
Adaptive Inference on Probabilistic
Relational Models

Tanya Braun(B) and Ralf Möller

Institute of Information Systems, University of Lübeck, Lübeck, Germany
{braun,moeller}@ifis.uni-luebeck.de

Abstract. Standard approaches for inference in probabilistic relational
models include lifted variable elimination (LVE) for single queries. To effi-
ciently handle multiple queries, the lifted junction tree algorithm (LJT)
uses a first-order cluster representation of a model, employing LVE as
a subroutine in its steps. Adaptive inference concerns efficient inference
under changes in a model. If the model changes, LJT restarts, possibly
unnecessarily dumping information. The purpose of this paper is twofold,
(i) to adapt the cluster representation to incremental changes, and (ii)
to transform LJT into an adaptive version, enabling LJT to preserve as
much computations as possible. Adaptive LJT fast reaches the point of
answering queries again after changes, which is especially important for
time-critical applications or online query answering.

1 Introduction

A common task in many applications is repeated inference on variations of a
model. Variations range from conditioning on a new set of observed events to
updating a probability distribution given observations or adapting a model struc-
ture while optimising a model representation. Applications include risk analy-
sis where most likely explanations are of interest with changing sets of events
coming in regularly [14]. When learning a model structure given data, one app-
roach, called structural expectation-maximisation, alternates between minimally
changing a model structure and updating distributions in a model to optimise
the representation of the given data. The approach involves changing a model
w.r.t.structure and distributions as well as repeated inference when computing
the probability of the observed data in the altered model [11].

In a naive way, one incorporates the changes in a model or evidence and
performs inference. Adaptive inference, however, aims at performing inference
more efficiently when changes in a model or evidence occur. Research exists
for adaptive inference on propositional models [1,10]. But, modelling realistic
scenarios yields large probabilistic relational models, requiring exact and efficient
reasoning about sets of individuals.

Research in the field of lifted inference has lead to efficient algorithms for
relational models. Lifted variable elimination (LVE), first introduced in [16] and
expanded in [13,17,20], saves computations by reusing intermediate results for

c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 487–500, 2018.
https://doi.org/10.1007/978-3-030-03991-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03991-2_44&domain=pdf
https://doi.org/10.1007/978-3-030-03991-2_44

488 T. Braun and R. Möller

isomorphic subproblems when answering a query. The lifted junction tree algo-
rithm (LJT) sets up a first-order junction tree (FO jtree) to handle multiple
queries efficiently [4] using LVE as a subroutine. Van den Broeck et al. apply
lifting to weighted model counting and knowledge compilation [8], with newer
work on asymmetrical models [7]. To scale lifting, Das et al. use graph databases
storing compiled models to count faster [9]. Lifted belief propagation (BP) pro-
vides approximate solutions to queries, often using lifted representations, e.g. [2].
But, to the best of our knowledge, research for adaptive inference on relational
models is limited. In relational models, changes can also affect the sets of indi-
viduals over which one reasons or on which one conditions on. How to handle
such incremental changes correctly and efficiently is not obvious.

Nath and Domingos as well as Ahmadi et al. provide approximate algorithms
based on BP for lifted, adaptive inference for changing evidence [3,15]. They
reuse results from previous algorithm runs and propagate messages only in
affected regions or adapt their lifted representations to the changed evidence.
We focus on exact inference for multiple queries and present an efficient algo-
rithm for adaptive inference based on LJT, called aLJT, handling changes in
model and evidence. This paper includes two main contributions, (i) procedures
for adapting an FO jtree to incremental changes for its underlying model and (ii)
an algorithm, aLJT, preserving as much computations as possible under changes
in a model. aLJT handles changes ranging from new evidence to extending a
model with new factors. aLJT fast reaches the point of answering queries again,
which is especially important for time-critical or online query answering.

The remainder of this paper is structured as follows: First, we introduce basic
notations and recap LJT. Then, we show how to adapt an FO jtree to changes
and present aLJT, followed by a discussion. We conclude with upcoming work.

2 Preliminaries

This section specifies notations and recaps LJT. Based on [17], a running example
models the interplay of natural or man-made disasters, an epidemic, and people
being sick, travelling, and being treated. Parameters represent disasters, people,
and treatments.

2.1 Parameterised Probabilistic Models

Parameterised models compactly represent models by using logical variables (log-
vars) to parameterise randvars, abbreviated PRVs.

Definition 1. Let L, Φ, and R be sets of logvar, factor, and randvar names
respectively. A PRV R(L1, . . . , Ln), n ≥ 0, is a syntactical construct with R ∈
R and L1, . . . , Ln ∈ L to represent a set of randvars. For PRV A, the term
range(A) denotes possible values. A logvar L has a domain D(L). A constraint
(X, CX) is a tuple with a sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆
×n

i=1D(Xi) restricting logvars to values. The symbol � marks that no restrictions

Adaptive Inference on Probabilistic Relational Models 489

apply and may be omitted. For some P , the term lv(P) refers to its logvars, the
term rv(P) to its PRVs with constraints, and the term gr(P) to all instances of
P , i.e. P grounded w.r.t. constraints.

For the epidemic scenario, we build the boolean PRVs Epid, Sick(X),
and Travel(X) from R = {Epid, Sick, Travel} and L = {X}, D(X) =
{alice, eve, bob}. Epid holds if an epidemic occurs. Sick(X) holds if a person X is
sick, Travel(X) holds if X travels. With C = (X, {eve, bob}), gr(Sick(X)|C) =
{Sick(eve), Sick(bob)}. gr(Sick(X)|�) also contains Sick(alice). Parametric fac-
tors (parfactors) combine PRVs. A parfactor describes a function, identical for
all argument groundings, mapping argument values to real values (potentials),
of which at least one is non-zero.

Definition 2. Let X ⊆ L be a set of logvars, A = (A1, . . . , An) a sequence of
PRVs, built from R and X, C a constraint on X, and φ : ×n

i=1range(Ai) �→ R
+

a function with name φ ∈ Φ, identical for all gr(A|C). We denote a parfactor g
by ∀X : φ(A)|C . We omit (∀X :) if X = lv(A) and |�. A set of parfactors forms
a model G := {gi}ni=1.

We define a model Gex as our running example. Let L = {D,W,M,X},
Φ = {φ0, φ1, φ2, φ3}, and R = {Epid,Nat,Man, Sick, Travel, T reat}. We
build three more boolean PRVs. Nat(D) holds if a natural disaster D occurs,
Man(W) if a man-made disaster W occurs. Treat(X,T) holds if a person X is
treated with treatment T . The other domains are D(D) = {earthquake, flood},
D(W) = {virus, war}, and D(T) = {vaccine, tablet}. The model reads
Gex = {gi}3i=0, g0 = φ0(Epid), g1 = φ1(Epid,Nat(D),Man(W))|�, g2 =
φ2(Epid, Sick(X), T ravel(X))|�, and g3 = φ3(Epid, Sick(X), T reat(X,T))|�.
Parfactors g1 to g3 have eight input-output pairs, g0 has two (omitted here).
Figure 1 depicts Gex as a graph with six variable nodes for the PRVs and four
factor nodes for the parfactors with edges to arguments.

Evidence displays symmetries if observing the same value for n instances of
a PRV [20]. In a parfactor gE = φE(P (X))|CE

, a potential function φE and con-
straint CE encode the observed values and instances for PRV P (X). Assume we
observe the value true for ten randvars of the PRV Sick(X). The correspond-
ing parfactor is φE(Sick(X))|CE

. CE represents the domain of X restricted to
the 10 instances and φE(true) = 1 and φE(false) = 0. A technical remark: To
absorb evidence, we split all parfactors gi that cover P (X), called shattering [17],
restricting Ci to those tuples that contain gr(P (X)|CE

) and a duplicate of gi to
the rest. gi absorbs gE (cf. [20]).

The semantics of a model G is given by grounding and building a full
joint distribution PG. With Z as the normalisation constant, G represents
PG = 1

Z

∏
f∈gr(G) f . The query answering (QA) problem asks for a marginal

distribution of a set of randvars or a conditional distribution given events, which
boils down to computing marginals w.r.t. a model’s joint distribution, elimi-
nating non-query terms. Formally, P (Q|E) denotes a query with Q a set of
grounded PRVs and E = {Ei = ei}ni=1 a set of events. An example query for
Gex is P (Epid|Sick(eve) = true). Next, we look at LJT, a lifted QA algorithm,
which seeks to avoid grounding and building a full joint distribution.

490 T. Braun and R. Möller

Nat(D)
g1

Man(W)

Epid g0

Sick(X)

Travel(X) Treat(X,T)
g2 g3

Fig. 1. Parfactor graph for Gex

Epid Nat(D)Man(W) {g0, g1}C1

Epid Sick(X) Travel(X) {g2}C2

Epid Sick(X) Treat(X,T) {g3}C3

{Epid}

{Epid, Sick(X)}

Fig. 2. FO jtree for Gex

2.2 Lifted Junction Tree Algorithm

LJT answers queries for probability distributions. It uses an FO jtree to effi-
ciently answer a set of queries, with LVE as a subroutine. We briefly recap LJT.

LJT answers a set of queries {Qi}mi=1 given a model G and evidence E. The
main workflow is: (i) Construct an FO jtree J for G. (ii) Enter E into J . (iii)
Pass messages in J . (iv) Compute answers for {Qi}mi=1. LJT first constructs a
minimal FO jtree with parameterised clusters (parclusters) as nodes, which are
sets of PRVs connected by parfactors, both defined as follows.

Definition 3. Let X be a set of logvars, A a set of PRVs with lv(A) ⊆ X, and
C a constraint on X. Then, ∀X:A|C denotes a parcluster. We omit (∀X:) if
X = lv(A) and |�. An FO jtree for a model G is a cycle-free graph J = (V,E),
where V is the set of nodes, i.e., parclusters, and E the set of edges. J must
satisfy three properties: (i) ∀Ci ∈ V : Ci ⊆ rv(G). (ii) ∀g ∈ G: ∃Ci ∈ V s.t.
rv(g) ⊆ Ci. (iii) If ∃A ∈ rv(G) s.t. A ∈ Ci ∧ A ∈ Cj, then ∀Ck on the path
between Ci and Cj: A ∈ Ck (running intersection property). An FO jtree is
minimal if by removing a PRV from any parcluster, the FO jtree ceases to be
an FO jtree, i.e., it no longer fulfils at least one of the three properties. The
parameterised set Sij, called separator of edge {i, j} ∈ E, is defined by Ci ∩Cj.
The term nbs(i) refers to the neighbours of node i, defined as {j|{i, j} ∈ E}.
Each Ci ∈ V has a local model Gi and ∀g ∈ Gi: rv(g) ⊆ Ci. The Gi’s partition
G.

In a minimal FO jtree, no parcluster is a subset of another parclus-
ter. Figure 2 shows a minimal FO jtree for Gex with parclusters C1 =

Adaptive Inference on Probabilistic Relational Models 491

Algorithm 1. Adapting an FO jtree J = (V,E)

procedure add(FO jtree J, parfactor g′)
Let Aold known, Anew new PRVs in g′

adjust(J, Aold) to get Ci with Aold ⊆ Ci

if Anew = ∅ then
Gi ← Gi ∪ {g′}, mark Ci

else if Aold = Ci then
Ci←Ci∪rv(g′),Gi←Gi∪{g′},markCi

else
New Ck←rv(g′), Gk←{g′}, mark Ck

Add {i, k} to E

procedure delete(FO jtree J, parfactor g)
Get Ci ∈ V where g ∈ Gi

Gi ← Gi \ {g}
min(J, Ci, rv(g) \ rv(Gi)), mark Ci

procedure min(FO jtree J, node Ci, PRVs A)
for PRV A ∈ A do

if ∀j, k∈nbs(i) : A
∈Sij ∧ A
∈Sik then
Ci ← Ci \ {A}, mark Ci

if Ci marked ∧ ∃j∈nbs(i) : Ci⊆Cj then
merge(J, Ci,Cj)

procedure adjust(FO jtree J, PRVs A)
Extract set of nodes N s.t.A ⊆ rv(N)
while |N | > 1 do

Get Ci,Cj ∈ N
P ← path betw.i, j without i, j, mark P
C′ := Ci,C

′′ := Cj , lst ← |P | − 1
merge(J, Ci,Cj), remove Cj from N
while lst > 0 do

if ∃k, l∈P : Skl⊆C′∧Skl⊆P [lst]
∨Skl⊆C′′∧Skl⊆P [0] then

Remove {k, l} from E
break

C′ := P [0],C′′ := P [lst]
merge(J, P [0], P [lst]), update N
P ← P [1 . . . lst − 1], lst ← |P | − 1

procedure merge(FO jtree J, nodes Ci,Cj)
Ci ← Ci ∪ Cj , Gi ← Gi ∪ Gj

Remove Cj from V
for each k ∈ nbs(j) do

Remove {j, k}, add {i, k}, k
= i, in E

{Epid,Nat(D),Man(W)}, C2 = {Epid, Sick(X), T ravel(X)}, and C3 =
{Epid, Sick(X), T reat(X,T)}. S12 = {Epid} and S23 = {Epid, Sick(X)} are
the separators. Parfactor g0 appears at C1 but could be in any local model as
rv(g0) = {Epid} ⊂ Ci∀i ∈ {1, 2, 3}.

During construction, LJT assigns the parfactors in G to local models (cf.
[4]). LJT enters E into each parcluster Ci where rv(E) ⊆ Ci. Local model Gi at
Ci absorbs E as described above. Message passing distributes local information
within the FO jtree. Two passes from the periphery to the center and back
suffice [12]. If a node has received messages from all neighbours but one, it
sends a message to the remaining neighbour (inward pass). In the outward pass,
messages flow in the opposite direction. Formally, a message mij from node i
to node j is a set of parfactors, with arguments from Sij . LJT computes mij

by eliminating Ci \ Sij from Gi and the messages of all other neighbours with
LVE. A minimal FO jtree enhances the efficiency of message passing. Otherwise,
messages unnecessarily copy information between parclusters. To answer a query
Qi, LJT finds a subtree J ′ covering Qi, compiles a submodel G′ of local models
in J ′ and messages from outside J ′, and sums out all non-query terms in G′

using LVE.
Currently, LJT partially handles adaptive inference. LJT assumes a constant

G for which it builds an FO jtree J , reusing J for varying E and Q. If G or E
change, LJT restarts with construction or evidence entering. However, changes
do not necessarily mean a completely new model or evidence set. LJT may
preserve J , local models, or messages in parts. Before presenting aLJT, we show
how to adapt an FO jtree.

492 T. Braun and R. Möller

3 Adapting an FO Jtree to Model Changes

Changes may yield a structure change in a model G, which may cause a structure
change in an FO jtree J . All actions towards adapting J need to ensure that
J continues to be a minimal FO jtree and that local models still partition G.
This section looks at adding, deleting, or replacing a parfactor and ends with an
example.

Adding a parfactor g′ to G requires adding g′ to a local model to partition
G ∪ {g′}. Algorithm 1 includes pseudocode for adding g′ to J = (V,E). It
contains marking instructions relevant for aLJT. We assume that g′ contains at
least one PRV from V to yield one FO jtree. If the arguments in g′ appear in a
parcluster Ci, we add g′ to Gi. But, if g′ contains new PRVs Anew or if the old,
known PRVs in g′, Aold ← rv(g′) ∩ rv(V), do not appear in a single parcluster,
there is no parcluster Ci s.t. rv(g′) ⊆ Ci. Thus, we adjust J until Aold ⊆ Ci for
some i and handle Anew appropriately.

Procedure adjust in Algorithm 1 arranges that Aold ⊆ Ci for some i in J .
adjust finds a set of parclusters N that cover the PRVs in Aold and merges N
into a single parcluster to fulfil Aold ⊆ Ci by successively merging parclusters
Ci,Cj ∈ N . Merging is a union of parclusters, local models, and neighbours.
Since J is acyclic, there exists a unique path P from Ci to Cj without i and j,
which forms a cycle if |P | > 1, which adjust resolves: It searches for a separator
Skl of two parclusters Ck,Cl on P s.t.

Skl ⊆ C′ ∧ Skl⊆P [lst] ∨ Skl ⊆ C′′ ∧ Skl⊆P [0] (1)

where C′ and C′′ are Ci and Cj in the beginning, i.e., information on Skl reaches
Ck from one end and Cl from the other end. If Skl exists, adjust deletes the
edge {k, l} to break the cycle, which keeps the parclusters on P small. Otherwise,
it continues along P , merging parclusters at the path ends if the search for a
separator fulfilling Eq. 1 fails. For details, see Algorithm 1.

After adjusting J , there is a parcluster Ci s.t. Aold ⊆ Ci. If g′ contains only
Aold, procedure add adds g′ to local model Gi at Ci. If g′ contains new PRVs,
it distinguishes between Aold ⊂ Ci and Aold = Ci. In the former case, PRVs in
Ci do not appear in rv(g) and vice versa. add adds a new node Ck ← rv(g′)
with Gk ← {g′} as a neighbour to i. In the latter case, Ci is a strict subset of the
PRVs in g. add adds the new PRVs to Ci and g′ to Gi. Now, the local models
partition G′.

Deleting a parfactor g from G requires removing g from the local model Gi

in which g appears. Afterwards, the local models partition G\{g}. Algorithm 1
contains pseudocode for deleting g from J . After removing g from Gi, it min-
imises Ci w.r.t. Adel ← rv(g) \ rv(Gi). The procedure deletes a PRV A ∈ Adel

from Ci if no two separators contain A, i.e., ∀j, k ∈ nbs(i) : A �∈ Sij ∧ A �∈ Sik.
If now Ci ⊆ Cj for a neighbour Cj , min merges Ci and Cj to keep J minimal.

Replacing a parfactor g with a parfactor g′ in G boils down to adding g′ and
then deleting g. If rv(g) = rv(g′), adding g′ and deleting g does not touch J . If
rv(g) ⊆ rv(g′), adding g′ yields J ′, followed by deleting g from J ′, which does

Adaptive Inference on Probabilistic Relational Models 493

not change J ′. First deleting g may lead to removing PRVs and superfluously
merging parclusters. If rv(g′) ⊆ rv(g), adding g′ before deleting g uses that there
exists a parcluster Ci with rv(g′) ⊆ Ci as rv(g) ⊆ Ci. If the arguments of g
and g′ overlap otherwise, first adding g′ and then deleting g avoids unnecessarily
deleting PRVs and merging parclusters for the overlap PRVs. If both parfactors
do not share any PRVs, replacing g with g′ naturally decomposes into adding g′

and deleting g.

Epid Nat(D)Man(W)C1

Epid Sick(X) Travel(X)C2

Epid Sick(X) Treat(X,T)C3

Epid Sick(X)Work(X,T)C4

{Epid}

{Epid, Sick(X)}

{Epid, Sick(X)}

Epid A1 A2 C5

A1 A3 C6

A1 A4 C7

{Epid}

{A1}

{A1}

Fig. 3. Adapted and extended FO jtree

Epid Nat(D)Man(W)C1

Epid Sick(X) Travel(X)C2

Epid Sick(X) Treat(X,T) A1 A3C3

Epid Sick(X)Work(X,T) A1 A4C4

{Epid}

{Epid, Sick(X)}

{Epid, Sick(X), A1}

Epid A1 A2 C5

{Epid,A1}

Fig. 4. Adjusted FO jtree

To illustrate adaption, consider the FO jtree in Fig. 2. We add the parfac-
tor g4 = φ4(Epid, Sick(X),Work(X)) to Gex, where PRV Work(X) holds
if a person X works. For g4, the known PRVs are Epid and Sick(X)
which appear in C2 and C3. Assume Algorithm 1 chooses C3, which
contains a PRV not in g4, Treat(X,T), while g4 contains a new PRV,
Work(X). Thus, Algorithm 1 adds a parcluster C4 = {Epid, Sick(X),
Work(X)}, G4 = {g4}. The left column of parclusters in Fig. 3 shows the result.

Next, we replace g2 with a parfactor g′
2 = φ′

2(Travel(X), Sick(X)) in Gex,
which means adding g′

2 to C2 and deleting g2. After removing g2 from G2,
Epid no longer appears in G2. But, Epid appears in both its separators and as
such, has to remain in C2 to connect the appearance of Epid from C1 to C3.
If g′

2 = φ′
2(Epid, Travel(X)), Algorithm 1 would delete Sick(X) as Sick(X)

appears only in one separator. If g′
2 = φ′

2(Epid, Sick(X)), Algorithm 1 would
delete Travel(X) and merge C2 with C3.

To illustrate adjusting an FO jtree, let the adapted FO jtree have three more
parclusters with PRVs A1, A2, A3, and A4, shown in Fig. 3. We add a parfactor
g′ = φ′(A4,Work(X)). adjust merges C4 and C7 into C′

4, causing a cycle.
P [0] and P [lst] are C3 and C6, i.e., the neighbours of 4 and 7 on the cycle/path.
No separator appears in C4 and C6 or C7 and C3 (Eq. 1 not fulfilled). adjust
merges C3 and C6 into C′

3. Separator S25 = {Epid} appears in C′
3 and C5.

adjust deletes edge {2, 5}, forming an acyclic FO jtree as seen in Fig. 4. At C′
4,

Algorithm 1 adds g′ to the local model.

494 T. Braun and R. Möller

4 LJT for Adaptive Inference

The extended algorithm aLJT performs adaptive inference for more efficient
QA than by restarting from scratch. aLJT basically still consists of the steps
construction, evidence entering, and message passing before it answers queries.
Each step proceeds in an adaptive manner w.r.t. changes in input model G or
in evidence E given an FO jtree J . Without an FO jtree, the steps are identical
to the LJT steps.

Algorithm 2 shows a description of aLJT for J , referring to the changes in
G and E by ΔG and ΔE. Line 1 contains the adaptive construction step, which
adapts J to ΔG according to Algorithm 1. To track changes, aLJT marks a
parcluster Ci if a local model changes s.t. the messages become invalid. Based
on the marks and ΔE, aLJT performs adaptive evidence entering and message
passing, answering queries as before. Lines 2 to 4 show adaptive evidence entering
and lines 5 to 9 adaptive message passing. Lines 10 to 12 contain the steps to
answer a query Qi from a set of queries {Qi}mi=1, as in LJT. Next, we look at
the adaptive steps, followed by an example.

Construction: aLJT handles changes ΔG as in Algorithm 1 with J as input and
ΔG referring to parfactors to add, delete, or replace. When adding a parfactor
g, aLJT marks the parcluster Ci that receives g. If adjusting J for known PRVs,
aLJT marks all parclusters on the cycle between two parclusters Ci,Cj that it
merges. The merged parcluster C′

i has two messages mxi,myj from its neighbours
on the cycle with both information about the parclusters on the cycle and with
information from Gi (in myj) and Gj (in mxi), which is already contained in
G′

i ← Gi ∪ Gj . A similar situation occurs for all cycle parclusters, requiring new
messages. Merging adjacent parclusters does not require a mark since messages
between them are no longer considered and all other messages remain valid.
When deleting a parfactor from the local model of Ci, aLJT marks Ci. aLJT
replaces a parfactor by adding and deleting, which includes marks.

For changes in potentials, ranges, or constraints, aLJT replaces parfactors.
For domain changes of a logvar X, aLJT marks a parcluster Ci if X ∈ lv(Ci)
and its constraint w.r.t. X is �. After incorporating all changes, parclusters are
properly marked.

Evidence Entering: Adaptive entering deals with evidence at marked parclusters
and changes ΔE in evidence. In the first case, marked parcluster only need
evidence entering if new parfactors or domain changes affect it. If evidence does
not change, only new parfactors or parfactors affected by domain changes need
to absorb evidence.

In the second case, aLJT enters evidence at all parclusters Ci affected by
ΔE, which refers to changes in the form of additional or retracted evidence
or new observed values. For additional evidence, aLJT uses the current local
model Gi and enters the additional evidence. For retracted evidence, aLJT resets
parfactors where the evidence no longer appears, which may require reentering
evidence if evidence for a PRV is partially retracted. For new values, aLJT resets

Adaptive Inference on Probabilistic Relational Models 495

parfactors that have absorbed the original evidence. These parfactors absorb the
new values. If ΔE leads to changes in Gi, aLJT marks Ci.

Message Passing: aLJT maintains the same two-pass scheme starting at the
periphery going inward and returning to the periphery outward. Inward, if a
parcluster has received messages from all neighbours but one, it sends a message
to the remaining neighbour. Outward, after a parcluster has received a message
from the remaining neighbour, it sends messages to all other neighbours. The
scheme preserves the ability for an automatic execution. After message passing,
aLJT starts answering queries.

The adaptive part occurs during message calculation. A parcluster Ci calcu-
lates a new message if messages have become invalid during adjusting or if Ci

has to distribute changes in its local model or received messages, else, it sends
an empty message. The receiver replaces the old message with the new message
and marks it changed (if not empty) or marks the old message as unchanged.
Formally, Ci calculates a message mij for neighbour Cj if Ci itself is marked
or if a message from a neighbour is marked as changed. Then, Ci computes mij

using LVE with G′ ← Gi ∪ ⋃
k∈nbs(i),k
=j mki as model (messages irregardless of

whether they are marked changed) and Sij as query.

Algorithm 2. LJT for adaptive inference answering queries {Qi}mi=1 given an
FO jtree J and changes ΔG for model G and ΔE for evidence E
1: Adapt J to ΔG according to Alg.1 � marks parclusters
2: for each parcluster Ci in J do
3: if Ci marked or affected by ΔE then
4: Handle evidence at Ci, mark Ci

5: while ∃Ci ready to send message mij to Cj in J do
6: if Ci marked or has marked message then
7: Send newly computed mij , mark mij at Cj as changed
8: else
9: Send empty message, mark mij at Cj as unchanged

10: for each query Qi do
11: Extract submodel G′ from subtree J ′ that covers Qi

12: Answer Qi on G′ using LVE

As an example, consider the FO jtree in Fig. 4 with all its changes. All par-
clusters are marked except C1. Thus, the only empty message is m12. After
message passing, aLJT can answer queries for any randvar in gr(rv(G)). Next,
assume we add evidence about Nat(D) at C1, which leads aLJT to mark C1.
With no further changes, aLJT only needs to distribute the updated information
in G1. Thus, messages m53 and m43 from C5 and C4 to C3 are empty as well
as the messages from C3 over C2 to C1 as no change occurs in local models.
Message m12 from C1 to C2 is new. The new message received by C2 leads to
new messages from C2 to C3 and from C3 back to the leaf nodes C4 and C5.
After sending all messages, aLJT can answer queries again.

496 T. Braun and R. Möller

Theoretical Discussion: aLJT and LJT have a runtime complexity linear in
domain sizes, which also holds for other lifted algorithms [6,19]. The speedup
comes in form of a factor as aLJT can avoid handling evidence for up to all
parclusters and save calculating up to half of the messages after a change. Next,
we argue why aLJT is sound.

Theorem 1. aLJT is sound, i.e., computes a correct result for a query Q on
an FO jtree J after adapting to changes in input model G and evidence E.

Proof sketch. We assume that LJT is correct, yielding an FO jtree J , fulfilling
the FO jtree properties, which allows for local computations [18]. Further, we
assume that LVE is correct, ensuring correct local computations during evidence
entering, message passing, and query answering. aLJT first adapts J , which con-
sists of adding, deleting and replacing parfactors. We briefly sketch how to prove
that adapting J outputs an FO jtree again: we follow the changes in J showing
that J remains an FO jtree. For the changes regarding adding, extending, or
deleting a parcluster, it is straightforward to see that J ′ still fulfils the prop-
erties. The main part concerns the adjust procedure, which relies on J being
acyclic and thus, causing at most one cycle between two parclusters. Breaking
the cycle then ensures the FO jtree properties. Thus, adaptive construction out-
puts an FO jtree with marked parclusters. Adaptive evidence entering enters the
new evidence version at all parclusters covering evidence and re-enters evidence
at parclusters with changed local models, ensuring a correct evidence handling
at all parclusters. Adaptive message passing distributes updated information
whenever changed information arrives or local information has changed. With
messages and local models updated, aLJT uses local models and messages to
correctly answer Q using LVE. ��

5 Empirical Evaluation

We have implemented prototypes of (a) LJT, named ljt and aljt here.
Taghipour provides an LVE implementation (https://dtai.cs.kuleuven.be/
software/lve), named lve. We fixed some lines in lve for queries with more
than one grounded logvar. We do not include ground algorithms as we have
already shown the speed-up by lifting (e.g., [5]).

The evaluation has two parts. First, we look at runtimes for Gex under
changes, focussing on how fast the programs provide answers again after consec-
utive changes. Second, we look at runtimes for the individual steps of LJT and
aLJT for varying models G of sizes |G| ranging from 2 to 1024 under a model
change (adding a parfactor) and an evidence change (adding new evidence).

5.1 Consecutive Changes

This first part concerns three consecutive changes and two queries each. As input,
we use Gex with random potentials. We set |D(X)| = 1,000 and |D(.)| = 100
for the other logvars, yielding |gr(Gex)| = 111,001. Evidence occurs for 200

https://dtai.cs.kuleuven.be/software/lve
https://dtai.cs.kuleuven.be/software/lve

Adaptive Inference on Probabilistic Relational Models 497

instances of Sick(X) with the value true. There are two queries, Sick(x1000) and
Treat(x1, t1). The consecutive changes for Gex, based on the adaption examples,
are (i) adding parfactor φ(Epid, Sick(X),Work(X)) (referred to as model G1

ex),
(ii) replacing g2 with parfactor φ(Sick(X), T ravel(X)) (referred to as model
G2

ex), and (iii) adding as evidence Work(X) = true for 100 instances of X
(referred to as model G3

ex). The X values are a subset of the X values in the
Sick(X) evidence. After each change, the programs answer both queries again.
We compare runtimes for inference averaged over five runs. Runtimes for ljt
and aljt include construction, evidence entering, message passing, and query
answering. Runtimes for lve consist of query answering.

Figure 5 shows runtimes in seconds [s] accumulated over all four models for
lve (square), ljt (triangle), and aljt (circle). The vertical lines indicate when
the programs have answered both queries, after which lve and ljt proceed with
the next model, while aljt starts with adaption. For a model, the points on the
ljt and aljt lines mark when an individual step is finished. lve takes longer
than both LJT versions, showcasing the advantage of using an FO jtree. After
only two queries, ljt and aljt have already offset their overhead and provide
answers faster than lve.

For Gex, ljt and aljt have the same runtimes since their runs are identical.
As Gex incrementally changes, aljt displays its advantage of adaptive steps
in contrast to ljt. Starting with G1

ex, aljt provides answers faster than ljt.
Before ljt has completed message passing, aljt has already answered both
queries. Especially message passing is faster as aljt does not need to compute
half of the messages ljt computes. Construction is slightly faster. Evidence
entering does not take long for both programs. But, evidence usually leads to
longer runtimes for query answering compared to no evidence for LVE and LJT
as the necessary splits lead to larger models. Since G3

ex contains more evidence,
all runtimes increase compared to the previous models.

aljt fast reaches the point of answering queries again, providing answers
more timely than the other two programs. As each change provides the possibility
for aljt to save computations, leading to savings in runtime, the savings add
up over a sequence of changes. Thus, performing adaptive inference pays off.

5.2 Step-Wise Performance

This second part looks at runtimes of the individual steps of LJT and aLJT given
models of varying size. The model sizes start at 2 and double until they reach
1,024. The first model is G2 ∪ G3 from the FO jtree of Gex. The second model
is Gex. For the other models, we basically duplicated the current G, starting
with Gex, renamed the PRVs and logvars of the duplicate, and connected the
original part with the copied part through a parfactor. The largest model has
1,024 parfactors and logvars and 3, 072 PRVs, resulting in an FO jtree with 770
parclusters. The largest parcluster contains 256 PRVs. Technical remark: The
maximum parcluster size is larger than need be due to the heuristic the construc-
tion is based on. The largest parcluster contains all PRVs without parameters,
because the heuristic leads the (a)LJT implementations to handle all parfactors

498 T. Braun and R. Möller

Fig. 5. Runtimes [s] accumulated over
four models. Vertical lines mark the
end of QA for the current model. Points
on lines indicate the steps of (a)LJT.

Fig. 6. Runtimes [ms] of the (a)LJT
steps. X-axis: increasing |G| from 2 to
1,024. Both axes appear on log scale.
Points are connected for readability.

without logvars separately at the beginning, resulting in one large parcluster as
the parameterless PRVs also appear in all other parts of the model.

The domain sizes for all logvars are set to 1,000, leading to grounded model
sizes, ranging from 1,001,000 to 513,256,256. A part of the model receives evi-
dence for 50% of the instances of one PRV. We compare runtimes of the corre-
sponding LJT and aLJT step for the following settings: (i) Add a parfactor with
a new PRV. (ii) Enter new evidence to an unchanged model. (iii) Pass messages
after changes in a model. Reentering known evidence after changes in a model
and passing messages after changes in evidence have shown similar runtimes to
settings (ii) and (iii).

Figure 6 shows runtimes in milliseconds [ms] of ljt and aljt averaged over
five runs for the three settings. The triangles and crosses mark ljt, while the
circles and stars mark aljt. The hollow marks refer to construction/adaption,
the cross and star marks to evidence entering, and the filled marks to message
passing. In all three settings, aljt is faster than ljt and both performing similar
given larger models. The curves have a similar shape but are on a different level
if domain sizes are different to 1,000.

For construction (hollow marks), aljt is two to three orders of magnitude
faster than ljt (0.0024 in average). For evidence entering (cross/star marks),
the savings are even higher: aljt is faster than ljt by more than three orders
of magnitude (0.0004 in average). Evidence handling appears to be constant in
this setup. Since LVE has to perform one split per evidence PRV independent
of the domain sizes and the evidence is restricted to one part of the model,
evidence handling does not depend on the model size. Message passing (filled
marks) shows only a clear speedup for smaller models. The first half of the
models allows for aljt to be one order of magnitude faster than ljt (0.0955 in
average). For the larger models, the factor of the speedup lays between 0.25 and
0.79. Concerning providing an answer to a query after a change, runtimes are
basically a sum of the previous steps plus the time for answering a query, which
takes around 100 ms. Since message passing dominates in the overall performance

Adaptive Inference on Probabilistic Relational Models 499

of (a)LJT with only one query, the overall runtimes resemble the runtimes of
message passing.

Overall, aljt runtimes are faster by a factor ranging from 0.003 and 0.5 for
such models. In the first two steps, aLJT is two orders of magnitude faster with
changes in evidence and model restricted to certain parts of an FO jtree. Con-
sidering the first part of the evaluation, savings add up given frequent changes.
In summary, performing adaptive inference pays off as aljt is able to provide a
faster online QA than ljt.

6 Conclusion

We present aLJT, an adaptive version of LJT, which incorporates incremental
changes in its input model or evidence efficiently. We specify how to adapt an
FO jtree when deleting, adding, or replacing parts of a model. We formalise
under which conditions evidence entering and new messages are necessary. Given
the adaptive steps, aLJT reduces its static overhead for construction, evidence
entering, and message passing under gradual changes compared to LJT. aLJT
allows for fast online inference for answering multiple queries, minimising the
lag in query answering when inputs change.

We currently work on learning lifted models, where we use aLJT as a subrou-
tine. Other interesting algorithm extensions include parallelisation, construction
using hypergraph partitioning, and different message passing strategies. Addi-
tionally, we look into areas of application to see its performance on real-life
scenarios.

References

1. Acar, U.A., Ihler, A.T., Mettu, R.R., Sümer, Ö.: Adaptive inference on general
graphical models. In: Proceedings of the 24th Conference on Uncertainty in AI,
UAI 2008, pp. 1–8 (2008)

2. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries
for scaling loopy belief propagation and relational training. Mach. Learn. 92(1),
91–132 (2013)

3. Ahmadi, B., Kersting, K., Sanner, S.: Multi-evidence lifted message passing, with
application to Pagerank and the Kalman filter. In: Proceedings of the 22nd Inter-
national Joint Conference on AI, IJCAI 2011, pp. 1152–1158 (2011)

4. Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert,
M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46073-4 3

5. Braun, T., Möller, R.: Counting and conjunctive queries in the lifted junction tree
algorithm. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) GKR
2017. LNCS (LNAI), vol. 10775, pp. 54–72. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78102-0 3

6. van den Broeck, G.: On the completeness of first-order knowledge compilation for
lifted probabilistic inference. Adv. Neural Inf. Process. Syst. 24, 1386–1394 (2011)

https://doi.org/10.1007/978-3-319-46073-4_3
https://doi.org/10.1007/978-3-319-78102-0_3
https://doi.org/10.1007/978-3-319-78102-0_3

500 T. Braun and R. Möller

7. van den Broeck, G., Niepert, M.: Lifted probabilistic inference for asymmetric
graphical models. In: Proceedings of the 29th Conference on AI, AAAI 2015, pp.
3599–3605 (2015)

8. van den Broeck, G., Taghipour, N., Meert, W., Davis, J., Raedt, L.D.: Lifted
probabilistic inference by first-order knowledge compilation. In: Proceedings of the
22nd International Joint Conference on AI, IJCAI 2011 (2011)

9. Das, M., Wu, Y., Khot, T., Kersting, K., Natarajan, S.: Scaling lifted probabilistic
inference and learning via graph databases. In: Proceedings of the SIAM Interna-
tional Conference on Data Mining, pp. 738–746 (2016)

10. Delcher, A.L., Grove, A.J., Kasif, S., Pearl, J.: Logarithmic-time updates and
queries in probabilistic networks. In: Proceedings of the 11th Conference on Uncer-
tainty in AI, UAI 1995, pp. 116–124 (1995)

11. Friedman, M.: The Bayesian structural EM algorithm. In: Proceedings of the 14th
Conference on Uncertainty in AI, UAI 1998, pp. 129–138 (1998)

12. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. J. Royal Statist. Soc.
Ser. B: Methodol. 50, 157–224 (1988)

13. Milch, B., Zettelmoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted prob-
abilistic inference with counting formulas. In: Proceedings of the 23rd Conference
on AI, AAAI 2008, pp. 1062–1068 (2008)

14. Muñoz-González, L., Sgandurra, D., Barrère, M., Lupu, E.C.: Exact inference tech-
niques for the analysis of Bayesian attack graphs. IEEE Trans. Depend. Secur.
Comput. PP(99), 1–14 (2017)

15. Nath, A., Domingos, P.: Efficient lifting for online probabilistic inference. In: Pro-
ceedings of the 24th AAAI Conference on AI (2010)

16. Poole, D.: First-order probabilistic inference. In: Proceedings of the 18th Interna-
tional Joint Conference on AI, IJCAI 2003 (2003)

17. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In:
Proceedings of the 19th International Joint Conference on AI, IJCAI 2005 (2005)

18. Shenoy, P.P., Shafer, G.R.: Axioms for probability and belief-function propagation.
Uncertain. AI 4(9), 169–198 (1990)

19. Taghipour, N., Fierens, D., van den Broeck, G., Davis, J., Blockeel, H.: Complete-
ness results for lifted variable elimination. In: Proceedings of the 16th International
Conference on AI and Statistics, pp. 572–580 (2013)

20. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination:
decoupling the operators from the constraint language. J. AI Res. 47(1), 393–439
(2013)

	Adaptive Inference on Probabilistic Relational Models
	1 Introduction
	2 Preliminaries
	2.1 Parameterised Probabilistic Models
	2.2 Lifted Junction Tree Algorithm

	3 Adapting an FO Jtree to Model Changes
	4 LJT for Adaptive Inference
	5 Empirical Evaluation
	5.1 Consecutive Changes
	5.2 Step-Wise Performance

	6 Conclusion
	References

