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1 Introduction

Referring to the water resources engineering literature, it is observed that artificial
intelligence (AI) methods are applied as versatile decision support tools to solve
wide range of associated problems. They were typically implemented to attain the
cause-effect relationships between nonlinear hydro-environmental processes (i.e.,
system identification) and time series modeling hydro-meteorological variables
that often cannot be modeled by classic statistical models such as autoregressive
integrated moving average with exogenous input (ARIMAX). A few studies are also
available using AI methods as system identifiers of hydrological processes (e.g., [3,
4, 10, 11, 36, 38, 57]).

Most of the hydrological processes are known as highly nonlinear process that
cannot be expressed in simple or complex mathematical forms [48]. To address
such difficulty, AI-based modeling can be more effective than the probabilistic
or distributed (physically based) models mainly because of (i) complex underling
systems of the hydrological processes, (ii) unknown factors/parameters involved in
the processes, (iii) and spatiotemporal variation of the processes and their forcing
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factors. Some of the AI methods applied in hydrological studies include (but not
limited to) artificial neural networks (ANNs, e.g., [1, 34, 35]), fuzzy logic (FL, e.g.,
[36, 45]), support vector regression (SVR, e.g., [8, 12]), and genetic programming
(GP, e.g., [11, 27]).

ANNs, known as the universal approximator, have been widely used for mod-
eling nonlinear hydrological processes over the past decades [5]. In general, the
advantages of ANN models in comparison with other statistical and conceptual
methods can be categorized as [39]:

• Regarding to the black box feature of ANN models, the use of these models does
not require prior knowledge of the process.

• Due to the application of a nonlinear filter, known as the activation function on
neurons, ANN models can handle the nonlinear properties of the process.

• ANN models have the ability to apply multivariate inputs with different charac-
teristics.

The ability of ANN for linking input and output variables in complex hydrologi-
cal systems without the need of prior knowledge about the nature of the process has
led to a huge leap in the use of ANN models in hydrological simulations [2, 5, 13,
14, 22, 23, 32, 42].

In spite of popularity and capability of nonlinear modeling, ANNs suffer from
some deficiencies when the interested hydrological process includes inadequate
observed samples or the associated time series comprises high rate of non-stationary
and seasonal variations [39]. To achieve reliable models and increase the accuracy
of results, a number of data preprocessing approaches such as wavelet transform,
season algorithm, singular spectrum analysis, and others have been developed and
used in the hydrological modeling issues [8, 12, 39, 49]. The effectiveness of
wavelet-based de-noising and multi-resolution analysis in optimizing AI models
has been recently introduced and widely employed by the hydrologists to simulate
different components of the hydrologic cycle such as rainfall-runoff, river flow,
groundwater, precipitation, and sedimentation [41]. For example, Kisi and Cimen
[26] examined the efficiency of wavelet-SVR to one-day-ahead rainfall predicting
in Turkey and demonstrated that the hybrid model can increase forecasting precision
and performs superior than the stand-alone SVR and ANN models. Wavelet-based
data preprocessing approach has also been employed to extract the seasonal features
of the hydrological processes by decomposing the main time series into multi-
scale sub-series, each representing a specific seasonal scale [3, 28]. Such studies
showed that the data preprocessing by wavelet transform may improve the modeling
efficiency over different time scales (both short and long terms). Corresponding
improvement was found to be more sensible in large time scales such as seasonal or
monthly, because in most of hydrological process, the seasonal (periodic) patterns
in the large-scale time series are more dominant than that of the small-scale time
series. In other words, the autoregressive property is more remarkable in small-scale
hydrological time series (e.g., daily), whereas the seasonal specification is more
highlighted in large-scale time series (e.g., monthly) (see [26, 49, 53]). However,
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it should be noted that such wavelet-based data processing scheme should be
conducted within an external unit apart from the ANN’s framework.

2 Emotion in ANNs

Fellous is probably the first researcher who stressed on the need for emotions in AI
systems describing that the emotions must be dynamically interacted with together
[18]. Emotion tends to be used in medical terminology for what a person is feeling
at a given moment. Examples for emotion include joy, sadness, anger, fear, disgust,
surprise, pride, shame, regret, and elation. The first six emotions are typically
considered as the basic emotions, and the last four are treated as elaborations or
specializations of them [6]. More recent descriptions either emphasized the external
stimuli that trigger emotion or the internal responses involved in the emotional
state, when in fact emotion includes both of those things and much more [25].
Perlovsky [43] defines emotion as the exaggeratedly expressive communications
related to feelings. Love, hate, courage, fear, joy, sadness, pleasure, and disgust can
all be described in both mental and physical terms. Emotion is the realm where
thought and physiology are inextricably entwined, and where the self is inseparable
from individual perceptions of value and judgment toward others and ourselves
[6]. Emotions are sometimes considered as the antithesis of reason. A distinctive
and challenging fact about human beings is a potential for both opposition and
entanglement between will, emotion, and reason [25]. According to Khashman
[25] researchers and scientists studied the role of emotions in artificial intelligence
(AI) from a variety of viewpoints: to develop agents and robots that interact more
gracefully with humans, to develop systems that use the analog of emotions to
aid their own reasoning, or to create agents or robots that more closely model
human emotional interactions and learning [29]. Although computers do not have
physiologies like humans, information signals and regulatory signals travel within
them. According to Picard [44], “There will be functions in an intelligent complex
adaptive system, that have to respond to unpredictable, complex information that
play the role that emotions play in people. Therefore, for computers to respond
to complex affective signals in a real-time way, they will need something like the
systems we have, which we call emotions.” Such computers will have the same
emotional functionality, but not the same emotional mechanisms as human emotions
[25, 44].

Recent studies have shown that scientists attempt to integrate the artificial emo-
tion into the ANN in order to solve complex engineering problems via emotional
ANN (EANN) models. From the biological standpoint, the mood and emotion of
animal due to the activity of hormone glands can affect neurophysiological response
of the animal, sometimes by providing different actions for a similar task at different
moods [37]. Similarly for an EANN, there will be a feedback loop between the
hormonal and neural systems; each is influenced by the other which in turn, the
learning ability of the network is relatively enhanced. Over the past decades, a few
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kinds of EANNs have been developed and suggested. They have their own merits
and features. For instance, Moren [33] proposed brain emotional learning (BEL)-
based ANN inspired by some biological evidences that an emotional stimulus (such
as fear) can be processed more quickly than a regular stimulus through available
shorter routes in the emotional brain to act fast when the logical mind does not have
enough time for processing an external situation (such as danger).

BEL networks have been efficiently used by Rahman et al. [46] to control interior
permanent magnet synchronous motor drive. Khashman [25] considered emotional
anxiety and confidence factors to modify back propagation (BP) learning algorithm
of the multilayer perceptron (MLP) networks. The author developed emotional
back propagation (EmBP) neural network in which anxiety factor was initialized
according to the pattern of input samples, and then it was modified through the
process of iteration. In a contrary manner, confidence factor was related to the
anxiety factor as well as the network output at the first iteration. In the beginning
of the network training, the anxiety and confidence levels were found high and
low, respectively, but they received optimal values after a few iterations. Within
the training procedure of EmBP, assigning a high value to the anxiety factor forces
the network to have less attention to the derivative of the errors (error gradient) in
the network’s output. However the rise of confidence factor (due to stress reduction)
dictates the network to pay more heed to the alteration of the weights in the previous
training step. In fact, the procedure was similar to the magnification of inertia term
to moderate the alteration degree from a pattern to the other as the learning iteration
is progressed [37]. In the studies by Lotfi and Akbarzadeh [30, 31], BEL, EmBP, and
some other emotional concepts were conjugated in order to develop some EANNs
for clustering, pattern recognition, and predication tasks. From the mathematical
perspective and apart from the biological concepts, with regard to the conventional
ANN, an EANN includes a few extra parameters which are dynamically interacted
with inputs, outputs, and statistical weights of the network [37]. Returning to
the hydro-environmental studies, Nourani [37] demonstrated the first application
of EANN in which the author proposed the revised BP algorithm to train MLP
networks by incorporating emotional anxiety concept. The new algorithm was
used to solve streamflow forecasting problem when there is lack of long-observed
training time series. Details of this pioneer study are described in the following
section after a brief overview on the structure of EANN and its difference with
classic ANN.

3 Difference Between EANN and Simple ANN

Feed-forward neural networks (FFNN) are of the most popular ANN structures
extensively applied to model different components of the hydrologic cycle [4, 13].
A FFNN with three layers of input, output, and hidden, trained by BP algorithm,
has shown appropriate efficiency in nonlinear hydrological modeling tasks [5, 20].
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Figure 1 shows a schematic of a three-layered FFNN, and the explicit equation to
calculate the target of such FFNN can be written as [40]:

ŷj = fj

[

m
∑

h=1

wjh × fh

(

n
∑

i=1

whixi + whb

)

+ wjb

]

(1)

where i, h, j, b, and w indicate, respectively, neurons of the input, hidden, and output
layers and bias and applied weight (or bias) by the neuron; fh and fj show activation
functions of hidden layer and output layer, respectively; xi, n, and m represent,
respectively, input value, input, and hidden neuron numbers; and y and ŷj denote
the observed and calculated target values, respectively. In the calibration phase of
the model, the values of hidden and output layers and corresponding weights could
be varied and calibrated.

On the other hand, an EANN model is the improved version of a conventional
ANN including an emotional system which emits artificial hormones to modulate
the operation of each neuron, and in a feedback loop, the hormonal parameters are
also adjusted by inputs and output of the neuron. The schematic of an inner neuron
from FFNN and EANN has been depicted in Figs. 1 and 2, respectively.

By comparing these two neurons, it is deduced that in contrast to the FFNN
in which the information flows only in the forward direction, a neuron of EANN
can reversibly get and give information from inputs and outputs and also can
provide hormones (e.g., Ha, Hb, and Hc). These hormones as dynamic coefficients
are initialized according to the pattern of input (and target) samples and then are
modified through the training iterations. Through training phase they can impact
on all components of the neuron (i.e., weights, I; net function, II; and activation

Fig. 1 Schematic of a three layer FFNN model
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Fig. 2 A node of EANN and
emotional unit [37]

function, III, in Fig. 2). In Fig. 2 the solid and dotted lines, respectively, show neural
and hormonal routes of information. The output of ith neuron in an EANN with three
hormonal glands of Ha, Hb, and Hc can be computed as [37]:

Yi =
(

γi +
∑

h

∂i,hHh

)

︸ ︷︷ ︸

1

× f

⎛

⎝

∑

j

⎡

⎣

(

βi +
∑

h

χi,hHh

)

︸ ︷︷ ︸

2

×
(

αi,j +
∑

h

�i,j,kHh

)

Xi,j

︸ ︷︷ ︸

3

)

+
(

μi +
∑

h

ψi,hHh

)

])

︸ ︷︷ ︸

4

(2)

where the artificial hormones are computed as [37]:

Hh =
∑

i

Hi.h (h = a, b, c) (3)

In Eq. 2, term (1) shows the imposed weight to the activation function (f ). It
includes the statistic (constant) neural weight of γ i as well as dynamic hormonal
weight of

∑

h ∂i,hHh. Term (2) stands for the imposed weight to the summation
(net) function. Term (3) shows imposed weight to the Xi,j (an input from jth node
of former layer), and term (4) shows the bias of the summation function, including
both neural and hormonal weights of μi and

∑

h ψi,hHh, respectively.
The contribution of overall hormonal level of EANN (i.e., Hh) among the

hormones should be controlled by ∂ i,h, χ i,h, Φ i,j,k and ψ i,h factors which in turn,
the i th node output (Yi) will provide hormonal feedback of Hi,h to the network as
[37]:
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Hi,h = glandityi,h × Yi (4)

where the glandity factor should be calibrated in the training phase of EANN to
provide appropriate level of hormone to the glands. Different schemes may be used
to initialize the hormonal values of Hh according to the input samples, e.g., mean
of input vector of learning samples. Thereafter considering the network output (Yi)
and Eqs. 2 and 3, the hormonal values are updated through the learning process to
get appropriate match between observed and computed time series of the target.

4 Application of EANN for Hydrological Modeling

As previously mentioned, Nourani [37] proposed EANN model to simulate rainfall-
runoff process in two watersheds, namely, Lobbs Hole Creek in Australia and
Moselle River in France. The study incorporated emotional anxiety into a FFBP
structure and investigated its efficiency using different efficiency measures including
root-mean-square error (RMSE), determination coefficient (DC), and determination
coefficient for peak values (DCpeak). To assess the capability of modeling with
limited observed time series, the author developed three different scenarios (i.e.,
strategy1, strategy2, and strategy3) in which the EANN was trained and validated
by different size of training and validation samples.

The first case study was demonstrated using observe data from Lobbs Hole
Creek, a sub-basin of Murrumbidgee in Australia, and the second was shown using
data from Moselle River catchment, a sub-basin of river Rhine in France. The
selected watersheds had two distinct climatic conditions showing quite different
hydrological behavior and response to the rainfall. The Lobbs Hole Creek is
upstream of the main river including mountainous and hilly regions and experi-
encing irregular precipitation pattern over a year with higher coefficient of variation
(because of higher fluctuations of the observed data). However, Moselle watershed
experiences a well-dominated seasonal weather with a larger area.

Different data division strategies were assumed to evaluate the overall perfor-
mance and also efficiency of models to estimate peak discharge values. To this end,
the first 75%, 50%, and 40% of data samples were considered as training data sets at
the strategies1, strategies2, and strategies13, respectively. By decreasing the number
of training samples, the generalization of the resultant network to predict the unseen
data sets was foun d as a challenging task. Furthermore, due to importance of multi-
step-ahead forecasts of the hydro-environmental processes, already pointed out by
some studies (e.g., [7]), 2-, 4-, and 7-day-ahead predictions of the process were
performed and compared as well as single-step-ahead forecasting scenario.

The rainfall value at time t (Rt) and current and antecedent runoff values (Qt,
Qt−1, ..., Qt-p) were imposed to the FFBP and EANN to predict runoff value one-d-
ahead (Qt + 1) as the network output. Since the effect of antecedent rainfall values
is implicitly considered by antecedent runoff values, only Rt was entered to the
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networks as a potential input. Therefore the general mathematical formulation of
the networks could be expressed as:

Qt+k = fn

(

Qt,Qt−1,Qt−2, . . . ,Qt−p, Rt

)

(5)

in which fn denotes the FFBP or EANN and k = 1 for single-step-ahead forecasting
and k = 2, 4, and 7 for multi-step-ahead forecasts.

Selection of appropriate architecture of the network, i.e., appropriate lag No. of p
(No. of neurons in input layer will be p + 1), hidden layer No., and optimal iteration
epoch No., is a key issue in any training task which can prevent the network from
the overtraining problem. Considering tangent sigmoid and pure line as activation
functions of hidden and output layers, respectively, the FFBPs were trained using
Levenberg-Marquardt scheme of BP algorithm [19], and the best structure and
epoch number of each network were determined through trial-error procedure. Also
for EANN model, hormones as dynamic coefficients are initialized according to
the pattern of input (and target) samples and then are modified through the training
iterations. Through training phase, they can impact on all components of the neuron
(i.e., weights, net function, and activation function).

Overall comparison of the results denotes superiority of the EANN over FFBP
in rainfall-runoff modeling of both watersheds. According to higher coefficient of
variation (because of higher fluctuations of the observed data) for the observed
rainfall and runoff time series of the Lobbs Hole Creek watershed due to the
hydro-geomorphologic condition, this watershed has a wild hydro-climatic regime
with regard to the Moselle watershed. Therefore for Lobbs Hole Creek watershed,
the performance of both models is lower as compared to the Moselle watershed.
However this difference between modeling performances of two watersheds using
EANN is relatively lower than the FFBP modeling. The results are listed below:

1. Computed values of DCpeak (see Table 1) indicate the ability of EANN to
catch the peak values of hydrographs better than FFBP in both watersheds.
Since autoregressive models, according to the Markovian property of a process,
consider states of the process at some previous time steps to predict the state
of system at the next time step, they usually underestimate the peak values
which occurred due to instantaneous imposition of an external force (intensive
rainfall) to the system. In this condition, the system is experiencing an emotional
situation which is different from normal conditions of the system. Therefore in
the training phase, a hormone of the emotional unit of EANN acts as a dynamic
weight to recurrently gives the feedback to other components of the network
and regulates the model for the emotional situation. In the mathematical point
of view, such dynamical weights are activated in extraordinary situations (e.g.,
intensive rainfall) and affect and magnify the weights of network, all done within
the EANN framework without any need to external data processing approach.

2. The obtained results by data division strategies of 2 and 3 presented in Table 1
showed that EANN can be trained efficiently even in the presence of the sparse
training data sets. In the Lobbs Hole River, the strategies 2 and 3 reulted in 1.4%
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and 5.7% reduction in the performance of the EANN. Regardin the results of
the same strategies in the Moselle Rivere, 1% and 2.2% performance reduction
were obtained. Based on the FFBP modelling results, the performance reduction
values were 8.5% and 32% for the Lobbs Hole River and 3.5% and 6.3% for the
Moselle River. The FFBP even shows overtraining alert for Lobbs Hole Creek
watershed in strategy 3. However during FFBP training, the network does not
consider the difference between the system’s situations, and therefore when the
statistical weights of network start to be trained using the ordinary situation data
of system (e.g., base flow data of river, observed at the outlet of watershed),
sudden appearance of severe rainfall values in the input layer can alter the trained
weights, and then again this confusion continues by returning the system to the
ordinary state. This is the main reason that usually FFBPs need long data set
to be trained appropriately. The aforementioned obtained results approve the
efficiency of EANN with regard to conventional FFBP model when it is trained
using relatively fewer data samples.

3. Although both FFBP and EANN models are interpolators and must experience
critical and extreme conditions in the training phase, the results indicated that
EANN is capable of producing more reliable predictions for the unseen data
samples. In other words, ENN can generate better estimations using less observed
extreme values.

4. Since the ability of a forecasting model to provide a useful horizon of forecasts
is a crucial task in hydrological modeling, several lead times of runoff time
series (i.e., 2, 4, and 7 d of lead time) were also considered as the networks’
outputs to evaluate and compare the performance of FFBP and EANN models
in multi-step-ahead runoff forecasts. The results of multi-step-ahead forecasting
obtained via FFBP and EANN models with data division strategies of 1 and 3
have been presented in Table 2 for both watersheds. It should be noticed that
the outputs of multi-step-ahead models were Qt+2, Qt+4 and Qt+7, and only the
results of the best networks have been presented in the table. As the results show,
by increasing the forecast horizon, the performance of both FFBP and EANN
models is decreased mostly due to the magnification of the forecast noise at each
forecasting time step. However again, it is clear that the performance of EANN in
multi-step-ahead forecasting is relatively better than FFBP model about 10% in
average. According to the presented results in Table 2, although by decreasing the
number of training samples the training efficiency is increased, the verification
performance for unseen data is remarkably decreased, and the difference between
calibration and verification DCs is increased.

At the first glance, it brings to mind that EANN is structurally more complicated
than FFBP, but actually the EANN with only a few hormonal parameters could
lead to better outcomes without the need for any external data processing operation.
Even though, in some cases the best structure of trained EANN contains fewer input
neurons than FFBP which makes the EANN more comparable with the FFBP model
from structural simplicity point of view (see Table 1).
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Briefly, through the comparison of the proposed EANN and conventional FFBP
models, two main objectives were targeted. Firstly to address the deficiency of
network training in the lack of long training time series, three data division strategies
with different sizes of training points were considered for the training purpose. The
outcomes showed the ability of EANN to cope with the lack of long observed data
used for network training. Secondly in the multi-step-ahead forecasting task, the
obtained results indicated better performance of EANN than FFBP so that for 2, 4,
and 7 d forecasts via EANN model, the reductions of forecasting performance of
test data with regard to single-step-ahead forecasting were 2%, 4%, and 8.2% and
2.1%, 7.6%, and 14%, respectively, for the Lobbs Hole and Moselle watersheds.
These reductions were 5%, 6.2%, and 15.4% and 5.9%, 11.8%, and 18% for the
FFBP model. Overall, the comparison of experimental results shows the merits of
EANN in the mentioned tasks of rainfall-runoff modeling with regard to the FFBP
model. In contrast to the statistical weights of network, emotional parameters of an
EANN dynamically get/give information from/to inputs and outputs of the network
at each time step to distinguish the dry (e.g., rainless d) and wet (e.g., stormy d)
situations of the system. Both watersheds studied in this research are almost free
from remarkable anthropogenic influences. Clearly just like any other data-driven
time series forecasting method, the performance of the EANN can be affected in
presence of anthropogenic and/or climatic influences and shifts of the observed time
series. In the presence of such shifts or strong non-stationary of time series, reliable
data preprocessing approaches may be employed prior to performing the forecasts.

Such a reliable implementation of EANN in rainfall-runoff modeling offers its
application to model other hydrological processes (e.g., sediment load, groundwater,
precipitation, etc.) at different time scales (e.g., daily, monthly, and annual).
According to the importance of accurate predictions of hydro-climatologic events
(stressed by [55]), the proposed EANN model may be used to create ensemble
extreme predictions at multiple lead times. The employed model in this study was
a typical form of EANN among broad classes of EANNs trained by BP algorithm;
future studies may focus on evaluating other types of EANNs and other training
algorithms (e.g., metaheuristic approaches) in hydrological modeling.

More recently Sharghi et al. [51] implemented EANN to model Markovian
and seasonal rainfall-runoff process in West Nishnabotna and Trinity Rivers in
the USA (sub-basin in California, USA). The authors compared the prediction
accuracy of EANN with those of FFNN and wavelet-ANN in terms of different
statistical measures and demonstrated that for daily modeling, EANN outperforms
the counterparts, especially for the Trinity River. By contrast, the results showed
that wavelet-ANN is superior for monthly rainfall-runoff modeling.
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5 The Internet of Things (IoT) in Hydro-Environmental
Studies

The IoT is a concept in which the virtual world of information technology integrates
seamlessly with the real world of things. Many of the initial developments toward
the IoTs have focused on the combination of Auto-ID and networked infrastructures
in business-to-business logistics and product life cycle applications [54]. Regarding
the application of IoT in hydro-environmental studies, our review showed that only a
few researches considered the IoT in their studies although web services as an online
repository of historical and real-time hydrological data such as runoff, rainfall,
streamflow, and groundwater level are available for more than a decade. However,
it must be mentioned that geographical information systems (GIS), remote sensing
(RS), and data storage systems were applied frequently in the hydro-environmental
studies such as flood forecasting, flood hazard mapping, as well as climate change
studies (e.g., [9, 50]).

One of the earlier studies in the application of the IoT in the wide range
of hydro-environmental studies was carried out by Xiaoying and Huanyan [56].
The authors developed a wetland monitoring system on the basis of real-time,
remote, and automatically monitored data in which wireless sensor networks and
communication systems were used. The study showed that the new system may
provide accurate sampling data that is important for conservation of wetlands. In
the preliminary study of possible applications of IoT, Khan et al. [24] reported
some applications in hydro-environment such as prediction of natural disasters and
water scarcity detection at different places. The combination of sensors and their
autonomous coordination and with the relevant modeling tools, one may predict the
occurrence of natural disasters and take appropriate actions in advance. In addition,
such network may be used to alert the users of a stream or water supply pipelines, for
instance, when an upstream event such as the accidental release of sewage into the
stream might have dangerous issues for downstream users. In a similar study, Dlodlo
and Kalezhi [15] studied the potential applications of the IoT in environmental man-
agement in South Africa. The authors categorized IoT applications into four broad
classes of environmental quality and protection management, oceans and coasts
management, climate change adaptation, biodiversity, and conservation and envi-
ronmental awareness. The results indicated that integrating IoT into environmental
management in South Africa has likely more enhanced impact. Environmental IoT
together with 1-year meteorological measurements was employed by Du et al. [16]
to investigate the characterization of atmospheric visibility and its relationship with
the variables comprising precipitation, relative humidity, wind speed, and wind
direction at Xiamen, China. The study demonstrated that an optimal regression
model can moderately simulate atmosphere visibility which provides new insights
to its characteristics and forcing meteorological factors. Fang et al. [17] focused
on the integration of RS data, GIS, and global positioning system with IoT and
cloud services to develop snowmelt flood early-warning system for a case study
catchment in Xinjiang, China. The results revealed that the process of snowmelt
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flood simulation and early warning are greatly benefited by such an integrated
system. Rathore et al. [47] proposed a hybrid IoT-based system for smart city
development and urban planning using Big Data analytics that consists of various
types of sensors deployment including smart home sensors, vehicular networking,
weather and water sensors, smart parking sensors, surveillance objects, etc. The
authors reported that weather and water information may increase the efficiency of
the smart city by providing the associated data such as temperature, rain, humidity,
pressure, wind speed and water levels at rivers, lakes, dams, and other reservoirs.
All the information is gathered by placing the sensors in the reservoirs and other
open places. Using rain-measuring sensors and snow-melting parameters, they
were able to predict floods and water demands to the residents of the city. More
recently, Shenan et al. [52] developed software and hardware in IoT environment
to manage light, temperature, and soil water content in a greenhouse system. The
authors used FL to monitor and manage the entire process in the system and
showed that the single -code fuzzy controllers reside in single microcontroller
chip may keep the practicality of the system. Most recently, González-Briones
et al. [21] developed an innovative multicomponent system that uses information
from wireless sensor networks for knowledge discovery (from weather and terrain
conditions) and decision-making in both micro- and macroscale irrigation projects.
The use of IoT was improved the efficiency of water use and optimized irrigation
system in comparison to a traditional automatic systems.

With respect to the aforementioned review, the present study shows the lack
of studies toward the integration of rapidly developing IoT technologies with
hydrological modeling techniques, particularly artificial intelligence methods. To
increase the efficiency of rainfall-runoff models for many applications in practice,
one way may be the integration of IoT with the state-of-the-art EANN that has not
been explored so far.
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