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Abstract. Recently motor imagery (MI) based Brain-Computer Interface
(BCI) for lower limb rehabilitation is gaining attention. Feature extraction and
dimensionality reduction are crucial signal processing blocks that determine the
performance of a BCI system. In this work, various features, that are, band
power (BP) features, autoregressive (AAR) parameters and Hjorth (HJ) param-
eters, widely used in BCI research are studied for their efficacy in discriminating
MI brisk walking activity from the idle state. Feature transformation (FT) tech-
niques, a type of dimensionality reduction techniques, namely Principal Com-
ponent Analysis (PCA), Locality Preserving Projections (LPP) and Local Fisher
Discriminant analysis (LFDA) are then applied on the extracted features to map
them into a lower dimensional subspace. Ten-fold cross-validation is used to
choose the dimension of the projection subspace. In a group of five novice users,
it is observed that none of these features separately or all taken together rep-
resented the activity well. On using FT techniques, the discriminability of the
fused features improved. Among the three techniques, LFDA performed the best
showing an average increase in classification accuracy (26.9%), sensitivity
(37.6%) and specificity (26.2%) over the average values obtained when no FT
technique are used for the group of five subjects.
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1 Introduction

Electroencephalogram (EEG) based Brain-Computer Interface (BCI) noninvasively
measures the electrical activity of the brain and converts them into control commands
for external devices. It provides to individuals suffering from severe motor disabilities
an alternate mode of control and communication with the external world like a com-
puter cursor [1], virtual keyboards [2], movement in virtual reality [3], limb prosthetics
[4, 5] etc., without using their normal neuromuscular pathway of the body.

EEG based BCI is a signal processing and pattern recognition system which
decodes activities encoded in the electrical activity of the brain. It basically consists of
preprocessing module, feature extraction module, dimensionality reduction module and
the classifier [6]. Once EEG signals are captured they are processed to reduce noise and
artifacts by the preprocessing module. Then the feature extraction module extracts
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representative features vectors to obtain discriminative information of each class or
type. The dimension of the feature vector is reduced by the dimensionality reduction
module to assure that most discriminative information is contained in a lower
dimension thereby helping in improving the detection accuracy. The reduced feature
vector is then fed into the classifier which translates it into control commands for the
external devices. To operate on any such BCI system, the subject has to engage in
active or passive mental activity. Changes in EEG corresponding to this activity is
decoded by the BCI system and converted into control command for external devices
[7]. One of the widely used mental strategies is motor imagery (MI) of certain tasks or
activities.

MI based BCI is gaining popularity as it can be used as alternate method by the
paralyzed subjects to generate changes in neuronal circuits by their motor intent rather
than using their restricted ability to do physical movements [8]. While a majority of
these studies are focused on classification of motor imagination of the hand movements
or upper limb, only recently MI based BCI for lower limb rehabilitation is gaining
attention. In [9], kinesthetic walking motor imagery of lower limb is used to control an
avatar in a virtual reality environment. In [10], right and left foot motor imagery is
detected from EEG signals using beta rebound. In [11], a joint channel and frequency
selection method is proposed to detect the walking motor imagery of the lower limb
from the idling activity. Given the smaller foot representation area in the brain [12]
compared to the upper limb and subjects difficulty in using an MI based BCI, the
detection rates of lower limb motor imagery is low compared to upper limb. Hence
efforts have to be made to improve the classification performance to better detect the
motor imagery of lower limb.

To improve the detection of motor intent from EEG, the most discriminative fea-
tures have to represent different classes in the detection problem. In a classification
problem, dimensionality reduction of the feature vector helps in deriving the most
discriminative features for a particular task. Band power features (BP), Adaptive
Autoregressive parameters (AAR) and Hjorth parameters (HJ) are successfully used in
the design of BCI for classifying various motor tasks [13, 14]. The major problem in
the feature based BCI system is the high dimensionality of the feature vector being fed
into the classifier. This dimensionality problem indeed results in increased computa-
tional complexity and poor performance of the system. Thus dimensionality reduction
techniques are used to reduce the dimension of the feature vector.

Dimensionality reduction techniques [15] are basically of two types, feature
selection (FS), and feature transformation (FT) techniques respectively. In FS, best
feature subset is selected from the existing set of features without changing the original
representation of the features whereas, in FT techniques, the number of features is
reduced by projecting the data points from higher dimensional space to a lower
dimensional space. FT techniques do not neglect any features, unlike FS techniques.
Since BCI systems are to be adapted to each subject differently, therefore selecting only
a subset of features for designing the system does not prove beneficial for the detection
problem [16].

Therefore in this work, we explore the discriminative power of different features
widely used in BCI research namely BP, AAR, and HJ in representing MI of brisk
walking. We also explore the role of various FT techniques mainly Principal
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Component Analysis (PCA) [17], Locality Preserving Projections (LPP) [18] and Local
Fisher Discriminant Analysis (LFDA) [19] in improving the detection of the features.
In this study, we are evaluating the efficacy of these FT methods in improving the
detection of the brisk walking motor imagery. Firstly various features were extracted
from the brain signals, and then we classify these features with and without using FT
techniques to test its role in improving the detection problem.

2 Materials and Methods

2.1 Subjects

Five healthy subjects (5 males: 22–28 years in age) participated in the current study.
The subjects have no history of any neuromuscular disorders and have never partici-
pated in a BCI study before. The current study is approved by the Institute Ethical
Committee (IEC), Indian Institute of Technology (IIT) Kharagpur, India. Informed
consent is taken from the subjects prior to the study.

2.2 Experimental Setup and Data Collection

During the experiment, subjects are seated in a comfortable armchair at a distance
1.5 m from a 19 in. monitor where visual cues are shown according to which the
subjects performed brisk walking motor imagery. The timing protocol of the experi-
ment is shown in Fig. 1. The experiment begins with a cross at the center of the screen.
At 2 s an auditory cue in the form of a beep acts as a marker for the visual cue of motor
imagery or idle task that appears on the screen at 3 s. The cue lasts for 4 s followed by
a blank screen that appears for a period of 4 s and an additional random time period of
1–2 s between trials to avoid adaptation. A total of 5 runs of 40 trials, 20 of each class
(imagery and idle) respectively are collected from each subject.

EEG is recorded from 7 Ag/AgCl scalp electrodes placed over the sensorimotor
region, namely at FCz, C3, C1, Cz, C2, C4, CPz. EEG is recorded using Thought
Technology’s Flexcomp Infinity encoder, Canada at 2048 Hz sampling frequency and
notch filtered at 50 Hz to remove the power line interference.

2.3 Preprocessing and Feature Extraction

The EEG signals are then band pass filtered in the frequency range of 0.5–30 Hz to
avoid artifacts and down sampled to 256 Hz for further processing. Epochs

Fig. 1. The timing diagram of the experimental protocol
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corresponding to the motor imagery and rest are then extracted from the data. Band
powers features [20] in alpha (8–12 Hz) and beta bands (16–24 Hz), Hjorth parameters
[21] and Adaptive Auto Regressive coefficients (AAR) [22] are extracted in windows
of one second from each trial. The features extracted are averaged over all the windows
to obtain final feature vector per trial consisting of features extracted from all channels.
The flowchart of the entire methodology followed in this study is as shown in Fig. 2.

Feature Transformation. It is a type of dimensionality reduction techniques, where
data points in the original feature space are projected into lower dimension feature
space by combining or fusing features. Whereas in FS techniques, only a subset of
features are considered from the original feature space. Since BCI systems are adapted
to each subject differently, selecting only a subset of features for designing the system
does not prove beneficial for the detection problem [16]. In this line of thought the
utility of different FT techniques in improving detection of motor imagery of brisk
walking are explored.

If x ¼ ½x1; x2 � � � xN � represents the D� N feature matrix, where each column is a D
dimensional feature vector xN representing motor activity or rest, then a FT technique
maps X into Z with reduced dimensionality ‘ assuming that the dataset X has an
intrinsic dimensionality ‘ embedded in the original D dimensional space [3, 13].

Fig. 2. Flowchart of the methodology followed to process the EEG data
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The samples in the subspace are obtained by transforming the original features vectors
using a projection or feature transformation matrix given by equation as under

Z ¼ PTX ð1Þ

where P is the projection matrix of size D� ‘. The linear FT methods studied here are
PCA, LPP and LFDA.

Principal Component Analysis (PCA). PCA is a popular nonparametric and an unsu-
pervised feature reduction technique. It finds a linear lower dimensional representation
for the original dataset, such that its maximal variability is preserved [17, 23]. This
subspace is spanned by orthonormal unit vectors that form the new coordinate axis for
the projected dataset. The feature transformation matrix for PCA is obtained by solving
maximum optimization problem given as under

PPCA ¼ argmax
P2RDx‘

½traceðPTCPÞ� ð2Þ

where C is the sample covariance matrix of the feature matrix X. This projection matrix
PPCA retains the maximal variance property of the original data set and is obtained by
solving eigenvalue decomposition of the covariance matrix of the dataset.

Locality Preserving Projection (LPP). Locality preserving projections finds a linear
low dimensional representation of the original dataset by preserving its local neigh-
bourhood structure. It is proposed by He and Niyogi [18]. This transformation tech-
nique finds a subspace where data points that are close in the original dataset are also
close in the reduced space and vice versa for the farther points. The adjacency of the
data points is defined by k-nearest neighbour. In this study, k ¼ 7 is taken [24]. The
transformation matrix PLPP is then obtained by solving a minimum optimization
problem given as under

PLPP ¼ argmin
P2RDx‘

1
2

XN

i;j¼1

PTxi � PTxj
�� ��2Wi;j

" #

¼ argmin
P2RDx‘

PTXLXTP

subject to PTXDXTP ¼ 1

ð3Þ

where xi, xj are the ith and jth feature vectors. The affinity matrix Wi;j, gives the affinity
between xi; xj. The value of the matrix elements lies in the range of ½0; 1�. Affinity
values are lower for feature vectors, xi; xj, that are close in the feature space and vice
versa. D is a diagonal matrix, Dii ¼

P
j Wi;j and L is a laplacian matrix, L ¼ D� A.

Local Fisher Discriminant Analysis (LFDA). LFDA tries to combine the advantage of
the LPP into Fisher Discriminant Analysis (FDA) by defining between-class covariance
matrix and within-class covariance matrix in a local manner [19]. The covariance
matrices are weighted or scaled by the distance between a data point and its k nearest
neighbor like in LPP. Doing this it preserves within the class local structure of the data
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in the reduced space while ensuring maximum distance between the samples from
different classes. These modified scatter matrices are used to define the Fisher ratio.
Then the transformation matrix of LFDA is obtained by maximizing the Fisher ratio as
done in FDA, given as under

PLFDA ¼ argmax
P2RD�‘

½traceððPT~SwPÞ�1ðPT~SBPÞÞ� ð4Þ

where ~SB and ~Sw are between-class and within-class covariance matrices respectively.
The solution is obtained by solving a generalized eigen value problem of ~Sw and ~SB.
The transformation matrix is formed from the top ‘ eigenvectors corresponding to
maximum ‘ eigenvalues.

2.4 Classification

To test the discriminating power of each individual feature, feature matrix formed from
each feature type is classified separately and then classification is performed by taking
all features types together. To select the reduced dimension ‘, the feature vectors are
projected sequentially, using the feature transformation technique, into the reduced
space of dimension starting from first dimension till Dth dimension. Ten-fold cross-
validation (CV) with linear discriminant classifier (LDA) [17, 23, 25] is performed in
each of these subspaces. The mean accuracy, specificity and sensitivity of the 10 fold
CV is computed in these subspaces. The dimension that gives maximum mean clas-
sification accuracy and minimum error rate is chosen to be the lower dimensional
subspace for final projection.

3 Results

Mean classification accuracy, sensitivity and specificity values in % for 10 fold CV
using LDA classifier on different features for all the subjects are given in Table 1. In
this study LDA is applied to classify each feature separately and then all features are
considered together. It can be inferred from these values that there is not a single
feature that performs consistently well for all the subjects in detection of brisk walking
motor imagery from idle state. The features perform either below, at or just above the
chance level classification accuracy. HJ features performs better in case of subjects 2
and 4, AAR features in subject 1 and BP features in subject 3. The classification
accuracy of the best performing feature is bold faced for each subject in Table 1. In
case of subject 5, none of features perform above chance level accuracy. But the
classification accuracy obtained using these FE techniques are mostly below or just
above the chance level classification accuracy. Moreover, considering all the features
together further decreases the classification accuracy in all the subjects. Similar
observations can be drawn from the sensitivity and specificity values for the features.
Using these features directly for setting up a BCI system gives poor performance.
Therefore further in this study the role of FT techniques, i.e., PCA, LPP and LFDA
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techniques in improving the performance of the BCI system based on these features for
detection of lower limb brisk walking motor intent from the idle condition is explored.

The performance of the LDA classifier post the application of FT techniques, that
is, PCA, LPP and LFDA on the entire set of features taken together are given in
Table 2. The FT techniques are used to project the feature matrix into reduced
dimensional subspace starting from first dimension to Dth dimension sequentially.
Mean classification accuracy, specificity and sensitivity of 10 fold cross-validation of
LDA classifier is calculated in each dimension. The dimension with maximum mean
classification accuracy and minimum misclassification rate is chosen as the subspace.
The reduced dimension attained by each technique on the basis of above criteria is also
given in the third column of Table 2. It can be clearly observed from Table 2, that
classification accuracy value is improved by using the FT techniques that reduces the
dimensionality of the input feature space. Among all the FT methods, LFDA performs
the best in terms of accuracy, sensitivity and specificity of the classification. There is no
significant difference between PCA and LPP technique on accuracy, sensitivity and
specificity values except the reduced dimension attained by PCA is lower than LPP in
subjects 1, 3, 4 and vice versa in subjects 2 and 5. Whereas LFDA attains significantly
higher accuracy, sensitivity and specificity values compared to LPP and PCA methods.
It also attains the lowest dimension for all subjects except in the case of S5 where even

Table 1. Mean classification accuracy (%), sensitivity (%) and specificity (%) of 10 fold cross-
validation using LDA classifier for 5 subjects (S1–S5)

Subjects Features Accuracy Sensitivity Specificity

S1 HJR 44.50 46.00 43.00
BP 45.00 44.00 46.00
AAR 50.00 50.00 50.00
ALL 50.00 43.00 57.00

S2 HJR 55.00 51.00 59.00
BP 51.00 50.00 53.00
AAR 50.00 49.00 51.00
ALL 53.00 54.00 52.00

S3 HJR 51.00 51.00 51.00
BP 53.00 54.00 52.00
AAR 51.00 54.00 49.00
ALL 48.50 50.00 47.00

S4 HJR 55.00 56.00 54.00
BP 43.00 41.00 45.00
AAR 54.50 57.00 52.00
ALL 46.50 50.00 43.00

S5 HJR 48.50 47.00 50.00
BP 45.00 50.00 40.00
AAR 40.50 41.00 40.00
ALL 46.50 47.00 46.00
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though LPP finds a lower dimensional representation but fails in attaining better
accuracy than LFDA. Similar observations can be made for subjects 1 and 3, where
PCA gives lowest subspace dimension compared to LFDA but with lower values for
the performance measures. To further validate the performance of the FT techniques,
scatter plots of the data points in two-dimensional subspace obtained by each method
for subject S2 are given in Fig. 4. It can be observed that LFDA finds two-dimensional
subspace that clearly discriminates between the two classes whereas there is strong
overlapping of the points in 2D subspace attained by PCA and LPP techniques.

A plot of average 10 fold CV accuracies along each reduced dimension from one to
Dth dimensional subspace obtained by each of the FT techniques for all the subjects are
given in Fig. 3. There is a great variability in the evolution of the classification
accuracy for these techniques across subjects. This can be attributed to the variability of
the EEG signals from subject to subject. From these plots it can be inferred that for
most of the subjects the accuracy values increases with dimension or wanders about the
mean value in case of PCA and LPP methods. Whereas using LFDA the accuracy is
higher for lower dimensions and gradually decreases with increasing dimension. Also
the mean classification accuracy for LFDA technique is higher compared to LPP and
PCA technique as can be seen in the plots. But the performance of the PCA, LPP and
LFDA converges in the first and at Dth dimension in all subjects except in S5 where
they have different accuracy in the first dimension.

Table 2. Mean and standard deviation of classification accuracy (%), sensitivity (%), specificity
(%) of 10 fold cross-validation and the reduced dimension attained by the FT techniques (PCA,
LPP and LFDA) for subjects (S1–S5)

Subjects DR Red dim Accuracy Sensitivity Specificity

S1 PCA 11 57.00 ± 8.88 59.00 ± 20.25 55.00 ± 9.72
LPP 62 56.00 ± 11.50 52.00 ± 10.33 60.00 ± 15.63
LFDA 12 76.00 – 7.38 76.00 – 9.66 76.00 – 6.99

S2 PCA 64 58.50 ± 11.32 60.00 ± 16.33 57.00 ± 16.36
LPP 43 57.50 ± 9.79 59.00 ± 17.29 56.00 ± 16.47
LFDA 2 80.00 – 6.67 76.00 – 6.99 84.00 – 9.66

S3 PCA 9 58.50 ± 11.56 59.00 ± 22.34 58.00 ± 18.14
LPP 43 59.50 ± 13.43 57.00 ± 21.11 62.00 ± 17.51
LFDA 11 75.50 – 10.39 77.00 – 16.36 74.00 – 15.06

S4 PCA 25 53.50 ± 8.83 54.00 ± 16.47 53.00 ± 14.94
LPP 56 53.50 ± 15.64 57.00 ± 14.94 50.00 ± 23.09
LFDA 2 75.50 – 9.26 80.00 – 9.43 71.00 – 17.29

S5 PCA 26 51.50 ± 9.44 53.00 ± 12.52 50.00 ± 17.00
LPP 2 55.00 ± 10.8 57.00 ± 12.52 53.00 ± 17.03
LFDA 4 72.00 – 13.37 73.00 – 17.67 71.00 – 15.24
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The results obtained by this study are in accordance with the results obtained in [16]
where LFDA performs the best in identifying the motor imagery of the hand. There-
fore LFDA is a promising technique which can be used for detecting motor imagery
tasks. This concept is verified by testing the FT techniques in detecting brisk walking MI
task in this study and thereby giving a supporting evidence of its usefulness in lower
limb MI task in addition to upper limb imagery tasks performed in [16].

Fig. 3. 10 fold cross-validation accuracy versus reduced dimension for subjects 1 to 5 as shown
in subplots (a)–(e) respectively
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4 Discussions

In this current study, the combination of features and FT techniques in detecting the
brisk walking motor intent are explored. Standard EEG features for the motor imagery
are extracted and the role of the FT methods in improving the discriminative infor-
mation of the features in representing the lower limb brisk walking motor imagery is
explored in this study. The BP, HJ and AAR features are not able to discriminate the
imagery trials from rest trials. This could be possibly because of the low signal to noise
characteristics of EEG signals. Advanced artifact rejection algorithm can be applied
prior to feature extraction technique to improve the signal to noise ratio. Since in the
experiment, only the electrodes placed over the sensorimotor region are considered, the
effects of artifacts are less pronounced and hence bandpass filtering is used to remove
noise corresponding to low and high frequency.

On applying FT techniques on the complete set of poorly performing features, the
classification accuracy of the detection problem is significantly improved. Among the
FT techniques, best improvement is obtained using the LFDA. The detection rate of the
lower limb could be further improved by considering other representative features for
lower limb motor imagery task and using the capabilities of LFDA in projecting the
features into a lower dimension. Channel selection methods can be explored in addition

Fig. 4. Scatter plots in 2 dimensional reduced space obtained by FT techniques, (a) PCA
(b) LPP (c) LFDA for subject 2
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to FT techniques to select the most informative channels which would further improve
the classification accuracy.

5 Conclusions

From this study it can be inferred that among various FT techniques, LFDA performs
best in improving the detection of brisk walking motor imagery compared to other FT
techniques or without using any FT technique. Hence LFDA can be used as a potential
dimensionality reduction method in the design of feature based BCI system for
detection of brisk walking motor intent from idle condition.
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