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Abstract A linear gyroscopic system is of the form:

Mẍ + Gẋ + Kx = 0,

where the mass matrixM is a symmetric positive definite real matrix, the gyroscopic
matrix G is real and skew symmetric, and the stiffness matrix K is real and
symmetric. The system is stable if and only if the quadratic eigenvalue problem
det(λ2M + λG + K) = 0 has all eigenvalues on the imaginary axis.

In this chapter, we are interested in evaluating robustness of a given stable
gyroscopic system with respect to perturbations. In order to do this, we present an
ODE-based methodology which aims to compute the closest unstable gyroscopic
system with respect to the Frobenius distance.

A few examples illustrate the effectiveness of the methodology.

Keywords Stability of gyroscopic systems · Robust stability · Structured matrix
nearness problems · Matrix ODEs

1 Introduction

Gyroscopic systems play an important role in a wide variety of engineering and
physics applications, and vary from the design of urban structures (buildings,
highways, and bridges), to aircraft industry, and to the motion of fluids in flexible
pipes.
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In its most general form, a gyroscopic system is modeled by means of a linear
differential system on a finite-dimensional space, as follows:

Mẍ(t) + (G + D)ẋ(t) + (K + N)x(t) = 0. (1)

Here, x(t) corresponds to the generalized coordinates of the system, M = MT

represents the mass matrix, G = −GT and K = KT are related to gyroscopic and
potential forces, D = DT and N = −NT are related to dissipative (damping)
and nonconservative positional (circulatory) forces, respectively. Therefore, the
gyroscopic system (1) is not conservative when D and N are nonzero matrices.

The stability of the system is determined by its associated quadratic eigenvalue
problem:

Mλ2 + (G + D)λ + (K + N) = 0. (2)

In particular, the system is said to be strongly stable if all eigenvalues of (2) lie
in the open left half plane, weakly stable if all eigenvalues of (2) lie in the closed
left half plane, that is, there is at least one pure imaginary eigenvalue and all such
eigenvalues are semi-simple. It is unstable otherwise.

Although nonconservative systems are of great interest, especially in the context
of nonlinear mechanics (see [8] for reference), this work is confined to conservative
systems. Thus, the equation of motion is given by:

Mẍ(t) + Gẋ(t) + Kx(t) = 0. (3)

In particular, the spectrum of (2) is characterized by Hamiltonian symmetry. We
note indeed that for any eigenvalue λ with a corresponding pair of left and right
eigenvectors (y, x), that is:

(λ2M + λG + K)x = 0, y∗(λ2M + λG + K) = 0 (x, y �= 0),

also λ,−λ,−λ are eigenvalues with corresponding pairs of left and right eigenvec-
tors (y, x), (x, y), (x, y), respectively.

Let us define the matrix pencilQ(λ) = Mλ2 + Gλ + K such that the associated
quadratic eigenvalue problem reads

Q(λ)x = [Mλ2 + Gλ + K]x = 0. (4)

In the absence of gyroscopic forces, it is well known that the system Mẍ(t) +
Kx(t) = 0 is stable for K positive definite and unstable otherwise. When G is
nonzero, then the system is weakly stable (see [11]) if the stiffness matrix K is
positive definite, and may be unstable if K ≤ 0 and K is singular. In the latter
case, indeed, the 0 eigenvalue can be either semi-simple (thus the system is stable)
or defective (unstable). Indeed, as numbers in the complex plane, the eigenvalues
are symmetrically placed with respect to both the real and imaginary axes. This
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property has two important consequences. On one hand, the eigenvalues can only
move on the axis they belong to unless coalesce occurs; on the other hand, stability
of system (3) only holds if all eigenvalues are purely imaginary.

Basically, for a conservative gyroscopic system, strong stability is impossible,
since the presence of an eigenvalue on the left half plane would imply the existence
of its corresponding symmetric one in the right half plane. The only possibility for
the system to be stable is to bemarginally stable (a particular case of weak stability),
which requires that all eigenvalues lie on the imaginary axis, and the only way to
lead the system to instability is a strong interaction (coalescence of two or more
eigenvalues, necessary for them to leave the imaginary axis). The stiffness matrix
K , for which no information about its signature is provided, plays a fundamental
role in the stability of the system, and many stability results are available in the
literature, based on the mutual relationship of G and K , as reported in [6, 7, 10] and
references therein, and summarized in [12]. Given a marginally stable system of the
form (3), the aim of this work is to find a measure of robustness of the system, that
is the maximal perturbation that retains stability.

The paper is organized as follows. In Sect. 2, we phrase the problem in terms of
structured distance to instability and present the methodology we adopt. In Sect. 3,
we illustrate the system of ODEs for computing the minimal distance between pairs
of eigenvalues. In Sect. 4, we derive a variational formula to compute the distance
to instability. In Sect. 5, we present the method, and in Sect. 6, some experiments.

2 Distance to Instability

Distance to instability is the measure of the smallest additive perturbation which
leads the system to be unstable. To estimate the robustness of (3), we will use the
Frobenius norm. In order to preserve the Hamiltonian symmetry of the system, we
will allow specific classes of perturbations. Indeed, gyroscopic forces and potential
energy will be subject to additive skew-symmetric and symmetric perturbations,
respectively. In [9], such a measure of robustness is called strong stability, which
seems to be misleading according to the definitions in Sect. 1. Nevertheless, the
author’s aim was to find a neighboring system, that is an arbitrarily close system
which retains stability and symmetry properties. Interesting results on stability
are presented, allowing sufficiently small perturbations. However, our goal is to
characterize these perturbations, and give a measure of “how small” they need to
be to avoid instability. The distance to instability is related to the ε-pseudospectrum
of the system.

In particular, we assume that M is fixed and we allow specific additive perturba-
tions on G and K .
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Therefore, let us define the structured ε-pseudospectrum of [G,K] as follows:

σε([G,K]) = {λ ∈ C : λ ∈ σ([G + ΔG,K + ΔK]) with ||[ΔG,ΔK]||F ≤ ε,

for some skew-symmetric ΔG, and symmetric ΔK }

We will call ε� the sought measure, meaning that for every ε < ε� the system
remains marginally stable. Moreover, as mentioned in Sect. 1, the only way to lead
the system to instability is a strong interaction, which means that at least two ε�-
pseudoeigenvalues coalesce. Exploiting this property, we will compute the distance
to instability in two phases: an outer iteration will change the measure ε of the
perturbation, and an inner iteration will allow the ε-pseudoeigenvalues to move on
the imaginary axis, according to the fixed ε, until determining the candidates for
coalescence. The following remark suggests to limit our interest to systems in which
the stiffness matrix is not positive definite.

Remark 1 When K is positive definite, the distance to instability of the system
coincides with the distance to singularity of the matrix K , which is trivially equal
to the absolute value of the smallest eigenvalue of K , because of the Hamiltonian
symmetry.

2.1 Methodology

We make use of a two-level methodology.
First, we fix as ε the Frobenius norm of the admitted perturbation [ΔG,ΔK].

Then, given a pair of (close) eigenvalues λ1, λ2 on the imaginary axis, we look for
the perturbations associated to a minimum of the distance |λ1−λ2| on the imaginary
axis. This is obtained by integrating a suitable gradient system for the functional
|λ1 − λ2|, preserving the norm of the perturbation [ΔG,ΔK].

The external method controls the perturbation level ε to the aim of finding the
minimal value ε∗ for which λ1 and λ2 coalesce. The method is based on a fast
Newton-like iteration.

Two-level iterations of a similar type have previously been used in [4, 5] for other
matrix-nearness problems.

To formulate the internal optimization problem, we introduce the functional, for
ε > 0:

fε(ΔG,ΔK) =
∣
∣
∣λ1(ΔG,ΔK) − λ2(ΔG,ΔK)

∣
∣
∣ (5)

where λ1,2(ΔG,ΔK) are the closest eigenvalues on the imaginary axis of the
quadratic eigenvalue problem det(Mλ2 + (G + ΔG)λ + (K + ΔK)) = 0.



Stability of Gyroscopic Systems with Respect to Perturbations 257

Thus, we can recast the problem of computing the distance to instability as
follows:

(1) For fixed ε, compute

[ΔG(ε),ΔK(ε)] −→ min
ΔG,ΔK :‖[ΔG,ΔK]‖F =ε

fε(ΔG,ΔK) := f (ε) (6)

with

ΔG + ΔGT and ΔK + ΔKT = 0. (7)

(2) Compute

ε∗ −→ min
ε>0

{ε : f (ε) = 0}. (8)

that means computing a pair (ΔG∗,ΔK∗) of norm ε∗ such that λ1(ε
∗) is

a double eigenvalue of the quadratic eigenvalue problem det(Mλ2 + (G +
ΔG∗)λ + (K + ΔK∗)) = 0.

2.2 Algorithm

In order to perform the internal minimization at (6), we locally minimize the
functional fε(ΔG,ΔK) over all [ΔG,ΔK] of at most unit Frobenius norm, by
integrating a steepest-descent differential equation (identifying the gradient system
to the functional (5)) until a stationary point. The key instrument to deal with
eigenvalue optimization is a classical variational result concerning the derivative
of a simple eigenvalue of a quadratic eigenvalue problem.

In order to perform the minimization at (8), instead, denoting the minimum value
of fε(ΔG,ΔK) by f (ε), we determine then the smallest perturbation ε� > 0 such
that f (ε�) = 0, by making use of a quadratically convergent iteration.

Remark 2 Given a fixed ε, we compute all the possible distances between the eigen-
values, in order to identify the eigenpair which coalesces first (global optimum).

The whole method is summarized later by Algorithm 2.

3 The Gradient System of ODEs

In this section, the goal is to design a system of differential equations that, for a
given ε, will find the closest pair of ε-pseudoeigenvalues on the imaginary axis.
Indeed, this turns out to be a gradient system for the considered functional, which
allows to obtain a useful monotonicity property along its analytic solutions.
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To this intent, let us define the two-parameter operator:

Q(τ, λ) = Mλ2 + G(τ)λ + K(τ). (9)

Let λ = λ(τ), and let λ0 satisfy the quadratic eigenvalue problem (4).
Assuming that λ0 is a simple eigenvalue, then by Theorem 3.2 in [1]:

y∗
0
∂Q

∂λ
x0 �= 0,

where x0 and y0 are the right and left eigenvectors of Q at λ0, respectively.
Under this assumption, therefore, by the variational result (5.3) in [1], the

derivative of λ with respect to τ is well defined and given by:

dλ

dτ
= −

(

y∗
0
∂Q

∂τ
x0

) / (

y∗
0
∂Q

∂λ
x0

)

(10)

Next, let us consider the matrix-valued functions Gε(t) = G + εΔG(t) and
Kε(t) = K + εΔK(t), where the augmented matrix [ΔG,ΔK] satisfies (7), and

‖[ΔG(t),ΔK(t)]||F = 1 for all t ∈ R. (11)

The corresponding quadratic eigenvalue problem is Qε(t, λ)x = 0, where:

Qε(t, λ) = Mλ2 + [G + εΔG]λ + [K + εΔK].

Moreover, let λ1(t) = iθ1(t) and λ2(t) = iθ2(t), with θ1(t) > θ2(t) be two
purely imaginary eigenvalues of Qε(t, λ)x = 0, corresponding to the eigenvalue
of minimal distance of Qε(t, λ)x = 0.

Let λ1 = iθ1 and λ2 = iθ2 with θ1, θ2 ∈ R.
Conventionally assume θ1 > θ2.
For i = 1, 2, let yi such that

γi := y∗
i [2iθiM + (G + εΔG)] xi > 0 (12)

be real and positive. This is naturally possible by suitably scaling the eigenvectors.
Then, applying (10) gives

θ̇1 − θ̇2 = iε

[

y∗
1

(

iθ1Δ̇G + Δ̇K
)

x1

γ1
− y∗

2

(

iθ2Δ̇G + Δ̇K
)

x2

γ2

]

= ε

〈

− θ1

γ1
y1x

∗
1 + θ2

γ2
y2x

∗
2 , Δ̇G

〉

+ ε

〈

− i
γ1

y1x
∗
1 + i

γ2
y2x

∗
2 , Δ̇K

〉

. (13)
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where—for a pair of matrices A,B—we denote the Frobenius inner product:

〈A,B〉 = trace(A∗B).

The derivative of [ΔG(t),ΔK(t)] must be chosen in the direction that gives the
maximum possible decrease of the distance between the two closest eigenvalues,
along the manifold of unitary Frobenius norm matrices [ΔG,ΔK]. Notice that
constraint (11) is equivalent to

〈

[ΔG,ΔK], [Δ̇G, Δ̇K]
〉

= 0.

We have the following optimization result, which allows us to determine the
constrained gradient of fε(ΔG,ΔK).

Theorem 3 Let [ΔG,ΔK] ∈ Rn,2n a real matrix of unit norm satisfying con-
ditions (7)–(11), xi and yi right and left eigenvectors relative to the eigenvalues
λi = iθi , for i = 1, 2, of Qε(t, λ)x = 0. Moreover, let γi , with i = 1, 2, be two real
and positive numbers and consider the optimization problem:

min
Z∈Ω

〈

− θ1

γ1
y1x

∗
1 + θ2

γ2
y2x

∗
2 , ZG

〉

+
〈

− i
γ1

y1x
∗
1 + i

γ2
y2x

∗
2 , ZK

〉

(14)

with

Ω =
{

‖Z‖ = 1, 〈[ΔG,ΔK], Z〉 = 0, ZG ∈ MSkew, ZK ∈ MSym

}

,

where MSkew is the manifold of skew-symmetric matrices and MSym the manifold
of symmetric matrices.

The solution Z� = [Z�
G,Z�

K ] of (14) is given by:

μZ� = μ
[

Z�
G,Z�

K

] = [

fG − η ΔG, fK − η ΔK
]

(15)

where μ > 0 is a suitable scaling factor, and

η = 

〈

[ΔG,ΔK], [fG, fK ]
〉

fG = Skew

(



[

θ1

γ1
y1x

∗
1 − θ2

γ2
y2x

∗
2

])

fK = Sym

(

�
[
1

γ2
y2x

∗
2 − 1

γ1
y1x

∗
1

])

(16)

where Skew(B) denotes the skew-symmetric part of B and Sym(B) denotes the
symmetric part of B.
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Proof Preliminarily, we observe that for a real matrix:

B = B + BT

2
+ B − BT

2
= Sym(B) + Skew(B)

the orthogonal projection (with respect to the Frobenius inner product) onto the
manifolds MSym of symmetric matrices and MSkew of skew-symmetric matrices
are, respectively, Sym(B) and Skew(B). In fact:

〈Sym(B), Z〉 = 0 for all Z ∈ MSkew

and

〈Skew(B), Z〉 = 0 for all Z ∈ MSym.

Looking at (14), we set the free gradients:

φG = − θ1

γ1
y1x

∗
1 + θ2

γ2
y2x

∗
2 and φK = − i

γ1
y1x

∗
1 + i

γ2
y2x

∗
2 .

The proof is obtained by considering the orthogonal projection (with respect to
the Frobenius inner product) of the matrices (which can be considered as vectors)
− φG and − φK onto the real manifold MSkew of skew-symmetric matrices
and onto the real manifold MSym of symmetric matrices, and further projecting
the obtained rectangular matrix onto the tangent space to the manifold of real
rectangular matrices with unit norm.

3.1 The System of ODEs

Following Theorem 3, we consider the following system of ODEs, where we omit
the dependence of t:

⎧

⎪⎪⎨

⎪⎪⎩

d

dt
ΔG = fG − η ΔG

d

dt
ΔK = fK − η ΔK

(17)

with η, fG, and fK as in (16).
This is a gradient system, which implies that the functional fε(ΔG(t),ΔK(t))

decreases monotonically along solutions of (17), until a stationary point is reached,
which is generically associated to a local minimum of the functional.
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4 The Computation of the Distance to Instability

Asmentioned in Sect. 1, the only way to break the Hamiltonian symmetry is a strong
interaction, that is two (or more) eigenvalues coalesce. This property allows us to
reformulate the problem of distance to instability in terms of distance to defectivity
(see [3]). In particular, since the matrices G and K must preserve their structure,
we will consider a structured distance to defectivity. Because of the coalescence,
we do not expect the distance between the eigenvalues to be a smooth function with
respect to ε when fε = 0.

As an illustrative example, consider the gyroscopic system described by the
equation:

[

1 0
0 1

]

ẍ(t) +
[

0 3
−3 0

]

ẋ(t) −
[

1 1
1 2

]

x(t) = 0. (18)

The minimal distance among the eigenvalue of this system is achieved by the
conjugate pair closest to the origin, that is, |θ1| = |θ2|, and coalescence occurs
at the origin, as shown in Fig. 1 (left).

Let us substitute the stiffness matrix in (18) with −I , that is:

[

1 0
0 1

]

ẍ(t) +
[

0 3
−3 0

]

ẋ(t) −
[

1 0
0 1

]

x(t) = 0. (19)

Although |θ1| = |θ2| still holds, strong interaction does not occur at the origin. Here,
two pairs coalesce at the same time, as shown in Fig. 1 (right).
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Fig. 1 Eigenvalues of system (18) on the left, before and at the moment of strong interaction at
the origin. Eigenvalues of system (19) on the right: two strong interactions occur at the same time
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4.1 Variational Formula for the ε-Pseudoeigenvalues
with Respect to ε

We consider here the minimizers ΔG(ε) and ΔK(ε) computed as stationary points
of the system of ODEs (17) for a given ε, and the associated eigenvalues λi(ε) =
iθi(ε) of the quadratic eigenvalue problem with ε < ε∗ (which implies θ1(ε) �=
θ2(ε)). We assume that all the abovementioned quantities are smooth functions with
respect to ε, which we expect to hold generically.

Formula (10) is useful to compute the derivative of the ε-pseudoeigenvalueswith
respect to ε. We need the derivative of the operator Q w.r.t. ε, which appears to be
given by:

∂Q

∂ε
= ΔGλ + ΔK + ε(ΔG′λ + ΔK ′)

Here, the notation A′ = dA
dε

is adopted. Assuming that λ = λ0 is a simple
eigenvalue, and x0 and y0 are the right and left eigenvectors of Q at λ0 respectively,
then

∂λ

∂ε
= −y∗

0 (ΔGλ + ΔK + ε(ΔG′λ + ΔK ′))x0
y∗
0 (2Mλ + G + εΔG)x0

Claim y∗
0 (ΔG′λ + ΔK ′)x0 = 0.

The norm conservation ||[ΔG,ΔK]||F = 1, which is equivalent to ||ΔG||2F +
||ΔK]||2F = 1, implies that 〈ΔG,ΔG′〉 = 0 = 〈ΔK,ΔK ′〉. Also:


(y∗
0λ0ΔG′x0) = 
(y∗

0 iθ0 ΔG′x0) = 〈ΔG′,
(y0 x∗
0 )〉 = 〈ΔG′, ηΔG〉 = 0,

and

�(y∗
0λ0ΔK ′x0) = �(y∗

0 ΔK ′x0) = 〈ΔK ′,�(y0 x∗
0 )〉 = 〈ΔK ′, ηΔK〉 = 0.

Therefore:

∂λ

∂ε
= − y∗

0 (ΔGλ + ΔK)x0

y∗
0 (2Mλ + G + εΔG)x0
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and

θ ′
1 − θ ′

2 = 1

γ2

[

θ2
(y∗
2 ΔG x2) + �(y∗

2 ΔK x2)

]

− 1

γ1

[

θ1
(y∗
1 ΔG x1) + �(y∗

1 ΔK x1)

]

(20)

The previous expression provides f ′(ε). Hence, for ε < ε� we can exploit its
knowledge. Since generically coalescence gives rise to a defective pair on the
imaginary axis, we have that the derivative of f (ε) is singular at ε�.

Our goal is that of approximating ε� by solving f (ε) = δ with δ > 0 a
sufficiently small number. For ε close to ε�, ε < ε� we have generically (see [3])

⎧

⎨

⎩

f (ε) = γ
√

ε� − ε + O(

(ε� − ε)3/2
)

f ′(ε) = − γ

2
√

ε� − ε
+ O(

(ε� − ε)1/2
)

,
(21)

which corresponds to the coalescence of two eigenvalues. For an iterative process,
given εk , we use formula (20) to compute f ′(ε) and estimate γ and ε� by
solving (21) with respect to γ and ε�. We denote the solution as γk and ε�

k , that
is:

γk = √

2f (εk)|f ′(εk)|, ε�
k = εk + f (εk)

2|f ′(εk)| (22)

and then compute

εk+1 = ε�
k − δ2/γ 2

k . (23)

An algorithm based on previous formulæ is Algorithm 2, which does not add any
additional cost to the algorithm since the computation of f ′(εk) is very cheap.

Unfortunately, since the function f (ε) is not smooth at ε�, and vanishes
identically for ε > ε�, the fast algorithm has to be complemented by a slower
bisection technique to provide a reliable method to approximate ε�.

5 The Complete Algorithm

The whole Algorithm 2 follows:
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Algorithm 2: Algorithm for computing ε�

Data: tol > 0, δ > 0, and ε0, ε1, εu (such that f (ε0) > f (ε1) > tol, and f (εu) < tol).
Result: εf (approximation of ε�).
begin

1 Set Reject = False and k = 1.
2 while |εk − εu| ≥ tol do
3 if Reject = False. then

Store εk and f (εk) into the memory.
4 Solve the system (17) and compute [ΔG(ε),ΔK(ε)] and

f (ε) = fε(ΔG(ε),ΔK(ε)).
5 Compute ε̃k+1 by the formula (23).
6 if ε̃k+1 > εu then

Set ε̃k+1 = (εu + εk)/2.

else
Set ε̃k+1 = (εu + εk)/2.

7 Compute f (ε̃k+1) by integrating (17) with initial datum [ΔG(εk),ΔK(εk)] (the
minimizer associated to εk).

8 if |f (ε̃k+1)| < tol then
Set Reject = True.
Set εu = ε̃k+1.

else
Set Reject = False.

9 Set εk+1 = ε̃k+1.
10 Set k = k + 1.

11 Set εf = εk .

6 Numerical Experiments

We consider here some illustrative examples with M = I , from [2, 10, 13]. In
the following, εu is chosen as the distance between the largest and the smallest
eigenvalues, whereas ε0 = 0 and ε1 is obtained by (23).

6.1 Example 1

Let G =
⎡

⎣

0 −2 4
2 0 −2

−4 2 0

⎤

⎦ and K =
⎡

⎣

13 2 1
2 7 2
1 2 4

⎤

⎦.

Also in this example, the stiffness matrix is positive definite, and the distance to
singularity is ε� = 3 which coincides with the distance to instability.
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Fig. 2 A zoom-in, before, during, and after strong interaction for system (24)

6.2 Example 2

Let us consider the equation of motion Mẍ(t) + Gẋ(t) + Kx(t) = 0, with:

M =

⎡

⎢
⎢
⎢
⎣

8 −2 1 0

−2 10 4 4

1 4 10 −1.2

0 4 −1.2 8

⎤

⎥
⎥
⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎣

0 −16 −8 −12

16 0 −40 −12

8 40 0 16

12 12 −16 0

⎤

⎥
⎥
⎥
⎦

, K =

⎡

⎢
⎢
⎢
⎣

4 −3 2 0

−3 6 1 −3

2 1 5 −2

0 −3 −2 4

⎤

⎥
⎥
⎥
⎦

(24)

Here, the two closest eigenvalues of the system are the complex conjugate θ1 =
−θ2 = 2.1213e − 02 and coalescence occurs at the origin, with ε� = 4.6605e −
01. Figure 2 illustrates these results. On the left, a zoom-in of the eigenvalues of
system (24) near the origin is provided. In the center, coalescence occurs for the
perturbed system Mẍ(t) + (G + ε�ΔG)ẋ(t) + (K + ε�ΔK)x(t) = 0. On the right,
the two eigenvalues become real after the strong interaction, namely, for ε > ε�,
and the positive one leads the system to instability.
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6.3 Example 3

This problem arises in the vibration analysis of a wiresaw. Let n be the dimension
of the matrices. Let

M = In/2, K = diag1≤j≤n(j
2π2(1 − v2)/2)

and G = (gjk) where gjk = 4jk

j2−k2
v if j + k is odd, and 0 otherwise.

The parameter v is a real nonnegative number representing the speed of the wire.
For v ∈ (0, 1), the stiffness matrix is positive definite. Here, we present two cases
in which v > 1, and K is negative definite.

First, consider n = 4 and v = 1.1. Then, the system is marginally stable, and the
distance to instability is given by ε� = 4.6739e−02. The eigenvalues iθ1 = i3.4653
and iθ2 = i2.5859 coalesce, as well as their respective conjugates.
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