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Preface

Solving a mathematical model, by means of computational techniques in general or
more specifically by means of numerical analysis, is ultimately reduced to solving
problems in linear algebra. In fact, very often models are linear by their nature,
while sometimes they are nonlinear but their solution is achieved by means of
linearization. This to some extent explains why numerical linear algebra and matrix
analysis have undergone such extensive development in recent decades.

In this process, one typically encounters problems like solving linear systems, or
solving standard or generalized eigenvalue problems, as well as matrix polynomial
equations or polynomial eigenvalue problems where the size of the matrices
involved in the model is extremely large or in some cases even infinite. For such
problems standard (general-purpose) algorithms cannot work due to their extreme
complexity; therefore, one has to exploit the specific properties which originate from
the peculiar features of the model. In the language of linear algebra, these properties
are translated in terms of structures that the matrices involved in the model share;
often, structured matrices reveal themselves in a clear form and appear to show
all their properties immediately. Sometimes, however, structures are hidden and
difficult to discover, and their properties seem hardly exploitable. Their analysis
and exploitation is not just a challenge but also a mandatory step which is necessary
to design highly effective ad hoc algorithms for the solution of large-scale problems
from applications. In fact, general-purpose algorithms, say Gaussian elimination
for solving linear systems, cannot be used to solve problems of large size while a
smart exploitation of the available structures enables one to design effective solution
algorithms even for problems of a huge size.

The importance of matrix structures has grown over the years. Analyzing
structures from the theoretical point of view, turning them into effective solution
algorithms, constructing software which implements the algorithms, and verifying
its effectiveness by direct computation is one of the most exciting challenges that
covers abstract theory, design and analysis of algorithms, software implementation,
and applications.

This volume presents a selected number of peer-reviewed papers concerning
structured matrix analysis and its applications. The topics discussed concern theory,

v



vi Preface

algorithms, and applications in which structured matrices are involved. The subjects
range from abstract topics such as the theory of generalized locally (block) Toeplitz
matrices and the analysis of matrix subspaces and quadratic kernels to more
numerical issues such as error analysis of algorithms for tensor manipulation and
analysis of the derivative of matrix geometric means. Moreover, other structured
oriented topics are developed, e.g., analysis of companion pencil and block Fiedler
companion matrices, together with analysis of the tridiagonal symmetric eigenvalue
problem, computation of bivariate matrix functions, and solution of the saddle
point problem. Among the applications are analysis of the stability of gyroscopic
systems, numerical solution of 2D hard scattering problems of damped waves,
fractional reaction-diffusion equations, and the problem of multi-frame super-
resolution reconstruction from video clips.

All the papers correspond to talks presented at the INdAM meeting Structured
Matrices in Numerical Linear Algebra: Analysis, Algorithms and Applications held
in Cortona, Italy, on September 4–8, 2017.

This workshop aimed to continue in both form and spirit the series of conferences
on Structured Matrices and their applications held in Cortona, Italy, every 4 years
between 1996 and 2008 and continued in Leuven, Belgium, in September 2012 and
in Kalamata, Greece, in September 2014.

The book will be of interest to graduate students in mathematics and researchers
in numerical linear algebra and scientific computing, as well as engineers and
applied mathematicians.

Pisa, Italy Dario Andrea Bini
Genoa, Italy Fabio Di Benedetto
Moscow, Russia Eugene Tyrtyshnikov
Heverlee, Belgium Marc Van Barel
October 2018



Contents

Spectral Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Giovanni Barbarino

Block Locally Toeplitz Sequences: Construction and Properties . . . . . . . . . . . 25
Carlo Garoni, Stefano Serra-Capizzano, and Debora Sesana

Block Generalized Locally Toeplitz Sequences: Topological
Construction, Spectral Distribution Results,
and Star-Algebra Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Carlo Garoni, Stefano Serra-Capizzano, and Debora Sesana

OnMatrix Subspaces with Trivial Quadratic Kernels . . . . . . . . . . . . . . . . . . . . . . . 81
Alexey Tretyakov, Eugene Tyrtyshnikov, and Alexey Ustimenko

Error Analysis of TT-Format Tensor Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Dario Fasino and Eugene E. Tyrtyshnikov

The Derivative of the Matrix Geometric Mean with an Application
to the Nonnegative Decomposition of Tensor Grids . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Bruno Iannazzo, Ben Jeuris, and Filippo Pompili

Factoring Block Fiedler Companion Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Gianna M. Del Corso, Federico Poloni, Leonardo Robol,
and Raf Vandebril

A Class of Quasi-Sparse Companion Pencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Fernando De Terán and Carla Hernando

On Computing Eigenvectors of Symmetric Tridiagonal Matrices . . . . . . . . . . 181
Nicola Mastronardi, Harold Taeter, and Paul Van Dooren

A Krylov Subspace Method for the Approximation of Bivariate
Matrix Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Daniel Kressner

vii



viii Contents

Uzawa-Type and Augmented Lagrangian Methods for Double
Saddle Point Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Michele Benzi and Fatemeh Panjeh Ali Beik

Generalized Block Tuned Preconditioners for SPD Eigensolvers. . . . . . . . . . . 237
Luca Bergamaschi and Ángeles Martínez

Stability of Gyroscopic Systems with Respect to Perturbations . . . . . . . . . . . . 253
Nicola Guglielmi and Manuela Manetta

Energetic BEM for the Numerical Solution of 2D Hard Scattering
Problems of Damped Waves by Open Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Alessandra Aimi, Mauro Diligenti, and Chiara Guardasoni

Efficient Preconditioner Updates for Semilinear Space–Time
Fractional Reaction–Diffusion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Daniele Bertaccini and Fabio Durastante

A Nuclear-Norm Model for Multi-Frame Super-Resolution
Reconstruction from Video Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Rui Zhao and Raymond HF Chan



About the Editors

Dario Andrea Bini, a Full Professor of Numerical Analysis since 1986, has held
a permanent position at the University of Pisa since 1989. His research mainly
focuses on numerical linear algebra problems, on structured matrix analysis and
on the design and analysis of algorithms for polynomial and matrix computations.
The author of three research books and more than 120 papers, he also serves on the
editorial boards of three international journals.

Fabio Di Benedetto is an Associate Professor of Numerical Analysis at the
Department of Mathematics of the University of Genoa, where he teaches courses
on Numerical Analysis for undergraduate and graduate students, since 2000. His
main research interests concern the solution of large-scale numerical linear algebra
problems, with special attention to structured matrices analysis with applications to
image processing. He is the author of more than 30 papers.

Eugene Tyrtyshnikov, Professor and Chairman at the Lomonosov Moscow State
University, is a Full Member of the Russian Academy of Sciences and Director
of the Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow. He completed his Ph.D. in Numerical Mathematics at Moscow State Uni-
versity, and his postdoctoral studies at the Siberian Branch of the Russian Academy
of Sciences, Novosibirsk. His research interests concern numerical analysis, linear
and multilinear algebra, approximation theory and related applications. He is the
associate editor of many international journals and the author of more than 100
papers and 8 books.

Marc Van Barel received his Ph.D. in Computer Engineering (Numerical Analysis
and Applied Mathematics) from the KU Leuven, where he is currently a Full
Professor at the Department of Computer Science. His work mainly focuses on
numerical (multi-)linear algebra, approximation theory, orthogonal functions and
their applications in systems theory, signal processing, machine learning, etc. He is
the author or co-author of more than 140 papers and 4 books. Currently, he serves
on the editorial boards of three international journals.

ix



Spectral Measures

Giovanni Barbarino

Abstract The theory of spectral symbols links sequences of matrices with mea-
surable functions expressing their asymptotic eigenvalue distributions. Usually, a
sequence admits several spectral symbols, and it is not clear if a canonical one
exists. Here we present a way to connect the sequences with the space of probability
measure, so that each sequence admits a uniquely determined measure. The methods
used are similar to those employed in the theory of generalized locally Toeplitz
(GLT) sequences: a goal of this present contribution is in fact that of explaining
how the two concepts are connected.

Keywords Probability measures · Generalized locally Toeplitz sequences ·
Complete pseudo-metrics · Ergodic formula

1 Introduction

A matrix sequence is an ordered collection of complex valued matrices with
increasing size, and is usually denoted as {An}n, where An ∈ Cn×n. We will refer
to the space of matrix sequences with the notation

E := {{An}n : An ∈ C
n×n}.

It is often observed in practice that matrix sequences, {An}n, generated by
discretization methods applied to linear differential equations possess a spectral
symbol, that is a measurable function describing the asymptotic distribution of the

G. Barbarino (�)
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2 G. Barbarino

eigenvalues of An. We recall that a spectral symbol associated with a sequence
{An}n is a measurable function k : D ⊆ Rn → C satisfying

lim
n→∞

1

n

n∑

i=1

F(λi(An)) = 1

l(D)

∫

D

F(k(x))dx

for every continuous function F : C → C with compact support, where D is
a measurable set with finite Lebesgue measure l(D) > 0 and λi(An) are the
eigenvalues of An. In this case we write

{An}n ∼λ k(x).

We can also consider the singular values of the matrices instead of the eigenvalues.
In the same setting, if

lim
n→∞

1

n

n∑

i=1

F(σi(An)) = 1

l(D)

∫

D

F(|k(x)|)dx

for every continuous function F : R→ C with compact support, where σi(An) are
the singular values of An, then {An}n possesses a singular value symbol, and we
write

{An}n ∼σ k(x).

The space of matrix sequences is a complete pseudometric space when endowed
with a pseudometric inducing the approximating classes of sequences (acs) con-
vergence, that we will redefine in the next section. One fundamental property of
this metric is that it identifies sequences that differ by a sequence admitting zero as
singular value symbol (called zero-distributed sequences). In particular, it has been
shown that such sequences share the same singular value symbol, but the distance
between two sequences with the same singular value symbol is not usually zero.

The main observation of this note is that for any measurable function k(x), the
operator

φ(F) :=
∫

D

F(k(x))dx φ : Cc(C)→ C

is linear and continuous and can be represented by a unique probability measure μ.
We call μ a spectral measure, and we associate it with any sequence {An}n that has
k(x) as spectral symbol. It turns out that if a sequence admits a spectral measure,
then it is uniquely determined, differently from the spectral symbols. The space of
probability spectral measures is moreover a complete metric space with the Lévy–
Prokhorov distance π , and it corresponds to a pseudometric d ′ on matrices called
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modified optimal matching distance. The main result is that d ′ identifies sequences
admitting the same spectral symbol, differently from the acs distance.

Theorem 1 If {An}n ∼λ f (x), then

{Bn}n ∼λ f (x) ⇐⇒ d ′({An}n, {Bn}n) = 0.

A different approach to the uniqueness problem for the spectral symbol is embod-
ied in the theory of GLT sequences. For specific sequences, called generalized
locally Toeplitz (GLT) sequences, we can choose one of their symbols, and denote
it as GLT symbol of the sequence

{An}n ∼GLT k(x, θ).

In the case of diagonal matrix sequences, the choice of one symbol can be seen
as a particular sorting of their eigenvalues, as expressed in the following theorem,
proved in the last section, and which represents a generalization of the results in [3].

Theorem 2 Given a diagonal sequence {Dn}n and one of its spectral symbols k :
[0, 1] → C, then

{PnDnP
T
n } ∼GLT k(x)⊗ 1

for some Pn permutation matrices.

The paper is organized in the following way: In Sect. 2 we recall basic definitions
such as the acs convergence, the optimal matching distance d , and the theory of
GLT sequences. Moreover, we define the modified optimal matching distance d ′
since it is a slight variation of d , and we discuss how it is connected to dacs . In
Sect. 3 we introduce the spectral measures and we study their relationships with the
spectral symbols. In particular, we notice how the vague convergence and the Lévy–
Prokhorov distance π on the probability measures lead to a reformulation of the
definition of spectral symbol/measure. In Sect. 4, we prove that the pseudometrics
π and d ′ are actually equivalent, and we explain how this fact leads to the proofs of
the above reported theorems.

2 Prerequisites

2.1 Complete Pseudometrics

The space of matrix sequences that admit a spectral symbol on a fixed domain D

has been shown to be closed with respect to a notion of convergence called the
approximating classes of sequences (acs) convergence. This notion and this result
are due to Serra-Capizzano [11], but were actually inspired by Tilli’s pioneering



4 G. Barbarino

paper on LT sequences [12]. Given a sequence of matrix sequences {Bn,m}n,m, it is
said to be acs convergent to {An}n if there exists a sequence {Nn,m}n,m of “small
norm” matrices and a sequence {Rn,m}n,m of “small rank” matrices such that for
every m there exists nm with

An = Bn,m +Nn,m + Rn,m, ‖Nn,m‖ ≤ ω(m), rk(Rn,m) ≤ nc(m)

for every n > nm, and

ω(m)
m→∞−−−−→ 0, c(m)

m→∞−−−−→ 0.

In this case, we will use the notation {Bn,m}n,m acs−−→ {An}n.

This notion of convergence has been shown to be metrizable on the whole space
E . Given a matrix A ∈ Cn×n, we can define the function

p(A) := min
i=1,...,n+1

{
i − 1

n
+ σi(A)

}
,

where σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) are the singular values of A, and by
convention σn+1(A) = 0. The function p(A) is subadditive, so we can introduce
the pseudometric dacs on the space of matrix sequences

dacs ({An}n, {Bn}n) = lim sup
n→∞

p(An − Bn).

It has been proved [6, 8] that this distance induces the acs convergence already
introduced. In other words,

dacs
({An}n, {Bn,m}n,m

) m→∞−−−−→ 0 ⇐⇒ {Bn,m}n,m acs−−→ {An}n.

One fundamental property of this metric is that it identifies sequences whose
difference admits zero as singular value symbol (called zero-distributed sequence).
In particular, it has been shown that such sequences share the same singular value
symbol, in case one of them admits singular value symbol.

Lemma 1 Let {An}n, {Bn}n ∈ E . We have

{An − Bn}n ∼σ 0 ⇐⇒ dacs ({An}n, {Bn}n) = 0.

In this case, if k : D ⊆ Rn → C where D is a measurable set with finite Lebesgue
measure l(D) > 0, then

{An}n ∼σ k(x) ⇐⇒ {Bn}n ∼σ k(x).
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In [2], it has been first proved that the pseudometric dacs on the space of matrix
sequences is complete. In Theorem 2.2 of [4], we find sufficient conditions for a
pseudometric on E to be complete. Here we need a different result, but the proof is
almost identical.

Lemma 2 Let dn be pseudometrics on the space of matrices Cn×n bounded by the
same constant L > 0 for every n. Then the function

d({An}n, {Bn}n) := lim sup
n→∞

dn(An,Bn)

is a complete pseudometric on the space of matrix sequences.

2.2 Optimal Matching Distance

Let v,w ∈ Cn be vectors with components

v = [v1, v2, . . . , vn], w = [w1, w2, . . . , wn].

We recall the pseudometric on Cn called optimal matching distance defined in
Bhatia’s book [5].

Definition 1 Given v,w ∈ Cn, the pseudometric of the optimal matching distance
is defined as

d(v,w) := min
σ∈Sn

max
i=1,...,n

|vi −wσ(i)|,

where Sn is the symmetric group of permutation of n objects.

Given A ∈ Cn×n, let Λ(A) ∈ Cn be the vector of the eigenvalues. We can extend
the distance d to matrices in the following way.

Definition 2 Given A,B ∈ Cn×n, we define

d(A,B) := d(Λ(A),Λ(B)).

Notice that the order of the eigenvalues in Λ(A) and Λ(B) does not affect the
quantity d(A,B). It is easy to see that d is still a pseudometric on Cn×n. This is
still not enough for our purposes, since we want a distance that sees two matrices
differing for few eigenvalues as very similar. For this reason, we modify the previous
metric, and we introduce a new function d ′ called modified optimal matching
distance.
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Definition 3 Given v,w ∈ Cn, the modified optimal matching distance is
defined as

d ′(v,w) := min
σ∈Sn

min
i=1,...,n+1

{
i − 1

n
+ |v − wσ |↓i

}
,

where

|v − wσ | = [|v1 −wσ(1)|, |v2 − wσ(2)|, . . . , |vn −wσ(n)|]

and |v − wσ |↓i is the i-th greatest element in |v − wσ |, with the convention

|v −wσ |↓n+1 := 0.

Given A,B ∈ C
n×n, we define

d ′(A,B) := d ′(Λ(A),Λ(B))

and if {An}n, {Bn}n ∈ E , we can also define

d ′({An}n, {Bn}n) := lim sup
n→∞

d ′(An,Bn).

Notice that d ′(v,w) ≤ 1 for every v,w ∈ Cn, so d ′(A,B) ≤ 1 for every pair
of matrices of the same size, and d ′({An}n, {Bn}n) ≤ 1 for every pair of sequences
{An}n, {Bn}n ∈ E . We referred to d ′ as a distance, but we need to prove it.

Lemma 3 The function d ′ is a complete pseudometric on E .

Proof Let us prove that d ′ is a pseudometric on Cn. First, it is easy to see that
d ′(v,w) is always a finite nonnegative real number, and it is symmetric since

d ′(v,w) = min
σ∈Sn

min
i=1,...,n+1

{
i − 1

n
+ |v −wσ |↓i

}

= min
σ∈Sn

min
i=1,...,n+1

{
i − 1

n
+ |w − vσ−1 |↓i

}
= d ′(w, v).

Moreover, given any τ ∈ Sn, we have

d ′(v,w) = min
σ∈Sn

min
i=1,...,n+1

{
i − 1

n
+ |v −wσ |↓i

}

= min
σ∈Sn

min
i=1,...,n+1

{
i − 1

n
+ |vτ −wστ |↓i

}
= d ′(vτ ,w),
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so we can permute the elements of the vectors as we like. Let v,w, z ∈ Cn and let
us sort their elements in such a way that

d ′(v,w) = min
i=1,...,n+1

{
i − 1

n
+ |vi −wi |

}
,

d ′(w, z) = min
i=1,...,n+1

{
i − 1

n
+ |w − z|↓i

}
,

meaning that the permutation realizing the minimum in both cases is the identity,
and that |vi −wi | ≥ |vj −wj | whenever i ≤ j . Moreover, let s, r, q be the greatest
indices that satisfy

d ′(v,w) = s − 1

n
+ |vs − ws |, d ′(w, z) = r − 1

n
+ |wq − zq |.

Let I, J be two sets of indices defined as

I = { 1, 2, . . . , s − 1 } , J = {j : |wj − zj | > |wq − zq |}.

Notice that #I = s − 1 and #J = r − 1. Let us consider two cases.

• Suppose I ∪ J = { 1, . . . , n }. We obtain that

#I + #J = r + s − 2 ≥ n

and hence

d ′(v, z) ≤ 1 ≤ s − 1

n
+ r − 1

n
≤ d ′(v,w) + d ′(w, z).

• Suppose I ∪ J �= { 1, . . . , n }. Let k be the index not belonging to I ∪ J that
maximizes |vi − zi |. If we consider the identity permutation, we deduce that

d ′(v, z) ≤ min
i=1,...,n+1

{
i − 1

n
+ |v − z|↓i

}
,

but the number of indices such that |vi − zi | is greater than |vk − zk| is at most
#I ∪ J ≤ r + s − 2, and consequently

d ′(v, z) ≤ r + s − 2

n
+ |vk − zk|.

The index k does not belong to I or to J , so

|vk −wk| ≤ |vs −ws |, |wk − zk| ≤ |wq − zq |.
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From the latter we infer that

d ′(v, z) ≤ r + s − 2

n
+ |vk − zk|

≤ s − 1

n
+ |vk − wk| + r − 1

n
+ |wk − zk|

≤ s − 1

n
+ |vs −ws | + r − 1

n
+ |wq − zq |

= d ′(v,w) + d ′(w, z).

This shows that d ′ is a pseudometric on Cn and consequently it is a pseudometric
even on Cn×n. Thanks to Lemma 2, we can conclude that d ′ is a complete
pseudometric on E . ��

In the general case, the two pseudometrics have no common features, but, when
dealing with diagonal matrices, we can prove the following lemma.

Lemma 4 Given {Dn}n, {D′n}n ∈ E sequences of diagonal matrices, there exists a
sequence {Pn}n of permutation matrices such that

d ′({D′n}n, {Dn}n) = dacs({D′n}n, {PnDnP
T
n }n).

Proof Let vn and v′n be the vectors of the ordered diagonal entries of Dn and D′n,
so that

vni := [Dn]i,i , v′ni := [D′n]i,i .

Let τn ∈ Sn be the permutations satisfying

d ′(D′n,Dn) = min
σ∈Sn

min
i=1,...,n+1

{
i − 1

n
+ |v′n − vnσ |↓i

}

= min
i=1,...,n+1

{
i − 1

n
+ |v′n − vnτn |↓i

}
.

Let also Pn be the permutation matrices associated with τn. We know that

p(D′n − PnDnP
T
n ) = min

i=1,...,n+1

{
i − 1

n
+ σi(D

′
n − PnDnP

T
n )

}

= min
i=1,...,n+1

{
i − 1

n
+ |v′n − vnτn |↓i

}

= d ′(D′n,Dn).
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As a consequence

dacs({D′n}n, {PnDnP
T
n }n) = lim sup

n→∞
p(D′n − PnDnP

T
n )

= lim sup
n→∞

d ′(D′n,Dn) = d ′({D′n}n, {Dn}n).
��

2.3 GLT Matrix Sequences

A matrix sequence {An}n may have several different singular value symbols, even on
the same domain. For specific sequences, called generalized locally Toeplitz (GLT)
sequences, we can choose one of their symbols, and denote it as GLT symbol of the
sequence

{An}n ∼GLT k(x, θ).

where the chosen symbols have all the same domain D = [0, 1] × [−π, π]. If we
denote with MD the set of measurable functions on D, and with G the set of GLT
sequences, then the choice of the symbol can be seen as a map

S : G →MD.

Both G and MD are C algebras and pseudometric spaces with the distances dacs
and dm, inducing respectively the acs convergence and the convergence in measure.
In [9] and in [2] several properties of the map S are proved.

Theorem 3

1. S is a homomorphism of C algebras. Given {An}n, {Bn}n ∈ G , and c ∈ C, we
have that

S({An + Bn}n) = S({An}n)+ S({Bn}n),

S({AnBn}n) = S({An}n) · S({Bn}n),

S({cAn}n) = cS({An}n).

2. The kernel of S are exactly the zero-distributed sequences.
3. S preserves the distances. Given {An}n, {Bn}n ∈ G we have

dacs ({An}n, {Bn}n) = dm(S({An}n), S({Bn}n)).

4. S is onto. All measurable functions are GLT symbols.
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5. GLT symbols are singular value symbols:

{An}n ∈ G �⇒ {An}n ∼σ S({An}n)
6. The graph of S is closed in G × MD . If {Bn,m}n,m are sequences in G that

converge acs to {An}n, and their symbols converge in measure to k(x, θ), then
S({An}n) = k(x, θ).

The diagonal sampling sequences are denoted as {Dn(a)}n, where a : [0, 1] → C

is a measurable function, and

Dn(a) = diag
i=1,...,n

a

(
i

n

)
=

⎛

⎜⎜⎜⎜⎜⎝

a
(

1
n

)

a
(

2
n

)

. . .

a(1)

⎞

⎟⎟⎟⎟⎟⎠

It is easy to verify that when a : [0, 1] → C is an almost everywhere (a.e.)
continuous function, we have {Dn(a)}n ∼σ,λ a(x). Furthermore, if a(x) is
continuous, we know that these sequences have as GLT symbol

{Dn(a)}n ∼GLT a(x)⊗ 1,

where a ⊗ 1 : [0, 1] × [−π, π] → C is a function constant in the second variable.
This is not true for every a(x) measurable, so we resort to the following result.

Lemma 5 Given any a : [0, 1] → C measurable function, and am ∈ C([0, 1])
continuous functions that converge in measure to a(x), there exists an increasing
and unbounded map m(n) such that

{Dn(am(n))}n ∼GLT a(x)⊗ 1 {Dn(am(n))}n ∼λ a(x)

Proof Easy corollary of Lemma 3.4 and Theorem 3.1 in [3]. ��

3 Spectral Measures

3.1 Radon Measures

Let {An}n ∈ E be a sequence with a spectral symbol k(x) with domain D. By
definition, we have

lim
n→∞

1

n

n∑

i=1

G(λi(An)) = 1

l(D)

∫

D

G(k(x))dx.
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Let φ : Cc(C)→ C be the functional defined as

φ(G) := 1

l(D)

∫

D

G(k(x))dx.

The latter is a continuous and linear map, and if we restrict it to real valued
compacted supported functions, it is also a positive operator, since

G(x) ≥ 0 ∀x ∈ C �⇒ φ(G) = 1

l(D)

∫

D

G(k(x))dx ≥ 0.

Let us now recall Riesz theorem [1].

Theorem 4 (Riesz) Let φ : Cc(X) → R be a positive linear and continuous
function, whereX is a Hausdorff and locally compact space. There exists a uniquely
determined Radon positive measure μ such that

φ(F) =
∫

X

Fdμ ∀F ∈ Cc(X).

If G ∈ Cc(C) is a complex valued map, we can always decompose it into G =
G1 + iG2 where G1 and G2 are real valued and supported on a compact. Since φ is
linear, we get

φ(G) = φ(G1)+ iφ(G2) =
∫

C

G1dμ+ i

∫

C

G2dμ =
∫

C

Gdμ

so φ induces a unique measure μ. We can thus define a spectral measure.

Definition 4 Given {An}n ∈ E , we say that it has a spectral measure μ if

lim
n→∞

1

n

n∑

i=1

G(λi(An)) =
∫

C

Gdμ

for every G ∈ Cc(C).

Let Gm ∈ Cc(C) be a sequence of nonnegative real valued maps such that
‖Gm‖∞ ≤ 1 and

Gm(x) = 1 ∀ |x| ≤ m.

We find that

∫

C

Gmdμ = lim
n→∞

1

n

n∑

i=1

Gm(λi(An)) ≤ 1
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and hence

μ(C) = lim
m→∞μ ({x : |x| ≤ m}) ≤ lim sup

m→∞

∫

C

Gmdμ ≤ 1.

This proves that all the measures we consider are finite. Since all the finite measures
over the Borelian set are Radon, we will now simply say “measure” instead
of “Radon measure.” We showed that any measurable function induces a finite
measure, but we can actually prove that it induces a probability measure, and also
that any probability measure is induced by a function.

Lemma 6 Let D ⊆ Rn be a measurable set with finite nonzero measure. Then, for
any k ∈MD there exists a probability measure μ such that

1

l(D)

∫

D

G(k(x))dx =
∫

C

Gdμ ∀G ∈ Cc(C).

Let J be the real interval [0, 1]. Then for every probability measure μ there exists a
measurable function k ∈MJ such that

∫ 1

0
G(k(x))dx =

∫

C

Gdμ ∀G ∈ Cc(C).

Proof Given k ∈ MD , we already showed that Riesz theorem identifies a unique
finite measure μ such that

1

l(D)

∫

D

G(k(x))dx =
∫

C

Gdμ ∀G ∈ Cc(C).

Let us consider M > 0 and denote

χM(x) =
{

1 |x| ≤ M,

0 |x| > M.

Moreover, let us fix ε > 0, so that for every M > 0 we can find GM ∈ Cc(C) such
that

χM(x) ≤ GM(x) ≤ χM+ε(x) ∀x ∈ C.

We infer
∫

C

χM−εdμ ≤
∫

C

GM−εdμ = 1

l(D)

∫

D

GM−ε(k(x))dx ≤ 1

l(D)

∫

D

χM(k(x))dx,

1

l(D)

∫

D

χM(k(x))dx ≤ 1

l(D)

∫

D

GM(k(x))dx =
∫

C

GMdμ ≤
∫

C

χM+εdμ
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so that
∫

C

χM−εdμ ≤ 1

l(D)

∫

D

χM(k(x))dx ≤
∫

C

χM+εdμ.

When we let ε go to zero, we obtain that the integrals coincide on the indicator
functions of closed intervals

∫

C

χMdμ = 1

l(D)

∫

D

χM(k(x))dx.

The symbol k(x) is a measurable function, so it is sparsely unbounded, meaning
that

lim
M→∞ l({x : |k(x)| > M}) = lim

M→∞

∫

D

χ|x|>M(k(x))dx = 0.

With the latter, we can conclude that μ is a probability measure

μ(C) = lim
M→+∞

∫

C

χ|x|≤Mdμ = lim
M→∞

1

l(D)

∫

D

χ|x|≤M(k(x))dx = 1.

Given any probability measure μ, we know that the space (C, μ) is a standard
probability space, meaning that it is isomorphic to a space X = I � E, where I is
a real finite interval with the Lebesgue measure, and E = { x1, x2, . . . } is a discrete
numerable set with an atomic measure ν. In particular, the isomorphism ϕ : C→ X

satisfies

μ(U) = l ⊕ ν(ϕ(U)) ∀U ∈ B(C).

and if the atomic measure is ν =∑+∞
i=1 ciδxi , then

1 = μ(C) = l ⊕ ν(X) = l(I )+
+∞∑

i=1

ci .

If we call S = ν(X) = ∑+∞
i=1 ci , then we can take I = [S, 1]. Let g : [0, 1] → X

be a map defined as

g(x) :=
{
xk

∑k−1
i=1 ci ≤ x <

∑k
i=1 ci,

x x ≥ S.
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This has the same distribution as l⊕ ν, since for every measurable map G : X→ C

we obtain

∫

X

Gd(l ⊕ ν) =
+∞∑

i=1

ciG(xi)+
∫ 1

S

G(x)dx =
∫ 1

0
G(g(x))dx.

Let now k := ϕ−1 ◦ g : [0, 1] → C be a measurable function, and G ∈ Cc(C). We
conclude that

∫

C

Gdμ =
∫

X

G ◦ ϕ−1d(l ⊕ ν) =
∫ 1

0
G(ϕ−1(g(x)))dx =

∫ 1

0
G(k(x))dx.

��
A corollary of the latter result is that any sequence with a spectral symbol admits

a probability spectral measure, and also the opposite holds. Moreover, if we call P
the set of probability measures on C, then we can also prove that any measure μ ∈ P

is a spectral measure.

Corollary 1 All measures in P are spectral measures.

Proof Let J be the real interval [0, 1]. Given any k ∈ MJ , then there exists a
sequence of continuous functions km ∈ MJ converging to k in measure. Using
Lemma 5, we find that k is a spectral symbol, so every function in MJ is a spectral
symbol.

Given now a measure μ ∈ P, Lemma 6 shows that it is induced by a measurable
function in MJ , so μ is also a spectral symbol. This implies that every measure in
P is a spectral measure. ��

3.2 Vague Convergence

We notice that every matrix An can be associated with an atomic probability
measure μAn with support on its eigenvalues

μAn :=
1

n

n∑

i=1

δλi(An).

Let us return again to the definition of spectral measure and notice that it can be
rewritten as

lim
n→∞

∫

C

GdμAn =
∫

C

Gdμ ∀G ∈ Cc(C).

This is actually the definition of vague convergence for measures.
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The space P endowed with the vague convergence is a complete metric space,
using the Lévy–Prokhorov metric [10]

π(μ, ν) = inf { ε > 0 | μ(A) ≤ ν(Aε)+ ε, ν(A) ≤ μ(Aε)+ ε ∀A ∈ B(C) }

where

Aε := { x ∈ C | dist (x,A) < ε } = { x + y | x ∈ A, |y| < ε } .

Since every matrix is associated with an atomic probability measure, we can extend
the definition of π to matrices and sequences.

Definition 5 Let A,B ∈ Cn×n and let μA,μB be the probability atomic measures
associated with their spectra, defined as

μA := 1

n

n∑

i=1

δλi(A), μB := 1

n

n∑

i=1

δλi(B).

The Lévy–Prokhorov metric on Cn×n is defined as

π(A,B) := π(μA,μB).

The Lévy–Prokhorov metric on E is defined as

π({An}n, {Bn}n) := lim sup
n→∞

π(μAn, μBn).

Again, we need to prove that the latter is actually a pseudometric.

Lemma 7 The Lévy–Prokhorov metric is a pseudometric on Cn×n and a complete
pseudometric on E .

Proof The Lévy–Prokhorov metric is an actual metric on the space of probability
measures, so all the properties can be transferred to the space of matrices Cn×n,
except for the identity of matrices with zero distance, since two different matrices
may have the same eigenvalues. Thus it is a pseudometric on Cn×n, and by
Lemma 2, it is a complete pseudometric on E . ��

Since every matrix is associated with an atomic probability measure, we can also
use the same notation for mixed elements, like

π(A, ν) := π(μA, ν).
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The considered notation is useful since the definition of spectral measure is given
by

lim
n→∞

1

n

n∑

i=1

G(λi(An)) =
∫

C

Gdμ ∀G ∈ Cc(C)

and, when μ ∈ P, it can be rewritten as

{An}n ∼λ μ ⇐⇒ π(An,μ)
n→+∞−−−−→ 0.

The distance π on E is consistent with the distance between their spectral
probability measures, as shown in the following result.

Lemma 8 If {An}n ∼λ μ and {Bn}n ∼λ ν, with {An}n, {Bn}n ∈ E and μ, ν ∈ P,
then

π({An}n, {Bn}n) = π(μ, ν) = lim
n→∞π(An,Bn).

Proof Using the triangular property, we infer

π(μ, ν) ≤ π(μ,An)+ π(An,Bn)+ π(Bn, ν),

π(μ, ν) ≥ −π(μ,An)+ π(An,Bn)− π(Bn, ν).

Thus we obtain

π(μ, ν) ≤ lim inf
n→∞ π(μ,An)+ π(An,Bn)+ π(Bn, ν) = lim inf

n→∞ π(An,Bn),

π(μ, ν) ≥ lim sup
n→∞

−π(μ,An)+ π(An,Bn)− π(Bn, ν) = lim sup
n→∞

π(An,Bn).

By exploiting the latter relationships we conclude that

π({An}n, {Bn}n) = lim sup
n→∞

π(An,Bn)

≤ π(μ, ν) ≤
lim inf
n→∞ π(An,Bn) ≤ π({An}n, {Bn}n).

��
It is noteworthy to stress the importance of the probability condition on the

measures. In fact, it is possible to find a sequence that admits a spectral measure
but does not admit a spectral symbol, when the spectral measure is not a probability
measure. Moreover, the Lévy–Prokhorov metric is defined only on probability
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measures and if μn ∈ P vaguely converge to a measure not in P, then the sequence
μn is not even a Cauchy sequence for π .

4 Main Results

4.1 Connection Between Measures

First of all, we prove that π and d ′ are equivalent pseudometrics on E .

Lemma 9 If {An}n, {Bn}n ∈ E , then

π({An}n, {Bn}n) ≤ d ′({An}n, {Bn}n) ≤ 2π({An}n, {Bn}n).

Proof Let us first prove that for any A,B ∈ Cn×n, we have

π(A,B) ≤ d ′(A,B) ≤ 2π(A,B).

Let Λ(A) and Λ(B) be ordered so that

i < j �⇒ |λi(A)− λi(B)| ≥ |λj (A)− λj (B)|

and

s := d ′(A,B) = k − 1

n
+ |λk(A)− λk(B)|.

In particular, we deduce that

|λi(A)− λi(B)| ≤ s ∀i ≥ k

and consequently, for any subset U ⊆ C, we obtain the inequality

#{λi(A) ∈ U, i ≥ k} ≤ #{λi(B) ∈ Us, i ≥ k}.

Denote with μA and μB the atomic probability measures associated with A,B. Let
U ∈ B(C) be any Borelian set and denote the cardinality of the intersection with a
n-uple v as

QU(v) := #{i : vi ∈ U}.
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Formally, QU(v) is the number of elements of v inside v, counted with multiplicity.
We know that

μA(U) = QU(Λ(A))

n

= QU({λi(A) : i ≥ k})
n

+ QU({λi(A) : i < k})
n

≤ QUs ({λi(B) : i ≥ k})
n

+ k − 1

n

≤ QUs (Λ(B))

n
+ s = μB(U

s)+ s.

We symmetrically obtain also the following relation:

μB(U) ≤ μA(U
s)+ s.

As a consequence

π(A,B) = inf { ε > 0 | μA(U) ≤ μB(U
ε)+ ε, μB(U) ≤ μA(U

ε)+ ε ∀U ∈ B(C) }

�⇒ π(A,B) ≤ s = d ′(A,B).

Denote now r = π(A,B) and let T be any sub-uple of Λ(A). If we see T as a
set, then it is a finite subset of C, so it is a Borelian set. Given any ε > 0 we know
that

μA(T ) = QT (Λ(A))

n
≤ μB(T

r+ε)+ r + ε = QT r+ε (Λ(B))

n
+ r + ε

so we deduce that

QT (Λ(A))

n
≤ QT r (Λ(B))

n
+ r �⇒ QT (Λ(A)) ≤ QT r (Λ(B))+ rn.

By using the fact that the map Q is integer valued, we conclude that

QT (Λ(A)) ≤ QT r (Λ(B))+ �rn�.

The quantity QT (Λ(A)) is actually the cardinality of T seen as a sub-uple of Λ(A),
so for every subset T of k eigenvalues in A, even repeated, there are at least k−�rn�
eigenvalues of B that have distance less than r from one of the elements of T .

Let us now build a bipartite graph, where the left set of nodes L contains the
elements of Λ(A), the right set of nodes R contains the elements of Λ(B), and �rn�
additional nodes. Every additional node is connected to all the elements of L, and
an element of Λ(A) is connected to an element of Λ(B) if and only if their distance
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is less than r . If we denote E the set of edges of the graph and N the set of its nodes,
then we can define the neighborhood of a subset of nodes P ⊆ N as

N(P) := #{u ∈ N : ∃v ∈ P, (v, u) ∈ E}.

By using the previous derivations, we know that for any T ⊆ L = Λ(A) it holds

N(T ) ≥ #T − �rn� + �rn� = #T .

Thanks to Hall’s marriage theorem that can be found, for example, in [7], there
exists a matching for L, meaning that there exists an injective map α : L→ R such
that

(u, α(u)) ∈ E ∀ u ∈ L.

Now let us consider the set

P := {u ∈ L : α(u) ∈ Λ(B)}.

we know that #P ≥ n− �rn�, and we can enumerate the eigenvalues in Λ(A) = L

and Λ(B) so that

λi(A) ∈ P, λi(B) = α(λi (A)) ∀ i ≤ n− �rn�.

Since u and α(u) are connected for all u ∈ L, we deduce that λi(A) and λi(B) are
connected for at least n− �rn� indices. By construction,

|λi(B)− λi(A)| < r ∀ i ≤ n− �rn�

so

d ′(A,B) = min
σ∈Sn

min
i=1,...,n+1

{
i − 1

n
+ |Λ(A)−Λ(B)σ |↓i

}

≤ min
i=1,...,n+1

{
i − 1

n
+ |Λ(A)−Λ(B)|↓i

}

<
�rn�
n

+ r ≤ 2r = 2π(A,B).

This proves that for any A,B ∈ fCn×n we have

π(A,B) ≤ d ′(A,B) ≤ 2π(A,B).
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Given now {An}n, {Bn}n ∈ E , we conclude

π({An}n, {Bn}n) = lim sup
n→∞

π(An,Bn) ≤ lim sup
n→∞

d ′(An, Bn) = d ′({An}n, {Bn}n),

d ′({An}n, {Bn}n) = lim sup
n→∞

d ′(An, Bn) ≤ lim sup
n→∞

2π(An,Bn) = 2π({An}n, {Bn}n).

��
The two distances d ′ and π are equivalent, so they induce the same topology on

the space E and they respect a property of closeness given by the following lemma.

{An,m}n {An}n

μm μ

d ′

λ λ

π

Lemma 10 Let {An,m}n ∼λ μm, where {An,m}n ∈
E and μm ∈ P for every m. If we consider the
statements below

1. π(μm,μ)
m→∞−−−−→ 0,

2. {An}n ∼λ μ,

3. d ′({An,m}n, {An}n) m→∞−−−−→ 0,

where {An}n ∈ E and μ ∈ P, then any two of them
are true if and only if all of them are true.

Proof 1.3. �⇒ 2.) We know that

π(An,μ) ≤ π(An,An,m)+ π(An,m,μm)+ π(μm,μ) ∀ n,m.

Given ε > 0, we can find M such that

π(μm,μ)
m→∞−−−−→ 0 �⇒ π(μm,μ) < ε ∀m > M,

d ′({An,m}n, {An}n) m→∞−−−−→ 0 �⇒ d ′({An,m}n, {An}n) < ε ∀m > M.

Using Lemma 9, we obtain

lim sup
n→∞

π(An,m,An) = π({An,m}n, {An}n) ≤ d ′({An,m}n, {An}n).

We can then fix m > M and find N > 0 such that

π(An,m,An) ≤ 2ε, π(An,m,μm) ≤ ε ∀ n > N.

We obtain that

π(An,μ) ≤ 2ε + ε + ε = 4ε ∀ n > N,
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and hence we conclude that

π(An,μ)
n→∞−−−→ 0 �⇒ {An}n ∼λ μ.

2.3. �⇒ 1.) Thanks to Lemma 8, we know that

{An,m}n ∼λ μm, {An}n ∼λ μ �⇒ π(μm,μ) = π({An,m}n, {An}n)

and, using Lemma 9, we conclude that

π(μm,μ) = π({An,m}n, {An}n) ≤ d ′({An,m}n, {An}n) m→∞−−−−→ 0.

1.2. �⇒ 3.) Thanks to Lemma 8, we know that

{An,m}n ∼λ μm, {An}n ∼λ μ �⇒ π({An,m}n, {An}n) = π(μm,μ)

and, using Lemma 9, we conclude that

d ′({An,m}n, {An}n) ≤ 2π({An,m}n, {An}n) = 2π(μm,μ)
m→∞−−−−→ 0.

��

4.2 Proofs of Theorems

We can finally prove that d ′ identifies two sequences if and only if they have the
same spectral symbol.

Theorem 1 If {An}n ∼λ f (x), then

{Bn}n ∼λ f (x) ⇐⇒ d ′({An}n, {Bn}n) = 0.

Proof Let μ be the probability measure associated with f (x). Let also {An,m}n and
μm be constant sequences defined as

An,m := An ∀ n,m, μm := μ ∀m.

We know by hypothesis that

{An,m}n ∼λ μm, π(μm,μ)
m→∞−−−−→ 0,

therefore, owing to Lemma 10, we obtain the equivalence

{Bn}n ∼λ μ ⇐⇒ d ′({An,m}n, {Bn}n) m→∞−−−−→ 0,
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which can be rewritten as

{Bn}n ∼λ f (x) ⇐⇒ d ′({An}n, {Bn}n) = 0.

��
The other theorem shows that the GLT symbol represents in fact an ordering of

the sequence eigenvalues. Given a sequence {An}n ∈ E with a spectral symbol k(x),
we can consider the diagonal matrices Dn ∈ Cn×n containing the eigenvalues of An.
We get again that {Dn}n ∼λ k(x), so we can focus only on diagonal sequences. A
permutation of the eigenvalues is thus formalized as the similarity PnDnP

T
n with Pn

permutation matrices. In [3], we showed that a function k(x)⊗1 is a GLT symbol for
a diagonal sequence {Dn}n if and only if the piecewise linear functions interpolating
the ordered entries of Dn on [0, 1] converge in measure to k(x). Thanks to the
existence of the natural order on R, we deduced that for any real diagonal sequence
{Dn}n, with a real spectral symbol k(x), there exists a sequence of permutations
{Pn}n such that

{PnDnP
T
n }n ∼GLT k(x)⊗ 1.

We could not extend the result on the complex plane, due to the lack of a natural
ordering. Using the spectral measure theory we developed, we can now bypass the
problem, since spectral symbols with the same distribution are now identified into a
uniquely determined probability measure.

Theorem 2 Given a measurable function k : [0, 1] → C, and a diagonal sequence
{Dn}n with spectral symbol k(x), there exists a sequence {Pn}n of permutation
matrices such that

{PnDnP
T
n } ∼GLT k(x)⊗ 1.

Proof The space of continuous functions is dense in the space of measurable
functions with the convergence in measure. Thus, there exist km(x) ∈ C[0, 1] that
converge in measure to k(x). Using Lemma 5, we can find a diagonal sequence
{D′n}n with

{D′n}n ∼GLT k(x)⊗ 1, {D′n}n ∼λ k(x).

Theorem 1 leads to d ′({Dn}n, {D′n}n) = 0 and owing to Lemma 4, there exist
permutation matrices {Pn}n such that

dacs

(
{D′n}n, {PnDnP

T
n }n

)
= 0.

Using the fact that the GLT space is closed for the pseudometric dacs , and that the
distance of the GLT symbols is equal to the distance of the sequences for Theorem 3,
we conclude that {PnDnP

T
n }n ∼GLT k(x)⊗ 1. ��
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5 Future Works

The theory of spectral measures is still a work in progress, with open questions and
many possible extensions.

For example, we have seen that the space of probability measures corresponds to
the space of sequences which admit a spectral symbol, but the sequences admitting
a general spectral measure (not necessarily a probability measure) are larger. The
difference between 1 and the mass of a spectral measure can be interpreted as the
rate of eigenvalues not converging to finite values, and consequentially we can admit
spectral symbols f : [0, 1] → C

∗, where C
∗ = C ∪ {∞} is the Riemann sphere

or the Alexandroff compactification of C. The insight on the sequences of matrices
is that they may have a fraction of the asymptotic spectrum that diverges to ∞ in
modulus, so a spectral symbol with values on C

∗ may also catch this new behavior.
The introduction of these new functions probably leads to a variation of Corollary 1,
where a sequence admits a spectral measure if and only if it admits a spectral symbol
with values on C

∗. The downside of this extension is that the distance π does not
induce the vague convergence on the space of finite measures, so we need to find a
new metric that mimics the characteristics of the Lèvy–Prokhorov metric.

All this document is focused on spectral symbols/measures, but the same analysis
can be performed using the singular values instead of the eigenvalues, leading to a
theory focused into singular value symbols/measures, that will probably have some
deep bounds with the GLT symbols. They are similar since both the GLT symbol
and the singular value symbol of a sequence are unique, but at the same time they
are also very different since the space of measures lacks a group structure, and two
sequences with different GLT symbols may have the same singular value symbol.

Eventually, it seems that spectral measures arise naturally even in algebraic
geometry (see, for example, [13]) so further connections can be also developed in
different areas of mathematics.
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Block Locally Toeplitz Sequences:
Construction and Properties

Carlo Garoni, Stefano Serra-Capizzano, and Debora Sesana

Abstract The theory of block locally Toeplitz (LT) sequences—along with its
generalization known as the theory of block generalized locally Toeplitz (GLT)
sequences—is a powerful apparatus for computing the spectral distribution of
matrices arising from the discretization of differential problems. In this paper
we develop the theory of block LT sequences, whereas the theory of block GLT
sequences is the subject of the complementary paper (Chap. 3 of this book).

Keywords Singular values and eigenvalues · Block locally Toeplitz sequences ·
Block Toeplitz matrices · Discretization of differential equations

1 Introduction

A Toeplitz matrix is a matrix whose entries are constant along each northwest–
southeast diagonal. A block Toeplitz matrix is a Toeplitz matrix whose entries
are blocks, i.e., square matrices of a fixed size s. Any matrix-valued function
f : [−π, π] → Cs×s whose components fij belong to L1([−π, π]) generates a
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sequence of block Toeplitz matrices {Tn(f )}n via its Fourier coefficients

fk = 1

2π

∫ π

−π

f (θ)e−ikθdθ ∈ C
s×s, k ∈ Z,

where the integrals are computed componentwise. Specifically, we have

Tn(f ) = [fi−j ]ni,j=1 ∈ C
sn×sn,

i.e., the entries of Tn(f ) along the kth northwest–southeast diagonal identified by
the equation i − j = k are equal to the kth Fourier coefficient fk . For example, if

f (θ) =
[

2− 2 cos θ −i sin θ

−i sin θ 1

]

then we have

f0 =
[

2 0

0 1

]
, f1 =

[
−1 − 1

2

− 1
2 0

]
, f−1 =

[
−1 1

2
1
2 0

]
,

fk = 0 for |k| > 1, and

Tn(f ) =

⎡
⎢⎢⎢⎢⎢⎣

f0 f−1

f1 f0 f−1
. . .

. . .
. . .

f1 f0 f−1

f1 f0

⎤
⎥⎥⎥⎥⎥⎦
= tridiag

j=1,...,n

[
−1 − 1

2 2 0 −1 1
2

− 1
2 0 0 1 1

2 0

]
. (1)

A ‘block locally Toeplitz matrix’ or ‘locally block Toeplitz matrix’ is a matrix
possessing a local block Toeplitz structure. For instance, denoting by X ◦ Y the
componentwise (Hadamard) product of the matrices X and Y , a block locally
Toeplitz version of (1) is

An =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(x1) ◦ f0 a(x1) ◦ f−1

a(x2) ◦ f1 a(x2) ◦ f0 a(x2) ◦ f−1

. . .
. . .

. . .

a(xn−1) ◦ f1 a(xn−1) ◦ f0 a(xn−1) ◦ f−1

a(xn) ◦ f1 a(xn) ◦ f0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= tridiag
j=1,...,n

[
−a11(xj ) − 1

2a12(xj ) 2a11(xj ) 0 −a11(xj )
1
2a12(xj )

− 1
2a21(xj ) 0 0 a22(xj )

1
2a21(xj ) 0

]
,

(2)



Block LT Sequences 27

where xj = j
n+1 for j = 1, . . . , n and a : [0, 1] → C2×2 is continuous on [0, 1],

in the sense that its components aij are continuous on [0, 1] for all i, j = 1, 2.
Looking at a relatively small submatrix of An (according to a ‘local’ perspective),
one easily recognizes an approximate block Toeplitz structure weighted through the
function a(x). For instance, the principal submatrix of An corresponding to the first
two block rows and columns, i.e.,

[
a(x1) ◦ f0 a(x1) ◦ f−1

a(x2) ◦ f1 a(x2) ◦ f0

]

is approximately equal to

[
a(x1) ◦ f0 a(x1) ◦ f−1

a(x1) ◦ f1 a(x1) ◦ f0

]
= T2(a(x1) ◦ f ),

because x2 ≈ x1 and a is continuous. Similarly, if B�√n� is a submatrix of An of size
�√n�, obtained as the intersection of �√n� consecutive block rows and columns of
An, then B�√n� ≈ T�√n�(a(xi) ◦ f ), where a(xi) is any of the evaluations of a(x)
appearing in B�√n�. The latter assertion remains true if �√n� is replaced by any
other integer kn such that kn = o(n). In conclusion, if we explore ‘locally’ the
matrix An, using an ideal microscope and considering a large value of n, then we
realize that the ‘local’ structure of An is approximately the block Toeplitz structure
generated by a(xi) ◦ f (θ) for some xi .

Sequences of block locally Toeplitz (LT) matrices (or block LT sequences for
shortness) along with their generalizations (the so-called block generalized locally
Toeplitz (GLT) sequences) naturally arise in the discretization of systems of differ-
ential equations (DEs) and also in the higher-order finite element approximation
of scalar DEs. For example, up to a proper scaling and a possible permutation
transformation, the block LT matrix An in (2) is the matrix resulting from the
classical central second-order finite difference discretization of the following system
of DEs:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−a11(x)u
′′
1(x)+ a12u

′
2(x) = f1(x), x ∈ (0, 1),

a21(x)u
′
1(x)+ a22(x)u2(x) = f2(x), x ∈ (0, 1),

u1(0) = u1(1) = 0,

u2(0) = u2(1) = 0.

The theory of block LT sequences—and especially its generalization, the theory
of block GLT sequences—is a powerful apparatus for computing the asymptotic
spectral distribution of such sequences as the matrix size goes to infinity. For
instance, these theories allow one to show that the asymptotic spectral distribution
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of the sequence {An}n is described by the matrix-valued function

a(x) ◦ f (θ) =
[
a11(x)(2− 2 cos θ) −i a12(x) sin θ

−i a21(x) sin θ a22(x)

]
,

in the sense of Definition 2.1 below (this result will be proved in the forthcoming
paper [11], which is entirely devoted to applications of the theory of block GLT
sequences).

The present paper develops the theory of block LT sequences, which is funda-
mental to the theory of block GLT sequences. The latter will be developed in the
complementary paper [12], whereas for applications we refer the reader to [11]. The
paper is organized as follows. In Sect. 2 we collect all the necessary preliminaries.
Section 3 focuses on the fundamental notion of approximating classes of sequences.
In Sect. 4 we develop the theory of block LT sequences. Section 5 is devoted to final
remarks, including a discussion on the analogies and differences between the theory
of (scalar) LT sequences [7, Chapter 7] and the theory of block LT sequences.

2 Mathematical Background

2.1 Notation and Terminology

• Om and Im denote, respectively, the m × m zero matrix and the m × m identity
matrix. Sometimes, when the size m can be inferred from the context, O and I

are used instead of Om and Im.
• 1m denotes the m×m matrix whose entries are all equal to 1.
• The eigenvalues and the singular values of X ∈ Cm×m are denoted by λj (X), j =

1, . . . ,m, and σj (X), j = 1, . . . ,m, respectively. The maximum and minimum
singular values of X are also denoted by σmax(X) and σmin(X), respectively. The
spectrum of X is denoted by Λ(X).

• Given X ∈ Cm×m and 1 ≤ p ≤ ∞, ‖X‖p denotes the Schatten p-norm of X,
which is defined as the p-norm of the vector (σ1(X), . . . , σm(X)); see [3]. The
Schatten 1-norm is also called the trace-norm. The Schatten ∞-norm ‖X‖∞ =
σmax(X) is the classical 2-norm (or spectral norm) and will also be denoted by
‖X‖.

• �(X) is the real part of the (square) matrix X, i.e., �(X) = X+X∗
2 , where X∗ is

the conjugate transpose of X.
• Cc(C) (resp., Cc(R)) is the space of complex-valued continuous functions

defined on C (resp., R) and with bounded support.
• χE is the characteristic (indicator) function of the set E.
• μk denotes the Lebesgue measure in Rk . Throughout this paper, unless otherwise

stated, all the terminology from measure theory (such as ‘measurable set’,
‘measurable function’, ‘a.e.’, etc.) is always referred to the Lebesgue measure.
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• Let D ⊆ Rk , let r ≥ 1 and 1 ≤ p ≤ ∞. A matrix-valued function f : D →
Cr×r is said to be measurable (resp., continuous, bounded, in Lp(D), in C∞(D),
etc.) if its components fαβ : D → C, α, β = 1, . . . , r , are measurable (resp.,
continuous, bounded, in Lp(D), in C∞(D), etc.). The space of functions f :
D → Cr×r belonging to Lp(D) will be denoted by Lp(D, r) in order to stress
the dependence on r .

• Let fm, f : D ⊆ Rk → Cr×r be measurable. We say that fm converges to f

in measure (resp., a.e., in Lp(D), etc.) if (fm)αβ converges to fαβ in measure
(resp., a.e., in Lp(D), etc.) for all α, β = 1, . . . , r .

• A function a : [0, 1] → Cr×r is said to be Riemann-integrable if its components
aαβ : [0, 1] → C, α, β = 1, . . . , r , are Riemann-integrable. We point out that
a complex-valued function g is Riemann-integrable when its real and imaginary
parts�(g) and �(g) are Riemann-integrable in the classical sense. We also recall
that any Riemann-integrable function is bounded by definition.

• We use a notation borrowed from probability theory to indicate sets. For example,
if f, g : D ⊆ Rk → Cr×r , then {σmax(f ) > 0} = {x ∈ D : σmax(f (x)) > 0},
μk{‖f − g‖ ≥ ε} is the measure of the set {x ∈ D : ‖f (x)− g(x)‖ ≥ ε}, etc.

• A function of the form f (θ) =∑d
j=−d fj eijθ with f−d , . . . , fd ∈ Cr×r is said

to be a (matrix-valued) trigonometric polynomial. If f−d �= Or or fd �= Or , the
number d is referred to as the degree of f .

• A matrix-sequence is any sequence of the form {An}n, where An ∈ Csn×sn and
s is a fixed positive integer. The role of s will become clear later on. A matrix-
sequence {An}n is said to be Hermitian if each An is Hermitian.

2.2 Preliminaries on Matrix Analysis

2.2.1 Matrix Norms

Let X ∈ Cm×m. Since ‖X‖ = ‖X‖∞ = σmax(X) and rank(X) is the number of
nonzero singular values of X, we have

σmax(X) = ‖X‖ ≤ ‖X‖1 =
m∑

i=1

σi(X) ≤ rank(X)‖X‖ ≤ m‖X‖, X ∈ C
m×m.

(3)

Another important trace-norm inequality is the following [7, p. 33]:

‖X‖1 ≤
m∑

i,j=1

|xij |, X ∈ C
m×m. (4)
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If 1 ≤ p, q ≤ ∞ are conjugate exponents, i.e., 1/p + 1/q = 1, then the following
Hölder-type inequality holds for the Schatten norms [3]:

‖XY‖1 ≤ ‖X‖p‖Y‖q , X, Y ∈ C
m×m. (5)

2.2.2 Direct Sums and Hadamard Products

If X ∈ C
m1×m2 and Y ∈ C

�1×�2 , the direct sum of X and Y is the (m1+�1)×(m2+
�2) matrix defined by

X ⊕ Y = diag(X, Y ) =
[
X O

O Y

]
.

We recall some properties of direct sums.

• The relation (X1 ⊕ Y1)(X2 ⊕ Y2) = (X1X2) ⊕ (Y1Y2) holds whenever X1,X2
can be multiplied and Y1, Y2 can be multiplied.

• If X ∈ Cm×m and Y ∈ C�×�, the eigenvalues and singular values of X ⊕ Y are
given by {λi(X) : i = 1, . . . ,m} ∪ {λj (Y ) : j = 1, . . . , �} and {σi(X) : i =
1, . . . ,m} ∪ {σj (Y ) : j = 1, . . . , �}, respectively.

In particular, for all X ∈ C
m1×m2 and Y ∈ C

�1×�2 ,

‖X ⊕ Y‖ = max(‖X‖, ‖Y‖),
‖X ⊕ Y‖p =

(‖X‖pp + ‖Y‖pp
)1/p

, 1 ≤ p <∞. (6)

If X,Y ∈ Cm×�, the Hadamard (or entrywise) product of X and Y is the m × �

matrix defined by (X ◦ Y )ij = xij yij for i = 1, . . . ,m and j = 1, . . . , �. We recall
the following property of Hadamard products [3, p. 23]:

‖X ◦ Y‖ ≤ ‖X‖ ‖Y‖, X, Y ∈ C
m×m. (7)

2.3 Preliminaries on Measure and Integration Theory

2.3.1 Measurability

The following lemma can be derived from the results in [3, Section VI.1]. It will be
used essentially everywhere in this paper, either explicitly or implicitly.

Lemma 2.1 Let f : D ⊆ Rk → Cr×r be measurable and let g : Cr →
C be continuous and symmetric in its r arguments, i.e., g(λ1, . . . , λr ) =
g(λρ(1), . . . , λρ(r)) for all permutations ρ of {1, . . . , r}. Then, the function
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x �→ g(λ1(f (x)), . . . , λr (f (x))) is well-defined (independently of the labeling
of the eigenvalues of f (x)) and measurable. As a consequence:

• the function x �→ g(σ1(f (x)), . . . , σr (f (x))) is measurable;
• the functions x �→ ∑r

i=1 F(λi(f (x))) and x �→ ∑r
i=1 F(σi(f (x))) are

measurable for all continuous F : C→ C;
• the function x �→ ‖f (x)‖p is measurable for all p ∈ [1,∞].

2.3.2 Lp-Norms of Matrix-Valued Functions

Let D be any measurable subset of some Rk, let r ≥ 1, and let 1 ≤ p ≤ ∞. For any
measurable function f : D→ Cr×r we define

‖f ‖Lp =
{
(
∫
D
‖f (x)‖ppdx)1/p, if 1 ≤ p <∞,

ess supx∈D‖f (x)‖∞, if p = ∞.
(8)

Note that this definition is well-posed by Lemma 2.1. In the case where r = 1, it
reduces to the classical definition of Lp-norms for scalar functions. As highlighted
in [6, p. 164], there exist constants Ap,Bp > 0 such that, for all f ∈ Lp(D, r),

Ap‖f ‖pLp ≤
r∑

α,β=1

‖fαβ‖pLp ≤ Bp‖f ‖pLp, if 1 ≤ p <∞,

A∞‖f ‖L∞ ≤ max
α,β=1,...,r

‖fαβ‖L∞ ≤ B∞‖f ‖L∞, if p = ∞.

This means that Lp(D, r), which we defined in Sect. 2.1 as the set of functions f :
D → Cr×r such that each component fαβ belongs to Lp(D), can also be defined as
the set of measurable functions f : D → Cr×r such that ‖f ‖Lp <∞. Moreover, if
we identify two functions f, g ∈ Lp(D, r) whenever f (x) = g(x) for almost every
x ∈ D, then the map f �→ ‖f ‖Lp is a norm on Lp(D, r) which induces onLp(D, r)

the componentwise Lp convergence; that is, fm → f in Lp(D, r) according to the
norm ‖ · ‖Lp if and only if (fm)αβ → fαβ in Lp(D) for all α, β = 1, . . . , r .

2.3.3 Convergence in Measure

The convergence in measure plays a central role in the theory of block LT sequences,
as well as in the theory of block GLT sequences [12]. Two useful lemmas about this
convergence are reported below.

Lemma 2.2 Let fm, gm, f, g : D ⊆ R
k → C

r×r be measurable functions.

• If fm → f in measure and gm → g in measure, then αfm + βgm → αf + βg in
measure for all α, β ∈ C.



32 C. Garoni et al.

• If fm → f in measure, gm → g in measure, and μk(D) <∞, then fm ◦ gm →
f ◦ g in measure and fmgm → fg in measure.

Proof See, e.g., [7, Lemma 2.3]. ��
Lemma 2.3 Let gm, g : D → C

r×r be measurable functions defined on a set
D ⊂ R

k with 0 < μk(D) < ∞. If gm → g in measure, then
∑r

j=1 F(λj (gm(x)))
converges to

∑r
j=1 F(λj (g(x))) in L1(D) for all F ∈ Cc(C).

Proof For each fixed x ∈ D, consider the optimal matching distance between the
spectra of gm(x) and g(x), namely

d(Λ(gm(x)),Λ(g(x))) = min
ρ

max
1≤j≤r |λj (gm(x))− λρ(j)(g(x))|

where the minimum is taken over all permutations ρ of {1, . . . , r}; see also [3,
Section VI.1]. For every ε > 0 we have the inclusion

{d(Λ(gm),Λ(g)) > ε} ⊆ {4(‖gm‖ + ‖g‖)1−1/r‖gm − g‖1/r > ε} = Em,ε,

because

d(Λ(gm),Λ(g)) ≤ 4(‖gm‖ + ‖g‖)1−1/r‖gm − g‖1/r ;

see [3, Theorem VIII.1.5]. The set Em,ε is measurable by Lemma 2.1, and for each
x ∈ D \ Em,ε we have d(Λ(gm(x)),Λ(g(x))) ≤ ε, hence

∣∣∣∣∣∣

r∑

j=1

F(λj (gm(x)))−
r∑

j=1

F(λj (g(x)))

∣∣∣∣∣∣
≤ rωF (ε), ∀F ∈ Cc(C),

where ωF (ε) = sup{|F(u) − F(v)| : u, v ∈ C, |u − v| ≤ ε} is the modulus of
continuity of F . Thus, for every F ∈ Cc(C), every m and every ε > 0,

∥∥∥∥∥∥

r∑

j=1

F(λj (gm))−
r∑

j=1

F(λj (g))

∥∥∥∥∥∥
L1

=
∫

D

∣∣∣∣∣∣

r∑

j=1

F(λj (gm(x)))−
r∑

j=1

F(λj (g(x)))

∣∣∣∣∣∣
dx

=
∫

Em,ε

∣∣∣∣∣∣

r∑

j=1

F(λj (gm(x)))−
r∑

j=1

F(λj (g(x)))

∣∣∣∣∣∣
dx

+
∫

D\Em,ε

∣∣∣∣∣∣

r∑

j=1

F(λj (gm(x)))−
r∑

j=1

F(λj (g(x)))

∣∣∣∣∣∣
dx

≤ 2r‖F‖∞μk(Em,ε)+ μk(D)rωF (ε). (9)
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We show that

lim
m→∞μk(Em,ε) = lim

ε→0
ωF (ε) = 0.

Once this is done, passing first to the lim supm→∞ and then to the limε→0 in (9),
we obtain that

∑r
j=1 F(λj (gm)) → ∑r

j=1 F(λj (g)) in L1(D), and the thesis is
proved. The limit relation limε→0 ωF (ε) = 0 follows immediately from the Heine–
Cantor theorem, so we only have to prove that limm→∞ μk(Em,ε) = 0. By (3) and
(4),

Em,ε =
{
4(‖gm‖ + ‖g‖)1−1/r‖gm − g‖1/r ≥ ε

}

≤ {4(‖gm − g‖ + 2‖g‖)1−1/r‖gm − g‖1/r ≥ ε
}

≤
{

4

( r∑

α,β=1

|(gm − g)αβ | + 2‖g‖
)1−1/r( r∑

α,β=1

|(gm − g)αβ |
)1/r

≥ ε

}
,

and the limit relation limm→∞ μk(Em,ε) = 0 follows from the hypothesis that
gm → g in measure. ��

2.4 Singular Value and Eigenvalue Distribution
of a Matrix-Sequence

We introduce in this section the fundamental definitions of singular value and
spectral distribution for a given matrix-sequence. Recall from Sect. 2.1 that a matrix-
sequence is a sequence of the form {An}n, where An ∈ Csn×sn and s is a fixed
positive integer.

Definition 2.1 (Singular Value and Eigenvalue Distribution of a Matrix-
Sequence) Let {An}n be a matrix-sequence and let f : D ⊂ Rk → Cr×r be
a measurable matrix-valued function defined on a set D with 0 < μk(D) <∞.

• We say that {An}n has a (asymptotic) singular value distribution described by f ,
and we write {An}n ∼σ f , if

lim
n→∞

1

sn

sn∑

j=1

F(σj (An)) = 1

μk(D)

∫

D

∑r
i=1 F(σi(f (x)))

r
dx, ∀F ∈ Cc(R).

(10)
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• We say that {An}n has a (asymptotic) eigenvalue (or spectral) distribution
described by f , and we write {An}n ∼λ f , if

lim
n→∞

1

sn

sn∑

j=1

F(λj (An)) = 1

μk(D)

∫

D

∑r
i=1 F(λi(f (x)))

r
dx, ∀F ∈ Cc(C).

(11)

Note that Definition 2.1 is well-posed by Lemma 2.1, which ensures that the
functions x �→ ∑r

i=1 F(σi(f (x))) and x �→ ∑r
i=1 F(λi(f (x))) are measurable.

Whenever we write a relation such as {An}n ∼σ f or {An}n ∼λ f , it is understood
that f is as in Definition 2.1; that is, f is a measurable function taking values in
Cr×r for some r ≥ 1 and defined on a subset D of some Rk with 0 < μk(D) <∞.
We refer the reader to [9, Remark 1] or to the appendix of [13] for the informal
meaning behind the distribution relations (10) and (11).

2.5 Zero-Distributed Sequences

A matrix-sequence {Zn}n is said to be zero-distributed if {Zn}n ∼σ 0. It is clear that,
for any r ≥ 1, {Zn}n ∼σ 0 is equivalent to {Zn}n ∼σ Or . Theorems 2.1 and 2.2
provide a characterization of zero-distributed sequences together with a sufficient
condition for detecting such sequences [7, Theorems 3.2 and 3.3].

Theorem 2.1 Let {Zn}n be a matrix-sequence. The following are equivalent.

1. {Zn}n ∼σ 0.
2. For all n we have Zn = Rn +Nn, where lim

n→∞(rank(Rn)/n) = lim
n→∞‖Nn‖ = 0.

Theorem 2.2 Let {Zn}n be a matrix-sequence and suppose there exists p ∈ [1,∞)

such that lim
n→∞(‖Zn‖pp/n) = 0. Then {Zn}n ∼σ 0.

2.6 Sparsely Unbounded Matrix-Sequences

The notion of sparsely unbounded matrix-sequences plays an important role within
the framework of the theory of block LT and GLT sequences.

Definition 2.2 (Sparsely Unbounded Matrix-Sequence) A matrix-sequence
{An}n is said to be sparsely unbounded (s.u.) if for every M > 0 there exists nM
such that, for n ≥ nM ,

#{i ∈ {1, . . . , sn} : σi(An) > M}
n

≤ r(M),

where limM→∞ r(M) = 0.
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The following proposition provides equivalent characterizations of s.u. matrix-
sequences [7, Proposition 5.3]. This will allow us to show in Proposition 2.2 that
the product of two s.u. matrix-sequences is s.u., and in Proposition 2.3 that any
matrix-sequence enjoying an asymptotic singular value distribution is s.u.

Proposition 2.1 Let {An}n be a matrix-sequence. The following are equivalent.
1. {An}n is s.u.
2. limM→∞ lim supn→∞

#{i ∈ {1, . . . , ns} : σi(An) > M}
n

= 0.

3. For every M > 0 there exists nM such that, for n ≥ nM ,

An = Ân,M + Ãn,M, rank(Ân,M) ≤ r(M)n, ‖Ãn,M‖ ≤ M,

where limM→∞ r(M) = 0.

Proposition 2.2 If {An}n, {A′n}n are s.u. then {AnA
′
n}n is s.u.

Proof By Proposition 2.1, for every M > 0 there exists nM such that, for n ≥ nM ,

An = Ân,M + Ãn,M, rank(Ân,M) ≤ r(M)n, ‖Ãn,M‖ ≤ M,

A′n = Â′n,M + Ã′n,M, rank(Â′n,M) ≤ r(M)n, ‖Ã′n,M‖ ≤ M,

where limM→∞ r(M) = 0. Thus, for every M > 0 and every n ≥ nM we have

AnA
′
n = Ân,MA′n + Ãn,MÂ′n,M + Ãn,MÃ′n,M = B̂n,M + B̃n,M ,

where the matrices B̂n,M = Ân,MA′n+ Ãn,MÂ′n,M and B̃n,M = Ãn,MÃ′n,M are such

that rank(Bn,M) ≤ 2r(M)n and ‖B̃n,M‖ ≤ M2. We conclude that {AnA
′
n}n is s.u.

because condition 3 in Proposition 2.1 is satisfied. ��
Proposition 2.3 If {An}n ∼σ f then {An}n is s.u.
Proof Let D ⊂ Rk be the domain of the matrix-valued function f : D → Cr×r .
Fix M > 0 and take FM ∈ Cc(R) such that FM = 1 over [0,M/2], FM = 0 over
[M,∞) and 0 ≤ FM ≤ 1 over R. Note that FM ≤ χ[0,M] over [0,∞). Then,

#{i ∈ {1, . . . , sn} : σi(An) > M}
sn

= 1− #{i ∈ {1, . . . , sn} : σi(An) ≤ M}
sn

= 1− 1

sn

sn∑

i=1

χ[0,M](σi(An))

≤ 1− 1

sn

sn∑

i=1

FM(σi(An))
n→∞−→ 1− 1

μk(D)

∫

D

∑r
i=1 FM(σi(f (x)))

r
dx
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and

lim sup
n→∞

#{i ∈ {1, . . . , sn} : σi(An) > M}
sn

≤ 1− 1

μk(D)

∫

D

∑r
i=1 FM(σi(f (x)))

r
dx.

Since 1
r

∑r
i=1 FM(σi(f (x))) → 1 pointwise and

∣∣ 1
r

∑r
i=1 FM(σi(f (x)))

∣∣ ≤ 1, the
dominated convergence theorem yields

lim
M→∞

∫

D

∑r
i=1 FM(σi(f (x)))

r
dx = μk(D),

and so

lim
M→∞ lim sup

n→∞
#{i ∈ {1, . . . , sn} : σi(An) > M}

sn
= 0.

This means that condition 2 in Proposition 2.1 is satisfied, i.e., {An}n is s.u. ��

2.7 Block Toeplitz Matrices

A matrix of the form

[Ai−j ]ni,j=1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A0 A−1 · · · · · · A−(n−1)

A1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . A−1

An−1 · · · · · · A1 A0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
sn×sn, (12)

with blocksAk ∈ Cs×s for k = −(n−1), . . . , n−1, is called a block Toeplitz matrix.
If s = 1, it is simply referred to as a Toeplitz matrix. We have seen in Sect. 1 that
a function f ∈ L1([−π, π], s) gives rise via its Fourier coefficients to a sequence
of block Toeplitz matrices {Tn(f )}n. We call {Tn(f )}n the block Toeplitz sequence
associated with f , which in turn is called the generating function of {Tn(f )}n.

For each fixed s, n ∈ N, the map Tn(·) : L1([−π, π], s)→ Csn×sn is linear, i.e.,

Tn(αf + βg) = αTn(f )+ βTn(g), α, β ∈ C, f, g ∈ L1([−π, π], s). (13)

Moreover, it is clear from the definition that Tn(Is) = Isn. For every f ∈
L1([−π, π], s), let f ∗ be its conjugate transpose. It is not difficult to show that

Tn(f )∗ = Tn(f
∗), f ∈ L1([−π, π], s), s, n ∈ N. (14)
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In particular, if f is Hermitian, i.e., f (θ) is Hermitian for all θ ∈ [−π, π], then the
block Toeplitz matrices Tn(f ) are Hermitian.

Theorem 2.3 is a fundamental result concerning block Toeplitz matrices. It
provides the singular value distribution of block Toeplitz sequences generated
by a matrix-valued function f ∈ L1([−π, π], s) and the spectral distribution
of block Toeplitz sequences generated by a Hermitian matrix-valued function
f ∈ L1([−π, π], s). For the eigenvalues it goes back to Szegő [14], and for the
singular values it was established by Avram [1] and Parter [15]. They assumed
that f ∈ L∞([−π, π], s) and s = 1; see [4, Section 5] and [5, Section 10.14]
for more on the subject in the case of L∞ generating functions. The extension to
f ∈ L1([−π, π], s) with s = 1 was performed by Tyrtyshnikov and Zamarashkin
[23–25], and the final generalization to f ∈ L1([−π, π], s) with s ≥ 1 is due to
Tilli [21]. We also refer the reader to [10] for a proof of Theorem 2.3 based on the
notion of approximating classes of sequences (see Sect. 3); the proof in [10] is made
only in the case of eigenvalues for s = 1, but the argument is general and can be
extended to singular values and matrix-valued generating functions.

Theorem 2.3 If f ∈ L1([−π, π], s) then {Tn(f )}n ∼σ f . If moreover f is
Hermitian then {Tn(f )}n ∼λ f .

Important inequalities involving Toeplitz matrices and Schatten p-norms origi-
nally appeared in [20, Corollary 4.2]. They have been generalized to block Toeplitz
matrices in [17, Corollary 3.5]. We report them in the next theorem for future use.

Theorem 2.4 Let f ∈ Lp([−π, π], s) and n ∈ N. Then, using the natural
convention 1/∞ = 0, the inequality ‖Tn(f )‖p ≤ n1/p‖f ‖Lp holds for all p ∈
[1,∞].

The next theorem is the last result we shall need about block Toeplitz matrices.

Theorem 2.5 Let fi ∈ L∞([−π, π], s) for i = 1, . . . , q . Then,

lim
n→∞

∥∥∏q
i=1 Tn(fi)− Tn

(∏q
i=1 fi

)∥∥
1

n
= 0. (15)

Proof For q = 2 the result is proved in [6, Proposition 2]. In the general case we
proceed by induction. Fix p ≥ 3 and suppose that the result holds for q = p − 1. If
q = p, using (5) and Theorem 2.4 we obtain

1

n

∥∥∥∥∥

p∏

i=1

Tn(fi)− Tn

( p∏

i=1

fi

)∥∥∥∥∥
1

= 1

n

∥∥∥∥∥∥

p∏

i=1

Tn(fi)−
(p−2∏

i=1

Tn(fi)

)
Tn(fp−1fp)
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+
(p−2∏

i=1

Tn(fi)

)
Tn(fp−1fp)− Tn

( p∏

i=1

fi

)∥∥∥∥∥∥
1

≤ 1

n

∥∥∥∥∥∥

(p−2∏

i=1

Tn(fi)

)
(Tn(fp−1)Tn(fp)− Tn(fp−1fp))

∥∥∥∥∥∥
1

+ 1

n

∥∥∥∥∥∥

(p−2∏

i=1

Tn(fi)

)
Tn(fp−1fp)− Tn

( p∏

i=1

fi

)∥∥∥∥∥∥
1

≤ 1

n

(p−2∏

i=1

‖fi‖L∞
)∥∥Tn(fp−1)Tn(fp)− Tn(fp−1fp)

∥∥
1

+ 1

n

∥∥∥∥∥∥

(p−2∏

i=1

Tn(fi)

)
Tn(fp−1fp)− Tn

((p−2∏

i=1

fi

)
(fp−1fp)

)∥∥∥∥∥∥
1

.

Now, the first term in the right-hand side tends to zero as n → ∞ by [6,
Proposition 2], and the second term tends to zero as n → ∞ by the induction
hypothesis. ��

3 Approximating Classes of Sequences

The notion of approximating classes of sequences (a.c.s.), which is fundamental to
the theory of block LT and GLT sequences, is due to the second author [16]. It should
be said, however, that the underlying idea was already present in the pioneering
papers by Tilli [22] and Tyrtyshnikov [23].

3.1 The a.c.s. Notion

The formal definition of a.c.s. is given below.

Definition 3.1 (Approximating Class of Sequences) Let {An}n a matrix-
sequence. An approximating class of sequences (a.c.s.) for {An}n is a sequence
of matrix-sequences {{Bn,m}n}m with the following property: for every m there
exists nm such that, for n ≥ nm,

An = Bn,m + Rn,m +Nn,m, rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m), (16)

where nm, c(m), ω(m) depend only on m and lim
m→∞ c(m) = lim

m→∞ω(m) = 0.
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Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for all sufficiently large
m, the sequence {Bn,m}n approximates (asymptotically) the sequence {An}n in the
sense that An is eventually equal to Bn,m plus a small-rank matrix (with respect to
the matrix size sn) plus a small-norm matrix. As proved in [7, Section 5.2], the a.c.s.
notion is a notion of convergence in the space of matrix-sequences

E = {{An}n : {An}n is a matrix-sequence}.

More precisely, there exists a pseudometric da.c.s. in E such that {{Bn,m}n}m is an
a.c.s. for {An}n if and only if da.c.s.({Bn,m}n, {An}n)→ 0 as m→∞. It was shown
in [2] that da.c.s. is complete, i.e., any Cauchy sequence {{Bn,m}n}m in (E , da.c.s.)

converges to some limit sequence {An}n. Moreover, for every {An}n, {Bn}n ∈ E we
have

da.c.s.({An}n, {Bn}n) = 0 ⇐⇒ {An − Bn}n ∼σ 0. (17)

Based on the above topological interpretation, we will use the convergence notation

{Bn,m}n a.c.s.−→ {An}n to indicate that {{Bn,m}n}m is an a.c.s. for {An}n.

3.2 The a.c.s. Tools for Computing Singular Value
and Eigenvalue Distributions

The importance of the a.c.s. notion resides in Theorems 3.1 and 3.2, which are easily
derived from the results in [7, Section 5.3], as shown below.

Theorem 3.1 Let {An}n, {Bn,m}n be matrix-sequences and let f, fm : D → Cr×r

be measurable functions defined on a set D ⊂ Rk with 0 < μk(D) < ∞. Assume
that:

1. {Bn,m}n ∼σ fm for every m;

2. {Bn,m}n a.c.s.−→ {An}n;
3. fm → f in measure.

Then {An}n ∼σ f .

Proof Let F ∈ Cc(R). For every n,m we have

∣∣∣∣∣∣
1

sn

sn∑

j=1

F(σj (An))− 1

μk(D)

∫

D

∑r
j=1 F(σj (f (x)))

r
dx

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1

sn

sn∑

j=1

F(σj (An))− 1

sn

sn∑

j=1

F(σj (Bn,m))

∣∣∣∣∣∣
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+
∣∣∣∣∣∣

1

sn

sn∑

j=1

F(σj (Bn,m))− 1

μk(D)

∫

D

∑r
j=1 F(σj (fm(x)))

r
dx

∣∣∣∣∣∣

+
∣∣∣∣∣

1

μk(D)

∫

D

∑r
j=1 F(σj (fm(x)))

r
dx− 1

μk(D)

∫

D

∑r
j=1 F(σj (f (x)))

r
dx

∣∣∣∣∣ .

(18)

The second term in the right-hand side tends to 0 as n → ∞ by hypothesis, while
the third one tends to 0 as m → ∞ by Lemmas 2.2 and 2.3 (take into account
that

∑r
j=1 F(σj (fm(x))) = ∑r

j=1 G(λj (fm(x)fm(x)∗)) where G(z) = F(
√|z|)

belongs to Cc(C)). For the first term we have

lim
m→∞ lim sup

n→∞

∣∣∣∣∣∣
1

sn

sn∑

j=1

F(σj (An))− 1

sn

sn∑

j=1

F(σj (Bn,m))

∣∣∣∣∣∣
= 0;

see [7, Lemma 5.3]. Therefore, passing first to the lim supn→∞ and then to the
limm→∞ in (18), we get the thesis. ��
Theorem 3.2 Let {An}n, {Bn,m}n be Hermitian matrix-sequences and let f, fm :
D → Cr×r be measurable functions defined on a set D ⊂ Rk with 0 < μk(D) <

∞. Assume that:

1. {Bn,m}n ∼λ fm for every m;

2. {Bn,m}n a.c.s.−→ {An}n;
3. fm → f in measure.

Then {An}n ∼λ f .

Proof Let F ∈ Cc(R). For all n,m we have

∣∣∣∣∣∣
1

sn

sn∑

j=1

F(λj (An))− 1

μk(D)

∫

D

∑r
j=1 F(λj (f (x)))

r
dx

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1

sn

sn∑

j=1

F(λj (An))− 1

sn

sn∑

j=1

F(λj (Bn,m))

∣∣∣∣∣∣

+
∣∣∣∣∣∣

1

sn

sn∑

j=1

F(λj (Bn,m))− 1

μk(D)

∫

D

∑r
j=1 F(λj (fm(x)))

r
dx

∣∣∣∣∣∣

+
∣∣∣∣∣

1

μk(D)

∫

D

∑r
j=1 F(λj (fm(x)))

r
dx− 1

μk(D)

∫

D

∑r
j=1 F(λj (f (x)))

r
dx

∣∣∣∣∣ .

(19)
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The second term in the right-hand side tends to 0 as n → ∞ by hypothesis, while
the third one tends to 0 as m→∞ by Lemma 2.3. For the first term in the right-hand
side we have

lim
m→∞ lim sup

n→∞

∣∣∣∣∣∣
1

sn

sn∑

j=1

F(λj (An))− 1

sn

sn∑

j=1

F(λj (Bn,m))

∣∣∣∣∣∣
= 0;

see [7, Lemma 5.5]. Therefore, passing first to the lim supn→∞ and then to the
limm→∞ in (19), we get the thesis. ��

3.3 The a.c.s. Algebra

Theorem 3.3 collects important algebraic properties possessed by the a.c.s.

Theorem 3.3 Let {Bn,m}n a.c.s.−→ {An}n and {B ′n,m}n a.c.s.−→ {A′n}n. The following
properties hold.

• {B∗n,m}n a.c.s.−→ {A∗n}n.
• {αBn,m + βB ′n,m}n a.c.s.−→ {αAn + βA′n}n for all α, β ∈ C.

• If {An}n, {A′n}n are s.u. then {Bn,mB
′
n,m}n a.c.s.−→ {AnA

′
n}n.

• If {Cn}n is s.u. then {Bn,mCn}n a.c.s.−→ {AnCn}n.
Proof For the proofs of statements 1 to 3, see [7, Section 5.4]. We prove statement 4.

Since {Bn,m}n a.c.s.−→ {An}n, for every m there exists nm such that, for n ≥ nm,

An = Bn,m + Rn,m +Nn,m, rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m),

where limm→∞ c(m) = limm→∞ ω(m) = 0. Since {Cn}n is s.u., by Proposition 2.1
for every M > 0 there exists n(M) such that, for n ≥ n(M),

Cn = Ĉn,M + C̃n,M, rank(Ĉn,M) ≤ r(M)n, ‖C̃n,m‖ ≤M,

where limM→∞ r(M) = 0. Setting Mm = ω(m)−1/2, for every m and every n ≥
max(nm, n(Mm)) we have

AnCn = Bn,mCn + R′n,m +N ′n,m,

where R′n,m = Rn,mCn + Nn,mĈn,Mm and N ′n,m = Nn,mC̃n,Mm satisfy

rank(R′n,m) ≤ (c(m)+ r(Mm))n, ‖N ′n,m‖ ≤ ω(m)1/2.

This shows that {Bn,mCn}n a.c.s.−→ {AnCn}n. ��
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Remark 3.1 As a consequence of Theorem 3.3 and Proposition 2.2, if {A(i,j)
n }n is

an s.u. matrix-sequence and {B(i,j)
n,m }n a.c.s.−→ {A(i,j)

n }n for i = 1, . . . , p and j =
1, . . . , qi , then

{∑p

i=1

∏qi
j=1 B

(i,j)
n,m

}
n

a.c.s.−→ {∑p

i=1

∏qi
j=1 A

(i,j)
n

}
n
.

3.4 A Criterion to Identify a.c.s.

A useful criterion to show that a sequence of matrix-sequences {{Bn,m}n}m is
an a.c.s. for another matrix-sequence {An}n is reported in the next theorem [7,
Corollary 5.3].

Theorem 3.4 Let {An}n be a matrix-sequence, let {{Bn,m}n}m be a sequence of
matrix-sequences, and let 1 ≤ p < ∞. Suppose that for every m there exists nm
such that, for n ≥ nm,

‖An − Bn,m‖pp ≤ ε(m, n)n,

where limm→∞ lim supn→∞ ε(m, n) = 0. Then {Bn,m}n a.c.s.−→ {An}n.

4 Block Locally Toeplitz Sequences

The theory of (scalar) LT sequences dates back to Tilli’s pioneering paper [22]. It
was then carried forward in [18, 19], and it was finally developed in a systematic
way in [7, Chapter 7] and [8, Chapter 4]. In this section we develop the theory of
block LT sequences, which has been suggested in [19, Section 3.3] but so far has
never been addressed in a systematic way. We recall that the theory of block LT
sequences is a necessary intermediate step toward a rigorous mathematical theory
of block GLT sequences [12].

4.1 The Block LT Operator

Similarly to the case of (scalar) LT sequences, the theory of block LT sequences
begins with the definition of block locally Toeplitz operator.

Definition 4.1 (Block Locally Toeplitz Operator) Let m,n, s ∈ N, let a :
[0, 1] → Cs×s , and let f ∈ L1([−π, π], s). The block locally Toeplitz (LT)
operator is defined as the following ns × ns matrix:

LT m
n (a, f ) =

m⊕

k=1

T�n/m�
(
a
( k

m

)
◦ f
)
⊕ Os(nmodm).
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It is understood that LT m
n (a, f ) = Osn when n < m and that the term Os(nmodm)

is not present when n is a multiple of m.

In this section we investigate the properties of the block LT operator. We first
note that Definition 4.1 reduces to the definition of the (scalar) LT operator [7,
Definition 7.1] if s = 1. Moreover, for every m,n, s ∈ N, every a, b : [0, 1] →
C

s×s , every f, g ∈ L1([−π, π], s), and every α, β ∈ C, we have

LT m
n (a, f )∗ = LT m

n (a∗, f ∗), (20)

LT m
n (αa + βb, f ) = αLT m

n (a, f )+ βLT m
n (b, f ), (21)

LT m
n (a, αf + βg) = αLT m

n (a, f )+ βLT m
n (a, g). (22)

Proposition 4.1 Let a : [0, 1] → Cs×s , f ∈ L1([−π, π], s), and n,m ∈ N. Then,

‖LT m
n (a, f )‖1 ≤ ns max

k=1,...,m

∥∥∥a
( k

m

)∥∥∥ ‖f ‖L1 .

Proof From Theorem 2.4 and (3), (6), (7), (8), we obtain

‖LT m
n (a, f )‖1 =

m∑

k=1

∥∥∥∥T�n/m�
(
a
( k

m

)
◦ f
)∥∥∥∥

1
≤

m∑

k=1

⌊ n

m

⌋ ∥∥∥∥a
( k

m

)
◦ f
∥∥∥∥
L1

=
m∑

k=1

⌊ n

m

⌋ ∫ π

−π

∥∥∥∥a
( k

m

)
◦ f (θ)

∥∥∥∥
1
dθ ≤

m∑

k=1

⌊ n

m

⌋ ∫ π

−π

s

∥∥∥∥a
( k

m

)
◦ f (θ)

∥∥∥∥dθ

≤
m∑

k=1

s
⌊ n

m

⌋ ∫ π

−π

∥∥∥∥a
( k

m

)∥∥∥∥ ‖f (θ)‖dθ ≤
m∑

k=1

s

∥∥∥∥a
( k

m

)∥∥∥∥
⌊ n

m

⌋ ∫ π

−π

‖f (θ)‖1dθ

≤ ns max
k=1,...,m

∥∥∥a
( k

m

)∥∥∥ ‖f ‖L1,

which completes the proof. ��
Remark 4.1 Let a : [0, 1] → Cs×s be bounded and take any sequence {fh}h ⊂
L1([−π, π], s) such that fh → f in L1([−π, π], s) as h→∞. Then, by (22) and
Proposition 4.1, for every n,m ∈ N we have

‖LT m
n (a, f )− LT m

n (a, fh)‖1 = ‖LT m
n (a, f − fh)‖1

≤ ns sup
x∈[0,1]

‖a(x)‖ ‖f − fh‖L1 .

By Theorem 3.4, this implies that {LT m
n (a, fh)}n a.c.s.−→ {LT m

n (a, f )}n for each m ∈
N.
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Proposition 4.2 Let a(i,j) : [0, 1] → Cs×s be bounded and let f (i,j)

∈ L∞([−π, π], s) for i = 1, . . . , p and j = 1, . . . , qi . Then, for every n,m ∈ N,

∥∥∥∥∥∥

p∑

i=1

qi∏

j=1

LT m
n (a(i,j), f (i,j))

−
m⊕

k=1

T�n/m�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))
⊕ Os(nmodm)

∥∥∥∥∥∥
1

≤ ε(�n/m�)n,

(23)

where

ε(�n/m�) =

1

m

m∑

k=1

p∑

i=1

∥∥∥
∏qi

j=1 T�n/m�
(
a(i,j)( k

m ) ◦ f (i,j)
)− T�n/m�

(∏qi
j=1

(
a(i,j)( k

m) ◦ f (i,j)
))∥∥∥

1
�n/m�

and limn→∞ ε(�n/m�) = 0. In particular, for every m ∈ N we have

da.c.s.

({ p∑

i=1

qi∏

j=1

LT m
n (a(i,j), f (i,j))

}

n

,

{ m⊕

k=1

T�n/m�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))
⊕ Os(nmodm)

}

n

)
= 0.

(24)

Proof By the properties of direct sums and the linearity of the map Tn(·), we obtain

∥∥∥∥∥∥

p∑

i=1

qi∏

j=1

LT m
n (a(i,j), f (i,j))

−
m⊕

k=1

T�n/m�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))
⊕ Os(nmodm)

∥∥∥∥∥∥
1

=
∥∥∥∥∥∥

m⊕

k=1

p∑

i=1

qi∏

j=1

T�n/m�
(
a(i,j)

( k

m

)
◦ f (i,j)

)
⊕ Os(nmodm)

−
m⊕

k=1

p∑

i=1

T�n/m�
( qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))
⊕ Os(nmodm)

∥∥∥∥∥∥
1
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=
∥∥∥∥∥∥

m⊕

k=1

p∑

i=1

⎡

⎣
qi∏

j=1

T�n/m�
(
a(i,j)

( k

m

)
◦ f (i,j)

)

− T�n/m�
( qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))⎤

⎦ ⊕ Os(nmodm)

∥∥∥∥∥∥
1

≤
m∑

k=1

p∑

i=1

∥∥∥∥∥∥

qi∏

j=1

T�n/m�
(
a(i,j)

( k

m

)
◦ f (i,j)

)

− T�n/m�
( qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))∥∥∥∥∥∥
1

= �n/m�
m∑

k=1

p∑

i=1

1

�n/m�

∥∥∥∥∥∥

qi∏

j=1

T�n/m�
(
a(i,j)

( k

m

)
◦ f (i,j)

)

− T�n/m�
( qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))∥∥∥∥∥∥
1

≤ (n/m)

m∑

k=1

p∑

i=1

1

�n/m�

∥∥∥∥∥∥

qi∏

j=1

T�n/m�
(
a(i,j)

( k

m

)
◦ f (i,j)

)

− T�n/m�
( qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))∥∥∥∥∥∥
1

.

This proves (23). Since ε(�n/m�) → 0 as n → ∞ by Theorem 2.5 (recall that
a(i,j)( k

m
) ◦ f (i,j) ∈ L∞([−π, π], s)), Eq. (24) follows immediately from (23),

Theorem 2.2, and (17). ��
Theorem 4.1 Suppose that a(i,j) : [0, 1] → Cs×s is Riemann-integrable and
f (i,j) ∈ L∞([−π, π], s) for i = 1, . . . , p and j = 1, . . . , qi . Then, for every
m ∈ N,

⎧
⎨

⎩

m⊕

k=1

T�n/m�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))
⊕ Os(nmodm)

⎫
⎬

⎭
n

∼σ

p∑

i=1

qi∏

j=1

(
a
(i,j)
m (x) ◦ f (i,j)(θ)

)
, (25)
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where

a
(i,j)
m (x) =

m∑

k=1

a(i,j)
( k

m

)
χ[ k−1

m , k
m

)(x). (26)

Proof By the properties of direct sums, the singular values of the matrix

m⊕

k=1

T�n/m�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))
⊕ Os(nmodm)

are given by

σ�

(
T�n/m�

( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

)))
, � = 1, . . . , s

⌊ n

m

⌋
, k = 1, . . . , m,

plus further s(nmodm) singular values which are equal to 0. Therefore, by
Theorem 2.3, since

∑p

i=1

∏qi
j=1(a

(i,j)( k
m
) ◦ f (i,j)) ∈ L∞([−π, π], s), for any

F ∈ Cc(R) we have

lim
n→∞

1

sn

sn∑

r=1

F

(
σr

( m⊕

k=1

T�n/m�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))
⊕ Os(nmodm)

))

= lim
n→∞

ms
⌊
n
m

⌋

sn

1

m

m∑

k=1

1

s
⌊
n
m

⌋
s
⌊

n
m

⌋
∑

�=1

F

(
σ�

(
T�n/m�

( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))))

= 1

m

m∑

k=1

1

2π

∫ π

−π

1

s

s∑

�=1

F

(
σ�

( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)(θ)

)))
dθ

= 1

2π

∫ 1

0

∫ π

−π

1

s

s∑

�=1

F

(
σ�

( p∑

i=1

qi∏

j=1

(
a
(i,j)
m (x) ◦ f (i,j)(θ)

)))
dθdx. (27)

This concludes the proof. ��
Theorem 4.2 Suppose that a(i,j) : [0, 1] → Cs×s is Riemann-integrable and
f (i,j) ∈ L∞([−π, π], s) for i = 1, . . . , p and j = 1, . . . , qi . Then, for every
m ∈ N,

⎧
⎨

⎩�
( m⊕

k=1

T�n/m�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))
⊕ Os(nmodm)

)⎫⎬

⎭
n

∼λ �
( p∑

i=1

qi∏

j=1

(
a
(i,j)
m (x) ◦ f (i,j)(θ)

))
. (28)

where a(i,j)
m is defined in (26).
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Proof The proof follows the same pattern as the proof of Theorem 4.1. The
eigenvalues of the matrix

�
( m⊕

k=1

T�n/m�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))
⊕ Os(nmodm)

)

=
m⊕

k=1

T�n/m�
(
�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

)))
⊕ Os(nmodm),

are given by

λ�

(
T�n/m�

(
�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)(θ)

))))
, � = 1, . . . , s

⌊ n

m

⌋
, k = 1, . . . , m,

plus further s(nmodm) eigenvalues which are equal to 0. Therefore, by Theo-
rem 2.3, since �(∑p

i=1

∏qi
j=1(a

(i,j)( k
m
) ◦ f (i,j))) ∈ L∞([−π, π], s), following the

same derivation as in (27) we obtain, for any F ∈ Cc(C),

lim
n→∞

1

sn

sn∑

r=1

F

(
λr

(
�
( m⊕

k=1

T�n/m�
(( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))))))

= 1

2π

∫ 1

0

∫ π

−π

1

s

s∑

�=1

F

(
λ�

(
�
( p∑

i=1

qi∏

j=1

(
a
(i,j)
m (x) ◦ f (i,j)(θ)

))))
dθdx.

This concludes the proof. ��
Proposition 4.3 Let a : [0, 1] → Cs×s be Riemann-integrable and let f ∈
L1([−π, π], s). Then, for every m ∈ N,

{LT m
n (a, f )}n ∼σ am(x) ◦ f (θ),

where

am(x) =
m∑

k=1

a
( k

m

)
χ[ k−1

m , k
m

)(x).

Proof Fix m ∈ N and take any sequence {fh}h ⊂ L∞([−π, π], s) such that fh →
f a.e. and in L1([−π, π], s). We have:

• {LT m
n (a, fh)}n a.c.s.−→ {LT m

n (a, f )}n by Remark 4.1;
• {LT m

n (a, fh)}n ∼σ am(x) ◦ fh(θ) by Theorem 4.1;
• am(x) ◦ fh(θ)→ am(x) ◦ f (θ) a.e. (and hence also in measure).

We conclude that {LT m
n (a, f )}n ∼σ am(x) ◦ f (θ) by Theorem 3.1. ��
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4.2 Definition of Block LT Sequences

The notion of block LT sequences is formalized in the next definition.

Definition 4.2 (Block Locally Toeplitz Sequence) Let {An}n be a matrix-
sequence, let a : [0, 1] → Cs×s be Riemann-integrable, and let f ∈ L1([−π, π], s).
We say that {An}n is a block locally Toeplitz (LT) sequence with symbol a(x)◦f (θ),
and we write {An}n ∼LT a(x) ◦ f (θ), if {LT m

n (a, f )}n a.c.s.−→ {An}n.

In what follows, whenever we write a relation such as {An}n ∼LT a(x) ◦ f (θ),
it is understood that a and f are as in Definition 4.2, i.e., a : [0, 1] → Cs×s is
Riemann-integrable and f ∈ L1([−π, π], s). Note that Definition 4.2 reduces to
the definition of (scalar) LT sequences [7, Definition 7.2] if s = 1. LT sequences are
then special cases of block LT sequences.

Remark 4.2 The results in [19, Section 3.3] could have led to believe that block LT
sequences should be defined in reference to the classical matrix product a(x)f (θ)
instead of the Hadamard product a(x) ◦ f (θ). However, the experience coming
from the applications has rejected such a solution as the matrices arising from the
discretization of systems of DEs usually invoke the Hadamard product rather than
the classical matrix product; see also Sect. 1. In this sense, Definition 4.2 may be
seen as a correction to [19, Section 3.3].

Remark 4.3 If {An}n ∼LT a(x) ◦ f (θ) then {A∗n}n ∼LT a(x)∗ ◦ f (θ)∗ = (a(x) ◦
f (θ))∗ and {αAn}n ∼LT α a(x) ◦ f (θ) = a(x) ◦ αf (θ) for all α ∈ C. This follows
immediately from Definition 4.2, the properties of the block LT operator (see (20)–
(22)), and Theorem 3.3.

4.3 Zero-Distributed Sequences, Sequences of Block Diagonal
Sampling Matrices, and Sequences of Block Toeplitz
Matrices

In this section now provide three fundamental examples of block LT sequences:
zero-distributed sequences, sequences of block diagonal sampling matrices, and
sequences of block Toeplitz matrices.

4.3.1 Zero-Distributed Sequences

We show that any zero-distributed sequence is a block LT sequence with symbol
Os .
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Theorem 4.3 Let {Zn}n be a matrix-sequence. The following are equivalent.

1. {Zn}n ∼σ 0.
2. {Osn}n a.c.s.−→ {Zn}n.
3. {Zn}n ∼LT Os .

Proof (1 �⇒ 2) By Theorem 2.1, Zn = Rn + Nn with limn→∞(rank(Rn)/n) =
limn→∞ ‖Nn‖ = 0. Hence, the convergence {Osn}n a.c.s.−→ {Zn}n follows immedi-
ately from Definition 3.1 (take Rn,m = Rn, Nn,m = Nn, c(m) and ω(m) any two
positive functions of m that converge to 0 as m→∞, and nm any integer such that
rank(Rn)/n ≤ c(m) and ‖Nn‖ ≤ ω(m) for n ≥ nm).

(2 �⇒ 1) Since {Osn}n a.c.s.−→ {Zn}n and, moreover, {Osn}n ∼σ 0, the relation
{Zn}n ∼σ 0 follows from Theorem 3.1.

(2 ⇐⇒ 3) This equivalence follows from Definition 4.2 and the observation that
LT m

n (Os,Os) = Osn and Os ◦Os = Os . ��

4.3.2 Sequences of Block Diagonal Sampling Matrices

For n ∈ N and a : [0, 1] → Cs×s , we define the block diagonal sampling matrix
Dn(a) as the following diagonal matrix of size sn× sn:

Dn(a) = diag
i=1,...,n

a
( i
n

)
=

n⊕

i=1

a
( i
n

)
.

We are going to see in Theorem 4.4 that {Dn(a)}n ∼LT a(x) ◦ 1s whenever a is
Riemann-integrable. To prove Theorem 4.4 we shall need the following lemmas; cf.
[7, Lemmas 5.6 and 7.1].

Lemma 4.1 Let C be an �× � matrix and suppose that

‖C‖pp ≤ ε�′

where p ∈ [1,∞), ε ≥ 0, and �′ ≤ �. Then we can write C in the form

C = R + N, rank(R) ≤ ε
1

p+1 �′, ‖N‖ ≤ ε
1

p+1 .

Lemma 4.2 For every m ∈ N let {x(m, k)}k be a sequence of numbers such that
x(m, k) → x(m) as k → ∞ and x(m) → 0 as m → ∞. Then, there exists a
sequence {m(k)}k ⊆ N such that m(k)→∞ and x(m(k), k)→ 0.

Theorem 4.4 Suppose that a : [0, 1] → C
s×s is Riemann-integrable, then

{Dn(a)}n ∼LT a(x) ◦ 1s .
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Proof The proof consists of two steps. We first show that the thesis holds if a is
continuous. Then, by using an approximation argument, we show that it holds even
in the case where a is only supposed to be Riemann-integrable.

Step 1. We prove that if a = [aαβ]sα,β=1 : [0, 1] → Cs×s is continuous and ωaαβ is
the modulus of continuity of aαβ then, for every m ∈ N,

Dn(a) = LT m
n (a, 1s)+ Rn,m +Nn,m,

rank(Rn,m) ≤ sm, ‖Nn,m‖ ≤
s∑

α,β

ωaαβ

( 1

m
+ m

n

)
.

(29)

Since ωaαβ (δ) → 0 as δ → 0 for all α, β, the convergence {LT m
n (a, 1s)}n a.c.s.−→

{Dn(a)}n (and hence the relation {Dn(a)}n ∼LT a(x) ◦ 1s) follows immediately
from Definition 3.1 (take nm = m2, c(m) = s/m, ω(m) =∑s

α,β=1 ωaαβ (2/m)).
The matrix LT m

n (a, 1s) is the sn× sn block diagonal matrix given by

LT m
n (a, 1s) =

m⊕

k=1

T�n/m�
(
a
( k

m

)
◦ 1s

)
⊕ Os(nmodm)

=
m⊕

k=1

⎛

⎝
�n/m�⊕

j=1

a
( k

m

)
⎞

⎠ ⊕ Os(nmodm).

For i = 1, . . . ,m�n/m�, let k = k(i) be the index in {1, . . . ,m} such that

(k − 1)�n/m� + 1 ≤ i ≤ k�n/m�.

In other words, k is the index such that the ith diagonal block of LT m
n (a, 1s) is

given by (LT m
n (a, 1s))ii = a(k/m). Using (3)–(4) and taking into account that

the ith diagonal block of Dn(a) is given by (Dn(a))ii = a(i/n), for every i =
1, . . . ,m�n/m� we obtain

∥∥(LT m
n (a, 1s))ii − (Dn(a))ii

∥∥ =
∥∥∥∥a
( k

m

)
− a
( i
n

)∥∥∥∥

≤
s∑

α,β=1

∣∣∣∣aαβ
( k

m

)
− aαβ

( i
n

)∣∣∣∣ ≤
s∑

α,β=1

ωaαβ

( 1

m
+ m

n

)
,

where the last inequality follows from the fact that

∣∣∣∣
k

m
− i

n

∣∣∣∣ ≤
k

m
− (k − 1)�n/m�

n
≤ k

m
− (k − 1)(n/m− 1)

n
= 1

m
+k − 1

n
≤ 1

m
+m

n
.
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Define the following sn× sn block diagonal matrices:

D̃n,m(a) =
m�n/m�⊕

i=1

a

(
i

n

)
⊕ Os(nmodm),

D̂n,m(a) = Osm�n/m� ⊕
n⊕

i=m�n/m�+1

a

(
i

n

)
.

Then,

Dn(a)− LT m
n (a, 1s) = D̂n,m(a)+ D̃n,m(a)− LT m

n (a, 1s) = Rn,m +Nn,m,

where Rn,m = D̂n,m(a) and Nn,m = D̃n,m(a)− LT m
n (a, 1s) satisfy

rank(Rn,m) ≤ s(nmodm) < sm,

‖Nn,m‖ = max
i=1,...,m�n/m� ‖(LT m

n (a, 1s))ii − (Dn(a))ii‖ ≤
s∑

α,β=1

ωaαβ

( 1

m
+ m

n

)
.

This completes the proof of (29).

Step 2. Let a : [0, 1] → Cs×s be any Riemann-integrable function. Take any
sequence of continuous functions am : [0, 1] → Cs×s such that am → a in

L1([0, 1], s). By Step 1, {Dn(am)}n ∼LT am ◦ 1s . Hence, {LT h
n (am, 1s)}n a.c.s.−→

{Dn(am)}n, i.e., for every m,h there is nm,h such that, for n ≥ nm,h,

Dn(am) = LT h
n (am, 1s)+ Rn,m,h + Nn,m,h,

rank(Rn,m,h) ≤ c(m, h)n, ‖Nn,m,h‖ ≤ ω(m, h),

where limh→∞ c(m, h) = limh→∞ ω(m, h) = 0. Moreover, {Dn(am)}n a.c.s.−→
{Dn(a)}n. Indeed, by (4),

‖Dn(a)−Dn(am)‖1 =
n∑

j=1

∥∥∥∥a
(j
n

)
− am

(j
n

)∥∥∥∥
1
=

n∑

j=1

∥∥∥∥(a − am)
(j
n

)∥∥∥∥
1

≤
n∑

j=1

s∑

α,β=1

∣∣∣∣(a − am)αβ

(j
n

)∣∣∣∣ = ε(m, n)n, (30)

where

ε(m, n) = 1

n

n∑

j=1

s∑

α,β=1

∣∣∣∣(a − am)αβ

(j
n

)∣∣∣∣ .
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By the Riemann-integrability of
∑s

α,β=1 |(a − am)αβ |, which is a consequence of

the Riemann-integrability of a − am, and by the fact that am → a in L1([0, 1], s),
the quantity ε(m, n) satisfies

lim
m→∞ lim

n→∞ ε(m, n) = lim
m→∞

∫ 1

0

s∑

α,β=1

∣∣(a − am)αβ(x)
∣∣ dx

= lim
m→∞

s∑

α,β=1

‖(a − am)αβ‖L1 = 0.

By Theorem 3.4, this implies that {Dn(am)}n a.c.s.−→ {Dn(a)}n. Thus, for every m

there exists nm such that, for n ≥ nm,

Dn(a) = Dn(am)+ Rn,m +Nn,m,

rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m),

where limm→∞ c(m) = limm→∞ ω(m) = 0. It follows that, for every m,h and
every n ≥ max(nm, nm,h),

Dn(a) = LT h
n (a, 1s)+

[
LT h

n (am, 1s )− LT h
n (a, 1s)

]

+ (Rn,m + Rn,m,h)+ (Nn,m +Nn,m,h),

rank(Rn,m + Rn,m,h) ≤ (c(m)+ c(m, h))n,

‖Nn,m +Nn,m,h‖ ≤ ω(m)+ ω(m, h),

‖LT h
n (am, 1s)− LT h

n (a, 1s)‖1 ≤ n

h

h∑

j=1

∥∥∥∥a
(j
h

)
− am

( j
h

)∥∥∥∥
1
≤ ε(m, h)n,

where the last inequality is proved as in (30). Let {m(h)}h be a sequence such that
m(h)→∞ and

lim
h→∞ ε(m(h), h) = lim

h→∞ c(m(h), h) = lim
h→∞ω(m(h), h) = 0.

Note that such a sequence exists by Lemma 4.2 (apply the lemma with x(m, h) =
ε(m, h)+c(m, h)+ω(m, h)). Then, for every h and every n ≥ max(nm(h), nm(h),h),

Dn(a) = LT h
n (a, 1s)+

[
LT h

n (am(h), 1s)− LT h
n (a, 1s)

]

+ (Rn,m(h) + Rn,m(h),h)+ (Nn,m(h) +Nn,m(h),h),

rank(Rn,m(h) + Rn,m(h),h) ≤ (c(m(h))+ c(m(h), h))n,
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‖Nn,m(h) +Nn,m(h),h‖ ≤ ω(m(h))+ ω(m(h), h),

‖LT h
n (am(h), 1s)− LT h

n (a, 1s)‖1 ≤ ε(m(h), h)n.

The application of Lemma 4.1 allows one to decompose LT h
n (am(h), 1s ) −

LT h
n (a, 1s) as the sum of a small-rank term R̂n,h, with rank bounded by√
ε(m(h), h) n, plus a small-norm term N̂n,h, with norm bounded by

√
ε(m(h), h).

This shows that {LT h
n (a, 1s)}n a.c.s.−→ {Dn(a)}n, hence {Dn(a)}n ∼LT a(x) ◦ 1s . ��

4.3.3 Sequences of Block Toeplitz Matrices

Theorem 4.5 Suppose that f ∈ L1([−π, π], s), then {Tn(f )}n ∼LT 1s ◦ f (θ).

Proof The proof consists of two steps. We first show that the thesis holds if f

is a matrix-valued trigonometric polynomial. Then, by using an approximation
argument, we prove the theorem under the sole assumption that f ∈ L1([−π, π], s).
Step 1. We show that if f is a matrix-valued trigonometric polynomial of degree d

then

Tn(f ) = LT m
n (1s, f )+ Rn,m, rank(Rn,m) ≤ s(2d + 1)m. (31)

Once this is done, the convergence {LT m
n (1s, f )}n a.c.s.−→ {Tn(f )}n (and hence the

relation {Tn(f )}n ∼LT 1s ◦ f (θ)) follows immediately from Definition 3.1 (take
nm = m2, c(m) = s(2d + 1)/m, ω(m) = 0).

Since f has degree d , we can write f (θ) =∑d
j=−d cj eijθ . Moreover, we have

LT m
n (1s, f ) =

m⊕

k=1

T�n/m�(1s ◦ f ) ⊕ Os(nmodm) =
m⊕

k=1

T�n/m�(f ) ⊕ Os(nmodm).

A direct comparison between the matrix Tn(f ) and the matrix LT m
n (1s, f ) shows

that if n/m ≥ 2d + 1 then the number of nonzero rows of the difference Tn(f ) −
LT m

n (1s, f ) is at most s(2dm− d + (nmodm)). Hence, if n/m ≥ 2d + 1,

Tn(f ) = LTm
n (1s , f )+ Rn,m, rank(Rn,m) ≤ s(2dm − d + (nmodm)) ≤ s(2d + 1)m.

This completes the proof of (31) for n/m ≥ 2d + 1, but it is clear that (31) holds
even if n/m < 2d + 1, because in this case s(2d + 1)m is greater than the matrix
size sn.

Step 2. Let f ∈ L1([−π, π], s). Since the set of trigonometric polynomials is
dense in L1([−π, π]) (see, e.g., [7, Lemma 2.2]), there is a sequence of matrix-
valued trigonometric polynomials fm : [−π, π] → Cs×s such that fm → f in
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L1([−π, π], s). By Step 1, {Tn(fm)}n ∼LT 1s ◦fm(θ). Hence, {LT h
n (1s, fm)}n a.c.s.−→

{Tn(fm)}n, i.e., for every m,h there is nm,h such that, for n ≥ nm,h,

Tn(fm) = LT h
n (1s, fm)+ Rn,m,h +Nn,m,h,

rank(Rn,m,h) ≤ c(m, h)n, ‖Nn,m,h‖ ≤ ω(m, h),

where limh→∞ c(m, h) = limh→∞ ω(m, h) = 0. Moreover, by Theorem 2.4,

‖Tn(f )− Tn(fm)‖1 = ‖Tn(f − fm)‖1 ≤ n‖f − fm‖L1

and so {Tn(fm)}n a.c.s.−→ {Tn(f )}n by Theorem 3.4. Thus, for every m there exists nm
such that, for n ≥ nm,

Tn(f ) = Tn(fm)+ Rn,m + Nn,m,

rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m),

where limm→∞ c(m) = limm→∞ ω(m) = 0. It follows that, for every m,h and
every n ≥ max(nm, nm,h),

Tn(f ) = LT h
n (1s, f )+ [LT h

n (1s, fm)− LT h
n (1s, f )

]

+ (Rn,m + Rn,m,h)+ (Nn,m + Nn,m,h),

rank(Rn,m + Rn,m,h) ≤ (c(m)+ c(m, h))n,

‖Nn,m + Nn,m,h‖ ≤ ω(m)+ ω(m, h),

‖LT h
n (1s, fm)− LT h

n (1s, f )‖1 = ‖LT h
n (1s, fm − f )‖1 ≤ n‖fm − f ‖L1,

where the last inequality follows from (6) and Theorem 2.4. Let {m(h)}h be a
sequence such that m(h)→∞ and

lim
h→∞ c(m(h), h) = lim

h→∞ω(m(h), h) = 0.

Note that such a sequence exists by Lemma 4.2 (apply the lemma with x(m, h) =
c(m, h)+ ω(m, h)). Then, for every h and every n ≥ max(nm(h), nm(h),h),

Tn(f ) = LT h
n (1s, f )+ [LT h

n (1s, fm(h))− LT h
n (1s, f )

]

+ (Rn,m(h) + Rn,m(h),h)+ (Nn,m(h) +Nn,m(h),h),

rank(Rn,m(h) + Rn,m(h),h) ≤ (c(m(h))+ c(m(h), h))n,

‖Nn,m(h) +Nn,m(h),h‖ ≤ ω(m(h))+ ω(m(h), h),

‖LT h
n (1s, fm(h))− LT h

n (1s, f )‖1 ≤ n‖fm(h) − f ‖L1 .
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The application of Lemma 4.1 allows one to decompose LT h
n (1s, fm(h)) −

LT h
n (1s, f ) as the sum of a small-rank term R̂n,h, with rank bounded by√‖fm(h) − f ‖L1 n, plus a small-norm term N̂n,h, with norm bounded by

√‖fm(h) − f ‖L1 . This shows that {LT h
n (1s, f )}n a.c.s.−→ {Tn(f )}n, hence

{Tn(f )}n ∼LT 1s ◦ f (θ). ��

4.4 Singular Value and Spectral Distribution of a Sum
of Products of Block LT Sequences

The main results of this section are Theorems 4.6 and 4.7. In order to prove them,
we shall need the following lemma, which is a special case of Theorem 4.6.

Lemma 4.3 If {An}n ∼LT a(x) ◦ f (θ) then {An}n ∼σ a(x) ◦ f (θ) and {An}n is
s.u.

Proof We have:

• {LT m
n (a, f )}n a.c.s.−→ {An}n by definition of block LT sequences;

• {LT m
n (a, f )}n ∼σ am(x) ◦ f (θ) with am(x) = ∑m

k=1 a(
k
m
)χ[ k−1

m
, k
m

)(x) by

Proposition 4.3;
• am(x)◦f (θ)→ a(x)◦f (θ) a.e. (and hence also in measure) by [7, Lemma 2.9],

because a(x) is Riemann-integrable.

We conclude that {An}n ∼σ a(x) ◦ f (θ) by Theorem 3.1, and so {An}n is s.u. by
Proposition 2.3. ��
Theorem 4.6 If {A(i,j)

n }n ∼LT a(i,j)(x) ◦ f (i,j)(θ) for i = 1, . . . , p and j =
1, . . . , qi then

{ p∑

i=1

qi∏

j=1

A
(i,j)
n

}

n

∼σ

p∑

i=1

qi∏

j=1

(
a(i,j)(x) ◦ f (i,j)(θ)

)
.

Proof Let

An =
p∑

i=1

qi∏

j=1

A
(i,j)
n , An,m =

m⊕

k=1

T�n/m�
( p∑

i=1

qi∏

j=1

(
a(i,j)

( k

m

)
◦ f (i,j)

))
⊕ Os(nmodm),

κ(x, θ) =
p∑

i=1

qi∏

j=1

(
a(i,j)(x) ◦ f (i,j)(θ)

)
, κm(x, θ) =

p∑

i=1

qi∏

j=1

(
a
(i,j)
m (x) ◦ f (i,j)(θ)

)
,



56 C. Garoni et al.

where

a
(i,j)
m (x) =

m∑

k=1

a(i,j)
( k

m

)
χ[ k−1

m
, k
m

)(x).

Since {LT m
n (a(i,j), f (i,j))}n a.c.s.−→ {A(i,j)

n }n by definition of block LT sequences,

Lemma 4.3 and Remark 3.1 imply that {∑p

i=1

∏qi
j=1 LT

m
n (a(i,j), f (i,j))}n a.c.s.−→

{An}n. Thus, we have:

• {An,m}n a.c.s.−→ {An}n by Proposition 4.2;
• {An,m}n ∼σ κm(x, θ) by Theorem 4.1;
• κm(x, θ)→ κ(x, θ) a.e. (and hence also in measure) by [7, Lemma 2.9], because

each a(i,j)(x) is Riemann-integrable.

We conclude that {An}n ∼σ κ(x, θ) by Theorem 3.1. ��
Theorem 4.7 If {A(i,j)

n }n ∼LT a(i,j)(x) ◦ f (i,j)(θ) for i = 1, . . . , p and j =
1, . . . , qi then

{
�
( p∑

i=1

qi∏

j=1

A
(i,j)
n

)}

n

∼λ �
( p∑

i=1

qi∏

j=1

(
a(i,j)(x) ◦ f (i,j)(θ)

))
.

Proof The proof is essentially the same as the proof of Theorem 4.6.
Define the matrices An, An,m and the functions κ(x, θ), κm(x, θ) as in

the proof of Theorem 4.6. Since {LT m
n (a(i,j), f (i,j))}n a.c.s.−→ {A(i,j)

n }n by
definition of block LT sequences, Lemma 4.3 and Remark 3.1 imply that

{∑p
i=1

∏qi
j=1 LT

m
n (a(i,j), f (i,j))}n a.c.s.−→ {An}n. Hence, {�(∑p

i=1

∏qi
j=1 LT

m
n (a(i,j),

f (i,j)))}n a.c.s.−→ {�(∑p

i=1

∏qi
j=1 A

(i,j)
n )}n by Theorem 3.3. Thus, we have:

• {�(An,m)}n a.c.s.−→ {�(An)}n by Proposition 4.2 and Theorem 3.3;
• {�(An,m)}n ∼λ �(κm(x, θ)) by Theorem 4.2;
• �(κm(x, θ))→ �(κ(x, θ)) a.e. (and hence also in measure) by [7, Lemma 2.9],

because each a(i,j)(x) is Riemann-integrable.

We conclude that {�(An)}n ∼λ �(κ(x, θ)) by Theorem 3.2. ��

5 Concluding Remarks

In this paper we have developed the theory of block LT sequences, which, as
the reader may have noted, is conceptually very similar to the theory of LT
sequences [7, Chapter 7]. The similarity can be inferred not only from the numerous
citations to [7] disseminated in the paper but also from the analogies between the
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proofs presented herein and the proofs of analogous results presented in [7] (e.g.,
Proposition 2.3 vs. [7, Proposition 5.4], Theorems 3.1 and 3.2 vs. [7, Corollaries 5.1
and 5.2], Theorems 4.3, 4.4, 4.5 vs. [7, Theorems 7.3, 7.4, 7.5]). It is clear,
however, that the block case has involved several technicalities that are not present
in the scalar case (e.g., Lemma 2.3 vs. [7, Lemma 2.5], Proposition 4.1 vs. [7,
Eq. (7.13)]). Nevertheless, technicalities were not the main difficulty. The main
difficulty was to understand the ‘right’ generalization to the block case of the
definitions of LT operator and LT sequences. In particular, the necessity of replacing
the classical product a(x)f (θ) with the Hadamard product a(x) ◦ f (θ) became
clear only after considering specific application examples (see Remark 4.2 and
Sect. 1). Once the right generalization was found, aside from technicalities, the
theory of block LT sequences has been worked out (almost) painlessly by adapting
the results/arguments already known within the framework of the theory of LT
sequences.

We conclude by recommending that the reader go through the complementary
paper [12] so as to gain a complete picture of the theory of block GLT sequences.
The related applications can be found in [11].
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Block Generalized Locally Toeplitz
Sequences: Topological Construction,
Spectral Distribution Results,
and Star-Algebra Structure

Carlo Garoni, Stefano Serra-Capizzano, and Debora Sesana

Abstract The theory of generalized locally Toeplitz (GLT) sequences is a powerful
apparatus for computing the asymptotic singular value and eigenvalue distribution
of matrices An arising from virtually any kind of numerical discretization of
differential equations (DEs). Indeed, when the discretization parameter n tends to
infinity, these matrices An give rise to a sequence {An}n, which often turns out to be
a GLT sequence or one of its ‘relatives’, i.e., a block GLT sequence or a reduced GLT
sequence. In particular, block GLT sequences are encountered in the discretization
of systems of DEs as well as in the higher-order finite element or discontinuous
Galerkin approximation of scalar DEs. Despite the applicative interest, a solid
theory of block GLT sequences is still missing. The purpose of the present paper
is to develop this theory in a systematic way.
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1 Introduction

The theory of generalized locally Toeplitz (GLT) sequences stems from Tilli’s work
on locally Toeplitz (LT) sequences [42] and from the spectral theory of Toeplitz
matrices [2, 10–13, 32, 33, 41, 43, 44, 46]. It was then carried forward by the first
two authors in [24, 25, 39, 40], and it has been recently extended by Barbarino in [3].
This theory is a powerful apparatus for computing/analyzing the asymptotic spectral
distribution of matrices arising from the numerical discretization of continuous
problems, such as integral equations (IEs) and, especially, differential equations
(DEs). The experience reveals that essentially any kind of numerical methods for the
discretization of DEs gives rise to structured matrices An whose asymptotic spectral
distribution, as the fineness parameter n goes to infinity, can be computed/analyzed
through the theory of GLT sequences. We refer the reader to [24, Section 10.5],
[25, Section 7.3], and [14, 39, 40] for applications of the theory of GLT sequences
in the context of finite difference discretizations of DEs; to [24, Section 10.6], [25,
Section 7.4], and [4, 14, 40] for the finite element case; to [6] for the finite volume
case; to [24, Section 10.7], [25, Sections 7.5–7.7], and [17, 23, 27, 28, 35] for the
case of isogeometric analysis discretizations, both in the collocation and Galerkin
frameworks; and to [19] for a further recent application to fractional differential
equations. We also refer the reader to [24, Section 10.4] and [1, 37] for a look at the
GLT approach to deal with sequences of matrices coming from IE discretizations.

We have to say, however, that, despite the aforementioned progresses, the theory
of GLT sequences is still incomplete. In particular, the so-called ‘block’ GLT
sequences have only been introduced in [40, Section 3.3], without any claim to
completeness or correctness. Papers pointing toward or referring to block GLT
sequences are many (see, e.g., [5, 16, 18, 20, 22]), but none of them enters into
the details of the theory. Yet, the topic is worthy of high consideration. Indeed,
matrices with a block Toeplitz structure naturally arise in many areas of science
such as Markov chains [8], subdivision algorithms [34], Riccati equations [9], in
the study of the zeros of orthogonal polynomials with periodic coefficients [45],
in the reconstruction of signals with missing data [15], and, above all, in the
discretization of systems of constant-coefficient DEs [40, Section 3.3]. Recently,
it has been discovered that matrices of this kind also arise in the discretization
of scalar constant-coefficient DEs by higher-order finite element methods [26]
or discontinuous Galerkin methods [5, 21]. More generally, they are encountered
whenever we are in the presence of a finite element discretization in which the
Galerkin approximation space consists of piecewise polynomial functions of degree
p and smoothnessCk with p−k > 1; see [31]. In the case of nonconstant-coefficient
DEs, block Toeplitz structures leave the place to locally block Toeplitz structures,
that is, the progenitors of block GLT sequences. It is then clear that the computation
of the asymptotic spectral distribution of DE discretization matrices with a block
structure requires a solid theory of block GLT sequences, which is currently not
available.
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In this paper, based on the results about block LT sequences obtained in [30],
we develop a systematic theory of block GLT sequences, in line with the theory
of (scalar) GLT sequences already formalized in [24, 25]. A forthcoming paper [29]
will take care of illustrating several applications of the theory developed herein. The
paper is organized as follows. In Sect. 2 we collect all the necessary preliminaries.
Section 3 focuses on the fundamental notion of approximating classes of sequences.
In Sect. 4 we summarize the theory of block LT sequences developed in [30], and
in Sect. 5 we address the theory of block GLT sequences. In Sect. 6 we provide a
summary of the theory. Section 7 is devoted to final remarks about future lines of
research and the connections between the theory of GLT sequences [24, Chapter 8]
and the theory of block GLT sequences.

2 Mathematical Background

2.1 Notation and Terminology

• Om and Im denote, respectively, the m × m zero matrix and the m × m identity
matrix.

• 1m denotes the m×m matrix whose entries are all equal to 1.
• The eigenvalues and the singular values of X ∈ Cm×m are denoted by λj (X), j =

1, . . . ,m, and σj (X), j = 1, . . . ,m, respectively. The maximum and minimum
singular values of X are also denoted by σmax(X) and σmin(X), respectively.

• If X ∈ Cm×m, we denote by X† the Moore–Penrose pseudoinverse of X.
• Given X ∈ Cm×m and 1 ≤ p ≤ ∞, ‖X‖p denotes the Schatten p-norm of X,

which is defined as the p-norm of the vector (σ1(X), . . . , σm(X)); see [7]. The
Schatten 1-norm is also called the trace-norm. The Schatten ∞-norm ‖X‖∞ =
σmax(X) is the classical 2-norm (or spectral norm) and will also be denoted by
‖X‖.

• �(X) is the real part of the (square) matrix X, i.e., �(X) = X+X∗
2 , where X∗ is

the conjugate transpose of X.
• If X,Y ∈ Cm×�, the Hadamard (or entrywise) product of X and Y is the m × �

matrix defined by (X ◦ Y )ij = xij yij for i = 1, . . . ,m and j = 1, . . . , �.
• Cc(C) (resp., Cc(R)) is the space of complex-valued continuous functions

defined on C (resp., R) and with bounded support.
• χE is the characteristic (indicator) function of the set E.
• μk denotes the Lebesgue measure in Rk . Throughout this paper, unless otherwise

stated, all the terminology from measure theory (such as ‘measurable set’,
‘measurable function’, ‘a.e.’, etc.) is always referred to the Lebesgue measure.

• Let D ⊆ Rk , let r ≥ 1 and 1 ≤ p ≤ ∞. A matrix-valued function f : D →
Cr×r is said to be measurable (resp., continuous, bounded, in Lp(D), in C∞(D),
etc.) if its components fαβ : D → C, α, β = 1, . . . , r , are measurable (resp.,
continuous, bounded, in Lp(D), in C∞(D), etc.). The space of functions f :
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D → Cr×r belonging to Lp(D) will be denoted by Lp(D, r) in order to stress
the dependence on r .

• Let fm, f : D ⊆ Rk → Cr×r be measurable. We say that fm converges to f

in measure (resp., a.e., in Lp(D), etc.) if (fm)αβ converges to fαβ in measure
(resp., a.e., in Lp(D), etc.) for all α, β = 1, . . . , r .

• A function a : [0, 1] → Cr×r is said to be Riemann-integrable if its components
aαβ : [0, 1] → C, α, β = 1, . . . , r , are Riemann-integrable. We point out that
a complex-valued function g is Riemann-integrable when its real and imaginary
parts�(g) and �(g) are Riemann-integrable in the classical sense. We also recall
that any Riemann-integrable function is bounded by definition.

• We use a notation borrowed from probability theory to indicate sets. For example,
if f, g : D ⊆ Rk → Cr×r , then {σmax(f ) > 0} = {x ∈ D : σmax(f (x)) > 0},
μk{‖f − g‖ ≥ ε} is the measure of the set {x ∈ D : ‖f (x)− g(x)‖ ≥ ε}, etc.

• A matrix-sequence is any sequence of the form {An}n, where An ∈ Csn×sn and
s is a fixed positive integer. The role of s will become clear later on. A matrix-
sequence {An}n is said to be Hermitian if each An is Hermitian.

2.2 Preliminaries on Measure and Integration Theory

2.2.1 Measurability

The following lemma can be derived from the results in [7, Section VI.1]. It will be
used essentially everywhere in this paper, either explicitly or implicitly.

Lemma 2.1 Let f : D ⊆ R
k → C

r×r be measurable and let g : C
r →

C be continuous and symmetric in its r arguments, i.e., g(λ1, . . . , λr ) =
g(λρ(1), . . . , λρ(r)) for all permutations ρ of {1, . . . , r}. Then, the function
x �→ g(λ1(f (x)), . . . , λr (f (x))) is well-defined (independently of the labeling
of the eigenvalues of f (x)) and measurable. As a consequence:

• the function x �→ g(σ1(f (x)), . . . , σr (f (x))) is measurable;
• the functions x �→ ∑r

i=1 F(λi(f (x))) and x �→ ∑r
i=1 F(σi(f (x))) are

measurable for all continuous F : C→ C;
• the function x �→ ‖f (x)‖p is measurable for all p ∈ [1,∞].

2.2.2 Convergence in Measure

In this section we collect some key properties of the convergence in measure, which
plays a central role in the theory of block GLT sequences. We first recall that the
convergence in measure is induced by a pseudometric. More precisely, let r ≥ 1
and D ⊂ Rk with 0 < μk(D) <∞, and set

M(D, r) = {κ : D → C
r×r : κ is measurable}.
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Then, there exists a pseudometric dmeasure onM(D, r) such that κm → κ in measure
if and only if dmeasure(κm, κ)→ 0 as m→∞. For example, we can take

dmeasure(κ, ξ) =
r∑

i,j=1

∫

D

|κij (x)− ξij (x)|
1+ |κij (x)− ξij (x)|dx, κ, ξ ∈M(D, r);

see, e.g., [36, p. 102]. Further properties of the convergence in measure that we shall
need later on are collected in the next lemmas [30, Lemmas 2.2 and 2.3].

Lemma 2.2 Let fm, gm, f, g : D ⊆ Rk → Cr×r be measurable functions.

• If fm → f in measure and gm → g in measure, then αfm + βgm → αf + βg in
measure for all α, β ∈ C.

• If fm → f in measure, gm → g in measure, and μk(D) <∞, then fm ◦ gm →
f ◦ g in measure and fmgm → fg in measure.

Lemma 2.3 Let gm, g : D → Cr×r be measurable functions defined on a set
D ⊂ Rk with 0 < μk(D) < ∞. If gm → g in measure, then

∑r
j=1 F(λj (gm(x)))

converges to
∑r

j=1 F(λj (g(x))) in L1(D) for all F ∈ Cc(C).

2.2.3 Technical Lemma

We conclude this section on measure and integration theory by stating and proving
a technical lemma that we shall need in Sect. 5.

Lemma 2.4 Let f : D → Cr×r be a measurable function defined on a setD ⊂ Rk

with 0 < μk(D) <∞, and assume that

1

μk(D)

∫

D

∑r
j=1 F(σj (f (x)))

r
dx = F(0), ∀F ∈ Cc(R).

Then f = Or a.e.

Proof Suppose by contradiction that μk{f �= Or} = μk{σmax(f ) > 0} > 0. Then,
there exists ε > 0 such that μk{σmax(f ) ≥ ε} > 0. Take a real function F ∈ Cc(R)

such that F(0) = 1 = maxy∈R F(y) and F(y) = 0 for |y| ≥ ε. Then,

1

μk(D)

∫

D

∑r
j=1 F(σj (f (x)))

r
dx

= 1

rμk(D)

⎡

⎣
∫

{σmax(f )<ε}

r∑

j=1

F(σj (f (x)))dx+
∫

{σmax(f )≥ε}

r∑

j=1

F(σj (f (x)))dx

⎤

⎦
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≤ 1

rμk(D)

[∫

{σmax(f )<ε}
rdx+

∫

{σmax(f )≥ε}
(r − 1)dx

]

= rμk{σmax(f ) < ε} + (r − 1)μk{σmax(f ) ≥ ε}
rμk(D)

< 1 = F(0),

which is a contradiction to the assumption. ��

2.3 Singular Value and Eigenvalue Distribution of a
Matrix-Sequence

We introduce in this section the fundamental definitions of singular value and
spectral distribution for a given matrix-sequence. Recall from Sect. 2.1 that a matrix-
sequence is a sequence of the form {An}n, where An ∈ Csn×sn and s is a fixed
positive integer.

Definition 2.1 (Singular Value and Eigenvalue Distribution of a Matrix-
Sequence) Let {An}n be a matrix-sequence and let f : D ⊂ Rk → Cr×r be
a measurable matrix-valued function defined on a set D with 0 < μk(D) <∞.

• We say that {An}n has a (asymptotic) singular value distribution described by f ,
and we write {An}n ∼σ f , if

lim
n→∞

1

sn

sn∑

j=1

F(σj (An)) = 1

μk(D)

∫

D

∑r
i=1 F(σi(f (x)))

r
dx, ∀F ∈ Cc(R).

(1)

• We say that {An}n has a (asymptotic) eigenvalue (or spectral) distribution
described by f , and we write {An}n ∼λ f , if

lim
n→∞

1

sn

sn∑

j=1

F(λj (An)) = 1

μk(D)

∫

D

∑r
i=1 F(λi(f (x)))

r
dx, ∀F ∈ Cc(C).

(2)

Note that Definition 2.1 is well-posed by Lemma 2.1, which ensures that the
functions x �→ ∑r

i=1 F(σi(f (x))) and x �→ ∑r
i=1 F(λi(f (x))) are measurable.

Whenever we write a relation such as {An}n ∼σ f or {An}n ∼λ f , it is understood
that f is as in Definition 2.1; that is, f is a measurable function taking values in
Cr×r for some r ≥ 1 and defined on a subset D of some Rk with 0 < μk(D) <∞.
We refer the reader to [26, Remark 1] or to the appendix of [31] for the informal
meaning behind the spectral distribution (2); a completely analogous meaning can
be given also for the singular value distribution (1).
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2.4 Zero-Distributed Sequences

A matrix-sequence {Zn}n is said to be zero-distributed if {Zn}n ∼σ 0. It is clear that,
for any r ≥ 1, {Zn}n ∼σ 0 is equivalent to {Zn}n ∼σ Or . Theorem 2.1 provides a
characterization of zero-distributed sequences [24, Theorem 3.2].

Theorem 2.1 Let {Zn}n be a matrix-sequence. The following are equivalent.

1. {Zn}n ∼σ 0.
2. For all n we have Zn = Rn +Nn, where lim

n→∞(rank(Rn)/n) = lim
n→∞‖Nn‖ = 0.

2.5 Sparsely Unbounded and Sparsely Vanishing
Matrix-Sequences

The notions of sparsely unbounded and sparsely vanishing matrix-sequences play
an important role within the framework of the theory of block GLT sequences.

Definition 2.2 (Sparsely Unbounded Matrix-Sequence) A matrix-sequence
{An}n is said to be sparsely unbounded (s.u.) if for every M > 0 there exists nM
such that, for n ≥ nM ,

#{i ∈ {1, . . . , sn} : σi(An) > M}
n

≤ r(M),

where limM→∞ r(M) = 0.

As highlighted in the next propositions, the product of two s.u. matrix-sequences
is s.u. and any matrix-sequence enjoying an asymptotic singular value distribution
is s.u. For the related proofs, see [30, Propositions 2.2 and 2.3].

Proposition 2.1 If {An}n, {A′n}n are s.u. then {AnA
′
n}n is s.u.

Proposition 2.2 If {An}n ∼σ f then {An}n is s.u.
Strictly related to the notion of sparsely unbounded matrix-sequences is the

notion of sparsely vanishing matrix-sequences.

Definition 2.3 (Sparsely VanishingMatrix-Sequence) A matrix-sequence {An}n
is said to be sparsely vanishing (s.v.) if for every M > 0 there exists nM such that,
for n ≥ nM ,

#{i ∈ {1, . . . , sn} : σi(An) < 1/M}
n

≤ r(M),

where limM→∞ r(M) = 0.
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Remark 2.1 If {An}n is s.v. then {A†
n}n is s.u. This follows from the fact that the

singular values of A† are 1/σ1(A), . . . , 1/σr(A), 0, . . . , 0, where σ1(A), . . . , σr (A)

are the nonzero singular values of A (r = rank(A)).

Remark 2.2 We know from [24, Remark 8.6] that {An}n is s.v. if and only if

lim
M→∞ lim sup

n→∞
#{i ∈ {1, . . . , sn} : σi(An) < 1/M}

n
= 0. (3)

Proposition 2.3 is the analog of Proposition 2.2 for s.v. matrix-sequences.

Proposition 2.3 If {An}n ∼σ f then {An}n is s.v. if and only if f is invertible a.e.

Proof Let D ⊂ Rk be the domain of the matrix-valued function f : D → Cr×r .
Fix M > 0 and take FM,GM ∈ Cc(R) such that

⎧
⎨

⎩

FM = 1 over [0, 1/(2M)],
FM = 0 over [1/M,∞),

0 ≤ FM ≤ 1 over R,

⎧
⎨

⎩

GM = 1 over [0, 1/M],
GM = 0 over [2/M,∞),

0 ≤ GM ≤ 1 over R.

Note that, once we have defined FM , we may simply take GM = FM/2. By
construction we have FM ≤ χ[0,1/M) ≤ GM over [0,∞), hence

1

sn

sn∑

i=1

FM(σi(An)) ≤ 1

sn

sn∑

i=1

χ[0,1/M)(σi(An))

= #{i ∈ {1, . . . , sn} : σi(An) < 1/M}
sn

≤ 1

sn

sn∑

i=1

GM(σi(An))

Passing to the limit as n→∞, we obtain

1

μk(D)

∫

D

∑r
i=1 FM(σi(f (x)))

r
dx ≤ lim sup

n→∞
#{i ∈ {1, . . . , sn} : σi(An) < 1/M}

sn

≤ 1

μk(D)

∫

D

∑r
i=1 GM(σi(f (x)))

r
dx.

Since both 1
r

∑r
i=1 FM(σi(f (x))) and 1

r

∑r
i=1 GM(σi(f (x))) converge to

1
r

∑r
i=1χ{σi (f )=0}(x) a.e. and

∣∣ 1
r

∑r
i=1FM(σi(f (x)))

∣∣,
∣∣ 1
r

∑r
i=1GM(σi(f (x)))

∣∣≤ 1,
by the dominated convergence theorem we get

lim
M→∞

∫

D

∑r
i=1 FM(σi(f (x)))

r
dx = lim

M→∞

∫

D

∑r
i=1 GM(σi(f (x)))

r
dx

=
∫

D

∑r
i=1 χ{σi (f )=0}(x)

r
dx.
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Thus,

lim
M→∞ lim sup

n→∞
#{i ∈ {1, . . . , sn} : σi(An) < 1/M}

sn
= 1

μk(D)

∫

D

∑r
i=1 χ{σi(f )=0}(x)

r
dx,

which is equal to 0 if and only if f is invertible a.e. By Remark 2.2, this means that
{An}n is s.v. if and only if f is invertible a.e. ��

2.6 Block Toeplitz Matrices

A matrix of the form

[Ai−j ]ni,j=1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A0 A−1 · · · · · · A−(n−1)

A1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . A−1

An−1 · · · · · · A1 A0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
sn×sn, (4)

with blocks Ak ∈ Cs×s for k = −(n − 1), . . . , n − 1, is called a block Toeplitz
matrix. If s = 1, it is simply referred to as a Toeplitz matrix. Given a function f :
[−π, π] → Cs×s belonging to L1([−π, π], s), its Fourier coefficients are denoted
by

fk = 1

2π

∫ π

−π

f (θ)e−ikθdθ ∈ C
s×s, k ∈ Z, (5)

where the integrals are computed componentwise. The nth block Toeplitz matrix
associated with f is defined as

Tn(f ) = [fi−j ]ni,j=1 ∈ C
sn×sn.

We call {Tn(f )}n the block Toeplitz sequence associated with f , which in turn is
called the generating function of {Tn(f )}n. Note that Tn(Is) = Isn.

3 Approximating Classes of Sequences

The notion of approximating classes of sequences (a.c.s.), which is fundamental to
the theory of block GLT sequences, is attributed to the second author [38], though
the underlying idea was already present in the pioneering papers by Tilli [42] and
Tyrtyshnikov [43]. Here is the formal definition.
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Definition 3.1 (Approximating Class of Sequences) Let {An}n a matrix-
sequence. An approximating class of sequences (a.c.s.) for {An}n is a sequence
of matrix-sequences {{Bn,m}n}m with the following property: for every m there
exists nm such that, for n ≥ nm,

An = Bn,m + Rn,m +Nn,m, rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m), (6)

where nm, c(m), ω(m) depend only on m and lim
m→∞ c(m) = lim

m→∞ω(m) = 0.

As explained in [30, Section 3.1], there exists a complete pseudometric da.c.s. in
the space of matrix-sequences

E = {{An}n : {An}n is a matrix-sequence}

such that

da.c.s.({An}n, {Bn}n) = 0 ⇐⇒ {An − Bn}n ∼σ 0 (7)

and {{Bn,m}n}m is an a.c.s. for {An}n if and only if da.c.s.({Bn,m}n, {An}n) → 0 as

m → ∞. We will therefore use the convergence notation {Bn,m}n a.c.s.−→ {An}n to
indicate that {{Bn,m}n}m is an a.c.s. for {An}n.

In the remainder of this section we summarize the properties of a.c.s. that we
shall need later on. Properties ACS1 –ACS3 are Theorems 3.1–3.3 from [30]. The
only property which has not been proved in previous works is ACS 4, which will be
proved below.

ACS1. If there exist matrix-sequences {Bn,m}n ∼σ fm such that {Bn,m}n a.c.s.−→
{An}n and fm → f in measure, then {An}n ∼σ f .

ACS2. Suppose each An is Hermitian. If there exist Hermitian matrix-sequences

{Bn,m}n ∼λ fm such that {Bn,m}n a.c.s.−→ {An}n and fm → f in measure,
then {An}n ∼λ f .

ACS3. If {Bn,m}n a.c.s.−→ {An}n and {B ′n,m}n a.c.s.−→ {A′n}n then

• {B∗n,m}n a.c.s.−→ {A∗n}n,

• {αBn,m + βB ′n,m}n a.c.s.−→ {αAn + βA′n}n for all α, β ∈ C,

• {Bn,mB
′
n,m}n a.c.s.−→ {AnA

′
n}n provided that {An}n, {A′n}n are s.u.,

• {Bn,mCn}n a.c.s.−→ {AnCn}n provided that {Cn}n is s.u.

ACS4. Suppose {An − Bn,m}n ∼σ gm for some gm : D → Cr×r . If gm → Or in

measure then {Bn,m}n a.c.s.−→ {An}n.

Proof of the last property Let Cn,m = An − Bn,m. For any � ∈ N, choose F� ∈
Cc(R) such that F� = 1 over [0, 1/(2�)], F� = 0 over [1/�,∞), and 0 ≤ F� ≤ 1
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over R. Note that F� ≤ χ[0,1/�] over [0,∞). For every m, �, we have

#{i ∈ {1, . . . , sn} : σi(Cn,m) > 1/�}
sn

= 1− #{i ∈ {1, . . . , sn} : σi(Cn,m) ≤ 1/�}
sn

= 1− 1

sn

sn∑

i=1

χ[0,1/�](σi(Cn,m)) ≤ 1− 1

sn

sn∑

i=1

F�(σi(Cn,m))
n→∞−→ c(m, �),

(8)

where

c(m, �) = 1− 1

μk(D)

∫

D

∑r
j=1 F�(σj (gm(x)))

r
dx.

For every fixed � we have c(m, �) → 0 as m → ∞, by Lemmas 2.2 and 2.3
(take into account that

∑r
j=1 F�(σj (gm(x))) =∑r

j=1 G�(λj (gm(x)gm(x)∗)) where
G�(z) = F�(

√|z|) belongs to Cc(C)). Hence, there exists a sequence {�m}m of
natural numbers such that �m →∞ and c(m, �m)→ 0. By (8), for each m we have

lim sup
n→∞

#{i ∈ {1, . . . , sn} : σi(Cn,m) > 1/�m}
sn

≤ c(m, �m). (9)

Let Cn,m = Un,mΣn,mV
∗
n,m be a singular value decomposition of Cn,m. Let Σ̂n,m

be the matrix obtained from Σn,m by setting to 0 all the singular values that are less
than or equal to 1/�m, and let Σ̃n,m = Σn,m − Σ̂n,m be the matrix obtained from
Σn,m by setting to 0 all the singular values that exceed 1/�m. Then we can write
Cn,m = Rn,m + Nn,m, where Rn,m = Un,mΣ̂n,mV

∗
n,m and Nn,m = Un,mΣ̃n,mV

∗
n,m.

By definition, ‖Nn,m‖ ≤ 1/�m. Moreover, (9) yields lim supn→∞(rank(Rn,m)/n) ≤
c(m, �m), implying the existence of a nm such that, for n ≥ nm, rank(Rn,m) ≤
(c(m, �m) + 1/m) n. This shows that {Cn,m}n a.c.s.−→ {Osn}n, i.e., {Bn,m}n a.c.s.−→
{An}n. ��

4 Block Locally Toeplitz Sequences

In this section we summarize the theory of block LT sequences, which has been
developed in [30]. Needless to say, this theory is the basis of the theory of block
GLT sequences. A block LT sequence {An}n is a special matrix-sequence equipped
with a function of the form a(x) ◦ f (θ), where a : [0, 1] → Cs×s is Riemann-
integrable and f ∈ L1([−π, π], s). The function a(x) ◦ f (θ) is referred to as the
symbol of {An}n. In what follows, we write {An}n ∼LT a(x) ◦ f (θ) to indicate
that {An}n is a block LT sequence with symbol a(x) ◦ f (θ); it is understood that
a : [0, 1] → Cs×s is Riemann-integrable and f ∈ L1([−π, π], s). For n ∈ N and
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a : [0, 1] → Cs×s , we define the block diagonal sampling matrix Dn(a) as the
following block diagonal matrix of size sn× sn:

Dn(a) = diag
i=1,...,n

a

(
i

n

)
.

LT 1. If {A(i,j)
n }n ∼LT a(i,j)(x) ◦ f (i,j)(θ) for i = 1, . . . , p and j = 1, . . . , qi

then:

• {∑p

i=1

∏qi
j=1 A

(i,j)
n }n ∼σ

∑p

i=1

∏qi
j=1 a

(i,j)(x) ◦ f (i,j)(θ);

• {�(∑p

i=1

∏qi
j=1 A

(i,j)
n )}n ∼λ �(∑p

i=1

∏qi
j=1 a

(i,j)(x) ◦ f (i,j)(θ)).

LT 2. We have:

• {Tn(f )}n ∼LT 1s ◦ f (θ) if f ∈ L1([−π, π], s);
• {Dn(a)}n ∼LT a(x) ◦ 1s if a : [0, 1] → Cs×s is Riemann-integrable;
• {Zn}n ∼LT Os if and only if {Zn}n ∼σ 0.

LT 3. If {An}n ∼LT a(x) ◦ f (θ) then:

• {A∗n}n ∼LT a(x)∗ ◦ f (θ)∗ = (a(x) ◦ f (θ))∗;
• {αAn}n ∼LT αa(x) ◦ f (θ) = a(x) ◦ αf (θ) for all α ∈ C.

5 Block Generalized Locally Toeplitz Sequences

In this section we develop the theory of block GLT sequences, by correcting and
extending the results in [40, Section 3.3].

5.1 Equivalent Definitions of Block GLT Sequences

Block GLT sequences can be defined in several different ways. We begin with what
we may call the ‘classical definition’ (though, actually, a definition of this kind has
never been formulated before).

Definition 5.1 (Block Generalized Locally Toeplitz Sequence) Let {An}n be a
matrix-sequence and let κ : [0, 1] × [−π, π] → Cs×s be measurable. We say that
{An}n is a block generalized locally Toeplitz (GLT) sequence with symbol κ , and
we write {An}n ∼GLT κ , if the following condition is met.
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For every m ∈ N there exists a finite number of block LT sequences
{A(i,j)

n,m }n ∼LT a
(i,j)
m (x) ◦ f

(i,j)
m (θ), i = 1, . . . , Nm, j = 1, . . . ,Mm,i ,

such that:

•
∑Nm

i=1

∏Mm,i

j=1 (a
(i,j)
m (x) ◦ f (i,j)

m (θ))→ κ(x, θ) in measure;

•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n

a.c.s.−→ {An}n.

In the case s = 1, it can be shown that Definition 5.1 is equivalent to the definition
of (scalar) GLT sequences given in [24, Chapter 8]. Whenever we write a relation
such as {An}n ∼GLT κ , it is understood that κ : [0, 1] × [−π, π] → Cs×s is
measurable, as in Definition 5.1.

Remark 5.1 It is clear that any sum of products of block LT sequences is a block
GLT sequence. More precisely, if {A(i,j)

n }n ∼LT a(i,j)(x)◦f (i,j)(θ) for i = 1, . . . , p
and j = 1, . . . , qi then

{ p∑

i=1

qi∏

j=1

A
(i,j)
n

}

n

∼GLT

p∑

i=1

qi∏

j=1

(a(i,j)(x) ◦ f (i,j)(θ)).

Remark 5.2 Let {An}n ∼GLT κ and {Bn}n ∼GLT ξ . Then, {A∗n}n ∼GLT κ∗ and
{αAn + βBn}n ∼GLT ακ + βξ for all α, β ∈ C. This follows immediately from
Definition 5.1, LT 3 and ACS 3.

In the remainder of this section, we present an alternative definition of block GLT
sequences, which is illuminating for many purposes. Let

E = {{An}n : {An}n is a matrix-sequence},
M = {κ : [0, 1] × [−π, π] → C

s×s : κ is measurable},
E ×M = {({An}n, κ) : {An}n ∈ E , κ ∈M}.

We make the following observations.

• E is a *-algebra with respect to the natural pointwise operations (namely,
{An}∗n = {A∗n}n, α{An}n + β{Bn}n = {αAn + βBn}n, {An}n{Bn}n = {AnBn}n),
and it is also a pseudometric space with respect to the pseudometric da.c.s.
inducing the a.c.s. convergence.

• M is a *-algebra with respect to the natural pointwise operations, and it is also
a pseudometric space with respect one of the equivalent pseudometrics dmeasure
inducing the convergence in measure.

• E ×M is a *-algebra with respect to the natural pointwise operations (namely,
({An}n, κ)∗ = ({A∗n}n, κ∗), α({An}n, κ)+ β({Bn}n, ξ) = ({αAn+ βBn}n, ακ +
βξ), ({An}n, κ)({Bn}n, ξ) = ({AnBn}n, κξ)), and it is also a pseudometric space
with respect to the product pseudometric

(da.c.s.×dmeasure)(({An}n, κ), ({Bn}n, ξ)) = da.c.s.({An}n, {Bn}n)+dmeasure(κ, ξ).
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Let A be the *-subalgebra of E ×M generated by the ‘block LT pairs’

L = {({An}n, a(x) ◦ f (θ)) ∈ E ×M : {An}n ∼LT a(x) ◦ f (θ)}.

Using LT 3, it is not difficult to see that

A =
{( p∑

i=1

qi∏

j=1

A
(i,j)
n ,

p∑

i=1

qi∏

j=1

(a(i,j)(x) ◦ f (i,j)(θ))

)
:

p, q1, . . . , qp ∈ N, {A(i,j)
n }n ∼LT a(i,j)(x) ◦ f (i,j)(θ) for all i, j

}
.

We can now reformulate Definition 5.1 as follows.

Definition 5.2 (Block Generalized Locally Toeplitz Sequence) Let {An}n be a
matrix-sequence and let κ : [0, 1] × [−π, π] → Cs×s be measurable. We say that
{An}n is a block generalized locally Toeplitz (GLT) sequence with symbol κ , and
we write {An}n ∼GLT κ , if the pair ({An}n, κ) belongs to the topological closure of
A in (E ×M, da.c.s. × dmeasure). In other words, the set of ‘block GLT pairs’

G = {({An}n, κ) ∈ E ×M : {An}n ∼GLT κ}

is defined as the topological closure of A in (E ×M, da.c.s. × dmeasure).

In the light of this algebraic-topological definition of block GLT sequences, the
following theorem is obvious.

Theorem 5.1 Let {An}n be a matrix-sequence and let κ : [0, 1]×[−π, π] → Cs×s

be a measurable matrix-valued function. Suppose that:

1. {Bn,m}n ∼GLT κm for every m;

2. {Bn,m}n a.c.s.−→ {An}n;
3. κm → κ in measure.

Then {An}n ∼GLT κ .

5.2 Singular Value and Spectral Distribution of Block GLT
Sequences

In this section we prove the main singular value and eigenvalue distribution results
for block GLT sequences.

Theorem 5.2 If {An}n ∼GLT κ then {An}n ∼σ κ .
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Proof By definition, for every m ∈ N there exist block LT sequences {A(i,j)
n,m }n ∼LT

a
(i,j)
m (x) ◦ f (i,j)

m (θ), i = 1, . . . , Nm, j = 1, . . . ,Mm,i , such that:

•
∑Nm

i=1

∏Mm,i

j=1 (a
(i,j)
m (x) ◦ f (i,j)

m (θ))→ κ(x, θ) in measure;

•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n

a.c.s.−→ {An}n.

Moreover, by LT 1,

•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n
∼σ

∑Nm

i=1

∏Mm,i

j=1 (a
(i,j)
m (x) ◦ f (i,j)

m (θ)).

We conclude that {An}n ∼σ κ by ACS1. ��
Remark 5.3 Any block GLT sequence {An}n is s.u. This follows from Theorem 5.2
and Proposition 2.2.

Using Theorem 5.2 we now show that the symbol of a block GLT sequence
is essentially unique and that the symbol of a block GLT sequence formed by
Hermitian matrices is Hermitian a.e.

Proposition 5.1 If {An}n ∼GLT κ and {An}n ∼GLT ξ then κ = ξ a.e.

Proof By Remark 5.2 we have {Osn}n = {An − An}n ∼GLT κ − ξ . Hence, by
Theorem 5.2, we also have {Osn}n ∼σ κ − ξ , i.e.,

F(0) = 1

2π

∫ π

−π

∫ 1

0

∑s
j=1 F(σj (κ(x, θ)− ξ(x, θ)))

s
dxdθ, ∀F ∈ Cc(R).

We conclude that κ − ξ = Os a.e. by Lemma 2.4. ��
Proposition 5.2 If {An}n ∼GLT κ and the An are Hermitian then κ is Hermitian
a.e.

Proof Since the matrices An are Hermitian, by Remark 5.2 we have {An}n ∼GLT κ

and {An}n ∼GLT κ∗. Thus, by Proposition 5.1, κ = κ∗ a.e. ��
Theorem 5.3 If {An}n ∼GLT κ and the An are Hermitian then {An}n ∼λ κ .

Proof By definition, for every m ∈ N there exist block LT sequences {A(i,j)
n,m }n ∼LT

a
(i,j)
m (x) ◦ f (i,j)

m (θ), i = 1, . . . , Nm, j = 1, . . . ,Mm,i , such that:

•
∑Nm

i=1

∏Mm,i

j=1 (a
(i,j)
m (x) ◦ f (i,j)

m (θ))→ κ(x, θ) in measure;

•
{∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m

}
n

a.c.s.−→ {An}n.

Thus:

•
{�(∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m )

}
n

a.c.s.−→ {�(An)}n by ACS 3;

•
{�(∑Nm

i=1

∏Mm,i

j=1 A
(i,j)
n,m )

}
n
∼λ �(∑Nm

i=1

∏Mm,i

j=1 (a
(i,j)
m (x) ◦ f (i,j)

m (θ))) by LT 1;

• �(∑Nm

i=1

∏Mm,i

j=1 (a
(i,j)
m (x) ◦ f (i,j)

m (θ)))→ �(κ(x, θ)) in measure.
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We conclude that {�(An)}n ∼λ �(κ) by ACS 2. Since the matrices An are
Hermitian, we have �(An) = An and �(κ) = κ a.e. by Proposition 5.2. Hence,
the spectral distribution {�(An)}n ∼λ �(κ) yields {An}n ∼λ κ . ��

5.3 The GLT Algebra

The next theorems are of fundamental importance. In particular, the first one shows
that the set of block GLT pairs G is a *-subalgebra of E ×M.

Theorem 5.4 Let {An}n ∼GLT κ and {Bn}n ∼GLT ξ . Then:

1. {A∗n}n ∼GLT κ∗;
2. {αAn + βBn}n ∼GLT ακ + βξ for all α, β ∈ C;
3. {AnBn}n ∼GLT κξ .

Proof The first two statements have already been settled before (see Remark 5.2).
We prove the third one. By definition, there exist ({An,m}n, κm), ({Bn,m}n, ξm) ∈ A
such that ({An,m}n, κm)→ ({An}n, κ) and ({Bn,m}n, ξm)→ ({Bn}n, ξ) in the space
(E ×M, da.c.s. × dmeasure), i.e.:

• {An,m}n a.c.s.−→ {An}n and {Bn,m}n a.c.s.−→ {Bn}n;
• κm → κ in measure and ξm → ξ in measure.

Considering that every block GLT sequence is s.u. (see Remark 5.3), from ACS3
and Lemma 2.2 we obtain:

• {An,mBn,m}n a.c.s.−→ {AnBn}n;
• κmξm → κξ in measure.

Since ({An,mBn,m}n, κmξm) ∈ A, by definition we have {AnBn}n ∼GLT κξ . ��
Lemma 5.1 Let κ : [0, 1] × [−π, π] → Cs×s be any measurable function. Then,
there exists a sequence of block GLT pairs ({An,m}m, κm) such that κm → κ in
measure.

Proof By [24, Lemma 2.8], there exists a sequence of measurable functions κm :
[0, 1] × [−π, π] → Cs×s such that κm is of the form

κm(x, θ) =
Nm∑

j=−Nm

aj,m(x)e
ijθ , aj,m ∈ C∞([0, 1]), Nm ∈ N,

and κm → κ a.e. (and hence also in measure). Take

An,m =
Nm∑

j=−Nm

Dn(aj,m)Tn(Ise
ijθ )

and note that {An,m}n ∼GLT κm by LT 2 and Remark 5.1. ��
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Theorem 5.5 If {An}n ∼GLT κ and κ is invertible a.e. then {A†
n}n ∼GLT κ−1.

Proof Take any sequence of block GLT pairs ({Bn,m}n, ξm) such that ξm → κ−1 in
measure. Note that such a sequence exists by Lemma 5.1. We show that

{Bn,m}n a.c.s.−→ {A†
n}n. (10)

Once this is done, the thesis follows from Theorem 5.1. By Theorem 5.4 we have
{Bn,mAn− Isn}n ∼GLT ξmκ − Is , which implies that {Bn,mAn− Isn}n ∼σ ξmκ − Is
by Theorem 5.2. Moreover, ξmκ − Is → Os in measure by Lemma 2.2 and so, by
ACS4,

{Bn,mAn}n a.c.s.−→ {Isn}n.

Since κ is invertible a.e. by hypothesis, {An}n is s.v. by Theorem 5.2 and Proposi-
tion 2.3. It follows that A†

n is s.u. (see Remark 2.1) and hence, by ACS 3,

{Bn,mAnA
†
n}n a.c.s.−→ {A†

n}n. (11)

Now we observe that, by definition of A†
n,

AnA
†
n = Isn + Sn, rank(Sn) = #{i ∈ {1, . . . , sn} : σi(An) = 0}.

Considering that {An}n is s.v., we have

lim
n→∞

rank(Sn)

n
= 0.

Thus, from (11) we obtain

{Bn,m + Zn,m}n a.c.s.−→ {A†
n}n, (12)

where Zn,m = Bn,mSn is such that, for every m, limn→∞(rank(Zn,m)/n) = 0. It
follows that {Zn,m}n is zero-distributed for every m by Theorem 2.1, and so (12)
and (7) immediately imply (10). ��

6 Summary of the Theory

A block GLT sequence is a special matrix-sequence {An}n equipped with a
measurable function κ : [0, 1] × [−π, π] → Cs×s , the so-called symbol. The
notation {An}n ∼GLT κ is used to indicate that {An}n is a block GLT sequence
with symbol κ . The symbol of a block GLT sequence is unique in the sense that
if {An}n ∼GLT κ and {An}n ∼GLT ξ then κ = ξ a.e. in [0, 1] × [−π, π]. The
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main properties of block GLT sequences proved in this paper are summarized in the
following list.

GLT1. If {An}n ∼GLT κ then {An}n ∼σ κ . If moreover the matrices An are
Hermitian then {An}n ∼λ κ .

GLT2. We have:

• {Tn(f )}n ∼GLT κ(x, θ) = f (θ) if f ∈ L1([−π, π], s);
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1] → C

s×s is Riemann-
integrable;

• {Zn}n ∼GLT κ(x, θ) = Os if and only if {Zn}n ∼σ 0.

GLT3. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then:

• {A∗n}n ∼GLT κ∗;
• {αAn + βBn}n ∼GLT ακ + βξ for all α, β ∈ C;
• {AnBn}n ∼GLT κξ ;
• {A†

n}n ∼GLT κ−1 provided that κ is invertible a.e.

GLT4. We have {An}n ∼GLT κ if and only if there exist block GLT sequences

{Bn,m}n ∼GLT κm such that {Bn,m}n a.c.s.−→ {An}n and κm → κ in measure.

7 Final Remarks

By comparing the way in which the theory of block GLT sequences has been
developed in this paper with the way in which the theory of GLT sequences has
been developed in [24, Chapter 8], one immediately realizes that the two ways are
different (though, of course, the set of block GLT sequences defined herein coincides
in the scalar case s = 1 with the set of GLT sequences defined in [24]). The
reason of this difference resides in the fact that we here adopted a more appropriate
definition than [24, Definition 8.1]. Even though the two definitions turn out to be
equivalent in the scalar case s = 1, the one employed herein should be considered
as the ‘right’ definition; in particular, it allows us to simplify the proofs of several
important theorems (compare, e.g., Theorems 5.1 and 5.4 with [24, Theorems 8.4
and 8.8]). A future edition of [24] should take into account this issue by correcting
the definition of GLT sequences; once this is done, any formal difference between
the theories of GLT and block GLT sequences will be removed and the latter will
be obtained from the former through a straightforward adaptation process, with the
only difference that the latter will involve more technicalities (just as the theory of
block LT sequences involves more technicalities than the theory of LT sequences;
see the discussion in Section 5 of [30]).

We conclude this work by just mentioning some future lines of research. First
of all, as pointed out in the introduction, a forthcoming paper [29] will illustrate
several applications of the theory of block GLT sequences developed herein. After



Block GLT Sequences 77

that paper, it will be necessary to develop the multivariate version of the theory of
block GLT sequences and also the theory of reduced GLT sequences, as explained
in [24, Chapter 11].
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On Matrix Subspaces with Trivial
Quadratic Kernels

Alexey Tretyakov, Eugene Tyrtyshnikov, and Alexey Ustimenko

Abstract Some subspaces of real matrices of the same order may contain nonsin-
gular matrices, some may not. We prove that if the maximal rank matrix in the given
subspace with trivial quadratic kernel is symmetric, then it must be nonsingular. It
immediately follows that any subspace of symmetric matrices with trivial quadratic
kernel contains a nonsingular matrix. We present some particular cases when this
holds true without the assumption about symmetry. Whether this remains valid in
the general case of real nonsymmetric matrices we still do not know.

Keywords Matrix subspaces · Quadratic kernels

1 Introduction and Preliminaries

The topic of this paper has been naturally initiated by some problems arising when
one considers a system of nonlinear equations with a singular Jacoby matrix and
tries to modify a system in order to make this matrix nonsingular and then be
able to apply the Newton method [1, 3]. In particular circumstances, the success of
this enterprise is guaranteed when a certain linear subspace of symmetric matrices
contains a nonsingular matrix [3].
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Consider an arbitrary field F and n × n matrices with the entries from F.
Quadratic kernel of a matrix A ∈ Vn = Fn×n is defined as a set of all vectors
x ∈ Fn with the property

x#Ax = 0.

We denote this set by ker2(A) and remark that

ker2(A) ⊇ ker(A).

It might happen that the kernel is trivial (i.e. consists of a single zero vector) while
the quadratic kernel is not. For instance, consider a diagonal matrix

A =
[

1 0
0 −1

]
.

Now, let V be a subspace in Vn. Then its quadratic kernel ker2 V is defined as
the intersection of quadratic kernels for all matrices in V . Similarly, the subspace
kernel kerV is the intersection of all the matrix kernels. We are interested to know if
a subspace contains a nonsingular matrix and to which extent this property is related
to the triviality of the quadratic kernel of this subspace. Note that the kernel triviality
kerV = 0 does not mean that V includes a nonsingular matrix, e.g. consider V as a
linear span of

A =
[

1 0
1 0

]
and B =

[
0 1
0 1

]
.

However, we propose and investigate the following

Conjecture If ker2 V = 0 then V contains a nonsingular matrix.

Let P be a nonsingular matrix of order n. Then a set

P#VP := {P#AP : A ∈ V}

is as well a subspace that will be called a congruent (in more detail, P -congruent)
subspace to V . Now take any k from 1 to n. For a matrix A ∈ Vn, denote by Ak ∈
F
k×k the leading submatrix located in the left upper corner of A. Denote by Vk ⊆

Vk = F
k×k the collection of all leading submatrices matrices Ak for all matrices

A ∈ V . The following are some simple but useful observations we base on in what
follows.

Statement 1 If ker2 V = 0, then ker2 P#VP = 0 for any P -congruent subspace.

Statement 2 If ker2 V = 0, then ker2 Vk = 0 for any k.
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The congruence transformation allows us to simplify the structure of matrices
in a subspace, at least for some of them. Assume that A ∈ V is singular but has a
nonsingular leading submatrix An−1:

A =
[
An−1 u

v# α

]
. (1)

Then the last row of A is a linear combination of the first rows, and setting

P# =
[

In−1 0
−v#A−1

n−1 1

]
, (2)

we obtain

P#AP =
[
An−1 u− An−1A

−#
n−1v

0 0

]
. (3)

From this equation we straightforwardly deduce the following.

Statement 3 Let matrices A and P be defined by formulas (1) and (2), and assume
that A is symmetric. Then

P#AP =
[
An−1 0

0 0

]
.

The next observation is crucial in the constructions proposed in [3].

Statement 4 Let ker2 V = 0 and k be any integer from 1 to n. Then there exists a
matrix A = [aij ] ∈ V with the entry akk = 1.

Proof On the contrary, assume that akk = 0 for any matrix A ∈ V . Let ek signify
the kth column of the identity matrix. Then

e#k Aek = 0

for any A ∈ V , which contradicts the quadratic kernel triviality. ��
Statement 5 Assume that a subspace V of n × n matrices has trivial quadratic
kernel and contains a singular matrix with nonsingular leading submatrix of order
n − 1. Then there is a congruent subspace that contains matrices A and B of the
following form:

A =
[
Â p

0 0

]
, B =

[
B̂ q

0 1

]
, (4)
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where

rank Â ≥ n− 2. (5)

Proof Assume that A ∈ V is singular and its leading submatrix An−1 is nonsingular,
and, instead of V , consider a P -congruent subspace, where P is of the form (2).
Allowing for (3), among those congruent matrices one is of the form

Ã =
[
Ãn−1 p

0 0

]
(note that Ãn−1 = An−1),

and, by Statement 4, there is another one, say B̃ , of the form

B̃ =
[
B̃n−1 x

y# 1

]
.

With a nonsingular matrix

Q =
[
In−1 0
−y# 1

]

we obtain

Q#B̃Q =
[
B̃n−1 − xy# x − y

0 1

]
.

By the same congruence, Ã is transformed into

Q#ÃQ =
[
An−1 − py# p

0 0

]
.

Thus, the existence of two matrices with required structure is established, the
corresponding leading submatrices being

Â = Ãn−1 − py#, B̂ = B̃n−1 − xy#

and

q = x − y.

��
The next theorem was proposed and proved in [3]. However, we give it here a bit

different proof explicitly using all considered above preliminaries.
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Theorem 1 ([3]) If a matrix subspace has trivial quadratic kernel and consists
only of symmetric matrices, then it contains a nonsingular matrix.

Proof We prove the claim by induction in the matrix order n. The case n = 1 is
trivial. If n ≥ 2, then, by Statement 2, the subspace of all leading submatrices of
order n − 1 has nontrivial quadratic kernel and, by the induction assumption, in
the given subspace there is a matrix with nonsingular leading submatrix of order
n − 1. If this matrix is itself nonsingular, then the claim is already proved. If not,
we construct a congruent subspace containing matrices A and B of the form (4),
according to Statement 5. Now, consider linear combinations

tA+ B =
[
tÂ+ B̂ tp + q

0 1

]
.

By the symmetry and Statement 3, p = 0 and hence the block Â is nonsingular.
Thus, a function

f (t) = det(tA+ B) = det(tÂ+ B̂) = det(tIn−1 + B̂Â−1)

det(Â)

is a polynomial of degree n and therefore for at most n values of t the linear
combinations as above can be singular. ��

The symmetric case is important for applications in nonlinear analysis and
optimization [1, 3].

2 Maximal Rank Consequences

Further on we assume that the field F is infinite, although most results are valid as
well for finite but sufficiently large fields.

Consider now a subspaceV ⊆ Vn that is allowed to include nonsingular matrices,
and let A be a matrix of maximal rank among all matrices belonging to V . We are
going to prove the following result.

Theorem 2 Suppose that A ∈ V is a maximal rank matrix in the subspace V . If A
is symmetric, then

kerA ⊆ ker2 V . (6)

In order to prove this theorem we will have recourse to some properties of matrix
pencils. Besides A, take an arbitrary matrix B ∈ V and consider matrices A + λB

as the ones over the field of rational functions of λ with coefficients from the field
F. Thus,

A = A+ λB ∈ (F(λ))n×n.
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We may consider the rank and defect of A over the field F(λ). Denote them by

Rank (A) := rank F(λ)A,

Def(A) := defF(λ)A = n− RankA.

Lemma 1 If A is of maximal rank in V , then

Rank (A+ λB) = rankA (7)

for any B ∈ V .
Proof Since A is of maximal rank, for any t ∈ F we have the inequality

rank (A+ tB) ≤ rankA.

A minor of A = A+ λB is a polynomial in λ. If it is nonzero, then for some t the
corresponding minor of A + tB is a nonzero element of the field F, provided that
the number of elements in F exceeds the degree of this polynomial. This is the very
place where we demand of the field to be sufficiently large. Consequently,

Rank (A+ λB) ≤ max
t∈F

rank (A+ tB) ≤ rankA.

Moreover, if a minor in A = A+λB is zero, then the corresponding minor in A+tB

is zero for any t ∈ F, and hence, for an arbitrary field concerning this particular fact,

rankA ≤ max
t∈F

rank (A+ tB) ≤ Rank (A+ λB).

All in all, we come up with the equality

Rank (A+ λB) = max
t∈F

rank (A+ tB) = rankA.

��
Now consider the polynomial ring K = F[λ] and the set Kn of all vectors with n

elements all belonging to K . Clearly, Kn is a finitely generated free module over K
(also called K-module). Denote by M the set of all vectors X(λ) ∈ Kn satisfying
the equation

(A+ λB)X(λ) = 0.

As is readily seen, M is a submodule in Kn, and since K is the ring of principal
ideals, M is a finitely generated free module as well.
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Lemma 2 A basis of M consists of m = n− r vectors, where r = rankA. Written
in a polynomial form

X1(λ) =
d1∑

i=0

xi1λ
i, . . . , Xm(λ) =

dm∑

i=0

ximλ
i, (8)

where

xij ∈ F
n,

this basis can be chosen in such a way that the free-term vectors x01, . . . , x0m
comprise a basis of the kernel of A.

Proof From the theory of λ-matrices and recalling constructions related with the
Smith form it emanates, that the matrix A+λB is diagonalized by some unimodular
λ-matrices U,V ∈ Kn×n (for example, see [4]):

U(A+ λB)V = D(λ) =
[
Dr(λ) 0

0 0m×m

]
,

where Dr(λ) ∈ Kr×r is a diagonal λ-matrix with nonzero polynomials on the
diagonal. Obviously,

Rank (A+ λB) = RankD(λ) = r,

and the equation

(A+ λB)X(λ) = 0

is equivalent to

D(λ)Y (λ) = 0, X(λ) = V Y(λ).

Thus, the basis with m vectors for M is directly constructed from the basis with m

vectors for the kernel of D(λ).
Now, let us assume that the basis (8) is selected to provide the minimal possible

value for the sum d = d1 + . . .+ dm. Such a basis obviously exists and is called a
minimal basis [2]. If the free-term vectors are linearly dependent, then at least one
of them, say x0k, is clearly expressed through the others. Upon the substraction from
Xk(λ) the corresponding linear combination of vectors Xl(λ) for l �= k, we arrive
at a new system that remains a basis. All components of the kth vector of this new
basis can be devided by λ. When this is done, we get a vector from Kn which can
replace the previous one in the basis of the module M . In the result we obtain a new
basis in which the sum of degrees is less than d . ��
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Other useful properties of minimal bases are established in [2]. In particular, it
was proved therein that the senior vector coefficients are linearly independent. In
addition to this, we have proved above the linear independence of the free term
vector coefficients.

Proof of Theorem 2 Let x0 ∈ kerA. Then, in line with Lemma 2, x0 is a linear
combination of the vectors x01, . . . , x0m, and therefore there exists a vector

X(λ) = x0 + x1λ+ . . .+ xsλ
s

such that

(A+ λB)X(λ) = Ax0 + (Ax1 + Bx0)λ+ . . . = 0.

Hence, Ax1 + Bx0 = 0 and, consequently,

x#0 Ax1 + x#0 Bx0 = 0.

If A is symmetric, then

x#0 Ax1 = (Ax0)
#x1 = 0,

from which it directly stems that

x#0 Bx0 = 0

for any B ∈ V . Therefore, x0 ∈ ker2 V . ��
Remark 1 In fact, without any reference to the symmetry of the maximal rank
matrix A, we proved the inclusion

kerA ∩ kerA# ⊆ ker2 V .

Remark 2 Theorem 1 can be obtained as a direct corollary of Theorem 2.

3 Particular Cases Without Symmetry

Here we collect our attempts to remove the symmetry assumption from Theorem 1.

Theorem 3 Let V ⊆ V2 be an arbitrary subspace with trivial quadratic kernel.
Then V contains a nonsingular matrix.
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Proof On the contrary, suppose that all matrices in V are singular. In accordance
with Statements 4 and 5, there is a congruent subspace to V in which we can find
matrices of the following structure:

A =
[
a p

0 0

]
, B =

[
b q

0 1

]
.

If a �= 0 or b �= 0, a nonsingular matrix appears easily as a linear combination of
A and B. Assume that a = b = 0. Then p �= 0, and we readily conclude that the
subspace contains two linearly independent matrices

U =
[

0 1
0 0

]
and V =

[
0 0
0 1

]
.

If dimV = 2, then V is the span of these two matrices, and in this case

e1 =
[

1
0

]
∈ kerV ⊆ ker2 V,

which contradicts the triviality of quadratic kernel. Consequently, V must contain a
nonzero matrix of the form

C =
[
c 0
d 0

]
.

In this case the determinant

f (x, y) := det(C + xU + yV ) = cy − dx

is a nonzero polynomial of x and y, and hence, for some values of x and y we have
f (x, y) �= 0. ��
Theorem 4 Let V ⊆ Vn be a subspace with trivial quadratic kernel and dimV = 2.
Then V contains a nonsingular matrix.

Proof We will prove the claim by induction in n. First of all, let us acknowledge
that the case n = 2 is covered by Theorem 3. Now take any n ≥ 3.

Note that the dimension is the same for all congruent subspaces. Since the
matrices A and B of the form (4) are linearly independent, they form a basis in the
corresponding congruent subspace. Thus, the subspace of all linear combinations
αA + βB possesses trivial quadratic kernel, and hence, the same holds true for
the linear combinations αÂ + βB̂. By the induction assumption, among the latter
combinations we can pick up a nonsingular matrix. Let α and β be such that

det(αÂ+ βB̂) �= 0.
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Thus, the corresponding linear combination of A and B is an upper triangular matrix
of the form

αA+ βB =
[
αÂ+ βB̂ αp + βq

0 β

]
.

If β = 0, then Â is a nonsingular block, and thence tÂ+ B̂ is a nonsingular matrix
for all t save for at most n values, and the same is valid for tA+ B. If β �= 0, then

det(αA+ βB) = β det(αÂ+ βB̂) �= 0.

��
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Error Analysis of TT-Format Tensor
Algorithms

Dario Fasino and Eugene E. Tyrtyshnikov

Abstract The tensor train (TT) decomposition is a representation technique
for arbitrary tensors, which allows efficient storage and computations. For a d-
dimensional tensor with d ≥ 2, that decomposition consists of two ordinary
matrices and d − 2 third-order tensors. In this paper we prove that the TT
decomposition of an arbitrary tensor can be computed (or approximated, for
data compression purposes) by means of a backward stable algorithm based on
computations with Householder matrices. Moreover, multilinear forms with tensors
represented in TT format can be computed efficiently with a small backward error.

Keywords TT-format · Backward stability · Tensor compression · Multilinear
algebra

1 Introduction

The tensor train decomposition is a representation technique which allows compact
storage and efficient computations with arbitrary tensors. The origins of this
representation can be traced back to a brief paper by Oseledets and Tyrtyshnikov
dating 2009 [9], while its popularization is mainly due to the subsequent papers
[7, 10]. Nowadays, the tensor train decomposition is a computationally powerful
tool that offers viable and convenient alternatives to classical (e.g., Tucker, CP)
tensor representations [2, 5], in particular for the approximation of solutions of high
dimensional problems. As shown in, e.g., [1, 6, 8], certain computations with large-
scale structured matrices and vectors can be conveniently recast in terms of tensor
train representations.
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Basically, a tensor train (TT) decomposition of a d-dimensional tensor A with
size n1×n2×· · ·×nd is a sequence G1, . . . ,Gd of tensors of order 2 or 3; the size
of Gi is ri−1 × ni × ri with r0 = rd = 1 (that is, G1 and Gd are ordinary matrices)
and

A(i1, i2, . . . , id ) =
r1∑

j1=1

· · ·
rd−1∑

jd−1=1

G1(i1, j1)G2(j1, i2, j2) · · ·Gd(jd−1, id). (1)

We will denote by TT(G1, . . . ,Gd ) the tensor identified by the right hand side
of (1). Conditioning and numerical properties of the representation map TT :
(G1, . . . ,Gd ) �→ A are examined in [1].

In this paper, we present a backward error analysis of two algorithms, originally
devised in [10], which perform computations with tensors in TT-format. The first
algorithm produces an exact or approximate TT decomposition G1, . . . ,Gd of
an arbitrary d-dimensional tensor A given in functional form, depending on a
tolerance parameter ε. If ε = 0 then the output of the algorithm is an exact TT
decomposition, that is, A = TT(G1, . . . ,Gd ). If ε > 0 then TT(G1, . . . ,Gd )

is an O(ε)-approximation of A which can realize significant savings in memory
space. The computational core of the algorithm is a suitable (approximate) matrix
factorization that, in the original paper, relies on SVD computations. We prove that
analogous performances and backward stability can be obtained by means of QR
factorizations based on Householder transformations.

The second algorithm computes the contraction (i.e., multilinear form) of a given
d-dimensional tensor A and vectors v(1), . . . , v(d),

α =
n1∑

i1=1

· · ·
nd∑

id=1

A(i1, i2, . . . , id)v
(1)
i1
· · · v(d)id

, (2)

where A is known in TT format. By means of known error bounds for inner products
in floating point arithmetic [4], we prove backward stability of the proposed
algorithm under very general hypotheses on the evaluation order of the summations.
More precisely, if A = TT(G1, . . . ,Gd) and no underflows or overflows are
encountered then the output computed by the algorithm in floating point arithmetic
is the exact contraction of Â = TT(G1 +ΔG1, . . . ,Gd +ΔGd) and v(1), . . . , v(d)

where |ΔGi | ≤ (ni + ri−1)u|Gi | +O(u2) and u is the machine precision.
After setting up some basic notations and concepts, in Sect. 3 we present the

algorithm for computing the TT-representation of a tensor and analyze its numerical
stability. Next, we discuss in Sect. 4 the computation in computer arithmetic of
the multilinear form (2) with a tensor in TT-format. A final appendix contains a
complementary result.
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2 Notations and Preliminaries

We refer to [2, Ch. 12] and [5] for notations and fundamental concepts on tensors
and basic multilinear operations. Vectors and matrices are denoted by lower-case
and upper-case italic letters, respectively, and higher order tensors by upper-case
sans-serif letters: x, X, and X. A tensor X of order d is a multiway array of size
n1× n2× · · ·× nd , where nk is the size of the kth dimension or mode. A vector is a
first-order tensor, and a matrix is a second-order tensor. The (i1, i2, . . . , id)th entry
of X ∈ R

n1×n2×···×nd is denoted by Xi1,i2,...,id or, alternatively, X(i1, i2, . . . , id) to
avoid long, multiple subscripts. Lower case greek letters denote real numbers.

Throughout this paper, the prototypical tensor is a d-dimensional array A with
dimensions n1 × n2 × · · · × nd . In particular, the scalar d is used exclusively for
the order of A, and the scalars n1, n2, . . . , nd are reserved for A’s dimensions. The
size of A is the number of entries, N(A) = n1n2 · · · nd . The vectorization of A
is the vector vec(A) ∈ R

N(A) whose ith entry is the ith entry of A according to
the lexicographic ordering of the indices. The Matlab-style function reshape is
defined in terms of the vectorization operator as follows. Let m1,m2, . . . ,mk be
integers such that N(A) = m1m2 · · ·mk . Then,

B = reshape(A, [m1,m2, . . . ,mk])

is the tensor B ∈ Rm1×m2×···×mk such that vec(A) = vec(B). In particular, for
k = 1, . . . , d − 1,

Ak = reshape(A,
[∏k

i=1 ni,
∏d

i=k+1 ni
]
)

is the k-th unfolding matrix of A.
The k-mode product of a tensor A ∈ Rn1×···×nd by a matrix M ∈ Rnk×m, denoted

by A ×k M , is an (n1 × · · · × nk−1 × m × nk+1 × · · · × nd)-tensor of which the
entries are given by

(A×k M)(i1, . . . , id) =
nk∑

j=1

A(i1, . . . , ik−1, j, ik+1, . . . , id )Mj,ik .

The latter definition extends trivially to the case where M is a vector, by treating it
as a nk × 1 matrix. The k-mode product satisfies the property

(A×i B)×j C = (A×j C)×i B , (3)

so that notations like A×i B ×j C can be used without ambiguity.
If A is a vector, a matrix or a tensor, we denote by |A| the componentwise

absolute value of A. Inequalities between tensors hold componentwise. Finally, the
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Frobenius inner product of two matrices A,B ∈ Rm×n is 〈A,B〉 = trace(AT B) =
vec(A)T vec(B), and the associated matrix norm is ‖A‖F = ‖vec(A)‖2. The latter
is extended in an obvious way to arbitrary tensors.

2.1 The Tensor Train Format for Multidimensional Arrays

A tensor train decomposition of A ∈ Rn1×···×nd is a sequence G1, . . . ,Gd of
tensors, called carriages (or cores [7, 8]), such that the size of Gi is ri−1 × ni × ri
with r0 = rd = 1 (that is, G1 and Gd can be understood as ordinary matrices) and
fulfilling the identity (1), that is, A = TT(G1, . . . ,Gd).

Example 1 Let A be a 10×20×30×40 tensor with TT-ranks 5, 6, 7. The TT-format
of A is made of four carriages, whose dimensions are as follows:

G1 : 1× 10× 5
G2 : 5× 20× 6
G3 : 6× 30× 7
G4 : 7× 40× 1.

An alternative viewpoint on the decomposition (1) is

A(i1, i2, . . . , id ) = G′1(i1)G′2(i2) · · ·G′d(id),

where now G′k(ik) is an rk−1 × rk matrix depending on the integer parameter ik .
The numbers r1, . . . , rd−1 are called TT-ranks of A. As shown in, e.g., [7, 10], rk
is bounded from below by rank(Ak). Moreover, a TT decomposition with rk =
rank(Ak) always exists and can be computed by the algorithm shown in [10], which
is recalled in the next section. It is often the case that an exact or approximate TT-
format of a given tensor yields considerable savings in terms of memory space with
respect to other representation techniques.

Remark 1 It is sometimes convenient to assume that G1 and Gd are not three-
dimensional but two-dimensional with sizes n1 × r1 and rd−1 × nd , respectively.
For that reason, in what follows we will use indifferently the notations G1 and G1
to denote the first carriage.

3 Full-to-TT Compression

In this section we address backward stability properties of the compression algo-
rithm from [10], which is recalled hereafter as Algorithm 3.1. This algorithm
produces an exact or approximate TT decomposition G1, . . . ,Gd of a given tensor
A with d ≥ 2, depending on a tolerance ε. If ε = 0 then the output of the algorithm
is an exact TT decomposition, that is A = TT(G1, . . . ,Gd) with rk = rank(Ak)
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for k = 1, . . . , d − 1, see [10, Thm. 2.1]. If ε > 0 then rk ≤ rank(Ak)

and TT(G1, . . . ,Gd ) is an O(ε)-approximation of A which can realize significant
savings in memory space with respect to the exact TT-decomposition.

As a basic compression device we suppose to have at our disposal a generic,
black-box algorithm having the interface

[M,N, r] = compress(A, ε) (4)

which, for any matrix A ∈ Rm×n and tolerance ε ≥ 0 returns an integer r and two
matrices M ∈ Rm×r and N ∈ Rr×n such that

rank(M) = rank(N) = r, ‖MN − A‖F ≤ ε‖A‖F . (5)

In particular, if ε = 0 then A = MN is a rank decomposition of A. In [10] this
algorithm is realized by means of a truncated SVD of A. In that case, one has

‖A−MN‖F = min
rank(X)≤r ‖A−X‖F, r = min‖A−X‖F≤ε‖A‖F

rank(X).

Consequently, if ε > 0 then TT-ranks r1, . . . , rd−1 computed by the resulting
procedure are in some sense optimal. However, other rank-revealing factorizations
can be usefully adopted for the purpose of computing the TT-format of (an
approximation of) the given tensor.

Observe that Algorithm 3.1 is based on a finite iteration. Each iteration is entirely
based on matrix computations. In particular, if the argument A is a matrix then the
output consists of the two matrices computed by compress. In the pseudocode
here below, the intermediate matrices B1, . . . , Bd−1 are introduced to improve
readability; in a more implementation-oriented description, these variables can share
the same name and memory space.

Algorithm 3.1 Full-to-TT compression, iterative version
Input: tensor A of size n1 × n2 × · · · × nd and local accuracy bound ε

Output: tensor carriages G1, . . . ,Gd

1: function [G1, . . . ,Gd ] = FULL_TO_TT(A, ε)
2: n := N(A)
3: nR := n/n1
4: A1 := reshape(A, [n1, nR])
5: [G1, B1, r1] := compress(A1, ε)

6: for k = 2 . . . d − 1 do
7: nR := nR/nk
8: Bk−1 := reshape(Bk−1, [rk−1nk, nR ])
9: [Gk, Bk, rk] := compress(Bk−1, ε)

10: Gk := reshape(Gk, [rk−1, nk, rk])
11: end for
12: Gd := Bd−1
13: end function
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Example 2 Suppose that Algorithm 3.1 is applied to the fourth order tensor A in
Example 1. Then Algorithm 3.1 performs three for-loops; the dimensions of the
matrices B1 and B2 before and after being reshaped in step 8 are as follows:

B1 : 5× 24000 and 100× 1200
B2 : 6× 1200 and 180× 40

At the third iteration the matrix B3 is 7 × 40 and is renamed G4 without being
reshaped.

Algorithm 3.2 is a recursive version of Algorithm 3.1, namely, the two algorithms
compute the same function, but Algorithm 3.2 calls itself internally. Termination
is ensured by the fact that the order of the tensor argument diminishes by one at
each recursive call. In fact, if d = 2 then the sought decomposition is obtained
immediately by one call to compress, as in the iterative version. When d > 2,
the matrix B1 computed in step 4 together with the carriage G1 is the first unfolding
matrix of the (d − 1)-dimensional tensor B, whose TT decomposition is computed
by the recursive call in step 9. In that step the carriage G2 is obtained as a matrix of
dimension (r1n2)× r2. In the subsequent steps that matrix is reshaped into a tensor
of dimension r1 × n2 × r2 and the computation is complete.

Remark 2 Apart of reshaping, the matrix Bk computed in Algorithm 3.1 coincides
with the matrix B1 computed in the (k − 1)-th recursive call of Algorithm 3.2.

In the subsequent analysis we assume that, in exact arithmetic, the function
compress satisfies the following property: For any input matrix A, the output
matrices M and N fulfil the identities

MTM = I, MT (A−MN) = O. (6)

Algorithm 3.2 Full-to-TT compression, recursive version
Input: tensor A of size n1 × n2 × · · · × nd and local accuracy bound ε

Output: tensor carriages G1, . . . ,Gd

1: function [G1, . . . ,Gd ] = FULL_TO_TT(A, ε)
2: n := N(A)
3: A1 := reshape(A, [n1, n/n1])
4: [G1, B1, r1] := compress(A1, ε)

5: If d = 2 then
6: G2 := B1
7: else
8: B := reshape(B1, [r1n2, n3, . . . , nd ]) ( the order of B is d − 1
9: [G2, . . . ,Gd ] := Full_to_TT(B, ε) ( recursive call

10: r2 := N(G2)/(r1n2)

11: G2 := reshape(G2, [r1, n2, r2]) ( G2 is tensorized
12: end if
13: end function
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Equations (5) and (6) can be met if compress is obtained from a truncated SVD
as in [10] or from a (truncated) QR factorization. Indeed, the equations in (6) are
fulfilled if and only if the matrix A admits a factorization

A = (M M ′)
(
N

N ′
)

where the matrix Q = (M M ′) has orthonormal columns and N has full rank, in
which case we have ‖A −MN‖ = ‖M ′N ′‖ = ‖N ′‖ and ‖N‖ = ‖MT A‖ ≤ ‖A‖
in any unitarily invariant norm. The sufficiency of that condition is obvious. To
prove necessity, consider the residual matrix R = A −MN and let R = M ′N ′ be
a factorization where the columns of M ′ are an orthonormal basis for the column
space of R and N ′ has full rank. Since MTM ′N ′ = O the columns of M ′ must
belong to the kernel of MT , hence the matrix Q = (M M ′) has orthonormal
columns.

The following theorem is a reworking of Theorem 2.2 from [10] to emphasize
the role of the hypotheses placed on compress. A shorter proof is included for
later reference.

Theorem 1 Suppose that the function compress in (4) fulfills the conditions (5)
and (6). Let T = TT(G1, . . . ,Gd ) where the tensor carriages G1, . . . ,Gd are
computed from Algorithm 3.2 in exact arithmetic. Then ‖A−T‖F ≤ ε

√
d − 1 ‖A‖F.

Proof We proceed by induction on d . When d = 2 the claim follows immediately
from (5). For d > 2, consider the matrices G1 and B1 computed in step 4. By
construction, the first unfolding matrix of T admits the factorization T1 = G1U1,
for some r1 × (n2 · · · nd) matrix U1. Since GT

1 (A1 − G1B1) = O and GT
1 G1 = I

by hypothesis, we have

‖A− T‖2
F = ‖A1 −G1B1 +G1B1 −G1U1‖2

F

= ‖A1 −G1B1‖2
F + ‖G1(B1 − U1)‖2

F + 2〈GT
1 (A1 −G1B1), B1 − U1〉

= ‖A1 −G1B1‖2
F + ‖B1 − U1‖2

F .

Consider the (d − 1)-dimensional tensor

U = reshape(U1, [r1n2, n3, . . . , nd ]) ,

whose first unfolding matrix is U1. Then,

‖A − T‖2
F ≤ ε2‖A‖2

F + ‖B− U‖2
F ,

where B is obtained in step 8 of Algorithm 3.2. By construction U =
TT(G2, . . . ,Gd), that is, U is the tensor whose exact TT-decomposition is given
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by the tensor carriages obtained from Algorithm 3.2 with input B. By inductive
hypothesis we have

‖B1 − U1‖2
F = ‖B− U‖2

F ≤ (d − 2)ε2‖B‖2
F .

Moreover,

‖B‖F = ‖B1‖F = ‖GT
1 A1‖F ≤ ‖A1‖F = ‖A‖F ,

and the claim follows. ��
Remark 3 It is not difficult to prove that the hypothesis MTM = I in (6) can be
replaced by ‖M‖2‖M+‖2 = 1, where M+ is the Moore–Penrose inverse of M ,
without affecting the claim of Theorem 1. In the proof, one has simply to replace
‖G1(B1 − U1)‖F = ‖B1 − U1‖F by ‖G1(B1 − U1)‖F ≤ ‖G1‖2‖B1 − U1‖F and
‖B1‖F = ‖GT

1 A1‖F ≤ ‖A1‖F by ‖B1‖F = ‖G+1 A1‖F ≤ ‖G+1 ‖2‖A1‖F.
This fact allows to introduce scaling factors in the computed carriages, e.g., in

order to balance their norms, with no changes in the error estimate.

3.1 Backward Stability Analysis

The forthcoming Theorem 2 provides a backward stability estimate for Algo-
rithm 3.2 which, in the exact arithmetic case, reduces to the error estimate given
in Theorem 1 and, in the floating point arithmetic case, outlines the effects of the
tolerance ε, the loss of orthogonality of the matrix M in (4) and the numerical
stability of the function compress on the backward error of the computed TT
decomposition.

Actually, the following analysis is mainly aimed to deal with two issues arising
in the practical usage of Algorithm 3.2:

1. We compute an “exact” (ε = 0) TT decomposition in computer arithmetics and
we desire a bound on the backward error of the computed result.

2. We want to compute a “low rank” approximation (ε > 0) of the given tensor but
the function compress does not meet the conditions (6) as it happens if, e.g., it
is based not on (pivoted) QR but on a different rank-revealing factorization where
the spectral conditioning of M is greater than 1, see e.g., [2, §5.4.5]. In that case,
we would like to quantify to what extent the approximation bound in Theorem 1
is degraded.

These two issues can be tackled together by assuming that the function compress
fulfills the following hypotheses in place of (6): For any A ∈ Rm×n there exists an
exact decomposition A+ΔA = Q̂R̂ with

Q̂ = (M M ′) ∈ R
m×m, R̂ =

(
N

N ′
)
∈ R

m×n , (7)
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such that ‖M ′N ′‖F ≤ ε‖A‖F where ε is the user-specified tolerance; and there exist
two functions η1 = η1(m, n, r) and η2 = η2(m, r) such that

‖ΔA‖F ≤ η1‖A‖F, ‖Q − Q̂‖2 ≤ η2 (8)

for some orthogonal matrix Q ∈ Rm×m.
If computations are performed in the usual IEEE standard computer arithmetic

with machine precision u, the existence of two functions η1 and η2 being O(u),
fulfilling (8) and having a moderate growth in m,n, r can be inferred from known
facts concerning the error analysis of Householder QR factorization [2, Ch. 5], [3,
§19.3]. For example, if the matrix Q̂ in (7) is computed by means of r ≤ min{m,n}
Householder transformations then [3, pp. 359–361] brings in the estimates

η1(m, n, r) = O(mru), η2(m, r) = O(mr3/2u).

These estimates are deemed as rather conservative, and practical experience sug-
gests e.g., that η1 is a linear polynomial in m and r , see [3, p. 368]. In any case, all
quantities η1 and η2 occurring in what follows are assumed to be “sufficiently small”
so that quadratic and higher order terms can be neglected. We stress that conditions
(7) and (8) reduce to (6) when η1 = η2 = 0.

Lemma 1 In the preceding notations and hypotheses, neglecting higher order
terms in ε, η1, and η2 we have

1. ‖A−MN‖F ≤ (ε + η1)‖A‖F
2. ‖MT (A−MN)‖F ≤ η1‖A‖F
3. ‖N‖F ≤ (1+ η1 + η2)‖A‖F.

Proof Firstly, we have

‖A−MN‖F = ‖A+ΔA−ΔA−MN‖F = ‖M ′N ′ −ΔA‖F ≤ (ε + η1)‖A‖F ,

and the first part follows.
Let Q, Q̂ ∈ Rm×m be the matrices appearing in (7) and (8). Let Q = (Q1 Q2)

and ΔQ = Q̂ − Q = (Δ1 Δ2) be partitioned consistently with Q̂ as in (7). Then,
‖Δ1,2‖2 ≤ η2 and

‖MTM ′‖2 = ‖(Q1 +Δ1)
T (Q2 +Δ2)‖2

≤ ‖ΔT
1 Q2‖2 + ‖QT

1 Δ2‖2 + ‖ΔT
1 Δ2‖2

≤ ‖Δ1‖2 + ‖Δ2‖2 + ‖ΔT
1 Δ2‖2 ≤ η2(2+ η2) .
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Neglecting quadratic terms we get ‖MT M ′‖2 � 2η2, ‖N ′‖F � ε‖A‖F and

‖MT (A−MN)‖F = ‖MT (M ′N ′ −ΔA)‖F

≤ ‖MTM ′‖2‖N ′‖F + ‖M‖2‖ΔA‖F � (2η2ε + η1)‖A‖F .

This proves the second inequality in the claim.
Since Q̂ = Q + ΔQ and ‖ΔQ‖2 ≤ η2, standard perturbation theory yields

that the smallest singular value of Q̂ is not smaller than 1 − η2, see e.g., [2,
Corollary 2.4.4]. Hence ‖Q̂−1‖2 ≤ 1/(1− η2) ≈ 1+ η2. Finally,

‖N‖F ≤ ‖R̂‖F = ‖Q̂−1(A+ΔA)‖F

≤ ‖Q̂−1‖2‖A+ΔA‖F � (1+ η1)(1+ η2)‖A‖F ,

and the proof is complete. ��
Theorem 2 Let T = TT(G1, . . . ,Gd) where the carriages G1, . . . ,Gd are
computed under the aforementioned hypotheses. Let η1 and η2 denote the largest
values of the like named coefficients occurring in all recursive calls of Algorithm 3.2
on the specific input A. Moreover, let ε̂ = ε + η1. Neglecting higher order terms in
ε, η1, and η2,

‖A− T‖F ≤ (1+ η1 + 2η2)
d−2((d − 2)η1 +

√
d − 1 ε̂

)‖A‖F .

Proof We proceed by induction, as in the the proof of Theorem 1. The d = 2 case
is an immediate consequence of Lemma 1(1):

‖A− T‖F = ‖A1 −G1B1‖F ≤ (ε + η1)‖A1‖F = ε̂‖A‖F.

For d > 2, the inductive argument begins similarly to the proof of Theorem 1.
Indeed, by hypotheses and Lemma 1 we have ‖G1‖2 ≤ 1+ η2 and

‖A− T‖2
F = ‖A1 −G1B1 +G1B1 −G1U1‖2

F

= ‖A1 −G1B1‖2
F + ‖G1(B1 − U1)‖2

F + 2〈GT
1 (A1 −G1B1), B1 − U1〉

≤ ε̂2‖A‖2
F + (1+ η2)

2‖B1 − U1‖2
F + 2η1‖A‖F‖B1 − U1‖F .

The last inequality follows by Cauchy–Schwartz inequality and Lemma 1(2).
Let A = Ad and T = Td . For k = 2, . . . , d − 1, let Ak,Tk be the k-dimensional

tensors defined as follows: Ak and Tk are the argument and the result of the (d−k)-th
recursive call of the algorithm,1

(Gd−k+1, . . . ,Gd) = Full_to_TT(Ak, ε) , Tk = TT(Gd−k+1, . . . ,Gd ) .

1With a little abuse of notation, in the ensuing equation we identify Gd−k+1 with its first unfolding
matrix.
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For example, in the proof of Theorem 1 Ad−1 is denoted by B and Td−1 by U. With
these notations, the preceding inequality yields

‖Ak+1−Tk+1‖2
F ≤ ε̂2‖Ak+1‖2

F+ (1+ η2)
2‖Ak −Tk‖2

F+ 2η1‖Ak+1‖F‖Ak −Tk‖F .

Let � = 1 + η1 + η2. From Lemma 1(3) we have ‖Ak‖F ≤ �‖Ak+1‖F. For k =
1, . . . , d − 1 let ek = ‖Ak+1 − Tk+1‖/‖Ak+1‖F. Neglecting product terms in η1, η2
and other small quantities we arrive at the recurrence

e2
k ≤ ε̂2 + �2(1+ η2)

2e2
k−1 + 2η1�ek−1

≤ (αek−1 + η1)
2 + ε̂2

where α = 1+ η1 + 2η2 and e1 ≤ ε̂. From Lemma 5 in Appendix we obtain

ek ≤ αk−1((k − 1)η1 +
√
k ε̂
)
,

and the claim follows by setting k = d − 1. ��
It is worth noting that in the exact case (that is, when η1 = η2 = 0) the inequality

in the previous claim reduces to that of Theorem 1.

4 Computing Multilinear Forms

The computation of the multilinear form (or contraction)

α = A×1 v(1) ×2 v(2) ×3 · · · ×d v(d)

where v(i) ∈ R
ni , occurs e.g., in the computation of multidimensional integrals on

cartesian product grids [10]. If A = TT(G1, . . . ,Gd) then the preceding expression
can be rewritten as

α =
∑

i1,...,id

∑

j1,...,jd−1

G1(i1, j1)G2(j1, i2, j2) · · ·Gd(jd−1, id )v
(1)
i1
· · · v(d)id

.

Assuming n1 = . . . = nd = n and r1 = . . . = rd−1 = r , the right hand side can be
computed in O(dnr2) floating point operations using Algorithm 3 from [10], which
is described hereafter as Algorithm 4.1.

After completion of the k-th cycle of the for-loop, W is an nk× rk matrix and t is
an rk-vector. In particular, when k = d step 4 is a matrix-vector multiplication
as rd = 1, so W becomes a vector and step 5 is an inner product of two nd -
vectors. Note that the computation of W = Gk ×1 t followed by t = WT v(k)

yields a particular algorithm to compute Gk ×1 t ×2 v
(k) which can be implemented

using nkrk inner products with rk−1-vectors followed by rk inner products with
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Algorithm 4.1 Fast TT contraction algorithm

Input: tensor train A = TT(G1, . . . ,Gd ), vectors v(1), . . . , v(d)

Output: α = A×1 v(1) ×2 · · · ×d v(d)

1: function α = TT_CONTRACTION(G1, . . . ,Gd , v
(1), . . . , v(d))

2: t := G1 ×1 v(1)

3: for k = 2 . . . d do
4: W := Gk ×1 t

5: t := WT v(k)

6: end for
7: α := t .
8: end function

nk-vectors. Owing to the identity (3), an alternative algorithm for computing the
same expression (with almost the same number of floating point operations) is
W := Gk ×2 v(k) followed by t := WT t .

In what follows, F denotes a set of (computer) floating point numbers endowed
by the usual IEEE standard arithmetics, and u denotes the corresponding unit
roundoff. Moreover, we use the notation fl(·) with an argument that is an expression
to denote the computed value of that expression. The next two lemmas are borrowed
from [4].

Lemma 2 Given x, y ∈ F
n, any order of evaluation of the inner product xT y

produces an approximation α such that |α− xT y| ≤ nu|x|T |y|, if no underflows or
overflows are encountered.

Lemma 3 Given A ∈ Fm×n and x ∈ Fn, let ŷ = fl(Ax) be the approximation
to Ax obtained by computing m inner products of n-vectors, each of them being
performed in an arbitrary evaluation order. If no underflow or overflow occurs,
then there exists a matrix Â ∈ Rm×n such that

ŷ = Âx, Âij = (1+ εij )Aij , |εij | ≤ nu .

On the basis of these two lemmas it is not hard to obtain the result hereafter.

Theorem 3 GivenG ∈ F�×m×n, x ∈ F�, and y ∈ Fm, let ẑ = fl(fl(G×1 x)×2 y) ∈
Fn be the finite precision approximation to z = G×1 x ×2 y obtained after mn+ n

inner products, each of them being performed in an arbitrary evaluation order. If no
underflow or overflow occurs then there exists a tensor ΔG ∈ R�×m×n such that

ẑ = (G+ΔG)×1 x ×2 y, |ΔG| ≤ (�+m)u|G| +O(u2) .

Proof Introduce the auxiliary matrix M = G ×1 x and let M̂ = fl(G ×1 x) be its
finite precision counterpart. In exact arithmetic,

Mjk =
�∑

i=1

Gijkxi .
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Owing to Lemma 2, for every j, k there exists εjk such that

M̂jk −Mjk = εjk

�∑

i=1

|Gijkxi | , |εjk| ≤ �u .

Letting ηijk = sign(Gijkxi)εjk we obtain

M̂jk =
∑

i

Gijkxi + εjk|Gijkxi|

=
∑

i

(1+ ηijk)Gijkxj .

Obviously |ηijk | ≤ �u. By Lemma 3, for k = 1, . . . , n we have

ẑk = [fl(M̂T y)]k =
∑

j

(1+ ηjk)M̂jkyj

=
∑

j

∑

i

(1+ ηjk)(1+ ηijk)Gijkxiyj

for some constants ηjk with |ηjk| ≤ mu. In conclusion, ẑ = (G+ΔG)×1 x ×2 y

where

ΔGijk = ξijkGijk , |ξijk | = |(1+ ηjk)(1+ ηijk)− 1| ≤ (�+m)u+ �mu2 ,

and the proof is complete. ��
Note that the previous theorem applies also when � = 1 or n = 1, where

G reduces to a matrix. Recalling the conventional notation r0 = 1, we obtain
immediately the following consequence.

Corollary 1 Let α̂ be the result of Algorithm 4.1 computed in machine arithmetics
from input A = TT(G1, . . . ,Gd). Then, there exist tensors ΔG1, . . . ,ΔGd such
that

α̂ = Â×1 v(1) ×2 v(2) · · · ×d v(d), Â = TT(G1 +ΔG1, . . . ,Gd +ΔGd) ,

and |ΔGi | ≤ (ni + ri−1)u|Gi| + O(u2).

The previous result allows us to interpret the rounding errors in the computation
of α as due to perturbations in the carriages G1, . . . ,Gd , not in A. The forthcoming
Theorem 4 provides a backward error bound in terms of a perturbation in A. To
that goal, we need the following lemma whose proof derives from an elementary
inductive argument and will not be shown.
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Lemma 4 Let ξ1, . . . ξk be numbers such that s =∑k
i=1 |ξi | < 1. Then,

k∏

i=1

(1+ ξi) = 1+ θ, |θ | ≤ s

1− s
.

In particular, if s ≤ 1
2 then |θ | ≤ 2s.

Theorem 4 Let α̂ be the result of Algorithm 4.1 computed in machine arithmetic
from input A = TT(G1, . . . ,Gd ), and let s =∑d

i=1(ni + ri−1)u. If s ≤ 1
2 then

α̂ = Â×1 v(1) ×2 v(2) · · · ×d v(d)

where |Â− A| ≤ 2s TT(|G1|, . . . , |Gd |)+ O(u2).

Proof In what follows, we interpret G1(i, j) and Gd(i, j) as G1(1, i, j) and
Gd(i, j, 1), respectively. Let εi = (ni + ri−1)u for i = 1, . . . , d . By Corollary 1,
there exist constants ξ(�)ijk such that α̂ is the exact contraction of the tensor TT(G1 +
ΔG1, . . . ,Gd +ΔGd) and vectors v(1), . . . , v(d) where

ΔG�(i, j, k) = G�(i, j, k)ξ
(�)
ijk , |ξ(�)ijk | ≤ ε� +O(u2) .

Assuming j0 = jd = 1, for every multi-index i = (i1, i2, . . . , id) we have

Â(i) =
∑

j1,...,jd−1

G1(i1, j1)G2(j1, i2, j2) · · ·Gd(jd−1, id)

d∏

�=1

(1+ ξ
(�)
j�−1i�j�

)

=
∑

j1,...,jd−1

G1(i1, j1)G2(j1, i2, j2) · · ·Gd(jd−1, id)(1+ θx)

with x = (i1, . . . , id , j1, . . . , jd−1) and |θx | ≤ 2s by Lemma 4. By triangle
inequality,

|Â(i)− A(i)| ≤
∑

j1,...,jd−1

|G1(i1, j1)||G2(j1, i2, j2)| · · · |Gd(jd−1, id)||θx | ,

and the claim follows. ��

Appendix

Hereafter, we prove a technical lemma which yields an upper bound for the growth
of a sequence occurring within the proof of Theorem 2.
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Lemma 5 Let {ek} be a sequence of nonnegative numbers such that e1 ≤ γ and for
k ≥ 2

e2
k ≤ (αek−1 + β)2 + γ 2

for some nonnegative constants α, β, γ with α ≥ 1. Then for all k ≥ 1

ek ≤ αk−1((k − 1)β +√k γ
)
.

Proof Define the auxiliary notations êk = α1−kek , β̂k = α1−kβ and γ̂k = α1−kγ .
Note that β̂k ≤ β and γ̂k ≤ γ for k ≥ 1. Then,

ê2
k = α2−2ke2

k ≤ (α2−kek−1 + α1−kβ)2 + α2−2kγ 2

= (êk−1 + β̂k)
2 + γ̂ 2

k .

Firstly we prove that for all k ≥ 1

êk ≤∑k
j=2 β̂k +

√∑k
j=1 γ̂

2
j .

Indeed, the claim is trivially verified when k = 1. By an inductive argument, for
k ≥ 2 we have

ê2
k ≤

(∑k
j=2 β̂j +

√∑k−1
j=1 γ̂

2
j

)2 + γ̂ 2
k

= (∑k
j=2 β̂j

)2 +∑k
j=1 γ̂

2
j + 2

(∑k
j=2 β̂j

)√∑k−1
j=1 γ̂

2
j

≤
(∑k

j=2 β̂j +
√∑k

j=1 γ̂
2
j

)2
.

Going back to the sequence {ek} we have for all k ≥ 1

ek = αk−1êk ≤ αk−1
(∑k

j=2 β̂j +
√∑k

j=1 γ̂
2
j

)

≤ αk−1((k − 1)β +√k γ
)

and we are done. ��
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The Derivative of the Matrix Geometric
Mean with an Application
to the Nonnegative Decomposition
of Tensor Grids

Bruno Iannazzo, Ben Jeuris, and Filippo Pompili

Abstract We provide an expression for the derivative of the weighted matrix
geometric mean, with respect to both the matrix arguments and the weights, that
can be easily translated to an algorithm for its computation. As an application,
we consider the problem of the approximate decomposition of a tensor grid M ,
a matrix whose entries are positive definite matrices. For different geometries on
the set of positive definite matrices, we derive an approximate decomposition such
that any column of M is a barycentric combination of the columns of a smaller
tensor grid. This extends the Euclidean case, already considered in the literature,
to the geometry in which the barycenter is the matrix geometric mean and the log-
Euclidean geometry.

Keywords Matrix geometric mean · Karcher mean · Tensor grid · Positive
definite matrix · Nonnegative factorization

1 Introduction

The geometric mean of positive definite matrices, the so-called Karcher mean, is the
minimizer, over the set of positive definite matrices of a fixed size, of the function

f (X) =
p∑

σ=1

δ2(X,Aσ ), (1)
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where A1, . . . , Ap ∈ Cμ×μ are given positive definite matrices, and δ is a distance
on the set of positive definite matrices that we will define later.

The matrix geometric mean can be related to a Riemannian geometry in the set
of positive definite matrices of size μ that we will denote by Pμ. Besides the wide
mathematical interest in this geometry (see [2, Ch. 6]), there are also a large number
of applications where it is used. In particular, it has been used for averaging tensors
[1, 18], for describing the variability of shapes [9], and also in regularization of
matrix data [19], appearance tracking [7, 23], and brain–computer interface [8], to
cite just some.

A useful generalization of the matrix geometric mean is the weighted matrix
geometric mean [16], or weighted Karcher mean, that is the minimizer of

p∑

σ=1

wσδ
2(X,Aσ ), (2)

where w1, . . . , wp are nonnegative weights, of which some must be nonzero, and
δ is the same distance as before. With no loss of generality, we may assume that
w1+· · ·+wp = 1, so that the weighted matrix geometric mean defines a barycentric
combination of A1, . . . , Ap with respect to the Riemannian structure of Pμ. We use
the notation K(w1, . . . , wp;A1, . . . , Ap) for the weighted matrix geometric mean.

In this chapter, we consider the derivative of the weighted matrix geometric mean
with respect to both the matrix arguments and the weights. While there is no explicit
expression for the mean K , we are able to find an expression for its derivative that
is explicit in terms of K .

The matrix K can be computed by an optimization algorithm or a fixed-point
iteration [5, 13, 14, 21]. Once K has been approximated, the derivative can be
evaluated directly by means of a numerical algorithm based on the aforementioned
expression.

As an application, we consider a generalization of the nonnegative matrix
factorization [17] to tensor grids that can be seen as matrices whose entries are
positive definite matrices (the physical tensors).

We propose an approach to compute the factorization based on the geometry on
Pμ mentioned above. This requires the derivative of the matrix geometric mean for
its numerical computation.

The chapter is structured as follows: in Sect. 2 we provide some basic material
on the Riemannian geometry of Pμ that gives rise to the matrix geometric mean;
in Sect. 3 we provide an algorithm for computing the weighted matrix geometric
mean and its derivative, whose explicit expression is obtained; in Sect. 4 we propose
different models for the factorization of tensor grids, with a simple minimization
algorithm to obtain it; in Sect. 5 we perform some preliminary numerical experi-
ments proving that the new models have potential in solving factorization problems;
in the final section we draw some conclusions.
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2 The Geometry ofPμ and the Matrix Geometric Mean

The geometry of Pμ is very easy, since the positive definite matrices of size μ are
an open subset of Hμ, the set of Hermitian matrices of size μ. This endows Pμ

with a natural structure of differentiable manifold, where the tangent space at any
point A ∈ Pμ is isomorphic to Hμ. In view of this isomorphism, we will identify
tangent vectors with Hermitian matrices.

The vector space Hμ is an Euclidean space, with the usual scalar product

〈X,Y 〉 = trace(XY ),

whose associated norm is the Euclidean (Frobenius) norm, ‖X‖F :=
(
trace(X2)

)1/2
.

Nevertheless, the Riemannian structure on Pμ, that will allow us to define the
distance δ of (1) and (2), is obtained when one considers the scalar product

〈X,Y 〉(R)
A := trace(A−1XA−1Y ), X, Y ∈ Hμ, (3)

on the tangent space to Pμ at the matrix A.
This Riemannian structure has been described, for instance, in [15, Ch. XII], [3,

20], and yields the Riemannian distance δ of (1) on Pμ, whose explicit expression
is known to be

δ(X, Y ) = ‖ log(X−1/2YX−1/2)‖F . (4)

The inverse square root and the logarithm in (4) should be understood as
primary matrix functions. When a matrix X is diagonalizable, say K−1XK =
diag(λ1, . . . , λμ), the primary matrix function f (X) is defined as K diag(f (λ1), . . .,
f (λμ))K

−1; this requires that f is well defined on the spectrum of X. The definition
of primary matrix function can be extended to non-diagonalizable matrices, making
further assumptions on the regularity of f on the spectrum of X (for a detailed
description, see [10]). An important property of matrix functions is that they
commute with similarities: if f (X) is well defined and M is invertible, then
f (M−1XM) is well defined and we have f (M−1XM) = M−1f (X)M . We will
use, moreover, the fact that log(M−1) = − log(M) when M has no nonpositive real
eigenvalues.

A primary matrix function f : Ω → Cμ×μ, with Ω open subset of Cμ×μ, is
Fréchet differentiable at X ∈ Ω , if there exists a linear function Df (X) : Cμ×μ →
Cμ×μ such that, for any matrix norm

f (X +H) = f (X)+Df (X)[H ] + o(‖H‖),

as H ∈ C
μ×μ tends to 0.

For the practical use of derivatives of primary matrix functions, it is useful to
consider the vec operator that stacks the columns of a matrix into a long vector and
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define a Kronecker matrix Kf (X) such that vec(Df (X)[H ]) = Kf (X) vec(H).
The basis of Cμ×μ, that is mapped through the vec operator to the standard basis
of Cμ2

, is said to be the vec basis and Kf (X) is the matrix representing the
derivative in this basis. With abuse of notation we will write Df (X) also for
Kf (X). A useful equality involving the vec operator and the Kronecker product
is vec(AXB) = (BT ⊗ A) vec(X) [11, Sec. 4.3].

The Fréchet derivative commutes with similarities: if Df (X)[H ] is the
Fréchet derivative of f at X in the direction H and M is invertible, then
Df (M−1XM)[M−1HM] = M−1Df (X)[H ]M . This fact can be seen using the
commutativity of primary matrix functions with similarities, and observing that if
f (X +H)− f (X)−Df (X)[H ] = o(‖H‖), then

f (M−1XM +M−1HM)− f (M−1XM)−M−1Df (X)[H ]M = o(‖M−1HM‖).

In the vec basis, we can write

Df (M−1XM) = (MT ⊗M−1)Df (X)(M−T ⊗M), (5)

where M−T := (M−1)T .
We conclude this section, giving a lemma on the derivative of the Euclidean and

Riemannian distance with respect to one of its arguments, which will be useful in the
following. (The first equality is straightforward, for a proof of the second equality,
see [2, Thm. 6.3.3].)

Lemma 1 Let A ∈ Hμ and let dA : Hμ → Hμ be such that dA(X) = ‖A − X‖F .
For any H ∈ Hμ, we have

Dd2
A(X)[H ] = 2 trace((X − A)H).

Let A ∈ Pμ and let δA : Pμ → Pμ be such that δA(X) = δ(A,X), with δ as
in (4). For any H ∈ Hμ, we have

Dδ2
A(X)[H ] = 2 trace(X−1 log(XA−1)H).

3 Computing the Weighted Matrix Geometric Mean
and Its Derivative

We propose a method for computing the derivative of the weighted matrix geometric
mean with respect to both the matrix arguments and the weights.

This method requires the weighted matrix geometric mean: in Sect. 3.1 we adapt
the Richardson algorithm [5] from the standard matrix geometric mean to the
weighted one; while in Sect. 3.2 we derive explicit expressions (in terms of the
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matrix geometric mean itself) for the derivative of the weighted matrix geometric
mean that can be evaluated by a numerical algorithm.

3.1 Computing the Weighted Matrix Geometric Mean

The weighted matrix geometric mean of p positive definite matrices A1, . . . , Ap ∈
Pμ, with nonnegative weights w1, . . . , wp , of which some must be nonzero, is the
unique minimizer of the function

f (w1, . . . , wp;A1, . . . , Ap) =
p∑

σ=1

wσδ
2(X,Aσ ), (6)

and it is denoted by K = K(w1, . . . , wp;A1, . . . , Ap).
Using Lemma 1 one gets that the Euclidean gradient of f and its Riemannian

gradient with respect to the inner product (3) are

∇f (X) = 2
p∑

σ=1

wσX
−1 log(XA−1

σ ), ∇(R)f (X) = 2
p∑

σ=1

wσX log(A−1
σ X),

(7)

respectively (see [6, Sec. 4.3] for the unweighted case).
For computing the weighted matrix geometric mean, we consider the Riemannian

gradient descent iteration

X�+1 = X� exp
(
θ�

p∑

σ=1

wσ log(X−1
� Aσ )

)
, X0 ∈Pμ. (8)

Using the same idea as the one of the Richardson algorithms [5], we look for the
steplength θ� that gives optimal local convergence, when X� is seen as an approxi-

mation of the matrix geometric mean. This yields θ� = 2/
∑p

σ=1 wσ
c
(�)
σ +1
c
(�)
σ −1

log c
(�)
σ ,

where c
(�)
σ is the ratio between the largest and the smallest eigenvalues of the matrix

X
−1/2
� AσX

−1/2
� .

As an initial value, a possibility is to use the weighted arithmetic mean or a
weighted generalization of the cheap mean [4].
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3.2 The Derivative of the Matrix Geometric Mean

Even if an explicit expression for the weighted matrix geometric mean is not known,
we are able to find an explicit expression for its derivative with respect to the matrix
arguments and the weights, in terms of the matrix geometric mean itself.

We start from Eq. (7) and set the Euclidean gradient to zero. After some
simplifications, this yields an equation that defines the weighted matrix geometric
mean of the matrices A1, . . . , Ap with weights w1, . . . , wp, namely

p∑

σ=1

wσ log(XA−1
σ ) = 0, (9)

whose unique positive definite solution is the weighted matrix geometric mean K :=
K(w1, . . . , wp;A1, . . . , Ap).

We thus know that the function

ϕ(A1, . . . , Ap) :=
p∑

σ=1

wσ log(K(w1, . . . , wp;A1, . . . , Ap)A
−1
σ ),

as a function from P
p
μ to Pμ is such that ϕ ≡ 0.

From the derivatives of ϕ we will get the derivatives of K as a function of the
matrix arguments. Let us set

Δ�[H�] = DK(w1, . . . , wp;A1, . . . , Ap)[0, . . . , 0,H�, 0, . . . , 0],

where the Hermitian matrix H� is put in position 1 ≤ � ≤ p. By the chain rule and
since the derivative of the function X−1 in the direction H is−X−1HX−1, we have

0 = Dϕ(A1, . . . , Ap)[0, . . . , 0,H�, 0, . . . , 0]

=
p∑

σ=1

wσD log(KA−1
σ )[Δ�[H�]A−1

σ −KA−1
� H�A

−1
� δ�σ ],

where δ�σ is the Kronecker delta function.
In the vec basis we can write (with abuse of notation we denote with

D log(KA−1
σ ) also the μ2 × μ2 Kronecker matrix representing the derivative in

the vec basis)

p∑

σ=1

wσD log(KA−1
σ )(A−T

σ ⊗ I) vec(Δ�[H�]) = w�D log(KA−1
� )(A−T

� ⊗KA−1
� ) vec(H�)
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and then the matrix representing the derivative of the matrix geometric mean, with
respect to its �-th argument, with � = 1, . . . , p, is

Δ� =
( p∑

σ=1

Zσ

)−1
Z�(I ⊗KA−1

� ), Z� = w�D log(KA−1
� )(A−T

� ⊗ I ), � = 1, . . . , p.

(10)

The matrix Z� is not necessarily Hermitian. We will obtain another expression of
the derivative, involving Hermitian matrices only, and this will make the derivative
easier to be computed.

We consider the full rank factorization K = R∗R (for instance, the Cholesky
factorization), with R ∈ Cn×n, and the Schur factorizations

RA−1
� R∗ = U�D�U

∗
� , � = 1, . . . , p, (11)

from which it follows that, for � = 1, . . . , p,

KA−1
� = R∗U�D�U

∗
� R

−∗, A−T
� = R

−1
U�D�U

∗
�R
−T . (12)

Notice that D� is a diagonal matrix with real positive diagonal entries.
Using (12) and the properties of the derivative of matrix functions (compare (5)),

we obtain for Z� in (10),

Z� = w�D log(R∗U�D�U
∗
� R

−∗)(A−T
� ⊗ I)

= w�(R
−1

U� ⊗ R∗U�)D log(D�)(U
∗
�R ⊗ U∗� R−∗)(R

−1
U�D�U

∗
�R
−T ⊗ I)

= w�(R
−1 ⊗ R∗)(U� ⊗ U�)D log(D�)(D� ⊗ I)(U

∗
� ⊗ U∗� )(R−T ⊗ R−∗).

In order to get an expression for Δ� where the matrix to be inverted is Hermitian,
we define the new matrix

S� := w�(R
T ⊗R∗)(U�⊗U�)D log(D�)(D�⊗I)(U

∗
�⊗U∗� )(R−T ⊗R−∗), (13)

and it is easily seen that

Δ� =
( p∑

σ=1

Sσ

)−1
S�(I ⊗KA−1

� ). (14)

We claim that S� is positive definite for any � = 1, . . . , p, and this can be proved
by showing that D log(D�)(D�⊗ I) is (diagonal and) positive definite. We need the
following statement attributed to Daleckii and Krein (see [10, Thm. 3.11]).



114 B. Iannazzo et al.

Lemma 2 Let f be analytic on the open set Ω ⊂ C. Let Δ = diag(d1, . . . , dμ) be
a diagonal matrix with di ∈ Ω for all i. Then, for anyH = (hij )i,j=1,...,μ ∈ Cμ×μ,
we have

(Df (Δ)[H ])ij = f [di, dj ]hij , i, j = 1, . . . , μ,

where f [di, dj ] = (f (di)− f (dj ))/(di − dj ) if di �= dj and f [di, dj ] = f ′(di) if
di = dj .

Let F be the matrix such that (F )ij = f [di, dj ], for i, j = 1, . . . , μ. The matrix
that represents Df (Δ) in the vec basis is diag(vec(F )).

Lemma 2 shows that D log(D�) is diagonal and that its diagonal elements are of
the type

logλi − logλj

λi − λj
,

1

λi
,

where λi, λj are eigenvalues of D�. Since the eigenvalues of D� are positive, also the
diagonal elements of D log(D�) are positive. This shows that S� is positive definite.

From (12), we get that U∗� R−∗KA−1
� = D�U

∗
� R

−∗, and

T� := S�(I ⊗KA−1
� )

= w�(R
T ⊗ R∗)(U� ⊗ U�)D log(D�)(D� ⊗D�)(U

∗
� ⊗ U∗� )(R−T ⊗ R−∗),

that is a positive definite matrix, and we obtain a minor variation of (14), namely

Δ� =
( p∑

σ=1

Sσ

)−1
T�, (15)

where the matrix KA−1
� (not necessarily Hermitian) does not appear.

The evaluation of the previous formulae (14) or (15) is very expensive, since the
matrices, S1, . . . , Sp, have size μ2 and we do not see a way to compute Δ� with
O(μ3) ops, without constructing and inverting (or, more appropriately, solving a
multiple right-hand side linear system with coefficient matrix) S1 + · · · + Sp.

For p = 2 there is a much simpler formula for the derivative (see the extended
preprint of [12] available at http://arxiv.org/abs/1201.0101).

We also need the derivative of the weighted matrix geometric mean with respect
to the weights. As in the derivation with respect to the matrix variables we consider
the function

ψ(w1, . . . , wp) :=
p∑

σ=1

wσ log(K(w1, . . . , wp;A1, . . . , Ap)A
−1
σ ),

http://arxiv.org/abs/1201.0101
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that is zero for each w ∈ Rp such that w �= 0 and wj ≥ 0, for j = 1, . . . , p.
Let us set

Γ�[f�] = DK(w1, . . . , wp;A1, . . . , Ap)[0, . . . , 0, f�, 0, . . . , 0],

where f� is put in position �. By the chain rule we have

0 = Dψ(w1, . . . , wp)[0, . . . , 0, f�, 0, . . . , 0]

= f� log(KA−1
� )+

p∑

σ=1

wσD log(KA−1
σ )[Γ�[f�]A−1

σ ].

In the vec basis we can write

p∑

σ=1

wσD log(KA−1
σ )(A−T

σ ⊗ I) vec(Γ�[f�])

= − vec(f� log(KA−1
� )) = vec(log(A�K

−1))f�,

so that the matrix representing the derivative of the matrix geometric mean, with
respect to its �-th weight, is

Γ� =
( p∑

σ=1

Zσ

)−1
vec(log(A�K

−1)),

with Zσ defined in (10).
A more symmetric form is obtained by introducing, as before, the Hermitian

matrix S� = (RT R ⊗ I)Z� that yields

Γ� =
( p∑

σ=1

Sσ

)−1
vec(log(A�K

−1)K) =
( p∑

σ=1

Sσ

)−1
vec(K log(K−1A�)),

(16)

where we have used that K is Hermitian and the definition of primary matrix func-
tion. Notice that

∑p

σ=1 Γσwσ = 0, because K satisfies
∑

σ wσ log(AσK
−1)K = 0,

and this is expected since the weighted matrix geometric mean is invariant under
positive scaling of the weights.

In summary, let A1, . . . , Ap be positive definite matrices of size μ,
and w1, . . . , wp nonnegative numbers whose sum is not zero. Let K =
K(w1, . . . , wp;A1, . . . , Ap) be the weighted matrix geometric mean of
A1, . . . , Ap, then the derivative of the matrix geometric mean with respect to
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the �-th matrix variable, in the vec basis, has the following expression:

Δ� =
( p∑

σ=1

Sσ

)−1
S�(I ⊗KA−1

� ), (17)

where

S� = w�(R
T ⊗ R∗)(U� ⊗U�)D log(D�)(D� ⊗ I)(U

∗
� ⊗ U∗� )(R−T ⊗ R−∗),

with K = R∗R (full rank factorization) and RA−1
� R∗ = U�D�U

∗
� (Schur

factorization).
If the weights are positive, then the derivative of the matrix geometric mean with

respect to the �-th weight variable, if the vec basis is used on the arrival space, has
the following expression:

Γ� =
( p∑

σ=1

Sσ

)−1
vec(K log(K−1A�)). (18)

4 Factorization of Tensor Grids

Let M ∈ R
m×n be a nonnegative matrix, namely a matrix with nonnegative

entries. In its classic formulation, nonnegative matrix factorization (NMF) consists
in finding two nonnegative matrices U ∈ R

m×k and V ∈ R
k×n, such that the product

UV best approximates the given matrix M with respect to a certain matrix norm.
In the applications, one is mostly interested in cases where k is much smaller than

n, since this yields an approximation of the columns of M as linear combinations of
the fewer columns of U , through V . This factorization has been extensively used in
machine learning and data analysis (see [22] and the references therein).

A more general problem is obtained when one considers instead of an m × n

matrix, a grid of points where a positive definite matrix is attached to each point,
namely a set of positive definite matrices Mij of size μ, with i = 1, . . . ,m and
j = 1, . . . , n. Such an object arises when one considers a planar distribution of
tensor quantities, for this reason we call it tensor grid.

From a tensor grid one can easily construct an m×n block matrix M ∈ R
μm×μn

whose blocks are Mij , but this matrix may have negative entries, so that NMF cannot
be applied to M . Xie et al. [24] have proposed to “factorize” M using a set of
positive definite matrices Ui� ∈ R

μ×μ, with i = 1, . . . ,m and � = 1, . . . , k and a
nonnegative matrix V = (v�j ) ∈ R

k×n such that the function

E (U, V ) :=
m∑

i=1

n∑

j=1

‖Mij −
k∑

�=1

Ui�v�j‖2
F (19)
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achieves the minimum. Each block column of the matrix M is thus approximated by
a nonnegative linear combination of the columns of the matrix U (the n × k block
matrix whose blocks are Ui�).

This first model implicitly assumes the Euclidean geometry on the set of positive
definite matrices, but the latter set can be provided with a different geometry, such
as the one described in Sect. 2. In the following, we propose two new models based
on these geometries.

Since we are dealing with objects in the set Pm×n
μ that are (mn)-tuples of

positive definite matrices, we consider also the product Riemannian manifold
structure on Pm×n

μ , where the tangent space can be identified with Hm×n
μ , the set of

(mn)-tuples of Hermitian matrices, the scalar product at M ∈Pm×n
μ is

〈X,Y 〉(R)
M :=

m∑

i=1

n∑

j=1

〈Xij , Yij 〉(R)
Mij

, X, Y ∈ H
m×n
μ , (20)

and the distance is Δ2(M,N) :=∑m
i=1
∑n

j=1 δ
2(Mij ,Nij ).

Now we can give a second model for the decomposition of a tensor grid that is
to find the minimum of the cost function

R(U, V ) = 1

2

m∑

i=1

n∑

j=1

δ2(Mij ,K(v1j , . . . , vkj ;Ui1, . . . , Uik)
)
, (21)

where, as before, Ui� ∈ R
μ×μ is positive definite and V = (v�j ) ∈ R

k×n is
nonnegative with no zero columns.

In some sense we are trying to get U and V such that the approximation Mij ≈
K(v1j , . . . , vkj ;Ui1, . . . , Uik) holds.

This nonlinear decomposition, that we call matrix geometric mean decomposi-
tion, is much more complicated than its Euclidean counterpart and so it is much
more computationally demanding.

For this reason, in some cases, we replace the weighted matrix geometric mean
with the weighted log-Euclidean mean, defined as

L(w1, . . . , wp;A1, . . . , Ap) := exp

( p∑

�=1

w� logA�

)
,

that is known to be an approximation of the weighted matrix geometric mean, but
cheaper to be computed. The log-Euclidean mean, as the matrix geometric mean, is
based on the structure of the set of positive matrices, but it is computed by a direct
evaluation of a single expression instead of an iterative process. From this, we obtain
a third model as the minimizer of the cost function

L (U, V ) = 1

2

m∑

i=1

n∑

j=1

‖ logMij −
k∑

�=1

v�j logUi�‖2
F . (22)
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Computing the log-Euclidean decomposition is less expensive than the matrix
geometric mean decomposition, while the Riemannian structure of Pμ is well
approximated.

In the next section we will derive an alternating gradient descent algorithm for
the functions (21) and (22).

Remark 1 Let A1, . . . , Ak ∈Pμ. While the functions w1A1+ · · · +wkAk and the
function exp(w1 log(A1)+· · ·+wk log(Ak)), for w1, . . . , wk > 0 describe an object
depending on k parameters; the function K(w1, . . . , wk;A1, . . . , Ak) describes an
object depending on k− 1 parameters, since the weighted matrix geometric mean is
invariant under positive scaling of the parameters. For k = 2, for instance, w1A1 +
w2A2 describes a surface, while K(w1, w2;A1, A2) is a curve.

A possible remedy to this issue is to introduce, in the matrix geometric mean
model, the values v0j ≥ 0, for j = 1, . . . ,m, and define the function

R ′(U, V ) = 1

2

m∑

i=1

n∑

j=1

δ2(Mij , v0jK(v1j , . . . , vkj ;Ui1, . . . , Uik)
)
. (23)

The new scaling constants reestablish the right number of parameters, marginally
affecting the computation.

4.1 A Simple Algorithm for the Matrix Geometric Mean
Decomposition

A customary optimization algorithm in NMF is the alternating minimization. In
our case we use the alternating minimization of the functions R(U, V ) of (21) or
L (U, V ) of (22) with respect to the variables U and V , respectively. We describe
the algorithm for R; the one for L is the same.

Algorithm 1 Start with U0, V0 and repeat the cycle:

1. use a gradient descent method, with a backtracking strategy to ensure cost
function reduction, on R(Uq, Vq) to get Uq+1;

2. use a gradient descent, with a backtracking strategy to ensure cost function
reduction, on R(Uq+1, Vq) to get Vq+1 (project onto the positive orthant, if some
of the elements of Vq+1 are negative);

for q = 0, 1, 2, . . . , until the gradients are smaller than a fixed tolerance or a
maximum number of iterations has been reached.

In order to use a gradient descent algorithm, it is necessary to derive the gradients
of both functions and design an algorithm to compute them. The rest of the section
is devoted to the gradients computation.
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4.1.1 The Gradients ofR(U, V )

We consider the derivatives of the cost function R(U, V ) of (21) as a function of
the sole variables U and V , respectively. We first compute the derivative of the cost
function with respect to U in the direction E = (Est) ∈ H

m×k
μ , from which the

Riemannian gradient is easily obtained. By linearity, it is sufficient to consider the
functions ϕij (U) := δ2

(
Mij ,K(v1j , . . . , vkj ;Ui1, . . . , Uik)

)
separately, for each i

and j .

Lemma 3 The Fréchet derivative of the function ϕij (U) in the directionE = (Est )

is

Dϕij (U)[E] = 2
k∑

�=1

vec(K−1
ij log(KijM

−1
ij ))∗Δ(ij)

� vec(Ei�),

where Kij := K(v1j , . . . , vkj ;Ui1, . . . , Uik) and Δ
(ij)
� is the matrix representing

the derivative of the weighted matrix geometric mean in the vec basis, obtained as
Δ� of (17) with

A� := Ui�, w� := v�j , K := Kij .

Proof For a fixed V and for W ∈Pn×k
μ , we can define the two functions δij (X) :=

δMij (X) and σij (W) := K(v1j , . . . , vkj ;Wi1, . . . ,Wik) for which ϕij (U) = (δ2
ij ◦

σij )(U). The derivative of σij at U , in the direction E, is

Dσij (U)[E] =
∑

s,t

Dσij (U)[Est ] =
k∑

�=1

Dσij (U)[Ei�] =
k∑

�=1

vec−1(Δ
(ij)
�

vec(Ei�)),

then, by the chain rule and using Lemma 1, we get

Dϕij (U)[E] = Dδ2
ij (Kij )[Dσij (U)[E]]

= 2
k∑

�=1

trace(K−1
ij log(KijM

−1
ij ) vec−1(Δ

(ij)

� vec(Ei�)))

= 2
k∑

�=1

vec(K−1
ij log(KijM

−1
ij ))∗Δ(ij)

� vec(Ei�),

where the latter equality follows from trace(AB) = vec(A)∗ vec(B), when A is
Hermitian (notice that the matrix K−1

ij log(KijM
−1
ij ) is Hermitian).
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Let ∇(U) denote the Riemannian gradient of the function 1
2

∑
i,j ϕij (U), with

respect to the geometry defined in (20). By definition,

〈∇(U), E〉(R)
U = D

(1

2

∑

i,j

ϕij

)
(U)[E],

for any E ∈ Hμ
m×k , which, in view of Lemma 3, can be rewritten as

〈∇(U), E〉(R)
U

=
m∑

i=1

k∑

�=1

trace(U−1
i�
∇(U)
i�

U−1
i�

Ei�)

=
m∑

i=1

k∑

�=1

vec(U−1
i�
∇(U)
i�

U−1
i�

)∗ vec(Ei�) =
m∑

i=1

k∑

�=1

vec(∇(U)
i�

)∗(U−T
i�

⊗ U−1
i�

)∗ vec(Ei�)

=
m∑

i=1

n∑

j=1

k∑

�=1

vec(K−1
ij

log(KijM
−1
ij

))∗Δ(ij)
�

vec(Ei�),

from which we finally get

vec(∇(U)
i� ) =

n∑

j=1

(UT
i� ⊗ Ui�)

(
Δ

(ij)

�

)∗ vec(K−1
ij log(KijM

−1
ij )), (24)

for i = 1, . . . ,m and � = 1, . . . , k.
On the other hand, we should compute the derivative of the function R(U, V )

of (21) with respect to V in the direction F = (fst ) ∈ Rk×n, from which the
Riemannian gradient is easily obtained. By linearity, it is sufficient to consider the
functions ψij (V ) := δ2

(
Mij ,K(v1j , . . . , vkj ;Ui1, . . . , Uik)

)
separately, for each i

and j .

Lemma 4 The Fréchet derivative of the function ψij (V ), in the direction F =
(fst ), is

Dψij (V )[F ] = 2
k∑

�=1

vec(K−1
ij log(KijM

−1
ij ))∗Γ (ij)

� f�j ,

where Kij := K(v1j , . . . , vkj ;Ui1, . . . , Uik) and Γ
(ij)
� is the (column) vector

representing the derivative of the weighted matrix geometric mean with respect to
the weights obtained as Γ� of (18) with

A� := Ui�, w� := v�j , K := Kij .

Proof The proof is similar to the one of Lemma 3.
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Let ∇(V ) be the Riemannian gradient of the function 1
2

∑
i,j ψij (V ). By defini-

tion

〈∇(V ), F 〉V = D
(1

2

∑

i,j

ψij

)
(V )[F ],

for any F ∈ Rk×n, which, in view of Lemma 4, can be rewritten as

n∑

j=1

k∑

�=1

∇(V )
�j f�j

v2
�j

=
m∑

i=1

n∑

j=1

k∑

�=1

vec(K−1
ij log(KijM

−1
ij ))∗Γ (ij)

� f�j ,

from which we finally get

∇�j
(V ) =

m∑

i=1

v2
�j vec(K−1

ij log(KijM
−1
ij ))∗Γ (ij)

� , (25)

for � = 1, . . . , k and j = 1, . . . , n.

4.1.2 The Gradients ofL (U, V )

We consider the derivatives of the cost function L (U, V ) of (22) as a function of
the sole variables U and V , respectively. As before, we compute first the derivative
of L with respect to U in the direction E = (Est ) ∈ Hm×k

μ , from which we get the
Riemannian gradient. By linearity, it is sufficient to consider the functions ϕij (U) =
‖∑k

�=1 v�j logUi� − logMij‖2
F , separately.

Lemma 5 The Fréchet derivative of the function ϕij (U) in the directionE = (Est )

is

Dϕij (U)[E] = 2
k∑

�=1

v�j vec
( k∑

q=1

vqj logUiq − logMij

)∗
Klog(Ui�) vec(Ei�),

where Klog(Ui�) is the μ2 × μ2 Kronecker matrix of the derivative of the matrix
logarithm.

Proof For a fixed V , we define dij (X) := dlogMij (X) and τij (U) =
∑k

�=1 v�j log(Ui�) for which ϕij (U) = (d2
ij ◦ τij )(U). The derivative of τij at

U , in the direction E, is

Dτij (U)[E] =
∑

s,t

Dτij (U)[Est ] =
k∑

�=1

Dτij (U)[Ei�] =
k∑

�=1

v�j vec−1(Klog(Ui�) vec(Ei�)),
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then, by Lemma 1 and the chain rule, we get

Dϕij (U)[E] = Dd2
ij (τij (U))[Dτij (U)[E]]

= 2
k∑

�=1

trace

(( k∑

q=1

vqj logUiq − logMij

)
v�j vec−1(Klog(Ui�) vec(Ei�)

))

= 2
k∑

�=1

v�j vec
( k∑

q=1

vqj logUiq − logMij

)∗
Klog(Ui�) vec(Ei�).

Let ∇(U) be the Riemannian gradient of the function 1
2

∑
i,j ϕij (U), then

〈∇(U), E〉(R)
U = D

(1

2

∑

i,j

ϕij

)
(U)[E],

for any E ∈ Hm×k
μ , which, by Lemma 3, can be rewritten as

m∑

i=1

k∑

�=1

trace(U−1
i� ∇(U)

i� U−1
i� Ei�) =

m∑

i=1

k∑

�=1

vec(U−1
i� ∇(U)

i� U−1
i� )∗ vec(Ei�)

=
m∑

i=1

k∑

�=1

vec(∇(U)
i� )∗(U−T

i� ⊗ U−1
i� )∗ vec(Ei�)

=
m∑

i=1

n∑

j=1

k∑

�=1

v�j vec(
k∑

q=1

vqj logUiq − logMij )
∗Klog(Ui�) vec(Ei�),

that yields

vec(∇(U)
i� ) =

n∑

j=1

v�j (U
T
i� ⊗ Ui�)(Klog(Ui�))

∗ vec(
k∑

q=1

vqj logUiq − logMij ),

(26)

for i = 1, . . . ,m and � = 1, . . . , k.
We should compute also the derivative of L (U, V ) of (22) with respect to V in

the direction F = (fst ) ∈ Rk×n
μ , from which we obtain the Riemannian gradient.

By linearity, we consider the functions ψij (V ) := ‖∑k
�=1 v�j logUi� − logMij‖2

F

separately, for each i and j .
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Lemma 6 The Fréchet derivative of the function ψij (V ) in the direction F = (fst )

is

Dψij (V )[F ] = 2
k∑

�=1

trace
(
(

k∑

q=1

vqj logUiq − logMij ) logUi�

)
f�j .

Proof The proof is similar to the one of Lemma 5.

Let ∇(V ) denote the Riemannian gradient of 1
2

∑
i,j ψij (V ). We have

〈∇(V ), F 〉V = D
(1

2

∑

i,j

ψij

)
(V )[F ],

for any F ∈ Rk×n, which, by Lemma 4, is

n∑

j=1

k∑

�=1

∇(V )
�j f�j

v2
�j

=
m∑

i=1

n∑

j=1

k∑

�=1

trace
(
(

k∑

q=1

vqj logUiq − logMij ) logUi�

)
f�j ,

from which we finally get

∇�j
(V ) =

m∑

i=1

v2
�j trace

(
(

k∑

q=1

vqj logUiq − logMij ) logUi�

)
, (27)

for � = 1, . . . , k and j = 1, . . . , n.

5 Numerical Experiments

In order to compare the performance of all presented models, we examine the
speed and accuracy of the algorithms in some numerical tests. The first test will
handle a basic example in which the columns of the grid M are exactly one of two
possible grid vectors. In the second experiment, a new dataset is constructed based
on the natural flow of the Riemannian geometry of positive matrices, and in a final
experiment, we perform the decomposition of data without any predefined structure
and observe the difference in computational time of the algorithms.

In the following, we will refer to the minimizer of (19) as the Euclidean model,
to the minimizer of (21) as the matrix geometric mean model, and to the minimizer
of (22) as the log-Euclidean model.
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The accuracy of the reconstruction is measured by

err =
(∑

i,j ‖M̃ij −Mij‖2

∑
i,j ‖Mij ‖2

)1/2

,

where (M̃ij )i,j is the reconstructed tensor grid, while (Mij )i,j is the original one.

5.1 Basic Dataset

In this first experiment, we use a dataset M as shown in Fig. 1 and discussed in Xie
et al. [24]. Looking at the representation of the data, it is clear that each column
in the grid is exactly one of two possibilities, hence we use a decomposition with
k = 2, indicating two columns in the grid U .

The experiment is conducted by applying noise to the grid in Fig. 1 and
performing the decomposition. However, because the columns in the dataset do not
combine the given columns in grid U , but rather select one of both, the chosen model
(Euclidean, matrix geometric, or log-Euclidean), in this case, does not influence the
resulting accuracy of the approximation significantly.

5.2 Geometrically Varying Dataset

As before, we consider a dataset in which the original, underlying grid U consists
of two columns. This time, however, the dataset M is not constructed by choosing

Fig. 1 The dataset presented
in Xie et al. [24]. The 3× 3
matrix at each gridpoint is
represented by an ellipsoid
using its eigendecomposition.
The color is given by the
direction of the principal
eigenvector. The picture has
been obtained using the
program TenVis by R. Parcus
(https://github.com/quiuquio/
TenVis)

https://github.com/quiuquio/TenVis
https://github.com/quiuquio/TenVis
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(a) (b) (c) (d)

Fig. 2 Accuracy test using data varying according to the Riemannian structure. The 3× 3 matrix
at each gridpoint is represented by an ellipsoid using its eigendecomposition. (a) The original,
geometrically varying data. (b) The resulting approximation using the Euclidean model. (c) The
resulting approximation using the matrix geometric model. (d) The resulting approximation using
the log-Euclidean model

the columns of U separately, but by combining them using the weighted matrix
geometric mean with variable weights. This results in a grid M in which the rows
are formed by positive matrices varying according to the geometry of Pμ. Some
noise is applied to the matrices in M to prevent the matrix geometric model from
being trivial and the resulting dataset is shown in Fig. 2a.

The error in the reconstruction for the Euclidean model is 0.21, while for
the matrix geometric and log-Euclidean models is 0.054 and 0.044, respectively.
The results for the Euclidean, matrix geometric, and log-Euclidean models are
shown in Fig. 2b–d, respectively. The pictures confirm the numerical accuracy
of the reconstruction. As expected, the matrix geometric model gives a good
approximation of the original dataset, since the data were created based on the
underlying geometry of this model. The close connection between the log-Euclidean
mean and this geometry causes the log-Euclidean model to give very similar results.

On the other hand, the Euclidean model suffers from the connection between
the variation of the data and the geometry of the set Pμ, especially when the data
approach the boundary of Pμ. A closer look at the iterations in the computation of
the Euclidean model reveals that the model attempts to obtain some matrices in the
grid U which are no longer positive, violating the assumptions of the nonnegative
matrix factorization. Removing this condition on the matrices in U results in a
Euclidean model with similar accuracy to the matrix geometric mean and log-
Euclidean models, but with less significance since some of the matrices in U would
not be positive definite.
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Fig. 3 Computational time for the three decomposition when applied to a 15 × 15 grid M

containing random positive matrices. The experiment is repeated 20 times for each decomposition
rank k, with the line connecting the mean computational time

5.3 Speed Test

Finally, we compare the computational time of the different decompositions by
repeatedly creating a 15×15 grid M consisting of random positive (3×3) matrices.
The results of the experiments are displayed in Fig. 3.

As expected, the matrix geometric and log-Euclidean decompositions require
more computational time when compared to the Euclidean model. This is mainly
caused by the evaluation of the more involved distance measure and non-trivial
matrix functions, and more importantly, by the evaluation of their derivatives. At
each iteration step, the current approximation for the grid M also needs to be
computed, requiring the evaluation of mn matrix geometric/log-Euclidean means
(e.g., 225 in this experiment).

The difference between the matrix geometric and log-Euclidean decompositions
becomes clear when examining the evolution of the computational time going from
decomposition rank k = 2 to k = 3. While the matrix geometric mean has an
explicit expression for two matrices, it is computed in an iterative process for three
or more matrices. This difference greatly influences the amount of work required
to evaluate the mean and to compute its derivatives (see also Sect. 3.2). The log-
Euclidean mean on the other hand is given by an explicit expression for any number
of matrices.



The Derivative of the Matrix Geometric Mean and the Factorization of Tensor Grids 127

6 Conclusions

We have obtained an expression for the derivative of the weighted matrix geometric
mean that can be easily evaluated by a numerical algorithm. As a possible
application, we have presented new models for the decomposition of tensor grids
based on the non-Euclidean geometry defining the matrix geometric mean.

From some preliminary tests these new models seem to be promising. A future
step could be to test these models on real data and to find faster algorithms for
computing the decomposition.

Acknowledgements The authors would like to thank the referees for carefully reading the
manuscript, providing many insightful comments which improved the presentation of the chapter.
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Factoring Block Fiedler Companion
Matrices

Gianna M. Del Corso, Federico Poloni, Leonardo Robol, and Raf Vandebril

Abstract When Fiedler published his “A note on Companion matrices” in 2003 on
Linear Algebra and its Applications, he could not have foreseen the significance
of this elegant factorization of a companion matrix into essentially two-by-two
Gaussian transformations, which we will name (scalar) elementary Fiedler factors.
Since then, researchers extended these results and studied the various result-
ing linearizations, the stability of Fiedler companion matrices, factorizations of
block companion matrices, Fiedler pencils, and even looked at extensions to non-
monomial bases. In this chapter, we introduce a new way to factor block Fiedler
companion matrices into the product of scalar elementary Fiedler factors. We use
this theory to prove that, e.g. a block (Fiedler) companion matrix can always
be written as the product of several scalar (Fiedler) companion matrices. We
demonstrate that this factorization in terms of elementary Fiedler factors can be used
to construct new linearizations. Some linearizations have notable properties, such
as low bandwidth, or allow for factoring the coefficient matrices into unitary-plus-
low-rank matrices. Moreover, we will provide bounds on the low-rank parts of the
resulting unitary-plus-low-rank decomposition. To present these results in an easy-
to-understand manner, we rely on the flow-graph representation for Fiedler matrices
recently proposed by Del Corso and Poloni in Linear Algebra and its Applications,
2017.
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1 Introduction

It is well known that, given a monic polynomial p(z) = zd + ad−1z
d−1 + · · · + a0,

we can build a (column) companion matrix1 that has the roots of p(z) as eigenvalues
and whose entries are just 1, 0, and the coefficients of p(z):

Γp :=

⎡

⎢⎢⎢⎢⎢⎣

−a0

1 −a1

1 −a2
. . .

...

1 −ad−1

⎤

⎥⎥⎥⎥⎥⎦
. (1)

We remark that constructing a companion matrix is operation-free: no arithmetic
operations are needed to get Γp from p. The pencil zI − Γp is an example of a
linearization for p(z). A formal definition of a linearization is the following.

Definition 1 Let p(z) be a k× k degree d matrix polynomial. Then, the pencil A−
zB is a linearization of p(z) if there exist two unimodular matrices E(z) and F(z)

(i.e. matrix polynomials with non-zero constant determinant) such that Ik(d−1) ⊕
p(z) = E(z)(A− zB)F (z).

In the above setting, when B = I , we say that A is a companion matrix.2 In the rest
of the paper, we will never deal with the matrices E(z) and F(z) directly. For us,
it is sufficient to know that the column companion matrix identifies a linearization,
and that any matrix similar to it still leads to a linearization (see, for instance, [25]).

The fact that a linearization is operation-free can be formalized as follows:

Definition 2 A companion matrix C of a polynomial p(z) = a0+a1z+· · ·+ zd is
called operation-free if each of the elements in C is either 0, 1, or one of the scalars
aj (possibly with a minus sign). Similarly, for a block companion matrix linearizing
a matrix polynomial, we say that it is operation-free if its entries are either 0, 1, or
one entry in the coefficients of the matrix polynomial (possibly with a minus sign).

In 2003, Fiedler showed that Γp in (1) can be factored as the product of d

(scalar) elementary Fiedler factors which are equal to the identity matrix with the
only exception of a 1 × 1 or 2 × 2 diagonal block [27]. This factorization has a
remarkable consequence: the product of these factors in any order provides still a
linearization for p(z), since its characteristic polynomial remains p(z). Companion

1We typically abbreviate column companion matrix and omit the word column, unless we want to
emphasize it.
2Often, the term companion matrix indicates a matrix obtained from the coefficients of the
polynomial without performing arithmetic operations. Here, we have not added this constraint into
the definition but—as we will discuss later—all the matrices obtained in our framework satisfy it.
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matrices resulting from permuting the elementary Fiedler factors are named Fiedler
companion matrices.

This theory has then been extended to matrix polynomials, by operating block-
wise, and to more general constructions than just permutations of the original
factors, which led to Fiedler pencils with repetitions [16, 36], generalized Fiedler
pencils [2, 18] and generalized Fiedler pencils with repetitions [20]. These ideas
sparked the interest of the numerical linear algebra community: several researchers
have tried to find novel linearizations in this class with good numerical properties
[26, 28], or which preserve particular structures [17, 23, 26, 33].

The construction of Fiedler companion matrices is connected with permutations
of {0, . . . , d − 1}. In this framework, the development of explicit constructions
for palindromic, even–odd, and block-symmetric linearizations in the Fiedler
class is investigated in [17, 20, 23, 26]. At the same time, several authors have
investigated vector spaces of linearizations with particular structures [29, 30], and
linearizations with good numerical properties [11, 21, 35]. Recently, a new graph-
based classification of Fiedler pencils has been recently introduced by Poloni and
Del Corso [31], and has been used to count the number of Fiedler pencils inside
several classes, as well as to describe common results in a simpler way.

The aim of this paper is to extend the theory proposed in [31] by introducing
manipulations that operate inside the blocks and factor them, but at the same time
remain operation-free, which is a key property of Fiedler-like pencils.

We show that these tools can be used to construct new factorizations of
block Fiedler companion matrices. In particular, we prove that (under reasonable
assumptions on the constant coefficient) any block Fiedler companion matrix of a
monic k × k matrix polynomial can be factored into k Fiedler companion matrices
of scalar polynomials. This approach extends a similar factorization for column
companion matrices by Aurentz, Mach, Robol, Vandebril, and Watkins [7]. The
graph-based representation makes it easy to visualize the unitary-plus-low-rank
structure of (block) Fiedler companion matrices; it also provides upper bounds on
the rank in the low-rank correction of the unitary-plus-low-rank matrix.

Aurentz et al. [7] developed a fast method to compute eigenvalues of matrix
polynomials by factoring the column block companion matrix into scalar companion
matrices and then solving a product eigenvalue problem exploiting the unitary-
plus-rank-1 structure of the factors. As we will show in Theorem 8, some block
Fiedler companion matrices can be similarly factored as a product of row and
column companion matrices (appropriately padded with identities). This makes the
algorithm in [7] applicable to devise a fast solver; in fact, this idea is exploited in
[6] to describe an algorithm for computing the eigenvalues of unitary-plus-rank-k
matrices. As an alternative, after a preliminary reduction of the matrix to Hessenberg
form we can employ the algorithm proposed in [10] for generic unitary-plus-rank-k
matrices.

As a final application, to illustrate the power of the new representation, we show
by an example that these techniques can easily produce novel companion matrices
such as thin band or factorizations in which symmetry of the original problem is
reflected.
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Throughout the chapter, we adopt the following notation: In denotes the identity
matrix of size n × n; its subscript is dropped whenever its size is clear from the
context; ej denotes the j -th vector of the canonical basis of Cn; and Z denotes the
downshift matrix, having ones on the first subdiagonal and zeros elsewhere.

2 Fiedler Graphs and (Block) Fiedler Companion Matrices

As mentioned in the introduction, Fiedler [27] showed that the column companion
matrix Γp in (1) can be factored as Γp = F0F1 · · ·Fd−1, where the Fi , named
elementary Fiedler factors, are matrices which are equal to the identity except for a
diagonal block of size at most 2× 2. More precisely:

F0 = F0(a0) = (−a0)⊕ Id−1, Fi = Fi(ai) = Ii−1 ⊕
[

0 1
1 −ai

]
⊕ Id−i−1.

(2)

We omit the parameters in parentheses if they are clear from context.
The key result due to Fiedler [27] is that any permutation of the factors in the

above factorization C = Fσ(0) · · ·Fσ(d−1), where σ is a permutation of {0, . . . , d −
1}, is still a companion matrix for p(z). We call linearizations obtained in this way
Fiedler linearizations (and the associated matrices Fiedler companion matrices).
Throughout the chapter, we use the letter Γ (with various subscripts) to denote a
column (or, occasionally, row) companion matrix, possibly padded with identities,
i.e. Ih1 ⊕ Γp ⊕ Ih2 , and the letter C to denote Fiedler companion matrices. We will
heavily rely on the flow-graph representation established by Poloni and Del Corso
[31], so we introduce it immediately.

The elementary flow graph associated to each elementary Fiedler factor is the
graph shown in Fig. 1.

To construct the Fiedler graph associated to a product of Fiedler elementary
factors P = Fi1(a1) · · ·Fik (ak), each of size d × d , we first draw d horizontal
lines labelled with the integers 1, . . . , d (with 1 at the top); this label is called the
height of a line. Then, we stack horizontally (in the same order in which they appear
in P ) the graphs corresponding to the elementary factors. These must be properly
aligned vertically so that Fij touches the lines at heights ij and ij +1 (or ij +1 only

Fi(a) =
a

F0(a) =
−a

.

−

Fig. 1 Elementary flow graphs corresponding to Fi(a) (for i > 0) and to F0(a)
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Fig. 2 Flow graph for
P = F0(a0)F1(a1)

1

2

−a0

a1−

if ij = 0). Straight horizontal edges are drawn in grey to distinguish them from the
edges of the flow graph.

A Fiedler graph is a representation of multiplying a row vector v, having compo-
nents vi , with P . This vector–matrix multiplication can be seen as a composition of
additions and multiplications by scalars, and the flow graph depicts these operations,
as follows. We imagine that for each i the entry vi of a row vector v enters the graph
from the left along the edge at height i and moves towards right. A scalar traveling
from left to right through an edge with a box carrying the label a is multiplied
by a before it proceeds; an element following a straight edge (with no box) is left
unchanged; a scalar arriving at a node with two outgoing edges is duplicated; and
finally when two edges meet the corresponding values are added. If one carries on
this process, the result at the right end of the graph are the entries of vP , with the
j th entry appearing at height j .

Example 1 Consider the simple case in which d = 2, and P = F0(a0)F1(a1). The
flow graph associated to P is shown in Fig. 2.

The element v1 enters from the left at the first row, hits −a0 resulting in a
multiplication −v1a0, and then moves down to the second row. The element v2
enters at the second row and is duplicated. Its first clone moves to the top row, and
its second clone gets multiplied with −a1 and then also ends up in the second row.
Since both−v1a0 and −v2a1 end up in the bottom row, we add them together. As a
result, we obtain [v2, −v2a1 − v1a0] at the right end of the graph, which is exactly
[v1, v2]P .

The power of this framework lies in the fact that representing a matrix by a
Fiedler graph enables us to easily draw conclusions on the structure of the matrix
and its associated elementary Fiedler factors. For instance, to determine the content
of the (i, j)-th entry of a product of Fiedler factors it is sufficient to inspect the paths
on the graph that start from the left at height i and end on the right at height j .

Consider for instance the column companion matrix (1) of degree d = 4. The
associated Fiedler graph is depicted in Fig. 3. Indeed, entering the graph from the
left on row i > 1 yields two elements: one on column i − 1 (the edge pointing one
row up), and the other is −ai−1, which follows a descending path until the very last
column. This implies that

eTi Γp =
[
0i−2 1 0d−i −ai−1

]
, i > 1,

which is exactly the i-th row of Γp. The case i = 1 produces the row vector

eT1 Γp =
[
0d−1 −a0

]
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Fig. 3 Fiedler graph
associated to a column
companion matrix of a degree
4 monic polynomial

1

2

3

4

−a0

−a1

−a2

a3−

Fig. 4 Fiedler graph
associated to the matrix
F = F0F1F3F2

1

2

3

4

−a0

−a1

a3

−a2

−

Some Fiedler companion matrices are simpler, some are more complex. For
instance, we have already considered F0 · · ·Fd−1, which is the usual column
companion matrix. The transpose of this matrix is Fd−1 · · ·F0 (all the Fiedler factors
are symmetric), which is a Fiedler companion matrix with all the coefficients on the
last row:

Γ T
p = Fd−1 · · ·F0 =

⎡
⎢⎢⎢⎣

1
. . .

1
−a0 −a1 . . . −ad−1

⎤
⎥⎥⎥⎦ . (3)

We refer to (3) as a row companion matrix.3

The flow graphs help us to visualize the structure of the factorization in
elementary Fiedler factors. For example, the Fiedler companion matrix with σ =
(0, 1, 3, 2) is associated with the graph in Fig. 4. Note that the order of the
elementary flow graphs coincides with the order of the elementary Fiedler factors.

Since Fi and Fj commute whenever |i − j | > 1, different permutations σ may
correspond to the same matrix. For example, in Fig. 4, F1 and F3 commute, so
F0F1F3F2 = F0F3F1F2. In terms of graphs, we can “compress” a Fiedler graph
by drawing the elements Fi and Fj one on top of the other whenever |i − j | > 1,

3This is a variation on the usual construction of a row companion matrix having the elements ai in
its first row.
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Fig. 5 A more compact
representation of the graph in
Fig. 4

1

2

3

4

−a0

−a1

a3

−a2

−

or swap them; these are operations that do not alter the topological structure of the
graph nor the height of each edge.

For example, we can draw the graph in Fig. 4 in a compact way as in Fig. 5.
Moreover, we can immediately read off the following equivalences F0F3F1F2 =
F0F1F3F2 = F3F0F1F2, since the factor F3 is free to slide to the left of the diagram.

If we allow for repositioning factors in this way, two Fiedler companion matrices
coincide if and only if their graphs do (see [31] for a detailed analysis of this
characterization).

Remark 1 There are a number of different “standard forms” [31, 36], i.e. canonical
ways to order the factors in a Fiedler product or draw the corresponding graph. In
this chapter, we do not follow any of them in particular. Rather, when drawing the
graph associated to a Fiedler companion matrix C, we try to draw them so that the
elements form a connected twisted line. (In practice, this can be obtained by drawing
first the elementary factor Fd−1 at the bottom of the graph, and then Fd−2, Fd−3, . . .

each immediately at the left or right of the last drawn element.) This choice gives
a better visual interpretation of some of our results; See for instance the discussion
after Theorem 6.

We now generalize this construction to monic matrix polynomials. Given a
degree-d matrix polynomial with k × k coefficients

P(z) = Izd + Ad−1z
d−1 + · · · + A0 ∈ C

k×k[z],

we can factor its column companion matrix as:

ΓP =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −A0

Ik 0 0 −A1

Ik 0 −A2
. . .

...
...

Ik −Ad−1

⎤
⎥⎥⎥⎥⎥⎦
=F0F1 · · ·Fd−1,
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i (A) =
A

0(A) =
−A

.

−

Fig. 6 Graph representing the active part of the block elementary Fiedler factor Fi (A), for i > 0
and of F0(A)

where all Fi are block elementary Fiedler factors, that is

F0 = F0(A0) = (−A0)⊕ Ik(d−1), Fi = Fi (Ai) = I(i−1)k ⊕
[

0 I

I −Ai

]
⊕ I(d−i−1)k,

for all i = 0, . . . , d − 1. Again, each permutation of these factors gives a (block)
Fiedler companion matrix. We can construct graphs associated to their products
in the same way; the entities we operate on are now matrices instead of scalar
entries. For instance, for A ∈ Ck×k , the active part of a block elementary Fiedler
factor, which is the diagonal block differing from the identity, can be represented
as in Fig. 6. All the results of this section concerning the reordering of the block
elementary Fiedler factors remain valid also in the block case. In particular,
block Fiedler flow graphs represent the multiplication of a “block row vector”
[V1, V2, . . . , Vd ] ∈ Ck×kd by a product of block Fiedler matrices.

This construction can be thought of as the “blocked” version of the one we had
in the scalar case: we treat the blocks as atomic elements, which we cannot inspect
nor separate. However, it does not have to be that way, and in the next section we
will explore the idea of splitting these blocks into smaller pieces.

In particular, we will show in Sect. 3.1 how each of the block elementary Fiedler
factors can be decomposed as a product of (scalar) elementary Fiedler factors. So,
we have a coarse (block) level factorization and graph, and a fine (entry) level
factorization and corresponding graph.

3 Factoring Elementary Block Fiedler Factors

We discuss the block Fiedler factors Fi for i > 0 and i = 0 in different subsections
because they require different treatments.

3.1 Block Factors Fi , for i > 0

To ease readability and avoid additional notation we will use, in this section, F (A)

to denote the active part (the one different from the identity) of an arbitrary block
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Fiedler factor Fi (A), for i > 0. In particular, we have

F (A) :=
[

0k×k Ik

Ik −A

]
∈ C

2k×2k. (4)

Consider the graph of a single Fiedler factor F (A) given in the left of Fig. 6.
This graph represents the multiplication of F (A) by a block row vector [V1, V2], so
the two horizontal levels in the graph correspond to the blocks 1 : k and k + 1 : 2k
(in Fortran/Matlab notation).

We show that it can be converted into a more fine-grained graph in which each
line represents a single index in {1, 2, . . . , 2k}. We call this construction a scalar-
level graph (as opposed to the block-level graph appearing in Fig. 6).

We first show the result of this construction using flow graphs, to get a feeling of
what we are trying to build.

Example 2 Let k = 3, and A = (aij ), with 1 ≤ i, j ≤ 3. In this case, the elementary
block factor F (A) in Fig. 6 has size 6× 6. A scalar-level graph associated to F (A)

is depicted in Fig. 7.

Theorem 1 Let F (A) ∈ C2k×2k be a block elementary Fiedler factor as defined
by Eq. (4). Then, F (A) can be factored into k2 scalar elementary Fiedler factors
associated to the elements of the matrix A = (aij ), as follows

F (A) = ΓkΓk−1 · · ·Γ1,

Γj = Fj (a1j )Fj+1(a2j ) · · ·Fj+k−1(akj ), j = 1, 2, . . . , k.

Proof From a linear algebra viewpoint, the proof can be obtained simply multi-
plying the various factors together. Alternatively, one can construct the 2k × 2k

Fig. 7 Scalar-level graph
associated to F (A) where A

is a 3× 3 matrix with entries
aij

1

2

3

4

5

6

−a13

−a23

a33

−a12

−a22

−a32

−a11

−a21

−a31

−
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analogue of Fig. 7, and follow the edges of the graph to check the value of each
matrix element. ��
Remark 2 Each Γj is a (scalar) column companion matrix padded with identities,
i.e. it has the form Ij−1 ⊕ Γaj ⊕ Ik−j , where Γaj is a particular column companion
matrix of size k + 1. Indeed

Γj =
⎡

⎣
Ij−1

Z + aj e
T
k+1

Ik−j

⎤

⎦ , aj :=
[

1
−Aej

]
,

where Z is the downshift matrix, with ones on the first subdiagonal and zero
elsewhere. In the following, we call column (resp., row) companion matrices also
matrices with this form, ignoring the additional leading and trailing identities.

We could have proved that F (A) is the product of k column companion matrices
also by inspecting the associated scalar-level graph. Indeed, for simplicity let us
restrict ourselves to the running example in Fig. 7 of size 6×6. We replot the graph in
Fig. 7 inserting gaps between some elements. Hence, the graph is the concatenation
of three sequences of factors that can be arranged in a descending diagonal line each.
These correspond precisely to Γ3, Γ2, Γ1; indeed, any descending line of diagonal
factors forms a column companion matrix (padded with identities) (Fig. 8).

1

2

3

4

5

6

−a13

−a23

a33

−a12

−a22

−a32

−a11

−a21

−a31

−

Fig. 8 Replot of the graph in Fig. 7 with gaps between descending diagonal lines. This reveals the
factorization into companion matrices
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Example 3 Written explicitly, the factors that compose the 6 × 6 matrix F (A) of
our running example are

F (A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 −a11 −a12 −a13

0 1 0 −a21 −a22 −a23

0 0 1 −a31 −a32 −a33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[

0 I

I −A

]
= Γ3Γ2Γ1

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 −a13

0 0 0 1 0 −a23

0 0 0 0 1 −a33

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 −a12 0
0 0 1 0 −a22 0
0 0 0 1 −a32 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
1 0 0 −a11 0 0
0 1 0 −a21 0 0
0 0 1 −a31 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Remark 3 We can also factor F (A) into row companion matrices. If we group
the elements in Fig. 7 following ascending diagonals, we obtain an analogous
factorization, shown in Fig. 9, into row companion matrices, each containing entries
from one row of A. This new decomposition can be identified from the graph in
Fig. 9. This result is immediately obtained by applying Theorem 1 to F (A)T .

Remark 4 Poloni and Del Corso [31], only consider elementary blocks of the
form Fi = Fi (Ai), where Ai is a coefficient of the matrix polynomial P(z) =
Izd +Ad−1z

d−1 + · · · + zA1 +A0. Here, we allow for a more general case, where

1

2

3

4

5

6

−a13

−a23

a33

−a12

−a22

−a32

−a11

−a21

−a31

−

Fig. 9 Replot of the graph in Fig. 7 adding gaps between ascending diagonal lines



140 G. M. Del Corso et al.

two elementary blocks Fi(a) and Fi(b) with the same index i can have different
parameters a �= b.

3.2 The Block Fiedler Factor F0

In this section, we provide a factorization for the block F0 into the product of scalar
companion matrices. Note that the active part of the elementary Fiedler factor F0 is
confined to the first k rows instead of 2k rows like the factors Fi for i > 0.

Since our goal is to build linearizations of matrix polynomials, we can perform
a preliminary transformation that does not alter the spectrum. If there exist two
invertible matrices E,G, such that EP(λ)G = Q(λ), then the matrix polynomials
P(λ) and Q(λ) are said to be strictly equivalent [25]. When this happens, their
spectra (both finite and infinite) coincide. If the matrices E and G are also unitary,
then the condition number of their eigenvalues also matches,4 hence we need not
worry about instabilities resulting from using this factorization.

In particular, we can choose an orthogonal (resp., unitary) matrix E and let
G = ETΠ (resp., G = EHΠ), where Π is the counter-identity matrix, so that
the monic matrix polynomial P(λ) is transformed into a monic polynomial Q(λ)

with A0 lower anti-triangular (i.e. (A0)i,j = 0 whenever i + j ≤ k). These unitary
matrices can be obtained by computing the Schur form of A0 = QTQT , and then
setting E = QT . For these reasons, we may assume that A0 is lower anti-triangular.

Theorem 2 Let A ∈ Ck×k be a lower anti-triangular matrix. Then, F0(A) can be
factored as the product of k(k+1)

2 scalar elementary Fiedler factors as follows

F0(A) = ΓkΓk−1 · · ·Γ1,

Γj = F0(ak−j+1,j )F1(ak−j+2,j ) · · ·Fj−1(ak,j ).

Moreover, each Γj is a scalar column companion matrix (padded with identities).

The proof is analogous to the one of Theorem 1. Again, we can consider the flow
graph associated with F0.

Example 4 Consider again k = 3. Then, the flow graph associated with F0 is

4Here, by condition number we mean the non-homogeneous absolute or relative condition number
defined in [34] (see also [1] where several definitions are compared). It is easy to verify that
substituting the change of basis in the formula for the non-homogeneous condition number in
[34] does not change the result.
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1

2

3

−a13

−a23

a33

−a22

−a32

−a31

−

Separating the elementary factors into three descending diagonals, we get the
decompositions into three column companion matrices.

1

2

3

−a13

−a23

a33

−a22

−a32

−a31

−

The explicit matrices are

F0 =
⎡

⎣
0 0 −a13

0 −a22 −a23

−a31 −a32 −a33

⎤

⎦ = Γ3Γ2Γ1

=
⎡

⎣
0 0 −a13

1 0 −a23

0 1 −a33

⎤

⎦

⎡

⎣
0 −a22 0
1 −a32 0
0 0 1

⎤

⎦

⎡

⎣
−a31 0 0

0 1 0
0 0 1

⎤

⎦ .

We can adapt this decomposition to work with lower triangular matrices, but the
result is more complicated.

Theorem 3 Let A ∈ Ck×k be a lower triangular matrix. Then, F0(A) can be
factored as the product of k2 scalar elementary Fiedler factors as follows

F0(A) = Γ1Γ2 · · ·Γk, (5)

Γj = F0(aj,j )F1(aj+1,j ) · · ·Fk−j (ak,j )Fk−j+1(0)Fk−j+2(0) · · ·Fk−1(0).

Moreover, eachΓj is a scalar column companionmatrix (paddedwith identities).

Again, we can prove this factorization either algebraically or by following the edges
along the associated Fiedler graph, which is shown in Fig. 10.

The additional blocks with zeros are in fact permutations necessary for position-
ing each element correctly. Even though this factorization is still operation-free,
meaning that there are no arithmetic operations involving the aij , we see that
this is only because the trailing elementary Fiedler factors have 0. Indeed, if one
replaces the zeros appearing in Fig. 10 with different quantities, the resulting product
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1

2

3

−a11

−a21

a31

−a22

−a32

0

−a33

0

0−

Fig. 10 Fiedler graph associated to F0(A) where A is a lower triangular 3× 3 matrix

requires arithmetic operations. This is an instance of a more general result, linked
to operation-free linearizations, as in Definition 2.

Theorem 4 ([31, 36]) Consider the product P = M1M2 · · ·M�, where for each
k = 1, 2, . . . , � the factor Mk is an elementary Fiedler factor Fik (ajk ). Then, P is
operation-free for each choice of the scalars (or matrices) ajk if and only if between
every pair of factors Mik ,Mik′ with the same index ik = ik′ = i there is a factor
with index i+ 1. In terms of diagrams, this means that between every two factors at
height i there must appear a factor at height i + 1.

Again, this theorem holds for the block version as well. While all the other
products of Fiedler factors that we consider in this paper are operation-free a priori
because of this theorem, the one in (5) does not satisfy this criterion. It is only
operation-free because of the zeros.

Remark 5 It is impossible to find an operation-free factorization of F0(A) for an
unstructured A. Indeed, if there existed a factorization F0(A) = M1M2 · · ·Mk2 ,
where each Mi is a scalar elementary Fiedler factor, then by writing F0(A)−1 =
M−1

k2 · · ·M−1
2 M−1

1 one could solve any linear system Ax = b in O(k2) flops, which
is known to be impossible [32].

4 Factoring Block Companion Matrices

In this section, we use the previous results to show that any block Fiedler companion
matrix can be factored as C = C1C2 · · ·Ck , where each Cj is a scalar Fiedler
companion. This generalizes the results for block column companion matrices from
Aurentz et al. [7].

These factorizations have a nice property: they are low-rank perturbations of
unitary matrices. This allows the design of fast algorithms for computing the
eigenvalues of C , by working on the factored form [7].

This novel factorization allows to build even more linearizations. When all
factors Cj are invertible, all the cyclic permutations of the factors provide again
linearizations for the same matrix polynomial, since they are all similar.



Factoring Block Fiedler Companion Matrices 143

For column block companion matrices, we have the following (see also Aurentz,
et al. [7]).

Theorem 5 Let P(z) ∈ C[z]k×k be a monic matrix polynomial of degree d

with lower anti-triangular constant term A0. Then, the associated block column
companion matrix can be factored as a product of k scalar companion matrices of
size dk × dk.

A formal proof will follow as a special case of Theorem 6. Here, we only point
out that this factorization is again easy to detect using the graph representation.

Example 5 Let d = k = 3 and P(z) = Iz3 + A2z
2 + A1z + A0, with A0 lower

anti-triangular. Then, using the scalar-level factorizations of each Fiedler block, the
column companion matrix of P(z) links to the flow graph in Fig. 11.

It is easy to decompose this graph as the product of the three factors drawn in
the figure in different colours. Moreover, each of these three factors is a column
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Fig. 11 Graph of the block column companion matrix associated to the monic matrix polynomial
P (z). The constant coefficient A is lower anti-triangular. To simplify the notation, we used a

(i)
ij to

denote the entries of the matrices Ai
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companion matrix5 constructed from a polynomial whose coefficients are a column
of [AT

0 AT
1 AT

2 ]T .

This construction can be generalized to a generic block Fiedler companion. To
prove the theorem formally, we need some additional definitions [22, 31] and a
lemma which is a variation of [19, Proposition 2.12].

Definition 3 Let P = Fi1Fi2 · · ·Fi� be a product of � Fiedler elementary factors.
For each i = 0, . . . , d−1, the layerLi:i+1(P ) is the sequence formed by the factors
of the form Fi(a) and Fi+1(b), for any values of a, b, taken in the order in which
they appear in P .

Definition 4 Let C = Fσ(0)Fσ(1) · · ·Fσ(d−1) be a Fiedler companion matrix, where
σ is a permutation of {0, 1, . . . , d − 1}. We say that C has

• A consecution at i, 0 ≤ i ≤ d − 2, if Li:i+1(C) = (Fi, Fi+1);
• An inversion at i, 0 ≤ i ≤ d − 2, if Li:i+1(C) = (Fi+1, Fi).

For instance, the Fiedler companion matrix whose associated graph is depicted
in Fig. 4 has two consecutions at 0 and 1, and an inversion at 2. Note that in the
flow graph a consecution corresponds to the subgraph of Fi being to the left of the
subgraph of Fi+1, and vice versa for an inversion. The definition extends readily to
the block case.

The layers of a factorization in elementary Fiedler factors uniquely define the
resulting product as stated in the next lemma.

Lemma 1 Let F and G be two products of (scalar or block) elementary Fiedler
factors of size d × d . If Li:i+1(F ) = Li:i+1(G) for all i = 0, . . . , d − 2, then
the two products can be reordered one into the other by only swapping commuting
factors, and hence F = G (as matrices).

Proof See [19, Proposition 2.12]. ��
Theorem 6 Let C = Fσ(0) · · ·Fσ(d−1) be a block Fiedler companion matrix of
the monic matrix polynomial P(z) = Izd +Ad−1z

d−1+· · ·+A1z+A0 ∈ C[z]k×k,
with the matrix A0 lower anti-triangular. Then, C = C1C2 · · ·Ck , where each of
the matrices Cj is a scalar Fiedler companion matrix.

Proof In the following, we use the notation a
(i)
ij to denote the (i, j) entry of Ak .

For all i = 0, 1, . . . , d − 2 and j = 1, 2, . . . , k, we use j ′ as a shorthand for
k − j + 1; let the matrix Mi,j be defined as

Mi,j = Fki(a
(i)

j,j ′)Fki+1(a
(i)

j+1,j ′) · · ·Fki+j ′−1(a
(i)

k,j ′)

Fki+j ′ (a
(i+1)
1,j ′ )Fki+j ′+1(a

(i+1)
2,j ′ ) · · ·Fki+k−1(a

(i+1)
j−1,j ′) (6)

5Similarly, one could factor it into dk row companion matrices linked to polynomials of degree 3.
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if C has a (block) consecution at i, or:

Mi,j = Fki+k−1(a
(i+1)
j,j ′−1)Fki+k−2(a

(i+1)
j,j ′−2) · · ·Fki+j (a

(i+1)
j,1 )

Fki+j−1(a
(i)
j,k)Fki+j−2(a

(i)
j,k−1) · · ·Fki(a

(i)

j,j ′) (7)

if C has a (block) inversion at i.
When i = d − 1, we can take either of (6) or (7) as Mi,j , omitting all

terms containing entries of a(d). (Hence, in particular, one can find two different
factorizations for C .)

We will prove that C = C1C2 · · ·Ck , where

Cj = (Mσ(0),jMσ(1),j · · ·Mσ(d−1),j ). (8)

Each of the Cj contains exactly one factor of the form F0, F1, . . . , Fdk−j , hence it
is a scalar Fiedler companion matrix, linked to a polynomial whose coefficients are
elements out of the original block coefficients.

To show that C = C1C2 · · ·Ck , we rely on Lemma 1. Note that C =
Fσ(0)Fσ(1) · · ·Fσ(d−1) can be seen as a product of scalar elementary Fiedler
factors of size kd × kd using the factorizations in Theorems 1 and 2. Relying
on Lemma 1, we simply have to verify that its layers coincide with those of
C1C2 · · ·Ck . Indeed, let 0 ≤ i < d , and 1 ≤ � ≤ k; if C has a block consecution at
i, then

Lki+�−1:ki+�(C ) = Lki+�−1:ki+�(FiFi+1) =
(
Fki+�−1(a

(i)
�,k), Fki+�(a

(i)
�+1,k), Fki+�−1(a

(i)
�+1,k−1), Fki+�(a

(i)
�+2,k−1), . . . , Fki+�−1(a

(i)
k,�),

Fki+�(a
(i+1)
1,� ), Fki+�−1(a

(i+1)
1,�−1), Fki+�(a

(i+1)
2,�−1), Fki+�−1(a

(i+1)
2,�−2), . . . , Fki+�(a

(i+1)
�,1 )

)

= Lki+�−1:ki+�(Mi,1Mi+1,1Mi,2Mi+1,2 · · ·Mi,kMi+1,k) = Lki+�−1:ki+�(C1C2 · · ·Ck).

Similarly, if C has an inversion in i, then:

Lki+�−1:ki+�(C ) = Lki+�−1:ki+�(Fi+1Fi ) =
(
Fki+�(a

(i+1)
1,� ), Fki+�−1(a

(i+1)
1,�−1), Fki+�(a

(i+1)
2,�−1), Fki+�−1(a

(i+1)
2,�−2), . . . , Fki+�(a

(i+1)
�,1 ),

Fki+�−1(a
(i)
�,k), Fki+�(a

(i)
�+1,k), Fki+�−1(a

(i)
�+1,k−1), Fki+�(a

(i)
�+2,k−1), . . . , Fki+�−1(a

(i)
k,�)

)

= Lki+�−1:ki+�(Mi+1,1Mi,1Mi+1,2Mi,2 · · ·Mi+1,kMi,k) = Lki+�−1:ki+�(C1C2 · · ·Ck).

��



146 G. M. Del Corso et al.

This tedious algebraic proof hides a simple structure that is revealed by the
associated graphs: the scalar elementary Fiedler factors appearing in the graph of
C can be split into k twisted lines that run diagonally, parallel one to the other.
Moreover, it is interesting to remark that all resulting Fiedler companion matrices
have the same structure, with consecutions and inversions in the same positions.
This is illustrated clearly in the next example.

Example 6 Consider the block Fiedler companion matrix of the matrix polynomial
P(z) = Iz3 + A2z

2 + A1z + A0, with d = k = 3, defined as C = F2F0F1. Its
block-level graph is

1

2

3

A0

A2

A1

and has a consecution at block level 0 and an inversion at block level 1. Its scalar-
level diagram is presented in Fig. 12. The elements belonging to the three factors
C1, C2, C3 are drawn in three different colours. Formally, we have

M0,1 = F0(a
(0)
13 )F1(a

(0)
23 )F2(a

(0)
33 ), M1,1 = F5(a

(2)
12 )F4(a

(2)
11 )F3(a

(1)
13 ),

M0,2 = F0(a
(0)
22 )F1(a

(0)
32 )F2(a

(1)
12 ), M1,2 = F5(a

(2)
21 )F4(a

(1)
23 )F3(a

(1)
22 ),

M0,3 = F0(a
(0)
31 )F1(a

(1)
11 )F2(a

(1)
21 ), M1,3 = F5(a

(1)
33 )F4(a

(1)
32 )F3(a

(1)
31 )

and finally, using (7) we have

M2,1 = F6(a
(2)
13 ), M2,2 = F7(a

(2)
23 )F6(a

(2)
22 ), M2,3 = F8(a

(2)
33 )F7(a

(2)
32 )F6(a

(2)
31 ).

In accordance with (8), we get C1 = M2,1M0,1M1,1, C2 = M2,2M0,2M1,2, and
C3 = M2,3M0,3M1,3.

Note that the factorization is not unique since we can additionally incorporate
the terms F7(a

(2)
23 )F8(a

(2)
33 ) in C1, thereby defining the matrix M2,1 as in (6) rather

than (7). In that case also M2,2 and M2,3 should be defined in accordance with (6).
The corresponding matrices are

C =
⎡

⎣
0 A0 0
0 0 I

I A1 A2

⎤

⎦ = C1C2C3,
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Fig. 12 The scalar-level diagram associated to Example 6. Each diagonal segment in a box
represents a term Mi,j . We use the notation a

(k)
ij to denote the entry in position (i, j) of Ak

with:

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a
(0)
13

1 −a
(0)
23

1 −a
(0)
33

1
1

1
1 −a

(1)
13 −a

(2)
11 −a

(2)
12 −a

(2)
13

1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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C2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a
(0)
22

1 −a
(0)
32

1 −a
(1)
12

1
1

1
1

1 −a
(1)
22 −a

(1)
23 −a

(2)
21 −a

(2)
22 −a

(2)
23

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a
(0)
31

1 −a
(1)
11

1 −a
(1)
21

1
1

1
1

1
1 −a

(1)
31 −a

(1)
32 −a

(1)
33 −a

(2)
31 −a

(2)
32 −a

(2)
33

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5 Unitary-Plus-Low-Rank Structure

Unitary- (or orthogonal) plus-low-rank matrices appear frequently in fast algorithms
for polynomial root-finding [3–5, 7–9, 12–15]. To the best of our knowledge,
these techniques have been applied to row and column companion matrices (either
block or scalar ones), but never to general Fiedler linearizations, even though
recent advances [10] point towards novel algorithms for eigenvalue computations
of unitary-plus-low-rank matrices.

In this section, we show that (block) Fiedler companion matrices are unitary-
plus-low-rank, and that an upper bound on the rank of the correction is easily
determined from their structure. This result is not new, as it is already present in a
very similar form in [24, Section 6]; however, we report an alternative proof making
use of the Fiedler graphs.

Lemma 2 Let A1 be unitary plus rank t1, and A2 be unitary plus rank t2. Then,
A1A2 is unitary plus rank (at most) t1 + t2.

Proof It is sufficient to write Ai = Qi + uiv
T
i , with Qi unitary and ui, vi ∈ C

n×ti ,
for i = 1, 2. Then

A1A2 = (Q1 + u1v
T
1 )A2 = Q1A2 + u1v

T
1 A2 = Q1Q2 +Q1u2v

T
2 + u1v

T
1 A2. ��
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We introduce the concept of segment decomposition of a Fiedler companion
matrix, which groups together elementary Fiedler factors with consecutive indices.

Definition 5 Let C = Fσ(0)Fσ(1) · · ·Fσ(d−1) be a scalar Fiedler companion matrix.
We say that C has t segments (or, equivalently, that its graph has t segments) if t is
the minimal positive integer such that C = Γ1 · · ·Γt , for a certain set of indices ij
satisfying

Γj = Fσ(ij ) · · ·Fσ(ij+1−1), 0 = i1 < i2 < · · · < it+1 = d,

and such that the integers σ(ij ), . . . , σ (ij+1 − 1) are consecutive (either in
increasing or decreasing order).

Note that each Γj is either a column or row companion matrix possibly
padded with identities. Segments are easily identified in the Fiedler graph, as they
correspond to sequences of diagonally aligned elementary graphs. For instance,
Fig. 13 depicts, on the left, the graph of the Fiedler companion matrix of C =
F0F1F5F4F2F6F7F3. Swapping commuting blocks we can rearrange the elemen-
tary Fiedler factors as follows C = (F0F1F2)(F5F4F3)(F6F7) identifying the three
column and row companion matrices and hence the three segments. Similarly, the
graph on the right has two segments.

Remark 6 The paper [22] defines a sequence of integers called the consecution-
inversion structure sequence (CISS) of a Fiedler companion. The number of
segments can be deduced from the CISS: namely, it is the length of CISS (excluding
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Fig. 13 Two graphs associated to scalar Fiedler companion matrices. The example on the left is
composed of three segments, while the one on the right of only two
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a leading or trailing zero if there is one) minus the number of distinct pairs of
consecutive 1’s appearing in it.

Theorem 7 Let C be a scalar Fiedler companion matrix with t segments. Then, C
is unitary plus rank (at most) t .

Proof If C has t segments, then by definition C = Γ1Γ2 · · ·Γt , where each Γj

is either a column or a row companion matrix (possibly padded with identities).
In fact, if Γj = Fσ(ij ) · · ·Fσ(ij+1−1) and the integers σ(ij ), . . . , σ (ij+1 − 1) are
consecutive in increasing order, we obtain a column companion matrix; if instead
they are consecutive in decreasing order, we obtain a row companion matrix. Each
row or column companion matrix is unitary plus rank 1 (since it is sufficient to
alter the last row or column to turn it into the unitary cyclic shift matrix Z + e1e

T
n ).

Hence, C is the product of t unitary-plus-rank-1 matrices, which is unitary plus rank
(at most) t by Lemma 2. ��

The above result can be used to prove another interesting fact.

Theorem 8 Let C be a block Fiedler companion matrix with a block-level graph
composed of t segments. Then, C is unitary plus rank (at most) kt .

Proof The result follows by generalizing the proof of Theorem 7 to block Fiedler
companion matrices, noticing that each block Fiedler companion matrix is unitary
plus rank k. ��
Remark 7 Given a Fiedler companion matrix C with t segments and its factor-
ization C = C1C2 · · ·Ck obtained through Theorem 6, each Cj has the same
number of segments, but it may happen that this number is larger than t . An
example is given by the block version of the pencil on the right of Fig. 13, i.e.
C = F5F6F7F0F1F2F3F4. Indeed, each of its scalar Fiedler companion
factors Cj has three segments rather than two.

Remark 8 Theorem 8 shows that we can apply to C structured methods for fast
eigenvalues computation, provided that the number of segments in the graph
associated with the Fiedler companion matrix is limited.

In addition, it gives an explicit factorization of C into unitary-plus-rank-1
matrices, therefore providing all the tools required to develop a fast method similar
to the one presented in [7] for column block companion matrices.

6 A Thin-Banded Linearization

Another interesting use of scalar-level factorizations of block Fiedler companion
matrices is to construct new companion matrices by rearranging factors. We present
an example using the flow graphs.
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Fig. 14 The flow graph of the column companion matrix in Example 7

Example 7 We consider the matrix polynomial P(z) = Iz4+A3z
3+A2z

2+A1z+
A0, with d = 4, k = 3. Assume for simplicity that A is already anti-triangular. The
graph associated to its column companion matrix Γ is shown in Fig. 14.

We can factor this matrix as the product of three factors Γ = RST , which we
have drawn in different colours in Fig. 14. Note that R and T commute, and that S, T
are invertible, being products of non-singular Fiedler factors. Hence, RST is similar
to TRS = RT S, which is in turn similar to T SR. This proves that C = T RS is
also a companion matrix for P(z). The graph of C is depicted in Fig. 15.

Note that C is not a Fiedler companion matrix, as it cannot be obtained by
permuting block-level factors; “breaking the blocks” is required to construct it. This
construction can be generalized to arbitrary d and k, and it has a couple of nice
features.

• C is a banded matrix. Since we have drawn its diagram inside six columns in
Fig. 15, there is no path from the left to the right of the diagram that moves up
or down more than five times; this means that Ci,j = 0 whenever |j − i| ≥ 6.
Generalizing this construction to arbitrary k and d , one gets Ci,j = 0 whenever
|j − i| ≥ 2k. Finding low-bandwidth linearizations and companion matrices
has attracted quite some interest in the past: for instance, [2, 27] present a
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Fig. 15 The graph of C in
Example 7
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(block) pentadiagonal companion matrix (which can also be expressed as a
block tridiagonal linearizing pencil). The new companion matrix C has the same
bandwidth as this classical example.

• Whenever the coefficients of P(z) are symmetric matrices, we can factor C
into the product of two symmetric matrices C = C1C2: it is sufficient to
take C1 as the product of all factors appearing in the first five columns of
Fig. 15, and C2 as the product of all factors appearing in the sixth and last one,
i.e. C2 = F1(a

(1)
11 )F3(a

(1)
22 )F5(a

(1)
33 )F7(a

(3)
11 )F9(a

(3)
22 )F11(a

(3)
33 ). This means that

we can construct a symmetric pencil C1 − C−1
2 z which is a linearization of

P(z). (Note that C−1
2 is operation-free.) Finding symmetric linearizations for

symmetric matrix polynomials is another problem that has attracted research
interest in the past [19, 31].
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Remark 9 We remark that it is not clear that thin-banded linearizations provide
practical advantages in numerical computation. Commonly used eigenvalue algo-
rithms (namely, QZ and QR) cannot exploit this structure, unless the matrix at hand
is also symmetric (or the pencil is symmetric/positive definite).

7 Conclusions

We have presented an extension of the graph-based approach by Poloni and Del
Corso [31] that allows to produce scalar-level factorizations of block Fiedler
companion matrices.

We have shown that this framework can be used for several purposes, such
as identifying new factorizations of products of Fiedler matrices, revealing their
structures (such as the unitary-plus-rank-t structure), and combining them to build
new linearizations.

Once the reader is familiar with reading the Fiedler graphs, there are many more
factorizations that could be devised. Every time a diagonal line of factors appears
in a graph, it can be transformed into a factorization that involves row or column
companion matrices.

The presented approach allows a more general and particularly easy manipulation
of these linearizations. It might lead to the development of efficient algorithms for
the computation of eigenvalues of matrix polynomials using the product form with
the unitary-plus-rank-1 structure.
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A Class of Quasi-Sparse Companion
Pencils

Fernando De Terán and Carla Hernando

Abstract In this paper, we introduce a general class of quasi-sparse potential
companion pencils for arbitrary square matrix polynomials over an arbitrary field,
which extends the class introduced in [B. Eastman, I.-J. Kim, B. L. Shader, K.N.
Vander Meulen, Companion matrix patterns. Linear Algebra Appl. 436 (2014) 255–
272] for monic scalar polynomials. We provide a canonical form, up to permutation,
for companion pencils in this class. We also relate these companion pencils with
other relevant families of companion linearizations known so far. Finally, we
determine the number of different sparse companion pencils in the class, up to
permutation.

Keywords Companion matrix · Companion pencil · Linearization · Sparsity ·
Scalar polynomial · Matrix polynomial · arbitrary field · Permutation

1 Introduction

The standard way to compute the eigenvalues and eigenvectors of a matrix
polynomial

Q(λ) =
k∑

i=0

λiAi, Ai ∈ F
n×n, i = 0, 1, . . . , k, Ak �= 0, (1)

(with F being an arbitrary field) is by means of a linearization, which is a matrix
pencil (that is, a matrix polynomial of degree 1) whose eigenvalues (together with
their multiplicities) coincide with the ones of the polynomial (1). Any matrix
polynomial has infinitely many linearizations, but in order for them to be useful in
practice, it is important to know in advance that they are linearizations. One way to
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create such linearizations is by means of symbolic constructions consisting of block-
partitioned pencils whose blocks contain the coefficients of (1). Companion pencils
are particular cases of these constructions (see Definition 2.2). They present several
advantages, besides being linearizations for any matrix polynomial. Among the
most relevant ones are: (a) they are strong linearizations (that is, they also preserve
the infinite eigenvalue of the polynomial, and its multiplicities), and (b) they present
a template involving no arithmetic operations at all. The only information needed to
build companion pencils is the selection and placement of the blocks.

Several families of companion pencils have been introduced in the literature,
including the Fiedler-like families [1, 4, 8, 10, 23] and the block-Kronecker
linearizations [15]. They contain, as particular cases, the classical Frobenius lin-
earizations, and extend the notion of companion matrix, which has been extensively
used to compute roots of scalar polynomials (like in the MATLAB command
roots). In the recent years, some effort has been devoted to introduce new families
of companion pencils which preserve some of the structures of matrix polynomials
usually encountered in applications [3, 5, 6, 9], or to companion pencils in other
polynomial bases than the monomial basis [20–22]. Some recent works have also
analyzed particular features or applications of Fiedler-like pencils [2, 12–14]. In
particular, it is proved in [7] that the families of Fiedler and generalized Fiedler
pencils are particular cases of block-Kronecker linearizations. As for companion
matrices of scalar polynomials, we refer to [18] and [19] for a more general
notion than the one considered in this paper, and to [16] for some pentadiagonal
constructions.

Companion matrices are valid only for monic scalar polynomials. They have
been studied in several recent papers [17–19] from a theoretical point of view,
providing canonical expressions up to permutation. Some interest has also been
paid to sparse companion matrices, namely those with the smallest number of
nonzero entries, motivated by the simplicity of the constructions. However, from the
numerical point of view, it may be desirable to work with non-monic polynomials.
This is one of the motivations to introduce the more general notion of companion
pencils.

In this paper, we are mainly interested in sparse companion pencils. Our main
goal is to extend the results in [17] to such kind of constructions. In particular,
we first introduce a general class of pencils (denoted by Rn,k) associated with
symbolic matrix polynomials as in (1). As with all families of companion pencils
mentioned above, the pencils in Rn,k contain k − 1 identity blocks, plus another
k − 1 blocks equal to λI , together with some other nonzero blocks involving
the coefficients of the polynomial. However, its generality relies on the fact that
these blocks can be located anywhere in the pencil. This aims to introduce a class
of potential linearizations that keeps all the essential structural properties of the
previous families of linearizations (namely, the identity blocks), and having a small
number of nonzero entries (or blocks). We refer to them as quasi-sparse because
of this small number of nonzero entries. Some pencils in Rn,k can be either not
companion (that is, linearizations) or not sparse, and our interest focuses on those
which are companion (firstly) and those which are companion and sparse (secondly).
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Our goal is to provide a canonical expression, up to permutation, for companion
pencils in this family, resembling the one provided in [17] for companion matrices,
and to determine, up to permutation as well, how many different sparse companion
pencils are in this family. To achieve this goal, we introduce a new class of pencils,
denoted by QC n,k (plus an intermediate class Qn,k), which comprises, up to
permutation, all companion pencils in Rn,k , and we count the number of different
sparse pencils in QC n,k .

The paper is organized as follows. In Sect. 2 we present the basic notions
(including the families Rn,k , Qn,k , and QC n,k), together with some structural
properties. Section 3 is devoted to prove that any companion pencil in Rn,k is
permutationally equivalent to a pencil in Qn,k , and that companion pencils in Qn,k

must belong to QC n,k . We also prove that all pencils in QC n,k are companion
pencils. In Sect. 4 we get the number of different sparse (companion) pencils in
QC n,k .

2 Preliminaries

Throughout this paper, we use calligraphic letters with two subindices, like An,k ,
to denote a class of nk × nk block-partitioned matrix pencils, which are viewed as
block k × k matrices with blocks of size n× n.

In order to define the notion of companion pencil for matrix polynomials, we first
recall the following notions. For more information about them we refer to [11].

In what follows, the reversal of Q(λ) in (1) is the polynomial revQ(λ) :=∑k
j=0 λ

jAk−j , obtained by reversing the order of the coefficients of Q(λ).

Definition 2.1 A matrix pencil L(λ) = λX + Y with X,Y ∈Fnk×nk is a lineariza-
tion of an n × n matrix polynomial Q(λ) of degree k if there exist two unimodular
nk × nk matrix polynomials U(λ) and V (λ) such that

U(λ)L(λ)V (λ) =
[
I(k−1)n 0

0 Q(λ)

]
,

(that is, L(λ) is unimodularly equivalent to diag(I(k−1)n,Q(λ)). The linearization is
called a strong linearization if revL(λ) is also a linearization of revQ(λ).

Definition 2.2 A companion pencil for general n × n matrix polynomials∑k
i=0 λ

iAi of degree k is an nk × nk matrix pencil L(λ) = λX + Y such that
if X and Y are viewed as block k × k matrices with blocks of size n× n, then:

(i) each nonzero block of X and Y is either In or Ai (up to constants), for some
i = 0, . . . , k, and

(ii) L(λ) is a strong linearization for every n× n matrix polynomial of degree k.

Note, in particular, that if L(λ) is a companion pencil for Q(λ), then det(L(λ)) =
α det(Q(λ)) (for some α �= 0). When n = 1, Q(λ) is just a scalar polynomial. In
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this case, we will use lowercase letters and this determinant condition reduces to

det(L(λ)) = α q(λ) = α

k∑

i=0

λiai , with 0 �= α ∈ F.

2.1 New Classes of Block-Partitioned Pencils

The most general family of “potential” companion pencils in this work, Rn,k , is
introduced in Definition 2.3. This family contains all the sparse companion pencils
introduced so far in the literature (in the monomial basis). In particular both Fiedler
and generalized Fiedler pencils [4, 8, 10], as well as the sparse block-Kronecker
pencils introduced in [15, Def 5.1]. The motivation for introducing this family is
precisely to create a general family containing all these companion pencils, and also
to extend the family of companion matrices introduced in [17].

Definition 2.3 We denote by Rn,k the set of block-partitioned matrix pencils with
block entries in F[A0, . . . , Ak] and whose only nonzero blocks are of the form:

• k − 1 blocks equal to −I , together with k − 1 blocks of the form λI , and
• at most k nonzero blocks, denoted by B0(λ), . . . , Bk−1(λ), such that each

coefficient Ai , for i = 0, . . . , k, appears only in one Bj , for j = 0, . . . , k − 1.
These blocks are of the form

Bj(λ) = B0
j + λB1

j , (2)

for j = 0, . . . , k − 1, with Bj (λ) being either 0, Ai , λAi+1 or Ai + λAi+1, for
some 0 ≤ i ≤ k − 1.

The generality of the family Rn,k relies on the fact that nothing is said about
the location of the nonzero blocks in Definition 2.3. Because of this generality, not
all pencils in Rn,k are companion pencils, as we are going to see. The following
subclass of Rn,k will comprise, up to permutation, all companion pencils of Rn,k

(see Theorem 3.1).

Definition 2.4 Qn,k is the class of block-partitioned pencils in Rn,k where:

• the blocks equal to −I are in all super-diagonal positions (i.e., the block entries
(i, i + 1), for i = 1, . . . , k − 1),

• the blocks equal to λI , together with a nonzero block Bd , for some 0 ≤ d ≤ k−1,
are on the main diagonal, and

• the remaining nonzero blocks Bj , for j �= d , are below the main diagonal.

However, it is not difficult to see that not every matrix pencil in Qn,k is a companion
pencil [17, p. 261–262], since these pencils do not necessarily satisfy condition (ii)
of Definition 2.2. The following result provides some necessary conditions in order
for a pencil in Qn,k to be companion.
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Theorem 2.5 Let L(λ) ∈ Qn,k be a companion pencil. Then,

(i) If Bj , for 1 ≤ j ≤ k − 2, is located in the ith subdiagonal, for 1 ≤ i ≤ k − 2,
then Bj is either 0, Ak−i−1, λAk−i , or Ak−i−1 + λAk−i .

(ii) If Bj is located in the (k−1)th subdiagonal, then Bj is either A0 or A0+λA1.
(iii) If Bj is located on the main diagonal, then Bj is either λAk or λAk + Ak−1.

In order to prove Theorem 2.5 we use the following result.

Lemma 2.6 Let L(λ) = [lij ] ∈ Q1,k . For any nonzero lst with s − t ≥ 0, the
determinant of L(λ) contains a nonzero summand of the form:

l11 · · · lt−1,t−1lst ls+1,s+1 · · · lkk. (3)

Proof Spanning either across the row or the column containing lst , for some s− t ≥
0, we obtain that the only term in det(L(λ)) containing lst is lstCst , where Cst is the
cofactor of the block entry lst . This cofactor is of the form:

Cst = (−1)s+t det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l11 −1 0
. .
.
. .
.

∗
. . . −1

lt−1,t−1

0 0

∗
−1 0

∗
. . .
−1

0

∗ ∗

ls+1,s+1 −1 0

. . .
. . .

∗
. .
. −1
lkk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

that is, Cst = l11 · · · lt−1,t−1ls+1,s+1 · · · lkk + C̃st . Recall that below the main
diagonal of L(λ) there can be nonzero entries. Since L(λ) ∈ Q1,k, the first summand
in Cst has degree k − (s − t) − 1. It suffices to prove that C̃st has, at most, degree
k − (s − t)− 2.

First, the matrix in (4) is partitioned in six big nonzero blocks. Note that each
summand in C̃st contains a term below the main diagonal multiplied by its cofactor,
in particular, this term can be in one of the (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), or
(3, 3) blocks. If it is in any of the blocks (2, 1), (2, 2), or (3, 2), its cofactor is
0. However, if it is in the remaining blocks (1, 1), (3, 1), or (3, 3), its cofactor is
obtained by removing two terms on the main diagonal, which are of degree 1 in λ,
and the cofactor is multiplied by the term on the subdiagonal, which is, at most, of
degree 1 in λ. Then, C̃st is, at most, of degree k − (s − t)− 2 in λ.

Finally, by Definition 2.3, lst contains some coefficient ar , which does not appear
in any other entry, so (3) cannot cancel out with any other term in det(L(λ)). �
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Proof (Theorem 2.5) We focus on the case n = 1. Let L(λ) ∈ Q1,k. If ai , for
0 ≤ i ≤ k, is in lst (in the rth subdiagonal, with r := s − t), then the exponent of λ
which appears multiplied by ai in det(L(λ)) is, by (3), equal to k− r − 1+ deg(lst )
(note that l11, . . . , lt−1,t−1, ls+1,s+1, . . . , lkk all have degree 1). Then, i = k − r −
1+ deg(lst ), so r = k− i− 1+ deg(lst ), but deg(lst ) is either 0 or 1, and ai must be
either in the (k − i − 1)th subdiagonal (without λ) or in the (k − i)th subdiagonal
(multiplied by λ). In particular, when i = 0, the only possibility is deg(lst ) = 0
and r = k − 1 (otherwise, if deg(lst ) = 1, we would have r = k, which is not
possible, since there are no k subdiagonals), and similarly when i = k, the only
possibility is deg(lst ) = 1 and r = 0. This means that a0 can only be in the (k −
1)th subdiagonal (without λ) and ak can only be in the 0th subdiagonal (multiplied
by λ).

As a consequence, if bj = b0
j + λb1

j is in the ith subdiagonal, then b0
j can be

either 0 or ak−i−1, and b1
j can be either 0 or ak−i . �

Now, we introduce the following class of block-partitioned pencils, where part (i) is
motivated by Theorem 2.5.

Definition 2.7 QC n,k is the class of block-partitioned pencils in Qn,k satisfying
the following conditions:

(i) The coefficient Ai is either in the (k − i − 1)th subdiagonal or in the (k − i)th
subdiagonal. In the first case it appears without λ, and in the second one it
appears multiplied by λ.

(ii) (Rectangle condition). All possible nonzero blocks Bj , for j = 0, 1, . . . , k− 1,
lie on the rectangular block-partitioned submatrix whose upper right corner is
the position containing Ak, which is on the main diagonal (denoted as Bk−1),

and whose lower left corner is the position containing A0 (denoted by B0),
namely the (k, 1) position.

The following example illustrates the difference between Definitions 2.4 and 2.7.

Example 2.8 Let Q(λ) = ∑4
i=0 λ

iAi be an n × n matrix polynomial of degree 4.
Let us consider the following block-partitioned matrix pencils L1(λ) and L2(λ).

L1(λ) =
[ λI −I 0 0

0 A3 + λA4
0 0
A0 A1

−I 0
λI −I
A2 λI

]
and L2(λ) =

[ λI −I 0 0
A2 + λA3 λA4

0 0
A0 + λA1 0

−I 0
λI −I
0 λI

]
.

In L1(λ), the coefficient A2 is not inside the rectangular block-partitioned submatrix
indicated with a box. In L2(λ), instead, all nonzero blocks below the main diagonal
are in this rectangle. Then, L1(λ) ∈ Qn,4\QC n,4, and L2(λ) ∈ QC n,4.

Figure 1 illustrates the relationship between the classes Rn,k , Qn,k , and QC n,k .
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n,k: quasi-sparse

n,k: lower Hessenberg

n,k: companion pencils in n,k

Fig. 1 An illustrative diagram clarifying the relations among the three classes of matrix pencils
introduced in Sect. 2.1

3 Companion Pencils inQn,k

Our first result shows that any companion pencil in Rn,k can be taken to the form
Qn,k by block permutations of rows and columns.

Theorem 3.1 Any companion pencil inRn,k is block permutationally equivalent to
a pencil inQn,k .

Proof We can focus on the case n = 1 for simplicity. All developments are also true
for arbitrary n.

Let S(λ) ∈ R1,k be a companion pencil for the scalar polynomial q(λ) =∑k
i=0 λ

iai , which has k − 1 entries equal to −1, together with k − 1 entries equal
to λ and, at most, k nonzero entries that we order as b0, . . . , bk−1. The polynomials
bj , for j = 0, . . . , k − 1, are equal to either 0, ai , λai+1, or ai + λai+1, for some
0 ≤ i ≤ k − 1, as in Definition 2.3. Suppose, bk−1 is the entry containing ak and b0
is the one containing a0. Then, bk−1 and b0 must be of the form

bk−1(λ) =
{

λak, or
ak−1 + λak,

and b0(λ) =
{

a0, or
a0 + λa1.

Since S(λ) is a companion pencil, det(S(λ)) = α q(λ) = α
∑k

i=0 λ
iai, with 0 �=

α ∈ F (note that, since the leading term of det(S(λ)) comes from the product of
the k − 1 entries equal to λ, together with bk−1, it must be α = ±1). This identity
is satisfied for all values of the coefficients ai . Then, we can shrink to zero some
coefficients ai or give them some specific values and the identity, for these particular
values, must be true as well.

In the first place, we shrink to zero all the coefficients ai of q(λ) which are not
in bk−1, that is, we assume that all entries bj are zero except bk−1. In this case,
det(S(λ)) = α(λk−1bk−1). This implies that all entries equal to λ, together with
bk−1, are in different rows and columns of S(λ).

Similarly, by shrinking to zero all the coefficients ai of q(λ) which are not in b0,
we conclude that all entries equal to −1, together with b0, are in different rows and
columns of S(λ).
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Now, we can find two permutation matrices P1, P2 such that

S̃(λ) := P1S(λ)P2 =

⎡
⎢⎢⎢⎢⎣

λ ∗ ∗ ∗ ∗ ∗ ∗

∗
. . . ∗ ∗ ∗ ∗ ∗∗ ∗ λ ∗ ∗ ∗ ∗

∗ ∗ ∗ bk−1 ∗ ∗ ∗∗ ∗ ∗ ∗ λ ∗ ∗

∗ ∗ ∗ ∗ ∗
. . . ∗∗ ∗ ∗ ∗ ∗ ∗ λ

⎤
⎥⎥⎥⎥⎦
.

To be precise, P2 is built up as follows: S(λ) has, in each row, only one element
equal to either λ or bk−1. Then, we can define P2 as the matrix that takes this
element, which is in the position (i, ji), to the position (i, i), for each i = 1, . . . , k.

Similarly, we can proceed with columns instead of rows to define P1. Then,
we only need one of P1 or P2, depending on whether we perform row or column
permutations. Therefore, up to permutational equivalence, we get the pencil S̃(λ),
with the same entries as S(λ), but with the k − 1 entries equal to λ, together with
bk−1, on the main diagonal.

There are, at most, 2(k − 1) nonzero entries (∗) in S̃(λ), which are the k − 1
entries equal to −1 together with the polynomials bj , for j = 0, . . . , k − 2. Note
that bk−1 can be in any position on the main diagonal, and that the k − 1 entries
equal to −1, together with b0, are also in different rows and columns. We are going
to show that there is a permutation matrix P̃1 such that

Ŝ(λ) := P̃1S̃(λ)P̃
T
1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ −1 ∗ ∗ ∗ ∗ ∗

∗
. . .

. . . ∗ ∗ ∗ ∗∗ ∗ λ −1 ∗ ∗ ∗
∗ ∗ ∗ bk−1 −1 ∗ ∗

∗ ∗ ∗ ∗ λ
..
. ∗

∗ ∗ ∗ ∗ ∗
. . . −1

∗ ∗ ∗ ∗ ∗ ∗ λ

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that the entries equal to λ and bk−1 remain on the main diagonal in Ŝ(λ).
It suffices to prove that the k entries (−1’s and b0) form a k-cycle. For this,

let us shrink to zero all coefficients ai of q(λ) other than a0 and ak , set ak = 1,
and denote by S̃1(λ) the pencil obtained from S̃(λ) after this replacement. Then
det(S̃1(λ)) = λk+a0. Moreover, S̃1(λ) does not contain any other terms with degree
1 in λ than the ones on the main diagonal, so S̃1(λ) = λI − A, with A being a
companion matrix for the polynomial λk + a0.

As a consequence of Lemma 2.1 in [17], we conclude that the −1 entries,
together with the one containing a0, must be in a cycle of length k.

Therefore, up to permutational similarity, we arrive at Ŝ(λ), having the same
entries as S̃(λ), but the k − 1 entries equal to −1 being on the super-diagonal and
the entry b0 being in the position (k, 1).

Finally, let us assume, by contradiction, that Ŝ(λ) has, at least, one entry bt , for
some 1 ≤ t ≤ k − 2, above the super-diagonal, that is, in the position (it , jt ), with
it < jt − 1.
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Let us shrink to zero all the coefficients ai of q(λ) which are not in bt and denote
by Ŝ1(λ) the pencil obtained after this replacement. Note that either bt (λ) = ar ,
bt (λ) = λar+1, or bt (λ) = ar + λar+1, for some 1 ≤ r ≤ k − 2. We suppose that
bt (λ) = ar + λar+1 (the proof is analogous for the other two cases). In this case,
since Ŝ(λ) is a companion pencil, it must be det(Ŝ1(λ)) = λrar + λr+1ar+1, where

Ŝ1(λ) := Ŝ(0, . . . , 0, ar, ar+1, 0, . . . , 0; λ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ −1
. . .

. . .

λ
. . . bt

0
. . .

λ
. .
.

. . . −1
λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix is upper triangular and its determinant is the product of the entries on
the main diagonal, that is, det(Ŝ1) = 0 �= λrar+λr+1ar+1, which is a contradiction.
Therefore, all nonzero entries in Ŝ(λ) are on or below the super-diagonal. �

Next we prove that any companion pencil in Qn,k belongs to QC n,k .

Theorem 3.2 Let L(λ) ∈ Qn,k be a companion pencil. Then, L(λ) ∈ QC n,k .

Proof As in the proof of Theorem 3.1, we can focus on the case n = 1. Then,
let L(λ) ∈ Q1,k . By Theorem 2.5, we know that if the polynomial bj , for j =
1, . . . , k − 2, is in the ith subdiagonal of L(λ), for i = 1, . . . , k − 2, then bj is
either 0, ak−i−1, λak−i , or ak−i−1 + λak−i . Therefore, it satisfies condition (i) in
Definition 2.7. It remains to prove that L(λ) satisfies condition (ii) in Definition 2.7.

By contradiction, let us assume that there is an entry bt , for some 1 ≤ t ≤ k − 2,
outside the rectangle. Then it is located in the position (it , jt ), with either jt <

it < i0 or it > jt > i0, where li0,i0(λ) = bk−1(λ). Let us shrink to zero all the
coefficients ai of the polynomial q(λ) which are not in bt or bk−1 and let us denote
by L1(λ) the pencil obtained after doing this. Then, L1(λ) is of the form

L1(λ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ −1
. . .

. . .

bt

. . .
. . .

0 · · · 0 bk−1
.
.
.
. .
. 0

.

.

.
. . .

.

.

.
0 · · · · · · 0

. . .

. . .
. . .

. .
. −1

λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ −1
. . .

. . .

. . .
. . .

0 · · · 0 bk−1
.
.
.
. .
. 0

.

.

.
. . .

.

.

.
0 · · · · · · 0

. . .

. . .
. . .

bt

. .
. −1

λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

depending on whether jt < it < i0 or it > jt > i0. In both cases, the entries not
explicitly indicated in the matrix are zero. Let us first assume that jt < it < i0.
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By Lemma 2.6, the determinant of L1(λ) will contain a nonzero term of the form:

︸ ︷︷ ︸
λ′s

l11 · · · ljt−1,jt−1 ︸ ︷︷ ︸
bt

· lit ,jt ·︸ ︷︷ ︸
λ′s and bk−1

lit+1,it+1 · · · lkk = λk−(it−jt )−2btbk−1.

Therefore, det(L1(λ)) contains a term involving the product btbk−1, which involves
in turn a product of coefficients ai of q(λ), and this is in contradiction with the fact
that L(λ) is a companion pencil.

It remains to analyze the case where i0 < jt < it . The determinant of L1(λ) for
this case contains a nonzero term of the form:

︸ ︷︷ ︸
λ′s and bk−1

l11 · · · ljt−1,jt−1 ︸ ︷︷ ︸
bt

· lit ,jt ·︸ ︷︷ ︸
λ′s

lit+1,it+1 · · · lkk = λk−(it−jt )−2btbk−1.

As above, this is a contradiction with the fact that L(λ) is a companion pencil. �
Theorem 3.2 tells us that a matrix pencil in Qn,k must belong to QC n,k in order
to be a companion pencil. The following result shows that, moreover, all pencils in
QC n,k are companion.

Theorem 3.3 Any pencil inQC n,k is a companion pencil.

Proof Let L(λ) ∈ QC n,k be an nk × nk matrix pencil. If Bk−1 is in the entry
(p + 1, p + 1), for some 0 ≤ p ≤ k − 1, then we can write L(λ) as the following
block-partitioned matrix pencil:

L(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λI −I

. . .
. . .
λI −I

︸ ︷︷ ︸
(p + 1)n

Mp+1,1 · · · Mp+1,p Mp+1,p+1
.
.
.

. . .
. . . Mp+2,p+1

Mk−1,1

. . .
. . .

.

.

.
Mk1 Mk2 · · · Mk,p+1 ︸ ︷︷ ︸

qn

−I

λI
. . .

. . . −I
λI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

}

pn

⎫
⎬

⎭
(q + 1)n

,

with p + q + 1 = k. Note that Mk1 = B0, Mp+1,p+1 = Bk−1, and the remaining
blocks Mst , for s = p + 1, . . . , k and t = 1, . . . , p + 1, are either 0 or Bj , for
j = 1, . . . , k − 2. Note that, by Theorem 2.5, if Bj , for j = 1, . . . , k − 2, is in the
rth subdiagonal of L(λ), for r = 1, . . . , k − 2, then it is either 0, Ak−r−1, λAk−r ,
or Ak−r−1 + λAk−r .

Now, we consider the following two block permutations Prow and Pcol:

• Prow permutes the rows of L(λ). Note that L(λ) is partitioned in two big blocks
of block-partitioned matrices by rows; the first block-partitioned matrix includes
rows from 1 to p and the second one includes rows from p + 1 to k. We define
Prow as the matrix taking: s �→ k − s + 1, for s = 1, . . . , p, and s �→ s − p, for
s = p + 1, . . . , k.
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• Pcol permutes only the first p + 1 columns of the matrix L(λ). We define Pcol as
the matrix taking: t → p + 2− t, for t = 1, . . . , p + 1.

It is straightforward to see that:

L̃(λ) := ProwL(λ)Pcol =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Mp+1,p+1 Mp+1,p · · · Mp+1,1

Mp+2,p+1

...
...

.

.

.

.

.

.
..

.
..

. Mk−1,1
Mk,p+1 · · · Mk2 Mk1

−I

λI
. . .

. . . −I
λI

︸ ︷︷ ︸
(p + 1)n

−I λI

. . .
. . .
−I λI ︸︷︷︸

qn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎬

⎭
(q + 1)n

}

pn

. (5)

In particular, the (block) diagonals in the (2, 1) big block of L(λ) become the
(block) anti-diagonals of the (1, 1) big block in L̃(λ). Now, let us consider a general
pencil like in the right-hand side of (5). In particular, the blocks Mst are matrix
pencils. It is shown in [15, Thm. 5.4] that if the sum of the trailing coefficients of all
Mst blocks in the (k− i−1)th anti-diagonal plus the sum of the leading coefficients
of all Mst blocks in the (k − i)th anti-diagonal equals Ai , for all i = 0, 1, . . . , k,
then L̃(λ) is a strong linearization of Q(λ). By condition (i) in Definition 2.7, this
condition on the leading and trailing coefficients of the Mst blocks is satisfied for the
particular L̃(λ) coming from L(λ) as in (5). Therefore, L̃(λ) is a strong linearization
of Q(λ). Since L(λ) is permutationally equivalent to L̃(λ), L(λ) is also a strong
linearization of Q(λ). Then, L(λ) satisfies condition (ii) in Definition 2.2 and, by
definition, L(λ) satisfies condition (i) as well, so it is a companion pencil. �
The proof of Theorem 3.3 shows that the family of block-Kronecker pencils
introduced in [15, Def. 5.1] comprise, up to block permutation, all companion
pencils in Rn,k (in other words, it contains, up to block permutation, all pencils
in QC n,k).

4 Number of Different Sparse Companion Pencils inRn,k

We say that companion pencils in Rn,k are quasi-sparse companion pencils, since
they have a small number of nonzero block entries. However, not all companion
pencils in Rn,k have the same number of nonzero block entries. We first give a
lower bound on the number of nonzero block entries of a companion pencil in Rn,k .
In the following, �r� and ,r- denote, respectively, the floor and the ceiling of r ∈ R.
Note that, if r is an integer, then r = �r� = ,r-.
Lemma 4.1 Any companion pencil in Rn,k has, at least, 2k − 1 + ⌊ k2

⌋
nonzero

block entries.

Proof By Theorems 3.1 and 3.2, any companion pencil in Rn,k is permutationally
equivalent to a pencil in QC n,k , so we focus on pencils in QC n,k . Recall
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(Theorem 2.5) that the blocks Bj , for j = 0, . . . , k − 1, are equal to either 0, Ai ,
λAi+1, or Ai+λAi+1, for some 0 ≤ i ≤ k−1. Note that the entries equal to−I and
λI add up to 2(k−1) nonzero block entries. Regarding the k+1 coefficients Ai (i =
0, . . . , k), they can be grouped in the pencils Bj = B0

j + λB1
j (j = 0, . . . , k − 1).

If k is odd, then k+1
2 = , k+1

2 - is the smallest number of nonzero blocks Bj , which
are of the form A2i+λA2i+1, for i = 0, 1, . . . , k−1

2 . However, if k is even, different
groupings are possible, but in all cases the smallest number of nonzero blocks Bj is⌊
k+1

2

⌋
+1 =

⌈
k+1

2

⌉
. Adding up, we get 2(k−1)+

⌈
k+1

2

⌉
= 2k−1+⌊ k2

⌋
nonzero

block entries. ��
Lemma 4.1 motivates the following definition.

Definition 4.2 A sparse pencil in Rn,k is a pencil with exactly 2k−1+⌊ k2
⌋

nonzero
block entries.

Since any companion pencil in Rn,k is permutationally equivalent to a pencil
in QC n,k , to count the number of sparse companion pencils in Rn,k , up to per-
mutation, we can just count the number of non-permutationally equivalent pencils
in QC n,k . First, Theorem 4.3 guarantees that no two of them are permutationally
equivalent.

Theorem 4.3 Two different matrix pencils inQC n,k are not block permutationally
equivalent.

Proof Let L1(λ), L2(λ) ∈ QC n,k . If L1(λ) is block permutationally equivalent to
L2(λ) there exists two block-partitioned permutation matrices P,P ′ with

PL1(λ)P
′ = L2(λ). (6)

Let us shrink to zero all coefficients Ai , for i = 0, . . . , k − 1, and let Ak = I .
Looking only at the leading terms in (6), we get P · I · P ′ = I, so P = (P ′)−1.
Then, L1(λ) and L2(λ) are block permutationally similar.

It suffices to prove that two different matrix pencils in QC n,k are not block
permutationally similar. L1(λ) is block permutationally similar to L2(λ) if there
exists a block-partitioned permutation matrix P such that

PL1(λ)P
B = L2(λ) (7)

(where (·)B stands for block transposition). We prove that the only permutation
matrix P satisfying (7) is the identity matrix, which implies L1(λ) = L2(λ). For
this, we can focus on the case n = 1.

Again, by shrinking to zero all entries ai , for i = 0, . . . , k, and equating the
trailing coefficients in (7) we get PN = NP , with

N =
⎡

⎣
0 1
. .
.
. .
.

0 1
0

⎤

⎦ .
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It is straightforward to check that the only permutation matrix P with PN = NP

is P = I . �
The following lemmas will help us to get the number of sparse pencils in QC n,k .

Lemma 4.4 If L(λ) ∈ QC n,k , then L(λ) cannot have two consecutive null
subdiagonals.

Proof Just recall, by condition (i) in Definition 2.7, that Ak−j is either in the (j −
1)th subdiagonal or in the j th subdiagonal (as λAk−j ), for j = 1, . . . , k − 2. �

Lemma 4.5 If L(λ) ∈ QC n,k is sparse, then it cannot have two nonzero block
entries in the same subdiagonal.

Proof If L(λ) ∈ QC n,k is sparse and it has two nonzero block entries in the j th
subdiagonal, for some 1 ≤ j ≤ k − 2, these must be Ak−j−1 and λAk−j (by
Definitions 2.3 and 2.7). Then, by joining Ak−j−1+λAk−j in the same entry (either
the one containing Ak−j−1 or the one containing λAk−j ) we arrive at a new pencil
in QC n,k having less nonzero block entries than L(λ), which is a contradiction with
the fact that L(λ) is sparse. �

The following result gives us the exact number of zero subdiagonals (including
the main diagonal as the 0th subdiagonal) of any sparse pencil in QC n,k .

Lemma 4.6 Let L(λ) ∈ QC n,k be sparse. Then L(λ) has exactly k − 1− � k2� null
subdiagonals.

Proof If L(λ) ∈ QC n,k is sparse, it has
⌊
k
2

⌋
nonzero entries below the diagonal,

by Lemma 4.1. By Lemma 4.5, no two nonzero entries of L(λ) are in the same
subdiagonal, so L(λ) has � k2� nonzero subdiagonals and, as a consequence, k− 1−
� k2� null subdiagonals. �

As a consequence of the previous results, we can explicitly identify which are
the only null subdiagonals of any sparse pencil in QC n,k . This is the first step in
determining the number of sparse pencils in QC n,k . We start with the case k odd.

Lemma 4.7 Let L(λ) ∈ QC n,k be a sparse pencil with k odd. Then the only
nonzero j th subdiagonals of L(λ) are the ones with indices j = 0, 2, 4, . . . , k − 1.

Proof By Lemma 4.6, L(λ) has exactly k−1
2 null subdiagonals and, consequently,

k+1
2 nonzero subdiagonals. Since the main diagonal and the (k − 1)st subdiagonal

(the entry (k, 1)) are nonzero, among the remaining k − 2 subdiagonals there are
k−1

2 null ones, together with another k−3
2 nonzero ones. Since, by Lemma 4.4, there

cannot be two consecutive null subdiagonals in L(λ), the first and the (k − 2)nd
subdiagonal must be zero, and the zero/nonzero subdiagonals must alternate. ��

For k even, the situation is more involved. As there are k + 1 coefficients Ai ,
for i = 0, . . . , k, there must be k

2 nonzero blocks of the form Ak−j−1 + λAk−j ,
together with another nonzero block of the form B� = λAk−j or B� = Ak−j−1, for
0 ≤ j ≤ k − 1. In particular, the pattern of zero/nonzero subdiagonals in QC n,k
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depends on the position of this monomial B�. This is stated in Lemma 4.8, which
also establishes some restrictions about B�.

Lemma 4.8 Let L(λ) ∈ QC n,k be a sparse pencil with k even. Then the monomial
B�, located in the j th subdiagonal (for 0 ≤ j ≤ k − 1), and the indices of the
nonzero rth subdiagonals of L(λ) are the following:

(a) If j is even: B� = λAk−j , and r = 0, 2, 4, . . . , j, j+1, j+3, . . . , k−3, k−1;
(b) If j is odd: B� = Ak−j−1, and r = 0, 2, 4, . . . , j−1, j, j+2, . . . , k−3, k−1.

Proof By Lemma 4.6, L(λ) has exactly k
2 − 1 zero subdiagonals and, consequently,

k
2 + 1 nonzero subdiagonals. Recall that the main diagonal and the (k − 1)th
subdiagonal (the entry (k, 1)) are nonzero. As mentioned above, there is only one
nonzero block of the form B� = λAk−j or Ak−j−1, which is located in the j th
subdiagonal, for some 0 ≤ j ≤ k−1. The remaining nonzero blocks are of the form
Ak−s−1 + λAk−s , for s �= j . As a consequence, there are four possible situations:

Case 1: B� = λAk−j is in the j th subdiagonal, for 0 ≤ j ≤ k − 1, with j even.
Case 2: B� = λAk−j is in the j th subdiagonal, for 0 ≤ j ≤ k − 1, with j odd.
Case 3: B� = Ak−j−1 is in the j th subdiagonal, for 0 ≤ j ≤ k − 1, with j even.
Case 4: B� = Ak−j−1 is in the j th subdiagonal, for 0 ≤ j ≤ k − 1, with j odd.

By Lemma 4.5, B� is the only nonzero block entry in the j th subdiagonal. Moreover,
(see Theorem 2.5), the block entries in the ith subdiagonal, for i = 0, . . . , k − 1,
with i �= j , are either: (i) λAk−i , (ii) Ak−i−1, (iii) Ak−i−1 + λAk−i , or (iv) 0.

Case 2: In this case, the j coefficients Ak,Ak−1, . . . , Ak−j+1 are located in the
subdiagonals from 0th to (j − 1)th. Since j is odd, at least another coefficient must
be unpaired, so the pencil is not sparse.

Case 3: Now there are j + 1 coefficients Ak,Ak−1, . . . , Ak−j among the
subdiagonals from 0th to (j − 1)th. Since j is even, the pencil is, again, not sparse.

This proves the first part of the statement. The second part follows from
Theorem 2.5, together with Lemma 4.4 and Lemma 4.6. In particular, conditions (i)–
(iv) above determine the pattern of zero/nonzero subdiagonals, taking into account
Lemma 4.4. This is summarized in Table 1.

�
Remark 4.9 Note that if L1(λ) and L2(λ) are two sparse pencils in QC n,k of even
degree k such that L1(λ) has a monomial in the j th subdiagonal (with j even) of the

Table 1 Possible forms of the block entries in the subdiagonals for Cases 1 and 4

Forms of the
block entries

Subdiagonal

0th 1st · · · (j − 1)th j th (j + 1)th · · · (k − 2)th (k − 1)th

Case 1 Ak−1 + λAk 0 · · · 0 λAk−j Ak−j−2+
λAk−j−1

· · · 0 A0 + λA1

Case 4 Ak−1 + λAk 0 · · · Ak−j +
λAk−j+1

Ak−j−1 0 · · · 0 A0 + λA1
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Table 2 All possible patterns
for sparse pencils in QC n,4

Pattern Nonzero blocks

j = 0, 1
⎡

⎢⎢⎢⎣

� −I 0 0

• � −I 0

0 • � −I

� 0 • �

⎤

⎥⎥⎥⎦

j = 0

λA4 ∈�
A2 + λA3 ∈ •
A0 + λA1 = �

j = 1

A3 + λA4 ∈�
A2 ∈ •
A0 + λA1 = �

j = 2, 3
⎡
⎢⎢⎢⎣

� −I 0 0

0 � −I 0

• 0 � −I

� • 0 �

⎤
⎥⎥⎥⎦

j = 2

A3 + λA4 ∈�
λA2 ∈ •
A0 + λA1 = �

j = 3

A3 + λA4 ∈�
A1 + λA2 ∈ •
A0 = �

form B� = λAk−j and L2(λ) has a monomial in the (j + 1)th subdiagonal of the
form B� = Ak−j−2, for j = 0, 2, . . . , k − 2, then L1(λ) and L2(λ) have the same
nonzero subdiagonals. This is straightforward to see looking at the indices of the
nonzero subdiagonals in Lemma 4.8, just replacing, for the case j odd, j by j + 1.

Example 4.10 In this example we show all possible patterns for sparse pencils in
QC n,4 (that is, for quartic n × n matrix polynomials). Following Lemma 4.8, the
zero/nonzero pattern of the subdiagonals depends on the subdiagonal containing the
monomial B�. Let this subdiagonal be the j th one, for j = 0, 1, 2, 3. Then:

(a) For j = 0, 1, the monomial is B� = λA4 (for j = 0) or B� = A2 (for j = 1),
and the nonzero subdiagonals are the ones with indices 0, 1, and 3 in both cases.

(b) For j = 2, 3, the monomial is B� = λA2 (for j = 2) or B� = A0 (for j = 3).
The nonzero subdiagonals are the ones with indices 0, 2, and 3 in both cases.

The patterns are shown in Table 2.

Since we know which are exactly the zero and nonzero subdiagonals in QC n,k ,
for k odd and even, we can determine the number of different sparse pencils in
QC n,k . We use, for a given k ∈ N

⋃ {0}, the double factorial of k, defined by the
recurrence relation: k!! := (k − 2)!! · k, if k ≥ 2, and k!! := 1 if k ≤ 1.

Theorem 4.11 The number of different sparse pencils inQC n,k , for k odd, is:

2

⎛

⎜⎜⎝

⌊
k
4

⌋

∑

j=1

((2j − 1)!!)2
(
(2j − 1)

⌈
k−4j

2

⌉

+ (2j)

⌈
k−4j

2

⌉)
⎞

⎟⎟⎠+
((

k − 3

2

)
!!
)2 (

k + 1

2

)
, if

⌊
k

2

⌋
is even, and

2

⎛

⎜⎜⎝

⌊⌊
k
2

⌋
/2
⌋

∑

j=1

((2j − 1)!!)2
(
(2j − 1)

⌈
k−4j

2

⌉

+ (2j)

⌈
k−4j

2

⌉)
⎞

⎟⎟⎠+ 3

((
k − 1

2

)
!!
)2

, if

⌊
k

2

⌋
is odd.

(8)
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Proof Let k be an odd integer and let 1 ≤ j ≤ ⌊ k2
⌋

. We consider the rectangle Rj of
an nk × nk matrix pencil in QC n,k , whose vertices are (j, 1), (j, j), (k, 1), (k, j).

1

j

k

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
︷︸︸︷

λI −I

j k
︷︸︸︷

∗
. . .

. . .

.

.

.
. .
.
. .
.
. .
.

∗ · · · ∗ λI
. . .

∗ · · · · · · · · · ∗
.
.
.
. . .

.

.

.

.

.

. ∗
.
.
.

.

.

.
. . .

.

.

.∗ · · · · · · · · · ∗

. . .

λI
. . .

∗
. . .

. . .

.

.

.
. . .

. . . −I∗ · · · ∗ λI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

There are k+1
2 nonzero blocks among the asterisks ∗. By Lemma 4.7, they are of the

form Ak−i−1 + λAk−i , located in the ith subdiagonal, for i = 0, 2, . . . , k − 1. We
look for the number of different ways to place them in Rj .

This is summarized in Table 3, where we indicate the number of possible
positions of each nonzero block in Rj . We need to take into account the parity
of j .

Table 3 Number of positions where each nonzero block entry can be in Rj

Coefficient Can be placed in . . .

λAk +Ak−1 1 position (0th subdiagonal)

λAk−2 + Ak−3 3 positions (2nd subdiagonal)

.

.

.
.
.
.

{
λAk−(j−2) +Ak−(j−1), or

λAk−(j−3) +Ak−(j−2)

{
j − 1 positions ((j − 2)th subdiagonal) if j even, or

j − 2 positions ((j − 3)th subdiagonal) if j odd

{
λAk−j + Ak−(j+1), or

λAk−(j−1) +Ak−j

{
j positions (j th subdiagonal) if j even, or

j positions ((j − 1)th subdiagonal) if j odd

.

.

.
.
.
.

{
λAj+1 + Aj, or

λAj + Aj−1

{
j positions ((k − j − 1)th subdiagonal) if j even, or

j positions ((k − j)th subdiagonal) if j odd

{
λAj−1 + Aj−2, or

λAj−2 + Aj−3

{
j − 1 positions ((k − j + 1)th subdiagonal) if j even, or

j − 2 positions ((k − j + 2)th subdiagonal) if j odd

.

.

.
.
.
.

λA3 + A2 3 positions ((k − 3)th subdiagonal)

λA1 + A0 1 position ((k − 1)th subdiagonal)
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Then, the number of possible sparse pencils in QC n,k , for k odd, with all
entries in Rj is determined by counting all possible locations for the coefficients in
Table 3.

In particular, if η(j)n,k denotes the number of possible sparse pencils in QC n,k with
all entries in the rectangle Rj , then:

η
(j)

n,k =

⎧
⎪⎪⎨

⎪⎪⎩

12 · 32 · 52 · · · (j − 1)2 · (j)
⌈

k−2j
2

⌉

= ((j − 1)!!)2(j)

⌈
k−2j

2

⌉

, if j is even, and

12 · 32 · 52 · · · (j − 2)2 · (j)
⌈

k−2j+2
2

⌉

= ((j − 2)!!)2(j)

⌈
k−2j+2

2

⌉

, if j is odd.

(9)

Now we consider all possible rectangles Rj , for 1 ≤ j ≤ ⌊ k2
⌋

. We only need to look
at j = 1, . . . ,

⌊
k
2

⌋
, and also at j = k+1

2 , since for j = k+3
2 , . . . , k, the patterns are

symmetric (with respect to the anti-diagonal) to the first
⌊
k
2

⌋
patterns. In the case

j = k+1
2 , we can obtain the number of possible sparse pencils in QC n,k with all its

entries in the rectangle Rk+1
2

just replacing j by k+1
2 in (9), and this number is equal

to:

η

(
k+1

2

)

n,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((
k−1

2

)
!!
)2

, if k+1
2 is even, and

((
k−3

2

)
!!
)2 (

k+1
2

)
, if k+1

2 is odd.

(10)

Adding up, the total number of sparse pencils in QC n,k is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

⎛
⎜⎜⎝

⌊
k
2

⌋
/2

∑

j=1

(
η
(2j−1)
n,k + η

(2j)
n,k

)
⎞
⎟⎟⎠+ η

(
k+1

2

)

n,k , if
⌊
k
2

⌋
is even, and

2

⎛
⎜⎜⎝

⌈⌊
k
2

⌋
/2
⌉

∑

j=1

η
(2j−1)
n,k +

⌊⌊
k
2

⌋
/2
⌋

∑

j=1

η
(2j)
n,k

⎞
⎟⎟⎠+ η

(
k+1

2

)

n,k , if
⌊
k
2

⌋
is odd,

(11)

Using (9) and (10), and grouping summands appropriately in (11), we get (8). �
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Theorem 4.12 The number of different sparse pencils inQC n,k , for k even, is:

2

3

⎛

⎜⎜⎝

⌊
k
4

⌋

∑

j=1

((2j − 1)!!)2(3k − 4j + 4)
(
(2j − 1)

k−4j+2
2 + (2j)

k−4j+2
2

)
⎞

⎟⎟⎠ , if

⌊
k

2

⌋
is even, and

2

3

⎛

⎜⎜⎝

⌊
k
4

⌋

∑

j=1

((2j − 1)!!)2(3k − 4j + 4)
(
(2j − 1)

k−4j+2
2 + (2j)

k−4j+2
2

)
⎞

⎟⎟⎠+

+ 2

3

(
(2k + 2)

((
k

2

)
!!
)2
)
, if

⌊
k

2

⌋
is odd.

(12)

We will use the following lemma in the proof of Theorem 4.12.

Lemma 4.13 Let j be an integer. The following identities hold:

(a)
(j − 2)!!
(j − 1)!!

j−4
2∑

i=0

(2i + 1)!!
(2i)!! = j − 2

3
, if j ≥ 4 is an even number.

(b)
(j − 1)!!
(j − 2)!!

j−3
2∑

i=0

(2i + 1)!!
(2i)!! = j (j − 1)

3
, if j ≥ 3 is an odd number.

Proof We divide the proof into two cases, depending on the parity of j .

(a) If j is an even number:

(j − 2)!!
(j − 1)!!

j−4
2∑

i=0

(2i + 1)!!
(2i)!! = 2 · 4 · 6 · · · (j − 2)

3 · 5 · 7 · · · (j − 1)
+ 4 · 6 · · · (j − 2)

5 · 7 · · · (j − 1)
+ · · · + (j − 4)(j − 2)

(j − 3)(j − 1)
+ j − 2

j − 1
=

= j − 2

(j − 1)!!
(

2 · 4 · 6 · · · (j − 4)+ 3 · 4 · 6 · · · (j − 4)+ 3 · 5 · 6 · · · (j − 4)+ · · · +

3 · 5 · · · (j − 5)(j − 4) + 3 · 5 · · · (j − 5)(j − 3)
)
= j − 2

(j − 1)!!
(

5 · 4 · 6 · · · (j − 4)+ 3 · 5 · 6 · · · (j − 4)

+ · · · + 3 · 5 · · · (j − 5)(j − 4)+ 3 · 5 · · · (j − 5)(j − 3)
)
= j − 2

(j − 1)!!
(

5 · 7 · 6 · · · (j − 4)

+ · · · +

3 · 5 · · · (j − 5)(j − 4) + 3 · 5 · · · (j − 5)(j − 3)
)
= · · · + j − 2

(j − 1)!!
(

5 · 7 · · · (j − 1)
)
= j − 2

3
.
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(b) If j is an odd number:

(j − 1)!!
(j − 2)!!

j−3
2∑

i=0

(2i + 1)!!
(2i)!! = 2 · 4 · 6 · · · (j − 1)

3 · 5 · 7 · · · (j − 2)
+ 4 · 6 · · · (j − 1)

5 · 7 · · · (j − 2)
+ · · · + (j − 3)(j − 1)

(j − 4)(j − 2)
+ j − 1

j − 2
=

= j − 1

(j − 2)!!
(

2 · 4 · 6 · · · (j − 3)+ 3 · 4 · 6 · · · (j − 3)+ 3 · 5 · 6 · · · (j − 3)+ · · · +

3 · 5 · · · (j − 4)(j − 3) + 3 · 5 · · · (j − 4)(j − 2)
)
= j − 1

(j − 2)!!
(

5 · 4 · 6 · · · (j − 3)+ 3 · 5 · 6 · · · (j − 3)

+ · · · + 3 · 5 · · · (j − 4)(j − 3)+ 3 · 5 · · · (j − 4)(j − 2)
)
= j − 1

(j − 2)!!
(

5 · 7 · 6 · · · (j − 3)+ · · · +

3 · 5 · · · (j − 4)(j − 3) + 3 · 5 · · · (j − 4)(j − 2)
)
= · · · = j − 1

(j − 2)!!
(

5 · 7 · · · (j − 2)j
)
= j (j − 1)

3
.

�
Proof (Theorem 4.12) Let k be an even integer and let 1 ≤ j ≤ k

2 . We
consider the rectangle Rj with vertices (j, 1), (j, j), (k, 1), (k, j), as in the proof
of Theorem 4.11. First, we locate the nonzero block entry with only one coefficient,
B�, and, according to Lemma 4.8, the remaining nonzero subdiagonals are uniquely
determined.

We assume that B� = λAk−i , which is in the ith subdiagonal, for i being an even
number (case (a) in Lemma 4.8). For the other case (B� = Ak−i−1), the nonzero
subdiagonals are exactly the same, by Remark 4.9.

As in Theorem 4.11, we have to take into account the parity of the integer j and
the position of the monomial B�. The procedure consists of counting, for each B�,
and for each i even, the number of possible locations of each nonzero block entry
inside Rj . It is also important to note that, in Rj ,

the ith subdiagonal has

⎧
⎨

⎩

i + 1 positions, if 0 ≤ i ≤ j − 2,
j positions, if j − 1 ≤ i ≤ k − j, and
k − i positions, if k − j + 1 ≤ i ≤ k − 1.

(13)

First, let us assume j even. Then, depending on i (i even), we obtain:

• If i ≤ j − 4: The nonzero subdiagonals, by Lemma 4.8, have indices
0, 2, 4, . . . , i, i+1, . . . , j −3, j −1, . . . , k− j −1, k− j +1, . . . , k−3, k−1,
so, using (13), the number of possible locations for the nonzero blocks inside Rj

is:

[1 · 3 · 5 · · · (i + 1)(i + 2) · · · (j − 2)] [j · · · j ] [(j − 1) · · · 3 · 1]

=
[
(i + 1)!! (j − 2)!!

(i)!!
] [

j
k−2j+2

2

]
[(j − 1)!!] .

• If j − 2 ≤ i ≤ k − j : The nonzero subdiagonals have indices 0, 2, . . . , j −
2, j, . . . , i, i + 1, . . . , k − j − 1, k − j + 1, . . . , k − 3, k − 1, so the number of



176 F. De Terán and C. Hernando

possible locations for the nonzero blocks inside Rj is:

[1 · 3 · · · (j − 1)] [j · · · j · j · · · j ] [(j − 1) · · · 3 · 1] = [(j − 1)!!]
[
j

k−2j+2
2

]
[(j − 1)!!] .

• If i ≥ k−j+2: The nonzero subdiagonals have indices 0, 2, . . . , j−2, j, . . . , k−
j, k− j +2, . . . , i, i+1, . . . , k−3, k−1, so, using (13), the number of possible
locations for the nonzero block entries inside Rj is:

[1 · 3 · · · (j − 1)] [j · · · j ] [(j − 2) · · · (k − i)(k − i − 1) · · · 3 · 1] =

= [(j − 1)!!]
[
j

k−2j+2
2

] [
(k − i − 1)!! (j − 2)!!

(k − i − 2)!!
]
.

Finally, if we denote by Eη
(j)
n,k the number of possible sparse pencils in QC n,k

with all entries in the rectangle Rj , for j even, then, adding up all the above
quantities, we get:

Eη
(j)
n,k = 2

( j−4
2∑

i=0

(
(2i + 1)!! (j − 2)!!

(2i)!!
)(

j
k−2j+2

2

)
((j − 1)!!)+

k−j
2∑

i= j−2
2

((j − 1)!!)2
(
j

k−2j+2
2

)
+

+
k−2

2∑

i= k−j+2
2

((j − 1)!!)
(
j

k−2j+2
2

)(
(k − 2i − 1)!! (j − 2)!!

(k − 2i − 2)!!
))

.

Note that the first and third summands in the last sum add up to the same number
(just replace i by k−2

2 − i in the sum of the third term). Moreover, the second

summand does not depend on the index i. Then, Eη
(j)

n,k is equal to:

Eη
(j)

n,k = 4
(
j

k−2j+2
2

)
((j − 1)!!) ((j − 2)!!)

j−4
2∑

i=0

(2i + 1)!!
(2i)!! + 2 ((j − 1)!!)2

(
j

k−2j+2
2

) k − 2j + 4

2
=

= ((j − 1)!!)2
(
j

k−2j+2
2

)
⎡

⎢⎣4 · (j − 2)!!
(j − 1)!!

j−4
2∑

i=0

(2i + 1)!!
(2i)!! + k − 2j + 4

⎤

⎥⎦ (by Lemma 4.13 (a))

= ((j − 1)!!)2
(
j

k−2j+2
2

) [
4 · j − 2

3
+ k − 2j + 4

]
= ((j − 1)!!)2

(
j

k−2j+2
2

)(3k − 2j + 4

3

)
.

Repeating this procedure for j odd, if we denote by Oη
(j)
n,k the number of all possible



A Class of Quasi-Sparse Companion Pencils 177

sparse pencils in QC n,k with all entries in the rectangle Rj , for j odd, then:

Oη
(j)

n,k = 2

( j−3
2∑

i=0

(
(2i + 1)!! (j − 1)!!

(2i)!!
)(

j
k−2j+2

2

)
((j − 2)!!)+

k−j−1
2∑

i= j−1
2

((j − 2)!!)2
(
j

k−2j+4
2

)
+

+
k−2

2∑

i= k−j+1
2

((j − 2)!!)
(
j

k−2j+2
2

)(
(k − 2i − 1)!! (j − 1)!!

(k − 2i − 2)!!
))

.

As above, we can simplify Oη
(j)

n,k as:

Oη
(j)

n,k = 4
(
j

k−2j+2
2

)
((j − 2)!!) ((j − 1)!!)

j−3
2∑

i=0

(2i + 1)!!
(2i)!! + 2 ((j − 2)!!)2

(
j

k−2j+4
2

) k − 2j + 2

2
=

= ((j − 2)!!)2
(
j

k−2j+2
2

)
⎡

⎢⎣4 · (j − 1)!!
(j − 2)!!

j−3
2∑

i=0

(2i + 1)!!
(2i)!! + j (k − 2j + 2)

⎤

⎥⎦ (by Lemma 4.13 (b))

= ((j − 2)!!)2
(
j

k−2j+2
2

) [
4 · j (j − 1)

3
+ j (k − 2j + 2)

]
=

= ((j − 2)!!)2
(
j

k−2j+2
2 +1

)(3k − 2j + 2

3

)
= (j !!)2

(
j

k−2j
2

)( 3k − 2j + 2

3

)
.

In summary,

Eη
(j)

n,k = ((j − 1)!!)2
(
j

k−2j+2
2

)(3k − 2j + 4

3

)
, Oη

(j)

n,k = (j !!)2
(
j

k−2j
2

)(3k − 2j + 2

3

)
.

(14)

Now, we consider all possible rectangles Rj , for 1 ≤ j ≤ k
2 . We just look at j =

1, . . . , k
2 , since for j = k

2 +1, . . . , k, the patterns are symmetric (with respect to the
anti-diagonal) to the first ones. Adding up, the number of sparse pencils in QC n,k

is:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

⎛
⎜⎝

k
4∑

j=1

(
Oη

(2j−1)
n,k + Eη

(2j)
n,k

)
⎞
⎟⎠ , if k

2 is even, and

2

⎛
⎜⎜⎝

⌈
k
4

⌉

∑

j=1

Oη
(2j−1)
n,k +

⌊
k
4

⌋

∑

j=1

Eη
(2j)
n,k

⎞
⎟⎟⎠ , if k

2 is odd.

(15)

Using (14) and grouping summands appropriately in (15), we arrive at (12). �
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Remark 4.14 Note that the number of sparse companion pencils in QC n,k for k

even becomes much larger than the one for k odd as k increases. This is due
to the fact that the nonzero subdiagonals in the case k odd are determined (they
are the ones with indices 0, 2, . . . , k − 1), but the case k even allows for more
flexibility, depending on which is the nonzero subdiagonal containing the block B�

(see Lemma 4.8).

5 Conclusions

In this work, we have first introduced a family of companion pencils for n×n matrix
polynomials of degree k over an arbitrary field, Rn,k , which extends the one in
[17] for companion matrices of monic scalar polynomials. This family contains all
companion pencils in most of the families of companion linearizations introduced
so far in the literature, expressed in the monomial basis, and having a small number
of nonzero entries. In particular, Rn,k contains both Fiedler and generalized Fiedler
pencils, as well as all sparse pencils in the block-Kronecker linearizations presented
in [15]. We have provided a “canonical” expression for companion pencils in Rn,k ,
up to block permutation. This expression, which leads to the class Qn,k , is block
upper Hessenberg and resembles the one provided in [17] for companion matrices of
monic scalar polynomials, We have provided a characterization for a pencil in Qn,k

to be a companion pencil (namely, they are those in the class denoted by QC n,k ).
Finally, we have obtained the number of different sparse companion pencils in Rn,k ,
up to block permutation. We want to emphasize that there could be other sparse
companion pencils for n × n matrix polynomials of degree k not included in Rn,k .
Therefore, describing all sparse companion pencils for n× n matrix polynomials of
degree k is still an open field of research.
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1 Introduction

Computing the eigenvalue decomposition of symmetric matrices is one of the
most investigated problems in numerical linear algebra [6, 11]. For a matrix of
moderate size, having reduced the symmetric matrix into a symmetric tridiagonal
one by means of a similarity orthogonal transformation, the problem reduces to the
computation of the eigendecomposition of a tridiagonal matrix.

There are different methods to compute the eigenvalues of symmetric tridiagonal
matrices, such as the bisection method [14], the QR method [14] and divide &
conquer methods [2, 7]. For computing the eigenvectors one can use inverse
iteration [14], the QR method [14] and the multiple relatively robust representations
algorithm [5, 13, 15]. The latter algorithm is based on the twisted factorization of the
involved tridiagonal matrix to determine the position where the sought eigenvector
has a large entry [5, 15, 16].

Once an eigenvalue is computed, a deflation algorithm was proposed in [4] in
order to remove it from the tridiagonal matrix and reduce the dimension of the
problem by one. Such an algorithm can also be used to compute the eigenvector
associated to the computed eigenvalue and it is based on the twisted factorization
used in [5, 15].

In this manuscript we consider a modified version of the aforementioned
algorithm to compute an eigenvector of a symmetric tridiagonal matrix, supposing
the corresponding eigenvalue is known.

Without loss of generality, we consider only the real case. The complex
Hermitian one can be handled in the same way.

We illustrate the behavior of the proposed method with some numerical exam-
ples. The manuscript is organized as follows. In Sect. 2 the notation used in the
manuscript is given. In Sect. 3 the main features of the QR method are described.
The proposed algorithm is described in Sect. 4, followed by the section of numerical
examples and by the conclusions.

2 Notations and Definitions

Matrices are denoted with upper case letters and their entries with lower case letters,
i.e., the element (i, j) of the matrix T is denoted by ti,j .

The submatrix of the matrix B made by the rows i, i + 1, i + 2, . . . , i + k, with
1 ≤ i ≤ n − k, 0 ≤ k ≤ n − i, and columns j, j + 1, j + 2, . . . , j + l, with
1 ≤ j ≤ n − l, 0 ≤ l ≤ n − j, is denoted by Bi:i+k,j :j+l . If the matrix T is
symmetric, the submatrix made by the rows and columns i, i + 1, i + 2, . . . , i + k,

with 1 ≤ i ≤ n− k, 0 ≤ k ≤ n− i, is simply denoted by Ti:i+k.

The identity matrix of order n is denoted by In or by I if there is no ambiguity.
The matrix T − κI, with κ ∈ R, is denoted by T (κ).

The principal diagonal of a matrix B ∈ Rm×n is denoted by diag(B).
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The machine precision is denoted by ε.

The ith vector of the canonical basis of Rn is denoted by e(n)i , or simply by ei , if
there is no ambiguity.

Definition 1 Given B ∈ Rm×n,m ≥ n, let B = UΣV T be its singular value
decomposition, with U ∈ Rm×m, V ∈ Rn×n orthogonal and Σ ∈ Rm×n diagonal,

with diag(Σ) = [σ1, σ2, · · · σn
]T

, and σi ≥ σi+1, i = 1, . . . , n− 1.
The columns of B are said ε-linear dependent if σn ≤ ε‖B‖2.

The columns of B are said strongly linear independent if σn / ε‖B‖2 > 0.

3 Implicit QR Method

Let T ∈ Rn×n be the symmetric tridiagonal matrix

T =

⎡

⎢⎢⎢⎢⎣

t1,1 t1,2

t2,1 t2,2
. . .

. . .
. . . tn−1,n

tn,n−1 tn,n

⎤

⎥⎥⎥⎥⎦
,

with ti,i+1 = ti+1,i , i = 1, . . . , n− 1.
Let us suppose that T is irreducible, i.e., ti,i+1 �= 0, i = 1, . . . , n − 1 and let

T = XΛXT be its eigenvalue decomposition, with X ∈ Rn×n orthogonal, and
Λ ∈ Rn×n diagonal, with diag(Λ) = [λ1, . . . , λn]T . Since T is irreducible, then
λi �= λj , with i �= j, i, j = 1, . . . , n.

The Implicit QR (IQR) method is the standard method for computing the
eigenvalue decomposition of matrices of moderate size [6]. In particular, MATLAB
uses the LAPACK routine DSYEV, based on the QR method, to compute eigenvalues
and eigenvectors of a real symmetric matrix [1].

Given a symmetric irreducible tridiagonal matrix T ∈ Rn×n, and κ ∈ R, one
sweep of IQR with shift κ consists of computing the similarity transformation

T̂ (n) = Ĝn−1Ĝn−2 · · · Ĝ1T̂
(1)ĜT

1 · · · ĜT
n−2Ĝ

T
n−1,

where T̂ (1) = T and Ĝi, i = 1, . . . , n− 1, are Givens rotations

Ĝi =

⎡
⎢⎢⎣

Ii−1

ĉi ŝi

−ŝi ĉi

In−i−1

⎤
⎥⎥⎦ , i = 1, . . . , n− 1.

with ĉ2
i + ŝ2

i = 1. Without loss of generality, we assume that ĉi ≥ 0. Hence the

matrix Q̂ in (1) is uniquely defined.
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In particular, Ĝ1 is the Givens rotation acting on the first two rows of T̂ (1), whose
coefficients ĉ1 and ŝ1 are such that

[
ĉ1 ŝ1

−ŝ1 ĉ1

][
t̂
(1)
1,1 − κ

t̂
(1)
2,1

]
=
[
α̂1

0

]
,

with α̂1 = ‖
[
t̂
(1)
1,1 − κ, t̂

(1)
2,1

]
‖2. The structure of the matrix T̂ (2) = Ĝ1T̂

(1)ĜT
1

differs from the one of a tridiagonal matrix for an entry different from 0 in position
(3, 1) (and, symmetrically, in position (1, 3)), called “bulge”.

Each of the other Givens rotations Ĝi are applied to move the bulge one position
downward along the second subdiagonal/superdiagonal and eventually remove it
[11], i.e, the matrix

T̂ (i) = Ĝi−1Ĝi−2 · · · Ĝ1T̂
(1)ĜT

1 · · · ĜT
i−2Ĝ

T
i−1,

has the bulge in position (i−1, i+1) (and, symmetrically, in position (i+1, i−1)),
T̂ (i+1) = Ĝi T̂

(i)ĜT
i has the bulge in position (i, i + 2) (and, symmetrically, in

position (i + 2, i)), and so on. The matrix

Q̂ = Ĝn−1Ĝn−2 · · · Ĝ1 (1)

is orthogonal Hessenberg.
In the sequel, we call the sweep of the IQR method described above a “forward”

IQR (FIQR) sweep because it starts from the top-left corner of T̂1 and ends in the
bottom-right one.

The IQR method can also be implemented in a “backward” fashion, i.e., starting
from the bottom-right corner of T and ending in the top-left corner [9]. We will refer
to one sweep of this procedure as a backward IQR (BIQR) sweep.

Let T̃ (1) = T . In a BIQR sweep with shift κ , a sequence of Givens rotations

G̃i =

⎡

⎢⎢⎣

In−i−1

c̃i s̃i

−s̃i c̃i

Ii−1

⎤

⎥⎥⎦ , i = 1, . . . , n− 1,

with c̃2
i + s̃2

i = 1, is determined in the following way.
The coefficients c̃1 and s̃1 of G̃1 are computed such that

[
t̃
(1)
n,n−1, t̃

(1)
n,n − κ

] [
c̃1 s̃1

−s̃1 c̃1

]
= [0, α̃n

]
,

with α̃n = ‖
[
t̃
(1)
n,n−1, t̃

(1)
n,n − κ

]
‖2. The matrix T̃ (2) = G̃T

1 T̃
(1)G̃1 has a bulge in

position (n, n− 2) (and, symmetrically, in position (n− 2, n)).
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The Givens rotations G̃i, i = 2, . . . , n − 1, are sequentially applied to T̃ (2) to
move the bulge upward along the second subdiagonal and eventually remove it in
the matrix T̃ (n) = G̃T

n−1G̃
T
n−2 · · · G̃T

1 T̃
(1)G̃1 · · · G̃n−2G̃n−1.

Let Q̃ = G̃1 · · · G̃n−2G̃n−1. Without loss of generality, we assume c̃i ≥ 0, which
makes the matrix Q̃ uniquely defined.

Let λ be an eigenvalue of T with corresponding eigenvector x. In infinite
precision arithmetic, if λ is chosen as shift κ in the FIQR sweep, λ shows up in
position (n, n) of T̂ (n). Moreover, t̂ (n)n−1,n = t̂

(n)
n,n−1 = 0, and x = Q̂(:, n). In

particular, since

Q̂ =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĉ1 −ŝ1ĉ2 ŝ1ŝ2ĉ3
. . . −1nĉn−1

∏n−2
i=1 ŝi −1n+1∏n−1

i=1 ŝi

ŝ1 ĉ1ĉ2 −ĉ1ŝ2ĉ3
. . . −1n−1ĉ1ĉn−1

∏n−2
i=2 ŝi −1nĉ1

∏n−1
i=2 ŝi

ŝ1 ĉ1ĉ2
. . .

...
...

. . .
. . . −ĉn−3ŝn−2ĉn−1 ĉn−3ŝn−2ŝn−1

ŝn−2 ĉn−2ĉn−1 −ĉn−2ŝn−1

ŝn−1 ĉn−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

then

x = Q̂(:, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1n+1∏n−1
i=1 ŝi

−1nĉ1
∏n−1

i=2 ŝi

−1n−1ĉ2
∏n−1

i=3 ŝi
...

ĉn−3ŝn−2 ŝn−1

−ĉn−2ŝn−1

ĉn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Analogously, in infinite precision arithmetic, if λ is chosen as shift κ in the BIQR
sweep, λ shows up in position (1, 1) of T̃ (n). Moreover, t̃ (n)1,2 = t̃

(n)
2,1 = 0, and x =

Q̃(1, :)T ,

x =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̃n−1

−c̃n−2s̃n−1

c̃n−3s̃n−2 s̃n−1
...

−1n−1c̃2
∏n−1

i=3 s̃i

−1nc̃1
∏n−1

i=2 s̃i

−1n+1∏n−1
i=1 s̃i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)
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Therefore, for a given eigenvalue λ, it is suggested in [11] to apply one sweep
of either forward or backward IQR with shift λ to compute the corresponding
eigenvector with O(n) floating point operations [11].

Unfortunately, forward instability can occur in floating point arithmetic in one
forward/backward IQR sweep with shift λ and the last column of Q̂ (the first row of
Q̃) may be far from the sought eigenvector [12].

In particular, forward instability occurs at step j of one sweep of FIQR if and
only if the shift κ is very close to one of the eigenvalues of T̂

(j)
1:j,1:j and the last

entry of the corresponding eigenvector is tiny [12]. As a consequence, the entries
t
(j)
j,j−1 and t

(j)
j,j+1 are “sufficiently” small1 [12]. By (2), the last component of the

eigenvector is given by ĉj . Hence, forward instability happens if κ is very close to
one of the eigenvalues of T̂1:j,1:j and ĉj ∼ O(ε). This means that the first j columns
of T̂1:j,1:j are ε-linear dependent.

The same phenomenon can occur in a BIQR sweep.
To examine in which step of a IQR sweep forward instability can occur, let us

consider the following Corollary [8, p.149].

Corollary 1 Let A ∈ Rn×n be a symmetric matrix and let B be a submatrix
obtained by deleting r rows from A. Then

σk(A) ≥ σk(B) ≥ σk+r (A), k = 1, . . . , n,

where σ�(A) ≡ 0, if � > n.

Let us suppose that σn−1(T (λ)) / ε > σn(T (λ)) = 0 and σj−1(T1:j,:(λ)) /
σj (T1:j,:(λ)) ∼ O(ε), for a j ∈ {2, . . . , n}. By Corollary 1, all the submatrices
T1:j+�,:(λ) are ε-singular, � = 1, . . . , n− j, and

σj+�(T1:j+�,:(λ)) ≥ σj+�(T1:j+�,1:j+�(λ)), � = 1, . . . , n− j,

i.e., the submatrices T1:j+�,1:j+�(λ) are ε-singular as well.
On the other hand,

σj−1(Tn−j+1:n,:(λ)) ≥ σn−1(T (λ))/ ε,

σj−1(Tn−j+1:n,:(λ)) ≥ σj (Tn−j+1:n,n−j+1:n(λ)) ≥ σj (Tn−j+1:n,:(λ)).

This means that forward instability is not encountered in the first n− j − 1 steps of
FIQR and in the first j steps of BIQR.

In the following example it is shown how the sequences {ĉj }n−1
j=1 and {c̃j }n−1

j=1,

computed in floating point arithmetic, differ from those computed in infinite
precision arithmetic.

1If one of the indices i, j in ti,j is either 0 or n, we set ti,j ≡ 0.



On Computing Eigenvectors of Symmetric Tridiagonal Matrices 187

Example 1 Let T ∈ Rn×n, n = 100, be a symmetric irreducible tridiagonal matrix
with its entries generated by the MATLAB function randn.2

Let T = X(M)Λ(M)X(M)T be the eigenvalue decomposition of T computed by
using the MATLAB function eig, with Λ(M) = diag(λ(M)

1 λ
(M)
2 , . . . , λ

(M)
n ), with

λ
(M)
i ≥ λ

(M)
i+1 i = 1, . . . , n− 1.

We report the behaviour of one sweep of F/B IQR with shift λ(M)
19 , although a

similar behavior can be observed if we choose almost any λ
(M)
i , i = 1, . . . , n, as a

shift.
Let (λ̄, x̄) be the eigenpair computed by a few steps of inverse iteration with

initial guess (λ
(M)
19 ,X(M)(:, 19)). In this way, x̄ is computed with higher accuracy

with respect to X(M)(:, 19)).
Let {či}n−1

i=1 and {c̄i}n−1
i=1 be the sequence of the cosines of the Givens matrices

{Ǧi}n−1
i=1 and {Ḡi}n−1

i=1 , determined in order to transform x̄ to en and e1, respectively,
i.e.,

Ǧi =

⎡
⎢⎢⎣

In−i−1

či ši

−ši či

Ii−1

⎤
⎥⎥⎦ , such that Ǧn−1Ǧn−2 · · · Ǧ1x̄ = en,

Ḡi =

⎡
⎢⎢⎣

Ii−1

c̄i s̄i

−s̄i c̄i

In−i−1

⎤
⎥⎥⎦ , such that Ḡ1 · · · Ḡn−2Ḡn−1x̄ = e1.

Without loss of generality, we assume či ≥ 0 and c̄i ≥ 0, i = 1, . . . , n− 1.
Since x̄ is computed with high accuracy, the sequences {či}n−1

i=1 and {c̄i}n−1
i=1 , are

computed with high accuracy, too [10].
In infinite precision arithmetic, the sequences {či}n−1

i=1 and {ĉi}n−1
i=1 should be

the same, while in floating point arithmetic the sequence {ĉi}n−1
i=1 can depart from

the sequence {či}n−1
i=1 due to the forward instability [10]. The same holds for the

sequences {c̄i}n−1
i=1 and {c̃i}n−1

i=1 .

The sequences {ĉi}n−1
i=1 , {či}n−1

i=1 , {|t̂ (i)i−1,i | + |t̂ (i)i,i+1|}n−1
i=1 , {σ̌i}n−1

i=1 , and {σ̂i}n−1
i=1 ,

with σ̌i = min(svd(T:,i:n(λ(M)
19 ))) and σ̂i = min(svd(Ti:n,i:n(λ(M)

19 ))), denoted
respectively by “∗”, “+”, “◦”, “1” and “∇”, are displayed in Fig. 1 on a logarithmic
scale.

We can observe that the first and the third sequence have a similar behaviour. The
same can be said for the second and the fifth sequence. Moreover, the two sequences
of cosines {ĉi}n−1

i=1 and {či}n−1
i=1 are similar until forward instability occurs, i.e., until

ĉi and |t̂ (i)i−1,i | + |t̂ (i)i,i+1| are both greater than O(
√
ε).

2The matrix T can be downloaded at users.ba.cnr.it/iac/irmanm21/TRID_SYM.

users.ba.cnr.it/iac/irmanm21/TRID_SYM
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Fig. 1 Sequences {ĉi }n−1
i=1 , {či }n−1

i=1 , {|t̂ (i)i−1,i | + |t̂ (i)i,i+1|}n−1
i=1 , {σ̌i}n−1

i=1 , and {σ̂i}n−1
i=1 , denoted respec-

tively by “asterisk”, “plus”, “circle”, “diamond” and “triangledown”, related to T (λ
(M)
19 ), with T

the matrix of Example 1 and λ
(M)
19 the 19th ordered eigenvalue computed by eig of MATLAB

The sequences {c̃i}n−1
i=1 , {c̄i}n−1

i=1 , {|t̃ (i)n−i−1,n−i−2|+|t̃ (i)n−i,n−i−1|}n−1
i=1 , {σ̌i}n−1

i=1 , and

{σ̂i}n−1
i=1 , with σ̌i = min(svd(T:,1:i (λ(M)

19 ))), σ̂i = min(svd(T1:i,1:i (λ(M)
19 ))), denoted

respectively by “∗”, “+”, “◦”, “1” and “∇”, are displayed in Fig. 2 in logarithmic
scale.

Also in this case, the first and the third sequence have a similar behaviour and the
same can be said for the second and the fifth sequence. Moreover, the two sequences
of cosines {c̃i}n−1

i=1 and {c̄i}n−1
i=1 are similar until forward instability occurs, i.e., until

c̃i and |t̃ (i)n−i−1,n−i−2| + |t̃ (i)n−i,n−i−1| are both greater than O(
√
ε).

Summarizing, forward instability occurs if the smallest singular value σ
(j)

j of
T1:j,1:j (λ) is close to the machine precision ε, for a certain j ∈ {1, . . . , n}. As a
consequence, the elements of the last column of Q̂ of index greater than j begin to
depart from the elements of the eigenvector x̄. Moreover, t̂ (j)j,j−1 ≈ t̂

(j)

j+1,j ≈ O(
√
ε),

where t̂
(j)
i,k is the (i, k) entry of the matrix obtained after having applied j Givens

rotations in the forward IQR sweep with shift λ̄ to T1:n(λ̄) [12]. The same holds to
one sweep of BIQR, i.e., the first row of the upper Hessenberg matrix Q̃ is accurately
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Fig. 2 Sequences {c̃i}n−1
i=1 , {c̄i }n−1

i=1 , {|t̃ (i)n−i−1,n−i−2| + |t̃ (i)n−i,n−i−1|}n−1
i=1 , {σ̄i}n−1

i=1 , and {σ̃i}n−1
i=1 ,

denoted respectively by “asterisk”, “plus”, “circle”, “diamond” and “triangledown”, related to
T (λ

(M)
19 ), with T the matrix of Example 1 and λ

(M)
19 the 19th ordered eigenvalue computed by eig

of MATLAB

computed as far as the smallest singular value of Tj :n(λ) is large enough, for a
certain j ∈ {1, . . . , n}.

Hence, the main issue is to determine the index j.

In the next section we consider the problem of determining the index j such that
the computed eigenvector will be obtained by Q̂(1 : j, n) and Q̃(1, j + 1 : n)T ,
i.e., gluing together the first j entries of Q̂ and the last n− j entries of the first row
of Q̃.

4 Computation of the Eigenvector

In this section we describe a technique to determine the index j used for construct-
ing the sought eigenvector by fetching the first j entries of the last column of Q̂ and
the last n− j entries of the first row of Q̃.

If σn−1(T (λ))/ σn(T (λ)) and forward instability occurs at step j of one sweep
of FIQR with shift λ, the sequence {ĉi}ni=1 begins to depart from the sequence
{či}ni=1 around the index j . Analogously, the sequence {c̃i}ni=1 begins to depart from
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the sequence {c̄i}ni=1 around the index n − j . Therefore, the sought index j can be
computed in the following way.

The sequence {ĉi}n−1
i=1 generated by one FIQR sweep, is computed until ĉĵ < tol1

and |t̂ (ĵ )
ĵ−1,ĵ |+|t̂ (ĵ )ĵ ,ĵ+1| < tol2, with tol1 and tol2 fixed tolerances and 1 ≤ ĵ ≤ n−1.

The sequence {c̃i}n−1
i=1 , generated by one BIQR sweep, is thus computed until

c̃j̃ < tol1 and |t̃ (j̃ )
j̃−1,j̃ | + |t̃ (j̃ )j̃ ,j̃+1| < tol2.

Hence, the sought index j is computed as the index j̄ such that

ĉj̄ + c̃j̄ ≥ ĉi + c̃i , i, j̄ ∈ [j̃ , ĵ ], i �= j̄ ,

i.e., the index j̄ is chosen so that the columns of T:,1:j̄ and T:,j̄ :n are strongly linear
independent.

The last column of Q̂ in (2) depends on all the Givens coefficients ĉi and ŝi , i =
1, . . . , n − 1, while the first row of Q̃ in (3) depends on all the Givens coefficients
c̃i and s̃i , i = 1, . . . , n− 1.

Therefore, at the first sight one can say that both the last column of Q̂ and the
first row of Q̃ must be computed in order to construct the sought eigenvector even
though the “splitting” index j is already determined.

In the sequel we show that the sought approximation of the eigenvector can be
computed relying only on the knowledge of ĉi and ŝi , i = 1, . . . , j − 1, and c̃i and
s̃i , i = 1, . . . , n − j + 1. In fact, once the index j is determined, we observe that
the “good” part of the vector (2) can be written as

x̂1:j =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1n+1∏n−1
i=1 ŝi

−1nĉ1
∏n−1

i=2 ŝi

−1n−1ĉ2
∏n−1

i=3 ŝi
...

−1j+1ĉj−2
∏n−1

i=j−1 ŝi

−1j ĉj−1
∏n−1

i=j ŝi

−1j−1ĉj
∏n−1

i=j+1 ŝi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= γ (u)x̂(u),

while the “good” part of the vector (2) can be written as

x̃n−j :n =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1n−j−1c̃n−j

∏n−1
i=n−j+1 s̃i

−1n−j c̃n−j−1
∏n−1

i=n−j s̃i

−1n−j+1c̃n−j−2
∏n−1

i=n−j−1 s̃i
...

−1n−1c̃2
∏n−1

i=3 s̃i

−1nc̃1
∏n−1

i=2 s̃i

−1n+1∏n−1
i=1 s̃i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= γ (b)x̃(b),
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where γ (u) =∏n−1
i=j+1 ŝi , γ (b) =∏n−1

i=n−j+1 s̃i ,

x̂(u) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1n+1∏j

i=1 ŝi

−1nĉ1
∏j

i=2 ŝi

−1n−1ĉ2
∏j

i=3 ŝi
...

−1j+1ĉj−2
∏j

i=j−1 ŝi

−1j ĉj−1ŝj

−1j−1ĉj

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x̃(b) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1n−j−1c̃n−j

−1n−j c̃n−j−1s̃n−j

−1n−j+1c̃n−j−2
∏n−j

i=n−j−1 s̃i
...

−1n−1c̃2
∏n−j

i=3 s̃i

−1nc̃1
∏n−j

i=2 s̃i

−1n+1∏n−j

i=1 s̃i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, we first normalize both vectors in this way,

x̌1:j =
x̂(u)1:j
x̂(u)j

, x̌j+1:n =
x̃(b)2:n−j+1

x̃(b)1

,

i.e., we divide the first vector by its last component and the second one by its first
one in order to have 1 as the j -th entry of the first vector and as the first entry of the
second one, and finally we normalize x̌ such that ‖x̌‖2 = 1.

The corresponding MATLAB code to compute the eigenvector associated to a
given eigenvalue of a symmetric tridiagonal matrix is freely available and can be
downloaded at users.ba.cnr.it/iac/irmanm21/TRID_SYM.

5 Deflation

Once the eigenvector x̌ has been computed, we can apply to it a sequence of n −
1 Givens rotations Gi in order to transform it either to ±e(n)1 or to ±e(n)n , where

±e(n)i , i = 1, . . . , n, is the ith vector of the canonical basis of Rn.

The same Givens rotations Gi are applied to the matrix T obtaining

Ť = Gn−1Gn−2 · · ·G1TGT
1 · · ·GT

n−2G
T
n−1. (4)

If the eigenvector x̌ is computed in an accurate way and satisfies particular
properties, it has been shown in [9, 10] that Ť in (4) is still tridiagonal with the entry
(2, 1) equal to zero if the Givens rotations are applied in a backward fashion or the
entry (n, n − 1) is equal to zero if the Givens rotations are applied in a forward
manner. In the first case the last row and column can be dropped and the other
eigenvalues to be computed are the eigenvalues of Ť1:n−1. In the other case, the first
row and column are removed and the other eigenvalues are the eigenvalues of Ť2:n.

users.ba.cnr.it/iac/irmanm21/TRID_SYM
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6 Numerical Examples

All the numerical experiments of this section are performed in MATLAB Ver.
2014b, with machine precision ε ∼ 2.22× 10−16. We have compared the results
obtained computing the eigenvector matrix with the following techniques: eig of
MATLAB, MR3 and the proposed method, denoted by MTV.3 For the second and the
third method, the eigenvalues are computed by the bisection method [14].

For all the experiments, the tolerances tol1 and tol2 were chosen equal to n
√
ε,

with n the order of the matrix.

Example 2 In this example we consider symmetric tridiagonal matrices Tn ∈
Rn×n, n = 128, 256, 512, 1024 whose elements are generated by the MATLAB
function randn.

The latter matrices can be downloaded at users.ba.cnr.it/iac/irmanm21/TRID$_
$SYM.

In Table 1 the orthogonality of the computed eigenvectors with the considered
three methods are displayed. In column 5, the average lengths of the computed
intervals in which to search the index j are reported.

In Table 2 the accuracy of the residuals of the computed eigenvectors with the
considered three methods are displayed.

We can conclude that the eigenvectors obtained with the proposed procedure are
computed in an accurate way.

Example 3 In this example Tn ∈ Rn×n, n = 128, 256, 512, 1024 are the
Jacobi matrices associated to the Chebyshev polynomials of first kind [3], whose
eigenvalues are

cos

(
iπ

n+ 1

)
, i = 1 . . . , n.

In Table 3 the orthogonality of the computed eigenvectors with the considered
three methods are displayed. We do not report the average lengths of the computed
intervals in which to search the index j in this case, since there is no premature
deflation for such matrices.

In Table 4 the accuracy of the residuals of the computed eigenvectors with the
considered three methods are displayed.

We can conclude that the eigenvectors obtained with the proposed procedure are
computed in an accurate way.

3We have used a MATLAB implementation of the MR3 algorithm written by Petschow [13].

users.ba.cnr.it/iac/irmanm21/TRID$_$SYM
users.ba.cnr.it/iac/irmanm21/TRID$_$SYM
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Table 1 Accuracy of the orthogonality of the computed eigenvectors computed by eig of
MATLAB (second column), by MR3 (third column) and by the proposed method (fourth
column)

maxi
‖XT xi−e(n)i

‖2
nε

n eig MR3 MTV
∑n

i=1(j̃−ĵ+1)
n

128 1.14 × 10−1 2.01 × 101 7.05 × 101 26

256 5.72 × 10−2 1.00 × 101 3.52 × 101 24

512 2.86 × 10−2 5.02 × 100 1.97 × 101 24

1024 1.43 × 10−2 3.40 × 100 3.83 × 101 24

Average lengths of the computed intervals in which the index j is sought (fifth column)

Table 2 Accuracy of the residuals of the eigenvectors computed by eig of MATLAB (second
column), by MR3 (third column) and by the proposed method (fourth column)

maxi
‖T x̄i−λi x̄i‖2

nε‖T ‖2

n eig MR3 MTV

128 4.96 × 10−2 5.33× 100 1.87 × 101

256 1.73 × 10−2 1.00× 101 3.52 × 101

512 1.06 × 10−2 5.02× 100 1.76 × 101

1024 6.72 × 10−3 5.94× 10−1 5.96 × 100

Table 3 Accuracy of the orthogonality of the computed eigenvectors computed by eig of
MATLAB (second column), by MR3 (third column) and by the proposed method (fourth
column)

maxi
‖XT xi−e(n)i

‖2
nε

n eig MR3 MTV

128 2.36× 10−1 2.901 × 100 2.16 × 102

256 1.18× 10−1 2.69 × 100 6.35 × 102

512 5.92× 10−2 7.26 × 101 1.03 × 101

1024 1.43× 10−2 2.99 × 100 3.83 × 101

Table 4 Accuracy of the residuals of the eigenvectors computed by eig of MATLAB (second
column), by MR3 (third column) and by the proposed method (fourth column)

maxi
‖T x̄i−λi x̄i‖2

nε‖T ‖2

n eig MR3 MTV

128 1.67 × 10−1 2.05× 100 1.52 × 102

256 8.37 × 10−2 1.45× 101 1.08 × 101

512 4.18 × 10−2 7.26× 100 1.05 × 102

1024 6.72 × 10−3 9.48× 10−1 5.21 × 100
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7 Conclusions

Recently, Malyshev and Dhillon have proposed an algorithm for deflating the
tridiagonal matrix, once an eigenvalue has been computed. Starting from the above
mentioned algorithm, a method for computing the eigenvectors of a symmetric
tridiagonal matrix T has been proposed. It requires the computation of an index
j which determines the premature deflation in the implicit QR method. The index
j is computed considering the two sequences of cosines generated by a sweep of
forward and backward QR method with shift the computed eigenvalue. The sought
eigenvector is obtained form the first j Givens coefficients generated by the forward
implicit QR method and from the last n − j Givens coefficients generated by the
backward implicit QR method.

The overall complexity for computing an eigenvector depends linearly on the
size of the matrix.

The numerical tests show the reliability of the proposed technique.

Acknowledgements The authors wish to thank the anonymous reviewers for their constructive
remarks that helped improving the proposed algorithm and the presentation of the results.

The authors would like to thank Paolo Bientinesi and Matthias Petschow for providing their
MATLAB implementation of the MR3 algorithm, written by Matthias Petschow.

The work of the author “Nicola Mastronardi” is partly supported by GNCS–INdAM and by
CNR under the Short Term Mobility Program. The work of the author “Harold Taeter” is supported
by INdAM-DP-COFUND-2015, grant number: 713485.

References

1. Anderson, E., Bai, Z., Bischof, C., Blackford, L., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd
edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

2. Cuppen, J.J.M.: A divide and conquer method for the symmetric tridiagonal eigenproblem.
Numer. Math. 36, 177–195 (1981)

3. Davis, P., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press,
Cambridge (1984)

4. Dhillon, I., Malyshev, A.: Inner deflation for symmetric tridiagonal matrices. Linear Algebra
Appl. 358, 139–144 (2003)

5. Dhillon, I., Parlett, B.: Multiple representations to compute orthogonal eigenvectors of
symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1–28 (2004)

6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press,
Baltimore (2013)

7. Gu, M., Eisenstat, S.: A divide-and-conquer algorithm for the symmetric tridiagonal eigen-
problem. SIAM J. Matrix Anal. Appl. 16(1), 172–191 (1995)

8. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, New York
(1991)

9. Mastronardi, N., Van Dooren, P.: Computing the Jordan structure of an eigenvalue. SIAM J.
Matrix Anal. Appl. 38, 949–966 (2017)

10. Mastronardi, N., Van Dooren, P.: The QR–steps with perfect shifts. SIAM J. Matrix Anal.
Appl. 39, 1591–1615 (2018)



On Computing Eigenvectors of Symmetric Tridiagonal Matrices 195

11. Parlett, B.N.: The Symmetric Eigenvalue Problem. Society for Industrial and Applied Mathe-
matics, Philadelplhia (1997)

12. Parlett, B.N., Le, J.: Forward instability of tridiagonal QR. SIAM J. Matrix Anal. Appl. 14(1),
279–316 (1993)

13. Petschow, M., Quintana-Ortí, E., Bientinesi, P.: Improved accuracy and parallelism for MRRR–
based eigensolvers–a mixed precision approach. SIAM J. Sci. Comput. 36(2), C240–C263
(2014)

14. Wilkinson, J., Bauer, F., Reinsch, C.: Linear Algebra. Handbook for Automatic Computation.
Springer, Berlin (2013)

15. Willems, P.R., Lang, B.: Twisted factorizations and qd–type transformations for the MR3
algorithm–new representations and analysis. SIAM J. Matrix Anal. Appl. 33(2), 523–553
(2012)

16. Willems, P.R., Lang, B.: A framework for the MR3 algorithm: theory and implementation.
SIAM J. Sci. Stat. Comput. 35(2), A740–A766 (2013)



A Krylov Subspace Method
for the Approximation of Bivariate
Matrix Functions

Daniel Kressner

Abstract Bivariate matrix functions provide a unified framework for various tasks
in numerical linear algebra, including the solution of linear matrix equations and the
application of the Fréchet derivative. In this work, we propose a novel tensorized
Krylov subspace method for approximating such bivariate matrix functions and
analyze its convergence. While this method is already known for some instances,
our analysis appears to result in new convergence estimates and insights for all but
one instance, Sylvester matrix equations.

Keywords Matrix function · Krylov subspace method · Bivariate polynomial ·
Fréchet derivative · Sylvester equation

1 Introduction

Given a univariate function f (z) defined in the neighborhood of the spectrum
Λ(A) of a matrix A ∈ Cn×n, the numerical computation of the matrix function
f (A) ∈ Cn×n has been studied intensively during the last decades; see [10, 15, 18]
for surveys. The extension of the notion of matrix functions to bivariate or, more
generally, multivariate functions f has a long history as well, notably in the context
of holomorphic functional calculus and operator theory; see [23, Sec. 3] for a
detailed discussion and references. In the numerical analysis literature, however,
bivariate matrix functions have been discussed mostly for special cases only.

Given two matrices A ∈ Cm×m and B ∈ Cn×n and a bivariate function f (x, y)

defined in a neighborhood of Λ(A)×Λ(B), the bivariate matrix function f {A,B}
is a linear operator on Cm×n. We will recall the formal definition of f {A,B} in
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Sect. 2 below. Linear matrix equations and Fréchet derivatives constitute the most
widely known instances of bivariate matrix functions:

1. For f (x, y) = 1/(x + y) the matrix X = f {A,B}(C) is the solution of the
Sylvester matrix equation

AX + XBT = C, C ∈ C
m×n, (1)

where BT denotes the complex transpose of B and C is often of low rank. When
B equals Ā (denoting the complex conjugate of A) and C is Hermitian, (1) is
called Lyapunov matrix equation. Such matrix equations play an important role
in control, e.g., for computing the Gramians in balanced truncation model reduc-
tion of linear time-invariant control systems. They also arise from structured
discretizations of partial differential equations. See [5, 35] for references.

2. There are several variants of (1) that fit the framework of bivariate matrix
functions. The solution of the Stein equation AXBT − X = C is given by
X = f {A,B}(C) with f (x, y) = 1/(1 − xy). More generally, for f (x, y) =
1/p(x, y), with a bivariate polynomial p(x, y) = ∑k

i=0
∑�

j=0 pij x
iyj , the

matrix X = f {A,B}(C) is the solution of the matrix equation

k∑

i=0

�∑

j=0

pijA
iX(BT )j = C,

which has been considered, e.g., in [9, 27].
Time-limited and frequency-limited balanced truncation model reduction [6,

12] give rise to matrix equations that involve matrix exponentials and logarithms.
For example, the reachability Gramian corresponding to a time interval 0 ≤ ts <

te ≤ ∞ satisfies an equation of the form

AX +XA∗ = − exp(tsA)C exp(tsA∗)+ exp(teA)C exp(teA∗), (2)

where A∗ = ĀT denotes the Hermitian transpose and, once again, C is often of
low rank. The solution of (2) can be expressed as X = f {A, Ā}(C) with

f (x, y) = exp(te(x + y))− exp(ts(x + y))

x + y
. (3)

In the analogous situation for frequency-limited balanced truncation, the corre-
sponding function takes the form

f (x, y) = −g(x)+ g(y)

x + y
, g(z) = Re

( i

π
ln
(z + iω2

z + iω1

))
, 0 ≤ ω1 < ω2 ≤ ∞,

(4)

where Re denotes the real part of a complex number.
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3. Given a (univariate) matrix function f (A) and the finite difference quotient

f [1](x, y) := f [x, y] =
{

f (x)−f (y)
x−y

, for x �= y,

f ′(x), for x = y,
(5)

the matrix X = f [1]{A,AT }(C) is the Fréchet derivative of f at A in direction
C; see [23, Thm. 5.1].

In this work, we consider the numerical approximation of f {A,B}(C) for large
matrices A and B. As the size of the involved matrices grows, it becomes necessary
to impose additional structure before attempting this task. We assume that matrix-
vector multiplications with A and B are feasible because, for example, A and B

are sparse. Moreover, C is assumed to have low rank. The latter is a common
assumption in numerical solvers for large-scale matrix equations (1), but we also
refer to [14, 16, 25, 30] for works that consider other types of data-sparsity for C.

Given a rank-one matrix C = cdT , the method proposed in this paper makes use
of the two Krylov subspaces generated by the matrices A,B with starting vectors
c, d . An approximation to f {A,B}(C) is then selected from the tensor product
of these two subspaces. Our method already exists for several of the instances
mentioned above. For f (x, y) = 1/(x + y), it corresponds to a widely known
Krylov subspace method for Lyapunov and Sylvester equations [20, 32]. For the
functions (3) and (4), our method corresponds to the Krylov subspace methods
presented in [26] and [6], respectively. For the Fréchet derivative, the algorithm
presented in this paper has been proposed independently in [21]. For Lyapunov and
Sylvester equations, the convergence of these methods has been analyzed in detail;
see, e.g., [2, 36]. For all other instances, the general theory presented in this work
appear to result in previously unknown convergence estimates.

We note in passing that the algorithm proposed in this paper shares similarities
with a recently proposed Krylov subspace method for performing low-rank updates
of matrix functions [4].

2 Preliminaries

We first recall the definition of bivariate matrix functions and their basic properties
from [23]. Let Πk,� denote the set of all bivariate polynomials of degree at most
(k, �), that is, for p ∈ Πk,� we have that p(x, y) has degree at most k in x and
degree at most � in y. Every such polynomial takes the form

p(x, y) =
k∑

i=0

�∑

j=0

pij x
iyj , pij ∈ C.
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The bivariate matrix function corresponding to p and evaluated at A ∈ Cm×m,
B ∈ Cn×n is defined as

p{A,B} : Cm×n → C
m×n, p{A,B}(C) :=

k∑

i=0

�∑

j=0

pijA
iC(BT )j . (6)

This definition extends via Hermite interpolation to general functions f that are
sufficiently often differentiable at the eigenvalues of A and B; see [23, Def. 2.3] for
details. A more compact and direct definition is possible when f is analytic.

Assumption 1 There exist domains ΩA,ΩB ⊂ C containing the eigenvalues of A
and B, respectively, such that fy(x) := f (x, y) is analytic in ΩA for every y ∈ ΩB

and fx(y) := f (x, y) is analytic in ΩB for every x ∈ ΩA.

By Hartog’s theorem [22], Assumption 1 implies that f is analytic in ΩA × ΩB .
Moreover, we have

f {A,B}(C) = − 1

4π2

∮

ΓA

∮

ΓB

f (x, y)(xI − A)−1C(yI − BT )−1 dy dx, (7)

where ΓA ⊂ ΩA and ΓB ⊂ ΩB are closed contours enclosing the eigenvalues of A
and B, respectively.

Diagonalizing one of the two matrices A,B relates bivariate matrix functions to
(univariate) matrix functions of the other matrix. A similar result has already been
presented in [23, Sec. 6]; we include its proof for the sake of completeness.

Lemma 1 Suppose that Assumption 1 holds and that there is an invertible matrix
Q such that Q−1BQ = diag(μ1, . . . , μn). Then

f {A,B}(C) = [fμ1(A)c̃1 fμ2(A)c̃2 · · · fμn(A)c̃n
]
QT ,

with CQ−T =: C̃ = [c̃1 · · · c̃n
]
and fμ := f (x,μ).

Proof Setting ΛB = diag(μ1, . . . , μn), we obtain from (7) that

f {A,B}(C) = − 1

4π2

∮

ΓA

(xI − A)−1C̃
[ ∮

ΓB

f (x, y)(yI −ΛB)
−1 dy

]
QT dx

= 1

2π i

∮

ΓA

(xI − A)−1C̃ · diag(fμ1(x), . . . , fμn (x))Q
T dx

= 1

2π i

∮

ΓA

[
fμ1(x)(xI − A)−1c̃1 · · · fμn(x)(xI − A)−1c̃n

]
QT dx,

which concludes the proof, using the contour integral representation of fμ(A). ��
For the case f (x, y) = 1/(x+y), the result of Lemma 1 is related to algorithms for
Sylvester equation with large m but relatively small n; see [34].
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If both A,B are diagonalizable, that is, additionally to the assumption of
Lemma 1 there exists an invertible matrix P such that P−1AP = diag(λ1, . . . , λm)

then the result of the lemma implies

f {A,B}(C) = P

⎛

⎜⎝

⎡

⎢⎣
f (λ1, μ1) · · · f (λ1, μn)

...
...

f (λm, μ1) · · · f (λm, μn)

⎤

⎥⎦ ◦ C
⎞

⎟⎠QT , C̃ := P−1CQ−T ,

where ◦ denotes the elementwise (or Hadamard) product.

3 Algorithm

For the sake of simplifying the presentation, we assume that C has rank 1 and can
thus be written as C = cdT for nonzero vectors c, d ∈ Cn. We comment on the
extension to (small) ranks larger than 1 below.

Our method proceeds by constructing orthonormal bases for the Krylov sub-
spaces

Kk(A, b) = span
{
c,Ac, . . . , Ak−1c

}
, K�(B, d) = span

{
d,Bd, . . . , B�−1d

}
,

When k ≤ m and � ≤ n, these subspaces are generically of dimension k and
�, which will be assumed in the following. The Arnoldi method [38] applied to
Kk(A, b), K�(B, d) not only produces orthonormal bases Uk ∈ Cm×k , V� ∈ Cn×�

but also yields Arnoldi decompositions

AUk = UkGk + gk+1,kuk+1e
T
k , (8)

BV� = V�H� + h�+1,�v�+1e
T
� , (9)

where Gk = U∗k AUk and H� = V ∗� BV� are upper Hessenberg matrices, ek and e�
denote the kth and �th unit vectors of suitable length, gk+1,k and h�+1,� are complex
scalars. If k < m and � < n then [Uk, uk+1] and [V�, u�+1] form orthonormal bases
of Kk+1(A, b) and K�+1(B, d), respectively.

We search for an approximation to f {A,B}(C) in Kk(A, b)×K�(B, d). Every
such approximation takes the form UkXk,�V

T
� with some matrix Xk,� ∈ Ck×�. For

reasons that become clear in Sect. 4 below, a suitable (but possibly not the only)
choice for this matrix is obtained by evaluating the compressed function:

Xk,� = f
{
U∗k AUk, V

∗
k BVk

}
(U∗k CV �) = f {Gk,H�}(c̃d̃T ),

with c̃ = U∗k c, d̃ = V ∗� d .
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Algorithm 1 Arnoldi method for approximating f {A,B}(C) with C = cdT

1: Perform k steps of the Arnoldi method to compute an orthonormal basis Uk of Kk(A, c) and
Gk = U∗k AUk , c̃ = U∗k c.

2: Perform � steps of the Arnoldi method to compute an orthonormal basis V� of K�(B, d) and
H� = V ∗� BV�, d̃ = V ∗k d.

3: Compute bivariate matrix function Xk,� = f {Gk,H�}(c̃d̃T ).

4: Return UkXk,�V
T
� .

The described procedure is summarized in Algorithm 1. We conclude this section
with several remarks:

1. For the compressed function in Line 3, one requires that f is defined on Λ(Gk)×
Λ(H�). Considering the numerical ranges

W (A) = {w∗Aw : w ∈ C
m, ‖w‖2 = 1

}
, W (B) = {w∗Bw : w ∈ C

m, ‖w‖2 = 1
}
,

the following assumption guarantees that this requirement is met; it is also needed
in the convergence analysis of Sect. 4.

Assumption 2 Assumption 1 is satisfied with domains ΩA,ΩB satisfying
W (A) ⊂ ΩA andW (B) ⊂ ΩB .

Because of Λ(Gk) ⊂ W (Gk) ⊂ W (A) and Λ(Hk) ⊂ W (Hk) ⊂ W (B),
Assumption 2 implies that f {Gk,H�} is well defined.

General-purpose approaches to evaluating the small and dense bivariate
matrix function f {Gk,H�}(c̃d̃T ) in Line 3 are discussed in [23, Sec. 6].
However, let us stress that it is generally advisable to use an approach that is
tailored to the function f at hand. For example, for f (x, y) = 1/(x + y) this
amounts to solving a small linear matrix equation, for which the Bartels-Stewart
algorithm [1] should be used. For the finite difference quotient (5), a suitable
method is discussed in Sect. 5 below.

2. As in the case of univariate functions, there is no reliable stopping criterion for
general f that would allow to choose k, � such that Algorithm 1 is guaranteed
to return an approximation with a prescribed accuracy. In the spirit of existing
heuristic criteria, we propose to use the approximation

‖f {A,B}(cdT )−UkXk,�V
T
� ‖F ≈ ‖Uk+hXk+h,�+hV

T
�+h−UkXk,�V

T
� ‖F := ek,�,h

for some small integer h, say h = 2. As already explained in, e.g., [4, Sec. 2.3],
the quantity ek,�,h is inexpensive to check because

ek,�,h =
∥∥∥∥Uk+h

(
Xk+h,�+h −

[
Xk,� 0

0 0

])
V T
�+h

∥∥∥∥
F

=
∥∥∥∥Xk+h,�+h −

[
Xk,� 0

0 0

]∥∥∥∥
F

.
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If ek,�,h is smaller than a user-specified tolerance, the output of Algorithm 1
is accepted. Otherwise, k and � are increased, the orthonormal bases Uk, V� are
extended and Step 3 is repeated. It may be desirable to increase k and � separately.
For example, one could increase k if

∥∥∥∥Xk+h,� −
[
Xk,�

0

]∥∥∥∥
F

≥ ∥∥Xk,�+h −
[
Xk,� 0

]∥∥
F

and increase � otherwise.
Again, we emphasize that better stopping criteria may exist for specific

choices of f . This is particularly true for linear matrix equations; see [31] and
the references therein.

3. Algorithm 1 extends to matrices C of rank r > 1 by replacing the Arnoldi method
in Steps 1 and 2 by a block Arnoldi method, by a global Arnoldi method, or by
splitting C into r rank-1 terms; see [11] for a comparison of these approaches in
a related setting.

4 Exactness Properties and Convergence Analysis

In this section, we analyze the convergence of Algorithm 1 following a strategy
commonly used for matrix functions; see, in particular, [4]. First, we establish that
Algorithm 1 is exact (that is, it returns f {A,B}(cdT )) for polynomials of bounded
degree. This then allows us to relate its error for general functions to a bivariate
polynomial approximation problem on the numerical ranges.

Lemma 2 Algorithm 1 is exact if f ∈ Π(k−1,�−1).

Proof The following well-known exactness property of the Arnoldi method (see,
e.g., [33]) follows by induction from (8)–(9):

Aic = Uk

(
Gk

)i
U∗k c, i = 0, . . . , k − 1, Bj d = V�

(
H�

)j
V ∗� d, j = 0, . . . , �− 1.

By writing f (x, y) =∑k−1
i=0
∑�−1

j=0 pij x
iyj and using (6), this gives

f {A,B}(cdT ) =
k−1∑

i=0

�−1∑

j=0

Aic(Bjd)T = Uk

( k−1∑

i=0

�−1∑

j=0

Gi
kU

∗
k cd

T V �(H
T
� )j
)
V T
�

= Uk · f {Gk,H�}
(
U∗k cdT V �

) · V T
� ,

which corresponds to what is returned by Algorithm 1. ��
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To treat general functions, we will need to estimate the norm of f {A,B} induced
by the Frobenius norm on Cm×n:

‖f {A,B}‖ := max
{‖f {A,B}(C)‖F : C ∈ C

m×n, ‖C‖F = 1
}
.

For a (univariate) matrix function f (A), the seminal result by Crouzeix and
Palencia [8] states that ‖f (A)‖2 ≤ (1 + √2)maxx∈W (A) |f (x)|. Theorem 1.1
in [13] appears to be the only result in the literature that aims at establishing
norm bounds for general bivariate functions. This result provides an upper bound
in terms of Henrici’s departure from normality for A and B [17] as well as the
maximal absolute value of f and its derivatives on convex hulls of Λ(A),Λ(B).
The following lemma provides an upper bound in terms of the maximal absolute
value of f on the numerical ranges, which is better suited for our purposes.

Lemma 3 Suppose that Assumption 2 holds and let EA,EB be compact connected
sets such that W (A) ⊂ EA ⊂ ΩA and W (B) ⊂ EB ⊂ ΩB . Let len(∂EA) denote
the length of the boundary curve ∂EA of EA, let dA(·) denote the distance between
a subset of C and W (A), and define analogous quantities for B. Then

‖f {A,B}‖ ≤M · max
x∈EA,y∈EB

|f (x, y)|,

where

(a) M = 1 if both A and B are normal;
(b) M = 1+√2 if A or B are normal;

(c) M = 1+√2
2π min

{ len(∂EA)
dA(∂EA)

, len(∂EB)
dB(∂EB)

}
otherwise, under the additional assumption

that dA(∂EA) > 0 or dB(∂EB) > 0.

Proof (a) and (b) Assume that B is normal. The result of Lemma 1, with Q chosen
unitary, implies

‖f {A,B}(C)‖2
F =

m∑

j=1

‖fμj
(A)c̃j‖2

2 ≤
m∑

j=1

‖fμj
(A)‖2

2‖c̃j‖2
2

= M2
m∑

j=1

max
x∈EA

|fμj
(x)|2 · ‖c̃j‖2

2 ≤ M2 max
x∈EA,y∈EB

|f (x, y)|2 · ‖C‖2
F ,

with M = 1 if A is also normal and M = 1 + √2 otherwise [8]. The proof is
analogous when B is normal and A is not.

(c) Starting from the representation (7), we obtain

f {A,B}(C) = − 1

4π2

∮

∂EB

[ ∮

∂EA

f (x, y)(xI − A)−1dx
]
C(yI − BT )−1 dy

= 1

2π i

∮

∂EB

fy(A)C(yI − BT )−1 dy
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and, in turn,

‖f {A,B}(C)‖F ≤ 1

2π
max
y∈EB

‖fy(A)‖2‖C‖F ·
∮

∂EB

∥∥(yI − BT )−1
∥∥

2 dy

Combined with ‖(yI − BT )−1‖2 ≤ 1/dB(y), this shows ‖f {A,B}‖ ≤
1+√2

2π
len(∂EB)
dB(∂EB)

. Analogously, one establishes the same inequality with B replaced
by A. ��

Remark 1 The result of Lemma 3 can be strengthened in the special case that
f (x, y) = g(x + y) for a univariate function g. This class of functions covers the
matrix equations discussed in the introduction and also features prominently in [7].
Using that W(I⊗A+B⊗I) = W(A)+W(B) (see, e.g., the proof of [37, Corollary
3.2]), we obtain

‖f {A,B}‖ = ‖g(I ⊗ A+ B ⊗ I)‖2 ≤ (1+√2)‖g‖W(I⊗A+B⊗I )

= (1+√2)‖g‖W(A)+W(B) = (1+√2) max
x∈W(A),y∈W(B)

|f (x, y)|.

It remains an open and interesting problem to study whether a similar bound holds
for a general bivariate function f .

Theorem 1 Let EA, EB , and M be defined as in Lemma 3 and suppose that the
assumptions of the lemma hold. Then the output of Algorithm 1 satisfies the error
bound

‖f {A,B}(cdT )−UkXk,�V
T
� ‖F ≤ 2M‖c‖2‖d‖2· inf

p∈Πk−1,�−1
max

x∈EA,y∈EB

|f (x, y)−p(x, y)|.

Proof Let p ∈ Πk−1,�−1. By Lemma 2, we have

p{A,B}(cdT ) = Uk · p{Gk,H�}
(
c̃d̃T

) · V T
� , c̃ = U∗k c, d̃ = V ∗� c.

Hence,

f {A,B}(cdT )− UkXk,�V
T
�

= f {A,B}(cdT )− p{A,B}(cdT )− Uk

(
f {Gk,H�}

(
c̃d̃T

)− p{Gk,H�}
(
c̃d̃T

))
V T
�

= e{A,B}(cdT )− Uk · e{Gk,H�}
(
c̃d̃T

) · V T
� (10)
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with e = f − p. Applying Lemma 3 and using that the numerical ranges of Gk and
Hk are contained in A and B, respectively, we have

max{‖e{A,B}‖F , ‖e{Gk,H�}‖F } ≤M · max
x∈EA,y∈EB

|e(x, y)|

Inserted into (10), this gives

‖f {A,B}(cdT )− UkXk,�V
T
� ‖F ≤ 2M‖c‖2‖d‖2 · max

x∈EA,y∈EB

|e(x, y)|,

Because p was chosen arbitrary, the result of the theorem follows. ��
Combining Lemma 3 with existing results on polynomial multivariate approxi-

mation yields concrete convergence estimates. For example, let us consider the case
of Hermitian matrices A and B. By a suitable reparametrization, we may assume
without loss of generality that W (A) = W (B) = [−1, 1]. By Assumption 2,
there is ρ > 1 such that f is analytic on Eρ × Eρ , with the Bernstein ellipse
Eρ = {z ∈ C : |z− 1| + |z+ 1| ≤ ρ + ρ−1}. Then for any ρ̃ ∈ (1, ρ) it holds that

inf
p∈Πk−1,k−1

max
x,y∈[−1,1] |f (x, y)− p(x, y)| = O(ρ̃−k), k →∞, (11)

see, e.g., [40]. Hence, Algorithm 1 converges linearly as � = k → ∞ with a rate
arbitrarily close to ρ.

For f (x, y) = 1/(α + x + y), a specification of (11) can be found in [24,
Lemma A.1], resulting in a convergence bound for Sylvester equation that matches
the asymptotics of [36]. This is also an example for a function of the form f (x, y) =
g(x + y). By choosing an approximating polynomial of the same form and using
Remark 1, the convergence estimate of Theorem 1 simplifies for any such function
f to

‖f {A,B}(cdT )− UkXk,�V
T
� ‖F

≤ 2(1+√2)‖c‖2‖d‖2 · min
p∈Πk−1

max
z∈W(A)+W(B)

|g(z)− p(z)|, (12)

where Πk−1 is the set of all (univariate) polynomials of degree at most k − 1.
We now use (12) to analyze the Krylov subspace method for the time-limited

Gramian (2) for a symmetric negative definite matrix A with eigenvalues contained
in the interval [−β,−α], 0 < α < β < ∞, and a rank-one matrix C = ccT .
By combining (3) and (12), convergence estimates can be obtained by studying
the polynomial approximation of g(z) = z−1(exp(tez) − exp(tsz)) on the interval
[−β,−α]. For te = ∞, g always has a singularity at z = 0. In turn, the asymptotic
linear convergence rate ρ predicted by polynomial approximation is independent
of ts ≥ 0. In other words, for te = ∞ the convergence behavior for time-limited
Gramians (ts > 0) and Lyapunov equations (ts = 0) are expected to be similar. for
te < ∞, the situation is dramatically different: g is an entire function, yielding
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Fig. 1 Convergence of Algorithm 1 applied to the time-limited Gramians from Example 1 for
different choices of ts , te

superlinear convergence. For ts = 0, g(z) = z−1(exp(tez) − 1) = teϕ(tez)

and Lemma 5 in the appendix can be applied to obtain quantitative convergence
estimates.

Example 1 To illustrate the convergence of Algorithm 1 for approximating time-
limited Gramians, we consider a 500 × 500 diagonal matrix A with eigenvalues
uniformly distributed in [−100,−0.1] and a random vector c of norm 1. Figure 1
reports the error ‖X−X̃k‖2 (vs. k) of the approximation X̃k returned by Algorithm 1
with � = k. The left plot displays the effect of varying ts while keeping te = ∞
fixed. While there is a pronounced difference initially, probably due to the different
norms of X, the convergence eventually settles at the same curve. The right plot
displays the effect of choosing te finite, clearly exhibiting superlinear convergence
for te = 1.

5 Application to Fréchet Derivatives

Given a univariate function f analytic in a neighborhood of the eigenvalues of A,
the Fréchet derivative of f at A is a linear map Df {A} : Cn×n → Cn×n uniquely
defined by the property f (A+ E) = f (A)+Df {A}(E)+ O(‖E‖2

2). In [23, Thm
5.1] it was shown that Df {A} = f [1]{A,AT } for the function f [1] defined in (5). In
turn, this enables us to use Algorithm 1 for approximating the application of Df {A}
to rank-one or, more generally, to low-rank matrices. This may be, for example, of
interest when approximating gradients in the solution of optimization problems that
involve matrix functions; see [39] for an example.

When applying Algorithm 1 to f [1]{A,AT } with � = k, the reduced problem
f [1]{Gk,Hk} does, in general, not satisfy Hk = GT

k and can therefore not be related
to a Fréchet derivative of f (unless A is Hermitian and d is a scalar multiple of c).
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The following lemma shows that a well-known formula for the Fréchet derivative
(see, e.g., [29, Thm. 2.1]) carries over to this situation.

Lemma 4 Let f be analytic on a domain Ω containing the eigenvalues of A ∈
Cm×m and B ∈ Cn×n. Then

f

([
A C

0 B

])
=
[
f (A) f [1]{A,BT }(C)

0 f (B)

]
.

Proof The assumption of the lemma implies that Assumption 1 is satisfied for
f [1]{A,BT } with domains ΩA,ΩB satisfying ΩA ∪ΩB ⊂ Ω . Let Γ ⊂ Ω

be a closed contour enclosing ΩA and ΩB . Combining the contour integral
representation (7) with

f [1](x, y) = 1

2π i

∮

Γ

f (z)

(z− x)(z− y)
dz, ∀x ∈ ΩA, y ∈ ΩB,

gives

f [1]{A,BT }(C) = − 1

8π3i

∮

ΓA

∮

ΓB

[ ∮

Γ

f (z)

(z− x)(z − y)
dz
]
(xI − A)−1C(yI − B)−1 dy dx

= − 1

8π3i

∮

Γ

f (z)
[ ∮

ΓA

(xI − A)−1

z− x
dx
]
C
[ ∮

ΓB

(yI − B)−1

z− y
dy
]

dz

= 1

2π i

∮

Γ

f (z)(zI − A)−1C(zI − B)−1 dz.

On the other hand, we have

f

([
A C

0 B

])
= 1

2π i

∮

Γ

f (z)

[
zI − A −C

0 zI − B

]−1

dz

=
[
f (A) 1

2π i

∮
Γ
f (z)(zI − A)−1C(zI − B)−1 dz

0 f (B)

]
,

which completes the proof. ��
When applying Algorithm 1 to f [1], we can now use Lemma 4 to address the

reduced problem with a standard method for evaluating small and dense matrix
functions. This yields Algorithm 2.

The following convergence result is a consequence of Theorem 1; the particular
structure of f [1] allows us to reduce the bivariate to a univariate polynomial
approximation problem.
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Algorithm 2 Arnoldi method for approximating Df {A}(cdT )

1: Perform k steps of the Arnoldi method to compute an orthonormal basis Uk of Kk(A, c) and
Gk = U∗k AUk , c̃ = U∗k c.

2: Perform k steps of the Arnoldi method to compute an orthonormal basis Vk of Kk(A
T , d) and

Hk = V ∗k AT Vk , d̃ = V ∗k d.

3: Compute F = f

([
Gk c̃d̃T

0 HT
k

])
and set Xk = F(1 : k, k + 1 : 2k).

4: Return UkXkV
T
k .

Corollary 1 Let f be analytic on a domainΩA containingW (A) and let EA be a
compact convex set such that W (A) ⊂ EA ⊂ ΩA. Then the output of Algorithm 2
satisfies the error bound

‖Df {A}(cdT )− UkXkV
T
k ‖F ≤ 2M‖c‖2‖d‖2 min

p∈Πk−1
max
x∈EA

|f ′(x)− p(x)|,

where M = 1 if A is normal and M = 1+√2
2π

len(∂EA)
dA(∂EA)

otherwise.

Proof The conditions of the corollary imply that the conditions of Theorem 1 are
satisfied for f [1]{A,AT }, which in turn yields

‖f [1]{A,AT }(cdT )− UkXkV
T
k ‖F ≤ 2M‖c‖2‖d‖2 · inf

p∈Πk−1,k−1
max

x,y∈EA

|f [1](x, y)− p(x, y)|.

For arbitrary q ∈ Πk , we let p̃(x, y) := q [1](x, y) ∈ Πk−1,k−1 and set e := f − q .
By the mean value theorem and convexity of EA, for every x, y ∈ EA with x �= y

there is ξ ∈ EA such that

e′(ξ) = e(x)− e(y)

x − y
= f [1](x, y)− p̃(x, y).

Hence,

max
x,y∈EA

|f [1](x, y)− p̃(x, y)| ≤ max
ξ∈EA

|e′(ξ)| = max
ξ∈EA

|f ′(ξ)− q ′(ξ)|.

Setting p = q ′ ∈ Πk−1 completes the proof. ��
Corollary 1 indicates that the convergence of Algorithm 2 is similar to the con-

vergence of the standard Arnoldi method for approximating f ′(A)c and f ′(AT )d .
Moreover, Corollary 1 allows us to directly apply existing polynomial approxima-
tion results derived for studying the convergence of the latter method, such as the
ones from [3, 19].

Example 2 We consider the matrix A and the vector c from Example 1 and measure
the error ‖Df {A}(ccT ) − Fk‖2 of the approximation Fk = UkXkU

T
k returned
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Fig. 2 Convergence of Algorithm 2 for approximating Df {A}(ccT ) and convergence of Arnoldi
method for approximating f ′(A)c for f (z) = exp(z) (left plot) and f (z) = √−z (right plot)

by Algorithm 2. This is compared with the error ‖f ′(A)c − Ukf
′(Gk)c̃‖2 of

the standard Arnoldi approximation for f ′(A)c. Figure 2 demonstrates that both
algorithms exhibit the same qualitative convergence behavior.

6 Outlook

This work offers numerous opportunities for future work. Most notably, it remains
an open problem whether the result of Lemma 3 can be established with a constant
independent of A,B. All experiments reported in this paper are of academic nature,
their purpose is to illustrate convergence properties. Although the algorithms are, in
principle, designed to tackle large-scale matrices, the detailed implementation in a
large-scale setting has not been discussed and will be reported elsewhere.

Appendix: Polynomial Approximation of the φ Function

The ϕ function, which plays an important role in exponential integrators, is given
by ϕ(z) = (exp(z) − 1)/z. As ϕ is an entire function, we expect polynomial
approximations to converge superlinearly. The following lemma derives such an
error bound when considering approximations on an interval [−4ρ, 0].

Lemma 5 Let ρ > 0 and εk = minp∈Πk−1 maxz∈[−4ρ,0] |ϕ(z)− p(z)|. Then

εk ≤ 40
ρ2

k3 exp

(
− k2

5ρ

)
for
√

4ρ ≤ k ≤ 2ρ, (13)
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εk ≤ 8

3k − 5ρ

(
eρ

k + 2ρ

)k

for k ≥ 2ρ. (14)

Proof We use x �→ (2x − 2)ρ to map [−1, 1] to [−4ρ, 0], yielding the equivalent
polynomial optimization problem

εk = min
p∈Πk−1

max
x∈[−1,1]

|ϕ̃(x)− p(x)|,

with ϕ̃(x) := ϕ((2x − 2)ρ). By [28, Theorem 2.2], we have for any r > 1 that

εk ≤ 2μ(ϕ̃, r)
r−k

1 − r−1 ,

where

μ(ϕ̃, r) ≤ max
w∈C
|w|=r

∣∣∣ϕ̃
((

w +w−1
)
/2
)∣∣∣ = max

w∈C
|w|=r

∣∣∣ϕ
((

w +w−1 − 2
)
ρ
)∣∣∣

=
∣∣∣ϕ
((

r + r−1 − 2
)
ρ
)∣∣∣ ≤ exp

((
r + r−1 − 2

)
ρ
)

(
r + r−1 − 2

)
ρ

.

The expression exp((r+r−1−2)ρ)r−k is minimized by setting r := k
2ρ+

√
k2

4ρ2 + 1.

Note that r−1 =
√

k2

4ρ2 + 1− k
2ρ and (r + r−1 − 2)ρ = √k2 + 4ρ2 − 2ρ.

We first discuss the case
√

4ρ ≤ k ≤ 2ρ, which in particular implies ρ ≥ 1. The
inequality

√
k2 + 4ρ2 − 2ρ

k
+ log

⎛

⎝
√

k2

4ρ2 + 1− k

2ρ

⎞

⎠ ≤ − k

5ρ
(15)

is shown for k = √
4ρ by direct calculation. By differentiating, it is shown

that the difference between both sides of (15) is monotonically decreasing for
k ∈ [√4ρ, 2ρ] and hence the inequality holds for all such k. Using also

√
k2 + 4ρ2 − 2ρ ≥ k2

5ρ
, 1− r−1 ≥ k

4ρ
,
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we obtain from (15) that

μ(ϕ̃, r)
r−k

1− r−1 ≤
exp(

√
k2 + 4ρ2 − 2ρ)√

k2 + 4ρ2 − 2ρ
·

exp
(
k log

(√
k2

4ρ2 + 1− k
2ρ

))

1− r−1

≤ 20
ρ2

k3 exp

(
− k2

5ρ

)
,

which completes the proof of (13).
Similarly, the inequality (14) follows from combining

√
k2 + 4ρ2 − 2ρ

k
+ log

⎛

⎝
√

k2

4ρ2 + 1− k

2ρ

⎞

⎠ ≤ log(eρ)− log(k + 2ρ)

with

(

√
k2 + 4ρ2 − 2ρ)(1− r−1) ≥ 3

4
k − 5

4
ρ,

which hold for k ≥ 2ρ. ��
Compared to the corresponding bounds for the exponential [19, Theorem 2],

the bounds of Lemma 5 are lower for larger k, primarily because they benefit
from the additional factor O(1/k) due to the slower growth of the ϕ function.
Additionally, the factor

(
eρ

k+2ρ

)k in (14) seems to be better than the corresponding

factor exp(−ρ)
( eρ

k

)k [19, Eqn. (14)]. This improvement can probably be carried
over to the exponential. Figure 3 illustrates the differences between the bounds.
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Fig. 3 Bounds of Lemma 5 for the polynomial approximation of the ϕ function (in blue) and
bounds of [19, Theorem 2] for the polynomial approximation of the exponential function (in red).
Left plot: ρ = 10. Right plot: ρ = 1000
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Abstract We study different types of stationary iterative methods for solving a
class of large, sparse linear systems with double saddle point structure. In particular,
we propose a class of Uzawa-like methods including a generalized (block) Gauss-
Seidel (GGS) scheme and a generalized (block) successive overrelaxation (GSOR)
method. Both schemes rely on a relaxation parameter, and we establish convergence
intervals for these parameters. Additionally, we investigate the performance of
these methods in combination with an augmented Lagrangian approach. Numerical
experiments are reported for test problems from two different applications, a mixed-
hybrid discretization of the potential fluid flow problem and finite element modeling
of liquid crystal directors. Our results show that fast convergence can be achieved
with a suitable choice of parameters.
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1 Introduction

Consider the following linear system of equations:

A u ≡
⎡

⎣
A BT CT

B 0 0
C 0 −D

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
b1

b2

b3

⎤

⎦ ≡ b, (1)

where A ∈ Rn×n is symmetric positive definite (SPD), B ∈ Rm×n has full row rank,
C ∈ Rp×n and the matrix D ∈ Rp×p is symmetric positive semidefinite (SPS). In
this paper we focus primarily on two cases: D is either SPD, or the zero matrix.
When D is zero, C ∈ Rp×n is assumed to have full row rank. Throughout the paper
we assume that n ≥ m+ p.

Linear systems of this type arise, e.g., from finite element models of liquid
crystals (case D �= 0) and from mixed finite element approximation of potential
fluid flow problems (case D = 0); see [1, 10, 13] and the references therein for
detailed descriptions of these problems.

The following two propositions give necessary and sufficient conditions for the
invertibility of the coefficient matrix A in (1).

Proposition 1 ([1, Proposition 2.3]) Let A be SPD and assume that B and C

have full row rank. Consider the linear system (1) with D = 0. Then range(BT ) ∩
range(CT ) = {0} is a necessary and sufficient condition for the coefficient matrix
A to be invertible.

Proposition 2 ([1, Proposition 2.1]) Assume that A and D are respectively SPD
and SPS matrices. Then matrix A is invertible if and only if B has full row rank.

As is well known, stationary iterative schemes for solving A x = b are uniquely
associated with a given splitting A = M − N where M is nonsingular. More
precisely, an iterative scheme produces a sequence of approximate solutions as
follows:

uk+1 = G uk +M−1b, k = 0, 1, 2, . . . , (2)

where G =M−1N and u0 is given. It is well-known that (2) is convergent for any
initial guess if and only if ρ(G ) < 1, see [14].

In practice, stationary methods may fail to converge or converge too slowly.
For this reason they are usually combined with acceleration techniques, such
as Chebyshev or Krylov subspace methods [14]. These acceleration schemes,
while very successful, have some limitations. For instance, the use of Chebyshev
acceleration may require spectral information that is not always available, while
Krylov acceleration necessitates the computation of an orthonormal basis for the
Krylov subspace. For methods like GMRES the latter operation is known to have
an adverse impact on the parallel efficiency, especially on emerging multicore and



Uzawa-Type and Augmented Lagrangian Methods for Double Saddle Point Systems 217

hybrid architectures [7, 17]. On future-generation exascale architectures, resilience
is also expected to be an issue with these methods [4, 15]. This realization has
spurred renewed interest in classical fixed point iterations of the form (2), which do
not require any orthogonalization steps. Alternative acceleration techniques, such
as Monte Carlo and Anderson-type acceleration, are currently being investigated by
researchers [4, 9, 11, 12, 16]. Acceleration is only needed, of course, if the basic
stationary scheme (2) converges slowly. There are, however, situations where fast
convergence of (2) can be obtained, for example through the use of suitable relax-
ation parameters and, in the case of saddle point problems, augmented Lagrangian
techniques. In this paper we show that it is possible to have fast convergence of
stationary methods for linear systems of the form (2), without the need for Krylov
acceleration.

The remainder of this paper is organized as follows. Before ending this section,
we present some notations that are used throughout the paper. In Sect. 2 we investi-
gate a class of Uzawa-like methods, which can also be interpreted as generalized
(block) Gauss–Seidel method. In this section, we also consider the use of an
augmented Lagrangian technique to improve the performance of the iteration. In
Sect. 3 we propose the GSOR method to solve (1) in the case that its (3, 3)-block is
SPD. The convergence properties of the GSOR method are also studied. Illustrative
examples are reported in Sect. 4 for test problems appearing in groundwater flow
and liquid crystal modeling. Finally, we briefly state our conclusions in Sect. 5.

Notations For a given arbitrary square matrix W , its spectrum is denoted by σ(W).
If all eigenvalues of W are real, we use λmin(W) and λmax(W) to denote the
minimum and maximum eigenvalues of W , respectively. Moreover, the notation
ρ(W) stands for the spectral radius of W . If W is symmetric positive (semi)definite
we write W 2 0 (W � 0). Furthermore for two given matrices W1 and W2, by
W1 2 W2 (W1 � W2) we mean W1 −W2 2 0 (W1 −W2 � 0). For given vectors
x, y and z of dimensions n, m and p, (x; y; z) will denote a column vector of
dimension n+m+ p.

2 Uzawa-Like Iterative Schemes

Uzawa’s method (see, e.g., [3]) has long been a popular technique for solving
saddle point problems. In this section, we investigate possible extensions of Uzawa’s
method to the double saddle point problem (1). Since this involves a (lower) block
triangular splitting of the coefficient matrix, these schemes can also be regarded as
a generalization of the classical (block) Gauss–Seidel scheme. To this end, first we
split A as follows:

A =M
GGS

−N
GGS

, (3)
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where

M
GGS

=
⎡

⎣
A 0 0
B − 1

α
Q 0

C 0 M

⎤

⎦ and N
GGS

=
⎡

⎣
0 −BT −CT

0 − 1
α
Q 0

0 0 N

⎤

⎦ ,

in which the parameter α > 0 and the matrix Q 2 0 are given and D = N −M

where M is a negative definite matrix.

2.1 Double Saddle Point Problems with Zero (3,3)-Block

Here we assume that the matrix D in A is zero. Substituting M = N into the
splitting (3), we consider the following iterative method for solving (1),

uk+1 = Ḡ
GGS

uk +M−1
GGS

b, k = 0, 1, 2 . . . , (4)

in which the arbitrary initial guess u0 is given and

ḠGGS =
⎡

⎣
0 −A−1BT −A−1CT

0 I − αQ−1S
B
−αQ−1BA−1CT

0 M−1CA−1BT I +M−1S
C

⎤

⎦ , (5)

where S
B
= BA−1BT and S

C
= CA−1CT .

We recall next the following theorem and lemma, which we need to prove the
convergence of iterative method (4) under appropriate conditions. The lemma is an
immediate consequence of Weyl’s Theorem, see [8, Theorem 4.3.1].

Theorem 1 ([8, Theorem 7.7.3]) Let A and B be two n × n real symmetric
matrices such that A is positive definite and B is positive semidefinite. Then A � B

if and only if ρ(A−1B) ≤ 1, and A 2 B if and only if ρ(A−1B) < 1.

Lemma 1 Let A and B be two Hermitian matrices. Then,

λmax(A+ B) ≤ λmax(A)+ λmax(B),

λmin(A+ B) ≥ λmin(A)+ λmin(B).

Theorem 2 Let A 2 0,Q 2 0 andM ≺ 0. Assume that the matrices B andC have
full row rank and that range(BT ) ∩ range(CT ) = {0}. If −M � CA−1CT and

0 < α ≤ 1

λmax(Q−1SB)
, (6)

the iterative scheme (4) converges to the solution of (1).
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Proof Let λ ∈ σ(Ḡ
GGS

) and (x; y; z) be a corresponding eigenvector which is
equivalent to say that

− BT y − CT z = λAx, (7)

− 1

α
Qy = λ(Bx − 1

α
Qy), (8)

Mz = λ(Cx +Mz). (9)

First we observe that λ �= 1. Otherwise, From (8) and (9), we respectively conclude
that Bx = 0 and Cx = 0 which together with (7) and the positive definiteness
of A imply that x = 0. Now using the assumption range(BT ) ∩ range(CT ) =
{0}, we can deduce that y and z are both zero vectors. Consequently, it must
be (x; y; z) = (0; 0; 0), which contradicts our assumption that (x; y; z) is an
eigenvector. Assuming λ �= 1, from (8) and (9), we have

y = λ

λ− 1
αQ−1Bx and z = λ

1− λ
M−1Cx.

We observe that x cannot be zero. Substituting y and z from the above relation
into (7), it can be found that λ is either zero or it satisfies the following relation:

1− λ = αp̃ − q̃, (10)

where

p̃ = x∗BT Q−1Bx

x∗Ax
and q̃ = x∗CT M−1Cx

x∗Ax
.

By the assumptions it must be p̃ ≥ 0 and q̃ ≤ 0, therefore 1− λ ≥ 0. In view of the
fact that λ �= 1, we conclude that λ < 1. We observe that

p̃ ≤ max
x �=0

x∗BTQ−1Bx

x∗Ax
= λmax(A

−1BTQ−1B) = λmax(Q
−1SB),

and

−q̃ ≤ max
x �=0

−x∗CTM−1Cx

x∗Ax
= λmax(−A−1CTM−1C) = λmax(−M−1SC).

The assumption −M � CA−1CT ensures that −1 ≤ q̃. Hence, we conclude that

1− λ ≤ αλ max(Q
−1SB)+ 1.
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Since αλ max(Q
−1SB) ≤ 1, we have 1 − λ ≤ 2 which implies that −1 ≤ λ. To

complete the proof, we only need to show that λ �= −1. Let λ = −1, from (10), we
have

αv∗A− 1
2 BT Q−1BA− 1

2 v

v∗v
− v∗A− 1

2 CTM−1CA− 1
2 v

v∗v
= 2,

where v = A
1
2 x. The above relation is equivalent to

v∗(I − αA− 1
2 BT Q−1BA− 1

2 )v

v∗v
+ v∗(I + A− 1

2 CT M−1CA− 1
2 )v

v∗v
= 0.

In view of (6) and −M � CA−1CT , the following two matrices

I − αA−
1
2 BTQ−1BA−

1
2 and I + A−

1
2 CT M−1CA−

1
2 ,

are both symmetric positive semidefinite. Consequently, we deduce that

αA−
1
2 BTQ−1BA−

1
2 v = v and − A−

1
2 CTM−1CA−

1
2 v = v.

The preceding two relations imply that

αBT Q−1BA−
1
2 v = −CTM−1CA−

1
2 v.

Since range(BT ) ∩ range(CT ) = {0}, the above equality implies that BA− 1
2 v = 0

and CA− 1
2 v = 0, which is equivalent to say that Bx = 0 and Cx = 0. Notice

that Bx = 0 and Cx = 0 implies that (x; y; z) = 0, which is a contradiction. This
completes the proof.

2.2 Double Saddle Point Problems with SPD (3,3)-Block

Here we assume that D 2 0 and A 2 CTD−1C. The latter assumption warrants
some discussion. In the case of linear systems of the form (1) arising from liquid
crystal modeling, we have been able to verify numerically that the condition holds
true for problems of small or moderate size, and numerical tests suggest that it may
hold for larger problems as well. In some cases, it may be possible to enforce the
condition by a suitable modification of the (1, 1) block A (augmented Lagrangian
technique). We first consider the case where the assumption is satisfied, then in the
next subsection we briefly discuss the augmented Lagrangian approach.



Uzawa-Type and Augmented Lagrangian Methods for Double Saddle Point Systems 221

Substituting M = −D into (3) results in the splitting

A =MGGS −NGGS ,

with

M
GGS

=
⎡

⎣
A 0 0
B − 1

α
Q 0

C 0 −D

⎤

⎦ ,

where the parameter α > 0 and Q 2 0 are given. The corresponding GGS iterative
scheme is given by

uk+1 = GGGSuk +M−1
GGS

b, k = 0, 1, 2, . . . , (11)

where GGGS =M−1
GGS

NGGS and u0 is given.
In the following, we obtain a sufficient condition for the convergence of the GGS

iterative scheme. To this end, we first recall the following useful lemma.

Lemma 2 ([18, Section 6.2]) Consider the quadratic equation x2 − bx + c = 0,
where b and c are real numbers. Both roots of the equation are less than one in
modulus if and only if |c| < 1 and |b| < 1+ c.

Theorem 3 Let A 2 0 and D 2 0 and let B be a full row rank matrix. Suppose
that A 2 CT D−1C. If

0 < α <
2− 2λ max(G )

λ max(A−1BTQ−1B)
, (12)

where G = A−1CTD−1C, then ρ(GGGS ) < 1.

Proof Note that λ = 0 is an eigenvalue of G
GGS

with the possible eigenvector
(x; 0; z) where x is an arbitrary nonzero vector and z can be either a zero vector
or, if CT does not have full column rank, a nonzero vector in ker(CT ).

Now let λ �= 0 be an arbitrary eigenvalue of G
GGS

= M−1
GGS

N
GGS

. Therefore,
there exists a nonzero vector (x; y; z) such that

− BT y − CT z = λAx, (13)

− 1

α
Qy = λ(Bx − 1

α
Qy), (14)

0 = λ(Cx −Dz). (15)

Evidently x �= 0, otherwise in view of the positive definiteness of D and the
fact that B has full row rank we would have that y and z are both zero vectors,
contradicting the assumption that (x; y; z) is an eigenvector.
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From (14) we derive

λ− 1

α
y = λQ−1Bx, (16)

The vector z can be computed from (15) by

z = D−1Cx.

Premultiplying (13) by λ−1
α

and then substituting z from the above relation, we have

λ(λ − 1)

α
Ax = − (λ− 1)

α
BT y − (λ− 1)

α
CT D−1Cx.

In view of (16), the above equation can be rewritten as follows:

λ(λ− 1)

α
Ax = −λBT Q−1Bx − (λ− 1)

α
CTD−1Cx.

Multiplying the above equation by αx∗ on the left side, we obtain the following
quadratic equation:

λ2 + (−1+ αp + q)λ− q = 0, (17)

where

p = x∗BT Q−1Bx

x∗Ax
and q = x∗CT D−1Cx

x∗Ax
. (18)

It is not difficult to verify that

p ≤ max
x �=0

x∗BTQ−1Bx

x∗Ax
= λ max(A

−1BTQ−1B),

and

q ≤ max
x �=0

x∗CTD−1Cx

x∗Ax
= λ max(G ).

Notice that the assumption A 2 CT D−1C implies that ρ(G ) < 1. Invoking the
above inequality, ρ(G ) < 1 implies q < 1. Also, q < 1 together with (12) ensures
that | − 1+ αp + q| < 1− q . The result now follows from Lemma 2.

We end this section by the following remark on the parameter α in the GGS
method.
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Remark 1 Under the assumptions of Theorem 3, the roots of the quadratic equa-
tion (17) are given by

(1− αp − q)±
√
(−1+ αp + q)2 + 4q

2
,

where p and q are in the forms (18), respectively. Therefore, the eigenvalues of
G

GGS
=M−1

GGS
N

GGS
are all real. Assume that α is chosen such that

−1+ αλ max(A
−1BTQ−1B)+ λ max(G ) = 0,

which is equivalent to say that

α = 1− λ max(G )

λ max(A−1BTQ−1B)
.

Note that for the choice Q = BA−1BT then λ max(A
−1BTQ−1B) = 1. Our

numerical tests show that in this case ᾱ = 1−λ max(G ) is a very good approximation
of the optimum value of α. In particular, for the test problems arising from the
liquid crystal model the value of ᾱ remains roughly constant as the dimension of the
problem increases.

2.3 Augmenting the (1,1)-Block of Double Saddle Point
Problems

The result in the previous subsection relies on the assumption that A 2 CT D−1C.
Although this condition appears to be satisfied in some cases of practical interest,
it is rather restrictive and one cannot expect it to always hold. In some cases, it
may be possible to enforce the condition by applying the iterative scheme (11) to an
equivalent linear system of equations, rather than directly to the original system (1).
Indeed, the double saddle point system (1) is equivalent to the following linear
system of equations:

A u ≡
⎡

⎣
Â BT CT

B 0 0
C 0 −D

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
b1 + rBT b2

b2

b3

⎤

⎦ ≡ b, (19)

where Â = A+ rBT B for a given r > 0. Note that if we wish to apply the proposed
iterative scheme (11) for solving (19), we may be able to choose r large enough so
that the assumption Â 2 CTD−1C holds, since Â 4 A for all r > 0.
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Table 1 Numerical results with iterative method (4), potential fluid flow problem (α = 1 and
ε = 10−7)

r = 0 r = 20 r = 200

Size Iter Iter CPU Iterpcg Err Iter CPU Iterpcg Err

2125 † 6 0.0148 102 0.3183e−07 4 0.0103 68 0.3462e−06

17,000 † 8 0.1218 240 0.2985e−07 6 0.0912 180 0.6884e−08

57,375 † 8 0.6007 342 0.1608e−05 6 0.4548 257 0.6967e−07

136,000 † 10 2.6079 555 0.1443e−05 6 1.6174 335 0.5211e−06

265,625 † 12 8.1918 805 0.2172e−05 6 4.1609 413 0.2498e−05

459,000 † 16 24.084 1248 0.7639e−06 8 12.602 648 0.1809e−06

For example, consider the case A = I2, B = C = e1 = [1, 0], and D = [ 1
2 ].

Then CT D−1C =
[

2 0
0 0

]
and the condition A 2 CT D−1C fails to hold. However,

A+ rBT B =
[

1+ r 0
0 1

]
and thus the condition A+ rBT B 2 CTD−1C holds for

all r > 1.
Augmentation can be beneficial also for the case D = 0, where it leads to faster

convergence of the GGS iterative scheme. However, generally speaking, there may
be a price to pay for this faster convergence: solving linear systems with Â is often
more expensive than solving systems with A. In particular, augmentation often leads
to loss of sparsity in A. Note, however, that this need not always be the case. Using
the well-known Sherman–Morrison formula, we obtain BÂ−1BT = S

B
− rS

B
(I +

rS
B
)−1S

B
. In the case of the potential fluid flow problem studied in [10], it turns

out that SB is diagonal. In view of the preceding relation, we conclude that ŜB =
BÂ−1BT is also a diagonal matrix. Hence, in this case there is virtually no increase
in costs associated with the augmented Lagrangian approach. Moreover, with the
choice Q = Ŝ

B
, it can be shown (and is numerically observed) that the convergence

rate of the iterative scheme (4) for solving (19), asymptotically, becomes faster for
increasing values of r; see the results in Table 1.

As already mentioned, for the double saddle point problems arising from liquid
crystal problem, the condition A 2 CTD−1C seems to be satisfied. However,
our numerical experiments show that augmentation can be beneficial here as well.
Indeed, increasing the value of r and applying iterative method (11) to the equivalent
system (19) provides better results than those obtained from applying the method
to (1), both in terms of number of iterations and total solution time; see Table 4 for
further details.

We emphasize again that augmenting the (1, 1)-block does not always lead to
any excessive fill-in problems. For the sake of illustration, in Fig. 1 we compare
the sparsity patterns of the (1, 1)-blocks of the coefficient matrix in (1) and (19)
corresponding to potential fluid flow and liquid crystal problems, respectively. It is
clear that the loss of sparsity is very modest for the first problem. For the second
problem, it may seem at first sight that augmentation destroys the sparsity of the
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Fig. 1 Sparsity pattern of A (left) versus sparsity pattern of A + rBT B (right). Top: potential
fluid flow problem (n = 1250 corresponds to problem size 2125) Bottom: liquid crystal problem
(n = 3069 corresponds to problem size 5115)
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Fig. 2 Sparsity patterns. Left: factor of A obtained by Cholesky factorization; Right: factor of
A+ rBT B obtained by Cholesky factorization with SYMAMD reordering (n = 3069 corresponds
to problem size 5115, liquid crystal problem)

(1, 1) block. However, it turns out that using an appropriate reordering (symmetric
AMD) leads to a very sparse Cholesky factor with a modest increase in fill-in, see
Fig. 2.
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3 A Generalization of the Block SOR Method

In this section, we further develop the idea of the well-known SOR iterative method
to construct an iterative scheme for solving (1) in the case that D 2 0. To this end,
first, we need to consider the following splitting

A =M
GSOR

−N
GSOR

, (20)

with

MGSOR = 1
ω

⎡

⎢⎣
A BT 0

B 0 0

ωC 0 −D

⎤

⎥⎦ and NGSOR = 1
ω

⎡

⎢⎣
(1− ω)A (1− ω)BT −ωCT

(1− ω)B 0 0

0 0 −(1− ω)D

⎤

⎥⎦ ,

where ω �= 0 is given. Therefore, using the splitting (20), we derive the GSOR
method as follows:

uk+1 = G
GSOR

uk +M−1
GSOR

b, k = 0, 1, 2, . . . , (21)

where G
GSOR

=M−1
GSOR

N
GSOR

and the initial guess u0 is given.
A possible procedure for the computation of uk+1 = (xk+1; yk+1; zk+1) from

uk = (xk; yk; zk) is detailed in Algorithm 1.

Algorithm 1: Computing (k + 1)-th approximation in the GSOR method

1 Compute the vectors r1 and r2 as follows:
2 r1 = (1 − ω)Axk + (1− ω)BT yk − ωCT zk + ωb1;
3 r2 = (1 − ω)Bxk + ωb2;
4 Solve the following two systems to find yk+1 and xk+1, respectively,
5 (BA−1BT )yk+1 = BA−1r1 − r2;
6 Axk+1 = r1 − BT yk+1;
7 Compute r3 = ωCxk+1 + (1− ω)Dzk − ωb3;
8 Solve Dzk+1 = r3 to find zk+1.

Next, we establish a theorem about the eigenvalues of G
GSOR

. The theorem plays
a key role in deriving a sufficient condition for the convergence of the GSOR
method.

Theorem 4 Assume that A 2 0,D 2 0 and B has full row rank. Also suppose that
λ ∈ σ(G

GSOR
) where G

GSOR
denotes the iteration matrix of the GSOR method. Then

either λ = 1− ω or λ �= 1 − ω and there exists a positive constant μ such that the
following relation holds:

(λ+ ω − 1)2 = −ω2λμ. (22)
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Proof Let λ ∈ σ(G
GSOR

), hence there exists a nonzero vector v = (x; y; z) such
that N

GSOR
v = λM

GSOR
v, or equivalently,

(1− ω)Ax + (1− ω)BT y − ωCT z = λ(Ax + BT y) (23)

(1− ω)Bx = λBx (24)

− (1− ω)Dz = λ(ωCx −Dz). (25)

Evidently λ = 1−ω is an eigenvalue of GGSOR with a corresponding eigenvector of
the form (0; y; 0) where y �= 0. In the rest of proof, we assume that λ �= 1− ω.

From (25), we have

z = λω

λ+ ω − 1
D−1Cx. (26)

Invoking the earlier assumption that λ �= 1 − ω and in view of (24), we get
Bx = 0. Notice that x = 0 with λ �= 1 − ω implies that (x; y; z) = (0; 0; 0), in
contradiction with the fact that (x; y; z) is an eigenvector. Consequently, x �= 0.
Premultiplying (23) by x∗ and then substituting z from (26) into it, we obtain
(λ+ ω − 1)2 = −ω2λμ where

μ = x∗CTD−1Cx

x∗Ax
,

which completes the proof.

The above theorem can be used to establish that if the parameterω lies in a certain
interval, then the GSOR method for solving (1) is convergent.

Theorem 5 Assume that A 2 0, D 2 0, B has full row rank and G =
A−1CT D−1C. If ω ∈ (0, 2

1+√ρ(G )
), then the GSOR method converges to the exact

solution of (1) for any initial guess.

Proof Let λ ∈ σ(GGSOR ), we need to show that |λ| < 1. Note that from the
assumption, it is obvious that ω ∈ (0, 2) which implies |1 − ω| < 1. This ensures
that if λ = 1− ω, we immediately obtain the result.

In the remaining part of the proof, we assume that λ �= 1 − ω. By Theorem 4,
there exists μ > 0 such that (22) holds. Simplifying (22), we derive

λ2 + (ω2μ+ 2ω − 2)λ+ (ω − 1)2 = 0.

Notice that by Lemma 2, one may conclude that |λ| < 1 if,

|ω − 1| < 1, (27)
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and,

|ω2μ+ 2ω − 2| < 1+ (ω − 1)2. (28)

As observed earlier, the inequality (27) is equivalent to the fact that ω ∈ (0, 2). Note
that (28) holds as soon as ω2μ < (ω− 2)2. From the assumption it is easy to check
that ω2ρ(G ) < (ω − 2)2. Now the fact that μ < ρ(G ) implies the desired result.

We end this section with the following remark.

Remark 2 Numerical tests show that if A 2 CTD−1C and D 2 0, then

ω̄ = 2

1+√1+ ρ(G )

is a good approximation for the experimentally obtained optimum parameter of the
GSOR method to solve (1). We recall here that numerical observations indicate that
the condition A 2 CTD−1C holds for (1) arising from the liquid crystal problem.
As pointed out in Remark 1, the value of ρ(G ) remains roughly constant for all sizes
of (1) when solving the liquid crystal problem.

4 Numerical Experiments

In this section we present the results of numerical tests on two sets of problems of
the type (1) arising in the finite element modeling of potential fluid flow problems
(with D = 0) and liquid crystals (with D �= 0).

All of the reported numerical results were performed on a 64-bit 2.45 GHz
core i7 processor and 8.00 GB RAM using MATLAB version 8.3.0532. In all of
the experiments, we have used right-hand sides corresponding to random solution
vectors, performing ten runs and then averaging the CPU-times. At each iteration
of the proposed iterative methods, we need to solve at least two SPD linear systems
as subtasks. These are either solved by Cholesky factorization (when feasible) or
by the preconditioned conjugate gradient (PCG) method using a strict tolerance;
loose tolerances can be employed in the case of inexact variants (see [6]). The
iteration counts reported in the tables (under “Iter”) are also averages (rounded to the
nearest integer). Under “Iterpcg”, we report the total number of inner PCG iterations
performed. In all of the following numerical tests, the initial guess is taken to be
the zero vector and the iterations are stopped once ‖A uk − b‖2 < ε‖b‖2 where
uk is the obtained k-th approximate solution to the exact solution of (1) and ε is
given. Furthermore, under “Err” we report the relative error ‖uk − u∗‖2/‖u∗‖2,
averaged over the ten runs. Here uk is the approximate solution obtained with the
above described stopping criterion and u∗ is the exact solution of (1).
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Unless otherwise specified, the preconditioner in the PCG method is a drop
tolerance-based incomplete Cholesky factorization [2] computed using the MAT-
LAB function “ichol(.,opts)", where

- opts.type = ’ict’,
- opts.droptol = 1e-2.

Example 1 Here we consider linear systems of equations of the form

⎡

⎣
A BT CT

B 0 0
C 0 0

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
b1

b2

b3

⎤

⎦ , (29)

arising from a low-order Raviart–Thomas mixed-hybrid finite element approxima-
tion [5] of Darcy’s law and continuity equation describing the three-dimensional
potential fluid flow problem in porous media. For this problem we have that the
conditions of Proposition 1 are satisfied, hence A is nonsingular. Details on the
dimensions of the sub-blocks A, B, and C and further information can be found
in [10, Table 1]. For this test problem, the SPD matrix A is block diagonal with
small (5× 5) dense blocks, and linear systems associated with it can be solved very
cheaply by means of Cholesky factorization. Furthermore, it turns out that the Schur
complement SB = BA−1BT is a scalar multiple of the m×m identity matrix. First
we set Q = BA−1BT and M = −CA−1CT , then we used iterative method (4) to
solve (29). Notice that Theorem 2 shows that the iterative method (4) converges with
the specified choices of Q and M . However, the method converges too slowly (after
1000 iterations the stopping criterion is not yet satisfied), denoted by † in Table 1
for the case that r = 0 in (19) with zero (3, 3)-block. Then we applied iterative
method (4) with Q = B(A + rBT B)−1BT and M = −C(A + rBT B)−1CT for
solving the equivalent (augmented Lagrangian) linear system of the form (19) with
D = 0. We observed that the best results for the GGS method to solve (29) are
obtained when α = 1, and this is the value used in the numerical tests reported
in Tables 1 and 2. To illustrate the sensitivity of the method for different values of
α, we also reported the performance of the method for problem size 2125 for two
different values of α and three different values of r > 0 in Table 3. From the reported
results, it can be seen that increasing the value of r speeds up the convergence of
iterative method (4). As pointed out in Sect. 2.3, the matrix B(A + rBT B)−1BT is
also a scalar multiple of the m × m identity matrix. We comment that M is sparse
and inexpensive to form and the linear systems corresponding to it were solved with
PCG with the inner-tolerance 10−15.

Example 2 In this example we consider linear systems of equations arising from
liquid crystal directors modeling, see [13]. These are double saddle point systems
of the form (1) where A is n × n, B is m × n, C is p × n and D is p × p with
n = 3k and m = p = k. Here k is an integer taking up seven values, ranging from
1023 to 61,535. All the nonzero blocks in A are sparse and structured. A detailed
description of the submatrices A, B, C and D is given in [13]. Here we mention that
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Table 3 Numerical results with iterative method (4), potential fluid flow problem (problem size
2125 and ε = 10−7)

α = 0.8 α = 1.2

r Iter CPU Iterpcg Err Iter CPU Iterpcg Err

20 11 0.0266 187 0.1135e−06 11 0.0264 187 0.1164e−06

200 11 0.0260 187 0.3631e−07 11 0.0277 187 0.3623e−07

500 11 0.0269 187 0.3977e−07 11 0.0265 187 0.2922e−07

A is SPD, B has full row rank, C is rank deficient, and D is tridiagonal and SPD.
By Proposition 2, A is nonsingular.

In applying iterative method (11), we set Q = BA−1BT and α ≈ 0.825
is determined using the discussions in Remark 1. For implementing iterative
method (11) and the GSOR method, we need to solve linear systems with the
coefficient matrices A and D. As already mentioned D is tridiagonal, therefore the
solution of linear systems involvingD is not an issue. Linear systems with A are also
easy to solve, since it turns out that the Cholesky factorization of A (with the original
ordering) does not incur any fill-in. Hence, we compute the Cholesky factorization
A = LLT at the outset, and then perform back and forward substitutions each time
the action of A−1 on a vector is required.

For applying the GSOR method, we further need to solve a saddle point problem
of size (n+m)× (n+m) of the form

[
A BT

B 0

] [
w1

w2

]
=
[
r1

r2

]
. (30)

The solution of (30) can be obtained in two steps as follows:

• Step I. Solve (BA−1BT )w2 = BA−1r1 − r2, to find w2.
• Step II. Set w1 = A−1(r1 − BTw2).

As observed, for applying both iterative method (11) and the GSOR method, we
further need to solve the linear systems with the coefficient matrix BA−1BT . To this
end, the PCG method in conjunction with the approximate inverse preconditioner
BABT ≈ (BA−1BT )−1 is used; see [1], where it is shown that this preconditioner
results in very fast convergence independent of problem size. The inner tolerances
for the PCG method are set to 10−3 and 10−5 in applying iterative method (11) and
the GSOR method, respectively. Furthermore, we applied the iterative scheme (11)
for solving the equivalent linear system of equations (19) in the same manner used
for solving (1). The obtained results show that the convergence rate of the GGS
method (11) with the augmented Lagrangian approach (r > 0) is mesh-independent
and can be improved by increasing the value of r . We comment that for r �= 0,
we compute a sparse Cholesky factorization of A + rBT B with the symmetric
approximate minimum degree (SYMAMD) reordering and using Remark 1, for
r = 2 and r = 2000 in the GSS method, we obtain α ≈ 0.9808 and α ≈ 0.9834,
respectively. The numerical results for the GGS method for different values of r are
reported in Table 4. In order to show the effect of the value of α on the speed of
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Table 5 Numerical results with the iterative method (11), potential liquid crystal problem size
2555 (ε = 10−10)

α = 0.8 α = 1

r Iter CPU Iterpcg Err Iter CPU Iterpcg Err

0 21 0.0132 50 0.4384e−07 25 0.0144 52 0.5167e−07

2 12 0.0066 12 0.6738e−08 6 0.0039 6 0.1847e−07

2000 11 0.0060 11 0.2407e−07 5 0.0027 5 0.4628e−07

convergence of the GGS method, for the problem size 2555, we present the results
of using two other values of α in Table 5.

As seen from the reported results, applying the GGS method for solving (19)
with r > 0 gives better results than r = 0. Our experimental observations show that
r = 2 leads to better results than 0 < r < 2. The improvement of the convergence of
the GSOR method for solving (19) is not significant with the augmented Lagrangian
approach, so we do not report it here. For choosing a suitable value for ω, we
used Remark 2, which yields an approximation of the optimal value of ω in terms
of the spectral radius of G , and obtained ω ≈ 0.9597 for the coarsest grid. As
mentioned in Remark 2, the same value was used also for the finer grids. To clarify
the performance of the GSOR method in terms of different values of ω, we reported
the corresponding results for the GSOR method in Table 6 with respect to three
different values of ω including ω = 0.9597.

We conclude this section with some comments on how the performance of these
methods compares with that of other possible solution approaches. For the potential
fluid flow problem, it is possible to explicitly form the reduced (Schur complement)
systems and to use standard PCG methods for their solution; see [10]. In [1],
block diagonal and block triangular preconditioners based on Schur complement
approximations were used to solve the potential fluid flow problem in conjunction
with Krylov methods like MINRES and (F)GMRES. These approaches turn out
to be very efficient, and are faster than the methods studied here for the potential
fluid flow problem. This is ultimately due to the fact that for this problem the
Schur complement matrices remain sparse and it is not difficult to find effective
preconditioners for them. For the case of the liquid crystal problems, however, the
situation is reversed. Here the Schur complement matrices are completely full and it
is not easy to find effective preconditioners for them. Looking at the results reported
in [1], Tables 4 and 5 (note that the computer used to obtain those timings is the
same one that was used for this paper), we find that the stationary iterative schemes
proposed in the present paper can be considerably faster than the more standard
Krylov-based methods with approximate Schur complement preconditioners.
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5 Conclusions

In this paper we have introduced and analyzed some Uzawa-type and block SOR-
type stationary iterative schemes for solving large sparse linear systems in double
saddle point form. These methods, possibly in combination with an augmented
Lagrangian formulation, are able to achieve fast convergence when applied to linear
systems arising in certain applications and therefore can be a valid alternative to
Krylov subspace methods, especially on emerging hybrid and multicore architec-
tures.
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Generalized Block Tuned Preconditioners
for SPD Eigensolvers

Luca Bergamaschi and Ángeles Martínez

Abstract Given an n × n symmetric positive definite (SPD) matrix A and an
SPD preconditioner P , we propose a new class of generalized block tuned (GBT)
preconditioners. These are defined as a p-rank correction of P with the property
that arbitrary (positive) parameters γ1, . . . , γp are eigenvalues of the preconditioned
matrix. We propose to employ these GBT preconditioners to accelerate the iterative
solution of linear systems like (A − θI)s = r in the framework of iterative
eigensolvers. We give theoretical evidence that a suitable, and effective, choice
of the scalars γj is able to shift p eigenvalues of P(A − θI) very close to one.
Numerical experiments on various matrices of very large size show that the proposed
preconditioner is able to yield an almost constant number of iterations, for different
eigenpairs, irrespective of the relative separation between consecutive eigenvalues.
We also give numerical evidence that the GBT preconditioner is always far superior
to the spectral preconditioner (Numer. Linear Algebra Appl. 24(3):1–14, 2017), on
matrices with highly clustered eigenvalues.

Keywords Eigenvalues · SPD matrix · Newton method · Tuned preconditioner ·
Incomplete Cholesky preconditioner

1 Introduction

Let A be a symmetric positive definite (SPD), large and sparse n × n matrix.
We denote as λ1 ≤ λ2 ≤ . . . λm . . . ≤ λn its positive eigenvalues and
v1, v2, . . . , vm, . . . vn the corresponding eigenvectors. The computation of the
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m 5 n leftmost eigenpairs of such a matrix is a common task in many scientific
applications. Typical examples are offered by the vibrational analysis of mechanical
structures [1], and the electronic structure calculations [2]. Computation of a few
eigenpairs is also crucial in the approximation of the generalized inverse of the
graph Laplacian [3, 4]. We also mention that approximate knowledge of the leftmost
eigenpairs can be conveniently employed in the efficient solution of ill-conditioned
linear systems [5].

Recently in [6], an efficiently preconditioned Newton method (DACG–Newton)
has been developed which has proven to display comparable performances against
the well-known Jacobi–Davidson (JD) method [7] and outperforms the implicitly
restarted Lanczos (IRL) method with optimal tuned preconditioning [8] if a
moderate number of eigenpairs are being sought.

The common feature to all these methods, when approaching the eigenpair
(λj , vj ), is the need to solve a linear system like:

(A− θj I)s = r (1)

where θj ≈ λj , as needed in the shift-invert IRL method and also, implicitly in the
DACG method, see [9], or to solve the projection of (1) in a subspace orthogonal to
the previous iterate uk and the previously computed eigenvectors, like:

J
(j)
k s = −(A− θjI)uk; where (2)

J
(j)

k = (I −QQ#)(A− θj I)(I −QQ#), Q = [v1 . . . vj−1 uk

]
(3)

(Newton and JD methods).
The idea of updating a given preconditioner with a low-rank matrix has been

studied in a number of papers such as [10, 11]. In this chapter, we propose and
develop a new preconditioning strategy for accelerating the solution of such linear
system within the PCG method when accurately computing the eigenpair (λj , vj )

once a number of subsequent eigenpairs (λ̃s , ṽs), s = j + 1, . . . , j + p ≡ m

are known to a (possibly) very rough accuracy. After collecting the approximate
eigenpairs in a matrix Vj and choosing a suitable SPD diagonal matrix Γ =
diag(γj+1, . . . , γm), the generalized block tuned (GBT) preconditioner is defined
as:

P̂ = P + low rank matrix(Vj , Γ )

satisfying P̂AVj = VjΓ. We also develop a symmetric variant of such precondi-
tioners and prove that there is an optimal choice of scalars γs , depending only on
the approximate eigenvalues λ̃s which cluster close to one m − j eigenvalues of
P̂ (A − θjI), or of PQJ

(j)
k , with PQ = (I − QQ#)P̂ (I − QQ#). Note that this

GBT preconditioner can be viewed as an improvement of the spectral preconditioner
proposed in [12], and particularly so in case of matrices with very close eigenvalues.
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We experimentally test the proposed preconditioners in accelerating either the
DACG method [13] or the Newton method (or simplified Jacobi–Davidson) after
computing the inaccurate eigenpairs by the DACG method. In both cases, we obtain
fast convergence when computing a small to moderate number of the leftmost
eigenpairs of large SPD matrices. The action of the generalized tuned preconditioner
is to weaken the dependence of the number of iterations in solving systems (1) or (2)
on the relative separation of the eigenvalue being sought and the next higher one.
Numerical results onto a number of medium- to large-size SPD matrices arising
from Finite Element discretization of PDEs modelling groundwater flow in porous
media, geomechanical processes in reservoirs, financial, and thermal processes,
show the significant improvement provided by the GBT on all the test problems.

The outline of the chapter is as follows: In Sect. 2, we define the generalized
tuned preconditioner and we theoretically prove the clustering of a number of eigen-
values of both P̂ (A − θj I) and PQJ

(j)
k . In Sect. 3, we give some implementation

details. Section 4 provides numerical results of the proposed preconditioners onto a
number of realistic and large-size test problems, while in Sect. 5 we give the main
conclusions.

2 The Generalized Tuned Preconditioner

In [14], the tuned preconditioner is proposed in the framework of the iterative
solution of the inner system within the inverse iteration (and the Rayleigh quotient
iteration).

Definition 1 Given a preconditioner P and a vector x, a tuned preconditioner for
matrix A is a matrix P̂ obtained by adding a rank-1 correction to P and satisfying

P̂Ax = x. (4)

An example of a tuned preconditioner can be found in [14]:

P̂ = P − uu#

u#Ax
, where u = PAx − x

This definition can be easily extended to multiple vectors:

Definition 2 Given a preconditioner P and an n × p matrix V with full column
rank, a block tuned preconditioner for matrix A is a matrix P̂ obtained by adding a
rank-p correction to P and satisfying

P̂AV = V. (5)
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The following example of block tuned preconditioner is taken from [8]:

P̂ = P − Z
(
Z#AV

)−1
Z#, where Z = PAV − V. (6)

A block tuned preconditioner has the pleasant property that the p columns of matrix
V are eigenvectors of the preconditioned matrix corresponding to eigenvalues equal
to one. Tuned preconditioners have been used in [12] to accelerate the inner linear
systems in the framework of the inexact Newton method (or simplified JD) when
seeking the eigenpair (vj , λj ). In this case, the system to be solved has the form,
with θj ≈ λj :

(A− θj I)x = b, (7)

and it has been proved that the tuned preconditioner has the effect to cluster the
eigenvalues of the preconditioned matrix P̂ (A − θj I), when the columns of V are
orthonormal approximate eigenvectors of A:

Vj =
[
ṽj+1 . . . ṽm

]
(8)

satisfying

Aṽs = λs ṽs + ress , ‖ress‖ ≤ τλs, s = j + 1, . . . ,m. (9)

In addition, we assume that λ̃s = ṽ#s Aṽs > λs (and this is always true for
eigensolvers that minimize the Rayleigh Quotient) and also that the same accuracy
τ is fulfilled for the relative eigenvalue error, namely

λ̃s − λs ≤ τλs,

which is again a reasonable hypothesis since for SPD matrices there holds: λ̃s =
ṽ#s Aṽs = λs +O(‖ṽs − vs‖2).
We recall the following result stated in [12, Lemma 3.1]:

Lemma 1 Let matrix Vj be as in (8), P̂j a block tuned preconditioner satisfying
condition (5). In the hypothesis (9), each column of Vj , i.e., ṽs , s = j + 1, . . . ,m,
is an approximate eigenvector of P̂j (A − θjI) corresponding to the approximate

eigenvalue 1− θj

λs
≈ 1− λj

λs
. In particular, the following relation holds:

P̂j (A− θj I)ṽs =
(

1− θj

λs

)
ṽs + εs, with ‖εs‖ ≤ τλj+1‖P̂j‖.

When solving a linear system by an iterative Krylov subspace method, it is clear
that the tuning property is in some sense optimal as it provides a clustering of a
number of eigenvalues of the preconditioned matrix at 1. However, Lemma 1 points
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out this is not the case for eigenvalue computation. The effect of applying a tuned
preconditioner to A−θj I is to set a number of eigenvalues of P̂ (A−θjI) to a value
that is close to one under the conditions that the eigenvalues are well separated, i.e.,
λj

λj+1
5 1, which is not always the case on realistic problems.

In order to define a more effective preconditioner for systems like (7), we allow
the preconditioned matrix P̂A to have eigenvalues different from one corresponding
to the columns of matrix V . We thus define a generalized block tuned (GBT)
preconditioner:

Definition 3 Given a preconditioner P , an n × p matrix V with full column
rank, and a diagonal matrix Γ = diag(γ1, . . . , γp), a generalized block tuned
preconditioner for matrix A is a matrix P̂ obtained by adding a rank-p correction to
P and satisfying

P̂AV = VΓ. (10)

As an example of a generalized block tuned preconditioner, we propose the
generalization of (6) as:

P̂ = P − ZΠ−1Z#, where Z = PAV − VΓ, and Π = Z#AV. (11)

Note that the above preconditioner is not in general symmetric as small matrix Π is
not and hence its use would prevent convergence either of the DACG eigensolver or
the inner PCG iteration within the Newton method. However, this drawback can be
circumvented when V ≡ Vj represents the matrix of the (approximate) eigenvectors
and Λj = diag(λ̃j+1, λ̃j+2, . . . , λ̃m). In such case, we can approximate Π as:

Π = V #j APAVj − Γ V #j AVj ≈ V #j APAVj − ΓΛj = Π̃, (12)

so restoring symmetry. This modified preconditioner:

P̃j = P − ZΠ̃−1Z# =

= P − (PAVj − VjΓ )
(
V #j APAVj −ΛjΓ

)−1
(PAVj − VjΓ )# (13)

does not satisfy exactly the tuning property since

P̃jAVj = PAVj − ZΠ̃−1
(
Π̃ + ΓΛj − Γ V #j AVj

)

= VjΓ − ZΠ̃−1Γ (Λj − V#j AVj) = VjΓ + E . (14)
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Writing (14) column-wise yields: P̃jAṽs = γs ṽs + Es , having denoted with Es the
s-th column of E . Finally, in view of (9) we have

Es = −ZΠ̃−1Γ (λ̃ses − V #j Aṽs) = ZΠ̃−1Γ V#j ress ,

with es the s−th vector of the canonical basis, ‖Es‖ ≤ τλsα, and α = ‖ZΠ̃−1Γ ‖.
The approximate generalized block tuned preconditioner therefore satisfies

P̃jAṽs = γs ṽs + Es, ‖Es‖ ≤ τλsα, s = j + 1, . . . ,m. (15)

The following theorem states that it is possible to have p eigenvalues of the
preconditioned matrix P̃j (A − θj I) very close to one depending on how the
columns of matrix V approximate the eigenvectors of A. We assume to know λ̃j ,
an approximation of the wanted eigenvalue λj . We also define the reciprocal of the
relative separation between pairs of eigenvalues as:

η
(j)
s = λs

λs − λj
, s = j + 1, . . . ,m; (16)

ξj = max
s≥j+1

η
(j)
s = η

(j)

j+1 =
λj+1

λj+1 − λj
. (17)

Theorem 1 Let matrix Vj be as in (8), P̃j an approximate GBT preconditioner
satisfying condition (15), with γs = λ̃s/(λ̃s − λ̃j ), s = j + 1, . . . ,m, then each
column of Vj , i.e., ṽs, s = j + 1, . . . ,m, is an approximate eigenvector of P̃j (A−
θj I) corresponding to the approximate eigenvalue:

μs = λs − θj

λs

λ̃s

λ̃s − λ̃j
.

In particular, the following relation holds:

P̃j (A− θj I)ṽs = μs ṽs + εs, with ‖εs‖ ≤ τ
(
λsα + λj+1‖P̃j‖

)
.

Proof Since P̃j is a generalized block tuned preconditioner, it satisfies (15).
Moreover from (9), we have

ṽs = Aṽs

λs
− g, with ‖g‖ ≤ τ, hence

P̃j (A− θj I)ṽs = P̃jAṽs − θj P̃j ṽs

= P̃jAṽs − θj P̃j

(
Aṽs

λs
− g

)
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=
(

1− θj

λs

)
P̃jAṽs + θj P̃jg

=
(

1− θj

λs

)
(γs ṽs + Es )+ θj P̃jg

= λs − θj

λs

λ̃s

λ̃s − λ̃j
ṽs +

(
1− θj

λs

)
Es + θj P̃jg

= μs ṽs + εs

where we have set εs =
(

1− θj

λs

)
Es + θj P̃jg. Noting that

‖εs‖ ≤ τλsα + τλj+1‖P̃j‖

concludes the proof.

The eigenvalues μs are expected to be very close to one, depending on the initial
tolerance τ . The bounds on the distance of μs from one are stated in the Corollary 1,
which assumes as additional hypotheses that: (1) θj is closer to λj than λ̃j and (2)
τ < (2ξj )−1. This last assumption implies that λ̃j is closer to λj than to λj+1. In
fact:

λ̃j − λj ≤ τλj <
1

2

λj+1 − λj

λj+1
λj ≤ λj+1 − λj

2
,

and is also needed for the convergence of the simplified JD, see [15].

Corollary 1 Let θj ∈ (λj , λ̃j ) and τ < (2ξj )−1, then the following bounds hold:

1− τ
(

2η(j)s − 1
)
≤ μs ≤ 1+ 2τ (ξj − 1), s = j + 1, . . . ,m.

Proof First, the lower bound:

1− μs ≤ 1− λs − θj

λ̃s − λ̃j

≤ 1− λs − (1+ τ )λj

λs(1+ τ )− λj
= τ (λs + λj )

λs(1+ τ )− λj
≤ τ

λs + λj

λs − λj
= τ

(
2η(j)s − 1

)
.
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Hence, μs ≥ 1− τ (2η(j)s − 1). Regarding the upper bound:

μs ≤ λ̃s − θj

λ̃s − λ̃j
= 1+ λ̃j − θj

λ̃s − λ̃j

≤ 1 + τλj

λ̃s − λ̃j
≤ 1+ τλj

λj+1 − λ̃j
≤ 1+ 2τλj

λj+1 − λj
= 1+ 2τ (ξj − 1).

Remark 1 From Corollary 1, it is clear that μs can be made arbitrarily close to
one by appropriately reducing the tolerance τ . As an example, if ξj = 102, and
τ = 10−3, then all μs are expected to be in (0.8, 1.2).

The following theorem states a result, analogous to that of Theorem 1, which
characterizes the eigenvalues of PQJ

(j)
k , that is the preconditioned system matrix

in the Newton phase. The proof of this theorem is not given here, for being quite
similar to that of Lemma 3.1 and Theorem 3.1 of [12].

Theorem 2 Let matrix Vj =
[
ṽj+1 . . . ṽm

]
, P̃j a generalized block tuned precon-

ditioner, and PQ = (I −QQ#)P̃j (I −QQ#), then (ṽs , μs), s = j + 1, . . . ,m, is

an approximate eigenpair of PQJ
(j)
k satisfying

PQJ
(j)
k ṽs = μs ṽs + err, ‖err‖ ≤ τ C, (18)

and C ≡ C(α, τ, ‖P̃j ‖, λj , λj+1) is increasing with respect to τ .

3 Algorithmic Issues

Efficient implementation of our generalized tuned preconditioner takes into account
the following issues:

1. Limited memory implementation. We fix the maximum number of columns of
matrix Vj , parameter lmax.

2. Conversely, for assessing an eigenpair whose index j is close to m, the size of
matrix Vj is too small, and too few eigenvalues are shifted from around zero to
near to 1 and the preconditioner looses efficiency. To avoid this, we propose to
compute an additional number (win) of approximated eigenpairs by the DACG
procedure.

With these variants, in the computation of the j -th eigenpair we will use Vj =[
ṽj+1 . . . ṽjend

]
with jend = min{m+ win, lmax + j } to get the final expression for
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our GBT preconditioner:

P = (LL#)−1

P̃j = P − ZΠ̃−1Z#, with Z = PAVj − VjΓ (19)

PQ = (I −QQ#)P̃j (I −QQ#)

being L = IC(A) an incomplete triangular Cholesky factor of A, with
parameters LFIL, maximum fill-in of a row in L, and τIC the threshold for
dropping small elements in the factorization. The construction (C) of P̃j and
its application (A) as P̃j r are sketched below. MVP = matrix–vector products,
mj = jend − j, Zj = Z0(:, j + 1, jend ) and Πj = Π0(j + 1 : jend , j + 1 : jend).

Phase When What Relevant cost
C Once and • Z0 = PAV0 m MVP and m applications of P

for all • Π0 = ZT
0 AV0 m2/2 dot products.

C For every • Z = Zj − VjΓ mj daxpys
eigenpair • Π̃ = Πj − ΓΛj

A At each • h = ZT r mj dot products
iteration • g = Π̃\h 1 system solve of size mj

• w = P r − Zg 1 application of P , mj daxpys

3.1 Repeated Application of the GBT Preconditioner

In principle, every eigenvalue solver may take advantage of the GBT preconditioner
to update a given approximate inverse of A. In this chapter, we embed this
preconditioner in the DACG–Newton method [12, Algorithm 2] also allowing
to run twice the DACG solver: in the first run, a very rough approximation of
the leftmost m + win eigenpairs: ṽ

(0)
1 , ṽ

(0)
2 , . . . , ṽ

(0)
m+ win is provided, satisfying

‖Aṽ
(0)
j − q(ṽ

(0)
j )ṽ

(0)
j ‖ ≤ τ1q(ṽ

(0)
j ), with τ1 > τ . All these approximate eigen-

vectors are used to form the GBT preconditioner to accelerate a second DACG
run (up to tolerance τ ) which provides ṽ1, ṽ2, . . . , ṽm. These new approxima-
tions serve as starting points for the subsequent Newton scheme, while the set
{ṽ1, ṽ2, . . . , ṽm, ṽ

(0)
m+1, . . . , ṽ

(0)
m+ win} is used for the projected GBT preconditioner

updating.
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4 Numerical Results

In this section, we provide numerical results where both the DACG and the DACG–
Newton algorithms are tried for different values of the parameters for the GBT
preconditioners.

We tested the proposed algorithm in the computation of the 20 smallest eigen-
pairs of a number of small to large matrices arising from various realistic applica-
tions. The CPU times (in seconds) refer to running a Fortran 90 code on a 2× Intel
Xeon CPU E5645 at 2.40 GHz (six core) and with 4-GB RAM for each core.
The iteration is stopped whenever the following exit test on the relative eigenresidual
is satisfied:

‖Au− q(u)u‖
q(u)

≤ ε,

with ε = 10−8. The parameters for the inner PCG solver within the DACG–Newton
method were set to: τPCG = 10−2, ITMAXPCG = 20.
The list of the selected problems together with their size n, and nonzero number nz
is reported in Table 1. Some of the matrices are publicly available in the SuiteSparse
Matrix Collection (SMC) at https://sparse.tamu.edu/. We also computed the fill-in
σ of the initial preconditioner defined as the ratio between the nonzeros of L and
the nonzeros of the lower triangular part of A.

4.1 Matrices with Clustered Small Eigenvalues

We analyze in detail the behavior of the proposed preconditioner in eigensolving
two matrices having very clustered small eigenvalues, which represents the most
challenging situation.

Matrix FINAN512
For this test case, the 20 smallest eigenvalues are much clustered, thus suggesting

that the spectral preconditioner could not accelerate the iterative eigensolvers. We

Table 1 Main characteristics of the matrices used in the tests

Initial preconditioner

Matrix Source SMC n nz LFIL τIC σ

MONTE-CARLO Stochastic PDE NO 77120 384320 20 10−3 2.30

FINAN512 Financial problem YES 74752 596992 10 10−1 1.40

THERMOMEC Thermal problem YES 102158 711558 20 10−3 0.94

MAT268515 Flow in porous media NO 268515 3 926823 20 10−3 2.67

EMILIA-923 Elasticity problem YES 923136 41 005206 20 10−3 1.86

https://sparse.tamu.edu/
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Table 2 Eigenvalues λj and inverse of the relative separation ξj , for matrix FINAN512

j λj ξj j λj ξj j λj ξj j λj ξj

1 0.94746 3.8E+2 6 1.03176 8.7E+2 11 1.05180 1.6E+2 16 1.07829 5.6E+4

2 0.95024 1.6E+1 7 1.03288 1.5E+2 12 1.05779 7.1E+1 17 1.07831 1.3E+3

3 1.01279 1.6E+2 8 1.03943 2.8E+2 13 1.07086 2.5E+2 18 1.07905 4.6E+2

4 1.01895 9.7E+1 9 1.04282 4.5E+3 14 1.07460 4.9E+2 19 1.08108 7.2E+2

5 1.02902 3.5E+2 10 1.04303 1.1E+2 15 1.07652 5.2E+2 20 1.08235 1.5E+2
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Fig. 1 Number of iterations for the second DACG run with various preconditioners. In red is the
(scaled) logarithm of the indicator ξj

show in Table 2 the 20 smallest eigenvalues together with the reciprocal of the
relative separation between consecutive eigenvalues, ξj , see (17).
We run first the DACG method with a tolerance τ = 4×10−3 and then again DACG
up to ε = 10−8. In Fig. 1, we compare the number of iterations per eigenvalue index
of the second DACG step, using the fixed Cholesky preconditioner, the spectral
preconditioner as in [12] and the proposed GBT preconditioner. In the same figure,
we also display the (scaled) log ξj .

The iteration curves corresponding to the fixed and spectral preconditioners
show a clear dependence on log ξj . Moreover, the blue curve is almost constant
so confirming the weakened dependence on the relative eigenvalue separation. We
finally notice the great reduction of the iteration number obtained with the GBT
preconditioner, irrespective of the eigenvalue index.
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Fig. 2 Convergence profile of DACG using three different preconditioners (fixed, spectral, and
GBT) in evaluating eigenpair # 16

We plot in Fig. 2 the convergence profile of the three preconditioners (fixed,
spectral GBT) in evaluating eigenpair (λ16, v16) which corresponds to the smallest
relative separation, see Table 2. There is a constant portion of the three graphs which
correspond to the first DACG run. Then, the steep convergence profile of the GBT
preconditioner reveals the fastest convergence.

A similar acceleration is provided by the GBT preconditioner to the Newton
phase, once approximate eigenvectors are evaluated by the DACG method. They
will be used both as starting points for the Newton method and to form the GBT
preconditioner. In Table 3, we report the results of both DACG and Newton-DACG
methods with different preconditioners. The proposed GBT preconditioner is shown
to accelerate both methods in terms of iteration number and CPU time, the combined
DACG–Newton method being the most efficient method.

Matrix THERMOMEC

In this case also, the smallest eigenvalues are much clustered as accounted for by
Table 4.

The results of the runs, summarized in Table 5, show that the GBT preconditioner
is the most efficient one. To obtain convergence with the spectral preconditioner
within the DACG–Newton method, it was necessary to enlarge the dimension of
matrix Vj ( win = 10) with however larger number of iterations in comparison with
the GBT preconditioner. In Fig. 3, we plot the number of iterations taken by the
Newton phase with the spectral and GBT preconditioners. In this case, we set the
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Table 3 Timings and iterations for the DACG and DACG–Newton methods for the computation
of m = 20 eigenpairs of matrix FINAN512

DACG Newton Total

Iterations

Prec. Win lmax τ1 τ I ts. CPU OUT Inner CPU MVP CPU

Fixed 0 0 0.01 10−3 1134 10.72 339 15372 153.13 16845 164.19

Spectral 5 10 0.01 10−3 1212 12.21 76 1429 16.12 2717 28.52

Spectral 5 10 0.03 3× 10−3 953 9.64 a a a a a

GBT 5 10 0.01 10−3 1053 10.72 48 528 6.45 1629 17.33

GBT 5 10 0.03 3× 10−3 833 8.58 86 634 7.75 1525 16.57
Fixed 0 0 10−8 3217 29.97 – – – 3217 29.97

Spectral 5 10 4× 10−3 10−8 2285 23.34 – – – 2285 23.34

Spectral 5 10 10−3 10−8 2541 25.82 – – – 2541 25.82

GBT 5 10 4× 10−3 10−8 1789 18.36 – – – 1789 18.36
GBT 5 10 10−3 10−8 2100 21.77 – – – 2100 21.77

aNo convergence

Table 4 Eigenvalues λj (all scaled by a factor 103) and inverse of the relative separation ξj , for
matrix THERMOMEC

j λj ξj j λj ξj j λj ξj j λj ξj

1 0.4540 3.27E+1 6 0.4892 1.65E+2 11 0.5087 1.62E+2 16 0.5201 2.30E+2

2 0.4688 1.57E+3 7 0.4922 1.10E+2 12 0.5119 4.12E+3 17 0.5224 4.24E+1

3 0.4691 4.40E+1 8 0.4967 8.49E+1 13 0.5120 1.36E+2 18 0.5353 2.28E+2

4 0.4802 9.54E+1 9 0.5027 1.54E+2 14 0.5158 1.37E+3 19 0.5376 1.18E+2

5 0.4854 1.29E+2 10 0.5060 1.93E+2 15 0.5162 1.35E+2 20 0.5423 2.23E+2

Table 5 Timings and iterations for the DACG and DACG–Newton methods for the computation
of m = 20 eigenpairs of matrix THERMOMEC

DACG Newton Total

Iterations

Prec. Win lmax τ1 τ I ts. CPU OUT Inner CPU MVP CPU

Fixed 0 0 10−3 10−4 1510 15.86 153 2628 34.12 4291 52.97

Spectral 10 10 0.01 10−4 1533 16.81 51 838 12.67 2422 33.58

Spectral 10 10 0.01 10−3 1335 14.89 137 2187 32.19 3659 51.48

GBT 5 10 0.01 10−3 956 13.17 45 591 9.16 1592 22.50

GBT 5 10 0.03 10−3 777 11.16 44 607 9.42 1428 20.74
Fixed 0 0 10−8 2876 35.28 – – – 2876 35.28

Spectral 5 10 0.01 10−8 2122 28.88 – – – 2122 28.88

Spectral 5 10 0.03 10−8 2167 29.87 – – – 2167 29.87

GBT 5 10 0.01 10−8 1580 21.87 – – – 1580 21.87

GBT 5 10 0.03 10−8 1516 21.77 – – – 1516 21.77
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Fig. 3 Number of iterations for the Newton phase with fixed, spectral, and GBT preconditioners.
In red is the (scaled) logarithm of the indicator ξj

Table 6 Comparisons between GBT–DACG (Newton) and Jacobi–Davidson

FINAN512 THERMOMEC

Preconditioner Method MVP CPU Preconditioner Method MVP CPU

GBT DACG 1789 18.36 GBT DACG 1580 21.87

GBT DACG–Newton 1525 16.57 GBT DACG–Newton 1428 20.74

Fixed JD 2077 23.54 Fixed JD 1947 29.38

second DACG tolerance τ = 5×10−4. Larger tolerances prevented fast convergence
of the spectral preconditioner. The almost constant GBT curve confirms the property
of this preconditioner which makes the number of iterations nearly independent of
the relative separation between eigenvalues.
We conclude this section by reporting (Table 6) the comparisons between the above
methods and the Jacobi–Davidson method [7] with fixed Cholesky preconditioner
and with minimum and maximum dimension of the search subspace set to 15
and 25, respectively, which revealed the most successful combination. Moreover,
within the JD eigensolver, the PCG method for the inner linear systems has been
efficiently implemented following [15]. Both DACG and DACG–Newton, with
GBT preconditioners, prove faster than JD with fixed preconditioner.
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Table 7 Timings and iterations for the DACG and DACG–Newton methods for the computation
of m = 20 eigenpairs of matrix EMILIA-923

DACG Newton Total

Iterations

Prec. Win lmax τ1 τ Its. CPU OUT Inner CPU MVP CPU

MONTE- Fixed 0 0 0.02 10−3 1565 13.98 135 2403 14.03 4103 36.61

CARLO Spectral 5 20 0.2 10−3 1120 11.05 38 500 5.98 1658 17.11

GBT 5 10 0.2 10−3 1063 10.75 48 521 6.39 1623 17.29

Fixed 0 0 10−8 3278 29.18 – – – 3278 29.18

Spectral 5 10 0.1 10−8 1738 17.00 – – – 1738 17.00

GBT 5 10 0.1 10−8 1669 16.58 – – – 1669 16.58

MAT268515 Fixed 0 0 0.02 0.2 655 35.08 98 1337 73.746 2090 110.36

Spectral 5 10 0.2 0.02 619 33.32 55 588 38.39 1262 73.16

GBT 5 10 0.2 0.02 588 33.04 60 592 39.24 1240 72.28

Fixed 0 0 10−8 2285 108.54 – – – 2285 108.54

Spectral 5 10 0.1 10−8 1387 72.30 – – – 1387 72.30

GBT 5 10 0.1 10−8 1357 72.65 – – – 1357 72.65

EMILIA-923 Fixed 0 0 10−3 1761 515.56 182 3345 1044.46 5288 1570.94

Spectral 5 10 0.2 10−3 1436 438.30 47 641 233.39 2124 694.58

GBT 5 10 0.2 10−3 1345 409.69 55 566 214.38 1966 636.57

Fixed 0 0 10−8 3990 1176.64 – – – 3990 1176.64

Spectral 5 10 0.2 10−8 2162 698.33 – – – 2162 698.33

GBT 5 10 0.2 10−8 1921 628.12 – – – 1921 628.12

4.2 Summary of Results on the Remaining Matrices

We now report in Table 7 the results in eigensolving the other test matrices. The
results show that either the spectral or the GBT preconditioners provide an important
acceleration as compared with a fixed Cholesky preconditioner.

In all cases, the GBT preconditioner requires the smallest number of iterations to
converge, as compared to the fixed and the spectral preconditioners. In particular, for
the largest matrix EMILIA-923, the (GBT) DACG method reveals the most efficient
one, halving the number of iterations required by the (Fixed) DACG variant.

5 Conclusions

A new generalized block tuned preconditioner P̃j has been proposed and analyzed
in order to accelerate the iterative (PCG) solution of the shifted linear systems
like (A − θjI)u = r , being θj an approximation of the sought eigenvalue. The
action of the proposed preconditioner is theoretically proved to shift a number
of the eigenvalues of P̃j (A − θj I) very close to one, by taking advantage of a
rough approximation of subsequent eigenvectors. Numerical results onto matrices
of large size arising from different models confirm the theoretical findings. Inserted
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in the DACG, or in the Newton-DACG, methods, the GBT preconditioner provides
a noteworthy acceleration of these iterative eigensolvers.
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Stability of Gyroscopic Systems
with Respect to Perturbations

Nicola Guglielmi and Manuela Manetta

Abstract A linear gyroscopic system is of the form:

Mẍ +Gẋ +Kx = 0,

where the mass matrix M is a symmetric positive definite real matrix, the gyroscopic
matrix G is real and skew symmetric, and the stiffness matrix K is real and
symmetric. The system is stable if and only if the quadratic eigenvalue problem
det(λ2M + λG+K) = 0 has all eigenvalues on the imaginary axis.

In this chapter, we are interested in evaluating robustness of a given stable
gyroscopic system with respect to perturbations. In order to do this, we present an
ODE-based methodology which aims to compute the closest unstable gyroscopic
system with respect to the Frobenius distance.

A few examples illustrate the effectiveness of the methodology.

Keywords Stability of gyroscopic systems · Robust stability · Structured matrix
nearness problems · Matrix ODEs

1 Introduction

Gyroscopic systems play an important role in a wide variety of engineering and
physics applications, and vary from the design of urban structures (buildings,
highways, and bridges), to aircraft industry, and to the motion of fluids in flexible
pipes.
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In its most general form, a gyroscopic system is modeled by means of a linear
differential system on a finite-dimensional space, as follows:

Mẍ(t)+ (G+D)ẋ(t)+ (K + N)x(t) = 0. (1)

Here, x(t) corresponds to the generalized coordinates of the system, M = MT

represents the mass matrix, G = −GT and K = KT are related to gyroscopic and
potential forces, D = DT and N = −NT are related to dissipative (damping)
and nonconservative positional (circulatory) forces, respectively. Therefore, the
gyroscopic system (1) is not conservative when D and N are nonzero matrices.

The stability of the system is determined by its associated quadratic eigenvalue
problem:

Mλ2 + (G+D)λ + (K +N) = 0. (2)

In particular, the system is said to be strongly stable if all eigenvalues of (2) lie
in the open left half plane, weakly stable if all eigenvalues of (2) lie in the closed
left half plane, that is, there is at least one pure imaginary eigenvalue and all such
eigenvalues are semi-simple. It is unstable otherwise.

Although nonconservative systems are of great interest, especially in the context
of nonlinear mechanics (see [8] for reference), this work is confined to conservative
systems. Thus, the equation of motion is given by:

Mẍ(t)+Gẋ(t)+Kx(t) = 0. (3)

In particular, the spectrum of (2) is characterized by Hamiltonian symmetry. We
note indeed that for any eigenvalue λ with a corresponding pair of left and right
eigenvectors (y, x), that is:

(λ2M + λG+K)x = 0, y∗(λ2M + λG+K) = 0 (x, y �= 0),

also λ,−λ,−λ are eigenvalues with corresponding pairs of left and right eigenvec-
tors (y, x), (x, y), (x, y), respectively.

Let us define the matrix pencil Q(λ) = Mλ2 +Gλ+K such that the associated
quadratic eigenvalue problem reads

Q(λ)x = [Mλ2 +Gλ+K]x = 0. (4)

In the absence of gyroscopic forces, it is well known that the system Mẍ(t) +
Kx(t) = 0 is stable for K positive definite and unstable otherwise. When G is
nonzero, then the system is weakly stable (see [11]) if the stiffness matrix K is
positive definite, and may be unstable if K ≤ 0 and K is singular. In the latter
case, indeed, the 0 eigenvalue can be either semi-simple (thus the system is stable)
or defective (unstable). Indeed, as numbers in the complex plane, the eigenvalues
are symmetrically placed with respect to both the real and imaginary axes. This
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property has two important consequences. On one hand, the eigenvalues can only
move on the axis they belong to unless coalesce occurs; on the other hand, stability
of system (3) only holds if all eigenvalues are purely imaginary.

Basically, for a conservative gyroscopic system, strong stability is impossible,
since the presence of an eigenvalue on the left half plane would imply the existence
of its corresponding symmetric one in the right half plane. The only possibility for
the system to be stable is to be marginally stable (a particular case of weak stability),
which requires that all eigenvalues lie on the imaginary axis, and the only way to
lead the system to instability is a strong interaction (coalescence of two or more
eigenvalues, necessary for them to leave the imaginary axis). The stiffness matrix
K , for which no information about its signature is provided, plays a fundamental
role in the stability of the system, and many stability results are available in the
literature, based on the mutual relationship of G and K , as reported in [6, 7, 10] and
references therein, and summarized in [12]. Given a marginally stable system of the
form (3), the aim of this work is to find a measure of robustness of the system, that
is the maximal perturbation that retains stability.

The paper is organized as follows. In Sect. 2, we phrase the problem in terms of
structured distance to instability and present the methodology we adopt. In Sect. 3,
we illustrate the system of ODEs for computing the minimal distance between pairs
of eigenvalues. In Sect. 4, we derive a variational formula to compute the distance
to instability. In Sect. 5, we present the method, and in Sect. 6, some experiments.

2 Distance to Instability

Distance to instability is the measure of the smallest additive perturbation which
leads the system to be unstable. To estimate the robustness of (3), we will use the
Frobenius norm. In order to preserve the Hamiltonian symmetry of the system, we
will allow specific classes of perturbations. Indeed, gyroscopic forces and potential
energy will be subject to additive skew-symmetric and symmetric perturbations,
respectively. In [9], such a measure of robustness is called strong stability, which
seems to be misleading according to the definitions in Sect. 1. Nevertheless, the
author’s aim was to find a neighboring system, that is an arbitrarily close system
which retains stability and symmetry properties. Interesting results on stability
are presented, allowing sufficiently small perturbations. However, our goal is to
characterize these perturbations, and give a measure of “how small” they need to
be to avoid instability. The distance to instability is related to the ε-pseudospectrum
of the system.

In particular, we assume that M is fixed and we allow specific additive perturba-
tions on G and K .
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Therefore, let us define the structured ε-pseudospectrum of [G,K] as follows:

σε([G,K]) = {λ ∈ C : λ ∈ σ([G+ΔG,K +ΔK]) with ||[ΔG,ΔK]||F ≤ ε,

for some skew-symmetric ΔG, and symmetric ΔK }

We will call ε! the sought measure, meaning that for every ε < ε! the system
remains marginally stable. Moreover, as mentioned in Sect. 1, the only way to lead
the system to instability is a strong interaction, which means that at least two ε!-
pseudoeigenvalues coalesce. Exploiting this property, we will compute the distance
to instability in two phases: an outer iteration will change the measure ε of the
perturbation, and an inner iteration will allow the ε-pseudoeigenvalues to move on
the imaginary axis, according to the fixed ε, until determining the candidates for
coalescence. The following remark suggests to limit our interest to systems in which
the stiffness matrix is not positive definite.

Remark 1 When K is positive definite, the distance to instability of the system
coincides with the distance to singularity of the matrix K , which is trivially equal
to the absolute value of the smallest eigenvalue of K , because of the Hamiltonian
symmetry.

2.1 Methodology

We make use of a two-level methodology.
First, we fix as ε the Frobenius norm of the admitted perturbation [ΔG,ΔK].

Then, given a pair of (close) eigenvalues λ1, λ2 on the imaginary axis, we look for
the perturbations associated to a minimum of the distance |λ1−λ2| on the imaginary
axis. This is obtained by integrating a suitable gradient system for the functional
|λ1 − λ2|, preserving the norm of the perturbation [ΔG,ΔK].

The external method controls the perturbation level ε to the aim of finding the
minimal value ε∗ for which λ1 and λ2 coalesce. The method is based on a fast
Newton-like iteration.

Two-level iterations of a similar type have previously been used in [4, 5] for other
matrix-nearness problems.

To formulate the internal optimization problem, we introduce the functional, for
ε > 0:

fε(ΔG,ΔK) =
∣∣∣λ1(ΔG,ΔK)− λ2(ΔG,ΔK)

∣∣∣ (5)

where λ1,2(ΔG,ΔK) are the closest eigenvalues on the imaginary axis of the
quadratic eigenvalue problem det(Mλ2 + (G+ΔG)λ+ (K +ΔK)) = 0.
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Thus, we can recast the problem of computing the distance to instability as
follows:

(1) For fixed ε, compute

[ΔG(ε),ΔK(ε)] −→ min
ΔG,ΔK :‖[ΔG,ΔK]‖F=ε

fε(ΔG,ΔK) := f (ε) (6)

with

ΔG+ΔGT and ΔK +ΔKT = 0. (7)

(2) Compute

ε∗ −→ min
ε>0
{ε : f (ε) = 0}. (8)

that means computing a pair (ΔG∗,ΔK∗) of norm ε∗ such that λ1(ε
∗) is

a double eigenvalue of the quadratic eigenvalue problem det(Mλ2 + (G +
ΔG∗)λ+ (K +ΔK∗)) = 0.

2.2 Algorithm

In order to perform the internal minimization at (6), we locally minimize the
functional fε(ΔG,ΔK) over all [ΔG,ΔK] of at most unit Frobenius norm, by
integrating a steepest-descent differential equation (identifying the gradient system
to the functional (5)) until a stationary point. The key instrument to deal with
eigenvalue optimization is a classical variational result concerning the derivative
of a simple eigenvalue of a quadratic eigenvalue problem.

In order to perform the minimization at (8), instead, denoting the minimum value
of fε(ΔG,ΔK) by f (ε), we determine then the smallest perturbation ε! > 0 such
that f (ε!) = 0, by making use of a quadratically convergent iteration.

Remark 2 Given a fixed ε, we compute all the possible distances between the eigen-
values, in order to identify the eigenpair which coalesces first (global optimum).

The whole method is summarized later by Algorithm 2.

3 The Gradient System of ODEs

In this section, the goal is to design a system of differential equations that, for a
given ε, will find the closest pair of ε-pseudoeigenvalues on the imaginary axis.
Indeed, this turns out to be a gradient system for the considered functional, which
allows to obtain a useful monotonicity property along its analytic solutions.
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To this intent, let us define the two-parameter operator:

Q(τ, λ) = Mλ2 +G(τ)λ+K(τ). (9)

Let λ = λ(τ), and let λ0 satisfy the quadratic eigenvalue problem (4).
Assuming that λ0 is a simple eigenvalue, then by Theorem 3.2 in [1]:

y∗0
∂Q

∂λ
x0 �= 0,

where x0 and y0 are the right and left eigenvectors of Q at λ0, respectively.
Under this assumption, therefore, by the variational result (5.3) in [1], the

derivative of λ with respect to τ is well defined and given by:

dλ

dτ
= −

(
y∗0

∂Q

∂τ
x0

)/(
y∗0

∂Q

∂λ
x0

)
(10)

Next, let us consider the matrix-valued functions Gε(t) = G + εΔG(t) and
Kε(t) = K + εΔK(t), where the augmented matrix [ΔG,ΔK] satisfies (7), and

‖[ΔG(t),ΔK(t)]||F = 1 for all t ∈ R. (11)

The corresponding quadratic eigenvalue problem is Qε(t, λ)x = 0, where:

Qε(t, λ) = Mλ2 + [G+ εΔG]λ+ [K + εΔK].

Moreover, let λ1(t) = iθ1(t) and λ2(t) = iθ2(t), with θ1(t) > θ2(t) be two
purely imaginary eigenvalues of Qε(t, λ)x = 0, corresponding to the eigenvalue
of minimal distance of Qε(t, λ)x = 0.

Let λ1 = iθ1 and λ2 = iθ2 with θ1, θ2 ∈ R.
Conventionally assume θ1 > θ2.
For i = 1, 2, let yi such that

γi := y∗i [2iθiM + (G+ εΔG)] xi > 0 (12)

be real and positive. This is naturally possible by suitably scaling the eigenvectors.
Then, applying (10) gives

θ̇1 − θ̇2 = iε

[
y∗1
(
iθ1Δ̇G+ Δ̇K

)
x1

γ1
− y∗2

(
iθ2Δ̇G+ Δ̇K

)
x2

γ2

]

= ε

〈
− θ1

γ1
y1x

∗
1 +

θ2

γ2
y2x

∗
2 , Δ̇G

〉
+ ε

〈
− i
γ1

y1x
∗
1 +

i
γ2

y2x
∗
2 , Δ̇K

〉
. (13)
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where—for a pair of matrices A,B—we denote the Frobenius inner product:

〈A,B〉 = trace(A∗B).

The derivative of [ΔG(t),ΔK(t)] must be chosen in the direction that gives the
maximum possible decrease of the distance between the two closest eigenvalues,
along the manifold of unitary Frobenius norm matrices [ΔG,ΔK]. Notice that
constraint (11) is equivalent to

〈
[ΔG,ΔK], [Δ̇G, Δ̇K]

〉
= 0.

We have the following optimization result, which allows us to determine the
constrained gradient of fε(ΔG,ΔK).

Theorem 3 Let [ΔG,ΔK] ∈ Rn,2n a real matrix of unit norm satisfying con-
ditions (7)–(11), xi and yi right and left eigenvectors relative to the eigenvalues
λi = iθi , for i = 1, 2, of Qε(t, λ)x = 0. Moreover, let γi , with i = 1, 2, be two real
and positive numbers and consider the optimization problem:

min
Z∈Ω

〈
− θ1

γ1
y1x

∗
1 +

θ2

γ2
y2x

∗
2 , ZG

〉
+
〈
− i
γ1

y1x
∗
1 +

i
γ2

y2x
∗
2 , ZK

〉
(14)

with

Ω =
{
‖Z‖ = 1, 〈[ΔG,ΔK], Z〉 = 0, ZG ∈MSkew, ZK ∈MSym

}
,

where MSkew is the manifold of skew-symmetric matrices and MSym the manifold
of symmetric matrices.

The solution Z! = [Z!
G,Z

!
K ] of (14) is given by:

μZ! = μ
[
Z!

G,Z
!
K

] = [fG − ηΔG, fK − ηΔK
]

(15)

where μ > 0 is a suitable scaling factor, and

η = �
〈
[ΔG,ΔK], [fG, fK ]

〉

fG = Skew

(
�
[
θ1

γ1
y1x

∗
1 −

θ2

γ2
y2x

∗
2

])

fK = Sym

(
�
[

1

γ2
y2x

∗
2 −

1

γ1
y1x

∗
1

])
(16)

where Skew(B) denotes the skew-symmetric part of B and Sym(B) denotes the
symmetric part of B.
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Proof Preliminarily, we observe that for a real matrix:

B = B + BT

2
+ B − BT

2
= Sym(B)+ Skew(B)

the orthogonal projection (with respect to the Frobenius inner product) onto the
manifolds MSym of symmetric matrices and MSkew of skew-symmetric matrices
are, respectively, Sym(B) and Skew(B). In fact:

〈Sym(B), Z〉 = 0 for all Z ∈MSkew

and

〈Skew(B), Z〉 = 0 for all Z ∈MSym.

Looking at (14), we set the free gradients:

φG = − θ1

γ1
y1x

∗
1 +

θ2

γ2
y2x

∗
2 and φK = − i

γ1
y1x

∗
1 +

i
γ2

y2x
∗
2 .

The proof is obtained by considering the orthogonal projection (with respect to
the Frobenius inner product) of the matrices (which can be considered as vectors)
− φG and − φK onto the real manifold MSkew of skew-symmetric matrices

and onto the real manifold MSym of symmetric matrices, and further projecting
the obtained rectangular matrix onto the tangent space to the manifold of real
rectangular matrices with unit norm.

3.1 The System of ODEs

Following Theorem 3, we consider the following system of ODEs, where we omit
the dependence of t:

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
ΔG = fG − ηΔG

d

dt
ΔK = fK − ηΔK

(17)

with η, fG, and fK as in (16).
This is a gradient system, which implies that the functional fε(ΔG(t),ΔK(t))

decreases monotonically along solutions of (17), until a stationary point is reached,
which is generically associated to a local minimum of the functional.
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4 The Computation of the Distance to Instability

As mentioned in Sect. 1, the only way to break the Hamiltonian symmetry is a strong
interaction, that is two (or more) eigenvalues coalesce. This property allows us to
reformulate the problem of distance to instability in terms of distance to defectivity
(see [3]). In particular, since the matrices G and K must preserve their structure,
we will consider a structured distance to defectivity. Because of the coalescence,
we do not expect the distance between the eigenvalues to be a smooth function with
respect to ε when fε = 0.

As an illustrative example, consider the gyroscopic system described by the
equation:

[
1 0
0 1

]
ẍ(t)+

[
0 3
−3 0

]
ẋ(t)−

[
1 1
1 2

]
x(t) = 0. (18)

The minimal distance among the eigenvalue of this system is achieved by the
conjugate pair closest to the origin, that is, |θ1| = |θ2|, and coalescence occurs
at the origin, as shown in Fig. 1 (left).

Let us substitute the stiffness matrix in (18) with −I , that is:

[
1 0
0 1

]
ẍ(t)+

[
0 3
−3 0

]
ẋ(t)−

[
1 0
0 1

]
x(t) = 0. (19)

Although |θ1| = |θ2| still holds, strong interaction does not occur at the origin. Here,
two pairs coalesce at the same time, as shown in Fig. 1 (right).
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Fig. 1 Eigenvalues of system (18) on the left, before and at the moment of strong interaction at
the origin. Eigenvalues of system (19) on the right: two strong interactions occur at the same time
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4.1 Variational Formula for the ε-Pseudoeigenvalues
with Respect to ε

We consider here the minimizers ΔG(ε) and ΔK(ε) computed as stationary points
of the system of ODEs (17) for a given ε, and the associated eigenvalues λi(ε) =
iθi(ε) of the quadratic eigenvalue problem with ε < ε∗ (which implies θ1(ε) �=
θ2(ε)). We assume that all the abovementioned quantities are smooth functions with
respect to ε, which we expect to hold generically.

Formula (10) is useful to compute the derivative of the ε-pseudoeigenvalues with
respect to ε. We need the derivative of the operator Q w.r.t. ε, which appears to be
given by:

∂Q

∂ε
= ΔGλ+ΔK + ε(ΔG′λ+ΔK ′)

Here, the notation A′ = dA
dε

is adopted. Assuming that λ = λ0 is a simple
eigenvalue, and x0 and y0 are the right and left eigenvectors of Q at λ0 respectively,
then

∂λ

∂ε
= −y∗0 (ΔGλ+ΔK + ε(ΔG′λ+ΔK ′))x0

y∗0 (2Mλ+G+ εΔG)x0

Claim y∗0 (ΔG′λ+ΔK ′)x0 = 0.

The norm conservation ||[ΔG,ΔK]||F = 1, which is equivalent to ||ΔG||2F +
||ΔK]||2F = 1, implies that 〈ΔG,ΔG′〉 = 0 = 〈ΔK,ΔK ′〉. Also:

�(y∗0λ0ΔG′x0) = �(y∗0 iθ0 ΔG′x0) = 〈ΔG′,�(y0 x
∗
0 )〉 = 〈ΔG′, ηΔG〉 = 0,

and

�(y∗0λ0ΔK ′x0) = �(y∗0 ΔK ′x0) = 〈ΔK ′,�(y0 x
∗
0 )〉 = 〈ΔK ′, ηΔK〉 = 0.

Therefore:

∂λ

∂ε
= − y∗0 (ΔGλ+ΔK)x0

y∗0 (2Mλ+G+ εΔG)x0
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and

θ ′1 − θ ′2 =
1

γ2

[
θ2�(y∗2 ΔGx2)+ �(y∗2 ΔK x2)

]
− 1

γ1

[
θ1�(y∗1 ΔGx1)+ �(y∗1 ΔK x1)

]

(20)

The previous expression provides f ′(ε). Hence, for ε < ε! we can exploit its
knowledge. Since generically coalescence gives rise to a defective pair on the
imaginary axis, we have that the derivative of f (ε) is singular at ε!.

Our goal is that of approximating ε! by solving f (ε) = δ with δ > 0 a
sufficiently small number. For ε close to ε!, ε < ε! we have generically (see [3])

⎧
⎨

⎩

f (ε) = γ
√
ε! − ε +O((ε! − ε)3/2

)

f ′(ε) = − γ

2
√
ε! − ε

+O((ε! − ε)1/2),
(21)

which corresponds to the coalescence of two eigenvalues. For an iterative process,
given εk , we use formula (20) to compute f ′(ε) and estimate γ and ε! by
solving (21) with respect to γ and ε!. We denote the solution as γk and ε!k , that
is:

γk =
√

2f (εk)|f ′(εk)|, ε!k = εk + f (εk)

2|f ′(εk)| (22)

and then compute

εk+1 = ε!k − δ2/γ 2
k . (23)

An algorithm based on previous formulæ is Algorithm 2, which does not add any
additional cost to the algorithm since the computation of f ′(εk) is very cheap.

Unfortunately, since the function f (ε) is not smooth at ε!, and vanishes
identically for ε > ε!, the fast algorithm has to be complemented by a slower
bisection technique to provide a reliable method to approximate ε!.

5 The Complete Algorithm

The whole Algorithm 2 follows:
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Algorithm 2: Algorithm for computing ε!

Data: tol > 0, δ > 0, and ε0, ε1, εu (such that f (ε0) > f (ε1) > tol, and f (εu) < tol).
Result: εf (approximation of ε!).
begin

1 Set Reject = False and k = 1.
2 while |εk − εu| ≥ tol do
3 if Reject = False. then

Store εk and f (εk) into the memory.
4 Solve the system (17) and compute [ΔG(ε),ΔK(ε)] and

f (ε) = fε(ΔG(ε),ΔK(ε)).
5 Compute ε̃k+1 by the formula (23).
6 if ε̃k+1 > εu then

Set ε̃k+1 = (εu + εk)/2.

else
Set ε̃k+1 = (εu + εk)/2.

7 Compute f (ε̃k+1) by integrating (17) with initial datum [ΔG(εk),ΔK(εk)] (the
minimizer associated to εk).

8 if |f (ε̃k+1)| < tol then
Set Reject = True.
Set εu = ε̃k+1.

else
Set Reject = False.

9 Set εk+1 = ε̃k+1.
10 Set k = k + 1.

11 Set εf = εk .

6 Numerical Experiments

We consider here some illustrative examples with M = I , from [2, 10, 13]. In
the following, εu is chosen as the distance between the largest and the smallest
eigenvalues, whereas ε0 = 0 and ε1 is obtained by (23).

6.1 Example 1

Let G =
⎡

⎣
0 −2 4
2 0 −2
−4 2 0

⎤

⎦ and K =
⎡

⎣
13 2 1
2 7 2
1 2 4

⎤

⎦.

Also in this example, the stiffness matrix is positive definite, and the distance to
singularity is ε! = 3 which coincides with the distance to instability.
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Fig. 2 A zoom-in, before, during, and after strong interaction for system (24)

6.2 Example 2

Let us consider the equation of motion Mẍ(t)+Gẋ(t)+Kx(t) = 0, with:

M =

⎡

⎢⎢⎢⎣

8 −2 1 0

−2 10 4 4

1 4 10 −1.2

0 4 −1.2 8

⎤

⎥⎥⎥⎦ , G =

⎡

⎢⎢⎢⎣

0 −16 −8 −12

16 0 −40 −12

8 40 0 16

12 12 −16 0

⎤

⎥⎥⎥⎦ , K =

⎡

⎢⎢⎢⎣

4 −3 2 0

−3 6 1 −3

2 1 5 −2

0 −3 −2 4

⎤

⎥⎥⎥⎦

(24)

Here, the two closest eigenvalues of the system are the complex conjugate θ1 =
−θ2 = 2.1213e − 02 and coalescence occurs at the origin, with ε! = 4.6605e −
01. Figure 2 illustrates these results. On the left, a zoom-in of the eigenvalues of
system (24) near the origin is provided. In the center, coalescence occurs for the
perturbed system Mẍ(t)+ (G+ ε!ΔG)ẋ(t)+ (K + ε!ΔK)x(t) = 0. On the right,
the two eigenvalues become real after the strong interaction, namely, for ε > ε!,
and the positive one leads the system to instability.
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6.3 Example 3

This problem arises in the vibration analysis of a wiresaw. Let n be the dimension
of the matrices. Let

M = In/2, K = diag1≤j≤n(j2π2(1− v2)/2)

and G = (gjk) where gjk = 4jk
j2−k2 v if j + k is odd, and 0 otherwise.

The parameter v is a real nonnegative number representing the speed of the wire.
For v ∈ (0, 1), the stiffness matrix is positive definite. Here, we present two cases
in which v > 1, and K is negative definite.

First, consider n = 4 and v = 1.1. Then, the system is marginally stable, and the
distance to instability is given by ε! = 4.6739e−02. The eigenvalues iθ1 = i3.4653
and iθ2 = i2.5859 coalesce, as well as their respective conjugates.

Acknowledgements N. Guglielmi thanks the Italian M.I.U.R. and the INdAM GNCS for financial
support and also the Center of Excellence DEWS.
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Energetic BEM for the Numerical
Solution of 2D Hard Scattering Problems
of Damped Waves by Open Arcs

Alessandra Aimi, Mauro Diligenti, and Chiara Guardasoni

Abstract The energetic boundary element method (BEM) is a discretization
technique for the numerical solution of wave propagation problems, introduced and
applied in the last decade to scalar wave propagation inside bounded domains or
outside bounded obstacles, in 1D, 2D, and 3D space dimension.

The differential initial-boundary value problem at hand is converted into a space–
time boundary integral equations (BIEs), then written in a weak form through
considerations on energy and discretized by a Galerkin approach.

The paper will focus on the extension of 2D wave problems of hard scattering
by open arcs to the more involved case of damped waves propagation, taking into
account both viscous and material damping.

Details will be given on the algebraic reformulation of Energetic BEM, i.e.,
on the so-called time-marching procedure that gives rise to a linear system whose
matrix has a Toeplitz lower triangular block structure.

Numerical results confirm accuracy and stability of the proposed technique,
already proved for the numerical treatment of undamped wave propagation prob-
lems in several space dimensions and for the 1D damped case.

Keywords Damped waves · Energetic boundary element method · FFT

1 Introduction

A variety of engineering and physical applications, such as the propagation or the
scattering of acoustic or electromagnetic waves, leads to the problem of solving
linear hyperbolic partial differential equations (PDEs) in two- or three-dimensional
space. These problems are normally considered in an unbounded homogeneous
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domain, and a method to tackle them is to reformulate the PDE as a boundary
integral equation (BIE) on the usually bounded boundary of the domain, which
can then be numerically solved using the boundary element method (BEM) [9, 17].
In some applications, the physically relevant data are given not by the solution in
the interior of the domain but rather by the boundary values of the solution or its
derivatives. These data can be obtained directly from the solution of BIEs, whereas
it is well known that boundary values obtained from finite element method (FEM)
solutions are in general not so accurate.

In the context of wave propagation, while the elastic forces tend to maintain
the oscillatory motion, the transient effect dies out because of energy dissipations.
The process of energy dissipation is generally referred to as damping. The analysis
of damping phenomena that occur, for example, in mechanics, in fluid dynamics,
and in semiconductors, is of particular interest [18, 20]: the dissipation is generated
by the interaction between the waves and the propagation medium and it can be
also closely related to the dispersion, as in the interactions between water streams
and surface waves or in ferromagnetic materials. On the other side, in mechanical
systems, in general, damping has the effect of reducing the amplitude of vibrations
and, therefore, it is desirable to have some amount of damping in order to faster
achieve stability. Hence, damping is whether an unavoidable presence in physical
reality or a desired characteristic in industrial design.

The use of advanced numerical techniques to solve the related PDEs,
such as FEMs and finite difference methods (FDMs), is well established
and it is standard in this framework, while in the context of BEMs the
analysis of dissipation through damped wave equation rewritten as a BIE is
a relatively new topic, because it has been scarcely investigated until now.
For the numerical solution of this kind of problems, one needs consistent
approximations and accurate simulations even on large time intervals. Furthermore,
as wave propagation phenomena are often observed in semi-infinite media (domain)
where Sommerfeld radiation condition holds, a suitable numerical method has to
ensure that this condition is not violated. For example, FEMs need the application of
special techniques to fulfill this condition that, on the contrary, is implicitly fulfilled
by BEM; hence a suitable coupling of both these techniques, when applicable, gives
undoubted advantages.

In principle, both frequency-domain [13] and time-domain [7, 8] BEM can be
used for hyperbolic initial-boundary value problems. Space–time BEM has the
advantage that it directly yields the unknown time-dependent quantities. In this last
approach, the construction of the BIEs, via representation formula in terms of single-
and double-layer potentials, uses the fundamental solution of the hyperbolic partial
differential equation and jump relations [15]. The mathematical background of time-
dependent boundary integral equations is summarized by M. Costabel in [14].

For the numerical solution of the damped wave equation in 1D unbounded media,
we have already considered in [5] the extension of the so-called space–time ener-
getic BEM, introduced for the undamped wave equation in several space dimensions
[1, 3, 4]. Energetic BEM comes from the discretization of a weak formulation based
on energy arguments, directly expressed in the space–time domain, thus avoiding
the use of the Laplace transform and of its inversion suggested in [15].
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The analysis carried out for 1D damped wave propagation problems allowed to
fully understand the approximation technique for what concerns marching on time,
avoiding space integration with BEM singular kernels and it was considered as a
touchstone for the extension to higher space dimensions, which is done here for
the 2D case, taking into account hard scattering problems in unbounded domains,
being soft scattering already treated in [6]. The chapter is structured as follows:
at first, we present the differential model problem on an unbounded 2D domain
and its energetic boundary weak formulation, and then we illustrate the consequent
BEM discretization, highlighting numerical aspects of its algebraic reformulation.
Significant numerical benchmarks are introduced and discussed, showing, from
a numerical point of view, stability and accuracy of the obtained approximate
solutions.

2 Model Problem and Its Weak Boundary Integral
Formulation

We will consider the 2D Neumann problem for the damped wave equation in a
bounded time interval [0, T ], exterior to an obstacle given by an open arc Γ ⊂ R2:

[
Δu− 1

c2
utt − 2D

c2
ut − P

c2
u
]
(x, t) = 0, x ∈ R2 \ Γ, t ∈ (0, T ] (1)

u(x, 0) = ut (x, 0) = 0, x ∈ R2 \ Γ, (2)

q(x, t) := ∂u

∂n
(x, t) = q̄(x, t), x ∈ Γ, t ∈ (0, T ] , (3)

where c is the propagation velocity of a perturbation inside the domain, D and P are
the viscous and material damping coefficients, respectively; n stands for the normal
unit vector to Γ , and the datum q̄ represents the opposite of the normal derivative of

the incident wave along Γ , i.e., q̄ = − ∂uI

∂n . In the acoustic framework, the exterior
Neumann problem defines the scattering of a plane wave at a hard obstacle [21].

Remark 1 When D = P = 0, the given PDE collapses to the classical wave
equation and the considered model problem can be also conceived, as stated in
[10], as the scattering problem by a crack Γ in an unbounded elastic isotropic
medium R2 \ Γ . Let Γ − and Γ + denote the lower and upper faces of the crack,
respectively, and n the normal unit vector to Γ oriented from Γ − to Γ +. As usual,
the total displacement field can be represented as the sum of the incident field (the
wave propagating without the crack) and the scattered field. In a 3D elastic isotropic
medium, there are three plane waves propagating in a fixed direction: the primary
wave P, the shear horizontal wave SH, and the vertical wave SV. The 2D antiplane
problem corresponds to an incident SH wave, when all quantities are independent of
the third component z (in particular, the crack has to be invariant with respect to z).
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The scattered wave satisfies the Neumann problem (1)–(3) for the wave operator,
where u stands for the third component of the displacement field.

Since we want to discretize the above problem using BEM, we have to rewrite
it in a boundary integral form. This can be done using classical arguments and the
knowledge of the fundamental solution of the 2D damped wave operator. Hence, we
start writing the double-layer representation of the solution of (1)–(3):

u(x, t) =
∫

Γ

∫ t

0

∂G

∂ny
(r, t− τ )ϕ(y, τ ) dτ dγy, x ∈ R2 \Γ, t ∈ (0, T ], (4)

where r := x− y, the unknown density ϕ = [u]Γ represents the time history of the
jump of u along Γ , and

G(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c
2π e−Dt

cos

(√
P−D2
c

√
c2t2−‖x‖2

)

√
c2t2−‖x‖2

H [c t − ‖x‖] , P ≥ D2

c
2π e−Dt

cosh

(√
D2−P
c

√
c2t2−‖x‖2

)

√
c2t2−‖x‖2

H [c t − ‖x‖] , P ≤ D2

(5)

is the forward fundamental solution of the 2D damped wave operator, with H [·] the
Heaviside distribution and ‖ · ‖ the Euclidean vector norm. Definition (5) switches
from cos(·) to cosh(·) depending on the reciprocal magnitude of P and D2: when
P > D2 we are in the so-called underdamping configuration, when P < D2 we
are in overdamping configuration, while the separation state P = D2, referred to
the vanishing of both cos(·) and cosh(·) arguments, is called critical damping. Note
that in the limit for D, P tending to 0, G(x, t) tends to the fundamental solution of
the 2D undamped wave operator, that is:

G0(x, t) = c

2π

H [c t − ‖x‖]√
c2t2 − ‖x‖2

. (6)

Defining the auxiliary kernel:

G̃(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
P−D2

2π e−Dt sin
(√

P−D2

c

√
c2t2 − ‖x‖2

)
H [c t − ‖x‖] , P ≥ D2

−
√

D2−P
2π e−Dt sinh

(√
D2−P
c

√
c2t2 − ‖x‖2

)
H [c t − ‖x‖] , P ≤ D2

(7)
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the representation formula (4) can be rewritten explicitly as:

u(x, t) =
∫

Γ

∫ t

0

r · ny
r

{
G(r, t − τ)

[
ϕτ (y, τ) +Dϕ(y, τ)

c
+ ϕ(y, τ)

c(t − τ)+ r

]
+

G̃(r, t − τ)
ϕ(y, τ)

c(t − τ)+ r

}
dτ dγy, x ∈ R2 \ Γ, t ∈ (0, T ] , r := ‖r‖ . (8)

Now, it is clear that if we want to recover the solution of the differential problem
at any point outside the obstacle and at any time instant, we have to proceed with a
post-processing phase provided that we know the density function ϕ(x, t). To this
aim, applying a directional (normal) derivative w.r.t. x in (4), performing a limiting
process for x tending to Γ , and using the assigned Neumann boundary condition (3)
we obtain the hypersingular space–time BIE:

∫

Γ

∫ t

0

∂2G

∂nx∂ny
(r, t − τ )ϕ(y, τ ) dτ dγy = q̄(x, t), x ∈ Γ, t ∈ [0, T ], (9)

in the unknown ϕ(x, t), which can be written with the compact notation:

Dϕ = q̄ . (10)

Problem (10) has been set in weak form. The so-called energetic weak formu-
lation of (10) is defined similarly as in [3] and it can be deduced observing that,
multiplying the PDE (1) by ut , integrating over [0, T ] × (R2 \ Γ ), and using
integration by parts in space, one obtains that the energy E (u, T ) of the solution
u at the final time of analysis T , defined by:

1

2

∫

R2\Γ

[
‖∇xu(x, T )‖2 + 1

c2 u
2
t (x, T )+ P

c2 u
2(x, T )+ 4D

c2

∫ T

0
u2
t (x, t)dt

]
dγx

(11)

can be rewritten as:

E (u, T ) =
∫

Γ

∫ T

0
[ut ]Γ (x, t)

∂u

∂nx
(x, t) dt dγx =

∫

Γ

∫ T

0
ϕt(x, t)Dϕ(x, t) dt dγx .

(12)

Hence, projecting (10) by means of test functions ψ , derived w.r.t. time and
belonging to the same functional space where we will search for the unknown
density ϕ, we can write the energetic weak problem:
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find ϕ ∈ H 1([0, T ];H 1/2
0 (Γ )) such that

∫

Γ

∫ T

0
(Dϕ)(x, t)ψt (x, t) dt dγx =

∫

Γ

∫ T

0
q̄(x, t)ψt (x, t) dt dγx ,

∀ψ ∈ H 1([0, T ];H 1/2
0 (Γ )) . (13)

Remark 2 The theoretical analysis of the quadratic form coming from the left-hand
side of (13) was carried out for P = D = 0 in [3] where, under suitable hypothesis,
coercivity was proved with some technicalities. This property allowed us to deduce
stability and convergence of the related Galerkin approximate solution, which in
this paper, for the case of nontrivial damping coefficients, will be verified from a
numerical point of view.

3 Energetic BEM Discretization

We consider on the obstacle Γ , a boundary mesh constituted by MΔx straight
elements {e1, · · · , eMΔx }, with length(ei) ≤ Δx, ei ∩ ej = ∅ if i �= j and such

that
⋃MΔx

i=1 ei coincides with Γ , closure of Γ , if the obstacle is (piece-wise) linear,
or is a suitable approximation of Γ , otherwise. The functional background compels
one to choose space shape functions belonging to H 1

0 (Γ ); hence, we use standard
piece-wise linear polynomial boundary element functions wj(x), j = 1, · · · , NΔx ,
with NΔx := MΔx − 1, suitably defined in relation to the introduced mesh over the
obstacle and vanishing at the endpoints of Γ .

For time discretization, we consider a uniform decomposition of the time interval
[0, T ] with time step Δ t = T/NΔt ,NΔt ∈ N+, generated by the NΔt + 1
instants: tk = k Δ t, k = 0, · · · , NΔt , and we choose piece-wise linear time
shape functions. Note that, for this particular choice, our shape functions, denoted
by vk(t), k = 0, · · · , NΔt − 1, will be defined as:

vk(t) = R[t − tk] − 2R[t − tk+1] + R[t − tk+2] , (14)

where R(t − tk) := t−tk
Δt

H [t − tk] is the ramp function. Hence, the approximate
solution of the problem at hand will be expressed as:

ϕ(x, t) 8
NΔt−1∑

k=0

NΔx∑

j=1

α
(k)
j wj (x) vk(t). (15)

The Galerkin BEM discretization coming from energetic weak formulation (13)
produces the linear system:

Aα = b , (16)
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of order NΔx ·NΔt , where matrix A has a block lower triangular Toeplitz structure.
Each block has dimension NΔx . If we indicate with A(�) the block obtained when
th − tk = �Δt, � = 0, . . . , NΔt − 1, the linear system can be written as:

⎛
⎜⎜⎜⎜⎜⎝

A(0) 0 0 · · · 0
A(1) A(0) 0 · · · 0
A(2) A(1) A(0) · · · 0
· · · · · · · · · · · · 0

A(NΔt−1) A(NΔt−2) · · · A(1) A(0)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α(0)

α(1)

α(2)

...

α(NΔt−1)

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

b(0)

b(1)

b(2)

...

b(NΔt−1)

⎞
⎟⎟⎟⎟⎟⎠

(17)

where: α(�) =
(
α
(�)
j

)
and b(�) =

(
b
(�)
j

)
, � = 0, . . . , NΔt − 1 , j = 1, . . . , NΔx .

The solution of (17) is obtained with a block forward substitution, i.e., at every
time instant t�, we solve a reduced linear system of the type:

A(0)α(�) = b(�) − (A(1)α(�−1) + · · · + A(�)α(0)). (18)

Procedure (18) is a marching-on-time (MoT) technique, where the only matrix to
be inverted once and for all is the symmetric, even if dense, non-singular A(0)

diagonal block, while all the other blocks are used to update at every time step
the right-hand side. Owing to this procedure, we can construct and store only the
blocks A(0), · · · , A(NΔt−1) with a considerable reduction of computational cost and
memory requirement. Let us finally note that for 2D problems blocks dimensions
are typically low, as well as the condition number of block A(0). On the other
side, the only drawback is the necessity of calculating, as discretization matrix
elements, double integrals, involving hypersingular kernels in the space variables, as
it happens for Galerkin BEM applied in the context of Neumann elliptic problems.
Efficient quadrature schemes, used in this work, for numerical evaluation of these
types of integrals are based on those described in [2], to which the interested reader
is referred.

4 An FFT-Based Algorithm for MoT Computation

A reduction in computational cost, evaluating the block–vector products in the right-
hand side of (18), can be obtained using an FFT-based algorithm as suggested in [16]
and described here in detail. The interested reader is also referred to [12].

Definition Let v = [v0 . . . vm−1], w = [w0 . . . wm−1], m ≥ 1, two vectors
with the same length. We define their discrete circular convolution as a vector of
components:

(v ∗ w)q :=
m−1∑

p=0

vmod[m+q−p,m]wp , q = 0, . . . ,m− 1 . (19)
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Note that we can equalize the discrete circular convolution to a matrix–vector
product with a circulant matrix associated to the first vector of the convolution:

v ∗ w =

⎛
⎜⎜⎜⎜⎜⎝

v0 vm−1 vm−2 · · · v1

v1 v0 vm−1 · · · v2

v2 v1 v0 · · · v3

· · · · · · · · · · · · · · ·
vm−1 vm−2 vm−3 · · · v0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

w0

w1

w2

· · ·
wm−1

⎞
⎟⎟⎟⎟⎟⎠

. (20)

For the discrete circular convolution (19), the following result holds (see [19]):

v ∗ w = F−1(F (v)F (w)) , (21)

where F is the discrete Fourier transform (DFT). This allows to faster evaluate the
convolution of two vectors with an FFT algorithm.

At every time step, for � = 1, · · · , NΔt − 1, we have to evaluate in (18) the �-th
component of the vector resulting from the product:

⎛
⎜⎜⎜⎜⎜⎝

A(1) 0 0 · · · 0
A(2) A(1) 0 · · · 0
A(3) A(2) A(1) · · · 0
· · · · · · · · · · · · · · ·

A(NΔt−1) A(NΔt−2) · · · A(2) A(1)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

α(0)

α(1)

α(2)

...

α(NΔt−2)

⎞
⎟⎟⎟⎟⎟⎠

(22)

The algorithm proceeds as follows.
At first, we compute α(0), then we compute α(1) having evaluated, in the right-

hand side of (18), A(1)α(0) =: b(1). Afterwards, we can proceed observing that for
the evaluation of the next two unknown vectors α(2) and α(3), we need to prepare
the following terms at the right-hand side of (18):

A(2)α(0) + A(1)α(1)

A(3)α(0) + A(2)α(1) + A(1)α(2) .
(23)

Having at disposal α(0) and α(1), we can compute

(
b(2)

b(3)

)
:=
(
A(2) A(1)

A(3) A(2)

)(
α(0)

α(1)

)
=
⎡

⎣

⎛

⎝
A(1) A(3) A(2)

A(2) A(1) A(3)

A(3) A(2) A(1)

⎞

⎠

⎛

⎝
α(0)

α(1)

0

⎞

⎠

⎤

⎦

q=2,3

(24)

where, here and in the following, b(j) :=
(
b
(j)

1 · · · b(j)NΔx

)#
, and intending that, in

the product with the circulant matrix in the right-hand side, we will consider only
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the second and the third block–vectors (q = 2, 3) and that 0 is a vector of zeros of
dimension NΔx .

The FFT, as suggested in (21), is point-wise performed to faster evaluate (24):
for i = 1, . . . , NΔx , we get

(
b
(2)
i

b
(3)
i

)
=

NΔx∑

j=1

⎡

⎢⎢⎣

⎛

⎜⎜⎝

A
(1)
ij A

(3)
ij A

(2)
ij

A
(2)
ij A

(1)
ij A

(3)
ij

A
(3)
ij A

(2)
ij A

(1)
ij

⎞

⎟⎟⎠

⎛

⎜⎜⎝

α
(0)
j

α
(1)
j

0

⎞

⎟⎟⎠

⎤

⎥⎥⎦

q=2,3

=
NΔx∑

j=1

[[
A

(1)
ij A

(2)
ij A

(3)
ij

]
∗
[
α
(0)
j α

(1)
j 0

]]

q=2,3

=
NΔx∑

j=1

[
F−1

(
F
([

A
(1)
ij A

(2)
ij A

(3)
ij

])
F
([

α
(0)
j α

(1)
j 0

]))]

q=2,3

(25)

and, with a suitable reordering, we recover (b(2) b(3))#; after having obtained α(2),
we can complete the computation in (23) in order to finally get α(3).

Then, we can proceed observing that for the evaluation of the next four unknown
vectors α(4), α(5), α(6) and α(7), we need to prepare the following terms at the right-
hand side of (18):

A(4)α(0) + A(3)α(1) + A(2)α(2) + A(1)α(3)

A(5)α(0) + A(4)α(1) + A(3)α(2) + A(2)α(3) + A(1)α(4)

A(6)α(0) + A(5)α(1) + A(4)α(2) + A(3)α(3) + A(2)α(4) + A(1)α(5)

A(7)α(0) + A(6)α(1) + A(5)α(2) + A(4)α(3) + A(3)α(4) + A(2)α(5) + A(1)α(6)

(26)

Having at disposal α(0), α(1), α(2) and α(3), we can fastly compute

⎛
⎜⎜⎜⎝

b(4)

b(5)

b(6)

b(7)

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎝

A(4) A(3) A(2) A(1)

A(5) A(4) A(3) A(2)

A(6) A(5) A(4) A(3)

A(7) A(6) A(5) A(4)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

α(0)

α(1)

α(2)

α(3)

⎞
⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

A(1) A(7) . . . A(2)

A(2) A(1) . . . A(3)

. . . . . . . . . . . .

A(7) A(6) . . . A(1)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(0)

...

α(3)

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

q=4,...,7

(27)
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using the FFT: for i = 1 . . . NΔx , we get

⎛

⎜⎜⎜⎝

b
(4)
i

b
(5)
i

b
(6)
i

b
(7)
i

⎞

⎟⎟⎟⎠=
NΔx∑

j=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

A
(1)
ij A

(7)
ij . . . A

(2)
ij

A
(2)
ij A

(1)
ij . . . A

(3)
ij

. . . . . . . . . . . .

A
(7)
ij A

(6)
ij . . . A

(1)
ij

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(0)
j

...

α
(3)
j

0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

q=4,...,7

=
NΔx∑

j=1

[
[A(1)

ij . . . A
(7)
ij ] ∗ [α(0)

j . . . α
(3)
j 0 0 0]

]

q=4,...,7

=
NΔx∑

j=1

[
F−1(F ([A(1)

ij . . . A
(7)
ij ])F ([α(0)

j . . . α
(3)
j 0 0 0]))

]

q=4,...,7
,

(28)

and, with a suitable reordering, we recover (b(4) . . .b(7))#, so that we can complete
the computation in (26) using partial results of previous steps, in order to get, step
by step, α(4), α(5), α(6), and α(7).

This strategy can be generalized in the following algorithm AFFT:
Let NΔt be a power of 2 and let ν be such that 2ν+1 = NΔt . Then:

• compute α(0),
• for ν = 1, . . . , ν + 1 compute:

i) the matrix–vector product:

⎛

⎜⎜⎜⎜⎝

b(2
ν−1)

b(2
ν−1+1)

...

b(2
ν−1)

⎞

⎟⎟⎟⎟⎠
:=

⎛

⎜⎜⎜⎝

A(2ν−1) · · · A(2) A(1)

A(2ν−1+1) · · · A(3) A(2)

· · · · · · · · · · · ·
A(2ν−1) · · · A(2ν−1+1) A(2ν−1)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

α(0)

α(1)

...

α(2ν−1−1)

⎞

⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎜⎜⎝

A(1) · · · A(3) A(2)

A(2) · · · A(4) A(3)

· · · · · · · · · · · ·
A(2ν−2) · · · A(1) A(2ν−1)

A(2ν−1) · · · A(2) A(1)

⎞

⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(0)

...

α(2ν−1−1)

0
.
.
.

0

⎫
⎬

⎭ 2ν−1 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

q=2ν−1,...,2ν−1
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that is, for i = 1, . . . , NΔx , the FFT of the discrete convolutions:

⎛

⎜⎜⎜⎜⎜⎜⎝

b
(2ν−1)
i

b
(2ν−1+1)
i

.

.

.

b
(2ν−1)
i

⎞

⎟⎟⎟⎟⎟⎟⎠
=

NΔx∑

j=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

A
(1)
ij · · · A(3)

ij A
(2)
ij

A
(2)
ij · · · A(4)

ij A
(3)
ij

· · · · · · · · · · · ·
A

(2ν−2)
ij · · · A(1)

ij A
(2ν−1)
ij

A
(2ν−1)
ij · · · A(2)

ij A
(1)
ij

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(0)
j

.

.

.

α
(2ν−1−1)
j

0
.
.
.

0

⎫
⎪⎪⎬

⎪⎪⎭
2ν−1 − 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

q=2ν−1,...,2ν−1

=

=
NΔx∑

j=1

⎡

⎢⎣
[
A

(1)
ij . . . A

(2ν−1)
ij

]
∗
⎡

⎢⎣α(0)
j . . . α

(2ν−1−1)
j 0 . . . 0︸ ︷︷ ︸

2ν−1−1

⎤

⎥⎦

⎤

⎥⎦

q=2ν−1,...,2ν−1

=

=
NΔx∑

j=1

⎡

⎢⎣F−1

⎛

⎜⎝F
([

A
(1)
ij . . . A

(2ν−1)
ij

])
F
([

α
(0)
j . . . α

(2ν−1−1)
j 0 . . . 0︸ ︷︷ ︸

2ν−1−1

])
⎞

⎟⎠

⎤

⎥⎦

q=2ν−1,...,2ν−1

with final reordering of elements,
ii) the unknown vectors α(q), for q = 2ν−1, . . . , 2ν − 1, successively, using

partial FFT results from the previous steps.

Remark 3 Algorithm AFFT can be visualized as shown in Fig. 1, where the
dimension of the square blocks:

[
A(q−p)

]

q=2ν−1,··· ,2ν−1;p=0,··· ,2ν−1−1
,

involved in the FFT computation is reported, for ν = 3. Note that triangles in the
same figure can represent the numerical solution of the linear system in (18), to be
done at each time step t�, for � = 0, · · · , NΔt − 1.

Fig. 1 Scheme of repartition
of block-FFT computation in
the algorithm AFFT , for
ν = 3
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Fig. 2 Comparison between computational times of MoT and AFFT-based MoT, for different
values of ν and for NΔx = 10 on the left, with a zoom and theoretical slopes on the right

The above algorithm, which exploits at every iteration FFT results from the
previous steps, applied to a simpler lower triangular matrix of order 2ν+1, has a
computational cost of order O(2ν+1 log(2ν+1)), but for our problem everything is
complicated by the fact that A(q−p) is not a scalar quantity but a matrix of order
NΔx , hence we have to apply the FFT N2

Δx times. Summarizing, in our case the
number of arithmetical operations can be kept at the order O(N2

ΔxNΔt log(NΔt ))

instead of O(N2
ΔxN

2
Δt), and the computational time saving is appreciable in case

of large number of time steps, as shown in Fig. 2, where a comparison between
computational times, on a standard laptop, of MoT and AFFT-based MoT, for
different values of ν and for NΔx = 10, is plotted. Note that the leading term of the
computational cost of the proposed FFT-based MoT algorithm is coincident with the
one findable for the Algorithm 4 in [11], related to a block Toeplitz matrix–vector
product.

Alternatively, one can proceed with the inversion of the whole block lower tri-
angular Toeplitz matrix A in (16), following specific Algorithm 5 proposed in [11],
where computational cost is proved to be of order O(N3

ΔxNΔt+N2
ΔxNΔt log(NΔt )).

Remark 4 In general, there are FFT algorithms that keep their efficiency for any
integer dimensions; however, for example, the Cooley–Tukey FFT algorithm [19] is
optimized for vector dimensions equal to powers of 2, reason why we have chosen
in the above description NΔt = 2ν+1.

5 Numerical Results

In the following, we present some numerical results obtained by the energetic BEM
applied to the analysis of 2D damped waves hard scattering.
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We consider the model problem (1)–(3) fixing Γ = {x = (x, 0) | x ∈ [0, 1]},
c = 1, [0, T ] = [0, 5], and Neumann boundary datum, taken from [3], coming from
an incident plane linear wave uI (x, t) propagating in direction k = (cos θ, sin θ),
that is:

q̄(x, t) = − ∂

∂nx
f (t − k · x)

∣∣∣
Γ

with f (t) = 0.5 t H [t] . (29)

In this case, the Neumann datum (29) tends to the constant value q̄θ = 0.5 sin θ ,
independent of time, when t tends to infinity, so we expect that the approximate
transient solution ϕ(x, t) of BIE (9) on Γ will tend to the BIE solution related to a
simpler elliptic PDE.

When P = 0,D ≥ 0, we can discard in (1) the terms dependent on time and on
P ; we can therefore consider the following stationary BVP for the Laplace equation:

⎧
⎨

⎩

Δu∞(x) = 0, x ∈ R2 \ Γ
q∞(x) = q̄θ , x ∈ Γ

u∞(x) = O(‖x‖−1
2 ), ‖x‖ → ∞ ,

(30)

and the related BIE, whose analytical solution is explicitly known, it reads ϕ∞(x) =
sin θ

√
x(1− x) and it is shown in Fig. 3. Let’s remark that this static solution

remains the same for every value of D.
For an incident angle of π/3 and for discretization parameters fixed as Δx =

0.05 and Δt = 0.05, in Fig. 4 we show the approximate solution obtained by
energetic BEM, at the final time instant of analysis T = 5, for P = 0 and
different values of the viscous damping parameter D = 0, 0.25, 1, 4 (overdamping
configuration). The higher the value of D, the higher the gap between transient
and steady-state solutions, meaning that when we are in the presence of growing

Fig. 3 BIE static solution on
Γ related to the Laplace
BVP (30)
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Fig. 4 ϕ(x, T ) on Γ , for P = 0 and different values of D

viscosity, we would need more time to see the overlapping between the two
corresponding plots.

When P > 0, we can discard in (1) the terms dependent on time; hence, for any
value of D ≥ 0, we can consider the following stationary BVP for the Helmholtz
equation:

⎧
⎨

⎩

Δu∞(x)+ k2u∞(x) = 0, x ∈ R2 \ Γ
q∞(x) = q̄θ , x ∈ Γ

u∞(x) = O(‖x‖−1
2 ), ‖x‖ → ∞ ,

(31)

with k2 = −P . The corresponding BIE solution ϕ∞(x) assumes the same regularity
of the steady-state solution related to the Laplace BVP and, of course, it changes for
different values of material damping coefficient P . Again, for an incident angle of
π/3 and for discretization parameters fixed as Δx = 0.05 and Δt = 0.05, in Fig. 5
we show the approximate solution obtained by energetic BEM, at the final time
instant of analysis T = 5, for D = 0 and different values of the material damping
parameter P = 0.25, 1, 4 (underdamping configuration). The higher the value of
P , the smaller the maximum value of the transient and steady-state solutions. The
accordance between the corresponding plots is perfectly visible.
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Fig. 5 ϕ(x, T ) on Γ , for D = 0 and different values of P (left), together with the corresponding
Helmholtz BIE static solution (right)

In Table 1, the condition number μ2(A
(0)) of linear system (17) matrix diagonal

block, related to the previous simulations, is shown: the variation w.r.t. damping
parameters is almost negligible, and we can note that the discrete problem to be
solved at each time step is very well conditioned.
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Table 1 Condition number
μ2(A

(0)) with A(0) ∈ R19×19

for different values of
damping parameters

P = 0 μ2(A
(0)) D = 0 μ2(A

(0))

D = 0 2.4161 P = 0 2.4161

D = 0.25 2.4180 P = 0.25 2.4161

D = 1 2.4238 P = 1 2.4161

D = 4 2.4455 P = 4 2.4162

6 Conclusions

In this chapter, we have considered the so-called energetic BEM for the numerical
solution of 2D damped wave propagation exterior problems equipped with Neu-
mann boundary condition. The method was already considered for the numerical
solution of the undamped wave equation in several space dimensions, revealing
its accuracy and stability, also coupled with FEM. The presented numerical results
confirm that these properties are maintained in the presence of dissipation terms in
the model problem, as already highlighted in 1D simulations [5] and for 2D exterior
problems equipped by Dirichlet boundary conditions [6].
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Abstract The numerical solution of fractional partial differential equations poses
significant computational challenges in regard to efficiency as a result of the nonlo-
cality of the fractional differential operators. In this work we consider the numerical
solution of nonlinear space–time fractional reaction–diffusion equations integrated
in time by fractional linear multistep formulas. The Newton step needed to advance
in (fractional) time requires the solution of sequences of large and dense linear
systems because of the fractional operators in space. A preconditioning updating
strategy devised recently is adapted and the spectrum of the underlying operators
is briefly analyzed. Because of the quasilinearity of the problem, each Jacobian
matrix of the Newton equations can be written as the sum of a multilevel Toeplitz
plus a diagonal matrix and produced exactly in the code. Numerical tests with a
population dynamics problem show that the proposed approach is fast and reliable
with respect to standard direct, unpreconditioned, multilevel circulant/Toeplitz and
ILU preconditioned iterative solvers.
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1 Introduction and Rationale

Recently there has been a great deal of interest in the scientific community concern-
ing theoretical aspects of the fractional calculus and its applications to modelling
anomalous diffusion. Fractional derivatives are becoming widely used and accepted
in models of diffusion-type processes where the underlying particle motion deviates
from Brownian motion. Here we concentrate on semilinear space–time fractional
reaction–diffusion equations, i.e., fractional reaction–diffusion partial differential
equations where the nonlinearity of f is only in the reaction term such as

⎧
⎪⎪⎨

⎪⎪⎩

∂αu

∂tα
= f (u) ≡ ∂βu

∂|x|β +
∂βu

∂|y|β + g(u), α ∈ (0, 1), β ∈ (0, 2),

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t > 0,

(1)

where
∂αu

∂tα
is the Caputo fractional derivative of order α

∂αu

∂tα
= 1

Γ (m− α)

∫ t

0

u(m)(τ )

(t − τ )α+1−m
dτ, α ∈ (m− 1,m),

with Γ (z) the Euler Gamma function, and

∂βu(x, y)

∂|x|β = − 1

2π

∫ +∞

−∞
e−iξ |ξ |β

[∫ +∞

−∞
u(η, y)eiξηdη

]
dξ (2)

is the Riesz fractional derivative in space relative to the space variable x. A similar
expression is obtained for y.

To advance the solution in (fractional) time, we use fractional linear multistep
formulas proposed in [19].

The solution of the Newton equations at each step, needed to advance the
candidate approximate solution in (fractional) time, requires solving sequences of
large and dense linear systems because of the fractional operators in space. Because
of the quasilinearity of the problem, each Jacobian matrix of the Newton equations
can be written as the sum of a multilevel Toeplitz T plus a diagonal matrix D and
here is easily computed exactly. The above-mentioned explicit Toeplitz structure is
essentially used for the analysis of the spectrum of the eigenvalues of the Jacobian
matrices. Note that there exist no fast direct solvers for solving Toeplitz (multilevel
or not) plus diagonal (T + D)x = b because the displacement rank of the matrix
T + D can take any value between 0 and n. Hence, fast Toeplitz solvers that are
based on small displacement rank of matrices cannot be applied. Given a vector
v and a Toeplitz matrix T , the product (T + D)v can be computed in O(n logn)

operations. In fact, T v can be obtained by FFTs by first embedding T into a
2n-by-2n circulant matrix; see Strang [27]. Thus Krylov iterative methods such as
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the conjugate gradient or BiCGstab can be employed for these linear systems. The
convergence rate of the conjugate gradient method depends on the spectrum of the
matrix T +D, see Golub and van Loan [15]. However, in general, the spectrum of
T , and hence of T + D, is not clustered, and hence the underlying Krylov method
converges slowly without preconditioning. For a short review on preconditioners for
Toeplitz plus diagonal matrices, see, e.g., [22] and the references therein.

In this paper we propose using the conjugate gradient and BiCGstab to solve the
sequence of the Newton equations with a preconditioner updating strategy for the
multilevel Toeplitz plus diagonal Jacobian matrices generated by the discretization
of (1) based on incomplete factorizations using inversion and sparsification of
incomplete LU factorizations with threshold. Some important computational aspects
of the latter have been recently analyzed in [11].

Here we also add comparisons with standard direct, unpreconditioned, fixed
multilevel Toeplitz-like and ILU preconditioned iterative solvers. In particular, for
experiments performed with multilevel BCCB circulant (BCCB stands for block
circulant with circulant blocks; see [21] for more details on multilevel Toeplitz and
circulant matrices) and multilevel Toeplitz approximations, our unstructured but
localized updates appear faster and more reliable than the structured ones for the
linear systems of the Newton equation for problem (1), including the approximate
inverse of a multilevel circulant plus diagonal as a preconditioner for T + D

proposed in [22].
Among the other papers concerning numerical integration of nonlinear fractional

partial differential equations, we mention [12, 20, 26], but they do not consider
preconditioner updates and are focused on integer partial derivatives in time only.
In [12], a semilinear fractional partial differential equation from optimal control is
considered with an approximate inverse preconditioner but with no updates because
it is not necessary there.

2 Fractional Linear Multistep Formulas or FLMMs

An elegant and effective strategy for obtaining fractional linear multistep methods
from linear multistep methods for ordinary differential equations was proposed
in [19]. The key aspect of these schemes is the approximation of the Riemann–
Liouville integral in the definition of the Caputo derivatives. This means establishing
a convolution quadrature formula

Iαh u(tn) = hα

n∑

j=0

ωn−ju(tj )+ hα

s∑

j=0

wn,ju(tj ), (3)

on the uniform grid {tn}n = {n h}n for h > 0, where the weights ωn and wn,j do not
depend on h, moreover, the parameter s ≤ n, i.e., the number of starting weights,
is selected to take into account the singular behavior of integrated quantities in the



288 D. Bertaccini and F. Durastante

origin, see [13] . As discussed in [18, 29], the weights {ωn}n for the ordinary case
with α = 1, i.e., the case of a derivative of order one in time, can be computed as
the coefficients of the formal power series:

ω(ζ ) =
+∞∑

n=0

ωnζ
n, ω(ζ ) = σ(1/ζ)

ρ(1/ζ)
,

where σ(ζ ) and ρ(ζ ) are the characteristic polynomials of the linear multistep
method. In [19], the extension for the fractional differential equations is obtained
through the use of the new generating function ωα(ζ ):

ωα(ζ ) =
+∞∑

n=0

ωnζ
n, ωα(ζ ) =

(
σ(1/ζ)

ρ(1/ζ)

)α

. (4)

Methods of this kind are called fractional linear multistep methods (FLMMs), and
when applied to fractional problems such as

⎧
⎪⎪⎨

⎪⎪⎩

∂αu(x, t)
∂tα

= f (x, t, u), (x, t) ∈ Q = Ω × (0, T ],
+Boundary Conditions, (x, t) ∈ Σ = ∂Ω × (0, T ],
+m Initial Conditions {u(k)

0 (x)}m−1
k=0 , m ∈ N, m− 1 < α ≤ m,

(5)

where among the arguments of the (nonlinear) function f there can be fractional
partial differential equations, we get

u(n) =
m−1∑

k=0

tkn

k!u
(k)
0 + hα

s∑

j=0

wn,jf (x, tj ,u(j))+ hα

n∑

j=0

ωn−j f (x, tj ,u(j)). (6)

Theorem 1 ([19]) Let (ρ, σ ) denote the characteristic polynomials of an implicit
linear multistep method which is stable and consistent of order p. Assume that
the zeros of σ(ζ ) have absolute values less than 1. If ωα(ζ ), given by (4),
denotes the generating power series, then the corresponding convolution quadrature
formula (3) is convergent of order p.

Now, let us assume that p is the order of convergence of the method. The starting
weights wn,j which are needed to deal with the singular behavior of the solution
at the left end point of the time-integration interval are selected as in [13] by
imposing (3) exact for the function tν and ν ∈ Ap−1 ∪ {p − 1} = {ν ∈ R :
ν = i + jα, i, j ∈ {0, 1, 2, . . .}, ν < p− 1} ∪ {p− 1}. Since we focus on methods
of order p = 2, then we need to solve a system of s+1 linear equations at each step
n, where s is the cardinality of A1, i.e., s = , 1

α
-, given by

s∑

j=0

wn,j j
ν = −

n∑

j=0

ωn−j j
ν + Γ (ν + 1)

Γ (ν + 1+ α)
nν+α, ν ∈ A1 ∪ {1}.
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As discussed in [13, 14], in this case we have a mildly ill-conditioned Vandermonde
system of reasonably small size (see [14, Section 6.2]), whose solution can be faced
analytically. For more general cases and higher orders p, we refer to the analysis
in [13]. The initialization step for (6) requires the knowledge of the first s + 1
approximations u(0), . . . ,u(s) of the solution. Usually problems (5) come with only
the value of u(0), thus the remaining s values u(1), . . . ,u(s) need to be evaluated
in other ways. By using the same method, one needs to solve the nonlinear system
of size sN , where N is the size of the discretized system of nonlinear fractional
differential equations (or FDEs for short):

⎡

⎢⎢⎢⎣

u(1)

u(2)

.

.

.

u(s)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m−1∑

k=0

tk1

k!u
(k)
0

m−1∑

k=0

tk2

k!u
(k)
0

.

.

.
m−1∑

k=0

tks

k!u
(k)
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ hα

⎡

⎢⎢⎢⎣

(ω1 + w1,0)f (x, t0,u(0))
(ω2 + w2,0)f (x, t0,u(0))

.

.

.

(ωs +ws,0)f (x, t0,u(0))

⎤

⎥⎥⎥⎦ + hαB

⎡

⎢⎢⎢⎣

f (x, t1,u(1))
f (x, t2,u(2))

.

.

.

f (x, ts ,u(s))

⎤

⎥⎥⎥⎦ , (7)

where

B =

⎡
⎢⎢⎢⎣

ω0I

ω1I ω0I
...

...
. . .

ωs−1I ωs−2I . . . ω0I

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

w1,1I w1,2I . . . w1,sI

w2,1I w2,2I . . . w2,sI
...

...
. . .

...

ws,1I ws,2I . . . ws,sI

⎤
⎥⎥⎥⎦ .

If M is the number of time steps, i.e., h = T/M , then the computational tasks we
need to face for applying these methods to (5) are

1. M solutions of the Vandermonde linear systems of size s+1 for the computation
of the starting weights {wn,j };

2. one solution of the nonlinear system (7) computing the initial approximations
u(1), . . . ,u(s);

3. M solutions of the nonlinear system given by the quadrature rule (6) for
advancing the solution in time; and

4. computing the lag term in the quadrature rule (6), i.e., the term

n−1∑

j=0

ωn−j f (x, tj ,u(j))

accounting for the “memory” of the time fractional partial derivative.

The computation of the initial weights, i.e., the solution of the Vandermonde linear
systems, does not present any particular challenge in our setting since its dimension
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is usually reasonably small (p = 2 and α ∈ (0, 2)). In general, the underlying
computational cost depends linearly on the cardinality of the set Ap−1 and thus
on both the order p of the method and the order α of the fractional derivative, we
refer to [13] for the treatment of these cases. On the other hand, the computation
of the lag term can become increasingly expensive if the number of time steps M

becomes large: this represents a critical bottleneck for all these methods. Using the
implementation in [14] we perform this task by the O(M log(M)2) FFT algorithm
in [16], thus reaching a reasonable cost. In Sect. 3, we focus on the solution of the
sequence of nonlinear systems needed to advance in time (6).

3 Preconditioning the Linear Systems of the Newton
Iterations

At each time step we need to solve the nonlinear system (6) that can be restated into
the form:

u(n) = z(n) + hαω0f (x, tn,u(n)),

where both z(n) and ω0 do not depend on u(n). This task is equivalent to find a zero
of the function

F(u) = z(n) + hαω0f (x, tn,u)− u ≡ 0

and can be faced by means of the usual Newton iteration in the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(n)k+1 = u(n)k + d(n)k , k ≥ 0,

d(n)k = −J−1
F (u(n)k )F (u(n)k )

=
(
I − hαω0Jf (x, tn,u

(n)
k )
)−1

F(u(n)k ),

u(n)0 = u(n−1),

(8)

until the stopping criteria on either the norm of ‖d(n)k ‖2 or ‖F(u(n)k )‖2 are satisfied.

To shorten the notation, sometimes we write JF for JF (u
(n)
k ).

The nonlinear system (7) for the initialization phase can be solved similarly. In
the cases of interest α is usually either in (0, 1) or in (1, 2), thus the solution of (7) is
not computationally expensive and can be faced efficiently with a Newton–Krylov
method with a frozen (i.e., computed once and then used for all systems in the
underlying sequence of the Newton linear equations) ILUT preconditioner. See,
e.g., [25] for details on ILUT preconditioners. Therefore, we do not discuss this
issue anymore.
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In order to update the Newton steps (8), we need to solve a sequence of linear
systems with matrices given by

JF (u
(n)
k ) = I − hαω0Jf (x, tn,u

(n)
k ),

where, other than hαω0, the only term that can change is a diagonal matrix inside
the Jacobian Jf and thus JF can be written as

JF (u
(n)
k ) = I − hαω0Jf (x, tn,u

(n)
k ) = A+D(x, tn,u

(n)
k ), (9)

where A is a constant nonsingular matrix whose spectrum of eigenvalues is in the
right half complex plane, in particular, in the case of Equation (1), matrix A contains
the discretization of the linear part, i.e., the discrete representation of the fractional
operator

∂β

∂|x|β +
∂β

∂|y|β ,

while D is the diagonal matrix accounting for the Jacobian of the function g(·).
In the following, we denote with Jg(u) the Jacobian matrix of the function g(u)

in (1).

Theorem 2 Let Jg(u) have eigenvalues with nonpositive real part. Then, the
Jacobian matrix JF (·) in (8) has all eigenvalues in the right half plane and thus
it is nonsingular.

Proof Follows from (9) and by the definition of f in (1) by recalling that h and ω0
are positive values.

Corollary 1 Let Jf (u) be symmetric and nonnegative definite. Then, the Jacobian
matrix JF (·) in (8) is positive definite and thus it is nonsingular.

Proof Follows from (9) by recalling that h and ω0 are positive values.

In particular, the test problems in Sect. 4, based on the Riesz fractional deriva-
tives (2), generate real symmetric and negative definite matrices Jf and therefore
a nonsingular Jacobian matrix by Corollary 1, i.e., we easily find that the problems
in Sect. 4 generate real, symmetric, and positive definite Jacobian matrices (and a
nonsymmetric one but only in the setup phase (7)).

Remark 1 Under the assumptions in [10, Section 3.5.1], based mostly on the results
in [17], in particular that the underlying matrices and their inverses are bounded in
�2(K) for K = Z or N, we can prove that there is a decay of the entries along the
main diagonal for all the Jacobian matrices generated by the discretization of the
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Fig. 1 Decay pattern of the reference Jacobian JF (u(0)) and of its inverse J−1
F (u(0)) for the

problem described in Sect. 4

semilinear fractional partial differential equation (1) and, more interesting, for their
inverses, i.e., we can write something like this:

∃ λ ∈ (0, 1), such that (|J−1
F (·)|)i,j ≤ C(h)λ|i−j |.

The claim is confirmed by numerical experiments, see Fig. 1. Unfortunately, without
some restrictive assumptions, the parameter C that is dependent on h can be large
and increases by decreasing h, while λ ∈ (0, 1) can be very near one in general.

The topic in Remark 1 is actually under investigation for some classes of nonlinear
problems and will be considered in a future work.

These properties suggest that a sparse approximate inverse preconditioners in
factored form can be appropriate for approximating the (dense) Jacobian matrix JF .

By some numerical experiments, we can immediately observe that, in order to
solve the linear systems of the underlying Newton steps by an iterative method
faster than a direct solver, we need preconditioning. In order to build efficiently a
sequence of preconditioners for (9), we start by considering approximate inverse
preconditioners in factored form. The latter have been proved to be fast and reliable
and well suited for various parallel computing paradigms; see, e.g., [3] and [11] for
some recent notes on the implementation and computational cost analysis.

Let us write a sparse approximation of the inverse of A in factored form

A−1 ≈ ZD−1WT ,

where the matrices Z and W are lower triangular. If A is real, symmetric, and
definite, then W = Z.
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Among reliable algorithms for computing an approximate factorization of the
inverse of the underlying matrices, we mention:

• the AINV techniques, see, e.g., [3–6, 11], based on a biconjugate Gram–
Schmidt process (conjugate with respect to the bilinear form associated with the
underlying matrix). Sparsity in the inverse factors is obtained by carrying out
biconjugation process incompletely;

• the inversion-and-sparsification technique considered in [10, 11, 28], or INVT
for short, based on computing and inverting an incomplete LU decomposition (or
ILUT for short, where the final T stands for ILU with threshold) with a process
of sparsification during the inversion process for the factors of the ILU.

We recall that there exist stabilized algorithms for computing approximate
inverses for nonsymmetric matrices that are less prone to breakdowns than others;
see [3, 6]. Indeed, we stress that in general incomplete factorizations (ILUs; see [25])
are not guaranteed to be nonsingular also for positive definite matrices. This issue
holds also for efficient inverse ILU techniques, i.e., approximations of the inverse
matrix generated by sparsification and inversion of an ILU algorithm; see [11, 28].
However, for our tests, both the above-mentioned approaches are efficient and
reliable.

To avoid recomputing a new preconditioner from scratch for each value of
the parameters and for each value of the approximate solution in (9), we adapt
the approximate inverse preconditioners updating framework devised for sparse
matrices in [2, 7, 9, 10] even if here the matrices are dense. The property that
permits us to produce and use effective sparse approximations for dense matrices
(the inverses of the Jacobians JF ) is the decay of the entries of the underlying
matrices observed in Remark 1.

The overall strategy is the following: once an approximate inverse factorization
J0 for JF (u(0)) is generated as

J−1
0 = ZD−1WT ,

then by writing each JF (u(k)), for k ≥ 1, as

JF (u(k)) = JF (u(k))− JF (u(0))+ JF (u(0))

= JF (u(0))+Δk, Δk � JF (u(k))− JF (u(0)),

we build the updated preconditioner for JF (u(k)) at step k, denoted Jk to shorten the
notation, by using the one produced for J−1

0 as

P−1
k = Z(D + Ek)

−1WT ≈ J−1
k , Ek � g(WT ΔkZ), (10)

where g is a sparsification function, e.g., a function that extracts some banded
approximation of its matrix argument. Note that g can also be chosen to produce
a structured approximation of its arguments. A convergence analysis can be found
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in [10, Section 3.6.1] where there is also a strategy to approximate the matrix value
g(WT ΔkZ) without computing the matrix–matrix product WT ΔkZ. When A is
symmetric, all reasonings above repeat with W = Z.

Techniques with more than one reference matrix have been devised in [8, 10] by
means of matrix interpolation.

4 Numerical Experiments

The preliminary experiments presented here are performed on a laptop running
Linux with 8 Gb memory and CPU Intel R© Core

TM
i7-4710HQ CPU with clock

2.50 GHz, while the GPU is a NVIDIA GeForce GTX 860M. The scalar code is
written and executed in MATLAB R2016b, while for the GPU we use C++ with
Cuda compilation tools, release 7.5, V7.5.17 and the CUSP library v0.5.1 [1]. The
code for FLMM from [14] is used as outer framework for the updating strategy.

4.1 A Time-Fractional Biological Population Model

We consider the following space–time fractional partial differential equation [24]:
⎧
⎪⎪⎨

⎪⎪⎩

∂αu

∂tα
= ∂βu

∂|x|β +
∂βu

∂|y|β + g(u), (x, y) ∈ Ω, t > 0,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t > 0,

(11)

where α ∈ (0, 1), β ∈ (1, 2); g(u) = h uã(1− r u)b̃ represents the balance between
birth and death in the population u on the domain Ω .

We semidiscretize in space equation (11) in the domain Ω = [a, b] × [c, d] on
the grid

{
(xi, yj ) = (a +Δx i, c +Δy j) : Δx = b − a

Nx

, Δy = d − c

Ny

}Nx,Ny

i,j=0

with the usual notation ui,j = u(xi, yj ), gi,j = g(ui,j ) and using the fractional
centered derivatives discretization for the Riesz derivative [23] from equation (2),
we find:

∂βu(x, y)

∂|x|β ≈− 1

Δxβ

x−a
Δx∑

k=− b−x
Δx

ςku(x − kΔx, y)+O(Δx2),

ςk = (−1)kΓ (β + 1)

Γ (β/2− k + 1)Γ (β/2+ k + 1)
,

(12)
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and similarly for ∂βu(x, y)/∂|y|β . To apply the Newton method, we need to
compute the Jacobian of the function

(f (u))i,j =

⎡

⎢⎢⎣
1

Δxβ

xi−a

Δx∑

k=− b−xi
Δx

ςku(x − kΔx, yj )+ 1

Δyβ

yj−c

Δy∑

k=− d−yj
Δy

ςku(xi , y − kΔy)

⎤

⎥⎥⎦+ gi,j ,

for i = 0, . . . , Nx and j = 0, . . . , Ny , that is given by

Jf (u) = Δx−βT (1) ⊗ I +Δy−βI ⊗ T (2) + Jg(u), (13)

where the entries of the Toeplitz matrices T (1) and T (2) come from the coefficients
of the discretization in (12), and Jg is the Jacobian of the function g(u) satisfying
Theorem 2 as well.

Lemma 1 If Δx = Δy = Δ and β ∈ (1, 2), then the sequence of matrices {T (1)⊗
I + I ⊗ T (2)}Nx is a two-level Toeplitz matrix sequence with generating function

tβ(θ1, θ2) = �
(
(eiθ1 − e−iθ1)β + (eiθ2 − e−iθ2)β

)
.

Proof Matrices T (1) = T (2) are symmetric negative definite Toeplitz matrices
whose coefficients are defined by (12). Moreover, {ςk}k ∈ �1, since

|ςk| ∼ 1

π

∣∣∣∣
Γ (β + 1)

k1+β

∣∣∣∣ for k →+∞ and β ∈ (1, 2),

i.e., we have convergence by comparing asymptotically with an absolutely
summable series. Finally, tβ(θ1, θ2) generates the matrix sequence by direct
inspection of the coefficients ςk that are the Fourier coefficients of the function
�((eiθ1 − e−iθ1)β).

Proposition 1 IfΔx = Δy = Δ and β ∈ (1, 2), then the matrixA in (9) is given by

A = I − hα

Δβ
ω0(T

(1) ⊗ I + I ⊗ T (2)),

and it is symmetric and positive definite.

Proof The proof is straightforward by using Lemma 1 and recalling that all
coefficients h, Δ, ω0 are positive.

For the source term g(u), we select ã = −1, b̃ = 1, h = 3, and r = 0.25, while
the initial data is given by

u0(x, y) =
√

hr
x2

4
+ hr

y2

4
+ y + 5,
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with the same choice of h and r , the fractional order of derivative in space is β =
1.5, and the domain is Ω = [−1, 1]2.

In Table 1 we report the total number of matrix–vector products (Av), the number
of nonlinear iterations (NIT) (equal to the total number of linear system solved
here), the average number of matrix–vector products for each linear system (Avavg.),
and the timings in seconds. The iterative methods considered are BiCGstab for the
initialization steps of (7) because the related linear systems are nonsymmetric, and
the conjugate gradient (or CG for short) for solving the Newton linear systems (8)
that are symmetric and positive definite for our problems. The updated INVT
preconditioners used with CG to solve linear systems in (8) are built by using only a
diagonal correction from a reference preconditioner with tolerances τL = 1e−3 for
the ILUT phase and τZ = 1e− 1 for the inversion phase, respectively. We compare
the performances of the underlying approach with the built-in Matlab’s direct solver
“\,” with the nonpreconditioned BiCGstab/CG and BiCGstab/CG preconditioned
by recomputing an ILUT incomplete factorization for all systems from scratch with
threshold (drop tolerance) τL = 1e−2. It is intended that when the underlying linear
systems are symmetric, then the symmetric versions of the incomplete factorizations
are used even if we write ILU/ILUT, etc., and that the drop tolerances used are those
that give among the best possible performances. Moreover, we report also tests with
a block circulant with circulant blocks preconditioner with Strang’s approximation
(see, e.g., [21] for details on this approach) recomputed for each linear system
because keeping the preconditioner fixed delays sensibly the convergence to the
prescribed accuracy. A † is reported when the method fails to achieve convergence.

The three fractional quadrature formulas generated by the following second
order methods are tested: fractional trapezoidal rule, Newton–Gregory, and BDF2
formulas. We do not show the results with the frozen ILUT/ILUT(l) preconditioners
(the ILUT computed once and then reused for all experiments, also with l level of
fill-in dropping; see, e.g., [25]) because they give unreliable results due to an erratic
convergence behavior for some tests.

From the reported experiments and from others performed and not shown, we
can draw some final comments:

• The iterations using preconditioners computed by our updating strategy are
always faster (and much less memory consuming) than the built-in Matlab’s
solver, unpreconditioned and ILU/ILUT- and BCCB-preconditioned iterations.

• We can observe a clustering effect around the unity for the eigenvalues produced
by our updated preconditioners such as the sample in Fig. 2.

• The Matlab direct solver cannot be used for large problems because it gives out
of memory error quite soon.

• The updated preconditioners based on INVT (inversion and sparsification) are
reliable and slightly faster than those based on AINV [4–6, 11]. On the other
hand, we observed experimentally that the latter are optimal with respect to the
discretization, i.e., the number of the underlying preconditioned iterations does
not increase refining the mesh. Moreover, AINV can give better performances
when used in a GPU environment, see [11].
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Fig. 2 Comparisons of the spectra for the seed Jacobian, its preconditioned version (a) and of
the Jacobian for a matrix of the sequence (13) with the updated preconditioner (b). The seed
preconditioner is computed with a drop tolerance τ = 1e − 3 for the problem with N = 40,
M = 400, and α = 0.4 using the trapezoidal method. To update the underlying preconditioners,
the function g in (10) extracts only the main diagonal of its matrix argument



Preconditioner Updates for Semilinear Space–Time FPDEs 301

• Using a multilevel circulant preconditioner gives timings worse than ours and
sometimes much worse if the preconditioner is recomputed for each system.

• Adapting the updating circulant plus diagonal preconditioners discussed in [22],
even if it is very interesting and fast, is not beneficial here because of two main
reasons: The function generating the Jacobian matrix JF is bivariate and the
multilevel circulant preconditioner is not optimal for the differential part of the
problem. The interpolation used in the approach in [22] works very well for
univariate functions and it is essentially linear while the problems considered
here are not.
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A Nuclear-Norm Model for Multi-Frame
Super-Resolution Reconstruction
from Video Clips

Rui Zhao and Raymond HF Chan

Abstract We propose a variational approach to obtain super-resolution images
from multiple low-resolution frames extracted from video clips. First the displace-
ment between the low-resolution frames and the reference frame is computed by an
optical flow algorithm. Then a low-rank model is used to construct the reference
frame in high resolution by incorporating the information of the low-resolution
frames. The model has two terms: a 2-norm data fidelity term and a nuclear-norm
regularization term. Alternating direction method of multipliers is used to solve the
model. Comparison of our methods with other models on synthetic and real video
clips shows that our resulting images are more accurate with less artifacts. It also
provides much finer and discernable details.

Keywords Image processing · Super-resolution · Low-rank approximation

1 Introduction

Super-resolution (SR) image reconstruction from multiple low-resolution (LR)
frames has many applications, such as in remote sensing, surveillance, and medical
imaging. After the pioneering work of Tsai and Huang [28], SR image reconstruc-
tion has become more and more popular in image processing community, see,
for example, [3, 8, 10, 12, 19, 25–27]. SR image reconstruction problems can be
classified into two categories: single-frame super-resolution (SFSR) problems and
multi-frame super-resolution (MFSR) problems. In this paper, we mainly focus on
the multi-frame case, especially the MFSR problems from low-resolution video
sequences. Below, we first review some existing work related to MFSR problems.

R. Zhao
Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
e-mail: rzhao@math.cuhk.edu.hk

R.H.F. Chan (�)
Department of Mathematics, City University of Hong Kong, KLN, Hong Kong
e-mail: rchan.sci@cityu.edu.hk

© Springer Nature Switzerland AG 2019
D. A. Bini et al. (eds.), Structured Matrices in Numerical Linear Algebra,
Springer INdAM Series 30, https://doi.org/10.1007/978-3-030-04088-8_16

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04088-8_16&domain=pdf
mailto:rzhao@math.cuhk.edu.hk
mailto:rchan.sci@cityu.edu.hk
https://doi.org/10.1007/978-3-030-04088-8_16


304 R. Zhao and R.H.F. Chan

Bose and Boo [3] considered the case where the multiple LR image frames
were shifted with affine transformations. They modeled the original high-resolution
(HR) image as a stationary Markov–Gaussian random field. Then they made use
of the maximum a posteriori scheme to solve their model. However, the affine
transformation assumption may not be satisfied in practice, for example, when there
are complex motions or illumination changes. Another approach for SR image
reconstruction is the one known as patch-based or learning-based. Bishop et al.
[2] used a set of learned image patches which capture the information between
the middle and high spatial frequency bands. They assumed a priori distribution
over such patches and made use of the previous enhanced frame to provide part of
the training set. The disadvantage of this patch-based method is that it is usually
time consuming and sensitive to the off-line training set. Liu and Sun [18] applied
Bayesian approach to estimate simultaneously the underlying motion, the blurring
kernel, the noise level, and the HR image. Within each iteration, they estimated the
motion, the blurring kernel, and the HR image alternatively by maximizing a pos-
teriori, respectively. Based on this work, Ma et al. [20] tackled motion blur in their
paper. An expectation-maximization (EM) framework is applied to the Bayesian
approach to guide the estimation of motion blur. These methods used optical flow
to model the motion between different frames. However, they are sensitive to the
accuracy of flow estimation. The results may fail when the noise is heavy.

In [6], Chan et al. applied wavelet analysis to HR image reconstruction. They
decomposed the image from previous iteration into wavelet frequency domain and
applied wavelet thresholding to denoise the resulting images. Based on this model,
Chan et al. [7] later developed an iterative MFSR approach by using tight-frame
wavelet filters. However, because of the number of framelets involved in analyzing
the LR images, the algorithm can be extremely time consuming.

Optimization models are one of the most important image processing models.
Following the classical ROF model [24], Farsiu et al. [11] proposed a total
variation-l1 model where they used the l1 norm for the super-resolution data fidelity
term. However, it is known that TV regularization enforces a piecewise solution.
Therefore, their method will produce some artifacts. Li et al. [16] used l1 norm of the
geometric tight-framelet coefficients as the regularizer and adaptively mimicking l1
and l2 norms as the data fidelity term. They also assumed affine motions between
different frames. The results are therefore not good when complex motions or
illumination changes are involved.

Chen and Qi [9] recently proposed a single-frame HR image reconstruction
method via low rank regularization. Jin et al. [14] designed a patch-based low rank
matrix completion algorithm from the sparse representation of LR images. The
main idea of these two papers is based on the assumption that each LR image is
downsampled from a blurred and shifted HR image. However, these works assumed
that the original HR image, when considered as a matrix, has a low rank property,
which is not convincing in general.

In this paper, we show that the low rank property can in fact be constructed
under MFSR framework. The idea is to consider each LR image as a downsampled
instance of a different blurred and shifted HR image. Then when all these different
HR images are properly aligned, they should give a low rank matrix; therefore, we
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can use a low-rank prior to obtain a better solution. Many existing works assume
that the shift between two consecutive LR frames is small, see, e.g., [1, 11, 22, 30,
31]. In this paper, we allow illumination changes and more complex motions other
than affine transformation. They are handled by an optical flow model proposed in
[13]. Once the motions are determined, we reconstruct the high-resolution image by
minimizing a functional which consists of two terms: the 2-norm data fidelity term
to suppress Gaussian noise and a nuclear-norm regularizer to enforce the low-rank
prior. Tests on seven synthetic and real video clips show that our resulting images
are more accurate with less artifacts. It can also provide much finer and discernable
details.

The rest of the paper is organized as follows: Section 2 gives a brief review
of a classical model on modeling LR images from HR images. Our model will be
based on this model. Section 3 provides the details of our low-rank model, including
image registration by optical flow and the solution of our optimization problem by
alternating direction method. Section 4 gives experimental results on the test videos.
Conclusions are given in Sect. 5.

To simplify our discussion, we now give the notation that we will be using in the
rest of the paper. For any integer m ∈ Z, Im is the m × m identity matrix. For any
integer l ∈ Z and positive integer n ∈ Z+, there exists a unique 0 ≤ l̃ < n such that
l̃ ≡ l mod n. Let Nn(l) denote the n× n matrix

Nn(l) =
[

0 In−̃l

Ĩl 0

]
. (1)

For a vector f ∈ R
n, Nn(l)f is the vector with entries of f cyclic-shifted by l.

Define the downsampling matrix Di and the upsampling matrix DT
i as

Di(n) = In ⊗ eTi and DT
i (n) = In ⊗ ei , i = 0, 1, (2)

where e0 = [1, 0]T , e1 = [0, 1]T , and ⊗ is the Kronecker product. For 0 ≤ ε ≤ 1,
define Tn(ε) to be the n× n circulant matrix

Tn(ε) =

⎡
⎢⎢⎢⎢⎣

1− ε ε · · · 0

0 1− ε
. . .

...
...

. . .
. . . ε

ε · · · 0 1− ε

⎤
⎥⎥⎥⎥⎦
. (3)

This matrix performs the effect of linear interpolation shifted by ε.
For a matrix Xm×n, the nuclear norm ‖ · ‖∗ of Xm×n is given by

‖Xm×n‖∗ =
r∑

i=1

|σi |,

where σi, i = 1, 2, · · · , r are singular values of Xm×n.
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2 Low-Resolution Model with Shifts

Consider a LR sensor array recording a video of an object. Then it gives multiple LR
images of the object. Unless the object or the sensor array is completely motionless
during the recording, the LR images will contain multiple information of the object
at different shifted locations (either because of the motion of the object or of the
sensor array itself). Our problem is to improve the resolution of one of the LR
images (called the reference image) by incorporating information from the other
LR images.

Let the sensor array consist of m× n sensing elements, where the width and the
height of each sensing element are Lx and Ly , respectively. Then, the sensor array
will produce an m×n discrete image with mn pixels, where each of these LR pixels
is of size Lx×Ly . Let r be the upsampling factor, i.e., we would like to construct an
image of resolution rm× rn of the same scene. Then the size of the HR pixels will
be Lx/r × Ly/r . Figure 1a shows an example. The big rectangles with solid edges
are the LR pixels and the small rectangles with dashed edges are the HR pixels.

Let {gi ∈ R
m×n, 1 ≤ i ≤ p} be the sequence of LR images produced by the

sensor array at different time points, where p is the number of frames. For simplicity
we let g0 be the reference LR image which can be chosen to be any one of the
LR images gi . The displacement of gi from the reference image g0 is denoted by
(εxi Lx, ε

y

i Ly), see the solid rectangle in Fig. 1a labeled as gi . For ease of notation,
we will represent the 2D images gi , 0 ≤ i ≤ p, by vectors gi ∈ R

mn obtained by
stacking the columns of gi . We use f ∈ R

r2mn to denote the HR reconstruction of g0
that we are seeking.

We model the relationship between f and g0 by averaging, see [3, 8]. Figure 1b
illustrates that the intensity value of the LR pixel is the weighted average of the

(a) (b)

Fig. 1 LR images with displacements. (a) Displacements between LR images. (b) The averaging
process
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intensity values of the HR pixels overlapping with it. The weight is precisely the
area of overlapping. Thus, the process from f to each of the LR images gi can be
modeled by [8]

gi = DKAi f+ ni , i = 1, 2, · · · , p, (4)

where D = D0(n)⊗D0(m) ∈ Rmn×r2mn is the downsampling matrix defined by (2);
K ∈ Rr2mn×r2mn is the average operator mentioned above; Ai ∈ Rr2mn×r2mn is
the warping matrix which measures the displacement between gi and g0; and ni is
the additive unknown noise. In this paper, we assume for simplicity that the noise
is Gaussian. Other noise models can be handled by choosing suitable data fidelity
terms.

The warping matrix Ai , 1 ≤ i ≤ p, is to align the LR pixels in gi at exactly
the middle of the corresponding HR pixels in f, exactly like the g0 is w.r.t f0 in
Fig. 1b. Once this alignment is done, the average operator K , which is just a blurring
operator, can be written out easily. In fact, the 2D kernel (i.e., the point spread
function) of K is given by vvT , where v = [1/2, 1, . . . , 1, 1/2]T with (r − 1) ones
in the middle, see [3]. The Ai are more difficult to obtain. In the most ideal case
where the motions are only translation of less than one HR pixel length and width,
Ai can be modeled by Ai = Tn(ε

x
i ) ⊗ Tm(ε

y

i ), where Tn(ε
x
i )andTm(ε

y

i ) are the
circulant matrices given by (3) with (εxi Lx, ε

y

i Ly) being the horizontal and vertical
displacements of gi , see Fig. 1a and [8]. In reality, the changes between different LR
frames are much more complicated. It can involve illumination changes and other
complex non-planar motions. We will discuss the formation of Ai in more detail in
Sects. 3.1 and 3.3.

3 Nuclear-Norm Model

Given (4), a way to obtain f is to apply least-squares. However, because D is
singular, the problem is ill-posed. Regularization is necessary to make use of some
priori information to choose the correct solution. A typical regularizer for solving
this problem is total variation (TV) [24]. The TV model is well known for edge
preserving and can give a reasonable solution for MFSR problems. However, it
assumes that the HR image is piecewise constant. This will produce some artifacts.

Instead we will develop a low-rank model for the problem. The main motivation
is as follows: We consider each LR image gi as a downsampled version of an HR
image fi . If all these HR images fi are properly aligned with the HR image f, then
they all should be the same exactly (as they are representing the same scene f). Wi

is the alignment matrix that aligns fi with f. For example, if p = 2, and

f1 =
⎛

⎝
a

b

c

⎞

⎠ , f2 =
⎛

⎝
b

c

d

⎞

⎠ ,
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then we can let

W1 =
(

0 1 0
0 0 1

)
,W2 =

(
1 0 0
0 1 0

)
,

thence

W1f1 =
(
b

c

)
= W2f2.

In general, [W1f1,W2f2, . . . ,Wpfp] should be a low-rank matrix (ideally a rank 1
matrix). Thus, the rank of the matrix can be used as a prior.

In Sect. 3.1, we introduce our low-rank model in the case where the LR images
are perturbed only by translations. Then in Sect. 3.2, we explain how to solve the
model by the alternating direction method. In Sect. 3.3, we discuss how to modify
the model when there are more complex motions or changes between the LR frames.

3.1 Decomposition of the Warping Matrices

In order to introduce our model without too cumbersome notations, we assume
first here that the displacements of the LR images from the reference frame are
translations only. Let sxi Lx and s

y
i Ly be the horizontal and vertical displacements of

gi from g0. (How to obtain sxi and s
y
i will be discussed in Sect. 3.3.) Since the width

and height of one HR pixel are Lx/r and Ly/r , respectively, the displacements are
equivalent to rsxi HR pixel length and rs

y
i HR pixel width. We decompose rsxi and

rs
y
i into the integral parts and fractional parts:

rsxi = lxi + εxi , rs
y
i = l

y
i + ε

y
i , (5)

where lxi andl
y

i are the integers and 0 ≤ εxi , ε
x
i < 1. Then the warping matrix can

be decomposed as

Ai = CiBi, (6)

where Bi = Nn(l
x
i ) ⊗ Nm(l

y
i ) is given by (1) and Ci = Tn(ε

x
i ) ⊗ Tm(ε

y
i ) is given

by (3) [6]. Thus, by letting fi = Bif, 1 ≤ i ≤ p, (4) can be rewritten as

gi = DKCi fi + ni , i = 1, 2, · · · , p. (7)

As mentioned in the motivation above, all these fi , which are equal to Bi f, are
integral shift from f. Hence, if they are aligned correctly by an alignment matrix Wi ,
the overlapping entries should be the same. Figure 2 is the 1D illustration of this
idea. Wx

i is the matrix that aligns fi with f (in the x-direction) and the dark squares
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Fig. 2 1D signals with integer displacements

are the overlapping pixels and they should all be the same as the corresponding
pixels in f.

Mathematically, Wi is constructed as follows: Given the decomposition of rsxi
and rs

y

i in (5), let lx+ = maxi{0, lxi }, ly+ = maxi{0, lyi } and lx− = maxi{0,−lxi },
l
y
− = maxi{0,−l

y

i }. Then

Wi = Wx
i ⊗W

y
i , (8)

where

Wx
i =

⎡

⎢⎣
0lx+−lxi

Irn−lx+−lx−
0lx−+lxi

⎤

⎥⎦ ,

W
y
i =

⎡
⎢⎣

0l
y
+−l

y
i

Irm−l
y
+−l

y
−

0l
y
−+l

y
i

⎤
⎥⎦ .

Note that Wi nullifies the entries outside the overlapping part (i.e., outside the dark
squares in Fig. 2).

Ideally, the matrix [W1f1,W2f2, · · · ,Wpfp] should be a rank-one matrix as every
column should be a replicate of f in the overlapping region. In practice, it can be of
low rank due to various reasons such as errors in measurements and noise in the
given video. Since nuclear norm is the convexification of low-rank prior, see [5],
this leads to our convex model

min
f1,··· ,fp

α‖W1f1,W2f2, · · · ,Wpfp‖∗ + 1

2

p∑

i=1

‖gi −DKCi fi‖2
2, (9)

where ‖ · ‖∗ is the matrix nuclear norm and α is the regularization parameter. We
call our model (9) the nuclear-norm model. We remark that here we use the 2-norm
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data fidelity term because we assume the noise is Gaussian. It can be changed to
another norm according to the noise type.

3.2 Algorithm for Solving the Nuclear-Norm Model

We use alternating direction method of multipliers (ADMM) [4] to solve the
nuclear-norm model. We replace {Wi fi}pi=1 in the model by variables {hi}pi=1. Let
H = [h1,h2, · · · ,hp], F = [f1, f2, · · · , fp], and WF = [W1f1,W2f2, · · · ,Wpfp].
The augmented Lagrange of model (9) is

Lαρ(H,F,Λ) = α‖H‖∗ + 1

2

p∑

i=1

‖gi −DKCi fi‖2
2

+
p∑

i=1

〈Λi,hi −Wi fi〉 + 1

2ρ
‖H −WF‖2

F ,

where Λ = [Λ1,Λ2, · · · ,Λp] is the matrix of Lagrange multipliers, ‖ · ‖F is the
Frobenius norm, and ρ is an algorithm parameter.

To solve the nuclear-norm model, it is equivalent to minimize Lαρ , and we
use ADMM [4] to minimize it. The idea of the scheme is to minimize H and F

alternatively by fixing the other, i.e., given the initial value F 0,Λ0, let Hk+1 =
arg minH Lαρ(H,F k,Λk) and Fk+1 = arg minF Lαρ(H

k+1, F,Λk), where k is
the iteration number. These two problems are convex problems. The singular value
threshold (SVT) gives the solution of the H -subproblem. The F -subproblem is
reduced to solving p linear systems. For a matrix X, the SVT of X is defined to be

SVTρ(X) = UΣ+
ρ V T ,

where X = UΣV T is the singular value decomposition (SVD) of X and Σ+
ρ =

max{Σ − ρ, 0}. We summarize the algorithm in Algorithm 1. It is well-known that
the algorithm is convergent if ρ > 0 [4].

In Algorithm 1, the SVT operator involves the SVD of a matrix WFk − Λk .
Its number of column is p, the number of LR frames, which is relatively small.
Therefore, the SVT step is not time consuming. For the second subproblem, we
need to solve p linear systems. The coefficient matrices contain some structures
which help accelerating the calculation. The matrices DT D and WT

i Wi are diagonal
matrices, while K and Ci can be diagonalized by either FFT or DCT depending on
the boundary conditions we choose, see [23]. In our tests, we always use periodic
boundary conditions.

In Algorithm 1, within each iteration, we should apply once singular value
decomposition to an r2mn × p matrix. The complexity of SVD is O(r2mnp2).
Then, we should solve p linear systems with r2mn equations. By using FFT, the
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Algorithm 1 f← ({gi,Wi, Ci},K, α, ρ,Λ0, F 0)

for k = 1, 2, 3, · · · do
Hk+1 = SVTαρ(WFk − ρΛk);
for i = 1 to p do

Mi = (DKCi)
T DKCi + 1

ρ
WT

i Wi ;

f k+1
i = (Mi)

−1
(
(DKCi)

T gi +WT
i Λk

i + 1
ρ
WT

i hk+1
i

)
;

end for
Λk+1 = Λk + 1

ρ
(Hk+1 −WFk+1);

end for
Output: f as the average of the columns of Fk .

complexity for this step is O(pr2mn log(r2mn)). Usually, log(r2mn) is larger than
p. Thence, the overall complexity for Algorithm 1 is O(pr2mn log(r2mn), where
m× n is the size of LR images; r is the upsampling factor; and p is the number of
frames.

3.3 Image Registration and Parameter Selection

In Algorithm 1, we assume that there are only translations between different LR
frames. However, there can be other complex motions and/or illumination changes
in practice. We handle these by using the local all-pass (LAP) optical flow algorithm
proposed in [13]. Given a set of all-pass filters {φj }Nj=0 and φ := φ0 +∑N−1

j=1 cjφj ,
the optical flow Mi of gi is obtained by solving the following problem:

min{c1,··· ,cN−1}
∑

l,k∈R
|(φ ∗ gi)(k, l)− (φ− ∗ g0)(k, l)|2,

where ∗ is the convolution operator, R is a window centered at (x, y), and
φ−(k, l) = φ(−k,−l). In our experiments, we followed the settings in the paper
[13], and let N = 6, R = 16 and

φ0(k, l) = e
− k2+l2

2σ2 , φ1(k, l) = kφ0(k, l),

φ2(k, l) = lφ0(k, l), φ3(k, l) = (k2 + l2 − 2σ 2)φ0(k, l),

φ4(k, l) = klφ0(k, l), φ5(k, l) = (k2 − l2)φ0(k, l),

where σ = R+2
4 and φ is supported in [−R,R] × [−R,R]. The coefficients cn

can be obtained by solving a linear system. The optical flow Mi at (x, y) is then
given by

Mi (x, y) =
(

2
∑

k,l kφ(k, l)∑
k,l φ(k, l)

,
2
∑

k,l lφ(k, l)∑
k,l φ(k, l)

)
,
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which can be used to transform gi back to the grid of g0. In order to increase the
speed by avoiding interpolation, here we consider only the integer part of the flow.
Hence, we get the restored LR images

g̃i (x, y) = gi([Mi](x, y)), i = 1, 2, · · · , p, ∀(x, y) ∈ Ω, (10)

where [Mi] is the integer part of the flow Mi and Ω is the image domain.
The optical flow method can handle complex motions and illumination changes

and will restore the positions of pixels in gi w.r.t g0. To enhance the accuracy of
the image registration, we further estimate if there are any translations that are
unaccounted for after the optical flow. In particular, we assume that g̃i may be
displaced from g0 by a simple translation

T (x, y) =
[
x

y

]
−
[
sxi
s
y

i

]
. (11)

To estimate the displacement vector [sxi , syi ]T , we use the Levenberg–Marquardt
algorithm proposed in [15, 21], which is a well-known method for nonlinear least-
squares problems. It aims to minimize the squared error

E(g̃i , g0) =
∑

(x,y)∈Ω
[g̃i (T (x, y))− g0(x, y)]2. (12)

The detailed implementation of this algorithm can be found in [8, Algorithm 3].
After obtaining [sxi , syi ], then by (6) and (8), we can construct the matrices Ci and
Wi for our nuclear-norm model (9).

Before giving out the whole algorithm, there remains the problem about param-
eters selection. There are two parameters to be determined: α, the regularization
parameter, and ρ, the algorithm (ADMM) parameter. We need to tune these two
parameters in practice such that the two subproblems can be solved effectively and
accurately. Theoretically, ρ will not affect the minimizer of the model but only the
convergence of the algorithm [4]. However, in order to get an effective algorithm,
it should not be set very small. For α, we use the following empirical formula to
approximate it in each iteration [16],

α ≈ 1/2
∑p

i=1 ‖̃gi −DKCi fki ‖2

‖W1fk1,W2fk2, · · · ,Wpfkp‖∗
, (13)

where fki is the estimation of fi in the kth iteration. The formula may not give the
best α but can largely narrow its scope. We then use trial and error to get the best
parameter. We give out the full algorithm for our model below.
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4 Numerical Experiments

In this section, we illustrate the effectiveness of our algorithm by comparing it with
3 different variational methods on 7 synthetic videos and real videos. Chan et al.
[6] applied wavelet analysis to MFSR problem and then developed an iterative
approach by using tight-frame wavelet filters [8]. We refer their model as tight-
frame (TF) model. Li et al. [16] proposed the sparse directional regularization
(SDR) model where they used l1 norm of the geometric tight-framelet coefficients
as the regularizer and the adaptively mimicking l1 and l2 norms as the data fidelity
term. Ma et al. [20] introduced an expectation-maximization (EM) framework to
the Bayesian approach of Liu and Sun [18]. They also tackled motion blur in their
paper. We refer it as the MAP model. We will compare our Algorithm 2 (the nuclear-
norm model) with these three methods. The sizes of the videos we used are listed
in Table 1. The CPU timing of all methods is also listed. It shows that our method
is the fastest, with two exceptions (i.e., the “disk” video when r = 2 and the “text”
video when r = 2). For other instances, our model is the best. We marked the
fastest results with bold letters. These data show that, when dealing with small-size
images, the SDR model is the fastest. When the size of the images gets larger, our
nuclear-norm model is the fastest.

There is one parameter for the TF model—a thresholding parameter η which
controls the registration quality of the restored LR images g̃i (see (10)). If the PSNR
value between g̃i and the reference image g0 is smaller than η, it will discard g̃i in
the reconstruction. We apply trial and error method to choose the best η. For the
SDR method, we use the default setting in the paper [16]. Hence, the parameters
are selected automatically by the algorithm. The TF model, the SDR model, and the
nuclear-norm model are applied to g̃i , i.e., we use the same optical flow algorithm
[13] for these three models. For the MAP model, it utilized an optical flow algorithm
from Liu [17]. Following the paper, the optical flow parameter α is very small. We
also apply trial and error method to tune it.

All the videos used in the tests and the results are available at http://www.math.
cuhk.edu.hk/~rchan/paper/super-resolution/experiments.html.

Algorithm 2 f← ({gi}, i0,K,Λ0, F 0, α, ρ)

for i = 0, 1, 2, · · ·p do
Compute g̃i(x, y) from (10);
Compute sxi and s

y

i in (11) by using the Levenberg–Marquardt algorithm in [8, Algorithm 3]
Compute the warping matrices Ci and Wi , according to (6) and (8);

end for
Apply Algorithm 1 to compute the HR images f← ({̃gi,Wi, Ci},K, α, ρ,Λ0, F 0);
Output f.

http://www.math.cuhk.edu.hk/~rchan/paper/super-resolution/experiments.html
http://www.math.cuhk.edu.hk/~rchan/paper/super-resolution/experiments.html
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Table 1 Size of each data set and CPU time for all models

Size of data Factor CPU time (in seconds)

Height Width Frame r TF MAP SDR Nuclear

Boat 240 240 17 2 1251 198 336 138
Boat 120 120 17 4 7642 196 282 94.4
Bridge 240 240 17 2 3256 202 348 142
Bridge 120 120 17 4 9703 189 278 92.3
Disk 57 49 19 2 568 6.4 28 7.9

Disk 57 49 19 4 5913 21.4 53 13.6
Text 57 49 21 2 497 6.2 30 8.5
Text 57 49 21 4 4517 22.1 56 14.5
Alpaca 96 128 21 2 816 26.1 78 24
Alpaca 96 128 21 4 6178 172 250 90.6
Books 288 352 21 2 3943 1511 818 689

4.1 Synthetic Videos

We start from a given HR image f∗, see, e.g., the boat image in Fig. 3f. We translate
and rotate f∗ with known parameters and also change their illuminations by different
scales. Then we downsample these frames with the given factor r = 2 or r = 4 to
get our LR frames {gi}pi=1. We take p = 17, and Gaussian noise of ratio 5% is added
to each LR frame.

After we reconstruct the HR image f by a method, we compare it with the true
solution f∗ using two popular error measurements. The first one is peak signal-to-
noise ratio (PSNR) and the second one is structural similarity (SSIM) [29]. For two
signals x = (x1, x2, · · · , xn)T and y = (y1, y2, · · · , yn)T , they are defined by

PSNR(x, y) = 10 log10

(
d2

‖x− y‖2/n

)
,

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
,

where d is the dynamic range of x, y; μxandμy are the mean values of x and
y; σxandσy are the variances of x and y; σxy is the covariance of x and y;
and ci , i = 1, 2, are the constants related to d , which are typically set to be
c1 = (0.01d)2andc2 = (0.03d)2. Because of the motions, we do not have enough
information to reconstruct f near the boundary; hence, this part of f will not be
accurate. Thus, we restrict the comparison within the overlapping area of all LR
images.

Table 2 gives the PSNR values and SSIM values of the reconstructed HR images
f from the boat and the bridge videos. The results show that our model gives much
more accurate f for both upsampling factor r = 2 and 4, see the boldfaced values.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Comparison of different algorithms on “boat” image with upsampling factor r = 2. (a) The
reference LR image. (b) Result of the TF model [8]. (c) Result of the MAP model [20]. (d) Result
of the SDR model [16]. (e) Result of our nuclear-norm model (α = 35.2924 and ρ = 3.379×104).
(f) True HR image

Table 2 PSNR and SSIM values for the “boat” and “bridge” videos

Upsampling factor r = 2 Upsampling factor r = 4

TF MAP SDR Nuclear TF MAP SDR Nuclear

Boat PSNR 18.7 25.3 28.2 29.8 20.7 23.6 27.0 27.1
SSIM 0.69 0.70 0.80 0.82 0.69 0.67 0.72 0.76

Bridge PSNR 20.7 23.6 27.0 26.9 20.1 22.4 24.6 24.9
SSIM 0.69 0.67 0.72 0.80 0.53 0.57 0.65 0.70

The improvement is significant when comparing to the other three models, e.g., at
least 1.6 dB in PSNR for the boat video when r = 2. All the PSNR values and SSIM
values of our method for boat video are higher than that of other models. All the
PSNR values and SSIM values of our method for bridge video are higher than that
of other models except the PSNR value when r = 2, see the fifth column of the last
row. It is comparable with the SDR method. However, the SSIM value is higher. This
means the reconstructed structure is better for our method. The major cost of this
algorithm is to solve the fi subproblems in Algorithm 1. Since the resulting images
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Zoomed-in comparison of different algorithms on “boat” image for r = 2. (a) The zoom-in
part in the HR image. (b) Result of the TF model [8]. (c) Result of the MAP model [20]. (d) Result
of the SDR model [16]. (e) Result of our nuclear-norm model (α = 35.2924 and ρ = 3.379×104).
(f) Zoomed-in original HR image

are with larger sizes, the sizes of coefficients of all subproblems in Algorithm 1 are
larger. Thence, when r = 4, the cost is larger than that when r = 2.

To compare the images visually, we give the results and their zoom-ins for the
boat video in Figs. 3, 4, 5. The results for the bridge video are similar and therefore
omitted. Figure 3 shows the boat reconstructions for r = 2. We notice that the
TF model loses many fine details, e.g., the ropes of the mast. The MAP model
produces some distortion on the edges and is sensitive to the noise; and the SDR
model contains some artifacts along the edges. One can see the difference more
clearly from the zoom-in images in Fig. 4. We also give the zoom-in results for
r = 4 in Fig. 5. We can see that the nuclear-norm model produces more details and
less artifacts than the other three models.
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Zoom-in comparison of different algorithms on “boat” image for r = 4. (a) The reference
LR image. (b) Result of the TF model [8]. (c) Result of the MAP model [20]. (d) Result of the
SDR model [16]. (e) Result of our nuclear-norm model (α = 32.0659 and ρ = 3.5841 × 104). (f)
Zoomed-in original HR image

4.2 Real Videos

In the following, experiments on real videos are carried out. Three videos “text,”
“disk,” and “alpaca” are downloaded from the website https://users.soe.ucsc.edu/~
milanfar/software/sr-datasets.html.

The basic information of these videos are listed in Table 1. We see that they
are very low-resolution videos. Figure 6 shows the reference LR images for these
videos. It is difficult to discern most of the letters from the reference images.

The first test video is the “text video.” The results are shown in Fig. 7. We see
that the TF model produces blurry reconstructions. The images by the MAP model
have obvious distortions. We also see that for the SDR model, some of the letters are
coalesced, e.g., the word “film.” The results of the nuclear-norm model are better.
One can easily tell each word and there are no obvious artifacts for the letters.

The second video is the “disk video,” which contains 26 gray-scale images with
the last 7 ones being zoom-in images. Therefore, we only use the first 19 frames
in our experiment. The results are shown in Fig. 8. The TF model again produces
blurry reconstructions. The MAP results are better but still blurry. The SDR results

https://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
https://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
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(a) (b) (c)

Fig. 6 The reference LR images of (a) “text,” (b) “disk,” and (c) “alpaca”

(a) (b) (c) (d)

Fig. 7 Comparison of different algorithms on “text video.” Top row with upsampling factor r = 2
and second row with r = 4. (a) Result of the TF model [8]. (b) Result of the MAP model [20].
(c) Result of the SDR model [16]. (d) Result of our nuclear-norm model (α = 8.368 and ρ =
3.6236 × 106 for r = 2; α = 8.6391 and ρ = 4.5618 × 105 for r = 4)

have some artifacts, especially in the word “DIFFERENCE.” Our results are the best
ones with each letter being well reconstructed, especially when r = 2.

The third video is the “alpaca video,” and the results are shown in Fig. 9. When
r = 2, the word “service” is not clear from the TF model, the MAP model, and the
SDR model. When r = 4, the resulting images from all models are improved and the
phrase “university food service” is clear. However, we can see that our nuclear-norm
model still gives the best reconstruction.
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(a) (b) (c) (d)

Fig. 8 Comparison of different algorithms on “disk video.” Top row with upsampling factor r = 2
and second row with r = 4. (a) Result of the TF model [8]. (b) Result of the MAP model [20].
(c) Result of the SDR model [16]. (d) Result of our nuclear-norm model (α = 6.6802 and ρ =
1.0701 × 106 for r = 2; α = 11.6185 and ρ = 8.6404 × 105 for r = 4)

(a) (b) (c) (d)

Fig. 9 Comparison of different algorithms on “alpaca video.” Top row with upsampling factor
r = 2 and second row with r = 4. (a) Result of the TF model [8]. (b) Result of the MAP model
[20]. (c) Result of the SDR model [16]. (d) Result of our nuclear-norm model (α = 35.3704 and
ρ = 2.7892 × 104 for r = 2; α = 45.6486 and ρ = 2.9798 × 105 for r = 4)
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(a) (b) (c)

(d) (e)

Fig. 10 Zoom-in comparison of different algorithms on “books video” with r = 2. Leftmost
figure: the LR reference frame with zoom-in areas marked. (a) Zoomed-in LR image. (b) Result of
the TF model [8]. (c) Result of the MAP model [20]. (d) Result of the SDR model [16]. (e) Result
of our nuclear-norm model (α = 15.3958 and ρ = 5.6858 × 105 for r = 2)

(a) (b) (c)

(d) (e)

Fig. 11 Another zoom-in comparison on “books video” with r = 2. (a) Zoomed-in LR image. (b)
Result of the TF model [8]. (c) Result of the MAP model [20]. (d) Result of the SDR model [16].
(e) Result of our nuclear-norm model (α = 15.3958 and ρ = 5.6858 × 105 for r = 2)

The last video is a color video which is used in the tests in [7, 8]. It contains 257
color frames. We take the 100th frame to be the reference frame, see the leftmost
figure in Fig. 10. Frames 90–110 in the video are used as LR images to enhance the
reference image. We transform the RGB images into the Ycbcr color space and then
apply the algorithms to each color channel. Then we transform the resulting HR
images back to the RGB color space. Figures 10 and 11 show the zoom-in patches
of the resulting images by different models. In Fig. 10, the patch shows a number
“98” on the spine of a book. We see that the TF model gives a reasonable result
when compared with MAP and SDR. However, our nuclear-norm model gives the
clearest “98” with very clean background. Figure 11 shows the spines of two other
books: “Fourier Transforms” and “Digital Image Processing.” Again, we see that
our nuclear-norm model gives the best reconstruction of the words with much less
noisy artifacts.
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5 Conclusion

In this paper, we proposed an effective algorithm to reconstruct a high-resolution
image using multiple low-resolution images from video clips. The LR images
are first registered to the reference frame by using an optical flow. Then a low-
rank model is used to reconstruct the high-resolution image by making use of
the overlapping information between different LR images. Our model can handle
complex motions and illumination changes. Tests on synthetic and real videos show
that our model can reconstruct an HR image with much more details and less
artifacts.
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