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Abstract. In this study, a novel orthonormalized partial least squares
(OPLS) spatial filter is proposed for the extraction of the steady-state
visual evoked potential (SSVEP) components buried in the electroen-
cephalogram (EEG) data. The proposed method avoids over-fitting of
the EEG data to the ideal SSVEP reference signals by reducing the over-
emphasis of the target (pure sine-cosine) space. The paper presents the
comparison of the detection accuracy of the proposed method with other
existing spatial filters and discusses the shortcomings of these algorithms.
The OPLS was tested across ten healthy subjects and its classification
performance was examined. Further, statistical tests were performed to
show the significant improvements in obtained detection accuracies. The
result shows that the OPLS provides a significant improvement in detec-
tion accuracy across subjects compared to spatial filters under compar-
ison. Hence, OPLS would act as a reliable and efficient spatial filter
for separation of SSVEP components in brain-computer interface (BCI)
applications.
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1 Introduction

Steady-state visual evoked potentials (SSVEP) are electroencephalogram (EEG)
components that are generated over the visual cortex in response to periodically
flicking visual stimuli. They are elicited in response to flicker frequencies greater
than 4 Hz [9] and the SSVEP amplitude is modulated by visual spatial attention
provided by the user [11]. Further, the SSVEP response is in-phase with the
target frequencies and contains other harmonics. Due to its properties, relatively
high signal to noise ratio (SNR) and ease of implementation, SSVEP has been
studied increasingly for application in non-invasive brain-computer interfaces
(BCI) [6].
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SSVEP based brain-computer interfaces requires very low training and
exhibits high information transfer rates (ITR) compared to other BCI modalities
[13]. A classical SSVEP-BCI system consists of flickering target stimuli placed
at different locations. The user selects the target by gazing over it and intended
target is extracted by analysing the acquired EEG for components correspond-
ing to the flicker frequency [12]. Extracting low noise SSVEP components from
a given EEG data segment is a basic and crucial step in SSVEP detection meth-
ods. The band limiting of the acquired data is useful in eliminating noise outside
the desired SSVEP frequency range. But, the filtering does not remove the noise
embedded in the desired range. Hence, to achieve higher SSVEP SNR, a number
of spatial filtering techniques employing linear signal models have been proposed.

Common spatial filtering techniques used in SSVEP based BCIs include
hardware-based methods like best bipolar combination (BCC) and multivari-
ate data analysis (MVA) algorithms like principal component analysis (PCA),
minimum energy combination (MEC), maximum contrast combination (MCC),
and partial least squares (PLS) spatial filter [7]. Even though BCC provides
considerable improvement in SNR, the selection of the optimal electrode pair
need to be done through an exhaustive search for every individual user. The
PCA is an unsupervised method that exploits the common information between
the input EEG channels to maximize the variance of the reconstructed data and
disregards the SSVEP source model [4].

Other MVA methods are supervised linear signal models that use a sim-
ple SSVEP model consisting of sine-cosine signals as target data for improving
the EEG signal components. The MEC and MCC spatial filters try to min-
imise the SSVEP noise or maximise SNR by computing the signal and noise
components using ordinary least squares (OLS) regression method. The OLS
has several shortcomings as it fails when the inter-channel correlation increases
(multicollinearity) and it further assumes that the target SSVEP model as fixed
[3]. Recently, a PLS spatial filter has been proposed that overcomes the disadvan-
tages of MEC and MCC by efficiently dealing with highly correlated channels.
The PLS tries to maximise the covariance between the EEG and SSVEP model
and considers the target SSVEP model to contain error, thus providing a robust
estimate. Among the reported spatial filters in the literature, MCC and PLS
have been shown to achieve the highest performance [8].

In this study, we propose an orthonormalized partial least squares (OPLS)
spatial filter that rewards the channels that better model the information con-
tained in the features of the SSVEP target space. In PLS spatial filter, the input
and output spaces with very high variance are overemphasized even if the cor-
relation between them in the projected data is not significant. The OPLS is
a variant of PLS which overcomes this disadvantage by minimizing the mean
squares error (MSE) instead of the covariance and not considering the variance
of the target (pure sine-cosine) space. The proposed method is evaluated by
comparing its SSVEP detection performance in terms of accuracy with classical
SSVEP spatial filters such as PLS and MCC using EEG data collected from
ten subjects. Further, statistical tests are performed to depict the improvement
achieved using OPLS method.



18 G. R. Kiran Kumar and M. Ramasubba Reddy

2 Methods

2.1 Spatial Filtering

Spatial filters for SSVEP based BCI try to find projections of the EEG data that
are “maximally aligned” with the SSVEP model. Consider the EEG data (Y ∈
R

N×Ny ) obtained using ‘Ny’ electrodes and each channel contains data of length
‘N ’. Given the EEG data segment of small time window (‘lw’), the different filters
maximize a particular objective function to preserve the SSVEP components
with improved SNR. The solution to these problems in general consists of finding
the transformation matrix (W ∈ R

Ny×Nl where Nl < Ny) that acts as a linear
operator and is given by,

̂Y = Y W (1)

Here, Nl is the number of reconstructed channels in the resulting signal, ̂Y . The
SSVEP model that is used commonly across all the spatial filters consists of sine
and cosine components of a target frequency and its harmonics. The reference
signal (X ∈ R

N×(2×Nh)) obtained from SSVEP model with columns equal to
twice the number of harmonics (2 × Nh) is given by,
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Here, ‘fm’ is the target frequency ‘m’ and ‘t’ is the time vector of length ‘N ’.
The PSDA is used as the common feature extractor across all the methods in
this study. Once the filtered signals are obtained, the detection score (feature)
is computed for all the target frequencies, fm and is given by,

T (fm) =
(

1
NlNh

) Nl
∑

l=1

Nh
∑

h=1

̂Ph,l (3)

where ̂Ph,l = ‖Xt
hŶl‖2 is the signal power of the target frequency, ‘Nh’ and ‘Nl’

filtered channel. The following sections describe the PLS spatial filter followed
by the proposed OPLS and MCC and in all the descriptions the EEG data (‘Y’)
is assumed to be mean centred.

2.2 Partial Least Squares (PLS)

Partial least squares (PLS) is a MVA technique that allows comparison of multi-
variate explanatory (input) and response (output) variables, to establish a linear
relationship between them. Here, the EEG data (‘Y’) is considered as the input
variable and the SSVEP reference (‘X’) as the output variable. This regression
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model is as given in (1). The PLS extracts the latent variables that accounts for
the maximum covariance between the EEG data and SSVEP model signals [8].
This is achieved by obtaining projections with orthonormality constraint that
maximize the objective function given by,

maximize : Tr{WT
y CyxWx}

subject to : WT
y Wy = WT

x Wx = I
(4)

where, Wy and Wx are the projection vectors of input and output space respec-
tively. The solution to the above objective function is achieved via an iterative
procedure known as SIMPLS [3]. Here the variables are decomposed into the
form,

Y = TPT + E

X = UQT + F
(5)

where, T and U are score vectors, P and Q are loading vectors and E and
F are residuals respectively. Here the score matrices T and U are the latent
variables that maximize the covariance and are obtained by computing the linear
transformation of the explanatory and response variables. Each column of the
score vectors known as the factors are computed one after another iteratively
by minimizing the residuals E and F (via SIMPLS algorithm). The dimension
of the score matrices dictates the dimension of the reconstructed data. The
linear relationship between the input and the output variables is given by the
transformation vector in-terms of T and U as,

Bpls = Y TU(TTY Y TU)−1TTX (6)

The estimation of target variable via the PLS regression is given by,

̂X = Y Bpls (7)

Once ̂X, the reconstructed EEG data, is obtained, the detection score, Tpls is
found via power spectral density analysis (PSDA). The target frequency (Fpls)
is detected as,

Fpls = max
m

(Tpls(fm)) (8)

2.3 Orthonormalized Partial Least Squares (OPLS)

The orthonormalized PLS algorithm [15] is a variant of PLS method which tries
to minimize the mean square error (MSE) by maximizing the objective function
given by,

maximize : Tr{WT
y CyxC

T
yxWx}

subject to : WT
y Wy = I

(9)

where Wy corresponds to optimal regression parameters. Unlike PLS, the OPLS
method does not take into account the variance of the SSVEP references [2].
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A novel property of OPLS is that the optimal projections obtained are such
that the it rewards the EEG latent variables that better predict the variance
of the target SSVEP model. Intuitively, this means that we are more interested
in approximating the actual SSVEP response signals instead of a projection
of it (namely the reference signals). Due to this, the OPLS can be seen as a
potential alternative to other SSVEP spatial filters. The projection matrix Bopls

is obtained similar to PLS procedure [3]. Similarly, the detection scores (Topls)
are computed and target frequency (Fopls) is identified as depicted in (8).

2.4 Maximum Contrast Combination (MCC)

MCC algorithm is designed to find the linear combination of the EEG channels
that maximizes the SNR of the desired signals [1,5]. The noise component is
obtained by projecting the EEG data orthogonal to the SSVEP reference signals
and is given by,

Ỹ = Y − XALS = Y − XC−1
xx C−1

xy (10)

where, ALS = Popt =
(

XTX
)−1

XTY . The weight matrix (Wmcc) that maxi-
mizes the SNR is obtained by minimizing the constrained optimization problem
given by,

min
Wmcc

‖Y Wmcc‖2
‖˜Y Wmcc‖2

= min
Wmcc

WT
mccY

TY Wmcc

WT
mcc

˜Y T ˜Y Wmcc

(11)

The solution to the above problem is obtained by decomposing the matrix,
(˜Y T

˜Y )−1Y TY . The resulting eigenvectors corresponding to ‘n’ largest eigen-
values make up the columns of the weight matrix Wmcc (contributing to 90%
of total data variance). Once the detection score (Tmcc) is computed from the
reconstructed channels, the frequency of interest (Fmcc) is detected as,

Fmcc = max
m

(Tmcc(fm)) (12)

2.5 Data Acquisition

The EEG data for the study was obtained from ten subjects (denoted as S1
to S10) with normal vision using a eight electrode (Oz, Pz, O1, O2, PO3, PO4,
PO7 and PO8) setup based on extended 10–20 electrode configuration (shown in
Fig. 1a). An analog front end with ADS1299 and Arduino Uno based on OpenBCI
system was employed to sample the EEG data at 250 Hz and transmit in real
time to PC [14]. The visual stimuli and EEG data storage was managed using
Processing R© language. The recorded data was filtered between 2 to 40 Hz and
Offline analysis was performed using MATLAB R©.

The visual stimuli consisted of four on-off stimulus targets (8.57, 10, 12, and
15 Hz respectively) presented against a dark background with a centeral fixation
point using a LCD screen (shown in Fig. 1b). The screen had a 60 Hz refresh
rate and was placed 50 cm from the subject. Each session consisting of five trails
begins with the subject at rest and looking at the fixation point. At the start,
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(a)

(b)

Fig. 1. Illustration of (a) the electrode placement for EEG recording and (b) the on-off
stimulus design.

a visual cue is presented to the subject to gaze at a target stimuli for 10 s.
Once the highlight is removed the subject is advised to move to the central
fixation point for 5 s. Likewise, all the target frequencies are cued one after
another which depicts a single trial. Each session of recording consists of five
continuous trials. A single low artifact session (devoid of avoidable artifacts such
as electrode displacements, prolonged eye closure and high levels of power line
interferences) was selected and used for analysis of the detection performance of
the algorithms.
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Fig. 2. Accuracies obtained for MCC, PLS and Orthonormalized PLS (represented as
OPLS) spatial filters with PSDA as the feature extractor across window lengths of 1 s
to 5 s for all ten subjects (S1 to S10).

3 Results and Discussion

The detection metrics for each of the algorithms discussed in the Methods section
were computed from the selected EEG data for each subject across the window
length of 1 s to 5 s in steps of 1 s with a 25% overlap. The EEG data is mean
centred and the classification accuracies were calculated by creating a confusion
matrix. Since the target frequencies were mainly in the lower frequency range
(<25 Hz), the algorithms were evaluated for two harmonic case only [8].

The accuracy across all ten subjects for MCC, PLS and OPLS spatial filters
with PSDA as the feature extractor across window lengths of 1 s to 5 s is depicted
in Fig. 2. PSDA was used across all the methods under comparison as a common
feature extractor to analyse them uniformly. Overall, the detection accuracies
was seen to improve as the window length increased. The OPLS provided a more
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Fig. 3. Averaged accuracies obtained from MCC, PLS and OPLS spatial filters for two
harmonic case, H = 2 (fm and 2fm) and window lengths of 1 s to 5 s. The standard
deviation from mean accuracy is depicted using error bars.

efficient and improved detection performance in terms of accuracy compared to
both MCC and PLS across all the subjects. The Averaged accuracy across the
ten subjects depicted in Fig. 3 which provides a insight into the stability of the
algorithms to inter-subject variability. The standard deviation from mean accu-
racy is depicted using error bars. Similar to Fig. 2, the mean detection accuracy
of OPLS was highest across the methods. The figures also confirms that OPLS
can achieve consistent and stable higher detection accuracies compared classical
spatial filters such as MCC and PLS.

Two way repeated measures ANOVA was used to examine the differences
in accuracies depending on detection method used and window lengths. The
Greenhouse Geisser correction was made if the data did not conform to the
sphericity assumption. The post-hoc paired t-tests (Bonferroni corrected) were
used to compare the significance of difference accuracies across detection meth-
ods for various window lengths [10,13]. The Two way ANOVA found significant
differences in accuracies due to both methods factor (F(2,18) = 62.98, p < 0.001)
and window length (F(4,36) = 462.98, p < 0.001) but there was no significant
interaction effects. The results of the post-hoc tests can be seen in Table 1 which
depicts the consistent performance of OPLS compared to PLS and MCC.

By designing a spatial filter that minimizes the MSE instead of maximizing
the covariance between EEG and SSVEP model, higher detection accuracy has
been achieved. The OPLS is shown to provide statistically significant improve-
ment in the detection performance compared to conventional SSVEP spatial
filters such as MCC and PLS. Further, the orthonormalized PLS improves upon
the advantages of PLS algorithms such as tolerance to multicollinearity and
uniquely weighs the features that provide better approximation of the SSVEP
model.
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Table 1. Post-hoc paired t-test (Bonferroni’s corrected) of differences in detection
accuracies between MCC, OPLS and PLS for window lengths from 1 s to 5 s

Methods Time window length

1.0 2.0 3.0 4.0 5.0

OPLS vs. PLS ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗
OPLS vs. MCC ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
PLS vs. MCC ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Note ∗: p < 0.05, ∗∗: p < 0.01, ∗ ∗ ∗: p < 0.001,

4 Conclusion

We have proposed, orthonormalized PLS (OPLS) as a novel spatial filter for
extracting SSVEP from the noisy EEG data. To demonstrate the superior per-
formance of the proposed method, MCC and PLS were used for comparison
using a common feature extractor (PSDA). The result showed that minimizing
the MSE between the EEG data and SSVEP references rather than maximizing
covariance improves the detection accuracy significantly. The method provides
efficient performance across subjects and statistically significant improvement
in accuracies across window lengths relative to the methods under comparison.
Hence, the OPLS can be considered for a robust and calibration less way of
extracting SSVEP features with high SNR.
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