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Abstract. STRIM (Statistical Test Rule Induction Method) has been
proposed for an if-then rule induction method from the decision table
independently of Rough Sets theory, not utilizing the notion of the
approximation and the validity of the method has also been confirmed by
a simulation model for data generation and verification of induced rules.
However, the previous STRIM used a plain hypothesis of the complete
correspondence with rules while a real-world dataset judged by human
beings often seems to obey a partial correspondence hypothesis (PCH).
This paper studies STRIM incorporating the PCH and improves the pre-
vious STRIM into a new version, STRIM2, of which performance and
caution for use is examined by the above simulation model incorporating
PCH. STRIM2 is also applied to the real-world dataset and draws results
showing interesting suggestions.
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1 Introduction

Nowadays, a large number of electronic datasets are being generated with the
growth of a network society. Among such datasets, those generated in the e-
commerce area are used for various business strategies and such trials have
recently proliferated quickly. The e-commerce takes in the various datasets
including their attributes with regard to items for sale as well as their cus-
tomers so that their relationships, structures and features are easily analyzed
and used for strategies of providing it with new items and/or services for sale as
well as acquiring new customers. In those processes, the conventional data min-
ing or analyzing methods are used, or new methods are needed and developed
for improving their precision and adaptation of new aims. Demands from such a
network society generate research and development in those data science areas.

A statistical test rule induction method (STRIM) [1–8] also has been pro-
posed for improving rule induction methods by the conventional Rough Sets
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methods [9–12] which are used for inducing if-then rules from a dataset called
the decision table. Specifically, STRIM recognized the if-then rules as an input-
output system and proposed a data generation model for the decision table in
order to clarify the relationship between if-then rules and the decision table, the
stochastic uncertainty included in the table and what is a rule hidden in the
table. The data generation model made up for faults of the conventional Rough
Sets lacking statistical views. An algorithm for the rule induction by STRIM
also has been proposed and the validity and the usefulness have been confirmed
by applying it to real-world datasets after simulation experiments.

However, the plain hypotheses were used in the process of transforming the
input into the output in order to simply study the data generation process.
Specifically, the previous data generation process used a complete correspon-
dence hypothesis (CCH) that the input was transformed by the pre-specified
rules only when it completely corresponded with them. In the real-world, human
beings often use their rules even when the input partially corresponds with them
and they decide to compromise with the second best. This paper experimentally
studies an if-then rule induction problems from the dataset generated based on a
partial correspondence hypothesis (PCH) in order to better match the previous
STRIM to the real-world dataset judged in the processes such as human decision-
making. Specifically, the previous STRIM is first applied to the PCH dataset in a
simulation experiment. The experimental consideration suggests that the interim
results by the previous STRIM can be used for inferring the original rules by use
of a Hamming distance and a technique of a one-strike sketch. STRIM2 named
after the revised STRIM is applied for the real-world dataset, Rakuten Travel
dataset and draws results showing interesting suggestions.

2 Introduction of Decision-Making Processes

In statistics, a dataset U = {u(i)|i = 1, ..., N = |U |} is collected from a popula-
tion of interest to estimate and/or infer properties and features of the population.
Here, u(i) is an object with several attributes, whose properties and features
contribute to the estimation and inference of the population. Let us denote an
observation system by S = (U,A, V ). Here, A is the set of an attribute and V is
the set of the attribute’s values; that is, V =

⋃
a∈A Va and Va is the set of the

value of attribute a. When randomly sampling u(i) from the population, each
attribute becomes a random variable with the respective attribute value as its
outcome.

Here, there are two main types of datasets, with a division between the
response and explanatory variables and those without it. In the former case, the
set of attributes A is denoted A = C ∪ {D} to distinguish from the latter case.
Here, D is a decision attribute and the response variable, and C = {C(j)|j =
1, ..., |C|} is the set of condition attribute C(j) and C(j) is also an explanatory
variable for the response variable. If D and C(j) are qualitative variables, D
represents the random variable of the class containing u(i) and is affected by the
set C of the random variable C(j). This paper studies the former case dealing
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with qualitative variables based on the system S = (U,A = C ∪D,V ) called the
decision table in the Rough Sets theory.

Figure 1 outlines the data generation process. Randomly sampling u(i) from
the population, the outcome of C = (C(1), ..., C(|C|)); that is, uC(i) = (vC(1)(i),
..., vC(|C|)(i)) is obtained and becomes the input into the rule box. The rule box
transforms uC(i) into the output uD(i) using the rule box’s pre-specified rules
R(d, k): if CP (d, k) then D = d (d = 1, 2, ..., k = 1, 2, ...) and the following partial
correspondence hypothesis with the input modifying CCH shown in Table 1.

Partial correspondence hypothesis (PCH): The degree Dgr of uC(i) for cor-
respondence with the box’s pre-specified rules is estimated and the rule of the
highest Dgr is applied for transforming uC(i) into uD(i). If there are sev-
eral rules of ties, one of them is randomly determined in the same way as
Hypothesis 3 in Table 1. PCH expands and generalizes three cases for uC(i)
in Table 1 for CCH, taking human decision-making into account. The observer
in Fig. 1 records u(i) = (uC(i), uD(i)). NoiseC and NoiseD are introduced
to adapt the model for the real-world dataset. NoiseC adjusts the value of
uC(i) = (vC(1)(i), ..., vC(|C|)(i)) or makes vC(j)(i) a missing value, and NoiseD
adjusts the value of uD(i).

Generating uC(i) = (vC(1)(i), ..., vC(|C|)(i)) using random numbers and
transforming it into uD(i) using the model shown in Fig. 1, including PCH,
U = {u(i) = (uC(i), uD(i))|i = 1, ..., N = |U |} can be obtained and applied to
any rule induction method to investigate the extent to which the method applied
induces the pre-specified rules.

Rule Box &
Hypothesis

Input:

u (i)

Output:

u (i)C D

Observer
NoiseC NoiseD

Fig. 1. A simulation model for data generation and verification of induced rules. The
rule box contains if-then rules R(d, k): if CP (d, k) then D = d (d = 1, 2, ..., k = 1, 2, ...).

3 Simulation Experiment by the Previous STRIM

We implemented the data generation process with PCH and the verification
process applying the previous STRIM as follows: (1) Specified rules, for example,
shown in Table 2 in the rule box in Fig. 1, where |C| = 6, Va = {1, 2, ..., 6}
(a = C(j)(j = 1, ..., |C|), a = D), and CP (1, 1) = 110010 denoted CP (1, 1) =
(C(1) = 1)

∧
(C(2) = 1)

∧
(C(5) = 1) and was called a rule of the rule length

3 (RL = 3) having three conditions. (2) Generated vC(j)(i) (j = 1, ..., |C| =
6) with a uniform distribution and formed uC(i) = (vC(1)(i), ..., vC(6)(i)) (i =
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Table 1. Complete correspondence hypothesis with regard to the input.

Hypothesis 1 uC(i) coincides with R(d, k), and uD(i) is uniquely
determined as D = d (uniquely determined data)

Hypothesis 2 uC(i) does not coincide with any R(d, k), and uD(i) can
only be determined randomly (indifferent data)

Hypothesis 3 uC(i) coincides with several R(d, k) (d = d1, d2, ...), and
their outputs of uC(i) conflict with each other.
Accordingly, the output of uC(i) must be randomly
determined from the conflicted outputs (conflicted data)

1, ..., N = 10, 000). (3) Transformed uC(i) into uD(i) using the pre-specified
rules in Table 2 and PCH, without generating NoiseC and NoiseD for a simple
experiment. Here, Dgr was simply estimated by the sum of the number of the
conditions satisfied for each rule. For example, if uC(i) = 112251 then Dgr = 2 at
R(1, 1), Dgr = 1 at R(1, 2), Dgr = 0 at R(2, 1), and so on. Accordingly, R(1, 1)
or R(2, 2) having the highest Dgr = 2 were randomly selected. We will refer to
the dataset generated based on the above procedures as the PCH dataset. We
randomly sampled NB = 5, 000 data and formed a new dataset as the decision
table.

We applied the previous STRIM [1–8] to the PCH dataset. Figure 2 shows
an outline of the algorithm implementing the STRIM written in C-language
style (details in [7,8]). At LN = 8 − 9, for each decision attribute value di,
the statistically independent condition attributes against di are reducted. At
LN = 10, the function rule check() (the body is at LN = 19−33) systematically
forms a trying rule based on the dimension rule[ ] (condition part of a rule CP ).
At LN = 25, we examine the degree of the validity for the trying rule by the
z-value, which is the degree of bias in the frequency distribution of D supposing
the standard normal distribution and is used to select the rule as a candidate.
The selected candidates are finally arranged into the induced rules at LN = 12.

Table 3 shows examples of the results of the arranged rules for D = 1 and
the part of those for D = 2 in descending order of z-values for each D. For
example, the first row CP (1, 1) of the table means the following: The condition
part of the induced rule is (C(2) = 1)

∧
(C(5) = 1). The frequency distribution

of D f = (n1, ..., n6) satisfying the condition is (138, 3, 4, 4, 6, 6), which suggests
the maximum frequency nd of D is nd=1 = 138 and thus D = 1 is the decision
part for the rule. The distribution of z = nd+0.5−npd

(npd(1−pd))0.5
obeys the standard

normal distribution under the null hypothesis H0: CP is not a rule candidate
(the alternative hypothesis H1: CP is a rule candidate) and the testing condition
[13]: npd ≥ 5 and n(1−pd) ≥ 5, where n =

∑6
m=1 nm. The p-value corresponding

to the z-value is the index of supporting H0, and the accuracy and the coverage
are also shown in the table.



78 Y. Kato et al.

Table 3 shows that the previous STRIM doesn’t induce R(1, 1) of the pre-
specified rules having RL = 3 in Table 2 but induces three rules CP (1, 1),
CP (1, 3) and CP (1, 6) with RL = 2 including R(1, 1). Hereafter R(1, 1) is called
a partial rule of them since it is a special case of them and conversely they are
called a including rule of R(1, 1) respectively. The same results apply to R(1, 2)
and applied to those for D = 2, ..., 6. Then, all the rule candidates for D = 1
were investigated as shown in Table 4 which shows CndCP to distinguish the
CP in Table 3. Table 4 shows the following:

(4-1) The rules CndCP (1, 1), ..., CndCP (1, 6) with RL = 2 including R(1, 1) or
R(1, 2) appear in descending order of z-values, which coincides with the
CP in Table 3. They suggest us that a lot of inputs partially coinciding
with the pre-specified rules by Dgr = 2 were transformed into the output
by the use of their rules and PCH.

(4-2) The CndCP (1, 7), ..., CndCP (1, 21) with RL = 1 including R(1, 1) or
R(1, 2), or those straddling both rules with RL =2 appear in descending
order of z-values. For example, the candidate CndCP (1, 10) with RL = 2
straddles both CndCP (1, 8) and CndCP (1, 7) of the rule including R(1, 1)
and R(1, 2) respectively. They also suggest the same as that applied to
(4-1) by Dgr = 1.

(4-3) All CndCP (1, 7), ..., CndCP (1, 21) in Table 4 were arranged in Table 3,
which was conducted at LN = 12 in Fig. 2. For example, CndCP (1, 10)
is a partial rule of CndCP (1, 7) whereas the z-value of CndCP (1, 7) is
larger than that of CndCP (1, 10). Accordingly, the previous STRIM made
CndCP (1, 7) represent CndCP (1, 10) based on the index of z. In the
same way, CndCP (1, 7) was represented by CndCP (1, 3). In this way, the
previous STRIM arranged the rule candidates with inclusion relationships
by their z-values.

The pre-specified rules R(1, 1) and R(1, 2) did not appear even as rule can-
didates respectively in Table 3 since each of them did not satisfy the testing
condition at LN = 24. The following is a summary of the simulation studies
using the previous STRIM for the PCH dataset:

(1) The previous STRIM can’t induce the pre-specified rules with longer rule
lengths since the datasets partially corresponding with those rules will cause
increased growth, and overwhelmingly covers those completely correspond-
ing with them which is the PCH effects. As the result, it induces a lot of
rules including the pre-specified rules.

(2) In the case when N is not so large and the rule length of the pre-specified
rules is long, the previous STRIM can’t adopt them even as a rule candidate.
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Table 2. An example of pre-specified rules in the rule box.

R(d, k) CP (d, k) D = d

R(1, 1) 110000 D = 1

R(1, 2) 001100 D = 1

R(2, 1) 220000 D = 2

R(2, 2) 002200 D = 2

... ... ...

R(6, 1) 660000 D = 6

R(6, 2) 006600 D = 6

Fig. 2. An algorithm for STRIM including a reduct function.

4 Improved Algorithm Taking PCH into Account

The PCH effects derive a lot of including rules of the pre-specified rules as shown
in (4-1) and (4-2) if the previous algorithm of STRIM is applied to the PCH
dataset. In this section, we improve the algorithm based on the considerations
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Table 3. Examples of finally induced rule using previous STRIM for the PCH dataset.

CP (d, k) C(1)C(2)
...C(6)

D p-value(z) Accuracy Coverage f = (n1, n2, ..., n6)

CP (1, 1) 010010 1 1.19E−123(23.62) 0.857 0.166 (138, 3, 4, 4, 6, 6)

CP (1, 2) 000101 1 2.42E−120(22.30) 0.899 0.150 (125, 0, 3, 3, 3, 5)

CP (1, 3) 100010 1 2.38E−97(20.90) 0.826 0.137 (114, 5, 5, 7, 1, 6)

CP (1, 4) 001100 1 3.27E−90(20.11) 0.861 0.119 (99, 2, 2, 2, 3, 7)

CP (1, 5) 001001 1 9.22E−84(19.36) 0.835 0.115 (96, 3, 7, 3, 3, 3)

CP (1, 6) 110000 1 5.60E−78(18.66) 0.780 0.119 (99, 4, 4, 6, 7, 7)

CP (2, 1) 002200 2 4.43E−130(24.24) 0.849 0.175 (8, 141, 1, 6, 6, 4)

CP (2, 2) 000202 2 7.58E−111(22.33) 0.883 0.140 (2, 113, 5, 3, 4, 1)

. . . . . . . . . . . . . . . . . . . . .

obtained by the simulation experiment in Sect. 3. Figure 3 especially shows their
relationships for the including rules of D = 1. For example, “110000(6)” denotes
CndCP (6) in Table 4. The solid line connects each other with one Hamming
distance (HD = 1) which is considered to be the closest and solidest relationship
since rule candidates derived from the pre-specified rules by the PCH effects as
shown in (4-1) and (4-2). For example, one of the methods to estimate R(d, 1)
or R(d, 2) is to make the groups of candidates connected to each other with
HD = 1 in Table 4 and to make each group indicate the pre-specified rules for
each D = d as follows:

(Step1) Truncate Table 4 in descending order of z-value until the candidate
with RL = 1 having the least z-value.

(Step2) Make the Hamming matrix (HM) having the (i, j) element of the HD
between CndCP (d, i) and CndCP (d, j) by use of the truncated table. The
HM is symmetric.

(Step3) Make the groups with HD = 1 by using the HM and a one-stroke
sketch, and estimate the pre-specified rules.

In the case of D = 1, the last term of Table 4 to be truncated in (Step1) is
CndCP (1, 14) and the HM obtained in (Step2) is Table 5 showing HM(i, j)
(i, j = 1, ..., 14). For example, the HM(1, 2) (= HM(2, 1)) is the HD between
CndCP (1, 1) = 010010 and CndCP (1, 2) = 000101 and is found to be HD = 4.
The following is the specific procedures of (Step3) by the use of Table 5:

(1) Find the i-th element in Table 4 corresponding with CP (d = 1, k) in Table 3
and the least j-th with HM(i, j) = 1. Reserve the i for the starting point i0.

(2) Reset HM(i, j) = 0 and HM(j, i) = 0 to prevent a loop.
(3) Substitute i with j.
(4) If i = i0 then go to (6) else go to (5).
(5) Find the least j-th element with HM(i, j) = 1 if there are and go to (2),

else go to (6).
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(6) If i = i0 is satisfied then construct the pre-specified rule by use of the above
sequence candidates else discard the sequence.

For example, execute procedure (1) by k = 1 in Table 3 then i = 1 is found in
Table 4, (i, j) = (1, 7) is obtained and i0 = 1 is the starting point in Table 5 since
(1, 7) is the least j satisfying HM(1, j) = 1. Execute the procedures (2)–(5) and
then the sequence of H(i, j) is (i, j) = (1, 7) → (7, 3) → (3, 11) → (11, 6) →
(6, 13) → (13, 1) and i = i0 is satisfied. The sequence is proved to be the one-
stroke sketch of the rule candidates with HD = 1 of R(1, 1) (trace the sequence
in Fig. 3) and then R(1, 1) is reconstructed. In the same way, for k = 2, the
sequence satisfying i = i0: (i, j) = (2, 8) → (8, 5) → (5, 14) → (14, 4) → (4, 9) →
(9, 2) is obtained and is proved to be that of R(1, 2) (see Fig. 3). The k = 3
in Table 3 derives R(1, 1). All of the k in Table 3 derives R(1, 1) and R(1, 2) by
three respectively. The same applied to D = 2, ..., 6.

Table 4. Rule candidates for D = 1 induced by the previous STRIM for the PCH
dataset.

CndCP (d, k) C(1)C(2)...C(6) D p-value(z)

CndCP (1, 1) 010010 1 1.19E−123(23.62)

CndCP (1, 2) 000101 1 2.42E−120(23.30)

CndCP (1, 3) 100010 1 2.38E−97(20.91)

CndCP (1, 4) 001100 1 3.27E−90(20.10)

CndCP (1, 5) 001001 1 9.22E−84(19.36)

CndCP (1, 6) 110000 1 5.60E−78(18.66)

CndCP (1, 7) 000010 1 5.21E−70(17.65)

CndCP (1, 8) 000001 1 4.19E−68(17.40)

CndCP (1, 9) 000100 1 3.52E−55(15.60)

CndCP (1, 10) 000011 1 1.83E−54(15.50)

CndCP (1, 11) 100000 1 5.83E−54(15.42)

CndCP (1, 12) 001010 1 1.52E−51(15.06)

CndCP (1, 13) 010000 1 2.57E−50(14.87)

CndCP (1, 14) 001000 1 5.11E−47(14.35)

CndCP (1, 15) 100001 1 2.15E−44(13.93)

CndCP (1, 16) 000110 1 1.33E−42(13.63)

CndCP (1, 17) 010100 1 2.39E−41(13.41)

CndCP (1, 18) 100100 1 2.31E−37(12.72)

CndCP (1, 19) 011000 1 1.82E−36(12.56)

CndCP (1, 20) 101000 1 2.08E−34(12.18)

CndCP (1, 21) 010001 1 3.84E−34(12.13)
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110010(R(1,1))

110000(6) 100010(3) 010010(1)

100000(11) 010000(13) 000010(7)

001101(R(1,2))

001100(4) 001001(5) 000101(2)

001000(14) 000100(9) 000001(8)

Fig. 3. Derived rules from the pre-specified rules for D = 1 with one Hamming distance.

Adding to an algorithm implementing the above procedure under LN = 12
in Fig. 2, STRIM can adapt the PCH dataset and results in a new algorithm we
call STRIM2.

Table 5. Examples of Hamming distance against rule candidates for D = 1.

HM(i, j) [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

[1] 0 4 2 4 4 2 1 3 3 2 3 2 1 3

[2] 4 0 4 2 2 4 3 1 1 2 3 4 3 3

[3] 2 4 0 4 4 2 1 3 3 2 1 2 3 3

[4] 4 2 4 0 2 4 3 3 1 4 3 2 3 1

[5] 4 2 4 2 0 4 3 1 3 2 3 2 3 1

[6] 2 4 2 4 4 0 3 3 3 4 1 4 1 3

[7] 1 3 1 3 3 3 0 2 2 1 2 1 2 2

[8] 3 1 3 3 1 3 2 0 2 1 2 3 2 2

[9] 3 1 3 1 3 3 2 2 0 3 2 3 2 2

[10] 2 2 2 4 2 4 1 1 3 0 3 2 3 3

[11] 3 3 1 3 3 1 2 2 2 3 0 3 2 2

[12] 2 4 2 2 2 4 1 3 3 2 3 0 3 1

[13] 1 3 3 3 3 1 2 2 2 3 2 3 0 2

[14] 3 3 3 1 1 3 2 2 2 3 2 1 2 0

5 Another Type of Pre-specified Rule

In order to confirm the availability of the algorithm studied in Sect. 4, let us study
it by modifying the rules in Table 2 like R(d, 2) = 00dd0d → R(d, 2) = 0d0d0d
(d = 1, ..., 6). Having the same condition attribute value like C(2) = d in R(d, 1)
and R(d, 2) is the feature of the modified rules. Generating the PCH dataset
based on the modified rules in Fig. 1, and applying STRIM2 to the dataset,
Table 6 for D = 1 was obtained by arranging the interim results. Table 6 contains
the set of CndCP (1, k) which is ordered in descending order of the z-value and
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truncated at the least z-value of the candidate with RL = 1 corresponding to
the front side of Table 5, and the HM which corresponds to Table 5 and was
constructed by the set of CndCP (1, k). Here, three CndCP (1, k) (k = 1, 5, 7)
with an “∗” are the candidates corresponding to CP (1, k) in Table 3.

In the same way as Table 5, STRIM2 induced the rules from Table 6 as follows:
By use of CndCP (1, 1) = 010000(∗1), the sequence: (1, 2) → (2, 9) → (9, 5) →
(5, 8) → (8, 3) → (3, 1) induced 010101 = R(1, 2) although CndCP (1, 1) is
also the including rule of R(1, 1). In the same way, CndCP (1, 5) = 000101(∗2)
derived the sequence: (5, 8) → (8, 3) → (3, 1) → (1, 2) → (2, 9) →(9,5) and
induced 010101 = R(1, 2). However, CndCP (1, 7) = 100010(∗3) derived the
sequence: (7, 10) → (10, 4) → (4, 1) → (1, 2) → (2, 9) → (9, 5) → (5, 8) →
(8, 3) → (3, 1) → (1, 6) → (6, 12) → (12, 7) and induced “110111,” which was the
compound of R(1, 1) and R(1, 2). Inspecting the sequence in detail, it started
from CndCP (1, 7) of the including rule of R(1, 1), and on the way changed
that of R(1, 1) into that of R(1, 2) like (1, 2) → (2, 9) and again changed into
that of R(1, 1). That is why STRIM2 induced the compound rule. It should be
noted that the case when STRIM2 cannot induce the pre-specified rules but the
compound rules may happen in the case when they have more than two CP (d, k)
(k = 1, 2, ...) and the same condition attribute value like C(2) = d for the same
decision attribute value, and/or their including rules are not separated from each
other (see Fig. 3).

Table 6. Rule candidates and Hamming distance induced by STRIM2 for the dataset
generated by the rules modifying Table 2.

CndCP (1, k): HM

(1, 1): 010000(*1) 0 1 1 1 3 1 3 2 2 2 2 2

(1, 2): 010001 1 0 2 2 2 2 4 3 1 3 1 3

(1, 3): 010100 1 2 0 2 2 2 4 1 3 3 1 3

(1, 4): 110000 1 2 2 0 4 2 2 3 3 1 3 3

(1, 5): 000101(*2) 3 2 2 4 0 4 4 1 1 3 1 3

(1, 6): 010010 1 2 2 2 4 0 2 3 3 3 3 1

(1, 7): 100010(*3) 3 4 4 2 4 2 0 3 3 1 5 1

(1, 8): 000100 2 3 1 3 1 3 3 0 2 2 2 2

(1, 9): 000001 2 1 3 3 1 3 3 2 0 2 2 2

(1, 10): 100000 2 3 3 1 3 3 1 2 2 0 4 2

(1, 11): 010101 2 1 1 3 1 3 5 2 2 4 0 4

(1, 12): 000010 2 3 3 3 3 1 1 2 2 2 4 0
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6 Application of STRIM2 to a Real-World Dataset

The Rakuten Institute of Technology provides an open dataset of Rakuten Travel
[14]. This dataset contains about 6, 200, 000 questionnaire survey ratings A =
{C(1) = Location, C(2) = Room, C(3) = Meal, C(4) = Bath (Hot Spring),
C(5) = Service, C(6)=Amenity, D = Overall} for about 130, 000 travel facilities
using a set of categorical values Va = {Dissatisfied (1), Somewhat dissatisfied (2),
Neither satisfied nor dissatisfied (3), Satisfied (4), Very Satisfied (5)}, ∀a ∈ A,
that is, |Va=D| = |Va=C(j)| = 5. We constructed a decision table of N = 10, 000
surveys by randomly selecting 2, 000 samples, each with D = m (m = 1, ..., 5),
from about 400, 000 surveys of the 2013–2014 dataset because there were heavy
biases with respect to the frequency of D = m. Finally, we randomly sampled
NB = 5, 000 from the 10, 000 surveys and re-constructed the decision table.

We applied STRIM2 to the decision table and Table 7 shows the interim
results corresponding to Table 3. The HM corresponding to Table 5 or Table 6
is omitted since its size is so large, for example, 62×62 for D = 1. Table 8 shows
the final results by STRIM2 obtained in the same procedures as the simulation
experiments in Sects. 4 and 5. Here, the results are shown as CP2(d, k) to dis-
tinguish the final from the interim. Although the Rakuten Travel dataset is not
clear whether it obeys PCH or not, and no one knows the original rules since
it is not a simulation experiment, Table 8 suggests the following based on the
results obtained from the simulation experiments:

(1) For D = 1, both of CP (1, 1) and CP (1, 2) with RL = 1 induced the same rule
CP2(1, 1) with RL = 3 respectively. That is, STRIM2 induced the partial
rule CP2(1, 1) of CP (1, 1) and CP (1, 2) which represented CP2(1, 1) by
use of the previous STRIM and moreover found another factor C(6) = 1
affecting D = 1. The result seems not to be so strange.

(2) For D = 2, STRIM2 induced the same rule as CP (2, 1) of which accuracy is
not so high to compare with the other rules. The frequency distribution of
CP (2, 1) spreads widely from D = 1 to D = 3, which seemed to be caused
by the hard decision of “Somewhat dissatisfied.” Accordingly, it is supposed
that the original rule of D = 2 could not make the one-strike sketch by the
including rules with RL = 1

(3) STRIM2 induced CP2(3, 1) with RL = 4 from CP (3, 1) with RL = 2 and
CP2(4, 1) with RL = 3 from CP (4, 1) with RL = 2, which seems not to be
so strange taking the simulation studies into account.

(4) STRIM2 induced CP2(5, 1) with RL = 3 from CP (5, 1) with RL = 1
and CP2(5, 2) with RL = 4 from CP (5, 2) with RL = 2, and the former
rule includes the latter, which remind us of the studies in Sect. 5. However,
STRIM2 suggested that the factors: C(2) = 5, C(3) = 5, C(5) = 5, C(6) = 5
have an important effect on D = 5 while the previous STRIM indicates only
the partial effect.
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Table 7. Induced interim rules from Rakuten Travel dataset by STRIM2.

CP (d, k)
by
STRIM

C(1)C(2)
...C(6)

D p-value(z) Accuracy Coverage f = (n1, n2, ..., n6)

CP (1, 1) 000010 1 0.00(40.50) 0.761 0.639 (654,187,16,1,1)

CP (1, 2) 010000 1 4.01E−236(32.79) 0.683 0.509 (521,200,39,3,0)

CP (2, 1) 020000 2 4.44E−79(18.79) 0.488 0.335 (160,339,169,29,4)

CP (3, 1) 030030 3 2.47E−165(27.38) 0.634 0.390 (31,97,373,82,5)

CP (4, 1) 040040 4 1.50E−184(28.95) 0.725 0.351 (7,16,47,350,63)

CP (5, 1) 000050 5 0.00(44.94) 0.758 0.790 (17,21,31,186,800)

CP (5, 2) 055000 5 0.00(43.36) 0.874 0.580 (11,12,5,57,588)

Table 8. Induced final rules from Rakuten Travel dataset by STRIM2.

CP2(d, k)
by
STRIM2

C(1)C(2)
...C(6)

D p-value(z) Accuracy Coverage f = (n1, n2, ..., n6)

CP2(1, 1) 010011 1 8.14E−185(28.97) 0.940 0.231 (236,15,0,0,0)

CP2(2, 1) 020000 2 4.44E−79(18.79) 0.488 0.335 (160,339,163,29,4)

CP2(3, 1) 033033 3 3.26E−135(24.72) 0.811 0.207 (8,15,198,23,0)

CP2(4, 1) 040044 4 4.97E−162(27.10) 0.796 0.262 (4,8,18,261,37)

CP2(5, 1) 055050 5 0.00(43.24) 0.939 0.515 (3,4,0,27,522)

CP2(5, 2) 055055 5 0.00(40.20) 0.977 0.419 (2,2,0,6,424)

7 Conclusion

This paper experimentally studied an algorithm to adapt PCH datasets and
improved the previous STRIM. Specifically, this paper focused on rule candi-
dates derived by the STRIM, proposed a method to group them by the solid
relationship of a one-stroke sketch having one Hamming distance (HD = 1)
and made the groups estimate the pre-specified rules. STRIM incorporating this
function was named STRIM2 which clarified its performance and cautions for
use by applying it in two typical simulation experiments. STRIM2 was applied to
a real-world dataset, that is, Rakuten Travel dataset and the induced rules were
considered from the view of those studied by the simulation so that the results
were roughly shown to be valid and were full of interesting suggestions although
no one knew the pre-specified rules and the domain-knowledge was needed for
the review.
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