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Abstract. Unmanned Aerial Vehicles (UAVs) have attracted significant
interest in recent years, as they have shown to be effective in supporting
a wide range of applications in many different areas, including logistics,
search and rescue (SAR) [3], public safety communications [8], infrastruc-
ture monitoring [9], precision agriculture [4], forestry [5], and telecommu-
nications [2]. Specifically we focus on those of search and exploration in
the context of search and rescue. In our presented work, success is mea-
sured in an agents ability to find all transmitters in as small a time as
possible. Through the use of a challenging discretized simulation environ-
ment, we investigate the practicality of an empowerment-driven explo-
ration behaviour (EEB) in order to locate an unknown number of wireless
transmitters with minimal prior knowledge about the locations of obsta-
cles, transmitters and their properties. With problem specific adaptations
to the algorithm, including the ability to detect non-identifying signals
from transmitters, when compared with a random walk agent and an
idealistic Bayesian agent, the empowerment algorithm performs near to
that of the Bayesian agent with unrealistic information about the envi-
ronment. We show that our empowerment-driven algorithm has practical
potential and lays a foundation for future work in this area.
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1 Introduction

We are interested in SAR operations and in particular on a scenario where several
people carrying some kind of wireless transmitter (e.g. their cellphone, laptop,
smart watch) are distributed over a fixed area and need to be located so that
they can receive rescue assistance. We assume that their wireless transmitters
frequently send out some signal, although the period is unknown. The overall
aim is to minimize the (average) time required to detect and localize all wireless
transmitters, assuming that an increased time (cost) taken to find these targets
has negative consequences [1].
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We have chosen to investigate the viability of empowerment [7] to drive the
behaviour of UAV agents for SAR. Bayesian search models have been proven
effective in time-critical SAR operations, but there are still open questions
about path planning [10]. Empowerment offers an intrinsic motivation for agents
to search an environment, offering the ability to negotiate immediate loss of
“reward” in favour of long-term opportunity to discover a transmitter. The
empowerment-based algorithm developed in this paper comes with O(|A|N ) time
complexity, where |A| is the number of possible actions and N is the look-ahead
variable. We compare the performance of this algorithm against two baseline
schemes and find that it offers detection times much shorter than a random
search and competitive with the times achievable with an idealized Bayesian
agent already knowing the environment.

2 Background

See Table 1.

Table 1. Nomenclature for equations in this paper.

A Set of possible action states L Length of the environment in patches

B Set of obstacles within the environment n Number of empowerment steps

C Channel capacity S Set of possible sense states

ζ Channel capacity with prediction decay t Discrete time step for the environment

E Empowerment value T Set of transmitters

f(·) Function for calculating agent action W Set of possible world states

g(·) Function for internal agent update λ Information decay value

2.1 Perception Action Loop

We model our agent in a discrete-time perception action loop as shown in Fig. 1.
At each time step (or tick), t, the real world is in state Wt. An agent (i.e. a
UAV) is given sensor input St, updates its own internal world model to become
the new internal model Mt, and then calculates an action to be carried out,
At, which is taken from a finite set of actions available in the current internal
state Mt. The action taken in turn has an impact on the real world state, which
changes to become Wt+1 at the start of the next round. An agent essentially
wants to choose its action At so that it maximizes its chances of detecting or
even localizing a transmitter. In picking its action At the agent can choose to
consider the consequences of the actions into the future, for example over a time
horizon of the next n steps (lookahead). The agent first updates its internal
model using the behaviour g, i.e. Mt = g(Mt−1, St), and then calculates its best
action using behaviour f , i.e. At = f(Mt, n). In this paper we look to define
suitable representations for the sensor data St, the internal model Mt and the
two behaviours g(·) and f(·).
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Fig. 1. Agent’s perception action loop with memory.

2.2 Empowerment

Empowerment is an information-theoretic algorithm that describes the control
an agent has over its environment (whether this is actual control or perceived
control from an internal model) in the perception-action loop (see Sect. 2.1).
Empowerment can also be interpreted as allowing an agent to estimate how
much control it has and to choose its actions so as to maximize it’s capability
of maintaining many control options in the future [6]. In other words, an agent
driven by empowerment aims to “keep its options” as open as possible. When
applied to the SAR problem, we interpret the notion of “option” or “control”
here by the opportunities to discover a transmitter.

With one-step empowerment we aim to choose our action At to maximize our
information about the location of transmitters in the next step, i.e. to maximize
our chances of getting the desired sensor inputs St+1:

E1 := C(At → St+1) ≡ max
p(at)

I(St+1;At) (1)

With n-step empowerment we aim to choose At to maximize our information
about the location of transmitters within the next n steps:

En := C(At → St+n) (2)

3 System Model and Evaluation Method

3.1 Environment

We assume that the search environment W (i.e. the pre-defined area within
which to search for transmitters) is two-dimensional and has the shape of a
square, with sides of length L. The obstacles are placed randomly, with a given
probability p(B) of finding an obstacle within a patch.

We have used an algorithm from maze design, particularly we are using a
depth-first search (recursive-stack) backtracker to place obstacles. Obstacles are
then randomly removed until the desired ratio of obstacles in the environment
is obtained - whilst maintaining a fully explorable environment. Varying the
number of obstacles in the environment changes the scenario difficulty.
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3.2 Wireless Transmitters

The transmitters are randomly placed into the environment, particularly into
patches without obstacles, such that no two transmitters are in the same patch.
We choose a uniform distribution for placing transmitters into patches.

In this paper we use the simple unit disc model for transmitter detection.
In this model there is given a radius around the transmitter. If the receiver
is within this radius, a signal is received with 100% probability and if outside
this radius, signal is 0% probability. A transmitter transmits signals periodically
from a uniform distribution between 4 ticks and 10 ticks and do not contain any
information allowing the UAV to uniquely identify the transmitter, the UAV can
only tell whether a signal is detected or not. In our model signals do not overlap
or interfere with one another.

3.3 State, Sensing and Action Spaces

The world state is given by a vector (Wx,y : x, y ∈ {1, . . . , L}) with one state
value Wx,y for each patch (x, y). The patch occupancy is given by Wx,y ∈
{EMPTY, OBSTACLE, TRANSMITTER}.

With respect to sensing we make the following assumptions:

– The UAV agent has a GPS facility and can always tell with certainty in which
patch (x, y) it currently is. The UAV is restricted to being in patches without
obstacles.

– The UAV agent has a downward-facing camera, which allows to determine
with certainty whether a transmitter is directly below the UAV agent or not.
A transmitter in square (x, y) is detected with the downward camera only
when the UAV position is (x, y), too.

– The UAV has further sensors allowing it to determine whether the eight neigh-
boured patches contain obstacles (with obvious adaptations if the UAV is at
the boundary of the environment). This is called the Moore neighbourhood.

All these quantities are being made available to the UAV as the sensing input
St at the start of a tick. In addition there is the input from the radio receiver,
which the agent receives while being in the current patch. The action space of
the UAV agent reflects its options for movement, more precisely, when the agent
is in patch (x, y) it gives the possible movements into any neighboured patch for
the next tick, taken from the set A = {NORTH, EAST, SOUTH, WEST}.

3.4 Performance Measure

We vary both the number of transmitters and the density of obstacles indepen-
dently and record the average time to accurately detect all transmitters. The
simulation keeps track of transmitters the agent has accurately located by visit-
ing them (i.e. the agent being in the same patch and detecting the transmitter
with the downward camera). The average is taken over a number of realizations
of the maze.
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4 Comparison Algorithms

The random walk algorithm is very simple and can be considered a lower
bound. It does not keep any internal state (i.e. the state update function g(·) is
empty) and it selects the next patch randomly with uniform distribution (it can
tell which of the neighbouring patches is admissible based on sensor inputs, it
does not need to keep track of the environment).

We also use a Bayesian search algorithm which we expect to perform quite
well, by virtue of already having a-priori information about the environment,
which EEB does not have. Particularly, the Bayesian search algorithm knows
a-priori which patches contain obstacles and which ones don’t. The location of
transmitters is not known to the Bayesian search agent. Intuitively, the behaviour
of the Bayesian search agent is always to go next to the nearest patch which it
has not yet visited, this way exhausting all non-obstacled patches in a greedy
fashion.

5 Empowered Exploration Behaviour (EEB)

5.1 Algorithm Overview

Building on empowerment, our agent employs a few key differences:

– A preference for information in the near future: suppose the agent consid-
ers two alternative paths of n steps each, and both with the same number
of yet-unexplored patches, i.e. both allowing for the same information gain.
According to the definition of empowerment both possible paths would be of
the same value, but in our algorithm we give preference to the path which
leads more quickly to expected information gain.

– The use of transmitter signals to prioritize search, i.e. when the agent receives
transmitter signals in its current patch, it gives preference to close-by patches
in order to quickly locate the transmitter(s) currently close to it. With this,
the agent spends more time searching a given area with the expectation the
signal may reveal a new transmitter.

– When there exists two or more actions of the same maximal empowerment
value, we use a further heuristic to break the ties, where preference is given
to the option that leads to a newly discovered transmitter with a higher
probability. This is explained in more detail below.

5.2 Internal Memory

The EEB agent maintains an internal state Mt which is updated from the sensed
information about the environment. More precisely, to each patch (x, y) the agent
associates the following information:

– A belief value Wb(x,y) which encodes the current knowledge of the agent about
this patch, giving the probability of an undiscovered transmitter existing. As
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Wb(x,y) → 0, the probability of discovering a new transmitter is low and
at 0 the agent has directly observed the patch and confirmed there is no
transmitter. As Wb(x,y) → 1, the probability of discovering a new transmitter
is high. The agent operates under the assumption that there is always a new
transmitter to be found, which cannot be confidently proved true or false
until the entire environment is searched.

– Whether a patch can be explored (because of an obstacle) is stored in We(x,y),
where by default 1 indicates the state is explorable until an observation sug-
gests otherwise, in which case We(x,y) = 1.

– The number Ws(x,y) of radio signals heard while being on this patch: this is a
counter incremented each time the agent is in this patch and hears a wireless
signal.

– The location of transmitters found Wt(x,y), 0 by default indicates no trans-
mitter located, whereas 1 indicates a transmitter found.

Besides this information the agent knows its own position at any time, repre-
sented as the patch (x, y) it is currently in.

5.3 Update Function g(·)
In each tick, we update our internal model M depending on the sensor input S
as follows, assuming the agent is currently in patch (x, y):

1. Increment signal reception counters: When the agent has heard a signal while
being in patch (x, y) the counter Ws(x,y) is incremented according to the
number of signals overheard.

2. Record when no transmitter found: When the downward sensor in the current
location (x, y) indicates the absence of a transmitter we assign the belief value
Wb(x,y) = 0.

3. Record when transmitter found: When the downward sensor in the current
location (x, y) indicates the presence of a transmitter we assign the belief
value Wt(x,y) = 1.

4. Updating belief about neighboured patches: The agent uses its further sensors
to check neighbouring patches for the presence of obstacles. If, while the
agent is in patch (x, y) these sensors indicate an obstacle in a neighboured
patch (u, v), then we update the belief value We(u,v) = 0 and by extension, a
transmitter may not exist and Wb(u,v) = 0.

5. Keep track of update rates: Whenever we update any part of our internal
model during a tick, we increment the counter c by one. When calculating
1 − (c/ticks), we can calculate the average probability ρ under the assumption
this invalidates our previous empowerment calculations of the world. As time
passes, ρ will converge to 0, and we use ρ as a discount factor when weighing
information gain on n steps.

6. Identify areas with unaccountable signal(s): We consider two scenarios: (i)
the detected signal at Ws(u,v) is within radio range of a transmitter Wt(i,j) =
1 and our current model is Wz = Wb, (ii) the detected signal cannot be
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accounted for, in which case Wz(i,j) is Wb(i,j) times the sum of all local signals
Ws(u,v) divided by the total number of unexplored patches when the sum is
not zero.

Wz is finally normalized. It is recalculated per tick and represents a heuristic,
where larger values indicate a transmitter is more likely.

5.4 Action Function f(·)
After the update function g(·), we compute an output A by performing a calcu-
lation on our internal model M .

As described by the empowerment Eq. 1, we probe actions A for our model
Wz, and measure the resulting S to calculate the maximum expected information
gain. To perform n-step as seen in Eq. 2, for each probed Wz, we perform this
step again until n steps deep, choosing the action with the greatest expected
information gain.

An exception to this process is that when calculating maximum mutual infor-
mation for channel capacity, C, we decay this value for the current n-step value.
The purpose of ζ is to apply a self inflicted cost function to favour near-future
expected information gain. We consider the observed model update-rate as a
approximation of model accuracy.

ζ = max
p(a)

I(S;A) . ρn−1 (3)

Finally, if our empowerment calculation yields no bias between two or more
actions, we sum the probabilities represented by the competing actions and use
the largest in order to attempt to split the tie: North:

∑L
i=0

∑y+1
j=0 Wz=i,j , East:

∑L
i=x

∑L
j=0 Wz=i,j , South:

∑L
i=0

∑L
j=y Wz=i,j , West:

∑x+1
i=0

∑L
j=0 Wz=i,j . If still

no clear action exists, one is randomly selected from the empowerment calcula-
tion stage.

6 Results

We have developed a simulator in Java for the purpose of a controlled com-
parison. For both the random and the Bayesian search algorithm we run 1,000
replications for each considered combination of parameters, where for each repli-
cation a new scenario is generated randomly. For EEB we have used >50 aver-
aged replications per parameter combination, due to the computational complex-
ity of this algorithm. The results for the first set of experiments are shown in
Fig. 2a and b shows the results for the second set of experiments. We see that the
EEB agent was easily able to outperform the random walk agent and generally
performs close to the advantaged Bayesian search agent. Interestingly, in the sec-
ond experiment the gap between EEB and Bayesian search widens somewhat as
the number of transmitters is increased. We explain this by our heuristic to not
look in the vicinity of already detected transmitters, which can have a tendency
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(a) % of obstacles {0, 5, 10, 15, 20, 25} vs av-
erage ticks (y axis), transmitters = 5.

(b) % of transmitters {5, 10, 15, 20, 25} vs
average ticks (y axis), obstacles = 5.

Fig. 2. Comparison of algorithms where: (Length) L = 10, n-step = 12, transmitter
radius of 4 with periods of 4 to 10 ticks.

to mask further transmitters close to already detected ones. With the exception
of the random algorithm, the probability of obstacles had no measurable effect
on the average performance, meaning that the EEB agent was able to success-
fully navigate around obstacles to find transmitters despite no prior knowledge
of where obstacles were placed.

7 Conclusions

The EEB agent appears to be a practical algorithm which can find wireless
transmitters efficiently while simultaneously mapping the environment. We see
the EEB algorithm as a promising stepping stone towards the development of
more refined and more realistic single-agent algorithms, but more importantly
we also expect that it can be fruitfully carried over to the case where several
agents are used in parallel and are allowed to collaborate with each other, e.g.
by sharing belief and counter information. The EEB algorithm is an important
step towards information-driven search and exploration agents with an unknown
number of objectives. More work is required in order to reduce the computational
overhead and allowing for real-time application.
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