 1, 0), c = (4, 2, 0), d =
(3, 1, 0) and � is sufficiently large, the unrestricted sum (14) consists of two terms

Sl,m

(
a b
d c

)
trig

= (2
1

)−1
q

(q−1;q)1
(q−2;q)1 for b = (4, 1, 0) and Sl,m

(
a b′
d c

)
trig

= (2
1

)−1
q

(q3;q)1
(q2;q)1

for b′ = (3, 2, 0) summing up to 1, but b′ must be discarded in the restricted case

since a
m=2⇒ b′ [6, (c-2)] does not hold. Thus we see that in order to satisfy (i) and (ii)

simultaneously one needs to resort to a construction different from the restriction.
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Boundary Regularity
of Mass-Minimizing Integral Currents
and a Question of Almgren

Camillo De Lellis, Guido De Philippis, Jonas Hirsch, and Annalisa Massaccesi

Abstract This short note is the announcement of a forthcoming work in which
we prove a first general boundary regularity result for area-minimizing currents in
higher codimension, without any geometric assumption on the boundary, except
that it is an embedded submanifold of a Riemannian manifold, with a mild amount
of smoothness (C3,a0 for a positive a0 suffices). Our theorem allows to answer a
question posed by Almgren at the end of his Big Regularity Paper. In this note we
discuss the ideas of the proof and we also announce a theorem which shows that the
boundary regularity is in general weaker that the interior regularity. Moreover we
remark an interesting elementary byproduct on boundary monotonicity formulae.

1 Introduction

Consider a smooth complete Riemannian manifold Σ of dimension m + n̄ and
a smooth closed oriented submanifold Γ ⊂ Σ of dimension m − 1 which is a
boundary in integral homology. Since the pioneering work of Federer and Fleming
(cf. [20]) we know that Γ bounds an integer rectifiable current T in Σ which
minimizes the mass among all integer rectifiable currents bounded by Γ .

C. De Lellis (�)
Institute for Advanced Study, Princeton, NJ, USA
e-mail: camillo.delellis@math.uzh.ch

G. De Philippis · J. Hirsch
SISSA, Trieste, Italy
e-mail: gdephili@sissa.it; jonas.hirsch@sissa.it

A. Massaccesi
Dipartimento di Informatica, Università di Verona, Verona, Italy
e-mail: annalisa.massaccesi@univr.it

© Springer Nature Switzerland AG 2019
D. R. Wood et al. (eds.), 2017 MATRIX Annals, MATRIX Book Series 2,
https://doi.org/10.1007/978-3-030-04161-8_14

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04161-8_14&domain=pdf
mailto:camillo.delellis@math.uzh.ch
mailto:gdephili@sissa.it
mailto:jonas.hirsch@sissa.it
mailto:annalisa.massaccesi@univr.it
https://doi.org/10.1007/978-3-030-04161-8_14


194 C. De Lellis et al.

In general, consider an open U ⊂ Σ and a submanifold Γ ⊂ Σ which has no
boundary in U . If T is an integral current in U with ∂T U = �Γ � U we say that
T is mass-minimizing if

M(T + ∂S) ≥ M(T )

for every integral current S in U .
Starting with the pioneering work of De Giorgi (see [7]) and thanks to the efforts

of several mathematicians in the sixties and the seventies (see [3, 8, 21, 29]), it is
known that, ifΣ is of class C2,a0 for some a0 > 0, in codimension 1 (i.e., when n̄ =
1) and away from the boundaryΓ , T is a smooth submanifold except for a relatively
closed set of Hausdorff dimension at most m− 7. Such set, which from now on we
will call interior singular set, is indeed (m − 7)-rectifiable (cf. [28]) and it has
been recently proved that it must have locally finite Hausdorff (m− 7)-dimensional
measure (see [27]). In higher codimension, namely when n̄ = 2, Almgren proved
in a monumental work (known as Almgren’s Big Regularity Paper [4]) that, if Σ
is of class C5, then the interior singular set of T has Hausdorff dimension at most
m− 2. In a series of papers (cf. [9–13]) the first author and Emanuele Spadaro have
revisited Almgren’s theory introducing several new ideas which simplify his proof
considerably. Furthermore, the first author together with Spadaro and Spolaor, in
[14–17] applied these sets of ideas to establish a complete proof of Chang’s interior
regularity results for 2 dimensional mass-minimizing currents [6], showing that in
this case interior singular points are isolated.

Both in codimension one and in higher codimension the interior regularity theory
described above is, in terms of dimensional bounds for the singular set, optimal
(cf. [5] and [19]). In the case of boundary points the situation is instead much
less satisfactory. The first boundary regularity result is due to Allard who, in his
Ph.D. thesis (cf. [1]), proved that, if Σ = R

m+n̄ and Γ is lying on the boundary
of a uniformly convex set, then for every point p ∈ Γ there is a neighborhood W
such that T W is a classical oriented submanifold (counted with multiplicity 1)
whose boundary (in the usual sense of differential topology) is Γ ∩W . In his later
paper [2] Allard developed a more general boundary regularity theory from which
he concluded the above result as a simpler corollary.

When we drop the “convexity assumption” described above, the same conclusion
cannot be reached. Let for instance Γ be the union of two concentric circles γ1 and
γ2 which are contained in a given 2-dimensional plane π0 ⊂ R

2+n̄ and have the
same orientation. Then the area-minimizing current T in R

2+n̄ which bounds Γ is
unique and it is the sum of the two disks bounded by γ1 and γ2 in π0, respectively.
At every point p which belongs to the inner circle the current T is “passing” through
the circle while the multiplicity jumps from 2 to 1. However it is natural to consider
such points as “regular”, motivating therefore the following definition.

Definition 1 A point x ∈ Γ is a regular point for T if there exist a neighborhood
W 2 x and a regularm-dimensional connected submanifoldΣ0 ⊂ W ∩Σ (without
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boundary in W ) such that spt(T )∩W ⊂ Σ0. The set of such points will be denoted
by Regb(T ) and its complement in Γ will be denoted by Singb(T ).

By the Constancy Lemma, if x ∈ Γ is a regular point, if Σ0 is as in Definition 1
and if the neighborhoodW is sufficiently small, then the following holds:

1. Γ ∩ W is necessarily contained in Σ0 and divides it in two disjoint regular
submanifoldsΣ+

0 and Σ−
0 of W with boundaries ±Γ ;

2. there is a positiveQ ∈ N such that T W = Q
�
Σ+

0

� + (Q− 1)
�
Σ−

0

�
.

We define the density of such points p as Q − 1
2 and we denote it by Θ(T , p) =

Q− 1
2 .

If the density is 1
2 then the point fulfills the conclusions of Allard’s boundary

regularity theorem and Σ0 is not uniquely determined: the interesting geometrical
object is Σ+

0 and any smooth “extension” of it across Γ can be taken asΣ0. On the
other hand for Q ≥ 2 the local behavior of the current is similar to the example of
the two circles above: it is easy to see thatΣ0 is uniquely determined and that it has
mean curvature zero.

When the codimension of the area-minimizing current is 1, Hardt and Simon
proved in [23] that the set of boundary singular points is empty, hence solving
completely the boundary regularity problem when n̄ = 1 (although the paper [23]
deals only with the case Σ = R

m+n̄, its extension to a general Riemannian ambient
manifold should not cause real issues). In the case of general codimension and
general Γ , Allard’s theory implies the existence of (relatively few) boundary regular
points only in special ambient manifolds Σ: for instance when Σ = R

m+n̄ we can
recover the regularity of the “outermost” boundary points q ∈ Γ (i.e., those points
q where Γ touches the smallest closed ball which contains it, cf. [24]). According
to the existing literature, however, we cannot even exclude that the set of regular
points is empty when Σ is a closed Riemannian manifold. In the last remark of the
last section of his Big Regularity Paper, cf. [4, Section 5.23, p. 835], Almgren states
the following open problem, which is closely related to the discussion carried above.

Question 1 (Almgren) “I do not know if it is possible that the set of density 1
2 points

is empty when U = Σ and Γ is connected.”

The interest of Almgren in Question 1 is motivated by an important geometric
conclusion: in [4, Section 5.23] he shows that, if there is at least one density 1

2
point and Γ is connected, then spt(T ) is as well connected and the current T has
(therefore) multiplicity 1 almost everywhere. In other words the mass of T coincides
with the Hausdorffm-dimensional measure of its interior regular set.

In the forthcoming paper [18] we show the first general boundary regularity
result in any codimension, which guarantees the density of boundary regular points
without any restriction (except for a mild regularity assumption on Γ and Σ: both
are assumed to be of class C3,a0 for some positive a0; note that such regularity
assumption for the ambient manifold coincides with the one of the interior regularity
theory as developed in the papers [9–13], whereas Almgren’s Big Regularity Paper
[4] assumes C5). As a corollary we answer Almgren’s question in full generality
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showing: when U = Σ and Γ is connected, then there is always at least one point
of density 1

2 and the support of any minimizer is connected. In the next section
we will state the main results of [18], whereas in Sect. 3 we will give an account
of their (quite long) proofs. Finally, in Sect. 4 we outline an interesting side remark
sparked by one of the key computations in [18]. The latter yields an alternative proof
of Allard’s boundary monotonicity formula under slightly different assumptions: in
particular it covers, at the same time, the Grüter-Jost monotonicity formula for free
boundary stationary varifolds.

2 Main Theorems

Our main result in [18] is the following

Theorem 1 Consider a C3,a0 complete Riemannian submanifold Σ ⊂ R
m+n of

dimensionm+ n and an open set W ⊂ R
m+n. Let Γ ⊂ Σ ∩W be a C3,a0 oriented

submanifold without boundary in W ∩ Σ and let T be an integral m-dimensional
mass-minimizing current in W ∩ Σ with boundary ∂T W = �Γ �. Then Regb(T )

is dense in Γ .

As a simple corollary of the theorem above, we conclude that Almgren’s
Question 1 has a positive answer.

Corollary 1 Let W = R
m+n and assume Σ,Γ and T are as in Theorem 1. If Γ is

connected, then

1. Every point in Regb(T ) has density 1
2 ;

2. The support spt(T ) of the current T is connected;
3. The multiplicity of the current is 1 at H m-a.e. interior point, and so the mass of

the current coincides with H m(spt(T )).

In fact the above corollary is just a case of a more general “structural” result,
which is also a consequence of Theorem 1.

Theorem 2 Let W = R
m+n and assume Σ,Γ and T are as in Theorem 1 and that

Γ is in addition compact. Denote by Γ1, . . . , ΓN the connected components of Γ .
Then

T =
N∑
j=1

QjTj , (1)

where:

(a) For every j = 1, . . . , N , Tj is an integral current with ∂Tj = ∑N
i=1 σij �Γi�

and σij ∈ {−1, 0, 1}.
(b) For every j = 1, . . . , N , Tj is an area-minimizing current and Tj = H m Λj ,

where Λ1, . . . ,ΛN are the connected components of of Regi (T ), the interior
regular set.
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(c) Each Γi is

a. either one-sided, which means that all coefficients σij = 0 except for one
j = o(i) for which σio(i) = 1;

b. or two-sided, which means that:

i. there is one j = p(i) such that σip(i) = 1,
ii. there is one j = n(i) such that σin(i) = −1,

iii. all other σij = 0.

(d) If Γi is one-sided, then Qo(i) = 1 and all points in Γi ∩ RegbT have
multiplicity 1

2 .
(e) If Γi is two-sided, then Qn(i) = Qp(i) − 1, all points in Γi ∩ RegbT have

multiplicity Qp(i) − 1
2 and Tp(i) + Tn(i) is area minimizing.

Note that, as a simple consequence of Theorem 2 and the interior regularity
theory, we conclude that in every two-sided component Γi of the boundary Γ the
boundary singular points have dimension at most m− 2.

In view of the interior regularity results, one might be tempted to conjecture that
Theorem 1 is very suboptimal and that the Hausdorff dimension of Singb(T ) is at
mostm−2. Though currently we do not have an answer to this question, let us stress
that at the boundary some new phenomena arise. Indeed, in [18], we can prove the
following:

Theorem 3 There are a smooth closed simple curve Γ ⊂ R
4 and a mass

minimizing current T in R
4 such that ∂T = �Γ � and Singb(T ) has an accumulation

point.

In particular Chang’s result, namely the discreteness of interior singular points
for two dimensional mass minimizing currents, does not hold at the boundary.
Actually the example can be modified in order to obtain also a sequence of interior
singular points accumulating towards the boundary, see [18].

3 The Main Steps to Theorem 1

In this section we outline the long road which is taken in [18] to prove Theorem 1.
We fix thereforeΣ,Γ and T as in Theorem 1.

3.1 Reduction to Collapsed Points

Recalling Allard’s monotonicity formula, we introduce at each boundary point
p ∈ Γ the density Θ(T , p), namely the limit, as r ↓ 0, of the normalized mass
ratio in the ball Br (p) ⊂ R

m+n (in particular the normalization is chosen so that at
regular boundary points the density coincides with the one defined in the previous
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section). Using a suitable variant of Almgren’s stratification theorem, we conclude
first that, except for a set of Hausdorff dimension at most m − 2, at any boundary
point p there is a tangent cone which is flat, namely which is contained in an m-
dimensional plane π ⊃ T0Γ . Secondly, using a classical Baire category argument,
we show that, for a dense subset of boundary points p, additionally to the existence
of a flat tangent cone, there is a sufficiently small neighborhoodU where the density
Θ(T , q) is bounded below, at any q ∈ Γ ∩ U , by Θ(T , p). In particular the proof
of Theorem 1 is reduced to the claim that any such point, which we call collapsed,
is in fact regular.

3.2 The “Linear” Theory

Assume next that 0 ∈ Γ is a collapsed point and let Q − 1
2 be its density. By

Allard’s boundary regularity theory for stationary varifolds, we know a priori that 0
is a regular point if Q = 1 and thus we can assume, without loss of generality, that
Q ≥ 2. Fix a flat tangent cone to 0 and assume, up to rotations, that it is the plane
π0 = R

m × {0} and that T0Γ = {xm = 0} ∩ π0. Denote by π±
0 the two half-planes

π±
0 = {±xm > 0} ∩ π0. Assume for the moment that, at suitably chosen small

scales, the current T is formed by Q sheets over π+
0 and Q − 1 sheets over π−

0 .
By a simple linearization argument such sheets must then be almost harmonic (in a
suitable sense).

Having this picture in mind, it is natural to develop a theory of
(
Q− 1

2

)
-valued

functions minimizing the Dirichlet energy. In order to explain the latter object
consider the projection γ of Γ onto π0. On a sufficiently small disk Br (0) ∩ π0,

γ divides π0 into two regions. A Lipschitz
(
Q− 1

2

)
-valued map consists of:

1. a Lipschitz Q-valued map (in the sense of Almgren, cf. [9]) u+ on one side of γ
2. and a Lipschitz (Q− 1)-valued map u− on the other side,

satisfying the compatibility condition that the union of their graphs forms a current

whose boundary is the submanifold Γ itself. A
(
Q− 1

2

)
-map will then be called

Dir-minimizing if it minimizes the sum of the Dirichlet energies of the two
“portions” u+ and u− under the constraint that Γ and the boundary values on
∂(Br (0) ∩ π0) are both fixed.

The right counterpart of the “collapsed point situation” described above is the
assumption that all the 2Q − 1 sheets meet at their common boundary Γ ; under

such assumption we say that the
(
Q− 1

2

)
Dir-minimizer has collapsed interface.

We then develop a suitable regularity theory for minimizers with collapsed interface.
First of all their Hölder continuity follows directly from the Ph.D. thesis of the third
author, cf. [25]. Secondly, the most important conclusion of our analysis is that a
minimizer can have collapsed interface only if it consists of a single harmonic sheet
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“passing through” the boundary data, counted therefore with multiplicity Q on one
side and with multiplicity Q− 1 on the other side.

The latter theorem is ultimately the deus ex machina of the entire argument
leading to Theorem 1. The underlying reason for its validity is that a monotonicity
formula for a suitable variant of Almgren’s frequency function holds. Given the
discussion of [26], such monotonicity can only be hoped in the collapsed situation
and, remarkably, this suffices to carry on our program.

The validity of the monotonicity formula is clear when the collapsed interface
is flat. However, when we have a curved boundary, a subtle yet important point
becomes crucial: we cannot hope in general for the exact first variation identities
which led Almgren to his monotonicity formula, but we must replace them with
suitable inequalities. Moreover the latter can be achieved only if we adapt the
frequency function by integrating a suitable weight. We illustrate this idea in a
simpler setting in the next section.

3.3 First Lipschitz Approximation

A first use of the linear theory is approximating the current with the graph of

a Lipschitz
(
Q− 1

2

)
-valued map around collapsed points. The approximation is

then shown to be almost Dir-minimizing. Our approximation algorithm is a suitable
adaptation of the one developed in [10] for interior points. In particular, after adding
an “artificial sheet”, we can directly use the Jerrard-Soner modified BV estimates of
[10] to give a rather accurate Lipschitz approximation: the subtle point is to engineer
the approximation so that it has collapsed interface.

3.4 Height Bound and Excess Decay

The previous Lipschitz approximation, together with the linear regularity theory, is
used to establish a power-law decay of the excess à la De Giorgi in a neighborhood
of a collapsed point. The effect of such theorem is that the tangent cone is flat and
unique at every point p ∈ Γ in a sufficiently small neighborhood of the collapsed
point 0 ∈ Γ . Correspondingly, the plane π(p) which contains such tangent cone is
Hölder continuous in the variable p ∈ Γ and the current is contained in a suitable
horned neighborhood of the union of such π(p).

An essential ingredient of our argument is an accurate height bound in a
neighborhood of any collapsed point in terms of the spherical excess. The argument
follows an important idea of Hardt and Simon in [23] and takes advantage of an
appropriate variant of Moser’s iteration on varifolds, due to Allard, combined with
a crucial use of the remainder in the monotonicity formula. The same argument has
been also used by Spolaor in a similar context in [30], where he combines it with
the decay of the energy for Dir-minimizers, cf. [30, Proposition 5.1 & Lemma 5.2].
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3.5 Second Lipschitz Approximation

The decay of the excess proved in the previous step is used then to improve the
accuracy of the Lipschitz approximation. In particular, by suitably decomposing the
domain of the approximating map in a Whitney-type cubical decomposition which
refines towards the boundary, we can take advantage of the interior approximation
theorem of [10] on each cube and then patch the corresponding graphs together.

3.6 Left and Right Center Manifolds

The previous approximation result is combined with a careful smoothing and
patching argument to construct a “left” and a “right” center manifold M+ and M−.
The M± are C3,κ submanifolds of Σ with boundary Γ and they provide a good
approximation of the “average of the sheets” on both sides of Γ in a neighborhood
of the collapsed point 0 ∈ Γ . They can be glued together to form aC1,1 submanifold
M which “passes through Γ ”. Each portion has C3,κ estimates up to the boundary,
but we only know that the tangent spaces at the boundary coincide: we have a priori
no information on the higher derivatives. The construction algorithm follows closely
that of [12] for the interior, but some estimates must be carefully adapted in order to
ensure the needed boundary regularity.

The center manifolds are coupled with two suitable approximating maps N±.
The latter take values on the normal bundles of M± and provide an accurate
approximation of the current T . Their construction is a minor variant of the one
in [12].

3.7 Monotonicity of the Frequency Function and Final
Blow-Up Argument

After constructing the center manifolds and the corresponding approximations we
use a suitable Taylor expansion of the area functional to show that the monotonicity
of the frequency function holds for the approximating maps N± as well.

We then complete the proof of Theorem 1: in particular we show that, if 0
were a singular collapsed point, suitable rescalings of the approximating maps N±

would produce, in the limit, a
(
Q− 1

2

)
Dir-minimizer violating the linear regularity

theory. On the one hand the estimate on the frequency function plays a primary role
in showing that the limiting map is nontrivial. On the other hand the properties of
the center manifolds M± enter in a fundamental way in showing that the average

of the sheets of the limiting
(
Q− 1

2

)
map is zero on both sides.
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4 Weighted Monotonicity Formulae

In this section we want to illustrate in a simple situation an idea which, in
spite of being elementary, plays a fundamental role in our proof of Theorem 1:
boundary monotonicity formulae can be derived from the arguments of their interior
counterparts provided we introduce a suitable weight.

Let Γ be an (m − 1)-dimensional submanifold of R
m+n. We consider an m-

dimensional varifold V in R
m+n \Γ and assume it is stationary in R

m+n \Γ . Allard
in [2] derived his famous monotonicity formula at the boundary under the additional
assumption that the density of V has a uniform positive lower bound. His proof
consists of two steps: he first derives a suitable representation for the first variation
δV of V along general vector fields of R

m+n, i.e., vector fields which might be
nonzero on Γ . He then follows the derivation of the interior monotonicity formula,
i.e., he tests the first variation along suitable radial vector fields. His proof needs the
lower density assumption in the first part and although the latter can be removed (cf.
Allard, W.K., Personal communication), the resulting argument is rather laborious.

We introduce here varifolds which are stationary along “tangent fields”:

Definition 2 Consider an m-dimensional varifold V in an open set U ⊂ R
m+n and

let Γ be a k-dimensional C1 submanifold of U . We say that V is stationary with
respect to vector fields tangent to Γ if

δV (χ) = 0 for all χ ∈ C1
c (U,R

m+n) which are tangent to Γ. (2)

Clearly, when k = m−1, the condition above is stronger than that used by Allard
in [2], where χ is assumed to vanish on Γ . On the other hand our condition is the
natural one satisfied by classical minimal surfaces with boundary Γ , since the one-
parameter family of isotopies generated by χ maps Γ onto itself. When k > m− 1,
the condition is the one satisfied by classical “free-boundary” minimal surfaces,
namely minimal surfaces with boundary contained in Γ and meeting it orthogonally.
In the context of varifolds, the latter have been considered by Grüter and Jost in [22],
where the two authors derived also an analog of Allard’s monotonicity formula.
In this section we show how one can take advantage of a suitable distortion of
the Euclidean balls to give a (rather elementary) unified approach to monotonicity
formulae in both contexts.

Definition 3 Assume that 0 ∈ Γ . We say that the function d : R
m+n → R is

a distortion of the distance function adapted to Γ if the following two conditions
hold:

(a) d is of class C2 on R
m+n \ {0} and Djd(x) = Dj |x| +O(|x|1−j+α) for some

fixed α ∈ (0, 1] and for j = 0, 1, 2;
(b) ∇d is tangent to Γ .

The following lemma is a simple consequence of the Tubular Neighborhood
Theorem and it is left to the reader.
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Lemma 1 If Γ is of class C3 then there is a distortion of the distance function
adapted to Γ where the exponent α of Definition 3(a) can be taken to be 1.

The main point of our discussion is then the argument given below for the
following

Theorem 4 Consider Γ and V as in Definition 2, assume that 0 ∈ Γ and that d is
a distorted distance function adapted to Γ . Let ϕ ∈ C1

c ([0, 1)) be a nonincreasing
function which is constant in a neighborhood of the origin. If α is the exponent of
Definition 3(a), then there are positive constants C and ρ such that the following
inequality holds for every positive s < ρ

d

ds

[
eCs

α

s−m
∫
ϕ
(
d(x)
s

)
d‖V ‖(x)

]

≥ − eCs
α

s−m−1
∫
ϕ′ ( d(x)

s

) d(x)
s

∣∣∣∣Pπ⊥

( ∇d(x)
|∇d(x)|

)∣∣∣∣
2

dV (x, π) (3)

(where Pτ denotes the orthogonal projection on the subspace τ ).

Note that if we let ϕ converge to the indicator function of the interval [0, 1) we
easily conclude that

s → Φ(s) := eCs
α ‖V ‖({d < s})

sm

is monotone nondecreasing: indeed, for ρ > s > r > 0, the difference Φ(s) −
Φ(r) controls the integral of a suitable nonnegative expression involving d and the
projection of ∇d/|∇d| over π⊥. When d(x) = |x|, namely when Γ is flat, the
exponential weight disappears (i.e., the constant C might be taken to be 0), the
inequality becomes an equality and (in the limit of ϕ ↑ 1[0,1)) we recover Allard’s
identity

‖V ‖(Bs (0))
ωmsm

− ‖V ‖(Br (0))
ωmrm

=
∫

Bs (0)\Br (0)

|Pπ⊥(x)|2
|x|m+2

d‖V ‖(x) .

In particular, since d is asymptotic to |x|, all the conclusions which are usually
derived from Allard’s theorem (existence of the density and its upper semicontinuity,
conicity of the tangent varifolds, Federer’s reduction argument and Almgren’s
stratification) can be derived from Theorem 4 as well. Moreover, the argument given
below can be easily extended to cover the more general situation of varifolds with
mean curvature satisfying a suitable integrability condition.

Proof (of Theorem 4) Consider the vector field

Xs(x) = ϕ

(
d(x)

s

)
d(x)

∇d(x)
|∇d(x)|2 .
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Xs is obviously C1 on R
m+n \ {0} and moreover we have

DXs = ϕ

(
d

s

)[∇d ⊗ ∇d
|∇d|2 + dD2d

|∇d|2 − 2d
∇d

|∇d|4 ⊗ (D2d·∇d)
]

+ ϕ′
(
d

s

)
d

s

∇d ⊗ ∇d
|∇d|2 .

From the above formula, using that ϕ is constant in a neighborhood of the origin
and Definition 3(a), we easily infer that (for every fixed s)

DXs(x) = ϕ

(
d(x)

s

)
Id +O(|x|α).

In particular Xs is C1, compactly supported in U (provided s is sufficiently small),
and tangent to Γ . Thus

0 = δV (Xs) =
∫

divπXs(p) dV (p, π) .

Fix next an orthonormal basis e1, . . . , em of π and use Definition 3(a) to compute

divπXs =
m∑
i=1

eTi ·DX · ei = (m+O(sα))ϕ

(
d

s

)
+ ϕ′

(
d

s

)
d

s

∑
i

|∇d · ei |2
|∇d|2

= (m+O(sα))ϕ

(
d

s

)
+ ϕ′

(
d

s

)
d

s

(
1 −

∣∣∣∣Pπ⊥

( ∇d
|∇d|

)∣∣∣∣
2
)
.

Plugging the latter identity in the first variation condition we achieve the following
inequality for a sufficiently large constant C:

∫ (
−mϕ

(
d(x)

s

)
− ϕ′

(
d(x)

s

)
d(x)

s

)
d‖V ‖(x)+Cαsα

∫
ϕ

(
d(x)

s

)
d‖V ‖(x)

≥ −
∫
ϕ′
(
d(x)

s

)
d(x)

s

∣∣∣∣Pπ⊥

( ∇d(x)
|∇d(x)|

)∣∣∣∣
2

dV (x, π) .

Multiplying both sides of the inequality by eCs
α
s−m−1 we then conclude (3).
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Optimal Transport with Discrete Mean
Field Interaction

Jiakun Liu and Grégoire Loeper

Abstract In this note, we summarise some regularity results recently obtained for
an optimal transport problem where the matter transported is either accelerated by
an external force field, or self-interacting, at a given intermediate time.

1 Background

This note is a summary of an ongoing work [5]. The motivation comes from a
previous work by the second author [6], where he studies the motion of a self-
gravitating matter, classically described by the Euler-Poisson system. Letting ρ be
the density of the matter, the gravitational field generated by a continuum of matter
with density ρ is the gradient of a potential p linked to ρ by a Poisson coupling.
The system is thus the following

⎧⎨
⎩

∂tρ + ∇ · (ρv) = 0,
∂t (ρv) + ∇ · (ρv ⊗ v) = −ρ∇p,

Δp = ρ.

(1)

A well known problem in cosmology, named the reconstruction problem, is to
find a solution to (1) satisfying

ρ|t=0 = ρ0, ρ|t=T = ρT .
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In [6], the reconstruction problem was formulated into a minimisation problem,
minimising the action of the Lagrangian which is a convex functional. Through
this variational formulation, the reconstruction problem becomes very similar to
the time continuous formulation of the optimal transportation problem of Benamou
and Brenier [1], and the existence, uniqueness of the minimiser was obtained by
use of the Monge-Kantorovich duality. In the context of optimal transport as in [6],
there holds v = ∇φ for some potential φ, and the author obtained partial regularity
results for φ and ρ, as well as the consistency of the minimiser with the solution of
the Euler-Poisson system.

The optimal transport problem of [6] was formulated as finding minimisers of
the action of the Lagrangian

I (ρ, v, p) = 1

2

∫ T

0

∫
Td
ρ(t, x)|v(t, x)|2 + |∇p(t, x)|2dxdt, (2)

over all ρ, p, v satisfying

∂tρ + ∇ · (ρv) = 0,

ρ(0) = ρ0, ρ(T ) = ρT ,

Δp = ρ,

where Td denotes the d-dimensional torus, as the study in [6] was performed in the
space-periodic case.

In the work [5] we address the more general problem of finding minimisers for
the action

I (ρ, v, p) = 1

2

∫ T

0

∫
Td
ρ(t, x)|v(t, x)|2 + F (ρ(t, x))dxdt, (3)

for more general F . The problem (2) falls in this class. In [3], Lee and McCann
address the case where

F (ρ) = −
∫
ρ(t, x)V (t, x)dx.

(Note that in the context of classical mechanics F would be the potential energy.)
This Lagrangian corresponds to the case of a continuum of matter evolving in an
external force field given by ∇V (t, x). We call this the non-interacting case for
obvious reasons. This can be recast as a classic optimal transport problem, where
the cost functional is given by

c(x, y) = inf
γ (0)=x,γ (T )=y
γ∈C1([0,T ],Rd)

∫ T

0

1

2
|γ̇ (t)|2 − V (t, γ (t))dt. (4)
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For a small V satisfying some structure condition, they obtain that c satisfies the
conditions found in [8] to ensure the regularity of the optimal map.

2 Time Discretisation

In [5] we restrict ourselves to the case where the force field only acts at a single
discrete time between 0 and T :

V (t, x) = δt=T/2V (x).

We will call this case the “discrete” case. The minimisation problem therefore
becomes

I (ρ, v) = 1

2

∫ T

0

∫
Rd
ρ(t, x)|v(t, x)|2dxdt +

∫
Rd
ρ(T /2, x)Q(x)dx, (5)

for some potential Q. This will allow to remove the smallness condition on V .
Moreover, we will be able to extend our result to the mean-field case, where the
force field is given by

∇V (x) =
∫
ρ(t, y)∇κ(x − y)dy. (6)

This corresponds to the case where a particle located at x attracts or repels
another particle located at y with a force equal to ∇κ(x − y). We will give a
sufficient condition on κ to ensure a smooth transport map and intermediate density.
Especially, we consider the gravitational case, which corresponds to the Coulomb
kernel

κ(x − y) = cd

|x − y|d−2 ,

that corresponds to the potential energy

E (t) = −F (ρ(t)) = −1

2

∫
ρ(t, x)κ(x − y)ρ(t, y)dxdy

= −1

2

∫
‖∇p‖2,

whereΔp = ρ.
One sees straight away that between time 0 and T/2 we are solving the usual

optimal transport problem in its “Benamou-Brenier” formulation [1], as well as
between T/2 and T . More generally, as done in [6], one can consider multiple-steps
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time discretisation, where the potential energy term contributes only at time

ti = iT

N
, i = 1, · · · , N − 1.

Between two time steps, the problem will be an optimal transport problem as in
[1, 2] and [9]. Then at each time step, the gravitational effect will be taken into
account, and the velocity will be discontinuous. From a Lagrangian point of view,
the velocity of each particle will therefore be a piecewise constant function with
respect to time. Then letting the time step go to 0, one will eventually recover the
time continuous problem.

3 Main Results

Let us consider a two-step time discretisation in the interval [0, T ]: At t = T/2, the
velocity is changed by an amount equal to ∇Q, the gradient of a potential Q. The
initial density ρ0 is supported on a bounded domainΩ0 ⊂ R

d , and the final density
ρT is supported on a bounded domainΩT ⊂ R

d , satisfying the balance condition

∫
Ω0

ρ0(x) dx =
∫
ΩT

ρT (y) dy. (7)

As is always the case in solving problems of the form (3), the velocity v is the
gradient of a potential, and we let φ be the velocity potential at time 0, i.e. v(0, x) =
∇φ(x). At time t = T/2, v will be changed into v + ∇Q and one can see that for
an initial point x ∈ Ω0, the final point y = m(x) ∈ ΩT is given by

m(x) = x + T∇φ + T

2
∇Q

(
x + T

2
∇φ
)
.

By computing the determinant of the Jacobian Dm and noting that m pushes
forward ρ0 to ρT , one can derive the equation for φ. To be specific, define a modified
potential

φ̃(x) := T

2
φ(x)+ 1

2
|x|2, for x ∈ Ω0. (8)

It is readily seen [1, 2, 9] that the modified potential φ̃ is a convex function. Since
m#ρ0 = ρT , we obtain that φ̃ satisfies a Monge-Ampère type equation

det

[
D2φ̃ −

(
D2Q̃(∇φ̃)

)−1
]

=
(

1

detD2Q̃(∇φ̃)
)

ρ0

ρT ◦ m
, (9)
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where Q̃ is a modified potential given by

Q̃(z) := T

2
Q(z)+ |z|2, (10)

with an associated natural boundary condition

m(Ω0) = ΩT . (11)

For regularity of the solution φ̃ to the boundary value problem (9) and (11)
(equivalently that of φ), it is necessary to impose certain conditions on the potential
energy function Q̃ (equivalently on Q) and the domainsΩ0,ΩT . In [5] we assume
that Q̃ satisfies the following conditions:

(H0) The function Q̃ is smooth enough, say at least C4,
(H1) The function Q̃ is uniformly convex, namely D2Q̃ ≥ ε0I for some ε0 > 0,
(H2) The function Q̃ satisfies that for all ξ, η ∈ R

d with ξ⊥η,

∑
i,j,k,l,p,q,r,s

(
D4
ijrs Q̃− 2Q̃pqD3

ijpQ̃D
3
qrsQ̃

)
Q̃rkQ̃slξkξlηiηj ≤ −δ0|ξ |2|η|2,

(12)

where {Q̃ij } is the inverse of {Q̃ij }, and δ0 is a positive constant. When δ0 = 0,
we call it (H2w), a weak version of (H2).

Note that conditions (H0) and (H1) imply that the inverse matrix (D2Q̃)−1 exists,
and ensure that Eq. (9) well defined. Condition (H2) is an analogue of the Ma-
Trudinger-Wang condition [8] in optimal transportation, which is necessary for
regularity results. We also use the notion of Q-convexity of domains as in [8].

Our first main result is the following

Theorem 1 Let φ be the velocity potential in the reconstruction problem. Assume
the gravitational function Q̃ satisfies conditions (H0), (H1) and (H2), ΩT is
Q-convex with respect to Ω0. Assume that ρT ≥ c0 for some positive constant c0,
ρ0 ∈ Lp(Ω0) for some p > d+1

2 , and the balance condition (7) is satisfied. Then,
the velocity potential φ is C1,α(Ω0) for some α ∈ (0, 1).

If furthermore, Ω0,ΩT are C4 smooth and uniformly Q-convex with respect
to each other, ρ0 ∈ C2(Ω0), ρT ∈ C2(ΩT ), then φ ∈ C3(Ω0), and higher
regularity follows from the theory of linear elliptic equations. In particular, if
Q̃,Ω0,ΩT , ρ0, ρT are C∞, then the velocity potential φ ∈ C∞(Ω0).

The proof of Theorem 1 is done by linking the time discretisation problem to
a transport problem, where the key observation is that the cost function c(x, y)
is given by Q̃∗(x + y), where Q̃∗ is the Legendre transform of the gravitational
function Q̃. Under this formulation, the regularity then follows from the established
theory of optimal transportation, see for example [4, 7, 8, 10] and references therein.



212 J. Liu and G. Loeper

Our second main result is the following:

Theorem 2 Assume that Q is given by

Q(x) = 1

2

∫
ΩT/2

ρ(T /2, y)κ(x − y)dy, (13)

where ΩT/2 = (Id + T
2 ∇φ)(Ω0) is the intermediate domain at t = T

2 , and that κ
satisfies conditions (H0), (H1) and

(H2C) for any ξ, η ∈ R
d , x, y ∈ ΩT/2,

∑
i,j,k,l,p,q,r,s

(
D4
ijrsκ(x − y)

)
κ̃ rkκ̃slξkξlηiηj ≤ 0,

where {κ̃ ij } is the inverse of {κij + 2
T
I },

We also assume some geometric conditions on the domains. Then the results of
Theorem 1 remain true.

The proof of Theorem 2 relies on the observation that (H2c) implies (H2), and is
preserved under convex combinations, and therefore by convolution with the density
ρ(T /2), and on some a priori C1 estimates on the potential. Full details and further
remarks are contained in our work [5].
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A Sixth Order Curvature Flow of Plane
Curves with Boundary Conditions

James McCoy, Glen Wheeler, and Yuhan Wu

Abstract We show that small energy curves under a particular sixth order curvature
flow with generalised Neumann boundary conditions between parallel lines con-
verge exponentially in the C∞ topology in infinite time to straight line segments.

1 Introduction

Higher order geometric evolution problems have received increasing attention in
the last few years. Particular geometric fourth order equations occur in physical
problems and enjoy some interesting applications in mathematics. We mention in
particular for curves the curve diffusion flow and L2-gradient flow of the elastic
energy, and for surfaces the surface diffusion and Willmore flows. Flows of higher
even order than four have been less thoroughly investigated, but motivation for them
and their elliptic counterparts comes for example from computer design, where
higher order equations are desirable as they allow more flexibility in terms of
prescribing boundary conditions [8]. Such equations have also found applications
in medical imaging [10].

In this article we are interested in curves γ meeting two parallel lines with
Neumann (together with other) boundary conditions evolving under the L2 gradient
flow for the energy

∫
γ

k2
s ds.

J. McCoy (�)
University of Newcastle, Callaghan, NSW, Australia
e-mail: James.McCoy@newcastle.edu.au

G. Wheeler · Y. Wu
University of Wollongong, Wollongong, NSW, Australia
e-mail: glenw@uow.edu.au; yw120@uowmail.edu.au

© Springer Nature Switzerland AG 2019
D. R. Wood et al. (eds.), 2017 MATRIX Annals, MATRIX Book Series 2,
https://doi.org/10.1007/978-3-030-04161-8_16

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04161-8_16&domain=pdf
mailto:James.McCoy@newcastle.edu.au
mailto:glenw@uow.edu.au
mailto:yw120@uowmail.edu.au
https://doi.org/10.1007/978-3-030-04161-8_16


214 J. McCoy et al.

Here ks denotes the first derivative of curvature with respect to the arc length
parameter s. Particularly relevant to us is the corresponding consideration of the
curve diffusion and elastic flow in this setting in [12]. Other relevant works on fourth
order flow of curves with boundary conditions are [1, 2, 7]. Of course if one instead
considers closed curves without boundary evolving by higher order equations, these
have been more thoroughly studied; we mention in particular [3–5, 9, 11].

The remainder of this article is organised as follows. In Sect. 2 we describe
the set-up of our problem, the normal variation of the energy and the boundary
conditions. We define our corresponding gradient flow, discuss local existence and
give the relevant evolution equations of various geometric quantities. We also state
our main theorem in this part, Theorem 2.2. In Sect. 3 we state the relevant tools
from analysis to be used including an interpolation inequality valid in our setting.
Under the small energy condition (7) below, we show that the winding number of
curves under our flow is constant and remains equal to zero. We show further that
under this condition the length of the curve does not increase and the curvature and
all curvature derivatives in L2 are bounded under the flow. That these bounds are
independent of time implies solutions exist for all time. In Sect. 4 we show under
a smaller energy assumption that in fact the L2 norm of the second derivative of
curvature decays exponentially under the flow. As a corollary we obtain uniform
pointwise exponential decay of curvature and all curvature derivatives to zero. A
stability argument shows that the solution converges to a unique horizontal line
segment. The exponential convergence of the flow speed allows us to describe the
bounded region in which the solution remains under the flow.

2 The Set-Up

Let γ0 : [−1, 1] → R
2 be a (suitably) smooth embedded (or immersed) regular

curve. Denote by ds the arc length element and k the (scalar) curvature. We consider
the energy functional

E [γ ] = 1

2

∫
γ

k2
s ds

where ks is the derivative of curvature with respect to arc length. We are interested
in the L2 gradient flow for curves of small initial energy with Neumann boundary
conditions.

Under the normal variation γ̃ = γ + εFν a straightforward calculation yields

d

dε
E
[
γ̃
]∣∣∣∣
ε=0

= −2
∫
γ

(
ks4 + k2kss − 1

2
k k2

s

)
F ds

+ 2
[
ksFss + kssFs +

(
ksss + k2ks

)
F
]
∂γ

, (1)

where ks4 = kssss.
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‘Natural boundary conditions’ for the corresponding L2-gradient flow would
ensure that the above boundary term is equal to zero. However, this term is rather
complicated. In view of the first term in (1), we wish to take

F = ks4 + k2kss − 1

2
k k2

s (2)

and the corresponding gradient flow

∂γ

∂t
= Fν. (3)

Differentiating the Neumann boundary condition (see also [12, Lemma 2.5] for
example) implies

0 = −Fs (±1, t) = −ks5 − kkskss − k2ksss + 1

2
k3
s . (4)

As in previous work, we will assume the ‘no curvature flux condition’ at the
boundary,

ks (±1, t) = 0. (5)

The boundary terms in (1) then disappear if we choose, for example,

ksss (±1, t) = 0. (6)

This is in a way a natural choice because Eq. (4) then implies ks5 (±1, t) = 0. In
fact by an induction argument we have

Lemma 2.1 With Neumann boundary conditions and also (5) and (6) satisfied, a
solution to the flow (3) satisfies ks2�+1 = 0 on the boundary for � ∈ N.

Let us now state precisely the flow problem.
Let η± (R) denote two parallel vertical lines in R

2, with distance between them
|e|. We consider a family of plane curves γ : [−1, 1] × [0, T ) → R

2 satisfying the
evolution Eq. (3) with normal speed given by (2), boundary conditions

γ (±1, t) ∈ η± (R)
〈
ν, νη±

〉
(±1, t) = 0

ks (±1, t) = ksss (±1, t) = 0
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and initial condition

γ (·, 0) = γ0 (·)

for initial smooth regular curve γ0.

Theorem 2.2 There exists a universal constant C > 0 such that the following
holds. For the flow problem described above, if the initial curve γ0 satisfies ω = 0
and

δ =
(√

5129 − 67

80

)
π3 − ‖ks‖2

2 L
3
0 > 0 , (7)

where L0 is the length of γ0, then the solution exists for all time T = ∞ and
converges exponentially to a horizontal line segment γ∞ with dist(γ∞, γ0) < C/δ.

In the above statement and throughout the article we use ω to denote the winding
number, defined here as

ω := 1

2π

∫
γ

k ds.

Remarks

• The condition (7) is not optimal. By a standard argument it can be weakened for
example to the requirement of Lemma 3.4, namely

π3

7
− ‖ks‖2

2 L
3
0 > 0.

Details of this argument will appear in a future article. It is an open question
whether the requirement can be further weakened.

• The exponential decay facilitates an explicit estimate on the distance of γ∞ to γ0.

Local existence of a smooth regular curve solution γ : [−1, 1] × [0, T ) → R
2

to the flow problem γ : [−1, 1] × [0, T ) → R
2 is standard. If γ0 also satisfies

compatibility conditions, then the solution is smooth on [0, T ). In this article we
focus on the case of smooth initial γ0. However, γ0 may be much less smooth;
Eq. (3) is smoothing. We do not pursue this here.

Similarly as in [12] and elsewhere we may derive the following:

Lemma 2.3 Under the flow (3) we have the following evolution equations

(i) ∂
∂t
ds = −kF ds;

(ii) ∂
∂t
k = Fss + k2F ;

(iii) ∂
∂t
ks = Fsss + k2Fs + 3kksF ;
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(iv)

∂tksl = ksl+6 +
∑

q+r+u=l
(c1
qruksq+4ksr ksu + c2

qruksq+3ksr+1ksu

+c3
qruksq+2ksr+2ksu + c4

qruksq+2ksr+1ksu+1)

+
∑

a+b+c+d+e=l
cabcdeksaksbkscksd kse

for constants c1
qru, c

2
qru, c

3
qru, c

4
qru, cabcde ∈ R with a, b, c, d, e, q, r, u ≥ 0.

In particular,
(v)

∂

∂t
kss = ks8 +10ksks3kss+ 21

2
k2
s ks4 +12kks5ks+14kks4kss+5kk2

s3 +2k2ks6

+ 11

2
k2k2

s kss + 8k3ks3ks + 5k3k2
ss + k4ks4 − 4kk4

s .

3 Controlling the Geometry of the Flow

We begin with the following standard result for functions of one variable.

Lemma 3.1 (Poincaré-Sobolev-Wirtinger (PSW) Inequalities) Suppose f :
[0, L] → R, L > 0 is absolutely continuous.

• If
∫ L

0 f ds = 0 then

∫ L

0
f 2ds ≤ L2

π2

∫ L

0
f 2
s ds and ‖f ‖2∞ ≤ 2L

π

∫ L

0
f 2
s ds.

• Alternatively, if f (0) = f (L) = 0 then

∫ L

0
f 2ds ≤ L2

π2

∫ L

0
f 2
s ds and ‖f ‖2∞ ≤ L

π

∫ L

0
f 2
s ds.

To state the interpolation inequality we will use, we first need to set up some
notation. For normal tensor fields S and T we denote by S"T any linear combination
of S and T . In our setting, S and T will be simply curvature k or its arc length
derivatives. Denote by Pmn (k) any linear combination of terms of type ∂i1s k " ∂

i2
s k "

. . . " ∂
in
s k where m = i1 + . . .+ in is the total number of derivatives.

The following interpolation inequality for closed curves appears in [3], for our
setting with boundary we refer to [2].
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Proposition 3.2 Let γ : I → R
2 be a smooth curve. Then for any term Pmn (k) with

n ≥ 2 that contains derivatives of k of order at most �− 1,
∫
I

∣∣Pmn (k)∣∣ ds ≤ c L1−m−n ‖k‖n−m2 ‖k‖p�,2

where p = 1
�

(
m+ 1

2n− 1
)

and c = c (�,m, n). Moreover, if m+ 1
2 < 2�+ 1 then

p < 2 and for any ε > 0,

∫
I

∣∣Pmn (k)∣∣ ds ≤ ε

∫
I

∣∣∣∂�s k
∣∣∣2 ds + c ε

−p
2−p
(∫

I

|k|2 ds
) n−p

2−p + c

(∫
I

|k|2 ds
)m+n−1

.

Our first result concerns the winding number of the evolving curve γ . In view
of the Neumann boundary condition, in our setting the winding number must be a
multiple of 1

2 .

Lemma 3.3 Under the flow (3), ω(t) = ω(0).

Proof We compute using Lemma 2.3 (i)

d

dt

∫
k ds =

∫
Fssds +

∫
k2Fds −

∫
k2Fds = 0,

so ω is constant under the flow. "#
Remarks

• It follows immediately that the average curvature k satisfies

k := 1

L

∫
γ

k ds ≡ 0

under the flow (3). This is important for applying the inequalities of Lemma 3.1.
• Unlike the situation in [12], here small energy does not automatically imply that

the winding number is close to zero. Indeed, one may add loops (or half-loops)
of circles that contribute an arbitrarily small amount of the energyL3‖ks‖2

2. Note
that such loops must all be similarly oriented, as a change in contribution from
positive to negative winding will necessitate a quantum of energy (for example
a figure-8 style configuration with ω = 0 can not have small energy despite
comprising essentially only mollified arcs of circles).

Next we give an estimate on the length of the evolving curve in the case of small
initial energy. Of course, this result does not require the energy as small as (7).

Lemma 3.4 Under the flow (3) with ω(0) = 0,

d

dt
L [γ (t)] ≤ 0.
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Proof We compute using integration by parts

d

dt
L [γ (t)] = −

∫
kF ds = −

∫
k2
ssds+

7

2

∫
k2k2

s ds ≤ −
[

1 − 7L3

π3
‖ks‖2

2

] ∫
k2
ssds

where we have used Lemma 3.1. The result follows by the small energy assumption.
"#

Thus under the small energy assumption we have the length of the evolving curve
bounded above and below:

|e| ≤ L [γ ] ≤ L0.

We are now ready to show that the L2-norm of curvature remains bounded,
independent of time.

Proposition 3.5 Under the flow (3) with ω(0) = 0, there exists a universal C > 0
such that

‖k‖2
2 ≤ |k‖2

2

∣∣∣
t=0

+ C.

Proof Using integration by parts, Lemma 2.3 and the interpolation inequality
Proposition 3.2

d

dt

∫
k2ds = −2

∫
k2
s3ds+5

∫
k2
ssk

2ds+5
∫
kssk

2
s k ds+

∫
kssk

5ds− 1

2

∫
k2
s k

4ds

≤ (−2 + 3ε)
∫
k2
s3ds + C ‖k‖14

2 ≤ −π
6

L6
0

∫
k2ds + Cπ7

|e| ,

where we have also used Lemma 3.1 and the length bounds. The result follows. "#
Moreover, we may show similarly using the evolution equation for ks� that all

derivatives of curvature are bounded in L2 independent of time.

Proposition 3.6 Under the flow (3) with ω(0) = 0, there exists a universal C > 0
such that, for all � ∈ N,

∥∥ks�∥∥2
2 ≤ ∣∣ks�∥∥2

2

∣∣∣
t=0

+ C.

Pointwise bounds on all derivatives of curvature follow from Lemma 3.1. It
follows that the solution of the flow remains smooth up to and including the final
time, from which we may (if T < ∞) apply again local existence. This shows that
the flow exists for all time, that is, T = ∞.
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4 Exponential Convergence

Using Lemma 2.3 (i) and (v) and integrating by parts to reduce the order of the
derivatives we obtain

Lemma 4.1 Under the flow (3),

d

dt

∫
k2
ssds = −2

∫
k2
s5ds+4

∫
k2k2

s4ds−
∫
k2
s k

2
s3ds−8

∫
kkssk

2
s3ds−2

∫
k4k2

s3ds

+ 1

3

∫
k4
ssds − 1

2

∫
k2k2

s k
2
ssds + 5

∫
k3k3

ssds + 8

5

∫
k6
s ds.

Further integration by parts, use of Lemma 3.1 and throwing away some negative
terms gives

Corollary 4.2 Under the flow (3) with ω(0) = 0,

d

dt

∫
k2
ssds ≤

[
−2 + 67L3

2π3
‖ks‖2

2 + 20L6

π6
‖ks‖4

2

] ∥∥ks5

∥∥2
2 .

Under the small energy condition (7), the coefficient of
∥∥ks5

∥∥2
2 of Corollary 4.2

is bounded above by −δ. Using also Lemma 3.1 we obtain

Corollary 4.3 There exists a δ > 0 such that, under the flow,

d

dt
‖kss‖2

2 ≤ −δ ‖kss‖2
2 .

It follows that ‖kss‖2
2 decays exponentially to zero.

Proof (Completion of the Proof of Theorem 2.2) Exponential decay of ‖kss‖2
2

implies exponential decay of ‖k‖2
2, ‖ks‖2

2, ‖k‖∞, ‖ks‖∞ via Lemma 3.1. Expo-
nential decay of

∥∥ks�∥∥2 and
∥∥ks�∥∥∞ then follows by a standard induction argument

involving integration by parts and the curvature bounds of Propositions 3.5 and 3.6.
That ‖ks‖2

2 → 0 implies subsequential convergence to straight line segments
(horizontal, in view of boundary conditions). A stability argument (see [12] for the
details of a similar argument) gives that in fact the limiting straight line is unique;
all eigenvalues of the linearised operator

L u = ux6

are negative apart from the first zero eigenvalue, which corresponds precisely to
vertical translations. By Hale-Raugel’s convergence theorem [6] uniqueness of the
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limit follows. Although we don’t know the precise height of the limiting straight
line segment, we can estimate a-priori its distance from the initial curve, since

|γ (x, t)− γ (x, 0)| =
∣∣∣∣
∫ t

0

∂γ

∂t
(x, τ ) dτ

∣∣∣∣ ≤
∫ t

0
|F | dτ ≤ C

δ

(
1 − e−δt

)
.

"#
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Quasilinear Parabolic and Elliptic
Equations with Singular Potentials

Maria Michaela Porzio

Abstract In this paper we describe the asymptotic behavior of the solutions to
quasilinear parabolic equations with a Hardy potential. We prove that all the
solutions have the same asymptotic behavior: they all tend to the solution of
the original problem which satisfies a zero initial condition. Moreover, we derive
estimates on the “distance” between the solutions of the evolution problem and
the solutions of elliptic problems showing that in many cases (as for example the
autonomous case) these last solutions are “good approximations” of the solutions of
the original parabolic PDE.

1 Introduction

Let us consider the following nonlinear parabolic problem

⎧⎪⎪⎨
⎪⎪⎩
ut − div(a(x, t,∇u)) = λ

u

|x|2 + f (x, t) in ΩT ≡ Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

(1)

where Ω ⊂ R
N (N ≥ 3) is a bounded domain containing the origin and λ and T

are positive constants.
Here a(x, t, ξ) : Ω ×R

+ × R
N → R

N is a Caratheodory function1 satisfying

a(x, t, ξ)ξ ≥ α|ξ |2, α > 0, (2)

1That is, it is continuous with respect to ξ for almost every (x, t) ∈ ΩT , and measurable with
respect to (x, t) for every ξ ∈ R

N .
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|a(x, t, ξ)| ≤ β[|ξ | + μ(x, t)], β > 0, μ ∈ L2(ΩT ), (3)

(a(x, t, ξ)− a(x, t, ξ ′)) · (ξ − ξ ′) ≥ α|ξ − ξ ′|2 , (4)

and the data satisfy (for example)

u0 ∈ L2(Ω) f ∈ L2(ΩT ) . (5)

The model problem we have in mind is the following

⎧⎪⎪⎨
⎪⎪⎩
ut −Δu = λ

u

|x|2 + f (x, t) in ΩT ,

u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω.

(6)

We recall that if the data f and u0 are nonnegative and not both identically zero,
there exists a dimension dependent constant ΛN such that (6) has no solution for
λ > ΛN (see [10]). More in details, the constant ΛN is the optimal constant (not
attained) in the Hardy’s inequality

ΛN

∫
Ω

u2

|x|2 dx ≤
∫
Ω

|∇u|2dx for every u ∈ H 1
0 (Ω) where ΛN ≡

(
N − 2

2

)2
,

(7)

(see [24] and [20]).
Hence, here, in order to guarantee the existence of solutions, we assume λ < ΛN in
the model case (6) and its generalization

λ < αΛN . (8)

in the general case (1).
The main aim of this paper is the study of the asymptotic behavior of the solutions
of (1).

The peculiarity of these problems is the presence of the singular Hardy potential,
also called in literature “inverse-square” potential. This kind of singular potential
arises, for example, in the context of combustion theory (see [11, 47] and the
references therein) and quantum mechanics (see [10, 44, 47] and the references
therein).

There is an extensive literature on problems with Hardy potentials both in
the stationary and evolution cases and it is a difficult task to give a complete
bibliography. In the elliptic case, more related to our framework are [1, 2, 4, 5,
15, 35, 41, 49, 50] and [7]. In the parabolic case, a mile stone is the pioneer
paper [10] which revealing the surprising effects of these singular potentials on the
solutions stimulated the study of these problems. More connected to our results are
[3, 6, 19, 25, 26, 43, 45, 47] and [38].
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In particular, in [43] it is studied the influence of the regularity of the data f
and u0 on the regularity of the solutions of (1), while in [47] and [38], among other
results, there is a description of the behavior (in time) of the solutions when f ≡ 0.

Hence, here we want to complete these results studying what is the asymptotic
behavior of the solutions when f is not identically zero.

We point out that the presence of a singular potential term has a strong influence
not only, as recalled above, on the existence theory, but also on the regularity and
on the asymptotic behavior, even when the datum f is zero. As a matter of fact, it
is well known that if λ ≡ 0 = f and the initial datum u0 is bounded then also the
solution of (1) is bounded; moreover, this result remains true in the more general
case of non zero data f belonging to Lr(0, T ;Lq(Ω)) with r and q satisfying

1

r
+ N

2q
< 1 (9)

(see [9] and the references therein).
Surprisingly, the previous L∞-regularity fails even in the model case (6) as soon

as λ becomes positive if f and u0 are not both identically zero (otherwise u ≡ 0 is a
bounded solution) since every solution (for nonnegative initial data u0) satisfies2

u(x, t) ≥ C

|x|α1
for almost every (x, t) ∈ Ω ′ × [ε, T̂ ], (10)

for every ε ∈ (0, T̂ ), 0 < T̂ < T and Ω ′ ⊂⊂ Ω , where the constant C depends
only on ε, T̂ , Ω ′ and λ, while α1 is the smallest root of z2 − (N − 2)z+ λ = 0.

Indeed, the singular potential term influences the solutions also when the
summability coefficients r and q of f do not satisfy (9). As a matter of fact, again the
regularity of the solutions in presence of the Hardy potential is different from the
classical semilinear case λ = 0 (see [43] if λ > 0 and [14, 16, 27, 31, 33, 34] and
the references therein if λ = 0).

Great changes appear also in the behavior in time of the solutions. As a matter
of fact, if λ = 0 = f (x, t) it is well known that the solutions of (1) become
immediately bounded also in presence of unbounded initial data u0 belonging only
to Lr0(Ω) (r0 ≥ 1) and satisfy the same decay estimates of the heat equation

‖u(t)‖L∞(Ω) ≤ c
‖u0‖Lr0 (Ω)
t
N

2r0 eσ t
for almost every t ∈ (0, T ), (11)

2The proof of (10) can be easily obtained following the outline of the proof of (2.5) of Theorem
2.2 in [10].



226 M. M. Porzio

where σ = c

|Ω| 2
N

is a constant depending on the measure of Ω (see [36] and the

references therein). The previous bound, or more in general estimates of the type

‖u(t)‖L∞(Ω) ≤ c
‖u0‖h0

Lr0
(Ω)

th1
h0 , h1 > 0 , (12)

are often referred as ultracontractive estimates and hold for many different kinds of
parabolic PDE (degenerate or singular) like, for example, the p-Laplacian equation,
the fast diffusion equation, the porous medium equation etc. These estimates are
widely studied because they describe the behavior in time of the solutions and often
imply also further important properties like, for example, the uniqueness (see for
example [8, 12, 17, 18, 21–23, 28–30, 36, 37, 40, 42, 46, 48] and the references
therein).

Unfortunately, by estimate (10) above it follows that estimate (11) together
with (12) fail in presence of a Hardy potential term. Anyway, in [38] it is proved
that if f ≡ 0, λ > 0 and u0 ∈ L2(Ω), then there exists a solution that satisfies

‖u(t)‖L2γ (Ω) ≤ c
‖u0‖L2(Ω)

tδeσ t
for almost every t ∈ (0, T ), δ = N(γ − 1)

4γ
,

(13)

for every γ > 1 satisfying

γ ∈
(

1,
1 + √

1 − θ

θ

)
where θ = λ

αΛN
.

Hence an increasing of regularity appears (depending on the “size” λ of the singular
potential), but according with (10), there is not the boundedness of the solutions.

As said above, aim of this paper is to describe what happens when f is not
identically zero.
We will show that under the previous assumptions on the operator a and on the data
f and u0, there exists only one “good” global solution u of (1). Moreover, if v is the
global solution of

⎧⎪⎨
⎪⎩
vt − div(a(x, t,∇v)) = λ

v

|x|2 + f (x, t) in Ω × (0,+∞),

v(x, t) = 0 on ∂Ω × (0,+∞),

v(x, 0) = v0(x) in Ω,

(14)

i.e., v satisfies the same PDE of u (with the same datum f) but verifies the different
initial condition v(x, 0) = v0 ∈ L2(Ω), then the following estimate holds

‖u(t) − v(t)‖L2(Ω) ≤ ‖u0 − v0‖L2(Ω)

eσ t
for every t > 0 , (15)
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where σ is a positive constant which depends on λ (see formula (26) below). In
particular, it results

lim
t→+∞ ‖u(t)− v(t)‖L2(Ω) = 0. (16)

Hence, for t large, the initial data do not influence the behavior of the solutions since
by (16) it follows that all the global solutions tend to the solution which assumes the
null initial datum.

We recall that in absence of the singular potential term we can replace the L2-
norm in the left-hand side of (15) with the L∞-norm and, consequently, together
with (16), the following stronger result holds true

lim
t→+∞ ‖u(t)− v(t)‖L∞(Ω) = 0. (17)

(see [39]). Thus, the presence of the Hardy potential provokes again a change in
the behavior of the solutions since generally the difference of two solutions u and v
cannot be bounded if λ > 0. As a matter of fact, it is sufficient to notice that choosing
f = 0 and v = 0 (which corresponds to the choice v0 = 0) the boundedness of u-v
becomes the boundedness of u which by (10) we know to be false in presence of a
Hardy potential.

Moreover, in the autonomous case

a(x, t, ξ) = a(x, ξ) f (x, t) = f (x)

we prove that all the global solutions of (1) (whatever is the value of the initial
datum u0) tend to the solution w ∈ H 1

0 (Ω) of the associate elliptic problem

⎧⎨
⎩

−div(a(x,∇w)) = λ
w

|x|2 + f (x) in Ω,

w(x) = 0 on ∂Ω .

Indeed, we estimate also the difference u−v between the global solutions of (1) and
the global solution v of the different evolution problem (not necessarily of parabolic
type)

⎧⎪⎨
⎪⎩
vt − div(b(x, t,∇v)) = λ

v

|x|2 + F(x, t) in Ω × (0,+∞),

v(x, t) = 0 on ∂Ω × (0,+∞),

v(x, 0) = v0(x) in Ω,

looking for conditions which guarantee that this difference goes to zero (letting
t → +∞).
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Finally, we estimate also the difference u − w between a global solution of (1)
and the solutions w of the stationary problem

⎧⎨
⎩

−div(b(x,∇w)) = λ
w

|x|2 + F(x) in Ω,

w(x) = 0 on ∂Ω ,
(18)

showing that in the non autonomous case, under suitable “proximity” conditions on
the operators a and b and the data f and F, the global solution of (1) tends to the
solution w of the stationary problem (18).

The paper is organized as follows: in next section we give the statements of our
results in all the details. The proofs can be found in Sect. 4 and make use of some
“abstract results” proved in [38] and [32] that, for the convenience of the reader, we
recall in Sect. 3.

2 Main Results

Before stating our results, we recall the definitions of solution and global solution
of (1).

Definition 1 Assume (2)–(5). A function u inL∞(0, T ;L2(Ω))∩L2(0, T ;H 1
0 (Ω))

is a solution of (1) if it results

∫ T

0

∫
Ω

{−uϕt + a(x, t,∇u)∇ϕ} dxdt =
∫
Ω
u0ϕ(x, 0) dx +

∫ T

0

∫
Ω

[
λ
u

|x|2 + f

]
ϕ dxdt

(19)

for every ϕ ∈ W 1,1(0, T ;L2(Ω)) ∩ L2(0, T ;H 1
0 (Ω)) satisfying ϕ(T ) = 0.

We point out that all the integrals in (19) are well defined. As a matter of fact, by (3)
it follows that a(x, t,∇u) ∈ (L2(ΩT ))

N and thanks to Hardy’s inequality (7) it
results

∫ T

0

∫
Ω

λ
u

|x|2 ϕ dxdt ≤ λ

(∫ T

0

∫
Ω

u2

|x|2
) 1

2
(∫ T

0

∫
Ω

ϕ2

|x|2
) 1

2

≤
λ

ΛN
‖∇u‖L2(ΩT )

‖∇ϕ‖L2(ΩT )
. (20)

We recall that under the assumptions (2)–(5) and (8) there exist solutions of (1) (see
[43]). Now, to extend the previous notion to that of global solution, we assume

f ∈ L2
loc([0,+∞);L2(Ω)) and μ ∈ L2

loc([0,+∞);L2(Ω)) (21)

where μ is the function that appears in (3).
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Definition 2 By a global solution of (1), or (equivalently) of
⎧⎪⎪⎨
⎪⎪⎩
ut − div(a(x, t,∇u)) = λ

u

|x|2 + f (x, t) in Ω × (0,+∞)

u(x, t) = 0 on ∂Ω × (0,+∞),

u(x, 0) = u0(x) in Ω,

(22)

we mean a measurable function u that is a solution of (1) for every T > 0 arbitrarily
chosen.

We point out that (21) together with the previous structure assumptions guarantee
that the integrals in (19) are well defined for every choice of T > 0. Indeed, there
exists only one global solution of (1). In detail, we have:

Theorem 1 Assume (2)–(5), (8) and (21). Then there exists only one global
solution u of (1) belonging to Cloc([0,+∞);L2(Ω)) ∩ L2

loc([0,+∞);H 1
0 (Ω)).

In particular, for every t > 0 it results

∫ t

0

∫
Ω

{−uϕt + a(x, t,∇u)∇ϕ} dxdt +
∫
Ω

[u(x, t)ϕ(x, t)− u0ϕ(x, 0)] dx =
∫ t

0

∫
Ω

[
λ
u

|x|2 + f

]
ϕ dxdt , (23)

for every ϕ ∈ W 1,1
loc ([0,+∞);L2(Ω)) ∩ L2

loc([0,+∞);H 1
0 (Ω)).

As noticed in the introduction, if we change the initial data in (1), all the associated
global solutions (to these different initial data) have the same asymptotic behavior.
In detail, let us consider the following problem

⎧⎪⎨
⎪⎩
vt − div(a(x, t,∇v)) = λ

v

|x|2 + f (x, t) in Ω × (0,+∞),

v(x, t) = 0 on ∂Ω × (0,+∞),

v(x, 0) = v0(x) in Ω .

(24)

We have the following result:

Theorem 2 Assume (2)–(5), (8) and (21). If v0 ∈ L2(Ω), then the global solutions
u and v of, respectively, (1) and (24) belonging to Cloc([0,+∞);L2(Ω)) ∩
L2
loc([0,+∞);H 1

0 (Ω)) satisfy

‖u(t)− v(t)‖L2(Ω) ≤ ‖u0 − v0‖L2(Ω)

eσ t
for every t > 0 , (25)

where

σ =
(
α − λ

ΛN

)
cP (26)
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with cP Poincaré’s constant.3

In particular, it results

lim
t→+∞ ‖u(t)− v(t)‖L2(Ω) = 0 . (28)

Remark 1 Notice that in the particular case f ≡ 0, choosing as initial datum v0 = 0
we obtain that v ≡ 0 is the global solution of (1). With such a choice in (25) it
follows that

‖u(t)‖L2(Ω) ≤ ‖u0‖L2(Ω)

eσ t
for every t > 0 .

In the model case (6) the previous estimate can be found (among other interesting
results) in [47] with σ = μ1 the first eigenvalue (see also [38]). We recall that decay
estimates of the solutions in the same Lebesgue space where is the initial datum
is not a peculiarity of problems with singular potentials since appear also for other
parabolic problems (see [13, 38, 46] and the references therein).

An immediate consequence of Theorem 2 is that in the autonomous case

a(x, t, ξ) = a(x, ξ) f (x, t) = f (x) (29)

all the global solutions of (1), whatever is the value of the initial datum u0, tend
(letting t → +∞) to the solution w of the associate elliptic problem

⎧⎨
⎩

−div(a(x,∇w)) = λ
w

|x|2 + f (x) in Ω,

w(x) = 0 on ∂Ω .
(30)

In detail, we have:

Corollary 1 (Autonomous Case) Assume (2)–(5), (8), (21) and (29). Let w be the
unique solution of (30) in H 1

0 (Ω) and u be the global solution of (1) belonging to
Cloc([0,+∞);L2(Ω)) ∩ L2

loc([0,+∞);H 1
0 (Ω)). Then it results

‖u(t)−w‖L2(Ω) ≤ ‖u0 − w‖L2(Ω)

eσ t
for every t > 0 , (31)

where σ is as in (26).

3Poincaré’s inequality:

cP

∫
Ω

u2dx ≤
∫
Ω

|∇u|2dx for every u ∈ H 1
0 (Ω) , (27)

where cP is a constant depending only on N and on the bounded set Ω .
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In particular, it results

lim
t→+∞ ‖u(t) −w‖L2(Ω) = 0 . (32)

We show now that it is also possible to estimate the distance between the global
solution u of (1) and the global solution v of the different parabolic problem

⎧⎪⎨
⎪⎩
vt − div(b(x, t,∇v)) = λ

v

|x|2 + F(x, t) in Ω × (0,+∞),

v(x, t) = 0 on ∂Ω × (0,+∞),

v(x, 0) = v0(x) in Ω ,

(33)

where b(x, t, ξ) : Ω ×R
+ ×R

N → R
N is a Caratheodory function satisfying

b(x, t, ξ)ξ ≥ α0|ξ |2, α0 > 0, (34)

|b(x, t, ξ)| ≤ β0[|ξ | + μ0(x, t)], β0 > 0, μ0 ∈ L2
loc([0,+∞);L2(Ω)),

(35)

(b(x, t, ξ)− b(x, t, ξ ′)) · (ξ − ξ ′) ≥ α0|ξ − ξ ′|2 . (36)

v0 ∈ L2(Ω) F ∈ L2
loc([0,+∞);L2(Ω)). (37)

Theorem 3 Assume (2)–(5), (8), (21) and (34)–(37). Then the global solutions
u and v of, respectively, (1) and (33) belonging to Cloc([0,+∞);L2(Ω)) ∩
L2
loc([0,+∞);H 1

0 (Ω)) satisfy

‖u(t)− v(t)‖2
L2(Ω)

≤
‖u0 − v0‖2

L2(Ω)

e2σ0t
+
∫ t

0
g(s)ds for every t ≥ 0 , (38)

for every choice of

σ0 < σ (39)

where

g(s) = cP

σ − σ0

∫
Ω

[
|b(x, s,∇v(x, s)) − a(x, s,∇v(x, s))|2 + 1

cP
|f (x, s) − F(x, s)|2

]
dx ,

(40)

with σ and cP are as in (26). Moreover, if g ∈ L1((0,+∞)) then it results

‖u(t)− v(t)‖2
L2(Ω)

≤ Λ

eσ0t
+
∫ t

t
2

g(s)ds for every t > 0 , (41)
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where

Λ = ‖u0 − v0‖2
L2(Ω)

+
∫ +∞

0
g(t)dt .

In particular, we have

lim
t→+∞ ‖u(t)− v(t)‖L2(Ω) = 0 . (42)

Remark 2 The proof of Theorem 3 shows that the structure assumptions (34)–(36)
on the operator b can be weakened. In particular, it is sufficient to assume that there
exists a global solution v of (33) inCloc([0,+∞);L2(Ω))∩L2

loc([0,+∞);H 1
0 (Ω))

satisfying

b(x, t,∇v) ∈ L2
loc([0,+∞);L2(Ω)) .

Hence, also problems (33) which are not of parabolic type are allowed.
Moreover, with slight changes in the proof, it is also possible to choose a

larger class of data f and F. In particular, an alternative option that can be done
is L2

loc([0,+∞);H−1(Ω)).

Examples of operators satisfying all the assumptions of the previous Theorem (and
hence for which (42) holds) are

⎧⎪⎪⎨
⎪⎪⎩
ut − div(a(x, t,∇u)) = λ

u

|x|2 + f (x, t) in Ω × (0,+∞),

u(x) = 0 on ∂Ω × (0,+∞)

u(x, 0) = u0 in Ω .

and the model case
⎧⎪⎪⎨
⎪⎪⎩
vt −Δv = λ

u

|x|2 + F(x, t) in Ω × (0,+∞),

v(x) = 0 on ∂Ω × (0,+∞)

v(x, 0) = v0 in Ω ,

if we assume

[a(x, t,∇v)−∇v] ∈ L2(Ω×(0,+∞)) [f (x, t)−F(x, t)] ∈ L2(Ω×(0,+∞)).

Remark 3 We point out that an admissible choice for the parameter λ in Theo-
rem 3 is

λ = 0 ,
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i.e., the case of absence of the singular potential. In this particular but also
interesting case, the previous result permits to estimate the difference of solutions of
different evolution problems. Moreover, as noticed in Remark 2, only one of these
two evolution problems is required to be of parabolic type.

A consequence of Theorem 3 is the possibility to estimate also the distance
between global solutions of (1) and solutions of stationary problems, for example of
elliptic type, without assuming to be in the autonomous case (29). These estimates
(see Corollary 2 below) show that if the data and the operators of these different PDE
problems (calculated on the solution of the stationary problem) are “sufficiently
near”, then the solutions of the evolution problems tend (for every choice of the
initial data u0) to the stationary solution.
In detail, let us consider the following stationary problem

⎧⎨
⎩

−div(b(x,∇w)) = λ
w

|x|2 + F(x) in Ω ,

w(x) = 0 on ∂Ω .
(43)

To stress the assumptions really needed, in what follows we do not assume any
structure condition on b except that b : Ω ×R

N → R
N is a Caratheodory function.

We have:

Corollary 2 Assume (2)–(5), (8) and (21). Let F be in L2(Ω) and w ∈ H 1
0 (Ω) be

such that

b(x,∇w) ∈ (L2(Ω))N . (44)

If w is a solution of (43) and u ∈ Cloc([0,+∞);L2(Ω))∩L2
loc([0,+∞);H 1

0 (Ω))

is the global solution of (1), then the following estimate holds true

‖u(t)− w‖2
L2(Ω)

≤
‖u0 − w‖2

L2(Ω)

e2σ0t
+
∫ t

0
g(s)ds , (45)

for every t ≥ 0 and for every choice of σ0 as in (39) where

g(s) = cP

σ − σ0

∫
Ω

[
|b(x,∇w(x)) − a(x, s,∇w(x))|2 + 1

cP
|f (x, s)− F(x)|2

]
dx .

(46)

Moreover, if g ∈ L1((0,+∞)), then it results

‖u(t) −w‖2
L2(Ω)

≤ Λ

eσ0t
+
∫ t

t
2

g(s)ds for every t > 0 , (47)
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where

Λ = ‖u0 −w‖2
L2(Ω)

+
∫ +∞

0
g(t)dt .

In particular, it follows

lim
t→+∞ ‖u(t) −w‖L2(Ω) = 0 . (48)

Examples of operators satisfying all the assumptions of Corollary 2 (and hence for
which (48) holds) are

⎧⎪⎪⎨
⎪⎪⎩
ut − div(α(x, t)∇u) = λ

u

|x|2 + f (x, t) in Ω × (0,+∞),

u(x) = 0 on ∂Ω × (0,+∞)

u(x, 0) = u0 in Ω .

and
⎧⎨
⎩

−Δw = λ
w

|x|2 + F(x) in Ω,

w(x) = 0 on ∂Ω .

with

[α(x, t) − 1] ∈ L∞(Ω × (0,+∞)) [f (x, t)− F(x)] ∈ L2(Ω × (0,+∞))

(49)

or
⎧⎪⎪⎨
⎪⎪⎩
ut − div(α(x, t)b(x,∇u)) = λ

u

|x|2 + f (x, t) in Ω × (0,+∞),

u(x) = 0 on ∂Ω × (0,+∞)

u(x, 0) = u0 in Ω .

and
⎧⎨
⎩

−div(b(x,∇w)) = λ
w

|x|2 + F(x) in Ω,

w(x) = 0 on ∂Ω .

with α(x, t) and the data f and F satisfying (49).
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3 Preliminary Results

In this section we state two results that will be essential tools in proving the theorems
presented above.

Theorem 4 (Theorem 2.8 in [38]) Let u be in C((0, T );Lr(Ω)) ∩ L∞(0, T ;
Lr0(Ω)) where 0 < r ≤ r0 < ∞. Suppose also that |Ω | < +∞ if r �= r0 (no
assumption are needed on |Ω | if r = r0). If u satisfies

∫
Ω

|u|r(t2)−
∫
Ω

|u|r(t1)+ c1

∫ t2

t1

‖u(t)‖rLr (Ω) dt ≤ 0 for every 0 < t1 < t2 < T,

(50)

and there exists u0 ∈ Lr0(Ω) such that

‖u(t)‖Lr0 (Ω) ≤ c2‖u0‖Lr0 (Ω) for almost every t ∈ (0, T ), (51)

where ci , i = 1, 2 are real positive numbers, then the following estimate holds true

‖u(t)‖Lr (Ω) ≤ c4
‖u0‖Lr0 (Ω)

eσ t
for every 0 < t < T, (52)

where

c4 =
{
c2|Ω | 1

r − 1
r0 if r < r0,

1 if r = r0,
σ = c1

r
.

Proposition 1 (Proposition 3.2 in [32]) Assume T ∈ (t0,+∞] and let φ(t) a
continuous and non negative function defined in [t0, T ) verifying

φ(t2)− φ(t1)+M

∫ t2

t1

φ(t)dt ≤
∫ t2

t1

g(t)dt

for every t0 ≤ t1 ≤ t2 < T where M is a positive constant and g is a non negative
function in L1

loc([t0, T )). Then for every t ∈ (t0, T ) we get

φ(t) ≤ φ(t0)e
−M(t−t0) +

∫ t

t0

g(s)ds (53)

Moreover, if T = +∞ and g belongs to L1((t0,+∞)) there exists t1 ≥ t0 (for
example t1 = 2t0) such that

φ(t) ≤ Λe−
M
2 t +

∫ t

t
2

g(s)ds for every t ≥ t1 , (54)
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where

Λ = φ(t0)+
∫ +∞

t0

g(s)ds .

In particular, we get that

lim
t→+∞φ(t) = 0 .

4 Proofs of the Results

4.1 Proof of Theorem 1

Let T > 0 arbitrarily fixed. The existence of a solution u ∈ L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H 1

0 (Ω)) of (1) can be found in [43]. We point out that since ut belongs to
L2(0, T ;H−1(Ω)) (thanks to the regularity of u and (20)) it follows that u belongs
also to C([0, T ];L2(Ω)). Consequently, it results

∫ T

0

∫
Ω

{−uϕt + a(x, t,∇u)∇ϕ} dxdt +
∫
Ω

[u(x, T )ϕ(x, T )− u0ϕ(x, 0)] dx =
∫ T

0

∫
Ω

[
λ
u

|x|2 + f

]
ϕ dxdt , (55)

for every ϕ ∈ W 1,1(0, T ;L2(Ω)) ∩ L2(0, T ;H 1
0 (Ω)). Moreover, u is the unique

solution of (1) belonging to C([0, T ];L2(Ω)) ∩ L2(0, T ;H 1
0 (Ω)). As a mat-

ter of fact, if there exists an other solution v of (1) in C([0, T ];L2(Ω)) ∩
L2(0, T ;H 1

0 (Ω)), taking as test function u− v in the equation satisfied by u and in
that satisfied by v and subtracting the results4 we deduce (using (4))

1

2

∫
Ω

[u(x, T )− v(x, T )]2 + α

∫ T

0

∫
Ω

|∇(u− v)|2 ≤

λ

∫ T

0

∫
Ω

[u− v]2

|x|2 . (56)

By the previous estimate and Hardy’s inequality (7) we obtain

1

2

∫
Ω

[u(x, T )− v(x, T )]2 +
(
α − λ

ΛN

)∫ T

0

∫
Ω

|∇(u− v)|2 ≤ 0 .

4The use here and below of these test functions can be made rigorous by means of Steklov
averaging process.
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from which the uniqueness follows since by assumption it results α − λ
ΛN

> 0.
Hence, for every arbitrarily fixed T > 0 there exists a unique solution of (1) in

C([0, T ];L2(Ω)) ∩ L2(0, T ;H 1
0 (Ω)) that we denote u(T ).

To conclude the proof, let us construct now the global solution of (1). For every
t ≥ 0 let us define u(x, t) = u(T )(x, t) where T is arbitrarily chosen satisfying
T > t . We notice that by the uniqueness proved above this definition is well posed.
Moreover, by construction this function satisfies the assertions of the theorem. "#

4.2 Proof of Theorem 2

Let u and v be as in the statement of Theorem 2. Taking as test function u− v in (1)
and in (24) and subtracting the equations obtained in this way, we deduce (using
assumption (4)) that for every 0 ≤ t1 < t2 it results

1

2

∫
Ω

[u(x, t2)− v(x, t2)]2 dx − 1

2

∫
Ω

[u(x, t1)− v(x, t1)]2 + α

∫ t2

t1

∫
Ω

|∇(u − v)|2 ≤

λ

∫ t2

t1

∫
Ω

[u− v]2

|x|2 . (57)

Using again Hardy’s inequality (7), from (57) we deduce

∫
Ω

[u(x, t2)− v(x, t2)]2 dx −
∫
Ω

[u(x, t1)− v(x, t1)]2 + c0

∫ t2

t1

∫
Ω

|∇(u− v)|2 ≤ 0 ,

(58)

where we have defined

c0 = 2

(
α − λ

ΛN

)
. (59)

Thanks to Poincaré’s inequality (27) by the previous estimate we get for every 0 ≤
t1 < t2

∫
Ω

[u(x, t2)− v(x, t2)]2 dx −
∫
Ω

[u(x, t1)− v(x, t1)]2 + c1

∫ t2

t1

∫
Ω

|u− v|2 ≤ 0 ,

(60)

where c1 = cP c0. Notice that by (60) (choosing t2 = t and t1 = 0) it follows also
that

‖u(t) − v(t)‖L2(Ω) ≤ ‖u0 − v0‖L2(Ω) .

Now the assert follows applying Theorem 4 with r = r0 = 2. "#
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4.3 Proof of Corollary 1

The assertion (31) follows by Theorem 2 once noticed that, thanks to the assump-
tion (29), the solution w ∈ H 1

0 (Ω) of (30) is also the global solution w(x, t) ≡
w(x) ∈ Cloc([0,+∞];L2(Ω))∩L2

loc([0,+∞);H 1
0 (Ω)) of the following parabolic

problem

⎧⎪⎨
⎪⎩
wt − div(a(x,∇w)) = λ

w

|x|2 + f (x) in Ω × (0,+∞),

w(x, t) = 0 on ∂Ω × (0,+∞),

w(x, 0) = w(x) in Ω .

"#

4.4 Proof of Theorem 3

Let u and v be the global solutions in Cloc([0,+∞];L2(Ω)) ∩ L2
loc([0,+∞);

H 1
0 (Ω)) of, respectively, (1) and (33). Taking u-v in both the problems (1) and (33)

and subtracting the results we obtain for every 0 ≤ t1 < t2

1

2

∫
Ω

[u(x, t2)− v(x, t2)]2 dx − 1

2

∫
Ω

[u(x, t1)− v(x, t1)]2 +
∫ t2

t1

∫
Ω

[a(x, t,∇u)− b(x, t,∇v)]∇(u− v) ≤

λ

∫ t2

t1

∫
Ω

(u− v)2

|x|2 +
∫ t2

t1

∫
Ω

(f − F)(u− v) ,

which is equivalent to the following estimate

1

2

∫
Ω

[u(x, t2)− v(x, t2)]2 dx − 1

2

∫
Ω

[u(x, t1)− v(x, t1)]2 +
∫ t2

t1

∫
Ω

[a(x, t,∇u)− a(x, t,∇v)]∇(u− v) ≤ λ

∫ t2

t1

∫
Ω

(u− v)2

|x|2 +
∫ t2

t1

∫
Ω

(f − F)(u− v)+
∫ t2

t1

∫
Ω

[b(x, t,∇v)− a(x, t,∇v)]∇(u− v) . (61)
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By assumption (4), Hardy’s inequality (7) and (61) we deduce

1

2

∫
Ω

[u(x, t2)− v(x, t2)]2 dx − 1

2

∫
Ω

[u(x, t1)− v(x, t1)]2 +
(
α − λ

ΛN

)∫ t2

t1

∫
Ω

|∇(u− v)|2 ≤ (62)

∫ t2

t1

∫
Ω

(f − F)(u− v)+
∫ t2

t1

∫
Ω

[b(x, t,∇v)− a(x, t,∇v)]∇(u− v) .

We estimate the last two integrals in (62). Let θ ∈ (0, 1) a constant that we will
choose below. It results (using Young’s and Poincaré’s inequalities)

∫ t2

t1

∫
Ω

(f − F)(u− v) ≤ θ

2
C0cP

∫ t2

t1

∫
Ω

(u− v)2 + 1

2θC0cP

∫ t2

t1

∫
Ω

|f − F |2 ≤

θ

2
C0

∫ t2

t1

∫
Ω

|∇(u− v)|2 + 1

2θC0cP

∫ t2

t1

∫
Ω

|f − F |2

where cP is Poincaré’s constant defined in (27) and C0 =
(
α − λ

ΛN

)
. Moreover, we

have

∫ t2

t1

∫
Ω

[b(x, t,∇v)− a(x, t,∇v)]∇(u− v) ≤ θ

2
C0

∫ t2

t1

∫
Ω

|∇(u− v)|2 +

1

2θC0

∫ t2

t1

∫
Ω

|b(x, t,∇v)− a(x, t,∇v)|2

By the previous estimates we deduce that

∫
Ω

[u(x, t2)− v(x, t2)]2 dx −
∫
Ω

[u(x, t1)− v(x, t1)]2 +

2(1 − θ)C0

∫ t2

t1

∫
Ω

|∇(u− v)|2 ≤

1

θC0cP

∫ t2

t1

∫
Ω

|f − F |2 + + 1

θC0

∫ t2

t1

∫
Ω

|b(x, t,∇v)− a(x, t,∇v)|2 .

which implies (again by Poincaré’s inequality)

∫
Ω

[u(x, t2)− v(x, t2)]2 dx −
∫
Ω

[u(x, t1)− v(x, t1)]2 +

M

∫ t2

t1

∫
Ω

|u− v|2 ≤
∫ t2

t1

g(s) ds (63)
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whereM = 2cP (1 − θ)C0 = 2(1 − θ)σ (where σ is as in (26)) and

g(s) = 1

θC0

∫
Ω

[
1

cP
|f (x, s)− F(x, s)|2 + |b(x, s,∇v)− a(x, s,∇v)|2

]
dx .

(64)

Denoting σ0 = (1 − θ)σ (i.e., θ = 1 − σ0
σ

) and applying Proposition 1 with
φ(t) = ∫Ω [u(x, t)− v(x, t)]2 dx and t0 = 0, the assertions follow. "#

4.5 Proof of Corollary 2

The asserts follow observing that w(x, t) = w(x) is also a global solution in

Cloc([0,+∞];L2(Ω)) ∩ L2
loc([0,+∞);H 1

0 (Ω))

of the following evolution problem

⎧⎪⎨
⎪⎩
wt − div(b(x,∇w)) = λ

w

|x|2 + F(x) in Ω × (0,+∞),

w(x, t) = 0 on ∂Ω × (0,+∞),

w(x, 0) = w(x) in Ω .

"#
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How to Hear the Corners of a Drum

Medet Nursultanov, Julie Rowlett, and David Sher

Abstract We prove that the existence of corners in a class of planar domain,
which includes all simply connected polygonal domains and all smoothly bounded
domains, is a spectral invariant of the Laplacian with both Neumann and Robin
boundary conditions. The main ingredient in the proof is a locality principle in the
spirit of Kac’s “principle of not feeling the boundary,” but which holds uniformly
up to the boundary. Albeit previously known for Dirichlet boundary condition, this
appears to be new for Robin and Neumann boundary conditions, in the geometric
generality presented here. For the case of curvilinear polygons, we describe how the
same arguments using the locality principle are insufficient to obtain the analogous
result. However, we describe how one may be able to harness powerful microlocal
methods and combine these with the locality principles demonstrated here to show
that corners are a spectral invariant; this is current work-in-progress (Nursultanov
et al., Preprint).

1 Introduction

It is well known that “one cannot hear the shape of a drum” [8, 22, 27]. Mathemat-
ically, this means that there exist bounded planar domains which have the same
eigenvalues for the Laplacian with Dirichlet boundary condition, in spite of the
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0

Fig. 1 These two domains were demonstrated by Gordon, Webb, and Wolpert to be isospectral for
the Laplacian with Dirichlet boundary condition [9]. This image is from Wikipedia Commons

domains having different shapes. The standard example is shown in Fig. 1. Two
geometric characteristics of these domains are immediately apparent:

1. These domains both have corners.
2. Neither of these domains are convex.

This naturally leads to the following two open problems:

Problem 1 Can one hear the shape of a smoothly bounded drum?

Problem 2 Can one hear the shape of a convex drum?

The mathematical formulation of these problems are: if two smoothly bounded
(respectively, convex) domains in the plane are isospectral for the Laplacian with
Dirichlet boundary condition, then are they the same shape?

One could dare to conjecture that the answer to Problem 1 is yes, based on the
isospectrality result of Zelditch [36]. He proved that if two analytically bounded
domains both have a bilateral symmetry and are isospectral, then they are in fact the
same shape. For certain classes of convex polygonal domains including triangles [5,
11]; parallelograms [15]; and trapezoids [12]; if two such domains are isospectral,
then they are indeed the same shape. This could lead one to suppose that perhaps
Problem 2 also has a positive answer.

Contemplating these questions led the second author and Z. Lu to investigate
whether smoothly bounded domains can be isospectral to domains with corners.
In [16], they proved that for the Dirichlet boundary condition, “one can hear the
corners of a drum” in the sense that a domain with corners cannot be isospectral to
a smoothly bounded domain. Here we generalize that result to both Neumann and
Robin boundary conditions.

The key technical tool in the proof is a locality principle for the Neumann and
Robin boundary conditions in a general context which includes domains with only
piecewise smooth boundary. This locality principle may be of independent interest,
because it not only generalizes Kac’s “principle of not feeling the boundary” [13]
but also unlike that principle, it holds uniformly up to the boundary. First, we explain
Kac’s locality principle. Let Ω be a bounded domain in R

2, or more generally
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γ

Ω

Ω0

Fig. 2 Above, we have the polygonal domainΩ which contains the triangular domain,Ω0. Letting
S = Sγ be a circular sector of opening angle γ and infinite radius, this is an example of an “exact
geometric match,” in the sense that Ω0 is equal to a piece of S

R
n, because the argument works in the same way in all dimensions. Assume

the Dirichlet boundary condition, and let the corresponding heat kernel for Ω be
denoted by H , while the heat kernel for Rn,

K(t, z, z′) = (4πt)−n/2e−d(z,z′)2/4t . (1)

Let

δ = min{d(z, ∂Ω), d(z′, ∂Ω)}.
Then, there are constants A,B > 0 such that

|K(t, z, z′)−H(t, z, z′)| ≤ At−n/2e−Bδ2/t .

This means that the heat kernel for Ω is O(t∞)1 close to the Euclidean heat
kernel, as long as we consider points z, z′ which are at a positive distance from
the boundary. Hence the heat kernel “does not feel the boundary.”

In a similar spirit, a more general locality principle is known to be true. The
idea is that one has a collection of sets which are “exact geometric matches” to
certain pieces of the domain, Ω . To describe the meaning of an “exact geometric
match,” consider a piece of the first quadrant near the origin in R

2. A sufficiently
small piece is an exact match for a piece of a rectangle near a corner. Similarly,
for a surface with exact conical singularities, near a singularity of opening angle
γ , a piece of an infinite cone with the same opening angle is an exact geometric
match to a piece of the surface near that singularity. For a planar example, see
Fig. 2. The locality principle states that if one takes the heat kernels for those “exact
geometric matches,” and restricts them to the corresponding pieces of the domain
(or manifold), Ω , then those “model heat kernels” are equal to the heat kernel for
Ω , restricted to the corresponding pieces of Ω , with errorO(t∞) as t ↓ 0.

1By O(t∞), we mean O(tN ) for any N ∈ N.
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This locality principle is incredibly useful, because if one has exact geometric
matches for which one can explicitly compute the heat kernel, then one can use
these to compute the short time asymptotic expansion of the heat trace. Moreover,
in addition to being able to compute the heat trace expansion, one can also use this
locality principle to compute the zeta regularized determinant of the Laplacian as in
[1].

Here, we shall give one application of the locality principle: “how to hear the
corners of a drum.”

Theorem 1 LetΩ ⊂ R
2 be a simply connected, bounded, Lipschitz planar domain

with piecewise smooth boundary. Moreover, assume that the (finitely many) points
at which the boundary is not smooth are exact corners; that is, there exists a
neighborhood of each corner in which the boundary ofΩ is the union of two straight
line segments. Assume that for at least one such corner, the interior angle is not
equal to π .

Then the Laplacian with either Dirichlet,2 Neumann, or Robin boundary condi-
tion is not isospectral to the Laplacian with the same boundary condition3 on any
smoothly bounded domain.

To prove the result, we use a locality principle which is stated and proved in
Sect. 2. We next introduce model heat kernels as well as the corresponding Green’s
functions for the “exact geometric matches” in Sect. 3. We proceed there to use the
models together with our locality principle to compute the short time asymptotic
expansion of the heat trace. Theorem 1 is then a consequence of comparing the
heat trace expansions in the presence and lack of corners. In conclusion, we explain
in how the locality principle fails to prove Theorem 1 for the case of curvilinear
polygonal domains, in which the corners are not exact. An example of a non-
exact corner of interior angle π/2 is the corner where the straight edge meets the
curved edge in a half-circle. This motivates the discussion in Sect. 4 concerning the
necessity and utility of microlocal analysis, in particular, the construction of the
heat kernel for curvilinear polygonal domains and surfaces via the heat space and
heat calculus in those settings. This construction, together with a generalization of
Theorem 1 to all boundary conditions (including discontinuous, mixed boundary
conditions), as well as to surfaces with both conical singularities and edges, is
currently in preparation and shall be presented in forthcoming work [23].

2This result was proven in the Dirichlet case in [16].
3In particular, in the case of Robin boundary conditions, we assume the same Robin parameters
for both domains.
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2 The Locality Principle

We begin by setting notations and sign conventions and recalling fundamental
concepts.

2.1 Geometric and Analytic Preliminaries

To state the locality principle, we make the notion of an “exact geometric match”
precise. Let Ω be a domain, possibly infinite, contained in R

n.

Definition 1 Assume that Ω0 ⊂ Ω ⊂ R
n, and S ⊂ R

n. We say that S and Ω
are exact geometric matches on Ω0 if there exists a sub-domain Ωc ⊆ Ω which
compactly containsΩ0 and which is isometric to a sub-domain of S (which, abusing
notation, we also call Ωc). Recall that Ω0 being compactly contained in Ωc means
that the distance from Ω0 to Ω \Ωc is positive. A planar example is depicted in
Fig. 2.

Next, we recall the heat kernel in this context. The heat kernel,H , is the Schwartz
kernel of the fundamental solution of the heat equation. It is therefore defined on
Ω ×Ω × [0,∞), and satisfies

H(t, z, z′) = H(t, z′, z), (∂t +Δ)H(t, z, z′) = 0 for t > 0,

H(0, z, z′) = δ(z − z′), in the distributional sense.

Throughout we use the sign convention for the Laplacian,Δ, on R
n, that

Δ = −
n∑
j=1

∂2
j .

We consider two boundary conditions:

(N) the Neumann boundary condition, which requires the normal derivative of the
function to vanish on the boundary;

(R) the Robin boundary condition, which requires the function, u, to satisfy the
following equation on the boundary:

αu+ β
∂u

∂ν
= 0,

∂u

∂ν
is the outward pointing normal derivative. (2)

For u0 ∈ L 2(Ω), the heat equation with initial data given by u0 is then solved
by

u(t, z) =
∫
Ω

H(t, z, z′)u0(z
′)dz′.
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Moreover, if Ω is a bounded domain, and {φk}k≥1 is an orthonormal basis for
L 2(Ω) consisting of eigenfunctions of the Laplacian satisfying the appropriate
boundary condition, with corresponding eigenvalues {λk}k≥1, then the heat kernel

H(t, z, z′) =
∑
k≥1

e−λktφk(z)φk(z′).

2.2 Locality Principle for Dirichlet Boundary Condition

In the general context of domains in R
n which have only piecewise smooth

boundary, the key point is that the locality principle should hold up to the boundary.
This differs from many previous presentations of a locality principle. For example,
in [14, Theorem 1.1], it is proved that without any condition on the regularity of the
boundary, for any choice of self-adjoint extension of the Laplacian on Ω ⊂ R

n, the
heat kernel for this self adjoint extension of the Laplacian on Ω , denoted by HΩ

satisfies

|HΩ(t, z, z′)−H 0(t, z, z′)| ≤ (Caρ(z, z
′)−n + Cb) ·

exp
(
− (ρ(z)+ρ(z′))2

4t

)

t2) n+1
2 *− 1

2

.

Above, H 0 is the heat kernel for R
n, ρ(z) = dist(z, ∂Ω), ρ(z, z′) =

min(ρ(z), ρ(z′)). The constants Ca and Cb can also be calculated explicitly
according to [14]. Clearly, the estimate loses its utility as one approaches the
boundary.

In the case of smoothly bounded domains, there is a result of Lück and Schick
[17, Theorem 2.26], which implies the locality principle for both the Dirichlet and
Neumann boundary conditions, and which holds all the way up to the boundary. We
recall that result.4

Theorem 2 (Lück and Schick) Let N be a Riemannian manifold possibly with
boundary which is of bounded geometry. Let V ⊂ N be a closed subset which
carries the structure of a Riemannian manifold of the same dimension as N
such that the inclusion of V into N is a smooth map respecting the Riemannian
metrics. For fixed p ≥ 0, let Δ[V ] and Δ[N] be the Laplacians on p-forms
on V and N , considered as unbounded operators with either absolute boundary
conditions or with relative boundary conditions (see Definition 2.2 of [17]). Let

4In the original statement of their result, Lück and Schick make the parenthetical remark “We
make no assumptions about the boundaries of N and V and how they intersect.” This could easily
be misunderstood. If one carefully reads the proof, it is implicit that the boundaries are smooth.
The arguments break down if the boundaries have singularities, such as corners. For this reason,
we have omitted the parenthetical remark from the statement of the theorem.
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Δ[V ]ke−tΔ[V ](x, y) andΔ[N]ke−tΔ[N](x, y) be the corresponding smooth integral
kernels. Let k be a non-negative integer.

Then there is a monotone decreasing function Ck(K) : (0,∞) → (0,∞) which
depends only on the geometry of N (but not on V , x, y, t) and a constant C2
depending only on the dimension of N such that for all K > 0 and x, y ∈ V

with dV (x) := d(x,N \ V ) ≥ K , dV (y) ≥ K and all t > 0:

∣∣∣Δ[V ]ke−tΔ[V ](x, y)−Δ[N]ke−tΔ[N](x, y)
∣∣∣ ≤ Ck(K)e

−
(
dV (x)

2+dV (y)2+d(x,y)2
C2 t

)
.

One may therefore compare the heat kernels for the Laplacian acting on
functions, noting (see p. 362 of [28]) that relative boundary conditions are Dirichlet
boundary conditions, and absolute boundary conditions are Neumann boundary
conditions. We present this as a corollary to Lück and Schick’s theorem.

Corollary 1 Assume that S is an exact match for Ω0 ⊂ Ω , for two smoothly
bounded domains, Ω and Ω0 in R

n. Assume the same boundary condition, either
Dirichlet or Neumann, for the Euclidean Laplacian on both domains. Then

∣∣∣HΩ(t, z, z′)−HS(t, z, z′)
∣∣∣ = O(t∞) as t ↓ 0, uniformly for z, z′ ∈ Ω0.

Proof We use the theorem of Lück and Schick twice, once with N = Ω and once
with N = S, with V = Ωc in both cases. We set k = 0 and

K = α = d(Ω0, S \Ωc).

By the definition of an exact geometric match, α > 0. In the N = S case, the
theorem reads

|HS(t, z, z′)−HΩc(t, z, z′)| ≤ C0(α)e
− |dist(z,S\Ωc)|2

C2 t
− |dist(z′,S\Ωc)|2

C2 t ≤ C0(α)e
− 2α2
C2 t .

We conclude that

|HS(t, z, z′)−HΩc(t, z, z′)| = O(t∞)

uniformly on Ω0. The same statement holds with S replaced by Ω , and then the
triangle inequality completes the proof. "#

The assumption of smooth boundary is quite restrictive, and the proof in [17]
relies heavily on this assumption. To the best of our knowledge, the first locality
result which holds all the way up to the boundary and includes domains which have
only piecewise smooth boundary, but may have corners, was demonstrated by van
den Berg and Srisatkunarajah [29]. We note that this result is not stated in the precise
form below in [29], but upon careful reading, it is straightforward to verify that this
result is indeed proven in [29] and is used in several calculations therein.
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Theorem 3 (van den Berg and Srisatkunarajah) Let Ω ⊂ R
2 be a polygonal

domain. Let HΩ denote the heat kernel for the Laplacian on Ω with the Dirichlet
boundary condition. Then, for S = Sγ , a sector of opening angle γ , and for any
corner of Ω with opening angle γ , there is a neighborhood of the corner Nγ such
that

|HΩ(t, z, z′)−HSγ (t, z, z′)| = O(t∞), uniformly ∀(z, z′) ∈ Nγ ×Nγ ,

Above, HSγ denotes the heat kernel for Sγ with the Dirichlet boundary condition.
Moreover, for any Ne ⊂ Ω which is at a positive distance to all corners of Ω ,

|HΩ(t, z, z′)−HR2+(t, z, z′)| = O(t∞), uniformly ∀(z, z′) ∈ Ne ×Ne.

Above, HR2+ denotes the heat kernel for a half space with the Dirichlet boundary
condition.

The proof uses probabilistic methods. We are currently unaware of a general-
ization to domains with corners in higher dimensions. However, it is reasonable
to expect that such a generalization holds. Since Theorem 1 has already been
demonstrated for the Dirichlet boundary condition in [16], we are interested in the
Neumann and Robin boundary conditions. For this reason, we shall give a proof
of a locality principle for both Neumann and Robin boundary conditions which
holds in all dimensions, for domains with piecewise smooth boundary (in fact, only
piecewise C 3 boundary is required), as long as we have a suitable estimate on the
second fundamental form on the boundary. Moreover, our locality principle, similar
to that of [29], allows one to compare the heat kernels all the way up to the boundary.
For this reason, the locality principles demonstrated below may be of independent
interest.

2.3 Locality Principle for Neumann Boundary Condition

Here we prove a locality principle for the Neumann boundary condition for domains
in R

n with piecewise C 2 boundary satisfying some relatively general geometric
assumptions. Since we consider both bounded and unbounded domains, we require
a uniform version of an interior cone condition:

Definition 2 Let ε > 0 and h > 0. We say that a domain Ω ⊂ R
n satisfies the

(ε, h)-cone condition if, for every x ∈ ∂Ω , there exists a ball B(x, δ) centered at
x of radius δ, and a direction ξx , such that for all y ∈ B(x, δ) ∩ Ω , the cone with
vertex y directed by ξx of opening angle ε and height h is contained in Ω .

Definition 3 Let ε > 0 and h > 0. We say that a domainΩ ⊂ R
n satisfies the two-

sided (ε, h)-cone condition if both Ω and R
n \Ω satisfy the (ε, h)-cone condition.
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Theorem 4 (Locality Principle for Neumann Boundary Condition) LetΩ ,Ω0,
and S be domains in R

n such that S and Ω are exact geometric matches on Ω0,
as in Definition 1. Assume that both Ω and S satisfy the two-sided (ε, h)-cone
condition for some ε > 0 and h > 0. Let HΩ denote the heat kernel associated to
the Laplacian onΩ , and letHS denote the heat kernel on S, with the same boundary
condition for ∂S as taken on ∂Ω . Moreover, assume that there exists σ ∈ R such
that the second fundamental form I ≥ σ holds on all the C 2 pieces of ∂Ω and ∂S.
Then
∣∣∣HΩ(t, z, z′)−HS(t, z, z′)

∣∣∣ = O(t∞) as t ↓ 0, uniformly for z, z′ ∈ Ω0.

Proof We use a patchwork parametrix construction, as discussed in section 3.2 of
[1]. This is a general technique to construct heat kernels whenever one has exact
geometric matches for each part of a domain; see for example [1], [18] and [26].

Let {χj }2
j=1 be a C∞ partition of unity on Ω . Assume that χ̃j ∈ C∞(Ω) is

identically 1 on a small neighborhood of the support of χj and vanishes outside a
slightly larger neighborhood. In particular, we choose χ1 to be identically equal to
one on Ω0. Choose χ̃1 to be identically one on a strictly larger neighborhood and
to have its support equal to Ωc. We assume that the support of χ̃2 does not intersect
Ω0. We then define the patchwork heat kernel

G(t, z, z′) :=
2∑
j=1

χ̃j (z)H
S(t, z, z′)χj (z′).

We claim that uniformly for all z, z′ ∈ Ω0,

|HΩ(t, z, z′)−G(t, z, z′)| = O(t∞), t ↓ 0.

That is, we claim that the patchwork heat kernel is equal to the true heat kernel
with an error that is O(t∞) for small time. This claim immediately implies our
result, since on Ω0, χ1 = 1, and χ̃1 = 1, whereas χ2 and χ̃2 both vanish, and thus
G(t, z, z′) = HS(t, z, z′).

To prove the claim, we follow the usual template. Observe that

E(t, z, z′) := (∂t +Δ)G(t, z, z) =
2∑
j=1

[Δ, χ̃j (z)]HS(t, z, z′)χj (z′).

Each commutator [Δ, χ̃j (z)] is a first-order differential operator with support a
positive distance from the support of χj . Thus E(t, z, z′) is a sum of model heat
kernels and their first derivatives, cut off so that their spatial arguments are a positive
distance from the diagonal. We claim each such term is O(t∞). To obtain this
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estimate, we use [30, Theorem 1.1], which gives the estimate

|∇HD(t, z, z′)| ≤ Cα

t(n+1)/2
exp

(
−|z− z′|

Cβt

)
, z, z′ ∈ D,

for some constants Cα,Cβ > 0, for D = Ω and D = S. The setting there is
not identical, so we note the places in the proof where minor modifications are
required. First, the assumption that Ω is compact is used there to obtain estimates
for all t > 0. In particular, the discreteness of the spectrum is used to obtain long
time estimates by exploiting the first positive eigenvalue in (2.1) of [30]. Since
we are only interested in t ↓ 0, this long time estimate is not required. Next,
compactness is used to be able to estimate the volume of balls, |B(x,√t)| ≥ Cεt

n
2 ,

for a uniform constant Cε . However, we have this estimate due to the two-sided
(ε, h)-cone condition which is satisfied for both Ω and S which are contained in
R
n. Moreover, we have verified (Wang, private communication) that the assumption

of piecewise C 2 boundary (rather than C 2 boundary) is sufficient for the proof of
[30, Theorem 1.1], as well as the references used therein: [31–33].5

Since the domains S andΩ satisfy the two-sided (ε, h)-cone condition, there are
Gaussian upper bounds for the corresponding Neumann heat kernels. Specifically,
as a result of [4, Theorems 6.1, 4.4], for any T > 0, there exist C1, C2 > 0 such that

|HS(t, z, z′)| ≤ C1t
− n

2 e
− |z−z′ |2

C2t , |HΩ(t, z, z′)| ≤ C1t
− n

2 e
− |z−z′ |2

C2t (3)

on (0, T ] × S× S and (0, T ] ×Ω ×Ω respectively. The upshot is that each term in
the sum defining E(t, z, z′) is uniformlyO(t∞) for all z and z′ in Ω , and therefore

|E(t, z, z′)| = O(t∞).

From here, the error may be iterated away using the usual Neumann series
argument, as in [19] or Section 4 of [26]. Letting ∗ denote the operation of
convolution in time and composition in space, define

K := E − E ∗E + E ∗ E ∗ E − . . . .

It is an exercise in induction to see that K(t, z, z′) is well-defined and also O(t∞)
as t goes to zero, see for example the proof of parts a) and b) of Lemma 13 of [26].
Note that Ω is compact, which is key. Then the difference of the true heat kernel
and the patchwork heat kernel is

HΩ(t, z, z′)−G(t, z, z′) = −(G ∗K)(t, z, z′).

5We have also verified in private communication with F. Y. Wang that the arguments in [30–33]
apply equally well under the curvature assumption I ≥ −σ for piecewise C 2 boundary.
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As in Lemma 14 of [26], this can also be bounded in straightforward fashion by
O(t∞), which completes the proof. "#

The key ingredients in this patchwork construction are: (1) the model heat kernels
satisfy off-diagonal decay estimates, and (2) the gradients of these model heat
kernels satisfy similar estimates. The argument can therefore be replicated in any
situation where all models satisfy those estimates. Here is one generalization:

Corollary 2 Using the notation of Theorem 4, suppose that Ω is compact and that
the heat kernels on bothΩ and S satisfy off-diagonal bounds of the following form:
if A and B are any two sets with d(A,B) > 0, then uniformly for z ∈ A and z′ ∈ B,
we have

|H(t, z, z′)| + |∇H(t, z, z′)| = O(t∞) as t → 0. (4)

Then the conclusion of Theorem 4 holds.

Proof Apply the same method, with a partition of unity onΩ consisting of just two
components, one cutoff function for Ω0 where we use the model heat kernel HS ,
and one cutoff function for the rest of Ω where we use HΩ . The result follows.

Remark 1 The bounds (4) are satisfied, for example, by Neumann heat kernels on
compact, convex domains with no smoothness assumptions on the boundary [30],
as well as by both Dirichlet and Neumann heat kernels on sectors, half-spaces, and
Euclidean space.

2.4 Locality for Robin Boundary Condition

In this section, we determine when locality results similar to those of Theorem 4
hold for the Robin problem. The answer is that in many cases they may be deduced
from locality of the Neumann heat kernels. We consider a generalization of the
classical Robin boundary condition (2)

∂

∂n
u(x)+ c(x)u(x) = 0, x ∈ the smooth pieces of ∂D. (5)

In the first version of the locality principle, to simplify the proof, we shall
assume that Ω ⊂ S, and that Ω is bounded. We note, however, that both of
these assumptions can be removed in the corollary to the theorem. The statement
of the theorem may appear somewhat technical, so we explain the geometric
interpretations of the assumptions. Conditions (1) and (2) below are clear; they are
required to apply our references [30] and [4]. Items (3), (4), and (5) mean that the
(possibly unbounded) domain, D = S (and as in the corollary, in which Ω may be
unbounded, D = Ω) has boundary which does not oscillate too wildly or “bunch
up” and become space-filling. These assumptions are immediately satisfied when
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the domains are bounded or if the boundary consists of finitely many straight pieces
(like a sector in R

2, for example).

Theorem 5 (Locality Principle for Robin Boundary Condition) Assume thatΩ
and S are exact geometric matches on Ω0, as in Definition 1, with Ω0 ⊂ Ω ⊂ S ⊂
R
n. Assume thatΩ is bounded. LetKS(t, x, y) andKΩ(t, x, y) be the heat kernels

for the Robin Laplacian with boundary condition (5) for D = S and D = Ω ,
respectively, for the same c(x) ∈ L∞(∂S ∪ ∂Ω). Let α := dist(Ω0, S \ Ω), and
note that α > 0 by our assumption of an exact geometric match. Define the auxiliary
domain

W := {x ∈ Ω : d(x,Ω0) ≤ α/2}.

We make the following geometric assumptions:

1. Both S and Ω satisfy the two-sided (ε, h)-cone condition;
2. Both S andΩ have piecewise C 3 boundaries, and there exists a constant σ ∈ R

such that the second fundamental form satisfies I ≥ −σ on all the C 3 pieces of
both ∂S and ∂Ω .

3. For any sufficiently small r > 0 and any t > 0, we have

sup
x∈W

∫ t

0

∫
∂S\B(x,r)

1

s
n
2
e−

|x−z|2
s σ (dz)ds < ∞; (6)

4. For all r > 0 and all x ∈ R
n, and both D = S and D = Ω , there is a constant

CD such that

H n−1(∂D ∩ (B(x, r)) ≤ CDVoln−1(Bn−1(x, r)), (7)

where H n−1 denotes the n− 1 dimensional Hausdorff measure;
5. If Gn(x, y) is the free Green’s function on R

n, we have

sup
x∈W

∫
∂Ω

Gn(x, y)σ (dy) < ∞. (8)

Then, uniformly onΩ0 ×Ω0, we have Robin locality:

|KS(t, z, z′)−KΩ(t, z, z′)| = O(t∞), ∀ z, z′ ∈ Ω0, t → 0.

The assumptions thatΩ ⊂ S and that Ω is bounded can both be removed:

Corollary 3 Suppose we have an exact geometric match between Ω and S on the
bounded domain Ω0, and the Robin coefficient c(x) agrees on a common open,
bounded neighborhood Ωc of Ω0 in Ω and S. Then, as long as Theorem 5 holds
for the pairs (Ω0,Ω) and (Ω0, S), the conclusion of Theorem 5 holds for the pair
(Ω, S).
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Proof Apply Theorem 5 to the pairs (Ω0,Ω) and (Ω0, S), using the same W , then
use the triangle inequality. "#

Before we prove Theorem 5, we discuss the geometric assumptions (6), (7),
and (8), and give some sufficient conditions for them to hold. First, observe that
regardless of what W is, (6) is immediately valid if S is a bounded domain whose
boundary has finite n − 1 dimensional Lebesgue measure. It is also valid if S is an
infinite circular sector, by a direct computation, part of which is presented below.

Example 1 Let S = Sγ ⊂ R
2 be a circular sector of opening angle γ and infinite

radius. Assume that W and Ω are bounded domains such that W ⊂ Ω ⊂ S, and
assume for simplicity that W contains the corner of S; see Fig. 2 (the case where
this does not happen is similar.) Then (6) holds. Indeed, let r ∈ (0, α/2) and t > 0,
then

sup
x∈W

∫ t

0

∫
∂S\B(x,r)

1

s
e−

|x−z|2
s σ (dz)ds

≤ sup
x∈W

∫ t

0

∫
∂S\∂Ω

1

s
e−

|x−z|2
s σ (dz)ds + sup

x∈W

∫ t

0

∫
(∂S∩∂Ω)\B(x,r)

1

s
e−

|x−z|2
s σ (dz)ds

≤ 2
∫ t

0

∫ ∞

0

1

s
e−

τ2
s dτds +

∫ t

0

1

s
e−

r2
s

∫
(∂S∩∂Ω)

σ (dz)ds < ∞.

Moreover, recalling the Green’s function in two dimensions (9), we also have

sup
x∈W

∫
∂Ω∩B(x,r)

Gn(x, y)σ(dy) = sup
x∈W

∫
∂Ω∩B(x,r)

| ln |x−z||σ(dz) ≤
∫ α

0
| ln τ |dτ < ∞.

As for (7), this is automatic if D is a bounded domain with piecewise C 1

boundary. It is also true if D is a circular sector (in fact here CD = 2).
The condition (8) is also easy to satisfy:

Proposition 1 Assume that Ω is a bounded domain in R
n which has piecewise C 3

boundary. Let W ⊂ Ω be a compact set; then (8) holds.

Proof Recall that

Gn(x, y) =
{
| ln |x − y||, if n = 2;
|x − y|2−n, if n ≥ 3.

(9)

Since W is compact, it is enough to prove that

x →
∫
∂Ω

Gn(x, y)σ (dy) (10)

is a continuous function on W .
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Fix x ∈ W . Let ε > 0 and {xj }∞j=1 ⊂ W be a sequence such that xj → x. Since

∂Ω is piecewise C 3, and Gn(x, y) is in L 1
loc, we can choose δ > 0 such that

∫
∂Ω∩B(x,2δ)

Gn(x, y)σ (dy) < ε,

∫
∂Ω∩B(x,2δ)

Gn(xj , y)σ (dy) < ε, (11)

for sufficiently large j ∈ N, such that for these j we also have |x − xj | < δ. To
see this, we note that Gn(x, y) = Gn(|x − y|) = Gn(r), where r = |x − y|, and
similarly, Gn(xj , y) = Gn(rj ) with rj = |xj − y|. Thus, choosing the radius, 2δ,
sufficiently small, sinceGn is locally L 1(∂Ω) integrable, and ∂Ω is piecewise C 3,
we can make the above integrals as small as we like.

Now, we note that Gn(xj , y) → Gn(x, y) as j → ∞, for y ∈ ∂Ω \ B(x, 2δ).
Moreover, since Ω and thus ∂Ω are both compact, Gn(xj , y) < C = C(δ) for
y ∈ ∂Ω \ B(x, 2δ). The Dominated Convergence Theorem therefore implies

∣∣∣∣
∫
∂Ω\B(x,2δ)

(Gn(x, y)−Gn(xj , y))σ (dy)

∣∣∣∣ < ε

for sufficiently large j ∈ N. This, together with (11), implies that the function (10)
is continuous on W .

In summary, we have

Corollary 4 The locality principle, Theorem 5, holds in the case where Ω is a
bounded domain in R

n with piecewise C 3 boundary, and S is any domain with
piecewise C 3 boundary such that Ω and S are an exact geometric match on the
bounded subdomainΩ0 as in Definition 1. Moreover, we assume that:

1. Both S and Ω satisfy the two-sided (ε, h)-cone condition;
2. There exists a constant σ ∈ R such that the second fundamental form satisfies

I ≥ −σ on both ∂S and ∂Ω;
3. S satisfies (6) and (7);
4. The Robin coefficient c(x) ∈ L∞(∂S∪ ∂Ω) agrees on a common open bounded

neighborhoodΩc in Ω and S.

Remark 2 In particular, all assumptions are satisfied if Ω is a bounded polygonal
domain in R

2, and S is a circular sector in R
2.

The proof of Theorem 5 is accomplished by proving several estimates, in the
form of lemmas and propositions below. Since the domains S andΩ satisfy the two-
sided (ε, h)-cone condition, there are Gaussian upper bounds for the corresponding
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Neumann heat kernels as given in (3). With this in mind, define

F1(t) := sup
(s,x,z)∈(0,t ]×W×(S∩Ω)

∣∣∣HS(s, x, z)−HΩ(s, x, z)

∣∣∣ ,

F2(t) := sup
(s,x,z)∈(0,t ]×W×S\Ω

∣∣∣HS(s, x, z)

∣∣∣ ,
F3(t) := sup

(s,x,z)∈(0,t ]×W×∂Ω\∂S

∣∣HΩ(s, x, z)
∣∣ .

It now follows from (3) and Theorem 4 that

F(t) := max(F1(t), F2(t), F3(t)) = O(t∞), t → 0. (12)

The reason we require the Neumann heat kernels is because, as in [24, 35],6

the Robin heat kernels, KS(t, x, y) and KΩ(t, x, y), can be expressed in terms of
HS(t, x, y) and HΩ(t, x, y) in the following way. Define

kD0 (t, x, y) = HD(t, x, y), D = S andD = Ω,

and

kDm(t, x, y) =
∫ t

0

∫
∂D

HD(s, x, z)c(z)kDm−1(t − s, z, y)σ (dz)ds (13)

form ∈ N. Then

KS(t, x, y) =
∞∑
m=1

kSm(t, x, y), KΩ(t, x, y) =
∞∑
m=1

kΩm (t, x, y).

Let us define the function

A(t, x) :=
∫ t

0

∫
∂S

∣∣∣HS(s, x, z)c(z)

∣∣∣σ(dz)ds+
∫ t

0

∫
∂Ω

∣∣HΩ(s, x, z)c(z)
∣∣ σ(dz)ds

= : A1(t, x)+ A2(t, x)

(14)

on (0, 1] × W . The following lemma, in particular, shows that A(t, x) is a well
defined function.

Lemma 1 The function A(t, x) is uniformly bounded on (0, 1] ×W .

6We note that the result is stated for compact domains. However, the construction is purely formal
and works as long as the series converges. Under our assumptions, we shall prove that it does.
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Proof For n = 1 the lemma follows from (3). Hence, we assume here n ≥ 2. For
any x ∈ W , Aj(t, x), j = 1, 2, is an increasing function with respect to the variable
t ∈ (0, 1]. Therefore, it is sufficient to prove that Aj(x) := Aj(1, x) is bounded on
W , for j = 1, 2.

Let us choose 0 < ρ < min(α/2, 1). Without loss of generality, setting C1 =
C2 = 1 in (3), we obtain

A1(x)+ A2(x)

≤
∫ 1

0

∫
∂S\B(x,ρ)

s− n
2 e−

|x−z|2
s |c(z)|σ(dz)ds +

∫ 1

0

∫
∂S∩B(x,ρ)

s− n
2 e−

|x−z|2
s |c(z)|σ(dz)ds

+
∫ 1

0

∫
∂Ω\B(x,ρ)

s− n
2 e−

|x−z|2
s |c(z)|σ(dz)ds+

∫ 1

0

∫
∂Ω∩B(x,ρ)

s− n
2 e−

|x−z|2
s |c(z)|σ(dz)ds

=: J1(x)+ J2(x)+ J3(x)+ J4(x).

The boundedness of J1(x) on W follows from (6) and the assumption that c(z) ∈
L∞. For J3(x) we estimate using only that ∂Ω is bounded and thus, since it is
piecewise C 3, has finite measure,

J3(x) ≤ ‖c‖∞
∫ 1

0

1

s
n
2
e−

ρ2

s

∫
∂Ω\B(x,ρ)

σ (dz)ds < ∞.

Since ρ < α/2, ∂S ∩ B(x, ρ) = ∂Ω ∩ B(x, ρ) for x ∈ W , and hence by Fubini’s
theorem and a change of variables

J2(x) = J4(x) =
∫ 1

0

∫
∂Ω∩B(x,ρ)

s−
n
2 e−

|x−z|2
s |c(z)|σ(dz)ds

≤ ‖c‖∞
∫
∂Ω∩B(x,ρ)

1

|x − z|n−2

∫ +∞

|x−z|2
τ
n
2 −2e−τ dτσ (dz).

For n > 2, the second integral is uniformly bounded, and hence, (8) implies that
J2(x) and J4(x) are bounded on W . If on the other hand n = 2, then

J2(x) = J4(x) =
∫
∂Ω∩B(x,ρ)

|c(z)|
∫ +∞

|x−z|2
τ−1e−τ dτσ (dz).

Since ρ < 1, ρ2 < ρ < 1, so we can write

J2(x) = J4(x) ≤
∫
∂Ω∩B(x,ρ)

|c(z)|
∫ 1

|x−z|2
τ−1dτσ (dz)+

∫
∂Ω∩B(x,ρ)

|c(z)|
∫ +∞

1
e−τ dτσ (dz)

≤ ‖c‖∞
∫
∂Ω∩B(x,ρ)

∣∣∣ln |x − z|2
∣∣∣ σ(dz)+ ‖c‖∞

∫
∂Ω∩B(x,ρ)

σ (dz),
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which is finite by (8), the boundedness of ∂Ω and the piecewise C 3 smoothness of
the boundary. "#
Corollary 5 In the notation of Lemma 1, we have

lim
T→0

sup
(t,x)∈(0,T ]×W

A(t, x) = 0.

Proof Consider the functions Aj(t, x). They are monotone increasing in t for each
x, and they are continuous in x for each t by continuity of solutions to the heat
equation. We claim that as t → 0, A(t, x) approaches zero pointwise. To see this
write the time integral from 0 to t in each Aj(t, x), j = 1, 2, as a time integral over
[0, 1] by multiplying the integrand by the characteristic function χ[0,t ]. For example,

A1(t, x) =
∫ 1

0

∫
∂S

χ[0,t ]|HS(s, x, z)c(z)| σ(dz)ds.

The integrands are bounded by |HS(s, x, z)c(z)|, which is integrable by Lemma 1.
For each x, they converge to zero as t → 0. So by the Dominated Convergence
Theorem applied to each Aj(t, x), we see that A(t, x)→ 0 as t → 0 for each x.

Now we have a monotone family of continuous functions converging pointwise
to a continuous function (zero) on the compact set W . By Dini’s theorem, this
convergence is in fact uniform, which is precisely what we want. "#

To use this, fix a small number A to be chosen later. Then Corollary 5 allows us
to find T > 0 such that

A(t, x) < A, (t, x) ∈ (0, T ] ×W. (15)

Next we prove the following two auxiliary propositions.

Proposition 2 The following inequality holds with D = S andD = Ω:

∫ t

0

∫
∂D

∣∣∣kDm(s, x, z)c(z)
∣∣∣ σ(dz)ds ≤ 2m+1Am+1 (16)

on (0, T ] × W , for any m ∈ N. Moreover, an identical inequality holds when
kDm(s, x, z) is replaced by kDm(s, z, x).

Proof By induction. Form = 0, recalling the definition of A(t, x), (14),

∫ t

0

∫
∂D

|kD0 (s, x, z)c(z)|σ(dz)ds =
∫ t

0

∫
∂D

|HD(s, x, z)c(z)|σ(dz)ds ≤ A(t, x) < A.
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We have thus verified the base case. Now, we assume that (16) holds for k ≤ m.
Consider k = m+ 1:

∫ t

0

∫
∂D

∣∣∣kDm+1(s, x, z)c(z)

∣∣∣σ(dz)ds

=
∫ t

0

∫
∂D

∫ s

0

∫
∂D

∣∣∣HD(τ, z, ζ )kDm(s − τ, ζ, x)c(ζ )c(z)

∣∣∣σ(dζ )dτσ(dz)ds.
Changing variables:

∫ t

0

∫
∂D

∫ s

0

∫
∂D

∣∣∣HD(τ, z, ζ )kDm(s − τ, ζ, x)c(ζ )c(z)

∣∣∣σ(dζ )dτσ(dz)ds

≤
∫ t

0

∫
∂D

∫ s

0

∫
∂D

∣∣∣HD(s − τ, z, ζ )kDm(τ, ζ, x)c(ζ )c(z)

∣∣∣σ(dζ )dτσ(dz)ds

≤
∫ t

0

∫
∂D

∫ t

0

∫
∂D

∣∣∣HD(|s − τ |, z, ζ )kDm(τ, ζ, x)c(ζ )c(z)
∣∣∣σ(dζ )dτσ(dz)ds

≤
∫ t

0

∫
∂D

(∫ t

0

∫
∂D

∣∣∣HD(|s − τ |, z, ζ )c(z)
∣∣∣σ(dz)ds

) ∣∣∣kDm(τ, ζ, x)c(ζ )
∣∣∣σ(dζ )dτ.

(17)

For the integrand, we compute

∫ t

0

∫
∂D

∣∣∣HD(|s − τ |, z, ζ )c(z)
∣∣∣σ(dz)ds

=
∫ τ

0

∫
∂D

∣∣∣HD(|s − τ |, z, ζ )c(z)
∣∣∣ σ(dz)ds +

∫ t

τ

∫
∂D

∣∣∣HD(|s − τ |, z, ζ )c(z)
∣∣∣ σ(dz)ds

=
∫ τ

0

∫
∂D

∣∣∣HD(τ − s, z, ζ )c(z)

∣∣∣ σ(dz)ds +
∫ t−τ

0

∫
∂D

∣∣∣HD(s, z, ζ )c(z)
∣∣∣ σ(dz)ds < 2A.

Therefore, from the induction hypothesis and (17), we obtain

∫ t

0

∫
∂D

∫ s

0

∫
∂D

∣∣∣HD(τ, z, ζ )kDm(s − τ, ζ, x)c(ζ )c(z)

∣∣∣σ(dζ )dτσ(dz)ds

≤ 2A
∫ t

0

∫
∂D

∣∣∣kDm(τ, ζ, x)c(ζ )
∣∣∣σ(dζ )dτ ≤ 2A · 2m+1Am+1 = 2m+2Am+2,

as desired.
The estimates with x and z reversed are proved similarly. Note in particular that

the base case works because kD0 = HD
0 is a Neumann heat kernel and is thus

symmetric in its spatial arguments. "#
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We need one more lemma concerning pointwise bounds for kDm , which uses the
geometric assumption (7).

Lemma 2 Let D = S orΩ . There exists T0 > 0 such that for all m, all t < T0, all
x ∈ D, and all y ∈ D,

|kDm(t, x, y)| ≤ C1

2m
t−

n
2 e

− |x−y|2
C2 t .

Proof The proof proceeds by induction. The base case is m = 0, which is (3).
Now assume we have the result for k = m. Using the iterative formula (13), we

have

|kDm+1(t, x, y)| ≤ ||c||∞
∫ t

0

∫
∂D

|HD(s, x, z)kDm(t − s, z, y)| σ(dz)ds. (18)

Using (3) and the inductive hypothesis, we see that the integrand is bounded by

C1C12−ms−n/2(t − s)−n/2e−
1
C2
(
|x−z|2
s

+ |z−y|2
t−s )

.

First assume thatD is a half-space. We do the estimate in the case n = 2, because
the general case is analogous. Hence, we use the coordinates x = (x1, x2), y =
(y1, y2), z = (z1, z2), and estimate using {z2 = 0} ⊂ R

2 for ∂D. Dropping the
constant factors, and saving the integral with respect to time for later, we therefore
estimate

∫
R

s−1(t − s)−1e
− |x−z|2

C2s
− |y−z|2
C2(t−s) dz1.

Without loss of generality, we shall assume that x = (0, 0). Then we are estimating

∫
R

s−1(t − s)−1e
−z21(t−s)−s|y−z|2

C2s(t−s) dz1.

Since z ∈ ∂D, we have z2 = 0. For the sake of simplicity, set y2 = 0; the case
where y2 is nonzero is similar. Given this assumption, we set

z := z1, y := y1,

and estimate

∫
R

s−1(t − s)−1e
−z2(t−s)−s(y−z)2

C2s(t−s) dz.
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We do the standard trick of completing the square in the exponent. This gives

∫
R

s−1(t − s)−1 exp

⎡
⎣−

( √
tz− sy√

t√
C2

√
s
√
t − s

)2

− y2

C2(t − s)
+ sy2

C2t (t − s)

⎤
⎦ dz.

We therefore compute the integral over R in the standard way, obtaining

s−1/2(t − s)−1/2

√
C2π

t
e
− y2

C2(t−s)+
sy2

C2 t (t−s) = s−1/2(t − s)−1/2

√
C2π

t
e

−ty2+sy2

C2t (t−s)

= s−1/2(t − s)−1/2

√
C2π

t
e
− y2

C2t .

Finally, we compute the integral with respect to s,

∫ t

0

1√
s

1√
t − s

ds = π.

Hence, the total expression is bounded from above by

π

√
C2π

t
e
− y2

C2 t .

Since we had assumed that x = 0, we see that this is indeed

π

√
C2π

t
e
− |x−y|2

C2 t .

Recalling the constant factors, we have

|kDm+1(t, x, y)| ≤ C1C1||c||∞2−mπ
√
C2π

t
e
− |x−y|2

C2 t .

Now we note that the power of t is t−(n−1)/2 for dimension n = 2. Hence, we
re-write the above estimate as

|kDm+1(t, x, y)| ≤ C1C1||c||∞2−mπ
√
tt−1

√
C2πe

− |x−y|2
C2t .

We then may choose for example

t ≤ T0 = 1

4(C1 + 1)2(||c||∞ + 1)2π3(C2 + 1)

8⇒ √
t ≤ 1

2(C1 + 1)(||c||∞ + 1)π
3
2
√
C2 + 1

.
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This ensures that

|kDm+1(t, x, y)| ≤ C12−(m+1)t−
n
2 e

− |x−y|2
C2 t , n = 2.

We note that in general, for Rn, by estimating analogously, noting that the integral
will be over Rn−1, we obtain

|kDm+1(t, x, y)| ≤ ||c||∞2−mπ(C2π)
n/2t−(n−1)/2e

− |x−y|2
C2 t .

So, in the general-n case, we let

T0 = 1

4(C1 + 1)2(||c||∞ + 1)2π2+n(C2 + 1)n
.

Then, for all t ≤ T0, we have

|kDm+1(t, x, y)| ≤ C12−m−1t−
n
2 e

− |x−y|2
C2t .

Now consider the case whereD is a general domain, not necessarily a half-space.
As before, we have

|kDm+1(t, x, y)| ≤ ||c||∞C2
1

2m

∫ t

0

∫
∂D

s−n/2(t − s)−n/2e−
1
C2
(
|x−z|2
s

+ |z−y|2
t−s )

σ (dz)ds.

(19)

We claim that the right-hand side of (19) is less than or equal to CD , the constant
from (7), times the corresponding integral in the case where D is a half-plane
through x and y. Assuming this claim, we get the same bound as for a half-plane,
but with an extra CD , and adjusting T0 to absorb CD as well, by putting an extra
(CD + 1)2 in the denominator, completes the proof.

To prove this claim, we use the so-called layer cake representation: rewrite the
right-hand side of (19), without the outside constants, as

∫ t

0
s−n/2(t − s)−n/2

∫
∂D

∫ ∞

0
χ{f (s,t,x,y,z)<a}e−a daσ(dz)ds, (20)

where naturally

f (s, t, x, y, z) := 1

C2

( |x − z|2
s

+ |z− y|2
t − s

)
.

The representation (20) may seem odd at first but reverts to (19) upon integration
in a. Switching the order of integration in (20) (valid by Fubini-Tonelli, since
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everything is positive) and evaluating the z-integral, this becomes

∫ t

0
s−n/2(t−s)−n/2

∫ ∞

0
H n−1(∂D∩{z : f (s, t, x, y, z) < a})e−a dads. (21)

Let us more closely examine the set {z : f (s, t, x, y, z) < a}. It is the set where

(
1 − s

t

)
|x − z|2 + s

t
|z− y|2 < 1

t
C2as(t − s).

It is straightforward to compute that this set is in fact a ball centered at the point
P(s, t, x, y) := (1 − s

t
)x + s

t
y, with radius squared equal to

R2(s, t, x, y) := max

{
0,

1

t
C2as(t − s)− s

t

(
1 − s

t

)
|y − x|2

}
.

Therefore (21) equals

∫ t

0
s−n/2(t − s)−n/2

∫ ∞

0
H n−1(∂D ∩ Bn(P,R))e−a dads. (22)

By the assumption (7), this is bounded by

CD

∫ t

0
s−n/2(t − s)−n/2

∫ ∞

0
Voln−1(Bn−1(P,R))e

−a dads. (23)

However, in the event thatD is a half-space with x and y ∈ ∂D (so also P ∈ ∂D),
we have ∂D ∩ Bn(P,R) = Bn−1(P,R), so (22) equals

∫ t

0
s−n/2(t − s)−n/2

∫ ∞

0
Voln−1(Bn−1(P,R))e

−a dads. (24)

Therefore, the integral (22) for generalD is bounded by CD times the integral (22)
for a half-space. Since (22) is equal to the right-hand side of (19) without the
preceding constants, the claim is proven. This completes the proof of Lemma 2. "#
Remark 3 The key is that the integral is half an order better in t than the true heat
kernel, which is a critical feature of the difference between Robin and Neumann
heat kernels. It allows us to utilize the extra

√
t to obtain the additional factor of

2−m which is required for the induction step in the next proposition.

Now, we establish the main estimate to prove Theorem 5. Let

G(t) = max

{
F(t), 2C1t

−(n/2)e−
(α/2)2

C2 t

}
.

We note that of course we still have G(t) = O(t∞) as t ↓ 0.
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Proposition 3 There exists T > 0 such that the estimate

|kSm(t, x, y)− kΩm (t, x, y)| ≤ G(t) · 7 · 2−m (25)

holds for all (t, x, y) ∈ (0, T ] ×W ×Ω0.

Proof We choose T small enough so that T < T0 in Proposition 3 and so that (15)
holds with A = 1/4.

Now proceed by induction. The base case is instantaneous by definition of k0 and
ofF(t), using our locality principle for the Neumann case. So assume that (25) holds
for k = m; we will prove it for k = m+ 1. Using some algebraic manipulations,

I := |kSm+1(t, x, y)− kΩm+1(t, x, y)| ≤ I1 + I2 + I3

:=
∫ t

0

∫
∂S∩∂Ω

∣∣∣HS(s, x, z)kSm(t − s, z, y)−HΩ(s, x, z)kΩm (t − s, z, y)

∣∣∣ |c(z)|σ(dz)ds

+
∫ t

0

∫
∂S\∂Ω

|HS(s, x, z)kSm(t − s, z, y)c(z)|σ(dz)ds

+
∫ t

0

∫
∂Ω\∂S

|HΩ(s, x, z)kΩm (t − s, z, y)c(z)|σ(dz)ds.

We estimate these terms separately, beginning with I1.

I1 ≤
∫ t

0

∫
∂S∩∂Ω

∣∣∣HS(s, x, z)− HΩ(s, x, z)

∣∣∣ |kSm(t − s, z, y)||c(z)|σ(dz)ds

+
∫ t

0

∫
W∩∂S∩∂Ω

∣∣∣kSm(t − s, z, y)− kΩm (t − s, z, y)

∣∣∣ ∣∣HΩ(s, x, z)
∣∣ |c(z)|σ(dz)ds

+
∫ t

0

∫
(Ω\W)∩∂S∩∂Ω

∣∣∣kSm(t − s, z, y)− kΩm (t − s, z, y)

∣∣∣ ∣∣HΩ(s, x, z)
∣∣ |c(z)|σ(dz)ds.

The first term in the first integral is bounded by F(t), since x ∈ W and z ∈ Ω , so
we may pull it out. We estimate the other term with Proposition 2 and get a bound
of F(t) · 2m+1Am+1 = F(t) · 2−(m+1) for the first integral.

For the second integral, we pull out the supremum of the first term using the
inductive hypothesis. We estimate the other term using the definition of A and we
get a bound of G(t) · 7 · 2−m−2.

For the third integral, we use Lemma 2 to pull out the first term, ignoring the
difference and just estimating both k terms separately. Since |z − y| ≥ α/2 on this
region, the supremum is less than 2−mG(t) by Lemma 2. We estimate the other term
using the definition of A and we get 1/4, giving a bound of 2−m−2G(t). Overall, we
have

I1 ≤ G(t)(2−m−1 + 7 · 2−m−2 + 2−m−2).
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Next we estimate the terms I2, I3. In each, we pull out the supremum of
HS(s, x, z) over the relevant region, and observe that it is bounded above by F(t).
For the term remaining in the integral we use Proposition 2. Since F(t) ≤ G(t), we
obtain a bound of G(t) · 2−m−1 for each of these two terms. Putting it all together,
we see

I ≤ G(t)(3·2−m−1+7·2−m−2+2−m−2) = G(t)·2−m−1
(

3 + 7

2
+ 1

2

)
= G(t)·7·2−m−1,

as desired. "#
Proof Finally, we prove Theorem 5. By Proposition 3,

|KS(t, x, y)−KΩ(t, x, y)| ≤
∞∑
m=0

|kSm(t, x, y)− kΩm (t, x, y)|

≤
∞∑
m=0

7G(t)2−m = 14 ·G(t),

which is O(t∞) as t → 0. "#

3 Hearing the Corners of a Drum

As a consequence of the work in the previous section, the locality principle holds for
both the Neumann and Robin boundary conditions whenΩ is a bounded domain as
described in Theorem 1, and S is either a whole space, a half-space, a circular sector,
or a smoothly bounded domain which is an exact geometric match for some piece
of Ω . Therefore, to compute the heat trace expansion for Ω ⊂ R

2 satisfying the
hypotheses of Theorem 1, it suffices to chop the domain into pieces and, depending
on the piece, replace the true heat kernel with one of the following:

• the heat kernel for an infinite circular sector with the same opening angle and
boundary conditions near a corner of Ω ,

• the heat kernel for a smoothly bounded domain which is an exact match to Ω
away from all the corners. Note that such a domain can be produced by rounding
off each corner.

Henceforth we consider the Neumann boundary condition or the classical Robin
boundary condition as in (2), so that in (5), c(x) is a constant, specifically
c(x) = α/β. In [23] we prove that the “corner contribution” for the Robin
boundary condition is identical to that for the Neumann boundary condition. In the
aforementioned work, we determine the Green’s function for a circular sector of
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infinite radius and opening angle γ , with the Neumann boundary condition in polar
coordinates:

GN(s, r, φ, r0, φ0) = 1

π2

∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)×

{
cosh(π − |φ0 − φ|)μ

+ sinhπμ

sinh γμ
cosh(φ + φ0 − γ )μ+ sinh(π − γ )μ

sinh γμ
cosh(φ − φ0)μ

}
dμ. (26)

Above,Kiμ is the modified Bessel function of the second kind, and s is the spectral
parameter of the resolvent, (Δ+ s)−1. The derivation of these formulas stems from
Fedosov’s study of Kontorovich-Lebedev transforms [7] and shall be presented in
our forthcoming work [23]. Using functional calculus techniques, as we do in [23],
one may rigorously justify the statement that

H(t, r, φ, r0, φ0) = L −1 (G(s, r, φ, r0, φ0)) (t),

where H denotes the heat kernel and L −1 denotes the inverse Laplace transform
taken with respect to s. This allows us to pass from the Green’s functions to the heat
kernels on a sector, and we may then compute the short time asymptotic expansions
of the heat traces using our locality principles.

3.1 Heat Trace Calculations

Let Ω be a domain with corners as described in Theorem 1. Assume that Ω has n
corners. Let Ni be a neighborhood of the ith corner consisting of a circular sector
of radius R, with R sufficiently small so that each Ni can be taken to equal toΩ0 in
the definition of exact geometric match corresponding to Si , where Si is the infinite
circular sector of interior angle equal to the angle θi . Then let U be a smoothly
bounded domain such that U can be taken equal to S in the definition of exact
geometric match, with Ω0 = Ω \ {Ni}ni=1. By our locality principles, the heat trace

∫
Ω

HΩ(t, z, z)dz =
∫
Ω\{Ni }ni=1

HU(t, z, z)dz+
n∑
i=1

∫
Ni

H Si (t, z, z)dz+O(t∞).

(27)

The calculation of the asymptotics of the integral of HU(t, z, z) is well-known
and may be extracted from [21], [25] and [35]. More interesting is the calculation
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of the heat trace near the corners. Let us define:

A :=
∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s) cosh(π − |φ0 − φ|)μdμ,

B :=
∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)

sinhπμ

sinh γμ
cosh(φ + φ0 − γ )μdμ

C :=
∫ ∞

0
Kiμ(r

√
s)Kiμ(r0

√
s)

sinh(π − γ )μ

sinh γμ
cosh(φ − φ0)μdμ,

With this terminology, the Neumann Green’s function for an infinite sector is
given by

1

π2 (A+ B + C) .

We shall compute the heat trace contributions from each of these terms. In each
calculation, we will take the inverse Laplace transform, restrict to the angular
diagonal φ = φ0 (which commutes with L −1), integrate in φ (same), restrict to
r = r0, and integrate in r .

3.1.1 Heat Trace Contribution from the A Term

Setting φ = φ0, we have by Gradshteyn and Ryzhik [10, 6.794.1]

∫ ∞

0
Kix(r

√
s)Kix(r0

√
s) cosh(πx)dx = π

2
K0(
√
(r − r0)2s).

Then, by Erdelyi et al. [6, 5.16.35], we have

L −1 [A] = L −1
[π

2
K0(
√
(r − r0)2s)

]
= π

2

1

2

1

t
e−

(r−r0)2
4t .

Hence for φ = φ0,

1

π2
L −1(A) = e−

(r−r0)2
4t

4πt
. (28)

Setting r = r0 gives (4πt)−1, and integrating over Ni , the contribution from this
term to the heat trace is the usual area term:

A(Ni )

4πt
.
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3.1.2 Heat Trace Contribution from the B Term

Now we investigate the contribution from B. The first simplification is to restrict to
φ = φ0, then compute

∫ γ

0
B|φ=φ0dφ =

∫ γ

0
Kix(r

√
s)Kix(r0

√
s)

sinhπx

sinhγ x
cosh(2φ − γ )xdφ.

The only dependence on the angle is in the cosh term, which may be explicitly
integrated, and we obtain

∫ γ

0
B|φ=φ0dφ =

∫ ∞

0
Kix(r

√
s)Kix(r0

√
s)

sinhπx

x
dx = π2

2
I0(r0

√
s)K0(r

√
s),

where in the last equality we have used [10, 6.794.10]. Now take the inverse Laplace
transform:

L −1
[∫ γ

0
B|φ=φ0dφ

]
= L −1

[
π2

2
I0(r0

√
s)K0(r

√
s)

]
= π2

2

1

2t
e−

r2+r20
4t I0(

rr0

2t
).

(29)

Thus, we see that

1

π2
L −1

[∫ γ

0
B|φ=φ0dφ

]
= 1

4t
e−

r2+r20
4t I0(

rr0

2t
). (30)

To compute the trace, we make a change of variables, by setting

u = r2

2t
, du = r

t
dr.

Therefore,

1

4t

∫ R

0
e−r2/2t I0

(
r2

2t

)
rdr = 1

4

∫ R2
2t

0
e−uI0(u)du.

By Watson [34, p. 79 (3)] with ν = 1,

uI ′
1(u)+ I1(u) = uI0(u). (31)

By Watson [34, p. 79 (4)] with ν = 0,

uI ′
0(u) = uI1(u). (32)
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We use these to compute

d

du

(
e−uu(I0(u)+ I1(u))

) = e−u
(−uI0(u)− uI1(u)+ I0(u)+ I1(u)+ uI ′0(u)+ uI ′1(u)

)

= e−u
(−uI1(u)+ I0(u)+ uI ′0(u)

)
(by (31))

= e−uI0(u) (by (32)).

Next, define

g(u) := e−uu(I0(u)+ I1(u)), (33)

and note that we have computed

g′(u) = e−uI0(u).

We therefore have

∫ R2/2t

0
e−uI0(u)du =

(
g(R2/2t)− g(0)

)
.

Since I0(0) = 1 and I1(0) = 0 [34], it follows that g(0) = 0, and we therefore
compute that

∫ R2/2t

0
e−uI0(u)du = g(R2/2t) = e−R2/2t R

2

2t
(I0(R

2/2t)+ I1(R
2/2t)).

For large arguments, the Bessel functions admit the following asymptotic expan-
sions (see [34])

Ij (x) = ex√
2πx

(
1 − 1

2x

(
j2 − 1

4

)
+

∞∑
k=2

cj,kx
−k
)
, x - 0, j = 0, 1.

Consequently, for x = R2/2t ,

g(R2/2t) = R2

2t
e−R2/2t (I0(R

2/2t)+ I1(R2/2t)) = R2

2t

(
2√

2π(R2/2t)

)
−O

(
1

(R2/2t)3/2

)

= R√
πt

+O(
√
t), t ↓ 0.
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Recalling the factor of 1
4 , we see that the trace of B contributes

R

4
√
πt

+O(
√
t), t ↓ 0. (34)

Observe that this is precisely the usual perimeter term:

�(Ni ∩ ∂Ω)
8
√
πt

+O(
√
t).

3.1.3 Heat Trace Contribution from the C Term

Next, we compute the trace of the C term. This is done following [29]. The cosh
term drops out when φ = φ0. Integrating with respect to the angle gives a factor of
γ . We define

R(t) = −L −1
(
γ

π2

∫ ∞

0

sinh(π − γ )x

sinh(γ x)

∫ ∞

R

K2
ix(r

√
s)rdr

)
.

It is shown in [29] that

R(t) = O(e−c/t ),

and in fact an estimate is also obtained there for the constant c > 0. Hence, it suffices
to compute

L −1
(
γ

π2

∫ ∞

0
dx

sinh(π − γ )x

sinh γ x

∫ ∞

0
K2
ix(r

√
s)rdr

)
.

Here we use [10, 6.521.3]. As in that notation we have a = s = b, we must compute
instead the limit of the expression as b → a,

lim
b→a

π(ab)−ν(aν + bν)

2 sin(νπ)(a + b)

f (a)− f (b)

a − b
, f (t) = tν .

Then, since

f ′(t) = νtν−1

we have

lim
b→a

π(ab)−ν(aν + bν)

2 sin(νπ)(a + b)

f (a)− f (b)

a − b
= πa−2ν(2aν)

4 sin(νπ)a
νaν−1 = πν

2 sin(πν)a2 .
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Inserting our parameters, we have that

∫ ∞

0
K2
ix(r

√
s)rdr = πx

2 sinh(πx)s
.

So we must compute

L −1
{
γ

π2

∫ ∞

0

sinh(π − γ )x

sinh γ x

πx

2s sinh(πx)
dx

}
.

This calculation has been done in [29, p. 122] using [10]; we have independently
verified these calculations as well. The result is given in [29, (2.10)]:

π2 − γ 2

24πγ
.

Thus, we see that C contributes to the trace the usual “corner contribution”:

π2 − γ 2

24πγ
+O(t∞). (35)

3.2 Robin Boundary Condition

The Robin heat kernel has an additional contribution from the boundary. In [2,
(3.19)], and more classically [3, §14.2], the Robin heat kernel for a half-space is
computed, and it is equal to the Neumann heat kernel plus one additional term. This
term is

E = − 1√
4πt

e−
(x−x′)2

4t
α

β
e
α(y+y′)

β e
α2t
β2 erfc

(
y + y ′
√

4t
+ α

β

√
t

)
.

3.2.1 Trace of the E Term

The restriction of E to the diagonal yields

− 1√
4πt

α

β
e

2αy
β e

α2t
β2 erfc

(
y√
t
+ α

β

√
t

)
.
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We have to integrate this over the semicircle x2 + y2 ≤ R2. Doing the x-integration
first yields

∫ R

0
−
√
R2 − y2
√
πt

α

β
e

2αy
β e

α2t
β2 erfc

(
y√
t
+ α

β

√
t

)
dy.

We make a substitution by setting

u = y√
t
,

so we obtain

− α√
πβ

e
α2t
β2

∫ R/
√
t

0
e2αu

√
t/β
√
R2 − t2u2 erfc(u+ α

β

√
t)du.

We shall use integration by parts, noting that

d

dz

(
z erfc(z)− e−z2

√
π

)
= erfc(z).

So,

∫ R/
√
t

0
e2αu

√
t/β
√
R2 − t2u2 erfc(u+ α

β

√
t)du

= e2α
√
tu/β
√
R2 − t2u2

[(
u+ α

√
t

β

)
erfc(u+ α

√
t/β)− e−(u+α

√
t/β)2

√
π

]R/√t
u=0

−
∫ R/

√
t

0

(
2α

√
t

β
− t (tu)

R2 − t2u2

)
e2α

√
tu/β
√
R2 − t2u2 erfc(u+ α

√
t/β)du.

It is a straightforward exercise to prove that

∫ R/
√
t

0
e2α

√
tu/β erfc(u+ α

√
t/β)du

is uniformly bounded as t ↓ 0. Hence the second term isO(
√
t) as t ↓ 0, for we can

pull out a factor of
√
t and keep every other term in the integrand bounded above

by a constant. However, as t ↓ 0, the first term converges to Rπ−1/2. Hence, the E
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term gives a contribution of

−αR
πβ

= − α

2πβ
�(Ni ∩ ∂Ω).

This is the usual perimeter term in the Robin setting [35].
The Robin heat trace asymptotics also have a contribution from the corners.

Though we cannot calculate it explicitly here, we do so using geometric microlocal
analysis in [23]. We obtain that the “corner contribution” from an interior angle γ
is the same as in the Neumann case,

π2 − γ 2

24πγ
.

3.3 Heat Trace Expansions and Proof of Theorem 1

It is now straightforward to use (27) to compute the heat trace asymptotics for Ω
by combining our explicit computations of the integrals over Ni with the known
asymptotics [21, 35] for the integrals over Ω \ {Ni}. In addition to the “corner
contribution” from the parametrix at the corner, there is also a contribution from the
model used for the smooth parts of the domain, as turning the corner contributes to
the curvature:

−π − θk

12π
, for an interior angle θk.

We therefore obtain:

(N) for the Neumann boundary condition,

tre−tΔ ∼ |Ω |
4πt

+ |∂Ω |
8
√
πt

+ χ(Ω)

6
− n

12
+

n∑
k=1

π2 + θ2
k

24πθk
+O(

√
t),

(R) for the Robin boundary condition,

tre−tΔ ∼ |Ω |
4πt

+ |∂Ω |
8
√
πt

+ χ(Ω)

6
− |∂Ω |α

2πβ
− n

12
+

n∑
k=1

π2 + θ2
k

24πθk
+O(

√
t).

Now let Ω̃ be a smoothly bounded domain in the plane. The heat trace expansions
have been computed by McKean and Singer [21] for the Neumann boundary
condition and [35] for the Robin condition. These are, respectively,
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(N) for the Neumann boundary condition,

tre−tΔ ∼ |Ω̃|
4πt

+ |∂Ω̃|
8
√
πt

+ χ(Ω̃)

6
+O(

√
t),

(R) for the Robin boundary condition,

tre−tΔ ∼ |Ω̃|
4πt

+ |∂Ω̃|
8
√
πt

+ χ(Ω̃)

6
− |∂Ω̃|α

2πβ
+O(

√
t).

Proof (Theorem 1) If two domains are isospectral, then they have the same heat
trace. Hence, for each power of t in such an expansion, the coefficient must be
identical for both domains. Now, let us assume that Ω satisfies the assumptions
in Theorem 1, so it has at least one corner of interior angle not equal to π . Let
the interior angles at the corners be {θk}nk=1. Let us assume that Ω̃ is a smoothly
bounded domain, and that the we have taken the same boundary condition for the
Laplacian for both Ω and Ω̃ . Assume for the sake of contradiction that Ω and Ω̃
are isospectral. Therefore, their heat trace coefficients coincide. Hence, they have
the same area and perimeter. Since the same boundary condition is taken for both
domains, and thus the same values of α and β in the Robin case, we should have

χ(Ω)

6
− n

12
+

n∑
k=1

π2 + θ2
k

24πθk
= χ(Ω̃)

6
. (36)

We have assumed that Ω is simply connected, but we make no such assumption on
Ω̃ . Hence

χ(Ω) = 1, χ(Ω̃) ≤ 1.

Following the argument on p. 91–92 of [16],

χ(Ω)

6
− n

12
+

n∑
k=1

π2 + θ2
k

24πθk
>

1

6
≥ χ(Ω̃)

6
,

which violates (36). "#

4 Microlocal Analysis in the Curvilinear Case

It turns out that the heat trace expansions above are also valid for curvilinear
polygons, once terms accounting for the curvature of the boundary away from the
corners have been included. Although this has been demonstrated in [16] for the
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Dirichlet boundary condition using monotonicity, it becomes a much more subtle
matter for the Neumann and Robin boundary conditions.

The main problem is that for curvilinear polygons, we no longer have an exact
geometric match. Hence, we can no longer use the locality principle to compute
the heat trace expansion, because there are no known expressions for the heat
kernels. For classical polygons, one may compute the Neumann heat trace using
the Dirichlet heat trace together with the trace of a Euclidean surface with conical
singularities created by doubling the polygon. However, this technique fails once the
edges of the polygon are no longer necessarily straight near the corners. Therefore,
in order to compute the short time asymptotic expansion of the heat trace without
exact geometric matches, we turn to the robust techniques of geometric microlocal
analysis. This allows us to give a full description of the Dirichlet, Neumann, and
Robin heat kernels on a curvilinear polygon in all asymptotic regimes. Restricting
to the diagonal and integrating yields the heat trace.

In order to describe the heat kernel in all asymptotic regimes, we build a space,
called the heat space or double heat space, on which the heat kernel is well-behaved.
This space is built by blowing up various p-submanifolds of Ω × Ω × [0,∞). To
see why this is needed, first consider the heat kernel (1) on R

n. At the diagonal
in R

n × R
n × [0,∞), the heat kernel behaves as O(t−n/2) as t ↓ 0. However,

as long as d(z, z′) ≥ ε > 0, the heat kernel behaves as O(t∞) as t ↓ 0. So the
heat kernel fails to be well-behaved at {z = z′, t = 0}. This is the motivation for
“blowing up” the diagonal {z = z′} at t = 0, which means replacing this diagonal
with its inward pointing spherical normal bundle, corresponding to the introduction
of “polar coordinates”. The precise meaning of “blowing up” is explained in [20],
and in this particular case of blowing up {z = z′} at t = 0 in R

n×R
n× [0,∞), see

[20, Chapter 7].
For the case of a curvilinear polygonal domain Ω ⊂ R

2, we begin with Ω ×
Ω × [0,∞) and perform a sequence of blow-ups. Our construction is inspired by
the construction of the heat kernel on manifolds with wedge singularities performed
by Mazzeo and Vertman in [19]. We leave the details to our forthcoming work [23].

Once the double heat space has been constructed, the heat kernel may be built
in a similar spirit to the Duhamel’s principle construction of the Robin heat kernel
in the proof of Theorem 5. We start with a parametrix, or initial guess, and then
use Duhamel’s principle to iterate away the error. This requires the proof of a
composition result for operators whose kernels are well-behaved on our double heat
space, and that in turn requires some fairly involved technical machinery (a proof
“by hand” without using this machinery would be entirely unreadable). However, it
works out and gives us a very precise description of the heat kernel on a curvilinear
polygon, with any combination of Dirichlet, Neumann, and Robin conditions.
Moreover, we are able to generalize our techniques and results to surfaces which
have boundary, edges, corners, and conical singularities.

The details of this sort of geometric microlocal analysis construction are intricate,
but its utility is undeniable. In settings such as this, where exact geometric matches
are lacking, but instead, one has asymptotic geometric matches, these microlocal
techniques may be helpful. For the full story in the case of curvilinear polygons
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and their heat kernels, please stay tuned for our forthcoming work [23]. We
have seen here that the heat kernels for circular sectors gives the same angular
contribution, arising from the so-called “C term” for both Neumann and Robin
boundary conditions. Moreover, this is the same in the Dirichlet case as well [29].
Interestingly, it appears that for mixed boundary conditions, there is a sudden change
in this corner contribution. We are in the process of obtaining a small collection of
negative isospectrality results in these general settings in the spirit of Theorem 1,
including a generalization of Theorem 1 which removes the hypothesis that the
corners are exact; see [23] for the full story.
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Nonparametric Bayesian Volatility
Estimation

Shota Gugushvili, Frank van der Meulen, Moritz Schauer, and Peter Spreij

Abstract Given discrete time observations over a fixed time interval, we study
a nonparametric Bayesian approach to estimation of the volatility coefficient of
a stochastic differential equation. We postulate a histogram-type prior on the
volatility with piecewise constant realisations on bins forming a partition of the
time interval. The values on the bins are assigned an inverse Gamma Markov
chain (IGMC) prior. Posterior inference is straightforward to implement via Gibbs
sampling, as the full conditional distributions are available explicitly and turn
out to be inverse Gamma. We also discuss in detail the hyperparameter selection
for our method. Our nonparametric Bayesian approach leads to good practical
results in representative simulation examples. Finally, we apply it on a classical
data set in change-point analysis: weekly closings of the Dow-Jones industrial
averages.
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1 Introduction

1.1 Problem Formulation

Consider a one-dimensional stochastic differential equation (SDE)

dXt = b0(t,Xt ) dt + s0(t) dWt, X0 = x, t ∈ [0, T ], (1)

where b0 is the drift coefficient, s0 the deterministic dispersion coefficient or
volatility, and x is a deterministic initial condition. Here W is a standard Brownian
motion. Assume that standard conditions for existence and uniqueness of a strong
solution to (1) are satisfied (see, e.g., [47]), and observations

Xn = {Xt0,n , . . . , Xtn,n}

are available, where ti,n = iT /n, i = 0, . . . , n. Using a nonparametric Bayesian
approach, our aim is to estimate the volatility function s0. In a financial context,
knowledge of the volatility is of fundamental importance e.g. in pricing financial
derivatives; see [4] and [52]. However, SDEs have applications far beyond the
financial context as well, e.g. in physics, biology, life sciences, neuroscience and
engineering (see [1, 25, 40] and [76]). Note that by Itô’s formula, using a simple
transformation of the state variable, also an SDE of the form

dXt = b0(t,Xt ) dt + s0(t)f0(Xt ) dWt, X0 = x, t ∈ [0, T ],

can be reduced to the form (1), provided the function f0 is known and regular
enough; see, e.g., p. 186 in [66]. Some classical examples that fall under our sta-
tistical framework are the geometric Brownian motion and the Ornstein-Uhlenbeck
process. Note also that as we allow the drift in (1) to be non-linear, marginal
distributions of X are not necessarily Gaussian and may thus exhibit heavy tails,
which is attractive in financial modelling.

A nonparametric approach guards one against model misspecification and is an
excellent tool for a preliminary, exploratory data analysis, see, e.g., [65]. Commonly
acknowledged advantages of a Bayesian approach include automatic uncertainty
quantification in parameter estimates via Bayesian credible sets, and the fact
that it is a fundamentally likelihood-based method. In [51] it has been argued
that a nonparametric Bayesian approach is important for honest representation of
uncertainties in inferential conclusions. Furthermore, use of a prior allows one to
easily incorporate the available external, a priori information into the estimation
procedure, which is not straightforward to achieve with frequentist approaches. For
instance, this a priori information could be an increasing or decreasing trend in the
volatility.
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1.2 Literature Overview

Literature on nonparametric Bayesian volatility estimation in SDE models is scarce.
We can list theoretical contributions [34, 36, 54], and the practically oriented paper
[2]. The model in the former two papers is close to the one considered in the present
work, but from the methodological point of view different Bayesian priors are used
and practical usefulness of the corresponding Bayesian approaches is limited. On
the other hand, the models considered in [54] and [2] are rather different from ours,
and so are the corresponding Bayesian approaches. The nearest predecessor of the
model and the method in our paper is the one studied in [37]. In the sequel we
will explain in what aspects the present contribution differs from that one and what
the current improvements are. We note in passing that there exists a solid body
of literature on nonparametric Bayesian estimation of the drift coefficient, see, e.g.,
[35, 55, 57, 63, 70, 71] and the review article [72], but Bayesian volatility estimation
requires use of substantially different ideas. We also note existence of works dealing
with parametric Bayesian estimation in discrete-time stochastic volatility models,
see, e.g., [45] and [46], but again, these are not directly related to the problem we
study in this paper.

1.3 Approach and Results

The main potential difficulties facing a Bayesian approach to inference in SDE
models from discrete observations are an intractable likelihood and absence of a
closed form expression for the posterior distribution; see, e.g., [21, 25, 62] and
[69]. Typically, these difficulties necessitate the use of a data augmentation device
(see [67]) and some intricate form of a Markov chain Monte Carlo (MCMC)
sampler (see [61]). In [37], these difficulties are circumvented by intentionally
setting the drift coefficient to zero, and employing a (conjugate) histogram-type
prior on the diffusion coefficient, that has piecewise constant realisations on bins
forming a partition of [0, T ]. Specifically, the (squared) volatility is modelled a
priori as a function s2 = ∑N

k=1 θk1Bk , with independent and identically distributed
inverse gamma coefficients θk’s, and the prior Π is defined as the law of s2.
Here B1, . . . , BN are bins forming a partition of [0, T ]. With this independent
inverse Gamma (IIG) prior, θ1, . . . , θN are independent, conditional on the data,
and of inverse gamma type. Therefore, this approach results in a fast and simple to
understand and implement Bayesian procedure. A study of its favourable practical
performance, as well as its theoretical validation was recently undertaken in [37].
As shown there under precise regularity conditions, misspecification of the drift is
asymptotically, as the sample size n → ∞, harmless for consistent estimation of
the volatility coefficient.
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Despite a good practical performance of the method in [37], there are some
limitations associated with it too. Thus, the method offers limited possibilities for
adaptation to the local structure of the volatility coefficient, which may become
an issue if the volatility has a wildly varying curvature on the time interval
[0, T ]. A possible fix to this would be to equip the number of bins N forming
a partition of [0, T ] with a prior, and choose the endpoints of bins Bk also
according to a prior. However, this would force one to go beyond the conjugate
Bayesian setting as in [37], and posterior inference in practice would require, for
instance, the use of a reversible jump MCMC algorithm (see [32]). Even in the
incomparably simpler setting of intensity function estimation for nonhomogeneous
Poisson processes with histogram-type priors, this is very challenging, as observed
in [77]. Principal difficulties include designing moves between models of differing
dimensions that result in MCMC algorithms that mix well, and assessment of
convergence of Markov chains (see [22], p. 204). Thus, e.g., the inferential
conclusions in [32] and [33] are different on the same real data example using the
same reversible jump method, since it turned out that in the first paper the chain
was not run long enough. Cf. also the remarks on Bayesian histograms in [27],
p. 546.

Here we propose an alternative approach, inspired by ideas in [7] in the context
of audio signal modelling different from the SDE setting that we consider; see also
[8, 9, 15, 16] and [73]. Namely, instead of using a prior on the (squared) volatility
that has piecewise constant realisations on [0, T ] with independent coefficients θk’s,
we will assume that the sequence {θk} forms a suitably defined Markov chain. An
immediately apparent advantage of using such an approach is that it induces extra
smoothing via dependence in prior realisations of the volatility function across
different bins. Arguing heuristically, with a large number N of bins Bk it is then
possible to closely mimick the local structure of the volatility: in those parts of
the interval [0, T ], where the volatility has a high curvature or is subject to abrupt
changes, a large number of (narrow) bins is required to adequately capture these
features. However, the grid used to define the binsBk’s is uniform, and if θ1, . . . , θN
are a priori independent, a large N may induce spurious variability in the volatility
estimates in those regions of [0, T ] where the volatility in fact varies slowly. As
we will see in the sequel, this problem may be alleviated using a priori dependent
θk’s.

In the subsequent sections we detail our approach, and study its practical
performance via simulation and real data examples. Specifically, we implement
our method via a straightforward version of the Gibbs sampler, employing the
fact that full conditional distributions of θk’s are known in closed form (and are
in fact inverse gamma). Unlike [37], posterior inference in our new approach
requires the use of MCMC. However, this is offset by the advantages of our new
approach outlined above, and in fact the additional computational complexity of
our new method is modest in comparison to [37]. The prior in our new method
depends on hyperparameters, and we will also discuss several ways of their choice
in practice.
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1.4 Organisation of This Paper

In Sect. 2 we supply a detailed description of our nonparametric Bayesian approach
to volatility estimation. In Sect. 3 we study the performance of our method via
extensive simulation examples. In Sect. 4 we apply the method on a real data
example. Section 5 summarises our findings and provides an outlook on our
results. Finally, Sect. 6 contains some additional technical details of our proce-
dure.

1.5 Notation

We denote the prior distribution on the (squared) volatility function by Π and write
the posterior measure given data Xn as Π( · | Xn). We use the notation IG(α, β)
for the inverse gamma distribution with shape parameter α > 0 and scale parameter
β > 0. This distribution has a density

x → βα

Γ (α)
x−α−1e−β/x, x > 0. (2)

For two sequences {an}, {bn}, the notation an 9 bn will be used to denote the fact
that the sequences are asymptotically (as n → ∞) of the same order. Finally, for a
density f and a function g, the notation f ∝ g will mean that f is proportional to
g, with proportionality constant on the righthand side recovered as (

∫
g)−1, where

the integral is over the domain of definition of g (and of f ). The function g can be
referred to as an unnormalised probability density.

2 Nonparametric Bayesian Approach

2.1 Generalities

Our starting point is the same as in [37]. Namely, we misspecify the drift
coefficient b0 by intentionally setting it to zero (see also [49] for a similar idea
of ‘misspecification on purpose’). The theoretical justification for this under the
‘infill’ asymptotics, with the time horizon T staying fixed and the observation times
ti,n = iT /n, i = 1, . . . , n, filling up the interval [0, T ] as n → ∞, is provided
in [37], to which we refer for further details (the argument there ultimately relies
on Girsanov’s theorem). Similar ideas are also encountered in the non-Bayesian
setting in the econometrics literature on high-frequency financial data, see, e.g.,
[53].



284 Gugushvili et al.

Set Yi,n = Xti,n −Xti−1,n . With the assumption b0 = 0, the pseudo-likelihood of
our observations is tractable, in fact Gaussian,

Ln(s
2) =

n∏
i=1

⎧⎨
⎩

1√
2π
∫ ti,n
ti−1,n

s2(u) du
ψ

⎛
⎝ Yi,n√∫ ti,n

ti−1,n
s2(u) du

⎞
⎠
⎫⎬
⎭ , (3)

where ψ(u) = exp(−u2/2). The posterior probability of any measurable set S of
volatility functions can be computed via Bayes’ theorem as

Π(S | Xn) =
∫
S
Ln(s

2)Π(ds)∫
Ln(s2)Π(ds)

.

Here the denominator is the normalising constant, the integral over the whole space
on which the prior Π is defined, which ensures that the posterior is a probability
measure (i.e. integrates to one).

2.2 Prior Construction

Our prior Π is constructed similarly to [37], with an important difference to be
noted below. Fix an integer m < n. Then n = mN + r with 0 ≤ r < m, where
N = . n

m
/. Now define bins Bk = [tm(k−1),n, tmk,n), k = 1, . . . , N − 1, and BN =

[tm(N−1),n, T ]. Thus the first N − 1 bins are of length mT/n, whereas the last bin
BN has length T − tm(N−1),n = n−1(r + m)T < n−12mT . The parameter N
(equivalently,m) is a hyperparameter of our prior. We model s as piecewise constant
on binsBk , thus s =∑N

k=1 ξk1Bk . The priorΠ on the volatility s can now be defined
by assigning a prior to the coefficients ξk’s.

Let θk = ξ2
k . Since the bins Bk are disjoint,

s2 =
N∑
k=1

ξ2
k 1Bk =

N∑
k=1

θk1Bk .

As the likelihood depends on s only through its square s2, it suffices to assign the
prior to the coefficients θk’s of s2. This is the point where we fundamentally diverge
from [37]. Whereas in [37] it is assumed that {θk} is an i.i.d. sequence of inverse
gamma random variables, here we suppose that {θk} forms a Markov chain. This
will be referred to as an inverse Gamma Markov chain (IGMC) prior (see [7]), and
is defined as follows. Introduce auxiliary variables ζk, k = 2, . . . , N , and define a
Markov chain using the time ordering θ1, ζ2, θ2, . . . , ζk, θk, . . . , ζN , θN . Transition
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distributions of this chain are defined as follows: fix hyperparameters α1, αζ and α,
and set

θ1 ∼ IG(α1, α1), ζk+1|θk∼ IG(αζ , αζ θ
−1
k ), θk+1|ζk+1 ∼ IG(α, αζ−1

k+1). (4)

The name of the chain reflects the fact that these distributions are inverse Gamma.

Remark 1 Our definition of the IGMC prior differs from the one in [7] in the choice
of the initial distribution of θ1, which is important to alleviate possible ‘edge effects’
in volatility estimates in a neighbourhood of t = 0. The parameter α1 determines
the initial distribution of the inverse Gamma Markov chain. Letting α1 → 0 (which
corresponds to a vague prior) ‘releases’ the chain at the time origin. "#
Remark 2 As observed in [7], there are various ways of defining an inverse
Gamma Markov chain. The point to be kept in mind is that the resulting posterior
should be computationally tractable, and the prior on θk’s should have a capability
of producing realisations with positive correlation structures, as this introduces
smoothing among the θk’s in adjacent bins. This latter property is not possible
to attain with arbitrary constructions of inverse Gamma Markov chains, such as
e.g. a natural construction θk|θk−1 ∼ IG(α, θk−1/α). On the other hand, positive
correlation between realisations θk’s can be achieved e.g. by setting θk|θk−1 ∼
IG(α, (αθk−1)

−1), but this results in intractable posterior computations. The defi-
nition of the IGMC prior in the present work, that employs latent variables ζk’s,
takes care of both these important points. For an additional discussion see [7]. "#
Remark 3 Setting the drift coefficient b0 to zero effectively results in pretending
that the process X has independent (Gaussian) increments. In reality, since the
drift in practical applications is typically nonzero, increments of the process are
dependent, and hence all observations Yi,n contain some indirect information on
the value of the volatility s2 at each time point t ∈ [0, T ]. On the other hand,
assuming the IGMC prior on s2 yields a posteriori dependence of coefficients {θk},
which should be of help in inference with smaller sample sizes n. See Sect. 4 for an
illustration. "#

2.3 Gibbs Sampler

It can be verified by direct computations employing (4) that the full conditional
distributions of θk’s and ζk’s are inverse gamma,

θk|ζk, ζk+1 ∼ IG

(
α + αζ ,

α

ζk
+ αζ

ζk+1

)
, k = 2, . . . , N − 1, (5)

θ1|ζ2 ∼ IG

(
α1 + αζ , α1 + αζ

ζ2

)
, (6)



286 Gugushvili et al.

θN |ζN ∼ IG

(
α,

α

ζN

)
, (7)

ζk|θk, θk−1 ∼ IG

(
αζ + α,

αζ

θk−1
+ α

θk

)
, k = 2, . . . , N. (8)

See Sect. 6 for details. Next, the effective transition kernel of the Markov chain {θk}
is given by formula (4) in [7], and is a scale mixture of inverse gamma distributions;
however, its exact expression is of no direct concern for our purposes. As noted in
[7], p. 700, depending on the parameter values α, αζ , it is possible for the chain
{θk} to exhibit either an increasing or decreasing trend. We illustrate this point by
plotting realisations of {θk} in Fig. 1 for different values of α and αζ . In the context
of volatility estimation this feature is attractive, if prior information on the volatility
trend is available.

Inference in [7] is performed using a mean-field variational Bayes approach,
see, e.g., [5]. Here we describe instead a fully Bayesian approach relying on Gibbs
sampling (see, e.g., [26] and [29]), cf. [9].

The algorithm is initialised at values ζ2, . . . , ζN , e.g. generated from the prior
specification (4). In order to derive update formulae for the full conditionals of the
θk’s, define

Zk =
km∑

i=(k−1)m+1

Y 2
i,n, k = 1, . . . , N − 1,

ZN =
n∑

i=(N−1)m+1

Y 2
i,n.

With this notation, the likelihood from (3) satisfies

Ln(θ) ∝ θ
−(m+r)/2
N exp

(
− nZN

2T θN

)N−1∏
k=1

θ
−m/2
k exp

(
− nZk

2T θk

)
.
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Fig. 1 Realisations of the Markov chain {θk} with α = 40, αζ = 20 (left panel) and α = 30,
αζ = 30 (center panel) and α = 20, αζ = 40 (right panel). In all cases, θ1 is fixed to 500
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Using this formula and Eq. (5), and recalling the form of the inverse gamma
density (2), it is seen that the update distribution for θk, k = 2, . . . , N − 1, is

IG

(
α + αζ + m

2
,
α

ζk
+ αζ

ζk+1
+ nZk

2T

)
,

whereas by (7) the ones for θ1 and θN are

IG

(
α1 + αζ + m

2
, α1 + αζ

ζ2
+ nZ1

2T

)
, IG

(
α + m+ r

2
,
α

ζN
+ nZN

2T

)
,

respectively.
Next, the latent variables ζk’s will be updated using formula (8). This update step

for ζk’s does not directly involve the data Xn, except through the previous values of
θk’s.

Finally, one iterates these two Gibbs steps for θk’s and ζk’s a large number
of times (until chains can be assessed as reasonably converged), which gives
posterior samples of the θk’s. Using the latter, the posterior inference can proceed
in the usual way, e.g. by computing the sample posterior mean of θk’s, as well
as sample quantiles, that provide, respectively, a point estimate and uncertainty
quantification via marginal Bayesian credible bands for the squared volatility s2.
Similar calculations on the square roots of the posterior samples can be used to
obtain point estimates and credible bands for the volatility function s itself.

2.4 Hyperparameter Choice

We first assume the number of bins N has been chosen in some way, and we
only have to deal with hyperparameters α, αζ and α1, that govern properties of
the Markov chain prior. In [7], where an IGMC prior was introduced, guidance on
the hyperparameter selection is not discussed. In [8], the hyperparameters are fine-
tuned by hand in specific problems studied there (audio denoising and single channel
audio source separation). Another practical solution is to try several different fixed
combinations of the hyperparameters α, αζ and α1, if only to verify sensitivity
of inferential conclusions with respect to variations in the hyperparameters. Some
further methods for hyperparameter optimisation are discussed in [16]. In [8] opti-
misation of the hyperparameters via the maximum likelihood method is suggested;
practical implementation relies on the EM algorithm (see [13]), and some additional
details are given in [15]. Put in other terms, the proposal in [15] amounts to using
an empirical Bayes method (see, e.g., [20], [59] and [60]). The use of the latter
is widespread and often leads to good practical results, but the method is still
insufficiently understood theoretically, except in toy models like the white noise
model (see, however, [17] and [56] for some results in other contexts). On the
practical side, in our case, given that the dimension of the sequences {ζk} and {θk} is
rather high, namely 2N−1 withN large, and the marginal likelihood is not available
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in closed form, this approach is expected to be computationally intensive. Therefore,
a priori there is no reason not to try instead a fully Bayesian approach by equipping
the hyperparameters with a prior, and this is in fact our default approach in the
present work. However, the corresponding full conditional distribution turns out to
be nonstandard, which necessitates the use of a Metropolis-Hastings step within the
Gibbs sampler (see, e.g., [39], [50] and [68]). We provide the necessary details in
Sect. 6.

Finally, we briefly discuss the choice of the hyperparameterN . As argued in [37],
in practice it is recommended to use the theoretical results in [37] (that suggest to
take N 9 nλ/(2λ+1), if the true volatility function s0 is λ-Hölder smooth) and try
several values of N simultaneously. Different N’s all provide information on the
unknown volatility, but at different resolution levels; see Section 5 in [37] for an
additional discussion. As we will see in simulation examples in Sect. 3, inferential
conclusions with the IGMC prior are quite robust with respect to the choice of
N . This is because through the hyperparameters α and αζ , the IGMC prior has
an additional layer for controlling the amount of applied smoothness; when α and
αζ are equipped with a prior (as above), they can in fact be learned from the data.

3 Synthetic Data Examples

Computations in this section have been done in the programming language Julia,
see [3]. In order to test the practical performance of our estimation method, we use
a challenging example with the blocks function from [18]. As a second example, we
consider the case of the Cox-Ross-Ingersoll model. Precise details are given in the
subsections below.

We used the Euler scheme on a grid with 800,001 equidistant points on the
interval [0, 1] to obtain realisations of a solution to (1) for different combinations
of the drift and dispersion coefficients. These were then subsampled to obtain
n = 4000 observations in each example.

The hyperparameterα1 was set to 0.1, whereas for the other two hyperparameters
we assumed that α = αζ and used a diffuse IG(0.3, 0.3) prior, except in specially
noted cases below. Inference was performed using the Gibbs sampler from Sect. 2,
with a Metropolis–Hastings step to update the hyperparameter α. The latter used an
independent Gaussian random walk proposal with a scaling to ensure the acceptance
rate of ca. 50%; see Sect. 6. The Gibbs sampler was run for 200,000 iterations and
we used a burn-in of 1000 samples. In each example we plotted 95% marginal
credible bands obtained from the central posterior intervals for the coefficients
ξk = √

θk .

3.1 Blocks Function

As our first example, we considered the case when the volatility function was given
by the blocks function from [18]. With a vertical shift for positivity, this is defined
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as follows:

s(t) = 10 + 3.655606 ×
11∑
j=1

hjK(t − tj ), t ∈ [0, 1], (9)

whereK(t) = (1 + sgn(t))/2, and

{tj } = (0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81),

{hj } = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2).

The function serves as a challenging benchmark example in nonparametric regres-
sion: it is mostly very smooth, but spatially inhomogeneous and characterised
by abrupt changes (cf. Chap. 9 in [74]). Unlike nonparametric regression, the
noise (Wiener process) in our setting should be thought of as multiplicative and
proportional to s rather than additive, which combined with the fact that s takes
rather large values further complicates the inference problem. Our main goal here
was to compare the performance of the IGMC prior-based approach to the IIG prior-
based one from [37]. To complete the SDE specification, our drift coefficient was
chosen to be a rather strong linear drift b0(x) = −10x + 20.

In Fig. 2 we plot the blocks function (9) and the corresponding realisation of the
process X used in this simulation run.

The left and right panels of Fig. 3 contrast the results obtained using the IGMC
prior with N = 160 and α = αζ = 20 versus N = 320 and α = αζ = 40.
These plots illustrate the fact that increasing N has the effect of undersmoothing
prior realisations, that can be balanced by increasing the values of αζ , α, which has
the opposite smoothing effect. Because of this, in fact, both plots look quite similar.

The top left and top right panels of Fig. 4 give estimation results obtained with
the IIG prior-based approach from [37]. The number of bins was again N = 160
and N = 320, and in both these cases we used diffuse independent IG(0.1, 0.1)
priors on the coefficients of the (squared) volatility function (see [37] for details).
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Fig. 2 The sample path of the process X from (9) (left panel) and the corresponding volatility
function s (right panel)
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Fig. 3 Volatility function s from (9) with superimposed 95% marginal credible band for the IGMC
prior, using N = 160, α = αζ = 20 (left panel) and N = 320, α = αζ = 40 (right panel); in both
cases, α1 = 0.1
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Fig. 4 Volatility function s with superimposed 95% marginal credible band for the IIG prior
IG(0.1, 0.1), using N = 160 (top left panel) and N = 320 bins (top right panel). Volatility
function s from (9) with superimposed 95% marginal credible band for the IGMC prior, using
N = 160 (bottom left panel) and N = 320 bins (bottom right panel); in both cases, α1 = 0.1 and
α = αζ ∼ IG(0.3, 0.3)

These results have to be contrasted to those obtained with the IGMC prior, plotted
in the bottom left and bottom right panels of Fig. 4, where we assumed α1 = 0.1
and α = αζ ∼ IG(0.3, 0.3). The following conclusions emerge from Fig. 4:
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• Although both the IGMC and IIG approaches recover globally the shape of
the volatility function, the IIG approach results in much greater uncertainty in
inferential conclusions, as reflected in wider marginal confidence bands. The
effect is especially pronounced in the case N = 320, where the width of the
band for the IIG prior renders it almost useless for inference.

• The bands based on the IGMC prior look more ‘regular’ than the ones for the IIG
prior.

• Comparing the results to Fig. 3, we see the benefits of equipping the hyperparam-
eters α, αζ with a prior: credible bands in Fig. 3 do not adequately capture two
dips of the function s right before and after the point t = 0.2, since s completely
falls outside the credible bands there. Thus, an incorrect amount of smoothing is
used in Fig. 3.

• The method based on the IIG prior is sensitive to the bin number selection:
compare the top left panel of Fig. 4 using N = 160 bins to the top right panel
using N = 320 bins, where the credible band is much wider. On the other hand,
the method based on the IGMC prior automatically rebalances the amount of
smoothing it uses with different numbers of bins N , thanks to the hyperprior on
the parameters α, αζ ; in fact, the bottom two plots in Fig. 4 look similar to each
other.

3.2 CIR Model

Our core estimation procedure, as described in the previous sections, assumes that
the volatility function is deterministic. In this subsection, however, in order to test
the limits of applicability of our method and possibilities for future extensions, we
applied it to a case where the volatility function was stochastic. The study in [53]
lends support to this approach, but here we concentrate on practical aspects and
defer the corresponding theoretical investigation until another occasion.

Specifically, we considered the Cox-Ross-Ingersoll (CIR) model or the square
root process,

dXt = (η1 − η2Xt)dt + η3
√
XtdWt, X0 = x > 0, t ∈ [0, T ]. (10)

Here η1, η2, η3 > 0 are parameters of the model. This diffusion process was
introduced in [23] and [24], and gained popularity in finance as a model for short-
term interest rates, see [11]. The condition 2η1 > η2

3 ensures strict positivity and
ergodicity of X. The volatility function s0 from (1) now corresponds to a realisation
of a stochastic process t → η3

√
Xt , where X solves the CIR equation (10).

We took arbitrary parameter values

η1 = 6, η2 = 3, η1 = 2, x = 1. (11)
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Fig. 5 The sample path of the process X from (10) (left panel) and the corresponding realised
volatility function s(ω) (right panel). The parameter values are given in (11)
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Fig. 6 Volatility function s from (10) with superimposed 95% marginal credible band for the
IGMC prior, using N = 160 (left panel) and N = 320 bins (right panel); in both cases, α1 = 0.1
and α = αζ ∼ IG(0.3, 0.3)

A sample path of X is plotted in the left panel of Fig. 5, whereas the corresponding
volatility is given in the right panel of the same figure. In Fig. 6 we display
estimation results obtained with the IGMC prior, using N = 160 and N = 320
bins and hyperparameter specifications α1 = 0.1 and α = αζ ∼ IG(0.3, 0.3). A
conclusion that emerges from this figure is that our Bayesian method captures the
overall shape of the realised volatility in a rather satisfactory manner.

4 Dow-Jones Industrial Averages

In this section we provide a reanalysis of a classical dataset in change-point
detection in time series; see, e.g., [10, 14, 41, 42] and [43]. Specifically, we consider
weekly closing values of the Dow-Jones industrial averages in the period 2 July
1971–2 August 1974. In total there are 162 observations available, which constitute
a relatively small sample, and thus the inference problem is rather nontrivial. The
data can be accessed as the dataset DWJ in the sde package (see [44]) in R (see
[58]). See the left panel of Fig. 7 for a visualisation. In [43] the weekly data Xti ,
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Fig. 7 Dow-Jones weekly closings of industrial averages over the period 2 July 1971–2 August
1974 (left panel) and the corresponding returns (right panel)

i = 1, . . . , n, are transformed into returns Yti = (Xti − Xti−1)/Xti−1 , and the
least squares change-point estimation procedure from [12] has been performed.
Reproducing the corresponding computer code in R results in a change-point
estimate of 16 March 1973. That author speculates that this change-point is related
to the Watergate scandal.

Similar to [43], parametric change-point analyses in [10, 14] and [42] give
a change-point in the third week of March 1973. However, as noted in [43],
examination of the plot of the time series Yti (see Fig. 7, the right panel) indicates
that another change-point may be present in the data. Then dropping observations
after 16 March 1973 and analysing the data for existence of a change-point using
only the initial segment of the time series, the author discovers another change-point
on 17 December 1971, which he associates with suspending the convertibility of the
US dollar into gold under President Richard Nixon’s administration.

From the above discussion it should be clear that nonparametric modelling of
the volatility may provide additional insights for this dataset. We first informally
investigated the fact whether an SDE driven by the Wiener process is a suitable
model for the data at hand. Many of such models, e.g. the geometric Brownian
motion, a classical model for evolution of asset prices over time (also referred to as
the Samuelson or Black–Scholes model), rely on an old tenet that returns of asset
prices follow a normal distribution. Although the assumption has been empirically
disproved for high-frequency financial data (daily or intraday data; see, e.g., [6, 19]
and [48]), its violation is less severe for widely spaced data in time (e.g. weekly data,
as in our case). In fact, the Shapiro–Wilk test that we performed in R on the returns
past the change-point 16 March 1973 did not reject the null hypothesis of normality
(p-value 0.4). On the other hand, the quantile-quantile (QQ) plot of the same data
does perhaps give an indication of a certain mild deviation from normality, see
Fig. 8, where we also plotted a kernel density estimate of the data (obtained via
the command density in R, with bandwidth determined automatically through
cross-validation).
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In Fig. 9 we plot the sample autocorrelation and partial autocorrelation functions
based on returns Yti ’s past the change-point 16 March 1973. These do not give
decisive evidence against the assumption of independence of Yti ’s. Neither does
the Ljung–Box test (the test is implemented in R via the command Box.test),
which yields a p-value 0.057 when applied with 10 lags (the p-value is certainly
small, but not overwhelmingly so).

Summarising our findings, we detected only a mild evidence against the assump-
tion that the returns of the Dow-Jones weekly closings of industrial averages (over
the period 16 March 1973–2 August 1974, but similar conclusions can be reached
also over the other subperiods covered by the DWJ dataset) are approximately
independent and follow a normal distribution. Thus there is no strong a priori reason
to believe that a geometric Brownian motion is an outright unsuitable model in
this setting: it can be used as a first approximation. To account for time-variability
of volatility (as suggested by the change-point analysis), we incorporate a time-
dependent volatility function in the model, and for additional modelling flexibility
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we also allow a state-dependent drift. Setting Zt = log(Xt/X0), our model is thus
given by

dZt = b0(t, Zt )dt + s0(t)dWt, Z0 = 0. (12)

An alternative here is to directly (i.e. without any preliminary transformation)
model the Dow-Jones data using Eq. (1). We consider both possibilities, starting
with the model (12).

We used a vague prior on θ1 corresponding to the limit α1 → 0, whereas for
the other two hyperparameters we assumed α = αζ ∼ IG(0.3, 0.3). The scaling in
the independent Gaussian random walk proposal in the Metropolis–Hastings step
was chosen in such a way so as to yield an acceptance rate of ca. 50%. The Gibbs
sampler was run for 200,000 iterations, and the first 1000 samples were dropped as
a burn-in. We present the estimation results we obtained using N = 13 and N = 26
bins, see Fig. 10. Although the sample size n is quite small in this example, the data
are informative enough to yield nontrivial inferential conclusions even with diffuse
priors. Both plots in Fig. 10 are qualitatively similar and suggest:

• A decrease in volatility at the end of 1971, which can be taken as corresponding
to the change-point in December 1971 identified in [43]. Unlike that author, we
do not directly associate it with suspending the convertibility of the US dollar
into gold (that took place in August 1971 rather than December 1971).

• A gradual increase in volatility over the subsequent period stretching until the end
of 1973. Rather than only the Watergate scandal (and a change-point in March
1973 as in [43]), there could be further economic causes for that, such as the
1973 oil crisis and the 1973–1974 stock market crash.

• A decrease in volatility starting in early 1974, compared to the immediately
preceding period.

In general, in this work we do not aim at identifying causes for changes in volatility
regimes, but prefer to present our inference results, that may subsequently be used
in econometric analyses.

Now we move to the Bayesian analysis of the data using model (1). The prior
settings were as in the previous case, and we display the results in Fig. 11. The
overall shapes of the inferred volatility functions are the same in both Figs. 10 and
11, and hence similar conclusions apply.

Finally, we stress the fact that our nonparametric Bayesian approach and change-
point estimation are different in their scope: whereas our method aims at estimation
of the entire volatility function, change-point estimation (as its name actually
suggests) concentrates on identifying change-points in the variance of the observed
time series, which is a particular feature of the volatility. To that end it assumes
the (true) volatility function is piecewise constant, which on the other hand is not
an assumption required in our method. Both techniques are useful, and each can
provide insights that may be difficult to obtain from another.
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Fig. 10 Marginal 90% credible bands for the volatility function of the log Dow-Jones industrial
averages data. The left panel corresponds to N = 13 bins, while the right panel to N = 26 bins
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Fig. 11 Marginal 90% credible bands for the volatility function of the Dow-Jones industrial
averages data. The left panel corresponds to N = 13 bins, while the right panel to N = 26
bins

5 Conclusions

Bayesian inference for SDEs from discrete-time observations is a difficult task,
owing to intractability of the likelihood and the fact that the posterior is not
available in closed form. Posterior inference therefore typically requires the use
of intricate MCMC samplers. Designing algorithms that result in Markov chains
that mix well and explore efficiently the posterior surface is a highly nontrivial
problem. Inspired by some ideas from the audio signal processing literature and
our earlier work [37], in this paper we introduced a novel nonparametric Bayesian
approach to estimation of the volatility coefficient of an SDE. Our method is
easy to understand and straightforward to implement via Gibbs sampling, and
performs well in practice. Thereby our hope is that our work will contribute to
further dissemination and popularisation of a nonparametric Bayesian approach to
inference in SDEs, specifically with financial applications in mind. In that respect,
see [38], that builds upon the present paper and deals with Bayesian volatility
estimation under market microstructure noise. Our work can also be viewed as a
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partial fulfillment of anticipation in [31] that some ideas developed originally in the
context of audio and music processing “will also find use in other areas of science
and engineering, such as financial or biomedical data analysis”.

As a final remark, we do not attempt to provide a theoretical, i.e. asymptotic
frequentist analysis of our new approach here (see, e.g., the recent monograph [30],
and specifically [37] for such an analysis in the SDE setting), but leave this as a
topic of future research.

6 Formulae for Parameter Updates

In this section we present additional details on the derivation of the update formulae
for the Gibbs sampler from Sect. 2. The starting point is to employ the Markov
property from (4), and using the standard Bayesian notation, to write the joint
density of {ζk} and {θk} as

p(θ1)

N∏
k=2

p(ζk |θk−1)p(θk|ζk). (13)

6.1 Full Conditional Distributions

We first indicate how (5) was derived. Insert expressions for the individual terms
in (13) from (4) and collect separately terms that depend on θk only, to see that the
density of the full conditional distribution of θk , k = 2, . . . , N−1, is proportional to

θ−α−1
k e−α/(θkζk)θ−αζ

k e−αζ /(θkζk+1).

Upon normalisation, this expression is the density of the IG(α+αζ , αζ−1
k +αζ ζ−1

k+1)

distribution, which proves formula (5). Formula (7) follows directly from the last
expression in (4). Formula (8) is proved analogously to (5). Finally, (6) follows
from (4) and Bayes’ formula. Cf. also [15], Appendix B.6.

6.2 Metropolis-Within-Gibbs Step

Now we describe the Metropolis–Hastings step within the Gibbs sampler, that is
used to update the hyperparameters of our algorithm, in case the latter are equipped
with a prior. For simplicity, assume α = αζ (we note that such a choice is used
in practical examples in [8]), and suppose α is equipped with a prior, α ∼ π . Let
the hyperparameter α1 be fixed. Obviously, α1 could have been equipped with a
prior as well, but this would have further slowed down our estimation procedure,
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whereas the practical results in Sects. 3 and 4 we obtained are already satisfactory
with α1 fixed. Using (4) and (13), one sees that the joint density of {ζk}, {θk} and α
is proportional to

π(α)× θ
−α1−1
1 × e−α1θ

−1
1

×
N∏
k=2

{
αα

Γ (α)θαk−1
ζ−α−1
k e−α/(θk−1ζk)

αα

Γ (α)ζ αk
θ−α−1
k e−α/(θkζk)

}
.

This in turn is proportional to

q(α) = π(α)×
(
αα

Γ (α)

)2(N−1)

×
N∏
k=2

(θk−1θkζ
2
k )

−α

× exp

(
−α

N∑
k=2

1

ζk

(
1

θk−1
+ 1

θk

))
.

The latter expression is an unnormalised full conditional density of α, and can be
used in the Metropolis-within-Gibbs step to update α.

The rest of the Metropolis–Hastings step is standard, and the following approach
was used in our practical examples: pick a proposal kernel g(α′ | α), for instance a
Gaussian random walk proposal g(α′ | α) = φσ (α

′ −α), where φσ is the density of
a normal random variable with mean zero and variance σ 2. Note that this specific
choice may result in proposing a negative value α′, which needs to be rejected
straightaway as invalid. Then, for computational efficiency, instead of moving to
another step within the Gibbs sampler, one keeps on proposing new values α′ until
a positive one is proposed. This is then accepted with probability

A = min

(
1,
q(α′)
q(α)

Φσ (α)

Φσ (α′)

)
,

where Φσ (·) is the cumulative distribution function of a normal random variable
with mean zero and variance σ 2; otherwise the current value α is retained. See
[75] for additional details and derivations. Finally, one moves to other steps in the
Gibbs sampler, namely to updating ζk’s and θk’s, and iterates the procedure. The
acceptance rate in the Metropolis–Hastings step can be controlled through the scale
parameter σ of the proposal density φσ . Some practical rules for determination of
an optimal acceptance rate in the Metropolis–Hastings algorithm are given in [28],
and those for the Metropolis-within-Gibbs algorithm in [64].
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The Exact Asymptotics for Hitting
Probability of a Remote Orthant
by a Multivariate Lévy Process: The
Cramér Case

Konstantin Borovkov and Zbigniew Palmowski

Abstract For a multivariate Lévy process satisfying the Cramér moment condition
and having a drift vector with at least one negative component, we derive the
exact asymptotics of the probability of ever hitting the positive orthant that is
being translated to infinity along a fixed vector with positive components. This
problem is motivated by the multivariate ruin problem introduced in Avram et al.
(Ann Appl Probab 18:2421–2449, 2008) in the two-dimensional case. Our solution
relies on the analysis from Pan and Borovkov (Preprint. arXiv:1708.09605, 2017)
for multivariate random walks and an appropriate time discretization.

1 Introduction

In this note we consider the following large deviation problem for continuous
time processes with independent increments that was motivated by the multivariate
simultaneous ruin problem introduced in [1]. Let {X(t)}t≥0 be a d-dimensional
(d ≥ 2) right-continuous Lévy process with X(0) = 0. One is interested in finding
the precise asymptotics for the hitting probability of the orthant sG as s → ∞,
where

G := g +Q+
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for some fixed

g ∈ Q+, Q+ := {x = (x1, . . . , xd) ∈ R
d : xj > 0, 1 ≤ j ≤ d}.

Clearly, sG = sg +Q+, which is just the positive orthant translated by sg.
We solve this problem under appropriate Cramér moment assumptions and

further conditions on the process X and vertex g that, roughly speaking, ensure
that the “most likely place” for X to hit sG when s is large is in vicinity of the
“corner point” sg. More specifically, we show that the precise asymptotics of the
hitting probability of sG are given by the following expression: letting

τ (V ) := inf{t ≥ 0 : X(t) ∈ V }

be the first hitting time of the set V ⊂ R
d by the process X, one has

P
(
τ (sG) < ∞) = A0s

−(d−1)/2e−sD(G)(1 + o(1)) as s → ∞, (1)

where the “adjustment coefficient” D(G) is the value of the second rate function
(see (9) below) for the distribution of X(1) on the set G and the constant A0 ∈
(0,∞) can be computed explicitly.

The asymptotics (1) extend a number of known results. The main body of
literature on the topic of precise asymptotics for boundary crossing large deviation
probabilities in the multivariate case concerns the random walk theory, see [3–5]
and references therein for an overview of the relevant results. The crude logarithmic
asymptotics in the multivariate case was also derived independently in [6].

The entrance probability to a remote set for Lévy processes was analyzed later,
usually under some specific assumptions on the structure of these processes. For
example, paper [1] dealt with the two-dimensional reserve process of the form

X(t) = (X1(t),X2(t)) = (c1, c2)

N(t)∑
i=1

Ci − (p1, p2)t, t ≥ 0, (2)

where ci, pi > 0, i = 1, 2, are constants, {Ci}i≥1 is a sequence of i.i.d. claim
sizes, and N(t) is an independent of the claim sizes Poisson process. That model
admits the following interpretation: the components of the process sg − X describe
the dynamics of the reserves of two insurance companies that start with the initial
reserves sg1 and sg2, respectively, and then divide between them both claims and
premia in some pre-specified proportions. In that case, P

(
τ (sG) < ∞) corresponds

to the simultaneous ruin probability of the two companies. The main result of the
present paper generalizes the assertion of Theorem 5 of [1] to the case of general
Lévy processes. One may also wish to mention here the relevant papers [2, 7].
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2 The Main Result

To state the main result, we will need some notations. For brevity, denote by ξ a
random vector such that

ξ
d= X(1). (3)

Our first condition on X is stated as follows.

C1 The distribution of ξ is non-lattice and there is no hyperplane H = {x :
〈a, x〉 = c} ⊂ R

d such that P(ξ ∈ H) = 1.

That condition can clearly be re-stated in terms of the covariance matrix of the
Brownian component and spectral measure of X, although such re-statement will
not make it more compact nor transparent.

Next denote by

K(λ) := ln Ee〈λ,ξ〉, λ ∈ R
d , (4)

the cumulant function of ξ and let

Θψ := {λ ∈ R
d : K(λ) < ∞}

be the set on which the moment generating function of ξ is finite. We will need the
following Cramér moment condition on X:

C2 Θψ contains a non-empty open set.

The first rate function Λ(α) for the random vector ξ is defined as the Legendre
transform of the cumulant functionK :

Λ(α) := sup
λ∈Θψ

(〈α,λ〉 −K(λ)), α ∈ R
d . (5)

The probabilistic interpretation of the first rate function is given by the following
relation (see e.g. [5]): for any α ∈ R

d ,

Λ(α) = − lim
ε→0

lim
n→∞

1

n
ln P
(

X(n)

n
∈ Uε(α)

)
, (6)

where Uε(α) is the ε-neighborhood of α. Accordingly, for a set B ⊂ R
d , any point

α ∈ B such that

Λ(α) = Λ(B) := inf
v∈B Λ(v) (7)
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is called a most probable point (MPP) of the set B (cf. relation (11) in [8]). If such
a point α is unique for a given set B, we denote it by

α[B] := arg min
v∈B

Λ(v). (8)

Now recall the definition of the second rate function D that was introduced and
studied in [4]: letting Du(v) := uΛ(v/u) for v ∈ R

d , one sets

D(v) := inf
u>0

Du(v), v ∈ R
d, D(B) := inf

v∈B D(v), B ⊂ R
d (9)

(see also [8]). Further, we put

rB := arg min
r>0

D1/r (B). (10)

Recall the probabilistic meaning of the functionD and the value rB . While the first
rate function Λ specifies the main term in the asymptotics of the probabilities for
the random walk values X(n) to be inside “remote sets” (roughly speaking, Λ(B)
equals the RHS of (6) with the neighbourhood of α in it replaced withB), the second
rate function D does that for the probabilities of ever hitting “remote sets” by the
whole random walk trajectory {X(n)}n≥0, the meaning of rB being that 1/rB gives
(after appropriate scaling) the “most probable time” for the walk to hit the respective
remote set. For more detail, we refer the interested reader to [4, 8].

Define the Cramér range ΩΛ for ξ as follows:

ΩΛ := {α = gradK(λ) : λ ∈ int(Θψ)
}
,

where the cumulant function K(λ) of ξ was defined in (4) and int(B) stands for
the interior of the set B. In words, the set ΩΛ consists of all the vectors that can
be obtained as the expectations of the Cramér transforms of the law of ξ , i.e. the
distributions of the form e〈λ,x〉−K(λ)P(ξ ∈ dx), for parameter values λ ∈ int(Θψ).

For α ∈ R
d , denote by λ(α) the vector λ at which the upper bound in (5) is

attained (when such a vector exists, in which case it is always unique):

Λ(α) = 〈α,λ(α)〉 −K(λ(α)).

For r > 0, assuming that α[rG] ∈ ΩΛ, introduce the vector

N(r) := gradΛ(α)
∣∣
α=α[rG] = λ(α[rG]), (11)

which is a normal to the level surface of Λ at the point α[rG] (see e.g. (22) in [8]).
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The last condition that we will need to state our main result depends on the
parameter r > 0 and is formulated as follows:

C3(r) One has

Λ(rG) = Λ(rg), rg ∈ ΩΛ, N(r) ∈ Q+, 〈Eξ ,N(r)〉 < 0.

The first part of condition [C3(r)] means that the vertex rg is an MPP for the set rG.
Note that under the second part of the condition, this MPP rg for rG is unique (e.g.,
by Lemma 1 in [8]). Since N(r) always belongs to the closure of Q+, the third
part of condition [C3(r)] just excludes the case when the normal N(r) to the level
surface of Λ at the point rg belongs to the boundary of the set rG.

Theorem 1 Let conditions [C1], [C2] and [C3(rG)] be met. Then the asymptotic
relation (1) holds true, where D(G) is the value of the second rate function (9) on
G and the constant A0 ∈ (0,∞) can be computed explicitly.

The value of the constant A0 ∈ (0,∞) is given by the limit as δ → 0 of the

expressions given by formula (68) in [8] for the distribution of ξ
d= X(δ). When

proving the theorem below, we demonstrate that that limit does exist and is finite
and positive.

Proof For a δ > 0, consider the embedded random walk {X(nδ)}n∈N and, for a set
V ⊂ R

d , denote the first time that random walk hits that set V by

ηδ(V ) := inf{n ∈ N : X(nδ) ∈ V }.

First observe that, on the one hand, for any δ > 0, one clearly has

P(τ (sG) < ∞) ≥ P(ηδ(sG) < ∞). (12)

On the other hand, assuming without loss of generality that min1≤j≤d gj ≥ 1 and
setting I (s) := (τ (sG), τ (sG) + δ] ⊂ R on the event {τ (sG) < ∞}, we have, for
any ε > 0,

P(ηδ((s − ε)G) < ∞) ≥ P

(
τ (sG) < ∞, sup

t∈I (s)
‖X(t)− X(τ (sG))‖ ≤ ε

)

= P(τ (sG) < ∞)P

(
sup
t∈I (s)

‖X(t)− X(τ (sG))‖ ≤ ε

)

= P(τ (sG) < ∞)P

(
sup
t∈(0,δ]

‖X(t)‖ ≤ ε

)
, (13)

where the last two relations follow from the strong Markov property and homogene-
ity of X.
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Now take an arbitrary small ε > 0. As the process X is right-continuous, there
exists a δ(ε) > 0 such that

P

(
sup

t∈(0,δ(ε)]
‖X(t)‖ ≤ ε

)
> (1 + ε)−1,

which, together with (13), yields the inequality

P(τ (sG) < ∞) ≤ (1 + ε)P(ηδ((s − ε)G) < ∞). (14)

The precise asymptotics of the probability on the RHS of (12) were obtained
in [8]. It is given in terms of the second rate functionD[δ] for the distribution of the

jumps X(nδ)−X((n− 1)δ)
d= X(δ) in the random walk {X(nδ)}n≥0. Recalling the

well-known fact that the cumulant of X(δ) is given by δK , we see that the first rate
functionΛ[δ] for X(δ) equals

Λ[δ](α) = sup
λ∈Θψ

(〈α,λ〉 − δK(λ))

= δ sup
λ∈Θψ

(〈α/δ,λ〉 −K(λ)) = δΛ(α/δ), α ∈ R
d

(cf. (5)). Therefore the second rate function (see (9)) D[δ] for X(δ) is

D[δ](v) := inf
u>0

uΛ[δ](v/u) = inf
u>0
(uδ)Λ(α/(uδ)) = D(v), v ∈ R

d .

That is, the second rate function for the random walk {X(nδ)} is the same for all
δ > 0, which makes perfect sense as one would expect the same asymptotics for
the probabilities P(ηδ(sG) < ∞) for different δ. Hence the respective value r [δ]G
(see (10)) can easily be seen to be given by δrG.

Therefore, applying Theorem 1 in [8] to the random walk {X(nδ)} and using
notationA[δ] for the constantA appearing in that theorem for the said random walk,
we conclude that, for any δ ∈ (0, δ(ε)], as s → ∞,

P
(
ηδ(sG) < ∞) = A[δ]s−(d−1)/2e−sD(G)(1 + o(1)), (15)

and likewise

P
(
ηδ((s − ε)G) < ∞) = A[δ](s − ε)−(d−1)/2e−(s−ε)D(G)(1 + o(1)). (16)

Now from (12) and (14) we see that, as s → ∞,

A[δ](1 + o(1)) ≤ R(s) := P(τ (sG) < ∞)

s−(d−1)/2e−sD(G)
≤ A[δ](1 + ε)eεD(G)

(1 − ε/s)(d−1)/2
(1 + o(1)).
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Therefore, setting R := lim infs→∞ R(s), R := lim sups→∞ R(s), we have

A[δ] ≤ R ≤ R ≤ (1 + ε)eεD(G)A[δ]

for any δ ∈ (0, δ(ε)], and hence

lim sup
δ→0

A[δ] ≤ R ≤ R ≤ (1 + ε)eεD(G) lim inf
δ→0

A[δ].

As ε > 0 is arbitrary small, we conclude that there exists limδ→0 A
[δ] =: A0 ∈

(0,∞). Therefore there also exists

lim
s→∞R(s) = A0.

The theorem is proved. "#
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Parisian Excursion Below a Fixed Level
from the Last Record Maximum of Lévy
Insurance Risk Process

Budhi A. Surya

Abstract This paper presents some new results on Parisian ruin under Lévy
insurance risk process, where ruin occurs when the process has gone below a
fixed level from the last record maximum, also known as the high-water mark or
drawdown, for a fixed consecutive periods of time. The law of ruin-time and the
position at ruin is given in terms of their joint Laplace transforms. Identities are
presented semi-explicitly in terms of the scale function and the law of the Lévy
process. They are established using recent developments on fluctuation theory of
drawdown of spectrally negative Lévy process. In contrast to the Parisian ruin of
Lévy process below a fixed level, ruin under drawdown occurs in finite time with
probability one.

1 Introduction

Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process defined on filtered
probability space (Ω,F , {Ft : t ≥ 0},P), where Ft is the natural filtration of X
satisfying the usual assumptions of right-continuity and completeness. We denote
by {Px, x ∈ R} the family of probability measure corresponding to a translation of
X s.t. X0 = x, with P = P0, and define Xt = sup0≤s≤t Xs the running maximum
of X up to time t . The Lévy-Itô sample paths decomposition of the Lévy process is
given by

Xt = μt + σBt +
∫ t

0

∫
{x<−1}

xν(dx, ds)+
∫ t

0

∫
{−1≤x<0}

x
(
ν(dx, ds)−Π(dx)ds

)
,
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where μ ∈ R, σ ≥ 0 and (Bt )t≥0 is standard Brownian motion, whilst ν(dx, dt)
denotes the Poisson random measure associated with the jumps process ΔXt :=
Xt −Xt− of X. This Poisson random measure has compensator given byΠ(dx)dt ,
whereΠ is the Lévy measure satisfying the integrability condition:

∫ 0

−∞
(1 ∧ x2)Π(dx) < ∞. (2)

We refer to Chap. 2 of [12] for more details on paths decomposition of X.
Due to the absence of positive jumps, it is therefore sensible to define

ψ(λ) = 1

t
logE

{
eλXt

} = μλ+ 1

2
σ 2λ2 +

∫
(−∞,0)

(
eλx − 1 − λx1{x>−1}

)
Π(dx),

(3)

which is analytic on (Im(λ) ≤ 0). It is easily shown thatψ is zero at the origin, tends
to infinity at infinity and is strictly convex. We denote by Φ : [0,∞) → [0,∞) the
right continuous inverse of the Laplace exponent ψ(λ), so that

Φ(θ) = sup{p > 0 : ψ(p) = θ} and ψ(Φ(θ)) = θ for all θ ≥ 0.

It is worth mentioning that under the Esscher transform P
ν defined by

dPν

dP

∣∣∣
Ft

= eνXt−ψ(ν)t for all ν ≥ 0, (4)

the Lévy process (X,Pν) is still a spectrally negative Lévy process. The Laplace
exponent of X under the new measure Pν has changed to ψν(λ) given by

ψν(λ) = ψ(λ+ ν)− ψ(ν), for λ ≥ −ν. (5)

Subsequently, we define by Φν(θ) the largest root of equation ψν(λ) = θ satisfying

Φν(θ) = Φ(θ + ψ(ν))− ν.

Furthermore, assume that from some reference point of time in the past X has
achieved maximum y > 0. Define drawdown process Y = {Yt : t ≥ 0} of X by

Yt = Xt ∨ y −Xt , (6)

under measure Py,x . Notice that we altered slightly our notation for the probability
measure Py,x to denote the law of X under which at time zero X has current
maximum y ≥ x and position x ∈ R. We simply write P|y := Py,0 the
law of Y under which Y0 = y, and use the notation Ex , Ey,x and E|y to
define the corresponding expectation operator to the above probability measures.
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Subsequently, we denote by E
ν
y,x the expectation under P

ν
y,x by which the Lévy

processX has the Laplace exponentψν(λ) (5). Recall that sinceX is a Lévy process,
it follows that Y is strong Markov.

In recent developments, some results regarding excursion below a (fixed) default
level, say zero, of the Lévy process X with fixed duration (Parisian ruin) have been
obtained and applied in finance and insurance (e.g. option pricing, corporate finance,
optimal dividend, etc). We refer among others to Chesney et al. [6], Francois and
Morellec [9], Broadie et al. [4], Dassios and Wu [8], Loeffen et al. [16, 17], Czarna
and Palmowski [7] and Landriault et al. [15] and the literature therein for further
discussions. In these papers, the excursion takes effect from the first time T −

0 =
inf{t > 0 : Xt < 0} the process X has gone below zero under measure Px , and
default is announced at the first time τr = inf

{
t > r : (t − sup{s < t : Xs > 0})>r}

the Lévy process has gone below zero for r > 0 consecutive periods of time.
In the past decades attention has been paid to find risk protection mechanism

against certain financial assets’ outperformance over their last record maximum,
also referred to as high-water mark or drawdown, which in practice may affect
towards fund managers’ compensation. See, among others, Agarwal et al. [1]
and Goetzmann et al. [10] for details. Such risk may be protected against using
an insurance contract. In their recent works, Zhang et al. [21], Palmowski and
Tumilewicz [19] discussed fair valuation and design of such insurance contract.

Motivated by the above works, we consider a Parisian ruin problem, where ruin
occurs when the Lévy risk processX has gone below a fixed level a > 0 from its last
record maximum (running maximum)Xt ∨y for a fixed consecutive periods of time
r ≥ 0. This excursion takes effects from the first time τ+

a = inf{t > 0 : Xt∨y−a >
Xt } the process under Py,x has gone below a fixed level a > 0 from the last record
maximumXt∨y. Equivalently, this stopping time can be written in terms of the first
passage above level a > 0 of the drawdown process Y as τ+

a = inf{t > 0 : Yt > a}.
Ruin is declared at the first time the process Y has undertaken an excursion above
level a for r consecutive periods of time before getting down again below a, i.e.,

τr = inf{t > r : (t − gt ) ≥ r} with gt = sup{0 ≤ s ≤ t : Ys ≤ a}. (7)

Working with the stopping time τr (7), we consider the Laplace transforms

Ey,x

{
e−uτr 1{τr<∞}

}
and Ey,x

{
e−uτr+νXτr 1{τr<∞}

}
, (8)

for u, ν, r ≥ 0 and y ≥ x. The first quantity gives the law of the ruin time τr ,
whereas the second describes the joint law of the ruin time τr and the position at
ruin Xτr .

The rest of this paper is organized as follows. Section 2 presents the main results
of this paper. Some preliminary results are presented in Sect. 3. Section 4 discusses
the proofs of the main results. Section 5 concludes this paper.
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2 Main Results

The results are expressed in terms of the scale functionW(u)(x) of X defined by

∫ ∞

0
e−λxW(u)(x)dx = 1

ψ(λ) − u
, for λ > Φ(u), (9)

with W(u)(x) = 0 for x < 0. We refer to W(u)
ν the scale function under P

ν .
Following (9), it is straightforward to check under the new measure Pν that

W(u)
ν (x) = e−νxW(u+ψ(ν))(x), (10)

for all u and ν such that u ≥ −ψ(ν) and ψ(ν) < ∞. To see this, take

Laplace transforms on both sides. We will also use the notation W
(u)

ν (x) to denote∫ x
0 W

(u)
ν (y)dy.

It is known following [14] and [5] that, for any u ≥ 0, the u−scale function
W(u) is C1(0,∞) if the Lévy measure Π does not have atoms and is C2(0,∞) if
σ > 0. For further details on spectrally negative Lévy process, we refer to Chap. 6
of Bertoin [3] and Chap. 8 of Kyprianou [12]. Some examples of Lévy processes for
whichW(u) are available in explicit form are given by Kuznetzov et al. [11]. In any
case, it can be computed by numerically inverting (9), see e.g. Surya [20].

In the sequel below, we will use the notationΩ(u)
ε (x, t) defined by

Ω(u)
ε (x, t) =

∫ ∞

ε

W(u)(z + x − ε)
z

t
P{Xt ∈ dz}, for ε ≥ 0,

and define its partial derivative w.r.t x, ∂
∂x
Ω
(u)
ε (x, t), by Λ(u)ε (x, t), i.e.,

Λ(u)ε (x, t) =
∫ ∞

ε

W(u)′(z+ x − ε)
z

t
P{Xt ∈ dz}.

For convenience, we write Ω(u)(x, t) = Ω
(u)
0 (x, t) andΛ(u)(x, t) = Λ

(u)
0 (x, t).

We denote by Ω(u)
ν the role of Ω(u) under change of measure Pν , i.e.,

Ω(u)
ν (x, t) :=

∫ ∞

0
W(u)
ν (z+ x)

z

t
P
ν{Xt ∈ dz}, (11)

similarly defined for Λ(u)ν (x, t). Using (4), we can rewriteΩ(u)
ν (x, t) as follows

Ω(u)
ν (x, t) = e−νxe−ψ(ν)tΩ(u+ψ(ν))(x, t). (12)

The main result concerning the Laplace transform (8) is given below.
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Theorem 1 Define z = y − x, with y ≥ x. For a > 0 and u, r ≥ 0, the Laplace
transform of τr is given by

Ey,x

{
e−uτr 1{τr<∞}

} = e−ur
{

1 + u
[
W
(u)
(a − z)− Ω(u)(a − z, r)

Λ(u)(a, r)
W(u)(a)

+
∫ r

0

(
Ω(u)(a − z, t)− Ω(u)(a − z, r)

Λ(u)(a, r)
Λ(u)(a, t)

)
dt
]}
. (13)

By inserting u = 0 in (13), we see that in contrary to the Parisian ruin probability
under the Lévy process X, see e.g. [16], we have the following result.

Corollary 1 For y ≥ x and r ≥ 0, Py,x{τr < ∞} = 1.

Following the result of Theorem 1 and applying Esscher transform of measure,
the joint law of ruin-time τr and the position at ruin Xτr is given below.

Proposition 1 Define z = y − x, with y ≥ x, and p = u − ψ(ν), with u ≥ 0 and
ν such that ψ(ν) < ∞. For a > 0 and r ≥ 0, the joint Laplace transform of τr and
Xτr is given by

Ey,x

{
e−uτr+νXτr 1{τr<∞}

} = e−preνx
{

1 + p
[
W
(p)

ν (a − z)− Ω
(p)
ν (a − z, r)

Λ
(p)
ν (a, r)

W(p)
ν (a)

+
∫ r

0

(
Ω(p)
ν (a − z, t)− Ω

(p)
ν (a − z, r)

Λ
(p)
ν (a, r)

Λ(p)ν (a, t)
)
dt
]}
.

(14)

3 Preliminaries

Before we prove the main results, we devote this section to some preliminary results
required to establish (13)–(14); in particular, Theorem 1 on the Laplace transform
of τr . By spatial homogeneity of the sample paths of X, we establish Theorem 1
under the measure P|y . To begin with, we define for a > 0 stopping times:

τ+
a = inf{t > 0 : Yt > a} and τ−

a = inf{t > 0 : Yt < a} under P|y . (15)

Due to the absence of positive jumps, we have by the strong Markov property of X
that τ−

a can equivalently be rewritten as τ−
a = inf{t > 0 : Yt ≤ a} and that

E|y
{
e−θτ−

a
} = e−Φ(θ)(y−a). (16)

This is due to the fact that τ−
a < τ{0} a.s., with τ{0} = inf{t > 0 : Yt = 0},

and that {Yt , t ≤ τ{0},Py,x} = {−Xt, t ≤ T +
0 ,P−z}, with z = y − x, where
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T +
a = inf{t > 0 : Xt ≥ a}, a ≥ 0. We refer to Avram et al. [2] and Mijatović and

Pistorius [18].
In the derivation of the main results (13)–(14), we will also frequently apply

Kendall’s identity (see e.g. Corollary VII.3 in [3]), which relates the distribution
P{Xt ∈ dx} of a spectrally negative Lévy process X to the distribution P{T +

x ∈ dt}
of its first passage time T +

x above x > 0 under P. This identity is given by

tP{T +
x ∈ dt}dx = xP{Xt ∈ dx}dt. (17)

To establish our main results, we need to recall the following identities.

Lemma 1 Define s = y − x, with y ≥ x. For a > 0, u ≥ 0 and ν such that
ψ(ν) < ∞, the joint Laplace transform of τ+

a and Yτ+
a

is given by

Ey,x

{
e
−uτ+

a −νY
τ+a 1{τ+

a <∞}
} = (ψ(ν) − u)e−νs

∫ ∞

a−s
e−νzW(u)(z)dz (18)

+ W(u)(a − s)

W(u)′(a)

[
(ψ(ν)− u)e−νaW(u)(a)− ν(ψ(ν) − u)

∫ ∞

a

e−νzW(u)(z)dz
]
.

The identity (18) is due to Theorem 1 in Avram et al. [2] taking account of (9)–(10).

Corollary 2 Define s = y − x, with y ≥ x. For a > 0 and u, θ ≥ 0,

Ey,x

{
e
−uτ+

a −Φ(θ)Y
τ
+
a 1{τ+

a <∞}
} = (θ − u)e−Φ(θ)s

∫ ∞

a−s
e−Φ(θ)zW(u)(z)dz (19)

− W(u)(a − s)

W(u)′(a)

[
(u− θ)e−Φ(θ)aW(u)(a)− (u− θ)Φ(θ)

∫ ∞

a

e−Φ(θ)zW(u)(z)dz
]
.

Proof The result follows from inserting ν = Φ(θ) in Eq. (18) and taking account
that ψ(Φ(θ)) = θ , and

∫ x
0 e

−νzW(u)(z)dz = 1
(ψ(ν)−u) − ∫∞

x
e−νzW(u)(z)dz. "#

Along with Lemma 1 and Corollary 2, the three results below are used when
applying inverse Laplace transforms to get the main results (13)–(14).

Lemma 2 For a given θ > 0 and α such that α < Φ(θ), we have for y ∈ R,

∫ ∞

0
e−θt e−αy

∫ ∞

y

eαz
z

t
P{Xt ∈ dz}dt = e−Φ(θ)y(

Φ(θ)− α
) . (20)

∫ ∞

0
e−θt e−αy

∫ ∞

y

eαz
∫ t

0

z

u
P{Xu ∈ dz}dudt = e−Φ(θ)y

θ
(
Φ(θ)− α

) . (21)

∫ ∞

0
W(u)(z)

z

t
P{Xt ∈ dz} = eut , for u ≥ 0 and t > 0.

(22)
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The results above are slightly generalizations of those given in [16] and can be
proved in similar fashion of [16] using Kendall’s identity (17) and Tonelli.

4 Proof of the Main Results

4.1 Proof of Theorem 1

The proof is established for the case where X has paths of bounded and unbounded
variation. To deal with unbounded variation case, we will use a limiting argument
similar to the one employed in [16, 17] and adjust the ruin time (7) accordingly. For
this reason, we introduce for ε ≥ 0 the stopping time τ εr defined by

τ εr = inf{t > r : (t − gεt
) ≥ r} with gεt := sup{s < t : Ys ≤ a − ε}.

This stopping time represents the first time that the Lévy insurance risk process
X has spent a fixed r > 0 units of time consecutively below pre-specified level
a > 0 from its running maximum Xt ∨ y ending before X getting back up again to
a level a − ε ≥ 0 below the running maximum. Note that τr = τ 0

r .
By spatial homogeneity of X, the proof is given under measure P|y by which X

starts at point zero and has current maximum y. We have for any y > a that

E|y
{
e−uτεr 1{τ εr <∞}

} = e−urP|y{τ−
a−ε > r} + E|y

{
e−uτεr 1{τ εr <∞,τ−

a−ε≤r}
}
.

By the strong Markov property of the drawdown process Y (6), the second
expectation can be worked out using tower property of conditional expectation,

E|y
{
e−uτεr 1{τ εr <∞,τ−

a−ε≤r}
} = E|y

{
E
{
e−uτεr 1{τ εr <∞,τ−

a−ε≤r}
∣∣Fτ−

a−ε
}}

= E|y
{
e−uτ

−
a−ε1{τ−

a−ε≤r}E|Y
τ−a−ε

{
e−uτεr 1{τ εr <∞}

}}

= E|y
{
e−uτ

−
a−ε1{τ−

a−ε≤r}
}
E|a−ε

{
e−uτεr 1{τ εr <∞}

}
,

where the last equality is due to the absence of positive jumps of X. Hence,

E|y
{
e−uτεr 1{τ εr <∞}

} = e−ur
(
1 − P|y{τ−

a−ε ≤ r})
+ E|y

{
e−uτ

−
a−ε1{τ−

a−ε≤r}
}
E|a−ε

{
e−uτεr 1{τ εr <∞}

}
.

(23)
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Following the above, for y ≤ a we have by strong Markov property of Y that

E|y
{
e−uτεr 1{τ εr <∞}

} = E|y
{
E
{
e−uτεr 1{τ εr <∞}

∣∣Fτ+
a

}}

= E|y
{
e−uτ+

a 1{τ+
a <∞}

(
e−ur

(
1 − P|Y

τ+a
{τ−
a−ε ≤ r}))}

+ E|y
{
e−uτ+

a 1{τ+
a <∞}E|Y

τ
+
a

{
e−uτ

−
a−ε1{τ−

a−ε≤r}
}}

E|a−ε
{
e−uτεr 1{τ εr <∞}

}

= e−urE|y
{
e−uτ+

a 1{τ+
a <∞}

}− e−urE|y
{
e−uτ+

a 1{τ+
a <∞}P|Y

τ+a
{τ−
a−ε ≤ r}

}

+ E|y
{
e−uτ+

a 1{τ+
a <∞}E|Y

τ
+
a

{
e−uτ

−
a−ε1{τ−

a−ε≤r}
}}

E|a−ε
{
e−uτεr 1{τ εr <∞}

}
.

(24)

The first expectation in the last equality of (24) can be worked out in terms of
the scale function W(u)(x) using identity (18), whereas the second and the third
expectations are given by the following propositions. To establish the results, we
denote throughout by eθ exponential random time with parameter θ , independent
of X.

Proposition 2 For given u, r, ε ≥ 0 and a > 0, we have for any y ≥ 0 that

E|y
{
e−uτ+

a 1{τ+
a <∞}P|Y

τ+a

{
τ−
a−ε ≤ r

}} = Ω(u)
ε (a − y, r)− u

∫ r

0
Ω(u)
ε (a − y, t)dt

− W(u)(a − y)

W(u)′(a)

(
Λ(u)ε (a, r)− u

∫ r

0
Λ(u)ε (a, t)dt

)
.

(25)

Proof On recalling (16), we have by Tonelli, Lemma 1 and Corollary 2,
∫ ∞

0
dre−θrE|y

{
e−uτ+

a 1{τ+
a <∞}P|Y

τ+a

{
τ−
a−ε ≤ r

}}

= 1

θ
E|y
{
e−uτ+

a 1{τ+
a <∞}P|Y

τ
+
a

{
eθ ≥ τ−

a−ε
}}

= 1

θ
eΦ(θ)(a−ε)E|y

{
e
−uτ+

a −Φ(θ)Y
τ
+
a 1{τ+

a <∞}
}
.

(26)

Furthermore, observe following the result of Corollary 2 that for θ > u we have

E|y
{
e
−uτ+

a −Φ(θ)Y
τ+a 1{τ+

a <∞}
}

= (θ − u)

Φ(θ)
e−Φ(θ)aW(u)(a − y)

+ (θ − u)

Φ(θ)
e−Φ(θ)a

∫ ∞

0
e−Φ(θ)zW(u)′(z + a − y)dz

− W(u)(a − y)

W(u)′(a)

[
(θ − u)e−Φ(θ)a

∫ ∞

0
e−Φ(θ)zW(u)′(z + a)dz

]
.
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Define Γ (x, r) = ∫∞
x

z
r
P{Xr ∈ dz}. Following the above, we have from (26) that

∫ ∞
0

dre−θrE|y
{
e−uτ+

a 1{τ+
a <∞}P|Y

τ+a

{
τ−a−ε ≤ r

}}

= 1

θ
E|y
{
e−uτ+

a 1{τ+
a <∞}P|Y

τ+a

{
eθ ≥ τ−a−ε

}}

= (θ − u)

θΦ(θ)
e−Φ(θ)εW(u)(a − y)

+ (θ − u)

θΦ(θ)
e−Φ(θ)ε

∫ ∞
0

e−Φ(θ)zW(u)′(z + a − y)dz

− W(u)(a − y)

θW(u)′(a)
[
(θ − u)e−Φ(θ)ε

∫ ∞
0

e−Φ(θ)zW(u)′(z+ a)dz
]
.

Next, recall following (20)–(21), (16) and the Kendall’s identity (17) that

( 1

Φ(θ)
− u

θΦ(θ)

)
e−Φ(θ)x =

∫ ∞

0
dre−θr

(
Γ (x, r) − u

∫ r

0
Γ (x, t)dt

)
∫ ∞

0

(
1 − u

θ

)
e−Φ(θ)(z+ε)W (u)′(z+ a)dz =

∫ ∞

0
dre−θr

(
Λ(u)ε (a, r) − u

∫ r

0
Λ(u)ε (a, t)dt

)
.

Moreover, by applying integration by part we have after some calculations that
∫ ∞

0
dzW(u)′(z + x)Γ (z + ε, t) = Ω(u)

ε (x, t)−W(u)(x)Γ (ε, t). (27)

The claim in (25) is established following the above and by Tonelli and Laplace
inversion (noting that both sides of (26) is right-continuous in r) to (26). "#
Proposition 3 For given u, r, ε ≥ 0 and a > 0, we have for any y ≥ 0 that

E|y
{
e−uτ+

a 1{τ+
a <∞}E|Y

τ+a

{
e−uτ

−
a−ε1{τ−

a−ε≤r}
}}

= e−ur
(
Ω(u)
ε (a − y, r)− W(u)(a − y)

W(u)′(a)
Λ(u)ε (a, r)

)
.

(28)

Proof On recalling (16), we have by Tonelli, Lemma 1 and Corollary 2,
∫ ∞

0
dre−θrE|y

{
e−uτ+

a 1{τ+
a <∞}E|Y

τ+a

{
e−uτ

−
a−ε1{τ−

a−ε≤r}
}}

= 1

θ
E|y
{
e−uτ+

a 1{τ+
a <∞}E|Y

τ
+
a

{
e−uτ

−
a−ε1{eθ≥τ−

a−ε }
}}

= 1

θ
eΦ(θ+u)(a−ε)E|y

{
e
−uτ+

a −Φ(θ+u)Y
τ
+
a 1{τ+

a <∞}
}
.

(29)
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From Corollary 2, the expectation on the right hand side is given by

E|y
{
e
−uτ+

a −Φ(θ+u)Y
τ+a 1{τ+

a <∞}
}

= θ

Φ(θ + u)
e−Φ(θ+u)aW(u)(a − y)

+ θ

Φ(θ + u)
e−Φ(θ+u)a

∫ ∞

0
e−Φ(θ+u)zW(u)′(z+ a − y)dz

− W(u)(a − y)

W(u)′(a)
θe−Φ(θ+u)a

∫ ∞

0
e−Φ(θ+u)zW(u)′(z+ a)dz.

Following the above, we have from the Laplace transform (29) that

∫ ∞

0
dre−θrE|y

{
e−uτ+

a 1{τ+
a <∞}E|Y

τ
+
a

{
e−uτ

−
a−ε1{τ−

a−ε≤r}
}}

= 1

Φ(θ + u)
e−Φ(θ+u)εW(u)(a − y)

+ 1

Φ(θ + u)
e−Φ(θ+u)ε

∫ ∞

0
e−Φ(θ+u)zW(u)′(z+ a − y)dz (30)

− W(u)(a − y)

W(u)′(a)
e−Φ(θ+u)ε

∫ ∞

0
e−Φ(θ+u)zW(u)′(z+ a)dz.

Moreover, following (16), we have by applying Kendall’s identity and (20)

1

Φ(θ + u)
e−Φ(θ+u)x =

∫ ∞

0
dre−θre−urΓ (x, r)

∫ ∞

0
e−Φ(θ+u)(z+ε)W(u)′(z+ a)dz =

∫ ∞

0
dre−θre−urΛ(u)ε (a, r).

The claim (28) is justified using the above and (27) and by Tonelli and Laplace
inversion of (30)—noting that both sides of (30) is right-continuous in r . "#

From the above two propositions, we have following (24) and (18) that

E|y
{
e−uτεr 1{τ εr <∞}

} = e−ur
[
1 + uW

(u)
(a − y)− u

W(u)(a)

W(u)′(a)
W(u)(a − y)

]

− e−ur
[
Ω(u)
ε (a − y, r)− u

∫ r

0
Ω(u)
ε (a − y, t)dt (31)

− W(u)(a − y)

W(u)′(a)

(
Λ(u)ε (a, r)− u

∫ r

0
Λ(u)ε (a, t)dt

)]

+ e−ur
(
Ω(u)
ε (a − y, r)− W(u)(a − y)

W(u)′(a)
Λ(u)ε (a, r)

)
E|a−ε

{
e−uτεr 1{τ εr <∞}

}
.
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We arrive at our claim (13) once the expectation on the right hand side is found.
For this purpose, set y = a − ε on both sides of the above equation to get

[
1 − e−ur

(
Ω(u)
ε (ε, r)− W(u)(ε)

W(u)′(a)
Λ(u)ε (a, r)

)]
E|a−ε

{
e−uτεr 1{τ εr <∞}

}

= e−ur
[
1 + uW

(u)
(ε)− u

W(u)(a)

W(u)′(a)
W(u)(ε)−Ω(u)

ε (ε, r)+ u

∫ r

0
Ω(u)
ε (ε, t)dt

+ W(u)(ε)

W(u)′(a)

(
Λ(u)ε (a, r)− u

∫ r

0
Λ(u)ε (a, t)dt

)]
.

(32)

However, on account of (22), we can rewrite the termsΩ(u)
ε (ε, t) as follows

Ω(u)
ε (ε, t) = eut −

∫ ε

0
W(u)(z)

z

t
P{Xt ∈ dz},

from which the Eq. (32) simplifies further after some calculations to

[ ∫ ε

0
W(u)(z)

z

r
P{Xr ∈ dz} + W(u)(ε)

W(u)′(a)
Λ(u)ε (a, r)

]
E|a−ε

{
e−uτεr 1{τ εr <∞}

}

=
∫ ε

0
W(u)(z)

z

r
P{Xr ∈ dz} + W(u)(ε)

W(u)′(a)
Λ(u)ε (a, r) + u

[
W
(u)
(ε) − W(u)(a)

W(u)′(a)
W(u)(ε)

−
∫ r

0
dt
( ∫ ε

0
W(u)(z)

z

t
P{Xt ∈ dz} + W(u)(ε)

W(u)′(a)
Λ(u)ε (a, t)

)]
,

or equivalently, we obtain after dividing both sides of the equation by W(u)(ε),

E|a−ε
{
e−uτεr 1{τ εr <∞}

}

=1 + u

[
W
(u)
(ε)

W(u)(ε)
− W(u)(a)

W(u)′(a) − ∫ r0 dt
( ∫ ε

0
W(u)(z)

W(u)(ε)

z
t
P{Xt ∈ dz} + Λ

(u)
ε (a,t)

W(u)′(a)

)]
( ∫ ε

0
W(u)(z)

W(u)(ε)

z
r
P{Xr ∈ dz} + Λ

(u)
ε (a,r)

W(u)′(a)

) .
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Using this result and putting it back in the Eq. (31), we arrive at

eurE|y
{
e−uτεr 1{τ εr <∞}

} = 1 + uW
(u)
(a − y)− u

W(u)(a)

W(u)′(a)
W(u)(a − y)

+ u

∫ r

0
dt
(
Ω(u)
ε (a − y, t)− W(u)(a − y)

W(u)′(a)
Λ(u)ε (a, t)

)

+ u

[
W
(u)
(ε)

W(u)(ε)
− W(u)(a)

W(u)′(a) − ∫ r0 dt
( ∫ ε

0
W(u)(z)

W(u)(ε)

z
t
P{Xt ∈ dz} + Λ

(u)
ε (a,t)

W(u)′(a)

)]
( ∫ ε

0
W(u)(z)

W(u)(ε)

z
r
P{Xr ∈ dz} + Λ

(u)
ε (a,r)

W(u)′(a)

)

×
(
Ω(u)
ε (a − y, r)− W(u)(a − y)

W(u)′(a)
Λ(u)ε (a, r)

)
. (33)

We now want to compute the limit as ε ↓ 0 of (33). In order to do this, recall by the
spatial homogeneity that P|y{τ εr ≤ t} = P|y+ε{τr ≤ t} and therefore by the right-
continuity of the map y → P|y{τr ≤ t}, we have P|y{τr ≤ t} = limε↓0 P|y{τ εr ≤ t}.
Hence, by weak convergence theorem the Laplace transform of P|y{τ εr ≤ t}
converges as ε ↓ 0 to that of P|y{τr ≤ t}, i.e., limε↓0 E|y

{
e−uτεr 1{τ εr <∞}

} =
E|y
{
e−uτr 1{τr<∞}

}
.

We consider two cases: W(u)(0+) > 0 (X has paths of bounded variation) and
W(u)(0+) = 0 (X has unbounded variation). For the case W(u)(0+) > 0,

eurE|y
{
e−uτr 1{τr<∞}

} = 1 + uW
(u)
(a − y)− u

W(u)(a)

W(u)′(a)
W(u)(a − y)

+ u

∫ r

0
dt
(
Ω(u)(a − y, t)− W(u)(a − y)

W(u)′(a)
Λ(u)(a, t)

)
(34)

− u
( W(u)(a)

Λ(u)(a, r)
+
∫ r

0

Λ(u)(a, t)

Λ(u)(a, r)
dt
)(
Ω(u)(a − y, r)− W(u)(a − y)

W(u)′(a)
Λ(u)(a, r)

)
,

which after some further calculations simplifies to the main result (13).
For the case W(u)(0+) = 0, we have after applying integration by parts that

∫ ε

0

W(u)(z)

W(u)(ε)

z

r
P{Xr ∈ dz} =

∫ ε

0

z

r
P{Xr ∈ dz}−

∫ ε

0
dz
W(u)′(z)
W(u)(ε)

∫ z

0

w

r
P{Xr ∈ dw}.

Therefore, by employing l’Hôpital rule we obtain

lim
ε↓0

∫ ε

0

W(u)(z)

W(u)(ε)

z

r
P{Xr ∈ dz} = lim

ε↓0

W(u)′(ε)
∫ ε

0
z
r
P{Xr ∈ dz}

W(u)′(ε)
= 0.
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The claim is established once we show that limε↓0
W
(u)
(ε)

W(u)(ε)
= limε↓0

W(u)(ε)

W(u)′(ε) = 0.
This turns out to be the case when X has paths of unbounded variation since
W(u)′(0+) = 2/σ 2 if σ �= 0 and is equal to ∞ if σ = 0. See for instance
Lemma 4.4. in Kyprianou and Surya [13]. On account of these results, we arrive
at the identity (34), which after some further calculations simplifies to the main
result (13). "#

We have shown that (13) holds for z ≤ a. We now prove that (13) holds for
z > a. For this purpose, recall that under measure P|y , with y > a, τ+

a = 0 a.s. On
account of the fact W(u)(x) = 0 for x < 0, we have from (25) and (28) for ε = 0
and y > a,

P|y{τ−
a ≤ r} = Ω(u)(a − y, r)− u

∫ r

0
Ω(u)(a − y, t)dt. (35)

E|y
{
e−uτ−

a 1{τ−
a ≤r}

} = e−urΩ(u)(a − y, r). (36)

These identities can be proved by Kendall’s identity, Tonelli, (16) and Laplace
inversion taking account for x < 0,

∫∞
0 e−θtΩ(u)(x, t)dt = eΦ(θ)x/(θ − u), θ > u.

Indeed,
∫ ∞

0
e−θtΩ(u)(x, t)dt =

∫ ∞

0
e−θt

∫ ∞

0
W(u)(z + x)

z

t
P{Xt ∈ dz}dt

=
∫ ∞

0
e−θt

∫ ∞

0
W(u)(z + x)P{T+

z ∈ dt}dz

=
∫ ∞

0
W(u)(z+ x)

∫ ∞

0
e−θtP{T +

z ∈ dt}dz

=
∫ ∞

0
W(u)(z+ x)e−Φ(θ)zdz

= eΦ(θ)x
∫ ∞

x

e−Φ(θ)zW(u)(z)dz. "#

Starting from Eq. (23) with ε = 0, we obtain following identities (35)–(36),

E|y
{
e−uτr 1{τr<∞}

} = e−ur
[
1 + u

∫ r

0
Ω(u)(a − y, t)dt −Ω(u)(a − y, r)

]

+ e−urΩ(u)(a − y, r)E|a
{
e−uτr 1{τr<∞}

}
.

(37)

The expression for E|a
{
e−uτr 1{τr<∞}

}
is given by setting z = a in (13):

E|a
{
e−uτr1{τr<∞}

} = 1 − u
( W(u)(a)

Λ(u)(a, r)
+
∫ r

0

Λ(u)(a, t)

Λ(u)(a, r)
dt
)
, (38)
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where we have used in the calculation above the fact that Ω(u)(0, t) = eut , see
Eq. (22). By inserting (38) in (37) we obtain after some further calculations that

E|y
{
e−uτr 1{τr<∞}

} = e−ur
{

1 + u
[
− Ω(u)(a − y, r)

Λ(u)(a, r)
W(u)(a)

+
∫ r

0

(
Ω(u)(a − y, t)− Ω(u)(a − y, r)

Λ(u)(a, r)
Λ(u)(a, t)

)
dt
]}
,

which corresponds to (13) for z > a showing that (13) holds for any z ≥ 0. "#

4.2 Proof of Proposition 1

Applying Esscher transform of measure (4) to the result (13), we have

Ey,x

{
e−uτr+νXτr 1{τr<∞}

} =eνxEy,x
{
e−pτr eν(Xτr−x)−ψ(ν)τr1{τr<∞}

}
=eνxEνy,x

{
e−pτr1{τr<∞}

}
, (39)

where we have defined p = u− ψ(ν). Under the new measure Pν ,

E
ν
y,x

{
e−pτr1{τr<∞}

} = e−pr
{

1 + p
[
W
(p)

ν (a + x − y)− Ω
(p)
ν (a + x − y, r)

Λ
(p)
ν (a, r)

W(p)
ν (a)

+
∫ r

0

(
Ω(p)
ν (a + x − y, t)− Ω

(p)
ν (a + x − y, r)

Λ
(p)
ν (a, r)

Λ(p)ν (a, t)
)
dt
]}
,

following which and the Eq. (39) our claim in (14) is established. "#

5 Conclusions

We have presented some new results concerning Parisian ruin problem under Lévy
insurance risk process, where ruin is announced when the risk process has gone
below a certain level from the last record maximum of the process, also known
as the drawdown, for a fixed consecutive period of time. They further extend the
existing results on Parisian ruin below a fixed level of the risk process. Using recent
developments on fluctuation and excursion theory of the drawdown of the Lévy risk
process, the law of ruin-time and the position at ruin was given in terms of their
joint Laplace transforms. Identities are presented semi-explicitly in terms of the
scale function and the law of the Lévy process. The results can be used to calculate
some quantities of interest in finance and insurance as discussed in the introduction.



Parisian Excursion Below a Fixed Level from the Last Record Maximum of. . . 325

Acknowledgements The author would like to thank a number of anonymous referees and
associate editors for their useful suggestions and comments that improved the presentation of
this paper. This paper was completed during the time the author visited the Hugo Steinhaus
Center of Mathematics at Wrocław University of Science and Technology in Poland. The author
acknowledges the support and hospitality provided by the Center. He thanks to Professor Zbigniew
Palmowski for the invitation, and for some suggestions over the work discussed during the
MATRIX Mathematics of Risk Workshop in Melbourne organized by Professors Konstantin
Borovkov, Alexander Novikov and Kais Hamza to whom the author also like to thanks for the
invitation. This research is financially supported by Victoria University PBRF Research Grants #
212885 and # 214168 for which the author is grateful.

References

1. Agarwal, V., Daniel, N., Naik, N.: Role of managerial incentives and discretion in hedge fund
performance. J. Financ. 64, 2221–2256 (2009)

2. Avram, F., Kyprianou, A.E., Pistorius, M.R.: Exit problems for spectrally negative Lévy
processes and applications to (Canadized) Russian options. Ann. Appl. Probab. 14, 215–238
(2004)

3. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)
4. Broadie, M., Chernov, M., Sundaresan, S.: Optimal debt and equity values in the presence of

Chapter 7 and Chapter 11. J. Financ. LXII, 1341–1377 (2007)
5. Chan, T., Kyprianou, A.E., Savov, M.: Smoothness of scale functions for spectrally negative

Lévy processes. Probab. Theory Rel. 150, 691–708 (2011)
6. Chesney, M., Jeanblanc-Picqué, M., Yor, M.: Brownian excursions and Parisian barrier options.

Adv. Appl. Probab. 29, 165–184 (1997)
7. Czarna, I., Palmowski, Z.: Ruin probability with Parisian delay for a spectrally negative Lévy

process. J. Appl. Probab. 48, 984–1002 (2011)
8. Dassios, A., Wu, S.: Perturbed Brownian motion and its application to Parisian option pricing.

Finance Stoch. 14, 473–494 (2010)
9. Francois, P., Morellec, E.: Capital structure and asset prices: some effects of bankruptcy

procedures. J. Bus. 77, 387–411 (2004)
10. Goetzmann, W.N., Ingersoll Jr., J.E., Ross, S.A.: High-water marks and hedge fund manage-

ment contracts. J. Financ. 58, 1685–1717 (2003)
11. Kusnetzov, A., Kyprianou, A.E., Rivero, V.: The Theory of Scale Functions for Spectrally

Negative Lévy Processes, Lévy Matters II. Springer Lecture Notes in Mathematics. Springer,
Berlin (2013)

12. Kyprianou, A.E.: Introductory Lectures on Fluctuations of Lévy Processes with Applications.
Springer, Berlin (2006)

13. Kyprianou, A.E., Surya, B.A.: Principles of smooth and continuous fit in the determination of
endogenous bankruptcy levels. Finance Stoch. 11, 131–152 (2007)

14. Lambert, A.: Completely asymmetric Lévy processes confined in a finite interval. Ann. Inst.
Henri Poincaré 2, 251–274 (2000)

15. Landriault, D., Renaud, J-F., Zhou, X.: An insurance risk model with Parisian implementation
delays. Methodol. Comput. Appl. Probab. 16, 583–607 (2014)

16. Loeffen, R., Czarna, I., Palmowski, Z.: Parisian ruin probability for spectrally negative Lévy
processes. Bernoulli 19, 599–609 (2013)

17. Loeffen, R., Palmowski, Z., Surya, B.A.: Discounted penalty function at Parisian ruin for Lévy
insurance risk process. Insur. Math. Econ. 83, 190–197 (2017)
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Simple Group Actions on Arc-Transitive
Graphs with Prescribed Transitive Local
Action

Marston Conder

Abstract This paper gives a partial answer to a question asked by Pierre-Emmanuel
Caprace at the Groups St Andrews conference at Birmingham (UK) in August 2017,
and investigated at the ‘Tutte Centenary Retreat’ workshop held at MATRIX in
November 2017. Caprace asked if there exists a 2-transitive permutation group P
such that only finitely many simple groups act arc-transitively on a connected graph
X with local action P (of the stabiliser of a vertex v on the neighbourhood of v).
Some evidence is given to suggest that the answer is “No”, even when ‘2-transitive’
is replaced by ‘transitive’, and then by way of illustration, a follow-up question
is answered by showing that all but finitely many alternating groups have such an
action on a 6-valent connected graph with vertex-stabiliserA6.

1 Introduction

At the Groups St Andrews conference held at Birmingham (UK) in August 2017,
Pierre-Emmanuel Caprace asked if there exists a 2-transitive permutation group P
such that only finitely many simple groups act arc-transitively on a connected graph
X in such a way that the stabiliser (in the simple group) of a vertex v induces P on
the neighbourhood of v. This question and a follow-up question about what happens
when P is the alternating group A6 were conveyed by Gabriel Verret and Michael
Giudici at the ‘Tutte Centenary Retreat’ workshop held at MATRIX in November
2017. What follows is a partial answer to the main question, showing that even
when ‘2-transitive’ is replaced by ‘transitive’, no such group P can exist if a certain
conjecture about alternating quotients of amalgamated free products is valid, and
then a full answer to the sub-question, showing that P cannot be A6, as well as
noting that P cannot be one of a number of other permutation groups.
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2 The General Question

One approach that can be taken to the general question is to consider the action of
a group G on a graph X with the property that the stabiliser V in G of a vertex v
of X is isomorphic to P (and induces P on the neighbourhood X(v)). First, let d
be the degree of P (as a transitive permutation group). Then we may suppose that
d ≥ 3, since the automorphism groups of 2-valent connected arc-transitive graphs
are dihedral and therefore soluble, and the question by Caprace is not relevant.

Now observe that if E is the stabiliser of an edge e = {v,w} incident with v, and
A is the stabiliser of the arc (v,w) (and hence isomorphic to a point-stabiliser in the
given group P ), then G is a homomorphic image of the free product V ∗AE with
the subgroup A = V ∩ E amalgamated. Moreover,A has index d in V , and 2 in E.

Next, a conjecture made by Džambić and Jones [10] and supported by the author
asserts that if V and E are any two finite groups with a common subgroup A with
index |V : A| ≥ 3 and index |E : A| ≥ 2, then all but finitely many alternating
groupsAn occur as homomorphic images of the amalgamated free product V ∗A E.
An even stronger version of this conjecture (believed to be true by the author) is as
follows:

Conjecture 1 Let V and E be any two finite groups with a common subgroup A
with index |V : A| ≥ 3 and index |E : A| ≥ 2, and let K be the core of A in
V ∗A E. Then all but finitely many An occur as the image of the amalgamated free
product V ∗A E under some homomorphism that takes V and E to subgroups (of
An) isomorphic to V/K and E/K respectively. In particular, if the amalgamated
subgroupA is core-free in V ∗A E, then all but finitely many An occur as images of
V ∗A E under homomorphisms that are faithful on each of V and E.

It is easy to see this is stronger than the conjecture in [10], since for example any
quotient of C2 ∗C1C3 = C2 ∗C3 (the modular group) is also a quotient of C4 ∗C2C6,
but not vice versa. Also there is plenty of evidence in support of it. Indeed it is known
to be true in many special cases (proved well before the original conjecture was
made in [10]), such as those arising in the way described above from the study of
finite arc-transitive and/or path-transitive 3-valent graphs [4, 8], or 7-arc-transitive
4-valent graphs [9], or similarly from the study of arc-transitive digraphs [6], chiral
maps [2] or chiral polytopes [5], and even hyperbolic 3-manifolds [7].

Furthermore, if the above conjecture is valid, then the answer to Caprace’s main
question can be shown to be ‘No’, even when V is not 2-transitive:

Theorem 1 If Conjecture 1 is valid, then for every transitive finite permutation
group P , all but finitely many alternating groups An act arc-transitively on a
connected graph X in such a way that the stabiliser in An of a vertex v induces
P on the neighbourhood of v.

Proof Let V , E and A be as above, with E chosen as a group containing an index 2
subgroup isomorphic toA, and consider the amalgamated free productV ∗AE. Note
that because A is a point-stabiliser in the permutation group V (= P ), it is core-free
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in V and hence also A is core-free in V ∗A E. Suppose further that θ : V ∗A E → G

is any epimorphism to a finite non-abelian simple groupG such that θ is faithful on
each of V and E, and also let a be any element of the image of E \ A in G, and let
H be the θ -image of V (so that H is isomorphic to P ).

Now let X be the double-coset graph X(G,H, a), with vertices defined as the
right cosets of H in G, with cosets Hx and Hy adjacent in X if and only if xy−1 ∈
HaH . This is a well-known construction attributed to Sabidussi, and described in
detail in [4, 9] for example. The construction ensures thatG acts as an arc-transitive
group of automorphisms of the graphX (by right multiplication of cosetsHx inG),
with vertex-stabiliser H acting transitively on the neighbourhoodX(H) = {Hah :
h ∈ H } of the trivial coset H . Moreover, this action of H is equivalent to the action
of V on cosets of A (by right multiplication), and hence the same as the natural
action of the given permutation group P, as required.

Finally, if Conjecture 1 is valid then we can take G as the alternating group An
for all but finitely many n, and this completes the proof. "#

3 Some Specific Cases

The same argument as used in the above proof can be applied to many specific cases
where Conjecture 1 is known to be valid.

For example, this is often known to happen when the amalgamated subgroup A
in V ∗A E is trivial. The validity of Conjecture 1 for the free products C3 ∗ C2 and
Ck ∗ C2 for all k ≥ 7 follows from the fact that all but finitely many alternating
groups are quotients of the ordinary (2, 3, k) triangle group for any given such k
(see [3]), and the same holds for Ck ∗ C2 for all k ∈ {4, 5, 6} by the analogous
properties of the (2, k,m) triangle groups for 4 ≤ k < m (see [11]).

Similarly, the fact that all but finitely many alternating groups are quotients of the
extended (2, 3, k) triangle (see [3]) shows that the same thing holds for Dk ∗C2 V4
for k = 3 and all k ≥ 7. Also in [10] it was shown that infinitely many alternating
groups occur as quotients of A5 ∗C5 D5.

Hence, in particular, the answer to Caprace’s question is ‘No’ when P is a cyclic
or dihedral group of degree 3 or more, or the group of degree 12 induced by A5 on
cosets of a subgroup of order 5. It is fairly clear that the same answer holds for many
other permutation groups besides these, and we complete this paper (and answer the
sub-question mentioned earlier) by considering the case where P = A6.

From now on we take V as A6 and A as its point-stabiliser A5, and we choose
E as A5 × C2. Just as before, note that A is core-free in V and hence also core-free
in V ∗A E. We will show that all but finitely many alternating groups An occur as
images of V ∗A E under homomorphisms that are faithful on each of V and E.
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To do this, first we note that V ∗A E = A6 ∗A5 (A5 × C2) is generated by three
elements x, y and a with the following properties:

• x and y generateV = A6 and satisfy the relations x2 = y5 = (xy)5 = (xy2)4 = 1,
• y and u = xy−1xyx generateA = A5 (and satisfy u2 = y5 = (uy2)3 = 1), and
• y, u and a generate E = A5 × C2, and satisfy a2 = [u, a] = 1 and ya = y−1.

These properties may be seen by taking x = (3, 6)(4, 5) and y = (1, 2, 3, 4, 5)
in A6, with u = (1, 4)(3, 5), and by viewing a as the inner automorphism of A5
induced by conjugation by (1, 3)(4, 5).

Next, we consider six particular transitive permutation representations of V ∗AE,
of degrees 1, 12, 42, 62, 21 and 31, as given below. In each case we give also the
permutations induced by u = xy−1xyx andw = xa, and identify the fixed points of
the subgroup E (generated by y, u and a), and call these fixed points ‘link points’,
for reasons that should soon become clear.

Representation R1 (degree 1)

x → (),
y → (),
u → (),
a → (),
w → ().
Link point 1

Representation R2 (degree 12)

x → (1, 2)(3, 4)(9, 12)(10, 11),
y → (2, 3, 4, 5, 6)(7, 8, 9, 10, 11),
u → (2, 4)(3, 5)(7, 10)(9, 11),
a → (2, 7)(3, 11)(4, 10)(5, 9)(6, 8),
w → (1, 7, 2)(3, 10)(4, 11)(5, 9, 12)(6, 8).
Link points 1 and 12

Representation R3 (degree 42)

x → (1, 2)(3, 4)(7, 12)(8, 20)(9, 32)(10, 27)(11, 24)(13, 29)(14, 33)(15, 18)
(16, 31)(17, 25)(21, 34)(23, 36)(26, 28)(30, 35)(39, 42)(40, 41),

y → (2, 3, 4, 5, 6)(7, 8, 9, 10, 11)(12, 13, 14, 15, 16)(17, 18, 19, 20, 21)
(22, 23, 24, 25, 26)(27, 28, 29, 30, 31)(32, 33, 34, 35, 36)
(37, 38, 39, 40, 41),

u → (2, 4)(3, 5)(7, 10)(9, 11)(12, 17)(13, 22)(14, 27)(15, 28)(16, 23)(18, 21)
(19, 31)(20, 29)(24, 26)(25, 30)(32, 34)(33, 35)(37, 40)(39, 41),

a → (2, 7)(3, 11)(4, 10)(5, 9)(6, 8)(13, 16)(14, 15)(18, 21)(19, 20)(22, 23)
(24, 26)(27, 28)(29, 31)(32, 37)(33, 41)(34, 40)(35, 39)(36, 38),

w → (1, 7, 12, 2)(3, 10, 28, 24)(4, 11, 26, 27)(5, 9, 37, 32)(6, 8, 19, 20)
(13, 31)(14, 41, 34, 18)(15, 21, 40, 33)(16, 29)(17, 25)(22, 23, 38, 36)
(30, 39, 42, 35).



Simple Group Actions on Arc-Transitive Graphs with Prescribed Transitive. . . 331

Link points 1 and 42

Representation R4 (degree 62)

x → (1, 2)(3, 4)(7, 12)(8, 20)(10, 14)(11, 21)(13, 16)(15, 18)(23, 32)(24, 31)
(25, 35)(26, 40)(27, 41)(28, 33)(29, 39)(36, 38)(42, 52)(43, 50)(44, 46)
(45, 54)(47, 55)(48, 53)(57, 61)(60, 62),

y → (2, 3, 4, 5, 6)(7, 8, 9, 10, 11)(12, 13, 14, 15, 16)(17, 18, 19, 20, 21)
(22, 23, 24, 25, 26)(27, 28, 29, 30, 31)(32, 33, 34, 35, 36)
(37, 38, 39, 40, 41)(42, 43, 44, 45, 46)(47, 48, 49, 50, 51)
(52, 53, 54, 55, 56)(57, 58, 59, 60, 61),

u → (2, 4)(3, 5)(7, 10)(9, 11)(12, 17)(13, 19)(16, 20)(18, 21)(22, 27)(23, 29)
(26, 30)(28, 31)(33, 37)(34, 39)(35, 41)(38, 40)(44, 47)(45, 49)(46, 51)
(48, 50)(52, 54)(53, 56)(57, 60)(58, 61),

a → (2, 7)(3, 11)(4, 10)(5, 9)(6, 8)(12, 22)(13, 26)(14, 25)(15, 24)(16, 23)
(17, 27)(18, 31)(19, 30)(20, 29)(21, 28)(32, 42)(33, 46)(34, 45)(35, 44)
(36, 43)(37, 51)(38, 50)(39, 49)(40, 48)(41, 47)(52, 57)(53, 61)(54, 60)
(55, 59)(56, 58),

w → (1, 7, 22, 12, 2)(3, 10, 25, 44, 33, 21)(4, 11, 28, 46, 35, 14)(5, 9)
(6, 8, 29, 49, 39, 20)(13, 23, 42, 57, 53, 40)(15, 31)
(16, 26, 48, 61, 52, 32)(17, 27, 47, 59, 55, 41)(18, 24)(19, 30)
(34, 45, 60, 62, 54)(36, 50)(37, 51)(38, 43)(56, 58).

Link points 1 and 62

Representation R5 (degree 21)

x → (1, 2)(3, 4)(7, 12)(8, 20)(10, 14)(11, 21)(13, 16)(15, 18),
y → (2, 3, 4, 5, 6)(7, 8, 9, 10, 11)(12, 13, 14, 15, 16)(17, 18, 19, 20, 21),
u → (2, 4)(3, 5)(7, 10)(9, 11)(12, 17)(13, 19)(16, 20)(18, 21),
a → (2, 7)(3, 11)(4, 10)(5, 9)(6, 8)(13, 16)(14, 15)(18, 21)(19, 20),
w → (1, 7, 12, 2)(3, 10, 15, 21)(4, 11, 18, 14)(5, 9)(6, 8, 19, 20).
Link point 1

Representation R6 (degree 31)

x → (1, 2)(3, 4)(7, 12)(8, 20)(10, 14)(11, 21)(13, 16)(15, 18)(23, 25)(24, 31)
(26, 28)(27, 29),

y → (2, 3, 4, 5, 6)(7, 8, 9, 10, 11)(12, 13, 14, 15, 16)(17, 18, 19, 20, 21)
(22, 23, 24, 25, 26)(27, 28, 29, 30, 31),

u → (2, 4)(3, 5)(7, 10)(9, 11)(12, 17)(13, 19)(16, 20)(18, 21)(22, 27)(23, 29)
(26, 30)(28, 31),

a → (2, 7)(3, 11)(4, 10)(5, 9)(6, 8)(12, 22)(13, 26)(14, 25)(15, 24)(16, 23)
(17, 27)(18, 31)(19, 30)(20, 29)(21, 28),
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w → (1, 7, 22, 12, 2)(3, 10, 25, 16, 26, 21)(4, 11, 28, 13, 23, 14)(5, 9)
(6, 8, 29, 17, 27, 20)(15, 31)(18, 24)(19, 30).

Link point 1

Note that in each case, the permutations induced by x, y and u are necessarily
even, since they generate a subgroup isomorphic to A6 or the trivial group. On
the other hand, the permutations induced by the involution a have 0, 5, 18, 30, 9
and 15 transpositions respectively, and hence the permutations induced by a and
w = xa are even in representations R1, R3 and R4, but are odd in representations
R2, R5 and R6. Indeed, the cycle structure of the permutation induced by w =
xa in representations R2 to R6 is 23 32, 23 49, 28 52 66, 13 21 44 and 24 51 63,
respectively.

We will use these six representations as ‘building blocks’ for constructing
transitive permutation representations of V ∗AE of arbitrarily large degree, by using
the link points to join representations together.

To help to explain that, we observe how the image of each representation of
V ∗A E splits into orbits of the subgroups V = 〈x, y〉 ∼= A6, E = 〈y, u, a〉 ∼=
A5 × C2 and A = V ∩ E = 〈y, u〉 ∼= A5. For example, the image of R3 (of
degree 42) splits into three orbits of V, of lengths 6, 6 and 30, namely {1, 2, . . . , 6},
{7, 8, . . . , 36} and {37, 38, . . . , 42}, and these in turn split into seven orbits of
A, of lengths 1, 5, 5, 20, 5, 5 and 1, namely {1}, {2, 3, . . . , 6}, {7, 8, . . . , 11},
{12, 13, . . . , 31}, {32, 33, . . . , 36}, {37, 38, . . . , 41} and {42}. Every orbit of the
subgroup E = 〈A, a〉 is then either an orbit of A preserved by a, or a union
of two orbits of A that are interchanged by a. For example (again), in R3 the
subgroupE has five orbits, of lengths 1, 10, 20, 10 and 1, namely {1}, {2, 3, . . . , 11},
{12, 13, . . . , 31}, {32, 33, . . . , 41} and {42}.

This orbit decomposition is depicted for all six of our ‘building block’ repre-
sentations in Fig. 1, with each small box indicating an orbit of A (and the number
inside it indicating the length of that orbit), and each thin horizontal line indicating
a connection between a pair of orbits of A that are interchanged by a. In particular,
each small box with a ‘1’ inside it contains a link point, fixed by E = 〈y, u, a〉.

Next, if we take any two transitive permutation representations of V ∗A E, say
of degrees n1 and n2, such that each representation contains at least one link point,
then we can join them together to form a larger one of degree n1 + n2, by simply
concatenating the permutations induced by each of x, y and a, and then adding a
transposition to a that swaps the two chosen link points.

For example, we can join the first two representations together by re-labelling
the single point of R1 as ‘13’, and then adding a new transposition (12, 13) to the
permutation induced by a. This gives a transitive representation on 13 points, in
which x, y and u induce the same permutations as given in R2, while a induces
the involution (2, 7)(3, 11)(4, 10)(5, 9)(6, 8)(12, 13) and w = xa induces the
permutation (1, 7, 2)(3, 10)(4, 11)(5, 9, 13, 12)(6, 8).

Here, and in general when a pair of transitive representations are joined together
in this way, the images of x, y and a still satisfy the same relations as in V ∗A E,
and hence (by the universal property of amalgamated products), the definition of the
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1

1 5 5 1

1 5 5 20 5 5 1

1 5 5 10 10 10 10 5 5 1

10 5 5 1

10 10 5 5 1

Fig. 1 Our ‘building block’ representations 1 to 6 (on 1, 12, 42, 62, 21 and 31 points respectively)

images extends to a new permutation representation of V ∗A E. The only significant
change is made to the permutation induced by a, and this simply joins two single-
point orbits of E = 〈y, u, a〉 into a single two-point orbit of E. Similarly, the cycles
of w = xa containing the two link points are merged into a single cycle.

For another example, suppose we join together a copy of each of R5 and R2 by
adding a new transposition that swaps the link point 1 of R5 with link point 1 of
R2 (suitably re-labelled). Then we obtain a transitive permutation representation on
21 + 12 = 33 points. Before the join, the permutations induced by w have cycle
structures 13 21 44 and 23 32, with link point 1 of R5 lying in a cycle of length 4 and
link point 12 of R2 lying in a cycle of length 3. The effect of the join is to merge
those two cycles into a single cycle of length 7, leaving other cycles unchanged.

We have now dealt with enough properties of the building blocks and their
conjunction to prove the following:

Theorem 2 For all but finitely many positive integers n, both the alternating group
An and the symmetric group Sn are homomorphic images of the amalgamated free
product A6 ∗A5 (A5 × C2), and hence act faithfully as an arc-transitive group of
automorphisms of some 6-valent graph with vertex-stabiliser isomorphic to A6.

Proof For any positive integers k and m, let n = 21 + 12k + 62m, and observe that
every odd positive integer n ≥ 395 is expressible in this way.

Now construct a transitive permutation representation ofA6∗A5 (A5×C2) of odd
degree n by stringing together a single copy of R5 with k copies of R2, and then m
copies of R4. Then the permutation induced by a has 9 + 6k + 31m transpositions
(with k+m of these coming from the linkages), and so the permutations induced by
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a and w are even when m is odd, but odd when m is even. Indeed, the permutation
induced by w has cycle structure 13 21+3k+8m 43 51 6k−1+6m 71 81 10m−1.

The single 7-cycle comes from the linkage between the copy of R5 and the first
copy of R2. Also the length of every other cycle of w divides 120, so w120 is a
single 7-cycle. Moreover, this 7-cycle contains a pair of points interchanged by x,
a fixed point of y, and a pair of points interchanged by a. It follows that the image
of this new representation is primitive (for otherwise there would be a block B of
imprimitivity containing all 7 points of the 7-cycle, but then B would be preserved
by each of x, y and a and hence by the whole group). And now by a theorem of
Jordan [12, Theorem 13.9], this 7-cycle ensures that the permutations generate An
for large n ≡ 3 mod 4 when m is odd, and Sn for large n ≡ 1 mod 4 when m is
even.

Next, we can add a copy of R1 to the final copy of R4, and get a transitive
representation of A6 ∗A5 (A5 ×C2) of even degree n = 21+12k+62m+1, and the
same argument works, except that the parity of the permutations a and w changes,
with a 5-cycle of w = xa becoming another 6-cycle. In this case the permutations
generate Sn with n ≡ 0 mod 4 when m is odd, and An with n ≡ 2 mod 4 when m is
even.

Finally, we can replace the single copy of R5 by a copy of R6, and insert a single
copy of R3 between the k copies of R2 and the m copies of R4, and get transitive
permutation representations of odd degree n = 31 + 12k + 42 + 62m and even
degree n = 31 + 12k+ 42 + 62m+ 1, in which the permutations induced by a and
w are even if and only if m is even in the first case, and are even if and only if m is
odd in the second case. The cycle structure of xa is altered by addition of a 9-cycle,
plus some changes in the 1-, 2-, 4-, 6- and 8-cycles, and replacement of the single
7-cycle by a new single 7-cycle coming from the linkage between R2 and R3, but
the same arguments apply as earlier. In this case the induced permutations generate
An for large n ≡ 1 mod 4 and Sn for large n ≡ 3 mod 4 whenm is even, and Sn for
large n ≡ 2 mod 4 and An for large n ≡ 0 mod 4 when m is odd.

These constructions cover all residue classes mod 4 for the degree n, for both An
and Sn for large enough n (indeed for all n ≥ 447), as required. "#

Incidentally, we also obtain the following, because if a is any involution in E \A,
then the index 2 subgroup S = 〈V, V a〉 in the group V ∗A E = A6 ∗A5 (A5 ×
C2) used above is isomorphic to A6 ∗A5 A6, and also maps onto An for large n.
This strengthens an observation made by Peter Neumann and Cheryl Praeger at
the Groups St Andrews conference that A6 ∗A5 A6 has infinitely many alternating
quotients.

Corollary 1 All but finitely many alternating groups occur as quotients of the
amalgamated free product A6 ∗A5 A6.
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Biquasiprimitive Oriented Graphs
of Valency Four

Nemanja Poznanović and Cheryl E. Praeger

Abstract In this short note we describe a recently initiated research programme
aiming to use a normal quotient reduction to analyse finite connected, oriented
graphs of valency 4, admitting a vertex- and edge-transitive group of automorphisms
which preserves the edge orientation. In the first article on this topic (Al-bar et
al. Electr J Combin 23, 2016), a subfamily of these graphs was identified as
‘basic’ in the sense that all graphs in this family are normal covers of at least
one ‘basic’ member. These basic members can be further divided into three types:
quasiprimitive, biquasiprimitive and cycle type. The first and third of these types
have been analysed in some detail. Recently, we have begun an analysis of the basic
graphs of biquasiprimitive type. We describe our approach and mention some early
results. This work is on-going. It began at the Tutte Memorial MATRIX Workshop.

A graph Γ is said to be G-oriented for some subgroup G ≤ Aut(Γ ), if G acts
transitively on the vertices and edges ofΓ , andΓ admits aG-invariant orientation of
its edges. Any graph Γ admitting a group of automorphisms which acts transitively
on its vertices and edges but which does not act transitively on its arcs can be viewed
as aG-oriented graph. These graphs are usually said to beG-half-arc-transitive, and
form a well-studied class of vertex-transitive graphs.

A G-oriented graph Γ necessarily has even valency, with exactly half of the
edges incident to a vertex α being oriented away from α to one of its neighbours.
Since such a graph is vertex-transitive, it follows that all of its connected compo-
nents are isomorphic, and each connected component is itself a G-oriented graph.
We therefore restrict our attention to the study of connected G-oriented graphs.
For each even integer m, we let OG (m) denote the family of all graph-group pairs
(Γ,G) such that Γ is a finite connected G-oriented graph of valencym.
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Graphs contained in OG (2) are simply oriented cycles. The family OG (4) on
the other hand, has been studied for several decades now, see for instance [4–6].
These papers suggest a framework for describing the structure of graphs Γ for pairs
(Γ,G) in the class OG (4) by considering various types of quotients based on the
structure of certain kinds of cycles of Γ . In this new approach we study quotients
based on normal subgroups of the groupG.

Normal Quotients Given a pair (Γ,G) ∈ OG (4) and a normal subgroupN of G,
we define a new graph ΓN as follows: the vertex set of ΓN consists of all N-orbits
on the vertices of Γ , and there is an edge between two N-orbits {B,C} in ΓN if
and only if there is an edge of the form {α, β} in Γ , with α ∈ B and β ∈ C. The
graph ΓN is called aG-normal-quotient of Γ . The groupG induces a subgroupGN
of automorphisms of ΓN , namely GN = G/K for some normal subgroup K of G
such that N ≤ K . TheK-orbits are the same as the N-orbits so ΓK = ΓN , although
sometimes K may be strictly larger than N .

In general, the pair (ΓN,GN) need not lie in OG (4). For instance, if the normal
subgroup N is transitive on the vertex set of Γ , then ΓN consists of just a single
vertex. If the graph Γ is bipartite and the two N-orbits form the bipartition, then
ΓN will be isomorphic to the complete graph on two verticesK2. In other cases the
quotient graph ΓN may also be a cycle graph Cr , for r ≥ 3. These three types of
quotients are defined to be degenerate in the sense that in each of these cases ΓN
does not have valency 4 and so (ΓN,GN) �∈ OG (4). It turns out that these cases are
the only obstacles to the pair (ΓN,GN) lying in OG (4).

Theorem 1 ([1] Theorem 1.1) Let (Γ,G) ∈ OG (4) with vertex set X, and let N
be a normal subgroup of G. Then G induces a permutation group GN on the set of
N-orbits in X, and either

(i) (ΓN,GN) is also in OG (4), Γ is aG-normal cover of ΓN , N is semiregular on
vertices, andGN = G/N; or

(ii) (ΓN,GN) is a degenerate pair, (i.e. ΓN is isomorphic toK1,K2 orCr , for some
r ≥ 3).

This leads to a framework for studying the family OG (4) using normal quotient
reduction. The first goal of this approach is to develop a theory to describe the ‘basic’
pairs in OG (4). A graph-group pair (Γ,G) ∈ OG (4) is said to be basic if all of its
G-normal quotients relative to non-trivial normal subgroups are degenerate. Since
Theorem 1 ensures that every member of OG (4) is a normal cover of a basic pair,
the second aim of this framework is to develop a theory to describe the G-normal
covers of these basic pairs. This approach has been successfully used in the study
of other families of graphs with prescribed symmetry properties, see for instance
[7–9].

The basic pairs may be further divided into three types. A pair (Γ,G) ∈ OG (4)
is said to be basic of quasiprimitive type if all G-normal quotients ΓN of Γ are
isomorphic to K1. This occurs precisely when all non-trivial normal subgroups
of G are transitive on the vertices of Γ . (Such a permutation group is said to be
quasiprimitive.)
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If the only normal quotients of a basic pair (Γ,G) ∈ OG (4) are the graphs K1
or K2, and Γ has at least one G-normal quotient isomorphic to K2, then (Γ,G) is
said to be basic of biquasiprimitive type. (The groupG here is biquasiprimitive: it is
not quasiprimitive but each nontrivial normal subgroup has at most two orbits.) The
other basic pairs in OG (4) must have at least one normal quotient isomorphic to a
cycle graph Cr , and these basic pairs are said to be of cycle type.

The basic pairs of quasiprimitive type have been analysed in [1], and further
analysis was conducted on basic pairs of cycle type in [2] and [3]. Although more
remains to be done to describe the structure of basic pairs of cycle type, the main
focus of our work is the biquasiprimitive case.

Basic Pairs of Biquasiprimitive Type: Early Results Our current work aims to
develop a theory to describe the basic pairs of biquasiprimitive type. Following the
work done in [1] describing quasiprimitive basic pairs, we aim to produce similar
structural results and constructions for the biquasiprimitive case. In [10] there is a
group theoretic tool available for studying finite biquasiprimitive groups analogous
to the O’Nan-Scott Theorem for finite primitive and quasiprimitive permutation
groups. We outline our general approach below, though this work is still in progress.

Let Γ be a graph with vertex set X and suppose that (Γ,G) ∈ OG (4) is basic
of biquasiprimitive type for some groupG. Then there exists a normal subgroup N
of G with exactly two orbits on X, and all normal subgroups of G have at most
two orbits. It is easy to see that Γ is bipartite: since Γ is connected there is an
edge joining vertices in different N-orbits, and since G normalises N and is edge-
transitive, each edge joins vertices in different N-orbits. Thus the two orbits of N
form a bipartition of Γ .

Let {Δ,Δ′} denote the bipartition of the vertices of Γ , and letG+ be the index 2
subgroup of G fixing Δ (and Δ′) setwise. Since Γ is G-vertex-transitive it follows
that G+ is transitive on both Δ and Δ′. As we just saw, any non-trivial intransitive
normal subgroupN ofGmust have the sets Δ,Δ′ as its two orbits on X, and hence
N ≤ G+. It can also be shown that the action of G+ onΔ is faithful.

Consider now a minimal normal subgroup M of G+. If M is also normal in G
then the M-orbits on X are Δ andΔ′ and M is a minimal normal subgroup of G.

On the other hand, if M is not normal inG, then for any element x ∈ G\G+, we
see that Mx is also a minimal normal subgroup of (G+)x = G+, and furthermore,
M �= Mx since otherwise G would normalise M . It follows from the minimality of
M that M ∩Mx = 1 and hence that M ×Mx is contained in G+ and is normal in
G. Letting N := M ×Mx , we see that the N-orbits on X are Δ and Δ′ since N is
normal in G.

In summary, we always have a normal subgroup N of G contained in G+ with
Δ and Δ′ the N-orbits in X, and such that either

(a) N is a minimal normal subgroup of G+ and N = T k for some simple group T
and k ≥ 1; or

(b) N = M ×Mx where x ∈ G\G+, and M = T � is a minimal normal subgroup
of G+ with T a simple group and � ≥ 1. In particular,N ∼= T k with k = 2�.
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For a vertex α ∈ Δ, the vertex stabilisers Gα and G+
α are equal and G+ ∼= NGα .

Moreover, since the vertex stabilisers of 4-valentG-oriented graphs are 2-groups, it
follows that G+/N ∼= Gα/Nα is also a 2-group.

Hence by analysing the minimal normal subgroups of G and G+ as above, and
considering the various possibilities for the direct factors T of N , we can reduce
the possibilities for basic pairs of biquasiprimitive type to several cases. In fact, our
main result so far uses combinatorial arguments to bound the values of � and k in
cases (a) and (b) above, though this is still a work in progress.

We give an infinite family of examples of basic biquasiprimitive pairs. These
graphs have order 2p2, with p prime, and G+ has an elementary abelian normal
subgroup. There were no analogues of these examples in the basic quasiprimitive
case since the minimal normal subgroups in that case are nonabelian, [1, Theo-
rem 1.3].

Example 1 Let p be a prime such that p ≡ 3 (mod 4), let Δ = {(x, y)0 | x, y ∈
Cp} and Δ′ = {(x, y)1 | x, y ∈ Cp}, two copies of the additive group N = C2

p, and
let X = Δ ∪ Δ′. Define δ ∈ Sym(X) by (x, y)δε = (y,−x)1−ε, for x, y ∈ Cp and
ε ∈ {0, 1}, and let G := N � 〈δ〉. Note that δ has order 4 and normalises N . Also
for α = (0, 0)0, Gα = Nα = 〈δ2〉 ∼= C2.

Define the G-oriented graph Γ to have vertex set X and, for each x, y ∈ Cp,
edges oriented from (x, y)0 to (x, y ± 1)1 and from (x ± 1, y)1 to (x, y)0.

Then Γ has valency 4,G is vertex- and edge-transitive, andG preserves the edge
orientation. Thus (Γ,G) ∈ OG (4). Also Γ is bipartite, and G is biquasiprimitive
(verifying the latter property uses the fact that p ≡ 3 (mod 4)). Hence (Γ,G) is
basic of biquasiprimitive type.

Our goal is to refine our restrictions on k and � to such an extent that we can give
constructions of families of examples for all possible values of these parameters.
Example 1 defines the graphs as BiCayley graphs, and other BiCayley examples
arise naturally in our context. However, in the case where G+ has no normal
subgroup which is regular on the two G+ orbits Δ and Δ′, different constructions
will be required.

As noted above, these results develop the work initiated in [1] and developed
further in [2, 3].
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The Contributions of W.T. Tutte
to Matroid Theory

Graham Farr and James Oxley

Abstract Bill Tutte was born on May 14, 1917 in Newmarket, England. In 1935, he
began studying at Trinity College, Cambridge reading natural sciences specializing
in chemistry. After completing a master’s degree in chemistry in 1940, he was
recruited to work at Bletchley Park as one of an elite group of codebreakers that
included Alan Turing. While there, Tutte performed “one of the greatest intellectual
feats of the Second World War.” Returning to Cambridge in 1945, he completed a
Ph.D. in mathematics in 1948. Thereafter, he worked in Canada, first in Toronto and
then as a founding member of the Department of Combinatorics and Optimization
at the University of Waterloo. His contributions to graph theory alone mark him
as arguably the twentieth century’s leading researcher in that subject. He also
made groundbreaking contributions to matroid theory including proving the first
excluded-minor theorems for matroids, one of which generalized Kuratowski’s
Theorem. He extended Menger’s Theorem to matroids and laid the foundations for
structural matroid theory. In addition, he introduced the Tutte polynomial for graphs
and extended it and some relatives to matroids. This paper will highlight some of
his many contributions focusing particularly on those to matroid theory.

1 Introduction

The task of summarizing Bill Tutte’s mathematical contributions in a short paper
is an impossible one. There are too many, they are too deep, and their implications
are too far-reaching. This paper will discuss certain of these contributions giving
particular emphasis to his work in matroid theory and the way in which that work
links to graph theory. The terminology used here will follow Oxley [16].
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This paper will attempt to give insight into the thoughts and motivations that
guided Tutte’s mathematical endeavours. To do this, we shall quote extensively from
three sources. Dan Younger, Tutte’s long-time colleague and friend at the University
of Waterloo, wrote the paper William Thomas Tutte 14 May 1917–2 May 2002 [53]
in the Biographical Memoirs of Fellows of the Royal Society, and that paper includes
many quotes from Tutte that are reproduced here. In 1999, Tutte presented the
Richard Rado Lecture The Coming of the Matroids at the British Combinatorial
Conference in Canterbury. We will also quote from Tutte’s write-up of that lecture
in the conference proceedings [47]. Finally, we draw on commentaries by Tutte on
his own papers that appear in Selected Papers of W.T. Tutte I, II [45, 46], published
in 1979 to mark Tutte’s 60th birthday.

These Selected Papers were edited by D. McCarthy and R. G. Stanton. Ralph
Stanton was a noted mathematician who had been the first Dean of Graduate
Studies at the University of Waterloo and who recruited Tutte to Waterloo from
Toronto in 1962. Stanton’s foreword to the Selected Papers provides a context for
the magnitude of Tutte’s achievements:

Not too many people are privileged to practically create a subject, but there have been
several this century. Albert Einstein created Relativity . . . Similarly, modern Statistics owes
its existence to Sir Ronald Fisher’s exceptionally brilliant and creative work. And I think
that Bill Tutte’s place in Graph Theory is exactly like that of Einstein in Relativity and that
of Fisher in Statistics. He has been both a great creative artist and a great developer.

Bill Tutte was born on May 14, 1917 in Newmarket, England. His family moved
several times when he was young but they returned to the Newmarket area, to the
village of Cheveley, when Bill was about seven. Bill attended the local school. In
May, 1927 and again a year later, he won a scholarship to the Cambridge and County
High School for Boys, some eighteen miles from his home. The first time he won,
his parents judged that it was too far for their son to travel and he was kept home.
A year later his parents permitted him to attend the school despite the long daily
commute each way, by bike and by train [53, p. 287]. In the high school library,
Bill came across Rouse Ball’s book Mathematical Recreations and Essays [1], first
published in 1892. That book included discussions of chess-board recreations, map
colouring problems, and unicursal problems (including Euler tours and Hamiltonian
cycles). Some parts of his chemistry classes were [45, p. 1] pure graph theory and in
his physics classes, he learned about electrical circuits and Kirchhoff’s Laws. Tutte
wrote [45, p. 1],

When I became an undergraduate at Trinity College, Cambridge, I already possessed much
elementary graph-theoretical knowledge though I do not think I had this knowledge well-
organized at the time.

In 1935, Tutte began studying at Trinity College, Cambridge. He read natural
sciences, specializing in chemistry. From the beginning, he attended lectures of the
Trinity Mathematical Society. Three other members of that Society, all of whom
were first-year mathematics students, were R. Leonard Brooks, Cedric A.B. Smith,
and Arthur H. Stone. This group had various names [47, p. 4] including ‘The
Important Members, The Four Horsemen, The Gang of Four.’ They became fast



The Contributions of W.T. Tutte to Matroid Theory 345

friends spending many hours discussing mathematical problems. Tutte wrote [53,
p. 288],

As time went on, I yielded more and more to the seductions of Mathematics.

Tutte’s first paper [22], in chemistry, was published in 1939 in the prestigious
scientific journal Nature. His first mathematical paper, The dissection of rectangles
into squares, was published with Brooks, Smith, and Stone [3] in 1940 in the Duke
Mathematical Journal. Their motivating problem was to divide a square into a finite
number of unequal squares. In 1939, Sprague [21] from Berlin published a solution
to this problem just as The Four were in the final stages of preparing their paper
in which, ingeniously, they converted the original problem into one for electrical
networks. Writing later about The Four’s paper, Tutte said [45, p. 3],

I value the paper not so much for its ostensible geometrical results, which Sprague largely
anticipated, as for its graph-theoretical methods and observations.

Tutte went on to note [45, p. 4] that, in this paper,

two streams of graph theory from my early studies came together, Kirchhoff’s Laws from
my Physics lessons, and planar graphs from Rouse Ball’s account of the Four Colour
Problem.’

Tutte wrote a very readable account of this work in Martin Gardner’s Mathemat-
ical Games column in Scientific American in November, 1958, and that account is
now available online [32].

The Four’s paper is remarkable not only for its solution to the squaring-the-
square problem and its beautiful graph-theoretic ideas, but also for the extent to
which it contains the seeds of Tutte’s later work. In it, we find planarity, duality,
flows, numbers of spanning trees, a deletion-contraction relation, symmetry, and
above all the powerful application of linear algebra to graph theory.1

After completing his chemistry degree in 1938, Tutte worked as a postgraduate
student in physical chemistry at Cambridge’s famous Cavendish Laboratory com-
pleting a master’s degree in 1940. Tutte’s work in chemistry [53, p. 288]

convinced him that he would not succeed as an experimenter. He asked his tutor, Patrick
Duff, to arrange his transfer from natural sciences to mathematics. This transfer took place
at the end of 1940.

Tutte later wrote [47, p. 4],

I left Cambridge in 1941 with the idea that graph theory could be reduced to abstract algebra
but that it might not be the conventional kind of algebra.

1Incidentally, it may also be regarded as Tutte’s first paper on graph drawing. In that field, too, he
is regarded as a pioneer, mostly because of his 1963 paper ‘How to draw a graph’ [35]. But it is still
worth noting the graph-drawing aspect of his very first mathematics paper: the squared rectangles
are a type of simultaneous “visibility drawing” of a planar graph and its dual.
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Like so many of the brightest minds in Britain at the time, Tutte was recruited
as a codebreaker and worked at the Bletchley Park Research Station—now famous,
but then top secret—from 1941 till 1945. He wrote [47, p. 5],

at Bletchley I was learning an odd new kind of linear algebra.

Narrating the 2011 BBC documentary, Code-Breakers: Bletchley Park’s Lost
Heroes [2], the actress Keeley Hawes says,

This is Bletchley Park. In 1939, it became the wartime headquarters of MI6. If you know
anything, about what happened here, it will be that a man named Alan Turing broke the
German Naval code known as ‘Enigma’ and saved the nation; and he did. But that’s only
half the story.

Then Captain Jerry Roberts, who had been a Senior Cryptographer at the Park
during the war, speaks:

There were three heroes of Bletchley Park. The first was Alan Turing; the second was Bill
Tutte, who broke the Tunny system, a quite amazing feat; and the third was Tommy Flowers
who, with no guidelines, built the first computer ever.

Tutte’s work at Bletchley Park was truly profound. The problem he faced was
to break into communications encoded by an unknown cypher machine, codenamed
Tunny by the British. (Its real name was Lorenz SZ40.) This machine was much
more secure and complex than the famous Enigma machine, reflecting its use at
the highest levels of the Nazi regime including by Hitler himself. Furthermore,
although the British knew the architecture of the Enigma machine, the design of
the Tunny machine was a complete mystery to them. The problem Tutte faced
was thus far harder than the Enigma problem which Turing is justly celebrated
for solving. Tutte’s first problem was the diagnosis of the Tunny machine (that is,
determining how it worked), just from collected cyphertext; only then could he and
his colleagues move on to cryptanalysis. Tutte made the crucial breakthrough in
diagnosis, an astonishing achievement. He then went on to develop cryptanalysis
algorithms. These were very computationally intensive. The Colossus cryptanalytic
computers, designed by Tommy Flowers, were built to implement Tutte’s algorithms
and performed service of incalculable value for the remainder of the war.

The University of Waterloo’s magazine for Spring, 2015 has an article Keeping
Secrets about this work in which one reads,

According to Bletchley Park’s historians, General Dwight D. Eisenhower himself described
Tutte’s work as one of the greatest intellectual feats of the Second World War.

Some details of this work can be found in [7, 12, 53]. Tutte’s own account of
these efforts appear in [47, 48].

As a consequence of Tutte’s top-secret code-breaking work at Bletchley Park, he
was elected a Fellow of Trinity College in 1942. He wrote [53, p. 291] of this,

It seemed to me that the election might be criticized as a breach of security, but no harm
came of it.
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In 1945, after the war, Tutte returned to Cambridge for a Ph.D. in mathematics,
supervised by Shaun Wylie, with whom Tutte had worked at Bletchley. Tutte
completed his Ph.D. thesis, An algebraic theory of graphs, in 1948 despite Wylie’s
advice [53, p. 291] to

drop graph theory and take up something respectable, such as differential equations.

Tutte’s thesis, which was xi + 417 pages, was an extraordinary accomplishment
with the ideas in it forming the basis for much of his work for the next two decades.
We discuss it in more detail in Sect. 8. He wrote [53, p. 291] of his decision to stick
with graph theory,

If one assumes that graph theory was my métier, it was just as well that I had the prestige
of a Fellow of Trinity.

2 Tutte’s Doctoral Research

Tutte’s first year of doctoral research was remarkably productive. He submitted six
papers during the period from November 1945 to December 1946, including four
that became classics of the field, though most of them bore no relation to his Ph.D.
thesis.

In the first of these classic papers [24], Tutte found a 46-vertex counterexample
to an 1884 conjecture of Tait [23] that every cubic planar graph is Hamilitonian.

Tutte’s paper A ring in graph theory is his first paper on the Tutte polynomial and
one of his most profound. His polynomial is not given explicitly in any of its usual
forms, and its presence is somewhat obscured by some technical details and the use
of multivariate polynomials to develop much of the theory. But the main ingredients
of Tutte-polynomial theory are all there. We return to it shortly, in Sect. 2.1.

His third classic paper [27] studied symmetry in cubic graphs. An s-arc in a
graph is a walk with s edges in which consecutive edges are always distinct. Apart
from this constraint, vertices and edges may occur repeatedly. Note that a walk and
its reverse are considered to be different. A graph G is s-arc-transitive if it has at
least one s-arc and, for any two s-arcs, there is an automorphism of G that maps
one to the other. This is a very strong symmetry property indeed. Tutte showed that
there are no s-arc-transitive cubic graphs with s > 5, gave an inequality relating
girth to s, and characterized graphs where the inequality comes as close to equality
as possible for a given girth; these are the g-cages, a finite family of graphs, the most
complex being his 8-cage. This paper became enormously influential in the theory
of symmetric graphs.

The fourth of these groundbreaking papers [25] proved the characterization of
when a graph has a 1-factor, or perfect matching. This theorem is now a staple of
most introductory courses on graph theory.
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2.1 ‘A Ring in Graph Theory’

The starting point and driving principle of this paper is the observation that certain
functions on graphs obey deletion-contraction relations. As an example of such a
function, Tutte considered the complexity C(G) of a connected graph G, this being
the number of spanning trees ofG. When The Four were working on the problem of
partitioning a rectangle into unequal squares, they observed that complexity obeys
the following recursion.

Lemma 1 In a graphG, let e be an edge that is neither a loop or a cut edge. Then

C(G) = C(G\e)+ C(G/e).

Proof Partition the set of spanning trees of G into

(i) those not using e; and
(ii) those using e.

There are C(G\e) spanning trees in (i); and the spanning trees in (ii) match up with
the spanning trees of G/e.

Tutte wrote [45, p. 51],

I wondered if complexity, or tree number, could be characterized by the above identity alone
and decided that it could not.

His paper considered the following.

Problem 1 What isomorphism-invariant functionsW of graphs satisfy

W(G) = W(G\e)+W(G/e)

for all non-loop edges e of G?

He called such a function, taking values in an abelian group, a W -function. A
W -function is a V -function if

W(G1 ∪G2) = W(G1)W(G2)

for all disjoint graphsG1 andG2, whereW now takes values in a commutative ring
with unity.

For a graph G, let P(G; λ) denote the number of proper λ-colourings of G.
Tutte noted that (−1)|V (G)| times P(G; λ) is an example of a V -function. This is an
immediate consequence of the following lemma, which was first proved by Foster,
in “Note added in proof” in [51, p. 718].

Lemma 2 For a non-loop edge e of a graphG,

P(G; λ) = P(G\e; λ)− P(G/e; λ).
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Proof Let e have distinct endpoints u and v. Partition the proper k-colourings of
G\e into

(i) those in which u and v have different colours; and
(ii) those in which u and v have the same colour.

In (i), we are counting the number of proper k-colourings of G; while (ii)
corresponds to the number of proper k-colourings of G/e.

Tutte’s insightful breakthrough here was to focus on the two recursions:

1. W(G) = W(G\e)+W(G/e); and
2. W(G1 ∪G2) = W(G1)W(G2).

Many readers will recognize here the origins of the Tutte polynomial. There
are technical differences between the multivariate polynomials in this paper and
the more familiar polynomials of Whitney and Tutte, which we will define in
Sect. 3. But some simple adjustments—such as substitutions to give bivariate
specializations, and dividing by xk(G) or (x−1)k(G)—reveal both the Whitney rank
generating function and Tutte polynomial, albeit in period costume. The relationship
between these two polynomials, which is just a coordinate translation of one step in
each direction, is subsumed by a more general result in the paper. In fact, most of
the main ingredients of Tutte-polynomial theory are here, with deletion-contraction
relations at the core. The details of this paper are discussed in [9].

3 Graph Polynomials

In 1954, Tutte published [29] A contribution to the theory of chromatic polynomials.
By then, he was at the University of Toronto having been recruited there in 1948
by H.S.M. Coxeter, another famous graduate of Trinity College, Cambridge. In
this paper, Tutte introduced what he called the dichromate of a graph, this now
being known as the Tutte polynomial of the graph. The dichromate is a two-variable
polynomial not to be confused with another two-variable polynomial Tutte labelled
the dichromatic polynomial of a graph. The latter is now known as the Whitney
rank-generating function of the graph. Welsh [50, p. 44] draws attention to the
rather confused history of these polynomials and their nomenclature. This history is
clarified in [8, 9] where Tutte [49, p. 8] is quoted concerning the use of the name
‘Tutte polynomial’ as saying,

This may be unfair to Hassler Whitney who knew and used analogous coefficients without
bothering to affix them to two variables.

Tutte cites Whitney’s 1932 paper [51] as his source. Formally, let G be a graph
with edge set E. For a subset X of E, let G[X] be the subgraph of G induced by
X, and let r(X), the rank of X, be the difference between the number of vertices
and the number of connected components of G[X]. The Whitney rank-generating



350 G. Farr and J. Oxley

function R(G; x, y) of G is

R(G; x, y) =
∑
X⊆E

xr(E)−r(X)y |X|−r(X).

The Tutte polynomial T (G; x, y) is the translation of R(G; x, y) defined by

T (G; x, y) = R(G; x − 1, y − 1).

In particular, when G is connected, T (G; 1, 1) is the complexity of G, that is, its
number of spanning trees. When G has k(G) components, P(G; λ), the number
of proper λ-colourings of G is λk(G)(−1)r(E)T (G; 1 − λ, 0). Another important
evaluation of the Tutte polynomial involves flows.

To define a flow in a graph G, first assign directions to every edge of G. A
nowhere-zero k-flow assigns a flow value f (e) from Zk − {0} to every edge e of
G such that, at every vertex v, the sum of the flows on the edges directed into v
equals the sum of the flows on the edges directed out from v. Intuitively, Kirchhoff’s
Current Law holds at each vertex of G. For example, G has a nowhere-zero 2-flow
if and only if every vertex has even degree. WhenG is connected, this is, of course,
equivalent to G being Eulerian.

It is straightforward to show that if G has a nowhere-zero k-flow, then G has no
cut edges. Moreover, a plane graph G without cut edges has a nowhere-zero k-flow
if and only if its dual G∗ is k-colourable.

Let A be an additive abelian group. A nowhere-zero A-flow takes flow values
from A − {0} such that, at every vertex, the flow into the vertex equals the flow
out from that vertex. Thus a nowhere-zero k-flow is just a nowhere-zero Zk-flow.
Remarkably, Tutte [29] showed that the number of nowhere A-flows on a graph
depends only on the cardinality of A.

Proposition 1 (Tutte, 1954) For n ≥ 2, let A be an abelian group with n elements
and G be a graph without cut edges. Then the number of nowhere-zero A-flows on
G equals the number of nowhere-zero n-flows on G.

Tutte [29] made two striking conjectures about flows.

Conjecture 1 (Tutte, 1954) There is a fixed number t such that every graph without
cut edges has a nowhere-zero t-flow.

This conjecture was not settled for over 20 years until Jaeger [14] proved the
following.

Theorem 1 (Jaeger, 1976) Every graph without cut edges has a nowhere-zero 8-
flow.

Tutte’s second flow conjecture is even more elusive and still remains open.

Conjecture 2 (Tutte, 1954) Every graph without cut edges has a nowhere-zero 5-
flow.
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The best partial result towards this 5-Flow Conjecture was proved by Sey-
mour [19]. Just as Jaeger’s proof relied on the fact that 8 is 2 cubed, Seymour’s
proof relies on 6 being the product of 3 and 2.

Theorem 2 (Seymour, 1981) Every graph without cut edges has a nowhere-zero
6-flow.

4 Matroids

Before discussing Tutte’s contributions to matroid theory, we briefly introduce
matroids to readers unfamiliar with them.

Let A be a matrix having E as its set of column labels. Let I be the collection
of subsets X of E such that X labels a linearly independent set of columns. The
pair (E,I ) is an example of a matroid M with the members of the set I being its
independent sets. We denote this matroid by M[A]. In general, (E,I ) is a matroid
M with ground set E if I is a non-empty hereditary collection of subsets of the
finite set E with the property that, wheneverX and Y are in I and |X| > |Y |, there
is an element x of X − Y such that Y ∪ {x} ∈ I . Subsets of E that are not in I
are dependent and the minimal dependent sets are the circuits ofM . Evidently,M is
uniquely determined by its collection of circuits. If G is a graph, there is a matroid
M(G) having E(G) as its ground set and the set of edge sets of cycles of G as its
set of circuits. The matroidM(G) is the cycle matroid of G.

For a field F, a matroid M is F-representable if there is a matrix A over F such
that M = M[A]. A GF(2)-representable matroid is called binary. For example,
overGF(2), let

A =
⎛
⎝

1 2 3 4 5 6 7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎞
⎠.

Then M[A] is a matroid with ground set {1, 2, . . . , 7} whose circuits include
{4, 5, 6} since, over GF(2), the three corresponding vectors are linearly dependent
although any two of them are linearly independent. This matroid is usually called
the Fano matroid and is denoted by F7. A geometric representation of this matroid
is shown in Fig. 1. In such a picture, three collinear points form a circuit as do four
coplanar points of which no three are collinear. The dual, F ∗

7 , of the Fano matroid
is the matroidM[A∗] where

A∗ =

⎛
⎜⎜⎝

1 2 3 4 5 6 7

1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1

⎞
⎟⎟⎠.
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Fig. 1 The Fano matroid, F7
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In general, if the n-element matroid M = M[Ir |D], its dual M∗ is M[DT |In−r ].
More generally, supposeM is a matroid on the set E having B as its set of maximal
independent sets (bases). The collection {E − B : B ∈ B} can be shown to be the
set of bases of a matroid on E; this matroidM∗ is the dual ofM .

The deletion of the element 1 from F7 is the matroid of the matrix that is obtained
fromA by deleting the first column. The reader may wish to check that this deletion
is actually equal toM(K4)where {2, 3, . . . , 7} is the edge set ofK4. The contraction
of 1 from F7 is the matroid of the matrix that is obtained from A by deleting the
first row and the first column. This contraction is the cycle matroid of the doubled
triangle graph, obtained from a triangle with edge set {2, 6, 3} by adding 4, 7, and
5 in parallel with 2, 6, and 3, respectively. In general, for a matroidM , the deletion
of the element e from M is the matroid M\e having ground set E − {e} and set
of independent sets {I ∈ I : e �∈ I }. Moreover, provided {e} is independent, the
contraction M/e of e from M is the matroid with ground set E − {e} and set of
independent sets {I ′ ⊆ E − {e} : I ′ ∪ {e} ∈ I }. When {e} is dependent, we define
M/e to be M\e. A minor of M is any matroid that can be obtained from M by
a sequence of deletions and contractions. As partially outlined above, every minor
of an F-representable matroid is F-representable. This means that the class of F-
representable matroids can be characterized by the matroids that are themselves not
F-representable but for which every minor is F-representable. These minor-minimal
matroids that are not F-representable are the excluded minors for the class of F-
representable matroids.

Tutte wrote [53, p. 292] that his Ph.D. thesis

attempted to reduce Graph Theory to Linear Algebra. It showed that many graph-theoretical
results could be generalized to algebraic theorems about structures I called ‘chain-groups’.
Essentially, I was discussing a theory of matrices in which elementary operations could be
applied to rows but not columns.

As Dan Younger noted in his wonderful memoir of Tutte [53, p. 292]:

This is matroid theory.

His chain-groups, called nets in his thesis, are essentially row spaces of rep-
resentative matrices of representable matroids. In a sense, they may be regarded
as represented matroids. But it would be pedantic to make much of the difference
between these and representable matroids.
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In essence, then, Tutte developed a theory of representable matroids as general-
izations of graphs. Some of his work is valid for arbitrary matroids, in that some
definitions and arguments only use matroid ideas (such as rank) in a way that does
not depend on representability. But the thesis does not mention arbitrary matroids,
and does not cite Whitney’s seminal 1935 paper on matroids [52].

5 The Excluded-Minor Theorems

In a commentary on one of his matroid papers, Tutte wrote [46, p. 497],

If a theorem about graphs can be stated in terms of edges and circuits only it probably
exemplifies a more general theorem about matroids.

The application of this principle is evident in much of Tutte’s work and has
guided the efforts of a number of other researchers in matroid theory. Two of the
most well-known graphs are K5 and K3,3, the latter being the three-houses-three-
utilities graph. These graphs are forever linked by their appearance in Kuratowski’s
famous characterizations [15] of planar graphs in terms of excluded (topological)
minors. Tutte introduced the operation of contraction for matroids and also the
notion of a minor of a matroid. In a very productive period in the late 1950s, Tutte
published three important papers that included excluded-minor characterizations of
various classes of matroids. This section will discuss these theorems.

Looking back on his thesis, Tutte wrote [47, p. 6],

I went on happily developing a theory of chain-groups and their elementary chains, these
latter of course being defined by minimal supports. The method was to select theorems about
graphs and try to generalize them to chain-groups. This was not too difficult for theorems
expressible in terms of circuits. But theorems about 1-factors imposed problems. As I look
back on this episode I am grieved to recall that I still did not appreciate the work of Whitney
[on matroids]. Yet these chain-groups were half-way to matroids and their minimal supports
were Whitney’s matroid circuits.

Later in the same paper, Tutte wrote [47, p. 7],

By 1958 . . . I had learned to appreciate matroids. I put the work in my thesis into matroid
terminology and generalized from chain-groups to matroids. . . . Then from the thesis-
theorems I got the now well-known excluded minor conditions for a binary matroid to be
regular and for a regular matroid to be graphic.

The uniform matroid U2,4, which geometrically corresponds to four collinear
points, is the matroidM[A] where A is the real matrix

( 1 2 3 4

1 0 1 1
0 1 1 −1

)
.
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It is straightforward to see that U2,4 is not binary. Tutte’s first excluded-minor
theorem [31], which is relatively straightforward to prove, establishes that U2,4 is
the unique excluded minor for the class of binary matroids.

Theorem 3 (Tutte, 1958) A matroid is binary if and only if it has no U2,4-minor.

A real matrix A is totally unimodular if the determinant of every square
submatrix of A is in {0, 1,−1}. A matroid M is regular if there is a totally
unimodular matrix A such that M = M[A]. As an example, take a graph G and
arbitrarily orient its edges. Then take the vertex-edge incidence matrix A of this
directed graph. In this real matrix, each non-zero column has one 1 and one −1. By
a result of Poincaré [17], A is totally unimodular. The matroid M[A] of this matrix
can be shown to be equal to the cycle matroid M(G) of G. In general, a matroid
is graphic it equals the cycle matroid of some graph. Thus every graphic matroid is
regular. Tutte [31] proved the following.

Lemma 3 A matroid M is regular if and only if M is F-representable for all
fields F.

Tutte’s second excluded-minor characterization [31] is significantly more diffi-
cult than his first.

Theorem 4 (Tutte, 1958) A matroid is regular if and only if it has none of U2,4,
F7, or F ∗

7 as a minor.

The last theorem was proved in two papers in the Transactions of the American
Mathematical Society called A homotopy theorem for matroids I, II. In a 1959 paper
Matroids and graphs in the same journal, Tutte [33] characterized graphic matroids
in terms of excluded minors. For a graph G, the dual of its cycle matroid M(G) is
denoted byM∗(G). Recognizing the link between cycles in a plane graph and bonds
in the dual graph, the reader may not be surprised to learn that the circuits ofM∗(G)
coincide with the bonds in G. One attractive feature of M∗(G) is that it is defined
whether or not G is planar. Thus, although non-planar graphs do not have graphic
duals, the cycle matroids of such graphs do have matroid duals.

Theorem 5 (Tutte, 1959) A regular matroid is graphic if and only if it has neither
M∗(K3,3) norM∗(K5) as a minor.

Tutte wrote [47, p. 8] of this theorem that it

was guided, in the usual vague graph-to-matroid way, by Kuratowski’s Theorem and my
favourite proof thereof.

6 Higher Connectivity for Matroids

Whitney [52] had introduced the notion of a non-separable matroid as one with
the property that, for every two distinct elements, there is a circuit containing both.
Such a matroid is now more commonly called connected. A loopless graphG has the
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property that every two edges lie in a cycle if and only ifG is 2-connected, provided
G has at least three vertices and has no isolated vertices. Given the importance of
higher connectivity for graphs, it was natural to seek a matroid analogue. Tutte [40]
did this. One feature of Tutte’s definition was the desire for the connectivity of a
matroid and its dual to be equal. Of course, a 3-connected graph cannot have a bond
of size at most two. Dually, Tutte felt that a 3-connected graph should have no cycles
of size at most two; in other words, it should be simple. Tutte began his work in this
area by proving the following result for graphs [34].

Theorem 6 (Tutte, 1961) A 3-connected simple graph G has an edge e such that
G\e or G/e is 3-connected and simple unless G is a wheel.

Five years later, in the paper Connectivity in matroids, Tutte [40] generalized this
theorem to matroids. Indeed, it is in his commentary [46, p. 487] on this paper that
Tutte made the statement about generalizing graph results to matroids quoted at the
beginning of Sect. 5. LetM be a matroid with ground set E. For a subsetX ofE, the
rank r(X) of X is the cardinality of the largest independent set that is contained in
X. Earlier, we defined the rank of a set of edges in a graphG. That rank is precisely
the rank of X in the cycle matroid of G.

Tutte defined the matroidM to be 2-connected if

r(X)+ r(E −X)− r(M) ≥ 1

for all X ⊆ E with |X|, |E − X| ≥ 1. He then defined a 2-connected matroidM to
be 3-connected if

r(X)+ r(E −X)− r(M) ≥ 2

for all X ⊆ E with |X|, |E −X| ≥ 2.
The following result is elementary.

Proposition 2 Let G be a graph with at least four vertices. Then

(i) M(G) is 2-connected if and only if G is 2-connected and loopless; and
(ii) M(G) is 3-connected if and only if G is 3-connected and simple.

In the cycle matroidM(Wr ) of the r-spoked wheel Wr , the rimR is a cycle whose
complement is a bond. The set R has the same size as the bases ofM(Wr ), that is, as
the spanning trees of Wr . Indeed, Tutte defined a new matroid W r , the rank-r whirl,
on the set of edges of Wr having as its bases all of the bases ofM(Wr ) together with
the set R.

Theorem 7 (Tutte, 1966) A 3-connected matroid M has an element e such that
M\e or M/e is 3-connected unless M has rank at least three and is a whirl or the
cycle matroid of a wheel.

In 1980, Seymour [18] generalized this theorem by proving the following.
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Theorem 8 (Seymour, 1980) Let M and N be 3-connected matroids such that N
is a proper minor of M . Then M has an element e such that M\e or M/e is 3-
connected having a minor isomorphic to N unless M is a wheel or a whirl.

7 The First Conference on Matroids

In 1964, Jack Edmonds was working at the National Bureau of Standards in
Washington. He and his colleagues there organized the first conference on matroids.
Tutte gave a series of Lectures on Matroids [36]. These appeared in the conference
proceedings, which were published in the Journal of Research of the National
Bureau of Standards in 1965. Tutte wrote [47, p. 8] about that 1964 meeting,

To me that was the year of the Coming of the Matroids. Then and there the theory of
matroids was proclaimed to the mathematical world. And outside the halls of lecture there
arose the repeated cry: ‘What the hell is a matroid?’

The 1965 Journal of Research of the National Bureau of Standards included
Tutte’s paper, Menger’s Theorem for matroids [37]. That important paper was
largely ignored for about 35 years until, in 2002, Geelen et al. [10] recognized its
utility. The theorem has been used extensively since then.

For disjoint sets X and Y in a matroidM , define the connectivity between X and
Y by

κM(X, Y ) = min{r(S)+ r(E − S)− r(M) : X ⊆ S ⊆ E − Y }.

Theorem 9 (Tutte, 1965) Let X and Y be disjoint sets in a matroid M . Then
κM(X, Y ) is the maximum value of κN(X, Y ) over all minors N of M with ground
set X ∪ Y .

Subsequently, Geelen et al. [11, Theorem 4.2] proved that this maximum could
be restricted to minors N of M with E(N) = X ∪ Y such that N |X = M|X and
N |Y = M|Y . As an example, let {1, 2, 3} and {4, 5, 6} be the disjoint triangles in
a triangular prism graph P . Then, by contracting the three edges of P that are not
in triangles, we get a doubled triangle with edge set {1, 2, . . . , 6}. A consequence
of Theorem 9 is that, in an arbitrary 3-connected binary matroid M , if {1, 2, 3}
and {4, 5, 6} are disjoint 3-element circuits, then M has a minor on {1, 2, . . . , 6}
consisting of the cycle matroid of a doubled triangle.

8 Tutte’s Ph.D. Thesis

So far, we have mostly described Tutte’s published work on matroids. But many of
his discoveries were made much earlier and were included in his remarkable Ph.D.
thesis, completed in 1948 [28]. In this section. we discuss some particulars of the
thesis.



The Contributions of W.T. Tutte to Matroid Theory 357

In reading the thesis, it must be borne in mind that Tutte’s viewpoint for matroids
is dual to the usual one, so that, for example, his “circuits” in nets generalize
bonds (or minimal edge cuts) of graphs, and a matroid is “graphic” if its dual
is graphic in the sense defined above. Similarly, the terminology for deletion and
contraction aligns with standard usage for graphs but is swapped around for nets;
see the discussion in [9]. There is also much nonstandard terminology, for example,
“codendroids” for bases, “dendroids” for cobases, and “cyclic elements” for blocks
in graphs and components in matroids.

In Chapter III of the thesis, Tutte presents his extension of Menger’s Theorem to
matroids although it is not until Chapter VII that he deduces Menger’s Theorem for
graphs from his generalization. His paper ‘Menger’s theorem for matroids’ was not
published until 1965 [37].

Chapter IV introduces regular matroids, under the name “simple nets”, approach-
ing them from an unusual direction. Tutte then shows that a matroid of rank r on
n elements is regular (according to his definition) if and only if it has an r × n

representative matrix over Z such that the determinant of every r × r submatrix
is in {0, 1,−1}. It is routine to show that this condition is equivalent to total
unimodularity of the matrix. Parts of this chapter were published and extended in
[30].

Chapter V, the shortest in the thesis, is about his polynomials. It is the only
chapter of the thesis that contains results he published before the thesis was
completed in 1948. Its results are generalizations of a subset of those in ‘A ring
in graph theory’ (published in 1947) [26]. Whereas [26] is restricted to graphs, this
chapter of the thesis introduces polynomials for representable matroids. Instead of
the V -functions of [26], we now have chromatic functions, which are called Tutte
invariants or Tutte-Grothendieck invariants by later writers. Tutte’s definition of
chromatic functions only needs deletion, contraction, and the notion of a matroid
component. He then extends the Whitney rank generating function to matroids,
which only needs a rank function. Thus these definitions make no real use of
representability, and it is reasonable to regard them as the first extension to matroids
of any polynomials in the Tutte-Whitney family. It would be another 20 years until
Crapo [4] formally defined the Tutte polynomial for matroids.

Tutte gives a recipe theorem for the (matroidal) Whitney rank generating function
and defines, without name, the (matroidal) Tutte polynomial. An appropriate
evaluation gives the number of bases, generalizing his observation for the number
of spanning trees of a graph in [26]. Other evaluations give a representable-matroid
analogue of counting q-colourings in a graph. Care is need with Tutte’s terminology
in this chapter, as discussed in [9].

Chapter VI concerns connectivity in binary matroids, extending to them the
notion of a 2-separation of a graph. For graphs, some of the theory appears in [39,
Ch. 11].

Having worked entirely at the level of representable matroids for Chapters II–
VI, Tutte establishes the relationship with graphs in Chapter VII. He develops the
theory of cycle matroids and cocycle matroids and applies the theory of the previous
chapters to them. Graphic matroids and their duals are shown to be regular. The
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Tutte polynomial evaluations of Chapter V are specialized to counting colourings
and spanning trees. The theory of Chapter VI is applied to 2-connected graphs.

Chapters VIII–IX, occupying 140 pages, give Tutte’s excluded-minor characteri-
zation of (the duals of) graphic matroids among binary matroids. The four excluded
minors are called “gnarls” and he calls his result the “gnarl theorem”. It has been
the foundation and inspiration of matroid structure theory ever since, and is a fitting
climax for one of the greatest doctoral theses of twentieth century mathematics.

9 The Move Away from Matroids

Although Tutte did publish some matroid papers after 1966, these later papers were
in conference proceedings [43, 44] reiterating results from earlier journal papers or
were supplements to earlier papers [41, 42]. Tutte’s 1966 paper On the algebraic
theory of graph colorings [38] proposed a conjecture for binary matroids now
called Tutte’s Tangential 2-Block Conjecture, which can be viewed as an analogue
of Hadwiger’s Conjecture. The same paper included [38, p. 22] the following
conjecture on 4-flows, now known as ‘Tutte’s 4-Flow Conjecture’. This conjecture
remains open in general.

Conjecture 3 A graph without cut edges or nowhere-zero 4-flows has a Petersen-
graph minor.

For cubic graphs, the last conjecture is equivalent to the assertion that every cubic
graph without a cut edge or a Petersen-graph minor is 3-edge-colourable. A proof of
this has been announced by Robertson, Sanders, Seymour, and Thomas. It appears
in a series of papers including [6], which provides details of the other papers.

In 1981, Seymour [20] reduced Tutte’s Tangential 2-Block Conjecture to the 4-
Flow Conjecture by using his decomposition theorem for regular matroids [18].

By 1967, Tutte had essentially stopped publishing new results in matroid theory.
Why? Looking back on his homotopy theorem for matroids, the excluded-minor
characterization of regular matroids noted above (Theorem 4), Tutte wrote [47, p. 8],

One aspect of this work rather upset me. I had valued matroids as generalizations of graphs.
All graph theory, I had supposed would be derivable from matroid theory and so there
would be no need to do independent graph theory any more. Yet what was this homotopy
theorem, with its plucking of bits of circuit across elementary configurations, but a result in
pure graph theory? Was I reducing matroid theory to graph theory in an attempt to do the
opposite? Perhaps it was this jolt that diverted me from matroids back to graphs.

10 Tutte’s Contributions

Tutte’s contributions to mathematics were immense. MathSciNet credits him with
160 publications. As of May 17, 2018, MathSciNet also lists 3656 citations for his
papers although it should be noted that this source primarily constructs its list for
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the years 2000 onwards. From 1967, he was the Editor-in-Chief of the Journal of
Combinatorial Theory.

Under his leadership the journal flourished. It became such a desirable place to publish that
in time it was partitioned into two, series A and B, with Tutte retaining the leadership of
the latter until his retirement as professor from the University of Waterloo in 1985 [53,
pp. 294–95]

To this day, that journal remains preeminent in combinatorics. Tutte was a
founding member of the Department of Combinatorics and Optimization at the
University of Waterloo, and he had eight Ph.D. students most notably Ron Mullin
and Neil Robertson.

In 2012, British Prime Minister David Cameron wrote a letter to Tutte’s niece
Jeanne Youlden [53, p. 286] expressing the gratitude of the United Kingdom for
Tutte’s codebreaking work. Cameron wrote [53, p. 286],

We should never forget how lucky we were to have men like Professor Tutte in our darkest
hour and the extent to which their work not only helped protect Britain itself but also shorten
the war by an estimated two years, saving countless lives.

One aspect of Tutte’s creative work has yet to be touched on here. The Four
invented a mathematical poetess named ‘Blanche Descartes’. Any one of them could
add works under her name but Tutte was believed to be the primary contributor.

The Four carefully refused to admit Blanche was their creation. Visiting Tutte’s office in
1968, [Tutte’s fifth Ph.D. student Arthur] Hobbs had the following conversation with him:
Hobbs: “Sir, I notice you have two copies of that proceedings. I wonder if I could buy your
extra copy?”
Tutte: “Oh, no, I couldn’t sell that. It belongs to Blanche Descartes.” [13, p. 4]

At the conference banquet celebrating Tutte’s eightieth birthday, he recited the
following poem written by Ms Descartes especially for the occasion [5]. The second
author, on requesting a copy of the poem from Professor Tutte, was handed the
original handwritten version.

The Three Houses Problem

In central Spain in mainly rain
Three houses stood upon the plain.

The houses of our mystery
To which from realms of industry
Came pipes and wires to light and heat
And other pipes with water sweet.

The owners said, “Where these things cross
Burn, leak or short, we’ll suffer loss
So let a graphman living near
Plan each from each to keep them clear.”
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Tell them, graphman, come in vain,
They’ll bear the cross that must remain
Explain the planeness of the plain.

Blanche Descartes
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Cluster Decorated Geometric Crystals,
Generalized Geometric
RSK-Correspondences, and
Donaldson-Thomas Transformations

Gleb Koshevoy

Abstract For a simply connected, connected, semisimple complex algebraic group
G, we define two geometric crystals on the A -cluster variety of double Bruhat
cell B− ∩ Bw0B. These crystals are related by the ∗ duality. We define the graded
Donaldson-Thomas correspondence as the crystal bijection between these crystals.
We show that this correspondence is equal to the composition of the cluster chamber
Ansatz, the inverse generalized geometric RSK-correspondence, and transposed
twist map due to Berenstein and Zelevinsky.

1 Introduction

For reductive split algebraic groups, Berenstein and Kazhdan [1] defined decorated
geometric crystals. One of important feature of such a crystal is a decoration
function. For double Bruhat cells, in relation to mirror symmetry, this decoration
function have been appeared in [10] as a pullback of a Landau-Ginsburg potential
defined in the cluster setup in [12] with respect to a proper map of A -cluster variety
to X -cluster variety on the double Bruhat cells, for the Langlands dual groups.

We follow the recipes of [7, 9, 15], and endow the A -cluster variety of double
Bruhat cell Gw0,e := B− ∩ Bw0B with two geometric crystals for Langlands dual
groupG∨, related by the ∗ duality. The Kashiwara crystal admits a duality operation
∗. One may regard the above ∗ duality as a geometric lift of the Kashiwara ∗ duality.
The decoration function for the ∗ dual geometric crystal can be regarded as the
pullback of the Landau-Ginzburg potential for the cluster algebra which is obtained
by reversing all directions of edges in quivers of that considered in [10]. In this paper
we will consider the case of simply-laced groups.

There are two actions of Cartan torus H on Gw0,e from the left and from the
right. Under the actionH from the left, we regardGw0,e asH×Bw0− , where Bw0− :=
B− ∩ Nw0N is the reduced Bruhat cell. Berenstein and Kazhdan endowed such a
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reduced cell with decorated geometric crystal structure. Under the action H from
the right, we regard Gw0,e as Nw0− × H , where Nw0− := N− ∩ Bw0B is also a
reduced cell. We endowNw0− with ∗ dual decorated geometric crystal structure. For
the former crystal we let the frozen variables Δw0ωi ,ωi , i ∈ I , be fixed (I denotes
the set of vertices of the Dynkin diagram), while for the ∗ dual crystal we let be
fixed another half of frozen variablesΔωi,ωi , i ∈ I .

In order to obtain combinatorial crystal from geometric one, we have to consider
toric charts of a positive structure and corresponding tropicalization [1].

There are several positive structures on Gw0,e.
For one of such structures we use toric charts which constitute the Berenstein-

Zelevinsky positive structures of Bw0− , BZ-variety, see [1] and [18]. The graded
cones corresponding to the charts of such a positive structure are defined by trop-
icalization of the Berenstein-Kazhdan decoration function, and the cones turn out
to be polyhedral realizations of the (graded) Kashiwara crystal due to Nakashima-
Zelevinsky [19]. Specifically, such charts and cones correspond to the same reduced
decomposition i ∈ R(w0) of the longest element w0 of the Weyl group. For
i ∈ R(w0), we denote such a cone grN Z i.

Another positive structure is related to the Lusztig variety on Nw0− [4, 15]. The
charts of this variety are also defined for reduced decompositions of R(w0). For
i ∈ R(w0), the tropicalization with respect to the ∗ dual potential gives polyhedral
realization of the combinatorial crystal with vertices being lattice vertices of the
Kashiwara ∗ dual Lusztig graded cone, grL ∗

i .
One more positive structure is related to the A -cluster variety. Specifically, we

consider only a part of cluster toric charts of A -cluster variety which correspond
to the reduced decompositions of R(w0). We consider two families of positive
charts, for one we let to be fixed frozen Δw0ωi ,ωi , i ∈ I , we call fixing frozen
specialization, and for another we make specialization at the frozen Δωi,ωi , i ∈ I .
For i ∈ R(w0), tropicalization with respect to the corresponding chart of the former
one and Landau-Ginzburg potential provides us with the polyhedral realization of
the Kashiwara crystal being unimodular isomorphic to the graded Lusztig cone
grLi and tropicalization with respect to the latter one and ∗ dual LG potential gives
us the polyhedral realization of the Kashiwara ∗ dual being unimodular isomorphic
to the graded Littelmann cone grSi, see [10].

We provide birational positive mappings between these positive structures. For
that we use birational automorphisms tori (C∗)l(w0) called the generalized geometric
RSK-correspondence, gRSK, and its inversion (Sect. 5), two mappings from cluster
tori localized at frozen coordinates called Chamber Ansatz [10] and transposed twist
map of [3].

We define the graded Donaldson-Thomas transformation as the map which, for
each reduced decomposition i ∈ R(w0), makes the following diagram with the
positive structures onGw0,e commutative and tropical graded DT-transformation as
that wrt the tropicalization.



Cluster Decorated Geometric Crystals, Generalized Geometric RSK-. . . 365

Lusztig-variety×H
ηTw0,e−−−→ H×BZ-variety

↑ α ↑ β

cluster charts specialized at
{Δωi,ωi }i∈I

DT−−−→ cluster charts specialized at
{Δw0ωi,ωi }i∈I

(1)

where ηTw0,e
is transposition of the twist map defined in [3, Definition 4.1], α is the

composition of CA− and inverse gRSK, β is the composition of CA+ and gRSK,
where CA+ denotes the tuples maps grCAi, i ∈ R(w0), and CA− denotes the
inverse of grNAi, defined in [10, Definition 6.1 and 7.1], for details see Sects. 5
and 6. The latter mappings are motivated by the Chamber Ansatz [4] for the Lusztig-
and Berenstein-Zelevinsky-parametrizations of Nw0− and Bw0− , respectively.

The twist ηTw0,e
is a crystal bijection sendingN−∩Bw0B×H toH×B−∩Nw0N .

Since all vertical maps are crystal isomorphism we get that the graded Donaldson-
Thomas transformation is an isomorphism of geometric cluster crystals.

In other words, the graded Donaldson-Thomas transformation is the composition
of five maps, the inverse generalized geometric RSK and CA−, sending cluster
variety specialized at the half of frozenΔωi,ωi , i ∈ I , to the graded Lusztig variety,
both endowed with ∗-dual geometric crystal structure, then transposed twist map
which sends the Lusztig variety to the Berenstein-Zelevinsky variety, where the
latter is endowed with the geometric crystal as in [1, 18], and finally the inverse
generalized geometric RSK and inverse CA+ sending BZ-variety to the cluster
variety specialized at another half of frozenΔωi,ωi , i ∈ I .

The tropical graded DT-transformation is as in [10]. Specifically, tropicalization
of the above diagram leads to the definition of a tropical DT-transformation which
makes the following diagram commutative

grL ∗
i

tropical BZ-twist−−−−−−−−−−−−→ grN Z i

↑ tropical inverse RSK ↑ tropical RSK

grSi
tropical DT−−−−−−−−→ grLi

(2)

The mappings between the SW-NE and NW-SE corners of diagram (1) are geo-
metric lifting of the Kashiwara ∗ dual crystal isomorphisms between corresponding
corners of the diagram (2).

Thus we may regard ∗ duality (Kashiwara ∗ duality) as the composition of
the transposed twist, the inverse generalized geometric RSK correspondence, and
inverse CA+ (tropical twist, tropical gRSK, and tropical inverse CA+).
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Goncharov and Shen [11] conjectured that the Donaldson-Thomas transforma-
tion, defined for X -cluster variety, is the twist ηw0,e under specialization at all
frozen variables. This conjecture is proven in [20].

Our graded Donaldson-Thomas transformation is the composition of transposed
twist and maps α and β−1.

2 Preliminary and Notations

2.1 Simply-Connected Algebraic Groups

For a simply connected, connected, semisimple complex algebraic group G, let B
and B− be Borel subgroup and its opposite, N and N− be unipotent radicals, a
maximal torus H = B ∩ B−, and W = NormG(H)/H be the Weyl group. Let
A = (aij )i,j∈I be the Cartan matrix, cardinality of I , |I |, equals the rank of G.
The Weyl group W is canonically identified with the Coxeter group generated by
the involutions s1, . . . , s|I |, subject to the relations (sisj )dij = e, dij = 0, 3, 4, 6
if aij = 0, 1, 2, 3, respectively. A reduced decomposition of w ∈ W is a word
i = (i1 · · · il) in the alphabet I , such that w = si1 · · · sil gives a factorization of
smallest length. The length l is called the length of w and denoted by l(w). For
w ∈ W , the set of all reduced decompositions is denoted by R(w). We denote
by w0 the element of maximal length in W . Any two reduced decompositions i,
i′ ∈ R(w) are related by the Artin relations. For simply-laced cases, Artin relations
are 2-moves ad 3-moves. Specifically, a reduced word j = (j1, . . . , jl) is defined to
be obtained from i = (i1, . . . , il) by a 2-move at position k ∈ [l − 1] if i� = j� for
all � /∈ {k, k + 1}, (ik+1, ik) = (jk, jk+1) and aik,ik+1 = 0.

A reduced word j is defined to be obtained from i by a 3-move at position k ∈
[l − 1] if i� = j� for all � /∈ {k − 1, k, k + 1}, jk−1 = jk+1 = ik , jk = ik−1 = ik+1
and aik,ik+1 = −1.

Let g be the Lie algebra of G, and h the Cartan subalgebra. Let {α1, . . . , α|I |} ⊂
h∗ be simple roots for which the corresponding root subgroups are contained in N .
For i ∈ I , let φi be the homomorphism SL2 → G corresponding to the ith simple
root of G. Given i ∈ I define

xi(t) = φi

(
1 t
0 1

)
, yi(t) = φi

(
1 0
t 1

)
, si = φi

(
0 1

−1 0

)
,
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and

x−i (p) = φi

(
1
p

0

1 p

)
.

α∨
i (c) = φi

(
c 0
0 c−1

)
, αi(h) = hi

hi+1
, i ∈ I.

2.2 Cluster Seeds Associated to Reduced Decompositions

Recall that, for a dominant weight λ : H → Gm, the principal minor Δλ : G → A
1

is the function defined on the open subset N−HN ⊂ G by

Δλ(u
−hu+) := λ(h) u− ∈ N−,h ∈ H,u+ ∈ N.

Let γ, δ be extremal weights such that γ = w1λ, δ = w2λ for some w1, w2 ∈ W ,
λ ∈ P+. The generalized minor associated to γ and δ is

Δγ,δ(g) := Δλ(w
−1
1 gw2), g ∈ G,

where w is a lift of W into NormGH using si , i ∈ I
The base affine space G/N is the partial compactification of the open double

Bruhat cell

Gw0,e := Bw0B ∩ B−

obtained by allowing the generalized minorsΔωa,ωa and Δw0ωa,ωa to vanish.
Here we need a small part of cluster seeds of the A -variety. Namely, for a

reduced decomposition i ∈ R(w0), we consider the corresponding seed S (i) follow
[5]. The vertices of the quiverQ(i) are labeled by the fundamental weightsωi , i ∈ I ,
and i|≤kωik , k ∈ l(w0), . . . , i|≤k denotes the subword i of the first k letters.

The frozen vertices are labeled by the fundamental weights ωi , i ∈ I , and w0ωi ,
i ∈ I .

The cluster variables of S (i) are the generalized minors Δi|≤kωik ,ωik attached to
vertices labeled by i|≤kωik .

Follow [5] we associate to every reduced word i a seed Σ(i). The set of edges
quiver Γi is described as follows. For k ∈ [−n] we set ik = −k. For k ∈ [l(w0)] we
denote by k+ = k+i the smallest � such that k < � and i� = ik. If no such � exists,
we set k+ = l(w0) + 1. For k ∈ [l(w0)], we further let k− be the largest index �
with that � < k and i� = ik.
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There is an edge connecting vk and v� with k < � if at least one of the two
vertices is mutable and one of the following conditions is satisfied:

1. � = k+,
2. � < k+ < �+, ck,� < 0 and k, � ∈ [N].
Edges of type (1) are called horizontal and are directed from k to �. Edges of type
(2) are called inclined and are directed from � to k.

We need the following fact. Let j ∈ R(w0) be obtained from i by a 3-move in
position k. Then the transposition (k, k+1) is an isomorphism of quiversΓj 	 μkΓi,

where μk is a mutation at the vertex labeled by i|≤kωik .
The new variables is obtained by the A -cluster mutation

μkA� =

⎧⎪⎨
⎪⎩

∏
� : (�,k)∈Γ(j) A�

Ak
+
∏
m : (k,m)∈Γ (j) Am

Ak
if � = k,

A� else,

For reduced seeds corresponding to reduced words, such cluster mutation take
the form of Plúcker relations between generalized minors.

3 Cluster Geometric Crystals

On the A -cluster variety Gw0,e, we define two geometric crystals (for Langlands
dual group) related by the Kashiwara ∗-involution.

3.1 Geometric Crystal for A -Variety Specialized at Δw0ωi,ωi
’s

We consider simply-laced case and define the main ingredients of the geometric
crystal on the A -cluster variety Gr obtained of Gw0,e by the specialization at the
frozen variablesΔw0ωi ,ωi , i ∈ I .

For k ∈ I , we denote by ik a reduced decomposition which starts with sk , we call
such a reduced decomposition optimal from the head for k.

For such an optimal reduced decomposition ik , we consider the corresponding
seed S (ik).

We define the crystal actions fk(c, · · · ) : C
∗ × Gw0,e → Gw0,e, k ∈ I , by

specifying it on the variables of the seed S (ik). Namely, we set

fk(c, ·) : Δωk,ωk → cΔωk,ωk , (3)

and fk(c, ·) does not change other generalized minors labeling nodes of S (i(k)).
In order to get the action of another crystal operation fl(c, ·) on variables of

this seed, firstly, we have to express the cluster variables of S (i(k)) as Laurent
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polynomials of cluster variables S (i(l)), secondly we have to apply fl(c, ·) to
variables of these Laurent polynomials, and then to express such obtained Laurent
polynomials in the variables of S (i(k)).

Because of refinement of the Laurent phenomenon for cluster algebras [8], that
claims that frozen variables do not appear in denominators of Laurent polynomials
expressing a cluster variable of one seed in the variables of another, we get that the
crystal operations take the form of Laurent polynomials, indeed.

Note that the frozen variables Δw0ωi ,ωi , i ∈ I , do not change under any of such
crystal actions. This is a reason to specialize the cluster algebra at these frozen
variables.

We take the potential ΦBK : Gw0,e → C, as the decoration function due to
Berenstein and Kazhdan [1]

ΦBK(M) =
∑
i∈I

Δw0ωi,siωi (M)

Δw0ωi ,ωi (M)
+
∑
i∈I

Δw0siωi ,ωi (M)

Δw0ωi,ωi (M)
, M ∈ Gw0,e. (4)

For a groupG with simply-laced Lie algebra, it follows from [10], that, for each
k and any reduced decomposition i(k) optimal for k, we have

ΦBK(fk(c,Mi(k)))−ΦBK(Mi(k))

=(c − 1)
Δωk,ωk (Mi(k))

Δskωk,ωk (Mi(k))
+ (

1

c
− 1)

Δωk−1,ωk−1(Mi(k))Δωk+1,ωk+1(Mi(k))

Δskωk,ωk (Mi(k))Δωk,ωk (Mi(k))
. (5)

where Mi(k) a toric chart of the A cluster variety Gw0,e written in cluster variables
of S (i(k)).

For SLn, this means the following. We consider matrix elements of M ∈ Gw0,e,

as Laurent polynomials which express
Δsi−1 ···sj ωj ,ωj
Δωj−1 ,ωj−1

, in variables of the cluster seed

S (i(k)). Mi(k) denotes such a representation of matrix elements.
Because of that if we consider a point of the A -variety, that is a collection of

tuples, related by the cluster mutations, then each tuple of the collection defines the
same matrix.

Because of Positivity Theorem [14], these matrix elements are Laurent polyno-
mials with non-negative coefficients.

We define the functions ϕ, ε and γ being geometric lifting of the Kashiwara
functions as follows.

For the seed S (i(k)), we set

ϕk(Mi(k)) = Δskωk,ωk (Mi(k))

Δωk,ωk (Mi(k))
,

εk(Mi(k)) = Δskωk,ωk (Mi(k))Δωk,ωk (Mi(k))

Δωk−1,ωk−1(Mi(k))Δωk+1,ωk+1(Mi(k))
, and

αk(γ (Mi(k)) := ϕk

εk
. (6)
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Thus we have,

αk(γ (Mi(k))) = Δωk,ωk (Mi(k))
2

Δωk−1,ωk−1(Mi(k))Δωk+1,ωk+1(Mi(k))
.

Because of the above formula and that all seeds before action of operations fk’s
has the same frozen variables, we get that γ does not depend on a seed and

αk(γ (M)) = Δωk,ωk (M)
2

Δωk−1,ωk−1(M)Δωk+1,ωk+1(M)
, M ∈ Gw0,e. (7)

Note that we can also regard functions ϕ and ε independently of cluster seeds,

ϕk(M) = Δskωk,ωk (M)

Δωk,ωk (M)
,

εk(M) = Δskωk,ωk (M)Δωk,ωk (M)

Δωk−1,ωk−1(M)Δωk+1,ωk+1(M)
.

From the refined Laurent phenomenon, we get that, for any cluster seed, the
functions ϕ and ε are Laurent polynomials in variables of that seed.

3.2 SL3

For example for SL3 and a cluster seed, corresponding to a reduced word 121,
let us denote the cluster variables t1 = Δω1,ω1 , t2 = Δs1ω1,ω1 , t3 = Δs2s1ω1,ω1 ,
t12 = Δω2,ω2 , t23 = Δw0ω2,ω2 .

Then elements of the corresponding cluster chart are matrices of the form

M121 :=
⎛
⎜⎝
t1 0 0
t2

t12
t1

0

t3
t1t23+t3t12

t1t2

1
t12

⎞
⎟⎠

and, since the 121 is optimal for s1, the action f1(c, ·) is

f1(c,M121) =
⎛
⎜⎝
ct1 0 0
t2

t12
ct1

0

t3
ct1t23+t3t12

ct1t2

1
t12

⎞
⎟⎠

Then the potentialΦBK computed in variables of this cluster chart is

Φ121
BK = t12

t1t2
+ t2

t12t23
+ t23

t2t3
+ t1

t2
+ t12t3

t23t2
+ t2

t3
.
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The functions ϕ1(M121) = t2
t1

, ε1(M121) = t1t2
t12

and γ1 = t21
t12

.
In order to have the action f2(c, ·) and to compute ϕ2(M121) and ε2(M121),

we have to represent M121 in the cluster coordinates of the chart for the reduced
decomposition 212. For 212, we get

M212 :=
⎛
⎜⎝

t1 0 0
t1t23+t3t12

t13

t12
t1

0

t3
t13
t1

1
t12

⎞
⎟⎠ ,

where t13 = Δs2ω2,ω2 and there due to the Plúcker we have t13t2 = t1t23 + t3t12,
where t1, t2, t3, t12, . . . , t23 are as above, and t1, t3, t3, t12, . . . , t23 are the cluster
variables of S (212).

Then the action f2(c, ·) at the chart M212, corresponding to the seed S (212),
takes the form

f2(c,M212) :=
⎛
⎜⎝

t1 0 0
t1t23+ct3t12

t13
c t12
t1

0

t3
t13
t1

1
ct12

⎞
⎟⎠ ,

and, hence, f2(c, ·) acts in the chart for 121 as follows

f2(c,M121) =
⎛
⎜⎝

t1 0 0
t2 + (c−1)t3t12t2

t1t23+t3t12
c t12
t1

0

t3
t1t23+t3t12

t1t2

1
ct12

⎞
⎟⎠ .

Hence we get ϕ2(M121) = t1t23+t3t12
t12t2

, ε2(M121) = t12(t1t23+t3t12)
t1t2

, and γ2(M)

= t212
t1

.
Note the potentialΦBK computed in variables of cluster chart for 212 is

Φ212
BK = t1

t12t13
+ t13

t1t2
+ t3

t13t23
+ t1

t3
+ t1t23

t3t13
+ t12

t13
.

3.3 Cluster Charts and Geometric Crystals

Denote by Gr(h) a leaf of Gw0,e obtained by fixingΔw0ωi ,ωi =: hi , i ∈ I . Namely,
for a cluster seed, corresponding to a reduced word i ∈ R(w0), we regard matrixMi
as product

Mi = α∨
1 (

1

Δw0ω|I |
)α∨

2 (
1

Δw0ω|I |−1,ω|I |−1

) · · ·α∨|I |−1(
1

Δw0ω1,ω1

)M̃i,

where M̃i ∈ Gr(1).
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Theorem 1 For any h ∈ H , the crystal operations defined by the rule (3), the
decoration function defined by (4), the functions ϕ, ε, γ defined by (6), define a
geometric crystal on the A -cluster variety Gr(h), in the sense of [1].

Proof We have to verify that the crystal operations satisfy the Verma relations and
proper behavior of the above functions under the crystal actions.

a) The claim that the crystal actions fk , k ∈ I , satisfy the Verma relations (quantum
Yang-Baxter equation1)

f ak (f
ab
k′ (f

b
k )) = f b

k′(f
ab
k (f a

k′ )) if k and k’ are joined by an edge in the Dynkin diagram

and commute elsewhere,

can be reduced to that claim for the case of SL3 (see [7]). The later case is
straightforward computation.

b) The relation of the decoration functionΦBK and the Kashiwara functions ϕ and
ε, takes the form

ΦBK(fk(c,M))−ΦBK(M) = c − 1

ϕk(M)
+ 1/c − 1

εk(M)
. (8)

For simply-laced groups, k ∈ I and a seed S (i(k)), i(k) ∈ R(w0) and is optimal
for k, (8) follows from [9, 10].

The claim that relations between ε, ϕ and γ fulfill the requirements of [1] also
follows from the above claim. �

4 ∗ Dual Geometric Crystal

We define the ∗ dual geometric crystal on A -variety Gl , obtained from Gw0,e by
the specialization at the frozen variablesΔωi,ωi , i ∈ I .

The Kashiwara crystal admits a duality operation ∗ (see, for example, [13]), and
one may regard such ∗ dual geometric crystal as a geometrization the Kashiwara
duality.

Namely, for a ∈ I , a reduced decomposition ia is optimal from the tail for a, if ia
is the last element of ia . One can consider ia as reversed i(a)with sw0(j) replacing sj .

Let us consider the corresponding seed S (ia).

1Integrable system related to this quantum Yang-Baxter equation is Toda lattice, and we will come
to this issue in another paper.



Cluster Decorated Geometric Crystals, Generalized Geometric RSK-. . . 373

For such a reduced decomposition ia , we define the action of f ∗
w0(a)

(c, ·) on the
variables of the seed S (ia) by acting only on frozen variable

Δw0ωa,ωa → cΔw0ωa,ωa ,

of this seed and does not changing other cluster variables of S (ia).
To define f ∗

w0(a)
(c, · · · ) in another seed S , we have to mutate from S to S (ia),

than apply fw0(a)(c, ·) on S (ia), and than mutate back to S .
Remark that the frozen variables Δωi,ωi , i ∈ I , do not change under all such

crystal actions. Because of that we make specialization at these frozen.
To define all functions for a geometric crystal, we firstly define the decoration

function

Ψ∗K(M) :=
∑
i∈I

Δωi ,siωi (M)

Δωi,ωi (M)
+
∑
i∈I

Δw0ωi ,siωi (M)

Δw0ωi ,ωi (M)
, M ∈ Gw0,e. (9)

Then, in the seed S (ia) we get the following functions

ϕ∗
w0(a)

(Mia )) = Δw0saωa,ωa (Mia )

Δw0ωa,ωa (Mia )
, (10)

ε∗w0(a)
(Mia ) = Δw0saωa,ωa (X)Δw0ωa,ωa (Mia )

Δw0ωa−1,ωa−1(Mia )Δw0ωa+1,ωa+1(Mia )
(11)

αw0(k)(γ
∗(M)) = Δw0ωk,ωk (M)

2

Δw0ωk−1,ωk−1(M)Δw0ωk+1,ωk+1(M)
, M ∈ X. (12)

Note that γ ∗ is the ‘highest weight’ for the Kashiwara geometric crystal with the
potentialΦBK .

For SLn and i ∈ R(w0), we have the following relations, which shows symmetry
of weights and highest weights on the language of geometric crystals,

αk(γ (Mi))αk(γ
∗(Mi)) =

∏
ρ∈T (k)

t
signρ·χ(m,ρ)
m

∏
ρ∈T (k+1)

t
signρ·χ(m,ρ)
m , (13)

where T (k) is a train track colored by k in the rhombus tiling for i, χ(m, ρ) is the
delta function of positive roots labeled by m-th cluster variable and the tile ρ, and
t := CA+(S (i)) (for details see [9]). Note that symmetry between γ and γ ∗ breaks
when we choose from what side the Cartan torus acts on B−. Another relations
between weights and highest weights is

αk(γ (Mi))αw0(k)(γ
∗(Mi)) =

∏
m∈I (k)

q2
im

∏
m′∈I (k′) : ai′m,k=−1

qi′m, (14)

where, for i, I (k) = {j : ij = k}, q := CA−(S (i)).
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Denote by Gl(ĥ) a leaf of Gw0,e with fixedΔωi,ωi =: ĥi , i ∈ I .

Theorem 2 For each ĥ, the above defined crystal actions f ∗
a , a ∈ I , the

decoration (9), and the functions (10)–(12) define a geometric crystal on the A -
cluster variety Gl(ĥ).

Proof For the Verma relations, it suffices to check for SL3, and this is a rather
straightforward. Then the relations among the actions, decorations and the functions
in order to fulfill the axioms of the geometric crystal, follows from the above
property of the potential Ψ∗K in each seed tail optimal for a ∈ I . �

4.1 SL3

For SL3, the cluster seed for 121 is tail optimal for 1 and hence for the second action
f ∗

2 .
Thus, we have

f ∗
2 (c,M121) =

⎛
⎜⎝
t1 0 0
t2

t12
t1

0

ct3
t1t23+ct3t12

t1t2

1
t12

⎞
⎟⎠

The cluster seed for 212 is tail-optimal for 2 and hence, is optimal for the crystal
action f ∗

1 , we have

f ∗
1 (c,M212) :=

⎛
⎜⎝

t1 0 0
ct1t23+t3t12

t13

t12
t1

0

t3
t13
t1

1
ct12

⎞
⎟⎠ ,

and, hence, f ∗
1 (c, ·) acts in the chart for 121 as follows

f ∗
1 (c,M121) =

⎛
⎜⎝

t1 0 0
t2 + (c−1)t1t23t2

t1t23+t3t12

t12
t1

0

t3
t1t23+t3t12

t1t2

1
ct12

⎞
⎟⎠ .

Note that in the cluster chart for 121, the specialization lead to the right action of
H of the form

⎛
⎜⎝
t1
t3

0 0
t2
t3

t12t3
t1t23

0

1 (t1t23+t3t12)t3
t1t2t23

t23
t12

⎞
⎟⎠ ·
⎛
⎜⎝
t3 0 0
0 t23

t3
0

0 0 1
t23

⎞
⎟⎠ .
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For cluster chart for 121, the decoration Ψ∗K is of the form

Ψ 121∗K = t4

t1t2
+ t2

t4t5
+ t5

t2t3
+ t2

t1
+ t5t1

t4t2
+ t3

t2
.

Restricted to the leaf for t1 =: ĥ1, t4 =: ĥ2, we get

Ψ 121(ĥ1, ĥ2) = ĥ2

ĥ1t2
+ t2

t5ĥ2
+ t5

t2t3
+ t2

ĥ1
+ t5ĥ1

ĥ2t2
+ t3

t2
.

For the cluster seed, corresponding to a reduced word 212, we have the cluster
variables t ′1 = Δω1,ω1 , t ′4 = Δs2ω2,ω2 , t ′2 = Δs2s1ω1,ω1 , t ′3 = Δω2,ω2 , t ′5 = Δw0ω2,ω2 .
For this seed, Ψ 212∗K is of the form

Ψ 212∗K = t ′1
t ′4t ′3

+ t ′4
t ′1t ′2

+ t ′2
t ′4t ′5

+ t ′4
t ′3

+ t ′2t ′3
t ′1t ′4

+ t ′5
t ′4
.

Note that Ψ 212∗K coincides with ΦBK computed in the chart for 121 under
‘reversing’ of the variables tk = t ′w0(k)

, k = 1, . . . , 5.
As a generalization this remark we get the following

Proposition 3 For a reduced decomposition i ∈ R(w0) and the cluster chart S (i),
we have

Φ i
BK(S (i)) = Ψ i∗∗K((S (i∗)op). (15)

We establish an explicit crystal bijection between the geometric crystal and ∗
dual geometric crystal below.

5 Piece-Wise Linear Combinatorics
and RSK-Correspondences

5.1 Elementary Maps from Which We Make Geometric
RSK-Correspondences

For w ∈ W and a reduced decomposition i ∈ R(w), we define the geometric i-
RSK as the composition of l(w) primitive maps, where l(w) is the length of i. (For
simplicity we regard i as a word of I l(w).)
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For any i ∈ I l(w) and k = 1, . . . , l(w) we define a primitive map as the rational
map κk = κ

A,i
k : Tl(w) → T

l(w), Tl(w) := (C∗)l(w), by

κk(t)k′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tk′ if k′ > k

σ0,k(t) if k′ = k

tk′ · σk′,k(t)−aik′ ,ik if k′ < k, ik′ �= ik
tk′

σk′,k (t)·(tk′+σk′,k (t)) if k′ < k, ik′ = ik

,

where we abbreviated σk′,k(t) := ∑
k′<�≤k:i�=ik

t�. Clearly, each κk is a positive

birational isomorphism of Tl(w).
For a word i ∈ R(w), the coordinates of Tl(w) are labeled (colored) by simple

roots follow to i,

t1 t2 t3 · · · tk · · · tl(w)−1 tl(w)

αi1 αi2 αi3 · · · αik · · · αil(w)−1 αil(w)

Suppose, for example, that si2 = sik = sil(w) and sij �= sil(w) for other j , than κl(w)(t)
is the following map

t1 t2 t3 · · ·
↓ ↓ ↓ · · ·

t1(t2 + tk + tl(w))
−ai1,il(w) t2

(t2+tk+tl(w))(tk+tl(w)) t3(tk + tl(w))
−ai3,il(w) · · ·

· tk tk+1 · · · tl(w)−1 tl(w)

· ↓ ↓ · · · ↓ ↓
· tk
tl(w)(tk+tl(w)) tk+1t

−aik+1 ,il(w)
l(w) · · · tl(w)−1t

−ail(w)−1,il(w)
l(w) t2 + tk + til(w)

Definition 1 For a Cartan matrix A, a reduced decomposition i of w ∈ W , the
composition of maps

KA
i := κ1 ◦ · · · ◦ κl(w) (16)

is a geometric i-RSK.

(This definition is a slight generalization of that introduced in [6].)
Geometric i-RSK is a positive birational isomorphism of Tl(w) which depends

on i.

Example For SL3, and the word 121, we get

K121(t1, t2, t3) = (
t1t2

t1 + t3
, t2t3, t1 + t3).

In this example, we haveK121 = K212, but this is because 212 = w0(1)w0(2)w0(1).
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5.2 Inverse Geometric RSK

The composition of the following maps provide us with the inverse map for RSK.
Letw ∈ W and i ∈ R(w). Then the map (κ−1

k )A,i : (C∗)m → (C∗)m,m := l(w),
sends the vector (p1, . . . , pm) to the vector defined as follows.

Denote by I (ik) = {j ∈ [k] ij = ik}, and let j1 < j2 < . . . < j|I (ik)| = k be
elements of this set.

Then, for s ∈ [j1 − 1],

κ−1
k (ps) = psp

ais ,ik
k ,

for s = j1,

κ−1
k (ps) = psp

2
k

pkps + 1
,

and we redefine pk := pk(1) as pk(2) := pk
pkps+1 ;

for s ∈ [jl − 1] \ [jl−1],

κ−1
k (ps) = ps(pk(l))

ais ,ik ,

for s = jl , l < |I (ik)|,

κ−1
k (ps) = pspk(l)

2

pspk(l)+ 1
,

and we define

pk(l + 1) := pk(l)

pk(l)pjl + 1
;

and continue as above for the next interval [jl+1] \ [jl];
then, for s = j|I (ik)|, we set

κ−1
k (pk) = pk(|I (ik)|),

and for s > k, κ−1
k (ps) = ps .

We define K−1
i : (C∗)m → (C∗)m by the rule

K−1
i (p1, . . . , pm) := κ−1

m ◦ · · · ◦ κ−1
2 ◦ κ−1

1 (p1, . . . , pm).

Note that κ−1
1 (p1, . . . , pm) = (p1, . . . , pm) is the identical map.



378 G. Koshevoy

For example, for SL3 and a reduced word s1s2s1, we get

κ−1
2 (p1, p2, p3) = (

p1

p2
, p2, p3),

κ−1
3 (q1, q2, q3) = (

q1q
2
3

q1q3 + 1
, q2(

q3

q1q3 + 1
)−1,

q3

q1q3 + 1
),

The composition of these maps is

K−1
121 : (p1, p2, p3) → (

p1p
2
3

p1p3 + p2
,
p1p3 + p2

p3
,

p2p3

p1p3 + p2
).

5.3 Geometric Lusztig Mutations

Piece-wise linear combinatorics of canonical bases was defined by Lusztig [3,
15–17] as tropicalization the following birational mappings between tori (Gm)l

coordinates of which are colored by corresponding transpositions of a reduced
decomposition i ∈ R(w), w ∈ W , l is the length of w.

Here we give the rule for simply-laced groups: Positive birational mappings
between tori for different reduced decompositions i and i′ are either swapping
coordinates for 2-move, if the decompositions are related by the corresponding 2-
move, or

(. . . , p, q, r, . . .) → (. . . ,
qr

p + r
, p + r,

pq

p + r
, . . .)

for corresponding 3-move of the decompositions, and is the identical map on the
torus T .

5.4 Commutativity Elementary Maps κl and Lusztig Moves

Proposition 4 For any i, the mapping κl and any geometric Lusztig move are
commutative.

Proof The statement is clear for 2-moves. It suffices to check the statement for a
3-move and a mapping κl with il ∈ {is, is+1, is+2}, where the latter set of indexes
corresponds to the triple of the 3-move, and s + 2 ≤ l.

For il = is , we have

κl(· · · , a, b, c, · · · ) = (
a

(t + c)(t + a + c)
, b(t + c),

c

t (t + c)
),
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where we denote by t the ‘running value’ of til at the k − (s + 3)+ 1-step.
Then the composition of the Lusztig 3-move and κl is

(· · · , bc(t + a + c)

a + c
,

a + c

t (t + a + c)
,
abt

a + c
, · · · ),

and ‘running value’ at k − s + 1 steps is t + a + c.
On the other hand side we have, the Lusztig map sends

(. . . , a, b, c, . . .) → (. . . ,
bc

a + c
, a + c,

ab

a + c
, . . .),

and

κl(. . . ,
bc

a + c
, a+c, ab

a + c
, . . .)= (· · · , bc(t + a + c)

a + c
,

a + c

t (t + a + c)
,
abt

a + c
, · · · ),

and ‘running value’ at k − s + 1 steps is t + a + c.
Checking of other possible cases we leave to the reader. �

Remark Let us note that in diagram (1), we can consider an expanded version
by replacing the geometric RSK and its inverse by the elementary maps of
which they are composed. On this way we will obtain new family of tori and
corresponding tropicalizations of corresponding potentials. Explaining of meaning
the corresponding potentials and crystal structures will be in done in another paper.

5.5 Lusztig Variety and the Map CA+

Consider the part of cluster variety, corresponding to seeds labeled by reduced
decompositions, S (i), i ∈ R(w0).

For a reduced word i, the mutations of the tuples CA+
i (Δi) of the cluster variables

of seeds S (i) (specialized at the frozen Δw0ωi ,ωi , i ∈ I ), i ∈ R(w0), at vertices
corresponding to 3-moves follow the Lusztig rule [10]. Recall that, for a reduced
decomposition i ∈ R(w0), the Chamber variables are defined as

tk(i) =
∏
l;i−k <il<ik Δ

−a(ik,il )
i|≤il ωil ,ωil

Δi|≤i−
k
ωik ,ωik

Δi|≤ik ωik ,ωik
, k ∈ [l(w0)], (17)

plus the frozen variablesΔw0ωi,ωi , i ∈ I .
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We denoted that map CA+ in the diagram (1), specifically, for a cluster
seed S (i), this transformation sends cluster variables Δi to (tk(i))k=1,...,l(w0) =:
CA+(Δ(i)) and leaves unchanged the half of the frozen variablesΔw0ωi,ωi , i ∈ I .

Proposition 5 The tuples {tk(i), k ∈ [l(w0)]}, i ∈ R(w0), form the Lusztig variety
in the sense of Definition 2.2.1 [4].

Proof See, for example [10]. �
This Lusztig variety has the following implementation using elementary matri-

ces. The following proposition a cluster version of the Chamber Ansatz of [4].

Proposition 6 For each i ∈ R(w0), the matrix

x−i(K
A
i ({tk(i), k ∈ [l(w0)]})) (18)

coincides with Mi under change of cluster variables (17).

5.6 Berenstein-Zelevinsky Variety

In [3] it was considered the following positive birational maps for tori (C∗)l(w0)

labeled by reduced decompositions i and i′: swapping coordinates for i and i′ related
by a 2-move and the birational positive transformations of the form

(. . . , p, q, r, . . .) → (. . . ,
q

p + q
r

, pr, p + q

r
, . . .)

for that related by the corresponding 3-move.
The BZ-variety is the collection of tori labeled by elements of R(w0) and glued

together follows 3-moves by the above BZ-map. For an element {pi
k, k ∈ [l(w0)]}

of the BZ-variety, the product

x−i1(pi
1) · · · x−ilw0

(pi
lw0
)

does not depend on the choice of a reduced word i ∈ R(w0), see [3].
Moreover, the BZ-variety endow Gw0,e with a positive structure. This result

essentially appears in [2].
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5.7 Graded Nakashima-Zelevinsky Cone

Theorem 7

1. For i ∈ R(w0), the tropicalization of ΦBK corresponding to the BZ-torus,
labeled by i, defines grN Z i, the graded Nakashima-Zelevinsky cone for i2;

2. Tropicalization of the BK-potential ΦBK defined by the torus obtained as the
composition of geometric RSKKA

i and the map (17) is grLi, the graded Lusztig
cone for i;

3. The geometric RSKKA
i sends the Lusztig (geometric) crystal actions f cαk defined

on the variables (17) to the Berenstein-Kazhdan geometric crystal actions [1]
defined on the BZ-variety.

From Theorem 7 follows that the composition of the CA+ and the geometric
RSK-correspondence provides birational maps between the cluster positive struc-
ture and the BZ-positive structure for the same geometric crystal on Gw0,e.

Before proving we give an example.

Example For SL3 and a reduced word 121, we have

x−1(
t1t2

t1 + t3
)x−2(t2t3)x−1(t1 + t3) =

⎛
⎜⎝

1
t1t2

0 0
1
t3

t1
t3

0

1 t1 + t3 t2t3

⎞
⎟⎠

Here t1 := Δ12
Δ1Δ2

, t2 := Δ2
Δ12Δ23

, t3 := Δ23
Δ2Δ3

, and hence, we have the following
form of the above matrix

⎛
⎜⎝
Δ1Δ23 0 0
Δ2Δ3
Δ23

Δ3Δ12
Δ1Δ23

0

1 Δ12Δ3+Δ23Δ1
Δ2Δ1Δ3

1
Δ3Δ12

⎞
⎟⎠

Note that de-specialization is obtained by multiplication on the left by the
diagonal matrix

⎛
⎜⎝

1
Δ23

0 0

0 Δ23
Δ3

0

0 0 Δ3

⎞
⎟⎠

2The graded Nakashima-Zelevinsky cone for i is obtained of the realization of highest weight
Kashiwara crystal with the highest weight

∑
a∈I caωa of the form the integer points of a polytope

obtained as the intersection of the string cone S (i) and the polyhedron defined by inequalities: for
each a ∈ I rγ ≤ ca , while γ runs the set of the crossings Rla (i) wrt the left boundary (see [9]) and
rγ denotes the corresponding Reineke vector.
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that is
⎛
⎜⎝

1
Δ23

0 0

0 Δ23
Δ3

0

0 0 Δ3

⎞
⎟⎠ ·
⎛
⎜⎝
Δ1Δ23 0 0
Δ2Δ3
Δ23

Δ3Δ12
Δ1Δ23

0

1 Δ12Δ3+Δ23Δ1
Δ2Δ1Δ3

1
Δ3Δ12

⎞
⎟⎠ =

⎛
⎜⎝
Δ1 0 0
Δ2

Δ12
Δ1

0

Δ3
Δ12Δ3+Δ23Δ1

Δ2Δ1

1
Δ12

⎞
⎟⎠

the latter is nothing but the cluster torusM121 for the reduced word 121.
Thus, the Berenstein-Kazhdan potential computed in coordinates ti ’s and hi’s

this torus

⎛
⎜⎝
h1

1
t1t2

0 0
h2
h1

1
t3

h2
h1

t1
t3

0
1
h2

1
h2
(t1 + t3)

1
h2
t2t3

⎞
⎟⎠

is

ΦBK(t,h) := t1 + t3 + t2 + h2
2

h1

1

t3
+ h2

1

h2

t1 + t3

t1t2
.

Recall that the potentialΦBK computed at the torus in coordinates pi ’s and hi ’s

α1(h1)α2(h2)x−1(p1)x−2(p2)x−1(p3) =
⎛
⎜⎝

h1
1

p1p3
0 0

h2
h1
(
p1
p2

+ 1
p3
) h2
h1

p1p3
p2

0
1
h2

1
h2
p3

1
h2
p2

⎞
⎟⎠

is

ΦBK(p,h) = p3 + p1 + p2

p3
+ h2

2

h1
(
p1

p2
+ 1

p3
)+ h2

1

h2

1

p1
.

Formal tropicalization of ΦBK(t,h) defines the graded Lusztig cone for 121 and
that of ΦBK(p,h) defines the graded Nakashima-Zelevinsky cone for 121.

5.8 Proof of Theorem 7

We consider SLn. Items 1 and 2 are slight generalization of the Chamber Ansatz of
[3].

Item 3: because of Proposition 4, we can make proof for the lexmin reduced
decomposition imin := 1(21)(321) . . . (n− 1 n− 2 · · · 1). We have explicit form of
geometric crystal actions. Let us check the statement for fαn−1 . Namely, we have to
show that the compositionKi(fαn−1(c,CA+(Δi)) turns into multiplication by c the
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coordinate (n(n−1)/2−n−2)th coordinate ofKi(CA+(Δi)). The latter coordinate
corresponds to sn−1 of the lexmin reduced decomposition.

With help of (n−1) 3-moves and (n−3)(n−3)/2 2-moves, we can get from the
lexmin decomposition, the following one imin(n− 1) := 1(21)(321) . . . (n− 3 n−
4 · · · 1)(n−1n−2n−1n−3n−2n−4n−3 · · · 12) of I (n−1). The corresponding
sequence of moves the following point of the Lusztig variety corresponding to
tmin, a tuple of coordinates for the lexmin reduced decomposition. We denote
t := tmin for simplicity. Denote by bs := tl(w0)−(n−1)−(n−2−s), s = n − 2, . . .1,
the coordinates of t which correspond to the segment (n− 2n− 3 · · · 1) of imin and
by as := tl(w0)−(n−1−s), . . . , s = n−1, . . . 1, the coordinates of t which correspond
to the segment (n− 1n− 2 · · · 1) of imin. Then we have

timin(n−1)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk, k <
n(n−1)

2 − (2n− 3)

1
1

an−1
+ bn−2
an−2an−1

+ bn−3bn−2
an−3an−2an−1

+...+ b1···bn−2bn−1
a1···an−3an−2an−1

k = (n−2)(n−3)
2

bn−2 + 1
bn−3bn−2

an−3an−2an−1
+...+ b1···bn−2bn−1

a1···an−3an−2an−1

k = (n−2)(n−3)
2 + 1

bn−s + 1
b1···bn−s−1

an−3an−2an−1
+...+ b1···bn−2bn−1

a1···an−3an−2an−1

k = (n−2)(n−3)
2 + s, s ≤ n − 2

bn−s+1an−s (bn−s + 1
b1···bn−s−1

an−3an−2an−1
+...+ b1···bn−2bn−1

a1···an−3an−2an−1

)−1 k = (n−2)(n−1)
2 + s, s ≤ n − 1

By definition, fαn−1 changes only one coordinate

1
1

an−1
+ bn−2

an−2an−1
+ bn−3bn−2

an−3an−2an−1
+ . . .+ b1···bn−2bn−1

a1···an−3an−2an−1

of timin(n−1) to

c

1
an−1

+ bn−2
an−2an−1

+ bn−3bn−2
an−3an−2an−1

+ . . .+ b1···bn−2bn−1
a1···an−3an−2an−1

.

We have

timin(n−1)
k + timin(n−1)

k+n−2 = bs + as, k = n(n− 1)

2
− (2n − 3)+ s, s ≤ n− 1, bn−1 := 0.

Because of this property and since each elementary κl has the same conservation
law, we get the statement. �
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6 Inverse Geometric RSK and ∗ Dual Geometric Crystals

One can see that elementary maps of which the reverse geometric RSK is composed
are also commute with transformations of the Lusztig variety.

6.1 Lusztig Variety and the Map CA−

For each seed S (i), with i ∈ R(w0), we make the following change of cluster vari-
ables wrt the specialization of the frozen variables Δωi,ωi , denoted by CA−(Δ(i)),
that is inversing the map grNAi of [10], and defined by

ql(w0)−l+1 := Δi|≤lωil ,ωil
Δi|<lωil ,ωil

, l ∈ [l(w0)]. (19)

Then for a reduced word i(k) which is tail optimal for k, we get that the ∗-dual
fk ∗ (c, ·) action changes only one variable q1, sending it to c · q1.

Note, that in coordinates ql’s, the cluster transformations between seeds labeled
by reduced decompositions are nothing else but the inverse BZ-moves for 3-braid
moves between the corresponding words. Inverse means the following

(. . . , p, q, r, . . .) → (. . . , p + q

r
, pr,

q

p + q
r

, . . .).

For a reduced word i ∈ R(w0), we have the corresponding variant of the
Chamber Ansatz

Proposition 8 The factorization

yi(K
−1
i (q)) (20)

defines the cluster torus factorizationMi written in coordinates (19).

Here is an example.

Example Consider SL3 and reduced word 121. Then the reverse RSK sends

(q1, q2, q3) → (
q1q

2
3

q1q3 + q2
,
q1q3 + q2

q3
,

q2q3

q1q3 + q2
),

and

y1(
q1q

2
3

q1q3 + q2
)y2(

q1q3 + q2

q3
)y1(

q2q3

q1q3 + q2
) =

⎛
⎜⎝

1 0 0
q3 1 0
q1q3

q1q3+q2
q3

1

⎞
⎟⎠ .
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Recalling that q3 := Δ2
Δ1

, q2 := Δ23
Δ12

, q1 := Δ3
Δ2

, we get the latter matrix as

⎛
⎜⎝

1 0 0
Δ2
Δ1

1 0
Δ3
Δ1

Δ3Δ12+Δ1Δ23
Δ2Δ12

1

⎞
⎟⎠ .

Multiplying the latter matrix on the right by diagonal matrix

⎛
⎜⎝
Δ1 0 0
0 Δ12

Δ1
0

0 0 1
Δ12

⎞
⎟⎠ we get

⎛
⎜⎝
Δ1 0 0
Δ2

Δ12
Δ1

0

Δ3
Δ3Δ12+Δ1Δ23

Δ1Δ2

1
Δ12

⎞
⎟⎠ ,

that is M121. �

6.2 Lusztig Variety and Decoration Ψ∗K

For SLn, we have

Ψ∗K(yi(q)α1(h1) · · ·αn−1(hn−1)) =
∑
i∈l(w0)

qi +
∑
k∈I

h2
k

hk−1hk+1

∑
γ∈Rlk(i)

q−sγ ,

(21)

where Rlk(i) denotes the set of crossings wrt the left boundary [9], and sγ is the
Reineke statistics.

Thus the tropicalization of this potential defines the ∗-Kashiwara dual Lusztig
cone.

In such a case, we have

Theorem 9 For any i ∈ R(w0),

Ψ∗K(yi(K
−1
i (q))α1(h1) · · ·αn−1(hn−1)) =

∑
k∈I

∑
γ∈Rlk(i)

qrγ +
∑
k∈I

h2
k

hk−1hk+1

∑
s∈I (k)

qxik+2
∑
m≥k xim−∑(i±1)l≥ik x(i±1)l

Note that the tropicalization of the latter potential defines the Littelmann graded
cone grSi.
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We also have the following theorem

Theorem 10

1. For i ∈ R(w0), tropicalization of the Ψ∗K corresponding to the torus of the
Lusztig variety labeled by i, defines ∗-Kashiwara dual graded Lusztig cone,
grL ∗

i .

2. The inverse geometric RSK K−1
i sends the dual Kashiwara (geometric) crystal

action f cαk , defined on the variables (19), to the geometric ∗-dual Lusztig crystal
action on the Lusztig variety.

6.3 Transposed BZ-Twist

Berenstein and Zelevinsky [3, Definition 4.1]) defined twist map between reduced
double Bruhat cells. We use this map for Gw0,e, and in such a case it is

ηw0,e : N ∩ B−w0B → B ∩N−w0N−, ηw0,e(x) = [(xι)−1]+([w−1x]+)ι,

where x → xι is the involutive antiautomorphism of G given by

hι = h−1,h ∈ H, xi(t)ι = xi(t), yi(t)
ι = yi(t).

By transposing the BZ-twist we get a map

N− ∩ Bw0B → B ∩N−w0N−

which is a crystal isomorphism between the ∗-dual geometric crystals for the
Lusztig-variety and geometric crystal for the BZ-variety. This result is a reformula-
tion of Theorem 5.10 of [3].

Thus all the maps are in place in the diagrams (1) and (2) in order to define the
Donaldson-Thomas transformation through commutativity.

Note that all these maps are crystal isomorphism between corresponding cluster
geometric crystals.

Thus we have as a corollary

Theorem 11 The Donaldson-Thomas transformation defined above is an isomor-
phism of geometric crystals.

In particular, the tropical DT-transformation is a crystal isomorphism between
the Littelmann graded cone grSi and the Lusztig graded cone grLi.
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RSF grant 16-11-10075 for financial support.



Cluster Decorated Geometric Crystals, Generalized Geometric RSK-. . . 387

References

1. Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals II: from unipotent bicrystals
to crystal bases. Contemporary Mathematics, vol. 433, pp. 13–88. American Mathematical
Society, Providence (2007)

2. Berenstein, A., Zelevinsky, A.: Total positivity in Schubert varieties. Comment. Math. Helv.
72(1), 128–166 (1997)

3. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally
positive varieties. Invent. Math. 143, 77–128 (2001)

4. Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally
positive matrices (with S. Fomin and A. Zelevinsky). Adv. Math. 122, 49–149 (1996)

5. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras III: upper bounds and double Bruhat
cells (2004). arXiv:math/0305434v3

6. Berenstein, A., Kirillov, A., Koshevoy, G.: Generalized RSK correspondences, Obervolfach
reports, 23/2015, 1303–1305

7. Danilov, V., Karzanov, A., Koshevoy, G.: Tropical Plúcker functions and Kashiwara crystals.
Contemporary Mathematics, vol. 616, pp. 77–100. American Mathematical Society, Provi-
dence (2014)

8. Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529
(2002)

9. Genz, V., Koshevoy, G., Schumann, B.: Combinatorics of canonical bases revisited: type A
(2017). arXiv:1611.03465

10. Genz, V., Koshevoy, G., Schumann, B.: Polyhedral parametrizations of canonical bases &
cluster duality (2017). arXiv:1711.07176

11. Goncharov, A., Shen, L.: Donaldson-Thomas trasnsformations of moduli spaces of G-local
systems (2016). arXiv:1602.06479

12. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras, preprint
(2014). arXiv:1411.1394v2 [math.AG]

13. Kashiwara, M.: On crystal bases. In: Representations of Groups (Banff, AB, 1994). CMS
Conference Proceedings, vol. 16, pp. 155–197. American Mathematical Society, Providence
(1995)

14. Lee, K., Schiffler, R.: Positivity for cluster algebras. Ann. Math. 182, 73–125 (2015)
15. Lusztig, G.: Introduction to Quantum Groups. Progress in Mathematics, vol. 110. Birkháuser,

Boston (1993)
16. Lusztig, G.: Total positivity in reductive groups. In: Lie Theory and Geometry. Progress in

Mathematics, vol. 123, pp. 531–568. Birkháuser, Boston (1994)
17. Lusztig, G.: Piecewise linear parametrization of canonical bases (2008). arXiv:0807.2824
18. Nakashima, T.: Decorations on geometric crystals and monomial realizations of crystal bases

for classical groups. J. Algebra 399, 712–769 (2014)
19. Nakashima, T., Zelevinsky, A.V.: Polyhedral realizations of crystal bases for quantized Kac-

Moody algebras. Adv. Math. 131, 253–278 (1997)
20. Weng, D.: Donaldson-Thomas transformation of double Bruhat cells in semisimple lie groups

(2016). arXiv:1611.04186



Part II
Other Contributed Articles



Fields of Definition of Finite
Hypergeometric Functions

Frits Beukers

Abstract Finite hypergeometric functions are functions of a finite field Fq to C.
They arise as Fourier expansions of certain twisted exponential sums and were
introduced independently by John Greene and Nick Katz in the 1980s. They have
many properties in common with their analytic counterparts, the hypergeometric
functions. One restriction in the definition of finite hypergeometric functions is
that the hypergeometric parameters must be rational numbers whose denominators
divide q − 1. In this note we use the symmetry in the hypergeometric parameters
and an extension of the exponential sums to circumvent this problem as much as
possible.

1 Introduction

In the 1980s Greene [4] and Katz [5] independently introduced functions from finite
fields to the complex numbers which can be interpreted as finite sum analogues of
the classical one variable hypergeometric functions. These functions, also known
as Clausen–Thomae functions, are determined by two multisets of d entries in Q

each. We denote them by α = (α1, . . . , αd) and β = (β1, . . . , βd). Throughout we
assume that these sets have empty intersection when considered modulo Z. The
Clausen–Thomae functions satisfy a linear differential equation of order d with
rational function coefficients. See [1].

Let Fq be the finite field with q elements. Let ζp be a primitive p-th root of unity

and define the additive character ψq(x) = ζ
Tr(x)
p where Tr is the trace from Fq to

Fp. For any multiplicative character χ : F×
q → C

× we define the Gauss sum

g(χ) =
∑
x∈F×

q

χ(x)ψq(x) .
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Let ω be a generator of the character group on F
×
q . We use the notation g(m) =

g(ωm) for any m ∈ Z. Note that g(m) is periodic in m with period q − 1. Note that
the dependence of g(m) on ζp and ω is not made explicit. Very often we shall need
characters on F

×
q of a given order. For that we use the notation q = q − 1 so that a

character of order d can be given by ωq/d for example, provided that d divides q of
course.

Now we define finite hypergeometric sums. Let again α and β be multisets of
d rational numbers each, and disjoint modulo Z. We need the following crucial
assumption.

Assumption 1.1 Suppose that

(q − 1)αi, (q − 1)βj ∈ Z

for all i and j .

Definition 1.2 (Finite Hypergeometric Sum) Keep the above notation and
Assumption 1.1. We define for any t ∈ Fq ,

Hq(α,β|t) = 1

1 − q

q−2∑
m=0

d∏
i=1

(
g(m+ αiq)g(−m− βiq)

g(αiq)g(−βiq)
)
ω((−1)d t)m .

It is an exercise to show that the values of Hq(α,β|t) are independent of the
choice of ζp.

The hypergeometric sums above were considered without the normalizing factor

(

d∏
i=1

g(αiq)g(−βiq))−1

by Katz in [5, p. 258]. Greene, in [4], has a definition involving Jacobi sums which,
after some elaboration, amounts to

ω(−1)|β|qq−d
d∏
i=1

g(αiq)g(−βiq)
g(αiq− βiq)

Hq(α,β|t) ,

where |β| = β1 +· · ·+βd . The normalization we adopt in this paper coincides with
that of McCarthy, [6, Def 3.2].

Let

A(x) =
d∏
j=1

(x − e2πiαj ), B(x) =
d∏
j=1

(x − e2πiβj ).



Fields of Definition of Finite Hypergeometric Functions 393

An important special case is when A(x), B(x) ∈ Z[x]. In that case we say that
the hypergeometric sum is defined over Q. Another way of describing this case
is that kα ≡ α(mod Z) and kβ ≡ β(mod Z) for all integers k relatively prime
to the common denominator of the αi, βj . In other words, multiplication by k of
the αi(mod Z) simply permutes these elements. Similarly for the βj . From work
of Levelt [1, Thm 3.5] it follows that in such a case the monodromy group of
the classical hypergeometric equation can be defined over Z. It also turns out that
hypergeometric sums defined overQ occur in point counts in Fq of certain algebraic
varieties, see [2, Thm 1.5] and the references therein. It is an easy exercise to show
that Hq(α,β|t) is independent of the choice of ω (it is already independent of the
choice of ψq ).

One of the obstacles in the definition of finite hypergeometric sums over Q is
Assumption 1.1 which has to be made on q , whereas one has the impression that
such sums can be defined for any q relatively prime with the common denominator
of the αi, βj . This is resolved in [2, Thm 1.3] by an extension of the definition
of hypergeometric sum. The idea is to apply the theorem of Hasse–Davenport to
the products of Gauss sums which occur in the coefficients of the hypergeometric
sum. Another way of dealing with this problem is given by McCarthy, who uses
the Gross–Koblitz theorem which expresses Gauss sums as values of the p-adic
&-function.

Theorem 1.3 (Gross–Koblitz) Let ω be the inverse of the Teichmüller character.
Let πp−1 = −p and ζp such that ζp ≡ 1 + π(mod π2). Let &p be the p-adic
Morita &-function. Let q = pf and gq(m) denote the Gauss-sum over Fq with
multiplicative character ωm. Then, for any integer m we have

gq(m) = −
f−1∏
i=0

π
(p−1)

{
pim
q−1

}
&p

({
pim

q − 1

})
.

Here {x} = x − .x/ is the fractional part of x. In particular, when q = p we get

gp(m) = −π(p−1)
{

m
p−1

}
&p

({
m

p − 1

})
.

See Henri Cohen’s book [3] for a proof. When p does not divide the common
denominator of the αi, βj one easily writes down a p-adic version of our hypergeo-
metric sum for the case q = p.

Definition 1.4 We define Gp(α,β|t) by the sum

1

1 − p

q−2∑
m=0

ω((−1)d t)m(−p)'(m)
d∏
i=1

&p

({
αi + m

p−1

})
&p({αi})

&p

({
−βi − m

p−1

})
&p({−βi}) ,
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where

'(m) =
d∑
i=1

{
αi + m

p − 1

}
− {αi} +

{
−βi − m

p − 1

}
− {−βi}.

Note that

'(m) =
d∑
i=1

−
⌊
αi + m

p − 1

⌋
+ .αi/ −

⌊
−βi − m

p − 1

⌋
+ .−βi/.

In particular '(m) ∈ Z. Definition 1.4 almost coincides with McCarthy’s function
dGd from [6, Def 1.1] in the sense that our function coincides with dGd(1/t). We
prefer to adhere to the definition given above. The advantage of Definition 1.4 is
that Assumption 1.1 is not required, it is well-defined for all parameters αi, βj as
long as they are p-adic integers. Define

δ = δ(α,β) = max
x∈[0,1]

d∑
i=1

.x + αi/ − .αi/ + .−x − βi/ − .−βi/.

Then, using Definition 1.4 and the fact that −'(m) ≤ δ one easily deduces that
pδGp(α,β|t) is a p-adic integer. In [6, Prop 3.1] we find this in a slightly different
formulation. However, it is not clear from the definition whether this value is
algebraic or not over Q. It is the purpose of the present note to be a bit more specific
by proving the following theorem.

Theorem 1.5 Let notations be as above and let K be the field extension of Q

generated by the coefficients of A(x) and B(x). Suppose p splits in K , i.e. p factors
into [K : Q] distinct prime ideals in the integers of K . Let * = maxk δ(kα, kβ)
over all integers k relatively prime with the common denominator of the αi, βj . Then
p*Gp(α,β|t) is an algebraic integer in K .

For the proof we construct in Sect. 2 a generalization of the hypergeometric
function Hq(A,B|t) involving two semisimple finite algebras A and B over Fq .
We show that it belongs to K and then, in Sect. 3 identify its p-adic evaluation with
Gp(α,β|t).

2 Gauss Sums on Finite Algebras

The main idea of the proof of Theorem 1.5 is to use Gauss sums on finite
commutative algebras over Fq with 1. Let A be such an algebra. For any x ∈ A

we define the trace Tr(x) and norm N(x) as the trace and norm of the Fp-linear
map given by multiplication with x on A.
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Choose an additive character ψ on A which is primitive. That is, to any ideal
I ⊂ A, I �= (0) there exists x ∈ I such that ψ(x) �= 1. Any other non-degenerate
additive character is of the formψ(ax) with a ∈ A×. A multiplicative character χ is
called primitive if its kernel does not contain any subgroup of the form {1+a|a ∈ I }
for some non-zero ideal I in A.

For any multiplicative character χ on A× we can define a Gauss sum

gA(ψ, χ) =
∑
x∈A×

ψ(x)χ(x).

When A is not semisimple, the Gauss sum can be 0, as illustrated by the following
example.

Example 2.1 Let A = Fp[x]/(x2). Choose the additive character ψ(a + bx) = ζ bp .
It is easy to see that this is a primitive character. Note that a + bx ∈ A× ⇐⇒
a ∈ F

×
p . Let χ be a nontrivial multiplicative character on F

×
p and extend it to A× by

χ(a + bx) = χ(a). Then

gA(ψ, χ) =
∑

a∈F×
p ,b∈Fp

ζ bpχ(a) = 0.

♦
So we restrict ourselves to semisimple algebras. These are precisely the finite

sums of finite field extensions of Fq . In this case there is an obvious choice for the
additive character.

Lemma 2.2 SupposeA is a direct sum of finite field extensions of Fq . Thenψ(x) =
ζ

Tr(x)
p is a primitive additive character.

Proof Let A ∼= ⊕r
i=1Fi with Fi a finite field extension of Fq for all i. Then

ψ(x) = ζ
Tr1(x1)+···+Trr (xr )
p , where Tri stands for the trace function on Fi . If ψ were

not primitive then there exists a ∈ A, a �= 0 such that ψ(ax) = 1 for all x ∈ A.
Suppose a = (a1, . . . , ar ) and assume, without loss of generality, a1 �= 0. Then
ψ(x, 0, . . . , 0) = ζ

Tr(a1x)
p = 1 for all x ∈ F1. By the properties of the trace of a

field this is not possible. "#
From now on we use the trace character on a semisimple algebra A as additive

character and write gA(χ) for the Gauss sum. So we dropped the dependence of the
Gauss sum on the additive character. The only amount of freedom in the additive
character rests on the choice of ζp.

Proposition 2.3 LetA be a direct sum of finite fields over Fq andψ(x) = ζ
Tr(x)
p the

additive character. Let χ a multiplicative character. Then there exists a non-negative
integer f such that

|gA(χ)|2 = qf .
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Proof Again, write A = ⊕r
i=1Fi . Then χ can be written as χ(x1, . . . , xr) =

χ1(x1) · · ·χr(xr), where χi is a multiplicative character on F×
i . This implies that

gA(ψ, χ) =
r∏
i=1

g(χi),

where g(χi) is the usual Gauss sum on the field Fi . The additive character on Fi is
ζ

Tri (x)
p with the same choice of ζp for each i. Our assertion follows directly. "#

Choose two finite semisimple algebrasA,B over Fq . Choose the trace characters
on each of them with the same choice of ζp and call them ψA,ψB . Let χA, χB be
multiplicative characters on A×, B×. Denote the norms on A,B by NA,NB .

Definition 2.4 We define

Hq(A,B|t) = −1

gA(χA)gB(χB)

∑
x∈A×,y∈B×,tNA(x)=NB(y)

ψA(x)ψB(−y)χA(x)χB(y),

for any t ∈ F
×
q .

The following theorem gives its Fourier expansion in t .

Theorem 2.5 Let ω be a generator of the multiplicative characters on F
×
q . When

the context is clear we denote both functions ω(NA(x)) and ω(NB(y)) by ωN . We
then have,

Hq(A,B|t) = 1

1 − q

q−2∑
m=0

gA(χAω
m
N)gB(χBω

−m
N )

gA(χA)gB(χB)
ω(NB(−1)t)m.

Proof We compute the Fourier expansion
∑q−2
m=0 cmω(t)

m of Hq(A,B|t). The
coefficient cm can be computed using

cm = 1

q − 1

∑
t∈F×

q

Hq(A,B|t)ω(t)−m.

When we substitute the definition for Hq(A,B|t) in the summation over t , we get a
summation over t ∈ F

×
q , x ∈ A×, y ∈ B× with the restriction tNA(x) = NB(y). So

we might as well substitute t = NB(y)/NA(x) and sum over x, y. We get,

cm = 1

1 − q

∑
x∈A×,y∈B×

1

gAgB
ψA(x)ψB(−y)χA(x)χB(y)−1ω(NA(x))

mω(NB(y))
−m.
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The summation over x yields gA(χAωmN). To sum over y we first replace y by −y
and then perform the summation. We get ω(NB(−1))mgB(χBω

−m
N ). This proves

our theorem. "#
Example 2.6 As in the previous section take two multisets of hypergeometric
parameters α,β. Suppose that (q − 1)αi, (q − 1)βj are in Z for all i, j . Take
A = B = F

d
q , the direct sum of d copies of Fq with componentwise addition

and multiplication. The norm on A,B is given by N(x1, . . . , xd) = x1 · · · xd .
In particular NB(−1) = (−1)d . For both A,B we take the additive character
ψ(x1, . . . , xd) = ζ

Tr(x1+···+xd )
p , where Tr the trace function on Fq . As multiplicative

characters we take

χA(x1, . . . , xd) =
d∏
i=1

ω(xi)
(q−1)αi , χB(x1, . . . , xd) =

d∏
j=1

ω(yj )
(q−1)βj .

An easy calculation shows that gA(χAωmN) = ∏d
i=1 g(m + (q − 1)αi) and

similarly for gB . So we see that we recover the finite hypergeometric sum of the
previous section. ♦
Lemma 2.7 Suppose dimFq (A) = dimFq (B). Then Hq(A,B|t) does not depend
on the choice of ζp in the additive characters.

As a corollary, in this equi-dimensional case the values of Hq(A,B|t) are
contained in the field generated by the character values of χA, χB .

Proof When we choose ζ ap , a ∈ F
×
p instead of ζp in the definition of the additive

character it is easy to check that gA(χA) gets replaced by χA(a)−1gA(χA). And
similarly for B. As a corollary any term in the sum in the hypergeometric sum
in Theorem 2.4 is multiplied by ω(NB(a)/NA(a))m. Since a ∈ Fp is a scalar,
NA(a) = NB(a) = ad , where d = dimFq (A) = dimFq (B). Hence, in the case
of equal dimensions of A,B the multiplication factor is 1.

Let σ ∈ Gal(Q/Q) be such that it fixes the values of χA, χB but sends ζp to ζ ap .
According to the above calculation Hq(A,B|t) is fixed under this substitution and
hence under σ . "#

Let us return momentarily to Example 2.6 and suppose that the parameters α have
the property that kα ≡ α(mod Z), kβ ≡ β(mod Z) for all k relative prime with the
common denominator of the αi, βj . Then, for any σ ∈ Gal(Q/Q) there exists a
permutation ρ of the summands of A = ⊕d

i=1Fp such that χA(ρ(x)) = χA(x)
σ for

all x ∈ A×. A similar permutation exists for B. Notice also that Tr(ρ(x)) = Tr(x)
and N(ρ(x)) = N(x).

A similar situation arises in the case A = Fpr as Fp-algebra. Let χA be a
character of order d dividing pr − 1. Let ρ be the p-th power Frobenius on A,
then χA(ρ(x)) = χA(x)

p, a conjugate of χA(x) for all x ∈ A×. Notice also that
Tr(ρ(x)) = x and N(ρ(x)) = N(x).
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Definition 2.8 Let A be a finite dimensional Fq -algebra. A ring automorphism ρ :
A → A is called an Fq-automorphism if it is Fq -linear and it fixes both norm and
trace of A.

Proposition 2.9 Let A,B be finite commutative semisimple Fq -algebras. Let
χA, χB be multiplicative characters. Consider the subgroup G of Gal(Q/Q) of
elements σ for which there exists an Fq -automorphisms ρA of A and ρB of B with
the property that χA(ρA(x)) = χA(x)

σ and χB(ρB(x)) = χB(x)
σ for every σ ∈ G.

Then Hq(A,B|t) lies in the fixed field of G for every t ∈ F
×
q .

Proof Let σ ∈ G. We first compute the action of σ on gA(χA). Suppose that
σ(ζp) = ζ ap .

gA(χA)
σ =

∑
x∈A×

ζ aTr(x)
p χA(x)

σ

=
∑
x∈A×

ζ aTr(x)
p χA(ρ(x))

=
∑
x∈A×

ζTr(ρ−1(x))
p χA(a

−1x)

= χA(a)
−1gA(χA)

A similar calculation holds for B. Now apply σ to the terms in the sum in
Definition 2.4. A similar calculation as above shows that the sum gets multiplied
with χA(a)−1χB(a)

−1. This cancels the factor coming from gA(χA)gB(χB). Hence
Hq(A,B|t) is fixed under all σ ∈ G. "#

3 Proof of Theorem 1.5

We use the notations from the introduction. In particular

A(x) =
d∏
j=1

(x − e2πiαj ), B(x) =
d∏
j=1

(x − e2πiβj )

and K is the field generated by the coefficients of A(x) and B(x). Let p be a prime
which splits completely in K . Then we can consider A(x) as element of Fp[x].
Let A(x) = A1(x) · · ·Ar(x) be the irreducible factorization of A(x) in Fp[x]. For
the Fp-algebra we take ⊕r

i=1Fp[x]/(Ai(x)). The construction of a multiplicative
character on A is as follows. First we choose a multiplicative character ω on Fp

such that its restriction to Fpr has order pr −1 for all r ≥ 1 and fix in the remainder
of the proof.
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Since p splits in K multiplication by p gives a permutation of the multiset α

modulo Z. Under this action α(mod Z) decomposes into a union of orbits, which
we call p-orbits. Let O be such a p-orbit. Then

∏
α∈O(x − e2πiα) is a polynomial

and p splits in the field generated by its coefficients. So we can consider it modulo
a prime ideal dividing p and hence as an element of Fp[x]. It is one of the factors
Ai(x) of the mod p factorization of A(x). The orbit O will now be denoted by Oi .
There are r orbits and we renumber the indices of the αi such that αi ∈ Oi for
i = 1, . . . , r . On Fp[x]/(Ai) we define the multiplicative character χi = ωαi(qi−1),
where qi = pdeg(Ai). If we would have chosen pαi instead of αi , the new character
would simply consist of the Frobenius transform followed by χi . For the character
χA on A =∑r

i=1 Fp[x]/(Ai) we choose

χA(x1, . . . , xr) =
r∏
i=1

ω(xi)
αi(qi−1).

Let σ ∈ Gal(Q/K). It acts as ω(x) → ω(x)k for some integer k. Hence

χA(x1, . . . , xr)
σ =

r∏
i=1

ω(xi)
kαi(qi−1).

This permutes the factors by a permutation s ∈ Sr and we get

χA(x1, . . . , xr )
σ =

r∏
i=1

ω
(
xs−1(i)

)pli αi (qi−1)
,

where 0 ≤ li < deg(Ai) for each i. We used qs(i) = qi . We finally get

χA(x1, . . . , xr )
σ =

r∏
i=1

ω
(
x
pli

s−1(i)

)αi(qi−1) = χA

(
x
pli

s−1(1)
, . . . , x

plr

s−1(r)

)
.

In other words, χA(x)σ = χA(ρ(x)) for a suitable Fp-automorphism ρ of A.
Notice that norm and trace of A are preserved by ρ. A similar construction can
be performed for B(x). According to Proposition 2.9 we get Hp(A,B|t) ∈ K for
all t ∈ F

×
q .

In order to connect to the p-adic function Gp we take the inverse of the
Teichmüller character for ω and compute the terms given in Definition 2.4 p-
adically. The Gauss sum gA(χAω

m
N) is the product of ordinary Gauss sums of the

form g(ω(q−1)α+m(1+p+···+pl−1)) over the field Fq with q = pl . The occurrence of

m(1 + p + · · · + pl−1) is due to ω(NFq/Fp(x)
m) = ω(x)m(1+···+pl−1). The Gross–

Koblitz theorem for Gauss sums over Fq with q = pl gives us

gq(ω
a) = −

l−1∏
i=0

π

{
pi a
q−1

}
&p

({
pia

q − 1

})
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for every integer a. When applied to a = (q−1)α+m(q−1)/(p−1) this amounts to

−
l−1∏
i=0

π

{
piα+ m

p−1

}
&p

({
piα + m

p − 1

})
.

Note that this is a product over the p-orbit containing α and each factor is precisely
of the type that occur in the definition of the p-adic hypergeometric sum. A similar
story goes for B(x). As a result we get

gA(χAω
m
N)gB(χBω

−m
N )

gA(χA)gB(χB)
= (−p)'(m)

d∏
i=1

&p

({
αi + m

p−1

})
&p

({
−βi − m

p−1

})
&p ({αi}) &p ({−βi}) ,

where'(m) is as defined in the introduction. So we find that p-adically

Hp(A,B|t) = Gp(α,β|t).

Hence we conclude that the values of Gp are in K . It remains to give an estimate
for the denominator. The conjugates of Hp(A,B|t) are obtained by taking χkA, χ

k
B

as multiplicative characters. The corresponding hypergeometric parameters are
kα, kβ . From McCarthy’s work it follows that p*Gp(kα, kβ|t) is a p adic integer
for all k relatively prime to the common denominator of αi, βj . This implies that
p*Hp(A,B|t) is an algebraic integer in K .
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L-Series and Feynman Integrals

David Broadhurst and David P. Roberts

Abstract Integrals from Feynman diagrams with massive particles soon outgrow
polylogarithms. We consider the simplest situation in which this occurs, namely
for diagrams with two vertices in two space-time dimensions, with scalar particles
of unit mass. These comprise vacuum diagrams, on-shell sunrise diagrams and
diagrams obtained from the latter by cutting internal lines. In all these cases,
the Feynman integral is a moment of n = a + b Bessel functions, of the form
M(a, b, c) := ∫∞

0 Ia0 (t)K
b
0 (t)t

cdt . The corresponding L-series are built from
Kloosterman sums over finite fields. Prior to the Creswick conference, the first
author obtained empirical relations between special values of L-series and Feynman
integrals with up to n = 8 Bessel functions. At the conference, the second author
indicated how to extend these. Working together we obtained empirical relations
involving Feynman integrals with up to 24 Bessel functions, from sunrise diagrams
with up to 22 loops. We have related results for moments that lie beyond quantum
field theory.

1 Physical and Mathematical Context

The context for our work is given in [1]. At the conference, the first author reported
on the magnificent progress made by Stefano Laporta, whose solitary decade-
long effort on the magnetic moment of the electron has come to fruition [4]. This
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involves, inter alia, moments of 6 Bessel functions, one of which

M(1, 5, 1) :=
∫ ∞

0
I0(t)K

5
0 (t)tdt = π2L6(2)

2
(1)

is empirically related in [1] to the central value of the L-series of modular weight
4 and conductor 6, with Fourier series q

∏
k>0(1 − qk)2(1 − q2k)2(1 − q3k)2(1 −

q6k)2 =∑k>0A6(k)q
k. This modular form also delivers the Bessel moments

M(2, 4, 1) :=
∫ ∞

0
I 2

0 (t)K
4
0 (t)tdt = 3L6(3)

2
(2)

M(3, 3, 1) :=
∫ ∞

0
I 3

0 (t)K
3
0 (t)tdt = 3L6(2)

2
. (3)

For n = 8 Bessel functions, the L-series of a modular form of weight 6 and
conductor 6 likewise gives evaluations of M(1, 7, 1), M(2, 6, 1), M(3, 5, 1) and
M(4, 4, 1). The challenge presented at the conference was to find comparable
relations between L-series and moments of n > 8 Bessel functions.

2 Progress at Creswick

This challenge was met by considering determinants of Feynman integrals, by
allowing for adjustment of the local Kloosterman data, at primes that divide the
conductor, and by empirical determination of the conductor, sign and gamma factors
that enter the functional equation for the L-series. The good factors are classical and
much useful information towards conductors was available in [5]. The formalism
of [2] pointed us to the correct determinants. Using the methods in [3] for numerical
computation of L-series, we were able to progress beyond the modular forms studied
in [1].

We were successful for odd Bessel numbers up to n = 17 and even Bessel
numbers up to n = 20. Let Ωa,b be the determinant of the r × r matrix with
M(a, b, 1) at top left, size r = )(a + b)/4 − 1*, powers of t2 increasing to the
right and powers of I 2

0 (t) increasing downwards. Then

L17(8) = 215 × 29Ω2,15

35 × 52 × 7π12 (4)

L20(10) = 212 × 11 × 131Ω1,19

311 × 56 × 73π20 (5)

L20(11) = 219 × 17 × 19 × 23Ω2,18

313 × 57 × 73π12
(6)

are among findings made and presented at the conference.
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3 Subsequent Progress

From data on Kloosterman sums in finite fields Fq with q < 200,000, we found

L19(8) = 214 × 1093 × 13171Ω2,17

34 × 54 × 7 × 11π20 (7)

L24(12) = 229 × 12558877Ω1,23

319 × 59 × 73 × 11π30 (8)

L24(13) = 227 × 17 × 192 × 232 × 46681Ω2,22

323 × 512 × 74 × 112π20 . (9)

In parallel with the above results for odd moments, we obtained relations between
even moments of Bessel functions and L-series determined by a quadratic twist
of Kloosterman data. We have conjecturally complete sets of quadratic relations
for both types of moment, encoded by Betti and de Rham matrices, for which
we provide explicit constructions. In some cases where the sign of the functional
equation is odd, we are able to define regulated moments that deliver central
derivatives.

Acknowledgements We thank Ling Long, Masha Vlasenko and Wadim Zudilin for their splendid
organization of a three-week conference on Hypergeometric motives and Calabi–Yau differential
equations, held at Creswick, Australia, in January 2017, and the MATRIX Institute for financial
support. DB thanks the University of Newcastle, NSW, and the Mainz Institute for Theoretical
Physics, for hospitality and support that enabled further progress. DPR’s research is supported by
grant DMS-1601350 from the National Science Foundation.

References

1. Broadhurst, D.: Feynman integrals, L-series and Kloosterman moments. Commun. Number
Theory Phys. 10, 527–569 (2016). http://arxiv.org/abs/1604.03057

2. Deligne, P.: Valeurs de fonctions L et périodes d’intégrales. Proc. Sympos. Pure Math. 33, 313–
346 (1979). http://publications.ias.edu/deligne/paper/379

3. Dokchitser, T.: Computing special values of motivic L-functions. Exp. Math. 13, 137–149
(2004). http://arxiv.org/abs/math/0207280

4. Laporta, S.: High-precision calculation of the 4-loop contribution to the electron g − 2 in QED.
http://arxiv.org/abs/1704.06996

5. Yun, Z.: Galois representations attached to moments of Kloosterman sums and conjectures of
Evans. Compos. Math. 151, 68–120 (2015). http://arxiv.org/abs/1308.3920

http://arxiv.org/abs/1604.03057
http://publications.ias.edu/deligne/paper/379
http://arxiv.org/abs/math/0207280
http://arxiv.org/abs/1704.06996
http://arxiv.org/abs/1308.3920


Arithmetic Properties of Hypergeometric
Mirror Maps and Dwork’s Congruences

Éric Delaygue

Abstract Mirror maps are power series which occur in Mirror Symmetry as the
inverse for composition of q(z) = exp(f (z)/g(z)), called local q-coordinates,
where f and g are particular solutions of the Picard–Fuchs differential equations
associated with certain one-parameter families of Calabi–Yau varieties. In several
cases, it has been observed that such power series have integral Taylor coefficients
at the origin. In the case of hypergeometric equations, we discuss p-adic tools and
techniques that enable one to prove a criterion for the integrality of the coefficients
of mirror maps. This is a joint work with T. Rivoal and J. Roques. This note
is an extended abstract of the talk given by the author in January 2017 at the
conference “Hypergeometric motives and Calabi–Yau differential equations” in
Creswick, Australia.

1 Arithmetic Conditions for Operators of Calabi–Yau Type

An irreducible fourth order differential operator L in Q(z)[d/dz] is of Calabi–Yau
type if it is of Fuchsian type, self-dual, has 0 as MUM-point and it satisfies certain
arithmetic conditions including that

(i) L has a solution ω1(z) ∈ 1 + zC[[z]] at z = 0 which is N-integral1;
(ii) L has a linearly independent solution ω2(z) = G(z) + log(z)ω1(z) at z = 0

with G(z) ∈ zC[[z]] and exp(ω2(z)/ω1(z)) is N-integral.

An additional condition is usually considered: the instanton numbers nd associated
with L belong to 1

N
Z for some non-zero integerN . As far as we know, a systematic

approach to prove the integrality of the nd ’s has not yet been developed, even in

1A power series f (z) ∈ 1 + zQ[[z]] is N-integral if there is c ∈ Q
∗ such that f (cz) ∈ Z[[z]].
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the case of hypergeometric equations. In this note, we discuss useful p-adic tools
to prove or disprove Conditions (i) and (ii). A classical example of a differential
operator satisfying both (i) and (ii) is

L = θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4),

where θ = z d
dz

. Consider the two solutions

ω1(z) =
∞∑
n=0

(5n)!
n!5 zn and ω2(z) = G(z)+ log(z)ω1(z),

with

G(z) =
∞∑
n=1

(5n)!
n!5 (5H5n − 5Hn)zn and Hn :=

n∑
k=1

1

k
.

Then ω1(z) has integers coefficients and Lian and Yau proved in [10] that

exp

(
ω2(z)

ω1(z)

)
∈ Z[[z]].

We shall see that hypergeometric techniques presented in this note allow to
prove the integrality of the coefficients of q-coordinates associated with non-
hypergeometric operators. For example, consider the differential operator

L = θ3 − z(34θ3 + 51θ2 + 27θ + 5)+ z2(θ + 1)3,

whose holomorphic solution is the generating series of the Apéry numbers used by
Apéry in its proof of the irrationality of ζ(3) (see [1]):

ω1(z) =
∞∑
n=0

n∑
k=0

(
n

k

)2(n+ k

k

)2

zn.

A second solution is given by the method of Frobenius and reads ω2(z) = G(z) +
log(z)ω1(z), with

G(z) =
∞∑
n=1

n∑
k=0

(
n

k

)2(
n+ k

k

)2

(2Hn+k − 2Hn−k)zn.

As we will see, a consequence of the results of the author [5] is that

exp

(
ω2(z)

ω1(z)

)
∈ Z[[z]].

First, we present criteria on the integrality of hypergeometric terms.
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2 Integrality of Hypergeometric Terms

2.1 Factorial Ratios

Let e = (e1, . . . , eu) and f = (f1, . . . , fv) be vectors of positive integers. For every
non-negative integer n, we set

Q(n) = (e1n)! · · · (eun)!
(f1n)! · · · (fvn)!

and we consider the generating series of Q:

F(z) =
∞∑
n=0

Q(n)zn,

which is a rescaling of a hypergeometric function. We consider the function Δ of
Landau defined for every x in R by

Δ(x) :=
u∑
i=1

.eix/ −
v∑
j=1

.fj x/.

Let p be a prime number. By Legendre’s formula, we have

vp(n!) =
∞∑
�=1

⌊
n

p�

⌋
,

which yields

vp
(
Q(n)

) =
∞∑
�=1

Δ

(
n

p�

)
.

Furthermore, we haveΔ(x) = Δ({x})+(|e|−|f|).x/, where {x} is the fractional part
of x and |e| = e1 + · · · + eu. Hence the graph of Δ is essentially determined by its
values on [0, 1]. Landau’s function provides a useful criterion for the N-integrality
of F(z).

Theorem 2.1 (Landau [9], Bober [2]) The following assertions are equivalent.

(i) F(z) is N-integral;
(ii) F(z) ∈ Z[[z]];

(iii) For all x in [0, 1], we haveΔ(x) ≥ 0.
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Landau proved the equivalence of (ii) and (iii) in 1900 while Bober proved in
2009 a result which implies the equivalence with (i). One can easily compute the
jumps ofΔ on [0, 1] to check Assertion (iii).

The generating series of factorial ratios are rescaling of hypergeometric functions
whose parameters have a certain symmetry. Namely, if α = (α1, . . . , αr ) and β =
(β1, . . . , βs) are tuples of parameters in Q ∩ (0, 1], then there is C ∈ Q

∗ such that,
for every n ∈ N, we have

Cn
(α1)n · · · (αr )n
(β1)n · · · (βs)n = (e1n)! · · · (eun)!

(f1n)! · · · (fvn)! ,

if, and only if

(X − e2iπα1) · · · (X − e2iπαr )

(X − e2iπβ1) · · · (X − e2iπβs )

is a ratio of cyclotomic polynomials. We will see that, when this is not the case, we
still have a criterion for theN-integrality of hypergeometric functions but it involves
several Landau’s functions: the functions of Christol.

2.2 Generalized Hypergeometric Functions

Let α = (α1, . . . , αr ) and β = (β1, . . . , βs) be tuples of elements in Q\Z≤0. We set

F(z) =
∞∑
n=0

(α1)n · · · (αr )n
(β1)n · · · (βs)n z

n.

If βi = 1 for some i, then F(z) is annihilated by the hypergeometric differential
operator

L =
s∏
i=1

(θ + βi − 1)− z

r∏
i=1

(θ + αi),

which is irreducible if, and only if αi �≡ βj mod Z. Elementary calculations show
that F(z) is N-integral if and only if, for almost all primes p, we have F(z) ∈
Z(p)[[z]], where Z(p) is the set of the rational numbers whose denominator is not
divisible by p.

We introduce some definitions to construct useful functions defined by Christol
in [3]. If x is a rational number, then we set

〈x〉 =
{
{x} if x /∈ Z,

1 otherwise.
.
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We write B for the total order on R defined by

x B y ⇐⇒ (〈x〉 < 〈y〉 or (〈x〉 = 〈y〉 and x ≥ y)).

Let d be the common multiple of the exact denominators of the αi ’s and βj ’s. For
all a coprime to d , 1 ≤ a ≤ d , we set

ξa(x) := #{1 ≤ i ≤ r : aαi B x} − #{1 ≤ j ≤ s : aβj B x}.

Then we have the following criterion for the N-integrality of F(z).

Theorem 2.2 (Christol [3]) The following assertions are equivalent.

(i) F(z) is N-integral;
(ii) For all a coprime to d , 1 ≤ a ≤ d , and all x in R, we have ξa(x) ≥ 0.

If F(z) is N-integral, then the set of constants c ∈ Q such that F(cz) ∈ Z[[z]]
is CZ for some C ∈ Q

∗. When F(z) is algebraic over Q(z), then F(z) is N-
integral and C is called the Eisenstein constant of F . Hence we shall also call C the
Eisenstein constant of F(z). Rivoal, Roques and the author gave in [6] a formula
for C when the parameters of the hypergeometric function belong to (0, 1].

For every prime p, we set

λp = #{1 ≤ i ≤ r : αi ∈ Z(p)} − #{1 ≤ j ≤ s : βj ∈ Z(p)}.

If α is a rational number, then we write den(α) for its exact denominator. As a
particular case of Theorem 1 in [6], we have the following formula.

Theorem 2.3 If α and β are tuples of elements in (0, 1], r = s and F(z) is N-
integral, then the Eisenstein constant of F is

C =
∏r
i=1 den(αi)∏s
j=1 den(βj )

∏
p|d
p

−
⌊
λp
p−1

⌋
.

In the case of factorial ratios, if e = (e1, . . . , eu) and f = (f1, . . . , fv) are tuples
of positive integers, then we have

(e1n)! · · · (eun)!
(f1n)! · · · (fvn)! =

(
e
e1
1 · · · eeuu

f
f1
1 · · · f fvv

)n ∏u
i=1
∏ei
r=1(r/ei)n∏v

j=1
∏fv
r=1(r/fj )n

.

If the associated generating series is (N-)integral then the Eisenstein constant is
indeed

C = e
e1
1 · · · eeuu

f
f1
1 · · ·f fvv

.
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2.2.1 Landau-Like Functions

To prove Theorem 2.3, we use Landau-like functions to calculate the p-adic
valuation of Pochhammer’s symbols. To define those functions, we first consider
a map Dp introduced by Dwork as follows.

Let p be a prime and α in Z(p). We write Dp(α) for the unique element in Z(p)

satisfying pDp(α)− α ∈ {0, . . . , p− 1}. We have Dp(1) = 1 and if α = r/N with
r coprime to N ≥ 2, 1 ≤ r ≤ N , then

Dp(α) = sN
(
πN(p)

−1πN(r)
)

N
,

where sN is the section of the canonical morphism πN : Z → Z/NZ with values in
{0, . . . , N − 1}.

If p does not divide d , then, for all positive integers �, we define the Landau-like
function

Δp,�(x) =
r∑
i=1

⌊
x −D�

p(αi )−
.1 − αi/
p�

⌋
−

s∑
j=1

⌊
x −D�

p(βj )−
.1 − βj /
p�

⌋
+r−s.

Christol proved in [3] a Legendre-like formula involving Landau-like function.

Theorem 2.4 If p does not divide d , then we have

vp

(
(α1)n · · · (αr )n
(β1)n · · · (βs)n

)
=

∞∑
�=1

Δp,�

(
n

p�

)
.

Our first task to prove Theorem 2.3 was to find a convenient analog of Legenre’s
formula when p is a divisor of d . In this case, Dwork’s maps are note defined for
every parameters αi and βj . To that end, we proved in [6] an average formula for
primes dividing d .

Theorem 2.5 Assume that α and β are tuples of r elements in (0, 1] such that F(z)
isN-integral. Let p be a prime divisor of d and write d = pfD whereD is coprime
to p.

For every a coprime to p, 1 ≤ a ≤ pf , and all positive integers �, we choose a
prime pa,� satisfying pa,� ≡ p� mod D and pa,� ≡ a mod pf . Then

vp

(
Cn
(α1)n · · · (αr )n
(β1)n · · · (βs)n

)
= 1

ϕ(pf )

pf∑
a=1

gcd(a,p)=1

∞∑
�=1

Δpa,�,1

(
n

p�

)
+ n

{
λp

p − 1

}
.
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In the case of factorial ratios, we have again

(e1n)! · · · (eun)!
(f1n)! · · · (fvn)! = Cn

(α1)n · · · (αr )n
(β1)n · · · (βs)n .

α and β are tuples of elements in (0, 1]. For every p not dividing d and every �, the
map D�

p induces a permutation on α and β. Hence we have

Δp,�(x) =
r∑
i=1

⌊
x − D�

p(αi)−
.1 − αi/
p�

⌋
−

s∑
j=1

⌊
x − D�

p(βj )−
.1 − βj /
p�

⌋
+ r − s

=
r∑
i=1

⌊
x − D�

p(αi)
⌋

−
s∑
j=1

⌊
x − D�

p(βj )
⌋

+ r − s

=
r∑
i=1

.x − αi/ −
s∑
j=1

⌊
x − βj

⌋+ r − s

=
u∑
i=1

.eix/ −
v∑
j=1

.fjx/

= Δ(x).

Hence, in both cases, the formulas of Theorems 2.4 and 2.5 reduce to Legendre’s
one.

3 Integrality of the Coefficients of q-Coordinates

3.1 A Glimpse of Dwork’s Result

Consider the power series

F(z) =
∞∑
n=0

(α1)n · · · (αr )n
(β1)n · · · (βs)n z

n,

G(z) =
∞∑
n=0

(α1)n · · · (αr )n
(β1)n · · · (βs)n

⎛
⎝ r∑
i=1

Hαi (n)−
s∑
j=1

Hβj (n)

⎞
⎠ zn,

where, for n ∈ N and x ∈ Q \ Z≤0, we set Hx(n) =∑n−1
k=0

1
x+k .
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ThenG(z)+log(z)F (z) is annihilated by the hypergeometric operatorL if there
are at least two 1’s in β. The q-coordinate is

q(z) = exp

(
G(z)+ log(z)F (z)

F (z)

)
= z exp

(
G(z)

F (z)

)
.

A consequence of a lemma of Dieudonné and Dwork is that, for every prime p,
we have

q(z) ∈ Zp[[z]] ⇐⇒ G

F
(zp)− p

G

F
(z) ∈ pZp[[z]].

Let p be a prime not dividing d and write F1(z) (resp. G1(z)) for F(z) (resp.
G(z)) with the substitutions

α ↔ (Dp(α1), . . . ,Dp(αr)) and β ↔ (Dp(β1), . . . ,Dp(βs)).

Then Dwork proved in [7] the following. Assume that r = s, for all � ∈ N,D�
p(βi) ∈

Z
×
p , plus some fundamental but hard to read interlacing conditions (depending on
p) on elements of α and β. Then we have

G1

F1
(zp)− p

G

F
(z) ∈ pZp[[z]].

In particular, if Dp induces a permutation on α and β, which is the case for
factorial ratios, then F1 = F , G1 = G and Dwork’s result yields

G

F
(zp)− p

G

F
(z) ∈ pZp[[z]],

so that q(z) ∈ Zp[[z]].

3.2 Factorial Ratios

If the interlacing conditions hold for every (explicitly) large enough primes p, then
q(z) is N-integral. Methods for the remaining primes were developed by Lian-Yau
[10], Zudilin [11], Krattenthaler–Rivoal [8] for infinite families of factorial ratios,
yielding proofs of q(Cz) ∈ Z[[z]] where C is the Eisenstein constant of F(z).

In the case of factorial ratios, we have

G(z) =
∞∑
n=0

(e1n)! · · · (eun)!
(f1n)! · · · (fvn)!

⎛
⎝ u∑
i=1

eiHein −
v∑
j=1

fjHfjn

⎞
⎠ zn
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and

Δ(x) =
u∑
i=1

.eix/ −
v∑
j=1

.fjx/.

We gave a criterion for the integrality of the Taylor coefficients of q(z) in 2012
(see [4]).

Theorem 3.1 If F(z) is N-integral with Eisenstein constant C, then the following
assertions are equivalent.

(i) q(z) is N-integral;
(ii) q(Cz) ∈ Z[[z]];

(iii) we have |e| = |f| and, for all x ∈ [1/M, 1), we have Δ(x) ≥ 1, where M is
the largest element in e and f.

The proof of (iii) ⇒ (i) is essentially a consequence of Dwork’s results.
Legendre’s formula and Landau’s functions play an important role in the proof
of Theorem 3.1. When F(z) is the generating series of multisums of binomial
coefficients (such as Apéry numbers), it seems impossible to apply an analog of the
proof of Theorem 3.1. To prove the integrality of the coefficients of the associated
q-coordinate, we prove a generalization of Theorem 3.1 to several variables and
then we specialize the multivariate q-coordinates.

3.3 Factorial Ratios of Linear Forms

Let e = (e1, . . . , eu) and f = (f1, . . . , fv) be tuples of nonzero vectors in N
d .

Consider

F(z) =
∑

n∈Nd

(e1 · n)! · · · (eu · n)!
(f1 · n)! · · · (fv · n)! zn.

For every k ∈ {1, . . . , d}, write

Gk(z) =
∑

n∈Nd

(e1 · n)! · · · (eu · n)!
(f1 · n)! · · · (fv · n)!

⎛
⎝ u∑
i=1

e(k)i Hei ·n −
v∑
j=1

f(k)j Hfj ·n

⎞
⎠ zn,

where e(k)i is the k-th component of ei . The q-coordinates are

qk(z) = zk exp

(
Gk(z)
F (z)

)
, 1 ≤ k ≤ n.
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The associated Landau function is

Δ(x) =
u∑
i=1

.ei · x/ −
v∑
j=1

.fj · x/, (x ∈ R
d).

The non-trivial zone for Δ is defined by

D := {x ∈ [0, 1)d : there is d in e or f such that d · x ≥ 1
}
.

Observe that if x belongs to [0, 1)d \ D , then we have Δ(x) = 0. We proved in [5]
the following criterion.

Theorem 3.2 Assume that F(z) ∈ Z[[z]]. Then the following assertions are
equivalent:

(i) For every k, we have qk(z) ∈ Z[[z]];
(ii) we have |e| = |f | and, for every x ∈ D , Δ(x) ≥ 1.

To apply Theorem 3.2 to the case of Apéry numbers (associated with ζ(3)), we
consider the bivariate power series

F(x, y) =
∑

n1,n2≥0

(2n1 + n2)!2
n1!4n2!2 xn1yn2

and

G2(x, y) =
∑

n1,n2≥0

(2n1 + n2)!2
n1!4n2!2

(
2H2n1+n2 − 2Hn2

)
xn1yn2 .

In this case, we have

Δ(x, y) = 2.2x + y/ − 4.x/ − 2.y/.

We have

D = {(x, y) ∈ [0, 1)2 : 2x + y ≥ 1
}

and if x ∈ D , then Δ(x) ≥ 2. Hence we have q2(x, y) ∈ Z[[x, y]] by Theorem 3.2.
Taking x = y yields

q2(x, x) = exp

(
G2(x, x)

F (x, x)

)
∈ Z[[x]],
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where

F(x, x) =
∞∑
n=0

n∑
k=0

(
n

k

)2(
n+ k

k

)2

xn

and

G2(x, x) =
∞∑
n=1

n∑
k=0

(
n

k

)2(
n+ k

k

)2

(2Hn+k − 2Hn−k)xn,

as expected.

3.4 Generalized Hypergeometric q-Coordinates

In this section, we briefly comment analog results in the (univariate) general case.
Write m(a) for the smallest element in ({aα1, . . . , aαr , aβ1, . . . , aβs},B). We

consider the following assertion, denotedH : For all a coprime to d , 1 ≤ a ≤ d , for
all x ∈ R satisfying m(a) B x ≺ a, we have ξa(x) ≥ 1. We consider a product of
q-coordinates whose N-integrality is strongly related to the one of q(z):

q̃(z) =
d∏

a=1,gcd(a,d)=1

q〈aα〉,〈aβ〉(z).

Then we proved in [6] the following criterion.

Theorem 3.3 Assume that L is irreducible and that F(z) is N-integral. Then

(i) if r = s and Assertion H holds, then q̃(z) is N-integral.

Furthermore, the following assertions are equivalent:

(ii) q(z) is N-integral;
(iii) q̃(z) is N-integral and q̃(z) = q(z)ϕ(d).

3.5 A Brief Overview of the p-Adic Strategy

The first step is to reduce the problem for each prime by the following classical
result: if x ∈ Q, then x ∈ Z if and only if x ∈ Zp for all primes p.

Then we get ride of the exponential by applying the lemma of Dieudonné and
Dwork.
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Lemma 3.4

z exp

(
G(z)

F (z)

)
∈ Zp[[z]] ⇐⇒ G

F
(zp)− p

G

F
(z) ∈ pzZp[[z]].

Then, in all proofs, one has to generalize a theorem on formal congruences of
Dwork to prove that

Fs−1(z
p)F (z) ≡ F(zp)Fs(z) mod psZp[[z]], (∀s ≥ 1),

where Fs(z) :=∑ps−1
n=0 anz

n and F(z) =∑∞
n=0 anz

n.
The last main step is to prove congruences for harmonic numbersHα(n) and the

p-adic Gamma function.
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Appell–Lauricella Hypergeometric
Functions over Finite Fields, and a New
Cubic Transformation Formula

Sharon Frechette, Holly Swisher, and Fang-Ting Tu

Abstract We define a finite-field version of Appell–Lauricella hypergeometric
functions built from period functions in several variables, paralleling the
development by Fuselier et al. (Hypergeometric functions over finite fields,
arXiv:1510.02575v2) in the single variable case. We develop geometric connections
between these functions and the family of generalized Picard curves. In our main
result, we use finite-field Appell–Lauricella functions to establish a finite-field
analogue of Koike and Shiga’s cubic transformation (Koike and Shiga, J. Number
Theory 124:123–141, 2007) for the Appell hypergeometric function F1, proving a
conjecture of Ling Long. We also prove a finite field analogue of Gauss’ quadratic
arithmetic geometric mean. We use our multivariable period functions to construct
formulas for the number of Fp-points on the generalized Picard curves. Lastly,
we give some transformation and reduction formulas for the period functions, and
consequently for the finite-field Appell–Lauricella functions.

1 Cubic Transformation Formulas

Classical hypergeometric functions are among the most versatile of all special func-
tions. These functions and their finite-field analogues have numerous applications
in number theory and geometry. For instance, finite-field hypergeometric functions
play a role in proving congruences and supercongruences, they count points modulo
p over algebraic varieties and affine hypersurfaces, and in certain instances they
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provide formulas for the Fourier coefficients of modular forms. We define finite-field
hypergeometric functions F(n)D in several variables, as an analogue of the classical
Appell–Lauricella hypergeometric functions of typeD. Lauricella’s series of type D
[15] give a natural generalization of Appell’s F1 functions [1, 2] to n variables and
are closely related to generalized Picard curves [18]. Following the literature, we
refer to these generalizations as Appell–Lauricella functions. For a comprehensive
survey of Appell–Lauricella functions, we refer the reader to the article by Schlosser
[19], and to the monograph by Slater [20]. Furthermore, we note that classical
hypergeometric functions as well as Appell–Lauricella functions are examples of
a more general class called A-hypergeometric functions introduced and studied by
Gelfand et al. [10], and further studied by Beukers [4].

We develop the theory of these F
(n)
D finite field hypergeometric functions in

several variables, with a focus on their geometric connections to the generalized
Picard curves. This parallels the construction (by the second and third authors et al.)
in [9], categorizing the interplay between classical and finite-field hypergeometric
functions in the single-variable setting.

Our results are motivated by a conjecture of Ling Long, related to identities
proved by Koike and Shiga [13, 14]. In [13], Koike and Shiga applied Appell’s F1
hypergeometric function in two variables to establish a new three-term arithmetic
geometric mean result (AGM), related to Picard modular forms. As a consequence
of this cubic AGM, Koike and Shiga proved the following cubic transformation for
Appell’s F1-function. Let x, y ∈ C, and let ω be a primitive cubic root of unity.
Then

F1

[
1

3
; 1

3
,

1

3
; 1
∣∣∣ 1 − x3, 1 − y3

]

= 3

1 + x + y
F1

[
1

3
; 1

3
,

1

3
; 1
∣∣∣
(

1 + ωx + ω2y

1 + x + y

)3

,

(
1 + ω2x + ωy

1 + x + y

)3 ]
.

(1)

As an application of Appell–Lauricella functions over finite fields, we prove the
following finite-field analogue of Koike and Shiga’s transformation, as conjectured
by Ling Long.

Theorem 1 Let q be a prime power with q ≡ 1 (mod 3), let ω be a primitive cubic

root of unity, and let η3 be a primitive cubic character in F̂
×
q . If λ,μ ∈ Fq satisfy

1 + λ+ μ �= 0, then

F
(2)
D

[
η3; η3 η3

ε
; 1 − λ3, 1 − μ3

]

=F
(2)
D

[
η3; η3 η3

ε
;
(

1 + ωλ+ ω2μ

1 + λ+ μ

)3

,

(
1 + ω2λ+ ωμ

1 + λ+ μ

)3 ]
.
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When λ = μ, we have the following corollary.

Corollary 1 For q a prime power with q ≡ 1 (mod 3), and ω as above, if λ ∈ Fq

satisfies 1 + 2λ �= 0, then

2F1

[
η3 η

2
3
ε

; 1 − λ3
]

= 2F1

[
η3 η

2
3
ε

;
(

1 − λ

1 + 2λ

)3
]
.

The result of Corollary 1 was first established in [9], using a different method of
proof. It is a finite-field version of the cubic transformation

2F1

[ 1
3

2
3
1

; 1 − x3
]

= 3

1 + 2x
2F1

[
1
3

2
3
1

;
(

1 − x

1 + 2x

)3
]
, (2)

proved by Borwein and Borwein [5, 6] for x ∈ R with 0 < x < 1, as a cubic
analogue of Gauss’ quadratic AGM.

2 Quadratic Transformations: Revisiting Gauss’ Quadratic
AGM

In [9], the authors give a dictionary for the correspondence between results on
classical hypergeometric functions and finite-field hypergeometric functions. Given
a transformation for classical hypergeometric functions, this dictionary can be used
to predict the form of the analogous transformation for finite-field hypergeometric
functions. They also use a calculus-style method of converting the proofs of classical
identities to the finite-field setting, provided the classical identity satisfies the
following condition: It can be proved using only the binomial theorem, the reflection
and multiplication formulas [for the gamma function], or their corollaries (such as
the Pfaff-Saalschütz formula) [9].

We illustrate this calculus-style method of translating classical results by proving
the following theorem.

Theorem 2 The quadratic arithmetic-geometric mean of Gauss, given for x ∈ C

by

2F1

[ 1
2 ,

1
2
1

1 − x2
]

= 2

1 + x
2F1

[
1
2 ,

1
2
1

(
1 − x

1 + x

)2
]
, (3)

can be proved using only the binomial theorem, the reflection and duplication
formulas for the gamma function, and special evaluations of the 3 F2 and 2 F1
functions, using the Pfaff-Saalschütz formula and Gauss’ formula, respectively.
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As a consequence, translating this alternate proof of Gauss’ quadratic AGM
and analyzing the associated error terms on the finite-field side, we also obtain the
following corollary.

Corollary 2 Let p ≡ 1 (mod 4) be prime, let φ be the quadratic character in F̂
×
p ,

and let ε be the trivial character in F̂
×
p . If λ ∈ Fp satisfies 1 + λ �= 0, then

2F1

[
φ φ

ε
1 − λ2

]
= 2F1

[
φ φ

ε

(
1 − λ

1 + λ

)2
]
, (4)

3 Connections to Picard Curves

Taking the approach used in [9], our finite-field Appell–Lauricella hypergeometric
functions are defined as normalizations of finite-field period functions P(n)D , which
we also define. These period functions are naturally related to periods of the
generalized Picard curves

C
[N;i,j,k]
λ : yN = xi(1 − x)j (1 − λ1x)

k1 · · · (1 − λnx)
kn , (5)

defined for distinct complex numbers λ1, . . . , λn �= 0, 1 and positive integers
N, i, j, k1, . . . , kn that satisfy the conditions gcd(N, i, j, k1, . . . , kn) = 1 and
N � i + j + k1 + · · · + kn. As a consequence, the P

(n)
D functions are ideally

suited for counting Fp-points on Picard curves. We prove a theorem which gives
the number of Fp-points on the generalized Picard curves in a simple, elegant
formula. This is analogous to the point-counting result for the generalized Legendre
curves that was established by the second and third authors, et al. in [7, 8]. We also
compute the genus of the generalized Picard curves C[N;i,j,k]

λ , following methods
of Archinard [3].

4 Transformation and Reduction Formulas

Transformation and reduction formulas for classical hypergeometric functions have
been successfully translated to the finite-field setting, first by Greene and also
by authors such as McCarthy, and Fuselier et al. (See [9, 11, 17] for details.)
Transformation formulas for classical Appell–Lauricella hypergeometric functions,
many of which can be found in the monograph by Slater [20] or the survey paper of
Schlosser [19], may be translated into the finite-field setting using the same methods.
We carry out this process, proving several identities for the period functions P

(n)
D
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and hypergeometric functions F(n)D . Among other things, these include a finite-field
analogue of the Pfaff-Kummer transformation,

F1

[
a; b1, b2; c

∣∣∣ x, y] = (1−x)−b1 (1−y)−b2 F1

[
c − a; b1, b2; c

∣∣∣ x

x − 1
,

y

y − 1

]
,

and Euler’s transformation,

F1

[
a; b1, b2; c

∣∣∣ x, y] = (1 − x)c−a−b1 (1 − y)−b2 F1

[
c − a; c − b1 − b2, b2; c

∣∣∣ x, x − y

1 − y

]
,

which hold for all a, b1, b2, c ∈ C and all x, y for which the series are defined.
We note that another version of finite-field Appell–Lauricella functions is

independently defined by He [12] and Li et al. [16], which closely follows Greene’s
definition. For their version, they establish several degree 1 transformation and
reduction formulas, including some that are analogous to the identities we prove.
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Sequences, Modular Forms and Cellular
Integrals

Dermot McCarthy, Robert Osburn, and Armin Straub

Abstract It is well-known that the Apéry sequences which arise in the irrationality
proofs for ζ(2) and ζ(3) satisfy many intriguing arithmetic properties and are related
to the pth Fourier coefficients of modular forms. Here, we briefly indicate that the
connection to modular forms persists for sequences associated to Brown’s cellular
integrals and state a general conjecture concerning supercongruences.

1 Introduction and Statement of Results

Recently, Brown [4] introduced a program where period integrals on the moduli
space M0,N of curves of genus 0 with N marked points play a central role in
understanding irrationality proofs of values of the Riemann zeta function. The main
idea of [4] is to associate a rational function fσ and a differential (N − 3)-form ωσ
to a given permutation σ = σN on {1, 2, . . . , N}. Consider the cellular integral

Iσ (n) :=
∫
SN

f nσ ωσ ,

where

SN = {(t1, . . . , tN−3) ∈ R
N−3 : 0 < t1 < . . . < tN−3 < 1}.

D. McCarthy
Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA
e-mail: dermot.mccarthy@ttu.edu

R. Osburn (�)
School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
e-mail: robert.osburn@ucd.ie

A. Straub
Department of Mathematics and Statistics, University of South Alabama, Mobile, AL, USA
e-mail: straub@southalabama.edu

© Springer Nature Switzerland AG 2019
D. R. Wood et al. (eds.), 2017 MATRIX Annals, MATRIX Book Series 2,
https://doi.org/10.1007/978-3-030-04161-8_30

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04161-8_30&domain=pdf
mailto:dermot.mccarthy@ttu.edu
mailto:robert.osburn@ucd.ie
mailto:straub@southalabama.edu
https://doi.org/10.1007/978-3-030-04161-8_30


424 D. McCarthy et al.

For “convergent” σ , the integral Iσ (n) converges and, for n = 0, we obtain the
cell-zeta values ζσ (N − 3) = Iσ (0) studied in [5], which are multiple zeta values
of weight N − 3. More generally, Brown [4] showed that Iσ (n) is a Q-linear
combination of multiple zeta values of weight less than or equal to N − 3. If this
linear combination is of the form Aσ (n)ζσ (N − 3), for some rational Aσ(n), plus
a combination of multiple zeta values of weight less than N − 3, then we say that
Aσ(n) is the leading coefficient of the cellular integral Iσ (n).

This construction recovers Beukers’ integrals [3] which appear in the irrationality
proofs of ζ(2) and ζ(3) and the Apéry numbers

a(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)
, b(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

as leading coefficients. This framework also raises some natural questions. Is there
an analogue of the results in [1] and [2] to higher weight modular forms? Do the
leading coefficients Aσ (n) satisfy supercongruences akin to those in [6]?

In [7], we prove that there is a higher weight version of Theorem 5 in [2] and
Theorem 3 in [1] can be extended to all odd weights greater than or equal to 3. Based
on numerical evidence, we also conjecture that for each N ≥ 5 and convergent σN ,
the leading coefficients AσN (n) satisfy

AσN (mp
r) ≡ AσN (mp

r−1) (mod p3r )

for all primes p ≥ 5 and integers m, r ≥ 1.
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Some Supercongruences for Truncated
Hypergeometric Series

Ling Long and Ravi Ramakrishna

Abstract We prove various supercongruences involving truncated hypergeometric
sums. These include a strengthened version of a conjecture of van Hamme. Our
method is to employ various hypergeometric transformation and evaluation formu-
lae to convert the truncated sums to quotients of Γ -values. We then convert these to
quotients of Γp-values and use Taylor’s Theorem to make p-adic approximations.
In the cases under consideration higher order coefficients often vanish leading to the
supercongruences.

In [3], van Hamme conjectured that

7F6

[ 1
3

7
6

1
3

1
3

1
3

1
3

1
3

1
6 1 1 1 1 1

]
p−1

:=
p−1∑
k=0

(6k + 1)
((1/3)k)6

(k!)6

≡ −pΓp(1/3)9 mod p4 for p ≡ 1 mod 6.

We have, in [2], proved

Theorem 1 Let p > 11. Then

7F6

[ 1
3

7
6

1
3

1
3

1
3

1
3

1
3

1
6 1 1 1 1 1

]
p−1

≡ −pΓp(1/3)9 mod p6 for p ≡ 1 mod 6
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and

7F6

[ 1
3

7
6

1
3

1
3

1
3

1
3

1
3

1
6 1 1 1 1 1

]
p−1

≡ −10

27
p4Γp(1/3)9 mod p6 for p ≡ 5 mod 6.

Note these are congruences cover (almost) all primes and are stronger than the van
Hamme Conjecture. We proved a number of other supercongruences including the
3F2 ones below:

Theorem 2

3F2

[ 1
3

1
3

1
3

1 1

]
p−1

≡ Γp(1/3)
6 mod p3 for p ≡ 1 mod 6

and

3F2

[ 1
3

1
3

1
3

1 1

]
p−1

≡ −p
2

3
Γp(1/3)6 mod p3 for p ≡ 5 mod 6.

For p ≡ 1 mod 6 the right side of the above congruence corresponds to Dwork’s unit
root for ordinary primes of a certain modular form that is part of the corresponding
hypergeometric motive.

We outline the strategies for p ≡ 1 mod 6. Various minor differences (and one
on medium-sized technical issue in Theorem 1) arise for p ≡ 5 mod 6. The idea in
both theorems is to perturb the entries so that the series naturally truncate at p−1

3
(for p ≡ 1 mod 6).

Let ζ3 be a primitive cube root of unity. For instance in Theorem 2 we study

3F2

[
1−p

3
1−ζ3p

3
1−ζ 2

3 p

3
1 1

]
for p ≡ 1 mod 6. The corresponding infinite series

truncates at p−1
3 . The Galois symmetry and a simple congruence argument imply

3F2

[
1−p

3
1−ζp

3
1−ζ 2p

3
1 1

]
≡ 3F2

[ 1
3

1
3

1
3

1 1

]
p−1

mod p3.

At this point we can use the Pfaff-Saalschütz formula (see, for instance, Theo-
rem 2.2.6 of [1])

3F2

[−n a b

c 1 + a + b − c − n

]
= (c− a)n(c − b)n

(c)n(c− a − b)n

with n = p−1
3 to write 3F2

[
1−p

3
1−ζp

3
1−ζ 2p

3
1 1

]
as a quotient of Γ -values. One can

rewrite this as a quotient of Γp-values and then use a Taylor approximation to get
the desired result.
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For Theorem 1 a similar argument with primitive 5th roots of unity and Dougall’s
formula below, which holds when 1 + 2a = b + c + d + e + f ,

7F6

[
a 1 + a

2 b c d e f
a
2 1 + a − b 1 + a − c 1 + a − d 1 + a − e 1 + a − f

]

= (a + 1)−f (a − b − c + 1)−f (a − b − d + 1)−f (a − c − d + 1)−f
(a − b + 1)−f (a − c + 1)−f (a − d + 1)−f (a − b − c − d + 1)−f

gives the van Hamme congruences mod p5.
To obtain the congruence mod p6 involves an extra argument. It is not difficult

to show the terminating

7F6

[ 1
3

7
6

1
3 − ζ5x

1
3 − ζ 2

5 x
1
3 − ζ 3

5 x
1
3 − ζ 4

5 x
1
3 − x

1
6 1 + ζ5x 1 + ζ 2

5 x 1 + ζ 3
5 x 1 + ζ 4

5 x 1 + x

]
p−1

3

∈ Zp[[x5]].

Call this power series G(x). Using a result of Bailey relating 9F8 expressions one
can in fact prove the above series is in pZp[[x5]]. A somewhat subtle argument is
required when p ≡ 5 mod 6 to obtain the divisibility of G(x) by p.

Since p |G(x), G(0) ≡ G(p/3) mod p6. It is easy to show that G(0) is
congruent to the left side of Theorem 1 mod p6. The argument using Dougall’s
formula gives G(p/3) is congruent to the right side of Theorem 1 mod p6.
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The Explicit Formula and a Motivic
Splitting

David P. Roberts

Abstract We apply the Guinand-Weil-Mestre explicit formula to resolve two
questions about how a certain hypergeometric motive splits into two irreducible
motives.

1 Introduction

The classical explicit formula of Guinand and Weil was generalized to a broader
context by Mestre in [2]. This formula applies to any L-function satisfying standard
analytic properties, and gives a family of formulas for its conductorN . Mestre used
it to get lower bounds on conductors of abelian varieties. This extended abstract
gives an example of how it can be used in more exotic motivic contexts.

The example we pursue here has the form M = M8 ⊕ M6, the factor motives
being indexed by their degree. We assume that the associated L-functions really
do have the required analytic properties, and work numerically to a precision that
is adequate for being very confident in the assertions. Presently, we can compute
directly with M , but not with the individual factors. We know that its conductor is
cond(M) = 215 and its local L-factor at 2 is just 1. These numerics imply that one
ofM6 andM8 is tame at 2, and the other is minimally wild. Also we know the order
of central vanishing is rank(M) = 2. This raises two questions:

Q1: (rank(M6), rank(M8)) can only be (2, 0), (1, 1), or (0, 2). Which is correct?
Q2: (cond(M6), cond(M8)) can only be (26, 29) or (27, 28). Which is correct?

The answers are given in the table at the end of this extended abstract. We provide
enough computational details so that the reader can both reproduce our answers and
attempt analogous calculations for other split motives.
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2 The Motive M = M6 ⊕ M8

One of the points of the talk was to illustrate how the Magma hypergeometric
motives package by Mark Watkins lets one compute with hypergeometric motives
of large degree. We use Magma language here as well [1], and the reader can repeat
most computations using the free online Magma calculator.

To obtain the motiveM and its L-function L, type

M:=HypergeometricData(
[1/2: i in [1..16]], [0: i in [1..16]]);

L:=LSeries(M,1:Precision:=10,BadPrimes:=[<2,15,1>]);

Here Magma correctly understands that M has good reduction outside of 2. The
optional argument ensures that it has the correct data at 2 as well, that being
conductor 215 and local L-factor 1. Other possibilities failing badly, correctness
of the choice <2,15,1> is confirmed by CheckFunctionalEquation(L)
returning 0.0000000000. The command HodgeStructure(L:PHV) says that
M has weight w = 15 with Hodge vector

(h0,15, h1,14, . . . , h14,1, h15,0) = (1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1).

In particularM can only appear in the cohomology of varieties of dimension ≥ 15.
In general, if d is even and the αi ’s and the βj ’s are obtained from one

another by adding 1/2 modulo Z, then H(α, β|1) decomposes as a sum of two
motives of specified degrees. In our case, we know a priori that M = M8 ⊕ M6.
Factorization(EulerFactor(L,3)) then yields f3(x) in 2 s:

(1 − 268 · 3x + 204193 · 34x2 − 1001800 · 39x3 + 204193 · 319x4

−268 · 331x5 + 345x6)

(1 + 2992 · x + 39116 · 34x2 − 7596496 · 36x3 − 203836426 · 312x4

−7596496 · 321x5 + 39116 · 334x6 + 2992 · 345x7 + 360x8).

Thus, M6 and M8 are both irreducible. Moreover Newton-over-Hodge forces the
Hodge vector of M to decompose nicely into h6 + h8 with

h6 : = (0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0),

h8 : = (1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1).

Likewise, but in 30 s, 8 min, and 2.5 h now,

f5(x) = (1 + 1614 · 53x + · · · + 545x6)(1 − 41208x + · · · + 560x8),

f7(x) = (1 + 248232 · 7x + · · · + 745x6)(1 + 667104x + · · · + 760x8),

f11(x) = (1 − 883812 · 11x + · · · + 1145x6)(1 + 34438544x + · · · + 1160x8).
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Any two of the fp(x) are completely different Galois-theoretically, implying that the
two factor Mk each have motivic Galois group as large as possible, namelyGSpk .
L has a functional equation with respect to s ↔ 16 − s. Sign(L) immediately

returns 1, so the analytic rank r of L is even. Evaluate(L,8) takes 4 s and
returns 0.000000000, so r ≥ 2. Evaluate(L,8:Derivative:=2) takes 14 s
and returns 7.851654518, so r = 2. The Hardy Z-function Z(t) is a vertically
rescaled version of L(M, 8 + ti). On [0, 7] it graphs out to

1 2 3 4 5 6 7
–2

2

4

6

The double zero at t = 0 is visible. The next three zeros are γ1 ≈ 1.93195000805,
γ2 ≈ 3.00559765, and γ3 ≈ 3.61679. Note that this calculation does not give any
hints as to the desired factorization Z(t) = Z6(t)Z8(t). In other words, we do not
know which motive a given γi belongs to.

3 The Explicit Formula

LetM be a motive of odd weightw with L-function assumed to satisfy the Riemann
hypothesis. Then its Hodge vector h, conductorN , analytic rank r , Frobenius traces
cpe = Tr(Frep|M), and zeros 1/2+γki in the upper half plane are related by logN =

2πrF̂ (0)+4π
∑
k

F̂ (γk)+4
∑
j>0

hj
∫ ∞

0
F̂ (t)Ej (t)dt+2

∑
pe

cpe
logp

p(ew+e)/2F(e logp).

Here F is an allowed test function, Ej(t) = log 2π − Ψ ((1 + j)/2 + it) with
Ψ (s) = Re(Γ ′(s)/Γ (s)), and hp−q = hp,q .

The standard Odlyzko test function and its Fourier transform are

FOd(x) = χ[−1,1]
(
(1 − |x|) cos(πx)+ sin |πx|

π

)
, F̂Od(t) = 4π cos2(t/2)

(π2 − t2)2
.

Also allowed are the scaled functions Fz(x) = FOd(x/ log z) and their Fourier
transforms F̂z(t) = (log z)F̂Od(t log z).
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4 Applying the Explicit Formula to M6 and M8

Computing cpe for our motive M is easily done by Magma. However, to get the
decomposition cpe = c6

pe + c8
pe , even for just e = 1, we need to factor fp(x), which

we can do only for p ≤ 11. From the factorizations above, one has c6
3 = 268 · 3,

c6
9 = (268 · 3)2 − 2(204193 · 34), etc. The explicit formula using (F13, F̂13), with

all terms divided by log 2 for greater clarity, answers Questions 1 and 2:

(Tends to 6 or 7) (Tends to 8 or 9)
Term6 Total6 Term8 Total8 Comments

h 3.11142 3.11142 4.85928 4.85928 Hodge contribution
3 0.17011 3.28154 −0.63306 4.22622 Contributions
5 −0.35472 2.92682 0.07245 4.29897 from the successively
7 −0.07386 2.85296 −0.02836 4.27031 harder factorizations
9 −0.02269 2.83027 0.00183 4.27214 of Frobenius
11 0.00028 2.83055 −0.00101 4.27114 polynomials fp(x)
r 2.99946 5.83002 2.99946 7.27060 Forced! A1 : (1, 1)
γ1 5.83002 1.68061 8.95121 Forced! A2 : (26, 29)

γ2 0.13610 5.96612 8.95121 Forced!
...

...
...

...
...

Total 6.00000 9.00000

Terms are positive starting with the line beginning r , and so these terms must be
associated with either M6 or M8 so as to keep (total6, total8) coordinatewise less
than either (6, 9) or (7, 8). This forces the indicated answers. Thus, both motives
have analytic rank 1. The prime 2 is tamely ramified in M6 and minimally wildly
ramified in M8.

Remarkably, the talk just described relates directly to two collaborative projects
begun at the MATRIX Institute. The decomposition studied here is the d = 16 case
of the sequence of decompositions mentioned in numbered sentence 2 in §4 in the
abstract with Rodriguez Villegas. The Hodge vectors h6 and h8 also arise for the
L-functions denoted L16 and L18 in the abstract with Broadhurst; conductors there
are 1260 = 22 · 32 · 5 · 7 and 7560 = 23 · 33 · 5 · 7 respectively.

Acknowledgements I thank the organizers and local staff for the excellent conference. My
attendance at the MATRIX Institute was supported by the conference and by grant DMS-1601350
from the National Science Foundation.
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Hypergeometric Supercongruences

David P. Roberts and Fernando Rodriguez Villegas

Abstract We discuss two related principles for hypergeometric supercongruences,
one related to accelerated convergence and the other to the vanishing of Hodge
numbers.

1 Introduction

At the conference, we added two related principles to the study of supercongruences
involving the polynomials obtained by truncating hypergeometric series. By a
supercongruence we mean a congruence which somewhat unexpectedly remains
valid when the prime modulus p is replaced by pr for some integer r > 1. We call
r the depth of the supercongruence.

The first principle is that a supercongruence is the first instance of a sequence
of similar supercongruences, reflecting accelerated convergence of certain Dwork
quotients. The second is that splittings of underlying motives can be viewed as the
conceptual source of supercongruences, with the depth of the congruence being
governed by the vanishing of Hodge numbers.

We present these principles here in a limited context, so that they can be seen as
clearly as possible. Let α = (α1, . . . , αd) be a length d vector of rational numbers
in (0, 1) and let β = 1d = (1, . . . , 1). We assume that multiplication by any integer
coprime to the least common multiple m of the denominators of the αi’s preserves
the multiset {α1, . . . , αd } modulo Z.
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The associated classical hypergeometric series and its p-power truncations, for
p prime, are as follows.

F(α, 1d |t) :=
∞∑
k=0

(α1)k · · · (αd)k
k!d tk, Fs(α, 1d |t) :=

ps−1∑
k=0

(α1)k · · · (αd)k
k!d tk.

Our starting point was the list CY3 of fourteen α = (α1, . . . , α4) associated to
certain families of Calabi–Yau threefolds discussed in [8]. Each has a corresponding
normalized Hecke eigenform f = ∑ anq

n of weight four and trivial character. For
each, it was conjectured in [8] that

F1(α, 1d |1) ≡ ap mod p3, p � map. (1)

Some of these cases have been settled. For example, the case α = (1/5, 2/5, 3/5,
4/5) was proved by McCarthy [6], the corresponding modular form having level
25 [9]. Just before submitting this note, Long et al. [5] announced two different
proofs of (1) for all fourteen cases in CY3.

2 Convergence to the Unit Root and Hodge Gaps

The two principles stem from observations about common behavior of the examples
in CY3. The first observation is that each supercongruence (1) seems to be part of a
sequence. Dwork proved [2] that for p � m

Fs+1(α, 1d | t)
Fs(α, 1d | tp) ≡ Fs(α, 1d | t)

Fs−1(α, 1d | tp) mod ps, s ≥ 0. (2)

Moreover, the rational functions Fs+1(α, 1d | t)/Fs(α, 1d | tp) converge as s → ∞
to a Krasner analytic function which can be evaluated at a Teichmüller representative
Teich(τ ) which is not a zero of F1 giving the unit root γp of the corresponding
local L-series at p.

For α ∈ CY3, computations suggest

Fs(α, 1d | 1)

Fs−1(α, 1d | 1)
≡ γp mod p3s , p � map, s > 0, (3)

where γp ∈ Zp is the root of T 2 − apT + p3 not divisible by p. Note that the case
s = 1 reduces to (1) since γp ≡ ap mod p3.

Our second observation is that the appearance of a congruence to a power p3s as
opposed to the expected ps is related to Hodge theory. Consider the hypergeometric
family of motives H(α, 1d | t) (see [1] for a computer implementation). For any
τ ∈ P

1(Q) \ {0, 1,∞} the motiveH(α, 1d | τ ) is defined over Q, has rank d , weight
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d − 1 and its only non-zero Hodge numbers are (hd−1,0, . . . , h0,d−1) = (1, . . . , 1).
When τ = 1 there is a mild degeneration and the rank drops to d − 1.

For α ∈ CY3, the motive for τ = 1 is the direct sum, up to semi-simplification,
of a Tate motive Q(−1) and the motive A = M(f ) of the corresponding
Hecke eigenform f of weight four. The Hodge numbers of A are (1, 0, 0, 1).
We view the gap of three between the initial 1 and the next 1 as explaining the
supercongruences (3).

3 A Congruence of Depth Five

To illustrate our two observations further, we use the decomposition established in
[3, Cor. 2.1] for the case α = (1/2, 1/2, 1/2, 1/2, 1/2, 1/2). We learned at the
conference that this example was recently studied further by Osburn et al. [7], who
proved (4) below for s = 1 modulo p3 and report that Mortenson conjectured it
modulo p5.

Again after semisimplifying, the motive H(α, 16 | 1) has a distinguished sum-
mand isomorphic to the Tate motiveQ(−2) of rank 1 and weight 4. The complement
of this Q(−2) breaks up into two pieces A and B. They are both rank 2 motives of
weight 5. Namely, A = M(f6) is the motive associated to the unique normalized
eigenform f6 =∑n≥1 an q

n of level 8 and weight 6 and B = M(f4)(−1) is a Tate
twist of the motive associated to the unique normalized eigenform f4 =∑n≥1 bn q

n

of level 8 and weight 4. The LMFDB [4] conveniently gives data on modular forms,
including the an and bn here.

The trace of Frobp on the full rank 5 motiveH(α, 16 | 1) is given by

ap + bpp + p2.

Numerically, we observe the following supercongruences

Fs(α, 1d | 1)

Fs−1(α, 1d | 1)
≡ γp mod p5s, p � 2ap, s ≥ 1, (4)

where γp ∈ Zp is the root of T 2 − apT + p5 not divisible by p.
The Hodge numbers forA andB are (1, 0, 0, 0, 0, 1) and (1, 0, 0, 1) respectively,

with the gap of five in the Hodge numbers for A nicely matching the exponent of
the supercongruences.
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4 A Summarizing Conjecture

We now state a conjecture that generalizes the situations discussed so far.

Conjecture 1 For fixed τ = ±1, let A be the unique submotive ofH(α, 1d | τ ) with
h0,d−1(A) = 1 and let r the smallest positive integer such that hr,d−1−r (A) = 1.
For p � m such that F1(α, 1d | τ ) ∈ Z

×
p , let γp be the unit root of A. Then

Fs(α, 1d | τ )
Fs−1(α, 1d | τ ) ≡ γp mod prs, s ≥ 1. (5)

In particular, for s = 1 we have

F1(α, 1d | τ ) ≡ ap mod pr, (6)

where ap is the trace of Frobp acting on A.

1. For generic α, τ we expect r = 1 and (5) follows (see (2) and the subsequent
paragraph). For the conjecture to predict r > 1, the motive has to split
appropriately.

2. For α = (1/2, . . . , 1/2) and τ = (−1)d the motive H(α, 1d | τ ) acquires an
involution and we expect r = 2 for any d ≥ 7; all numerical evidence is
consistent with this assertion.

3. For large d the unit roots involved are not in general related to classical modular
forms since the motives A will typically have degrees greater than two.

Acknowledgements We thank the organizers for the wonderful conference Hypergeometric
motives and Calabi–Yau differential equations, held at the MATRIX Institute in Creswick,
Australia, in January 2017. DPR’s research is supported by grant DMS-1601350 from the National
Science Foundation. FRV would like to thank the AMSI and the Australian Mathematical Society
for their financial support for his participation in this conference. Special thanks go to our close
collaborator M. Watkins for his continuous and significant contributions to the hypergeometric
motives project in general and for the implementation of an associated package in Magma [1] in
particular.
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Alternate Mirror Families
and Hypergeometric Motives

Charles F. Doran, Tyler L. Kelly, Adriana Salerno, Steven Sperber,
John Voight, and Ursula Whitcher

Abstract Mirror symmetry predicts surprising geometric correspondences between
distinct families of algebraic varieties. In some cases, these correspondences have
arithmetic consequences. Among the arithmetic correspondences predicted by
mirror symmetry are correspondences between point counts over finite fields, and
more generally between factors of their Zeta functions. In particular, we will discuss
our results on a common factor for Zeta functions of alternate families of invertible
polynomials. We will also explore closed formulas for the point counts for our
alternate mirror families of K3 surfaces and their relation to their Picard–Fuchs
equations. Finally, we will discuss how all of this relates to hypergeometric motives.
This report summarizes work from two papers.
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1 Motivation

Calabi–Yau varieties—those smooth projective varieties with trivial canonical
bundle—provide a rich and interesting source of arithmetic and geometry. Calabi–
Yau varieties of dimension 1 are elliptic curves, ubiquitous in mathematics and
theoretical physics. In dimensions two and above, we take our Calabi–Yau varieties
to be simply connected. The two-dimensional Calabi–Yau varieties are better known
as K3 surfaces, after the mathematicians Kummer, Kähler, and Kodaira and the
mountain K2. Like elliptic curves, K3 surfaces are all diffeomorphic to each other,
but the study of their complex and arithmetic structure remains deep. The study of
higher dimensional Calabi–Yau varieties promise the same rewards in many areas
of mathematics.

It is particularly important to study Calabi–Yau varieties in families, and
interesting families of Calabi–Yau varieties arise in several ways. Perhaps the
simplest method of obtaining Calabi–Yau varieties is to take smooth (n + 1)-
folds in projective space P

n. A natural generalization of this construction is to
take anticanonical hypersurfaces or complete intersections in certain toric varieties.
Often, however, one wishes to consider subfamilies with further special properties.
For example, a general smooth quartic in P3

C
has Picard rank 1, but a general member

of the pencil of K3 surfaces given by

x4
0 + x4

1 + x4
2 + x4

3 − 4ψx0x1x2x3 = 0

has Picard rank 19 and the Fermat quartic

x4
0 + x4

1 + x4
2 + x4

3 = 0

where ψ = 0 has Picard rank 20. As often happens, these special geometric
properties are correlated with enhanced symmetry: each member of the pencil
admits an action by the group (Z/4Z)2, and the Fermat quartic admits an action
by a group of 384 elements [18, 19].

Calabi–Yau manifolds are also interesting from a physical perspective. Indeed,
string theory posits that our universe consists of four space-time dimensions
together with six extra, compact real dimensions which take the shape of a Calabi–
Yau variety. Physicists have produced several consistent candidate theories, using
properties of the underlying varieties. These theories are linked by dualities which
transform physical observables described by one collection of geometric data into
equivalent observables described by different geometric data. Attempts to build a
mathematically consistent description of the duality between Type IIA and Type
IIB string theories led to the thriving field of mirror symmetry, which is based on
the philosophy that the complex moduli of a given family of Calabi–Yau varieties
should correspond to the complexified Kähler moduli of a mirror family.
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There are several methods of constructing the mirror to a family of Calabi–Yau
varieties. The first mirror symmetry construction, due to Greene–Plesser [15], used
a (Z/5Z)3 action on the one-parameter family of quintic threefoldXψ given by

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5ψx0x1x2x3x4 = 0

to construct the mirror family Yψ to all smooth quintic hypersurfaces in P
4. A

directly analogous construction can be used to find the mirrors to families of
Calabi–Yau hypersurfaces in weighted projective spaces. Batyrev gave combina-
torial methods for constructing mirror families to Calabi–Yau varieties realized
as hypersurfaces or complete intersection in toric varieties [1]. Though powerful,
Batyrev’s construction relates families rather than individual varieties. In the current
work, we use an alternative generalization of the Greene–Plesser construction due
to Berglund–Hübsch–Krawitz [2, 17], allowing for a direct comparison of varieties
on either side of the mirror correspondence.

When individual pairs of mirror varieties can be identified, mirror symmetry
constructions have implications for their arithmetic and geometric structure. These
implications were first explored by Candelas–de la Ossa–Rodriguez-Villegas [4] for
their zeta functions, the generating function for the number of Fpr -valued points

Z(X, T ) = exp

( ∞∑
r=1

#X(Fpr )T r

r

)

for a variety X over Fp; we have Z(X, T ) ∈ Q(T ) by a theorem of Dwork [10].
These authors used the Greene–Plesser mirror construction and techniques from
toric varieties to compare the zeta function of fibers of the diagonal Fermat pencil
of threefold Xψ and the mirror pencil of threefold Yψ [3–5]. They found that for
general ψ , the zeta functions of Xψ and Yψ share a common factor R(T ,ψ). This
common factor is related to the period of the holomorphic form on Xψ , and the
number of points on Xψ over a finite field is given by a truncation of a generalized
hypergeometric function which solves the Picard–Fuchs equation associated to the
holomorphic form. Furthermore, the other nontrivial factors of Z(Xψ, T ) were
closely related to the action of (Z/5Z)3 on homogeneous monomials.

The Greene–Plesser construction generalizes easily to smooth hypersurfaces of
degree n + 1 in P

n. Wan [20] has characterized the relationship between a member
Xψ of the diagonal Fermat pencil in P

n and its mirror Yψ in terms of point counts
via the congruence

#Xψ(Fq) ≡ #Yψ(Fq) (mod q)

for all q = pr such that Fq ⊇ Fp(ψ). Fu–Wan [12] generalized this result to
other pairs of mirror pencils. More recently, Kloosterman [16] showed that one
can use a group action to describe the distinct factors of the zeta function for
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any one-parameter monomial deformation of a diagonal hypersurface in weighted
projective space.

In our work, we take a slightly different approach. Rather than relating a pencil
of Calabi–Yau varieties to its mirror, we instead consider those pencils whose
mirrors are related in some geometric way. In other words, we seek to understand
when common properties of mirrors translate into arithmetic, geometric, or physical
implications for the original pencils themselves.

There is an intricate relationship between Picard–Fuchs equations and the zeta
function, mediated by the action of the Frobenius map. Given a set of symmetric
pencils in P

n which yield alternate mirrors to smooth n + 1-folds in P
n, we

hypothesize that the zeta functions of the members of each pencil and their mirror
should share a common factor, corresponding to the Picard–Fuchs equation satisfied
by the holomorphic form. In the current work, we apply the formalism of Berglund–
Hübsch–Krawitz mirror symmetry to characterize appropriate symmetric pencils,
and we study the resulting zeta functions.

We have followed four approaches, exploiting algebraic, geometric, and arith-
metic properties of highly symmetric pencils.

2 Common Factor Theorem

Our first result, described in more detail in [8], is that invertible pencils whose
mirrors have common properties share arithmetic similarities as well. Revisiting
work of Gährs [14], we find that invertible pencils whose BHK mirrors are
hypersurfaces in quotients of the same weighted-projective space have the same
Picard–Fuchs equation associated to their holomorphic form. In turn, we show that
the Picard–Fuchs equations for the pencil dictate a factor of the zeta functions of the
pencil.

An invertible polynomial is a polynomial

FA =
n∑
i=0

n∏
j=0

x
aij
j ∈ Z[x0, . . . , xn],

where A = (aij )i,j is an (n + 1) × (n + 1) is a matrix with nonnegative integer
entries, such that:

• det(A) �= 0,
• the polynomial FA is homogeneous of degree n+ 1, and
• the function FA : Cn+1 → C has exactly one singular point at the origin.

We further impose that these hypersurfaces are Calabi–Yau varieties, so the
degree of the polynomial FA is n+ 1.
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Inspired by Berglund-Hübsch-Krawitz (BHK) mirror symmetry, we look at the
weights of the transposed polynomial

FAT :=
n∑
i=0

n∏
j=0

x
aji
j ,

which will be a quasihomogeneous polynomial, i.e., there exist nonnegative integral
weights q0, . . . , qn so that gcd(q0, . . . , qn) = 1 and FAT defines a hypersurface
XAT in the weighted-projective spaceWP

n(q0, . . . , qn). We call q0, . . . , qn the dual
weights of FA. Let dT =∑i qi be the sum of the weights.

Using the dual weights, we define a one-parameter deformation of our invertible
pencil. Consider the polynomials

FA,ψ =
n∑
i=0

n∏
j=0

x
aij
j − dT ψx0 · · · xn ∈ Z[ψ][x0, . . . , xn].

We then have a family of hypersurfacesXA,ψ := Z(FA,ψ) ⊂ P
n in the parameter

ψ , which we call an invertible pencil.
The Picard–Fuchs equation for the family XA,ψ is determined completely by

the dual weights by work of Gährs [14, Theorem 3.6]. Indeed, Gährs computes the
order of the Picard–Fuchs equation in terms of the qi . There is an explicit formula
for the orderD(q) of the Picard–Fuchs equation that depends solely on the (n+ 1)-
tuple of dual weights q = (q0, . . . , qn). The Picard–Fuchs equation itself depends
solely on q as well. To be precise, we observe that the Picard–Fuchs equation is a
hypergeometric differential equation whose motive descends to Q.

For a smooth projective hypersurfaceX in P
n, the zeta function is of the form

Z(X, T ) = PX(T )
(−1)n

(1 − T )(1 − qT ) · · · (1 − qn−1T )
,

with PX(T ) ∈ Q[T ]. Our main result exhibits a (fiber-wise) common factor of the
zeta function in the general setting suggested above.

Theorem 1 Let XA,ψ and XB,ψ be invertible pencils of Calabi–Yau n− 1-folds in
P
n, determined by integer matrices A and B, respectively. Suppose A and B have

the same dual weights qi . Then for eachψ ∈ Fq such that the fibersXA,ψ andXB,ψ
are smooth and gcd(q, (n + 1)dT ) = 1, the polynomials PXA,ψ (T ) and PXB,ψ (T )
have a common factor Rψ(T ) ∈ Q[T ] with degRψ(T ) ≥ D(q).
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3 Explicit Computations and Hypergeometric Motives

We next focus our attention on invertible families of K3 surfaces, with dual weights
(1, 1, 1, 1), which are as follows:

In [9] we analyze the zeta functions of the families given in Table 1. Using
a classical viewpoint, we find that the hypergeometricity of the Picard–Fuchs
equations associated to the five families predicts a motivic decomposition of the
point counts over finite fields for our families. We see that the hypergeometric
Picard–Fuchs equations for the primitive middle cohomology of the five families
correspond to nontrivial hypergeometric summands in the point counts over finite
fields. The core of this paper is the following theorem:

Theorem 2 Let � ∈ F = {F4,F2L2,F1L3,L2L2,L4} signify one of the five K3
families in Table 1. There is a canonical decomposition of the finite field point count
for NFq (X�,ψ ) whose summands are either trivial or hypergeometric. Moreover,
there exists an element inH 2

prim(X�,ψ ) that satisfies a hypergeometric Picard–Fuchs
differential equation with parameters α1, . . . , αn; β1, . . . , βn−1 if and only if there
exists a nontrivial summand in the canonical finite field point count NFq (X�,ψ )
corresponding to the hypergeometric function defined over Fq with parameters
α1, . . . , αn; β1, . . . , βn−1.

This proof is done explicitly. First, we find the Picard–Fuchs equations via
the diagrammatic method introduced in [4, 5] and fully developed in [7]. After
establishing the hypergeometric forms of the Picard–Fuchs equations, we confirm
that they do indeed correspond to those in the finite point counts using Gauss sums,
using a classical method due to Delsarte [6] and Furtado Gomida [13].

Additionally, we obtain finer information by factoring the polynomial Q�,ψ (T )
in Theorem 1 further, giving a complete hypergeometric decomposition. Our result
is as follows.

Table 1 The symmetric quartic K3 pencils with dual weights (1,1,1,1)

Quartic Family Symmetries

F4 x4
0 + x4

1 + x4
2 + x4

3 − 4ψx0x1x2x3 = 0 (Z/4Z)2

F1L3 x4
0 + x3

1x2 + x3
2x3 + x3

3x1 − 4ψx0x1x2x3 = 0 Z/7Z

F2L2 x4
0 + x4

1 + x3
2x3 + x3

3x2 − 4ψx0x1x2x3 = 0 Z/8Z

L2L2 x3
0x1 + x3

1x0 + x3
2x3 + x3

3x2 − 4ψx0x1x2x3 = 0 Z/4Z

L4 x3
0x1 + x3

1x2 + x3
2x3 + x3

3x0 − 4ψx0x1x2x3 = 0 Z/5Z
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Corollary 1 The polynomialsQ�,ψ,q (T ) factor over Z[T ] according to the follow-
ing table.

Family Factorization Hypothesis r

F4 (deg 1)12(deg 2)3 q ≡ 1 mod 4 2
F2L2 (1 − qT )6(deg 1)2(deg 2)5 q ≡ 1 mod 8 4
F1L3 (deg 6)3 q ≡ 1 mod 28 12
L2L2 (1 − qT )8(deg 2)1(deg 4)2 q ≡ 1 mod 4 2
L4 (1 − qT )2(deg 4)4 q ≡ 1 mod 20 10

(1)

In the above table, there may be further factorization depending on ψ and q ,
and some of these factors may agree. The integer r in above table is such that for
q = pr , we have Q�,ψ,q (T ) = (1 − qT )18 under the hypotheses of Theorem A:
in other words, if we factorQ�,ψ,q (T ) as a product of cyclotomic polynomials φmi ,
then lcm(mi) | r .

The case of the Dwork pencil F4 is due to Dwork [11, §6j, p. 73], and in this
case we know that the degree 2 factor occurs with multiplicity 3 and the linear
factor occurs with multiplicity 12, as the notation indicates. The factorization in
Corollary 1 is motivated by similar work due to Candelas–de la Ossa–Rodriguez-
Villegas [4, 5]. (Kloosterman [16] has shown that one can use a group action to
describe the distinct factors of the zeta function for any one-parameter monomial
deformation of a diagonal hypersurface in weighted projective space; only one of
our families, the Dwork pencil, fits within the scope of this work.)
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Schwarzian Equations and Equivariant
Functions

Abdellah Sebbar

Abstract In this review article we show how the theory of Schwarzian differential
equations leads to an interesting class of meromorphic functions on the upper-half
plane H named equivariant functions. These functions have the property that their
Schwarz derivatives are weight 4 automorphic forms for a discrete subgroup Γ of
PSL2(R). It turns out that these functions must satisfy the relation

f (γ τ) = ρ(γ )f (τ ) , τ ∈ H , γ ∈ Γ,

where ρ is a 2-dimensional complex representation of Γ and the matrix action
on both sides is by linear fractional transformation. When ρ is the identity
representation ρ(γ ) = γ , the equivariant functions are parameterized by scalar
automorphic forms, while if ρ is an arbitrary representation they are parameterized
by vector-valued automorphic forms with multiplier ρ. If Γ is a modular subgroup
we obtain important applications to modular forms for Γ as well as a description
in terms of elliptic functions theory. We also prove the existence of equivariant
functions for the most general case by constructing a vector bundle attached to the
data (Γ, ρ) and applying the Kodaira vanishing theorem.

1 The Schwarz Derivative

Let D be a domain in C and f a meromorphic function on D. The Schwarz
derivative or the Schwarzian of f is defined by

{f, z} =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

.
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It was named after Schwarz by Cayley, however, Schwarz himself pointed out
that it was discovered by Lagrange in 1781 [10]. The Schwarz derivative has
many interesting properties which are given below. The functions involved are
meromorphic functions on a domainD.

• Projective invariance:

{
af + b

cf + d
, z

}
= {f, z} , a, b, c, d ∈ C , ad − bc �= 0.

• Cocycle property: If w is a function of z, then

{f, z} = {f,w}(dw/dz)2 + {w, z}.

• {f, z} = 0 if and only if f (z) = az+ b

cz+ d
for some a, b, c, d ∈ C.

• If w = az+ b

cz+ d
with

(
a b

c d

)
∈ GL2(C), then

{f, z} = {f,w} (ad − bc)2

(cz+ d)4
.

• For two meromorphic functions f and g on D,

{f, z} = {g, z} if and only if f (z) = ag(z)+ b

cg(z)+ d
,

(
a b

c d

)
∈ GL2(C)

• If w(z) is a function of z with w′(z0) �= 0 for some z0 ∈ D, then in a
neighborhood of z0, we have

{z,w} = {w, z} (dz/dw)2 .

Some of the properties are elementary and the rest follows from the following
important connection with the theory of ordinary differential equations:

Let R(z) be a meromorphic function on D and consider the second order
differential equation

y ′′ + 1

2
R(z)y = 0

with two linearly independent solutions y1 and y2. Then f = y1/y2 is a solution to
the Schwarz differential equation

{f, z} = R(z).
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Conversely, if f (z) is locally univalent and {f, z} = R(z), then y1 = f/
√
f ′ and

y2 = 1/
√
f ′ are two linearly independent solutions to y ′′ + 1

2
R(z)y = 0.

The Schwarz derivative plays an important role in the study of the complex
projective line, univalent functions, conformal mapping, Teichmuller spaces and
most importantly in the theory of modular forms and hypergeometric functions
[1, 4, 6, 8, 9, 11].

We now look at the effect of the Schwarz derivative on automorphic functions for
a discrete subgroup Γ of PSL2(Z), that is a Fuchsian group of the first kind acting
on the upper half-plane H = {τ ∈ C | ((τ ) > 0} by linear fractional transformation

γ τ = aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ Γ.

Proposition 1.1 ([8]) If f is an automorphic function for a discrete group Γ , then
{f, τ } is a weight 4 automorphic form for Γ that is holomorphic everywhere except
at the points where f has a multiple zero or a multiple pole (including at the cusps).
Moreover, if Γ is of genus zero and f is a Hauptmodul, then {f, τ } is modular for
the normalizer of Γ in PSL2(R)

As an example, let λ be the Klein modular function for Γ (2) given by

λ(τ) =
(
η(τ/2)

η(2τ )

)8

,

where η is the Dedekind eta-function given by

η(τ) = q
1

24
∏
n≥1

(1 − qn) , q = exp(2πiτ),

then

{λ, τ } = π2

2
E4(τ ),

where E4 is the weight 4 Eisenstein series

E4(τ ) = 1 + 240
∑
n≥1

σ3(n)q
n ,

with σk(n) being the sum of the k-th powers of the positive divisors of n.
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If Γ = Γ0(8) and we consider the Hauptmodul f8 for Γ given by

f8(τ ) = η(4τ )12

η(2τ )4η(8τ )8

then

1

2π2 {f8, τ } = 1

4
(θ4

3 + θ4
4 )

2 = θD4⊕D4(2τ ),

where θD4⊕D4(2τ ) is the theta function of two copies of the root lattice D4 and θ3
and θ4 are the Jacobi theta-functions

θ3(τ ) =
∑
n∈Z

q
1
2n

2
, θ4(τ ) =

∑
n∈Z

(−1)nq
1
2n

2
.

For later use, we also give

θ2(τ ) =
∑
n∈Z

q
1
2 (n+1/2)2 .

Finally, if Γ = Γ1(5) and f5 is the Hauptmodul given by

f5(τ ) = q
∏
n≥1

(1 − qn)5(
n
5 )

where
(n

5

)
is the Legendre symbol, then

1

2π2
{f5, τ } = θQ8(1)

where Q8(1) is the Icosian or Maass lattice which is the 8-dimensional 5-
unimodular lattice with determinant 625 and minimal norm 4.

Notice that in the above three examples, the Schwarz derivatives are all holomor-
phic as the groups involved are torsion-free and thus their Hauptmoduls do not have
multiple zeros or poles.

One may ask if the converse of the above properties is true: Suppose that
the Schwarz derivative {f, τ } of a meromorphic function on H is a weight 4
automorphic, what can be said about f ? Does it have any automorphic properties?
The following sections will be devoted to elucidate this question.
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2 Equivariant Functions

Suppose that F is a weight 4 automorphic form for a discrete group Γ and f is a
meromorphic function on H such that {f, τ } = F(τ). Then using the properties of

the Schwarz derivative from the previous section we have, for γ =
(
a b

c d

)
∈ Γ ,

(cτ + d)4 F(τ) = F

(
aτ + b

cτ + d

)

=
{
f

(
aτ + b

cτ + d

)
,
aτ + b

cτ + d

}

= (cτ + d)4
{
f

(
aτ + b

cτ + d

)
, τ

}
.

Therefore,

{f, τ } =
{
f

(
aτ + b

cτ + d

)
, τ

}
.

Hence, there exists

(
A B

C D

)
∈ GL2(C) such that

f

(
aτ + b

cτ + d

)
= Af (τ)+ B

Cf (τ)+D
.

This defines a 2-dimensional representation ρ of Γ in GL2(C) such that

f (γ τ) = ρ(γ ) f (τ ) (1)

where on both sides the action of the matrices is by linear fractional transformation.
We will distinguish three cases:

1. ρ = 1 a constant , in which case f is an automorphic function.
2. ρ = Id, the embedding of Γ in GL2(C) or the defining representation of Γ ,

providing a meromorphic function commuting with the action of Γ which we
call an equivariant function for Γ .

3. ρ is a general representation not equal to one in the above cases giving a function
f called a ρ-equivariant function for Γ .

We will be interested in the last two cases. A trivial example of an equivariant
function for a discrete group Γ is f (τ) = τ . We will see in the next section
that there are infinitely many examples parametrized by automorphic forms for Γ .
Furthermore, the set of equivariant functions will have a structure of an infinite
dimensional vector space isomorphic to the space of meromorphic sections of the
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canonical bundle of the compact Riemann surface X(Γ ) = (Γ \H)∗ where the star
indicates that we have added the cusps to the quotient space, in other words, the
space of meromorphic differential forms on X(Γ ).

In the general case, we establish the existence of ρ-equivariant functions for an
arbitrary representation ρ of Γ . This will include the case when ρ : Γ −→ C

∗ is
a character. Of course, when this character is unitary, then we recover the classical
automorphic functions with a character.

3 The Automorphic and Modular Aspects

In this section we focus solely on the equivariant functions, that is when ρ is the
defining representation. We have already seen that f (τ) = τ is equivariant for
every discrete group. It turns out that there are many more nontrivial equivariant
functions.

Theorem 3.1 ([5]) Let Γ be a discrete group. We have

1. Let f a nonzero automorphic form of weight k for Γ (even with a character),
then

hf (τ ) := τ + k
f (τ)

f ′(τ )
(2)

is an equivariant function for Γ .
2. Let h be an equivariant function for Γ . Then h(τ) = hf (τ ) for some

automorphic form with a character for Γ if and only if the poles of 1/(h(τ )− τ )
are simple with rational residues. Moreover, if Γ has genus 0, then we can omit
the character from this statement.

If k is a nonzero integer and c is a nonzero constant, then hf = hf k = hcf and
so the correspondence f → hf is not one-to-one. Because of the second part of the
theorem, an equivariant functions that arises from an automorphic form as in (2) is
called a rational equivariant form. It turns out that for such an equivariant function
h(τ), the residues of 1/(h(τ ) − τ ) have bounded denominators, and any common
multiple of these denominators can be the weight for an automorphic form f such
that h = hf . Moreover, not all equivariant functions are rational. An example of a
non-rational equivariant function is given by

h(τ) = τ + 4
E4(τ )

E′
4(τ )+ E6(τ )

,

where E6 is the weight six Eisenstein series

E6(τ ) = 1 − 504
∑
n≥1

σ5(n)q
n .
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Indeed, one can show that 1/(h(τ )− τ ) has a simple pole at the cubic root of unity,

but with residue
1

4
+ πi

6
.

The following theorem provides two important applications of equivariant
functions to modular forms.

Theorem 3.2 ([12]) Let f be a modular form for a finite index subgroup of SL2(Z)

of nonzero weight, then

1. The derivative of f has infinitely many non-equivalent zeros in H, all but a finite
number are simple zeros.

2. The q-expansion of f , where q is the uniformizer at ∞ for Γ , cannot have only
a finite number of nonzero coefficients.

This theorem follows from the properties of the equivariant function hf attached to
f as in (2); the most important of which is that hf takes always real values. This is
clear if hf has a pole in H as it will take rational values at the orbit of this pole, but if
hf is holomorphic, then we have to apply the theorem of Denjoie-Wolfe applied to
the iterates of hf . Then we prove that hf has infinitely many non-equivalent poles in
H. To prove that the zeros are all simple except for a finite number of them requires
the use the Rankin-Cohen brackets. The second statement is usually proven using
the L-function of the modular form, but here it is a simple consequence of the first
statement.

We end this section with an interesting connection with the cross-ration which is
defined for four distinct complex numbers zi , 1 ≤ i ≤ 4 by

[z1, z2, z3, z4] = (z1 − z2)(z4 − z3)

(z1 − z3)(z4 − z2)
.

As it is projectively invariant, the cross-ration of four distinct equivariant functions
for a discrete group Γ is an automorphic function for Γ . As examples, we have

[τ, hθ2 , hθ3, hθ4 ] = λ,

and

[τ, hE4 , hΔ, hE6 ] = 1

1728
j,

where Δ = η24 is the discriminant cusp form and the Dedekind j -function is given
by j = E3

4/Δ.
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4 The Elliptic Aspect

The ideas in this section first started in [3] and were developed further in [15] and
more recently in full generalization in [2]. Let L = ω1Z + ω2Z be a lattice in C

with (ω2/ω1 > 0. Its Weierstrass ℘-function is given by

℘(z) = 1

z2 +
∑

ω∈L\{0}

1

(z− ω)2
− 1

ω2 ,

and the Weierstrass ζ -function is given by

ζ(z) = 1

z
+

∑
ω∈L\{0}

1

z− ω
+ 1

ω
+ z

ω2 .

Notice that ζ ′(z) = −℘(z), and while ℘ is L-periodic, ζ is quasi-periodic with
respect to L in the sense that for ω ∈ L and z ∈ C, we have

ζ(z+ ω) = ζ(z)+HL(ω)

where the quasi-period map depends on the Lattice L. It is Z-linear and so it is
determined by the quasi-periods η1 = HL(ω1) and η2 = HL(ω2). Moreover,HL is
homogeneous of weight −1 in the sense that if α ∈ C

×, then

HαL(αω) = α−1HL(ω).

The quasi-periods satisfy the Legendre relation

ω1η2 − ω2η1 = 2πi.

We now suppose that ω1 = 1 and ω2 = τ ∈ H. Using the fact that SL2(Z) acts on
L by isomorphisms (by a change of basis) and using the homogeneity of the quasi
period map HL, it is easy to see that

h0(τ ) = η2

η1

is equivariant for SL2(Z) [3].
In fact, from the expression of the Weierstrass ζ -function one can prove that

η1 = π2

3
E2(τ )
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where E2 is the weight 2 Eisenstein series

E2(τ ) = 1 − 24
∑
n≥1

σ1(n)q
n = 1

2πi

Δ′(τ )
Δ(τ)

.

Therefore, using the Legendre relation, we get

h0(τ ) = τ + 6

iπE2(τ )
= τ + 12

Δ(τ)

Δ′(τ )
,

and thus h0 = hΔ is a rational equivariant function.
Let us put

Mτ =
(
τ η2

1 η1

)
.

ThenMτ is invertible as detMτ = −2πi by the Legendre relation.
Let Γ be a finite index subgroup of SL2(Z) and denote By Eq(Γ ) the set of all

equivariant functions for SL2(Z) excluding the trivial one h(τ) = τ . Also denote
byM2(Γ ) be the set of all weight two meromorphic modular forms for SL2(Z). We
have

Theorem 4.1 The map from M2(Γ ) to Eq(Γ )

f → Mτf

is a bijection where Mτf is the linear fraction of f given by Mτ .

The above map sends the zero modular form to h0 which is equivariant for SL2(Z)

and hence for every subgroup. In the meantime, h0 was built using the quasi-periods
of the Weierstrass ζ -function. One might ask: what about the remaining equivariant
functions? can they arise also from elliptic objects in the same way h0 does? In
the paper [2], this question is fully answered, and indeed for each equivariant
function for Γ , one can construct a generalizations of the Weierstrass ζ -function
called elliptic zeta functions which are quasi-periodic maps on the set of lattices
such the quotient of two fundamental quasi-periods is an equivariant function. The
interesting aspect is that there is a triangular commutative correspondence between
the set of these elliptic zeta functions, M2(Γ ) and Eq(Γ ) which encompasses the
modular and elliptic nature of equivariant functions.

As for the geometric aspect, because the weight 2 meromorphic modular forms
are identified with the meromorphic differential forms on the Riemann surface
X(Γ ), we can thus view the equivariant functions as the global meromorphic
sections of the canonical bundle of X(Γ ).
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5 The General Case

In this section, we consider the case of a general discrete group and an arbitrary
representation ρ : Γ −→ GL2(C) and investigate the existence of ρ-equivariant
functions for Γ , that is, the meromorphic functions on H such that

f (γ τ) = ρ(γ )f (τ ).

We will denote the set of such functions by Eq(Γ, ρ). Let us first recall the notion
of vector-valued automorphic forms for the data (Γ, ρ). A meromorphic function
F = (f1, f2)

t : H −→ C
2 where f1 and f2 are tow meromorphic functions on H

is called a 2-dimensional vector-valued automorphic form for Γ of multiplier ρ and
weight k ∈ Z if

(cτ + d)−k F (γ τ) = ρ(γ ) F (τ) , τ ∈ H , γ =
(
a b

c d

)
∈ Γ,

in addition to the usual growth behavior at the cusps. Denote by Vk(Γ, ρ) the space
of all such forms. They were fairly studied in the last two decades by various authors
in different contexts from algebraic, arithmetic, analytic, geometric and theoretical
physics points of view, see [14] and the extensive list of references therein. Their
existence is well established in the literature for a unitary representation ρ and for
Γ being a subgroup of SL2(Z) or a genus zero discrete group among other cases.
The existence for an arbitrary data (Γ, ρ) has been recently proved in [14] even for
Γ being a Fuchsian group of the second kind.

The first result of importance to us is

Theorem 5.1 ([13]) Let F = (f1, f2)
t be a 2-dimensional vector-valued auto-

morphic form of multiplier ρ and arbitrary weight for Γ , then hF = f1/f2 is a
ρ-equivariant function for Γ .

This settles the question of the existence of ρ-equivariant functions which is
then a consequence of the existence of vector valued automorphic forms. A more
interesting result is that every ρ-equivariant functions arises in this way

Theorem 5.2 ([13]) The map from Vk(Γ, ρ) to Eq(Γ, ρ) given by

F =
[
f1

f2

]
→ hF = f1/f2 (3)

is surjective.

Surprisingly, the proof uses almost all the properties of the Schwarz derivative which
lead to the next theorem. If D is a domain in C, and R(z) is a holomorphic function
on D, then we cannot guarantee the existence of two linearly independent global
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solutions to the differential equation

y ′′ + R(z)y = 0

when D is not simply connected, and all we can hope for are local solutions.
However, when R(z) comes from a Schwarz derivative, then we have a different
outcome.

Theorem 5.3 Let D be a domain and f be a meromorphic function onD such that
R(z) = {f, z} is holomorphic onD. Then the differential equation y ′′ +R(z)y = 0
has two linearly independent global solutions on D.

It is this important result and the use of the Bol identity that lead to the surjectivity
of the map (3).

So far we have established this close connection between ρ-equivariant functions
for Γ and 2-dimensional vector valued automorphic forms. All we need is to prove,
for arbitrary data (Γ, ρ), the existence of such automorphic forms. To this end we
associate to (Γ, ρ) a vector bundle E = EΓ,ρ over X = X(Γ ) constructed as
follows:

We choose a covering U = (Ui)i∈I where I is the set of cusps and elliptic
fixed points on X. We then construct holomorphic maps ψi : Ui −→ GL2(C)

having ρ as a factor of automorphy [7]. This is carried out by solving the Riemann-
Hilbert problem overUi with the monodromyρ. These maps yield a cocycle (Fij ) ∈
Z 1(U ,GL(2,O)) to which is associated a rank two holomorphic vector bundle E
over X whose transition functions are the maps Fij on Ui ∩ Uj .

Now if P is a given point (that can be a cusp) and L is the line bundle over X
corresponding to the divisor [P ], then using the Kodaira vanishing theorem, there
exists an integer μ ≥ 0 such that

dimH 0(X,O(L μ ⊗ E )) ≥ 2

where O(L μ ⊗ E ) is the set of holomorphic sections of the sheaf L μ ⊗ E which
can be seen as sections in H 0(X \ {P },O(E )) having a pole at P of order at most
μ. Thus we have two linearly independent meromorphic sections of E with a single
pole at P . When lifted to H ∪ {cusps} these sections yield two linearly independent
vector-valued automorphic functions (of weight 0) attached to (Γ, ρ) with poles at
the fiber of P . The full details of the proof can found for a higher dimension of the
representation in [14].

We have therefore established the following:

Theorem 5.4 For every discrete group Γ and every 2-dimensional representation
ρ of Γ , vector-valued Γ -automorphic functions of multiplier ρ exist and so do
ρ-equivariant functions for Γ .
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Hypergeometric Functions over Finite
Fields

Jenny Fuselier, Ling Long, Ravi Ramakrishna, Holly Swisher,
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Abstract We discuss recent work of the authors in which we study the translation
of classical hypergeometric transformation and evaluation formulas to the finite field
setting.

Our approach is motivated by the desire for both an algorithmic type approach
that closely parallels the classical case, and an approach that aligns with geometry.
In light of these objectives, we focus on period functions in our construction which
makes point counting on the corresponding varieties as straightforward as possible.

We are also motivated by previous work joint with Deines, Fuselier, Long, and
Tu in which we study generalized Legendre curves using periods to determine a
condition for when the endomorphism algebra of the primitive part of the associated
Jacobian variety contains a quaternion algebra over Q. In most cases this involves
computing Galois representations attached to the Jacobian varieties using Greene’s
finite field hypergeometric functions.
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1 Motivation

In this talk we discuss recent work of the authors [9], in which we study the
translation of classical hypergeometric transformation and evaluation formulas
to the finite field setting. The theory of classical hypergeometric functions and
hypergeometric functions over finite fields sits inside the broader framework of
hypergeometric motives. Hypergeometric functions over finite fields have been
developed by several people, including for example Evans [5, 6], Greene [10],
Katz [11], and McCarthy [12], and a number of current developments have been
discussed at this workshop including recent work of Roberts et al. [13], Doran et al.
[4], and Beukers et al. [2], for example.

Our approach to translation of classical hypergeometric transformation and
evaluation formulas to the finite field setting is motivated by two strong desires:

1. An algorithmic type approach that closely parallels the classical case (and does
not require particular ingenuity for each example).

2. An approach that aligns with geometry by explicitly interpreting the finite field
hypergeometric functions in terms of Galois representations corresponding to
associated algebraic varieties.

In light of these objectives, we focus on period functions in our construction which
makes point counting on the corresponding varieties as straightforward as possible.

We are also motivated by previous work joint with Deines, Fuselier, Long, and Tu
[3] in which we study generalized Legendre curves yN = xi(1−x)j (1−λx)k, using
periods to determine for certain N a condition for when the endomorphism algebra
of the primitive part of the associated Jacobian variety contains a quaternion algebra
over Q. In most cases this involves computing Galois representations attached to the
Jacobian varieties using Greene’s finite field hypergeometric functions.

2 Method

From this perspective, the following approach is very natural. We slightly modify
the finite field hypergeometric function definition of Greene (or McCarthy) by
inductively using the Euler integral representation to construct our analogues. In
the classical setting, define the period function 1P0[a; z] := (1− z)−a = 1F0[a; z],
and then use the Euler integral formula to define

2P1[a, b; c; z] :=
∫ 1

0
tb−1(1 − t)c−b−1

1P0[a; zt]dt = B(b, c − b)2F1[a, b; c; z],

where B(x, y) = ∫ 1
0 t

x−1(1 − t)y−1dt is the beta function. To justify calling these
period functions we note that Wolfart [15] realized that if the parameters a, b, c ∈ Q,
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and a, b, a − c, b − c /∈ Z, then the integrals

2P1

[
a b

c
; λ
]

and (−1)c−a−b−1λ1−c
2P1

[
1 + b − c 1 + a − c

2 − c
; λ
]

are both periods of a generalized Legendre curve yN = xi(1−x)j (1−λx)k, where
N = lcd(a, b, c) (least common denominator), i = N · (1−b), j = N · (1+b− c),
and k = N · a.

Inductively we define higher period functions n+1Pn, gathering additional beta
function terms in front of the n+1Fn. We can then use the following “dictionary”
which is well-known to experts to translate these period functions to the finite field
setting. Here q = pe for prime p, and F̂

×
q denotes the group of multiplicative

characters on F
×
q , where each character A is extended to Fq by defining A(0) = 0.

Furthermore N ∈ N, a, b ∈ Q with common denominator N , ηN ∈ F̂
×
q has order

N , A denotes the complex conjugate of A, and ζp is a primitive pth root of unity.

a = i
N
, b = j

N
↔ A,B ∈ F̂

×
q , A = ηiN , B = η

j

N

xa ↔ A(x)

−a ↔ A∫ 1
0 dx ↔ ∑

x∈F
Γ (a) ↔ g(A) =∑x∈F×

q
ζ x+xp+xp

2+···+xpe−1

p

B(a, b) ↔ J (A,B) =∑x∈Fq A(x)B(1 − x)

Thus we correspondingly define 1P0[A; λ] := A(1 − λ),

2P1[A,B;C; λ] :=
∑
y∈Fq

B(y)BC(1 − y)1P0[A; λy],

and define n+1Pn inductively. We obtain a nice point counting formula for the
hypergeometric variety Xλ : yN = x

i1
1 · · · xinn (1 − x1)

j1 · · · (1 − xn)
jn(1 −

λx1 · · · xn)k. In particular, we have for q ≡ 1 (mod N),

#Xλ(Fq) = 1 + qn +
N−1∑
m=1

n+1Pn

[
η−mk
N η

min
N . . . η

mi1
N

η
min+mjn
N . . . η

mi1+mj1
N

; λ
]
.

Normalizing the period functions n+1Pn by dividing by the appropriate Jacobi
sums using the dictionary, gives our finite field analogues to the classical hypergeo-
metric functions which we denote by n+1Fn. For example when n = 1,

2F1[A,B;C; λ] := 1

J (B,CB)
2P1[A,B;C; λ].
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If none of the “top” parameters are the trivial character, or match with one of the
“bottom” parameters, we call the n+1Pn or n+1Fn primitive. Our definition of n+1Fn
has two nice properties that match the classical case: it is 1 when evaluated at 0, and
in the primitive case it is symmetric in both the top or bottom parameters.

We note that key properties such as the reflection and multiplication formulas for
the Gamma function translate using the dictionary to properties of the Gauss sum.
Our method allows that any classical formula proved using these properties, as well
as their corollaries such as the Pfaff-Saalchütz formula, can be translated directly
(introducing error terms as needed) and thus we can indeed use an algorithmic type
approach to translation that closely parallels proofs in the classical case. However,
this approach does not work for everything in the classical setting; for example
proofs involving a derivative structure cannot be translated in this way.

3 Galois Interpretation

We can interpret the n+1Pn or n+1Fn functions as traces of Galois representations
at Frobenius elements via the corresponding hypergeometric algebraic varieties. In
the n = 1 case we make this explicit in the following theorem.

For a given number field K , denote its ring of integers by OK , its algebraic
closure by K , and set GK := Gal(K/K). We call a prime ideal p of OK unramified
if it is coprime to the discriminant of K . Fix λ ∈ Q. Given a rational number of the
form i

m
, a number field K containing Q(ζm, λ) and a prime ideal p ofK coprime to

the discriminant ofK , one can assign a multiplicative character ιp( im) to the residue
field OK/p of p with size q(p) = |OK/p|. This assignment, based on themth power
residue symbol, is compatible with the Galois perspective when p varies. It is also
compatible with field extensions of K . Thus the finite field analogues of classical
period (or hypergeometric) functions are viewed as the converted functions over the
finite residue fields, unless otherwise specified. We show the following.

Theorem 1 Let a, b, c ∈ Q with least common denominatorN such that a, b, a−c,
b − c /∈ Z and λ ∈ Q \ {0, 1}. Let K be the Galois closure of Q(λ, ζN) with the
ring of integers OK , and � any prime. Then there is a 2-dimensional representation
σλ,� of GK := Gal(K/K) over Q�(ζN), depending on a, b, c, such that for each
unramified prime ideal p of OK for which λ and 1 − λ can be mapped to nonzero
elements in the residue field, σλ,� evaluated at the arithmetic Frobenius conjugacy
class Frobp at p is an algebraic integer (independent of the choice of �), satisfying

Tr σλ,�(Frobp) = −2P1

[
ιp(a) ιp(b)

ιp(c)
; λ; q(p)

]
.

As a corollary to this theorem, given a primitive 2P1 and a prime � we can
compute the L-function of the corresponding 2-dimensional Galois representation
(�-adic) as a product over good primes of terms involving 2P1 and (2P1)

2.
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4 Examples of Translated Identities

As examples of our techniques we use both our algorithmic type approach as well as
the Galois perspective to translate several classical hypergeometric formulas to the
finite field setting, including transformations of degree 1, 2, 3, algebraic identities,
and evaluation formulas.

For example, we translate a Clausen identity between the square of a 2F1 and
a 3F2. From a differential equations perspective, this identity is indicating that the
symmetric square of the 2-dimensional solution space to the corresponding hyperge-
ometric differential equation (HDE) corresponding to the 2F1 is the 3-dimensional
solution space of the HDE corresponding to the 3F2. Translating this identity to the
finite field setting yields a finite field hypergeometric transformation due to Greene
and Evans [7] which in our notation more closely matches the classical identity.
With the representation theoretic perspective, it indicates the fact that the tensor
square of a 2-dimensional representation (associated to the 2F1) is its symmetric
square (which is a 3-dimensional representation associated to the 3F2) plus its
alternating square (which is a linear representation).

For an example of an algebraic type identity, consider the following identity in
Slater [14, (1.5.20)] which gives that

2F1

[
a a − 1

2
2a

; z
]

=
(

1 + √
1 − z

2

)1−2a

.

To see its finite field analogue, it is tempting to translate the right hand side

into a corresponding character evaluated at 1+√
1−z

2 using the dictionary. However,
Theorem 1 implies that one character is insufficient as the corresponding Galois
representations should be 2-dimensional. Instead, our translated identity becomes
the following. For Fq of odd characteristic, φ the quadratic character, A ∈ F̂

×
q

having order at least 3, and z ∈ Fq ,

2F1

[
A Aφ

A2 ; z
]
=
(

1 + φ(1 − z)

2

)(
A

2

(
1 + √

1 − z

2

)
+ A

2

(
1 − √

1 − z

2

))
.

The proof is quite straightforward using only translations of Kummer 24 relations
as well as the reflection and duplication formulas. This example highlights that the
Galois perspective allows us to predict analogues beyond the dictionary alone.

As another example, we use our dictionary technique to translate a quadratic 2F1
transformation of Kummer [1, Thm. 3.1.1] which we first show can be proved using
only the multiplication and reflection formulas with the Pfaff-Saalschütz identity.
The finite field version we obtain is equivalent to a quadratic formula of Greene in
[10], but holds for all values in Fq . Our proof (although it might appear technical
on the surface) is very straightforward. In comparison, the approaches of Evans
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and Greene to higher order transformation formulas (such as [8, 10]) often involve
clever changes of variables. This example also demonstrates that our method has the
capacity to produce finite field analogues that are satisfied by all values in Fq .

As an explicit application of finite field formulas in computing the arithmetic
invariants of hypergeometric varieties, we use the finite field quadratic transfor-
mation from the previous example to obtain the decomposition of a generically
4-dimensional abelian variety arising naturally from the generalized Legendre curve
y12 = x9(1 − x)5(1 − λx).

Acknowledgements Many thanks to the International Mathematical Research Institute MATRIX
in Australia for hosting the workshop on Hypergeometric Motives and Calabi–Yau Differential
Equations where this talk was presented.
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Supercongruences Occurred to Rigid
Hypergeometric Type Calabi–Yau
Threefolds

Ling Long, Fang-Ting Tu, Noriko Yui, and Wadim Zudilin

Abstract In this project, we establish the supercongruences for the 14 families
of rigid hypergeometric Calabi–Yau threefolds conjectured by Roriguez-Villegas
in 2003.

1 Main Result

The talk outlines the proof of the supercongruences for the 14 families of rigid
hypergeometric Calabi–Yau threefolds conjectured by Roriguez-Villegas [9].

Theorem 1 Let d1, d2 ∈ {1/2, 1/3, 1/4, 1/6} or

(d1, d2) = (1/5, 2/5), (1/8, 3/8), (1/10, 3/10), (1/12, 5/12).

Then for each prime p > 5, we have

4F3

[
d1 1 − d1 d2 1 − d2

1 1 1
; 1

]
p−1

≡ ap(fd1,d2) mod p3,

where the hypergeometric series on the left-hand side is truncated after p − 1
terms and ap(fd1,d2) is the pth coefficient of an explicit Hecke eigenform fd1,d2

of weight 4 associated to the corresponding rigid Calabi–Yau manifold via the
modularity theorem.
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2 Motivation

The term supercongruence refers to a congruence which is stronger than what the
formal group law implies. In [3] Beukers proved

A

(
p − 1

2

)
= 4F3

[ 1−p
2

1−p
2

p+1
2

p+1
2

1 1 1
; 1

]
≡ ap(f ) mod p,

where A(n) are the Apéry numbers

A(n) :=
n∑
k=0

(
n

k

)2(
n+ k

k

)2

= 4F3

[−n −n n+ 1 n+ 1
1 1 1

; 1

]

and ap(f ) is the pth coefficient of the Hecke eigenform η4(2τ )η4(4τ ). In [3]
Beukers also conjectured the supercongruence

4F3

[ 1−p
2

1−p
2

p+1
2

p+1
2

1 1 1
; 1

]
≡ ap(f ) mod p2.

This was proved by Ahlgren and Ono [1]. Their key idea is using Green’s
hypergeometric function over finite fields to perform point counting on the Calabi–
Yau threefold

{
x + 1

x
+ y + 1

y
+ z+ 1

z
+w + 1

w
= 0

}
,

which is modular. Later, Kilbourn [7] gives an extension of the supercongruence

ap(f ) ≡
p−1∑
j=0

(
2j

j

)4

2−8j = 4F3

[ 1
2

1
2

1
2

1
2

1 1 1
; 1

]
p−1

mod p3, (1)

which was conjectured by Van Hamme. Kilbourn’s proof is mainly relying on p-
adic tools. Using the techniques similar to the ones given by Ahlgren, Ono and
Kilbourn, McCarthy [8] obtained the supercongruence

4F3

[ 1
5

2
5

3
5

4
5

1 1 1
; 1

]
p−1

≡ ap
(
f1/5,2/5

)
mod p3, (2)

where f1/5,2/5 is an explicit Hecke eigenform conjectured by Rodriguez-Villegas.
This supercongruence corresponds to the mirror quintic threefold in P

4, whose
modularity was first established by Schoen [10]. The supercongruences given by
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Kilbourn (1) and McCarthy (2) are particular instances of Rodriguez-Villegas’s
conjectures.

In this joint project, our main motivation is to study the arithmetic aspect
of rigid hypergeometric type Calabi–Yau manifolds. The first step is verifying
the supercongruences conjectured by Rodriguez-Villegas coming from the well-
known 14 hypergeometric families of Calabi–Yau threefolds whose Picard–Fuchs
equations are degree 4 hypergeometric differential equations with solution near 0 of
the form

4F3

[
d1 1 − d1 d2 1 − d2

1 1 1
; z
]
,

where d1, d2 are as in Theorem 1. When z = 1, it corresponds to the singularity
of the hypergeometric differential equation, which is equivalent to getting a rigid
Calabi–Yau threefold in the fibre. Due to Gouvêa and Yui [6], a rigid Calabi–Yau
threefold defined over Q is modular. This means, the L-function associated with the
third étale cohomology group of a rigid Calabi–Yau threefold V in the 14 families
is equal to the L-function of an explicit Hecke eigenform of weight 4 conjectured
by Rodriguez-Villegas.

Very recently, Fuselier and McCarthy [5] establish the case (d1, d2) =
(1/2, 1/4). In this joint project, we provide a more general method to verify
the remaining 11 cases of supercongruences conjectured by Rodriguez-Villegas.

3 Key Ideas and Example

The strategy of our proof is to use hypergeometric motives over Q to describe
the arithmetic background. There are different versions of hypergeometric motives
such as given by Katz, Greene and McCarthy. However, for our purposes, the
most connivent one is the general version given by Beukers, Cohen and Mellit
in [4]. They modify Katz’s finite hypergeometric function H(α, β; λ) so that
their version works for all the primes p. They also give a recipe to realize toric
models as hypergeometric motives arising from certain type hypergeometric data
α = (α1, α2, . . . , αd) and β = (β1, β2, . . . , βd), where αi, βj ∈ Q. For such case,
one can express the number of rational points over finite fields on the given model
in terms of H(α, β; λ).

For example, the multi-sets α = (1/3, 2/3, 1/3, 2/3) and β = (1, 1, 1, 1) give
the hypergeometric type Calabi–Yau threefold with d1 = d2 = 1/3. The toric model
in this case corresponds to the resolution of singularities on the affine variety given
by projective equations

W : x1+x2+x3+x4 = y1+y2+y3+y4 = 0, (x1y1)
3 = 36x2x3x4y2y3y4, xi , yj �= 0.
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The resulting manifold W is the rigid Calabi–Yau threefold labelled as V3,3 by
Batyrev and van Straten in [2].

In the talk, principal ideas of our proof are illustrated in the case d1 = d2 = 1/3.
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p-Adic Hypergeometrics

Fernando Rodriguez Villegas

Abstract We study classical hypergeometric series as a p-adic function of its
parameters inspired by a problem in the Monthly solved by D. Zagier.

1 Introduction

The classical generalized hypergeometric series is defined by

rFr−1

[
α1 . . . αr

β1 . . . βr−1
| t
]

=
∑
k≥0

(α1)k · · · (αr )k
(β1)k · · · (βr−1)k

tk

k! (1)

for αj ∈ C and βj ∈ C \ {0,−1,−2, . . .} . If αr = −n for n a non-negative integer
the series terminates and we have

rFr−1

[
α1 . . . −n
β1 . . . βr−1

| t
]

=
n∑
k=0

(−1)k
(
n

k

)
(α1)k · · · (αr−1)k

(β1)k · · · (βr−1)k
tk . (2)

One can show that for fixed αi ∈ Zp, βi ∈ Zp \ {0,−1,−2, . . .} and |t|p < 1
this yields a convergent Mahler series and hence a continuous function f of the
variable x := n in Zp

f (x) := rFr−1

[
α1 . . . −x
β1 . . . βr−1

| t
]

=
∑
k≥0

(−1)k
(
x

k

)
(α1)k · · · (αr−1)k

(β1)k · · · (βr−1)k
tk . (3)

These functions seem very interesting and worthy of further investigation.
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2 The Problem

It turns out that a special case of these functions appears in the solution of an
interesting Monthly problem [3] solved by D. Zagier. The problem is to prove that

v3

(
n−1∑
k=0

(
2k

k

))
= v3

(
n2
(

2n

n

))
, (4)

where vp denotes the p-adic valuation. Zagier does this by showing that there is a
continuous function f1 : Z3 −→ −1 + 3Z3 which interpolates the values

f1(n) =
∑n−1
k=0

(2k
k

)
n2
(2n
n

) , n = 1, 2, . . . . (5)

Considering the expansion

f1(n) = A+ Bn+ Cn2 + · · ·

he goes further and conjectures, based on numerical evidence, thatB = 0; moreover,
he mentions

Another interesting problem would be to evaluate in closed form the 3-adic number A.

We prove that in fact

A = −3

2
ζ3(2) = 2 + 3 + 2 · 32 + 2 · 36 + 37 + 2 · 38 + 2 · 39 +O(310), (6)

where ζ3(s) is the Kubota-Leopoldt 3-adic zeta function.

3 Periods

The connection with zeta values is perhaps to be expected: in general the Taylor
coefficients of the functions of Sect. 1 involve multiple polylogarithms. In the
specific case in question we have

f (n) =
n∑
k=1

1(2k
k

)
(
n

k

)
(−3)k−1, f (n) = nf1(n). (7)

If we expand in general

f (x) :=
∑
k≥1

1(2k
k

)
(
x

k

)
tk−1 =

∑
n≥0

bn(t)x
n,
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then

bn(t) = 1

(t + 4)

∑
0≤j1<j2<···<jn

( t
t+4)

jn

(j1 + 1
2 )(j2 + 1

2 ) · · · (jn + 1
2 )
. (8)

These multiple polylogarithms can be expressed in terms of usual polylogarithms
for small n. Trivially b0 = 0. For n = 1 we have the following identity of power
series in z = 1 −w

b1
(
(w − w−1)2

) = (w2 −w−2)−1 log
(
w2), w = 1 − z. (9)

By plugging in a primitive third root of unity ζ3 ∈ C3 forw it follows that 3-adically
we have b1(−3) = 0. This shows that in this case f (x) is divisible by x and we may
consider f1(x) := f (x)/x (see [3]).

With some effort one can prove that as power series in z, with w = 1 − z, we
have

b2
(
w −w−1)2

) = (w2 −w−2)−1[Li2(1 −w2)− 1
2 Li2(1 − w4)

−Li2(1 −w−2)+ 1
2 Li2(1 −w−4)],

(10)

where Li2 is the standard dilogarithm function.
Plugging in w = ζ3 ∈ C3 into (10) and using a result of Coleman [1] we

obtain (6). The identity is the special case p = 3, r = 1 of the following. Given
a prime p > 2 fix ζp ∈ Cp a primitive p-th root of unity.

Theorem 1

i) The following limit exists

A(ζp) := lim
s→∞

1(2ps
ps

)
p2s

ps−1∑
k=0

(
2k

k

)
(ζp + ζ−1

p )2(p
s−1−k) (11)

ii) Let ω : F×
p → C

×
p be the Teichmüller character. For 0 < r < p − 1 we have

1

(ωr(4)− 2ωr(2))

p−1∑
i=1

ω(i)−r (ζ 2i
p − ζ−2i

p ) A(ζ ip) = Lp(2, ωr−1), (12)

where Lp is Kubota-Leopoldt’s p-adic L-function.

We note in passing that

lim
s→∞

(
2ps

ps

)
= 2

∏
k≥1

Γp(2pk)

Γp(pk)2



474 F. Rodriguez Villegas

(see [2, §6.3.4, ex. 16]), where Γp denotes the p-adic gamma function.
The beauty of the expressions (9) and (10) is that though their proof were

obtained working over the complex numbers they are identities of power series
with rational coefficients and hence also hold p-adically in an appropriate domain.
Fortunately, this domain includes the point were need to evaluate for Zagier’s
questions (w = ζ3 ∈ C3).

For n = 3 there is an expression for b3(t) in terms of polylogarithms valid over
the complex numbers, which is much more difficult to obtain. For n > 3 we do not
expect bn(t) to reduce to polylogarithms.

However, to apply this expression for b3 to our p-adic setting requires some
form of analytic continuation. This we will achieve by delicate manipulations using
Coleman’s integration but the details have not yet been fully carried out.

The expectation nevertheless is that for p = 3 we should have that b3(−3) is a
simple multiple of L3(3, χ−3). But L3(s, χ−3) is identically zero since χ−3 is odd!
Hence the constant B of Zagier should vanish because it is a special value of an
L-function which happens to be identically zero.

4 Speculation

We tested numerically to see if there are any other relations for bn(t) and p-adic
L-values and found only the following likely identities:

Q3 :
{
b4(−3) = − 27

8 ζ3(4)

b6(−3) = − 297
32 ζ3(6)

Q5 :
{
b2(−5) = 0

b3(−5) = − 25
12ζ5(3)

(13)

but we did not attempt to prove these. We pointed out above that b4(t) and b6(t) are
not expected to be expressible in terms of polylogarithms. Hence the connection of
the observed identities for b4(−3) and b6(−3) in Q3 appear to be less obvious than
the others.
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On p-Adic Unit-Root Formulas

Masha Vlasenko

Abstract For a multivariate Laurent polynomial f (x) with coefficients in a ring R
we construct a sequence of matrices with entries in R whose reductions modulo
p give iterates of the Hasse–Witt operation for the hypersurface of zeroes of
the reduction of f (x) modulo p. We show that our matrices satisfy a system of
congruences modulo powers of p. If the Hasse–Witt operation is invertible these
congruences yield p-adic limit formulas, which conjecturally describe the Gauss–
Manin connection and the Frobenius operator on the slope 0 part of a crystal
attached to f (x). We also apply our results on congruences to integrality of formal
group laws of Artin–Mazur kind.

1 Hasse–Witt Matrix

Let X/Fq be a smooth projective variety of dimension n over a finite field with
q = pa elements. The congruence formula due to Katz (see [1]) states that modulo
p the zeta function of X is described as

Z(X/Fq; T ) ≡
n∏
i=0

det(1 − T ·F a |Hi(X,OX))
(−1)i+1

mod p , (1)

where Hi(X,OX) is the cohomology of X with coefficients in the structure sheaf
OX and F is the Frobenius map, the p-linear vector space map induced by h →
hp on the structure sheaf (p-linear means F (bs + ct) = bpF (s) + cpF (t) for
b, c ∈ Fq and s, t ∈ Hi(X,OX)). When X is a complete intersection the only
interesting term in formula (1) is given by Hn(X,OX). The action of F on this
space is classically known as the Hasse–Witt operation.
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The following algorithm (see [2, §7.10], [1, Corollary 6.1.13] or [3, §II.1]) can
be used to compute the Hasse–Witt matrix of a hypersurface X ⊂ P

n+1 given by a
homogeneous equation f (x0, . . . , xn+1) = 0 of degree d > n+ 2. One extends the
Frobenius to a transformation of the exact sequence of sheaves on P

n+1:

0 → OPn+1(−d) f−→ OPn+1 → OX → 0

↓ f p−1F ↓ F ↓ F

0 → OPn+1(−d) f−→ OPn+1 → OX → 0 .

The coboundary in the resulting long exact cohomology sequence allows to identify

Hn(X,OX) →̃ Hn+1(Pn+1,OPn+1(−d)) ,

so that the Frobenius F on Hn(X,OX) corresponds to the map on Hn+1(Pn+1,

OPn+1(−d)) induced by

0 → OPn+1(−d) F−→ OPn+1(−pd) f
p−1

−→ OPn+1(−d)→ 0 .

Computing Čech cohomology we find that Laurent monomials x−u =
x

−u0
0 . . . x

−un+1
n+1 where u runs through the set

U = {u = (u0, . . . , un+1) : ui ∈ Z≥1 ,

n+1∑
i=0

ui = d} (2)

form a basis in Hn+1(Pn+1,OPn+1(−d)) and the Hasse–Witt matrix is given in this
basis by

Fu,v∈U = the coefficient of xpv−u in f (x)p−1 . (3)

Suppose one starts from a polynomial f in characteristic 0, e.g. with coefficients
in Z. In my talk at the MATRIX institute in Creswick I presented a construction
which lifts (3) to a matrix with entries in Zp whose characteristic polynomial
conjecturally gives the p-adic unit root part of the zeta function attached to the
middle cohomology of X. The proofs and a few evidences for the conjecture can be
found in [4].
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2 Main Results

We study a sequence of matrices which generalize (3). Let R be a commutative
characteristic 0 ring, that is the natural map R → R ⊗ Q is an embedding.
Let f ∈ R[x±1

1 , . . . , x±1
N ] be a Laurent polynomial in N variables. If f (x) =∑

u au x
u , au ∈ R, the Newton polytopeΔ(f ) ⊂ R

N is the convex hull of the finite
set {u : au �= 0}. Consider the set of internal integral points J = Δ(f )o ∩ Z

N ,
where Δ(f )o denotes the topological interior of the Newton polytope. Let g = #J
be the number of internal integral points in the Newton polytope, which we assume
to be positive. Consider the following sequence of g × g matrices with entries in R
whose rows and columns are indexed by the elements of J :

(βm)u,v∈J = the coefficient of x(m+1)v−u in f (x)m . (4)

By convention, β0 is the identity matrix. We shall consider arithmetic properties of
the sequence {βm;m ≥ 0}.

Let us fix a prime number p. We restrict our attention to the sub-sequence {αs =
βps−1; s ≥ 0}. The entries of these matrices are then given by

(αs)u,v∈J = the coefficient of xp
sv−u in f (x)p

s−1 .

Notice that when R/pR is a finite field and f is a homogeneous polynomial of
degree d such that its reduction modulo p defines a smooth hypersurface, then U
in (2) coincides with J (withN = n+2) and α1 = βp−1 modulop is the Hasse–Witt
matrix.

Theorem 1 Assume that the ring R is endowed with a pth power Frobenius
endomorphism, that is a ring endomorphism σ : R → R satisfying σ(a) ≡ ap

mod p for all a ∈ R. Then for every s

αs ≡ α1 · σ(α1) · . . . · σ s−1(α1) mod p . (5)

If α1 is invertible modulo p then for every s ≥ 1 one has congruences

αs+1 · σ(αs)−1 ≡ αs · σ(αs−1)
−1 mod ps (6)

and

D(αs) · α−1
s ≡ D(αs−1) · α−1

s−1 mod ps (7)

for any derivationD : R → R.

Congruence (5) shows that αs mod p are iterates of the Hasse–Witt operation
whenever the latter is defined. It also implies that when α1 is invertible modulo p
then all αs are invertible modulo p and hence also modulo ps for all s. Therefore
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statements (6) and (7) make sense. We remark that analogous congruences also hold
when one multiplies by the inverse matrices on the left, that is we can prove that
σ(αs)

−1 · αs+1 ≡ σ(αs−1)
−1 · αs and α−1

s ·D(αs) ≡ α−1
s−1 ·D(αs−1) mod ps .

Our results are related to the topic of the workshop because when Δ(f ) is a
reflexive polytope (in this case g = 1), the toric hypersurface of zeroes of f can
be compactified to a Calabi–Yau variety. Congruence (6) then generalizes so called
Dwork’s congruences (see [5, 6]) and (7) seems to be new even in the Calabi–Yau
case.

Theorem 1 implies existence of the p-adic limits

F = lim
s→∞αs+1 · σ(αs)−1 (8)

and

∇D = lim
s→∞D(αs) · α

−1
s for every derivation D ∈ Der(R) . (9)

These are g × g matrices have entries in the p-adic closure R̂ = lim← R/psR.

Note that F ≡ α1 mod p. We are currently working on identifying the limiting
matrices (8) and (9) with the Frobenius and Gauss–Manin connection on the slope 0
part of a crystal attached to the Laurent polynomial f . This fact was conjectured
in [4] based on several examples and analogy with the congruences for expansion
coefficients of differential forms stated in [7]. The progress in this project is due
to our collaboration with Frits Beukers, which started at the MATRIX institute.
I am also grateful to Frits for the series of extremely helpful lectures on Dwork
cohomology which he gave during the first week of the program.

Matrices (4) showed up in [8] as coefficients of the logarithms of explicit
coordinalizations of the Artin–Mazur formal group laws of projective hypersurfaces
and complete intersections. Under certain conditions (e.g. R is the ring of integers
of the unramified extension of Qp of degree a and f is a homogeneous polynomial
whose reduction modulo p defines a non-singular hypersurface X/Fpa ) one can
combine (6) with the generalized Atkin and Swinnerton-Dyer congruences in [9],
which yields that the eigenvalues of Φ = F · σ(F ) · . . . · σa−1(F ) are p-adic unit
eigenvalues of the Frobenius operator on the middle crystalline cohomology of X
(see [4, Section 5]).

Our second result is the following integrality theorem for formal group laws
attached to a Laurent polynomial. Its proof is based on explicit congruences (similar
to those in Theorem 1) and Hazewinkel’s functional equation lemma (see [4, Section
4]).

Theorem 2 Let J be either the set Δ(f ) ∩ Z
N of all integral points in the Newton

polytope of f or the subset of internal integral points Δ(f )◦ ∩ Z
N . Assume that J

is non-empty and let g = #J . Consider the sequence of matrices βm ∈ Matg×g(R),
m ≥ 0 given by formula (4) and define a g-tuple of formal powers series
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l(τ ) = (lu(τ ))u∈J in g variables τ = (τv)v∈J as

l(τ ) =
∞∑
m=1

1

m
βm−1 τ

m .

Consider the g-dimensional formal group law Gf (τ, τ
′) = l−1(l(τ ) + l(τ ′)) with

coefficients in R ⊗ Q.
Let p be a prime number. If R can be endowed with a pth power Frobenius

endomorphism then Gf is p-integral, that is Gf ∈ R(p)[[τ, τ ′]] where R(p) =
R⊗Z(p) is the subring of R⊗Q formed by elements without p in the denominator.

Note that if one can define a Frobenius endomorphism on R for every prime p
then Theorem 2 implies thatGf ∈ R[[τ, τ ′]] because the subring ∩pR(p) ⊂ R⊗Q

coincides with R. For example, rings Z and Z[t] are of this type: one can take the
Frobenius endomorphism to be the identity on Z and h(t) → h(tp) on Z[t].
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Triangular Modular Curves

John Voight

Abstract We consider certain generalizations of modular curves arising from
congruence subgroups of triangle groups.

1 Triangle Groups

Let a, b, c ∈ Z≥2 ∪ {∞} satisfy a ≤ b ≤ c. Consider the triangle T with angles
π/a, π/b, π/c (with π/∞ = 0) in the space H , where H is the sphere, Euclidean
plane, or hyperbolic plane according as the quantity χ(a, b, c) = 1/a+1/b+1/c−1
is positive, zero, or negative. Let τa, τb, τc be reflections in the sides of T and let
Δ = Δ(a, b, c) be the subgroup of orientation-preserving isometries in the group
generated by the reflections: then Δ is generated by

δa = τbτc, δb = τcτa, δc = τaτb

and has a presentation

Δ = 〈δa, δb, δc | δaa = δbb = δcc = δaδbδc = 1〉.
We call Δ a triangle group. The quotient

X = X(a, b, c; 1) = Δ(a, b, c)\H

is a complex Riemannian 1-orbifold of genus zero; it has as many punctures as
occurrences of ∞ among a, b, c.

Example 1 We have Δ(2, 3, 3) 	 A4, and the other spherical triangle groups (i.e.,
those with χ(a, b, c) > 0) correspond to the Platonic solids. The Euclidean triangle
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groups are the familiar tessellation of the plane by triangles. We haveΔ(2, 3,∞) 	
PSL2(Z); andΔ(∞,∞,∞) 	 Γ (2), the free abelian group on two generators.

A uniformizer for X is expressed by an explicit ratio of 2F1-hypergeometric
functions, with parameters given in terms of a, b, c. As a consequence, containments
of triangle groups imply relations between 2F1-hypergeometric functions, with
arguments given by Belyi maps. Moreover, the quotient is a moduli space for certain
abelian varieties, often called hypergeometric abelian varieties: the values of the
hypergeometric functions are periods of the generalized Legendre curve

yN = xA(1 − x)B(1 − tx)C

for certain integers A,B,C,N again given explicitly in terms of a, b, c.
The triangle group Δ is arithmetic if and only if it is commensurable with the

units of reduced norm 1 in an order in a quaternion algebra over a number field
(necessarily defined over a totally real field and ramified at all but one real place).
There are only 85 arithmetic triangle groups, the list given by Takeuchi [4]; for these
groups, the corresponding curve X is a Shimura curve.

2 Triangular Modular Curves

For the remaining nonarithmetic triangle groups, there is still a quaternion algebra!
This observation was used by Cohen–Wolfart [2] in their work on transcendence
of values of hypergeometric functions. This relationship can be interpreted geomet-
rically: there is a finite map X → V where V is a quaternionic Shimura variety,
a moduli space for abelian varieties with quaternionic multiplication, suitably
interpreted. The dimension adim(a, b, c) of V is given in terms of a, b, c; we call it
the arithmetic dimension of (a, b, c). Nugent–Voight [3] have proven that for every
t , the set {(a, b, c) : adim(a, b, c) = t} is finite and effectively computable. For
example, there are 148 + 16 = 164 triples with arithmetic dimension 2.

Like with the modular curves, we now add level structure: we take a congruence
subgroup Γ (P) ≤ Γ of the uniformizing group Γ for V , and we intersect

Δ(p) = Γ (P) ∩Δ.

By pullback, this gives a cover

φ : X(p) = Δ(p)\H → X(1);

this corresponds geometrically to adding level structure to the family of hyper-
geometric abelian varieties. Clark–Voight [1] have proven that the cover φ has
Galois group PSL2(Fp) or PGL2(Fp) (cases distinguished by a Legendre symbol);
moreover, the minimal field of definition of φ is explicitly given as an at most
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quadratic extension of an explicitly given totally real abelian number field with
controlled ramification.

We call these curves X(p) triangular modular curves as generalizations of the
classical modular curves, and we expect that their study will be as richly rewarding
for arithmetic geometers as the classical case.

Acknowledgement The author was supported by an NSF CAREER Award (DMS-1151047).
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Jacobi Sums and Hecke
Grössencharacters

Mark Watkins

Abstract We give an extended abstract regarding our talk, and the associated
Magma implementation of Jacobi sums and Hecke Grössencharacters. This builds
upon seminal work of Weil (Trans Am Math Soc 73:487–495, 1952), and makes his
construction explicitly computable, inherently relying on his upper bound for the
conductor. Moreover, we can go slightly further than Weil by additionally allowing
Kummer twists of the Jacobi sums. We also note the correspondence of these
(twisted) Jacobi sums to tame prime information for hypergeometric motives.

Although our viewpoint and notation is derived from later work of Anderson, we
do not use his formalism in any substantial way, and indeed the main thrust of all
we do is already in Weil’s work.

Let θ = ∑
j nj 〈xj 〉 ∈ Z[Q/Z]0 be an integral linear combination of nonzero

elements xj ∈ Q/Z as a formal sum, with
∑
j njxj = 0. We put m for the least

common multiple of the denominators of the xj , and write Kθ ⊆ Q(ζm) for the
subfield corresponding by Galois theory to modding out (Z/mZ)" by those u for
which the scaling u◦θ =∑j nj 〈uxj 〉 is equal to θ . Letting α be a nontrivial additive
character modulo p and recalling the Gauss sum of a multiplicative character ψ on
F×
p as

Gα(ψ) = −
∑
x∈F×

p

ψ(x) α(Tr x),

for ideals p of Q(ζm) we define the Jacobi sum

Jθ (p) =
∏
j

Gα(χ
mxj
p )nj
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where this is independent of the choice of α and χp is the power residue symbol

χp(x) =
(x
p

)
m

≡ x(q−1)/m (mod p).

where q is the norm of p. One then has a partial L-function

L"θ (s) =
∏
p

(
1 − Jθ (p)

qs

)−1

,

where the product is over p � m in Kθ .
In a 1952 paper [3], Weil associates a Grössencharacter to such a Jacobi sum

L-function, and in particular gets an upper bound on the modulus. This gives
us an algorithm in principle to compute said Grössencharacter, which has been
implemented in the Magma computer algebra system [1, 2]. Briefly, one first
determines the field of definition Kθ of the Grössencharacter as above, and then
the ∞-type in a similar manner. The upper bound on the modulus then makes it a
finite problem to recognize the correct twist in the Hecke character group (the dual
of the ray class group), and by computing Jθ (p) at sufficiently many primes of small
norm we can isolate the desired twist. The possibility of including Kummer twists of
the θ was not considered directly by Weil, but fits easily into the above framework.

The resulting Jacobi sum machinery also helps explain the tame prime behavior
of hypergeometric motives, in particular giving the Euler factors when the inertia
corresponding to such primes is in fact trivialized. As an example, for the quintic
3-fold at (say) t = t0 · p5 with p ≡ 1 (mod 5), the Euler factor corresponds to a
Grössencharacter over Q(ζ5), with the precise twist varying with t0.

This is joint work with David Roberts and Fernando Rodriguez Villegas.
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Special Values of Hypergeometric
Functions and Periods of CM Elliptic
Curves

Yifan Yang

Abstract Let X = X6
0(1)/W6 be the quotient of the Shimura curve X6

0(1) by all
the Atkin-Lehner involutions. By realizing modular forms on X in two ways, one
in terms of hypergeometric functions and the other in terms of Borcherds forms,
and using Schofer’s formula for values of Borcherds forms at CM-points, we obtain
special values of certain hypergeometric functions in terms of periods of elliptic
curves overQ with complex multiplication.

Let XD0 (N) be the Shimura curve associated to an Eichler order of level N in
an indefinite quaternion algebra of discriminant D over Q. When D = 1, the
Shimura curve X1

0(N) is just the classical modular curve X0(N) and there are
many different constructions of modular forms on X0(N) in literature, such as
Eisenstein series, Dedekind eta functions, Poincare series, theta series, and etc.
These explicit constructions provide practical tools for solving problems related to
classical modular curves. On the other hand, when D �= 1, because of the lack of
cusps, most of the methods for classical modular curves cannot possibly be extended
to the case of general Shimura curves. However, in recent years, there have been
several methods for Shimura curve emerging in literature, such as the method of
Yang [9] realizing modular forms on a Shimura curve of genus zero in terms of
solutions of its Schwarzian differential equation, the method of Voight and Willis
[7] for computing power series expansions of modular forms, the method of Nelson
[4] for computing values of modular forms using explicit Shimizu lifting [8], and
the method of Elkies [1] via K3 surfaces. Finally, there is a powerful method that
realizes modular forms on Shimura curves as Borcherds forms. To make the method
of Borcherds forms useful in practice, one would employ Schofer’s formula [5] for
values of Borcherds forms at CM-points (see [2] for sample computation). In [3],
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we developed a systematic method to construct Borcherds forms and determined the
equations of all hyperelliptic Shimura curvesXD0 (N) using Schofer’s formula.

In [11], by combining the method of Schwarzian differential equations and the
method of Borcherds forms, we obtain some intriguing evaluations of hypergeomet-
ric functions, such as

2F1

(
1

24
,

5

24
; 3

4
; − 37 · 74

210 · 56

)
= 1

2
4
√

10

√
7 + √

43
ω−43

ω−4
(1)

and

3F2

(
1

3
,

1

2
,

2

3
; 3

4
,

5

4
; − 37 · 74

210 · 56

)
= 100

21
ω2−43, (2)

where for a negative fundamental discriminant d , we let

ωd = 1√|d|
|d |−1∏
a=1

Γ

(
a

|d|
)χd(a)μd/4hd

be the Chowla-Selberg period. Here χd is the Kronecker character associated to
Q(

√
d), μd is the number of roots of unity in Q(

√
d), and hd is the class number

of Q(
√
d). Note that if E is an elliptic curve over Q with complex multiplication

by Q(
√
d), then its periods are algebraic multiples of

√
πωd . We now explain the

origin of such evaluations.
Assume that t (τ ) is a modular function on XD0 (N) that takes algebraic values

at all CM-points. Then according to Shimura [6, Theorem 7.1] and Yoshida [12,
Theorem 1.2 and (1.4) of Chapter 3], the value of t ′(τ ) at a CM-point of discriminant
d is an algebraic multiple of ω2

d . Here we choose t (τ ) to be the Hauptmodul
of X = X6

0(1)/W6, the quotient of X6
0(1) by all the Atkin-Lehner involutions,

that takes values 0, 1, and ∞ at the CM-points of discriminants −4, −24, and
−3, respectively. Now the Schwarzian differential equation of X is essentially a
hypergeometric differential equation (see [9]), which means that all (meromorphic)
modular forms on X can be expressed in terms of hypergeometric functions. In
particular, we have

t ′(τ ) = 2t1/4(1 − t)1/2

Ci

(
2F1

(
1

24
,

5

24
; 3

4
; t
)

− C2F1

(
7

24
,

11

24
; 5

4
; t
))2

,

where C = −1/ 4
√

12ω2−4 (see Lemma 8 of [10]). Manipulating this identity and
recalling the result of Shimura and Yoshida above, we find that at a CM-point τd of
discriminant d , we have

2F1

(
1

24
,

5

24
; 3

4
; t (τd)

)
∈ ωd

ω−4
·Q
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and

3F2

(
1

3
,

1

2
,

2

3
; 3

4
,

5

4
; t (τd)

)
∈ ω2

d ·Q.

This explains the algebraicity of values of hypergeometric functions at singular
moduli. To determine actual values, we use theory of Borcherds forms.

In [9], we find that the one-dimensional space of modular forms of weight 8 on
X is spanned by

(
2F1

(
1

24
,

5

24
; 3

4
; t
)

+ 1
4
√

12ω2−4

t1/42F1

(
7

24
,

11

24
; 5

4
; t
))8

.

On the other hand, we can construct a Borcherds formΨ of weight 8. As the space of
modular forms has dimension 1, these two modular forms must be scalar multiples
of each other. Evaluating Ψ at the CM-point of discriminant −4 using Schofer’s
formula, we can determine the ratio of the two modular forms. Then evaluating at
other CM-points, we obtain the special values of hypergeometric functions.
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CY-Operators and L-Functions

Duco van Straten

Abstract This a write up of a talk given at the MATRIX conference at Creswick
in 2017 (to be precise, on Friday, January 20, 2017). It reports on work in progress
with P. CANDELAS and X. DE LA OSSA. The aim of that work is to determine, under
certain conditions, the local Euler factors of the L-functions of the fibres of a family
of varieties without recourse to the equations of the varieties in question, but solely
from the associated Picard–Fuchs equation.

1 Introduction

It is very honourable to speak the last words in this nice conference; surely these
words are not the last on hypergeometrics, but rather represents a further exploration
into Transhypergeometria, the unknown land of our dreams. I will report on joint
work in progress with CANDELAS and DE LA OSSA [9]. I will start with some
motivation.

2 Elliptic Curves Versus Rigid Calabi–Yau Threefolds

Elliptic curves and rigid Calabi–Yau manifolds share many common features. As a
topological space, an elliptic curve is isomorphic to S1 ×S1 and a rigid Calabi–Yau
threefold is a bit like S3 × S3, at least what its third cohomology is concerned.
On the arithmetic level, an elliptic curve E defined over Q determines a two
dimensional motive H 1(E) and in a similar way a rigid Calabi–Yau threefold X
defined over Q produces a two dimensional motive H 3(X). There are Hodge and
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p-adic realisations, giving rise to L-functions that come from classical modular
forms for some Γ0(N).

Space Motive Hodge Frobenius Weil Hecke

E/Q H 1(E) 0 1 1 0 T 2 − apT + p |ap | ≤ p1/2 L(H 1(E)) = L(f ), f ∈ S2(Γ0(N))

X/Q H 3(E) 1 0 0 1 T 2 − apT + p3 |ap | ≤ p3/2 L(H 3(X)) = L(f ), f ∈ S4(Γ0(N))

By the great theorem of WILES [35, 36] we know that all elliptic curves over Q
are modular, and by further development of these methods, it was shown that rigid
Calabi–Yau threefolds defined over Q are also modular [14, 17].

However, there are also big differences between these two cases. Elliptic curves
depend on a single modulus and form nice families. Classical normal forms are
provided by the Legendre family

Lλ : y2 = x(x − 1)(x − λ)

or the Hesse family

Hλ : x3 + y3 + z3 + λxyz = 0 ,

where λ is the parameter.
On the other hand, as by definition h12 = 0, rigid Calabi–Yau spaces do not

admit any non-trivial deformations, and their occurrence is sporadic. No general
description or construction is known for them. We refer to [23, 37] for an overview
of the exciting bestiary.

Question

Which weight four cups forms appear as modular form of rigid Calabi–Yau
manifolds?

For example, as can be seen from consulting [23], there are many different rigid
Calabi–Yau varieties leading to the weight four cusp form for Γ0(6), but I do not
know of any rigid Calabi–Yau threefold realising the weight four cusp form for
Γ0(7).

2.1 How Can Rigid Varieties Appear in a Pencil?

Let us look at an example. The famous Schoen quintic X1 studied in [29] is the
degree 5 hypersurface in P

4 given by the equation

X1 : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 5x1x2x3x4x5.

It is easily seen to have the 125 points

x5
i = 1, x1x2x3x4x5 = 1



CY-Operators and L-Functions 493

as nodal singularities. There exists a small resolution π : X −→ X1 that replaces
each node by a projective line P1.X is a rigid Calabi–Yau threefold: the infinitesimal
deformations of X can be identified with the infinitesimal deformations of X1 for
which the nodes lift, which are none. For small prime numbers the Euler factors
of the L-function can be determined counting points of X1 and correcting these
counts to get the numbers of points of the resolved manifold X. As the Galois
representation is determined by finitely many Euler factors, it was found that
the L(H 3(X1)) = L(f ) for some f ∈ S4(Γ0(25)), which was identified by C.
SCHOEN.

Now note that the quintic X1 (and not X) is a member of the even more famous
Dwork pencil

Xψ : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 5ψx1x2x3x4x5

that stands at the beginning of the mirror symmetry story, for which we refer to
[8, 11, 24, 33]. The third cohomology of Xψ is the direct sum of two pieces

H 3(Xψ) = V ⊕ F .

Here the part F has Hodge numbers 0 100 100 0, and the part V has Hodge
numbers 1 1 1 1. The Picard–Fuchs equation for this part leads to the
hypergeometric differential equation

P := Θ4 − 55t (Θ + 1

5
)(Θ + 2

5
)(Θ + 3

5
)(Θ + 4

5
), t = 1/(5ψ)5, Θ = t

d

dt
,

which describes a variation of Hodge structures (VHS) over S := P
1\{0, 1/55,∞}.

At the three singular points these Hodge structures degenerate into mixed Hodge
structures (MHS) [30]. We refer to [25] for a detailed account of (mixed) Hodge
theory. Quite generally, the Jordan structure of the local monodromy determines the
weight filtration. At t = 0 we have a so-called MUM-point, the monodromy has a
maximal Jordan block. The mixed Hodge diamond looks like

1
0 0

0 1 0
0 0 0 0

0 1 0
0 0

1

(The weight is equal to the height in the diagram, counted by putting lowest row
at height zero; the operator N shifts two steps downwards.) The limiting mixed
Hodge structure is an iterated extension of Tate Hodge structures and it leads to
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the extension data described in [13] that are equivalent to the so-called instanton
numbers computed in [8].

At t = 1/55 there is a single Jordan block of size 2 (a C-point in the terminology
of [31]). The mixed Hodge-diamond for H 3 looks like:

0
0 0

0 1 0
1 0 0 1

0 1 0
0 0

0

So we see that the motiveGrW3 H
3 is like that of a rigid Calabi–Yau.

There is one further possible degeneration of a (1, 1, 1, 1)-VHS, that does not
appear in this family, namely where there are two Jordan blocks of size 2 (aK-point
in the terminology of [31]). The mixed Hodge diamond forH 3 now looks like

0
0 0

1 0 1
0 0 0 0

1 0 1
0 0

0

So GrW2 H
3 is a (1, 0, 1)-Hodge structure that looks like the one appearing for

K3-surfaces with Picard number 20.
One of the motivations to look at general motivic (1, 1, 1, 1)-variations over

S = P
1 \ Σ is the natural appearance of weight four and weight three cusp forms

for Γ0(N) at the boundary points Σ ⊂ P
1. Such motivic (1, 1, 1, 1)-variations are

expected to arise from Calabi–Yau operators.

3 Calabi–Yau Operators

Calabi–Yau operators, as understood in [3] and [31], are operators ‘like’ P . First of
all, they are fourth order Fuchian differential operators

P ∈ C[t,Θ], Θ = t
d

dt
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that are symplectic and have 0 as a MUM-point. If we look at it from the point
of view of differential operators, it is rather easy to satisfy these conditions, for
example by looking at operators of the form

P = Θ2PΘ2 +ΘQΘ + R ,

where P,Q,R are any polynomials with P(0) = 1. In order to classify as a Calabi–
Yau operator, one has to complement these easy conditions with further arithmetical
conditions that are supposed to hold if the operator is a Picard–Fuchs operator of a
1-parameter family of Calabi–Yau varieties defined over Q. In [3] the following
integrality conditions were put forward and used to define Calabi–Yau operators.

I. The holomorphic solution φ0(t) has an integral power-series expansion:

φ0(t) ∈ Z[[t]] .
II. The q-coordinate has an integral power series expansion

q(t) ∈ Z[[t]] .
III. The normalised instanton numbers become integral

n0 := 1, n1, n2, . . . , nd , . . .

after multiplication by a common denominator.

Furthermore, the case where all nd = 0, d ≥ 1 is considered as trivial, as in that case
P is the third symmetric power of a second order operator. In fact, it is more natural
to have coefficients in Z[ 1

N
], so to allow denominators involving a finite set of bad

primes. Currently more than 500 operators are known that seem to satisfy these three
conditions (see [2, 4, 10]), but condition III is not proven to hold in a single case. The
first condition should already imply that the operator is of geometric origin, see [5].
There are many examples of operators that satisfy I , but not II. In a good number
of cases integrality of the q-coordinate have been proven [12, 21]. For some time it
was expected that condition III was implied by I and II, until MICHAEL BOGNER

[6] found an operator that satisfies I and II, but for which III appears to fail. There
exists an unpublished paper [34] in which it is claimed that Picard–Fuchs operators
coming from families of Calabi–Yau varieties indeed satisfy these three arithmetical
conditions.

Of course, one can also look at differential operators of order different from four,
and try to single out a particular nice sub-class of Calabi–Yau operators of arbitrary
order. For an account, we refer to [1, 6] and [7].

A particular nice example is operator AESZ 34

Θ4 − t (35Θ4 + 70Θ3 + 63Θ2 + 28Θ + 5)+
+t2(Θ + 1)(259Θ2 + 518Θ + 235)− 53t3(Θ + 1)2(Θ + 2)2
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that was reported to us long ago by VERRILL [32]. It turned up prominently at this
conference, as it is associated to the five-fold banana FEYNMAN graph. As such,
it is part of a very nice series of Calabi–Yau operators that exist for all orders. Its
Riemann symbol (see [18, 19]) is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 1/25 1/9 1 ∞
0 0 0 0 1
0 1 1 1 1
0 1 1 1 2
0 2 2 2 2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

and the holomorphic solution has an expansion of the form

φ0(t) =
∞∑
n=0

Ant
n, An :=

∑
i+j+k+l+m=n

(
n!

i!j !k!l!m!
)2

.

As for all Calabi–Yau operators, there is a unique Frobenius basis of solutions
around 0 of the form

φ0(t) = f0(t)

φ1(t) = log(t)φ0(t)+ f1(t)

φ2(t) = log(t)2φ0(t)+ 2 log(t)φ1(t)+ f2(t)

φ3(t) = log(t)3φ0(t)+ 3 log(t)2φ1(t)+ 3 log(t)φ2(t)+ f3(t)

where f0(t) ∈ Z[[t]], fi(t) ∈ tQ[[t]] (i = 1, 2, 3).

The points 1/25, 1/9, 1 are C-points: there appears a single logarithm ‘between’
the two equal exponents. The point ∞ is a K-point: there are two logarithms, again
between the two pairs of equal exponents. At each of the conifold points should
appear a weight four modular form of some level, at ∞ there is a weight three
modular form.

4 Euler Factors from Picard–Fuchs Operators

It has been known from the work of DWORK [15, 16] that there is a very tight
link between the Frobenius operator and the Picard–Fuchs operator in a family
of varieties. For the sake of concreteness, let us consider as before a family Yt of
Calabi–Yau threefolds defined over Q with a MUM-point at 0 and let us fix a prime
p. Then the Frobenius operator

F := Fp ∈ Aut(H 3(Yt ))
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has a characteristic polynomial P(T ) = det(T − F) of the form

T 4 + aT 3 + bpT 2 + ap3T + p6 ∈ Z[T ] ,

where

a = ap(t) = T r(F ), b = bp(t) = (T r(F 2)− T r(F )2)/2p.

from which we get the local Euler factor

1 + ap−s + bp1−2s + ap3−3s + p6−4s

for the L-function of H 3(Yt ).

4.1 Unit Root Method

Let us suppose that the Frobenius polynomial is irreducible, but factors over Zp as

(T − u)(T − v)(T − p3/v)(T − p3/u) ∈ Zp[T ]

with ordp(u) = 0, ordp(v) = 1. Then u is called the unit-root and according
to DWORK [16], this unit root u = u(t) can be computed from the holomorphic
solution φ0(t) using p-adic analytic continuation of

φ0(t)

φ0(tp)

and evaluation at Teichmüller lift t̃ of t ∈ P
1 (avoiding singular and supersingular

values of t .) Dwork’s unit-root method has been clarified by KATZ [20] by
formulating it in terms of crystals. In her thesis, SAMOL [26] used this method
to compute Euler factors for many families of Calabi–Yau varieties, using only
the Picard–Fuchs equation. One of the important discoveries she made was that
in many cases the method even worked at the singular points of the differential
equation, and thus managed to determine weight four forms attached to C-points of
Calabi–Yau operators [27]. The explicit control of the p-adic analytic continuation
can sometimes be obtained from Dwork congruences on the coefficients An of the
holomorphic solution. In the context of Calabi–Yau varieties defined by Laurent
polynomials such Dwork congruences can be shown to hold [22, 28].
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4.2 Deformation Method

The type of crystals we are considering are defined over a ring R, which is a certain
two-dimensional regular local sub-ring of Zp[[t]]. On R there are two operations:
the derivation

Θ : R −→ R, a → t
∂a

∂t

and the lifted Frobenius map

σ : R −→ R, a(t) → a(tp) .

One has

Θ ◦ σ = p σ ◦Θ .

We will consider a free R-module of rank four H , a non-degenerate symplectic
pairing

〈−,−〉 : H ×H −→ R

and two operations

∇ : H −→ H, F : H −→ H

that we call the Gauss-Manin and Frobenius. The operator ∇ a connection, so is
supposed to satisfy the appropriate Leibniz rule, whereas F is σ -linear. These three
structures are required to satisfy the following compatibilities

(i) Θ〈x, y〉 = 〈∇x, y〉 + 〈x,∇y〉.
(ii) p3〈x, y〉 = 〈Fx, Fy〉.

(iii) ∇F = p F∇.

Furthermore, we will have a Hodge-filtration

Fil3 ⊂ Fil2 ⊂ Fil1 ⊂ Fil0 = H

with

∇(F ili) ⊂ Fili−1, F (F ili ) ⊂ piH .

The first part of the structure may be called a polarised F-crystal, including
the filtration makes us speak about a polarised divisible Hodge F-crystals
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(Fontaine-Lafaille crystals), we will call it a CY-crystal for short. Let us try to
associate such a structure to a differential operator of the form

P := Θ4 + tP1(Θ)+ t2P2(Θ)+ . . .+ trPr (Θ) .

For this, we write everything out in MATRIX-form. We let

H :=
3∑
i=0

Rφi ,

where the φi are abstract basis vectors, that behave with respect to differentiation as
the Frobenius basis of P . Writing out the action of Θ on them, we can construct
the companion matrix A(t) for the connection ∇ on H corresponding to P:

∇ = t
d

dt
− A(t) ,

where A(t) is of the form

A(t) =

⎛
⎜⎜⎝

0 0 0 ∗
1 0 0 ∗
0 1 0 ∗
0 0 1 ∗

⎞
⎟⎟⎠ = A0 + A1t + A2t

2 + . . .+ Art
r ∈ Q[t]4×4 .

Because of the MUM-condition, we have

A0 = N =

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ .

The matrixΣ of the symplectic form at t = 0 can be taken to be of the form

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ .

We now write the Frobenius matrix in a series

F = F(t) = F0 + F1t + F2t
2 + . . .
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The above conditions, especially the Griffiths transversality and divisibility, lead to
a very specific form for the constant term F0:

F0 =

⎛
⎜⎜⎝

ξ 0 0 0
pα ξp 0 0
p2β p2α ξp2 0
p3γ p3β p3α ξp3

⎞
⎟⎟⎠ ,

where ξ2 = 1 and ξβ = α2/2. One give an explicit formula for the series F(t) as

F(t) = E(tp)−1F0E(t) ∈ Q[t]4×4 ,

where the matrixE(t) is a modification of the fundamental matrix for the differential
equation

Ẽjk = Θkφj =

⎛
⎜⎜⎝
φ0 Θ(φ0) Θ

2(φ0) Θ
3(φ0)

φ1 Θ(φ1) Θ
2(φ1) Θ

3(φ1)

φ2 Θ(φ2) Θ
2(φ2) Θ

3(φ2)

φ3 Θ(φ3) Θ
2(φ3) Θ

3(φ3)

⎞
⎟⎟⎠ ∈ Q[[t]][log t]4×4 .

This matrix reduces mod t to E0
jk := Θk logj (t)/j ! and we set

E := (E0)−1Ẽ = “Ẽ
∣∣∣
log(t)=0

”.

In all examples we have computed so far, we could make the following

Observations

• All terms of the series F(t) are p-adically integral (depending linearly on
α, β, γ .)

• One can write

F(t) = ϕ(t)

Δ(t)p−1 mod p3 ,

where ϕ(t) ∈ (Z/p3)[t]4×4 is a polynomial matrix and Δ(t) is the discriminant
of the operator P .

• The poles cancel at all singularities of P , except for the apparent singularities.
So if P does not have apparent singularities, the matrix F(t) mod p3 is in fact
polynomial.

• We can ‘trivially’ read off

a(t) = −T rF (t) mod p3 , b(t) = (T r(F (t)2)− T r(F (t))2)/2p mod p3
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and these do not depend on the choice of α, β, γ (this was already observed in
[26].) This suffices to determine the local Euler factor at p for p ≥ 5.

Using this, we can compute Euler factors even at the singular points, as long as
they are not apparent singularities. In particular, it works at the conifold points and
we do not have to care about super-singular behaviour. For example, for the above
mentioned operator AESZ 34 one finds characteristic polynomials of Frobenius of
the form

T (T − pχ(p))(T 2 − apT + p3)

for some character χ . We find

1/25 1/9 1
a7 32 −16 −16
a11 −60 12 12
a13 −34 38 38
a17 42 −126 −126

So we recognise, using the table in [23], the weight four cusp forms 6/1 for Γ0(6)
at t = 1 and t = 1/9, and the form 30/1 for Γ0(30) at t = 1/25.

4.3 Lifting to Higher Order

Let us set α = β = 0 and ξ = 1, but keep γ as a parameter. It appears that there is
a unique choice for γ mod p for which

F(t) = ϕ(t)m(p)

Δ(t)�(p)
mod p4

where �(p) is a small slope linear functions of p and ϕ(t)m(p) is a matrix-
polynomial of small degree m(p) linear in p. For all other choices of γ this
structure seems to get lost. By playing the same game modulo p5, p6, p7, etc, we
can determine a number γ modulo p2, p3, etc. Continuing this way, we obtain a
well-defined p-adic number γ that goes into the Frobenius matrix at the MUM-
point:

F0 =

⎛
⎜⎜⎝

1 0 0 0
0 p 0 0
0 0 p2 0
γ 0 0 p3

⎞
⎟⎟⎠
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For the quintic and p = 11 one finds

γ = 2 + 2 · 11 + 3 · 112 + 7 · 113 + 5 · 114 + 5 · 115 + 6 · 116 + . . .

Recall the relation between the p-adic ζ(3) and the p-adic gamma function:

−2ζp(3) = logΓ ′′′
p (0) = Γ ′′′

p (0)− Γ ′
p(0)

3 .

The following marvellous miracle seems to take place:

Observation

• γ = r · ζp(3).
• r = c3(X)/d , where d is the degree of the mirror manifold.

For the quintic r = 200/5 = 40. This is reminiscent of a very similar matrix
describing the hermitian form 〈x, y〉, where · is the Frobenius at ∞, that is, complex
conjugation, and the real ζ(3) appears at the place of ζp(3)!

This is the end of the talk and of the conference, but I feel it is the beginning of
something great.

During the conference we have seen some amajzing maths, we had a great taam,
it was really a naas workshop.

Acknowledgement A great thank to the organisers Masha, Ling and Wadim!
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A Matrix Theoretic Derivation
of the Kalman Filter

Johnathan M. Bardsley

Abstract The Kalman filter is a data analysis method used in a wide range of
engineering and applied mathematics problems. This paper presents a matrix-
theoretic derivation of the method in the linear model, Gaussian measurement error
case. Standard derivations of the Kalman filter make use of probabilistic notation
and arguments, whereas we make use, primarily, of methods from numerical
linear algebra. In addition to the standard Kalman filter, we derive an equivalent
variational (optimization-based) formulation, as well as the extended Kalman filter
for nonlinear problems.

1 Introduction

We start with the standard linear model with Gaussian measurement error:

b = Ax + e, (1)

where b ∈ R
m is measured data; A ∈ R

m×n is a known observation matrix; x ∈ R
n

is the unknown parameter vector to be estimated; e ∈ R
m is a zero-mean Gaussian

random vector with covariance matrix Ce, which we denote by e ∼ N (0,Ce); and
x ∈ R

n is the unknown vector that is to be estimated.
The standard technique for estimating x, known as least squares estimation,

was developed by Gauss in his study of planetary motion [1]. The extension of
least squares estimation to the case when the unknown x is also assumed to be
a Gaussian random vector, which will be the case for us, is known as minimum
variance estimation [4].
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In the study of time varying phenomena, it is natural to generalize (1) as follows:

xk = Mkxk−1 + Ek, (2)

bk = Akxk + ek, (3)

where Eq. (3) is defined analogous to (1) for each k; and in (2), Mk ∈ R
n×n is the

known evolution matrix, xk−1 is a Gaussian random vector, and Ek ∼ N (0,CEk ).
The Kalman filter [2, 5] is the extension of minimum variance (and hence least
squares) estimation to the problem of sequentially estimating {x1, x2, . . .} given data
{b1,b2, . . .} arising from the model in (2), (3). For the interested reader, a discussion
of the progression of ideas from Gauss to Kalman is the subject of the excellent
paper [3].

This paper is organized as follows. First, in Sect. 2, we present the basic statistical
definitions and results that we will need in our later discussion. In Sect. 3, we define
the minimum variance estimator, which we then apply to (2), (3) to derive the
Kalman filter in Sect. 4. Finally, we present an equivalent formulation of the Kalman
filter, which we call the variational Kalman filter, as well as the extended Kalman
filter for the case when (2), (3) contain nonlinear evolution and/or observation
operators.

2 Statistical Preliminaries

Let x = (x1, . . . , xn)
T be a random vector with E(xi) the mean of xi and E((xi −

μi)
2), where μi = E(xi), its variance. The mean of x is then defined E(x) =

(E(x1), . . . , E(xn))
T , while the n× n covariance matrix of x is defined

[cov(x)]ij = E((xi − μi)(xj − μj)), 1 ≤ i, j ≤ n.

Note that the diagonal of cov(x) contains the variances of x1, . . . , xn, while the off
diagonal elements contain the covariance values. Thus if xi and xj are independent
[cov(x)]ij = 0 for i �= j .

The n × m cross correlation matrix of the random n-vector x and m-vector y,
which we will denote Γxy, is defined

Γ xy = E(xyT ), (4)

where [E(xyT )]ij = E(xiyj ). If x and y are independent, then Γ xy is the zero
matrix. Furthermore,

E(x) = 0 implies Γ xx = cov(x). (5)
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Finally, given an m × n matrix A and a random n-vector x, it is not difficult to
show that

cov(Ax) = Acov(x)AT . (6)

We end these preliminary comments with the probability density function of
primary interest to us in this paper, the Gaussian distribution. If b is an n × 1
Gaussian random vector, then its probability density function has the form

pb(b;μ,C) = 1√
(2π)n det(C)

exp

(
−1

2
(b − μ)TC−1(b − μ)

)
, (7)

where μ ∈ R
n is the mean of b; C is an n×n symmetric positive definite covariance

matrix of b; and det(·) denotes matrix determinant. As above, we will use the
notation b ∼ N (μ,C) in this case. For more details on introductory mathematical
statistics, see one of many introductory mathematics statistics texts.

3 Minimum Variance Estimation

First, we consider model (1). When x is assumed to be deterministic, it is a standard
exercise to show that if A has full column rank, the least squares estimator is given
by

xls = (AT A)−1AT b.

However, we are interested in the case in which x ∼ N (0,Cx). We assume,
furthermore, that x and e are independent random variables. We now define the
minimum variance estimator of x.

Definition 1 Suppose b is defined as in (1), x ∼ N (0,Cx), and e and x
independent random vectors. Then the minimum variance estimator of x given b
has the form

xest = B̂b,

where B̂ ∈ R
n×m solves the optimization problem

B̂ = arg min
B∈Rn×m

E
(
‖Bb − x‖‖2

2

)
.

Because our model (1) is a linear model with Gaussian measurement error, B̂ has an
elegant closed form, as described in the following theorem.
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Theorem 1 If Γ bb is invertible, then the minimum variance estimator of x from b
is given by

xest = (Γ xbΓ −1
bb )b.

Proof First, we note that

E(‖Bb − x‖2
2) = trace

(
E[(Bb − x)(Bb − x)T ]

)
,

= trace
(

BE[bbT ]BT − BE[bxT ] − E[xbT ]BT + E[xxT ]
)
.

Then, using the distributive property of the trace function and the identity

d

dB
trace(BTC) =

(
d

dB
trace(BC)

)T
= C,

we see that dE(‖Bb − x‖2)/dB = 0 when

B̂ = Γ xbΓ −1
bb ,

which establishes the result.

In the context of (1), and given our assumptions stated above, we can obtain a more
concrete form for the minimum variance estimator. In particular, we note that since
x and e are assumed to be independent, Γ xe = Γ ex = 0. Hence, using (1), we obtain

Γ xb = E[x(Ax + e)T ],
= Γ xxAT .

Similarly,

Γ bb = E[(Ax + e)(Ax + e)T ],
= AΓ xxAT + Γ ee.

Thus, since Γ xx = Cx and Γ ee = Ce, the minimum variance estimator has the form

xest = B̂b

= CxAT (ACxAT + Ce)
−1b,

= (ATC−1
e A + C−1

x )−1AT C−1
e b. (8)

We note, in passing, that (8) can also be expressed as

xest = arg min
x

{
‖Ax − b‖2

C−1
e

+ ‖x‖2
C−1

x

}
, (9)
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where “arg min” denotes “argument of the minimum” and ‖x‖2
C

def= xTCx.
This establishes a clear connection between minimum variance estimation and
generalized Tikhonov regularization [4]. Note in particular that if Ce = σ 2

1 I and
Cx = σ 2

2 I, problem (9) can be equivalently expressed as

xest = arg min
x

{
‖Ax − b‖2

2 + (σ 2
1 /σ

2
2 )‖x‖2

2

}
,

which has classical Tikhonov form. This formulation is also equivalent to maximum
a posteriori (MAP) estimation.

4 The Kalman Filter

In the previous section, we considered the stationary linear model (1), but suppose
our model now has the form (2), (3). Equation (2) is the equation of evolution for
xk with Mk the n × n linear evolution matrix, and Ek ∼ N (0,CEk ). In Eq. (3),
bk denotes the m × 1 observed data, Ak the m × n linear observation matrix, and
ek ∼ N (0,Cek ). In both equations, k denotes the time index.

The problem is to estimate xk at time k from bk and an estimate xestk−1 of the
state at time k − 1. We assume xestk−1 ∼ N (xk−1,Cestk−1). To facilitate a more
straightforward application of the result of Theorem 1, we rewrite (2), (3). First,
define

xak = Mkxestk−1 (10)

zk = xk − xak , (11)

rk = bk − Akxak . (12)

Then, subtracting (10) from (2) and Akxak from both sides of (3), and dropping the
k dependence for notational simplicity, we obtain the stochastic linear equations

z = M(x − xest )+ E, (13)

r = Az + e. (14)

The minimum variance estimator of z from r given (13), (14) is then given, via
Theorem 1 (note that z is a zero mean Gaussian random vector), by

zest = Γ zrΓ
−1
rr r.
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We assume that x − xest is independent of E, and that z = x − xa is independent of
e. Then, from (4), (5), (6), (13) and (14), we obtain

Γ zz = MCestMT + CE
def= Ca, (15)

Γ zr = CaAT ,

Γ rr = ACaAT + Ce.

where Cest and Ca are the covariance matrices for xest and xa , respectively. Thus,
finally, the minimum variance estimator of z is given by

zest = CaAT (ACaAT + Ce)
−1r, (16)

From (16) and (11) we then immediately obtain the Kalman Filter estimate of x
given by

xest+ = xa + H(b − Axa), (17)

where

H = CaAT (ACaAT + Ce)
−1 (18)

is known as the Kalman Gain matrix.
Finally, in order to compute the covariance of xest+ , we note that by (17) and (3),

xest+ = (I − HA)xa + He + HAx,

where x is the true state. Given our assumptions and using (6), the covariance then
takes the form

Cest+ = (I − HA)Ca(I − HA)T + HCeHT ,

which can be rewritten, using the identity HCeHT = (I − HA)CaATHT , in the
simplified form

Cest+ = Ca − HACa. (19)

Incorporating the k dependence again leads directly to the Kalman filter iteration.
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The Kalman Filter Algorithm
Step 0: Select initial guess xest0 and covariance Cest0 , and set k = 1.

Step 1: Compute the evolution model estimate and covariance:
A. Compute xak = Mkxestk−1;
B. Compute Cak = MkCestk−1MT

k + CEk := Cak .

Step 2: Compute the Kalman filter estimate and covariance:
A. Compute the Kalman Gain Hk = CakATk (AkC

a
kATk + Ce)

−1;
B. Compute the estimate xestk = xak + Hk(bk − Akxak);
C. Compute the estimate covariance Cestk = Cak − HkAkCak .

Step 3: Update k := k + 1 and return to Step 1.

4.1 A Variational Formulation of the Kalman Filter

As in the stationary case (see (8), (9)), we can rewrite Eq. (16) in the form

zest = (ATC−1
e A + (Ca)−1)−1ATC−1

e r,

which, yields, using (11), the Kalman filter estimate

xest+ = xa + [AT C−1
e A + (Ca)−1]−1AT C−1

e (b − Axa),

= arg min
x

{
�(x) def= 1

2
(b − Ax)T C−1

e (b − Ax)+ 1

2
(x − xa)T (Ca)−1(x − xa)

}
.

It can be shown using a Taylor series argument that

xest+ = xa − ∇2�(xa)−1∇�(xa), (20)

where ∇� and ∇2� denote the gradient and Hessian of � respectively, and are given
by

∇�(x) = ATC−1
e (b − Ax)+ (Ca)−1(x − xa),

∇2�(x) = ATC−1
e A + (Ca)−1.

By the matrix inversion lemma, we have

(ATC−1
e A + (Ca)−1)−1 = Ca − CaAT (ACaAT + Ce)−1ACa.
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Then from Eqs. (18) and (19), we obtain the interesting fact that

Cest+ = ∇2�(x)−1. (21)

This allows us to define the following equivalent formulation of the Kalman filter,
which we call the variational Kalman filter.

The Variational Kalman Filter Algorithm
Step 0: Select initial guess xest0 and covariance Cest0 , and set k = 1.

Step 1: Compute the evolution model estimate and covariance:
A. Compute xak = Mkxestk−1;
B. Compute Cak = MkCestk MT

k + CEk := Cak .

Step 2: Compute the Kalman filter estimate and covariance:
A. Compute the estimate xestk = arg minx �(x);
C. Compute the estimate covariance Cestk = ∇2�(x)−1.

Step 3: Update k := k + 1 and return to Step 1.

A natural question is, what is the use of this equivalent formulation of the Kalman
filter? Theoretically there is no benefit gained in using the variational Kalman
filter if the estimate and its covariance are computed exactly. However, with the
variational approach, the filter estimate, and even its covariance, can be computed
approximately using an iterative minimization method, such as conjugate gradient.
This is particularly important for large-scale problems where the exact Kalman filter
is prohibitively expensive to compute.

4.2 The Extended Kalman Filter

The extended Kalman filter is the extension of the Kalman filter when (2), (3) are
replaced by

xk = M (xk−1)+ Ek, (22)

bk = A (xk)+ ek, (23)

where M and A are (possibly) nonlinear functions. The extended Kalman filter is
obtained by the following simple modification of either of the above algorithms: in
Step 1, A use, instead, xak = M (xestk ), and define

Mk = ∂M (xestk−1)

∂x
, and Ak = ∂A (xak)

∂x
, (24)

where ∂f
∂x denotes the Jacobian of f .
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5 Conclusions

We have presented a derivation of the Kalman filter that utilizes matrix analysis
techniques as well as the Bayesian statistical approach of minimum variance
estimation. In addition, we presented an equivalent variational formulation, which
we call the variational Kalman filter, as well as the extended Kalman filter for
nonlinear problems.
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Approximate Bayesian Computational
Methods for the Inference of Unknown
Parameters

Yuqin Ke and Tianhai Tian

Abstract Recent advances in biology, economics, engineering and physical sci-
ences have generated a large number of mathematical models for describing the
dynamics of complex systems. A key step in mathematical modelling is to estimate
model parameters in order to realize experimental observations. However, it is
difficult to derive the analytical density functions in the Bayesian methods for these
mathematical models. During the last decade, approximate Bayesian computation
(ABC) has been developed as a major method for the inference of parameters in
mathematical models. A number of new methods have been designed to improve
the efficiency and accuracy of ABC. Theoretical studies have also been conducted
to investigate the convergence property of these methods. In addition, these methods
have been applied to a wide range of deterministic and stochastic models. This
chapter gives a brief review of the main ABC algorithms and various improvements.

1 Introduction

Since more and more natural and social science problems involve the uncertainty
in observations, statistical models and parameter inference play an important role
in the development of mathematical methods for studying real-world problems.
In particular, the era of big data has generated huge amount of data whose
volume is increasing at a very fast speed. Mathematical and statistical models are
becoming more and more complex in terms of the network size and regulatory
relationships. Thus effective and efficient methods are strongly needed to infer
unknown parameters in these models in order to reduce the simulation errors against
the experimental data.

There are two major types of inference methods, namely the optimization
methods and Bayesian statistical methods. The optimization methods are designed
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to minimize an objective function by searching for parameters within a given
parameter space in a directed manner. The inferred set of parameters produces
the best fit to the experimental data [30]. A variety of effective approaches have
been developed in recent years. Among them, the genetic algorithm is a popular
and effective approach and has been widely applied to various models [49]. These
methods all share two main ingredients: a cost function for specifying the distance
between simulated data and experimental data and an optimization algorithm for
searching for parameters in order to optimize the cost function. However, when the
landscape of the cost function is complex, it is difficult for these methods to find
the global optimum. To tackle this challenge, the global optimization methods have
been proposed to explore the complex surfaces as widely as possible. Comparison
studies have been conducted to examine the efficiency of several global optimization
algorithms for the test models [21].

Compared with the optimization methods, the Bayesian inference methods can
estimate the probability distributions of parameters by using the Bayes’ rule to
update the prior probability estimates. In addition, Bayesian methods are more
robust in dealing with stochastic models and/or experimental data with noise
[22, 54]. In recent years Bayesian methods have been successfully used in a diverse
range of fields and provide the promise to applications [47]. The recent advances in
approximate Bayesian computation (ABC) provide effective methods without any
restriction on the requirement of the likelihood function [7, 16, 32, 41, 51]. This
chapter provides a brief review for the recent development in ABC, including the
rejection ABC, regression ABC, Markov chain Monte Carlo (MCMC) ABC and
sequential Monte Carlo (SMC) ABC. We also discuss the relevant improvements
and extensions of these methods, such as the choice of summary statistics.

2 Principle of Bayesian Inference

For the Bayesian inference problems, model parameters are treated as random
quantities along with the observation data. The Bayesian inference involves the
estimation of the posterior probability

p(θ |y) = p(y|θ)π(θ)
p(y)

∝ p(y|θ)π(θ), (1)

where y is the observation data and the parameter vector of the model is θ (θ ∈
Θ ⊆ R

q, q ≥ 1). In addition, π(θ) is the prior distribution representing the prior
beliefs about the parameters under investigation, and p(y|θ) is a likelihood function
of parameter θ . The marginal distribution, defined by

p(y) =
∫
θ∈Θ

p(y|θ)π(θ)dθ (2)
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often involves a high-dimensional integral, and p(θ |y) is the posterior probability
distribution which expresses the uncertainty regarding θ conditional on the observed
experimental data y. All the Bayesian inference about θ will be based on the esti-
mated p(θ |y). However, the integrations which produce the Bayesian quantities of
interest (such as marginal posteriors, marginal moments, and probability intervals)
can only be performed analytically when the density function p(y|θ) is available,
which can be achieved only for relatively simple cases.

When the density function p(y|θ) is available, the classic Metropolis-Hasting
algorithm is applied to find a Markov chain of the parameters, which is given below.

Algorithm 1 Metropolis-Hasting algorithm
Given the observation data yobs , proposal distribution q(·), and an initial sample from the prior
distribution θ(0) ∼ π(θ).

At iteration i ≥ 0

1. Generate a sample from the proposal distribution θ
′ ∼ q(θ |θ(i)).

2. Draw a sample from the uniform distribution μ ∼ U(0, 1) and calculate the ratio

α = min(1,
π(θ ′)p(yobs |θ ′)q(θ(i)|θ ′)
π(θ(i))p(yobs |θ(i))q(θ ′ |θ(i)) ). (3)

3. If μ ≤ α, accept the sample as θ(i+1) = θ
′
; otherwise reject the sample.

4. Repeat steps 1 ∼ 3 until the required number of posterior samples is obtained.

Based on the classic Metropolis-Hasting algorithm, a number of more sophis-
ticated methods have been designed, such as the Markov chain Monte Carlo
(MCMC), the importance sampling (IS), and the sequential Monte Carlo (SMC)
[20, 42]. The MCMC sampling methods usually break a high-dimensional problem
into a number of smaller dimensional problems and generate a sample of dependent
or correlated draws which can be treated as a realization of a Markov chain with
equilibrium distribution equal to p(θ |y). Once the convergence to p(θ |y) occurs,
any subsequent simulated value can be viewed as a sample from p(θ |y) and all
these samples are used to estimate the posterior quantities of interest.

An alternative approach is the Gibbs sampling if the marginal distribution of
each parameter is available. In the basic version, the Gibbs sampling is a special
case of the Metropolis-Hastings algorithm. However, in its extended versions, these
methods can be considered as a framework for sampling each variable (or more
generally, each group of variables) from a number of variables in turn. It can
also be incorporated into the Metropolis-Hastings algorithm (or other methods) to
implement in one or more sampling steps. The detail of this algorithm is given
below.
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Algorithm 2 Gibbs sampling

Given the observation data yobs , and an initialize sample from the prior distribution θ(0) =
(θ
(0)
1 , · · · , θ(0)p )T ∼ π(θ).

At iteration i ≥ 0

1. Generate a sample for θ(i+1)
1 using

θ
(i+1)
1 ∼ π(θ1|θ(i)2 , · · · , θ(i)p , yobs).

2. For j = 2, . . . , p − 1, sample for θ(i+1)
j using

θ
(i+1)
j ∼ π(θj |θ(i+1)

1 , . . . , θ
(i+1)
j−1 , θ

(i)
j+1, · · · , θ(i)p , yobs).

3. Generate a sample for θ(i+1)
p using

θ(i+1)
p ∼ π(θp |θ(i+1)

1 , θ
(i+1)
2 , · · · , θ(i+1)

p−1 , yobs).

4. Repeat steps 1 ∼ 3 until the required number of posterior samples is obtained.

Although these Bayesian inference methods are effective, they are based on the
availability of the likelihood function. However, it may be difficult to derive the
likelihood function directly for many complex models. For example, the analytical
density function may not be available, or it may be expensive to calculate the
likelihood. In some cases, the observed experimental data are insufficient to obtain
a tractable likelihood. This intractability prohibits the direct implementation of a
generic MCMC algorithm.

3 Rejection ABC Method

To deal with complex models without analytical likelihood, a number of algorithms
have been developed during the past two decades, which are referred to as the
likelihood-free inference or Approximate Bayesian Computation (ABC). The ABC
method is based on the following intuition: namely if a sample of the unknown
parameter produces the simulation that matches the observed dataset, this sample
should be close to the exact value of the parameter. Conversely, if the simulated
dataset differs from the observed data substantially , this sample should not be
considered as the estimate of the parameter. Thus the method strongly relies on the
metric to determine the distance between simulated dataset and observed dataset.
In the late 90s, ABC was first introduced as a rejection technique bypassing the
computation of the likelihood function [48]. Later, Pritchard et al. proposed a
generalisation based on an approximation of the target [40]. In recent years, the ABC
methods have been proposed with various improvements and have been applied to a
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wide range of application fields, such as population genetics, ecology, epidemiology
and systems biology [2, 3, 17, 25, 27].

The ABC spirit is based on the following algorithm [43].

Algorithm 3 Likelihood-free rejection sampling
Given the observation data yobs , and prior distribution π(θ).

1. Generate a sample from the prior distribution θ ′ ∼ π(θ).
2. Simulate the model using θ ′ to get a dataset x ∼ p(x|θ ′).
3. Accept the sample θ ′ if x = yobs , otherwise reject it.
4. Repeat the above steps until the required number of posterior samples is obtained.

In this paper Rubin just exhibited this algorithm as an intuitive way to understand
the posterior distributions from a frequentist perspective rather than using it for
interring models where the likelihood function was not available [43]. Then Tavaré
et al. proposed an implementation of the rejection algorithm for the Bayesian
inference of parameters in population genetics. When the data are discrete and of
low dimension, this algorithm is effective. However, the probability of acceptance
for a sample is usually very low.

As mentioned earlier, the rejection algorithm is dependent on a metric to measure
the distance between the simulation and observation data. For inference problems
with continuous distributions, or the datasets are high dimensional, it may be
necessary to use summary statistics to reduce the dimensionality. Pritchard et al.
suggested the prototype rejection-ABC algorithm as follows in a population genetics
setting [40].

Algorithm 4 Rejection ABC method
Given the observation data yobs , prior distribution π(θ), summary statistics s(·), tolerance level
ε > 0, and distance function ρ(·, ·)
1. Generate a sample from the prior distribution θ ′ ∼ π(θ).
2. Simulate the model using θ ′ to get a dataset x ∼ p(x|θ ′).
3. Calculate the distance between the simulation and experimental data ρ(s(x), sobs ) based on the

given summary statistics s(·).
4. Accept the sample θ ′ if

ρ(s(x), sobs ) < ε.

Otherwise reject the sample.
5. Repeat steps 1∼ 4 until the required number of posterior samples is obtained

The basic idea of ABC is to use summary statistics with a small tolerance
to produce a good proximation of the posterior distribution. The output is the
samples of parameters from the distribution p(θ |ρ(s(x), sobs) ≤ ε). The choice
of summary statistics is very important which we will discuss later. In addition, the
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tolerance ε in Algorithm 4 may determine the efficiency of ABC. The basic ABC
rejection algorithm may result in long computing time when a prior distribution is
far away from posterior distribution. In addition, there is no learning process in this
algorithm; and thus no information could be obtained from the previous accepted
samples of parameters. When the search space is complex, the convergence rate of
this algorithm may be very slow.

4 Regression ABC

To improve the efficiency of the rejection-ABC algorithm, Beaumont et al. [6]
introduced the regression approach by explicitly modeling the discrepancy between
the simulated summary statistics and that of the observed data through the following
algorithm.

Algorithm 5 Regression ABC
Given the observation data yobs , prior distribution π(θ), summary statistics s(·), tolerance level ε,
and distance function ρ(·).
1. Generate a sample from the prior distribution θ(i) ∼ π(θ).
2. Simulate the model using θ(i) to get a dataset x(i) ∼ p(x|θ(i)) and compute the summary

statistics s(i) = s(x(i)).
3. Repeat steps 1 and 2, until N pairs {θ(i), s(i)} are obtained.
4. Associate each pair (θ(i), s(i)) with a weight ω(i) ∝ Kε(ρ(s

(i) − sobs)). The weighted kernel
can be selected as:

Kε(t) =
{
ε−1(1 − (t/ε)2) t ≤ ε,

0 t > ε.

5. Apply a regression model to the n points, which have nonzero weights to obtain an estimate of
E(θ |s(x) = s(i)), denoted as m̂(s(i)).

6. Adjust each sample to

θ∗(i) = m̂(sobs)+ (θ(i) − m̂(s(i))).

7. Use {θ∗(i), ω(i)} to approximate the posterior distribution.

Here the samples θ(i) are adjusted with weights ω(i) > 0 to account for the
difference between simulated summary statistics and that of the observed data.
Beaumont et al. [6] suggested a local linear model in the region of sobs , given by

θ(i) = m(s(i))+ e(i),

m(s(i)) = α + βT (s(i) − sobs),
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where e(i) are zero-mean random variates with common variance, m(s) is the
conditional expectation of θ given s.

In this approach, the choice of ε involves a bias-variance trade-off, namely the
increase of ε will reduce the variance because of a larger sample size for fitting the
regression. However, this will also increases bias arising from the departure from
the linearity and homoscedasticity [8].

When the number of samples is not very large due to the computational
constraints, the homoscedastic assumption is no longer valid, because the neigh-
bourhood of samples where ω(i) �= 0 is too large. Thus Blum et al. [9, 10] extended
this algorithm to a nonlinear and heteroscedastic model, given by

θ(i) = m(s(i))+ σ(s(i))e(i),

where σ(s(i)) = V ar(θ |s(i)) denotes the conditional variance. The variance is then
estimated by using a second regression model for the logarithm of the squared
residuals, given by

log(θ(i) − m̂(s(i)))
2 = log(σ (s(i)))+ η(i),

where η(i) are independent, zero-mean variates with common variance. The param-
eter adjustment then can be performed as follows:

θ∗(i) = m̂(sobs)+ (θ(i) − m̂(s(i)))× σ̂ (sobs)

σ̂ (s(i))
, (4)

where σ̂ (s) denotes the estimator of σ(s). Here e plays the same role as for
homoscedastic model, but it has more flexibility on deviations from homoscedas-
ticity.

5 MCMC-ABC Algorithm

In the Rejection-ABC and Regression-ABC algorithms, parameter values are
sampled from the prior distribution. Thus the acceptance rate may be low if the
prior and posterior distributions are quite different. In fact, using samples from a
non-informative prior is very inefficient because this scheme does not account for
the data at the proposal stage and thus may lead to proposed values located in low
posterior probability regions. To address this issue, Marjoram et al. [33] introduced
the following MCMC-ABC algorithm.
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Algorithm 6 MCMC-ABC algorithm
Given the observation data yobs , summary statistics s(·), tolerance level ε, distance function ρ(·),
and proposal distribution q(·).
Initialize the first sample from the prior distribution θ(0) ∼ π(θ).

At iteration i ≥ 0

1. Generate a sample from the proposal distribution θ
′ ∼ q(θ |θ(i)) .

2. Simulate the model using θ
′

to get a dataset x ∼ p(x|θ ′
).

3. Draw a sample from the uniform distribution μ ∼ U(0, 1), and calculate the ratio

α = min(1,
π(θ

′
)q(θ(i)|θ ′

)

π(θ(i))q(θ
′ |θ(i)) × I (ρ(s(x), sobs ) ≤ ε)).

Here I (A) is an indicator function.
4. If μ ≤ α, accept the sample θ(i+1) = θ

′
; otherwise θ(i+1) = θ(i).

5. Repeat steps 1∼ 4 until the required number of posterior samples is obtained.

This algorithm has a similar structure as that of the standard MCMC. Both
algorithms use a proposal distribution and prior distribution to calculate the ratio.
The difference is that the density function is used in MCMC for computing the ratio,
while in MCMC-ABC we treat the ratio of density function as one if the simulation
error satisfies the criterion. Thus the performance of MCMC-ABC strongly depends
on the selection of proposal distribution and prior distribution.

A potential drawback of MCMC-ABC is the selection of tolerance level ε and
proposal distribution q(θ |θ(i)) that may lead to expensive pilot runs [26, 44]. The
convergence property of the generated chain (θ(1), · · · , θ (n)) is important because
MCMC algorithm may suffer if the proposal distribution is poorly chosen [14]. A
potential issue is that the chain may get stuck in a low probability region of the
posterior and lead to a poor approximation [18]. Since the proposed sample θ

′
must

meet two criteria, the rejection rate of the MCMC ABC may be extremely high.

6 SMC ABC

To tackle the challenges in MCMC-ABC, sequential Monte Carlo sampling tech-
niques have been introduced to ABC. Sequential Monte Carlo sampling differs
from the MCMC approach by using the technique of particle filtering. Rather than
drawing one candidate sample θ

′
at a step, this algorithm considers a pool with a

large number of samples (θ
′
1, · · · , θ

′
N) simultaneously and treats each sample as a

particle. Sisson et al. [45] proposed a method which embed ABC simulation steps
in Sequential Monte Carlo algorithm based on the theoretical work in [15]. This
method generates sample from a sequence of approximate ABC posteriors under
successively smaller acceptance tolerances [4, 46, 50]. SMC-ABC concentrates on
simulating a dataset from the parameter regions with relatively high acceptance
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probabilities and can adapt tuning choices such as acceptance tolerances during the
computation, which has potential advantages over the Rejection-ABC or MCMC-
ABC. Here we illustrate the algorithm of Beaumont et al. [4]:

Algorithm 7 SMC-ABC
Given the observation data yobs , summary statistics s(·), distance function ρ(·), tolerance
thresholds ε1 ≥ · · · ≥ εT , and density kernel K(·).
1. At iteration t = 1,

a. For i = 1, . . . , N , repeat:

i. Sample sample θ(1)i ∼ π(θ), and simulate dataset x ∼ p(x|θ(1)i ) .

ii. Accept θ(1)i if ρ(s(x), sobs ) ≤ ε1, otherwise reject this sample.

iii. Set weight ω(1)i = 1/N .

b. Take τ 2
2 as twice the empirical variance of the θ(1)i s

2. At iteration 2 ≤ t ≤ T

a. For i = 1, . . . , N , repeat:

i. Pick θ∗
i from θ

(t−1)
j s with probabilities ω(t−1)

j

ii. Generate sample θ(t)i ∼ K(θ |θ∗
i , τ

2
t ), and simulate a dataset x ∼ p(x|θ(t)i ).

iii. Accept θ(t)i if ρ(s(x), sobs ) ≤ εt , otherwise reject this sample.
iv. Set the weight of this accepted particle as

ω
(t)
i ∝

π(θ
(t)
i )∑N

j=1ω
(t−1)
j K(θ

(t)
i |θ(t−1)

j , τ 2
t )
.

b. Take τ 2
t+1 as twice the weighted empirical variance of the θ(t)i s.

At the first iteration, this algorithm draws samples from the prior distribution
π(θ), simulates the model using the sample, calculate summary statistics, and select
N samples that satisfy the error criterion. This step actually is the rejection-ABC
algorithm. However, at the subsequent iterations, samples are drawn from a density
kernelK(θ) based on the previous particle population. A Gaussian kernel is used in
Beaumont et al. [4], given by

K(θ
(t)
i |θ(t−1)

j , τ 2
t ) = ϕ{τ−1

t (θ
(t)
i − θ

(t−1)
j )},

where ϕ(·) is the density of a normal distribution. This algorithm effectively
performs the repeated importance sampling technique, which is also known as
population Monte Carlo [12]. Similar algorithms have been proposed by using
different formulas to calculate the weights and different kernel functions [4, 46, 50].

SMC-ABC has addressed a potential drawback of the rejection and regression
approaches. If the data are informative, the posterior distribution may be very narrow
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compared with the prior, then the rejection and regression algorithms may become
inefficient. Thus repeatedly sampling from a gradually improving approximation of
the posterior will make the distribution of summary statistics become closer to the
posterior distribution, and increase the density of samples whose summary statistics
is located in the vicinity of the target [5].

7 Choice of Summary Statistics

As discussed in previous sections, the posterior distribution of dataset p(θ |yobs) is
approximated by

p(θ |sobs) ∝ p(sobs |θ)π(θ),

where sobs is the summary statistics which usually has lower dimension than that of
the data yobs . If sobs is sufficient,

p(θ |sobs) = p(θ |yobs).

When sobs is highly informative, p(θ |sobs) ≈ p(θ |yobs) is a good approximation.
However, for many practical problems, it is hard to derive sufficient statistics or
even a highly informative statistics. An appropriate choice of summary statistics is
required to balance the informativeness and low-dimensionality. In some application
fields, there has been a history of the development of summary statistics within a
model-based framework in recent years. However, it is also possible that empirical
summaries can be used without any strong theory to support them. Thus the
selection of informative summary statistics is one of the important steps in the
application of ABC. In recent years a number of methods have been proposed
regarding the selection of summary statistics [19, 38].

Joyce and Marjoram [24] first proposed the ε-sufficiency concept and score of
statistics for selecting an additional summary statistic sk from the candidate set,
when the model already has summary statistics s1, . . . , sk−1. Later three methods
regarding the choice of summary statistics have been used in application [31],
namely

1. selection of a subset of the summary statistics that maximizes prespecified
criteria such as the Akaike Information Criterion [11] or the entropy of a
distribution [35];

2. partial least square regression to get linear combinations of the original summary
statistics that are maximally decorrelated and highly correlated with the parame-
ters [53]; and

3. summary statistics are chosen by minimizing a loss function under the assump-
tion of a statistical model between parameters and transformed statistics of
simulated data [1, 19].
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Blum et al. [11] provided a comprehensive review of the principal methods.
However, this topic still remains as a challenging problem in Bayesian inference.

8 Early Rejection ABC

To reduce the simulation time, a number of inference methods have been proposed
based on the idea of early rejection. For example, the delayed ABC divides a method
into two stages [13]. In the first stage, a sample of parameters may be rejected or
accepted by using an approximated posterior distribution. If it is accepted, a standard
ABC method will be applied in the second stage to evaluate the discrepancy between
the observation data and simulation. This idea has been used in the MCMC-ABC
for inferring stochastic differential equation models, in which the prior distribution
and proposal distribution are used in the first stage for early rejection [37]. Based
on the MCMC-ABC [37], a sample is rejected if the following ratio is less than a
sample ω ∼ U(0, 1) by using the same notations in Eq. (3)

ω >
π(θ∗)π(θi |θ∗)
π(θr)π(θ∗|θi) . (5)

In this approach, the kernel density function p(y|θ) is removed from the ratio above.
Thus the performance of this early-rejection technique is fully dependent on the
choice of the proposal density function π(θ∗|θi).

A recently published approach is the Lazy ABC, which proposes a random
stopping rule to abandon simulations with unsatisfactory accuracy [39]. This method
makes ABC more scalable to applications where simulation is expensive. The
detailed algorithm is given below

Algorithm 8 Lazy ABC
Input: prior density π(θ) and importance density g(θ), observation data yobs , summary statistics
s(·), tolerance level ε, distance function ρ(·, ·), proposal distribution q(·), and a continuous
probability function α(θ, x).

At iteration i = 1 : N
1. Generate a sample from importance sampling θ∗ ∼ g(θ).
2. Simulate the model to get a dataset x∗ ∼ p(x|θ∗) and let α∗ = α(θ∗, x∗).
3. With probability α∗ continue to step 4. Otherwise perform early rejection: namely let l∗ = 0

and go to step 6.
4. Simulate the model to get dataset Y ∗ ∼ p(Y |θ∗, x∗).
5. Set l∗ABC = 1[d(s(y∗), s(yobs )) < ε] and l∗ = l∗ABC/α∗.
6. Set w∗ = l∗π(θ∗)/g(θ∗).
7. Repeat steps 1∼ 6 until the required number of posterior samples is obtained.

Output: A set of N pairs of (θ∗, w∗) values.
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The detailed information of Lazy importance sampling and multiple stopping
decision can be found in [39].

9 ABC Software Packages

A number of computer software packages have been designed in recent years to
implement ABC in different platforms using various computer languages. A soft-
ware package, BioBayes, provides a framework for Bayesian parameter estimation
and evidential model ranking over models of biochemical systems using ordinary
differential equations. This package is extensible allowing additional modules
to be included [52]. A Python package, ABC-SysBio, implements parameter
inference and model selection for dynamical systems in the ABC framework [29].
This package combines three algorithms: ABC rejection sampler, SMC ABC for
parameter inference, and SMC ABC for model selection. It is designed to work with
models written in Systems Biology Markup Language (SBML). Deterministic and
stochastic models can be analyzed in ABC-SysBio. In addition, a computational
tool SYSBIONS has been designed for model selection and parameter inference
using nested sampling [23]. Using a data-based likelihood function, this package
calculates the evidence of a model and the corresponding posterior parameter
distribution. This is a C-based, GPU-accelerated implementation of nested sampling
that is designed for biological applications.

Also in the R platform, a number of software packages have been designed.
Among them, package abc implements Rejection ABC with many methods of
regression post-processing; while EasyABC implements a wide suite of ABC
algorithms but not post-processing [36]. Package abctools has been designed to
complement the existing software provision of ABC algorithms by focusing on tools
for tuning them. It implements many previous unavailable methods from literature
and makes them easy available to the research community [36]. In addition, there
are also two ABC packages implemented as MATLAB toolbox. EP-ABC has been
designed for state space models and related models, and ABC-SDE for inferring
parameters in stochastic differential equations [37]. There are still some other
software packages that have been reviewed in [36], including ABCreg, ABCtoolbox,
Bayes SSC, DIY-ABC, and PopABC.

10 Conclusion

In this chapter, we have reviewed a number of algorithms of ABC, together with the
relevant improvements, from choice of summary statistics to early rejection, aiming
at increasing the statistical accuracy and computational efficiency. In addition, we
give a few of the widely used software packages for the practical use of ABC
algorithms. In recently years, the ABC methods have been applied to a wide range of
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inference problems in biology, economics, engineering and physical sciences. These
applications have also raised more challenging questions for parameter inference,
such as high-dimensional data [28, 34] and stochastic modeling [55], which provides
interesting topics for future research.

References

1. Aeschbacher, S., Beaumont, M. A., Futschik, A.: A novel approach for choosing summary
statistics in approximate Bayesian computation. Genetics 192, 1027–1047 (2012)

2. Barthelmé, S., Chopin, N.: Expectation propagation for likelihood-free inference. J. Am. Stat.
Assoc. 109, 315–333 (2014)

3. Bazin, E., Dawson, K.J., Beaumont, M.A.: Likelihoodfree inference of population structure
and local adaptation in a Bayesian hierarchical model. Genetics 185, 587–602 (2010)

4. Beaumont, M.A.: Adaptive approximate Bayesian computation. Biometrika 96, 983–990
(2009)

5. Beaumont, M.A.: Approximate Bayesian computation in evolution and ecology. Annu. Rev.
Ecol. Evol. Syst. 41, 379–406 (2010)

6. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population
genetics. Genetics 162, 2025–2035 (2002)

7. Biau, G., Cérou, F., Guyader, A.: New insights into approximate Bayesian computation. Ann.
I. H. Poincaré B 51, 376–403 (2015)

8. Blum, M.G.B.: Approximate Bayesian computation: a nonparametric perspective. J. Am. Stat.
Assoc. 105, 1178–1187 (2010)

9. Blum, M.G.B.: Regression approaches for approximate Bayesian computation (2017).
arXiv:1707.01254v1

10. Blum, M.G.B., François, O.: Non-linear regression models for approximate Bayesian compu-
tation. Stat. Comput. 20, 63–73 (2010)

11. Blum, M.G.B., Nunes, M.A., Prangle, D., Sisson, S.A.: A comparative review of dimension
reduction methods in approximate Bayesian computation. Stat. Sci. 28(2), 189–208 (2013)

12. Cappé, O., Guillin, A., Marin, J.-M., Robert, C.P.: Population Monte Carlo. J. Comput. Graph.
Stat. 13(4), 907–929 (2004)

13. Christen, J.A., Fox, C.: Markov chain Monte Carlo using an approximation. J. Comput. Graph.
Stat. 14, 795–810 (2005)

14. Csilléry, K., Blum, M.G.B., Gaggiotti, O., François, O.: Approximate Bayesian computation
(ABC) in practice. Trends Ecol. Evol. 25(7), 410–418 (2010)

15. Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B
68, 411–436 (2006)

16. Del Moral, P., Doucet, A, Jasra, A.: An adaptive sequential Monte Carlo method for
approximate Bayesian computation. Stat. Comput. 22(5), 1009–1020 (2012)

17. Deng, Z., Tian, T.: A continuous optimization approach for inferring parameters in mathemat-
ical models of regulatory networks. BMC Bioinform. 15, 256 (2014)

18. Drovandi, C.C., Pettitt, A.N.: Estimation of parameters for macroparasite population evolution
using approximate Bayesian computation. Biometrics 67(1), 225–233 (2011)

19. Fearnhead, P., Prangle, D.: Constructing summary statistics for approximate Bayesian compu-
tation: semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Ser. B 74, 419–474
(2012)

20. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman and
Hall/CRC Press, London (2003)

21. Goel, G., Chou, I.C., Voit, E.O.: System estimation from metabolic time-series data. Bioinfor-
matics 24(21), 2505–2511 (2008)



528 Y. Ke and T. Tian
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The Loop-Weight Changing Operator
in the Completely Packed Loop Model

Bernard Nienhuis and Kayed Al Qasimi

Abstract Loop models are statistical ensembles of closed paths on a lattice. The
most well-known among them has a variety of names such as the dense O(n) loop
model, the Temperley-Lieb (TL) model. This note concerns the model in which the
weight of the loop n = 1, and a local operator which changes the weight of all the
loops that surround the position of the operator to some other value. A conjecture of
the expectation value of the one-point function of this operator was formulated 15
years ago. In this note we sketch the proof.

1 Introduction

It has long been recognized that loop models can represent many different local spin
models in statistical mechanics. The model we deal with in this note, was introduced
[1] as a representation of the Potts model. It has a free parameter, the weight of a
loop, which is the square root of the number of states of the Potts model. The case
that this weight is unity corresponds to the bond percolation model, and is the case
we deal with here. The configurations of the model are a tiling of the square lattice,
in which each face of the lattice is covered with one of two tiles

and

Thus in every configuration the red arcs in the tiles form paths on the lattice,
which are either closed (hence loops), or terminating at the boundary, if there is
one. The partition sum of the model is trivial, it is the product over all faces of
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the sum of the two weights of the faces. Non-trivial are observables, which give
weights to the configurations according to some specific properties of the paths.
The loop-weight changing operator (LWCO) inserted at a given vertex, gives the
loops surrounding that vertex a new weight w possibly different from that of the
other loops, i.e. from one. The expectation value of the one-point function of this
operator is the generating function of the probabilities of having a specific number
of loops surrounding the point of insertion. For brevity we will use the short-hand
LWCO also for one-point function of this operator, trusting the context will make it
unambiguous.

A new approach to the study of this model originates in the work of Razumov and
Stroganov [2] who found a connection between the XXZ model and combinatoric
problems as Alternating Sign Matrices (ASM) and Plane Partitions (PP) [3].
A connections with loop models followed quickly [4] and led to the famous
Razumov-Stroganov conjecture featuring a connection between two types of loop
models on different geometries [5]. It was proven by Cantini and Sportiello [6].
These connections led to a wealth of explicit formulae for expectation values
of observables and of indicator functions, some proven others conjectured. The
value of these is that the formulae are (supposedly) exact with finite distances and
geometries, rather than only in the scaling limit. One of these observables is the
LWCO that turns the loop weight of surrounding loops into w, on a cylinder of
infinite length and circumference L. Mitra and Nienhuis [7] conjectured the value
of its one-point function P(L,w) = F(L,w)/F(L, 1), with

F(L, a2 + a−2) = (a + a−1)−(L mod 2)
L−1

det
r,s=0

a−1
(
r + s

s

)
+ a δr,s (1)

This expression was not based on any theoretical understanding, let alone a deriva-
tion or proof. It was completely guessed from the recognition of the coefficients in
the polynomial, and subsequently verified for large but finite L. We remark that the
symmetry for a → 1/a is manifest in the LHS, but not in the RHS of Eq. (1).

A discussion with Christian Hagendorf at the Matrix workshop Statistical
Mechanics, Combinatorics and Conformal Field Theory in 2017, eventually led to
a proof, which we will sketch in this note. The line of argument is as follows. We
will first generalize the model to be inhomogeneous, thus introducing a number of
variables on which the LWCO depends. We will show that the LWCO is a rational
function of these variables. A family of recursion relations in the size of the system
can be used to fix the value of the numerator and the denominator, for a number
of values of one of the variables. The number of values suffices to completely
determine these functions, by the polynomial interpolation formula. A publication
of Hagendorf and Morin-Duchesne [8] suggested the inhomogeneous generalization
of Eq. (1). It then remained to show that this expression satisfies the same recursion
relation as the LWCO.
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2 Inhomogeneous TL Model

An important step towards a partial proof of the RS conjecture by Di Francesco and
Zinn-Justin [9], was making the TL model inhomogeneous, by associating a variable
to each column and each row of faces in the lattice. We imagine the axis of the
cylinder to be vertical, so the columns run along the length of the cylinder, and the
rows form rings around the cylinder. These variables are often called rapidities due
to their role in the relativistic field theory which is the scaling limit of the model. The
Boltzmann weights at a particular face then depend on the two rapidities associated
with the column and row the face is in. Specifically the Boltzmann weight of a face
can be written as

R(w, z) = qz− q−1w

qw − q−1z
+ z−w

qw − q−1z
(2)

where z and w are the variables associated with the column and row, respectively,
that the face belongs to, and q = e2π i/3. The two coefficients add up to one, and
are real positive when z/w = eiφ with φ ∈ (0, 2π/3). The transfer matrix can be
written as

T (w, z) ≡ T (w; z1, z2, . . . , zL) =
L∏
i=1

R(zi, w) , (3)

where we use z as a shorthand for {z1, z2, . . . , zL}. A term in the expansion of this
product corresponds to the graph

This transfer matrix acts as a stochastic matrix in the space of so-called link
patterns. In each link pattern the edges cut by the rim of the cylinder are connected
pairwise, by paths that do not intersect, as in the following example for L = 7 and
L = 8
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For odd L the link pattern includes an unpaired edge, which is the connected to a
path all along the half-infinite cylinder. For evenLwe mark the disk with a puncture,
to distinguish if a path between two edges at the rim is along one side of the cylinder
or the other. When two edges that are connected in a link pattern are reconnected by
the transfer matrix or another operator, the resulting loop is removed.

Due to the Yang-Baxter equation [T (w, z), T (v, z)] = 0, and consequently the
eigenvectors of T (w, z) do not depend on w. With Ψ (z) we denote the ground
state, i.e. the eigenvector with eigenvalue 1. In the regime where all transfer matrix
elements are non-negative this is the largest (Perron-Frobenius) eigenvalue. Because
the transfer matrix is a rational function of the variables zj , also Ψ (z) is rational,
and with suitable normalization polynomial. As shown in [9] Ψ (z) satisfies

Ři(zi , zi+1) Ψ (z1, . . . , zi, zi+1, . . . , zL) = Ψ (z1, . . . , zi+1, zi , . . . , zL), (4)

where the operator

Ř(w, z) = qz− q−1w

qw − q−1z
1 + z−w

qw − q−1z
ei (5)

and the operator ei acts on position i and i + 1 of a link pattern as

i.e. connecting the partners of position i and i + 1, and creating an arc connecting
i and i + 1 themselves. These equations (4) are called quantum Knizhnik-
Zamolodchikov (qKZ) equations as they are analogous to q-deformed versions of
the Knizhnik-Zamolodchikov equations [10] on correlation functions in conformal
field theory.

We write the ground state vector

Ψ (z) =
∑
α

ψα(z) α (6)

where α is a link pattern, and the sum is over all link patterns of a given size (i.e.
circumference of the cylinder). For the weights ψα of link patterns α in which the
positions i and i + 1 are not connected by a small (minimal) arc, Eq. (4) leads to

(qzi+1 − q−1zi) ψα(. . . , zi , zi+1, . . .) = (qzi − q−1zi+1) ψα(. . . , zi+1, zi , . . .)

(7)

For the polynomial solution this implies that ψα(. . . , zi , zi+1, . . .) must contain the
factor (qzi − q−1zi+1), and is otherwise symmetric for interchange of zi and zi+1.
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If this argument is used recursively on a link pattern not containing a minimal arc in
a sequence of edges {k, . . . , n}, it must contain the factor

n−1∏
i=k

n∏
j=i+1

(qzj − q−1zi)

and be otherwise symmetric in the variables {zk, . . . , zn}. For the most nested link
pattern, μ, (again for L = 7 and L = 8)

in which the small arc not containing the puncture connects the position 1 and L,
contains the factor

∏L−1
i=1

∏L
j=i+1(qzj − q−1zi). Because all other weights can be

derived from this one with the qKZ equations (4), from which functions symmetric
in zi and zi+1 can be factored out, the weight of the most nested link pattern μ is in
fact given by

ψμ(z) =
L−1∏
i=1

L∏
j=i+1

(qzj − q−1zi) (8)

with no further factors symmetric in z. Clearly ψμ(z) is homogeneous and of joint
degree L(L − 1)/2. As polynomial of a single zi it is of degree L − 1. These
properties transcend to all ψα , as they are conserved by Eq. (4).

3 Recursions in System Size

Reference [9] also shows that (4) implies a recursion relation between the ground
states of systems different in size by 2. For this it is useful to introduce operators
that mediate between link patterns of different sizes. The operator σi introduces two
additional positions between positions i − 1 and i, and a small arc that connects
them. Conversely, the operator τi connects (the partners of) i − 1 and i, and then
removes the positions themselves. Thus, the operators σi acting on a link patterns
of size L results in a link pattern of size L+ 2, and τi results in link pattern of size
L− 2. These operators satisfy

σi τi = ei and τi σi = 1 (9)
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and acting on the ground state vectors gives

ψσiα(. . . , zi−1, zq, zq
2, zi , . . .) =

ψα(. . . , zi−1, zi, . . .) (q
−1 − q) z

L∏
i=1

−(z− zi)
2 (10)

and

τi Ψ (. . . , zi−1, zq
2, zq, zi, . . .) =

Ψ (. . . , zi−1, zi, . . .) (q
−1 − q) z

L∏
i=1

−(z− zi)
2 (11)

These relations for ground state elements can be read as recursion relations in the
system size, as the LHS refers to a system of size L + 2, and the RHS has size L.
We call these relation the fusion recursion relations.

Later Di Francesco et al. [11] introduced another recursion in the system size,
not by fixing the ratio between two variables, but by sending one to zero. Since we
extend their results we treat this in some more detail. When one of the variables zi
is zero, the Boltzmann weights in the corresponding column are from Eq. (2)

R(w, 0) = −q − q−1 (12)

We wish to relate a system with size L to a system with size L + 1, with the same
variables, and one additional variable equal to zero. We will refer to this recursion
relation as the braid recursion relation, as the Ř-operator reduces to a so-called braid
operator that satisfies the Reidemeister moves of the braid group.

Consider a path in the size-L system, that crosses the location of the rapidity-zero
column, wanders around and crosses back on a face adjacent to the other crossing.
In the size-(L+ 1) system, we consider the same configuration, combined with all
possible configurations in the rapidity-zero column. For the weight of these two
cases we get the following equation:

=   q2 + 1

+ q-2+ 1

(13)
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The green line is the line with variable 0, and the red curves are the paths, while
the two faces where the crossing occurs are indicated with a black box. We see
that in the system of size L + 1, there are only two possible connectivities in
four configurations. In one case, with weight 1, the path continues as in the size-
L system, but avoiding the D-tour, while the paths entering the two boxes vertically
are connected along the D-tour that is avoided by the original path. In the other
cases, the branches of the path connect up or down to the vertical. The total weight
of the last connectivity is 1 + q2 + q−2 = 0, so it can be disregarded.

If this applies to paths which cross in two adjacent faces, the same must apply to
paths which cross the zero rapidity line at more distant faces, as all the crossings in
between these two faces, form a nested set of double crossings.

In conclusion one can say that any path that crosses the rapidity-zero column
once and back, has the same connectivity between the systems of size L and that of
L+ 1.

When L is odd, the system has one path (the defect path) that is not closed, but
runs along the infinite cylinder from one end to the other. The system with sizeL+1
then does not contain such path, so when the system is extended with a rapidity zero,
the defect path must join up with the additional rapidity zero column. However, this
can be done in two ways, as the puncture can be placed on either side of the path.
Figure 1 shows the two possibilities. Since there is no way to exclude one, we accept
both, with weights b if the puncture is to the right of the juncture, and c if it is to
the left as indicated in the figure. The result is that the puncture is “inside” the path
with weight b and “outside” with weight c.

The defect line can intersect the zero rapidity column any number of times, even
or odd. Therefore an additional crossing should not make any difference in the
weights. Figure 2 shows the configurations if the defect path crosses one more time
before it joins up with the zero-rapidity line. Now we see that the puncture is inside
with weight −cq−1 and outside with weight −bq − cq − bq−1. This is consistent
only when both

c q−1 = −b and b q + c q + b q−1 = −c (14)

Fig. 1 The puncture relative
to the path formed by the
unmatched path and the zero
rapidity line. The defect path
is shown as red, the zero
rapidity line is indicated by
green, and the puncture is
black b c
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-bq -cq -bq-1 -cq-1

Fig. 2 The configurations formed by placing the puncture on either side of the path and uncrossing
the intersection between the path and the rapidity-zero line in the two possible ways. As in Fig. 1
the green line represents the (unresolved) zero-rapidity line, and the red curves represent paths

These (overdetermined) equations are solved by

b = (−q)−1/2 and c = (−q)1/2 (15)

where we chose c = b∗. If the defect path is connected to the zero-rapidity
line in the opposite direction, the same solution is found. In conclusion, since an
intersection of the defect line with the zero-rapidity line does not affect the weight
of a configuration, we may argue without loss of generality as if the defect line never
crosses the zero-rapidity line.

4 Recursion Relations for the LWCO

In the previous section we showed that the qKZ equations induce recursion relations
in the system size for the elements of the ground state vector, and for the probability
of certain events. In this section we will present how these recursions lead to
recursion relations for the LWCO in the inhomogeneous TL model on an infinite
cylinder. First we remind the reader that the elements of the ground state vector, that
is the relative configurational weight of a half-infinite cylinder, are polynomials of
degreeL−1 in each of the rapidities. Thus the configurational weights of the infinite
cylinder, made up of two half-infinite cylinder has degree 2(L − 1). Therefore the
LWCO is a rational function of degree 2(L− 1) for both the numerator and denom-
inator. We can determine these polynomials completely, from knowing their value
for 2L− 1 values of one of the variables. Let zi to be the variable of choice. We can
apply the fusion recursion relation when zi = q−1 zi−1 or zi = q zi+1, and the braid
recursion relation when zi = 0. However, the qKZ equations (4) ensure that both
the numerator and denominator are symmetric functions of the variables. Therefore
we can use the fusion recursion relation for zi = q−1 zj or zi = q zj for any j �= i.
Together with the braid recursion relation this gives precisely enough values.

To establish some notation, let us use Φ(w, z) for the (one-point function of the)
LWCO, with altered loop weight w, and Φn(w, z) and Φd(z) for its polynomial
numerator and denominator:

Φ(w, z) = Φn(w, z)
Φd(z)

(16)
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Because Φd(z) = Φn(1, z) it suffices to study Φn. To denote the recursions, we will
use z for the list {z1, z2, . . . , zL} as before, (z | zi → v) to indicate that zi takes a
specific value v, and (z \ i) for the list z from which zi is omitted, and similarly
(z \ i, j) from which both zi and zj are omitted. The system size is implicit as the
length of the last argument. We choose z to have length L always, so that e.g. (z \ i)
has length (L− 1).

The weight of a specific combination of link patterns in the two half-infinite
cylinders, is the product of two ground state elements. But the dependence on the
variables is different, as the order of one is reversed relative to the other. The list of
variable in reversed order is denoted as ρz. For example the sum of weights of all
link patterns for both halves of the cylinder, should be equal to Φd(z), so

Φd(z) =
∑
α,β

ψα(z) ψβ(ρz) =
(∑

α

ψα(z)

)2

(17)

The order of the variables is immaterial because the qKZ equations ensure that the
sum of all elements of the ground state vector is a symmetric function.

4.1 The Fusion Recursion Relation

From Eqs. (10) and (11) it is clear that

Φd(z | zi → qzj ) = Φd(z \ i, j) (−3q) z2
j

L∏
k �=i,j

−(q−1zj − zk)
4, (18)

and

Φd(z | zi → q−1zj ) = Φd(z \ i, j) (−3q−1) z2
j

L∏
k �=i,j

−(qzj − zk)
4. (19)

In order to see what the analogous recursion is for Φn, we first use the symmetry
of Φn for permutation of the z to place zi and zj adjacent. As shown in [9], the
corresponding double column simply connects the paths on the left to those on the
right in the same row. This implies that the topology of the paths in the system of
size L and that of size L − 2 is the same. As long as the LWCO is not inserted
between the two adjacent columns carrying the variables zi and zj , the number of
loops surrounding the point of insertion is the same in the two models. This implies
that Φn satisfies precisely the same fusion recursion relations (18) and (19) as Φd,
irrespective of the value of the altered loop weight. Clearly, the difference between
the two functionsΦn and Φd must come from the braid recursion relation.
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4.2 The Braid Recursion Relation

We consider an inhomogeneous TL model on a cylinder with perimeter L − 1 and
another one on a cylinder with perimeter L, with the same variables supplemented
with one variable equal to zero. In this we consider a contractible loop in the size-
(L − 1) system, that intersects the position of the zero rapidity column in two
adjacent faces, and study how this configuration is resolved in the size-L system.
This is shown in Fig. 3. We observe that if the LWCO is not inserted in the original
loop, the weight in the size-L system is equal to that in the size-(L − 1) system,
multiplied with the sum of the four weights, that is 1 + 1 + q2 + q−2 = 1. If the
LWCO is inserted in the original loop, to the left of the zero-rapidity line, then it sits
in a loop in the upper-right figure, and not in the remaining configurations, whose
weights add up as 1+q2+q−2 = 0. In the surviving (upper-right) configuration, the
two ends of the zero rapidity line are connected by a path. Likewise if the operator
is inserted inside the loop, to the right of the zero rapidity line, it sits in a loop in
the lower-left figure, and again not in the remaining figures. As far as this type of
configuration is concerned, the weight of the LWCO is the same between the system
of size L and that of size (L− 1).

When a contractible loop intersects the zero-rapidity line in two arbitrary faces,
other loops inside it intersect the zero-rapidity line in a nested fashion, in which
the loops deepest in the nesting cut the zero-rapidity line in adjacent faces. We can
resolve this recursively, starting with the loops deepest in the nest, and then the loops
enclosing them, and so on. We conclude that in a system of size L, in which one of

q2 1

q-21

Fig. 3 A closed, contractible loop that cuts the rapidity-zero line in consecutive faces. The path as
resolved in the size-L system is drawn red, and the continuation of the zero-rapidity line is shown
in green. The total weight of the two faces is given for each configuration
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the variables is zero, the relative weight of configurations with any given number of
loops surrounding an operator insertion is completely the same as in the system of
size (L − 1) with only the (L − 1) non-zero rapidities. This suggests that also the
braid recursion relation is the same for Φn as for Φd. However, this is not the case.
Since the braid recursion relation relates even and odd sized systems, a defect line
may appear or disappear or turn into a loop.

In Eq. (1) the determinantal expression is divided by (a + 1/a) for odd L. So
in the determinant itself, while the loops that surround the operator insertion have
weight (a2 + a−2), the defect line has weight (a + 1/a). It is convenient to take
this operator to replace the original LWCO: in the numerator the surrounding loops
have weight (a2 + a−2), and the defect line has co-varying weight (a + 1/a). In
analogy, in the denominator all loops have weight 1, but the defect line has weight√

3. So, from now on, we multiply the LWCO in odd-L systems by the simple
factor (a + 1/a)/

√
3, and rename the resulting one-point function Φ and similarly

its numerator and denominator Φn and Φd. The results for the fusion recursion
relations are not altered, as the factors appear on the RHS and LHS of the recursion
equally.

First we will consider a system of odd size L, and send one of its rapidities to
zero. We have already seen that for a single insertion of the LWCO, all the loops in
the corresponding system of size (L−1) that surround it, translate into a surrounding
loop in the system of size L, with precisely the same weight. What changes is that
in all configurations in the larger system a defect line appears, of which the weight
is always (a + 1/a). Thus we find for odd L

Φn(a
2 + a−2, z | zi → 0) = (a + a−1) Φn(a

2 + a−2, z \ i)Fi(z), (20)

where the function Fi(z) is a symmetric function of (z \ i), which we do not need,
as it does not depend on a.

Second we consider a system of even size L, and send one of its rapidities to
zero. Now the larger system has a defect line, and it has weight (a + a−1) in all
configurations. We have seen above that the zero-rapidity line effectively creates a
new path. The defect path in the system of size (L− 1) joins up with this new path
to form a loop. While it does this the puncture for either end of the cylinder is placed
to the right or left of the juncture with weight b or c, respectively, as illustrated in
Fig. 4. The defect line and the zero-rapidity line form a loop. If this loop separates
the two punctures, it must wind the cylinder. This happens with weight c2 + b2 =
−q − q−1 = 1. The loop surrounds the operator insertion if it separates this from
both punctures. Irrespective of where the insertion is, it is surrounded with weight
1 and not surrounded with weight 1. Thus, in total the insertion is surrounded with
weight 1, and not surrounded with weight 2. Thus we see that the weight (a + a−1)

for the defect line in the size-(L−1) system is replaced by (a2+a−2)with weight 1,
and by 1 with weight 2. In total the weight (a+a−1) in the small system is replaced
by (a2 + a−2 + 2) = (a + a−1)2 in the big system. Thus also for even L we find

Φn(a
2 + a−2, z | zi → 0) = (a + a−1) Φn(a

2 + a−2, z \ i)Fi(z) (21)
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b2 bc bc c2

Fig. 4 The possible configurations of the puncture relative to the closed path in the width-(L+ 1)
system made up of the unmatched path in the width-L system and the zero-rapidity line, with
respective weights (top) and current factor (bottom)

just as for odd L. With Φd(z) = Φn(1, z) and Φ(w, z) = Φn(w, z)/Φd(z) this
completes the braid recursion relation for the LWCO.

5 The Inhomogeneous Expression for LWCO

Now that we have found recursion relations that should be satisfied by the LWCO
of the inhomogeneous TL model, we have the means to prove an expression if we
have it. However, until now only the homogeneous limit was known. In the Matrix
workshop on Statistical Mechanics, Combinatorics and Conformal Field Theory in
2017, Christian Hagendorf pointed us to his publication [8] in which an expression
appears equivalent to (1). And it also gives an more general expression of which
(1) is the homogeneous limit. Since we had calculated explicit expressions for the
inhomogeneous LWCO for small systems (L < 9), it was not difficult to verify
that indeed his expression is what we need. To make this explicit, we introduce the
shorthand [x] ≡ (x − x−1), and we propose that

Φn(a
2 + a−2, z) =

∏
1≤i<j≤L

(qzi − q−1zj )(qzj − q−1zi)[
z

1/2
i z

−1/2
j

] [
z

1/2
j z

−1/2
i

] ×

L∏
i,j=1

[
qz

1/2
i z

−1/2
j

] L

det
i,j=1

⎛
⎝ a−1[
qz

1/2
i z

−1/2
j

] + a[
qz

1/2
j z

−1/2
i

]
⎞
⎠ (22)

That this expression does indeed satisfy the recursion relations we have derived, can
be shown by explicit row and column manipulations of the matrix after specification
of the last variable zL → 0 or zL → qzj or zL → q−1zj for any j �= L respectively.
As mentioned before this gives 2L−1 values for a polynomial that has degree 2L−2
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in zL and thus proves the inhomogeneous expression for the LWCO. The fact that (1)
is the homogeneous limit is shown in [8], which proves the expression conjectures
in [7].

Acknowledgements We thank Christian Hagendorf for his important contribution to this result,
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A Note on Optimal Double Spending
Attacks

Juri Hinz and Peter Taylor

Abstract In the present note we address the important problem of stability of
blockchain systems. The so-called “double-spending attacks” (attempts to spend
digital funds more than once) have been analyzed by several authors. We re-state
these questions under more realistic assumptions than previously discussed and
show that they can be formulated as an optimal stopping problem.

1 Introduction

In recent years, novel concepts originating from the blockchain idea have gained
popularity. Their rapidly emerging software realizations are based on a mixture of
traditional techniques (peer-to-peer networking, data encryption) and more modern
concepts (consensus protocols). Digital currencies represent assets of these systems,
their transactions are written and kept in an electronic ledger as part of the operation
of the blockchain system. The main difference from a traditional financial system is
that crypto-currencies are not issued and supervised by a central authority, but are
maintained by joint efforts of a network consisting of independent computers (all
running the same/similar software). Such a network searches for consensus which
yields a common version of the ledger shared by all participants. The consensus
is reached by means of a process, which is called mining and is usually backed
by economic incentives. Blockchain systems are believed to achieve the same level
of certainty and security as those governed by a central authority but do that at
significantly lower costs. Furthermore, because of the distributed, decentralized, and
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homogeneous architecture of the network, a blockchain system can reach a very high
level of stability due to data redundancy and hard/software replicability.

Following the mining process, all network participants append, validate, and
mutually agree on a common version of the data history, which is usually referred
to as the blockchain ledger. Although the invention of mining is considered to
be a real break-through which solves the long-standing consensus problem in
computer science, there is criticism of this approach. The problem is that to reach
consensus, real physical resources/efforts must be spent or at least allocated. For
instance, the traditional Bitcoin protocol requires participants to solve cryptographic
puzzles with real consumption of computing power and energy. This process is
referred to as the so-called proof of work. Other blockchain systems avoid resource
consumption and require temporary allocation of diverse resources, for instance the
ownership of the underlying digital assets (proof of stake) or their spending (proof of
burn). Furthermore, commitment of storage capacity (proof of storage) or a diverse
combination of resource allocation/consumption can also be used.

Let us briefly elaborate on the proof of work; more details can be found in the
excellent book by “Mastering Bitcoin” [1] by Andreas Antonopoulos. We focus on
the Bitcoin protocol which was been initiated by Nakomoto [4], with a refinement
on the double-spending problem in [5] and later in [3] with further considerations
addressing propagation delay in [2]. In this framework, the ledger consists of a
chain of blocks and each block contains valid transactions. The nodes compete to
add a new block to the chain, and while doing so, each node attempts to collect
transactions and solve a cryptographic puzzle. Once this puzzle is solved, it is made
public to other nodes. This protocol also prescribes that if a peer node reports a
completed block, then it must be verified, and if this block is valid, it must be
attached to the chain, all uncompleted blocks shall be abandoned and a new block
continuing the chain must be started. However, even following these rules, the chain
forks regularly, which results in different nodes working on different branches. In
order to reach a consensus in such cases, the protocol prescribes that a branch with
shorter length must be abandoned as soon as a longer branch becomes known.

2 The Double-Spending Problem

Now we return to the resilience of the protocol to attacks. Note that within a
blockchain system, the nodes are running publicly available open-source software
(for mining) which can easily be modified by any private user to control the
computer nodes in order to undermine the system. In principle, there are many
ways of doing this. One of the most obvious among malicious strategies would be
an attempt to spend the electronic money more than once. The analysis of such a
strategy is referred to as the double-spending problem.

In the classical [4, 5] formulation of this problem a merchant waits for n ∈ N0
confirming blocks after a payment by a buyer, before providing a product or service.
While the network is mining these n blocks, the attacker tries to build his/her own
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secret branch containing a version of the history in which this payment is not
made. The idea is to not include the paying transaction in the private secret branch
whose length will overtake the official branch to be then published. If this strategy
succeeds, then the private secret branch becomes official and the payment disappears
in the ledger after the product/service is taken by the attacker. Nakomoto [4]
provides and Rosenfeld [5] refines an estimate of the attacker’s success probability
depending on his/her computational power and the number n of confirming blocks.

Let us briefly discuss their result before we elaborate on further details. In
the framework of double-spending problem, it is assumed that a continuous-time
Markov chain taking values in Z describes the difference in blocks between the offi-
cial and secret branches. As in [5], we consider this process at time points at which a
new block in one of the branches is completed, which yields a discrete-time Markov
chain (Zt )∞t=0. Having started secret mining after the block including the attacker’s
payment (at block time t = 0, Z0 = 0) the attacker considers the following
situation: At each time t = 1, 2, 3 . . . , a new block in one of the branches (official
or secret) is found, the block difference changes by ±1 with probabilities (see [2, 5])

P(Zt = z+ 1 |Zt−1 = z) = 1 − q

P(Zt = z− 1 |Zt−1 = z) = q.

where q ∈]0, 1[ is the ratio of the computational power controlled by the attacker
to the total mining capacity. Consider a realistic case where the attacker controls
a smaller part of the mining power 0 < q < 1/2 than that controlled by honest
miners. In this case, if at any block time t = 0, 1, 2, . . . the block difference is
z ∈ Z, then the probability a(z,∞) that the secret branch overtakes the official
branch within unlimited time after t is given by

a∞(z, q) = P(
∞

min
u=0

Zu < 0 |Z0 = z) =
{

1 if z < 0
(
q

1−q )
z+1 otherwise.

(2.1)

Furthermore, at the time when the n-th block in the official branch is mined, the
probability that the attacker has mined m = 0, 1, 2, . . . blocks follows the negative
binomial distribution whose distribution function is given by

Fq,n(k) =
k∑

m=0

(
n+m− 1

m

)
(1 − q)nqm, k = 0, 1, 2, . . . . (2.2)

Both results (2.1) and (2.2) are combined in [5] to obtain the success probability of
the double-spending as follows: Consider the situation where at the time the n-th
block in the official chain is completed, the attacker has minedm > n blocks which
can be published immediately. The probability of this event is given by

∞∑
m=n+1

(
n+m− 1

m

)
(1 − q)nqm = 1 −

n∑
m=0

(
n+m− 1

m

)
(1 − q)nqm = 1 − Fq,n(n).
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Next, consider the opposite event, assuming that when the n-th official block is
completed, the attacker has not overtaken the official chain in which case m ≤ n. In
this case, the probability of winning the race is given by

n∑
m=0

(
n+m− 1

m

)
(1 − q)nqma∞(n−m, q) = q

1 − q

n∑
m=0

(
n+m− 1

m

)
(1 − q)mqn

= q

1 − q
F1−q,n(n).

Clearly, the success probability is given by

1 − Fq,n(n)+ q

1 − q
F1−q,n(n). (2.3)

For instance, if the merchant waits for six confirming blocks the attack succeeds
with probabilities

0.00037% for q = 6%, and with 0.0025% for q = 8%.

As a result, waiting for six blocks after the payment has been considered as secure
in the sense that with realistic efforts it is practically impossible to succeed with
double spending.

Remark Note that in the original work [5] it was assumed that the attacker can start
the race having pre-mined one block. This leads to a different success probability

1 − Fq,n(n− 1)+ F1−q,n(n− 1). (2.4)

While the difference between (2.4) and (2.3) can be significant (see Fig. 1), it is not
clear how to achieve an advantage of being able to start the race with one block
ahead of the official chain. The present note is devoted to this interesting question.
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Fig. 1 The success probability (and its logarithm) of the double spending attack for n = 6
confirming blocks depending on the mining ratio q ∈ [0, 1

10 ] calculated by (2.3) (solid line)
versus (2.4) (dashed line)
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The above analysis [5] calculates the probability of the alternative blockchain
getting ahead of the official one. It doesn’t consider revenues and losses from a suc-
cessful/failed attack. Furthermore, the possibility of canceling the secret mining (if
the block difference becomes too high) is not considered. Most important, however,
is the question why the paying transaction must be placed right after fork-off. Note
that this assumption is justifiable only if the merchant requires immediate payment
after the purchase is agreed upon, otherwise canceling the deal. However, in reality,
the attacker may be able to freely choose the time of payment, in particular when
buying goods from web portals. That is, an attempt to overtake the official chain
before launching an attack can give an advantage in the spirit of the above remark.

3 A Refinement of the Double-Spending Problem

Let us consider an alternative situation. Assume that the attacker can freely choose
the time of payment. Doing so, he/she can start working on a private secret branch
long before the payment is placed. For such situations, the analysis of the double-
spending is different and requires solving (multiple) stopping problems.

Consider a finite time horizon where t ∈ {0, . . . , T } represents the number of
blocks mined in the official chain since the branch has forked off. That is, we
suppose that our secret mining starts at the block time t = 0. We interpret T ∈ N0 as
the maximal length of the official branch, which can be abandoned if a longer branch
has been discovered. To the best of our knowledge, the current Bitcoin protocol
does not have such a restriction, meaning that the shorter branch must always be
discarded, independently of its length . However, other blockchain systems discuss
“checkpoints” and “gates” with a similar functionality. A finite time horizon yields
conceptual advantages and presents a negligible deviation from the reality since T
can be sufficiently large.

Recall the process (Zt )∞t=0, describing the branch length difference at times the
next block in one of the branches has been mined. Now, consider another process
(Xt)

∞
t=0, where Xt stands for the branch length difference between the official and

secret branches at the times t = 0, 1 . . . , when one new block in the official branch
is completed. In turns out that (Xt)∞t=0 follows a Markov chain, whose transition
from state Xt = x to Xt+1 = x + 1 − y describes the event that while one
official block has been mined, y = 0, 1, 2, . . . secret blocks have been obtained.
The transition probabilities of (Xt)Tt=0 are given for all t = 0, 1 . . . , by

P(Xt+1 = x + 1 − k|Xt = x) =
{
G(k), k ∈ N0,

0, k ∈ Z \N0,
(3.1)

in terms of the geometric distribution

G(k) = (1 − q)qk for k ∈ N0 = {0, 1, 2, . . . , }. (3.2)
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Suppose that the secret branch contains the invalidation of the paying transaction.
Recall this can be reached by a simple non-inclusion of the attacker’s paying
transaction. If the attack is launched at a block time τ = {0, . . . , T }, then the
payment will be included into block τ + 1 of the official branch. In this context, the
crucial question is whether to attack or not and how to choose the time τ = 0, . . . , T
optimally. It turns out that under specific assumptions, this question can be treated
as an optimal stopping problem, which we formulate next.

According to our modeling with a finite time horizon, we agree that for τ > T−n
a successful attack is not possible. Namely, since the payment is placed into block
τ + 1 and n confirming blocks are expected, the last confirmation block τ + n > T

would be beyond the maximal branch length which can be abandoned. That is, we
can assume that the time τ must be chosen within the finite horizon τ = 0, . . . , T̃
with the last time point T̃ = T − n. The decision whether to attack must be based
on the current block time t = 0, . . . , T̃ and on the recent block difference Xt . In
order to optimize the time τ = 0, 1, . . . , T̃ , we define the success event S(τ) for the
attack launched at τ as

S(τ) = { T+1
min

i=τ+n+1
Xi ≤ 0} τ = 0, . . . , T̃ .

Hence the expected reward of the attack is

Rτ (x) = E(C1S(τ) − c1S(τ)c |Xτ = x)

= (C + c)P(S(τ )|Xτ = x)− c, τ = 0, . . . , T̃ , x ∈ Z (3.3)

where the numbers C > 0 and c > 0 represent the revenue and loss resulting
from the success or failure of the attack. Let us agree that τ = +∞ stands for the
attacker’s option to not attack, which can be optimal if the chance of overtaking
the official branch is too low. In order to model such an opportunity, we extend the
reward function (3.3) for the time argument t = ∞ as

R∞(x) = 0, x ∈ Z. (3.4)

In this context, the choice of the optimal payment time τ ∗ yields an optimal stopping
problem of the following type:

determine a maximizer τ ∗ to T → R, τ → E(Rτ (Xτ )) where
T denotes all {0, . . . , T̃ } ∪ {+∞}-valued stopping times.

(3.5)
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4 Conclusion

Having assumed that the payment moment can be chosen by the attacker, the
solution to the double spending problem consists of secret mining, followed by a
later payment. The optimal payment time is determined by the current numbers of
blocks in both chains since their fork off. The success probability of such an attack is
dependent on the required confirmation block number n and the revenue/lossC > 0,
c > 0 caused by the success/failure of the attack. This contribution shows that
the optimization of the attack under these assumptions requires solving an optimal
stopping problem. The authors will address these problems in future research.

Acknowledgement The first author expresses his warmest gratitudes to Kostya Borovkov for
useful remarks.
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Stochastic Maximum Principle
on a Continuous-Time Behavioral
Portfolio Model

Qizhu Liang and Jie Xiong

Abstract In this short note, we consider the optimization problem with probability
distortion when the objective functional involves a running term which is given by
an S-shaped function. A stochastic maximum principle is presented.

1 Introduction

There are several epoch-making achievements in the history of finance theory over
the past 70 years. The first is the expected utility maximization proposed by von
Neumann and Morgenstern [17]. It is premised on the tenets that decision makers
are rational and consistently risk averse under uncertainty. Later on, a Nobel-
prize-winning work, Markowitz’s mean-variance model [12] came out. Along with
these theories in continuous portfolio selection problems, many approaches, such
as dynamic programming, stochastic maximum principle, martingale and convex
duality have been developed, see Merton [13], Peng [14], Duffie and Epstein [4],
Yong and Zhou [19], Karatzas et al. [9].

On the account of substantial phenomena violating the basic tenets of conven-
tional financial theory, for instance, Allais paradox [1], Tversky and Kahneman
[16] put forward cumulative prospect theory (CPT) and Benartzi and Thaler [3]
proposed behavioral economics. Both of them integrate psychology with finance and
economics. To study the continuous-time portfolio choice problem, we concentrate
on CPT in this paper. Its key elements are: (1) benchmark (evaluated at terminal time
T ) serves as a base point to distinguish gains from losses (Without loss of generality,
it is assumed to be 0 in this paper); (2) Utility functions are concave for gains and
convex for losses, and steeper for losses than for gains; (3) Probability distortions
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(or weighting) are nonlinear transformation of the probability measures, which
overweight small probabilities and underweight moderate and high probabilities.

There have been burgeoning research merge CPT into portfolio investment. Most
of them are limited to the discrete-time setting, see for example Benartzi and Thaler
[2], Shefrin and Statman [15], Levy and Levy [10]. The pioneering analytical
research on continuous-time asset allocation featuring behavioral criteria is done
by Jin and Zhou [7]. Since then, a few extensive works have been published, see
He and Zhou [5, 6], Xu and Zhou [18], Jin and Zhou [8] and so on. Jin and Zhou
developed a new theory to work out the optimal terminal value in a continuous-time
CPT model. Nonetheless, their theory aims at a particular portfolio choice problem
in a self-financing market.

This article is to deal with probability distortion for model with running utilities.
In order to come closer to reality, bankruptcy is not allowed in our problem. The
remainder is organized as follows. Next section will formulate a general continuous-
time portfolio selection model under the CPT, featuring S-shaped utility functions
and probability distortions. The stochastic maximum principle as well as a solvable
example are finally presented.

2 Problem Formulation

Let T > 0 be a fixed time horizon and (Ω,F ,P, {Ft }t≥0) a filtered complete
probability space on which is defined a standard Ft -adapted m-dimensional
Brownian motion Wt ≡ (W 1

t , · · · ,Wm
t )

, with W0 = 0. It is assumed that
Ft = σ {Ws : 0 ≤ s ≤ t}, augmented by all the null sets. Throughout this paper
A, denotes the transpose of a matrix A; a± denote the positive and negative parts
of the real number a.

We define a positive state process
{
dXt = b(t, ut ,Xt )dt + σ(t, ut ,Xt )dWt

X0 = x0 > 0,
(2.1)

and the agent’s prospective functional

J (u·) = E
∫ T

0

(
ζ+(u+

t )-
′+
(
1 − Fu+

t
(u+
t )
)− ζ−(u−

t )-
′−
(
1 − Fu−

t
(u−
t )
))
dt

+ E
(
l(XT )w

′(1 − FXT (XT )
))
,

(2.2)

where u· is a control process taking values in a convex set U ⊆ R. According
to CPT, the following assumptions will be in force throughout this paper, where x
denotes the state variable, u denotes the control variable.

We make the following assumptions throughout this article.

(H.1) b(·, ·, ·) : [0, T ] × U × R
+ → R, σ(·, ·, ·) : [0, T ] × U × R

+ → R, are
continuously differentiable with respect to (u, x) with Lipschitz continuous first
derivatives. We further assume b(t, u, 0) = σ(t, u, 0) = 0.
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(H.2) ζ±(·), l(·) : R
+ → R

+ are differentiable, strictly increasing, strictly
concave, with ζ±(0) = l(0) = 0 and ζ ′±(0+) = l′(0+) = ∞.

(H.3) -±(·),w(·) : [0, 1] → [0, 1], are differentiable and strictly increasing,
with -±(0) = w(0) = 0, -±(1) = w(1) = 1. Moreover, the first derivatives of
-±(·),w(·) are all bounded.

Let

U =
{
u : [0, T ] ×Ω → U | ut is Ft -adapted and E

∫ T

0
|ut |4dt < ∞

}
.

Definition 1 A control process u· ∈ U is said to be admissible, and (u.,X.) is
called an admissible pair, if

1. X. is the unique solution of Eq. (2.1) under u.;
2. For any t ∈ [0, T ], the distribution functions of u±· are continuous except at 0;

3. E
∫ T

0

∣∣ζ±(u±
t )-

′±
(
1 − Fu±

t
(u±
t )
)∣∣8dt < ∞.

4. E
∫ T

0

(∣∣ d
du

ln ζ±(u±
t )
∣∣8 + ∣∣ζ ′′±(u±

t )
∣∣4)dt < ∞.

The set of all admissible controls is denoted by Uad .

Meanwhile, the following technical assumption for the terminal state are in force
throughout this paper.

Assumption 1 The terminal state XT corresponding to the control process u. ∈
Uad is supposed to has continuous distribution function. Besides,

E
∣∣l(XT )w′(1 − FXT (XT )

)∣∣8 + E

∣∣∣ d
dx

ln l(XT )
∣∣∣8 + E

∣∣l′′(XT )∣∣4 < ∞. (2.3)

Problem Our optimal control problem is to find ū· ∈ Uad such that

J (ū·) = max
u·∈Uad

J (u·). (2.4)

3 A Necessary Condition for Optimality

The current section presents our main result of the article. Let (ū·, X̄·) be an optimal
pair of the problem (2.4). We proceed to presenting the condition it must satisfy. To
this end, we formulate the adjoint equation

{
dpt = −(bx(t, ūt , X̄t )pt + σx(t, ūt , X̄t )qt

)
dt + qtdWt ,

pT = l′(X̄T )w′(1 − FX̄T (X̄T )).
(3.1)

Here is the necessary condition we obtained for the optimality of the control.
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Theorem 1 If ū· is the optimal control with the state trajectory X̄·, then there exists
a pair (p·, q·) of adapted processes which satisfies (3.1) such that a.e. t ∈ [0, T ],

ptbu(t, ūt , X̄t )+ σu(t, ūt , X̄t )qt =
{

−ζ ′+
(
ū+
t

)
- ′+
(
1 − Fū+

t
(ū+
t )
)

if ūt > 0,

−ζ ′−
(
ū−
t

)
- ′−
(
1 − Fū−

t
(ū−
t )
)

if ūt < 0,
a.s.

(3.2)

Recall the state equation (2.1) and the adjoint equation (3.1). Given an optimal
control ū·, there exists a unique solution X̄(ū·) to the state equation. As pT is known,
the unique solution (p(ū·), q(ū·)) for the backward SDE (3.1) is obtained. Plugging
X̄(ū·) and (p(ū·), q(ū·)) into (3.2), the optimal control ū· is narrowed to one of the
solution of so obtained algebraic equation.

In what follows, we present a solvable example and compare the result with the
one without probability distortions. The process u±

t in the objective functional are
replaced by u±

t Xt , signifying the proportion of wealth process. We study a case with
compounded cost function.

Example 1 Let ut ,Xt > 0, b(t, u, x) = −ux, and σ(t, u, x) = x. We take utility
function ζ+(x) = xα

α
(0 < α < 1), and distortion function (see, Lopes [11])

-+(p) = νpγ+1 + (1 − ν)[1 − (1 − p)β+1], γ , β ≥ 0, 0 ≤ ν ≤ 1.

Then,

dXt = −utXtdt +XtdWt, X0 = x0,

and

J (u·) = E

∫ T

0

( 1

α
(utXt )

α- ′+
(
1 − FutXt (utXt )

)+Xt

)
dt.

By Theorem 1, its optimal solution (ū·, X̄·) should satisfy

pt = (ūt X̄t )α−1
- ′+
(
1 − Fūt X̄t (ūt X̄t )

)
, a.e.t ∈ [0, T ], a.s., (3.3)

and

dpt = (ūtpt −qt − (ūt X̄t )α−1
- ′+
(
1−FūtX̄t (ūt X̄t )

)
ūt −1

)
dt+qtdWt , pT = 0.
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It yields pt = T − t, qt = 0, ∀t ∈ [0, T ]. Plugging back to equality (3.3),

we obtain that ūt X̄t =
(

T−t
(1−ν)(β+1)

)1/(α−1)
, a.e.t ∈ [0, T ], a.s. Solving the state

equation, we arrive at

ūt = (T − t)1/(α−1)/Vt (x0((1− ν)(β+1))1/(α−1)+
∫ t

0

(T − s)1/(α−1)

Vs
ds, a.s.,

where Vt = exp{Bt − t
2 }.

Acknowledgements This research is supported by Macao Science and Technology Development
Fund FDCT 025/2016/A1 and Southern University of Science and Technology Start up fund
Y01286220.

References

1. Allais, M.: Le comportement de l’homme rationnel devant le risque: critique des postulats et
axiomes de l’ecole americaine. Econom. J. Econom. Soc. 21, 503–546 (1953). https://doi.org/
10.2307/1907921

2. Benartzi, S., Thaler, R.H.: Myopic loss aversion and the equity premium puzzle. Q. J. Econ.
110, 73–92 (1995). https://doi.org/10.3386/w4369

3. Benartzi, S., Thaler, R.H.: Behavioral economics and the retirement savings crisis. Science
339, 1152–1153 (2013). https://doi.org/10.1126/science.1231320

4. Duffie, D., Epstein, L.G.: Stochastic differential utility. Econom. J. Econom. Soc. 60, 353–394
(1992). https://doi.org/10.2307/2951600

5. He, X.D., Zhou, X.Y.: Portfolio choice under cumulative prospect theory: an analytical
treatment. Manag. Sci. 57, 315–331 (2011). https://doi.org/10.1287/mnsc.1100.1269

6. He, X.D., Zhou, X.Y.: Portfolio choice via quantiles. Math. Financ. 21, 203–231 (2011). https://
doi.org/10.1111/j.1467-9965.2010.00432.x

7. Jin, H.Q., Zhou, X.Y.: Behavioral portfolio selection in continuous time. Math. Financ. 18,
385–426 (2008). https://doi.org/10.1111/j.1467-9965.2008.00339.x

8. Jin, H.Q., Zhou, X.Y.: Greed, leverage, and potential losses: a prospect theory perspective.
Math. Financ. 23, 122–142 (2013). https://doi.org/10.1111/j.1467-9965.2011.00490.x

9. Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.L.: Martingale and duality methods for utility
maximization in an incomplete market. SIAM J. Control. Optim. 29, 702–730 (1991). https://
doi.org/10.1137/0329039

10. Levy, H., Levy, M.: Prospect theory and mean-variance analysis. Rev. Financ. Stud. 17, 1015–
1041 (2003). https://doi.org/10.1093/rfs/hhg062

11. Lopes, L.L.: Between hope and fear: the psychology of risk. Adv. Exp. Soc. Psychol. 20, 255–
295 (1987). https://doi.org/10.1016/S0065-2601(08)60416-5

12. Markowitz, H.: Portfolio selection. J. Financ. 7, 77–91 (1952). https://doi.org/10.1111/j.1540-
6261.1952.tb01525.x

13. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev.
Econ. Stat. 51, 247–257 (1969). https://doi.org/10.2307/1926560

14. Peng, S.G.: A general stochastic maximum principle for optimal control problems. SIAM J.
Control. Optim. 28, 966–979 (1990). https://doi.org/10.1137/0328054

15. Shefrin, H., Statman, M.: Behavioral portfolio theory. J. Financ. Quant. Anal. 35, 127–151
(2000). https://doi.org/10.2307/2676187

https://doi.org/10.2307/1907921
https://doi.org/10.2307/1907921
https://doi.org/10.3386/w4369
https://doi.org/10.1126/science.1231320
https://doi.org/10.2307/2951600
https://doi.org/10.1287/mnsc.1100.1269
https://doi.org/10.1111/j.1467-9965.2010.00432.x
https://doi.org/10.1111/j.1467-9965.2010.00432.x
https://doi.org/10.1111/j.1467-9965.2008.00339.x
https://doi.org/10.1111/j.1467-9965.2011.00490.x
https://doi.org/10.1137/0329039
https://doi.org/10.1137/0329039
https://doi.org/10.1093/rfs/hhg062
https://doi.org/10.1016/S0065-2601(08)60416-5
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.2307/1926560
https://doi.org/10.1137/0328054
https://doi.org/10.2307/2676187


558 Q. Liang and J. Xiong

16. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of
uncertainty. J. Risk Uncertain. 5, 297–323 (1992). https://doi.org/10.1007/bf00122574

17. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton
University Press, Princeton (2007)

18. Xu, Z.Q., Zhou, X.Y.: Optimal stopping under probability distortion. Ann. Appl. Probab. 23,
251–282 (2013). https://doi.org/10.1214/11-AAP838

19. Yong, J.M., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations.
Springer, New York (1999)

https://doi.org/10.1007/bf00122574
https://doi.org/10.1214/11-AAP838


Number of Claims and Ruin Time
for a Refracted Risk Process

Yanhong Li, Zbigniew Palmowski, Chunming Zhao, and Chunsheng Zhang

Abstract In this paper, we consider a classical risk model refracted at given level.
We give an explicit expression for the joint density of the ruin time and the cumula-
tive number of claims counted up to ruin time. The proof is based on solving some
integro-differential equations and employing the Lagrange’s Expansion Theorem.

1 Introduction

Between 20.11.2017 and 8.12.2017 an international research institute MATRIX
in Creswick, Australia, run research program Mathematics of Risk during which
four 5-h workshops were given. In particular, Z. Palmowski presented a workshop
entitled Ruin probabilities: exact and asymptotic results. This paper is closely
related with the topics introduced during his lectures.

The joint density of the ruin time and the numbers of claims counted until ruin
time has been already studied for a classical risk process over last years. Dickson [3]
derived special expression for it using probabilistic arguments. Landriault et al. [11]
analyzed this object for the Sparre Andersen risk model with the exponential claims.
Later Frostig et al. [6] generalized it to the case of a renewal risk model with the
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phase-type claims and inter-arrival times. The main tool used there was the duality
between the risk model and a workload of a single server queueing model. Zhao
and Zhang [20] considered a delayed renewal risk model, where the claim size is
Erlang(n) distributed and the inter-arrival time is assumed to be infinitely divisible.

Our goal is to derive expression for the joint density of the ruin time and the
numbers of claims counted until ruin time for a refracted classical risk process (see
Kyrianou and Loeffen [9] for a formal definition). It is also called a compound
Poisson risk model under a threshold strategy. The latter process is a classical risk
process whose dynamic is changed by subtracting off a fixed linear drift whenever
the cumulative risk process is above a pre-specified level b. This subtracting of the
linear drift corresponds to the dividend payments and the considered strategy is also
known as a threshold strategy. Dividend strategies for insurance risk models were
first proposed by De Finetti [2] to reflect more realistically the surplus cash flows
in an insurance portfolio. More recently, many kind of risk related quantities under
threshold dividend strategies have been studied by Lin and Pavlova [16], Zhu and
Yang [22], Lu and Li [14, 15, 18], Badescu et al. [1], Gao and Yin [7] (see references
therein). The case when the drift of the refracted process is disappearing (everything
above threshold b is paid as dividends) is called barrier strategy, see Lin et al. [17],
Li and Garrido [12], Zhou [21] and in the references therein.

The paper is organized as follows. In Sect. 2 we define the model we deal
with in this paper. In Sect. 3 we recall properties of the translation operator and
the root of the Lundberg fundamental equation. In particular, we introduce the
Lagrange’s expansion theorem and some notation. In Sect. 4 we construct two
integro-differential equations identifying the joint Laplace transform of joint density
of the numbers of claims counted up to ruin time and the ruin time. Analytical
solutions of these two integro-differential equations are given in Sect. 5. Applying
the Lagrange’s expansion theorem in Sect. 6 we give the expression for above
mentioned density.

2 Model

The classical risk process is given by

U(t) = u+ c1t − S(t), (1)

where U(0) = u denotes initial capital, c is the premium rate and S(t) = ∑Nt
i=1Xi

represents the total amount of claims appeared up to time t ≥ 0. That is, {Xi}{i∈N}
are non-negative i.i.d. random variables with pdf f (x) and cdf F(x) and {Nt }{t≥0}
is an independent Poisson process with a parameter λ. To take into account dividend
payments paid when regulated process (after deduction of dividends) is above fixed
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Ub(t)

b

u

0 tτ

c1

c2

Fig. 1 Graphical representation of the surplus process Ub(t)

threshold level b > 0, we consider so-called refracted process given formally for
c2 < c1 by:

dUb(t) =
{
c1dt − dS(t), 0 ≤ Ub(t) ≤ b

c2dt − dS(t), Ub(t) > b
(2)

and Ub(0) = u. In this case c1 − c2 denotes intensity of dividend payments, see
Fig. 1.

Throughout this paper, we will assume that c2 > λEX1, which means refracted
process Ub(t) tends to infinity almost surely. We can then consider the ruin time:

τ = inf{t > 0, Ub(t) < 0},
(τ = ∞ if ruin does not occur). Note that Nτ represents the number of claims
counted until the ruin time. The main goal of this paper is identification of the
density of (τ,Nτ ). We start from analyzing its Laplace transform:

φ(u) = E[rNτ e−δτ I(τ < ∞)|Ub(0) = u] (3)

=
∞∑
n=1

rn
∫ ∞

0
e−δtw(u, n, t)dt, (4)

where

w(u, n, t) = P(Nτ = n, τ ∈ dt|Ub(0) = u)/dt

is the joint density of (τ,Nτ ) when Ub(0) = u. In above definition we have δ > 0
and r ∈ (0, 1]. Later we will use the following notation

w1(u, n, t) = w(u, n, t) for u ≤ b
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and

w2(u, n, t) = w(u, n, t) for u > b.

3 Preliminaries

In this section we introduce few facts used further in this paper. We start from
recalling the translation operator Ts ; see Dickson and Hipp [4]. For any integrable
real-valued function f it is defined as

Tsf (x) =
∫ ∞

x

e−s(y−x)f (y)dy, x ≥ 0.

The operator Ts satisfies the following properties:

1. Tsf (0) = ∫∞
0 e−sxf (x)dx = f̂ (s) which is the Laplcae transform of f ;

2. The operator Ts is commutative, i.e. TsTr = TrTs . Moreover, for s �= r and x ≥ 0

TsTrf (x) = TrTsf (x) = Tsf (x)− Trf (x)

r − s
. (5)

More properties of the translation operator Ts can be found in Li and Garrido [13]
and Gerber and Shiu [8].

For any function g we will denote by ĝ(s) its Laplace Transform, that is ĝ(s) =∫∞
0 e−sxg(x) dx. Next, for i = 1, 2 let ρi be the positive root of the Lundberg

fundamental equation

cis − (λ+ δ)+ λrf̂ (s) = 0. (6)

The positive roots always exists for δ > 0; see Fig. 2.

Lagrange’s Expansion Theorem In this paper we will also use the Lagrange’s
Expansion Theorem; see pages 251–326 of Lagrange [10]. Given two functions
α(z) and β(z) which are both analytic on and inside a contour D surrounding a
point a, if r satisfies the inequality

|rβ(z)| < |z− a|, (7)

for every z on the perimeter ofD, then z− a− rϕ(z), as a function of z, has exactly
one zero η in the interior of D, and we further have:

α(η) = α(a)+
∞∑
k=1

rk

k!
dk−1

dxk−1

(
α′(x)βk(x)

)∣∣
x=a. (8)
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Fig. 2 Roots for Lundberg’s
fundamental equation
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Finally, we define also the impulse function

δx(t) =
{

0, t �= x

∞, t = x

with
∫∞

0 δx(t)dt = 1. We denote gk∗, k ≥ 0, with g1∗ = g and g0∗(t) = δ0(t) the
k-fold convolution of g with itself, where

(g ∗ h)(t) =
∫ t

0
g(x)h(t − x)dx, t ≥ 0

for two functions g and h supported on (0,∞).

4 Integro-Differential Equations for the Joint Laplace
Transform

In this section, we derive two integro-differential equations identifying φ(u) defined
in (3). We will follow the idea given in Lin and Pavlova [16]. Denote

φ(u) =
{
φ1(u), u ≤ b,

φ2(u), u > b.
(9)
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Theorem 1 The joint Laplace transform φ satisfies the following integro-
differential equations:

⎧⎨
⎩
φ′

1(u)= λ+δ
c1
φ1(u)− λr

c1

∫ u
0 φ1(u− x)f (x)dx − λr

c1
F̄ (u), 0 ≤ u ≤ b

φ′
2(u)= λ+δ

c2
φ2(u)− λr

c2

(∫ u−b
0 φ2(u− x)f (x)dx + ∫ u

u−b φ1(u− x)f (x)dx
)

− λr
c2
F̄ (u), u > b

(10)

with the boundary condition

φ1(b) = φ2(b) := lim
u→b+

φ2(u). (11)

Remark 1 Note that from the integro-differential equations (10) follows that the
joint Laplace transform with initial surplus above the barrier depends on the
respective function with initial surplus below the barrier, but the reverse relationship
does not hold true.

Proof Let first 0 ≤ u ≤ b. Then conditioning on the occurrence of the first claim
we will have two cases: the first claim occurs before the surplus has reached the
barrier level b or it occurs after reaching this barrier. There are also two other cases
at the moment of the arrival of the first claim: either the risk process starts all over
again with new initial surplus or the first claim leads already to ruin. Hence:

φ(u) = φ1(u)

=
∫ b−u

c1

0
λre−λt e−δt

(∫ u+c1 t

0
φ(u+ c1t − x)f (x)dx + F̄ (u+ c1t )

)
dt

+
∫ ∞
b−u
c1

λre−λt e−δt
(∫ b+c2(t− b−u

c1
)

0
φ(b + c2(t − b − u

c1
)− x)f (x)dx + F̄ (b + c2(t − b − u

c1
))

)
dt

= λr

∫ b−u
c1

0
e−(λ+δ)t γ (u+ c1t )dt + λr

∫ ∞
b−u
c1

e−(λ+δ)t γ (b+ c2(t − b− u

c1
))dt,

(12)

where γ (t) = ∫ t0 φ(t − x)f (x)dx + F̄ (t).
Changing variables in (12) and rearranging leads to the following equation for

0 ≤ u ≤ b:

φ1(u) = λr

c1
e(λ+δ)u/c1

∫ b

u

e−(λ+δ)t/c1γ (t)dt + λr

c2
e(λ+δ)u/c1

×
∫ ∞

b

e−(λ+δ)[t−(c1−c2)b/c1]/c2γ (t)dt. (13)

Differentiating both sides of (13) with respect to u yields first equation.
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Similarly, for u > b we have:

φ(u) = φ2(u)

=
∫ ∞

0
λre−λt e−δt

(∫ u+c2t

0
φ(u+ c2t − x)f (x)dx + F̄ (u+ c2t)

)
dt

= λr

∫ ∞

0
e−(λ+δ)tγ (u+ c2t)dt

= λr

c2
e(λ+δ)u/c2

∫ ∞

u

e−(λ+δ)t/c2γ (t)dt. (14)

Differentiating both sides of (14) with respect to u produces the second equation.
Note also that from Eqs. (13) and (14) it follows that φ(u) is continuous at u = b

and hence (11) holds. This completes the proof.

5 The Analytical Expression for φ(u)

In this section, we derive the analytical expression for φi(u) (i = 1, 2) using the
translation operator introduced in Sect. 3.

Theorem 2 The function φ2(u) can be expressed analytically as follows:

φ2(u) =
∞∑
n=0

(
λr

c2

)n+1

(Tρ2f )
n∗ ∗ h(u− b), u > b, (15)

where

h(u) :=
∫ u+b

u

φ1(u+ b − x)Tρ2f (x)dx + Tρ2 F̄ (u+ b). (16)

Proof We adopt the approach of Willmot and Dickson [19]. Consider the second
equation in (10) for u > b. For a fixed s > 0, we multiply both sides of this
equation by e−s(u−b) and integrate it with respect to u from b to ∞:

c2

∫ ∞

b

e−s(u−b)φ′
2(u)du

=(λ+ δ)Tsφ2(b)− λr

∫ ∞

b

e−s(u−b)
∫ u−b

0
φ2(u− x)f (x)dxdu

− λr

∫ ∞

b

e−s(u−b)
∫ b

0
φ1(y)f (u− y)dydu− λrTsF̄ (b)
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=(λ+ δ)Tsφ2(b)− λr

∫ ∞

0
e−sxf (x)

∫ ∞

x+b
e−s(u−x−b)φ2(u− x)dudx

− λr

∫ b

0
φ1(y)

∫ ∞

b

e−s(u−b)f (u− y)dudy − λrTsF̄ (b)

=(λ+ δ)Tsφ2(b)− λrf̂ (s)Tsφ2(b)− λr

∫ b

0
φ1(y)Tsf (b − y)dy − λrTsF̄ (b).

Integrating by parts gives:

c2

∫ ∞

b

e−s(u−b)φ′
2(u)du = c2sTsφ2(b)− c2φ2(b).

Hence

c2sTsφ2(b)− c2φ2(b)

=(λ+ δ)Tsφ2(b)− λrf̂ (s)Tsφ2(b)− λr

∫ b

0
φ1(y)Tsf (b − y)dy − λrTsF̄ (b)

and simple rearranging leads to:

(c2s − (λ+ δ)+ λrf̂ (s))Tsφ2(b) = c2φ2(b)− λr

∫ b

0
φ1(y)Tsf (b − y)dy − λrTsF̄ (b).

(17)

Taking s = ρ2 for the solution ρ2 of the Lundberg Fundamental Equation (6) gives

c2φ2(b) = λr

∫ b

0
φ1(y)Tρ2f (b − y)dy + λrTρ2 F̄ (b).

Then Eq. (17) is equivalent to:

[c2(s − ρ2)+ λrf̂ (s)− λrf̂ (ρ2)]Tsφ2(b)

=λr
∫ b

0
φ1(y)[Tρ2f (b − y)− Tsf (b − y)]dy + λr[Tρ2 F̄ (b)− TsF̄ (b)].

Now dividing above equation by s − ρ2 and using property 2 of the translation
operator introduced in Sect. 2 produces:

c2Tsφ2(b) = λrTsTρ2f (0)Tsφ2(b)+λr
∫ b

0
φ1(y)TsTρ2f (b−y)dy+λrTsTρ2 F̄ (b).

(18)
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Inverting the translation operators of (18) yields the following renewal equation for
φ2(u):

φ2(u) = λr

c2

[∫ u−b

0
φ2(u− x)Tρ2f (x)dx +

∫ u

u−b
φ1(u− x)Tρ2f (x)dx + Tρ2 F̄ (u)

]
.

(19)

Taking y = u− b and g(y) = φ2(y + b) we can rewrite (19) as follows:

g(y) = λr

c2

∫ y

0
g(y − x)Tρ2f (x)dx + λr

c2
h(y), y > 0,

where

h(y) = h(u− b) =
∫ u

u−b
φ1(u− x)Tρ2f (x)dx + Tρ2 F̄ (u), u > b.

Hence

φ2(u) = g(y)

= λr

c2

∫ y

0
g(y − x)Tρ2f (x)dx + λr

c2
h(y)

=
∞∑
n=0

(
λr

c2

)n+1

(Tρ2f )
n∗ ∗ h(y)

=
∞∑
n=0

(
λr

c2

)n+1

(Tρ2f )
n∗ ∗ h(u− b)

which completes the proof.

The expression for φ1(u) could be also derived in terms of the translation
operator.

Theorem 3 The function φ1(u) can be expressed analytically in the following form:

φ1(u) = φ∞(u)+
λr
c2

[
φ∞ ∗ Tρ2f (b)+ Tρ2 F̄ (b)

]− φ∞(b)
ν(b)− λr

c2
ν ∗ Tρ2f (b)

ν(u), (20)

where

φ∞(u) :=
∞∑
n=0

(
λr

c1

)n+1

(Tρ1f )
n∗ ∗ Tρ1 F̄ (u) (21)



568 Y. Li et al.

and

ν(x) :=
∞∑
n=0

(
λr

c1

)n
(Tρ1f )

n∗ ∗ p(x) (22)

with p(x) = eρ1x .

Proof We will follow Landriault et al. [11]. Note that the first equation in (10) does
not involve the barrier level b:

φ′
1(u) = λ+ δ

c1
φ1(u)− λr

c1

∫ u

0
φ1(u− x)f (x)dx − λr

c1
F̄ (u). (23)

The information about the barrier b is included in the boundary condition:

φ1(b) = φ2(b) := lim
u→b+

φ2(u).

Lin et al. [16] showed that the general solution of (23) is of the form

φ1(u) = φ∞(u)+ kν(u), (24)

where φ∞(u) is the joint Laplace transform of density of the ruin time and number
of claims counted up to ruin time for the classical risk process (1) without any barrier
applied. That is,

φ∞(u) :=
∞∑
n=1

rn
∫ ∞

0
e−δtw∞(u, n, t)dt (25)

for

w∞(u, n, t) := P(Nτ = n, τ ∈ dt|U(0) = u)/dt. (26)

In above Eq. (24) the quantity k is a constant which we can specify by
implementing (24) and (19):

k =
λr
c2

[∫ b
0 φ∞(b − x)Tρ2f (x)dx + Tρ2 F̄ (b)

]
− φ∞(b)

ν(b)− λr
c2

∫ b
0 ν(b − x)Tρ2f (x)dx

. (27)

We express now the function φ∞ in terms of a compound geometric distribution.
Indeed, since φ∞ also satisfies Eq. (23), taking Laplace transforms of its both sides
for sufficiently large s gives:

(c1s − (λ+ δ)+ λrf̂ (s))φ̂∞(s) = c1φ∞(0)− λr ˆ̄F(s), s ≥ 0. (28)
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To determine the constant term c1φ∞(0) in (28), we substitute the solution ρ1 of the
Lundberg Fundamental Equation (6) for s:

c1φ∞(0) = λr ˆ̄F(ρ1) = λrTρ1
ˆ̄F(0). (29)

Consequently, the Eq. (28) reduces to

[c1(s − ρ1)+ λrf̂ (s)− λrf̂ (ρ1)]φ̂∞(s) = λr ˆ̄F(ρ1)− λr ˆ̄F(s).

Dividing above equation by s − ρ1 and simple rearranging along with implementa-
tion of the formula (5) produces:

c1φ̂∞(s) = λrφ̂∞(s)TsTρ1f (0)+ λrTsTρ1 F̄ (0).

Inverting this Laplace transforms gives classical renewal equation:

φ∞(u) = λr

c1
φ∞ ∗ Tρ1f (u)+

λr

c1
Tρ1 F̄ (u) (30)

having the solution given as an Neumann infinite series (21).
To prove the last statement (22) note that the function ν(u) satisfies the following

integro-differential equation:

c1ν
′
(u)− (λ+ δ)ν(u)+ λr

∫ u

0
ν(u− x)f (x)dx = 0, u ≥ 0, (31)

with the initial condition ν(0) = 1. To get the analytical expression of ν(u) we take
the Laplace transforms of both sides of (31) for sufficiently large s (s > ρ1). This
yields:

c1sν̂(s)− c1ν(0) = (λ+ δ)ν̂(s)− λrf̂ (s)ν̂(s).

Since ν(0) = 1,

(s + λr

c1
f̂ (s)− λ+ δ

c1
)ν̂(s) = 1. (32)

Recalling that ρ1 is the root of (6), we can rewrite (32) as

(s − ρ1 + λr

c1
[f̂ (s)− f̂ (ρ1)])ν̂(s) = 1,
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which, by dividing by s − ρ1 and implementing (5), produces:

ν̂(s) = λr

c1
ν̂(s)TsTρ1f (0)+

1

s − ρ1
. (33)

Inverting the Laplace transforms in (33) leads to the Eq. (22). Including all above
identities in (24) completes the proof.

6 The Joint Density of (τ,Nτ )

In this section we give the joint density of the number of claims counted until ruin
time and the ruin time using the Lagrange’s Expansion theorem. We start with few
facts that will be useful in the proof of the main result.

Recall that by w∞(u, n, t) we denote the joint density of (τ,Nτ ) for the classical
risk process (1) (with infinite barrier b = +∞); see (26). For i = 1, 2 we denote

gi(x, 0, t) := δx/ci (t)e
−λx/ci ,

gi(x, n, t) := xtn−1e−λtλnf n∗(ci t − x)/n!.

Following Dickson [3] we can state the following lemma.

Lemma 1 We have

w∞(u, 1, t) = λe−λt F̄ (u+ c1t).

For n = 1, 2, 3, . . . the following holds:

w∞(u, n+ 1, t) = (λt)n

n! e−λt
∫ u+c1t

0
f n∗(u+ c1t − x)λF̄ (x)dx

−c1

n∑
j=1

∫ t

0

(λs)j

j ! e−λsf j∗(u+ c1s)w∞(0, n + 1 − j, t − s))ds,

(34)

where

w∞(0, n, t) = λ

c1

∫ c1t

0
F̄ (x)g1(x, n− 1, t)dx, n = 1, 2, . . . . (35)
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Proof Using Lagrange’s Expansion Theorem presented in Sect. 2 with α(z) = e−zx ,
β(z) = − λ

ci
f̂ (s), a = (λ + δ)/ci and D = {z||z − a| ≤ a} (i = 1, 2) and the

Lundberg fundamental equation (6) we can conclude the following identity:

e−ρix = e−(λ+δ)x/ci +
∞∑
n=1

rn

n!
dn−1

dsn−1

(
−xe−sx

(
− λ

ci
f̂ (s)

)n) ∣∣∣
s=(λ+δ)/ci

= e−(λ+δ)x/ci +
∞∑
n=1

rn

n!
dn−1

dsn−1

(
(−1)n+1λnx/cni

∫ ∞

0
e−s(x+y)f n∗(y)dy

) ∣∣∣
s=(λ+δ)/ci

= e−(λ+δ)x/ci +
∞∑
n=1

λnrn

n!cni

∫ ∞

0
x(x + y)n−1e−(λ+δ)(x+y)/ci f n∗(y)dy.

Substituting t := (x + y)/ci and rearranging leads to:

e−ρix = e−(λ+δ)x/ci +
∞∑
n=1

rn
λn

n!
∫ ∞

x/ci

xtn−1e−λt e−δtf n∗(ci t − x)dt

=
∞∑
n=0

rn
∫ ∞

x/ci

e−δtgi (x, n, t)dt. (36)

Therefore,

Tρi f (x) =
∫ ∞

x

e−ρi (u−x)f (u)du

=
∫ ∞

x

∞∑
n=0

rn
∫ ∞

(u−x)/ci
e−δtgi(u− x, n, t)dtf (u)du

=
∞∑
n=0

rn
∫ ∞

0
e−δt

∫ ci t+x

x

f (u)gi(u− x, n, t)dudt. (37)

Since φ∞(u) defined in (25) is the joint Laplace transform under the classical
compound Poisson risk model without a barrier we can use Dickson [3] to complete
the proof.

Moreover, the following result holds true.

Lemma 2 The function ν(u) given in (22) equals

ν(u) =
∞∑
n=0

rn
∫ ∞

0
e−δt-(u, n, t)dt, (38)
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where

-(u, 0, t) := g1(−u, 0, t),

-(u, n, t) :=
n∑

m=1

(
λ

c1

)m ∫ c1 t

0

∫ u

0
gc1 (y, n−m, t)bm(u− x, y + x)dxdy + gc1 (−u, n, t), n ≥ 1

bn(u, y) :=
n−1∑
j=0

(
n

j

)
(−1)j

Γ (n)

∫ u

0
(u− x)n−1f (n−j)∗(y + u− x)f j∗(x)dx.

Proof Our goal is to express ν(u) as the Laplace transform:

ν(u) =
∫ ∞

0
e−ρ1t ξ(u, t)dt. (39)

We start from definition (22):

ν(u) =
∞∑
n=0

(
λr

c1

)n
(Tρ1f )

n∗ ∗ p(u)

=
∞∑
n=1

(
λr

c1

)n ∫ u

0
(Tρ1f )

n∗(u− x)eρ1xdx + eρ1u. (40)

Using Dickson and Willmot [5] we can obtain the following representation:

(Tρi f )
n∗(u) =

∫ ∞

0
e−ρiybn(u, y)dy (41)

for

bn(u, y) :=
n−1∑
j=0

(
n

j

)
(−1)j

Γ (n)

∫ u

0
(u− x)n−1f (n−j)∗(y + u− x)f j∗(x)dx.

By (40)

ν(u) =
∞∑
n=1

(
λr

c1

)n ∫ u

0

∫ ∞

0
e−ρ1ybn(u− x, y)dyeρ1xdx + eρ1u

=
∞∑
n=1

(
λr

c1

)n ∫ ∞

0
e−ρ1t

∫ u

0
bn(u− x, t + x)dxdt

+
∞∑
n=1

(
λr

c1

)n ∫ 0

−u
e−ρ1t

∫ u

−t
bn(u− x, t + x)dxdt +

∫ ∞

0
e−ρ1t δ−u(t)dt.
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Comparing the coefficients of e−ρ1t in (39) gives:

ξ(u, t) =
∞∑
n=1

(
λr

c1

)n ∫ u

0
bn(u− x, t + x)dx + δ−u(t); (42)

see also [11]. Using (36) and (42) in (39) we end up with:

ν(u) =
∫ ∞

0
e−ρ1yξ(u, y)dy + eρ1u

=
∫ ∞

0

∞∑
n=0

rn
∫ ∞

y/c1

e−δt gc1 (y, n, t)dtξ(u, y)dy

=
∞∑
n=0

rn
∫ ∞

0
e−δt

∫ c1t

0
gc1 (y, n, t)ξ(u, y)dydt

=
∞∑
n=1

rn
∫ ∞

0
e−δt

(
n∑

m=1

(
λ

c1
)m
∫ c1t

0

∫ u

0
gc1 (y, n−m, t)bm(u− x, y + x)dxdy + gc1 (−u, n, t)

)
dt

+
∫ ∞

0
e−δt gc1 (−u, 0, t)dt

which completes the proof.

Using above lemmas we will prove the main result of this paper.

Theorem 4 For 0 ≤ u ≤ b and m > 1 the joint density of the number of claims
until ruin Nτ and the time to ruin τ is given by

w1(u, 1, t) = λ

c2
e−λt F̄ (c2t + b + c2

c1
(u− b))

w1(u, m, t) = e
− λb
c1

[
m∑
n=1

ϑ(u,m, n, t − b

c1
)−

m−1∑
n=1

∫ t− b
c1

0
ς(b,m− n, t − b

c1
− z)w1(u, n, z)dz

]
,

(43)

where for n ≥ 1

ς(b, 0, t) := -(b, 0, t) = gc1 (−b, 0, t),

ς(b, n, t) := -(b, n, t) −
n−1∑
m=0

λ

c2

∫ b

0

∫ t

0
-(b − x, n− 1 −m, t − z)

∫ c2z+x

x

f (y)g2(y − x,m, z)dydzdx,

γ (b, 1, t) := λ

c2

∫ c2 t+b

b

F̄ (y)g2(y − b, 0, t)dy,

γ (b, n, t) :=
n−2∑
m=0

λ

c2

∫ b

0

∫ t

0
w∞(b − x, n−m− 1, t − z)

∫ c2z+x

x

f (y)g2(y − x,m, z)dydzdx,

ϑ(u,m, n, t) :=
∫ t

0
ς(b,m− n, t − z)w∞(u, n, z) + (γ (b, n, t − z)−w∞(b, n, t − z))-(u,m − n, z)dz.
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Proof In order to get the joint density w(u, n, t), we have to take inverse Laplace
transform with respect to δ rather than ρ1 and ρ2. To do this we must find firstly
the relationship between transforms with respect to ρ1, ρ2 and δ by applying the
Lagrange’s Expansion theorem. For convenience, we will denote:

χ(b) := ν(b)− λr

c2
ν ∗ Tρ2f (b). (44)

Then we can rewrite (20) as follows:

χ(b)φ1(u) = χ(b)φ∞(u)+ λr

c2

[
φ∞ ∗ Tρ2f (b)+ Tρ2 F̄ (b)

]
ν(u)− φ∞(b)ν(u).

(45)

Putting (37) and (38) into (44) we will derive:

χ(b) =
∞∑
n=0

rn
∫ ∞

0
e−δt- (b, n, t)dt − λr

c2

∫ b

0
ν(b − x)Tρ2f (x)dx

=
∞∑
n=0

rn
∫ ∞

0
e−δt- (b, n, t)dt − λr

c2

∞∑
n=0

rn
n∑

m=0

∫ b

0

∫ ∞

0
e−δt- (b− x, n−m, t)dt

∫ ∞

0
e−δz

∫ c2z+x

x

f (y)g2(y − x,m, z)dydzdx

=
∞∑
n=0

rn
∫ ∞

0
e−δt- (b, n, t)dt −

∞∑
n=1

rn
∫ ∞

0
e−δt {

n−1∑
m=0

λ

c2

∫ b

0

∫ t

0
-(b − x, n− 1 −m, t − z)

∫ c2z+x

x

f (y)g2(y − x,m, z)dydzdx}dt

=
∞∑
n=1

rn
∫ ∞

0
e−δt {-(b, n, t)−

n−1∑
m=0

λ

c2

∫ b

0

∫ t

0
-(b− x, n− 1 −m, t − z)

∫ c2z+x

x

f (y)

g2(y − x,m, z)dydzdx}dt +
∫ ∞

0
e−δt- (b, 0, t)dt

=
∞∑
n=0

rn
∫ ∞

0
e−δt ς(b, n, t)dt. (46)

Similarly, using Lemma 1, we can check that:

λr

c2

[
φ∞ ∗ Tρ2f (b)+ Tρ2 F̄ (b)

] =
∞∑
n=1

rn
∫ ∞

0
e−δtγ (b, n, t)dt. (47)
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Using (38), (46) and (47) in (45) we obtain:

∞∑
m=1

rm
∫ ∞

0
e−δt

m∑
n=1

∫ t

0
ς(b,m− n, t − z) (w1(u, n, z)− w∞(u, n, z)) dzdt

=
∞∑
m=1

rm
∫ ∞

0
e−δt

m∑
n=1

∫ t

0
(γ (b, n, t − z)−w∞(b, n, t − z))-(u,m− n, z)dzdt

or equivalently that

m∑
n=1

∫ t

0
ς(b,m− n, t − z)w1(u, n, z)dz

=
m∑
n=1

∫ t

0
ς(b,m− n, t − z)w∞(u, n, z)

+ (γ (b, n, t − z)−w∞(b, n, t − z))-(u,m− n, z)dz.

Now, if m = 1 then
∫ t

0
ς(b, 0, t − z)w1(u, 1, z)dz = ϑ(u, 1, 1, t).

In this case
∫ t

0
δ−b/c1(t − z)e

λb
c1 w1(u, 1, z)dz = e

λb
c1 w1(u, 1, t + b

c1
)

= λ

c2
e−λt F̄ (c2t + b + c2

c1
u)

and

w1(u, 1, t) = λ

c2
e
−λ(t+ b

c1
)
F̄ (c2t + b + c2

c1
(u− b)).

Similarly, if m = 2 then

∫ t

0
δ−b/c1(t − z)e

λb
c1 w1(u, 2, z)dz =

2∑
n=1

ϑ(u, 2, n, t) −
∫ t

0
ς(b, 1, t − z)w1(u, 1, z)dz

and

w1(u, 2, t) = e
− λb
c1

[
2∑
n=1

ϑ(u, 2, n, t − b

c1
)−
∫ t− b

c1

0
ς(b, 1, t − b

c1
− z)w1(u, 1, z)dz

]
.

Similarly we can prove the assertion for any m > 1.
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Theorem 5 For u > b and m > 1 the joint density of the number of claims until
ruin Nτ and the time to ruin τ is given by

w2(u,m, t) = (
λ

c2
)m

m−1∑
k=0

m−k−1∑
n=0

∫ u−b

0

∫ t

0

∫ c2z

0
g2(y, k, z)bm−k−n−1(u− b − x, y)ε(x, n, t − z)dydzdx,

(48)
where

ε(u, 0, t) :=
∫ c2t+u+b

u+b
F̄ (y)g2(y − u− b, 0, t)dy,

ε(u,m, t) :=
m∑
n=1

∫ u+b

u

∫ t

0
w1(u+ b − x, n, t − z)

∫ c2z+x

x

f (y)g2(y − x,m− n, z)dydzdx

+
∫ c2t+u+b

u+b
F̄ (y)g2(y − u− b,m, z)dy, n ≥ 1.

Proof To obtain an expression forw2(u,m, t) we first consider h(x) defined in (16).
Using (37) we can derive:

h(u) =
∫ u+b

u

∞∑
m=1

rm
∫ ∞

0
e−δtw1(u+ b − x,m, t)dt

×
∞∑
n=0

rn
∫ ∞

0
e−δz

∫ c2z+x

x

f (y)g2(y − x, n, z)dydzdx

+
∞∑
n=0

rn
∫ ∞

0
e−δt

∫ c2t+u+b

u+b
F̄ (y)g2(y − u− b, n, t)dydt

=
∞∑
n=1

rn
∫ ∞

0
e−δt

[ n∑
m=1

∫ u+b

u

∫ t

0
w1(u+ b − x,m, t − z)

×
∫ c2z+x

x

f (y)g2(y − x, n−m, z)dydzdx

+
∫ c2t+u+b

u+b
F̄ (y)g2(y − u− b, n, z)dy

]
dt (49)

+
∫ ∞

0
e−δt

∫ c2t+u+b

u+b
F̄ (y)g2(y − u− b, 0, t)dydt

=
∞∑
n=0

rn
∫ ∞

0
e−δt ε(u, n, t)dt. (50)
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Moreover, substituting (41), (49) and (36) into (15) gives:

φ2(u) =
∞∑
m=0

(
λr

c2

)m+1 ∫ u−b
0

(Tρ2f )
m∗(u− b − x)h(x)dx

=
∞∑
m=0

(
λr

c2

)m+1 ∫ u−b
0

∫ ∞
0

e−ρ2ybm(u− b − x, y)dy

∞∑
n=0

rn
∫ ∞

0
e−δt ε(x, n, t)dtdx

=
∞∑
m=0

(
λr

c2

)m+1 ∫ u−b
0

∫ ∞
0

∞∑
k=0

rk
∫ ∞
y/c2

e−δzg2(y, k, z)dzbm(u− b − x, y)dy

×
∞∑
n=0

rn
∫ ∞

0
e−δt ε(x, n, t)dtdx

=
∞∑
m=1

rm
∫ ∞

0
e−δt

{(
λ

c2

)m m−1∑
k=0

m−k−1∑
n=0

∫ u−b
0

∫ t

0

∫ c2z

0
g2(y, k, z)bm−k−n−1(u− b − x, y)

×ε(x, n, t − z)dydzdx

}
dt. (51)

Comparing Eqs. (51) and (4) completes the proof.
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Numerical Approximations
to Distributions of Weighted
Kolmogorov-Smirnov Statistics
via Integral Equations

Dan Wu, Lin Yee Hin, Nino Kordzakhia, and Alexander Novikov

Abstract We show that the distribution of two-sided weighted Kolmogorov-
Smirnov (wK-S) statistics can be obtained via the solution of the system of two
Volterra type integral equations for corresponding boundary crossing probabilities
for a diffusion process. Based on this result we propose a numerical approximation
method for evaluating the distribution of wK-S statistics. We provide the numerical
solutions to the system of the integral equations which were also verified via Monte
Carlo simulations.

1 Introduction

The applications of one-sided and two-sided weighted Kolmogorov-Smirnov
(wK-S) statistical tests are ubiquitous in diverse areas of applications, including
physics, finance, computational biology and Gene Set Enrichment Analysis
(GSEA), see e.g. [8, 14, 21]. In some cases there exist modifications of the wK-S
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whose limit distributions (for large sample sizes) can be represented as the following
random variable

Dg,f := sup
t∈T

|Bt − g(t)ξ |
f (t)

, (1.1)

where g(t) and f (t) are some deterministic functions of t, B = {Bt, t ∈ [0, 1]}
is a standard Brownian bridge, the random variable ξ is independent of B and has
the standard normal distribution, ξ ∼ N(0, 1), T ⊆ [0, 1]. Note that analytical
expressions for the distribution function P {Dg,f < x}, x > 0, are not available in
closed form besides the classical case when g(t) = 0, f (t) = 1 (see Kolmogorov
[15]).

Recent applications of wK-S in GSEA (see e.g. [6]) require the development of
fast and accurate numerical approximations for the cumulative distribution functions
(cdf) of Dg,f for specific functions f and g.

This paper addresses the issues of approximating cdf of the Dg,f under the
following two important settings:

1. f (t) = 1, g = {g(t) = tα − t , 1/2 < α < 1, t ∈ T = [0, 1]},
2. f (t) = √

t (1 − t), t ∈ T = [a, b], g(t) = 0, 0 < a ≤ b < 1.

Our goal is to find accurate numerical approximations for the following corre-
sponding tail distributions

P1(x) := P {sup
t∈T

|Bt − g(t)ξ | > x}; P2(x) := P

{
sup
t∈[a,b]

|Bt |√
t (1 − t)

> x

}
.

Setting 1 was recently discussed in the context of GSEA, see e.g. [6, 16, 17].
The family of functions g is of special relevance there. In particular, the case α =
2/3 in Setting 1 corresponds to GSEA analysis where the weights of the genes in
question are replaced by their respective ranks obtained based on their expressions
in typical experiments. Examples of such gene expression profiles are accessible
from the Gene Expression Omnibus repository [12]. Note that g = 0 corresponds to
the classical Kolmogorov-Smirnov test statistic where the closed-form expression
for P {D0,1 < x} is well known [15]. See also [10], [11] and [20] for a historical
account.

Setting 2 corresponds to the wK-S test suggested by Anderson and Darling [1].
It is designed with the purpose to increase the sensitivity for the tails of empirical
distributions compared to the classical K-S test. Some asymptotic result for the tail
probabilities under this setting have been derived recently in [7].

In general, finding the distribution of Dg,f is a computationally intensive
numerical problem, a subject of pursuit for many different approaches, each with its
own merits and shortcomings, that are devised specifically to address this problem
from different perspectives. In [9] and [2], among others, the authors reduce the
problem of approximating the extrema of modified Brownian bridges to finding
boundary crossing probabilities (BCP) with respect to Brownian motion. In line
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with this approach, piecewise linear boundaries were used to replace nonlinear
boundaries and approximate the desired distribution by an n-dimensional integrals
in a similar way as used in [3, 18], and [22]. The convenient feature of this approach,
as demonstrated in [17] and [16] for the case of the one-sided version of wK-S, is
a possibility to obtain analytical upper and lower bounds for the tail distributions
of statistics which lead to fast and reasonably accurate approximations. However,
for the case of the two-sided wK-S this approach requires substantial computational
cost in situations when highly accurate approximations are needed.

Historically it was Kolmogorov [15] who first found the distribution of D0,1
as a solution of a partial differential equation (PDE). Subsequently, Anderson
and Darling in [1], had applied this approach for solving related problems in
the construction of goodness-of-fit tests. Under Settings 1 and 2 it is possible to
use the finite-difference schemes or finite element method to obtain numerical
approximations. However, the PDE approach seems to be not computationally
efficient due to the fact that not only function evaluations are required at larger
number of discretised points, but substantially higher computational burden is
incurred due to the element assembly process [4].

The technique discussed in our paper is inspired by the work of Peskir (see
Theorem 2.2 in [19]) who derived an integral equation of Volterra type for BCP
with one-sided boundaries. In this paper we are expanding this technique for BCP
with two-sided boundaries deriving a system of two integral equations of Volterra
type. Note that this system of integral equations was derived in a different way by
Buonocore et al. [5] using a different approach. As a matter of fact our technique
is applicable to all regular diffusion processes where transition probabilities are
available in a closed form. The advantage of this approach is that a system of integral
equations are rather straight forward to obtain for all one-dimensional diffusion
processes and efficient numerical techniques can be easily developed to solve the
equations. The complete results including the case of general diffusion processes
will be presented in another publication.

The paper is organised as follows. In Sect. 2 we formulate the results which
provide a system of two Volterra integral equations for P {Dg,f < x}. In Sect. 3
we describe the numerical algorithm and results as well as comparisons with Monte
Carlo simulation.

2 Construction of a System of Integral Equations
of Volterra Type

In this section, we formulate a general result on BCP for two-sided boundaries
which will be used for deriving a system of integral equations to evaluate the
distribution of Dg,f .

Note that in Setting 1 we need to find BCP of the following form

P1(x, y) := P {sup
t∈T

|Bt − g(t)y| < x} = P {L(t) ≤ Bt ≤ U(t), t ∈ [0, 1]}
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where

L(t) = −x + g(t)y, U(t) = x + g(t)y, x > 0, y ∈ R.

Having the function P1(x, y) the distribution of two-sided wK-S statistics
can be evaluated via integration with respect the density function φ(y, σ ) :=

1
σ
√

2π
e−(y/σ )2/2 :

P1(x) = 1 − P {Dg,1 < x} =
∫ ∞

−∞
φ(y, 1)(1 − P1(x, y))dy. (2.1)

In Setting 2 a similar integral representation holds due to the following relations:

P2(x) = P

(
sup
t∈[a,b]

|Bt |√
t (1 − t)

> x

)
= P(|Ba | > x

√
a(1 − a))+

P

(
{|Ba | ≤ x

√
a(1 − a)} ∩

{
sup
t∈[a,b]

|Bt |√
t (1 − t)

> x

})

= 1 − erf(x/
√

2)+
∫ x

√
ta

−x√ta
φ(y,

√
t (1 − t))(1 − P2(x, y))dy (2.2)

with

P2(x, y) = P {L(t) ≤ Bt ≤ U(t), t ∈ [a, b]|Ba = y}, y ∈ R,

L(t) = −x√t (1 − t), U(t) = x
√
t (1 − t), x > 0.

To derive equations for BCP under the general setting for a general diffusion
process X = {Xt, t ≥ 0} (defined on a suitable probability space) we set

τL = inf
t≥t0

{t : Xt ≤ L(t);Bs < U(s),∀s ∈ (t0, t)|Xt0 = x0}, (2.3)

τU = inf
t≥t0

{t : Xt ≥ U(t);Xs > L(s),∀s ∈ (t0, t)|Xt0 = x0}, (2.4)

τ = inf
t≥t0

{t : Xt �∈ (L(t), U(t))|Xt0 = x0} = inf{τ−, τ+}. (2.5)

Let fL(t|x0, t0), fU(t|x0, t0) and f (t|x0, t0) be the densities of τL, τU and τ

respectively (subject their existence) and Xt0 = x0.
Now we state a modified version of Theorem 2.2 in [19] for the two-sided BCP.
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Theorem 1 Let X be a one-dimensional diffusion process with boundaries U and
L being continuously differentiable functions satisfying inequalities L(s) < x0 <

U(s) and L(t) < U(t) for all t > s. Let FU and FLbe the cumulative distribution
functions of τU and τL respectively. The following system of integral equations

P(G1, t |x0, s) =
∫ t

s

P (G1, t |U(s), s)FU (ds|x0, s)+
∫ t

s

P (G1, t |L(s), s)FL(ds|x0, s) ,

(2.6)

P(G2, t |x0, s) =
∫ t

s

P (G2, t |U(s), s)FU (ds|x0, s)+
∫ t

s

P (G2, t |L(s), s)FL(ds|x0, s) ,

(2.7)

hold for any measurable sets G1 ⊆ [U(t),∞) andG2 ⊆ (−∞, L(t)].
The proof of this result will be presented in a full version of this paper; we

just mention that it is based on the use of the Chapman-Kolmogorov equation as
a starting point.

In both Settings 1 and 2 we need to derive equations for the case when X = B

is a standard Brownian bridge. Since B is a Gauss-Markov process we have

P(y, t|x, s) ∼ N

(
R(s, t)

R(s, s)
x, R(t, t) − R2(s, t)

R(s, s)

)
(2.8)

where R is the covariance function of B. Using this representation, upon the
substitution of the initial condition Bt0 = x0 into the Eqs. (2.6) and (2.7). Letting

Ψ (y|x, s) = Ψ

⎛
⎝ y − 1−t

1−s x√
(t−s)(1−t )
(1−s)

⎞
⎠ , Φ(y|x, s) = Φ

⎛
⎝ y − 1−t

1−s x√
(t−s)(1−t )
(1−s)

⎞
⎠ ,

we have

Ψ (U(t)|x0, t0) =
∫ t

t0

Ψ (U(t)|U(s), s)fU (s|x0, t0) ds +
∫ t

t0

Ψ (U(t)|L(s), s)fL(s|x0, t0) ds,

(2.9)

Φ(L(t)|x0, t0) =
∫ t

t0

Φ(L(t)|U(s), s)fU (s|x0, t0) ds +
∫ t

t0

Φ(L(t)|L(s), s)fL(s|x0, t0) ds

(2.10)

respectively, where Φ(x) = ∫ x−∞ φ(z, 1) dz and Ψ (x) = 1 −Φ(x).
Since by assumptions U(t) and L(t) are differentiable, we have

lim
t→s

Ψ (U(t), t|U(s), s) = lim
t→s

Φ(L(t), t|L(s), s) = Ψ (0) = 1

2
, (2.11)

lim
t→s

Ψ (U(t), t|L(s), s) = lim
t→s

Φ(L(t), t|U(s), s) = Ψ (−∞) = 0. (2.12)
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Hence, the kernelsΨ (·) andΦ(·) are non-singular and are differentiable with respect
to t for the case X = B.

The system of integral equations (2.6) and (2.7) (and the corresponding Eqs. (2.9)
and (2.10) for the case of Brownian bridge) are Volterra equations of the first kind;
they can be reduced to Volterra integral equations of the second kind which are
numerically more suitable.

Theorem 2 Let fU (t|x0, t0) and fL(t|x0, t0) be the probability density functions of
τU and τL respectively and let p(y, t|x, s) = ∂

∂t
P (y, t|x, s), then

fU(t|x0, t0) = 2p(y1, t|x0, t0)− 2
∫ t

t0

p(y1, t|U(s), s)fU (s|x0, t0) ds

− 2
∫ t

t0

p(y1, t|L(s), s)fL(s|x0, t0) ds, (2.13)

fL(t|x0, t0) = 2p(y2, t|x0, t0)− 2
∫ t

t0

p(y2, t|U(s), s)fU (s|x0, t0) ds

− 2
∫ t

t0

p(y2, t|L(s), s)fL(s|x0, t0) ds (2.14)

hold for any y1 ⊆ [U(t),∞) and y2 ⊆ (−∞, L(t)].
Equations (2.13) and (2.14) are obtained by differentiating (2.6) and (2.7) with

respect to t and then using the relation

lim
s→t

P (U(t), t|U(s), s) = lim
s→t

P (L(t), t|L(s), s) = 1

2
.

Note that a similar approach for the one-sided case was used by Fortet [13] .
It follows that for a standard Brownian bridge with the initial conditionBt0 = x0,

we have

fU (t|x0, t0) = 2
∂Ψ (U(t)|x0, t0)

∂t
− 2

∫ t

t0

∂Ψ (U(t)|U(s), s)
∂t

fU (s|x0, t0) ds

− 2
∫ t

t0

∂Ψ (U(t)|L(s), s)
∂t

fL (s|x0, t0) ds, (2.15)
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and

fL(t|x0, t0) = 2
∂Φ(L(t)|x0, t0)

∂t
− 2

∫ t

t0

∂Φ(L(t)|U(s), s)
∂t

fU (s|x0, t0) ds

− 2
∫ t

t0

∂Φ(L(t)|L(s), s)
∂t

fL(s|x0, t0) ds. (2.16)

Due to properties (2.11) and (2.12) , singularities in the denominator of the kernels
can be removed.

3 Numerical Integration Procedure for Approximation BCP

For Settings 1 and 2 we use (2.1) and (2.2)

P1(x) =
∫ ∞

−∞

∫ 1

0
φ(y, 1)(fU (t|0, 0)+ fL(t|0, 0))dy

and

P2(x) = erfc(x/
√

2)+
∫ x

√
ta

−x√ta

∫ b

a

φ(y,
√
t (1 − t))(fU (t|y, a)+ fL(t|y, a))dy

with boundaries L and U shown in Sect. 1 respectively. To calculate fU and fL we
use (2.15) and (2.16).

Let ti = t0 + ih, i = 1, . . . ,m, where h is the time step size of uniform
discretisations. We use the Euler approximation to obtain fL(ti ) = fL(ti |x, s)
and fU(ti ) = fU (ti |x, s) at an increasing sequence of knots ti and the appropriate
Gaussisan quadrature for numerical integrations.

For each of the aforementioned cases, we preform N simulations and use
m equally-spaced discretization in the time interval T , and we estimate the tail
probabilities

pf,g;m(x) := P
[
D
(i)
f,g;m ≥ x

]
≈ 1

N

N∑
i=1

I (D
(i)
f,g;m ≥ x) ,

where I (·) is an indicator function.
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Table 1 Setting 1: estimated tail probabilities P̂1(x) using integral equations, compared to
simulations pf,g;m(x)

x P̂1(x) pf,g;m(x) V ar[pf,g;m(x)] × 107 |P̂1(x) − pf,g;m(x)|
0.4 0.997467 0.997395 0.025982 0.000072

1.2 0.128036 0.127972 1.115952 0.000064

2.0 0.001056 0.001040 0.010389 0.000016

2.2 0.000219 0.000233 0.002329 0.000014

For Setting 1 we calculate P̂1(x), the tail probabilities approximated using the
aforementioned approximation for pf,g;m(x) with m = 210 discretised time steps
and the usage of n = 20 Gauss-Hermite nodes in the numerical integrations. Table 1
contains the comparisons of P̂1(x) and pf,g;m.

For Setting 2 we calculate P̂2(x), the tail probabilities approximated using
the aforementioned approximation for pf,g;m(x) in this setting, with m = 210

discretised time steps and the usage of n = 20 Gauss-Legendre nodes in the
numerical integrations. In Table 2 we compare P̂2(x) to simulation results, and
asymptotic estimators P̃2(x) generated from [7].

The numerical approximations using integral equations are performed on a
Macintosh laptop computer running OS X with 8 GB RAM and 1600 MHz CPU,
and computer programs are implemented in C++98. Each point of p̂g(x) and p̂t (x)
in the tables takes 1.92 and 1.87 s respectively. The Monte Carlo simulations for all
cases are carried out on a cluster computer with 28 parallel CPUs using N = 107

simulation runs and m = 219 equally-spaced discretization time intervals.
In both settings, tail probabilities estimated using integral equations and sim-

ulation approach differ only at the third decimal place and beyond, suggesting
that the numerical integration approach delivers a level of accuracy comparable to
those of the simulation approach despite the use of a comparatively coarser grain
discretization time step, i.e., m = 210 in the former as opposed to m = 219 in the
latter.

The major advantage of our method is the relative simplicity and fast calculations
compared to other techniques. For approximations using integral equations, since
discretization time steps of the orderm = 210 is sufficient to deliver tail probability
estimates comparable to those of simulation at N = 107 and m = 219, they can be
evaluated in a modest computational framework to reduce costs.
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Introduction to Extreme Value Theory:
Applications to Risk Analysis
and Management

Marie Kratz

Abstract We present an overview of Univariate Extreme Value Theory (EVT)
providing standard and new tools to model the tails of distributions. One of the
main issues in the statistical literature of extremes concerns the tail index estimation,
which governs the probability of extreme occurrences. This estimation relies heavily
on the determination of a threshold above which a Generalized Pareto Distribution
(GPD) can be fitted. Approaches to this estimation may be classified into two
classes, one qualified as ‘supervised’, using standard Peak Over Threshold (POT)
methods, in which the threshold to estimate the tail is chosen graphically according
to the problem, the other class collects unsupervised methods, where the threshold
is algorithmically determined.

We introduce here a new and practically relevant method belonging to this second
class. It is a self-calibrating method for modeling heavy tailed data, which we
developed with N. Debbabi and M. Mboup. Effectiveness of the method is addressed
on simulated data, followed by applications in neuro-science and finance. Results
are compared with those obtained by more standard EVT approaches.

Then we turn to the notion of dependence and the various ways to measure it,
in particular in the tails. Through examples, we show that dependence is also a
crucial topic in risk analysis and management. Underestimating the dependence
among extreme risks can lead to serious consequences, as for instance those we
experienced during the last financial crisis. We introduce the notion of copula, which
splits the dependence structure from the marginal distribution, and show how to use
it in practice. Taking into account the dependence between random variables (risks)
allows us to extend univariate EVT to multivariate EVT. We only give the first
steps of the latter, to motivate the reader to follow or to participate in the increasing
research development on this topic.
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1 Introduction

Quantitative risk analysis used to rely, until recently, on classical probabilistic
modeling where fluctuations around the average were taken into account. The
standard deviation was the usual way to measure risk, like, for instance, in
Markowitz portfolio theory [26], or in the Sharpe Ratio [34]. The evaluation of
“normal” risks is more comfortable because it can be well modelled and predicted
by the Gaussian model and so is easily insurable. The series of catastrophes that
hit the World at the beginning of this century (see Fig. 1), natural (earthquakes,
volcano eruption, tsunami, . . . ) or financial (subprime crisis, sovereign crisis) or
political (Arab Spring, ISIS, Ukraine, . . . ), made it clear that it is crucial nowadays
to take also extreme occurrences into account; indeed, although it concerns events
that rarely occur (i.e. with a very small probability), their magnitude is such that
their consequences are dramatic when they hit unprepared societies.

Including extreme risks in probabilistic models is recognized nowadays as a
necessary condition for good risk management in any institution, and not restricted
anymore to reinsurance companies, who are the providers of covers for natural
catastrophes. For instance in finance, minimizing the impact of extreme risks,
or even ignoring them because of a small probability of occurrence, has been
considered by many professionals and supervisory authorities, as a factor of

Fig. 1 Some of the extreme events (covered by reinsurances) that hit the World between 2001 and
2015
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aggravation of the financial crisis of 2008–2009. The American Senate and the
Basel Committee on Banking Supervision confirm this statement in their reports.
Therefore, including and evaluating correctly extreme risks has become very topical
and crucial for building up the resilience of our societies.

The literature on extremes is very broad; we present here an overview of some
standard and new methods in univariate Extreme Value Theory (EVT) and refer the
reader to books on the topic [1, 8, 12, 24, 31–33] and also on EVT with applications
in finance or integrated in quantitative risk management [25, 27, 29]. Then we
develop the concept of dependence to extend univariate EVT to multivariate EVT.
All along applications in various fields including finance, insurance and quantitative
risk management, illustrate the various concepts or tools.

1.1 What Is Risk?

Risk is a word widely used by many people and not only by professional risk
managers. It is therefore useful to spend a bit of time analysing this concept. We
start by looking at its definition in common dictionaries. There, we find that it is
mainly identified to the notion of danger of loss:

The Oxford English Dictionary: Hazard, a chance of bad consequences, loss or
exposure to mischance.

For financial risks: “Any event or action that may adversely affect an organiza-
tion’s ability to achieve its objectives and execute its strategies” or, alternatively,
“the quantifiable likelihood of loss or less-than-expected returns”.

Webster’s College Dictionary (insurance): “The chance of loss” or “The degree
of probability of loss” or “The amount of possible loss to the insuring company”
or “A person or thing with reference to the risk involved in providing insurance”
or “The type of loss that a policy covers, as fire, storm, etc.”

However, strictly speaking, risk is not simply associated to a danger. In its
modern acceptance, it can also be seen as an opportunity for a profit. It is the main
reason why people would accept to be exposed to risk. In fact, this view started
to develop already in the eighteenth century. For instance, the French philosopher,
Etienne de Condillac (1714–1780), defined risk as “The chance of incurring a bad
outcome, coupled, with the hope, if we escape it, to achieve a good one”.

Another concept born from the management of risk is the insurance industry.
In the seventeenth century, the first insurance for buildings is created after the big
London fire (1666). During the eighteenth century appears the notion that social
institutions should protect people against risk. This contributed to the development
of life insurance that was not really acceptable by religion at the time. In this
context, the definition of ‘Insurance’ as the transfer of risk from an individual to a
group (company) takes its full meaning. The nineteenth century sees the continuous
development of private insurance companies.
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Independently of any context, risk relates strongly to the notion of randomness
and the uncertainty of future outcomes. The distinction between “uncertainty”’ and
“risk” was first introduced by the American economist Frank H. Knight (1885–
1972), although they are related concepts. According to Knight, risk can be defined
as randomness with knowable probabilities, contrary to uncertainty, which is ran-
domness with unknowable probabilities. We could then define risk as a measurable
uncertainty, the ‘known-unknowns’ according to Donald Rumsfeld’s terminology,
whereas uncertainty is unmeasurable, the ‘unknown-unknowns’ (D. Rumsfeld).
Of course, research and improved knowledge help to transform some uncertainty
into risk with knowable probabilities.

In what follows, we focus on the notion of risk, in particular extreme risk, and
its quantification. We choose a possible definition of risk, used within probabilistic
framework, namely the variation from the expected outcome over time.

There are numerous ways to measure risk and many risk measures have been
developed in the literature. Most modern measures of the risk in a portfolio are
statistical quantities describing the conditional or unconditional loss distribution of
the portfolio over some predetermined horizon. Here we present only popular ones,
used in particular in regulation. We recall their definition and refer to Emmer et al.
[13] and references therein for their mathematical properties.
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We will focus on the analysis of extreme risks, related to unexpected, abnormal
or extreme outcomes.

Many questions arise as: How to model extreme risks? How to study the behavior
in the tails of the distribution of the model? How to capture dependency and measure
it in risk models? which methods can be used? What about aggregation of risks?

First we present the main concepts of univariate EVT. Then we introduce the
issue of dependence among random variables (risks).

1.2 Impact of Extreme Risks

When considering financial assets, because of the existence of a finite variance, a
normal approximation is often chosen in practice for the unknown distribution of the
yearly log returns, justified by the use of the Central Limit Theorem (CLT), when
assuming independent and identically distributed (iid) observations. Such a choice
of modeling, in particular using light tail distributions, has shown itself grossly
inadequate during the last financial crisis when dealing with risk measures because
it leads to underestimating the risk.

On Fig. 2, the QQ-plot of the S&P 500 daily returns from 1987 to 2007, helps
to detect a heavy tail. When aggregating the daily returns into monthly returns,
the QQ-plot looks more as a normal one, and the very few observations appearing
above the threshold of VaR99%, among which the financial crises of 1998 and 1987,
could almost be considered as outliers, as it is well known that financial returns are
almost symmetrically distributed. Now, look at Fig. 3. When adding data from 2008
to 2013, the QQ plot looks pretty the same, i.e. normal, except that another “outlier”
appears . . . with the date of October 2008! Instead of looking again on daily data
for the same years, let us consider a larger sample of monthly data from 1791 to
2013 (as compiled by Global Finance Data). With a larger sample size, the heavy

Fig. 2 QQ-plots of the S&P500 daily (left) and monthly (right) log-returns from 1987 to 2007
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Fig. 3 QQ-plots of the S&P500 monthly log-returns from 1987 (left) or 1791 (right) to 2013

tail becomes again visible. And now we see that the financial crisis of 2008 does
belong to the heavy tail of the distribution and cannot be considered anymore as an
outlier. Although it is known, by Feller theorem, that the tail index of the underlying
distribution remains constant under aggregation, we clearly see the importance of
the sample size to make the tail visible. The figures on the S&P 500 returns illustrate
very clearly this issue.

2 Univariate EVT

Let (Xi)i=1,··· ,n be iid random variables (rv) with parent rv X and continuous
cumulative distribution function (cdf) F (that is unknown). The associated order
statistics are denoted by min

1≤i≤n(Xi) = X1,n ≤ X2,n ≤ · · · ≤ Xn−1,n ≤ Xn,n =
max

1≤i≤n(Xi).

2.1 CLT Versus EVT

• Mean behavior. Assuming the existence of the variance σ 2 of X, the Central

Limit Theorem (CLT) tells us that the empirical mean X̄n = 1

n

n∑
i=1

Xi , when

normalized (since var(X̄n) = 1
n
var(X) →

n→∞ 0), has an asymptotic standard

Gaussian distribution (whatever is F ):

X̄n − E(X̄n)√
var(X̄n)

=
√

n

var(X)

(
X̄n − E(X)

) =
√
n(X̄n − μ)√

σ 2

d→
n→∞ N (0, 1)
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i.e. lim
n→∞P[(X̄n − bn)/an ≤ x] = FN (0,1)(x) with bn = E(X), an =

√
var(X)

n
.

• Extreme behavior. Instead of looking at the mean behavior, consider now the
extreme behavior, with for instance the maximum. Noticing that

P[ max
1≤i≤n

Xi ≤ x] =
n∏
i=1

P[Xi ≤ x] = Fn(x) →
n→∞

{
0 if F(x) < 1
1 if F(x) = 1 ,

could we find, as for the CLT, a linear transformation to avoid such degeneracy,
and say that there exist sequences (an), (bn) and a rv Z with cdf H such that
lim
n→∞P[(maxXi − bn)/an ≤ x] = H(x) ? It comes back to look for (an) and

(bn), and a non-degenerated cdf H s.t.

P

[
maxXi − bn

an
≤ x

]
= P[ max

1≤i≤nXi ≤ anx + bn] = Fn(anx + bn) 	
n→∞H(x).

It can be proved that there is not a unique limit distribution as for the CLT, but
three possible asymptotic distributions (whatever is F ), namely:

Theorem 1 (The ‘Three-Types Theorem’; Fréchet-Fisher-Tippett Theorem,
1927–1928; [15]) The rescaled sample extreme (max renormalized) has a limiting
distribution H that can only be of three types:

H1,a(x) := exp{−x−a}1(x>0) (a > 0) : Fréchet
H2,a(x) := 1(x≥0) + exp{−(−x)a}1(x<0) (a > 0) : Weibull
H3,0(x) := exp{−e−x}, ∀x ∈ R : Gumbel

(A similar result holds for the minimum).
We can then classify the distributions according to the three possible limiting

distributions of the (rescaled) maximum, introducing the notion of Maximum
Domain of Attraction (MDA):

F ∈ MDA(H) ⇔ ∃(an) > 0, (bn) : ∀x ∈ R, lim
n→∞Fn(anx + bn) = H(x).

For instance, for Fréchet, an = F−1(1 − 1/n) and bn = 0. (Note that most of the
cdf F we use, usually belong to a MDA.)

To mimick the CLT, the three types of extreme value distribution have been
combined into a single three-parameter family [18, 19, 36] known as Generalized
Extreme Value Distribution (GEV).
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Theorem 2 (The EV Theorem) If F ∈ MDA(G) then, necessarily, G is of the
same type as the GEV cdf Hξ (i.e.G(x) = Hξ(ax + b), a > 0), defined by

Hξ(x) =
⎧⎨
⎩

exp

[
−(1 + ξx)

− 1
ξ

+
]

if ξ �= 0

exp(−e−x) if ξ = 0

where y+ = max(0, y). The parameter ξ , named the tail (or extreme-value) index,
determines the nature of the tail distribution: if ξ > 0 then Hξ is Fréchet, if ξ = 0
then Hξ is Gumbel, and if ξ < 0 then Hξ is Weibull.

We can write G(x) = Gμ,σ,ξ (x) = exp

[
−
(

1 + ξ
x − μ

σ

)− 1
ξ

]
,

for 1 + ξ
x − μ

σ
> 0.

Moments of the GEV: the kth moment exits if ξ < 1/k (in particular if
E(X) < ∞ if ξ < 1 and var(X) < ∞ if ξ < 1/2).

Example:

Sample cdf MDA

Uniform Weibull

Exponential(1) (F(x) = 1 − e−x , x > 0) Gumbel

Gaussian Gumbel

Log-normal Gumbel

Gamma (λ, r) Gumbel

Cauchy (F(x) = 1

2
+ 1

π
arctan x) Fréchet

Student Fréchet

Pareto (β) (F(x) = 1 − x−β , x ≥ 1, β > 0) Fréchet

Example of tails of distributions: Fréchet and Gumbel versus Gaussian (normal).

We observe that the tail can vary substantially according to the type of distributions. Here the tail

of the Fréchet distribution is moderately heavy (α = ξ = 3) although it looks much heavier than

the Gaussian distribution
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Exercise Considering the S&P500 daily log returns from 1987 to 2016, compute
the chances to find a value smaller than the second minimum, i.e. P[X < x(n−1)] =
Φ
(
x(n−1)−μ

σ

)
(with Φ the standard normal cdf), assuming the data are normally

distributed. We obtain the following statistics on S&P500 daily log returns from
1987 to 2016:

Characteristic Property of the GEV. A distribution is a GEV if and only if it is

max-stable, i.e. that it satisfies max
1≤i≤nXi

d= αnX + βn, with αn > 0.

For the three types of the GEV, we have:

Fréchet: max
1≤i≤nXi

d= n1/ξX; Weibull: max
1≤i≤nXi

d= n−1/ξX; Gumbel: max
1≤i≤nXi

d=
X + logn.

2.2 A Limit Theorem for Extremes: The Pickands Theorem

Extracting more information in the tail of the distribution than just that given by the
maximum should help for the evaluation of the tail. So considering the kth (k ≥ 1)
largest order statistics, we introduce the notion of ‘threshold exceedances’ where all
data are extreme in the sense that they exceed a high threshold.

Picking up a high threshold u < x+
F (upper-end point of F ), we study all

exceedances above u.

Theorem 3 (Pickands Theorem, 1975) If F does belong to one of the maximum
domains of attraction (i.e. the limit distribution of maxXi is a GEV), then for a
sufficiently high threshold u, ∃ β(u) > 0 and ξ ∈ R such that the Generalized
Pareto Distribution (GPD) Gξ,β(u), defined by Gξ,β(u)(y) := 1 − Gξ,β(u)(y) =(

1 + ξ
y

β(u)

)−1/ξ

1(ξ �=0) + e−y/β(u)1(ξ=0), is a very good approximation to the

excess cdf Fu(·) := P [X − u ≤ · |X > u]:

lim
u↑x+

F

sup
0≤y≤x+

F−u

∣∣Fu (y)−Gξ,σ(u) (y)
∣∣ = 0,

x+
F denoting the upper endpoint of F
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As for the GEV, we have three cases for the GPD, depending on the sign of the
tail index ξ :

• ξ > 0: Gξ,β(y) ∼ cy−1/ξ , c > 0 (“Pareto” tail): heavy-tail
(note that E(Xk) = ∞ for k ≥ 1/ξ ).

• ξ < 0: x+
G = β/|ξ | (upper endpoint of G), similar to the Weibull type of the

GEV (short-tailed, Pareto type II distribution)
• ξ = 0: Gξ,β(y) = e−y/β : light-tail (exponential distribution with mean β)

The mean of the GPD is defined for ξ < 1 by E(X) = β

1 − ξ
.

2.3 Supervised Methods in EVT: Standard Thresholds Methods

Univariate Extreme Value Theory (EVT) focuses on the tail distribution evaluation,
more precisely on the estimation of the tail index. That is why the first and main
question is how to determine the threshold above which observations are considered
as extremes. Various methods have been developed to answer this question. We give
here their main ideas and refer the reader e.g. to [12] for more details (see also the
references therein).

2.3.1 Peak Over Threshold (POT) Method

This method developed for the GPD by Davison and Smith [7] helps to decide on an
appropriate threshold for exceedance-based methods, when looking at the empirical
Mean Excess Plot (MEP). This graphical method can be qualified as supervised.

The mean excess (ME) function defined by e(u) = E[X − u|X > u] can be
computed for any rv X (whenever its expectation exists). For instance, if X is
exponentially distributed Gξ,σ , then its ME function is a constant. If X is GPD
Gξ,σ distributed, with σ > 0 and ξ < 1, then its ME function is given by

e(u) = σ + uξ

1 − ξ
1(σ+uξ>0).

Hence, via the Pickands theorem, the MEP ofX with unknown cdf F should stay
reasonably close to a linear function from the threshold u at which the GPD provides
a valid approximation to the excess distribution of X: E[X − u| X>u] 	

u→∞
σ(u)/(1 − ξ). It will be the way to select u, when considering the empirical MEP(
v,

1

nv

nv∑
i=1

(x(i) − v) : v < xn,n

)
, where the x(i) correspond to the nv observations

that exceed v.
Then, u being chosen, we can use ML or Moments estimators to evaluate the tail

index ξ (and the scaling parameter β).
Illustration: Example from Embrechts et al.’s book [12]



Introduction to EVT: Applications to QRM 601

Data set: time series plot (a) of AT&T weekly percentage loss data for the 521 complete weeks in
the period 1991–2000
(b) Sample MEP. Selection of the threshold at a loss value of 2.75% (102 exceedances)

(c) Empirical distribution of excesses and fitted GPD, with ML estimators ξ̂ = 0.22 and β̂ = 2.1

(with Standard Error 0.13 and 0.34, respectively)

2.3.2 Tail Index Estimators for MDA(Fréchet) Distributions

To determine the tail index, other graphical methods than MEP may be used.
Various estimators of the tail index have been (and still are) built, starting with the
Hill estimator [17], a moment estimator [11], the QQ-estimator [22], . . . , the Hill
estimator for truncated data [2], . . .

For a sample of size n, the tail index estimators are generally built on the k =
k(n) upper order statistics, with k(n) → ∞ such that k(n)/n → 0, as n → ∞.

Choosing k is usually the Achilles heel of all these (graphical) supervised
procedures, including the MEP one, as already observed.

Nevertheless it is remarkable to notice that for these methods, no extra informa-
tion is required on the observations before the threshold (the n−kth order statistics).

Let us present two tail index estimators under regular variation framework: the
Hill estimator [17], as it is most probably still the most popular, and the QQ-
estimator [22], which is based on a simple and intuitive idea (hence this choice).

Assume F ∈ MDA(Fréchet) with tail index ξ > 0, i.e. F̄ is regularly varying
RV−α , with ξ = α−1. (Recall that a function f belongs to the class RVρ of
regularly varying functions with index ρ ∈ R if f : R+ → R+ satisfies
limt→∞ f (tx)/f (t) = xρ, for x > 0 (see [3].) Consider the threshold u = Xn−k,n
with k = k(n) → ∞ and k/n → 0 as n → ∞.

• The Hill estimator Hk,n of the tail index ξ = α−1 is defined by, and satisfies [17]

Hk,n := 1

k

k−1∑
i=0

log

(
Xn−i,n
Xn−k,n

)
P−→

n→∞ ξ

This estimator is asymptotically normal, with a rate of convergence of 1/α2. The
Hill estimator can exhibit outrageous bias and graphical aids are often very difficult
to interpret accurately. So it is wise to consider alternative methods to supplement
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information given by the Hill estimator and associated plots. Thus we turn to the
QQ-plot.

• The QQ-estimator (Kratz and Resnick [22]), Qk,n, of the tail index ξ :

The QQ-method is based on the following simple observation: if we suspect that
the n-sample X comes from the continuous cdf F , then the plot of

{(
i

n+ 1
, F (Xi,n)

)
, 1 ≤ i ≤ n

}

should be roughly linear, hence also the QQ-plot of {(F←( i
n+1 ) , Xi,n), 1 ≤ i ≤ n}

(considering the theoretical quantile F←( i
n+1 ) and the corresponding quantile Xi,n

of the empirical distribution function).
If F = Fμ,σ (x) = F0,1(

x−μ
σ
), since F←

μ,σ (y) = σF←
0,1(y)+ μ, the plot of

{(
G←

0,1

(
i

n+ 1

)
, Xi,n

)
, 1 ≤ i ≤ n

}

should be approximately a line of slope σ and intercept μ.
Take the example of a n-sample Pareto(α) distributed (F̄ (x) = x−α); then, for

y > 0, F0,α(y) := P[logX1 > y] = e−αy and the plot of

{(
F←

0,1

(
i

n+ 1

)
, logXi,n

)
, 1 ≤ i ≤ n

}
=
{(

− log

(
1 − i

n+ 1

)
, logXi,n

)
, 1 ≤ i ≤ n

}

should be approximately a line with intercept 0 and slope α−1.
Now, just use the least squares estimator for the slope (SL), namely

SL({(xi, yi), 1 ≤ i ≤ n}) =
∑n
i=1 xiyi − x̄ȳ∑n
i=1 x

2
i − x̄2

to conclude that, for the Pareto example, an estimator of α−1(= ξ) is

α̂−1 =
∑n
i=1 − log( i

n+1 ){n logXn−i+1,n −∑n
j=1 logXn−j+1,n}

n
∑n
i=1(− log( i

n+1 ))
2 − (

∑n
i=1 − log( i

n+1 ))
2

,

which we call the QQ-estimator.
This method can be extended from Pareto to the general case F̄ ∼ RV−α ; we can

define the QQ-estimatorQk,n of the tail index ξ = α−1, based on the upper k order
statistics, by

Qk,n = SL({(− log(1 − i

k + 1
), logXn−k+i,n), 1 ≤ i ≤ k})
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=

k∑
i=1

− log
(

i
k+1

)⎧⎨
⎩k log

(
Xn−i+1, n

)−
k∑
j=1

log
(
Xn−j+1, n

)
⎫⎬
⎭

k

k∑
i=1

(
− log

(
i

k+1

))2 −
(

k∑
i=1

− log
(

i
k+1

))2

and we can prove [22] that the QQ-estimator is weakly consistent (Qk,n
P−→

n→∞
ξ ) and asymptotically normal with a rate of convergence of 1/(2α2) (which is
larger than for the Hill, but the Hill estimator exhibits considerable bias in certain
circumstances). Whenever the threshold u is determined (corresponding to a kth
order statistics), we can estimate the parameters, in particular the tail index.

Illustration: Comparison of the Hill plot and the QQ-plot of estimates of α.

• On Pareto (1) simulated data (sample size n = 1000)
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The QQ-plot shows α̂−1 	 0.98. It seems a bit less volatile than the Hill plot.
• On real data:
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The Hill plot is somewhat inconclusive, whereas the QQ-plot indicates a value of
about 0.97

The QQ-method in practice:

1. Make a QQ-plot of all the data (empirical vs theoretical quantile)
2. Choose k based on visual observation of the portion of the graph that looks linear
3. Compute the slope of the line through the chosen upper k order statistics and the

corresponding exponential quantiles.

Alternatively, for Hill and QQ methods:

1. Plot {(k, α̂−1(k)), 1 ≤ k ≤ n}
2. Look for a stable region of the graph as representing the true value of α−1.

Using those graphical (supervised) methods to determine u or, equivalently k, is
an art as well as a science and the estimate of α is usually rather sensitive to the
choice of k (but this is the price to pay for having a method to fit the tail without
using any information before u).

Let us turn to another method, which answers this concern and provides an
automatic (algorithmic) determination of the threshold u (but requiring, in this case,
the data information before u).

2.4 A Self-Calibrated Method for Heavy-Tailed Data

It is based on a paper developed with N. Debbabi and M. Mboup [9].
We assume continuous (smooth transitions) and, with no loss of generality, right

heavy tailed data (a similar treatment being possible on the left tail) belonging to
the MDA(Fréchet).

Whereas one of the motivations for this new method is to be able to determine the
threshold above which we fit the GPD in an unsupervised way, it will also provide
a good fit for the entire distribution.

We introduce a hybrid model to fit the whole distribution underlying heavy tailed
data. The idea is to consider both the mean and tail behaviors, and to use limit
theorems for each one (as suggested and developed analytically in [21]), in order
to make the model as general as possible. Therefore, we introduce a Gaussian
distribution for the mean behavior, justified by the Central Limit Theorem (CLT),
and a GPD for the tail (justified by the Pickands theorem). Then we bridge the gap
between mean and asymptotic behaviors by inserting an exponential distribution
used as a leverage to give full meaning of tail threshold to the junction point between
the GPD and its exponential neighbour.

We assume that the hybrid model distribution (which belongs to the Fréchet
MDA) has a density that is C1. It is the only assumption that is needed (no
assumption on the dependence of the data). This model, denoted by G-E-GPD
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(Gaussian-Exponential-Generalized Pareto Distribution), is characterized by its pdf
h expressed as:

h(x; θ) =
⎧⎨
⎩
γ1 f (x;μ, σ), if x ≤ u1,

γ2 e(x; λ), if u1 ≤ x ≤ u2,

γ3 g(x − u2; ξ, β), if x ≥ u2,

where f is the Gaussian pdf (μ, σ 2), e is the exponential pdf with intensity λ, g
is the GPD pdf with tail index ξ and scaling parameter β, and γ1, γ2, γ3 are the
weights (evaluated from the assumption).
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Hybrid probability density function

x

h(
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u1 u2μ
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Combining the facts that we are in the MDA(Fréchet) and that h is a C1 pdf gives
rise to six equations relating all model parameters:

⎧⎪⎨
⎪⎩
β = ξ u2; λ = 1+ξ

β ; u1 = μ+ λσ 2;
γ1 = γ2

e(u1; λ)
f (u1;μ,σ) ; γ2 =

[
ξ e−λ u2 +

(
1 + λ

F(u1;μ, σ)
f (u1;μ,σ)

)
e−λ u1

]−1; γ3 = β γ2 e(u2; λ).

Consequently, the vector of the free parameters is reduced to θ = [μ, σ, u2, ξ ].
Remark The main component in this hybrid model is the GPD one (for heavy
tail), the mean behavior having to be adapted to the context. For instance, for
insurance claims, we have replaced the Gaussian component with a Lognormal one
(lognormal-E-GPD hybrid model).
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2.4.1 Pseudo-code of the Algorithm for the G-E-GPD Parameters
Estimation

Here we describe the iterative algorithm, which self-calibrates the G-E-GPD
model, in particular the tail threshold above which a Fréchet distribution fits
the extremes. We study its convergence, proving analytically the existence of
a stationary point, then numerically that the stationary point is attractive and
unique.

1: Initialization of p̃(0) = [μ̃(0), σ̃ (0), ũ(0)2 ], α, ε > 0, and kmax , then initialization
of ξ̃ (0) (recall that θ = [μ, σ, u2, ξ ]):

ξ̃ (0) ← argmin
ξ>0

∥∥∥H(y; θ | p̃(0))−Hn(y)

∥∥∥2

2
,

whereHn is the empirical cdf of X and y = (yj )1≤j≤m is a generated sequence
of synthetic increasing data of size m (that may be different from n), with
a logarithmic step, in order to increase the number of points above the tail

threshold u2: yj = min(xi)
1≤i≤n

+ (max(xi)
1≤i≤n

− min(xi)
1≤i≤n

) log10

(
1 + 9(j − 1)

m− 1

)
.

2: Iterative process:

• k ← 1

Step 1—Estimation of p̃(k): p̃(k) ← argmin
(μ,σ)∈R×R∗+

u2∈R+

∥∥∥H(y; θ | ξ̃ (k−1))−Hn(y)

∥∥∥2

2

Step 2—Estimation of ξ̃ (k): ξ̃ (k) ← argmin
ξ>0

∥∥∥H(y; θ | p̃(k))−Hn(y)

∥∥∥2

2
.

• k ← k + 1
until

(
d(H(y; θ(k)),Hn(y)) < ε and d(H(yqα ; θ(k)),Hn(yqα )) < ε

)
or
(
k = kmax

)
where ε is a positive real that is small enough, yqα represents the observations
above a fixed high quantile qα of arbitrary order α ≥ 80% associated with H
and d(a, b) denotes the distance between a and b, chosen in this study as the
Mean Squared Error (MSE); it can be interpreted as the Cramér-von-Mises test
of goodness of fit.

3: Return θ(k) = [μ̃(k), σ̃ (k), ũ(k)2 , ξ̃ (k)
]
.

2.4.2 Performance of the Method (Algorithm) Tested via MC Simulations

To study the performance of the algorithm to self-calibrate the G-E-GPD model, we
build on MC simulations. To do so, we proceed in four steps:
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1. Consider
{Xq = (X

q
p)1≤p≤n}1≤q≤N : training sets of length n

{Y q = (Y
q
p )1≤p≤l}1≤q≤N : test sets of length l

with a G-E-GPD parent distribution with a fixed parameters vector θ .
2. On each training set Xq , 1 ≤ q ≤ N , evaluate θ̃ q = [μ̃q, σ̃ q , ũ2

q, ξ̃ q ] using our
algorithm

3. Compute the empirical mean ã and variance S̃a of estimates of each parameter a
over the N training sets. To evaluate the performance of the estimator ã, we use
two criteria:

(i) MSE expressed for any a as: MSEa = 1
N

∑N
q=1(̃a

q − a)2; a small value of
MSE highlights the reliability of parameters estimation using the algorithm.

(ii) Test on the mean (with unknown variance):

∣∣∣∣H0 : ã = a

H1 : ã �= a

(use for instance the normal test for a large sample)

4. Compare the hybrid pdf h (with the fixed θ ) with the corresponding estimated
one h̃, using θ̃ q on each test set Y q . To do so, compute the average of the log-
likelihood function D , over N simulations, between h(Y q; θ̃ q ) and h(Y q; θ):
D = 1

Nl

∑N
q=1

∑l
p=1 log

(
h(Y

q
p ; θ)/ h̃(Y qp ; θ̃ q )). The smallest the value of D is,

the most trustworthy is the algorithm.

Several MC simulations have been performed varying θ and n, to test the
robustness of the algorithm (see [9, §4 and Appendix B]).

2.4.3 Application in Neuroscience: Neural Data

We consider the data corresponding to 20 s, equivalent to n = 3.105 observations,
of real extracellular recording of neurons activities. The information to be extracted
from these data (spikes or action potentials) lies on the extreme behaviors (left and
right) of the data (Fig. 4).
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Fig. 4 One second of neural data, extracellularly recorded
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Table 1 Comparison between the self-calibrating method and the three graphical methods: MEP,
Hill and QQ ones

Tail index Threshold Distance Distance

Model (ξ ) (u2) Nu2 (tail distr.) (full distr.)

GPD MEP (PWM):
0.3326

1.0855 = q93.64% 19,260 3.26 × 10−6

GPD Hill-estimator:
0.599

1.0855 = q93.64% 19,260 2.07 × 10−6

GPD QQ-estimator:
0.5104

1.0671 = q93.47% 19,871 1.26 × 10−5

G-E-GPD Self-calibrating
method: 0.5398

1.0301 = q92.9% 21,272 7.79 × 10−6 9.31 × 10−5

Nu2 represents the number of observations above u2. The distance gives the MSE between the
empirical (tail or full respectively) distribution and the estimated one from a given model (GPD or
hybrid G-E-GPD respectively). The neural data sample size is n = 3 × 105

Since the neural data can be considered as symmetric, it is sufficient to evaluate
the right side of the distribution with respect to its mode.

In Table 1, we present the results obtained with the self-calibrating method, the
MEP, Hill and QQ methods. Since the three graphical approaches fit only the tail
distribution, the comparison of the methods will focus on the goodness-of-fit of the
GPD component. As observed in this table, the MSE between the estimated cdf and
the empirical one, using only data above the selected threshold, is small enough
for the four methods ensuring a reliable modeling of extremes. The GPD threshold
and the estimated tail index are of the same order of magnitude for all methods; it
confirms that our algorithm works in the right direction.

We can also notice the good performance of these methods through Fig. 5, where
we plot the empirical quantile function and the estimated ones using the self-
calibrating method and the various graphical ones. However, the advantage of our
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Fig. 5 Neural data: comparison between the empirical quantile function and the estimated ones
via the self-calibrating method and the graphical methods
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method is that it is unsupervised, i.e. it does not need the intervention of the user to
select the threshold manually. Moreover it provides a good fit between the hybrid
cdf estimated on the entire data sample (the right side for this data set) and the
empirical cdf, with a MSE of order 10−5.

2.4.4 Application in Finance: S&P 500 Data

Consider the S&P500 log-returns from January 2, 1987 to February 29, 2016,
corresponding to n = 7348 observations, available in the tseries package of the R
programming language. It is well known that log-returns of financial stock indices
exhibit left and right heavy tails, with a slight different tail index from one to
the other. It is important in such context to evaluate the nature of tail(s) in order
to compute the capital needed by a financial institution to cover their risk, often
expressed as a Value-at-Risk (i.e. a quantile) of high order.

The S&P500 log-returns being essentially symmetric around zero (representing
the data mode), we kept the Gaussian component to model the mean behavior when
applying the self-calibrating method. We modelled the negative log returns and the
positive ones, respectively, then the full data set. When focusing on tails, we also
compare our results with those obtained with MEP, Hill, and QQ methods. We
present them in Tables 2 and 3. We observe that all methods offer a good fit of
the tail distribution. However, the advantage of the self-calibrating method is that it
does not need the intervention of the user to select the threshold manually, which is
a considerable advantage in practice.

Now, to underline the good performance of the self-calibrating method even in
the case when data are autocorrelated with a long memory, we apply it on the
S&P500 absolute log-returns. Indeed, it is well known that the absolute value of
financial returns are autocorrelated (see Fig. 6), but also that their extremes are not
(for a thorough discussion of this point and empirical evidences, see (author?)
[16]). In time of crisis, as e.g. in 2008–2009, we observe an increase of the
dependence between various financial indices, in particular in the extremes. This is
to be distinguished from a dependence of the extremes within a univariate financial
index, which is not observed [16].

A comparison of the results obtained with our self-calibrating method and the
graphical EVT ones is depicted in Table 4. In Fig. 7, we also give a comparison
of the estimated quantile function using the G-E-GPD method and the graphical
(MEP, Hill and QQ) ones. Through Table 4 and Fig. 7, we can highlight once again
the good performance of the self-calibrating method to estimate the tail distribution
as well as the entire distribution of autocorrelated data. Note that the estimate of the
tail index is of the same order as those of the upper and lower tail indices evaluated
in the previous section.
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Table 2 Lower tail modeling of the S&P500 log-returns

Distance Distance

Model Tail index (ξ ) Threshold (u2) Nu2 (tail distr.) (positive distr.)

GPD MEP: 0.3640 0.0270 = q98.36% 120 1.19 × 10−7

GPD Hill-estimator:
0.3601

0.0301 = q98.84% 86 6.43 × 10−8

GPD QQ-estimator:
0.3813

0.0313 = q99.00% 74 3.54 × 10−8

G-E-GPD Self-calibrating
method: 0.3545

0.0289 = q98.63% 100 2.64 × 10−7 3.11 × 10−6

Comparison between the self-calibrating method and the three graphical methods: MEP, Hill and
QQ ones, applied on the right side of the S&P500 opposite log-returns (−X). Nu2 represents
the number of observations above the tail threshold u2. The distance gives the MSE between the
empirical tail (from u2), or positive side (for x ≥ 0) respectively, distribution and the estimated
one from a given model (GPD, or hybrid G-E-GPD respectively)

Table 3 Upper tail modeling of the S&P500 log-returns

Distance Distance

Model Tail index (ξ ) Threshold (u2) Nu2 (tail distr.) (positive distr.)

GPD MEP: 0.2715 0.0209 = q96.89% 229 4.91 × 10−7

GPD Hill-estimator:
0.3225

0.0288 = q98.84% 86 4.42 × 10−7

GPD QQ-estimator:
0.2859

0.0321 = q99.03% 71 5.06 × 10−8

G-E-GPD Self-calibrating
method: 0.3360

0.0266 = q98.51% 109 3.89 × 10−7 2.49 × 10−6

Comparison between the self-calibrating method and the graphical methods applied on the right
side of the S&P500 log-returns
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Fig. 6 AutoCorrelation function (ACF) of the S&P500 absolute log-returns
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Table 4 Comparison between the self-calibrating method and the three graphical methods: MEP,
Hill and QQ ones

Distance Distance

Model Tail index (ξ ) Threshold (u2) Nu2 (tail distr.) (full distr.)

GPD MEP: 0.3025 0.0282 = q97.21% 206 1.78 × 10−7

GPD Hill-estimator:
0.3094

0.0382 = q98.85% 85 4.49 × 10−8

GPD QQ-estimator:
0.3288

0.0323 = q98.14% 137 6.01 × 10−8

G-E-GPD Self-calibrating
method: 0.3331

0.0290 = q97.49% 184 2.00 × 10−7 1.05 × 10−5

The S&P500 absolute log-returns data sample size is n = 7348
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Fig. 7 S&P 500 absolute log-returns data: comparison between the empirical quantile function
and the estimated ones via the self-calibrating method and the graphical methods

3 Dependence

3.1 Motivation

3.1.1 Impact of the Dependence on the Diversification Benefit

The diversification performance is at the heart of the strategy of a company. It can
be measured, for a portfolio of n risks, via the diversification benefit Dn,α at a

threshold α (0 < α < 1) defined by Dn,α = 1 − ρα(
∑n
i=1 Li)∑n

i=1 ρα(Li)
, where ρ denotes

a risk measure. This indicator, not universal as it depends on the number of the
risks undertaken and on the chosen risk measure ρ, helps to determine the optimal
portfolio of the company since the diversification reduces the risk and thus enhances
the performance. This is key to both insurances and financial institutions.
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Before developing an example in the insurance context (it would be the same for
investment banks) to point out the impact of the dependence on the diversification
benefit, let us recall some standard notions in insurance.

Insurance Framework

In insurance, the risk is priced based on the knowledge of the loss probability
distribution. The occurrence of a loss L being random, we define it as a random
variable (rv) on a probability space (Ω,A ,P) (note that, in insurance context,
we often use risk and loss for one another).
The role of capital for an insurance company is to ensure that the company can
pay its liability even in the worst cases, up to some threshold.
It means to define the capital to put behind the risk. That is why we introduce
a risk measure (say ρ), defined on the loss distribution, in order to estimate the
capital needed to ensure payment of the claim up to a certain confidence level.

Now let us define some useful quantities, as:

Risk-adjusted-capital. The risk can be defined as the deviation from the expec-
tation, hence the notion of Risk-Adjusted-Capital (RAC), say K , which is a
function of the risk measure ρ associated to the risk L, defined by K =
ρ(L)− E[L].
Risk Loading. An insurance is a company in which shareholders can invest. They
expect a return on investment. So the insurance firm has to make sure that the
investors receive their dividends. It corresponds to the cost of capital, η, that
the insurance company must charge on its premium. Consider a portfolio of N

similar policies. The risk loading per policy, say R, is defined as R = η
KN

N
=

η

(
ρ(L(N))

N
− E[L1]

)
, whereKN is the capital assigned to the entire portfolio,

L(N) =∑N
i=1 Li is the total loss of the portfolio, and L1 = L is the loss incurred

by one policy (of the portfolio).
Technical risk premium. For one policy case, incurring a loss L, the technical
premium, P , that needs to be paid can be defined by P = E(L)+ ηK + e, where
η is the return expected by shareholders before tax,K is the RAC (i.e. the capital
assigned to this risk), ηK corresponds to the Risk loading (per policy), and e are
the expenses incurred by the insurer to handle this case.

Assuming that the expenses are a small portion of the expected loss, i.e.
e = aE[L] with 0 < a << 1, then the premium can be written as P =
(1 + a)E[L] + R.
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Generalizing to a portfolio of N similar (iid) policies, the total loss is L(N) =
N∑
i=1

Li , hence the premium for one policy in the portfolio becomes:

P = (1 + a)E[L(N)] + ηKN

N
= (1 + a) E[L] + η

KN

N
,

where ηKN
N

is the risk loading per policy.

Let us then develop our toy model (see [4, 5]) to show the dependence impact on
the diversification benefit.

Suppose an insurance company has underwritten N policies of a given risk. To
price these policies, the company must know the underlying probability distribution
of this risk. Assume that each policy is exposed n times to this risk, thus in a
portfolio of N policies, the risk may occur n× N times.

Let us introduce a sequence (Xi, i = 1, . . . , Nn) of rv’s Xi to model the
occurrence of the risk, with a given severity l (for simplicity, take it deterministic).
Hence the total loss amount, say L, associated to this portfolio is given by L =
l

Nn∑
i=1

Xi := l SNn.

We are going to consider three models for the occurrence of the risk, depending
on the dependence structure.

(a) A First Simple Model, Under the iid Assumption

Assume theXi’s are iid (independent, identically distributed) with parent rv denoted
by X, Bernoulli distributed B(p), i.e. the loss L1 = lX occurs with some
probability p:

X =
{

1 with probability p

0 with probability 1 − p

Hence the total loss amount L = l SNn follows a binomial distribution B(Nn, p).
We can then deduce the risk loading for an increasing number N of policies in the

portfolio: R = η

(
ρ(L)

N
− lnp

)
, in order to determinate the risk premium the

insurance will ask to a customer if he buys this insurance policy. The relative risk

loading per policy is then
R

E[L(1)] = η

(
ρ(L)

lnp
− 1

)
.

Numerical application. We choose for instance the number of times one policy
is exposed to the risk as n = 6 and the unit loss l is fixed to l = 10 Euros.

Computing the loss distribution, we obtain the results presented in Table 5. We
observe that the probability that the company will turn out paying more than the
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Table 5 Distribution of the loss L = lS1n for one policy (N = 1) with n = 6 and p = 1/6

Number of losses Policy loss Probability mass Cdf

k lX(ω) P[S1n = k] P[S1n ≤ k]
0 0 33.490% 33.490%

1 10 40.188% 73.678%

2 20 20.094% 93.771%

3 30 5.358% 99.130%

4 40 0.804% 99.934%

5 50 0.064% 99.998%

6 60 0.002% 100.000%

Table 6 The Risk loading
per policy as a function of the
number N of policies in the
portfolio (with n = 6)

Risk loading R per policy

Risk measure Number N with probability

ρ of policies p = 1/6 p = 1/4 p = 1/2

VaR 1 3.000 3.750 4.500

5 1.500 1.650 1.800

10 1.050 1.200 1.350

50 0.450 0.540 0.600

100 0.330 0.375 0.420

1000 0.102 0.117 0.135

10,000 0.032 0.037 0.043

TVaR 1 3.226 3.945 4.500

5 1.644 1.817 1.963

10 1.164 1.330 1.482

50 0.510 0.707 0.675

100 0.372 0.425 0.476

1000 0.116 0.134 0.154

10,000 0.037 0.042 0.049

E[L]/N 10.00 15.00 30.00

expectation E(L) = lnp = 10, is of more than 26%. It makes then clear why the
technical premium cannot be reduced to E(L).

Now we compute the risk loading per policy as a function of the number N of
policies in the portfolio for both risk measures VaR and TVaR, and when taking
p = 1/6 (fair game), 1/4 and 1/2, respectively. We assume that the cost (of capital)
is η = 15%, and that the risk measure is computed at threshold α = 99%. Results
are given in Table 6.

We observe that, in the case of independent risks, the risk loading R is a
decreasing function of the number of policies N , even with a biased dice. With
10,000 policies, R is divided by 100, whatever is the choice of the risk measure ρ,
with slightly higher values for TVaR than VaR.
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(b) Introducing a Structure of Dependence to Reveal a Systematic Risk

We introduce two types of structure of dependence between the risks, in order to
explore the occurrence of a systematic risk and, as a consequence, the limits to
diversification.

We still consider the sequence (Xi, i = 1, . . . , Nn) to model the occurrence of
the risk, with a given severity l, for N policies, but do not assume anymore that the
Xi’s are independent (but identically distributed, for sake of simplicity). We assume
that the occurrence of the risks Xi ’s depends on another phenomenon, represented
by a random variable (rv), say U . Depending on the intensity of the phenomenon,
i.e. the values taken by U , a risk Xi has more or less chances to occur.

Suppose that the dependence between the risks is totally captured by U that is
identified to the occurrence of a state of systematic risk. Consider, w.l.o.g., that U

can take two possible values denoted by 1 and 0:U
d∼ B(p̃), 0 < p̃ << 1, where p̃

is chosen very small since we want to explore rare events. We present two examples
of models (i.e. two types of dependence).

(i) A dependent model, but conditionally independent
The occurrence of the risks (Xi)i is modeled by a Bernoulli rv whose

parameter is chosen depending on U and such that the conditional rv’s Xi | U
are independent. Since U takes two possible values, the same holds for the
parameter of the Bernoulli distribution of the conditionally independent rv’s
Xi | U , namely

Xi | (U = 1)
d∼ B(q) and Xi | (U = 0)

d∼ B(p)

where we choose q >> p, so that whenever U occurs (i.e. U = 1 (crisis
state)), it has a big impact in the sense that there is a higher chance of loss.
We include this effect in order to have a systematic risk (non-diversifiable) in
our portfolio. Hence the mass probability distribution fS of the total amount of
losses SNn appears as a mixture of two mass probability distributions fS̃q and

fS̃p of conditional independent rv’s S̃q := SNn| (U = 1)
d∼ B(Nn, q) and

S̃p := SNn| (U = 0)
d∼ B(Nn, p), respectively:

fS = p̃ fS̃q + (1 − p̃) fS̃p .

Note that p̃ = 0 gives back the normal state.
Numerical application. As for example (a), we take n = 6 and p = 1/n.
Moreover we choose the loss probability during the crisis to be q = 1/2, and
explore different probabilities p̃ of occurrence of a crisis. In Table 7, the results
illustrate well the effect of the non-diversifiable risk. When the probability of
occurrence of a crisis is high, the diversification does not play a significant role
anymore already with 100 contracts in the portfolio. For p̃ ≥ 1%, the risk
loading barely changes when there is a large number of policies (starting at
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Table 7 The risk loading per policy as a function of the probability of occurrence of a systematic
risk in the portfolio using VaR and TVaR measures with α = 99%

Risk loading R

Risk measure Number N In a normal state With occurrence of a crisis state

ρ of policies p̃ = 0 p̃ = 0.1% p̃ = 1.0% p̃ = 5.0% p̃ = 10.0%

Var 1 3.000 2.997 4.469 4.346 5.693

5 1.500 1.497 2.070 3.450 3.900

10 1.050 1.047 1.770 3.300 3.450

50 0.450 0.477 1.410 3.060 3.030

100 0.330 0.327 1.605 3.000 2.940

1000 0.102 0.101 2.549 2.900 2.775

10,000 0.032 0.029 2.837 2.866 2.724

TVaR 1 3.226 3.232 4.711 4.755 5.899

5 1.644 1.707 2.956 3.823 4.146

10 1.164 1.266 2.973 3.578 3.665

50 0.510 0.760 2.970 3.196 3.141

100 0.372 0.596 2.970 3.098 3.020

1000 0.116 0.396 2.970 2.931 2.802

10,000 0.037 0.323 2.970 2.876 2.732

E[L]/N 10.00 10.02 10.20 11.00 12.00

The probability of giving a loss in a state of systematic risk is chosen to be q = 50%

N = 1000) in the portfolio, for both VaR and TVaR. The non-diversifiable term
dominates the risk. For lower probability p̃ of occurrence of a crisis, the choice
of the risk measure matters. For instance, when choosing p̃ = 0.1%, the risk
loading, compared to the normal state, is multiplied by 10 in the case of TVaR,
for N = 10,000 policies, and hardly moves in the case of VaR! This effect
remains, but to a lower extend, when diminishing the number of policies. It is
clear that the VaR measure does not capture well the crisis state, while TVaR is
sensitive to the change of state, even with such a small probability and a high
number of policies.

(ii) A more realistic model setting to introduce a systematic risk
We adapt further the previous setting to a more realistic description of a

crisis. At each of the n exposures to the risk, in a state of systematic risk,
the entire portfolio will be touched by the same increased probability of loss,
whereas, in a normal state, the entire portfolio will be subject to the same
equilibrium probability of loss.

For this modeling, it is more convenient to rewrite the sequence (Xi, i =
1, . . . , Nn) with a vectorial notation, namely (Xj , j = 1, . . . , n) where the
vector Xj is defined by Xj = (X1j , . . . , XNj )

T . Hence the total loss amount
SNn can be rewritten as

SNn =
n∑
j=1

S̃(j) where S̃(j) is the sum of the components of Xj : S̃(j) =
N∑
i=1

Xij .
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We keep the same notation for the Bernoulli rv U determining the state and
for its parameter p̃. But now, instead of defining a normal (U = 0) or a crisis
(U = 1) state on each element of (Xi, i = 1, . . . , Nn), we do it on each vector
Xj , 1 ≤ j ≤ n.

It comes back to define a sequence of iid rv’s (Uj , j = 1, . . . , n) with parent
rv U . We deduce that S̃(j) follows a Binomial distribution whose probability
depends on Uj :

S̃(j) | (Uj = 1)
d∼ B(N, q) and S̃(j) | (Uj = 0)

d∼ B(N, p),

and these conditional rv’s are independent.
Let us introduce the event Al defined, for l = 0, . . . , n, as

Al := {l vectors Xj are exposed to a crisis state andn− l to a normal state}

=
( n∑
j=1

Uj = l
)

whose probability is given by

P(Al) = P

( n∑
j=1

Uj = l
)

=
(
n

l

)
p̃l (1 − p̃)n−l .

We can then write, with, by conditional independence,

S̃(l)q =
l∑

j=1

(
S̃(j) | Uj =1

)
d∼ B(Nl, q)

and

S̃(n−l)p =
n−l∑
j=1

(
S̃(j) | Uj =0

)
d∼ B(N(n − l), p),

that

P(SNn = k)=
n∑
l=0

P(SNn = k|Al)P(Al) =
n∑
l=0

(
n

l

)
p̃l (1−p̃)n−l P[S̃(l)q +S̃(n−l)p = k

]
.

Numerical example revisited: In this case, we cannot directly use an explicit
expression for the distributions, so we go through Monte-Carlo simulations.
At each of the n exposures to the risk, first choose between a normal or a crisis
state. Since, we take here n = 6, the chances of choosing a crisis state when
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Table 8 The risk loading per policy as a function of the probability of occurrence of a systematic
risk in the portfolio using VaR and TVaR measures with α = 99%

Risk loading R

Risk measure Number N in a normal state with occurrence of a crisis state

ρ of policies p̃ = 0 p̃ = 0.1% p̃ = 1.0% p̃ = 5.0% p̃ = 10.0%

VaR 1 3.000 2.997 2.969 4.350 4.200

5 1.500 1.497 1.470 1.650 1.800

10 1.050 1.047 1.170 1.350 1.500

50 0.450 0.477 0.690 0.990 1.200

100 0.330 0.357 0.615 0.945 1.170

1000 0.102 0.112 0.517 0.882 1.186

10,000 0.032 0.033 0.485 0.860 1.196

100,000 0.010 0.008 0.475 0.853 1.199

TVaR 1 3.226 3.232 4.485 4.515 4.448

5 1.644 1.792 1.870 2.056 2.226

10 1.164 1.252 1.342 1.604 1.804

50 0.510 0.588 0.824 1.183 1.408

100 0.375 0.473 0.740 1.118 1.358

1000 0.116 0.348 0.605 1.013 1.295

10,000 0.037 0.313 0.563 0.981 1.276

100,000 0.012 0.301 0.550 0.970 1.269

E[L]/N 10.00 10.02 10.20 11.00 12.00

The probability of giving a loss in a state of systematic risk is chosen to be q = 50%

p̃ = 0.1% is very small. To get enough of the crisis states, we need to do enough
simulations, and then average over all the simulations. The results shown in
Table 8 are obtained with ten million simulations (we ran it also with 1 and 20
million simulations to check the convergence).

The diversification due to the total number of policies is more effective for
this model than for the previous one, but we still experience a part which is not
diversifiable. We also computed the case with 100,000 policies (since via Monte
Carlo simulations). As expected, the risk loading in the normal state continues to
decrease. In this state, it decreases by

√
10. However, except for p̃ = 0.1% in

the VaR case, the decrease becomes very slow when we allow for a crisis state
to occur. The behavior of this model is more complex than the previous one,
but more realistic, and we reach also the non-diversifiable part of the risk. For a
high probability of occurrence of a crisis (1 every 10 years), the limit with VaR is
reached already at 100 policies, while, with TVaR, it continues to slowly decrease.
Concerning the choice of risk measure, we see a similar behavior as in the previous
case for the case N = 10,000 and p̃ = 0.1%: VaR is unable to catch the possible
occurrence of a crisis state, which shows its limitation as a risk measure. Although
we know that there is a part of the risk that is non-diversifiable, VaR does not catch
it really when N = 10,000 or 100,000 while TVaR does not decrease significantly
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Table 9 Summary of the analytical results (expectation and variance per policy) for the three
cases of biased games (L = l SNn)

Case Expectation 1
N
E(L) Variance 1

N2 var(L)

(a) ln q l2n
N q(1 − q)

(b)-(i) ln
(
p̃ q + (1 − p̃) p

)
l2n
N

(
q(1 − q)p̃ + p(1 − p)(1 − p̃)

)
+ l2n2(q − p)2p̃(1 − p̃)

(b)-(ii) ln
(
p̃ q + (1 − p̃) p

)
l2n
N

(
q(1 − q)p̃ + p(1 − p)(1 − p̃)

)
+ l2n (q − p)2p̃(1 − p̃)

between 10,000 and 100,000 reflecting the fact that the risk cannot be completely
diversified away.

Discussion: Comparison of the Methods

In Table 9, we see in the first case (a) that the variance decreases with increasing
N , while both other cases (b) (i and ii) contain a term in the variance that does not
depend on N . Those two cases are those containing a systematic risk component
that cannot be diversified. Note that the variance var2(L) of L in the case (b)-(i)
contains a non-diversified part that corresponds to n times the non-diversified part
of var3(L) in the case (b)-(ii).

To conclude, we have seen the effect of diversification on the pricing of
insurance risk through a simple modeling that allows for a straightforward analytical
evaluation of the impact of the non-diversified part. In real life, risk takers have to
pay special attention to the effects that can weaken the diversification benefits, hence
affect greatly the risk loading of the risk premium (as seen here). Various examples
can illustrate this situation, as, for instance, for motor insurance, the appearance
of a hail storm may hit a big number of cars at the same time and thus cannot be
diversified among the various policies, or for life insurance, pandemic or mortality
trend would affect the entire portfolio and cannot be diversified away, or the financial
crisis suddenly increases the dependence between risks (systemic risk). There is a
saying among traders: “Diversification works the best when you need it the least”.

Understanding the dependence between risks is crucial for solid risk manage-
ment. For portfolio management, we need to include both the single risk model and
the dependence model.

3.1.2 Type of Dependence

Consider a portfolio of political risks, the two largest ones being those of China and
Hong-Kong, with 22.5% linear correlation. A customer asks a reinsurer for a cover
of those extreme risks, providing him their marginal distributions and the following
simulations results:
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X-axis: China; Y-axis: Hong-Kong
(r = 22.5%)

10 extreme events

Applying the reinsurance structure (rectangle) to the customer’s simulations, we
find ten relevant events in it. However, in this model, the conditional probability
for Hong-Kong to default on the risk, given that China defaults with probability
of 1/200 years (i.e. 0.5%), would give a probability less than 5% , which is totally
unrealistic, given the political situation of dependence of Hong-Kong on China!

Hence the reinsurer decides to study this portfolio, using the same margins, but
suggesting a dependence structure via a Clayton copula, calibrating it to have the
same linear correlation of 22.5%. He obtains a much more realistic conditional
probability of default of 60%, which gives 21 relevant events in the reinsurance
structure. Applying simply a non-linear dependence structure increases by a factor
2 the number of events and by a factor 3 the average loss for the reinsurer. Of course,
the price of such a cover would be much higher than what the customer expected
given his model.

X-axis: China; Y-axis: Hong-Kong
(r = 22.5%)

21 extreme events

This example shows that the type of dependence considered for the modeling
matters a lot when considering the risk!
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3.2 Notion of Dependence

How to analyze a phenomenon in view of understanding it better, then modeling it?
Modeling is a simplification but must not be a reduction! It is the fundamental basis
of a scientific approach. ‘Everything should be made as simple as possible, but not
simpler’ (Saying attributed to Albert Einstein).

We proceed from simplest tools to more elaborated ones, when needed. In
terms of dependence, in a multivariate context, it means to look at the rv’s
from independence to linear dependence to non-linear dependence. Studying the
dependence between risks is essential for understanding their real impacts and
consequences. There exists many ways of describing dependence or association
between rv’s, e.g. linear correlation coefficient, rank correlations (Kendall’s tau,
Spearman’s rho), . . .

Let us present a brief historical overview. Dependence has always been a topic in
probability and statistics when looking at what is called a multivariate framework.
Notions like linear correlation or copula, for instance, were introduced to treat this
problem.

– In 1895: Karl Pearson[30] formalized mathematically the notion of linear
correlation (first introduced by Galton in the context of biometric studies). If
independence implies linear independence, the converse is false (except in the
elliptical case), as illustrated on Fig. 8.

– In 1959: Abe Sklar [35] introduced (in the context of probability theory to solve
a theoretical problem posed by Fréchet) the more general concept of dependence
structure, called also copula, separating this structure from the margins.

X

Y
ρxy=1

X

Y
ρxy=-1

X

Y ρxy=0

X

Y
ρxy=0

Independence ⇒

Independenceρxy=0 ⇒
Linear 
Independence

⇒ρxy=0

ρxy=0

Fig. 8 Linear versus stochastic independence
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Fig. 9 Scatterplots of (X1, X2) with normal margins, linear correlation ρ = 70%, and, respec-
tively, a Gaussian copula (left plot) and a Gumbel copula (right plot)

For instance, consider two random vectors having the same standard normal
margins and a linear correlation of 70%, but a different dependence structure, a
Gaussian copula and a Gumbel one, respectively. We clearly see in Fig. 9 how
different they are.

It emphasizes the fact that knowing the marginal distributions and linear cor-
relation is not enough for determining the joint distribution, except for elliptical
distributions (as e.g. the Gaussian ones).

– In 1984: Paul Deheuvels[10] introduced the notion of extreme-value copula.
– From the 1970s, diverse types of dependence have been studied in mathematical

statistics and probability.
– From the twenty-first century, those dependence tools have been introduced in

the industry: copulas turn out to become an important tool for applications and
the evaluation of risks in insurance and reinsurance (and later in finance: non-
linear tools cannot/should not be ignored anymore, especially after the second
most severe financial crisis starting in 2008)

– After the 2008 financial crisis, Extreme Value Theory (EVT) finally enters the
financial world (academics and professionals). The fact that risks are more
interdependent in extreme situations led to the development of the notion of
systemic risks, risks that would affect the entire system as well as the notion
of systematic risks, where components are present in all other risks.

The world has changed a lot, from the end of the nineteenth to early twentieth
century, where using the concept of linear correlation (Pearson) was of great help, to
nowadays, where world is getting more complex, and more and more interconnected
(see [6] for a discussion of this point). In the next few years, research in statistics
and probability will have to make significant progress in this area if we want to
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master the risk at an aggregate level. We have seen that societal demand goes in this
direction, looking for protection at a global level.

3.3 Copulas

Definition 1 A copula is a multivariate distribution function C : [0, 1]d → [0, 1]
with standard uniform margins i.e.C(1, · · · , 1, ui, 1, · · · , 1) = ui , ∀i ∈ {1, . . . , d},
ui ∈ [0, 1].

Sklar showed in [35] how a unique copula C fully describes the dependence of
X proving the following theorem.

Theorem 4 (Sklar’s Theorem, 1959) Let F be a joint cdf with margins (Fi, i =
1, · · · , d). There exists a copula C such that

F(x1, · · · , xd) = C(F1(x1), · · · , Fd(xd)), ∀xi ∈ R, i = 1, · · · , d.

If the margins are continuous then C is unique.
Conversely, if C is a copula and (Fi, 1 ≤ i ≤ d) are univariate cdf, then F

defined above is a multivariate cdf with margins F1, · · · , Fd .

Proof as an exercise.
As a consequence, we can give another definition of a copula.

Definition 2 The copula of (X1, · · · ,Xd) (or F ) is the cdf C of (F1(X1), · · · , Fd
(Xd)).
We sometimes refer to C as the dependence structure of F.

Here is a useful way to express Sklar’s theorem in dimension 2:

Theorem 5 (Sklar—dim 2) Let F be a joint cdf with margins (F1, F2). The copula
C associated to F can be written as

C(u1, u2) = C(F1(x1), F2(x2))

C(u1, u2) = F(x1, x2)

C(u1, u2) = F(F−1
1 (u1), F

−1
2 (u2))

If the margins are continuous then C is unique.

Copulas satisfy a property of invariance, very useful in practice, and which is not
satisfied by the linear correlation.

Property 1 (Property of Invariance) C is invariant under strictly increasing
transformations of the marginals. If T1, · · · , Td are strictly increasing, then
(T1(X1), · · · , Td(Xd)) has the same copula as (X1, · · · ,Xd).
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As for probability distributions, we can define the notion of density function,
when existing.

Definition 3 The density function c of a copula C is defined by

c(u1, · · · , ud) = ∂dC(u1, · · · , ud)
∂u1 · · · ∂ud .

The density function of a bivariate distribution can be written in terms of the density
function c of the associated copula and in terms of the density functions f1 and f2
of the margins:

f (x1, x2) = c
(
F1(x1), F2(x2)

)
f1(x1)f2(x2).

Using this definition, we can prove that: the product copula characterize the inde-
pendence between two r.v. More generally,X1, . . . , Xd are mutually independent if

and only if their copula C satisfies C(u1, . . . , ud) =
d∏
i=1

ui .

As the linear correlation, which is bounded between −1 and 1, a copula also admits
bounds, named Fréchet-Hoeffding bounds:

max
( d∑
i=1

ui + 1 − d ; 0
)

≤ C(u) ≤ min
1≤i≤d ui = P[U ≤ u1, · · · , U ≤ ud ]

where u = (u1, . . . , ud) and U is uniformly distributed on [0,1].
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Scatterplot, Upper Fréchet–Hoeffding bound

The upper Fréchet-Hoeffding bound Cu(u1, . . . , ud) := min
1≤i≤d ui is a copula for

any d . It describes the perfect dependence, named also comotonicity:
Xi

a.s.= Ti(X1), with Ti strictly increasing function, i = 2, . . . , d ⇐⇒ Cu satisfies
Cu(u1, . . . , ud) := min

1≤i≤d ui .

The lower Fréchet-Hoeffding bound Cl(u) := max
(∑d

i=1 ui + 1 − d ; 0
)

is

a copula for d = 2, but not for all d > 2. For d = 2, Cl describes the perfect
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negative dependence, named also countercomotonicity: X2
a.s.= T (X1), with T

strictly decreasing function ⇐⇒ Cl(u1, u2) := max(u1 + u2 − 1, 0).

Examples of Copulas Since any type of dependence structure can exist, the same
can be said about copulas, that is why many new copulas are introduced by
researchers. Here let us define three standard classes of copulas, already in use
among practitioners, among which the Extreme Value (EV) copulas (which can
overlap the two other classes).

• Elliptical or normal mixture copulas, as for instance:

– The Gaussian copula (often used in financial modeling); in dimension 2, with
parameter α ∈ (−1, 1), it is defined via Sklar’s theorem by

C(u, v) = 1

2π
√

1 − α2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
exp

{
− x2 − 2αxy + y2

2(1 − α2)

}
dxdy

where Φ denotes the standard normal distribution.
– The Student-t copula is the distribution of (T (Xi), i = 1, · · · , d) where T is

the t-cdf and (Xi, i = 1, . . . , d) has a joint t-distribution. For d = 2, it can be
expressed (via Sklar’s theorem) as:

C(u, v) = 1

2π
√

1 − α2

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

(
1 + x2 − 2αxy + y2

2(1 − α2)

)−(ν+2)/2

dxdy

for α ∈ (−1, 1) and degrees of freedom ν ≥ 2.

• Archimedean copulas.
Definition. An Archimedean copula C is defined by

C(u1, . . . , ud) = ψ−1(ψ(u1)+ · · · + ψ(ud )
)

where ψ :]0, 1] → [0,∞) is continuous, strictly decreasing, convex, and
satisfies ψ(1) = 0 and lim

t→0
ψ(t) = +∞; set ψ−1(t) = 0 if ψ(0) ≤ t ≤ +∞.

We call ψ the strict generator of C.
Archimedean copulas are exchangeable, i.e. invariant under permutation.
Examples:

– Gumbel copula, defined in dimension 2 by:

CGuβ (u, v) = exp
{− ((− logu)β + (− log v)β

)1/β}
, with β ≥ 1.

When β = 1: CGu1 (u, v) = uv pointing out the independence of the variables.
When β → ∞, the variables tend to be comonotonic:CGu∞ (u, v) = min(u, v).
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– Clayton copula, defined in dimension 2 by:

CClβ (u, v) = (u−β + v−β − 1
)−1/β

, with β > 0.

We have lim
β↘0

CClβ (u, v) = uv, independence case, and lim
β→∞CCl∞ (u, v) =

min(u, v), comonotonic case.

• Extreme Value (EV) Copulas
A copula C is said to be an Extreme Value (EV) copula if it satisfies the max-
stability characteristic property:

∀γ > 0, Cγ (u1, . . . , ud) = C(u
γ

1 , . . . , u
γ
d ).

An alternative definition is the following, that we state e.g. in dimension 2:

C(u, v) = exp

{
(logu+ log v)A

(
logu

logu+ log v

)}

where A, called the dependence (or Pickands) function, is convex on [0, 1] and
satisfies A(0) = A(1) = 1 and max(1 − ω,ω) ≤ A(ω) ≤ 1, ∀ω ∈ [0, 1].
The function A can be defined from the EV copula C by setting

A(w) = − lnC
(
e−w, e−(1−w)

)
, w ∈ [0, 1].

Bounds have also been provided for A. If the upper bound is reached, i.e. if
A(w) = 1, ∀w, then C is the independence copula. If the lower bound is reached,
i.e. if A(w) = max(w, 1 −w), then it is a comonotonicity copula.

Examples of EV copulas: independence copula, comonotonicity copula,
Gumbel copula (it is a parametric EV copula; the Gumbel copula model is
sometimes known as the logistic model), Galambos copula (as defined below).

Let us consider the dependence function A, introduced by Galambos and
defined, for 0 ≤ w ≤ 1, with 0 ≤ α, β ≤ 1 and θ > 0, by

A(w) = 1 −
(
(αw)−θ + (β(1 −w)

)−θ)−1/θ
.

We can check that A is a convex function having the right bounds for the
definition of an EV copula, so that we can create an EV copula from A. We
obtain the bivariate EV copula, named Galambos copula (this copula model is
sometimes known as the negative logistic model),

CGalθ,α,β(u, v) = u v exp
{(
(−α lnu)−θ + (−β ln v)−θ

)−1/θ
}
.

It is represented in Fig. 10 [27, p. 313].
To learn more on copulas, refer e.g. to [28] and [20].
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Fig. 10 Plot of dependence function for (a) the symmetric Galambos (α = β = 1), spanning the
whole range from independence to comonotonicity, and (b) the asymmetric Galambos copula with
α = 0.9 and β = 0.8; the limit as θ → 0 is the independence model, whereas as θ → ∞, it is
no longer the comonotonicity model. Dashed lines show boundaries of the triangle in which the
dependence function must reside; solid lines show dependence functions for a range of θ values
running from 0.2 to 5 in steps of size 0.1

3.4 Notion of Rank Correlation

Let us introduce two rank correlations, the Spearman’s rho ρS and the Kendall’s tau
ρτ , which can also be expressed in terms of copulas (see e.g. [27, §5.2]).

Let C denote the copula of (X1,X2), and ρ the Pearson (linear) correlation of
X1 and X2.

• The Spearman’s rho ρS is defined by

ρS(X1,X2) = ρ(F1(X1), F2(X2)) = ρ(copula)

and also by

ρS(X1,X2) = 12
∫ 1

0

∫ 1

0

(
C(u1, u2)− u1u2

)
du1du2.

• The Kendall’s tau ρτ is defined by

ρτ (X1,X2) = 2P
[
(X1 − X̃1)(X2 − X̃2) > 0

]− 1

with (X̃1, X̃2) an independent copy of (X1,X2), and also by

ρτ (X1,X2) = 4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1.

Case of elliptical models: Suppose X = (X1,X2) has any elliptical distri-
bution (e.g. X has a Student distribution t2(ν, μ, Γ )). Then ρτ (X1,X2) =
2

π
arcsin

(
ρ(X1,X2)

)
.
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Note that if Xi has infinite variance, then ρ(X1,X2) can be interpreted as
Γ1,2√
Γ1,1Γ2,2

.

3.4.1 Properties of Rank Correlations

We can enunciate the following properties for the Spearman’s rho ρS . The same
holds true for Kendall’s tau ρτ . But those properties are not shared by the linear
correlation.

1. ρS depends only on the copula of (X1,X2);
2. ρS is invariant under strictly increasing transformations of the rv’s;
3. ρS(X1,X2) = 1 ⇔ C(X1,X2) is comonotonic;
4. ρS(X1,X2) = −1 ⇔ C(X1,X2) is countermonotonic.

3.5 Ranked Scatterplots

Let us draw ranked scatterplots with different copulas.
First we consider archimedean copulas (with parameter θ ), namely Clayton,

Clayton-mirror (i.e. when we flip it) and Gumbel, and elliptical ones, namely
Student copula with ν = 1 and Gaussian one. For all of them, we choose the
Kendall’s tau ρτ = 50%.

Clayton Clayton-M

Gumbel GaussStudent v=1

Then we consider the same margins and play with the parameters of the copulas
to see their impact.



Introduction to EVT: Applications to QRM 629

Gaussian copula with ρ = 0,30,60,90 % from left to right

Student t3 copula with ρ = 0,30,60,90 % from left to right

Gumbel copula with θ = 1,1.5,2,3 from left to right

Survival (Mirror) Clayton copula with θ = 0.1,0.5,1,2 from left to right

3.6 Other Type of Dependence: Tail or Extremal Dependence

The objective is to measure the dependence in joint tail of bivariate distribution. Let
C denote the copula of the random vector (X1,X2).

• Coefficient of upper tail dependence. When the limit exists, it is defined as

λu(X1,X2) = lim
α→1

P
[
X2 > V aRα(X2) |X1 > V aRα(X1)

]
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and, as function of the copula C,

λu(X1,X2) = lim
α→1

1 − 2α + C(α, α)

1 − α
.

• Coefficient of lower tail dependence. When the limit exists, it is defined as

λl(X1,X2) = lim
α→0

P
[
X2 ≤ V aRα(X2) | X1 ≤ V aRα(X1)

]

and, as function of C,

λl(X1,X2) = lim
α→0

C(α, α)

α
.

3.6.1 Properties and Terminology

1. λu ∈ [0, 1] and λl ∈ [0, 1] ;
2. For elliptical copulas, λu = λl := λ. Note that this is true for all copulas with

radial symmetry, i.e. such that (U1, U2) =d (1 − U1, 1 − U2);
3. If λu ∈ (0, 1], then there exits an upper tail dependence and if λl ∈ (0, 1], there

exits a lower tail dependence;
4. λu = 0 means that there is asymptotic independence in the upper tail and λl = 0

means that there is asymptotic independence in lower tail.

Examples

1. We can prove that a Gaussian copula with parameter ρ is asymptotically
independent (i.e. λ = 0) whenever |ρ| < 1;

2. A t-copula with parameter ρ is tail dependent whenever ρ > −1, whatever is
the number of degrees of freedom ν. Its coefficient of (lower and upper) tail

dependence is given by: λ = 2t̄ν+1

(√
1 + ν

√
1 − ρ

1 + ρ

)
;

3. The Gumbel copula with parameter β is upper tail dependent for β > 1, and this
upper tail dependence is measured by λu = 2 − 21/β ;

4. The Clayton copula with parameter β is lower tail dependent for β > 0, and
λl = 2−1/β .

The properties of symmetric tail dependence, as well as of asymptotic tail
dependence for the Gaussian copula and upper tail dependence for the Student
copula, are well illustrated in Fig. 11.
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Fig. 11 Gaussian (left) and student t3 (right) copulas with same margins and parameter ρ = 70%.
Quantiles lines are given for 0.5% and 99.5%

Table 10 Left table: joint tail probabilities P[X1 > V aRα(X1),X2 > VaRα(X2)] for α =
95, 99, 99.5, 99.9%, respectively. Right table: Joint tail probabilities P[Xi > VaR99%(Xi), i =
1, . . . , d] for d = 2, 3, 4, 5 respectively, when taking equal correlations

ρ C Quantile
95% 99% 99.5% 99.9%

0.5 N 1.21× 10−2 1.29× 10−3 4.96× 10−4 5.42× 10−5

0.5 t8 1.20 1.65 1.94 3.01
0.5 t4 1.39 2.22 2.79 4.86
0.5 t3 1.50 2.55 3.26 5.83
0.7 N 1.95× 10−2 2.67× 10−3 1.14× 10−3 1.60× 10−4

0.7 t8 1.11 1.33 1.46 1.86
0.7 t4 1.21 1.60 1.82 2.52
0.7 t3 1.27 1.74 2.01 2.83

ρ C Dimension d

2 3 4 5
0.5 N 1.29× 10−3 3.66× 10−4 1.49× 10−4 7.48× 10−5

0.5 t8 1.65 2.36 3.09 3.82
0.5 t4 2.22 3.82 5.66 7.68
0.5 t3 2.55 4.72 7.35 10.34
0.7 N 2.67× 10−3 1.28× 10−3 7.77× 10−4 5.35× 10−4

0.7 t8 1.33 1.58 1.78 1.95
0.7 t4 1.60 2.10 2.53 2.91
0.7 t3 1.74 2.39 2.97 3.45

For both tables: The copula C of the random vector is either Gaussian (denoted by N) or Student
t with three possible degrees of freedom ν = 8, 4, 3 (the smaller is ν, the heavier is the tail) and
parameter ρ = 50% or 70%. Note that for the Student cases, only the factor by which Gaussian
(N) joint tail probability must be multiplied, is given

3.6.2 Numerical Example Showing the Impact of the Choice of Copula

We already provided in Sect. 3.1.2 an example with political risks where we
observed how much the choice of the dependence structure would impact the results.
In that example we considered a Gaussian dependence versus a Clayton one.

Let us give another example where we compare in Table 10 the joint tail
probability at finite levels of two copulas which are both elliptical. This is an
example developed by McNeil et al. in [27].

Let us illustrate those results, giving the financial interpretation suggested in [27].
Consider daily returns on five financial instruments and suppose that we believe

that all correlations between returns are equal to 50%. However, we are unsure
about the best multivariate model for these data. On one hand, if returns follow
a multivariate Gaussian distribution then the probability that on any day all returns
fall below their 1% quantiles is 7.48 × 10−5. In the long run such an event will
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happen once every 13,369 trading days on average, that is roughly once every
51.4 years (assuming 260 trading days in a year). On the other hand, if returns follow
a multivariate t distribution with four degrees of freedom then such an event will
happen 7.68 times more often, that is roughly once every 6.7 years, which would
induce a very different behavior in terms of risk management! During the subprime
crisis, this was the problem of the too high rating given to the CDOs (Collateralized
Debt Obligation) by the rating agencies, who only considered linear correlation for
the dependence between the risks.

4 Multivariate EVT

Let us end those notes by giving a brief idea about the basis on which EVT has been
extended in the multivariate setting. It is a research domain which has aroused an
increasing interest this past decade, in particular due to its practical use.

4.1 MEV Distribution

Some Notation Let X1, · · · ,Xi, · · · ,Xn be iid random vectors in R
d , each Xi

(i = 1, · · · , n) having its components denoted by Xij , j = 1, · · · , d; they could be
interpreted as losses of d different types. Let F be the joint cdf of any random vector
Xi and F1, · · · , Fd be its marginal cdf’s. Let Mnj = max

1≤i≤nXij , for j = 1, · · · , d;

it is the maximum of the j th component, andMn be the d-random vector the vector
of componentwise block maxima, i.e. with componentsMnj , j = 1, · · · , d .

The main question that might be asked, when going from univariate EVT to
multivariate one, is which underlying multivariate cdf’s F are attracted to which
MEV distributionsH ?

Definition 4 If there exist vectors of normalizing constants (of dimension d) cn > 0
and dn such that (Mn − dn)/cn converges in distribution to a random vector with
joint (non-degenerated) cdf H , i.e.

P

[
Mn − dn

cn
≤ x

]
= Fn(cnx + dn) −→

n→∞ H(x), x ∈ R
d,

we say that F is in the Maximum Domain of Attraction of H , written F ∈
MDA(H), and we refer to H as a MEV (Multivariate Extreme Value) distribution.

If H has non-degenerate margins, then

– these margins are univariate EV distributions of one of the three types, by
application of univariate EVT;
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– via Sklar’s theorem, H has a copula, which is unique if the margins are
continuous.

Theorem 6 If F ∈ MDA(H) for some F and H with GEV margins, then the
unique copula C of H satisfies the scaling property:

Cγ (u) = C(uγ ), ∀u ∈ R
d, ∀γ > 0,

which means that C is an extreme value (EV) copula (as defined previously); it can
then be the copula of a MEV distribution.

4.2 Copula Domain of Attraction

We can enunciate the following asymptotic theorem.

Theorem 7 ([14]) Let Fi, i = 1, · · · , d , be some continuous marginals cdf’s and
C some copula. Let define F(x) = C

(
F1(x1), · · · , Fd(xd)

)
and let H(x) =

C0
(
H1(x1), · · · ,Hd(xd)

)
be a MEV distribution with EV copula C0. Then we have

F ∈ MDA(H) if and only if

⎧⎪⎨
⎪⎩
Fi ∈ MDA(Hi) for i = 1, · · · , d,
and
lim
t→∞C

t
(
u1/t) = C0(u), u ∈ [0, 1]d.

Notice that:

– the marginal distributions of F determine the margins of the MEV limit but are
irrelevant to the determination of its dependence structure;

– the copulaC0 of the limiting MEV distribution is determined solely by the copula
C of the underlying distribution.

Definition 5 If lim
t→∞C

t
(
u1/t) = C0(u), u ∈ [0, 1]d , for some C and some EV

copula C0, then we say that C belongs to the copula domain of attraction of C0:
C ∈ CDA(C0).

4.2.1 Upper Tail Dependence and CDA

Proposition 1 Let C be a bivariate copula with upper tail-dependence coefficient
λu. Assume that C ∈ MDA(C0) for some EV copula C0 with Pickands (depen-
dence) function A. Then λu is also the upper tail-dependence coefficient of C0 and
is related to its dependence function by λu = 2(1 − A(1/2)).



634 M. Kratz

Proof First, let us prove that C and C0 have the same λu. To do so, we just need to

check that lim
α→1

1 − C(α, α)

1 − α
= lim

α→1

1 − C0(α, α)

1 − α
. We have, using the definition of

C ∈ CDA(C0),

lim
α→1

1 − C0(α, α)

1 − α
= lim
α→1

logC0(α, α)

1 − α
= lim
α→1

lim
t→∞

log
(
t[1 − C(α1/t , α1/t )])

1 − α

= lim
α→1

lim
s→0+

1 − C(αs , αs)

−s log(α)
= lim
α→1

lim
s→0+

1 − C(αs, αs )

− log(αs)
= lim
β→1−

1 − C(β, β)

1 − β
.

hence the result. The converse is straightforward. "#
Consequence: λu = 0 ⇒ A(1/2) = 1 ⇒ A ≡ 1 (since A convex function) ⇔

C0 is the independence copula.

5 Conclusion

In these notes, we have explored the EVT both in the univariate as well as in the
multivariate case by looking at dependence between rv’s. We have seen that there are
mature methods for determining accurately the shape of the tail of the distribution.
There are also methods to backtest statistically if the model captures it correctly.
This can be done when choosing Expected Shortfall as a risk measure (see e.g. [23]
and references therein). We pointed out through examples the importance for good
risk management of accounting for extreme risks, but also of correctly modeling the
non-linear dependence when present in the data or in the process to be studied. We
hope to have shown that there is no excuse anymore to ignore EVT in quantitative
risk management.
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Monotone Sharpe Ratios and Related
Measures of Investment Performance

Mikhail Zhitlukhin

Abstract We introduce a new measure of performance of investment strategies, the
monotone Sharpe ratio. We study its properties, establish a connection with coherent
risk measures, and obtain an efficient representation for using in applications.

1 Introduction

This paper concerns the problem of evaluation of performance of investment
strategies. By performance, in a broad sense, we mean a numerical quantity which
characterizes how good the return rate of a strategy is, so that an investor typically
wants to find a strategy with high performance.

Apparently, the most well-known performance measure is the Sharpe ratio, the
ratio of the expectation of a future return, adjusted by a risk-free rate or another
benchmark, to its standard deviation. It was introduced by William F. Sharpe in
the 1966 paper [23], a more modern look can be also found in [24]. The Sharpe
ratio is based on the Markowitz mean-variance paradigm [14], which assumes that
investors need to care only about the mean rate of return of assets and the variance
of the rate of return: then in order to find an investment strategy with the smallest
risk (identified with the variance of return) for a given desired expected return, one
just needs to find a strategy with the best Sharpe ratio and diversify appropriately
between this strategy and the risk-free asset (see a brief review in Sect. 2 below).
Despite its simplicity, as viewed from today’s economic science, the Markowitz
portfolio theory was a major breakthrough in mathematical finance. Even today,
more than 65 years later, analysts still routinely compute Sharpe ratios of investment
portfolios and use it, among other tools, to evaluate performance.

In the present paper we look at this theory in a new way, and establish
connections with much more recent developments. The main part of the material
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of the paper developed from a well-known observation that variance is not identical
to risk: roughly speaking, one has to distinguish between “variance above mean”
(which is good) and “variance below mean” (which is bad). In particular, the Sharpe
ratio lacks the property of monotonicity, i.e. there might exist an investment strategy
which always yields a return higher than another strategy, but has a smaller Sharpe
ratio. The original goal of this work was to study a modification of the Sharpe ratio,
which makes it monotone. Some preliminary results were presented in [27, 28]. It
turned out, that the modified Sharpe ratio posses interesting properties and is tightly
connected to the theory of risk measures. The study of them is the subject of this
paper.

The modification of the Sharpe ratio we consider, which we call the monotone
Sharpe ratio, is defined as the maximum of the Sharpe ratios of all probability
distributions that are dominated by the distribution of the return of some given
investment strategy. In this paper we work only with ex ante performance measure,
i.e. assume that probability distributions of returns are known or can be modeled,
and one needs to evaluate their performance; we leave aside the question how to
construct appropriate models and calibrate them from data.

The theory we develop focuses on two aspects: on one hand, to place the new
performance measure on a modern theoretical foundation, and, on the other hand,
take into account issues arising in applications, like a possibility of fast computation
and good properties of numerical results. Regarding the former aspect, we can
mention the paper of Cherny and Madan [3], who studied performance measures by
an axiomatic approach. The abstract theory of performance measures they proposed
is tightly related to the theory of convex and coherent risk measures, which has been
a major breakthrough in the mathematical finance in the past two decades. We show
that the monotone Sharpe ratio satisfies those axioms, which allows to apply results
from the risk measures theory to it through the framework of Cherny and Madan.
Also we establish a connection with more recently developed objects, the so-
called buffered probabilities, first introduced by Rockafellar and Royset in [21] and
now gaining popularity in applications involving optimization under uncertainty.
Roughly speaking, they are “nice” alternatives to optimization criteria involving
probabilities of adverse events, and lead to solutions of optimization problems which
have better mathematical properties compared to those when standard probabilities
are used. One of main implications of our results is that the portfolio selection
problem with the monotone Sharpe ratio is equivalent to minimization of the
buffered probability of loss.

Addressing the second aspect mentioned above, our main result here is a repre-
sentation of the monotone Sharpe ratio as a solution of some convex optimization
problem, which gives a computationally efficient way to evaluate it. Representations
of various functionals in such a way are well-known in the literature on convex
optimization. For example, in the context of finance, we can mention the famous
result of Rockafellar and Uryasev [22] about the representation of the conditional
value at risk. That paper also provides a good explanation why such a representation
is useful in applications (we also give a brief account on that below).
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Our representation also turns out to be useful in stochastic control problems
related to maximization of the Sharpe ratio in dynamic trading. Those problems
are known in the literature as examples of stochastic control problems where the
Bellman optimality principle cannot be directly applied. With our theory, we are
able to find the optimal strategies in a shorter and simpler way, compared to the
results previously known in the literature.

Finally, we would like to mention, that in the literature a large number of
performance measures have been studied. See for example papers [4, 5, 10]
providing more than a hundred examples of them addressing various aspects of
evaluation of quality of investment strategies. We believe that due to both the
theoretical foundation and the convenience for applications, the monotone Sharpe
ratio is a valuable contribution to the field.

The paper is organized as follows. In Sect. 2 we introduce the monotone Sharpe
ratio and study its basic properties which make it a reasonable performance measure.
There we also prove one of the central results, the representation as a solution of a
convex optimization problem. In Sect. 3, we generalize the concept of the buffered
probability and establish a connection with the monotone Sharpe ratio, as well
as show how it can be used in portfolio selection problems. Section 4 contains
applications to dynamic problems.

2 The Monotone Sharpe Ratio

2.1 Introduction: Markowitz Portfolio Optimization
and the Sharpe Ratio

Consider a one-period market model, where an investor wants to distribute her initial
capital between n + 1 assets: one riskless asset and n risky assets. Assume that the
risky assets yield return Ri , i = 1, . . . , n, so that $1 invested “today” in asset i
turns into $(1 + Ri) “tomorrow”; the rates of return Ri are random variables with
known distributions, such that Ri > −1 with probability 1 (no bankrupts happen).
The rate of return of the riskless asset is constant,R0 = r > −1. We always assume
that the probability distributions of Ri are known and given, and, for example, do
not consider the question how to estimate them from past data. In other words, we
always work with ex ante performance measures (see [24]).

An investment portfolio of the investor is identified with a vector x ∈ R
n+1,

where xi is the proportion of the initial capital invested in asset i. In particular,∑
i xi = 1. Some coordinates xi may be negative, which is interpreted as short sales

(i = 1, . . . , n) or loans (i = 0). It is easy to see that the total return of the portfolio
is Rx = 〈x,R〉 :=∑i xiRi .

The Markowitz model prescribes the investor to choose the optimal investment
portfolio in the following way: she should decide what expected return ERx she
wants to achieve, and then find the portfolio x which minimizes the variance of the
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return VarRx . This leads to the quadratic optimization problem:

minimize VarRx over x ∈ R
n+1

subject to ERx = μ∑
ixi = 1.

(1)

Under mild conditions on the joint distribution of Ri , there exists a unique solution
x∗, which can be easily written explicitly in terms of the covariance matrix and the
vector of expected returns of Ri (the formula can be found in any textbook on the
subject, see, for example, Chapter 2.4 in [18]).

It turns out that points (σx∗, μx∗), where σx∗ = √
VarRx∗ , μx∗ = ERx∗

correspond to the optimal portfolios for all possible expected returns μ ∈ [r,∞), lie
on the straight line in the plane (σ, μ), called the efficient frontier. This is the set of
portfolios the investor should choose from—any portfolio below this line is inferior
to some efficient portfolio (i.e. has the same expected return but larger variance),
and there are no portfolios above the efficient frontier.

The slope of the efficient frontier is equal to the Sharpe ratio of any efficient
portfolio containing a non-zero amount of risky assets (those portfolios have the
same Sharpe ratio). Recall that the Sharpe ratio of return R is defined as the ratio of
the expected return adjusted by the risk-free rate to its standard deviation

S(R) = E(R − r)√
VarR

.

In particular, to solve problem (1), it is enough to find some efficient portfolio x̂, and
then any other efficient portfolio can be constructed by a combination of the riskless
portfolio x0 = (1, 0, . . . , 0) and x̂, i.e x∗ = (1 − λ)x0 + λx̂, where λ ∈ [0,+∞) is
chosen to satisfy ERx∗ = μ ≥ r . This is basically the statement of the Mutual Fund
Theorem. Thus, the Sharpe ratio can be considered as a measure of performance of
an investment portfolio and an investor is interested in finding a portfolio with the
highest performance. In practice, broad market indices can be considered as quite
close to efficient portfolios.

The main part of the material in this paper grew from the observation that
the Sharpe ratio is not monotone: for two random variables X,Y the inequality
X ≤ Y a.s. does not imply the same inequality between their Sharpe ratios, i.e.
that S(X) ≤ S(Y ). Here is an example: let X have the normal distribution with
mean 1 and variance 1 and Y = X ∧ 1; obviously, S(X) = 1 but one can compute
that S(Y ) > 1. From the point of view of the portfolio selection problem, this fact
means that it is possible to increase the Sharpe ratio by disposing part of the return
(or consuming it). This doesn’t agree well with the common sense interpretation of
efficiency. Therefore, one may want to look for a replacement of the Sharpe ratio,
which will not have such a non-natural property.
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In this paper we’ll use the following simple idea: if it is possible to increase the
Sharpe ratio by disposing a part of the return, let’s define the new performance
measure as the maximum Sharpe ratio that can be achieve by such a disposal.
Namely, define the new functional by

S(X) = sup
C≥0

S(X − C),

where the supremum is over all non-negative random variables C (defined on the
same probability space asX), which represent the disposed return. In the rest of this
section, we’ll study such functionals and how they can be used in portfolio selection
problems. We’ll work in a more general setting and consider not only the ratio of
expected return to standard deviation of return but also ratios of expected return to
deviations in Lp. The corresponding definitions will be given below.

2.2 The Definition of the Monotone Sharpe Ratio
and Its Representation

In this section we’ll treat random variables as returns of some investment strategies,
unless other is stated. That is, large values are good, small values are bad. Without
loss of generality, we’ll assume that the risk-free rate is zero, otherwise one can
replace a return X with X − r , and all the results will remain valid.

First we give the definition of a deviation measure in Lp, p ∈ [1,∞), which will
be used in the denominator of the Sharpe ratio instead of the standard deviation (the
latter one is a particular case for p = 2). Everywhere below, ‖ · ‖p denotes the norm

in Lp, i.e. ‖X‖p = (E|X|p) 1
p .

Definition 1 We define the Lp-deviation of a random variable X ∈ Lp as

σp(X) = min
c∈R ‖X − c‖p.

In the particular case p = 2, as is well-known, σ2(X) is the standard deviation, and
the minimizer is c∗ = EX. For p = 1, the minimizer c∗ = med(X), the median
of the distribution of X, so that σ1(X) is the absolute deviation from the median. It
is possible to use other deviation measures to define the monotone Sharpe ratio, for
example ‖X−EX‖p , but the definition given above seems to be the most convenient
for our purposes.

Observe that σp obviously satisfies the following properties, which will be used
later: (a) it is sublinear; (b) it is uniformly continuous on Lp; (c) σp(X) = 0 if and
only ifX is a constant a.s.; (d) for any σ -algebraG ⊂ F , where F is the original σ -
algebra on the underlying probability space forX, we have σp(E(X | G )) ≤ σp(X);
(e) if X and Y have the same distributions, then σp(X) = σp(Y ).
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Definition 2 The monotone Sharpe ratio in Lp of a random variable X ∈ Lp is
defined by

Sp(X) = sup
Y≤X

EY

σp(Y )
, (2)

where the supremum is over all Y ∈ Lp such that Y ≤ X a.s. For X = 0 a.s. we set
by definition Sp(0) = 0.

One can easily see that if p > 1, then Sp(X) assumes value in [0,∞]. Indeed, if
EX ≤ 0, then Sp(X) = 0 as it is possible to take Y ≤ X with arbitrarily large Lp-
deviation keeping EY bounded. On the other hand, if X ≥ 0 a.s. and P(X > 0) �= 0,
then Sp(X) = +∞ as one can consider Yε = εI(X ≥ ε) with ε → 0 for which
EYε/σp(Yε) → ∞.

Thus, the main case of interest will be when EX > 0 and P(X < 0) �= 0; then
0 < Sp(X) < ∞. For this case, the following theorem provides the representation
of Sp as a solution of some convex optimization problem.

Theorem 1 Suppose X ∈ Lp and E(X) > 0, P(X < 0) �= 0. Then the following
representations of the monotone Sharpe ratio are valid.

1) For p ∈ (1,∞) with q such that 1
p

+ 1
q

= 1:

(Sp(X))
q = max

a,b∈R

{
b − E

(
q−1
qp

∣∣(aX + b)+ − q
∣∣p + (aX + b)+

)}
. (3)

2) For p = 1, 2:

1

1 + (Sp(X, r))p
= min

c∈R E(1 − cX)
p
+. (4)

The main point about this theorem is that it allows to reduce the problem of
computing Sp as the supremum over the set of random variables to the optimization
problem with one or two real parameters and the convex objective function. The
latter problem is much easier than the former one, since there exist efficient
algorithms of numerical convex optimization. This gives a convenient way to
compute Sp(X) (though only numerically, unlike the standard Sharpe ratio). We’ll
also see that the representation is useful for establishing some theoretical results
about Sp.

For the proof, we need the following auxiliary lemma.

Lemma 1 SupposeX ∈ Lp, p ∈ [1,∞), and q is such that 1
p

+ 1
q

= 1. Then

σp(X) = max{E(RX) | R ∈ Lq, ER = 0, ‖R‖q ≤ 1}.
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Proof Suppose σp(X) = ‖X − c∗‖p . By Hölder’s inequality, for any R ∈ Lq with
ER = 0 and ‖R‖q ≤ 1 we have

E(RX) = E(R(X − c∗)) ≤ ‖R‖q · ‖X − c∗‖p ≤ ‖X − c∗‖p.

On the other hand, the two inequalities turn into equalities for

R∗ = sgn(X − c∗) · |X − c∗|p−1

‖X − c∗‖p−1
p

and R∗ satisfies the above constraints.

Proof (Proof of Theorem 1) Without loss of generality, assume EX = 1. First
we’re going to show that Sp can be represented through the following optimization
problem:

Sp(X) = inf
R∈Lq

{‖R‖q | R ≤ 1 a.s., ER = 0, E(RX) = 1}. (5)

In (2), introduce the new variables: c = (EY )−1 ∈ R and Z = cY ∈ Lp. Then

1

Sp(X)
= inf
Z∈Lp
c∈R

{σp(Z) | Z ≤ cX, EZ = 1}.

Consider the dual of the optimization problem in the RHS (see the Appendix for
a brief overview of duality methods in optimization). Define the dual objective
function g : Lq+ × R → R by

g(u, v) = inf
Z∈Lp
c∈R

{σp(Z)+ E(u(Z − cX))− v(EZ − 1)}.

The dual problem consists in maximizing g(u, v) over all u ∈ Lq+, v ∈ R. We want
to show that the strong duality takes place, i.e. that the values of the primal and the
dual problems are equal:

1

Sp(X)
= sup
u∈Lq+
v∈R

g(u, v).

To verify the sufficient condition for the strong duality from Theorem 7, introduce
the optimal value function φ : Lp × R → [−∞,∞)

φ(a, b) = inf
Z∈Lp
c∈R

{σp(Z) | Z − cX ≤ a, EZ − 1 = b}
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(obviously, (Sp(X))
−1 = φ(0, 0)). Observe that if a pair (Z1, c1) satisfies the

constraints in φ(a1, b1) then the pair (Z2, c2) with

c2 = c1 + b2 − b1 + E(a1 − a2), Z2 = Z1 + a2 − a1 + (c2 − c1)X,

satisfies the constraints in φ(a2, b2). Clearly, ‖Z1 − Z2‖p + |c1 − c2| = O(‖a1 −
a2‖p + |b1 − b2|), which implies that φ(a, b) is continuous, so the strong duality
holds.

Let us now transform the dual problem. It is obvious that if E(uX) �= 0, then
g(u, v) = −∞ (minimize over c). For u such that E(uX) = 0, using the dual
representation of σp(X), we can write

g(u, v) = inf
Z∈Lp

sup
R∈R

E(Z(R + u− v)+ v) if E(uX) = 0,

where R = {R ∈ Lq : ER = 0, ‖R‖q ≤ 1} is the dual set for σp from Lemma 1.
Observe that the set R is compact in the weak-∗ topology by the Banach-Alaoglu
theorem. Consequently, by the minimax theorem (see Theorem 8), the supremum
and infimum can be swapped. Then it is easy to see that g(u, v) > −∞ only if there
exists R ∈ R such that R + u− v = 0 a.s., and in this case g(u, v) = v. Therefore,
the dual problem can be written as follows:

1

Sp(X)
= sup
u∈Lq
v∈R

{v | u ≥ 0 a.s., E(uX) = 0, v − u ∈ R}

= sup
R∈R

{E(RX) | R ≤ E(RX) a.s.}

= sup
R∈Lq

{E(RX) | R ≤ E(RX) a.s., ER = 0, ‖R‖q ≤ 1},

where in the second equality we used that if v − u = R ∈ R, then the second
constraint imply that v = E(RX) since it is assumed that EX = 1. Now by changing
the variable R to R/E(RX) in the right-hand side, we obtain representation (5).

From (5), it is obvious that for p > 1

(Sp(X))
q = inf

R∈Lq
{E|R|q | R ≤ 1 a.s., ER = 0, E(RX) = 1}. (6)

We’ll now consider the optimization problem dual to this one. Denote its optimal
value function by φ : Lq × R × R → R. It will be more convenient to change the
optimization variable R here by 1 − R (which clearly doesn’t change the value of
φ), so that

φ(a, b, c) = inf
R∈Lq

{E|R − 1|q | R ≥ a a.s., ER = 1 + b, E(RX) = c}.
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Let us show that φ is continuous at zero. Denote by C(a, b, c) ⊂ Lq the set
of R ∈ Lq satisfying the constraints of the problem. It will be enough to show
that if ‖a‖q, |b|, |c| are sufficiently small then for any R ∈ C(0, 0, 0) there exists
R̃ ∈ C(a, b, c) such that ‖R− R̃‖q ≤ (‖R‖q +K)(‖a‖q +|b|+ |c|) and vice versa.
Here K is some fixed constant.

Since P(X < 0) �= 0, there exists ξ ∈ L∞ such that ξ ≥ 0 a.s. and E(ξX) = −1.
If R ∈ C(0, 0, 0), then one can take the required R̃ ∈ C(a, b, c) in the form

R̃ =
{
a + λ1R + λ2ξ, if E(aX) ≥ 0,

a + μ1R + μ2, if E(aX) < 0,

where the non-negative constants λ1, λ2, μ1, μ2 can be easily found from the
constraint R̃ ∈ C(a, b, c), and it turns out that λ1, μ1 = 1 + O(‖a‖q + |b| + |c|)
and λ2, μ2 = O(‖a‖q + |b| + |c|). If R ∈ C(a, b, c), then take

R̃ =
{
λ1(R − a + λ2ξ), if c ≥ E(aX),

μ1(R − a + μ2), if c < E(aX),

with λi, μi making R̃ ∈ C(0, 0, 0).
Thus, the strong duality holds in (6) and we have

Sp(X) = sup
u∈Lq+
v,w∈R

g(u, v,w) (7)

with the dual objective function g : Lq+ × R × R → R

g(u, v,w) = inf
R∈Lq

E(|R|q + R(u+ v +wX)− u−w)

= −E
(
q−1
qp

|u+ v +wX|p + u+w
)
,

where the second inequality is obtained by choosing R which minimizes the
expression under the expectation for every random outcome.

Observe that for any fixed v,w ∈ R the optimal u∗ = u∗(v,w) in (7) can
be found explicitly: u∗ = (v + wX + q)−. Then by straightforward algebraic
transformation we obtain (3).

For p = 2, from (3) we get

(S2(X))
2 = max

a,b∈R

{
b − 1

4
E(aX + b)2+ − 1

}

It is easy to see that it is enough to maximize only over b ≥ 0. Maximizing over b
and introducing the variable c = − a

b
, we obtain representation (4) for p = 2.
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To obtain representation (4) for p = 1, let’s again consider problem (5). Similarly
to (7) (the only change will be to use ‖R‖q instead of E|R|q), we can obtain that

S1(X) = sup
u∈L∞+
v,w∈R

g(u, v,w),

where now we denote

g(u, v,w) = inf
R∈L∞{‖R‖∞ + E(R(u+ v +wX)− u)−w}.

Observe that a necessary condition for g(u, v,w) > −∞ is that E|u+v+wX| ≤ 1:
otherwise take R̃ = c(I(u+ v + wX ≤ 0)− I(u+ v + wX > 0)) and let c → ∞.
Under this condition we have g(u, v,w) = −Eu−w since from Hölder’s inequality
|E((α + v + wX)R)| ≤ ‖R‖∞ and therefore the infimum in g is attained at R = 0
a.s. Consequently, the dual problem becomes

S1(X) = − inf
u∈L∞
v,w∈R

{Eu+w | u ≥ 0 a.s., E|u+ v +wX| ≤ 1}. (8)

Observe that the value of the infimum is non-positive, and so it is enough to restrict
the values of w to R− only. Let’s fix v ∈ R, w ∈ R− and find the optimal u∗ =
u∗(v,w). Clearly, whenever v + wX(ω) ≥ 0, it’s optimal to take u∗(ω) = 0.
Whenever v +wX(ω) < 0, we should have u∗(ω) ≤ |v + wX(ω)|, so that u(ω)+
v +wX(ω) ≤ 0 (otherwise, the choice u∗(ω) = |v +wX(ω)| will be better). Thus
for the optimal u∗

E|u∗ + v + wX| = E|v +wX| − Eu∗.

In particular, for the optimal u∗ the inequality in the second constraint in (8) should
be satisfied as the equality, since otherwise it would be possible to find a smaller
u∗. Observe that if E(v + wX)+ > 1, then no u ∈ L∞ exists which satisfies the
constraint of the problem. On the other hand, if E(v + wX)+ ≤ 1 then at least one
such u exists. Consequently, problem (8) can be rewritten as follows:

− S1(X) = inf
v∈R,w∈R−

{E|v + wX| +w − 1 | E(v +wX)+ ≤ 1}.

Clearly, E|v∗ +w∗X| ≤ 0 for the optimal pair (v∗, w∗), so the constraint should be
satisfied as the equality (otherwise multiply both v,w by 1/E|v+wX)+, which will
decrease the value of the objective function). By a straightforward transformation,
we get

1 + S1(X) = sup
v∈R,w∈R−

{v | E(v +wX)+ = 1}

and introducing the new variable c = w/v, we obtain representation (3).
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2.3 Basic Properties

Theorem 2 For any p ∈ [1,∞), the monotone Shape ratio in Lp satisfies the
following properties.

(a) (Quasi-concavity) For any c ∈ R, the set {X ∈ Lp : Sp(X) ≥ c} is convex.
(b) (Scaling invariance) Sp(λX) = Sp(X) for any real λ > 0.
(c) (Law invariance) If X and Y have the same distribution, then Sp(X) = Sp(Y ).
(d) (2nd order monotonicity) If X dominates Y in the second stochastic order, then

Sp(X) ≥ Sp(Y ).
(e) (Continuity) Sp(X) is continuous with respect to Lp-norm at any X such that

EX > 0 and P(X < 0) �= 0.

Before proving this theorem, let us briefly discuss the properties in the context of
the portfolio selection problem.

The quasi-concavity implies that the monotone Sharpe ratio favors portfolio
diversification: if Sp(X) ≥ c and Sp(Y ) ≥ c, then Sp(λX + (1 − λ)Y ) ≥ c for
any λ ∈ [0, 1], where λX + (1 − λ)Y can be thought of as diversification between
portfolios with returnsX and Y . Note that the property of quasi-concavity is weaker
than concavity; it’s not difficult to provide an example showing that the monotone
Sharpe ratio is not concave.

The scaling invariance can be interpreted as that the monotone Sharpe ratio
cannot be changed by leveraging a portfolio (in the same way as the standard Sharpe
ratio). Namely, suppose X = Rx , where Rx = 〈x,R〉 is the return of portfolio
x ∈ R

n+1 (as in Sect. 2.1),
∑
i xi = 1. Consider a leveraged portfolio x̃ with

x̃i = λxi , i ≥ 1 and x̃0 = 1 −∑ x̃i , i.e. a portfolio which is obtained from x by
proportionally scaling all the risky positions. Then it’s easy to see that Rx̃ = λRx ,
and so Sp(Rx) = Sp(Rx̃).

Law invariance, obviously, states that we are able to evaluate the performance
knowing only the distribution of the return. The interpretation of the continuity
property is also clear.

The 2nd order monotonicity means that Sp is consistent with preferences of risk-
averse investors. Recall that it is said that the distribution of a random variable X
dominates the distribution of Y in the 2nd stochastic order, which we denote by
X�Y , if EU(X) ≥ EU(Y ) for any increasing concave functionU such that EU(X)
and EU(Y ) exist. Such a function U can be interpreted as a utility function, and
then the 2nd order stochastic dominance means that X is preferred to Y by any risk
averse investor.

Regarding the properties from Theorem 2, let us also mention the paper [3],
which studies performance measures by an axiomatic approach in a fashion similar
to the axiomatics of coherent and convex risk measures. The authors define a
performance measure (also called an acceptability index) as a functional satisfying
certain properties, then investigate implications of those axioms, and show a deep
connection with coherent risk measures, as well as provide examples of performance
measures. The minimal set of four axioms a performance measure should satisfy
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consists of the quasi-concavity, monotonicity, scaling invariance and semicontinuity
(in the form of the so-called Fatou property in L∞, as the paper [3] considers only
functionals on L∞). In particular, the monotone Sharpe ratio satisfies those axioms
and thus provides a new example of a performance measure in the sense of this
system of axioms. It also satisfies all the additional natural properties discussed in
that paper: the law invariance, the arbitrage consistency (Sp(X) = +∞ iff X ≥ 0
a.s. and P(X > 0) �= 0) and the expectation consistency (if EX < 0 then Sp(X) = 0,
and if EX > 0 then Sp(X) > 0; this property is satisfied for p > 1).

Proof (Proof of Theorem 2) Quasi-concavity follows from that the Lp–Sharpe ratio
Sp(X) = EX

σp(X)
is quasi-concave. Indeed, if Sp(X) ≥ c and Sp(Y ) ≥ c, then

Sp(λX + (1 − λ)Y ) ≥ λEX + (1 − λ)EY

λσp(X)+ (1 − λ)σp(Y )
≥ c

for any λ ∈ [0, 1]. Since Sp is the maximum of fZ(X) = Sp(X −Z) over Z ∈ Lp+,
the quasi-concavity is preserved.

The scaling invariance is obvious. Since the expectation and the Lp-deviation
are law invariant, in order to prove the law invariance of Sp, it is enough to show
that the supremum in the definition of Sp(X) can be taken over only Y ≤ X which
are measurable with respect to the σ -algebra generated by X, or, in other words,
Y = f (X) for some measurable function f on R. But this follows from the fact
that if for any Y ≤ X one considers Ỹ = E(Y | X), then Ỹ ≤ X, E(Ỹ ) = EY and
σp(Y ) ≤ σp(Y ), hence Sp(Ỹ ) ≥ Sp(Y ).

To prove the 2nd order monotonicity, recall that another characterization of the
2nd order stochastic dominance is as follows: X1�X2 if and only if there exist
random variables X′

2 and Z (which may be defined on a another probability space)

such that X2
d= X′

2, X1
d= X′

2 + Z and E(Z | X′
2) ≤ 0. Suppose X1�X2. From

the law invariance, without loss of generality, we may assume that X1,X2, Z are
defined on the same probability space. Then for any Y1 ≤ X1 take Y2 = E(Y1 | X2).
Clearly, Y2 ≤ X2, EY2 = EY1 and σp(Y2) ≤ σp(Y1). Hence σp(X1) ≤ σp(X2).

Finally, the continuity of Sp(X) follows from that the expectation and the Lp-
deviation are uniformly continuous.

3 Buffered Probabilities

In the paper [21] was introduced the so-called buffered probability, which is defined
as the inverse function of the conditional value at risk (with respect to the risk level).
The authors of that and other papers (for example, [7]) argue that in stochastic
optimization problems related to minimization of probability of adverse events, the
buffered probability can serve as a better optimality criterion compared to the usual
probability.
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In this section we show that the monotone Sharpe ratio is tightly related to the
buffered probability, especially in the cases p = 1, 2. In particular, this will provide
a connection of the monotone Share ratio with the conditional value at risk. We begin
with a review of the conditional value at risk and its generalization to the spaces Lp.
Then we give a definition of the buffered probability, which will generalize the one
in [12, 21] from L1 to arbitrary Lp.

3.1 A Review of the Conditional Value at Risk

Let X be a random variable, which describes loss. As opposed to the previous
section, now large values are bad, small values are good (negative values are profits).
For a moment, to avoid technical difficulties, assume that X has a continuous
distribution.

Denote by Q(X, λ) the λ-th quantile of the distribution of X, λ ∈ [0, 1], i.e.
Q(X, λ) is a number x ∈ R, not necessarily uniquely defined, such that P(X ≤
x) = λ. The quantile Q(X, λ) is also called the value at risk1 (VAR) of X at level
λ, and it shows that in the worst case of probability 1 − λ, the loss will be at least
Q(X, λ). This interpretation makes VAR a sort of a measure of risk (in a broad
meaning of this term), and it is widely used by practitioners.

However, it is well-known that VAR lacks certain properties that one expects
from a measure of risk. One of the most important drawbacks is that it doesn’t
show what happens with probability less than 1 − λ. For example, an investment
strategy which loses $1 million with probability 1% and $2 million with probability
0.5% is quite different from a strategy which loses $1 million and $10 million with
the same probabilities, however they will have the same VAR at the 99% level.
Another drawback of VAR is that it’s not convex—as a consequence, it may not
favor diversification of risk, which leads to concentration of risk (above 1−λ level).

The conditional value at risk (CVAR; which is also called the average value at
risk, or the expected shortfall, or the superquantile) is considered as an improvement
of VAR. Recall that if X ∈ L1 and has a continuous distribution, then CVAR of X
at risk level λ ∈ [0, 1] can be defined as the conditional expectation in its right tail
of probability 1 − λ, i.e.

CVAR(X, λ) = E(X | X > Q(X, λ)) (9)

We will also use the notation Q(X, λ) = CVAR(X, λ) to emphasize the connection
with quantiles.

CVAR provides a basic (and the most used) example of a coherent risk measure.
The theory of risk measures, originally introduced in the seminal paper [1], plays

1Some authors use definitions of VAR and CVAR which are slightly different from the ones used
here: for example, take (−X) instead of X, or 1 − λ instead of λ, etc.
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now a prominent role in applications in finance. We are not going to discuss all the
benefits of using coherent (and convex) risk measures in optimization problems; a
modern review of the main results in this theory can be found, for example, in the
monograph [8].

Rockafellar and Uryasev [22] proved that CVAR admits the following represen-
tation though the optimization problem

Q(X, λ) = min
c∈R

(
1

1 − λ
E(X − c)+ + c

)
. (10)

Actually, this formula can be used as a general definition for CVAR, which works in
the case of any distribution ofX, not necessarily continuous. The importance of this
representation is that it provides an efficient method to compute CVAR, which in
practical applications often becomes much faster than e.g. using formula (9). It also
behaves “nicely” when CVAR is used as a constraint or an optimality criterion in
convex optimization problems, for example portfolio selection. Details can be found
in [22].

Representation (10) readily suggests how CVAR can be generalized to “put more
weight” on the right tail of the distribution of X, which provides a coherent risk
measure for the space Lp.

Definition 3 For X ∈ Lp, define the Lp-CVAR at level λ ∈ [0, 1) by

Qp(X, λ) = min
c∈R

(
1

1 − λ
‖(X − c)+‖p + c

)
.

The Lp-CVAR was studied, for example, in the papers [2, 9]. In particular, in [9],
it was argued that higher values of p may provide better results than the standard
CVAR (p = 1) in certain portfolio selection problems. For us, the cases p = 1, 2
will be the most interesting due the direct connection with the monotone Sharpe
ratio, as will be shown in the next section.

It is known that the following dual representation holds for Lp-CVAR, which we
will use below: for any X ∈ Lp and λ ∈ [0, 1)

Qp(X, λ) = sup
{
E(RX) | R ∈ Lq+, ‖R‖q ≤ (1 − λ)−1, ER = 1

}
, (11)

where, as usual, 1
p

+ 1
q

= 1. This result is proved in [2].

3.2 The Definition of Buffered Probability
and Its Representation

Consider the function inverse to CVAR in λ, that is for a random variable X and
x ∈ R define P(X, x) = λ where λ is such that Q(X, λ) = x (some care should
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be taken at points of discontinuity, a formal definition is given below). In the papers
[12, 13, 21], P(X, x) was called the “buffered” probability that X > x; we explain
the rationale behind this name below. At this moment, it may seem that from a purely
mathematical point of view such a simple operation as function inversion probably
shouldn’t deserve much attention. But that’s not the case if we take applications
into account. For this reason, before we give any definitions, let us provide some
argumentation why studying P(X, x) may be useful for applications.

In many practical optimization problems one may want to consider constraints
defined in terms of probabilities of adverse event, or to use those probabilities
as optimization criteria. For example, an investment fund manager may want
to maximize the expected return of her portfolio under the constraint that the
probability of a loss more than $1 million should be less than 1%; or an engineer
wants to minimize the construction cost of a structure provided that the tension in
its core part can exceed a critical threshold with only a very small probability during
its lifetime.

Unfortunately, the probability has all the same drawbacks as the value at risk,
which were mentioned above: it’s not necessarily convex, continuous and doesn’t
provide information about how wrong things can go if an adverse event indeed
happens. For those reasons, CVAR may be a better risk measure, which allows
to avoid some of the problems. For example, if using CVAR, the above investor
can reformulate her problem as maximization of the expected return given that the
average loss in the worst 1% of cases doesn’t exceed $1 million. However, such a
setting of the problem may be inconvenient, as CVAR “speaks” in terms of quantiles,
but one may need the answer in terms of probabilities. For example, $1 million may
be value of liquid assets of the fund which can be quickly and easily sold to cover
a loss; so the manager must ensure that the loss doesn’t exceed this amount. But it
is not clear how she can use the information about the average loss which CVAR
provides. A similar problem arises in the example with an engineer.

In [21], Rockafellar and Royset proposed the idea that the inverse of CVAR may
be appropriate for such cases: since quantiles and probabilities are mutually inverse,
and CVAR is a better alternative to quantiles, then one can expect that the inverse
of CVAR, the buffered probability, could be a better alternative to probability. Here,
we follow this idea.

Note that, in theory, it is possible to invert CVAR as a function in λ, but, in
practice, computational difficulty may be a serious problem for doing that: it may
take too much time to compute CVAR for a complex system even for one fixed level
of risk λ, so inversion, which requires such a computation for several λ, may be
not feasible (and this is often the case in complex engineering or financial models).
Therefore, we would like to be able to work directly with buffered probabilities,
and have an efficient method to compute them. We’ll see that the representation
given below turns out to give more than just an efficient method of computation. In
particular, in view of Sect. 2, it will show a connection with the monotone Sharpe
ratio, a result which is by no means obvious.

The following simple lemma will be needed to show that it is possible to invert
CVAR.
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Lemma 2 For X ∈ Lp, p ∈ [1,∞), the function f (λ) = Qp(X, λ) defined for
λ ∈ [0, 1) has the following properties:

1. f (0) = EX;
2. f (λ) is continuous and non-decreasing;
3. f (λ) is strictly increasing on the set {λ : f (λ) < ess supX};
4. if P := P(X = ess supX) > 0, then f (λ) = ess supX for λ ∈ [1 − P 1/p, 1).

Proof The first property obviously follows from the dual representation, and the
second one can be easily obtained from the definition. To prove the third property,
observe that if Qp(X, λ) < ess supX, then the minimum in the definition is attained
at some c∗ < ess supX. So, for any λ′ < λ we have Qp(X, λ

′) ≤ 1
1−λ′ ‖(X −

c∗)+‖p + c∗ < Qp(X, λ) using that ‖(X − c∗)+‖p > 0.
Finally, the fourth property follows from that if P > 0, and, in particular,

ess supX < ∞, then Qp(X, λ) ≤ ess supX for any λ ∈ [0, 1), as one can take

c = ess supX in the definition. On the other hand, for λ0 = 1 − P
1
p we have that

R = P−1I(X = ess supX) satisfies the constraint in the dual representation and
E(RX) = ess supX. Hence Q(X, λ0) = ess supX, and then Qp(X, λ) = ess supX
for any λ ≥ λ0 by the monotonicity.

Definition 4 For X ∈ Lp, p ∈ [1,∞), and x ∈ R, set

Pp(X, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if x > ess supX,

(P(X = supX))
1
p , if x = ess supX,

1 − Q
−1
p (X, x), if EX < x < ess supX,

1, if x ≤ EX.

The “main” case in this definition is the third one. In particular, one can see that
for a random variable X which has a distribution with a support unbounded from
above, the first and the second cases do not realize. Figure 1 schematically shows
the relation between the quantile function, the CVAR, the probability distribution
function, and the buffered probability. In particular, it is easy to see that always
Pp(X, x)≥ P(X >x). According to the terminology of [21], the difference between
these two quantities is a “safety buffer”, hence the name buffered probability.

Theorem 3 For any X ∈ Lp

Pp(X, x) = min
c≥0

‖(c(X − x)+ 1)+‖p. (12)

Proof For the case p = 1 this result was proved in [12]. Here, we follow the same
idea, but for general p ∈ [1,∞). Without loss of generality, we can assume x = 0,
otherwise consider X − x instead of X.
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Q(X,λ)

0 λ

x

λ = 1

Q(X,λ)

EX

ess sup X

0

λ

x

λ = 1P(X, x)

P(X > x)

EX ess sup X

“buffer”

Fig. 1 Left: quantile and distribution functions. Right: complementary probability distribution
function and buffered probability P(X, x). In this example, ess supX < ∞, but P(X =
ess supX) = 0, so P(X, x) is continuous everywhere

Case 1: EX < 0, ess supX > 0. By Lemma 2 and the definition of Qp we have

Pp(X, 0) = min{λ ∈ (0, 1) | Qp(X, 1 − λ) = 0}
= min
λ∈(0,1){λ | min

c∈R(
1
λ
‖((X + c)+‖p − c) = 0}

= min
λ∈(0,1)
c∈R

{λ | ‖(X + c)+‖p = λc}.

Observe that the minimum here can be computed only over c > 0 (since for
c ≤ 0 the constraint is obviously not satisfied). Then dividing the both parts of
the equality in the constraint by c we get

Pp(X, 0) = min
c>0

‖(c−1X + 1)+‖p,

which is obviously equivalent to (12).
Case 2: EX ≥ 0. We need to show that min

c≥0
‖(cX + 1)+‖p = 1. This clearly

follows from that for any c ≥ 0 we have min
c≥0

‖(cX+1)+‖p ≥ min
c≥0

E(cX+1) = 1.

Case 3: ess supX = 0. Now ‖(cX + 1)+‖p ≥ P(X = 0)1/p for any c ≥ 0, while
‖(cX + 1)+‖p → P(X = 0)1/p as c → +∞. Hence min

c≥0
‖(cX + 1)+‖p =

P(X = 0)1/p as claimed.
Case 4: ess supX < 0. Similarly, ‖(cX + 1)+‖p → 0 as c → +∞.
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From formula (12), one can easily see the connection between the monotone
Sharpe ratio and the buffered probability for p = 1, 2: for any X ∈ Lp

1

1 + (Sp(X))p
= (Pp(−X, 0))p.

In particular, if X is as the return of a portfolio, then a portfolio selection problem
where one wants to maximize the monotone Sharpe ratio of the portfolio return
becomes equivalent to the minimization of the buffered probability that (−X)
exceeds 0, i.e. the buffered probability of loss. This is a nice (and somewhat unex-
pected) connection between the classical portfolio theory and modern developments
in risk evaluation!

One can ask a question whether a similar relation between Pp and Sp holds for
other values of p. Unfortunately, in general, there seems to be no simple formula
connecting them. It can be shown that they can be represented as the following
optimization problems:

Sp(X) = min
R∈Lq+

{‖R − 1‖q | ER = 1, E(RX) = 1},

Pp(X, 0) = min
R∈Lq+

{‖R‖q | ER = 1, E(RX) = 1},

which have the same constraint sets but different objective functions. The first
formula here easily follows from (5), the second one can be obtained using the
dual representation of CVAR (11).

3.3 Properties

In this section we investigate some basic properties of Pp(X, x) both in X and x,
and discuss its usage in portfolio selection problem. One of the main points of this
section is that buffered probabilities (of loss) can be used as optimality criteria,
similarly to monotone Sharpe ratios (and in the cases p �= 1, 2 they are more
convenient due to s simpler representation).

Theorem 4 Suppose X ∈ Lp, x ∈ R and p ∈ [1,∞). Then Pp(X, x) has the
following properties.

1. The function x → Pp(X, x) is continuous and strictly decreasing on
[EX, ess sup(X)), and non-increasing on the whole R.

2. The functionX → Pp(X, x) is quasi-convex, law invariant, 2nd order monotone,
continuous with respect to the Lp-norm, and concave with respect to mixtures of
distributions.

3. The function p → Pp(X, x) is non-decreasing in p.
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For p = 1, similar results can be found in [12]; the proofs are similar as well
(except property 3, but it obviously follows from the Lyapunov inequality), so we
do not provide them here.

Regarding the second property note that despite Pp(X, x) is quasi-convex in X,
it’s not convex in X as the following simple example shows: consider X ≡ 2 and
Y ≡ −1; then P((X + Y )/2, 0) = 1 �≤ 1

2 = 1
2P(X, 0)+ 1

2P(Y, 0).
Also recall that the mixture of two distributions on R specified by their

distribution functions F1(x) and F2(x) is defined as the distribution F(x) =
λF1(x) + (1 − λ)F2(x) for any fixed λ ∈ [0, 1]. We write X

d= λX1 ⊕ (1 − λ)X2
if the distribution of a random variable X is the mixture of the distributions of X1
and X2. If ξ is a random variable taking values 1, 2 with probabilities λ, 1 − λ and

independent of X1,X2, then clearly X
d= Xξ . Concavity of Pp(x, x) with respect to

mixtures of distributions means that Pp(X, x) ≥ λPp(X1, x)+ (1 − λ)Pp(X2, x).

Now let’s look in more details on how a simple portfolio selection problem can
be formulated with Pp. Assume the same setting as in Sect. 2.1: R is a (n + 1)-
dimensional vector of asset returns, the first asset is riskless with the rate of return
r , and the other n assets are risky with random return in Lp. Let Rx = 〈x,R〉 denote
the return of a portfolio x ∈ R

n+1, and δ > 0 be a fixed number, a required expected
return premium. Consider the following optimization problem:

minimize Pp(r − Rx, 0) over x ∈ R
n+1

subject to E(Rx − r) = δ,∑
ixi = 1.

(13)

In other words, an investor wants to minimize the buffered probability that the return
of her portfolio will be less than the riskless return subject to the constraint on the
expected return. Denote the vector of adjusted risky returnsR = (R1 − r, . . . , Rn−
r), and the risky part of the portfolio x = (x1, . . . , xn). Using the representation of
Pp, the problem becomes

minimize E(1 − 〈x,R〉)p+ over x ∈ R
n

subject to E〈x,R〉 ≥ 0.
(14)

If we find a solution x∗ of this problem, then the optimal portfolio in problem (13)
can be found as follows:

x∗
i = δx∗

i

E〈x∗, R〉 , i = 1, . . . , n, x∗
0 = 1 −

n∑
i=1

x∗
i .

Moreover, observe that the constraint E〈x,R〉 ≥ 0 can be removed in (14) since the
value of the objective function is not less than 1 in the case if E〈x,R〉 < 0, which is
not optimal. Thus, (14) becomes an unconstrained problem.
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4 Dynamic Problems

This section illustrates how the developed theory can be used to give new elegant
solutions of dynamic portfolio selection problems when an investor can continu-
ously trade in the market. The results we obtain are not entirely new, but their proofs
are considerably shorter and simpler than in the literature.

4.1 A Continuous-Time Market Model and Two Investment
Problems

Suppose there are two assets traded in the market: a riskless asset with price Bt and
a risky asset with price St at time t ∈ [0,∞). The time runs continuously. Without
loss of generality, we assume Bt ≡ 1. The price of the risky asset is modeled by a
geometric Brownian motion with constant drift μ and volatility σ , i.e.

St = S0 exp

(
σWt +

(
μ− σ 2

2
t
))
, t ≥ 0,

where Wt is a Brownian motion (Wiener process). Without loss of generality, S0 =
1. It is well-known that the process St is the unique strong solution of the stochastic
differential equation (SDE)

dSt = St (μdt + σdWt ).

We consider the following two problems of choosing an optimal investment
strategy in this market model.

Problem 1 Suppose a trader can manage her portfolio dynamically on a time
horizon [0, T ]. A trading strategy is identified with a scalar control process ut ,
which is equal to the amount of money invested in the risky asset at time t . The
amount of money vt is invested in the riskless asset. The valueXut = ut + vt of the
portfolio with the starting value Xu0 = x0 satisfies the controlled SDE

dXut = ut (μdt + σdWt ), Xu0 = x0. (15)

This equation is well-known and it expresses the assumption that the trading strategy
is self-financing, i.e. it has no external inflows or outflows of capital. Note that vt
doesn’t appear in the equation since it can be uniquely recovered as vt = Xut − ut .

To have Xu correctly defined, we’ll assume that ut is predictable with respect to
the filtration generated by Wt and E

∫ T
0 u2

t dt < ∞. We’ll also need to impose the
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following mild technical assumption:

E exp

(
σ 2p2

2

∫ T

0

u2
t

(1 −Xut )
2 dt

)
< ∞. (16)

The class of all the processes ut satisfying these assumptions will be denoted by
U . Actually, it can be shown that (16) can be removed without changing the class
of optimal strategies in the problem formulated below, but to keep the presentation
simple, we will require it to hold.

The problem consists in minimizing the buffered probability of loss by time T .
So the goal of the trader is to solve the following control problem with some fixed
p ∈ (1,∞):

V1 = inf
u∈U

Pp(x0 −XuT , 0). (17)

For p = 2 this problem is equivalent to the problem of maximization of the
monotone Sharpe ratio Sp(X

u
T − x0). Moreover, we’ll also show that the same

solution is obtained in the problem of maximization of the standard Sharpe ratio,
S(XuT − x0). Note that we don’t consider the case p = 1.

From (15) and (17), it is clear that without loss of generality we can (and will)
assume x0 = 0. It is also clear that there is no unique solution of problem (17):
if some u∗ minimizes Pp(x0 − XuT , 0) then so does any ut = cu∗

t with a constant
c > 0. Hence, additional constraints have to be imposed if one wants to have a
unique solution, for example a constraint on the expected return like EXuT = x0 + δ.
This is similar to the standard Markowitz portfolio selection problem, as discussed
in Sect. 2.1.

Problem 2 Suppose at time t = 0 a trader holds one unit of the risky asset with the
starting price S0 = 1 and wants to sell it better than some goal price x ≥ 1. The
asset is indivisible (e.g. a house) and can be sold only at once.

A selling strategy is identified with a Markov time of the process St . Recall that a
random variable τ with values in [0,∞] is called a Markov time if the random event
{τ ≤ t} is in the σ -algebra σ(Sr ; r ≤ t) for any t ≥ 0. The notion of a stopping
time reflects the idea that no information about the prices in the future can be used
at the moment when the trader decides to sell the asset. The random event {τ = ∞}
is interpreted as the situation when the asset is never sold, and we set S∞ := 0.
We’ll see that the optimal strategy in the problem we formulate below will not sell
the asset with positive probability.

Let M we denote the class of all Markov times of the process St . We consider
the following optimal stopping problem for p ∈ (1,∞):

V2 = inf
τ∈M

Pp(x − Sτ , 0), (18)
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i.e. minimization of the buffered probability to sell worse then for the goal price
x. Similarly to Problem 1, in the case p = 2, it’ll be shown that this problem
is equivalent to maximization of the monotone Sharpe ratio S2(Sτ − x), and the
optimal strategy also maximizes the standard Sharpe ratio.

4.2 A Brief Literature Review

Perhaps, the most interesting thing to notice about the two problems is that they
are “not standard” from the point of view of the stochastic control theory for
diffusion processes and Brownian motion. Namely, they don’t directly reduce
to solutions of some PDEs, which for “standard” problems is possible via the
Hamilton–Jacobi–Bellman equation. In Problems 1 and 2 (and also in the related
problems of maximization of the standard Sharpe ratio), the HJB equation cannot be
written because the objective function is not in the form of the expectation of some
functional of the controlled process, i.e. not EF(Xur ; r ≤ T ) or EF(Sr ; r ≤ τ ).
Hence, another approach is needed to solve them.

Dynamic problems of maximization of the standard Sharpe ratio and related
problems with mean-variance optimality criteria have been studied in the literature
by several authors. We just briefly mention several of them.

Richardson [19] was, probably, the first who solved a dynamic portfolio selection
problem under a mean-variance criterion (the earlier paper of White [26] can also
be mentioned); he used “martingale” methods. Li and Ng [11] studied a multi-
asset mean-variance selection problem, which they solved through auxiliary control
problems in the standard setting. A similar approach was also used in the recent
papers by Pedersen and Peskir [15, 16]. The first of them provides a solution for the
optimal selling problem (an analogue of our Problem 2), the second paper solves the
portfolio selection problem (our Problem 1). There are other results in the literature,
a comprehensive overview can be found in the above-mentioned papers by Pedersen
and Peskir, and also in the paper [6].

It should be also mentioned that a large number of papers study the so-called
problem of time inconsistency of the mean-variance and similar optimality criteria,
which roughly means that at a time t > t0 it turns out to be not optimal to follow
the strategy, which was optimal at time t0. Such a contradiction doesn’t happen in
standard control problems for Markov processes, where the Bellman principle can
be applied, but it is quite typical for non-standard problems. Several approaches
to redefine the notion of an optimal strategy that would take into account time
inconsistency are known: see, for example, the already mentioned papers [6, 15, 16]
and the references therein. We will not deal with the issue of time inconsistency (our
solutions are time inconsistent).

Compared to the results in the literature, the solutions of Problems 1 and 2 in the
case p = 2 readily follows from earlier results (e.g. from [15, 16, 19]); the other
cases can be also studied by previously known methods. Nevertheless, the value
of this paper is in the new approach to solve them through the monotone Sharpe
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ratio and buffered probabilities. This approach seems to be simpler than previous
ones (the reader can observe how short the solutions presented below compared to
[15, 16]) and promising for more general settings.

4.3 Solution of Problem 1

Theorem 5 The class of optimal control strategies in Problem 1 is given by

uct = μ

σ 2(p − 1)
(c −Xu

c

t ),

where c > 0 can an arbitrary constant. The process Yu
c

t = c − Xu
c

t is a geometric
Brownian motion satisfying the SDE

dYu
c

t

Y u
c

t

= − μ2

σ 2(p − 1)
dt − μ

σ(p − 1)
dWt, Y u

c

0 = c.

Proof Assuming x0 = 0, from the representation of Pp(X, x) we have

V1 = min
c≥0

min
u∈U

‖(1 − cXuT )+‖p = min
u∈U

‖(1 −XuT )+‖p, (19)

where in the second equality we used that the constant c can be included in the
control, since cXu = Xcu. Denote X̃ut = 1 −Xut , so that the controlled process X̃u

satisfies the equation

dX̃ut = −μutdt − σutdWt , X̃u0 = 1.

Then

V
p
1 = min

u∈U
E|X̃uT |p, (20)

where (·)+ from (19) was removed since it is obvious that as soon as X̃ut reaches
zero, it is optimal to choose u ≡ 0 afterwards, so the process stays at zero.

Let vt = vt (u) = −ut/X̃ut . Then for any u ∈ U we have

E|X̃uT |p = E
{
ZT exp

(∫ T
0

(
μpvs + 1

2σ
2(p2 − p)v2

s

)
ds
)}
,

where Z is the stochastic exponent process Z = E (σpv). From Novikov’s
condition, which holds due to (16),Zt is a martingale andEZT = 1. By introducing
the new measure Q on the σ -algebra FT = σ(Wt , t ≤ T ) with the density
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dQ = ZT dP we obtain

E|X̃uT |p = EQ
{

exp
(∫ T

0

(
μpvs + 1

2σ
2(p2 − p)v2

s

)
ds
)}
.

Clearly, this expression can be minimized by minimizing the integrand for each t ,
i.e. by

v∗t = − μ

σ 2(p − 1)
for all t ∈ [0, T ].

Obviously, it satisfies condition (16), so the corresponding control process

u∗
t = μ

σ 2(p − 1)
X̃ut = μ

σ 2(p − 1)
(1 −Xut )

is optimal in problem (20). Consequently, any control process uct = cu∗
t , c > 0, will

be optimal in (17). Since Xu
c

t = cXu
∗
t , we obtain the first claim of the theorem. The

representation for Yu
c

t follows from straightforward computations.

Corollary 1 Let u∗ = μ

σ 2 (c−Xut ), with some c > 0, be an optimal control strategy

in problem (17) for p = 2. Then the standard Sharpe ratio of Xu
∗
T is equal to its

monotone Sharpe ratio, S(Xu
∗
T ) = S2(S

u∗
T ).

In particular, u∗ also maximizes the standard Sharpe ratio of the return XuT , i.e.
S(XuT ) ≤ S(Xu

∗
T ) for any u ∈ U .

Proof Suppose there is Y ∈ L2 such that Y ≤ Xu
∗
T and S(Y ) > S(Xu

∗
T ). It is

well-known that the market model we consider is no-arbitrage and complete. This
implies that there exists y0 < 0 and a control ut such that Xu0 = y0 and XuT = Y .
The initial capital y0 is negative, because otherwise an arbitrage opportunity can be
constructed. But then the capital process X̃t = Xut − y0 would have a higher Sharpe
ratio than Y and hence a higher monotone Sharpe ratio than Xu∗T . A contradiction.
This proves the first claim of the corollary, and the second one obviously follows
from it.

4.4 Solution of Problem 2

We’ll assume that x ≥ 1, μ ∈ R, σ > 0, p > 1 are fixed throughout and use the
following auxiliary notation:

γ = 2μ

σ 2 , C(b) =
(

b

1 + x
b−x (1 − b1−γ )

1
p−1

− x

)−1

for b ∈ [x,∞).
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Theorem 6 The optimal selling time τ ∗ in problem (18) is as follows.

1. If μ ≤ 0, then τ ∗ can be any Markov time: Pp(x − Sτ , 0) = 1 for any τ ∈ M .

2. If μ ≥ σ 2

2 , then St reaches any level x ′ > x with probability 1 and any stopping
time of the form τ ∗ = inf{t ≥ 0 : St = x ′} is optimal.

3. If 0 < μ < σ 2

2 , then the optimal stopping time is

τ ∗ = inf{t ≥ 0 : St ≥ b∗},

where b∗ ∈ [x,∞) is the point of minimum of the function

f (b) = ((1 +C(b)(x − b))pbγ−1 + (1 +C(b)x)p(1 − bγ−1), b ∈ [x,∞),

and we set τ ∗ = +∞ on the random event {St < b for all t ≥ 0}.
Observe that if 0 < μ < σ 2

2 , i.e. γ ∈ (0, 1), then the function f (b) attains its
minimum on [x,∞), since it is continuous with the limit values f (x) = f (∞) = 1.

Proof From the representation for Pp we have

V
p

2 = inf
c≥0

inf
τ∈M

E|(1 + c(x − Sτ ))+|p.

Let Y ct = 1 + c(x − Sτ ). Observe that if μ ≤ 0, then Y ct is a submartingale for any
c ≥ 0, and so by Jensen’s inequality |(Yt )+)|p is a submartingale as well. Hence for
any τ ∈ M we have E|(1 + c(x − Sτ ))+|p ≥ 1, and then V2 = 1.

If μ ≥ σ 2

2 , then from the explicit representation St = exp(σWt + (μ− σ 2

2 )t) one
can see that St reaches any level x ′ ≥ 1 with probability 1 (as the Brownian motion
Wt with non-negative drift does so). Then for any x ′ > x we have Pp(x−Sτx′ , 0) =
0, where τx ′ is the first moment of reaching x ′.

In the case μ ∈ (0, σ 2

2 ), for any c ≥ 0, consider the optimal stopping problem

V2,c = inf
τ∈M

E|(1 + c(x − Sτ ))+|p.

This is an optimal stopping problem for a Markov process St . From the general
theory (see e.g. [17]) it is well known that the optimal stopping time here is of the
threshold type:

τ ∗
c = inf{t ≥ 0 : St ≥ bc},

where bc ∈ [x, x + 1
c
] is some optimal level, which has to be found. Then the

distribution of Sτ∗
c

is binomial: it assumes only two values bc and 0 with probabilities

pc and 1 − pc, where pc = b
γ−1
c as can be easily found from the general formulas



662 M. Zhitlukhin

for boundary crossing probabilities for a Brownian motion with drift. Consequently,

V
p

2 = inf
b≥x inf

c≤ 1
(b−x)

(
(1 + c(x − b))pbγ−1 + (1 + cx)p(1 − bγ−1)

)
.

It is straightforward to find that for any b ≥ x the optimal c∗(b) is given by c∗(b) =
C(b), which proves the claim of the theorem.

Corollary 2 Assume μ ∈ (0, σ
2

2 ) and p = 2. Let τ ∗ denote the optimal stopping
time from Theorem 6. Then the standard Sharpe ratio of Sτ∗ − x is equal to its
monotone Sharpe ratio, S(Sτ∗ −x) = S2(Sτ∗ −x). In particular, τ ∗ also maximizes
the standard Sharpe ratio of Sτ − x, i.e. S(Sτ − x) ≤ S(Sτ∗ − x) for any τ ∈ M .

Moreover, in this case the optimal threshold b∗ can be found as the point of
maximum of the function

g(b) = bγ − x

b
γ+1

2 (1 − bγ−1)
1
2

.

Proof Suppose Y ≤ Sτ∗ −x. As shown above, it is enough to consider only Y which
are measurable with respect to the σ -algebra generated by the random variable
Sτ∗ . Since Sτ∗ has a binomial distribution, then Y should also have a binomial
distribution, assuming values y1 ≤ b∗ − x and y2 ≤ −x with the same probabilities
(b∗)γ−1 and 1 − (b∗)γ−1 as Sτ∗ assumes the values b∗ and 0. Using this, it is now
not difficult to see that S(Y ) ≤ S(Sτ∗ − x), which proves the first claim.

The second claim follows from that for any stopping time of the form τb = {t ≥
0 : St = b}, b ∈ [x,∞) we have S(Sτb − x) = g(b).

Appendix

This appendix just reminds some facts from convex optimization and related results
which were used in the paper.

Duality in Optimization

Let Z be a topological vector space and f (z) a real-valued function onZ . Consider
the optimization problem

minimize f (z) over z ∈ Z . (21)

A powerful method to analyze such an optimization problem consists in considering
its dual problem. To formulate it, suppose that f (z) can be represented in the form
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f (z) = F(z, 0) for all z ∈ Z , where F(z, a) : Z × A → R is some function, and
A is another topological vector space (a convenient choice of F and A plays an
important role).

Let A ∗ denote the topological dual of A . Define the LagrangianL : Z ×A ∗ →
R and the dual objective function g : A ∗ → R by

L(z, u) = inf
a∈A

{F(z, a)+ 〈a, u〉}, g(u) = inf
z∈Z

L(z, u).

Then the dual problem is formulated as the optimization problem

maximize g(u) over u ∈ A ∗.

If we denote by VP and VD the optimal values of the primal and dual problems
respectively (i.e. the infimum of f (z) and the supremum of g(u) respectively), then
it is easy too see that VP ≥ VD always.

We are generally interested in the case when the strong duality takes place, i.e.
VP = VD , or, explicitly,

min
z∈Z

f (z) = max
u∈A ∗ g(u). (22)

Introduce the optimal value function φ(a) = inf
z∈Z

F(z, a). The following

theorem provides a sufficient condition for the strong duality (22) (see Theorem 7
in [20]).

Theorem 7 Suppose F is convex in (z, a) and φ(0) = lim inf
a→0

φ(a). Then (22)

holds.

Let us consider a particular case of problem (21) which includes constraints in
the form of equalities and inequalities. Assume that Z = Lp for some p ∈ [1,∞)

and two functions hi : Lp → Lri (Rni ), i = 1, 2 are given (the spaces Lp and Lri are
not necessarily defined on the same probability space). Consider the problem

minimize f (z) over z ∈ Lp

subject to g(z) ≤ 0 a.s.

h(z) = 0 a.s.

This problem can be formulated as a particular case of the above abstract setting by
defining

F(z, a1, a2) =
{
f (z), if g(z) ≤ a1 and h(z) = a2 a.s.,

+∞, otherwise.
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The Lagrangian of this problem is

L(z, u1, u2) = inf
a1,a2

{
F(z, a1, a2)+ 〈a1, u1〉 + 〈a2, u2〉

}

=
{
f (z)+ 〈g(z), u1〉 + 〈h(z), u2〉, if u1 ≥ 0 a.s.,

−∞, otherwise,

where we denote 〈a, u〉 = E(
∑
i aiui).

So the dual objective function

g(u, v) = inf
z∈Lp{f (z)+ 〈g(z), u〉 + 〈h(z), v〉} for u ≥ 0 a.s.,

and the dual optimization problem

maximize g(u, v) over u ∈ Lr ′ , v ∈ Lw
′

subject to u ≥ 0.

The strong duality equality:

min
z

{f (z) | g(z) ≤ 0, h(z) = 0} = max
u,v

{g(u, v) | u ≥ 0}

The Minimax Theorem

Theorem 8 (Sion’s Minimax Theorem, Corollary 3.3 in [25]) SupposeX,Y are
convex spaces such that one of them is compact, and f (x, y) is a function onX×Y ,
such that x → f (x, y) is quasi-concave and u.s.c. for each fixed y and y → f (x, y)

is quasi-convex and l.s.c. for each fixed x. Then

sup
x∈X

inf
y∈Y f (x, y) = inf

y∈Y sup
x∈X

f (x, y).
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On Chernoff’s Test for a Fractional
Brownian Motion

Alexey Muravlev and Mikhail Zhitlukhin

Abstract We construct a sequential test for the sign of the drift of a fractional
Brownian motion. We work in the Bayesian setting and assume the drift has a
prior normal distribution. The problem reduces to an optimal stopping problem for a
standard Brownian motion, obtained by a transformation of the observable process.
The solution is described as the first exit time from some set, whose boundaries
satisfy certain integral equations, which are solved numerically.

1 Introduction

This paper provides an overview of the resutls obtained in the paper [22].
Suppose one observes a fractional Brownian motion process (fBm) with linear

drift and unknown drift coefficient. We are interested in sequentially testing the
hypotheses that the drift coefficient is positive or negative. We consider a Bayesian
setting where the drift coefficient has a prior normal distribution, and we use an
optimality criteria of a test which consists of a linear penalty for the duration of
observation and a penalty for a wrong decision proportional to the true value of the
drift coefficient. The main result of this paper describes the structure of the exact
optimal test in this problem, i.e. specifies a time to stop observation and a rule to
choose between the two hypotheses.

The main novelty of our work compared to the large body of literature related
to sequential tests (for an overview of the field, see e.g. [10, 20]) is that we work
with fBm. To the best of our knowledge, this is the first non-asymptotic solution
of a continuous-time sequential testing problem for this process. It is well-known
that a fBm is not a Markov process, neither a semimartingale except the particular
case when it is a standard Brownian motion (standard Bm). As a consequence, many
standard tools of stochastic calculus and stochastic control (Itô’s formula, the HJB
equation, etc.) cannot be directly applied in models based on fBm. Fortunately, in
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the problem we consider it turns out to be possible to change the original problem for
fBm so that it becomes tractable. One of the key steps is a general transformation
outlined in the note [13], which allows to reduce sequential testing problems for
fBm to problems for diffusion processes.

In the literature, the result which is most closely related to ours is the sequential
test proposed by Chernoff [3], which has exactly the same setting and uses the same
optimality criterion, but considers only standard Bm. For a prior normal distribution
of the drift coefficient, Chernoff and Breakwell [1, 4] found asymptotically optimal
sequential tests when the variance of the drift goes to zero or infinity.

Let us mention two other recent results in the sequential analysis of fBm,
related to estimation of its drift coefficient. Çetin et al. [2] considered a sequential
estimation problem assuming a normal prior distribution of the drift with a
quadratic or a δ-function penalty for a wrong estimate and a linear penalty for
observation time. They proved that in their setting the optimal stopping time is non-
random. Gapeev and Stoev [8] studied sequential testing and changepoint detection
problems for Gaussian processes, including fBm. They showed how those problems
can be reduced to optimal stopping problems and found asymptotics of optimal
stopping boundaries. There are many more results related to fixed-sample (i.e.
non-sequential) statistical analysis of fBm. See, for example, Part II of the recent
monograph [19], which discusses statistical methods for fBm in details.

The remaining part of our paper is organized as follows. Section 2 formulates the
problem. Section 3 describes a transformation of the original problem to an optimal
stopping problem for a standard Bm and introduces auxiliary processes which are
needed to construct the optimal sequential test. The main result of the paper—the
theorem which describes the structure of the optimal sequential test—is presented
in Sect. 4, together with a numerical solution.

2 Decision Rules and Their Optimality

Recall that the fBm BHt , t ≥ 0, with Hurst parameter H ∈ (0, 1) is a zero-mean
Gaussian process with the covariance function

cov(BHt , B
H
s ) = 1

2
(s2H + t2H − |t − s|2H), t, s ≥ 0.

In the particular caseH = 1/2 this process is a standard Brownian motion (standard
Bm) and has independent increments; its increments are positively correlated in the
case H > 1/2 and negatively correlated in the case H < 1/2.

Suppose one observes the stochastic process

Zt = θt + BHt , t ≥ 0,

where H ∈ (0, 1) is known, and θ is a random variable independent of BH and
having a normal distribution with known mean μ ∈ R and known variance σ 2 > 0.
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It is assumed that neither the value of θ , nor the value of BHt can be observed
directly, but the observer wants to determine whether the value of θ is positive or
negative based on the information conveyed by the combined process Zt . We will
look for a sequential test for the hypothesis θ > 0 versus the alternative θ ≤ 0.
By a sequential test we call a pair δ = (τ, d), which consists of a stopping time τ
of the filtration FZ

t , generated by Z, and an FZ
τ -measurable function d assuming

values ±1. The stopping time is the moment of time when observation is terminated
and a decision about the hypotheses is made; the value of d shows which of them is
accepted.

We will use the criterion of optimality of a decision rule consisting in minimizing
the linear penalty for observation time and the penalty for a wrong decision
proportional to the absolute value of θ . Namely, with each decision rule δ we
associate the risk

R(δ) = E(τ + |θ |I(d �= sgn(θ))).

The problem consists in finding δ∗ that minimizes R(δ) over all decision rules.
This problem was proposed by Chernoff in [3] for standard Bm, and we refer the

reader to that paper for a rationale for this setting. The subsequent papers [1, 4, 5]
include results about the asymptotics of the optimal test and other its properties,
including a comparison with Wald’s sequential probability ratio test. Our paper [21]
contains a result which allows to find the exact (non-asymptotic) optimal test by a
relatively simple numerical procedure.

3 Reduction to an Optimal Stopping Problem

From the relation |θ |I(d �= sgn(θ)) = θ+I(d = −1) + θ−I(d = 1), where θ+ =
max(θ, 0), θ− = − min(θ, 0), and from that d is FZ

τ -measurable, one can see
that the optimal decision rule should be looked for among rules (τ, d) with d =
min(E(θ− | FZ

τ ),E(θ+ | FZ
τ )). Hence, it will be enough to solve the optimal

stopping problem which consists in finding a stopping time τ ∗ such that R(τ ∗) =
infτ R(τ), where

R(τ) = E(τ + min(E(θ− | FZ
τ ),E(θ+ | FZ

τ )))

(for brevity, we’ll use the same notation R for the functional associated with a
decision rule, and the functional associated with a stopping time).

We will transform the expression inside the expectation in R(τ) to the value of
some process, constructed from a standard Bm. Introduce the process Xt , t ≥ 0, by

Xt = CH

∫ t

0
KH(t, s)dZs
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with the integration kernelKH(t, s) = (t−s) 1
2 −H

2F1(
1
2 −H, 1

2 −H, 3
2 −H, s−t

t
),

where 2F1 is the Gauss (ordinary) hypergeometric function, and the constant CH =(
Γ (2−2H)

2HΓ ( 1
2 +H)(Γ ( 3

2 −H))3
) 1

2
; as usual, Γ denotes the gamma function.

As follows from [9] (see also earlier results [12, 14]), Bt = CH
∫ t

0 KH(t, s)dB
H
s

is a standard Bm, and by straightforward computation we obtain the representation

dXt = Bt + θLH t
1
2 −Hdt,

and the filtrations of the processesZt andXt coincide. The constantLH in the above

formula is defined by LH = (2H( 3
2 − H)B( 1

2 +H, 2 − 2H))− 1
2 , where B is the

beta function.
Now one can find that the conditional distribution Law(θ | FX

τ ) is normal and
transform the expression for the risk to

R(τ) = E
(
τ − 1

2
Yτ

)
+ const,

where const denotes some constant (depending on μ, σ , H ), the value of which is
not essential for what follows, and Yt , t ≥ 0, is the process satisfying the SDE

dYt = t
1
2 −H ((σLH )−2 + t2−2H/(2 − 2H)

)
dB̃t , Y0 = μLH ,

where B̃ is another standard Bm, the innovation Brownian motion (see e.g.
Chapter 7.4 in [11]). For brevity, denote γ = (2−2H)−1. Then under the following
monotone change of time

t (r) =
(

(2 − 2H)r

(σLH )2(1 − r)

)γ
, r ∈ [0, 1),

where t runs through the half-interval [0,∞)when r runs through [0, 1), the process

Wr = (σLH )
−1Yt(r) − μσ−1

is a standard Bm in r ∈ [0, 1), and the filtrations FW
r and FX

t(r) coincide. Denote

Mσ,H = 2

σ

(
2 − 2H

σ 2L2
H

)γ
.

Then the optimal stopping problem for X in t-time is equivalent to the following
optimal stopping problem forW in r-time:

V = inf
ρ<1

E

(
Mσ,H

(
ρ

1 − ρ

)γ
−
∣∣∣Wρ + μ

σ

∣∣∣
)
. (1)
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Namely, if ρ∗ is the optimal stopping time for V , then the optimal decision rule
δ∗ = (τ ∗, d∗) is given by

τ ∗ = t (ρ∗), d∗ = I(aτ∗ > 0)− I(aτ∗ ≤ 0). (2)

4 The Main Results

In this section we formulate a theorem about the solution of problem (1), which
gives an optimal sequential test through transformation (2). Throughout we will
assume that σ and H are fixed and will denote the function

f (t) = Mσ,H

(
t

1 − t

)γ
.

It is well-known that under general conditions the solution of an optimal stopping
problem for a Markov process can be represented as the first time when the process
enters a certain set (a stopping set). Namely, let us first rewrite our problem in the
Markov setting by allowing the processWt to start from any point (t, x) ∈ [0, 1)×R:

V (t, x) = inf
ρ<1−t E(f (t + ρ)− |Wρ + x|)− f (t). (3)

For example, for the quantity V from (1) we have V = V (0, μ
σ
). We subtract f (t)

in the definition of V (t, x) to make the function V (t, x) bounded. For t = 1 we
define V (1, x) = −|x|.

The following theorem describes the structure of the optimal stopping time in
problem (3). In its statement, we set

t0 = t0(H) := max

(
0,

1 − 2H

4(1 −H)

)
.

Obviously, t0 > 0 forH < 1
2 and t0 = 0 for H ≥ 1

2 .

Theorem 1

1) There exists a function A(t) defined on (t0, 1], which is continuous, strictly
decreasing, and strictly positive for t < 1 with A(1) = 0, such that for any
t > t0 and x ∈ R the optimal stopping time in the problem (3) is given by

ρ∗(t, x) = inf{s ≥ 0 : |Ws + x| ≥ A(t + s)}.
Moreover, for any t ∈ (t0, 1] the function A(t) satisfies the inequality

A(t) ≤ (1 − t)γ

2Mσ,H tγ−1 . (4)
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2) The function A(t) is the unique function which is continuous, non-negative,
satisfies (4), and solves the integral equation

G(t,A(t)) =
∫ 1

t

F (t, A(t), s, A(s))ds, t ∈ (t0, 1), (5)

with the functions G(t, x) = E|ζ√1 − t + x| − x and F(t, x, s, y) =
f ′(s)P(|ζ√s − t + x| ≤ y) for a standard normal random variable ζ .

Regarding the statement of this theorem, first note that for H < 1
2 , the stopping

boundary A(t) is described only for t > t0 > 0. The main reason is that the
method of proof we use to show that A(t) is continuous and satisfies the integral
equation requires it to be of bounded variation (at least, locally). In particular, this is
a sufficient condition for applicability of the Itô formula with local time on curves
[16], which is used in the proof. In the caseH ≥ 1

2 and for t ≥ t0 in the caseH < 1
2

by a direct probabilistic argument we can prove thatA(t) is monotone and therefore
has bounded variation; this argument however doesn’t work for t < t0 in the case
H < 1

2 , and, as a formal numerical solution shows, the boundary A(t) seems to be
indeed not monotone in that case. Of course, the assumption of bounded variation
can be relaxed while the Itô formula can still be applicable (see e.g. [6, 7, 16]),
however verification of weaker sufficient conditions is problematic. Although the
general scheme to obtain integral equations of type (5) and prove uniqueness of their
solutions has been discovered quite a while ago (the first full result was obtained
by Peskir for the optimal stopping problem for American options, see [17]), and
has been used many times in the literature for various optimal stopping problems
(a large number of examples can be found in [18]), we are unaware of any of its
applications in the case when stopping boundaries are not monotone and/or cannot
be transformed to monotone ones by space and/or time change. Nevertheless, a
formal numerical solution of the integral equation produces stopping boundaries
which “look smooth”, but we admit that a rigor proof of this fact in the above-
mentioned cases remains an open question.

Note also, that in the caseH ≥ 1
2 the space-time transformation we apply to pass

from the optimal stopping problem for the process a(t) to the problem for Wr is
essential from this point of view, because the boundaries in the problem for a(t) are
not monotone. Moreover, they are not monotone even in the caseH = 1

2 , when a(t)
is obtained by simply shifting Xt in time and space, see [3, 21].

The second remark we would like to make is that in the case H > 1
2 we do not

know whether A(0) is finite. In the case H = 1
2 the finiteness of A(0) follows from

inequality (4), which is proved by a direct argument based on comparison with a
simpler optimal stopping problem (one can see that it extends to t = 0). It seems
that a deeper analysis may be required for the case H > 1

2 , which is beyond this
paper.
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Fig. 1 The stopping boundary A(t) for different values of H and σ = 1

Figure 1 shows the stopping boundary A(t) for different values H computed
by solving Eq. (5) numerically. A description of the numerical method, based on
“backward induction”, can be found, for example, in [15].
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How to Sheafify an Elliptic Quantum
Group

Yaping Yang and Gufang Zhao

Abstract These lecture notes are based on Yang’s talk at the MATRIX program
Geometric R-Matrices: from Geometry to Probability, at the University of Mel-
bourne, Dec. 18–22, 2017, and Zhao’s talk at Perimeter Institute for Theoretical
Physics in January 2018. We give an introductory survey of the results in Yang and
Zhao (Quiver varieties and elliptic quantum groups, 2017. arxiv1708.01418). We
discuss a sheafified elliptic quantum group associated to any symmetric Kac-Moody
Lie algebra. The sheafification is obtained by applying the equivariant elliptic
cohomological theory to the moduli space of representations of a preprojective
algebra. By construction, the elliptic quantum group naturally acts on the equivariant
elliptic cohomology of Nakajima quiver varieties. As an application, we obtain
a relation between the sheafified elliptic quantum group and the global affine
Grassmannian over an elliptic curve.

1 Motivation

The parallelism of the following three different kinds of mathematical objects was
observed in [11] by Ginzburg-Kapranov-Vasserot.
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(iii): Oriented Cohomology
Theory: CH,K,Ell

(i): 1-dimensional
algebraic groups C,C∗, E

(ii): Quantum Groups:

Here, the correspondence (i)↔(iii) is well known in algebraic topology, goes back
to the work of Quillen, Hirzebruch, et al. Similar correspondence also exists in
algebraic geometry thanks to the oriented cohomology theories (OCT) of Levine
and Morel [15]. The algebraic OCT associated to C,C∗ and E are, respectively, the
intersection theory (Chow groups) CH, the algebraic K-theory K and the algebraic
elliptic cohomology Ell.

The correspondence (i)↔(ii) was introduced to the mathematical community
by Drinfeld [6]. Roughly speaking, the quantum group in (ii) quantizes of the Lie
algebra of maps from the algebraic group in (i) to a Lie algebra g. The quantization
is obtained from the solutions to the quantum Yang-Baxter equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u). (QYBE)

The Yangian Yh̄(g), quantum loop algebra Uq(Lg), and elliptic quantum group
Eh̄,τ (g) are respectively obtained from the rational, trigonometric and elliptic
solutions of the QYBE. There is a dynamical elliptic quantum group associated to
a general symmetrizable Kac-Moody Lie algebra, which is obtained from solutions
to the dynamical Yang-Baxter equation.

The correspondence (ii)↔(iii) is the main subject of this note, and is originated
from the work of Nakajima [21], Varagnolo [24], Maulik-Okounkov [17], and
many others. Without going to the details, the quantum group in (ii) acts on
the corresponding oriented cohomology of the Nakajima quiver varieties recalled
below.

Let Q = (I,H) be a quiver, with I being the set of vertices, and H being the
set of arrows. LetQ♥ be the framed quiver, schematically illustrated below. For any
dimension vector (v,w) of Q♥, we have the Nakajima quiver variety M(v,w).

v

Quiver Q

v

w :

Framed quiver Q♥
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Denote M(w) = ∐
v∈NI M(v,w). We follow the terminologies and notations

in [21] on quiver varieties, hence refer the readers to loc. cit. for the details.
Nevertheless, we illustrate by the following examples, and fix some conventions
in Sect. 2.

Example 1

1. Let Q be the quiver with one vertex, no arrows. Let (v,w) = (r, n), with 0 ≤
r ≤ n. Then, M(r, n) ∼= T ∗Gr(r, n), the cotangent bundle of the Grassmannian.

2. Let Q be the Jordan quiver with one vertex, and one self-loop. Let (v,w) =
(n, 1), with n ∈ N. Then, M(n, 1) ∼= Hilbn(C2), the Hilbert scheme of n-points
on C

2.

r

n :
Example (1)

n

1 :
Example (2)

When Q has no edge-loops, Nakajima in [21] constructed an action of Uq(Lg)
on the equivariant K-theory of M(w), with g being the symmetric Kac-Moody
Lie algebra associated to Q. Varagnolo in [24] constructed an action of Yh̄(g)
on the equivariant cohomology of the Nakajima quiver varieties. For a general
quiver Q, Maulik-Okounkov in [17] constructed a bigger Yangian YMO acting on
the equivariant cohomology of M(w) using a geometric R-matrix formalism. See
[1, 22] for the geometric R-matrix construction in the trigonometric (K-theoretic
stable envelope), and elliptic case (elliptic stable envelope).

The goal of the present notes is to explain a direct construction of the cor-
respondence from (iii) to (ii) above, using cohomological Hall algebra (CoHA)
following [28]. Most of the constructions are direct generalizations of Schiffmann
and Vasserot [23]. Closely related is the CoHA of Kontsevich-Soibelman [14],
defined to be the critical cohomology (cohomology valued in a vanishing cycle)
of the moduli space of representations of a quiver with potential. A relation between
the CoHA in the present note and the CoHA from [14] is explained in [25].

This approach of studying quantum groups has the following advantages.

• The construction works for any oriented cohomology theory, beyond CH,K, Ell.
One interesting example is the Morava K-theory. The new quantum groups
obtained via this construction are expected to be related the Lusztig’s character
formulas [28, §6].

• In the case of Ell, the construction gives a sheafified elliptic quantum group, as
well as an action of Eh̄,τ (g) on the equivariant elliptic cohomology of Nakajima
quiver varieties, as will be explained in Sect. 3.



678 Y. Yang and G. Zhao

2 Construction of the Cohomological Hall Algebras

For illustration purpose, in this section we take the OCT to be the intersection theory
CH. Most statements have counterparts in an arbitrary oriented cohomology theory.

2.1 The Theorem

Let Q = (I,H) be an arbitrary quiver. Denote by gQ the corresponding symmetric
Kac-Moody Lie algebra associated toQ. The preprojective algebra, denoted byΠQ,
is the quotient of the path algebra C(Q∪Qop) by the ideal generated by the relation∑
x∈H [x, x∗] = 0, where x∗ ∈ H op is the reversed arrow of x ∈ H . Fix a dimension

vector v ∈ N
I , let Rep(Q, v) be the affine space parametrizing representations of

the path algebra CQ of dimension v, and let Rep(ΠQ, v) be the affine algebraic
variety parametrizing representations of ΠQ of dimension v, with an action of
GLv := ∏

i∈I GLvi . Here v = (vi)i∈I . Let Rep(ΠQ, v) := Rep(ΠQ, v)/GLv be
the quotient stack.

Example 2 Let Q be the Jordan quiver:

x

. The preprojective algebra ΠQ =
C[x, x∗] is the free polynomial ring in two variables. We have

Rep(ΠQ, n) = {(A,B) ∈ (gln)2 | [A,B] = 0}/GLn.

Consider the graded vector space

P(CH,Q) :=
⊕
v∈NI

CHC∗(Rep(ΠQ, v)) =
⊕
v∈NI

CHGLv×C∗(Rep(ΠQ, v)). (1)

The torus C∗ acts on Rep(ΠQ, v) the same way as in [21, (2.7.1) and (2.7.2)]. More
explicitly, let a be the number of arrows inQ from vertex i to j ; We enumerate these
arrows as h1, . . . , ha . The corresponding reversed arrows in Qop are enumerated as
h∗

1, · · · , h∗
a . We define an action of C∗ on Rep(ΠQ, v) in the following way. For

t ∈ C
∗ and (Bp,B∗

p) ∈ Rep(ΠQ, v) with hp ∈ H , we define

t · Bp := ta+2−2pBp, t · B∗
p := t−a+2pB∗

p

Theorem A ([27, 28, Yang-Zhao])

1. The vector space P(CH) is naturally endowed with a product " and a coproduct
Δ, making it a bialgebra.

2. OnD(P) := P⊗P, there is a bialgebra structure obtained as a Drinfeld double
of P(CH). For any w ∈ N

I , the algebraD(P) acts on CHGLw(M(w)).
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3. AssumeQ has no edge loops. There is a certain spherical subalgebraD(Psph) ⊆
D(P(CH)), such that

D(Psph) ∼= Yh̄(gQ).

Furthermore, the induced Yangian action from (2) is compatible with the action
constructed by Varagnolo in [24], and, in the case when Q is of ADE type, the
action of Maulik-Okounkov in [17].

Remark 1 The construction of the Drinfeld double involves adding a Cartan
subalgebra and defining a bialgebra pairing, as can be found in detail in [27, §3]. The
Cartan subalgebra can alternatively be replaced by a symmetric monoidal structure
as in [26, §5]. The definition of the spherical subalgebra can be found in [27, §3.2].

2.2 Constructions

The Hall multiplication " of P(CH) is defined using the following correspondence.

where Ext is the moduli space of extensions {0 → V1 → V → V2 → 0 |
dim(Vi) = vi, i = 1, 2}. The map φ : (0 → V1 → V → V2 → 0) → (V1, V2)

is smooth, and ψ : (0 → V1 → V → V2 → 0) → V is proper. The Hall
multiplication " is defined to be

" = ψ∗ ◦ φ∗.

Here the stacks Rep(ΠQ, v) for v ∈ N
I are endowed with obstruction theories

obtained from the embeddings Rep(ΠQ, v) ↪→ T ∗Rep(Q, v)/GLv, and Ext has
a similar obstruction theory described in detail in [28, §4.1]. Similar for the
construction of the action below.

Now we explain the action in Theorem A (2). Let Repfr(ΠQ, v,w) be the moduli
space of framed representations of ΠQ with dimension vector (v,w), which is con-
structed as a quotient stack Repfr(ΠQ, v,w)/GLv. Imposing a suitable semistability
condition, explained in detail in [21], we get an open subset Repfr,ss(ΠQ, v,w) ⊂
Repfr(ΠQ, v,w). There is an isomorphism

CH(Repfr,ss(ΠQ, v,w)) = CHGLw(M(v,w)).
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We have the following general correspondence [28, §4.1]:

(2)

The action in Theorem A (2) is defined as (ψ
ss
)∗ ◦ (φss)∗ by taking w1 = 0, and

imposing a suitable semistability condition on the correspondence (2).

2.3 Shuffle Algebra

Notations as before, let Q = (I,H) be a quiver. Following the proof of [28,
Proposition 3.4], we have the following shuffle description of (ψ)∗ ◦ (φ)∗ in (2).

Let SH be an N
I × N

I -graded C[t1, t2]-algebra. As a C[t1, t2]-module, we have

SH =
⊕

v∈NI ,w∈NI
SHv,w,

where

SHv,w := C[t1, t2] ⊗ C[λis ]Sv
i∈I,s=1,...,vi

⊗ C[zjt ]Sw
j∈I,t=1,...,wj

.

Here Sv = ∏
i∈I Svi is the product of symmetric groups, and Sv naturally acts

on the variables {λis}i∈I,s=1,...,vi by permutation. For any (v1,w1) and (v2,w2) ∈
N
I × N

I , we consider SHv1,w1 ⊗C[t1,t2] SHv2,w2 as a subalgebra of

C[t1, t2][λis, zjt ]{ i∈I,s=1,...,(vi1+vi2),
j∈I,t=1,...,(wj1+wj2 )

}

by sending (λ′i
s , z

′j
t ) ∈ SHv1,w1 to (λis , z

j
t ), and (λ′′i

s , z
′′j
t ) ∈ SHv2,w2 to

(λi
s+vi1

, z
′′j
t+wj1

).

We define the shuffle product SHv1,w1 ⊗C[t1,t2] SHv2,w2 → SHv1+v2,w1+w2 ,

f (λv1, zw1)⊗ g(λv2, zw2) →
∑

σ∈Sh(v1,v2)×Sh(w1,w2)

σ
(
f (λ′

v1
, z′w1

) · g(λ′′
v2
, z′′w2

) · facv1+v2,w1+w2

)
, (3)

with facv1+v2,w1+w2 specified as follows.
Let

fac1 :=
∏
i∈I

vi1∏
s=1

vi2∏
t=1

λ′i
s − λ′′i

t + t1 + t2

λ′′i
t − λ′i

s

. (4)
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Let m : H ∐H op → Z be a function, which for each h ∈ H provides two
integers mh and mh∗ . We define the torus T = (C∗)2 action on Rep(Q ∪ Qop)

according to the functionm, satisfying some technical conditions spelled out in [27,
Assumption 1.1]. The T -equivariant variables are denoted by t1, t2. Define

fac2 :=
∏
h∈H

( vout(h)
1∏
s=1

v
in(h)
2∏
t=1

(λ
′′in(h)
t − λ

′out(h)
s +mht1)

v
in(h)
1∏
s=1

v
out(h)
2∏
t=1

(λ
′′out(h)
t − λ

′in(h)
s +mh∗ t2)

)

·
∏
i∈I

( vi1∏
s=1

wi2∏
t=1

(z
′′i
t − λ

′i
s + t1)

wi1∏
s=1

vi2∏
t=1

(λ
′′i
t − z

′i
s + t2)

)
(5)

Let

facv1+v2,w1+w2 := fac1 · fac2. (6)

Proposition 1 Under the identification

CHGLv×GLw×T (Repfr(ΠQ, v,w))

∼= C[t1, t2] ⊗ C[λis]Sv
i∈I,s=1,...,vi

⊗ C[zjt ]Sw
j∈I,s=1,...,wi

=: SHv,w,

the map (ψ)∗ ◦ (φ)∗ is equal to the multiplication (3) of the shuffle algebra SH =⊕
v∈NI ,w∈NI SHv,w.

Proof The proof follows from the same proof as [28, Proposition 3.4] replacing the
quiverQ by the framed quiverQ♥.

Remark 2

1. For an arbitrary cohomology theory, Proposition 1 is still true when A + B is
replaced by A+F B in the formula (6) of facv1+v2,w1+w2 , where F is the formal
group law associated to this cohomology theory.

2. Restricting to the open subset Repfr,ss(ΠQ, v) of Repfr(ΠQ, v) induces a
surjective map SHv,w → CHGLw(M(v,w)), for v ∈ N

I ,w ∈ N
I . The

surjectivity follows from [18]. This map is compatible with the shuffle product of
the left hand side, and the multiplication on the right hand side induced from (2).

2.4 Drinfeld Currents

Let v = ei be the dimension vector valued 1 at vertex i ∈ I and zero otherwise.
Then, Pei = CHGLei×C∗(Rep(ΠQ, ei)) = C[h̄][xi]. Let (xi)k ∈ Pei , k ∈ N, be the
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natural monomial basis of Pei . One can form the Drinfeld currents

X+
i (u) :=

∑
k∈N

(xi)
ku−k−1, i ∈ I.

By Theorem A, the generating series {X+
i (u) | i ∈ I } satisfy the relations of

Y+
h̄ (g)[[u]] [28, § 7].

3 Sheafified Elliptic Quantum Groups

In this section, we applying the equivariant elliptic cohomology to the construction
in Sect. 2. It gives a sheafified elliptic quantum group, as well as its action on M(w).

3.1 Equivariant Elliptic Cohomology

There is a sheaf-theoretic definition of the equivariant elliptic cohomology theory
EllG in [11] by Ginzburg-Kapranov-Vasserot. It was investigated by many others
later on, including Ando [2, 3], Chen [5], Gepner[10], Goerss-Hopkins [12],
Lurie [16].

Let XG be the moduli scheme of semisimple semistable degree 0 G-bundles
over an elliptic curve. For a G-variety X, the G-equivariant elliptic cohomology
EllG(X) of X is a quasi-coherent sheaf of OXG-module, satisfying certain axioms.
In particular, EllG(pt) ∼= OXG .

Example 3

1. LetG = S1, then EllS1(X) is a coherent sheaf on Pic(E) ∼= E. This fact leads to
the following patten.

• CHS1(X) is a module over CHS1(pt) = OC.
• KS1(X) is a module overKS1(pt) = OC∗ .
• EllS1(X) is a module over EllS1(pt) = OE .

2. Let G = GLn, then Ell∗GLn
(X) is a coherent sheaf over E(n) = En/Sn.

There is a subtlety for pushforward in the equivariant elliptic cohomology theory.
Let f : X → Y be a proper,G-equivariant homomorphism. The pushforward f∗ is
the following map

f∗ : EllG(Th(f )) → EllG(Y ),
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where EllG(Th(f )), depending on the Thom bundle of the relative tangent bundle
of f , is a rank 1 locally free module over EllG(X). The appearance of this twist
can be illustrated in the following simple example. The general case is discussed in
detail in [11, § 2] and [29, § 2].

Example 4 Let f : {0} ↪→ C be the inclusion. The torus S1 acts on C by scalar
multiplication. Denote by D the disc around 0. We have the Thom space Th :=
D/S1. There is an exact sequence

0 → EllS1(Th) → EllS1(D) → EllS1(S
1) → 0.

As EllS1(D) ∼= OE , since D is contractible, and EllS1(S1) is the skyscraper sheaf
C0 at 0, we have the isomorphism EllS1(Th) ∼= O(−{0}).

3.2 The Sheafified Elliptic Quantum Group

Recall the elliptic cohomological Hall algebra (see (1)) is defined as

P(Ell,Q) :=
⊕
v∈NI

EllGLv×C∗(Rep(ΠQ, v)).

By the discussion in Sect. 3.1, P(Ell,Q) is a sheaf on

HE×I × Eh̄ :=
∐

{v=(vi)i∈I∈NI }
(E(v

1) × E(v
2) × · · · ×E(v

n))× Eh̄,

where h̄ comes from the C
∗-action, and HE×I is the moduli space of I -colored

points on E.

Due to the subtlety of pushing-forward in the elliptic cohomology, there is no
product on P(Ell,Q) in the usual sense. We illustrate the structure of the Hall
multiplication " of P(Ell,Q) in the following example.
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Example 5 LetQ be the quiver © with one vertex, no arrows. In this case, we have
gQ = sl2. The elliptic CoHA P(Ell, sl2) associated to the Lie algebra sl2 consists
of:

• A coherent sheaf P(Ell, sl2) = (Pn)n∈N on HE × Eh̄ =∐n∈NE(n) × Eh̄.
• For any n,m ∈ N, a morphism of sheaves on E(n+m) × Eh̄:

" : (Σn,m)∗
(
(Pn � Pm)⊗ Ln,m

)→ Pn+m,

where Σn,m the symmetrization map E(n) ×E(m) → E(n+m), and Ln,m is some
fixed line bundle on E(n) × E(m) × Eh̄, depending on the parameter h̄.

• The above morphisms are associative in the obvious sense.

Let C be the category of coherent sheaves on HE×I × Eh̄. Motivated by the Hall
multiplication " of P(Ell,Q), we define a tensor structure ⊗h̄ on C: for {F }, {G} ∈
Obj(C), F ⊗h̄ G is defined as

(F ⊗h̄ G)v :=
⊕

v1+v2=v

(Σv1,v2)∗
(
(Fv1 � Gv1)⊗ Lv1,v2

)
. (7)

Theorem B ([26, Yang-Zhao])

1. The category (C,⊗h̄) is a symmetric monoidal category, with the braiding given
by Yang and Zhao [26, Theorem 3.3].

2. The elliptic CoHA (P(Ell,Q), ",Δ), endowed with the Hall multiplication ", and
coproductΔ, is a bialgebra object in (Cloc,⊗h̄).

3. The Drinfeld double D(P(Ell,Q)) of P(Ell,Q) acts on EllGw(M(w)), for any
w ∈ N

I .
4. After taking a certain space of meromorphic sections Γrat, the bialgebra
Γrat(D(Psph

λ (Ell,Q))) becomes the elliptic quantum group given by the
dynamical elliptic R-matrix of Felder [7], Gautam-Toledano Laredo [9].

Remark 3

1. In Theorem B(4), a version of the sheafified elliptic quantum group with
dynamical twist D(Psph

λ (Ell,Q)) is needed in order to recover the R-matrix of
Felder-Gautam-Toledano Laredo. This twist is explained in detail in [26, § 10.2].
Below we illustrate the flavour of this dynamical twist in Sect. 3.4.

In particular, the abelian category of representations of D(P(Ell,Q)) and
D(Psph

λ (Ell,Q)) are both well-defined (see [26, § 9] for the details). Fur-
thermore, it is proved in loc. cit. that these two representation categories are
equivalent as abelian categories.

2. The details of the space of meromorphic sections are explained in [26, § 6].
3. Based on the above theorem, we define the sheafified elliptic quantum group to

be the Drinfeld double of Psph(Ell,Q).
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3.3 The Shuffle Formulas

The shuffle formula of the elliptic quantum group is given by (3), with the factor
A + B replaced by ϑ(A + B). The shuffle formula gives an explicit description of
the elliptic quantum group, as well as its action on the Nakajima quiver varieties.
In this section, we illustrate the shuffle description of the elliptic quantum group
Eτ,h̄(sl2). Furthermore, we show (3) applied to special cases coincides with the
shuffle formulas in [8, Proposition 3.6] and [13, Definition 5.9].

When g = sl2, the corresponding quiver is ©, with one vertex, no arrows. Let
SHw=0 := OHE×Eh̄ = (

⊕
n∈NOE(n) )�OEh̄ . For any local sections f ∈ OE(n) , g ∈

OE(m) , by (3) and (6), we have

f " g =
∑

σ∈Sh(n,m)

σ

⎛
⎝fg ∏

1≤s≤n,n+1≤t≤n+m

ϑ(xs − xt + h̄)

ϑ(xs − xt )

⎞
⎠ ,

where f "g ∈ OE(n+m) and Sh(n,m) consists of (n,m)-shuffles, i.e., permutations of
{1, · · · , n+m} that preserve the relative order of {1, · · · , n} and {n+1, · · · , n+m}.
The elliptic quantum group E+

τ,h̄(sl2) is a subalgebra of (SHw=0, ").
In the following examples we consider SH with general w.

Example 6 Assume the quiver is ©, with one vertex, no arrows. Let v1 = k′, v2 =
k′′, and w1 = n′, w2 = n′′. Choose t1 = h̄, and t2 = 0. Applying the formula (6) to
this case, we have

fack′+k′′,n′+n′′

=
k′∏
s=1

k′+k′′∏
t=k′+1

ϑ(λs − λt + h̄)

ϑ(λt − λs)
·
k′∏
s=1

n′+n′′∏
t=n′+1

ϑ(zt − λs + h̄)

n′∏
s=1

k′+k′′∏
t=k′+1

ϑ(λt − zs),

where ϑ(z) is the odd Jacobi theta function, normalized such that ϑ ′(0) = 1. This
is exactly the same formula as [8, Proposition 3.6].

Example 7 When g = slN , the corresponding quiver is

· · · ,

with N − 1 vertices, and N − 2 arrows. Consider the framed quiver

Q♥ · · ·
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Label the vertices of Q♥ by {1, 2, · · · , N − 1, N}. Let v1 = (v
(l)
1 )l=1,··· ,N−1,

v2 = (v
(l)
2 )l=1,··· ,N−1 be a pair of dimension vectors, and take the framing to

be w1 = (0, · · · , 0, n), w2 = (0, · · · , 0,m). To simplify the notations, let

v
(N)
1 = n, v(N)2 = m, and denote the variables zw1 by {λ′(N)

s }
s=1,··· ,v(N)1

, and zw2

by {λ′′(N)
t }

t=1,··· ,v(N)2
. Applying the formula (6) to this case, we then have

facv1+v2,w1+w2

=
N−1∏
l=1

( v
(l)
1∏
s=1

v
(l)
2∏
t=1

ϑ(λ′(l)
s − λ′′(l)

t + t1 + t2)

ϑ(λ′′(l)
t − λ′(l)

s )

·
v
(l)
1∏
s=1

v
(l+1)
2∏
t=1

ϑ(λ
′′(l+1)
t − λ

′(l)
s + t1)

v
(l+1)
1∏
t=1

v
(l)
2∏
s=1

ϑ(λ
′′(l)
s − λ

′(l+1)
t + t2)

)
.

Following [13, §5 (5.3)], we denote by Hv+w(λv, zw) the following element

Hv+w(λv, zw) =
N−1∏
l=1

v(l)∏
s=1

v(l+1)∏
t=1

ϑ(λ
(l+1)
t − λ(l)s + t1).

Define Hcross = Hv1+v2+w1+w2 (λv1∪λv2 ,zw1 ∪zw2 )

Hv1+w1 (λv1 ,zw1 )·Hv2+w2 (λv2 ,zw2 )
. We have

Hcross

=
N−1∏
l=1

( v
(l)
1∏
s=1

v
(l+1)
2∏
t=1

ϑ(λ
′′(l+1)
t − λ

′(l)
s + t1)

v
(l+1)
1∏
t=1

v
(l)
2∏
s=1

ϑ(λ
′(l+1)
t − λ

′′(l)
s + t1)

)

=
N−1∏
l=1

( v
(l)
1∏
s=1

v
(l+1)
1 +v(l+1)

2∏
t=v(l+1)

1 +1

ϑ(λ
(l+1)
t − λ(l)s + t1)

v
(l+1)
1∏
t=1

v
(l)
1 +v(l)2∏
s=v(l)1 +1

ϑ(λ
(l+1)
t − λ(l)s + t1)

)
.

(8)

Divide facv1+v2,w1+w2 by Hcross, we obtain

facv1+v2,w1+w2

Hcross
=(−1)v

(l+1)
1 +v(l)2

N−1∏
l=1

( v
(l)
1∏
s=1

v
(l)
2∏
t=1

ϑ(λ′(l)
s − λ′′(l)

t + t1 + t2)

ϑ(λ′ ′(l)
t − λ′(l)

s )

·
v
(l+1)
1∏
t=1

v
(l)
2∏
s=1

ϑ(λ
′(l+1)
t − λ

′′(l)
s − t2)

ϑ(λ
′(l+1)
t − λ

′′(l)
s + t1)

)
.
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This coincides with the formula in [13, Definition 5.9] when t1 = −1, t2 = 0.
In other words, consider the map

⊕
v∈NI ,w∈NI

SHv,w →
⊕

v∈NI ,w∈NI
(SHv,w)loc, given by

f (λv, zw) → f (λv, zw)

Hv+w(λv, zw)
.

It intertwines the shuffle product (3) (with theta-functions), and the shuffle product
of [13, Definition 5.9].

Remark 4

1. In the work of [8] in the sl2 case, and [13] in the slN case, the shuffle
formulas are used to obtain an inductive formula for the elliptic weight functions.
Proposition 1 provides a way to define the elliptic weight functions associated to
a general symmetric Kac-Moody Lie algebra g.

2. In the above cases for slN and the special framing, the elliptic weight functions
are expected to be related to the elliptic stable basis in [1] (see also [8, 13]).
Therefore, it is reasonable to expect an expression of the elliptic stable basis in
terms of the shuffle product (3) (with theta-functions) for general quiver varieties.

3.4 Drinfeld Currents

We now explain the Drinfeld currents in the elliptic case. The choice of an elliptic
curve E gives rise to the dynamical elliptic quantum group.

Let M1,2 be the open moduli space of 2 pointed genus 1 curves. We write a point
in M1,2 as (Eτ , λ), whereEτ = C/Z⊕τZ, and λ gives a line bundle Lλ ∈ Pic(Eτ ).
LetE be the universal curve on M1,2. There is a Poincare line bundleL onE, which
has a natural rational section

ϑ(z + λ)

ϑ(z)ϑ(λ)

where z is the coordinate of Eτ , and ϑ(z) is the Jacobi odd theta function,
normalized such that ϑ ′(0) = 1.

We can twist the equivariant elliptic cohomologyEllG by the Poincare line bundle
L. For each simple root ek, after twisting, we have SHL

ek
= OE(ek )⊗L. A basis of the

meromorphic sections Γrat(SHL
ek
) consists of

{
g
(i)
λk
(zk) := ∂i

∂zik

(
ϑ(zk+λk)
ϑ(zk)ϑ(λk)

)}
i∈N

.
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Consider λ = (λk)k∈I , and let

X+
k (u, λ) :=

∞∑
i=0

g
(i)
λk
(zk)u

i = ϑ(zk + λk + u)

ϑ(zk + u)ϑ(λk)
∈ Γrat(SHL)[[u]], k ∈ I.

Similarly, we define series X−
k (u, λ), Φk(u). The series X+

k (u, λ), X
−
k (u, λ), and

Φk(u) satisfy the relations of the elliptic quantum group of Gautam-Toledano
Laredo [9].

4 Relation with the Affine Grassmannian

In this section, we explain one unexpected feature of the sheafified elliptic quantum
group, namely, its relation with the global loop Grassmannians over an elliptic curve
E. We assume the quiverQ=(I, H) is of type ADE in this section.

We collect some facts from [19, 20]. Let C be a curve. An I -colored local space
Z over C, defined in [19, Section 2], see also [20, Section 4.1], is a space Z →
HC×I over the I -colored Hilbert scheme of points of C, together with a consistent
system of isomorphisms

ZD × ZD′ → ZD#D′ , forD,D′ ∈ HC×I with D ∩D′ = ∅.

Similarly, for a coherent sheaf F on HC×I , a locality structure of F on HC×I is a
compatible system of identifications

ιD,D′ : FD � FD′ ∼= FD#D′ , forD,D′ ∈ HC×I with D ∩D′ = ∅.

An example of local spaces is the zastava space Z → HC×I , recollected in
detail in [19, Section 3] and [20, Section 4.2.3]. Here C is a smooth curve. In
Mirković (personal communication), a modular description of Z is given along the
lines of Drinfeld’s compactification. Let G be the semisimple simply-connected
group associated to Q, with the choice of opposite Borel subgroups B = T N

and B− = T N− with the joint Cartan subgroup T . Consider the Drinfeld’s
compactification YG of a point:

YG = G\[(G/N+)aff × (G/N−)aff]/T .

The zastava space Z → HC×I for G is defined as the moduli of generic maps from
C to YG. Gluing the zastava spaces, one get a loop Grassmannian Gr as a local space
over HC×I , which is a refined version of the Beilinson-Drinfeld Grassmannian, see
[19, Section 3] and [20, Section 4.2.3].

Fix a point c ∈ C, and a dimension vector v ∈ N
I , let [c] ∈ C(v) ⊆ HC×I be

the special divisor supported on {c}. The fiber Z[c] is the Mirković-Vilonen scheme
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associated to the root vector v, i.e., the intersection of closures of certain semi-
infinite orbits in GC((z))/GC[[z]] [19, Section 3].

The maximal torus T ⊂ G acts on Z. There is a certain component in a torus-
fixed loci (Z)T , which gives a section HC×I ⊂ (Z)T . We denote this component by
(Z)T ◦. The tautological line bundle OGr (1)|ZT ◦ has a natural locality structure, and
is described in [19, Theorem 3.1].

We now take the curveC to be the elliptic curveE. Let Gr → HE×I be the global
loop Grassmannian over HE×I . The following theorem relies on the description of
the local line bundle on HC×I in [19] and [20, Section 4.2.1].

Theorem C ([26] Yang-Zhao)

1. The classical limit Psph(Ell,Q)|h̄=0 is isomorphic to OGr (−1)|ZT ◦ as sheaves on
HE×I .

2. The Hall multiplication " on Psph(Ell,Q)|h̄=0 is equivalent to the locality
structure on OGr (1)|ZT ◦ .

Remark 5

1. Theorem C is true when the curve E is replaced by C (and C
∗), while the

corresponding cohomological Hall algebra is modified to Psph(CH,Q)|h̄=0
(and Psph(K,Q)|h̄=0 respectively). The sheaf Psph(Ell,Q) deforms the local
line bundle OGr (−1)|ZT ◦ . In the classification of local line bundles in [19],
OGr (1)|ZT ◦ is characterized by certain diagonal divisor of HE×I [20, Section
4.2.1]. As a consequence of Theorem C, the shuffle formula of Psph(Ell,Q) gives
the h̄-shifting of the diagonal divisor of HE×I that appears in OGr (1)|ZT ◦ .

2. When the base is HC×I , and cohomology theory is the Borel-Moore homology
HBM, Theorem C (1) has a similar flavour as [4, Theorem 3.1]. Here, we only
consider Psph(HBM,Q)|h̄=0 and OGr (−1)|ZT ◦ as sheaves of abelian groups. By
Theorem A, (Psph(HBM,Q), ") is isomorphic to the positive part of the Yangian,
which is in turn related to OGr (−1)|ZT ◦→HC×I by Theorem C.
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