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Chapter 2
Infection Based Gastric Cancer

Lydia E. Wroblewski and Richard M. Peek Jr.

Abstract Gastric cancer is one of the leading causes of cancer-related death in the 
world. Helicobacter pylori is currently the strongest known risk factor for this dis-
ease and is classified as a type I carcinogen by the World Health Organization. 
Many factors play a role in the progression towards gastric cancer including, but not 
limited to, bacterial virulence factors, host genetics, diet, and the gastric microbiota. 
The stomach, once thought to be a sterile environment, is now known to host a rich 
microbiota, which is unique to each individual. A complex interplay exists between 
H. pylori and the gastric microbiota which may one day become a target for person-
alized medicine to attenuate the progression towards gastric cancer. In this chapter, 
we discuss how the infectious bacterium, H. pylori, interacts with its host to augment 
the risk of developing gastric cancer.
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2.1  Infection-Associated Cancers

Infectious agents are major contributors to the development of human cancer and 
collectively they impose a large burden on global health. In 2008, two million of an 
estimated 12.7 million new cases of cancer were ascribed to infections. Perhaps not 
surprisingly, 80% of these infection-based cancers occurred in less developed 
regions of the world, which is likely attributable to a inadequate preventative treat-
ment of infectious agents [1].

Francis Peyton Rous first noted the association between infection with specific 
pathogens and cancer over a century ago in 1911 when he demonstrated that a 
malignant tumor (a sarcoma in chickens) was transmissible. This is now known as 
the Rous sarcoma virus and its pathogenesis is still widely studied over 100 years 
from its discovery [2]. In 2012, the International Agency for Research on Cancer 
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(IARC) classified eleven infectious agents as harboring carcinogenic potential for 
humans [1, 3]. These include H. pylori, hepatitis B virus (HBV), hepatitis C virus 
(HCV), Opisthorchis viverrini, Clonorchis sinensis, human papillomavirus (HPV), 
Epstein-Barr virus (EBV), human T-cell lymphotropic virus type 1 (HTLV-1), 
Merkel Cell polyoma virus (MCPv),  human herpes virus type 8 (HHV-8; also 
known as Kaposi’s sarcoma herpes virus KSHV), and Schistosoma haematobium. 
The cancers these infectious agents are associated with include, but are not limited 
to, gastric, liver, cervical and bladder, and are summarized in Table 2.1.

One of the primary infectious agents deemed a class I carcinogen is H. pylori. 
This single bacterium accounts for a staggering 32.5% of the two million new cancer 
cases attributable to infections worldwide occurring in 2008 [1]. To date, H. pylori is 
the only bacterium that is recognized as causally being associated with malignant 
neoplasia in humans and it confers an attributable risk of approximately 89% for 
non-cardia gastric carcinoma which translates to around 780,000 new gastric cancer 
cases, emphasizing the role of H. pylori as a major cause of cancer [4].

2.2  Gastric Cancer

Gastric cancer was the leading cause of cancer-related death in the developed world 
until the mid-1930s and despite a significant decrease in incidence rates, gastric 
cancer is still the third leading cause of cancer-related death in the world, resulting 
in close to 740,000 deaths in 2008. Within the United States the 5-year survival rate 
is surprisingly low, at less than 15% [1, 5–7]; such high mortality rates are primarily 
thought to be due to late-stage detection.

The incidence and mortality rates of gastric adenocarcinoma in developed coun-
tries have declined significantly over the past century. This is primarily attributed to 
a decline in intestinal-type adenocarcinomas in the distal stomach and may be 
related to decreased transmission of H. pylori in childhood following improved 

Table 2.1 Group 1 infectious agents and the major cancer sites they are associated with

Cancer site Infectious agent

Stomach H. pylori, EBV
Liver HBC, HCV, Opisthorchis viverrini, Clonorchis sinensis

Cervix HPV
Anogenital HPV
Nasopharynx EBV
Oropharynx HPV
Kaposi’s sarcoma Human herpes virus type 8
Non-Hodgkin lymphoma H. pylori, EBV, HCV, human T-cell lymphotropic virus 

type 1
Hodgkin’s lymphoma EBV
Bladder Schistosoma haematobium
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hygiene and smaller family units and/or changes in food preservation and storage 
[6, 8, 9]. Distal gastric adenocarcinomas are strongly associated with H. pylori 
infection, but the causal relationship between H. pylori and gastric cardia adenocar-
cinomas is less well defined. Conversely, the incidence rates of cancers localized to 
the cardia, as well as Barrett’s esophagus and adenocarcinomas originating in the 
gastroesophageal junction, have been increasing in both the United States and 
Europe. This increase is seen predominately in white males and to date the reasons 
for this increase are unclear [9–11].

The Cancer Genome Atlas (TCGA) research network proposed a new molecular 
classification whereby gastric cancer is divided into four subtypes and EBV- associated 
gastric tumors have been classified as a newly distinct subtype of gastric cancer; EBV-
positive tumors [12]. The three other subtypes of gastric cancer are termed microsat-
ellite-instable tumors, genomically stable tumors, and tumors with chromosomal 
instability. EBV-positive tumors contain PIK3CA mutations, DNA hypermethylation, 
and increased expression of JAK2, CD274, and PDCD1LG2 [12].

Adenocarcinoma is the most common type of cancer affecting the stomach, 
but lymphoma and leiomyosarcoma may also occur. Distinct variants of gastric 
adenocarcinoma can be separated into two types which may be differentiated 
histologically; intestinal-type adenocarcinoma, which progresses through a 
series of well-defined histological steps and diffuse-type gastric cancer, which 
consists of individually infiltrating neoplastic cells that do not form glandular 
structures [13].

The strongest identified risk factor for developing gastric adenocarcinoma is 
chronic infection with H. pylori and whilst most human gastric cancers arise follow-
ing long-term infection with H. pylori, emerging data suggest that other compo-
nents of the gastric microbiota may also influence gastric disease progression (see 
Sect. 2.3.5). The reported degree to which H. pylori increases the risk for gastric 
adenocarcinoma varies between studies and is likely dependent on several factors 
including patient age, selection of controls, and the site and stage of gastric cancer. 
In one study, infection with H. pylori was associated with 6.2% of all gastric cancers 
[4]. In another study, the combined incidence of intestinal and diffuse-type gastric 
cancer in H. pylori-infected individuals was reported to be approximately 3%, com-
pared with 0% in uninfected persons [14]. As our knowledge currently stands, it is 
not possible to predict which infected individuals will develop gastric cancer and 
what form this will take.

2.3  Factors That Influence Gastric Carcinogenesis

2.3.1  Host Genetics

The combination of a more virulent strain of H. pylori infecting genetically suscep-
tible hosts further increases the risk of developing gastric cancer. For example, 
infection with H. pylori increases gastric mucosal expression of the pro- inflammatory 
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cytokine, IL-1ß. Individuals who possess polymorphisms in IL-1ß that culminate in 
high expression levels are at a significantly higher risk of developing distal gastric 
adenocarcinoma compared to individuals with genotypes that limit IL-1ß expres-
sion, but only when colonized with H. pylori [15]. Further, the combination of colo-
nization with H. pylori cagA+ or vacA s1-type strains (discussed further in H. pylori 
section  2.3.3) in conjunction with high-expressing IL-1ß polymorphisms on the 
host side, confers a 25- or 87-fold increase in risk, respectively, for developing gas-
tric cancer compared to uninfected individuals [16]. Polymorphisms that increase 
expression of the pro-inflammatory cytokines TNF-α and Il-10 are also associated 
with an augmentation in risk of developing gastric cancer and its precursors in the 
presence of H. pylori [17].

2.3.2  The Environment

Case-control studies have identified clear associations between diet and the risk of 
developing gastric cancer. Diets rich in fruits and vegetables and therefore antioxi-
dants are protective against gastric cancer. Conversely, diets containing a high 
amount of salted, pickled, smoked or poorly preserved foods, diets rich in meat 
which induces production of nitrosamines, and those with low fruit and vegetable 
content are most commonly associated with an increased risk for developing gastric 
cancer [18–24].

When H. pylori is present, high dietary salt intake and low iron levels are highly 
associated with an increased risk for developing gastric cancer [25–27]. In animal 
models, high salt diets have been reported to increase expression of the H. pylori 
virulence factors CagA, VacA and UreA [28–30]. Similarly, iron deficiency in H. 
pylori-infected persons is also thought to accelerate the development of carcinogen-
esis by increasing the virulence potential of H. pylori [26].

2.3.3  Infectious Agents

2.3.3.1  H. pylori

H. pylori is a epsilonproteobacterium and a member of the Helicobacteraceae fam-
ily that selectively colonizes gastric epithelium. H. pylori has colonized humans for 
around 60,000 years; infection is usually acquired in childhood and in the absence 
of combined antibiotic therapy, can persist for the life time of the host [31]. This 
long standing relationship between H. pylori and its human host, combined with 
approximately half of the world’s population currently being colonized with H. 
pylori has driven many investigators to try and define specific mechanisms through 
which H. pylori interacts with humans and induces disease [32].
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2.3.3.2  H. pylori Virulence Factors

H. pylori virulence factors play a key role in determining the risk of developing 
gastric cancer. One H. pylori pathogenic constituent that is linked to carcinogenicity 
is the cag pathogenicity island (cagPAI), which contains a cluster of genes encoding 
proteins that form a type IV bacterial secretion system (T4SS). The cag T4SS trans-
locates CagA from adherent H. pylori across the bacterial and epithelial membranes 
into host cells. Around 60% of H. pylori isolates from Western countries contain the 
cagPAI and almost all strains from East Asia are positive for cagPAI [33–36]. 
Infection with cagA-positive H. pylori strains has been associated with developing 
intestinal and diffuse gastric adenocarcinoma at 2–3 times the frequency of those 
infected with H. pylori strains that are cagA-negative [37, 38].

CagA exists in alternative structures and contains different glutamate-proline- 
isoleucine-tyrosine-alanine (EPIYA) motifs, which may also be used as indicators 
of pathologic outcome [39–41]. Four different EPIYA motifs (EPIYA-A, -B, -C, or -D) 
have been identified [39–41]. EPIYA-A and EPIYA-B motifs are found in most 
strains, while the EPIYA-C motif is predominately found in Western strains and the 
number of EPIYA-C sites is associated with an elevated risk of developing gastric 
cancer [42]. Strains that contain the EPIYA-D motif are typically East Asian strains 
and are associated with increased pathogenesis compared with strains harboring 
C-type CagA motifs (Fig. 2.1) [39, 43]. Following translocation, CagA is tyrosine 
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Fig. 2.1 Schematic representation of CagA EPIYA motifs. EPIYA motifs are sites of tyrosine 
phosphorylation. EPIYA-D motifs are commonly found in East Asian CagA sequences, EPIYA-C 
motifs are generally found in Western CagA sequences and EPIYA-A and EPIYA-B motifs are 
found in most strains. EPIYA motifs can be used to predict pathologic outcome, with EPIYA-D 
motifs associated with increased pathogenesis compared to a single EPIYA-C motif
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phosphorylated at EPIYA motifs and can induce cellular response with carcinogenic 
potential. Non-phosphorylated CagA also exerts effects within host cells that con-
tribute to pathogenesis. Unmodified CagA targets many cellular effectors including 
apical-junctional components, the hepatocyte growth factor receptor c-Met, the 
phospholipase PLC-γ, the adaptor protein Grb2, and the kinase PAR1b/MARK2, 
leading to pro-inflammatory and mitogenic responses, disruption of cell-cell junc-
tions, and loss of cellular polarity [44–51]. Independent of CagA, H. pylori can also 
induce mislocalization of the tight junction proteins occludin and claudin-7 and 
alter barrier function [52, 53].

Another widely studied H. pylori virulence factor is the multifunctional cyto-
toxin VacA which causes vacuolation, altered plasma and mitochondrial membrane 
permeability, autophagy, and apoptosis [54, 55]. The vacA gene is found in all 
strains of H. pylori, and contains a number of variable loci in the 5′ region of the 
gene termed s, i and m regions. This 5′ terminus encodes the signal sequence and 
amino-terminus of the secreted toxin (allele types s1a, s1b, s1c, or s2), an intermedi-
ate region (allele types i1 or i2), and a mid-region (allele types m1 or m2) [56, 57]. 
Strains containing type s1, i1, or m1 alleles are highly associated with gastric cancer 
[56, 58, 59] and are associated with a greater risk of developing gastric cancer than 
cag status [57, 60, 61]. VacA and CagA may also counter-regulate each other’s 
actions to manipulate host cell responses [62–64].

Blood group antigen binding adhesin (BabA) and Sialic acid-binding adhesin 
(SabA) are two other important H. pylori constituents that have been linked to the 
development of gastric cancer [65]. BabA is an outer membrane protein that binds 
to fucosylated Lewisb antigen (Leb) on the surface of gastric epithelial cells [65–68]. 
The presence of babA2, the gene encoding BabA, is associated with gastric cancer 
[65], and BabA expression is linked with adenocarcinoma of the gastric cardia [69]. 
The combined effect of BabA with cagA and vacA s1 alleles is strongly linked to a 
more severe gastric disease outcome [65, 70]. Sialyl-Lewisx is expressed in the gas-
tric epithelium and expression is increased by chronic inflammation [71]. SabA 
binds to sialyl-Lewisx antigen, suggesting that H. pylori may modulate sialyl-Lewisx 
in the host to enhance attachment and colonization [72].

2.3.4  Epstein-Barr Virus (EBV)

EBV infection is another pathogen that is associated with gastric cancers. EBV- 
positive tumors comprise almost 10% of gastric cancers, are associated with exten-
sive gene methylation, predominately affect males, and tumors are generally located 
in the cardia or corpus, and are less frequently found in the antrum [73, 74]. EBV 
and H. pylori may act synergistically in the gastric epithelium to promote the pro-
gression towards gastric cancer and the majority of EBV-positive individuals are 
also co-positive for H. pylori [75]. A case-control study has shown that the combi-
nation of EBV and H. pylori induces severe inflammation and, in this way, aug-
ments the risk of developing intestinal type gastric cancer [76]. A meta-analysis 
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with meta-regression to control for heterogeneity across studies also supported the 
notion that infection with EBV increases the risk of developing gastric cancer [77]. 
In a recent mechanistic study, EBV was shown to methylate the phosphatase SHP1 
and thereby prevent SHP1 from dephosphorylating CagA.  This perturbation 
increases the oncogenic activity of CagA and may increase the synergistic effect of 
EBV and H. pylori [78].

It has been shown that patients who present with the highest levels of antibodies 
against EBV and H. pylori also express the highest levels of immune cell infiltra-
tion, and are therefore, at increased risk for developing more severe inflammation. 
In a recent cross-sectional study of 127 patients with gastric cancer, the presence of 
elevated serum levels of the cytokine interferon-gamma (IFN-γ) has been associated 
with EBV reactivation and intestinal gastric cancer. However, IFN-γ can exert both 
pro-inflammatory and anti-inflammatory effects, and further studies need to be con-
ducted to determine if IFN-γ is acting to repress EBV activity or is augmenting 
EBV and H. pylori-induced gastric cancer progression [79].

2.3.5  The Human Gastric Microbiome

The gut microbiota is essential to maintain host physiology through its integral role 
in cellular metabolism, nutrient absorption and immune defense against invading 
pathogens. When the microbiota is altered, homeostasis is also disrupted, and dis-
eases may develop. Historically, research has focused on a single organism causing 
disease, for example H. pylori and gastric cancer; however, a rapid burst in molecu-
lar technologies such as next-generation sequencing in combination with computa-
tional analysis and new and well-designed animal models have transformed our 
understanding of how the microbiota is associated with disease states. A diverse 
bacterial community is found within the stomach with colonization densities 
reported to range from between 101 and 103 colony forming units/g [80]. Emerging 
data strongly suggest that the gastric microbiota affects gastric homeostasis in com-
bination with H. pylori infection [81].

The gastric microbiota in H. pylori-negative individuals is highly diverse. 
Through one sequencing study, 128 phylotypes were identified within eight bacte-
rial phyla; and the five most abundant phyla were Proteobacteria, Firmicutes, 
Bacteroidetes, Fusobacteria, and Actinobacteria [82, 83]. In an independent study 
using tagged 454 pyrosequencing analysis, 262 phylotypes representing 13 phyla 
were identified in gastric biopsies from H. pylori-negative persons [84]. Even 
though the results of the analysis vary depending on the sequencing approach and 
sample preparation, in addition to the large variability between the microbiota in 
different individuals, it is clear that the gastric microbiota is highly diverse [82, 84]. 
In stark contrast, in H. pylori infected individuals, H. pylori was found to be the 
single most abundant phylotype present in the stomach and accounts for between 
72% and 97% of all sequence reads [82, 84, 85].
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Currently there are very few studies that have examined differences in microbial 
composition and outcomes stratified by disease. Atrophic gastritis is a key step in 
the histologic progression to intestinal-type gastric cancer and predisposes the 
stomach to elevated pH [13]. The hypochlorhydric environment found in atrophic 
gastritis permits colonization of other bacteria that may enter the stomach and may 
further promote the progression towards gastric cancer. In one study, the microbiota 
of patients with gastric cancer was found to be equally as complex as the microbiota 
of dysplastic patients with five predominant bacterial phyla identified in both 
groups; Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria. 
H. pylori was detected in relatively low abundance and the microbiota was instead 
dominated by species of Streptococcus, Lactobacillus, Veillonella, and Prevotella 
[86]. A more recent study using pyrosequencing found distinct differences when the 
gastric microbiota was compared in different disease stages from chronic gastritis, 
to intestinal metaplasia and gastric cancer. In gastric cancer, the Bacilli class and 
Streptococcaceae family were significantly increased compared to what was found 
in chronic gastritis and intestinal metaplasia, where the Epsilonproteobacteria class 
and Helicobacteraceae family were both decreased [87]. In a recent large study, the 
gastric microbiota was compared in chronic gastritis and gastric cancer and signifi-
cant differences were identified between the two groups. Specifically, the microbi-
ota in gastric cancer had decreased diversity, reduced Helicobacter abundance and 
over-abundance of Citrobacter, Clostridium, Lactobacillus, Achromobacter and 
Rhodococcus, which are usually found in the intestinal microbiota [88].

These studies are intriguing and demonstrate associations between the human 
gastric microbiota and H. pylori with gastric disease, however, they are not able to 
differentiate between cause and effect. To start to address whether changes in the 
gastric microbiota play a direct role in the development of gastric cancer, or are 
secondary to the changing gastric environment, further detailed molecular studies to 
define the composition of the gastric microbiota in well-characterized human popu-
lations, with and without gastric cancer will need to be conducted. As of now, infec-
tion with H. pylori is the strongest known risk factor for developing gastric cancer, 
however, a large longitudinal human study suggests that other components of the 
gastric microbiota may influence gastric disease progression. In a 15-year follow-up 
study of 3365 subjects, antibiotic treatment of H. pylori infection significantly 
reduced the incidence of gastric cancer despite less than half of the treated individu-
als remaining free of H. pylori infection. The incidence of gastric cancer was 
decreased to a similar level in individuals that remained free of H. pylori over 
15 years versus those where eradication was not successful, suggesting that treat-
ment with antibiotics may modify the microbiota in such a way that the develop-
ment of gastric cancer is attenuated despite the presence of H. pylori [89]. Along 
similar lines, computational analysis of bacterial DNA within known cancer 
genomes determined that gastric adenocarcinoma contained the second highest 
number of bacterial DNA sequences. Interestingly, this bacterial DNA was not H. 
pylori, but was instead, Pseudomonas [90].
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2.3.6  The Rodent Gastric Microbiome

Animal models greatly increase our ability to establish causality. Inbred mice with 
defined genotypes are frequently used as a model of gastric carcinogenesis and 
transgenic mice can be generated to allow for in-depth analyses of host responses.

Similar to in the human stomach, the phylotypes with the most members in the 
mouse gastric environment are Bacteroidetes, Firmicutes, Proteobacteria, and 
Actinobacteria [91]. Similar to in humans, H. pylori induces chronic atrophic gas-
tritis in the mouse gastric mucosa; however, Acinetobacter lwoffii in the absence of 
H. pylori can also induce gastric inflammation and metaplastic changes comparable 
to that induced by H. pylori [92]. Also, the extent to which inflammation is induced 
by H. pylori can vary depending on the composition of the mouse gastric microbiota 
with different ratios of Lactobacillus species ASF360 and ASF361 altering the out-
come for the inflammation and injury responses when mice were subsequently chal-
lenged with H. pylori [91].

Gnotobiotic mice provide a powerful model in which the microbiota can be care-
fully controlled by incremental addition of individual or collections of microorgan-
isms. INS-GAS mice are transgenic hypergastrinemic mice that, in the presence of 
a complex gastric microbiota, spontaneously develop gastric cancer [93, 94]. 
However, development of gastric cancer was delayed by over a year in gnotobiotic 
INS-GAS mice [95]. In the context of H. pylori infection, gnotobiotic mice chal-
lenged with H. pylori developed less severe lesions and were slower to develop 
gastric cancer than H. pylori-infected INS-GAS mice with a complex microbiota 
[95]. Subsequent work has shown that a microbiota containing only three species of 
commensal bacteria (ASF356 Clostridium species, ASF361 Lactobacillus murinus 
and ASF519 Bacteroides species) was sufficient to promote gastric cancer in H. 
pylori-infected INS-GAS mice to the same extent as what was seen in H. pylori- 
infected INS-GAS mice with a complex microbiota [96].

Extragastric constituents of the microbiota may also influence outcomes of H. 
pylori-induced gastric cancer in mice. Co-infection of mice with the intestinal 
Helicobacter species H. bilis or H. muridarum significantly decreased H. pylori- 
induced gastric disease by altering T helper 1-type cell responses [97, 98]. However, 
pre-existing infection with H. hepaticus increased H. pylori-induced gastric disease 
through a T helper 17-type cell response to the combined infection [97]. Helminth 
infections may also decrease the degree to which H. pylori-induces changes in the 
microbiota of mice [99].

Although great advances are being made in understanding the complex interplay 
between the microbiota and H. pylori in the development of gastric cancer in animal 
models, rodent models have several limitations. Among other problems, rodents are 
not naturally infected with H. pylori and need to be experimentally infected with 
rodent adapted strains. Also, the topography of H. pylori colonization in rodent 
stomachs does not precisely reflect that of humans [81]. An exciting animal model 
for investigating interactions between H. pylori and the gastric microbiota is the 
rhesus monkey (Macaca mulatta). Rhesus monkeys are naturally infected early in 
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life with H. pylori strains that are indistinguishable from human strains. In addition, 
the rhesus monkey stomach is similar to humans, in contrast to rodents, which pos-
sess a forestomach, and gastric biopsies can be obtained over time by endoscopy 
[100]. Similar to humans, Helicobacter species formed the majority of the gastric 
microbiota when present in rhesus macaques [100].

2.4  Conclusions

Gastric cancer culminates in a high number of cancer-related deaths throughout the 
world and understanding the complex interplay between host factors, H. pylori, and 
the gastric microbiota will be critical to identify individuals who are most at risk of 
developing gastric cancer (Fig. 2.2). There has been some success in generating 
a H. pylori vaccine in H. pylori naive children [101], but eradication of H. pylori 
using antibiotics is not always successful and contributes to the global problem of 
bacterial resistance. Moreover, there is mounting evidence to suggest H. pylori may 
be beneficial to a large proportion of infected individuals who may be protected 
against esophageal diseases, gastric reflux disease and some allergic and autoim-
mune diseases. Thus, it is increasingly important to identify the 1–3% of individuals 
colonized by H. pylori that will develop gastric cancer and specifically test and treat 
these persons.

In the future, treatment for gastric cancer may soon involve personalized medi-
cine targeting elements such as the gastric microbiota. Indeed, pioneering work 
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recently published has demonstrated that cancer patients have a better therapeutic 
outcome with PD-1 inhibitor immunotherapy when their gut microbiome is com-
plex and intact compared to individuals who had received antibiotics that disrupted 
the microbiome around the time of receiving immunotherapy [102]. The hope is that 
we may be able to identify groups of bacterial taxa present in the stomach that are 
predictive of gastric disease outcome. It may also be possible to manipulate an indi-
vidual’s specific microbiota to produce more favorable outcomes following infec-
tion with H. pylori. Exploiting the microbiome to improve gastric cancer outcomes 
will be challenging given the large amount of variation between individuals and 
detailed analyses of the human gastric microbiome still need to be completed. 
Furthermore, it will be critical to determine cause and effect outcomes when target-
ing the gastric microbiome to alter disease outcome [103]. Ultimately, understand-
ing the dynamics of the microbiota, along with host genetic and dietary factors, and 
H. pylori virulence factors will be essential to devise a plan to treat patients with 
precancerous gastric disease.
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