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Abstract. In this paper it is analysed how emerging behaviour of an adaptive
network can be related to characteristics of the adaptive network’s structure
(which includes the adaptation structure). In particular, this is addressed for
mental networks based on Hebbian learning. To this end relevant properties of
the network and the adaptation that have been identified are discussed. As a
result it has been found that in an achieved equilibrium state the value of a
connection weight has a functional relation to the values of the connected states.
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1 Introduction

A challenging issue for dynamic models is to predict what patterns of behaviour will
emerge, and how their emergence depends on the structure of the model, including
chosen values for model characteristics or parameters. This applies in particular to
network models, where behaviour depends in some way on the network structure,
defined by network characteristics such as connections and their weights. It can be an
even more challenging issue when adaptive networks are considered, where the net-
work characteristics also change over time, according to certain adaptation principles
which themselves depend on certain adaptation characteristics represented by their own
particular parameters. It is this latter issue what is the topic of the current paper: how
does emerging behaviour of adaptive networks relate to the characteristics of the
network and of the adaptation principles used. More in particular, the focus is on
adaptive mental networks based on Hebbian learning [1, 3, 4, 6–8]. Hebbian learning
is, roughly stated, based on the principle ‘neurons that fire together, wire together’ from
Neuroscience.

To address the issue, as a vehicle the Network-Oriented Modeling approach based
on temporal-causal networks [10] will be used. For temporal-causal networks,
parameters characterising the network structure are connection weights, combination
functions and speed factors. For the type of adaptive networks considered, the con-
nection weights are dynamic based on Hebbian learning, so they are not part of the
characteristics of the network structure anymore. Instead, characteristics of Hebbian
learning have been identified that play an important role. In this paper, results will be
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discussed that have been proven mathematically for this relation between structure and
behavior for such adaptive network models, in particular, for the result of Hebbian
learning in relation to the connected network states. These results have been proven not
for one specific model or function, but for classes of functions that fulfill certain
properties. More specifically, it has been found how for the classes of functions con-
sidered within an emerging equilibrium state the connection weight and the connected
states satisfy a fixed functional relation that can be expressed mathematically.

In this paper, in Sect. 2 the temporal-causal networks that are used as vehicle are
briefly introduced. In Sect. 3 the properties of Hebbian learning functions are intro-
duced that define the adaptation principle of the network. Section 4 focuses in par-
ticular on the class of functions for which a form of variable separation can be applied,
In Sect. 5 a number of examples are discussed. Finally, Sect. 6 is a discussion.

2 Temporal-Causal Networks

For the perspective on networks used in the current paper, the interpretation of con-
nections based on causality and dynamics forms a basis of the structure and semantics
of the considered networks. More specifically, the nodes in a network are interpreted
here as states (or state variables) that vary over time, and the connections are inter-
preted as causal relations that define how each state can affect other states over time.
This type of network has been called a temporal-causal network [10]. A conceptual
representation of a temporal-causal network model by a labeled graph provides a
fundamental basis. Such a conceptual representation includes representing in a
declarative manner states and connections between them that represent (causal) impacts
of states on each other. This part of a conceptual representation is often depicted in a
conceptual picture by a graph with nodes and directed connections. However, a
complete conceptual representation of a temporal-causal network model also includes
a number of labels for such a graph. A notion of strength of a connection is used as a
label for connections, some way to aggregate multiple causal impacts on a state is
used, and a notion of speed of change of a state is used for timing of the processes.
These three notions, called connection weight, combination function, and speed factor,
make the graph of states and connections a labeled graph (e.g., see Fig. 1), and form
the defining structure of a temporal-causal network model in the form of a conceptual
representation; see Table 1, first 5 rows.

There are many different approaches possible to address the issue of combining
multiple impacts. To provide sufficient flexibility, the Network-Oriented Modelling
approach based on temporal-causal networks incorporates for each state a way to
specify how multiple causal impacts on this state are aggregated by a combination
function. For this aggregation a library with a number of standard combination func-
tions are available as options, but also own-defined functions can be added.

Next, this conceptual interpretation is expressed in a formal-numerical way, thus
associating semantics to any temporal-causal network specification in a detailed
numerical-mathematically defined manner.
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Fig. 1. An adaptive temporal-causal network model for adaptive decision making.

Table 1. Concepts of conceptual and numerical representations of a temporal-causal network.

Concepts Notation Explanation

States and
connections

X, Y, X!Y Describes the nodes and links of
a network structure (e.g., in
graphical or matrix format)

Connection weight xX,Y The connection weight xX,Y 2
[−1, 1] represents the strength of
the causal impact of state X on
state Y through connection X!Y

Aggregating multiple
impacts

cY(..) For each state Y (a reference to)
a combination function cY(..) is
chosen to combine the causal
impacts of other states on state Y

Timing of the causal
effect

ηY For each state Y a speed factor
ηY � 0 is used to represent how
fast a state is changing upon
causal impact

Concepts Numerical representation Explanation
State values over
time t

Y(t) At each time point t each state
Y in the model has a real number
value in [0, 1]

Single causal impact impactX,Y(t)
¼ xX,Y X(t)

At t state X with connection to
state Y has an impact on Y, using
weight xX,Y

Aggregating multiple
impacts

aggimpactY(t)
¼ cY ðimpactX1 ;Y ðtÞ; . . .; impactXk ;Y ðtÞÞ
¼ cY ðxX1 ;YX1ðtÞ; . . .; xXk ;YXkðtÞÞ

The aggregated causal impact of
multiple states Xi on Y at t, is
determined using combination
function cY(..)

Timing of the causal
effect

Y(t + Dt) = Y(t) + ηY [aggimpactY(t) - Y(t)] Dt
¼ YðtÞ þ gY cY ðxX1 ;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ� �

Dt
The causal impact on Y is
exerted over time gradually,
using speed factor ηY
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This is done by showing how a conceptual representation based on states and con-
nections enriched with labels for connection weights, combination functions and speed
factors, can get an associated numerical representation [10], Ch. 2; see Table 1, last five
rows. The difference equations in the last row in Table 1 constitute the numerical rep-
resentation of the temporal-causal network model and can be used for simulation and
mathematical analysis; it can also be written in differential equation format:

YðtþDtÞ ¼ YðtÞþ gY ½cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ�Dt
dYðtÞ=dðtÞ ¼ gY ½cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ� ð1Þ

In adaptive networks connection weights x are treated in the same way as states,
and are defined by combination functions cx(…) in a similar manner (with suitable
arguments refering to relevant states and connection weights):

xðtþDtÞ ¼ x tð Þ þ gx½cx . . .ð Þ � x tð Þ�Dt
dx tð Þ=dt ¼ gx½cx . . .ð Þ � x tð Þ� ð2Þ

3 Adaptive Networks Based on Hebbian Learning

In this section it is discussed how specific combination functions for Hebbian learning
can be defined, and it will be analysed what equilibrium values can emerge for the
learnt connections. First a basic definition; see also [2, 5, 9].

Definition 1 (stationary point and equilibrium)
A state Y or connection weight x has a stationary point at t if dY(t)/dt = 0 or
dx(t)/dt. The network is in equilibrium a t if every state Y and connection weight of the
model has a stationary point at t. A state Y has is increasing at t if dY(t)/dt > 0; it is
decreasing at t if dY(t)/dt < 0. Similar for adaptive connections based on dx(t)/dt.

Considering the specific type of differential equation for a temporal-causal network
model, and assuming a nonzero speed factor, from (1) and (2) more specific criteria can
be found:

Lemma 1 (Criteria for a stationary, increasing and decreasing)
Let Y be a state and X1, …, Xk the states with outgoing connections to state Y. Then

Y has a stationary point at t , cYðxX1 ;Y
X1ðtÞ; . . .;xXk ;YXkðtÞÞ ¼ YðtÞ

Y is increasing at t , cYðxX1 ;Y
X1ðtÞ; . . .;xXk ;YXkðtÞÞ [ YðtÞ

Y is decreasing at t , cYðxX1 ;Y
X1ðtÞ; . . .;xXk ;YXkðtÞÞ\ YðtÞ

Similar criteria are applied to adaptive connection weights:
x has a stationary point at t , cx(…) = x(t)
x is increasing at t , cx(…) > x(t)
x is decreasing at t , cx(…) < x(t)

The Hebbian learning principle for the connection between two mental states is
sometimes formulated as ‘neurons that fire together, wire together’; e.g., [1, 3, 4, 6–8, 11].
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This is modelled by using the activation values the two mental states X(t) and Y(t) have at
time t. Then the weight xX,Y of the connection from X to Y is changing over time
dynamically, depending on these levels X(t) and Y(t). As this connection weight is
dynamic, following the Network-Oriented Modeling approach outlined in Sect. 2 it is
handled as a state with its own combination function cxX;Y ðV1;V2; Þ, and using the
standard difference and differential equation format as shown in (2) in Sect. 2

xX;YðtþDtÞ ¼ xX;YðtÞþgxX;Y
½cxX;Y ðXðtÞ; YðtÞ;xX;YðtÞÞ � xX;YðtÞ�Dt

dxX;Y=dðtÞ ¼ gxX;Y
½cxX;Y ðX; Y ;xX;Y Þ � xX;Y �

ð3Þ

The parameter gxX;Y
is the speed parameter of connection weight xX,Y, in this case

interpreted as learning rate. Note that by the above criteria xX,Y increases if and only if
cxX;Y (X, Y, xX,Y) > xX,Y, and xX,Y decreases if and only if cxX;Y (X, Y, xX,Y) < xX,Y, and
xX,Y is stationary if and only if cxX;Y (X, Y, xX,Y) = xX,Y.

An example of a mental network model using Hebbian learning is shown in Fig. 1
(adopted from [10], Ch 6, p. 163). It describes adaptive decision making as affected by
direct triggering of decision options ai (via weights x1,i) in combination with emotion-
related valuing of the options by an as-if prediction loop (via weights x3,i and x2,i). For
the weights of the adaptive connections the bending arrows show that they are affected
by the states they connect. Here wsw are world states, ssw sensor states, srsw and srsei
sensory representations states for stimulus w and action effect ei, psai preparation states
for ai, fsei feeling states for action effect ei, and esai execution states for ai. A relatively
simple example, also used in [10] in a number of applications (including in Ch 6 for the
model shown in Fig. 1) is the following combination function:

cxX;Y ðV1;V2;WÞ ¼ V1V2ð1�WÞþ lW

or cxX;Y ðXðtÞ; YðtÞ;xX;Y ðtÞÞ ¼ XðtÞYðtÞð1� xX;YðtÞÞþ lxX;YðtÞ
ð4Þ

Here l is a persistence parameter. In an emerging equilibrium state it turns out that
the equilibrium value for xX,Y functionally depends on the equilibrium values of X and
Y according to some formula that has been determined for this case in [10], Ch 12. For
some example patterns, see Fig. 2.

It is shown that when the equilibrium values of X and Y are 1, the equilibrium value
for xX,Y is 0.83 (top row), when the equilibrium values of X and Y are 0.6, the
equilibrium value for xX,Y is 0.64 (middle row), and when the equilibrium values of
X and Y are 0, the equilibrium value for xX,Y is 0 (bottom row). This equilibrium value
of xX,Y is always attracting. The three different rows in Fig. 1 illustrate how the
equilibrium value of xX,Y varies with the equilibrium values of X and Y. It is this
relation that is analysed in a more general setting in some depth in this paper. In
Example 1 in Sect. 5 below, this case is analysed and more precise numbers will be
derived for the equilibrium values. In [10], Ch. 12 a mathematical analysis was made
for the equilibria of the specific example combination function above. In the current
paper a much more general analysis is made which applies to a wide class of functions.

Relating an Adaptive Network’s Structure to Its Emerging Behaviour 363



The following plausible assumptions are made for a Hebbian learning function: one
set for fully persistent Hebbian learning and one set for Hebbian learning with
extinction described by a persistence parameter l; here V1 is the argument of the
function cxX,Y(..) used for X(t), V2 for Y(t), and W for xX,Y(t).

Definition 2 (Hebbian learning function)
A function c: [0, 1] x [0, 1] x [0, 1] ! [0, 1] is called a fully persistent Hebbian
learning function if the following hold:

(a) c(V1, V2, W) is a monotonically increasing function of V1 and V2

(b) c(V1, V2, W) − W is a monotonically decreasing function of W
(c) c(V1, V2, W) � W
(d) c(V1, V2, W) = W if and only if one of V1 and V2 is 0 (or both), or W = 1

A function c: [0, 1] x [0, 1] x [0, 1] ! [0, 1] is called a Hebbian learning function
with persistence parameter l if the following hold:

(a) c(V1, V2, W) is a monotonically increasing function of V1 and V2

(b) c(V1, V2, W) - lW is a monotonically decreasing function of W
(c) c(V1, V2, W) � lW
(d) c(V1, V2, W) = lW if and only if one of V1 and V2 is 0 (or both), or W = 1

Note that for l = 1 the function is fully persistent. The following proposition shows
that for any Hebbian learning function with persistence parameter l there exists a
monotonically increasing function fl(V1, V2) which is implicitly defined for given V1, V2
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Fig. 2. Hebbian learning η = 0.4, l = 0.8, Δt = 0.1; adopted from [10], pp. 339–340. a) Top
row: activation levels X1 = 1 and X2 = 1; equilibrium value 0.83 b) Middle row activation levels
X1 = 0.6 and X2 = 0.6; equilibrium value 0.64 c) Bottom row: activation levels X1 = X2 = 0;
equilibrium value 0 (pure extinction)
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by the equation cxX;Y (V1, V2, W) = W in W. When applied to an equilibrium state of an
adaptive temporal-causal network, the existence of this function fl(V1, V2) reveals that in
equilibrium states there is a direct and monotonically increasing functional relation of
the equilibrium value xX,Y of xX,Y with the equilibrium values X, Y of the states X and
Y. This is described in Theorem 1 below. Proposition 1 describes the functional relation
needed for that. For proofs of Propositions 1 and 2, see the Appendix.

Proposition 1 (functional relation for W)
Suppose that c(V1, V2, W) is a Hebbian learning function with persistence parameter l.
(a) Suppose l < 1. Then the following hold:

(i) The function W ! c(V1, V2, W) − W on [0, 1] is strictly monotonically
decreasing

(ii) There is a unique function fl: [0, 1] x [0, 1]! [0, 1] such for any V1, V2 it holds

cðV1; V2; flðV1; V2ÞÞ ¼ flðV1; V2Þ

This function fl is a monotonically increasing function of V1, V2, and is implicitly
defined by the above equation. Its maximal value is fl(1, 1) and minimum fl(0, 0) = 0.
(b) Suppose l = 1. Then there is a unique function f1: (0, 1] x (0, 1] ! [0, 1], such for
any V1, V2 it holds

cðV1; V2; f1ðV1; V2ÞÞ ¼ f1ðV1; V2Þ

This function f1 is a constant function of V1, V2 with f1(V1, V2) = 1 for all V1,
V2 > 0 and is implicitly defined on (0, 1] x (0, 1] by the above equation.

If one of V1, V2 is 0, then any value ofW satisfies the equation c(V1, V2,W) = W, so
no unique function value for f1(V1, V2) can be defined then.

When applied to an equilibrium state of an adaptive temporal-causal network, this
proposition entails the following Theorem 1. For l < 1 this follows from Proposition
1a) applied to the function cxX;Y (.). From (a)(i) it follows that the equilibrium value is
attracting: suppose x(t) < xX,Y, then from cxX;Y (X, Y, xX,Y) − xX,Y = 0 and the
decreasing monotonicity of W ! c(V1, V2, W) − W it follows that cxX;Y (X, Y, x(t)) −
x(t) > 0, and therefore by Lemma 1 x(t) is increasing. Similarly, when x(t) > xX,Y, it
is decreasing.

For l = 1 the statement follows from Proposition 1b) applied to the function cxX;Y (.).

Theorem 1 (functional relation for equilibrium values of xX,Y)
Suppose in a temporal-causal network cxX;Y (V1, V2, W) is the combination function for
connection weight xX,Y and is a Hebbian learning function with persistence parameter
l, with fl the function defined by Proposition 1. In an achieved equilibrium state the
following hold.

(a) Suppose l < 1. For any equilibrium values X, Y 2 [0, 1] of states X and Y the
value fl(X, Y) provides the unique equilibrium value xX,Y for xX,Y. This xX,Y

monotonically depends on X, Y: it is higher when X, Y are higher. The maximal
equilibrium value xX,Y of xX,Y is fl(1, 1) and the minimal equilibrium value is 0.
Moreover, the equilibrium value xX,Y is attracting.
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(b) Suppose l = 1. If for the equilibrium values X, Y 2 [0, 1] of states X and Y it
holds X, Y > 0, then xX,Y = 1. If one of X, Y is 0, then xX,Y can be any value in
[0, 1]: it does not depend on X, Y. So, for l = 1 the maximal value of xX,Y in an
equilibrium state is 1 and the minimal value is 0.

4 Variable Separation for Hebbian Learning Functions

There is a specific subclass of Hebbian learning functions that is often used. Relatively
simple functions c(V1, V2, W) that satisfy the requirements from Definition 2 are
obtained when the arguments V1 and V2 and W can be separated as follows.

Definition 3 (variable separation)
The Hebbian learning function c(V1, V2, W) with persistence parameter l enables
variable separation by functions cs: [0, 1] x [0, 1] ! [0, 1] monotonically increasing
and cs: [0, 1] ! [0, 1] monotonically decreasing if

cðV1; V2; WÞ ¼ csðV1; V2Þ cc Wð Þ þ lW

where cs(V1, V2) = 0 if and only if one of V1, V2 is 0, and cc(1) = 0 and cc(W) > 0
when W < 1

Note that the s in cs stands for states and the second c in cc for connection. When
variable separation holds, the following proposition can be obtained. For this type of
function the indicated functional relation can be defined.

Proposition 2 (functional relation for W based on variable separation)
Assume the Hebbian function c(V1, V2, W) with persistence parameter l enables
variable separation by the two functions cs(V1, V2) monotonically increasing and
cc(W) monotonically decreasing:

cðV1; V2; WÞ ¼ csðV1; V2Þ cc Wð Þ þ lW

Let hl(W) be the function defined for W 2 [0, 1) by

hl Wð Þ ¼ ð1� lÞW=cc Wð Þ

Then the following hold.

(a) When l < 1 the function hl(W) is strictly monotonically increasing, and has a
strictly monotonically increasing inverse gl on the range hl([0, 1)) of hl with
W = gl(hl(W)) for all W2 [0, 1).

(b) When l < 1 and c(V1, V2, W) = W, then gl(cs(V1, V2)) < 1 andW < 1, and it holds

hl Wð Þ ¼ csðV1; V2Þ
W ¼ glðcsðV1; V2ÞÞ
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So, in this case the function fl from Theorem 1 is the function composition gl o cs
of cs followed by gl; it holds:

flðV1; V2Þ ¼ glðcsðV1; V2ÞÞ

(c) For l = 1 it holds c(V1, V2, W) = W if and only if V1 = 0 or V2 = 0 or W = 1.
(d) For l < 1 the maximal value W with c(V1, V2, W) = W is gl(cs(1, 1)), and the

minimal equilibrium value W is 0. For l = 1 the maximal value W is 1 (always
when V1, V2 > 0 holds) and the minimal value is 0 (occurs when one of V1, V2 is
0).

Note that by Proposition 2 the function fl(V1, V2) can be determined by inverting
the function hl(W) = (1 − l)W/cc(W) to find gl and composing the inverse with the
function cs(V1, V2). This will be shown below for some cases. For the case of an
equilibrium state of an adaptive temporal network model Proposition 2 entails
Theorem 2.

Theorem 2 (functional relation for equilibrium values of xX,Y: variable
separation)
Assume in a temporal-causal network the Hebbian learning combination function
cxX;Y (V1, V2, W) with persistence parameter l for xX,Y enables variable separation by
the two functions csxX;Y (V1, V2) monotonically increasing and ccxX;Y (W) monotonically
decreasing, and the functions fl and gl are defined as in Propositions 1 and 2. Then the
following hold.

(a) When l < 1 in an achieved equilibrium state with equilibrium values X, Y for
states X and Y and xX,Y for xX,Y it holds

xX;Y ¼ flðX; YÞ ¼ glðcsxX;Y ðX; YÞÞ\1

(b) For l = 1 in an equilibrium state with equilibrium values X, Y for states X and
Y and xX,Y for xX,Y it holds X = 0 or Y = 0 or xX,Y = 1.

(c) For l < 1 in an equilibrium state the maximal equilibrium value xX,Y for xX,Y is
gl(csxX;Y (1, 1)) < 1, and the minimal equilibrium value xX,Y is 0. For l = 1 the
maximal value is 1 (always when X, Y > 0 holds for the equilibrium values for
the states X and Y) and the minimal value is 0 (which occurs when one of X, Y is 0

5 Analysis of Different Cases of Hebbian Learning Functions

In this section some cases are analysed as corollaries of Theorem 2. First the specific
class of Hebbian learning functions enabling variable separation with cc(W) = 1−W is
considered. Then

hl Wð Þ ¼ ð1� lÞW=cc Wð Þ ¼ ð1� lÞW= 1�Wð Þ ð5Þ

and the inverse gl(W′) of hl(W) can be determined from (4) algebraically as follows.
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W 0 ¼ ð1� lÞW= 1�Wð Þ
W 0 1�Wð Þ ¼ ð1� lÞW
W 0 �W 0W ¼ ð1� lÞW
W 0 ¼ ðW 0 þ ð1� lÞÞW
W ¼ W 0 =½W 0 þ ð1� lÞ�

So

gl W 0ð Þ ¼ W 0 =½W 0 þ ð1� lÞ� ð6Þ

Substitute W′ = cs(V1, V2) in (6) and it is obtained:

flðV1; V2Þ ¼ gl cs V1; V2ð Þð Þ ¼ cs V1; V2ð Þ=½ð1� lÞ þ cs V1; V2ð Þ� ð7Þ

and this is less than 1 because 1 − l > 0. From this and Theorem 2b) and c) it follows.

Corollary 1 (cases for function ccxX;Y (W) = 1 – W)
Assume in a temporal-causal network the Hebbian learning combination function
cxX;Y (V1, V2, W) for xX,Y with persistence parameter l enables variable separation by
the two functions csxX;Y (V1, V2) monotonically increasing and ccxX;Y (W) monotonically
decreasing, where ccxX;Y (W) = 1 – W. Then the following hold.

(a) When l < 1 in an equilibrium state with equilibrium values X, Y for states X and
Y and xX,Y for xX,Y it holds

xX;Y ¼ flðX;YÞ ¼ csðX;YÞ=½ð1� lÞ þ csðX;YÞ�\1

(b) For l = 1 in an equilibrium state with equilibrium values X, Y for states X and
Y and xX,Y for xX,Y it holds X = 0 or Y = 0 or xX,Y = 1.

(c) For l < 1 in an equilibrium state the maximal equilibrium value xX,Y for xX,Y is

cs 1; 1ð Þ=½ð1� lÞ þ cs 1; 1ð Þ�\1

and the minimal equilibrium value xX,Y is 0. For l = 1 the maximal value is 1
(when X, Y > 0 holds for the equilibrium values for the states X and Y) and the
minimal value is 0 (which occurs when one of X, Y is 0).

Corollary 1 is illustrated in the following three examples.

Example 1. cðV1; V2; WÞ ¼ V1V2 1�Wð Þ þ lW

csðV1; V2Þ ¼ V1V2 cc Wð Þ ¼ 1�W

This is the example shown in Fig. 2

368 J. Treur



flðV1; V2Þ ¼ cs V1; V2ð Þ=½ð1� lÞ þ cs V1; V2ð Þ� ð8Þ

Substitute cs(V1, V2) = V1 V2 in (7) then fl(V1, V2) = V1 V2 / [(1−l) + V1 V2].
Maximal W is W = fl(1, 1) = 1/[2 − l], which for l = 1 is 1; minimal W is 0. The
equilibrium values shown in Fig. 2 can immediately derived from this (recall l = 0.8):

Top row V1 = 1, V2 = 1, then fl(1, 1) = 1/[2 − l] = 0.833333
Middle row V1 = 0.6, V2 = 0.6, then fl(0.6, 0.6) = 0.36 / [(1 − 0.8) +0.36]
= 0.642857
Bottom row V1 = 0, V2 = 0, then fl(0, 0) = 0

Example 2. cðV1; V2; WÞ ¼ ð ffiffiffiffiffiffiffiffiffiffi
V1V2

p Þ 1�Wð Þ þ lW

csðV1; V2Þ ¼ ffiffiffiffiffiffiffiffiffiffi
V1V2

p
cc Wð Þ ¼ 1�W

flðV1; V2Þ ¼ cs V1; V2ð Þ=½ð1� lÞ þ cs V1; V2ð Þ� ð9Þ

Substitute cs(V1, V2) = √(V1V2) in (8) to obtain

flðV1; V2Þ ¼ ffiffiffiffiffiffiffiffiffiffi
V1V2

p
= ½ð1� lÞþ ffiffiffiffiffiffiffiffiffiffi

V1V2
p � ð10Þ

Maximal W is W = fl(1, 1) = 1/[2 − l], which for l = 1 is 1; minimal W is 0.
In a similar case as in Fig. 2, but the using this function the following equilibrium

values would be found
Top row V1 = 1, V2 = 1, then fl(1, 1) = 1/[2 − l] = 0.833333
Middle row V1 = 0.6, V2 = 0.6, then fl(0.6, 0.6) = 0.6 / [(1 − 0.8) + 0.6] = 0.75
Bottom row V1 = 0, V2 = 0, then fl(0, 0) = 0

Example 3. cxX;Y ðV1; V2; WÞ ¼ V1V2 V1 þV2ð Þ 1�Wð Þ þ lW

csxX;Y ðV1; V2Þ ¼ V1V2 V1 þV2ð Þ ccxX;Y Wð Þ ¼ 1�W

flðV1; V2Þ ¼ cs V1; V2ð Þ=½ð1� lÞ þ cs V1; V2ð Þ� ð11Þ

Substitute cs(V1, V2) = V1V2(V1 + V2) in (10) to obtain

flðV1; V2Þ ¼ V1V2 V1 þV2ð Þ= ½ð1� lÞþ V1V2 V1 þV2ð Þ� ð12Þ

Maximal W is fl(1, 1) = 2/[(1 − l) + 2] = 2/[3 − l], which for l = 1 is 1; minimal
W is 0

In a similar case as in Fig. 2, but the using this function the following equilibrium
values would be found

Top row V1 = 1, V2 = 1, then fl(1, 1) = 2/[3 − l] = 0.909090
Middle row V1 = 0.6, V2 = 0.6, then fl(0.6, 0.6) = 0.36 * 1.2/ [(1 − 0.8) + 0.36 *
1.2] = 0.632

Bottom row V1 = 0, V2 = 0, then fl(0, 0) = 0
Next the specific class of Hebbian learning functions enabling variable separation

with cc(W) = 1 − W2 is considered. Then
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hl Wð Þ ¼ ð1� lÞW=cc Wð Þ ¼ ð1� lÞW= 1�W2� � ð13Þ

and the inverse of hl can be determined algebraically as shown in Corollary 2.
Inverting hl(W) to get inverse gl(W′) now can be done as follows:

W 0 ¼ ð1� lÞW= 1�W2� �

1�W2� �
W 0 ¼ ð1� lÞW

�W 0 þ ð1� lÞW þ W2W 0 ¼ 0

This is a quadratic equation in W:

W 0W2 þ ð1� lÞW �W 0 ¼ 0 ð14Þ

As W � 0 the solution is

W ¼ ð�ð1� lÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� lÞ2 þ 4W 02Þ

q
Þ= 2W 0ð Þ ð15Þ

W ¼ �ð1� lÞ=2W 0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� lÞ=2W 0Þ2 þ 1

q

So

gl W 0ð Þ ¼ �ð1� lÞ=2W 0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� lÞ=2W 0Þ2 þ 1

q
ð16Þ

By substituting W′ = cs(V1, V2) it follows

flðV1; V2Þ ¼ glðcsðV1; V2ÞÞ
¼ �ð1� lÞ=2 csðV1; V2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� lÞ=2 csðV1; V2ÞÞ2 þ 1

q
ð17Þ

All this is summarised in the following:

Corollary 2 (cases for function ccxX;Y(W) = 1 – W2)
Assume in a temporal-causal network the Hebbian learning combination function
cxX;Y (V1, V2, W) for xX,Y with persistence parameter l enables variable separation by
the two functions csxX;Y (V1, V2) monotonically increasing and ccxX;Y (W) monotonically
decreasing, where ccxX;Y (W) = 1 – W2. Then the following hold.

(a) When l < 1 in an equilibrium state with equilibrium values X, Y for states X and
Y and xX,Y for xX,Y it holds

xX;Y ¼ flðX;YÞ ¼ �ð1� lÞ=2 csðX;YÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� lÞ=2 csðX;YÞÞ2 þ 1

q
\1

(b) For l = 1 in an equilibrium state with equilibrium values X, Y for states X and
Y and xX,Y for xX,Y it holds X = 0 or Y = 0 or xX,Y = 1.
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(c) For l < 1 in an equilibrium state the maximal equilibrium value xX,Y for xX,Y is

�ð1� lÞ=2 cs 1; 1ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� lÞ=2 cs 1; 1ð ÞÞ2 þ 1

q
\1

and the minimal equilibrium value xX,Y is 0. For l = 1 the maximal value is 1
(when X, Y > 0 holds for the equilibrium values for the states X and Y) and the
minimal value is 0 (which occurs when one of X, Y is 0).

Corollary 2 is illustrated in Example 4.

Example 4. cxX;Y ðV1; V2; WÞ ¼ V1V2 V1 þV2ð Þ 1�W2ð Þ þ lW

csxX;Y ðV1; V2Þ ¼ V1V2ðV1 þV2ÞccxX;Y Wð Þ ¼ 1�W2

flðV1; V2Þ ¼ �ð1� lÞ=2 csðV1; V2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� lÞ=2 csðV1; V2ÞÞ2 þ 1

q
ð18Þ

Substitute cs(V1, V2) = V1V2(V1 + V2)

flðV1; V2Þ ¼ �ð1� lÞ=2V1V2ðV1 þV2Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� lÞ=2V1V2ðV1 þV2ÞÞ2 þ 1

q
ð19Þ

Maximal W is W = fl(1, 1) = −(1 − l)/4+ √(((1 − l)/4)2 + 1) = [−(1 − l)
+ √((1 − l)2 + 16)]/4 = 4/[(1 − l) + √((1 − l)2 + 16)], which for l = 1 is 1; minimal
W is 0. In a similar case as in Fig. 2, using this function the equilibrium values can be
found by applying (18).

6 Discussion

In this paper it was analysed how emerging behaviour of an adaptive network can be
related to characteristics of network structure and adaptation principles. In particular
this was addressed for an adaptive mental network based on Hebbian learning [1, 3, 4,
6–8, 11]. To this end relevant properties of the functions defining the Hebbian adap-
tation principle have been identified. For different classes of functions emerging
equilibrium values for the connection weight have been expressed as a function of the
emerging equilibrium values of the connected states. The presented results do not
concern results for just one type of network or function, as more often is found, but
were formulated and proven at a more general level and therefore can be applied not
just to specific networks but to classes of networks satisfying the identified relevant
properties of network structure and adaptation characteristics.
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Appendix Proofs of Propositions 1 and 2

Proof of Proposition 1. (a) Consider l < 1. Then by Definition 2 (b) the function
W ! c(V1, V2, W) - lW is monotonically decreasing in W, and since l − 1 < 0 the
function W ! (l − 1)W is strictly monotonically decreasing in W. Therefore the sum
of them is also strictly monotonically decreasing in W. Now this sum is

cðV1; V2;WÞ � lW þ ðl� 1ÞW ¼ cðV1; V2;WÞ � W

So, the function W ! c(V1, V2, W) - W is strictly monotonically decreasing in W; by
Definition 2(d) it holds c(V1, V2, 1) −1 = l − 1 < 0, and by Definition 2(c) c(V1, V2, 0)
– 0 � 0. Therefore c(V1, V2, W) - W has exactly 1 point with c(V1, V2, W) − W = 0; so
for each V1, V2 the equation c(V1, V2,W) – W = 0 has exactly one solutionW, indicated
by fl(V1, V2); this provides a unique function fl: [0, 1] x [0, 1] ! [0, 1] implicitly
defined by c(V1, V2, fl(V1, V2)) = fl(V1, V2). To prove that fl is monotonically
increasing, the following. Suppose V1 � V 0

1 and V2 � V 0
2, then by monotonicity of

V1, V2 ! c(V1, V2, W) in Definition 2(a) it holds

0 ¼ cðV1; V2; flðV1; V2ÞÞ � flðV1; V2Þ� cðV 0
1; V

0
2; flðV1; V2ÞÞ � flðV1; V2Þ

So c(V 0
1, V

0
2, fl(V1, V2)) − fl(V1, V2) � 0 whereas c(V 0

1, V
0
2, fl(V

0
1, V

0
2)) − fl(V 0

1,
V 0
2) = 0

and therefore

cðV 0
1; V

0
2; flðV 0

1; V
0
2ÞÞ � flðV 0

1; V
0
2Þ� cðV 0

1; V
0
2; flðV1; V2ÞÞ � flðV1; V2Þ

By strict decreasing monotonicity of W ! c(V1, V2, W) - W it follows that fl(V1,
V2) > fl(V 0

1, V 0
2) cannot hold, so fl(V1, V2) � fl(V 0

1, V 0
2). This proves that fl is

monotonically increasing. From this monotonicity of fl(..) it follows that fl(1, 1) is the
maximal value and fl(0, 0) the minimal value. Now by Definition 1(d) it follows that
fl(0, 0) = c(0, 0, fl(0, 0)) = l fl(0, 0) so fl(0, 0) = l fl(0, 0), and as l < 1 this implies
fl(0, 0) = 0.

(b) Consider l = 1. When both V1, V2 are > 0, and c(V1, V2, W) = W, then W = 1,
by Definition 1(d). This defines a function f1(V1, V2) of V1, V2 2 (0, 1], this time f1(V1,
V2) = 1 for all V1, V2 > 0. When one of V1, V2 is 0 and l = 1, then also by Definition 1
(d) always c(V1, V2, W) = W, so in this case multiple solutions forW are possible: every
W is a solution, and therefore no unique function value for f1(V1, V2) can be defined
then.

Proof of Proposition 2

(a) From cc(W) monotonically decreasing in W it follows that W!1/cc(W) is
monotonically increasing on [0, 1). Moreover, the function W is strictly mono-
tonically increasing; therefore for l < 1 the function hl(W) = (1 − l)W/cc(W) is
strictly monotonically increasing. Therefore hl is injective and has an inverse
function gl on the range of hl: a function gl with gl(hl(W)) =W for allW 2 [0, 1).
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(b) Suppose l < 1 and c(V1, V2, W) =W, then from Definition 2(d) it follows thatW =
1 is excluded, since from both c(V1, V2, W) = W and c(V1, V2, W) = lW it would
follow l = 1, which is not the case. Therefore W < 1, and the following hold

csðV1; V2Þ cc Wð Þ þ lW ¼ W

csðV1; V2Þ cc Wð Þ ¼ ð1� lÞW
csðV1; V2Þ ¼ ð1� lÞW=cc Wð Þ ¼ hl Wð Þ

So, hl(W) = cs(V1, V2). Applying the inverse gl yields W = gl(hl(W)) = gl(cs(V1,
V2)).
Therefore in this case for the function fl from Theorem 1 it holds:

flðV1; V2Þ ¼ W ¼ glðcsðV1; V2ÞÞ\1

so fl is the composition of cs(..) followed by gl.
(c) For l = 1 the equation c(V1, V2, W) = W becomes cs(V1, V2) cc(W) = 0 and this is

equivalent to cs(V1, V2) = 0 or cc(W) = 0. From the definition of separation of
variables it follows that this is equivalent to V1 = 0 or V2 = 0 or W = 1.

(d) Suppose l < 1 and c(V1, V2, W) = W, then because cs(..) and gl are both
monotonically increasing, the maximal W is gl(cs(1, 1)), and the minimal W is
gl(cs(0, 0)). For l = 1 these values are 1 always when V1, V2 > 0, and any value
in [0, 1] (including 0) when one of V1, V2 is 0.
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