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Preface

This volume contains the papers presented at the 31st Australasian Joint Conference on
Artificial Intelligence 2018 (AI 2018), which was held during December 11–14 2018,
in Wellington, New Zealand, hosted by the Victoria University of Wellington. This
annual conference remains the premier event for artificial intelligence in Australasia,
which provides a forum for researchers and practitioners across all subfields of artificial
intelligence to meet and discuss recent advances. This year the conference was held
together with the IEEE/ACALCI Summer School on Artificial Life and Computational
Intelligence.

AI 2018 received 125 submissions with authors from 26 countries. Each submission
was reviewed by at least three Program Committee members or external reviewers.
Subsequent to a thorough discussion and rigorous scrutiny by the reviewers and the
dedicated members of the Senior Program Committee, 76 submissions were accepted
for publication: 50 as full papers and 26 as short papers. The acceptance rate was 40%
for full papers. In addition to the 76 paper presentations, we had four keynote talks by
the following distinguished scientists:

– Jie Lu, University of Technology Sydney, Australia
– Zbigniew Michalewicz, Complexica, Australia
– Kay Chen Tan, City University of Hong Kong, Hong Kong
– Toby Walsh, University of New South Wales, Australia

AI 2018 also featured an exciting selection of workshops and tutorials, which were
held on the first day of the conference and were free for all conference participants to
attend. The workshop with its own proceedings is:

– The 5th Workshop on Machine Learning for Sensory Data Analytics.

The seven tutorials were on:

– Academia and Entrepreneurship: How to Start and Run a Technology Company,
presented by Zbigniew Michalewicz

– Computational Intelligence for Brain Computer Interface (CIBCI), presented by
Chin-Teng (CT) Lin

– Methods and Techniques for Combating False Information in Social Media, pre-
sented by Wei Gao

– Managing and Communicating Object Identities in Knowledge Representation and
Information Systems, presented by David Toman and Grant Weddell

– Evolutionary Computation for Digital Art, presented by Frank Neumann
and Aneta Neumann

– Machine Learning in Uncertain Environments, presented by Ke Tang
– Grammar-Guided Genetic Programming, presented by Grant Dick

and Peter Whigham



AI 2018 would not have been successful without the support of authors, reviewers,
and organizers. We thank the authors for submitting their research papers to the con-
ference. We are grateful to authors whose papers are published in this volume for their
cooperation during the preparation of the final camera-ready versions of the manu-
scripts. We thank the members of the Program Committee and the external referees for
their expertise and timeliness in assessing the papers. We also thank the organizers
of the workshops and tutorial speakers for their commitment and dedication. We are
very grateful to the members of the Organizing Committee for their efforts in the
preparation, promotion, and organization of the conference, especially the general
chairs, Mengjie Zhang and Michael Blumenstein, for coordinating the whole event. We
acknowledge the assistance provided by EasyChair for conference management. Last
but not the least, we thank the Australian Computer Society (ACS) National Committee
for Artificial Intelligence, Victoria University of Wellington, and Springer for their
sponsorship, and the professional service provided by the Springer LNCS editorial and
publishing teams.

September 2018 Tanja Mitrovic
Bing Xue

Xiaodong Li
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Abstract. Recently, the study of social conventions has attracted much
attention. We notice that different agents may tend to establish dif-
ferent conventions, even though they share common interests in conven-
tion emergence. We model such scenarios to be competitive-coordination
games. We hypothesize that agents may fail to establish a convention
under these scenarios and introducing the option of compromise may
help solve this problem. Experimental study confirms this hypothesis. In
particular, it is shown that besides convention emergence is promoted,
the undesirable social unfairness is also significantly reduced. In addi-
tion, we discuss how the reward of coordination via compromise affects
convention emergence, social efficiency and unfairness.

Keywords: Convention emergence · Norm · Fairness · Compromise

1 Introduction

Social conventions (or conventions), such as driving on a particular side of roads
and hand-shaking to greet, play an important role in human society. They are
a type of social norms that specially focus on coordination problems and help
maintain social order [1]. Recently, the concept of conventions have attracted
much attention in multi-agent system research, in terms of how they promote
coordination among agents. To introduce conventions into multi-agent systems,
there are two branches of research [2], namely, prescriptive and emergence per-
spectives. The prescriptive perspective is usually concerned with central author-
ities [3], while the emergence one takes a bottom-up view and addresses the
emergence of conventions from agents’ local interactions [4,5]. In comparison,
the emergence approach does not require any a priori central authority, and is
usually more adaptive to an open and dynamic environment [6].

Early research work defines conventions in a game-theoretic framework and
finds that conventions can naturally emerge from agents’ repeatedly playing 2-
action pure coordination games [7,8]. To improve social efficiency under such

c© Springer Nature Switzerland AG 2018
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game setting, an amount of subsequent research attempts to promote conven-
tion emergence from multiple perspectives [9–11]. In particular, emergence phe-
nomena from agents’ playing games other than pure coordination games, e.g.,
anti-coordination and prisoner’s dilemma games, have also been studied [12–14].

In this paper, we consider the scenario in which different agents may prefer
different conventions, although establishing a global convention is in their com-
mon interest. In real life, Qualcomm and Huawei compete to set the 5G industry
standards; open source programmers convince one another to adopt their own
coding styles; and right-hand (or left-hand) vehicle owners try to enforce the
rule of right-hand (or left-hand) traffic. Despite the commonness of these sce-
narios, they have rarely been investigated in the literature. To this end, following
the conventional game-theoretic framework, we model the above scenario as 2-
action competitive-coordination games, where there are two Nash equilibria in
which players choose the same action, and each player prefers either of the equi-
libria to the other. We suspect that agents’ divergence in preferences hinders
convention emergence and may result in the undesirable discoordation among
agents.

To tackle this problem, we introduce the option of compromise into multi-
agent systems. The inspiration is derived from the fact that different parties
usually give up parts of their own interests so as to achieve a win-win situa-
tion in human society. By compromise, agents with different preferences will
receive the same acceptable payoffs. We hypothesize that this should facilitate
convention emergence and reduce the undesirable social unfairness. However, it
is still unclear a priori whether rational agents (which aim to maximize their
own payoffs) are willing to compromise voluntarily.

To answer the above questions, we conduct an experimental study on sys-
tems of agents which repeatedly play competitive-coordination games with and
without the option of compromise respectively. To measure the consequent social
fairness and efficiency, we adopt two metrics, namely, Gini index and utilitarian
social welfare. It is confirmed that in the absence of compromise, it is hard for
social conventions to emerge, and agents generally receive highly unfair payoffs.
More importantly, experimental results confirm that introducing the option of
compromise helps promote convention emergence and lower social unfairness.
Last but not least, from the engineering perspective, we discuss how the reward
of compromise influences convention emergence, social unfairness and efficiency.

The remainder of the paper is organized as follows. Section 2 reviews the
related work. Section 3 formalizes competitive coordination games with or with-
out the option of compromise and defines the metrics of social efficiency and
fairness. Section 4 presents our experimental study. Section 5 concludes the paper
with some directions for the future work.

2 Related Work

Social conventions are solution to certain coordination problems, which, with
time, turn normative [1]. Early research work [5–8,10] reveals the natural con-
vention emergence from agents’ repeatedly playing pure coordination games,
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where there are multiple equally good Nash equilibria in which players choose
the same action. Pujol et al. [12] base their research on the coordination games
in which a particular Nash equilibrium is Pareto-optimal. Hao and Leung [13]
address convention emergence under stochastic coordination games in which the
optimal Nash equilibrium is risk-dominated by the sub-optimal ones. Some more
recent work [14–16] focus on language coordination games that are similar to
pure coordination games in principle, but with an extremely large convention
space. To evaluate convention emergence, Kittock [17] proposes that a conven-
tion is considered to emerge if at least 90% of agents converge to choose the
same action. Following this 90% convergence metric, most of the prior studies
aim to increase social efficiency, in terms of the probability and speed of con-
vention emergence [4,9,10]. Social fairness is rarely considered in these studies,
since agents are indifferent to the particular convention that emerge in the above
game settings.

Few research work on social norms also studies the emergent phenomena but
focuses on scenarios different than coordination problems. For example, under
anti-coordination games the norms that emerge are discoordinations [18]. Some
researchers [19,20] study norm emergence under prisoner’s dilemma games in
which the unique Nash equilibrium is not Pareto-optimal. In particular, Yu
et al. [19] take social fairness as an appraisal signal to derive agents’ emotions.
Their main goal, however, is to engineer the emergence of the norm of coopera-
tion, which maximizes social efficiency.

Therefore, in line with most of the prior studies, our main research goal
in this paper is to facilitate convention emergence and to achieve coordination
among agents. However, we focus on the scenario in which agents have different
preferences, which has not been studied before. Social fairness, which is rarely
considered in the prior studies, is one of the concerns in this paper.

3 Game Formalization and Quantitative Metrics

Consider a set N = {1, 2, . . . , n} of agents, each of which has a set A = {x, y} of
two available actions. By the 90% convergence metric [17], a social convention λa

restricts at least 90% of agents of set N to choose a particular action a ∈ A. In
this paper, we consider the situation in which agents tend to establish different
conventions, although they share common interests in convention emergence.

3.1 Competitive-Coordination Game

We define agents’ local interactions under the situation that we investigate to
be competitive-coordination games. Agents prefer coordination via the same
choice of action to discoorination. However, different agents may prefer different
conventions. Let Nx and Ny be the sets of agents that prefer conventions λx and
λy respectively, such that Nx ∩ Ny = ∅ and Nx ∪ Ny = N . Formally, we define
the competitive-coordination game as follows.
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Definition 1. A competitive-coordination game G is a tuple 〈P,A, (τi), (ri)〉,
where P = {1, 2} is the set of players; A = {x, y} is the set of actions available
to each player; τi is the type of each player i, which reflects its preference over
different conventions, such that τi = x if i ∈ Nx and τi = y if i ∈ Ny; and ri is
the reward function of each player i such that ri(ai, aj) corresponds to player i’s
reward of the joint action (ai, aj), which is given by:

ri(ai, aj) =

⎧
⎨

⎩

α ai = aj = τi

β ai = aj , ai �= τi

0 ai �= aj

(1)

where α > β > 0.

By Definition 1, an agent receives a reward α or β, when it coordinates to play
the same action as its opponent’s. However, it receives the highest reward α
only when the coordination is achieved in its preferred way. Therefore, agents
which prefer convention λx, i.e., τi = x, are motivated to choose action x. On the
contrary, agents which prefer convention λy, i.e., τi = y, tend to choose action
y. This suggests that agents with different preferences easily fail to coordinate
on the same choice of actions. We present the example payoff matrices (with
α = 10 and β = 2) under different situations in Table 1. Under each situation,
there are two Nash equilibria which denote two ways of coordination: (x, x)
and (y, y). As shown in Tables 1a and b, when the two players have the same
preference, their jointly preferred coordination results in the maximum payoff of
10 for both players. However, as shown in Tables 1c and d, when the two players
have different preferences, either way of coordination dose not Pareto-dominate
the other. Only one of the players can receive the payoff of 10, but at the sacrifice
of the other player’s receiving the payoff of 2.

Intuitively, once a convention emerges in systems where these games are
played, some agents embrace their preferred convention, while the others have
to sacrifice and put up with their non-preferred one. Consequently, as we shall
show in Sect. 4.2, conventions may not emerge and agents may fail to achieve
coordination. To tackle this problem, we shall introduce the option of compro-
mise into these multi-agent systems in the next section.

Table 1. Payoff matrices of competitive-coordination game under different situations.
The row player is i and the column player is j. α is set to 10 and β is set to 2.

x y
x 10,10 0,0
y 0,0 2,2

(a) τi = τj = x.

x y
x 2,2 0,0
y 0,0 10,10

(b) τi = τj = y.

x y
x 10,2 0,0
y 0,0 2,10

(c) τi = x, τj = y.

x y
x 2,10 0,0
y 0,0 10,2

(d) τi = y, τj = x.

3.2 Competitive-Coordination Game with the Option of
Compromise

In real-life, compromise is a common way for different parties in conflict of
interest to reach agreement. Each party gives up part of its own interests, so



Compromise as a Way to Promote Convention Emergence 7

that a win-win situation is achieved. Inspired by this, we introduce an additional
action, which is compromise c, into multi-agent systems. For individual agents,
in addition to the original two ways of coordination via actions x and y, they can
also achieve coordination via compromise c. Specifically, if agents coordinate to
play compromise c, they will receive exactly the same acceptable reward γ. The
reward γ is not as high as the reward α of preferred coordination, but is higher
than the reward β of the non-preferred one as it serves as a fairer alternative.
For simplicity, we here set the reward γ to be the average of the rewards α
and β.1 Formally, we define a competitive-coordination game with the option of
compromise as follows.

Definition 2. A competitive-coordination game Gc with the option of com-
promise is a tuple 〈P,A, (τi), (ri)〉, where P = {1, 2} is the set of players;
A = {x, y, c} is the set of actions available to each player; τi is the type of
each player i, which reflects its preference over different conventions, such that
τi = x if i ∈ Nx and τi = y if i ∈ Ny; and ri is the reward function of each
player i such that ri(ai, aj) corresponds to player i’s reward of the joint action
(ai, aj), which is given by:

ri(ai, aj) =

⎧
⎪⎪⎨

⎪⎪⎩

α ai = aj = τi

β ai = aj , ai �= τi, ai �= c
γ ai = aj = c
0 ai �= aj

(2)

where α > β > 0 and γ = α+β
2 .

We present the example payoff matrices (with α = 10, β = 2 and γ = 6)
under different situations in Table 2. Under each situation, there are three Nash
equilibria which denote three ways of coordination: (x, x), (y, y) and (c, c). As
shown in Tables 2a and 2b, when the two players have the same preference, their
jointly preferred coordination still leads to the maximum payoff of 10 and thus
they are not motivated to compromise. However, as shown in Tables 2c and 2d,
when the two players have different preferences, coordination via compromise c
is the unique Pareto-optimal outcome. As a result, both players receive the same
acceptable reward, neither of which have to unfairly sacrifice.

We hypothesize that this may motivate a system of agents with different
preferences to establish the convention of compromise, i.e., λc. Intuitively, if such
a convention does emerge, all of the agents receive the same reward γ, which leads
to both coordination and social fairness among agents. However, it is important
to note that agents are autonomous and rational in the systems. Thus, they may
not voluntarily compromise and the desirable compromise convention may not
emerge.

3.3 Quantitative Metrics: Social Efficiency and Fairness

Obviously, frequent emergence of conventions is socially desirable, since agents
achieve coordination among one another. From the view of utilitarianism, the
1 The effect of the value of γ will be discussed in Sect. 4.4.
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Table 2. Payoff matrices of competitive-coordination game with the option of com-
promise under different situations. The row player is i and the column player is j. α is
set to 10, β is set to 2, and γ which is the average of α and β is set to 6.

x y c
x 10,10 0,0 0,0
y 0,0 2,2 0,0
c 0,0 0,0 6,6

(a) τi = τj = x.

x y c
x 2,2 0,0 0,0
y 0,0 10,10 0,0
c 0,0 0,0 6,6

(b) τi = τj = y.

x y c
x 10,2 0,0 0,0
y 0,0 2,10 0,0
c 0,0 0,0 6,6

(c) τi = x, τj = y.

x y c
x 2,10 0,0 0,0
y 0,0 10,2 0,0
c 0,0 0,0 6,6

(d) τi = y, τj = x.

convention which maximizes the total (or average) reward of the entire agent
society should be established. However, this is indeed ethically unfair for agents
which do not prefer the to-be-established convention.

We measure social efficiency by the utilitarian social welfare [21], which is
the average (or sum) of individual agents’ payoffs. Let r̂i be the expected reward
of any agent i ∈ N . The utilitarian social welfare is given as follows:

μ =
n∑

i=1

r̂i. (3)

By Eq. 3, when the social efficiency in terms of utilitarian social welfare is max-
imized, it is possible that most of the rewards concentrate on the hands of only
few agents. To reveal such possible unfair situations, we adopt Gini index [22],
a well-known index of wealth gap in economics, to measure social fairness. For-
mally, we define Gini index of a multi-agent system as follows:

g =

∑n
i=1

∑n
j=1,j �=i |r̂i − r̂j |

2n
∑n

i=1 r̂i
. (4)

By Eq. 4, the value of Gini index is between 0 and 1. A higher value of Gini
index indicates a larger degree of undesirable social unfairness. When all the
agents receive exactly the same rewards, Gini index is 0. By contrast, when a
particular agent receives all the rewards, Gini index is 1.

We can now ready to quantitatively measure social efficiency and fairness
of a multi-agent system. An efficient and socially fair system should be of high
utilitarian social welfare but of low Gini index.

4 Experimental Study

We consider a system of 500 agents, each of which is randomly connected to 20
other agents. Let ρx denote the ratio of agents that prefer convention λx to the
total number of agents, i.e., ρx = |Nx|/|N |. We vary ρx from 0.1 and 0.9. When
ρx is close to 0.9 (or 0.1), most agents prefer convention λx (or λy). As the ratio
ρx becomes closer to 0.5, the numbers of agents preferring different conventions
become more balanced.



Compromise as a Way to Promote Convention Emergence 9

4.1 Game-Theoretic Framework

We adopt the conventional social learning [4] as agents’ interaction model. In
this model, agents randomly choose their initial actions and then learn their
strategies by playing games with their neighbours repeatedly. Specifically, at
each time step, agents are first randomly paired with one of their neighbours.
Each pair of agents then independently choose their actions and play games. Each
agent receives a payoff from playing the game, based on which it reevaluates its
choice on actions with reinforcement learning methods.

Following the convention [5,9,11], we equip agents with Q-learning [23] with
ε-greedy exploration.In particular, we consider two type of Q-learners: individual
action learner (IAL) and joint action learner (JAL) [24]. IALs update the Q-value
for each individual action. By contrast, JALs update the Q-value for each joint
action of themselves and their opponents. It is shown in the previous work [13]
that JALs usually have better performance than IALs in terms of the probability
of convention emergence.

4.2 Emergent Phenomena Without the Option of Compromise

We first let agents repeatedly play competitive-coordination games with one
another. We set the reward α of the preferred coordination to 10 and focus on
the following three values of the reward β of the non-preferred coordination: 8,
5 and 2. The decreasing trend in the value of β expresses that, to establish a
convention, agents which do not prefer the to-be-established convention have to
put up with the less (i.e., more unequal) rewards. For each of the above settings,
we conduct 100 simulations each of which contains 5, 000 iterations.

Convention Emergence Conditioned on a Sufficiently Large β. We report the
number of simulations that manage to establish each social convention in Fig. 1.
Each column comprises the results of a type of learners and each row comprises
the results of a certain value of β. From Fig. 1, it can be seen that with a
sufficiently large reward of non-preferred coordination, i.e., β is 5 or 8 here, social
conventions usually emerge. As the ratio ρx increases, there is a larger number of
simulations that manage to establish convention λx. This can be expected, since
there are more agents preferring convention λx, the choice of action x becomes
more prevalent and thus there is a higher chance for convention λx to emerge.

Convention Non-emergence Conditioned on a Sufficiently Small β and a Bal-
anced Ratio ρx. More importantly, we observe that with a small reward β of
non-preferred coordination, it is hard for social conventions to emerge.When β
is 2, as the ratio ρx gets closer to 0.5, conventions become less likely to emerge,
especially in systems of JALs. When the ratio ρx is exactly 0.5, no simulation
manages to establish a convention, no matter agents are IALs or JALs. In fact,
we find that in these simulations, agents always attempt to achieve their pre-
ferred ways of coordination. Specifically, agents which prefer conventions λx and
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λy persist in choosing actions x and y respectively, neither of which are willing
to give in. Therefore, with a low value of β, agents with different preferences
fail to achieve coordination with one another. JALs may even result in smaller
chance of convention emergence, which contrasts with the prior finding [13].

Latent Low Social Efficiency and High Social Unfairness. We present utilitarian
social welfare and Gini index under each of the settings in Fig. 2. The expected
reward r̂i of any agent i ∈ N , which is used in the calculation of these two
metrics, is agent i’s immediate payoffs averaged over the last 100 iterations.
The results of the systems in which conventions generally do not emerge are
marked with circles. From Fig. 2a, we observe that with respect to the ratio ρx

changing from 0.1 to 0.9, the curve of utilitarian social welfare is generally ‘V’-
shaped. This result reveals that when agents with different preferences become
more balanced, agents receive lower rewards on average. This is especially true
in systems where conventions fail to emerge. On the other hand, it can be seen
in Fig. 2b that the curve of Gini index is ‘M’-shaped with a low value of β,
but is ‘Λ’-shaped with a sufficiently high value of β. Despite the difference in
shapes of curves, in general, when ratio ρx is closer to 0.5, there is an increasing
trend of Gini index. The exceptions are the results of systems where there is no
convention emergence. That is to say, Gini index is low in systems where agents
cannot establish a convention. However, it is high where conventions are able to
emerge, especially if the ratio ρx is close to 0.5. Therefore, without the option of

Fig. 1. The number of simulations that manage to establish each convention without
the option of compromise. The x-axis is the ratio ρx and the y-axis is the number of
simulations. The blue and yellow colors indicate conventions λx and λy respectively.
(Color figure online)

(a) Utilitarian Social Welfare (b) Gini index

Fig. 2. Utilitarian social welfare and Gini index of systems without the option of com-
promise. The results are averaged over 100 simulations.
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compromise, the social efficiency of certain systems is considerably hindered by
the non-emergence of conventions and agents receive equally low payoffs. Even
though agents manage to establish a convention, they may still suffer from the
high degree of social unfairness.

4.3 Benefits of Introducing the Option of Compromise

To verify the benefits of introducing the option of compromise, we let agents
play repeated competitive-coordination games with the option of compromise
and adopt the same setting of rewards α and β as those in last section. That is,
for every values of β which are 8, 5 and 2, we set the corresponding rewards γ of
coordination via compromise to 9, 7.5 and 6 respectively. For each reward γ, we
conduct 100 simulations in which agents randomly choose their initial actions.

Promotion of Convention Emergence. We report the number of simulations in
which a convention emerges in Fig. 3. It can be seen that social conventions gen-
erally emerge under different systems. Besides conventions λx and λy, the com-
promise convention λc also manages to emerge. As the ratio ρx becomes closer
to 0.5, a larger proportion of simulations establish the compromise convention
λc. Specifically, when β is 2 and ρx is close to 0.5, the established conventions
are mainly the compromise convention λc. We see in the last section that under
the same setting of rewards α and β, it is hard for social conventions to emerge

Fig. 3. The number of simulations that manage to establish each convention with the
option of compromise. The x-axis is the ratio ρx, the y-axis is the number of simulations,
and the blue, yellow and green colors indicate conventions λx, λy and λc respectively.
(Color figure online)

(a) Utilitarian Social Welfare (b) Gini index

Fig. 4. Percentage change of utilitarian social welfare and Gini index with the option
of compromise.
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without the option of compromise. Therefore, introducing the option of compro-
mise significantly promotes convention emergence by enabling the emergence of
compromise convention.

Comparability of Social Efficiency and Significant Reduction of Social Unfair-
ness. In Fig. 4, we present the percentage change of utilitarian social welfare
and Gini index after introducing the option of compromise. It is shown that the
utilitarian social welfare is at most 9% lowered. Occasionally, it is improved by
8%. On the other hand, Gini index mostly decreases by 20% or more. When
β is 2, Gini index can drop by more than 60%. Therefore, utilitarian social
welfare is generally comparable in systems with or without the option of com-
promise. Interestingly, Gini index is always significantly lowered with the option
of compromise. That is to say, introducing the option of compromise maintains
comparable social efficiency and significantly reduces undesirable social unfair-
ness.

4.4 Effects of the Reward of Coordination via Compromise

We also investigate how the change of the reward γ of coordination via com-
promise affects convention emergence, social efficiency and fairness. Specifically,
we vary the value of γ between the rewards α and β such that γ ∈ (α, β). This
is to express that coordination via compromise is less desirable than an agent’s
preferred coordination but is still a better alternative than the non-preferred
one.

More Frequent Emergence of Convention λc with the Increase of γ. Intuitively,
increasing the reward of coordination via compromise should motivate agents to
establish the compromise convention.This is confirmed by our experiments. As
shown in Fig. 5, with the increase of the value of γ, the number of simulations
in which convention λc emerges always increases. When the numbers of agents
preferring different conventions become balanced, i.e., ρx is close to 0.5, the
emergence of compromise convention is especially frequent. Due to the lack of
space, we only present in this section the results for IALs. However, the results
for JALs also show the same trend.

Lower Social Unfairness with the Increase in γ When γ ≥ α+β
2 . When a comprise

convention emerges, different individual agents receive almost the same payoff
and thus Gini index is close to 0. Thus, with the emergence of compromise
convention becoming more frequent, which is the result of the increase in γ, Gini
index drops correspondingly. In Fig. 6, we present the percentage change of Gini
index, when the option of compromise with different values of γ is introduced.
The results confirm the decrease in Gini index as the value of γ rises. In addition,
we find that if γ ≥ α+β

2 , which means the reward of coordination via compromise
is equal or greater than the average of the rewards of preferred and non-preferred
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coordination, there is almost always a significant reduction in the value of Gini
index by introducing the option of compromise. However, we also find that given
γ < α+β

2 , when β is small and the ratio ρx is close to 0.5, Gini index may be
marginally increased. That is to say, to ensure a lower degree of social unfairness,
the reward γ of coordination via compromise should be not smaller than the
average of the rewards α and β.

Fig. 5. The number of simulations that manage to establish convention compromise
λc with different values of γ.

Fig. 6. Percentage change of Gini index, when the option of compromise with different
values of γ is introduced. The results of γ = α+β

2
are marked with crosses.

Higher Social Efficiency with the Increase in γ When γ ≥ α+β
2 . We also inves-

tigate if the increase in social fairness is achieved at the cost of the decrease in
social efficiency. We present the percentage change of utilitarian social welfare in
Fig. 7, when the option of compromise with different values of γ is introduced.
We observe that as the reward γ increases, in general, there is an increasing trend
in utilitarian social welfare by introducing the option of compromise. However,

Fig. 7. Percentage change of utilitarian social welfare, when the option of compromise
with different values of γ is introduced. The results of γ = α+β

2
are marked with crosses.
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we also find that when γ < α+β
2 , utilitarian social welfare is usually marginally

reduced with the option of compromise. On then contrary, when γ ≥ α+β
2 and

β is small, there is a significant increase in utilitarian social welfare by intro-
ducing the option of compromise. Therefore, to achieve a comparable or even
higher social efficiency, the reward γ of coordination via compromise should not
be smaller than the average of the rewards α and β.

5 Conclusions and Future Work

In this paper, we study the scenarios in which different agents may prefer the
emergence of different conventions, although they share common interests in con-
vention emergence. We formalize such scenarios to be competitive-coordination
games. Our results confirm that when agents repeatedly play these games, they
may fail to establish a convention or suffer from high degree of social unfair-
ness. To solve this problem, we enable agents to compromise such that agents
coordinate on compromise receive the same acceptable reward γ. Our main find-
ing is that introducing the option of compromise, not only promotes convention
emergence, maintains comparable social efficiency, but also significantly reduces
social unfairness. To ensure the benefits, we identify that the value of γ should
be not smaller than the average of the rewards of preferred and non-preferred
coordination. Moreover, we find that the benefits become more significant with
a higher value of γ. In our future work, we will consider the cases in which differ-
ent agents prefer a convention to different degrees, there are a larger number of
possible conventions, and agents may prefer more than one convention, to see if
introducing the option of compromise still helps facilitate convention emergence
and lower social unfairness.
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Abstract. Large-scale Coalition Structure Generation poses a key chal-
lenge in the Cooperative Game Theory and Multi-Agent Systems in
regards to its NP-hardness computation complexity. State-of-the-art
algorithms, such as Optimal Dynamic Programming, could only solve
the problem on a small scale, e.g. 20 agents, with an excessive running
time. Our previous study, using population-based learning to deal with
the same scale outperforms others and revels an immense potential of
efficiency and accuracy. In this study we further advance the problem to
large scales, e.g. 80 agents. Firstly, we show that our PBIL-MW algorithm
could obtain an approximate optimal solution. Furthermore, we propose
an approach of Hierarchical PBIL-MW with a termination scheme that
achieves significant efficiency with only small losses in terms of accuracy.
It provides an alternative solution, while time restriction is essential in
some applications.

Keywords: Coalition Structure Generation · Optimisation
Dynamic Programming · Population-Based Incremental Learning
Smart Grids · Hierarchical Structure

1 Introduction

Coalition Structure Generation (CSG) [5], aka a “Coalitional Game in Parti-
tion Form” [13], is a concern in multi-agent systems technology when individual
agents join together to form groups (coalitions) for achieving an optimal solution
for the overall benefit of all the participating agents.

For example, because renewable energy sources, such as wind and solar power,
have variable energy outputs across both space and time, it can be useful for
them to form temporary coalitions in order to share their energy. That way
communities having excess energy (i.e. they are producing energy in excess of
their local consumption) can give their unneeded energy to other members in

c© Springer Nature Switzerland AG 2018
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their coalition who are facing an energy deficit. For a large collection of commu-
nities producing renewable energy, it then becomes an optimisation problem as
to what coalition arrangement (i.e. which energy-producing communities should
join together to form the various coalitions) will result in the optimal distribution
of available power. Because weather conditions can change rapidly, a solution for
this CSG optimisation needs to be recalculated very often, say every hour.

However a straightforward algorithmic approach to reaching CSG optimiza-
tion is NP-hard and so does not scale well with respect to increasing numbers of
participating communities involved. Indeed, calculating CSG optimisation using
this straightforward approach for just two dozen agents in this connection is
infeasible. In this paper we explore more efficient ways to achieve near-optimal
results that are more computationally tractable.

There are many investigations have been devoted to improving the efficiency
of solving a CSG problem [10]. For instance, [14] propose a Dynamic Program-
ming (DP) approach to find an exact solution without using an exhaustive search,
[11] present a partial search algorithm which guarantees the solution to be within
a bound from optimum; [6] use heuristic to select optimal values from sub-
problems and choose the remained unassigned agents from other sub-problems;
[9] combine DP with a tree-search algorithm to avoid the redundant process in
DP and claim that the approach is the fastest exact algorithm for complete set
partitioning. These DP variants, such as [9] and [4] run in O(3n) and O(2n) time
respectively, which still restrict their application with limited numbers of agents.
For example, all the DP variants will need to get all the possible subsets, i.e.
coalitions, for n agents, which will be (2n−1). While n = 31, the number of
coalitions, (231−1), will need to have ≈ 16 GB RAM to store the fitness values
in a float array, 64 bites each, which is the maximum size allowed on our exper-
imental PC, and it makes the programs of DP variants difficult to manipulate.
Clearly, using 80 agents as we do in our study is beyond the practical scope of
DP. For large scale CSG, it remains impractical to search for a global optimum
using the approaches. Alternatively, stochastic optimisation (SO) algorithms for
CSG may provide a promising solution with great efficiency. For example, [12]
use an Order-Based Genetic Algorithm as a stochastic search process to identify
the optimal coalition structure. Though it does not guarantee finding an exact
solution, it has suggested the potential for using SO algorithms to solve the CSG
problems.

To our knowledge, there are few studies [10] employing SO algorithms to
solve CSG problems. Specifically, based on the algorithm of Population-Based
Incremental Learning (PBIL) [1], we have suggested an improved algorithm, Top-
k Merit Weighting PBIL (PBIL-MW) [7], for solving CSG problems. The result
has showed a promising ability both in accuracy and efficiency in comparison
with other algorithms. Advancing upon the previous approach, we ave designed
a new genotype encoding scheme [8], and the new results outperform a few SO
counterparts, such as Genetic Algorithm and the original PBIL. Moreover, in
comparison with DP, our approach has largely reduced the memory consumed
in computation and shortened the running time significantly. In this study, we
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further proposed two approaches, a Hierarchical PBIL-MW algorithm and a
termination scheme, and both have shown greater advantages for dealing with
large scale CSG applications which the DP variants hardly achieve.

The rest of this paper is organised as follows: in Sect. 2 we first give the math-
ematical framework for forming a coalition structure of agents in smart grids,
and we then propose our SO-based solutions, especially the hierarchical approach
and the termination scheme, for investigating the optimal partition. Some results
of experiment are shown in Sect. 4, with the algorithm’s performance compared
to the DP and our previous PBIL-MW method in terms of convergence speed
and computational efficiency for larger scale optimization. Finally, we conclude
the paper and point to some possible further directions.

2 Coalition Model for Large Scale Smart Grids

2.1 Coalition Structure

Within a cooperative game contains n agents, the set of all agents is denoted by
S, such that S = {an}. The term “coalition”, denoted by Ck, refers to k agents,
k �= 0, a subset of S. A coalition structure CS is a collection of coalitions, where
CS = {Ck}, such that ∪kCk = S, Ck �= ∅ and Ck ∩ C ′

k = ∅, if k �= k′. The size
of CS for S, denoted by |CSn|, is known as a Bell number [3], B(n), which is
proven to satisfy [5]

(n/4)n/2 ≤ |CSn| = B(n) ≤ nn. (1)

For example, in a set of three agents, there are five possible CS, i.e. |CS3| =
B(3) = 5, as listed below,

{a1, a2, a3}, {{a1, a2}{a3}}, {{a1, a3}, {a2}}, {{a1}, {a2, a3}}, and
{{a1}, {a2}, {a3}}.

To show its extraordinary growth rate, a few Bell numbers are listed below:

• B(1) = 1,
• B(10) = 115, 975,
• B(20) ≈ 5.172 × 1013,
• B(40) ≈ 1.575 × 1035,
• B(60) ≈ 9.769 × 1059,
• B(80) ≈ 9.913 × 1086.

Furthermore, a coalition structure CS is said to be globally optimal for a
characteristic function game G, if CS gives the maximal overall characteristic
value [5]:

v(CS) =
∑

Ck∈CS

v(Ck). (2)
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2.2 Coalition Model for Smart Grids

In comparison with other approaches for CSG in smart grids, we adopt our
previous model [7,8] which requires that every agent in the coalition should
have adequate renewable energy to support its own demand in general. However,
according to the intermittence of renewable energy, the agent may frequently
face shortage. Accordingly, keeping an agreement to share the surplus energy
among others is a more profitable method in comparison with measures such as
expanding the facility, installing larger backup capacity or dealing with power
companies. Since the demand and supply are both dynamic, the model needs to
engage a flexible mechanism to obtain the optimal CS endlessly. In the studies,
we assume all agents exchange their power generation surplus and consumption
needs regularly, e.g. on an hourly basis in this study. Thus, a faster algorithm,
e.g. within 10 min, with acceptable accuracy will be an essential prerequisite
for providing decision makers, such as agents or the coalition organizer, with
sufficient time to allow agents to adjust their power demand and supply, and to
reach a confirmed agreement among the agents.

Coalition Criterion. In every hourly period any agent ai with extra power can
share its surplus with shortage ones within the cooperative union. Our goal of
the union is to maximise the total profit by forming coalitions. For the stability
of power grids, the union joins every feasible coalition must have a power excess.

For instance, for a1 and a2, each has a 1.5 and 0.9 kWh excess accordingly,
but a3 has a shortage of 1.2 kWh . According to the requirement, a1 and a3

can team up as a feasible coalition {a1, a3}. On the other hand, a coalition such
as {a2, a3} is not acceptable. Consequently, a grand coalition cannot always be
feasible and a game of CSG [13] should be constructed and needs to be resolved.

Distributed Agents in Regional Smart Grids. Based on our previous stud-
ies which focus on local coalition, to demonstrate the ability on a large regional
scale, such as cities, we have extended the local model to four regional areas
as shown in Fig. 1. The power transports among the inter-area need to be sent
by a high voltage transmission network by way of transformers to exchange
power between distribution and transmission lines. The power loss caused by
the electrical lines is trivial in short distance; therefore, for a simplified coalition
model, only the power losses of transformers, β = 2%, per step up or down via a
transformer, are calculated.

Coalition Evaluation. In our study, v(Ck) is the fitness function of Ck given
by

v(Ck) =

⎧
⎪⎨

⎪⎩

0 if |Ck| = 1,

Qd × Pr if |Ck| > 1 and Q(Ck) ≥ 0,

−9999 otherwise,
(3)
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Fig. 1. Regional power connections structure

where |Ck| denotes the size of the coalition Ck, Pr represents the price difference
between getting power from the coalition and trading with power utilities, Qd

is the total power needed for deficit agents in the Ck, and Q(Ck) is the net
power of Ck. Furthermore, for giving penalty to an unfeasible coalition, we let
v(Ck) = −9999. The goal is to arrive at the best CS and to maximize total profit.
Certainly, an exhaustive search (ES) for the optimal CS could be a solution, but
will be impracticable for a generous size of agents. Thus, as in [10], other options
are essential for practically acquiring the optimum, or a near-optimal coalition
structure.

3 Approaches of PBIL-MW for Solving a Large-Scale
Coalition Structure Generation

3.1 PBIL-MW

As we know from the original PBIL algorithm [1,2,7], the probability vector
p(t+1) is updated depending on the top K elements Gi chosen from G. In fact,
K bests are utilized for updating p

(t)
i by p

(t+1)
j with equal weighting, i.e. 1

K .
However, it is reasonable that the fitness values {fi} may be used to tune the
weighting when updating p(t+1).
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Our proposed adaptive algorithm, PBIL with merit weighting (PBIL-MW),
incorporates this idea [7]. The first steps are the same as in PBIL until every
fitness individual fi has been evaluated in the first iteration. Then fi is ranked
and the weights are given by

wi =
f ′
i∑K

i=1 f ′
i

, 2 ≤ K ≤ n, (4)

where f ′
i = fi − min

i′∈i
(fi′),∀fi′ ≥ 0, and K is the number of chosen particles with

the highest fitness values. Now that every wi has been obtained, the probability
vector p(t+1) is given by

p(t+1) = (1 − γ) p(t) + γ

K∑

i=1

(wiGi) . (5)

Note that every fitness fi is considered and its weight wi is given accordingly.
The pseudocode of PBIL-MW is shown in Algorithm1.

Algorithm 1. PBIL-MW
1: Initialise probability vector P(0)

2: repeat
3: Generate a population Gn from P(t)

4: Evaluate and rank the fitness fi of each member Gi

5: Obtain wi from Eq.(4)
6: Update P(t+1) according to Eq.(5)
7: until termination condition has been met

3.2 Set-ID Encoding Scheme

In our previous study [7], we proposed a novelty encoding scheme by using the
coalition ID to allocate agents into separate groups in the process of searching
for an optimal coalition structure.

For example, in an 8 agents scenario, the bit-length is 3 for one agent and
3 × 8 = 24 bits for a probability vector. The binary vector [0, 0, 0] represents the
number 0 set, and [0, 0, 1] corresponds to number 1 etc. Hence, if the ID array
for agents 1 to 8 is [3, 2, 3, 7, 2, 2, 4, 0] then the coalitions will be
Coalition 0: {a8};
Coalition 2: {a2, a5, a6};
Coalition 3: {a1, a3};
Coalition 4: {a7};
Coalition 7: {a4}.
Therefore, the CS for this ID set is
{{a1, a3}, {a2, a5, a6}, {a4}, {a7}, {a8}}.
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Consequently, agents with the same ID suggest that they are in the same
coalition. For a set of n agents, the maximum coalition is n (all singletons) and
the minimum coalition is 1 (the grand coalition). Therefore,

L = n × 
log2 n�(bits) (6)

will be a sufficient length for the probability vector to represent all possible
coalition structures.

3.3 Global PBIL-MW

To distinguish the organisational paradigms used in this study, we name “Global
PBIL-MW” for the approach of searching the optimal CSG in a single PBIL-MW
computation as previous studies [7,8].

Coalition Evaluation. Following Eq. (3), the net power Q(Ck) of coalition Ck

with respect to intra-area and inter-area are calculated separately. For example,
a1 and b1 are surplus agents in different areas, a2 is a deficit in same area as a1.
For Coalition {a1, a2} the net power Q(Ck) = Q(a1) − Q(a2), and for Coalition
{b1, a2} the net power Q(Ck) = Q(b1) × (1 − 2β) − Q(a2) = Q(b1) × (1 − 4%) −
Q(a2).

Initial Probability Threshold. During our preliminary study, we found that
different initial thresholds for numerous agents and their power statuses will
lead the algorithms’ iterations for finding a better solution in different speeds.
Some results are shown in Fig. 2. Therefore, we have examined a series of initial
probabilities from 0.5 to 0.01, the suggested initial thresholds for numerous agent
size, in four hourly periods randomly chosen in data of year 2008, as shown in
Table 1.

Fig. 2. Comparative results of different initial probabilities for period II
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Table 1. Different initial probabilities used in Global PBIL-MW

Period I II III IV

Agent’s size Initial probability

20 0.1 0.1 0.1 0.1

32 0.1 0.1 0.1 0.1

48 0.1 0.2 0.1 0.1

64 0.1 0.2 0.1 0.1

80 0.1 0.2 0.05 0.1

3.4 Hierarchical PBIL-MW

Once the number of agents becomes larger, the size CSn will be very large.
For instance, in the 80 agents experiment, CS80 = B(80) ≈ 9.913 × 1086, any
program written to implement DP variants might be unfeasible. Although the
vector length L = 80 × 
log2 80� = 560 bits will be moderate for PBIL-MW
to search for the better CS, it will consume longer iterations to reach a global
or local optimal solution, e.g. over 27 min and 1580 iterations on average will
need in our experiment. Consequently, we propose a hierarchical structure of
PBIL-MW to accelerate the process of exploring the CS.

Our hierarchical approach uses two steps of PBIL-MW iterations. First, it
searches every local area separately to form a local optimal CS. Note that, since
there is no transformer with the local area, the power losses are ignored. Secondly,
we then employ all the local coalitions to explore the CS for the whole region. For
instance, in the first step, a1 to a4 and b1 to b4 can form a local optimal CS such
as la1 = {a1, a2}, la2 = {a3, a4}, lb1 = {b1, b3} and lb2 = {b2, b4}. According
to the local CS, the second PBIL-MW can look for the hierarchical optimal CS,
such as h1 = {la1, lb2} = {a1, a2, b2, b4} and h2 = {la2, lb1} = {a3, a4, b1, b3}.

From the framework we realize that after forming the local coalitions, then
any agent in a local coalition would only be able to cooperate with other agents
in a different local coalition by joining the two coalitions. Consequently, the best
fitness will be less than or equal to the one by global PBIL-MW. However, by
sacrificing the accuracy, this approach may shorten the time in return.

3.5 Termination Scheme

As seen in Fig. 4, we might find that some PBIL-MW can reach a maximum
fitness with just a few iterations. For speeding up the running time, we have
improved the algorithm by adding a threshold check to count the latest best
repeating times during the iterations. Throughout the process, any latest global
best fitness values and repeat times have been recorded. If a further new global
best value is found, then the repeat time will return to one; otherwise, this
duplicated time will be accumulated until its number meets the termination
threshold, e.g. 10 times in our experiments. On that occasion the program will
be terminated earlier.
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4 Experiment

4.1 Data

To demonstrate the potentials for our approach to be utilized in real-world smart
grids, we follow the same approach as in our previous works to construct a
realistic dataset, which is composed of two diverse sources. The first part is
power consumption of smart-meter readings in New Zealand. The second source
is power generated by commercialized facilities of wind turbines and solar panels
which are coupled with meteorological data of New Zealand from NIWA1.

To assess the ability of sharing power in a regional area, the weather data of
the four local cities, Dunedin, Balclutha, Middlemarch and Ranfurly, have been
gathered from NIWA. The first two cities are located in a windy coastal zone,
and the others are in sunny central Otago. The distance between cities is 40
to 80 km approximately. The power conditions of all agents are then given by
subtracting demand from supply. The power(kWh) used is on an hourly basis,
and the price Pr = 20 (¢/kWh).

However, we know that while the union has a net power surplus at some given
hours, then the grand coalition will have trivial solutions. Thus, we consider
only periods with overall power deficits. In our data, we have one year of hourly
power demand and supply for 240 agents. Among those, four hourly periods
with net power deficits are randomly chosen. Furthermore, in comparison with
the efficiency of different approaches, we pick five sizes of union at random which
are 20, 32, 48, 64 and 80 agents for the all four periods accordingly.

4.2 Setup

To our understanding, except Exhaustive Search, the algorithms of DB categories
are the ones which can guarantee an exact optimal for CSG [10]. However, from
Subsect. 2.1 we know that the running time of DP with respect to agent numbers
grows rapidly. Figure 3 (left) shows the running time for four periods with each
size from 4, 8, 12, 16 to 20 agents2, and all the 20 agents’ cases will spend more
than 6 h to get an exact solution.

Since our further experiments have utilized 20, 32, 48, 64 and 80 agents for
large scale CSG evaluation, and only the result of 20 agents obtained by DP
could be available as the ground truth in comparison with other algorithms.
Accordingly, instead of DP we will use max-fitness obtained from all approaches
in each period to be the comparison index.

The algorithms used in experiments are Global PBIL-MW (G-PBIL-MW),
Hierarchical PBIL-MW (Hi-PBIL-MW) and Hierarchical DP (Hi-DP). For two
PBIL-MW algorithms we also use fixed iteration and termination scheme for
comparison. Consequently, G-PBIL-MW-t and Hi-PBIL-MW-t will represent
1 Meteorological data obtained from “CliFlo: NIWA’s National Climate Database on

the Web”, https://cliflo.niwa.co.nz/.
2 The code of the experiments is written and testing in Python 3.6 on Windows 10

PC with Intel core i5-4570 CPU and 16 GB RAM.

https://cliflo.niwa.co.nz/
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algorithms with a termination scheme. Note that DP and Hi-DP are run once,
and all PBIL-MW experiments are repeated 20 times to obtain the average.
Figure 3 (right) shows the running time for all PBIL approaches with each size
from 20 to 80 agents accordingly.

Fig. 3. Running time according to different number of agents. Left: DP with log-scale
of time. Right: average running time for PBIL approaches.

4.3 Results

Case Study of 20 Agents. For the four periods, all the algorithms can reach
the exact solution as DP’s results. The optima of these periods are 111.047,
77.889, 98.845, 124.895 respectively. Table 2 shows the time required for each
approach. It is clear from the table that excludes DP, all others are more than
200 times faster, and especially they could all reach the same optima as DP.

Table 2. Running time of different approaches for 20 agents

Period DP Hi-DP G-PBIL-MW Hi-PBIL-MW G-PBIL-MW-t Hi-PBIL-MW-t

I 21328.98 16.63 45.05 100.91 14.38 2.11

II 27565.86 14.50 43.94 76.94 36.54 39.91

III 29372.56 0.22 44.75 77.77 17.28 2.70

IV 28605.46 0.22 47.31 81.98 2.77 1.46

Mean 26718.21 7.89 45.26 84.40 17.74 11.54

Unit: sec

Case Study from 32 to 80 Agents. For the large-scale experiments, we
select 32, 48, 64 and 80 agents to be the size for the whole four local areas.
Hence, from Eq. 6 we know that the bits length of the probability vector are
160, 288, 384 and 560 accordingly. The population and number of iterations are
consistently 500 and 4000. All PBIL-MW algorithms have run 20 times, and the
results are summarised in Table 4. Since DP is unfeasible in these experiments,
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we follow the hierarchical structure of PBIL-MW to compute the fitness of CSG
by hierarchical DP (Hi-DP), though it can be executing under 20 agents, while
in some cases the local coalitions will exceed 20 which leads to Hi-DP becoming
unfeasible again.

Furthermore, Table 3 shows the running time of different approaches for 32
agents. It is obvious from the table that Hi-DP is becoming slower than others.
Thus we can know that Hi-DP will still be unfeasible while the agents’ size
becoming larger.

Table 3. Running time of different approaches for 32 agents

Period Hi-DP G-PBIL-MW Hi-PBIL-MW G-PBIL-MW-t Hi-PBIL-MW-t

I 5608.41 622.88 111.58 171.01 43.68

II 423.81 624.66 101.97 752.01 25.34

III 0.16 676.16 89.33 20.28 2.03

IV 0.10 707.83 87.95 82.15 2.35

Mean 1508.12 657.88 97.71 256.36 18.35

Unit: sec

Table 4. Max-fitness of different approaches

Size Period Hi-DP G-PBIL-MW Hi-PBIL-MW G-PBIL-MW-t Hi-PBIL-MW-t

32 I 147.75 147.75 147.75 147.75 147.75

II 164.04 164.12 163.70 164.12 163.58

III 119.29 119.29 119.29 119.29 119.29

IV 199.43 199.43 199.43 199.43 199.43

48 I NA 218.03 218.03 218.03 218.03

II NA 179.76 179.35 179.76 179.38

III 270.07 270.07 270.07 270.07 270.07

IV 234.85 234.85 234.85 234.85 234.85

64 I NA 288.16 288.16 288.16 288.16

II NA 237.34 235.65 237.34 235.65

III 384.21 384.21 384.21 384.21 384.21

IV 289.82 289.82 289.82 289.82 289.82

80 I NA 369.94 369.94 369.94 369.94

II NA 291.48 291.39 291.48 291.29

III NA 462.95 462.94 462.95 462.94

IV 372.40 372.40 372.40 372.40 372.40

unit: cent(¢)/hr
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In general, we can find that G-PBIL-MW and G-PBIL-MW-t always have the
max-fitness values, though in some cases the hierarchical approaches will have
the same ones. Albeit, we have explained in Subsect. 3.4 that the best values of
Hi-PBIL-MW will be less than the global approach sometimes. It is clear from
Table 4 that even in the worst case, e.g. period II of 64 agents (as shown in
Fig. 4), its best fitness is still close to the maximum.

Besides the accuracy, we have computed the average running time of all
approaches as shown in Fig. 3. The faster converge speed of H-PBIL-t will be
an appropriate alternative, while running time is an essential concern in some
applications. Like the data of our study which are based on an hourly exchange,
in the 80 agents’ cases, the G-PBIL-MW or G-PBIL-MW-t will demand nearly
half an hour to obtain the better result, and on the contrary, Hi-PBIL-MW
and Hi-PBIL-MW-t take only 10 min less to gain a plausible solution. However,
for the large case, e.g. 200 agents in an hourly-based case, the Hi-PBIL-MW
and Hi-PBIL-ME-t could be the only two possible solutions to meet the time
requirement.

Fig. 4. Fitness VS. iteration for period II using different approaches

5 Conclusions

In this study, we demonstrate the superior speed and comparable accuracy of
hierarchical PBIL-MW approaches for solving a large scale CSG. Though the
stochastic optimization algorithms cannot guarantee finding the exact solution,
since no other method could be used, then it could provide a viable alternative.

Renewable energy sharing in a large region is a critical component. Some
areas have abundant wind power, while others have longer sunshine hours. Con-
sequently, the cooperation among those areas may result in flourishing energy
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utilisation and reduce the demand for a backup system. Our study can provide
a solution. While the subsidy of renewable energy is trivial, the prosumer could
still be profitable by utilising the mechanism provided in this study.

For future work, we will bring more constraints and enlarge the region to
form a multi-hierarchical CSG in smart grids.
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Abstract. Unmanned Aerial Vehicles (UAVs) have attracted significant
interest in recent years, as they have shown to be effective in supporting
a wide range of applications in many different areas, including logistics,
search and rescue (SAR) [3], public safety communications [8], infrastruc-
ture monitoring [9], precision agriculture [4], forestry [5], and telecommu-
nications [2]. Specifically we focus on those of search and exploration in
the context of search and rescue. In our presented work, success is mea-
sured in an agents ability to find all transmitters in as small a time as
possible. Through the use of a challenging discretized simulation environ-
ment, we investigate the practicality of an empowerment-driven explo-
ration behaviour (EEB) in order to locate an unknown number of wireless
transmitters with minimal prior knowledge about the locations of obsta-
cles, transmitters and their properties. With problem specific adaptations
to the algorithm, including the ability to detect non-identifying signals
from transmitters, when compared with a random walk agent and an
idealistic Bayesian agent, the empowerment algorithm performs near to
that of the Bayesian agent with unrealistic information about the envi-
ronment. We show that our empowerment-driven algorithm has practical
potential and lays a foundation for future work in this area.

Keywords: Empowerment · Search and rescue · Wireless transmitters

1 Introduction

We are interested in SAR operations and in particular on a scenario where several
people carrying some kind of wireless transmitter (e.g. their cellphone, laptop,
smart watch) are distributed over a fixed area and need to be located so that
they can receive rescue assistance. We assume that their wireless transmitters
frequently send out some signal, although the period is unknown. The overall
aim is to minimize the (average) time required to detect and localize all wireless
transmitters, assuming that an increased time (cost) taken to find these targets
has negative consequences [1].

c© Springer Nature Switzerland AG 2018
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We have chosen to investigate the viability of empowerment [7] to drive the
behaviour of UAV agents for SAR. Bayesian search models have been proven
effective in time-critical SAR operations, but there are still open questions
about path planning [10]. Empowerment offers an intrinsic motivation for agents
to search an environment, offering the ability to negotiate immediate loss of
“reward” in favour of long-term opportunity to discover a transmitter. The
empowerment-based algorithm developed in this paper comes with O(|A|N ) time
complexity, where |A| is the number of possible actions and N is the look-ahead
variable. We compare the performance of this algorithm against two baseline
schemes and find that it offers detection times much shorter than a random
search and competitive with the times achievable with an idealized Bayesian
agent already knowing the environment.

2 Background

See Table 1.

Table 1. Nomenclature for equations in this paper.

A Set of possible action states L Length of the environment in patches

B Set of obstacles within the environment n Number of empowerment steps

C Channel capacity S Set of possible sense states

ζ Channel capacity with prediction decay t Discrete time step for the environment

E Empowerment value T Set of transmitters

f(·) Function for calculating agent action W Set of possible world states

g(·) Function for internal agent update λ Information decay value

2.1 Perception Action Loop

We model our agent in a discrete-time perception action loop as shown in Fig. 1.
At each time step (or tick), t, the real world is in state Wt. An agent (i.e. a
UAV) is given sensor input St, updates its own internal world model to become
the new internal model Mt, and then calculates an action to be carried out,
At, which is taken from a finite set of actions available in the current internal
state Mt. The action taken in turn has an impact on the real world state, which
changes to become Wt+1 at the start of the next round. An agent essentially
wants to choose its action At so that it maximizes its chances of detecting or
even localizing a transmitter. In picking its action At the agent can choose to
consider the consequences of the actions into the future, for example over a time
horizon of the next n steps (lookahead). The agent first updates its internal
model using the behaviour g, i.e. Mt = g(Mt−1, St), and then calculates its best
action using behaviour f , i.e. At = f(Mt, n). In this paper we look to define
suitable representations for the sensor data St, the internal model Mt and the
two behaviours g(·) and f(·).
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Fig. 1. Agent’s perception action loop with memory.

2.2 Empowerment

Empowerment is an information-theoretic algorithm that describes the control
an agent has over its environment (whether this is actual control or perceived
control from an internal model) in the perception-action loop (see Sect. 2.1).
Empowerment can also be interpreted as allowing an agent to estimate how
much control it has and to choose its actions so as to maximize it’s capability
of maintaining many control options in the future [6]. In other words, an agent
driven by empowerment aims to “keep its options” as open as possible. When
applied to the SAR problem, we interpret the notion of “option” or “control”
here by the opportunities to discover a transmitter.

With one-step empowerment we aim to choose our action At to maximize our
information about the location of transmitters in the next step, i.e. to maximize
our chances of getting the desired sensor inputs St+1:

E1 := C(At → St+1) ≡ max
p(at)

I(St+1;At) (1)

With n-step empowerment we aim to choose At to maximize our information
about the location of transmitters within the next n steps:

En := C(At → St+n) (2)

3 System Model and Evaluation Method

3.1 Environment

We assume that the search environment W (i.e. the pre-defined area within
which to search for transmitters) is two-dimensional and has the shape of a
square, with sides of length L. The obstacles are placed randomly, with a given
probability p(B) of finding an obstacle within a patch.

We have used an algorithm from maze design, particularly we are using a
depth-first search (recursive-stack) backtracker to place obstacles. Obstacles are
then randomly removed until the desired ratio of obstacles in the environment
is obtained - whilst maintaining a fully explorable environment. Varying the
number of obstacles in the environment changes the scenario difficulty.
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3.2 Wireless Transmitters

The transmitters are randomly placed into the environment, particularly into
patches without obstacles, such that no two transmitters are in the same patch.
We choose a uniform distribution for placing transmitters into patches.

In this paper we use the simple unit disc model for transmitter detection.
In this model there is given a radius around the transmitter. If the receiver
is within this radius, a signal is received with 100% probability and if outside
this radius, signal is 0% probability. A transmitter transmits signals periodically
from a uniform distribution between 4 ticks and 10 ticks and do not contain any
information allowing the UAV to uniquely identify the transmitter, the UAV can
only tell whether a signal is detected or not. In our model signals do not overlap
or interfere with one another.

3.3 State, Sensing and Action Spaces

The world state is given by a vector (Wx,y : x, y ∈ {1, . . . , L}) with one state
value Wx,y for each patch (x, y). The patch occupancy is given by Wx,y ∈
{EMPTY, OBSTACLE, TRANSMITTER}.

With respect to sensing we make the following assumptions:

– The UAV agent has a GPS facility and can always tell with certainty in which
patch (x, y) it currently is. The UAV is restricted to being in patches without
obstacles.

– The UAV agent has a downward-facing camera, which allows to determine
with certainty whether a transmitter is directly below the UAV agent or not.
A transmitter in square (x, y) is detected with the downward camera only
when the UAV position is (x, y), too.

– The UAV has further sensors allowing it to determine whether the eight neigh-
boured patches contain obstacles (with obvious adaptations if the UAV is at
the boundary of the environment). This is called the Moore neighbourhood.

All these quantities are being made available to the UAV as the sensing input
St at the start of a tick. In addition there is the input from the radio receiver,
which the agent receives while being in the current patch. The action space of
the UAV agent reflects its options for movement, more precisely, when the agent
is in patch (x, y) it gives the possible movements into any neighboured patch for
the next tick, taken from the set A = {NORTH, EAST, SOUTH, WEST}.

3.4 Performance Measure

We vary both the number of transmitters and the density of obstacles indepen-
dently and record the average time to accurately detect all transmitters. The
simulation keeps track of transmitters the agent has accurately located by visit-
ing them (i.e. the agent being in the same patch and detecting the transmitter
with the downward camera). The average is taken over a number of realizations
of the maze.
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4 Comparison Algorithms

The random walk algorithm is very simple and can be considered a lower
bound. It does not keep any internal state (i.e. the state update function g(·) is
empty) and it selects the next patch randomly with uniform distribution (it can
tell which of the neighbouring patches is admissible based on sensor inputs, it
does not need to keep track of the environment).

We also use a Bayesian search algorithm which we expect to perform quite
well, by virtue of already having a-priori information about the environment,
which EEB does not have. Particularly, the Bayesian search algorithm knows
a-priori which patches contain obstacles and which ones don’t. The location of
transmitters is not known to the Bayesian search agent. Intuitively, the behaviour
of the Bayesian search agent is always to go next to the nearest patch which it
has not yet visited, this way exhausting all non-obstacled patches in a greedy
fashion.

5 Empowered Exploration Behaviour (EEB)

5.1 Algorithm Overview

Building on empowerment, our agent employs a few key differences:

– A preference for information in the near future: suppose the agent consid-
ers two alternative paths of n steps each, and both with the same number
of yet-unexplored patches, i.e. both allowing for the same information gain.
According to the definition of empowerment both possible paths would be of
the same value, but in our algorithm we give preference to the path which
leads more quickly to expected information gain.

– The use of transmitter signals to prioritize search, i.e. when the agent receives
transmitter signals in its current patch, it gives preference to close-by patches
in order to quickly locate the transmitter(s) currently close to it. With this,
the agent spends more time searching a given area with the expectation the
signal may reveal a new transmitter.

– When there exists two or more actions of the same maximal empowerment
value, we use a further heuristic to break the ties, where preference is given
to the option that leads to a newly discovered transmitter with a higher
probability. This is explained in more detail below.

5.2 Internal Memory

The EEB agent maintains an internal state Mt which is updated from the sensed
information about the environment. More precisely, to each patch (x, y) the agent
associates the following information:

– A belief value Wb(x,y) which encodes the current knowledge of the agent about
this patch, giving the probability of an undiscovered transmitter existing. As
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Wb(x,y) → 0, the probability of discovering a new transmitter is low and
at 0 the agent has directly observed the patch and confirmed there is no
transmitter. As Wb(x,y) → 1, the probability of discovering a new transmitter
is high. The agent operates under the assumption that there is always a new
transmitter to be found, which cannot be confidently proved true or false
until the entire environment is searched.

– Whether a patch can be explored (because of an obstacle) is stored in We(x,y),
where by default 1 indicates the state is explorable until an observation sug-
gests otherwise, in which case We(x,y) = 1.

– The number Ws(x,y) of radio signals heard while being on this patch: this is a
counter incremented each time the agent is in this patch and hears a wireless
signal.

– The location of transmitters found Wt(x,y), 0 by default indicates no trans-
mitter located, whereas 1 indicates a transmitter found.

Besides this information the agent knows its own position at any time, repre-
sented as the patch (x, y) it is currently in.

5.3 Update Function g(·)
In each tick, we update our internal model M depending on the sensor input S
as follows, assuming the agent is currently in patch (x, y):

1. Increment signal reception counters: When the agent has heard a signal while
being in patch (x, y) the counter Ws(x,y) is incremented according to the
number of signals overheard.

2. Record when no transmitter found: When the downward sensor in the current
location (x, y) indicates the absence of a transmitter we assign the belief value
Wb(x,y) = 0.

3. Record when transmitter found: When the downward sensor in the current
location (x, y) indicates the presence of a transmitter we assign the belief
value Wt(x,y) = 1.

4. Updating belief about neighboured patches: The agent uses its further sensors
to check neighbouring patches for the presence of obstacles. If, while the
agent is in patch (x, y) these sensors indicate an obstacle in a neighboured
patch (u, v), then we update the belief value We(u,v) = 0 and by extension, a
transmitter may not exist and Wb(u,v) = 0.

5. Keep track of update rates: Whenever we update any part of our internal
model during a tick, we increment the counter c by one. When calculating
1 − (c/ticks), we can calculate the average probability ρ under the assumption
this invalidates our previous empowerment calculations of the world. As time
passes, ρ will converge to 0, and we use ρ as a discount factor when weighing
information gain on n steps.

6. Identify areas with unaccountable signal(s): We consider two scenarios: (i)
the detected signal at Ws(u,v) is within radio range of a transmitter Wt(i,j) =
1 and our current model is Wz = Wb, (ii) the detected signal cannot be
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accounted for, in which case Wz(i,j) is Wb(i,j) times the sum of all local signals
Ws(u,v) divided by the total number of unexplored patches when the sum is
not zero.

Wz is finally normalized. It is recalculated per tick and represents a heuristic,
where larger values indicate a transmitter is more likely.

5.4 Action Function f(·)
After the update function g(·), we compute an output A by performing a calcu-
lation on our internal model M .

As described by the empowerment Eq. 1, we probe actions A for our model
Wz, and measure the resulting S to calculate the maximum expected information
gain. To perform n-step as seen in Eq. 2, for each probed Wz, we perform this
step again until n steps deep, choosing the action with the greatest expected
information gain.

An exception to this process is that when calculating maximum mutual infor-
mation for channel capacity, C, we decay this value for the current n-step value.
The purpose of ζ is to apply a self inflicted cost function to favour near-future
expected information gain. We consider the observed model update-rate as a
approximation of model accuracy.

ζ = max
p(a)

I(S;A) . ρn−1 (3)

Finally, if our empowerment calculation yields no bias between two or more
actions, we sum the probabilities represented by the competing actions and use
the largest in order to attempt to split the tie: North:

∑L
i=0

∑y+1
j=0 Wz=i,j , East:

∑L
i=x

∑L
j=0 Wz=i,j , South:

∑L
i=0

∑L
j=y Wz=i,j , West:

∑x+1
i=0

∑L
j=0 Wz=i,j . If still

no clear action exists, one is randomly selected from the empowerment calcula-
tion stage.

6 Results

We have developed a simulator in Java for the purpose of a controlled com-
parison. For both the random and the Bayesian search algorithm we run 1,000
replications for each considered combination of parameters, where for each repli-
cation a new scenario is generated randomly. For EEB we have used >50 aver-
aged replications per parameter combination, due to the computational complex-
ity of this algorithm. The results for the first set of experiments are shown in
Fig. 2a and b shows the results for the second set of experiments. We see that the
EEB agent was easily able to outperform the random walk agent and generally
performs close to the advantaged Bayesian search agent. Interestingly, in the sec-
ond experiment the gap between EEB and Bayesian search widens somewhat as
the number of transmitters is increased. We explain this by our heuristic to not
look in the vicinity of already detected transmitters, which can have a tendency
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(a) % of obstacles {0, 5, 10, 15, 20, 25} vs av-
erage ticks (y axis), transmitters = 5.

(b) % of transmitters {5, 10, 15, 20, 25} vs
average ticks (y axis), obstacles = 5.

Fig. 2. Comparison of algorithms where: (Length) L = 10, n-step = 12, transmitter
radius of 4 with periods of 4 to 10 ticks.

to mask further transmitters close to already detected ones. With the exception
of the random algorithm, the probability of obstacles had no measurable effect
on the average performance, meaning that the EEB agent was able to success-
fully navigate around obstacles to find transmitters despite no prior knowledge
of where obstacles were placed.

7 Conclusions

The EEB agent appears to be a practical algorithm which can find wireless
transmitters efficiently while simultaneously mapping the environment. We see
the EEB algorithm as a promising stepping stone towards the development of
more refined and more realistic single-agent algorithms, but more importantly
we also expect that it can be fruitfully carried over to the case where several
agents are used in parallel and are allowed to collaborate with each other, e.g.
by sharing belief and counter information. The EEB algorithm is an important
step towards information-driven search and exploration agents with an unknown
number of objectives. More work is required in order to reduce the computational
overhead and allowing for real-time application.
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Abstract. General game playing aims to develop autonomous computer play-
ers capable of playing any formally described games. The biggest challenge for
such a player is to understand a game and acquire useful knowledge about the
game from its description. This paper aims to develop a logical approach for
reasoning about game rules. We introduce a modal logic with a sound and com-
plete axiomatic system. The logic extends Zhang and Thielscher’s framework
with two modalities to express game rules and reason about game outcomes. We
use a well-known strategy game, Hex, to demonstrate how to use the logic to
standardise game descriptions and verify properties of a game description.

1 Introduction

One of the ultimate goals of AI is to develop programs that can solve any complex prob-
lem without the need to be taught how. Along with many other efforts towards such gen-
eral problem-solving systems, General Game Playing (GGP) aims to build AI systems
capable of playing any formally-described games without preset game-specific knowl-
edge [1]. To describe a game to an autonomous computer player, a formal language,
game description language (GDL), was developed as the official language for the AAAI
General Game Playing Competition [2,3]. GDL is highly expressive so that, in theory, it
can describe all finite-state, perfect-information games, including Checkers, Chess, Go
and many others. However, the way in which a game is described can dramatically affect
game players’ efficiency [4]. This has been observed at the 2016 GGP Competition,
which featured several games that were described by two syntactically different sets of
rules—a computationally simple one used by the Game Manager and one that was much
harder to reason about for the players. It was observed that the “badly described” games,
mostly involving recursive definitions, resulted in many players becoming highly inef-
ficient. Therefore a smart GGP player must be able to autonomously reformulate badly
written game rules in order to improve its efficiency [5,6]. The question is how this can
be systematically done.

Two approaches have been proposed in [1] for analysing a game from its GDL
description. The first approach is to create a domain graph from the formal game rules
to determine the dependencies of the variables therein. Such a graph can be useful
when we transform a GDL description into a more efficient data structure such as a
propnet [7]. The second approach is to create a rule graph from a game description
to analyse the structure of game rules [8]. A rule graph can be used to identify spe-
cific structural properties. Unfortunately neither of the approaches has been strictly for-
malised.
c© Springer Nature Switzerland AG 2018
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Zhang and Thielscher introduced a formal logical system to transfer GDL into a
propositional modal logic with a sound and complete axiomatisation [9,10]. The lan-
guage of their logic, denoted by LGDL+ , contains the basic components of GDL aug-
mented by a modality of strategy and two prioritised connectives to represent and rea-
son about game strategies. However, their logic was not specialised for representing and
reasoning about game descriptions. Although a GDL-described game rule can be liter-
ally translated into a formula their language, the translated game rules must be treated
as domain-dependent axioms and are combined with other domain-independent axioms
for reasoning purpose. The generic game properties, such as playability, terminability
and winnability, are not expressible in their logic. These properties must be discussed
in a upper level language with their logical language as the metalanguage.

This paper aims to develop a logical language to describe game rules in the object-
language level and reasoning facilities for formalising game properties and reasoning
about game descriptions. We will extend Zhang and Thielscher’s logical language with
two modalities, one for representing game rules and the other for reasoning about game
outcomes (Sect. 2.1). We then show the semantics of the extended logic (Sect. 2.2) and
discuss its properties (Sect. 2.3). By augmenting Zhang and Thielscher’s axiomatic sys-
tem with the axioms for the new introduced modalities (Sect. 2.4) we gain a sound and
complete axiomatisation of the new logic. In Sect. 3 we demonstrate how to describe
game rules in our logical language and how to formalise and verify game properties. We
will use the well-known strategy game Hex as a running example to demonstrate how
to use the logic to validate a game description and verify its properties. We conclude
the paper in Sect. 4 with a brief discussion of related work and future work.

2 The Logic

In this paper we will focus on games with finite states played by finite number of players
with complete information. To specify a game either syntactically or semantically, we
assume that any game is associated with a game frame F = (N,A), where N is a non-
empty, finite set of players andA is a non-empty, finite set of actions of players. We do
not make an assumption about whether an action is actually a joint move, as in GDL, or
a single player’s move. We only assume that each state transition is caused by exactly
one action. Therefore, in a simultaneous-move game, the actions are joint actions from
all players while in a sequential game, each action is performed by a single player. In
any case, all actions of a game must be fully specified by its description.

2.1 Syntax

Let us first introduce the syntax of our logic. To describe a game, we extend the propo-
sitional modal languageLGDL+ with the GDL variable wins(.) and two modal operators,
� and Υ.

Definition 1. Given a game frame (N,A), let LGDL++ be a propositional modal lan-
guage which consists of a set, Φ, of propositional letters, the reserved GDL variables,
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initial, terminal, does(.), legal(.),wins(.), and modalities [.], � .�, � and Υ. The formulas
of LGDL++ are generated by the following BNF rule:

ϕ ::= p | ¬ϕ | ϕ→ ϕ | initial | terminal | wins(n) | does(a) | legal(a)

| �ϕ | [a]ϕ | �a�ϕ | Υϕ
where p ∈ Φ, a ∈ A and n ∈ N. Other logical connectives (∧, ∨ and ↔) and logical
constants (� and ⊥) will be introduced as usual with the standard order of precedence.

As in GDL, initial and terminal are used to represent the initial states and the ter-
minal states of a game, respectively. does(a) means the action a is taken at the current
state. legal(a) means that action a is legal to be taken at the current state. wins(n) means
that the player n wins in the current state (wins(.) was not included in LGDL+ ). The
action modality [a]ϕ means if action a is executed at the current state, ϕ will be true in
the next state. With this modality, the next operators of temporal logic can be defined
as:

© ϕ =de f
∨

a∈A
(does(a) ∧ [a]ϕ) (1)

Modality �a�ϕ is inherited from LGDL+ and means that if action a is chosen (but
not yet executed), ϕ must be true in the current state.

The extended language does not include the strategy modality �.� from LGDL+ sim-
ply because strategic reasoning is not a major concern of this paper. Instead, LGDL++

introduces the following two additional modalities:

– Global modality �ϕ: ϕ holds in all states with all possible selection of actions.
– Ultimate modality Υϕ: Ultimately ϕ will hold in the terminal state of every termi-

nating path that starts from the current state.

The dual operators of both modalities can be defined as follows:

�ϕ =de f ¬�¬ϕ 〈Υ〉ϕ =de f ¬Υ¬ϕ (2)

�ϕmeans that there exists a state and a choice of action such that ϕ is true. 〈Υ〉ϕmeans
that there is a terminating path starting at the current state along which ϕ becomes true
ultimately at the terminal state. The meanings of these new modalities will be clearer
after the semantics is given in the next section.

2.2 Semantics

As a general practice for GGP, a GDL-described game is specified by a finite state
transition system (or state machine). A state transition system can be defined as follows.

Definition 2. Given a game frame (N,A), a state transition model M of LGDL++ is a
tuple (W, I,T,U, L,G,V), where

– W is a non-empty set of states;
– I ⊆ W is the set of initial states;



A Logic for Reasoning About Game Descriptions 41

– T ⊆ W is the set of terminal states;
– U : W ×A → W \ I maps each pair of state and action to a non-initial state;
– L ⊆ (W \ T ) ×A says which actions are legal in a state;
– G : N → 2T specifies which player wins in which terminal states1;
– V : Φ→ 2W specifies which propositional letters are true in each state.

For simplicity, U(w, a) is sometimes written as ua(w) sometimes. Let w ∈ W and a ∈ A,

we call (w, a) a move. A sequence ρ = w0
a0→ w1

a1→ · · · am−1→ wm is called a path if

1. wj ∈ W for all 0 ≤ j ≤ m and a j ∈ A for all 0 ≤ j < m;
2. (wj, a j) ∈ L for all 0 ≤ j < m; and
3. U(wj, a j) = wj+1 for all 0 ≤ j < m.

We say that the path starts at state w0, denoted by ρ ↑ w0, and ends at state wm, denoted
by ρ̂ = wm. As an extreme case, a single state can be a path. A path is called a terminat-
ing path if it ends at a terminal state.

Similar to [9], we define the satisfiability relation as M |=(w,a) ϕ to mean that ϕ is
satisfied when action a is taken at state w of M. We write M |=w ϕ as an abbreviation of
“M |=(w,a) ϕ for all a ∈ A”.

Definition 3. Let M be a state transition model of LGDL++ . The satisfiabilty relation
M |=(w,a) ϕ is defined as follows:

M |=(w,a) p iffw ∈ V(p)
M |=(w,a) ϕ1 → ϕ2 iffM |=(w,a) ϕ1 implies M |=(w,a) ϕ2

M |=(w,a) ¬ϕ iffM �|=(w,a) ϕ
M |=(w,a) does(b) iffa = b
M |=(w,a) legal(b) iff (w, b) ∈ L
M |=(w,a) initial iffw ∈ I
M |=(w,a) terminal iffw ∈ T
M |=(w,a) wins(n) iffw ∈ G(n)
M |=(w,a) [b]ϕ iffM |=ub(w) ϕ
M |=(w,a) �b�ϕ iffM |=(w,b) ϕ
M |=(w,a) �ϕ iffM |=(w′,a′) ϕ for all w′ ∈ W, a′ ∈ A
M |=(w,a) Υϕ iff M |=ρ̂ ϕ for all terminating path ρ↑w
where p ∈ Φ; a, b ∈ A; n ∈ N and ϕ ∈ LGDL++ . Note again that ub(w) is an abbreviation
of U(w, b), meaning the next state after move (w, b) is taken.

As in any modal logic, ϕ is valid in M, written as M |= ϕ, if M |=(w,a) ϕ for all w ∈ W
and a ∈ A. Similarly, by |= ϕ we mean ϕ is valid in all state transition models.

1 We allow tie situations in which more than one players can won or lose simultaneously.
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2.3 Properties of the New Modalities

In this section, we show the basic properties of the new introduced modalities. First we
consider the global modality �.

Proposition 1. For any a ∈ A and any ϕ ∈ LGDL++ ,

1. |= �ϕ→ ϕ (Reflexivity)
2. |= �ϕ→ ��ϕ (Transitivity)
3. |= ¬ϕ→ �¬�ϕ (Symmetry)
4. |= �ϕ→ [a]ϕ (Inclusion - action execution)
5. |= �ϕ→ �a�ϕ (Inclusion- action selection)
6. |= �a��ϕ↔ �ϕ (Action selection reduction)

With the diamond operator, these properties can be written in different forms. For
instance, Symmetry can be simplified as:

|= ϕ→ ��ϕ
From the above proposition, it is easy to see that � operator satisfies all the properties
of the global modality [11] although it has to interact with other K modalities - action
execution, action selection and ultimate modality.

Note that we do not have |= ��a�ϕ → �ϕ. For instance, let Φ = {p} and A =
{a, b}. For any state transition system M with non-empty set W of states, M |=(w,c)

��a�does(a) but M �|=(w,c) �does(a), where (w, c) can be any move in M.
Next we show the properties of Υ operator. Before that, let’s define a new next

operator ⊕:
⊕ϕ =de f

∧

a∈A
(legal(a)→ [a]ϕ) (3)

Different from ©, ⊕ is hypothetical, which means that ϕ could be true after any legal
action were taken no matter which action is actually chosen.

Proposition 2. For any a ∈ A and any ϕ ∈ LGDL++ ,

1. |= �a�Υϕ↔ Υϕ
2. |= Υϕ↔ Υ�a�ϕ
3. |= Υ terminal
4. |= (Υϕ ∧ terminal)→ ϕ
5. |= Υϕ→ ⊕Υϕ
6. |= ((terminal→ ϕ) ∧ (¬terminal→ ⊕Υϕ))→ Υϕ

Properties (1) and (2) indicate that the ultimate operator only concerns about state
status regardless selection of actions. Properties (3) and (4) show that the truth of ulti-
mate operation is determined in the terminal states. This become more obvious if we
put (4), (5) and (6) together:

|= ((terminal→ ϕ) ∧ (¬terminal→ ⊕Υϕ))↔ Υϕ (4)
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This means that, to know if a property holds ultimately in all terminating states, we can
check whether it is true whenever a terminal state is reached; or proceed to the next
state and check. Such a recursive property can be seen in a number of modal logics, say
temporal logic (future operator F) or dynamic logic (iteration operator ∗). Note that any
terminating path must be finite because there is no legal action at a terminal state. This
differentiates the ultimate operator from other temporal modalities in the traditional
modal logics [11,12]2.

2.4 Axiomatisation

In this section, we will develop an axiomatic system for the proposed logic. Since our
logic is extended from [9]’s system, we will inherit most of their axioms but introduce
the axioms for the new modalities and prove the soundness and completeness of the
whole system. We call the logic with the following axiomatic system GDL++ while
[9]’s system is referred to as GDL+:

1. Basic axioms:
(A1) all axioms for propositional cal-

culus
(A2) � ¬(does(a) ∧ does(b)) if a � b
(A3) � ∨

a∈A
does(a)

(A4) � ¬[a]initial
(A5) � terminal→ ¬legal(a)
(A6) � wins(n)→ terminal

2. Axioms on the action execution modal-
ity:
(B1) � [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ)
(B2) � ¬[a]ϕ↔ [a]

∨
b∈A
�b�¬ϕ

3. Axioms on the action selection modal-
ity:
(C1) � �a�p↔ p where

p ∈ Φ∪{initial, terminal, legal(b),wins(n)}
(C2) � �a�does(a)
(C3) � ¬�a�does(b), if a � b
(C4) � �a�¬ϕ↔ ¬�a�ϕ
(C5) � �a�(ϕ → ψ) ↔ (�a�ϕ →
�a�ψ)

(C6) � �a�[b]ϕ↔ [b]ϕ
(C7) � �a��b�ϕ↔ �b�ϕ

(C8) � �a��ϕ↔ �ϕ
(C9) � �a�Υϕ↔ Υϕ

4. Axioms on the global modality:
(E1) � �(ϕ→ ψ)→ (�ϕ→ �ψ)
(E2) � �ϕ→ ϕ
(E3) � ¬ϕ→ �¬�ϕ
(E4) � �ϕ→ ��ϕ
(E5) � �ϕ→ [a]ϕ
(E6) � �ϕ→ �a�ϕ

5. Axioms on the ultimate modality
(F1) � Υ(ϕ→ ψ)→ (Υϕ→ Υψ)
(F2) � Υ terminal
(F3) � Υ�a�ϕ↔ Υϕ
(F4) � (Υϕ ∧ terminal)→ ϕ
(F5) � Υϕ→ ⊕Υϕ
(F6) � ((terminal→ ϕ) ∧ (¬terminal
→ ⊕Υϕ))→ Υϕ

6. Inference rules:
(MP) If � ϕ and � ϕ→ ψ, then � ψ.
(GEN G) If � ϕ, then � �ϕ.
(GEN U) If � ϕ, then � Υϕ.

where a, b ∈ A, n ∈ N and ϕ, ψ, α ∈
LGDL++ .

Among the axioms and inference rules, (A6), (C8), (C9), (E1)–(E6), (F1)–(F6),
(GEN G) and (GEN U) are new to GDL+. We also removed inference rules (GEN A)

2 For example, the ultimate operator looks similar to the future operator F in temporal logic.
However, [F]ϕ (〈F〉) means that ϕ holds in all future time points (will hold in some future
point). The ultimate operator checks only at the terminal states.
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and (GEN C) from GDL+ because they can be derived from (E5), (E6) and (GEN G).
We excluded all the axioms in relation to the strategy modality because the strategy
operator is not part of language LGDL++ .

As usual, a formula ϕ is derivable, denoted by � ϕ, if it can be derived from the
axioms and inference rules. For any set of formulas Σ and formula ϕ, Σ � ϕ means that
there are ϕ1, · · · , ϕm ∈ Σ such that � (ϕ1 ∧ · · · ∧ ϕm)→ ϕ.

Theorem 1 (Soundness and completeness). For any ϕ ∈ LGDL++ , |= ϕ if and only if
� ϕ.
The soundness for the additional axioms has been proved by Propositions 1 and 2. The
proof of completeness is quite lengthy even for the extended components only. For
better readability, we put the proof at the end of this paper as an appendix.

Although the common practice of implementing a GGP player is to compile a
GDL described game into a state machine, search for game playing strategies over a
state machine normally has exponential complexity. As mentioned earlier, the way to
describe a game dramatically affects the efficiency of a GGP player. It is crucial for a
GGP player to be able to reformulate a computationally unfriendly game description
into more efficient ones before a game starts. Ideally, the process of rule reformulation
can be done in syntactical level. The axiomatic system of the logic not only gives us
hope for developing syntax-based approaches for game rule reformulation but also pro-
vide us two options for theoretical proofs - either in syntactical level or in semantical
level (See Proposition 4).

3 Reason About Game Descriptions

The logic introduced in the previous section not only provides a formal language to
describe game rules but also an inference mechanism for reasoning about a game.

3.1 Game Descriptions

Both LGDL+ and LGDL++ contain all the logical components of GDL. In order to reason
about a GDL-described game, it seems that we only have to translate the GDL rules
into a set of logical formulas in either LGDL+ or LGDL++ . Unfortunately this is not true.
A game description in GDL specifies an action theory, containing a set of initial state
axioms, precondition axioms, effect axioms, frame axioms, terminal state axioms and
wining conditions. This axioms must be treated as domain-dependent axioms when we
use GDL+ to reason. They are not expressible in the object level of GDL+. However,
with the global modality of LGDL++ , it is possible. To demonstrate how to describe a
game in LGDL++ , we consider the following game, Hex, co-invented by Piet Hein and
John Nash [13].

Example 1 (Hex Game).Hex is a two-player game played on a rhombus-shaped board
with m×m hexagonal cells (m > 1). The two players, Black (b) and White (w), alternate
placing a stone of their colour in a previously unoccupied cell. The goal of each player
is to form a connected path of their own stones linking opposing sides of the board
(North and South for Black; West and East for White). The first player to complete his
or her connection wins the game (see Fig. 1).
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Fig. 1. An 11 × 11 hex game where the white player wins.

To specify the game in our language, let pni, j denote that cell (i, j) is occupied by player
n’s stone and ani, j the action of player n placing a stone in the cell (i, j), where n ∈ {b,w}
and 1 ≤ i, j ≤ m. Furthermore, we recursively define a collection of propositional
symbols γn(i, j, i′, j′), for each n ∈ {b,w} and 1 ≤ i, i′, j, j′ ≤ m, as follows3:

– γn(i, j, i, j)↔ pni, j
– γn(i, j, i′, j′) ↔ (pni, j ∧ ad jacent(i, j, i′′, j′′)∧γn(i′′, j′′, i′, j′)) where ad jacent(i, j,
i′, j′) =de f (i′ = i∧| j − j′| = 1)∨(|i − i′| = 1∧ j′ = j)∨(i′ = i + 1∧ j′ = j − 1)∨(i′ =
i − 1)∧ j′ = j + 1).

It is easy to see that γn(i, j, i′, j′) represents the existence of a path for player n from
(i, j) to (i′, j′). With the variables defined above, the rules of Hex game on an m × m
rhombus can be specified by the following formulas:

1. �(initial↔ turn(b) ∧ ¬turn(w) ∧ m∧
i, j=1
¬(pbi, j ∨ pwi, j))

2. �(wins(b)↔ m∨
j, j′=1
γb(1, j,m, j′))∧

�(wins(w)↔ m∨
i,i′=1
γw(i, 1, i′,m))

3. �(teminal↔ wins(b) ∨ wins(w) ∨ m∧
i, j=1

(pbi, j ∨ pwi, j))

4. �(legal(ani, j)↔ ¬(pbi, j ∨ pwi, j) ∧ turn(n) ∧ ¬terminal)
5. �(©pni, j ↔ pni, j ∨ does(ani, j))
6. �(©turn(w)↔ turn(b)) ∧ �(©turn(b)↔ turn(w))

where n ∈ {b,w} and 1 ≤ i, j ≤ m whenever they occur as free variables. Let Σmhexp
denote the set of the above game rules. These are the rules, reformulated in our lan-
guage, from the original GDL description for players from the 2016 GGP Competition4.

3 Since our language is propositional, each γn(i, j, i′, j′) is treated as a propositional variable
rather than a predicate. Different values for n, i, j, i′, j′ result in different variables.

4 The original GDL description includes a step(.) variable. Since it does not play a role in the
rule compilation, we omitted it in our version.
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The rules are quite intuitive. Rule (1) says that initially it is the black player’s turn
and all cells are empty. Rules (2) and (3) describe the winning and termination con-
ditions, respectively. (4) and (5) specify legality and effects of each action. Rules (6)
defines turn-taking.

In theory, any set of formulas in LGDL++ specifies a game (or a set of games), there-
fore can be called as a game description, because they determines a set of state tran-
sition models. However, we expect a game description specifies a meaningful game,
which can be started, eventually terminates, is playable and winnable. It is important
to know whether a set of formula correctly specify such a game and, more importantly,
how to derive properties of a game from its description.

3.2 Game Properties

Genesereth and Thielscher introduced a set of constraints to limit the scope of game
descriptions so as to avoid problematic games [1]. These constraints were described
informally as follows:

– Termination: A game description terminates if all infinite sequences of legal moves
from the initial state of the game reach a terminal state after a finite number of steps.

– Playability: A game description is playable if and only if every role has at least one
legal move in every non-terminal state reachable from the initial state.

– Winnability: A game description is strongly winnable if and only if, for some role,
there is a sequence of individual actions of that role that leads to a terminal state of
the game where that role’s goal value is maximal, independent of the other players’
moves. A game description is weakly winnable if and only if, for every role, there is
a sequence of joint actions of all roles that leads to a terminal state where that role’s
goal value is maximal.

– Well-formedness: A game description is well-formed if it terminates and is both
playable and weakly winnable.

With the help of our logic, we can formalise these concepts accurately. Let Σ be a
set of formulas in LGDL++ . If we use Σ to describe a game, as a minimal requirement,
we want the description to be logically consistent:
Consistency: Σ � ⊥
In other words, at least one state transition model satisfies the game description.

Secondly, we require that the description of initial states and terminal states are
valid:
Non-vacuity: Σ � �initial ∧ �terminal
Semantically, either the set of initial states or the set of terminal states of any state
transition model of the game description is non-empty.

Thirdly, we specify the condition of termination:
Termination: Σ � �(initial→ 〈Υ〉terminal)
The condition says that any initial state leads to a terminal state. In other words, a game
must have a terminating path from each initial state. Since there is no legal action in
the terminal states, all terminating paths are finite. Note that we do not require that any
path from an initial state terminates in finitely many steps because in some games, such
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as Chess, states can be repeated forever unless there are special termination conditions
enforced.

The following conditions express two variations of termination.
Weak Termination: Σ � �(initial ∧ 〈Υ〉terminal)
Strong Termination: Σ � �〈Υ〉terminal
Weak termination means that there is at least one path that starts from an initial state
and ends in a terminal state. Maze games satisfy weak termination, for example. Strong
termination says that any state with any action can lead to a terminal state.

Next, we formalise the concept of playability.
Playability: Σ � �(¬terminal→ ∨

a∈A
legal(a))

The condition of playability requires that in every non-terminal state there must be
at least one legal action to proceed. Thus for a turn-taking or simultaneous-move game,
every player must have at least one legal move in every non-terminal state. Note that
our concept of playability is slightly stronger and simpler than [1]’s because we do not
require that non-terminal states are reachable.

Finally, we introduce concepts of winnability that also slightly differ from [1] due
to the following two reasons. First, we do not assume all players make simultaneous
moves. Weak winnability is then not generally applicable. Second, the original GDL
contains a goal function which awards each player a natural number as its goal value
when a game reaches a terminal state. However, including a function with values of
natural numbers in a propositional modal logic would introduce significant complexity.
Instead we simply use the propositional variables wins(.) with only two values, true
and false, to represent a game outcome. Accordingly, our concepts of winnability are
simpler but different.
Week Winnability: Σ � ∧

n∈N
�(initial→ 〈Υ〉wins(n)).

Strong Winnability: Σ � ∧
n∈N
�(initial→ 〈Υ〉wins(n)).

Weak winnability says that every player has a chance to win. Strong winnability says
that every player has a chance to win no matter which initial state the game starts from.
These concepts of winnability reflect a certain sense of fairness.

Finally we have the following definition:

Definition 4. A game description is well-formed if it is consistent, non-vacuous, ter-
minable, playable and weak winnable.

3.3 Reason About Game Descriptions

We have demonstrated that the language ofGDL++ is sufficient for formalisation of [1]’s
informal constraints on game descriptions. However, expressing properties of game
descriptions is not the main motivation of proposing this logic. The main motivation
for the logic is to develop approaches for analysing game properties. In this section, we
demonstrate how to use GDL++ for reasoning about game properties.

First we show the relationship between the game properties.

Proposition 3. For any game description,

1. Strong Termination implies Termination.
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2. Non-vacuity and Termination implies Weak Termination.
3. Strong Winnability implies Termination.

Secondly, we show the game properties of Hex game.

Proposition 4. For the game description Σmhexp of m × m-Hex,
1. Σmhexp |= �(initial→ 〈Υ〉terminal)
2. Σmhexp |= �(initial→ Υ¬(wins(b) ∧ wins(w)))
3. Σmhexp |= �(initial→ Υ(wins(b) ∨ wins(w)))

Statement (1) says that Hex is terminable. Statement (2) says that the two players
cannot win a game of Hex at the same time. Statement (3) is a well-known result which
says any terminated Hex game must have a winner. It is worth noting that the proof
of statement (3) requires to map Hex game models to planar graphs or to a fixed-point
problem so that either the Four-Colour Theorem or Brouwer’s Fixed-Point Theorem
can be used to prove it [13].

We would like to remark that we did not provide syntactical proofs for these state-
ments. The first two have simply syntactical proofs even quite lengthy. A syntactical
proof for the third statement can be very challenging. Thanks to the soundness and com-
pleteness, which allows us a model-based proof using the well-known existing methods.
However, it is interesting to know if an automated theorem prover can help.

Finally we show that Σmhexp is a well-formed game description.

Theorem 2. The game description Σmhexp is well-formed.

From the above examples we can see that although reasoning about game prop-
erties is possible but it cannot be easy, as [1] said, “analysing a set of rules with the
aim to acquire useful knowledge about a new game is arguably the biggest, and most
interesting, challenge for general game-playing systems.” A general practice in GGP
player design is: syntactical approaches can be highly efficient but less guaranteed while
model-based approaches can guarantee to use but less efficient. Normally syntactical
approaches apply to large games and model-based approaches work only for simple
games.

4 Discussion and Conclusion

We have introduced a modal logic system with formally defined syntax, semantics
and sound complete axiomatic system. Although the logic was build up on Zhang and
Thielscher’s framework, the motivation and outcomes of these two pieces of work are
significantly different. Zhang and Thielscher’s work focuses on representation and rea-
soning about game strategies while this current work aimed at expressing game rules
and analysing game properties. With the new modalities, we can describe game rules
and game outcomes in the object language level. These operators interact with the exist-
ing operators nicely resulting in a highly expressive but simple, intuitive and elegant
logical system.
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There has been a number of logical frameworks that can be used for describing and
reasoning about games, such as ATL, coalition logic and even dynamic logic or situ-
ation calculus [14–16]. Different frameworks have different focuses and different pros
and cons with respect to either expressive power, inference facilities, or computational
complexity. Among all the logics with similar expressive power, our logic looks the
simplest with regarding to its semantics and axiomatic system. In addition, our logic is
the only formal logical system fully expressing GDL without transformation. The pro-
posed proof theory may be useful in the development of automated reasoning systems
for GGP players.

There are a number of different directions for further extending the current work.
The first direction is to extend the existing logic with epistemic operators or coali-
tion operators in order to represent games with incomplete information and strategic
ability and coalition of multi-agents [17]. The second direction is to extend the cur-
rent logic with the strategy modality [9]. This can be extremely interesting because the
strategy modality in [9] is reducible. However, with the ultimate modality, this operator
is no longer reducible. This is very much like the announcement logic extending with
common knowledge operator [18]. In addition, the combination of strategy modality
and ultimate modality could allow us to express and even prove winning strategies for
games. As a simple example, the following statement says that ©(¬pb1,1 ∧ pb1,2) is a
winning strategy for Black in the elementary 2 × 2-Hex game:

Σ2
hexp |= �©(¬pb1,1 ∧ pb1,2)�Υwins(b)

However, with all modalities in one logic, the development of a sound and complete
axiomatisation becomes a challenge.

Finally, as mentioned earlier, the way of describing a game can affect the effi-
ciency of a GGP player significantly. It is ideal for a GGP player capable of
autonomously reformulating a badly-written game description into an “equivalent” but
more computationally-friendly description. Such equivalence is not necessarily logi-
cal equivalence but can be behaviourally equivalent. Implementation of algorithms for
automated game equivalence verification and automated game description compilation
and reformulation can be a common task for the GGP community in the future.
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Abstract. General Game Playing (GGP) is concerned with the devel-
opment of programs capable of expertly playing a game by just receiving
its rules and without human intervention. Its standard Game Descrip-
tion Language (GDL) has been extended so as to include incomplete
information games. The extended version is named as GDL-II. Differ-
ent algorithms were recommended to play games in GDL-II, however,
none of them can solve coordination games properly. One reason for this
shortcoming is their inability to generate the necessary coordination lan-
guage. On the other side, most existing language evolution techniques
focus on generating a common language without considering its gener-
ality or its use for problem solving. In this paper, we will extend GGP
with language evolution to develop a general language generation tech-
nique. The new technique can be combined with GGP algorithms for
incomplete-information games and assist players in automatically gener-
ating a common language to solve cooperation problems.

Keywords: General game playing with incomplete information
Language learning · Multi-agent coordination · Fictitious play
Evolutionary computing

1 Introduction

General Game Playing (GGP) is concerned with the development of a gen-
eral Artificial Intelligence (AI) system that, in principle, can learn to play any
game by only receiving its rules [8]. The rules are given in a formal language
called Game Description Language (GDL) [12]. While the original language was
restricted to games with full information, such as Chess and Go, a later exten-
sion of GDL, called Game Description Language with Incomplete Information
(GDL-II) [23], can also model games with asymmetric information and chance,
such as Poker. The current state of the art in GGP-II are three algorithms
known as Shodan Player [3], Norns algorithm [7], and HyperPlay-II [15], respec-
tively. However, none of these current algorithms is expressive enough to reach
an agreement for a common plan or language in cooperative games.

In some cooperative games, agents need to share their knowledge about
the world without this being explicitly described in the rules of the game.
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 51–64, 2018.
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As an example, consider a simple game, taken from [15], with a random player
(“Nature”) and two agents, respectively called cutter and viewer. The game is
named “cooperative spies game”. It proceeds as follows: First, a bomb is armed
by randomly choosing one of two wires. Only the viewer can see which wire the
bomb is armed with. This player can then send one of two possible messages
to the cutter. Finally, the cutter needs to cut the right wire for both agents to
win. The crux in this game is the lack of any connection between the percep-
tion of the viewer (which wire has been used) and the message it can send to
the cutter. This problem is mentioned as a limitation of all current methods
for GGP-II [15]. We believe this limitation is due to the inability of agents to
automatically generate a common language among themselves.

The study of common language generation in computer science can roughly
be divided into two categories based on the environments that are consid-
ered: simulated or embodied. The embodied systems mainly focus on language
games. There have been three main variants of the language game: object nam-
ing game, colour categorising and naming game, and lexicon spatial language
game [1,16,18–21]. In simulated environments, agents do not need any interac-
tion with the real world or image recognition, so they can focus on extending
the communication to a population of agents [9]. This extension allows the sim-
ulation to test how a common language equilibrium will be affected when a new
agent enters the environment [17].

Whether they use simulated or embodied environments, existing research
methods are all limited to the design and evaluation of one specific problem.
Recently, Reinforcement Learning (RL) has been suggested as a relatively gen-
eral approach to generate a common language [6,13]. RL techniques consist of
centralised learning and decentralised execution. They also assume there exists a
communication channel for sending messages with no effect on the world. These
assumptions limit the generality of the algorithms: Firstly, centralised learning
means agents who will cooperate need to come together and train with each
other. This reduces the applicability of these algorithms to games in which the
cooperating agents will always be allies and enemies will always be opponents.
Secondly, more complicated scenarios in which signalling might come at a cost
for agents cannot be solved by these techniques. In these scenarios, agents need
to weigh the benefit against the cost of signalling. Moreover, the RL techniques
always need centralised learning even though some problems can be solved with-
out requiring this. Later in this paper, we will present and discuss such a game.

In this paper, we will extend GGP with language evolution to develop a
general language generation technique. Our main contributions are as follows:
We extend GGP-II so that it can be applied to the field of language learning in AI
with the aim to study general language learning algorithms that can be applied
across a wide variety of problems. We also introduce a general language learning
algorithm in this framework that allows agents to reach a common language for
sharing information and correctly playing coordination games. Agents learning
new common languages for problems solely by being given a formal problem
description without a dedicated communication channel is new to both GGP as
well as the field of language learning.
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The rest of the paper is organised as follows: We first introduce the current
framework of GGP-II, cooperative games, and our recent so-called Iterative Tree
Search (ITS) algorithm for GGP-II [4]. We then introduce our new general lan-
guage learning algorithm for GGP-II, followed by an analysis of the algorithm in
a variety of different games. We also report on an experiment performed with the
help of genetic algorithm and our algorithm. The paper ends with a summary
and discussion of our results.

2 Background

This section provides a brief background on GGP-II, cooperative games, and
Iterative Tree Search.

Fig. 1. GDL-II description of the Cooperative Spies game.

2.1 General Game Playing with Incomplete Information

GGP systems can play any game whose rules are given in GDL format. Game
states in GDL are defined as sets of state features that are currently true. The
initial state and terminal states are distinguished. In GDL-II, “chance” is mod-
elled by a so-called random player. The random player chooses its moves ran-
domly with uniform probability, and it has the same reward value at all terminal
states. Players’ moves are hidden from each other. Logical rules are defined to
describe the next states, legal actions, and perceptions. The only way of knowing
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past moves of other players is through perceptions. Rules of the game explic-
itly describe who perceives what after every action. If agents are given sufficient
information then they can use logical inference and their perceptions to infer
some past moves. When the game ends, players will be notified and given a
reward value. In GGP the convention is that the minimum reward is 0 and the
maximum reward is 100. The goal of players is to maximise their reward values.

As an example of how games are specified to players in the general game
description language GDL-II, Fig. 1 formally describes the “Cooperative Spies
Game” [15] from the introduction. Pre-defined GDL-II keywords are printed in
bold. Keyword role in lines 1 to 3 is used to name the players in the game.
Keyword init in line 4 is used to list the state features that compose the initial
state of the game. Lines 6 to 21 use logical rules (that can be read like logic
programming rules but use prefix syntax and “?” to denote variables [12]) to
specify the legal moves that player have depending on the current position of
the game. As an example, lines 6 and 7 are saying that the random player can
perform action arm(?c) if the game is still at round(0) and ?c is a colour. Lines
23 to 30 describe the perceptions that players will get after a specific action. As
an example, lines 23 and 24 say that after the random player arms the red wire,
the viewer can see red. Lines 31 to 37 describe how the position of the game
will change during the match. For example, lines 36 and 37 are saying that the
armed wire will remain armed throughout the game. The terminal keyword at
line 45 describes when the game comes to an end. Lines 47 to 53 specify the
rewards of the players when the game terminates. For more details about syntax
and semantics we refer to [12] and [8].

2.2 Cooperative Games

A cooperative game has a cooperative environment. Cooperative environment
means agents will gain the most when they fully cooperate [14]. In this paper,
we will consider cooperative games in which agents need to generate a common
language in order to win. We also consider general games with a coordination
problem. The latter means that there is more than one optimal joint policy [2].
“Battle of Sexes” is a famous example of a game with a coordination problem.
Table 1 describes “Battle of Sexes” as a matrix game with rewards of either 1
or 0.

Table 1. Battle of Sexes with binary rewards

Man Woman

Boxing Shopping

Boxing (1, 0) (0, 1)

Shopping (0, 1) (1, 0)

Another example of a game with a coordination problem is called “pick a
number”. In this game, two agents are asked to choose a number simultaneously,
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e.g. between 0 and 100, and if they select the same, then both win. One technique
to solve this type of games is to use a focal point [5]. According to the focal point
technique, agents should choose the most distinct and unique object or path. In
the example the median, 50, is the most unique and distinct number, so both
agents should choose 50. This technique is easily understandable to humans and
often applied in real life. However, as problems get more complicated, e.g. when
a game becomes symmetric like the “Battle of Sexes” game with only 1 and 0
rewards, the focal point tewas chnique is not suitable to solve the problem.
Language games, such as the Naming Game, all feature both a cooperative
environment and a coordination problem.

The other common approaches for games with a coordination problem are
policy learning and convention techniques. In policy learning, agents play a game
several times and choose an optimal policy randomly each time. When they dis-
cover that they both chose the same optimal policy, then they will keep playing
it. Social law or convention technique is one of the most basic approaches. With
the help of a function that always chooses one unique element in a given set, this
technique will assist agents to always choose the same joint strategy. Social con-
vention technique has also been used to tackle the one-shot prisoner’s dilemma
problem [11,22]. The convention technique is relatively easy to implement with
GDL. One convention function could be to return the maximal optimal joint
strategies based on the alphabetic order of roles and their strategies. This, how-
ever, is not intuitive to other players or humans so that we will use the policy
learning technique instead.

2.3 Iterative Tree Search Algorithm

Recently, we have developed Iterative Tree Search (ITS) as a new algorithm
that can successfully play a wider variety of GGP-II games than previous tech-
niques [4]. ITS searches on the incomplete information game tree to value infor-
mation in games. It also iteratively plays against itself before the game starts in
order to learn the optimal strategy against a rational opponent. However, it is
incapable of playing coordination games such as the above-mentioned Coopera-
tive Spies game. For a detailed description of the ITS algorithm we refer to [4]; in
this paper, we will introduce a simplified version (called sITS). In this version,
the algorithm searches the game tree only once and avoids further iterations.
Iteration is required to model an opponent in a game and hence is not needed
for the purpose of our work here since we are focusing on cooperative games.
This dramatically reduces the time complexity of the algorithm. The simplified
version is described in Algorithm 1.

3 General Language Algorithm

While traditionally the focus in GGP competitions has been on one-shot
games [8], in order to solve a coordination problem we will use a policy learning
technique for which we extend the GGP framework to go beyond one-shot games.
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Algorithm 1. Simplified ITS algorithm
1: firstState ← GenerateTheGameTree(GDL)
2: IS ← GenerateInformationSetHashMap
3: gameV alue ← CalculateUtil(firstState)
4: return gameV alue[theP layer]

5: procedure CalculateUtil(state)
6: if state ∈ terminals then
7: return state.reward
8: else if state.playerToMove == random then
9: return CalculateRandomUtil(state)

10: else � If the player is an agent
11: return CalculateP layerUtil(state)

12: procedure CalculateRandomUtil(state)

13: return
∑

m∈state.legalM
CalculateUtil(state.nextS(m))

|state.legalMoves|

14: procedure CalculateP layerUtil(state)
15: return

max
m∈state.legalM

⎛

⎝
∑

st∈IS(state)

Prob(st) × CalculateUtil(state.nextS(m))

|IS(state)|

⎞

⎠

This also requires that players keep information about their past matches. On
this basis we can now introduce our General Language (GL) algorithm.

Only for the sake of clarity in our description of the algorithm, we will intro-
duce a new syntactical element to GDL-II, a pre-defined keyword called must().
An instance (must (does ?agent ?action1)) forces an agent to choose the given
specific action. Effectively, we are just removing all the legal actions except for
one for a player in a state. We will refer to this rule as the mustRule.

Our General Language technique for GGP-II learning is as follows: A common
language can be described as a set of mustRules added to the original GDL-II
of the game. These rules connect perception tokens received by a player to the
actions of that player. In other words, each mustRule forces an agent to play a
particular move that triggers a specific percept if, and only if, the agent made
a specific observation beforehand. A move that releases a percept must happen
right after the triggering percept has been received by the player. This is a one
to one relation. Formally, all the added mustRules have the following structure:

(⇐ (must(does ?agent1 ?action1)) (sees ?agent1 ?perception1))

where action1 has the following consequence:

(⇐ (sees ?agent2 ?perception2) (does ?agent1 ?action1))
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It is worth noting that ?perception1 is always received before ?perception2 in a
game.

The first step of the GL technique is to generate a bag of different GDL
games, each of which we refer to as dialect. The original GDL of the game is
a dialect, and so are the original GDL with one or more mustRules added. We
begin by adding all the possible dialects. Next, we run sITS on each dialect and
set the returned value for each game as the value of the dialect. We then choose
the dialect with the highest value and play the policy generated by running
sITS on this dialect. If there is more than one dialect with maximum value, then
we have a coordination problem. To solve this coordination problem, we will
use the learning policy algorithm. Each agent chooses a dialect with maximum
value randomly, then plays an optimal policy for it. If the coordination succeeds,
they will stick with what the chosen dialect for all future rounds. If, however,
it fails, then the agents repeat the process by randomly choosing a dialect with
maximum value again. Algorithm 2 describes this GL algorithm more formally.

Algorithm 2. General Language Algorithm
1: dialectList ← [ ].add(theOriginalGDL)
2: Populated dialectList
3: maxReward ← −1
4: for all dialect ∈ dialectList do
5: if maxReward < sITS.V alue(dialect) then
6: maxDialect.add(dialect)
7: maxReward ← sITS.V alue(dialect)

8: chosenDialect ← rand(maxDialect)
9: while (time allows) do

10: play according to sITS(chosenDialect) policy
11: if matchReward < maxReward then
12: chosenDialect ← rand(maxDialect)

Example: Cooperative Spies. To illustrate our technique, we will use the
Cooperative Spies game by Schofield and Thielscher [15], who introduced this
example to illustrate the limitation of their and all other existing approaches
to general game playing with incomplete information. The crux is that in the
description of the game (cf. Fig. 1) there is no logical dependency between the
colour of the wire and the signal that the viewer can send. For this reason, none
of the previous GGP-II approaches can solve this problem.

Recall from Fig. 1 the following sees rules for the viewer :

(⇐ (sees viewer redWire) (does random (arm red)))

(⇐ (sees viewer blueWire) (does random (arm blue)))

along with the following rules for the cutter :

(⇐ (sees cutter a) (does viewer tellA))

(⇐ (sees cutter b) (does viewer tellB))
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For this game, there are four possible mustRules that can be added:

1. (⇐ (must(does viewer tellA)) (sees viewer redWire))
2. (⇐ (must(does viewer tellA)) (sees viewer blueWire))
3. (⇐ (must(does viewer tellB)) (sees viewer blueWire))
4. (⇐ (must(does viewer tellB)) (sees viewer redWire))

There are 16 combinations of the above mustRules1. However, any combination
must keep the one-to-one rule and the received-perception-before-sent-perception
rule. As a result, we will only have six legal combinations that can be added to
the original GDL. We then run the sITS algorithm on all seven dialects and
calculate their values. Consider, for example, the dialect with only mustRule 1.
This dialect is similar to the original GDL but limits the viewer to only choose
tellA after the random player chose to arm the red wire. In other words, the
branch where viewer chooses tellB after the random player chose to arm with
the red wire is removed from the game tree.

The value of the original GDL determined by sITS is 50. The value of dialects
with only one mustRule is computed as 75. The value of the two dialects with two
mustRules is 100. This shows that in this game, we have a coordination problem.
Agents are required to choose between combinations of the first mustRule with
the third mustRule or the second mustRule with the fourth mustRule. Let
us assume that one agent chooses the first combination and the other choose
the second one. They will fail and need to choose again. As soon as the agents
make the same choice, they will stick to it for all future matches, thus having
learned to cooperate through the development of a common language. Figure 2
illustrates the difference between the original game tree and the tree for an
enhanced dialect. The utilities are calculated using the sITS algorithm. The left
game tree belongs to a dialect with mustRule 1 and mustRule 2.

tellAtellA

Cut redCut blueCut redCut blueCut redCut blueCut redCut blue

arm bluearm red

tellBtellB

50

50 50

50 50 5050

0 100 0 100 100 0 100 0

arm blue

tellB

Cut redCut blue

tellA

Cut redCut blue

arm red

100

100 100

100 100

0 100 100 0

Random Player

Viewer 

Cutter

Rewards

(a) GDL item with 
two mustRules (a) Original GDL

Fig. 2. Comparison of a dialect with two mustRules vs the original game in Cooperative
Spies. (Color figure online)

1 Later in this paper, we use a shorter version to represent a mustRule in figures.
It is structured as <action abbreviation>-<perception abbreviation>. For example,
(⇐ (must(does viewer tellA)) (sees viewer redWire)) will be shown
as A-Red.
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4 Analysis

In the following, we will describe different games and show how with the GL
algorithm agents are always able to generate a common language and play the
optimal move.

4.1 Naming Game

Naming Game is a game in which agents need to find a common language that
connects an object to a name. In this game, any dialect with a number of mus-
tRules equal to the number of objects is an optimal dialect. This class of games
can be described in GDL-II as follows. The game has three players, one random
player and two agents. The random player chooses an object at random. Both
agents can see the chosen object. Then they should choose one among different
actions. Each action sends a specific percept to the other agent. If both choose
the same action they win and receive a score of 100, otherwise they lose and
score 0. There are n!

obj! optimal legal dialects, where obj is the number of objects
and n the number of names. All of these optimal dialects contain exactly obj
many mustRules. The value of each optimal dialect is 100 after running the
sITS algorithm on them. Now agents can solve the coordination problem with
the help of our policy learning. As can be seen, the GL algorithm can successfully
play the Naming Game.

4.2 Air-Strike Alarm

Another simple game that we call “Air-Strike Alarm” is an example with only
one optimal dialect. Games with one optimal strategy show the advantage of
combining language learning with planning. In this category of games, agents
do not need to use policy learning to reach a common optimal dialect. The Air-
Strike Alarm game has three players: enemy, signalman and citizen. The enemy
is played by the random player who attacks 10% of the time. Signalman sees
aeroplanes coming toward the city. He can then sound the alarm or not. The
citizen then needs to decide whether to take shelter or not. The game is similar
to Cooperative Spies. The viewer is replaced by a signalman; the cutter is the
citizen; perceptions ‘a’ and ‘b’ are replaced, respectively, by seeing or not seeing
the aeroplanes; cutting wires are replaced by taking shelter or not taking shelter
by the citizen; and the two messages the signalman can send are sounding the
alarm or not. The main differences to the original game are, firstly, that raising
the alarm causes auditory discomfort which comes at a cost of 10 points for
everyone and, secondly, that the enemy will attack only 10% of the time.

Again, all the existing approaches to GGP-II would fail to optimally play
this game, because the best strategy they find is always not to sound the alarm.
People then know it is better to go about their normal life as only in 10% of the
time an air-strike will occur. As a result, they get an average of 90 points. This
mistake in choosing a non-optimal strategy occurs because there is no learning
involved. On the other hand, RL techniques cannot solve games that involve a
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penalty for sending messages. Moreover, they always require prearranged cen-
tralised learning of agents.

Our GL algorithm finds seven dialects, similar to the Cooperative Spies game.
sITS determines 90 as the value of the original GDL and 82 if the alarm is off
during an air-strike and on during a safe situation. The optimal dialect is when
the alarm is on during an air strike and off when it is safe. sITS returns 98 points
for this dialect. If we assume that all the citizens are rational, then all of them
will find the optimal dialect with the right language in it and play the optimal
strategy to receive an average expected value of 99.

5 Experimental Analysis

In the following, we report on the experiments with sITS and its complete
version, ITS. Our main focus is sITS, but we have also found that ITS can
introduce some additional advantages over sITS.

Experiment with sITS. We have performed a language evolution experiment
with sITS and Genetic Algorithm (GA) [10]. We let the population fluctuate to
reach an equilibrium in which the majority has developed an optimal common
language. This can also be used as a way to find an optimal dialect, provided
the size of the optimal language is too large. A language, i.e. a set of mustRules,
is hardcoded in each agent’s DNA. Agents reproduce and die similarly to single-
celled organisms. Agents whose language is less compatible with others in the
society will be eliminated sooner. The more compatible agents survive longer and
multiply more often. In other words, we use natural selection to show the evolu-
tion of a society without any language to an optimal society with an advanced
common language.

For the purpose of the experiment, we have introduced a new matchmaker
that is in charge of creating, penalising, death and organising games among
the agents. The society starts with a group of agents with no mustRule. The
matchmaker randomly chooses an agent from the society. Then if any agent
with a similar language exists, the matchmaker randomly picks one. Otherwise,
it randomly picks an agent with a different language. It lets them play a game.
If they succeed, they both age by a normal ageing value. However, if they fail,
both will be penalised by ageing faster (the penalised ageing value). All Agents
have a lifespan. Any agent with an age equal or higher than the lifespan will
die and be removed from the society. After playing some specific number of
matches, a single agent gives birth to a new agent. This parameter is referred
to as the reproduction rate. The new agent can have the same exact dialect
(chromosome) of the mother or some mutation of it. A mutation is the addition
or the removal of one mustRule (gene). The probability of a mutation is given
by the mutation rate. To make it similar to a real society, we set a limit on
reproduction. Reproduction in the society stops when the population reaches
the reproduction limit value. The reproduction restarts when the population is
reduced to the restart reproduction value.



General Language Evolution in General Game Playing 61

All of these parameters can be varied but need to satisfy the following con-
straints. The penalised ageing value needs to be larger than the normal ageing
value. Agents should be able to live long enough to reproduce. Some legal val-
ues might push the population to extinction with high probability. For example,
high ageing values or low restart reproduction values. Some combinations of legal
values for the parameters in the experiment can slow down reaching an equilib-
rium. As an example, having penalised ageing close to normal ageing or a low
mutation rate will stop the population from changing quickly.

In a society with natural selection, the species which can successfully cooper-
ate most of the times will remain in the society. Other species reduce dramatically
in population or even become extinct. To show the effect of natural selection on
language evolution, we have run a second experiment with identical parameters
as in the first experiment except that penalised ageing was set equal to normal
ageing .

Specifically, we ran experiments with an extended Cooperative Spies game
where we doubled the number of wires. This extension has the effect that success
by chance is unlikely and living without adaptation much more difficult. As we
have discussed, in the Cooperative Spies game, an agent with the maximum
number of mustRules is optimal. Optimal agents can fully cooperate with their
own kind and partially cooperate with their primitive kind.2 To make it similar
to a real society, we set a limit on reproduction.

The values used for the parameters in our experiment were as follows: We
set lifespan to 100 years, penalised ageing to 70 years reduction, normal ageing
after each game to 1 year reduction, the reproduction limit to 60 agents, the
value for restart reproduction to 58 agents, reproduction rate to 3 rounds for each
agent and the mutation rate to 1%. As Fig. 3 indicates, the society started with
some agents lacking any language. Then the common language slowly shifted
towards a more complicated version with more mustRules. After 700 matches,
an equilibrium was reached.

We were able to test the effect of natural selection by simply changing the
penalised ageing value to just −1 in the second experiment. This way agents
will face the same penalty if they succeed or fail. This simple change stops the
society from evolving to a more cooperative society: As can be seen from Fig. 4,
changes hardly happen in a society without natural selection. However, as in such
societies all agents benefit equally, in an externally long run the society might
turn into a scattered population of different kinds of agents. Our experiment
without natural selection shows the society hardly changes even after 10,000
total games were played.

Experiment with Full Version of ITS. In the following, we describe another
experiment with a similar four-wire Cooperative Spies game with ITS. The main
difference between ITS and its simplified version is the addition of opponent
modelling [4]. With the help of several self-plays, ITS can find Nash equilibria
2 An agent is referred to as a primitive version of another agent if the language of the

former is a subset of the language of the latter.
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Fig. 3. Experiment on language evolu-
tion with natural selection

Fig. 4. No language evolution can be
seen on a society without natural selec-
tion.
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Fig. 5. Game tree for four cutting wire game with three mustRules.

Fig. 6. The evolution of optimal language with ITS search algorithm.

in a variety of classes of games. The ITS algorithm helps the players with an
incomplete language to fully cooperate. An incomplete language misses one or
more mustRule compared to an optimal language. Our experiments show that
smarter algorithms, such as ITS, can guess the missing mustRule in the games.

For our example game, only three mustRule suffice for a smart player to guess
the missing mustRule. Figure 5 shows the game tree with three mustRules. State
values are given after few iterations of the ITS algorithm on the tree. For the
full details of the ITS algorithm we refer to [4]. Since ITS can guess the final
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mustRule, in the society the majority can have either four or three mustRules.
As can be seen in Fig. 6, the majority oscillates between two languages: one of
size three and another one of size four.

6 Discussion and Conclusion

We have introduced GGP-II, a well-known framework for general artificial intel-
ligence, into the field of language learning. With just a few modifications to
GGP-II, we were able to develop a general language learning method. The GL
algorithm allows agents, at least in principle, in any game to generate a common
language if there is a need for it. We have also shown that it can solve common
problems in language learning such as the Naming Game. Moreover, with the
help of planning in GL without repeating the match, agents can reach an optimal
common language if there exists only one.

The general language evolution in GGP is general enough for it to be used
as a framework for future research. One extension could be to involve a real
natural language for the common language among the agents. This adds natural
intuition to the language generation process. As an example, if a human needs to
convey the information red but is only allowed to say “blood” or “sky”, then the
obvious choice would be the former. This reduces the need for policy learning.

Finally, the GL technique is not restricted to ITS as a solution; other algo-
rithms can be used that might perform even better. For future work, we are
interested in investigating ways in which AI agents might be able to acquire this
background information with the help of machine learning and searching the
web and/or online media. Also testing the GL with other current algorithms in
GGP-II will be of interest.
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Abstract. In this paper we present a new method for improving rein-
forcement learning training times under the following two assumptions:
(1) we know the conditions under which the environment gives reward;
and (2) we can control the initial state of the environment at the begin-
ning of a training episode. Our method, called intra-task curriculum
learning, presents the different episode starting states to an agent in
order of increasing distance to immediate reward.

1 Introduction

Reinforcement learning [1] has surged in popularity in recent years due to the
outstanding performance of deep reinforcement learning on Atari video games
[2]. However, one draw back to reinforcement learning is the long training time
it requires. Recently, there have been several impressive results for improving
reinforcement learning training times [3–5] via general algorithms that make
no assumptions about the environment. We are interested in using pre-existing
knowledge to train an agent to solve a problem. A video game development team,
for example, is more likely to be concerned with the upcoming deadline for a
specific title than with how their approach will generalise.

2 Background

In reinforcement learning, an agent learns the best way to interact with an
environment through trial and error [1]. The environment can take on one of
a finite number of states, s ε S, and the agent interacts with the environment
through actions, a ε A, that transition the environment from the current state, st,
to a new state, st+1. After an agent’s action changes the state of the environment,
the agent receives feedback in the form of a reward, rt = r(st, at, st+1), that
indicates how desirable the choice of that action was while in that state. The goal
of reinforcement learning is to develop an optimal policy, π : S → A, a mapping
from states to actions, for a given problem. An optimal policy maximises the
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total return, R =
∑T

t=0 γtrt; where T is the total time the agent interacts with
the environment; and γ is a discount factor applied to future rewards.

The type of reinforcement learning that we use in this paper is Q-learning.
In Q-learning, each state-action pair is represented by a Q-value, Q(s, a), that
represents the expected total reward resulting from taking action a in state s,
assuming greedy actions thereafter. After taking action a in state s, the Q-value,
Q(s, a), is modified according to the following update rule:

Q(st, at) ← (1 − α)Q(st, at) + α(rt + γ × maxaQ(st+1, a)) (1)

where α is a learning rate parameter.

3 Related Work

Eligibility traces [1] are numerical values that are stored for each state1. The
eligibility trace for a state decays exponentially with each time step, but is
increased whenever that state is visited. When a learning update occurs, the
estimated value of each state is updated in proportion to its eligibility trace.
Thus, states receive more credit for a reward if they have been visited recently.

Prioritised sweeping [1] is a model-based reinforcement learning algorithm
that requires the model to be able to explicitly calculate, for a given state, what
predecessor states may lead to it. When a reinforcement learning update occurs
for a given state, the preceding states are checked to see if they should also be
updated. If the change in estimated value for the predecessors is above a certain
threshold then they are updated and their predecessors are also checked.

Rather than relying solely on an external reward function, agents can learn
by using an internal reward function [4] that may be stimulated by, for example,
curiosity [3] or the ability to correctly predict how an agent’s actions will affect
the environment [5]. The advantage of these internal reward functions is that
they allow for learning updates to occur after processing every input sample.

4 Intra-task Curriculum Learning

Our approach makes two key assumptions: (1) we have knowledge of the condi-
tions under which the environment gives reward; (2) we have the ability to control
the initial state of the environment at the beginning of a training episode. Given
these assumptions, we propose to present the states of a reinforcement learning
problem to an agent in order of increasing distance2 from immediate reward.
1 Eligibility traces are recorded for each value in value function based reinforcement

learning. We use the term “state” here, but in practice the values can also be stored
for state-action pairs (e.g. in Q-learning).

2 For the purpose of this paper, we define the distance form state sa to state sb as
the minimum number of transitions required to get from sa to sb. This definition
is sufficient because the environments we use have deterministic transitions, but a
different definition would be required for stochastic environments.
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For simple problems the distance to reward can be calculated explicitly for the
entire state space. For more realistic problems the distance can be approximated
heuristically on a sample of initial states that will be used in training. The actual
distance to reward does not need to be calculated explicitly, as long as a relative
ranking of the initial states can be determined.

States that are far from an immediate reward do not allow an agent the
opportunity to update its internal state for a potentially very long time. This is
especially true at the start of training, when an agent has no information about
which actions are desirable, and is typically exploring randomly in the state
space. Instead of letting the agent wander around randomly, we can guide the
propagation of this information in order to speed up convergence to the optimal
policy. We suggest that the “easier” (to learn) states in reinforcement learning
are those that are closer to immediate reward, and that the “harder” states are
those further from immediate reward.

In curriculum learning [6], training samples are provided to an agent in order
of increasing difficulty. Thus, we propose that our method is a form of curriculum
learning. We refer to our method as intra-task curriculum learning to indicate
that we are ordering a collection of states within a task. Algorithm 1 (used in
our experiments) introduces a form of intra-task curriculum learning where the
training time is equally distributed across the difficulty levels in a task.

Algorithm 1. Intra-task curriculum learning training regime
Define T as the total training time
Define |D| as the number of difficulty levels
Define Sd as the set of starting states of difficulty d
Define |Sd| as the number of states in Sd

td ← T/|D|
for d ← 1 to |D| do

ts ← td/|Sd|
for all s ∈ Sd do

train using s as the start state until time ts is reached
end for

end for

5 Experimental Setup

The first problem we have designed is a 5 × 5 maze in which the agent starts
in the bottom-left corner, and the goal lies in the top-right corner. The agent
can move: up, down, left, and right. The agent receives a positive reward if it
reaches the goal; and the goal state is terminal. For the curriculum we chose
three different possible starting locations. The 2D maze is shown in Fig. 1a.

For this experiment we chose to store all of the Q-values in a look-up table.
The Q-values were initialised to zero. A learning rate of 0.001 and a discount
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factor of 0.99 were used for the Q-learning update described in (1). For this
experiment, the agent used a 100% uniform random exploration strategy.

The second problem we designed is a game played on a 9 × 9 grid where a
piece of fruit (size 1× 1) spawns at a random location at the top of the board and
falls to the bottom. The agent controls a 3× 1 paddle that starts in a random
location at the bottom of the board. The paddle can: move left; move right; or
remain in place. At each time step the agent is given the coordinates of the piece
of fruit and the x-coordinate of the centre of the paddle. The terminal state for
the game is when the fruit reaches the bottom of the board. The agent receives
a reward of +1 if it catches the fruit, or a reward of −1 if it misses the fruit.
The curriculum learning difficulty levels for this problem were mapped to the
starting heights of the fruit. A visualisation of the game is shown in Fig. 1b.

In this experiment, we used a neural network as the agent model. The network
had an input layer with 3 units to receive the fruit coordinates and paddle x-
position. This was followed by a hidden layer with 64 fully connected units
using the rectified linear activation function. The output layer contained 3 fully
connected outputs with no activation function – representing the Q-values for
the three possible agent actions, conditioned on the input state.

The agent in this experiment used the ε-greedy exploration strategy, with ε
linearly annealed from 1 to 0.01 over the first 1000 training iterations. We also
used double Q-learning [7], with a target network and memory replay buffer
as described by [2]. We used the Adam optimisation algorithm with the mean
squared error (MSE) loss function, and a learning rate of 0.00025.

6 Theoretical Analysis of 2D Maze

We can model the 2D maze as an absorbing Markov Chain. For our experiment
the transition probabilities between states are known. The maze has 18 states3.
Define |T | as the number of transient (non-absorbing) states. From the transition
matrix we can determine the fundamental matrix, N , of the absorbing Markov
Chain. From this we can calculate the expected time before absorption for all
transient states, t = N1; where 1 is a unit vector of length |T |; and t is a vector
of length |T | such that ti is the expected time until absorption from state si.
The expected time to complete the maze without curriculum learning is t1.

t̄NCL = t1 = 456 (2)

The curriculum learning regime spreads training time evenly across all three des-
ignated start states4: s1, s11, and s13. Therefore, the expected time to complete
a game is the average of the expected time until absorption of these three states.

t̄CL =
t1 + t11 + t13

3
= 310.66̄ (3)

3 We have a 5 × 5 grid with 7 walls; leaving 18 free spaces.
4 We number the states in the 2D environment from left to right, bottom to top.
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Using (2) and (3) we can find the relative difference between the two methods.

t̄NCL − t̄CL

t̄NCL
= 1 − t̄CL

t̄NCL
≈ 0.3187 (4)

Thus, our analysis shows a 31.87% speed up from using curriculum learning on
the 2D maze. This result is verified empirically in Fig. 2.

7 Results and Discussion

We compare the rewards obtained by different agents under testing conditions.
The testing difficulty for each problem was the maximum difficulty. During test-
ing the agents acted greedily according to their learned policies, and the policies
were not updated.

For the 2D maze, the agents were given 100 testing iterations in which to
finish the maze as many times as they could. Acting optimally, the maze takes
10 iterations to solve. With a reward of 10 upon reaching the goal, the maximum
reward obtainable during testing is 100.

For the testing of the fruit catching game, the agents played the game ten
times in a row. Under the optimal policy the fruit should be caught every time.
With a reward of 1 per fruit caught, the maximum score achievable is 10.

Figure 3 shows the results of periodically sampling testing performance dur-
ing training for the two agent training regimes in the two experiments. In both
experiments, the testing reward for both regimes eventually converges to the
maximum value, but the curriculum learning regime converges faster. The vari-
ance for both regimes increases initially but decreases as the testing score con-
verges.

Fig. 1. A visual representation of the environments used in our experiments. (a) shows
the 2D maze. “G” is the goal. Numbered spaces are different curriculum learning start-
ing positions in order of difficulty. (b) shows the fruit game, with the paddle at the
bottom and a piece of fruit falling. Numbers show different curriculum learning fruit
spawning heights.

In conclusion, we have performed an investigation into reordering the states
of a reinforcement learning problem. Our method, called “intra-task curriculum
learning”, reorders the states the agent sees according to distance from reward.
Results indicate that starting an agent closer to reward, and moving them further
away during training, improves the learning speed.
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Fig. 2. Comparison of the time taken to complete a certain number of games between
an agent trained with curriculum learning, and one trained without, for the 2D maze.
(a) shows the absolute number of iterations taken for each method. Blue circles show
curriculum learning results; red crosses show non-curriculum learning results. (b) shows
the empirical (blue crosses) and theoretical (red line) results for the relative difference
in training time between the two methods. Empirical results are the average of 200
trials; error bars show standard deviations. (Color figure online)

Fig. 3. Testing reward during training for agents in: (a) the 2D maze; and (b) the fruit
game environment. Blue circles show curriculum learning results; red crosses show
non-curriculum learning results. Results are the average of 200 trials; error bars show
standard deviations. (Color figure online)
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Abstract. In this paper we consider the problem of task execution in
dynamic environments. We introduce a formal framework of a dynamic
environment, and model the behavior of the robots using communicating
automata. Based on the model we suggest a distributed approach for task
execution that can handle multiple tasks that arrive at same instant of
time. We have implemented the approach using ARGoS–a multirobot
simulator.

Keywords: Dynamic environment · Robots · Task execution · ARGoS

1 Introduction

In automated environments (e.g., office, workshop), a team of mobile robots may
be used to perform routine tasks like moving (carrying) a heavy box from one
location to another, lifting a heavy object [1,2]. The environment is dynamic
since the states of robots are changing, robots are moving from one location to
another, robots may enter or leave the environment, and tasks may arrive at any
instant of time at any location. Task execution requires all members of a team
be present at the location where the task arrived.

If a robot is not engaged in any activity, finds a task at a location (which is
in its range), it attends the task. When a robot r attends a task it can determine
the size of the team needed for its execution. However, since r does not know
the states and locations of other robots, it cannot determine the set of robots
available for the task. This is because in a distributed system, no agent (robot)
has a global view of the system. With such insufficient information, a team
cannot be formed by r, and subsequently the task cannot be executed. Thus
the necessary information has to be acquired by r by communicating with other
robots. This necessitates the design of a distributed approach for task execution
in such dynamic environments. Our proposed approach is described in Sect. 3.

Auction-based approaches for team formation (task allocation) are suggested
in [3,4]. A bidder agent has some resources (e.g., data center, CPU) [4], who may
bid for multiple auctioneers concurrently. In our work a non-initiator robot (bid-
der) will not express its willingness to multiple initiators (auctioneers) concur-
rently; when more than one request message arrives, the robot stores the requests
c© Springer Nature Switzerland AG 2018
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in its local queue. Having one or more resources specified in the auction, is a
sufficient condition for an agent to make a bid [4]. Having the required skills
for a task is a necessary but not a sufficient condition for a robot to express
its willingness to be part of a team, in our work. A robot’s behavior, in our
work (modeled using communicating automata), is determined by its current
state, whereas in [3,4] states need not be taken into consideration. Our app-
roach accommodates all these aspects and so it is substantially more complex
than auction based protocols used in [3,4].

The rest of the paper is structured as follows. A formal framework of a
dynamic environment is given in Sect. 2. The proposed approach is given in
Sect. 3. The implementation is given in Sect. 4. Conclusions are made in Sect. 5.

2 Problem Formalization

Definition 1 (Dynamic environment). A global view (snapshot) of an envi-
ronment E, with a set of locations L, taken at time t, is given by a 3-tuple
Et = 〈Rt, T t, f〉, where Rt is the set of robots present in the environment at
time t, and T t is the set of tasks that arrive in the environment at time t,
f : Rt × N �→ L, is a function that gives the location of a robot at a discrete
instant of time represented by the set of natural numbers N.

Definition 2 (Task). A task τ is specified by a 5-tuple τ = 〈ν, l, t, k, Ψ〉 where ν
is the name of a task (e.g., move (carry) box B to location l′, lift desk D), l ∈ L
is the location where the task arrived, t is the time at which the task arrived,
k > 1 is the number of robots required to execute the task, and Ψ is the set of
skills required to execute the task.

Definition 3 (Condition for multiple task execution). The tasks τ1 =
〈ν1, l1, t, k1, Ψ1〉 and τ2 = 〈ν2, l2, t, k2, Ψ2〉 can be executed if the following condi-
tions hold:

1. there exists a set R1 of k1 available robots at some time t′1 > t, such that
ψr ⊇ Ψ1 for all r ∈ R1, and at some time t′′1 > t′1, locr = l1 for all r ∈ R1.

2. there exists a set R2 of k2 available robots at some time t′2 > t, such that
ψr ⊇ Ψ2 for all r ∈ R2, and at some time t′′2 > t′2, locr = l2 for all r ∈ R2.

3. R1 ∩ R2 = ∅.
Definition 4 (Utility of a team for task execution). Let Γ = {x1, . . . , xk} be a
team that can execute a task τ = 〈ν, l, t, k, Ψ〉 where each member of the team was
located at locxi

. The utility of a team Γ for executing τ is U〈Γ,τ〉 = −cost〈Γ,τ〉,
where cost〈Γ,τ〉 =

∑
xi∈Γ μ〈xi,τ〉 and μ〈xi,τ〉 = p(xi, τ)× 1

αxi
+ d(locxi

, l)×βxi

where αxi
, βxi

∈ (0, 1] denote remaining battery coefficient and battery consump-
tion rate respectively of (a robot) xi, p(xi, τ) is the price of xi for τ , d(l1, l2) is
the distance covered when moving from l1 to l2.

Problem Statement: Design a distributed approach to execute the tasks that
arrive in a dynamic environment E at some time instant, where the team chosen
for each task has maximum utility.
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3 Proposed Approach for Task Execution

In a dynamic environment E , let a robot i attend a task τ = 〈ν, l, t, k, Ψ〉 where
ψi ⊇ τ.Ψ ; now loci = l. In order to form a team for the execution of task τ, r
communicates with other robots. We refer to i as an initiator, and the other
robots as non-initiators.

An initiator i broadcasts a Request message whose format is 〈idi, τ.ν, τ.l,
τ.Ψ〉, and waits for some time, say Δ. It is assumed that a broadcast message
would be delivered only to the robots present in the environment at that time. A
non-initiator j, who has the necessary skills, will send either a Willing message
(whose format is 〈idj ,p(j, τ), αj , βj , locj〉) or an Engaged message if its state
is Idle or Promise respectively. Otherwise, it will ignore the Request message.
The initiator increases its counter c when it receives a Willing message. After
Δ time has elapsed, i checks if there are enough robots available to form a team
(c ≥ k−1). If yes, i selects the team with maximum utility as per Definition 4, and
sends Confirm message to the other members of the team, Not-Required message
to (c− (k −1)) non-initiators, if any. If no, i sends a Not-Required message to all
c non-initiators who expressed their willingness to help. Depending on its queue
status, i will change its state from Ready to Idle or Promise.

A non-initiator robot works as follows. The computations are done based on
the current state that may be Idle, Promise, Busy, and Ready. Within a state,
the type of message is checked and appropriate actions are taken. For example,
when state is Idle, if a Request message is received, it becomes Promise, the
identifier of the sender is enqueued, and flag is set to true; all these actions are
done atomically (denoted by 〈. . .〉). Now the robot sends a Willing message to
the sender (initiator) and flag is set to false. A robot j maintains a local queue
Q which keeps the identifiers of the senders, based on the incoming Request
messages. The Q is used to avoid starvation since, more than one initiators may
send Request messages at the same instant of time. The boolean variables flag
and flag′ are used to control the sending of Willing and Engaged messages
respectively.

We use communicating automata (CA) [5] based model to capture the behav-
ior of robots, shown in Figs. 1 and 2. A CA is like a finite automaton where the
transitions may involve sending/receiving of messages. A label of a transition,
in the CA that we use, has a more general form χ : γ, where χ can either be an
input a (send message !m, receive message ?m), or a state condition g, or (a, g),
and γ can either be a sequence of actions seq, or a sequence of actions that is to
be performed atomically 〈seq〉, or empty. The semantics of the transitions are:
s

a−→ s′ means switch from s to s′ on input a; s
g−→ s′ means switch from s to s′

if a condition g holds at s; s
(a,g):〈seq〉−−−−−−−→ s′ means switch from s to s′ on input a if

g holds at s, and the sequence of actions seq are performed atomically either just

before or immediately after transiting to s′; s
(a,g):seq−−−−−→ s′ means switch from s to

s′ on input a if g holds at s, and the sequence of actions seq are performed either
just before or immediately after transiting to s′. QD in Figs. 1 and 2, denotes a
queue Q after making one Dequeue operation.
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Idle Ready

Promise Busy

task-detected !Request
?Engaged

?Request:〈enQueue(i);!Engaged〉

?Willing: c := c + 1

timeout∧c<(k-1)∧ Q = ∅:
!Not-required

?Confirm:〈flush Q; move to loci〉
?Request

timeout∧c� (k-1):
!Confirm;!Not-required; flush Q

timeout∧c<(k-1)∧ Q  = ∅:
!Willing

task-completed

(?Not-Required, QD = ∅)

?Request:〈enQueue(i);!Engaged〉

(?Not-Required,
QD  = ∅):!Willing

Fig. 1. Communicating automata model of initiator agent

Idle Promise

Busy

task-completed

?Request

?Confirm:〈flush Q; move to loci〉

?Request:〈enQueue(i);!Willing〉

(?Not-required, QD = ∅)

(?Not-required, QD  = ∅):!Willing

?Request:
:〈enQueue(i);!Engaged〉

Fig. 2. Communicating automata model of non-initiator agent

4 Implementation

We consider an obstacle clearance scenario to illustrate the proposed approach
(Sect. 3), where a corridor may be blocked by several obstacles. A team of robots
should jointly move each obstacle to one side of the corridor. The proposed
approach is implemented using ARGoS (Autonomous Robots Go Swarming) [6],
a multirobot simulator. The code run in ARGoS can be directly deployed on a
real robot system.

An example scenario is shown in Fig. 3, where the shaded portion in gray is
the corridor (10 m × 5 m), obstacles are simulated by green movable cylinders of
radius 0.2 m with a blue light on top. The robots are shown in blue. The overall
process of removing an obstacle from the corridor is shown in Fig. 3. The robots
in ARGoS use the inbuilt range and bearing sensor (rab) to communicate among
themselves.
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(a) three obstacles are detected (b) three teams are ready

(c) two obstacles are removed (d) three obstacles are removed

Fig. 3. Illustration of multiple task execution in ARGoS

In Fig. 3-a, the initial position of the robots and obstacles is shown. Three
robots detect three obstacles and they start team formation. We assume that
all the obstacles require two robots to move. In Fig. 3-b, initiator robots form
their respective teams; the robots have reached the location of obstacles and
they are ready to move the obstacles. Figure 3-c, shows that two obstacles have
been shifted to one side of the corridor. Then the robots again visit the corridor
and search for other obstacles, if any. Finally, in Fig. 3-d, the third obstacle is
also detected and removed.

For the implementation we have written the required functions in Lua, a
C-like language. These are (i) to control the movement of a robot to avoid obsta-
cle or another robot based on proximity sensor data, where the sensor detects an

Fig. 4. Performance based on varying the number of robots and tasks
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obstacle or another robot, (ii) control speed and velocity, (iii) synchronizing the
robots for task execution, (iv) to control the movement of a robot when bound-
aries are detected using motor-ground sensors, and (v) communication among
robots based on the line of sight.

We have performed several experiments with varying the number of tasks
and robots, and the results are shown in Fig. 4. From the results, we find that as
the number of robots is increased, average execution time of the tasks decreases.

5 Conclusion

The task execution problem in a dynamic environment is considered. A formal
framework for task execution is introduced. Communicating automata models
of the robots interacting with the environment are provided. We proposed a dis-
tributed approach for task execution based on the automata models and showed
how multiple tasks that arrive at the same instant of time can be executed. Some
salient aspects of the approach include non-blocking and starvation freedom, that
are handled by using timer and queue respectively.

We introduced two new parameters with each robot that are used for selecting
a team with maximum utility. The intuition behind these parameters is that
a robot with more battery backup and lower battery consumption would last
longer, and it would not fail due to battery failure during task execution. The
approach has been implemented and simulated in ARGoS. We have performed
several experiments and the results obtained are very encouraging. Our future
work would be to address the problem of multi-task execution in a dynamic
environment where the number of robots needed to execute a task is not known.
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Abstract. This work presents an application of ORB-SLAM in an iGus
bipedal humanoid robotic platform. The method was adapted from its
original implementation into the framework used by the NUbots robotic
soccer team and used for localization purposes. The paper presents a
description of the challenges to implement the adaptation, as well as sev-
eral tests where the method’s performance is analyzed to determine its
suitability for further development and use on medium sized humanoid
robots.

To conduct the tests, we determined the robot’s real location using a
high-accuracy, camera-based infrared tracking system. Two experiments
were performed to estimate the robustness of the method to the vibra-
tion and constant camera wobbling inherent to a bipedal walk and its
ability to deal with the kidnapped robot problem.

The tests indicate that ORB-SLAM is suitable for implementation
into a medium sized humanoid robot in situations comparable to a
robotic soccer environment, and requires relatively low computational
resources, leaving enough CPU power for other tasks. Additionally,
since ORB-SLAM is robust to the difficulties associated with humanoid
motion, we conclude that it provides a good SLAM algorithm to enhance
with features specific to the humanoid robotic platform.

Keywords: ORB-SLAM · Humanoid · Visual odometry
Visual SLAM

1 Introduction

One of the primary enabling capabilities of any autonomous mobile robotics
platform is the ability to keep track of its location. Various methods have been
utilized to achieve this, including odometry sensors, inertial measurement units
(IMU) like accelerometers and gyroscopes, and SLAM (Simultaneous Localiza-
tion and Mapping) techniques using cameras and Lidar. In the last decade,
visual odometry and visual SLAM techniques have become increasingly capable
of being run in real-time on mobile robotics platforms, with ORB-SLAM [6]
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widely considered state-of-the-art. The application of these SLAM techniques to
various mobile robotics platforms has focused mainly on ground-based wheeled
platforms, flying quadcopters and hand-held cameras. These platforms are rel-
atively stable when in motion. However, considerably less work has been done
on humanoid robots. Humanoid robots are bipedal which is a significantly more
unstable method of locomotion, considerably reducing the accuracy of odome-
try measurements. This work focuses on the RoboCup soccer competition and
thus the humanoid platform used supports only the strictly humanoid binocular
cameras, which is one of the requirements of the humanoid league.

In this paper, we report on and discuss the suitability of using ORB-SLAM
on a medium sized humanoid robot to provide visual odometry. This paper will
only investigate monocular ORB-SLAM, due to the computational limitations
of the robot, as all processing is done on-board. To the best of the authors
knowledge, there has been no feasibility study on the use of the state-of-the-art
monocular ORB-SLAM on humanoids.

Only one other 2018 RoboCup humanoid team (NimbRo1) mentioned using
a visual odometry system. They report testing two state-of-the-art visual odom-
etry (VO) techniques called SVO [3] and DSO [1]. They found that these tech-
niques failed over longer periods of time and under rapid movement. We believe
that a full visual SLAM system which provides loop closure, map building and
relocalisation will be able to succeed in the same circumstances.

The remainder of this paper is organized as follows: Sect. 2 gives a brief
overview of related work and concepts; Sect. 3 presents the humanoid robot and
experiment design used in this paper; Sect. 4 presents the results of ORB-SLAM’s
performance on a humanoid robot; Sect. 5 provides a discussion on the advan-
tages and disadvantages of ORB-SLAM; and Sect. 6 presents our conclusions.

2 Background

2.1 Related Work

The majority of works that implement SLAM onto humanoids use Lidar or RGB-
D sensors. This choice is often made due to the superior accuracy of these sensors.
Both however have their drawbacks, with Lidar sensors being quite expensive,
and RGB-D sensors having a fairly limited range. Cameras in contrast are very
cheap, and are usually already necessary for other vision processing tasks. Among
the studies that implement passive visual SLAM onto a humanoid, Oriolo et al.
[7] used odometry and foot pressure sensors to provide the state prediction for
an EKF (Extended Kalman Filter), and PTAM and IMU data to provide the
measurement update.

Scona et al. [8] used ElasticFusion [10] (an originally RGB-D camera SLAM
method) on a 1.8 m tall humanoid robot, and addressed the issue of what happens
when a robot faces its camera at a featureless area such as a wall. Odometry

1 https://www.robocuphumanoid.org/qualification/2018/AdultSize/NimbRo/tdp.
pdf.

https://www.robocuphumanoid.org/qualification/2018/AdultSize/NimbRo/tdp.pdf.
https://www.robocuphumanoid.org/qualification/2018/AdultSize/NimbRo/tdp.pdf.
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and IMU data was used to provide a motion prior that estimates where the
tracked features have moved to since the last frame. The odometry and IMU
data was then fused with the results of the SLAM algorithm. ElasticFusion is
a SLAM technique that tracks pixel intensities as opposed to tracking features
like ORB-SLAM and PTAM. As mentioned in Sect. 1, the RoboCup team Nim-
bRo reported trialing DSO and SVO, however they found the lack of long term
reliability of these purely visual odometry techniques leads to unreliable results
or complete loss of tracking.

Monocular or Binocular ORB-SLAM has been implemented on other plat-
forms such as Micro-aerial Vehicles (MAVs) and image datasets from wheeled
ground vehicles, but not on humanoids to the best of our knowledge. Using
a ground station, Garcia et al. [4] combined LSD-SLAM [2] (which is another
featureless, pixel tracking SLAM method) and ORB-SLAM (feature tracking
based) in a complementary way, along with IMU data to provide pose and map
data which could then be used by the ground station to provide path planning
commands to the MAV. Song et al. [9] collected binocular ORB-SLAM data,
along with IMU, GPS, and barometric data, which was then processed offline.
For ground based vehicles, Mur-Artal et al. [6] who are the creators of ORB-
SLAM, used wheeled ground based vehicle datasets of cars and smaller indoor
wheeled robots, as well as quadrotors to benchmark their results against other
SLAM algorithms.

2.2 Porting ORB-SLAM

ORB-SLAM, which is available for open source download2, relies on OpenCV,
as well as two third party libraries which come included in the download. The
first is DBoW2 which is a Bags of Words library, and the second is g2o which
handles the bundle adjustments and optimizations.

The NUbots team uses a framework called NUClear [5], which required some
reorganizing of ORB-SLAM. The source code was mostly able to stay untouched,
except that the threading had to be modified to work in NUClear, as it manages
its own threading. The two third party libraries needed to be compiled separately
and included into NUClear’s libraries.

3 Methodology

3.1 NUbots iGus Humanoid Robot

The iGus humanoid robot used in this paper is a modified version of the Nim-
bRo robot3. It is 90 cm tall and contains a Point Grey Flea3-U3-13E4 Global
shutter cameras with fisheye lenses, an IMU, and an Intel NUC7i7BNH (core
i7-7567U) 3.5 GHz processor. The current foot configuration does not include
pressure sensors, so the odometry data is purely based off servo measurements.
It is worth mentioning that the swaying motion that occurs when walking can
potentially assist monocular depth perception.
2 https://github.com/raulmur/ORB SLAM2.
3 http://nimbro.net/Humanoid/robots.html.

https://github.com/raulmur/ORB_SLAM2.
http://nimbro.net/Humanoid/robots.html.
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3.2 Data Collection

The data collection focused on recording the keyframe trajectory produced by
ORB-SLAM, timing data, and truth data from an infrared camera based Motion
Capture system set up in the lab. In the first experiment, the iGus walked in
a 3 m by 2 m rectangular path, performing a loop closure once the rectangle
was complete. In the second experiment, the iGus walked forwards for 2 m, then
was picked up by the robot handler and moved rapidly back to a position a
little to the left of the starting position (also received a 360◦ rotation), where
it walks forward a little distance. This procedure is to simulate handling of the
robot during a soccer match and tests the ability of ORB-SLAM to handle the
kidnapped robot problem where a robot is lifted and moved to an unknown new
location.

4 Results

With our walk engine running, ORB-SLAM ran on the iGus at an average frame
rate of 20 frames/second (standard deviation of 1.7) before an initial map had
been created, and an average of 26 frames/second (standard deviation of 5.2)
afterwards (see Fig. 1). When the keyframe trajectory data is compared to the
truth data, ORB-SLAM tracks the movement of the robot with a level of accu-
racy which is acceptable for a robot soccer application (see Fig. 2). In the kid-
napped robot experiment (see Fig. 3), ORB-SLAM was able to realize it had
been placed down in a familiar location. While ORB-SLAM was not able to
track the trajectory of the carried segment, as soon as it was put down, it was
able to recognize its location and resume tracking.

5 Discussion

The results demonstrated that a medium sized humanoid robot with a NUC7i7
processor is capable of running the current state-of-the-art ORB-SLAM in real
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Fig. 1. Frame rate data from the first experiment (see Fig. 2). The blue line is the
instantaneous frame rate of each frame, the bold red line is a 50 frame moving average,
and the horizontal solid red lines bounded by dashed red lines show the average frame
rate before and after map initialization, along with their standard deviations. (Color
figure online)
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Fig. 2. First experiment trajectory as reported by ORB-SLAM keyframes in blue, and
the motion capture system in red. The path walked is a 3 m by 2 m rectangle with a
loop closure at the end. Notice the sway in the red trajectory, which represents the
lateral movement of the robot’s head as it walks. (Color figure online)
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Fig. 3. Second experiment trajectory as reported by ORB-SLAM keyframes in blue,
and the motion capture system in red. Occasional missing parts of the red trajectory are
due to the robot handler temporarily blocking the view of the motion capture cameras.
The robot first walked a straight line (0.5,0.3) to (2.7,0.15) before being picked up by
handler and moved rapidly and disorientatingly to a new position (0.2,0.6) which was
close to position it had seen before. (Color figure online)

time, was able to handle the swaying motion and could recover from a typical
kidnapped robot situation. However several advantages and disadvantages that
should be weighed before implementing ORB-SLAM onto a humanoid robot.
An average frame rate of 20 fps was achieved before the initial map was created,
rising to 26 fps afterwards, leaving plenty of computational resources for other
system components to run.

Now that the basic reliability of ORB-SLAM has been observed, the authors
intend to address some of the limitations of this visual SLAM method. The maps
and trajectory ORB-SLAM produces are not referenced to the real world in any
way, so for ORB-SLAM to be useful for localization in a known environment like
RoboCup additional known feature extractors like goal detectors would need to
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be used. Additionally, while ORB-SLAM is resistant to objects moving within its
environment, it is unknown how ORB-SLAM degrades when placed in crowded
dynamic environments like RoboCup.

6 Conclusion

The objective of this research was to investigate the practicality of implement-
ing the state-of-the-art monocular ORB-SLAM onto a medium sized humanoid
robot. To the best of our knowledge, monocular ORB-SLAM has not been imple-
mented on humanoid robots, with its unique locomotion challenges of swaying
and jarring movements. We provided an evaluation of ORB-SLAM and detailed
the process undertaken to port it onto an iGus humanoid robot intended for
the robot soccer competition RoboCup and found that ORB-SLAM was able to
run at 26 fps while the robot was walking. ORB-SLAM was able to successfully
provide accurate localization to the robot during two experiments that tested
for loop closure and relocalization.
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Abstract. In IoT applications, it is often necessary to achieve an opti-
mal trade-off between data compression and data quality. This study
investigates the effect of Compressed Sensing and reconstruction algo-
rithms on ECG arrhythmia detection using SVM classifiers. To neutralise
the mutual effect of compression and reconstruction algorithms on one
another, we consider each reconstruction algorithms with various com-
pression ratios and vice versa. The employed reconstruction algorithms
are Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP). We
employ two steps: (a) identifying proper compression ratio that with-
holds essential information of ECG signals, (b) assessing the impact of
two reconstruction algorithms and their exactness on quality of classi-
fication. The findings of this study are threefold: (a) Remarkably, the
SVM classifier requires few samples to detect ECG arrhythmia. (b) The
results indicate for compression ratios up to around 1:7 ECG signals are
recovered then classified with the same quality for both algorithms. How-
ever, by increasing compression ratio BP outperforms OMP in terms of
ECG arrhythmia detection. (c) Negative correlation between compres-
sion ratio and signal quality is observed, that is intuitive enough to realise
the trade-off between them.

Keywords: Compressed sensing · OMP · BP · SVM classifier · ECG

1 Introduction

Internet of Things (IoT) is one of the promising approaches in interconnecting
various devices via communication networks. IoT enables us to remotely mon-
itor and collect data from individuals, and transmit them to data centres (e.g.
cloud) wherein the data is analysed. Technological advances enable collecting
various data from daily activities to biomedical information (e.g. wearable elec-
trocardiogram (ECG/EKG) monitors which are easy to use and free of wires
and patches [1]). In this work, we concentrate on ECG signals as an instance
of biomedical data. One of the issues faced by IoT is producing vast amount
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 85–97, 2018.
https://doi.org/10.1007/978-3-030-03991-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03991-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-03991-2_9


86 S. Zareei and J. D. Deng

of data collected by sensors mounted on different gadgets [2]. Another concern
is energy management especially when IoT devices are powered by renewable
sources. Energy consumption by sensors during data gathering and transmission
introduces crucial concerns that need to be addressed. The problem is aggra-
vated by using self-powered devices. Data compression is a promising method to
decrease energy consumption in data transmission.

In this paper, our overall goal is to infer vital information from the big
data gathered by biomedical sensors without a regular need of visiting a doctor.
The utilisation of data mining gives a promising solution to reach this goal.
There is a rich literature for classifying biomedical signals in past decades [3,
4]. In a recent study, Azariadi et al. focused on empirical implementation of
classification methods for arrhythmia detection by building wearable gadgets [5].
While some studies proposed methods for classifiers to handle imbalanced data
[6], others concentrate on improving classifier performance [7]. For more insights
into different aspects of ECG arrhythmia detection using classifiers see [8].

To overcome energy constraints, various energy management techniques are
proposed in the literature for example see [9]. There are different approaches that
have been considered in energy management; some instances are: (a) enhancing
harvester designs [10], (b) optimising buffer size for both energy and data storage
[11], (c) decreasing data volume to be transmitted by compression [12]. This
study focuses on data compression by Compressed Sensing technique. It is a
promising method since it pushes heavy processing burdens to a decoder (e.g.
cloud) considering limited computational capabilities of IoT devices [13,14].

Former studies investigated influence of data reduction or summarisation
on classifier performance. Shen et al. [15] employed the idea of data reduction
in web-page classification, for doing so, they used both summarised and pure
data as input for the classifier. Their study indicated summaries provided either
by human or machine help enhance web-page classification performance. Cos-
man et al. [16] assessed impact of compressing medical images on subjective
(e.g. radiologist or physicians) diagnostic accuracy. The outcomes suggested the
importance of training by same kind of images that subjects interpret. In other
words, diagnosis made by physicians trained with slightly compressed (or com-
pressed and then enhanced) images outperforms the one made by radiologists
(specialists) without such training. These results trigger the idea of analysing
how various compression ratios impact on ECG arrhythmia detection by clas-
sifiers. More precisely, ECG signals are compressed considering different com-
pression ratios. Then, we reconstruct the signals employing two conventional
algorithms, namely BP and OMP. These procedures are explained in Sect. 2.
We use Discrete Wavelet Transform (DWT) for feature extraction and Syn-
thetic Minority Oversampling Technique (SMOTE) to address class imbalance
issue in ECG signals. Next, obtained features are fed to Support Vector Machine
(SVM) classifier with Radial Basis Function (RBF) kernel as discussed in Sect. 3.
In Sect. 4, we perform a statistical analysis to investigate influence of range of
compression ratios on both precision and sensitivity of the classification result
per algorithm (i.e. BP and OMP). We also apply Wilcoxon test to compare
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the effectiveness of reconstruction algorithms, BP and OMP on SVM classifier
performance. Section 5 sums up the findings of the study and suggests future
directions.

2 Overview of System and Analysis

The architecture of E-health monitoring system is illustrated in Fig. 1. This
architecture is used for collecting and analysing all health-related information.
In this research, we limit our study to ECG signals. The reason is essentially
twofold: first, ECG provides vital health information and second, ECG signals
are well-studied in various research [17], and we can use this rich literature as a
solid foundation for our work.

As can be seen from Fig. 1, ECG signal is gathered by smart gadgets, com-
pressed using Compressed Sensing Technique and sent to cloud. Cloud takes
responsibility for reducing some burdens of sensors. One example is minimising
processing that leads to energy efficiency, especially in green gadgets. In the
cloud, original signals are recovered using reconstruction algorithm, (e.g. BP or
OMP). After reconstructing the original signals, ECG arrhythmia detection is
performed employing a classification algorithm. If any arrhythmia is detected,
notification will be sent to both gadget user and hospital for further analysis.

2.1 Compressed Sensing Principles

In standard form, Compressed Sensing is an underdetermined inverse problem.
Let X ∈ R

N , in this context, be N × 1 vector containing ECG signals. Basic
Compressed Sensing measurement model is defined as [18]:

[Y ]M,1 = [Φ]M,N [X]N,1, (1)

where Y ∈ R
M is a compressed ECG signal of length M and Φ ∈ R

M×N (M <
N) is a fixed matrix known as sensing (or measurement) matrix that contains
independently identically distributed (i.i.d) entries. The same version of this
matrix is kept at decoder in order to enable reconstruction.

To fully recover the original signal, X needs to be sparse. In cases that X
is not sparse in time domain, proper sparsifying dictionary, Ψ , is used in a way
that X can be represented as sparse vector using Ψ :

[X]N,1 = [Ψ ]N,P [z]P,1, (2)

where z is sparse representation of X. Sparsifying dictionary, Ψ , is usually a
basis, and it does not need to be of size N × P . Number of columns, P , can be
expanded above N to form overcomplete dictionary.

The purpose of signal reconstruction is to calculate z from Y as follows:

[Y ]M,1 = [Φ]M,N [Ψ ]N,P [z]P,1. (3)
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Then, X can be recovered employing (2). (3) is ill-conditioned since it consists
of fewer equations (M) than unknown (N). However, it has been proven that,
if signal is k-sparse in some domain, for proper M > k and Φ, probability of
finding suitable or exact solution of the equation is high [18,19].

Signal Recovery: Original signal is recovered employing the following convex
optimization problem:

min ||z||1 subject to Y = ΦΨz. (4)

This problem is solved utilising l1-norm, also known as Basis Pursuit (BP)
[20], which provides exact solution of the problem; or greedy algorithms, such
as Orthogonal Matching Pursuit (OMP) [21,22], that has the advantage of low
computational complexity.
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Fig. 1. Schematic overview of E-health monitoring system

Sensing Matrix Measurement: Sensing matrix, Φ, should be appropriately
designed in order to guarantee robust and accurate signal recovery. A proper
sensing matrix must satisfy Restricted Isometry Property (RIP) which is defined
as:

(1 − δk)||z||2 ≤ ||ΦΨz||2 ≤ (1 + δk)||z||2, (5)

where δk is the isometry constant of Φ. δk value must not be close to one. In
other words, smaller values of δk guarantee exact reconstruction of signal with
higher probability [19]. In practice, it is difficult to verify RIP. Alternatively, the
concept of coherence is applied to sensing matrix Φ and sparsifying dictionary
Ψ . Formally, coherence between the two, μ(Φ, Ψ), is defined as follows [23,24]:

μ(Φ, Ψ) =
√

N max1≤k,j≤N |<Φk, Ψj>|. (6)
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Ideally, μ(Φ, Ψ) will be small (i.e. the matrices are incoherent). The most
common choices for sensing matrix Φ are Gaussian or Bernoulli distribution.

3 ECG Arrhythmia Detection

This section presents steps of ECG analysis and arrhythmia detection.

3.1 Preprocessing

In preprocessing step, we normalise and standardise ECG signal to eliminate base
and gain from raw signal. Next, R peaks (i.e. maximum amplitude in the ECG
signal R wave) are located using beat-by-beat annotation file information. These
locations are then employed to segment ECG signals into individual heartbeats.
We choose 257 samples for the length of each heartbeat as suggested in [4].
Considering each R peak in the middle of a heartbeat, this length will cover the
whole heartbeat waveform.

3.2 Feature Extraction

Feature extraction involves representing a large amount of data using only a few
samples. Employing proper feature extraction method reduces the need for large
memory storage capacity and computational power. Wavelet Transform (WT)
is often used to extract features from ECG signals. Major concerns in using
WT are choosing proper wavelet and number of signal decomposition levels.
Daubechies wavelet [25] of order 2 is one of the best candidates for analysing
ECG signal according to [3]. In this article, the employed decomposition level is
four as suggested by the former study [4]. Each level of decomposition consists of
two sets of coefficients, namely detail and approximation. Therefore, we obtained
a total of eight sets of coefficients containing four sets of details (D1–D4) and
four sets of approximation (A1–A4). To decide about the best coefficients to use,
Azariadi et al. [5] performed a design space exploration for different combinations
of the coefficients (i.e. level one to four detail and approximation). The best result
was obtained by level four approximate coefficients. Therefore, approximation
four is employed as the final feature vector to be fed to SVM classifier.

3.3 Class Imbalance Treatment

Any non-uniform distribution between classes is described as a class imbalance.
Therefore, class imbalance negatively affects these algorithms [26]. In this article,
we use SMOTE [27] to treat class imbalance problem. It is a popular technique
which has been employed in many applications [6,28]. This algorithm creates
artificial instances of existing minority samples instead of simply duplicating
them. It selects k-nearest neighbours for a chosen target class. It then creates
new samples based on feature combination of the target class and its neighbours.
SMOTE is well-known for generating less specific decision region for minority
classes.
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3.4 Classification

In this article, SVM [29] is used to diagnose normal heartbeats from abnormal
ones and to offer non-linear classification with adequate precision. The objective
of SVM is finding an optimal hyperplane to distinguish classes of data. Generally,
this idea takes place by identifying the hyperplane with the maximum margin
between two classes. To find the best hyperplane, SVM utilises a kernel function
to map identified patterns into high-dimensional space. Therefore, SVM clas-
sifier characteristics are twofold: linear from parameters aspect and non-linear
in employed mapping attributes. Choosing suitable kernel function depends on
the problem SVM is used for, and there is no straightforward technique on how
to select a kernel function [29,30]. In this work, we applied Radial Basis Func-
tion (RBF) as the kernel function as it has been used in many studies for ECG
classification [3,5,7].

4 Result

4.1 MIT-BIH Arrhythmia Database

To perform our experiments, we employ the MIT-BIH arrhythmia database [31]
which has been used extensively for ECG related studies. This database contains
half-hour ECG signals of 47 both inpatient and outpatient participants aged from
23 to 89 years. The recordings are divided to “100” and “200” series. The “100”
series consists of more common arrhythmia while the “200” ones include rare
arrhythmias that are clinically important. ECG signals were captured at 360 Hz
with 11-bit resolution. Two independent cardiologists analysed the quality of
each signal and annotated it. To investigate the performance of SVM in relation
to different compression ratios of an ECG signal, we choose five participants
namely 100, 106, 202, 205, and 208. A total number of heartbeats analysed in
this article is 12095 including 9966 normal and 2129 abnormal beats. This data
test set is selected from “100” and “200” series to ensure the performance was
examined for common as well as rare arrhythmias. It is worth mentioning that
in this work, we assume the smart gadget is customised for each user (i.e. the
classifier is trained and tested by the same user’s ECG data). Hence, there is
no need of testing the SVM classifier with the data of patients who were not
involved in training process.

4.2 Experiments Setup and Performance Metrics

We employ broadly accepted performance measures in Compressed Sensing
and classification methods, namely, Compression Ratio (CR), Percentage Root-
mean-squared Difference (PRD), Sensitivity (SE), and Precision (PR) to quan-
tify functionality of compression algorithms coupled with SVM classification.

Compressed Sensing: To implement Compressed Sensing, we use Matlab func-
tions written by [13]. In this implementation, sensing matrix, Φ, is a random
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matrix of i.i.d Gaussian entries. Moreover, sparsifying matrix, Ψ , is formed using
nearly-perfect reconstruction cosine modulated filter banks [32]. After compress-
ing ECG signals, it is encoded through scalar quantisation. What follows discuss
measures associated with Compressed Sensing. Compression ratio is defined as
follows:

CR =
N × bitorig
M × bitrec

, (7)

where N is the length of the signal processing window, and bitorig is the sampling
resolution. Also, M is the length of compressed signal regarding window size,
and bitrec is the resolution of compressed signal. In this article, a window size
of N = 1024, compressed signal of length M = 64 × n(n = 1..9) bit sampling
resolution, and 6 bit compressed signal resolution are used.

PRD is a measurement factor of the distortion or alteration from an original
signal and defined as:

PRD =

√
√
√
√

∑N
i=1(xorig(i) − xrec(i))2

∑N
i=1(xorig(i))2

× 100, (8)

where xorig and xrec represent an original and reconstructed signal, respectively.

Classification: As mentioned before, approximation four of Daubechies Wavelet
of order 2 is used to form feature vectors from the recovered signal with a spe-
cific compression ratio (i.e. 0 to 29.33). Next, SMOTE is applied to address the
effect of class imbalance. The balanced classes are then fed to SVM classifier
with RBF kernel (Weka interface of LIBSVM [33] is used to implement SVM).
In SVM implementation, balanced classes are cross-validated employing 5-fold
validation. In k-fold cross-validation, the original sample is divided into k sub-
samples. One subsample is kept for testing, and the rest are used as training
data. The procedure is repeated for k times (k = number of folds). The benefit
of this method is that all subsamples are used for both training and testing.
We repeat SVM for ten seeds. The performance of SVM classifier is measured
using sensitivity and precision factors. Sensitivity is the ratio between retrieved
relevant instances (TP ) and a total number of relevant cases as follows:

SE =
TP

TP + FN
× 100, (9)

where relevant cases include retrieved and missed instances (TP+FN). Precision
is defined as the proportion of relevant instances over the retrieved ones:

PR =
TP

TP + FP
× 100, (10)

retrieved cases consist of relevant and irrelevant instances (TP + FP ).

4.3 Experimental Results

First, we analyse a number of factors that influence quality of ECG classification
including reconstruction algorithms and compression ratio. The impact of CR
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Fig. 2. Comparison between Basis Pursuit and Orthogonal Matching Pursuit. PRD as
a function of CR for different ECG records. (a) Basis Pursuit (b) Orthogonal Matching
Pursuit.

and PRD are presented in Fig. 2 for two reconstruction algorithms (i.e. BP and
OMP). As can be seen, an increment in CR is followed by PRD growth which is
intuitive as more compression leads to more distortion from the original signal.
We also note from Fig. 2 that for most participants (i.e. 4 out of 5 instances), BP
has a PRD less than 100 while OMP reaches a PRD over 140 when it becomes
stable. For participant 208, even though BP algorithm has a strictly increasing
trend for PRD, it still provides the same signal quality in relation to OMP in the
worst case. Furthermore, participants 208 and 106 could not reach an entirely
stable state for PRD in both BP and OMP.

Next, we present an analysis of SVM classification of the recovered signals
using OMP and BP. Figure 3 depicts the decreasing trend of precision of SVM
classifier with respect to CR for both OMP and BP algorithms. We use Wilcoxon
Signed-Ranked test to investigate whether there is a difference between the pre-
cision of reconstructed signals for various CRs concerning employed algorithms.
This test is used as a result of a limited number of participants and no evidence
of normality of the data. According to Wilcoxon Signed-Ranked test for CR
until 7.33, employed algorithms did not elicit a statistically significant change
in precision. However, for compression rates from 7.33 BP and OMP are sta-
tistically different in a sense that BP outperforms OMP. We have repeated the
same test to compare the sensitivity of SVM classifier for reconstructed signals
by BP and OMP. Interestingly, the test shows no substantial difference between
the sensitivity of the classifier regarding signal recovery methods. Table 1 shows
the precision and sensitivity of SVM for five participants considering different
CRs. As can be seen, there is a trade-off between CR and precision (sensitivity).
In other words, a higher compression ratio leads to lower precision (sensitiv-
ity). However, this claim needs further investigations using statistical methods.
Another important issue is deciding about reliable CR. From this table, we note
that three out of five participants (100, 202, and 205) have precision and sensi-
tivity more than 90% in CR 14.66 for both algorithms. From the same CR, OMP
precision (sensitivity) declines to less than 90% for participants 106 and 208. The
only case that has no issue either in understanding or measure of relevance in
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CR 29.33 is participant 205. To statistically evaluate the trade-off between CR
and precision (sensitivity), we employed Spearman’s rank correlation test pre-
sented in table 2. We employ this test to examine both direction and strength
of the relationship between CR and precision (sensitivity) monotonically. This
table shows that regardless of fluctuations in data points, there is a negative cor-
relation between them in 95% degree of confidence. Another essential criterion
that needs more investigation is the strength of coefficient for BP and OMP.
For precision in four out of five instances (i.e. all but 106) OMP has a stronger
negative correlation to CR. This means the precision is aggravated faster by
increasing CR. Similarly, the sensitivity of OMP for three out of five partici-
pants (100, 106, and 205) has the same behaviour. Despite the seemingly better
performance of OMP for 106, 202, 208 in precision (sensitivity), the cost of it
should be further evaluated. To do so, we use a measurement for OMP versus
BP as (CCBP /CCOMP )−1 for both precision and sensitivity. The measurement
shows that a minor improvement in precision (sensitivity) leads to a significant
deterioration in sensitivity (precision).

Fig. 3. Precision of classification associated with different compression ratios for all
ECG records as recovered by BP and OMP.

5 Discussion

This study shed some lights on factors impact quality of ECG classifica-
tion including reconstruction algorithms and compression ratio. What is most
remarkable about the results is that arrhythmia detection has low sensitivity to
intensity of signal recovery (i.e. a few samples represent important signal infor-
mation). Put differently, ECG signals with compression ratios up to 9.77 can
be classified with precision and sensitivity more than 90% for all participants
employing both algorithms. Moreover, as discussed in [15,16], compression may
improve precision of classifiers. This phenomenon is observed for some partici-
pants in our study (see Table 1).
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Table 1. Performance measurements of five-fold SVM (mean ± standard deviation)
for five ECG records based on different compression ratios.

CR BP OMP
PR (%) SE (%) PR (%) SE (%)

0 99.99±0.03 100±0 99.99±0.03 100±0
3.66 100±0 99.65±0.05 99.98±0.04 99.99±0.03
4.88 100±0 99.46±0.13 99.91±0.07 99.82±0.08
5.86 100±0 99.20±0.09 99.21±0.07 98.49±0.09
7.33 99.17±0.12 97.25±0.18 99.88±0.04 97.94±0.18
9.77 98.50±0.15 99.88±0.06 99.70±0.07 97.87±0.67
14.66 98.13±0.15 99.44±0.5 99.12±0.13 96.77±0.24
29.33 98.14±0.25 90.87±0.25 96.51±0.17 84.94±0.25

202
0 99.87±0.01 98.85±0.05 99.87±0.01 98.85±0.05

3.66 99.81±0.09 98.87±0.17 99.81±0.09 98.87±0.17
4.88 99.88±0.04 98.70±0.18 99.76±0.10 98.54±0.03
5.86 98.84±0.21 98.58±0.14 99.37±0.32 98.76±0.08
7.33 99.75±0.07 98.22±0.15 97.97±0.07 97.95±07
9.77 98.35±0.09 96.96±0.14 97.52±0.06 96.8±0.16
14.66 96.11±0.15 92.39±0.2 93.77±0.26 97.40±0.21
29.33 90.60±0.19 84.13±0.42 92.15±0.34 75.31±0.4

BP OMP
PR (%) SE (%) PR (%) SE (%)

99.87±0.06 99.98±0.04 99.87±0.06 99.98±0.04
100±0 99.70±0.05 99.87±06 99.96±0.05

99.82±0.10 99.88±0.07 99.79±0.08 99.89±0.03
99.79±0.09 99.99±0.07 99.56±0.09 99.78±0.08

99.90±0 99.55±0.07 99.97±0.09 98.99±0.12
99.19±0.11 98.94±0.13 97.71±0.25 95.62±0.28
95.27±0.46 95.8±0.43 90.05±0.55 89.29±0.32
77.92±0.38 85.65±0.42 68.20±0.46 86.59±0.68

205
100±0 99.71±0.07 100±0 99.71±0.07
100±0 99.64±0.06 100±0 99.75±0.09
100±0 99.64±0.05 99.99±0.03 99.62±0.08

99.98±0.04 99.57±0.05 100±0 99.21±0.09
99.79±0.19 99.35±0.21 99.96±0.05 99.54±0.05
99.82±0.08 98.93±0.13 99.87±0.05 99.07±0.13
99.51±0.11 98.55±0.14 98.5±0.15 97.26±0.16
95.06±0.20 94.20±0.18 91.68±0.2 95.59±0.2

208
CR BP OMP

PR (%) SE (%) PR (%) SE (%)

0 98.36±0.13 98.29±0.06 98.36±0.13 98.29±0.06
3.66 98.42±0.16 98.17±0.11 98.41±0.13 98.31±0.018
4.88 98.29±0.09 98.1±0.05 98.32±0.14 98.02±0.1
5.86 98.21±0.23 97.15±0.14 98.26±0.14 98.23±0.13
7.33 98.52±0.9 97.00±0.15 97.97±0.2 96.06±0.22
9.77 97.54±0.11 93.86±0.24 95.95±0.32 92.52±0.27
14.66 96.04±0.2 91.22±0.22 89.1±0.37 84.02±0.42

As mentioned earlier, BP and OMP do not show a significant difference when
it comes to sensitivity. What is more, the precision for both is the same for com-
pression ratios up to 7.33, after that BP outperforms OMP. This observation
expresses the idea that BP and OMP are interchangeable until a specific com-
pression ratio. Hence, OMP is a proper choice for small compression ratios due to
its lower time complexity [14]. An additional notable statement is regarding the
quality of reconstructed signal when using SVM classifier. Consider, for example,
compression ratio 9.77; the PRD ranges are roughly 55 to 80 and 80 to 125 for
BP and OMP, respectively. Obtained PRDs are far more than suggested PRDs
in the literature for high-quality signal recovery [12] (i.e. SVM classifier exploits
limited information to identify heartbeat abnormality). The performance of SVM
classifier with respect to individuals shows a general superiority of BP over OMP
considering both precision and sensitivity irrespective of compression ratio. To
be more precise, for three patients with slightly better performance in terms of
precision (sensitivity) there is considerable drop in sensitivity (precision), see
Table 2, participants 106, 202, 208. The results of SVM classification also indi-
cate the negative correlation between compression ratio and precision as well
as sensitivity for both algorithms. This observation can be explained as follows:
regardless of minor fluctuations, losing data information leads to a reduction in
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Table 2. Spearman’s rank correlation coefficient test between compression ratio and
(a) Precision and (b) Sensitivity.

(a) (b)

Par cipant BP OMP Index Par cipant BP OMP Index2

100 Cor.1 -0.657 -0.960 -31.6 100 Cor. -0.673 -0.976 -31.0
Sig. 0.039 0.000 Sig. 0.033 0.000

106
Cor. -0.758 -0.730 3.8

106
Cor. -0.782 -0.979 -20.1

Sig. 0.011 0.017 Sig. 0.008 0.000

202
Cor. -0.758 -0.985 -23.0

202
Cor. -0.939 -0.867 8.3

Sig. 0.011 0.000 Sig. 0.000 0.001

205 Cor. -0.841 -0.899 -6.5 205 Cor. -0.918 -0.939 -2.2
Sig. 0.002 0.000 Sig. 0.000 0.000

208 Cor. -0.661 -0.954 -30.7 208 Cor. -0.985 -0.927 6.3
Sig. 0.038 0.000 Sig. 0.000 0.000

1 Correla on Coefficient         

the ability of the classifier to identify arrhythmia detection. It is now time to
discuss the role played by severe heart disease. First, we need to know ratios of
abnormal heartbeats for each participant. The ratios of abnormal to total (i.e.
RA = abnormal/(normal + abnormal)) beats are 1.5, 26, 3.7, 3.4, 46.3 per cent
for participants 100, 106, 202, 205, 208, respectively. On the one hand, in Table 1,
patients 106 and 208 (with RA > 25%) are the ones with precision (sensitiv-
ity) less than 90% regarding OMP. On the other hand, participants 106, 202, 208
have RA > 3.5%. These patients had misleading classification performances
concerning OMP, see Table 2. These circumstances raise an important question.
Does severity of heart disease have impacts on the functionality of SVM classi-
fier? Admittedly, this question requires comprehensive investigation in terms of
participants.

6 Conclusion

In this work, we performed an empirical study to identify acceptable compression
ratios that hold crucial information of ECG signal. This is an efficient method
for reducing data transmission cost in sensors. To recover the original signal,
we applied two extensively used algorithms, namely BP and OMP. Next, we
used SVM classification to assess the effect of both compression ratio and signal
recovery methods on heartbeat arrhythmia detection. The results illustrated
that the SVM classifier only needs sparsely sampled signals to identify ECG
arrhythmia. Moreover, considering all of the participants, both OMP and BP
have the same performance for compression ratios up to around 1:7, after that
BP outperforms OMP with regard to ECG arrhythmia detection. For future
works, one can consider mutual effects of other reconstruction algorithms and
various classification methods on the acceptable interval of compression ratios.
Another extension of this article is to investigate more patients and examine
possible correlation between heart disease severity and classifier performance.
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Abstract. With the purpose of detecting the turnout fault without label data and
fault data timely, this paper proposes a hybrid deep learning framework com-
bining the DDAE (Deep Denoising Auto-encoder) and one-class SVM (Support
Vector Machine) for turnout fault detection only using normal data. The proposed
method achieves an accuracy of 98.67% on the real turn-out dataset for current
curve, which suggests that this work realizes the purpose of detecting the fault with
only normal data and provides a basis for the intelligent fault detection of turnouts.

Keywords: Fault detection � Deep Denoising Auto-encoder � DBSCAN
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1 Introduction

The high-speed railway in China has developed rapidly over the recent years, which
has brought great convenient trips. However, there is also an increasing awareness of
the train operation safety [1]. The turnout, as the most important infrastructure in the
high-speed railway system, controls the position change of trains. Its current operation
status shows characteristics of large quantity, frequent operation and harsh environ-
ment, which can easily cause the fault of the turnout and cause the hidden danger of the
train operation safety [2–4]. It is paramount to detect fault of the turnout precisely in
time for improving driving safety of the high-speed railway.

In the last decades, the research methods of fault detection for turnout mainly focus
on two aspects: analytical model [5, 6] and traditional machine learning method [7–13].
Despite their success, they also have their own drawbacks. On the one hand, the
analytical model-based detection system requires experts to establish the precise
mathematical model which is difficult in practice. On the other hand, the fault detection
based on traditional machine learning method relies heavily on the manual features
extraction and data labeling which are exhausted works.

Compared to traditional machine learning techniques, Deep learning (DL), especially
unsupervised DL algorithms [21], can eliminate the effect of manual feature and has been
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applied in the fault detection field [14]. Recently, as one of the effective DLs, DDAE was
also first employed to automatically extract feature of the turnout data without expertise
[17]. However, the work in [17] only focused on clustering analysis, not involving fault
detection. As a special case of DL, the hybrid deep learning, which integrates DL with
other classifiers to improve the classification accuracy [15, 16], has received an increasing
attention in classification task [15, 20]. But such hybrid architectures have not been
further studied in the field of fault detection, especially turnout fault detection.

This paper proposes a novel fault detection approach for high-speed railway turnout
based on hybrid deep learning by integrating the DDAE with one-class SVM. In the
proposed approach, DDAE is employed to extract features automatically instead of
relying on artificial experience from unlabeled dataset composed of current curves of
the turnout. The features are identified by the clustering algorithm and expert knowl-
edge [18] to classify the normal and abnormal current curve of turnout. Then only the
normal current curves are fed to one-class SVM model for detecting outliers. The
experimental results confirm that the proposed method performs well on the real
turnout dataset composed of more than 90,000 current curves of turnout provided by
cooperative enterprise, which also suggests that this work realizes the purpose of
intelligent detecting the turnout fault without label data and fault data.

This paper is organized as follows. In Sect. 2, an intelligent turnout fault detection
method based on hybrid deep learning is proposed. This method is verified in real
turnout data in Sect. 3. Finally, we conclude this paper in Sect. 4.

2 The Proposed Method

In this section, an intelligent fault detection method based on hybrid deep learning is
proposed to solve the problem of turnout fault detection without labeled data. Figure 1
illustrates the procedure of the proposed method, which mainly composed of three
steps: (1) data feature extraction, (2) normal data acquisition and (3) fault detection.
Details of each step of the proposed method are described below.

Raw Data

En
co

de
r

1 Loss

Noise

X

(1) DDAE-based Automatic Feature Extraction

En
co

de
r

...

En
co

de
r

n

D
ec

od
er

n

D
ec

od
er

...

D
ec

od
er

1

RMSProp

Decoded 
Data

DBSCAN

One-Class SVMExpert 
Knowledge

Feature Data

Clusting
Result

Parameter
Optimization

Normal
Data

(2)Normal Data 
Acquisition with Expertise

(3)One-class SVM 
Fault Detection

Fig. 1. Flow chart of proposed method.
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DDAE-Based Automatic Feature Extraction - For fault detection of turnout, how to
extract the features of the current curve is the key point. In the previous research on
fault detection of turnout, the main way of feature extraction relies on artificial expe-
rience, which makes the result of extracted features very subjective and unreliable.

In order to get rid of the limitations of subjective artificial experience, we use a
feature extraction method based on DDAE [22], which is a very important deep
learning method that can extract features automatically. Specifically, Gaussian noise
(Noise) is introduced on the basis of the original current curve (Raw Data), and then the
high-dimension input data with Gaussian noise (X) is mapped to a low dimension
encoding (Feature Data) by using an encoder (Encoder 1-Encoder n), finally the low
dimension encoding is decoded to the reconstructed curve (Decoded Data) by the
decoder (Decoder 1-Decoder n). The training process of DDAE is to minimize the
mean square error function (Loss) between the original current curve and the recon-
structed curve by root mean square prop (RMSprop).

Normal Data Acquisition with Expertise - The feature data without labels can’t be
used directly for the fault detection model training. So we propose a method of
obtaining normal samples with expertise by clustering the feature data.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN), as a
well-known clustering method, is used to cluster feature data extracted by DDAE. The
algorithm assumes that the clustering structure can be determined by the tightness of
the distribution of the curve samples. By tuning the algorithm parameters, the clusters
can be greatly different. To improve the process of the parameters tuning, the method of
sensitivity analysis with expert knowledge is introduced. specifically, expert knowl-
edge is employed as the decision fundament of sensitivity analysis. Based on this, two
main parameters of DBSCAN algorithm (eps and MinPts), are jointly tuned by sen-
sitivity analysis. The clusters that contain fault data are eliminated according to the
expert knowledge. The process of data screening is unnecessary to label each data, so it
can greatly reduce the workload of the fault data discrimination. And this process
solves the problem that unlabeled data is difficult to apply to fault detection.

One-class SVM Fault Detection - Fault detection with normal data can be also
regarded as novelty detection. Specifically, the turnout fault detection needs to decide
whether a new current curve belongs to the same distribution as existing current curves.
The idea of support vector domain description (SVDD) [19] is used to guide the
training of compact classification boundary for the samples. This idea can be used to
solve the above-mentioned novelty detection problems of turnout.

As a specific method of novelty detection, one-class SVM, which is inspired by
SVDD, has attracted wide attention. The normal data, which is acquired by expert
knowledge selection, is used to train one-class SVM model for fault detection. Then the
trained SVM model is used to detect turnout faults, where the data are mapped to the
classification plane to identify whether the detection data is inside the classification
boundary or not. The one-class SVM output is the result of fault detection, which
indicates the detected fault conclusion of turnout.
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3 Experiments and Results

In this section, experimental results are presented to validate the proposed method,
which is tested on the unlabeled datasets composed of more than 90,000 current curves
of 128 S700K point machines. Due to the similar results obtained from the datasets of
different point machines, the experimental results from one datasets including 1200
current curves are reported here.

The proposed method relies on unlabeled data while the existing turnout fault
detection methods require labeled data, so there is no direct comparative experiment.
For space limitation, the detailed experimental process is omitted. The paper only lists
the key experimental steps as follows:

(1) All data are sorted in chronological order and normalized. Then stratified sam-
pling is divided into two datasets: 3/4 of the data including 900 pieces as the
training set and the rest 1/4 data including 300 pieces as the test set. The data of
test set are labeled by expert knowledge.

(2) In order to better extract the feature automatically, the DDAE model is con-
structed. The Gaussian noise with average 0 and standard deviation 0.01 are added
to the raw data so as to enhance the ability of denoising in feature extraction. The
hidden layer size of DDAE is set as 200-128-64-32-16-8, which is determined by
sensitivity analysis.

(3) The DBSCAN algorithm is used to cluster the 8 dimensions features, and two main
parameters (eps and MinPts) are jointly tuned by sensitivity analysis. After clus-
tering, the training set is divided into 14 clusters, and then the clusters that contain
fault data are eliminated according to the expert knowledge. The data of remaining
clusters are selected as the normal data for training fault detection model.

(4) The normal data acquired above is used to train fault detection model constructed
by one-class SVM. And the sensitivity analysis method is used to determine the
best parameters of the turnout fault detection model.

The experimental result is shown in the following table:

The detailed results displayed in Table 1 show that the accuracy of the proposed
method in fault detection with unlabeled data is 98.67%, the probability of missing
alarm is 0 and the probability of false alarm is 1.33%. This result has met the actual
turnout fault detection needs of cooperative enterprise. The experimental result shows
that the proposed method can give full play to the advantages of automatic feature
extraction in deep learning, and uses hybrid deep learning to solve the problem of fault
detection under the unlabeled data.

Table 1. The experiment result

Parameter Value

Accurate rate (%) 98.67
Probability of false alarm (PFA, %) 1.33
Probability of missing alarm (PMA, %) 0
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4 Conclusion

In this paper, a hybrid deep learning method combining deep learning and one-class
SVM is proposed for the fault detection based on the actual situation of turnout
operation and maintenance. The challenge of selecting normal data is addressed by
taking inspiration from [17, 18]. The proposed method can be divided into three main
steps: Firstly, in order to avoid obtaining subjective and unreliable features from
manual extraction, a deep learning model is used to extract the features of the raw data
automatically. Secondly, the clustering algorithm and expert knowledge are introduced
so as to select normal data clusters. Finally, the normal data is fed to one-class SVM
model for detecting the fault of turnout.

The evaluation of proposed method is carried out on the real turnout data, the fault
detection accurate rate of the method reaches 98.67%. The result confirms that the
proposed method can get rid of the dependence on manual feature extraction and
overcome the limitations of requiring labeled data for fault detection, which is more
flexible and practical. It is very interesting to combine deep learning and other tradi-
tional machine learning to detect the turnout fault. On the basis of this study, we plan to
further study the small fault detection of turnout based on hybrid deep learning.
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Abstract. Text classification is a challenging task for allocating each
document to the correct predefined class. Most of the time, there are
irrelevant features which make noise in the learning step and reduce
the precision of prediction. Hence, more efficient methods are needed to
select or extract meaningful features to avoid noise and overfitting. In
this work, an ontology-guided method utilizing the taxonomical struc-
ture of the Unified Medical Language System (UMLS) is proposed. This
method extracts concepts of appeared phrases in the documents which
relate to diseases or symptoms as features. The efficiency of this method
is evaluated on the 2010 Informatics for Integrating Biology and the Bed-
side (i2b2) data set. The obtained experimental results show significant
improvement by the proposed ontology-based method on the accuracy
of classification.

Keywords: Coronary artery disease notes · Text classification
Feature selection · Conceptualization · Ontology

1 Introduction

This paper proposes a method which applies ontology by referring to Unified
Medical Language System (UMLS) [1] for entity recognition, and then aggregates
frequent entities to create features. The proposed method is integrated with five
common text classification methods to answer the following research questions:

1. Whether the proposed method can reduce the number of features and keep
the meaningful features; and

2. Whether the proposed method can increase the accuracy in classification of
the targeted clinical text.
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By analyzing the previous work, it is noticeable that the majority of disease-
targeted systems have tended to develop static rule-based systems which require
human interventions every time the model is updated with new features. Such
systems are not scalable for practical machine learning purposes. Our system
allows an easier and flexible selection of different types of medical concepts to
enable automatic extraction of features or combinations and generation of a
prediction model.

2 Proposed Ontology Based Approach

One of the important points in text classification problems is to investigate the
domain of documents which should be classified and the domain of classes that
documents should be labeled with. This can help to select only related features
of the documents to the domain for training phase and improve the accuracy
of prediction for unseen documents. In the clinic text classification task all of
the documents are discharge notes of patients in medical domain. The candidate
class is whether a disease such as that Coronary Artery Disease (CAD) is present
or not. Our goal is to select features that have relations with the disease. In this
case, the performance of the learned model can be improved.

To achieve the above goal, our proposed algorithm employs the knowledge in
the 2010 Informatics for Integrating Biology and the Bedside (i2b2) data set [2]
and UMLS library. For this purpose, the MetaMap tool is used to extract all the
concepts of existing phrases for each document using the UMLS. As shown in
Fig. 1, the concepts extraction step is employed on both the training and the test
documents. Then, by considering the medical domain, the concept selection step
is performed on the obtained concepts. As a first step, two concepts are selected
among all the concepts: “Disease or Syndrome” and “Sign or Symptom”. By
following this way of concept selection, the meaningful concepts will be selected
which will assist the training phase to learn better in order to increase the
accuracy of classification.

2.1 Conceptualization

Two sentences are given below as a sample to show how MetaMap works on the
input notes and what output it provides in classification process.

“Hyperlipidemia: The patient’s Lipitor was increased to 80mg q.d. A progress note in the

patient’s chart from her assisted living facility indicates that the patient has had shortness

of breath for one day.”

Figure 2 shows a segment of the returned results from MetaMap. Table 1
summaries the extracted concepts of detected meaningful phrases from the sam-
ple sentences using MetaMap. As can be observed, the phrase “hyperlipidemia”
belongs to “[Disease or Syndrome]” and “[Finding]” concepts. The phrase “short-
est of breath” is allocated to the “[Sign or Symptom]”, [Clinical Attribute] and



106 M. Abdollahi et al.

Fig. 1. The flowchart of the architecture of using MetaMap and UMLS for text classi-
fication.

“[Intellectual Product]” concepts. Considering the medical domain and the type
of the classes in the selected data set, we choose concepts that appear in the
“[Disease or Syndrome]” or “[Sign or Symptom]” categories. First we identify
these two categories which are in square brackets, then the phrase that is within
the round parentheses at the same line will be extracted as the main phrase. For
example, the phrase “Dyspnea” is extracted in line 19 of Fig. 2 for the phrase
“shortness of breath”. After finishing the concept selection step, the obtained
phrases will be used instead of the original documents in the binary classifica-
tion problem. In order to give weights to the extracted terms of the documents,
TF-IDF is applied in the vectorization step and each document is represented
as a vector of weights based on the TF-IDF function.

Fig. 2. A segment of returned results of extracted concepts using MetaMap.
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Table 1. The extracted concepts of example sentences using MetaMap.

Sentences Detected phrases Extracted concepts Selected

First sentence Hyperlipidaemia [Disease or Syndrome] �
[Finding] ×

Patient [Patient or Disabled group] ×
Lipitor [Organic Chemical, Pharmacologic Substance] ×
80% [Quantitative Concept] ×
mg++ increased [Finding] ×

Second sentence Progress note [Clinical Attribute] ×
[Intellectual Product] ×

Patient chart [Manufactured Object] ×
Assisted living facility [Healthcare Related Organization, Manufactured Object] ×
Patient [Patient or Disabled group] ×
Shortness of breath [Sign or Symptom] �

[Clinical Attribute] ×
[Intellectual Product] ×

One day [Temporal Concept] ×

2.2 Data Preprocessing and Labelling

The idea of the paper is tested on the 2010 i2b2 data set. This paper focuses on
binary classification, so all the documents are labeled based on whether or not
the Coronary Artery Disease (CAD) is present. Each document in the original
data set has three files consisting of “Concepts.con”, “Relations.rel”, and “Asser-
tions.ast” which were provided by the i2b2 organization for Relations Challenge.
We used the content of “Assertions.ast” file of each document to determine the
label of it. As shown in Fig. 3, there are a number of problem names inside each
Assertion file. To label all of the documents, at the first step, all the lines of the
file is searched for the “Coronary Artery Disease” phrase. If the phrase is found
by the search, the second step will be checking whether the disease is present or
not. If the name of illness appears with the phrase “present” in the same line, we
will consider that the document is in the CAD class. By following this rule, all
of the labels of 170 training documents and 256 test documents are extracted.

Fig. 3. A subpart of the Assertions file.

3 Results and Discussions

The performance of the proposed method is assessed on the 2010 i2b2 data set.
Among all the topics, class CAD is considered to form a binary classification.
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Five popular classifiers are used in the experimental comparison. The classifiers
are Naive Bayes, Linear Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), Decision Tree and Logistic Regression. The performance of the classifiers
are evaluated based on three main metrics (Precision, Recall, F1-measure) using
micro-average and macro-average.

Some of the parameters of these classifiers are turned to get better results.
For this purpose, the number of the neighbors in the KNN is set to 28 for the
“n neighbors” parameter. In the Decision Tree classifier, the maximum depth of
the tree and the random number generator are set to 14 for the “max depth”
and 11 for the “random state” parameters, respectively. The inverse of regular-
ization strength in the Logistic Regression is set to “1e1” for the “C” parameter.
Furthermore, early stopping rule is selected to avoid overfitting in training Lin-
ear SVM and Logistic Regression classifiers. Other parameters of the classifiers
are their default values.

Table 2 compares the obtained micro-average and macro-average results of
the classifiers without using MetaMap and with using MetaMap. The best results
are highlighted in the table. It can be concluded from the experimental results
that the accuracies of all classifiers are increased significantly after applying the
proposed method. In Table 2, K-Nearest Neighbor using MetaMap achieved bet-
ter performance (with 94.86% accuracy) in comparison with the other classifiers
in micro-average results (F1-measure metric).

Table 2. The obtained results for the 2010 i2b2 data set.

Method Without MetaMap With MetaMap

Precision Recall F1-measure Precision Recall F1-measure

Micro-average results

Naive Bayes 77.47 77.47 77.47 81.42 81.42 81.42

Linear SVM 87.35 87.35 87.35 93.28 93.28 93.28

KNN 84.98 84.98 84.98 94.86 94.86 94.86

Decision tree 85.77 85.77 85.77 90.12 90.12 90.12

Logistic regression 86.96 86.96 86.96 92.89 92.89 92.89

Macro-average results

Naive Bayes 50.55 50.20 48.33 68.50 62.21 64.00

Linear SVM 84.44 70.66 74.67 91.07 86.28 88.41

KNN 85.33 62.01 65.08 91.92 91.24 91.58

Decision tree 77.17 74.47 75.67 82.78 91.51 85.93

Logistic regression 86.39 68.02 72.31 92.38 83.64 87.15

By analyzing the two F1-measure columns of micro-average results in Table 2
as the classification accuracy, Naive Bayes and Decision Tree classifiers are
improved approximately 4% using the proposed method. Furthermore, Linear
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SVM and Logistic Regression achieved 6% more precision. The biggest improve-
ment is achieved by K-Nearest Neighbor (10%). Overall, all of the learned models
by utilizing the concept of phrases instead of the original documents achieved on
average a 6.1% improvement in classifying the 2010 i2b2 data set. Moreover, the
number of features has been reduced from 7554 to 788 by the conceptualization
approach, which is about 90% reduction.

To further evaluate our approach, instead of the original training-testing split
given by the data set, we used 10-fold cross validation. We shuffle the documents
and run the experiment 30 times, and each time is 10-fold cross validation. We did
significance test using the experiment results of the 30 runs. Table 3 details the
mean and the standard deviation of the suggested method with MetaMap and
the method without MetaMap over the i2b2 data set. The classification accuracy
is the average of 30 times 10-fold cross validation test. The Wilcoxon signed
ranks test is applied to check whether the proposed method has made significant
difference in classification accuracy. According to Table 3, “T” column shows the
significance test of the without MetaMap method against the suggested method,
where “+” implies the proposed technique is significantly more accurate, “=”
implies no significant difference, and “−” implies significantly less accurate.

Table 3. Comparison of classification accuracy and standard deviation averages using
30 independent runs. The highlighted entries are significantly better (Wilcoxon Test,
α = 0.05)

Dataset Classifier Without Highest Mean With Highest Mean T

MetaMap (Lowest STD) MetaMap (Lowest STD)

2010 i2b2 Naive Bayes 80.49 ± 0.055 81.34(0.036) 84.26 ± 0.053 85.64(0.029) +

Linear SVM 88.96 ± 0.046 89.49(0.031) 92.56 ± 0.038 93.08(0.016) +

KNN 86.76 ± 0.051 87.80(0.023) 91.61 ± 0.039 92.82(0.028) +

Decision Tree 90.36 ± 0.037 92.60(0.016) 89.14 ± 0.042 91.39(0.029) =

Logistic Regression 88.51 ± 0.047 89.02(0.027) 92.63 ± 0.038 93.32(0.021) +

From Table 3, it can be concluded that the proposed method is able to achieve
considerably higher classification accuracy than the other method. Our approach
gains significantly better classification accuracy in four cases. Only in the case
of Decision Tree classifier, the method shows not significantly difference of clas-
sification accuracy.

For further analyzing the methods, we checked the outputs and detected
two documents with names ”0101.txt” and ”0302.txt” and label CAD which all
the classifiers in the method without MetaMap have been labeled incorrectly,
whereas all of the classifiers in the proposed method have been labeled correctly.
By checking carefully the documents, we found two main reasons for this case.
The first reason is that our work decreases the number of noisy data significantly.
It assists classifiers to learn better. The second reason is that the new method
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maps phrases to their concepts which are meaningful and most of the time shorter
than the original phrases. Since all the words in the documents stand alone as
features, a phrase consists of more than one word will lose its meaning.

4 Conclusion and Future Work

The current study proposed a medical ontology driven feature engineering app-
roach to reduce the number of features as well as persist with meaningful fea-
tures. In conjunction with the MetaMap tool, we map meaningful phrases in
medical text to specific UMLS medical concepts. The related concepts to the
problem domain are selected as features. The number of features is reduced sig-
nificantly by selecting ”Disease or Syndrome” and ”Sign or Symptom” concepts,
which are the most important in the domain of clinical notes. Experimental and
statistical results show that the suggested approach can accomplish significantly
better classification accuracy.

As our future work, we will consider relations between diseases and symp-
toms, and include the ones that are interconnected as pairs [3]. Furthermore, we
are planning to use concepts of sentences instead of phrases as features, hopefully
to further reduce the number of features and increase the accuracy. We will find
temporal relations between events to increase the classification accuracy. Finally,
all of the suggested ideas will apply on other data sets for further analysis.
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Abstract. Melanoma is the deadliest type of skin cancer that accounts
for nearly 75% of deaths associated with it. However, survival rate is
high, if diagnosed at an early stage. This study develops a novel clas-
sification approach to melanoma detection using a multi-tree genetic
programming (GP) method. Existing approaches have employed various
feature extraction methods to extract features from skin cancer images,
where these different types of features are used individually for skin can-
cer image classification. However they remain unable to use all these
features together in a meaningful way to achieve performance gains. In
this work, Local Binary Pattern is used to extract local information
from gray and color images. Moreover, to capture the global informa-
tion, color variation among the lesion and skin regions, and geometrical
border shape features are extracted. Genetic operators such as crossover
and mutation are designed accordingly to fit the objectives of our pro-
posed method. The performance of the proposed method is assessed using
two skin image datasets and compared with six commonly used classifi-
cation algorithms as well as the single tree GP method. The results show
that the proposed method significantly outperformed all these classifica-
tion methods. Being interpretable, this method may help dermatologist
identify prominent skin image features, specific to a type of skin cancer.

Keywords: Genetic programming · Image classification
Feature extraction · Feature selection · Melanoma detection

1 Introduction

Skin cancer is the most common form of cancer, accounting for at least 40% of
cases globally [19]. Australia and New Zealand have one of the highest rates of
skin cancer incidence in the world, almost four times the rates registered in the
United States, the UK and Canada [19]. The worldwide continuous increase in
incidence of melanoma and other skin cancers in recent years, its high mortality
rate, painful biopsy procedures and their huge medical cost have made its early
diagnosis an important priority of public health. The advancements in the areas
of computer vision and machine learning facilitate earlier diagnosis of various
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 111–123, 2018.
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skin cancers that require no biopsy. For skin cancer image classification, impor-
tant characteristics for distinguishing between different cancer types, are based
on dermoscopy criteria; the Asymmetry, Border, Color, and Diameter (ABCD)
rule [20] and the 7-point check-list method [4]. These are the key medical prop-
erties that help dermatologists diagnose various types of skin cancers.

Genetic programming (GP) is a domain-independent method that genetically
breeds a population of computer programs (models or trees) to solve a particu-
lar problem [9]. Specifically, GP iteratively transforms a population of computer
programs into a new generation of programs by applying analogues of naturally
occurring genetic operations [9] such as crossover, mutation and reproduction.
GP automatically evolves a computer program or candidate solution to a prob-
lem in a tree-like structure where terminal nodes consist of features and internal
nodes consist of functions. As not all features are important for classification,
GP (with its implicit feature selection ability) picks the most prominent features
at its terminals, having high discriminating ability between classes in its evolved
solutions, which significantly impacts on achieving good performance.

Different from single-tree GP (STGP) which evolves one tree in an individ-
ual, GP can evolve an individual having more than one trees to solve a par-
ticular problem, which is termed as multi-tree GP (MTGP) [17]. In the litera-
ture, MTGP has been explored for multi-class classification [15], self-assembling
swarm robots [10], constructing new redundant features to create benchmark
datasets for feature selection [11], and automatically evolving image descriptors
[3]. Multi-tree approaches on non-image classification datasets have been stud-
ied in the literature [10,11,15], however, they have not been investigated for
complex image classification tasks such as melanoma image classification, where
different kinds of features (based on local and global as well as color and texture
information) are necessary to be incorporated in the evolved solution. Hence, for
having enough informative features in terminal set, various kinds of stated fea-
tures need to be employed. Moreover, with advancements in technology, various
optical instruments are in use to capture skin cancer images such as dermato-
scope and standard cameras. Images captured from different instruments might
have different visual properties such as illumination, scale, and reflection, there-
fore, which feature extraction methods are suitable for which type of images
(captured from different instruments) is still an open question. In such a sce-
nario, a multi-tree approach having multiple trees each evolved using a different
type of informative features is more convenient (appropriate) to employ.

The existing methods [6,21] have used deep Convolutional Neural Networks
(CNNs). Although these methods have shown very good performance, they are
implemented as a black-box, hence, are not interpretable. In assisting a derma-
tologist, these methods cannot suggest which features are critical in classifying
skin cancer images. Moreover, the performance of CNN is generally constrained
by data and can only classify well when provided sufficient training examples
which leads to long computation time and requires huge computing resources.
Some existing approaches [7,18] rely on extracting various kinds of features from
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skin cancer images and compared the performance of these features for image
classification using commonly used machine learning classification algorithms.

Goals: This work develops a new multi-tree GP method for skin cancer image
classification. Different from most existing methods, the proposed method aims
at evolving a GP individual based on different types of texture, color, border
shape and geometrical information features for skin cancer images taken from
different optical instruments (specialized dermatosocope and standard camera).
As compared to evolving models using only one type of feature, each individual
includes multiple trees each of which evolves one type of features. By doing so,
the proposed method is expected to automatically evolve a classification model,
using the best type of features for the images. This work aims to address the
following research question:

– Which type of the features are most prominent in providing good classification
performance and why?

– Whether multi-tree GP approach can provide better discriminating ability as
compared to single-tree GP (STGP) approach across different datasets?

– Whether the proposed GP method can outperform the other non-GP classi-
fication algorithms?

– How well this new method works as compared to existing GP skin cancer
image classification methods? and

– Whether all type of features are contributing equally to classification per-
formance or a specific type of feature has more distinguishing ability for an
image dataset captured using a specific instrument?

2 Feature Extraction

Feature extraction is used to extract the image features, similar to those visually
detected by dermatologists, that can accurately characterize a melanoma lesion
[7]. In this work, we capture local information from images using LBP image
descriptor [16] and global information using lesion color variation [18], and bor-
der shape features [7,13]. We have employed various types of features in order
to analyze which type of features are more prominent in providing good classi-
fication ability for which type of images (dermoscopy and standard camera).

2.1 Local Binary Patterns (LBP)

LBP is a dense image descriptor for feature extraction, developed by Ojala et al.
[16]. LBP scans an image pixel-by-pixel, using a sliding window of fixed radius.
The central pixel value is computed based on the intensity values of surrounding
pixels lying on the radius as depicted in Fig. 1. LBP generates a histogram (i.e.
feature vector) from the computed values. The LBP descriptor is defined as:

LBPp,r =
p−1∑

i=0

K(si − sc)2i (1)
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where p is the number of neighboring pixels, r is the radius, si and sc are the
intensity values of the ith neighbor and central pixel, respectively. K(x) returns
0 if x < 0 and 1 otherwise. The size of feature vector can be reduced from 2p

bins to p (p − 1) + 3 bins using only uniform codes and putting all non-uniform
codes in one bin. In skin cancer images, uniform codes can help detect streaks
(line ends) and blobs (flat regions) which may add to performance gains.
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Fig. 1. The LBP process.

2.2 Lesion Color Variation

Color is an important characteristic often used by dermatologists to classify skin
lesions as a significant component of the ABCD rule [20] and the 7-point checklist
method [4]. Melanoma skin lesions are characterized by variation in color across
the lesion area. This color variation induces high variance in the red, green,
blue (RGB) color space. Therefore, features extracted from RGB color channels
may have high discriminating ability between classes. To incorporate such global
color features, the pixels in the segmented skin lesion of red, green and blue color
channels are used. The mean (μ) and variance (σ) of each channel is calculated
and represented as μR, μG, μB and σR, σG, σB. To capture complex non-
uniform color distributions within the skin lesion region, mean ratios of the mean
values are calculated, i.e., µR

µG
, µR

µB
, µG

µB
. Variations in color of the skin lesion with

respect to the surrounding skin is also considered. These features are calculated
as µR

µR
, µG

µG
, µB

µB
, where μ represents the mean value of surrounding/normal skin

region. These features are adopted from [18].

2.3 Geometry-Based Features

Border information and geometrical properties of the shape of a lesion pro-
vide significant diagnostic information for detecting melanoma. According to the
ABCD rule of dermoscopy [20], asymmetry is given the highest score among its
four characteristics; asymmetry, border irregularity, color, and diameter. Here,
we used some standard geometry features (area, perimeter, greatest diameter,
circularity index, irregularity index A, irregularity index B, and asymmetry
index) adopted from [13] complemented by others (shortest diameter, irregu-
larity index C, irregularity index D, and major and minor asymmetry indices)
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adopted from [7]. Images within each dataset in this study have fairly similar
spatial resolution; thus, there has been no scale issue for features such as area
and perimeter. We extracted a set of 11 geometry-based features from each skin
lesion image.

Several computer-aided diagnostic (CAD) systems [6,7,18,21] have been
developed to help dermatologists in diagnosing benign and malignant skin
lesions. However, these methods remain unable to design a way of using all these
different type of features once, in order to get increased performance. Therefore,
we become interested to formulate a method, which not only incorporates vari-
ous types of features efficiently and effectively, but is also capable of evolving a
classification model based on selecting prominent features.

3 The Proposed Method

The proposed method for melanoma detection from skin cancer images is
described in this section. The overall structure is presented in Fig. 2.

Training Set

Test Set

Feature Extraction

GP

Evolved Model

Classification
Performance
(Accuracy)

Image Dataset Feature vectors

Fig. 2. The overall algorithm.

3.1 Representation

The images are first converted to feature vectors by employing the four feature
extraction methods described in Sect. 2. These four types of features (LBPgray,
LBPRGB, Lesioncolor, and Lesionshape) are fed into multi-tree GP method. Exam-
ple of an individual in the proposed method is shown in Fig. 3. During the evo-
lutionary process, the proposed method is designed in such a way that each
tree can select from only one type of feature. In other words, our multi-tree GP
method evolves an individual (model) which consists of four trees; one evolves
using LBPgray features, second using LBPRGB features, third using Lesioncolor

features and fourth using Lesionshape features as shown in Fig. 3.
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Fig. 3. An MTGP individual with different types of features at terminals of each tree.

3.2 Terminal Set and Function Set

The terminal set consists of four types of features, extracted from four different
feature extraction methods as discussed in Sect. 2.

1. LBPgray: A total of 59 LBP features are extracted from gray-level skin cancer
images through the process shown in Fig. 1.

2. LBPRGB: From each color channel (red, green, blue), 59 LBP features are
extracted. These features are concatenated to make a total of 177 (= 59 LBP
features × 3 channels) LBPRGB features.

3. Lesioncolor: Color variation inside the lesion area, and between the lesion area
and skin is calculated by a total of 12 Lesioncolor features.

4. Lesionshape: The geometrical properties and border information of the lesion
region are included in our method by extracting 11 Lesionshape features.

The value of the ith feature for the above four feature types is indicated as
Gi, Ri, Ci, and Si, respectively, as shown by the GP individual in Fig. 6. For
LBP features, window size of 3× 3 pixels and a radius of 1 pixel (LBP8,1) is
used.

The function set consists of the most commonly used seven operators; four
arithmetic {+,−,×, /}, two trigonometric {sin, cos}, and one conditional {if }
operator. Among the arithmetic operators, the first three operators have the
same arithmetic meaning, however, division is protected that returns 0 when
divided by 0. The if operator takes four inputs and returns the third input if
the first input is greater than the second input; else, it returns the fourth input.

3.3 Crossover and Mutation

The genetic operators, such as crossover and mutation, are designed accord-
ingly, which we call same-index-crossover/mutation. As presented in Fig. 4, the
tree evolved from LBPRGB features in Parent-1 can only crossover/mutate with
the tree evolved from the same LBPRGB features in Parent-2, and it cannot
crossover/mutate with the other three trees evolved from LBPgray, Lesioncolor,
Lesionshape features. At the end of the evolutionary process, the evolved GP
individual consists of four trees each evolved using a single type of features.
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Fig. 4. The proposed same-index-crossover operator.

3.4 Fitness Function

For evaluating each individual in the proposed multi-tree GP approach, we have
used a fitness function based on average of the classification accuracy of all the
trees in one GP individual. The fitness is defined as

fitness =
1
m

m∑

i=1

accuracy(Ti) (2)

accuracy(x ) =
1
2

(
TPx

TPx + FNx
+

TNx

TNx + FPx

)
(3)

where m shows the number of trees and Ti shows the ith tree in a GP individual
and accuracy is the balanced accuracy among the two classes given by Eq. (3).
TP refers to true positive, TN refers to true negative, FP refers to false positive,
and FN refers to false negative. Using this fitness (Eq. (2)), we allow all the four
trees to improve themselves during the evolutionary process, rather maximizing
the accuracy of only one tree. When there is a class imbalance problem (different
number of instances in different classes), it is more appropriate to use balanced
accuracy rather than standard overall accuracy, defined as the ratio between
correctly classified instances and total number of instances. After evolving a
model on the training data, we know the different accuracies produced by each
tree in a GP individual. Among these trees, we take the highest performing tree
on the training set and test it on the test (unseen) data.

4 Experiment Design

For carrying out the experiments, the datasets are split by 10-fold cross vali-
dation. Each dataset is divided into ten folds such that nine folds are used for
training and the remaining one fold for testing. In our experiments, nine folds
are used to evolve the model and one fold is used to test this evolved model
for classification. The division of instances among the folds is random but it
is ensured that the ratio of instances of each class in each fold is the same as
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in the original dataset. For our experiments, the number of GP runs is 30 and
the results are reported in terms of the mean and standard deviation of the
fitness values. For evolving an individual having four trees on the training data
(9 folds), the fitness given in Eq. (2) is used, which computes the average of the
accuracies of the four trees. This evolved model is then tested on the test data
(1-fold) using only a single tree having the highest accuracy on the training data.
This procedure is repeated 10 times to get the result for 10-fold cross validation
using all the different combinations of folds. Hence for the 30 GP runs, the above
procedure is repeated 30 times to get 30 accuracy values each for training and
test sets. In one set of experiments, the random seeds for each of the 30 runs are
all different. The implementation of our multi-tree GP method is done using the
Evolutionary Computing Java-based package [12].

4.1 Datasets

(a) (b)

Fig. 5. Samples of (a) PH2 dataset, and (b) Dermofit dataset.

PH2Dataset: This dataset [14] contains dermoscopy images captured from a
specialized instrument for skin cancer images called dermatoscope. Such high
quality images are rich enough to investigate them for skin cancer classification.
The dataset consists of 200 images that belong to three classes: common nevi
(80 instances), atypical nevi (80 instances), and melanomas (40 instances). In
dermatology, common nevi refers to non-disease lesion (mole), atypical nevi refers
to a currently non-disease lesion, but may develop malignancy later, whereas
melanoma is the diseased lesion. For our experiments on binary classification, 80
common nevi and 80 atypical nevi are used as “benign” class, and 40 melanoma
are used as “malignant” class. Samples of the two classes are shown in Fig. 5(a).

Dermofit Dataset: The Dermofit Image Library [5] is a collection of 1300 high
quality skin lesion images collected under standardized conditions with internal
color standards, captured from a standard camera. The lesions span across ten
different classes, where each image has a gold standard diagnosis. Images consist
of a snapshot of the lesion surrounded by normal skin. For evaluating our binary
classification methods, we have used two classes; (1) Melanocytic Nevus (mole)
with 331 images as “benign”, and (2) Malignant Melanoma with 76 images as
“malignant”. Samples of the two classes are shown in Fig. 5(b).
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4.2 GP Parameters

The parameter settings of our proposed multi-tree GP method are listed in
Table 1. The evolutionary process keeps evolving until a maximum of 50 gener-
ations is reached or it stops when a perfect individual with accuracy 100% is
found.

Table 1. Parameter settings of the GP method.

Parameter Value Parameter Value Parameter Value

Generations 50 Crossover rate 0.80 Selection type Tournament

Population size 1024 Mutation rate 0.19 Tournament size 7

Tree depth 2–6 Elitism 0.01 Initial population Ramped half-and-half

4.3 Classification Methods for Comparison

To check the performance of our proposed multi-tree GP method on the test
set, six classification methods are used: Näıve Bayes (NB), k-Nearest Neighbor
(k-NN) where k = 1 (the closest neighbor), Support Vector Machines (SVMs),
Decision Trees (J48), Random Forest (RF), and Multilayer Perceptron (MLP).
These methods are implemented through the commonly used Waikato Envi-
ronment for Knowledge Analysis (WEKA) package [8]. Similar to the existing
approaches [1,2], we have used a Radial basis Function (RBF) kernel instead
of the default linear kernel in WEKA. For MLP, the learning rate, momentum,
training epochs and the number of hidden layers are set to 0.1, 0.2, 60, and 20,
respectively. These parameters are specified empirically as they show the best
performance amongst other settings.

5 Results and Discussions

5.1 Overall Results

The results of our experiments are presented in Table 2. Vertically, the table
consists of three blocks where the first gives the results of the proposed multi-tree
GP method (MTGP), the second shows results of other non-GP classification
methods, and the third shows results of STGP methods each using one type
of features. Horizontally, the table consists of 5 columns where first lists the
classification algorithm, second and third show respectively the training and test
performances for the PH2 dataset, and fourth and fifth show these performances
for the Dermofit dataset. The values of these results are represented as the mean
and standard deviation of applying 10-fold cross validation to the datasets. For
all the GP methods (multi-tree and single-tree), the training and test processes



120 Q. U. Ain et al.

are repeated 30 times, hence we get 30 accuracies for each method which are
represented as mean and standard deviation (x̄ ± s) in Table 2.

For making a clear comparison between the proposed method and other non-
GP classification algorithms, and STGP methods, the results are also inves-
tigated using Wilcoxon signed-rank test with a significance level of 5%. This
statistical test is applied on the test results to check which method has bet-
ter ability to discriminate between benign and malignant classes. The symbols
“+”, “−” and “=” are used to represent significantly better, significantly worse
and not significantly different performance, respectively, of the proposed MTGP
method in comparison with other methods. For example, in case of the PH2

dataset, the test performance of RF is represented as “76.56±09.81”, where the
“+” sign represents that MTGP significantly outperformed the RF classification
method. From the results of the statistical test, it has been observed that the
proposed MTGP method not only outperformed all non-GP methods but also
outperformed all STGP methods which proves the authenticity of our method.

Table 2. Comparison between the proposed Multi-tree GP method, the non-GP and
single-tree GP Classification methods: Accuracy (%) on the training and test set of
both datasets (represented in terms of mean accuracy and standard deviation (x̄± s)).

PH2 Dermofit

Training Test Training Test

MTGP 79.69 ± 1.35 78.87 ± 2.92 75.63 ± 0.99 74.57 ± 1.86

Non-GP methods NB 93.85 ± 1.11 77.81 ± 08.44 + 86.42 ± 0.70 72.26 ± 11.62 +

SVM 89.62 ± 1.37 70.00 ± 10.29 + 95.16 ± 0.84 70.02 ± 10.34 +

KNN 100.0 ± 0.00 75.63 ± 14.71 + 100.0 ± 0.00 72.08 ± 09.52 +

J48 97.05 ± 2.71 71.25 ± 11.08 + 97.09 ± 1.31 73.98 ± 10.65 +

RF 100.0 ± 0.00 76.56 ± 09.81 + 99.93 ± 0.22 71.30 ± 09.80 +

MLP 78.92 ± 1.23 78.44 ± 10.96 + 79.83 ± 1.95 73.00 ± 08.51 +

Single- tree GP LBPgray 82.84 ± 1.35 65.96 ± 3.96 + 73.41 ± 1.87 59.91 ± 3.57 +

LBPRGB 84.42 ± 1.43 73.87 ± 2.34 + 75.52 ± 1.62 63.26 ± 3.19 +

Lesioncolor 81.59 ± 2.31 65.70 ± 3.61 + 81.06 ± 1.31 74.13 ± 2.67 +

Lesionshape 78.06 ± 1.97 49.89 ± 5.34 + 74.74 ± 2.67 61.74 ± 7.06 +

In comparing the MTGP and STGP methods, we have seen that MTGP
method has more potential to evolve good classification models that have more
discriminating ability between classes. Moreover, among the two datasets, dif-
ferent types of features are prominent in playing the role of classification.
For the PH2 dataset, the LBPRGB features have shown highest performance
(73.87 ± 2.34) among the four STGP methods. This shows that for images
captured from specialized instruments (such as in PH2 dataset), LBPRGB has
the most potential to discriminate between “benign” and “malignant” classes.
Whereas, for images captured from standard camera (such as in Dermofit
dataset), the Lesioncolor feature has produced best results (74.13± 2.67) among
the four type of features. Hence we can say that images captured from different
instruments require different feature extraction methods to obtain information
distinguishing between classes. We have also seen such a trend while evolving
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an individual using our multi-tree approach. Among all the four trees, on the
PH2 dataset LBPRGB features gave highest accuracy most of the time and in
case of evolving an individual on the Dermofit dataset, the tree representing
Lesioncolor features has the highest accuracy. We used the highest performing
tree to check the performance on the unseen data. It is evident from the results of
STGP methods for both datasets that selecting an appropriate feature extraction
method is critical in evolving good classification models. The existing approaches
to skin cancer image classification using GP [1,2] have used STGP methods
and employed only a single dataset to test their performance. Our MTGP
method has outperformed both of the existing methods in terms of classification
performance.

5.2 Further Analysis

To see why our proposed MTGP method can achieve good performance, we show
a good evolved GP individual (Fig. 6) with four trees evolved using the four types
of features (a) LBPgray, (b) LBPRGB, (c) Lesioncolor, and (d) Lesionshape) hav-
ing 80.32% accuracy on the test data. This individual is taken from the PH2

experiments. In Fig. 6, white nodes represent functions and colored nodes rep-
resent terminals. While evolving this model on the training data, the individual
accuracy values for LBPgray tree, LBPRGB tree, Lesioncolor tree, and Lesionshape

tree are 76.74%, 77.08%, 70.49% and 65.63%, respectively. As discussed earlier in
this section, for PH2 dataset LBPRGB features have played the most prominent
role in classification as compared to other feature types. This shows that for this
dataset, local pixel-based features having color information can extract good
information from images about the presence/absence of melanoma. Also the two
feature types (Lesioncolor and Lesionshape) which cover the global properties like
color variation between lesion area and skin region, and border shape are not as
good as LBP feature types which have the local pixel-based information.

From Fig. 6(a) in the LBPgray tree, the features G50 and G12 get selected
3 and 2 times, respectively, whereas the expression G14–G10 appears 2 times,
which shows that these features have high discriminating ability. Among a total
of 177 LBPRGB features, a tree (Fig. 6(b)) constructed from only four dominant
features (R161, R79, R97, R31) has shown 77.08% accuracy on the training data.
This is the highest performing tree among the four trees in this individual, hence
applied on the test data and achieved an accuracy of 80.32%. In Lesioncolor tree
(Fig. 6(c)), C6 and C11 (corresponding to µR

µG
and µB

µB
) showing the two ratios

between mean of (1) red channel lesion area and green channel lesion area,
and (2) blue channel lesion area and blue channel skin area, are significant.
In Lesionshape tree (Fig. 6(d)), S2, S5, S7, S8, S9, and S10 are selected which
corresponds to greatest diameter, irregularity indices A, C and D, minor and
major asymmetry indices, and Asymmetry Index. These border shape features
can provide significant knowledge to the dermatologist in making a diagnosis.
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(a) (b) (c) (d)

Fig. 6. A good evolved GP individual for PH2 dataset using (a) LBPgray, (b) LBPRGB,
(c) Lesioncolor, and (d) Lesionshape features. (Color figure online)

6 Conclusions

This work has developed a novel method for skin cancer image classification using
multi-tree Genetic Programming. The proposed method works by incorporating
various types of local and global features extracted from skin cancer images that
have information regarding pixel-based gray-level and RGB characteristics, vari-
ation in color across the image (inside and between the lesion and skin regions)
and geometrical border shape properties. These four type of features are provided
to multi-tree GP by designing same-index-crossover/mutation such that during
the evolutionary process, same type of features undergo crossover/mutation in
order to avoid mixing of different features in one tree. Our method has out-
performed all the most commonly used classification algorithms and all the
single-tree GP methods showing evidence of good discriminating ability between
“malignant” and “benign” skin lesions. We have also found an interesting behav-
ior for selecting a suitable feature extraction method for particular type of images
captured from a specific instrument. The local pixel-based features have more
potential for classifying dermoscopy images, however global color variation and
geometrical shape features provide good discriminating ability between classes
for skin cancer images captured from standard camera.

In the future, we would like to explore GP not only for performing classi-
fication but also employing feature extraction inside it’s multi-tree individual
directly from skin cancer images. Moreover, for real-world images, how to cope
with reducing noise without losing informative features, is still an open issue.
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Abstract. In order to develop policies to mitigate the impacts of cli-
mate change on energy consumption, it is imperative to understand and
quantify the impacts of climate change and socioeconomic development
on residential electric load. This paper develops a feed-forward neural
network to model the complex relationships among socioeconomic fac-
tors, weather, distributed renewable generation, and electric load at the
census block group level. The influence of different explanatory variables
on electric load is quantified through the layer-wise relevance propaga-
tion method. A case study with 4,000 census block groups in south-
ern California is conducted. The results show that temperature, housing
units, and solar PV systems have the highest influence on net electric
load. The scenario analysis reveals that net electric load of disadvan-
taged communities are much more sensitive to rising temperature than
the non-disadvantaged ones. Hence, they are much more vulnerable to
climate change.

Keywords: Climate change · Disadvantaged community
Electric load · Layer-wise relevance propagation · Socioeconomic factors

1 Introduction

One of the most compelling evidences for global climate change is the rapid
rise in global temperature. Around the world, people are already experiencing
the effects of climate change. For example, the rise in temperature will lead to
increased cooling need and electricity consumption from air conditioning sys-
tems. It is also expected that the disadvantaged communities will be dispro-
portionately affected by climate change. In this paper, the impacts of climate
change and socioeconomic development on residential net electric load in south-
ern California are explored. In particular, we intend to answer questions such
as whether electricity affordability will get worse for disadvantaged communities
due to climate change and how income growth affects electricity consumption
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for disadvantaged and non-disadvantaged communities. In addition, we are inter-
ested in modeling the relationships among socioeconomic factors, meteorological
variables, renewable energy interconnection, and electric load.

Previous studies have shown that weather conditions significantly affect res-
idential electric load [9]. The relationship between socioeconomic factors and
residential electric load has been studied extensively in the past decades. A
comprehensive review can be found in [5]. However, little work has been done
to compare the impacts of climate change and socioeconomic development on
electricity consumption of communities with different backgrounds. In addition,
there has been no rigorous analysis to quantify the influence proportion of vari-
ous input factors on residential electric load. Lastly, most of the previous works
focus on studying sample data of individual households instead of electricity
consumption at the community level such as census block groups (CBGs).

This work fills the knowledge gap by developing a feed-forward neural net-
work (FNN) to capture the relationships among weather, socioeconomic vari-
ables, and net electric loads at the CBG level. The layer-wise relevance propaga-
tion (LRP) method is used to quantify the impacts of input factors on residential
electric load. Finally, a comprehensive case study is conducted in southern Cali-
fornia to analyze the impacts of climate change and socioeconomic development
on electric loads of both poor and affluent communities.

The rest of this paper is organized as follows. Section 2 introduces our
methodology to explore the relationships among climate change, socioeconomic
factors, and electric load. Section 3 presents the case study with 4,000 CBGs in
southern California. The conclusions are given in Sect. 4.

2 Methodology

To quantify the impacts of climate change and socioeconomic development on
net electric load, we first establish a FNN to estimate the average electric loads
of local communities based on census, weather, and distributed renewable gen-
eration data. The relative importance of each input feature is then measured by
the LRP method [2].

2.1 Feed-Forward Neural Network

The proposed FNN is composed of four layers of neurons. The dimension of input
layer is determined by the number of input features. The model output is the
average electric load of a geographic region. Thus, the output layer’s dimension is
1. There are two hidden layers with ReLU as activation functions. The dimension
of each hidden layer is 200. We use Adam [6] optimizer to train the FNN. The
early stopping procedure is adopted to avoid over-fitting.

2.2 Layer-Wise Relevance Propagation

The idea of LRP is to decompose the output value into a set of scores measuring
input features’ contributions to the output [2]. All neurons in each layer of FNN
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are assigned with relevance scores. Let g(·) be a trained FNN and x be the input
features. The following equation needs to be satisfied for relevance propagation.

L1∑

p=1

R1
p =

L2∑

n=1

R2
n = · · ·

Lk∑

i=1

Rk
i = · · · = g(x) (1)

where Rk
i is the relevance score of the ith neuron in the kth layer. Lk is the

number of neurons in the kth layer. Let Rk←k+1
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where ε is a small value used to avoid excessively small denominator. xk
i is the

activated value of ith neuron in kth layer. ωk→k+1
i,j is the {i, j} element of weight

matrix W k→k+1. bk+1
j is the jth element of bias vector bk+1.

The interpretation of above formulation is stated as follows. The relevance
score passed between two neurons in adjacent layers is in proportional to the
previous-layer neuron’s contribution on latter-layer neuron’s pre-activated value.
By iterating Eq. (2) and Rk

i =
∑

j Rk←k+1
i←j , we can finally transform the out-

put value into relevance scores of input features. Note that these scores can
be either positive or negative. Therefore, we introduce the influence proportion
Id = |R1

d|/
∑L1

p=1 |R1
p| to measure the impacts of different input features on out-

put, where Id is the influence proportion of the dth input feature.

3 Case Study of Southern California

In this section, a case study is conducted for southern California to investigate
the impacts of climate change and social economic factors on residential electric
load. The residential electric load and solar PV interconnection data are pro-
vided by Southern California Edison (SCE) and aggregated at the CBG level.
The census and weather related data are gathered through the National Histor-
ical Geographic Information System (NHGIS) and the Weather Underground’s
website. The details of the data used in the case study will be discussed in Sub-
sect. 3.1. The forecasting performance of the data-driven electric load model and
the importance of input features are reported in Subsect. 3.2. Finally, scenario
analysis is carried out in Subsect. 3.3 to investigate the impacts of climate change
and socioeconomic factors on electric load.
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3.1 Data Description

Three categories of input data are used in the case study: census data, weather
data, and solar PV data. The subcategories and input features of the three data
categories are shown in Table 1.

Census Data: The smallest geographic area for which the Census Bureau pub-
lishes sample data is CBG, which is the next level above census block in the
geographic hierarchy. Hence, the latest census data from 2011 to 2015 at the
CBG level is used in the case study. We extract 16 input features from 8 dif-
ferent subcategories of the raw data as presented in Table 1. The input features
of Age, Income, Education, and Employment record the proportion of residents
in corresponding ranges. For each subcategory of these four, the input features
sum up to 1. Therefore, one input feature can be omitted for each subcategory
to avoid redundancy.

Table 1. Final input features of FNN

Data category Subcategory Input features & Ranges

Census Age Childhood age (5 yrs old and below)

School age (6 to 17 yrs old)

Working age (18 to 61 yrs old)

Retired age (62 yrs old and above)

Income Low-income ($0-$34,999)

Middle-income ($35,000-$149,999)

High-income ($150,000+)

Education No college experience, College experience,

Bachelor, Graduate

Employment Employed, Unemployed, Military service,

Not in labor force

Housing units Number of housing units, Occupancy rate

Children Proportion of households with children under 18

Rooms Average number of rooms

Population Number of residents in CBG

Weather Temperature Average hourly temperature

Average daily peak temperature

Proportion of cooling degree days

Solar PV Solar PV Solar PV capacity, Solar installation rate

Weather Data: The historical hourly temperature data of cities in southern
California in 2015 are collected from Weather Underground. The temperature
data are then mapped to all the CBGs. Three weather related features/variables
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are extracted from the raw hourly temperature data. Average hourly tempera-
ture: The average hourly temperature of a CBG. Average daily peak temperature:
The average daily peak temperature of a CBG. Proportion of cooling degree days:
The proportion of cooling degree days of a CBG 1.

Electric Load and Solar PV Interconnection Data: The hourly electric
load data at the household level are collected by smart meters in SCE’s service
territory in 2015. Note that for buildings which are equipped with solar PV
systems, the net electric loads are recorded by the smart meters. The electric
load data are then aggregated to the CBG level. For each CBG, the average
hourly electric load is calculated and used as the output data of FNN model.

The solar PV interconnection data as of the beginning of 2015 are gathered
by SCE for the residential customers in its service territory. The following two
input features are extracted from the raw data files. Solar PV capacity : The sum
of solar PV systems’ capacities in a CBG. Solar installation rate: The proportion
of residential customers who installed solar PV systems in a CBG.

3.2 Model Performance and Feature Importance Analysis
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Fig. 1. The influence proportions of all data subcategories.

A FNN is trained to capture the relationships among census, temperature,
solar PV systems, and electric load data. The input layer of the neural network
consists of 16 input features from the census data, 3 input features from the
weather data, and 2 input features from the solar PV interconnection data as
shown in Table 1. The output variable is the average hourly electric load of a
CBG.

The entire dataset contains 4,000 CBGs in SCE’s service territory. It is
divided into three datasets: training set (2,400 CBGs), validation set (600
CBGs), and testing set (1,000 CBGs). Early stopping procedure is carried out
by evaluating the generalization error for the validation set. Five different sets of
initial FNN weights are used as the starting points to train the FNN. The initial
weights are randomly generated using “Xavier” initialization [3]. The forecasting

1 The cooling degree days are defined as the days with average temperature (highest
value plus lowest value divided by two) above 65 ◦F.
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performance of the FNN is evaluated by measuring the model’s prediction error
for average electric loads of CBGs on the testing dataset. The mean absolute
percentage error (MAPE) and the root mean square error (RMSE) of prediction
are used as the evaluation metrics. The average MAPE across five fitted model is
14.88% and the average RMSE is 104.85 kWh. The prediction accuracy is decent
given that the geographic area of a CBG is often small.

We select the model with the lowest MAPE for the testing set as the final
model. The influence proportions of all input features are calculated via the LRP
algorithm discussed in Sect. 2. The influence proportions of input features of the
same data subcategory are merged together to measure its total influence and
the results are depicted in Fig. 1. As shown in the figure, temperature, housing
units, and solar PV interconnection data are three most important inputs which
determine the average electric load in the CBG. Together, they account for nearly
60% of the total influence. Given that HVAC systems account for around 50%
of the total building energy consumption [8] and there is a significant need for
space-cooling during summer in southern California, it is not surprising to see
that temperature related variables have the highest impact on the residential
electric load. Similarly, it is intuitive to see that the number of housing units is
directly related to the amount of electric load in a CBG. Lastly, solar PV system
can generate significant amount of electricity to offset the electric load. Hence,
it is also an important factor in determining the net load.

3.3 Scenario Analysis

In this subsection, we investigate the impacts of climate change and socioe-
conomic development on residential electricity consumption in California. In
particular, we explore if the impacts are different for disadvantaged and non-
disadvantaged communities using the FNN trained in Sect. 3.2.

Impacts of Household Income Growth on Electric Load: The U.S. gross
median household income grew 46% between 1979 and 2011 after adjusting for
inflation. To explore the impacts of income growth on electricity consumption,
we gradually increase the average household income for each CBG by $30,000
in 30 steps from the current income level. The 4,000 CBGs in southern Califor-
nia are divided into two communities: disadvantaged communities (DACs) and
non-disadvantaged communities (non-DACs). According to the definitions of the
California Environmental Protection Agency (CalEPA) [1], DACs are commu-
nities burdened the most by environmental pollution, socioeconomic stress, and
health issues. These areas typically possess concentrations of people with low
income, high unemployment rate, and low education levels. 1,018 out of 4,000
CBGs in this study are DACs and the rest are non-DACs.

The impacts of income growth on electric load for both DACs and non-DACs
are depicted in Fig. 2(a). As shown in the figure, the households of non-DACs
on average consume more electricity than that of DACs. The electric loads of
both DACs and non-DACs increase when the household income grows. The
percentage change in electricity consumption for DACs is much higher than
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that of the non-DACs given the same amount of household income growth. This
observation implies that the residents in DACs can afford to consume more
electricity compared to the baseline consumption with the same income growth.

0 1 2 3 4 5
Increase in household income ($) 104

0.85

0.9

0.95

1

1.05

1.1

Av
er

ag
e 

el
ec

tri
c 

lo
ad

 
pe

r h
ou

se
ho

ld
 (k

W
h)

0

0.02

0.04

0.06

0.08

In
cr

ea
se

 in
 a

ve
ra

ge
 e

le
ct

ric
 

lo
ad

 p
er

 h
ou

se
ho

ld
 (k

W
h)DACs non-DACs DACs non-DACs

(a)

0 0.5 1 1.5 2 2.5 3
Increase in temperature °C

0.85

0.9

0.95

1

1.05

1.1

Av
er

ag
e 

el
ec

tri
c 

lo
ad

 
pe

r h
ou

se
ho

ld
 (k

W
h)

0

0.05

0.1

0.15

0.2

In
cr

ea
se

 in
 a

ve
ra

ge
 e

le
ct

ric
 

lo
ad

 p
er

 h
ou

se
ho

ld
 (k

W
h)DACs non-DACs DACs non-DACs

(b)

Fig. 2. Impacts of income growth and temperature rise on residential electricity con-
sumption of DACs and non-DACs. (a) Income growth. (b) Temperature rise.

Impacts of Rising Temperature on Electric Load: Due to the global warm-
ing and urban heat island effect, the average temperature is expected to rise in
California. It is projected that residents of California will, on average, face a
2.4 ◦C temperature increase by 2060s [7]. The coastal regions will likely experi-
ence less warming thanks to the moderating effect of ocean, while the residents
of the inland areas, such as the Inland Empire, are expected to suffer summers
that are more than 3 ◦C hotter. To study the impacts of rising temperature on
net electric loads in different regions, the 4,000 CBGs in southern California
are clustered by climate zones (CZs) defined by California Energy Commission
(CEC) [4]. Based on average temperatures in summer and winter, CEC partitions
California’s territory into 16 distinct CZs. Each CZ has reasonably consistent
weather and easily recognized boundaries. There are only 9 CZs in the study area
of southern California. Hence, the 4,000 CBGs are separated into 9 clusters. CZ
5 is not included in the analysis due to its small number of CBGs. To explore the
impact of rising temperature on electricity consumption, we gradually increase
the average temperature by 3 ◦C in 30 steps from the current level. The changes
in forecasted CBG electric loads in different CZs with the rising temperature are
shown in Fig. 3(a) and (b). As shown in Fig. 3(a) the inland areas such as CZ 13,
14, and 15, have the highest electricity consumption per household. In addition,
the electric loads in all CZs are expected to increase with rising temperature. As
shown in Fig. 3(b), the increase in electricity usage for residents in inland areas
are much higher than those in the coastal areas. Hence, they are more vulnerable
to the climate change.

Similarly, the impacts of rising temperature on DACs and non-DACs are
also evaluated separately for comparison purposes. As shown in Fig. 2(b), the
electricity consumption of both DACs and non-DACs in California increase with
temperature. Compared to the non-DACs, the electricity consumptions of DACs
are, on average, much more sensitive to the change in temperature. There are
two possible reasons why this is so. First, the insulations of buildings in DACs



Impacts of Climate Change and Socioeconomic Development 131

0 0.5 1 1.5 2 2.5 3
Increase in temperature °C

0.6

0.8

1

1.2

1.4

1.6

1.8

Av
er

ag
e 

el
ec

tri
c 

lo
ad

 
pe

r h
ou

se
ho

ld
 (k

W
h)

CZ:6 CZ:8 CZ:9 CZ:10 CZ:13 CZ:14 CZ:15 CZ:16

(a)

0 0.5 1 1.5 2 2.5 3
Increase in temperature °C

-0.05

0

0.05

0.1

0.15

0.2

In
cr

ea
se

 in
 a

ve
ra

ge
 e

le
ct

ric
 

lo
ad

 p
er

 h
ou

se
ho

ld
 (k

W
h)

CZ:6 CZ:8 CZ:9 CZ:10 CZ:13 CZ:14 CZ:15 CZ:16

(b)

Fig. 3. Impact of temperature increase on electric loads of different climate zones.

are typically poorer than that of non-DACs. Second, low income communities
typically have less vegetation coverage, thereby enduring a higher land surface
temperature in summer. The poor insulation and vegetation coverage require
longer running time for air conditioning units and lead to higher electricity
consumption and bills. Given that the residents of low-income communities pay
a much higher percent of their income on electricity bill, and the electricity
consumptions of DACs are more sensitive to rising temperature, we can conclude
that DACs are much more vulnerable to climate change and rising temperatures.

4 Conclusion

This paper models the nonlinear relationships among residential electric load,
socioeconomic factors, weather variables, and distributed renewable generation
with a FNN. The relative importance of explanatory variables in determining
the electric load is estimated by the LRP method. A case study with 4,000 CBGs
in southern California is conducted. The results show that temperature, housing
units, and solar PV interconnection are the most influential determinants for
net electric load at the CBG level. The scenario analysis demonstrates that the
electricity consumption of poor Californian communities increases much faster
than that of the affluent communities when temperature rises. Given that the
residents of low-income communities pay a much higher percent of their income
on electricity bill, they are much more vulnerable to climate change. Therefore,
it is crucial for policy makers to make targeted investments in disadvantaged
communities to mitigate the adverse effects of climate change.
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Abstract. The speed of game rules processing plays an essential role in
the performance of a General Game Playing (GGP) agent. Propositional
Networks (propnets) are an example of a highly efficient representation
of game rules. So far, in GGP, only software implementations of prop-
nets have been proposed and investigated. In this paper, we present the
first implementation of propnets on Field-Programmable Gate Arrays
(FPGAs), showing that they perform between 25 and 58 times faster
than a software-propnet for most of the tested games. We also integrate
the FPGA-propnet within an MCTS agent, discussing the challenges of
the process, and possible solutions for the identified shortcomings.
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1 Introduction

The aim of General Game Playing (GGP) [7] is to develop a program that can
play any arbitrary game at an expert level, given only its rules. Moreover, these
rules are previously unknown, and an agent has a limited time to process them
before the game begins. During the game, the time is also constrained, with
usually only a few seconds available to choose a move.

In GGP, it is impossible for the designers of the program to embed in the
agent existing knowledge about the game, as it is in the case of chess, checkers,
Go, and other standard AI challenges. As such, with the goal to create a universal
algorithm performing well in various situations and environments, the domain
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has been identified as a new grand challenge of Artificial Intelligence [6], and
a special logic-based Game Description Language (GDL) has been designed to
describe any deterministic, turn-based, finite game with perfect information [11].

Because of the generality, GGP benefits algorithms that are knowledge-free.
As a result, the most successful approaches are based on the Monte Carlo Tree
Search (MCTS) [4], the algorithm that apart from GGP [5] has proven itself in
Go [17] and many other domains [3].

As the strength of game-playing search algorithms is usually closely corre-
lated with their performance, it is crucial for the game reasoners to be as fast
as possible. When in 1997 Deep Blue defeated Gary Kasparov, it was partially
because of the hardware accelerators – Application Specific Integrated Circuits
designed specifically for this system [9].

In GGP, as the quality of results obtained by MCTS depends on a number
of performed simulations, much attention has been devoted to improving the
speed of GDL resolution engines. This includes mainly fast, logically-optimized
interpreters and compilers to low-level languages [10,19]. Propositional Networks
(propnets) [14], are efficient representation of GDL reasoners, closely correlated
to logic circuits. They can speed-up the state computation process by several
orders of magnitude compared to non-optimized custom-made or Prolog-based
GDL reasoners [18]; thus they are used by many successful GGP players.

In this paper, we present the first implementation of Propositional Networks
on Field-Programmable Gate Arrays (FPGAs), the integrated circuits that can
be reconfigured by the end-user. Thus, we were able to achieve performance
impossible for the reasoners encoded as a software. Resulting FPGA-based rea-
soner computes game states mostly about 25–58 times faster than the optimized
software propnet implementation described in [18].

To utilize this computational potential, we have implemented a working
MCTS-based GGP player proof of concept, upon which we study and present
shortcomings and effort required to construct a hardware-accelerated player.

2 Preliminaries

2.1 Game Description Language and Propositional Networks

GDL is a first order logic language proposed to represent game rules in GGP
in a compact and modular format [11]. A state in GDL is represented as a set
of true facts. Special keywords, described in Table 1, are used to define different
game elements and the game dynamics. By processing the GDL game rules, a
player is able to reconstruct the dynamics of a finite state machine for the game.

Propnets [14] are an alternative to GDL to represent the dynamics of a game,
and any GDL game description can be converted into a propnet. Propnets are
directed graphs where the components are either propositions or connectives.
Each component has incoming arcs from its input components and outgoing
arcs to its output components. The truth value of a component depends on the
truth value of its inputs and is propagated to its outputs.
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Table 1. Description of GDL keywords. ?f represents a fact.

Keyword Description Keyword Description

role(?r) ?r is a player in the game true(?f) ?f is true in current state

init(?f) ?f is true in initial state next(?f) ?f is true in next state

terminal current state is terminal does(?r, ?m) ?r plays move ?m

goal(?r, ?s) ?r gets score ?s in current state legal(?r, ?m) ?r can play move ?m in current state

There are four types of connectives: and, or and not logic gates, and transi-
tions, identity gates that output their input value with one step delay. Proposi-
tions can be divided into three categories: input, that have no input components,
base, that have one single transition as input, and all other propositions, iden-
tified as view. The truth values of base propositions represent the state of the
game. Their input, the transition, controls their value for the next state. Having
no inputs, input proposition have their value set by the game playing agent,
that sets to true the one corresponding to the action he decides to play. View
propositions express agents’ goals, legal moves and terminality of game states.

A unique truth assignment to base propositions determines the unique truth
values of view propositions. The combination of truth assignments to base and
input proposition uniquely determines the truth assignment for the next state.

2.2 Monte Carlo Tree Search

MCTS [4] is a simulation-based search algorithm that incrementally builds a
tree representation of the search space of the game. More precisely, it repeats
the following four phases until a given search budget expires:

– Selection: the algorithm traverses the tree built so far. A selection strategy is
used to choose which action to simulate in each visited node until a state not
yet in the tree is reached. One of the most commonly used selection strategies
is UCB1 [1], the same we use in our MCTS implementation.

– Expansion: the first visited state in the simulation that was not part of the
tree yet, is added to the tree as a new node.

– Playout: starting from the state corresponding to the node added during
expansion, a playout strategy is used to simulate the game until a terminal
state or a certain depth is reached.

– Backpropagation: the result obtained at the end of the simulation is propa-
gated back in the tree and used to update statistics about the visited moves.

2.3 Field-Programmable Gate Arrays

FPGAs are chips, whose logic is designed to be configured after they were man-
ufactured or even embedded in the final product (hence Field). This allows fast
prototyping of the Integrated Chips (ICs), creating small amounts of products
with custom hardware, or even performing remote updates to the hardware in
the end devices. FPGAs are made out of thousands of interconnected Universal



136 C. Siwek et al.

Logic Modules (ULMs), which can be individually programmed to perform sim-
ple logic operations and arbitrarily connected with each other. For specialized
operations, this allows for a significant increase of computational speed and IO
bandwidth against implementation in software.

Desired structure and behavior of the FPGA is usually written in a Hardware
Description Language (HDL), like Verilog or VHDL. It resembles classic pro-
gramming with expressions, statements and datatypes, but the execution flow is
parallel rather than sequential, and there are explicit constructs to handle time.

FPGAs are used in many domains, including communication, image pro-
cessing, control engineering, networks, cryptography, mathematics, neuro-
computing, etc. A comprehensive survey on FPGA applications can be found
in [13].

Related research, mostly concerns using FPGAs to implement game engines,
especially board games [12], to accelerate computations and thus improve the
performance of the agents. This includes FPGA-based approaches to play, e.g.,
chess [2], Othello [20], and Go [8].

3 Methodology

We present our approach, that given an arbitrary GDL game generates FPGA-
based reasoner and embeds it into the MCTS algorithm. The entire random
playout phase, has been implemented within a reasoner component. This signif-
icantly reduces the number of tree-to-reasoner calls, reducing the overhead, and
improving the overall performance of the system.

We based our solution on Propositional Networks. They are a fast reasoning
mechanism on their own, and because their structure consists mainly of standard
logic gates, we can almost directly mirror their computational logic in a hardware
chip. This approach can increase performance by orders of magnitude because of
zero computational overhead and simultaneous propagation of signals. The latter
is essential, as the simulation speed is dictated by the clock frequency, which is
in turn constrained by the longest component path, not the total number of
propnet components.

FPGAs are especially well suited to be used as a GGP reasoner because
their reprogramming capability allows for switching between various (previously
known) games on the fly. The Cyclone V chip we are using is even more up to
the task because it integrates a dual core ARM computer running GNU/Linux
operating system that can communicate with the FPGA through fast shared
memory. We run the player search algorithm on this ARM computer, and the
intense reasoning computations are delegated to the FPGA-part of the chip.

3.1 From GDL to Verilog

Our system generates ready-to-synthesize Verilog code. We use previously pre-
pared Verilog modules that implement the behavior of the propnet component
types, a template for a whole propnet module, and the project into which the
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propnet module will be injected. Now, given GDL rules of a new game, we gen-
erate software propnet using the code from [18]. Then, for every component in
this propnet, we create new instance belonging to one of the before-mentioned
modules and make it a new node in our hardware propnet. When all components
are placed, we implement edges of the software propnet as wire connections in
the HDL. We do this by BFS traversal of the underlying propnet graph.

The propnet meta-information contains information about the propnet struc-
ture (e.g. initial state, game state size) and describes game’s legal moves, states,
etc. We write this data to the propnet module and a separate XML file that will
be later passed to the software side running on the ARM computer. Propnet
graph and meta-information for the propnet controller logic are filled into the
propnet module template, and resulting file is copied to the FPGA project.

Because of the complexity of the compilation process for the FPGA, and the
fact that Intel’s tools require to be run on an AMD64 PC, given GDL rules,
our system waits until the image for the FPGA is provided from the computer
controlled by a human. Thus, the current version cannot compete in a standard
GGP match; however, the human does not make any contribution to the resulting
image, and in principle, the process can be fully automated.

3.2 System Architecture

Figure 1 presents the overall architecture of our project. The ARM computer
contains the high-level part of the system. It consists of GGP player, MCTS
implementation, and driver library initialized with a game meta-information.
It exchanges data with the FPGA board through the shared memory, contain-
ing four regions for communication with the propnet controller. Those are for:
command queue (e.g., reset, execute n random simulations, set return context);
sending next states; sending next legal moves; and sending scores of the players.

The information flow on FPGA is presented on the lower half of the figure.
The main components are propnet driver, responsible for proper data trans-
mission, and the propnet itself, programmed as described in Subsect. 3.1 and
containing parts dedicated to communicating with the rest of the board.

3.3 MCTS Reasoner Implementation

Our goal is to implement a reasoner that can be effectively used by the MCTS
algorithm. Thus, it needs to perform random simulations from an arbitrary game
state to some terminal state, computing players’ scores in this state.

The search algorithm works on the integrated ARM computer and interfaces
with the FPGA via a driver library encoded in Java. For the FPGA to start
playouts from a specific node, it has to switch context into the state correspond-
ing to this node. Thus, we require from the MCTS tree implementation to store
data representing the internal state of the FPGA propnet. This state is provided
by the library during the MCTS expansion phase. The library exposes to MCTS
three functions:
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Fig. 1. System architecture.

– FPGAState getRootState(): returns game tree root in FPGA encoding.
– (list<legalMoves>, list<(FPGAState, jointMove)>) getNextStates

(FPGAState state): returns for a given state the list of legal moves for
each role, and all the children states and edges going to them.

– list<long> getScores(FPGAState state, int n): computes for each player
the scores obtained during a batch consisting of n random simulations.



Implementing Propositional Networks on FPGA 139

Calling reasoner to calculate a single playout, which is standard for software
propnets, is very inefficient in our FPGA-based architecture, mainly because of
communication costs. In order to reduce the number of read-write cycles, we
only provide interface for scheduling batched playouts. When simulating, MCTS
uses the getScores function to request a specific number of playouts (it is an
MCTS initialization parameter) and backpropagates the summarized scores.

3.4 State Computation

Each transition node has assigned a unique number, and thus the game state
is coded as a bit vector, where nth bit corresponds to the value stored in the
nth transition node. Since this can grow up to a few kilobytes, it is divided into
128-bit words when loaded from or stored in the shared memory. Now, when the
library issues new playouts, the propnet driver module loads every context word
into an appropriate context register in the propnet. Propnet reset, and every
new game state evaluation, takes place in one clock cycle.

We have three modes that we use to control the behavior of the propnet
module: state discovery, context switching, and continuous playout.

In the state discovery mode, all legal joint actions are iterated over by the
move sequencer. For each joint action, after calculating the next state, the prop-
net driver starts forwarding context words (state representation) and the corre-
sponding joint move into the shared memory. This can be a multi-step process,
as the memory may force to stall sending the state until it is ready.

In the context switching mode, the propnet driver queries requested place
in the shared memory for the context words, which are then written to the
propnet’s context registers.

In the continuous playout mode, the players’ actions are continuously taken
from the modules generating legal random actions, until a terminal state is
reached. When that happens, the propnet module signals scores to the propnet
driver and resets the internal propnet to the previously set context. To ensure
generated actions are uniformly distributed, for each player, we randomize a
number i between 0 and the number of his legal actions, and loop through all
his actions, reducing i on set bits, until the i-th legal action is found.

4 Experiments

To evaluate the performance of the FPGA implementation of propnets we carried
out two types of experiments. Firstly, we compare the speed of our propnets
with one of the fastest software propnets reasoners [18] and also with the Java-
based Prover from the GGP-Base package [15] used as a baseline. Secondly, we
investigate how the obtained speed-up translates to the performance of an MCTS
agent, focusing on analysis of influence of batch size to the number of MCTS
node expansions and software MCTS operations overhead.
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In our experiments we use TerasIC DE1-SoC board containing the Altera’s
Cyclone V series SoC: 5CSEMA5F31C6. The GGP player, search algorithm and
communication with the reasoner are run by a computer embedded in the before-
mentioned SoC with ARM Cortex A9, Dual core @925 Mhz with 1 GB RAM,
running Debian 9 Strech 32-bit. The FPGA project compilation is performed
on Intel Core i5-4670 with 16 GB DDR3 @1600 Mhz RAM using Ubuntu 16.04
server 64-bit and Intel Quartus Prime Lite Edition 17.0 as FPGA compilation
IDE. Software propnets and the GGP-Base Prover are tested on a Linux server
consisting of 64 AMD Opteron 6174 2.2-GHz cores and 252 GB RAM.

4.1 Performance Comparison

To test the reasoner’s performance, we use a Flat Monte Carlo Search, measuring
the number of states visited during random playouts from the initial game state.

We compare results obtained for FPGA with other reasoners – software prop-
nets and Prover. The overall results are presented in Table 2. They are based on
1 million simulations for FPGA, and more than 250 thousands simulations for
the other reasoners (except 1000 simulations for Reversi). GDL descriptions of
the games can be found in the Stanford Gamemaster repository [16].

Table 2. Comparison of reasoners based on running Flat Monte Carlo algorithm.
FPGA speed is equivalent to the clock frequency, which is probed in 1.0Mhz steps.
FPGA chip utilization is the space required to fit the propnet on the board.

Game Speed (avg nodes/sec) Initialization time #Propnet

components

FPGA chip

utilization

FPGA Software Prover FPGA (min) Software (sec)

Horseshoe 8,500,000 192,583 3,812 4:20 0.45 350 7%

Connectfour 7,000,000 285,908 561 5:37 0.67 814 12%

Pentago 7,000,000 119,111 342 5:20 2.70 1,291 13%

Jointconnectfour 4,500,000 171,575 270 5:53 1.00 1,614 16%

Breakthrough 1,400,000 38,015 601 12:03 1.35 17,752 72%

Reversi 1,171,875 4,806 19 14:08 23.91 56,014 41%

As expected, the usage of hardware accelerator substantially increases the
reasoner’s efficiency. For all games except Reversi, the improvement factors are
between 24.5 (Connect-Four) and 58 (Pentago). For Reversi, which produces
the largest propnet among the tested games, FPGA-based reasoner computes
states over 290 times faster. This example shows that smaller propnets do not
necessarily imply smaller chip utilization.

The downside of moving from software to hardware is a considerable increase
of initialization time. Instead of seconds it is about 5–6 min for small and medium
games, and for large propnets it is almost a quarter. Such times exclude GGP
players from being ready during their standard initialization clock. We discuss
this issue in detail and present possible solutions in the next section.
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4.2 MCTS Player Performance

Embedding an FPGA propnet reasoner into the MCTS involves delegating some
computation time to the software responsible for managing the MCTS tree. The
longer the time, the more overhead is observed, and the results are getting worse
compared to the zero-overhead situation from the previous experiment.

Increasing batch size makes the evaluation of expanded nodes more reliable,
yet significantly reduces their number. Reduced batches, instead, lead to more
frequent calls to software part of the algorithm, increasing the overhead.

Figure 2 presents the data we gathered for Pentago (for other games the
charts look similar). For both games we run 10 matches against the random
player, considering only 10 first turns of each match. The number of node expan-
sions obtained by the software player (using the same, yet non-batched MCTS, so
number of playouts and node expansions are the same) is provided as a baseline.

Despite the overhead, it is possible to adjust batch so the FPGA player per-
forms much more playouts than software-only agent. However, it is impossible
to reach the same size of MCTS tree, which significantly influences the perfor-
mance. This can be solved by implementing multithreaded MCTS, embedding
MCTS in the FPGA, or using hardware with shorter communication latency.

Fig. 2. Dependency between a batch size and the FPGA-based agent’s performance
measured by a number of nodes expansions, number of computed playouts, and the
overhead (percent of time spent in an MCTS tree). Data was measured for batches of
size 10, 50, 300, 600, 1500, and 3000; 10 runs for each test.

5 Discussion

Let us analyze the time-profile of an initialization process. The FPGA initial-
ization time currently prevents the described solution to be embedded in a
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competition-ready GGP player. However, there are possibilities for reducing it
significantly. The first phase is a software propnet construction. The exact times
have been presented in Table 2. For generating Verilog propnet module, we use
our own Java library, that requires up to 2 min and can be easily optimized.
In our GGP player, the dynamic part of FPGA is a particular game’s propnet,
and the support structure remains constant. Preparing this support structure
(compilation and fitting) requires 3 min, but can be reduced significantly using
commercial tools, e.g., Intel Quartus Prime Pro, which allows caching part of
the compilation process. The most time-consuming phase is propnet structure
fitting, responsible for the physical placement of the logic modules on a chip.
Its time depends mostly on the number of components, and requires solving
computationally hard problems. Currently, it can take from 1 to about 30 min,
depending on the game size.

Due to limited space on the FPGA chip, there is a hard limit on the game
size we are able to handle. However, this size is not a direct result of the number
of the propnet components, as it also heavily depends on the graph planarity
and the optimizations performed by the synthesis toolchain. We can observe in
Table 2 that for Reversi and breakthrough smaller initial propnet size lead to
much higher chip utilization. Also, we would like to point out that the largest
chip utilization we have observed is 72%, which allows to estimate the limit on
the games we are able to hardware-accelerate using the described system.

We also have a limitation associated with memory block size that can be
easily extended in the future. In the described implementation, the state size
times number of legal joint moves in this state cannot exceed 32 KB.

There is also a number of significant optimization improvements we can apply.
For example, during gameplay, clock frequency has to be low because of long
signal propagation paths within the game propnet. However, after the result is
calculated and information exchange between the shared memory and propnet
driver starts, frequency can be temporarily increased by an order of magnitude.
This will make the process of writing data to the memory several times faster.

The usage of a PCI-E equipped FPGA-board would allow pushing the ARM
computer out of the loop, removing the need to handle propnet on two machines
and allowing FPGA board to talk directly to the main, much powerful, computer
(which is necessary to reduce the influence of the MCTS tree overhead).

Currently, when MCTS has control, the reasoner is idle, waiting for the next
task. As the reasoner operates independently of the ARM computer, it is possible
to remove those pauses, by scheduling tasks ahead. From the MCTS point of view
it can be managed as multithreaded simulations, e.g., by using virtual loses [17].

Summarizing, it is possible to create a fully functional GGP player that can
successfully participate in the GGP competitions, although it requires heavy
optimizations and top-level hardware and software. Still, for some large games,
there is no guarantee that the initialization will finish before the imposed start
time. This can be partially solved by storing compiled FPGA projects for already
known games, allowing their fast retrieval when the same game is detected.
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5.1 Future Work

Although the hardware accelerators provide the highest computational efficiency,
it comes with some drawbacks. However, as we have a complete implementa-
tion of the propnet in the Verilog, we can use the industrial-grade simulators
and optimizers to run the propnet in software. This could lead to better opti-
mized propnet structure and allow more straightforward embedding into the
GGP player. To evaluate the usefulness of such simulated hardware propnets,
we plan to implement them and compare their efficiency against the reference
Java implementation and our FPGA-based reasoner.

Most MCTS implementations are based on the purely random playouts; how-
ever, multiple more sophisticated strategies have proven to be quite effective
[5,17]. We would like to implement and test such non-random simulations on
the FPGA. This will complicate the board architecture and slow down the rea-
soner. Yet, it may be the only possibility to overcome certain limitations, and
tackle games that cannot be solved by even extremely efficient brute force search.

In particular, because FPGAs have memory distributed around the entire
chip, it is possible to locally keep track of state changes. Thus, once a player
wins, we can memorize which propositions contributed to this, and create a
heuristic state evaluation function that improves over time, similarly to some
simulation control learning algorithms presented in [5].

6 Conclusions

In this paper, we present the first attempt to encode propnets, a successful com-
putational representation in GGP, on a hardware chip. Because a GGP player
has to handle any game encoded in GDL, we based our system on FPGAs,
which allow us to reprogram our hardware reasoners and quickly switch between
previously encountered games.

This is preliminary work that opens a new branch of GGP research, parallel
to the improvement of software-based reasoners, which has been worked on for
nearly a decade [19]. The approach we described is able to achieve from 25 up to
290 times improvement over the software propnets when comparing the number
of visited states per time unit. Moreover, the ratio is considerably better for large
games, the ones that are especially problematic for all kinds of software-based
reasoners – even GDL compilers. We may conclude that FPGA-propnets are a
faster alternative to software propnets for reasoning on game descriptions.

We also integrate the FPGA-propnet within an MCTS agent and discuss
the difficulties that this entails. Using Pentago, we show how the communi-
cation between the FPGA-propnet and the software that manages the search
introduces a considerable overhead. Because of this, our FPGA-propnet MCTS
agent is not ready to participate in a GGP competition yet. However, we discuss
various improvements that can solve the current shortcomings. This, together
with the successful performance of the FPGA-propnet with respect to the soft-
ware propnet when tested on their own, indicates that this research direction is
promising.
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Moreover, although we plan to enhance our system to handle more sophis-
ticated AI approaches, we think that merging vanilla MCTS with computation
power of hardware raises an interesting question about a gameplay level that
can be achieved by using sheer brute force.
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Abstract. The popularity of container-based clouds is its ability to
deploy and run applications without launching an entire virtual machine
(VM) for each application. Container-based clouds support flexible
deployment of applications and therefore brings the potential to reduce
the energy consumption of data centers. With the goal of energy reduc-
tion, it is more difficult to optimize the allocation of containers than tra-
ditional VM-based clouds because of the finer granularity of resources.
Little research has been conducted for applying human-design heuristics
on balanced and unbalanced resources. In this paper, we first compare
three human-design heuristics and show they cannot handle balanced
and unbalanced resources scenarios well. We propose a learning-based
algorithm: genetic programming hyper-heuristic (GPHH) to automati-
cally generate a suitable heuristic for allocating containers in an online
fashion. The results show that the proposed GPHH managed to evolve
better heuristics than the human-designed ones in terms of energy con-
sumption in a range of cloud scenarios.

Keywords: Cloud computing · Resource allocation
Energy consumption · Genetic programming · Hyper-heuristic

1 Introduction

A container-based cloud [1] is a promising new technology for both software and
cloud computing industries. Containers are beneficial for cloud providers because
they can potentially reduce the energy of data centers [2]. Energy reduction is
achieved by deploying more applications in fewer physical machines (PMs).

Although container-based clouds have the potential of better energy effi-
ciency, the complexity for allocating both containers and VMs is much higher
than solely managing VMs. In a container-based cloud, a typical PM may host
multiple VMs with different operating systems. Each VM hosts multiple con-
tainers. This box-inside-box structure forces us to break down the container
allocation process into two levels: containers to VMs and VMs to PMs.

To address the high complexity, this work considers a simplified structure
and focuses on the challenge of the container allocation problem. Many cloud
c© Springer Nature Switzerland AG 2018
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providers (e.g. Amazon) skip VM level and deploy containers directly to PMs.
Moreover, we consider an online container allocation in which the request come
in real time, and the information of each request (e.g. CPU and memory demand)
is unknown until the request arrives.

AnyFit-based algorithms with human-designed greedy rules such as sub and
sum (detailed discussed in Sect. 2) are used by existing approaches [2]. We argue
that the goal for resource allocation in clouds is to minimize the accumulated
energy consumption instead of the cutting-point energy. It is critical to con-
sider the order of creating new PMs when allocating containers [3]. Therefore,
the container allocation problem can be treated as a scheduling task. Existing
human-designed rules, therefore, may not be suitable for the scheduling task.

To address the drawbacks of human-design rules and the high design dif-
ficulty, we propose a learning algorithm: Genetic programming-based hyper-
heuristic (GPHH) to automatically design scheduling rules using the information
of a data center. To apply GPHH in the container allocation problem, we need
to define a terminal set and a fitness function to evaluate scheduling rules.

In this paper, our contributions are:

– We perform an experimental comparison of the widely used human-designed
greedy rules: sub, sum, and random in online container allocation. This com-
parison provides an important insights of their limitations in flexibly handling
different scenarios, and therefore motivate us to develop a learning algorithm
to automatically generate rules to adapt all scenarios.

– We develop a GPHH for generating rules for online container allocation.

2 Background

Problem Description: The container allocation problem can be described as,
for a given set of t containers, each container arrives at a time i, 0 <= i <= t,
the overall objective of container allocation is to allocate containers to physical
machines so that during the period of time of allocation. These t number of
containers to be allocated into p physical machines. Each container i has a CPU
demand Ai and a memory occupation Mi. Each physical machine j ∈ {1, · · · , p}
has a CPU capacity PAj and a memory capacity PMj . A physical machine can
host multiple containers. We consider all physical machines have the same size
of CPU capacity and memory.

The accumulated energy consumption of PMs AE =
∑t

i=1

∑p
j=1 Ei

j ·
[ui

cpu(j) > 0] are minimized where Ei
j is the energy consumption of a physi-

cal machine for allocating the container i. [ui
cpu(j) > 0] returns 1 if the CPU

utilization ui
cpu(j) > 0 (the physical machine is active), and 0 otherwise.

Ei
j is determined by a widely used energy model Ei

j = α · Emax + (1 − α) ·
Emax · ui

cpu(j) [4]. The CPU utilization of a physical machine can be computed
as ui

cpu(j) =
∑i

c=1(x
c
j · Ac). Where xc

j is a binary value (e.g. 0 and 1) denoting
whether a container c is allocated on a physical machine j when i containers
have been allocated.
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Constraints: A container can be allocated on a physical machine if and only
if the physical machine has enough CPU and memory. The other constraint is
that each container should be deployed exactly once.

Human-Designed Rules for Online Container Allocation: AnyFit algo-
rithms [2] are greedy-based algorithms and use human-designed rules for evalu-
ating an allocation. Mann [2] applied six rules (such as sub, sum, and product)
for container allocation. However, the performance of these rules have not been
shown. Therefore, it motivates us to explore the effectiveness of the most used
rules – sum and sub – in solving the problem of the container allocation problem.
sum is the most commonly used rule in multi-dimensional bin packing. It can be
represented as resourceA + resourceB in the two-dimensional case. Resources
A and B are the residual resources of a chosen bin after the item has been
allocated. The smaller the function result, the better the candidate bin. This
heuristic tries to minimize the residual resources in all dimensions. It is based on
a simple assumption that less residual resource results in fewer number of used
bins.

sub is designed to maintain the balance in a bin. It can be represented as
|resourceA− resourceB|. Similar to the sub, it prefers a smaller function value.
The sub rule tries to minimize the difference between the two resources. With
the assumption of balanced resource allocation can lead to fewer bins.

In summary, the performance of these simple rules has not been well studied.
Because of their simplicity, we believe they cannot fully capture the complex
behavior of diverse resource requirements and temporal effect. Therefore, these
two reasons motivate us to investigate a learning method: GPHH using the
information from a data center to generate rules.

3 GPHH for Online Container Allocation

This section describes the overview of our GPHH approach, including a training
process, function and terminal nodes, and a fitness function.

Fig. 1. The overview of GPHH training and testing process

Training and Testing: GPHH trains on the training set which includes the
trace of resource requirement. GPHH iteratively improves the generated heuris-
tics by the standard procedure [5] shown in Fig. 1. A testing process evaluates the
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generated rules from GPHH training with a test set and compare with human-
designed rules in terms of the energy consumption (see details in Sect. 4).

Both training and testing rely on the simulation of container allocation for
evaluating the quality of rules. The simulation includes two parts: data center
initialization and container allocation. Data center initialization randomly ini-
tializes a data center with PMs and containers. Without initialization, allocation
algorithms perform similarly. Container allocation process allocate containers
to the PM according to a BestFit-based algorithm (see Algorithm1). The rule
decides the goodness of a candidate PM.

Algorithm 1. BestFit framework for the evolved rules
Input : container, A list of available PMs,
Output: The best PM

1 BestPM = nil;
2 bestF itness = nil;
3 while PMi in PMs do
4 fitness =Rule(container, PMi);
5 if fitness > bestFitness then
6 bestF itness = fitness;
7 BestPM =PMi;

8 end
9 i = i + 1;

10 end
11 return BestPM ;

Function, Terminal Sets, and Fitness Function: Our function set is
{+,−,×} and the protected ÷ that returns 1 when divided by 0. Terminal
set includes four features. The CPU and memory requirement of a container
and the residual CPU and memory from a PM. Residual CPU and memory are
calculated as the current PM’s resources subtract the resource requirement of
the container.

We calculate the fitness function fitness =
∑N

k=1
AEk

t

N where N is the number
of training instances. The fitness value represents the average increase in energy
consumption for allocating a container in all N number of training instances.
Therefore, it is free from the bias of the randomize initial data center.

4 Experiments

We design three scenarios – unbalanced containers and PMs, balanced containers
and unbalanced PMs, and balanced containers and PMs – for two objectives:
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testing whether existing rules can work well in container allocation and evaluate
the proposed GPHH.

Experiment Settings: Each of the three scenarios includes 100 of test
instances. They are splitted equally into training and testing set. Each test
instance consists of 200 containers to be allocated. The scenario with unbalanced
containers and PMs is the most common scenario in the real world because of
the diverse applications. We use a real-world dataset (AuverGrid trace [6]) to
generate test instances of unbalanced container scenario.

For container generation, we randomly choose pairs of CPU and memory from
the dataset with both resource requirement less than or equal to the maximum
capacity. Balanced containers are generated from an exponential distribution
with the rate λ = 0.004 in both CPU and memory. For initialization of a data
center, we randomly generate 4 to 8 running PMs. Each VM will host at least
one container. In addition, we use the corresponding dataset as the test cases
for generating the initial containers in PMs. For the balanced PMs scenarios, we
set the PM’s CPU and memory as (3300 MHz, 3300 MBs) and for unbalanced
PMs scenario, we set the PM’s CPU and memory as (3300 MHz, 4000 MBs).

To compare the performance between sub and sum, we add a random rule.
The random rule chooses a random available PM instead of the best one. We
intend to compare sub and sum with the random rule as a baseline. Hence, we
can identify which rule performs badly in which scenario.

Table 1. Real world scenarios

evo sub sum random

evo NaN 49-0-1 30-0-20 45-0-5
sub 1-0-49 NaN 2-1-47 5-2-43
sum 20-0-30 47-1-2 NaN 40-4-6
random 5-0-45 43-2-5 6-4-40 NaN

We run GP 30 times to generate
30 rules with different random seeds.
Each evolved rule is applied on the test
instances. The accumulated energy of
each test instance is then normalized
with the result of the benchmark sub
rule with equation normalized Eevolve = Eevolve

Esub
. Then, for each instance, we

calculate the average normalized accumulated energy from 30 runs. Lastly, we
applied the paired Wilcoxon test to calculate the statistic significance between
the evolved rules and the benchmark rules (sub, sum, and random).

Table 2. Unbalanced PMs

evo sub sum random

evo NaN 44-0-6 41-0-9 43-0-7
sub 6-0-44 NaN 20-1-29 30-0-20
sum 9-0-41 29-1-20 NaN 33-1-16
random 7-0-43 20-0-30 16-1-33 NaN

For GPHH, we use the population size
of 1024. The number of generation is 100.
For crossover, mutation, and reproduc-
tion, we use 0.8, 0.1, and 0.1 respectively.
We use tournament selection with the
size of the tournament as 7.

Experiment Results: In all scenarios, the rules generated by GPH show sig-
nificant advantages than other rules (Tables 1, 2 and 3). Table 1 shows the Win-
Draw-Loss of the unbalanced containers and PMs dataset among four algorithms.
The sub rule is significantly worse than all the other rules.

Evolved rules dominate the sub and random rules, and is better than the
sum rule with a small margin.
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Table 3. Balanced containers and PMs

evo sub sum random

evo NaN 43-0-7 38-0-12 46-0-4
sub 7-0-43 NaN 23-0-27 32-0-18
sum 12-0-38 27-0-23 NaN 35-0-15
random 4-0-46 18-0-32 15-0-35 NaN

In balanced containers and unbal-
anced PMs scenario (Table 2), there is
no statistic difference between sub, sum
and random rules. In balanced contain-
ers and PMs (Table 3), evolved rules
dominate other rules. Both sub and
sum are significantly better than the random rule.

To explain the goodness of evolved rules, Fig. 2 shows the energy consumption
of the data center while allocating 200 containers with four rules. The initial
energy consumption are the same because of the same initialized data center.
With the allocation processing, random rule (yellow) creates a new PM which
incurs the sudden increase of energy while other rules can still allocate containers
to the existing PMs. Similarly, sub and sum create new PMs earlier than the
evolved rule. Although, in most cases, all four rules create the same number
of PMs (not in this case), evolved rules always allocate more containers to the
existing PMs.

5 Conclusion

Fig. 2. The energy consumption of allo-
cating 200 containers with four algorithms
(from balanced VM dataset, run 15, test
case 5)

In this paper, we first show that exist-
ing rules for container allocation do not
perform well in dealing with real-world
resource requirement and PM. Second,
we develop a novel GPHH approach for
container allocation to automatically
generate rules using the information of
data centers.

Experiments show that the evolved
rules perform significantly better than
human-designed rules in all scenarios.
The proposed GPHH approach is effec-
tive for automatically generating rules
for various container allocation scenar-
ios in data centers. In future work, we
will investigate the container allocation in a general architecture where multiple
VMs are allocated in PMs.
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Abstract. This paper describes a novel computational framework for
damage detection and regeneration in an artificial tissue of cells resem-
bling living systems. We represent the tissue as an Auto-Associative Neu-
ral Network (AANN) consisting of a single layer of perceptron neurons
(cells) with local feedback loops. This allows the system to recognise its
state and geometry in a form of collective intelligence. Signalling entropy
is used as a global (emergent) property characterising the state of the
system. The repair system has two submodels - global sensing and local
sensing. Global sensing is used to sense the change in whole system state
and detect general damage region based on system entropy change. Then,
local sensing is applied with AANN to find the exact damage locations
and repair the damage. The results show that the method allows robust
and efficient damage detection and accurate regeneration.

Keywords: Self-repair · Multi-cellular structures · Regeneration
Auto-Associative Neural Network · Perceptron · Signalling entropy
Modeling

1 Introduction

Regeneration is an important phenomenon in nature; while it plays a key role
in living organisms that are capable of recovering a fully functional state from
diverse forms of injury, it is not completely understood [4]. Although molecular
mechanisms required for regeneration are being discovered, the algorithms suf-
ficient for regeneration of complex anatomical structures represent a significant
knowledge gap that holds back progress in evolutionary developmental biology
and regenerative medicine. Currently, there is insufficient knowledge to mimic
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regeneration in living organisms, making it essential to analyze computational
models of cell activity and communication dynamics that can implement complex
structural repair. It is especially important to explore connectionist (neural-like)
models in the control of regeneration to begin to formulate rigorous formalisms
for pattern memory and decision-making during anatomical remodeling.

In software engineering, self-repair systems are not popular yet and often
apply when working with agent-based systems or service-oriented architectures
that are still the subject of intense research [7]. The term self-repair refers to
automatic software repair which involves finding a solution to software faults
without human interference. This is analogous to wound healing and regenerative
repair in living organisms. In robotics, multi-robot systems have the ability to
form patterns or configurations to achieve desired goals, such as detecting and
recovering from faults [1,5]. However, great gains can be achieved in robotics
and synthetic biology by advancing research in bio-inspired self-repair systems.

In this paper, we propose a concept for an autonomous self-repair system
that has the capacity to sense, detect and regenerate missing cells in a simple
tissue system (Fig. 1a) under any damage condition induced by injury in a simple
way that resembles some related processes in biological systems.

2 Related Work

One of the key questions facing biology today is how cells in an organism col-
lectively collaborate to maintain the normal state of the system. Several com-
putational models have been proposed with regeneration capabilities. In [2,15],
authors developed dynamic models for describing morphogenesis and regenera-
tion of complex patterns assuming that cells communicate with each other by
passing signals. The change in signal distribution is used for detecting damage
and regenerating a tissue structure. However, the large amount of communication
between cells reduces the computationally efficiency of the models. Research has
continued to explore methods to bring the morphology back to correct form, in
particular, by avoiding overgrowth, with limited success [9–12] with other meth-
ods such as nervous system communicating with non-neural cells [3], genetic algo-
rithms [8] and agent-based models [6]. Some main challenges to current models
are computational burden due to excessive cell communications and overgrowth;
these can be improved for greater efficiency or biological realism.

In robotics, a swarm of robots has been programmed to construct and
self-repair two-dimensional structures [1,13]. When robots suffer damage, the
remaining robots may reconfigure and reorganize the same pattern but on a
smaller scale and continue to function. This process to some extent is analogous
to regeneration in biology. From a robotic perspective, how robots can learn to
reorganise into new structural patterns need further research.

Thus there is great scope for models that are not only bio-realistic but also
computationally efficient. This research attempts to make improvements towards
efficient self-repair systems that completely and correctly regenerate their form
that in a broad sense resemble biological systems.
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3 Methodology

In this paper, we assume that an artificial tissue pattern (organism) consists of
a stem cell surrounded by more than 2000 differentiated cells in a 2-dimensional
plane (Fig. 1a). A cell is identified by polar coordinates (radius, θ) (Fig. 1a). The
stem cell can divide in a way that makes a copy of itself and produces a differ-
entiated cell. The tissue structure is described by a network of cells embedded
in a medium similar to Extra Cellular Matrix (ECM) in a living tissue.

Fig. 1. (a) A stem cell at the centre surrounded by differentiated cells, (b) Tissue pat-
tern divided into n segments (e.g, n= 24) and (c) Functional aspects of the framework

There are two types of communication in the tissue - local direct communi-
cations between neighbour cells and global diffusion of information through the
tissue matrix - the form of communication between a stem cell and differentiated
cells. Direct neighbourhood communication is facilitated by representing the tis-
sue as an AANN consisting of a single layer of perceptrons (threshold neurons)
that represent cells that are connected with local feedback loops (Fig. 2a). AANN
are networks where neurons influence themselves through feedback loops that
typically give rise to emergent systemic properties. Thus the tissue is represented
as a locally recurrent dynamical system that collectively maintains tissue states.
The global diffusion means that longer the distance the information travels the
greater the uncertainty of its content so we use the concept of entropy to encode
this information. Entropy has been used to identify signalling pathways, under-
stand drug sensitivity profiles, and determine cancer stem-cell phenotypes [14].
In the context of a network of cells, it can measure overall uncertainty in a
desired state, such as signaling entropy in the tissue. This model also considers
stochasticity in cell position due to cell movement using Brownian motion and is
approximated by white noise ε(μ, σ) that adjusts cell position as (r, θ)± ε(μ, σ).
The ε(μ, σ) is assumed to be a Gaussian noise distribution with mean (μ) and
standard deviation (σ) with a value determined heuristically.

Assume that a stem cell SCi has k number of differentiated cells. Let dij be
the distance between the stem cell SCi and differentiated cell DCj . We define a
stochastic matrix P with components pij and signalling entropy Ei:

pij =
dij

∑k
j=1 dij

; Ei = −γ

k∑

j=1

pij logpij ; γ =
1

logk
(1)
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where
∑k

j=1 dij denotes the total distance and γ is a positive constant. The stem
cell estimates and stores the entropy of the cells in the 24 segments.

Normal System: System in its normal state establishes its global (original)
entropy and tissue border. We assume that each interior cell has four neighbours
while a boundary cell has only three neighbours with two-way communication
(Fig. 2a) and the cell thus receives inputs from its neighbours. The perceptron
computes the output from the received inputs and connection weights (Fig. 2b)
(weights are fixed to 1.0 indicating cells communicate their presence to the neigh-
bours precisely). Figure 2c presents a sample dataset showing that a perception
responds with 1 only if all neighbours are present and 0 otherwise. This way,
tissue border is identified. The self-repair system consists of two submodels -
global sensing and local sensing (Fig. 1c)

Fig. 2. (a) Two-way communication of a perceptron with its neighbours, (b) Compu-
tation in a Perceptron (c) Sample data showing perceptron response to inputs from
neighbours and (d) Output of a damaged segment of AANN

Global Sensing: The stem cell can sense a change in the system due to damage
anywhere within it. The stem cell scans the system by segments and the differ-
ence between the current and original entropy informs the segment(s) that have
received damage.

Local Sensing: The stem cell initiates a local search for the exact location
of damage in the already identified damage segments to be able to regenerate
missing cells. Specifically, knowledge of the damaged segment(s) allows it to
inform the cells in these segment(s) (corresponding part of the AANN) to process
information through local feedback connections to assess any missing neighbours.
The single layer perceptron outputs help the system identify the boundary of the
damage (Fig. 2d). In order to regenerate, the stem cell moves along the shortest
path to the damage location and then regenerates missing neighbours of each cell
in the damage area. In the case of a damage extending to the original border,
when a new cell is added next to a border neuron, the new cell becomes the
marker for the next border cell and so on until the whole set of border cells
is added and regeneration comes to completion with the renewal of the correct
original form.
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4 Results and Discussion

To determine the level of noise in the cell position the system can handle, we
first perturbed the system by ± (2%, 5% and 10%) and calculated entropy. We
observed only a relatively small increase in the absolute change in entropy for
±2% and ±5% perturbations but ±10% introduces a significant change and dis-
order into the system producing random cell clusters. Further experimentation
with entropy calculation with various cell deletions revealed that ±5% perturba-
tion introduces enough noise into the system but still keeps it sensitive to single
cell deletions; therefore, ±5% perturbation with corresponding noise distribution
ε(0, 0.03) was selected to represent stochasticity in the tissue.

Fig. 3. (A) System entropy over the 24 segments of tissue for: original - no damage,
and random deletions of 1, 5 and 10 cells in each segment (as in (a)), and 100 cells
far from the stem cell (as in (b)); and (B) Progression of damage repair until correct
completion (from left to right) for damage in A(b)

We start with ±5% perturbed cell system and calculate its entropy over all 24
segments. Then we make six cases of damage with increasing damage intensity by
randomly deleting 1, 5 and 10 cell(s) in each segment or a large area near the stem
cell or far from it (Fig. 3A (a and b) show two cases). The system senses damage
from the entropy recalculated for the whole system and the graphs in Fig. 3A
show the degree of entropy change in relation to the intensity of the damage. As
can be seen, entropy undergoes change due to even single cell deletions and the
larger the number of cell deletions, the larger the change in entropy. The stem
cell determined damaged segments from these changes in entropy. Then, local
sensing activated the perceptrons in the portion of the AANN corresponding to
the affected segments and found the exact location, size and the boundary of
the damage. All damages and boundaries were identified correctly. To repair a
damage, the stem cell moved to the nearest location of the damage and initiated
regeneration of missing cells as shown in Fig. 3B for the case of 100-cell damage
far from the stem cell (Fig. 3A(b)).

For performance discussion, we compare our method with several previous
approaches. Global and local sensing in our model involving limited cell commu-
nications make our system more robust and computationally efficient in compar-
ison to models in [2,15]. Compared to models in [6], this model not only depends
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on much less communication between cells but also keeps minimal information
- just the global entropy and state of neurons in the original system. De et al.
model [3] does not recognise damage and generates and kills many cells before
reaching a partially recovered form. In contrast, the current model detects dam-
age and recovers the complete form using simpler and efficient computations.

5 Conclusions

In this paper, we propose a new model for damage detection and regeneration
in multicellular tissues based on assumptions inspired by the biology of living
tissues. This is achieved by enabling a cellular system to maintain its state and
geometry resembling a form of collective intelligence. This work advances the
effort of building ANN-like models of regenerative control. At the next stage,
the system will be extended to more complex forms of organisms and damages
implementing collective adaptation and learning.
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Abstract. Significant animal species loss has been observed in recent
decades due to habitat destruction, which puts at risk environmental
integrity and biodiversity. Traditional ways of assessing biodiversity are
limited in terms of both time and space, and have high cost. Since the
presence of animals can be indicated by sound, recently acoustic record-
ings have been used to estimate species richness. Bioacoustic sounds are
typically recorded in habitats for several weeks, so contain a large col-
lection of different sounds. Birds are of particular interest due to their
distinctive calls and because they are useful ecological indicators. To
assess biodiversity, the task of manually determining how many different
types of birds are present in such a lengthy audio is really cumbersome.
Towards providing an automated support to this issue, in this paper we
investigate and propose a clustering based approach to assist in auto-
mated assessment of biodiversity. Our approach first estimates the num-
ber of different species and their volumes which are used for deriving
a biodiversity index. Experimental results with real data indicates that
our proposed approach estimates the biodiversity index value close to
the ground truth.

Keywords: Biodiversity · Unsupervised model · Bioacoustics

1 Introduction

Monitoring environmental health has become a critical need for governments and
ecological agencies. Environment health can be monitored through several meth-
ods. Biodiversity is one such measure. Biodiversity can be assessed by measuring
species richness at desired locations. The work described hear focuses on birds as
an indicator of environmental health. A traditional method to determine species
richness is by using the point-count method. In this method, an experienced
and skilled expert has to physically visit the location, observe and hear bird
sounds for a specified period and count them. Typically, experts observe during
morning, noon and dawn/dusk for a specified time period and fixed number of
days. Several point-count methods have been outlined in [1], however Wimmer
et al. [2] mentioned that 20 min of observation, three times a day (morning,
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noon, dawn) for a specified number of days is considered as the typical con-
vention. Though this method is traditional, we can clearly observe an obvious
wastage of human effort in addition to time consumption and cost. Further, the
bird expert is listening to only a small amount of time, which may affect their
biodiversity assessment since the sample size is too small. Hence there is need
of some kind of automated support to assist this manual task.

Since the advent of bioacoustics, recording devices have been installed in
many locations to collect bird sounds, which dramatically reduces the need to
visit sites at regular intervals for observation. These recordings will assist in
several assessments such as species richness. Expert human labellers will listen
to the audio and label sections, thus assessing species richness. However, the
recent growth of technology in terms of hardware, recording devices and sensors
has enabled researchers to collect massive recordings. Listening to such enormous
volume of audio is cumbersome. Several automatic recognisers have been created
to detect species using supervised methods, however the state of art cannot
reliably detect species in many natural environments since the search space is
so high and often the ground truth is not available. Consequently, unsupervised
models are appropriate for such kind of problems. Seoane et al. [5] experimented
and concluded that unsupervised methods are a better and more cost effective
way to obtain species distributions. Further, with unsupervised learning, models
can learn different sounds in an area which makes further classification easier.
Hence through this unsupervised model, we propose to identify different birds
present in the audio and thus assess biodiversity.

Several works have attempted to use unsupervised methods in the domain
of bioacoustics. Eichinski et al. [3] used unsupervised models for selecting the
richest parts in long recordings such that a human listener used their effort
most effectively. The events are detected and clustered to estimate the amount
of information present in a sample. Phillips et al. [4] has applied unsupervised
modelling for revealing ecological content in long duration audio recordings. The
whole audio content is reduced to vectors of acoustic indices and then clustered.
To interpret and visualize the clusters, colour coding is used which enabled
quicker identification and indexing of long duration audio recordings. Although
these methods are robust, they are focusing on smart sampling, and so still rely
on a human labeller to assessing species richness manually. Hence, here also there
is some part of manual intervention. Further, it is a fact that most of the audio
data collected may not have ground truth available. In such a scenario, comput-
ing biodiversity will be a challenge. To address this issue, we propose a novel
clustering based approach to approximate biodiversity index in an automated
manner. In our approach, we first investigated the best way to estimate the num-
ber of different species, which becomes the input to either k-means or Gaussian
mixture model (GMM). Then, we investigate the best clustering algorithm that
categories different sounds in different clusters. These clusters then become the
basis for estimating biodiversity.

This paper is organized as follows: Sect. 2 discusses several research works on
traditional biodiversity approaches. In Sect. 3 the problem scenario is explained.



162 KVSN Rama Rao et al.

The proposed approach has been detailed in Sect. 4, and experimental results
are presented in Sect. 5. Section 6 presents discussion and briefly concludes.

2 Related Work

Biodiversity assessment is important as it provides an indication of the number
of varieties of animals living in that particular habitat. To analyse audio data
and obtain a biodiversity assessment, several approaches have been found in the
literature, however most of them have several manual steps and are therefore
not scalable to large recordings.

Riede [6] has made use of the Shannon-Wiener statistic to estimate cricket
diversity in the Amazon rainforest. The recordings are for a duration of two
weeks at 10 different points twice a day. The Shannon-Wiener statistic is used
to obtain an understanding of species and their abundance. Colwell et al. [7]
applied extrapolation to estimate terrestrial biodiversity. They considered two
important measures: richness to estimate species availability and complementar-
ity to estimate species varieties. They utilized a species accumulation curve for
richness or complementarity estimation. If these curves are stable and uniformly
sampled, then extrapolation can be applied. To extrapolate, asymptotic and
non-asymptotic functions are used to predict unknown values from known ones.
Celis-Murillo et al. [8] proposed a Soundscape Recording System (SRS) that
overcomes the limitations of point count methods. To obtain species richness
estimation for the acoustic data, they still applied the manual hearing process.

In an attempt to address this automatically, several works have attempted
the use of unsupervised models in bioacoustics. Thakur et al. [16] developed a
two-pass approach to detect species. Agranat [17] has developed a bat call clas-
sification model using Hierarchical Mixture Models (HMM). Salamon et al. [18]
used unsupervised feature learning motivated by their use in music retrieval sys-
tems by using spherical k means. Somervuo and Härmä [19] has applied SOM for
analysing bird song syllables. Further, Eichinski et al. [3] and Phillips et al. [4]
have developed unsupervised models for smart sampling of audio content that
identifies the richest part where more species are present. The smart sampled
audio part will be assessed by human labeller to measure species richness. In sum-
mary, these works focus more on developing unsupervised sampling techniques
to reduce a human labeller’s work. In contrast to these works, this paper’s focus
is on the applicability of unsupervised machine learning models for automating
biodiversity estimation of a region.

3 Problem Definition and System Scenario

When attempting to assess biodiversity from long-duration environmental
recordings automatically there will be several issues, including:

1. Ground truth may not be available.
2. Data will be recorded for several hours.



Investigation of Unsupervised Models for Biodiversity Assessment 163

3. Data will be recorded for different days.
4. Data will be recorded in different regions.

In such a scenario, this paper proposes unsupervised models to automatically
assess and approximate the biodiversity index. The proposed approach is to
estimate the number of different species and their abundance through clustering
methods. In order to do this, first the number of clusters will be estimated
and then different samples in the recording will be allocated to clusters (using
standard clustering algorithms). Based on the results of clustering algorithm,
biodiversity is estimated. Specifically this paper focuses on investigating answers
to the following questions:

1. How to decide on number of clusters and studying whether the same number
of clusters can be used for any day/region.

2. Which method of clustering is appropriate?
3. Developing a biodiversity index to estimate species richness or biodiversity.

4 Proposed Methodology

Our methodology consists of several steps which are outlined in Fig. 1.

Fig. 1. Methodology

4.1 Data Collection and Preparation

Raw audio data is usually collected from habitats. Data collection and prepara-
tion is the first bioacoustic analysis activity. It involves gathering the data and
further making it ready for analysis through several pre-processing methods.

4.2 Pre-processing

Since the raw data is not directly suitable for analysis, certain pre-processing
activities are required. Sampling and normalization are several pre-processing
activities. Noise removal also plays a major role in pre-processing. Filters such
as band pass filters will be used to cut off unwanted sounds by using the high
and low frequencies bounding an acoustic event.
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4.3 Feature Extraction

To build our unsupervised learning model, we have considered Mel-frequency
cepstral coefficients (MFCC) as features as they offer several advantages: they
are simple, robust and computationally efficient. They have good accuracy, com-
putation does not require any performance tuning and they have exceptional
recognition rates irrespective of call type. MFCC features have wide applicabil-
ity in human speech recognition. Cai et al. [10] argues that there are several
similarities between humans and birds with regard to hearing, the vocal tract
and auditory processing, which enables the usage of MFCCs across a diversified
set of animals. Several authors have used MFCCs as features for frogs, crickets
and bird sounds. However, Furui et al. [11] and Hanson et al. [12] have demon-
strated that MFCCs combined with delta and delta-delta features will enhance
accuracy. Hence we have considered delta and delta-delta features as well.

Delta features: These are obtained by computing the first order derivative of
MFCC features. These features represent the change in cepstral features with
respect to time. Each delta feature represents the change between frames and
hence they typically represent temporal information.

Delta-Delta features: These are obtained by computing the derivative of delta
features. These are referred as acceleration coefficients that will display the
change in delta features with respect to time. These features have longer
temporal context.

4.4 Estimation of Different Species (Clusters)

The goal of the clustering stage is to cluster audio samples containing the same
species together. Ideally, the process results in one cluster for each species. One
major task in clustering is to determine number of clusters. There are different
approaches to decide the initial number of clusters.

1. Elbow method: This approach focuses on the variance change as the num-
ber of clusters increases. Model accuracy increases as the number of clusters
increases, however after some point adding clusters will not yield a better
model. The mean squared error is plotted against the number of clusters.
The point where the graph tends toward being flat is considered to be opti-
mal value of the number of clusters, which is referred as the elbow criterion.

2. BIC/AIC: In a clustering algorithm based on mixture models, the informa-
tion criterion has been extensively used to determine a suitable number of
clusters. Bayesian Information Criterion (BIC) and Akaike’s Information Cri-
terion (AIC) have been widely used. Mixture models allows the use of Bayes
Factors for selecting the clustering method and number of clusters. Expecta-
tion maximization is used to find maximum likelihood, while twice the Bayes
factor referred as BIC is a more reliable approximation. More details about
AIC and BIC can be found in [13,14].
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4.5 Clustering Algorithm

After deciding on the best value of clusters, we perform clustering. To perform
clustering, several algorithms exist. For this study, we investigate two well known
clustering algorithms:k-means and Gaussian mixture model (GMM). k-means
has been chosen as it works well with large datasets and GMM since the cluster
assignment is flexible which can accommodate clusters of different structures
and sizes.

1. k-means: It is one of the simplest algorithm yet robust and fast algorithm
that is used in clustering. It requires initial k centers to be specified. Then
associate each dataset point to the nearest center. After assigning all points,
re-compute k new centroids. Re-assign the points to the new centroids. The
process is repeated until there are no changes.

2. GMM: Here, we consider clusters as Gaussian distributions. In this, finite
mixture of distributions are considered where components of each mixture
correspond to a separate group. Multi-variate Gaussian distribution is con-
sidered as typical component distribution model. Expectation- Maximization
algorithm is used to estimate the number of finite mixture models. Further
each observation is assigned to cluster based on model and its estimated
parameters. Since we are using probabilities, GMM performs soft assignment
of points to clusters rather than hard clustering as in k-means.

4.6 Computing Biodiversity Index

To assess biodiversity, species richness is typically evaluated. However species
richness alone cannot determine biodiversity as it does not take into account
the number of individuals of each species. Hence an appropriate measure of
biodiversity should consider abundance of each species as well. For instance,
consider the data of birds distributed in different regions A and B. In region
A, sparrow and parrot richness and abundance may be the same, but in region
B there may be only sparrows with no parrots. In this case, we can consider
that region A biodiversity is high compared to region B, because region B is
dominated by only one species.

To quantify species richness and evenness, Simpsons Index (D) is one of the
prominent measures [20]:

D = 1 −
∑

ni(ni − 1)
N(N − 1)

(1)

where ni is the total number of observations of species i and N is the total
number of observed individuals.

We compute the biodiversity index as follows:

1. Ground truth based biodiversity index (Simpson − GT ): We consider the
ground truth data for validating our result, using human expert labels of the
dataset (see next Section for details). The data related to a specific date is
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obtained and the samples belonging to a specific species counted which is
referred as ni. The total number of samples is considered as N . Using these
two values, actual biodiversity is computed.

2. Clustering based biodiversity index (Simpson − ClusEst): Cluster output
is considered to compute this index. The number of samples in a cluster is
computed and referred as ni. The count of all samples across all clusters gives
N . Using these two values, we estimate the biodiversity.

These two values are computed for each day and each region. The error difference
between these values is observed. If the error is minimal and the both trends
are similar, then we consider our computed biodiversity index is close to ground
truth value.

It may be noted that, like manual surveys, both the biodiversity indices are
slight overestimates of the actual value. However, these will be good enough for
estimating changes and trends in biodiversity.

5 Evaluation

5.1 Dataset

We have obtained data from the Samford Ecological Research Facility (SERF).
This dataset’s acquisition is well described in [15]: recordings were made contin-
uously for five days from three different sites in bushland in the Brisbane city
outskirts (North East (NE), North West (NW), South East (SE)). The audio
data was labelled by human experts with bird calls for all five days. The number
of labelled calls in each day’s audio is summarised in Table 1.

Table 1. Summary of labels

Region Day 1 Day 2 Day 3 Day 4 Day 5

NE 16025 7880 8095 3260 7890

NW 9565 9790 11140 4185 11100

SE 15275 10205 13980 2965 10385

5.2 Pre-processing

The collected audio is converted to mono channel (the original stereo recording
is purely for redundancy; no spatial information is derived from it). The audio is
then down sampled to 17,640 samples per second. This sampling rate is chosen in
order to reduce computational load. To extract short audio clips of each species,
the duration of the call was used. The call between event start and event end is
extracted. The extracted short audio will be of different lengths. Further, a band
pass filter is applied which will filter the frequencies below and above the given
frequencies. For each day, the number of audio files that are used for clustering
are as many as the label count (Table 1).
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5.3 Experiments and Analysis of Results

Number of Clusters. The goal of the clustering stage is to associate calls
by the same species together. Ideally, the process results in one cluster for each
species. To determine the number of clusters or species, we experimented with
three methods: Elbow, Bayesian information criterion (BIC) and Akaike’s infor-
mation criteria (AIC). Applying these to the data for Day 1 of the NE region
suggested 30, 36 or 54 clusters, respectively. Given the actual number of species
this suggests that the AIC value is more appropriate. In order to check that the
number of clusters obtained is valid for any day in the NE region we repeated the
above experiments on the remaining days. Results are shown in Fig. 2a. From
the figure, we can observe that the values are different for each day. However,
AIC continues to give values closer to ground truth than the other methods.

(a) NE region Clusters (b) NW Region Clusters

(c) SE Region Clusters

Fig. 2. Estimation of number of clusters

We further investigated the other regions, NW and SE. Results are shown in
Figs. 2b and c. Based on these experiments, we can infer that:

– The number of clusters/species are different each day
– Among the three methods, AIC gives the most realistic value.
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In summary, since each consecutive day the cluster counts are different it
indicates the amount of bird activity varies quite drastically, further supporting
the need for an automated approach to this problem.

Clustering Methods and Different Regions. As discussed before, clustering
is performed using k-means and Gaussian Mixture Models (GMM) using the
Python Scikit-learn package. To determine the better clustering method, we
applied these two algorithms on the NE region (across all five days). The clusters
are evaluated by the external measure purity. Figure 3a shows the cluster purity
obtained for NE region, and shows that both k-means and GMM performed
similarly well. However, when compared with GMM, the k-means algorithm’s
performance is slightly better across all days in the NE region.

(a) NE region Clusters (b) NW Region Clusters

(c) SE Region Clusters

Fig. 3. Clustering accuracy

To reaffirm this fact, the experiment is repeated for other the NW and SE
regions, with results shown in Figs. 3b and c, respectively. These also show that
k-means performed better than GMM. We also compared the performance of
two algorithms using the internal measure of the silhouette index, which demon-
strated that k-means’ performance is better when compared with GMM. Hence,
based on the above experiments, we concluded that k-means would be best algo-
rithm as the basis for the estimated biodiversity index.
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Computing Biodiversity Index. Our ultimate aim is to compute a bio-
diversity index that can estimate the bird activity using clustering results.
Since k-means performed well in all regions of the dataset, we considered
the cluster results of k-means and computed the estimated biodiversity index
(Simpson − ClusEst). To evaluate this index, we computed the ground truth
biodiversity index (Simpson−GT ). These two indexes are plotted for all three
regions, shown in Fig. 4. It can be observed that the trend of the estimated Simp-
son biodiversity index using our methodology and the actual value are quite sim-
ilar. Even in terms of actual value, the proposed unsupervised approach resulted
the biodiversity index which is very close to ground truth index. For example,
for the NE region the difference between the two indices is 6–7% while for the
other two regions it is just 3–4%.

(a) NE region (b) NW Region

(c) SE Region

Fig. 4. Biodiversity estimation

6 Conclusions and Future Work

Bioacoustics can be used to monitor sound-producing species in a variety of
habitats. Analysing the sounds in a long-duration recording can enable an area’s
biodiversity to be assessed. As the use of bioacoustic recorders increases so does
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the volume of data needing to be analysed. While automated species recognisers
are being developed, it is still generally required that human labellers inspect
selections of the audio to reliably identify all species present (which can then
support biodiversity assessments), but such an approach is too slow. This paper
proposed an unsupervised approach to assess biodiversity. In our approach, after
determining a suitable number of clusters using the AIC method, two clustering
algorithms were evaluated. Results indicated that k-means algorithm performed
better than GMM. Since it is a large dataset, k-means algorithm has shown
better performance than GMM. Hence k-means algorithm output can be used
to estimate biodiversity using the Simpson index. Estimated biodiversity index
values indicated that our approach produces an estimate that is close to the
ground truth.

However much of the data now a days is non-stationary, so a different app-
roach will be required to handle real time data. Hence our future work will focus
on the use of online clustering techniques for biodiversity estimation in streaming
bioacoustics data.
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Abstract. Failure prediction is very important for railway infrastruc-
ture. Traditionally, data from various sensors are collected for this task.
Value of maintenance logs is often neglected. Maintenance records of
equipment usually indicate equipment status. They could be valuable
for prediction of equipment faults. In this paper, we propose Field-
regularised Factorization Machines (FrFMs) to predict failures of rail-
way points with maintenance logs. Factorization Machine (FM) and its
variants are state-of-the-art algorithms designed for sparse data. They
are widely used in click-through rate prediction and recommendation
systems. Categorical variables are converted to binary features through
one-hot encoding and then fed into these models. However, field informa-
tion is ignored in this process. We propose Field-regularised Factorization
Machines to incorporate such valuable information. Experiments on data
set from railway maintenance logs and another public data set show the
effectiveness of our methods.

Keywords: Factorization Machines · Failure prediction
Categorical data

1 Introduction

Railway points are a kind of mechanical installations allowing railway trains
to be guided from one track to another. They are among the key components
of railway infrastructure. As a part of the signal equipment, points control the
routes of trains at railway junctions, having a great impact on the reliability and
punctuality of rail transport. Existing research on failure prediction of points
mainly relies on additional sensors’ data [1,6,7,15,22,26], e.g. voltages, currents
and forces. Installation of sensors incurs costly labour and material expenses,
as well as the possibility of sensor malfunction, which limits their implementa-
tion. Other research focuses on approximating the long-term degradation curve
of equipment under certain maintenance strategy [11,12,18,21,23], rather than
predicting failure of equipment in the near future.
c© Springer Nature Switzerland AG 2018
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Maintenance logs of equipment contain formatted maintenance records,
including maintenance type, components, finished time, etc. They can be of
great value in failure prediction. These data often carry information of equip-
ment status with timestamps. Compared to data collected by sensors, mainte-
nance records are usually ready to hand with a specified format. They mainly
consist of categorical variables and could be very sparse after commonly per-
formed one-hot encoding. Besides, railway points consist of many components,
and failures can be viewed as a result of their interactions. Domain knowledge
regarding such interactions might be very limited and depends on equipment
types. In order to predict failures with maintenance logs, the model needs to
learn the complex interactions from such sparse data.

Aiming at this challenging task, we put forward Field-regularised Factor-
ization Machines (FrFMs) for failure prediction of railway points. Factorization
Machines (FMs) combine the advantages of Support Vector Machines (SVMs)
with factorization models [19]. In contrast to SVM, FMs factorise all interac-
tions between features into products of two low-rank matrices. In this way, they
are likely to learn interactions which even do not appear in training data. Many
variants of FMs have been proposed and achieved good performance. Locally
Linear Factorization Machines [13] adopts locally linear coding scheme and
jointly optimise FM models with anchor points. They are capable of learning
complex non-linear data by exploring local coding technique. Wang et al. [24]
propose Contextual and Position-Aware Factorization Machines targeted at sen-
timent analysis of texts. Inspired by the neural skip-gram model, Contextual and
Position-Aware Factorization Machines limits interactions to a range of words.
In addition, latent vectors are learned based on the relative position of words,
which means that there will be several independent latent vectors for one word.
FMs are usually limited to quadratic models, and related loss functions are non-
convex. Many papers have focused on overcoming these two limitations. Neural
Factorization Machines [9] take in the advantages of deep neural networks to
modelling higher-order feature interactions. They firstly encode feature vectors
by pre-training FMs and then train a neural network with these embedding
vectors. DeepFM [8] is similar to Neural Factorization Machines, except that
it is an end-to-end model that requires no pre-training. Unlike Neural Factor-
ization Machines, DeepFM jointly learns the embedded vectors and the neural
networks. Yamada et al. [25] reformulate the optimisation problem of FMs as a
semi-definite programming problem. By introducing nuclear norm in FMs, their
loss functions of FMs becomes convex.

The above-mentioned models focus less on the inherent properties of data
carried by field information. Field-aware Factorization Machines (FFMs) [10]
consider the field structure of data and learn pair-wise interactions with regard
to each pair of fields. They are more complex than FMs in terms of the num-
ber of parameters and computational complexity. Field-weighted Factorization
Machines [16] add additional coefficients to depict the interactions of fields, and
reduce the number of model parameters compared to FFMs. These models treat
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features from different fields differently. In other words, they only consider inter-
field information.

Existing models either ignore the field information or only consider the inter-
field information. They neglect the relationships among features inside
each field, which is going to be used in our models.

Our contributions could be shown in two aspects. Firstly, to the best of our
knowledge, it is the first time that maintenance logs are used to predict the failure
of railway points. Secondly, we propose FrFMs which leverage field information
and develop a method to solve the related optimisation problems. Experiments
on two data sets show that our methods can achieve better performance com-
pared to some state-of-the-art methods.

2 Preliminaries

A degree-2 polynomial mapping can often effectively capture the information of
feature conjunctions [2]. It learns a weight for each feature conjunction:

φPoly2(W,x) =
n∑

i=1

n∑

j=i+1

wi,jxixj

W = (wi,j) ∈ R
n×n,x ∈ R

n (1)

where W is the learned weight matrix and x is the input vector of dimension n.
Corresponding 2-way FMs can be written in following form:

φFM (V,x) =
n∑

i=1

n∑

j=i+1

〈vi,vj〉xixj

V =

⎡

⎢⎢⎢⎣

v1

v2

...
vn

⎤

⎥⎥⎥⎦ ∈ R
n×k,x ∈ R

n (2)

〈·, ·〉 stands for dot product of two vectors. vi and vj denote two row vectors of
V with dimension k. vi is referred to as embedding vector or latent vector
for feature i. For simplicity of formulations, we omit linear terms and bias term
following [10], but we include them in experiments.

Categorical data are highly sparse after one-hot encoding. Some pairs of xixj

might even not appear in training data. In this case, for polynomial mapping
some wi,j are not able to be learned. By factorizing weight matrix W into V V T ,
FMs are able to learn interactions for rare feature pairs. Each row vector vi in
V stands for latent vector regarding feature xi.
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Table 1. A sample of maintenance records with failures to be predicted.

Failure Maintenance type Component

1 A II

1 C II

−1 B VI

3 Field-Regularised Factorization Machines

3.1 Motivation

Table 1 presents some simple data constructed from maintenance records for
failure prediction. ‘Maintenance Type’ and ‘Component’ are two different fields.
A, B and C stand for different maintenance types that can probably be ‘Routine
Inspection’, ‘Corrective Maintenance’ and so on. The field ‘Component’ shows
the maintenance was performed over which component. ‘1’ and ‘−1’ in column
‘Failure’ stand for whether there was a fault occurred after this maintenance and
before next planned maintenance.

FMs will learn latent vectors for A, B, C, II and VI respectively. In
engineering practice, we anticipate different effects with different maintenance
behaviours. Each field can be regarded as a classification criterion for mainte-
nance work, and corresponding features in that field are the class labels. We
would prefer diverse latent vectors in the same field because we could distin-
guish the effects caused by different maintenance work in this way. As a result,
latent vectors for A, B and C should be diverse, as well as latent vectors for II
and VI.

3.2 Methods

In this section, we propose the FrFMs for binary classification. For simplicity of
formulations, we omit linear terms and bias term following [10], but we include
them in experiments as they often improve the results. The loss function of
FrFMs with logistic loss regarding one sample (y,x) is:

L(V ) = log(1 + exp(−yφFM (V,x))) +
λ1

2
‖V ‖2

F
+

λ2

2
R(V ) (3)

φFM (V,x) is defined in (2), as we share the same prediction function with FMs.
‖ · ‖

F
is the Frobenius norm for matrices. y ∈ {−1, 1} is the ground truth label

for sample x. The first term denotes the prediction loss compared to ground
truth, and the second term forces the solution V sparse. R(V ) is a regulariser
that measures the similarity of latent vectors in each field, and we prefer smaller
similarity as discussed above. By introducing R(V ) into loss function, field infor-
mation is included. λ1, λ2 are two non-negative parameters obtained by cross
validation.
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In order to capture the inherent properties come with fields of data, we
construct a feature relation matrix A which will be included in R(V ):

Ai,j =

{
1

Ni,j
if xi, xj are in same field and i �= j,

0 else.
(4)

Ni,j is the number of features in the field contains xi and xj . It is introduced to
avoid deviation caused by different number of features in different fields. Each
element in A stands for the relationship of two features. If they are in same field,
then corresponding entries in A will be one divided by the number of features
in this field. Otherwise they will be zeros.

Various metrics can be used to measure the similarity of latent vectors. In
this work, we will present FrFM with Euclidean distance and cosine similarity.

FrFM-EUC. We refer to FrFM with Euclidean distance as FrFM-EUC.
Euclidean distance is used to measure the similarity of two vectors in FrFM-
EUC, and larger Euclidean distance indicates smaller similarity. Therefore, R(V )
has the following form:

R(V ) = −
n∑

i=1

n∑

j=i+1

Ai,j‖vi − vj‖22 (5)

‖ · ‖2 denotes l2-norm for vectors. The loss function for FrFM-EUC is:

Leuc(V ) = log(1 + exp(−yφFM (V,x))) +
λ1

2
‖V ‖2

F
− λ2

2

n∑

i=1

n∑

j=i+1

Ai,j‖vi − vj‖22
(6)

FrFM-COS. FrFM-COS denotes FrFM with cosine similarity. R(V ) has the
following form:

R(V ) =
n∑

i=1

n∑

j=1

Ai,j
〈vi,vj〉

‖vi‖2‖vj‖2 (7)

Directly optimizing (3) with (7) is complicated. Rewriting rows of V into
products of their direction vectors and lengths leads to:

V =

⎡

⎢⎢⎢⎣

w1v̂1

w2v̂2

...
wnv̂n

⎤

⎥⎥⎥⎦ ∈ R
n×k, v̂i =

vi

‖vi‖2 , wi = ‖vi‖2 (8)

Then (7) equals to:

R(V ) =
n∑

i=1

n∑

j=1

Ai,j v̂iv̂
T
j = tr(V̂ TAV̂ ) (9)
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Substitute V with V̂ and w in formulation of FMs:

φFM (V̂ ,w,x) =
n∑

i=1

n∑

j=i+1

〈wiv̂i, wj v̂j〉xixj (10)

and finally we get loss function for FrFM-COS:

Lcos(V̂ ,w) = log(1 + exp(−yφFM (V̂ ,w,x))) +
λ1

2
‖w‖22 +

λ2

2
tr(V̂ TAV̂ )

s.t. ‖v̂i‖2 = 1, ∀i = 1, 2, . . . , n. w ∈ R
1×n
+ (11)

3.3 Optimization

Similar to FMs, our loss functions are non-convex. Gradient descent is used to
find local minima of our loss functions. Stochastic Gradient Descent (SGD) is
widely used in optimisation of FMs and its variants. It has shown its effectiveness.
Mini-batch Gradient Descent also enjoys the advantages of SGD while it is more
efficient. Thus we adopt Mini-batch Gradient Descent in optimisation. We apply
AdaGrad [5] to determine the learning rate in each iteration for it has shown
great power in similar problems [3,10]. To lessen over-fitting, we utilise early-
stop strategy in training of FrFM-EUC and FrFM-COS. The best training epoch
T will be decided based on a validation set.

FrFM-EUC. The gradient with regard to one sample (y,x) is:

∂Leuc(V )
∂vi

=
−y

1 + exp(yφFM (V,x))
(xi

n∑

j=1

vjxj − vix
2
i )

+ (xi �= 0)(λ1vi − λ2

n∑

j=1

Ai,j(vi − vj))

(12)

(xi �= 0) in (12) indicates that gradients would be zero if corresponding
features are zero. This strategy has been used in FFMs and performs well. We
can update model parameters with adaptive learning rate in iteration l:

G
(l+1)
i,f = G

(l)
i,f + (

∂Leuc(V )
∂vi,f

∣∣∣
V=V (l)

)2 (13)

v
(l+1)
i,f = v

(l)
i,f − η√

G
(l+1)
i,f + ε

◦ ∂Leuc(V )
∂vi,f

∣∣∣
V=V (l)

(14)

◦ denotes element-wise multiplication of vectors. G stores the accumulated
square gradient for AdaGrad and ε is s a smoothing term that avoids division
by zero (we set it to 10−8 in this paper). The training process for FrFM-EUC is
presented in Algorithm 1.
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Algorithm 1. Training FrFM-EUC by Mini-batch Gradient Descent
input Data matrix D ∈ R

M×n contains M samples, feature relation matrix A, latent
dimension k, hyper-parameters λ1, λ2, learning rate η, batch size m, G(0) = 0.
Randomly initialise V (0) ∈ R

n×k with values sampled from a uniform distribution
[0, 1/

√
k]. Calculate the number of batches b = �M

m
�.

for Epoch = 0 to T do
Shuffle the samples in D randomly.
Split D into batches X1, X2, ..., Xb ∈ R

m×n.
for i ∈ {1, 2, ..., b} do

Calculate the gradient of V by (12) for every sample in Xi and get the average.
Update accumulated square gradient G by (13).
Update V by (14).

FrFM-COS. The gradient with regard to one sample (y,x) is:

∂Lcos(V̂ ,w)
∂v̂i

=
−y

1 + exp(yφFM (V̂ ,w,x))
(wixi

n∑

j=1

v̂jwjxj − v̂iw
2
i x

2
i )

+ (xi �= 0)λ2

n∑

j=1

Ai,j v̂j

(15)

∂Lcos(V̂ ,w)
∂w

=
−y

1 + exp(yφFM (V̂ ,w,x))
((w ◦ x)(V̂ V̂ T − diag(V̂ V̂ T ))) ◦ x

+ λ1(x �= 0) ◦ w
(16)

(x �= 0) is a binary row vector indicates non-zero indices of x. Similarly, gradients
would be zero if corresponding features are zero. With gradient in hand, we can
train the model similar to Algorithm1. Differences are that we need to project
V̂ and w into feasible sets in each iteration.

4 Experiments

4.1 Data Set

POINTS-3 data set was generated from the maintenance logs of Sydney Trains’
railway points. For numerical features, they were simply transformed into fea-
tures ‘Zero’ or ‘Non-Zero’. As shown in Fig. 1, for one piece of equipment, we
selected three consecutive maintenance records: Maintenance 1, Maintenance 2
and Maintenance 3, to construct a sample and labelled the sample depending on
whether a failure occurred between Maintenance 3 and Maintenance 4. If there
was a failure record, then this sample was labelled with ‘1’, otherwise ‘−1’.

Equipment details including equipment type, location and other features were
also concatenated to construct one data sample. We randomly split the data set
into 60% training set, 20% validation set and 20% test set.
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Fig. 1. An example for sample labelling in POINTS-3.

Phishing data set contains important features that have been proven to be
sound and effective in predicting phishing websites [4]. We randomly split the
data into 64% training set, 16% validation set and 20% test set.

Table 2 summarises the statistics of the data sets.

Table 2. Statistics of the data sets.

Data set # Instances # Features # Fields

POINTS-3 55784 2226 52

Phishing 11055 68 30

4.2 Baselines and Hyper-parameter Tuning

We compare our models with three baselines.

LINEAR-LR denotes Logistic Regression with linear terms. It has been
proven to be effective in classification tasks with sparse data. We implemented
LINEAR-LR with Python library sklearn [17].
FM is the implementation of Factorization Machines defined in (2). We also
included linear terms and bias term.
FFM is the implementation of Field-aware Factorization Machines. We also
included linear terms and bias term.
FrFM-EUC and FrFM-COS stand for our methods proposed in this paper.

Both FM and FFM were implemented by xLearn [14] with AdaGrad
and SGD optimizer. All hyper-parameters were chosen based on validation
sets. The regularisation parameters were chosen from {10−6, 10−5, . . . , 106} for
LINEAR-LR and {10−6, 10−5, . . . , 10−1} for all other methods. Learning rates
for AdaGrad were chosen from {0.02, 0.2}. Latent dimensions were chosen from
{20, 40, . . . , 100} for FM and our method, and from {10, 20, . . . , 50} for FFM.
Early-stop strategy was adopted for FM, FFM and our method to reduce over-
fitting. Batch size was set to 64 in training of FrFM-EUC and FrFM-COS.
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4.3 Results and Metrics

Metrics. We calculated Logloss of each baseline on every data set. Logloss is
given by:

Logloss =
1
M

M∑

i=1

log(1 + exp(−yiŷi)) (17)

yi and ŷi are the label and model output for test sample i respectively. M is the
total number of test instances.

AUROC and AUPRC stand for area under receiver operating characteris-
tic curve and area under precision-recall curve respectively.

Results. Table 3 shows the results on different data sets, the best results are
bold and second best are underlined. We trained and tested these models five
times on each data set and reported the average results. POINTS-3 data set is
an imbalanced data set with only 1701 positive samples out of 55784 samples, so
AUPRC is more representative compared to AUROC according to [20]. AUPRC
were calculated from recall > 0.1 for the reason that too low recall is meaningless
in our case. Phishing data set is a balanced data set that won’t show much
difference between AUROC and AUPRC, so we only present the AUROC for it.

Table 3. Comparison of LINEAR-LR, FM, FFM, FrFM-EUC and FrFM-COS.

Method POINTS-3 Phishing

AUROC AUPRC (recall > 0.1) Logloss AUROC Logloss

LINEAR-LR 0.7012 0.0641 0.1275 0.9886 0.1384

FM 0.6987 0.0622 0.1285 0.9911 0.1226

FFM 0.6974 0.0619 0.1291 0.9923 0.1134

FrFM-COS 0.7090 0.0676 0.1271 0.9925 0.1120

FrFM-EUC 0.7108 0.0674 0.1270 0.9950 0.0919

Experiment results show that our methods perform best on these two data
sets. Precision-recall curves related to POINTS-3 data set for recall > 0.1 and
precision > 0.06 are plotted in Fig. 2.

Figure 2 shows that FrFM-COS can also achieve the best F1-score (0.165)
compared to other methods. By appropriately setting threshold value for the
classifier got from FrFM-EUC, we can get an overall Accuracy: 90.99%, with
Precision: 11.02% and Recall: 27.65%. This may not be a perfect prediction
but it is still acceptable considering that we didn’t use any sensor data (e.g.
current, voltage, force and so on). There are wrongly recorded data and failures
that are caused by vandalism which makes some failures unpredictable. Outputs
of the model could be used as references for maintenance plans.
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Fig. 2. Precision-recall curves with regard to POINTS-3.

Receiver operating characteristic curves with regard to Phishing data set
are plotted in Fig. 3. Our method FrFM-EUC consistently outperforms other
methods.

Fig. 3. Receiver operating characteristic curves with regard to Phishing.
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5 Conclusion and Future Work

In this paper, we proposed the Field-regularised Factorization Machines for fail-
ure prediction of railway points. Field information is often ignored in many
related methods. Especially for the inner-field relationships among features, there
is little work concerning them. The key components of FrFMs are the regular-
isation terms that incorporate field information in the training process. Two
forms of FrFMs: FrFM-EUC and FrFM-COS are presented. Experiment results
showed that our models outperformed some state-of-the-art methods in predict-
ing failure of railway points. We also achieved a better result on a public data
set.

The predictions for points failure were not perfect but could be used as the
reference for maintenance plans. Our following work will be focusing on combin-
ing data from other sources with maintenance data to improve the prediction
results.
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Abstract. Shill bidding is where a seller introduces fake bids into an
auction to artificially inflate an item’s final price, thereby cheating legit-
imate bidders. Shill bidding detection becomes more difficult when a
seller involves multiple collaborating shill bidders. Colluding shill bidders
can distribute the work evenly among each other to collectively reduce
their chances of being detected. Previous detection methods wait until
an auction ends before determining who the shill bidders are. However,
if colluding shill bidders are not detected during the auction, an honest
bidder can potentially be cheated by the end of the auction. This paper
presents a real-time collusive shill bidding detection algorithm for iden-
tifying colluding shill bidders while an auction is running. Experimental
results on auction data show that the algorithm can potentially highlight
colluding shill bidders in real-time.

Keywords: Collusive shill bidding · Collusion score
Local outlier factor · Loopy belief propagation · Markov random field

1 Introduction

Participating in an online auction often requires bidders to trust an inherently
adverse environment [9]. Shill bidding is a fraudulent practice where a seller
introduces fake bids in his/her auction [8]. This forces legitimate bidders to pay
more for the item. Collusive shill bidding is a strategy employed by a seller where
multiple shill bidders work together to undertake price inflating behaviour [11].
Shill bidding detection becomes more difficult when shill bidders collaborate to
distribute the work evenly among each other. This behaviour can collectively
reduce the chance of colluding shill bidders being detected.

Researchers [3–6,13] have proposed various methods for shill bidding detec-
tion in real-time. However, there are few research proposals to identify colluding
shill bidders in online auctions. For instance, Chau et al. [2] presented an algo-
rithm for detecting collusive fraud based on Markov Random Field (MRF) to
identify reputation inflation and non-delivery fraud [2]. Trevathan and Read
[11] proposed a statistical reputation system algorithm for identifying colluding
c© Springer Nature Switzerland AG 2018
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shill bidders in online auctions. Later, Zhang et al. [14] proposed a technique
for detecting auction fraud based on Loopy Belief Propagation (LBP). Further-
more, Tsang et al. [7] introduced the Score Propagation over an Auction Network
(SPAN) algorithm for detecting collaborative fraud in online auctions.

All of the aforementioned approaches work only when an auction ends which
eventually cheated an innocent bidder. Therefore, it is essential to identify collud-
ing shill bidders in real-time (i.e., while an auction is running). To our knowledge,
there is no literature available on detecting collusive shill bidding in real-time.
This paper introduces a real-time Collusive Shill Bidding Detection (CSBD)
algorithm for identifying colluding shill bidders during a live auction. Our algo-
rithm acts as a detection mechanism and a deterrent for colluding shill bidders.
We implemented the algorithm and applied it on simulated and commercial auc-
tion datasets. Experimental results show the algorithm can potentially detect
colluding shill bidders in real-time.

This paper is organised as follows: Sect. 2 illustrates the details of the real-
time CSBD algorithm; Sect. 3 presents our experimental setup and preliminary
results on simulated and commercial auction datasets. Finally, Sect. 4 provides
concluding remarks and avenues for future work.

2 Real-Time Detection of Collusive Shill Bidding

This section presents a real-time CSBD algorithm for identifying colluding shill
bidders while an auction is running. To limit the scope of what the algorithm is
trying to achieve, we consider multiple live auctions hosted by a single seller (we
are not considering concurrent auctions [12]). We assume there is no collusion
amongst sellers and a seller is not using multiple accounts in an attempt to
thwart the shill detection mechanism. We also assume that there are collusive
shill bidders who are participating in the live auctions.

The algorithm splits an auction into a series of stages depending on the time
elapsed (refer to [4,5,13]):

(a) Early stage - the first 25% of the auction duration;
(b) Middle stage - between 25.1% and 80% of the auction duration;
(c) Late stage - the next 15% (between 80.1% and 95%) of the auction duration;

and
(d) Final stage - the last 5% of the auction duration.

Figure 1 shows the operation of the real-time CSBD algorithm. The algorithm
consists of the following processes:

(a) Data transformation. An auction dataset is represented as an auction
network (referred to as a collusion graph). The interactions between bidders
in the auction network are indicated as a weighted graph. The collusion
graph is denoted as G = (V,E). V is the set of bidders, and E is the set
of edges where each edge between two bidders indicates they have both
participated in the same auction. Consider two bidders, vi ∈ V , vj ∈ V ,
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Fig. 1. The functional components of the real-time CSBD algorithm.

Fig. 2. Example of a collusion graph containing seven bidders.

where i �= j, that submitted bids in the same auction. An edge ei,j is added
to E that connects these two bidders together and the weight of the edge,
w(ei,j), indicates the number of auctions they participated in together.
Figure 2 illustrates an example of a collusion graph. Bidders b2 and b5 have
an edge weighting of 8. This indicates they have participated in 8 auctions
together and may be involved in collusive shill bidding.

(b) Selection of collusive shill bidding patterns. We selected the following
three bidding behaviours which may indicate potential colluding shill bidding
behaviour:
• Alpha rating (α rating) - A shill bidder usually submits bids in auctions

run by a particular seller [8]. Two bidders can be considered as colluding
shill bidders if their α ratings are approximately the same. The α ratings
are also typically higher than legitimate bidders.

• Collusion rating (η rating) - A shill bidder usually has the most num-
ber of edges (i.e., highest degree), and higher edge weightings compared
to legitimate bidders [11]. Two bidders are potentially involved in collu-
sive shill bidding if the η ratings of the bidders are approximately the
same. In general, colluding shill bidders will have similar η ratings and
these will be higher than honest bidders.

• Bind rating (λ rating) - Colluding shill bidders have approximately the
same number of bids (β rating [8]) [11]. The bind rating of two bidders
i and j, λβ

i,j , gives both bidders values between 0 and 1 depending on
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how similar their β ratings are [11]. A bind rating of 1 indicates a high
likelihood of collusive shill bidding, whereas 0 indicates a low likelihood.

(c) Anomaly score calculation. We calculate a Local Outlier Factor (LOF)
[1] of each behaviour pair over multiple k values in parallel, and select the
maximum value as the best performance for the behaviour pair. We choose
LOF because the interpretation of its score is easy and it has the ability to
capture outliers that were previously unseen by the global approaches. So,
the anomaly score for bidder i can be calculated as follows:

Scorei = max
p

(max
k

(LOFi(p, k)))

where k denotes the distance to be used to calculate LOFs and p indicates
the selected behaviour pairs. In general, the anomaly score for a shill bidder
will be higher than that for a legitimate bidder.

(d) Verification. This phase is used to verify the anomaly score for each bidder
found in the anomaly score calculation step. We use a Markov Random Field
(MRF) to model our auction network. A bidder i can have two states: (i)
honest state (bh

i ); or (ii) shill state (bs
i ). The beliefs for bidder i sum to 1.

That is, bh
i + bs

i = 1. We use the anomaly score found for bidder i, o
′
i, in

the anomaly score calculation step as the observed state of bidder i in the
MRF. As the anomaly score for bidder i is a positive value, we normalise the
value to keep it between 0 and 1 which is denoted by os

i . The honest belief
for bidder i is calculated as: oh

i = 1 − os
i ; where 0 ≤ oh

i ≤ 1. In general, the
shill belief of a shill bidder will be higher than that of a legitimate bidder.
We applied Loopy Belief Propagation (LBP) on the auction network for
detecting collusive shill bidding. To implement LBP, we need to define the
two types of potential functions: (i) Prior belief function (denoted by φ())
defines the prior knowledge (probabilities) of auction network nodes belong-
ing to each class (e.g., honest or shill); (ii) Compatibility function (denoted
by ψ()) represents the compatibility of two bidders with a given pair of nodes
being connected. Table 1 shows a sample instantiation of the compatibility
matrix.
A default value of ε0 is 0.2 suggested by [2] which is a heuristic. We found
a wide range of ε0 ∈ [0.05, 0.2] yields desired results through the analysis of
the real-time CSBD algorithm. Therefore, we have selected ε0 = 0.2 for the
real-time CSBD algorithm.

(e) Collusive shill bidders identification. When the LBP converges, the
nodes (bidders) are ranked according to their beliefs for the shill state. The
set of bidders is divided into potential shill and honest bidders by setting a
threshold value. We choose a threshold value, ξ = 0.75, depending on two
factors: (a) the relative misclassification cost for honest and shill bidders;
and (b) the ratio of honest and shill bidders in the auction dataset [7].
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Table 1. Compatibility matrix (ψ).

Neighbour state Node belief

Shill Honest

Shill 1 − ε0 ε0

Honest ε0 1 − ε0

3 Experimental Results

3.1 Simulated Auctions

We first tested the real-time CSBD algorithm on a simulated auction dataset
using a shill bidding agent [10]. We applied the algorithm on a dataset which
consisted of 5 sellers, 50 bidders, and 3 shill bidders. Each of these 5 sellers gen-
erated a random number of auctions. We selected the smallest size of the dataset
to easily visualise how the real-time CSBD algorithm performs. We considered
one auction as a live auction (i.e., Auction ID: 5 posted by seller a) and the rest
as past auctions.

Fig. 3. Anomaly score for each bidder in different stages of Auction ID: 5.

Figure 3 shows the anomaly score for each bidder in Auction ID: 5. Figure 3
suggests that Shill a, Shill b, and Shill c exhibit anomalous behaviour com-
pared to other bidders as they have the highest LOF values. Table 2 shows that
Shill a, Shill b, and Shill c achieved the highest prior shill belief (os

i ) during
AuctionID: 5.

We then applied the LBP on our simulated data using the prior function
(φ) and compatibility function (ψ) for each bidder. Figure 4 shows that the
shill belief values of Shill a, Shill b, and Shill c remain the highest throughout
the auction duration compared to other legitimate bidders. This indicates that
Shill a, Shill b, and Shill c are potential colluding shill bidders.



Real-Time Collusive Shill Bidding Detection in Online Auctions 189

Table 2. Prior belief function of each bidder in different stages of Auction ID: 5.

Bidder ID Early stage Middle stage Late stage Final stage

osiearly
osimiddle

osilate
osifinal

agentˆ5 0.17 0.41 0.41 0.41

agentˆ8 0.01 0.02 0.02 0.02

agentˆ13 0.00 0.41 0.41 0.41

agentˆ15 0.00 0.01 0.01 0.01

agentˆ19 0.00 0.00 0.00 0.00

agentˆ24 0.02 0.02 0.02 0.02

Shill a 0.84 0.84 0.84 0.84

Shill b 0.95 0.95 0.95 0.95

Shill c 1.00 1.00 1.00 1.00

Fig. 4. Shill belief value of each bidder in different stages of Auction ID: 5.

3.2 Commercial Auctions

We applied the algorithm on a commercial auction dataset obtained from the
website http://www.modelingonlineauctions.com/datasets. Since we do not have
a ground truth label for any of the bidders, we employed the algorithm in a gen-
eral fashion to work completely unsupervised. We considered an auction listing
for Palm Pilot PDAs because of its popularity. We randomly selected Auction
ID: 3025373736 as a live auction and the other auctions are considered as past
auctions.

Figure 5 shows the anomaly score for each bidder during Auction ID:
3025373736. Table 3 shows the prior belief function of each bidder during the
auction. We found r***h, c***am, and d***n achieved the highest prior shill
belief consistently in each of the four stages during the auction (see Table 3).

We applied the LBP on Auction ID: 3025373736 using the prior belief and
compatibility function. Figure 6 shows the shill belief values for each bidder.
We observed that c***am, d***n, and r***h consistently show the highest shill

http://www.modelingonlineauctions.com/datasets
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Fig. 5. Anomaly score for each bidder in different stages of Auction ID: 3025373736.

Table 3. Prior belief function for each bidder in Auction ID: 3025373736.

Bidder ID Early stage Middle stage Late stage Final stage

osiearly
osimiddle

osilate
osifinal

n***t 0.00 0.00 0.00 0.00

d***es 0.00 0.00 0.00 0.00

7***l 0.00 0.00 0.00 0.00

c***bs 0.00 0.00 0.00 0.00

g***6 0.00 0.00 0.45 0.39

g***1 0.00 0.57 0.53 0.39

s***rd 0.00 0.95 0.72 0.79

g***lf 0.00 0.63 0.92 0.79

r***h 1.00 0.87 0.91 0.84

c***am 0.91 0.97 0.97 0.97

d***n 0.91 1.00 1.00 1.00

Fig. 6. Shill belief value of each bidder in different stages of Auction ID: 3025373736.
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belief value during the auction, which indicates they could be potential colluding
shill bidders. Note that, some legitimate bidders (e.g., s***rd, g***lf ) achieve a
high value of prior shill belief during the auction (see Table 3). The bidders’ shill
belief values are minimised after applying the LBP (see Fig. 6). This indicates
the verification process is able to improve the detection accuracy.

4 Conclusion

This paper proposed a real-time collusive shill bidding detection (CSBD) algo-
rithm for detecting colluding shill bidders during a live auction. We calcu-
lated the anomaly score for each bidder using LOF based on collusive bidding
behaviour of the bidder. Finally, we verified the anomaly score for the bidder
acquired from the anomaly score calculation step based on their interactions
with other bidders to improve the detection accuracy.

We applied the algorithm on simulated and commercial datasets. Experi-
mental results show that the real-time CSBD algorithm was able to highlight
potential colluding shill bidders during a live auction. However, it is difficult to
determine the detection accuracy as we do not have a ground truth label for
any of the bidders in the commercial auction dataset. The algorithm acts as a
detection mechanism and deterrent to potential colluding shill bidders. Future
work involves detecting collusive seller shill bidding behaviour where a colluding
seller can spread the risk between the various sellers to reduce suspicion on the
individual shill bidders.
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Abstract. A heterogeneous correlation network represents relationships
(edges) among source-typed and attribute-typed objects (nodes). It can
be used to model an academic collaboration network, describing con-
nections among authors and published papers. To date, there has been
little research into mining communities in heterogeneous networks. The
objective of our research is to discover overlapping communities that
include all node and edge types in a heterogeneous correlation network.
We describe an algorithm, OHC, that detects overlapping communities
in heterogeneous correlation networks. Inspired by a homogeneous com-
munity scoring function, Triangle Participation Ratio (TPR), OHC finds
target heterogeneous communities then expands them recursively with
triangle-forming nodes. Experiments on different real world networks
demonstrate that OHC identifies heterogeneous communities that are
tightly connected internally according to two traditional scoring func-
tions. Additionally, analyzing the top ranking heterogeneous communi-
ties in a case study, we evaluate the results qualitatively.

Keywords: Heterogeneous community detection
Academic collaboration network mining · Algorithm

1 Introduction

A homogeneous network represents relationships between one object type. A
wide variety of methods for detecting communities in homogeneous networks
have been proposed [1,8,14]. Researchers in the fields of Computer Science [6,16]
and Physics [5,8] describe such communities as sets of nodes with high density
of internal edges and low density external edges. In contrast, a heterogeneous
network represents relationships (edges) between multiple types of interacting
objects (nodes). To date, there has been limited research that detects com-
munities in heterogeneous networks. Existing homogeneous community detec-
tion techniques cannot be used to detect communities that retain the complex
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characteristics of heterogeneous networks, such as multi-dimensional informa-
tion [10]. The motivation of our work is to find a group of objects which interact
significantly on multi-dimensional information of a heterogeneous network. For
example, in an academic collaboration network, we identify sets of authors who
relate to other authors with significant relationships on papers.

Network schemas have been used to represent the metastructure of heteroge-
neous networks. Various schemas have been proposed, including: Multi-relation
with single-typed object schema [17], Bipartite schema [7], Star schema [11] and
Correlation schema [4]. We constrain our work to correlation schemas, where
objects can be categorized as either Source Type (ST) or Attribute Type (AT).
Figure 1 presents a bibliographic heterogeneous correlation network H1, where
authors are the source-typed objects (nodes) and papers are the attribute-typed
objects (nodes) (represented by circles and rectangles respectively). The rectan-
gles with a striped pattern represent papers that share a common theme, namely
they are about texture spaces. The co-authorship relationship between authors
is denoted by solid lines. The relationship weighting represents the number of
papers the pair of authors have co-published together. Relationships between
authors and papers denoted by dashed lines, indicate the authors of a paper.

Applying heterogeneous community detection techniques on H1, we can iden-
tify communities of authors that publish together, and the papers that are
most significant in this community. Our Overlapping Heterogeneous Commu-
nity detection algorithm, OHC, detects one heterogeneous community, denoted
by the dotted boundary in Fig. 1: {Lawrence M. Brown, Riza Erturk, Senol Dost,
Murat Diker, Paper 1, Paper 2, Paper 3, Paper 6, Paper7}. The authors were
shown to have a common interest in the field of texture spaces (as highlighted by
the papers with stripped patterns in Fig. 1). This example illustrates that OHC
can detect communities of authors that are interested in a particular research
sub-field.

Fig. 1. Sample heterogeneous correlation network H1
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The main contributions of our research are: (1) We propose a novel algorithm,
OHC, that detects communities which contain multi-typed objects (nodes) and
relationships (edges) in heterogeneous correlation networks. Evaluation experi-
ments and case studies on real world datasets validate the effectiveness of the
algorithm. (2) We demonstrate that traditional metrics can be used to evaluate
the quality of detected heterogeneous communities.

We define overlapping heterogeneous communities as subgraphs of a given
heterogeneous network, where each community contains nodes of all object types
and edges of all relationship types that exist in the network. The aim of our
research is to identify heterogeneous communities with dense internal connec-
tions and loose external connections in a heterogeneous correlation network.

2 Related Work

We introduce existing community detection methods for homogeneous and het-
erogeneous networks.

Community Detection Methods in Homogeneous Networks. In recent
years, community detection in homogeneous networks has been researched widely
from various perspectives. Some methods focus on identifying disjoint communi-
ties while others focus on overlapping communities [14]. Newman and Girvan [8]
proposed that modularity can be used as a measure to divide the homogeneous
network into a set of graph partitions. This idea has been influential in later
community detection techniques, such as [1].

Speaker-listener Label Propagation Algorithm (SLPA) [14] has been shown
empirically to be one of the best performing algorithms for both overlapping and
disjoint homogeneous communities [3,15]. The algorithm propagates all labels
in each iteration to identify community membership between nodes of a given
network. Louvain [1] is a popular homogeneous community detection algorithm
based on modularity-optimization. This parameter-free algorithm is able to ana-
lyze a network with millions of nodes within seconds.

Homogeneous Community Scoring Functions. A homogeneous community
scoring function assesses a group of nodes’ connectivity level for representing a
network community structure [16]. Triangle Participation Ratio (TPR) is a scor-
ing function based on internal connectivity, which measures the fraction of nodes
in a community that belong to a triad [6,13,16]. The value range of TPR is [0, 1],
where a higher ratio represents better internal connectivity and a value of 1 indi-
cates a highly interconnected community. TPR has been widely recognized as a
useful metric for measuring community density and cohesion. Furthermore, Yang
and Leskovec’s [16] experiments with 230 large real-world networks highlighted
TPR’s high accuracy in identifying ground-truth homogeneous communities.

Fraction Over Median Degree (FOMD) is another community scoring func-
tion based on internal connectivity [16]. This metric calculates the proportion of
nodes in a community that have internal degree greater than the median degree
of all nodes in the network. FlakeODF is a community scoring function that
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combines internal and external connectivity [2,16] by calculating the fraction of
nodes in a community that have fewer edges pointing inside than outside the
community.

Community Detection Methods in Heterogeneous Networks. The exist-
ing techniques for detecting communities in heterogeneous networks were devel-
oped for multi-relation with single-typed object schema [17], bipartite schema [7]
or star schema [11]. Many of these techniques find communities that contain only
a single type of object with one or more types of relationships. None of the exist-
ing techniques produce heterogeneous communities that contain multiple-typed
objects and relationships.

3 OHC: Overlapping Heterogeneous Community
Detection Algorithm

In this section, we present our greedy community detection technique, OHC.
Details of OHC and how it transforms our example heterogeneous network shown
in Fig. 1 into a heterogeneous community are provided. Java source code for the
OHC algorithm and experiment datasets are available for download at http://
bit.ly/2vEfOQU.

Three Phases of OHC. Our proposed approach is composed of three main
phases. Phase One processes the input data and generates a set of seed commu-
nities. Inspired by Triangle Participation Ratio (TPR) scoring function [13,16]
described in Sect. 2, Phase Two produces a set of heterogeneous communities
by adding triangle-forming source-typed nodes with associated attribute-typed
nodes to each seed community. The output of Phase Two is fed into Phase
Three, where we remove the duplicate and subset heterogeneous communities.
Figures 1 and 2 demonstrate outcomes of OHC’s third phase and the first two
phases respectively. The data presented in these figures is a subset of real-world
datasets used in our experiments.

Phase One. The heterogeneous network processed by OHC in the initial phase
is composed of a homogeneous network that contains relationships among source
type (ST) nodes and a heterogeneous network containing relationships between
both ST nodes and attribute type (AT) nodes. For example, the heterogeneous
network processed by OHC in Fig. 1, is constructed from an author-collaboration
homogeneous network, containing co-authorship relationships between authors
and an authorship heterogeneous network, which contains the author-to-paper
relationships. This phase generates a list of heterogeneous seed communities
based on a set of distinct and interconnected source-typed nodes. Each of the
seed communities must contain more than one ST node, at least one commonly
linked node of AT, and the corresponding relationship edges. Seed communities
with solo ST nodes are eliminated due to their inability of forming triangles in
the next phase. When applied to the heterogeneous network shown in Fig. 1,
Phase One produces the set of seed communities, Cseeds, denoted by the dotted
boundaries in Fig. 2(1).

http://bit.ly/2vEfOQU
http://bit.ly/2vEfOQU


OHC: Uncovering Overlapping Heterogeneous Communities 197

Fig. 2. Outcome of OHC’s first two phases (identified (seed) communities denoted by
the dotted boundaries)

Phase Two. When expanding an individual seed community, Ca seed in Cseeds,
OHC takes a depth-first search approach to iterate through all pairs of ST
(Source Type) nodes (STx, STy) in the original and expanded Ca seed, and recur-
sively finds all triangle-forming triads (STx, STy, STz) in an exhaustive manner
by examining all other seed heterogeneous communities generated from Phase
One. The expansion process introduces the eligible triangle-forming ST nodes,
the associated AT (Attribute Type) nodes, and the corresponding relationship
edges that do not already exist to Ca seed. The recursive process for each pair
of ST nodes continues until no further triangle-forming ST nodes can be found.
The expansion processes for seed communities are independent and determinis-
tic. Additionally, resulting communities that have fewer than three AT nodes or
do not form triangles with any ST nodes will be removed from the outcome of
Phase Two.

To become a triangle-forming ST node, a node must have at least one distinct
edge with each member of the pair (STx, STy). The triangle-forming ST node,
STz, with the associated AT nodes will be added to Ca seed if they are not already
present. In the situation where STz is not included in the initial set of nodes of
Ca seed, STz forms two new pairs (STz, STx) and (STz, STy) with each member
of the original pair. The recursive process starts on each of the new pairs to find
further triangle-forming ST nodes. While in the situation where STz is included
in the initial set of nodes of Ca seed, OHC will explore further triangle-forming
ST nodes using the pairs (STz, STx) and (STz, STy) only when both STx and
STy are not included in the initial set of nodes of Ca seed.

To better illustrate the mechanisms of this phase, we refer to the seed commu-
nity, s, {Lawrence M. Brown, Murat Diker, Paper 7} in Fig. 2(1) as an example,
with the author pair (Lawrence M. Brown, Murat Diker) being a pair of ST
nodes. OHC detects that Senol Dost has one distinct edge with Lawrence M.
Brown (due to the associated AT nodes: Paper 1, Paper 2, Paper 3) and another
distinct edge with Murat Diker (resulted from Paper 6), therefore, Senol Dost is a
triangle-forming ST node for s, which expands s into the community {Lawrence
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M. Brown, Murat Diker, Paper 7, Senol Dost, Paper 1, Paper 2, Paper 3, Paper
6}. The outcome of Phase Two is denoted by the dotted boundaries in Fig. 2(2).

Phase Three. For the final phase, we iterate through the expanded communities
from Phase Two and remove the ones that are duplicates or subsets of other
communities. These communities are removed as information contained in a
subset or duplicate community has already been replicated in their counterpart
superset communities. Attributes observed in the OHC-detected heterogeneous
community from our example network are: (1) Authors in a community have
strong connections with other community members. (2) Authors in a community
are more likely to be interested in a paper within the community that they did
not co-publish than the authors outside of the community.

In our running example, the seed community, {Lawrence M. Brown, Riza
Erturk, Senol Dost, Paper 1, Paper 2, Paper 3} expanded to {Lawrence M.
Brown, Riza Erturk, Senol Dost, Paper 1, Paper 2, Paper 3, Murat Diker, Paper
6, Paper 7}. This results in the two duplicated sub-communities removed from
OHC’s final output. The final result is denoted by the dotted boundaries in
Fig. 1.

Time Complexity Analysis of OHC. To analyze the complexity of the pro-
posed algorithm we use |x| ST nodes, |y| AT nodes and |s| seed communities.
Here we first analyze the best case performance of OHC. Based on a set of dis-
tinct and interconnected ST nodes, Phase One iterates through |y| AT nodes
to generate qualified seed communities with O(|y| × |x|) runtime. The best case
for Phase Two is when only one pair of ST nodes needs to be processed in all
the seed communities and none of them have triangle-forming ST nodes, which
leads to a runtime of O(|s|2). During Phase Three, a linear execution time of
O(|s|) is required when the communities produced from the previous phase can
all be merged into one superset community. Pulling runtime of the three phases
all together we have a complexity of O(|y| × |x|+ |s|2 + |s|). Values of |x|, |y| and
|s| are data dependent, in our experiments, |x| and |y| are normally orders of
magnitude higher than |s|. In which case the best case runtime of OHC reduces
to O(|y| × |x|+ |s|2).

In a rare case where all ST nodes are processed in every seed community,
Phase Two’s runtime becomes O(|x|2 × |s|2). Execution time of the worst case
in the third phase is (|s|2) where no duplicate or subset communities can be
eliminated. As a result, OHC’s worst case performance is O(|y| × |x|+ |x|2 × |s|2
+ |s|2), which can be reduced to O(|x|2 × |s|2).
Conditions of OHC. Our proposed approach works for a given heterogeneous
network H, which satisfies the following three conditions:

1. The meta-structure of H is correlation schema based.
2. H contains two or more different types of nodes.
3. H is a static heterogeneous network.



OHC: Uncovering Overlapping Heterogeneous Communities 199

4 Experiments and Results

To study the effectiveness of OHC, we conducted experiments on various pub-
licly accessible real-world heterogeneous networks. All the experiments were per-
formed on a computer with 3.40 GHz i7 CPU, 8 GB RAM and Windows 10
operating system.

Datasets. Bibliographic data is widely used in heterogeneous network exper-
iments in the existing literature. For our experiments, we analyzed the ACL
Anthology Network (AAN) dataset [9] and the following five bibliographic
datasets from ArnetMiner [12]: Data Mining database information retrieval
(DM) dataset, Software Engineering (SE) dataset, Computer Graphics Multi-
media (CGM) dataset, Artificial Intelligence (AI) dataset and Interdisciplinary
Studies (IS) dataset. Statistics of the six datasets are shown in Table 1. For
each dataset, we constructed an author-collaboration network and authorship
network. In the author-collaboration network, authors are represented as nodes
while the number of edges between two nodes indicates the number of papers
that the corresponding authors have co-published. For the authorship network,
there exist two types of nodes: author and paper nodes, an edge between these
two types of nodes represents that the author had published the paper. We
define author nodes to be our source type (ST) nodes while the paper nodes are
described as attribute type (AT) nodes.

Benchmark Techniques. We are unable to compare OHC with existing het-
erogeneous community detection techniques because they were designed for a
different purpose (as described in Sect. 2). Hence, we build benchmark tech-
niques based on two state-of-the-art homogeneous community detection algo-
rithms: SLPA and Louvain. For simplicity, we notate the SLPA-based method
as SLPAh and the Louvain-based method as Louvainh. SLPAh is built on
top of SLPA [14], where SLPA is initially applied to the author-collaboration
network to detect homogeneous communities of the ST nodes. Appropriate AT
nodes are then appended to each of these detected homogeneous communities. In
our experiments, the number of iterations T was set to 100 to guarantee SLPA’s
stable performance and the threshold r, which affects the number of detected
overlapping communities, was varied: 0.01, 0.25 and 0.45. The construction pro-
cess of Louvainh is similar as SLPAh with the exception of Louvain [1] being the
community detection technique for the Louvain-based method. Both Louvain
and SLPA are non-deterministic heuristics, therefore, we repeated our experi-
ments twenty times for both techniques. For SLPAh, we repeated this for each
threshold, r.

Evaluation Metrics. Without ground-truth heterogeneous communities and
particular metrics for evaluating heterogeneous communities available, we adopt
the homogeneous community scoring functions, FOMD and Flake-ODF, to mea-
sure the inter and intra connectivity of the communities. Edge (relationship)
weightings are used for calculating FOMD and FlakeODF scores. The value
range of FOMD is [0, 1], where a higher FOMD score represents better internal
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Table 1. Statistics of datasets used

Dataset No. of authors No. of papers Average node degree∗

DM 5856 2640 3.35

SE 8127 3923 3.82

CGM 25961 16599 4.41

AI 41478 27596 4.43

IS 46097 18583 7.64

AAN 14464 18041 8.24
∗ Measured based on author-collaboration network

connectivity and a value of 1 indicates a highly interconnected community. The
value range of FlakeODF is [0, 1] as well. As the FlakeODF score approaches 0,
this indicates that a community is highly connected internally while being more
disconnected from the rest of the network. For our evaluations, we aim to find
heterogeneous communities with high FOMD score and low FlakeODF score.

Community Quality. In our experiments, we evaluated the performance of
benchmark algorithms, SLPAh and Louvainh, and compared them with OHC.
We calculate the minimum, maximum, median and average values for FOMD and
FlakeODF for the 6 datasets and collated them in Tables 2 and 3 respectively,
with the best results highlighted for each dataset. As SLPAh and Louvainh are
non-deterministic, we present their best results from multiple runs.

Notice in Table 2 that Louvainh and SLPAh despite having the same maxi-
mum value as OHC, their median FOMD value of 0. This indicates that at least
half of their communities scored very poorly resulting in an overall lower average.
On the other hand, OHC’s positive results were reinforced by its higher median
and lower standard deviation values, indicating the distribution between their
communities was less volatile. The average FOMD values for OHC communi-
ties were approximately five times higher than the other two techniques. Table 3
shows that the median FlakeODF score for Louvainh and SLPAh is either 0
or 1, indicating the communities produced by these algorithms have FlakeODF
scores at either extreme. The average FlakeODF score for OHC communities are
considerably lower than other techniques, particularly in the AAN dataset.

Figure 3 presents the distributions of FOMD and FlakeODF value ranges
across different heterogeneous community detection heuristics. From the results
of the three datasets presented, we identify common trends that underline the
performances of OHC, SLPAh and Louvainh. From Fig. 3a to c, we see that
both SLPAh and Louvainh have a larger percentage of communities in the lowest
value range (0–0.2). This indicates that most of SLPAh and Louvainh’s resulting
communities have low internal connectivity. On the other hand, OHC’s result
presents a more normal distribution curve, with the majority of communities
scoring between 0.4 and 0.6, indicating that OHC produces communities with
denser internal connectivity on average. The FlakeODF value ranges in Fig. 3d
to f again indicate favorable results for OHC. The results from SLPAh and
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Table 2. FOMD results

Method-dataset Min Max Median Average± SD

OHC-DM 0.19 1 0.50 0.57 ± 0.17

SLPAh-DM 0 1 0 0.19 ± 0.39

Louvainh-DM 0 1 0 0.07 ± 0.25

OHC-SE 0.18 1 0.50 0.55 ± 0.15

SLPAh-SE 0 1 0 0.17 ± 0.37

Louvainh-SE 0 1 0 0.08 ± 0.26

OHC-CGM 0.11 1 0.40 0.48 ± 0.16

SLPAh-CGM 0 1 0 0.13 ± 0.33

Louvainh-CGM 0 1 0 0.06 ± 0.22

OHC-AI 0.12 1 0.40 0.48 ± 0.16

SLPAh-AI 0 1 0 0.13 ± 0.32

Louvainh-AI 0 1 0 0.07 ± 0.24

OHC-IS 0 1 0.4 0.48 ± 0.19

SLPAh-IS 0 1 0 0.09 ± 0.29

Louvainh-IS 0 1 0 0.05 ± 0.22

OHC-AAN 0.09 1 0.50 0.44 ± 0.15

SLPAh-AAN 0 1 0 0.13 ± 0.33

Louvainh-AAN 0 1 0 0.08 ± 0.26

Louvainh communities form clusters on the value ranges of both extremes, indi-
cating around half of the communities have poor quality. Whereas the trend
from OHC presents a sharp negative slope, with the majority of communities in
the 0 to 0.4 value ranges.

Due to SLPAh and Louvainh’s non-deterministic nature, we ran both of them
multiple times and record the average and standard deviation values for FOMD
and FlakeODF. There were minor variation in the average values obtained from
each run, indicating both SLPAh and Louvainh had fairly stable performance.

In SLPAh and Louvainh we appended papers which were published by all
authors within a community. However, this methodology does not include papers
that have been authored by a subset of authors within a community. We pro-
duced two additional sets of results, firstly adding all papers that were authored
by one or more authors within a community and secondly adding all papers that
were authored by two or more authors within a community. In both cases, OHC
retains higher minimum, median and average FOMD values across all datasets.
However, the modified SLPAh and even Louvainh slightly outperform OHC in
some cases in terms of FlakeODF scores. The results indicate that when adding
papers that require at least two internal authors, the modified SLPAh and Lou-
vainh produce a more tightly internally bound community and more loosely
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externally connected community as compared to adding papers of each author,
likely due to the decrease in loosely connected papers.

Table 3. FlakeODF results

Method-dataset Min Max Median Average± SD

OHC-DM 0.67 0 0.10 0.18 ± 0.15

SLPAh-DM 1 0 0 0.28 ± 0.45

Louvainh-DM 1 0 1 0.79 ± 0.40

OHC-SE 0.86 0 0.20 0.24 ± 0.16

SLPAh-SE 1 0 0 0.34 ± 0.47

Louvainh-SE 1 0 1 0.75 ± 0.43

OHC-CGM 0.78 0 0.19 0.21 ± 0.15

SLPAh-CGM 1 0 0 0.41 ± 0.49

Louvainh-CGM 1 0 1 0.70 ± 0.45

HC-AI 0.89 0 0.20 0.22 ± 0.15

SLPAh-AI 1 0 0 0.43 ± 0.49

Louvainh-AI 1 0 1 0.69 ± 0.46

OHC-IS 0.93 0 0.30 0.34 ± 0.19

SLPAh-IS 1 0 0 0.43 ± 0.49

Louvainh-IS 1 0 1 0.61 ± 0.48

OHC-AAN 0.89 0 0.10 0.22 ± 0.14

SLPAh-AAN 1 0 1 0.52 ± 0.49

Louvainh-AAN 1 0 1 0.60 ± 0.47

Case Study. The purpose of the case study is to evaluate the results qualita-
tively. For each dataset, we examined the top five heterogeneous communities
with the highest FOMD and lowest FlakeODF scores generated by OHC, SLPAh
and Louvainh and found: (1) By analyzing common keywords across the paper
titles of a community, OHC was often able to identify additional information
such as the research sub-field that the community focused on, (2) OHC clus-
ters authors that frequently publish in the same field of research despite there
being no co-publication between all of these authors, (3) Regardless of the paper
appending methodology used, the vast majority of the top five scoring commu-
nities identified by SLPAh and Louvainh do not have these two properties.

We illustrate our findings further by analyzing the Top-1 AAN heteroge-
neous community detected by OHC which achieved a FOMD score of 1 and a
FlakeODF score of 0. The common keyword across the five paper titles in this
Top-1 community is “metaphor”. In addition, by examining the AAN dataset, we
found that the authors in this community had not published any papers together
and only partial co-authorship exists among them. To reduce bias, we evaluated
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SLPAh and Louvainh communities that contain one or more nodes in the Top-1
OHC community and found that the same property was not demonstrated in
these communities.

To present our findings in a systematic way, we analyze the top five AAN
communities detected by each of OHC, SLPAh and Louvainh. Each of the top five

Table 4. Run time of algorithms in seconds

Dataset OHC SLPAh Louvainh

DM 11 7 2

SE 26 9 3

CGM 492 62 23

AI 535 200 58

IS 658 254 69

AAN 12860 20 9

(a) AAN FOMD (b) AI FOMD

(c) SE FOMD (d) AAN FlakeODF

(e) AI FlakeODF (f) SE FlakeODF
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OHC communities have common keywords across their paper titles. In contrast,
for both SLPAh and Louvainh, only one of the top communities had common
keywords. Additionally, for all of the SLPAh and Louvainh top five communities,
there are only authors that have published the same papers together, which
differs substantially from OHC. Overall, based on our analysis of the top scoring
communities, OHC clusters authors with papers for a specific research sub-field
despite the authors not being fully interconnected.

Run Time. Table 4 shows the execution time of each technique across various
datasets. As expected, OHC consumed more time than both SLPAh and Lou-
vainh. The difference increased with the size of dataset. As an example, OHC
took 12860 s (3.5 h) to detect heterogeneous communities in the AAN dataset,
which we suspect was caused by high overlapping density and high overlapping
diversity of the dataset as indicated in Table 1.

5 Conclusions and Future Work

This research identifies heterogeneous communities by integrating and utiliz-
ing multiple node-to-node relationships that exist in heterogeneous correlation
networks. The proposed OHC algorithm uncovers overlapping heterogeneous
communities and has been shown to outperform benchmark techniques through
higher FOMD values. In addition, by analyzing the top scoring communities in
our case study, OHC clustered authors for specific research topics with indirect
authorships more effectively. Future work will include improving OHC’s effi-
ciency by limiting depth of the recursive process in Phase Two, adapting OHC
to find an evolution of communities in dynamic heterogeneous networks.
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Abstract. Salient Object Detection (SOD) methods have been widely
investigated in order to mimic human visual system in selecting regions
of interest from complex scenes. The majority of existing SOD methods
have focused on designing and combining handcrafted features. This pro-
cess relies on domain knowledge and expertise and becomes increasingly
difficult as the complexity of candidate models increases. In this paper,
we develop an automatic feature combination method for saliency fea-
tures to relieve human intervention and domain knowledge. The proposed
method contains three phases, two Genetic Programming (GP) phases
to construct foreground and background features and a spatial blend-
ing phase to combine those features. The foreground and background
features are constructed to complement each other, therefore one can
improve other’s shortcomings. This method is compared with the state-
of-the-art methods on four different benchmark datasets. The results
indicate the new automatic method is comparable with the state-of-the-
art methods and even improves SOD performance on some datasets.

Keywords: Salient object detection · Foreground · Background
Genetic programming

1 Introduction

Visual saliency detection is a fundamental research and real life problem in neu-
roscience, psychology, and computer vision [7]. Salient Object Detection (SOD)
is a process of identifying and localizing regions including objects that attract
more attention than other parts of an image when examined by a human viewer
[7].

In the past two decades, various types of saliency features have been designed
for the SOD task by domain experts. Using the existing collection of features
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saves us from designing similar or redundant features. However, manually select-
ing features from the existing features and combining them is not an efficient
way and not guarantee the optimal combination. Liu et al. [7] developed some
well-known SOD features including local, regional, and global features. However,
their proposed method loses its performance in some challenging images due to
lack of more informative features and a suitable combination method. Lin et
al. [6] proposed a method to detect salient object by extracting multiple fea-
tures such as local contrast, global contrast, and background prior. They refined
local and global contrasts by object center priors and then combined the refined
features to salient region detection, and the feature combination part has been
manually designed by the authors.

In order to have a more precise saliency map, saliency features are required to
complement each other. Some features can complement each other, while some
others may corrupt others’ efficacy. A good feature combination method explores
complementary characteristics of features and finds an optimal way to combine
these features. However, in the literature, authors often have not paid attention
to the complementary characteristic of features.

The aforementioned issues motivates us to develop a method which can auto-
matically explore a set of the different features, select informative ones, consider
their complementary characteristic and combine them suitably. Genetic Pro-
graming (GP) [5] is a search strategy to automatically evolve solutions (pro-
grams) by automatically exploring different possible combinations of features.
GP has a flexible tree-based representation which also allows searching the space
of various integration operations to combine different features. Thus, the afore-
mentioned capabilities of GP make it suitable choice to develop a GP-based
automatic feature combination method to address the aforementioned issues.

The overall goal of this study is to develop an automatic method to combine
features to construct two new informative features. We propose a new method
which focuses on two important parts of the image, foreground objects and
background. In the proposed method, two GP-based foreground and background
feature construction phases are developed. The GP-based foreground feature
mainly targets the foreground object, while the GP-based background feature
focuses on suppressing background. Specifically, this paper aims to fulfill the
following objectives:

Develop new automatic feature combination method to construct two new
informative features; and

Design two new fitness functions to evaluate the evolved solutions (individ-
uals) by GP method.

2 The Proposed Method

In this paper, the overall process contains three phases, two GP-based feature
construction phases to build foreground (FG) and background (BG) features,
respectively, and a spatial blending phase to combine the constructed features.
GP is utilized to find a good combination of the input features to construct
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Fig. 1. Scheme of the proposed method.

FG and BG features. The process of the complete method is depicted in Fig. 1.
For the first GP phase, GP-based foreground feature construction (GPFG), we
focus on constructing the FG feature in order to effectively highlight foreground
object(s). In this phase, GP takes a set of saliency feature maps as input and
constructs FG feature as output that is a combination of those features. For the
second GP phase, GP-based background feature construction (GPBG), GP is
used to construct the BG feature to suppress background. GPBG takes saliency
features and the function set as input to combine features, and returns a con-
structed feature as output. In contrast to GPFG, GPBG utilizes a different
fitness function in constructing the BG feature (see details in Sect. 3.3). Fit-
ness function for GPFG: saliency detection is a type of classification model that
classifies pixels into, salient or non-salient groups. Since saliency detection is
a Bernoulli distribution problem, binary entropy is chosen as the fitness mea-
sure. Here, binary entropy is employed to enhance precision of salient regions by
decreasing the difference between the constructed feature and the ground truth.

H(p, q) = −p log q − (1 − p) log(1 − q) (1)

where p is the ground truth value, q is the saliency value which is calculated by
the GP program, and H(p, q) is the entropy value between the ground truth and
the saliency map. The fitness function is the average entropy of all the training
images. The lower entropy shows the better fitness value for the GP program.

Table 1. GP parameters.

Population size Generations Mutation rate Crossover rate

100 50 0.19 0.8

Elitism rate Tree depth Selection type Tournament size

0.01 2–4 Tournament 7
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Fitness function for GPBG: recall is employed as the fitness function for
GP because recall operates as a pessimistic measure of saliency, so attempts
to suppress background regions. For the final GP phase, an object center prior
map and spatial blending is employed to combine the constructed FG and BG
features [9].

3 Experiment Design

In this work, the performance of the proposed method is evaluated using three
widely used SOD datasets including SED1 [4], MSRA10K [7], and ECSSD [4].
Each dataset is split into a training set (60%), a validation set (20%) and a test
set (20%). Each of the GP methods were run 30 times on each dataset.

Similar parameter values are used for both GP methods, GPFG and GPBG.
Table 1 summarizes the GP parameters. The parameter settings mostly follow
the suggested values from the literature [3]. The initial population is created by
the ramped half-and-half method. In this study, the population size is set to 100
to reduce the computational time. The tree depth was limited to 2–4, since it
prevents individuals to growing inefficiently and becoming more complex. For the
function set, both GP methods use a simple set of the commonly used arithmetic
operations including addition, subtraction, and multiplication. Each function in
the set {+,−,×}, takes two saliency feature maps as input in 2D-array and
returns another 2D-array saliency feature map as output. For the terminal set,
different types of features is collected based on different characteristics of the
saliency features from the literature. Here, nine saliency features are taken from
the previous work [2], and the SUSAN edge detector is also added to the feature
set [8]. The performance of the proposed method is evaluated using precision-
recall (PR) curve, receiver operating characteristic (ROC) curve, and F-measure
[4]. GPFBC is compared to seven other methods, five methods are selected from
[4] including DRFI, GS, GMR, SF, RBD, and two other methods MSSS [1] and
wPSO [2].

4 Results and Discussions

4.1 Quantitative Comparison

Based on the precision-recall curves in Fig. 2(a) and (b), GPFBC outperforms
most other methods, but is slightly worse than RBD and DRFI. On the ECSSD
dataset in Fig. 2(c), GPFBC performs better than RBD and also has a compara-
ble result with wPSO. Based on the ROC curves in Figs. 3(a)–(c), GPFBC has
the second best Area Under Curve (AUC) on all three data sets, where DRFI
has the best AUC. GPFBC has a higher true positive rate in relation to false
positive rate comparing to all the other methods apart from DRFI. Figure 4(a)
shows that GPFBC has slightly lower average precision, recall, and F-measure to
DRFI, RBD, and GS, but it has better performance than the other methods on
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the SED dataset. In Fig. 4(b), GPFBC has better results than most of the meth-
ods on the ASD dataset, while DRFI and RBD have slightly better results than
GPFBC. On the ECSSD dataset, GPFBC has a slightly lower average precision
than wPSO and DRFI, but a higher average recall than wPSO (Fig. 4(c)). The
ECSSD dataset contain more complex images than the SED and ASD datasets.
Although GPFBC performs well on the ASD and SED datasets, it has bet-
ter performance on ECSSD regarding average precision, recall, and F-measure.
Generally, GPFBC shows a comparable or even better performance compared to
the other methods except for DRFI. Although the performance of the GPFBC
method is not as good as the DRFI method, GPFBC uses only 10 features and
DRFI employs a 93 dimensional feature vector.
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Fig. 2. Precision-recall curves of GPFBC compared to seven other methods.
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Fig. 3. ROC curves of GPFBC compared to seven other methods.

4.2 Qualitative Comparison

Some sample saliency maps are shown in Figs. 5 and 6 to illustrate the qual-
itative performance of GPFBC and the seven other methods. It can be seen
that the performance of GPFBC is mostly good on the challenging and complex
images, e.g., images having non-homogeneous foreground object (e.g., 4th row),
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Fig. 4. Average precision, recall, and F-measure of GPFBC compared to seven other
methods.

Original GT RBD SF MSSS GMR GS DRFI wPSO GPFBC

Fig. 5. Some visual examples of the new method and seven other SOD methods.

cluttered/complex background regions (e.g., 1st and 3rd rows), having more
than one salient object (e.g., 3rd row), having similar color with the background
(e.g., 2nd row). Generally, GPFBC shows the highest quality on suppressing
background and completely detecting foreground object(s). However, it may fail
in some challenging images (Fig. 6), since it has the lack of enough informative
features such as shape information, texture features, and high-level features.

Original GT RBD SF MSSS GMR GS DRFI wPSO GPFBC

Fig. 6. Some visual examples of the new method and seven other SOD methods.
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5 Conclusions

In this study, an automatic feature combination method is developed to con-
struct two new informative features using GP to focus on the foreground object
and the background, respectively. The first GP method takes input saliency fea-
tures and generates a foreground feature, which is mainly good at highlighting
foreground objects. The second GP method focuses on generating background
feature, that mostly suppresses background for SOD. The results show that GP
has a promising capability for exploring a large search space and finding a good
way to combine different input saliency features. The findings motivate us to fur-
ther explore GP for developing a fully automatic feature combination method in
our future work that does not rely on the spatial blending approach in the third
phase of the proposed method.
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Abstract. With the phenomenon of global warming, more new shipping
routes will be open and utilized by more and more ships in the polar
regions, particularly in the Arctic. Synthetic aperture radar (SAR) has
been widely used in ship and iceberg monitoring for maritime surveil-
lance and safety in the Arctic waters. At present, compared with the
object detection of ship or iceberg, the task of ship and iceberg distinc-
tion in SAR images is still in challenge. In this work, we propose a novel
loss function called ensemble loss to train convolutional neural networks
(CNNs), which is a convex function and incorporates the traits of cross
entropy and hinge loss. The ensemble loss trained CNNs model for the
distinction between ship and iceberg is evaluated on a real-world SAR
data set, which can get a higher classification accuracy to 90.15%. Exper-
iment on another real image data set also confirm the effectiveness of the
proposed ensemble loss.

Keywords: Ship · Iceberg · Distinction
Synthetic aperture radar (SAR)
Convolutional neural networks (CNNs) · Ensemble loss

1 Introduction

With the rapid and observable global-scale warming of climate, more and more
commercial, economic and environmental interests have been attracted in the
polar regions, especially in the Arctic. One of those is the opening of more
Arctic new shipping routes, which is directly arisen from the sea ice decline
in recent 30 year. Actually, the Arctic shipping route is the shortest shipping
network between North America, Europe and Northeast Asia, with the advan-
tages of short distance, short duration of voyage, less congestion, no piracy. For
example, the Northwest Passage would get a huge shortcut for shipping between
c© Springer Nature Switzerland AG 2018
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the Northwest Atlantic Ocean and Pacific Ocean. In general, vessels must go
through Panama Canal or even Cape Horn if they take transit between North-
west Atlantic and Pacific Ocean. However, navigating through Canadian Arctic
would cut the normal voyage by more than 7,000 km.

The Arctic Passage’s opening will present more and more vessel traffic flow,
which also requires more accurate and efficient maritime surveillance approaches.
SAR is a common and important instrument for oceanographic observation. For
ship detection, ship-iceberg discrimination approach can be used to detect and
surveille merchant ships or even other non-merchant ships. In addition, since
the research conducted by Norwegian Defence Research Establishment in 2004
to insight the feasibility of space-based automatic identification system (SAIS)
for ship monitoring in high sea, the research of SAIS has attracted more and more
interests. At present, one emerging technology is the combination of SAR and
SAIS to enhance maritime surveillance [6]. On the other hand, for iceberg detec-
tion, large drifting icebergs present huge threat to vessels, particularly for oil
tanker, as well as human activities such as offshore oil platforms in the high lati-
tude regions. Currently, many stakeholders use aerial reconnaissance and shore-
based support to monitor icebergs and assess associated risks. However, these
methods are not viable in remote sea areas or under particularly harsh weather
conditions, and the only feasible option is via satellite.

Iceberg or ship detection in SAR image can be well implemented by adaptive
threshold techniques [3], some papers [4,9] have addressed this issue. However,
object recognition in SAR image is still challenging. Denbina et al. [5] conduct
feature extraction before feeding into a support vector machine (SVM) classi-
fier. Zakharov et al. [10] apply supervised learning after hand feature extraction
from satellite altimetry. Howell et al. [7] detect the difference in the dominant
scattering mechanism between the classes of iceberg and ship. However, it’s only
applicable for discrimination in multi-polarization SAR data, not suitable for
single-polarization data. Bentes et al. [3] use CNNs to learn features from SAR
image and classify ship or iceberg with a fully connected layer.

2 Ensemble Loss

In this section, we will present the details of the ensemble loss and how to
prove its convexity. In machine learning, the most common loss function for
classification task is cross entropy (CE). For binary classification, let yi denote
the ground truth class probabilities (also called as label), yi are either 0 or 1. pi

refer to the predicted class probabilities, N defines the number of class.

JCE = −
N∑

i=1

yi · logpi (1)

When applying CE for error calculation while training CNNs, the optimiza-
tion objective is to minimize JCE . On the other hand, to make the output
probability pi approach to 1 if the ground truth probability to this class is 1,
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Fig. 1. Cost function for cross entropy and ensemble loss (ε = 0.3).

otherwise, to let it close to 0. However, for some outputs with relatively high
probabilities (i.e. p > 0.9), it means the sum probabilities of the rest is quite low
(i.e. less than 0.1). In that situation, the cost is still positive and the optimiza-
tion process will still be proceeding to minimize the cost (i.e. to drive p from 0.9
to 1). However, this optimization mechanism means a waste of capacity [8], as
the outputs with high probabilities is with enough evidences for classification.

To avoid such case, we propose an ensemble loss (EL) function. The inspira-
tion comes from the hinge loss function (Eq. (2)) used in SVM.

JHL = max(0, 1 − ŷ · (wT · x + b)) (2)

where ŷ is the ground truth label, ŷ = ±1 for classification. w and b is the weight
and bias of hyperplane wT · x + b.

We introduce the multiplication of cross entropy loss and hinge loss, and set
a marginal value ε to avoid the problem of capacity wastage.

The proposed EL function is defined as Eqs. (3) and (4), and the plot is
displayed in Fig. 1. Equation (4) is derived from Softmax layer on the top of
network.

JEL = −
N∑

i=1

yi · log pi · max(0, 1 − (2yi − 1) · (2 · (pi + ε) − 1)) (3)

N∑

i=1

pi = 1, 0 < pi < 1 (4)

where ε is a small non-negative marginal value, 0 � ε < 0.5, yi are either 0 or 1.
Let

L(p) = −y · log p · max(0, 1 − (2y − 1) · (2 · (p + ε) − 1)) (5)

Thus we can get,

∂L

∂p
=

{
0, p � y

2y−1 − ε

(4y2 − 2y) · (1 + log p) + (4y2−2y)ε−2y2

p , p < y
2y−1 − ε

(6)
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∂2L

∂p2
=

{
0, p � y

2y−1 − ε
(4y2−2y)(p−ε)+2y2

p2 , p < y
2y−1 − ε

(7)

From Eqs. (3) to (7), y is either 1 or 0, we can derive,

∂2L

∂p2
� 0 (8)

Therefore, it is proved that the constructed EL function L(p) and JEL are
convex. So that EL loss could get rid of the problem of multiple local minimums
when introducing stochastic gradient descent (SDG) for optimization.

3 Experiments and Results

We conduct experiments on a real SAR data set generated from Sentinel-1 satel-
lite. Moreover, in order to validate the effectiveness and robustness of our loss
function, we also conduct experiments on a real optical satellite image data set.

3.1 Data Set

SAR Image Data Set: It comes from Sentinel-1 satellite carrying C-band SAR
instrument [1]. It contains 1604 groups of data, each group includes two channel
images: HH (transmit/receive horizontally) and HV (transmit horizontally and
receive vertically), both are with size of 50 × 50 pixels. The labels of each image
are either ship or iceberg. Figure 2(a) gives an example of one group SAR images.

Fig. 2. (a) SAR image of a ship. (b) Ship and non-ship labeled images.

Optical Image Data Set: These satellite images are captured by satellite
Planet [2]. It covers 2800 80 × 80 pixels RGB images with label of ship or
no-ship. Figure 2(b) illustrates the ship and no-ship labeled images.
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3.2 Architecture

There are some parameters that we need to determine before network training,
such as size of each convolution and fully connected layer, kernel size in convolu-
tion and max-polling layers, ε in the proposed EL loss function (Eq. (3)) and so
on. We use a greedy strategy to find the optimal network architecture. First of
all, We choose a default architecture and then conduct a five-fold cross-validation
on the training and validation sets with different parameter one by one. From
Tables 1, 2 and 3 give the process of searching the optimal architecture of CNNs
for ships and icebergs classification task. Note that in SAR images, we use the
component of HH, HV and the mean of HH and HV channels as the input.

Table 1. Layer size selection

Layer size 10-20-40-60 20-40-60-80 40-60-80-100 60-80-100-120 80-100-120-140

5-fold CV accuracy 87.03% 89.53% 86.66% 88.34% 88.90%

Table 2. Fully connected layer size and parameter ε selection

Neurons 200 300 400 500 1000

5-fold CV accuracy 88.53% 89.40% 89.53% 89.21% 88.79%

ε 0 0.1 0.2 0.3 0.4

5-fold CV accuracy 88.15% 89.34% 88.53% 89.53% 88.59%

Table 3. Kernel size selection in convolution and max-pooling layers

Kernel size (convolution layers) 1 × 1 3×3 5 × 5 7 × 7

5-fold CV accuracy 76.37% 89.53% 87.84% 87.53%

Kernel size (max-pooling Layers) 2×2 3 × 3 4 × 4 5 × 5

5-fold CV accuracy 89.53% 89.15% 89.40% 88.53%

3.3 Convergence

We use the augmented SAR images as the inputs with the aforementioned
optimal architecture. Both CE and EL are conducted with a five-fold cross-
validation. The mean validation accuracy in the training process is displayed in
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Fig. 3. Note that all variables in both experiments are initialized with the same
initializer. Analyzing the curves, accuracy in both methods does not differ much
at the earlier stage. After the turning point, observably, EL gets higher accuracy
than CE. Among the last 10 training epoches, the mean validation accuracy of
EL is 87.59%, which is better than 87.06% of CE.
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Fig. 3. Mean accuracy on validation data (SAR image data set).

3.4 Results

We compare EL trained CNNs (CNNs-EL) with CE trained CNNs and CNNs
without data augmentation, PCA+SVM [3] and human labeling with testing set.
For PCA+SVM, firstly, we extract 60 principle components via PCA and then
feed them into a SVM classifier. We also conduct human labeling experiment to
explore the ability of human brain for this task, 20 volunteers are participated in
this experiment. They are divided into 5 groups randomly with different labeling
tasks from fold 1 to 5. Then, they are required to learn SAR images with labels
in the training set by themselves. After completing independent learning stage,
they are asked to give the labels for unlabeled images in the testing set.

Table 4 presents the accuracy of CNNs-EL compared with other baselines.
CNNs-EL performs better than CE trained CNNs, as it employs the notion of
a margin like hinge loss. The employment of data augmentation in CNNs also
improves the accuracy by more than 3% as it has better generative ability. The
human performance is just at 63.77%, which is quite below our CNNs-EL, which
reflects the restriction of human ability on the task of SAR image distinction.

We also conduct experiments on an optical image data set for task of ship
and no-ship classification. From Table 5, overall, all methods can get much higher
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Table 4. Accuracy comparison with different models on SAR image data set

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

CNNs-EL 89.38% 91.59% 91.28% 87.86% 90.65% 90.15%

CNNs [3] 88.75% 89.72% 90.34% 89.41% 88.78% 89.40%

CNNs without data augmentation 87.50% 83.80% 85.05% 88.16% 86.60% 86.22%

PCA+SVM [3] 68.75% 78.82% 81.93% 73.83% 82.24% 77.11%

Human labeling 58.12% 65.73% 66.09% 63.55% 65.34% 63.77%

classification accuracy compared with ship-iceberg classification task, as the pat-
terns of ship and no-ship classes in optical images can be well recognized. CNNs-
EL also improves the performance compared with CE trained CNNs.

Table 5. Accuracy comparison with different models on optical image data set

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

CNNs-EL 100% 100% 99.82% 100% 99.64% 99.89%

CNNs 100% 100% 99.29% 100% 98.93% 99.64%

CNNs without data augmentation 100% 100% 98.39% 100% 98.93% 99.46%

4 Conclusion and Future Work

This paper builds a ship and iceberg classification model for SAR images based
on CNNs, which employs a novel ensemble loss for optimization. We evaluate
the performance of the proposed model on a real-world SAR image data set and
compare it with cross entropy trained CNNs, CNNs without data augmentation,
PCA+SVM and human labeling, and the results show that the proposed model
can get more accurate classification performance than the competing methods.
Besides, classification experiments conducted on an optical satellite image data
set also confirm the effectiveness of the proposed ensemble loss.

In future our plan is to develop multi-label classifier for this problem and
conduct more experiments to test the effectiveness of ensemble loss.
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Abstract. Shark attacks have been a very sensitive issue for Australians
and many other countries. Thus, providing safety and security around
beaches is very fundamental in the current climate. Safety for both
human beings and underwater creatures (sharks, whales, etc.) in gen-
eral is essential while people continue to visit and use the beaches heav-
ily for recreation and sports. Hence, an efficient, automated and real-
time monitoring approach on beaches for detecting various objects (e.g.
human activities, large fish, sharks, whales, surfers, etc.) is necessary
to avoid unexpected casualties and accidents. The use of technologies
such as drones and machine learning techniques are promising directions
in such challenging circumstances. This paper investigates the potential
of Region-based Convolutional Neural Networks (R-CNN) for detecting
various marine objects, and Sharks in particular. Three network architec-
tures namely Zeiler and Fergus (ZF), Visual Geometry Group (VGG16),
and VGG M were considered for analysis and identifying their potential.
A dataset consisting of 3957 video frames were used for experiments.
VGG16 architecture with faster-R-CNN performed better than others,
with an average precision of 0.904 for detecting Sharks.

Keywords: Faster R-CNN · Marine animal detection · Deep learning

1 Introduction

Sharks and other marine animals have a significant contribution in the main-
tenance of healthy marine ecosystems. Beach recreation involve extensive use
of ocean and humans are vulnerable to shark attacks. Australian Shark attack
statistics for 2015 [26] recorded 33 unprovoked cases, with 23 injured and 2 were
fatal. In 2016 [27], total number of shark attack reported were 26, with 2 fatal
and 16 injured. The statistics clearly reveal the risk involved while entering the
ocean. Thus, providing safety and security around beaches is very fundamental
in the current climate. Safety for both human beings and marine life (e.g. sharks,
dolphins, etc.) in general is essential while people continue to visit and use the
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beaches heavily for recreation and sport. Hence, an efficient, automated and
real-time monitoring approach on the beaches for detecting shark in particular
is necessary to avoid unexpected casualties and accidents.

Manned aircrafts with trained onboard crew has been used of conducting
aerial surveys [1] and beach monitoring for more than a decade. This process is
quite expensive, time-consuming, requires specialized skills and prone to human
error. Hence, automation of the process is an inevitable choice considering the
high degree of risk involved and the high precision required. Recent advance-
ments in the Unmanned Aerial Vehicle (UAV) technology have produced low-
priced drones/UAVs. Availability for sophisticated drones/UAVs with high def-
inition digital cameras have made them a popular choice for aerial surveys and
beach monitoring, in the recent past. Drones/UAVs can be explicitly used for
beach monitoring, combined with an intelligent system which analyses the video
stream to identify the presence of shark or potential threats.

(a) Shark (b) Shark

(c) Whale (d) Boat

Fig. 1. Sample aerial images of shark, whale and boats.

Increase in the global shark encounters are mainly due to the increase in
population and number of people using the ocean [4]. A number of shark control
program [3,5–8] have been adopted around the world with the aim of decreasing
the risk by removing/restricting the sharks from areas used for recreation pur-
poses. This programs in general do not discriminate sharks from other marine
life, which results in the interference with marine ecosystem and can be harmful
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[9,10]. Hence, there is need for exploring alternate solutions which facilitates the
co-existence of marine life and humans, without compromising the safety.

In order to ensure safety for beach/ocean users, personal shark deterrents
(e.g. Shark Shield) were created and are commercially available to mitigate the
risk from Sharks. This shark deterrents usually creates strong non-lethal electric
fields which repels sharks. The study presented by Kempster et al. [2], shows that
Shark Shield can reduce interactions between white sharks and static-bait under
test conditions. It also suggests that further studies are required to test the device
on different shark species by varying the discharge frequency. Although, the shark
deterrents are effective, it still has a hidden risk involved as there are various
shark species available and some may not respond to the pre-defined frequency.
Moreover, the devices are invasive in the context that they are wearable and the
discharge frequencies can be harmful to both human and sharks or marine life
in general. Hence, a study of non-invasive technique to ensure safety for ocean
users is presented in this paper.

The technique involves the use of UAVs/drones to patrol beaches and the
camera attached to them captures the aerial view for real-time analysis to detect
the presence of shark or identifying potential risks. There are many challenges
involved in the automatic processing of the video streams. Initial investigation
conducted for the development of an automatic shark detection system, reveals
the following challenges:

– Speed of UAV, altitude, camera resolution.
– Unconstrained lighting conditions while capturing real-time videos of beaches

using the UAV/drone.
– Tracking and identifying/distinguishing sharks from other large fish/marine

life.
– Distinguishing sharks from other objects namely, surfer, swimmers, drone

shadows, etc.
– Detecting potentially unusual activities indicating shark attacks.
– Noisy backgrounds dues to ocean waves, human activities, surf boards and

other objects.
– Real-time alarms for Surf lifesaving clubs/teams in case of a shark detec-

tion/attack.

Figure 1 highlights some of the challenges involved in processing the aerial
video of the ocean.

In this paper, we proposed to investigate the state-of-the-art Deep Convolu-
tional Neural Networks for detection of various marine animal and object namely,
Shark, Whale, Surfer, Largefish, and Boat. Specifically, we analyze the poten-
tial of Faster Region-based Convolutional Neural Networks (R-CNN) [19] for
the detection of the areas-of-interest and adapt it to the current problem. Three
different network architectures namely Zeiler and Fergus (ZF) [20], Visual Geom-
etry Group (VGG16) [21] and VGG CNN M 1024(VGGM) [22] were used in the
study. The primary intension of the present study is to model region segmen-
tation task for shark detection, as a standard object detection problem. The
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study explores object detection methods which can detect shark at real-time, in
a single pipeline and can eventually be used for beach monitoring/surveillance.
To the best of our knowledge, this is the first study which considers the use of
Deep CNNs for detecting Shark and other marine animals from aerial imagery
capture using UAV/drone patrolling Australian beaches.

The paper is organized as follows. The related works on marine life detection
and the Deep CNN based object detection methods are discussed in Sect. 2. The
proposed approach in presented in Sect. 3. In Sect. 4, experimental analysis and
result are discussed. Finally, the paper is concluded in Sect. 5.

2 Related Works

In this section, the recent works on automated marine animal detection and the
current state-of-the-art methods for object detection using Deep Convolutional
Neural Networks (CNN) are discussed in Subsects. 2.1 and 2.2, respectively. In
particular, a brief overview of Region-based Convolutional Neural Networks (R-
CNN) [18], Fast R-CNN [17], and Faster R-CNN [19] is presented in Subsect. 2.2.

2.1 Automated Marine Animal Detection

Not much work has been reported in the literature to address the problem of
automatic marine animal detection in general, and shark detection [11,12] in
particular. Among the recent work, Mejias et al. [14] presented tow algorithms
to detect marine species automatically. They focus on detecting dugongs from
aerial images, in order to automate the aerial surveys. They proposed two algo-
rithms. The first algorithm used morphological operations and combined colour
analysis for blob detection. The second algorithm uses a shape profiling method
on saturation channel from HSV colour space. The reported result had a very
low precision rate and high false-positives.

Maire et al. [13] also presented an algorithm for detecting dugongs from aerial
imagery. Their approach consist of two stages. Regions-of-interest are determined
in the first stage using colour and morphological filter. In the second stage, shape
analysis is performed on the candidate blobs identified from the first stage. A
template matching technique is used for finalizing detection results. The system
performed better when the sea surface was calm, but the performance degraded
as the sea surface became rough.

Shrivakshan [15] presented an analysis of Sobel and Gabor filters for clas-
sifying different shark types. The analysis shows that Gabor filters performed
better than Sobel filter. Use of multi-spectral imaging for automatic detection
of marine animals was studied by Lopez et al. [16].

To summarize, although global shark attacks in the recent years were quite
high, not many works have been reported toward the automation of the detection
process, as compared to the severity of the consequences. Most of the works found
in the literature used traditional machine learning approach and were quite slow
with unacceptable precision. To the best of our knowledge, no work has been
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reported in the literature considering the Deep Learning methodologies for shark
detection or marine animal detection, in general.

2.2 Deep CNN-Based Object Detection Methods

Recent advances in object detection techniques presented the community with
Region-Based Convolutional Neural Network (R-CNN) and its successors (Fast
and Faster R-CNN). R-CNN [18] uses Selective Search (SS) to compute (≈ 2k)
object proposals of different scales and positions. For each of these proposals,
image regions are warped to fixed size (227 × 227) pixels. The warped image
regions are then fed to the CNN for detections. The proposed network architec-
ture uses classification head for classifying region into one of the classes. The
SS does not necessarily provide perfect proposals. Therefore, to make up for the
slightly wrong object proposals, regression head uses linear regression to map
predicted bounding boxes to the ground-truth bounding boxes. R-CNN is very
slow at test time where every individual object proposals are passed through
CNN. The feature extracted are cached to the disk. Finally, a classifier such as
SVM is trained in an offline manner. Therefore, the weights of the CNN did not
have the chance to update itself in response to these offline part of the network.
Moreover, the training pipeline of the R-CNN is complex.

In Fast R-CNN [17] the order of the extracting region of proposals and run-
ning the CNN is exchanged. In this architecture whole image is passed once
through the CNN and the regions are now extracted from convolutional feature
map using ROI pooling. This change in architecture reduces the computation
time by sharing the computation of convolutional feature map between region
proposals. The region proposals are projected to the corresponding spatial part
of convolutional feature volume. Finally, fully connected layer expects the fixed
size feature vector and therefore the projected region is divided into grid and
Spatial Pyramid Pooling (SPP) is performed to get fixed size vector. SPP deals
with the variable window size of pooling operation and thus end-to-end training
of the network is very hard. The generation of the region proposals is the bottle
neck at the test time. In above mentioned approaches, CNN was used only for
regression and classification. The idea was further extended to use CNN also
for region proposals. The latest offspring from the R-CNN family, the Faster
R-CNN [19] proposed the idea of small CNN network called Region Proposal
Network (RPN), build on top of the convolutional feature map. A sliding win-
dow is placed over feature map in reference to the original image. The notion of
anchor box is used to capture object at multiple scales. The center of the anchor
box having different aspect ratio and size coincide with the center of sliding
window. RPN generates region proposals of different sizes and aspect ratios at
various spatial locations. RPN is a two layered network which does not add to
the computation of overall network. Finally, regression provides finer localization
with the reference to the sliding window position.

Although R-CNN and its predecessors perform well with high accuracy, they
are computationally very expensive and time consuming, making them undesir-
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able for real-time applications. Faster-R-CNN works at a rate of 7 frames per
second, while maintaining high accuracy.

Based on the brief investigation of the state-of-the-art, Faster R-CNN was
considered in this study for experiments on shark detection. Different CNN archi-
tectures were used with Faster R-CNN for analysis.

3 Proposed Approach

3.1 Dataset Preparation

The aerial images for the current work have been collected from live streaming
video captured from the trial runs of drones on popular Australian beaches.
Video streams were saved in high definition mode and later down sampled to
720p. The frames where extracted from the videos for preparing the dataset for
experiments. For training Faster R-CNN, ground truth/annotation were created
for frames/images as per PASCAL VOC XML format [25]. Specifically, Shark,
Surfer, Whale, Boat and LargeFishes were considered for annotation. Boat is
generic category which represents various types of boats namely, paddle boat,
kayak boat, etc. Whereas, Largefish is generic category which represents large
fish/marine animals which could pose potential risk to the safety of ocean users.
Due to the availability of a smaller number of samples for various large marine
animals and lack of ground truth information, the generic categories was defined
in order to reduce the confusion with sharks. Missing ground truth information
was due many reasons namely, low resolution resulting in unclear shape, glitter,
speed of UAV, etc. A sample video frame and its corresponding XML annotation
is shown in Fig. 2.

Fig. 2. Sample aerial image of a shark (marked in red) with annotation (Color figure
online)
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3.2 Approach

Faster R-CNN [19] with Caffe [24] deep learning library was considered for our
experiments. The Caffe-based pre-trained models are publically available for
most of the object detectors. There are less number of images in the dataset for
a deep learning system to learn from scratch. Hence, to take full advantage of
network architectures, transfer learning technique from ImageNet [23] was used
to fine-tune our models. The fine-tuning process helps our system to converge
faster and perform better. We have used various network architectures such
as ZF [20], VGG16 [21], and VGG CNN M 1024 [22] to train the system and
evaluate the performance on the dataset. ZF is a 8 layered architecture containing
5 convolutional layers and 3 fully-connected layers. Whereas, VGG16 is a much
deeper layered architecture with 16 layers, comprising 13 convolutional layers
and 3 fully connected layers.

4 Results and Discussion

The dataset used for experiments comprises of 3856 aerial video frames/images.
The dataset consists of videos from UAV trials conducted on popular Aus-
tralian beaches. The dataset was divided in three subsets, for training, vali-
dation, and testing, with random sampling. The train set consist of 60% for
total dataset, whereas validation and test set consist of 10% and 30% of the
total samples, respectively. Three different network architectures namely, ZF,
VGG CNN M 1024 (VGGM in short), and VGG16 were used for experiments.
Implementations details, and the detection results are discussed in the subsec-
tions given below.

Table 1. Performance of various network architectures on test dataset.

Class ZF VGG16 VGG M

Shark 0.903 0.904 0.895

Surfer 0.905 0.904 0.901

LargeFish 0.886 0.894 0.737

Whale 0.989 0.991 0.901

Boat 0.776 0.811 0.685

mAP 0.892 0.901 0.824

Iterations 60 K 50 K 70 K

Time (per image) 0.044 s 0.130 s 0.048 s
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4.1 Implementation Details

We trained our models with Nvidia Quadro P6000 GPU, 24 GB, on a Ubuntu
server (Core i7 processor, 64 GB RAM) with a learning rate of 0.001 and batch
size of 128. The RPN batch size is kept constant at 128 for region-based proposal
networks (RPN). Regions proposal networks were trained end-to-end using back-
propagation and stochastic gradient descent (SGD). In order reduce redundan-
cies arising from RPN proposals, non-maximum suppression (NMS) was applied
to the proposals based on the class scores. Performance of each network architec-
ture at different iterations was also analysed. In the training phase, the snapshot
of trained models were saved at an interval of 10k iterations. Detections with

Fig. 3. Mean average precision analysis at different iterations

Fig. 4. AP analysis of each class using VGG16
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(a) Shark (b) Shark

(c) Surfers and Boat

(d) Whale (e) Boat

Fig. 5. Sample detection results obtained using VGG16 trained model

overlap greater than the 50% Intersection Over Union (IOU) threshold with the
corresponding ground-truth bounding box are considered as true positive and
all other detections as false positive as shown in Eq. 1 [25].

IOU =
area (BBoxpred ∩ BBoxgt)
area (BBoxpred ∪ BBoxgt)

(1)

where, BBoxpred and BBoxgt denotes predicted bounding box and ground truth
bounding box respectively. The ground truth box with no matching detection
are considered false negative detection. To evaluate the detection performance,
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we use Average Precision (AP) calculated from the area under the Precision-
Recall (PR) curve [25]. While, mean Average Precision (mAP ) is used for a set
of detections and is the mean over classes, of the interpolated AP for each class.

4.2 Detection Results

The detection results of different object are detailed in Table 1. The results
obtained considering the different architectures are given in the respective
columns of the table. Among all the iterations, best results obtained for each
network architectures are reported in Table 1. The Table 1 shows that VGG16
performed better than ZF and VGGM. Mean average precision of 0.892 (60 K
iterations), 0.901 (60 K iterations) and 0.824 (70 K iterations) were obtained
for ZF, VGG16 and VGG M, respectively. Average time taken for processing
each image for detection was 0.044 s, 0.130 s and 0.048 s, for ZF, VGG16 and
VGG M, respectively. For shark detection, VGG16 performed better with an
average precision of 0.904. Lower precision for the detection of boat was due
to the unconstrained nature and confusion with surfer/surf-boards. On the con-
trary, performance of whale detection was better than other objects and this is
due to its size, shape and clear image samples. The performance of Largefish
category detection was also comparable with an average precision of 0.894. High
precision obtained for LargeFish class, justifies its creation for representing a
generic class of marine animals which are quite large in size and could of poten-
tial risk to surfers/swimmer and beach recreation in general. This also helped
in reducing the confusion/miss-classification with shark and whale. Although,
there was small improvement in the accuracy using VGG16 network compared
to ZF, but the processing time for ZF is significantly better than VGG16.

An analysis of mAP obtained at an interval of 10K iterations for each Deep
CNN architectures is given in the graph shown in Fig. 3. Figure 4 shows the
average precision obtained for each class using VGG16 model at 50 K itera-
tions. VGG16 was chosen for averge precision analysis, as it out performed other
architectures. Sample detection results obtained from VGG16 trained model are
shown in Fig. 5.

5 Conclusion

Shark attacks have been a very sensitive issue in Australia as well as globally. In
spite of various shark management programs implemented globally, the risk of
shark attacks is still high and a serious risk to beach recreation. Moreover, the
existing programs are invasive in nature and interferes with the marine ecosys-
tem. Although non-lethal shark deterrents are commercially available, they are
not extensively tested on all spices of sharks and other marine animals, which
can still pose potential risk to ocean users. In this paper, the potential of the
state-of-the-art Deep CNN-based object detection methods are investigated to
identify their potential in real-time shark and marine animal detection from
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aerial imagery. To the best of our knowledge, this is the first study which con-
siders Deep CNN based object detection for the detection of sharks and other
marine animals/objects. Faster-R-CNN was considered in the study and three
different CNN architectures were used in the experiments. Experimental results
are very promising and a high precision of 0.904 was obtained for detecting
sharks using VGG16 architecture. Whereas, the mean average precision (mAP)
of 0.901 was obtained considering five different categories, namely shark, whale,
surfer, boat and largefish. The average processing time per frame was 0.130 s,
which also satisfies the real-time processing requirement.

To summarize, the study reveals that Deep CNN has a huge potential in the
development of a real-time shark/marine animal detection system, with various
applications such as real-time beach surveillance, shark detection and conduct-
ing automatic marine surveys, to mention a few. Future research work includes
customizing the CNN architectures for optimal performance which best suites
the problem of marine animal detection and development of a large annotated
dataset which include various shark spices, dolphins, stingrays, dugongs, swim-
mers, different type of boats etc. This will facilitate further research in this area,
realizing the intention of making beach recreation much safer.
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Abstract. Convolutional Neural Networks (CNNs) have demonstrated
their superiority in image classification, and evolutionary computation
(EC) methods have recently been surging to automatically design the
architectures of CNNs to save the tedious work of manually designing
CNNs. In this paper, a new hybrid differential evolution (DE) algorithm
with a newly added crossover operator is proposed to evolve the architec-
tures of CNNs of any lengths, which is named DECNN. There are three
new ideas in the proposed DECNN method. Firstly, an existing effective
encoding scheme is refined to cater for variable-length CNN architec-
tures; Secondly, the new mutation and crossover operators are devel-
oped for variable-length DE to optimise the hyperparameters of CNNs;
Finally, the new second crossover is introduced to evolve the depth of the
CNN architectures. The proposed algorithm is tested on six widely-used
benchmark datasets and the results are compared to 12 state-of-the-art
methods, which shows the proposed method is vigorously competitive
to the state-of-the-art algorithms. Furthermore, the proposed method is
also compared with a method using particle swarm optimisation with
a similar encoding strategy named IPPSO, and the proposed DECNN
outperforms IPPSO in terms of the accuracy.

Keywords: Differential evolution · Convolutional Neural Network
Image classification

1 Introduction

Convolutional Neural Networks (CNNs) have proved their dominating spot in
various machine learning tasks, such as speech recognition [1], sentence classifi-
cation [6] and image classification [7]. However, from the existing efforts taken
by researchers such as LeNet [9,10], AlexNet [7], VGGNet [14] and GoogLeNet
[19], it can be found that designing CNNs for specific tasks could be extremely
complicated.

Since the difficulties of manually designing the architectures of CNNs have
been raised more frequently in recent years, exploiting evolutionary computation
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 237–250, 2018.
https://doi.org/10.1007/978-3-030-03991-2_24
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(EC) algorithms to generate deep neural networks [18] has come into the spot-
light to resolve the issues. Interested researchers have accomplished promising
results on the automatic design of the architectures of CNNs by using Genetic
Programming (GP) [17] and Genetic Algorithms (GAs) [21]. However, the com-
putational cost of the existing algorithms is very expensive, so more research
tends to focus on improving the efficiency by developing new algorithms.

Deferential Evolution (DE) has been proved to be an efficient heuristic for
global optimisation over continuous spaces [16], but it has never been used to
evolve deep CNNs. The IP-Based Encoding Strategy (IPES) [20] has demon-
strated its powerfulness in particle swarm optimisation for evolving deep CNNs,
but it has a critical drawback which is that the maximum depth of the CNN
architectures has to be set before the commencement of the evolutionary process.
Therefore, the encoding strategy is refined in the proposed algorithm to break
the constraint of the predefined maximum length.

Goals: The overall goal of this paper is to explore the ability of DE for automat-
ically evolving the structures and parameters of deep CNNs. The goal will be
achieved by designing an effective encoding scheme, new mutation and crossover
operators of DE, and a second crossover operator. The proposed method named
DECNN will be examined and compared with 12 state-of-the-art methods on
six widely-used datasets of varying difficulty. The specific objectives are

– refine the existing effective encoding scheme used by IPPSO [20] to break the
constraint of predefining the maximum depth of CNNs;

– design and develop new mutation and crossover operators for the proposed
DECNN method, which can be applied on variable-length vectors to conquer
the fixed-length limitation of the traditional DE method;

– design and integrate a second crossover operator into the proposed DECNN
to produce the children in the next generation representing the architectures
of CNNs whose lengths differ from their parents.

2 Background and Related Work

2.1 CNN Architecture

A typical Convolutional Neural Network (CNN) is constituted of four types of
layers - convolution layer, pooling layer, fully-connected layer and output layer.
The output layer depends only on the specific classification problem. For the
example of image classification, the number of classes decides the size of the
output layer. Therefore, when designing an architecture of CNNs, the output
layer is fixed once the specific task is given. However, to decide the other three
types of layers, first of all, the depth of the CNN architecture has to be decided;
Then, the type of each layer needs to be chosen from convolution layer, pooling
layer and fully-connected layer ; Last but no least, since there are different sets
of attributes for different types of layers - filter size, stride size and feature maps
for the convolution layer; kernel size, stride size and pooling type enclosing max-
pooling or average pooling for the pooling layer; and the number of neurons for
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the fully-connected layer, the attributes of each layer have to be tuned based on
its layer type in order to accomplish a CNN architecture that can obtain good
performance.

2.2 Differential Evolution

Differential Evolution (DE) is a population-based EC method which searches for
the optimal solutions of a problem. It has been proved to be a simple and efficient
heuristic method for global optimisation over continuous spaces [16]. Overall,
there are four major steps in a DE algorithm, which are initialisation, mutation,
crossover and selection [12]. First of all, a population of candidate vectors are
randomly initialised. Secondly, mutation is applied according to Formula (1),
where vi,g means the ith temporary candidate vector of the gth generation; xr0,g,
xr1,g and xr2,g indicate three randomly picked candidates of the gth generation;
and F is the differential rate, which is used to control the evolution rate. Thirdly,
the crossover is performed based on Formula (2), where uj,i,g represents the jth
dimension of the ith candidate at the gth generation. At the beginning of the
crossover process for each candidate, a random number jrand is generated, and
then for each dimension of each candidate vector, another random number randj

is generated, which then is compared with the crossover rate Cr and jrand as
shown in Formula (2) to decide whether the crossover applies on this dimension.
After applying the DE operators, a trial vector ui,g is produced, which is then
compared with the parent vector to select the one that has a better fitness.
By iterating the steps of mutation, crossover and selection until the stopping
criterion is met, the best candidate can be found.

vi,g = xr0,g + F × (xr1,g − xr2,g) (1)

uj,i,g =

{
vj,i,g if randj(0, 1) < Cr or j = jrand

xj,i,g otherwise
(2)

2.3 Related Work

Recently, more and more research has been done using EC methods to evolve the
architectures of CNNs. Genetic CNN [21] and CGP-CNN [17] are two of the most
recent proposed methods that have achieved promising results in comparison
with the state-of-the-art human-designed CNN architectures.

Genetic CNN uses a fixed-length binary string to encode the connections
of CNN architectures in a constrained case. It splits a CNN architecture into
stages. Each stage is comprised of numerous convolutional layers which may or
may not connect to each other, and pooling layers are used between stages to
connect them to construct the CNN architecture. Due to the fixed-length binary
representation, the number of stages and the number of nodes in each stage
have to be predefined, so a large fraction of network structures are not explored
by this algorithm. Other than that, the encoding scheme of Genetic CNN only
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encodes the connections, i.e. whether two convolutional layers are connected or
not; while the hyperparameters of the convolutional layers, e.g. the kernel size,
the number of feature maps, and the stride size, are not encoded, so Genetic
CNN does not have the ability to optimise the hyperparameters.

CGP-CNN utilises Cartesian Genetic Programming (CGP) [11] because the
flexibility of CGP’s encoding scheme is suitable to effectively encode the complex
CNN architectures. CGP-CNN employs a matrix of Nr rows and Nc columns to
represent the layers of a CNN architecture and their connections, respectively,
so the maximum number of layers is predefined. In addition, as six types of node
functions called ConvBlock, ResBlock, max pooling, average pooling, concatena-
tion and summation are prepared, CGP-CNN is confined to explore the limited
types of layers of CNN architectures. Last but not least, from the experimen-
tal results, the computational cost of CGP-CNN is quite high because training
CNNs in fitness evaluation is time-consuming.

In summary, manually design of CNN architectures and parameters is very
challenging and time-consuming. Automatically evolving the architectures of
deep CNNs is a promising approach, but their potential has not been fully
explored. DE has shown as an efficient method in global optimisation, but has
not been used to evolve deep CNNs. Therefore, we would like to investigate a
new approach using DE to automatically evolve the architectures of deep CNNs.

3 The Proposed Algorithm

The proposed DECNN method uses DE as the main evolutionary algorithm,
and a second crossover operator is proposed to generate children whose lengths
differ from their parents to fulfil the requirement of evolving variable-length
architectures of CNNs.

3.1 DECNN Algorithm Overview

The overall procedure of the proposed DECNN algorithm is written in Algo-
rithm1.

Algorithm 1. Framework of IPDE
P ← Initialise the population elaborated in Sect. 3.3;
P best ← empty;
while termination criterion is not satisfied do

Apply the refined DE mutation and crossover described in Sect. 3.5;
Apply the proposed second crossover to produce two children, and select the
best between the two children and their parents illustrated in Sect. 3.6;
evaluate the fitness value of each individual;
P best ← retrieve the best individual in the population;

end while
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3.2 Adjusted IP-Based Encoding Strategy

The proposed IP-Based Encoding Strategy is to use one IP Address to represent
one layer of Deep Neural Networks (DNNs) and push the IP address into a
sequence of interfaces, each of which bears an IP address and its corresponding
subnet, in the same order as the order of the layers in DNNs. Taking CNNs as an
example, the typical CNNs are composed of three types of layers - convolutional
layer, pooling layer and fully-connected layer. The first step of the encoding is
to work out the range that can represent each attribute of each type of the CNN
layer. There are no specific limits for the attributes of CNN layers, but in order
to practically apply optimisation algorithms on the task, each attribute has to
be given a range which has enough capacity to achieve an optimal accuracy
on the classification problems. In this paper, the constraints for each attribute
are designed to be capable of accomplishing a relatively low error rate. To be
specific, for the convolutional layer, there are three attributes, which are filter
size ranging from 1 to 8, number of feature maps from 1 up to 128, and the stride
size with the range from 1 to 4. As the three attributes need to be combined
into one number, a binary string with 12 bits can contain all the three attributes
of the convolutional layer, which are 3 bits for filter size, 7 bits for the number
of feature maps, and 2 bits for the stride size. Following the similar way, the
pooling layer and fully-connected layer can be carried in the binary strings with
5 bits and 11 bits, respectively. The details of the range of each attribute are
listed in Table 1.

Table 1. The ranges of the attributes of CNN layers - convolutional, pooling, fullly-
connected layer

Layer type Parameter Range # of bits

Conv Filter size [1,8] 3

# of feature maps [1,128] 7

Stride size [1,4] 2

Total 12

Pooling Kernel size [1,4] 2

Stride size [1,4] 2

Type: 1(maximal), 2(average) [1,2] 1

Total 5

Fully-connected # of neurons [1,2048] 11

Total 11

Once the number of bits of the binary strings has been defined, a specific
CNN layer can be easily translated to a binary string. Suppose a convolutional
layer with the filter size of 2, the number of feature maps of 32 and the stride size
of 2 is given, the corresponding binary strings of [001], [000 1111] and [01] can
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be calculated by converting the decimal numbers1 to the corresponding binary
numbers. The final binary string that stands for the given convolutional layer is
[001 000 1110 01] by joining the binary strings of the three attributes together.
The details of the example are shown in Fig. 1.

Fig. 1. An example of how to encode a convolutional layer using a byte array

Similar like network engineering where the subnet has to be defined before
allocating an IP address to an interface, i.e. a laptop or desktop, the IP-Based
Encoding Strategy needs to design a subnet for each type of CNN layers. Since
the number of bits of each layer type decides its size of the search space, and
the pooling layer takes much fewer bits than the other two, the chances of a
pooling layer being chosen would be much smaller than the other two. In order
to balance the probability of each layer type being selected, a place-holder of 6
bits is added to the binary string of the pooling layer to make it 11 bits, which
brings the odds of picking a pooling layer the same as that of a fully-connected
layer. As there are three types of layers with the maximum bits of 12, a 2-byte
binary string has sufficient capacity to bear the encoded CNN layers. Starting
with the convolutional layer of 12 bits, as this is the first subnet, the 2-byte
binary representation of the starting IP address would be [0000 0000 0000 0000],
and the finishing IP address would be [0000 1111 1111 1111]; The fully-connected
layer of 11 bits starts from the binary string [0001 0000 0000 0000] by adding one
to the last IP address of the convolutional layer, and ends to [0001 0111 1111
1111]; And similarly, the IP range of the pooling layer can be derived - from
[0001 1000 0000 0000] to [0001 1111 1111 1111]. The IP ranges of the 2-byte
style for each subset are shown in Table 2, which are obtained by converting the
aforementioned binary strings to the 2-byte strings. Now it is ready to encode
a CNN layer into an IP address, and the convolutional layer detailed in Fig. 1
is taken as an example. The binary representation of the IP address is [0000
1 Before the conversion, 1 is subtracted from the decimal number because the binary

string starts from 0, while the decimal value of the attributes of CNN layers begins
with 1.
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0010 0011 1001] by summing up the binary string of the convolutional layer
and the starting IP address of the convolutional layer’s subnet, which can be
converted to a 2-byte IP address of [2.61]. Figure 2 shows an example vector
encoded from a CNN architecture with 2 convolutional layers, 2 pooling layers
and 1 fully-connected layer.

Fig. 2. An example of the encoded vector of a CNN architecture

Table 2. Subnets distributed to the three types of CNN layers and the disabled layer

Layer type IP range

Convolutional layer 0.0–15.255

Fully-connected layer 16.0–23.255

Pooling layer 24.0–31.255

3.3 Population Initialisation

As the individuals are required to be in different lengths, the population initiali-
sation starts by randomly generating the lengths of individuals. In the proposed
DECNN, the length is randomly sampled from a Gaussian distribution with a
standard deviation ρ of 1 and a centre μ of a predefined length depending on
the complexity of the classification task as shown in Eq. (3). After obtaining the
candidate’s length, the layer type and the attribute values can be randomly gen-
erated for each layer in the candidate. By repeating the process until reaching
the population size to accomplish the population initialisation.

P (x) =
1

σ
√

2π
e−(x−μ)2/2σ2

(3)

3.4 Fitness Evaluation

The fitness evaluation process is illustrated in Algorithm 2. First of all, four argu-
ments are taken in by the fitness evaluation function, which are the candidate
solution which represents an encoded CNN architecture, the training epoch num-
ber for training the model decoded from the candidate solution, the training set
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which is used to train the decoded CNN architecture, and the fitness evaluation
dataset on which the trained model is tested to obtain the accuracy used as the
fitness value. Secondly, the fitness evaluation process is pretty straightforward
by using the back propagation to train the decoded CNN architecture on the
training set for a fixed number of epochs, and then obtaining the accuracy on
the fitness evaluation set, which is actually used as the fitness value. For the
purpose of reducing computational cost, the candidate CNN is only trained on
a partial dataset for a limited number of epochs, which are controlled by the
arguments of the fitness function - k, D train and D fitness.

Algorithm 2. Fitness Evaluation
Input: The candidate solution c, the training epoch number k, the training set

D train, the fitness evaluation dataset D fitness;
Output: The fitness value fitness;

Train the connection weights of the CNN represented by the candidate c on the
training set D train for k epochs;
acc ← Evaluate the trained model on the fitness evaluation dataset D fitness
fitness ← acc;
return fitness

3.5 DECNN DE Mutation and Crossover

The proposed DECNN operations are similar to the standard DE mutation and
crossover as described in Sect. 2.2, but it introduces an extra step to trim the
longer vectors before applying any operation because the DECNN candidates
have different lengths and the traditional DE operations in Eqs. (1) and (2) only
apply on fixed-length vectors. To be specific, the three random vectors for the
mutation are trimmed to the shortest length of them, and during the crossover,
if the trial vector generated by the mutation is longer than the parent, it will be
trimmed to the length of the parent.

3.6 DECNN Second Crossover

Similar as the crossover of GAs, each individual of the two parents is split into
two parts by slicing the vector at the cutting points, and swap one part with
each other. The cutting point is chosen by randomly finding a position based on
Gaussian distribution with the middle point as the centre and a hyperparameter
ρ as the standard deviation to control the variety in the population. The flow of
the second crossover is outlined in Fig. 3.
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Fig. 3. Second crossover of the proposed DECNN algorithm

4 Experiment Design

4.1 Benchmark Datasets

In the experiments, six widely-used benchmark datasets2 [3] are chosen to
examine the proposed algorithm, which are the datasets of MNIST Basic
(MB), MNIST with a black and white image as the Background Image (MBI),
MNIST Digits Rotated with a black and white image as the Background Image
(MDRBI), MNIST with a Random Background (MRB), MNIST with Rotated
Digits (MRD), and CONVEX. The MB benchmark dataset and its four variants,
the MBI, MDRBI, MRB and MRD datasets, consist of handwritten digits and
the corresponding labels from 0 to 9, and each of the datasets is composed of
a training set of 12,000 instances and a test set of 5,000 instances; while con-
vex images and non-convex images with the corresponding labels constitute the
CONVEX dataset, which is split into a training set of 8,000 examples and a
test set of 5,000 examples. Each image in these benchmark datasets has 28 × 28
pixels. The reason for picking the six aforementioned datasets is to fulfil the
purpose of thoroughly testing the proposed algorithms because both multi-class
classification tasks for MB and its variants and the binary classification tasks for
CONVEX are included in the selected datasets, and the complexity of MB and
its variants differ from each other where MB is the simplest one; while MDRBI
is the most complicated.

4.2 State-of-the-Art Competitors

Six state-of-the-art methods are reported to have achieved promising results on
the aforementioned benchmark datasets in the literature [3]. Therefore, they are
picked as the peer competitors of the proposed algorithm, which are CAE-2

2 Download URL: http://www.iro.umontreal.ca/∼lisa/twiki/bin/view.cgi/Public/
MnistVariations.

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
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[13], TIRBM [15], PGBM+DN1 [5], ScatNet-2 [2], RandNet-2 [3], PCANet-2
(softmax) [3], LDANet-2 [3], SVM+RBF [8], SVM+Poly [8], NNet [8], SAA-3
[8] and DBN-3 [8].

4.3 Parameter Settings of the Proposed EC Methods

All of the parameters are configured according to the conventions in the com-
munities of DE [4] along with taking into account a small population to safe
computation time and the complexity of the search space. For the evolutionary
process, 30 is set as the population size and 20 is used as the number of genera-
tions; In regard to the fitness evaluation, the number of training epochs is set to
5 and 10% of the training dataset is passed for evaluation; In terms of the DE
parameters, 0.6 and 0.45 are used as the differential rate and the crossover rate,
respectively; The hyperparameter ρ of second crossover is set to 2, and μ of the
population initialisation is set to 10; 30 independent runs is performed by the
proposed DECNN on each of the benchmark dataset.

5 Results and Analysis

Since DE is stochastic, statistical significance test is required to make the com-
parison result more convincing. When comparing the proposed DECNN with
the state-of-the-art methods, One Sample T-Test is applied to test whether the
results of DECNN is better; when the comparison of error rates between DECNN
and the peer EC competitor named IPPSO [20] is performed, Two Sample T-
test is utilised to determine whether the difference is statistically significant or
not. Table 3 shows the comparison results between the proposed DECNN and
the state-of-the-art algorithms; Table 4 compares DECNN with IPPSO.

5.1 DECNN vs. State-of-the-Art Methods

The experimental results and the comparison between the proposed DECNN
and the state-of-the-art methods are shown in Table 3. In order to clearly show
the comparison results, the terms (+) and (−) are provided to indicate the result
of DECNN is better or worse than the best result obtained by the corresponding
peer competitor; The term (=) shows that the mean error rate of DECNN are
slightly better or worse than the competitor, but the difference is not significant
from the statistical point of view; The term – means there are no available results
reported from the provider or cannot be counted.

It can be observed that the proposed DECNN method achieves encourag-
ing performance in terms of the error rates shown in Table 3. To be specific,
the proposed DECNN ranks the fifth on both the CONVEX and MB bench-
mark datasets; for the MBI benchmark, DECNN beats all of the state-of-the-art
methods; for the MDRBI dataset, the mean error rate of DECNN is the fourth
best, but the P-value of One Sample T-Test between DECNN and the third best
is 0.0871, which indicates that the significance difference is not supported from
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the statistical point of view, so DECNN ties the third with PGBM+DN-1; for
the MRB benchmark, the mean error rate of DECNN is smaller than all other
methods, but the difference between DECNN and the second best algorithm is
not significant given the calculated P-value of 0.1053, so DECNN ties the first
with PGBM+DN-1; for the MRD benchmark, DECNN outruns the state-of-the-
arts method apart from TIRBM. In addition, by looking at the best results of
DECNN, DECNN achieves the smallest error rates on five out of the six datasets
compared with the 12 state-of-the-art methods, which are 1.03% on MB, 5.67%
on MBI, 32.85% on MDRBI, 3.46% on MRB and 4.07% on MRD. This shows
that DECNN has the potential to improve the state-of-the-art results.

Table 3. The classification errors of DECNN against the peer competitors

classier CONVEX MB MBI MDRBI MRB MRD

CAE-2 – 2.48 (+) 15.50 (+) 45.23 (+) 10.90 (+) 9.66 (+)

TIRBM – – – 35.50 (-) – 4.20 (-)

PGBM+DN-1 – – 12.15 (+) 36.76 (=) 6.08 (=) –

ScatNet-2 6.50 (-) 1.27 (-) 18.40 (+) 50.48 (+) 12.30 (+) 7.48 (+)

RandNet-2 5.45 (-) 1.25 (-) 11.65 (+) 43.69 (+) 13.47 (+) 8.47 (+)

PCANet-2 (soft-
max)

4.19 (-) 1.40 (-) 11.55 (+) 35.86 (-) 6.85 (+) 8.52 (+)

LDANet-2 7.22 (-) 1.05 (-) 12.42 (+) 38.54 (+) 6.81 (+) 7.52 (+)

SVM+RBF 19.13 (+) 30.03 (+) 22.61 (+) 55.18 (+) 14.58 (+) 11.11 (+)

SVM+Poly 19.82 (+) 3.69 (+) 24.01 (+) 54.41 (+) 16.62 (+) 15.42 (+)

NNet 32.25 (+) 4.69 (+) 27.41 (+) 62.16 (+) 20.04 (+) 18.11 (+)

SAA-3 18.41 (+) 3.46 (+) 23 (+) 51.93 (+) 11.28 (+) 10.30 (+)

DBN-3 18.63 (+) 3.11 (+) 16.31 (+) 47.39 (+) 6.73 (+) 10.30 (+)

DECNN(best) 7.99 1.03 5.67 32.85 3.46 4.07

DECNN(mean) 11.19 1.46 8.69 37.55 5.56 5.53

DECNN(standard
deviation)

1.94 0.11 1.41 2.45 1.71 0.45

5.2 DECNN vs. IPPSO

In Table 4, it can be observed that by comparing the results between DECNN
and IPPSO, the mean error rates of DECNN are smaller across all of the six
benchmark datasets, and the standard deviations of DECNN is less than those
of IPPSO on five datasets out of the six, so the overall performance of DECNN
is superior to IPPSO. The second crossover operator improves the performance
of DECNN because it performs a kind of local search between the two children
and their parents both in terms of the depth of CNN architectures and their
parameters.

5.3 Evolved CNN Architecture

After examining the evolved CNN architectures, it is found that DECNN demon-
strates its capability of evolving the length of the architectures. When the evolu-
tionary process starts, the lengths of individuals are around 10; while the lengths
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Table 4. Classification rates of DECNN and IPPSO

CONVEX MB MBI MDRBI MRB MRD

DECNN(mean) 11.19 1.46 8.69 37.55 5.56 5.53

DECNN(standard
deviation)

1.94 0.11 1.41 2.45 1.71 0.45

IPPSO(mean) 12.65 1.56 9.86 38.79 6.26 6.07

IPPSO(standard
deviation)

2.13 0.17 1.84 5.38 1.54 0.71

P-value 0.01 0.01 0.01 0.26 0.10 0.001

of evolved CNN architectures drop to 3 to 5 depending on the complexity of the
datasets, which proves that DECNN has the ability of effectively evolving CNN
architectures of any lengths.

6 Conclusions and Future Work

The goal of this paper is to develop a novel DE-based algorithm to automatically
evolve the architecture of CNNs for image classification without any constraint
of the depth of CNN architectures. This has been accomplished by designing and
developing the proposed hybrid differential evolution method. More specifically,
three major contributions are made by the proposed DECNN algorithm. First
of all, the IP-Based Encoding Strategy has been improved by removing the
maximum length of the encoded vector and the unnecessary disabled layer in
order to achieve a real variable-length vector of any length; Secondly, the new
DE operations - mutation, crossover are developed, which can be applied to
candidate vectors of variable lengths; Last but not least, a novel second crossover
is designed and added to DE to produce children having different lengths from
their parents. The second crossover plays an important role to search the optimal
depth of the CNN architectures because the two children created through the
second crossover have different length from their parents - one is longer and
the other is shorter, and during the selection from the two children and the
two parents, the candidate with a better fitness survives to the next generation,
which indicates that the length of the remaining candidate tends to be better
than the other three.

The proposed DECNN has achieved encouraging performance. By comparing
the performance of DECNN with the 12 state-of-the-art competitors on the six
benchmark datasets, it can be observed that DECNN obtains a very competitive
accuracy by ranking the first on the MBI and MRB datasets, the second and the
third on the MRD and MDRBI datasets, respectively, and the fifth on the MB
and CONVEX datasets. In a further comparison with the peer EC competitor,
the best results are achieved by DECNN on five out of the six datasets.

There are a couple of potential future works that can be done based on
the proposed DECNN. As can been seen, the DECNN method gains much bet-
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ter accuracy on the most complex benchmark among all of the six benchmark
datasets, which implies DECNN is very likely to perform well on large and com-
plex datasets, so it is worthy investigating the DECNN algorithm on larger and
more complex datasets in order to obtain an insight of how it will perform for
industrial usage.
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Abstract. To learn image features automatically from the problems
being tackled is more effective for classification. However, it is very diffi-
cult due to image variations and the high dimensionality of image data.
This paper proposes a new feature learning approach based on Gaus-
sian filters and genetic programming (GauGP) for image classification.
Genetic programming (GP) is a well-known evolutionary learning tech-
nique and has been applied to many visual tasks, showing good learn-
ing ability and interpretability. In the proposed GauGP method, a new
program structure, a new function set and a new terminal set are devel-
oped, which allow it to detect small regions from the input image and to
learn discriminative features using Gaussian filters for image classifica-
tion. The performance of GauGP is examined on six different data sets
of varying difficulty and compared with four GP methods, eight tradi-
tional approaches and convolutional neural networks. The experimental
results show GauGP achieves significantly better or similar performance
in most cases.

Keywords: Feature learning · Genetic programming
Image classification · Gaussian filter · Evolutionary computation
Feature extraction

1 Introduction

Image classification is an important task in computer vision [1]. The task is
to assign class labels to images based on the content in images. It is a chal-
lenging task due to image variations, such as scale, illumination and rotation
variations. Generally, image features, e.g., shape and texture, are employed to
feed classification algorithms such as support vector machines (SVMs) to per-
form classification [3]. But most existing approaches require domain experts to
extract features. Feature learning is to learn informative features from raw data
without human intervention for visual tasks [7]. However, to learn discriminative
features from the raw pixel values for effective classification is difficult due to
the variations and high dimensionality of the image data. The state-of-the-art
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convolutional neural networks (CNNs) have achieved significant success in fea-
ture learning and image classification [7]. But deep CNNs often require a large
number of training instances and computing resources.

In contrast to CNNs, genetic programming (GP), as an evolutionary compu-
tation (EC) technique, can evolve solutions with good interpretability [11]. GP
aims at evolving computer programs to solve problems without the assumption
of solution structures [6]. The commonly used tree-based GP has very flexible
structure and is able to integrate different functions and terminals into feasible
solutions [6]. Image operators/descriptors, such as histogram equalisation, Sobel
and Laplacian, are employed in GP to learn discriminative features for classifi-
cation [2,11]. However, there are many advanced image-related operators, which
can be employed as GP functions to facilitate feature learning.

The Gaussian filter is a well-known and widely used filter in image processing
and computer vision. e.g., in the edge and blob detection operator Laplace of
Gaussian. The derivatives of the Gaussian filter are important for salient feature
detection, such as in the Canny edge detector. This work integrates Gaussian
filter and its derivatives in GP to achieve feature learning for image classification.

2 Proposed Method

Program Structure. GauGP is based on strongly typed GP (STGP). An
example program of GauGP is shown in Fig. 1, where an input image goes
through region detection, filtering, max-pooling, and feature concatenation pro-
cess. Region detection functions, i.e., Region R and Region S, are employed to
find the discriminative rectangle and square regions from the input image. Then
the detected regions are processed by filtering functions, i.e., GauD and Gau, and
max-pooling functions, i.e. Max-poolingf. Finally, a feature vector is generated
using feature concatenation functions as the final output of GauGP.

Fig. 1. An example program of GauGP.

Function Set. Table 1 lists all the functions employed in the GauGP method.
Region S and Region R are to detect a square and rectangle region from the
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Table 1. Function set

Functions Input Output Function description

Root 2 vectors 1 vector Concatenate two vectors to a vector

FeaCon2 2 images 1 vector Concatenate two images into a vector

FeaCon3 3 images 1 vector Concatenate three images into a vector

Max-pooling 1 image, k1, k2 1 image Conduct max-pooling to the input image

Gau 1 image, σ 1 image Gaussian filter with standard deviation σ

GauD 1 image, σ, o1, o2 1 image The derivatives of Gaussian filter

Mix Add 2 images 1 image Add two images with different sizes

Mix Sub 2 images 1 image Subtract two images with different sizes

Mix Mul 2 images 1 image Multiply two images with different sizes

Mix Div 2 images 1 image Protected division on two images with

different sizes

Region S 1 images, X, Y, S 1 image Detect a square region from the input image

Region R 1 images, X, Y,

W, H

1 image Detect a rectangle region from the input

image

input image, respectively. Gau is the Gaussian filter with the standard deviation
σ. GauD takes an image and three parameters,as input and returns an image,
where o1 and o2 represent the orders of derivative along the X axis and the Y axis.
Four arithmetic functions, i.e., Mix Add, Mix Sub, Mix Mul, and Mix Div, are
employed to deal with two images. These four functions take two images with
different sizes as input and return an image by performing the corresponding
arithmetic operation to the images after cutting them. Max-pooling function
takes an image and kernel size i.e., k1 and k2 as input and returns a smaller
image. FeaCon2, FeaCon3 and Root are feature concatenate functions , which
can be used to form the root node of GauGP. These functions are to concatenate
two or three images or vectors to a feature vector.

Terminal Set. The terminals used in GauGP include Image, X, Y, S, W, H,
k1, k2, σ, o1, and o2. Table 2 lists the description of all these terminals.

Table 2. Terminal set

Terminals Type Description

Image Image The input grey-scale image after normalisation

X, Y Integer The coordinates of the top left point of a detected region. They are in

range [0, Imagewidth − 20] or [0, Imageheight − 20]

S, W, H Integer The size or width/height of a square/rectangle region in Region S/

Region R functions. They are in range [20, 50]

k1, k2 Integer The kernel size of the Max-pooling function. They are in range [2, 10]

with a step of 2

σ Integer The standard deviation of the Gaussian filter in the Gau and GauD

functions. It randomly initialized from range [1, 3]

o1, o2 Integer The order of Gaussian derivatives. They are randomly initialised from

range [0, 2]
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Overall Process. The overall learning and testing process of GauGP on fea-
ture learning and classification is shown in Fig. 2. A training set is employed
for GauGP to learn a set of discriminative features for image classification. In
GauGP, each program can be considered as a feature extraction approach and
evaluated using linear SVM with 5-fold cross-validation on the training set. The
mean accuracy of the 5-fold are employed as the fitness function for GauGP. At
the final stage of learning, the best program is returned and tested on the test
set, as shown in Fig. 2. The classification accuracy on the test set is reported.

Fig. 2. The overall process of the proposed GauGP for image classification.

3 Experiment Design

Data Sets. To examine the performance of the proposed method, six different
data sets of varying difficulty are employed for conducting experiments. They
are JAFFE [9], YALE [5], FEI 1 [12], FEI 1 [12], SCENE [4], and TEXTURE
[10]. The data sets are binary classification and have gray-scale images. More
details of these data sets, e.g. image size and class label, are listed in Table 3.

Table 3. Data set properties

Name Size Class labels Training set Test set

JAFFE 128× 128 Happy/surprised 20/20 10/10

YALE 128× 128 Happy/sad 20/20 10/10

FEI 1 130× 180 Smile/natural 75/75 25/25

FEI 2 130× 180 Smile/natural 75/75 25/25

SCENE 128× 128 Highway/streets 195/219 65/73

TEXTURE 100× 100 Cork/brown bread 324/324 108/108

Baseline Methods. A number of advanced approaches are implemented for
comparisons, including four GP-based approaches, eight traditional approaches
and a CNN approach. The four GP-based approaches are 2TGP, DIF+ GP,
Histogram + GP, and uLBP+ GP [2]. The eight traditional approaches extract
image features using domain independent feature (DIF), Histogram, grey-level
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co-occurrence matrix (GLCM), Gabor bank features (Gabor), SIFT, HOG, local
binary patterns (LBP), and uniform LBP (uLBP) methods, respectively, and
employ linear SVM kernel for classification. The CNN method is the famous
LeNet [8] with ReLU as activation function and softmax for classification.

Parameter Settings. GauGP and four GP methods are implemented in Python
based on the DEAP (Distributed Evolutionary Algorithm Package) package. The
number of generations is 50 and the population size is 500. The crossover rate is
0.8, the mutation rate is 0.19 and the elitism rate is 0.01. Tournament selection
is employed and the size is 7. Ramped half-and-half is used for population gen-
eration and the tree depth is 2–6. In the four GP methods, the fitness function
is the classification accuracy. Experiments of GP methods and eight traditional
methods on each data set run 30 times independently. Experiments of LeNet run
10 times due to the high computation cost.

4 Results and Discussions

This section compares and discusses the results obtained by GauGP and 13 base-
line methods. Table 4 lists the maximum classification accuracy, mean accuracy
and standard deviation on each data set. The Wilcoxon signed-rank test with
a 5% significance level is used to compare the GauGP method with a baseline
method. The symbols “+”, “=” and “−” in Table 4 denote the GauGP method
is significantly better, similar or significantly worse than the competitor.

From Table 4, it is obvious that GauGP obtains good performance on the six
different data sets, especially on JAFFE, YALE, FEI 1, and FEI 2. Compared
with the four GP-based methods, GauGP achieves significantly better or sim-
ilar results in all the comparisons. Compared with the eight feature extraction
methods, GauGP obtains significantly better or similar performance in 44 cases
out of the total 48 cases. Compared with LeNet, the GauGP method achieves
significantly better results in 1 case and similar results in 4 cases on the six data
sets. In the total 78 (13 × 6 = 78) comparisons, GauGP performs significantly
better in 65 cases, similar in 8 cases and significantly worse in 5 cases.

These results illustrate that GauGP is able to learn discriminative features
from the input image with good classification accuracy. Especially, the learnt fea-
tures by GauGP are very powerful for facial expression classification. The exper-
iments confirm the difficulty of feature extraction by the traditional approaches
as they perform differently on different data sets. For example, the HOG method
performs well on the face image data sets, the SIFT method performs well on
the scene data set, and the LBP and uLBP methods perform well on the texture
data set. This also reveals that feature learning approaches are more powerful
and adaptive than these existing feature extraction approaches.
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Table 4. Classification accuracy (%) of the proposed GauGP method and the baseline
methods on the six data sets

Algorithms Max Mean ± St.D Max Mean ± St.D Max Mean ± St.D

Data sets JAFFE YALE FEI 1

2TGP 95.00 68.83 ± 13.64+ 95.00 74.67 ± 13.66+ 96.00 88.13 ± 6.22+

DIF+GP 90.00 75.83 ± 7.20+ 75.00 60.33 ± 9.74+ 80.00 56.67 ± 6.88+

Histogram+GP 80.00 53.33 ± 11.13+ 80.00 54.50 ± 11.57+ 70.00 48.93 ± 7.22+

uLBP+GP 75.00 50.33 ± 9.99+ 65.00 49.17 ± 9.84+ 66.00 50.87 ± 7.48+

DIF+SVM 90.00 85.17 ± 5.24+ 85.00 74.50 ± 7.89+ 74.00 61.13 ± 4.89+

Histogram+SVM 60.00 51.17 ± 2.79+ 55.00 50.00 ± 2.24+ 54.00 48.13 ± 3.38+

GLCM+SVM 70.00 54.50 ± 6.50+ 55.00 50.33 ± 1.25+ 50.00 49.67 ± 0.75+

Gabor+SVM 100.0 96.17 ± 5.87+ 75.00 60.50 ± 6.50+ 82.00 71.60 ± 7.87+

SIFT+SVM 80.00 80.00 ± 0.00+ 75.00 75.00 ± 0.00+ 82.00 82.00 ± 0.00+

HOG+SVM 90.00 90.00 ± 0.00+ 85.00 85.00 ± 0.00+ 94.00 94.00 ± 0.00+

LBP+SVM 75.00 74.33 ± 1.70+ 80.00 78.00 ± 3.32+ 68.00 62.47 ± 3.49+

uLBP+SVM 80.00 73.17 ± 5.08+ 85.00 76.00 ± 5.54+ 64.00 56.87 ± 5.18+

LeNet 100.0 100.0± 0.00− 90.00 85.50 ± 2.69+ 98.00 94.40 ± 1.96=

GauGP 100.0 99.17 ± 1.86 100.0 92.17± 4.60 98.00 94.67± 2.09

Data sets FEI 2 SCENE TEXTURE

2TGP 94.00 85.47 ± 5.98+ 93.48 87.85 ± 2.20+ 86.11 79.40 ± 3.42+

DIF+GP 72.00 60.33 ± 8.38+ 89.13 85.22 ± 2.24+ 88.43 84.46 ± 2.54+

Histogram+GP 60.00 48.80 ± 6.14+ 84.06 79.98 ± 1.83+ 92.13 87.36 ± 2.15+

uLBP+GP 72.00 48.73 ± 7.87+ 95.65 91.79 ± 2.98= 96.76 93.89 ± 2.01=

DIF+SVM 72.00 62.80 ± 6.10+ 87.68 81.09 ± 6.87+ 86.11 80.93 ± 6.74+

Histogram+SVM 54.00 50.13 ± 2.53+ 59.42 56.74 ± 3.09+ 52.31 52.31 ± 0.00+

GLCM+SVM 54.00 50.13 ± 0.72+ 93.48 90.56 ± 6.73= 88.89 73.60 ± 11.13+

Gabor+SVM 74.00 65.67 ± 5.14+ 82.61 75.14 ± 7.98+ 50.93 50.17 ± 0.30+

SIFT+SVM 78.00 78.00 ± 0.00+ 97.10 97.10± 0.00− 85.19 85.19 ± 0.00+

HOG+SVM 88.00 88.00 ± 0.00+ 91.30 90.17 ± 0.40+ 75.46 72.71 ± 1.26+

LBP+SVM 66.00 57.60 ± 3.56+ 95.65 94.49 ± 1.05− 99.54 99.09± 0.08−
uLBP+SVM 56.00 51.93 ± 2.34+ 97.83 94.15 ± 2.79= 99.54 98.72 ± 3.29−
LeNet 94.00 90.80± 1.83= 94.93 92.90 ± 1.77= 96.76 81.67 ± 20.77=

GauGP 94.00 90.27 ± 2.41 95.65 92.37 ± 1.92 97.69 94.66 ± 1.53

5 Conclusions

The goal of this paper has been successfully achieved by proposing a GauGP
method with a new program structure, a new function set and a new terminal
set, and examining it on six different data sets. The GauGP method was able
to detect small regions from the input image, evolve Gaussian-based filters and
max-pooling functions for feature learning, and produce a set of discriminative
features for classification. The experimental results demonstrated that the pro-
posed GauGP method was able to achieve significantly better or similar results
in the majority cases than the 13 state-of-the-art competitors. In the future,
the GauGP method will be further improved for feature learning to multi-class
classification tasks.
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Abstract. In case, we carry out single image Super Resolution (SR)
utilizing deep learning, we utilize bicubic interpolation for up-sampling
of low resolution images before input them into SR methods. In the pre-
processing, these basic interpolation methods cause blur and noise effects
for after processed images. These noise images may affect the SR results.
In this research, by focusing on this point, we propose a new image up-
sampling method utilizing Generative Adversarial Network (GAN). In
this work, we improve an image evaluation criterion in generator part
of GAN by combining Multi-Scale Structural Similarity (MS-SSIM) and
L1 norm. From experiments, we have confirmed that our method allows
us to create more qualitatively up-sampling images. As the quantitative
results, our proposed method have achieved 0.90 [dB] of average PSNR,
3.35 [%] of average SSIM, and 1.28 [%] of average MS-SSIM improvement
using Set 5 and Set 14 dataset compared with bicubic interpolation.

Keywords: Image up-sampling · GAN · Super resolution

1 Introduction

Nowadays, a demand to enlarge images from High Definition size is increasing
by rises of 4K TV. Therefore, “Super Resolution (SR)” techniques [1] have been
actively studied. There are a lot of kinds of SR. For example, filter-based SR
[2,3], edge-based SR [4,5] and database-based SR methods [6,7] are famous. We
focus on the fillter-based approach, which achieves the highest quality [8,9].

In these days, filter-based SR method using Convolutional Neural Network
(CNN) [8,9] has been reported as one of the most effective methods to make
high-definition SR images. There are two typical methods in such methods.

For the first method, it is represented by Super Resolution with Convo-
lutional Neural Network (SRCNN) [8]. This type utilizes up-sampled images,
which processed by bicubic interpolation, for inputting SR function. Besides,
bicubic interpolation has problems. In the case of the image expansion except
the multiple of two, this method cannot utilize base image pixels for outputs.
Besides, bicubic interpolation sometimes makes ringing noises in images. These
up-sampled images may affect output images made from SR methods. From this
c© Springer Nature Switzerland AG 2018
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information, we consider that outputting super resolution images may become
higher quality by utilizing higher quality input images.

On the other hand, for the second method, it is represented by Gradual
Up-sampling Network (GUN) [10]. This type method performs image expansion
processing and super resolution processing sequentially. In this approach, we
can process super resolution and gradually image expansion utilizing bicubic
interpolation by designing the convolution layer and the up-sampling layer in
network structure. Therefore, we can take less affection for images when we
expand images by bicubic interpolation. Nevertheless, because it is necessary to
perform down-sampling during back propagation, some information is lost, and
there is possibility that most suitable model for super resolution is not produced.

In this research, we improve image up-sampling method for adopting SRCNN.
To accomplish this, we focus on Generative Adversarial Network (GAN) [11],
which is an image generation model. GAN is the machine learning model to
learn the distribution of generated image accords with the distribution of input
image. In recent researches [11,12], GAN can make high quality forgery images.
Super Resolution with Generative Adversarial Network (SRGAN) [12], which
utilizes GAN, is one of the highest quality image generation method and known
as a state of the art method. We focus on SRGAN and utilize it for our proposed
image up-sampling method. This method have problems in loss function. SRGAN
utilizes VGG19 [13] and Mean Squared Error (MSE) loss for evaluating similarity
between images. However, VGG19 loss is not enough to evaluate similarity of
image. This is because VGG19 is used for image recognition and recognize image
by unique way unlike human [14]. Moreover, MSE sometimes produces splotchy
artifacts in output images. Therefore, we improve loss function of SRGAN by
combining Multi-Scale Structural Similarity (MS-SSIM) [15] and L1 norm. We
adopt our loss criteria for SRGAN and get high quality up-sampled images.

From experimental results with public data sets, Set5 and Set14, we have con-
firmed that our proposed method allows us to create more qualitatively images
compared with SRGAN and bicubic interpolation. In addition, as the quantita-
tive results, our proposed method have achieved 0.90 [dB] of average PSNR, 3.35
[%] of average SSIM, and 1.28 [%] of average MS-SSIM improvement compared
with bicubic interpolation. Moreover, we adopt our up-sampled images for SR
method to improve PSNR and SSIM score.

2 Related Work

In this research, we focus on GAN [11] to make up-sampled images for inputting
SR model. GAN is one of the generative model, which can make image from
scratch. In this section, we explain basic image generative models and GAN.

There are many image generative models using deep learning, e.g. “Varia-
tional Auto-Encoding” [16] and “Pixel Recurrent Neural Network” [17]. How-
ever, those methods have problems for adopting to SR. Variational Auto-
Encoding have to add noise and blur for last part of image generation. As a
result, output generated images have blurs and noises. Therefore, this model is
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not good for image up-sampling. Pixel Recurrent Neural Network needs long
time for generating images. This method suppose best pixels for image gener-
ation, to every pixel. Therefore, computational cost is high. Moreover, in case,
this model generate images, we cannot calculate the supposing pixels in parallel
[17]. This is why, this method does not suit for image up-sampling.

GAN can make clear output images and need few seconds for generating out-
put images. GAN has generator part and discriminator part in model. Generator
part makes image from scratch, and discriminator judges what input image is
similar to original image or not. In this model, learning process is carried out
in turn. First, generator optimizes the model until discriminator cannot recog-
nize the output image is made by generator part or not. After that, discriminator
starts optimizing for being able to recognize input images. By iterating these pro-
cesses, generator creates images like true images, and discriminator judges that
input image is forgery or not. Finally, generator can make high quality forgeries
which discriminator cannot recognize generated images or ground truth images.

Ledig utilizes GAN technology for making high resolution image from input
images; “Super Resolution with Generative Adversarial Network” [12]. In this
case, generator is optimized for making edges and denoising. Therefore input
images become high quality images. We select SRGAN as a conventional method.
As the previous section, this conventional method has the problems in loss func-
tion. SRGAN utilizes VGG19 and MSE loss in generator model to evaluate
image similarity and generate images. We consider that VGG19 and MSE are not
enough for these roles. VGG19 recognizes images by unique way unlike human,
and, MSE produces noises in generated images. Therefore, we adopt new evalu-
ation loss to overcome the problems. In this research, we improve a loss function
criteria of SRGAN to obtain higher quality up-sampled images.

3 Conventional Method

In this section, we explain Super Resolution with Generative Adversarial Net-
work (SRGAN), which is base of our proposed method. This method is known
as state of the art image generation method calculated by Mean Opinion Score.

3.1 Structure

Figure 1 shows the structure of SRGAN, which has two models; generator and
discriminator. These models are constructed by Residual Block [18] which has
convolution layer, batch normalization layer and relu layer. Generator model
creates output images which are similar to input images. Discriminator model
judges whether input images are created by generator model or not. Utilizing
these two models, SRGAN outputs high quality up-sampled images.
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Fig. 1. Structure of SRGAN

3.2 Loss Function

In SRGAN, generator model employs Eq. (1) as the loss function lSR, which is
diffierent from usual GAN.

lSR = lSRMSE + lSRVGG + 10−3lSRGen (1)

lSRMSE, lSRVGG, lSRGen are shown as Eq. (2) - Eq. (4). lSRMSE calculates mean square error
between generated image and true image corresponding to generated image. lSRVGG

evaluates the differences between feature maps of generated images and feature
maps of true images from VGG19 network. lSRGen means discrimination accuracy
of input image which is evaluated by discriminator model.

lSRMSE =
1

r2WH

rW∑

x=1

rH∑

y=1

(IHR
x,y − G(ILR)x,y)2 (2)

ILR, IHR are low resolution (LR) image and true high resolution (HR) image
(true image) corresponding to LR image, respectively. W,H are image width and
height, respectively, r is down-sampling factor, and G(p) is an image processing
function produced by generator model.

lSRVGG/i,j =
1

Wi,jHi,j

Wi,j∑

x=1

Hi,j∑

y=1

(φi,j(IHR)x,y

−φi,j(G(ILR))x,y)2
(3)

Wi,j ,Hi,j describe the dimensions of the respective feature maps within the
VGG19 network. We separate VGG19 model into five stages by Maxpooling
layer. Here, i means No.i stage, j means No.j convolution layer in i stage. φi,j(p)
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is the function of sampling the feature map from VGG19 network pre-trained
by ImageNet.

lSRGen =
N∑

n=1

− log D(G(ILR)) (4)

N is number of patch, and D(p) means the discriminator function which evalu-
ates whether input images are true or fake.

In SRGAN, Eq. (3) utilizes for evaluating perceptual similarity of images.
VGG 19 are optimized for image recognition. Moreover, VGG19 recognizes
images by unique way unlike human. Therefore, we consider that utilizing only
VGG19 loss for evaluating perceptual similarity of images is not good for satis-
fying with human. Further, Eq. (2) sometimes produces visible splotchy artifacts
in output images.In this work, we propose a new image evaluation criterion in
generator part to overcome this point.

4 Proposed Method

In this research, we propose a new image criterion for a loss function of generator
model utilizing Hang Zhao’s criterion [19] which includes Multi Scale-Structural
Similarity (MS-SSIM) and the L1 norm. MS-SSIM can evaluate the change of a
brightness level and the image structure, which people utilize. Moreover, we can
suppress the outbreak of the noise while obtaining an image processing effect
similar to MSE by incorporating L1 norm in a loss function. We consider that
we can perform the image expansion that we make use of a characteristic of
GAN with maintaining structure information.

4.1 Structural Simirality

MS-SSIM is an image evaluation function based on Structural Similarity (SSIM)
[20]. Equation (5) shows that SSIM utilizes pixel average values and image stan-
dard deviation. This is why, SSIM can evaluate differences of brightness, contrast,
and image structure.

SSIM =
(2μxμy + c1)

(μ2
x + μ2

y + c1)︸ ︷︷ ︸
l

· (σxy + c2)
(σ2

x + σ2
y + c2)︸ ︷︷ ︸

cs

(5)

where x, y are SR and true image, μx, μy are pixel average values, σ2
x, σ2

y are
standard deviation and σxy is covariance. Further c1 = (k1L)2, c2 = (k2L)2, we
utilize k1 = 0.01, k2 = 0.03, L = 255 which are the same as reference [19].

4.2 MS-SSIM

In the case that we utilize SSIM for loss function of a deep learning model, σ in
SSIM has an impact on the quality of the processed results of a network [19].



Image Up-Sampling for Super Resolution with GAN 263

To solve this problem, we select MS-SSIM. This has the structure which changes
scale of image. Moreover, MS-SSIM are calculated by average SSIM score of all
scale changed images. Equation (6) shows loss function using MS-SSIM.

lMS-SSIM = [lM ]αM ·
M∏

j=0

[csj ]βj (6)

where l, cs are defined in Eq. (5). M means the total number of scale and αM ,
βj are weight for l, cs. We utilize M = 5, (αM , βj) = (1, 1) which is the same as
reference [19].

4.3 L1 Norm

We employ L1 norm instead of MSE, which produces splotchy artifacts in SR
images [19]. Equation (7) shows that we utilize Manhattan distance for L1 norm.

lL1(P ) =
1
N

∑

p∈P

|xp − yp| (7)

where x,y are SR and true image, N means the total number of patches. p is
index of pixel, and P is patch.

Table 1. Experimental condition for comparison of up-sampled images.

OS Ubuntu16.04

CPU Intel core i7-7700K 4.20 GHz

GPU GeForceGTX 1080Ti

Memory 64 GB

Platform Tensorflow

Test dataset Set 5,14

Training data 800 images

4.4 Proposed Criterion

Utilizing lMS-SSIM and lL1(P ), Hang Zhao’s evaluation criteria for image super
resolution is constructed. Equation (8) is our criteria.

lSRMSL = 0.84 · (1 − lMS-SSIM) + 0.16 · lL1(P ). (8)

0.84 and 0.16 are already defined in reference [19]. This criteria can evaluate
structure similarity of input images and less noises than using mean square
error for deep learning.
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(a)True image (b)Proposed (c)SRGAN (d)Bicubic

Fig. 2. The qualitative comparison among the proposed method and conventional
methods. Images made by our propose method are higher quality than Bicubic method
and conventional SRGAN method.

We make the new loss function model, which can generate clear expansion
image unless changing an image structure, using Eq. (8). Equation (9) shows our
new criterion.

lProp = lSRMSL + lSRVGG + 10−3lSRGen. (9)

Conventional SRGAN utilizes VGG19 for evaluating perceptual loss, and MSE
for evaluating pixel similarity of images. In our new criteria, we utilize L1 norm
instead of MSE, and MS-SSIM for structural similarity. L1 norm can control
noises which are produced in output images. And MS-SSIM is able to evaluate
images quantitatively. Therefor, we delete lSRMSE from conventional loss function
to adopt our new criteria lSRMSL. We still employ lSRVGG as perceptual loss. This is
because MS-SSIM works other role what lSRVGG does.

By utilizing the above criterion, we finally can obtain clear up-sampled
images, which controlled occasion of blur and noise, and contrast of color, by
utilizing our criteria for loss function in Generator model of SRGAN.
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5 Experiment

In this research, we qualitatively and quantitatively evaluated upsampled images
made by bicubic interpolation, SRGAN and our proposed method. Besides, we
would like to prove that our up-sampled images can be useful for utilizing as
input image of super resolution methods. Therefore, we selected SRCNN, which
basically utilized bicubic interpolated images for input, and qualitatively and
quantitatively evaluated super resolution images made from our proposed images
and bicubic interpolated images.

5.1 Comparison of Up-Sampled Images Created by Our Proposed
and Conventional Methods

We set our experiment condition as Table 1. In this experiment, we utilized 18
test images, Set5 and Set 14, which are used in [12], for super resolution. We
scaled up images 2.5 times after scaled down 0.4 times for inputting model. We
trained SRGAN and our proposed model for 2000 iteration. Other environment
was same as [12].

We show images in Fig. 2 which are up-sampled Bird and Barbara images
made by each method. We can see that our proposed images are less noises and
blur than other conventional methods. This means that our propose method
makes high quality up-sampled images compared with bicubic interpolation and
SRGAN. And, in Tables 2, 3 and 4, we show PSNR [21], SSIM, and MS-SSIM

Table 2. Evaluation of Set 5 and Set 14 dataset by PSNR (dB)

Image Baboon Baby Barbara Bird Bridge Butterfly Coastguard Comic Face

Bicubic 21.01 30.96 23.81 28.76 23.27 21.41 24.11 21.32 27.29

SRGAN 16.64 28.30 22.73 28.90 22.08 23.60 23.49 18.72 26.37

Proposed 19.93 31.34 24.18 30.28 23.73 24.53 24.50 19.90 29.24

Flowers Foreman Lenna Man Monarch Pepper PPT3 Woman Zebra

Bicubic 22.40 26.07 25.25 24.42 25.93 24.15 21.48 20.34 23.40

SRGAN 21.70 26.26 26.01 24.30 27.72 26.53 21.37 22.90 24.35

Proposed 22.55 27.05 26.53 24.48 28.88 24.42 21.42 23.79 24.95

Table 3. Evaluation of Set 5 and Set 14 dataset by SSIM (%)

Image Baboon Baby Barbara Bird Bridge Butterfly Coastguard Comic Face

Bicubic 43.92 85.42 68.05 86.23 58.55 76.06 52.28 65.42 67.18

SRGAN 24.99 77.99 64.96 83.88 49.86 79.48 45.02 52.97 67.80

Proposed 44.11 85.93 70.27 88.23 59.54 84.79 52.92 62.21 71.17

Flowers Foreman Lenna Man Monarch Pepper PPT3 Woman Zebra

Bicubic 66.33 83.36 74.61 67.98 85.13 79.38 81.41 83.34 71.15

SRGAN 62.15 84.53 56.32 63.81 86.75 86.23 84.79 84.04 74.32

Proposed 67.90 87.91 75.21 71.27 91.08 90.69 89.55 87.77 75.32
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Table 4. Evaluation of Set 5 and Set 14 dataset by MS-SSIM (%)

Image Baboon Baby Barbara Bird Bridge Butterfly Coastguard Comic Face

Bicubic 89.81 95.23 93.34 97.76 92.10 95.32 87.24 84.92 94.21

SRGAN 82.13 95.26 91.80 97.34 88.74 97.24 83.12 85.73 93.78

Proposed 87.42 97.14 93.59 98.02 92.23 97.91 87.41 88.32 95.54

Flowers Foreman Lenna Man Monarch Pepper PPT3 Woman Zebra

Bicubic 91.32 97.30 91.30 94.21 95.78 82.84 95.42 96.84 92.84

SRGAN 89.51 97.62 86.77 93.10 97.76 87.45 96.81 97.18 80.45

Proposed 91.64 98.23 91.86 94.96 98.31 89.32 97.50 97.81 93.65

score of each images. From these result, our method can make high quality
images compared with other methods. This model has similar functions as GAN
and can make less noise images than GAN.

Some evaluation scores of our proposed up-sampled images are not better
than bicubic interpolation ones. There are two reasons. First, GAN is generation
model. Therefore, images, which have many thin lines, are very affected by gap
of generation part. Second, we utilized L1 norm for the loss function instead of
L2 norm. L2 norm utilizes square for modifying error of images. This is why
L2 norm can more strongly revise images than L1 norm. In this research, we
selected L1 norm to control occasion of noise and blur. Therefore, we loss strong
revise power like L2 norm. In future work, we have to make better loss function
to accomplish making high quality images.

(a)Butterfly (b)Foreman

Fig. 3. Images are improved by our pro-
posed up-sampling method

(a)Baboon (b)Comic

Fig. 4. Images are not improved by
our proposed up-sampling method

Figures 3 and 4 show that what images are very effective for our method, and
not good for our method, respectively. From experimental result, our propose
method tends to become little flat images. This is because, we utilize L1 norm
instead of MSE. L1 norm weakly revises images compared with MSE. Therefore,
baby and butterfly, which have few edges and do not need strong revise, become
very high quality. On the other hands baboon and comic, which have many micro
lines and need strong revise, are not improved. It is evident from experimental
result that our proposed method is more skillful at up-sampling images, which
have few edges in these structures.
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5.2 Adopting for Super Resolution Method

In this research, we adopted our up-sampled images for super resolution method
to evaluate the usability of our method. We selected SRCNN as SR method.
SRCNN is the most basic super resolution method. This super resolution method
utilizes bicubic interpolation images as input images to make up-sampled low
resolution images. Figure 5 shows structure of SRCNN.

We set our experimental condition as Table 5. Most of all other experiment
condition was the same as reference [8]. We prepared two type training data
sets, up-sampled by bicubic interpolation and our propose method. For bicubic
images, we scaled up images 2.5 times after scaled down 0.4 times for input
model. Our proposed up-sampled images also made by scaled down 0.4 times
images. Finally, we prepared two SRCNN networks which trained by those two
training datasets.

We show images in Fig. 6 which are super resolution images made by bicubic
interpolated images and our propose up-sampled images. We can see that the
super resolution image made by our proposed method is a higher quality image
compared with bicubic interpolated one and only up-sampled one. As we men-
tioned above, our propose up-sampled images are little flat ones. If we utilize
super resolution method for those, we can get sharpness and clear images from
them.

Fig. 5. Structure of SRCNN

Table 5. Experimental Condition for SRCNN

OS Ubuntu16.04

CPU Intel core i7-7700K 4.20 GHz

GPU GeForceGTX 1080Ti

Memory 64 GB

Platform Tensorflow

Test dataset Set 5,14

Training data 91 images
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(a)Ground truth
image

(b)SR image from
proposed method

(c)SR image from
Bicubic

(d)Proposed
up-sampling image

Fig. 6. The qualitative comparison of the super resolution images with SRCNN by
changing the input images created by our proposed method and the conventional
method, and our proposed up-sampling image

Table 6. Evaluation of Set5 and 14 dataset by SRCNN

Input image SR image by propose up-sampled image SR image by Bicubic image

Ave. PSNR 23.56 (dB) 23.11 (dB)

Ave. SSIM 68.93 (%) 68.31 (%)

Moreover, in Table 6, we show that how different PSNR and SSIM scores are
between super resolution images made from our proposed up-sampled images
and bicubic interpolation images. From this result, our method can make high
quality images compared with the bicubic interpolation.

6 Conclusion

In this study, we improved image evaluation criterion for generator part of
SRGAN. As a result, we can obtain higher quality up-sampled image com-
pared with bicubic interpolation and SRGAN. Moreover, we adopted our up-
sampled images for SRCNN to confirm our method was useful for conventional
SR method. From experimental result, we have confirmed that our proposed
method can adopt for other SR methods which are utilized bicubic interpolated
images as input images.

Our up-sampled images become flatter than SRGAN. This is because, we
utilize L1 norm for loss function instead of L2 norm. Further consideration will
be needed to yield any findings about investigating more optimal evaluation
criteria for solving this problem.
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As a future work, we would like to make one end to end SR method includ-
ing our up-sample part. Further we adopt our up-sampled images for other SR
methods [22,23] to confirm our method’s versatility.
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Abstract. In this paper, we develop a neural network model that learns
representations of 3D objects via tactile exploration. The basic princi-
ple is that the hand is considered as an autonomous ‘navigating agent’,
traveling within the ‘environment’ of a 3D object. We adapt a model of
hippocampal place cells, which learns the structure of a 2D environment
by exploiting constraints imposed by the environment’s boundaries on
the agent’s movement, and perceptual information about landmarks in
the environment. In the current paper, our focus is on 3D analogues of
these 2D information sources. We systematically investigate the informa-
tion about object geometry that is provided by navigation constraints in
a simple cuboid, and by tactile landmarks. We find that an asymmet-
ric cuboid conveys more information to the navigator than a symmetric
cuboid (i.e., a cube) – and that landmarks convey additional information
independently from asymmetry.

Keywords: Hippocampal place cells · 3D object representation
Tactile exploration · Landmarks · Recurrent self-organizing map

1 Introduction

When a human being enters an environment, hippocampal place cells develop
a cognitive map of the environment. While the person reaches one location in
the environment, one place cell or multiple place cells fire simultaneously, which
represents such a location in the navigation environment. The process of hip-
pocampal cells encoding spatial locations by the integration of linear and angular
self motions is called ‘path integration’ or ‘dead reckoning’ [10,11].

Even though the exploring agent’s movements are defined in an ‘egocentric’
reference frame, as are the perceptual stimuli it receives, the hippocampus can
derive from this egocentric information an ‘allocentric’ or ‘environment-centered’
representation of its location in the environment [3,5]. In our current paper,
we explore a 3D analogue of this navigation scenario, where the agent’s hand
is construed as traveling around the environment of a 3D object. Here again,
information about the hand’s movements and about landmarks arrive in an
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 271–283, 2018.
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egocentric reference frame. We will focus on tactile information, which is more
direct than visual information [6]. The egocentric information in this case is
defined in a ‘hand-centered’ coordinate system. From this egocentric information,
the agent can construct an allocentric (i.e., object-centered) representation of the
object’s geometry.

For concreteness, we can visualize the ‘agent’ traveling around the cube as
a snail, as shown in Fig. 1. The agent can move by translation (forward, back,
left or right), or can change its orientation by rotating on its current plane. It
can detect when it crosses onto a different plane of the cube. It can also sense
tactile landmarks that it is sliding over (the colored dots). From these egocentric
(snail-centered) cues, the agent can derive an environment-centered (i.e., object-
centered) representation of the cube.

It is not yet understood how this is done. However, as a starting point, we can
consider models of the 2D place cells system, which is one of the most studied
and best understood structures in the brain [2,4]. The place cells model we will
adopt is one that uses a biologically plausible self-organizing map (SOM) [8]:
specifically, a SOM is modified to take recurrent input, called a modified SOM
(MSOM) [12]. Note that we are not suggesting that hippocampal place cells
are involved in haptic object exploration; there is good evidence that object
representations derived from touch are developed in the parietal cortex [1,13].
However, we suggest that the parietal circuitry for learning haptic object rep-
resentations might be isomorphic in some way to the hippocampal circuitry for
learning 2D environment representations. Based on this assumption, we inves-
tigate what allocentric information about object geometry can be provided by
constraints on hand navigation, and by tactile landmarks.

Fig. 1. By executing ‘egocentric’ movements, an agent (here a snail) learns the ‘allo-
centric’ representation of the explored object, i.e, (a) a cube, (b) a cuboid, and (c) a
cube with landmarks.

The organization of this paper is summarized as follows. Section 2 presents
the background knowledge, which consists of MSOM, the relationship between
constrained action sequences and the object topography and a revisit of a existing
MSOM model activated by translative movements (T-MSOM) for 3D object rep-
resentations shown in [14] with its drawbacks pointed out. The proposed transla-
tive and orientational movements activated MSOM (TO-MSOM) model and
the landmarks together with translative and orientational movements activated
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MSOM (L-TO-MSOM) model are presented in Sect. 3. Section 4 shows simula-
tive results of the proposed models for learning representations of two typical
3D objects. Finally, Sect. 5 concludes the paper with final remarks. The main
contributions of this paper are highlighted as follows.

– Based on the authors’ knowledge, this is the first time to present a neural
network model for learning representations of 3D object via tactile exploration
by executing both translative and orientational movements.

– Simulative results based on a 3D cube and cuboid demonstrate the effective-
ness of the proposed models for learning representations of 3D objects. More
importantly, the statistics and systematic analysis verify that the models are
more accurate to learn a representation of a cuboid than a cube, which is
owing to the contributive asymmetrical topography of a cuboid.

– The positive effect of landmarks is verified by the statistics analysis of simu-
lative results of the models representing the cube and cuboid.

2 Background

In this section, we present the background knowledge for the proposed mod-
els. Specifically, the detailed description of MSOM algorithm is firstly presented.
Then, the constraint of object topographies placed on action sequences for explo-
ration is identified. After that, for comparison and for showing the contribution
of this paper, drawbacks of the existing T-MSOM model are pointed out.

2.1 Modified Self-Organizing Map (MSOM)

Owing to the added previous state input, MSOM comes to learn frequently
occurring input sequences, which is different from SOM learning the frequently
occurring input patterns [2]. Regarding an input x(t) ∈ Rm at time instance t,
the activity of unit i of a MSOM M ∈ Rn×n at that time instance is defined as

ai(t) = exp(−ηdi(t)), (1)

where i ∈ 1, 2, · · · , n2, η > 0 is a design parameter, and di(t) is a distance
function, which is defined as a weighted sum of two parts. The first part is
‖x(t) − wi(t)‖22 with ‖·‖2 denoting the 2-norm of a matrix or vector, which is to
evaluate the distance between the input x(t) and the weight wi(t) of unit i (for
simplicity, we name it as regular weight); and the second part is ‖c(t) − ci(t)‖22,
which is to evaluate the distance between the context weight c(t) for the map
M at time instance t and the individual context weight ci(t) of unit i. By
introducing a weight factor ξ ∈ (0, 1) to adjust the effect of such two parts on
di(t), the distance function di(t) is formulated as

di(t) = (1 − ξ)‖x(t) − wi(t)‖22 + ξ‖c(t) − ci(t)‖22. (2)

The context weight c(t) for the map M in (2) is defined as

c(t) = (1 − κ)w∗(t − 1) + κc∗(t − 1), κ ∈ (0, 1), (3)
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where w∗(t − 1) and c∗(t − 1) denote the regular weight and context weight of
the unit in MSOM with the maximal activity ai(t) at previous time instance
t − 1, respectively. By norming the activities of all MSOM units shown in (1),

pi(t) =
ai(t)

∑n2

j=1 aj(t)
, (4)

which denotes the activity probability of unit i for the current input at time
instance t. During training, the regular weight wi(t) is updated as

wi(t + 1) = wi(t) + L(t)H(i, f(x(t)))(t)(x(t) − wi(t)), (5)

and the individual context weight ci(t) is changed as

ci(t + 1) = ci(t) + L(t)H(i, f(x))(t)(c(t) − ci(t)), (6)

where L(t) and H(i, f(x(t)))(t) are a time-varying decreasing learning rate func-
tion and neighbourhood function respectively with f(x) denoting the index of
the unit in MSOM with the maximal activity for the current input x(t). At the
beginning of training, the regular weight wi(0) ∈ (0, 1) is randomly selected and
the context weight ci(0) = 0. The process of MSOM is shown in Algorithm 1.

Algorithm 1. MSOM
Input: Input data x(t) ∈ Rm

Output: A convergent MSOM M ∈ Rn×n

1: Randomly initialize all m-dimensional regular weights wi(0) ∈ (0, 1) and set all
context weights ci(0) = 0 ∈ Rm, i = 1, 2, . . . n2

2: while feature map is not convergent do
3: Sampling: draw sample input x(t) ∈ Rm

4: Competition: find best matching unit based on a distance discriminant function:

f(x(t)) = argmin
i

(1 − ξ)‖x(t) − wi(t)‖2
2 + ξ‖c(t) − ci(t)‖2

2,

where c(t) = (1 − κ)wf(x(t−1))(t − 1) + κcf(x(t−1))(t − 1), ξ ∈ (0, 1) κ ∈ (0, 1)
5: Cooperation: select f(x(t)) neuron’s neighbourhood neurons defined by a time-

varying decreasing neighbourhood function H(i, f(x))(t)
6: Adaptation: update regular weights and context weights of all selected neurons:

wi(t + 1) = wi(t) + L(t)H(i, f(x(t)))(t)(x(t) − wi(t)),

ci(t + 1) = ci(t) + L(t)H(i, f(x))(t)(c(t) − ci(t)),

where L(t) is a time-varying decreasing learning rate function.
7: end while
8: return M
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2.2 Action Sequences Constrained by Object Topographies

To lay a basis for further investigation, in this subsection, we present the
relationship (more specifically, the constraint relationship) between navigation
action sequences and object’s topographies. Regarding the constraint on action
sequences played by object topographies, we can refer to a cube shown in Fig. 2.
Assuming a navigation agent starts in location ‘L1’ facing Right, after moving
directly forward, it reaches location ‘L2’ facing Right. Then, the agent could
reach location ‘L3’ by moving forward over the edge or could get location ‘L4’
by moving right over the edge. Thus, from the same starting exploration position
and orientation, different action sequences lead the navigation agent to differ-
ent locations. Different object topographies support different exploration action
sequences and thus, constrained action sequences implicitly contain object topog-
raphy information. Relationships among action sequences, the object topography
plus navigation location and the MSOM are illustrated in Fig. 3.

Fig. 2. Geometrical description of a cube with four locations L1, L2, L3 and L4.

Fig. 3. Schematic showing analorelationships among object topography and agent loca-
tion, action sequences and the MSOM.

Without performing orientational movements, starting from ‘L2’ facing
Right, after moving forward over the edge to reach ‘L3’, moving right over the
edge to reach ‘L4’ and moving back over the edge to go to ‘L2’, the agent is back
in its starting location – but importantly, it is now facing a different direction
than it did when it started. This highlights an important geometrical property
of navigation in 3D space – the ‘non-commutativity of rotations’ (a good dis-
cussion is given in [7]). For our purposes, the key point about this property is
that our navigating agent needs the ability to rotate in its current plane, as
well as to translate, to make the task of returning to a given state tractable.
We begin by presenting a model with translative movements but no rotational
movements (i.e., T-MSOM model), and then introduce a model including orien-
tational movements as well (i.e., TO-MSOM model).
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2.3 T-MSOM

A basic model T-MSOM to learn representations of 3D objects based on transla-
tive movements and surface information is presented in the previous work [14,15].
Since orientational movements of a navigation agent are normally performed in
practice and without such kind of movements, an agent could not go back to the
start position with the same orientation, an improved and more practical model
with orientational movements considered is of significance. Meanwhile, because
objects generally do not have the differences among surfaces, to be more realistic,
the surface information included in T-MSOM model should be left out. What’s
more, [14] presented the informal one test result about the effect of object asym-
metry on the model’s performance, while in the current paper, we present a
statistics and more systematic study of the effect and extend the analysis to
consider the effect of tactile landmarks on the object’s surface.

3 Proposed Models

In this section, the proposed TO-MSOM and L-TO-MSOM model are presented.

3.1 TO-MSOM Model

By deleting the not always-existed surface difference information in T-MSOM
model and considering widely-performed orientational movements, TO-MSOM
model is developed and its architecture is shown in a blue frame in Fig. 4. As
illustrated in the figure, TO-MSOM model mainly consists of four parts: the
input, MSOM units, next action distribution and action selected. The input
to MSOM units is to simulate the circuit of object representations from the
somatosensory cortex to the parietal cortex, and the next action distribution to
action selected is to imitate the circuit from the premotor cortex to the motor
system. The details of such four parts are illustrated as below.

Algorithm 2. TO-MSOM model
Input: Constrained action sequences of the object to be explored and represented
Output: A representation of the object explored
1: Randomly initialize the exploration starting position and orientation of the agent
2: while training steps are not finished do
3: Input: input the executed constrained action
4: MSOM units: activate MSOM units to be responsive to the current input
5: Next action distribution: predict next possible actions allowed by the object
6: Action selected: select the most possible action allowed by the object and perform
7: end while
8: return
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Fig. 4. Architectures of TO-MSOM model and L-TO-MSOM model for learning to
represent 3D objects via translative movements (↑: move forward; ←: move left; →:
move right and ↓: move back) and orientational movements (�: rotate 90◦ counterclock-
wise and �: rotate 90◦ clockwise) together with the surface transition signal, where the
blue frame shows the architecture of TO-MSOM model and the red frame illustrates
the architecture of L-TO-MSOM model. (Color figure online)

Input. The input of TO-MSOM model is composed of the constrained action
sequences, which is comprised of translative and orientational movements. Note
that the bit of surface translation signal is to encode the difference between the
movement of moving directly (that is, moving forward, left, right, back directly)
and moving over the edge (that is, moving forward, left, right, back over the
edge). The input part is to encode and simulate the obtained sensorimotor infor-
mation from the peripheral sensors.

MSOM Units. The units in MSOM are driven to learn the frequently occurring
action sequences, which are constrained by the object’s topography. As pointed
out above, starting from the same location and orientation, the navigation agent
can lead to different locations and/or orientation by executing different action
sequences. Therefore, with regard to one starting exploration location, each unit
in MSOM comes to be responsive to one/many particular location(s) on the
object via learning constrained action sequences. After training, given a particu-
lar MSOM activity pattern, the learning model could reconstruct or say predict
the navigation agent’s position owing to the learnt representation of such an
object. Note that this MSOM units part aims to imitate neurons involved in the
circuit of object representations fulfilled in the parietal cortex.

Next Action Distribution. Regarding each input at one time instance, there
is an activity pattern in the MSOM, which denotes one particular location on the
object. Based on the learnt representation of such an object, the model attempts
to predict the next action possibly available to be preformed. In this model, the
MSOM activity pattern is the input to a network, which is implemented by
a multiple layer perceptron (MLP), and the output of MLP is the probability
distribution of all actions predicted to be possibly performed.
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Action Selected. After obtaining the possible action’s probability distribution,
the next action to be executed is then selected, which is based on the Boltzmann
selection. Note that the selection procedure can be regulated by setting the
selection decision policy involved in the Boltzmann selection. Regarding this
model, if the navigation agent fails to execute one action to reach a new location
for perceiving object’s information, the probability of such an action is set to be
zero, which implies that it cannot be selected for the next action to be performed.
Moreover, in the model, for expediting the learning process, the navigation agent
is commanded to find the boundary of the object as quickly as possible and
therefore, the probability of the moving forward action is increased by a positive
reinforced bias number. This part is to simulate the circuit of action selection
performed in the premotor cortex.

After the next action to be performed is selected, an encoded signal of such
an action is transferred to the motor system to perform. The performed action
then leads the navigation agent to a different location, which gives rise to an
update of the sensory information about the object and contributes to represent
such an object. The flow diagram of the model is shown in Algorithm 2.

3.2 L-TO-MSOM Model

Landmarks in an environment are reported to have an effect on a navigation
agent for exploring the environment, such as leading to remapping of the same
environment and speeding up finishing a navigation task [9]. To investigate the
effect of tactile landmarks on object representations, L-TO-MSOM model is
developed with its architecture illustrated in the red frame in Fig. 4. Differing
from TO-MSOM model, L-TO-MSOM model is not only activated by the con-
strained action sequences but also the landmarks on the object to be explored.
The landmark in L-TO-MSOM model mainly denotes tactile landmarks, such
as the temperature and texture differences among locations on the object. Since
the implementation flow diagram of L-TO-MSOM model is similar to that of
TO-MSOM model, it is omitted in the paper.

4 Simulation Results and Comparisons

To evaluate the effectivenesses of the proposed models and investigate effects
of object asymmetries and landmarks on representing objects, two typical 3D
objects–a 2 × 2 × 2 cube and a 3 × 2 × 1 cuboid–are assigned to be represented.

4.1 Effects of Object Asymmetries

To validate the effectiveness of TO-MSOM model for representing 3D objects as
well as investigate the effect of encoding approach for the translative movements
over the edge on the model, three kinds of TO-MSOM models, named TO-
MSOM-1, TO-MSOM-2 and TO-MSOM-3, are assigned to explore the cube and
cuboid with a random initial exploration position. Specifically, TO-MSOM-1 is
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the model using one bit of surface transition signal together with the four directly
translative movement bits to denote the four translative over the edge movements
(i.e., moving forward, left, right and back over the edge); TO-MSOM-2 is the
model by utilizing four independent bits to denote such four translative over the
edge movements, and TO-MSOM-3 is the model by using four bits of surface
translation signal and four directly translative movement bits. Note that each
model is to explore such two three objects for 30 sampled random tests/paths.
Each test has 20 epochs and each epoch contains 100 exploration steps. The
following results are based on statistics analysis of sampled 30 tests.

Table 1. Probability distribution of Pmax, represented as Pmax ∼ N (μ, σ2) with μ
and σ denoting the mean and standard deviation respectively, for TO-MSOM-1, TO-
MSOM-2 and TO-MSOM-3 models when representing a cube and cuboid

Model TO-MSOM-1 TO-MSOM-2 TO-MSOM-3

#Cube (6.59%, 0.90%2) (6.47%, 0.66%2) (6.63%, 0.72%2)

#Cuboid (11.19%, 1.10%2) (11.72%, 1.20%2) (11.26%, 1.58%2)

Table 2. 95% confidence interval of Pmax for TO-MSOM-1, TO-MSOM-2 and TO-
MSOM-3 models when representing a cube and cuboid

Model TO-MSOM-1 TO-MSOM-2 TO-MSOM-3

#Cube [4.75%, 8.43%] [5.12%, 7.82%] [5.16%, 8.10%]

#Cuboid [8.94%, 13.44%] [9.27%, 14.17%] [8.03%, 14.49%]

To evaluate effectivenesses of the proposed model, a criterion Pmax is intro-
duced, which is defined as

Pmax =
T (α = β)

φ
, (7)

where φ denotes a fixed size of a sliding window, T (·) denotes how many times a
given event happened in a given window in the sliding window series, α denotes
the probability of the actual agent position in the reconstructed probability dis-
tribution and β denotes the maximal value in the reconstructed probability dis-
tribution. Furthermore, another criterion Dgeodesic is also developed and defined
as

Dgeodesic =
m∑

i=1

4∑

j=1

g(i, δ)pij , (8)
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where g(i, δ) denotes the geodesic distance between position i and the actual
agent position δ, m denotes the number of available exploration positions on
the object; j = 1, 2, 3, 4 is used to respectively denote North South East West
orientations; and pij denotes the probability of the agent being in location i and
with the particular j orientation in the reconstruction distribution. Regarding
details about such two criteria, please refer to [14,15].

When exploring the cube and cuboid, the models’ statistics probability dis-
tributions of Pmax ∼ N (μ, σ2), with μ and σ denoting the mean and standard
deviation respectively, are illustrated in Table 1. From the table, we can see that
(1) the models have advantages in representing the cuboid over the cube, which
is owing to the additional asymmetry topography information of the cuboid; (2)
the models are effective on representing 3D objects; and (3) the encoding tech-
nique for translating over the edge movements does not make a difference on the
model’s representing ability. Corresponding t-based 95% confidence intervals and
statistics means of Pmax are shown in Table 2 and Fig. 5 respectively, which sug-
gests the positive effect of asymmetry topography on TO-MSOM model’s repre-
senting ability. Corresponding statistics probability distributions of Dgeodesic for
TO-MSOM models are illustrated in Table 3, which further verifies the contribu-
tive effect of the asymmetry geometry. Note that the accuracy of TO-MSOM
model could be improved by adding other perceptual information, such as tac-
tile landmarks (discussed later) and surface information (presented in [14]) or
by making the navigation agent articulated, which is more like mammals’ hands
and can perceive and detect information on different surfaces of the object in
parallel.

TO-MSOM-1 TO-MSOM-2 TO-MSOM-3
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Fig. 5. Statistics means of Pmax of TO-MSOM-1, TO-MSOM-2 and TO-MSOM-3 mod-
els when representing a cube and cuboid.
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Table 3. Probability distribution of Dgeodesic, represented as Dgeodesic ∼ N (μ, σ2) with
μ and σ denoting the mean and standard deviation respectively, for TO-MSOM-1, TO-
MSOM-2 and TO-MSOM-3 models when representing a cube and cuboid

Model TO-MSOM-1 TO-MSOM-2 TO-MSOM-3

#Cube (2.48, 1.45%2) (2.48, 1.18%2) (2.48, 1.39%2)

#Cuboid (2.39, 1.73%2) (2.39, 1.81%2) (2.38, 2.02%2)
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Fig. 6. Statistics means of Pmax and Dgeodesic for L-TO-MSOM model when represent-
ing a cube and cuboid.

4.2 Effects of Landmarks and Object Asymmetries

To investigate the effect of landmarks, L-TO-MSOM model is commanded to
explore and represent the cube and cuboid. Similarly, each model with different
numbers of landmarks explores such two 3D objects for 30 random tests/paths
and the following results are based on the statistics analysis.

The statistics means of Pmax and Dgeodesic when L-TO-MSOM represents a
cube and cuboid are illustrated in Fig. 6. As we can see from the figure, we can
draw the conclusion that the simulation result validates (1) the effectiveness of
the model for representing 3D objects; (2) the positive effect of landmarks on
the model’s learning representations ability; and (3) the superiority of a cuboid
to a cube for representation due to the asymmetry topography of the cuboid.

5 Conclusion and Future Work

In the paper, TO-MSOM model activated by translative and orientational move-
ments has been proposed to learn representations of 3D objects. To investigate
the effect of landmarks as well as object asymmetries, L-TO-MSOM model acti-
vated by landmarks together with translative and orientational movements has
been developed. Statistics simulative results of TO-MSOM model and L-TO-
MSOM model for learning representations of two typical 3D objects– a 2× 2× 2
cube and a 3 × 2 × 1 cuboid–demonstrate that (1) the proposed models are
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effective on learning representations of 3D objects; (2) object asymmetries have
a positive effect on representations; (3) landmarks also positively contribute to
learn representations. Future work is to design a more realistic and practical
model to learn representations of 3D objects with an articulated agent, which is
to simulate human beings’ hands and consists of multiple independently moving
‘fingers’ to compete and coordinate for achieving a task.

Acknowledgment. The authors would like to thank Martin Takac for the earlier
work on a SOM-based navigation model.
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Abstract. Predicting a long-term horizon of vulnerable road users’ tra-
jectories such as cyclists become an inevitable task for a reliable opera-
tion of highly and fully automated vehicles. In the literature, this problem
is often tackled using linear dynamics-based approaches based on recur-
sive Bayesian filters. These approaches are usually challenged when it
comes to predicting long-term horizon of trajectories (more than 1 sec).
Additionally, they also have difficulties in predicting non-linear motions
such as maneuvers done by cyclists in traffic environments. In this work,
we are proposing two novel models based on deep stacked recurrent neu-
ral networks for the task of cyclists trajectories prediction to overcome
some of the aforementioned challenges. Our proposed predictive mod-
els have achieved robust prediction results when evaluated on a real-life
cyclist trajectories dataset collected using vehicle-based sensors in the
urban traffic environment. Furthermore, our proposed models have out-
performed other traditional approaches with an improvement of more
than 50% in mean error score averaged over all the predicted cyclists’
trajectories.

1 Introduction

Recently, the problem of intent and trajectory prediction of vulnerable road users
(VRUs) has got more attention from the Advanced Driver Assistance Systems
(ADAS) research community [8,10,18]. Furthermore, with the increased rate of
testing highly and fully automated vehicles on our roads nowadays, the neces-
sity for trustworthy predictive models that can deeply understand VRUs behav-
iors become inevitable [17]. Most of the work that has been done on the intent
and trajectory prediction problem of VRUs were focused mainly on pedestrians.
Other VRUs such as cyclists have not got the same attention because of their
challenging behaviors which are hard to model especially from a moving vehicle.
Until recently, there were almost no available datasets of cyclists observed from
moving vehicles in a traffic environment, which was another hurdle for having
such predictive models for cyclists. However, with the recent benchmark dataset
for cyclist detection [11], it opened the way for the research community to build
upon it for the trajectory prediction problem of the cyclists [13]. In the liter-
ature, the problem of intent and trajectory prediction of pedestrians in urban
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 284–295, 2018.
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traffic environments was commonly approached through an explicit modeling
of the dynamical motions done by the VRUs in the scene [8,18]. To this end,
an initial motion model of the pedestrian is firstly classified and based on it a
Bayesian recursive filtering stage is done accordingly for a short-term prediction
of pedestrians’ trajectories. Recently, data-driven approaches such as artificial
neural networks have been also explored for the VRUs intent and trajectory
prediction problem [5,16,20].

Unlike motion dynamics based approaches, data-driven approaches do not
assume an explicit prior knowledge about the underlying motion done by the
VRUs. However, they approach the problem in a rather holistic end-to-end fash-
ion which was shown to be capable of generalizing across a wide range of traffic
scenarios [16]. Thus, in this work we will be adopting the data-driven approach,
in specific we will be utilizing a recurrent neural network (RNN)-based model for
the cyclist trajectory prediction problem. Our proposed model will be exploiting
the expressiveness of RNNs when it comes to model sequence-based data such
as cyclists’ trajectories. Given a short-time horizon of the cyclists’ trajectories,
it will infer their intentions by forecasting a long-term horizon of their future
trajectories. The rest of this paper is organized as follows. In Sect. 2 a brief
description of the work done in the literature related to the intent prediction
will be described. A thorough description and discussion of our methodology
will be covered in Sect. 3. Later, in Sect. 4, the experimental results of our pro-
posed model against other baseline models will be presented. Finally, in Sect. 5,
we summarize our paper.

2 Background

The intent and trajectory prediction problem of pedestrians has been studied in
the literature. For the cyclists, however, the number of research that has been
done on it is not as much as the pedestrians’ work. In this section, we will give
an overview of the work that has been done on the VRUs’ trajectory prediction
problem in general and its related work to our VRU of interest (i.e. cyclists).

2.1 Motion Modeling Approach

Most of the work on the VRUs intent and trajectory prediction were relying on
modeling the dynamics of motion of VRUs in urban traffic environments. In [18],
a dynamical motion model based on extended Kalman filter (EKF) was intro-
duced for pedestrian trajectory prediction. In their proposed approach, given
observed lateral positions of pedestrians from a vehicle-based stereo camera,
they predict their trajectories over a short-term interval (less than 2 s). They
relied in their approach on a various number of motion dynamics models such
as constant acceleration (CA), constant velocity (CV) and constant turn (CT).
In [10], another dynamical motion model was proposed as part of a dynamic
Bayesian network (DBN). Their DBN incorporated prior information regarding
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the situational awareness of pedestrians of their surroundings as well as the con-
textual information of the traffic scene. Based on this prior information as a
hidden variable on top of a switching linear dynamical system (SLDS), they can
predict a short-term horizon of the pedestrians’ trajectories in a specific traffic
scenario. Their traffic scenario of interest was at a crossing where a pedestrian
might intend to cross or continue walking beside the curb. Similar to [10], Pool et
al. [13] recently pursued the same approach for the cyclist trajectory prediction
problem using a stereo-based camera from a moving vehicle. They proposed two
models; the first one is based on the standard Kalman filter (KF) with a CV
underlying dynamical motion model for a linear cyclists’ trajectory prediction.
The other model is based on a mixture of five linear dynamical motion models
based on KF as well.

2.2 Data-Driven Approach

On the other hand, Zernetsch et al. [20] proposed a data-driven approach based
on multilayer perceptron neural network (MLP) in conjunction with a polyno-
mial least-squares approximation. Their proposed model was able to forecast
the future trajectory of cyclists in a traffic scene observed from a traffic cam-
era mounted at an intersection. Their proposed MLP model consisted of one
single layer and was trained using the approximated polynomials of different
cyclists’ movement types. In [16], another data-driven approach was also pro-
posed for pedestrian trajectory prediction using the recurrent neural network
architecture, long-short term memory (LSTM). Unlike traditional data-driven
approaches based on MLP, the LSTM framework proposed in [16], was able
to capture the temporal dependency exists in pedestrians’ trajectories espe-
cially from a moving vehicle perspective. It provided a long-term prediction
horizon (up to 4 secs) of the future pedestrians’ trajectories. The LSTM app-
roach achieved competitive small prediction errors in comparison to both the
traditional MLP and the dynamical motion models approaches.

3 Proposed Methodology

Since the motion dynamics based approaches require an explicit modeling of the
underlying motion model of the cyclists, thus it makes them more applicable
only to specific scenarios. Moreover, motion dynamics based approaches were
proved to be inefficient when it comes to predicting long-term horizons which
are essential for a reliable fully and highly automated vehicles [17]. Given that,
the data-driven approach becomes a more appealing approach for the cyclist
trajectory prediction task.

3.1 Problem Formulation

The cyclists’ trajectories are a series of consecutive measured positional informa-
tion over a period of time T1:N . Thus, we can formulate the cyclist’s trajectory
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prediction problem as a sequence prediction task [2]. In this respective, given a
few numbers of past positional observations of the cyclist trajectory at time t,
a prediction of his/her position in the future from time t + 1 onward is to be
inferred. The main advantage of such formulation is that it does not assume any
underlying particular type of motion model of the cyclists. Additionally, in this
formulation, longer prediction horizons can be reliably obtained [16]. In the fol-
lowing subsections, we will first go through one of the most successful data-driven
approaches for predicting sequential-based tasks (i.e recurrent neural networks
(RNN)). Then, we will discuss how we are utilizing one special variant of RNN
for the task of cyclist trajectory prediction.

3.2 Predicting Sequential Data via RNN

Recently, a number of successful use cases for utilizing Recurrent Neural Net-
works (RNN) in sequence-based tasks were reported in the literature [1,3,6,15].
The main distinction between RNNs and traditional neural networks such as
multilayer perceptron (MLP), is that RNNs can learn the temporal dependency
exists in its sequential input data. RNNs can efficiently capture this dependency
due to its internal feedback loop connection that makes it persist information
over time. This internal feedback loop is called the hidden unit or the hidden
state. Unfortunately, traditional RNNs can not memorize or keep track of its
past hidden states for a much longer time. Thus, a number of enhanced RNN
architectures were proposed in the literature to overcome the aforementioned
problem [4]. One of the most commonly utilized RNN architectures is the Long
Short-term Memory (LSTM) architecture [7]. The LSTM architecture replaces
the basic hidden state of traditional RNNs with a base unit called memory block.
Each memory block within LSTM can have one or more memory cells. For each
memory cell, three gates (namely input, output and forget gates) are governing
its operation. These three gates are commonly accessible by every memory cell
inside the memory block of the LSTM. Each gate of the three gates is responsible
for a certain task within the LSTM architecture. For instance, the input gate is
responsible for updating the LSTM’s memory state based on whether the input
data have new information or not. While the forget gate is responsible for bal-
ancing the memory block load by throwing away non-useful information. On the
other hand, the output gate is responsible for the final output from the LSTM’s
memory block based on the information from the input and the memory state.
The following equations describe the operation of the LSTM’s memory block
(shown in Fig. 1) at each time step t:

ft = sigm(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (1)

it = sigm(Wxixt + Whiht−1 + Wcict−1 + bi) (2)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (3)

ot = sigm(Wxoxt + Whoht−1 + Wcoct + bo) (4)

ht = ot ∗ tanh(ct) (5)
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where ft, it, ot and ct are the activations for the forget, input, output and cell
state gates at time t respectively. On the other hand, W∗f , W∗i, W∗o, W∗c, bf ,
bi, bo, bc are their respective weight matrices and variable biases. Additionally,
xt and ht are the memory cell input and final output at time t.

Fig. 1. LSTM memory block architecture (adopted from [12]).

It can be deduced from the previous equations, that the main basic building
blocks governing all the operations of LSTM’s memory block are comprised of a
sigmoid layer with an element-wise multiplication operation. The sigmoid layer
works in a way such as its input value is clipped into a value between [0, 1]. The
lower bound value (i.e. 0) means the input data to it will not pass through. On
the other hand, the upper bound (i.e. 1) means its input data will be passed
through.

3.3 Bidirectional LSTM

The aforementioned architecture of LSTM with only one hidden unit (i.e. one
memory block) is referred to in the literature as unidirectional LSTM (U-LSTM).
There is another extension to this architecture and it is called bidirectional
LSTM (B-LSTM) [19]. The main distinction between the two architectures is
that in B-LSTM the input sequence data are processed in both forward and back-
ward directions instead of the only forward direction of unidirectional LSTM.
Thus, in B-LSTMs the two hidden layers from the two directions are connected
to the same final output as shown in Fig. 2. The advantage of such two direc-
tion processing is that a higher level abstractions of sequential features can be
learned as it was shown in [6]. Similar to U-LSTM, the output in B-LSTM is
governed by the equations from (1)–(5). Whereas, the B-LSTM has two outputs,−→
h for the forward layer and

←−
h for the backward layer. The final output from the

B-LSTM memory block as shown in Fig. 2 at time step t is calculated according
to the following:

yt = σ(
−→
ht ,

←−
ht) (6)
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where σ is a function to combine the output from the two inner LSTMs and it
is usually implemented as a concatenation function.

3.4 Cyclist Trajectory Prediction via Stacked (B/U)-LSTM

The use of deep stacked LSTM layers (unidirectional or bidirectional) was shown
recently in a number of sequence-based learning tasks to achieve higher accura-
cies in comparison to the shallow ones [1,3,6]. The reason for that is that the
number of stacked hidden layers can build higher representation levels of under-
standing of the sequential data. As a result, it can be more effective in capturing
the underlying temporal dependency of the sequence data. Thus, in this study,
we will be adopting this paradigm for the cyclist trajectory prediction task. In
this work, we are proposing two novel stacked LSTM models (B-LSTM and U-
lSTM) for the task of cyclist trajectory prediction (shown in Fig. 3). The input
sequence data to our two models will be a sequential positional data (lateral,
longitudinal) u of the cyclists as observed from a vehicle-based stereo camera
during the time period T1:w. Where w is the windows size of the number of
observations of the cyclists’ positions. Given that as the input to our stacked
models, a long-term prediction about the cyclists’ future positions u from time
Tw to time Tw+δ can be inferred. Where δ is the prediction horizon. Our pro-
posed models will be consisting of two stacked LSTM layers (unidirectional &
bidirectional) (as shown in Fig. 3).

Fig. 2. Architecture of the bidirectional LSTM (B-LSTM) with its two inner forward
and backward LSTM memory blocks unrolled over t time steps.

The input to these models is the aforementioned cyclists’ sequential positions
data. For the number of hidden units of the two stacked LSTM layers, we exper-
imented with different parameters (32, 64, 128 and 256 respectively) using grid
search and we found 128 to give the best performance. For the window size w of
the sequential positional input, as a rule of thumb, the higher this number is the
more the model will be able to capture the temporal dependency of the input
data. However, since our predictive model is intended for predicting the future
trajectories of cyclists from a moving vehicle perspective, therefore it needs to
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provide an accurate prediction with the least possible number of sensor obser-
vations. Using grid search over parameters [1,3,5,8], we found that the effective
number of w to be 5. At the last layer of our proposed models, we have a fully
connected layer with one hidden unit that provides the next predicted position
of the cyclist at time Tw+1, given the past input position data from time T1:w.
During the training, we are only using the next step ahead of the input position
sequential data as our target. However, at the testing/inference stage, we are
recursively predicting any variable prediction horizon δ determined at the infer-
ence time. Regarding the training of our proposed models, we were minimizing
the mean squared error (MSE) as our loss function during the training. The
MSE loss function is calculated according to the following:

Fig. 3. Proposed framework for cyclist trajectory prediction based on stacked bidirec-
tional LSTM (B-LSTM) or unidirectional (U-LSTM) architectures. The input to our
framework at time step t is five past observations (ut−4:t) about cyclists’ positions. The
output is the future cyclist position at the next time step ahead (ut+1).

MSE =
1
N

N∑

i=1

(Ŷi − Yi)2 (7)

where N is the total number of training samples, Ŷi and Yi are the predicted
and target values for each training sample i, respectively. We utilized the Adam
algorithm [9] as our learning algorithm for optimizing the MSE loss function.
Adam is an extension of the traditional stochastic gradient descent algorithm [14]
but with less number of hyper-parameters which requires little tuning. As the
learning rate of Adam, we used value with 0.001. We trained proposed models
for total 500 epochs with a batch size of 64 training samples per each epoch.

4 Experiments

Throughout this section, we will first describe the dataset we used for training
and evaluating our proposed model. Then, we will give an overview of the prepa-
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ration and preprocessing stage we have done on the data before feeding them as
input to our models. Finally, we will compare the results of our models against
a number of baseline approaches from the literature.

4.1 Data Description

In order to evaluate the performance of our proposed models, we utilized the
recently published cyclist track dataset [13]. The dataset consists of cyclists
tracks that were extracted at 5 fps from the TDC benchmark dataset [11]. Based
on disparity maps and cyclists’ bounding boxes annotations, the dataset creators
obtained the sequence of lateral and longitudinal positions of the cyclists relative
to the ego-vehicle. The dataset was further annotated with road topology which
was used to determine the directions of the actual trajectories taken by the
cyclists. There are five direction classes annotated in the dataset according to
the cyclists’ trajectory direction, namely: straight, 90◦-right bend, 90◦-left bend,
45◦-right bend and 45◦-left bend. Additionally, the extracted cyclists’ tracks were
also spatially aligned relative to the topology of the road and its intersections.
The total number of cyclists tracks in the dataset are 119 trajectories (with 68
straight direction tracks, 17 90◦-right, 16 90◦-left, 10 45◦-right and 8 45◦-left).
They further split all the trajectories in the dataset that have a straight direction
label and last for more than 50 frames (10 s). As a result, the total number of
the trajectories in the dataset becomes 134 trajectories in total.

Fig. 4. An example of annotated trajectories from the cyclist track dataset [13].

4.2 Data Preparation

Before feeding the extracted trajectories from the cyclist track dataset to our
proposed framework. We firstly pre-process the trajectories to be in a format
accessible by our stacked LSTM layers. Since the length distribution of the total
134 trajectories varies from 4 to 89 positional observations per trajectory. Thus,
we firstly filtered out all trajectories with length less than 6 positional observa-
tions per trajectory, which resulted in a total number of 130 trajectories. Then,
we run a sliding window of size 6 overall the trajectories. We chose a sliding
window size of 6 because our proposed framework is expecting an input data of



292 K. Saleh et al.

Table 1. Performance of the different approaches over the cyclist track dataset accord-
ing to the average mean error (in meters) evaluation metric. Our proposed approaches
were evaluated over two different prediction horizons (5 or 15 steps ahead) of the
cyclists’ trajectories.

Approach 5 Steps Ahead (1 sec) 15 Steps Ahead (3 secs)

90◦ left 45◦ left Straight 45◦ right 90◦ right 90◦ left 45◦ left Straight 45◦ right 90◦ right

LDS [13] 1.75 1.15 1.19 1.23 2.36 - - - - -

U-MoLDS [13] 1.59 1.11 1.38 1.16 1.99 - - - - -

I-MoLDS [13] 1.51 1.10 1.20 1.08 1.88 - - - - -

MLP [20] 1.32 1.21 1.54 0.90 0.66 1.69 1.83 2.24 1.19 0.71

U-LSTM (proposed) 0.78 0.94 0.78 0.71 0.49 0.85 1.30 1.15 0.81 0.44

B-LSTM (proposed) 0.41 0.91 0.79 0.36 0.24 0.67 1.13 1.15 0.69 0.40

length (5) positional observations plus and an additional next (1) observation as
our target data. The sliding window had an overlapping offset value of 1.

Given the small number of cyclists trajectories exist in the cyclist track
dataset (only 130), we also similar to [13] adopted a Leave-One-Out (LOO)
cross-validation technique to split training and testing data splits. In the LOO
cross-validation, we train our proposed models on all the samples existing in the
dataset except one sample we leave it for testing. We then iteratively, repeat the
previous step by the number of the total samples (i.e 130), so that each sample
in the dataset got tested by a model trained only on the unseen other samples
of the dataset.

4.3 Results Analysis and Comparison

As we mentioned earlier, we used LOO as our cross-validation for evaluating
the performance of our proposed models. In order to quantify the effectiveness
of our proposed models, we used the average mean error similar to [13] as our
evaluation metric over all the cyclists’ trajectories. In Table 1, we present the
results of our proposed two models (U-LSTM and B-LSTM) for the cyclist tra-
jectory prediction task categorized based on the direction of the trajectories. We
evaluated our models over two different prediction horizons, namely short-term
one (1 sec or 5 steps ahead) and long-term one (3 secs or 15 steps ahead).

Furthermore, we compared the results of our proposed models against a num-
ber of baseline approaches that was utilized for trajectory prediction of VRUs
in the literature. The first baseline model is the linear dynamical system (LDS)
that was proposed in [13] for cyclist trajectory prediction. LDS is essentially a
constant-velocity based Kalman filter similar to the one used in [18] for pedes-
trian trajectory prediction. The LDS estimates the Gaussian distribution of the
future positions of the cyclists by recursively executing Kalman filter’s predict
step without its update step. As the name implies, LDS can only capture lin-
ear dynamics of motions done by the cyclists and will have harder times with
non-linear motions.

The second baseline model is another model proposed by [13], which is
referred to as an uninformed mixture of LDS (U-MoLDS). The U-MoLDS is
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combining 5 LDS models with different underlying dynamics according to the
five directions labeled in the cyclist track dataset. The U-MoLDS approach is
casting the motion direction of the cyclists as a latent variable with a uniform
prior distribution that they are trying to estimate online. Hence, the name unin-
formed. At the inference time, both distributions of the cyclist’s position and
the direction latent variable are estimated based on past observations.

Fig. 5. Lateral and longitudinal future positions prediction of our proposed stacked
LSTM models (B-LSTM&U-LSTM) over two different sample trajectories from the
cyclist track dataset [13] in comparison to the ground truth (GT) trajectories. The
prediction horizon of the predicted trajectories is 15 steps ahead (3 secs), however
since the GT trajectories themselves have length less than 15, thus the predictions are
clipped to match the GT length.

The third baseline approach, was also another model proposed in [13] and it
achieved the best scores in their experiments, and it is referred to as Informed
MoLDS (I-MoLDS). The I-MoLDS model is similar to U-MoLDS but with the
exception that it relies on a prior information regarding the road topology (i.e.
which direction existent in the cyclist trajectory). Thus, the prior distribution
over the direction of the cyclist is set to zero for road directions that are not
available in the topological labels of the cyclist’s trajectories. On the other hand,
the other directions have an equal distribution. Using this prior distribution with
the past observations about the cyclists’ trajectories, a mixture of Gaussians is
estimated according to the 5 different LDS models.

The last baseline approach we are comparing against is a data-driven app-
roach based on MLP. We implemented this model to mimic the one utilized
in [20] for the cyclist trajectory prediction from observations of a surveillance
camera at an intersection. Their MLP was consisting of only two layers with 20
hidden units in the first layer and 10 hidden units in the second layer.

As it is shown in Table 1, the four baseline approaches results are outlined
in terms of the average mean error (in meters) of the predicted trajectories over
two different prediction horizons (5 steps ahead and 15 steps ahead). It is worth
noting here, that the results of the first three baseline approaches were adopted



294 K. Saleh et al.

as they were reported in the author’s paper in [13]. We have made sure that
we are testing on their similar splits using the same technique for the cross-
validation (i.e. LOO). For the MLP baseline approach, we implemented it with
the same model specifications described in the author’s paper in [20].

From Table 1, it can be shown that our proposed models (specifically the B-
LSTM model) have achieved resilient results in terms of lower average mean error
and longer prediction horizons (up to 3 secs ahead). Moreover, our proposed mod-
els have also outperformed both the motion dynamics based approaches (namely,
LDS, U-MoLDS, and I-MoLDS) as well as other data-driven approaches (i.e.
MLP) with significant margins. Our models have also shown higher accuracy in
predicting the non-linear type of cyclists’ trajectories (right/left 45/90), while
on the contrary linear dynamics-based motion models were having a lot of chal-
lenges in predicting them. It is also worth mentioning that the best performing
dynamics-based motion models (i.e. U-MoLDS and I-MoLDS) were having a
prior information regarding the road topology while our proposed models did
not have such information during training or testing phases.

Additionally, in order to show the prediction capabilities of our proposed
models in Fig. 5 we are presenting the lateral and longitudinal predictions of the
future trajectories of two sample cyclists trajectories over two different directions
(straight and 90◦ left). As it can be seen, from the figures the B-LSTM model
have more robust results in comparison to the U-LSTM model especially in
the 90◦ left case. This is due to the expressiveness of bidirectional LSTM when
it comes to modeling complex non-linear sequential data as we discussed in
Sect. 3.3.

5 Conclusion

In this work, we have proposed two models based on stacked LSTM recurrent
neural networks for the cyclist trajectory prediction task in urban traffic environ-
ments. The proposed models have shown resilient results in terms of long-term
prediction horizons and lower mean prediction errors when evaluated on real
cyclist trajectory dataset. Additionally, the proposed models have been com-
pared against a number of the baseline approaches that have been proposed in
the literature for VRUs trajectory prediction. Our models have shown significant
improvements over these baseline approaches with more than 50% in mean error
score averaged over all the tested cyclists’ trajectories. Future directions would
be to investigate adding more input information to our B-LSTM model such as
semantic contextual information and inspect its performance.
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Abstract. The well-known Late Acceptance Hill Climbing (LAHC)
search aims to overcome the main downside of traditional Hill Climb-
ing (HC) search, which is often quickly trapped in a local optimum due
to strictly accepting only non-worsening moves within each iteration.
In contrast, LAHC also accepts worsening moves, by keeping a circu-
lar array of fitness values of previously visited solutions and comparing
the fitness values of candidate solutions against the least recent element
in the array. While this straightforward strategy has proven effective,
there are nevertheless situations where LAHC can unfortunately behave
in a similar manner to HC. For example, when a new local optimum is
found, often the same fitness value is stored many times in the array.
To address this shortcoming, we propose new acceptance and replace-
ment strategies to take into account worsening, improving, and sideways
movement scenarios with the aim to improve the diversity of values in
the array. Compared to LAHC, the proposed Diversified Late Accep-
tance Search approach is shown to lead to better quality solutions that
are obtained with a lower number of iterations on benchmark Travelling
Salesman Problems and Quadratic Assignment Problems.

Keywords: Local search · Late Acceptance · Diversification

1 Introduction

Local search algorithms are typically efficient and scalable approaches to solve
large instances of real world optimisation problems [9,13]. Such algorithms use
the following overall approach: starting from an initial solution, iteratively move
from one solution to another, with the aim to eventually arrive at a good solution.
The initial solution is often generated randomly or by using a specialised method.
Then, in each iteration, a candidate solution is obtained by modifying the current
solution using a perturbation method. If the candidate solution in a given iteration
satisfies a given acceptance criterion, it is used as the starting point for the
next iteration. Otherwise, the current solution in the given iteration becomes
the starting point for the next iteration. The traditional Hill Climbing (HC)
approach is a local search method that strictly uses a greedy strategy as its
c© Springer Nature Switzerland AG 2018
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acceptance criterion [3]. HC accepts the candidate solution only if its fitness
value is better (smaller in minimisation problems and larger in maximisation
problems) than that of the current solution. This greedy strategy typically leads
the search to quickly being trapped in a local optimum.

An important challenge in designing a local search algorithm is to find a
good balance between interleaving diversification and intensification phases dur-
ing search [13]. Diversification means exploring the solution space as widely as
possible, with the intent of ideally finding a globally optimum solution. In con-
trast, intensification means improving the current solution in order to converge
to the best local solution as quickly as possible. The perturbation method as
well as the acceptance criterion need to take this balancing issue into account.
As HC does not explore solutions that are worse than the current solution in
each iteration, HC uses a very high level of intensification at the cost of very low
level of diversification. Overall, the HC algorithm converges quickly to a local
optimum, but the quality of its solutions is often not high [6,7]. Diversification
strategies are hence necessary to provide better solutions.

There are well-studied acceptance criteria that, with the aim to avoid or
escape local optima, also accept worsening moves, rather than simply accepting
only better candidate solutions. Simulated Annealing (SA) [14] uses a stochas-
tic acceptance criterion, where worsening moves are accepted with a probability
based on the difference in the fitness values of the current solution and the
candidate solution, with the probability exponentially diminishing over time.
Threshold Acceptance (TA) [11] is a deterministic acceptance criterion, which
accepts worsening moves if the difference in the fitness values of the current and
the candidate solution is below a given threshold. The Great Deluge Algorithm
(GDA) [10,16,17] accepts worsening moves if the fitness value of the candidate
solution is below a given level. Each of the above acceptance criteria has a
parameter whose initial value and a variation schedule must be defined before-
hand. Unfortunately, obtaining a suitable initial value and variation schedule
is difficult to achieve, and is often problem domain dependent and/or problem
instance dependent [5,7,16]. This can make practical use of SA, TA and GDA
quite finicky.

In contrast to the above approaches, Late Acceptance Hill Climbing (LAHC)
search [6,7] is a relatively straightforward technique which deterministically
accepts worsening moves and has no complicated parameters. An array with
a predefined length stores the fitness values of previously visited solutions. Fit-
ness values of candidate solutions are compared against the least recent element
in the array. Since the fitness values from previous iterations can be worse than
that of the current solution, a candidate solution that is worse than the current
solution can be accepted. As the search progresses, the array is deterministi-
cally updated with fitness values of new solutions. The use of the fitness array
thus brings about search diversity. The larger the length of the array, the bet-
ter the diversity level. Overall, LAHC exhibits better diversification in terms of
the explored solutions and provides solutions which typically have higher qual-
ity than HC [6,7]. Moreover, LAHC has been successful in several optimisation
competitions [2,19], and has been used in real world applications [18].
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Despite the promising aspects of LAHC, in this work we observe that there
are situations where LAHC can unfortunately behave in a similar manner to
HC, even when using a large fitness array. For example, when the same fitness
value is stored many times in the array, particularly when a new local optimum
is found. In this case, the fitness values in the array are iteratively replaced with
the new local optimum fitness value, thereby reducing diversity.

To address the above shortcoming, we propose a new search approach termed
Diversified Late Acceptance Search (DLAS). With the aim to improve the overall
diversity of the search, the approach uses: (i) a new acceptance strategy which
increases diversity of the accepted solutions, and (ii) a new replacement strategy
to improve the diversity of the values in the fitness array by taking worsening,
improving, and sideways movement scenarios into account.

Section 2 overviews the LAHC algorithm and discusses its problems. Section 3
presents the proposed DLAS algorithm. Section 4 provides comparative eval-
uations on benchmark Travelling Salesman Problems (TSPs) and Quadratic
Assignment Problems (QAPs). The main findings are summarised in Sect. 5.

2 Late Acceptance Hill Climbing

Local search algorithms start from an initial solution S0. The current solution
Sk in each iteration k is then modified by a given perturbation method M to
generate a new candidate solution S′

k = M(Sk). Next, using a given acceptance
criterion A, the candidate solution S′

k is either accepted or rejected, meaning
either Sk+1 = S′

k if A(k) = true, or Sk+1 = Sk if A(k) = false. Assume Fk and F ′
k

denote the fitness values of solutions Sk and S′
k, respectively. For convenience,

we assume minimisation problems, where one solution is better than the other if
fitness value of the former is less than that of the latter. In HC, A(k) = true iff
F ′
k ≤ Fk, and so Fk ≥ Fk+1 for all k ≥ 0. Hence HC accepts only non-worsening

moves, i.e., sideways moves or improving moves.
The most recent version of LAHC [7] accepts candidate solution S′

k if its
fitness value F ′

k is better than or equal to the fitness value Fk of the current solu-
tion Sk, as in HC. Furthermore, for a given history length L, candidate solution
S′
k is accepted if its fitness value F ′

k is better than the fitness value Fk−L of the
then current solution Sk−L at iteration k−L ≥ 0. In other words, A(k) = F ′

k ≤ Fk

or F ′
k < Fk−L for k ≥ L. Since Fk−L is usually (not always as in HC) greater

than Fk, the candidate solution S′
k can be accepted at iteration k ≥ L, even if

F ′
k > Fk. LAHC thus accepts worsening moves like TA and GDA and thereby

aims to avoid or escape from local minima. Overall, LAHC exhibits better diver-
sification level with a larger L [4,7], as this allows comparison with further earlier
solutions which are most likely further worse as well.

Figure 1 shows the pseudo code for LAHC. To achieve memory efficiency,
a circular fitness array Φ of size L stores fitness values of previous L solutions.
Initially all values in Φ are set to the initial F , i.e., F0 (line 4). Note that F , F ′, S

and S′ at each iteration k in Fig. 1 correspond to Fk, F ′
k, Sk and S′

k, respectively.
A candidate solution S′ is accepted if F ′ ≤ F or F ′ < Φ[l] where l = k mod L
(lines 9–10). The value in Φ[l] is replaced by F whenever F < φ[l] (lines 13–14).
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2.1 Problems with LAHC

We have empirically observed that for some problems LAHC unfortunately
behaves in a similar manner to HC and does not accept worsening moves. Fig-
ures 3 and 4 show typical search progress trend while solving the benchmark
U1817 TSP instance (see Sect. 4 for TSP details). A similar pattern is seen in
other benchmark instances. For a small value of L, LAHC is quickly trapped
in a local optimum, leading to poor quality solutions. Even using restart tech-
niques may not help to obtain higher quality solutions [4,7]. For larger values of
L the search is less prone to trapping, but this comes at the cost of slow conver-
gence speed; the solution quality can be poor if not enough time is allotted. This
characteristic of LAHC makes it less useful for applications in time-constrained
systems where a high-quality solution must be found quickly.

The poor performance of LAHC is due to the following reasoning. Consider
the LAHC algorithm in Fig. 1. Assume that in a given iteration, all the values
in the fitness array Φ are equal to the fitness value F∗ of a newly found best
solution S∗, where S∗ is a hard-to-improve or a local optimum solution. This
happens when a new overall best solution S∗ with fitness value F∗ is found and
F remains to be equal to F∗ for at least L consecutive iterations. In this case,
no worsening moves with larger fitness values than F∗ will be accepted anymore,

1 proc LAHC
2 Initialise curr solution S, compute F
3 Specify length L for fitness array Φ
4 forall l ∈ [0, L), Φ[l] ← F
5 k ← 0, S∗ ← S, F∗ ← F // best S∗
6 while termination-criteria // iter k
7 S′ ← M(S), compute F ′ // perturb
8 l ← k mod L
9 if F ′ ≤ F or F ′ < Φ[l]
10 S ← S′, F ← F ′ // accept
11 if F < F∗
12 S∗ ← S, F∗ ← F // new best
13 if F < Φ[l]
14 Φ[l] ← F // replace in Φ
15 k ← k + 1
16 return S∗, F∗

Fig. 1. Late Acceptance Hill Climbing
(LAHC) algorithm, adapted from [7].

1 proc DLAS
2 Initialise curr solution S, compute F
3 Specify length L for fitness array Φ
4 forall l ∈ [0, L), Φ[l] ← F
5 Φmax ← F , N ← L
6 k ← 0, S∗ ← S, F∗ ← F // best S∗
7 while termination-criteria // iter k
8 F − ← F // previous
9 S′ ← M(S), compute F ′ // perturb
10 l ← k mod L
11 if F ′ = F or F ′ < Φmax
12 S ← S′, F ← F ′ // accept
13 if F < F∗
14 S∗ ← S, F∗ ← F // new best
15 if F > Φ[l]
16 Φ[l] ← F // replace in Φ
17 else if F < Φ[l] and F < F −

18 if Φ[l] = Φmax
19 N ← N − 1 // decrement
20 Φ[l] ← F // replace in Φ
21 if N = 0
22 compute Φmax,N // recompute
23 k ← k + 1
24 return S∗, F∗

Fig. 2. Proposed Diversified Late Accep-
tance Search (DLAS).
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Fig. 3. Search progress for the first
150 s while solving the benchmark
U1817 TSP instance via LAHC with L
∈ {5, 5000, 50000}. Further progress is
shown in Fig. 4. (To aid clarity, results
for DLAS are not shown as they effec-
tively cover LAHC with L=5 at the
given scale.)

Fig. 4. Search progress of LAHC and
DLAS with various L values in later
iterations of solving the U1817 instance.
LAHC with L=5 converges quicker than
LAHC with L=50000, but obtains a worse
solution. DLAS with L=5 obtains a better
solution than LAHC. Furthermore, DLAS
with L=5 converges much quicker than
LAHC with L=50000.

and if S∗ is a local optimum then the search is trapped in that solution. Clearly,
this is the situation HC reaches when it is trapped in a local optimum. In Sect. 4
we show that even when using a large value for L, LAHC behaves like HC in
solving many problems in a large proportion of the iterations.

3 Proposed Diversified Late Acceptance Search

We propose a new search approach that aims to obtain high diversity level
and high convergence speed, all while not suffering from the abovementioned
drawbacks of LAHC. We have termed the proposed method as Diversified Late
Acceptance Search (DLAS). We overview the approach as follows. We aim to
keep or obtain larger fitness values in the fitness array when the search encoun-
ters non-improving moves (diversification). Furthermore, we cautiously replace
large fitness values with small values when the search accepts improving moves
(intensification). Lastly, our acceptance criterion is more relaxed than LAHC
(diversification).

3.1 Acceptance Strategy

Comparing the fitness values of the candidate solutions with a larger value than
Φ[l] (with l = k mod L) arguably increases diversity of accepted solutions. Our
acceptance strategy is to compare the fitness value F ′ of the candidate solution
S′ in each iteration k with the maximum fitness value in the fitness array Φ,
instead of comparing it just with Φ[l]. The new candidate solution S′ would be
accepted if F ′ = F or F ′ < Φmax, i.e., the maximum value in the fitness array Φ.
The first condition allows accepting new candidate solutions with fitness values
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equal to Φmax when all the values in Φ are the same, especially in the initial and
final iterations of the search. Accepting candidate solutions with smaller fitness
values than Φmax in other iterations increases the level of acceptable worsening
moves and thereby increases the diversity level of the search. Section 3.3 shows
how to efficiently find and maintain the maximum value in Φ.

3.2 Replacement Strategy

Our proposed replacement strategy has two parts. In the first part, if the fitness
value F of the new current solution S is larger than Φ[l], the value in Φ[l] is always
replaced by F . Such a replacement is avoided in the most recent version of LAHC
to increase intensification of the search. However, this replacement increases the
probability of accepting more worsening moves in future iterations and thereby
can result in better final solutions. In the second part, if F is smaller than Φ[l],
the replacement must be done just when F is smaller than the previous value
of F as well. Such a replacement strategy avoids replacing other large values in
the fitness array in a series of consecutive steps if the search falls in a plateau or
local optimum.

We note that the combination of the above two replacement approaches is
new and is different from replacing just in acceptance or just in improving moves.
An illustration of the proposed method, especially the replacement strategy, is
given in Sect. 3.4.

3.3 Diversified Late Acceptance Search

Figure 2 shows the pseudo code for the proposed method using the above accep-
tance and replacement strategies. Variables Φmax and N in Fig. 2 are respectively
always equal to the maximum value in the fitness array and the number of occur-
rences of that value in the array. In line 5, Φmax and N are initialised by F and
L. In every iteration in line 8, F − holds the previous value of F . In line 11, new
candidate solution S′ is accepted if F ′ = F or F ′ < Φmax. In line 15, if F > Φ[l],
replacement is made. Otherwise, in line 17, if F < Φ[l] and F < F −, replacement
is made. However, before making the replacement this time, if Φ[l] is equal to
Φmax, N is decremented by one. In line 21, if N is zero, the values of Φmax and
N are recomputed by checking all the values in the fitness array.

3.4 DLAS Replacement Scenarios

Figure 5 shows eight possible combinations of values of F , F− and Φ[l] compared
to each other and corresponding replacement rules.

Worsening Moves. In cases (1)–(3) in Fig. 5, worsening moves take place. In
case (1), the fitness value of the new current solution F is still smaller than
Φ[l]. In this case, contrary to LAHC, replacement is not allowed in the proposed
DLAS method. This avoidance of replacement actually preserves the large values
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Fig. 5. All possible combinations of values of F , F − and Φ[l] compared to each other
and corresponding replacement rules in the proposed DLAS approach. See the text for
details.

in the fitness array Φ when DLAS does not improve the current solutions in some
consecutive iterations, and at the same time the fitness values of the new worse
solutions are not larger than the corresponding values in the fitness array Φ. In
cases (2) and (3), the fitness value of the new current solution F is greater than
Φ[l]. In both these cases, contrary to LAHC, replacement is allowed in DLAS to
increase diversity of values in the fitness array Φ.

Improving Moves. In cases (5)–(7), improving moves take place. In cases (5)
and (6), the fitness value of the new current solution F is smaller than Φ[l]. In
both these cases, as in LAHC, replacement is allowed to optimistically increase
the intensification of the search. In case (7), the fitness value of the new current
solution F is still greater than Φ[l]. Contrary to LAHC, replacement is allowed
in DLAS to increase diversity of values in the fitness array.

Sideways Moves or Rejected Moves. In cases (4) and (8), there are two pos-
sible outcomes: a candidate solution is not accepted, or a sideways move occurs.
In case (4), the fitness values of the previous and the new current solutions, i.e.,
F− and F , are greater than Φ[l]. In this case, contrary to LAHC, replacement is
allowed in DLAS to increase diversity of the accepted solutions in future itera-
tions. In case (8), the fitness values of the previous and the new current solutions
are smaller than Φ[l]. In this case, contrary to LAHC, replacement is not allowed
in DLAS. This avoidance of replacement actually avoids replacing all the values
in the fitness array Φ in consecutive iterations when DLAS falls in a plateau or
local optimum.
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4 Comparative Evaluation

In this section we evaluate the performance of the proposed DLAS method, the
most recent version of LAHC (as described in Sect. 2), and the recently proposed
Step Counting Hill Climbing (SCHC) [8]. All experiments were ran on the same
computing cluster with a 500 Mb memory limit. Each node of the cluster is
equipped with Intel Xeon CPU E5-2670 processors running at 2.6 GHz.

In SCHC a fitness bound and a counter limit are used instead of a fitness
array. The fitness bound is initialised by the fitness of the initial solution and
the counter limit is similar to the length of the fitness array. In each iteration,
a candidate solution is accepted if its fitness is equal to or better than that of
the current solution or better than the fitness bound. Whenever the number of
iterations becomes a factor of the counter limit, the fitness bound is made equal
to the fitness of the current solution.

The proposed DLAS algorithm, as well as LAHC and SCHC, are general pur-
pose local search algorithms for solving any optimisation problem. Hence, we use
sets of Travelling Salesman Problems (TSPs) and Quadratic Assignment Prob-
lems (QAPs) just to compare the relative performance of the three algorithms,
and not to improve the best known solutions for the individual problems.

4.1 Time Cutoff and Fitness Array Length

To provide a fair comparison, we use time cutoff as the stopping condition.
However, as each instance has its own size and complexity level, we decided to
solve all of them first with LAHC using a reasonably large fitness array size L.
We initially performed 50 runs of the LAHC algorithm (with L=50000) on each
instance, with the stopping condition as getting trapped in a local optimum for
at least 10% of the total running time. Then we took the longest running time
across the 50 runs as the cutoff time for each instance. We then ran all three
algorithms with just the cutoff time as the stopping condition 50 times for each
unique value for L.

The reported results in the following subsections are the averages of 50 runs
on each instance using the best performing value for L. For example, Fig. 4
compares LAHC and DLAS algorithms in the later steps of solving U1817 TSP
instance using various values for L. The figure shows that given 290 s as the
cutoff time for this instance, L=50000 and L=5 are the best values for LAHC
and DLAS algorithms, respectively.

4.2 Experiments on TSP Instances

Every TSP instance includes a set of cities or points on a map. The cities are
all connected with each other by symmetric roads of given distances or lengths.
The goal of solving such a TSP instance is to find the shortest closed tour that
includes all the cities such that every city is visited exactly once. We took all the
symmetric Euclidean distance TSP instances with 1,000 to 10,000 cities from the
well-known TSPLIB benchmark dataset at http://comopt.ifi.uni-heidelberg.de/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Table 1. Results on TSP instances for LAHC and SCHC with L=50000, and DLAS
with L=5. In the first column, the size of each instance is the number in the name of
the instance, which indicates the number of cities. The 2nd column is the best known
solution cost reported in the literature. The 3rd column is the time cutoff value used
by all methods. The 4th column shows the deviations of the best solution cost from
the best known solution cost. The 5th column shows the time spent by each algorithm
to find the best solution. The 6th column shows percentage of iterations in which each
algorithm undesirably behaves like HC. Shading denotes winning numbers where the
differences are statistically significant.

Instance

name

Best known

sol. cost

Time

cutoff

Dev. from the best

known solution

Time to find the

last best sol.

% of iterations

behaving like HC

LAHC SCHC DLAS LAHC SCHC DLAS LAHC SCHC DLAS

Dsj1000 18659688 100 924536 705626 339555 80 66 52 21 36 0

Pr1002 259045 120 6265 6552 4795 78 63 51 37 47 0

U1060 224094 150 4560 5647 4193 84 68 55 45 54 0

Vm1084 239297 155 5884 6593 5927 79 65 51 51 60 0

Pcb1173 56892 160 1910 2118 1306 81 77 49 52 52 0

D1291 50801 165 2612 1856 1404 111 88 93 35 49 0

Nrw1379 56638 177 2024 2159 1180 117 93 90 37 51 0

Fl1400 20127 180 290 324 901 116 92 33 43 57 0

U1432 152970 200 3513 4139 2022 125 114 176 45 55 0

Fl1577 22249 250 466 524 634 153 139 108 50 57 0

D1655 62128 270 2424 2464 1550 153 120 160 43 59 0

Vm1748 336556 280 10328 11009 8967 163 125 173 45 59 0

U1817 57201 290 2320 2461 1450 189 146 244 41 59 0

D2103 80450 309 5846 6137 2660 194 161 279 39 47 0

U2152 64253 320 2598 2956 1350 211 198 292 46 51 0

U2319 234256 350 3625 3837 2557 258 228 347 45 56 0

Pr2392 378032 370 19557 16025 9003 238 167 274 40 58 0

Pcb3038 137694 521 6530 7118 3116 324 267 384 42 51 0

Fl3795 28772 1110 1542 1547 1202 802 769 666 65 72 0

Fnl4461 182566 1150 9607 10558 3978 454 419 940 62 69 0

Rl5915 565530 1200 36974 39929 19232 718 613 1198 48 59 0

Rl5934 556045 1320 35718 38535 34863 812 664 814 46 60 0

Pla7397 23260728 2545 962561 990251 916947 1926 1818 2542 59 70 0

software/TSPLIB95/. We used the same source code and the same perturba-
tion heuristic provided by the authors of [7] for solving the TSP instances. The
perturbation heuristic randomly divides a given tour into two parts and then
reverses one part [15].

Table 1 shows the results on TSP instances using LAHC and SCHC with
L=50000 and DLAS with L=5. The size of each instance is the number in
the name of the instance, which indicates the number of cities. In 20 out of 23
instances, the proposed DLAS method with L=5 has found better solutions than
both LAHC and SCHC with L=50000. In 17 of those instances the differences
are statistically significant based on t-test with the confidence level of 0.95. The
results also show that in small instances (with small number of cities), DLAS
finds better solutions in less time, while in large instances it does not get trapped
in a local optimum quickly and continues to search for a better solution. For

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Fig. 6. Search progress for the first
360 s while solving the benchmark
Fnl4461 TSP instance via HC, LAHC
and SCHC with L=50000, and DLAS
with L=5.

Fig. 7. As per Fig. 6, but in later iter-
ations. The proposed DLAS approach
obtains a better solution than HC, LAHC
and SCHC. Furthermore, DLAS con-
verges quicker than LAHC.

example, for the largest instance in the last line of the table with the time cutoff
of 2545 s, LAHC and SCHC are quickly trapped in a local optimum and cannot
improve their last found solutions. In contrast, the proposed DLAS method
continues to improve its solutions until almost the end of the cutoff time.

The results also show that even when using a very large value for L in LAHC
and SCHC, in about half of the iterations (especially for large instances), LAHC
and SCHC undesirably behave like HC. This includes iterations in which the
maximum value in the fitness array in LAHC and the fitness bound in SCHC are
equal to the last found best solution. In contrast, the percentage of iterations in
which DLAS behaves like HC is zero. In other words, even when using very small
fitness arrays, there is always room for worsening moves to be accepted by DLAS.
This indicates that the combination of the new acceptance and replacement
strategies in DLAS is more effective in increasing the diversity level of the search
than just increasing the length of the fitness array.

Figures 6 and 7 show that DLAS with L=5 has a high convergence speed
(due to the small fitness array size) and converges almost as fast as HC. It also
shows that DLAS with L=5 ends up with a better solution than LAHC and
SCHC with L=50000, and HC for the Fnl4461 instance.

4.3 Experiments on QAP Instances

Every QAP instance includes two same-size sets of locations and facilities. The
locations are all connected with each other by symmetric links of given distances
or lengths. There is a flow between every pair of facilities with a given weight.
The goal of solving such a QAP instance is assigning each facility to a location
such that the sum of weights of flows between every two facilities multiplied by
the distances between their assigned locations is minimised.

We took all QAP instances with at least 80 locations and facilities from
the well-known QAPLIB benchmark dataset at http://anjos.mgi.polymtl.ca/
qaplib/. We used the same source code and the same perturbation heuristic pro-
vided in http://mistic.heig-vd.ch/taillard/ for solving the QAP instances. The

http://anjos.mgi.polymtl.ca/qaplib/
http://anjos.mgi.polymtl.ca/qaplib/
http://mistic.heig-vd.ch/taillard/
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Table 2. Results on QAP instances for LAHC and SCHC with L=50000, and DLAS
with L=10. The size of each instance is the number in the name of the instance, which
indicates the number of locations or facilities. Explanations for the other columns are
as per Table 1.

Instance

name

Best known

sol. cost

Time

cutoff

Dev. from the best

known solution

Time to find the last

best sol.

% of iterations

behaving like HC

LAHC SCHC DLAS LAHC SCHC DLAS LAHC SCHC DLAS

Lipa80a 253195 20 1607 1564 1411 14 11 8 1.3 0.3 0.0

Tai80a 13499184 21 330957 354263 264177 15 12 15 0.5 0.0 0.0

Lipa80b 7763962 26 39769 190699 0 22 17 8 8.0 28.5 0.0

Tai80b 818415043 27 4227835 3574665 979737 20 17 6 8.1 16.8 0.0

Sko81 90998 24 222 178 113 19 16 5 4.7 14.8 0.0

Lipa90a 360630 23 2045 2024 1893 19 15 13 0.0 1.0 0.0

Lipa90b 12490441 36 51015 20709 0 29 22 11 15.0 33.2 0.0

Dre90 1838 35 1575 1615 1450 16 12 8 0.0 6.3 0.0

Sko90 115534 28 321 310 219 26 21 8 1.2 10.0 0.0

Sko100a 152002 40 190 239 218 32 25 11 4.6 16.8 0.0

Tai100a 21052466 35 460894 486157 378092 23 18 29 0.0 0.9 0.0

Sko100b 153890 52 175 173 160 30 24 10 9.3 16.0 0.0

Tai100b 1185996137 55 2711882 2823207 5124004 34 29 13 12.6 38.3 0.0

Sko100c 147862 42 147 132 121 32 26 11 6.6 15.6 0.0

Sko100d 149576 42 241 246 245 30 24 10 10.7 23.8 0.0

Sko100e 149150 42 150 165 156 31 25 10 5.8 19.7 0.0

Sko100f 149036 42 237 232 204 33 26 11 7.7 16.9 0.0

Wil100 273038 35 149 171 241 32 26 10 2.5 12.8 0.0

Dre110 2264 37 2031 2057 1782 25 19 18 1.7 4.9 0.0

Esc128 64 21 0 0 0 6 5 0.3 70.0 77.0 0.0

Dre132 2744 65 2522 2543 2140 39 30 39 4.7 10.8 0.0

Tai150b 498896643 105 1511339 1669639 2641722 73 61 56 9.2 22.8 0.0

Tho150 8133398 130 9615 9282 6894 80 65 79 14.1 23.8 0.0

Tai256c 44759294 60 128527 132333 134885 35 27 54 16.9 30.9 0.0

perturbation heuristic randomly selects two locations and swaps their assigned
facilities.

Table 2 shows the results on QAP instances using LAHC and SCHC with
L=50000 and DLAS with L=10, respectively. In 15 out of 24 instances, the
proposed DLAS method with L=10 found better solutions than both LAHC and
SCHC with L=50000. In 10 of those instances the differences are statistically
significant based on t-test with the confidence level of 0.95. Notably, the results
also show that in most of the instances, especially small ones, DLAS finds better
solutions in considerably less time. The last column shows that even using a very
large value for L, in about 10% of the iterations LAHC behaves like HC. For
SCHC, it is about 20%. In contrast, the percentage of iterations in which DLAS
behaves like HC is zero.

5 Main Findings

The well-known Late Acceptance Hill Climbing (LAHC) search algorithm strives
to escape or avoid local optima by deterministically accepting worsening moves.
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LAHC stores fitness values of a predefined number of previous solutions in a
fitness array and compares fitness values of candidate solutions against the least
recent element in the array, rather than simply against the fitness value of the
current solution. The fitness values stored in the array are deterministically
replaced as the search progresses. Unfortunately, the behaviour of LAHC can
become similar to that of traditional Hill Climbing search (i.e., getting trapped
in a local minimum) when the same fitness value is stored many times in the
fitness array, particularly when a new local optimum is found.

To address the above issue, we have proposed: (i) a new acceptance strategy
which increases diversity of the accepted solutions, and (ii) a new replacement
strategy to improve the diversity of the values in the fitness array by taking
worsening, improving, and sideways movement scenarios into account. These
strategies improve the overall diversity of the search.

The proposed Diverse Late Acceptance Search (DLAS) method is shown to
outperform the current state-of-the-art LAHC method on benchmark Travelling
Salesman Problems and Quadratic Assignment Problems. The combination of
the new acceptance and replacement strategies in DLAS is more effective in
increasing the diversity of the search than just increasing the length of the fitness
array, and can lead to better quality solutions that are obtained with a lower
number of iterations (i.e., less time).

Future avenues of exploration include comparative evaluation of DLAS
against other LAHC variants [1], as well as evaluation on other optimisation
problems such as high-school timetabling [5,12].
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Abstract. Combinatorial optimisation is often needed for solving real-
world problems, which are often NP-hard so exact methods are not suit-
able. Instead local search methods are often effective to find near-optimal
solutions quickly. However, it is difficult to determine which local search
with what parameter setting should be optimal for a given problem.
In this study two complex combinatorial optimisation are used, Multi-
capacity Bin Packing Problems (MCBPP) and Google Machine Reas-
signment Problem (GMRP). Our experiments show that no single local
search method could consistently achieve the best. They are sensitive
to problem search space and parameters. Therefore we propose a hyper
heuristic based method, which automatically selects the most appropri-
ate local search during the search and tune the parameters accordingly.
The results show that our proposed hyper-heuristic approach is effective
and can achieve the overall best on multiple instances of both MCBPP
and GMRP.

1 Introduction

Combinatorial optimisation problems (COPs) appear in a wide range of real
world scenarios for example resource allocation, job scheduling and journey plan-
ning. COPs are often NP-hard hence not suited for exact methods which are to
find the actual optimal solution. Instead approximation or heuristic algorithms
that can obtain near-optimal solutions quickly are far more practical especially
when the problem instance is sizeable. Various local search algorithms have been
introduced for COPs in the literature [8,9,11–16]. They are effective on a variety
of problems. However there is no single local search algorithm that can perform
the best across different types of COPs.

Different local search algorithms are designed based on different mechanisms
which might be more suitable for some kind of scenarios over others. It is dif-
ficult to determine which local search should be the optimal for a given prob-
lem. Furthermore local search algorithms often have their own components and
parameters that can affect the search process and the final outcome. Selecting
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 312–317, 2018.
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and tuning these components and parameters to reach the optimal combina-
tion could be challenging as well. To illustrate the aforementioned phenomenon,
we study two well-known complex COPs: Multi-capacity Bin Packing Problems
(MCBPP) and Google Machine Reassignment Problem (GMRP). A range of
local search methods with different parameters were applied aiming to search for
the best combination which may consistently perform the best on all instances
on these two problems.

Furthermore we propose a hyper-heuristic method which adaptively select
local search algorithms and adjust parameters. The aim is to establish a more
generic yet effective approach which introduces auto-selection and tuning for
COPs. It is an evolutionary hyper-heuristic approach, which selects local search
and sets parameters by two levels of hyper-heuristics. An adaptive diversity strat-
egy is introduced to guide the search at both levels. Two levels of hyper-heuristic
interact with each other through a sharing mechanism so high-quality solutions
can be shared. To test the generality, consistency and performance of the pro-
posed methodology, two typical combinatorial optimisation problems, MCBPP
and GMRP, used in this study. For more details about these two MCBPP and
GMRP, please refer to [2,6,7,10].

The remainder of the paper is organised as follows: Local search methods are
given is Sect. 2. The details of the proposed algorithm are given in Sect. 3. Then
Sect. 4 explains our experimental setup, while Sect. 4.2 shows and discusses the
results. The conclusions were presented in Sect. 5.

2 Local Search Methods

In this work, five local search methods are commonly used in various combi-
natorial optimisation problems. For the MCBPP and GMRP, they are selected
as good candidate algorithms. These are Simulated Annealing (SA) [4], Iterated
Local Search (ILS) [5], Late Acceptance Hill Climbing (LAHC) [1], Great Deluge
(GD) [3] and Steepest Descent (SD).

3 Hyper Heuristic Method

Selecting the most suitable local search and tuning the setting are non-trivial
as the choices depend on factors like problems characteristics, constraints and
environment changes. Hence a population based hyper-heuristic approach is pro-
posed which aims to automate the selection and tuning local search as a single
search method can not guarantee optimal for different problems and different
instances of a same problem.

Hyper-heuristic is to find problem-solving methods rather than problem
solutions. A typical hyper-heuristic methodology often accomplishes this task
through a high-level strategy and low-level heuristics. The high-level strategy is
problem independent and involves two key components, heuristic selection strat-
egy and acceptance criterion. The low-level heuristic is problem dependent and
consists of various set of operators that work directly on the solution space of
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the given problem. The high-level strategy selects and determines which low-level
heuristic should be used to generate a new solution.

The hyper-heuristic method proposed in this study also follows the above
principle. It has two main component where the first one focuses on local search
selection while the second on the internal components of the selected search.
They are denoted as HH LS and HH OP respectively, which stand for Local
Search and Operation Components. Both use the aforementioned two-level hyper
heuristic structure. Both use roulette wheel as the selection mechanism. HH LS
to select a local search while HH OP to select components for a local search.

3.1 HH LS

The candidate low level heuristics are the five local searches: Simulated Anneal-
ing (SA), Iterated Local Search (ILS), Late Acceptance Hill Climbing (LAHC),
Great Deluge (GD) and Steepest Descent (SD).

3.2 HH OP

For this component, the low level heuristics are a range of operators that can
generate neighbourhood solutions. New solutions are reached by modifying the
current solution, while observing all constraints. These operators are Single swap,
Double swap, Single move, Double move, Swap-Move, Move-Swap and Big pro-
cess (item).

3.3 Population of Heuristics

Our hyper heuristic search is population based. Initial solutions are randomly
created and the feasible ones are used to fill the initial population for both
HH LS and HH OP. Similar to other evolutionary search methods, this is to take
advantage of population to better cover the search space hence better explore
different areas so a better solution could be found.

4 Experiments

This section is divided into two subsections. The first subsection presents the
parameters settings of local search. The second subsection is to evaluate the
proposed hyper-heuristic method against local search algorithms. Experiments
are evaluated on size 25 class 6 and a1 3 instances from MCBPP and GMRP,
respectively.

4.1 Settings

The proposed hyper-heuristic relies on some parameters. The values of these
parameters were carefully selected based on our preliminary experiments over
both problems. In our preliminary experiments, we tested the proposed algorithm
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30 independent runs with different parameters combination using different values
for each parameter. The values of these parameters are determined one by one
through manually changing the value of one parameter, while fixing the others.
Then, the best values for all parameters are recorded. The maximum execution
time fixed to 5 min for each instance. After a series of experiments, the final
parameter values of each local algorithm are settled and presented in Table 1. It
can be seen that large effort is needed to this type of tasks. Also when instance
changes, there is no guarantee that these parameters would still remain the most
suitable setting. Therefore an automated approach to fill the gap would more be
high desirable. This is the motivation of the proposed hyper-heuristic method
and the sequent study in the next part.

Table 1. Optimal parameter settings of the LS algorithms based on the experiments

Parameter Tested range Suggested value

Initial temperature (t) for SA 106–1010 108

α for SA 0.6–0.8 0.7

Local search termination criterion for ILS 5–20 10

Perturbation size for ILS 2%–10% 5%

List size (Lsize) for LAHC 10–25 20

Iteration counter (I) for LAHC 5–15 10

Number of iterations NI for GD 500–1500 1000

Number of iterations NI for SD 5–15 10

4.2 HH Results and Comparison

Our proposed method is denoted as HH, which is compared with local search
LAHC, SA, GD, ILS and SD. To ensure a fair comparison the initial solution,
number of runs, stopping condition and computer resources are the same for all
instances and all algorithms. All algorithms (LAHC, SA, GD, ILS and SD) have
been executed 31 independent runs over instances from MCBPP and GMRP. The
best results of LAHC, SA, GD, ILS and SD on MCBPP and GMRP instances
are presented in Tables 2 and 3 respectively. On these two tables, the best result
which is the lowest on that row is highlighted in bold. Some rows have multiple
cells in bold as several methods achieved the same best. In addition, the best
result among the five local search algorithms, LAHC, SA, GD, ILS and SD,
excluding HH is marked in italic font and with a pair of square brackets.

From the two tables, we can clearly see that when using a single local search
algorithm, there is no single method can consistently perform better than others.
All these five algorithms achieved 2 best results on MCBPP. Similarly on GMRP,
these methods also achieved the best on different instance, except SD. The results
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Table 2. Comparing LAHC, SA, GD, ILS, SD and HH on MCBPP instances

Size Class LAHC SA GD ILS SD HH

25 1 107 105 112 [97] 112 79

25 6 130 [128] 134 132 139 118

25 7 130 128 [126] [126] 140 109

25 9 116 110 [106] 111 124 88

24 10 [116] 125 118 117 129 91

50 1 202 [197] 213 204 218 169

50 6 390 398 401 [382] 499 309

50 7 [224] 237 236 228 230 205

50 9 199 194 [188] 191 [188] 159

51 10 209 209 213 216 [204] 189

Table 3. Comparing LAHC, SA, GD, ILS, SD and HH on GMRP instances

LAHC SA GD ILS SD HH

a1 1 44,306,501 44,306,501 44,307,107 44,306,874 44,306,805 44,306,501

a1 2 777,533,321 777,533,313 821,045,884 788,073,130 830,249,792 777,533,332

a1 3 583,006,901 583,416,998 [583,006,826 ] 583,009,451 583,416,992 583,005,861

a1 4 251,015,641 251,015,653 280,990,927 260,693,289 328,814,634 244,875,916

a1 5 727,579,557 727,579,558 727,579,618 727,578,369 727,579,212 727,578,396

are based on prior tuned parameters which are optimal for these algorithms.
Problem instances affect their performance.

On the other hand, the proposed HH method performed very well. It con-
sistently achieved the best on all MCBPP instances. On GMRP instances HH
achieved the best on 3 out of 5. HH’s results on a1 2 and a1 5 are not the best,
but just marginally behind the best results. Its overall perform on GMRP is still
the best.

5 Conclusion

In this study we investigated the effectiveness of different local search algorithms
on combinatorial optimisation problems, namely Multi-capacity Bin Packing
Problems (MCBPP) and Google Machine Reassignment Problem (GMRP).
Through our experiments it can be seen that the performance of a local search is
affected by its parameters. Different local search may cope with different problem
instances, e.g. different search space, differently. Hence there is a big advantage
in establishing an adaptive method which can automatically select the most
appropriate local search during the search and tune the parameters. The exper-
imental results show that our proposed hyper-heuristic approach is effective and
can achieve the overall best on multiple instances of both MCBPP and GMRP.
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Abstract. Distributed model predictive control explores an array of
local predictive controllers that synthesize the control of subsystems
independently yet they communicate to efficiently cooperate in achiev-
ing the closed-loop control performance. Distributed model predictive
control problems naturally result in sequential distributed optimization
problems that require real-time solution. This paper presents a collective
neurodynamic approach to design and implement the distributed model
predictive control of linear systems in the presence of globally coupled
constraints. For each subsystem, a neurodynamic model minimizes its
cost function using local information only. According to the communica-
tion topology of the network, neurodynamic models share information to
their neighbours to reach consensus on the optimal control actions to be
carried out. The collective neurodynamic models are proven to guarantee
the global optimality of the model predictive control system.

Keywords: Collective neurodynamic optimization
Recurrent neural networks · Distributed optimization
Model predictive control

1 Introduction

Model predictive control (MPC) is a popular optimization-based control tech-
nique. It iteratively predicts and optimizes control performances based on a sys-
tem model. Dynamic feedback control actions are computed by solving online
sequential optimization problems. As MPC can naturally deal with multivariable
control problems and can explicitly take account of system constraints, it has
been attracting much attention in many areas in recent years [11,20].

Many real-world control plants such as chemical reactors and smart grid
usually consist of linked units that can be grouped into subsystems [16]. These
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subsystems are connected through a network and each subsystem can transmit
certain local information to the others. As a result, the control technology can
be implemented in a distributed fashion which takes the advantage of the plant
structure to improve reliability and reduce cost. In distributed control, each
subsystem computes its control action by considering its local plant information
as well as the effect of local control actions on all subsystems in the network
[17]. Correspondingly, a distributed optimization problem arises in the setting
of distributed MPC [4]. A challenging issue is distributed MPC lies in constraint
satisfaction of coupled subsystems where local constraints are affected by the
network topology.

The success and performance of an MPC system are largely determined by
the deployed optimization algorithm. Real-time optimization is a significant issue
for MPC implementation. Conventional optimization methods may not be suffi-
ciently efficient for real time MPC implementation for problems with very large
dimensions and fast sampling frequency. In the past two decades, neurodynamic
optimization using recurrent neural networks (RNNs) emerged as a promising
computational approach to real time optimization [19]. The essence of neural
optimization lies in its inherent nature of parallel and distributed information
processing and the availability of hardware implementation. Various RNN mod-
els have been presented for solving constrained optimization problems, such as
the one-layer neural network with a hard-limiting activation function [13], the
improved dual network [7], the finite-time convergent neural network [14], the
neural network for nonsmooth optimization [15], the neural network for pesu-
doconvex optimization [6], the neural network for invex optimization [12], the
collective neural networks for global optimization [22], and the neural network
for distributed optimization [10]. These RNNs have shown good performance in
terms of global convergence and low model complexity.

Neural networks have demonstrated advantages to the design and analysis of
MPC methods. Due to their capabilities to approximate any continuous function
mapping, many studies on incorporating neural networks with MPC synthesis
have been carried out. Generally speaking, the use of neural networks fall into
three categories: (1) using neural networks for system identification and mod-
eling [21], (2) using neural networks for real time optimization [3], (3) using
neural networks for off-line control law approximation [1]. In these works, dis-
tinct advantages of neural networks are exploited in MPC design.

In this paper, a distributed MPC scheme is proposed for linear systems with
coupled constraints. The distributed MPC problem is formulated to distributed
convex optimization with globally coupled constraints. The overall performance
index to be minimized is the summation of local convex objectives. Cooperative
neurodynamic models are applied to collectively solve the distributed optimiza-
tion problems in real-time. One salient feature this work is that the optimization
algorithm is designed by exploring the characteristics of the control problem,
which greatly improves the scalability and reduces the computational cost. The
rest of this paper is organized as follows. Section 2 discusses some preliminaries.
Section 3 describes the distributed MPC formulation. Section 4 presents a collec-
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tive neurodynamic optimization approach. Section 5 provides simulation results.
Finally, Sect. 6 concludes this paper.

2 Preliminaries

In this section, some basic concepts and results from the algebraic graph theory
are introduced [5].

Let a triplet G = (V, ξ,A) denote a graph, where V = {ν1, ..., νm} denotes
a set of vertexes of order m. Each vertex corresponds to an agent, ξ ⊆ V × V
denotes a set of edges, and A = {aij} is a nonnegative m × m matrix called the
adjacency matrix satisfying aij > 0 if and only if νi and νj are connected, i.e.,
(νi, νj) ∈ ξ. If aij > 0, then it indicates that the two corresponding agents can
exchange information. The graph G is undirected if

∀νi, νj ∈ V : (νi, νj) ∈ ξ ↔ (νj , νi) ∈ ξ.

Correspondingly, A becomes a symmetric matrix. Moreover, an undirected graph
G is connected if for any pair of vertexes νi and νj , i, j = 1, ...,m, there is a path.
In this paper, the following assumption holds.

Assumption 1. The graph G = (V, ξ,A) is undirected and connected. More-
over, no self-connection exists in the graph; i.e., aii = 0, i = 1, ...,m.

Given a graph G = (V, ξ,A), a diagonal matrix D = {deg(ν1), ...,deg(νm)} ∈
�m×m is called the degree matrix where deg(νi) =

∑m
j=1,j �=i aij(i = 1, ...,m). In

view of it, the Laplacian matrix of the graph is defined as L = D−A. According
to the Assumption 1, the Laplacian matrix has the following properties [16]:

1. L is positive semidefinite and symmetric.
2. 0 is a simple eigenvalue of L.

3 Problem Formulation

Consider a network of M discrete-time subsystems where each subsystem is
described as follows:

xi(k + 1) = f i(xi(k), ui(k)) + gi(u), (1)

where xi ∈ �n is the state vector of the ith subsystem, x = [x1; · · · ;xm] is the
state vector of the network, ui ∈ �m is the input vector of the ith subsystem,
u = [u1; · · · ;um] is the input vector of the network, f i is the model of the ith
subsystem, and gi denotes the coupling effects on the subsystem i caused by
inputs of its neighbouring systems in the network.

In (1), xi(k), ui(k) are required to fulfill the following constraints:

xi(k) ∈ X i, ui(k) ∈ U i,∀k ≥ 0, (2)
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where X i and U i are closed compact convex sets. It is assumed that both X i

and U i contain the origin as an interior point. In addition, the control system
(1) is sometimes subject to coupling constraints which denote communication
structures and requirements among subsystems [17]:

φi(xi, xj , ui, uj) ≤ 0. (3)

An MPC law is supposed to optimize a performance index iteratively over a
predicted future horizon via the explicit use of the system model (1). In MPC,
the control inputs are obtained by solving a constrained optimization problem
during each sampling interval, using the current state as an initial state. For
each subsystem i, the following performance index is considered:

J i(ui(k)) =
N−1∑

q=0

xi(k + q|k)T Qixi(k + q|k)

+
N−1∑

q=0

ui(k + q|k)T Riui(k + q|k)

+ xi(k + N |k)T P ixi(k + N |k) (4)

where xi(k + q|k) denotes the predicted state vector, ui(k + q|k) denotes the
predicted input vector, N is the prediction horizon, Qi, Ri are weighting matrices
with compatible dimensions, and P i is designed for closed-loop stability.

In many distributed MPC settings, each subsystem i independently mini-
mizes the performance index (4) subject to its local constraints (1)–(3) to obtain
the optimal control input ui∗(k). In this paper, we consider a performance index
of the overall control system as follows:

J(u(k)) =
M∑

i=1

J i(ui(k)), (5)

where J i(ui(k)) is defined as (4). Correspondingly, the MPC problem is formu-
lated as follows:

min
u1(k),··· ,uM (k)

J =
M∑

i=1

J i(ui(k))

=
M∑

i=1

N−1∑

q=0

xi(k + q|k)T Qixi(k + q|k)

+
M∑

i=1

N−1∑

q=0

ui(k + q|k)T Riui(k + q|k)

+
M∑

i=1

xi(k + N |k)T P ixi(k + N |k)
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s.t. xi(k + 1) = f i(xi(k), ui(k)) + gi(u), i = 1, · · · ,M

xi(k) ∈ X i, ui(k) ∈ U i,∀k ≥ 0, i = 1, · · · ,M,

φi(xi, xj , ui, uj) ≤ 0, i = 1, · · · ,M. (6)

The optimization problem (6) offers a framework for subsystems to cooperatively
solve the MPC problem in a distributed manner. It differs from centralized MPC
in that all parameters in (6) are designed based on the structures and charac-
teristics of the corresponding subsystems. As a result, the objective functions
J1, · · · , JM in optimization problem (6) are separable, which makes it suitable
to be tackled by distributed optimization methods. However, it is worth noting
that the presence of coupling effects g(u) and φ(x, u) result in globally coupling
constraints, which posts challenges for the design and implementation of dis-
tributed optimization algorithms. In this paper, we focused our attention on a
special case of (6).

3.1 Linear Systems with Coupled Constraints

For each subsystem i it is assumed that its state space model independent of
other subsystem j in the network, however, the states and control inputs are
required to satisfy coupled constraints [18].

xi(k + 1) = Aixi(k) + Biui(k),

φi(x, u) ≤ 0. (7)

Assumption 2. The constraint φi(x, u) is convex and linearly separable, i.e.,
φi(x, u) =

∑
φi

j(x
j , uj).

This assumption is valid in many scenarios, especially when φi(x, u) is linear,
i.e., φi(x, u) = Cix + Diu ≤ 0, it is convex and linearly separable.

Denote the following vectors as the predicted system information:

x̄i(k) = [xi(k);xi(k + 1); · · · ;xi(k + N)];

ūi(k) = [ui(k);ui(k + 1); · · · ;ui(k + N)];

Δūi(k) = [Δui(k);Δui(k + 1); · · · ;Δui(k + N)];

where ui(k) = ui(k − 1) + Δui(k)
Using (7) as the prediction model, the predicted states and control inputs of

the subsystem i can be obtained

x̄i(k + 1) = Sixi(k) + M iΔūi(k) + V iu(k − 1), (8)
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where

Si =

⎡

⎢
⎢
⎢
⎣

Ai;
Ai2

...
AiN

⎤

⎥
⎥
⎥
⎦

∈ �Nn×n, V =

⎡

⎢
⎢
⎢
⎣

Bi

(Ai + I)Bi

...
(AiN−1 + . . . + I)B

⎤

⎥
⎥
⎥
⎦

∈ �Nn×m,

M =

⎡

⎢
⎢
⎢
⎣

Bi . . . 0
(Ai + I)Bi . . . 0

...
. . .

...
(AiN−1 + . . . + I)Bi . . . Bi)

⎤

⎥
⎥
⎥
⎦

∈ �Nn×Nm,

The corresponding distributed MPC problem can be correspondingly formu-
lated as follows

min
Δū(k)

J =
M∑

i=1

‖Sixi(k) + M iΔūi(k) + V iu(k − 1))‖2Qi
+ ‖Δūi(k)‖2Ri

s.t. ui
min ≤ M i(Δūi(k) + V iu(k − 1)) ≤ ui

max,

M∑

i

Ci(Sixi(k) + M iΔūi(k) + V iu(k − 1)) + Di(Δūi(k) + V iu(k − 1)) ≤ 0

Δui
min ≤ Δūi(k) ≤ Δui

max (9)

The optimization problem (9) is a distributed convex program, whose solution
provides optimal control increments for all subsystems. Equivalently, (9) can be
put into a compact form as follows:

min
Δū

J =
M∑

i=1

1
2
ΔūiT W iΔūi + piT Δūi

s.t.
M∑

i

EiΔūi + bi ≤ 0,

M∑

i

HiΔūi + qi ≤ 0, Hj �=i = 0, qj �=i = 0, j = 1, ...i, ...,M,

Δui
min ≤ Δūi ≤ Δui

max, (10)

where W i = 2M iT QM i + Ri, pi = 2M iT Qi(Sixi(k) + +V iu(k − 1)), Ei =
CiM i + Di, bi = Ci(Sixi(k) + V iu(k − 1)) + Di(V iu(k − 1)), Hi = [M i;−M i],
qi = [M iV iu(k − 1) − ui

max;u
i
min − M iV iu(k − 1)].

4 Collective Neurodynamic Optimization Model

In this section, we propose a collective neurodynamic optimization model
described by cooperative recurrent neural networks to solve the optimization
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problem (10) in a fully distributed fashion. Each recurrent neural network is
employed by a subsystem to minimize its local cost function. Their collective
efforts, guided by the topology of the network, enforce satisfaction of coupled
constraints. The recurrent neural networks share information if and only if the
two subsystems are connected. For each subsystem i, the corresponding recurrent
neural network is modeled as follows:

d

dt
βi = ProgΩi(βi − W iβi − pi − [Ei;Hi]T λi) − βi

d

dt
λi = (λi + [Eiβi + bi;Hiβi + qi] −

∑

j∈E i

(γi − γj + λi − λj))+ − λi

d

dt
γi =

∑

j∈E i

(λi − λj) (11)

At each time instant k, the output of the neurodynamic model in its equilibrium
state βi∗ is equal to the optimal control increment vector Δūi(k). The optimal
control input at k is obtained by implementing the first control action of the
predicted vector: ui(k) = ui(k − 1) + Δui(k).

Intuitively, the neurodynamic model (11) exploits local information of each
subsystem to reach consensus with the help of information sharing over the
network. Denote E i as the vertex set of the neighbors of the subsystem i. It can
be viewed that λi is driven toward the average of λj by a proportional-integral
controller

∑
j∈E i

∫
(λi − λj). Thereafter, (λi − λj) is expected to converge to 0.

Next, we proceed to show that λi is equivalent to the Lagrange multiplier vector
of (10).

Let β denote [Δū1; · · · ;ΔūM ] and φ(β) = [
∑M

i EiΔūi + bi;
∑M

i HiΔūi + qi]
for simplicity. The following lemma can be obtained.

Lemma 1. β∗ is an optimal solution to (10) if and only if there exists λ∗ such
that

β∗ = ProgΩ(β∗ − (Wβ∗ + p) − [E;H]T λ∗)

λ∗ = (λ∗ + [Eβ∗ + b;Hβ∗ + q])+.

Proof. It can be seen that the optimization (10) is convex since the objective is a
convex function and the feasible domain is a convex set. According to the KKT
conditions, variational equality conditions, and projection theorems [9], under
the complementary conditions [2], β∗ is an optimal solution to (10) if and only
if there exist (β∗, λ∗) such that

β∗ = ProgΩ(β∗ − (∇J(β∗) + ∇φT (β∗)λ∗)), β∗ ∈ Ω (12)

φT (β∗) ≤ 0, λ∗ ≥ 0, λ∗T

φ(β∗)λ∗ = 0. (13)

where Ω = {μ ∈ �n : lk ≤ μk ≤ hh} and

ProgΩ(μ) =

⎧
⎨

⎩

lk, μk < lk;
μk, lk ≤ μk ≤ hk;
hk, μk > hk;
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Moreover, (13) can be equivalently put into λ∗ = (λ∗ + φ(β∗))+, where

(μk)+ =
{

0, μk ≤ 0;
μk, μk > 0.

Therefore, it is shown that λ in (11) is equal to the Lagrange multiplier.

The distributed MPC approach based on the collective neurodynamic opti-
mization models is summarized as follows:

1. Let k = 1. Set MPC parameters including the control time terminal T , pre-
diction horizon N , sampling period t, weight matrices Q and R.

2. Compute parameters of the optimization model including W , p, E, b, H, q.
3. Solve the distributed optimization problem using the proposed neurodynamic

models to obtain the optimal control increment vector Δū(k).
4. Compute and implement the optimal control action u(k).
5. If k < T , let k = k + 1, go to Step 2; otherwise terminate.

5 Simulation Results

In this section, the formation control of flying robots which aim to form and
maintain desired relative position and orientation is considered. The coupled
constraints arise due to the considerations for collision and obstacles avoidance
[8]. For each mobile robot i, its state space model is

⎡

⎢
⎢
⎣

xi(k + 1)
yi(k + 1)
ẋi(k + 1)
ẏi(k + 1)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0 0.2 0
0 1 0 0.2
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

xi(k)
yi(k)
ẋi(k)
ẏi(k)

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

0 0
0 0

0.2 0
0 0.2

⎤

⎥
⎥
⎦

[
ui

x(k)
ui

y(k)

]

(14)

where [xi, yi] denotes the position coordinates of the robot i, [ẋi, ẏi] denotes a
vector of velocity components along x-axis and y-axis, and [ui

x, ui
y] denotes a

vector of acceleration components along x-axis and y-axis.
The distributed MPC of the flying mobiles seeks the solution to the problem

(6) via the neurodynamic model (11) based on the formulation (9). The linear
constraints on states and inputs of every flying robots are |x| ≤ [100; 100; 24; 24]
and |u| ≤ [2; 2]. The coupled constraints are introduced to ensure flying robots
cannot enter protection zones of each other, and they are represented as ‖(xi2 +
yi2) − (xj2 + yj2)‖∞ ≤ d2min.

We consider a scenario of three flying robots formed a formation in a structure
shown in Fig. 1. The initial conditions of the three robots are x1(0) = [1;−3; 0; 0],
x2(0) = [10;−3; 0; 0], x3(0) = [15;−3; 0; 0]. The final conditions are x1(T ) =
[6; 5; 0; 0], x2(T ) = [11; 5; 0; 0], x3(T ) = [3; 5; 0; 0]. The protection zone of each
robot is 0.3 m. The controlled result is depicted in Fig. 2. The control inputs are
shown in Figs. 3 and 4. It is shown that flying robots can effectively form the
desired formation with guaranteed input and safety constraints satisfaction.
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Fig. 1. Formation structure of three robots
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Fig. 4. Velocity along y-axis

6 Conclusion

This paper presented a model predictive control approach to linear systems with
coupled constraints in a fully distributed fashion. The global cost function took
an additive form of each local cost functions. The model predictive controllers
of each subsystem were designed based on local information only, and were com-
puted by using a neurodynamic model in real time. The collective efforts of neu-
rodynamic models forced the local controllers to reach consensus at the global
optimal control with theoretically guaranteed optimality. optimality were given.
An illustrative example on the formation control of flying robots was provided to
demonstrate the effectiveness of the approach. Future research will be directed
to nonlinear systems and more complex network topologies.
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Abstract. Aircraft sequencing problem (ASP) is to schedule the oper-
ation times of departing and arriving aircraft such that their deviation
from the desired operation times are minimised. There are two types
of hard constraint which make this problem very challenging: time win-
dow constraint for the operation time of each aircraft, and minimum
separation time between each pair of aircraft. ASP is known to be NP-
Hard. Although some progress has been made in recent years in solving
ASP, existing techniques still rely on generic algorithms that usually lack
problem specific knowledge. This leads to either finding low quality solu-
tions or scrambling with large-sized problems. In this work, we propose
a constraint-guided local search algorithm that advances ASP search by
injecting the specific knowledge of the problem into its different phases.
In the intensification phase, we propose a greedy approach that gives
more priorities to aircraft that are more problematic and create more
delays. In the diversification phase, we employ a bounded-diversification
technique that controls the new position of each selected aircraft and
does not allow them to move very far away from their current positions.
Computational results show that the proposed algorithm outperforms
the existing state-of-the-art methods with considerable margin.

Keywords: Aircraft scheduling · Constraints · Local search

1 Introduction

Air transport has significantly developed over the last few decades with the
increase of the demand for the air travelling and freight services. In Australia,
58.93 million passengers travelled by aircraft in 2016, which was 2.5% more com-
pared to that in 2015 [1]. In this situation, air transport systems may face con-
gestion and some have already reached their capacity limits; which causes many
problems including flight delays. In Europe in March 2015, 7% more departing
flights were delayed by about 4 more minutes compared to that in March 2014 [4].

To overcome such problems and to keep pace with this demand, one possible
solution could be to increase the airport capacities by building more runways.
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However, this process needs availability of the space and more importantly, the
huge investments. For example, Brisbane airport is constructing a new parallel
runway; which is expected to take 8 years and AU$1.35 billion investment [2]. It
has been showed that operational delays at a major US airport can be reduced
up to four hours a day by optimising aircraft landing and takeoff sequences [8].
These results highlight the importance of the aircraft sequencing problem (ASP)
and therefore ASP algorithms. By producing optimal or near-optimal sequences
of aircraft, these scheduling algorithms will utilise the runways efficiently to
increase the overall capacity of an airport and reduce the air traffic.

ASP contains a set of departing and arriving aircraft. Each aircraft belongs to
a weight class (e.g. heavy, large, and small). Solving a given ASP instance with a
single runway has two steps. The first step is sequencing the aircraft allocated to
the runway. The second step is determining the operation times of each aircraft.
These two steps must be carried out by satisfying constraints and optimising the
objective. There are both hard and soft constraint in ASP. The hard constraints
are time window and minimum separation time . The former forces each
aircraft to be operated within a specified time window, while the latter forces
each aircraft to have a minimum separation time with other aircraft. On the
other hand, the soft constraint is deviation of actual operation times from
desired operation times. All hard constraints must be satisfied in order to
obtain a feasible schedule while soft constraints could be violated if necessary, but
each instance of violation is penalised. The smaller the overall penalty value, the
better the quality of the scheduling. An efficient aircraft sequencing technique
can reduce flight times and fuel burn, thereby reduce traffic delays and increase
airspace capacity. ASP has been classified as an NP-hard problem [7].

ASP recently has made some progress and a number of methods have been
proposed for this problem including scatter search [10], simulated annealing (SA)
with variable neighbourhood search (VNS) and variable neighbourhood descent
(VND) [16], iterated local search (ILS) [15], and SA and metaheuristic for ran-
domized priority search (Meta-RaPS) [6].

Nevertheless, existing scheduling algorithms take the typical way of using
generic techniques that usually lack problem specific structural knowledge, i.e.,
they use random neighbourhood generation strategies rather than carefully
crafted ones or use constraints only in the calculation of the objective function.
In this paper, we design a search algorithm injecting the constraint awareness
into different steps of the algorithm.

Our search algorithm, called Constraint-Guided Local Search (CGLS),
includes two main steps: intensification and diversification. In the intensifica-
tion phase, we use two neighbourhood operators with problem-specific aircraft
selection procedure instead of the typical random one. The idea behind this pro-
cedure is that an aircraft with a higher objective value would have priority over
an aircraft with a lower objective value (i.e., fix the more problematic part of
a solution). In the diversification phase, a bounded-diversification technique is
proposed that does not allow the selected aircraft to move very far away from its
current position. The idea behind this is that because of the hard constraints,
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moving an aircraft at a position that is far from its current position might not
be effective and reasonable.

In the rest of the paper, the problem is discussed in Sect. 2, the proposed
CGLS technique is described in Sect. 3, computational results are provided in
Sect. 4, and conclusions are presented in Sect. 5.

2 Problem Description

Assume there are N aircraft {1, . . . , N} either arriving or departing and one
runway to perform the operations on. At any time, the runway can be used by
only one aircraft. To solve ASP, we have to determine the operation time OTj

of the aircraft j. There are two generic constraint categories: hard and soft
constraints that are to be satisfied to produce a feasible schedule. The aim is to
satisfy all the hard constraints and attempt to accommodate the soft constraints
as much as possible in order to produce a high-quality schedule.

2.1 Hard Constraints

– Time window: Because of several factors such as fuel restriction, airspeed,
and possible manoeuvres, the operation time of each aircraft must lie within a
specified time window. This time window is bounded by the desired operation
time DOTj and latest operation time LOTj i.e. OTj ∈ [DOTj , LOTj ].

– Safety separation time: Since each aircraft creates wake turbulence that
the following aircraft need to avoid, a certain minimum separation time is
required between any pair of aircraft. The separation times depend on the
aircraft classes (heavy, large, and small) and the aircraft operation types
(landing or takeoff). The separation times are determined by appropriate
aviation authorities such as Federal Aviation Administration (FAA) in the
United States or Civil Aviation Authority (CAA) in the United Kingdom [5].
Note that although the separation time constraints must hold between each
pair of aircraft, it has been showed that using FAA standard, the separation
times are automatically satisfied between two aircraft when there are three
other aircraft in between [17].

2.2 Soft Constraints

Deviation from Desired Operation Times: For each aircraft j, DOTj is
its desired operation time; which means that operation at that time has no
delays and extra fuel burn. However, because of the capacity limit of runways
and the hard constraints mentioned, some flights cannot operate at their DOTj .
Therefore, the operation times of some flights are deferred from their desired
times. If an aircraft j operates after its desired time DOTj , it would be penalised
by (OTj − DOTj).
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2.3 Objective Function

The objective function of ASP is to minimise total delay cost of the aircraft
resulting from the deviation of their operation times from the respective desired
times. However, the delay cost of all aircraft is not the same. So, a penalty weight
wj per unit time delay from DOTj for aircraft j. This penalty weight depends
on two priorities: operation priorities and aircraft size priorities. Based on the
operation priorities, arriving aircraft have greater priorities than departing air-
craft because of the higher average fuel burn and safety measures. On the other
hand, based on the size priorities, heavier aircraft get more weights than the
lighter ones owing to again higher average fuel burn and safety measures.

One of the main challenges is how to calculate the operation time OPj of
each aircraft j. Assume π is the current sequence, [k] represents the aircraft at
the position k, and s(j, j′) shows the separation time between aircraft j and j′.
So the operation times of aircraft can be calculated as follows:

s([k], [k′]) = 0, OP[k] = 0 k < 1 ∨ k′ < 1 (1)

OP[k] = max{DOT[k], OP[k−1] + s([k − 1], [k]),

OP[k−2] + s([k − 2], [k]), OP[k−3] + s([k − 3], [k])} ∀k ∈ [2, n] (2)

The objective function is the total weighted tardiness of a schedule TWT =∑N
j=1 wj(OTj −DOTj). This objective allows reduction of delays, maximisation

of the runway capacity, and reduction of congestion at the airport [14].

3 Methodology

In order to solve this problem, we propose a Constraint-Guided Local Search
(CGLS) algorithm. CGLS has two main steps: intensification and diversification.
As the main contribution, unlike the most existing techniques in the literature,
we use the specific knowledge of the problem to design our algorithm. In the
following sections, each step is described in detail.

The proposed local search algorithm is given in Algorithm1. It starts with
an initial solution. The initial solution is then improved by the intensification
method. The algorithm next goes through the loop in which the search restarts
with the diversification method. The new solution would be considered as the
current solution if it is better in terms of the objective value.

3.1 Solution Representation and Initial Solution

A single runway ASP solution is represented by a string of numbers containing
a permutation of N aircraft, i.e., π = {[1], [2], . . . , [N ]}. The [k] represents the
aircraft at the kth position of the permutation. For example, for a problem with 7
aircraft, one possible solution is π = {3, 5, 4, 2, 7, 1, 6}; which means that aircraft
3 must be operated first, followed by aircraft 5, 4, 2, 7, 1 and aircraft 6.
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Algorithm 1. Proposed CGLS Algorithm
1 π ← Generate an initial solution
2 π ← Use the intensification method on π
3 while termination criteria not satisfied do
4 π′ ← Use the diversification method on π
5 π′′ ← Use the intensification method on π′

6 if TWT (π′′) < TWT (π) then π ← π′′

7 return π

As the initial solution, we use the simplest and the most common heuristic
of aircraft sequencing, first-come-first-served (FCFS). In this method, the per-
mutation of aircraft is based on a non-decreasing order of their desired operation
time. Note that this very simple heuristic is still used in the air traffic control
these days, e.g., in Doha International Airport [5]. However, it is not an efficient
heuristic and can lead to the waste of resources and make the congestion in the
terminal area severer [3]. Using this heuristic in the initialisation of the proposed
algorithm can help find out how much improvement would be obtained by using
the proposed method instead of the typical FCFS.

3.2 Intensification Method

To intensify the search, we propose an intensification method that is made up of
two neighbourhood operators, instead of a single one. The reason is that different
neighbourhood operators produce different landscapes and hence different local
optima. We use insert and swap operators since they are widely used when solu-
tions are represented as permutations e.g., in the flowshop scheduling problems
[11,12] and the order scheduling problems [13].

Let π be a permutation of the given N aircraft. In the operator Insert(π, j, k),
aircraft at position j is selected and then inserted at a different position k. In
the Insert(π, j), aircraft at position j is inserted at all k (k �= j). On the other
hand, in the Swap(π, j, k) operator, an aircraft at position j is exchanged with
another aircraft at position k. However, in the Swap(π, j) operator, an aircraft
at position j is exchanged with all aircraft at positions k (k �= j).

In this paper, we use Insert(π, j) and Swap(π, j) operators mentioned in an
iterative procedure. It means that they would be applied for all N aircraft in
the permutation π, one by one, in a given order and as soon as a better solution
is found, it would be considered as the current solution and the procedure is
restarted with the new solution. We refer them to Insert(π) and Swap(π).

Greedy Aircraft Selection: Our main contribution in the intensification
method is to employ a greedy aircraft selection by using a constraint guidance.
In the proposed greedy selection procedure, first, the weighted tardiness (WTj)
of each aircraft j in the current solution π is calculated. Then, the aircraft are
sorted in a non-increasing order of WTj in a reference list πL. Next, in the
Insert(π) and Swap(π) operators, the aircraft are selected based on their order in
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the reference list πL. For instance, suppose for a problem with 6 aircraft, the cur-
rent sequence is π = {2, 3, 6, 4, 5, 1} and the reference list is πL = {4, 2, 6, 1, 3, 5}.
The Insert(π) or Swap(π) operator first selects aircraft 4 for insertion or swap
process from the sequence π. Then, it selects aircraft 2 from the sequence π. This
process is continued until all aircraft in the reference list πL are selected. The
idea behind this greedy procedure is that aircraft with higher objective values
should get more priorities over aircraft with lower objective values. Our idea is
to reschedule these aircraft and thus fix the sequence.

The proposed Insert(π) and Swap(π) operators with greedy aircraft selection
are given in Algorithm2. With the use of the Insert(π) and the Swap(π) operators,
the proposed intensification method is shown in Algorithm 3. At each iteration,
it first applies N1 on the current solution π. If the new solution obtained by N1 is
better than the current solution, it would be considered as the current solution
and the process is again continued with N1; otherwise the algorithm moves
to N2. The current solution would be updated if the new solution obtained
by N2 is better and algorithm also goes back to N1; otherwise intensification
phase is finished. Note that, in the intensification method, Insert(π) and Swap(π)
operators are selected as N1 and N2 respectively based on the results obtained
in the literature [18].

Algorithm 2. Insert(π) and Swap(π) operators
1 Let π be the input solution
2 foreach aircraft j, calculate weighted tardiness WTj , and sort them in the

non-increasing order of WTj to get a reference list πL = (πL
1 , πL

2 , . . . , πL
N ).

3 for k = 1 to N do
4 πj ← The position of the aircraft πL

k in π
5 Apply Insert(π, πj) or Swap(π, πj) and take the permutation π′ with the

lowest total weighted tardiness.
6 if π′ has a lower objective than π then let π = π′ and go to Step 1

7 end
8 return π as the output solution

Algorithm 3. Intensification Method
1 Input: sequence π
2 Set Insert(π) as N1 and Swap(π) as N2. Also l = 1
3 while l ≤ 2 do
4 Find the best neighbor π′ of π in Nl(π).
5 if π′ is better than π then Set π = π′ and l = 1
6 else l = l + 1

7 end
8 Output: sequence π
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3.3 Diversification Method

The proposed algorithm uses a diversification method to avoid getting stuck and
convergence towards local optima and also to explore new areas in the solution
space. Diversification method helps the algorithm generate new solutions for the
intensification method by modifying the current solution instead of a fully ran-
dom solution. The diversification procedure includes a number of moves, diversi-
fication strength λ, that are applied to the current local optimum. In this paper
the diversification method also used two neighbourhood operators: Swap(π, j, k)
and Insert(π, j, k). In this phase, for each diversification move, with 50%–50%
probabilities, we apply either Swap(π, j, k) or Insert(π, j, k) operators.

The value of the parameter λ is very important. A small λ may lead to
the stagnation of the search and cycling among the previously visited solutions.
On the other hand, a large λ may lead the algorithm to conduct like a random
restart algorithm which in most cases generates low quality solutions. Therefore,
we carefully calibrate the parameter λ which can be seen in Sect. 4.1.

Bounded-Diversification Technique: Unlike the typical diversification pro-
cedure that moves the selected aircraft to the completely randomly selected posi-
tions, we inject the problem specific knowledge into this method to find diverse as
well as reasonable positions for the selected aircraft. As mentioned already, ASP
has two types of hard constraint including time window constraint that forces
each aircraft j to be operated within a window, i.e, OTj ∈ [DOTj , LOTj ]. Being
operated the more closer to DOTj leads to the less penalty value. Therefore,
moving an aircraft to a position that is far from its current position could not be
very effective and reasonable. Therefore, in this paper, we propose a bounded-
diversification technique that does not allow a selected aircraft to move far away
from its current position. To that end, we introduce a parameter γ that controls
the position of each selected aircraft. In detail, when an aircraft at position j is
selected for diversification, it could be moved just to the position k such that
max(1, j − γ) ≤ k ≤ min(N, j + γ). Similar to λ, this parameter is also care-
fully calibrated which can be seen in Sect. 4.1. The procedure of the proposed
diversification method is given in Algorithm4.

Algorithm 4. Proposed bounded diversification method
1 Input: Solution π, the diversification strength λ, the diversification bound γ.
2 for h = 1 to λ do
3 j ← pick a random position
4 k ← pick another random position from [max(1, j − γ),min(N, j + γ)]
5 if rand() ≤ 0.5 then π ← Insert(π, j, k) else π ← Swap(π, j, k)

6 end
7 return π
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4 Experimental Results

In order to evaluate the performance of the proposed algorithm, we use 20 well-
known instances generated based on the Doha International Airport parameters
[5]. These instances are made up of 50 aircraft and time windows of 30 min. We
compare our algorithm with ILS algorithm [15] (called here as ILS-SK) as one
of the leading algorithms for the single runway ASP. The ILS-SK algorithm uses
a variant of FCFS as initialisation. In this paper, to have a fair comparison,
we use the FCFS as initialisation of the ILS-SK as well. Both algorithms have
been implemented in C++ language and on top of the constraint-guided local
search system, Kangaroo [9]. The functions and the constraints are defined by
using invariants in Kangaroo. Invariants are special constructs that are defined
by using mathematical operators over the variables. Algorithms are also tested
on the same computer.

To compare the performance of the algorithms, we use the relative percentage
deviation RPD = TWTA−TWTBEST

TWTBEST × 100 where TWTA is the total weighted
tardiness obtained by algorithm A and TWTBEST is the best total weighted
tardiness achieved by any of the algorithms compared. We run each algorithm
on each instance 5 times and compute average RPD (ARPD) over the 5 runs.
We also compute a further average of RPDs or ARPDs over all instances in a
benchmark set. As a stopping criterion, the algorithms were run for 20N ms
CPU time.

4.1 CGLS Parameter Calibration

The proposed CGLS contains two parameters: the diversification strength λ,
and the diversification bound γ. To analyse the effect of these two parameters, a
full factorial design is used by considering 3 different values for each parameter:
λ ∈ {10, 20, 30} and γ ∈ {3, 4, 5}. For this experiment, we randomly select 8
instances from those 20 instances in our benchmark. Our algorithm is run 5
times for each of the 3 × 3 = 9 settings and for each instance with the same
stopping criterion as already mentioned.

The 95% confidence interval plots of the parameters are shown in Fig. 1. The
results of Fig. 1 says that CGLS algorithm is robust with respect to λ and γ as
the tested values are statistically equivalent and each of them could be selected.
However, since the λ and γ have lower ARPD in 20 and 4 respectively, these
values are selected for further experiments.

4.2 Effectiveness of Multi Neighbourhood

The proposed intensification method includes two neighbourhoods N1 and N2.
In this paper, we use insertion and swap operators with greedy aircraft selection,
GI and GS respectively. In this section, we are to evaluate the efficiency of the
greedy neighbourhoods against the random insertion and swap operators, RI and
RS, and also to find the best order for the neighbourhood operators mentioned.
To that end, the following four cases are considered:
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Fig. 1. Mean and 95% confidence intervals for parameters.

1. Case 1: Consider GI as N1 and GS as N2.
2. Case 2: Consider GS as N1 and GI as N2.
3. Case 3: Consider RI as N1 and RS as N2.
4. Case 4: Consider RS as N1 and RI as N2.

In this experiment, the proposed CGLS is tested by considering each of the
cases mentioned as the intensification method on those 8 instances used already
for parameter tuning. The 95% confidence interval plot for each case is given in
Fig. 2. From this figure, it can be seen that cases 1 and 2 are significantly better
than cases 3 and 4. It can be concluded that the proposed problem-dependent
greedy strategies for Insertion and Swap moves statistically outperform the ran-
dom cases. In addition, although cases 1 and 2 are statistically equivalent, we
use case 1 for the intensification phase due to its lower ARPD.

Fig. 2. 95% confidence intervals for CGLS with different neighbourhood cases.

4.3 Effectiveness of CGLS Components

CGLS has two main contributions: a new constraint based greedy aircraft selec-
tion in the neighbourhood operators of the intensification method, and a con-
straint based bounded-diversification procedure. To test the effectiveness of each
component mentioned, we create three variants of CGLS as follows:
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1. CGLS: Proposed CGLS that includes both greedy intensification and
bounded-diversification.

2. CGLS R: CGLS but greedy intensification is replaced by a random one.
3. CGLS NB: CGLS but no bound in the diversification phase.

The algorithms are tested on the 8 instances which are the same as the ones
for parameter tuning. A 95% confidence interval plot in Fig. 3 is carried out
to show the effectiveness of the three variants. Note that non-overlapping confi-
dence intervals of each two methods represent a statistically significant difference
between them. From Fig. 3, we can see that both new components significantly
affect the performance of CGLS. Among these two components, the bounded-
diversification is more crucial as the algorithm obtained worse performance with
the absence of this method.

Fig. 3. 95% confidence interval for CGLS variants.

4.4 Comparison with FCFS Method

As mentioned before, the first-come-first-served (FCFS) heuristic is the simplest
and the most common heuristic for aircraft sequencing, and is still applied in the
air traffic control these days, e.g., in Doha International Airport [5]. As a result,
comparing CGLS with FCFS can show how much the proposed CGLS improves
over FCFS. The results are shown in Table 1. As can be seen from this table,
CGLS hugely outperforms the FCFS obtaining ARPD of 0.157% compared to
99.353% of FCFS.

Table 1. Comparison of CGLS and FCFS algorithms.

Instance 1 2 3 4 5 6 7 8 9 10 11

FCFS 155.67 138.61 212.54 160.93 178.10 102.55 133.63 75.99 90.06 82.97 68.75

CGLS 0.29 0.60 0.26 0.14 0.39 0.00 0.07 0.20 0.23 0.00 0.23

Instance 12 13 14 15 16 17 18 19 20 Average

FCFS 67.29 71.41 79.03 43.40 59.31 60.14 75.83 69.23 61.64 99.35

CGLS 0.10 0.06 0.07 0.00 0.08 0.05 0.28 0.04 0.13 0.16
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4.5 Comparison with the State-of-the-Art Method

We compare the results of CGLS with the results of ILS-SK algorithm [15] shown
in Table 2. In this table, besides the ARPD, we also show the number of times
each algorithm finds the TWTBEST (the best total weighted tardiness achieved
by any of the tested algorithms) for each instance out of 5 runs. As can be seen,
CGLS outperforms ILS-SK i.e., it achieves lower ARPD in 19 instances out of 20.
In addition, except in instance 7, CGLS obtains the TWTBEST in all instances
at least once, while ILS-SK finds the TWTBEST only in 6 instances out of the
20. To examine the difference of the algorithms statistically, we also perform a
student t-test with significance level of α = 0.05. Statistical results confirm a
significant difference between CGLS and ILS-SK since p-value = 0.00 < 0.05.

Table 2. Comparison of CGLS and ILS-SK algorithms

Instance CGLS ILS-SK

ARPD #best ARPD #best

1 0.287 3 3.222 0

2 0.597 1 1.119 0

3 0.257 3 1.427 0

4 0.140 2 1.440 1

5 0.387 2 4.230 0

6 0.000 5 0.361 1

7 0.067 0 0.149 2

8 0.199 2 0.668 0

9 0.229 1 1.415 0

10 0.000 5 0.641 0

11 0.225 2 0.149 1

12 0.103 1 1.117 0

13 0.061 2 0.240 0

14 0.071 2 0.150 1

15 0.000 5 0.207 0

16 0.007 3 0.292 0

17 0.053 1 0.244 1

18 0.275 2 0.431 0

19 0.044 2 0.751 0

20 0.134 1 0.355 0

Average 0.157 0.930
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5 Conclusion

In this paper, we proposed a Constraint-Guided Local Search (CGLS) for aircraft
sequencing problem (ASP) with a single mixed-operation runway considering
the total weighted tardiness as criterion. Unlike the other existing algorithms
in the literature, CGLS injects the specific knowledge of the problem in its
different phases. In the intensification phase, it uses a greedy approach that gives
more priorities to aircraft that are more problematic and create more delays. In
the diversification phase, it employs a bounded-diversification technique that
controls the new position of each selected aircraft in this phase and do not allow
aircraft to move very far away from their current position. The results show
that the good performance of the proposed CGLS hugely depends on these two
proposed main contributions. Moreover, the computational results show that
CGLS significantly outperforms existing state-of-the-art methods.
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Abstract. In data science, missingness is a serious challenge when deal-
ing with real-world data sets. Although many imputation approaches
have been proposed to tackle missing values in machine learning, most
studies focus on the classification task rather than the regression task.
To the best of our knowledge, no study has been conducted to investigate
the use of imputation methods when performing symbolic regression on
incomplete real-world data sets. In this work, we propose a new impu-
tation method called GP-KNN which is a hybrid method employing two
concepts: Genetic Programming Imputation (GPI) and K-Nearest Neigh-
bour (KNN). GP-KNN considers both the feature and instance relevance.
The experimental results show that the proposed method has a better
performance comparing to state-of-the-art imputation methods in most
of the considered cases with respect to both imputation accuracy and
symbolic regression performance.

Keywords: Symbolic regression · Genetic programming
Incomplete data · Imputation

1 Introduction

Symbolic Regression (SR) is a crucial machine learning field the task of which
is to construct a mathematical model that best fits a given data set. Different
from traditional regression, no priori assumption is required in SR. This means
many benefits to real-world applications, especially when dealing with multi-
variate data from unknown systems, such as real-time forecasting and physical
model integration [1]. Genetic Programming (GP) is an evolutionary computa-
tion technique which is inspired by the biological evolution analogy. It creates
new solutions from the current ones using mutation and crossover processes with
the expectation to find a good solution in the evolution process. SR problems
have been typically solved via GP [13].

Many real-world data sets have instances with missing values due to some
common reasons such as unfilled survey fields and sensor failures. When analyz-
ing the regression data sets in the UCI machine learning repository [6], among
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about the 80 available data sets, more than 20 data sets are annotated as having
missing values.

There are three main types of missing data: missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR) [8].
MCAR implies that the events that lead to any missing value happen inde-
pendently of both unobservable parameters and observable variables of interest,
i.e. no relationship presents between the missingness of values and other values,
observed or missing. In MAR, the missingness is related to some observed data
rather than to the missing data itself. MNAR means that the missingness is
related to the reason it’s missing (neither MAR nor MCAR).

Imputation is the process of filling missing values with plausible ones and
it can be categorized into single imputation and multiple imputation [8]. Single
imputation provides a specific value in place of the missing data directly. While
multiple imputation selects such imputed value from several possible responses
based on the variance/confidence interval analysis. Some methods are widely
used for imputation. K-nearest neighbour (KNN) is used to impute the missing
values with the average of the k most similar instances. Classification and regres-
sion trees (CART) is used for imputation by employing decision trees to predict
the missing values based on the non-missing ones. Another method adopting
the decision trees approach is random forest (RF). It starts from replacing the
missing data with the average of the corresponding complete values and then
iteratively improves the missing imputation using proximity. One of the most
flexible and powerful imputation methods is multivariate imputation by chained
equations (MICE). MICE is an iterative method based on chained equations
that generates an imputation model for each feature and involves other features
as predictors.

GP-based imputation has been investigated on the classification tasks and
has shown better performance than some popular imputation methods. In [17],
GP-based multiple imputation method is introduced. This method utilizes the
robust SR method to predict the missing values in classification data sets. In [18],
the GP-based imputation is separated into two stages: the training process and
the imputation process. In the training process, imputation regression functions
are constructed using chunks of training instances. The imputation process is
performed on individual instances by applying the constructed predictors. In
[19], multiple imputation and GP are combined to evolve classifiers on data with
missing values. Common patterns of missing values are firstly extracted and GP
is then used to construct a classifier for each pattern.

The existing research on dealing with missing values mainly focus on the
classification tasks. The impact of missing values when performing traditional
regression has been considered in several studies [11,12,14]. In SR research, the
most common strategy to deal with incomplete data is to delete the instances
having missing values [5,7,9]. The only studies that consider imputation for SR
are [3,15]. However, they have some limitations. [3] considered only artificial
functions, while in [15], missing values are simply replaced with corresponding
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feature values from other instances. Therefore, how to deal with missing values
in SR is still an open issue.

In this work, we aim to develop a new imputation method to handle missing
values for SR. This implies conducting SR research with incomplete data. Specific
objectives include:

1. developing a new hybrid imputation method to utilize two existing
approaches: KNN and GPI;

2. investigating whether the proposed method can outperform state-of-the-art
imputation methods on obtaining a small imputation error; and

3. investigating whether the proposed method can outperform state-of-the-art
imputation methods on achieving a good regression performance.

2 The Proposed Method

In this section, a new imputation method is proposed. An overall structure of
the imputation treatment is firstly introduced and the proposed method is then
presented and described.

2.1 The Overall Structure and Evaluation Measures

The framework of imputation for incomplete data is shown in Fig. 1. The first
step is to divide a data set into the training and test sets by ratios (70:30).
After that the imputation method is performed on the incomplete training and
test data sets independently and the imputed complete sets are then fed into
the evaluation process. Usually, two measures are used for evaluating the per-
formance of the imputation methods: the imputation error and the regression
performance.

For measuring the imputation error, complete regression data sets are used
to produce incomplete data sets by generating different percentages of missing
values. These synthetic incomplete data sets are then imputed and the imputa-
tion error is measured by the difference between the original complete data sets
and the imputed ones. In this work, the relative squared error (RSE) shown in
the following equation, is used to measure the imputation error:

RSE =
∑n

i=1(yi − ti)2∑n
i=1(ti − t̄)2

(1)

where n is number of instances, yi is the ith predicted value, ti is the ith desired
value, and t̄ is the average of the desired values ti, i = 1, 2, 3 . . . , n.

In addition to the synthetic incomplete data sets, real-world regression data
sets with missing values are also used in the experiments, where the regression
performance is used in both cases to evaluate the imputation methods. The
imputed complete training data sets are fed to GP-based SR to build the regres-
sion model and the obtained model is evaluated on the unseen test data sets.
RSE (Eq. 1) is used as the fitness function.
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Fig. 1. Incomplete data sets treatment using imputation methods.

2.2 The Proposed GP-KNN Imputation

GPI methods are adopted for classification with missing values in [17–19]. The
main idea is to consider each feature having missing values as the target variable
while using other features as predictive variables. Instances with complete cor-
responding feature values are used to build the regression functions and these
functions are then used to predict the missing values. This method has the
advantage of not requiring any presumptions. However, it performs the regres-
sion on all instances regardless of the potential variation. Such variation might
due to the imbalanced distribution of certain features. GPI might use some
instances that are irrelevant to the instance to be imputed. On the other hand,
KNN imputation replaces the missing value with the weighted average (weighted
based on distance) of the ‘k’ closest instances [2]. Although KNN clearly takes
the instance-based relevance into account, it ignores the feature-based relevance.

To overcome the limitations of GPI and KNN imputation by taking both
instance-based and feature-based relevance into consideration, this work pro-
poses a new imputation method named GP-KNN. The proposed method is
formed by combining the two methods GPI and KNN to handle the missing
values. The main idea is that, instead of using all instances to build the SR
regression functions for features having missing values, only k nearest instances
are used to build such predictors for the missing values. This modification is to
get the benefits of both GPI and KNN. It firstly explores the instance-based
similarity to extract k closest instances and then employs the feature-based pre-
dictability power of GPI to impute the missing value. This method considers
the variance in each feature to be imputed. More specifically, one feature might
require more than one imputation regression function according to the distances
between the corresponding instances.

Without loss of generality, the main steps of the proposed method assuming
that the input data X has a missing value at the position i, j (the ith instance
and the jth feature) are described as follows:

1. From the ith instance, extract the non-missing values to form a complete
instance Vi,j .

2. Obtain a sub data set X T
i,j by excluding the features that are not included in

Vi,j .
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3. Form a complete sub data set Xi,j by removing instances having missing
values from X T

i,j .
4. Get k nearest instances to Vi,j from Xi,j and put them in a new matrix X k

i,j .
5. Build an SR function fi,j using X k

i,j considering the corresponding jth feature
of X as a target variable.

6. Impute the missing value X [i, j] using the prediction value obtained by apply-
ing the constructed function fi,j on the ith instance Vi,j , i.e. XC [i, j] =
fi,j(Vi,j), where XC is the output compete imputed data.

An illustrative example for the main steps of the proposed method is
presented (see supplementary Example S1 that can be found online at:
http://ecs.victoria.ac.nz/foswiki/pub/Groups/ECRG/OnlineSupplimentaryMa
terials/GPKNN AI2018.pdf).

The above is a high level introduction of the proposed method. The pso-
duecode of the proposed method is shown in Algorithm1 and more detailed
description of this procedure is given below.

Algorithm 1. Modified GP-KNN Imputation
Input : Data set X with missing values
Output: Complete data set XC

1 Let F = φ R = φ D = φ, where F : regression functions set, R: instance-based
references set, D: the corresponding distance thresholds set;

2 foreach missing value X [i, j] do

3 From the ith instance, extract the non-missing values to form a complete
instance Vi,j ;

4 if ∃Vî,j ∈ R s.t distance(Vî,j , Vi,j) ≤ dî,j then

5 XC [i, j] ← fî,j(Vi,j)

6 else
7 Extract a sub data set X T

i,j by excluding the features that are not
included in Vi,j ;

8 Obtain Xi,j as the non-missing sub matrix of X T
i,j ;

9 k ← min(max(|Ji,j |, |Ii,j |/3), |Ii,j |), where Ii,j and Ji,j are the instance
and feature indexes of Xi,j ;

10 X k
i,j ← KNN(Xi,j , Vi,j , k) ;

11 di,j ← max(distance(V, Vi,j)), ∀ Vi,j an instance in X k
i,j ;

12 for r = 1 to N do

13 fr ← SR(X k
i,j , X [Ik

i,j , j]), where Ik
i,j is the instance indexes of X k

i,j ;
14 end
15 r̂ ← arg( min

r=1,...N
fr) ;

16 fi,j ← fr̂ ;

17 XC [i, j] ← fi,j(Vi,j) ;
18 Append fi,j , di,j , Vi,j to F, D, R, respectively

19 end

20 end

http://ecs.victoria.ac.nz/foswiki/pub/Groups/ECRG/OnlineSupplimentaryMaterials/GPKNN_AI2018.pdf
http://ecs.victoria.ac.nz/foswiki/pub/Groups/ECRG/OnlineSupplimentaryMaterials/GPKNN_AI2018.pdf
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Step 1. Initialize empty sets F , R, and D. These sets are used to store the
necessary parameters during the imputation process. The set F contains the
constructed imputation SR regression functions. R is a reference set formed
by extracting complete samples from the instances having missing values. D
is a set of distance thresholds representing the neighborhood diameter of the
processed missing values.

Step 2. Extract the non-missing values from the ith instance forming a complete
instance Vi,j .

Step 3. Compare Vi,j with the existing imputed instances, if there is already
a similar one Vî,j then use the corresponding stored imputation function fî,j
to impute X [i, j] directly, i.e. XC [i, j] = fî,j(Vi,j). The similarity is measured
by the Euclidean distance.

Step 4. Obtain a sub data set X T
i,j by excluding features having missing values

at the ith instance and instances having missing values at the jth feature.
After that, delete incomplete instances forming a complete sub data set Xi,j .

Step 5. Instead of using all instances in Xi,j to build the regression function as
in GPI, the KNN method is employed to extract X k

i,j which contains the k
nearest instances of Xi,j to Vi,j . For the selection of k, the lower bound is set
to the number of features in Vi,j (|Ji,j |) to avoid the curse of dimensionality
problem. The upper bound is chosen empirically as one-third of the number
of the instances (|Ii,j |/3). However, if these constraints can not be satisfied,
i.e. small complete sub set, the whole set is used (|Ii,j |). k is selected by the
following equation.

k = min(max(|Ji,j |, |Ii,j |/3), |Ii,j |) (2)

Step 6. The sub-data set X k
i,j is then used to build N regression functions

{fr}Nr=1 via SR where the jth feature is the target variable. The value of N
is set to 10 empirically.

Step 7. The best constructed SR function (the one having the least fitness
value), fi,j , is used to predict (impute) the value of X [i, j] and put it in
XC [i, j], i.e. XC [i, j] = fi,j(Vi,j). The fitness function is computed using
Eq. 1.

Step 8. To avoid the time consuming process of performing GP-KNN imputation
for each missing value, the maximum distance di,j of the returned k nearest
instances is computed and stored. This distance can be seen as the diameter of
this set of samples w.r.t Vi,j . It is used to compare the new missing values with
the previously imputed ones to check whether the already stored functions
can be used directly.

3 Experimental Setup

A set of the experiments has been conducted to evaluate the performance of
the proposed imputation method and compare it with state-of-the-art imputa-
tion methods, i.e. MICE, KNN, CART, RF, and GPI, using two measures: the
imputation error and the SR performance.
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As mentioned above, the first evaluation approach requires the complete
data sets as ground truth. Table 1 shows the statistics of the complete data sets
used in this work. The instances having missing target values are deleted and
some non-numerical features are ignored. For each data set, 30 data sets of five
instance MAR missingness probabilities (10, 20%, 30%, 40%, 50%) are generated
on 40% of the features, i.e. 150 incomplete data sets are obtained. The imputation
and missing imposing methods are implemented using R packages: mice [4] and
simsem [16] with the default settings. After applying the imputation method, the
statistics are aggregated to evaluate the performance. However, to validate the
proposed method on reality, real-world data sets with different probabilities of
missing values are used. The information of these data sets are shown in Table 2.
More details on the used data sets can be found in the UCI repository [6].

Table 3 shows the parameters for the GP runs that used for both imputation
(GPI) and regression (SR). They are common settings in GP research. For each
experiment, 30 independent GP runs are performed and the implementation
is carried out under the GP framework provided by distributed evolutionary
algorithms in python (DEAP) [10].

Table 1. Statistics of the used complete data sets

Data set #Features #Instances

Yacht-hydrodynamics 7 308

Forestfires 13 517

ENB2012 8 768

Concrete 9 1030

Airfoil-self-noise 6 1503

Table 2. Statistics of the used incomplete data sets

Data set #Features #Instances #Instances with missing % Missing

SkillCraft1 19 3395 57 1.68

Imports-85 15 205 54 26.34

Auto-mpg 7 398 6 1.58

CCN 122 1994 1676 84.05

4 Results and Analysis

This section shows the experimental results of the proposed GP-KNN imputa-
tion method, CART, KNN, MICE, RF, and GPI. The comparisons are carried
out in terms of both the imputation error and the regression performance. The
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Table 3. The used values for GP parameters

Parameter Value

Generations 100

Population size 512

Crossover rate 0.9

Mutation rate 0.1

Elitism 5

Selection method Tournament

Tournament size 7

Maximum depth 17

Initialization Ramped-half and half

Function set +, −, *, protected %

Terminal set features and constants ∈ (−1, 1)

Wilcoxon non-parametric statistical significance test with a significance level
of 0.05 has been used to compare the imputation methods with the proposed
method. The means of RSEs achieved by the best-of-run GP programs on the
imputed test sets using the examined imputation methods are shown.

4.1 Imputation Performance

The imputation performance with different missingness probabilities are shown
in Fig. 2(a). It can be seen that the proposed method has the best performance
among the examined methods on four of the five data sets with respect to
almost all considered missingness probabilities. The differences are all signifi-
cant on the data sets Yacht, Concrete, and Airfoil. On the Forestfires data set,
CART achieves a similar imputation performance to GP-KNN. However, CART
and MICE have smaller imputation errors than other imputation methods on
ENB2012.

One of the most important advantages of GP-KNN is that it mostly performs
well even if one of the two underlying methods, i.e. GPI and KNN, has an unde-
sirable performance. This is indicated by the results on Yacht, Forestfires, and
Concrete. On these data sets, using KNN results in the worst imputation while
GP-KNN has the best performance. On airofoil data set, the good performance
of GPI along with acceptable performance of KNN leads to a highly preferred
GP-KNN performance. However, the extremely low performance of KNN on
ENB2012 data set seems to affect the overall performance of GP-KNN nega-
tively. On this data set, GPI advances KNN significantly which indicates that
the correlation between features might be higher than that between instances.
However, it is difficult for GP-KNN to advance GPI notably in this case.

Considering the comparison between the other imputation methods, the GPI
method performs better than the rest and the CART method comes next. And
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KNN method has the worst imputation performance on the five data sets. A
common pattern among all the imputation methods is that the higher probability
of the missingness the worse imputation error as there will be less useful data
to predict the missing values properly.

4.2 SR Performance on Synthetic Incompleteness

The symbolic regression errors on these synthetic incomplete data sets are shown
in Fig. 2(b).

Similar to the pattern on the imputation evaluation, the proposed GP-KNN
method achieves the best performance except for the ENB2012 data set. How-
ever, the agreement between the imputation performance and the regression
performance is not as high as expected. Such agreement can be seen in the
Concrete data set with the corresponding results. However, on the Forestfires
data set, although CART achieves a similar imputation performance comparing
to GP-KNN, the best regression results are obtained by GP-KNN. This is an
indicator of the applicability of the proposed method when performing SR.

Unlike the corresponding imputation performance results, the regression
errors’ curves are not monotonically increasing w.r.t the missingness probabili-
ties. The functionality can be noticed when comparing the mean error obtained
on 10% missingness and that on 20% missingness on Airfoil data set. The reason
is that the regression models are trained on the imputed data and the regression
errors are evaluated on imputed data as well which means the error depends on
the modeling process regardless of the missingness itself.

4.3 SR Performance on Real-World Incompleteness

To validate the applicability of the proposed method, real-world incomplete data
sets are considered. In this section, four real-world data sets having different
ratios of missing values are examined.

As the data sets are incomplete, it is impossible to measure the imputation
error. Hence, the regression performance will be the only criterion to compare the
imputation methods. The SR performance results on the imputed test data sets
are shown in Table 4. The mean, standard deviation and the significant test sign
of RSEs achieved by the best-of-run programs on test sets are shown. ST refers
to the results of the significance test (Wilcox) against the proposed GP-KNN
method where “+” means GP-KNN is significantly better, “−” means GP-KNN
is significantly worse, and “=” indicates no significant difference.

GP-KNN achieves the best regression performance on Imports-85, Skill, and
CCN while on Auto-mpg, the best results are obtained by the CART method.
This may be due to the low percentage of missing values in the Auto-mpg data
set. The GP-based imputation methods are not the worst in any of the used data
sets. The worst reported results are obtained when using KNN on Auto data,
RF on Imports-85 data, and MICE on both Skill and CNN data sets.

The main limitation of the proposed method is the imputation time complex-
ity. This problem is due to the need to go through all missing values. It is also
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Fig. 2. The experimental results on synthetic incomplete data sets, where the x-axis
represents the missingness probability and the y-axis is the RSE error.
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required to apply the KNN method and then construct the regression function
using SR which means an extra load.

Table 4. The test results of SR error on real incomplete data sets with different
imputation methods.

Method Measure Auto Imports-85 Skill CCN

MICE Mean 0.248889 0.346285 0.646367 0.546712

Std 0.05624 0.038141 0.024561 0.056658

ST = + + +

KNN Mean 0.276211 0.33792 0.635711 0.539296

Std 0.071383 0.042548 0.032341 0.049915

ST + + + +

CART Mean 0.240706 0.335545 0.640299 0.509417

Std 0.046465 0.045827 0.026141 0.038756

ST − + + =

RF Mean 0.24339 0.373118 0.649879 0.517652

Std 0.058325 0.040726 0.028141 0.028572

ST = + + +

GPI Mean 0.242211 0.331869 0.635089 0.533547

Std 0.036748 0.031374 0.28758 0.0458

ST = + + +

GP-KNN Mean 0.24411 0.327196 0.633138 0.504164

Std 0.042643 0.0303757 0.02848 0.033821

5 Conclusions and Future Directions

This work proposed a new genetic programming-based imputation method which
combines KNN and GPI. The performance of this method is evaluated from two
aspects: the imputation error and the symbolic regression performance. The
proposed method has been compared with state-of-the-art imputation methods.
The experimental results show that the proposed GP-KNN method significantly
outperforms the other methods in most considered cases.

For future work, more experimental work should be done to investigate the
impact of generating incomplete data sets with more ratios and different miss-
ingness kinds. Moreover, various data sets from different applications should be
used. The use of the imputation methods can be then studied and analyzed
with more statistical evidences. Another plan is to deal with the incompleteness
issue in big data such as data sets with high dimensional features. However,
this should be done along with handling the problem of time-complexity which
represents the main limitation of the proposed method.
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Abstract. In Non Dominated Sorting Genetic Algorithm-III (NSGA-
III), the diversity of solutions is guided by a set of uniformly dis-
tributed reference points in the objective space. However, uniformly dis-
tributed reference points may not be efficient for problems with dis-
connected and non-uniform Pareto-fronts. These kinds of problems may
have some reference points that are never associated with any of the
Pareto-optimal solutions and will become useless reference points during
evaluation. The existence of these useless reference points in NSGA-III
significantly affects its performance. To address this issue, a new refer-
ence points adaptation mechanism is proposed that generates reference
points according to the distribution of the candidate solutions. The use
of this proposed adaptation method improves the performance of evolu-
tionary search and promotes population diversity for better exploration.
The proposed approach is evaluated on a number of unconstrained bench-
mark problems and is compared with NSGA-III and other reference point
adaptation approaches. Experiment results on several benchmark prob-
lems clearly show a prominent improvement in the performance by using
the proposed reference point adaptation mechanism in NSGA-III.

Keywords: Many-objective optimization · Genetic programming
Reference points · Evolutionary computation

1 Introduction

Non Dominated Sorting Genetic Algorithm-III (NSGA-III) [4] is one of the
prominent and effective algorithms in the field of many-objective optimization.
It is an extension of NSGA-II [5] which uses the widely distributed reference
points for preserving diversity. Therefore, the obtained Pareto-optimal solutions
are also likely to be widely distributed on the Pareto-optimal front. Previous
studies have shown [4,9] that NSGA-III performs better on 3 to 15 objectives of
constrained and unconstrained optimization problems.

Even though NSGA-III has successfully solved various practical many- objec-
tive optimization problems, it still has challenges when applying the algorithm
on real-world problems such as engineering problem. These real-world problems
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T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 358–370, 2018.
https://doi.org/10.1007/978-3-030-03991-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03991-2_34&domain=pdf
https://doi.org/10.1007/978-3-030-03991-2_34


Adaptive Reference Point Generation for Many-Objective Optimization 359

usually have non-uniform and irregular Pareto-fronts and the adoption of uni-
formly distributed reference points affect the performance of NSGA-III adversely
[8,9]. This is because many of these reference points are never associated with
any of the optimal solutions and become useless reference points. Evidently,
useless reference points will also notably affect the performance of NSGA-III
[8,9].

Particularly, in problems with irregular, non-uniform and disconnected
Pareto-fronts, useful reference points are associated with more than one optimal
solutions in their closest proximity. Selecting some of these popular reference
points with a number of solutions may not help to span all solutions uniformly
over the entire Pareto-fronts [9]. This may reduce the solution diversity of current
and future population evolved by NSGA-III.

To address this key issue of useless reference points in NSGA-III, the main
goal of this study is to develop a new effective mechanism for reference point gen-
eration. This mechanism will improve the association between reference points
and the Pareto-fronts during evaluation. Further, a proposed algorithm will dis-
cover well-distributed solutions on the Pareto-optimal fronts. Guided by this
goal, we will develop an adaptation mechanism by using a modelling technique
and accurately approximates the Pareto-fronts based on evolved solutions. In
particular, we introduce a density-based model that estimates the density of
solutions from each defined sub-location in a whole objective space. Using distri-
bution density information, we can further identify the distribution of candidate
solutions in each generation and generate reference points in more promising
regions. Furthermore, reference points in each partition are generated uniformly
at that specific location. Therefore, associated solutions of these reference points
are also well-distributed over the Pareto-fronts. Consequently, the proposed algo-
rithm will decrease the existence of useless reference points for the close match
between reference points and the evolved Pareto-front. Moreover, well distributed
solutions over the entire Pareto-fronts will enhance the solution’s diversity.

Driven by the goal of reducing the useless reference points and promoting
the solution diversity, this paper is organized as follow. Section 2 presents the
problem definition and related works in the literature for adaptive reference
points approaches. Section 3 provides the technical description of the proposed
algorithm. Section 4 outlines the experimental design and parameter setting.
Section 5 analyses the experimental studies on very well known many-objective
test problems and finally our conclusion in Sect. 6.

2 Research Background

This section briefly introduces many-objective optimization problems and then
discusses in more detail s several adaptive reference points approaches that have
been proposed previously in the literature [8,9].
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2.1 Problem Definition

Without losing generality, Many-Objective Optimization Problems (MaOPs)
involve four or more objectives [1] which often conflict with each other. In gen-
eral, an MaOPs can be formulated as follows:

min f
−→
(x) = {f1(−→x ) . . . fm(−→x )} : s.t. −→x ∈ X f ∈ Y (1)

Given two solutions x1 and x2, it is said that x1 dominates x2 if and only if

∀i, 1 ≤ i ≤ D, fi(x1) ≤ fi(x2) : whereD ≥ 4

and
∃i, fi(x1) < fi(x2).

Moreover, a solution x∗ is said to be Pareto-optimal if there does not exist
another solution x1 that dominates it.

2.2 Related Works

Several experimental and analytical studies [7,11] have shown that Evolution-
ary Multi-Objective (EMO) algorithms were vulnerable when handling many-
objective (four or more objective) problems due to the lack of adequate selection
pressure toward the Pareto-fronts.

To cope with many-objective issues, reference points based approach is one
of the state-of-the-art approaches that plays an important role for selecting well
diversified solutions during evaluation [4,10,14]. These points are used to guide
the solutions toward targeted locations. Therefore, the reference points based
approach has been used in several EMO algorithms for handling many-objective
optimization problems.

As an effective reference point based version of NSGA-II [5], NSGA-III [4] is
one of the most effective many-objective optimization algorithm which works on
uniformly distributed reference points. Although NSGA-III performs better on
a number of problems with uniformly distributed Pareto-fronts such as DTLZ1
problem, uniformly distributed reference points NSGA-III has an issue when it
is applied on non-uniform and irregular Pareto-front problems such as DTLZ7
problem. This limitation is also highlighted by Deb and Jain [9]. They have
witnessed in several many-objective problems that some reference points can
never be associated with a well-dispersed Pareto-optimal set while others are
associated with more than one candidate solutions. Several adaptive extensions
have been proposed [8,15] in the literature for alleviating an issue of NSGAIII.

Reference Points based Evolutionary Algorithms for Many objective Opti-
mization (REPA) [12] is one of the extension of NSGA-III which adaptively
generates a series of reference points. These points are generated by adopting
a series of local ideal points. Later individuals are selected by calculating the
euclidean distance between the reference points and individuals in the environ-
mental selection process.
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ANSGA-III [9] is one of the well-known adaptive extension of NSGA-III. This
extension of NSGA-III relocates the reference points adaptively. Further, relo-
cation of the reference points adopt the distribution of candidate solutions on
current generation. This relocation of reference points is carried out by two major
operations: inclusion and exclusion. In the inclusion procedure, m-objective ref-
erence points are added around the j-th reference points in form of m−1 dimen-
sional simplex. Moreover, the j-th reference points are kept as a centroid and the
side length of the simplex is equal to the distance between two existing closest
reference points. Unfortunately, this inclusion procedure requires adding the ref-
erence points outside the simplex, if new reference points introduces around the
vertices of simplex. Due to this reason, ANSGA-III is not able to fully relocate
the reference points and may fail to guide the evolution of a well-distributed set
of Pareto-optimal solutions.

One of our earlier work, Density Model based Reference Point Adapta-
tion (NSGA-III-DRA) [13] demonstrates the potential usefulness of the density
model. In addition, this algorithm estimates the density of solutions in each sub
location. NSGA-III-DRA generates reference points according to the average dis-
tance between selected solution and the centroid of all the existing solutions in
the location. Random distribution of reference points does not allow to achieve
an ideal association, thus the algorithm still has the issue of useless reference
points.

Our proposed algorithm overcomes the limitations of NSGA-III and pre-
viously proposed adaptive approaches. Our proposed algorithm enables close
match between reference points and the Pareto-front.

In addition, our algorithm generates reference points that distribute Pareto-
optimal points uniformly across the entire Pareto-front, thus alleviating the issue
of randomness in NSGA-III-DRA. Moreover, our approach does not add any
extra reference points during evolution and it is easy to implement regardless of
the number of optimization objectives under consideration.

3 Proposed Algorithm

Our proposed adaptive algorithm is inspired by a density-based model that esti-
mates the density of solutions at each sub location ŵ. Building this density-
based probabilistic model consists of two steps. First, the whole objective space
is decomposed into several sub-locations ŵ1, ŵ2, ŵ3 . . . , ŵk ∈ W . This decompo-
sition uses Das and Dennis’s [3] systematic approach. Then the number of the
associated solutions with ŵ is recorded in archive E(ŵ) where E(ŵ) preserves
the index of associated individuals. The association between each solution ŝ with
ŵ is obtained by a perpendicular distance (⊥). As a result, a solution is asso-
ciated with a sub-location where the perpendicular distance between the two
reaches the minimum. Lastly, solutions in E(ŵ) are divided by the total of the
non-dominated solutions (‖ S ‖) so far. Then the algorithm calculates the den-
sity of solutions of each sub-simplex locations ŵ. The density-based probabilistic
model is defined as
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P (D|ŵ ∈ W ) =
‖ ∑

(argminsεSd⊥(s, w)) ‖
‖ S ‖ (2)

Previous efforts on improving the adaptiveness of reference points in NSGA-
III focused mainly on adapting uniformly distributed reference points, guided
implicitly by the distribution of solutions (i.e. no distribution models are explic-
itly constructed and utilized to adjust reference point locations). However,
in our proposed algorithm, we emphasize clearly on the importance of using
modelling techniques to obtain a more accurate approximation of the Pareto-
fronts. Accordingly, our algorithm is capable of generating references points that
matches closely with the distribution model. Furthermore, with the help of a
new technique that generates reference points around the centroids of associated
solutions, our algorithm can effectively handle solutions in close proximity to
the simplex vertices. Additionally improvements have also been made to ensure
even distribution of reference points around any solutions that fall well inside
the simplex. Therefore, our algorithm has the ability to improve the diversity of
solutions in NSGA-III.

3.1 Reference Point Adaptation

The basic framework of our proposed work is shown in Algorithm1. In this
framework, the density model is built first. This formation of the density model
is shown in Algorithm 2. Next, a new adaptive procedure (see line 15 of Algo-
rithm1) is introduced into Algorithm3.

Algorithm 1. The framework of NSGA-III-DRAU.
Input : Parent population Pg

Output: A set of non-dominated solutions
1 Initialize the population P 0;
2 evaluate the population P 0;
3 Generate the W that partition the Objective Space into sub-simplex locations;
4 Set g ← 0;
5 while g < gmax do
6 Generate the offspring population Qg using the crossover, mutation and reproduction;
7 foreach Q ∈ Qg do Evaluate Q;
8 Rg ← P g ∪ Qg;
9 Apply non-dominated sorting on (Rg) and find (F1, F2 . . . );

10 Normalize the population members :Sg = ObjectiveNormalization(Sg);
11 foreach w ∈ W do
12 identify member of Sg associated with w;

13 Assign (E(ŵ), D(ŵ)) = Associatew(Sg,W ) ;

14 end

15 Assign Z∗
g = Generate(E(ŵ), D(ŵ), Sg ,W ) ;

16 Construct the new population Pg+1 by the NSGA − III association and Niching;
17 g ← g + 1;
18 end
19 return The non-dominated individuals P ∗ ⊆ Pgmax ;
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Algorithm 2. Associatew(Sg,W )

Input : Sg, W
Output: E(ŵ) (individuals at ŵ) &D(ŵ) (solution’s density at ŵ )

1 foreach w ∈ W do
2 E(w) = φ;
3 end

4 foreach s ∈ Sg do
5 foreach w ∈ W do

6 compute d⊥(s, w); // perpendicular distance of each solution from ŵ
7 end

8 Assign ŵ = argmins∈Sd⊥(s, w) ; // associate the solution with the sub-location

9 Save s in E(ŵ);

10 end
11 foreach s ∈ E(ŵ) do
12 Calculate the number of associated solutions with ŵ and store in A(ŵ);
13 end
14 while i ≤‖ A(ŵ) ‖ do
15 Assign P (D|ŵ) =‖ A(ŵ) ‖ ÷‖ S ‖ ; // probability of the associated solution

16 Assign D(ŵ)=‖ P (ŵ) ‖*length of reference points; // return solution’s density

17 set i=i+1;

18 end
19 return E(ŵ) &D(ŵ);

Algorithm 3. Generate(E(ŵ), D(ŵ), Sg ,W )

Input : E(w), P (w),D(w), Sg,W
Output: Z∗

g

1 foreach ŵ ∈ W do
2 set nref= ‖ D(ŵ) ‖ ; // number of reference points required at location ŵ
3 Assign Zr= ŵ ; // set ŵ as a first reference point
4 if Zr!=Vertex Points then
5 Assign Z∗

g = IntermediatePoints(E(ŵ),D(ŵ), nref, Sg,W,Zr) ; // call

intermediate points method

6 end
7 if Vertex points then
8 Assign Z∗

g = V ertexPoints(E(ŵ),D(ŵ), nref, Sg,W,Zr); // call vertex

points method

9 end
10 end
11 return Z∗

g ;

3.2 Reference Point Generation

Our proposed algorithm is broken into two parts: (1) handling references points
on the vertex and (2) dealing with the intermediate points.
References Points on the Vertex. The first method of the proposed algo-
rithm handles the issue of ANSGA-III. This issue relates to the generation of
the reference points around the vertices of simplex. In this method, the reference
points are generated from the centroid location of the associated solutions and
these reference points are always generated inside a simplex location. In this
procedure we have used the following steps:

1. Obtain the centre location from existing solutions in the sub-simplex ŵ ∈ W ,
where ŵ is one of the vertices of the hyperplane.

2. Calculate the perpendicular distance from the centroid to associated solutions
of ŵ.

3. Select a solution s based on a minimum perpendicular distance.
4. Calculate a mid-point value between the selected solution and the centroid for

generating a corresponding reference point. This mid-point of each dimension
is considered as one of the reference points around the vertices.

5. Repeat steps 1 to 4 until the required number of reference points are
generated.
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Intermediate Points. The generation of reference points at any intermediate
location is described in Algorithm 4. Consider the situation in M = 3 objective
case where M points are generated around any of the intermediate locations
on the simplex. This example is shown in Fig. 1. In this example,

{
Z1, Z2, Z3

}

reference points are generated using the following two equations:

pointsi = Zr − (Interval)/M (3)

Zi
new = Zi

new/div + pointsi (4)

where the interval is the difference between two consecutive reference points on
the hyperplane and the division(div) is the total number of partitions on the
original simplex.

Algorithm 4. IntermediatePoints(E(ŵ), D(ŵ), nref, Sg ,W,Zr)

Input : E(ŵ),D(ŵ), nref, Sg,W,Zr

Output: Z∗
g

1 foreach ŵ ∈ W do
2 associate(Zr, s ∈ E(ŵ) ; // associate solutions with the reference point
3 if ρ(Zr) = 1 then
4 Assign Zg = Zr : nref=nref-1;
5 end
6 while nref ≥ 0 do
7 foreach zr ∈ Zr do
8 if ρ(Zr) ≥ 2 and Flag(Zr) = 0 then
9 while i ≤ M do

10 Zr = Zr − interval ÷ M ;
11 Znew = Znew ÷ div + Zr ; // generate new reference point
12 i=i+1;
13 end
14 while i ≤ M do
15 associate(Zi

new, s ∈ E(ŵ) ; // associate the solutions with the
new reference point

16 if ρ(Zi
new) = 0 then

17 set Flag(Znew)=0;
18 if already − exist(Zi

new) = FALSE and Zi
new lie in first quadrant

then
19 Assign Zr = Zi

new ∪ Zr;
20 end
21 end
22 i=i+1;
23 end
24 foreach zr ∈ Zr do
25 if ρ(zr) = 1 then
26 Zg = zr : set Flag(zr)=1;
27 nref=nref-1;
28 end
29 if ρ(zr) = 0 then
30 remove(zr) ; // remove reference point
31 end
32 end
33 end
34 end
35 end
36 end
37 return Z∗

g ;
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These newly generated reference points can be inserted in the reference points
archive called Zr if they satisfy the two main conditions: (i) a reference point
must be inside the boundary of entire simplex; (ii) duplication is not allowed
and reference points must be unique. Once new reference points are added into
archive Zr, then the association between existing members of Zr and solutions
in E(ŵ) must be checked. If the i-th reference point from Zr still has ρi ≥
2, reference points are generated around i-th reference points but this time a
parameter value of interval is set to half of the current value and the division(div)
is set to be double its existing value. This process is also shown in Fig. 1. Figure 1
demonstrates that the i-th reference point is kept as a centroid location for newly
generated reference points and the reference points are generated as a layer
approach. These layers are also shows into the Fig. 1 with two different colours.
Thus, we named this method a centroid layer approach.

Fig. 1. Generate reference points until M − 1 times

4 Experimental Setup

4.1 Test Problems

In order to verify the quality of the proposed algorithm, we have compared the
performance of NSGA-III-DRAU with NSGA-III, ANSGA-III and NSGAIII-
DRA on benchmark problems with three to eight objectives. We selected four
many-objective test problems, DTLZ and Inverted DTLZ (IDTLZ), introduced
by Deb et al. [6]. The characteristics of DTLZ and IDTLZ problems [2] are
mentioned in Table 1.

Table 1. The characteristics of DTLZ problems

Problems No. of obj(m) n Characteristics

IDTLZ1 3, 5, 8 m + 4 Linear, multi-model, inverted

IDTLZ2 3, 5, 8 m + 9 Concave, inverted

DTLZ5 3, 5, 8 m + 9 Concave, degenerate

DTLZ7 3, 5, 8 m + 19 Mixed, disconnected, multi model
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4.2 Parameter Setting

The number of decision variables for DTLZ and inverted DTLZ test problems
are set as recommended in [6]. The population size of all compared algorithms
are set to 92 for the three-objective, 212 for the five-objective and 156 for eight-
objective. The size of reference points are also kept same as the population size.
91 reference are supplied to all compared algorithms for three-objective case, 210
for five-objective case and 156 for eight-objective case. The crossover and the
mutation parameters of NSGA-III are kept identical in the proposed algorithm.
In order to maintain a consistent and fair comparison the parameter settings of
compared algorithms are kept the same in all experiments.

4.3 Performance Measures

To evaluate the performance of the all proposed algorithm on DTLZ problems,
we used the Inverted Generational Distance (IGD) [16] and Hyper-Volume (HV)
[17]. These two indicators have been commonly used to evaluate the performance
of EMO algorithms. In this study, the exact Pareto-optimal surface of DTLZ test
problems are known. Therefore, we use the true Pareto-fronts for calculating
IGD. In the case of HV the nadir point is set as (1, 1, 1, . . . 1). The HV values in
this study are normalized to [0, 1].

5 Results and Discussions

In the experiment, for each algorithm, 30 independent runs are carried out. Then,
the mean and the standard deviation of HV and IGD values are reported. The
best value for each problem is marked in boldface.

5.1 Overall Results

Table 2 presents the mean and standard deviation of the four compared algo-
rithms on DTLZ problems. The Wilcoxon rank sum test with the significance
level of 0.05 is carried out on both HV and IGD values.

IDTLZ1 fitness landscape contains a large number of local optima which
may require better exploration. Therefore, a higher degree of population diver-
sity plays an important role for more exploration in this multi-model test prob-
lem. Table 2 shows that adaptively relocating reference points NSGAIII-DRA,
NSGAIII-DRAU and ANSGA-III have better HV and IGD values because they
can generate higher population diversity than the predefined uniformly dis-
tributed reference points in NSGA-III. Furthermore, the result also reveals that
NSGAIII-DRAU performs significantly better than NSGA-III and NSGAIII-
DRA but is competitive with ANSGA-III. This can also be seen in Fig. 2. Figure 2
also demonstrates that the NSGAIII-DRA has random distribution of solutions
and some area of the plane do not have any of the solution. Thus, the NSGAIII-
DRA plot indicates that reference points are not widely distributed in the objec-
tive space.
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Fig. 2. Approximate Pareto-front for 3-objective Inv-IDTLZ1 problem

Table 2. The mean and standard deviation over the average HV values on M -objectives
inverted DTLZ1, inverted DTLZ2, DTLZ5 and DTLZ7 problems. The significantly
better results are shown in bold.

Function M NSGAIII ANSGA-III NSGAIII-DRA NSGAIII-DRAU

HV Mean (std)

Inv-DTLZ1 3 1.07e−1(4.0e−3) 1.30e−1(2.8e−3) 1.19e−1(4.7e−3) 1.31e−1(2.0e−3)

5 7.91e−4(4.2e−4) 2.05e−3(3.0e−4) 2.75e−3(2.9e−4) 3.62e−3(2.0e−4)

8 2.62e−4(3.8e−5) 9.10e−3(1.5e−3) 1.35e−4(4.3e−5) 1.58e−4(4.3e−4)

Inv-DTLZ2 3 4.14e−1(1.7e−2) 4.47e−1(4.0e−3) 4.35e−1(6.74e−3) 4.54e−1(4.1e−3)

5 6.30e−2(2.4e−3) 6.89e−2(5.9e−3) 8.53e−2(3.1e−3) 2.85e−1(1.1e−2)

8 6.62e−3(6.8e−4) 9.37e−3(1.1e−4) 7.92e−3(8.8e−4) 1.25e−2(7.9e−4)

DTLZ5 3 8.19e−2(1.7e−2) 8.54e−2(6.3e−4) 8.41e−2(1.2e−3) 8.45e−2(2.3e−3)

5 2.28e−1(2.6e−1) 7.12e−1(4.2e−1) 4.5e−1(4.7e−2) 7.21e−1(3.5e−2)

8 6.03e−1(1.9e−2) 6.92e−1(2.2e−2) 6.44e−1(5.4e−2) 6.96e−1(2.2e−2)

DTLZ7 3 3.10e−1(7.9e−3) 3.15e−1(1.4e−2) 2.99e−1(5.5e−3) 3.19e−1(1.2e−2)

5 2.240e−1(3.8e−3) 3.23e−1(6.3e−3) 2.75e−2(2.7e−3) 3.25−1(4.3e−3)

8 3.08e−1(4.8e−3) 3.25e−1(6.3e−3) 2.23e−3(1.7e−2) 3.28e−1(6.2e−3)

IGD Mean (std)

Inv-DTLZ1 3 3.22e−2(5.0e−3) 2.37e−2(7.7e−3) 2.82e−2(2.5e−3) 2.34e−2(1.8e−3)

5 8.62e−2(3.8e−3) 5.53e−2(8.3e−3) 4.47e−2(6.8e−3) 3.11e−2(3.9e−3)

8 9.62e−2(8.8e−3) 7.13e−2(9.2e−3) 6.17e−2(9.9e−3) 5.49e−2(8.9e−3)

Inv-DTLZ2 3 6.80e−2(8.3e−3) 6.39e−2(4.6e−3) 6.38e−2(4.2e−3) 6.19e−2(4.6e−3)

5 2.33e−1(1.2e−2) 2.03e−1(1.2e−2) 1.61e−1(1.2e−2) 1.23e−1(1.4e−2)

8 2.62e−1(3.8e−2) 3.53e−1(2.3e−2) 2.78e−1(3.5e−2) 2.39e−1(3.4e−2)

DTLZ5 3 2.18e−2(2.5e−3) 1.35e−2(1.5e−3) 1.99e−2(3.7e−3) 1.39e−2(2.84e−3)

5 2.70e−1(5.16e−2) 1.99e−1(5.7e−2) 3.57e−1(8.4e−2) 1.85e−1(5.4e−2)

8 4.04e−1(8.8e−2) 4.01e−1(7.2e−2) 4.57e−1(8.9e−2) 3.95e−1(9.14e−2)

DTLZ7 3 9.6e−2(5.07e−3) 8.60e−2(6.8e−3) 9.57e−2(1.6e−3) 8.37e−2(6.43e−3)

5 4.54e−1(2.2e−2) 3.44e−1(2.4e−2) 3.68e−1(2.7e−2) 3.60e−1(2.6e−2)

8 7.89e−1(3.7e−2) 7.61e−1(2.7e−2) 8.83e−1(5.5e−2) 7.54e−1(7.9e−2)

For the IDTLZ2 problem, Table 2 shows that our proposed algo-
rithm NSGAIII-DRAU significantly outperformed NSGAIII, ANSGA-III and
NSGAIII-DRA in terms of HV and IGD. To verify this result, we plotted the
Pareto-fronts of our proposed algorithm and ANSGA-III. Fig. 3a and b show



368 A. Masood et al.

that the proposed algorithm has generated more diversified solutions on the
hyperplane than ANSGA-III for this problem.
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Fig. 3. Approximate Pareto-front for 3-objective Inv-IDTLZ2 and DTLZ7 test prob-
lems

DTLZ5 has a degenerated Pareto-front, i.e., the Pareto-front is always a curve
regardless of the dimensionality of the objective space. For DTLZ5 problem,
Fig. 4a and b show that the solutions obtained by NSGAIII-DRAU are well
distributed around Pareto-fronts, thus achieving better diversity than ANSGA-
III. For the five-and-eight objective test problems, Table 2 shows that NSGAIII-
DRAU significantly outperforms NSGAIII, ANSGA-III and NSGAIII-DRA.

Similar observations can be made from the results on DTLZ7 with three
to eight objectives as well. DTLZ7 has a disconnected Pareto-front. Due to this
feature, some algorithms that rely on uniformly distributed reference points can-
not perform well on this problem. Hence, the algorithms having adaptive refer-
ence points eventually have significantly better performance. Figure 4c and d
show that NSGAIII-DRAU can converge faster than ANSGA-III. For the three-
objective test problem, ANSGA-III apparently failed to cover some location on
the Pareto-fronts. This can be seen in Fig. 3c and d.

For the eight-objective test problems, Table 2 shows that NSGAIII-DRAU
significantly outperforms NSGAIII, ANSGA-III and NSGAIII-DRA on most of
the test problems.
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Fig. 4. Parallel coordinate plot for the e fitness values of the population on 5-objective
DTLZ5 and DTLZ7 problems.
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6 Conclusion

In this paper, we proposed a new adaptive generation strategy NSGA-III-DRAU
for reference points in the recently proposed many-objective NSGA-III. NSGA-
III-DRAU addresses a key research issue of using uniformly distributed refer-
ence points NSGA-III on many-objective irregular and disconnected Pareto-
front problems and attempted to alleviates the limitations of recently proposed
adaptive approaches. The proposed algorithm is applied to a number of uncon-
strained three to eight-objective optimization problems. We compared our pro-
posed algorithm with NSGA-III and previously proposed reference points adap-
tive approaches. Experimental results on the benchmark problems show that
NSGA-III-DRAU reduces the useless reference points and provides a better dis-
tribution of Pareto- optimal solutions on the entire Pareto-fronts. Further, a
better distribution of reference points also helps improve the diversity of the
solutions that can be observed visually and in terms of HV and IGD. This find-
ing leads us believe that our algorithm NSGA-III-DRAU is capable of handling
many-objective problems with non-uniformly distributed Pareto-front effectively.

This study opens up a substantial research direction for many-objective opti-
mization problems. It is still in exploration phase and more studies are required
in future. Thus, we have a plan to do more analytical and experimental studies
to know in detail about the behavior of the solutions in term of non-uniform and
irregular Pareto-fronts.
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Abstract. Binary PSO algorithms are extensions of the PSO algo-
rithm that enjoy some of the social intelligence properties of the original
algorithm. The intensive local search ability is one of the most impor-
tant characteristics of PSO. In this paper, we argue that, when eval-
uating binary PSO algorithms against common real-value benchmark
problems—a common practice in the literature—the representation of
the search space can have a significant effect on the results. For this
purpose we propose the use of reflected binary code, which is a minimal
change ordering representation for mapping a binary genotype space to
a real phenotype space, while preserving the notion of locality in the
phenotype space.

Keywords: Binary particle swarm optimization
Reflected binary code · Minimal change ordering · Representation
Benchmarking

1 Introduction

Particle swarm optimization (PSO) is a population-based optimization method
that produces computational intelligence through social interaction [1]. In the
algorithm, each particle has a memory of the best performance by itself and
by the swarm and is attracted to those best points. In the later stages of the
optimization process, particles swarm around the best points and those areas
are intensively explored. Eventually the particles gather around the best point
found by the swarm. This mechanism of intensive search around the optimal
points is the reason for the excellent performance of PSO.

The PSO algorithm was originally developed for continuous spaces, but many
real-world problems are defined in discrete spaces. Kennedy and Eberhart [2]
introduced a discrete binary version of PSO for discrete optimization problems.
In the binary PSO, the positions of particles are restricted to the vertices of
hyper-cubes and the velocities are interpreted as the probability that particles
move from the current vertices to other vertices.
c© Springer Nature Switzerland AG 2018
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An alternate version of binary PSO, a probability-based binary PSO—was
introduced by Zhen et al. [3]—in which the positions of particles represent the
probabilities of assuming the value of 1 and the binary outcomes are stochasti-
cally generated based on these probabilities. In this model, the update rules of
the velocity and position vectors are identical to those in the continuous PSO.
Therefore, the theories developed for the continuous PSO can be applied to the
analysis of this version of binary PSO.

It is a common practice to use benchmark functions to test the performance
of new PSO algorithms. For binary PSO, the common practice is to use a binary
representation for the domain (search space) of a benchmark function and then
operate the algorithm. The most commonly-used binary representation is based
on lexicographical ordering. In this paper, we will argue that this representation
does not preserve locality: two close points in the domain of the function may have
binary representations that are far apart from one another. For instance, the inte-
gers {0, 1, 2, 3, 4, 5, 6, 7} are represented as {000, 001, 010, 011, 100, 101, 110, 111}
in the binary system. The distance between 3 and 4 is one but the Hamming
distance between 011 and 100 is three. A better choice for the transformation
of real solutions is Reflected Binary Code (RBC), which is also known as Gray
code. There are some debates about RBC versus binary encoding in the field of
genetic algorithm (GA) (Chakraborty et al. [4]). Since the movement of particles
in PSO exclusively relies on the geometrical information in spaces, the preser-
vation of relative distance is crucial for PSO. The purpose of this article is to
verify this claim experimentally.

This paper is organized as follows. In Sect. 2, we review variants of continuous
and binary versions of PSO. In Sect. 4, we discuss the shortcomings in the current
representation used for binary PSO and present the proposed representation. In
Sect. 5, we conduct experiments to test the alternate representation and discuss
the results. We conclude the paper in Sect. 6.

2 Background and Review

In this section, we review major variants of continuous and binary-valued particle
swarm optimization.

2.1 Particle Swarm Optimization (PSO)

The goal of continuous PSO is to solve the following optimization problem:

minimize: F (x), x = (x1, . . . , xd) ∈ S ⊆ R
d (1)

where the search space S is a hyper-cube in R
d,

lj ≤ xj ≤ uj , lj , uj ∈ R, j = 1, . . . , d. (2)

PSO is a population-based algorithm where the individuals in the population
(or swarm) are called “particles”. For each particle i, at time t and along dimen-
sion j, xt

i,j represents the current position, vt
i,j represents the current velocity,
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and pti,j represents the best position seen so far (pbest). The algorithm also
keeps track of the best position seen by the swarm thus far (gbest), which is,
at time t and along dimension j, denoted by gtj .

Standard PSO. The original form of the PSO algorithm was first introduced by
Kennedy and Eberhart [1], with the following update equations for the elements
of the velocity and position vectors, respectively:

vt+1
i,j = vt

i,j + c1 rt1,i,j
(
pti,j − xt

i,j

)
+ c2 rt2,i,j

(
gtj − xt

i,j

)
; (3)

xt+1
i,j = xt

i,j + vt+1
i,j , (4)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, where rt1,i,j and rt2,i,j are random numbers
distributed uniformly in [0, 1] for each i, j and t; and c1 and c2 are constant
values. The d-dimensional pbest and gbest vectors are then updated as follows:

pt+1
i =

{
xt+1
i , if F (xt+1

i ) < F (pt
i)

pt
i, otherwise;

(5)

gt+1 = argmini F (pt+1
i ), (6)

where, xt
i = (xt

i,1, . . . , x
t
i,d) and pt

i = (pti,1, . . . , p
t
i,d), for i ∈ {1, . . . , n}.

Shi and Eberhart [5] introduced the inertia weight ω in the velocity update
formula, which controls the effect of the velocity in the previous iteration, such
that:

vt+1
i,j = ω vt

i,j + c1 rt1,i,j
(
pti,j − xt

i,j

)
+ c2 rt2,i,j

(
gtj − xt

i,j

)
. (7)

This is the most popular form of PSO, which is often referred to as standard
PSO (SPSO).

2.2 Binary Variants of PSO

The search space in binary PSO is {0, 1}b. The goal is to find a bit string of
length b that minimizes a given objective function. In this section, we review the
original version of binary PSO followed by two improved versions which will be
used in our experiments.

Original Binary PSO. The first extension of PSO for discrete problems was
introduced by Kennedy and Eberhart [6]. In binary PSO, the positions of par-
ticles are restricted to the vertices’s of hyper-cubes, which are represented by
binary values 0 or 1. They interpret the velocity vt

i,j as the probability of xt
i,j

taking the value 1. The velocity update equation has the same form as that of
(3). Since the velocity is a probability, it is constrained to the interval [0, 1].
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Using a sigmoid function Λ(v) = 1
1+e−v , the position update rule is defined as

follows:

xt+1
i,j =

{
1, if r < Λ(vt+1

i,j )
0, otherwise

(8)

where r is a random number generated uniformly from the interval [0, 1].

Khanesar’s Binary PSO (KBPSO). An improvement of BPSO was pro-
posed by Khanesar et al. [7], where like the original (continuous) PSO, the
velocity vector determines the rate of change. They introduced two vectors vt

0,i

and vt
1,i, which can be interpreted as the probability of the bits of particles

changing to 0 and 1 respectively, conditional on the current values of the bits in
the particle. The velocity is then defined as

vt
i,j =

{
vt
0,i,j , if xt

i,j = 1
vt
1,i,j , if xt

i,j = 0.

The idea is that if the j-th element of pbest (or gbest) is 1, then v1,i,j is
increased and v0,i,j is decreased, and similarly, if the j-th element of pbest (or
gbest) is 0, then v0,i,j is increased and v1,i,j is decreased. Based on the velocity
update rule of SPSO, given in (7), they formulate the velocity update rules as
follows:

vt+1
0,i,j = ω vt

0,i,j + dt0,1,i,j + dt0,2,i,j ;

vt+1
1,i,j = ω vt

1,i,j + dt1,1,i,j + dt1,2,i,j ,

where

dt0,1,i,j = −c1r
t
1,i,j , dt1,1,i,j = c1r

t
1,i,j , if pti,j = 1

dt0,1,i,j = c1r
t
1,i,j , dt1,1,i,j = −c1r

t
1,i,j , if pti,j = 0,

and

dt0,2,i,j = −c2r
t
2,i,j , dt1,2,i,j = c2r

t
2,i,j , if gtj = 1

dt0,2,i,j = c2r
t
2,i,j , dt1,2,i,j = −c2r

t
2,i,j , if gtj = 0.

The update rule for position is defined as follows:

xt+1
i,j =

{
x̄t
i,j , if r < Λ(vt+1

i,j )
xt
i,j , otherwise

where¯ is a complement operator, such that, x̄t
i,j = 0, if xt

i,j = 1, and x̄t
i,j = 1,

if xt
i,j = 0. The matlab code provided in (Khanesar [8]) uses ω = 0.5 and

c1 = c2 = 1. In our experiments we denote this model as KBPSO.
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Probability-Based Binary PSO (PBPSO). Zhen et al. [3], who view the
departure of BPSO from the continuous PSO and its theories as a weakness,
proposed a probability-based binary PSO (PBPSO), in which “the value of each
bit is determined by its corresponding probability of being 1, while this prob-
ability is updated according to the information share mechanism of PSO” [3].
The position vector (representing probabilities in this method) is initialized as
follows:

ẋ0
i =

(
ẋ0
i,1, . . . , ẋ

0
i,b

)
=

(
1
2
, . . . ,

1
2

)
.

All the update equations are identical to those in the original continuous PSO.
That is, the elements of the velocity and position vectors are updated according
to (3) and (4) respectively, in which x is replaced with ẋ.

The actual outcome of a particle is obtained stochastically as follows:

xt
i,j =

{
1, if r < ẋt

i,j

0, otherwise,

where r is a uniformly generated random number. The pbest and gbest vectors
are updated according to (5) and (6) respectively.

In order to avoid premature convergence, the authors also propose a mutation
operator that with a probability Pm (set to 0.08 in their experiments) flips the
bits in the outcome as follows:

xt+1
i,j =

{
x̄t
i,j , if r < Pm

xt
i,j , otherwise.

(9)

3 Reflected Binary Code

We present a brief review of the basics of Reflected Binary Code (RBC) proposed
by Frank Gray (Gray [9]). RBC is minimal change ordering of bit strings where
successive strings differ by a single bit. An n-bit RBC code G(n) consists of 2n

n-bit strings Gn,0, . . . , Gn,2n−1.

G(n) =

⎛

⎜
⎜
⎜
⎝

Gn,0

Gn,1

...
Gn,2n−1

⎞

⎟
⎟
⎟
⎠

where Gn,k = (gk,n−1, . . . , gk,0) for gk,j ∈ {0, 1}, k ∈ {0, 1, . . . , 2n − 1}, and
j ∈ {0, 1, . . . , n − 1}. The code can be constructed recursively. The basis is

G(1) =
(

0
1

)
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and the recurrence is

G(n + 1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0Gn,0

0Gn,1

...
0Gn,2n−1

1Gn,2n−1

1Gn,2n−2

...
1Gn,0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In RBC, G(n + 1) consists of a copy of G(n) with a “0” attached to each bit
string and a copy of G(n) in reverse order with a “1” attached to each string.
For instance,

G(2) =

⎛

⎜
⎜
⎝

00
01
11
10

⎞

⎟
⎟
⎠

G(3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

000
001
011
010
110
111
101
100

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The common binary encoding, B(n) of n-bit strings is

B(n) =

⎛

⎜
⎜
⎜
⎝

Bn,0

Bn,1

...
Bn,2n−1

⎞

⎟
⎟
⎟
⎠

where Bn,k = (bk,n−1, . . . , bk,0) for bk,i ∈ {0, 1}, k ∈ {0, 1, . . . , 2n − 1} and
i ∈ {0, 1, . . . , n − 1}. It can be recursively constructed with

B(1) =
(

0
1

)
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and the following recurrence

B(n + 1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Bn,00
Bn,01
Bn,10
Bn,11

...
Bn,2n−10
Bn,2n−11

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10)

For instance,

B(2) =

⎛

⎜
⎜
⎝

00
01
10
11

⎞

⎟
⎟
⎠

B(3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

000
001
010
011
100
101
110
111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Lemma 1 (Reingold et al. [10]). Suppose the bit string Bn,k = (bk,n−1, . . . , bk,0)
is expressed as Bn,k = (bk,n, bk,n−1, . . . , bk,0) with bk,n = 0. Then,

gk,j = (bk,j + bk,j+1) mod 2 (11)

bk,j =
n−1∑

i=j

gk,i mod 2 (12)

for k = 0, . . . , 2n − 1, j = 0, . . . , n − 1

4 Representation of the Search Space

Most binary PSO algorithms are evaluated in a “classical testbed”, where a
particle in a multi-dimensional binary space {0, 1}b is mapped to a point in a real
space S ⊂ R

d with the goal of solving (1) [1,3,7]. In evolutionary computation
terms, {0, 1}b is the genotype space and S is the phenotype space. This means
that the search happens in the genotype space while the objective function is
evaluated on a point in the phenotype space. Thus the goal is to

minimize: F (Ψ(x)), x ∈ {0, 1}b, Ψ : {0, 1}b → S



378 S. Yamada and K. Neshatian

where the mapping Ψ is the representation. A good representation can lead to a
“smooth” fitness landscape which increases the chance of finding a good solution.

The most common way of mapping a binary string to a number in the real
space is using a floating-point representation. The most widely-used floating
point representation standard is the IEEE 754 standard [11], which is very effi-
cient because it is implemented at the hardware level in most modern computers.
This representation, however, is not appropriate for searching binary spaces. This
is because small changes in the parts of the bit string that are related to sign and
exponent (i.e. small changes in the genotype space) can lead to drastic changes
in the phenotype space.

The other alternative is using a fixed-point representation in which the inter-
val [lj , uj ] (the j-th dimension of S) is meshed by a number of equi-distant points.
If bj is the number of bits dedicated to the j-th dimension, then the distance
between the points on the mesh is uj−lj

2bj
.

A ranking function ρ(x1, . . . , xbj ) takes a binary vector and returns an integer
in {0, 1, . . . , 2bj − 1} which determines the rank (or order) of the points on the
mesh that the binary vector maps to. If r = ρ(x1, . . . , xbj ), then the vector
(x1, . . . , xbj ) is mapped onto points in the interval [lj , uj ] as follows:

ψj(r) = lj +
r(uj − lj)

2bj
. (13)

If we view the vector x ∈ {0, 1}b as a bit string of length b, which has been
divided into d consecutive substrings such that the j-th substring is bj bits long,
then the overall representation function can be defined as follows:

Ψ(x) =

⎡

⎢
⎣

ψ1(ρ(x1, . . . , xb1))
...

ψd(ρ(xb−bd , . . . , xb))

⎤

⎥
⎦

where
∑d

j=1 bj = b.
The choice of the ranking function ρ is important because it affects the fitness

landscape. Although the literature does not use the terminology we introduced
here, the most common choice of representation (for instance, those used in
[1,3,7]) is effectively equivalent to choosing a ρl defined as

ρl(x1, . . . , xbj ) =
bj∑

i=1

xi2(i−1).

This is the usual way of converting a binary string to an unsigned integer—binary
strings in lexicographical order are mapped to consecutive integers.

When PSO is trying to “fine-tune” a solution, the closest points on the left
and on the right of some point ψ(r) in the interval [lj , uj ] are ψ(r−1) and ψ(r+1)
respectively. Ideally this notion of locality must also be presented in the binary
vector (x1, . . . , xbj ) but this is not always the case when using a ranking function
like ρl and this can cause undesired hurdles in the search process. For example,
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while the rankings 3 and 4 are next to each other, their conventional binary
representations, namely 0011 and 0100, have a Hamming distance of 3 between
them. In other words, the locality in the phenotype space is not preserved in the
genotype space. The problem becomes more acute when the size of the binary
vector increases.

In order to preserve locality, neighbourhood in the phenotype space must
imply neighbourhood in the genotype space. We address this point using a min-
imal change ordering [12] instead of the lexicographical ordering imposed by
ρl.

More formally, we use a function ρm such that

|ρm(x) − ρm(x′)| = 1 =⇒
∑

i

|xi − x′i| = 1. (14)

In other words, the Hamming distance between two points x and x′ in the
genotype space being 1 is a necessary condition for their corresponding points
in the phenotype space being adjacent.

One option when defining such a ranking function is to interpret the sequence
x1, . . . , xbj as RBC, and define ρm as

ρm(x1, . . . , xbj ) =
bj∑

i=1

⎛

⎝

⎛

⎝
bj∑

k=i

xk

⎞

⎠ mod 2

⎞

⎠ 2(i−1). (15)

This ranking function meets the criterion set in (14). The relationship between
the domains (inputs) of ρm and ρl is specified by (11) and (12).

5 Experiments

In this section, we conduct experiments in order to test our hypothesis that a
‘smoother’ representation of the search space, obtained by using reflected binary
code, improves the performance of binary PSO algorithms.

5.1 Experimental Design

We use the following two binary PSO algorithms in our experiments:

1. PBPSO: We follow the parameter specifications in Zhen et al. [3]. We set
(c1, c2) = (2, 2) in (7). However, we adaptively adjust the parameter Pm in
(9): we start with 0.1 in the first iteration and end at 0.05 in the last iteration.

2. KBPSO: We follow the parameter specification in (Khanesar et al. [7],
Khanesar [8]). We set (ω, c1, c2) = (0.5, 1, 1), and the maximum of the velocity
we set to 4.

We use these two algorithms because they represent two main ideas of binary
PSO. In PBPSO the positions of particles are interpreted as the underlying prob-
abilities which generate the binary responses. The update equations of PBPSO
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are compatible with those of the continuous PSO. In KBPSO the velocities of
particles are interpreted as the probabilities which change the positions of par-
ticles.

We use benchmark functions commonly used in the literature to evaluate
binary PSO algorithms [1,3,7]. Table 1 lists the benchmark functions from CEC
2005 [13] that we use in our experiments. The domain of all the functions is R

d

and their range is R. We experiment with values of d taken from {3, 6, 9}. The
optimal points for all the functions is at zero.

Table 1. Basic and CEC 2005 benchmark functions [13]

ID Name Mode

S1 Sphere Unimodal

S2 Rosenbrock Multi-modal

S3 Griewangk Multi-modal

S4 Rastrigin Multi-modal

F1 Shifted Sphere Function Unimodal

F2 Shifted Schwefel’s Problem 1.2 Unimodal

F4 Shifted Schwefel’s Problem 1.2 with Noise in Fitness Unimodal

F5 Schwefel’s Problem 2.6 with Global Optimum on Bounds Unimodal

F6 Shifted Rosenbrock’s Function Multi-modal

F9 Shifted Rastrigin’s Function Multi-modal

F10 Shifted Rotated Rastrigin’s Function Multi-modal

F11 Shifted Rotated Weierstrass Function Multi-modal

F12 Schwefel’s Problem 2.13 Multi-modal

F14 Shifted Rotated Expanded Scaffer’s F6 Multi-modal

In the experiments, each real dimension in the input vector is represented by
20 bits of code:

bj = 20 ∀j ∈ {1, . . . , d}.

Thus b = 20×d; that is, the dimensionality of the binary space in our experiments
will be 60, 120 and 180.

For each of the benchmark functions S1, S2, S3, S4, F1, F2, F4, and F5, we
set the size of the population to 100d

3 and the number of iterations to 200d
3 . For

each of the multi-modal benchmark functions F6, F9, F10, F11, F12, and F14,
we set the size of the population to 100d and the number of iterations to 500d

3 .
The experiments are repeated 100 times for each function.

5.2 Results

The results of our experiments are presented in Table 2. For each method of
PBPSO and KBPSO we compare the RBC representation with the common
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Table 2. Optimal solutions for the benchmark functions

Func. d PBPSO PBPSO (RBC) NBPSO NBPSO (RBC)

S1 3 6.82e−09± 8.31e−24 6.82e−09± 8.31e−24 4.49e−07∗ ± 7.5e−07 1.07e−06± 1.9e−06

6 2.79e−05± 1.87e−05 3.27e−05± 2.56e−05 0.00239± 0.00357 0.00178± 0.00129

9 0.00524± 0.00281 0.00531± 0.00271 0.0905± 0.0547 0.0734∗ ± 0.042

S2 3 6.6± 10.7 7.2± 9.42 7.02± 11.2 5.77± 8.99 6

6 29.6± 62.4 8.03∗ ± 10.3 36.4± 82.4 9.86∗ ± 10.2

9 60.7± 131 20.2∗ ± 19.4 106± 189 63.1∗ ± 44.2

S3 3 0.0102∗ ± 0.00759 0.0149± 0.0143 0.0115± 0.009 0.0102± 0.00955

6 0.0276± 0.014 0.0305± 0.0159 0.0414± 0.0232 0.0408± 0.0233

9 0.0705± 0.0356 0.0682± 0.0281 0.122± 0.0489 0.0931∗ ± 0.0331

S4 3 0.0428∗ ± 0.209 1.63± 0.794 0.0943∗ ± 0.288 1.3± 0.84 6

6 0.78∗ ± 0.891 3.69± 1.17 4.02± 2.48 3.86± 1.06

9 7.87± 3.63 6.39∗ ± 1.37 19± 6.02 9.49∗ ± 2.43

F1 3 3.09± 5.69 4.9e−09∗ ± 4.08e−09 1.14± 3.69 2.3e−06∗ ± 5.2e−06

6 3.15± 5.58 8.43e−05∗ ± 6.23e−05 4.13± 5.86 0.00584∗ ± 0.00542

9 16.7± 33.3 0.0146∗ ± 0.00786 23.6± 36.7 0.21∗ ± 0.141

F2 3 5.35± 15.4 1.46e−07∗ ± 2.51e−07 3.49± 12.3 5.54e−05∗ ± 0.000125

6 16.5± 22.6 0.00438∗ ± 0.00476 17.5± 20.9 0.126∗ ± 0.14

9 18.6± 20.9 0.393∗ ± 0.38 43.2± 31.4 3.85∗ ± 2.61

F4 3 8.95± 18.4 5.61e−07∗ ± 1.12e−06 1.17± 6.23 0.00011± 0.000217

6 19± 23.4 0.00997∗ ± 0.0146 21.3± 28.5 0.278∗ ± 0.371

9 30.1± 27.9 0.809∗ ± 0.675 48± 41 7.25∗ ± 7.19

F5 3 0.0404∗ ± 0.0743 0.932± 1.37 0.613∗ ± 0.702 3.12± 3.85

6 14.5± 36.9 4.23∗ ± 1.89 19.5∗ ± 25.3 26.3± 17.2

9 394± 166 42.5∗ ± 22.8 424± 221 157∗ ± 80

F6 3 21.8± 20 6.75∗ ± 11.4 16.5± 19.1 5.9∗ ± 10.5

6 1.48e+03± 2.07e+03 8.6∗ ± 17.9 1.26e+03± 1.98e+03 11.9∗ ± 16.4

9 1.78e+04± 7.23e+04 13.9∗ ± 33.1 1.33e+04± 5.11e+04 52.5∗ ± 65

F9 3 0.114± 0.262 0.0398∗ ± 0.196 0.0565± 0.184 0.00995∗ ± 0.0995

6 0.297± 0.426 0.259± 0.482 0.448± 0.552 0.389± 0.598

9 0.945± 0.844 1.03± 1.02 2.64± 1.26 1.64∗ ± 1.1

F10 3 1.06± 1.3 0.916± 0.783 0.688± 0.663 0.56± 0.603

6 5.26± 2.86 4.92± 2.37 5.58± 2.46 4.61∗ ± 2.21

9 11.1± 4.46 10.7± 4.52 12.7± 4.92 12.2± 5.34

F11 3 0.198± 0.175 0.129∗ ± 0.15 0.145± 0.124 0.092∗ ± 0.105

6 1.25± 0.758 0.868∗ ± 0.769 1.26± 0.67 1.03∗ ± 0.698

9 2.8± 1.09 1.73∗ ± 0.938 3.31± 1.04 2.73∗ ± 1.2

F12 3 0.558± 3.68 1.31± 5.72 0.37± 2.67 0.0334± 0.0991

6 25.3± 44.8 28.4± 40.4 39.4± 54.5 55.5± 76.3

9 498± 721 346± 573 628∗ ± 770 1.01e+03± 744

F14 3 0.149± 0.229 0.0851∗ ± 0.166 0.111± 0.17 0.0455∗ ± 0.0358

6 1.21± 0.401 1.08∗ ± 0.545 1.1± 0.401 1.06± 0.494

9 2.14± 0.409 2.25± 0.395 2.37± 0.326 2.29± 0.357

binary representation. The better results are emphasized in boldface. We conduct
the two-tailed t-test with unequal variance for each comparison. If the results
of two representations are significantly different (p-values < 0.05), (∗) is shown
beside the number in the column of the better representation.

Table 2 report the results of the experiments carried out on the three different
dimensions on the 14 benchmark functions. For PBPSO, 23 out of 42 solutions
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using RBC representation are significantly better (p < 0.05) than those using the
binary representation and 4 solutions using RBC representation are significantly
worse than those using the binary representation. For KBPSO, 24 out of 42
solutions using RBC representation are significantly better (p < 0.05) than those
using the binary representation and 5 solutions using RBC representation are
significantly worse than those using the binary representation. In some cases
(for instance, the F1, F2, F4, F6 functions), the difference is quite large. In this
experiment the computing time for the RBC representation was not different
from that for the binary representation.

6 Conclusion

When benchmark functions with real domains are used to evaluate binary PSO
algorithms—as is the case in the literature—the representation (or encoding)
of numbers can influence the results. A good representation should be able to
preserve the notion of neighbourhood across the binary search space (where the
search happens) and the real space (where the functions are evaluated). We
proposed a representation based on minimal change ordering. Our experiments
on benchmark problems showed that state-of-the-art binary PSO algorithms
significantly benefit from this new representation. It implies that the proposed
encoding scheme provides more accurate means to test the new binary PSO
methods using the benchmark functions.
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Abstract. Multi-objective problems with more than three objectives,
more commonly referred to as many-objective problems, have lately been
a subject of significant research interest. Decomposition of the objective
space is one of the most widely used approaches, where the original prob-
lem is decomposed into several single-objective sub-problems and solved
collaboratively. The sub-problems are defined using reference vectors, to
which candidate solutions are assigned based on some proximity mea-
sures (e.g. perpendicular distance/angle etc.). The individuals attached
to a given reference vector can thus be considered as a sub-population
trying to solve that sub-problem. To create selection pressure among the
members of the sub-population, several measures have been proposed in
the past; such as weighted sum, penalty boundary intersection, achieve-
ment scalarizing function, Tchebycheff, etc. While being competitive,
some of them require parameters or reference points for implementa-
tion, which is far from ideal. The aim of this study is to investigate
an alternative, less explored avenue - the use of distance based ranking
with a decomposition based algorithm. Towards this end, we propose
an improved version of an existing distance based metric and embed
it within a decomposition based evolutionary algorithm (DBEA-MDR).
We characterize its performance through a comprehensive benchmark-
ing on a range of regular and inverted DTLZ/WFG problems. While
the performance of DBEA-MDR based on conventional benchmarking
practice (quality of solutions of the final populations) is not competi-
tive with existing state-of-the-art algorithms, selection of a diverse set
of solutions (of same size as the population) from the archive signifi-
cantly improves its performance which in a number of cases supersedes
the performance of other algorithms. Based on these observations, apart
from highlighting the scope of improvement in the presented strategy,
the study also emphasizes the need to look into existing benchmarking
practices further. In particular, instead of the performance judged by
the final population, a better approximation set could be found from the
archive and performance judged on such sets would be more reflective of
the true performance of the algorithms.
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1 Introduction

Real-world design problems often require simultaneous optimization of multi-
ple conflicting objectives, referred to as multi-objective optimization problems
(MOP). Problems with more than three objectives are further sub-categorized
as many-objective optimization problem (MaOP) due to their unique set of chal-
lenges. It is now well established in literature that traditional dominance-based
methods that have been quite successful in solving 2/3-objective MOPs tend to
not scale well for MaOPs [10]. This deterioration in performance is primarily
attributed to loss in adequate selection pressure, since most of the solutions in
the population become non-dominated (and hence indistinguishable in terms of
convergence). Additional challenges include diversity maintenance for large num-
ber of objectives, visualization, decision making, etc. [2]. Consequently, several
proposals have been put forward in the past decade to overcome the associated
challenges and it still remains an active area of interest. Some of the prominent
approaches to deal with MaOPs include use of secondary ranking measures,
dimensionality reduction, indicator based approaches and decomposition based
approaches.

A particular class of methods which have been widely reported builds upon
the principle of decomposition. The motivation of the approach is to incorpo-
rate ideas from classical optimization into evolutionary methods for solving
MOP/MaOPs. This is accomplished by decomposing the objective space of
the original problem into several single-objective problems (or occasionally sim-
pler multi-objective problems); and solving them co-cooperatively through an
evolving population. Multi-objective evolutionary algorithm based on decompo-
sition (MOEA/D) [21] is among the most well-known algorithm in this class;
although some other prior studies along this line also exist [16]. The strengths of
decomposition particularly in overcoming selection pressure has been widely rec-
ognized. A number of further developments have leveraged this idea [19], often
incorporating decomposition in conjunction with other enhancements.

The decomposition of the problem is typically done based on a set of uni-
formly distributed points generated using systematic sampling [4] on a unit
hyperplane (i.e. a plane with an intercept of 1 on each objective axis). Lines
joining the ideal point to the above sampled set of points yield the set of ref-
erence vectors that are used to define the sub-problems. The solution(s) in the
population or under consideration are assigned/attached to the reference vec-
tor(s) based on their proximity (based e.g. on angle or distance measures). This
translates to each sub-problem being solved by evolving a sub-population, in col-
laboration with other sub-populations. Evidently, selection measures are required
to rank the solutions within each sub-population. Some of the frequently used
selection measures include penalized boundary intersection (PBI) [21], achieve-
ment scalarizing function (ASF) [14,20], Tchebychev, angle penalized distance
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(APD) [3] etc. A range of studies have shown their effectiveness in use within
optimization frameworks based on decomposition; but at the same time have
also revealed some of their shortcomings. For example, some of these techniques
require a parameter to balance the convergence and diversity, e.g., PBI and
APD, which could require some tuning depending on the nature of the problem.
Weighted sum is known to be ineffective for locating non-convex regions of the
Pareto front. The formulation of ASF requires a reference point to be set, and
has issues in ranking the weakly dominated solutions.

In this paper, we aim to conduct investigations on the use of an alternate,
non-parametric, distance-based measure to rank members of a sub-population.
The inspiration for this study comes from reflecting on some of the earlier
attempts for secondary ranking for solving MaOPs using dominance based meth-
ods. By default, the dominance based algorithms incorporate a density estima-
tion based measure for ranking solutions within a given non-dominated front. In
the widely used non-dominated sorting genetic algorithm (NSGA-II) [7], this is
done by assigning each solution a “crowding distance” value, and sorting them
in a decreasing order; thereby ranking the relatively sparse solutions higher in
the list. In [12], four “substitute distance” based secondary ranking methods
were proposed for NSGA-II in lieu of crowding distance. The idea was that since
crowding distance measure does not work well for density estimation in higher
dimensions, it could be replaced by a ranking measure that could differentiate
between the solutions that are non-dominated to each other. In the process, these
secondary ranking measures could be chosen that promote both convergence and
diversity (in lieu of diversity alone in case of crowding distance). The methods
include epsilon-dominance, sub-vector dominance, fuzzy Pareto dominance and
sub-objective dominance count [12,17]. However, to the authors’ knowledge, the
potential of such measures in the context of decomposition based algorithms
has not been studied. Towards this end, we examine an existing distance-based
measures and propose an enhancement to overcome its limitation. The resulting
modified distance ranking (MDR) is integrated within a decomposition based
evolutionary algorithm (DBEA); referred to hereafter as DBEA-MDR. There-
after, we study the performance on a range of conventional and inverted versions
of the commonly studied DTLZ and WFG test problems with up to 10 objec-
tives, and compare the results with those reported in the literature. Further, we
observe the performance of the DBEA-MDR in two scenarios - one where the
final population is used for calculating the performance metric (hypervolume),
and one where a different set (of same size as population) is picked instead from
the archive of evaluated non-dominated solutions. We present the comparisons of
both versions with the results reported for state-of-the-art algorithms in the lit-
erature and conclude with some additional observations about the benchmarking
practices and potential future improvements.

The remainder of this paper is organized as follows. In Sect. 2, we provide a
brief background of the distance measure adopted in this study. Thereafter, we
describe the decomposition based framework in Sect. 3, followed by numerical
experiments in Sect. 4. Concluding remarks are presented in Sect. 5.
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2 Distance Based Ranking

In this study, we focus on modifying existing distance based ranking measure
discussed previously in [15] in the context of particle swarm optimization. The
distance based ranking (DR) proposed in [15] simply accounts for the sum of
absolute differences in the objective values between the two solutions, irrespec-
tive of the domination status (i.e. how many and which objectives are better for
one solution over other and vice versa). In order to calculate DR for any given
set of solutions, first the distance vectors between each solution pair xi and xj

are calculated as shown in Eq. 1.

dij = {|f1(xi) − f1(xj)|, |f2(xi) − f2(xj)|, . . . |fm(xi) − fM (xj)|} (1)

Thereafter, DR for each solution xi is calculated as shown in Eq. 2.

DR(xi) =
M∑

k=1

N∑

j=1,j �=i

dkij , where dkij = |fk(xi) − fk(xj)| (2)

A predecessor of DR, known as average ranking (AR) was also discussed in
[15], which was calculated simply based on how many objectives one is better
than compared to the other, irrespective of the magnitude of the differences in
the objective values. For a simple illustration, let us consider two non-dominated
solutions A and B for a three objective problem with objective values {0, 5, 10},
and {7, 5, 0} respectively. Thus, for the given two points, the values of AR and
DR for the two solutions can be summarized as shown in Table 1.

Table 1. AR and DR metrics

Metric A B

AR 9 9

DR 17 17

It can be seen that among the two solutions, A is better than B in one
objective (f1) and vice versa in f3, while they are equal in the remaining objec-
tive (f2). However, A is better than B by a smaller amount (7 units) in f1 and B
is better than A in f3 (10 units). Therefore, B should ideally have a preference
over A in the ranking. However, neither AR or DR can capture this preference;
as both the points are indistinguishable by either of the measures. In fact, owing
to this, they are not suitable to be used within a decomposition-based frame-
work, mainly because (a) AR can not quantify the scale of difference since it only
captures number of objectives, and (b) DR value will be the same irrespective
of whether a solution is dominating or dominated by another solution since it
only captures the absolute differences.

In order to overcome this limitation, we propose a simple modification of DR
in the following way. Instead of taking absolute difference between the objective
values (Eq. 2), we observe the difference between the raw objective values, and
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the summation considers only the objectives in which one solution is better than
the others. Without loss of generality, we consider all objectives in a minimization
sense. Thus, the formulation can be written as shown below, where a lower MDR
indicates a preferred solution.

MDR(xi) =
M∑

k=1

N∑

j=1,j �=i

min((fk(xi) − fk(xj), 0) (3)

Note that with this simple change, the information about the amount of
domination could be integrated into the ranking process. Revisiting the above
two points, A will get an MDR value of −7, whereas B will get a value of −10;
making the latter a more preferred solution. An example of the computation of
this metric for a larger set of (Np = 6) solutions is given next. Consider a set of
non-dominated points (A–F) shown in Table 2 which could be a set of solutions
identified in a sub-population during the search corresponding to a particular
sub-problem. Based on Eq. 3, their MDR and ranking are shown in the last two
columns. The solution A is best in this case, followed by solution C, E, D, F
and B.

Table 2. Objective values for an assumed sub-population

Solutions f1 f2 f3 MDR Rank

A 10.25 8 7 −16.55 1

B 9 9 9 −9.25 6

C 8 10 7 −15.85 2

D 7 11 9 −14.25 4

E 9.2 10.2 6.3 −14.75 3

F 11.1 7.2 10.5 −12.2 5

The key idea in this paper is to use this MDR within a DBEA to improve
ranking within a sub-population. Some of the potential advantages of a distance
based approach include:

• Unlike AR and DR, it takes into account of the objectives where the per-
formance is better along with its amount. Thus it creates a better and more
complete ordering of solutions, while promoting solutions with more desired
dominance characteristics.

• Based on above, the integration of proposed MDR in a DBEA could also be
thought of as combining the advantages of dominance and decomposition.

• The proposed ranking does not involve choice of any additional parameters
or reference points, unlike some of the existing measures such as PBI, APD,
ASF, etc.

• It is simple to implement and easily scalable with the number of objectives.
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• It has no conceptual limitation in handling non-convex Pareto fronts (as
opposed to weighted sum).

Having discussed the basic idea and motivation behind the proposed app-
roach, we move on to discuss the decomposition-based framework used for this
study.

3 Overview of the Framework

A generic unconstrained multi/many-objective optimization problem can be
defined as shown in Eq. 4.

Minimize fi(x); i = 1, 2, .......M, Subject to xL ≤ x ≤ xU , (4)

Here, f1(x) to fM (x) are the M objective functions. The upper and lower bounds
of the variables are denoted as xU and xL. The ideal vector (ZI) can be con-
structed by identifying minimum value of each of the M objectives. Similarly, the
nadir vector ZN can be constructed using the maximum values of each objective
in a given non-dominated set.

The proposed algorithm (DBEA-MDR) follows the general structure of the
Reference Vector guided Evolutionary Algorithm (RVEA) [3] with variations in
some components. It is based on a (μ + λ) evolutionary model, where μ parents
are recombined to generate λ offspring and the best μ solutions are selected as
parents for the next generation. The pseudo-code of the proposed method is
presented in Algorithm 1 and the details of its key components (highlighted in
bold) are outlined below.

Algorithm 1. DBEA-MDR
Input: Genmax (Max. generations), N (Population size), CR, F (DE crossover parame-
ters), ηc, ηm, pc, pm (SBX/Polynomial mutation parameters)

1: Gen = 0, j = 0;
2: Archive = {} { to store all evaluated solutions}
3: Generate W reference points using Normal Boundary Intersection.
4: Construct W reference directions by joining origin and W reference points
5: P j = Initialize(),

∣
∣P j

∣
∣ = NI

6: Evaluate every objective function of P j ; Update Archive
7: Wm = UpdateRef(W ,P j)
8: P j = Assign(Wm,P j)
9: while (Gen ≤ Genmax) do

10: C = CreateOffspring(P j), |C| = N
11: Evaluate each objective function of C; Update Archive
12: Wm = UpdateRef(W ,P j ∪ C)
13: P j+1 = Assign(Wm,P j ∪ C)
14: Gen = Gen + 1
15: end while
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• Generate: A structured set of W reference points is generated using the
method of systematic sampling (normal boundary intersection) as outlined
in [4]. The approach generates W points on the hyperplane in M -objective
space with a uniform spacing of δ = 1/H with H unique sampling locations
along each objective axis. The reference directions are formed by joining the
ideal point (origin in the scaled space) to each of these reference points.
For 8 or more objectives, a two-layered approach is commonly used in the
field (and adopted here), which limits the number of reference points from
growing exponentially.

• Initialize: N solutions are initialized within the variable bounds xL and xU

using Latin Hypercube Sampling based on “maximin” criterion.
• Evaluate: In this stage, the objective functions are evaluated for all the

solutions generated above.
• UpdateRef: In this stage, the ith reference direction W i is modified to W i

m

based on the ideal vector (ZI) and nadir vector (ZN ) of the combined parent
and child population using Eq. 5. Take note that the proposed approach uses
the nadir point of the combined parent and child population as opposed to
maximum value of each objective function of parent and child population in
the RVEA. This stage is necessary to achieve a decent distribution of solutions
in the objective space irrespective of the scale of objectives.

(W i
m)j = (W i)j × (ZN − ZI)j ,∀ 1 ≤ j ≤ M (5)

• Assign: In this stage, solutions are assigned to the reference directions. A
sub-population with respect to a reference direction is constructed using the
solutions which are closest to that reference direction based on angle measure
as described in [3]. If no solutions belong to a sub-population, it is considered
empty and all solutions in the existing population are made available to the
sub-population in this scenario. A modified distance based ranking scheme
is used to select the best solution in each sub-population to assign to the
reference direction and subsequently carry forward as parent for the next
generation.

• CreateOffspring: In our approach, each solution is selected as a base
parent and its partner is randomly chosen from the rest. Such a scheme
offers opportunity to all solutions to act as base parents for generating off-
spring. We capitalize on the advantages of two commonly used recombination
schemes, i.e., differential evolution (DE) crossover [5] and simulated binary
crossover (SBX) [7]. In each generation both types of crossover and polyno-
mial mutation are employed for each of the base parents attached to each
reference direction, i.e., if at the first generation, the first reference direction
uses DE crossover, the second reference direction would use SBX and this will
be reversed in the second generation. The intent behind such an alternation
is to remove the bias induced by the specific operators, and possibly gain
advantages of exploratory behaviors of both DE and SBX.
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4 Numerical Experiments

4.1 Test Problems and Experimental Settings

The most commonly studied benchmarks in the field of MaOPs are DTLZ
series [8] and WFG [9] series problems, both of which are scalable in terms
of decision variables as well as objectives. Both the series share one common
property that makes them conducive use of traditional decomposition based
methods. Most of the problems in these series have linear/quadratic PFs which
are oriented such that they can be mapped well by the traditional way of gen-
erating reference vectors on a hyperplane. It has been revealed and discussed
in-depth in some of the recent papers [1,11] that the performance of the decom-
position based approaches strongly depends on the shape of the PF, and hence
testing them on the regular problems alone may form an incomplete picture
of an algorithm’s performance. A series of problems with so called “inverted”
PFs was therefore proposed in [11], which are referred to as the “minus” prob-
lems. Therefore, in this study, even though no active mechanism is employed
for adaptation of the reference vectors for irregular fronts, a more diverse set
of test problems from both the original (DTLZ1–DTLZ7, WFG1–WFG9) and
the minus sets (DTLZ1−1–DTLZ4−1, WFG1−1–WFG9−1) is used for a more
comprehensive evaluation. The detailed description of the problems and the dif-
ficulties in solving them can be found in [11]. Up to 10 objectives are considered
for each problem in the experiments.

For a fair comparison, we adopt the same settings as in [11], including
the population size and generations (hence, the number of function evalua-
tions are same). The performance of DBEA-MDR is benchmarked against some
state-of-the-art algorithms such as NSGA-III [6], θ-DEA [20], MOEA/DD [13],
MOEA/D-PBI [21]. The results obtained by the listed algorithms are taken from
[11].

A probability of crossover of 1 and a probability of mutation of 1
n (n is the

number of variables) [6] was used for all problems studied in the paper. The
distribution index of crossover was set to 30 and the distribution index of the
mutation was set to 20 for all problems [6]. The DE crossover rate (CR) and
scaling factor (F ) are set to 1 and 0.5 respectively [5]. 21 independent runs were
conducted for all problems to observe the statistical behavior. The performance
metric used for comparison is hypervolume (HV), which is widely used in the
literature for benchmarking. The procedure of HV computation is consistent with
the recent works, e.g. [11] which can he referred to for more details. Comparisons
are also done using the inverted generational distance (IGD) metric and reflect
the same relative performance as the HV metric. Therefore, for brevity, only HV
results are presented in the following subsection.

4.2 Preliminary Results and Discussion

The HV statistics across 21 runs for regular DTLZ and WFG problems are shown
in Table 3, while the same for minus problems is shown in Table 4. The last four
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Table 3. Mean HV statistics for DTLZ and WFG series problems

Problem M DBEA-MDR DBEA-MDR(A) DBEA-ASF NSGA-III θ -DEA MOEA/DD MOEA/D-PBI

DTLZ1

3 0.87768 1.11642 0.860 1.11508 1.11767 1.11913 1.11711
5 1.24519 1.56026 1.095 1.57677 1.57767 1.57794 1.57768
8 1.77964 2.10287 1.546 2.13770 2.13788 2.13730 2.13620
10 2.20918 2.54055 1.851 2.59280 2.59272 2.59260 2.59220

DTLZ2

3 0.72644 0.74064 0.736 0.74336 0.74390 0.74445 0.74418
5 1.27645 1.29126 1.278 1.30317 1.30679 1.30778 1.30728
8 1.94691 1.89669 1.919 1.96916 1.97785 1.97862 1.97817
10 2.48903 2.42884 2.456 2.50878 2.51416 2.51509 2.51500

DTLZ3

3 0.54073 0.74369 0.573 0.73300 0.73642 0.73944 0.73654
5 0.88550 1.27828 0.874 1.29894 1.30376 1.30638 1.30398
8 1.60912 1.69096 1.629 1.95007 1.96849 1.97162 1.74240
10 2.31720 1.99442 2.239 2.50727 2.51279 2.51445 2.50933

DTLZ4

3 0.72755 0.73290 0.722 0.73221 0.71077 0.74484 0.48232
5 1.25023 1.28020 1.286 1.30839 1.30878 1.30876 1.20680
8 1.92917 1.87871 1.917 1.98025 1.98078 1.98083 1.86439
10 2.49688 2.43674 2.433 2.51524 2.51539 2.51532 2.43536

WFG1

3 0.45018 0.47148 0.523 0.65088 0.70151 0.69393 0.67291
5 0.67352 0.69421 0.668 0.85608 1.14844 1.23809 1.34797
8 0.89056 0.90596 0.847 1.36206 1.88297 1.91925 1.73875
10 1.09117 1.10279 1.061 2.22078 2.38349 2.37705 1.78435

WFG2

3 1.20802 1.22187 1.203 1.22359 1.22945 1.22193 1.11888
5 1.53911 1.57338 1.536 1.59770 1.59708 1.55672 1.52205
8 2.02956 2.11305 2.047 2.13629 2.12442 2.04619 2.01678
10 2.49843 2.56934 2.512 2.58890 2.57778 2.48332 2.45715

WFG3

3 0.93175 0.97330 0.961 0.81929 0.81556 0.77295 0.75364
5 1.28885 1.38442 1.299 1.01000 1.02782 0.95386 0.89357
8 1.26601 1.70179 1.795 1.21146 1.11348 1.15306 0.74674
10 1.60113 2.14605 2.269 1.55771 1.55919 1.37737 0.55186

WFG4

3 0.69821 0.70282 0.702 0.72867 0.72949 0.72031 0.68710
5 1.11140 1.18648 1.124 1.28496 1.28736 1.26067 1.15695
8 1.17570 1.75340 1.620 1.96402 1.96426 1.83751 1.19841
10 1.53370 2.28334 2.155 2.50322 2.50376 2.22383 1.43393

WFG5

3 0.66558 0.67785 0.667 0.68658 0.68706 0.67698 0.65668
5 1.07398 1.17637 1.073 1.22187 1.22209 1.18965 1.11627
8 1.26872 1.76605 1.510 1.84995 1.85027 1.71196 1.27483
10 1.58990 2.26602 1.979 2.34640 2.34644 2.07711 1.53615

WFG6

3 0.65969 0.66651 0.671 0.68696 0.68698 0.67923 0.65655
5 1.04261 1.14185 1.043 1.21978 1.22284 1.19424 1.04043
8 1.01886 1.58509 1.372 1.84625 1.84330 1.69055 0.71742
10 1.19848 1.97188 1.789 2.32660 2.32759 2.01837 0.82027

WFG7

3 0.71442 0.72140 0.720 0.72894 0.73099 0.72126 0.61145
5 1.13161 1.23049 1.140 1.29190 1.29548 1.25983 1.07723
8 1.25180 1.78232 1.613 1.97138 1.97353 1.82024 0.83439
10 1.50651 2.25390 2.140 2.50754 2.50858 2.25713 0.95972

WFG8

3 0.63015 0.63452 0.642 0.66560 0.66687 0.65741 0.62986
5 0.99859 1.07245 1.019 1.18225 1.18354 1.15376 0.95660
8 0.58597 1.13586 1.321 1.75970 1.76647 1.70621 0.30471
10 0.90617 1.57374 1.771 2.28203 2.28502 2.10729 0.27470

WFG9

3 0.66160 0.67438 0.660 0.67519 0.67978 0.67146 0.57864
5 1.05117 1.14811 1.053 1.21058 1.22122 1.15493 1.02426
8 1.21164 1.67194 1.460 1.80911 1.83678 1.60407 0.97800
10 1.49998 2.14480 1.914 2.34332 2.36516 1.92977 1.15138

columns in the tables denote the HV corresponding to the final populations
obtained using four of the widely reported algorithms in the current literature,
namely NSGA-III [6], θ-DEA [20], MOEA/DD [13] and MOEA/D-PBI [21]. The
first two columns denote the two ways in which the solutions from DBEA-MDR
are chosen for benchmarking:
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• The first column shows the results for the conventional approach, i.e., the
computing the HV of the final population delivered by the algorithm.

• The second column (DBEA-MDR(A)) shows results for a diverse subset of
solutions chosen from the archive of all solutions evaluated using DBEA-
MDR. The subset selection method here is the slightly modified version of the
one proposed in [18]. The selection process starts by picking a random solution
from the non-dominated solutions of the archive, followed by progressively
selecting the non-dominated solutions furthest from the currently selected
point(s). The scheme is designed to pick a diverse set of solutions and make
use of all information encountered during the search instead of relying only
on the final population.

Lastly, the third column in Tables 3 and 4 denotes a more commonly used
measure, namely ASF, in lieu of MDR in DBEA so it can be directly compared
with MDR in exactly same framework.

The first prominent observation from the tables is that the performance of the
DBEA-MDR is inferior to the compared state-of-the-art methods both for most
of the regular (except MOEA/D-PBI for WFG2-9) and inverted problems. Sec-
ondly, the performance of DBEA-ASF is better than DBEA-MDR. Thus, even
though MDR has some conceptually desirable properties as discussed in Sect. 2,
it still does not seem to be well-suited to a decomposition based framework. The
apparent reason for this is that MDR is not able to enforce explicit selection
pressure towards alignment of solutions to the reference vectors that is done in
other methods through penalized distance or reference point specification.

However, an interesting behavior is observed when the performance of DBEA-
MDR(A) is considered relative to other algorithms. It can be seen that the
performance of DBEA-MDR(A) is always better than DBEA-MDR (with a few
exceptions). Moreover, DBEA-MDR(A) is also better than DBEA-ASF for most
of the instances. This observation is noteworthy since it confirms that there
exists a subset of solutions with much better HV than final population within the
archive of solutions evaluated during the DBEA-MDR run. In-fact, the DBEA-
MDR(A) results are also better than the other four algorithms for 5 instances
in the regular problems (Table 3), and as many as 28 instances in the minus
problems (Table 4). For the remaining instances, the differences in performance
are less than those observed for the case of DBEA-MDR. Consequently, the
output of the algorithm could potentially be presented as this set instead of
the final population for the benchmarking. This is equally applicable to other
algorithms in the table. The full archives of the other algorithms are not available
to be included in this study, but in principle, the results reported for the other
algorithms are also potentially under-reported given that final populations are
used by default in the current benchmarking practices.

Given the above observations, an interesting and timely research direction in
the field of MaOP could therefore be to design strategies to pick the solutions
with the best possible output metric. In this regard, the closest related work is
on the so called hypervolume subset selection problem, which involves selecting
K solutions out of N0 such that HV is maximized. Such methods are, however,
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Table 4. Mean HV statistics for DTLZ−1 and WFG−1 series problems

Problem M DBEA–MDR DBEA–MDR(A) DBEA–ASF NSGA–III θ–DEA MOEA/DD MOEA/D–PBI

DTLZ1–1
3 0.23731 0.29074 0.255 0.27258 0.25057 0.24887 0.26146
5 0.00531 0.01769 0.006 0.01265 0.00898 0.00972 0.01739
8 4.241E–06 3.676E–05 1.327E–05 5.227E–05 4.499E–05 0.881E–05 0.598E–05
10 4.38E–08 6.72E–07 1.887E–07 1.185E–06 0.451E–06 0.100E–06 0.079E–06

DTLZ2–1
3 0.67037 0.71027 0.682 0.68986 0.69303 0.68912 0.69439
5 0.12781 0.20580 0.119 0.13957 0.13496 0.08794 0.15984
8 4.809E–03 7.194E–03 0.004 4.454E–03 3.406E–03 2.690E–03 5.978E–03
10 0.00048 0.00073 3.723E–04 6.308E–04 5.541E–04 1.836E–04 5.199E–04

DTLZ3–1
3 0.66738 0.70867 0.679 0.69251 0.69468 0.68990 0.69609
5 0.12557 0.20106 0.112 0.12951 0.13273 0.08190 0.15902
8 4.455E–03 6.888E–03 0.004 0.00414 0.00401 0.00255 0.00596
10 0.00046 0.00071 3.568E–04 0.00054 0.00059 0.00018 0.00052

DTLZ4–1
3 0.67785 0.71193 0.689 0.69397 0.69546 0.68942 0.59319
5 0.12599 0.18504 0.125 0.12326 0.11428 0.07242 0.12296
8 1.492E–03 1.793E–03 3.618E–03 4.582E–03 3.921E–03 2.198E–03 2.020E–03
10 0.00016 0.00014 2.994E–04 6.065E–04 6.409E–04 2.569E–04 2.333E–04

WFG1–1
3 0.07936 0.09848 0.115 0.10955 0.08936 0.08475 0.03944
5 0.00107 0.00242 1.208E–03 0.00221 0.00155 0.00094 0.00033
8 8.395E–07 3.371E–06 1.180E–06 1.835E–06 1.401E–06 1.028E–06 0.126E–06
10 8.84E–09 4.82E–08 1.060E–08 1.891E–08 1.524E–08 0.962E–08 0.149E–08

WFG2–1
3 0.37024 0.38323 0.378 0.38373 0.38347 0.38123 0.37769
5 0.00540 0.01121 0.006 0.01067 0.00805 0.00611 0.00500
8 3.792E–06 1.375E–05 4.975E–06 0.784E–05 0.638E–05 0.383E–05 0.368E–05
10 3.61E–08 1.37E–07 5.044E–08 0.795E–07 0.569E–07 0.441E–07 0.378E–07

WFG3–1
3 0.21564 0.24638 0.233 0.26507 0.24959 0.23184 0.25481
5 0.00662 0.01363 0.007 0.01279 0.00912 0.00388 0.00459
8 5.388E–06 1.538E–05 1.347E–05 3.666E–05 1.415E–05 0.262E–05 0.417E–05
10 5.49E–08 1.83E–07 1.873E–07 6.673E–07 2.511E–07 0.250E–07 0.483E–07

WFG4–1
3 0.66790 0.70742 0.681 0.66343 0.68880 0.66140 0.68582
5 0.06909 0.15952 0.088 0.12711 0.14416 0.10758 0.13711
8 7.145E–04 3.229E–03 3.964E–03 5.007E–03 5.123E–03 0.255E–03 0.602E–03
10 2.82E–05 0.00023 2.837E–04 5.475E–04 2.537E–04 0.039E–04 0.239E–04

WFG5–1
3 0.64977 0.69642 0.673 0.66841 0.68748 0.67405 0.68567
5 0.05195 0.14725 0.070 0.12789 0.12399 0.12320 0.13919
8 5.847E–04 4.260E–03 3.146E–03 0.00421 0.00436 0.00062 0.00080
10 3.82E–05 0.00043 2.533E–04 0.00046 0.00025 0.00002 0.00003

WFG6–1
3 0.66472 0.70203 0.678 0.68331 0.69235 0.67553 0.68534
5 0.04747 0.13408 0.072 0.13628 0.12549 0.12332 0.13846
8 5.633E–04 3.300E–03 4.227E–03 0.00450 0.00382 0.00075 0.00076
10 3.76E–05 0.00027 3.446E–04 0.00053 0.00022 0.00002 0.00003

WFG7–1
3 0.66821 0.70673 0.681 0.65101 0.68135 0.65126 0.67742
5 0.04916 0.12707 0.074 0.11727 0.11857 0.11268 0.13727
8 5.633E–04 2.841E–03 3.351E–03 0.00441 0.00382 0.00049 0.00054
10 3.02E–05 0.00024 1.857E–04 0.00047 0.00023 0.00002 0.00002

WFG8–1
3 0.67247 0.71039 0.686 0.68958 0.69311 0.67910 0.68517
5 0.06124 0.15807 0.091 0.13845 0.12755 0.12962 0.13872
8 7.538E–04 3.968E–03 3.624E–03 0.00460 0.00405 0.00129 0.00090
10 4.57E–05 0.00032 3.169E–04 0.00055 0.00023 0.00005 0.00003

WFG9–1
3 0.65629 0.69861 0.671 0.67193 0.68446 0.64574 0.66636
5 0.05504 0.16321 0.082 0.13747 0.12627 0.11905 0.13411
8 6.451E–04 4.164E–03 3.117E–03 0.00478 0.00431 0.00088 0.00073
10 3.10E–05 0.00043 2.317E–04 0.00048 0.00026 0.00003 0.00003

time consuming and have mostly been restricted to low values of K and N0. In
the context of MaOPs, given that several thousands of solutions are evaluated,
new strategies are needed that can scale up the capability of selection process for
large sets. The method of picking diverse solutions above improves the results
over the final population, but certainly there remains a potentially large scope
for research in improving the selection methods.
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5 Conclusions and Future Work

In this study, we propose and conduct an initial assessment of a distance based
metric, MDR, for its use within a decomposition-based framework. The main
motivation of studying this was from the earlier attempts of using similar met-
rics in dominance-based frameworks. Although the measure has some conceptual
advantages, its performance was observed to be inferior with other state-of-the-
art algorithms in the literature; as well as with ASF as a measure within the
same framework when HV was calculated based on the final population. How-
ever, when a different subset (of same size as the population) was chosen from
archive of all evaluated solutions using DBEA-MDR instead of the final popu-
lation, the performance showed notable improvements. The results of utilizing
all information from the archive in the selection scheme clearly improved the
performance of the approach. Such a scheme in principle is likely to improve
the performance of all existing algorithms and could provide significant new
insights in the context of performance assessment and benchmarking. A related
research direction would be to devise computationally efficient ways of selecting
prescribed number of solutions from large archives for performance assessment.
A more in-depth investigation of the distance based metric itself could also be
conducted to understand and improve its performance.

Acknowledgment. The authors would like to acknowledge the Australia-Germany
Joint Research Cooperation Scheme for supporting this work.
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Abstract. Learning classifier systems (LCSs) have been successfully
adapted to real-world domains with the claim of human-readable rule
populations. However, due to the inherent rich characteristic of the
employed representation, it is possible to represent the underlying pat-
terns in multiple (polymorphic) ways, which obscures the most infor-
mative patterns. A novel rule reduction algorithm is proposed based on
ensembles of multiple trained LCSs populations in a hierarchical learn-
ing architecture to reduce the local diversity and global polymorphism.
The primary aim of this project is to interrogate the hidden patterns in
LCSs’ trained population rather than improve the predictive power on
test sets. This enables successful visualization of the importance of fea-
tures in data groups (niches) that can contain heterogeneous patterns,
i.e. even if different patterns result in the same class the importance of
features can be found.

Keywords: Learning classifier systems · Pattern visualization
Hierarchical learning

1 Introduction

The proposed work is inspired by the concept of convergent evolution [1], where
similar traits arise in different species when they live in a similar environment. As
the species adapt to similar ecological niches, certain structures will be evolved.
It is hypothesised that by analyzing multiple LCSs’ rule populations trained
on the same environment (problem) the optimum structure of patterns will be
observable.

Previously, the Razor Cluster Razor (RCR) Boolean [2] was proposed to
search for the global optimal solutions in Boolean domains based on analyzing a
set of LCSs’ trained populations. RCR-Boolean compacts rulesets for any such
domain that LCSs can completely solve. This work aims to determine whether
the convergent evolution phenomenon helps in real-valued domains, which are
inherently unlikely to be completely solvable by any classification technique due
to their imprecise decision boundaries. It proposes RCR-real, which is tailored
to the most common representation used in real domains, i.e. upper and lower
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bounds rather than the ternary alphabet of Boolean domains. An LCSs-based
hierarchy learning architecture is also proposed to extract the common ruleset
for LCSs’ non-completely solvable domains. The first objective is to create a
method to extract a common ruleset for an ensemble of LCSs that have sep-
arately explored the domain. Second, then estimate each involved attribute’s
distinguishability. Finally, visualise a problem’s detected underlying heteroge-
neous patterns. Ten varied UCI datasets are used as benchmarks to visualise
learnt knowledge. Note, we do not seek to improve LCSs’ prediction capability,
thus the system’s performance is estimated by the training result only where
overfitting is to be detected through the visualisation. The proposed work is
based on XCS (a reinforcement-learning LCS) as it forms a complete map of
inputs to outputs. The main alternative, UCS (a supervised-learning LCS) [3]
forms a best-action map, which lacks the consistent incorrect information of the
observed domain needed to calculate attribute importance.

2 Background

Learning Classifier System (LCS). An LCS represents a Michigan approach
rule-based agent, where each rule in a population consists of a fixed length con-
dition that combine to form the solution. Environmental features are encoded,
e.g. in an upper and lower boundary e.g. [upper, lower ] [4], and a mapping learnt
to one of a set of plausible actions. Learning is achieved through evolutionary
computing [5] incorporating Q-learning [6] to explore and then exploit the given
environment. XCSs [7] are accuracy based LCSs, where consistency in the reward
has more import than the reward itself.

Seven parameters are also introduced to assist the evolutionary process. The
numerosity indicates the number of duplicates of a rule, the experience relates
to a rule’s training time, the prediction is a recency weighted sum of the envi-
ronmental rewards gained, prediction error shows by how much this prediction
is incorrect, accuracy is a function of this error, fitness shows a rule’s potential
performance calculated from the previous parameters and action set size shows
a rule’s approximate niche size.

There is an ongoing interest in visualizing data mining results, e.g. interacting
attributes [8]. Although LCSs’ results are readable, visualizing the importance of
attributes to the optimum rule set is difficult due to the inherent rich character-
istics of the representation. Previously, rule compaction algorithms were merely
removing irrelevant and redundant rules based on diversity [9]. As a result, it is
difficult to compact LCSs’ results into the optimized form [10].

Razor Cluster Razor in Boolean. RCR [2] stands for razor in micro, rule
cluster, and razor in macro, which is a rule reduction [9] algorithm applied
in sequence. RCR seeks to simplify multiple LCSs’ outputs applied to the same
problem as much as possible, but no simpler, so a single common solution can be
discovered. Razor in micro aims to reduce complexity in diversity level through
removing poor performance rules in each individual population. Subsequently,
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remaining rules in all populations are gathered together to be clustered according
to the number of specified attributes in each rule, thus a bridge between diversity
and polymorphism is found. Lastly, razor in macro is introduced, which seeks
the underlying single common morphism by reducing complexity by considering
these clusters at each polymorphic level.

Removing poor rules when 100% performance is possible and counting spec-
ified attributes in the ternary alphabet for Boolean problems is straightforward,
but in real domains with rich alphabets neither is easy.

Benchmark Problems. Ten UCI datasets for continuous real domains are
studied, six basic datasets are selected to interrogate the proposed work’s cor-
rectness, including Iris, Sonar, Wine, Australian, German, Wisconsin Breast
Cancer Diagnostic (WBCD), and four other complex domains to investigate the
novel method’s limitations are selected due to high dimensionality e.g. lung can-
cer, artificial problem e.g. hill and valley, and multiple actions with low number
of instances e.g. Zoo, and natural domains, e.g. Ionosphere [11]. As the aim is not
to test LCSs capability in dealing with missing data, all the instances that con-
tain missing data have been removed to avoid this confounding variable rather
than a lack of capability in LCSs.

3 The Proposed Method

This section includes three novel parts. Firstly, the Razor Cluster Razor is
adapted for real domains. Secondly, two formulas are proposed that estimate
any involved attributes’ distinguishability by its contribution to constructing the
representation space. Lastly, a hierarchical learning architecture is introduced to
enable the ability to completely represent a target domain.

3.1 Razor Cluster Razor (RCR) in Real Domains

Since XCSs employ different representations for Boolean and real domains, the
implementation between RCR-Boolean and RCR-Real is different, and the only
commonality between them is the basic philosophy, which is that “entities are
not to be multiplied without necessary, i.e. Occam’s razor” [12]. The RCR-Real
process is shown in Fig. 1.

Razors in Micro. In XCS, the training population is larger than the optimal
number of final rules to guarantee that XCS is capable of exploring multiple com-
peting hypotheses simultaneously. Thus, a high diversity of rules is introduced
to the actual final population. As a result, the quality of evolved rules is var-
ied. In certain domains, the majority of rules are redundant for representing the
task’s patterns. Moreover, a few rules may even make a negative contribution.
Hence, this pre-processing phrase is needed to remove the inferior individuals in
a population.
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Fig. 1. The graph for the RCR-Real process.

Generally, an inferior individual can be described by three factors; inadequate
training, inconsistent prediction behavior, and no contribution to represent the
task. Any such rule in the final populations should be deleted. The whole process
is split into four steps. Firstly, remove any rules where accuracy is less than
maximum. In an XCS, a rule’s accuracy reaching to maximum only becomes
apparent when a rule has been trained sufficiently and the prediction behavior
is consistent. Secondly, no rule with minimum fitness should be kept, as a rule’s
fitness indicates its potential performance in representing the ideal solution.
Hence, when a rule’s fitness falls decreases to the minimum this rule is actually
completely irrelevant to the representation. Thirdly, if a rule’s prediction is equal
to neither maximum nor minimum, then it ought to be removed. This is only true
in a classification task. Lastly, all the remaining rules will be ranked according to
their numerosity size, and only the 30% top-ranked individuals will be retained.
This strategy is supported by empirical evidence from the previous experiment
of Boolean domains, where XCSs tend to offer the most important individuals
a higher numerosity value compared with the redundant ones. By implementing
this strategy, the majority of the redundant diversity will be eliminated.

Rule Cluster. XCSs commonly employ the upper and lower bounds repre-
sentation in real domains [[attribute0 high boundary, attribute0 low boundary ],
[attribute1 high boundary, attribute1 low boundary ]], which offer rules both pre-
cision and generality. However, due to the rich representation style, a rule’s
explicitly represented niches cannot be observed directly in the condition part,
which hampers efforts to detect the target’s unique morphism.
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In this implementation, the rule cluster has two stages. In stage one, each
selected rule reviews the training set, whilst recording the matched niches
(instances) and the correctly represented niches. Subsequently, each rule’s niche
accuracy can be calculated by dividing the size of correct niches by the size of
matched niches. In the second stage, all the pre-processed rules will be clus-
tered according to the prediction, action tuple, since after pre-processing all the
remaining rules’ prediction can only be either the maximum or minimum value.
Thus, the number of clusters is equal to double the number of actions. Moreover,
if a rule’s prediction is associated with the maximum, then it is a correct rule,
otherwise, the rule is an incorrect one. As XCSs naturally seek to form com-
plete maps it consists of correct and incorrect rules where the inherent patterns
of each can be different, especially in multi-action domains. Thus, without the
clustering process, the effort of identifying the underlying patterns from trained
populations cannot make progress, since important patterns are mixed together.

Razor in Macro. XCSs aim to form a complete map to represent the explored
domains. However, due to the XCS’ rich representation, extremely diverse
rules are generated, which obscures the discovered patterns. Razor in macro
is designed to compact the XCS’s trained populations to their single common
state by reducing the populations’ polymorphism. Three processes are involved,
including error detection, rules merging, and two-level subsumption. The error
detection aims to eliminate all the remaining over-general individuals by interro-
gating each rules’ niche accuracy. For any correct rule, its niche accuracy reaches
the maximum and for any incorrect rule, its niche accuracy ought to decrease to
the minimum. Otherwise, the rule must be over-general.

The rule merging method focuses on merging rules within the same niche.
During the merging process, attributes will be merged one by one, and only
the common overlap interval will remain. Therefore, the final merged rule will
approximate the target, which successfully removes any unsupported attribute
interval. Merged rules’ numerosity will be summed.

In XCSs, subsumption focuses on addressing the over-specific rules problem.
In RCR, a novel two-level subsumption is implemented. The first level ranks
all the remaining rules according to their numerosity, and invokes subsumption
from top to bottom. Each rule will be compared with all their peers that have
a lower rank. If a lower-rank rule can be subsumed, it will be deleted. In the
second level, all the rules will be ranked according to their represented niche
size, then subsumption is reactivated to ensure that the output set is as general
as possible. Eventually, all the selected individuals will be stored into a positive
set or a negative set, depending on whether prediction is maximum or minimum.

3.2 Attribute Importance Equation

Traditionally, an attribute’s importance is estimated by its generality level [8].
Here the attribute importance is estimated by analyzing each attribute indepen-
dent distinguishability by comparing each attribute’s represented non-overlap
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space for each action between the RCR produced positive set and negative set.
Assume a problem, which has an action set M, M = [Act0, Act1...Actm] and
an attributes set N, N = [Att0, Att1, ...Attn], and for an action m (m ∈ M), it
associates a support rule set Im, Im = [Pm0, Pm1...Pmi] and an opposite rule set
Jm, Jm = [Nm0, Nm1...Nmj ], in i (i ∈ I) positive ruleset or j (j ∈ J) negative
ruleset, for any related attribute n, (n ∈ N), its represented range is defined as
PSizenmi and NSizenmj . The overlap between i positive rule and j negative rule
for attribute n is defined as PNsizenmij , Nmlength response for the number of
negative rules for action m (m ∈ M), then the attribute n’s influence for action
m AInfnm can be estimated by Eq. (1). Afterward, the attribute k (k ∈ N)
importance to action m AImpnm can be calculated by normalizing the attribute
influence as shown in Eq. (2).

AInfnm =

∑i=mi
i=m0

(
∑j=mj

j=m0(PSizenmi+NSizenmj−2∗PNSizenmij))

Nmlength
∑i=mi

i=m0 PSizenmi +
∑j=mj

j=m0 NSizenmj

(1)

AImpkm =
AInfkm

∑att=n
att=0 AInfattm

(2)

3.3 Hierarchical Learning Classifier System

The Hierarchical Learning Classifier System (HLCS) is proposed (Fig. 2) to
visualize underlying patterns in data. It utilizes homologues of ensemble learn-
ing, such as bagging and boosting [13]. The principles are also influenced by
population-based incremental learning (PBIL), where learning is “adapted to
new data without forgetting the existing knowledge” [14]. In HLCS, all layers’
components are exactly same, except for the first one, which lacks a data fil-
ter. The number of introduced layers for HLCS is flexible since the HLCS will
automatically create new layers until the observed dataset can be represented
completely.

In each layer, an HLCS has five sequential modules; data filter, training,
rule compact, rule importance analyze, and attribute importance visualization.
The first module selects un-represented instances from the observed dataset, and
this module is formed by the RCR produced positive set in the previous layer.
Hence, the initial layer’s data filter is empty. After selecting the subset from
the dataset, the training module is invoked, which is a bagging style structure
and employs multiple standard XCSs to explore the input dataset synchronously.
Two benefits are achieved from this architecture; firstly, any deviations caused by
the XCS’s stochastic search can be avoided. Secondly, this architecture naturally
splits computation into multiple tasks with progressively less, but harder to
classify, examples. Thus, the computation in HLCS only introduces around 20%
additional execution time than standard XCS.
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Fig. 2. The architecture of the Hierarchical Learning Classifier System (HLCS). The
number of layers will automatically be extended until the HLCS completely represents
the observed dataset. Each layer consist of five modules, a data filter based on the RCR
compacted positive set, a bagging based training process, RCR, attribute importance
analysis, and attribute importance visualization.

4 Results

In all the conducted experiments here, the system uses the common parame-
ter values in [7] learning rate β = 0.2; fitness fall-off rate α = 0.1; prediction
error threshold θ0 = 10; fitness exponent υ = 5; threshold for GA application
in the action set θGA = 25; two-point crossover with probability χ = 0.8; muta-
tion probability μ = 0.04; experience threshold for classifier deletion θdel = 20;
fraction of mean fitness for deletion δ = 0.1; classifier experience threshold for
subsumption θsub = 20; Scale range in covering is [−1.0, 1.0]; Scale range in
mutation is [−1.0, 1.0]; reduction of the fitness = 0.1; and the selection method
is tournament selection with tournament size ratio 0.4. Only GA subsumption is
activated. The size of the population is set as 3000 and the number of training
iterations is 50,000, The reward scheme used is 1000 for a correct classification
and 0 otherwise. All the experiments have been repeated 30 times with a known
different seed in each run. Each result reported in this work is average of the 30
runs.

Among all the ten explored datasets, HLCS achieves 100% training accuracy,
whereas standard XCS failed in four of them (see Table 1). For all the domains,
more than 90% of the introduced rules are removed. After the RCR-Real com-
paction process, a stable performance agent that consists of a unique rule set
is obtained. Importantly, the LCSs’ performance can be interrogated not only
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by the accuracy but also its generality/overfitting. For example, the visualiza-
tion for the Lung cancer and Sonar problems indicate the most specific rule sets
(Lung cancer is a high-dimension problem and Sonar is a difficult domain). Sur-
prisingly, a very general rule set is produced for the Zoo dataset, which contains
seven actions. Traditionally, LCSs are not systems that have good performance
for the high number of actions but low instances tasks.

Table 1. RCR results VS XCS results VS HLCS results in number of rules and training
accuracy, where [low, high] values or average over 30 runs are presented.

Domain Size XCS Rule RCR Rule XCS Acc RCR Acc HLCS Acc

Iris 150 [1557, 1675] 9 [99.5%, 100%] 100% 100%

wine 178 [2736, 2813] 13 [100%, 100%] 100% 100%

Australian 680+10 [2611, 2714] 115+9 [93.9%, 97.2%] 98.56% 100%

sonar 208 [2924, 2958] 208 [99%, 100%] 100% 100%

Zoo 101 [2756, 2834] 12 [100%, 100%] 100% 100%

BCWD 683 [2576, 2653] 37 [99.6%, 100%] 100% 100%

Ionosphere 351 [2764, 2848] 154 [97.5%, 100%] 100% 100%

German 940+60 [2642, 2745] 242+14 [78.5%, 86.8%] 94% 100%

Lung Cancer 18+9 [2944, 2963] 18+9 [63.1%, 70.3%] 66.66% 100%

Hill Valley 559+47 [2981, 2994] 267+31 [79.7%, 86.8%] 92.24% 100%

The training plot (Fig. 3) shows that there is a limitation on the ability
to comprehend a pattern in LCSs, without the edition of the method to add
hierarchies. Level 0 is essentially a standard LCS where a clear steady-state
error range exists, regardless of how many additional iterations are introduced.
This can be caused by overlapping niches suited to polymorphic rule sets, where
the LCS identifies multiple main patterns. Hierarchically removing the main
pattern and associated data enables the LCS to discover the next most important
patterns and so forth. Each such pattern can contain epistatic relationships
between features, unlike decision trees where each hierarchy level focusses on
an individual feature. Ultimately, the last hierarchy could consist of the hard to
classify outlier data points where no generality is possible, giving rise to specific
rules. These can be identified through equal importance being given to each
attribute (feature).

After the HLCS splits the problem domain into successive comprehensive
parts, the completely represented solutions are obtained. Thus, it is practicable
for LCSs to completely represent domains. The training map for the German
domain exhibits how LCS’s population is dominated by over-general rules in the
first stage of training (level 0) as when they form performance drops. This does
not occur for the Australia dataset, which suggests specific rules are formed.
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4.1 Attribute Importance

Generally, HLCS offers a fine-grained level of feature ranking and assessment of
the relationships between condition attributes according to their support for a
given action. The Iris dataset is easy to understand, so is selected to interrogate
the feature selection of HLCS, see Table 2 and Fig. 3. It is compared with three
traditional attribute ranking and selection algorithms, i.e. Principal components
analysis (PCA), Relief, and Consecution based feature selection (CFS), which
are implemented in WEKA [15].

Fig. 3. HLCS’ training performance for German and Australia dataset problems.

In all actions, HLCS identifies that petal length and petal width that are
the most important attributes, which is supported by PCA and CFS. Moreover,
HLCS also points out that petal length and petal width having similar attribute
importance. Meanwhile, sepal width and sepal length having similar attribute
importance. This discovery can also be found by using Relief. The Iris domain
indicates that although HLCS is based on investigating the LCS produced rules,
the novel proposed system obtains a common attribute importance with tradi-
tional statistics-based algorithms, but displays the achievement in a much clearer
manner.

Table 2. RCR vs traditional feature rankers’ results for iris problem.

AttributeRanker Attribute Importance

HLCS species1 Petal length, Petal Width: 50%, Sepal length, Sepal width: 0%

HLCS species2 Petal length: 32.8%, Petal Width: 31%

Sepal width: 18.3%, Sepal length:17.9%

HLCS species3 Petal Width:29.4%, Petal length: 28.9%

Sepal length:21.3%, Sepal width: 20.4%

PCA Petal length, petal width

relief Petal width, petal length, sepal width, sepal length

CFS Petal length, petal width
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Fig. 4. First line the result for Zoo and Iris problems. Second line the result for Wine
and WBCD problems

5 Discussion

Once the output is known, the solution can be interrogated, such that over-
fitting can be tested, i.e., the discovered patterns can be observed. It appears
that LCSs learns some strange patterns, e.g. in the Zoo dataset (see Table 3: the
feather attribute is not important to classify birds, but milk is. LCSs consider
birds are animals that can be distinguished by [not] drinking milk, laying eggs,
and [not] having hair. Mammals need to seriously consider their fins, where
this is an excellent example of a heterogeneous niche. To distinguish all the
animal classes, milk is really important. Amphibian contain fewer species, which
does not distract HLCS as it identifies that backbone type and the number of
tails are important to categories these species. Also, [not] feathers has the same
importance level as fin for identifying fishes.

If LCSs’ detected underlying patterns are directly compared with human’s
knowledge, there is obviously a huge gap between human’ and LCS’ comprehen-
sion of the world. However, if the training dataset of learnt knowledge is further
investigated, interesting patterns emerge. Firstly, Zoo is a typically unbalanced
dataset, where mammals occupy around 41% of the dataset. This indicates that
identifying differentiating common attributes for the mammals class is the most
important task, and among all the species, only mammals drink milk. Moreover,
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due to the involvement of sea mammals, only mammals have an non-consistent
fin number. That is the main reason why LCSs identify fin and milk as the most
important attributes to distinguish mammals from others. Meanwhile, birds only
get 20% of the dataset, and the feathers only could be used for birds, such that
this attribute’s function can be replaced by a combination from the first ten
attributes. Thus, the feather is a redundant attribute in this case, e.g. CFS
removes feather, and in Relief, feather gets a low rank, which is 10th. Not only
bird, but the mammal, amphibian, and reptile also note feather is redundant.
Fish and bird do have a similar attribute importance distribution. Therefore, to
distinguish these two species, certain discriminative attributes need to be con-
sidered. Thus, in fish support rules the feather attribute is considered (Fig. 4).

Table 3. RCR highlighting mammal and fish classes vs traditional feature rank results
for Zoo problem.

Attribute ranker Attribute importance

HLCS Mammal Milk: 17.4%, fins: 17.1%, hair: 8.8%, tail: 8.5%, airborne: 5.8%
Eggs, toothed, backbone, breathes, venomous, domestic: 4.4%
Legs, catesize: 4.3%, aquatic: 4.2%, predictor 3.4%, feathers: 0%

HLCS Fish Hair, feathers, eggs, milk, airborne, aquatic, predator, toothed,
backbone, fins, legs, tail, domestic: 7.3%, Venomous, catesize:
2.4% breathes: 0%

PCA Feathers, eggs, milk, airborne, aquatic, predator, toothed,
backbone, breathes, venomous

relief Venomous, breathes, tail, milk, backbone, domestic, predator,
eggs, fins, airborne, feathers, legs, aquatic, toothed, catesize

CFS Airborne, breathes, venomous, fins, domestic, catesize

In the Wine domain, HLCS identifies proline, color intensity, and
OD280/OD315 of diluted wines as the most important attributes for class0,
class1, and class2, respectively. Flavanoids need to be considered for all the
classes. The HLCS identifies that the most important attributes for WBCD are
Bare Nuclei and Normal Nucleoli in both actions. Generally, as WBCD only con-
tains two actions the results for each action’s attribute importance distribution
become very similar. However, the attributes’ potential range is still different,
which is why these two distributions are not exactly same.

The result shows that compared with humans LCSs have an advantage, which
is to get rid of the primacy effect. LCSs are impartial to the underlying patterns
for the domains. Therefore, by visualizing these hidden patterns humans could
understand the patterns in the dataset better as prejudice can be avoided. In
contrast with standard attribute rank algorithms, the proposed HLCS offers a
fine-grained level ranked attributes, which helps research not only know which
attributes are important but also hints about why these attributes are important.
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6 Conclusions

The overall aim to develop the LCS technique to construct a single common rule-
set for real domains was successful. Moreover, the LCSs’ potential to completely
represent a target domain is also explored, where the results show that despite
the different representation style, RCR is capable of identifying different under-
lying patterns for attributes. That is, for Boolean domains, LCSs can employ
the ternary representation to detect the inherent natural structure [16], and for
real domains, LCSs can now utilize higher and lower bounds, where underlying
patterns can be visualised. This includes heterogeneous patterns and epistatic
relationships at different levels of hierarchical patterns. This avoids problems
with polymorphic rules in previous LCSs. The result shows the convergent evo-
lution phenomenon appears in all the explored domains.

Further work is required to implement this approach in attribute list knowl-
edge representation (ALKR) [17] for synthetic datasets [18]. It is also important
to discover whether the same phenomenon will happen in the rich alphabet based
LCS, such as XCSCFA [19] or XCSCFC [20]. It is plausible that the relationship
between different attributes can be visualized by the inherent methods presented
here.
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3. Orriols-Puig, A., Bernadó-Mansilla, E.: Revisiting UCS: description, fitness shar-
ing, and comparison with XCS. In: Bacardit, J., Bernadó-Mansilla, E., Butz, M.V.,
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Abstract. We apply a cooperative coevolutionary algorithm for the
real-time evolution of schedules in underground mines. The algorithm
evolves simultaneously both truck dispatching and traffic light schedules
for one-lane roads. The coevolutionary approach achieves high produc-
tion with fewer trucks than both the widely-used DISPATCH algorithm,
and commonly-used greedy heuristics.
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1 Introduction

In underground mines, access to the orebody is often via an angled decline which
is traversed by trucks that move ore from the shovels, operating at the orebody
at various depths, to the crusher, situated at the surface. The expensive nature
of the decline [6] means that the majority is usually only one lane wide with
occasional passing points. When a truck finishes unloading ore at the crusher,
the dispatcher tells it which shovel to service next. Poor scheduling choices can
result in high truck waiting times, either at shovels or at passing points. To
solve this problem, automated scheduling methods can be used to optimise the
throughput of a mine. Truck haulage typically represents 50–60% of mining costs
[1,23], so a scheduling method should minimise the number of trucks required
to achieve good throughput. Access to one-lane sections is managed by traffic
lights, adding a further scheduling opportunity.

We apply a coevolutionary algorithm (CEA) to evolve schedules in real-time
for truck dispatching and traffic light switching [3,27]. We test our approach
on an abstract model of an underground mine, using a discrete event simula-
tor based on timed automata [7]. We compare its performance against com-
mon greedy heuristics and against an adaptation of DISPATCH [17,25,26]. The
coevolutionary approach for combined truck and traffic light scheduling is shown
to achieve high production with fewer trucks than the alternative approaches,
although with varying results depending on the exact choice of fitness function.
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Section 2 describes previous work on real-time dispatching. Section 3
describes our approach to scheduling and the model used. Section 4 describes
the experiments and discusses the results. Section 5 concludes the paper.

2 Literature Review

There is much previous work on truck dispatching in mining [1,7,18]. Here we
describe strategies relevant to our approach and to underground mining.

Greedy heuristics for truck dispatching attempt to optimise some heuristic
for each truck alone [22]. Common choices are to dispatch to the shovel

– from which the truck is expected to return soonest (MTCT);
– where the truck is expected to wait the least time (MTWT);
– where the truck is expected to be serviced in the least time (MTST);
– that has been waiting longest, or will be available soonest (MSWT).

DISPATCH is a two-stage plan-driven approach [25,26]. In the offline stage
the desired truck haulage rates along the available routes are determined using
linear programming (LP). In the online stage routing creates a series of tempo-
rary schedules from which only the first assignment in the schedule is deployed;
the remainder of the schedule is discarded. A DISPATCH system for under-
ground mines is available [17], but any improvements are not publicly available.

[14] also produces a plan using LP, then dispatching is performed by greedily
choosing the shovel with the highest ratio between the time since its last dispatch
and the optimal inter-arrival times. The current state of the mine is ignored, thus
there is no compensation for excessive queueing. [7] uses an EA to evolve cyclic
finite automata for truck dispatching, avoiding traffic contention by selective
routing. A simulation model inspired by a network of timed automata is used.

The literature on underground scheduling primarily deals with long-term
decisions [19]. [10] presents a graph-based approach, extending earlier work
[12,13,24] with automated guided vehicles. Nodes represent locations and ori-
entations of the trucks at each time step, and edge weights are based on the
desired objective. [4] extends this for multiple trucks per assignment using an
enumeration algorithm. [21] investigates a model where the positions of the min-
ing points change in the short-term, and discuss some basic collision-avoidance,
truck dispatching, and drawpoint selection strategies.

3 Approach

3.1 Problem Description

Figure 1 shows the topology of our model of an underground mine. Trucks travel
continuously between the shovels and the crusher. Horizontal crosscuts allow
two-way traffic. Overtaking is not possible. Trucks are homogeneous, but shovels
are heterogeneous; their average filling rates differ and they are at different
depths. Shovels and the crusher can each service only one truck a time.
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Fig. 1. The road network used in the test problem.

Each one-lane section is managed by a pair of traffic lights, which may be
managed by greedy rules or by a timer. The greedy rules make a light green iff
no trucks are travelling or waiting in the opposite direction. The timer assigns
a light a fixed amount of time to stay green.

We want to optimise the schedule for a mine to maximise total production. A
schedule determines the outgoing destination for each truck leaving the crusher,
and also manages the timing of the traffic lights. Production is measured in total
truckloads unloaded at the crusher per shift. The model assumes that we always
know the location of all trucks.

To compare dispatching algorithms we use a simulator based on a network
of timed automata (TA) [2,7]. The TA for a truck includes states for travelling
between shovels and the crusher, waiting in various queues, and waiting at traffic
lights. The clocks in the TA limit the times at which the truck can transition
between certain states. The traffic lights are represented by separate TA. Addi-
tionally, at any point in time a separate simulation can be initiated to test the
performance of a schedule from the current state of the mine [7].

3.2 Evolutionary Algorithm

There are four potential methods using EAs. We could evolve truck dispatching
schedules alone, or we could evolve traffic light schedules alone, or we could
evolve both together. In this paper we focus on the last option, which we label
CEA-RTL. The EA is run to produce a temporary schedule; periodically, this
schedule is discarded and the EA is rerun using updated information to ensure
that the schedule remains useful over time under variable real-time conditions.
Schedule updates are fifteen minutes apart in simulation time.
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The population size is set to 100, and in each generation 100 offspring are
produced. Survival is solely by elitism, from both parents and offspring. Repro-
duction selection is by stochastic roulette-wheel selection [15]. A run terminates
if 0.5% improvement in fitness is not observed in 100 generations. All parameters
were chosen based on early experimentation.

Two separate populations are maintained, one for each type of schedule. A
truck schedule is represented by a list of shovel IDs of length H/Cr, for time
horizon H and crusher service rate Cr. We use single-point crossover and three
independent mutations; either mutate a gene, or insert/delete a gene into/from
a random position. A light schedule is represented by a real-encoded list for each
one-lane section, representing the lengths of green lights, in minutes, alternating
in direction. We use blended crossover [9] and normally-distributed mutation.

The fitness function runs the stochastic simulator, using the current position
of each truck. Fitness is assigned using the parallel shuffling method [16]. In
each generation, each chromosome is assessed by randomly pairing it with one
from the other population, evaluating this pairing twenty times, and taking the
average. The fitness of the chromosome is that of the best pairing it has ever
participated in. The final output is the best observed pairing of schedules.

There is a discrepancy in the timeframe between what the fitness function
can practically measure and the overall goal of the problem. The overall goal is
to maximise the number of truckloads of ore unloaded into the crusher over a
long time period, but measuring this directly presents at least five difficulties:

– the simulation-based evaluations limit the period that can be considered;
– longer periods exacerbate the stochastic nature of the simulations;
– the effects of dispatching decisions on production are often delayed;
– longer periods require larger genotypes, making the search space bigger;
– the discreteness of the objective could limit the effectiveness of an EA.

A discounting scheme would address some but not all of these issues. We consider
instead two alternative proxy metrics.

Minimise total truck waiting time (MTTWT) returns the total waiting
time for all trucks in all queues. MTTWT allows some effects of decisions to
be observed immediately, enabling a shorter time horizon.

Minimise average truck cycle time (MATCT) returns the average cycle
time for all trucks that finish unloading at the crusher in the simulation
window. As an average, MATCT can operate with a flexible time horizon.

For both MTTWT and MATCT, H was set to be the longest expected cycle
time on all routes. On our test instances, H ranges from 56 to 72 min.

3.3 Cyclic Truck Scheduling and Cyclic Light Scheduling

Cyclic truck schedules are derived using LP, based on expected travel times and
using Monte Carlo simulation to estimate expected clear times for each one-lane
road. With these flow rates a fixed schedule can be produced, henceforth referred
to as flow-based cyclic scheduling (FCS).
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In cyclic light scheduling, each traffic light is assigned a pair of values which
denote the length of green lights in each direction. These values are produced
by running an EA with a real-valued chromosome and most of the same param-
eters as described in Sect. 3.2. The fitness function evaluates a set of timers by
simulating whole shifts using FCS for truck dispatching (determined by LP).

4 Results and Discussion

4.1 Methodology

Testing was performed in a discrete event simulator, as described in Sect. 3.1,
implemented in Java [8]. We used six instances of the problem in Fig. 1, with
randomly-generated set-ups: distances between passing points vary from 400–
600 m; lengths of crosscuts vary from 150–250 m; and filling rates for shovels
vary from 9–17 min per truck, and always sum to the emptying rate at the
crusher (3 min per truck). Empty trucks average 15 km/hr, and full trucks aver-
age 12 km/hr on the flat and 6 km/hr uphill [20].

The EA approach was compared with greedy heuristics, FCS, and DIS-
PATCH, each with greedy (GL) and cyclic light scheduling (CL). Our adaptation
of DISPATCH has only a single LP [7], with unused constraints [25] removed.
All algorithms were implemented in Java by the authors; LPs were solved with
lpsolve [5]. Figures 2 and 3 show the algorithms’ performance, measured in the
average number of truckloads unloaded in a 500-min shift. Each data point is
the average of 25 shifts, for a fixed number of trucks.

The greedy algorithms calculated their heuristics using 20 simulations. Two
versions of MTCT were used: MTCT minimises the complete cycle time of the
next truck, while MTRT excludes time spent at the crusher. Three versions
of MTWT were used: MTSWT minimises time spent queueing at the shovel
for the next truck, while MTTWT(1S) includes time spent queueing at passing
points on the way to the shovel, and MTTWT(2S) includes all waiting time in
both directions. Results for all seven heuristics are combined into an algorithm
portfolio [11] called Best-H. For each number of trucks, the performance of the
portfolio is that of the best-performing heuristic for that number.

4.2 Basic Algorithms and Simple Light Schedules

Figure 2 shows for two typical instances, the performance of Best-H, DISPATCH,
and FCS, with both GL and CL. Best-H almost always outperforms DISPATCH
and FCS. Section 4.3 compares CEA-RTL with Best-H alone.

Among the greedy heuristics, MTSWT and MTTWT(1S) perform best,
although MTSWT sometimes suffers in undertrucked systems. MTCT and
MTRT consistently perform much worse than all other heuristics. Greedy appli-
cation of MTCT results in trucks being over-dispatched to closer shovels; long-
term, this results in excessive shovel queues. MTTWT(2S) tries to minimise the
waiting times of one truck at the expense of trucks in opposing traffic. These
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Fig. 2. Typical comparisons of Best-H, DISPATCH, and FCS.

effects will not occur when considering an entire schedule rather than individual
trucks. MTSWT works well in this case, as minimising shovel queueing time for
one truck does not affect trucks that have already been dispatched.

DISPATCH being outperformed has been discussed in [7]: it primarily per-
forms well in multi-crusher systems, the real-time version over-dispatches on
long routes, and the variation in actual waiting times limits its success. CL con-
sistently beats GL, providing up to a 1.5% increase in production and allowing
Best-H to achieve over 99% of its peak production with 1–3 fewer trucks.

4.3 Coevolution

Figure 3 shows two typical comparisons of the performance of CEA-RTL against
Best-H-CL. CEA-RTL with MATCT outperforms Best-H on undertrucked sys-
tems, while MTTWT slightly overtakes MATCT for overtrucked systems.

Table 1 shows the minimum number of trucks required for each method to
achieve at least 99% of the observed peak performance. CEA-RTL with MTTWT
can achieve this with one fewer truck than Best-H on all but one instance; while
this may seem small, the significance of minimising truck use has already been
mentioned [1]. It corresponds broadly to a 6% reduction in haulage costs, or
approximately 3–4% of whole-mine costs. Additionally, while it may be unlikely
that a real-world mine would ever deliberately operate undertrucked, the better
results in undertrucked systems of CEA-RTL over Best-H indicates increased
reliability against sudden changes in mine conditions.
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(a) Instance 3. (b) Instance 4.

Fig. 3. Typical comparisons of Best-H-CL and CEA-RTL.

Table 1. The minimum number of trucks required for Best-H-CL and CEA-RTL to
achieve at least 99% of the observed peak performance on each problem instance.

Instance Best-H-CL CEA-RTL (W) CEA-RTL (C)

1 17 17 17

2 18 17 17

3 18 17 17

4 16 15 15

5 17 16 16

6 18 17 18

5 Conclusion

We have used a cooperative coevolutionary algorithm to evolve short-term sched-
ules for underground mines in real-time. The CEA was compared with common
greedy heuristics and the DISPATCH algorithm, using a discrete event simulator
based on timed automata. Two proxy fitness metrics were used as alternatives to
the overall objective of maximising production: minimising average truck cycle
time generally performed well on undertrucked systems, and was slightly outper-
formed by minimising total truck waiting time otherwise. The CEA performed
best, especially in achieving good performance with fewer trucks.

Future work will investigate continuous evolution alongside production, and
allowing for limited communication underground.
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Abstract. Feature selection is an important data preprocessing tech-
nique in the emerging field of artificial intelligence and data mining which
aims at finding a small set of features from the original dataset with pre-
determined targets. Particle swarm optimization (PSO) has been widely
used to address feature selection problems because of its easy implemen-
tation, efficiency and simplicity. However, in high-dimensional problems,
selecting the discriminative features with a higher correct classification
rate is limited. To solve the issue above, a particle swarm optimization
method with adaptive mechanism and new updating strategy is proposed
to choose best features to improve the correct classification rate. The pro-
posed approach, named as EPSO, is verified and compared with other
three meta-heuristic algorithms and four recent PSO-based feature selec-
tion methods. The experimental results and statistical tests have proved
the efficiency and feasibility of the EPSO approach in obtaining higher
classification accuracy along with smaller number of features. Therefore,
the proposed EPSO algorithm can be successfully used as a novel feature
selection strategy.

Keywords: Feature selection · Particle swarm optimization
Classification · Adaptive mechanism · New updating strategy

1 Introduction

The goal of feature selection is to eliminate the irrelevant and redundant features
without sacrificing the classification correct rate and find an optimal feature sub-
set from the original dataset. In recent years, feature selection techniques have
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been successfully applied to solve many real-world problems such as text catego-
rization [1], face recognition [2] and recommender systems [3]. Therefore, feature
selection attracts more and more attention from specialists and researchers.

Feature selection is a challenging problem because there may exist mutual
influence among features. In other words, a single relevant feature can become
redundant or less useful when combined with other features, vice versa. There-
fore, an optimal feature subset from the original dataset should be a set of
complementary features that span different attributes of the classes to cor-
rectly distinguish them. According to the evaluation indicator, feature selection
approaches can be divided into two types [4,5]: filter approaches and wrapper
approaches. In filter approaches, a feature subset is assessed by the performance
of simple auxiliary criteria such as mutual information, distance, relief and cor-
relation, or consistence measures to verify the quality of the selected feature
subset. Meanwhile, wrapper approaches evaluate the feature subset’s classifica-
tion performance in an independent way of a specific learning algorithm, such
as a neural network, support vector machines and K-nearest neighbor classifier.
Compared with filter approaches, wrapper methods are usually more superior in
terms of classification accuracy. Furthermore, wrapper methods consider inter-
actions among a group of features, which is difficult to discover in the filter
approaches [6]. Therefore, in this study, a wrapper method is adopted to assess
the selected feature subsets.

So as to better accomplish feature selection tasks, a strong and efficient search
algorithm is desired. Swarm intelligence optimization algorithms are famous
for their strong global search capability. Particle swarm optimization (PSO)
is a comparatively recent population-based search algorithm in the optimiza-
tion techniques family. Similar to the evolutionary algorithm (EA) and the
genetic algorithm (GA), PSO is a meta-heuristic stochastic optimization app-
roach, which searches for the global optima based on the generation number
update. In last two decades, several PSO-based feature selection techniques have
been proposed in the literature, such as the feature selection approach based on
momentum BPSO (SBPSO) [7], the approach based on GA and PSO (HGAPSO)
[8], the method based on PSO and genetic operators (CMPSO) [9], and the app-
roach based on a novel local search strategy and hybrid PSO (HPSO-LS) [10].
Although these feature selection approaches have better classification perfor-
mance and smaller number of features than the traditional PSO algorithm, the
performance of robustness, universality and trade-off between the exploitation
and exploration is still unsatisfactory for solving complex data mining problems
with different characteristics.

In this paper, a particle swarm optimization algorithm with adaptive mech-
anism and new updating strategy is developed to further solve feature selection
problems. The proposed improved version of PSO is named as enhance parti-
cle swarm optimization (EPSO). In EPSO, there are two major modifications.
Firstly, an adaptive parameter update mechanism is proposed to tune or control
the fly velocity vt+1

id . Secondly, a new position update strategy is developed to
improve the solution quality. A wrapper feature selection approach is proposed
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by using EPSO as the search method and K-nearest neighbor to measure the
quality of the feature subsets. Eight well-known classification datasets and two
groups of contrast experiments are used to evaluate the feasibility and validity of
the EPSO-based feature selection approach. The experimental results indicate
that the proposed method achieves higher classification correct rate and employs
fewer features than other feature selection approaches.

2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic global optimization tech-
nique proposed by Kennedy and Eberhart in the 1995 [11]. PSO simulates the
sociological behaviors of bird flocking and fish schooling in a swarm. In PSO,
each particle represents a potential candidate solution in the search space. To
search the global optimal solution, each particle adjusts its forward direction
based on its own best previous position and the current best position of all
other particles. During the search phase, the previous location of particle i
is denoted by a vector xi = (xi1, xx2, · · · , xxd), where d indicates the dimen-
sionality of the problem space. The fly velocity of the particle i is denoted as
vi = (vi1, vi2, · · · , vid), and the range of vid is [−Vmax, Vmax], where the Vmax

is defined as the maximum fly velocity to control the value within a reason-
able range. Moreover, the best currently location of the particle i is recorded as
pbesti = [pbesti1, pbesti2, · · · , pbestid], the best location achieved by the entire
population is recorded as gbest = [gbest1, gbest2, · · · , gbestd]. The PSO method
searches for the global optimal solution by updating the location and the fly
velocity of each particle in the swarm according to the following formulas:

vt+1
id = vt

id + c1 × r1i × (
pbestid − xt

id

)
+ c2 × r2i × (

gbestd − xt
id

)
(1)

xt+1
id = xt

id + vt+1
id (2)

where c1 and c2 are position constants, called acceleration coefficient, usually
set as c1 = c2 = 2; r1i and r2i are two random values between 0 and 1; t denotes
t-th iteration in the search process.

3 New Approach for Feature Selection

A novel thinking of the new approach for feature selection is achieved from the
original PSO and proposes an innovative PSO method called enhanced particle
swarm optimization (EPSO) in terms of the idea. The presented EPSO is an
excellent and effective approach for solving feature selection problems. In the
following subsection, we describe the EPSO method first and construct the new
approach later to address feature selection tasks.
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3.1 Proposed Method - Enhanced Particle Swarm Optimization

PSO has been proved to widely optimize a wide range of real-world optimization
problems. However, PSO exists insufficient with premature convergence, ineffi-
cient in tradeoff global search capability and local search capability. Therefore,
an enhanced particle swarm optimization called EPSO is presented to improve
the search performance of the original PSO method. In EPSO, there are two
major modifications, which are described in detail as follows:

Firstly, an adaptive mechanism is proposed to control or adjust the fly veloc-
ity vt+1

id . From Eq. (2), we can see that vt+1
id is used to control the direction and

distance of particle motion during the search process. Therefore, vt+1
id plays an

important role to obtain a high quality particle position in the problem space.
Generally, in a population-based optimization method, we hope that the particle
can wander through the entire solution space in the early search process. Fur-
thermore, in the later stage of search process, it is very important to increase the
capability of local search, for finding out the global optimal position efficiently.
Since PSO was introduced in 1995, some strategies are introduced to balance the
early stage’s global search and the latter stage’s local search capabilities, such
as inertia weight [12], constriction factor [13]. Although these strategies have
better control capabilities than the traditional version of PSO, the performance
of trade-off between the exploitation and exploration is still unsatisfactory for
solving complex optimization problems with different characteristics. In order to
better control particle’s trajectory and further improve the search performance
of PSO, in this paper, an adaptive mechanism is introduced to tune the fly
velocity vt+1

id , which can effectively control the PSO’s convergence tendencies in
the search process. In this improvement, the adaptive mechanism is designed as
a nonlinear decreasing function to maintain the diversity of the search process.
Mathematically, the modified fly velocity update strategy can be rewritten as
follows:

vt+1
id = � (t) × [

vt
id + c1 × r1i × (

pbestid − xt
id

)
+ c2 × r2i × (

gbestd − xt
id

)]

(3)

� (t) = ρ × exp

(

−α ×
(

t

tmax

)β
)

(4)

where t and tmax represent the current iteration and the maximum iteration,
respectively.

From experience, the value of ρ set as 1.5. Furthermore, simulation was car-
ried out with Ackley function to find out the best parameter values for α and β.
Results are shown in Table 1. A modified optimum solution for Ackley function
was observed when α and β are equal to 2. So � (t) decreased from 1.5 to 0.2
with iteration.

Secondly, a new position update strategy is proposed to generate particle
position of next generation, which can effectively improve the particle quality
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Table 1. The experimental for parameter selection

α β

1.0 1.5 2.0 2.5 3.0

1.0 7.31E−05 2.01E−03 1.39E−04 1.22E−04 5.84E−04

1.5 5.41E−05 6.43E−05 9.86E−05 1.39E−04 2.87E−04

2.0 5.54E−05 6.37E−05 2.47E−05 7.36E−05 1.57E−04

2.5 6.98E−05 8.19E−05 1.01E−04 9.36E−05 1.35E−04

3.0 7.29E−05 1.03E−04 1.59E−04 1.19E−04 1.11E−04

in the search process. As seen from Eq. (2), we can see that the position of the
next generation particle depends primarily on the current position xt

id and the
fly velocity vt+1

id . This may weaken the capability of searching the neighbor-
hood around the known optimal solution in the search process. Considering this
problem, we present three major improvements by introducing two contraction
factors and the previous best position to update the next generation particle
position with these two parts. Especially, this modified position update strategy
not only can strengthen the ability of global search around the known optimal
position but also can accelerate the global convergence by introducing the pre-
vious best position. Furthermore, two contraction factors are used to control the
maximum step size. In this paper, two contraction factors are defined as a linear
function with iteration. The update strategy of the modified PSO, described in
Eq. (5), provides more opportunities to the dense search region with many local
optimal solutions and thus gives more chances to find the global optimal solu-
tion during the search process. The position of each particle in the population
is generated depended on the following equation:

xt+1
id = χ (t) × xt

id + χ′ (t) × gbestd + vt+1
id (5)

χ (t) = 1 − t

tmax
(6)

χ′ (t) = 1 − χ (t) (7)

3.2 EPSO for Feature Selection

Feature selection is an important data pre-processing technique, which is exe-
cuted before classification and it can effectively remove irrelevant and redun-
dant features from the entire feature set. Feature selection approaches minimize
the feature subset dimension and maximize the classification accuracy, whilst it
chooses the discriminative features. In this paper, a novel wrapper-based fea-
ture selection method using EPSO has been proposed and the working of this
approach is described in the following part.
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In the EPSO approach, a particle represents a feature subset. The dimension
of the swarm denotes the number of available feature of the dataset. In the
original dataset, each feature corresponds to a dimension and each variable is
fixed within the range [0, 1]. The solution will be better when the number of
selected features is minimal and the classification accuracy is higher. The position
of the particle determines the reservation and rejection of the features. If the
position value is within (0.5, 1], it represents the reservation decision on of the
respective feature and if not, it represents the rejection [14]. Each position is
assessed by the developed fitness function, which includes two objectives: the
accuracy achieved by the K-nearest neighbor (KNN) model and the number of
determined features. In this study, the fitness function is described as follows:

Fitnessmin = α × γR (D) + β × |S|
|N | (8)

where γR (D) denotes the classification error rate of feature set R relative to the
decision D; Furthermore, |S| represents the number of the selected features and
|N | represents the total number of the available features in the dataset. α and
β are two parameters corresponding to the relative importance of classification
accuracy and selected feature subset size. α ∈ [0, 1] and β = 1−α achieved from
[15]. The pseudo-code of EPSO is shown in Algorithm 1.
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4 Experimental Results and Discussions

4.1 Experimental Design

To examine the effectiveness and feasibility of the proposed EPSO method, a
series of simulation experiments have been executed on eight well-known classi-
fication datasets, which are obtained from the UCI machine learning repository
[16] and can be seen in Table 2. As can be seen from Table 2, these eight clas-
sification datasets have different features, classes, instances and characteristics.
Therefore, they are adopted as representative examples of the classification prob-
lems that the proposed EPSO approach will be examed on. On each dataset, 70%
of instances were selected as the training examples randomly and the remaining
30% of instances are adopted as the testing examples.

The K-nearest neighbor (KNN) technique is the most simple and effective
approach and one of the researcher’s leading options for a classification research.
Especially, the set of samples is small or no prior knowledge about the data
distribution is available. In this paper, a wrapper-based EPSO method has been
presented in which KNN has been used as a learning algorithm. In order to sim-
plify the assessment process, we set K = 5 in KNN. We implement the proposed
EPSO method and 5NN for feature selection in Matlab. In addition, using five
cross-validation to avoid feature selection bias in the training stage. The com-
puter is Intel(R) Core(TM) i5-7400, 3.00 GHz, 16 GB RAM and the operating
system is Windows 10 Professional Edition.

The detailed parameters of EPSO are set as follows: the size of the population
is 20, and the maximum iteration is set to 100 for all test datasets. Other control
parameters of the PSO approach are available from Ref. [17]. In this paper, the
fully connected topology is used. For each dataset, the experiments are executed
30 times to ensure the feature selection performance of each approach. Further-
more, in the view of illustrating the significant difference of the proposed EPSO
algorithm with other feature selection approaches for each dataset, a test namely
the nonparametric Wilcoxon rank-sum has been conducted at a significance level
of 0.05. The results of Wilcoxon rank-sum test are described in Tables 3 and 4.
In Tables 3 and 4, when the proposed EPSO algorithm significantly outperforms
other contrast algorithms, + mark was used. Otherwise, − mark was used. ≈
means that they are similar.

4.2 Results and Discussions

The results are mainly shown in two Experiments: (a) Comparisons of EPSO and
other meta-heuristic methods, and (b) Comparison of EPSO and other existing
PSO-based methods. Furthermore, the average execution time (E.T.) and com-
parison via Wilcoxon rank-sum test (T-test) are recorded to verify the effective-
ness and efficiency of the proposed EPSO approach.

Experiment 1: Comparisons of EPSO and Other Meta-heuristic Meth-
ods. Table 3 shows the simulation experimental results of PSO, Differential
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Table 2. Datasets used for experimentation

Dataset #Features #Class #Instances #Characteristics

Wine 13 3 178 Real, Integer

Zoo 16 7 101 Categorical, Integer

Spect 22 2 267 Categorical

Ionosphere 34 2 351 Real, Integer

Sonar 60 2 208 Real

Hillvalley 100 2 606 Real

Musk 1 166 2 476 Integer

Multiple features 649 15 2000 Real, Integer

Evolution (DE), Artificial Bee Colony (ABC) and EPSO through the 30 inde-
pendent runs in terms of average classification correct rate (AveCR) along with
their chosen number of features. “All” indicates that all of the available features
are adopted for classification. The tabulated results of Table 3 show that the
EPSO method has obtained the best classification performance for six out of the
eight datasets. For example, datasets such as Zoo, Spect, Sonar, Hillvalley, Musk
1 and Multiple feature datasets have the best average classification correct rate
with the reduced feature subset. Inferences illustrate that the proposed EPSO
method outperforms the other three approaches and KNN using all the available
features in terms of average classification accuracy for the before-mentioned six
datasets. However, for Wine and Ionosphere datasets, the original PSO method
has obtained the best classification accuracy.

For all datasets, the reduction in the number of features is quite significant,
which is a remarkable capability of the proposed EPSO method. For example,
in case of the Zoo dataset, the EPSO approach has achieved the average clas-
sification accuracy of 100% with 3.83 features. Hence, one can conclude that
the optimal feature subset has been achieved by the EPSO approach for most
datasets. On an overall view, when comparing EPSO with DE, ABC, basic PSO
and using all available features, we speculate that the EPSO method seems to
execute well in obtaining the higher average classification accuracy and the bet-
ter feature subset for almost all classification datasets. From Table 3, we can
see that the EPSO algorithm has the best average computation time in com-
parison to other seven approaches on 9 datasets. Furthermore, four groups of
the Wilcoxon rank-sum test results are also recorded. The Wilcoxon rank-sum
test is adopted to compare two related approaches. From Table 3, we can clearly
see that the performance of HPSO-SSM is better than other four approaches.
Figure 1 shows the feature selection process of the proposed EPSO method for
the Ionosphere and Musk 1 datasets. Figure 1 also illustrates the relationship
between the obtained classification correct rate and the number of the chosen
feature. It can be known that, from Fig. 1, elimination of irrelevant and redun-
dancy features benefits classification correct rate.
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Table 3. Comparisons of proposed approach and other meta-heuristic methods

Dataset Approach Size E.T. AveCR ± S.D. T-test

Wine All 13 74.07 +

PSO 3.30 2.60 98.15 ± 0.28 ≈
DE 3.00 5.67 96.30 ± 0.64 +

ABC 5.20 2.84 97.78 ± 0.49 ≈
EPSO 5.10 2.47 98.02 ± 0.47

Zoo All 16 96.77 +

PSO 6.63 2.57 99.11 ± 0.14 +

DE 5.80 5.31 96.13 ± 0.96 +

ABC 7.60 2.80 100 ± 0.00 ≈
EPSO 3.83 3.40 100 ± 0.00

Spect All 22 67.90 +

PSO 10.93 2.78 76.30 ± 1.81 +

DE 11.00 5.46 76.30 ± 1.92 +

ABC 12.20 2.87 77.04 ± 1.84 +

EPSO 9.73 2.76 79.63 ± 1.61

Ionosphere All 34 83.02 +

PSO 9.30 2.95 94.87 ± 1.53 ≈
DE 11.80 6.59 94.53 ± 1.47 ≈
ABC 16.00 3.10 92.64 ± 1.68 +

EPSO 9.57 2.50 94.47 ± 1.30

Sonar All 60 88.89 +

PSO 25.87 2.61 95.08 ± 1.77 +

DE 24.96 6.57 96.37 ± 1.56 +

ABC 25.94 3.58 96.89 ± 0.95 +

EPSO 20.53 3.48 99.68 ± 0.77

Hillvalley All 100 58.24 +

PSO 45.23 6.67 65.57 ± 1.91 +

DE 38.20 12.82 61.10 ± 1.58 +

ABC 49.40 7.87 65.27 ± 1.73 +

EPSO 41.77 6.56 66.36 ± 1.28

Musk 1 All 166 83.22 +

PSO 76.63 6.82 92.31 ± 1.52 +

DE 70.00 13.76 95.38 ± 1.37 +

ABC 82.03 8.01 88.11 ± 1.96 +

EPSO 72.90 7.06 96.60 ± 1.06

Multiple features All 649 95.33 +

PSO 310.80 397.08 98.00 ± 0.57 ≈
DE 334.00 721.23 95.83 ± 0.96 +

ABC 321.00 443.37 96.17 ± 0.74 +

EPSO 298.87 394.84 98.49 ± 0.18
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Fig. 1. Iteration times versus the classification correct rate and the number of features
selected for Ionosphere (the left one) and Musk 1 (the right one) based on average of
the 30 runs

As a conclusion, for most classification datasets, EPSO achieves the best
classification performance, selects fewer features and obtains higher classification
accuracy than other three algorithms and KNN using all available features.

Experiment 2: Comparison of EPSO and Other Existing PSO-Based
Methods. To further examine the performance of the proposed EPSO app-
roach, we compare its classification ability with other four feature selection
methods, called Gaussian PSO (GPSO) [18], Gaussian PSO based Represen-
tation (GPSOR) [19], PSO based Representation (PSOR) [20] and Corossover-
Mutation PSO (CMPSO) [9]. The four feature selection approaches used datasets
with a relatively small number of features. Therefore, we adopt only the five clas-
sification datasets that are used in both our experiments, and the results of the
feature selection approaches in Table 4 is found in [9].

From Table 4, in terms of average classification accuracy, the proposed EPSO
method owns the best performance on four out of the five datasets. Only on
the Multiple features, EPSO achieves the average classification correct rate of
98.49%, which is only 0.56% lower than the best average classification accuracy,
achieve by CMPSO. Furthermore, as per the results in Table 4, on the small
datasets, the EPSO method chooses a similar number of features in compari-
son with other four PSO-based feature selection approaches. However, on the
large datasets, the proposed EPSO method tends to choose more features to
retain higher classification accuracy. In addition, according to the results of the
Wilcoxon rank-sum test (T-test), the performance of EPSO is different from
other four algorithms. Therefore, the EPSO approach are more suitable for clas-
sification datasets including different numbers of original features than other
existing PSO-based methods.
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Table 4. Comparisons of proposed approach and existing PSO-based methods

Dataset Approach Size AveCR ± S.D. T-test

Wine GPSO 5.40 96.59 ± 2.76 +

GPSOR 4.60 97.70 ± 2.52 ≈
PSOR 4.75 96.70 ± 3.10 +

CMPSO 4.70 97.24 ± 2.89 +

EPSO 5.10 98.02 ± 0.47

Ionosphere GPSO 7.66 89.50 ± 1.68 +

GPSOR 3.17 86.89 ± 1.80 +

PSOR 9.70 88.63 ± 1.68 +

CMPSO 3.77 87.94 ± 2.00 +

EPSO 9.57 94.47 ± 1.30

Sonar GPSO 17.64 78.19 ± 4.14 +

GPSOR 10.17 78.25 ± 2.95 +

PSOR 14.33 78.94 ± 4.02 +

CMPSO 11.60 79.42 ± 2.48 +

EPSO 20.53 99.68 ± 0.77

Musk 1 GPSO 39.64 84.95 ± 2.73 +

GPSOR 38.93 83.29 ± 2.48 +

PSOR 35.03 83.12 ± 3.41 +

CMPSO 39.93 85.06 ± 2.49 +

EPSO 72.90 96.60 ± 1.06

Multiple features GPSO 91.40 99.01 ± 0.13 +

GPSOR 51.00 98.86 ± 0.17 ≈
PSOR 51.07 98.84 ± 0.18 ≈
CMPSO 110.77 99.05 ± 0.01 -

EPSO 298.87 98.49 ± 0.18

5 Conclusions and Future Work

In this paper, a new feature selection algorithm, named enhanced PSO (EPSO),
is presented and successfully used to address feature selection tasks. This method
extends the idea of the traditional PSO to feature selection problems with a new
adaptive mechanism and new updating strategy. By compared with those exist-
ing results achieved by other three meta-heuristic algorithms and four PSO-based
feature selection methods. The experimental results show that the proposed
EPSO method has strong abilities in reducing the size of the feature subset,
improving the classification correct rates, and low computational complexity. In
addition, the results of Wilcoxon rank-sum test display the statistical robustness
of the EPSO method. Therefore, the EPSO method can be employed as an effec-
tive and efficient preprocessing approach to address feature selection problems.
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In the future, we would like to apply the proposed EPSO method to solve other
feature selection in other tasks like pattern recognition and image processing.
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Abstract. This paper uses a Genetic Programming Hyper-Heuristic
(GPHH) to evolve routing policies for the Uncertain Capacitated Arc
Routing Problem (UCARP). Given a UCARP instance, the GPHH
evolves feasible solutions in the form of decision making policies which
decide the next task to serve whenever a vehicle completes its current
service. Existing GPHH approaches have two drawbacks. First, they tend
to generate small routes by routing through the depot and refilling prior
to the vehicle being fully loaded. This usually increases the total cost
of the solution. Second, existing GPHH approaches cannot control the
extra repair cost incurred by a route failure, which may result in higher
total cost. To address these issues, this paper proposes a new GPHH
algorithm with a new No-Early-Refill filter to prevent generating small
routes, and a novel Flood Fill terminal to better handle route failures.
Experimental studies show that the newly proposed GPHH algorithm
significantly outperforms the existing GPHH approaches on the Ugdb
and Uval benchmark datasets. Further analysis has verified the effec-
tiveness of both the new filter and terminal.

Keywords: Arc routing · Hyper-heuristic · Genetic programming

1 Introduction

The Capacitated Arc Routing Problem (CARP) [9] is an important optimisation
problem with many real-world applications such as city waste collection [1] and
winter gritting [10,11]. With the intention of accurately aligning CARP with
reality, risk was introduced by [16] in presenting the Uncertain CARP (UCARP).
At a high level, this consists of a set of vehicles which generate a number of
routes (cycles) from a depot node, serving a number of edge-tasks at minimal
cost subject to some constraints, e.g. the total demand of a route cannot exceed
the vehicle’s finite capacity.

In UCARP, some information such as travel time and task demand is
unknown, and can only be estimated prior to arrival at the edge in question.
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 432–444, 2018.
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Therefore, preplanned solutions can fail and need to be adjusted in real time.
For example the actual demand of a task can be greater than expected, and
exceed the remaining capacity of the vehicle, or an edge along the planned path
becomes impassable and the vehicle has to plan a detour. Traditional optimisa-
tion approaches (e.g. [22,23]) that obtain a (robust) solution cannot handle this
well, as they usually have high computational complexity, and cannot adjust the
preplanned solution efficiently. Routing policies (e.g. [14,17,24]), on the other
hand, are a promising strategy in making real-time decisions due to their low
time complexity. A routing policy does not require any preplanned solution;
instead, it models the UCARP as an online decision making process, where the
routes are built over time by assigning the routes their next task at each step.

Manually designing effective routing policies is very time consuming, and
requires a high level of domain expertise. To combat this, Genetic Programming
Hyper-Heuristic (GPHH) can be applied to automatically evolve routing policies
without the need of a human expert. The GP-evolved routing policy has shown
great success in UCARP, and managed to achieve state-of-the-art solutions on
many UCARP benchmark instances [14,17].

However, the existing studies on GPHH for evolving routing policies are
still preliminary, and most problem-specific characteristics have been neglected.
As a result, the performance of existing GPHH methods are not satisfactory,
having two main drawbacks. First, in the decision making process, a route tends
to return to the depot early (i.e. with remaining capacity), which generates
many small cycles and leads to a large total cost. The existing methods are not
intelligent enough to recognise and exclude this case. Second, the existing GPHH
approaches cannot handle route failure (incurred when the actual demand of a
task is larger than the vehicle’s remaining capacity) well, often leading to a large
repair cost. This paper aims to propose new approaches to tackle the above two
drawbacks, and develop an improved GPHH to evolve more effective routing
policies. Specifically, the paper has the following research goals.

– Develop a new decision making process that explicitly prevents the routes
from going back to the depot too early.

– Design a new feature to handle the route failure more effectively.
– Propose a new GPHH algorithm with the new decision making process and

feature as a terminal.
– Examine the effectiveness of the newly proposed GPHH algorithm.

2 Background

2.1 Uncertain Capacitated Arc Routing Problem

In a UCARP instance, a graph G(V,E) is given, and a set of vehicles with capac-
ity Q are located at the depot v0 ∈ V . Each edge e ∈ E has a positive random
deadheading cost dc(e), non-negative random demand d(e) and a non-negative
deterministic serving cost sc(e). These represent e’s non-serving traversal cost,
the demand to serve and the serving traversal cost, respectively. If d(e) > 0, then
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e is called a task, and needs to be served. The goal is for the vehicles to serve all
tasks with the least total cost (sum of the serving and deadheading cost of all
edges in each route) subject to the following constraints:

– Each route starts and ends at the depot. Due to the route failures, the service
of a task can be interrupted. A vehicle can therefore stop to replenish capacity
early, before returning to complete the remaining service.

– Between two visits of the depot, the total demand served by the route cannot
exceed the vehicle’s capacity.

A sampled UCARP instance is a realised instance where each random vari-
able has a sampled value. In a sampled UCARP instance, the sampled (actual)
demand of a task is unknown until the vehicle completes its service. The actual
deadheading cost of an edge is known exactly after the vehicle has traversed it.
One can generate an arbitrary number of different sampled UCARP instances
(e.g. using different random seeds) based on the same UCARP instance.

The objective of a UCARP instance is to find a solution (e.g. a prede-
fined robust solution in proactive approaches or a routing policy in reactive
approaches) that minimises the expected total cost across all the possible sam-
pled UCARP instances based on that UCARP instance. In practice, it is impos-
sible to enumerate all the possible sampled UCARP instances. Therefore, we will
test our solution on a test set consisting of a large number of sampled UCARP
instances.

2.2 Related Work

Solutions to static CARP, where costs of travel and task demand are known
in full, range from exact mathematical methods on small instances [5], to tabu
search methods [6,12], memetic algorithms (MA) [13,15] and Edge Based His-
togram (EBH) methods [20]. A number of simple heuristics, such as Path-
Scanning [13], Augment-Merge [9] and Ulusoy’s single tour splitting method
[21], have also been proposed to generate reasonably good solutions in a very
short time. These heuristics can be used to generate initial solutions for the more
advanced search algorithms.

To simulate the uncertain real world better, a variety of stochastic CARP
models have been introduced, such as the CARP with stochastic demand [7],
CARP with collaborating depots [19], and UCARP [16]. In [7], a genetic algo-
rithm was proposed which took advantage of the concept of a ’slack’ in deter-
mining the next task. In [4], a Branch-and-Price algorithm was proposed to
consider the same stochastic task demand. UCARP was proposed in [16], con-
sidering four different stochastic factors to simulate the reality as closely as
possible. There have been a number of studies for solving UCARP, including
proactive approaches (e.g. [22,23]) that optimise a robust solution, and reactive
approaches that use Genetic Programming Hyper-Heuristics (GPHH) to evolve
routing policies (e.g. [14,17,24]). Wang et al. proposed an Estimation of Distri-
bution Algorithm with Stochastic Local Search (EDASLS) [22] that encompasses
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the work by [20]. They build routes for the static CARP instance using a path
scanning heuristic [8] then construct an edge based histogram matrix on a tem-
plate individual whenever a mutation operation occurs, per [20]. Further, they
then perform a novel SLS method to manipulate the route string in an attempt
to develop a better individual. To the best of our knowledge, EDASLS is the
current state-of-the-art proactive approach in solving UCARP.

GPHH has achieved great success in solving dynamic combinatorial optimi-
sation problems [2,3,18]. Based on the idea in [24], Liu et al. [14] proposed a
GPHH to evolve routing policies for UCARP, and achieved promising results on
the benchmark instances designed in [16]. In [14], a UCARP instance is mod-
elled as a decision making process, where a routing policy is used for deciding
the next task whenever a vehicle completes its current service. Then they use
GP to evolve the routing policy. When route failure occurs, the vehicle simply
returns to the depot in the middle of the service to refill, then returns to resume
the interrupted service. When an edge failure occurs, the vehicle finds a detour
using the updated graph topology. The work in [14] contains two contributions.
First, it proposes a filter method to select a small set of candidate tasks at each
decision point, improving the accuracy of the decisions made by the routing pol-
icy. Second, it designs a set of promising features to represent the current state,
leading to better and more meaningful policies.

Mei et al. [17] extend the proactive approaches [14,24] from a single-vehicle
case to the general multi-vehicle case, developing a new meta-algorithm that
generates routes simultaneously.

3 Proposed Algorithm

The standard framework of GPHH is described as follows.

1. Initialise a population of GP trees, each a routing policy (heuristic).
2. Evaluate the fitness of each GP tree using a training set.
3. Generate a new population by crossover/mutation/reproduction.
4. If stopping criteria is met, stop. Otherwise, go back to Step 2.

The evaluation of a GP tree on a training instance is essentially a decision
making process with that tree as the routing policy. The fitness of the GP tree is
set to the average total cost of the generated solutions on the training instances.
A decision making process is described as follows.

1. Initially, all the vehicles are at the depot, and all the tasks are unserved.
2. Whenever a vehicle becomes idle (at either the beginning or upon task com-

pletion), a set of candidate tasks Ω are selected from all the unserved tasks
by a filter method.

3. The GP tree is a priority function, applied to each candidate task to calculate
their relative priority. The task with the smallest heuristic value is selected
to be served next.
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4. If all the tasks have been served, return to depot and end the simulation.
Otherwise, go back to Step 2.

Using the terminals from Table 1, consider each variable in the oversimplified
heuristic below. A lower CFH value decreases the output of the heuristic, making
the task of a higher priority. Using similar logic, we can say that this heuristic
prioritises tasks that are close to the vehicle’s location (CFH) and the depot (CTD)
and that have a low task demand to vehicular capacity ratio (/ DEM RQ).

(+ (+CFH CTD) (/DEM RQ))

In the existing GPHH approaches, the filter method identifies the candidate
tasks as those expected to be feasible, i.e. their expected demand does not exceed
the remaining capacity. In this paper we design a new decision making process
by proposing a new filter method called the No-Early-Refill filter.

3.1 The New No-Early-Refill Filter

Algorithm 1 describes the new No-Early-Refill filter. The difference between this
and the standard existing filter is that it excludes the tasks where the depot is on
the expected shortest path to the task (lines 4–6) to avoid automatic, premature
refilling. δ(a1, a2) represents the cost of the fastest route between arcs a1 & a2.

Algorithm 1. The new No-Early-Refill Filter
1: Ω ← ∅;
2: for each unserved task t do
3: if d̂(t) ≤ Q̂ then � Remaining demand is less than remaining capacity
4: if δ(currNode, t) ! = δ(currNode, depot) + δ(depot, t) then
5: Ω ← Ω ∪ t;
6: end if
7: end if
8: end for
9: Return Ω;

Figure 1 shows an example where the depot is v0 and all the edges are undi-
rected and all except (v1, v2) are tasks. Each edge is associated with a number
denoting its deadheading cost. Suppose a vehicle has served (v0, v1) and is there-
fore located at v1. In this state, (v2, v3), (v0, v3) and (v0, v4) are yet to be served.
The existing filter considers all the three tasks and tends to prioritise (v0, v3) or
(v0, v4) to serve next as they are closest to the vehicle’s current location. The
proposed No-Early-Refill filter on the other hand only considers (v2, v3), and can
therefore serve (v0, v1), (v2, v3) and (v3, v0) in a single route, followed by (v0, v4).
In doing so the new filter reduces the noise introduced by these misleading tasks,
making it more capable of generating solutions with smaller total cost.
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Fig. 1. An example to show the difference between filters.

3.2 The New Flood Fill Feature Terminal

It is important to efficiently handle potential route failures, limiting the cost
of the recourse action. Intuitively, route failures occur toward the end of routes
and the incurred extra cost is smaller if they occur on a task close to the depot.
Therefore, given the same expected route cost, it is more desirable to serve tasks
closer to the depot at the end of the route.

An example is given in Fig. 2, where v0 is the depot, all 9 edges are tasks with
an expected demand of 1, and vehicle capacity is 4. As depicted in this example,
the routes R and R′ have the same expected cost. However, R should be preferred
over R′, since route failures (premature vehicular capacity exhaustion) in R tend
to occur at the end of the route (i.e. on (v5, v0)), which is closer to the depot
than (v3, v2) in R′, resulting in a lower recourse cost of returning to the depot.

Existing GPHH approaches cannot recognise this relationship. In the pro-
vided example, the GP-evolved policies tend to generate R′ more often than R
by preferring nearest neighbours. To address this issue, we design a new feature
called Flood Fill (FF) to reflect the ability of a task to be served towards the end
of the route to save the extra cost caused by the route failure.

FF borrows the concept of water flow dynamics, considering each edge as
a pipe. When pouring water into the depot node until all the edge-pipes are
uniformly full, the edges that pass a higher volume of water are easier to get
to from the depot. Following this idea, we calculate the shortest path from the
depot to the end of each unserved task using Djikstra’s Algorithm. Then, for
each task, FF is defined as the number of these shortest paths the task is a
member of. Therefore, a smaller FF should be preferred.

The calculation for FF is performed in three situations: first in the preprocess-
ing stage, then again on the realisation of route and edge failures. Specifically,
for each task t, we store a set of tasks Θ(t), which is defined as follows.

Θ(t) = {t′|either direction of t is on the shortest path from the depot to t′}

For all the tasks, FF is calculated as FF(t) = |Θ(t)|. As task t′ is served during
the decision making process, each Θ(t) is updated as Θ(t) \ t′.
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Fig. 2. An example to show the effectiveness of the new feature.

4 Experimental Studies

To verify the effectiveness of the proposed No-Early-Refill filter and Flood
Fill feature, we compare the following four algorithms on the Ugdb and Uval
instances [16].

– GPHH [17]: the baseline GPHH algorithm with the standard filter and ter-
minal set (given by Table 1).

– GPHH-NER: with the No-Early-Refill filter and standard terminal set.
– GPHH-FF: with the standard filter and the extended terminal set, which

contains the standard terminals and the new FF feature.
– GPHH-NF: with both the No-Early-Fill filter and extended terminal set.

In the experiment, each random variable follows a truncated normal distri-
bution, where μ is set as the value given by the static instance, and σ = 0.2μ.
For each UCARP instance, 500 sampled instances were generated independently
to be the test set. A separate training set of 5 sampled instances per generation,
was generated as well for the GP training process.

Table 1 gives the terminal set used in the GPHH [17]. The extended termi-
nal set used by GPHH-FF and GPHH-NF contains FF as well. The function set
is {+,−,×, /,max,min} (the “/” is protected, returning 1 if divided by 0). In
all the compared algorithms, the population size is set to 1024, and the max-
imal generations is 51. The crossover/mutation/reproduction rates are set to
80%/15%/5% and the maximal depth is set to 8. All the compared algorithms
were run 30 times independently, and Wicoxon rank sum test with significance
level of 0.05 was conducted to test the statistical significance. This follows stan-
dard experimental norms [14,16,24].

4.1 Experimental Results

Table 2 summarises the results of the compared algorithm, and shows the mean
and standard deviation of the normalised total cost of the compared algorithms
on the Ugdb and Uval datasets. These datasets are conventional for this problem
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Table 1. The terminals used in the GPHH.

Terminal Description

CFH Estimated cost from here (the current node) to the candidate task

CFR1 Estimated cost from the alternative closest route to the task

CR Estimated cost to refill (from the current node to the depot)

CTD Estimated cost from the candidate task to the depot

CTT1 Estimated cost from the candidate task to its closest remaining Task

DEM The estimated DEMand of the candidate task

DEM1 The estimated DEMand of the closest unserved task to this candidate

FRT The fraction of the remaining tasks (unserved)

FUT The fraction of the unassigned tasks

FULL The FULLness of the route (current load over capacity)

RQ The remaining capacity of the route

RQ1 The remaining capacity for the closest alternative route

SC The serving cost of the candidate task

ERC A random constant number

Table 2. The mean and standard deviation (in brackets) of the normalised total cost
of the compared algorithms over the Ugdb and Uval datasets.

GPHH [17] GPHH-NER GPHH-FF GPHH-NF

Ugdb 0.928 (0.057) 0.925 (0.061) 0.927 (0.059) 0.925 (0.061)

Uval 0.828 (0.048) 0.828 (0.051) 0.828 (0.048) 0.825 (0.051)

and range from 2 to 10 vehicles serving between 11 and 97 tasks of varying aver-
age demands. For normalisation, the total cost for each test instance is divided
by the total cost obtained by the Path-Scanning 5 (PS5) [13] benchmark policy.

From Table 2, it can be seen that all the three newly proposed GPHH algo-
rithms obtained better normalised total cost than GPHH. Whilst GPHH-NER
performed better on the smaller Ugdb dataset, GPHH-FF did so on the larger
Uval dataset with more vehicles. Finally, GPHH-NF performed the best.

For a more comprehensive statistical comparison, Table 3 shows the win-
draw-lose results of the pairwise comparisons over the total 57 (23 Ugdb plus
34 Uval) instances. For example, the row-3-column-2 entry (10-44-3) shows that
under the rank sum test with significance level of 0.05, GPHH-NF performed
significantly better than GPHH-NER on 10 instances, and significantly worse
on 3 instances. There is no statistical difference between the two algorithms on
44 instances. From the results, it is obvious that all the three newly proposed
algorithms significantly outperformed the baseline GPHH on many instances.
This demonstrates the effectiveness of the new No-Early-Refill filter and the
FF feature. Note that GPHH-NER was never significantly worse than GPHH.
When being used alone, the No-Early-Refill filter obtained relatively better per-
formance than FF. GPHH-NER won over GPHH-FF on more instances (15 versus
6), and showed significantly better performance than GPHH on more instances
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than GPHH-FF (18 versus 7). Moreover, when using the new No-Early-Refill fil-
ter and FF simultaneously, GPHH-NF achieved much better results; significantly
outperforming GPHH-NER on 10 instances, and GPHH-FF on 17 instances.

Note that EDASLS is the current state-of-the-art algorithm for UCARP.
However, it made an impractical assumption that the actual demand of a task is
known before it is served, which is not directly comparable to our problem, which
assumes the demand of a task is unknown until it is served. For this reason, we
do not compare against EDASLS.

Table 3. The win-draw-lose results of the pairwise comparisons over the 57 UCARP
instances.

GPHH [17] GPHH-NER GPHH-FF

GPHH-NER 18-39-0 — —

GPHH-FF 7-49-1 6-36-15 —

GPHH-NF 24-29-4 10-44-3 17-37-3

4.2 Analysis on No-Early-Refill Filter

To further analyse the effectiveness of the newly proposed No-Early-Refill Filter,
we first observe how it changes the size of the candidate task set during the
decision making process. Against the standard filter, the No-Early-Refill filter
is stronger as it removes tasks in addition to the standard filter. Therefore,
the No-Early-Refill filter tends to obtain smaller candidate tasks during the
decision making process. To verify this, we observed the decision making process
of GPHH, GPHH-NER and GPHH-NF on Ugdb23. For each of GPHH, GPHH-
NER and GPHH-NF, we arbitrarily selected one run, and applied the best rule
to a randomly sampled instance. For each decision making process, the candidate
set size is recorded for each time the routing policy is called.

Figure 3 shows the curves of the candidate set size of GPHH, GPHH-NER
and GPHH-NF. We have examined other GP-evolved policies and other sce-
narios, and observed similar patterns. From the figure, it is obvious that the
curve of GPHH is very smooth. This is because GPHH tends to generate early-
refill routes that almost always have sufficient remaining capacity. Thus, all the
unserved tasks are expected to be feasible at most decision points. The curves
of GPHH-NER and GPHH-NF are below the curve of GPHH, demonstrating
the effectiveness of the new filter in reducing the candidate set size. In addition,
the valleys of the GPHH-NER and GPHH-NF curves show that there are usu-
ally a large fraction of candidate tasks being removed. GPHH therefore has a
much higher chance of generating early-refill routes by not excluding such tasks.
Finally, when averaging this across the final generation the curve of GPHH-NF
is smoother than that of GPHH-NER. This demonstrates that using the No-
Early-Refill filter and FF simultaneously can further improve the performance.
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Fig. 3. Candidate task set size.

4.3 Analysis on the Flood Fill Terminal

To ensure FF is used to construct policies, basic high-level frequency analysis was
used. This simply counted the frequency of each feature in the best policy of each
generation. FF accounted for 7.19% of the terminals used in the Ugdb dataset and
6.77% on the Uval dataset. Whilst most other features were uniformly decreased
to accompany FF, the rate of CFH use increased by 6.39% (relatively) over GPHH,
suggesting the two terminals are most useful in tandem. It is worth noting that
the average policy size does not significantly change between the two algorithms.

To determine whether or not FF was used as expected, individual analysis
was performed. Presented below is an exemplary policy on the Ugdb2 instance.

(+ (max (* CFH SC) (+ FUT (+ (- CR CTD) (+ (* FUT (* FUT SC)) (+ FUT

FF))))) (+ (+ CTT1 CTT1) (max FF CFH)))

The above policy uses FF in two places. In both uses, a smaller FF will decrease
the priority value, making the task more desirable. It is then not surprising
that this policy has exceptional training and test performance in relation to
its peers. This use trend is continued across most policies that perform well
on both the training and test sets. There are policies that have an excellent
training fitness yet use FF inverse to how we would expect. This tends to result
in a disproportionately poor test fitness, showing that the GP process is not
always able to appropriately utilise FF.

A way of improving the performance of policies using FF is to recalculate the
flood fill map as frequently as new instance data is realised. For example, when-
ever the exact deadheading cost of an edge is determined. A balance between
instance fidelity and computational efficiency must be struck, however.
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4.4 Analysis on the Integrated Algorithm

Candidate set analysis was repeated to ensure the positive effects of GPHH-NER
carried over. One may expect similar pool sizes in GPHH-NER and GPHH-NF,
however per Fig. 3, they are significantly different. When averaging this graph
across all decision processes, the GPHH-NF plot is significantly smoother than
GPHH-NER. This smoothing makes logical sense when considering the effect FF
has on the simulation, where smoother traversal of the graph is encouraged.

Terminal frequency analysis was also performed to ensure FF was used in
a similar manner to that of GPHH-FF. This was mostly true, with GPHH-
NF utilising the feature slightly more; 7.01%. Figure 4 shows the terminal use
variance from GPHH on the standard terminal set (i.e. algorithm % value minus
GPHH % value). A notable difference is the usage of CFH, showing the new filter
in GPHH-NER decreases the demand for the feature - a concept reinforced by
comparison of GPHH-NER and GPHH.
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Fig. 4. Standard terminal use variation on GPHH

5 Conclusions and Future Work

Our motivations with this paper have been to ensure vehicle capacity is wholly
utilised before replenishment and to encourage the prioritisation of hard to access
tasks. This paper has presented two new techniques to meet these motivations
and improve the performance of the GPHH method. Firstly, a filtering method
that removes tasks from the possible selection pool if the fastest route to said
task passes the depot was shown to significantly outperform the standard GPHH
benchmark on 18 of the 57 tested instances. Secondly, the introduction of a new
flood fill value to the possible terminal set improved on 7 of the tested instances.
Additionally, when used together, these improvements further increased the
performance over the benchmark of [14] on 24 of the tested instances. Note
that improvement of this merged algorithm was not limited or restricted to the
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instances on which the two sub-algorithms performed well - together, the two
parts became a distinct whole.

Analysis was done on the terminal use and pool-size in relation to the GPHH
benchmark, highlighting some important anomalies between instance perfor-
mance. This highlighted the need for further research into the effects algorithms
have on particular instance characteristics. From this research, it is clear that
very particular algorithms react, often erratically, to the specific nature of the
instance in question. Discovering what exactly these critical topological features
are, and deciding which algorithmic features to use in each given environment is
certainly an interesting area for future research we believe worth exploring.
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Abstract. Test and evaluation is a process that is used to determine if
a product/system satisfies its performance specifications across its entire
operating regime. The operating regime is typically defined using fac-
tors such as types of terrains/sea-states/altitudes, weather conditions,
operating speeds, etc., and involves multiple performance metrics. With
each test being expensive to conduct and with multiple factors and per-
formance metrics under consideration, design of a test and evaluation
schedule is far from trivial. Design of experiments (DOE) still continues
to be the most prevalent approach to derive the test plans, although
there is significant opportunity to improve this practice through opti-
mization. In this paper, we introduce a surrogate-assisted optimization
approach to uncover the performance envelope with a small number of
tests. The approach relies on principles of decomposition to deal with
multiple performance metrics and employs bi-directional search along
each reference vector to identify the best and worst performance simul-
taneously. To limit the number of tests, the search is guided by multiple
surrogate models. At every iteration the approach delivers a test plan
involving at most KT tests, and the information acquired is used to
generate future test plans. In order to evaluate the performance of the
proposed approach, a set of scalable test functions with various Pareto
front characteristics and objective space bias are introduced. The perfor-
mance of the approach is quantitatively assessed and compared with two
popular DOE strategies, namely Latin Hypercube Sampling (LHS) and
Full Factorial Design (FFD). Further, we also demonstrate its practical
use on a simulated catapult system.

Keywords: Design of tests · Performance envelope
Multi-objective optimization

1 Background

The origin of most products can be traced back to a need/capability/requirement
that advances through concepts, prototypes and ultimately to the product. Many
of the technologies deployed in a product might be new or the product itself
might be operating in a new environment. Both these aspects might adversely
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affect the intended performance of the product. Operational test and evalua-
tion (OT&E) is typically carried out to ascertain that the product meets its
performance metrics across its entire operational regime. Testing is an expensive
process and operational tests should be conducted using enough samples across
a wide range of plausible scenarios to derive statistically sound information for
decisions [10]. Since the operational regime involves multiple factors and there
is often a hard limit on the number of tests (budget and scheduling constraints),
biased test plans are commonly used, i.e., the product is tested with a combi-
nation of factors that are more likely to occur than others. Such an approach
however provides very little information on the performance when it is at its
limits, i.e., less common environments which might lead to non-performance or
even failures. Since the overall objective of any test and evaluation exercise is to
identify, reduce and potentially eliminate risk, it is important to establish the
boundaries of operation [13]. In the current context, we refer to the boundaries of
the performance space as the performance envelope. The notion of strategically
varying factors have been suggested in OT&E literature [10] but such methods
still do not exploit state-of-the-art developments in the field of optimization.

From a user’s perspective, one is interested in either of the two possible
scenarios (a) what are the operating conditions where the performance of the
product is the best and/or (b) what are the operating conditions where the per-
formance is the worst. Theoretically, it would mean assessing the performance
of the product at all possible combinations of factors, which is practically unten-
able. For example, 510 tests would be needed to evaluate 10 factors with 5 levels
each. Thus, it is important to address the following fundamental questions in
any test design (a) how many tests to conduct, (b) what combinations of factors
to test, (c) in which order should the tests be conducted, and finally (d) how
to derive meaningful conclusions from such data. In addition to these, a few
other practical considerations need to be acknowledged. The first relates to the
error in performance measures which can be reduced through use of replicates
and/or use of more precise instrumentation. In the case where historical data
is used to augment the test plan, particular attention needs to be paid to the
level of these errors as they may vary significantly across batches and over time.
Secondly, tests need to be scheduled, e.g. a day/week ahead plan to conduct
KT tests. While conventional full factorial/partial factorial designs create the
test plan in one shot, there is an opportunity to update the test plans based
on observations, i.e., feedback. It is also important to take note that while an
FFD creates uniform and structured sampling locations across the factor space,
the resulting solutions in the performance space may have significant bias. For
example, 125 points sampled using FFD in the factor space with 3 factors is
presented in Fig. 1(a) along with its corresponding performance space defined
using two metrics f1 and f2 in Fig. 1(b). Throughout this paper, performance is
considered in a minimization sense, i.e., lower values of f1and f2 are preferred.
Its clear from Fig. 1(b) that even an FFD sampling will yield identification of
operating conditions that are more preferable as opposed to those where the
performance is at its worst. Such a scenario might be helpful in the event the
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user is interested to identify favorable operating conditions. However, if one is
interested to uncover operating conditions that are unfavorable, i.e., stressed
operations, the results will be of little use. This simple illustration clearly high-
lights the need for more efficient sampling strategies and particularly optimal
strategies that learn through feedback with an intent to deliver best and worst
operating conditions simultaneously with minimum number of tests. Figure 1(c)
presents the crux of proposal of this paper - to search efficiently for the best and
worst performance along a set of uniformly sampled search directions to uncover
the performance envelope.
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Fig. 1. (a) Sampling locations; (b) Performance at full factorial sampling locations; (c)
Underlying principle of the approach

Optimization methods are regularly used to uncover designs with good per-
formance metrics. Although there is vast amount of literature on application of
optimization methods for design, there is very limited effort directed towards
its use to develop optimal test plans. The underlying optimization method must
however be able to deal with multiple performance metrics (two or more) and
navigate potentially highly nonlinear performance landscapes. Decomposition-
based algorithms [14] have attracted significant interest in recent times as their
performance scales relatively well for problems more than 3 objectives (also
referred to as many-objective problems). Decomposition based approaches typi-
cally operate by dividing the problem into a set of single-objective problems along
a set of reference vectors and solve them collaboratively. However, since such
algorithms evolve a population, they require evaluation of numerous solutions
during the course of search. Thus if the number of evaluations (tests) are limited,
e.g., in the current context the optimal test plan design or optimization involving
computationally expensive evaluations, the algorithms cannot be used in their
native form. In such cases, surrogates-assisted optimization is typically used,
where computationally cheap approximation/meta-models are used to guide the
underlying optimizer in lieu of expensive evaluations/tests [8]. Surrogate-assisted
optimization strategies have been used to solve a number of practical, single and
multi-objective optimization problems involving computationally expensive sim-
ulations [1]. Surrogate assisted many-objective optimization is currently in its
infancy and its full potential is yet to be realized [2,3,11]. Such algorithms how-
ever share some common threads. Firstly, they all use a set of reference vectors
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generated via systematic sampling to guide the search. Secondly, all of them use
surrogates to approximate the responses (performance metrics in the current
case). Thirdly, they all use local search based on surrogates to improve candi-
date solutions before evaluation, and lastly they rely on surrogate model updates
through feedback and evaluate solutions in batches. All the above developments
align well with the challenges faced in design of optimal test plans, which forms
the key motivation of this work.

2 Approach

Let us consider a design defined using variables d which needs to be assessed
based on M performance metrics across a regime defined using n factors. We
assume continuous rectangular domains for the factors x defined using upper
and lower bounds xL ≤ x ≤ xU . To uncover the performance envelope, one can
solve two complementary optimization problems presented in Eq. 1. The solution
of the minimization problem will yield the operating conditions that offer the
best performance, while the solution of the maximization form will yield the
operating conditions where the performance of the design is the worst. Clearly,
in presence of multiple conflicting performance metrics, both will yield a set of
trade-off solutions.

Minimize fi(d,x); i = 1, 2, .......M

Maximize fi(d,x); i = 1, 2, .......M (1)

Here, f1(d,x) to fM (d,x) are the M performance metrics (considered to be
minimized in a general sense). Such an approach would attempt to simultane-
ously locate the best and worst operating conditions as schematically presented
in Fig. 1(c).
The general optimization framework is presented in Algorithm 1 and the details
of the key components (highlighted in bold) are outlined below.

• Initialize: NI candidate sampling locations (combinations of factors) are
initialized using the variable bounds xL and xU using the space-filling Latin
Hypercube Sampling (LHS) based on maximin criterion. This can be an unbi-
ased coarse sampling and a mapping might be required if the factor space is
non-continuous or non-rectangular.

• Build : This process involves building the surrogate models that can predict
the performance metrics of the design at any given operating condition. Dif-
ferent types of surrogates are used for this purpose and include Radial Basis
Function, Kriging and Response Surface Methodology of 1st and 2nd order.
Training of the surrogate models use 80% data selected based on “k-medoid”
clustering (scaled between 0 and 1 using the bounds xL and xU ) and the
remaining data are used for validation. Mean squared error (MSE) based on
the validation set is used to choose the most appropriate surrogate model for
each performance metric.
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Algorithm 1. Optimal Design of Tests
Input: Tmax (Total number of tests permitted), NI (Initial number of tests), N
(Population size during evolution i.e. µ), KT (Maximum number of tests in each
batch), K (Maximum number of tests for best or worst operating conditions K =
KT /2).

1: T = 0, j = 1, Archive of sampling locations and performance metrics A = ∅
2: Generate initial reference vector set W using Systematic Sampling [4]
3: P I = Initialize(),

∣
∣P I

∣
∣ = NI ; One can use a coarse DOE for this purpose

4: Conduct tests at sampling sites P I , Update T , A
5: Build global surrogate models for each of the performance metrics f1, . . . , fM
6: Wm = UpdateRef(W ,A )
7: PBj = Assign(Wm,P I); Select set of best performing operating conditions.
8: PW j = Assign(Wm,P I); Select set of worst performing operating conditions.
9: while (T ≤ Tmax) do

10: CB = CreateOffspring(PBj), |CB| = N
11: CW = CreateOffspring(PW j), |CW | = N
12: Approximate performance of the design at the set of sampling sites CB and

CW
13: CBK = Identify(PBj ,CB,A ), |CBK | ≤ K
14: CWK = Identify(PW j ,CW ,A ), |CWK | ≤ K
15: Conduct tests at sampling sites CBK and CWK , Update T , A
16: Build global surrogate models for each of the performance metrics f1, . . . , fM
17: Approximate performance of the design at the set of sampling sites (CB ∪

CW ) \ (CBK ∪ CWK)
18: Wm = UpdateRef(W ,PBj ∪ CBK ∪ CB \ CBK)
19: PBj+1 = Assign(Wm,PBj ∪ CBK ∪ CB \ CBK)
20: PW j+1 = Assign(Wm,PW j ∪ CWK ∪ CW \ CWK)
21: j = j + 1
22: end while

• UpdateRef : In this stage, the ith reference direction W i is modified to W i
m

based on the ideal vector (ZI) and nadir vector (ZN ) using Eq. 2. The ideal
vector ZI comprises the minimum values of f1 to fM and ZN comprises the
maximum values among the non-dominated set of solutions of the presented
set.

(W i
m)j = (W i)j × (ZN − ZI)j ,∀ 1 ≤ j ≤ M (2)

• Assign : In this stage, the candidate sampling locations are assigned to the
reference directions. The performance metrics of the design at a sampling
location x are represented using a vector f of size M . The vector is trans-
lated using fj − ZI

j ∀j = 1, . . . M . The acute angle between this translated
vector and all reference vectors W i

m are computed and the sampling location
is assigned to the reference vector with the minimum angle. This process cre-
ates sub-populations of candidate sampling sites corresponding to a reference
direction. A reference direction is considered to be non-empty if there is at
least a sampling site assigned to it. For the non-empty reference directions,
one can identify the best and the worst operating conditions using the scaled
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Euclidean Distance (ED) in the performance space as a measure. For the
empty reference directions, the best and worst selection is based on perfor-
mance measures at all sampling locations. The above process will result in two
sets of sampling sites, PB and PW , denoting the best and worst performing
operating conditions respectively along each reference direction.

• CreateOffspring : Recombination is carried out among the members of PB
via simulated binary crossover (SBX)[5] and polynomial mutation (PM) [5]
or differential evolution (DE) [12]to yield a set of offspring sampling sites.
Similarly, the same recombination process is also applied within the members
of PW to yield yet another set of offspring sampling sites. It is important
to highlight that all the members of PB (or PW ) participate in recombina-
tion with mating partners selected at random. Furthermore, DE and SBX
operation is selected with equal probability.

• Identify : This step of the algorithm is aimed at identifying at most K can-
didate sampling sites each for best and worst operating conditions. The sam-
pling sites PB and PW identified at the end of the Assign stage are each
clustered into K clusters via k-medoid clustering. In each of the clusters, the
sampling site with the best metric, i.e., minimum ED for PB and maximum
ED for PW is identified along with its assigned reference direction. There-
after, a surrogate assisted local search is initiated from each of these sampling
sites with an aim to minimize ED (for PB) or maximize ED (for PW ) subject
to an angle constraint. The angle constraint ensures that the angle between
any sampling site explored during local search and the reference direction
associated with it is always less than the minimum angle between that ref-
erence direction and its neighboring reference directions; to ensure diversity.
Out of these K solutions obtained after local search from each of PB and
PW , the ones that are not already members of the archive (A ) are used as
new test sites for evaluation.

3 Scalable Test Problems for Benchmarking

In order to mathematically illustrate the effect of bias due to non-linearity of the
objective functions, we systematically construct a set of test problems, referred to
here as SOT problems. The SOT problems are constructed through the modifica-
tion of scalable DTLZ2 problem [6] which is widely used in literature for bench-
marking of multi/many-objective evolutionary algorithms. The mathematical
formulation of a M -objective DTLZ2 problem is shown in Eq. 3. The variables
used here in Eq. 3 represent the operating conditions in the current context. The
design variables d are held constant and therefore not shown in Eq. 3 for brevity.
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Minimize f1(x) = r(xM ) cos(πx1/2) · · · cos(πxM−2/2) cos(πxM−1/2),
f2(x) = r(xM ) cos(πx1/2) · · · cos π(xM−2/2) sin(πxM−1/2),
f3(x) = r(xM ) cos(πx1/2) · · · sin(πxM−2/2),
...
fM−1(x) = r(xM ) cos(πx1/2) sin(πx2/2),
fM (x) = r(xM ) sin(πx1/2),

where r(xM ) = 1 + g(xM ) = 1 +
∑

xi∈xM
(xi − 0.5)2,

0 ≤ xi ≤ 1, for i = 1, 2, . . . , n.

(3)

The total number of variables involved in the problem is n = M +k −1. The
set of last k variables (i.e. xM , xM+1, . . . xn) is collectively referred to as distance
variables. They are denoted using xM and as evident from Eq. 3, they control
the radial distance r(xM ) of a solution from the origin in the objective space.
The Pareto optimal solutions of the problem correspond to x∗

M = 0.5, since the
term r(xM ) achieves its lowest value of 1 when g(xM ) = 0. In the objective
space, the Pareto front corresponds to a ball of radius 1 in the positive orthant,
i.e.,

∑M
i=1 f2

i = 1, fi ≥ 0 for i = 1, 2, . . . ,M . The Pareto Front is non-convex in
nature. The maximum possible value of r(xM ) can also be similarly deduced; as
it would occur when g(xM ) is at its maximum value. This value will correspond
to g(xM ) = k × 0.52, since given the range of the variables ([0, 1]), each term in
g(xM ) can be a max of 0.5. Thus, the worst case performance will be bounded
by a ball of radius r(xM ) = 1 + k × 0.52. For example, for k = 2, the radius will
be 1.5, and thus the best and worst performances are bounded by r = 1 and 1.5
respectively.

The proposed SOT problem is constructed by introducing a bias in the
above DTLZ2 formulation. This is achieved through a mapping of the orig-
inal distance variables xM to intermediate distance variables x′

M as follows:
x′
i = ((xi − 0.5)a/0.5a + 1)/2 ∀xi ∈ xM . Thereafter, xM is replaced by x′

M in
Eq. 3 to yield the SOT problem. This mapping function simply translates a large
portion of the original variables towards 0.5, i.e., close to the Pareto front (best
performance). Consequently, when the variables (in this case the parameters of
the scenarios) are sampled uniformly in the original search space using struc-
tured techniques such as LHS or Full Factorial Design (FFD), the distribution
of the points become non-uniform in the mapped space x′

M , and subsequently in
the objective (performance) space itself. Furthermore, the exponent a (an odd
positive integer) can be used to control the severity of bias. With a = 1, the
problem is identical to the original DTLZ2, whereas it gets increasingly more
biased as the value of a increases. The mapping for different values of a is shown
in Fig. 2.

The impact of introducing the bias discussed above can be visualized from
Fig. 3. The left column of subfigures show 1000 solutions generated using LHS in
the variable space, with increasing values of a. For a = 1, SOT problem behaves
exactly like original DTLZ2 problem, with the designs reasonably uniformly
spread within the performance envelope. However, a clear increase in density
towards the best case performance can be observed as the value of a increases.
This implies that for a > 1, if the envelope of design performance is estimated
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Fig. 2. Mapping of xM to x′
M to introduce different levels of bias

using LHS, much of the region near the worst case performance would remain
unexplored. The consequences of this can be potentially catastrophic as the
worst-case performance of the design is not apparent from the initial sampling (of
possible scenarios), even though a large number of scenarios were evaluated. On
the right column of subfigures, the same is illustrated for scenarios sampled
using FFD with 10 levels (1000 points for a 3-variable problem). A very similar
behavior is apparent, i.e., increasing number of points fall closer to the best case
performance as a is increased. However, additional to this radial bias, one can
also observe the lateral bias. As the value of a increases, the coverage of the best
and worst case performance boundaries become less diverse; and the objective
values become concentrated only along certain directions.

As evident, the above described SOT problem has a non-convex Pareto front.
In order to also investigate the performance for problems with convex Pareto
fronts, we introduce another problem, referred to as the SOT−1 problem. In
SOT−1 problem, all the response functions and mappings remain exactly the
same as SOT problem, but instead of minimizing the objective f(x) of SOT, the
minimization of −f(x) is undertaken. This simple negation inverts the shape of
the performance envelope, where both best case and worst case fronts become
convex in nature. Also, instead of the bias of performance values along the best-
case performance, it is now directed towards the worst case performance. The
corresponding plots for a = 3 are shown in Fig. 4. The general concept of gener-
ating a ‘minus’ problem through negation of objectives is inspired from a recent
work by Ishibuchi et al. [7].

4 Numerical Experiments

In order to objectively assess the performance of the proposed approach we use
6 test problems: SOT2, SOT3, SOT5 and their minus counterparts SOT2−1,
SOT3−1 and SOT5−1 involving 2, 3 and 5 performance metrics respectively
(suffix denotes the number of objectives in this case). We use k = 2 for all
versions, implying that the number of operating parameters is M+1 = 3, 4, and 6
respectively. For creating the bias in objective values, we use a = 3 for all cases.
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Fig. 3. LHS and FFD samplings for SOT problem (non-convex) with a = 1, 3.
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Fig. 4. LHS and FFD samplings for SOT−1 problem (convex) with a = 3.

The population size was set equal to the number of reference vectors, i.e.,
100, 105 and 210 for 2, 3 and 5 objective problems. It was evolved over 100
generations in all cases where at any generation at most KT = 10 solutions can
be evaluated. For recombination, the probability of SBX crossover was set to
1 and the probability of polynomial mutation was set to 0.1. The distribution
index of SBX crossover was set to 30 while the distribution index of polynomial
mutation was set to 20. For DE based recombination a differential weight of 0.5
and a crossover probability of 1.0 was used. The average number of evaluations
across 31 runs was computed for each of the problems and listed in Table 1.
We used LHS to generate 100, 105 and 210 initial sampling locations for 2, 3
and 5 objective problems respectively. The performance of the approach was
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assessed against two reference sets, i.e., on the theoretical best performance
boundary and the worst performance boundary. We construct two reference sets
for this purpose using systematic sampling. The reference sets contain 3000,
5050 and 20475 points for the 2, 3 and 5 objective problems. The proximity
to these reference sets is quantified using inverted generational distance (IGD),
which is commonly used in evolutionary multi-objective optimization literature
for benchmarking. The details of IGD calculations can be found in [1] and are
omitted here due to page limitations.

Table 1 shows the median IGD performance comparison. Problems SOT2,
SOT3 and SOT5 have a strong bias towards solutions close to the best perfor-
mance boundary. Hence it is not surprising that LHS delivers good estimates
of the best performance boundary (better in SOT2 and SOT3). However, LHS
struggles to deliver good estimates of the worst performance boundary (worse in
all of them with an order of difference in SOT2). Take note that our proposed
approach delivers better median results in 4 out of 6 cases. For SOT2−1, SOT3−1

and SOT5−1, there is a bias towards solutions close to the worst performance
boundary (easy to obtain). The proposed approach delivers better median results
in 6 out of 6 cases. We have also included the results of FFD with the closest
sample size (on the higher side). The FFD results are significantly worse off for
the test problems considered in this paper, in addition to FFD being impractical
for higher number of factors due to exponential increase in sample size. The
overall numbers of evaluations are compared in Table 2.

Table 1. Comparison of IGD metric obtained using proposed algorithm with LHS and
FFD sampling methods. For both best and worst performance boundaries, lower values
of IGD is preferable.

Probs. Objs. Proximity to the best performance boundary

SOT LHS FFD

Best Worst Mean Median Best Worst Mean Median

SOT2 2 0.0145 0.0267 0.0189 0.0184 0.0116 0.0204 0.0150 0.0147 0.1302

SOT3 3 0.0790 0.1155 0.0932 0.0906 0.0718 0.1051 0.0845 0.0827 0.2131

SOT5 5 0.1967 0.2863 0.2387 0.2390 0.2563 0.3057 0.2864 0.2870 0.3313

SOT2-1 2 0.1092 0.2432 0.1887 0.1859 0.1631 0.2156 0.1857 0.1864 0.1204

SOT3-1 3 0.1272 0.3011 0.2270 0.2312 0.2852 0.3289 0.3045 0.3043 0.2623

SOT5-1 5 0.3660 0.5166 0.4634 0.4712 0.4945 0.5513 0.5234 0.5237 0.4938

Proximity to the worst performance boundary

SOT2 2 0.0272 0.0793 0.0517 0.0514 0.2014 0.2838 0.2530 0.2568 0.1954

SOT3 3 0.1112 0.2489 0.1469 0.1413 0.3053 0.3507 0.3285 0.3282 0.3050

SOT5 5 0.2946 0.4190 0.3626 0.3602 0.4970 0.5469 0.5299 0.5332 0.4938

SOT2-1 2 0.0037 0.0065 0.0045 0.0043 0.0048 0.0069 0.0058 0.0058 0.0803

SOT3-1 3 0.0568 0.0771 0.0658 0.0658 0.0592 0.0768 0.0677 0.0672 0.1829

SOT5-1 5 0.2130 0.2981 0.2601 0.2697 0.2420 0.2995 0.2780 0.2768 0.3313
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Table 2. Average number of function evaluations in 31 independent runs for the SOT
algorithm, and corresponding number of samples for LHS and FFD

Probs. Avg. evals LHS samples FFD samples Probs. Avg. evals LHS samples FFD samples

SOT2 196.6 197 216 SOT2-1 805.1 806 1000

SOT3 381.5 382 625 SOT3-1 628.8 629 1296

SOT5 599.4 600 729 SOT5-1 656.2 657 729

5 Illustrative Example: Catapult Operation

Having shown consistently favorable performance of the proposed approach on
mathematical benchmarks, we now illustrate its practical use using a catapult
example [9]. Let us assume a catapult is available as a weapon to launch pro-
jectiles on an even land towards an enemy territory (Figure 5(a)). The catapult
can use various projectiles of mass varying between 1 and 20 kg and projectiles
can be launched with different settings of arm lengths between 2.5 and 3.4 m.
From a combat perspective, projectiles with larger ranges and with shorter time
of flight are preferred. The user involved in test and evaluation is interested to
uncover the performance envelope with minimum number of tests. Since there
are 2 factors (mass and arm length), we first construct a 100×100 FFD sampling
plan and present the true performance envelope in Fig. 5. One can observe that
the vast majority of the sampled solutions do not correspond to either best or
worst operating conditions.

-5 0 5 10 15 20

Horizontal position (m)

-5

0

5

10

15

V
er

tic
al

 p
os

iti
on

 (
m

)

(a) Schematic of catapult

0 2 4 6 8 10 12 14 16 18 20

Mass of Projective

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

A
rm

 L
en

gt
h

All Sampled Operating Conditions
Best Operating Conditions
Worst Operating Conditions

(b) FFD, x-space

-34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14

Range

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

T
im

e 
to

 E
nc

ou
nt

er

All Sampled Operating Conditions
Best Operating Conditions
Worst Operating Conditions

(c) FFD, f -space

Fig. 5. FFD sampling locations corresponding performance (10,000 solutions)

Now let’s say the user has limited resources for testing and is allowed to only
test at 64 sampling locations. The outcome from an FFD is presented in Fig. 6. It
is clear that the user will have a good estimate of best performance but extremely
poor estimates of worst performance. The same problem is solved using the pro-
posed approach with 20 reference directions (all remaining parameters are the
same as used for the previous experiments) with only 49 tests, including 9 LHS
samples used for initialization. The results presented in Fig. 6(c) clearly indi-
cate that the proposed approach delivers a more complete performance envelope
compared to FFD.
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Fig. 6. Performance of FFD (64 solutions) and proposed approach (49 solutions)

6 Summary and Conclusions

In this paper, we introduced a surrogate-assisted optimization approach to
uncover the performance envelope, i.e., best and worst performance boundaries
simultaneously using minimum number of tests. The approach relies on princi-
ples of decomposition to deal with multiple performance metrics and employs
bi-directional search along each reference vector to identify best and worst oper-
ating conditions simultaneously. At every iteration, the approach delivers a test
plan involving at most KT tests, the information of which is used to recursively
update future test plans. In order to evaluate the performance of the proposed
approach, we introduced scalable test functions with various bias characteris-
tics. The performance of the proposed approach is compared with commonly
used DOE practices based on LHS and FFD to demonstrate its benefits for such
problems. A case-study of catapult system is presented to further highlight the
practical utility of the approach. With only 49 tests, the approach delivers good
estimates of the best and worst performance boundaries, which are significantly
better than results delivered by FFD even with 64 tests.

Acknowledgments. The authors would like to acknowledge Defence Related
Research (DRR) grant from the University of New South Wales (UNSW), Canberra,
Australia.

References

1. Bhattacharjee, K.S., Singh, H.K., Ray, T.: Multi-objective optimization with mul-
tiple spatially distributed surrogates. J. Mech. Des. 138(9), 091401 (2016)

2. Bhattacharjee, K.S., Singh, H.K., Ray, T.: Multiple surrogate-assisted many-
objective optimization for computationally expensive engineering design. J. Mech.
Des. 140(5), 051403 (2018)

3. Chugh, T., Jin, Y., Meittinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted
reference vector guided evolutionary algorithm for computationally expensive
many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 129–142 (2018)

4. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generat-
ing the Pareto surface in nonlinear multicriteria optimization problems. SIAM J.
Optim. 8(3), 631–657 (1998)



Optimum Design of Tests 457

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolution-
ary multiobjective optimization. In: Proceedings of the International Conference
on Evolutionary Multiobjective Optimization, pp. 105–145 (2005)

7. Ishibuchi, H., Yu, S., Hiroyuki, M., Yusuke, N.: Performance of decomposition-
based many-objective algorithms strongly depends on Pareto front shapes. IEEE
Trans. Evol. Comput. 21(2), 169–190 (2017)

8. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Comput. - Fusion Found. Methodol. Appl. 9(1), 3–12 (2005)

9. Kelly, M.: Simple catapult simulation. https://au.mathworks.com/matlabcentral/
fileexchange/56469-simple-catapult-simulation?focused=6163843&tab=function

10. Lillard, V.B.: Science of test: improving the efficiency and effectiveness of DoD test
and evaluation (2014). http://fs.fish.govt.nz/Page.aspx?pk=7&sc=SUR

11. Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification based
surrogate-assisted evolutionary algorithm for expensive many-objective optimiza-
tion. IEEE Trans. Evol. Comput. (2018). https://ieeexplore.ieee.org/document/
8281523

12. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

13. Stuber, M.D.: Evaluation of process systems operating envelopes. Ph.D. thesis,
Massachusetts Institute of Technology (2013)

14. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multi-objective evo-
lutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3),
440–462 (2017)

https://au.mathworks.com/matlabcentral/fileexchange/56469-simple-catapult-simulation?focused=6163843&tab=function
https://au.mathworks.com/matlabcentral/fileexchange/56469-simple-catapult-simulation?focused=6163843&tab=function
http://fs.fish.govt.nz/Page.aspx?pk=7&sc=SUR
https://ieeexplore.ieee.org/document/8281523
https://ieeexplore.ieee.org/document/8281523
https://doi.org/10.1023/A:1008202821328


Towards Fully Automated Semantic Web
Service Composition Based on Estimation

of Distribution Algorithm

Chen Wang1(B), Hui Ma1, Gang Chen1, and Sven Hartmann2

1 School of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand

{chen.wang,hui.ma,aaron.chen}@ecs.vuw.ac.nz
2 Department of Informatics, Clausthal University of Technology,

Clausthal-Zellerfeld, Germany
sven.hartmann@tu-clausthal.de

Abstract. Web service composition has been a challenging research
area, where many researchers have been working on a composition
problem that optimizes Quality of service and/or Quality of semantic
matchmaking of composite solutions. This NP-hard problem has been
successfully handled by many Evolutionary Computation techniques
with promising results. Estimation of Distribution has shown its ini-
tial promise in solving fully automated service composition, and its suc-
cess strongly relies on distribution models and sampling techniques. Our
recently published work proposed a Node Histogram-Based approach to
fully automated service composition. However, many services presented
in sampled optimized queues does not contribute to decoded solutions
of the queue. Therefore, efforts should be made to focus on learning
distributions of component services in solutions. Consequently, we aim
to learn more suitable distributions considering services satisfying ser-
vice dependency in the solutions and use the Edge Histogram Matrix
to learn restricted sampled outcomes satisfying the dependency. Besides
that, we proposed effective sampling techniques with high efficiency in
a straightforward implementation. Our experimental evaluation using
benchmark datasets shows our proposed EDA-based approach outper-
forms two recent approaches regarding both efficiency and effectiveness.

Keywords: Web service composition · QoS optimization
Combinatorial optimization

1 Introduction

Web services are reusable components of web applications, and can be published,
discovered, and invoked on the Web, providing services to users or other software
[1]. Web service composition aims to loosely couple web services to provide more
complicated functionalities since one atomic web service does not always sat-
isfy users’ complex requirement completely. Fully automated service composition
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constructs a composition of services without strictly obeying any specific ser-
vice workflow [7]. As the number of web service with similar functionalities has
significantly increased, web service composition challenges many researchers to
find composition solutions with the best overall Quality of Service (QoS) within
polynomial-time. Apart from optimizing QoS, Quality of Semantic Matchmak-
ing (QoSM) is often optimized simultaneously that creates more challenges for
researchers [14].

Many Evolutionary Computation (EC) techniques have been widely used
to achieve QoS-aware web service composition in a fully automated way
[4,5,8,10,14–17]. Often, conventional EC techniques [4,8,15,17] rely on domain-
dependent genetic operators to generate new candidate solutions. Estimation
of Distribution Algorithm (EDA) is different from most conventional EC-based
techniques because a probabilistic model is learned based on the distribution of
superior subpopulation, and further used for sampling new candidate solutions.
EDA has been widely used in many problem domains, such as portfolio manage-
ment and cancer chemotherapy optimization, achieving better results compared
to conventional EC-based techniques [2], and it has been used for solving semi-
automated service composition, where service composition workflow is given in
advance. Learning distribution over a pre-defined structure of a workflow is rel-
atively less challenging. To support learning distributions over uncertain struc-
tures of candidate composite solutions in fully automated web service composi-
tion, our recently published work [16] proposed a Node Histogram-Based work
for fully automated service composition with the aim to find composition solu-
tions with optimized QoS and QoSM. The algorithm has been demonstrated to
achieve higher effectiveness and efficiency than one PSO-based approach [14].

Despite the initial success in EDA for solving fully automated service compo-
sition problems. A more suitable distribution model over superior subpopulation
needs further studies. Therefore, opportunities still exist to further investigate
the potential use of other distribution models for supporting fully automated ser-
vice composition and propose effective sampling algorithms to support sampling
composition solutions from these distribution models.

The overall goal of this paper is to propose an effective EDA-based approach
to fully automated semantic web service composition, where QoS and QoSM are
jointly optimized. We achieve three objectives in this work.

1. To learn more suitable distributions that can naturally capture the most
essential ingredients for building effective service composition solutions, we
consider dependencies of components services in composite solutions and
using Edge Histogram Matrix (EHM) to learn a distribution of restricted
sampled outcomes satisfying the service dependencies. To achieve that, we
will develop an ontology-based querying technique for efficiently querying the
dependencies and a way of using EHM to learn those dependencies for service
compositions.

2. To easily achieve high efficiency in a straightforward implementation, and to
effectively sample candidate composition solutions of high quality and validity
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from EHM directly, we will propose a guided edge histogram-based backward
graph sampling algorithm.

3. To demonstrate the effectiveness of our overall EDA-based approach, we con-
duct experiments to compare it against two recent works [14,16] that solve
the same problem in semantic web service composition.

2 The Semantic Web Service Composition Problem

We consider a semantic web service (service, for short) as a tuple S =
(IS , OS , QoSS) where IS is a set of service inputs that are consumed by S, OS

is a set of service outputs that are produced by S, and QoSS = {tS , cS , rS , aS}
is a set of non-functional attributes of S. The inputs in IS and outputs in OS

are parameters modeled through concepts in a domain-specific ontology O. The
attributes tS , cS , rS , aS refer to the response time, cost, reliability, and avail-
ability of service S, respectively, which are four commonly used QoS attributes
[18].

A service repository SR is a finite collection of services supported by a com-
mon ontology O. A service request (or composition task) over a given SR is a
tuple T = (IT , OT ) where IT is a set of task inputs, and OT is a set of task
outputs. The inputs in IT and outputs in OT are parameters that are seman-
tically described by concepts in the ontology O. We use two special services
Start = (∅, IT , ∅) and End = (OT , ∅, ∅) to account for the input and output
requirements of a given composition task T , and add them to SR.

A composite service (or composition solution) is represented as a directed
acyclic graph (DAG). Its nodes correspond to those services in SR (also called
component services) that are used in the composition, including Start and End.

In this paper, we are concerned with the Semantic Web Service Composition
Problem where we aim to jointly optimize QoS and QoSM. In previous work [14–
16] we have proposed and explored a comprehensive quality model for evaluating
these quality aspects. The comprehensive quality of a composition solution can
be evaluated based on a weighted sum of all quality criteria in QoS and QoSM
using the fitness function in Eq. (1):

Fitness = w1M̂T + w2
ˆSIM + w3Â + w4R̂ + w5(1 − T̂ ) + w6(1 − Ĉ) (1)

with
∑6

k=1 wk = 1. This objective function aggregates the quality criteria of
semantic matching type M̂T , semantic similarity ˆSIM , availability Â, reliability
R̂, time T̂ , and cost Ĉ. T̂ and Ĉ are offset by 1, so that higher scores correspond
to better quality. We refer to [14–16] for details on the calculation of each qual-
ity criterion. Therefore, the goal of our semantic web service composition is to
maximize the objective function in Eq. (1) to find the best solution.

3 Our EDA-Based Approach for Service Composition

In this section, we introduce our EDA-based approach for fully automatic seman-
tic web service composition. We first outline our EDA-based service composition
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approach in Sect. 3.1. Subsequently, we discuss three ideas behind this approach:
the first one is a proposed ontology-based querying technique for querying service
dependency in Sect. 3.2; the second one is an application of EHM for learning
service dependency in Sect. 3.3; the third one is a proposed sampling technique
for building composite solutions in Sect. 3.4.

As the success of EDA strongly relies on its distribution model, especially
when the number of outcomes (i.e., component services) sampled from a distri-
bution is huge, we aim to learn a suitable distribution model. Our recent work
[16] learns the distribution of each service in SR at each absolute position of a
service queue. However, many services presented in sampled optimized queues
does not contribute to decoded solutions of the queue. Therefore, efforts should
be made on learning distributions of the component services that contribute
to composite solutions. Therefore, we aim to learn distributions restricted by
the dependencies among component services in DAG-based solutions, and this
distribution can be easily presented in EHM. To achieve that, we proposed an
ontology-based querying technique for querying dependencies of services in SR.
This technique provides a set of outcomes, whose distributions are to be learned
in EHM, and we will demonstrate an application of EHM by mapping DAG-
based solutions and dependencies.

Furthermore, to easily achieve high efficiency in a straightforward implemen-
tation, and to sample component services satisfying services dependencies that
contribute to composition solutions with high quality and validity, we proposed
a Guided Edge Histogram-Based Backward Graph-Sampling Algorithm. This
algorithm builds a DAG-based composition from End to Start using guided
information of services dependencies, and service layers, see details in Sect. 3.4.

Algorithm 1. Our EDA-based method for service composition.
Input : composition task T , service repository SR and g ← 0
Output: an optimal composition solution Gopt

1: discovery task-related web services and layers Lp (where p = 0, . . . , q) ;
2: label O with task-related web services using Algorithm 2;
3: initialize Pg with m valid DAG-based solutions, each solution represented as a Gg

k (where

k = 1, . . . ,m);
4: evaluate each solution in Pg using Eq. 1;

5: generate EHMg from the top 1
2 of best solutions in P0;

6: while g < maximum number of generations do

7: sample m solutions Gg+1
k sampled from EHMg using Algorithm 3;

8: populate Pg+1 with newly sampled solutions ;

9: evaluate each solution in Pg+1 using Eq. 1;

10: generate EHMg+1 from the top 1
2 of the best solutions in Pg+1;

11: set g ← g + 1;

12: let Gopt be the best solution in Pg;

3.1 Outline of Our EDA-Based Method

We outline our proposed algorithm in Algorithm1. We start with filtering task-
relevant services with respect to any specific composition task, utilizing a simple
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discovery algorithm from [11] to identify all relevant services and their layers
Lp from Start (where p = 0, . . . , q and q is the number of layers). Basically,
the first layer contains services that can be immediately executed by using IT ,
and the second layer contains the remaining services that can be executed by
using IT and outputs provided by services in the previous layers. Other layers
can be discovered in the similar way, see details in [11]. After that, we label O
with task-related web services using Algorithm 2, which enables us to identify
non-zero entries in EHM for setting bias, see details in Sect. 3.3. Next, we initial-
ize a population P0 with m DAG-based candidate solutions by a greedy search
algorithm over randomly sorted SR [14] for building graphs. Those candidate
solutions are evaluated using Eq. 1. Then, the top half best-performing solutions
are used to generate a EHMg (where g = 0), see details in Sect. 3.3. The fol-
lowing steps (Step. 5 to Step. 9) will be repeated until the maximum number of
generations is reached: we sample m new valid candidate solutions from EHMg

using our proposed Guided Edge Histogram-Based Graph-sampling Algorithm.
These newly sampled candidate solutions form the next population Pg+1 and
will be evaluated and selected to learn EHMg+1.

In summary, we propose a way of learning EHM from high-quality solutions
discovered by EDA so far and a novel sampling technique for building valid
solutions from EHM.

3.2 Discovery of Service Dependency

Service dependency represents a relationship between two services (i.e., one ser-
vice Sj and its predecessor Si) that are determined by the existence of robust
causal links [14] between these two services. In other words, one service can be
either partially or fully satisfied by its predecessor, denoted as Si → Sj .

To identify service dependencies regarding each service, we proposed an
ontology-based querying technique to efficiently find their predecessor services
in SR. We first create labels for concept nodes of a taxonomy tree in O with
task-related services using Algorithm 2. In this Algorithm, we mark each tree
node with two sets of services, i.e., OC and IC , where robust causal links can be
ensured from services in OC and services in IC . We can query the predecessors of
one service S by a union of OC from concept nodes with respect to input-related
concepts of S. We will demonstrate this technique in Example 1.

Example 1. Suppose we have a service repository SR consisting of a single
service S0 = ({c, d}, {e}, QoSS0). Let us consider the service request T =
({a, b}, {i}). The two special services Start = (∅, {a, b}, ∅) and End = ({i}, ∅, ∅)
are defined by the given composition task T . Concepts related to a, b, c, d, e, and
i are Dog, Artificial Data, Data, Canine, Animal Robot and Robot respectively.
These concepts are represented and labeled with services in an taxonomy tree
in Fig. 1. The predecessor of End is S0, which is a service in ORobot of concept
Robot related to i. The predecessor of S0 is Start, which is a service in an union
of OData and OCanine related to c and d respectively.
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Algorithm 2. Labeling services on taxonomy tree in O
Input : SR and O
Output: a labeled O

1: foreach concept C in taxonomy tree in O do
2: label two empty service set IC and OC in relation to inputs and output;

3: foreach S in SR do
4: foreach IS of S do
5: find concepts C of IS on taxonomy tree in O;
6: foreach C in C ∪ its child concepts do
7: put S to IC of C;

8: foreach OS of S do
9: find concepts C of OS on taxonomy tree in O;

10: foreach C in C ∪ its parent concepts do
11: put S to OC of C;

12: return labeled O;

Fig. 1. An example of labeled O

3.3 Application of Edge Histogram Matrix

Let D = {Si → Sj} be the set of all existing service dependencies among all
possible pairs of services in SR. Let G be a DAG-based composition solution
consisting of a set of service dependencies, satisfying G ⊂ D. Consequently, Gg

k

represents the kth (0 ≤ k < m) DAG-based composite solution, and Pg =
[Gg

0 , . . . ,Gg
k , . . . ,Gg

m−1] is represented as a population of solutions of generation
g.

Example 2. Suppose we have a service repository SR consisting of five services
S0 = ({c, d}, {e}, QoSS0), S1 = ({a}, {f, g}, QoSS1), S2 = ({a, b}, {h}, QoSS2),
S3 = ({f, h}, {i}, QoSS3) and S4 = ({a}, {f, g, h}, QoSS4). Let us consider the
service request T = ({a, b}, {i}) as in Example 1.
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The initial population P0 may consist of m composition solutions for T , given
by their DAG-representations, such as follows (note that m = 6 in this example):

P0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

G0
0

G0
1

G0
2

G0
3

G0
4

G0
5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

{Start → S1, Start → S2, S1 → S3, S2 → S3, S3 → End}
{Start → S0, S0 → End}
{Start → S0, S0 → End}

{Start → S4, S4 → S3, S3 → End}
{Start → S4, S4 → 3, S3 → End}

{Start → S1, Start → 2, S1 → S3, S2 → S3, S3 → End}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The edge histogram matrix at generation g (denoted by EHMg) is a matrix
with entries egi,j (where i, j = Start, 0, 1, · · · ,m − 1, End) as follows:

egi,j =

{∑m−1
k=0 δi,j(Gg

k) + εi,j if i �= j

0 otherwise
(2)

δi,j(Gg
k) =

{
1 if Si → Sj ∈ Gg

k

0 otherwise
(3)

εi,j =

{
bratio

|D|
∑m−1

k=0 |Gg
k | if Si → Sj ∈ D

0 otherwise
(4)

Herein, bratio is a predetermined constant (called bias ratio), |Gg
k | denotes the

number the service dependencies in Gg
k , while |D| denotes the number of all ser-

vice dependencies in SR. Roughly speaking, entry egi,j counts how often service
dependency Si → Sj occurs in all composition solutions in population Pg.

3.4 A Guided Edge Histogram-Based Backward Graph-Sampling
Algorithm

The sampling algorithm is proposed based on an Edge Histogram-Based Sam-
pling Algorithm [13]. By providing the distribution information of predecessors
of each service in EHM, it is then possible to build up a composition graph
from the dependencies. Some useful information is used to guide the sampling
to produce only restricted outcomes, which makes this algorithm more effective:
only row indexes of non-zero entries in EHMg are to be sampled, and layer
information is used to verify sampled predecessors for preventing cycles in solu-
tions. This algorithm builds a DAG in a backward way. It has been suggested
in [11] that backward graph building has its advantage over the forward graph
building since it does not create dangling services. This sampling algorithm is
summarized in Algorithm 3.

In Algorithm 3, we first initialize a DAG-based solution G with an empty set
of service dependencies, and a set of service SerSet, whose inputs satisfactions
required to be checked, with End. The following steps are repeated if SerSet
does not only contains Start or any service in SerSet are not fully satisfied (Step.
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Algorithm 3. Guided Edge Histogram-Based Backward Graph-Sampling
Algorithm

Input : EHMg

Output: a composition solution G
1: initial G = { } and SerSet = {End};
2: foreach Sj in SerSet do
3: if SerSet does not only contains start and Sj is not fully satisfied then
4: identify Lp s.t. Sj ∈ Lp ;
5: determine a set SC of row indexes for non-zero entries in {eg

,j};
6: while inputs of Sj is not fully satisfied and SC is not empty do

7: sample one predecessor x with probability
e

g
x,j

∑

i∈SC
e

g
i,j

;

8: identify Lp′ s.t. Sx ∈ Lp′ ;

9: if p′ ≤ p and any unsatisfied input of Sj is fulfilled by Sx then
10: put Sx → Sj into G ;
11: foreach Sj� in SerSet do
12: identify Lp� s.t. Sj� ∈ Lp� ;

13: if p′ ≤ p� and any unsatisfied input of Sj� is fulfilled by Sx then
14: put Sx → Sj� into G ;

15: add Sx to SerSet;

16: remove x from SC;

17: remove Sj from SerSet;

18: return G;

2 to Step. 17): for each service Sj in SerSet, we identify its layer Lp. Meanwhile,
we initialize a set, SC, consisting of row indexes of non-zero entries in {eg,j}.
Afterward, another repeated sampling process is used to produce predecessors
of Sj until Sj is fully satisfied (Step. 6 to Step. 16). During the sampling, let
Sx be the corresponding service of sampled service index x, if the layer that
contains Sx is ahead of or the same to that of Sj , and any unsatisfied inputs of
Sj can be fulfilled by Sx (Step. 9), we create a dependency Sx → Sj and put it
into G (Step. 10). Meanwhile, to create a more compacted DAG, we also check
the satisfaction of other services in SerSet in the similar way that we create the
dependency with Sj (Step. 11 to Step. 14). Later on, the sampled predecessor
Sx is added to SerSet and sampled x is removed from SC. Once Sj is fully
satisfied, we remove it from SerSet, and repeat creating dependencies for newly
added services in SerSet until the stop conditions are met (Step. 2 to Step. 17).
Then, a G is returned.

4 Experimental Evaluation

We experimentally evaluate the performance of our proposed EDA-based app-
roach (named as EHM-EDA). In particular, we compared it to two recent works
[14,16] (named NHM-EDA and PSO respectively) that were conducted to solve
the same problem. Two Web Service composition Challenge (WSC) benchmarks,
i.e., WSC-08 and WSC-09 extended with QoS attributes are utilized for the
experiment. These two benchmarks are widely used in recent service composi-
tion research, e.g. in [4,8,10,14–17].
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The same number of evaluation times are ensured to conduct a fair compar-
ison. In particular, we set the population size as 200, the number of generations
as 300, and bratio as 0.0002. We run 30 independent repetitions for all the com-
peting approaches. We set the weights in the fitness function Eq. (1) to balance
the QoSM and QoS, following the existing work [14–16], i.e., w1 and w2 are set
to 0.25, and w3, w4, w5 and w6 to 0.125. We set the parameter p for the plugin
match 0.75 as recommended in [3]. Additional experiments are also conducted
with other weights and parameters, where the same behavior is usually observed.

4.1 Comparison of the Fitness

We utilize an independent-sample T-test to test the significant difference in
mean fitness and mean execution time over 30 repetitions of the three methods.
In particular, a significant level 5% is established for all pairwise comparisons
over the composition tasks in WSC-08 and WSC-09. We highlight the top per-
formance with its related fitness value and standard deviation in Table 1, while
the pairwise comparisons of fitness are summarized in Table 2. In pairwise com-
parisons, win/draw/loss shows frequencies one method outperforms, equals or
is outperformed by another method.

Table 1. Mean fitness values for our approach in comparison to NHM-EDA [16] and
PSO [14] (Note: the higher the fitness the better)

Task EHM-EDA NHM-EDA [16] PSO [14]

WSC-08-1 0.5326 ± 0 0.504916 ± 0.010355 0.522621 ± 0.00283

WSC-08-2 0.614333 ± 0 0.614333 ± 0 0.614333 ± 0

WSC-08-3 0.456083 ± 0.000194 0.455118 ± 6.8e−05 0.454343 ± 0.000531

WSC-08-4 0.463066 ± 0.001054 0.464498 ± 0.000117 0.464511 ± 0.000133

WSC-08-5 0.474222 ± 0.000414 0.469205 ± 0.000245 0.468536 ± 0.001148

WSC-08-6 0.472665 ± 0.000382 0.474322 ± 9.9e−05 0.472942 ± 0.000736

WSC-08-7 0.488584 ± 0.000527 0.480765 ± 0 0.479235 ± 0.000502

WSC-08-8 0.462254 ± 0.00017 0.46182 ± 0 0.461478 ± 0.000371

WSC-09-1 0.604377 ± 0.00429 0.569929 ± 0.005625 0.568493 ± 0.009659

WSC-09-2 0.471123 ± 0.000234 0.471164 ± 1.2e−05 0.4711 ± 0.000283

WSC-09-3 0.551159 ± 0 0.551159 ± 0 0.551159 ± 0

WSC-09-4 0.471059 ± 0.000404 0.472804 ± 0.000227 0.471512 ± 0.000904

WSC-09-5 0.47269 ± 0.000104 0.470408 ± 0 0.470132 ± 0.000304

Tables 1 and 2 show that the two EDA-based methods outperform the PSO-
based method [14]. This observation agrees with the findings in our previous work
[16] that learning the distributions of the superior subpopulation can help to find
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Table 2. Summary of the statistical significance tests for fitness, where each column
shows the win/draw/loss score of one method against a competing one for all tasks of
WSC-08 and WSC-09.

Dataset Method EHM-EDA NHM-EDA [16] PSO [14]

WSC-08 (8 tasks) EHM-EDA - 2/1/5 2/1/5

NHM-EDA [16] 5/1/2 - 1/2/5

PSO [14] 5/1/2 5/2/1 -

WSC-09 (5 tasks) EHM-EDA - 1/2/2 0/2/3

NHM-EDA [16] 2/2/1 - 0/2/3

PSO [14] 3/2/0 3/2/0 -

higher-quality composition solutions. For the two EDA-based methods, EHM-
EDA appears to be more effective. This corresponds well with our expectations
that taking the services dependencies into account can enhance the competency
of EDA for improving the quality of composition solutions.

It has been discussed in the examples of composition solutions analyzed in
[14,15], a small improvement of fitness that measures QoS and QoSM can make
a significant difference in the practical use of the computed composition service.

4.2 Comparison of the Execution Time

Tables 3 and 4 show the mean execution time with standard deviation over 30
repetitions and the frequencies of pairwise comparisons respectively.

Table 3 shows that two EDA-based approaches require less execution time
consistently over PSO [14]. For the two EDA-based approaches, our EDA-based
approach requires significantly and consistently less execution time than the
competing EDA-based approach [16]. These correspond well with our assump-
tions: on the one hand, although useful services are more likely to be put in
front of sampled service queue for the decoding algorithm in NHM-EDA [16],
improvements on the efficiency may not be outstanding; on the other hand, our
proposed sampling technique achieves outstanding efficiency with a straightfor-
ward implementation.

4.3 Comparison of the Convergence Rate

To investigate the effectiveness of our EDA-based approach, we use WSC-08-05
and WSC-08-08 as examples for demonstrating the convergence rate of fitness
over 30 independent runs. Note that WSC-08-08 is a more challenging task
than WSC08-05 as it involves more service dependencies and results in larger
composite services.

Figures 2a and b show the mean fitness of the best solutions found by EHM-
EDA, NHM-EDA [16] and PSO [14] over 300 generations for the two composi-
tion tasks. In Fig. 2a, for the less challenging composition task (WSC08-5), we
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Table 3. Mean execution time in seconds for our approach in comparison to NHM-EDA
[16] and PSO[14] (Note: the lower the execution time the better)

Task EHM-EDA NHM-EDA [16] PSO [14]

WSC-08-1 20 ± 1 152 ± 7 200 ± 130

WSC-08-2 13 ± 1 89 ± 12 130 ± 79

WSC-08-3 104 ± 4 1753 ± 87 4786 ± 1471

WSC-08-4 29 ± 1 86 ± 4 353 ± 109

WSC-08-5 50 ± 2 833 ± 141 4241 ± 1712

WSC-08-6 231 ± 7 18436 ± 1043 48215 ± 13973

WSC-08-7 96 ± 2 1351 ± 205 5482 ± 3277

WSC-08-8 204 ± 5 1267 ± 87 5890 ± 1534

WSC-09-1 18 ± 2 136 ± 11 284 ± 196

WSC-09-2 135 ± 11 2306 ± 283 6419 ± 1786

WSC-09-3 126 ± 4 782 ± 46 2273 ± 1007

WSC-09-4 733 ± 29 71932 ± 4370 105568 ± 31797

WSC-09-5 535 ± 20 6692 ± 565 19266 ± 5840

Table 4. Summary of the statistical significance tests for execution time, where each
column shows the win/draw/loss score of one method against a competing one for all
tasks of WSC-08 and WSC-09.

Dataset Method EHM-EDA NHM-EDA [16] PSO [14]

WSC-08 (8 tasks) EHM-EDA - 0/0/8 0/0/8

NHM-EDA [16] 8/0/0 - 0/0/8

PSO [14] 8/0/0 8/0/0 -

WSC-09 (5 tasks) EHM-EDA - 0/0/5 0/0/5

NHM-EDA [16] 5/0/0 - 0/0/5

PSO [14] 5/0/0 5/0/0 -

Fig. 2. Mean fitness values of best solutions over generations
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observe that our EDA-based converges much faster against the two competing
methods while the two competing methods reach a plateau in their early stages.
In Fig. 2b, for the more challenging composition task (WSC-08-08), the two com-
peting methods happen to converge fast in the early stage, but our EDA-based
method eventually outperforms them. It can be inferred from those observa-
tions that EHM-EDA is less prone to premature convergence to local optima,
but it may suffer from low convergence rate in more complex datasets, such as
WSC08-8.

5 Related Work

AI planning and EC techniques have been acquired in web service composition
to compute solutions automatically. AI planning is a commonly used technique
to handle dynamic scenarios with agents in constructing composition plans, but
combinatorial optimization is not a focus [12]. EC techniques have been widely
used for optimizing QoS and/or QoSM in fully automated service composition
[4,5,8–10,14–17]. These EC-based works can be categorized into two groups:
conventional EC-based and model learning-based approaches.

Conventional EC techniques have been used to breed candidate solutions for
an optimization purpose. Genetic Programming (GP) employs genetic opera-
tors directly on tree-based solutions, and it allows the evolution of composition
structure as well as services for exploration and exploitation. [8] proposed a
context-free grammar for initializing tree-based candidate solutions, while [17]
randomly initialized tree-based candidate solutions without ensuring structures
of composite solutions, but they proposed a general adaptive rule of crossover
and mutation for improving quality of computed composite solutions. These two
works present a low convergence rate since their population always consists of
invalid candidate solutions that are required to be penalized by the fitness func-
tions. To increase the convergence rate, a random greedy search algorithm was
utilized in [4,10] to construct DAG-based valid candidate composite solutions for
each population, and two different tree conversion algorithms were proposed to
allow a straightforward application of GP. However, their tree-based representa-
tion allows replicas of subtrees that potentially build up huge trees. To eliminate
these replicas, a tree-like representation was proposed in [15]. Other conventional
EC techniques, like swarm intelligence, such as Particle Swarm Optimization was
utilized to optimize the order of a queue of services, and each service is corre-
sponding to the position of a particle, a decoding algorithm [14] are developed
to decode the queue into DAG-based solutions.

Despite some successes in conventional EC techniques, some efforts have
been made to investigate model learning-based algorithms, such as EDA. Two
works [5,6] proposed EDA-based approaches to semi-automated services compo-
sition, but their distributions models can hardly support fully automated service
composition. One recent work [16] proposed a novel representation that allows
a Node Histogram Matrix to learn the distributions from composite solutions
structured in different composition workflows. However, opportunities still exist
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to propose more effective approaches by proposing more suitable distributions,
and sampling techniques from that distribution also remain to be developed.

6 Conclusion

In this paper, we proposed an effective EDA-based approach, which learns suit-
able distributions by considering service dependencies, and efficiently samples
high-quality solutions. The advantages of this approach have been experimen-
tally illustrated by comparing it with NHM-EDA [16] and PSO [14]. In the
future, we will study its scalability for more challenging datasets as scalability is
a common difficulty faced by most algorithms, and develop local search strategies
to enhance its searching ability.
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Abstract. Flexible job shop scheduling (FJSS) can be regarded as an
optimization problem in production scheduling that captures practical
and challenging issues in real-world scheduling tasks such as order pick-
ing in manufacturing and cloud computing. Given a set of machines and
jobs, FJSS aims to determine which machine to process a particular job
(by routing rule) and which job will be chosen to process next by a par-
ticular machine (by sequencing rule). In addition, dynamic changes are
unavoidable in the real-world applications. These features lead to diffi-
culties in real-time scheduling. Genetic programming (GP) is well-known
for the flexibility of its representation and tree-based GP is widely and
typically used to evolve priority functions for different decisions. How-
ever, a key issue for the tree-based representation is how it can capture
both the routing and sequencing rules simultaneously. To address this
issue, we proposed to use multi-tree GP (MTGP) to evolve both rout-
ing and sequencing rules together. In order to enhance the performance
of MTGP algorithm, a novel tree swapping crossover operator is pro-
posed and embedded into MTGP. The results suggest that the multi-
tree representation can achieve much better performance with smaller
rules and less training time than cooperative co-evolution for GP in solv-
ing dynamic FJSS problems. Furthermore, the proposed tree swapping
crossover operator can greatly improve the performance of MTGP.

Keywords: Multi-tree representation · Flexible job shop scheduling
Dynamic changes · Genetic programming

1 Introduction

The rapid development of globalization and information technologies has made
our world a Global Village, where the interest of countries is interconnected.
The core of the connection highly relies on international trade. Thus, it brings
more opportunities and also thrives competition among companies. The study
of allocating the jobs to machines and determining the order of processing the
allocated jobs on each machine to optimize criteria such as flowtime, tardiness
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or customer satisfaction will benefit the companies by increasing their efficiency,
profit or reputation.

Flexible job shop scheduling (FJSS) is an extension to classical job shop
scheduling (JSS). The FJSS task, as its name suggests, assumes a more flexible
situation. It reflects a production environment where it is possible to run an
operation on more than one machine. This special trait causes the problem to
become more complicated than classical JSS because we not only have to decide
where to allocate jobs, but also need to decide which job to be processed next
simultaneously. FJSS is NP-hard [2].

In addition, dynamic changes are inevitable in the real-world applications.
For example, it is obvious that job orders are unpredicted or cannot be accurately
predicted for companies, especially taking uncertain factors such as price impact,
asymmetric information, rush hours and indefinite events into consideration.
That is to say, we could not know job information until the job arrives. Dynamic
flexible job shop scheduling (DFJSS) was born for considering this situation.

All these characteristics make DFJSS much more challenging than standard
JSS and FJSS. Thus, the exact optimization methods such as mathematical pro-
gramming [15] are often inapplicable, especially to large scale instances. Under
this circumstance, heuristic search methods such as tabu search [14], genetic
algorithm [16], simulated annealing [18] become more and more popular. These
methods can get better performance in achieving reasonable solutions in less
time. However, the biggest drawback is their lack of capability to adapt to the
dynamic environmental change.

In order to reduce computational complexity and cope with dynamic changes,
dispatching rules (DRs) have been widely applied [6,10,13]. When a machine
becomes idle and has waiting operations in its queue, DRs will be triggered
to select the operation with highest priority to be processed next. In this way,
computation is carried out only at each decision point and decisions can be made
efficiently.

However, lots of DRs are designed manually [17] and manual design has its
inherent weaknesses. For instance, it highly relies on domain knowledge and it is
very demanding on labour and time. Fortunately, genetic programming (GP) has
been proven to be an effective hyper-heuristic method, which can automatically
design DRs for scheduling [1,9,10,12] that are much better than the manually
designed ones. However, the existing works mainly focus on evolving the sequenc-
ing rule (the rule to select which waiting operation will be processed next when
a machine becomes idle) without considering the routing rule (the rule to select
which machine will be chosen to allocate the ready operations).

For DFJSS, a crucial issue is how it can evolve both routing and sequencing
rules simultaneously. The representation is the crux of the applicable algorithm.
There are two main reasons. Firstly, an appropriate representation is definitely a
rudimentary factor for an algorithm to build a solution. Secondly, the representa-
tion determines the size of the search space and there is a clear trade-off between
the complexity of the representation and the ability of GP to explore the search
space. These two facts foster the motivation to propose a more suitable represen-
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tation for DFJSS. To the best of our knowledge, cooperative co-evolution (CC)
was firstly embedded into GP to evolve routing and sequencing rules together
[19]. The proposed CCGP in [19] is the current state-of-the-art algorithm of
DFJSS. However, the CC approach cannot fully capture the interaction between
the routing and sequencing rules. Research in this area is still in a very early
stage and little work has been reported on this important aspect. Dealing with
multiple interdependent decisions, especially in dynamic environment, is always
difficult but also creates opportunities to find the real global optimal solution.
This is particularly challenging when multiple decisions need to be made at the
same time.

In this paper, GP with multi-tree representation is introduced to evolve rout-
ing and sequencing rules together and a novel tree swapping crossover operator
is proposed to evolve more effective rules. We aim to find more effective routing
and sequencing rules for DFJSS based on GP with a multi-tree representation.
In particular, we have the following research objectives.

– Introduce GP with multi-tree representation (MTGP) for evolving the routing
and sequencing rules simultaneously.

– Propose a novel tree swapping crossover operator for the MTGP algorithm
according to the feature of the DFJSS problem. The MTGP with the newly
proposed tree swapping crossover is denoted as sMTGP.

– Compare the performance of MTGP, sMTGP and CCGP to verify the effec-
tiveness of the multi-tree representation and the novel tree swapping crossover
operator.

– Analyse the rules evolved by MTGP, sMTGP and CCGP.

2 Background

2.1 Dynamic Flexible Job Shop Scheduling

In the basic version of the job shop scheduling problem, n jobs need to be
processed by m machines. Each job consists of a sequence of operations and a
machine can process at most one operation at a time. For each operation, it can
be processed at a specified machine. In essence, the JSS problem is based on the
assumption that only one machine is able to run a particular operation.

FJSS breaks through the constraints of resources uniqueness: each operation
can be processed by more than one machine and its processing time depends on
the machine that processes it. Thus, FJSS can improve the production efficiency,
shorten the ordering cycle and increase the rate of orders delivered on time.

In real life, industry is in a dynamic environment, for instance, in terms of
a factory, the orders will arrive over time. Actually, there are some methods to
predict the information of incoming jobs to reduce uncertainty, thus to improve
the accuracy of decisions. However, the gap between prediction and reality is
always inevitable and sometimes they have a very wide difference. It is indicated
that when dealing with the real-world applications, dynamic changes should be
taken into consideration.
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2.2 Rules for Dynamic Flexible Job Shop Scheduling

This paper aims to evolve two kinds of rules for DFJSS, which are routing
and sequencing rules, to make decisions at decision points. A routing rule is
triggered when a new job arrives or when an operation is completed and its
next operation becomes ready to be processed to allocate ready operation to a
particular machine. When a machine is free and there are operations waiting, an
operation in its queue will be chosen by a sequencing rule to be processed next.

Machine 1

Machine 2

Machine 3

O43

O62

Routing Rule

O32 O22

O81

O71 O42

O63

O11

Operations

Sequencing Rule

Ready Operations

Job n

Unknown Jobs 

Machines

O52

O63
O62

Next Operation

Fig. 1. An example of decision process of DFJSS.

Figure 1 shows an example of decision process of DFJSS. In the figure, the
solid lines stand for what is happening and the dotted lines indicate what will
happen. There are three machines in the job shop and each job can be processed
by any machine. Each job consists of several operations in a certain order. In
the current system state, the operations (O32, O52, O22, O71, O42, O62 and
O11) have been allocated to different machines by the routing rule. Then, each
machine uses the sequencing rule to decide the next operation to be processed,
e.g. machine 3 selects O62. When O62 processing is completed, its subsequent
operation O63 becomes ready, and will be allocated by the routing rule.

3 Genetic Programming with Multi-tree Representation

The choice of which representation to use when dealing with a problem using
GP is vital. Tree-based GP is a popular way in previous research and multi-
tree representation [7] as a special structure has been applied to classifier design
[3,11] and feature manipulation [8].

In multi-tree representation, each individual is represented as a list trees.
Taking advantage of this feature to solve the DFJSS problems, routing and
sequencing rules can be denoted by different trees in one individual. According
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Algorithm 1. Pseudo-code of MTGP

// Initialization
1 while Nind < Popsize do
2 foreach individual
3 Initialize each tree //Randomly initialize each tree by ramp half-and-half
4 end
// Evolution
5 while Stopping criteria not met do
6 Evaluate the individuals
7 Copy the elites to the new population
8 Select individuals based on fitness value
9 Generate offsprings by applying crossover/mutation/reproduction operators
10 end
11 return best individual

to this, multi-tree representation naturally lends itself to DFJSS. The pseudo-
code of MTGP is given in Algorithm 1.

In this paper, we use the multi-tree representation that one individual con-
tains two trees to match our problem. To be specific, the first tree is used to
indicate the sequencing rule and the second tree denotes the routing rule. The
fitness of one individual depends on the two trees working together. In the case
of multi-tree representation, the evolutionary algorithm must come to a decision
as to which trees the genetic operator will be applied.

In multi-tree representation, the classical genetic operators are defined to act
upon only one tree in an individual at a time. Other trees are unchanged and
copied directly from the parents to the offsprings. Genetic operators are limited
to a single type of trees at a time in the expectation that this will reduce the
extent to which they disrupt “building blocks” of useful code. However, when
coping with DFJSS, such a crossover operator has the following issues.

Firstly, the crossover operation only happens between one type of trees of the
parents, therefore, the offsprings generated might not be substantially different
from their parents. Thus, the population will lose its diversity and the ability of
exploration will decrease.

Secondly, the crossover operation cannot improve the diversity of the combi-
nations of routing and sequencing rules. In DFJSS, a good rule cannot be “good”
by itself, but should behave well when collaborating with the other rule. Thus,
the diversity of combinations is an important factor for achieving good solutions.

In order to overcome these shortcomings and make the algorithm more in
line with the properties of DFJSS, a new tree swapping crossover operator is
proposed. Figure 2 shows the tree swapping crossover operator, which shares the
same process with the classical crossover operator except that the unselected
trees (the same type) are also swapped with each other. To be specific, two
parents (parent1 and parent2) are selected to generate offsprings and the second
type (T2) of trees is selected for crossover. The dotted circles mean that the
subtrees are chosen and will be swapped. The standard crossover operator will
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T1 T2 T1 T2

Parent 1 Parent 2

T1 T2 T1 T2

Fig. 2. Tree swapping crossover operator for multi-tree representation.

stop here. But for the tree swapping crossover operator, the other type of trees is
also swapped. Thus, two offsprings (Offspring1 and Offspring2) are generated.

This will bring two benefits. The first is that useful blocks are not easily bro-
ken. The second is more possible pairs or combinations of routing and sequenc-
ing rules will be examined in sMTGP. That is to say, the population of sMTGP
will become more diverse compared with MTGP. More importantly, this point
matches well with the characteristics of the DFJSS problems.

4 Experiment Design

4.1 Parameter Settings

In our experiment, time-invariant terminals in [10], were adopted. The details
are shown in Table 1. Six functions {+, −, ∗, /, max, min} are selected in the
function set, in which “/” is the protected division that returns the largest double
positive number if divided by 0. All of them take two operands.

Table 1. The terminal set.

Notation Description

Machine-related NIQ The number of operations in the queue

WIQ Current work in the queue

MWT Waiting time of a machine

PT Processing time of an operation on a specified machine

Job-related NPT Median processing time for the next operation

OWT The waiting time of an operation

WKR Median amount of work remaining for a job

NOR The number of operations remaining for a job

W Weight of a job

System-related TIS Time in system
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For fair comparison, the parameters in MTGP and sMTGP are the same as
in [19]. The population size is 1024 and the maximize depth of programs is 8. The
crossover, mutation and reproduction rates are 0.80, 0.15 and 0.05, respectively.
The rates of terminal and non-terminal selection are 0.10 and 0.90. Tournament
selection was set as parent selection method with a tournament size of 7.

The learning process continued until the generation met the maximum gen-
eration, which was set to 51. The 30 independent runs test results were reported
as the system performance.

4.2 Simulation Configuration

For dynamic simulation, the configuration is given in Table 2, which has been
commonly used in existing studies [5,10]. In order to improve the generalization
ability of the evolved rules, the seeds used to stochastically generate the jobs
were rotated in the training process at each generation.

Table 2. Dynamic simulation configuration.

Parameter Value

Number of machines 10

Number of jobs 5000

Number of warmup jobs 1000

Number of operations per job Uniform discrete distribution between 1 and 10

Available machines per operation Uniform discrete distribution between 1 and 10

Job arrival process Poisson process

Utilization level 0.85, 0.95

Processing time Uniform discrete distribution between 1 and 99

Job weights weight 1 (20%), weight 2 (60%), weight 4 (20%)

4.3 Comparison Settings

In our research, three algorithms were involved. CCGP [19] is built on GP
with cooperative co-evolution and MTGP is the proposed algorithm that intro-
duces GP with multi-tree representation to evolve routing and sequencing rules
together. sMTGP is the improved MTGP with the tree swapping crossover.
Moreover, a typical performance indicator for JSS is the flowtime, i.e., the sum
of the total waiting time and the total processing time for one job. In this paper,
we used three different kinds of variations of flowtime to measure the perfor-
mance of the proposed algorithms, namely Max-Flowtime, Mean-Flowtime and
Mean-weighted-Flowtime. Different scenarios were used to measure their robust-
ness.

For the DFJSS problem, in our case, it is impossible to get the best known
(lower bound) objective value of the instances. So, benchmark routing rule



Genetic Programming with Multi-tree Representation for DFJSS 479

(LWIQ, Least Work in Queue, select the machine with the least work in its
queue) and sequencing rules (SPT, Shortest Processing Time, choose the job
with shortest processing time, for mean-flowtime; FCFS, First Come First Serve,
the job comes first will be processed firstly, for max-flowtime and mean-weighted-
flowtime) [4], were applied to get a baseline objective value for each instance.
The reason for choosing them is that they show better performance than others
in previous work [6] and often be chosen as benchmark rules [19]. Here, the rel-
ative performance ratio was defined as the average normalized objective value
obtained by evolved rules over the counterpart got by benchmark rules. Thus,
in our case, the smaller the fitness, the better.

5 Results and Discussions

5.1 Optimization Performance

In our experiment, six scenarios were set to test the performance of MTGP,
sMTGP and CCGP. The best pair of rules of the last generation was tested on
test data set to measure its performance. The test data set consists of 50 dynamic
simulations with different random seeds. In addition, Wilcoxon signed rank test
at the 5% level was used for comparison between the three algorithms. First of
all, MTGP and sMTGP were compared with CCGP respectively to measure the
feasibility of multi-tree based GP. Then, sMTGP and MTGP were compared for
analysing the effectiveness of proposed tree swapping crossover operator.

All the mean value obtained by MTGP and sMTGP are better than CCGP
and all the standard deviation value are smaller than the counterparts. Wilcoxon
signed rank test results show that sMTGP is significantly better than CCGP only
in two scenarios (Max-Flowtime-0.85, Mean-Flowtime-0.85). It is interesting that
MTGP got better mean value than CCGP, but none of the instances of MTGP
is significantly better than CCGP.

When further looking into the boxplot in Fig. 3, one can see that CCGP has
many more outliers than MTGP and sMTGP. This is because CCGP cannot
handle well the interactions between routing and sequencing rules directly, thus
can be stuck into poor local optima more often. The reason why there is no
statistical significance between MTGP and CCGP is that the two algorithms
showed very similar performance except the outliers. Figure 3 clearly shows that
multi-tree representation managed to dramatically reduce the probability of out-
liers.

According to these observations, the performance of GP with the multi-
tree representation is more stable than GP with cooperative co-evolution. Also,
Wilcoxon signed rank test results show that sMTGP is significantly better than
MTGP in four scenarios, which are Max-Flowtime-0.85, Mean-Flowtime-0.85,
Mean-weighted-Flowtime-0.85/0.95. It means that the proposed tree swapping
crossover operator can effectively improve the performance of MTGP.

Figure 4 shows that the sizes of evolved best sequencing rules by sMTGP and
MTGP are obviously and dramatically smaller than the best rules evolved by
CCGP. Also, Fig. 5 shows that the best routing rule sizes got by sMTGP and
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Fig. 3. The boxplot of average normalized objective value obtained by sMTGP, MTGP
and CCGP on test data set.
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obtained by sMTGP, MTGP and CCGP at each generation.
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Fig. 5. The convergence curves of the average best routing rule size (30 runs) obtained
by sMTGP, MTGP and CCGP at each generation.

Table 3. The average training time for each run of the three algorithms.

Index Scenario Training time (seconds)

sMTGP MTGP CCGP

1 Max-Flowtime-0.85 4459.9 4267.1 4642.8

2 Max-Flowtime-0.95 5057.2 4790.3 5144.9

3 Mean-Flowtime-0.85 4184.5 4278.0 4538.5

4 Mean-Flowtime-0.95 4667.6 4721.3 4849.9

5 Mean-weighted-Flowtime-0.85 4348.1 4181.7 4458.4

6 Mean-weighted-Flowtime-0.95 4585.7 4680.3 4957.0

MTGP are smaller than that of CCGP. However, there is not so much difference
compared with the changes of sequencing rule sizes. These observations confirm
the potential of using multi-tree based GP to achieve smaller size rules.

From Table 3, it is clear that sMTGP and MTGP can evolve rules with
lower time complexity than CCGP in all scenarios. In addition, for sMTGP,
less training time is needed as compared to MTGP in three situations (scenario
3, 4, 6). This is a promising finding that GP with multi-tree representation is
computationally cheaper than GP via cooperative co-evolution for DFJSS.
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Overall, MTGP and sMTGP (especially) undoubtedly show better ability
to solve DFJSS problems. They can obtain better and smaller rules within a
shorter training time.

5.2 Further Analysis

In the last section, the rule size relates to the best rule only. In order to explore
whether the best rule is smaller by chance or the rules in the whole population
generally become smaller, in this section, the average rule sizes in the whole
population at each generation were investigated to get a clear vision of the
changes of rule sizes. We took the scenario (Mean-Weighted-Flowtime-0.95) as
an example to further investigate the changes of rule sizes.

As shown in Figs. 6 and 7, at the initial point, for all the three algorithms, the
average sizes of both rules are about equal. However, the average sizes obtained
by CCGP are larger than others over time. Maybe in multi-tree based GP,
effective and smaller rules are more likely to be well preserved because there is
at least one rule structure will not be changed by operator at each time during

Fig. 6. The convergence curves of average sequencing rule size (30 runs) obtained by
CCGP, MTGP and sMTGP in population at each generation.

Fig. 7. The convergence curves of average routing rule size (30 runs) obtained by
CCGP, MTGP and sMTGP in population at each generation.
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the evolution process. In addition, the average sizes obtained by MTGP and
sMTGP show the same trend basically and routing rule sizes are bigger than
sequencing rules. This is consistent with the observation in the last section.

6 Conclusions and Future Work

This paper tried to evolve routing and sequencing rules based on GP with multi-
tree representation simultaneously, which is one of the very first piece of work in
this field. From the experimental results, we got some interesting findings. Firstly,
in addition to performance, both the routing and sequencing rules evolved by
MTGP and sMTGP are much smaller than that of CCGP. MTGP and sMTGP
also take less training time. This is an important merit because high training
time is a big limitation of GP. Secondly, the proposed tree swapping crossover
operator can enhance the ability of MTGP from the perspective of performance,
rule size and training time in general. Thirdly, for average normalized objective
values on test data set, there are more outliers obtained by CCGP. That is to
say, the assumption in CCGP that routing and sequencing rules are independent
and can be involved separately, might be not true. This suggests that when we
evolve two rules at the same time, we would better to take the interaction into
consideration. In the future, the reason why the average rule size in the whole
population becomes smaller will be further explored in the future.
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Abstract. Standard approaches for inference in probabilistic relational
models include lifted variable elimination (LVE) for single queries. To effi-
ciently handle multiple queries, the lifted junction tree algorithm (LJT)
uses a first-order cluster representation of a model, employing LVE as
a subroutine in its steps. Adaptive inference concerns efficient inference
under changes in a model. If the model changes, LJT restarts, possibly
unnecessarily dumping information. The purpose of this paper is twofold,
(i) to adapt the cluster representation to incremental changes, and (ii)
to transform LJT into an adaptive version, enabling LJT to preserve as
much computations as possible. Adaptive LJT fast reaches the point of
answering queries again after changes, which is especially important for
time-critical applications or online query answering.

1 Introduction

A common task in many applications is repeated inference on variations of a
model. Variations range from conditioning on a new set of observed events to
updating a probability distribution given observations or adapting a model struc-
ture while optimising a model representation. Applications include risk analy-
sis where most likely explanations are of interest with changing sets of events
coming in regularly [14]. When learning a model structure given data, one app-
roach, called structural expectation-maximisation, alternates between minimally
changing a model structure and updating distributions in a model to optimise
the representation of the given data. The approach involves changing a model
w.r.t.structure and distributions as well as repeated inference when computing
the probability of the observed data in the altered model [11].

In a naive way, one incorporates the changes in a model or evidence and
performs inference. Adaptive inference, however, aims at performing inference
more efficiently when changes in a model or evidence occur. Research exists
for adaptive inference on propositional models [1,10]. But, modelling realistic
scenarios yields large probabilistic relational models, requiring exact and efficient
reasoning about sets of individuals.

Research in the field of lifted inference has lead to efficient algorithms for
relational models. Lifted variable elimination (LVE), first introduced in [16] and
expanded in [13,17,20], saves computations by reusing intermediate results for
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isomorphic subproblems when answering a query. The lifted junction tree algo-
rithm (LJT) sets up a first-order junction tree (FO jtree) to handle multiple
queries efficiently [4] using LVE as a subroutine. Van den Broeck et al. apply
lifting to weighted model counting and knowledge compilation [8], with newer
work on asymmetrical models [7]. To scale lifting, Das et al. use graph databases
storing compiled models to count faster [9]. Lifted belief propagation (BP) pro-
vides approximate solutions to queries, often using lifted representations, e.g. [2].
But, to the best of our knowledge, research for adaptive inference on relational
models is limited. In relational models, changes can also affect the sets of indi-
viduals over which one reasons or on which one conditions on. How to handle
such incremental changes correctly and efficiently is not obvious.

Nath and Domingos as well as Ahmadi et al. provide approximate algorithms
based on BP for lifted, adaptive inference for changing evidence [3,15]. They
reuse results from previous algorithm runs and propagate messages only in
affected regions or adapt their lifted representations to the changed evidence.
We focus on exact inference for multiple queries and present an efficient algo-
rithm for adaptive inference based on LJT, called aLJT, handling changes in
model and evidence. This paper includes two main contributions, (i) procedures
for adapting an FO jtree to incremental changes for its underlying model and (ii)
an algorithm, aLJT, preserving as much computations as possible under changes
in a model. aLJT handles changes ranging from new evidence to extending a
model with new factors. aLJT fast reaches the point of answering queries again,
which is especially important for time-critical or online query answering.

The remainder of this paper is structured as follows: First, we introduce basic
notations and recap LJT. Then, we show how to adapt an FO jtree to changes
and present aLJT, followed by a discussion. We conclude with upcoming work.

2 Preliminaries

This section specifies notations and recaps LJT. Based on [17], a running example
models the interplay of natural or man-made disasters, an epidemic, and people
being sick, travelling, and being treated. Parameters represent disasters, people,
and treatments.

2.1 Parameterised Probabilistic Models

Parameterised models compactly represent models by using logical variables (log-
vars) to parameterise randvars, abbreviated PRVs.

Definition 1. Let L, Φ, and R be sets of logvar, factor, and randvar names
respectively. A PRV R(L1, . . . , Ln), n ≥ 0, is a syntactical construct with R ∈
R and L1, . . . , Ln ∈ L to represent a set of randvars. For PRV A, the term
range(A) denotes possible values. A logvar L has a domain D(L). A constraint
(X, CX) is a tuple with a sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆
×n

i=1D(Xi) restricting logvars to values. The symbol � marks that no restrictions
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apply and may be omitted. For some P , the term lv(P ) refers to its logvars, the
term rv(P ) to its PRVs with constraints, and the term gr(P ) to all instances of
P , i.e. P grounded w.r.t. constraints.

For the epidemic scenario, we build the boolean PRVs Epid, Sick(X),
and Travel(X) from R = {Epid, Sick, Travel} and L = {X}, D(X) =
{alice, eve, bob}. Epid holds if an epidemic occurs. Sick(X) holds if a person X is
sick, Travel(X) holds if X travels. With C = (X, {eve, bob}), gr(Sick(X)|C) =
{Sick(eve), Sick(bob)}. gr(Sick(X)|�) also contains Sick(alice). Parametric fac-
tors (parfactors) combine PRVs. A parfactor describes a function, identical for
all argument groundings, mapping argument values to real values (potentials),
of which at least one is non-zero.

Definition 2. Let X ⊆ L be a set of logvars, A = (A1, . . . , An) a sequence of
PRVs, built from R and X, C a constraint on X, and φ : ×n

i=1range(Ai) �→ R
+

a function with name φ ∈ Φ, identical for all gr(A|C ). We denote a parfactor g
by ∀X : φ(A)|C . We omit (∀X :) if X = lv(A) and |�. A set of parfactors forms
a model G := {gi}ni=1.

We define a model Gex as our running example. Let L = {D,W,M,X},
Φ = {φ0, φ1, φ2, φ3}, and R = {Epid,Nat,Man, Sick, Travel, T reat}. We
build three more boolean PRVs. Nat(D) holds if a natural disaster D occurs,
Man(W ) if a man-made disaster W occurs. Treat(X,T ) holds if a person X is
treated with treatment T . The other domains are D(D) = {earthquake, flood},
D(W ) = {virus, war}, and D(T ) = {vaccine, tablet}. The model reads
Gex = {gi}3i=0, g0 = φ0(Epid), g1 = φ1(Epid,Nat(D),Man(W ))|�, g2 =
φ2(Epid, Sick(X), T ravel(X))|�, and g3 = φ3(Epid, Sick(X), T reat(X,T ))|�.
Parfactors g1 to g3 have eight input-output pairs, g0 has two (omitted here).
Figure 1 depicts Gex as a graph with six variable nodes for the PRVs and four
factor nodes for the parfactors with edges to arguments.

Evidence displays symmetries if observing the same value for n instances of
a PRV [20]. In a parfactor gE = φE(P (X))|CE

, a potential function φE and con-
straint CE encode the observed values and instances for PRV P (X). Assume we
observe the value true for ten randvars of the PRV Sick(X). The correspond-
ing parfactor is φE(Sick(X))|CE

. CE represents the domain of X restricted to
the 10 instances and φE(true) = 1 and φE(false) = 0. A technical remark: To
absorb evidence, we split all parfactors gi that cover P (X), called shattering [17],
restricting Ci to those tuples that contain gr(P (X)|CE

) and a duplicate of gi to
the rest. gi absorbs gE (cf. [20]).

The semantics of a model G is given by grounding and building a full
joint distribution PG. With Z as the normalisation constant, G represents
PG = 1

Z

∏
f∈gr(G) f . The query answering (QA) problem asks for a marginal

distribution of a set of randvars or a conditional distribution given events, which
boils down to computing marginals w.r.t. a model’s joint distribution, elimi-
nating non-query terms. Formally, P (Q|E) denotes a query with Q a set of
grounded PRVs and E = {Ei = ei}ni=1 a set of events. An example query for
Gex is P (Epid|Sick(eve) = true). Next, we look at LJT, a lifted QA algorithm,
which seeks to avoid grounding and building a full joint distribution.
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Nat(D)
g1

Man(W )

Epid g0

Sick(X)

Travel(X) Treat(X,T )
g2 g3

Fig. 1. Parfactor graph for Gex

Epid Nat(D)Man(W ) {g0, g1}C1

Epid Sick(X) Travel(X) {g2}C2

Epid Sick(X) Treat(X,T ) {g3}C3

{Epid}

{Epid, Sick(X)}

Fig. 2. FO jtree for Gex

2.2 Lifted Junction Tree Algorithm

LJT answers queries for probability distributions. It uses an FO jtree to effi-
ciently answer a set of queries, with LVE as a subroutine. We briefly recap LJT.

LJT answers a set of queries {Qi}mi=1 given a model G and evidence E. The
main workflow is: (i) Construct an FO jtree J for G. (ii) Enter E into J . (iii)
Pass messages in J . (iv) Compute answers for {Qi}mi=1. LJT first constructs a
minimal FO jtree with parameterised clusters (parclusters) as nodes, which are
sets of PRVs connected by parfactors, both defined as follows.

Definition 3. Let X be a set of logvars, A a set of PRVs with lv(A) ⊆ X, and
C a constraint on X. Then, ∀X:A|C denotes a parcluster. We omit (∀X:) if
X = lv(A) and |�. An FO jtree for a model G is a cycle-free graph J = (V,E),
where V is the set of nodes, i.e., parclusters, and E the set of edges. J must
satisfy three properties: (i) ∀Ci ∈ V : Ci ⊆ rv(G). (ii) ∀g ∈ G: ∃Ci ∈ V s.t.
rv(g) ⊆ Ci. (iii) If ∃A ∈ rv(G) s.t. A ∈ Ci ∧ A ∈ Cj, then ∀Ck on the path
between Ci and Cj: A ∈ Ck (running intersection property). An FO jtree is
minimal if by removing a PRV from any parcluster, the FO jtree ceases to be
an FO jtree, i.e., it no longer fulfils at least one of the three properties. The
parameterised set Sij, called separator of edge {i, j} ∈ E, is defined by Ci ∩Cj.
The term nbs(i) refers to the neighbours of node i, defined as {j|{i, j} ∈ E}.
Each Ci ∈ V has a local model Gi and ∀g ∈ Gi: rv(g) ⊆ Ci. The Gi’s partition
G.

In a minimal FO jtree, no parcluster is a subset of another parclus-
ter. Figure 2 shows a minimal FO jtree for Gex with parclusters C1 =
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Algorithm 1. Adapting an FO jtree J = (V,E)

procedure add(FO jtree J, parfactor g′)
Let Aold known, Anew new PRVs in g′

adjust(J, Aold) to get Ci with Aold ⊆ Ci

if Anew = ∅ then
Gi ← Gi ∪ {g′}, mark Ci

else if Aold = Ci then
Ci←Ci∪rv(g′),Gi←Gi∪{g′},markCi

else
New Ck←rv(g′), Gk←{g′}, mark Ck

Add {i, k} to E

procedure delete(FO jtree J, parfactor g)
Get Ci ∈ V where g ∈ Gi

Gi ← Gi \ {g}
min(J, Ci, rv(g) \ rv(Gi)), mark Ci

procedure min(FO jtree J, node Ci, PRVs A)
for PRV A ∈ A do

if ∀j, k∈nbs(i) : A 
∈Sij ∧ A 
∈Sik then
Ci ← Ci \ {A}, mark Ci

if Ci marked ∧ ∃j∈nbs(i) : Ci⊆Cj then
merge(J, Ci,Cj)

procedure adjust(FO jtree J, PRVs A)
Extract set of nodes N s.t.A ⊆ rv(N)
while |N | > 1 do

Get Ci,Cj ∈ N
P ← path betw.i, j without i, j, mark P
C′ := Ci,C

′′ := Cj , lst ← |P | − 1
merge(J, Ci,Cj), remove Cj from N
while lst > 0 do

if ∃k, l∈P : Skl⊆C′∧Skl⊆P [lst]
∨Skl⊆C′′∧Skl⊆P [0] then

Remove {k, l} from E
break

C′ := P [0],C′′ := P [lst]
merge(J, P [0], P [lst]), update N
P ← P [1 . . . lst − 1], lst ← |P | − 1

procedure merge(FO jtree J, nodes Ci,Cj)
Ci ← Ci ∪ Cj , Gi ← Gi ∪ Gj

Remove Cj from V
for each k ∈ nbs(j) do

Remove {j, k}, add {i, k}, k 
= i, in E

{Epid,Nat(D),Man(W )}, C2 = {Epid, Sick(X), T ravel(X)}, and C3 =
{Epid, Sick(X), T reat(X,T )}. S12 = {Epid} and S23 = {Epid, Sick(X)} are
the separators. Parfactor g0 appears at C1 but could be in any local model as
rv(g0) = {Epid} ⊂ Ci∀i ∈ {1, 2, 3}.

During construction, LJT assigns the parfactors in G to local models (cf.
[4]). LJT enters E into each parcluster Ci where rv(E) ⊆ Ci. Local model Gi at
Ci absorbs E as described above. Message passing distributes local information
within the FO jtree. Two passes from the periphery to the center and back
suffice [12]. If a node has received messages from all neighbours but one, it
sends a message to the remaining neighbour (inward pass). In the outward pass,
messages flow in the opposite direction. Formally, a message mij from node i
to node j is a set of parfactors, with arguments from Sij . LJT computes mij

by eliminating Ci \ Sij from Gi and the messages of all other neighbours with
LVE. A minimal FO jtree enhances the efficiency of message passing. Otherwise,
messages unnecessarily copy information between parclusters. To answer a query
Qi, LJT finds a subtree J ′ covering Qi, compiles a submodel G′ of local models
in J ′ and messages from outside J ′, and sums out all non-query terms in G′

using LVE.
Currently, LJT partially handles adaptive inference. LJT assumes a constant

G for which it builds an FO jtree J , reusing J for varying E and Q. If G or E
change, LJT restarts with construction or evidence entering. However, changes
do not necessarily mean a completely new model or evidence set. LJT may
preserve J , local models, or messages in parts. Before presenting aLJT, we show
how to adapt an FO jtree.
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3 Adapting an FO Jtree to Model Changes

Changes may yield a structure change in a model G, which may cause a structure
change in an FO jtree J . All actions towards adapting J need to ensure that
J continues to be a minimal FO jtree and that local models still partition G.
This section looks at adding, deleting, or replacing a parfactor and ends with an
example.

Adding a parfactor g′ to G requires adding g′ to a local model to partition
G ∪ {g′}. Algorithm 1 includes pseudocode for adding g′ to J = (V,E). It
contains marking instructions relevant for aLJT. We assume that g′ contains at
least one PRV from V to yield one FO jtree. If the arguments in g′ appear in a
parcluster Ci, we add g′ to Gi. But, if g′ contains new PRVs Anew or if the old,
known PRVs in g′, Aold ← rv(g′) ∩ rv(V ), do not appear in a single parcluster,
there is no parcluster Ci s.t. rv(g′) ⊆ Ci. Thus, we adjust J until Aold ⊆ Ci for
some i and handle Anew appropriately.

Procedure adjust in Algorithm 1 arranges that Aold ⊆ Ci for some i in J .
adjust finds a set of parclusters N that cover the PRVs in Aold and merges N
into a single parcluster to fulfil Aold ⊆ Ci by successively merging parclusters
Ci,Cj ∈ N . Merging is a union of parclusters, local models, and neighbours.
Since J is acyclic, there exists a unique path P from Ci to Cj without i and j,
which forms a cycle if |P | > 1, which adjust resolves: It searches for a separator
Skl of two parclusters Ck,Cl on P s.t.

Skl ⊆ C′ ∧ Skl⊆P [lst] ∨ Skl ⊆ C′′ ∧ Skl⊆P [0] (1)

where C′ and C′′ are Ci and Cj in the beginning, i.e., information on Skl reaches
Ck from one end and Cl from the other end. If Skl exists, adjust deletes the
edge {k, l} to break the cycle, which keeps the parclusters on P small. Otherwise,
it continues along P , merging parclusters at the path ends if the search for a
separator fulfilling Eq. 1 fails. For details, see Algorithm 1.

After adjusting J , there is a parcluster Ci s.t. Aold ⊆ Ci. If g′ contains only
Aold, procedure add adds g′ to local model Gi at Ci. If g′ contains new PRVs,
it distinguishes between Aold ⊂ Ci and Aold = Ci. In the former case, PRVs in
Ci do not appear in rv(g) and vice versa. add adds a new node Ck ← rv(g′)
with Gk ← {g′} as a neighbour to i. In the latter case, Ci is a strict subset of the
PRVs in g. add adds the new PRVs to Ci and g′ to Gi. Now, the local models
partition G′.

Deleting a parfactor g from G requires removing g from the local model Gi

in which g appears. Afterwards, the local models partition G\{g}. Algorithm 1
contains pseudocode for deleting g from J . After removing g from Gi, it min-
imises Ci w.r.t. Adel ← rv(g) \ rv(Gi). The procedure deletes a PRV A ∈ Adel

from Ci if no two separators contain A, i.e., ∀j, k ∈ nbs(i) : A �∈ Sij ∧ A �∈ Sik.
If now Ci ⊆ Cj for a neighbour Cj , min merges Ci and Cj to keep J minimal.

Replacing a parfactor g with a parfactor g′ in G boils down to adding g′ and
then deleting g. If rv(g) = rv(g′), adding g′ and deleting g does not touch J . If
rv(g) ⊆ rv(g′), adding g′ yields J ′, followed by deleting g from J ′, which does
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not change J ′. First deleting g may lead to removing PRVs and superfluously
merging parclusters. If rv(g′) ⊆ rv(g), adding g′ before deleting g uses that there
exists a parcluster Ci with rv(g′) ⊆ Ci as rv(g) ⊆ Ci. If the arguments of g
and g′ overlap otherwise, first adding g′ and then deleting g avoids unnecessarily
deleting PRVs and merging parclusters for the overlap PRVs. If both parfactors
do not share any PRVs, replacing g with g′ naturally decomposes into adding g′

and deleting g.

Epid Nat(D)Man(W )C1

Epid Sick(X) Travel(X)C2

Epid Sick(X) Treat(X,T )C3

Epid Sick(X)Work(X,T )C4

{Epid}

{Epid, Sick(X)}

{Epid, Sick(X)}

Epid A1 A2 C5

A1 A3 C6

A1 A4 C7

{Epid}

{A1}

{A1}

Fig. 3. Adapted and extended FO jtree

Epid Nat(D)Man(W )C1

Epid Sick(X) Travel(X)C2

Epid Sick(X) Treat(X,T ) A1 A3C3

Epid Sick(X)Work(X,T ) A1 A4C4

{Epid}

{Epid, Sick(X)}

{Epid, Sick(X), A1}

Epid A1 A2 C5

{Epid,A1}

Fig. 4. Adjusted FO jtree

To illustrate adaption, consider the FO jtree in Fig. 2. We add the parfac-
tor g4 = φ4(Epid, Sick(X),Work(X)) to Gex, where PRV Work(X) holds
if a person X works. For g4, the known PRVs are Epid and Sick(X)
which appear in C2 and C3. Assume Algorithm 1 chooses C3, which
contains a PRV not in g4, Treat(X,T ), while g4 contains a new PRV,
Work(X). Thus, Algorithm 1 adds a parcluster C4 = {Epid, Sick(X),
Work(X)}, G4 = {g4}. The left column of parclusters in Fig. 3 shows the result.

Next, we replace g2 with a parfactor g′
2 = φ′

2(Travel(X), Sick(X)) in Gex,
which means adding g′

2 to C2 and deleting g2. After removing g2 from G2,
Epid no longer appears in G2. But, Epid appears in both its separators and as
such, has to remain in C2 to connect the appearance of Epid from C1 to C3.
If g′

2 = φ′
2(Epid, Travel(X)), Algorithm 1 would delete Sick(X) as Sick(X)

appears only in one separator. If g′
2 = φ′

2(Epid, Sick(X)), Algorithm 1 would
delete Travel(X) and merge C2 with C3.

To illustrate adjusting an FO jtree, let the adapted FO jtree have three more
parclusters with PRVs A1, A2, A3, and A4, shown in Fig. 3. We add a parfactor
g′ = φ′(A4,Work(X)). adjust merges C4 and C7 into C′

4, causing a cycle.
P [0] and P [lst] are C3 and C6, i.e., the neighbours of 4 and 7 on the cycle/path.
No separator appears in C4 and C6 or C7 and C3 (Eq. 1 not fulfilled). adjust
merges C3 and C6 into C′

3. Separator S25 = {Epid} appears in C′
3 and C5.

adjust deletes edge {2, 5}, forming an acyclic FO jtree as seen in Fig. 4. At C′
4,

Algorithm 1 adds g′ to the local model.
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4 LJT for Adaptive Inference

The extended algorithm aLJT performs adaptive inference for more efficient
QA than by restarting from scratch. aLJT basically still consists of the steps
construction, evidence entering, and message passing before it answers queries.
Each step proceeds in an adaptive manner w.r.t. changes in input model G or
in evidence E given an FO jtree J . Without an FO jtree, the steps are identical
to the LJT steps.

Algorithm 2 shows a description of aLJT for J , referring to the changes in
G and E by ΔG and ΔE. Line 1 contains the adaptive construction step, which
adapts J to ΔG according to Algorithm 1. To track changes, aLJT marks a
parcluster Ci if a local model changes s.t. the messages become invalid. Based
on the marks and ΔE, aLJT performs adaptive evidence entering and message
passing, answering queries as before. Lines 2 to 4 show adaptive evidence entering
and lines 5 to 9 adaptive message passing. Lines 10 to 12 contain the steps to
answer a query Qi from a set of queries {Qi}mi=1, as in LJT. Next, we look at
the adaptive steps, followed by an example.

Construction: aLJT handles changes ΔG as in Algorithm 1 with J as input and
ΔG referring to parfactors to add, delete, or replace. When adding a parfactor
g, aLJT marks the parcluster Ci that receives g. If adjusting J for known PRVs,
aLJT marks all parclusters on the cycle between two parclusters Ci,Cj that it
merges. The merged parcluster C′

i has two messages mxi,myj from its neighbours
on the cycle with both information about the parclusters on the cycle and with
information from Gi (in myj) and Gj (in mxi), which is already contained in
G′

i ← Gi ∪ Gj . A similar situation occurs for all cycle parclusters, requiring new
messages. Merging adjacent parclusters does not require a mark since messages
between them are no longer considered and all other messages remain valid.
When deleting a parfactor from the local model of Ci, aLJT marks Ci. aLJT
replaces a parfactor by adding and deleting, which includes marks.

For changes in potentials, ranges, or constraints, aLJT replaces parfactors.
For domain changes of a logvar X, aLJT marks a parcluster Ci if X ∈ lv(Ci)
and its constraint w.r.t. X is �. After incorporating all changes, parclusters are
properly marked.

Evidence Entering: Adaptive entering deals with evidence at marked parclusters
and changes ΔE in evidence. In the first case, marked parcluster only need
evidence entering if new parfactors or domain changes affect it. If evidence does
not change, only new parfactors or parfactors affected by domain changes need
to absorb evidence.

In the second case, aLJT enters evidence at all parclusters Ci affected by
ΔE, which refers to changes in the form of additional or retracted evidence
or new observed values. For additional evidence, aLJT uses the current local
model Gi and enters the additional evidence. For retracted evidence, aLJT resets
parfactors where the evidence no longer appears, which may require reentering
evidence if evidence for a PRV is partially retracted. For new values, aLJT resets
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parfactors that have absorbed the original evidence. These parfactors absorb the
new values. If ΔE leads to changes in Gi, aLJT marks Ci.

Message Passing: aLJT maintains the same two-pass scheme starting at the
periphery going inward and returning to the periphery outward. Inward, if a
parcluster has received messages from all neighbours but one, it sends a message
to the remaining neighbour. Outward, after a parcluster has received a message
from the remaining neighbour, it sends messages to all other neighbours. The
scheme preserves the ability for an automatic execution. After message passing,
aLJT starts answering queries.

The adaptive part occurs during message calculation. A parcluster Ci calcu-
lates a new message if messages have become invalid during adjusting or if Ci

has to distribute changes in its local model or received messages, else, it sends
an empty message. The receiver replaces the old message with the new message
and marks it changed (if not empty) or marks the old message as unchanged.
Formally, Ci calculates a message mij for neighbour Cj if Ci itself is marked
or if a message from a neighbour is marked as changed. Then, Ci computes mij

using LVE with G′ ← Gi ∪ ⋃
k∈nbs(i),k 
=j mki as model (messages irregardless of

whether they are marked changed) and Sij as query.

Algorithm 2. LJT for adaptive inference answering queries {Qi}mi=1 given an
FO jtree J and changes ΔG for model G and ΔE for evidence E
1: Adapt J to ΔG according to Alg.1 � marks parclusters
2: for each parcluster Ci in J do
3: if Ci marked or affected by ΔE then
4: Handle evidence at Ci, mark Ci

5: while ∃Ci ready to send message mij to Cj in J do
6: if Ci marked or has marked message then
7: Send newly computed mij , mark mij at Cj as changed
8: else
9: Send empty message, mark mij at Cj as unchanged

10: for each query Qi do
11: Extract submodel G′ from subtree J ′ that covers Qi

12: Answer Qi on G′ using LVE

As an example, consider the FO jtree in Fig. 4 with all its changes. All par-
clusters are marked except C1. Thus, the only empty message is m12. After
message passing, aLJT can answer queries for any randvar in gr(rv(G)). Next,
assume we add evidence about Nat(D) at C1, which leads aLJT to mark C1.
With no further changes, aLJT only needs to distribute the updated information
in G1. Thus, messages m53 and m43 from C5 and C4 to C3 are empty as well
as the messages from C3 over C2 to C1 as no change occurs in local models.
Message m12 from C1 to C2 is new. The new message received by C2 leads to
new messages from C2 to C3 and from C3 back to the leaf nodes C4 and C5.
After sending all messages, aLJT can answer queries again.
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Theoretical Discussion: aLJT and LJT have a runtime complexity linear in
domain sizes, which also holds for other lifted algorithms [6,19]. The speedup
comes in form of a factor as aLJT can avoid handling evidence for up to all
parclusters and save calculating up to half of the messages after a change. Next,
we argue why aLJT is sound.

Theorem 1. aLJT is sound, i.e., computes a correct result for a query Q on
an FO jtree J after adapting to changes in input model G and evidence E.

Proof sketch. We assume that LJT is correct, yielding an FO jtree J , fulfilling
the FO jtree properties, which allows for local computations [18]. Further, we
assume that LVE is correct, ensuring correct local computations during evidence
entering, message passing, and query answering. aLJT first adapts J , which con-
sists of adding, deleting and replacing parfactors. We briefly sketch how to prove
that adapting J outputs an FO jtree again: we follow the changes in J showing
that J remains an FO jtree. For the changes regarding adding, extending, or
deleting a parcluster, it is straightforward to see that J ′ still fulfils the prop-
erties. The main part concerns the adjust procedure, which relies on J being
acyclic and thus, causing at most one cycle between two parclusters. Breaking
the cycle then ensures the FO jtree properties. Thus, adaptive construction out-
puts an FO jtree with marked parclusters. Adaptive evidence entering enters the
new evidence version at all parclusters covering evidence and re-enters evidence
at parclusters with changed local models, ensuring a correct evidence handling
at all parclusters. Adaptive message passing distributes updated information
whenever changed information arrives or local information has changed. With
messages and local models updated, aLJT uses local models and messages to
correctly answer Q using LVE. ��

5 Empirical Evaluation

We have implemented prototypes of (a) LJT, named ljt and aljt here.
Taghipour provides an LVE implementation (https://dtai.cs.kuleuven.be/
software/lve), named lve. We fixed some lines in lve for queries with more
than one grounded logvar. We do not include ground algorithms as we have
already shown the speed-up by lifting (e.g., [5]).

The evaluation has two parts. First, we look at runtimes for Gex under
changes, focussing on how fast the programs provide answers again after consec-
utive changes. Second, we look at runtimes for the individual steps of LJT and
aLJT for varying models G of sizes |G| ranging from 2 to 1024 under a model
change (adding a parfactor) and an evidence change (adding new evidence).

5.1 Consecutive Changes

This first part concerns three consecutive changes and two queries each. As input,
we use Gex with random potentials. We set |D(X)| = 1,000 and |D(.)| = 100
for the other logvars, yielding |gr(Gex)| = 111,001. Evidence occurs for 200

https://dtai.cs.kuleuven.be/software/lve
https://dtai.cs.kuleuven.be/software/lve
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instances of Sick(X) with the value true. There are two queries, Sick(x1000) and
Treat(x1, t1). The consecutive changes for Gex, based on the adaption examples,
are (i) adding parfactor φ(Epid, Sick(X),Work(X)) (referred to as model G1

ex),
(ii) replacing g2 with parfactor φ(Sick(X), T ravel(X)) (referred to as model
G2

ex), and (iii) adding as evidence Work(X) = true for 100 instances of X
(referred to as model G3

ex). The X values are a subset of the X values in the
Sick(X) evidence. After each change, the programs answer both queries again.
We compare runtimes for inference averaged over five runs. Runtimes for ljt
and aljt include construction, evidence entering, message passing, and query
answering. Runtimes for lve consist of query answering.

Figure 5 shows runtimes in seconds [s] accumulated over all four models for
lve (square), ljt (triangle), and aljt (circle). The vertical lines indicate when
the programs have answered both queries, after which lve and ljt proceed with
the next model, while aljt starts with adaption. For a model, the points on the
ljt and aljt lines mark when an individual step is finished. lve takes longer
than both LJT versions, showcasing the advantage of using an FO jtree. After
only two queries, ljt and aljt have already offset their overhead and provide
answers faster than lve.

For Gex, ljt and aljt have the same runtimes since their runs are identical.
As Gex incrementally changes, aljt displays its advantage of adaptive steps
in contrast to ljt. Starting with G1

ex, aljt provides answers faster than ljt.
Before ljt has completed message passing, aljt has already answered both
queries. Especially message passing is faster as aljt does not need to compute
half of the messages ljt computes. Construction is slightly faster. Evidence
entering does not take long for both programs. But, evidence usually leads to
longer runtimes for query answering compared to no evidence for LVE and LJT
as the necessary splits lead to larger models. Since G3

ex contains more evidence,
all runtimes increase compared to the previous models.

aljt fast reaches the point of answering queries again, providing answers
more timely than the other two programs. As each change provides the possibility
for aljt to save computations, leading to savings in runtime, the savings add
up over a sequence of changes. Thus, performing adaptive inference pays off.

5.2 Step-Wise Performance

This second part looks at runtimes of the individual steps of LJT and aLJT given
models of varying size. The model sizes start at 2 and double until they reach
1,024. The first model is G2 ∪ G3 from the FO jtree of Gex. The second model
is Gex. For the other models, we basically duplicated the current G, starting
with Gex, renamed the PRVs and logvars of the duplicate, and connected the
original part with the copied part through a parfactor. The largest model has
1,024 parfactors and logvars and 3, 072 PRVs, resulting in an FO jtree with 770
parclusters. The largest parcluster contains 256 PRVs. Technical remark: The
maximum parcluster size is larger than need be due to the heuristic the construc-
tion is based on. The largest parcluster contains all PRVs without parameters,
because the heuristic leads the (a)LJT implementations to handle all parfactors
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Fig. 5. Runtimes [s] accumulated over
four models. Vertical lines mark the
end of QA for the current model. Points
on lines indicate the steps of (a)LJT.

Fig. 6. Runtimes [ms] of the (a)LJT
steps. X-axis: increasing |G| from 2 to
1,024. Both axes appear on log scale.
Points are connected for readability.

without logvars separately at the beginning, resulting in one large parcluster as
the parameterless PRVs also appear in all other parts of the model.

The domain sizes for all logvars are set to 1,000, leading to grounded model
sizes, ranging from 1,001,000 to 513,256,256. A part of the model receives evi-
dence for 50% of the instances of one PRV. We compare runtimes of the corre-
sponding LJT and aLJT step for the following settings: (i) Add a parfactor with
a new PRV. (ii) Enter new evidence to an unchanged model. (iii) Pass messages
after changes in a model. Reentering known evidence after changes in a model
and passing messages after changes in evidence have shown similar runtimes to
settings (ii) and (iii).

Figure 6 shows runtimes in milliseconds [ms] of ljt and aljt averaged over
five runs for the three settings. The triangles and crosses mark ljt, while the
circles and stars mark aljt. The hollow marks refer to construction/adaption,
the cross and star marks to evidence entering, and the filled marks to message
passing. In all three settings, aljt is faster than ljt and both performing similar
given larger models. The curves have a similar shape but are on a different level
if domain sizes are different to 1,000.

For construction (hollow marks), aljt is two to three orders of magnitude
faster than ljt (0.0024 in average). For evidence entering (cross/star marks),
the savings are even higher: aljt is faster than ljt by more than three orders
of magnitude (0.0004 in average). Evidence handling appears to be constant in
this setup. Since LVE has to perform one split per evidence PRV independent
of the domain sizes and the evidence is restricted to one part of the model,
evidence handling does not depend on the model size. Message passing (filled
marks) shows only a clear speedup for smaller models. The first half of the
models allows for aljt to be one order of magnitude faster than ljt (0.0955 in
average). For the larger models, the factor of the speedup lays between 0.25 and
0.79. Concerning providing an answer to a query after a change, runtimes are
basically a sum of the previous steps plus the time for answering a query, which
takes around 100 ms. Since message passing dominates in the overall performance
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of (a)LJT with only one query, the overall runtimes resemble the runtimes of
message passing.

Overall, aljt runtimes are faster by a factor ranging from 0.003 and 0.5 for
such models. In the first two steps, aLJT is two orders of magnitude faster with
changes in evidence and model restricted to certain parts of an FO jtree. Con-
sidering the first part of the evaluation, savings add up given frequent changes.
In summary, performing adaptive inference pays off as aljt is able to provide a
faster online QA than ljt.

6 Conclusion

We present aLJT, an adaptive version of LJT, which incorporates incremental
changes in its input model or evidence efficiently. We specify how to adapt an
FO jtree when deleting, adding, or replacing parts of a model. We formalise
under which conditions evidence entering and new messages are necessary. Given
the adaptive steps, aLJT reduces its static overhead for construction, evidence
entering, and message passing under gradual changes compared to LJT. aLJT
allows for fast online inference for answering multiple queries, minimising the
lag in query answering when inputs change.

We currently work on learning lifted models, where we use aLJT as a subrou-
tine. Other interesting algorithm extensions include parallelisation, construction
using hypergraph partitioning, and different message passing strategies. Addi-
tionally, we look into areas of application to see its performance on real-life
scenarios.
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Abstract. Communicating agents in open environments such as the
semantic web face the problem of inter-ontological ambiguity, i.e., the
problem that some agent uses a (constant, role or concept) name differ-
ently than another agent. In this paper, we propose a strategy for online
ambiguity resolution relying on the ideas of belief revision and reinterpre-
tation. The data structures guiding the conflict resolution are systems of
spheres, which, in particular, allow to select a resolution result amongst
other potential results. The paper defines operators for (iterated) rein-
terpretation based on systems of spheres and shows that they fulfill some
desirable set of properties (postulates).

Keywords: Belief revision · Spheres · Ontology · Ambiguity

1 Introduction

Ambiguous use of words is a typical phenomenon of natural languages (next
to others such as vagueness, anaphora etc.) that may cause misunderstand-
ings within communicating humans. Similar problems occur also within artificial
agents communicating in open environments such as the semantic web. Though
artificial agents usually rely on formal languages one cannot assume that they
rely on the same ontology. Hence, instead of following the unrealistic aim of one
ontology for all agents, agents should be equipped with an online mechanism for
identifying and resolving conflicts caused by ambiguous use of symbols.

In this paper we consider the situation of two communicating agents, where a
receiver agent holds an ontology and receives (one-after-one) bits of information
from a sender agent, holding a different but kindred ontology. We consider a
class of operators that use the idea of reinterpretation for the resolution of logical
conflicts [2,4,6]: The meaning of the symbol as used in the ontology is changed
by broadening or weakening its extension such that the conflict is resolved, and
the different meanings are interrelated by bridging axioms.

The possible ways in which the receiver’s ontology could be changed has to
be constrained declaratively such that only “rational” types of changes results.
This idea was one of the corner-stones of the rationality postulates for revision
operators as developed in the pioneering work of AGM (Alchourron, Gärdenfors,
Makinson) on belief revision [1]. One rationality postulate requires that the
outcome of the change deviates only minimally from the original knowledge
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 501–506, 2018.
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base. In case of AGM the knowledge base is a logically closed set of sentences
called belief set, in this paper the knowledge base is an ontology.

Usually, there is more than a single “minimal” change result, hence the
change has to be supported by some data structure that allows to select a unique
result. In the literature different forms of such structures have been considered,
e.g., epistemic entrenchment relations, preference orders over models, selections
functions in partial meet operators etc. The kind of data structure that was con-
sidered in [4]—and that is also in the focus of this paper—are systems of spheres
as introduced by Grove [3] and used in prototype revision in [8].

In this paper we build on the general idea of [4] using systems of spheres for
changing concepts by reinterpretation and we extend the operators of [4] to deal
with iterated reinterpretation. We show that (iterated) sphere-based reinterpre-
tation operators enjoy most of the properties one would expect from a rational
semantic integration operator by considering the classical AGM-postulates [1]
as well as other postulates that fit the integration scenario mentioned above.

A longer version of this paper can be found at https://tinyurl.com/y8n3p6zo.

2 Example

Here and in the following we assume familiarity with description logics (DLs). A
receiver agent is the owner of the following ontology O = 〈O,Vp,Vi〉 where O is
a set of tbox and abox axioms over Vp ∪ Vi, Vp is a public vocabulary, in which
agents communicate, and Vi is the internal vocabulary of the receiver agent.

O = {Student � ¬Researcher ,Researcher(peter)} α = Student(peter)

O says that no student is a researcher and that Peter is a researcher. The infor-
mation α, stemming from a trustworthy sender, has to be integrated into O. It
says that Peter is a student. Information α leads to a logical conflict with the
ontology. And hence a change of the ontology is triggered.

Reinterpretation traces back the conflict between O and α to different read-
ings of the concept symbol Student or the constant peter . We consider only the
reinterpretation of concept symbols, hence Student has to be reinterpreted.

The outcome of sphere-based reinterpretation is given in the following:

O�Sα = {Student′ � ¬Researcher ,Researcher(peter)} ∪ (1)
{Student′ � Student} ∪ (2)
{Student � Student′ � Researcher} ∪ (3)
{Student(peter)} (4)

As the receiver trusts the sender, it adopts the sender’s reading of “student”
and hides its own reading in the internal vocabulary as Student′. As the notions
are assumed to be similar, they are related by two bridging axioms: the first
(line (2)) is an upper bound for Student′, stating that Student′ is a subconcept
of Student. The second one (line (3)) is an upper bound for Student.

https://tinyurl.com/y8n3p6zo
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In order to motivate the second bound let us write it the equivalent form
{Student � ¬Researcher � Student′}. This axiom says that a Student (student
in the sender’s sense) is a Student′ (student in the receiver’s sense) except for
the case that it is also a researcher. The concept Researcher which expresses the
exception and hence the difference between Student and Student′ is found by
exploiting the ontology for a compatible conceptual representation for the con-
stant peter involved in the conflict. In order to find this conceptual representation
the reinterpretation operator extracts the most specific concept mscO(peter) for
peter and than does a form of concept contraction based on spheres: it weakens
the original concept Student in the ontology such that it does not contain one of
the conflicting properties of peter, mentioned in mscO(peter), anymore. That is,
the student concept is contracted with the negation of mscO(peter). The result
of this is exactly the upper bound Student′ � Researcher for Student.

3 Revision and Contraction of Concepts

The reinterpretation operators considered in this paper are based on the revision
and contraction of (atomic or complex) DL concepts as defined in [4].

Let O = 〈O,Vp,Vi〉 be an ontology. Let Vrel ⊆ Vi∪Vp be a subset of the whole
vocabulary, called the relevant vocabulary. It is possible to define a Tarskian
consequence operator C⇑

O = (C)⇑
O,Vrel

on the set of concepts C over conc(Vrel).
(See long version of this paper.) A set X ⊆ conc(Vrel) is called consistent iff ⊥ /∈
X. X ⊆ conc(Vrel) is maximally (O,Vrel)-consistent iff X is consistent, (O,Vrel)-
closed and inclusion maximal with this property. The set of maximally (O,Vrel)-
consistent sets X is denoted MO,Vrel

. Let MO = MO,(V(O)∩Vi)∪Vp
. Intuitively,

MO denotes the set of all “possible objects” in ontology O. The “dynamics” of
possible objects under changing axioms, vocabularies, resp. are captured by the
following propositions.

Proposition 1. Let O1 = 〈O1,Vp,Vi〉, O2 = 〈O2,Vp,Vi〉 and V ⊆ Vp∪Vi. Then
O1 ⊆ O2 entails MO2,V ⊆ MO1,V .

Proposition 2. Let O = 〈O1,Vp,Vi〉 be an ontology, V1,V2 ⊆ Vp ∪ Vi be
vocabularies and assume that the consequence operator (·)⇑

O,Vi∪Vp
fulfills the

interpolation property. If V1 ⊆ V2, then for the injective function FO,V1,V2 :

MO,V1

inj−→ P(MO,V2); X → FO,V1,V2(X) = {Y ∈ MO,V2 | Y ⊇ X} it holds that
MO,V2 =

⊎
X∈MO,V1

FO,V1,V2(X).

For concept representation C, i.e., a set of concepts, let [C]O = {X ∈ MO | C ⊆
X} be the set of possible objects X ∈ MO that are not in conflict with C. This
adapts Grove’s model bracket [3]. For a concept C we let [C]O abbreviate [C⇑

O]O.
With this machinery we recapitulate the notion of a system of spheres of [4].

Definition 1 ([4]). For an ontology O = 〈O,Vp,Vi〉 and a subset W ⊆ MO a
family of sets S ⊆ P(MO) is called a system of spheres (for short SoS) for W
in O iff the following conditions are fulfilled: 1. S is totally ordered w.r.t. set
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inclusion; 2. W is inclusion minimal in S; 3. MO is inclusion maximal in S; for
all concepts C the following holds: If there is a sphere S ∈ S with [C]O ∩ S �= ∅,
then there is an inclusion minimal sphere Smin ∈ S with [C]O ∩ Smin �= ∅. Let
cS denote the function that selects for each [C]O the minimal sphere with non-
empty intersection with [C]O (which must exist due to condition 4.) One sets
cS(∅) = MO. Furthermore, let fS([C]O) = cS([C]O) ∩ [C]O.

For each SoS S one can define a dual chain of concept representations TS =
{
⋂

S | S ∈ S}. Because in the following examples concept representations
⋂

S ∈
TS are equivalently describable by concepts CS due to ((

⋂
S)⇑

O = (KS)⇑
O), we

will describe a SoS by the set of concepts {CS | S ∈ S}. Sphere-based revision
and contraction of concepts in an ontology are defined as follows.

Definition 2. Let O = 〈O,Vp,Vi〉 be an ontology, C be an O-closed concept
representation and D a concept from conc((V(O) ∩ Vi) ∪ Vp). Furthermore let S
be a SoS for [C]O in O. Then sphere-based revision of O-closed concept repre-
sentations @S and sphere-based contraction of O-closed concept representations
�S are defined by C @S D =

⋂ (
fS([D]O)

)
, C �S D = (C @S ¬D) ∩ C, resp.

Revision and contraction of single concepts are defined by C @S D = C⇑
O @S D,

C �S D = C⇑
O �S D resp.

As the O-closure operator (·)⇑
O is a Tarskian consequence operator, one can

prove that @S and �S fulfill exactly those properties—adapted from sentences
to concepts—that are fulfilled by the operators of [3].

4 Sphere-Based Reinterpretation

Using �S we now formally define sphere-based reinterpretation operators. Their
input is an ontology and a trigger information, that is a concept-based literal,
i.e. has the form K(a) or ¬K(a) for an atomic concept symbol K, for short: the
form K̂(a). Their output is a new ontology. The input ontology O is equipped
with a family of many SoS: For all concept symbols K ∈ Vp there is a SoS [K]O,
and a SoS [¬K]O for its negation.

Definition 3. A collection of systems of spheres S of O = 〈O,Vp,Vi〉 for
concept-based literals over Vp, for short 〈S(K̂)〉K̂∈CLit(Vp)

, is a family of SoS

for each set of models [K̂]O of a concept literal K̂ over Vp. A pair 〈O,S〉 of an
ontology O and a collection of SoS for O is called structured ontology.

〈O1,S
1〉 and 〈O2,S2〉 are called equivalent, for short 〈O1,S1〉 ≡̃ 〈O2,S2〉 iff O1 ≡

O2 and additionally the collections of SoS are identical, S1 = S2.
The definition of sphere-based reinterpretation operators (Definition 4) relies

on weak operators for reinterpretation defined in [2] as follows:

O ⊗ K(a) =
{

O ∪ {K(a)} if O ∪ {K(a)} is consistent,
O[K/K′] ∪ {K(a),K ′ � K} else

O ⊗ ¬K(a) =
{

O ∪ {¬K(a)} if O ∪ {¬K(a)} is consistent,
O[K/K′] ∪ {¬K(a),K � K ′} else
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Definition 4. Let 〈O,S〉 be a structured ontology. Sphere-based reinterpretation
�S for concept-based literals is defined by

O�SK̂(a) =

{
O ∪ {K̂(a)} if O ∪ {K̂(a)} is consistent,
O ⊗ K̂(a) ∪ {K̂ � C | C ∈ (K̂ �

S(K̂) ¬mscO(a))[K/K′]} else

The properties of these operators are listed in the following theorem. Some of
the postulates have already been discussed by [1] for belief revision. Other pos-
tulates (such as the postulate RI-right preservation) are postulates that express
desirable properties for semantic integration scenarios (see [5] for a discussion).

Theorem 1. For structured ontologies 〈O,S〉, 〈O1,S1〉, and 〈O2,S2〉 and
concept-based literals α and β the following holds:

1. If 〈O1,S1〉 ≡̃ 〈O2,S2〉 then (O1�S1α) ≡ (O2�S2α). (RI-left extensionality)
2. If α ≡ β, then (O�Sα) ≡ (O�Sβ). (RI-right extensionality)
3. O�Sα = O ∪ {α} iff O ∪ {α} �|= ⊥. (RI-vacuity)
4. α ∈ O�Sα (RI-success)
5. There is a substitution σ s.t. Oσ ⊆ O�Sα. (RI-left preservation)
6. There is a substitution σ s.t. ασ ∈ O�Sα. (RI-right preservation)
7. There is a substitution σ s.t. O ⊆ (O�Sα)σ. (RI-left recoverability)
8. There is a substitution σ s.t. α ∈ (O�Sα)σ. (RI-right recoverability)
9. O�Sα |= ⊥ iff O |= ⊥. (RI-consistency)

As collections of SoS S are defined for a specific ontology O, they are not
necessarily also proper collections for the reinterpretation result O�Sα. In the
following we mitigate this problem by proposing an iterated sphere-based rein-
terpretation operator �S. We require SoS to fulfill a condition called (SW) that
strengthens the fourth condition on SoS according to Definition 1, requiring it to
be well-ordered. Adapting the terminology of [7], we call a collection of systems
of spheres well-behaved if it contains only well-ordered systems of spheres.

Let Ores = O�Sα be the result of reinterpretation with α = K̂(a) according
to the one-step sphere-based reinterpretation. The main challenge in defining
the follow-up sphere collection is the change of the vocabulary: some of the sym-
bols of the receiver’s ontology become private. In order to handle this vocab-
ulary dynamics we use function DynP(MO) −→ P(MOres

); S → Dyn(S) =⋃
F [S[K/K′]] ∩ MOres

relying on the function F from Proposition 2.

Definition 5. For O = 〈O,Vp,Vi〉 and α = K̂(a), let V1 = (V(O[K/K′]) ∩ Vi) ∪
Vp \ {K} and V2 = (V(O[K/K′]) ∩ Vi) ∪ Vp and F = FO,V1,V2 be the function
F (X) = {Y ∈ MOres,V2 | Y ⊇ X} defined in Proposition 2. Further assume
that S is a well-behaved collection of SoS w.r.t. O for concept-based literals over
Vp. The follow-up collection of spheres of Ores = O�Sα is defined as follows:
If O ∪ {α} �|= ⊥, then for all concept literals L̂ with L ∈ Vp the follow-up
SoS is defined as S

′(L̂) = {S ∩ MOres
| S ∈ S(L̂)}. If O ∪ {α} |= ⊥ and

if L �= K, then one sets S
′(L̂) = {Dyn(S) | S ∈ S(L̂)}. If O ∪ {α} |= ⊥

and L = K, then: S
′(K̂) = {[K̂]Ores} ∪ {Dyn(S) | S ∈ S(K̂)} and S

′(K̂) =
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{[K̂]Ores} ∪ {Dyn(K̂ �
S(K̂) ¬mscO(a))} ∪ {Dyn(S) | S ∈ S(K̂) and Dyn(S) ⊇

Dyn(K̂ �
S(K̂) ¬mscO(a))}. (Here we use the notation K̂ = ¬K if K̂ = K and

K̂ = K if K̂ = ¬K.)

The follow-up collection of systems of spheres S′ of Definition 5 are well-behaved.
An iterated operator is called stable [2] if after some step the outcomes of

the operator do not change anymore—assuming that the set of triggers in the
input sequence is finite. (Triggers may be sent more than once.) Sphere-based
revision reinterpretation is strong in the sense that it does not forget about the
reinterpretation history—and hence stability is not guaranteed.

Theorem 2. Iterated sphere-based reinterpretation operators are not stable.

For the proof one may use the same example as in [2, Theorem 7.15].

5 Conclusion

Following the general idea of reinterpretation for resolving conflicts caused by
inter-ontological ambiguities, this paper defined iterable reinterpretation opera-
tors that rely on the preference structure of systems of spheres and showed (at
least for the single-step case) that it fulfills some desirable properties.

Questions for future work are: What is a full characterization of iterated
sphere-based reinterpretation operators via postulates? What is the best way to
extend the approach to handle not only concept-based literals but also whole
triggering ontologies—using still systems of spheres?
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2. Eschenbach, C., Özçep, Ö.L.: Ontology revision based on reinterpretation. Log. J.
IGPL 18(4), 579–616 (2010)

3. Grove, A.: Two modellings for theory change. J. Philos. Log. 17, 157–170 (1988)
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Abstract. We propose a sparse Gaussian process model to approximate
full Gaussian process with derivatives when a large number of function
observations t and derivative observations t′ exist. By introducing a small
number of inducing point m, the complexity of posterior computation can
be reduced from O((t+ t′)3) to O((t+ t′)m2). We also find the usefulness
of our approach in Bayesian optimisation. Experiments demonstrate the
superiority of our approach.

Keywords: Sparse Gaussian process model
Bayesian optimisation · Derivative-based

1 Introduction

Gaussian process (GP) has been widely used for regression and classification
tasks. It is a Bayesian method which specifies a prior distribution on the latent
functions. Generic Gaussian process focuses on the observations of the function.
Recent works have shown that the model accuracy can be improved by not
only the function observations but also the derivative observations [1–6]. It is
straightforward to use GP to model the combination of function observations
and derivative observations due to the fact that the derivative of GP is still a
GP [3].

A practical limitation of GP with derivative observations is that its compu-
tation expense increases rapidly with the size of training set. We shall recall that
each derivative observation is a vector and each entry is a separate observation
for GP. So the number of total observations also scales with the dimension. Gen-
erally, GP with derivatives requires O((t + t′)3) time to compute the Cholesky
decomposition of a (t + t′) × (t + t′) covariance matrix, where t is the number of
function observations and t′ is the number of derivative observations. Therefore,
it becomes very difficult to apply GP with derivative observations to large scale
data sets. Similar limitation can also be found in the generic GP [7–11].

The focus of this paper is on deriving an efficient sparse GP model to approx-
imate the full GP with derivative observations while preserving its predictive
accuracy. We use a set of inducing variables, which contains the number of m
inducing points and m ≤ t. Firstly, we assume that the function observations and
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 507–518, 2018.
https://doi.org/10.1007/978-3-030-03991-2_46
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derivative observations are conditionally independent by giving a set of induc-
ing variables. Then the conditional distribution for a test point can be obtained
by integrating out the inducing variables. To further decrease the costly com-
putation, we introduce the fully independent conditional approximation where
function observations, derivative observations and test points have no any deter-
ministic relation on the inducing variables, so that we can ignore the covariance
but remain the variance. This work is the first to develop a sparse GP model
to approximate the full GP with derivative observations. The resultant sparse
GP model is named sparse Gaussian process with derivatives, requiring the time
O((t + t′)m2) for posterior computation. We have applied the proposed model
in regression and Bayesian optimisation [12] on large scale datasets. The exper-
imental results show the effectiveness of our proposed model.

2 Background

2.1 Gaussian Process

Gaussian processes [13] is a strategy of specifying prior distributions over the
space of smooth functions. The property of the Gaussian distribution allows
us to compute the predictive mean and variance in the closed form. A GP is
specified by its mean function μ(x) and covariance function k(x,x′). A sample
from a Gaussian process is a function given as

f(x) ∼ N (μ(x), k(x,x′))

where N is a Gaussian distribution and x denotes a D-dimensional vector. With-
out any loss in generality, the prior mean function can be assumed to be a zero
function making the Gaussian process fully defined by the covariance function.
A popular choice of kernel is the squared exponential function,

(x,x′) = σ2
fexp(−1

2
‖x − x′‖2

ρ2l
)

where ρl is the length scale, and σf is the amplitude.
Given a set of observations D = {xi, f i}t

i=1, the joint distribution of obser-
vations D and a new point {xt+1, ft+1} in GP is a multivariate Gaussian dis-
tribution [

f1:t

ft+1

]
∼ N

(
0,

[
K k
kT k(xt+1,xt+1)

])

where f1:t = {f(xi)}t
i=1, k =[k(xt+1,x1) k(xt+1,x2) . . . k(xt+1,xt) ], and K is

the kernel matrix given by

K =

⎡
⎢⎣

k(x1,x1) . . . k(x1,xt)
...

. . .
...

k(xt,x1) . . . k(xt,xt)

⎤
⎥⎦
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Then the predictive distribution of ft+1 can be computed as

P(ft+1|D1:t,xt+1) = N (μ(xt+1), σ2(xt+1))

with the predicted mean and variance

μ(xt+1) = kT K−1f1:t

σ2(xt+1) = k(xt+1,xt+1) − kT K−1k.

If the observation is a noisy estimation of the actual function value

y = f(x) + ξ

where ξ ∼ N (0, σ2
noise), the predicted mean and variance can be computed as

μ(xt+1) = kT [K + σ2
noiseI]−1y1:t

σ2(xt+1) = k(xt+1,xt+1) − kT [K + σ2
noiseI]−1k.

GP is prohibitive for large data sets because its training requires O(t3) time
due to the inversion of the covariance matrix, where t is the number of function
observations.

2.2 Sparse Gaussian Process

In sparse Gaussian process [9], it introduces a set of inducing observations Du =
{Mi, ui}m

i=1 where u = {ui}m
i=1 contains values of the function at the points

M = {Mi}m
i=1, knowing as inducing points. Given prior distribution p(u) =

N (u | 0, Km,m), the training conditional distribution of f1:t given u can be
written as

p(f1:t | u) = N (f1:t | Kt,mK−1
m,mu, Kt,t − Qt,t), (1)

where Kt,m is the covariance matrix between all observations and inducing
points and Km,m is the covariance matrix between all inducing points. Besides,
a shorthand notation Qa,b = Ka,mK−1

m,mKm,b is also introduced. Since u plays
the role of observations so that the posterior mean is written as Kt,mK−1

m,mu.
The covariance matrix has the form of the Kt,t minus a non-negative definite
matrix Qt,t which gives the measurement of how much information that u pro-
vides in f1:t. The test conditional p(ft+1 | u) is formed the same way with
Eq. (1) as

p(ft+1 | u) = N (ft+1 | Kt+1,mK−1
m,mu, Kt+1,t+1 − Qt+1,t+1), (2)

where ft+1 is a test point and Kt+1,m is the covariance matrix between the test
point and inducing points.

To recover p(f1:t, ft+1) we can simply integrating out u from the joint GP
prior p(f1:t, ft+1, u) as

p(f1:t, ft+1) =
∫

p(f1:t, ft+1, u) du =
∫

p(f1:t, ft+1 | u)p(u)du
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In the first stage of approximation, we make the assumption that f1:t and ft+1

are conditionally independent given u, so the joint distribution of them can be
written as

p(f1:t, ft+1) ≈ q(f1:t, ft+1) =
∫

q(f1:t | u)q(ft+1 | u)p(u)du

The sparse approximation is then derived by making additional assumptions
about the q(f1:t | u) and q(ft+1 | u).

2.3 Gaussian Process with Derivative Observations

The joint distribution of a function observation and a derivative observation is
analytically tractable as the derivatives of a Gaussian process is still a GP [3].
The joint distribution is given as

[
f

∇f

]
∼ N

(
0,

[
k[f,f ] k[f,∇f ]

k[∇f,f ] k[∇f,∇f ]

])
(3)

In terms of the squared exponential covariance function, the covariance
between function values and partial derivatives can be written as [1]

cov(f i, ∂fj

∂x
(j)
g

) = σ2
fexp(− 1

2

∑D
b=1 ρ−2

l (x(i)
b − x

(j)
b )2) × (ρ−2

l (x(i)
g − x

(j)
g ))

and covariance between partial derivatives is given as

cov( ∂fj

∂x
(i)
g

, ∂fj

∂x
(j)
h

) =

σ2
fexp(− 1

2

∑D
b=1 ρ−2

l (x(i)
b − x

(j)
b )2) × ρ−2

l (δgh − ρ−2
l (x(i)

h − x
(j)
h )(x(i)

g − x
(j)
g ))

where δgh = 1 if g = h, and δgh = 0 if g �= h.

Suppose we have extra derivative observations upon giving function obser-
vations D and we denote the set as D′ = {xj , ∇f j}t′

j=1, where∇f1,t′ =
{∇f(xj)}t′

j=1. Now using GP we can derive the posterior over a new function
value ft+1 at xt+1 when given a set of observations of the function values and a
set of derivative information. We use K̄[f 1:t,∇f 1:t′ ] to denote the joint covariance
matrix over a set of observations of function values and the derivatives. Then
the new joint distribution for [f1:t,∇f1:t′ , ft+1] is showing as

⎡
⎣ f1:t

∇f1:t′

ft+1

⎤
⎦ ∼ N

(
0,

[
K̄[f 1:t,∇f 1:t′ ] k̄

k̄T k(xt+1, xt+1)

])
(4)

3 Proposed Framework

Full GP with derivative observations becomes prohibitive when a large num-
ber of function observations and derivative observations exist due to the high
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computational cost. We propose a sparse model to approximate the full GP with
derivative observations while preserving the desirable properties of it. Firstly, we
derive our model named sparse Gaussian process with derivatives (SGPD). Then
we apply the proposed sparse method as the probabilistic model in Bayesian
optimisation.

3.1 Sparse Gaussian Process with Derivatives for Regression

Similar with sparse GP, we induce a set of variables u and use the same notations
as before. We can easily get the following equation by marginalizing out u

p(f1:t, ∇f1:t′ , ft+1) =
∫

p(f1:t, ∇f1:t′ , ft+1 | u)p(u)du (5)

Further we make the assumption that function observation, derivative observa-
tions and test points only depend on the inducing variables u. Then we can
rewrite the Eq. (5) as

p(f1:t, ∇f1:t′ , ft+1) =
∫

p(f1:t | u)p(∇f1:t′ | u)p(ft+1 | u)p(u)du (6)

Therefore we next show how to compute the conditional distributions p(f1:t | u),
p(∇f1:t′ | u) and p(ft+1 | u) using both exact expressions and approximate
expressions.

Given the prior p(u) = N (u | 0, Km,m), the exact expression for p(f1:t | u)
can be computed as

p(f1:t | u) = N (f1:t | Kt,mK−1
m,mu, Kt,t − Qt,t) (7)

where we recall Qa,b = Ka,mK−1
m,mKm,b. Similarly, the conditional distribution

for a test point {xt+1, ft+1} is

p(ft+1 | u) = N (ft+1 | Kt+1,mK−1
m,mu, Kt+1,t+1 − Qt+1,t+1) (8)

and the conditional distribution for derivative observations is

p(∇f1:t′ | u) = N (∇f1:t′ | Kt′,mK−1
m,mu, Kt′,t′ − Qt′,t′) (9)

It is noted that Kt′,m is the covariance matrix between derivative observations
∇f1:t′ and inducing variables u and Qt′,t′ = Kt′,mK−1

m,mKm,t′ .
There are several methods to approximate conditional distributions in

Eqs. (7, 8 and 9) and Joaquin and Carl [9] have provided a unifying view of
them. In our framework, we use the fully independent conditional (FIC) approx-
imation where training function observations, derivative observations and test
points are fully independent on u.
Now we can derive the approximate expression of p(f1:t | u) as

q(f1:t | u) = N (Kt,mK−1
m,mu, diag[Kt,t − Qt,t]) (10)
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where diag[Kt,t − Qt,t] is a diagonal matrix whose elements match the diag-
onal of Kt,t − Qt,t so that we only keep the variance information of function
observations themselves and ignore covariance between function observations and
inducing points. Then f1:t have no any deterministic relation on u. Likewise,
the approximate expression for p(ft+1 | u) can write as

q(ft+1 | u) = N (Kt+1,mK−1
m,mu, diag[Kt+1,t+1 − Qt+1,t+1]) (11)

and the approximated format for p(∇f1:t′ | u) is

q(∇f1:t′ | u) = N (Kt′,mK−1
m,mu, diag[Kt′,t′ − Qt′,t′ ]) (12)

By substituting Eqs. (10, 11 and 12) into Eq. (6) we can give the FIC approx-
imate joint distribution

q(f1:t, ∇f1:t′ , ft+1) = N
⎛
⎝0,

⎡
⎣ KQt Qt,t′ Qt,t+1

Qt′,t KQt′ Qt′,t+1

Qt+1,t Qt+1,t′ KQt+1

⎤
⎦

⎞
⎠ (13)

where KQt = Qt,t + diag[Kt,t −Qt,t], KQt′ = Qt′,t′ + diag[Kt′,t′ −Qt′,t′ ] and
KQt+1 = Qt+1,t+1 + diag[Kt+1,t+1 − Qt+1,t+1].
The posterior distribution of the test point {xt+1, ft+1} is a Gaussian distribu-
tion

f(xt+1) ∼ N (μ̃(xt+1), σ̃2(xt+1))

with mean and variance as

μ̃(xt+1) = Qt+1,tt′KFIC
t,t′

−1[f1:t,∇f1:t′ ]

σ̃2(xt+1) = Kt+1,t+1 − Qt+1,tt′KFIC
t,t′

−1Qtt′,t+1

where KFIC
t,t′ =

[
Qt,t + diag[Kt,t − Qt,t] Qt,t′

Qt′,t Qt′,t′ + diag[Kt′,t′ − Qt′,t′ ]

]
,

Qt+1,tt′ = [Qt+1,t, Qt+1,t′ ] which combines Qt+1,t and Qt+1,t′ into one matrix
and Qtt′,t+1 = QT

t+1,tt′ .
If the function observation is a noisy estimation of the actual function value,

the predicted mean and variance can be computed as

μ̃(xt+1) = Qt+1,tt′ [KFIC
t,t′ + [

σ2
noise

0 ]I]−1[y1:t,∇f1:t′ ]

σ̃2(xt+1) = Kt+1,t+1 − Qt+1,tt′ [KFIC
t,t′ + [

σ2
noise

0 ]I]−1Qtt′,t+1

Complexity Analysis. In full GP with derivatives the computational complexity
for training is O((t + t′)3) where t is the number of function observations and
t′ is the number of the derivative observations. The proposed method which
introduced a set of inducing points u, bring the complexity down to O((t+t′)m2),
where m is the number of inducing points and m ≤ t.
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3.2 Application to Bayesian Optimisation

Bayesian optimisation (BO) has two main components [14]. The one is to model
the latent function using Gaussian process as a prior. The other component
is to search the next point where to perform the experiment. The search for
the next point is guided by a surrogate function, called acquisition function.
Acquisition functions are designed to trade off exploitation and exploration. High
exploitation means the areas where the mean prediction for function values are
high. High exploration means the areas where the epistemic uncertainty about
the function values is high. There are different types of acquisition functions.
Popular ones include EI [15], PI [16] and UCB [17]. In this paper, we use EI as
the criteria.

Bayesian optimisation using Gaussian process as a prior can be extremely
costly when there is a large number of function observations and derivative
observations and it is because the size of the covariance matrix is too large.
Therefore, we replace the modeling part with our method SGPD so that the time
taken during optimisation will not increase regardless of the increasing number
of function and derivative observations. The proposed algorithm is showing in
Algorithm 1.

Algorithm 1. Bayesian Optimisation Using SGPD

Input data: D = {xi, f i}t
i=1, D′ = {xj , ∇f j}t′

j=1 and Du = {Mi, ui}m
i=1

1: for n = 1, 2,... do
2: Model SGPD using input data.
2: Find xt+1 by optimizing the acquisition function EI(x|D):

xt+1 = argmaxxEI(x|D)
3: Evaluate the objective function: yt+1 = f(xt+1) + ξ
4: Augment the observation set D = D ∪ (xt+1, yt+1),

D′ = D′ ∪ {x1:t+1′ , f 1:t+1′}
5: end for

4 Experiments

We evaluate our method on regression tasks and application of Bayesian opti-
misation. We compare the proposed method SGPD with the following baselines
for regression:

– Standard Gaussian process (StdGP)
– Sparse Gaussian process (SGP)
– Gaussian process with derivatives (GPD)

In Bayesian optimisation tasks, we only compare with StdGP and GPD. For all
GPs we use the SE kernel with the hyperparameters - the isotropic length scale
ρl = 0.8, signal variance σ2

f = 1 and noise variance σ2
noise = (0.01)2. In terms of
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the inducing variables selection, we use a randomly selected subset of function
observations as inducing points in all of our experiments.

We visualise the results for 1D function in Fig. 1. We use 30 function observa-
tions (t = 30) and their derivatives (t′ = 30) as training data and use 450 points
for testing. We randomly select 70% of t (21 points) as inducing points (Deriva-
tive observations will not be used as inducing points in all of our cases), then
compare our method with StdGP and GPD. The mean functions of 3 methods
look similar but the variance of our method SGPD has a very close format with
GPD.
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Fig. 1. The visualisation of 3 methods for regression on 1D function (a) standard
Gaussian process (b) sparse Gaussian process with derivatives and (c) Gaussian process
with derivatives.

4.1 Regression on Benchmark Functions

In regression tasks, we run each algorithm 50 trials with different initialisation
and report the mean square error (MSE). Within each trial of SGP and SGPD,
we run 50 times on randomly selecting subset to calculate the average MSE of
each trial. We test our algorithm on five benchmark functions below:

1. Function with multiple local optima-1D (1D).
2. Branin function-2D (2D).
3. Hartmann-3D (3D).
4. Hartmann-4D (4D).
5. Hartmann-6D (6D).

For different functions, we use the number of training and test data referring to
Table 1. The number of function observations t shows in column 2 while column
3 indicates the number of derivative observations t′ . We use derivative observa-
tions at each dimension so that t′ is equal to D ∗ t, where D is the dimensional
of the input space. We set the number of inducing points m as 70% of function
observations (t) for 1D and 2D functions while setting 50% for 3D, 4D and 6D
functions. We also set up an experiment to discover how our method performs
if we use all function observations as inducing points (m = t). We summarise
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the MSE of each algorithm in Table 2. For all experiments, GPD has shown
the best result since function observations and derivatives observations are fully
used. Our method SGPD closely approximates the GPD and shows a better
result than SGP as well as StdGP in all regression tasks. Besides, the setting of
m = t with our method achieves very comparable performance to GPD while
requiring less computational complexity. While requires less computational com-
plexity, the setting of m = t in SGPD achieves very comparable performance to
GPD. For example, GPD requires 300 function observations plus 1800 deriva-
tive observations in 6D case, but SGPD (m = t) only incorporates 300 function
observations.

Table 1. Functions for regression

Function observations Derivative observations Test points

1D 30 30 450

2D 200 400 800

3D 200 600 800

4D 300 1200 900

6D 300 1800 900

Table 2. Comparison of MSE results among each method for regression tasks.

StdGP SGP GPD

1D 4.81e-5± 1.23e-4 6.20e-5± 1.51e-4 (0.7t) 4.54e-6± 1.19e-5

2D 0.0164± 0.0200 0.0397± 0.0408 (0.7t) 6.80e-4± 0.0014

3D 0.0786± 0.0145 0.0787± 0.0145 (0.5t) 0.0319± 0.0051

4D 0.0453± 0.0064 0.0473± 0.0066 (0.5t)) 0.0106± 0.0024

6D 0.0176± 0.0038 0.0177± 0.0026 (0.5t)) 0.0053± 0.0016

SGPD SGPD (m = t)

1D 4.68e-5± 2.12e-4 (0.7t) 8.00e-6± 2.92e-5

2D 0.0114± 0.0145 (0.7t) 0.0014± 0.0022

3D 0.0368± 0.0072 (0.5t) 0.0338± 0.0052

4D 0.0401± 0.0079 (0.5t) 0.0131± 0.0030

6D 0.0162± 0.0019 (0.5t) 0.0092±± 0.0015

4.2 Experiments with Bayesian Optimisation

We apply our method on Bayesian optimisation for two benchmark functions:

1. Hartmann-3D, where x∗ = (0.1146, 0.5556, 0.8525) is the global minimum
location with function value of f(x∗) = −3.8628.
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2. Hartmann-4D, where x∗ = (0.1873, 0.1906, 0.5566, 0.2647) is the global min-
imum location with function value of f(x∗) = −3.1355.

We use EI as acquisition function and DIRECT [18] as optimiser to optimise
EI. We run each algorithm 30 trials with different initialisation and report the
simple regret and standard errors at the end. Simple regret is defined as r =
f(x∗)−f(x+) where f(x∗) is the global optimum and f(x+) = maxx∈{x1:t}f(x)
which is the current best value. Figure 2 plots the simple regret vs iteration for all
experiments. BO with GPD performs the best in all three algorithms. It is easy
to explain since all function observations and derivative observations have been
incorporated in the algorithm. In Fig. 2a, BO with our method SGPD using
100% function observations as inducing points outperforms BO with StdGP
along the entire process. Figure 2b demonstrates the result of using 50% function
observation as inducing points. Although our method performs similar to StdGP
at the beginning, but jump ahead after 23 iterations as more information come
into SGPD. But we should emphasize that the computational cost of SGPD is
less than both GPD and StdGP in this case. We also receive similar results for
Hartmann-4D, and illustrate in Figs. 2c and d respectively.
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Fig. 2. Simple regret vs iterations for (a) Hartmann-3D using 100% t as inducing
points (b)Hartmann-3D using 50% t as inducing points (c) Hartmann-4D using 100%
t as inducing points(d) Hartmann-4D using 50% t as inducing points.
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5 Conclusion

We propose a novel method for speeding up Gaussian process with derivatives
in the case of a large number of function observations and derivatives observa-
tions. We also investigate the usability of our method in large scale Bayesian
optimisation. For all experiments, our proposed approach closely approximate
full Gaussian process with derivatives. In future, we consider to automatically
estimate locations and number of inducing points and extend to other applica-
tions.
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Abstract. In observational studies, a key problem is to estimate the causal effect
of a treatment on some outcome. Counterfactual inference tries to handle it by
directly learning the treatment exposure surfaces. One of the biggest challenges
in counterfactual inference is the existence of unobserved confounders, which are
latent variables that affect both the treatment and outcome variables. Building on
recent advances in latent variable modelling and efficient Bayesian inference
techniques, deep latent variable models, such as variational auto-encoders
(VAEs), have been used to ease the challenge by learning the latent confounders
from the observations. However, for the sake of tractability, the posterior of latent
variables used in existing methods is assumed to be Gaussian with diagonal
covariance matrix. This specification is quite restrictive and even contradictory
with the underlying truth, limiting the quality of the resulting generative models
and the causal effect estimation. In this paper, we propose to take advantage of
implicit generative models to detour this limitation by using black-box inference
models. To make inference for the implicit generative model with intractable
likelihood, we adopt recent implicit variational inference based on adversary
training to obtain a close approximation to the true posterior. Experiments on
simulated and real data show the proposed method matches the state-of-art.

Keywords: Causal effect � Counterfactual inference � Latent variable models

1 Introduction

The problem of estimating the treatment effect of some intervention on the outcome is
fundamental across many domains [1, 2]. In biology, scientists conduct randomized
experiments to discover and measure the effect of genes on certain phenotypes; in
healthcare, patients need to known the effect of the medication on their health to decide
whether to take a particular medication or not; in economics, policy makers debate the
possible effect of job training on employees’ earning; and in marketing, what ad
companies are really interested is the causal effect of an online advertisement on
customers’ purchasing habits. Due to the widespread accumulation of data in these
fields, causal inference from observational data is gaining increasing research interest in
the data science and machine learning community.
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Denote the treatment space by T , the set of contexts by X , and the set of possible
outcomes by Y. For example, for an employee with covariates x 2 X , the set of
treatments T might be whether she joined a specific training program and the set of
outcomes might be Y ¼ 0; 10K½ � indicating her monthly salary in dollars. For an
individual x (e.g., an employee), let Yt xð Þ 2 Y be the potential outcome of x under the
treatment t 2 T . The fundamental problem of causal inference is that only one of
potential outcomes Yt xð Þ; t 2 T is observed for a given individualx. In the machine
learning literature, this kind of partial feedback is often called “bandit feedback” [3, 4].

Without loss of generality, we consider the case of a binary treatment set, i.e.,
T ¼ 0; 1f g, where t ¼ 1 indicates the individual is allocated into the “treated” group
and t ¼ 0 the “control” group. In this setting, the individual treatment effect ITE xð Þ ¼
Y1 xð Þ � Y0 xð Þ for individual x is of high interest. Knowing this quantity enables us to
choose the best treatment options and to give personalized recommendations. Based on
ITE, the average treatment effect, ATE ¼ Ex� p xð Þ ITE xð Þ½ � for a population with dis-
tribution p xð Þ quantifies the average treatment effect difference between the two
actions. Sometimes, we are only interested in the ATE for the treated group, i.e., the
average treatment effect on the treated, ATT ¼ Ex� p xð Þ ITE xð Þjt ¼ 1½ �.

The problem of causal effect estimation from observational data has been studied
extensively in the literature [5–9]. One of the most widely used approaches is coun-
terfactual inference, also known as potential outcome modelling. The main idea is:
given n samples Dobs ¼ xi; ti; yið Þf gni¼1, where the observed “factual” outcome
yi ¼ tiY1 xið Þþ 1� tið ÞY0 xið Þ, if we can unbiasedly learn the potential outcome model
Yt xð Þ ¼ h x; tð Þ using the observed data, the estimated ITE is then

dITE xið Þ ¼
yi � h xi; 0ð Þ; ti ¼ 1
h xi; 1ð Þ � yi; ti ¼ 0

�
ð1Þ

Therefore, the key is to learn the potential outcome function h x; tð Þ. In the literature,
Y0 xð Þ ¼ h x; 0ð Þ and Y1 xð Þ ¼ h x; 1ð Þ are also called the response surfaces. As a learning
problem, this is different from classic learning in that we never see the individual-level
treatment effect in the observations. For each unit, we only observe her response to one
of the possible treatments – the one she actually receives. This is called the funda-
mental problem of causal inference and is known in the machine learning literature as
“counterfactual learning” [5, 6] and “learning from logged bandit feedback (LFBF)” [3,
4] where we do not have access to the treatment assignment model of the observed
data. Because of the existence of unobserved confounders that affect both the treatment
assignment and the outcome, naively fitting the outcome model from observational data
is subject to confounding bias [1, 2].

To handle the confounding bias, recently, [7, 8] make a connection between
covariate shift and counterfactual inference and propose to learn a balanced repre-
sentation for the explicitly observed covariates. Specifically, they introduce a balancing
regularization using integral probability metric distance between the treatment and
control distributions. Alternatively, in this paper, we regard counterfactual inference as
a Bayesian latent-variable modeling problem, modeling the potential outcome model
and the treatment assignment mechanism simultaneously to handle the confounding
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bias. Moreover, the proposed latent-variable modelling framework takes advantage of
recent advance in deep generative modelling to model causal mechanisms with deep
neural networks. Compared with the balancing scheme, the proposed method avoids
the trivial derivation of generalization bounds as well as cross validation for hyper-
parameter tuning.

While adapting deep generative models for counterfactual inference has recently
been studied by [9], their method is based on VAEs, the posterior of latent variables
used in these methods is usually assumed to be a Gaussian distribution with diagonal
covariance matrix. This kind of inference model is quite restrictive and even contra-
dictory with the underlying truth, limiting the estimation of the causal coefficients as
well as the causal effects. To tackle this limitation, in this paper, we propose to take
advantage of implicit generative models to detour this limitation by using a black-box
inference model.

The reminder of this paper is organized as follows: in Sect. 2, we firstly introduce
preliminary knowledge on causal models and implicit models; details of the proposed
method are presented in Sect. 3; Sect. 4 illustrates our experiments on two benchmark
datasets; lastly, we conclude this paper and discuss further works in Sect. 5.

2 Preliminaries

In this section, we introduce two basic components of our proposed method introduced
in the next section: the structural causal models and implicit generative models.

2.1 Structural Causal Models

Structural causal models [10], or functional causal models, defined in Definition 1,
represent variables as deterministic functions of their parents and exogenous noises.
They take advantages of the functional causal semantics of structural equation models
(SEMs) [11] and the representation and reasoning power of Bayesian networks [12].

Definition 1 (structural causal model, SCM) [10]. A structural causal modelM is a
tuple V ;U;F;P uð Þð Þ that consists of (i) a set of observed endogenous variables
V ¼ V1; � � � ;Vnf g; (ii) a set of unobserved background (or exogenous) variables U;
(iii) a set of causal mechanisms F ¼ f1; � � � ; fnf g that determines the endogenous
variables V; and (iv) the joint distribution P uð Þ over the background variables U. Each
causal mechanism fi tells us the value of Vi 2 V given the value of all other variables,
i.e., Vi  fi PAi;Uð Þ;U�P uð Þ, where PAi�VnVi is called the parents of Vi.

In this definition, endogenous variables V are regarded as deterministic functions of
other variables and randomness comes from unobserved exogenous variables
U. Together with Pearl’s do-calculus and counterfactual notations [10], it permits us to
answer intervention and counterfactual questions. In this paper, we consider causal
models with the observed set V including a treatment variable t, an outcome variable y,
and some evidence variables x that act as proxies of the unobserved confounders z. The
corresponding causal graph (or data-generating process) is illustrated as in Fig. 1(a). In
this setting, Theorem 1 in [9] gives the identifiability condition of causal effect.
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2.2 Implicit Generative Models

Implicit models (aka implicit generative models, IGMs) [13] [14] capture an unknown
distribution by hypothesizing about its data-generating process. For a distribution p xð Þ
of observations x, we define a function g that takes in noise �� p �ð Þ and output x given
parameters h (including possible null set of parents),

x ¼ g �jhð Þ; �� p �ð Þ ð2Þ

The induced implicit density of x 2 S given h is

p x 2 Sð Þ ¼
Z

g �jhð Þ¼x2Sf g
p �ð Þd� ð3Þ

In an implicit generative model, the function g is usually a deep neural network that
is a universal approximator to any continuous function. By separating randomness
noise �ð Þ from the transformation (function g), implicit generative models imitate the
structural invariance of causal models [15]. A weakness of IGMs is that the integral in
Eq. (3) is typically intractable and does not admit a tractable likelihood, making the
inference of the parameters very difficult.

In its general form, an SCMM defined in Definition 1 is a non-parametric causal
model, and each structural equation in F is a nonlinear, nonparametric generalization of
the linear structural equation models (SEMs) [11, 16]. SCMs work regardless of the
type of equations, linear or nonlinear, parametric or non-parametric. That means, SCMs
provide us a framework to conduct causal modeling and reasoning. Existing simple
parametric models apply simple nonlinearities such as polynomials, hand-engineered
low order interactions between variables, and assume additive interactions with
Gaussian noise. Deep neural networks provide us rich models to encode the causal
mechanisms in high-dimensional complex causal systems. Recently, [15] proposed to
use implicit causal models (ICMs). Analogous to the well known approximator the-
orem of feedforward neural networks [17], they present a similar universal approxi-
mation theorem for using implicit models to approximate causal models, as formally
described in Theorem 2.

x

z

t y

x

t

y z

x

t

y z

Fig. 1. Panel (a) shows the underlying causal model (the generative model). Panel (b) the
inference model for within-sample observations. Panel (c) the inference model for out-of-sample
data. Solid nodes are observed and hollow nodes are unobserved.
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Theorem 2 (Universal Approximation). In an SCM M¼ V ;U;F; s uð Þð Þ, assume
each causal mechanism is a continuous function on the n-dimensional unit cube
f 2 C 0; 1½ �nð Þ. Let r be a non-constant, bounded, and monotonically increasing con-
tinuous function. For each causal mechanism f and any error d[ 0, there exist
parameters h ¼ a; b; bð Þ for a H layer neural network, where ah; bh 2 R and bh 2 R

n,
h ¼ 1; 2; . . .;H, such that the following function approximates f:

8v 2 0; 1½ �n g vjhð Þ ¼
XH
h¼1

ahr bTh vþ bh
� �

; g vjhð Þ � f vð Þj j\d

Besides the universal approximation property of deep implicit models for causal
mechanisms, recent advances in the machine learning community, for example,
approximate Bayesian computation [18], adversarial training [19, 20], and probabilistic
programming [21], permit us to use fast algorithms for their Bayesian inference of the
parameters.

3 Counterfactual Inference Using IGMs

In this section, we firstly introduce our proposed counterfactual inference method using
implicit models. The lower bound objective and implicit variational inference method
based on adversary training are then presented.

3.1 Latent Variable Modelling for Causal Models

As discussed in Sect. 1, we need to learn the potential outcome function
Yt xð Þ ¼ h x; tð Þ. If the latent confounders are available, we can estimate the potential
outcome by the following adjustment formula [2, 10]

Yt xð Þ ¼ h x; tð Þ ¼ E Ytjx½ � ¼ E yjz; t½ � ð4Þ

Therefore, we need to obtain the posterior of the latent confounders, ph zjx; t; yð Þ.
Learning confounders for causal inference has its root from the “abduction-action-
prediction” procedure for counterfactual inference (see Chap. 4 in [22]). Instead of
such a multi-stage induction process, in this paper, we propose to jointly learn the
response surfaces and latent confounder space. This is analogous to deep generative
models which learn the “generative” and “inference” models jointly. The generative
and inference models for our proposed method are illustrated in Fig. 1. For an observed
triple xi; ti; yið Þ, the log-likelihood is

log p xi; ti; yið Þ ¼ Z
log ph xi; ti; yijzið Þp zið Þ dzi ð5Þ
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where h denotes the generative parameters. The generative model for each component
in the triple xi; ti; yið Þ is

xi� ph xjzið Þ ð6Þ

ti� ph tjzið Þ ð7Þ

yi� ph yjti; zið Þ ð8Þ

We put Gaussian priors on the latent confounders zi, i.e., zi�N zj0; IMð Þ where
M is the dimension of zi, and the implicit inference network (encoder) for zi is

zi ¼ z/ xi; ti; yi; �ð Þ; �� s �ð Þ ð9Þ

where / denotes the variational parameters. Based on Eq. (3), the induced implicit
density is denoted as q/ zjx; t; yð Þ. According to the generative models in Eqs. (6) (7)
(8), we have the decoder from latent variables zi to the observed tuple xi; ti; yið Þ as

log ph xi; ti; yijzið Þ ¼ log ph yijti; zið Þþ log ph tijzið Þþ log ph xijzið Þ ð10Þ

How can this joint learning framework account for the confounding bias? This is
because the posterior of the latent confounders z, q/ zjx; t; yð Þ, depends on both the
outcome y and the treatment t. Moreover, the learning of latent confounders z are
tailored to good generative models for the outcome y and the treatment t. This joint
learning process will hopefully extract information from the observations to learn a
good representation of the latent confounder that will account for the confounding bias.
Such a philosophy is also discussed in [9] and [15].

3.2 Lower Bound Objective

To maximize the log-likelihood of the observed data

‘ ¼
X

x;t;yð Þ2Dobs

E log p x; t; yð Þ½ � ð11Þ

variational inference minimizes the KL divergence from the variational approximation
q/ zjx; t; yð Þ to the posterior ph zjx; t; yð Þ, KL q/ zjx; t; yð Þjjph zjx; t; yð Þ

� �
. This is equiva-

lent to maximizing the evidence lower bound

ELBO ¼
X

x;t;yð Þ2Dobs

Eq/ zjx;t;yð Þ log ph z; x; t; yð Þ � log q/ zjx; t; yð Þ
� �

ð12Þ

524 F. Zhu et al.



Note that in observational causal effect estimation, the treatment assignment t and
corresponding outcome y required for inferring q/ zjx; t; yð Þ are not observed for new
test samples. For this reason, we need to take two auxiliary approximation models into
consideration in our variational lower bound.

ti� q/ tjxið Þ; yi� q/ yjxi; tið Þ ð13Þ

This is first recognized in [9] and formalized as the following causal effect lower
bound

LCE ¼ ELBOþ
Xn
i¼1

log q/ t�i jxi
� �

þ log q/ y�i jxi; t�i
� �� �

ð14Þ

Where xi; t�i ; y
�
i

� �
are the observed values in the training set. We try to maximize this

causal effect lower bound to learn the generative parameters h and the variational
parameters / for counterfactual inference via Eq. (4).

3.3 Inference

Notice that the ELBO in Eq. (12) can be written as

ELBO ¼
X

x;t;yð Þ2Dobs

Eq/ zjx;t;yð Þ log ph x; t; yjzð Þ � log
q/ zjx; t; yð Þ

p zð Þ

� �
ð15Þ

When we have an explicit representation q/ zjx; t; yð Þ such as the neural network
parameterized Gaussian distribution used in VAE [23] and the CEVAE, the ELBO L
can be maximized using the reparameterization trick [23] and stochastic gradient
descent. Unfortunately, when we use black-box approximation families, the implicit
density q/ zjx; t; yð Þ becomes intractable. In this paper, we follow [24] and define the

log density ratio (or prior contrastive) r z; x; t; y;/ð Þ ¼ log q/ zjx;t;yð Þ
p zð Þ . Then we have

ELBO ¼ Eq/ zjx;t;yð Þ log ph x; t; yjzð Þ � r z; x; t; y;/ð Þ½ � ð16Þ

Moreover, introducing the following objective for the discriminator D z; x; t; y;wð Þ

max
w

Eq/ zjx;t;yð Þ log r D z; x; t; y;wð Þð Þ½ � þEp zð Þ logð1� r D z; x; t; y;wð ÞÞð Þ½ �

where r �ð Þ is the sigmoid activation function. The following proposition indicates that
we can obtain the value of the prior contrastive via optimizing the discriminator.

Proposition 3. For fixed generative model ph x; t; yjzð Þ and inference model
q/ zjx; t; yð Þ, the optimal discriminator parameter w� is given by
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D z; x; t; y;w�ð Þ ¼ r z; x; t; y;/ð Þ ¼ log q/ zjx; t; yð Þ � log p zð Þ

Proof. The proof is analogous to the proof of Proposition 1 in [19].
As we get the optimal discriminator D z; x; t; y;w�ð Þ, Proposition 3 allows us to use

it as a proxy of the log density ratio r z; x; t; y;/ð Þ and the ELBO

ELBO ¼ Eq/ zjx;t;yð Þ log ph x; t; yjzð Þ � D z; x; t; y;w�ð Þ½ � ð17Þ

Substitute Eq. (17) into Eq. (14), we get the causal effect lower bound objective

LCE ¼
Xn
i¼1

Eq/ zijxi;ti;yið Þ log ph xi; ti; yijzið Þ � D zi; xi; ti; yi;w
�ð Þ½ � þ log q/ t�i jxi

� �
þ log q/ y�i jxi; t�i

� �	 

ð18Þ

4 Experiments

Evaluating causal inference methods using observational data is always challenging
because we do not have access to the ground-truth for the target causal effects.
Common evaluation approaches include creating synthetic or semi-synthetic datasets,
where real data is modified in a way that allows us to know the true causal effect. In this
section, we firstly introduce several metrics and baseline methods used for comparison.
Experiment performances on two existing benchmark datasets, IHDP (continuous
outcomes) and Jobs (binary outcomes), are then discussed to validate the proposed
method. Our experiments are conducted using the TensorFlow [25] platform. The noise
distributions s �ð Þ used in implicit inference networks are standard multivariate
Gaussians.

4.1 Evaluation Metrics and Baselines

For causal inference evaluation, the absolute error of the ATE estimator, �ATE, is
defined as

�ATE ¼ dATE � ATE
��� ��� ¼ 1

n

Xn
i¼1

ŷ1 xið Þ � ŷ0 xið Þð Þ � 1
n

Xn
i¼1

Y1 xið Þ � Y0 xið Þð Þ
�����

����� ð19Þ

where ŷt xið Þ ¼ h xi; tð Þ; t ¼ 0; 1: Analogously, the absolute error of the ATT estimator,
�ATT , is defined as

�ATT ¼ dATT � ATT
��� ��� ¼ 1

n1

X
ti¼1

ŷ1 xið Þ � ŷ0 xið Þð Þ � 1
n1

X
ti¼1

Y1 xið Þ � Y0 xið Þð Þ
�����

����� ð20Þ

where n1 is the number of units that are in the treatment group.
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To evaluate the ITE estimation, when the underlying ground truth are known, the
metric precision in estimation of heterogeneous effect (PEHE) [26] is defined in
Eq. (21). We will report its square root.

PEHE ¼ 1
n

Xn
i¼1

ŷ1 xið Þ � ŷ0 xið Þð Þ � Y1 xið Þ � Y0 xið Þð Þ½ �2 ð21Þ

When the true ITEs are unknown, we can not calculate PEHE. Alternatively, the
policy risk defined in Eq. (22) can be used as a proxy to the ITE performance

Rpol pð Þ ¼ 1� p p xð Þ ¼ 1ð Þ � E Y1jp xð Þ ¼ 1½ � þ 1� p p xð Þ ¼ 1ð Þð Þ � E Y0jp xð Þ ¼ 0½ �ð Þ
ð22Þ

where the induced policy p xð Þ using the fitted outcome model E Y1jx½ � and E Y0jx½ � is to
treat, p xð Þ ¼ 1, if E Y1jx½ �[E Y0jx½ �, and not to treat p xð Þ ¼ 0 otherwise.

Since our method is based on implicit generative models, we call it CEIGM.
Baseline methods used for comparison include Ordinary Least Squares (OLS-1, for
continuous outcomes)/Logistic Regression (LR1 for binary outcomes) with treatment
as feature, Ordinary Least Squares (OLS-2, for continuous outcomes)/Logistic
Regression (LR2 for binary outcomes) with separate regressors for each treatment, k-
nearest neighbor (k-NN), the double robust method Targeted Maximum Likelihood
Estimation (TMLE) [27], Bayesian Additive Regression Trees (BART) estimator [26,
28], Random Forest (Rand. For.) [29, 30], Causal Forest (Caus. For.) [31], Balancing
Linear Regression (BLR) and Balancing Neural Network (BNN) by [7], and CEVAE
[9]. Following [7] and [9], we report both the within-sample and out-of-sample results.

4.2 Simulated Outcome: IHDP

The benchmark dataset IHDP was first compiled by [26] based in the Infant Health and
Development Program, which aims at studying the effect of high-quality child care and
home visits on future cognitive test scores. The dataset consists of 747 subjects (139
treated and 608 control), each represented by 25 covariates measuring aspects of
children and their mothers. For the sake of comparison, we follow [9] and use the
noiseless outcome to compute the true effects. The results are presented in Table 1.

The results shows that the proposed CEIGM method gets the lowest within-sample
and out-of-sample PEHE errors. This indicates CEIGM fits both response surfaces
E Y0jx½ � and E Y1jx½ � quite well. Unfortunately, CEIGM gets the highest errors for
estimating the ATE. This is beyond our expectation. One possible reason is that,
though the two response surfaces are well fitted, they differ from the underlying true
response surfaces in opposite directions. For example, the fitted potential outcomes for
the control E Y0jx½ � tend to be smaller than the true control outcomes, while the fitted
potential outcomes for the treated E Y1jx½ � tend to be larger than the true treated out-
come. As a result, even though both of them have small errors, the average of their
difference may induce a relatively large error.
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4.3 Real World Outcome: Jobs

We also validate the proposed CEIGM method using the Jobs dataset, which combines
a randomized study R based on the National Supported Work (NSW) program with
observational data O to form a larger dataset. For more details of the data, refer1.
Instead of the ATE, the NSW program aims at estimating the effect of job training on
employment after training, i.e., the true average treatment effect on the treated (ATT).
Since all the treated individuals come from the randomized study R, we can easily
estimate ATT by ATT := 1

Tj j
P
i2T

Y1 xið Þ � Y0 xið Þð Þ ¼ 1
Tj j
P
i2T

yi � 1
C\Rj j

P
i2C \R

yi ¼ ATE,

where T and C are the treated and control group in the full dataset. Following [8] and
[9], we use the NSW experimental sample (297 treated and 425 control) and the PSID

Table 1. Within-sample and out-of-sample results on IHDP datasetffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�within�s:PEHE

p
�within�s:ATE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�out�of�s:PEHE

p
�out�of�s:ATE

OLS1 5.8 ± .3 .73 ± .04 5.8 ± .3 .94 ± .06
OLS2 2.4 ± .1 .14 ± .01 2.5 ± .1 .31 ± .02
BLR 5.8 ± .3 .72 ± .04 5.8 ± .3 .93 ± .05
k-NN 2.1 ± .1 .14 ± .01 4.1 ± .2 .79 ± .05
TMLE 5.0 ± .2 .30 ± .01 – –

BART 2.1 ± .1 .23 ± .01 2.3 ± .1 .34 ± .02
Rand. For. 4.2 ± .2 .73 ± .05 6.6 ± .3 .96 ± .06
Caus. For. 3.8 ± .2 .18 ± .01 3.8 ± .2 .40 ± .03
BNN 2.2 ± .1 .37 ± .03 2.1 ± .1 .42 ± .03
CEVAE 2.7 ± .1 .34 ± .01 2.6 ± .1 .46 ± .02
CEIGM 2.0 ± .1 1.1 ± .2 2.0 ± .2 1.2 ± .2

Table 2. Within-sample and out-of-sample results on Jobs dataset

Rwithin�s:
pol �within�s:ATT Rout�of�s:

pol �out�of�s:ATT

LR1 .22 ± .0 .01 ± .00 .23 ± .0 .08 ± .04
LR2 .21 ± .0 .01 ± .01 .24 ± .0 .08 ± .03
BLR .22 ± .0 .01 ± .01 .25 ± .0 .08 ± .03
k-NN .02 ± .0 .21 ± .01 .26 ± .0 .13 ± .05
TMLE .22 ± .0 .02 ± .01 – –

BART .23 ± .0 .02 ± .00 .25 ± .0 .08 ± .03
Rand. For. .23 ± .0 .03 ± .01 .28 ± .0 .09 ± .04
Caus. For. .19 ± .0 .03 ± .01 .20 ± .0 .07 ± .03
BNN .20 ± .0 .04 ± .01 .24 ± .0 .09 ± .04
CEVAE .15 ± .0 .02 ± .01 .26 ± .0 .03 ± .01
CEIGM .22 ± .0 .02 ± .00 .23 ± .0 .05 ± .01

1 http://users.nber.org/*rdehejia/data/nswdata2.html
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comparison group (2490 control) and report the �ATT ¼ dATT � ATT
��� ���: For evaluating

ITE estimation, we use the policy risk Rpol. The results are list in Table 2.
For this dataset, our proposed CEIGM method has lower out-of-sample ATT error

and policy risk than most of the benchmarks. Specifically, CEIGM gets the second
smallest values for both the out-of-sample policy risk and ATT error. Compared with
CEVAE, our proposed CEIGM method has lower out-of-sample policy risk but higher
ATT error. The result validate again that the proposed CEIGM method is able to learn
better potential outcome functions because the implicit posteriors are theoretically able
to approximate arbitrarily complex distributions.

5 Conclusions and Discussion

In this paper, we model the causal mechanisms in a causal model by implicit generative
models, which are proved universal approximators for the underlying causal mecha-
nisms. The proposed CEIGM method is a generalization of the CEVAE method pro-
posed in [9]. Specifically, we generalize the Gaussian inference model of latent
confounders used in CEVAE to general black box inference models parameterized by
deep neural networks. To tackle the intractability of implicit inference model, we adopt
an adversary training scheme using a discriminator to learn the parameters. Experi-
ments on two benchmark datasets validate our proposed method.

However, both experiments indicate that the proposed method tend to learn better
potential outcome functions with opposite error directions, leading to better ITE esti-
mation but worse ATE/ATT estimation. This issue is out of our expectation and we
leave it as future investigation. We also notice that recent research [32, 33] on implicit
model inference indicate that discriminator-based adversary training may lead to noisy
gradients and thus unstable results. In future work, more implicit variational inference
algorithms will be investigated to realize methods that are more robust.
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Abstract. In this article the use of a matrix based representation of
pieces is tested for the classification of musical pieces of some well known
classical composers. The pieces in two corpora have been represented in
two ways: matrices of interval pair probabilities and a set of 12 global
features which had previously been used in a similar task. The classifica-
tion accuracies of both representations have been computed using several
supervised classification algorithms. A class binarization technique has
also been applied to study how the accuracies change with this kind of
methods. Promising results have been obtained which show that both the
matrix representation and the class binarization techniques are suitable
to be used in the automatic composer recognition problem.

Keywords: Matrices · Pairwise classification · Composer recognition

1 Introduction

Automatic music classification is a task within the field of Music Information
Retrieval (MIR) which is getting more attention with the growth of the available
information, thanks to the digital media. When dealing with automatic composer
recognition it is important to choose the features that will be used to represent
the pieces. Global feature sets, n-grams and string methods have been used to
represent folk song collections [11], as well as event models [10]. Other works
represent the pieces with multiple viewpoints [1] or discover patterns within
collections of pieces, to find melodic families [7,12] within them. Herremans et
al. [9] use a 12 global feature set to classify pieces of three classical composers,
and Dor and Reich [3] manually extract some pitch based features and use a
classifier tool named CHECKUP to discover more features that they then use
to classify pieces of nine composers.

After the pieces are represented using one of the methods above, a classifier is
built, which is first trained with a set of pieces with a known composer, and will
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predict a class for new pieces with no composer information. Since usually the
classifier has to distinguish among several classes (composers), class binarization
techniques can also be applied, to decompose the original multi-class (more than
two classes) classification problem into multiple binary sub-problems [5].

In this work the automatic composer recognition problem is studied, using
two corpora of symbolic representation of pieces of well known composers. A
corpus of pieces of three composers, Bach, Beethoven and Haydn, similar to
the one used in [9], is created, and a matrix based representation presented
in the classification method of [6] is used to characterize the pieces. A matrix
representation is tested to compare the classification accuracies obtained with it
to the results obtained with a global feature set presented in [9], which achieves
a promising accuracy. A binarization method is also applied, to see the effect
that it has on the classification accuracies. Finally, the corpus is extended with
the pieces of two more composers, Mozart and Vivaldi, and their classification
accuracies are also computed, in order to observe the effect that the increase of
classes has on the accuracies when applying class-binarization techniques.

2 Corpora

The two corpora used in this work have been downloaded from the KernScores
website [14], which was developed by the Center for Computer Assisted Research
in the Humanities (CCARH), at Stanford University, to organize musical scores.

The first corpus, which from this point will be referenced as corpus3 includes
pieces of the composers Bach, Beethoven and Haydn, similar to the corpus used
in [9]. It has a total number of 1138 pieces, and the distribution of the composers
and pieces can be seen in the top part of Table 1.

The second corpus, referenced as corpus5, is an extension of the first one,
but it also includes pieces of Mozart and Vivaldi. It contains 1586 pieces, and its
composer/piece number distribution can be seen in Table 1. All the pieces used
in the corpora are polyphonic MIDI files.

Table 1. Number of pieces of each composer used in this work. The central part shows
the composers and piece numbers of corpus composers3. The two composers of the
right extend the first corpus to corpus5.

Composer Bach Beethoven Haydn Mozart Vivaldi

Instances 694 190 254 313 135

3 Methods

The method presented in this work has two main steps; representation and clas-
sification. A matrix-based melody representation presented in [6] is tried and the
its classification accuracies are compared to the results of a global feature set
used in [9], which obtained acceptable accuracy in a similar classification task.
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3.1 Representation

The matrix representation of the pieces intends to capture some of their features
that ideally would be able to characterize them well enough to be used in the
classification process. To create the matrices of the pieces of the corpora, first
they are represented using viewpoints. A viewpoint τ is a function that maps
an event sequence e1, . . . , el to a more abstract sequence τ(e1), . . . , τ(el) [2]. In
this work an interval viewpoint has been chosen to represent the voices in the
pieces; intpc, which computes the pitch class interval (modulo 12). In Fig. 1 the
first two bars of the first voice of a Bach chorale included in the corpora can be
seen, along with their viewpoint representation.

Fig. 1. First two bars the first voice of a Bach chorale and its viewpoint representation.

Once the viewpoint representation of the scores is made, the matrixintpc matri-
ces are built, which are 12× 12 matrices that describe the probabilities of the
transitions between all the pitch class interval pairs that occur in each piece.

From every piece of the corpora a matrixintpc has been built and linked to its
composer in a arff file that is then used by Weka in the classification process. In
order to compare the classification results obtained with the matrix representa-
tion to the results of the global feature set presented in [9] the jSymbolic feature
extractor is used [13]. The used feature collection will be referenced as global12.

3.2 Class Binarization

Class binarization is composed of two main steps; decomposition and combi-
nation. In the decomposition step the original problem is divided into several
binary sub-problems, for what two main techniques have been developed; One
versus All (OVA) and One versus One (OVO). In the classification step, each
binary classifier returns a prediction, which need to be combined. When a new
instance is being classified using this method all the sub-problems give a predic-
tion of its class, and all these outputs need to be combined. To do so, there are
several strategies, but in this work the majority vote strategy [4] is used, where
each sub-problem returns a vote, and the class with the largest amount of votes
is predicted.

4 Experiments and Results

4.1 Experimental Setup

To test the suitableness of the matrix based representation two experiments have
been performed, for which the two corpora (corpus3 and corpus5) presented in
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Sect. 2 have been used. The pieces in the corpora have been represented with
global12 and matrixintpc representations. We have applied a stratified 10 fold
cross-validation in each classification process, and used different base classifiers
to study their accuracies, both in multi-class and binarized classifications.

Seven base classifiers from the machine learning software Weka [8] have been
used in the classification steps: J48, SMO, JRip, Naive Bayes (NB), Bayesian
Network (BNet), Random Forest (RF) and Multilayer Perceptron (MP).

4.2 Results

corpus3. The classification accuracies of corpus3 with all the base classifiers,
with and without OVO, are presented in Table 2.

Table 2. Accuracy results of the classifications with each single classifier and OVO
technique for corpus3.

J48 J48-OVO SMO* JRIP JRIP-OVO NB NB-OVO
global12 84.007 83.568 86.028 82.074 83.655 66.784 66.872
matrixintpc 81.459 82.1617 89.982 81.986 82.162 80.668 80.580

BNet BNet-OVO RF RF-OVO MP MP-OVO Mean Mean-OVO
global12 78.647 78.735 87.171 87.786 87.346 87.434 81.722 82.011
matrixintpc 82.513 81.986 86.907 88.401 89.982 89.631 84.559 84.986

The best results are obtained with the matrixintpc representation and SMO
or Multilayer Perceptron classifier. Even if this representation obtains the best
classification accuracy, that does not happen for J48, JRip and Random Forest.
The mean accuracies show that overall, better results are obtained with the
matrixintpc representation and OVO technique.

The choice of the classifier that is used has a great impact on the obtained
accuracies. Depending on the classifier that is used, the accuracies can vary from
66.8% to 87.3% in the case of the global12 representation.

corpus5. The classification accuracies of corpus5 with all the base classifiers,
with and without OVO, are presented in the Table 3.

The best accuracy is again obtained with the matrixintpc representation and
a Multilayer Perceptron classifier, which achieves an accuracy of 80.7%. The
results obtained with the matrixintpc representation are better than the ones
obtained with the global12 representation for every classifier but J48. It can be
seen that the difference for some classifiers, such as SMO, is significant.

4.3 Statistical Results

We have applied Wilcoxon signed-rank test in order to detect statistical differ-
ences between global12 and matrixintpc representations. The result of the statis-
tical analysis rejects the null hypothesis that both methods are equivalent, since
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Table 3. Accuracy results of the classifications with each single classifier and OVO
technique for the five composers corpus5.

J48 J48-OVO SMO* JRIP JRIP-OVO NB NB-OVO
global12 71.402 75.126 73.864 70.328 72.980 56.692 56.692
matrixintpc 70.266 72.917 80.556 72.033 72.854 71.970 71.843

BNet BNet-OVO RF RF-OVO MP MP-OVO Mean Mean-OVO
global12 65.530 67.361 77.904 79.104 74.432 76.641 70.022 71.681
matrixintpc 72.096 73.106 79.419 80.556 80.682 80.177 75.289 76.001

the p-value (0.0014) returned by the Wilcoxon test is lower than our α-value
(0.01).

We have also carried out another statistical analysis in order to detect sta-
tistical differences between OVO and single classifier, in this case we have also
applied Wilcoxon signed-rank test. Again, the obtained results rejects the null
hypothesis since the p-value (0.0039) returned is lower than our α-value (0.01).

5 Conclusions

In this work the use of a matrix based representation is tested to be used for the
automatic recognition of some well known composers. The classification accu-
racies of the interval matrices with several different base classifiers have been
compared to the accuracies obtained with a global feature set which had already
been used in a similar classification task with acceptable results. The application
of binarization techniques in classification is also proposed, and their effect is
studied.

The best accuracies have been achieved with the matrixintpc representation
in both corpora, and even if the accuracy obtained with this representation does
not improve the global12 representation for every classifier, its mean accuracy is
better in both corpora. The statistical analysis has also shown that there are sig-
nificant differences between the results obtained with matrixintpc representation
and the ones obtained with global12 representation.

The application of OVO binarization technique has proven beneficial to the
classification accuracies in general, even if in this work the best accuracies were
obtained with single classifiers. Its effects are more noticeable when it is used on
corpus5 with five possible target classes, where the results with OVO are better
for almost all the classifiers. The results of the statistical test also show that
there are statistical differences between global12 and matrixintpc representations
and between single classifiers and OVO classifications.

Considering that the use of interval based matrices have obtained promising
accuracies, more complex viewpoints should be considered to build the matrices,
to study how the classification can be improved with more complex information.
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Abstract. We present a specialisation of Q-learning for the problem of
training an agent to click on a computer screen. In this problem formu-
lation the agent sees the pixels of the screen as input, and selects a pixel
as output. The task of selecting a pixel to click on involves selecting an
action from a large discrete action space in which many of the actions
are completely equivalent in terms of reinforcement learning state transi-
tions. We propose to exploit this by performing simultaneous Q-learning
updates for equivalent actions. We use the flood fill algorithm on the
input image to determine the action (pixel) equivalence.

1 Introduction

We consider the problem of training an agent to interact with a computer screen
by clicking. The agent sees the pixels of the screen as input, and selects a pixel as
output. The computer reacts to the selected pixel as if a human user had clicked
on it. We use reinforcement learning [1] to solve this problem. Reinforcement
learning has gained a lot of attention in recent years due to the record breaking
performance of deep reinforcement learning on Atari video games [2] and in the
game of Go [3]. An important difference between these examples and our work
is the action space. The Atari games that were used are environments with 4 to
18 independent actions, depending on the game. The game of Go has an action
space of 19 × 19 board positions that are similarly independent from each other.
By contrast, even a conservative monitor resolution of 800 × 600 pixels creates
a very large action space with many actions that are completely equivalent.
Clicking on any pixel that is part of an object on the screen registers as clicking
on the object, resulting in the same state transition. We propose to perform
simultaneous learning updates for these equivalent actions.

2 Background

In reinforcement learning an agent learns to interact with an environment
through trial and error [1]. The environment can take on one of a finite number
c© Springer Nature Switzerland AG 2018
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of states, s ε S, and the agent interacts with the environment through actions,
a ε A, that transition the environment from the current state, st, to a new state,
st+1. After an agent’s action changes the state of the environment, the agent
receives feedback in the form of a reward, rt = r(st, at, st+1), that indicates how
desirable the choice of that action was while in that state. The goal of reinforce-
ment learning is to develop an optimal policy, π : S → A, a mapping from states
to actions, for a given problem. An optimal policy is one which maximises the
total cumulative reward, R:

R =
T∑

t=0

γtr(st, at, st+1) (1)

where T is the total time the agent interacts with the environment; and γ is a
discount factor applied to future rewards.

The type of reinforcement learning we use in this paper is Q-learning. In
Q-learning, each state-action pair is represented by a Q-value, Q(s, a), that rep-
resents the expected total reward resulting from taking action a in state s. After
taking action a in state s, the Q-value, Q(s, a), is modified according to the
following update rule:

Q(st, at) ← (1 − α)Q(st, at) + α(rt + γ × maxaQ(st+1, a)) (2)

where α is a learning rate parameter.

3 Related Work

There has been some research focused on large discrete action spaces in rein-
forcement learning [4]. However, there has been very little work that uses pixels
as both the input (state) space and the output (action) space. The work that
is most relevant to ours, from an application perspective, involves the World of
Bits [5] environment which was designed to allow for training agents to interact
with websites. It contains several web-related tasks, such as form filling and page
navigation. The environment provides images of the screen and the Document
Object Model (DOM) of the web page as the state. The actions it accepts are
primitive mouse movements and keyboard presses.

Aside from the application perspective, there is work that is similar to ours
in terms of methodology. The idea of an agent that learns multiple policies has
been considered implicitly since the early days of reinforcement learning in the
form of stochastic policies [1] (a stochastic policy can be considered a weighted
combination of deterministic policies). However, this is not often the focus of
the research that uses these methods, as the environments (e.g. Atari and Go)
are often solvable with deterministic policies. The idea of explicitly ensuring
an agent learns multiple policies has recently been explored by Haarnoja et al.
with their energy-based deep reinforcement learning [6]. They add an entropy
term to the loss function that the agent is minimising in order to prevent over
committing to a single policy.
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4 Flood-Fill Q-Learning Updates

We assume that the input images are simple enough that the flood-fill algo-
rithm can be used to segment an object from the rest of an image. Consider
the conventional Q-learning update Eq. (2), which only updates the Q-value for
the state-action pair that was just involved in obtaining the reward the agent
received. This implicitly assumes no correlation between different states/actions,
and that they should all be updated independently. Our proposed modification
can be written as follows:

Q(st, a′) ← (1 − α)Q(st, a′) + α(rt + γ maxaQ(st+1, a)) ∀a′ ∈ At (3)

where At is the set of all actions that are equivalent to action at. We consider
two actions to be equivalent if, when applied to the same state, they receive the
same reward and result in the same state transition. For the problem that we
consider (clicking pixels on a computer screen) we use a modified version of the
flood-fill algorithm to determine which actions belong in At. Instead of colouring
nodes on a graph, our modified flood-fill algorithm adds actions/pixels to a set
in the main loop, and then returns that set upon completion. Algorithm1 shows
our modified version of Q-learning that makes use of this flood-fill algorithm.

Algorithm 1. Q-Learning with Flood Fill Q-Value Updates
Initialise Q(s, a)
Initialise st
for t ← 1 to T do

Choose action at according to an action selection policy (e.g. ε-greedy)
Take action at, observe reward rt and new state st+1

At ← FLOOD FILL(st, at)
for all a′ ∈ At do

Q(st, a
′) ← (1 − α)Q(st, a

′) + α(rt + γ maxaQ(st+1, a))
end for
st ← st+1

if st is terminal then
Reset the environment and receive new st

end if
end for

5 Experimental Setup

For our experiments we designed our own example problem called Click Black.
The agent is presented with an 120 × 120 greyscale image containing 25 squares
arranged in a 5× 5 grid. One of these squares is black, and the remaining 24
squares are white. The task is to click on the black square. The black square
starts at the top left position of the board. After every click/action the black
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square advances left to right, top to bottom, until it reaches the bottom right
position. The episode ends after 25 clicks. For each interaction, the agent receives
a reward of +1 if it clicks on the black square, and a reward of 0 otherwise.

In our experiments we evaluate both the conventional Q-learning update and
our flood-fill update1, in order to compare the two. We investigated the effects
of the different update mechanisms on two different agent model types: (1) a
tabular Q-learning agent; and (2) a neural network. For the neural network we
used a single fully connected layer with 14400 inputs and 14400 outputs. The
14400 inputs correspond to a flattened 1D representation of the 120× 120 input
image. The 14400 outputs represent the network’s predicted Q-values for the
corresponding pixels.

In all experiments the tabular agents were trained for 300 iterations, and the
neural network agents were trained for 400 iterations. During training all agents
used the ε-greedy exploration strategy. The value of ε was annealed from 1 to
0.01 over the course of training. The value of the learning rate parameter in (2)
was 0.01 for the tabular agents, and 0.00025 for the neural network agents. For
the neural network agents we used double Q-learning [7], with a target network
and memory replay buffer as described by [2]. To tune the weights of the neural
network we used the Adam optimisation algorithm with the mean squared error
(MSE) loss function, and a learning rate of 0.00025.

To gauge the sample efficiency of the different Q-learning update mechanisms
we measured the testing performance of the agents for a fixed number of training
iterations. To gauge the robustness of the agents, we measured testing perfor-
mance under the condition that the agent’s preferred action was unavailable. i.e.
instead of testing the agents using the action of their highest learned Q-value,
we tested them using the action corresponding to the second highest Q-value, or
lower.

For the testing procedure, the agent played a fresh copy of the game from
start to finish; resulting in a maximum possible score of 25. During testing the
agents acted greedily according to their learned Q-values, and the agent models
were not updated.

6 Results and Discussion

The results of the sample efficiency experiment are shown in Fig. 1. For both
model types the agent using the flood fill Q-learning update converges faster,
and to a higher testing reward. This demonstrates that using the flood fill Q-
learning update can yield more efficient training even when learning a single
policy.

1 For the problem described in this paper all pixels of the same colour are also part
of the same shape. Thus, for efficiency reasons, the flood fill algorithm was not
actually implemented in this case. Instead we used the simpler method of updating
the Q-values of all pixels with same colour.
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Fig. 1. Testing reward of different Q-learning update mechanisms while learning to
play Click Black: (a) tabular agent; (b) neural network agent. Blue lines show agents
using flood fill Q-learning; red lines show agents using conventional Q-learning. Solid
lines represent mean values over 10 runs; dashed lines represent standard deviations.
(Color figure online)

The results of the initial robustness experiment are shown in Fig. 2. In this
experiment the agents used the action corresponding to their second highest Q-
value during testing. This is equivalent to asking the agent to act in a constrained
environment where a single specific pixel can not be clicked on. While the agents
using the conventional Q-learning update suffer a heavy performance hit under
these conditions, the agents trained with the flood fill Q-learning update obtain
results almost identical to Fig. 1.

To investigate robustness further we repeated the experiment using the n-th
maximum Q-value, with n varying from 1 to 10 (i.e. we repeated the experiment
using the action corresponding to the 3rd, 4th, 5th, etc. maximum Q-values).
For each value of n, we recorded the testing performance at the end of the
training period. Figure 3 shows how this testing reward varies with the different
values of n. In both the tabular and fully connected cases, the performance
of the conventional Q-learning update plummets dramatically with increasing
n, while the flood fill Q-learning update suffers no noticeable performance hit.
This indicates that using the flood-fill Q-learning update can enable agents to
learn redundant policies that can help make them robust to changes in the
environment.

In summary, we have presented a specialisation of Q-learning for the problem
of training an agent to click on a computer screen. Our method makes use of
the flood-fill algorithm to simultaneously update all actions that are equivalent
to the one selected by the agent at each time step. We performed experiments
using a tabular Q-learning agent and a fully connected neural network layer
as the agent models. Results for both models indicate that using our flood-
fill Q-learning update improves the sample efficiency of the algorithm, and the
robustness of the trained agents.
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Fig. 2. Testing reward of different Q-learning update mechanisms, with the preferred
agent action disabled: (a) tabular agent; (b) neural network agent. Blue lines show
agents using flood fill Q-learning, and red lines show agents using conventional Q-
learning. Solid lines represent mean values over 10 runs; dashed lines represent standard
deviation. (Color figure online)

Fig. 3. Post-training test reward of different Q-learning update mechanisms, with mul-
tiple preferred actions disabled: (a) tabular agent; (b) neural network agent. Blue points
show agents using flood fill Q-learning; red points show agents using conventional Q-
learning. Circles represent mean values over 10 runs; error bars represent standard
deviations. (Color figure online)
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Abstract. The lifted dynamic junction tree algorithm (LDJT) answers
filtering and prediction queries efficiently for probabilistic relational tem-
poral models by building and then reusing a first-order cluster represen-
tation of a knowledge base for multiple queries and time steps. We extend
LDJT to answer conjunctive queries over multiple time steps by avoid-
ing eliminations, while keeping the complexity to answer a conjunctive
query low. The extended version of saves computations compared to an
existing approach to answer multiple lifted conjunctive queries.

1 Introduction

Areas like healthcare and logistics involve probabilistic data with relational and
temporal aspects and need efficient exact inference algorithms. These areas
involve many objects in relation to each other with changes over time and
uncertainties about object existence, attribute value assignments, or relations
between objects. More specifically, healthcare systems involve electronic health
records (relational) for many patients (objects), streams of measurements over
time (temporal), and uncertainties [21] due to, e.g., missing information caused
by data integration. Probabilistic databases (PDBs) can answer queries for rela-
tional temporal models with uncertainties [5,6]. However, each query possibly
contains redundant information, resulting in huge queries. In contrast to PDBs,
we build more expressive and compact models including behaviour (offline)
enabling efficient answering of more compact queries (online). For query answer-
ing, our approach performs deductive reasoning by computing marginal distri-
butions at discrete time steps. In this paper, we study the problem of exact
inference for answering multiple conjunctive queries in temporal probabilistic
models.

We propose the lifted dynamic junction tree algorithm (LDJT) to exactly
answer multiple filtering and prediction queries for multiple time steps efficiently
[7]. LDJT combines the advantages of the interface algorithm [13] and the lifted
junction tree algorithm (LJT) [2]. Specifically, this paper presents LDJTcon to

This research originated from the Big Data project being part of Joint Lab 1, funded
by Cisco Systems Germany, at the centre COPICOH, University of Lübeck.
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answer multiple conjunctive queries efficiently. In the static case, LJT answers
conjunctive queries by merging a subtree of a first-order junction tree (FO jtree),
which contains all query terms. For the temporal case, merging multiple time
steps, increases the complexity to answer multiple conjunctive query. Therefore,
we propose to avoid eliminations of query terms to answer multiple conjunctive
queries efficiently. Answering multiple conjunctive queries over different time
steps can be used to perform probabilistic complex event processing (CEP) [25].
CEP is a hard problem and also for healthcare, a series of events is of interest.

The remainder of this paper has the following structure: We begin by recapit-
ulating parameterised probabilistic dynamic models (PDMs) as a representation
for relational temporal probabilistic models and LDJT. Afterwards, we present
how LJT answers static conjunctive queries and propose an approach to answer
temporal conjunctive queries. Lastly, we evaluate the computational savings of
our approach and conclude by looking at possible extensions.

2 Related Work

We take a look at inference for propositional temporal models, relational static
models, and give an overview about research on relational temporal models.

For exact inference on propositional temporal models, a naive approach is to
unroll the temporal model for a given number of time steps and use any exact
inference algorithm for static, i.e., non-temporal, models. Murphy [13] proposes
the interface algorithm consisting of a forward and backward pass using temporal
d-separation to apply static inference algorithms to the dynamic model.

First-order probabilistic inference leverages the relational aspect of a static
model. For models with known domain size, it exploits symmetries in a model
by combining instances to reason with representatives, known as lifting [16].
Poole [16] introduces parametric factor graphs as relational models and proposes
lifted variable elimination (LVE) as an exact inference algorithm on relational
models. Further, de Salvo Braz [18], Milch et al. [11], and Taghipour et al. [20]
extend LVE to its current form. Lauritzen and Spiegelhalter [9] introduce the
junction tree algorithm. To benefit from the ideas of the junction tree algorithm
and LVE, Braun and Möller [2] present LJT, which efficiently performs exact
first-order probabilistic inference on relational models given a set of queries.

To handle inference for relational temporal models most approaches are
approximative. Additional to being approximative, these approaches involve
unnecessary groundings or are not designed to handle multiple queries efficiently.
Ahmadi et al. [1] propose lifted (loopy) belief propagation. From a factor graph,
they build a compressed factor graph and apply lifted belief propagation with
the idea of the factored frontier algorithm [12], which is an approximate counter-
part to the interface algorithm. Thon et al. [22] introduce CPT-L, a probabilistic
model for sequences of relational state descriptions with a partially lifted infer-
ence algorithm. Geier and Biundo [8] present an online interface algorithm for
dynamic Markov logic networks (DMLNs), similar to the work of Papai et al. [15].
Both approaches slice DMLNs to run well-studied MLN inference algorithms [17]
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on each slice. Two ways of performing online inference using particle filtering
are described in [10,14]. Vlasselaer et al. [23,24] introduce an exact approach for
relational dynamic models, but perform inference on a ground knowledge base.

However, by using efficient inference algorithms, we calculate exact solutions
for relational temporal models. Therefore, we extend LDJT, which leverages the
well-studied LVE and LJT algorithms, to answer multiple conjunctive queries.

3 Parameterised Probabilistic Models

Based on [4], we present parameterised probabilistic models (PMs) for relational
static models. Afterwards, we extend PMs to the temporal case, resulting in
PDMs for relational temporal models, which, in turn, are based on [7].

3.1 Parameterised Probabilistic Models

PMs combine first-order logic with probabilistic models, representing first-order
constructs using logical variables (logvars) as parameters. Let us assume, we
would like to remotely infer the condition of patients with regards to water
retaining. To determine the condition of patients, we use the change of their
weights. An increase in weight could either be caused by overeating or retaining
water. Additionally, we use the change of weights of people living with the patient
to reduce the uncertainty to infer conditions. In case both persons gain weight,
overeating is more likely, while otherwise retaining water is more likely. If a water
retention is undetected, it can be an acute life-threatening condition.

Definition 1. Let L be a set of logvar names, Φ a set of factor names, and R
a set of random variable (randvar) names. A parameterised randvar (PRV) A =
P (X1, . . . , Xn) represents a set of randvars behaving identically by combining a
randvar P ∈ R with X1, . . . , Xn ∈ L. If n = 0, the PRV is parameterless. The
domain of a logvar L is denoted by D(L). The term range(A) provides possible
values of a PRV A. Constraint (X, CX) allows to restrict logvars to certain
domain values and is a tuple with a sequence of logvars X = (X1, . . . , Xn) and a
set CX ⊆ ×n

i=1D(Xi). � denotes that no restrictions apply and may be omitted.
The term lv(Y ) refers to the logvars in some element Y . The term gr(Y ) denotes
the set of instances of Y with all logvars in Y grounded w.r.t. constraints.

To model our scenario, we use the randvar names C, LT , S, and W for
Condition, LivingTogether, ScaleWorks, and Weight, respectively, and the log-
var names X and X ′. From the names, we build PRVs C(X), LT (X,X ′),
S(X), and W (X). The domain of X and X ′ is {alice, bob, eve}. The range
of C(X) is {normal, deviation, retains water}. LT (X,X ′) and S(X) have
range {true, false} and W (X) has range {steady, falling, rising}. With
κ = (X, {alice, bob}), gr(C(X)|κ) = {C(alice), C(bob)}. gr(C(X)|�) also con-
tains C(eve).
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Definition 2. We denote a parametric factor (parfactor) g with ∀X : φ(A) |C.
X ⊆ L being a set of logvars over which the factor generalises and A =
(A1, . . . , An) a sequence of PRVs. We omit (∀X :) if X = lv(A). A function
φ : ×n

i=1range(Ai) �→ R
+ with name φ ∈ Φ is defined identically for all grounded

instances of A. A list of all input-output values is the complete specification for
φ. C is a constraint on X. A PM G := {gi}n

i=0 is a set of parfactors and seman-
tically represents the full joint probability distribution PG = 1

Z

∏
f∈gr(G) f where

Z is a normalisation constant.

LT (X,X ′)
g1

C(X ′)

C(X)
g0

S(X)W (X)

Fig. 1. Parfactor graph for Gex

LT (X,X ′),
C(X),
C(X ′)

{g1}

C2

W (X),
C(X),
S(X)

{g0}

C1

C(X)

Fig. 2. FO jtree for Gex (local models
in grey)

Now, we build the model Gex of our example with the parfactors:

g0 = φ0(C(X), S(X),W (X))|� and g1 = φ1(C(X), C(X ′), LT (X,X ′))|κ1

We omit the concrete mappings of φ0 and φ1. Parfactor g0 has the constraint
�, meaning it holds for alice, bob, and eve. The constraint κ1 of g1 ensures that
X �= X ′ holds. Figure 1 depicts Gex as a parfactor graph and shows PRVs, which
are connected via undirected edges to parfactors, with W (X) being observable.

The semantics of a model is given by grounding and building a full joint
distribution. In general, queries ask for a probability distribution of a randvar
using a model’s full joint distribution and fixed events as evidence.

Definition 3. Given a PM G, a ground PRV Q, and grounded PRVs with fixed
range values E = {Ei = ei}i, the expression P (Q|E) denotes a query w.r.t. PG.

3.2 Parameterised Probabilistic Dynamic Models

We define PDMs based on the first-order Markov assumption, i.e., a time slice
t only depends on the previous time slice t − 1. Further, the underlying process
is stationary, i.e., the model behaviour does not change over time.

Definition 4. A PDM is a pair of PMs (G0, G→) where G0 is a PM repre-
senting the first time step and G→ is a two-slice temporal parameterised model
representing At−1 and At where Aπ is a set of PRVs from time slice π.

Figure 3 shows how the model Gex behaves over time. Gex
→ consists of Gex for

time step t − 1 and for time step t with inter-slice parfactors for the behaviour
over time. In this example, gLT , gC , and gS are the inter-slice parfactors.
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Ct−1(X)

g0t−1

St−1(X)Wt−1(X)

g1t−1

LTt−1(X,X ′)Ct−1(X ′)

Ct(X)

g0t
St(X)Wt(X)

g1t

LTt(X,X ′)Ct(X ′)

gC
gLT

gS

Fig. 3. Gex
→ the two-slice temporal parfactor graph for model Gex

Definition 5. Given a PDM G, a ground PRV Qt, and grounded PRVs with
fixed range values E0:t = {Ei

t = ei
t}i,t, P (Qt|E0:t) denotes a query w.r.t. PG.

The problem of answering a marginal distribution query P (Ai
π|e0:t) w.r.t.

the model is called prediction for π > t and filtering for π = t.

4 Lifted Dynamic Junction Tree Algorithm

In this section, we recapitulate LJT [3] to answer queries for PMs and LDJT [7]
a filtering and prediction algorithm to answer queries for PDMs.

4.1 Lifted Junction Tree Algorithm

LJT provides efficient means to answer queries P (Qi|E), with Qi ∈ Q a set of
query terms, given a PM G and evidence E, by performing the following steps:
(i) Construct an FO jtree J for G. (ii) Enter E in J . (iii) Pass messages (iv)
Compute answer for each query Qi ∈ Q.

We first define an FO jtree and then go through each step. To define an FO
jtree, we define parameterised clusters (parclusters), nodes of an FO jtree.

Definition 6. A parcluster C is defined by ∀L : A|C. L is a set of logvars, A
is a set of PRVs with lv(A) ⊆ L, and C a constraint on L. We omit (∀L:) if
L = lv(A). A parcluster Ci can have parfactors φ(Aφ)|Cφ assigned given that
(i) Aφ ⊆ A, (ii) lv(Aφ) ⊆ L, and (iii) Cφ ⊆ C holds. We call the set of assigned
parfactors a local model Gi.

An FO jtree for a PM G is J = (V,P) where J is a cycle-free graph, the
nodes V denote a set of parclusters, and P is a set of edges between parclusters.
J must satisfy the following properties: (i) A parcluster Ci is a set of PRV
from G. (ii) For each parfactor φ(A)|C in G, A must appear in some parcluster
Ci. (iii) If a PRV from G appears in two parclusters Ci and Cj, it must also
appear in every parcluster Ck on the path connecting nodes i and j in J (running
intersection).The separator Sij of edge i−j is given by Ci ∩Cj containing shared
PRVs.

LJTconstructs an FO jtree using a first-order decomposition tree, enters evi-
dence in the FO jtree, and to distribute local information of the nodes through
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the FO jtree, passes messages through an inbound and an outbound pass. To
compute a message, LJT eliminates all non-separator PRVs from the parclus-
ter’s local model and received messages. After message passing, LJT answers
queries. For each query, LJT finds a parcluster containing the query term and
sums out all non-query terms in its local model and received messages.

Figure 2 shows an FO jtree of Gex with the local models of the parclusters and
the separators as labels of edges. During the inbound phase of message passing,
LJT sends messages from C1 to C2 and for the outbound phase a message from
C2 to C1. If we would like to know whether S(bob) holds, we query P (S(bob)) for
which LJT can use parcluster C1. LJT sums out C(X), W (X), and S(X) where
X �= bob from C1’s local model G1, {g0}, combined with the received messages.

4.2 LDJT: Overview

LDJT efficiently answers queries P (Qi
π|E0:t), with Qi

π ∈ Qt and Qt ∈ {Qt}T
t=0,

given a PDM G and evidence {Et}T
t=0, by performing the following steps: (i)

Construct offline two FO jtrees J0 and Jt with in- and out-clusters from G. (ii)
For t = 0, enter E0 in J0, pass messages, answer each query term Qi

π ∈ Q0, and
preserve the state in message α0. (iii) For t > 0, instantiate Jt for the current
time step t, recover the previous state from αt−1, enter Et in Jt, pass messages,
answer each query term Qi

π ∈ Qt, and preserve the state in message αt.
Next, we show how LDJT constructs the FO jtrees J0 and Jt with in- and

out-clusters, which contain a minimal set of PRVs to m-separate the FO jtrees.
M-separation means that information about these PRVs render FO jtrees inde-
pendent from each other. Afterwards, we present how LDJT connects the FO
jtrees for reasoning to solve the filtering and prediction problems efficiently.

4.3 LDJT: FO Jtree Construction for PDMs

LDJT constructs FO jtrees for G0 and G→, both with an incoming and outgoing
interface. To be able to construct the interfaces in the FO jtrees, LDJT uses the
PDM G to identify the interface PRVs It for a time slice t.

Definition 7. The forward interface is defined as It = {Ai
t | ∃φ(A)|C ∈ G :

Ai
t ∈ A ∧ ∃Aj

t+1 ∈ A}, i.e., the PRVs which have successors in the next slice.

For Gex
→ , which is shown in, PRVs Ct−1(X), LTt−1(X,X ′), and St−1(X) have

successors in the next time slice, making up It−1. To ensure interface PRVs I
ending up in a single parcluster, LDJT adds a parfactor gI over the interface to
the model. Thus, LDJT adds a parfactor gI

0 over I0 to G0, builds an FO jtree J0

and labels the parcluster with gI
0 from J0 as in- and out-cluster. For G→, LDJT

removes all non-interface PRVs from time slice t − 1, adds parfactors gI
t−1 and

gI
t , constructs Jt, and labels the parcluster containing gI

t−1 as in-cluster and the
parcluster containing gI

t as out-cluster.
The interface PRVs are a minimal required set to m-separate the FO jtrees.

LDJT uses these PRVs as separator to connect the out-cluster of Jt−1 with the
in-cluster of Jt, allowing to reusing the structure of Jt for all t > 0.
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4.4 LDJT: Proceeding in Time with the FO Jtree Structures

Since J0 and Jt are static, LDJT uses LJT as a subroutine by passing on a
constructed FO jtree, queries, and evidence for time step t to handle evidence
entering, message passing, and query answering using the FO jtree. Further, for
proceeding to the next time step, LDJT calculates an αt message over the inter-
face PRVs using the out-cluster to preserve the information about the current
state. Afterwards, LDJT increases t by one, instantiates Jt, and adds αt−1 to
the in-cluster of Jt. During message passing, αt−1 is distributed through Jt.

Figure 4 depicts how LDJT uses the interface message passing between time
step three to four. First, LDJT sums out the non-interface PRVs from C2

3’s
local model and the received messages and saves the result in message α3. After
increasing t by one, LDJT adds α3 to the in-cluster of J4, C3

4. α3 is then dis-
tributed by message passing and accounted for during calculating α4.

Fig. 4. Forward pass of LDJT without C1
3 (local models and labeling in grey)

5 Conjunctive Queries

We begin with recapitulating how LJT answers conjunctive queries in the static
case [4]. Afterwards, we introduce LDJTcon to efficiently answer multiple con-
junctive queries with query terms from different time steps.

5.1 Conjunctive Queries in LJT

We extend Definition 3 to allow for multiple query terms in a static query.

Definition 8. Given a PM G, grounded PRVs Q and grounded PRVs with fixed
range values E = {Ei = ei}i, the expression P (Q|E) denotes a query w.r.t.
P (G).

Each query of the set of queries Q that LJT answers can be a conjunctive
query. Since the query terms are not necessarily contained in a single parcluster,
LJT builds for that conjunctive query a parcluster containing all query terms
to leverage its default query answering behaviour. Therefore, LJT identifies a
subtree containing all query terms. LJT merges the subtree into one parcluster
to answer the query. Further, LJT can still use the messages calculated during
the initial message pass, which enter the subtree from the outside. Thus, after
merging the subtree, LJT can directly use LVE on the local model of the merged
subtree with the messages to answer a conjunctive query.



550 M. Gehrke et al.

5.2 Conjunctive Queries in LDJT

Now, we introduce LDJTcon to answer multiple conjunctive queries. In case
LDJT answers conjunctive filtering queries, meaning that all query terms are
from the same time step, LDJT can just use LJT’s merging approach. However,
in case the query terms of a conjunctive query are from time step t up to time
step t + δ, LDJT would need to instantiate FO jtrees for δ time steps and
identify a subtree for the combination of δ FO jtrees. The subtree contains at
least (δ−2)×m+2 parclusters, where m is the number of parclusters on the path
between in- and out-cluster. Thus, merging the parclusters of the subtree, leads
to a parcluster with many PRVs. Further, the asymptotic complexity of LVE
is exponential in the number of PRVs [19]. Hence, we propose an approach to
answer temporal conjunctive queries, which merges fewer PRVs in a parcluster.
First, we extend Definition 5 to allow for multiple query terms in a temporal
query.

Definition 9. Given a PDM G, grounded PRVs Qt and grounded PRVs with
fixed range values E0:t = {Ei

t = ei
t}i,t, P (Qt|E0:t) denotes a query w.r.t. P (G).

Now, each query that LDJTcon answers can be a conjunctive query. To answer
a conjunctive query, LDJTcon needs a parcluster containing all query terms. We
construct this parcluster without over-approximating the number of PRVs as
much as merging a subtree. Thus, we develop an approach to avoid eliminations
of query terms to obtain one parcluster with all query terms. To send a message
from parcluster C1 to C2, LDJT eliminates all PRVs from C1 that are not
included in the separator S12. Hence, LDJT extends separators with query terms.
A PRV is in a separator iff the PRV is contained in both parclusters, which the
separator connects. Therefore, to avoid the elimination of a PRV, LDJTcon adds
the PRV to all parclusters on the path from the parcluster, where the PRV
would be eliminated, to a designated parcluster. By extending parclusters with
the query PRVs, LDJT can avoid the elimination of the query terms to answer
conjunctive queries by leveraging LDJT’s behaviour to answer a query.

A naive approach to extend parclusters is to add the query PRVs to all
parclusters of the relevant time steps. Unfortunately by over-approximating the
extension of parclusters, LDJT increases the number of PRVs in each parcluster.
However, the complexity of LVE depends on the PRVs parclusters. Thus, we
propose to add the query PRVs on demand, which is outlined in Algorithm1.
Basically, LDJT adds all query PRVs to a designated parcluster. Therefore, the
number of PRVs in parclusters is only extended by the necessary number of
PRVs.

Using Algorithm 1 LDJTcon ensures that one parcluster contains all query
terms. Then, LDJT performs a message pass, and answers the conjunctive query
Q. To answer a conjunctive query, LDJTcon instantiates FO jtree J for the
time steps t to t + δ of Q. From J LDJTcon selects a root parcluster, which
contains most of the query terms from Q and is from the last time step of J ,
as designated receiver of all query PRVs. Now, LDJTcon needs to avoid the
elimination of the query terms of Q to the root parcluster. Therefore, starting
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Algorithm 1. Answer Conjunctive Query for Unrolled FO Jtrees for Time Steps
t to t + δ J and Conjunctive Query Q

procedure AnswerConjunctiveQuery(J , Q)
root := Parcluster with the most query terms from time step t + δ
for all Leaf parcluster p ∈ J do

current := p
while current �= root do

qt := Q ∩ current
next := next parcluster on the path to root
next := next + qt
current := next

J := LJT.PassMessages(J )
LVE.AnswerQuery(root, Q)

from each leaf parcluster, LDJTcon traverses the path to the root parcluster. As
FO jtrees are cycle-free graphs, there is exactly one path from each leaf parcluster
to the root parcluster. While traversing the paths, LDJTcon checks whether a
parcluster contains query PRVs and adds the query PRVs to all parclusters on
the path to the root parcluster. Thereby, LDJT avoids the elimination of query
terms to the root parcluster. Another way of interpreting the extension of the
root parcluster is to add all the query terms of Q to the root parcluster and
then to ensure the running intersection property of an FO jtree. After root is
extended, LDJTcon has to repeat a message pass, as the PRVs in parclusters
changed. Lastly, LDJTcon can use LVE to answer the conjunctive query with
the root parcluster’s local model, which contains at least the query terms, and
the incoming messages.

Unfortunately, by avoiding eliminations of query terms, LDJT needs to per-
form an extra message pass as outlined in Algorithm 1. Nonetheless, the approach
is still advantageous over identifying a subtree and merge the subtree into one
parcluster for conjunctive queries over multiple time steps. Even though the work
to answer one conjunctive query is the same, our approach is parallelisable and
the search space for the elimination order is smaller. Further, for a second con-
junctive query with the same query PRVs but different grounding, the work of
the message pass can be reused and thereby redundant computations prevented.

To perform CEP, events from different time steps are queried. For exam-
ple, we are interested whether there is an influence from LTt(x1, x2), Ct+2(x1),
and Ct+2(x2). Figure 4 shows our example model unrolled for time step 3
and 4, without parcluster C1

3. Assuming, we have the conjunctive query
P (LT2(eve, bob), C4(bob), C4(eve)), then LDJTcon can apply the steps of Algo-
rithm1 to answer the query. First, LDJTcon selects C1

4 as root parcluster,
because C1

4 is from the latest time step and is a parcluster containing most of the
query terms. Afterwards, LDJTcon extends the parclusters on the path from the
leaf parclusters C1

3 and C3
3 to root. C3

3 includes the query term LT2(eve, bob).
Hence, LDJT adds LT2(X,X ′) to all parclusters on the path to the root parclus-
ter, namely C2

3, C
3
4, C

2
4, and to the root parcluster C1

4. No additional parcluster
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on the path from C3
3 to root contain any query terms. The same holds for the

path from C1
3 to root. Second, LDJTcon performs a message pass on the extended

FO jtree. Last, LDJTcon uses root to answer the conjunctive query. LDJTcon

increases the maximum number of PRVs in a parcluster from 6 to 7, allowing
us to efficiently answer multiple conjunctive query, e.g., also for alice and bob.
By performing merging, all parclusters would be merged in a parcluster with 12
PRVs.

Theorem 1. LDJTcon’s answering of conjunctive queries is correct.

Proof. While extending a parcluster P to contain at least all query terms, LDJT
ensures the running intersection property of FO jtrees. Thus, after the extension,
the FO jtree is still valid, only with a changed elimination order. Further, LDJT
performs a complete message pass after the FO jtree structure is changed to
distribute information. Therefore, LDJT still has a valid FO jtree with P con-
taining all query terms and the local model of P received the incoming messages.
Hence, given that LVE is correct, using LVE to answer the conjunctive query
with P ’s local model produces a correct answer to the conjunctive query.

Algorithm 1 still has room for improvement, e.g., currently, in case paths to
the root parclusters merge, they are traversed multiple times. Further, LDJT
could directly perform the message passing, while extending the parclusters and
in case one only wants to use the unrolled FO jtree to answer conjunctive query
with different grounding of the query PRVs, an inbound pass to the root par-
cluster would suffice to answer the conjunctive query. Furthermore, instead of
unrolling FO jtrees, LDJT could also always only instantiate an FO jtree for one
time step and proceed in time as described in Sect. 4.4, and one could increased
parclusters to prevent groundings [3]. Nonetheless, Algorithm 1 in the current
form allows for answering conjunctive queries from time step t − π to t + δ in
case one extends LDJT to answer hindsight queries by performing smoothing.

6 Evaluation

For the evaluation, we use the example model Gex and evaluate computations
LDJTcon can save. Therefore, we compare the maximum number of PRVs in a
parcluster for LDJTcon against merging a subtree containing all query terms. We
evaluate the influence the number of PRVs and the time interval in a conjunctive
query have on the maximum number of PRVs in a parcluster. An example query
is P (Wt−δ(eve), Ct(eve)), which has two PRVs and the time interval is δ.

Figure 5 shows the maximum number of PRVs in a parcluster for different
time intervals dependent on the maximum number of PRVs queried in a time
step. The line for 2 PRVs (filled diamond) shows the parcluster size for conjunc-
tive queries with at most 2 different PRVs queried in a time step, analogous for
1,3, 4, and 5. For example our query P (Wt−δ(eve), Ct(eve)) has 1 PRV in each
time step, relating to the 1 PRV line.

In Fig. 5 the 5 PRVs line (filled triangle) correspond to merging a subtree.
Further, with merging one merges all time step in the time interval. Therefore,
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Fig. 5. Y-axis: maximum number of PRVs in a parcluster, x-axis: δ

for our example query with a δ of 10, the size of the maximum parcluster grows to
55 PRVs. For LDJTcon there are only two different time steps involved with only
one PRV for each time step involved. Therefore, the size of the largest parcluster
only grows from 5 to 6 PRVs. Overall the size of the largest parcluster is always
smaller by using LDJTcon compared to merging a subtree.

We desire small parclusters, as the complexity of LVE is exponential to the
number of PRVs [19]. For example with our query, with LDJTcon, the largest
parcluster has 6 PRVs and with merging a subtree has 55 PRVs. Further, per-
forming CEP could lead to asking the same conjunctive query at least for a
subset of our individuals. Hence, starting with a second query only with dif-
ferent groundings, LDJTcon saves the elimination of 49 PRVs, by reusing the
computations performed during message passing by LDJTcon.

7 Conclusion

We present how LDJTcon answers conjunctive queries by avoiding eliminations.
To avoid eliminations, LDJTcon increases parclusters with query PRVs until
all query PRVs are in one parcluster. Results show that extending significantly
reduces computations for multiple conjunction queries compared to merging.

We are currently working on extending LDJT to also calculate the most prob-
able explanation. Other interesting future work includes a tailored automatic
learning for PDMs, parallelisation of LJT, and improved evidence entering.
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Abstract. The lifted dynamic junction tree algorithm (LDJT) answers
filtering and prediction queries efficiently for probabilistic relational tem-
poral models by building and then reusing a first-order cluster represen-
tation of a knowledge base for multiple queries and time steps. Unfortu-
nately, a non-ideal elimination order can lead to groundings. We extend
LDJT (i) to identify unnecessary groundings and (ii) to prevent ground-
ings by delaying eliminations through changes in a temporal first-order
cluster representation. The extended version of LDJT answers multiple
temporal queries orders of magnitude faster than the original version.

1 Preventing Groundings in LJT

The elimination order in the lifted dynamic junction tree algorithm (LDJT) can
lead to unnecessary groundings [2]. In this paper, we propose an approach to
prevent unnecessary groundings and use the examples and definitions from [2].

A lifted solution to a query given a model means that we compute an answer
without grounding a part of the model. Unfortunately, not all models have a
lifted solution because lifted variable elimination (LVE), the basis for lifted junc-
tion tree algorithm (LJT), requires certain conditions to hold. Therefore, these
models involve groundings with any exact lifted inference algorithm. Grounding
a logical variable (logvar) is expensive and, during message passing, may prop-
agate through all nodes. LJT has a few approaches to prevent groundings for
a static first-order junction tree (FO jtree). On the one hand, some approaches
originate from LVE. On the other hand, LJT has a fuse operator to prevent
groundings, occurring due to a non-ideal elimination order [1].

1.1 General Grounding Prevention Techniques from LVE

One approach to prevent groundings is to perform lifted summing out. The
idea is to compute VE for one case and exponentiate the result for isomorphic
instances. Another approach in LVE to prevent groundings is count-conversion,
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which exploits that all random variables (randvars) of a parameterised randvar
(PRV) A evaluate to a value v of range(A). LVE forms a histogram by counting
for each v ∈ range(A) how many instances of gr(A) evaluate to v.

Definition 1. #X∈C [P (X)] denotes a counting randvar (CRV) with PRV P (X)
and constraint C, where lv(X) = {X}. Its range is the space of possible his-
tograms. If {X} ⊂ lv(X), the CRV is a parameterised CRV (PCRV) represent-
ing a set of CRVs. Since counting binds logvar X, lv(#X∈C [P (X)]) = X \ {X}.
We count-convert a logvar X in a parametric factor (parfactor) g = L : φ(A)|C
by turning a PRV Ai ∈ A, X ∈ lv(Ai), into a CRV Ai′ . In the new parfactor g′,
the input for Ai′ is a histogram h. Let h(ai) denote the count of ai in h. Then,
φ′(..., ai−1, h, ai+1, ...) maps to

∏
ai∈range(Ai) φ(..., ai−1, ai, ai+1, ...)h(a

i).

One precondition to count-convert a logvar X in g, is that only one input in g
contains X. To perform lifted summing out PRV A from parfactor g, lv(A) =
lv(g). For the complete list of preconditions for both approaches, see [3].

1.2 Preventing Groundings During Intra FO Jtree Message Passing

During message passing, LJT tries to eliminate PRVs by lifted summing out.
However, the messages LJT passes via the separators restrict the elimination
order, which can lead to groundings. LJT has three tests whether groundings
occur during message passing, namely: (i) check whether LJTcan apply lifted
summing out, (ii) check whether count-conversion can prevent groundings, and
(iii) check that count-converting will not lead to groundings in another parcluster.

A parcluster Ci = Ai|Ci sends a message mij containing the PRVs of the
separator Sij to parcluster Cj . To calculate the message mij , LJT eliminates
the PRVs not part of the separator, i.e., Eij := Ai \ Sij , from the local model
and all messages received from other nodes than j, i.e., G′ := Gi ∩ {mil}l �=j . To
eliminate a PRV from G′, LJT has to eliminate the PRV from all parfactors of
G′. By combining all these parfactors, LJT only has to check whether a lifted
summing out is possibile to eliminate the PRV. To eliminate E ∈ Eij by lifted
summing out from G′, we replace all parfactors g ∈ G′ that include E with
a parfactor gE = φ(AE)|CE that is the lifted product of these parfactors. Let
Sij
E := Sij ∩ AE be the set of randvars in the separator that occur in gE . For

lifted message calculation, it necessarily has to hold ∀S ∈ Sij
E ,

lv(S) ⊆ lv(E). (1)

Otherwise, E does not include all logvars in gE . LJT may induce Eq. (1) for a
particular S by count-conversion if S has an additional, count-convertible logvar:

lv(S) \ lv(E) = {L}, L count-convertible in gE . (2)

In case Eq. (2) holds, LJT count-converts L, yielding a (P)CRV in mij , else, LJT
grounds. Unfortunately, a (P)CRV can lead to groundings in another parcluster.
Hence, count-conversion helps in preventing a grounding if all following messages
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can handle the resulting (P)CRV. Formally, for each node k receiving S as a
(P)CRV with counted logvar L, it has to hold for each neighbour n of k that

S ∈ Skn ∨ L count-convertible in gS . (3)

LJT fuses two parclusters to prevent groundings if Eqs. (1) to (3) checks deter-
mine unnecessary groundings would occur by message passing between these
parcluster.

2 Preventing Groundings in LDJT

LDJT has an intra and inter FO jtree message passing phase. Intra FO jtree
message passing takes place inside of an FO jtree. Inter FO jtree message pass-
ing takes place between two FO jtrees. In both cases unnecessary groundings
can occur. To prevent groundings during intra FO jtree message passing, LJT
successfully proposes to fuse parclusters. Additionally, LDJT performs inter FO
jtree message passing using two instantiations of an FO jtree structure. Unfor-
tunately, having two FO jtrees, LDJT cannot fuse parclusters from different
FO jtrees. Hence, LDJT requires a different approach to preventing unnecessary
groundings during inter FO jtree message passing. In the following, we present
how LDJT prevents grounding and discuss preventing of groundings during intra
and inter FO jtree message passing as well as the implications for a lifted run.

2.1 Preventing Groundings During Inter FO Jtree Message Passing

As we desire a lifted solution, LDJT also needs to prevent unnecessary ground-
ings induced during inter FO jtree message passes. Therefore, LDJT’s expand-
ing performs two steps: (i) check whether inter FO jtree message pass induced
groundings occur, (ii) prevent groundings by extending the set of interface PRVs,
and prevent possible intra FO jtree message pass induced groundings.

Checking for Groundings. To determine whether an inter FO jtree message
pass induces groundings, LDJT also uses Eqs. (1) to (3). For the forward pass,
LDJT applies the equations to check whether the αt−1 message from Jt−1 to
Jt leads to groundings. More precisely, LDJT needs to check for groundings for
the inter FO jtree message passing between J0 and J1 as well as between two
temporal FO jtree copy patters, namely Jt−1 to Jt for t > 1.

Thus, LDJT checks all PRVs E ∈ Eij , where i is the out-cluster from Jt−1

and j is the in-cluster from Jt, for groundings. In case Eq. (1) holds, no additional
checks for E are necessary as eliminating E does not induce groundings. In case
Eq. (2) holds, LDJT has to test whether Eq. (3) holds in Jt at least on the path
from in-cluster to out-cluster. Hence, if Eqs. (2) and (3) both hold, eliminating
E does not lead to groundings, but if Eq. (2) or Eq. (3) fail groundings occur.
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Fig. 1. Forward pass of LDJT without C3
3 (local models and labeling in grey)

Expanding Interface Separators. In case eliminating E leads to groundings,
LDJT delays the elimination to a point where the elimination does no longer lead
to groundings. Therefore, LDJT adds E to the in-cluster of Jt, which results in
E also being added to the inter FO jtree separator. Hence, LDJT does not need
to eliminate E in the out-cluster of Jt−1 anymore. Based on the way LDJT con-
structs the FO jtree structures, the FO jtrees stay valid. Lastly, LDJT prevents
groundings in the extended in-cluster of Jt as described in Sect. 1.2.

Let us now have a look at Fig. 1 to understand the central idea of preventing
inter FO jtree message pass induced groundings. Figure 1 shows Jt instantiated
for time step 3 and 4. Using these instantiations, LDJT checks for groundings dur-
ing inter FO jtree message passing for the temporal copy pattern. To compute α3,
LDJT eliminates AttC3(A) from C2

3’s local model. Hence, LDJT checks whether
the elimination leads to groundings. In this example, Eq. (1) does not hold, since
AttC3(A) does not contain all logvars, X and P are missing. Additionally, Eq.
(2) is not applicable, as the expression lv(S) \ lv(E) = {X,P} \ {C} = {X,P},
which contains more than one logvar and therefore is not count-convertible.

As eliminating AttC3(A) leads to groundings, LDJT adds AttC3(A) to the
parcluster C1

4. Additionally, LDJT also extends the inter FO jtree separator
with AttC3(A) and thereby changes the elimination order. By doing so, LDJT
does not need to eliminate AttC3(A) in C2

3 anymore and therefore calculating α3

does not lead to groundings. However, LDJT has to check whether adding the
PRV leads to groundings in C1

4. For the extended parcluster C1
4, LDJT needs to

eliminate the PRVs Hot3, AttC3(A), and Pub3(X,P ). To eliminate Pub3(X,P ),
LDJT first count-converts AttC3(A) and then Eq. (1) holds for Pub3(X,P ).
Afterwards, it can eliminate the count-converted AttC3(A) and the PRV Hot3
as Eq. (1) holds for both of them. Thus, by adding the PRV AttCt−1(A) to the
in-cluster of Jt and thereby to the inter FO jtree separator, LDJT can prevent
unnecessary groundings. Additionally, as LDJT uses this FO jtree structure for
all time steps t > 0, i.e., the changes to the structure also hold for all t > 0.

Theorem 1. LDJT’s expanding is correct and produces a valid FO jtree.

Proof. In the initial FO jtree structures, the separator between FO jtree Jt−1 and
Jt consists of exactly It−1. Thus, by taking the intersection of the PRVs contained
in Jt−1 and Jt, we get the set of PRVs from It−1. While LDJT calculates αt−1, it
only needs to eliminate PRVs E not contained in the separator and thereby It−1.
Therefore, all E ∈ E are not contained in any parcluster of Jt. Hence, by adding
E to the in-cluster of Jt, LDJT does not violate any FO jtree properties. Further,
LDJT does not even have to validate properties like the running intersection
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property, since it could not have been violated in the first place. Additionally,
LDJT extends the set of interface PRVs, resulting in an over-approximation of
the required PRVs for the inter FO jtree communication to be correct.

2.2 Discussion

In the following, we start by discussing workload and performance aspects of
the intra and inter FO jtree message passing. Afterwards, we present model
constellations where LDJT cannot prevent groundings.

Performance. The additional workload for LDJT introduced by handling
unnecessary groundings is moderate. In the best case, LDJT checks Eqs. (1)
to (3) for calculating two messages, namely for the αt−1 message and for the
message LDJT passes from in in-cluster of Jt in the direction of the out-cluster
of Jt. In the worst case, LDJT needs to check 1 + (m − 1) messages, where m
is the number of parclusters on the path from the in-cluster to the out-cluster
in Jt.

From a performance point of view, increasing the size of the α messages and of
a parcluster is not ideal, but always better than the impact of groundings, which
would result in ground calculations for each time step. By applying the intra FO
jtree message passing check, LDJT may fuse the in-cluster and out-cluster, which
most likely results in a parcluster with many model PRVs. Increasing the number
of PRVs in a parcluster, increases LDJT’s workload for query answering. But
even with the increased workload a lifted run is faster than grounding. However,
in case the checks determine that a lifted solution is not obtainable, using the
initial model with the local clustering is the best solution.

First, applying LJT’s fusion is more efficient since fusing the out-cluster with
another parclusters could increase the number of its PRVs. In case of changed
PRVs, LDJT has to rerun the expanding check. Therefore, LDJT first applies
the intra and then the inter FO jtree message passing checks.

Groundings LDJT Cannot Prevent. Fusing the in-cluster and out-cluster
due to the inter FO jtree message passing check is one case for which LDJT
cannot prevent groundings. In this case, LDJT cannot eliminate E in the out-
cluster of Jt−1 without groundings. Thus, LDJT adds E to the in-cluster of Jt.
The checks whether LDJT can eliminate E on the path from the in-cluster to the
out-cluster of Jt fail. Thereby, LDJT fuses all parclusters on the path between the
two parclusters and LDJT still cannot eliminate E. Even worse, LDJT cannot
eliminate E from time step t − 1 and t in the out-cluster to calculate αt. In
theory, for an unrolled model, a lifted solution might be possible, but with many
PRVs in a parcluster, since, in addition to other PRVs, one parcluster contains
E for all time steps. Depending on the domain size and the maximum number
of time steps, either grounding or using the unrolled model is advantageous.
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If S occurs in an inter-slice parfactor for both time steps, then another source
of groundings is a count-conversion of S to eliminate E. In such a case, LDJT
cannot count-convert S in the inter-slice parfactor, which leads to groundings.

3 Evaluation

For the evaluation, we use the example model Gex with the set of evidence
being empty, for |D(X)| = 10, |D(P )| = 3, |D(C)| = 20, and the queries
{Hott, AttCt(c1),DoRt(x1)} for each time step. We compare the runtimes on
commodity hardware with 16 GB of RAM of the extended LDJT version against
the original version and then also against LJT for multiple maximum time steps.

Figure 2 shows the runtime in seconds for each maximum time step. We can
see that the runtime of the extended LDJT (diamond) and the original LDJT
(filled triangle) is, as expected, linear, while the runtime of LJT (cross) roughly
is exponential, to answer queries for changing maximum number of time steps.
Further, we can see how crucial preventing groundings is. Due to the FO jtree
construction overhead, the extended version is about a magnitude of three faster
for first time steps, but the construction overhead becomes negligible with more
time steps. Overall, the extended LDJT is up to four orders of magnitude faster.

20 21 22 23 24 25 26 27 28 29 210 211 212 213

10−1

100

101

102

103

104

105

original LDJT
extended LDJT
LJT

Fig. 2. Y-axis: runtimes [seconds], x-axis: maximum time steps, both in log scale

Additionally, we see the runtimes of LJT. LJT is faster for the initial time
steps, especially in case grounding are prevented by unrolling. Nonetheless, after
several time steps, the size of the parclusters becomes a big factor, which also
explains the exponential behaviour [3]. To summarise the evaluation results, on
the one hand, we see how crucial the prevention of groundings is and, on the
other hand, how crucial the dedicated handling of temporal aspects is.

4 Conclusion

We present how LDJT can prevent unnecessary groundings by delaying elimina-
tions to the next time step and thereby changing the elimination order. To delay
eliminations, LDJT increases the in-cluster of the temporal FO jtree structure
and the separator between out-cluster and in-cluster with PRVs, which lead to
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the groundings. First results show that the extended LDJT significantly outper-
forms the orignal version and LJT if unnecessary groundings occur.

We currently work on extending LDJT to calculate the most probable expla-
nation. Other interesting future work includes a tailored automatic learning for
parameterised probabilistic dynamic models and parallelisation of LJT.
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Abstract. While standardisation of variables is a common practice for
many machine learning algorithms, it is rarely seen in the literature on
genetic programming for symbolic regression. This paper compares the
predictive performance of unscaled and standardised genetic program-
ming, using artificial datasets and benchmark problems. Linear scaling
is also applied to genetic programming for these problems. We show that
unscaled genetic programming provides worse predictive performance
than genetic programming augmented by linear scaling and/or standard-
isation as it is highly sensitive to the magnitude and range of explanatory
or response variables. While linear scaling does provide better predictive
performance on the simple artificial datasets, we attribute much of its
success to an implicit standardisation within the predictive model. For
benchmark problems, the combination of linear scaling and standardisa-
tion provides greater stability than only applying linear scaling to genetic
programming. Also, for many of the simple artificial datasets, unscaled
genetic programming produces larger individuals, which is undesirable
in the search for parsimonious models.

Keywords: Genetic programming · Standardisation · Linear scaling

1 Introduction

Symbolic regression is the process of fitting mathematical models to observa-
tions through searching for arbitrary equations rather than pre-defining a fixed
form. Though there are many ways to potentially search the space of equa-
tions in symbolic regression, the majority of research has focused upon using
methods based upon genetic programming (GP) [9]. Indeed, symbolic regression
has become almost synonymous with GP, with indications that as much as a
third of all research into GP is dedicated to using or improving symbolic regres-
sion [17]. However, the baseline symbolic regression performance of canonical GP
as defined by Koza has been shown to be quite poor [3], and a large body of work
has introduced new search operators, selection methods, and fitness functions to
improve upon this performance. Almost all of this work has focused upon inter-
nal factors of GP itself: factors relating to the nature of the data provided to GP
for training remain largely unexplored. This is in contrast to many other types of
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machine learning, such as neural networks, where it is well-understood that data
must be adequately preprocessed (e.g., through standardising variables) prior to
training to best exploit the learning method’s behaviour [10].

Given that GP typically evolves solutions that involve multiple interactions
between numerous variables, there is a need to properly understand the impact
that variable scale, and more importantly removing the scale of variables through
standardisation, has on GP performance. This paper explores the impact of stan-
dardisation of GP on a range of symbolic regression problems, and compares the
resulting behaviour to that of GP augmented with linear scaling. The results sug-
gest that the success of linear scaling at improving GP performance can largely
be attributed to an explicit translation and rotation of the predictive model.
We also demonstrate that standardisation of variables prior to evolution has a
positive effect on the size on individuals relative to canonical GP and GP using
linear scaling. Exploiting this knowledge, we explore the behaviour of a GP vari-
ant that utilises both standardisation and linear scaling, and demonstrate that
this variant offers the lowest error with increased stability over a range of bench-
mark problems. Given that it demands almost no cost in terms of computational
effort, we argue that all future investigations using GP for symbolic regression
adopt standardisation of variables.

The remainder of this paper is structured as follows: Sect. 2 provides a back-
ground review of the methods used to improve the performance of GP (including
linear scaling), Sect. 3 outlines the process involved in performing standardisa-
tion, Sect. 4 presents the method and experimental results for simple artificial
datasets, Sect. 5 presents the method and experimental results for the bench-
mark datasets, and Sect. 6 presents the conclusions and suggestions for future
work.

2 Background

There have been many previous attempts to improve the baseline performance of
GP for symbolic regression: these include the use of gradient descent to optimise
coefficients [15], interval arithmetic to increase reliability [4,7], special crossover
methods to accelerate search [16], and semantic methods such as geometric
semantic GP (GSGP) [11]. In all these cases, the emphasis is on the under-
lying algorithms used by GP: there is little emphasis on exploring the behaviour
of GP in response to the nature and scale of the data used for training. As data
used for modelling is typically supplied in arbitrary scales, dimensions and for-
mats, this has many practical implications for genetic programming. The units
used to record the state of a variable may have significant impact in the way
that they interact with other variables in the problem. For example, recording
an elapsed time in hours will produce values several orders of magnitude smaller
than the same quantity recorded in seconds, and this would produce consider-
ably different behaviour if this variable was used within a ratio computation. To
cope with this, canonical GP using raw unscaled variables needs to rely on the
use of ephemeral random constants, and possibly adjusting their magnitude, in
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order to appropriately scale variables within the evolved model. However, the
search mechanisms in canonical GP do not lend themselves well to searching for
optimal coefficient values [7].

2.1 Linear Scaling

Earlier work, particularly that of Keijzer et al., introduced extensions to GP
that attempt to acknowledge the scale and nature of the variables used for mod-
elling [7,8]. Of particular interest to the work in this paper is the concept of
linear scaling: this involves calculating the slope and intercept for a regression
of the actual values on the fitted values for the set of outputs of a GP system,
resulting in the scaled formula a + bŷ, where ŷ is the prediction/output of the
GP system. The slope (b) and intercept (a) are calculated using the formulas:

b =
∑

[(y − ȳ)(ŷ − ¯̂y)]
∑

[(ŷ − ¯̂y)2]
(1)

a = ȳ − b¯̂y (2)

where y is the actual response, ȳ is the mean actual response, ŷ is the predic-
tion/output of the GP system and ¯̂y is the mean prediction/output. As linear
scaling calculates two coefficients that would otherwise have to be evolved explic-
itly by GP, this means that GP is “free to search for that expression whose shape
is most similar to that of the target function” [7, p. 7]. Implicit in this is the
notion that the scale of input variables and their impact on the resulting GP
function will be standardised when wrapped in a linear model. However, no
standardisation of variables was done by Keijzer et al., so linear scaling was
effectively tasked with both shifting the search space and correcting the shape
of the evolved GP function.

3 Standardisation of Variables

Standardising variables is a common practice in machine learning. The motiva-
tion for this is that all variables are initially treated with equal importance in
a predictive model. For example, variables are standardised for k-nearest neigh-
bour methods so that a variable captured in an arbitrarily small unit does not
dominate other variables when measuring Euclidean distance. Standardisation
is a preferred preprocessing method compared to normalisation because the dis-
tribution of a variable with standardised values more closely follows a normal
distribution and standardisation reduces the effect of outliers. A variable y is
converted into its standardised form yST using the equation:

yST =
y − ȳ

SD(y)
(3)

where ȳ is the sample mean value of y and SD(y) is the sample standard devia-
tion of y. The predictor variables can be standardised in the same way. Typically,
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once a model using standardised inputs has been trained, any predictions are
also in a standardised space, and so a reverse transformation is typically applied
to the prediction to restore the value back into the original scale of the response.

4 Initial Comparisons of Standardisation in GP

Though it appears to be essentially overlooked, the concept of standardisation
can be easily applied to GP. This is an important concept to explore, as the
scale of the response in relation to its predictor variables is likely to have an
effect on the performance of a predictive model. If a model is produced to pre-
dict the outcomes from an underlying data generating process that involves a
reasonably large intercept, for example, then the individuals evolved in GP may
have difficulty in capturing random constants that capture the magnitude of the
underlying intercept. Therefore, the importance of standardisation for GP needs
to be investigated.

We adopt a simple model of standardisation: after performing GP, the pre-
dicted value is converted back into its normal range using the equation:

ŷ∗ = ȳ + SD(y) ∗ GP (XST ) (4)

where GP (XST ) is the output value from the GP system, using standardised
predictors (we call this full standardisation). Alternatively, only the response
variable could be standardised, which would be converted back into its normal
range using the equation:

ŷ∗ = ȳ + SD(y) ∗ GP (X) (5)

where GP (X) is the output value from the GP system, using unstandardised
predictors (we call this partial standardisation).

An initial controlled experiment was set up to compare unscaled GP, fully
standardised GP, partially standardised GP, linear scaled GP and the combina-
tion of fully standardised and linear scaled GP (see Eq. 8). These variations of
GP all operated with the function set {+,−, ∗, AQ}, where AQ is the analytic
quotient defined by [12] as:

AQ(x1, x2) =
x1√

1 + x2
2

(6)

where x1 and x2 are real numbers. The analytic quotient has similar properties
to that of the division operator but without the need for protection. This is
important in terms of operator closure as Koza argues that an operation on a real
number should always map to another real number [9]. Operators often used by
Koza, including sin, cos, loge and exp, have not been included in this function set
as they can be approximated by polynomial combinations of arithmetic operators
in a GP tree and often require protection. The possible terminal nodes consist of
the explanatory variables in the dataset as well as ephemeral random constants
(ERCs) drawn from the uniform distribution [-1,1). GP was performed using the
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ECJ library in Java. To avoid bias, the sample mean and standard deviation of
all variables was established using training data, and the same values were then
used for subsequent testing.

The predictive performance of different versions of GP was determined using
root relative squared error (RRSE), which is calculated using the formula:

RRSE =

√∑
i(yi − ŷi)2∑
i(yi − ȳ)2

(7)

where i denotes the index of an instance in the data set. For standardised GP,
ŷ is replaced by ŷ∗ (see Eqs. 3 to 5) and by a + bŷ for linear scaled GP (see
Eqs. 1 and 2). In addition to RRSE, we measure and compare the size of models
produced by the different variations of GP.

Unscaled GP, fully standardised GP, partially standardised GP, and linear
scaled GP were compared using a number of artificial datasets, all of which use
the same underlying data generating process:

y = Bx1x2 + C + U(−0.05, 0.05) (8)

where x1 and x2 are drawn from the uniform distribution [-1,1). Given that this
generating function involves a single interaction of only two variables, we could
näıvely assume that GP would find this a trivial problem to search. However,
previous research has indicated that GP struggles on functions of this form when
B and C become large [7]. In order to determine how the methods perform based
on the magnitude of coefficient B and magnitude of intercept C, the data were
produced for B and C equal to 1, 2, 4, 8, 16 and 32 (i.e. 36 different datasets).
Each dataset was generated with 100 observations and was split into training
(90 observations used to train GP) and test sets (10 observations) using 10-
fold cross-validation that was repeated 10 times. For these datasets, GP was
performed using the default parameters in ECJ.

4.1 Results

The testing RRSE (averaged over the different cross-validation folds) for the
best individual in the population is shown in Fig. 1. The RRSE values in the
range [0,1] are plotted on the vertical axis; only the unscaled GP provides RRSE
values greater than one. The training RRSE values (not shown) exhibit sim-
ilar behaviour, although with smaller RRSE values for the initial population.
For small B and C, the four methods provide similar predictive performance,
particularly after approximately 10 generations. As with the training RRSE, lin-
ear scaling provides better performance for the initial population, staying rela-
tively constant during the evolutionary process. As the magnitude of C increases,
the test RRSE associated with unscaled GP increases while the test RRSE of
the three other methods remains relatively constant. This strongly suggests the
importance of standardisation or linear scaling in GP providing good predic-
tive performance. As the magnitude of B increases, unscaled GP provides a
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higher RRSE for the initial population and a slower decrease in RRSE. Also, the
test RRSE associated with linear scaled GP decreases as B increases, providing
better predictive performance than the other methods. This shows that linear
scaling provides better generalisation performance than standardisation for large
scale coefficients in a simple data generating process. Fully standardised GP and
partially standardised GP provide similar predictive performance, although fully
standardised GP does provide slightly better generalisation performance for the
initial population.
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Fig. 1. Test RRSE of best individual averaged over cross validation folds

The mean tree size (averaged over the different cross-validation folds) is
shown in Fig. 2. For small B and C, unscaled GP provides the smallest increase
in tree size and linear scaling provides the largest increase. This may be due to
linear scaling protecting good solutions from disruption due to crossover opera-
tions, in order to maintain good predictive performance [13]. As the magnitude
of B or C increases, the size of trees generated by unscaled GP increase faster
than for the other methods. This suggests that unscaled GP trees require more
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nodes than the other methods to try to capture the larger coefficient or intercept
in the underlying data generating process as it is more difficult to evolve larger
coefficients or intercepts without standardisation or linear scaling. The increase
in tree size for unscaled GP is more pronounced for larger values of B and C.
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Fig. 2. Mean tree size averaged over cross validation folds

For these artificial datasets, linear scaled GP provides greater predictive
performance than the other variations of GP. However, y = Bx1x2 + C +
U(−0.05, 0.05) is a simple underlying process, so it is not surprising that shifting
the search space through linear scaling provides good predictive performance.
Therefore, these methods should be examined using more complex datasets.
Also, given that linear scaling appears to perform an implicit standardisation
within the predictive model, a combination of fully standardised and linear
scaled GP should be investigated to allow linear scaling to concentrate solely
on its intended purpose.
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5 Comparisons on Benchmark Data

All of the variations of GP examined in the previous section, with the addi-
tional combination of fully standardised and linear scaled GP, were compared
using a number of artificial and real-world datasets, as shown in Table 1, where
p is the number of explanatory variables and n is the number of observations.
These datasets have been chosen as they are commonly used in the machine
learning literature [5]. GP was repeated 100 times for each dataset: for Fried-
man 1–3 a different train/test split was drawn. For all other datasets, 10 trials
of 10-fold cross-validation were used. The GP parameters used for these bench-
mark datasets are shown in Table 2 and are typical of those used in recent work
[4,5,11].

Table 1. Benchmark datasets

Dataset p n References Train/Test

Friedman 1 10 2200 [1] 200, 2000

Friedman 2 4 2200 [1] 200, 2000

Friedman 3 4 2200 [1] 200, 2000

Auto MPG 7 392 [14] 10-fold CV

Boston Housing 13 506 [2,4,6] 10-fold CV

Concrete Strength 8 1030 [4,18] 10-fold CV

Dow Chemical 57 1066 [4] 10-fold CV

Energy 8 768 [4] 10-fold CV

Machine 7 209 [14] 10-fold CV

Ozone 8 330 [1] 10-fold CV

Servo 4 167 [1,14] 10-fold CV

Yacht 6 308 [4] 10-fold CV

Table 2. GP parameters for benchmark datasets

Parameter Value

Population size 200

Number of generations 250

Probability of crossover 0.3

Probability of subtree mutation 0.7

Depth of subtree mutation 5

Elitism Yes (1 individual)

Size of tournament 3

Training RRSE (averaged over the different cross-validation folds) for the
best individual in the population is shown in Fig. 3, including the 95% confi-
dence intervals for RRSE. The RRSE values in the range [0,1] are plotted on the
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vertical axis; only the unscaled GP provides RRSE values greater than one for
the initial generations. For most of the datasets, unscaled GP and partially stan-
dardised GP provide the worst predictive performance. This is particularly the
case for datasets that include explanatory variables with a much greater range
and magnitude of values than the other explanatory variables in the dataset
(e.g. the Dow Chemical dataset). As partially standardardised GP standardises
only the response variable, the method does not affect the magnitude or range
of explanatory variables. For some of the datasets, fully standardised GP pro-
vides worse predictive performance than unscaled GP or partially standardised
GP after approximately 50 generations. This seems to be the case for datasets
that have a response variable with a greater range and size of values than the
explanatory values. As might be expected, standardising datasets that consist of
explanatory variables with similar magnitudes and ranges results in performance
largely equivalent to unscaled GP. However, linear scaled GP and the combina-
tion of standardised and linear scaled GP provide the best performance for all of
the datasets. This shows that it is easier for GP to evolve desirable individuals
when the search space is shifted, by calculating coefficient b for the predictions
and intercept a. For many of the datasets, the combination of standardisation
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Fig. 3. Train RRSE of best individual averaged over cross validation folds
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and linear scaling provides similar or better performance than linear scaling. This
suggests that standardisation and linear scaling contribute in different ways and
are therefore complementary in enhancing predictive performance.

The testing RRSE (averaged over the different cross-validation folds) for the
best individual in the population is shown in Fig. 4, including the 95% confi-
dence intervals for RRSE. Again, the RRSE values in the range [0,1] are plotted
on the vertical axis; only unscaled GP and partially standardised GP provide
RRSE values greater than one, mostly during the initial generations. The per-
formance trends on the test and training data are similar. However, a number
of the datasets (e.g. Machine and Ozone) exhibit more erratic behaviour in per-
formance, particularly those that include explanatory variables with the largest
magnitudes and/or ranges of values. For the Dow Chemical dataset, which has
one explanatory variable with a very large range of values, unscaled GP and
partially standardised GP provide large and erratic RRSE values. This shows
the importance of standardising both the explanatory and response variables.
Linear scaled GP provides more erratic predictive performance than combined
standardised and linear scaled GP for some of the datasets, particularly those
that include more than one variable with a large magnitude and range. This
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suggests that linear scaled GP does not generalise to unseen data as well as
linear scaled and standardised GP combined. This may be because linear scaled
GP shifts the search space based solely on information in the training data and
so cannot manage the effects of outliers in the test set. In contrast, standardisa-
tion using statistics from the training data will have at least some effect on test
outliers. For example, the Machine dataset includes one particularly large value
for the fourth explanatory variable: if the observation associated with this value
was included in the test data fold, it is unlikely to be represented by the search
space shifted by linear scaling without standardisation. This observation may
also contribute to the poor performance of unscaled GP, which provides very
large mean test RRSE values (approximately 8) over the final 50 generations.

6 Conclusion

Standardisation of variables plays an important role in the performance of many
machine learning methods. However, its effect on GP appears to be largely unex-
plored. This paper considers GP as a machine learning method, rather than sys-
tems identification, as GP is being used to approximate the unknown underlying
function. This paper takes the first steps into exploring the importance of vari-
able standardisation in GP and suggests that, like other methods that involve
variable interactions, GP is highly sensitive to the scale in which variables are
presented. Through a number of experiments, we have demonstrated that the
performance of GP can be greatly improved simply through z-score standard-
isation of variables prior to training. Naturally, standardisation will have little
effect if using GP to model a dataset that includes variables of similar scale.
However, this process has positive effects on both error and size performance,
typically resulting in models that were smaller and generalised better than using
unscaled variables. Additionally, the process of standardisation had a positive
effect on linear scaling, allowing it to concentrate on correcting the shape of
the function evolved in GP and leaving standardisation to position the function
within a promising region of the search space. The evidence presented in this
paper strongly suggests that all future investigations into symbolic regression
via genetic programming adopt a standardised variable approach.

The results reported in this paper are promising and suggest several areas of
future investigation. While linear scaling is explicitly performing translation and
rotation, the combination of linear scaled and standardised GP provides greater
stability in predictive performance because it is more effective than implicitly
dampening the oscillation between variables. Therefore, further investigation of
how these variations of GP affect its predictive performance would be useful. This
could be performed by decomposing the error associated with these methods. We
also find that unscaled GP often produces larger individuals than standardised
or linear scaled GP. Therefore, the models produced by these methods should
be examined in order to test our hypothesis that unscaled GP produces large
subtrees made up of ERCs in order to capture the magnitude or range of variables
involved in the underlying data generating process.
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Abstract. Missing values are an unavoidable issue in many real-world
datasets. Classification with incomplete data has to be addressed care-
fully because inadequate treatment often leads to a big classification
error. Interval genetic programming (IGP) is an approach to directly
use genetic programming to evolve an effective and efficient classifier
for incomplete data. This paper proposes a method to improve IGP for
classification with incomplete data by integrating IGP with ensemble
learning to build a set of classifiers. Experimental results show that the
integration of IGP and ensemble learning to evolve a set of classifiers
for incomplete data can achieve better accuracy than IGP alone. The
proposed method is also more accurate than other common methods for
classification with incomplete data.

Keywords: Incomplete data · Classification · Genetic programming
Interval functions · Ensemble learning

1 Introduction

Classification is a major data mining task that predicts a class label for an
instance based on feature values of the instance. Classification includes two main
processes: a training process and an application (test) process. The goal of the
training process is to use a classification algorithm on a training dataset to build
a classifier. The goal of the application process is to use the built classifier to
assign a class label to each new instance. Classification has been widely applied
to many areas such as computer science, engineering and medicine. However,
there are still issues, one of which is incomplete data [1,6].

Missing values where the values of some features are unknown are a common
example of incomplete data in many real-world datasets. For example, in the UCI
machine learning repository [2], which is one of the most popular benchmarks for
data mining, 45% of the datasets suffer from missing values. There are various
causes of missing values. For example, in social surveys, respondents often refuse
to answer some questions, so datasets collected from the surveys are incomplete.
c© Springer Nature Switzerland AG 2018
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Medical datasets usually contain a large number of missing values because not
all possible tests can be done on every patient [6].

Missing values cause serious problems for classification. One of the most
serious problems is that the majority of classification algorithms do not work
on datasets with missing values (incomplete datasets) [6]. For example, neural
networks cannot directly work with incomplete data. Another problem is that
missing values often lead to big classification error due to inadequate information
for the training and application processes [10].

In classification tasks, discriminant functions are a popular method for rep-
resenting classifiers. A discriminant function is a mathematical expression that
represents a combination of the features of an instance which needs be classi-
fied. The value returned by the discriminant function determines the predicted
class by using a single threshold (binary classification) or a set of thresholds
(multi-class classification) [5].

Genetic programming (GP) is an evolutionary technique which constructs
computer programs [9]. The capability of GP to learn the definition of a func-
tion from examples makes it a very good choice for constructing discriminant
functions for classification tasks. Therefore, GP has been widely used to con-
struct discriminant functions for classification tasks [5].

Although GP has been successfully used to construct classifiers, it has been
mainly applied to complete data. To use traditional GP to construct classifiers
for incomplete data, imputation methods which replaces missing values with
plausible values [6] are required to transform incomplete data into complete
data before using GP. To construct good classifiers, GP should be combined
with sophisticated imputation methods such as multiple imputation by chained
equations (MICE) [16]. Unfortunately, sophisticated imputation methods like
MICE are only appropriate for batch imputation and are too computationally
intensive to estimate missing values for individual incomplete instances in the
unseen data [15].

In [14], interval GP (IGP) is proposed to directly construct classifiers for
incomplete data without imputation requirement. Experimental results showed
that IGP can evolve more effective and efficient classifiers than the combination
of traditional GP and imputation. Moreover, IGP is more accurate than common
classifiers able to directly classify incomplete data such as C4.5 and CART [17].

The overall goal of this paper is to improve the accuracy of IGP for clas-
sification with incomplete data. To achieve this goal, this paper proposes an
integration of IGP and ensemble learning to construct an ensemble of classifiers
for incomplete data. Specially, this paper will investigate:

– Whether a set of classifiers constructed by the proposed approach can achieve
better classification accuracy than a single classifier constructed by IGP; and

– Whether a set of classifiers constructed by the proposed approach can achieve
better classification accuracy than a set of classifier constructed by the com-
bination of ensemble learning, imputation and traditional GP; and

– Whether a set of classifiers constructed by the proposed approach can achieve
better classification accuracy than a set of classifiers constructed by the
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combination of ensemble learning and classification algorithm that are able
to directly work with incomplete data su such as C4.5/CART.

2 Related Work

This section outlines related work including approaches to classification with
incomplete data, GP for classification and ensemble learning.

2.1 Approaches to Classification with Incomplete Data

There are three major approaches to classification with incomplete data: the dele-
tion approach, the imputation approach, and directly classification with incom-
plete data [6].

– Deletion approach: this approach simply deletes all instances containing miss-
ing values. The benefit of this approach is that it provides complete data for
classification. However, the deletion approach is only feasible for datasets with
few missing values because this approach cannot provide enough information
for training a classifier when a dataset has numerous missing values [1].

– Imputation approach: this approach uses imputation methods to transform
incomplete data into complete data before building a classifier in the training
process or classifying a new incomplete instance in the application process.
This approach can provide complete data which then can be used by any
classification algorithm. It also can deal with incomplete datasets with a large
number of missing values. Therefore, imputation is the most popular approach
to classification with incomplete data [6].

– Directly classification with incomplete data: this approach builds a model in
the training process which can directly classify incomplete instances in the
application process without requiring any imputation method. For example,
C4.5 can directly classify incomplete datasets by using a probabilistic app-
roach [17].

2.2 GP for Classification

GP has been widely applied to evolve classifiers. The basic idea of the application
of GP for inducing classifiers is that each individual is made to represent a
classifier or a part of a classifier, a fitness function is designed to score its quality
and GP acts as a search technique to discover a high quality final classifier [5].

Discriminant functions are a common way to represent classifiers. A function
is a mathematical expression where different types of operators are applied to the
features of an instance that needs be classified. The value returned by the func-
tion determines the class predicted by using a threshold (binary classification)
or set of thresholds (multiple classification) [5].

The obvious approach to evolving discriminant functions with GP is to have
a population where each individual encodes one discriminant function. The func-
tion set in GP can be any type of operations and functions that can perform on
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the data. GP has been widely applied to evolve discriminant functions including
binary discriminant functions and multiple discriminant functions [5].

GP has been mainly applied to evolve classifiers, but mainly for complete
data. Therefore, to use GP for evolving classifiers for incomplete data, imputa-
tion methods are required to impute missing values before using GP. In order
to evolve good classifiers, GP has to be combined with sophisticated imputa-
tion methods such as (MICE) [16]. However, sophisticated imputations such as
MICE are computationally expensive. To deal with this problem, [14] proposed
interval GP (IGP) to directly construct a classifier for each incomplete data.
With the constructed classifier, each missing value is replaced by an interval
that expresses the uncertainty associated with the missing value. Experimental
results show that IGP can evolve effective and efficient classifiers for incomplete
data.

2.3 Ensemble Learning

An important class of techniques for classification is ensemble learning which
uses a set of classifiers instead of a single classifier. Ensemble techniques first
build a set of classifiers, and then a new instance is classified by conducting a
vote with decisions of the individual classifiers. Ensemble learning has proved
capable of achieving better classification accuracy than any single classifier [13].

An ensemble of classifiers is good if the individual classifiers in the ensemble
are accurate and diverse. Bagging is one of the most popular approaches to
building accurate ensembles. Bagging use “resampling” techniques to manipulate
the training data. Bagging manipulates the original training dataset by randomly
drawing instances with replacement. Therefore, in the resulting training dataset,
some of the original instances may appear multiple times while others might not
appear. Bagging is often effective on “unstable” learning algorithms such as
neural networks and decision trees where small changes in the training dataset
can lead to major changes in predictions [13].

3 The Proposed Method

3.1 The Limitations of IGP

The problem with IGP [14] is that the output of a classifier constructed by IGP is
an interval which can span more than one class boundary, but IGP determines a
single class label by using the middle point of the output interval. This decision
method does not select the highest probability class when the middle point
belongs to one class region, but the biggest overlap with the output interval
belongs to another class region. For example, in Fig. 1, the middle point belongs
to class 2, but the highest overlap with the interval output is the region of
class 1.

The decision method of IGP also makes an unjustified decision when there
exist two or more class regions with the same or similar overlap with the interval
output. For example, in Fig. 2, class 2, class 3 and class 4 have the same overlap
with the interval, but IGP only outputs class 3.
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class 1 class 2 class 3

L U. mid

Fig. 1. A potential failure example of IGP due to using the middle of interval output
to decide a final class.

class 1 class 2 class 3 class 4 class 5

L U.mid

Fig. 2. A problem with IGP because of building only one classifier.

3.2 The Combination of Ensemble Learning with IGP

In order to overcome the limitations of IGP, this paper proposes algorithm,
EnIGP, which integrates ensemble methods and IGP to construct a set of clas-
sifiers for incomplete data. To construct a set of classifiers, firstly, a training
dataset is put into a resample procedure such as in bagging/boosting to build a
set of training resampled datasets. After that, each training resampled dataset is
used by IGP to build a single a classifier. As a result, a set of classifiers is gener-
ated. When a new instance needs be classified, each classifier in EIGP estimates
the probability of the instance belonging to each class instead of determining a
single class for the instance as IGP. After that, the final class of the instance
is the class which achieves the highest total probability over all classifiers. The
main steps of EnIGP are presented following steps:

Finding the Interval of a Feature: As IGP in [14], in order to make EnIGP
able to directly work with missing values, we need to find an interval for each
incomplete feature, and then replace missing values for the feature by the inter-
val.

A feature interval is the range which covers a large majority of the actual
values of the feature. The interval of a feature should be estimated from the
distribution of the feature values. We used the method described in [12] which
removes a fixed fraction of values from both the top and bottom of the range to
find an interval for each feature. Experiments in [12] showed that this worked
well for a range of distributions.

Interval Functions: Along with transforming incomplete data to interval data,
we also need to build interval functions to work with interval data. We used the
four interval arithmetic operations shown in [14]:
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a + b =

{
lower : al + bl

upper : au + bu

a − b =

{
lower : al − bu

upper : au − bl

a ∗ b =

{
lower : min(al ∗ bl, al ∗ bu, au ∗ bl, au ∗ bu)
upper : max(al ∗ bl, al ∗ bu, au ∗ bl, au ∗ bu)

a/b =

{
lower : min(al/bl, al/bu, au/bl, au/bu)
upper : max(al/bl, al/bu, au/bl, au/bu)

where al and au are lower and upper bounds of feature a; bl and bu are lower
and upper bounds of feature b

Class Label Determination: Assuming [l, u] is the output of a classifier con-
structed by GP with interval function, and [Ti−1, Ti) is the class region of the ith

class label, then the probability of the ith class label is chosen by the classifier
is defined as followed:

prob([l, u] ∈ classi) =

{
0 : if u < Ti−1 or T i ≤ l
min(u,Ti)−max(l,Ti−1)

u−l : otherwise

where T1, T2, ..., Tn−1 are the pre-defined static class boundaries.

4 Experiment Design

4.1 The Comparison Methods

The experiments are designed to evaluate the proposed method to evolve a set
of classifiers for incomplete data. To achieve this goal, the proposed method is
compared to three benchmark methods:

– The first benchmark method is to use IGP to construct a single classifier.
The purpose of this comparison is to figure out whether a set of classifiers
constructed by the integration of ensemble learning and IGP can achieve
better classification accuracy than a single classifier constructed by IGP alone.

– The second benchmark method is to combine imputation, ensemble learn-
ing and traditonal GP to construct a set of classifiers. The purpose of this
comparison is to figure out whether a set of classifiers constructed by the
integration of ensemble learning and IGP can achieve better classification
accuracy than a set of classifier constructed by the combination of ensemble
learning, imputation and traditional GP.
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– The third benchmark method is to combine ensemble learning and classifi-
cation algorithms able to directly work with incomplete data (C4.5/CART)
to construct a set of classifiers. The purpose of this comparison is to figure
out whether a set of classifiers constructed by the integration of ensemble
learning and IGP can achieve better classification accuracy than a set of clas-
sifiers constructed by the combination of ensemble learning and classification
algorithms able to directly work with incomplete data.

4.2 Datasets

The proposed method are evaluated and compared with other methods on
a number of benchmark datasets. The datasets are chosen from the the
UCI machine learning repository [2]. Table 1 shows the main characteris-
tics of the chosen datasets: the number of instances, the number of features
(Real/Integer/Nominal), the number of classes, the percentage of incomplete
instances which contain at least one missing value, and the abbreviation of
dataset.

Table 1. Datasets

Name #Inst #Features (R/I/N) #Classes Incomplete inst (%) Abbrev

Breast cancer wisconsin 699 9(0/9/0) 2 2.29 Bre

Cleveland heart disease 303 13(13/0/0) 5 1.98 Cle

Cylinder bands 539 19(13/6/0) 2 32.28 Ban

Hepatitis 155 19(2/17/0) 2 48.39 Hep

Mammographic 961 5(0/5/0) 2 13.63 Mam

Marketing 8993 13(0/13/0) 9 23.54 Mar

Ozone 2536 73(73/0/0) 2 27.12 Ozo

Balance scale 625 4(0/4/0) 3 0 Bal

Diabetes 768 8(8/0/0) 2 0 Dia

Iris plants 150 4(4/0/0) 3 0 Iri

Liver disorders 345 6(1/5/0) 2 0 Liv

Statlog heart 270 13(13/0/0) 2 0 Sta

The first seven datasets suffer from missing values in a “natural” way. To
evaluate the proposed method on datasets with various levels of missing values,
from the last five complete datasets, some complete values are randomly removed
to generate “artificial” incomplete datasets. Six levels of missing values: 5%, 10%,
15%, 20%, 25% and 30% are introduced into each complete dataset. Missing
values are only introduced into important features which are selected by CFS
[8]. Ten-fold cross-validation is used to divide these datasets into training sets
and test sets.
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4.3 Parameter Settings

ECJ package [11] is used to implement GP. Table 2 shows parameters of GP. The
parameters of GP in imputation methods combined with GP are similar to the
parameters of GP in the proposed methods, except using a normal function set
and a normal terminal set instead of using the interval function set and interval
terminal set.

Table 2. GP parameters.

Parameter Value

Function set Interval functions, +, −, *, / (protected division)

Variable terminals Interval of the original features \{f1, f2, ..., fn}
Constant terminals Random float values

Population size 1024

Initialization Ramped half-and-half

Generations 50

Crossover probability 60

Mutation probability 30

Reproduction rate 10

Selection type Tournament (size = 7)

The experiments use two imputation methods to combine with GP are kNN-
based imputation and MICE. For kNN-based imputation, the number of k is
set 1; MICE in [3] with random forest is used to estimate missing values for
incomplete features. Each incomplete feature is repeatedly regressed 20 times
on other features. With each incomplete dataset, the multiple imputation is
repeatedly done 5 times to generate 5 imputed datasets before averaging them
to generate a final imputed dataset.

The proposed methods are compared with two decision trees which can
directly classify incomplete data: C4.5 and CART [17]. WEKA [7] is used to
implement the classification algorithms. For both the proposed method and the
benchmark methods, bagging is used to build training resampled datasets. Fol-
lowing the suggestion in [13], the number of classifiers in ensemble learning evolv-
ing by the proposed method and the benchmark methods is set 25.

5 Results and Analysis

Table 3 presents the average of classification accuracy along with standard devi-
ation of EIGP and the other benchmark methods on the first seven “natural”
incomplete datasets. The average of classification accuracy in Table 3 is cal-
culated on accuracies of each method on 30 times performing ten-fold cross-
validation on each dataset. Table 4 shows the average of classification accuracy
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Table 3. The comparison between EnIGP with the other benchmark methods on
natural incomplete datasets.

Dataset EnIGP IGP EnkNNGP EnMICEGP EnC4.5 EnCART

Ban 72.15 ± 0.84 69.97 ± 1.23 ↓ 70.53 ± 0.77 ↓ 70.74 ± 0.62 ↓ 71.18 ± 1.26 ↓ 70.10 ± 1.85 ↓
Bre 96.69 ± 0.21 96.33 ± 0.28 ↓ 96.22 ± 0.28 ↓ 96.30 ± 0.32 ↓ 95.86 ± 0.31 ↓ 95.84 ± 0.35 ↓
Cle 59.85 ± 1.17 58.12 ± 1.50 ↓ 57.88 ± 0.84 ↓ 57.69 ± 1.27 ↓ 57.08 ± 1.29 ↓ 57.73 ± 1.64 ↓
Hep 82.39 ± 1.69 81.05 ± 1.77 ↓ 82.47 ± 1.84 82.85 ± 1.47 81.56 ± 1.63 ↓ 81.27 ± 1.77 ↓
Mam 83.44 ± 0.27 83.13 ± 0.35 ↓ 80.77 ± 0.54 ↓ 80.77 ± 0.59 ↓ 82.68 ± 0.50 ↓ 81.63 ± 0.54 ↓
Mar 31.40 ± 0.28 30.74 ± 0.47 ↓ 30.83 ± 0.39 ↓ 30.89 ± 0.37 ↓ 31.56 ± 0.42 31.26 ± 0.41

Ozo 97.09 ± 0.06 97.08 ± 1.42 97.12 ± 0.01 97.12 ± 0.01 97.05 ± 0.08 97.07 ± 0.09

along with standard deviation of EIGP and the other ensemble methods on the
last five datasets with six levels of missing values. With each dataset and each
level of missing values, the averages of classification accuracy in Table 4 is cal-
culated on accuracies of each method on 30 generated incomplete datasets by
using ten-fold cross-validation on each incomplete dataset.

In Tables 3 and 4, “EnIGP” refers to the proposed method combining bag-
ging and interval GP to evolve a set of classifiers. “IGP” refers to the first
benchmark method using interval GP to evolve a single classifier. “EnkNNGP”
and “EnMICEGP” refer to the second benchmark method combining bagging,
interval GP with kNN-based imputation and MICE to evolve a set of classifiers.
“EnC4.5” and “EnCART” refer to the third benchmark method combining bag-
ging and C4.5 and CART to build a set of classifiers.

For each incomplete dataset, Friedman test [4], which is a non-parametric
test for multiple comparisons, is used to statistical test the null hypothesis in
classification accuracies at a 5% level of significant. The test shows that for all
tasks, there is a significant difference in classification accuracies for the five meth-
ods, so null hypothesis rejected. Therefore, a post hoc multiple comparisons test
using the Holm method [4] is used to determine the statistically significant dif-
ferences between group means. In Tables 3 and 4, “↑” means that the benchmark
method is significantly more accurate than the proposed method; and “↓” means
that the benchmark method is significantly worse than the proposed method.

It is clear from Tables 3 and 4 that the classification accuracies of EnIGP are
significantly better than IGP in almost all cases (significantly more accurate in
30 of the 36 cases). It means that ensemble learning helps to improve the accuracy
of IGP for classifying incomplete data. The key reason is that by constructing
a set of classifiers, ensemble learning can overcome the limitations of IGP as
constructing a single classifier.

Tables 3 and 4 also show that the proposed method is significantly better
than the combination of imputation, ensemble learning and traditional GP in
most cases (significantly more accurate than both EnKnnGP and EnMICEGP
in 23 of the 36 cases). The reason is that interval values can better reflect the
uncertainty of missing values than a specific value estimated by imputation.

As also can be seen from Tables 3 and 4 that the proposed method is signif-
icantly better than the combination of ensemble learning and classification able
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Table 4. The comparison between EnIGP with the other benchmark methods on
artificial incomplete datasets.

Dataset Missing

values

(%)

EnIGP IGP EnkNNGP EnMICEGP EnC4.5 EnCART

Bal 5 98.98 ± 0.41 98.61 ± 0.59 98.79 ± 0.41 98.92 ± 0.40 82.95 ± 0.77 ↓ 82.51 ± 0.84 ↓
10 97.75 ± 0.64 97.41 ± 0.71 97.70 ± 0.62 97.41 ± 0.57 82.66 ± 0.86 ↓ 82.14 ± 0.80 ↓
15 97.10 ± 0.60 96.63 ± 0.84 96.93 ± 0.72 96.73 ± 0.62 82.23 ± 0.94 ↓ 81.95 ± 0.78 ↓
20 95.81 ± 0.53 95.21 ± 0.65 95.32 ± 0.73 95.59 ± 0.50 81.69 ± 0.87 ↓ 81.31 ± 0.95 ↓
25 94.95 ± 0.76 94.20 ± 1.13 94.22 ± 0.90 94.65 ± 0.86 81.49 ± 1.10 ↓ 80.82 ± 1.09 ↓
30 93.70 ± 0.71 93.21 ± 0.99 92.87 ± 0.88 93.41 ± 0.81 81.02 ± 0.96 ↓ 80.37 ± 0.96 ↓

Dia 5 75.89 ± 0.88 74.37 ± 0.78 ↓ 67.37 ± 0.87 ↓ 67.61 ± 0.79 ↓ 74.86 ± 0.93 74.52 ± 0.80

10 75.20 ± 0.79 73.16 ± 1.09 ↓ 67.15 ± 1.00 ↓ 67.36 ± 0.95 ↓ 74.81 ± 0.72 73.71 ± 1.26

15 74.42 ± 0.68 72.55 ± 1.04 ↓ 66.87 ± 0.63 ↓ 67.13 ± 0.85 ↓ 74.34 ± 1.22 73.08 ± 1.09

20 73.61 ± 0.98 71.99 ± 1.04 ↓ 66.81 ± 0.80 ↓ 66.93 ± 1.04 ↓ 73.62 ± 1.21 72.37 ± 1.21

25 73.08 ± 1.22 71.54 ± 1.40 ↓ 66.61 ± 0.61 ↓ 66.67 ± 0.95 ↓ 73.48 ± 0.96 71.64 ± 1.24

30 71.97 ± 1.16 70.19 ± 1.38 ↓ 66.75 ± 0.86 ↓ 67.13 ± 1.01 ↓ 72.24 ± 1.06 70.88 ± 1.35

Iri 5 96.06 ± 0.93 94.73 ± 0.96 ↓ 93.42 ± 1.58 ↓ 93.77 ± 1.06 ↓ 93.33 ± 1.24 ↓ 94.17 ± 1.27 ↓
10 96.01 ± 0.93 94.68 ± 1.45 ↓ 92.11 ± 1.90 ↓ 93.42 ± 1.35 ↓ 93.17 ± 1.51 ↓ 94.11 ± 1.46 ↓
15 95.19 ± 1.37 93.68 ± 1.38 ↓ 90.06 ± 2.22 ↓ 92.11 ± 1.73 ↓ 92.62 ± 1.73 ↓ 93.06 ± 1.63 ↓
20 94.91 ± 1.48 92.97 ± 1.85 ↓ 87.91 ± 2.34 ↓ 91.57 ± 1.80 ↓ 91.20 ± 1.61 ↓ 91.86 ± 1.81 ↓
25 94.51 ± 1.58 92.42 ± 1.63 ↓ 86.28 ± 2.43 ↓ 90.24 ± 2.26 ↓ 90.62 ± 1.95 ↓ 90.57 ± 2.33 ↓
30 92.33 ± 2.20 90.37 ± 2.91 ↓ 84.91 ± 2.83 ↓ 87.60 ± 2.62 ↓ 88.24 ± 2.20 ↓ 88.62 ± 1.87 ↓

Liv 5 69.53 ± 1.62 67.98 ± 1.95 ↓ 69.24 ± 1.49 69.47 ± 1.62 69.12 ± 1.79 68.56 ± 1.72

10 69.05 ± 1.73 67.87 ± 2.01 ↓ 68.73 ± 1.54 68.96 ± 1.43 68.59 ± 1.93 68.07 ± 1.70

15 68.54 ± 1.63 67.48 ± 1.89 ↓ 68.21 ± 1.63 68.65 ± 1.53 68.10 ± 1.83 67.58 ± 1.73

20 68.04 ± 1.72 66.97 ± 1.97 ↓ 67.72 ± 1.55 68.06 ± 1.42 67.59 ± 1.92 67.07 ± 1.69

25 67.53 ± 1.66 65.86 ± 1.86 ↓ 67.22 ± 1.64 67.66 ± 1.57 67.12 ± 1.82 66.59 ± 1.72

30 67.05 ± 1.74 64.98 ± 1.96 ↓ 66.73 ± 1.56 67.09 ± 1.43 66.58 ± 1.97 66.03 ± 1.65

Sta 5 83.04 ± 1.31 81.02 ± 1.68 ↓ 78.50 ± 1.63 ↓ 78.46 ± 1.55 ↓ 81.39 ± 1.25 ↓ 80.49 ± 1.49 ↓
10 81.81 ± 1.70 80.32 ± 1.59 ↓ 77.60 ± 1.89 ↓ 78.14 ± 1.56 ↓ 80.04 ± 2.05 ↓ 79.38 ± 1.54 ↓
15 81.45 ± 1.38 79.56 ± 1.97 ↓ 76.92 ± 1.40 ↓ 77.71 ± 1.93 ↓ 78.77 ± 1.67 ↓ 78.70 ± 1.51 ↓
20 80.92 ± 1.83 78.71 ± 1.77 ↓ 76.46 ± 2.04 ↓ 77.32 ± 2.13 ↓ 79.06 ± 2.19 ↓ 78.04 ± 1.75 ↓
25 80.22 ± 1.60 78.45 ± 1.95 ↓ 75.80 ± 1.66 ↓ 76.80 ± 2.01 ↓ 78.02 ± 1.96 ↓ 77.12 ± 1.96 ↓
30 79.14 ± 1.51 77.03 ± 2.45 ↓ 74.67 ± 1.82 ↓ 75.99 ± 1.98 ↓ 77.35 ± 1.76 ↓ 76.48 ± 1.65 ↓

to directly work with incomplete data such as C4.5 and CART (significantly
more accurate than both EnC4.5 and EnCART in 23 of the 36 cases). The rea-
son is that interval GP is able to better construct classifiers for incomplete data
than C4.5 and CART.

In summary, the combination of ensemble learning and interval GP can
achieve better accuracy than the benchmark methods for classification with
incomplete data.

5.1 Analysis

To investigate how the proposed methods work, we further analysed trees gen-
erated by using interval GP on the Diabetes dataset. Diabetes is chosen because
generated trees in this case are small enough to be analysed by humans. Diabetes
is a binary classification problem (two classes: tested negative,tested positive),
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and it has eight features {f1, f2, ..., f8} and we put 10% missing values in four
features {f2, f6, f7, f8}, which are selected by CFS [8].

In training process, the training data is firstly normalised. After that, the
interval of each feature is estimated from complete values of the feature. Table 5
shows the interval of each feature in Diabetes. Subsequently, in the training data,
each complete field is replaced by an interval where lower bound and upper bound
are set the complete value, and each missing field is replaced by an interval of the
feature containing the field. For example, from Table 5, if a field in f2 is missing,
it is replaced by [−2.09, 2.40]. Finally, the training data is put into interval GP
to build a classifier. Figure 3 shows a tree generated by interval GP on Diabetes.

Table 5. Interval of features in Diabetes dataset.

f1 f2 f3 f4 f5 f6 f7 f8

Lower −1.14 −2.09 −3.44 −1.28 −0.68 −3.96 −1.17 −1.04

Upper 2.98 2.40 2.03 2.46 5.07 3.13 5.07 3.12

In application process, when an instance needs to be classified, it is firstly nor-
malised, and then intervalised. For example, to classify an instance: (5, 99, 9.74,
27, 0, ?, ?, ?) (? means missing value), complete values are firstly normalised:
(0.34, −0.68, 0.25, 0.41, −0.69, ?, ?, ?). After that, each field is replaced by an
interval: ([0.34, 0.34], [−0.68, −0.68], [0.25, 0.25], [0.41, 0.41], [−0.69, −0.69],
[−3.96, 3.13], [−1.17, 5.07], [−1.04, 3.12]) (each missing field is replaced by an
interval of corresponding feature). The interval instance is then put into a clas-
sifier such as shown in Fig.3 to result in an interval [−9.42, 4.77]. Subsequently,
the middle point of the interval is calculated: −9.42+4.77

2 = −2.32; therefore, the
instance is classified into tested negative class.

Fig. 3. The first tree generated by GP with interval. functions

In EnIGP, instead of constructing one classifier, a set of classifier is contructed
and combined to classify new instances. For example, Fig. 4 shows another clas-
sifier generated by using interval GP on Diabetes. When the instance is put into
the second classifier, the output is [−7.28, −0.18]. Instead of using middle point
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to decide class label, the proportion of the instance belonging to each class.
For example, with the output [−9.42, 4.77], |−9.42|

|−9.42|+4.77 ∗ 100 = 66.38% of the

instance belongs tested negative class, and |4.77|
|−9.42|+4.77 ∗ 100 = 33.62% belonging

to the tested positive class. With the output [−7.28, −0.18], both lower bound
and upper bound are less than zero; therefore, 100% of the instance belongs
tested negative class. As a result, if the two classifiers are used to classify an
instance, on average, 66.38+100

2 = 83.19% of the instance belongs tested negative
class, and 33.62+0

2 = 16.81% of the instance belongs tested positive class. Conse-
quently, the instance is classified to the tested negative class.

Fig. 4. The second tree generated by interval GP.

In summary, replacing missing values with intervals help reflect very well the
uncertainty of incomplete data. Moreover, the combination of a set of classi-
fiers generated by interval GP can improve the accuracy for classification with
incomplete data.

6 Conclusions and Future Work

This paper proposed a method which combines interval GP with ensemble learn-
ing to directly evolve a set of classifiers for incomplete data. Ensemble learning
methods such as bagging/boosting are firstly used to generate a set of training
resampled datasets. After that, GP with interval functions uses each training
resampled dataset to directly evolve a classifier. To classify a new instance,
each evolved classifier calculates the probability of the instance belonging to
each class, and the final class of the instance is the class achieving the highest
total probability over all classifiers. Experimental results show that the pro-
posed method helps to improve the accuracy of interval GP to evolve classifiers
for incomplete data. The proposed method is also more accurate than other
common methods for classification with incomplete data.

Along with bagging, boosting is one of the most popular ensemble methods.
Therefore, in future work, we would like to investigate an integration of boosting
and IGP for classification with incomplete data.
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6. Garćıa-Laencina, P.J., Sancho-Gómez, J.-L., Figueiras-Vidal, A.R.: Pattern classi-
fication with missing data: a review. Neural Comput. Appl. 19, 263–282 (2010)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11, 10–18
(2009)

8. Hall, M.A.: Correlation-based feature selection for discrete and numeric class
machine learning. In: Proceedings of the Seventeenth International Conference on
Machine Learning, pp. 359–366 (2000)

9. Koza, J.R.: Genetic Programming III: Darwinian Invention and Problem Solving,
vol. 3 (1999)

10. Liu, Y., Brown, S.D.: Comparison of five iterative imputation methods for multi-
variate classification. Chemom. Intell. Lab. Syst. 120, 106–115 (2013)

11. Luke, S., et al.: A Java-based evolutionary computation research system, March
2004. http://cs.gmu.edu/∼eclab/projects/ecj

12. Neshatian, K., Zhang, M., Andreae, P.: A filter approach to multiple feature con-
struction for symbolic learning classifiers using genetic programming. IEEE Trans.
Evol. Comput. 16, 645–661 (2012)

13. Opitz, D.W., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif.
Intell. Res. (JAIR) 11, 169–198 (1999)

14. Tran, C.T., Zhang, M., Andreae, P.: Directly evolving classifiers for missing data
using genetic programming. In: 2016 IEEE Congress on Evolutionary Computation
(CEC), pp. 5278–5285 (2016)

15. Tran, C.T., Zhang, M., Andreae, P., Xue, B., Bui, L.T.: An effective and efficient
approach to classification with incomplete data. Knowl.-Based Syst. 154, 1–16
(2018)

16. White, I.R., Royston, P., Wood, A.M.: Multiple imputation using chained equa-
tions: issues and guidance for practice. Stat. Med. 30, 377–399 (2011)

17. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan,
G.J., Ng, A., Liu, B., Philip, S.Y., et al.: Top 10 algorithms in data mining. Knowl.
Inf. Syst. 14(1), 1–37 (2008)

https://doi.org/10.1007/978-3-642-17103-1_60
https://doi.org/10.1007/978-3-642-17103-1_60
http://cs.gmu.edu/~eclab/projects/ecj


Stochastic Conjugate Gradient Descent
Twin Support Vector Machine for Large

Scale Pattern Classification

Sweta Sharma and Reshma Rastogi(B)

Department of Computer Science, South Asian University, New Delhi, India
sharma.sweta.2007@gmail.com, reshma.khemchandani@sau.ac.in

Abstract. With the advent of technology, the amount of data available
for learning is increasing day by day. However, machine learning algo-
rithms such as Support Vector Machines (SVMs) are effective but slow
in dealing with this huge inflow of information. Recent researches have
largely focussed on increasing the scalability of machine learning algo-
rithms including by using algorithmic level speed-ups such as TWSVM
[10], LS-SVM [18] and training level speed-ups such as using Newton-
Armijo method [12], Coordinate Descent Method [8] etc. Among these,
recently proposed stochastic gradient based methods have attracted sig-
nificant attention. However, these methods suffer from the inherent prob-
lems of stochastic gradient methodology such as ill-conditioning, slow
convergence near minima etc. In this paper, we propose a Stochastic Con-
jugate Gradient Descent method based Twin Support Vector Machine
(SCG-TWSVM) which improves upon the limitations of Stochastic Gra-
dient Descent Support Vector Machine (SG-SVM) and Stochastic Gra-
dient Twin Support Vector Machine (SG-TWSVM) and leads to a more
robust, effective and generalizable classifier. We also extend our proposed
classifier to non-linear case by using Kernel trick. We perform extensive
experiments on a variety of machine learning benchmark datasets as well
as real-world machine learning datasets which prove the efficacy of our
proposed approach compared to related methods on large scale problems.

Keywords: Twin Support Vector Machine
Conjugate gradient method · Pattern classification
Large scale problem

1 Introduction

Support Vector Machines aims to separate two classes by maximizing the mar-
gin between the closest points from each class [5]. This simple idea of SVM
has proved to be a breakthrough concept as the resulting convex optimization
problem guarantee a global optima compared to other neural network based
classifiers. The SVM model is well generalizable as well. However, SVM has
proved to be a slow learner as the training time complexity for learning with n
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samples is O(n3). Thus, training an SVM is an expensive operation, especially
for large n. However, many state-of-art methods have exclusively focused on
this issue resulting into various faster variants such as LS-SVM [18], GEPSVM
[14], Safe-screen SVM [22], CUDA-SVM [19] and TWSVM [10]. LS-SVM [18]
introduce equality constraints in SVM optimization problem resulting into an
unconstrained minimization problem whose solution can be obtained by solving
a system of linear equations. Further, Catanzaro et al. [4] proposed an imple-
mentation of SVM on GPUs which resulted into an speed up of 5–32 times over
the conventional SVM. Cao et al. [3] presented a variant of SMO where using
parallel computations. A detailed review of large scale optimization methods can
be found in [2].

Among the above-mentioned SVM based algorithms, Twin Support Vec-
tor Machine (TWSVM) is considered a innovative algorithmic approach. Unlike
SVM, which is a parallel plane classifier, TWSVM is a binary non-parallel hyper-
plane based classifier which seeks two hyperplanes, each proximal to its corre-
sponding class. It leads to two almost half-sized Quadratic Programming Prob-
lems (QPPs) resulting into approximately four-fold reduction in training time.
Beside this, it shows excellent generalization performance as well. However, it is
important to note that solving a QPP is still computationally expensive for large
scale problems [16] as it requires 0(n3) computational complexity if no. of train-
ing points n is extremely large. Hence, to further accelerate the learning process
in SVM based scenarios, stochastic learning approaches have recently attracted
attention [7,11,17,20]. Shavlev et al. [17] proposed Stochastic Gradient Support
Vector Machine (SG-SVM) which partitions the learning problem into a series
of sub-problems that are solved through iterative optimization using stochastic
sampling. This approach resulted into a very fast classifier with a justifiable guar-
antee for convergence. On the similar lines, Wang et al. have recently proposed
Stochastic Gradient Descent Twin Support Vector Machine (SG-TWSVM) [20].
SG-TWSVM selects a pair of samples randomly to construct a set of non-parallel
hyperplanes. Unlike learning with entire data at a time, which usually involve
extensive matrix computations, SG-TWSVM simply performs one matrix mul-
tiplication at a time. The main idea is to minimize the loss function specified
in the objective function by moving α steps in the direction of descent obtained
through a pair of points at a time. In an iterative process, the initial hyperplanes
obtained are further improved upon by learning through stochastic samples until
convergence is achieved. SG-TWSVM exhibits comparable performance to that
with TWSVM [20]. However, it is well known that the gradient based approach
is prone to inconsistency as an individual sample may deviate the algorithm
from the global minima resulting into zig-zag behaviour which leads to instabil-
ity in model training process. It is obviously not the optimal and fastest possible
way. Further, this problem enhances the requirements for more training data to
achieve convergence. This further increases the training time requirement of the
model. Moreover, the diversion as well as ill-conditioning issue faced by stochas-
tic gradient based approach may lead to poorly performing classifier model. Also,
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the success of SGD relies heavily on the setting of initial learning rate and decay
strategy of learning rate [11].

In this regard, Conjugate Gradient Descent (CGD) method has inherent
advantage over SGD method. Since CGD considers the structural information,
it results into more stable and thus well generalizable solution compared to
other methods. Moreover, effective theoretical guarantees can be established over
convergence.

In this paper, in order to overcome the limitations of conventional gradient
descent based approaches, we propose a stochastic Conjugate Gradient Descent
methodology based Twin Support Vector Machine (termed as SCG-TWSVM)
which can handle the above-mentioned issues by moving along conjugate gradi-
ent directions toward global optima while taking into consideration the useful
information from data.

Thus, the key contributions of this paper can be summed up as follows:

1. We introduce stochastic framework to CGD method which enables it to deal
with large data in stochastic manner while ensuring that the inherent idea of
CGD prevails.

2. We further propose a novel Stochastic Conjugate Gradient Descent method
based Twin Support Tensor Machine (SCG-TWSVM) classifier that seeks a
pair of non-hyperplanes, each representative of its own class, by formulating
related convex optimization problems in stochastic manner.

3. Experiments have been carried out on standard UCI benchmark datasets
and popular human activity recognition application that establish the out-
performance of our proposed algorithm over other stochastic approaches.

This paper is organized as follows: Sect. 2 gives a brief background of related
work that forms the basis of our proposed algorithm. Section 3 introduces a gen-
eral framework for the proposed classifier. Following this, Sect. 4 reports exper-
imental results on machine learning benchmark datasets and human activity
recognition dataset. Finally, Sect. 5 concludes the paper and highlights the future
work.

2 Related Works

Consider a data set D in which l1 data points belonging to class +1 are repre-
sented by matrix A = {x+

1 ; . . . ;x+
l1

} while l2 data points belonging to class −1
are represented by matrix B = {x−

1 ; . . . ;x−
l2

}. Therefore, the size of dataset D is
l = l1 + l2 and A ∈ R

n×d, B ∈ R
n×d respectively, where n is the dimension of

feature space.

2.1 Twin Support Vector Machine

Twin Support Vector Machine [10] seeks two non-parallel hyperplanes given by
wT

1 x + b1 = 0 and wT
2 x + b2 = 0 obtained by solving the following optimization

problem:
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Min
w1,b1,ξ2

1
2

∑l1
i=1 f(x+

i ) + c1
∑l2

j=1 L(x−
j , y, f(xj)), (1)

and

Min
w2,b2,ξ1

1
2

∑l2
i=1 f(x−

i ) + c2
∑l1

j=1 L(x+
j , y, f(xj)), (2)

where x+
i and x−

j are points from class +1 and class −1 respectively. Also, L(.)
denotes the error function where the points of class −1 (+1) are less than unit
distance from hyperplane of class +1 (−1). This eventually leads to following
pair of quadratic programming problems:

(TWSVM 1) Min
w1,b1,ξ2

1
2
||Aw1 + e1b1)||2 + c1e2

T ξ2

subject to − (Bw1 + e2b1) + ξ2 ≥ e2, ξ2 ≥ 0, (3)

and

(TWSVM 2) Min
w2,b2,ξ1

1
2
||Bw2 + e2b2||2 + c2e1

T ξ1

subject to (Aw2 + e2b2) + ξ1 ≥ e1, ξ1 ≥ 0, (4)

where the constant c1 ≥ 0 (c2 ≥ 0) is trade-off factor between sum of error vector
ξ2 (ξ1) due to samples of class −1 (class +1) and proximity of hyperplane towards
its own class; and e1 and e2 are vectors of ones of appropriate dimensions.

The class label ŷ of a new test point x̂ is determined based on its proximity
from the representative hyperplanes of the two classes.

2.2 Stochastic Gradient Twin Support Vector Machine

SG-TSVM [21] recast the QPP formulations similar to (3) and (4) into uncon-
strained minimization problems given as following:

(SG-TSVM 1) min
w1,b1

1

2
(||w1||2 + b21) +

c1
2l1

||Aw1 + e1b1||2 +
c2
l2
eT
2 (e2 + Bw1 + e2b1)+,

(5)

and

(SG-TSVM 2) min
w2,b2

1

2
(||w2||2 + b22) +

c1
2l2

||Bw2 + e2b2||2 +
c2
l1
eT
1 (e1 −Aw2 − e1b2)+,

(6)

where c1, c2 ≥ 0 are trade-off factors and (.)+ is the corresponding hinge-loss
function which replaces the negative component of a vector with zero.

While solving (5) and (6) iteratively, SG-TSVM constructs a pair of momen-
tary functions using sub-gradients with respect to w1, b1, w2 and b2 using a pair
of samples (x+

t ,+1) and (x−
t ,−1) from two classes given as:

�w1,t f1,t = w1,t + c1(wT
1,tx

+
t + b1,t)x+

t + c2x
−
t sign(1 + wT

1,tx
−
t + b1,t)+,

�b1,tf1,t = b1,t + c1(wT
1,tx

+
t + b1,t)x+

t + c2x
−
t sign(1 + wT

1,tx
−
t + b1,t)+, (7)



594 S. Sharma and R. Rastogi

and

�w2,t f2,t = w2,t + c1(wT
2,tx

−
t + b2,t)xt

− − c2x
+
t sign(1 − wT

2,tx
+
t + b2,t)+,

�b2,tf2,t = b2,t + c1(wT
2,tx

−
t − b2,t)x−

t − c2x
+
t sign(1 − wT

2,tx
+
t − b2,t)+, (8)

respectively. Finally, SG-TSVM iteratively updates w1,t, w2,t, b1,t and b2,t with
some predefined step-size α. The process is stopped if some predefined termina-
tion criteria is reached. The label of a new test point x ∈ R

n is assigned similar
to TWSVM.

Wang et al. showed that SG-TWSVM [20] algorithm will converge to an
optimal solution but existence of any upper bound on the maximum number of
iteration used is not known. Further, as discussed earlier, in stochastic process, an
individual pair of points in iteration t may deviate the direction of descent and in
order to compensate for that deviation, algorithm may require more iterations to
converge. Moreover, similar to limitation in most of stochastic gradient methods,
SG-TSVM is also prone to ill conditioning which adversely affect the convergence
of the same [15].

3 Proposed Work

In this section, we describe our proposed Stochastic Conjugate Gradient Twin
Support Vector Machine (SCG-TWSVM) in detail.

3.1 Linear SCG-TWSVM

On the lines of TWSVM [10], the proposed SCG-TWSVM also solves the follow-
ing unconstrained optimization problem (as given in Eqs. (5) and (6))to obtain
the requisite hyperplanes:

min
w1,b1

1
2
(||w1||2 + b21) +

c1
2m1

||Aw1 + e1b1||2 +
c2
m2

eT
2 (e2 + BT w1 + e2b1)+ (9)

and

min
w2,b2

1
2
(||w2||2 + b22) +

c1
2m2

||Bw2 + e2b2||2 +
c2
m1

eT
1 (e1 − AT w2 − e1b2)+ (10)

where (.)+ denote the hinge loss function. The QPP problem in Eq. (9) (Eq. (10))
aims to find a hyperplane such that it is close to points of positive (negative)
class and atleast one unit distance away from the points of other class. The
optimization problem in Eq. (9) seeks to find a hyperplane which is proximal
to samples from class A while simultaneously being at least unit distance away
from the samples of other class. The first terms of the problem takes care of
Structural Risk Minimization (SRM). Similar interpretation can be obtained for
the hyperplane of class B using Eq. (10).
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To model the above optimization problem in a stochastic manner, consider
that at iteration t, we have a pair of samples θ1,t = (x+

t ,+1) and θ2,t = (x−
t ,−1)

where +1 and −1 denotes the corresponding class labels. Thus, the stochastic
objective functions drawn on these two distributions are, thus, given as:

f1,t(w1, b1, θ1,i) =
1

2
(||w1,t||2 + b

2
1,t) +

c1

2m1
||x+

t w1 + b1||2 +
c2

m2
e
T
2 (e2 + x

−
t

T
w1 + e2b1)+, (11)

and

f2,t(w2, b2, θ2,i) =
1

2
(||w2,t||2 + b

2
2,t) +

c1

2m2
||x−

t w2 + b2||2 +
c2

m1
e
T
1 (e1 − x

+
t

T
w2 − b2)+, (12)

where x+
t and x−

t are selected randomly from A (points from class +1) and B
(points from class −1).

To solve the above problems, while considering At = [x+
t 1], Bt = [x−

t 1],
z1,t = [w1,t b1,t] and z2,t = [w2,t b2,t], we equate the gradient of these strictly
convex functions to zero as follows:

g1,t =
∂f1,t

∂z1,t
= z1,t + c1(zT

1,tAt) + c2B
T
t sign(1 + zT

1,tBt) = 0 (13)

g2,t =
∂f2,t

∂z2,t
= z2,t + c1(zT

2,tBt) − c2A
T
t sign(1 − zT

2,tAt) = 0 (14)

where At and Bt are augmented vectors of randomly selected points from class
+1 and −1 respectively.

Comparing this with standard Conjugate Gradient form min
x

1
2xT Qx−xT D,

we have two unconstrained minimization problem to be solved whose correspond-
ing matrices to Q and d are given as:

Q1 = c1(eT + At), D1 = −c2B
T
t sign(1 + zT

1,tBt),

Q2 = c2(eT + Bt), D2 = c2A
T
t sign(1 + zT

2,tAt).

Now, in order to optimize the two problems given in (9) and (10), SCG-
TWSVM seeks to minimize the objective function toward the conjugate direc-
tions. Let r1,0 = g1,t and r2,0 = g2,t be initial residual terms for class +1 and
−1 respectively; and p1,0 = −r1,0 and p2,0 = −r2,0 be initial gradient directions
in which objective functions is to be optimized. The length of step to be taken
in the direction of minimization is given as follows:

α1,t =
rT
1,tr1,t

pT
1,tQ1p1,t

, (15)

α2,t =
rT
2,tr2,t

pT
2,tQ2p2,t

. (16)

The solution and residual terms are now updated while moving α1,t and α2,t

steps in the gradient direction as follows:

z1,t+1 = z1,t + α1,tp1,t, z2,t+1 = z2,t + α2,tp2,t, (17)
r1,t+1 = rt + α1,tr1,t, r2,t+1 = rt + α2,tp2,t. (18)
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At this new point, the search direction is updated as:

β1,t+1 =
rT
1,t+1r1,t+1

rT
1,tr1,t

, β2,t+1 =
rT
2,t+1r2,t+1

rT
2,tr2,t

, (19)

p1,t+1 = −r1,t+1 + βtpt, p2,t+1 = −r2,t+1 + βtpt, (20)

The above procedure for training a SCG-TWSVM model is summarized in
Algorithm 1.

4 Experimental Results

The experiments are performed in MATLAB version 8.0 under Microsoft Win-
dows environment on a machine with 3.40 GHz CPU with 16 GB RAM.

4.1 Benchmark Datasets

In order to prove the competence of proposed work, we performed classification
experiments on a variety of machine learning benchmark datasets including UCI
datasets [1]. The training data has been normalized to the range [0,1] before
experimentation. In our simulations, we performed experiments with Linear as
well as Gaussian kernel.

We have used grid search method [9] to obtain the best values for the param-
eters c1, c2 and kernel parameter σ. For each dataset, a validation set comprising
of 10% randomly selected samples from the dataset is used. For this work, we
have selected values of c1 and c2 from the range [2−3; 2−2, . . . , 23]. The value of
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σ has been tuned in the range {0.1 to 1}. We also fixed the maximum number of
iterations max iter equals to the number of available training points. Mean of
classification accuracy as well as the average training time has been determined
using 10-fold cross validation [6].

Classification Results. In order to compare the performance of SCG-
TWSVM, we have also implemented SG-SVM and SG-TWSVM. The experi-
ments are conducted with all the algorithms using 10-fold cross validation [6]
and the mean classification accuracy along with standard deviation has been
reported. Further, average number of iterations required for convergence by each
model has also been reported.

The classification results using Linear kernel is reported in Table 1. The bold
values indicate best result and the mean accuracy (in %) across 10-folds. The
table clearly demonstrates that SCG-TWSVM outperforms other SGD methods
as it considers the structural information obtained through the use of resid-
ual information. Moreover, the as underlying number of training iterations for
SCG-TWSVM is much less compared to SG-SVM and SGD-TWSVM so, the
overall computational time is better despite a performing more computations
per iterations. This establishes the resulting out performance of SCG-TWSVM
in prediction accuracy and training time. The results with Gaussian kernel for
SCG-TWSVM, SG-SVM and SGD-TWSVM are reported in Table 2. The table
demonstrates similar trends as in the results obtained with Linear Kernel. Note
that, here, we have used rectangular kernel technique [13] with just 10% of the
data for kernel calculation. As the results show in Table 2 demonstrates, the
mean accuracy is still better than other compared method.

4.2 Application to Activity Recognition

In this subsection, we compared the performance of our proposed algorithm on
real-world activity recognition problem. Human activity recognition is an active
area of research with varied practical applications in video surveillance, human-
computer interaction, user interface design etc. The main challenges include
presence of extreme noises due to inter-related classes and huge training time
complexity because of large training data involved. We have used Weizmann
dataset which consists of 93 low-resolution (180 × 144 pixels) video sequences
of 10 activity sequence performed by 9 actors. We have used motion-context [6]
features for activity representation. Please refer to [6] for details.

We used Leave One Actor Out (L1AO) cross-validation methodology for
comparison of prediction performance. L1AO removes all sequences of one actor
from the training set and measures prediction accuracy. We have reported here
the prediction accuracy of video sequence based on the classification accuracy of
each frame.

Results. For Human Activity Recognition, we choose radial basis function
(RBF) kernel for our classifiers because of non-linear relationship between action
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Table 1. Comparison of performance of different methods with Linear Kernel on UCI
datasets

Dataset SCG-TWSVM SGD-TWSVM SGD-SVM

Training accuracy

Average training time (in ×10−3 s)

Australian 85.38 ± 3.82 83.49 ± 3.01 84.95 ± 6.09

(690× 14) 138.4 148.04 312.28

Compound 87.71 ± 5.88 89.47 ± 2.87 87.47 ± 0.10

(399× 2) 79.42 64.04 137.93

Bupaliver 71.08 ± 1.02 59.45 ± 1.09 58.28 ± 1.48

(345× 6) 115.2 83.84 183.88

Flame 97.92 ± 2.20 87.94 ± 7.59 84.91 ± 5.50

(240× 2) 43.24 28.81 93.80

Heart-Statlog 80.37 ± 7.62 80.74 ± 1.15 80.74 ± 2.69

(270× 13) 54.54 54.28 124.98

Ionosphere 86.59 ± 6.40 82.03 ± 6.61 81.15 ± 7.62

(351× 34) 125.81 97.38 200.62

PimaIndian 75.92 ± 3.85 58.23 ± 4.89 70.70 ± 5.35

(768× 8) 189.47 178.04 337.14

Sonar 89.83 ± 6.18 85.84 ± 4.05 86.46 ± 3.66

(208× 16) 59.48 52.29 116.61

CMC 66.8 ± 3.38 54.65 ± 6.24 61.44 ± 2.80

(1433× 10) 273.36 281.1 423.45

Titanic 79.05 ± 2.43 77.10 ± 3.07 77.60 ± 1.23

(2201× 41) 655.2 642.51 886.50

Twonorm 97.80 ± 0.51 96.37 ± 0.65 97.77 ± 0.58

(7400× 21) 1594.2 1425.74 1984.74

Ringworm 98.51 ± 0.40 97.39 ± 4.44 97.59 ± 1.74

(7400× 21) 1501.2 1541.18 1970.8

Letter recognition 90.27 ± 1.34 95.26 ± 2.03 90.37 ± 1.51

(20,000× 16) 4523.13 13271.34 18734.60

Credit Card 75.01 ± 0.81 75.35 ± 0.12 76.51 ± 1.59

(30,000× 24) 5043.37 18147.31 23744.34

Skin 84.35 ± 3.25 85.15 ± 2.21 83.57 ± 2.29

(245,057× 4) 32742.64 877843.37 107745.12

classes and histogrammed feature obtained in the descriptor. Optimal values of
parameter c1, c2 and kernel parameter σ were obtained using grid search with a
set comprising 10% of the frames from each video sequence.
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Table 2. Comparison of performance of different methods with Gaussian Kernel on
UCI datasets

Dataset SCG-TWSVM SGD-TWSVM SGD-SVM

Training accuracy

Average training time (in ×10−3 s)

Australian 86.96 ± 3.84 84.23 ± 4.30 85.80 ± 3.11

(690× 14) 172.90 175.04 240.54

Compound 94.72 ± 4.54 93.46 ± 3.68 92.72 ± 2.97

(399 × 2) 140.50 98.81 149.38

Bupaliver 71.92 ± 7.59 57.98 ± 0.88 57.98 ± 0.89

(345 × 6) 124.98 98.51 126.95

Flame 98.32 ± 2.18 94.77 ± 1.44 89.48 ± 5.83

(240× 2) 78.94 63.71 92.99

Heart-Statlog 83.33 ± 7.46 80.37 ± 9.57 82.96 ± 6.10

(270× 13) 91.75 72.44 77.74

Ionosphere 94.62 ± 4.05 92.64 ± 3.67 88.07 ± 3.99

(351× 34) 89.36 89.21 120.59

PimaIndian 76.05 ± 5.91 72.80 ± 5.48 70.58 ± 3.34

(768× 8) 211.04 191.54 253.79

Sonar 89.60 ± 1.09 88.46 ± 1.60 87.10 ± 2.71

(208× 16) 65.79 58.04 75.89

CMC 70.06 ± 1.90 68.52 ± 4.92 63.07 ± 2.78

(1433× 10) 414.95 382.21 477.22

Titanic 80.05 ± 2.43 79.30 ± 0.10 78.10 ± 1.67

(2201× 41) 658.59 550.34 738.59

Twonorm 97.82 ± 0.43 97.80 ± 5.81 97.63 ± 0.31

(7400× 21) 1598.10 1267.81 1740.12

Ringworm 98.59 ± 0.35 98.51 ± 0.05 96.78 ± 2.63

(7400× 21) 1327.74 1271.53 1877.30

In order to implement activity recognition problem as a binary classification
problem, we picked two activity classes at a time e.g. bend versus wave etc.
and used them to evaluate our results. We performed the activity recognition
task using SCG-TWSVM and SG-TWSVM and SG-SVM with given evaluation
methodology.

The results using SG-SVM, SG-TWSVM and SCG-TWSVM classifiers have
been summarised in Tables 3, 4 and 5 respectively. The results in Table 5 shows
that SCG-TWSVM performs comparable to other approaches and for the more
confusing classes such as skip and jump, SCG-TWSVM clearly outperforms
which validates the robustness of the algorithm’s ability to optimize the objective
function well.
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Table 3. Activity classification results on Weizmann dataset obtained using Stochastic
SG-SVM

Bend -
Jack 93.62 -
Jump 94.67 99.18 -
Pjump 92.33 90.06 99.40 -
Run 95.05 99.79 88.27 99.27 -
Side 90.23 89.11 96.10 95.06 86.04 -
Skip 94.45 99.84 80.26 99.32 71.10 93.21 -
Walk 93.84 98.35 95.42 89.59 74.67 94.98 86.09 -
Wave 1 81.84 99.18 98.40 97.66 100 99.85 100 96.43 -
Wave 2 91.44 83.22 99.16 88.35 99.69 97.48 99.38 98.90 91.00 -
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Table 4. Activity classification results on Weizmann dataset obtained using SG-
TWSVM

Bend -
Jack 91.70 -
Jump 99.52 100 -
Pjump 96.88 86.18 100 -
Run 99.05 99.90 86.40 100 -
Side 98.25 100 87.12 100 92.98 -
Skip 98.77 99.75 71.27 100 69.86 94.70 -
Walk 99.88 100 88.38 100 87.35 76.45 86.09 -
Wave 1 85.80 99.91 100 100 100 100 100 100 -
Wave 2 92.59 98.69 99.91 99.02 99.69 100 99.64 100 88.95 -
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Table 5. Activity classification results on Weizmann dataset obtained using SCG-
TWSVM

Bend -
Jack 99.74 -
Jump 98.91 100 -
Pjump 98.84 96.77 100 -
Run 99.60 99.32 93.12 100 -
Side 99.73 100 90.76 100 98.21 -
Skip 99.40 100 76.55 100 74.02 92.50 -
Walk 99.92 100 96.05 100 90.70 100 86.09 -
Wave 1 99.46 100 100 100 99.71 100 100 100 -
Wave 2 97.35 99.81 100 99.02 99.34 100 100 100 98.99 -
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5 Conclusions

In this paper, we proposed a novel stochastic conjugate gradient method based
TWSVM model, which has been termed as SCG-TWSVM. The proposed model
can effectively handle ill-conditioning, slow convergence and instability related
issues faced by traditional stochastic gradient descent methods such as SG-SVM
and SG-TWSVM. The experimental results on diverse ML datasets as well as
activity recognition datasets proves the efficacy of proposed method compared
to related methods over large scale datasets. The main advantages of the SCG-
TWSVM are- (1) it leads to faster convergence as it proceeds in the direction
of conjugate gradient directions, (2) the generalization performance which is at
par, if not better, with SG-SVM and SG-TWSVM.

In future, we aim to incorporate the structural information of each class in
the objective function of each problem so that feature noise among inter-related
classes can be taken care of.
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Abstract. A new synthetic minority class over-sampling approach for
binary (normal/cancer) classification of microarray gene expression data
is proposed. The idea is to exploit a previously trained autoencoder in
combination with the Particle Swarm Optimisation algorithm to gener-
ate new synthetic examples of the minority class for solving the class
imbalance problem. Experiments using two different autoencoder rep-
resentation sizes (500 and 30) and two base classifiers (Support Vector
Machine and näıve Bayes) show that the proposed method is able to
generate discriminating representations that outperformed state-of-the-
art methods such as Synthetic Minority Class Over-sampling Technique
and Density-Based Synthetic Minority Class Over-sampling Technique
in many test cases.

Keywords: Class imbalance · Cancer prediction · Autoencoders
Classification

1 Introduction

A labeled dataset for classification purposes is considered imbalanced when sam-
ples are distributed unequally among different classes. This kind of dataset poses
a challenge to machine learning classifiers as it becomes difficult to model the
minority class samples.

The problem of imbalanced datasets exists in many real-world applications
such as text classification [20], detection of fraudulent telephone calls [9], infor-
mation retrieval and filtering tasks [19]. In this research we are interested in
high dimensional cancer prediction applications where using a dimensionality
reduction method such as an autoencoder is a necessity for reducing noise and
increasing classification accuracy.

Microarrays produce high dimensional matrices consisting of thousands of
gene expressions for only a few hundred samples. The shortage in the number
of samples is a result of the cost and time needed for sequencing the biological
samples. Microarray datasets are usually imbalanced, where cancer samples form
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the majority of the dataset, and have non-linearly separable classes [15]. The
high dimensionality of the datasets is a major challenge to machine learning
classifiers and reducing it would help in decreasing computational complexity
and increasing classifier’s accuracy [8].

Autoencoders are commonly used to reduce the dimensionality of data and to
remove the noise. However, the suggested approach utilizes the representations
learnt by a pre-trained autoencoder for generating new synthetic minority class
data. To achieve this, we employed the Particle Swarm Optimisation (PSO)
algorithm to optimize the generated data to be as much similar (close) to the
original source data as possible. The aim of the approach is to find a variation of
a desired minority class representation that will make a good synthetic example
to be added to the dataset.

The approach was experimentally tested by training different autoencoders
using the training split of the considered microarray datasets. We tried different
number of hidden nodes, 500 and 30, in the network’s bottleneck layers to test the
suitability of the approach in generating representations with different dimen-
sionalities. The approach showed promising results when compared to two other
methods called Synthetic Minority Class Over-sampling Technique (SMOTE)
and Density-Based Synthetic Minority Over-sampling Technique (DBSMOTE).
We used näıve Bayes and Support Vector Machine (will be abbreviated by
SMO after the Sequential Minimization Optimization algorithm which is used
for training it) classifiers to classify the data generated by each oversampling
method. Generally, näıve Bayes achieved the highest prediction accuracy overall
when used with the suggested method’s representations compared to SMO and
other oversampling methods. However, the SMO classifier performed better with
our method’s 500D representations than SMOTE and DBSMOTE.

The rest of the paper is organized as follows. In Sect. 2 we present a basic
background to autoencoders, PSO and the class imbalance problem. Section 3
presents our motivation, Sect. 4 shows the methodology, Sect. 5 discusses the
experiments and results. Finally, the conclusion is presented in Sect. 6.

2 Background

This section presents a basic introduction to autoencoders, PSO and the class-
imbalance problem.

2.1 Autoencoders

Autoencoders are neural network models that have been successfully used for
extracting low dimensional representations from high dimensional data. In its
simplest form, the autoencoder consists of two fully connected feedforward layers
called the encoder and the decoder and this results in a three-layered network.
In the general (deep) case, both the encoder and the decoder may have multiple
layers. The number of outputs at every layer Ll equals the number of inputs at
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the next layer Ll+1, and the number of outputs from the encoder equals to the
number of inputs to the decoder.

The autoencoder learns from examples x1, x2, . . . by feeding the training
input vectors forward through the network to calculate the activation values of
its neurons at every layer subsequent to the input layer. The activation values
at the output layer are calculated and aggregated to get an output O(xi) for
each xi. Since the aim of an autoencoder is to reconstruct the input perfectly,
then the difference between O(xi) and xi is calculated using a predefined error
function such as the Mean Squared Error (MSE). The network tries to minimize
the objective function using a backpropagation learning algorithm which prop-
agates the error derivatives back through the network to fine-tune the weights
for optimal reconstruction.

Stacked Denoising Autoencoders (SDA) [18] are an improved variation of the
ordinary stacked autoencoder which is trained to denoise corrupted versions of
the inputs. Different methods can be used for corrupting the initial input such as
Gaussian noise, mask noise, and salt-and-pepper noise [18]. SDAs use the same
training algorithm that is used by normal autoencoders but achieve significant
improvements over the latter as they are better able to learn useful structures
of the data such as Gabor-like edge detectors from natural images [18].

2.2 Particle Swarm Optimization

PSO [16] is an optimization algorithm ideally used for optimizing continuous
nonlinear functions. The algorithm can be simply implemented by randomly
initializing the location (vector) and velocity (vector) for a number of particles
in a flock. On each iteration of the algorithm, the fitness of each particle’s position
is evaluated using the problem’s objective function. Each particle i updates its
velocity based on its current position yi and its previous best position pi. The
velocity is also influenced by the position pi found by the best neighbor pg. New
points are found, for the subsequent iteration, by adding the velocity coordinates
to yi according to the following equations:

vi = vi + U(0, φ1) × (pi − yi) + U(0, φ2) × (pg − yi) (1)

yi = yi + vi (2)

where U(0, φ1) is a vector of random numbers generated for each particle at
each iteration and uniformly distributed over

[
0, φi

]
, φ1 and φ2 are acceleration

factors and vi has to be kept within the range [Vmin, Vmax] [16].
Typically, PSO will continue iterating until either the best particle with the

best position (representing a perfect solution) is found, or until a maximum
number of iterations has been reached.

2.3 Class Imbalance

Different approaches have been suggested to improve the prediction accuracy
of imbalanced test samples. Majority class random under-sampling is one of
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the direct and most straight forward suggested approaches [14]. Focused under-
sampling, which targets the samples that are further away from the classes’
borders, has been investigated by Japkowicz [13] who observed that using sophis-
ticated under-sampling techniques did not add an advantage to the results in
the considered domain.

Minority over-sampling, on the other hand, is a different approach that can be
either applied using random duplication method or more sophisticated synthetic
methods. SMOTE [5] is a synthetic over-sampling method which generates sam-
ples on the line segment joining a chosen minority class sample and its neighbors
from the same class. DBSMOTE is a new variation of SMOTE that discovers an
arbitrary shaped cluster and over-samples it. Majority Weighted Minority Over-
sampling (MWMOTE) [2] is another synthetic over-sampling clustering-based
technique which generates new samples from weighted minority class samples.

3 Motivation

Most of the suggested minority over-sampling methods are efficient and effective
when generating synthetic samples, with the resulting datasets increasing classi-
fication accuracy [2,12]. However, we found that existing methods work ideally
when the boundaries between the classes are not ambiguous, a situation that is
not true for all kinds of datasets.

Real world datasets, especially medical datasets, are high dimensional, com-
plex, noisy and often have limited number of samples [15]. In such kind of
datasets, majority and minority class samples are not separable and they fre-
quently overlap [15], see Fig. 1. Classifying high-dimensional datasets requires
reducing the dimensionality of the data using either a dimensionality reduction
method or a feature selection method to remove the noise. Both of these solu-
tions depend on trial-and-error techniques for generating or selecting a number
of discriminating features that increase the accuracy. Hence, reducing the dimen-
sionality of the data does not necessarily solve the class overlap and borderline-
ambiguity problems.

K-nearest neighbor-based methods such as SMOTE generate synthetic sam-
ples on the line segments between sample s and its K nearest neighbors. This
tends to increase the density of the minority-class samples generated within the
majority class region. For example, in Fig. 1, a synthetic sample (the red sample)
is generated from two positive (white) examples. Since the synthetic example lies
on the line between two positive examples, it ends up being very close to sev-
eral negative (black) examples. As a consequence, the classifier’s performance
in discriminating both majority and minority samples may well decrease. The
problem becomes more complicated if the minority class has small number of
samples, the samples are very sparse or when the dimensionality of the data
increases. Blagus and Lusa [3] demonstrated the poor performance of SMOTE
in generating high-dimensional gene expression data.

Based on this observed weakness of the SMOTE family of algorithms, our
proposed new method aims to overcome this problem by generating synthetic
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examples that are variations of a single real example as opposed to being a
function of multiple real examples. In this way, the synthetic examples should
in theory be better represent the true region of the feature space occupied by
the minority class we are attempting to model. In Fig. 1, such an example is
illustrated by green example.

Fig. 1. Border line ambiguity in 2-D
space. white circle: minority class sam-
ples, black dots: majority class samples,
red circle: SMOTE generated sample and
green circle: a synthetic sample generated
by the proposed approach. (Color figure
online)

Our approach is not a random
oversampling-by-replication or duplica-
tion approach. Instead, we use an opti-
mization method to utilize the trained
decoder part of an autoencoder to gen-
erate a new representation that is sim-
ilar to an existing minority class one.
The autoencoder is trained on all of
the training examples, both minority
and majority, but the optimisation step
focuses only on the minority class train-
ing samples since these are ones being
generated. In this respect, our approach
shares a commonality with SMOTE:
both approaches consider all minority class training samples to generate the
synthetic data. Therefore we chose SMOTE and a newer version DBSMOTE as
suitable baseline methods for comparison.

4 Minority Over-Sampling Using Autoencoder
and Optimization

Our proposed approach integrates both the decoder part of a trained SDA and
the PSO algorithm for generating synthetic minority class samples. The algo-
rithm is presented in detail in the following two sub-sections.

4.1 Training the Autoencoder

We first configure the autoencoder by specifying the number of layers and their
sizes where input and output layers must be fixed and equal to the dimension-
ality of the dataset. The size of the hidden layers, however, can be varied. We
also select the network’s learning parameters including the weight initialization
method, a noising method, and an objective function to compute the differ-
ence between training examples (both minority and majority class examples)
and their reconstructed versions. The optimization algorithm for minimising the
reconstruction error must be also be specified.

After training the network (Fig. 2) for a set of iterations, the autoencoder
is expected to learn the training data abstract representations. To generate
a compact representation j with dimensionality M for data instance J with
dimensionality N where M << N , we simply propagate J forward through the
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encoder and “read off” the final activations at the bottleneck layer which con-
sists of M neurons. This process of encoding can be encapsulated as a function
j = Encoder(J).

majority

minority

N-D
Training
Data

M-D
Hidden
layer

N-D
Input
layer

N-D
Output
layer

Fig. 2. Training a single layer autoencoder.

Our approach uses a
trained encoder to gener-
ate low-dimensional train-
ing and testing datasets,
Rtraining and Rtesting res-
pectively, by activating the
encoder part using the
training and testing data-
sets. The generated com-
pact training representa-
tions Rtraining, since they
are labeled with the same
classes as the original train-
ing data, can be used for building a machine learning model for classification,
while Rtesting is going to be used for evaluating the accuracy of the model.

4.2 Generating Optimized Representations

We used the decoder part of the trained autoencoder in combination with the
PSO algorithm to generate new synthetic examples. This procedure is described
in Algorithm 1 and by Fig. 3. Given one real minority class sample, multiple
synthetic examples can be generated by repeatedly applying the algorithm.

. . .

. . .

. . .

Initial
M − D × S
solutions

M-D
Hidden
layer

N-D
Output
layer

trained
decoder

. . .

. . .

. . .

. . .

Reconstructed
Solutions
N−D×S

min-class
training
N−D×1

MSE

– Update Particles’ current
positions (y) and velocity (v)

– Update best positions (p) for
each particle

PSO

Fig. 3. Generating minority class over-sampling using trained decoder and PSO.
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To generate a single optimized minority class representation, we randomly
initialize the location and velocity (each of which is an M -D vector) for a swarm
y(t = 0) of S particles to small numbers between [0,1]. The algorithm iterates
over the initial particles y1, y2, ..., ys to feed them separately through the decoder
part of the trained autoencoder to generate Y ′

1 , Y
′
2 , .., Y ′

s at the output layer.
The MSE (difference) between each generated version Y ′

i (at the output
layer) and a desired minority training sample Y is computed to determine the
particle’s fitness. PSO determines each particle’s pg to update the positions
and the velocities according to Eqs. 1 and 2. Updated particles are fed again
through the decoder part for a subsequent iteration and the algorithm runs
until a termination condition is satisfied. The algorithm returns the most fitted
particle (representation) y whose inverse Y ′ is the most similar to the original
sample Y .

Algorithm 1. Minority-Class Over-Sampling using PSO
1 t = 0 ;
2 Y =target minority-class training sample;
3 y(t) = y1, y2, .., yS /*Swarm with S randomly initialized M -D particles*/ ;
4 p1, p2, .., pS = y1, y2, .., yS ;
5 while terminal condition is not satisfied do
6 for i = 1...S do
7 /*feed yi through the trained decoder to generate the reconstructed

versions */;
8 Y ′

i = decoder(yi) ;
9 /* evaluate the fitness f(yi) */ ;

10 f(yi)= MSE(Y ,Y ′
i ) ;

11 if f(yi) < f(pi) then
12 pi = yi;
13 end
14 determine pg [16] ;
15 update yi using Eq(1) and Eq(2);

16 end
17 t = t + 1;

18 end

5 Experiments

To experimentally test the proposed approach, we used 10 different datasets
downloaded from1 The Cancer Genome Atlas (TCGA) Data Portal. The datasets
are genomic data made publicly available for researchers to improve the preven-
tion, diagnosis, and treatment of cancer. An R/Bioconductor package called
TCGAbiolinks [6] was used to download and prepare the RNA-seq gene expres-
sion data. Table 1 shows detailed characteristics of the experimental datasets
which were chosen based on the number of samples and imbalance ratios.
1 https://portal.gdc.cancer.gosv/.

https://portal.gdc.cancer.gosv/
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Table 1. The microarray datasets and the distribution of the samples across normal
and cancerous groups. “No”denotes normal samples and“Ca” cancer samples.

Dataset Cancer type No(train/test) Ca(train/test) Imb.ratio length(N)

BLCA Bladder Urothelial Carcinoma 15/4 326/82 0.047 31209

BRCA Breast Invasive Carcinoma 90/13 877/218 0.094 3506

ESCA Esophageal Carcinoma 8/3 147/37 0.060 4438

HNSC Head & Neck Squamous Cell Carcinoma 35/9 416/102 0.085 3459

KICH Kidney Chromophobe 13/5 73/18 0.198 4293

LUAD Lung Adenocarcinoma 47/12 412/103 0.115 3849

LUSC Lung Squamous Cell Carcinoma 40/11 401/101 0.102 5354

READ Rectum Adenocarcinoma 8/2 75/19 0.106 3649

STAD Stomach Adenocarcinoma 29/7 331/83 0.087 2439

THCA Thyroid Carcinoma 48/13 400/100 0.122 2149

5.1 Experimental Setup

To build our proposed approach, we used an open source machine intelligence
library called TensorFlow r.1.4 [1] to configure two different autoencoders as
follows:

1. An input − 1000 − 500 − 1000 − output autoencoder, with bottleneck layer
size M = 500; and

2. An input− 1000− 30− 1000− output autoencoder, with bottleneck layer size
M = 30.

We used the MSE as an objective function. The Stochastic Gradient Descent
(SGD) [4] back propagation algorithm was used to optimise the network weights.
The learning rate was set to 0.001, the batch size was 25 and the number of
epochs was 250. We also attempted to train the autoencoder for more (500) and
less (100) iterations but results were comparable to the 250 iteration case, so we
only considered this number of iterations in our experiments.

For optimization, we used a python library called pyswarm2 to generate syn-
thetic samples from minority class representations by utilizing the decoder part
of the trained autoencoder. The PSO library requires the user to specify the
lower-bound and upper-bound vectors that bound the swarms’ locations between
them. Hence, we defined the lower-bound as an M -D vector of zeros, and the
upper-bound as an M -D vector of ones. The number of particles have been
experimentally specified and set to 200 and 2.

For the baseline comparison, we used SMOTE and DBSMOTE methods from
an R package called smotefamily [17] to over-sample the minority-class repre-
sentations extracted using the trained autoencoder. SMOTE method requires
the user to specify K, the number of neighbors to be considered, which was set
to 5 as indicated by the original paper [5].

2 https://pythonhosted.org/pyswarm/.

https://pythonhosted.org/pyswarm/
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Each of the configured autoencoders was separately trained and tested ten
times per dataset so that the mean expected performance metrics of the algo-
rithm could be calculated. In each run, we randomly selected 80% of the cancer
samples and 80% of the normal samples to form a training set, and the remain-
ing 20% were reserved for testing. After training, we extracted the training and
testing datasets representations, and then over-sampled the minority class train-
ing representations to varying degrees. The exact amount of over-sampling was
determined by the size of the majority class. We tried over-sampling the minor-
ity class until it was 25%, 35%, 50%, 75%, 85% or 100% of the majority class
size. This was done for each of the ten repetitions per dataset, and was done
using both our new proposed method (referred to hereafter as Opt/Decoder),
SMOTE and DBSMOTE. Therefore three versions of each training dataset for
each amount of over-sampling was generated. Finally, we built a classifier using
the training samples and tested it using the testing representations.

5.2 Classification Algorithms

The goal of this research is to solve the class-imbalance problem which degrades
the performance of classification algorithms. In order to evaluate this, we chose
two classifiers näıve Bayes and SMO implemented by WEKA package [10] and
trained using the extracted training representations, from both classes, and the
appended generated minority-class samples.

The metric used for assessing the performance of each algorithm was Area
Under the Receiver Operating Characteristics graph (AUROC, or alternatively
ROC).

An AUROC value of close to 0.5 indicates random prediction performance
while a value close to 1.0 indicates near-perfect prediction performance.

5.3 Results Using the TCGA Datasets

We compared the average AUROC (over 10 runs) of the SMO and näıve Bayes
(NB) classifiers in classifying Opt/Decoder, SMOTE and DBSMOTE represen-
tations with different minority/majority class ratios (25%, 35%, 50%, 75%, 85%,
100%) and representation size M = 500 and M = 30 respectively.

A visual inspection, based on the number of winning cases per method, of the
graphs shows that NB and Opt/Decoder (NB+Opt/Decoder) representations,
indicated by the blue line, have generally achieved the highest AUROC for most
datasets compared to other methods and classifiers.

Comparing the performance of the NB+Opt/Decoder with NB+SMOTE
(Fig. 4) and NB+ DBSMOTE (Fig. 6) indicates that our method’s 500D rep-
resentations were better classified than SMOTE (500) and DBSMOTE (500)
respectively. Another interesting point to note is the slight increase in the NB+
Opt/Decoder (500) AUROC with the increase in the number of generated minor-
ity samples (BLCA, ESCA, KICH, LUSC, READ). NB+Opt/Decoder (500) has
also proved success in cases where the number of minority training samples is
relatively small (BLCA, ESCA, HNSC, LUSCA, STAD). The NB+Opt/Decoder
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Fig. 4. AUROC results for SMOTE and Opt/Decoder (500D) using SMO and NB.

Fig. 5. AUROC results for SMOTE and Opt/Decoder (30D) using SMO and NB.
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Table 2. Wilcoxon signed rank test for (Opt/Decoder v.s. each of the listed method)
using the average AUROC over the 10 runs.

Method Classifier R+ R− p-val

SMOTE30 SMO 587 1243 0.0080

SMOTE30 NB 1761 68 2.32E−10

SMOTE500 SMO 1797 32 4.59E−11

SMOTE500 NB 1645 184 3.93E−08

DBSMOTE30 SMO 375 1454 8.81E−05

DBSMOTE30 NB 1148 682 0.0870

DBSMOTE500 SMO 1203 627 0.0343

DBSMOTE500 NB 1728 101 2.42E−09

Fig. 6. AUROC results for DB-SMOTE and Opt/Decoder (500D) using SMO and NB.

(30) had a slight better performance than NB+SMOTE (30) (Fig. 5) and a com-
parable behavior to NB+DBSMOTE (30) (Fig. 7).

The performance of the SMO classifier, on the other hand, was generally
lower than the NB. However, our method, represented by the green line, showed
a slight improvement over SMO+SMOTE and SMO+DBSMOTE in the 500D
case (Figs. 4 and 6 respectively). SMO classifier had better prediction accuracy
to other methos 30D representations.

A statistical analysis across all the datasets was performed following the
method described in [7] by applying Wilcoxon signed-rank test [11]. The test
results represented in Table 2 indicate that the overall performance of the
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Fig. 7. AUROC results for DB-SMOTE and Opt/Decoder (30D) using SMO and NB.

NB+Opt/ Decoder was better than NB+SMOTE and NB+DBSMOTE with
higher positive rank (R+) sum than other methods. SMO+Opt/Decoder had
also a general advantage over SMO+SMOTE and SMO+DBSMOTE (500D).

6 Conclusion

This paper presented a new method for generating training data using the fea-
tures learnt by a pre-trained autoencoder. Results on 10 different microarray
datasets showed that the suggested method generated discriminative minority
class representations, leading to increasing the AUCROC for both SMO and
näıve Bayes classifiers in many test cases. The method proved a notable suc-
cess in cases where the dimensionality of the representations was 500D. This
leads to the question of whether SMOTE family of algorithm is suitable for high
dimensional imbalanced datasets.

Several issues are left for future work, such as the consideration of other
optimisation algorithms and applying this method to very small, imbalanced
and multi-class datasets.
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Abstract. Deep convolutional neural networks (CNNs) represent the
state-of-the-art model structure in image classification problems. How-
ever, deep CNNs suffer from issues of interpretability and are difficult to
train. This work presents new tree-like shallow ANNs, and offers a novel
approach to exploring and examining the relationship between activation
functions and network performance. The proposed work is examined on
the MNIST and CIFAR10 datasets, finding surprising results relating
to the necessity and benefit of activation functions in this new type of
shallow network. In particular the work finds high accuracy networks for
the MNIST dataset which utilise pooling operations as the only non-
linearity, and demonstrate a certain invariance to the specific form of
activation functions on the more complicated CIFAR10 dataset.

1 Introduction

Over recent years, deep convolutional Artificial Neural Networks (ANNs), have
made great strides, particularly in tasks related to image classification [3,5,7].
Despite the success, they have been primarily designed by human experts, fre-
quently with state-of-the-art networks taking strong structural inspiration from
prior state-of-the-art networks [7,20]. Where the ANN design has been automati-
cally explored, it has tended to either augment existing state-of-the-art networks
[22,25,26], be highly computationally expensive and use only a few hand-picked
operators [25], explore only a component of the network [22], or develop small
networks without utilising gradient descent for training [21]. Because of the style
of these explorations, and the use of previous state-of-the-art networks to guide
manual ANN design, there are many open questions related to the necessity of
size and optimality of operations used in these networks.

Motivations: several problems have been noted with regards to the training
of deep networks. In particular, the vanishing gradient [2] and shattered gra-
dients problems [1] have been demonstrated to have a severe and detrimental
effect on the training in terms of both efficacy and final accuracy. Skip connec-
tions [7] and ReLU [4] activation functions have been used in manually designed
ANNs to address the vanishing gradient problem and “looks linear” initialisa-
tion [1] to address the shattered gradients problem. However, little investigation
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 616–629, 2018.
https://doi.org/10.1007/978-3-030-03991-2_56
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has been done to see whether or not sufficiently well constructed novel archi-
tectures can achieve sufficient results while avoiding these two issues altogether.
Further, the current state-of-the-art networks seem to be of ever increasing com-
plexity, becoming deeper with each new discovery [4,7]. This complexity tends to
decrease the interpretability of models, making their application difficult to prob-
lems where interpretability is considered of high importance. Work on increas-
ingly deep ANNs also has yet to establish whether this additional complexity is
strictly necessary to achieve the results that have been demonstrated.

Existing work on automatically discovering ANN architectures has the poten-
tial to answer this question, and tends to fall into 3 frameworks. Neuroevolution
of Augmenting Topologies (NEAT) [19] and extensions [18,21] create small ANNs
using EC methods. Generally these methods use a neuron level encoding scheme,
where weights are also found by EC methods, rather than trained through back
propagation, and tend to struggle on complex problems. Other styles of ANN
architecture discovery utilise novel EC methods to encode fully connected layers,
and the connections between layers, before training through back propagation
[10,14,22]. While these methods can to evolve accurate classification networks,
the ANNs are globally non-branching deep networks (i.e. [10,22] finds graph-
like cells for use in a manually designed, globally linear, ANN structure, while
[14] produces novel deep linear ANNs with skip connections), and the majority
of searches through the architecture space take place solely through mutation
[10,14], despite the efficacy of crossover in many traditional EC algorithms [15].
The last common framework for ANN architecture discovery utilises reinforce-
ment learning to construct ANNs [24–26]. These algorithms tend to be more
computationally expensive than their EC counterparts, and significantly limit
the search space of possible ANNs, either using only one operator [25] or dis-
covering novel ‘blocks’ for use in larger network structures inspired by existing
hand designed ANNs [24,26].

Notably, in all prior works where large ANN architectures are discovered
and trained by back propagation, accuracy improvement is the primary focus
of ANN design, rather than a balance of complexity and accuracy, and no tech-
niques have been introduced specifically to aid in the interpretability of models.
A similar issue lies in the established use of ReLU [4] and ReLU-like (e.g. [3])
activation functions. Given the use of non-linear pooling layers in image clas-
sification networks it has not been demonstrated that activation functions are
always necessary to introduce non-linearity to networks. Further, it has been
previously noted that little work has been done to investigate whether ReLU-
like activation functions are optimal for ANNs generally, or whether ANNs were
developed to be optimal for ReLU-like activation functions [23].

Two notable works have looked at the automatic discovery of activation func-
tions, utilising either EC methods [6] or reinforcement learning [13]. However,
each work suffers from significant drawbacks. The work in [6] utilises a sim-
ple weighting of a few known activation functions within a NEAT framework
for use with relatively simple datasets, whereas the work done in [13] sought to
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discover activation functions which improve accuracy in ReLU utilising networks,
potentially biasing discovered activations towards ReLU-like functions.

Goals: this work aims to propose a novel Genetic Programming (GP) represen-
tation of ANNs, and utilises cooperative co-evolution [12] to concurrently evolve
ANNs and activation functions. GP is an Evolutionary Computation (EC) tech-
nique which represents models as variably sized trees [9], utilising operations
inspired by biological evolution (i.e. elitism, crossover, and mutation) to evolve
populations through time, optimising fitness functions which are not required
to be differentiable. Cooperative co-evolution is used in situations where two or
more populations are desired, and the fitness of individuals within populations is
partly determined by individuals within other populations [12]. Three key goals
to be investigated are to:

– create a GP representation of tree-like ANNs, utilising branching to introduce
complexity rather than depth and allowing crossover during evolution,

– utilise region selection to decrease the overall number of parameters in the
network and increase the interpretability on image classification tasks, and

– create novel activation functions concurrently with the tree-like ANNs and
examine the structure and variation of high performing activation functions.

The novel representation proposed will also allow automatic region selection
on images, and utilise co-evolution to concurrently evolve ANNs and activation
functions, where good individuals within one population should improve fitness
within the other. Further, the novel GP representation allows for novel tree-like
ANNs to be developed, with the tree-like structure naturally allowing for mul-
tiple regions of input images to be selected by the ANN, and allowing these
different regions to be processed independently within the network. In this way
it is hoped that tree-like ANNs will allow sufficiently complex, novel, low-depth,
and interpretable ANNs to be discovered. Further, this approach provides a more
thorough search of the space of possible ANNs and activation functions, provid-
ing interesting insights and generating relatively high-accuracy, quick training,
shallow networks with fewer parameters than many state-of-the-art networks.

2 The Proposed Method

The overall method is based in cooperative co-evolutionary techniques. In par-
ticular, we define a GP encoding for ANNs and GP encoding for activation
functions, create populations of each of these two types of GP tree, and evaluate
the ANNs and activation functions with respect to each other. The GP trees
are strongly typed to ensure that, within each branch of the tree structure, the
following structure occurs: RegionSelection → ANN → Softmax Output. The
novel method utilises validation loss as fitness during evolution, and provides
constraints on the networks during training to reduce the required computa-
tion and provide evolutionary pressure towards networks with a small number
of trainable parameters and converge to optima quickly.
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Fig. 1. Example activation function assignment

2.1 The Evolutionary Process

The novel method utilises cooperative co-evolution to develop novel ANN archi-
tectures and novel activation functions concurrently, where two GP populations
are created, one of tree-like ANN structures and another of novel activation
functions. Within the ANN structures, an activation function is taken from a
subpopulation of activation functions, where the subpopulation is specified by
a terminal integer input to the node. The final fitness value of the network is
assigned to both the ANN structure and the activation functions used in it.
An example of this process and a simple example tree-like ANN can be seen in
Fig. 1. Note that this example does not show any parameters except for the acti-
vation function node, which demonstrates subpopulation specification. To ensure
robustness, ANNs utilising activation functions are run 3 times, each time select-
ing a new activation function from the least used activation functions within the
subpopulation, and the best fitness is used as the fitness of the networks and
activation functions.

2.2 ANN Construction

ANN construction takes place from nodes which represent fully connected layers
in an ANN. The novelty in the construction of these ANNs comes primarily
from three specific nodes, the Region Selection node, the Activation node, and
the Concatenation node. In general, nodes take as input another node and some
relevant parameters (e.g. layer size, convolution size, etc.). The only nodes for
which this is not true are Concatenation, which takes two nodes as input, and
Region Selection, which takes the input images as input rather than other nodes.

Notation. Throughout the next section we denote the size of an input to a layer
within the ANN as BatchSize×N×M×C, and define output size in these terms,
where N represents the size of the first variable input dimension, M represents
the size of the second variable input dimension, and C the third. For example,
the input images for the MNIST dataset have size BatchSize × 28 × 28 × 1.
We note that BatchSize is always a function of the overall complexity of the
network and is constant within a network.
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Terminal Sets. The terminal set is {input image, RandSmallFloat, RandFloa-
tRandInt, RandInt}, where RandSmallFloat and RandSmallFloat is a random
float number from two float generators U [0, 0.1] and U [0, 1], respectively, and
RandInt is a random int number from U [1, 256].

Region Selection is the only layer in the network defined as taking the raw
image as input, and as such all leaf nodes utilise this operation. This node
also takes four integers, x1, x2, y1, and y2, as input, all uniformly in the range
[1, SizeOfImage]. It then crops the image according to these inputs. The start
of the crop is then defined, in (x, y) as (min(x1, x2),min(y1, y2)) and the end
of the crop as (max(x1, x2),max(y1, y2)), giving a rectangle of arbitrary size.
The output is a Tensor with shape: BatchSize× (max(x1, x2)−min(x1, x2))×
(max(y1, y2) − min(y1, y2)) × #InputChannels.

Activation Nodes. Activation layers are the only time an activation function
is used within the network. In particular, this layer specifies a subpopulation of
activation functions to draw an activation function from through an integer input
in [1,#Subpopulations]. Within each utilisation of a network the same activation
function will be used for each node specifying the same subpopulation.

Concatenation is the only ‘true’ branching operator available to the GP algo-
rithm, as it accepts two nodes as inputs, and thus is the operator which allows
the GP algorithm to avoid creating fundamentally linear feed-forward networks.
Within this operation zero-padding is used to pad inputs to be the same shape.
In particular, where N1, M1, and C1 are the unique dimensions of the first input,
and N2, M2, and C2 the unique dimensions of the second input, the output size
for this layer is: BatchSize × max(N1, N2) × max(M1,M2) × (C1 + C2).

Layer Nodes: Dense layers are standard fully connected linear layers, with bias
but without an activation function. They output a layer of shape BatchSize ×
N ×M ×LayerSize, where LayerSize is an integer input parameter in U [1, 256].

Layer Nodes: Convolutional layers are implemented with bias but without an
activation function. They will run a KernalSize × KernalSize square kernal
over the input Tensor, outputting a Tensor with different shapes depending
on the padding type, stride, and number of filters chosen. In particular, where
NumberF ilters is an integer input parameter in U [1, 256], KernalSize, Stride
an integer input parameter in U [1, 3], and PaddingType a Boolean input:

– If the padding type is 0 then no padding is added, and the output shape is:
BatchSize × � (N+1−KernalSize)

Stride � × � (M+1−KernalSize)
Stride � × NumberF ilters,

– If the padding type is 1 then padding will offset the KernalSize, giving the
output shape: BatchSize × � N

Stride� × � M
Stride� × NumberF ilters.

To avoid errors, if the KernalSize is greater than any input dimensions, the
KernalSize is reduced to this input dimensionality.

Pooling Nodes all share a similar structure and perform a similar function.
They will run a square ‘window’ over the input returning the maximum or min-
imum value found within this window, and iterating over the input according to
either a given stride or some real-valued chosen reduction in output size.
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Maxpooling runs a PoolSize×PoolSize square window over the input Tensor,
outputting the maximal value found in this window. In particular:

– If padding type is 0 then no padding is added, and the output shape is:
BatchSize × � (N+1−PoolSize)

Stride � × � (M+1−PoolSize)
Stride � × C,

– If padding type is 1 then padding will offset the KernalSize, giving the output
shape: BatchSize × � N

Stride� × � M
Stride� × C.

where PoolSize and Stride are integer parameters in U [1, 3] and PaddingType
is a Boolean parameter.

Minpooling is equivalent to maxpooling in terms of input parameters but will
output the minimal value found in the pool.

Fractional Maxpooling layers return the maximum value found from a 2 × 2
window and iterating over the image pseudo-randomly such that the output is
reduced by a specified ratio. The output shape is: BatchSize×� N

Ratio�×� M
Ratio�×

C. The value for ratio is a real-valued parameter in [1, 2]. If N or M < 2 then
the input is padded minimally such that N ≥ 2 and M ≥ 2.

Fractional Minpooling is equivalent to fractional maxpooling in terms of input
parameters but will output the minimal value found in the pool.

Regularisation Nodes: the regularisation layer is an implementation of several
regularisation techniques, with the specific regularisation technique chosen being
determined by an input parameter. Each regularisation form chosen requires a
single real-valued parameter, denoted Rate, and is taken from the range [0, 1].
The possible regularisation techniques, and their description are as follows:

Dropout [17] sets each value in the input to 0 with probability Rate.
Gaussian Noise is specifically a form of additive Gaussian noise, such that each

value in the input has a value from N (0, Rate) added to it.
Gaussian Dropout [17] is a form of multiplicative Gaussian noise. Specifi-

cally, inputs are multiplied with probability Rate by a value drawn from
N (0,

√
Rate

1−Rate ).

Batch Normalisation maintains the dimensionality of the input and has no
parameters, simply enforcing that each element of the input is transformed to
approximate a standard normal distribution with respect to the batch.

Repeat Nodes are designed to allow GP to more easily construct deep net-
works, which are beneficial within the constraints. In addition to a node, repeat
layers take two integer inputs, #Repetitions and Depth, both drawn from
U [1, 16]. A repeat node will repeat all operations ‘below’ the repeat node up to
Depth, excluding other repeat nodes and region selection operators, and do so
#Repetitions times. Other repeat nodes are excluded from this operation to
avoid compounding effects on the depth of the network, and region selection is
excluded as it is only meaningful when to the input images.
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Padding Nodes: zero-padding is included to allow networks to generate one
form of sparsity within the network, or to counteract the gradual shrinking of
layers that is encountered by repeated application of pooling and convolutional
operators. Given a node and parameter PadN in U [1, 3], the input is padded with
PadN zeros before and after the input, such that the original input is centred
after the operation. Particularly, where PadN is the selected padding size, the
output size for this layer is: BatchSize× (N +2(PadN))× (M +2(PadN))×C.

2.3 ANN Mutation Operations and Activation Construction

Mutation on these ANNs is chosen randomly from the followings:

Uniform Mutation selects a point in the tree at random and replaces it with a
random tree where depth ∈ U [1, 4], to avoid generating over-sized trees.

Reroll Constants has a 50% chance to replace each terminal with a newly gen-
erated number from the same range.

Node Replacement will select a non-terminal node at random and replace it with
another node with the same input types.

Insertion will pick a non-terminal node at random and insert a new node as its
parent, selecting random terminals as needed as further children to this new
parent to ensure that the node is complete.

Activation construction utilises a simpler set of function nodes and terminals:

Function name Input types Function name Input types Terminal name Type

ReLU Tensor Abs Tensor Input Tensor

Sigmoid Tensor Negative Tensor RandomFloat Float, U[−4, 4]

Softmax Tensor Multiply Tensor, Tensor

Square Tensor Max Tensor, Tensor

Sin Tensor Min Tensor, Tensor

Cos Tensor Sub Tensor, Tensor

Sinh Tensor Add constant Tensor, Float

Cosh Tensor Scale Tensor, Float

Log Tensor

2.4 Computation Reduction Techniques

The proposed method utilises three key computation time reduction techniques.
Firstly, the method evaluates all ANNs after only 10 epochs of training. This
both limits training time, and provides evolutionary pressure towards networks
which train quickly. Secondly, the novel method begins training on only subsets
of CIFAR10. Namely, the first generations utilise only 1

8 of the available training
data, splitting this into the training and validation set, with this ratio doubling
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every 5 generations. Thirdly, the method estimates the maximal batch size that
can be trained given memory constraints, and rejects networks that are unable
to be trained with a batch size of at least 256. As this value is influenced heavily
by the number of trainable parameters, it provides an implicit limit to model
complexity.

3 Experimental Configuration

3.1 Parameter Settings

Adam is utilised as a the gradient descent technique, using parameters outlined
in the original work [8], i.e. α = 0.001, β1 = 0.9, and β2 = 0.999. Each network
is trained to 10 epochs, returning the validation loss from the final epoch.

Network evolution utilises the following GP parameters:

Parameter name Value - MNIST Value - CIFAR10

Population size 100 200

Number generations 20 20

Crossover probability 0.5 0.5

Crossover type Single point uniform Single point uniform

Mutation probability 0.5 0.5

Mutation type See Sect. 2.3 See Sect. 2.3

Selection type Tournament Tournament

Tournament size 5 5

Initalisation Grow Grow

Initalisation depth U [4, 8] U [4, 8]

Runs per activation network 3 3

Fitness function Best validation loss Best validation loss

Within the available nodes, network evolution has 50% chance of utilising the
concatenation operation, with other operations having uniform chance of being
selected. This is to give the tree-like ANNs an average branching factor of 1.5.

Activation Function Evolution parameters are as follows, where crossover
and selection are applied only within subpopulations.
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Parameter name Value - MNIST Value - CIFAR10

Population size 100 200

Number subpopulations 2 2

Subpopulation size 50 100

Number generations 20 20

Crossover probability 0.5 0.5

Crossover type Single point uniform Single point uniform

Mutation probability 0.5 0.5

Mutation type Uniform Uniform

Selection type Tournament Tournament

Tournament size 3 3

Initalisation Grow Grow

Initalisation depth U [1, 4] U [1, 4]

Fitness function Best validation loss Best validation loss

Fig. 2. Network performance by generation on MNIST

3.2 Benchmark Methods

The model from the final generation which minimises the Cross Entropy when
applied to the validation set will be trained for 100 epochs, where the set of
weights which minimise the validation Cross Entropy within this training is used
to compare with other networks. In particular, we compare the results to work
done by [5] for the unaugmented MNIST dataset and [16] for the unaugmented
CIFAR10 dataset, although we note that the comparison is not perfect, as our
goals are not strictly accuracy improvement.

4 Results and Discussions

4.1 MNIST

Overall validation accuracies and losses on MNIST for the ANNs considered by
the novel algorithm are presented in Fig. 2.
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Fig. 3. Network performance by generation on CIFAR10

Fig. 4. Activation accuracies by generation

For MNIST the novel algorithm quickly converged to networks containing
no activation functions, limiting the benefit of examining the efficacy of spe-
cific activation functions as many went unevaluated, thus graphs showing their
respective performance are omitted for space. The final model selected for clas-
sification on the MNIST dataset reached a minimum validation loss at epoch
8, where the accuracies are 99.06%, 98.69%, and 98.89% on training, validation
and test sets, respectively, while the losses are 0.0295, 0.0451 and 0.0727, respec-
tively. The model selected a total of 17 regions from the inputs, had ≈ 1.2 M
trainable weights, and the maximum number of layers with trainable parame-
ters occurring within a single brach, prior to output layer, is 2 (a convolutional
layer and a dense layer). Work done in [5] demonstrated higher accuracy on the
same data, finding a test accuracy of 99.56 using ≈ 3.2 M trainable weights. The
number of epochs used for training on MNIST in [5] is unspecified.

4.2 CIFAR10

Figure 3 shows the overall validation accuracies and losses on CIFAR10 for the
ANNs considered by the novel algorithm. Activation function performance tends
to mirror network performance, which is expected given the cooperative frame-
work being utilised (Fig. 4).

The final model structure selected for classification on CIFAR10 reached a
minimum validation loss at epoch 20, where the accuracies are 80.32%, 72.87%,
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Fig. 5. Activation log losses by generation

Fig. 6. Performance of best MNIST model during extended training

and 72.30% on training, validation and test sets, respectively, while the loss are
0.5651, 0.8505 and 0.8651, respectively. The model selected a total of 21 regions
from the inputs, had ≈ 1.2 M trainable weights, and the maximum number
of layers with trainable parameters occurring within a single branch, prior to
the output, is 3 (a convolutional layer, a dense layer, and another convolutional
layer). Work done in [16] demonstrated far higher accuracy on the same data,
finding a test accuracy of 90.92 using ≈ 1.4 M trainable weights, although the
network was designed with a training period of 350 epochs.

4.3 Analysis

MNIST: The overall results of the novel algorithm on MNIST show a highly
accurate shallow network being developed. Interestingly the algorithm appears
to find sufficient non-linearity in pooling operations, having top performing net-
works utilising no activa tion functions. It is further noted that the algorithm has
found a network reaching a local optima within just 8 epochs that appears robust
to overfitting during subsequent training, shown in Fig. 6. Note the evidence of
overfitting throughout extended training when observing Cross Entropy, but the
accuracy is effectively stable from an early epoch (Fig. 5).

CIFAR10: The overall results of the novel algorithm on CIFAR10, unlike on
MNIST, showed drastically diminished test and validation accuracy from the
final selected model when compared with published results from state-of-the-art
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networks [7], although results are in line with manually designed shallow net-
works which calculate weights exactly (i.e. do not perform gradient descent) and
utilise some form of data augmentation [11]. In particular we note that the large
number of regions selected indicates that fixed regions may not be appropriate
for this dataset, i.e. unlike MNIST the same ’feature’ may not always appear in
a similar area of the image, possibly contributing to the relatively poor accuracy.
Further, expanded training behaviour, seen in Fig. 7, indicates that this network
is designed such that it can easily find a local optima for validation loss. We note
that validation accuracy has effectively peaked by epoch 10, although training
set accuracy continues to increase modestly through to epoch 100. In this way,
we see a network tailoured exactly to the evolutionary environment in which we
performed architecture discovery, indicating that a relaxing of these evolutionary
pressures towards quick training may yield significantly better results.

Fig. 7. Performance of best CIFAR10 model during extended training

Three observations have been found when examining the top activations from
each activation subpopulation. Firstly, networks tended to utilise only activa-
tion functions from a single sub-population, indicating that networks which are
homogeneous with respect to activation functions tend to perform somewhat
better relative to those which are heterogeneous, which disagrees with a conclu-
sion in [6]. This led to a behaviour where one activation sub-population became
dominant during training, and several activation functions from the less used
sub-population were not evaluated. In particular, by the final generation half
of the non-dominant activation population went unevaluated. Secondly, we note
that activation functions seem to remain relatively simple, agreeing broadly with
an observation in [13]. Thirdly, and somewhat divergent with prior research, we
also note a certain invariance with regards to activation functions, with no com-
mon themes appearing in what is considered optimal except for non-linearity
and the aforementioned simplicity of functions. The top three activation func-
tions from each sub-population are shown in Table 1 to demonstrate. Note that
many of these are equivalent to simpler functions.



628 D. O’Neill et al.

Table 1. Top 3 activations from CIFAR10

(a) Sub-population 1 (b) Sub-population 2

Activation ValLoss ValAcc Activation ValLoss ValAcc

−softmax(x+ x) 0.938 69.12 abs(max(ReLU(x), abs(x)) 0.850 71.46

sinh(x+ sigmoid(x+ x)) 0.946 69.95 (abs(−x) ∗ x)2 0.858 71.73

abs(softmax(x)) 0.960 68.91 −ReLU(sinh(x) + x) 0.859 71.47

5 Conclusions and Future Work

This work has demonstrated a novel tree-like ANN structure, and a GP based
system to automatically explore and generate structures for specific problem
instances, while concurrently discovering novel activation functions. The algo-
rithm with computation reduction techniques found accurate models for the
MNIST dataset, but failed to find a high-accuracy model for CIFAR10, although
the results were similar to other manually designed shallow ANNs for this
dataset.

Analysis of the training of the final CIFAR10 model indicates that the evolu-
tionary pressure towards models which train quickly may have been too strong,
pushing CIFAR10 models towards a relatively inaccurate, but easily tainable,
optima. Further, particularly with regards to CIFAR10, the ability of region
selection to reliably select parts of the input which contain similar informa-
tion between images is unclear, as region selection in the presented form is not
translation invariant, potentially contributing to the poor accuracy. Lastly we
note that further evidence for the evolutionary pressure towards small networks
being too high is seen in the very similar number of trainable parameters found
in the two top models for significantly different datasets. As such, future work
should focus on the development and implementation of more nuanced computa-
tion reduction techniques, which allow for models to train towards more robust
optima, and should investigate translation invariant forms of region selection.
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Abstract. Data streams with concept drift change over time. Detect-
ing drift allows remedial action, but this can come at a cost e.g. train-
ing a new classifier. Prequential accuracy is commonly used to evaluate
the impact of drift detection frameworks on data stream classification,
but recent work shows frequent periodic drift detection can provide bet-
ter accuracy than state-of-the-art drift detection techniques. We discuss
how sequentiality, the degree of consecutive matching class labels across
instances, allows high accuracy without a classifier learning to differenti-
ate classes. We propose a novel metric: lift-per-drift (lpd). This measures
drift detection performance through its impact on classification accu-
racy, penalised by drifts detected in a dataset. This metric solves three
problems: lpd cannot be increased by periodic, frequent drifts; lpd clearly
shows when using drift detection increases classifier error; and lpd does
not require knowledge of where real drifts occurred. We show how lpd
can be set to be sensitive to the cost of each drift. Our experiments show
lpd is not artificially increased through sequentiality; that lpd highlights
when drift detection has caused a loss in accuracy; and that it is sensitive
to change in true-positive drift and false-positive drift detection rates.

Keywords: Data streams · Concept drift · Evaluation · Classification

1 Introduction

Concept drifts in data streams cause a classification problem to change over time.
Drift detectors monitor for changes (e.g. in classifier accuracy) to signal when
drift occurs. Addressing drift can come at a cost of losing valid learning. Consider
identifying intrusion attempts in a stream of network connections. If we restart
the classifier whenever we detect drift, then the classifier will need to relearn what
an intrusion attack looks like after each drift. Drift detection may help identify
intrusion attempts faster when they change in nature, but poorly chosen drifts
may lead to relearning the same rules that have just been forgotten. Prequential
accuracy (classifying and then training on each instance) [1] is commonly used
to measure improvement in classification provided by drift detection, but does
not in itself prove that drift detection has improved accuracy. Bifet [2] shows
c© Springer Nature Switzerland AG 2018
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that detecting drifts periodically can lead to better accuracy than the latest
drift detection techniques. High sequentiality (the degree to which consecutive
instances share a class label in a data stream) allows periodic drift detection
to provide high accuracy despite a classifier lacking the ability to differentiate
classes. When evaluating drift detection on real-world data where actual drifts
are rarely known, accuracy is often used as a proxy for correct drift detection,
though it is not suitable for this purpose.

Our contribution is a novel evaluation metric, lift-per-drift (lpd), which mea-
sures drift detector performance as the impact of drift detection on classification
accuracy against the same framework without drift detection, penalised by the
number of drifts detected. By measuring improvement over not using drift detec-
tion, it shows when drift detection reduces classifier error. It is not increased
by periodic drift detection on datasets with high sequentiality. We distinguish
sequentiality from class imbalance [3] and show how it can be tested for in a
dataset. Five common real-world data streams used for drift detection evalu-
ation are shown to have high sequentiality, suggesting it is prominent in real-
world datasets. Finally, lpd does not require knowing where real drifts occur in
a dataset so it can be used to evaluate drift detection on non-synthetic streams.

In Sect. 2, we describe current techniques and goals for drift detection eval-
uation. In Sect. 3, we define lpd. We discuss its characteristics and introduce a
parameter, r, that allows control over its cost-sensitivity. We define sequentiality,
contrast it to class imbalance, and provide a method to test the degree of sequen-
tiality in a dataset given class imbalance. Section 4 details experimental results
that support our claims about lpd. We show lpd is not artificially increased
through sequentiality, that it highlights when drift detection has caused a loss in
accuracy and that it is sensitive to change in true-positive drift and false-positive
drift detection rates. We back these claims up by testing on real-world data. We
suggest how our work can be extended and conclude this paper in Sect. 5.

2 Related Work

In a data stream, instances arrive one at a time, with no upper bound on the num-
ber that may arrive. Metrics that scale well in terms of cost in memory and time
[4] are used as it is be infeasible to retain every prior classification/error. Incre-
mental summary metrics are better suited to streams, requiring a set amount of
memory over time to store. Metrics that measure performance against baseline
approaches are an understood gap in available evaluation approaches [5]. At any
point in the stream, prequential accuracy acc may be measured: of all instances
seen, acc is the proportion that have been correctly classified at that point [1].
Concept drift refers to a change in the underlying data-generating distribution
of a stream [6]: real, in which the relationship between classes and attributes
change; and virtual, where the balance of classes change over time. Detecting
drifts allows remedial action, such as switching to a new classifier [7]. This is the
approach to drift detection we consider in this work. Drift detectors can have
a tolerance specified for false positive drift detection e.g. [8]. When measuring
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drift detection quality, often true positive detection rate TP is compared against
false positive detection rate FP . These can be combined with drift delay into a
single measure, MTR [2]. In real-world data, where actual drift points are often
unknown, these measures cannot be used. Adapting models comes at a cost, such
as training a new classifier for scratch; metrics that can account for this cost are
desirable for real-world applications [9].

Bifet [2] shows periodic drift detection (i.e. every n instances) can attain
better accuracy than many highly regarded drift detection techniques. This is
related to autocorrelation of class labels through a stream. Accuracy here is not
related to successful drift detection. However, accuracy is commonly used to
demonstrate the value of drift detection techniques on real-world datasets e.g.
in [8]. Accuracy can be biased towards majority classes in imbalanced datasets.
Kappa can be used to measure classification accuracy across classes compared
to a chance classifier [10] instead. However, this measure can also be increased
with periodic drift [2]. Temporal-Kappa [11] instead uses a baseline that classifies
each instance by the class of the prior instance. This accounts for sequentiality,
but leads to common negative scores and does not evaluate drift detection. The
authors’ proposed Combined metric combines both versions of Kappa, but is zero
when either of the above baselines are better than the comparison technique,
which is common in datasets with sequentiality. A metric for evaluating drift
detector performance on real-world data with sequentiality is required.

3 Lift-Per-Drift (lpd) and Sequentiality

Lift-Per-Drift. Lift-per-drift (lpd) measures the impact of drift detection on
classification accuracy against the same framework without drift detection,
penalised by the number of drifts detected. It can be measured at any point
in a data stream. It can: show whether drift detection has improved classifica-
tion accuracy on a given dataset; compare drift detection frameworks on a given
dataset; be used as a proxy to evaluate quality of drift detection where we do not
know actual drift points. It is defined in Eq. 1, where accd is the accuracy when
using a drift detection framework; acc

�d
is the accuracy on the same data with-

out drift detection; and #drifts ∈ W is the number of drifts detected by drift
detection. Here, lpd ∈ R, and −1 ≤ lpd ≤ 1. Calculating lpd in real-time requires
running a framework with and without drift detection in parallel. We propose
the default version lpd. The user-set parameter r, described further below, allows
cost-sensitive penalisation of drifts. By default r = 1.

lpd =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

accd − acc
�d

#drifts
, if #drifts ≥ 1 and r = 1

(accd − acc
�d
)(1 − r)

(1 − r#drifts)
, if #drifts ≥ 1 and 0 < r < 1

0 otherwise.

(1)

In Fig. 1, using an example range of 0 ≤ #drifts ≤ 20 and r = 1, we
show how absolute lpd varies over values of its numerator (accd − acc

�d
) and
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Fig. 1. Absolute value of lpd across potential range of accd−acc
�d
and 0 ≤ #drifts ≤ 20

denominator #drifts. When accd < acc
�d

then lpd is negative; when accd > acc
�dthen lpd is positive. Where #drifts = 0, lpd = 0. Our metric is furthest from

zero where we have fewer drifts and a larger numerator. The |lpd| becomes
smaller as accd approaches acc

�d
or when #drifts increases.

Example 1: Checking if drift detection improves accuracy over a framework
without drift detection, we measure accd = 85.0%, acc

�d
= 90.0% and #drifts =

100 over a period of our stream. As lpd = −0.05%, negative lpd shows that drift
detection has caused a relative loss in classification accuracy over this period.

Example 2: Comparing two drift detectors, ddA and ddB , we measure lpd for
both for the same period of a data stream. For ddA, #drifts = 50 and accd =
75.0%. For ddB , #drifts = 500 and accd = 80.0%. For both, acc

�d
= 60.0%. On

this sample, ddA has lpd = 0.30% while ddB has lpd = 0.04%. On average, each
drift in ddA provides a better increase in classification accuracy than ddB , and
so it provides improved drift detection.

When r = 1, each drift must improve accuracy as much as the last to maintain
lpd. Sometimes, incremental gains are more valuable then the cost of drift, so
subsequent drifts should be less penalised. The user-set r parameter decides the
proportional improvement in accuracy each subsequent drift must provide over
the last (following a geometric progression) to maintain its lpd. For instance, a
classifier with accd − acc

�d
= 10% with one drift would need accd − acc

�d
= 15%

to maintain lpd if r = 0.5 but only accd − acc
�d

= 12.5% if r = 0.25. This
allows a user to specify the relative improvement each drift must provide to be
justified. Setting r < 1 penalises each subsequent drift less, so lpd is less able to
penalise approaches relying on sequentiality and repeated drifts. Holding all else
constant, lower r values lead to larger lpd values so the same r setting must be
used for comparing drift frameworks.

Example 3: Comparing, ddA and ddB , we set r = 0.5 as we wish each drift to
contribute at least half as much accuracy as the drift before it. For ddA, with



634 R. Anderson et al.

100 drifts, lpd = 0.005% and for ddB , with 150 drifts, lpd = 0.008%. As ddB has
higher lpd than ddA, we know each extra drift provided more accuracy relative
to our set cost-ratio, so ddB is superior for our purpose.

Sequentiality. Unlike lpd, accuracy is increased by periodic drift detection.
Bifet [2] attributes this to two common characteristics of data streams. The first
is temporal dependence - an instance is more likely to be of the same class as
the previous instance. Secondly, the prior distribution evolves through a stream
e.g. with different times of a day being heavily associated with electricity prices
rising or falling, causing localised periods of extreme class imbalance, despite a
stream as a whole being relatively balanced.

Fig. 2. Example of sequential class labels with frequent drifts, denoted by ‘|’

In Fig. 2, drift is detected and the classifier replaced every five instances. Up
until the third drift, only one class is seen by new classifiers and so the classifier
will classify all instances as that class. After the third drift, the classifier may
begin to learn how to distinguish class A from B. The fourth drift will interrupt
this learning. However, the framework will continue to get high accuracy while
an evidence-based drift detector may not detect drift as often but is likely to
get worse accuracy. We define sequentiality as per Eq. 2. Here, n represents the
number of instances seen in a stream, xi refers to the ith instance, yi refers to the
index of the class label of the ith instance and ymax refers to the total number
of class labels. It follows that 0 ≤ seq ≤ 1 and seq ∈ R.

seq =
∑n−1

i=1 g(xi)
n − 1

g(xi) =

{
1, if yi = yi+1

0, yi �= yi+1

where y ∈ (0, 1, . . . , ymax) (2)

Fig. 3. Contrast of imbalance and sequentiality in class labels of a dataset

P (seq) = 1 − I1−q

(
(n − 1) − (k − 1), 1 + (k − 1)

)

k =
n−1∑

i=1

g(xi), q =
ymax∑

j=1

nj

n − 1
× nj − 1

n − 2
(3)
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Table 1. Imbalance and sequentiality in commonly used real-world data streams

Dataset n ymax Majority class % seq q p-value

Airlines 539,383 2 55.5% 58.1% 50.6% 0

Covtype 581,012 7 48.8% 95.1% 37.7% 0

Elec 45,312 2 57.5% 85.3% 51.1% 0

Intrusion 494,021 23 56.8% 99.9% 40.9% 0

Poker 829,201 10 50.1% 74.5% 43.2% 0

*p-values less than 1.00 ∗ 10−16

High class imbalance and high sequentiality are distinct traits for a dataset
e.g. Fig. 3. We can calculate the probability of randomly distributed classes given
class balance using Binomial probability (Eq. 3). The chance of seeing at least
that many sequential classes, P (seq), is given by 1 minus the Binomial CDF
with k − 1 successes. The probability of a class being followed by another class
assuming random distribution for a given class balance, q, is calculated as the
sum of chances for each class being followed by the same class; here, nj refers to
the total number of instances in the jth class, excluding the last instance in the
dataset. This gives us a p-value that indicates if the class is more sequential than
the class balance alone would explain. Table 1 shows five datasets regularly used
to evaluate drift detection. The proportion of instances in the majority class
indicates imbalance. Our test strongly shows that none of these datasets have
random distributions of classes given their imbalance. These common datasets
for evaluating drift detection techniques have sequentiality that may provide
misleading accuracy. There is a clear need for an alternative metric that will not
be increased by periodic detection when evaluating drift detection frameworks.

4 Experimental Results

In this section, we support our claims about lpd with experimental results. For
experiments shown, we use both synthetic dataset generators and real-world
datasets. We use dataset generators included in MOA. Each experiment was
repeated 30 times; we show mean results with a 95% confidence interval assum-
ing a Normal distribution of results. Each stream had 500 drifts (unless oth-
erwise stated) and seven distinct concepts. Real-world datasets used are avail-
able from http://moa.cms.waikato.ac.nz/datasets, except for Intrusion, avail-
able here: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Experi-
ment code is available from https://github.com/rand079/lpd. An incremental
Näıve Bayes classifier has been used in each experiment. We used lpd with r = 1
for experiments unless otherwise stated.

Streams with Varied Sequentiality. Here we support our claim that the
lpd metric is not increased by periodic drift detection on datasets with high

http://moa.cms.waikato.ac.nz/datasets
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://github.com/rand079/lpd
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Fig. 4. Mean accuracy and lpd for three synthetic datasets with varied sequentiality

sequentiality. We detect drift and replace the classifier every f instances, where
f = {60, 250, 500, 1000} regardless of the data seen. Every concept drift occurs
at 500 instances, so f = 500 is perfect drift detection, while f = 250 has addi-
tional false positive drifts. The detector with f = 60 matches the ‘No-Change’
periodic detector in [2]. Accuracy, as per Fig. 4, is always highest for the perfect
drift detector with f = 500 and worst for the f = 60 detector when seq = 50.0%.
Accuracy for the f = 60 detector dramatically improves as seq increases, match-
ing the perfect drift detector across datasets at seq = 95.0%. However, the very
frequent drift detector contributes very little accuracy per drift compared to
other approaches. Its lpd is consistently poor and even sometimes negative for
the ‘No-Change’ detector, substantiating our claim about lpd. It should be noted
that for two of the three datasets, f = 1000 provides superior lpd to the perfect
drift detector. When f = 500, the drift detector detects twice as many drifts as
when f = 1000 so lpd is sometimes relatively lower. The lpd measure tends to
be conservative due to its denominator; r allows the user to specify if they want
a less conservative measure.

Streams with Virtual Drift. Here we support our claim that lpd indicates
when drift detection reduces classifier error compared to a baseline without it.
Accuracy does not, and can be misleading when presented as a sole metric for
stream classification. In these experiments, we show accuracy and lpd for five
synthetic streams. Only virtual drift is present i.e only the class balance changes
when concept drift occurs. Each drift occurs after 250 instances. Classifiers learn
how classes are related to attributes over time, and this learning is still relevant
after virtual drift. However, frequent drifts can interrupt this learning. For this
experiment, we use drift detectors that detect drift every f = {125, 250, 500}
instances. These represent over-reactive, perfect and under-active drift detectors.
We introduce imbalance by generating up to 80% more of one class than others.
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Fig. 5. Mean accuracy and lpd for five synthetic datasets with virtual drift and 250
instances between drifts

In Fig. 5, we can identify which value of f for a drift detector is getting the
best classification accuracy. When presented with this plot, a reader may assume
that the detector with the best f setting for each stream is worth using and pro-
vides a good accuracy. However, these have not been compared to the baseline
approach with no drift detector. When we consider lpd, we can identify where
drift detectors are not providing a genuine improvement in classification accu-
racy. Negative values of lpd for Agrawal (which has very particular classification
rules), Waveform (with three classes) and LED (which has ten classes) show that
using detectors with any f value will result in fewer correct classifications than
using no drift detector. Even when f = 250 where drift is perfectly detected,
the remedial action can cost more than taking no action. This is not the case
with Hyperplane, which has a much simpler relationship between attributes and
classes to learn.
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Fig. 6. Accuracy and lpd for five synthetic streams with varied TP and 0% FP
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Sensitivity to True and False Positive Drift Rate. Here we show lpd’s
suitability as a proxy for TP and FP through its relationship with these mea-
sures. First, we compare lpd and accuracy’s relationship to TP over synthetic
data. These datasets each have 500 concept drifts, with 500 instances between
each. No sequentiality nor imbalance has been added, so accuracy is a useful
proxy for TP and FP . We use an artificial drift detector that detects drift 30
instances after a TP drift (to include a realistic detection delay). We show accu-
racy and lpd across different levels of TP with FP = 0%. Figure 6, shows that
accuracy increases with higher levels of TP in a fairly linear fashion across all
datasets. Every additional 10% TP results in 50 more drifts. For this reason,
we can see lpd increasing at a decreasing rate for Agrawal, LED and Hyper-
plane, showing that the mean improvement per drift rises with higher TP . This
is less clear with RandomRBF, and for Waveform, lpd drops with higher rates of
TP . This suggests that there is enough similarity between concepts that regular
drifts do not improve accuracy beyond the penalty for extra drifts, even though
they are correct detections. With lpd, we also see that drift detection achieves
worse accuracy than not using drift detection for low levels of TP on LED and
Hyperplane.
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Fig. 7. Accuracy and lpd for five synthetic streams with 100% TP and varied FP

Keeping 100% TP we introduced false positive drifts to streams to see the
impact on accuracy and lpd, as shown in Fig. 7. False positive drifts were signalled
randomly through the stream, though never within 100 instances following an
actual drift. With 10% FP , we have 500 true drifts and 56 false drifts; with 90%
FP , we have 500 true drifts and 4500 false drifts. With higher FP , accuracy
decreased at an increasing rate across all datasets. Higher levels of FP led to
lower lpd across datasets, apart from when lpd was negative and FP was very
high, as the drop in accuracy is divided by more drifts. The reduction in lpd with
higher FP is almost linear due to the number of drifts increasing in a superlinear
fashion with higher FP . The level of FP that results in lower accuracy than using
no drift detection is very clear, with RandomRBF and Agrawal never performing
worse than the baseline approach.
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Fig. 8. Mean lpd with varied TP (with 0% FP ) and varied FP rate (with 100% TP )
where r ∈ {0.75, 0.9, 1.0}

This comparison of lpd and accuracy shows how the metrics differ and that
they can both be useful proxies for drift detection quality when evaluating on
real-world datasets. Our proposed metric generally increases with improved drift
rate, and where lpd is positive, we know drifts are improving classification accu-
racy. As lpd is a trade-off between accuracy and drifts detected, we do not seek
to have a perfect correlation with TP ; lpd should only increase when each drift
notably increases accuracy. When varying FP , we could see both accuracy and
lpd dropping with higher FP . Across both experiments, negative lpd plainly
shows where drift detection is not providing additional classification accuracy
(Fig. 8).

Varying rwith FP and TP Rate. When varying r, we see that lpd still drops
with higher FP rate and increases with higher TP rate, making it a valid proxy
for TP and FP . Increasing FP is associated with more drifts. When r < 1,
lpd decreases more slowly than with r = 1. The more r is reduced, the less lpd
penalises an approach for using many drifts. The range of lpd increases with
higher r: only lpd scores with the same r should be compared with each other.

Real-World Datasets. Here, we show lpd’s usefulness for evaluating drift
detectors on real-world data, mirroring the experiments by Bifet [2] which
demonstrate increased accuracy through periodic drift (the ‘No-Change’ detec-
tor). We show accuracy, lpd, lpd(r = 0.9) and the number of drifts for each
experiment and detector. We use an incremental Näıve Bayes classifier and
drift detectors use default parameters as per their implementation in MOA.
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Table 2. Accuracy, lpd and number of drifts detected for real-world datasets

ADWIN CUSUM DDM EDDM HDDMw PageHinkley NoChange

Airlines acc 66.7% 67.5% 66.6% 64.9% 65.3% 67.0% 58.6%

lpd 0.011% 0.083% 0.116% 0.009% 0.001% 0.119% −0.001%

lpd(r = 0.9) 0.21% 0.30% 0.25% 0.04% 0.08% 0.28% −0.60%

#drifts 195 35 18 42 613 21 8989

Covtype acc 83.2% 81.5% 78.7% 85.1% 85.9% 80.1% 88.4%

lpd 0.020% 0.074% 0.008% 0.011% 0.011% 0.167% 0.003%

lpd(r = 0.9) 2.27% 2.10% 1.82% 2.46% 2.54% 1.95% 2.79%

#drifts 1151 286 2185 2214 2290 117 9683

Electricity acc 81.0% 79.2% 84.0% 84.5% 84.0% 78.0% 82.7%

lpd 0.087% 0.209% 0.056% 0.057% 0.080% 0.468% 0.012%

lpd(r = 0.9) 0.77% 0.62% 1.07% 1.11% 1.07% 0.72% 0.93%

#drifts 88 28 192 196 133 10 755

Intrusion acc 99.8% 99.7% 99.9% 99.9% 99.8% 99.6% 98.2%

lpd 0.057% 0.455% 0.045% 0.166% 0.326% 0.610% 0.000%

lpd(r = 0.9) 0.33% 0.61% 0.33% 0.38% 0.50% 0.74% 0.17%

#drifts 58 7 74 20 10 5 8233

Poker acc 73.7% 72.5% 66.5% 77.6% 77.0% 70.7% 79.0%

lpd 0.010% 0.020% 0.007% 0.004% 0.008% 0.023% 0.001%

lpd(r = 0.9) 1.41% 1.30% 0.69% 1.81% 1.74% 1.11% 1.95%

#drifts 1388 659 958 4868 2263 489 13820

For the No-Change detector, we detected drift and replaced the classifier with
an untrained classifier after every sixtieth instance.

Through accuracy alone, the No-Change detector appears competitive with
other techniques as per Table 2. However when r = 1, lpd is lowest for the
No-Change detector, penalising the approach for its extreme number of drifts.
Page-Hinkley has the best lpd, partly due to the lower number of drifts detected.
Compared to approaches like EDDM, Page-Hinkley has notably worse classifi-
cation accuracy. As lpd rewards lift in accuracy per drift, it will generally value
techniques with fewer drifts, unless the improvement in accuracy is dramatic.
This is valid. However, if drifts do not come with a significant cost, then select-
ing a framework using both lpd and accuracy is a good option. CUSUM and
ADWIN both seem to provide a balance of lpd and classification accuracy. Across
all datasets, drift detection provides an improvement in accuracy compared to
not using drift detection, as evidenced by usually positive lpd. The one negative
case suggests that the No-Change detector does not improve classification accu-
racy on Airlines. This dataset provides the most difficult classification problem,
and frequent drifts as per the No-Change detector may interrupt learning of
more complex rules. Intrusion by contrast is much easier to classify correctly.
In this dataset, 20 classes make up 1.8% of the dataset. Constantly replacing
the classifier will forget what has been learnt about these rare minority classes.
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The No-Change detector does best on Poker in terms of classification accuracy.
In all of these cases, Page-Hinkley achieves the best lpd. When r = 0.9, No-
Change appears best for Covtype and Poker, as each drift is penalised less than
the prior one. However, lpd is less conservative, rewarding drift detectors more
for accuracy and penalising less for increased drifts.

5 Conclusion and Future Work

High accuracy does not necessarily reflect well-chosen concept drifts; approaches
with high accuracy can be worse than baseline approaches. The lpd metric mea-
sures the impact on accuracy of drift detection against the number of drifts
detected. Unlike metrics such as FP , TP and MTR, lpd can be used on datasets
even when we do not know where drift has genuinely occurred. Through the r
parameter, lpd can account for the relative cost of drifts. Sequentiality can lead
to significant increases in accuracy despite a classifier being unable to differen-
tiate classes well. We have shown how to test for its presence in datasets while
accounting for class imbalance. Our experiments show that our metric achieves
the goals set out for it: lpd is not increased by periodic detection with high
sequentiality. It measures improvement over a non-drift detecting framework,
which shows when a drift detection framework actually reduces classifier error.
On synthetic datasets, lpd is related to true positive and false positive drift
detection so can work as a proxy for these measures. On real-world data, lpd
does not require knowing where real drifts occurred. We have contrasted lpd to
accuracy across real-world datasets and shown that it rewards well chosen drifts.

We have shown how to calculate lpd based upon accuracy. However, lpd could
be based on other classification metrics. For instance, the Kappa metric κ [1]
normalizes a classifier’s accuracy by that of a chance predictor to evaluate how
well a classifier performs across classes. For imbalanced data, where drifts may
negatively impact classifications of minority classes, lpdκ could be formulated to
measure the impact on κ per-drift detected relative to having no drifts. It would
also be of value to assess how lpd could be used in alternate frameworks such as
ensemble approaches that handle concept drift in different ways.
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Abstract. Classification tasks become more challenging when having
the curse of dimensionality issue. Recently, there has been an increas-
ing number of datasets with thousands of features. Some classification
algorithms often need feature selection to avoid the curse of dimensional-
ity. Genetic programming (GP) has shown success in classification tasks.
GP does not require to do feature selection because of its built-in capa-
bility to automatically select informative features. However, GP-based
methods are often computationally intensive to achieve a good classifi-
cation accuracy. Based on perspectives from granular computing (GrC),
this paper proposes a new approach to linking features hierarchically for
GP-based classification. Experiments on seven high-dimensional datasets
show the effectiveness of the proposed algorithm in terms of saving train-
ing time and enhancing the classification accuracy, compared to baseline
methods.

Keywords: High-dimensional data · Genetic programming
Granular computing · Classification

1 Introduction

Classification is one of the most important tasks of data mining, which refers
to an algorithmic procedure to assign a given piece of input data into one of
the given categories [15]. Classification has a wide range of applications, e.g.
medicine, biology and education, etc. Many algorithms have been proposed for
classification tasks, e.g. K-nearest neighbors (KNN) [4], Native bayes (NB) [9],
decision tree (DT) [7], and support vector machines (SVMs) [6]. However, when
having the curse of dimensionality issue, to enhance the classification perfor-
mance is challenging. Recently, there has been an increase in the number of
datasets with thousands to millions of features. To avoid the curse of dimen-
sionality, some classification algorithms, e.g. KNN, often require to perform a
pre-processing step, such as feature selection [3] or feature construction [16].
c© Springer Nature Switzerland AG 2018
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Genetic programming (GP) [11,16] is a heuristic technique, inspired by bio-
logical evolution and nature selection. GP is effective for classification tasks [5],
especially for binary classification. GP has been applied to pre-processing and
post-processing steps of high-dimensional classification, such as feature selection
[10] and feature construction [16,17], to enhance performance of different clas-
sification algorithms, e.g. KNN and NB. Furthermore, GP is often employed to
construct classifiers by using different kinds of representations, e.g. rules [5,8].
GP-based methods do not require domain knowledge, human intervention, or
statistical assumption or inference. Moreover, there is no requirement to do fea-
ture selection or other pre-processing steps before classification, because of its
build-in capability to automatically select informative features during the clas-
sification process [17]. Another crucial advantage of GP-based methods is that
GP is able to cope with different types of features.

However, GP-based methods are often time-consuming, which is a main dis-
advantage of GP. In standard GP, all the features are fed to the algorithm as
terminals. For high-dimensional datasets, the search space is large, which often
requires a large amount of training time. Moreover, it is not equally difficult
to classify each instances in a dataset. Some instances are classified correctly
by using only a small number of features, while some instances are difficult to
be classified, requiring features with very good discrimination ability. In order
to save training time and further enhance classification performance, this paper
proposes a new strategy to organise features hierarchically by taking perspec-
tives from granular computing (GrC) [1,18,20]. According to mechanisms from
GrC, knowledge should be understood and organized hierarchically and spirally.
Inspired by this, for high-dimensional datasets, the whole features are divided
into several feature set linked hierarchically, to learn hierarchically and spirally,
based on previous good feature knowledge.

Goals

In this paper, we focus on exploring the potential of GP in classification with
high-dimensional data, based on the perspectives of GrC. The overall goal is
to enhance the performance of GP-based methods, to save training time and
improve the accuracy for classification with high-dimensional data. This goal is
composed of the following three objectives.

– Proposes a new approach to link features hierarchically for GP-based meth-
ods.

– Investigate whether the proposed algorithm can effectively improve the accu-
racy, and save training time, compared to standard GP on classification tasks
with high-dimensional data.

– Investigate whether the proposed algorithm can achieve significantly better
or similar performance in classification with high-dimensional data, compared
to other non-GP classification algorithms.
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2 Background

2.1 Genetic Programming

Genetic programming [11] is a population-based evolutionary computation tech-
nique that aims at generating program automatically for addressing complex
problems. It emphasizes on tree structure, which makes GP distinctive and more
flexible to be applied widely [5]. When applying GP to solve problems, a ter-
minal set and a function set need to be defined. In tree-based GP, the internal
nodes of GP trees, called a function set, is the set of all possible operators or
functions, e.g. arithmetic operators (+, −, × and /), or mathematics functions
e.g. sin(x). All the possible arguments for internal nodes consist of a terminal set,
or called leaf nodes of GP trees. Individuals are evaluated by a predefined fitness
function for selection. New individuals are created by operators, e.g. crossover
and mutation. The pseudo-code of GP [11] is shown as follows:

Algorithm 1. Tree-based Genetic Programming
Initialization:Individuals (trees or programs) of initial population are generated randomly;
repeat

Evaluation: each individual is evaluated by a fitness function;
Selection: One or two individuals are selected from the population with a probability based on
its fitness;
Evolution: new individuals are created by the following genetic operators with specific proba-
bilities:

Reproduction
Crossover
Mutation

until the stopping criterion is satisfied;
return best program or individual;

2.2 Granular Computing

Granular Computing (GrC) [20] is a systematic study of using granules (such as
classes, clusters, intervals, groups, subsets, etc.) for solving complex problems. It
suggests to use a hierarchical granular structure for a multi-layer understanding
at multiple layers of varying granularity, and to use different granular structures
to achieve a multi-view understanding from different angles [21]. Yao proposes a
granular computing triangle: structured thinking within the philosophical per-
spective, structured problem solving within the methodological perspective, and
structured information processing within the computational perspective. This
paper adopts the reductionist thinking from structured granular thinking, which
focuses on breaking a complex problem into relatively simpler parts and inferring
properties of the whole by a summary of properties of its parts [21]. Yao explains
the reductionist thinking according to Discourse on the method of rightly con-
ducting one’s reason and seeking truth in the sciences by Rene Descartes [21]:

– To divide each of the difficulties into as many parts as possible and as might
be required in order to resolve them better;
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– To direct thoughts in an orderly manner, by starting with the simplest and
most easily known objects in order to move up gradually to knowledge of the
most complex, and by stipulating some order even among objects that have
no natural order of precedence;

– To make all enumerations so complete, and reviews so comprehensive.

To some extend, the methodology of GrC for classification is similar to meth-
ods used by human for classification. Human beings might solve problems, espe-
cially complex problems, in different granular worlds, and more importantly, they
are likely to shift from a granular world to another quickly and easily [1,18]. In
other words, human often solve problems with hierarchical knowledge in their
mind, which seems to be an aspect of human intelligence [18]. For human, knowl-
edge is often understood hierarchically and spirally. For example, when solving
a complex classification problem, people usually tend to classify some instances
that can be easily classified, based on their general knowledge, and then for
some instances that are difficult to be classified, they have to use more specific
knowledge to distinguish them.

3 The Proposed Approach

3.1 Hierarchical Feature Knowledge

In standard GP, all the features are fed to the algorithm as terminals. For high-
dimensional datasets, the search space is large, which often consumes a large
amount of training time. Furthermore, it is not equally difficult to classify each
instance in a dataset. Some instances are easily classified, while some instances
are difficult to be classified, requiring features with the good discrimination
ability.

According to mechanisms from GrC, knowledge should be understood and
organized hierarchically and spirally. It motivates us to divide features into differ-
ent feature sets that are linked hierarchically to provide hierarchical knowledge
for complex classification tasks. At different hierarchy layers, the discrimina-
tion ability of feature sets is different. Discrimination ability of features at the
first feature layer is relatively low, in which only a small number of features
are included, and then the discrimination ability of features in following feature
layers would become better and better. This paper assumes that classification
with more than a thousand is a complex classification problem.

When a number of features is more than a thousand, the whole feature space
F is divided into five independent parts, with same number of features, namely
F1, F2, F3, F4 and F5. First, a GP process is employed, using features in F1
only as its terminals, with a small population and a small number of generations
for evolving a classifier. After this evolutionary learning process, the best indi-
vidual is chosen as the first classifier. As mentioned previously, GP has a build-in
capability to automatically select good-quality features during the evolutionary
learning process. After the first GP process, the terminals of n top-ranked trees
(n = (#population)1 * 0.1) are selected to be a good feature set, denoted as
1 # indicates cardinality.
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F1∗ (F1∗ is expected to have the similar discrimination ability as original set
F1). The second feature layer includes F2 and F1∗ to ensure its discrimination
ability better than F1.

Similarly, the second GP process is employed to evolve the second classifier
by using feature set F2 and F1∗, and then F2∗, the second good feature set
is generated and transferred to the third feature layer, with new features from
F3, to be fed to the next GP process. The similar processes continue until the
fifth feature layer is generated by F5 and F4∗. It is worth of noticing that this
hierarchical feature structure is generated during classification process.

3.2 Learning from Incorrectly-Classified Instances

After each learning process, some instances might not be classified correctly,
which should be remained for further learning. The ideal situation is that all
of the correctly-classified instances will continue to be classified correctly by
classifiers that are evolved by the next GP processes at the following feature
layers. However, some correctly-classified instances might become incorrectly-
classified since the structure of the classifiers is different. Therefore, incorrectly-
classified instances from different GP processes might be different. All of these
incorrectly-classified instances are remained for learning by the sixth GP process
using features at the sixth feature layer, in which all of high-quality features
selected by previous five GP processes are included. Theoretically speaking, the
discrimination ability of the feature set at the sixth layer should be better than
other feature layers, because it is based on all of the good-quality features selected
previously by five GP processes.

Moreover, correctly-classified instances by all of the five classifiers (five best
individual from each GP process) are sampled randomly, with possibility 0.5,
for learning at sixth layer. A reason is that some high-dimensional datasets have
noisy data, so the sixth GP process should not consider incorrectly-classified
instances only. Furthermore, because some datasets are unbalanced, it is possible
that all of the incorrectly-classified instances have the same label. In that case,
the final GP process does not know any information about another label, thereby
making some mistakes.

As explained in Sect. 3.1, six GP processes are employed in total. Five GP
processes are learning all of the instances in the training set, and the sixth
GP process is learning incorrectly-classified instances and 50% of the correctly-
classified instances. A multi-classifier system is built when constructing a hier-
archical feature structure. Majority voting [2] is an effective and easy strategy,
which also embodies multi-view from GrC because a single feature set is seen as
one criterion taking one point of perspective. Therefore, for the testing process,
the best individual of each GP process is chosen to be a classifier voting for a
final decision, and their training accuracy as their weight of each classifier. The
overall structure is shown by Fig. 1.

For multi-classifier systems, their robustness is often better than a single
classifier to tolerate noise [12]. Moreover, this system is expected to save training
time. Although six GP classifiers are involved, each of them only requires a subset
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Fig. 1. The overall structure

of features, instead of using all of the features. Therefore, for each GP process,
the search space is significantly reduced. Because of the reduced search space, it
is reasonable to set a small population size and a smaller number of generations
to save training time.

3.3 The Overall Algorithm

In GP, each individual is seen as a simple classifier. For binary classification, a
threshold is set to separate two classes. If a program output of an instance is
greater than this threshold, it is classified to Class1, otherwise it is classified to
Class2. For c-classification, c − 1 values are used to separate c classes.

Fitness Function: For binary classification, the balanced accuracy is employed
as the fitness function since many high-dimensional datasets are unbalanced.
Therefore, the fitness function is defined as [16]:

fitnessb = 0.5 ∗ TP

TP + FN
+ 0.5 ∗ TN

TN + FP
(1)

where TP is true positive, TN is true negative, FP is false positive, and FN is
false negative.

For c-class classification problems, the fitness function is [13]:

fitnessm =

∑c
i

TPi+TNi

TPi+TNi+FPi+FNi

c
(2)

where c is the number of classes.
Algorithm 2 shows the pseudo-code of the proposed method.
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Algorithm 2. GrC GP
Input: The (whole) training set and the test set
Output: Classification accuracy

1. Initialization;
q ⇐ 1;
Good features set, Incorrect instance set ⇐ ∅;

2. The whole feature space is divided into 5 feature sets;
if q ≤ 5 then

Features in a feature set Fq are fed to the first GP process;
Obtained a good feature set F∗

q is appended into next feature set Fq+1 and Good features set
set;
Misclassified instances are appended into Incorrect instance set;
q ⇐ q + 1;

end if
if q = 6 then

Generate a new sub-training set by randomly sampling 50% of the correctly-classified
instances and use all the instances from Incorrect instance set, and feature set is from six
Good features set;
Apply a GP process on this sub-training set;

end if
3. Classify unseen instances in the test set, best individuals from each GP process are chosen as
classifiers voting for a final decision;
4. Calculate accuracy;

4 Experiment Design

4.1 Datasets

Seven datasets2 [23] with thousands of features are used to examine the per-
formance of the proposed method in classification with high-dimensional data.
Table 1 describes these datasets in details, including information about the num-
ber of features, instances, classes, and the proportions of instances in each class.

Table 1. Dataset description

Dataset #Features #Instances #Classes Class1 Class2 Class3

Colon 2,000 62 2 35% 65% −
DBWorld e-mails 4,071 64 2 45% 55% −
DLBCL 5,469 77 2 25% 75% −
Leukemia (or ALL-AML) 7,129 72 2 35% 65% −
Leukemia 3c (or ALL-AML-3) 7,129 72 3 13% 35% 53%

Ovarian 15,154 253 2 36% 64% −
Breast 24, 481 97 2 47% 53% −

For these datasets, they only contain a small number of instances, but are
involved with thousands of features. Therefore, these datasets may suffer from
the curse of dimensionality problem. Since some datasets are unbalanced, e.g.
2 http://www.gems-system.org,

http://csse.szu.edu.cn/staff/zhuzx/Datasets.html, and
https://archive.ics.uci.edu/ml/datasets/DBWorld+e-mails.

http://www.gems-system.org
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
https://archive.ics.uci.edu/ml/datasets/DBWorld+e-mails
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DLBCL and Colon, when splitting a dataset into the training set and test set,
the stratified sampling is employed to ensure instances in each class having the
same the proportion in both training and test set, which is same as in the original
whole set of data. Moreover, the majority of these datasets have noisy data [16].
In each dataset, the instances are divided into two sets: 70% as the training set
and 30% as the test set.

4.2 Baseline Methods

In order to examine performance of the proposed method, the new method is
compared with standard genetic programming (SGP) and non-GP methods,
including 1-nearest neighbours (1NN), random forest (RF), gradient boosting
decision tree (GBDT), SVMs, neural networks (NNs) and NB. They are rep-
resentatives of different kinds of classification methods. KNN is a well-known
instance-based classification method. SVMs [6] are a kernel based methods,
which often achieve good classification performance. RF [14] and GBDT [19]
are variants of decision tree (DT) methods that often use a tree-like represen-
tation, which often achieve better classification performance than DT. NNs are
data-driven self-adaptive methods, which are able to approximate any function
[22]. NB is the representative of probabilistic-based classification algorithms [9].

4.3 Parameter Settings

Table 2 shows the parameter settings for standard GP and GrC GP.

Table 2. Parameters setting

Parameters Values in SGP Values of GrC GP
(each feature layer)

Population size 1024 256

Generations 50 33

Initial population Ramped half-and-half Ramped half-and-half

Maximum tree depth 17 17

Mutation rate 0.2 0.2

Crossover rate 0.8 0.8

Elitism 10 2

Selection method Tournament (size= 6) Tournament (size= 6)

Function set +, −, ×, ÷, sin, cos,
neg

+, −, ×, ÷, sin, cos,
neg

Terminal set Features of a dataset
a random constant

Features at current
layer a random
constant

The function set includes four basic arithmetic functions (+, −, ×, and
protected division ÷), trigonometric functions (sin and cos) and neg function.
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Protected division returns zero when dividing by zero, and sin (or cos) returns
sin (or cos) value of an input. Neg returns the negative value of an input.

The population size of SGP is 1024 for 50 generations, which are common
settings for GP. To ensure a relatively fair comparison with SGP, for GrC GP,
at each feature layer, the population size of each GP process is 256 for 33 gen-
erations so that the total number of evaluations (i.e. 256 * 33 * 6) in GrC GP is
similar to that in SGP (i.e. 1024 * 50). Both SGP and GrC GP have been run for
30 times independently with different random seeds on each dataset. The results
from 30 runs of SGP and GrC GP are also compared using Wilcoxon statistical
significance test, with the significance level of 0.05.

5 Results and Discussion

Comparison Between SGP and GrC GP

GrC GP is compared with SGP and the accuracies on the test set are reported in
the Table 3. “+” means that the accuracy of GrC GP is significantly better than
SGP, “=” means that they are similar, and “−” means GrC GP is significantly
worse than SGP.

Table 3 shows that, in all datasets, the average classification accuracy of
GrC GP is improved, compared to SGP. According to Wilcoxon statistical sig-
nificance test, for dataset Colon, DBWorld, DLBCL, Leukemia 3c, and Breast,
the average accuracy is significantly better than SGP. For other two datasets,
the accuracies are similar to that of SGP. It is worth noticing that dataset
Leukemia 3c has 3 class labels, which is multi-classification, but the average
accuracy of this dataset also improved 14.05%. Multi-classifier systems seem to
be a possible method for multi-classification by GP.

Table 3. Comparison with standard GP

Methods Best Mean± StdDev Average training time (s)

Colon SGP 86.67 66.42± 0.11924+ 366

GrC GP 95.14 81.82± 0.072892 83 (22.67%)

DBWorld e-mails SGP 88.69 72.90± 0.08823+ 791

GrC GP 87.71 80.22± 0.040453 184 (23.26%)

DLBCL SGP 97.37 73.17± 0.109808982+ 1,213

GrC GP 96.04 85.52± 0.0658 271 (22.34%)

Leukemia SGP 93.33 79.07± 0.126652655= 962

GrC GP 100 85.96± 0.076838 124 (12.89%)

Leukemia 3c SGP 86.96 58.41± 0.140070796+ 858

GrC GP 95.65 72.46± 0.093267 184 (21.44%)

Ovarian SGP 100 94.58± 0.04163= 6,881

GrC GP 100 95.98± 0.024394 1,247 (18.12%)

Breast SGP 66.52 54.20± 0.07508+ 4,722

GrC GP 76.72 61.27± 0.0762 635 (13.44%)
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Fig. 2. The gap between the best and the average accuracies

According to the Fig. 2, except for dataset Breast, using GrC GP, the gap
between the best and average accuracies is narrower than those achieved using
SGP. For example, the best result that SGP achieves on dataset Colon is 86.67%,
which is 20.25% higher than its average accuracy 66.42%, while the gap is nar-
rowed to 13.32% using GrC GP (the best accuracy is 95.14% and the aver-
age accuracy is 81.82%). We also notice that datasets with a small number of
instances, such as Colon (62 instances), have the relatively wider gap between
the best and average accuracies, compared to datasets with a relatively large
number of instances, such as Ovarian (253 instances). A possible reason is that
with a small number of instances in a test set, one misclassified instance would
significantly decrease the classification accuracies. For example, dataset Colon
includes 18 instances in the test set, so one misclassified instance would cause
5.56% accuracy loss. However, for dataset Ovarian with 76 instances in the test
set, a misclassified instance only cause 1.32% accuracy loss.

The average training time for all of these datasets is significantly reduced.
For all of the datasets, the average training time of GrC GP for the 30 runs only
are 12.44%−22.67% of training time of SGP. The reason is that each GP process
of GrC GP only uses a part of features at their feature layer, and population
size is 256 for 33 generations. This results would show that our goal is achieved
in terms of saving training time and enhancing the classification accuracy.

Comparison Between Non-GP Methods and GrC GP

GrC GP is compared with non-GP methods, including 1NN, RF, GBDT, SVM,
NNs and NB. For a relatively fair comparison, non-GP classification algorithms
are also run 30 times and average accuracies are reported in Table 4.

According to average results of 30 runs, except for dataset Leukemia 3c,
GrC GP often achieves significantly better or similar accuracy, compared with
other classification algorithms. The last column in Table 4 shows the best accu-
racy of GrC GP on each dataset. The best accuracy by GrC GP is often higher
than other classification algorithms, except for dataset DBWorld e-mails (88.86%
by NB, compared to 87.71% by GrC GP). In three datasets, namely Colon,
DLBCL and Breast, both the best accuracy and average accuracy of GrC GP
are higher than other methods. However, in Leukemia, Leukemia 3c and Ovar-
ian, the best accuracy is higher than other methods, but their average accuracy
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Table 4. Comparison with other non-GP methods

1NN RF GBDT SVM NNs NB GrC GP (Mean) GrC GP (Best)

Colon 74.58+ 69.16+ 74.26+ 48.77+ 53.65+ 60.42+ 81.82 95.14

DBWorld e-mails 60.41+ 65.69+ 78.46= 52.69+ 84.76= 88.86− 80.22 87.71

DLBCL 78.28+ 76.63+ 78.93+ 56.18+ 62.43+ 73.61+ 85.52 96.04

Leukemia 88.04= 84.58= 87.40= 64.55+ 61.47+ 98.08− 85.96 100

Leukemia 3c 86.67− 75.12= 90.60− 51.50+ 50.17+ 92.62− 72.46 95.65

Ovarian 94.29= 94.63= 97.09= 88.11+ 93.39= 88.64+ 95.98 100

Breast 59.37= 58.94= 57.04+ 55.05+ 53.33+ 49.60+ 61.27 76.72

is not the highest. It is because GP is a stochastic search method, so the gap
between the best and average accuracies is usually wider than non-GP methods.

According to results, NB is effective in many cases. The possible reason
is that all of these algorithms maybe influenced by noise. It maybe true that
probabilistic-based classification algorithms (e.g. NB) and algorithms involved
with multi-classifiers are usually more robust to tolerate noise and alleviate over-
fitting. By NB, noise data would be averaged when estimating the conditional
probabilities. It is a possible reason for the good performance of NB. Another
reason is that NB only requires a small number of instances to evaluate param-
eters for classification. However, for the dataset Breast with 24,481 features,
the accuracy of NB is lowest, compared to other classification algorithms. The
possible reason is NB needs make a strict assumption that features are statis-
tically independent, but if this assumption is not satisfied because of feature
interactions or other reasons, the performance of NB would be degraded.

GrC GP is involved with multiple classifiers to improve robustness. Further-
more, although our method does not require feature selection before classifi-
cation, informative features are selected when constructing hierarchical feature
layer. Therefore, some noisy features are possibly deleted.

6 Conclusions and Future Work

This paper investigates the use of GP for classification with high-dimensional
data, which adopts ideas from GrC for GP to save the training time and enhance
the classification accuracy. Experiments on seven high-dimensional datasets show
that the proposed method significantly reduces the training time, and more
importantly, the accuracy is increased, compare to the standard GP. This is
probably because GrC GP does not need to use all of the features at the same
time, but use them hierarchically and spirally, based on previous useful feature
knowledge. Since the search space is reduced, the training time is saved. The
accuracy is improved because of the capability of the proposed method to allevi-
ate overfitting. In this experiments, these high-dimensional datasets have a small
number of instances, so the ratio of dimensionality and instance size is very high,
which often results in evolved patterns being too specific, leading to overfitting.
To learn features spirally for evolving multi-classifiers might alleviate overfitting
to some extent.
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Compared to non-GP classification algorithms, in most cases, the proposed
method is able to achieve significantly better or similar accuracies in binary
classification tasks, but this method was not able to achieve good performance for
multi-classification. One piece of future work could focus on multi-classification
by designing an effective classification strategy and a fitness function. Moreover,
after the first evolutionary learning by a GP process, good GP individuals can be
evolved. In order to reuse these good individuals, we will design a reinitialization
strategy to initialize the new population of the next GP processes, so that they
can start their evolutionary process based on good candidates, which is expected
to enhance interpretability of GP individuals.
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L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp.
210–226. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 14

18. Wang, G., Yang, J., Xu, J.: Granular computing: from granularity optimization to
multi-granularity joint problem solving. Granul. Comput. 2(3), 105–120 (2017)

19. Yang, H.J., Roe, B.P., Zhu, J.: Studies of stability and robustness for artificial
neural networks and boosted decision trees. Nucl. Instrum. Methods Phys. Res.
Sect. A: Accel. Spectrometers Detect. Assoc. Equip. 574(2), 342–349 (2007)

20. Yao, J.: Novel Developments in Granular Computing: Applications for Advanced
Human Reasoning and Soft Computation. IGI Global (2010)

21. Yao, Y.: A triarchic theory of granular computing. Granul. Comput. 1(2), 145–157
(2016)

22. Zhang, G.P.: Neural networks for classification: a survey. IEEE Trans. Syst. Man
Cybern. Part C (Appl. Rev.) 30(4), 451–462 (2000)

23. Zhu, Z., Ong, Y.S., Dash, M.: Markov blanket-embedded genetic algorithm for
gene selection. Pattern Recognit. 40(11), 3236–3248 (2007)

https://doi.org/10.1007/978-3-319-55696-3_14


Random-Sets for Dealing
with Uncertainties in Relevance Feature

Abdullah Semran Alharbi1,2(B) , Md Abul Bashar1 , and Yuefeng Li1

1 School of EECS, Queensland University of Technology, Brisbane, QLD, Australia
{m1.bashar,y2.li}@qut.edu.au

2 Department of Computer Science, Umm Al-Qura University, Makkah, Saudi Arabia
asaharbi@uqu.edu.sa

Abstract. Most relevance discovery models only consider document-
level evidence, which may introduce uncertainties to relevance features.
Research in information retrieval shows that adopting passage-level (i.e.
paragraph-level) evidence can improve the performance of different mod-
els in various retrieval tasks. This paper proposes an innovative and effec-
tive relevance method based on paragraph evidence to reduce uncertain-
ties in the relevance features discovered by existing models. The method
exploits latent topics in the relevance feedback collection to estimate the
implicit paragraph relevance. It uses random sets to effectively model the
intricate relationships between paragraphs, topics and features to deal
with the associated uncertainties. Experiments are conducted using the
standard RCV1 dataset, its TREC filtering collections and six popular
performance measures. The results confirm that the proposed Uncer-
tainty Reduction (UR) method can significantly enhance the perfor-
mance of 12 models for relevance feature selection.

Keywords: Relevance feature selection · Random set
Topic modelling · Feature re-ranking · User information needs
Uncertainty

1 Introduction

Relevance discovery aims to find and accurately weight useful features from a
set of relevance feedback documents that describe user information needs [23].
Relevance is an essential concept in information filtering (IF) and information
retrieval (IR). IR determines the relevance between a document and the user
query while IF regards the documents’ relevance to the user’s long-term interests
(e.g. their profile) [12]. Selecting relevant features that can be used to express
what the user needs is crucial for many Web personalisation applications and
has become a subject of study in areas such as data mining, web intelligence and
machine learning, including IR and IF [3,12,24,31].

Relevance discovery models face challenges in identifying relevant text fea-
tures from both an empirical and theoretical perspective [23]. One reason is the
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uncertainties associated with the relevance features. For example, a document
can be labelled as relevant even if only a short part of it comprises relevant infor-
mation. Using only the document-level evidence can select features from all parts
of such a document, which can lead to uncertainties and scatter the focus because
the features coming from nonrelevant parts do not represent user information
needs. Therefore, the relevance of the corresponding part should be considered
when selecting features from it. Many studies have been conducted to develop
models of relevance feature discovery over the last few decades [12,20,23,34,35].
However, most of them consider only the document-level evidence for relevance
feature discovery.

Research in IR shows that considering the evidence at the passage-level can
improve document retrieval accuracy, especially when long documents discuss
multiple subject areas [11,25]. Generally, IR models’ performance can dramati-
cally improve depending on the amount of evidence available in each passage [11].
Most of the existing research used some query-similarity scores between fixed
window-size passages as the passage-level evidence. However, the explicit query
may not always be available as in the example of IF, which forbids the estimation
of the query-similarity score [12]. In such a situation, it becomes very challenging
to explicitly estimate a paragraph’s relevance in a set of documents that describe
user information needs. Therefore, an implicit mechanism is needed to utilise the
paragraph-level evidence.

We propose a method to use paragraph relevance to reduce the uncertainties
of the relevance features discovered by existing popular models (e.g. BM25 [30],
Rocchio [32], RFD2 [23], etc.). The method uses topics in the relevance feedback
collection as an implicit mechanism to estimate the paragraph relevance. We
call the user information needs specific subject matters as topics. For example,
the user information needs of global warming may involve topics like pollution,
greenhouse gases, and ozone layer depletion. We assume that frequent topics in
relevance feedback collection are the relevant ones and use them to estimate the
relevance of paragraphs. Latent Dirichlet Allocation (LDA) [9] is employed in
this research to discover the topics of the collection.

LDA is a popular topic modelling algorithm that can probabilistically identify
the subject matters of a text corpus in an unsupervised way [9]. LDA represents
each discovered topic as a multinomial probability distribution over the set of
features (i.e. terms) in the documents collection. It also represents any document
or paragraph as a mixture over the discovered topics. As an unsupervised sta-
tistical generative model, LDA has been extensively adopted for text mining in
a wide variety of applications such as machine translation, human exploration,
information filtering, information retrieval, word sense disambiguation, multi-
document summarisation and many more [8].

Given a relevance feedback collection that discusses user information pref-
erences, the relationships between distinct entities in the collection, namely, its
features, paragraphs, and topics, can be modelled as set-valued observations.
The uncertainties is phenomena that can be observed and represented as multi-
ple sets, not as exact points, can effectively be modelled using the mathematical
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tool random set [13]. Therefore, we developed multiple random sets to effec-
tively model these complex relationships so they can be understood and the
uncertainties be dealt with.

This paper makes three contributions: (a) it uses random set and paragraph
relevance to reduce the uncertainty of relevance features; (b) it uses random
set and topics of relevance feedback to estimate the paragraph relevance; and
(c) it shows that topics discovered by LDA can effectively estimate paragraph
relevance in the absence of an explicit user query.

The results of experiments conducted on the 50 assessed collections of doc-
uments from the standard RCV1 dataset and their TREC filtering collections
show that the proposed Uncertainty Reduction (UR) method is highly effective.
When applied to the suitable existing model, it significantly outperforms all the
other state-of-the-art models in all evaluation metrics despite the kind of text
features they utilise.

2 Related Work

In IR, there are a considerable number of methods that adopt the passage-
level approach to locate relevant information [7,11,17,18,25]. Such an approach
results in remarkable improvements compared to traditional document-wide
techniques. However, in relevance discovery, and in the absences of a query,
identifying relevant features from a set of documents that describe user infor-
mation preferences is difficult mainly due to the problems of polysemy and syn-
onymy [3,23]. Most existing methods are document-wide and utilise various text
features, such as words (i.e. terms), phrases, patterns, topics, or mixtures of
them. Term-based methods like TFIDF, Mutual Information (MI), Chi-Square
(χ2), BM25, Rocchio, LASSO, ranking SVM [16,20,30,32,36] are efficient and
theoretically sound. Nevertheless, these methods suffer from synonymy and pol-
ysemy problems and ignore words order in documents [12,23,24]. Thus, they
miss the semantic information between these words [3].

Phrase-based methods use phrases (e.g. n-grams) because they are seman-
tically rich and more discriminative [24]. However, phrases can be redundant
and noisy. Published phrase-based experiments do not consider the paragraph
relevance. Therefore, they do not show encouraging results [28,33]. A pattern
carries more semantic information than individual terms and is more frequent
than phrases [24]. Nevertheless, general patterns suffer from noise and redun-
dancy, and specific ones experience low frequency [3,23,38]. Overall, relevance
models that use words, n-grams, patterns or even mixtures of them assume
that users’ information preferences can discuss a particular topic only. Statis-
tical topic-modelling techniques such as pLSA [15] and LDA [9] can solve this
problem by finding some topics that describe what users need.

The weighting scheme is the crucial component of the feature selection algo-
rithm [23]. Utilising LDA terms’ probabilistic weight to express the relevance of
these terms is inadequate and does not show effective performance [2–6,12]. This
applies to related models such as the pLSA [15]. For better performance, patterns
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have been integrated into LDA to identify discriminative topical features [12].
However, such a technique can be computationally complex and susceptive to
the features-loss problem as it is challenging to select useful patterns. Random
set (RS) has proven powerful in representing complicated relationships between
different objects and interpreting them through a probability function (i.e. scor-
ing function) [22]. Therefore, an RS-based method is used to calculate a more
accurate weight for closed sequential patterns and helps in discovering specific
patterns [1]. Nevertheless, selecting specific patterns from documents is difficult
and may also result in feature loss.

3 Problem Formulation and Basic Definitions

In this paper, we assume that a given document d has a set of paragraphs, each
paragraph is a bag of features, and each term in the paragraph is a feature. D is
a set of training documents that describes user information needs (both relevant
and irrelevant ones) [23,24] in which D+ represents the relevant training set and
D− represents the irrelevant set, thus, D = D+ ∪ D−.

Many models in relevance discovery assume that all paragraphs in relevance
feedback documents are equally relevant [23,24,35,37], which might not be the
case. People label a document as relevant because some of its paragraphs are
relevant, even though others are not. Feature relevance estimated by assuming
all paragraphs to be equally important increases uncertainties in representing
users’ information needs. For example, TFIDF calculated from a document can
be less reliable for estimating feature relevance if most of the paragraphs in the
document are irrelevant to users’ information needs.

This research aims to develop a method that can estimate the relevance of
paragraphs in a relevant document set D+ and use the paragraph relevance
to estimate feature relevance. The objective of the estimated feature relevance
is to reduce the uncertainties induced in the feature set discovered by existing
relevance discovery models. To discover the topics in relevance feedback D+, this
research uses LDA. The following subsection gives a brief description of LDA.

3.1 Latent Dirichlet Allocation

Let the collection D+ = {d1, d2, ..., dN} consist of a set of N relevant docu-
ments that describe user information needs, which can discuss multiple topics.
Each document d contains some paragraphs, and a bag of features represents
each paragraph g. G =

⋃
d∈D+{g|g ∈ d} is the set of paragraphs in D+, and

Ω = {t1, t2, ..., tV } is the set of unique features in G, where V = |Ω|. LDA observes
features in each paragraph and generates collection-wide latent topics. The user
specifies the number of latent topics, and, in this paper, it is considered to be
fixed to T . LDA represents each latent topic zj as a multinomial probability
distribution over the V features as ρ(ti|zj), where 1≤ j ≤ T and

∑V
i ρ(ti|zj) = 1.

LDA also describes a paragraph g as a probabilistic mixture of topics as ρ(zj |g).
Therefore, the probability of the ith feature in a paragraph g can be calculated
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as ρ(ti|g)=
∑T

j=1 ρ(ti|zj) × ρ(zj |g). Thus, the only observable variable is ρ(ti|g)
while ρ(ti|zj) and ρ(zj |g) are hidden. This paper uses Gibbs sampling, a widely
used statistical inference technique, to learn the hidden variables.

4 Feature Relevance Estimation

Let G be the set of paragraphs in the relevant documents D+. We assume that
the relevance of each paragraph gk∈G is defined by a probabilistic distribution
over the features set Ω in D+, which is modelled using the set-valued mapping
Γ1(gk). To estimate the feature relevance, we assume that a feature ti relevance
relies on a probabilistic mixture of G, which is modelled using the inverse set-
valued mapping Γ−1

1 (ti).
The set G is the evidence space, and a set of features can represent the

relevance of a paragraph gk, but its relevance level to the entire space is unknown.
Thus, the probability distribution Ψ1 is defined on G to indicate this uncertainty.
Ψ1 is then used to estimate the relevance level of gk to the features. Let the
probability of a feature ti be relevant to gk be p(ti|gk), where, for simplicity, we
assume p(ti|gk) = 1 if ti∈gk and p(tk|gk) = 0 if ti /∈ gk.

The random set can be defined as an arbitrary entity that has values, which
are a subset taken from a given space [27]. Given Ψ1, as a probability distribution
defined on G, we call the pair (Ψ1, Γ1) a random set [13,19,27]. Because each
paragraph gk is described by the probability distribution over the set Ω, we have
the set-valued mapping of Γ1 : G → 2Ω − {∅}; Γ1(gk)= {ti∈Ω|p(ti|gk)> ζ} to
represent and describe the relationship between a set of features and a paragraph,
where Γ1(gk)⊆ Ω for all gk ∈ G and ζ is a user defined threshold assigned to ζ = 0
in this research.

Because there is a need to identify the significance level of a feature ti,
the inverse set-valued mapping of Γ1 is considered to estimate a representa-
tive distribution Ψ1 on G. For all features ti ∈ Ω, the inverse of Γ1 is defined as
Γ−1
1 : Ω → 2G; Γ−1

1 (ti)= {gk∈G|ti∈Γ1(gk)} to also represent and understand
the relationships between a feature and a set of paragraphs. Therefore, the rele-
vance weight wg(ti) of a feature ti to the user information needs can be estimated
as follows:

Ψ1(ti) ∝ wg(ti) ∝
∑

gk∈Γ−1
1 (ti)

p(ti|gk) × p(gk) (1)

where p(gk) is the probability of gk being relevant to what the user need.
As the paragraph gk can discuss multiple topics or sub-topics, we assume that

gk is a probabilistic mixture of a set of latent topics Z in D+, which is modelled
using the set-valued mapping Γ2(gk). Z is the evidence space in this case. The set
Z can represent the relevance of gk to the user information preferences. The more
relevant topics a paragraph covers, the more the paragraph’s relevance increases.
This motivation implies the relevance of frequent topics (topics shared by many
paragraphs). However, the relevance level of gk is unknown. Similarly, as before,
Ψ2 is a probability distribution defined on Z to indicate this uncertainty, and
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Ψ2 is used to estimate the relevance level of gk to Z. Let the probability of a
paragraph gk being relevant to a given topic zj be p(gk|zj).

The pair (Ψ2, Γ2) is also called a random set in this case. As each paragraph
gk is described by the probability distribution over the set Z of topics, there
is a set-valued mapping of Γ2 : G → 2Z − {∅}; Γ2(gk)= {zj∈Z|p(gk|zj)> ξ},
where Γ2(gk) ⊆ Z for all gk ∈ G and ξ is another user-defined threshold assigned
to ξ = 0 in this research. Thus, the relevance of gk to D+ can be estimated as
follows:

Ψ2(gk) ∝ p(gk) ∝
∑

zj∈Γ2(gk)

p(gk|zj) (2)

Using Eqs. 1 and 2, the relevance weight wg(ti) of the feature ti can be
calculated as follows:

wg(ti) =
∑

gk∈Γ−1
1 (ti)

⎧
⎨

⎩
p(ti|gk) ×

∑

zj∈Γ2(gk)

p(gk|zj)

⎫
⎬

⎭
(3)

To find the latent topics in D+, we use LDA that gives us ρ(zj |gk), but we
need ρ(gk|zj). Therefore, by applying Bayes’ theorem, we can get ρ(gk|zj) =
ρ(zj |gk)×ρ(gk)

ρ(zj)
. Here, ρ(gk) is a prior distribution that can be ignored, and ρ(zj)

is the marginal probability of zj in G.

5 Relevance Feature Re-ranking

To effectively represent user information needs, we first need to select a set
of features that are representative. To find such features, the Support Vector
Machine (SVM) [14] is empirically used in this research. As a discriminative
classifier, SVM finds a hyperplane that best separates the positive and the nega-
tive classes. The discrepancy between normal values and the hyperplane is used
to weight and thus rank the features, and then a subset is empirically selected
from these ranked features. Because SVM and other existing models consider a
given document relevant if some parts of the document are relevant, some fea-
tures selected by these models can come from irrelevant or less relevant parts
of the document. Therefore, the selected features, their weights, and their ranks
incorporate uncertainties. We want to reduce these uncertainties by effectively
scaling the feature weights and re-ranking the features based on their relevance
value estimated by Eq. 3.

Let the weight of a feature ti estimated by a model (e.g. SVM) be wm(ti) and
its relevance estimated by Eq. 3 be wg(ti). The re-ranking weight w(ti) of the
feature is estimated by scaling wm(ti) by wg(ti), (i.e. w(ti) = wm(ti) × wg(ti)).
Then, the features are re-ranked based on the new weight w(ti). When re-ranking
is applied to the model (e.g. SVM), we call it the improved iModel (iSVM). An
intuitive interpretation of w(ti) is that it combines the paragraph-level evidence
of relevance with the document-level evidence of relevance, which is estimated



662 A. S. Alharbi et al.

by the existing models for reducing uncertainty. However, the sentence-level evi-
dence is too specific, and our preliminary experiments showed that such evidence
is not effective in our current relevance feature re-ranking framework.

6 Evaluation

The proposed UR method estimates paragraph relevance to user information
needs. Then, it uses the estimated paragraph relevance to estimate feature rele-
vance and re-rank the features discovered by existing models. The major objec-
tives of the experiments are to show that: (a) our proposed paragraph relevance
estimation method is effective, (b) paragraph relevance can effectively estimate
feature relevance, and (c) feature relevance can effectively reduce the uncertainty
of discovered features by scaling and re-ranking the feature weights. This research
hypothesises that paragraph relevance can effectively reduce uncertainties in rel-
evance feature space. As in [12,23,38], we use an IF system-based approach for
evaluating the hypothesis.

6.1 Dataset

The standard dataset of Reuters Corpus Volume 1 (RCV1) [21] is used in this
research. The TREC-10/2001 Filtering Track develops 100 collections of doc-
uments out of RCV1. The first 50 human-created assessor collections simulate
the real user scenarios, and they are reliable and have high quality. Conversely,
the second 50 artificially created intersection collections are not quite as good.
Besides, Buckley et al. (2000) [10] support that 50 collections are stable and
enough for controlling the correctness of the evaluation metrics. Hence, the asses-
sor collections are used in this research. In RCV1, documents in each collection
are provided with relevance judgements. Each collection has a set of training
documents and a set of testing documents. In each of the training sets and the
testing sets, the documents that are relevant to the collection specification are
called positive document set D+, and the documents that are not relevant to the
collection specification are called negative document set D−. In this research,
the unsupervised models use the set D+ of positive training documents, and the
supervised models use D = D+ ∪ D−, where D− is the set of negative training
documents. However, in the testing phase, both positive and negative documents
in the testing sets are used. This research applies three pre-processing steps to
all documents via the elimination of stop-words and meta-data, as well as the
stemming of terms by Porter’s suffix-stripping algorithm [29].

6.2 Baseline Models and Settings

Extensive experiments are conducted covering 12 major relevance feature discov-
ery methods to assess the effectiveness of the proposed UR method. Most of these
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methods are used, and their experimental parameters are set as in [12,23,38].
We give a brief description of all these baseline models as follows:
(1) RFD2 [23,24] is a state-of-the-art supervised pattern-based model. It groups
terms into positive specific, general and negative specific to represent informa-
tion needs. (2) Rocchio [32] is a term-based relevance feedback model. It uses a
centroid in a supervised way to identify user information needs’ representation.
(3) PDS [38] is another pattern-based model to discover relevance features in
an unsupervised way. It uses pattern support in the paragraphs and feature fre-
quency in the patterns to weight the features. (4) LDA [9] is the most widely used
unsupervised topic modelling algorithm. It uses p(ti|g) =

∑T
j=1 p(ti|zj)p(zj |g)

to assign scores to each term. (5) SVM [14] is a supervised term-based learn-
ing model. It finds a hyperplane that best separates two classes. The discrep-
ancy between normal values and the hyperplane is used to weight the features.
(6) BM25 [30] is one of the best term-based supervised-learning algorithms for
ranking documents in IR. (7) pLSA [15] is another unsupervised topic-based
algorithm. It is the predecessor of LDA, but it is a nongenerative model. pLSA
assigns scores to terms similar to LDA. (8) LASSO [36] is another supervised
term-based method for relevance feature selection. (9) Pr is the most effective
term-based probabilistic method reported in [38]. (10) MI and (11) χ2 are two
popular supervised and term-based methods for relevance feature selection. More
details about MI and χ2 can be found in [26]. (12) TFIDF [38] is a widely used
term-based weighting technique in relevance feature selection.

6.3 Evaluation Measures

The proposed UR method is assessed by six standard measures of the IF track
that are based on the relevance judgement. The measures are the Mean Average
Precision (MAP), the average precision of the top 20 documents (P@20), the
Fscore measure (F1), the Break-even Point (BP), interpolated precision averages
at 11 standard recall points (11-point), and the 11-point Interpolated Average
Precision (IAP). The larger the MAP, P@20, F1, BP, and IAP of a system,
the better the system performs. Each measure focuses on a different aspect of
the system performance. Readers can refer to [26] for more details about these
measures.

6.4 Experimental Design

For every new document from the testing set, the IF system has to determine
whether the new document is relevant to the user information preferences. We use
the set of discovered relevance features (i.e. relevant features and their estimated
weights learned from the training set) as a query Q submitted to an IF system,
as in the TREC Filtering Track [21,31]. The same procedure is used with each
baseline model. If the IF results for the proposed UR method significantly surpass
the baselines, we can claim that our proposed UR method reflects our hypothesis.
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6.5 Experimental Results

The proposed UR method is applied to re-rank each relevance feature set dis-
covered by the baseline models, which are trained on the RCV1 human-assessed
collections. The measures described in Sect. 6.3 are used to evaluate each model’s
IF performance. Table 1 shows each feature set’s performances before and after
applying the UR method. The imp% row shows the percentage of improvement
achieved by applying the UR method to the corresponding model’s original fea-
ture set. The table clearly shows that re-ranking can significantly improve the
performance of the feature set discovered by each model. Figure 1 shows the
changes in MAP values with the percentage of feature numbers changed in each
set. It is apparent from the figure that the re-ranked feature set performs sig-
nificantly better at any percentage of features in the set, and usually, compared
with the original feature set, requires less re-ranked features to obtain the highest
performance.

Table 2 and Fig. 2 compare the performance of iSVM with all the baseline
models. The imp% at the bottom of Table 2 shows the percentage of improve-
ment achieved by iSVM against the best baseline model, RFD2. The iSVM
model outperforms all models in all five measures. The improvement of iSVM
against the RFD2 model is from a maximum of 13.710% to a minimum of 7.496%
in all measures. The performance improvement against the most important mea-
sure for the IF system, MAP, is 13.344%, and the average improvement in all
measures is 12.276%. The interpolated precision results of 11 standard recall
levels in Fig. 2 show that iSVM consistently out-performs any baseline mod-
els. This means, when our re-ranking method is applied to suitable relevance

Table 1. Performance improvement to all models on all measures using the first 50
collections of documents in RCV1.
Model P@20 BP MAP F1 IAP Model P@20 BP MAP F1 IAP

BM25 0.479 0.410 0.412 0.412 0.439 Pr 0.454 0.402 0.405 0.415 0.431

iBM25 0.594 0.505 0.533 0.490 0.550 iPr 0.591 0.491 0.523 0.484 0.541

imp% +24.008+23.198+29.331+18.992+25.279imp% +30.176+22.093+29.139+16.636+25.350

LASSO 0.339 0.326 0.324 0.356 0.349 RFD2 0.533 0.455 0.475 0.456 0.493

iLASSO0.535 0.454 0.473 0.457 0.498 iRFD2 0.558 0.476 0.499 0.472 0.520

imp% +57.817+39.118+46.073+28.198+42.665imp% +4.690 +4.709 +5.071 +3.449 +5.453

LDA 0.496 0.432 0.448 0.443 0.475 Rocchio 0.501 0.440 0.458 0.445 0.477

iLDA 0.555 0.483 0.499 0.471 0.521 iRocchio0.544 0.462 0.486 0.462 0.510

imp% +11.895+11.661+11.266+6.261 +9.744 imp% +8.583 +5.141 +6.069 +3.631 +6.961

MI 0.329 0.315 0.316 0.350 0.341 SVM 0.492 0.415 0.435 0.436 0.462

iMI 0.539 0.464 0.473 0.459 0.498 iSVM 0.606 0.514 0.538 0.490 0.561

imp% +63.830+47.137+49.677+31.190+46.133imp% +23.171+23.854+23.726+12.587+21.258

PDS 0.492 0.434 0.451 0.443 0.477 TFIDF 0.364 0.339 0.339 0.368 0.366

iPDS 0.584 0.487 0.523 0.482 0.544 iTFIDF 0.436 0.377 0.382 0.394 0.408

imp% +18.699+12.134+16.036+8.946 +13.968imp% +19.780+11.350+12.651+7.114 +11.428

pLSA 0.434 0.380 0.383 0.388 0.405 χ2 0.318 0.321 0.320 0.356 0.347

ipLSA 0.558 0.464 0.496 0.470 0.516 iχ2 0.503 0.445 0.451 0.446 0.474

imp% +28.571+22.095+29.580+21.101+27.378imp% +58.176+38.501+40.978+25.360+36.292
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Fig. 1. MAP before and after uncertainty reduction for each model from 1% to 100%
of the features space.

feature discovery model, the performance can be significantly better than exist-
ing models. All these results support our hypothesis that paragraph relevance
can effectively reduce uncertainties in relevance feature space.
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Table 2. Comparison of iSVM with baseline
models

P@20 BP MAP F1 IAP

iSVM 0.606 0.514 0.538 0.490 0.561

RFD2 0.533 0.455 0.475 0.456 0.493

Rocchio 0.501 0.440 0.458 0.445 0.477

PDS 0.492 0.434 0.451 0.443 0.477

LDA 0.496 0.432 0.448 0.443 0.475

SVM 0.492 0.415 0.435 0.436 0.462

BM25 0.479 0.410 0.412 0.412 0.439

Pr 0.454 0.402 0.405 0.415 0.431

pLSA 0.434 0.380 0.383 0.388 0.405

TFIDF 0.364 0.339 0.339 0.368 0.366

LASSO 0.339 0.326 0.324 0.356 0.349

χ2 0.318 0.321 0.320 0.356 0.347

MI 0.329 0.315 0.316 0.350 0.341

imp% +13.70 +13.13 +13.34 +13.70 +13.71
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Fig. 2. 11-point results comparing
iSVM and baseline models

7 Conclusion

This paper addresses the challenge of reducing uncertainties in relevance feature
space by utilising the paragraph relevance. The proposed UR method uses latent
topics in relevance feedback to estimate the implicit paragraph-level relevance.
Random sets are used to model the complex relationships between features, para-
graphs, and topics, and to deal with the associated uncertainties. The experi-
mental results confirm the method’s merit as a feature re-ranking technique for
relevance discovery. The substantial improvement achieved is due to the effec-
tive estimation of paragraph relevance, as well as its use in estimating feature
relevance. This research’s theoretical contribution is using multiple random-sets
for modelling uncertainties associated with the complex relationships between
features, paragraphs, and topics as essential entities in the feature weight-scaling
process. This study provides a promising methodology for combining paragraph-
level evidence with document-level evidence to estimate feature relevance.
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Abstract. It is common that practical data has multiple attributes of
interest. For example, a picture can be characterized in terms of its con-
tent, e.g. the categories of the objects in the picture, and in the mean-
while the image style such as photo-realistic or artistic is also relevant.
This work is motivated by taking advantage of all available sources of
information about the data, including those not directly related to the
target of analytics.

We propose an explicit and effective knowledge representation and
transfer architecture for image analytics by employing Capsules for deep
neural network training based on the generative adversarial nets (GAN).
The adversarial scheme help discover capsule-representation of data with
different semantic meanings in respective dimensions of the capsules.
The data representation includes one subset of variables that are partic-
ularly specialized for the target task – by eliminating information about
the irrelevant aspects. We theoretically show the elimination by mixing
conditional distributions of the represented data. Empirical evaluations
show the propose method is effective for both standard transfer-domain
recognition tasks and zero-shot transfer.
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1 Introduction

This work presents a image data representation framework based on the gener-
ative adversarial nets (GANs) [1] using Capsule network [2]. We are concerned
with multiple-task learning scenarios, which is known to be beneficial to the
particular target task [3]. The data are represented using entities discovered by
Capsule Nets (CapsNet) [2] with the capsule elements being focused on different
tasks. In practical image analytics, it is common that the samples are associated
with multiple aspects. These aspects may or may not be the direct target of
learning.

However, all attributes of a sample convey information and the information
may be indirectly connected with the task target. For example, an image of a
hand-written digit can has a tag of its identity as a digit “0˜9”. It can also be
described by aspects such as “data source (URL or dataset)”, “writing orienta-
tion: tilting left/right”, etc. Those aspects may not be directly connected to the
identity of the digit, but contribute to the raw observation of the pixels together
with the identity. Our motivation is that the fact that some attribute affects
the observation but is not the target is informative and can be helpful to the
prediction of the target.

To classify the image content to “0˜9” regardless the source of the data, it is
likely to benefit the classification if we can (i) collect images from multiple data
sources to make a richer dataset and (ii) represent samples from the different
sources in such a way that the knowledge about the image identity (digit 0˜9)
and the image source are separated. In particular, we want to represent a sample
x as z, where z has two groups of variables z1 and z2. In z1, the data source
information has been eliminated: it is difficult to find out where x comes from by
inspecting z1, but all information related to the identity of the data is preserved
in z1; z2 is complementary to z1, which is informative to the data source, but
not to the identity.

Within the wide spectrum of transfer learning techniques [4–7], our focus
is on data representation assisted by auxiliary tasks. We propose a adversar-
ial deep capsule network scheme that represents data explicitly for transferring
knowledge of multiple attributes. Given the task of classifying data with respect
to one primary target aspect and taking into account of m auxiliary attributes,
the framework contains one capsule net-based data encoder (the “generator”
following convention in adversarial nets) and m + 1 discriminators. The gen-
erator produce capsule data representations that are fed to the discriminators,
where one specialized group is particularly fit for the primary task. The genera-
tive adversarial framework is named MCGAN, due to it nature of multiple-task
learning and capsule-based data representation.

In the rest of this paper, we discuss some related works in Sect. 2. Section 3
presents the MCGAN model. Section 4 reports empirical evaluation. Section 5
concludes the paper.
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2 Background

The past decade has witnessed the renaissance of neural networks as generic func-
tion approximator in statistical learning and machine intelligence [8]. Effective
training methods, massive data and heavily parallel and high speed computation
hardware have catalyzed successful application of deep architectures of neural
networks in a great variety of application areas [9–16]. Nonetheless, as new and
increasingly more complex architectures keep being developed and ever more
powerful high-performance computational facilities are built, the construction of
large-scale annotated data to tune the complex models can hardly keep pace with
the demand [17]. The need for the capability of sharing knowledge among differ-
ent tasks has never been greater. Zheng et al. [18] investigated several empirical
issues related to image search and classification in transfer learning for deep con-
volutional neural networks and found that simple combination of pooled features
extracted across various CNN layers is effective for knowledge transfer.

More related to this work, in [7], Shen et al. proposed to adopt the genera-
tive adversarial nets (GAN) framework [1] to construct two-stage data analytic
model for knowledge transfer between two domains. They trained an deep neural
encoder to represent data, while employ one adversarial discriminator to make
the encoder represent data in two domains indiscriminately. This work shares the
motivation of making the theoretical advantage of the distribution metrics com-
puted by the adversarial discriminator to improve data representation. However,
the method proposed in this work naturally adopt multiple relevant or irrelevant
aspects explicitly or implicitly annotated for knowledge transfer, which subsumes
dual-domain data classification problem addressed in [7] as a special case.

As mentioned above, the theoretical foundation of the work is the link
between distribution metrics and the adversarial discriminative net, which is
due to Arjovsky et al. [19]. The Wasserstein distance motivated GAN has greatly
improved the stability of training in GAN framework, which has been widely used
in multiple application areas [1,6,20,21]. In Fu et al. [22], a transfer learning
framework, MATGAN, has been proposed to address a similar problem. How-
ever, in MATGAN traditional deep neural networks are used in the generator G
to generate a single data representation, while we use capsules to simultaneously
generate multiple representations for all tasks.

CapsNet [2] represents an alternative visual information processing mecha-
nism that addressing some above mentioned issues. The neurons are divided into
small groups in each network layer, known as capsules. The capsules correspond
to concepts in different levels of abstraction during the process of parsing visual
information. The cross-layer association and the activation status of the capsules
represent semantic analysis of the image data. Recently, CapsNet has undergone
some developments such as Matrix Capsules [23] and has been employed in new
application domains such as text classification [24].
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3 Model

3.1 Multi-task Data Representation

We consider data with multiple categorical attributes. The data are distributed
in the space X × Y0 × Y1 × Y2 × · · · × Ym, where X is the space of observations
and Y0 represent the primary target, Y1, . . . ,Ym are m auxiliary tasks. For the
convenience of discussion, we consider binary prediction tasks in this section,
i.e. Yi = {0, 1}, and will discuss later that the binary setting does not harm
generality. The ultimate goal is to learn a strong predictor on Y0. MCGAN
adopts adversarial training to learn m + 1 groups of variables Z0,Z1, . . . ,Zm to
represent X . Each group Zi is focused on the information in X with respect to the
corresponding goal Yi while eliminating the information about other attributes
{Yj}m

j �=i. Consider the affect on the classification task by one particular transfer
attribute Y1. The motivation is that in an ideal representation, the distribution
of Z with respect to Y1 = 0 should be indistinguishable from the distribution of
Z with respect to Y1 = 1. Then Z is a form that mixes the subsets of Y1 = 0 and
Y1 = 1, which integrates the knowledge about the target attribute Y0 represented
by the samples in both subsets.

Formally, a data representor is a map G, X G→ Z, and Z is the represen-
tation space. Given a probability distribution on X , G induces a corresponding
distribution on Z. We consider the conditional distribution on X with respect
toYi, X|Yi = ξ, where X and Yi are variables in X and Yi, respectively, and
ξ ∈ {0, 1}. The G-induced conditional distribution on Z is

PX|Yi=ξ(x) G→ PG
Z|Yi=ξ(z) :=

∫
x

PX|Yi=ξ(x)δ(G(x), z)dx (1)

where the delta function δ(x, y) = 1 if x = y and 0 otherwise. For simplified
math, we denote PG

Z|Yi={0,1} as gi
{0,1}. Let I(p, q) represent some distance metric

between distributions. We can formulate the objective of being discriminative
on Yi and invariant to {Yj}m

j �=i by

min
G

⎧⎨
⎩

m∑
j=0,j �=i

I(gj
0, g

j
1) − I(gi

0, g
i
1)

⎫⎬
⎭ (2)

where G is the data representor. Note that to train an entire framework of
MCGAN, there are totally m + 1 equations in the form of (2), corresponding to
tasks i = 0, . . . ,m.

In MCGAN, the metric I is the Wasserstein-1 (Earth-Mover, EM) distance

I ← W (p, q) := inf
π∈∏

(p,q)
E(z,z′)∼π [|z − z′|] (3)

where
∏

(p, q) represents the set of all joint distributions π(z, z′) with con-
sistent marginal distributions:

∫
z′ π(z, z′)dz′ = p(z) and

∫
z
π(z, z′)dz = q(z′).
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Kantorovich-Rubinstein duality [25] provides a feasible approach of computing
the Wasserstein distance (3),

W (p, q) = sup
‖f‖L≤1

Ez∼p[f(z)] − Ez′∼q[f(z′)] (4)

where f is any 1-Lipschitz function Z → R. Combining (1–4), i.e. taking W as I
and substituting gj

0 and gj
1 for p and q, the optimal data representation problem

(1) can be formulated as a minimax game

min
G,Di

max
{Dj}m

j=0,j �=i

{ m∑
j=0,j �=i

Ex,yj=1[Dj
(
G(x)

)
] − Ex,yj=0[Dj

(
G(x)

)
]

+ Ex,yi=0

[
Di

(
G(x)

)] − Ex,yi=1

[
Di

(
G(x)

)] }
(5)

The discriminators {Dj}m
j=0 are the 1-Lipschitz functions f in (4), which are

implemented using deep neural networks. The data representation G(x) within
the expectation Ex,yj={0,1}[·] realizes the expectation over the induced condi-
tional distribution in the representation space gj

{0,1}. As above mentioned, there
are totally m + 1 minimax games as defined in (5) for m + 1 groups of data
representation. The details of G and the representations are introduced in the
following subsection.

Fig. 1. Structure of the MCGAN Framework. The figure shows how the final layer cap-
sules are organized into multiple groups of variables for data representation (boxes of
broken lines in different colors). The discriminators take respective representation vari-
able groups from the generator (shown in corresponding colors). (Color figure online)

3.2 Networks

Figure 1 sketches the overall structure of a MCGAN framework. We employ deep
neural networks as the discriminators D and capsule networks for the generator
G. The discriminator network D has a standard linear deep neural network
structure. We propose a novel data representation scheme by employing capsule
net [2] for the generator network G. The capsule nets transform an image into
a number of vectors (capsules). The capsules embody semantic entities in the
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image, where the magnitude of the vector indicates the presence of the entity and
the elements are specifying parameters of the entity [2]. The generator capsule
net and the discriminator deep nets are chosen to suit particular applications.
Example nets are sketched in a later figure in Sect. 4, Fig. 3.

To generate data representation specialized for different tasks, we make the
final layer capsules (m + 1)-dimensional. Using respective dimensions in all the
capsules, we can form data representation for the m + 1 tasks. For example,
if in the final layer there are 64 capsules, and there are 2 auxiliary tasks plus
the primary task, the final layer would contain 64 × 3 values. Taking the first
dimension of the 64 capsules, we can have a 64D vector Z1 as the data repre-
sentation and will use Z1 in the first minimax game as defined in (5). Similarly,
the second/third minimax game is defined via Z2/Z3, which is collected taking
the second/third dimension from each final layer capsule. Algorithm1 lists the
learning procedure of the networks under the proposed capsule-based adversarial
framework.

input : G: parameters θ
input : Dj : parameters wj , j = 0, . . . ,m
input : samples {(X, y0, y1, . . . , ym)} ∼ X × Y0 × Y1 × · · · × Ym

output: θ, wj , j = 0, . . . ,m
begin

while θ not converged do
compute capsules by G(X)
for j ∈ {0, . . . ,m} do

make Zj

maximize (5) w.r.t. Dj

w j (Z
j)

end
minimize (5) w.r.t. Gθ (X)

end

end
Algorithm 1. Multiple task learning via Capsule GAN

4 Experiments

In our experiment, we apply the proposed multiple-task-transfer capsule GAN
(MCGAN) to perform different learning tasks on hand-written digit datasets.
We use the MNIST [26] and the USPS [27] dataset. The tests are designed to
illustrate our motivation of learning designated aspects of data and verify the
proposed model is effective for the task.

Model Training

We have implemented MCGAN according to the framework structure as shown
in Fig. 1 and performed training as Algorithm1. To stabilize training of GAN,
we follow the technique proposed in [28].
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Fig. 2. Image samples from two hand-written datasets.

Fig. 3. Networks in MCGAN for handwritten digit recognition with data source
transfer.

Effective Transfer with Capsule Nets

We first apply MCGANs on the commonly employed hand-written digit image
recognition task. The test has been on two hand-written image datasets: MNIST
and USPS. MNIST has 60, 000 training/10, 000 testing samples which are
grayscale images. USPS has 7, 291 grayscale images for training and 2, 007 for
testing. Figure 2 shows a few digit samples from both datasets.

As [22], we employ MCGANs and make advantage of its capability of trans-
ferring knowledge to classify images from two datasets using one data repre-
sentation model. MCGANs are trained with respect to two kinds of objectives
in this experiment. The first goal is to recognize the digits, “0˜9”. The second
goal is to identify from which dataset an image is sampled. It is important to
keep in mind that in practice the primary objective is semantic classification,
i.e. the first goal of recognizing a digit to be one of “0˜9”. The auxiliary goal
is introduced to assist training of the network, so a more reliable and versatile
data representation can be found for the ultimate semantic recognition.

We construct the networks in MCGAN as shown in Fig. 3, which implements
the framework introduced in Sect. 3.2 and displayed in Fig. 1. The representation
net outputs a number of capsules for each data sample. As discussed in Sect. 3.1,
the capsule representation is then re-organized into two groups, H{1,2}. When
H1 is fed to discriminator D1, D1 is optimized to predict the digit identity
y ∈ {0, . . . , 9}. When H2 is fed to D1, the representations are formulated as non-
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informative samples for D1’s task, and the optimization objective is to confuse
D1 on H2. Correspondingly, when H2 is fed to discriminator D2, D2 predicts
from which dataset a sample is drawn, 0 for MNIST and 1 for USPS. When H1 is
fed to D2, the objective for H1 is to be non-informative for D2, which means H1

should be indiscriminative to the data sources. Note the first discriminator D1 is
multi-class classifiers in this setting, which slightly differs from the formulation
in Sect. 3 but does not change the fundamental architecture of MCGAN.

Table 1. Two-dataset (MNIST + USPS) digit classification performance

Mdoel Overall accuracy On MNIST On USPS

CNN 75.2% 64.6% 85.9%

MATGAN 69.3% 79.5% 59.2%

MCGAN 97.3% 98.7% 93.9%

Fig. 4. Training processes on MNIST + USPS datasets. The figure shows three typi-
cal training process of CNN, MATGAN [22] and MCGAN on data from mixed two
datasets of MNIST and USPS. The plots are optimization iteration steps versus model
performance on validation data. When the training iterations exceeded certain num-
bers, both CNN and MATGAN had been dominated by MNIST and performed poorly
on USPS.

Table 1 lists classification performance of MCGAN, standard CNN (similar
to D1) and a transfer framework using standard GAN, MATGAN [22]. The
performance verifies the effectiveness of MCGAN. It is not surprising that GANs
achieves superior performance over standard CNN considering the cross-dataset
knowledge transfer. However, the performances of both MATGAN and CNN
worth more investigation. In fact, we need to carefully tune the optimization,
and adopt early stop using verification to prevent the training process of normal
GAN from collapsing (despite employing the stabilizing technique for MATGAN
[22]). With the training progressing, both MATGAN and CNN are seriously
dominated by MNIST. However, the capsule nets have been remaining stable.
A possible interpretation is that capsules can capture meaningful entities in the
image and less prone to data source mixing. Figure 4 illustrates typical training
processes for the three models.
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Zero-Shot Transfer

MCGAN uses multiple groups of variables to represent data for distinctive pre-
diction tasks. This design benefits transfer learning since the preceding layers
must generate representation of the data that contains comprehensive informa-
tion of all tasks. We test this attribute of MCGAN in this experiment where
the network is required to classify new data population whose samples are
unseen during the training. The experiment is also based on the MNIST + USPS
datasets. Specifically, in addition to the auxiliary task of identifying the data
source, we introduce geometric transformations of the images and each image
has equal chance (1/3) to be rotated by {−π

4 , 0,+π
4 } as shown in Fig. 5. The chal-

lenge of zero-shot learning is posed in the following scheme. During the training
stage, the models are given examples of MNIST with rotation and USPS without
rotation, while during test, the models are required to classify USPS samples
with rotation. Note during test, the models are only asked to produce a predic-
tion of “0˜9” about the digit in the image, and has no access to information
about the data source of the image (USPS/MNIST) or whether/how the image
has been rotated.

We address the challenge by explicitly modelling the geometrical rotation
in MCGAN, and train an additional digit classifier using the penultimate layer
capsules for data representation. The zero-shot transfer classifier is not to be
confused with the digit identity classifier as a discriminator in MCGAN. More
specifically, MCGANs are trained with respect to one more objective in this
experiment. The first and the second goals are to recognize the digits as “0˜9”
and from MNIST or USPS as in the previous experiment. The third (new) goal
is to estimate the rotation an image may undergo. The networks in MCGAN is
similar to that is shown in Fig. 3. Note that the data representation for the final
classifier in this experiment is not from the final layer of capsules, but from the
penultimate capsule layer in the generator net.

During training MCGAN generates three groups of representation H{1,2,3}

for three discriminators D{1,2,3}, where the new D3 outputs the prediction of
the orientation of the images as 3 different rotation angles ρ ∈ {−π

4 , 0,+π
4 }. The

objective function has totally 3 × 3 components:

+D1(h1) −D1(h2) −D1(h3)
−D2(h1) +D2(h2) −D2(h3)
−D3(h1) −D3(h2) +D3(h3)

where h{1,2,3} are instances of the variables H{1,2,3}. The symbols indicate their
respective contribution to the training objective. For example, h1 should be a
group of features that is distinctive with respect to the digits “0˜9” and helpful
to the first task (+D1(h1)), but invariant to the dataset and rotations (−D2(h1)
and −D3(h1)).

Table 2 shows the classification results on the rotated USPS data using the
special classifier trained on MCGAN-generated representations, as well as stan-
dard CNN classifier fit to the same set of training samples as used by MCGAN.
MCGAN achieved significant advantage in this zero-shot transfer task while
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Fig. 5. Transformed hand-written image samples.

Fig. 6. Training processes on rotated MNIST + USPS datasets. The figure shows two
typical training process of CNN and MCGAN on the zero-shot training task. The plots
show classification accuracy on validation data (similar to Fig. 4). Note the classification
tasks are different in standard CNN and those in MCGAN. MCGAN has auxiliary tasks
of (i) classifying datasets (USPS/MNIST) and (ii) classifying rotations ({±π

4
, 0}).

Table 2. Zero-shot classification on rotated USPS

Mdoel On rotated USPS

CNN 13.4%

MCGAN 72.6%

CNN has failed to learn effective prediction model for data it has not seen. As
aforementioned, MCGAN has also stabler training process than CNN on this
task (Fig. 6).
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5 Conclusion

We employ deep capsule nets to construct a knowledge transfer framework based
on GAN. The proposed multitask capsule GAN (MCGAN) produces respective
data representations for multiple tasks, and in the meanwhile achieve knowledge
transfer from auxiliary tasks to improve the primary prediction task. Theoreti-
cally, we show that the data representor in MCGAN makes the representations
of the data conditioned on the irrelevant aspects similar to each other, using
the theory on the Wasserstein-1 distribution distances between populations pro-
duced by deep neural networks trained via an adversarial scheme [19]. Empirical
study shows the capsule nets in MCGAN improve both model performance and
training process.
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Abstract. Link prediction is the problem of predicting the existence of
edges in a network. The link prediction problem is a fundamental research
problem in graph mining and has numerous applications in social net-
works, bioinformatics, e-commerce, etc. A major challenge of link predic-
tion problems is handling the fact that real-world networks are becoming
extremely large. The large network size leads to huge sparsity in the net-
work’s adjacency matrix which most existing link prediction methods
(such as matrix factorization) rely on. Moreover, when networks become
very large, there exists a non-trivial link imbalance problem where the
numbers of known present and known absent links are significantly differ-
ent. Such sparsity and imbalance issues significantly impact and decrease
the performance of existing link prediction methods. To address these
challenges, in this research we propose a Balanced Factorization Machine
(BFM) which performs link predictions on very sparse network via learn-
ing interactions among nodes and edges of the network in a supervised
learning setting. Through extensive experiments on real-world network
data sets, we show that our BFM method significantly outperforms other
existing link prediction methods.

1 Introduction

Link prediction is a fundamental research problem in mining of graphs and
networks. It has made wide and important impacts in social network analysis
[9], bioinformatics [2], and e-commerce [8]. A major question that link predic-
tion answers is how to estimate the structure of a network that is partially
known: given the presence or absence of known links, how to predict the pres-
ence/absence of unknown ones? Solutions to this question can bring forward
practical applications such as predicting following-behaviour in Twitter, suggest-
ing friendship in Facebook, and inferring unknown interactions among proteins
in protein-to-protein interaction networks [10].

Link prediction has been mostly viewed in the literature as an unsuper-
vised learning problem and has been studied via different unsupervised methods
including neighborhood-based approaches [10], matrix factorization [14], cou-
pled tensor factorization [5], etc. But these unsupervised learning approaches
are closely based on graph structure measures and adjacency matrices, while
c© Springer Nature Switzerland AG 2018
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their performance have been shown to be limited to that of similarity based
approaches [20]. There also has been research work that views link prediction as
a supervised learning method [4,12]. This type of methods particularly focuses on
deriving and extracting features from the graph data, and then use the extracted
features for link prediction.

The existing supervised and unsupervised models are both challenged when
dealing with very big networks. When the network becomes very large, the size
of the adjacency matrix of the network increases exponentially to the increase of
the number of nodes. This makes the adjacency matrix extremely sparse which
non-trivially decreases the performance of unsupervised learning models [10].
Besides, the huge sparsity also means that there is significantly more known
absent links than present ones. In other words, if we represent a network graph
by G = {V,E} and E ∈ {0, 1, ?}, where V denotes all vertices (nodes), E
denotes all edges (links), 0 denotes a known absent link, 1 denotes a known
present link, and ? denotes an unknown link whose status is to be predicted,
then the huge sparsity means there are significantly more unknown ? entries
than known 1 and 0 entries. Moreover, since the 0 and 1 entries are taken as
class labels in supervised link prediction approaches, the frequently observed
scenarios of having significantly more 0 entries than 1 ones result in a significant
class imbalance issue which downgrades the performance of existing supervised
learning approaches [23].

To address the above challenges, in this research we proposed an effective
link prediction model called Balanced Factorization Machines (BFM). The BFM
takes all pair-wise interactions among nodes, links, and all their properties into
the training processes. It is a supervised learning model that is not reliant on
the network’s adjacency matrix and can handle network data with huge sparsity.
Moreover, we design a balanced loss function for the BFM which is robust to
the distribution of known link labels. Specifically, our main contributions in this
paper are the following:

– We propose a factorization machine based model, named Balanced Factoriza-
tion Machines (BFM), to address the sparsity issue in link prediction problems
in a supervised learning approach. The BFM method models all interactions
among nodes, edges, and their associated properties using both linear and
second-order expressions among features, which ensures that the BFM can
well handle the sparsity of the network.

– We design a quadratic-mean-based loss function for the BFM model to
address the link label imbalance issue. The loss function of BFM is designed
insensitive to distributions of labels in the training data and is thus robust
to the imbalanced distribution of known links.

– We perform evaluations on several real-world network data sets. Results from
our experiments demonstrate that the BFM model is significantly more accu-
rate on link prediction tasks in comparisons to existing other models.

To the best of our knowledge, this paper is the first research that uses factor-
ization machines to solve the link prediction problem and to address its inherent
class label imbalance problem.
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The structure of the rest of the paper is as follows. We provide a review
of related work in Sect. 2. Section 3 introduces the formulation and design of
the proposed BFM model. We empirically evaluate our model and analyze the
experiment outcomes in Sect. 4. In Sect. 5, we provide conclusions of this research
with our plan for future work.

2 Literature Review

In this section, we provide a review of related work from the perspectives of link
prediction and factorization machines respectively.

2.1 Link Prediction

Link prediction has become an attractive field in graph and network mining
[13]. Since many real-world data can be formulated as networks, the estima-
tion of unknown connections among nodes in a network can provide a com-
prehensive understanding of the studied problem, and thus provide significant
values to real-world applications. One type of solutions in link predictions is
the neighbourhood-based approach [1,10]. In such approaches, similarity-based
methods are used where it is assumed the nodes tend to have connections with
other nodes with the highest similarity scores. More advanced approaches, such
as factorization-based method [10,14], used the principles of collaborative filter-
ing to make link predictions, which is a similar approach as building recommen-
dation systems. In these methods, latent factors are learned from the adjacency
matrix of a network, and the predictions of links are made by a product of the
latent factors. Since these factorization based methods heavily rely on the adja-
cency matrix, their performance is impacted when the network becomes very
large and the adjacency matrix becomes highly sparse. Another type of app-
roach for link prediction is classification-based methods where the classification
is for the two labels: presence and absence of the link. In the work of [1], different
classification algorithms are empirically studied with respect to their effective-
ness on link prediction. Besides, directed networks are particularly studied in
[4] where random forests are found to be the most effective among other alter-
native ensemble methods. However, these classification-based methods all face
a common challenge of class imbalance, as in real-world settings there is always
extremely more absence than presence of known links [23].

2.2 Factorization Machines

Factorization machines (FM) [17] are a type of supervised learning model that
improves linear classification models by incorporating second-order feature inter-
actions into the modelling processes. After the initial publication of FMs, many
researchers have improved the model theoretically from several perspectives. To
integrate context information into modelling processes, [18] proposed Context-
aware FMs which can integrate contextual data and user it to improve the
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training outcome. Besides, although FM was initially introduced as a method
for building recommendation systems, it has also been applied to many other
domains such as Click-Through Rate (CTR) prediction [7]. Specifically, the CTR
prediction is made via an extended FM model named Field-aware Factorization
Machines (FFMs).

Despite of the improvements and applications of FMs, the class imbalance
problems for FM has not been addressed. Since the link prediction problem
usually faces huge imbalance of class labels, the imbalance problem will non-
trivially affect the performance of FM. In the next section, we explain how we
design our new model to address the class imbalance problem.

3 Balanced Factorization Machines

In this section, we introduce how we model link prediction as a supervised learn-
ing problem that can be addressed by factorization machines. We will also intro-
duce our Balanced Factorization Machine (BFM) model that is capable of han-
dling class imbalance problems.

3.1 Feature Modelling for Link Prediction

To make link prediction a supervised learning problem, we extract several types
of properties from the network and use them as feature vectors. In our modelling,
each data sample represents a known absent or present link from the network
where the label y is 0 or 1 respectively. The feature vector of a data sample
is comprised of the properties associated with the corresponding link, such as
which nodes the link connects, the degrees of the nodes, and what other nodes
that the link’s two ends connect to. An illustration of our feature modelling is
presented in Fig. 1. In this figure, the first two blocks of features indicate the two
nodes (denoted by N1 and N2) of each link, the third block stores the distance
between the two nodes (such as random walk distance) or the weight of the link,
the next two blocks are the degrees of N1 and N2, and the last two blocks have
the other nodes that N1 and N2 are respectively connected to.

Our feature modelling is capable of handling many different types of link
properties. When the network is directed, N1 is modelled as the source node and
N2 is the target node. Our model also integrates in-degrees and out-degrees of
nodes on directed network by adding extra in-degree and out-degree columns to
the formulation.

3.2 Our Proposed BFM Model

The creation of factorization machines can be linked back to the fundamental
model of linear supervised learners. Using bold font x to denote a data sample,
xi(i ∈ {1, ..., n}) to denote the ith feature value of x, y to denote labels, and D
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Fig. 1. Network properties extracted as feature vectors. Each row represents a known
presence (i.e., label y = 1) or absence (i.e., y = 0) of links. Node 1 and node 2 present
the two ends of each link. When the network is directed, node 1 is the source and node
2 is the target (from node 1 pointing to node 2). When the network is undirected, the
nodes 1 and 2 are arbitrarily two ends of each link.

to denote the training data, the formulation of a typical linear learning model
is:

min
w

Sqrt
{ 1

|D|
∑

∀x∈D

(y − wTx)2
}

+ R(w) (1)

where |D| represents the size of training data, w is the weight vector to be
learned, R(w) is the regularizer for w (such as L2 norm), and Sqrt represents
the square root operation. Using the same notation, the optimization problem
for a degree-2 polynomial learning model can be formulated as:

min
v

Sqrt
{ 1

|D|
∑

∀x∈D

(y −
n∑

i,j

vi,jxixj)2
}

+ R′(v) (2)

where v is a weight matrix of size n×n, vi,j is an element of v at its ith row and
jth column, and R′(v) is the regularizer for v (such as matrix Frobenius norm).
Factorization machines further improved the above two models by taking both
linear and second-order feature interactions into its modelling process. Using the
same notation above, factorization machines can be modelled as follows:

min
w,v

Sqrt
{ 1

|D|
∑

∀x∈D

(y − (w0 +
n∑

i=1

wixi +
n∑

i,j

< vi, vj > xixj))2
}
+R(w)+R′(v)

(3)
where w is the weight vector, v is the weight matrix of size n × k (where k is
the length of a column vector of v), and < vi, vj > is the inner product (i.e., dot
product) of the ith and jth column vectors of v.

Since the factorization machine’s loss function uses arithmetic mean (average
of all errors), when the label is very imbalanced (e.g., when there is significantly
more y = 0 than y = 1), Eq. 3 can be almost optimized by predicting all samples
to be 0 since in this way it will generate very small error rates measured by
the first term of Eq. 3. Consequently, the optimization of factorization machines
will be biased towards the majority label in the training processes which will
lead to low accuracy particularly on the minority label. The minority label is
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the presence of links in link prediction problems, the accuracy of which is vitally
important and cannot be compromised. To address this label imbalance prob-
lem, we proposed a Balanced Factorization Machines (BFM) which uses the
quadratic-mean of errors with respect to labels as its loss function. The overall
formulation of our BFM model is as follows:

min
w,v

Sqrt
{∑

∀x∈D+(y − (w0 +
∑n

i=1 wixi +
∑n

i,j < vi, vj > xixj))2

|D+|

+

∑
∀x∈D−(y − (w0 +

∑n
i=1 wixi +

∑n
i,j < vi, vj > xixj))2

|D−|
}

+R(w) + R′(v)

(4)
where D+ and D− represent data samples in positive and negative labels (i.e.,
presence and absence of known links), respectively. The first term in Eq. 4 uses
quadratic mean to measure the error loss of BFM. Now we introduce a lemma
to show why our quadratic-mean-based loss function is theoretical more advan-
tageous in learning from imbalanced data:

Lemma 1. ∀ err1 ≥ 0, and ∀ err2 ≥ 0, denote by AM(err1, err2) and
QM(err1, err2) the arithmetic mean and quadratic mean of err1 and err2

respectively, then QM(err1, err2) =
√

AM(err1, err2) + ( err1−err2
2 )2.

Proof. The lemma can be proved by the derivations below:

QM(err1, err2) =

√
err21 + err22

2

=

√
err21 + err22 + 2err1err2

4
+

err21 + err22 − 2err1err2
4

=

√

(
err1 + err2

2
)2 + (

err1 − err2
2

)2

=

√

AM(err1, err2) + (
err1 − err2

2
)2 ��

The above lemma shows that conventional factorization machines (which use
the AM) are optimized when the sum of errors from all samples are minimized,
while our BFM model (which uses the QM) is optimized if only the sum and the
difference between errors of positive and negative samples are both minimized.
To further illustrate the significance of this difference between AM and QM , we
provide the following example on error calculations:

Example 1. Consider a learning algorithm that has a classification performance
shown in Table 1. Apparently the classification is biased towards the negative
class (i.e., predicting almost all data to be negative). However, the AM-based
error is as extremely low as 0.8% (i.e., 8+0

10+990 ). On the contrary, the QM-based

error is as high as 56.6% (i.e.,
√

(8/10)2+(0/990)2

2 ).
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Table 1. Classification performance on an imbalanced data set for Example 1.

Predicted positives Predicted negatives Sum

Actual positives 2 8 10

Actual negatives 0 990 990

This example illustrates that QM can detect the bias of the learning algo-
rithm which AM cannot. This unique property of QM can effectively guide the
optimization of our BFM model and make BFM robust to learning on imbal-
anced data sets.

4 Experiments and Analysis

We analyze and compare the performance of our BFM model against existing
link prediction methods on real-world data sets. We compare our method with
classical factorization machines (FM) [17], field-aware factorization machines
(FFM) [7], graph-based link prediction method (GLP) [4], and matrix factor-
ization based method (MF) [14]. We also include unsupervised learning based
methods in the comparisons, such as non-negative matrix factorization (NNMF)
[3] and Link Propagation (LP) [11]. We use the L2 norm for R(w) and use
the Frobenius norm for R′(v), and use graph random walk [6] as the distance
between every pair of two nodes. In all our experiments, we use 5-fold cross
validation to separate training and test data, conduct 10 repeated runs with
different random seeds, and report the average results of the repeated runs. We
use the AUC (i.e., the area under ROC curve) as our evaluation metric, which is
more suitable than using the overall accuracy as the metric for imbalanced data.

4.1 Data Sets

We use six publicly available real-world network data sets in our experiments:
protein-to-protein interaction networks (PPI) [21], NIPS co-authorship networks
(NIPS) [19], email Eu-core network (Email) [24], UC Irvine messaging network
(SMS) [16], adolescent health network (Health) [15], and US electric power grid
network (PowerGrid) [22]. The details of all data sets are shown in Table 2.

4.2 Experimental Results

We compare BFM against the two most popular factorization machines, FM
and FFM, by evaluating their responses to changes of parameter k (i.e., the
length of the column vectors of v). The experimental results are shown in Fig. 2.
From the subfigures, we can clearly see that the performance of BFM is almost
persistently better than that of FM and FFM by a large magnitude. Although
the performances of FM and FFM are sometime indistinguishable (such as in the
Email data set), the performance of our BFM model is always better than them.
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Fig. 2. Performance comparisons among factorization machines based methods.

This confirms that our QM-based loss function is significantly more effective on
handling imbalanced data for link predictions problems.

We also compare our BFM model with other existing supervised and unsu-
pervised link prediction methods. The detailed experimental results of these
comparisons are presented in Table 3. In the table, we report the mean and vari-
ance values of 10 repeated runs for each algorithm on each data set. From the
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Table 2. Details of data sets used in experiments.

Data sets Type Nodes |D+| |D−| Pos:Neg

PPI Undirected 2,617 23,710 6,824,979 1:287

NIPS Undirected 2,865 9,466 8,198,759 1:866

Email Directed 1,005 25,571 984,454 1:38

SMS Directed 1,899 20,296 3,585,905 1:177

Health Directed 2,539 12,969 6,433,552 1:496

PowerGrid Undirected 4,941 13,188 24,400,293 1:1850

Table 3. Performance comparisons between BFM and other link prediction methods.

Data sets AUC (Area Under ROC Curve)

GLP MF NNMF LP FM FFM BFM

PPI .818± .008 .885± .006 .834± .005 .843± .004 .828± .007 .884± .008 .907± .006

NIPS .699± .002 .778± .008 .744± .002 .763± .011 .728± .003 .760± .002 .804± .002

Email .796± .006 .799± .005 .792± .003 .809± .009 .796± .006 .808± .006 .821± .005

SMS .641± .004 .725± .009 .718± .008 .704± .004 .673± .006 .697± .005 .724± .006

Health .687± .003 .762± .007 .731± .007 .734± .008 .694± .005 .743± .008 .782± .003

PowerGrid .858± .021 .882± .017 .871± .019 .843± .016 .841± .025 .885± .018 .919± .016

table, we can observed that the performance of our BFM model is significantly
better than all other alternative models.

5 Conclusions and Future Work

In this paper we propose to address the link prediction problem by using fac-
torization machines. We extract graphical features from networks and use the
features to training our model. Our modelling of the features can utilize informa-
tion from both directed and undirected networks. More importantly, we designed
a novel and effective loss function, which uses the quadratic mean of errors with
respect to labels, to handle the label imbalance problems. Our experiment results
on real-world data sets demonstrate that our BFM mode significantly outper-
forms other link prediction methods. In future, we plan to extend our model to
address link prediction problems on temporal networks and graph streams.
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Abstract. In this research, we propose deep networks that discover
Granger causes from multivariate temporal data generated in financial
markets. We introduce a Deep Neural Network (DNN) and a Recurrent
Neural Network (RNN) that discover Granger-causal features for bivari-
ate regression on bivariate time series data distributions. These features
are subsequently used to discover Granger-causal graphs for multivari-
ate regression on multivariate time series data distributions. Our super-
vised feature learning process in proposed deep regression networks has
favourable F-tests for feature selection and t-tests for model comparisons.
The experiments, minimizing root mean squared errors in the regres-
sion analysis on real stock market data obtained from Yahoo Finance,
demonstrate that our causal features significantly improve the existing
deep learning regression models.

1 Introduction

Causal inference is a central theme in computational sciences that construct
mathematical models for causation. In statistics, causality is defined over con-
ditional dependencies modelled between features in the data. Such conditional
dependencies are used to construct data distributions linking causes with effects
in causal relations defined on data features. Such causal relations are useful for
feature discovery in machine learning. The impact and risk of including causal
relations or causal features is validated by domain knowledge.

The Granger-Sargent statistic and the Granger-Wald statistic are commonly
used to discover Granger-causal features on time-domain and frequency-domain
formulations of Granger causality [1]. In this paper we discover Granger-causal
features by measuring model improvement in deep networks. Our models are
useful for simulating time-dependent observations in application domains with
neural computations in deep learning.

Deep learning is a class of neural networks that learn hierarchical feature rep-
resentations approximating non-linear functions. In data-driven analytics appli-
cations, deep learning has been used to visualize, store, process and predict
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information. In supervised deep learning, the information is typically modelled
as statistical correlations and variable associations. Introducing causality meth-
ods into supervised deep learning creates analytics models for data-driven deci-
sion making in an application domain where causal features are separated from
spurious features.

In computational learning theory, loss functions are mathematical functions
mapping a complex data-driven event in complex systems to real numbers. In
decision and estimation theory, loss functions relate empirical risk defined on
actual data to expected risk defined on predicted output of an analytics model.

In this paper, we analyze time series data distributions with the help of deep
learning networks to discover causal relations and causal graphs from Granger
causality tests [2]. To derive data representations, the deep networks are trained
to optimize squared error loss functions between actual data and predicted out-
put. The corresponding analytics predictions are tested and validated with sta-
tistical significance tests on regression errors. We also extend unrestricted models
in Granger causality for supervised feature discovery with bivariate regression
as well as supervised causal inference with multivariate regression. Theoreti-
cally, the deep network architecture and its squared error loss function determine
empirical risk in our regression models.

Following are the major contributions of this paper:

– We identify Granger-causal features using deep networks that improve bivari-
ate regression predictions amongst temporal dependencies in time series dis-
tributions.

– We discover Granger-causal graphs in time series distributions to improve
multivariate regression in deep networks.

– We evaluate our theoretical model on Yahoo Finance data to solve causal
inference problems defining stochastic processes found in financial markets.

The paper starts with related work in Sect. 2 comparing the new approach
with existing approaches. Algorithms and experiments for the proposed method
are presented in Sect. 3 and Sect. 4 respectively. The paper ends with Sect. 5
which summarises current and future work.

2 Related Work

Causality is generally defined on logical formalizations of different classes of
knowledge, reasoning and complexity in data. Causality also depends on features
and representations, patterns and noise from ground truth data generated in an
application domain. Depending on a particular definition of causality, causal
relations identify causal features for machine learning.

2.1 Causal Inference in Deep Learning

Causality methods have been applied to deep learning problems such as semi-
supervised learning and transfer learning. In these problems informed priors
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retrieved from other networks are used to center the weights in hybrid deep learn-
ing networks. Such networks then construct statistically significant hypotheses
and corresponding data representation on actual data from complex systems. An
analytics model employing causality methods can then validate such hypothe-
ses against causal features discovering patterns, structure, context and content
in actual data [3]. In general, the instance space for learning causal features
in actual data consists of concept adapting data structures like strings, trees,
networks and tensors.

Backpropagation learning algorithms for deep networks have been improved
by incorporating ideas for training probabilistic graphical models typically used
in causal inference. Such training is inherently Bayesian where prior distributions
inform and constrain analytics models predicting posterior distributions [4]. The
improved deep learning algorithms result in a predicted output informed by a
causality graph.

2.2 Causal Inference in Time Series Analysis

In time series analysis, causal inference is identifies and classifies events in time
series such that the events have either deterministic or probabilistic causal rela-
tions. Events are identified by mapping logic and structure of natural language
to concept lattices and causal graphs [5]. Historically, causal reasoning in time
series builds on statistical analysis of covariance or correlation between two or
more events in time series. The calculated correlation strength is then used to
predict causal relation between two events [6]. The disadvantage of this approach
is that it cannot determine the direction and significance of causation. It also
cannot discover hidden causes and patterns for which observed events are effects.

Granger causality is a simple learning mechanism that allows us to explore
all preceding ideas about causality methods in deep learning for time series
analysis [7]. Here, Granger causality does not empirically prove actual causation
between events but acts as a stepping stone to explore the phenomenon relating
two events participating in a cause-effect relationship. Granger-causal features
have been discovered with rule-based analytics models [8] and feature-based
analytics models [9]. Our approach to causal inference also builds a feature-
based analytics model.

3 Our Proposed Algorithms

We predict stock prices in financial markets with Deep Neural Networks (DNNs)
for discriminative learning based regression models and Recurrent Neural Net-
works (RNNs) for sequence learning based regression models. Outputs from
bivariate regression models are used to search Granger-causal features in multi-
variate time series data.
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3.1 Empirical Risk Training in Deep Learning Networks

Suppose a regression model for stock y having actual value y(t) at time t predicts
ŷ(t;α) parameterized by regression parameters α belonging to parameter space
A. In computational learning theory, the regression model is analyzed in terms of
expected risk E(L(ŷ(t;α), y(t))), which is defined as expected value of the loss
function L(ŷ(t;α), y(t)), learning probability density function P (ŷ(t;α), y(t))
underlying the data [10]:

Expected Risk : E(L(ŷ(t;α), y(t))) =

∫
d(ŷ(t;α))d(y(t))L(ŷ(t;α), y(t))P (ŷ(t;α), y(t))

(1)

The expected risk E(L(ŷ(t;α), y(t))) is posed as a regression model when loss
function L(ŷ(t;α), y(t)) is defined on squared errors computed between ŷ(t;α)
and y(t). If the regression model defining L(ŷ(t;α), y(t)) is learning a training
dataset of finite size m, then expected risk E(L(ŷ(t;α), y(t))) is called empirical
risk [11] Ê(L(ŷ(t;α), y(t))).

Empirical Risk : Êy(t)∼P (ŷ(t;α),y(t))(L(ŷ(t;α), y(t))) =
Σm

i=1L(ŷ(t;α)(i), y(t)(i))
m

(2)

The computational complexity of empirical risk Ê(L(ŷ(t;α), y(t))) is determined
by the computational complexity of L(ŷ(t;α), y(t)) which in turn is determined
by the regression model’s feature selection and model validation. Thus, our intu-
ition is that introducing causal features into deep networks not only minimizes
empirical risk but also minimizes regression error.

In our deep network based regression models, regression error is minimized
by the weights α learnt on Squared Error (SE) Loss function L(ŷ(t;α), y(t)) as
in Eq. 3:

SE Loss : L(ŷ(t;α), y(t)) = (ŷ(t;α) − y(t))2 (3)

L(ŷ(t;α), y(t)) is determined by the deep network’s data representation
P (ŷ(t;α), y(t))) of actual data y(t). For training data of size m, the total loss
function LMSE(ŷ(t;α), y(t)) is given in Eq. 4:

MSE Loss : LMSE(ŷ(t;α), y(t)) =
Σm

i=1L(ŷ(t;α)(i), y(t)(i))
m

(4)

By training a deep network model, we use either a DNN or RNN to minimize
empirical risk in Eq. 2. The backpropagation training algorithm solves for α
in Eq. 4 with a stochastic gradient descent procedure finding best model fit on
P (ŷ(t;α), y(t)).
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3.2 Granger Causality Testing in Deep Learning Networks

Causal features can be discovered by changing loss function L(ŷ(t;α), y(t)) in
Eq. 2 according to data representation P (ŷ(t;α), y(t)) in deep learning networks
conditioned on actual past data y(t − j), j = 1, 2, . . . , p with p lags. In the deep
network, P (ŷ(t;α), y(t)) = P (ŷ(t;α)|y(t − j)) is the conditional probability of
predicting regression value ŷ(t) or it parameterized version ŷ(t;α) for stock y.

If another stock x at time point x(t) with q lagged values x(t − k), k =
1, 2, . . . , q, indicates the occurrence of y(t) then we create a deep network condi-
tioned on not only y(t− j), j = 1, 2, . . . , p but also x(t−k), k = 1, 2, . . . , q. Then,
P (ŷ(t;α;β), y(t)) = P (ŷ(t;α;β)|y(t − j), x(t − k)) is conditional probability of
predicting regression value ŷ(t) or it parameterized version ŷ(t;α;β) for stock
y parameterized by regression parameters tensors α and β belonging to deep
network parameter spaces A and B respectively.

From data representations P (ŷ(t;α), y(t)) and P (ŷ(t;α;β), y(t)) defined
above, we devise following Granger causality test using Eq. 3 to predict ŷ(t;α)
and ŷ(t;α;β) as dependent test variables for y(t − j), x(t − k) as independent
test variables.

restricted model: ŷ(t;α) = L(P (ŷ(t;α), y(t))) = L(P (ŷ(t;α)|y(t − j))) (5)

unrestricted model: ŷ(t;α;β) = L(P (ŷ(t;α;β), y(t)))
= L(P (ŷ(t;α;β)|y(t − j), x(t − k)))

(6)

The null hypothesis of no Granger causality is rejected if and only if x(t−k) has
been retained along with y(t − j) in the ŷ(t) regression according to an F-test
on Root Mean Squared Errors (RMSEs) between ŷ(t) and y(t). The F-test in
Definition 1 [2] determines the Granger causality relation between stocks x and y
where RMSE is computed for unrestricted regression as RMSEur and restricted
regression as RMSEr.

Definition 1. F-statistic =
RMSEr−RMSEur

q−p

RMSEur

n−q

To compute causal features over N multivariate time series X = {X(t)u}, u ∈
[1, N ], t ∈ [1, n] selected from N stock prices at n time points in financial markets,
we repeat the F-test for every pair of stocks x and y. In each F-test, the null
hypothesis is that the sample means of predictions are equal and the regression
parameters β are zero. The alternative hypothesis is that there is significant
variation between the sample means of predictions for some non-zero α and
β. The null hypothesis is rejected if p-value on F-test has a significance level
less than 0.05. If the null hypothesis is rejected, deep network features y(t − j)
and x(t−k) Granger cause predicted output ŷ(t) with actual stock price y(t). In
experiments with deep learning networks, a Granger-causal feature is represented
by the causal relation x → y for stocks x and y.
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3.3 Multivariate Regression Validation with Deep Learning
Networks

While we introduced theory to identify single Granger-causes in the previous
subsection, in this subsection we explain the discovery of multiple Granger-
causes for a given stock. Incorporating multiple Granger-causal features into the
F-test allows us to improve deep learning with causal reasoning on multivariate
time-dependent data.

Therefore, we discover multiple Granger-causal features with multivariate
regression in an unrestricted model. The multiple Granger-causal features dis-
covery process validates the single Granger-causal features and predictions. We
extend the unrestricted model for bivariate regression in Eq. 6 to the unrestricted
model for multivariate regression as in Eq. 7.

multivariate unrestricted model: ŷ(t; {αw }) = L(P (ŷ(t; {αw }), y(t)))
= L(P (ŷ(t; {αw })|y(t − j), {x(t − k)w}))

(7)

Equation 7 predicts ŷ(t) by discovering statistically significant Granger-causal
features {xw} → y, w ∈ [1, N ] from multivariate regression. As detailed in
Algorithm 2 in the next subsection, Granger causality test of Eq. 5 is applied
to all pairs of restricted and unrestricted models that differ in one independent
variable xw discovered by bivariate regression. A feature selection procedure for
multivariate regression searches candidate feature sets in the power set of the
set {xw}. The optimal feature set is determined by {αw } with minimum RMSE
RMSEmv.

In bivariate regression, the single Granger-causal features are discovered by
a DNN-based and RNN-based regression model. In multivariate regression, mul-
tiple Granger-causal features are discovered by a DNN-based regression model.

3.4 Deep Learning Networks Based Regression Models

Algorithm 1 gives learning algorithm implementing Eqs. 5 and 6 for loss func-
tion in Eq. 4. The algorithm requires a multivariate time series X = {X(t)u} to
predict regression model’s causal graph GMSE of Granger-causal features and
corresponding regression errors RMSEr, RMSEur, RMSEmv for the restricted
model, the unrestricted model and the multivariate model participating in
Granger causality.

Algorithm 1 executes from Line 1 to Line 16 for every pair of time series
y(t), x(t) ∈ X with lags p, q. Line 6 prepares crossvalidation data for training
deep network on Line 8 which depends on the prediction ŷ(t) from Granger
causality models in Line 7. ŷ(t) is predicted as a complex nonlinear combination
of features y(t − j) and x(t − k) in Line 9. On Line 13 and Line 15, bivari-
ate regression errors RMSEr, RMSEur are computed on actual time point
y(t) and predicted time point ŷ(t). Line 11 applies F-test to discover Granger
causality relations in Line 16. The null hypothesis of not finding Granger-causal
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Algorithm 1. Discovery of Granger-causal features using deep learning networks
Input: Multivariate time series : X = {X(t)u}, u ∈ [1, N ], t ∈ [1, n]; Granger causality lags p, q ∈ Z;
Output: Predictive model output : Bivariate Granger-causal features graph GMSE ; Multivariate

Granger-causal features set Cmv ; Bivariate regression errors RMSEr, RMSEur for restricted
and unrestricted model; Multivariate regression errors RMSEmv for unrestricted model;

1: GMSE = Cmv = Φ, RMSEr = RMSEur = RMSEmv = Φ
2: for u ∈ [1, N ] do

3: y(t) = X(t)u

4: for v ∈ [1, N ] and v �= u do

5: x(t) = X(t)v

6: Create preprocessed and lagged cross validation data y(t − j), x(t − k) with lags
p, q from time series y(t), x(t), t ∈ [1, n]

7: Construct restricted and unrestricted regression model on actual data y(t), x(t)
according to Equation 5 and Equation 6.

8: Construct MSE loss predictions ŷ(t) from Equation 4 for DNN as well as RNN
networks.

9: Calculate regression errors RMSEr and RMSEur for each ŷ(t) and y(t).
10: From Definition 1, compute F -statistic over RMSEr and RMSEur .

11: if F -statistic > 0.05 then

12: if model is restricted then
13: Update bivariate regression error, RMSEr[u][v] = RMSEr, for

restricted model
14: else
15: Update bivariate regression error, RMSEur[u][v] = RMSEur , for unre-

stricted model
16: Update Granger-causal features, GMSE [u] = GMSE [u] ∪ x(t) → y(t), for

bivariate regression

17: for u ∈ [1, N ] do

18: y(t) = X(t)u

19: Retrieve bivariate Granger-causal features {x(t)w} for u from GMSE

20: RMSEmv [u], Cmv [u] = multivar granger(y(t), {x(t)w}, RMSEur) to compute multi-
variate regression outputs.

21: return RMSEr, RMSEur, RMSEmv, GMSE , Cmv

features is rejected at 5% significance level. The corresponding Granger-causal
graph GMSE is searched on Line 19 to improve multivariate regression errors
RMSEmv on Line 20. In Algorithm1, while loop from Line 2 to Line 16 dis-
covers single Granger-causal features GMSE with bivariate regression, loop from
Line 17 to Line 20 discovers multiple Granger-causal features Cmv with mul-
tivariate regression. Algorithm 1 ends on Line 21 by returning Granger-causal
features GMSE , Cmv as well as their regression errors RMSEr, RMSEur and
RMSEmv.

Algorithm 2 called on Line 20 of Algorithm 1 gives the search procedure
implementing Eq. 7. Algorithm 2 requires unrestricted model error RMSEur

found for bivariate regression predicting y(t) from single Granger-causal features
{x(t)w}. The causal relations discovered between {x(t)w} are in Granger-causal
graph GMSE . Algorithm 2 then returns unrestricted model error RMSEmv

from multivariate regression as well as corresponding multiple Granger-causal
features set cmv discovered by multivariate regression network. For all pre-
dicted {X(t)u}, Granger-causal feature sets Cmv stored on Line 20 are
the optimal Granger-causal feature sets discovered across many multivariate
regression networks. The loop from Line 4 to Line 19 in Algorithm2 uses
two sets of selected causes and candidate causes to generate and evaluate
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candidate Granger-causal feature sets for unrestricted model in multivariate
regression. On Line 2, selected causes are initialized to Granger-causal features
{x(t)w} discovered in GMSE of Algorithm 1. On Line 6, Cartesian product of
selected causes and bivariate Granger-causal features {x(t)w} generates candi-
date causes. Candidate RMSEr, Candidate RMSEur are used to track regres-
sion errors of restricted and unrestricted models built from candidate causes. On
Line 10, initially a restricted model in multivariate regression is assumed to be
the same as the unrestricted model in bivariate regression. Later as the loop from
Line 4 to Line 19 crosses more than one iteration as tracked by counter iter, the
restricted model is evaluated against Granger-causal features c\{x(t)w} on Line
12 while the unrestricted model is evaluated against Granger-causal features c on
Line 13. In any giver iteration iter, the restricted and unrestricted models differ
by only one of the Granger-causal features present in {x(t)w}. The multivariate
regression error Candidate RMSEur is computed for each candidate c at Lines
13–15. If the corresponding F-statistic is greater than a predefined threshold on
Line 17, then the candidate c is found to be a legitimate Granger-causal fea-
ture for subsequent processing with multivariate regression. Such a c is updated
to selected causes on Line 18. For every new iteration iter, selected causes are
reset to the empty set on Line 7 immediately after being used to generate can-
didate causes on Line 6. This loop convergence condition ensures that larger
Granger-causal feature sets are generated across iterations. On convergence, no
further selected causes are available for processing. Algorithm 2 terminates the
search procedure by returning the optimal Granger-causal feature set cmv that
minimizes multivariate regression error RMSEmv.

Table 1. Companies listing

Abbreviation Company name Abbreviation Company name

AAPL Apple Inc. MCD McDonald’s Corporation

ABT Abbott Laboratories MSFT Microsoft Corporation

AEM Agnico Eagle Mines Limited ORCL Oracle Corporation

AFG American Financial Group, Inc. WWD Woodward, Inc.

APA Apache Corporation T AT&T Inc.

CAT Caterpillar Inc. UTX United Technologies Corporation

4 Experiments

In this section we discuss the empirical validation of Granger-causal features in
deep learning networks regression models. Table 1 lists the stocks from different
financial sectors in Standard & Poors 500 - a stock market index based on the
market capitalizations of 500 large companies having common stock listed on the
NYSE or NASDAQ. The stocks daily closing prices were obtained from Yahoo
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Algorithm 2. Search procedure for constructing multivariate Granger-causal
graphs
Input: Effect time series y(t); Bivariate Granger-causal features {x(t)w}; Bivariate Regression

errors RMSEur for unrestricted model
Output: Optimal Granger-causal feature set cmv and multivariate regression error RMSEmv for

unrestricted model
1: function multivar granger(y(t), {x(t)w}, RMSEur)
2: Initialize selected causes to Bivariate Granger-causal features {x(t)w}
3: iter = 0, Candidate RMSEr = Candidate RMSEur = Φ
4: while selected causes �= Φ do
5: iter += 1
6: Generate candidate causes, candidate causes = {x(t)w}× selected causes, from previous

iteration’s selected causes
7: Reset selected causes to Φ in current iteration
8: for each candidate cause c ∈candidate causes do
9: if iter == 1 then
10: Set restricted model error Candidate RMSEr[c] = RMSEur [c]
11: else
12: Set restricted model error Candidate RMSEr[c] = Candidate RMSEur

[c \ {x(t)w}]
13: Construct multivariate unrestricted regression model on actual data y(t) and

{x(t)w} according to Equation 7
14: Construct MSE loss predictions ŷ(t) from Equation 4 for DNN networks.
15: Calculate regression error Candidate RMSEur[c] for all ŷ(t) and y(t).
16: From Definition 1, compute F -statistic over Candidate RMSEr[c] and

Candidate RMSEur[c].

17: if F -statistic > 0.05 then
18: Update Granger-causal features: selected causes = selected causes ∪ c

19: end while
20: Among unrestricted models Candidate RMSEur , find optimal Granger-causal feature set

cmv with minimum multivariate regression error RMSEmv

21: return RMSEmv, cmv

22: end function

Finance website1. The data is obtained for a period of 21 years from 26-07-1996
to 25-07-2017.

The regression model’s feature learning is determined by deep network struc-
ture weights α, β and {αw } with MSE loss function. Deep network structure is
designed to minimize bivariate/multivariate regression errors and maximize sig-
nificant Granger causes in the unrestricted model. We treat the regression model
as a time-dependent data-based model with causal lags p, q set to a default value
of 200 days. 5285 days of time points are used to create the crossvalidation data.
Each data record has delayed prices time series predicting current price of a given
stock. For fair comparison of baseline models, we split 30% of crossvalidatiton
data into testing data while remaining 70% of crossvalidatiton data is taken to
be training data.

On bivariate data, we treat regression modelling problem as a discriminative
learning problem in DNNs as well as a sequence learning problem in RNNs to
show that discovered Granger-causal features are not specific to a given network
structure. On multivariate data, we treat regression modelling problem as a
discriminative learning problem in DNNs to validate generalization capability
of proposed feature discovery procedure. The regression errors for discovering

1 https://finance.yahoo.com/.

https://finance.yahoo.com/
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Granger-causal features are also compared with those from a Autoregressive
Integrated Moving Average (ARIMA) regression model. A grid search procedure
is used to select ARIMA training parameters. Number of training epochs in DNN
is set to a default value 50 over a total of 12 stocks. The DNN has three hidden
layers consisting of dense activation units and dropout regularization units. It
is implemented in Keras2 – a Tensorflow based API for deep learning. All time
series are subject to min-max normalization before training.

We experiment with two variants of RNN with Long Short Term Memory
(LSTM) and Gated Recurrent Unit (GRU) activation units. The number of
training epochs in RNN is set to a default value 15. The LSTM has one hidden
layer consisting of LSTM activation unit with 50 neurons. The GRU has three
hidden layers consisting of GRU activation units with 25 neurons. Dropout units
are the regularization units. LSTM as well as GRU state is reset after each
training epoch. The LSTM and GRU are trained for 200 time steps - one record
at a time - over lagged data. The time series data is differenced and scaled to
a range of [-1,1]. For multivariate regression, all the identified single Granger-
causal features are used as input. On multivariate testing data, regression values
are predicted one time step at a time.

Table 2. RMSEs with MSE loss for bivariate regression. DNN is selected as the best
network structure for Granger causality.

Abbreviation ARIMA LSTM GRU DNN

AAPL 0.807 1.449 1.475 0.504

ABT 0.748 0.461 0.469 0.626

AEM 1.643 1.115 1.107 0.143

AFG 0.795 0.580 0.588 0.485

APA 2.795 1.558 1.520 0.145

CAT 1.254 1.474 1.452 0.106

MCD 0.319 0.981 0.994 0.425

MSFT 1.555 0.597 0.606 0.361

ORCL 0.190 0.521 0.520 0.497

T 0.786 0.335 0.339 0.078

UTX 0.209 1.110 1.113 0.297

WWD 0.237 0.817 0.819 0.311

t-test 1.24× 10−2 2.21× 10−4 1.89× 10−4 Base

4.1 Single Granger-Causes Validation

For each company’s price time series, autoregression models RMSEs are reported
in Table 2. From t-test statistics in Table 2, we find DNN generally has better per-
2 https://www.tensorflow.org/api docs/python/tf/contrib/keras.

https://www.tensorflow.org/api_docs/python/tf/contrib/keras
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Table 3. RMSEs with MSE loss for Granger-causal feature discovery. The rows show
causal relations with the restricted model and the unrestricted model RMSEs RMSEr

and RMSEur in bivariate regression with DNN.

Causal Relation RMSEr

Restricted
model (DNN
without
causes)

RMSEur

Unrestricted
model (our
model with
single cause)

Causal Relation RMSEr

Restricted
model (DNN
without
causes)

RMSEur

Unrestricted
model (our
model with
single cause)

AAPL → ABT 0.626 0.198 AAPL → AFG 0.485 0.293

AFG → ABT 0.626 0.191 WWD → AFG 0.485 0.396

APA → ABT 0.626 0.477 AAPL → MCD 0.425 0.315

CAT → ABT 0.626 0.372 AFG → MCD 0.425 0.418

MCD → ABT 0.626 0.261 UTX → MCD 0.425 0.365

MSFT → ABT 0.626 0.501 WWD → MCD 0.425 0.353

ORCL → ABT 0.626 0.362 ABT → MSFT 0.361 0.295

T → ABT 0.626 0.535 AFG → MSFT 0.361 0.249

UTX → ABT 0.626 0.271 UTX → MSFT 0.361 0.297

WWD → ABT 0.626 0.184 WWD → MSFT 0.361 0.183

WWD → UTX 0.297 0.219 UTX → ORCL 0.497 0.202

t-test 3.21 × 10−11 Base t-test 3.21 × 10−11 Base

formance than competitive models. So we choose DNN as the regression model
for discovering Granger-causal features with bivariate regression in Table 3 as
well as multivariate regression in Fig. 1. For experimental validation of our algo-
rithms, we also report Granger-causal features discovered by a GRU model in
Table 4.

Tables 3 and 4 report RMSEs for restricted model RMSEr and unrestricted
model RMSEur. RMSEur is consistently lower than RMSEr for Granger
causality models given in Eqs. 5 and 6 respectively. Each row in Tables 3 and 4
shows pairwise causal relations and their RMSEs. From t-test p-value statistic
comparing RMSEs with and without Granger-causal features in Tables 3 and 4,
we conclude that unrestricted model shows non-trivial reduction in RMSE com-
pared to restricted model for any random pair of stocks involved in Granger
causality. Figure 1(a) represents Granger-causal features discovered from bivari-
ate regression as a causal graph between time series of stock prices represented
by vertices where F-test statistics represented by edges show the strength of
Granger causality.

Thus Tables 3 and 4 validate our proposal to use Granger causality in feature
selection for deep networks based regression models. We also observe that the
proposed feature discovery process and supervised learning process are robust
to any particular deep network structure.
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Table 4. RMSEs with MSE loss for Granger-causal feature discovery. The rows show
causal relations with the restricted model and the unrestricted model RMSEs RMSEr

and RMSEur in bivariate regression with RNN.

Causal Relation RMSEr

Restricted
model (RNN
without
causes)

RMSEur

Unrestricted
model (our
model with
single cause)

Causal Relation RMSEr

Restricted
model (RNN
without
causes)

RMSEur

Unrestricted
model (our
model with
single cause)

ABT → AAPL 1.475 0.403 AFG → APA 1.529 0.788

AFG → AAPL 1.475 0.781 MCD → APA 1.571 0.944

MCD → AAPL 1.475 0.936 MSFT → APA 1.522 0.859

MSFT → AAPL 1.475 0.851 ORCL → APA 1.551 0.732

ORCL → AAPL 1.475 0.726 T → APA 1.527 0.741

T → AAPL 1.475 0.734 UTX → APA 1.522 1.021

UTX → AAPL 1.475 1.012 WWD → APA 1.526 0.846

WWD → AAPL 1.475 0.839 ABT → CAT 1.445 0.474

ABT → AEM 1.107 0.458 AFG → CAT 1.445 0.918

ABT → AFG 0.588 0.303 MSFT → CAT 1.445 1.001

ABT → APA 1.545 0.407 ORCL → CAT 1.444 0.853

ABT → MCD 0.994 0.382 T → CAT 1.445 0.863

ORCL → MCD 0.994 0.687 WWD → CAT 1.444 0.986

T → MCD 0.994 0.695 ABT → UTX 1.113 0.421

ABT → ORCL 0.521 0.257 ORCL → UTX 1.113 0.756

ABT → T 0.338 0.231 T → UTX 1.114 0.765

ABT → MSFT 0.606 0.256 ABT → WWD 0.821 0.397

t-test 3.21 × 10−11 Base t-test 3.21 × 10−11 Base

4.2 Multiple Granger-Causes Validation

Figure 1(a) shows the Granger-causal graph with directed weighted edges that
are outcomes of Definition 1. It indicates Granger-causal relations discovered for
bivariate regression. The edge weights are F-test statistics for all the unrestricted
models that reduce RMSEs in bivariate regression. For example, the causal rela-
tion UTX → ORCL indicates that UTX causes ORCL or ORCL is caused by
UTX with F-test statistic 0.129. This relation has been selected in the Granger-
causal graph because the unrestricted model including UTX prices in ORCL
price prediction leads to a RMSE reduction from 0.497 to 0.202 according to
Table 3. Figure 1(a) shows all the causalities identified on the training data. We
do not assume causalities change at every time point. From Fig. 1(a), we not
only can identify causal features but also indicate the strength of causality.

Figure 1(b) shows the top ranked Granger-causal features discovered by Algo-
rithm2 from Fig. 1(a). These causal features are suitable for multivariate regres-
sion. In Fig. 1(a), vertices like APA without Granger-causes, ORCL and MSFT
with one and two Granger-causes result in no output from Algorithm2. For
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Fig. 1. Granger-causal features, F-statistics on RMSEs RMSEr,RMSEur and multi-
variate regression RMSEs RMSEmv for the unrestricted model with DNN. The edge
directions indicate the causal relations between pairs of stocks and the edge weights
show the corresponding F-test statistic given in Definition 1.

vertices like ABT with non-zero single Granger-causes, Algorithm 2 identifies
multiple Granger-causes. For ABT, Algorithm 2 outputs a total of 69 Granger-
causes which reduces RMSE RMSEmv in multivariate regression models from
RMSEr = 0.626 in the restricted model to RMSEmv ∈ [0.141, 0.541] in the
unrestricted model. In Fig. 1(b), the multivariate Granger-cause {AAPL, AFG,
APA, UTX} has regression error of RMSEmv = 0.141 while {AAPL, CAT,
MCD, MSFT, T} has regression error of RMSEmv = 0.178 in the unre-
stricted model. Of the 69 causes, the longest but not optimal Granger-causes
are found to be {AAPL, APA, CAT, MCD, ORCL, T, UTX, WWD} with
RMSEmv = 0.162 and {AAPL, APA, CAT, MCD, MSFT, T, UTX, WWD}
with RMSEmv = 0.174 in the unrestricted model. We also find two Granger-
causes of length 8, six Granger-causes of length 7 and ten Granger-causes of
length 6. From Fig. 1(b), we observe that multivariate regression on Granger-
causal features results in a better unrestricted model than bivariate regression
on Granger-causal features. In bivariate regression as well as multivariate regres-
sion, while F-test statistics on RMSEs validate our feature selection on regression
errors, t-test statistics on RMSEs support our model validation on regression
errors.

5 Conclusion and Future Work

We presented deep networks based regression models to augment and discover
Granger-causal features analyzing multivariate time series data from finance
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domain. Our Granger-causal features are able to significantly improve multi-
variate regression performance. We also constructed Granger-causal graphs to
capture temporal dependencies in multivariate data. On real stock market data
we demonstrate that our theoretical model significantly outperforms existing
deep learning regression models. As future work we shall combine multiple data
sources to extract regularized features for cost sensitive concept learning and big
data pattern detection.
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Abstract. Generative adversarial nets (GANs) are effective framework
for constructing data models and enjoys desirable theoretical justifica-
tion. On the other hand, realizing GANs for practical complex data dis-
tribution often requires careful configuration of the generator, discrim-
inator, objective function and training method and can involve much
non-trivial effort.

We propose an novel family of generative adversarial nets (GANs),
where we employ both continuous noise and random binary codes in the
generating process. The binary codes in the new GAN model (named
BGANs) play the role of categorical latent variables helps improve the
model capability and training stability when dealing with complex data
distributions. BGAN has been evaluated and compared with existing
GANs trained with the state-of-the-art method on both synthetic and
practical data. The empirical evaluation shows effectiveness of BGAN.

1 Introduction

Generative adversarial nets (GANs) [9] have been shown effective in building gen-
erative data models. In particular, equipped with deep neural networks, GANs
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have achieved impressive success in representing the distributions of various
image data populations [7]. There a wide range of applications, such as image and
video analytics [5,15], image style conversion [6], image synthesis from natural
language description [27].

Training GANs is equivalent to a two-player minimax game, where a gener-
ator G and a discriminator D compete with each other while being optimized
for opposite objectives. G attempts to produce samples from the target distribu-
tion, namely the data population such as natural images, on the other hand, D
is trained to distinguish “true” data samples from the training set and those gen-
erated by G. The two players reach the Nash equilibrium [22] of the game when
G perfectly models the generative process of the data and D has an error rate of
50%. This basic setup of GANs is oriented to unsupervised learning, where the
only knowledge about the data distribution is a set of presumably i.i.d. observed
samples. On the other hand, structural knowledge of data population can be
helpful to build models. For example, if corresponding labels are provided, i.e.
samples in the form of (sample X, label Y ), the labels Y can be employed to
construct generative probabilistic models where latent variables have certain
structures consistent with Y , which is beneficial to build high quality models for
complex data such as images [25]. For example, one of the most straightforward
extensions is to construct a generative model for each individual label [25].

However, labeled data samples are scarce compared to unlabeled ones. More-
over, in a practical dataset, labels are effectively the supervisors’ decisions on
using which attributes to characterize the data. The attributes may be relevant
in the context for a particular task. But they are subject to human bias and
error or limited by the scope of the task, and can be suboptimal to describe the
latent structure of the data distribution.

In this paper, we consider a more general setting of GANs, where the gener-
ator accepts two sets of random variables as input. Input part one is a random
vector Z drawn from multivariate normal distribution as in standard GANs.
Input part two is a random binary vector C, elements drawn from independent
Bernoulli distributions, which we call generating code. The motivation behind
the design of G(z, c) is as follows.

– The binary input C characterize the sample, while different code c1 and c2 can
represent distinctive regions of the data distribution, such as images belong-
ing to two different object categories or video recording of different types of
events.

– The continuous input Z, through the mapping of G, spans a local variation of
the data distribution, such as the viewing angle of an object, or geometrical
or physical variations such as affine transforms or lighting conditions.

It is worthy noting that, unlike labels or latent variables associated to the training
samples, the categorical attributes represented by C are not explicitly specified
or inferred for the training samples. The training process of the propose binary
GAN, BGAN, remains to be unsupervised. Instead, C participates the generative
process as binary random noises (thus the name, generating code). The impose
the constraint that C is corresponding to characteristic global structures of the
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distribution, we introduce a new set of neural networks and the corresponding
training objectives in BGANs. It is required that the generating code C can be
recognized from the generated samples. In our empirical evaluation of BGAN on
complex data distributions, the codes C have been automatically aligned with
underlying factors that are meaningful in forming the structure of the data dis-
tribution. In practical data, the automatically allocated code-sample association
often reveals semantically significant attributes, such as object categories.

The rest of this paper is organized as follows. Section 2 reviews related works.
In Sect. 3, we introduce the BGAN model. Section 4 reports empirical evaluation
of BGAN on both synthetic and practical data. Section 5 concludes the paper.

2 Related Works

Deep neural networks have achieved impressive success in supervised tasks such
as image recognition [11,30,35], object detection [21,28], natural language pro-
cessing [34]. The learning of rich, distributed and hierarchical data representation
is the key to the success [18]. The early works are mostly discriminative tasks,
where the deep neural networks are adopted as powerful function approxima-
tor. The focus is effective learning of networks for accurate modelling of the
associative map between an observation and the desired output [32].

On the other hand, deep generative models are useful to model the casual-
effect relationship between interested underlying factors and observed data, while
the intractable inference adds to the difficulty of model training [12,33]. Adver-
sarial training strategy has been proposed to effectively tune a generative deep
neural that models the sampling distribution of the data [9]. A discriminator
is employed in the GAN framework as the critic on the output of the genera-
tor net: the discriminator attempts to differ the counterfeit samples produced
by the generator from the genuine data samples. It has been theoretically veri-
fied that when the minimax game between the generator and the discriminator
reaches the Nash equilibrium when the generator produces samples following
the real data distribution and discriminator cannot make effective distinction.
There are a growing number of practical applications of GAN in a wide range of
AI tasks, including image generation [4,26], mode conversion [3,20,37], text-to-
image translation [27], etc.

One concern of the GAN framework is that the lack of control over the
sampling distribution – it is often desirable to sample from a subset of data dis-
tribution, e.g. given the observation of a low-resolution image, super-resolution
task requires to produce a high-resolution image of the same content as the
low-resolution input. Variational auto-encoder [16] is an alternative framework
which models the posterior distribution of the latent variables. However, GAN
has advantage over VAE in terms of the representative capability. Recently, var-
ious variants of GANs have been proposed to address the conditional generation
given some external information [14,23], where the nets are provided with extra
observation particular to individual samples.

Despite theoretical justification, empirical implementation of GAN often suf-
fers from training difficulties. The optimization progress can fail to converge or
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the nets may collapse to undesirable trivial fixed point [7]. In particular, the
generators can have difficult time in producing distributions of multiple modes.
Previous efforts have been made to energy based models [8]. Explicit conditional
GANs with categorical information (as opposed to side information on individ-
uals as above) have been proposed [13,23,25]. However, the categorical codes
must be provided during training, and the frameworks thus requires explicit
supervision of sample labels. Instead, we randomly sample binary variables on
which the continuous generating process is conditioned. Binary representation
are also automatically inferred as code for image retrieval [31].

3 Model

We propose to incorporate binary noises in the inputs to the generator in the
GANs architecture. The binary GANs, BGANs, are defined as follows. To pro-
duce one fake sample, xfake, the generator G takes two sets of inputs, c ∈ {0, 1}kc

and z ∈ R
kz ,

ci ∼ Bernoulli(η), i ∈ 1 . . . kc (1)

zj ∼ N (0, σ2), j ∈ 1 . . . kz (2)

where the two noises are drawn as independent Bernoulli distributions and nor-
mal distributions, respectively. The η and σ are noise distribution parameters,
which can be fixed to η = 0.5 and σ = 1.0 for most practical scenarios. The
generated samples are

xfake ← G(z, c) (3)

Both xfake and xtrue ∼ pdata are taken by the discriminator D, which predicts
the probability that the sample belonging to the ground-truth data distribution

input : G: parameters θ
input : D: parameters wd

input : I: parameters wi

input : samples xtrue

output: θ, wd, wi

begin
while θ not converged do

Sample binary c and z
Produce xfake sampled by G(z, c)
minimize (7) and (8) w.r.t. Dw d(x)
minimize (9) w.r.t. Iw i(x)
minimize (9) but maximize (8) w.r.t. Gθ (z, c)

end
end

Algorithm 1: BGAN
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rather than the generated distribution. In BGAN, we introduce a new discrimi-
nator I, which examines the distinctiveness of the generated samples with respect
to the generating codes c

d ← I(xfake
1 , xfake

2 ) (4)

I takes a pair of generated samples as its input. The output d is of the same
dimension as the generating code c. The objective is designed such that I is
trained to identify different bits in c1 and c2, where

xfake
1 = G(z1, c1) (5)

xfake
2 = G(z2, c2) (6)

i.e. c1 and c2 are the generating codes responsible for xfake
1 and xfake

2 , respec-
tively.

During training, the objective function of BGAN consists of three parts,

LT := Ex∼pdata
[logD(x)] (7)

LF := Ez∼pz,c∼pc
[log

(
1 − D(G(z, c))

)
] (8)

LC := Ez1,c1,z2,c2 [DB

(
1[c1 �= c2], I

(
G(z1, c1), G(z2, c2)

))
] (9)

where the LC measures the accuracy of identifying the differences in the gen-
erating codes of two fake samples. The indicator vector 1[c1 �= c2] is a binary
vector of the same size as c1 and c2, each element representing the correspond-
ing elements in c1 and c2 are different. For example, if c1 = [0, 0, 1, 0, 1]T and
c2 = [0, 0, 0, 0, 1]T , then the difference indicator vector would be 1[c1 �= c2] =
[0, 0, 1, 0, 0]T . The metric DB measures the divergence between two binary dis-
tributions, for example binary cross-entropy can be used to realize the definition
in (9).

The training scheme of BGANs resemble the min-max game of the original
GAN [9]. The discriminator D is trained to minimize the loss LT + LF . The
difference identifier I is trained to optimize the loss LC . A well trained I can help
identify the differences in the generating codes behind two generated samples.
The generator G is trained to minimize the loss −LF +LC . I.e. on one hand, G
is required to generate samples sufficiently similar to the ones drawn from the
true distribution that can fool D. On the other hand, the generating process
must also respect the global structure induced in the codes c.

Training steps of BGAN was showed in Algorithm 1, and Fig. 1 illustrates
the implementation of network structure.

4 Experiments

We train BGANs on both a toy dataset and practical image datasets of MNIST
[36] and CIFAR-10 [17]. The MNIST dataset contains 70,000 grayscale images
(size of 28×28, 60,000 for training and 10,000 for testing) of hand-written digits.
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Fig. 1. BGAN Model Structure. The figure shows a typical workflow of BGAN on
example image data. Binary noises and continuous noises are send to a transposed
convolution structure, Generator, produce a sample more specifically an image. Stan-
dard convolution network is employed to construct both I-net and D-net. I-net receives
sample pair and output distinctiveness with respect to their binary codes. D-net pro-
cesses samples and output a single neuron corresponding to the probability sample
belonging to the ground-truth data distribution.

The CIFAR-10 dataset consists of 10 classes samples having 60,000 32×32 color
images in train set and 10,000 in test set.

In our implementation of BGANs, The generator G takes one m-dimensional
continuous noise vector drawn from independent Gaussian distribution N (0, σ2)
and one n-dimensional binary noise vector drawn from independent Bernoulli
distribution as (1). To generate an image of appropriate size, the noise vectors
are concatenated and considered as a 1 × 1 image of m + n channels. In one
step of upsampling the noise signal, G uses a transposed convolutional layer
[29] followed by rectifier linear activations [24]. The upsampling step is repeated
several times with specific stride and dilution settings to have the output of G
match that of the target images. The final layer of G has activation of sigmoid
function. The discriminator D has a standard structure of convolutional nets [19].
In particular, we use 3 convolution layers followed by a full-connection layer. In
terms of neural nets implementation, the code-identifier C is structurally similar
to D. There are two noticeable differences: (i) C takes two concatenated images
as input to identify the different bits in their respective generating code vectors,
so the input of C is a 2-D image for the MNIST grayscale images and 6-D
image for the CIFAR-10 color images. (ii) The output of C are of the same size
4 as the generating binary codes. Network structures adopted in the following
experiments are similar to the model showed in Fig. 1.

4.1 Verification of Concept on Toy Data

To verify the idea of BGANs and easily visualize the BGAN model behavior,
we construct a 2D point data and train BGANs on the synthetic data. The toy
data is a mixture of 2D Gaussian distributions. Each component of the mixture
is a simple isotropic 2D Gaussian differing from each other only by the mean
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Fig. 2. Synthetic 2D data points. (a): The probabilistic density of sampling distri-
bution. (b): 16,000 samples, 1000 from each of the 16 components of the Gaussian
mixture.

N (μ1, σ
2 ·I2×2),N (μ2, σ

2 ·I2×2), . . . . In particular, we draw an example in Fig. 2,
where the sampling distribution is a 16-Gaussian mixture with μ ∈ [0, 20]2 and
σ2 = 0.1 · I2×2. Figure 2 shows the density of the Gaussian mixture and one set
of 16, 000 training points. The task for the models is to generate points on the
2D plane that are distributed similarly to the mixture.

In this experiment, BGANs use 4 bits in the binary generating codes, and
2D Gaussian noise vectors. Our motivation is that we can represent up to 16
components by the 4-bit code and the data distribution is known to be in R

2.
Figure 3 shows the points sampled from the generator nets trained with

BGAN and Wasserstein GAN (WGAN) [10] respectively. Different panes rep-
resent different settings of the noise variance for z, in sufficiently trained models
the results are not sensitive to z-variance. In the following experiment we will use
σ2
z = 0.1. Simple visual inspection of the results show superior fitness of BGAN.

which can be attributed to the binary code helping model spatially complex dis-
tribution. When the components of the mixture are arranged so that the density
structure is spatially complex, BGANs can capture the complex structure more
reliably. In Fig. 3, the points generated with different binary codes are plotted
using respective colors. It is interesting to notice that the model automatically
recognizes data clusters without explicit constraint on connection between z and
generated points. In Fig. 7 (attached at the end of the paper on page 10), we
plot points generated by different binary code separately, which clearly show the
structure discovery and encoding capability of BGAN.

We also perform a quantitative evaluation of WGAN and BGAN on how they
have modeled the data distribution. Although in this synthetic data experiment
we have access to the ground-truth density function, we use a consistent evalu-
ation criterion as used for the practical data. The details are introduced below.
Briefly, we use the generated 16,000 points by BGAN and WGAN respectively
(Fig. 3(a) and (d)), and fit a density estimator on the generated points. Then
the likelihood of the training samples are computed. The higher the likelihood
the better the model has fitted to the data distribution.
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Fig. 3. Generated data points by BGAN and GAN. (a–c): Samples produced by 4-bit
BGAN with different continuous noise variance. The colors indicate different binary
codes. See Fig. 7 for clearer demonstration on samples generated with different codes.
(d–f): Samples produced by GAN trained using the framework in [10] using the same
noise variance as (a–c). (Color figure online)

Figure 4 shows the estimated probability using samples generated by trained
BGAN and WGAN models respectively, along with the likelihood of the train-
ing samples. The plot shows the advantage of using generating codes when the
structure of the distribution grows more complex, and especially when the dis-
tribution is not continuous in the raw observation space. The quantitative result

log pBGAN (Data) = −3.99 > log pWGAN (Data) = −4.35

shows effectiveness of BGAN.

Fig. 4. Synthetic data probability modeled by BGAN and WGAN.
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4.2 Modelling Distributions of Practical Image Datasets

We apply WGAN and BGAN to the MNIST [36] and CIFAR-10 datasets [17].
In the experiment, we have used 4 bits for c and σ2

z = 0.1 for both classes.
The learned probabilities are evaluated following the protocol as [1,2]. Specif-

ically, as the ground-truth probability density is intractable for the practical
image data, we generate samples using a learned model. Using a Gaussian Parzen
window fitted to the generated samples, we can calculate the likelihood of the
samples in the dataset under the learned probability. Higher likelihood indicates
better learned probability distributions. Table 1 lists the likelihood of BGAN and
WGAN, showing the binary codes improve the modelling of data distribution.

Table 1. Data average log-likelihood of BGAN and WGAN modeled distributions.

Data BGAN WGAN

MNIST −169.355 −177.676
CIFAR-10 −412.313 −3097.502

The data samples, generated images using WGAN and BGAN on MNIST
and CIFAR-10 are shown in Figs. 5 and 6, respectively. The generated samples
from BGAN with different generating codes. It is noteworthy that BGAN are
trained completely unsupervised as WGAN.

0000 0001 0010 01010011 0100 0110 0111 1000 1001 1010 11011011 1100 1110 1111

(c
)

a (b
)

Fig. 5. GAN models on MNIST images. (a) MNIST data samples; (b) WGAN gener-
ated samples; (c) BGAN generated samples. The binary code used in BGAN for each
sample generation is listed as well.
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Fig. 6. GAN models on CIFAR-10 images. (a) Training data samples; (b) WGAN
generated samples; (c) BGAN generated samples. The binary code for each sample
generation is listed as well.

Fig. 7. Synthetic data generated by BGAN with different binary codes. Each plot in the
figure shows samples from a particular binary code in the synthetic data experiment.
(Color figure online)
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5 Conclusion

We present a novel extension to GANs, where the generator takes into account
not only continuous random noises, but also binary random code. The combina-
tion of the two types of underlying stochastic processes have been shown effective
in capturing data distribution.

There are several straightforward yet useful extension to BGAN. Instead of
randomly drawing the codes, one can have a few bits fixed and condition the
sample generating process as x ∼ X|c1, c2, . . . . The known bits may correspond
to partial knowledge of stochastic process modeled by BGAN.
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Abstract. In order to speed up the learning time of large margin distri-
bution machine (LDM) and improve the generalization performance of
twin bounded support vector machine (TBSVM), a novel method named
twin bounded large margin distribution machine (TBLDM) is proposed
in this paper. The central idea of TBLDM is to seek a pair of nonparallel
hyperplanes by optimizing the positive and negative margin distribu-
tions on the base of TBSVM. The experimental results indicate that the
proposed TBLDM is a fast, effective and robust classifier.

Keywords: Large margin distribution machine
Twin bounded support vector machine · Margin distribution
Margin mean · Margin variance

1 Introduction

Support vector machines (SVMs) [3,18] are powerful tools for pattern classifi-
cation and regression. For the classical binary classification SVM, the optimal
hyperplane can be obtained by maximizing a relaxed minimum margin, i.e., the
smallest distance from data point to the classification boundary. This optimisa-
tion can be expressed as a quadratic programming problem (QPP). Margin the-
ory [17] provides good theoretical support to the generalisation performance of
SVMs and it has also been applied to many other machine learning approaches,
such as AdaBoost [5]. There was, however, a long debate on whether margin
theory plays a significant role in AdaBoost [2,14]. It had been believed that
a single-data-point margin such as minimum margin is not crucial [13,19]. [6]
ended the long debate and showed that margin distribution, characterized by
margin mean and variance, is critical for generalisation in boosting. Inspired
by these results, [23] first focused on the influence of the margin distribution
for SVMs and proposed large margin distribution machine (LDM). The margin
distribution heuristic can also be applied to clustering [24] and dimensionality
reduction [9].

The twin support vector machine (TWSVM) proposed by [7] seeks for two
nonparallel boundary hyperplanes and attempts to make each of the two hyper-
planes close to one class and far from the other as much as possible. TWSVM
solves two smaller size QPPs instead of a single large QPP. This results in
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 718–729, 2018.
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TWSVM being faster than SVM. An improved version of TWSVM, called twin
bounded support vector machine (TBSVM) was proposed by [16]. TBSVM
implemented the structural risk minimisation principle by introducing a reg-
ularization term. Based on statistical learning theory, TBSVM can improve the
performance of classification of TWSVM. Recently, many extensions of TWSVM
have been proposed, for details, see [8,12,15,20,21].

In this paper, we propose the twin bounded large margin distribution machine
(TBLDM). Similar to LDM, the margin distribution of TBLDM is characterised
by first and second order statistics and optimizing the margin distribution is
realized by maximizing the margin mean and minimizing the margin variance
simultaneously. However, TBLDM tries to optimise the positive and negative
margin distributions separately. This is different from LDM, which optimised
the whole margin distribution for all training points.

To begin with, we will first provide a brief background on SVM, TWSVM
and LDM in Sect. 2. Our novel approach TBLDM for classification problems will
be introduced in Sect. 3. In Sect. 4, we will make numerical experiments to verify
that our new model is very effective in classification. Discussions and conclusions
will be summarized in Sect. 5.

2 Notation and Related Work

Given the dataset T = {(xi, yi)}l
i=1, where xi ∈ Rn is the i-th input sam-

ple and yi ∈ {±1} is the class label of xi. Let l1 and l2 be the numbers
of samples belonging to the positive and negative classes, respectively, such
that l = l1 + l2. Denote X = [x1, · · · , xl] ∈ Rn×l, A = [x+

1 , · · · , x+
l1

] ∈
Rn×l1 and B = [x−

1 , · · · , x−
l2

] ∈ Rn×l2 as the entire, positive and negative
sample matrices. Let k : Rn × Rn → R be a kernel function with repro-
ducing kernel Hilbert space (RKHS) ˜H and nonlinear feature mapping φ :
Rn → ˜H. Denote φ(A) = [φ(x+

1 ), · · · , φ(x+
l1

)], φ(B) = [φ(x−
1 ), · · · , φ(x−

l2
)] as

the positive and negative mapped sample matrices, the kernel matrix K =
φ(X)T φ(X) where φ(X) = [φ(x1), · · · , φ(xl)], KA = φ(A)T φ(X) ∈ Rl1×l,KB =
φ(B)T φ(X) ∈ Rl2×l,K(x,X) = [k(x, x1), · · · , k(x, xl)] ∈ R1×l, ∀x ∈ Rn. and
y = (y1, · · · , yl)T ∈ Rl. yA = (y+

1 , · · · , y+
l1

)T ∈ Rl1 , yB = (y−
1 , · · · , y−

l2
)T ∈ Rl2 .

2.1 Support Vector Machine (SVM)

SVM tries to find a hyperplane f(x) = wT φ(x) = 0, where f is linear and w ∈ ˜H
is a linear predictor. According to [3] and [17], the margin of the individual
sample (xi, yi) is defined as

γi = yiw
T φ(xi), i = 1, · · · , l. (1)

In separable cases, all the γi will be non-negative. So we can get the geometric
distance from each xi to wT φ(x) = 0 by scaling each γi with 1/‖w‖:

γ̂i = yi
wT

‖w‖φ(xi), i = 1, · · · , l.
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For the separable case, SVM maximizes the minimum distance:

max
w

γ̂

s.t. γ̂i ≥ γ̂, i = 1, · · · , l.

It can be written as

max
w

γ

‖w‖
s.t. γi ≥ γ, i = 1, · · · , l.

We can simply set γ as 1 since it doesn’t have influence on the optimisation.
Note that maximizing 1/‖w‖ is equivalent to minimizing ‖w‖2, we can get the
classic formulation of hard-margin SVM as follows:

min
w

1
2
‖w‖2

s.t. yiw
T φ(xi) ≥ 1, i = 1, · · · , l.

For non-separable case, SVM can be written as

max
w,ξi

γ0 − C̄

l
∑

i=1

ξi

s.t. γi ≥ γ0 − ξi,

ξi ≥ 0, i = 1, · · · , l,

where γ0 is a relaxed minimum margin, ξi is slack variable and C̄ is the trading-
off parameter. The above formula can be rewritten as

max
w,ξi

γ0 − C
l

∑

i=1

ξi

s.t. yiw
T φ(xi) ≥ 1 − ξi,

ξi ≥ 0, i = 1, · · · , l,

where C is a trading-off parameter. We can see that SVMs for both separable and
non-separable cases consider only single-data-point margins but not the whole
margin distribution.

2.2 Twin Bounded Support Vector Machine (TBSVM)

Different from conventional SVM, TWSVM seeks for a pair of nonparallel hyper-
planes f+(x) = wT

+φ(x) = 0 and f−(x) = wT
−φ(x) = 0. As an improved version of

TWSVM, TBSVM consider the structural risk minimization principle by adding
a regularization term. The training time of TBSVM is approximately four times
faster than SVM. We introduce non-linear TBSVM in this subsection, for linear
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case and other details, see [7,16]. The unknown vectors w+, w− ∈ Rn of TBSVM
can be obtained by solving the following two QPPs:

min
w+,ξ2

c1
2

||w+||2 +
1
2
||φ(A)T w+||2 + c3e

T
2 ξ2

s.t. − φ(B)T w+ + ξ2 ≥ e2, ξ2 ≥ 0, (2)

min
w−,ξ1

c2
2

||w−||2 +
1
2
||φ(B)T w−||2 + c4e

T
1 ξ1

s.t. φ(A)T w− + ξ1 ≥ e1, ξ1 ≥ 0, (3)

where c1, · · · , c4 > 0 are trade-off parameters, ξ1 ∈ Rl1 , ξ2 ∈ Rl2 are slack
variable vectors and e1 ∈ Rl1 , e2 ∈ Rl2 are vectors of ones. A new input x̃ ∈ Rn

is assigned the class k depending on which of the two hyperplanes it is closer to.
That is, the class label yx̃ can be obtained by yx̃ = arg min

k=±
|fk(x̃)|
||wk|| .

Similar to the definition of the margin of individual sample in (1), the positive
and negative margin of individual sample can be formulated as

γ+
j = y+

j f−(x+
j ) = y+

j wT
−φ(x+

j ), j = 1, · · · , l1, (4)

γ−
j = y−

j f+(x−
j ) = y−

j wT
+φ(x−

j ), j = 1, · · · , l2, (5)

respectively. We can see that TBSVM tries to maximize the minimal negative
margin between the negative samples and positive decision hyperplane by (2)
and maximize the minimal positive margin by (3).

2.3 Large Margin Distribution Machine (LDM)

LDM tries to achieve a strong generalization performance by optimizing the
margin distribution of samples on the basis of soft-margin SVM. The margin
distribution is characterized by first- and second-order statistics. Optimizing
margin distribution is realized by maximizing the margin mean and minimizing
the margin variance simultaneously. Based on (1), the margin mean γ̄ and the
margin variance γ̂ can be calculated by γ̄ = 1

l

∑l
i=1 γi and γ̂ = 1

l

∑l
i=1(γi − γ̄)2.

The unknown w ∈ ˜H can be obtained by solving the following optimisation
problem:

min
w,ξi

1
2
wT w + λ1γ̂ − λ2γ̄ + C

l
∑

i=1

ξi

s.t. yiw
T φ(xi) ≥ 1 − ξi, ξi ≥ 0, i = 1, · · · , l,

where λ1, λ2 > 0 are the parameters for trading-off the margin variance, the
margin mean and the model complexity. It is obvious that LDM can be reduced
to soft-margin SVM when λ1 = λ2 = 0.
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3 Twin Bounded Large Margin Distribution Machine
(TBLDM)

In this section, we will introduce our novel classification method named as twin
bounded large margin distribution machine (TBLDM). Based on the concepts of
positive margin and negative margin in (4) and (5), the positive margin mean γ̄+

and the positive margin variance γ̂+ can be calculated by γ̄+ = 1
l1

∑l1
j=1 γ+

j =
1
l1

yT
Aφ(A)T w−, and γ̂+ = 1

l1

∑l1
i=1(γ

+
i − γ̄+)2 = wT

−φ(A)Q1φ(A)T w− respec-

tively. Here Q1 = l1Il1−yAyT
A

l21
is a symmetric matrix. Since Q2

1 = 1
l1

Q1, it can
be concluded that Q1 is a symmetric nonnegative definite matrix. Similarly, we
can get the negative margin mean γ̄− and the negative margin variance γ̂− by
γ̄− = 1

l2
yT

Bφ(B)T w+, γ̂− = wT
+φ(B)Q2φ(B)T w+, where Q2 = l2Il2−yByT

B

l22
is also

a symmetric nonnegative definite matrix.

3.1 TBLDM

Specifically, TBLDM seeks a pair of unknown vectors w+, w− ∈ ˜H by maxi-
mizing the positive and negative margin mean and minimizing the positive and
negative margin variance simultaneously, that is, by considering the following
two optimisation problems:

min
w+,ξ2

c1
2

‖w+‖2 +
1
2
‖φ(A)T w+‖2 − λ1γ̄

− + λ2γ̂
− + c3e

T
2 ξ2

s.t. − φ(B)T w+ + ξ2 ≥ e2, ξ2 ≥ 0, (6)

min
w−,ξ1

c2
2

‖w−‖2 +
1
2
‖φ(B)T w−‖2 − λ3γ̄

+ + λ4γ̂
+ + c4e

T
1 ξ1

s.t. φ(A)T w− + ξ1 ≥ e1, ξ1 ≥ 0, (7)

where λ1, · · · , λ4 > 0 are the parameters for trading-off the margin variances,
the margin means and the complexity of models. It is obvious that TBLDM
can be reduced to the nonlinear TBSVM when λ1, λ2, λ3 and λ4 are equal to 0.
Substituting γ̄− and γ̂− into the models (6), we can get the following:

min
w+,ξ2

c1
2

‖w+‖2 +
1

2
‖φ(A)T w+‖2 − λ1

l2
yT

Bφ(B)T w+ + λ2w
T
+φ(B)Q2φ(B)T w+ + c3e

T
2 ξ2

s.t. − φ(B)T w+ + ξ2 ≥ e2, ξ2 ≥ 0, (8)

Due to ˜H = span{φ(x1), · · · , φ(xl)}, we can let w+ = φ(X)β1 and w− = φ(X)β2,
where β1, β2 ∈ Rl are coefficient vectors, and then we can deduce that

‖w+‖2 = βT
1 Kβ1, |w−‖2 = βT

2 Kβ2,

φ(A)T w+ = KAβ1, φ(B)T w+ = KBβ1,

φ(A)T w− = KAβ2, φ(B)T w− = KBβ2,

f+(x) = wT
+φ(x) = K(x,X)β1, f−(x) = wT

−φ(x) = K(x,X)β2. (9)
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Substituting (9) into the models (8), we have

min
β1,ξ2

c1
2

βT
1 Kβ1 +

1
2
βT
1 KT

AKAβ1 − λ1

l2
yT

BKBβ1 + λ2β
T
1 KT

BQ2KBβ1 + c3e
T
2 ξ2

s.t. − KBβ1 + ξ2 ≥ e2, ξ2 ≥ 0, (10)

Let

G1 = c1K + KT
AKA + 2λ2K

T
BQ2KB ∈ Rl×l,

G2 = c2K + KT
BKB + 2λ4K

T
AQ1KA ∈ Rl×l.

Obviously, G1 and G2 are symmetric nonnegative definite matrices. The models
(10) can be rewritten as

min
β1,ξ2

1
2
βT
1 G1β1 − λ1

l2
yT

BKBβ1 + c3e
T
2 ξ2

s.t. − KBβ1 + ξ2 ≥ e2, ξ2 ≥ 0, (11)

Considering the Lagrangian function of the model (11)

L1(β1, ξ2, α1, δ1) =
1

2
βT
1 G1β1 − λ1

l2
yT

BKBβ1 + c3e
T
2 ξ2 − αT

1 (−KBβ1 + ξ2 − e2) − δT
1 ξ2,

where α1, δ1 ∈ Rl2 are nonnegative Lagrangian multipliers vectors, and letting
∂L1/∂β1 = ∂L1/∂ξ2 = 0, we get

G1β1 =
λ1

l2
KT

ByB − KT
Bα1,

c3e2 − α1 − δ1 = 0 ⇒ 0 ≤ α1 ≤ c3e2. (12)

Without loss of generality, we can assume that G1 is an invertible matrix; oth-
erwise, it can be regularized, that is, it can be replaced by the matrix G1 + t1Il,
where t1 > 0 is a small positive number called regularized coefficient. Conse-
quently, it can be deduced from (12) that

β1 = G−1
1 (

λ1

l2
KT

ByB − KT
Bα1). (13)

Submitting (13) and (12) into the Lagrangian function, we can obtain the Wolfe
dual form of the model (11):

min
α1

1
2
αT
1 H1α1 − (

λ1

l2
H1yB + e2)T α1

s.t. 0 ≤ α1 ≤ c3e2, (14)

where H1 = KBG−1
1 KT

B . Similarly, we can get

β2 = G−1
2 (

λ1

l1
KT

AyA + KT
Aα2), (15)
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and then the Wolfe dual form of the model (7) is:

min
α2

1
2
αT
2 H2α2 + (

λ3

l1
H2yA − e1)T α2

s.t. 0 ≤ α2 ≤ c4e1, (16)

where α2 ∈ Rl1 is a nonnegative Lagrangian multipliers vector and H2 =
KAG−1

2 KT
A . A new input x̃ ∈ Rn is assigned the class i (i = 1, 2 denotes the

positive and negative classes, respectively) depending on which of the two hyper-
planes is closer to, that is, label (x̃) = arg min

i=1,2

|K(x̃,X)βi|√
βiKβi

. The specific procedure

is listed in Algorithm 1.

Algorithm 1. TBLDM
Input: Training set T , testing sample x̃, kernel function k : Rn × Rn → R, model

parameters λi, · · · , λ4 and ci, · · · , c4, regularized parameters t1, t2 and kernel
parameters;

1: Solve the QPP (14) and obtain the optimal solution α∗
1;

2: Compute β∗
1 by (13) with α1 = α∗

1;
3: Solve the QPP (16) and obtain the optimal solution α∗

2;
4: Compute β∗

2 by (15) with α2 = α∗
2;

5: For x̃, predict its label by label (x̃) = arg min
i=1,2

|K(x̃,X)β∗
i |√

β∗
i Kβ∗

i

.

3.2 TBLDM for Large Scale Datasets

It can be seen that we need to compute G−1
1 and G−1

2 and kernel matrix
K,KA,KB before solving the dual problems (14) and (16). This is infeasible
when the number of samples is significantly large both in terms of memory and
computation. To effectively handle large scale problems, in this subsection, we
first choose a kernel approximation method, Nyström method [22] to explicitly
map features onto subspaces in the RKHS. In this case, the embedding features
are obtained without constructing the complete kernel matrix for the data set.
Given the kernel-specific embedding, we perform linear TBLDM. Because the
inverse matrices of AAT and BBT still need to be computed to get the dual
problem of linear TBLDM, we solve the primal problem of linear TBLDM here
with stochastic gradient descent (SGD) algorithm.

Linear TBLDM is a special case of TBLDM with linear kernel function
k(u, v) = 〈u, v〉 for any u, v ∈ Rn. In this case, the models (6) and (7) are
reduced into the following two QPPs:

min
w+,ξ2

c1
2

‖w+‖2 +
1
2
‖AT w+‖2 − λ1

l2
yT

BBT w+ + λ2w
T
+BQ2B

T w+ + c3e
T
2 ξ2

s.t. − BT w+ + ξ2 ≥ e2, ξ2 ≥ 0, (17)
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min
w−,ξ1

c2
2

‖w−‖2 +
1
2
‖BT w−‖2 − λ3

l1
yT

AAT w− + λ4w
T
−AQ1A

T w− + c4e
T
1 ξ1

s.t. AT w− + ξ1 ≥ e1, ξ1 ≥ 0. (18)

To solve formulas (17) and (18) in primal case, we express them equivalently as
two unconstraint optimisation problems:

min
w+,ξ2

g1(w+) =
c1
2

‖w+‖2 +
1
2
‖AT w+‖2 − λ1

l2
yT

BBT w+ + λ2w
T
+BQ2B

T w+

+ c3

l2
∑

i=1

max{0, 1 + wT
+x−

i }, (19)

min
w−,ξ1

g2(w−) =
c2
2

‖w−‖2 +
1
2
‖BT w−‖2 − λ3

l1
yT

AAT w− + λ4w
T
−AQ1A

T w− +

c4

l1
∑

i=1

max{0, 1 − wT
−x+

i }. (20)

If examples (x+
i , y+

i ), (x+
j , y+

j ), (x+
k , y+

k ) are randomly sampled from the positive
training set and (x−

i , y−
i ), (x−

j , y−
j ), (x−

k , y−
k ) are randomly sampled from the

negative training set independently, it is straightforward to prove that

∇g1(w+, x+
i , x−

j , x−
k ) = c1w+ + l1x

+
i x+

i

T
w+ + 2λ2x

−
j x−

j

T
w+ − 2λ2x

−
j x−

k

T
w+

+λ1x
−
j + c3l2x

−
j I(j ∈ I1), (21)

∇g2(w−, x−
i , x+

j , x+
k ) = c2w− + l2x

−
i x−

i

T
w− + 2λ4x

+
j x+

j

T
w− − 2λ4x

+
j x+

k

T
w−

−λ3x
+
j − c4l1x

+
j I(j ∈ I2). (22)

are the unbiased estimation of ∇g1(w+) and ∇g2(w−) respectively. I(·) is the
indicator function that returns 1 when the argument holds, and 0 otherwise.
I1, I2 are the index sets defined as I1 = {j|wT

+x−
j > −1}, I2 = {j|wT

−x+
j < 1}.

So we can update w+, w− by w+ ← w+ − r1∇g1(w+, x+
i , x−

j , x−
k ) and w− ←

w− − r2∇g2(w−, x−
i , x+

j , x+
k ), r1, r2 are learning rates for each iteration of SGD

algorithm. The detailed procedure is listed in Algorithm 2.

4 Experiments and Results Analysis

In order to demonstrate the effectiveness of TBLDM, a series of comparative
experiments with SVM, TBSVM and LDM are performed. The experiments
focus on the aspects of classification accuracy and computational time on six-
teen regular scale datasets and four large-scale datasets. These datasets are taken
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Algorithm 2. Nyström + linear TBLDM for large scale problems
Input: Positive training set A, negative training set B, testing sample x̃, model param-

eters λ1, · · · , λ4 and c1, · · · , c4 and learning rates r1, r2;
1: Get data embedding Ae, Be and x̃e by Nyström method;
2: while w+, w− not converged do
3: Randomly select a mini-batch x+

b = {x+
i , x+

j , x+
k } and a mini-batch x−

b = {x−
i ,

x−
j , x−

k };

4: for x+
b ⊂ Ae and x−

b ⊂ Be do
5: Compute the gradient ∇g1(w+, x+

i , x−
j , x−

k ) by (21);

6: Compute the gradient ∇g2(w−, x−
i , x+

j , x+
k ) by (22);

7: w+ ← w+ − r1∇g1(w+, x+
i , x−

j , x−
k );

8: w− ← w− − r2∇g2(w−, x−
i , x+

j , x+
k );

9: end for
10: end while
11: For x̃, predict its label by label (x̃) = arg min

i=±
|wT

i x̃e|
‖wi‖ .

from UCI database [4] and real-world databases1, respectively. All the compu-
tational time involved is the sum of the training time and the testing time and
all the classification accuracy involved is the testing accuracy, that is, the clas-
sification accuracy on testing sets.

4.1 Experiments on Regular-Scale Datasets

The statistics of the regular-scale datasets are listed in the first four rows
in Table 1, where l and n denote the number and the dimensionality of
samples, respectively. Gaussian radial basis function (RBF) kernel k(u, v) =
exp(−‖u − v‖2/γ) for u, v ∈ Rn is selected and SMO [11] algorithm is used
for SVM, where γ > 0 is a kernel parameter. We use SOR solver [10] for fast
training TBSVM; the source code of [23] for LDM; for TBLDM, the ‘quadprog’
toolbox in MATLAB [1] is used to solve QPPs (14) and (16). All the experi-
ments are operated in MATLAB. For the convenience of computation, we take
all the model parameters C, c1, c2, c3, c4 = 1, the kernel parameter γ and λ1, λ2

are chosen from [2−6, 26] by using 5-fold cross validation method. Experiments
are repeated for 5 times with random data partitions to calculate the average
accuracies and variances. The experimental results are listed in Table 2, from
which we can see that for computational time, TBLDM is obviously faster than
LDM except on spect and wpbc datasets, and faster than TBSVM on 12 datasets
and similar on the remaining 4 datasets. For classification accuracy, TBLDM is
higher than LDM on 11 datasets and same on wdbc data set, and is higher than
TBSVM on 13 datasets. In addition, SVM only gets the highest classification
accuracy on wdbc data set although its computational time is the fastest.

1 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 1. Statistics of datasets

Data set l n Data set l n Data set l n Data set l n

Australian 690 14 Parkinsons 195 22 Bupa 345 6 Ringnorm 400 20

Ecoli 336 7 Sonar 208 60 German 1000 24 Spect 80 22

Haberman 306 3 Transfusion 748 4 Heart 270 13 Twonorm 400 20

Ionosphere 351 34 wdbc 569 30 Monks2 432 6 wpbc 198 32

cod-rna 216948 8 ijcnn1 141691 22 Skin 245057 3 w8a 64700 300

Table 2. Experimental results with regular size datasets

SVM TBSVM LDM TBLDM

DATASETS acc(mean±std) time(s) acc(mean±std) time(s) acc(mean±std) time(s) acc(mean±std) time(s)

australian 0.8565±0.0262 0.0353 0.8574±0.0360 0.2015 0.8557±0.0258 1.4757 0.8672±0.0194 0.1500
bupa 0.6736±0.0591 0.0292 0.6986±0.0495 0.0818 0.6980±0.0542 0.1893 0.7014±0.0366 0.0820
ecoli 0.9637±0.0264 0.0189 0.9648±0.0331 0.0743 0.9672±0.0232 0.1785 0.9637±0.0175 0.0939
german 0.7224±0.0367 0.0611 0.7510±0.0211 0.5345 0.7590±0.0186 4.9356 0.7724±0.0223 0.4213
haberman 0.7333±0.0235 0.0241 0.7210±0.0203 0.1320 0.7353±0.0344 0.1337 0.7380±0.0396 0.0805
heart 0.8333±0.0367 0.0220 0.8356±0.0567 0.0577 0.8326±0.0461 0.0948 0.8363±0.0464 0.0491
ionosphere 0.9345±0.0327 0.0233 0.9248±0.0224 0.0688 0.9441±0.0254 0.2189 0.8872±0.0308 0.0511
monks2 0.7940±0.0450 0.0330 0.8065±0.0212 0.0595 0.8074±0.0391 0.3659 0.8320±0.0448 0.0509
parkinsons 0.9159±0.0387 0.0270 0.8995±0.0386 0.0399 0.9344±0.0421 0.0451 0.9415±0.0378 0.0358
ringnorm 0.9530±0.0273 0.0270 0.9560±0.0226 0.0594 0.9675±0.0189 0.3284 0.8485±0.0337 0.0448
sonar 0.8066±0.0460 0.0245 0.8489±0.0480 0.0467 0.8568±0.0519 0.0592 0.8738±0.0449 0.0296
spect 0.6900±0.1119 0.0217 0.6875±0.0633 0.0213 0.7025±0.1094 0.0038 0.7025±0.1033 0.0214
transfusion 0.7348±0.0262 0.0487 0.7628±0.0175 0.8928 0.7939±0.0264 1.8919 0.7839±0.0249 0.6641
twonorm 0.9725±0.0186 0.0195 0.9720±0.0158 0.0647 0.9695±0.0205 0.2988 0.9730±0.0165 0.0636
wdbc 0.9761±0.0116 0.0215 0.9708±0.0119 0.1345 0.9743±0.0146 0.8451 0.9743±0.0148 0.1185
wpbc 0.7627±0.0118 0.0306 0.7697±0.0176 0.0420 0.7988±0.0472 0.0428 0.8002±0.0405 0.0439

4.2 Experiments on Large-Scale Datasets

The statistics of the large-scale datasets are listed in the last row of Table 1. All of
these four large-scale datasets are split into training and test parts. To compare
with our method, we employ linear SVM, linear LDM and linear TBLDM after
Nyström method. We choose Liblinear for linear SVM; the source code of [23] for
linear LDM. A nonlinear SVM also runs directly on these large-scale datasets.
For the convenience of computation, C, c1, c2, c3, c4, λ1, λ2, λ3, λ4 are all set to 1,
γ that used for nonlinear SVM and Nyström method is set to the average squared
distance between data points and the sample mean. The number of landmark
points of Nyström method is chosen as m = 50, 100. Table 3 tells us that all
linear classifiers running after the Nyström method can get a close classification
accuracy result compared to nonlinear SVM, even with such small number of
landmark points m. However, we can see from Table 4 that the running time of
all linear classifier frameworks plus Nyström method are much faster than that
of nonlinear SVM. Moreover, we can see that TBLDM is the fastest if we only
compared the time running by three linear classifiers. In addition to nonlinear
SVM, all classifiers labelled as SVM, LDM and TBLDM in Tables 3 and 4 are
linear.
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Table 3. Classification accuracy results on 4 large-scale datasets

Datasets Nonlinear-SVM m = 50 m = 100

SVM LDM TBLDM SVM LDM TBLDM

cod-rna 0.8778 0.8650 0.8542 0.8536 0.8651 0.8618 0.8541

ijcnn1 0.9840 0.9138 0.9050 0.9050 0.9357 0.9203 0.9159

Skin 0.9756 0.9982 0.9972 0.9759 0.9985 0.9978 0.9807

w8a 0.9939 0.9696 0.9697 0.9698 0.9721 0.9709 0.9707

Table 4. Time (seconds) comparison on 4 large-scale data sets

Datasets Nonlinear-SVM m=50 m=100

Nyström SVM LDM TBLDM Nyström SVM LDM TBLDM

cod-rna 358.88 0.41 0.50 0.49 0.33 0.71 0.55 0.53 0.34

ijcnn1 46.28 0.38 0.63 0.67 0.12 0.65 1.09 1.23 0.15

Skin 1357.9 0.86 0.99 1.64 0.92 1.45 1.49 2.42 0.84

w8a 533.02 1.39 0.30 0.40 0.05 1.77 0.54 0.73 0.07

5 Conclusions

Inspired by the idea of LDM and TBSVM, in this paper, we introduce the
notions of positive margin and negative margin of samples and then present a
novel classification method, TBLDM, by optimizing the positive and negative
margin distributions. The experimental results on sixteen regular scale datasets
and four large scale datasets indicate that, compared with SVM, TBSVM and
LDM, the proposed TBLDM is a fast, effective and robust classifier. From the
derivation process in Sect. 3, we can see that the technique used in this paper
has a certain commonality. Therefore, it will be interesting to generalize the idea
of TBLDM to regression models and other learning settings, which will be our
next work.
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Abstract. Dealing with evolving data requires strategies for detecting
and quantifying change, and forgetting irrelevant examples during the
model revision process. To design an adaptive classifier that is suitable
for different types of streams requires us to understand the characteristics
of the data stream. Current adaptive classifiers have built-in concept
drift detectors used as an estimator at each node. Our research aim is to
investigate the usage of different drift detectors for Hoeffding Adaptive
Tree (HAT), an adaptive classifier. We proposed three variants of the
proposed classifier, called HATSEED, HATHDDMA , and HATPHT .
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1 Introduction

Data streams have numerous properties that are different from data found in sta-
tionary environments. They have continuous data that arrives indefinitely, thus,
storing all elements in memory is impossible. These differences mean that online
classification or decision tree algorithms acting on data streams have additional
constraints. Essentially these techniques should only process elements once. The
memory capacity and processing time for these techniques are limited. These
techniques must be able to provide predictions at anytime. The distribution of
the data may evolve over time. This is called concept drift. Concept drift may
render previously built models inaccurate as those previous models can no longer
be used to represent the current distribution. Responding to concept drifts is a
key challenge in building a successful data stream classification algorithm.

Existing adaptive classifiers [2] have been proposed to deal with evolving con-
cept drift by using a specific concept drift detector. The decision to use a concept
drift detector against another is a crucial choice. A single specific drift detector is
unlikely to be the best choice for a given classifier. This research aims to identify
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concept drift detectors that are good choices for streams with specific character-
istics. This would enable the appropriate concept drift detector to be selected for
specific types of streams. The main contribution of our research is to investi-
gate the usage of different drift detectors in a current state-of-the-art adaptive
classifier, namely Hoeffding Adaptive Tree (HAT) [2]. In the process we develop
three new variants of classifiers based on the original Hoeffding Adaptive Tree
(HAT) which uses the ADWIN change detector. HATADWIN is general decision
tree algorithm with adaptive methodology for mining data streams with concept
drift. Our proposed variants, called HATSEED, HATHDDMA

, and HATPHT , use
three different concept drift detectors namely, SEED [8], HDDMA [6], and Page
Hinkley Test (PHT) [9]. We note that this work is not to replace HAT but
instead investigate the impact that different detectors have on HAT.

2 Related Work

The HAT algorithm [2] is an adaptive classification tree algorithm based upon
the popular non-adaptive Hoeffding Tree algorithm [5]. HAT places instances of
change detectors at every node. HAT features frequency statistic estimators at
each node instead of maintaining sufficient statistic counters. The HATADWIN

[3] variant uses an ADWIN estimator. ADWIN [1] was selected as the detector
of choice for HAT as it provides utility not only as a change detector but also
simultaneously as a frequency statistic estimator.

Most drift detection approaches rely on well established test statistics for
the difference between the true population and sample mean. Test statistics are
based on bounds. Hoeffding’s Inequality has been widely used in data stream
mining [1]. We classify these drift detectors in three categories: (1) sequential
analysis testing, (2) windowing schemes, and (3) hybrid of both statistical testing
and windowing scheme. There are a large number of different drift detectors
in the area of concept drift [7]. We chose three detectors named SEED [8],
HDDMA [6], and Page-Hinkley Test [9] due to their specific nature. Each of
these tests represent one of the drift detector categories aforementioned.

3 Hoeffding Adaptive Trees Beyond ADWIN

HATADWIN is a efficient mechanism to build decision trees that is simpler to
describe, adapt better to the data, perform better or much better, and use less
memory than the ad-hoc designed CVFDT and VFDT mining algorithms [1].

The choice of change detector in HAT requires several important consider-
ations. In terms of performance, maintaining an alternate sub-tree is a costly
process and sub-trees should be swapped out as quickly as possible. However
detecting change more frequently than it occurs will result in alternate trees
being re-initialised unnecessarily. This further extends the time before the sub-
tree becomes accurate enough to replace the original. Additionally failing to
detect change at all detrimentally affects the accuracy of the model, as well as
its usefulness for higher understanding of the data.
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We chose to use the three different concept drift detectors due to two major
factors. The selection criteria we consider are diversity of the detectors and per-
formance in dealing with various drift types. In terms of diversity, each of the
three different detectors belongs to one of the different detector categories. In
terms of performance, these three drift detectors contains different characteristics
when dealing with concept drifts differently. PHT is a memoryless technique, this
means the memory needed would be relatively small. Both SEED and HDDMA

are variants of the Hoeffding Bound techniques. SEED is shown to be effective
in terms of memory and time for rather homogeneous data streams, whereas
HDDMA has high accuracy. The impact of how each of these individual drift
detectors handle changes may not be sufficient to determine how it translates to
modelling and updating a classifier.

3.1 HAT Variants

The three variations of the HAT technique namely, HATSEED, HATHDDMA
,

and HATPHT , has an instance of the specific change detector placed at every
node as an estimator for the tree and the HAT-variant reacts to the detectors’
alarmed in the same manner as HATADWIN .

Algorithm 1 shows the process for HATSEED. Note that we outlined the dif-
ference (lines 3, 8, 15, and 16) to the original HAT. The main advantage of
using SEED [8] as a change detector is its memory-efficiency when dealing with
homogenous data streams without many drifts. SEED’s boundary merging tech-
nique would be expected to perform well on homogeneous data, as the merging
optimisation occurs frequently on consecutive blocks that are homogeneous in
nature. Similar to ADWIN, SEED also does not maintain a window explicitly
but has a compression mechanism.

Similar changes were carried out for HATHDDMA
, as per HATSEED as shown

in Algorithm 1. The estimator used in the variation is HDDMA instead of SEED.
The HDDMA detector [6] maintains an adaptive sized window of instances and
determines a cut point in the window. If the difference in the means of the two
sub-windows either side of the cut point become sufficiently different, concept
drift is determined to have occurred and the entire window is forgotten. Similarly
to SEED, HDDMA maintains an uncompressed window. However the complete
forgetting mechanism used in HDDMA means that for instances directly follow-
ing the drift, HDDMA will use less memory. However this forgetting mechanism
makes HDDMA less capable of adapting to abrupt drifts as instances that may
be essential to establishing a distribution may be lost. An advantage of HDDMA

as an estimator is it more suited to handling long drifts, where instances from
each distribution may be interleaved for some time.

Similar changes were carried out for HATPHT , as per HATHDDMA
as shown

in Algorithm 1. The Page-Hinkley Test (PHT) [9] considers the variable mt which
is the cumulated difference between the observed values, xt, and their mean at
time t, where xt = 1

t

∑t
l=1 xl, δ represents the allowed magnitude of change and

α is a forgetting factor: mt+1 = α
∑t

1(xt − x̄t + δ) The minimum value of mt is



Concept Drift Detector Selection for Hoeffding Adaptive Trees 733

Algorithm 1. HATSEED Algorithm
1: function HATSEED(Stream, δ)
2: Let HT be a tree with a single leaf (root).
3: Initialise SEED estimators at root.
4: for each example x, y in Stream do
5: HATGrow((x, y), HT, δ)

6: function HATGrow((x, y), HT, δ)
7: Sort (x, y) to leaf l using HT.
8: Update SEED estimators at leaf l and nodes traversed.
9: if this node has an alternate tree Talt then

10: HATGrow((x, y), Talt, δ)

11: Compute information gain, G for each attribute.
12: if G(Best Attribute) - G(Second Best Attribute) > ε then
13: Split leaf on best attribute.
14: for each branch of split do
15: Start new leaf and initialise SEED estimators.
16: if SEED drift detector has detected change then
17: Create an alternate sub-tree if there is none.
18: if existing alternate sub-tree is more accurate then
19: Replace current node with alternate tree.

also recorded, Mt = min(mt; t = 1, . . . , t). Concept drift is determined to have
occurred when |Mt − mt| exceeds a given threshold, λ.

4 Evaluation and Results

The new HAT variants are tested on both real and synthetic datasets. The
algorithm implementations used are based upon the MOA [4] framework. The
datasets and code are available at https://github.com/MoanaStirling/Concept-
Drift-Detector-Selection-For-Hoeffding-Adaptive-Trees. All synthetic datasets
are generated from modified MOA data stream generators. Four different stream
generators are used: SEA, Agrawal, RBF, and Hyperplane.

Memory and Runtime. Table 1 displays the average memory and runtime
performance along with the standard deviations in brackets. In terms of accuracy
we measured the accuracy of the classifier for 10,000 instances after each subtree
swap was carried out.

False Positive and True Positive Rates. Table 2 shows the true positive
rate of correct HAT sub-tree switches and false positive rate of when there are
incorrect sub-tree switches. This is measured as the average number of switches
that occurred incorrectly per drift. This value should not be confused with con-
cept drift detection of a model, which is normally higher. We are more interested
in measuring whether an estimator at a node has triggered a warning. Table 2
shows the true positive rate and false positive rate at 10% and 40% noise level.

https://github.com/MoanaStirling/Concept-Drift-Detector-Selection-For-Hoeffding-Adaptive-Trees
https://github.com/MoanaStirling/Concept-Drift-Detector-Selection-For-Hoeffding-Adaptive-Trees
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Table 1. Runtime(s) and model size (kB)

Stream Runtime (s) Memory (kB)

Detector/Noise 10% 40% 10% 40%

SEA, 100,000 HATADWIN 12.78± (0.16) 17.2± (1.87) 413± (26) 981± (272)

HATSEED 8.52± (0.29) 22.43± (2.34) 168± (8) 1,169± (203)

HATHDDMA
10.22± (0.35) 9.00± (0.61) 200± (39) 157± (103)

HATPHT 7.92± (0.08) 9.30± (0.71) 217± (8) 341± (128)

Agrawal,

100,000

HATADWIN 24.76± (1.38) 40.35± (8.28) 1,020± (87) 965± (421)

HATSEED 23.29± (1.45) 73.84± (12.36) 768± (52) 4,025± (1,394)

HATHDDMA
23.25± (1.86) 27.51± (6.12) 793± (212) 409± (396)

HATPHT 23.31± (1.48) 27.86± (5.69) 827± (39) 857± (642)

RBF, 100,000 HATADWIN 28.34± (0.57) 28.03± (0.78) 807± (37) 809± (22)

HATSEED 21.65± (0.55) 22.63± (1.43) 551± (52) 550± (20)

HATHDDMA
23.20± (0.90) 24.50± (0.63) 561± (159) 575± (60)

HATPHT 23.19± (0.71) 26.05± (1.67) 935± (153) 623± (109)

Abrupt

Hyperplane

100,000

HATADWIN 16.94± (0.88) 14.91± (0.22) 445± (84) 449± (42)

HATSEED 16.25± (1.06) 11.28± (0.62) 244± (35) 236± (7)

HATHDDMA
15.30± (0.85) 10.39± (0.37) 309± (29) 129± (68)

HATPHT 13.9± (0.96) 10.55± (0.25) 312± (30) 269± (32)

Gradual

Hyperplane,

100,000

HATADWIN 17.69± (1.46) 54.00± (9.37) 242± (89) 3,638± (1,339)

HATSEED 15.68± (1.42) 38.86± (1.45) 169± (78) 2,294± (290)

HATHDDMA
17.66± (1.84) 15.75± (2.33) 205± (118) 223± (162)

HATPHT 14.94± (1.44) 25.27± (8.22) 170± (77) 1,125± (814)

Table 2. True positive rate and false positive rate

Stream True Postive False Positive

Detector/Noise 10% 40% 10% 40%

SEA, 100,000 HATADWIN 0.60± (0.09) 0.21± (0.10) 0.01± (0.02) 0.04± (0.09)

HATSEED 0.73± (0.1) 0.55± (0.08) 0.00± (0.00) 0.54± (0.27)

HATHDDMA
0.55± (0.13) 0.37± (0.15) 0.02± (0.05) 0.08± (0.11)

HATPHT 0.68± (0.07) 0.14± (0.06) 0.00± (0.00) 0.0± (0.02)

Agrawal

100,000

HATADWIN 0.77± (0.09) 0.33± (0.08) 0.05± (0.08) 0.04± (0.06)

HATSEED 0.82± (0.07) 0.25± (0.12) 0.07± (0.08) 0.06± (0.12)

HATHDDMA
0.78± (0.08) 0.44± (0.13) 0.83± (0.74) 0.14± (0.16)

HATPHT 0.78± (0.07) 0.37± (0.1) 0.02± (0.04) 0.01± (0.03)

RBF 100,000 HATADWIN 0.89± (0.09) 0.89± (0.09) 0.07± (0.09) 0.19± (0.13)

HATSEED 0.92± (0.09) 0.97± (0.05) 0.05± (0.07) 0.15± (0.13)

HATHDDMA
0.84± (0.11) 0.96± (0.06) 0.40± (0.28) 0.94± (0.39)

HATPHT 0.68± (0.10) 0.69± (0.15) 0.08± (0.1) 0.39± (0.27)

Abrupt

Hyperplane

100,000

HATADWIN 0.75± (0.26) 1.0± (0.02) 0.10± (0.17) 0.04± (0.05)

HATSEED 0.74± (0.27) 1.0± (0.01) 0.10± (0.19) 0.01± (0.02)

HATHDDMA
0.69± (0.29) 0.92± (0.10) 0.13± (0.17) 0.40± (0.20)

HATPHT 0.72± (0.27) 1.00± (0.01) 0.00± (0.00) 0.00± (0.02)

Gradual

Hyperplane

100,000

HATADWIN 0.28± (0.17) 0.12± (0.08) 0.04± (0.07) 0.01± (0.03)

HATSEED 0.57± (0.2) 0.12± (0.06) 0.30± (0.25) 0.00± (0.01)

HATHDDMA
0.49± (0.18) 0.30± (0.14) 0.25± (0.21) 0.06± (0.09)

HATPHT 0.24± (0.15) 0.12± (0.05) 0.03± (0.07) 0.00± (0.01)

Note that 0.00 is a very small value > 0.
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Table 3. Real datasets experimental results

Detector Overall
accuracy
(percentage)

Kappa
statistic

Model
size (B)

Evaluation
time
(seconds)

Subtrees
switched
out

Forest covertype

HATADWIN 85.21 82.23 20,000 39.65 33.0

HATSEED 84.34 89.07 18,000 36.0 42.0

HATHDDMA 83.59 89.39 19,000 70.66 8.0

HATPHT 85.56 87.33 72,000 40.10 41.0

Electricity

HATADWIN 84.49 69.88 42,000 1.40 3.0

HATSEED 84.47 75.66 37,000 1.26 4.0

HATHDDMA 84.71 70.11 10,000 1.64 0.0

HATPHT 84.11 74.51 75,000 1.47 0.0

Real Datasets Case Study. Table 3 displays a summary of the results of the
experiments on the real datasets from the MOA system [3].

5 Conclusion and Future Work

We proposed three additional variants of HAT namely HATSEED, HATHDDMA
,

and HATPHT . We empirically showed that each of these versions has advantages
over the others and previous techniques. We observed that the choice of a change
detector can have different impact on data streams with different characteristics.
This confirmed the idea that on streams with specific attributes certain change
detectors have better performance.

In the future, we plan to learn the characteristics of the streams to enable
us to automatically make a decision on the choice of change detector used in
adaptive classifiers. Algorithmic identification of stream attributes would be an
immensely powerful tool. This would enable dynamic switching of change detec-
tors for a classifier as attributes are detected.
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Abstract. Dynamic job shop scheduling (DJSS) problems are combina-
torial optimisation problems where dynamic events occur during process-
ing that prevents scheduling algorithms from being able to predict the
optimal solutions in advance. DJSS problems have been studied exten-
sively due to the difficulty of the problem and their applicability to real-
world scenarios. This paper deals with a DJSS problem with dynamic job
arrivals and machine breakdowns. A standard genetic programming (GP)
approach that evolves dispatching rules, which is effective for DJSS prob-
lems with dynamic job arrivals, have difficulty generalising over problem
instances with different machine breakdown scenarios. This paper pro-
poses a niched GP approach that incorporates multitasking to simul-
taneously evolve multiple rules that can effectively cope with different
machine breakdown scenarios. The results show that the niched GP app-
roach can evolve rules for the different machine breakdown scenarios
faster than the combined computation times of the benchmark GP app-
roach and significantly outperform the benchmark GP’s evolved rules.
The analysis shows that the specialist rules effective for DJSS problem
instances with zero machine breakdown have different behaviours to the
rules effective for DJSS problem instances with machine breakdown and
the generalist rules, but there is also large variance in the behaviours of
the zero machine breakdown specialist rules.

1 Introduction

Job shop scheduling (JSS) problems [1] are combinatorial optimisation problems
with significant importance in operation research and artificial intelligence [2].
JSS also has applications to real-world manufacturing environments and produc-
tion scheduling [3]. Because of this, JSS problems have been extensively studied
over the past 60 years by both academics and industry experts [4]. A JSS prob-
lem instance consists of a shop floor with a limited number of machine resources
that are used to process incoming jobs [1]. To process a job, a job’s operations
need to be processed in a specific sequence, and each operation requires a specific
c© Springer Nature Switzerland AG 2018
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https://doi.org/10.1007/978-3-030-03991-2_66

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03991-2_66&domain=pdf
https://doi.org/10.1007/978-3-030-03991-2_66


740 J. Park et al.

machine to process the operation. In addition, a machine can only process one
operation at a time. The goal of JSS is to make intelligent decisions during pro-
cessing to optimise a given objective function. Finally, in a real-world scenario,
there are unforeseen events that can occur which can affect the properties of
the shop floor [5]. JSS problems with unforeseen events are called dynamic JSS
(DJSS) problems and have been studied extensively in the literature [5].

For this paper, we deal with a DJSS problem with the mean weighted tardi-
ness (MWT) objective [1], dynamic job arrivals, and machine breakdowns [3,5].
This means that the jobs’ properties are unknown they reach the shop floor, and
unforeseen breakdowns of machines occur during processing where the machines
need to be repaired for durations of times before they are available to process the
jobs’ operations. The most prominent method of handling DJSS problems with
dynamic job arrivals is to evolve effective dispatching rules using evolutionary
computation (EC) techniques such as genetic programming (GP) [2,3]. In gen-
eral, the rules evolved by the EC techniques generally outperform the man-made
dispatching rules [3] given that the training set used to evolve the GP rules is
appropriate for the DJSS problem that the rules are applied to [6]. On the other
hand, predictive-reactive approaches are extensively applied to DJSS problems
with machine breakdowns and attempt to generate schedules that are as robust
as possible to disruptions caused by machine breakdowns [5]. They often focus
on small DJSS problem instances with a fixed number of job arrivals (e.g. up to
80 jobs [7]). Both dynamic job arrivals and machine breakdowns have been stud-
ied extensively in the literature, but there has only been a limited number of
GP approaches to DJSS problems with both dynamic job arrivals and machine
breakdowns [8].

By investigating the two types of dynamic events simultaneously, it is likely
that we can extend the scope of research into DJSS problems, and better emu-
late real-world scenarios where large numbers of unforeseeable events are likely to
occur. However, preliminary investigation by Park et al. [8] showed that it is too
difficult for the evolved rules to generalise effectively over the different machine
breakdown scenarios, and showed that the GP rules evolved using instances
from all machine breakdown scenarios (i.e. “generalist” rules) were more biased
towards the DJSS problem instances with no machine breakdowns than problem
instances with machine breakdowns. Therefore, a GP approach that handles the
DJSS problem by allowing the GP individuals to focus on the different machine
breakdown scenarios as much as possible may be more effective than a standard
GP approach. By focusing on specific machine breakdown scenarios, useful fea-
tures can be discovered by the GP that can be shared during the GP process
to improve the overall qualities of the output rules [9]. The idea of decompos-
ing a problem to smaller subproblems has parallels to multitask learning [9],
where multiple tasks are solved simultaneously. Evolutionary multitasking tech-
niques [10] have been effectively applied to solve multiple optimisation problems
concurrently [11], but they have not been applied to DJSS problems.
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1.1 Goal

The goal of this paper is to develop a multitask GP approach that is able to cope
with a DJSS problem with dynamic job arrivals and various severity of machine
breakdowns that occur during processing. To do this, we propose a niched GP
approach that evolves two types of rules: “generalist” rules that are effective over
the entire DJSS problem and “specialist” rules that specifically handle the desig-
nated machine breakdown scenario that they are specialised for. Specialist rules
are useful when the overall machine breakdown properties of the problems (e.g.
the distribution of repair times [12]) are known in advance, and the generalist
rules are useful otherwise. Compared to a standard GP approach that evolves
GP rules for the different machine breakdown scenarios separately, a niched GP
approach that evolves rules simultaneously has the potential to improve on the
effectiveness of the evolved rules by sharing useful properties of rules effective on
other machine breakdown scenarios, and have better performances overall than
the standard GP approach. In addition, by analysing the rules evolved by the
niched GP approach, e.g., by determining the behaviours of different special-
ist rules, we can observe the overlap between the machine breakdown scenarios
based on the behaviours of the evolved specialist rules.

2 Niched GP Approach to Handling DJSS Problems with
Machine Breakdown

This section covers the niched GP approach that is used to evolve a generalist
rule and specialist rules for the different machine breakdown scenarios simulta-
neously. First, we give the framework of the niched GP process, then provide the
details on the niched GP’s representation, the terminal and the function sets.

2.1 Overall Framework

The niched GP approach in this paper is extended from a niched GP approach
proposed by Mei et al. [13] used to evolve a diverse set of rules. The niched GP
keeps track of the GP individuals that are the best for the different machine
breakdown scenarios during training. By doing this, GP may be able to retain
useful features from rules which may not have the best overall performance which
can then be shared with other GP individuals.

For the niched GP process, the GP individuals are first randomly initialised
and the set of specialist rule S is empty. For each generation when a GP individ-
ual p is being evaluated, the individual is first evaluated on the “general” training
set T to calculate its fitness f(p). The problem instances in training set T consist
of N machine breakdown scenarios. If an individual p has the best performance
for problem instances in niche n (i.e. under a specific machine breakdown sce-
nario) in the training set T , then current generation niche individual tI for niche
n is updated to individual p. After all GP individuals in the current population
have been evaluated, the current generation niched individuals t1, . . . , tN are
then compared against the overall niched individuals s1, . . . , sN . To compare
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Algorithm 1. S ← NichedGP(G)
Output:The set of specialist rules S and the generalist rule g.
Initialise GP population P;
Initialise specialist rule set S ← {s1, . . . , sN} for the N niches;
for gen ← 1 to G do

Set t1, . . . , tN ← ∅ and f1, . . . , f|P| ← 0;
for each individual p in GP population P do

for each problem instance I in the training set T do
Apply individual p to I to calculate normalised objective Obj′(p, I);

end
Update f(p) and g;
Update tn if p is better on problem instances in niche n;

end
for tn in t1, . . . , tN do

Apply tn to problem instances in niched training set Vn and calculate
the performance f ′(tn) over the niched training set;
Update sn ← tn if f ′(tn) < f ′(sn);

end
P ′ ← Clearing(P, S, σ, κ);
Apply the breeding procedure using P ′ and update the population P;

end
Output the set of specialist GP rules S and the best overall GP rule g;

the current generation niched individuals tn to overall niched individual sn, the
individuals are evaluated on a niched training set Vn, separate from the general
training set T , that only consists of problem instances with the specific machine
breakdown scenario (i.e. the niched training sets are validation sets specifically
for the niched individuals). If the f ′(tn) of the current generation niched indi-
vidual tn is better than the fitness f ′(sn) of the overall niched individual sn over
the niched training set Vn, then sn is updated to the current generation’s niche
individual tn. Otherwise, the individual tn is kept the same.

After the set of niched individuals has been updated, the clearing algorithm
(denoted as Clearing(P,S, σ, κ)) is carried out before the individuals undergo
the standard tournament selection procedure. The clearing algorithm is modified
from the algorithm used by Mei et al. [13]. However, unlike Mei et al.’s clearing
procedure, where all GP individuals have a niche radius, only the specialist GP
rule from the rule set S (i.e., niched individuals that perform the best on the
different machine breakdown scenarios) and the best individual found so far
are used as the niches in our niched GP approach. Afterwards, the individuals
with poor performances within distance σ from the best niched individuals are
removed from the GP population if the niche has reached its capacity κ. This
continues until the maximum number of generations has been reached. Finally,
the algorithm reports the best overall rule as the generalist rule g and the set
of specialist rules S. The pseudocode that summarises the niched GP process is
shown in Algorithm1.
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Table 1. Terminal set for GP, where a job j is waiting at the available machine m at
a decision situation.

Given that the same training set T is used, the niched GP approach will
likely have a greater computation time than a standard GP approach that uses
a single population because it further evaluates the niched individuals on the
niched training sets on top of the standard evaluation procedure. When evolving
dispatching rules for DJSS problems using GP, the evaluation procedure and
the application of the individuals on the training instances is the most com-
putationally intensive step of the GP process [2]. As the niched GP approach
will have additional # of niches×niched training sets sizes simulation runs, the
niched GP approach requires a total of |P|×|T |+N ×|V| simulation runs. How-
ever, the niched GP approach will still have significantly shorter computation
time compared to evolving generalist and specialist rules using a standard GP
separately, which requires 2 × |P| × |T | simulation runs to evaluate all the GP
individuals per generation.

2.2 GP Representation, Terminal Set and Function Set

The GP representation, terminals and function sets are adapted from the GP
approach used by Park et al. [8] to investigate the DJSS problem with dynamic
job arrivals and machine breakdowns. For the niched GP approach, the GP
individuals are arithmetic function trees that are used to calculate the priorities
of jobs waiting at an available machine m∗ during a decision situation [3]. The
terminals listed in Table 1 for a GP individual’s tree correspond to job, machine
and shop floor attributes. The non-terminals consist of arithmetic operators
+, −, ×, protected /, binary operators max, min and a ternary operator if.
Protected / returns 1 if the denominator is zero, and returns the output of
a standard division operator otherwise. if operator returns the value of the
second child branch (representing the “then” condition) if the first child branch
(representing the input into the “if” condition) is greater than or equal to zero,
but returns the value of the third child branch (representing the “else” condition)
otherwise.
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2.3 Evaluation Procedure

The GP individual p is applied to the DJSS problem instances in the training
sets as a non-delay [1] dispatching rule. The individual p is applied to a problem
instance I to generate a schedule. Afterwards, the MWT value Obj(p, I) of the
schedule is normalised using a reference rule to reduce bias towards specific DJSS
problem instances [14]. The reference rule R, which is the weighted apparent
tardiness cost (wATC) rule [1], is applied to problem instance I to generate a
schedule with Obj(R, I). Afterwards, the normalised MWT value is calculated
as Obj′(p, I) = Obj(p,I)

Obj(R,I) . From the normalised objective values, the fitness of
individual p is given by f(p) = 1

|T |
∑

I∈T Obj′(p, I) after the individual has been
applied to all problem instances in the training set T .

3 Experimental Design

This section describes the simulation model used to evaluate the specialised rules
for the niched GP approach, followed by a description of benchmark GP used for
comparison during evaluation. Afterwards, detailed parameter settings for GP
and niching are provided.

3.1 DJSS Simulation Model

Discrete-event simulations are the standard method of simulating job shop
scheduling problem instances [3]. A discrete-event simulation stochastically gen-
erates the dynamic events, i.e., the job arrivals and the machine breakdowns.
The simulation model is adapted from the simulation model used by Park et
al. [8], which is a modification of Holthaus’s [12] simulation model. In the sim-
ulations, machine breakdown level (the proportion of simulation duration the
machines are broken down [12]) and mean machine repair time parameters are
used to stochastically generate machine breakdowns [12]. There are three dif-
ferent parameter values for machine breakdown level, three different values for
mean times required to repair the machines, and two different values for the due
date tightness. Due date tightness is a simulation parameter used to determine
how the due date is generated for a job arrival [12]. Since the repair times are not
a factor when the breakdown level is zero, i.e., there is no machine breakdown,
the DJSS problem instances can be generated from 2 × 3 × 3 = 14 different
scenarios. There is no re-entry for the arriving jobs, i.e., a job has at most one
operation on a machine [1]. These parameters are listed below in Table 2.

At each generation, the training set T simulates a DJSS problem instance
from each simulation configuration scenarios (i.e. different combinations of due
date tightness, breakdown level and mean repair time), resulting in a GP indi-
vidual being applied to 14 DJSS problem instances. The simulations used in
training set T are grouped up into the seven groups of two problem instances
based on their breakdown level and mean repair time, e.g., a group with break-
down level of 2.5% and mean repair time of 25 is denoted as 〈2.5%, 25〉. The
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Table 2. The parameters used for simulating a DJSS problem instance.

Parameters Value

Shop floor parameters Number of machines 10

Warm up jobs 500

# completed jobs before simulation termination 2500

Utilisation rate 90%

Job arrival rate (λ) λ ∼ Poisson(13.5)

Operation processing times (oij) oij ∼ Unif [1, 49]

# operations per job (Nj) Nj ∼ Unif [2, 10]

Job weight Random from 1, 2,

4 with probabilities

20%, 60%, 20%

Due date tightness 3.0 or 5.0

Machine breakdown

parameters

Breakdown level 0%, 2.5% or 5%

Mean repair time 25, 125 or 250

group with no machine breakdowns (i.e. has a breakdown level of 0%) is simply
denoted as 〈0〉. In other words, the seven groups are the “niches” that are filled
up by GP individuals that perform the best for the different machine breakdown
level and mean repair time parameter values (i.e. N = 7). The seed used to sim-
ulate the problem instances from the simulation configurations are rotated every
generation to help improve the generalisation ability of the evolved rules [13].

After the current generation niched individuals have been found, they are
further evaluated on the niched training sets to update the set of specialist GP
rules S. A niched individual t〈b,r〉 from the current generation for the scenario
〈b, r〉 is applied to the niched training set V〈b,r〉. The niched training set V〈b,r〉
has the configurations with due date tightness of 3.0 or 5.0. In other words, a
further two simulation runs are used per niched individuals. Finally, to ensure
that the comparisons between the rules between different generations are kept
consistent, the niched training sets are fixed over every generation for the niched
GP.

3.2 GP Benchmarks

To evaluate the niched GP’s evolved rules, we use a standard single-tree GP
representation [2,3] with the same terminal and function set used by the niched
GP for consistency (Table 1). Afterwards, the benchmark GP is applied to the
machine breakdown scenarios independently to evolve the generalist and the
specialist rules. The entire training set T is used to evolve the generalist rules
from the benchmark GP approach. To evolve the specialist rules, instead of using
the entire training set T described above, the benchmark GP only uses specific
machine breakdown scenarios to evolve dispatching rules, e.g., a GP process
is run with training instances being generated from 〈2.5%, 25〉. Since there are
two possible due date tightness parameters, an individual in the benchmark GP
process is applied to two training problem instances during the evaluation pro-
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cedure. The best individual of the last generation before the maximum number
of generations is reached is the output dispatching rule for the benchmark GP
process.

3.3 GP and Niching Parameters

The niched and the benchmark GP approaches follow parameters used by exist-
ing GP approaches for DJSS problems [8]. The GP population size is 1024, and
the number of generations is 51. The crossover, mutation, and reproduction rates
are 80%, 10% and 10% respectively. The maximum depth of the individuals dur-
ing initialisation is 4, and 8 across all generations of the GP process. Tournament
selection of size 7 for both the two GP approaches. For the clearing algorithm
Clearing(P,S, σ, κ) used by the niched GP approach, the two parameters niche
radius σ and niche capacity κ are kept consistent as the parameters used by Mei
et al. [13], i.e., σ = 1 and κ = 1. Finally, k = 3.0 is used for the wATC reference
rule used for the fitness calculation (Sect. 2.3).

4 Experimental Results

To compare the two GP approaches, the GP process is run 30 times over each
machine breakdown scenarios to obtain sets of independent rules for the differ-
ent machine breakdown scenarios. The computation times of the runs are also
recorded and compared against each other before comparing the performances of
the generalist and the specialist rules. One GP approach is significantly better
than the other GP approach either in terms of computation time or perfor-
mance if it can be verified by the two-sided Student’s t-test at p = 0.05. After
the comparisons, we analyse the behaviours of the rules evolved by the niched
GP approach.

4.1 Computation Costs

Both the niched and the benchmark GP approaches are implemented in a Java
program ran on Intel(R) Core(TM) i7 CPU 3.60 GHz. The time required to
evolve the rules is given in Table 3, where the computation time is measured
in seconds. In the table, “Specialist Combined” denotes the sum of the times
required to evolve the specialist rules with the benchmark GP approaches over
the different machine breakdown scenarios. This is to compare the overall com-
putation time required to evolve the specialist rules with the benchmark GP
approach to the niched GP approach, as the niched GP approach evolves the
generalist rule and the specialist rules simultaneously over a single run. “Total”
denotes the sum of the time required to evolve the generalist and the specialist
rules for the niched and the benchmark GP approaches. Since niched GP app-
roach evolves the generalist and the specialist rules simultaneously, its time is
only given in the “Total” category.
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Table 3. Comparison of the computation time required to evolve the rules for the GP
approaches (in seconds).

Approach Computation time (×104 s)

GP NGP

Generalist 2.17 ± 0.35 −
Specialist 〈0%, 0〉 0.20 ± 0.02 −

〈2.5%, 25〉 0.25 ± 0.03 −
〈2.5%, 125〉 0.30 ± 0.05 −
〈2.5%, 250〉 0.26 ± 0.04 −
〈5%, 25〉 0.31 ± 0.05 −
〈5%, 125〉 0.42 ± 0.07 −
〈5%, 250〉 0.37 ± 0.07 −
Specialist combined 2.10 ± 0.15 −

Total 4.27 ± 0.39 2.32 ± 0.34

From the tables, compared to the combined amount of time required to evolve
the specialist rules or the generalist rules individually using the benchmark GP
approach, the niched GP approach takes a significantly longer amount of time.
This is due to the additional evaluation required to further evaluate the niched
individuals in the niched GP approach after the individuals have been evaluated
over the training set. However, for evolving all rules, i.e., both the generalist
and the specialist rules, the niched GP approach is significantly faster than the
benchmark GP approach.

An interesting observation is that the additional computation time required
by the niched GP approach does not exactly correspond with the theoretical
amount of time required to further evaluate the niched GP individuals (Sect. 2.1).
From the GP and the DJSS parameters, the number of simulation runs required
per generation for each specialist rules for the benchmark GP approaches is
the population size times the number of configurations per machine breakdown
scenario, i.e., 1024 × 2 = 2048. Combined together, the total number of sim-
ulation runs required by the benchmark GP approach to evolve the specialist
rules is 2048 × 7 = 14336. This is equivalent to the number of simulation runs
required by the niched GP approach to evaluate the GP population minus the
additional runs required to further evaluate the niched GP individuals, which
requires 7 × 2 = 14 simulation runs. This means that the additional simulation
runs should approximately add 14/14336 × 100% = 0.1% overhead to the niched
GP approach compared to evolving the specialist rules separately. However, the
experiments show that the niched GP approach takes ∼10% longer computa-
tion time to evolve the rules compared to the combined time required by the
benchmark GP approach to evolve the specialist rules. Instead, the additional
computation time is likely due to the fitness adjustments made to GP individu-
als that are close to the niched individuals in the clearing algorithm (Sect. 2.1).
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It may also be likely that the evolved GP rules for the niched GP approach are
also bigger, which results in longer computation time required to calculate the
priorities of jobs during the simulation.

4.2 Performance Comparison of Evolved Rules

The performances of a set of rules are calculated by applying the evolved rules
to simulation models generated from the simulation configurations provided in
Sect. 3.1. A simulation model in the test set uses a new seed so that the exact
times of the job arrivals and machine breakdowns (and their properties) that
are generated by the simulation differs from the simulations during training. An
evolved rule is applied to DJSS simulation model to generate a schedule and
get a MWT objective value. This is then repeated 30 times with different seeds
for the simulation model to get an average MWT performance of the evolved
rule over the simulation configuration. The evolved generalist rules are applied
to all simulation configurations, whereas the evolved specialist rules are applied
to the machine breakdown scenarios they are designed for. The performances of
the specialist and the generalist rules are given in Table 4. In the table, μ±σ for
each set of rules denotes that the mean MWT performance is μ and the standard
deviation is σ. In addition, 〈b, r, h〉 in the tables denotes that the particular
simulation model has b breakdown level, r mean repair time and h due date
tightness factor.

Table 4. Comparison showing the mean and the standard deviation of the MWT
performances for the specialist and the generalist rules evolved by the niched and the
benchmark GP approaches over the test simulation runs.

From the tables, we can see that the niched GP approach generally outper-
forms the benchmark GP approach in terms of both the specialist rules perfor-
mances and the generalist rules performances. The only configuration scenarios
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where the benchmark specialist rules significantly outperform the niched spe-
cialist rules are on the simulations with zero machine breakdowns. In addition,
the benchmark specialist rules are slightly better than the niched specialist rules
for the scenarios 〈5%, 25, 3〉, 〈5%, 250, 5〉 and 〈5%, 250, 3〉, but the differences are
not significant.

The table also shows that the generalist rules for the benchmark GP app-
roach perform better than the specialist rules for a number of simulation con-
figurations (from the simulation configuration 〈0%, 0, 3〉 to the simulation con-
figuration 〈2.5%, 250, 3〉). This is likely attributed to the number of simulation
runs each GP individual during the GP process undergoes during the evalua-
tion procedure. The generalist rules are applied to 14 different simulation runs
with different machine breakdown scenarios, whereas a specialist rule is only
applied to two simulation runs over the specific machine breakdown scenario.
In other words, the GP individuals in the benchmark GP process may not have
had enough training instances to effectively evaluate the qualities of the individ-
uals, resulting in underperforming specialist rules. To verify this, we ran addi-
tional experiments for the benchmark GP process where the GP individuals
are applied to simulations under a specific machine breakdown scenario runs 14
times instead of two times, using different seeds for each simulation. The spe-
cialist rules evolved using the additional simulation runs for the GP individuals
performs significantly better than the generalist rules.

4.3 Diversity Analysis

For the analysis procedure, the goal is to find differences in terms of the rules’
behaviours that have been evolved using different machine breakdown sce-
narios. To do this, we calculate the phenotypic distances between the rules
evolved by the niched GP approaches using the job rank distance measure
proposed by Hildebrandt and Branke [14] and used by the clearing algorithm
Clearing(P,S, σ, κ) [13]. The distances between a single rule in a rule set are
compared against the 30 rules of another rule set to obtain an average distance
of the single rule to the rule set. The means and the standard deviations of the
average distances of the rule for the generalist and the specialist rule sets are
shown in Fig. 1. In the figure, we provide a heat map of the average distances of
two sets of rules as visual aids.

Compared to the other scenarios, the specialist rules that specialise in the
scenario with zero machine breakdown has a higher average distances from the
specialist rules evolved on other machine breakdown scenarios and the generalist
rules. This implies that the rules that are effective on DJSS problems with only
dynamic job arrivals are very different from the rules that are effective on DJSS
problems with both dynamic job arrivals and machine breakdowns. However,
the large standard deviation in the average distances between the behaviours
of the rules evolved on zero machine breakdown and the other sets of evolved
rules mean that the differences in the distances are not statistically significant.
Therefore, further experiments that isolate individual rules and analyse their
behaviours may be required.
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Fig. 1. Pairwise mean and standard deviations of the average distances between the
rules evolved by the niched GP approach using Hildebrandt and Branke’s ranked dis-
tance measure [14]. First table compares the specialist rule sets against each other, and
the second table compares the generalist rule set against the specialist rule sets.

5 Conclusions and Future Work

This paper proposes a novel niched GP approach that incorporates multitasking
[9] to evolve effective dispatching rules for a DJSS problem with dynamic job
arrivals and machine breakdowns. The proposed niched GP approach evolves
a generalist and multiple specialist rules for the different machine breakdown
scenarios simultaneously. Evolving the generalist rules and the specialist rules
for niched GP approach is significantly faster than sequentially evolving the
rules using a benchmark GP approach. In addition, the evolved rules from the
niched GP approach generally outperform the rules evolved by the benchmark
GP approach.

For the future work, it may be promising to further investigate the behaviours
of the rules evolved on the different machine breakdown scenarios, to determine
why the rules evolved for the niched GP approach performs significantly bet-
ter. The preliminary comparison shows that the rules that are effective for DJSS
problem instances with no machine breakdowns behave differently than the rules
that are effective for DJSS problem instances with machine breakdown, but the
large variance in the behaviours of the rules means that this difference is not
significant. In addition, further experiments that apply the rules to DJSS prob-
lem instances with unseen machine breakdown scenarios (e.g. a DJSS problem
instance with machine breakdown level of 10%) may further be able to test
generalisation ability of the generalist rules evolved by the niched GP approach.
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Abstract. Mobile communications networks may be required to operate in
highly dynamic environments. We consider a communications network in an
urban scenario where a UAV is used as a radio relay between mobile ground
based nodes. The UAVs flight path is constrained by buildings such that ground
based nodes will lose connectivity. We present the Opal system to generate,
through multi-objective optimisation, network solutions for such a scenario.
Opal is shown to develop novel behaviours which are effective in reducing
network disconnection time.

Keywords: Constrained optimization � Dynamic networks
Survivable networks

1 Introduction

Contrary to typical experience communications challenges are everywhere in real
world mobile networks. To the casual user such challenges are hidden due to the
maturity and ongoing evolution of communications infrastructure. Mobile network
challenges such as physical obstructions and restricted operating areas may be repre-
sented as planning constraints. We consider a mobile radio frequency (RF) communi-
cations exercise in an urban environment where it is necessary to deploy a network into
an area without working communications infrastructure. For example, widespread
infrastructure failure may result from Tsunami, flooding, or military or terrorist activity.
Given the physical access and agility requirements of these operating environments,
using autonomous Unmanned Aerial Vehicles (UAVs) as an RF communications relay
is an attractive option.

In this paper, the authors present Opal [1–6], an autonomous, distributed agent
based system developed by Defence Science and Technology (DST) Group, in a
simulated urban scenario.

The communications environment in mobile scenarios is highly volatile and con-
sequently the discretisation of the physical space is critical. To combat problems with
state space exploration [7–9] Opal uses short-term prediction and adaptive constrained
optimisation. These in combination produce novel behaviours that extend the com-
munications range between autonomous vehicles. Such behaviours would not be
anticipated under a conventional shortest path planning approach.
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This paper is organized as follows. Section 2 describes the constrained optimization
technique used in Opal, Sect. 3 presents the simulation model. A discussion of results
is provided in Sect. 4.

2 Constrained Planning Using Opal

2.1 Future State Predictions

In order to maintain/improve network connectivity in dynamic situations, Opal predicts
the near term future state of the network such as the node positions, link qualities and
noise levels. It then it directly optimises the UAV flight path in order to provide best
connectivity of the network in the predicted future time frame. In this way Opal can
foresee probable communications black-spots and propose trajectories to minimise
disruption.

2.2 Optimisation Objective

The objective of the UAV radio relay path planning is to maximize the network quality
represented by the Network Connection Level (NCL) [3], denoted as Q below within
an arbitrary time interval T1; T2½ �.

The scoring function of a trajectory of the network is described as

S ¼
Z T2

T1

Q Gj tð Þ
� �

dt; ð1Þ

where Q Gj tð Þ
� �

is the quality of the (dynamic) network Gj at time t, see [3] for details.
The optimisation program is to find the trajectory j such that the induced network state
trajectory Gj tð Þ has the maximum score.

2.3 Optimisation Constraints

Assuming the UAV is required to fly at a fixed altitude due to an operational constraint,
there are regions where the UAV is not allowed to enter (for example, to avoid
collision). In population based optimisation processes, one approach is to generate
candidates as if there were no restrictions and then reject those that violated the con-
straints before scoring. However, such an approach can be very inefficient. Alterna-
tively, we discretise the UAV positions and remove those that fall inside the no-go zone
(s). The discrete resolution can be as fine as we need, but should be as coarse as
practical to reduce computational load.

The next step is to construct a Markov transition probability matrix M describing
the possible next locations for the UAV within the location constraints and the speed
limit. Then the Cross Entropy method [10] is employed to operate on M to find the
transitions of the optimal UAV flight path. Note that due to the dynamic nature of the
environment, measurements are collected continuously and future state predictions are
updated regularly. Hence a new updated optimal path is generated at regular intervals
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to replace the previous one. Since all generated paths will not violate location or speed
constraints, this process always produces a safe and correct flight path. Regardless of
whether the optimisation process has converged or not, Opal can take the best can-
didate generated and execute the flight path.

2.4 Adaptive Warm Start Optimisation Cycle

Since Opal continuously receives measurement information from ground nodes and
updates the future network states’ prediction, the optimisation process needs to re-
calculate the optimal flight path at regular intervals in order to include the updates and
extended horizon. One approach is to restart the optimisation from scratch each time;
which is referred to as a cold start cycle. Opal, however, uses a warm start cycle to
carry over what was learnt from the previous cycles and adapts to updated predictions.
A warm start has the advantage of faster convergence than a cold start but has a
disadvantage of higher risk of being “trapped” at local optimums.

If the environment has not changed significantly from the previous cycle, the
predictions will be largely the same, and then the optimal matrix will be similar to those
from the previous cycle. Alternatively if the environment has changed considerably,
then the predictions will be changed accordingly. Opal uses an adaptive algorithm to
dynamically adapt the degree of warm start as the mission progresses.

3 Simulation Scenario

We consider an example urban operation scenario where two ground nodes, for
example, vehicles or dismounted personnel, (Node1 and Node2) are moving at 3 m/s
on either side of a row of buildings as shown in Fig. 1. The buildings have heights of
8 m, 12 m and 40 m. The magenta arrows depict the radio links, while the cyan arrows
show the travel paths for the mobile ground nodes. A small autonomous UAV con-
trolled by Opal is deployed to support the communications between the two ground
nodes, which have antennas 2 m above the ground. In order to avoid detection, the
UAV is restricted to fly at a low altitude of 25 m above the ground, and at speeds of up
to 8 m/s. The building map is known and pre-loaded onto Opal prior to operation. As a
safeguard, the UAV is not allowed to fly within 4 m of obstructions. The scenario is
arranged to challenge the path planning of the UAV due to the configuration of
Building 2 (12 m high) and Building 4 (40 m high). If all buildings were as high as
Building 1 (8 m high) a path that tracks the mid-point of Node 1 and Node 2 would be
optimal. However, the relaying links of the mid-point tracking path are disrupted over
building 2, and the mid-point path itself is physically disrupted by building 4.

The Opal prediction engine generates positions of the nodes during the scenario, in
this case, using straight line vector extrapolation. It then uses radio simulation at those
positions to calculate the link signal-to-noise ratio (SNR). The SNR is calculated from a
propagation model incorporating nodes’ positions, transmit signal strength, received
noise, distance, and terrain obstructions. The process is repeated when a new set of
measurements is passed to Opal to update the dynamics model (i.e. the next planning
step).
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This approach of iterative planning is particularly important when node positions
diverge from prediction, since the candidate population must be steered to include the
new information. Furthermore, this approach supports dynamic detection of flight
obstructions.

In moving through the scenario depicted in Fig. 1, Opal will autonomously plan
and conduct a solution in the context of maximising network connectivity, i.e. the total
NCL in the forward predicted window. This is done by autonomously controlling a
single UAV RF relay at a fixed altitude, whilst taking into account the effects of
building obstructions to radio links as well as the UAV flight path.

Fig. 1. The trajectories of Node1 and Node2, initial UAV position, and building heights.

Fig. 2. Stages of the simulation scenario where the UAV stays back from the mobile nodes to
extend the connection time. (Color figure online)
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4 Simulation Results and Discussion

The tactical scenario was simulated using the same system as was used in [3–5]. Screen
captures during simulation of the scenario are depicted in Figs. 2 and 3.

In these simulations, the solid blue circles represent ground nodes’ positions at the
time of capture with historic positions indicated as semi-transparent blue. Similarly, the
UAV positions are indicated in red. The Opal planned trajectory vectors are depicted as
green arrows.

The UAV initially follows an approximately centre path, but exercises much more
freedom of movement in speed (up to 8 m/s) and position in comparison to the ground
nodes, as dictated by the planning horizon.

The first interesting behaviour is shown in Fig. 2 at time t = 60 s. Just before the
UAV loses connectivity to the nodes due to the obstruction of building 2, Opal
develops a solution by moving the UAV back from the ground nodes (increasing the
glancing angle). This behaviour repeats before building 4, as shown in Fig. 2 at
t = 140 s.

Once the radio links are lost, the UAV quickly moves to the other side of the
building, anticipating the reconnection to the ground nodes. Subject to the speed
constraint, the UAV moves to the other side ahead in time and waits for Node1 and
Node2 to come back into communications range, then tracks them for the remainder of
the mission. This behaviour is shown in Fig. 3 for building 2, at t = 105 s, and for
building 4, at t = 190 s. In both cases, the UAV reconnects the ground nodes ahead of
building edges by roughly 2 to 4 s.

With the adaptive and predictive optimisation techniques, Opal exhibits intelligent
behaviour that reduces the disconnection time. It can be observed in the SNR graph
plotted in Fig. 4 the two disconnection time windows are smaller than what would have
been expected from a simple mid-point tracking algorithm. The total connection time
“gain” is about 30 s.

Fig. 3. Stages of the simulation scenario where the UAV speeds ahead of the mobile nodes to
reconnect early. (Color figure online)
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5 Conclusions and Future Work

In this paper, we have presented an adaptive optimisation approach to a range extension
problem in an urban environment with Opal. The scenario comprised two mobile
ground nodes and an autonomous UAV with planning constraints. This work
demonstrated that optimising the Network Connection Level (NCL) in the context of
planning constraints can improve the connectivity of a mobile communications net-
work that would otherwise be disconnected. The use of network state prediction along a
trajectory anticipates future requirements of that trajectory and minimises the downtime
of communications in the near term. The autonomy of the UAV and the continuous
optimisation enables high tempo support for communications in a highly dynamic
mobile tactical radio network. Furthermore, Opal exhibits intelligent behaviour that
reduced the disconnection time of the network.

Further work is planned to investigate the use of machine learning techniques to
assist the candidate generation. At present, the RF model for links treats the edges of
physical obstructions as hard edges; this can introduce positioning problems to the
UAV. A more realistic model would consider the potential measurement errors in the
vicinity of hard edges. Future models would include Gaussian or Raleigh distributions
[11] to soften the edges and thereby produce more robust solutions. Similarly, we plan
to use vectorization of the state space and parallel processing to reduce the granularity
and increase the prediction interval.

Fig. 4. SNR (dB) of the UAV network links against Time (seconds).
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Abstract. In this paper, we propose a general system for enabling
robots to generate assembly plans for assisting people during assem-
bly tasks. Such a plan is derived from a 3D occupancy grid that the
system generates while observing a person performing an assembly task.
Our proposed system uses the acquired 3D occupancy grid and a graph
search to generate an assembly plan. This plan is used to guide users
during assembly tasks to create a similar object. If the user deviates
from the suggested plan, our system automatically validates whether the
new state is solvable or not and reacts accordingly. Forward assembly
planning is an NP-hard problem, but we introduce pruning methods for
the search tree that make the approach practical.

1 Introduction

A primary challenge in robotics is to enable non-expert users to interact with
robotic systems. Future robots will need to adapt to changing requirements to
deliver personalized functionalities. A potential application of robotics is to assist
users in assembly tasks. Several strategies have been proposed to address this
problem. One of the most popular approaches is Learning from Demonstration
(LfD) [7] which can be viewed as a way to transfer instructions from non-expert
users to robots [1,4]. However, LfD does not generalise to new tasks.

Another common approach is to use Computer-Aided Design (CAD) models
for generating assembly plans [2,8,9]. The limitation of this method is that
a CAD model of each part of the object must be available beforehand and
the geometric interference relations between each pair of parts are generated
manually. Extracting sufficient visual information from observations, that can be
used to help a user complete assembly tasks, cannot be achieved using available
LfD approaches. Our key contributions are:

This work was supported by Thi Qar University, Iraq.
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– A system that computes assembly plans from a learned 3D occupancy grid.
– Pruning methods for the graph search used to generate assembly plans.
– Dynamic revision of the assembly plan.

Morphological 
processing

Pixels
classifier

Bricks classifier
(color, dimensions)

Labeled

pixels (3D)

Features

dictionary

First 

frame

3D pixels

array

Fig. 1. Workbench initialisation.

We demonstrate our system with the construction of 3D LEGO objects.
Instead of using a CAD model, which must be provided beforehand, our system
computes a 3D occupancy grid. This occupancy grid is a 3D array that encodes
the spatial relationships of the components of the object. After creating the 3D
occupancy grid of the assembled object, an assembly plan is generated by a
depth-first graph search with pruning. Finally, the system can assist a user with
the assembly of identical objects.

2 Related Work

Several approaches have been proposed for teaching assistant robots new skills.
Most of these approaches are based on LfD, which provides the robot with the
ability to learn tasks demonstrated by people [3]. A key problem in assembly
task learning from demonstration is detecting accurate poses of each object in
the scene during the demonstrations [4].

The most similar works to our approach is presented in [1]. Their work
describes a simple model of spatial relationships. The only factor taken into
account is the distance between each object and the robot. No assembly planning
is done and the relationships between the objects are not taken into account.
Our work offers more support to the user. Our system is observing, learning,
identifying the workbench state, and recommending a next action based on a
dynamic planner.

Another approach that can be used for assembly sequence generation is
reversed geometric planning. Complete disassembly is the process of disassem-
bling all the parts of an object. However, the disassembly sequence does not nec-
essarily match the assembly plan used by a person as it is simply one among sev-
eral possible solutions [6]. Most of the time, a complete disassembly sequence is
not the optimal solution due to the different cost of the disassembly process [10].
In our work, reversed geometric planning is used for pruning the depth-first
graph search.

3 System Description

Our system can be decomposed into three main modules Workbench initiali-
sation (see Fig. 1), Object structure induction (see Fig. 2), and Planning and
guiding. We call a part, either a single brick or a collection of connected bricks
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with their spatial relationships. Each brick is assigned a unique integer in the
range [1, n] where n is the number of bricks of the object. The value 0 codes
empty space cells. Each non empty cell in the 3D occupancy grid corresponds
to a stud of a LEGO brick.

3.1 Workbench Initialisation

The first frame f0 of the observation video is used to identify the initial work-
bench state S0. Abstractly, a (workbench) state is a set of parts. A state is
represented with a dictionary of features of the present parts on the workbench.

Pixel Classifier. The part detector is based on a pixel classifier trained on
images of the components (LEGO bricks) that form the assembled object. We
extract 5D training vectors by stacking the pixel position and its RGB colour
values. As a clustering method, we use the density-based spatial clustering of
applications with noise (DBSCAN) [5]. However, DBSCAN is a slow algorithm,
so we only use it to train a faster pixel classifier, namely a logistic regression
classifier. We train the logistic regression classifier using only the RGB values.

3.2 Object Structure Induction

The 3D occupancy grid is built by tracking the LEGO parts during the assembly
task. The pseudo-code of the object structure induction is given in Algorithm 1.

Assembly task 
observation video

First
frame f0

Workbench 
initialisation

Object structure 
induction

Initial 
workbench 

state
3D occupancy grid of 
the assembled object

Fig. 2. Object structure induction.

3.3 Assembly Plan Generation and Guidance

During planning, the system relies on the extracted 3D occupancy grid to dynam-
ically generate an assembly plan. The search space grows rapidly with the length
of the sequence of actions, especially as we allow the user to swap equivalent
parts. Two parts are considered equivalent if they have the same shape (they
can have different colours). The interchangeability adds flexibility as the system
can accept plan variations.

However, allowing these variations increases the size of the search tree of
the planner. Let b denote the branching factor m the maximum depth v the
maximum possible variations for assembling any two LEGO bricks, and n the
number of the bricks. Considering the worst case scenario in the LEGO assembly
problem, we have for a standard depth-first search (DFS), a space complexity
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Algorithm 1. Object structure induction
input : V : video of the assembly of an object
output: Sf : final state of the workbench

1 begin
2 S0 : initial workbench state
3 Initialize a foreground-background model
4 S = S0 /* workbench current state */
5 for t ∈ frame index range of V do
6 Ht = hands are visible /* track hands */
7 if Ht−1 and not Ht then

/* Quiescent frame. A state transition has just been completed. A
part A has been connected onto a part B */

8 Identify part A and part B from the last and the current quiescent
frames.

9 Build the occupancy grid of the new part C by combining the
occupancy grids of the old parts A and B.

10 Update the state S by adding C and removing A and B
11 Update the foreground-background model

12 end

13 end
14 Sf = S
15 end

of O(bm) and a time complexity of O(bm). As m = n − 1 and b = v, a standard
DFS planner would not scale well with the number of bricks.

In order to speed up the computation, we prune the search tree by filtering
out actions doomed to fail. The filtering algorithm (Algorithm 2) eliminates all
the candidate actions that lead to a successor state for which we can detect
without exploring further the search tree that the goal state cannot be reached
from that successor state. We say that a brick β comes before a brick γ with
respect to the grid O if for all disassembly sequences, brick γ has to be removed
before brick β. In this case, we write β ≺ γ. For each brick β, we associate the
set Γ (β) = {γ | β ≺ γ} of all the bricks γ that come after β.

The pruning dramatically speeds up the search algorithm at an additional
cost of O(n2) for the generation of the candidate actions in a given state.

Figure 3 shows an example of a doomed state where backtracking is required.
The two parts A and B (left) cannot physically be connected to create the goal
part (middle) because the size of the studs prevents this action (right).

Goal stateCurrent state Deadlock

A B

Fig. 3. Example of a doomed state.
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Algorithm 2. Valid action generation
input : A : source part to move, B : destination part to connect A to, O :

3D occupancy grid of the goal object
output: V : list of all valid actions (A, B, d)

1 begin
2 Compute Γ (β) for each brick β in O
3 eq(A) = set of all A equivalents in O
4 eq(B) = set of all B equivalents in O
5 for (Ã, B̃) ∈ eq(A) × eq(B) do

6 if Ã is not connected to B̃ in O then
7 continue
8 end

9 d = the horizontal offset between Ã and B̃ in O
10 C = drop A onto B with offset d

/* Check for potential obstructions */

11 Cb = Ã ∪ B̃
12 for γ ∈

(⋃
β∈Cb

Γ (β)
)

\ Cb do

13 if Γ (γ) ∩ Cb �= ∅ then
/* γ will be obstructed by C */

14 continue to next pair (Ã, B̃)

15 end

16 end

17 end
18 Append (A, B, d) to V
19 end

4 Experimental Results

We have tested our object structure induction module by observing several
LEGO assembly tasks of objects similar to those shown in Fig. 5. Our system has
been tested on a standard stationary computer. In all the tests, the system did
induce the correct 3D occupancy grids. The search tree is pruned dramatically
thanks to the action filtering (detailed in Algorithm 2). The number of generated
states can be as low as the number of bricks when no backtracking is required.

Table 1. Impact of action filtering on DFS running time

Exp. index No. of parts Execution time No. of explored states

Filtering No filtering Filtering No filtering

1 3 0.0952 s 3.9465 s 2 1737

2 4 0.1942 s 39.2 m 3 612874

3 5 0.3598 s 10 h 4 7122000

4 10 1.014 s 12 h+ 27 3500000+
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Table 1 shows the execution time and the number of the explored states
in four different experiments. In each case of experiments 1–3, the goal is to
assemble an object (State 3 in Fig. 4) that consists of 10 bricks but they start
from different states. Experiment 4 provides an example where backtracking is
required because the search comes across a situation similar to the case described
in Fig. 3.

State 1

State 2

State 3

A

B
B

A

Fig. 4. Example of a solution generated by the planner.

The sequence of actions generated by the planner is used to guide a user to
assemble an identical object. Figure 4 shows the last two actions of the assembly
plan generated by the planner to reassemble the object shown in Fig. 5, state
3. At each state, the system suggests to move a part (A) onto a part (B) and
shows the exact location to place A onto B. Figure 5 shows a user screen during
the guiding stage. The system will revise its assembly plan if the user chooses
another action.

Fig. 5. Example of the guiding process.

5 Conclusion

In this paper, we have introduced a proactive assistant system for human assem-
bly tasks. By observing the assembly of a single object, the system is capable of
inducing a 3D occupancy grid of this object. Next, The planner generates on the
fly an assembly plan, based on the current state and the goal state, and guides
a user during the assembly of identical objects. The planner is fast because it
uses ad hoc pruning techniques. The system can dynamically revise the plan, if
the user deviates from it, and act accordingly.
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We have started working on a prototype for IKEA pieces of furniture. The
parts of these objects have more complex spatial relationships than LEGO bricks,
but the same fundamental principles can be applied. Most of the presented mod-
ule limitations will be addressed in this prototype.
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Abstract. Genetic programming (GP) has been widely used for auto-
matically evolving priority rules for solving job shop scheduling problems.
However, one of the main drawbacks of GP is the intensive computation
time. This paper aims at investigating appropriate surrogates for GP
to reduce its computation time without sacrificing its performance in
solving dynamic flexible job shop scheduling (DFJSS) problems. Firstly,
adaptive surrogate strategy with dynamic fidelities of simulation models
are proposed. Secondly, we come up with generation-range-based surro-
gate strategy in which homogeneous (heterogeneous) surrogates are used
in same (different) ranges of generations. The results show that these
two surrogate strategies with GP are efficient. The computation time
are reduced by 22.9% to 27.2% and 32.6% to 36.0%, respectively. The
test performance shows that the proposed approaches can obtain rules
with at least the similar quality to the rules obtained by the GP app-
roach without using surrogates. Moreover, GP with adaptive surrogates
achieves significantly better performance in one out of six scenarios. This
paper confirms the potential of using surrogates to solve DFJSS prob-
lems.

Keywords: Surrogate · Dynamic flexible job shop scheduling
Genetic programming

1 Introduction

Flexible job shop scheduling (FJSS) is an extension to classical job shop schedul-
ing (JSS). However, in FJSS, one operation can be processed on more than one
machine rather than a specified machine. In order to tackle the FJSS problem,
two decisions, which are a machine-specific decision and a job-specific decision,
have to be made. The machine-specific decision is to allocate a ready opera-
tion to an appropriate machine while the job-specific decision aims to select one
operation as the next to be processed. FJSS is NP-hard [3].

In practice, the environment is usually dynamic and jobs arrive in the job
shop over time without prior information. Dynamic job shop scheduling (DJSS)
c© Springer Nature Switzerland AG 2018
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was proposed for considering this situation. Dispatching rules, as priority func-
tions, have been widely adopted for solving DJSS problems [2,4], due to the
ability to react in real time. A comprehensive comparison of dispatching rules
can be found in [9]. Dynamic flexible job shop scheduling (DFJSS) considers
both the characteristics of FJSS and DJSS. Naturally, two kinds of dispatch-
ing rules are needed in DFJSS, which are routing rule (machine-specific) and
sequencing rule (job-specific), respectively. In this case, the quality of DFJSS
schedule depends highly on how well the routing rule and the sequencing rule
work together. However, dispatching rules are normally manually designed. That
is, the design of dispatching rules is domain-dependent and time-consuming.

Genetic programming (GP) has been successfully applied to automatically
evolve dispatching rules for JSS [5,7]. However, a challenge of using GP is the
intensive computation time. Surrogate-assisted evolutionary computation with
efficient computation models, known as surrogates, provides a promising means
of handing complex applications [1,8]. The challenge is how to design appropriate
surrogates with cheaper computation time that can represent the original models
well.

1.1 Goals

To address the challenge above, this paper has the following research objectives.

– Propose adaptive surrogates for GP (ASGP) approach to operate linearly
diverse surrogates with different fidelities in the search process.

– Design generation-range-based surrogates for GP (GSGP) that uses homoge-
neous (heterogeneous) surrogates in the same (different) predefined ranges of
generations.

– Verify the effectiveness and efficiency of the proposed algorithms.
– Compare the learning processes of the proposed two algorithms with standard

GP without surrogates.

2 The Proposed Surrogate Strategies

2.1 Adaptive Surrogates

In this section, adaptive surrogates are proposed for GP and the corresponding
algorithm is named as ASGP. The basic idea is to deliberately enlarge accuracy
of the surrogate models by building up a very simple surrogates at the early
stage. As the evolutionary optimization proceeds, the accuracy of the surrogates
increases gradually and smoothly expecting that the performance of approxi-
mated surrogate models is consistent with the original model.

Let Njob and Nwarmup represent the number of jobs and warmup jobs, respec-
tively. At the ith generation, the number of jobs and warmup jobs are denoted
as Njob,i and Nwarmup,i. The expressions of Njob,i and Nwarmup,i are shown as
Eq. (1) and Eq. (2), respectively. In this way, the number of jobs and warmup
jobs will increase linearly.
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Njob,i =
{
Njob ∗ 1

maxGen−1 gen = 0
Njob ∗ Gen

maxGen−1 1 ≤ Gen < maxGen
(1)

Nwarmup,i =
{
Nwarmup ∗ 1

maxGen−1 gen = 0
Nwarmup ∗ Gen

maxGen−1 1 ≤ Gen < maxGen
(2)

2.2 Generation-range-based Surrogates

For the ASGP, at each generation, different surrogate models are applied. In
this section, generation-range-based surrogates is proposed for GP (GSGP) to
explore whether a fixed interval change can be more efficient. In this paper, the
number of jobs and warmup jobs of the original simulation model are set to 5000
and 1000, respectively. We set every ten generations into a range. The setting
details of different surrogates used in different generations are shown in Table 1.

Table 1. The setting of generation-range-based surrogates.

Generation ranges Njob,i Nwarmup,i

[0, 10) 500 100

[10, 20) 1000 200

[20, 30) 1500 300

[30, 40) 2500 500

[40, 50] 5000 1000

3 Experiment Design

In our experiment, the terminal and function sets in [6] are adopted. It is worth
mentioned that “/” is the protected division that returns the largest double
positive number if divided by 0. For dynamic simulation, commonly used config-
uration is adopted [10]. This paper presents the results obtained by the proposed
two approaches and CCGP approach [10], which is the state-of-the-art algorithm
for DFJSS, using three objectives, namely: (1) max-flowtime, (2) mean-flowtime,
and (3) mean-weighted-flowtime. The smaller the result, the better.

4 Results and Analyses

The (−,+) marks show whether our proposed approaches converge significantly
better or poorer than CCGP approach in Wilcoxon rank sum test (p ≤ 0.05),
respectively. For the convenience of description, < obj, uti > indicates the sim-
ulation scenarios, where obj and uti are the objective and the utilization level.
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Table 2. The mean and deviation error of normalized objective value of the compared
algorithms over 30 independent runs for six scenarios.

Index Scenario ASGP GSGP CCGP

1 < tmax, 0.85 > 0.640 (0.034) 0.638 (0.029) 0.642 (0.035)

2 < tmax, 0.95 > 0.571 (0.023) 0.565 (0.018) 0.568 (0.030)

3 < tmean, 0.85 > 0.772 (0.012)(-) 0.768 (0.008) 0.772 (0.015)

4 < tmean, 0.95 > 0.734 (0.023) 0.738 (0.022) 0.731 (0.015)

5 < twt, 0.85 > 0.778 (0.030) 0.772 (0.010) 0.774 (0.018)

6 < twt, 0.95 > 0.773 (0.023) 0.774 (0.024) 0.774 (0.037)

4.1 Test Performance of Evolved Rules

Table 2 shows that ASGP and GSGP algorithms are no significantly worse than
CCGP in general. The mean value obtained by ASGP are about equal with the
value obtained by CCGP in all scenarios. It is noted that ASGP significantly
outperforms CCGP in scenario < tmean, 0.85 >. This clearly shows the potential
of using surrogates to improve the performance of GP. It also indicates that the
surrogates (approximation models) may not be always harm.

For GSGP, the mean value obtained are smaller than CCGP in four (scenario
1, 2, 3, 5) out of six scenarios. In addition, the variances obtained by GSGP are
smaller than CCGP in five (scenario 1, 2, 3, 5, 6) out of six scenarios.

4.2 Training Time

Table 3 shows the computation time (reductions produced by surrogates com-
pared with CCGP) of the three algorithms. Overall, ASGP and GSGP need
less training computation times compared with CCGP. The average reductions
produced by ASGP and GSGP are 25.7% and 34.4%, respectively.

The experimental results have confirmed that ASGP can reduce the compu-
tation time by at least 22.9% in six scenarios. In both scenario 2 and scenario
3, the computation time are reduced the most (27.2%). For GSGP, it is obvious
that it can reduce more computation time (from 32.6% to 36.0%) than ASGP
(from 22.9% to 27.2%). It is not surprising because the average fidelity of ASGP
is higher than GSGP. In addition, the computation time is reduced the most
(36.0%) in scenario 1 while the least (32.6%) in scenario 5.

4.3 Insight the Learning Process

The lines in Fig. 1 are the average normalized objective value from 30 indepen-
dent runs. Although all GP methods start with the same population, the starting
points are different because they use different surrogates. To be specific, CCGP
get the value from surrogates with higher fidelities while ASGP and GSGP get
the value from surrogates with lower fidelities.
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Table 3. The average training time (reduction) of the compared algorithms over 30
independent runs for six scenarios.

Index Scenario Training time (seconds)

ASGP GSGP CCGP

1 < tmax, 0.85 > 3399.8 (26.8%) 2969.9 (36.0%) 4642.8

2 < tmax, 0.95 > 3743.6 (27.2%) 3326.2 (35.3%) 5144.9

3 < tmean, 0.85 > 3302.5 (27.2%) 2935.0 (35.3%) 4538.5

4 < tmean, 0.95 > 3635.3 (25.0%) 3220.2 (33.6%) 4849.9

5 < twt, 0.85 > 3436.2 (22.9%) 3004.4 (32.6%) 4458.4

6 < twt, 0.95 > 3725.7 (24.8%) 3282.7 (33.8%) 4957.0
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Fig. 1. The convergence curves of the fitness obtained by ASGP, GSGP and CCGP in
training process.

It is noted that both ASGP and GSGP have higher fluctuations in all sce-
narios than CCGP, especially at the early stage of evolutionary process. For
ASGP, the fidelities of surrogate models change smoothly to handle the learning
process gradually. It is expected to meet the need of training. It is interesting
that Fig. 1 shows that ASGP and GSGP have basically the same trends in six
scenarios. This indicates that the predefined ranges and settings of simulations
in GSGP are representative for the learning process. In addition, after generation
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Fig. 2. The convergence curves of the normalized objective value obtained by ASGP,
GSGP and CCGP in test process.

40, ASGP and GSGP can achieve almost the same learning ability as CCGP,
although they use surrogates with lower fidelities at previous generations.

Figure 2 shows that CCGP can improve much faster at the beginning of
the evolution in six scenarios. This benefits from the precise search with full
simulations at the expense of computation time. However, after generation 10
approximately, the test performance between these three algorithms does not
differ obviously.

Overall, taking the computation time and test performance into considera-
tion, the proposed algorithms are more promising than CCGP.

5 Conclusions and Future Work

In order to tackle the intensive computation time of GP approach, this paper
proposed two different kinds of strategies of surrogates for GP to automatically
design dispatching rules for DFJSS. It is a preliminary attempt to apply surro-
gates into DFJSS. The results show that the two proposed surrogate strategies
managed to reduce computation time without deteriorating the quality of the
evolved rules. It also indicates that the proposed strategies have the potential to
help GP to achieve more promising dispatching rules.
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It is important to further investigate different strategies for surrogates to
accelerate the effectiveness and efficiency of the GP approach. Function approx-
imation and evolutionary approximation will be considered in the future.
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Abstract. This paper investigates intersection management protocols
under an environment in which all vehicles are autonomous and capa-
ble of communication. Three potential protocols for intersection con-
trol was considered and implemented as a multi-robot system under the
Robot Operating System platform. Although these protocols mimic con-
ventional control mechanisms for human-driving, their behaviour under
environments of autonomous driving is different. We found that the vir-
tual roundabout, a protocol under which all vehicles follow the real-world
rule of roundabouts without a physical roundabout, is most effective
among the three protocols with respect to traffic load, safety distance
and traffic imbalances.

1 Introduction

Self-driving cars are becoming a tangible reality and will change our lives in more
ways than we can imagine [1–4]. In a future when all cars are self-driving, traffic
situations will be dramatically different and require different methods and infras-
tructure for control and management [5]. With the emergence of autonomous and
connected vehicles (AVs and CVs), traffic facilities that were designed for human-
driving such as traffic lights, stop signs and roundabouts would be replaced by
less visible but more efficient algorithmic policies [6]. As such, the utilisation of
new technologies with connected vehicles and intelligent traffic control for driver-
less cars has become one of the most important research topics for autonomous
driving [7–12]. This paper aims to investigate the behaviour of AVs under dif-
ferent intersection control protocols.

There are three typical control mechanisms used almost anywhere in the
world: traffic signals, stop signs and roundabouts. Traffic signals are considered
the most efficient mechanism for intersections with heavy traffic, stop signs for
intersections with light and unbalanced traffic and roundabouts built to accom-
modate for moderate traffic with balanced flow from all directions. These traffic
control facilities were designed for human drivers. Despite new technologies such
as smart intersections being developed to optimise traffic control [16,17], in the
environments where all vehicles are fully connected and autonomous, these facil-
ities are no longer necessary and efficient.
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In this paper we consider three potential protocols for intersection control
and implement them as a multi-robot system based on the Robot Operating Sys-
tem (ROS) platform - traffic signals, first-in-first-out and virtual roundabout.
Although these protocols mimic control mechanisms for human-driving, their
behaviour under autonomous driving is different. Based on our results, the vir-
tual roundabout outperformed the other two protocols in respect to average
delays, safety distance and traffic load in addition to handling imbalanced traffic
reasonably well.

The structure of this paper is as follows. Section 2 introduces the model
algorithms of the three intersection protocols. Section 3 shows our simulation
outcomes. Section 4 we summarise the paper with a discussion of related work
and future directions.

2 Protocols for Intersection Control

As mentioned above, we will consider three protocols for intersection traffic flow
controls. We will show how these protocols are implemented on the ROS plat-
form.

2.1 The Model of Intersections

We consider an intersection as a four-way junction crossing over of two roads.
An intersection is preset with an alert area, called the intersection area (see
Fig. 1). Inside the intersection area exists a stop line on each road towards the
intersection, a vehicle must stop before the stop line if the intersection is occupied
by another vehicle or encountering a red light. The area between the stop lines
is called the central area (see Fig. 1).

Vehicles on the road are assumed to possess valid software and hardware
to follow the appropriate protocols and are capable of communicating with each
other. Communication amongst the vehicles can be peer-to-peer or broadcast via
the facilities of the intersection allowing vehicles to negotiate with each other.
Whilst inside the intersection area, every vehicle will be aware of the status of
other vehicles in the intersection area. For the purpose of simulations, the status
include the following information:

– Vehicle id: an identification number to identify the vehicles inside the inter-
section area.

– Travel direction: the direction towards the intersection.
– Position: the current coordinates in the intersection area.
– State: used to determine whether the vehicle has or has not passed the inter-

section. It can be any of the following four values: “before central area”,
“waiting at stopping line”, “inside central area”, “after central area”.

– Speed: current speed of the vehicle.
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Fig. 1. The model of intersection

The state of a vehicle can be derived from its position and direction, however
explicitly including the state allow for easier implementation of algorithm.

In this study, an intersection consists of four entrances: east, west, south and
north with all cars entering the intersection proceeding straight without turning.
Road1 consists of the two lanes running north-south separated by a solid line
and similarly, Road2 the east-west lanes.

Consider an observation window period T . We let n denote the set of vehicles
that are travelling through the intersection area during the period (excluding the
vehicles that entered before the period or left after the period). Let W denote
the width of the intersection area1. We assume that each vehicle i ∈ n travels
into and out of the intersection area with velocity Vi. Let si be the time it enters
the intersection area and fi be the time it leaves the intersection area. Then,
the travel time di = fi − si.

We define the ideal travel time, Ii, of a vehicle i to be the time it would take
that vehicle to travel through the intersection at constant velocity Vi without
stopping. Therefore, the ideal travel time Ii = W

Vi
.

To test the efficiency of each intersection protocol, we compare the average
delay against the ideal travel time. In this case, the average delay DT of all
vehicles in the observation period T can be calculated as

DT =
1
n

n∑

i=1

(di − Ii)

1 For simplicity, we assume that the intersection is a square.
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Algorithm 1. Traffic signal protocol
Input: The set of vehicles N and the array of states {state[i] : i ∈ N}
Output: Time record for each vehicle: the finish time fi and time duration di
Function: traffic signals()

1: while System is not shutdown do
2: Get Systemtime;
3: for i ∈ N do
4: if state[i] is “after central area” then
5: Continue;
6: if Systemtime in phase1, vehicle i in Road1 then
7: Vehicle i crosses the intersection;
8: state[i] changes to “inside central area”;

9: if Systemtime in phase2, vehicle i in Road2 then
10: Vehicle i crosses the intersection;
11: state[i] change to “inside central area”;

2.2 Traffic Signal Protocol

From Algorithm 1 above, we divide the system time into two phases to replicate
traffic signals. Phase 1 allows the vehicles on Road 1 to pass through whilst
restricting vehicles on Road 2. In other words, Phase 1 means green light for
Road 1 while Road 2 has the red light and vice versa for Phase 2. Instead of
simulating yellow light, vehicles on one road do not enter the intersection until
the vehicles on the other road have left the intersection.

2.3 FIFO Protocol

The second protocol follows the idea of first-in-first-out queues (FIFO), the ear-
lier a vehicle enters the intersection area, the earlier it can pass through. Vehicles
that arrived later must wait at the stop line until all the earlier vehicles have
passed the intersection.

If we strictly follow FIFO, only a single vehicle can pass the intersection
at any given time. In our implementation, we allow two consecutively arrived
vehicles to pass the intersection at the same time if and only if they are on the
same road (different directions).

2.4 Virtual Roundabout Protocol

From Algorithm 3 below, the virtual roundabout is implemented off FIFO. It is a
protocol designed to mimic roundabouts without the need for a physical round-
about. If the central area is empty, the vehicle that arrived earliest is allowed to
enter the intersection. However, if the central area is not empty, vehicles that are
on the same road as the vehicle currently on the central area is allowed to enter
the intersection. The difference between FIFO and the virtual roundabout pro-
tocol is the ability to allow multiple vehicles to cross the intersection regardless
of arrival time.
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Algorithm 2. FIFO Protocol
Input: The vector of vehicles N sorted by their arrived time and the array of states

{state[i] : i ∈ N}
Output: Time record for each vehicle: the finish time fi and time duration di
Function: fifo()

1: while System is not shutdown do
2: for i = 1 to |N | do
3: occupied=false;
4: if state[i] is “inside central area” then
5: occupied=true;

6: for i = 1 to |N | do
7: if state[i] is “after central area” then
8: Continue;

9: if Vehicles i and i + 1 are on Road1 or Road2, state[i] and state[i + 1] are
10: “waiting at stop line”, and !occupied then
11: Vehicle i and vehicle i + 1 crosses the intersection;
12: Set state[i] and state[i+1] to “inside central area”;
13: else if state[i] is “waiting at stop line” and !occupied then
14: Vehicle i crosses the intersection;
15: Set state[i] to “inside central area”;

Algorithm 3. Virtual Roundabout Protocol
Input: The vector of vehicles N sorted by their arrived time and the array of states

{state[i] : i ∈ N}
Output: Time record for each vehicle: the finish time fi and time duration di
Function: roundabout()

1: while System is not shutdown do
2: occupied = false;
3: for i = 1 to |N | do
4: if state[i] is “inside central area” then
5: occupied = true;

6: for i = 1 to |N | do
7: if state[i] in “after central area” then
8: Continue;

9: if Vehicle i in the waiting state, and occupied then
10: Vehicle i crosses the intersection;
11: Set state[j] to “inside central area”;

12: if Vehicle i on Road1 or Road2, state[i] is “inside central area”,
13: and !occupied then
14: for j = 1 to |N | do
15: if state[j] in “after central area” then
16: Continue;
17: else if Vehicle j on same road with Vehicle i and
18: state[j] is “waiting at stop line” then
19: Vehicle j crosses the intersection;
20: Set state[j] to “inside central area”;
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3 Simulation

In our simulations, we compare the throughput efficiency of the conventional
traffic signal, FIFO, and the virtual roundabout protocol by measuring the aver-
age travel delay in each case. In order to simulate different traffic conditions, we
repeat experiments with varying numbers of vehicles and safety distances. Fur-
thermore, we varied the ‘road balance’ to examine the efficiency of the virtual
roundabout under asymmetric traffic load.

3.1 Testing Environment

For our simulation environment, we used Gazebo, a simulator designed to simu-
late real world robots. The communication frequency was set to 10 Hz (vehicles
broadcast a message 10 times a second). A unit of distance was defined to be
exactly the width of the central area. The central area and intersection area
was set to have 1 × 1 unit2 and 10 × 10 unit2 respectively with the speed in
the intersection area to be 0.5 unit/s. With a scale of 1 : 30, the central area
is 30 × 30 m2, the intersection area is 300 × 300 m2, and the speed Vi inside
the intersection area is 54 km/h. The start times si for each car was randomly
generated. A screenshot of the simulation is shown in Fig. 1.

3.2 Results

In this section we analyse the results from our simulations and discuss the per-
formance of the virtual roundabout against both the traffic light and FIFO
protocol.

Varying Number of Vehicles. For each of the protocols, we measured the
average delay time DT for an increasing numbers of vehicles. Regardless of the
protocol implemented, as the number of cars increased the average delay also
increased (see Fig. 2). However, the growth rate of each protocol was different

Fig. 2. Average delay
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Fig. 3. Increased system efficiency as traffic load becomes imbalanced.

with the traffic signal showing a staggered growth, the FIFO with an exponential
growth and the virtual roundabout showing a logarithmic growth.

As the traffic signal protocol was implemented with 30 s phases, traffic which
exceeded the maximum number that can be processed in a single cycle must stop
and wait resulting in a staggered growth. For FIFO protocol, the growth rate
appears to increase at an exponential rate as each lane of traffic backs up at the
stop line and must wait for cars that arrived at the central area first. For the
virtual roundabout, the growth rate appears to increase at a logarithmic rate
with an average delay 62% compared with the traffic lights and 56% of FIFO
protocol.

Varying Safety Distance. In this section we analyse the influence of different
safety distances on the vehicles’ average delay times. We denote the vehicle body
length by b and set the safety distance to 0.5b, 1b, 1.5b and 2b.

Fig. 4. Varying safety distance with traffic lights, FIFO and virtual roundabout.

In Fig. 4, we show the relationship between the average delays, the safety
distance, and number of vehicles for the three protocols. It is apparent for FIFO
and virtual round- about that as the safety distance increases so to does the
average delay. Interestingly, for the traffic light protocol, it was found that the
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safety distance has no measurable impact on the average delay time. As discussed
earlier, provided that the traffic load is able to pass in the allotted phase, the
increase in safety distance will only have a measurable affect if the traffic load
is unable to clear the cycle due to the increased distance.

Unbalanced Traffic Flow for the Virtual Roundabout Protocol. In the
previous simulations, an equal number of vehicles pass through the central area
from each direction. In this section, we present our experiments with the virtual
roundabout protocol on unbalanced roads, i.e. more vehicles on one road than
the other. Under realistic conditions, the ratio and direction of vehicles entering
an intersection is not uniform.

In Fig. 3, as the intersection become increasingly imbalanced due to the
composition of traffic load increasing on Road 1, the average delay decreases.
Although beneficial for the intersection as an overall system, vehicles on the less
congested roads suffer a penalty for taking the less congested path.

4 Related Work, Conclusion and Future Work

The rapid development of artificial intelligence and driverless cars has made
intersection management an increasingly hot topic with two main approaches
emerging for the management of intersections with AVs.

The first approach is implemented using a centralized intersection manage-
ment system. Under this approach, AVs in the intersection area are under con-
trol of the central control unit. In this approach, there have been numerous
approaches which includes Auction-based autonomous intersection management
[9] and the first-come-first-served protocol [13].

The second approach is based on autonomous Multi-Agent Systems (MAS)
and allows agents the ability negotiate with each other to decide when to pass
the intersection [14,15]. In this scheme, AVs are regarded as one kind of agent
and the intersection control as another agent [10]. Transportation networks can
be made up of multiple Intersection Agents (IA), and different agreements can
be reached by the AVs and IAs through several negotiation protocols.

This paper provides a new proposal to solve the management of an inter-
section for AVs by introducing the virtual roundabout. The virtual roundabout
was tested against conventional protocols used to manage an intersection; traffic
signal and FIFO protocol. From the simulations, the efficiency of the virtual
roundabout drastically outperformed the traffic signals and FIFO protocol in all
simulations with parameters such as traffic load and safety distance considered
whilst performing well in imbalanced traffic conditions.

This research put forwards that the virtual roundabouts outperform standard
protocols on intersections with four entries and vehicles all proceeding straight.
In future research, we plan to examine the efficiency of the virtual roundabout
with more complex traffic situations including intersections with more than 4
entries, multiple lanes, and the ability of vehicles to turn.
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As the simulation environment was performed using ROS, our algorithms
can be run directly on robots to replicate real world traffic. This is also the basis
for applying the technology in practice as this protocol can be used with any
vehicle with a communication device (level 3 AVs). Once the technology is ready
for use, many benefits such as reduced fuel consumption, exhaust emissions,
improvement of overall traffic efficiency, and safety is around the corner.
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Abstract. In recent years, container-based clouds are becoming increas-
ingly popular for their lightweight nature. Existing works on container
consolidation mainly focus on reducing the energy consumption of cloud
data centers. However, reducing energy consumption often results in con-
tainer migrations which have big impact on the performance (i.e. avail-
ability) of applications in the containers. In this paper, we consider con-
tainer consolidation as one multi-objective optimization problem with
the objectives of minimizing the total energy consumption and minimiz-
ing the total number of container migrations within the certain period
of time and present an NSGA-II based algorithm to find solutions for
the container consolidation problem. Our experimental evaluation based
on the real-world workload demonstrates that our proposed approach
can lead to further energy saving and significant reduction of container
migrations at the same time compared with some existing approaches.

Keywords: Container-based cloud · Energy consumption
Multi-objective · NSGA-II

1 Introduction

Cloud computing has been progressively gaining popularity in both industrial
and academic worlds in the last decade for its elasticity, availability, and scal-
ability. However, cloud data centers have to manage energy crisis due to the
constraints from renewable or nonrenewable energy sources [10].

Fortunately, high energy efficiency can be achieved through virtualization-
based approaches that implement multiple operating systems and applications
on the same physical machines (PMs, also known as hosts in this paper) simul-
taneously. As the most widely used virtualization technique, hypervisor allows
multiple operating systems to share one single PM through virtual machines
(VMs) [2]. Another more flexible, scalable, and resource efficient solution, i.e.
container is accelerated by the increasing popularity of Docker in recent years
[1]. Compared with VMs, containers are lightweight in nature and enable high-
density deployment, significantly reducing the thirst for large quantities of PMs.
The aim of container consolidation is to consolidate multiple containers to a set
c© Springer Nature Switzerland AG 2018
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of VMs which are then consolidated to a set of PMs so that the overall utilization
of both VMs and PMs is maximized.

During the process of container consolidation, containers are often migrated
among VMs to increase the utilization of VMs and PMs and therefore reduce the
number of running PMs. However, container migrations lead to the startup delay
because the migrations are implemented through shutting down the original
PM’s container and starting the same one on the destination PM. Naturally, the
process impacts the performance of applications in cloud computing [15].

For the above reason, we regard the problem of container consolidation as
one multi-objective optimization problem with two conflict objectives. On one
hand, cloud data centers expect to consolidate containers to a smaller number
of PMs to decrease energy consumption, which may cause a large number of
container migrations. On the other hand, they would like to minimize container
migrations to avoid service degradation derived from the container startup delay.

Existing works on container consolidation study the problem with different
focuses. For example, Zhang et al. [19] model the container scheduling problem
with the consideration of host energy consumption, network transmission cost,
and container image pulling cost. They also deploy an integer linear program-
ming (ILP) method to solve it. Piraghaj et al. [14] consider four metrics includ-
ing energy consumption, Service Level Agreement (SLA) violations, container
migrations rate and number of created virtual machines. In [9], Distance Based
Evaluation (DBE) is used to orchestrate the four objectives as one ultimate
value. However, this approach only suits to the situation when cloud providers
have clear preference over different objectives.

In comparison to mathematical optimization techniques such as ILP, evolu-
tionary multi-objective optimization (EMO) methodologies are ideal for solving
multi-objective optimization problems, because they can find multiple Pareto-
optimal solutions in one single run [5]. In particular, Non-dominated Sorting
Genetic Algorithm II (NSGA-II) is one of the most widely used EMO methods
that has shown its promises in solving combinatorial optimization problems. The
algorithm can search well-spread solutions and usually converge quickly to the
true Pareto-optimal front without specifying extra parameters [6]. The aim of
this paper is to propose an NSGA-II based approach to produce a set of near
optimal container consolidation solutions, to minimize energy consumption and
the number of container migrations jointly.

The rest of the paper is organized as follows. Section 2 introduces the related
work and background. Section 3 presents the objective functions and formulation
of the container consolidation problem. Section 4 presents our NSGA-II based
algorithm. Section 5 discusses the experiment results. Finally, Sect. 6 concludes
the work.

2 Background

This section introduces the simulation environment we apply and NSGA-II for
the problem we intend to solve.
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2.1 ContainerCloudSim

ContainerCloudSim [15] is one simulation tool extended from the CloudSim sim-
ulation tookit [4]. It applies VM-Container configuration [14] as virtual envi-
ronment and supports modeling and evaluating of container resource manage-
ment techniques such as container scheduling, placement, and consolidation. The
architecture of resource management in ContainerCloudSim is shown in Fig. 1.
Concretely, the VM manager on the top of host sends the status of the host and
the list of the containers required to be migrated to the consolidation manager.
The consolidation manager running on a separate host decides the destination
hosts of these containers and sends resource requests to them. There are two key
modules involved in this process, i.e. container selection and host selection. The
container selection module is implemented to select the candidate containers to
migrate, and the host selection module is responsible for selecting the destination
hosts for the migrated containers.

Fig. 1. The architecture of resource management in ContainerCloudSim [15].

Periodically, the container consolidation is triggered according to the status
of hosts. If the CPU utilization of one host exceeds the predefined overload
threshold or is lower than the under-load threshold, its status is set as Overloaded
or Under-loaded correspondingly.

Overloaded Hosts Consolidation: Migrate the containers from the over-
loaded hosts until they are no longer overloaded by the container selection mod-
ule and the host selection module. With regard to the container selection module,
MaxUsage (MU) policy that selects the container with the biggest CPU utiliza-
tion to migrate is proved to result in less energy consumption, fewer container
migrations and SLA violations in [15]. Therefore, our study adopts this policy.
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Under-Loaded Hosts Consolidation: For each under-loaded PM, all its con-
tainers will be migrated only if these containers can find the appropriate destina-
tion hosts by the host selection module. Our study focuses on this process since
it has the potential for improvement by using NSGA-II and our new approach.

2.2 NSGA-II

NSGA-II is proposed in [6] to solve optimization problems with two or three
objectives. It reduces the computational complexity of NSGA and also incor-
porates elitism. The algorithm can consider and control two attributes of each
chromosome (e.g. container consolidation decision), i.e. non-domination rank
and local crowding distance in the population to find the solutions near the
true Pareto-optimal front. Instead of combining the conflicting objectives into
one single fitness measure, NSGA-II generates solutions which provide a better
trade-off taking all conditions into consideration. It has been used to solve many
combinatorial optimization problems with the promising performance [18].

3 Problem Formulation

In this section, we first provide a general description of the container consoli-
dation problem in container-based clouds. We then present the formulation of
the problem, including assumptions, objective functions, and constraints that
should be satisfied by the consolidation solutions.

3.1 Problem Description

Assume that in a cloud data center there is a set of PMs and VMs, which may
have some containers allocated already, as the time going on new containers need
to be deployed to the cloud center. Container consolidation aims to allocate new
containers and migrate existing containers to VMs and VMs to PMs so that
overall energy consumption of PMs is minimized while the container migration
are also minimized.

3.2 Assumptions

The following assumptions are made in this paper.

– The major energy in data centers is consumed by CPU except the cooling
devices [16], so we assume that the energy consumption of PMs only depend
on the CPU utilization of PMs.

– Following the related work [14], the resources considered by PMs, VMs, and
containers are CPU performance, memory, disk, and network bandwidth.

– We consider general situations where heterogeneous PMs, VMs, and contain-
ers have different configurations, i.e. CPU, memory.
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3.3 Problem Formulation

Assume in a cloud data center, there are a set of physical machines
PM = {PM1, . . . , PMm, . . . , PMp} and a set of virtual machines VM =
{VM1, V M2, . . . , V Mj , . . . , V Mv}. Each physical machine PMm has the capac-
ities of CPU Pcm, memory Pmm, disk Pdm and network bandwidth Pnm, i.e.
PMm(Pcm, Pmm, Pdm, Pnm). Similarly, for the virtual machine VMj ∈ VM,
it has the corresponding capacities of resources, i.e. CPU, memory, disk, and
network bandwidth. We describe them as VMj(V cj , V mj , V dj , V nj).

For a given set of applications, their CPU cost is defined as Million Instruc-
tions (MI). The cloud provider allocates each of the applications to a container
which can be described as Ci(Cci, Cmi, Cdi, Cni). During container consolida-
tion, the list of containers that need to be allocated to the VMs on the corre-
sponding PMs is denoted as [C1, . . . , Ci, . . . , Cc].

In order to minimize the power consumption of a data center, we formulate
the first objective of the container consolidation problem as (1):

minimize E(t) =
p∑

m=1

Pm(t) (1)

where Pm(t) is the energy consumption of a physical machine PMm at time t.
The energy consumption model of the physical machine PMm we use is fully

compatible with the VM-based energy model proposed by Blackburn [3]. The
model is adopted widely by [11,17]. The power consumption is linearly related
to the utilization of the CPU of the PMs, i.e., the power consumption of PMm

is determined by

Pm(t) =
{
P idle
m + (P busy

m − P idle
m ) · pcm(t), if Nvm > 0

0, if Nvm = 0 (2)

where the CPU utilization at time t is pcm(t), P idle and P busy are the power
consumption of the PM when its utilizations are 0% and 100% respectively, Nvm

represents the total number of VMs being deployed in the PM.
Another objective of the container consolidation problem is to minimize the

total number of container migrations, which is formulated in (3):

minimize TotalMigration =
p∑

m=1

Migration(Pm) (3)

where Migration(Pm) is the migration number of containers in a physical
machine PMm.

(4) shows the formula of calculating the CPU utilization of PMm at time t.
The Equation sums up the CPU utilization vcj(t) of VMj . Similarly, its usages
of memory, disk, and network bandwidth pmm, pdm and pnm of PMm are deter-
mined by (5), and Nvm represents the total number of VMs being deployed to
PMm.
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pcm(t) =
Nvm∑

j=1

vcj(t) (4)

pmm =
Nvm∑

j=1

vmj , pdm =
Nvm∑

j=1

vdj , pnm =
Nvm∑

j=1

vnj (5)

Lastly, the CPU utilization at time t and the usages of memory, disk, and
network bandwidth of VMj can be calculated by (6) and (7). They are straight-
forward to sum up the relevant parameters of container Ci, and Nc represents
the total number of containers being deployed to a VMj .

vcj(t) =
Nc∑

i=1

ccj(t) (6)

vmj =
Nc∑

i=1

cmi, vdj =
Nc∑

i=1

cdi, vnj =
Nc∑

i=1

cni (7)

3.4 Constraints

We consider resource constraints about VMs and PMs in (8). Generally speaking,
VMs and PMs cannot process more CPU, memory, disk, and network bandwidth
requirements than their capacities.

vcj(t) ≤ V cj , ∀j ∈ {1...v}
vmj ≤ V mj , ∀j ∈ {1...v}
vdj ≤ V dj , ∀j ∈ {1...v}
vnj ≤ V nj , ∀j ∈ {1...v}
pcm(t) ≤ Pcm, ∀m ∈ {1...p}
pmm ≤ Pmm, ∀m ∈ {1...p}
pdm ≤ Pdm, ∀m ∈ {1...p}
pnm ≤ Pnm, ∀m ∈ {1...p}

(8)

4 NSGA-II Algorithm for Container Consolidation

In this section we present our algorithm that involves non-overloaded hosts
because they all have the potential to improve the utilization of PMs to decrease
energy consumption by migrating containers. However, it is NP-hard to find
the optimal consolidation solution. Consequently, we apply NSGA-II based algo-
rithm to search non-dominated solutions that decide which non-overloaded hosts
are attempted to migrate their containers at each time of reallocation. For each of
these hosts, we apply the First-Fit (FF) policy to choose its containers’ destina-
tion hosts. The strategy is widely used in existing works because of its reasonable
computational time.
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4.1 Chromosome Representation

Our approach uses a bit-string [si]Ni=1 to represent all the non-overloaded hosts
within a chromosome, where si is a binary value 1 or 0 to indicate whether the
corresponding non-overloaded PM is considered for container migrations (see
Fig. 2). In other words, the non-overloaded hosts whose corresponding binary
values are 0 can be regarded as the destination hosts for the migrated containers.

Fig. 2. An example chromosome representation.

4.2 Genetic Operators

As one discrete problem, we apply the binary crossover and mutation operators
of Genetic Algorithm [12]. With respect to the selection operator, we use the
tournament selection to choose the best individuals from candidates for further
genetic processing [8].

4.3 NSGA-II Based Algorithm for Container Consolidation

In this section we present the process of NSGA-II based container consolidation
as Algorithm 1. First of all, we initialize our non-dominated pool with the solu-
tion generated by Correlation Thresh-old Host Selection (CorHS) algorithm,
which shows good performance in combination with MU policy [14] (step 1).
Then we regard the non-overloaded hosts as the chromosome population, each
of which represents which non-overloaded hosts are ready to migrate (step 2–4),
the population are evolved with a predefined number of generations by NSGA-II
to achieve the final non-dominated solutions pool (step 6–17). In the end, we
decide one non-dominated solution according to practical requirement (e.g. the
balance strategy between energy consumption and container migrations) and
return its corresponding migration map to the simulator.

During the evolution, we calculate two objective functions of one solution
by Algorithm 2, i.e. energy consumption and container migrations of the data
center in line with (1) and (3). Firstly, we determine the destination host list
(step 1–6). Subsequently, for each container in one host ready to migrate, we
apply the FF policy to find the first host in the destination host list that meets
the resource requirement as its destination host (step 9–17). If all the containers
in the host can be migrated successfully, which means this host can be shut
down, we subtract its energy consumption and accumulate the container number,
otherwise we add the host to the list of destination hosts.
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Algorithm 1. NSGA-II for container consolidation
Input: overloadedHostList and activeHostList

Output: ContainersToMigrateMap

1: Initialize the Nondominated Pool with the solution from CorHS

2: Non overloadedHostList(NHL) ← activeHostList.removeAll(overloadedHostList)

3: L ← NHL.length()

4: Initialize a population of chromosome with L random binary values

5: Evaluate population with fitness functions (Algorithm 2)

6: while predefined generation do

7: Apply Tournament Selection

8: Apply Crossover

9: Apply Mutation

10: for all offspring chromosome do

11: Evaluate population with fitness functions (Algorithm 2)

12: end for

13: Non-dominated sort and assign a ranking to each chromosome

14: Calculate the crowding distance of each chromosome

15: Recombination and selection

16: Update the Nondominated Pool with the current Nondominated solutions

17: end while

18: Decide one Nondominated solution from Nondominated Pool

19: Return ContainersToMigrateMap corresponding to the solution

5 Experiments

To evaluate the performance of our proposed NSGA-II based approach, we com-
pare the energy consumption and the amount of container migrations with the
recently developed CorHS algorithm and Least Full Host Selection (LFHS) algo-
rithm [14]. Concretely, in the host selection module CorHS algorithm selects the
most irrelevant host based on workload history between the container and the
host, while LFHS algorithm chooses the host that has the least CPU utilization.
They both have state-of-the-art performance with less computational overhead.

5.1 Simulation Setup

We use the containerized cloud simulation toolkit, i.e. ContainerCloudSim [15] to
model our problem. The data center is simulated with 300 heterogeneous PMs,
500 heterogeneous VMs and 2500 heterogeneous containers (see Table 1). The
number of applications is also 2500 (modeled as Cloudlet in ContainerCloudSim),
each application is allocated to one container. We employ 80% and 70% as over-
load and under-load thresholds following the relevant research works in [14]. To
conduct statistics analysis, for each algorithm, we perform 30 independent runs.

We use the workload traces from PlanetLab [13]. The workload are simulated
as the containers’ CPU utilization measured every 5 min.

We implemented the NSGA-II based approach based on the jMetal frame-
work [7], and set parameters as follow. The population size is 100, and the
maximum number of generations is 50. We decided the crossover probability
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Algorithm 2. The process of calculating the fitness functions
Input: Non overloadedHostList(NHL) and chromosome S
Output: ContainersToMigrateMap and two fitness values, i.e. energy consumption

(E) and number of container migration (M)
1: destinationHostList ← null
2: for all bit si in S do
3: if si == 0 then
4: destinationHostList.add(NHLi)
5: end if
6: end for
7: E ← current energy consumption,M ← 0
8: for all bit si in S do
9: if si == 1 then

10: containerList ← NHLi.getContainerList()
11: for all container Ci in containerList do
12: for all host PMm in destinationHostList do
13: if Ci fits in VMj in the PMm then
14: tempMigrationList.add({Ci, V Mj , PMm})
15: end if
16: end for
17: containerList.remove(Ci)
18: end for
19: if containerList.size() == 0 then
20: ContainersToMigrateMap.addALL(tempMigrationList)
21: E ← E − NHLi.getPower()
22: M ← M + tempMigrationList.size()
23: else
24: destinationHostList.add(NHLi)
25: end if
26: end if
27: end for
28: Return ContainersToMigrateMap, E, and M

and mutation probability are 80% and 20% respectively, since the combination
can produce good results. In addition, the tournament size is 2.

5.2 Result

The energy consumption and the container migrations of our experimental eval-
uation are shown in Tables 2 and 3. With our proposed method, different pref-
erences can be incorporated into the process of consolidation. In this regard,
we study the performance for two preferences, i.e. minimizing the energy con-
sumption or minimizing the number of container migrations. For each time
of container consolidation, if we always select the consolidation solutions with
the minimal energy consumption, we achieve the simulation results indicated
as NSGA-II (min-Energy). On the other hand, if the solutions that prefer the
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Table 1. Configuration of PMs, VMs, and containers.

Type # CPU Memory (GB) Pidle (Watt) Pmax (Watt) Quantity

PM #1 4 cores * 37274 MIPS 64 86 117 100

PM #2 8 cores * 37274 MIPS 128 93 135 100

PM #3 16 cores * 37274 MIPS 256 66 247 100

VM #1 2 cores * 18636 MIPS 1 N.A. N.A. 125

VM #2 4 cores * 18636 MIPS 2 N.A. N.A. 125

VM #3 1 cores * 18636 MIPS 4 N.A. N.A. 125

VM #4 8 cores * 18636 MIPS 8 N.A. N.A. 125

Container #1 1 cores * 4658 MIPS 0.125 N.A. N.A. 834

Container #2 1 cores * 9320 MIPS 0.25 N.A. N.A. 833

Container #3 1 cores * 18636 MIPS 0.5 N.A. N.A. 833

minimal container migrations are deployed all the time, the simulation results are
demonstrated as NSGA-II (min-Migration). Our proposed NSGA-II based app-
roach outperforms the other two algorithms over time. Specifically, the one-day
simulation results demonstrate our approach consumes about 10% less energy,
while the container migrations are also about 15% less on average. The minimal
energy strategy has the compelling advantage in energy saving. Meanwhile the
minimal container migrations strategy is far superior to avoid service degrada-
tion caused by container startup delay.

Table 2. Energy Consumption

Hours LFHS [14] CorHS [14] NSGA-II (min-Energy) NSGA-II (min-Migration)

3 17.47 ± 0 17.72 ± 0 15.82 ± 0.19 16.9 ± 0.09

6 30.02 ± 0 29.72 ± 0 25.33 ± 0.35 25.67 ± 0.26

9 41.46 ± 0 40.93 ± 0 35.21 ± 0.45 35.71 ± 0.42

12 52.11 ± 0 51.85 ± 0.16 45.08 ± 0.6 45.88 ± 0.56

15 62.91 ± 0 62.83 ± 0.21 55.2 ± 0.71 55.97 ± 0.63

18 73.88 ± 0.02 73.27 ± 0.4 65.28 ± 0.83 66.03 ± 0.74

21 84 ± 0.07 83.12 ± 0.68 74.71 ± 0.99 75.97 ± 0.87

24 93.27 ± 0.2 91.62 ± 1.24 82.9 ± 1.36 83.62 ± 1.18

5.3 Analysis

To further analyze the performance of our proposed algorithm, we plot fitness
results of the solutions generated from the CorHS algorithm and our approach
at some simulation steps. In some steps such as at the simulation time 1200.2 s
(Fig. 3), there is only one solution left in the end of the evolution, which dom-
inates the solution from CorHS. In this case, we can minimize both objective



Multi-objective Container Consolidation in Cloud Data Centers 793

Table 3. Container Migrations

Hours LFHS [14] CorHS [14] NSGA-II(min-Energy) NSGA-II(min-Migration)

3 3399 ± 0 3601 ± 0 3343 ± 115 3315±56

6 5165 ± 0 5017 ± 0 4603 ± 168 4561±76

9 6682 ± 0 6267 ± 0 5604 ± 265 5552±125

12 7854 ± 0 7411 ± 37 6734 ± 296 6679±149

15 9453 ± 0 8656 ± 38 7837 ± 314 7758±148

18 10945 ± 53 9802 ± 113 8968 ± 406 8866±198

21 12459 ± 133 11221 ± 163 10418 ± 429 10334±210

24 14138 ± 202 12131 ± 287 11256 ± 492 11178±253

values by implementing this solution. Figure 4 depicts the Pareto front identified
by NSGA-II at the simulation time 10200.2 s. In this case, the solution from
CorHS is dominated by all the final generated solutions, which means our app-
roach has the flexibility to generate a set of non-dominated solutions instead of
one single solution. Therefore, energy-saving-oriented cloud data centers could
select the solution in the bottom right corner of the evolved Pareto front, while
performance-oriented cloud data centers tend to choose the solution in the top
left corner of the Pareto front.
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6 Conclusion

In this paper, we propose an NSGA-II based approach to the container consol-
idation problem under the VM-Container configuration. The approach aims to
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minimize the energy consumption and the amount of container migrations simul-
taneously. A thorough experimental evaluation using the well-known benchmark
dataset and simulator shows that our proposed method can find container con-
solidation solutions with less energy consumption and fewer container migrations
comparing with recent proposed approaches.
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Abstract. Text classification is a task of assigning a set of text documents into
predefined classes based on the classifier that learns from training samples;
labelled or unlabeled. Binary text classifiers provide a way to separate related
documents from a large dataset. However, the existing binary text classifiers are
not grounded in reality due to the issue of overfitting. They try to find a clear
boundary between relevant and irrelevant objects rather than understand the
decision boundary. Normally, the decision boundary cannot be described as a
clear boundary because of the numerous uncertainties in text documents. This
paper attempts to address this issue by proposing an effective model based on
sliding window technique (SW) and Support Vector Machine (SVM) to deal
with the uncertain boundary and to improve the effectiveness of binary text
classification. This model aims to set the decision boundary by dividing the
training documents into three distinct regions (positive, boundary, and negative
regions) to ensure the certainty of extracted knowledge to describe relevant
information. The model then organizes training samples for the learning task to
build a multiple SVMs based classifier. The experimental results using the
standard dataset Reuters Corpus Volume 1 (RCV1) and TREC topics for text
classification, show that the proposed model significantly outperforms six state-
of-the-art baseline models in binary text classification.

Keywords: Text classification � Uncertainty � Decision boundary
Sliding window technique � Support vector machine

1 Introduction

With the explosive growth of data, the massive amounts of unstructured data that is
available in an electronic form continue to increase. This requires the existence of
efficient and successful methods to manage and extract useful information from this
data for later retrieval and use [1]. Different methods and algorithms have been
developed for text classification including Support Vector Machine (SVM) [2], Naive
Bayes probabilistic Classifier (NB) [3], Rocchio Similarity [4], K-Nearest Neighbour
(KNN) [5], and C4.5 integration Decision Trees [1].
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There are two different approaches to text classification. One approach assigns each
document to a single category and the dataset has two or more classes (multi-class) [6].
The other approach is to allow documents to be categorized into all categories that it
matches well (multi-label) [7]. Binary classification is a special multi-class with two
predefined categories, namely, relevant or irrelevant classes [8], on which our research
focuses. A binary text classifier determines a decision boundary to classify documents
into two groups: positive and negative classes [6]. However, drawing a clear boundary
between the positive and negative classes of text documents is not easy for a classic
binary text classifier [8, 9].

Among the binary text classification techniques in recent years, SVM has gained
increasing recognition and popularity among researchers due to its ability to handle
high-dimensional data such as textual documents [10]. SVM performs classification by
finding a decision boundary (separating hyperplane) that partitions the feature space
into two distinct classes of data, positive and negative, with the maximum margin and
represents the decision boundary using a set of support vectors (SV) generated from the
training dataset [11, 12]. However, it is difficult for an SVM-based classifier to deal
with non-linearly separable data because the margin between positive and negative
objectives is still unclear. In such situations, due to the uncertainty, an SVM classifier
might not be completely effective in providing the optimal classification.

An important issue related to text classification is that many datasets have some
noise documents which make more difficult the finding of the optimal line to classify
related objects, and a full separation of relevant and irrelevant documents would require
a curve. However, it is not easy to achieve the curve in a direct way with high precision
because it requires too much computation [8]. Even if this were possible, there is no
guarantee that it can be applied to completely classify all unknown testing samples
because of the differences between training and testing document sets [9]. Thus, a
nonlinear classifier is inefficient for a prediction task where uncertain boundary exists
in the training set. It is, therefore, desirable to design a classifier model able to linearly
cope with non-separable data. Therefore, the hard question this research tries to answer
is: how to cope with data having uncertainties in the learning phase to improve the
performance of the classifier?

The aim of this research is to present an effective boundary setting model, that we
call an SW-based model, in order to overcome the limitations of the existing classifiers
and to achieve the best performance in linear SVM for data having uncertainties.
Different from traditional binary classifiers, the SW-based model aims to understand
uncertainty by partitioning training samples (with two labels) into three regions
(namely, positive, boundary, and negative regions) in order to understand the decision
boundary. Allowing this partitioning of the training set can help to describe relevant
and non-relevant information. This partitioning, at the decision boundary stage, can be
conducted by applying an efficient SW technique over positive and negative ranking
documents. At the second stage, based on three regions which are identified by SW,
new training sets will be created to support the construction of multiple SVMs based
classifier. We build up three different SVM classifiers (SVMP, SVMN, and SVMB),
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each of which is trained using its own training set. The training set for each classifier is
different in order to obtain a greater improvement of the prediction result, to increase
the certainty of all objects in positive and negative regions and to resolve the uncer-
tainty in boundary region. The basic motivation for using multiple SVMs to classify
new incoming documents is that a problem which requires expert knowledge will be
better solved by a committee of experts rather than by a single expert [6].

This research made three innovative contributions to the fields of text classification:
(a) A new and effective model that deal with the uncertain decision boundary for text
classification. Our proposed model uses only training set with minimal experimental
parameters to identify the uncertain boundary, which makes it efficient; (b) An alter-
native solution for the hard uncertain boundary problem that was traditionally solved
by non-linear SVMs; (c) A structure to guide the design of multiple classifiers fusion.
To test the effectiveness of the proposed model, substantial experiments were con-
ducted, based on the RCV1 data collection and TREC filtering track. The results show
a significant improvement on F1 and Accuracy in the performance of binary text
classification.

2 Related Work

Binary text classification is a significant research problem in information filtering and
information organization fields [14]. It provides a way to determine a decision
boundary that classifies textual documents into two distinct classes: relevant or irrel-
evant class. Several approaches to binary text categorization, such as NB, KNN,
decision tree, Rocchio, and SVM, have been developed to identify an efficient way to
separate all related documents from a large dataset to determine a clear boundary
between the classes in the text dataset [1]. However, in practice, the decision boundary
includes much uncertainty because of the limitation of traditional machine learning
algorithms, presence of noisy in text documents and feature scalability [15, 16].

SVM represents the training dataset as vectors, where each vector comprised of its
words with their frequencies, and then try to locate the linear hyperplane which sep-
arates two classes [12]. SVM can solve linear and nonlinear classifications and works
well when applied to many practical problems [17, 18]. Although nonlinear SVM is
effective when classifying nonlinear data, it has much higher computational complexity
than linear SVM when making predictions for sparse data [18]. In addition, linear SVM
performs better than nonlinear SVM when the number of features is very high, for
example, in document classification [19, 20]. Therefore, if the number of features is
extremely large, it is better to select linear SVM, due to the difficulty in finding the
optimal parameters of a classifier when using nonlinear SVM [21]. However, linear
SVM still has no effective way to deal with the uncertain factors, therefore, it is
desirable to have a classifier model with the efficiency of a linear classifier to deal with
data having uncertainty. The linear SVM is chosen in this study due to its computa-
tional and algorithmic simplicity.
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The above limitations can be alleviated by setting the decision boundary using the
SW technique and then designing a multiple SVMs based classifier. Through calcu-
lating the relevancy of the training samples to the topic, the SW- based model can
divide the ranked documents list into three regions based on scores that present their
degree of relevance. Recent advances in our proposed model mean that the SW
technique can be optimized by using Entropy. The entropy measurement is chosen in
this research because it is a commonly understood measure in information theory and it
is a fundamental measure for describing randomness and uncertainty of data [13, 22].

3 Decision Boundary Setting

To achieve the best performance in binary classification, the objective is to determine a
decision boundary between classes. Decision boundary setting is the first stage in an
SW-based model. Our proposed model uses the training set only to set the decision
boundary and to explore the uncertainty situation, as shown in Fig. 1.

3.1 Document Scoring

Scoring documents to indicate their importance is an effective way for ranking relevant
information. For a collection of documents in the datasets consisting of two sets
(positive document sets, D+; and negative document sets, D−), the SW-based model
calculates the weight of terms extracted from D+ and ranks them to use the

Step 1: A sliding window technique                                                     Step 2: Indicates the boundary 
over ranked documents                                                                          values and three regions.

Fig. 1. Decision boundary setting.
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top-k features based on their values. However, identifying the value of k is experi-
mental. In our proposed model, we use the Okapi BM25 as a term weighting function.
BM25 is a probabilistic state-of-the-art retrieval model [23], which can be calculated as
follows:

w tð Þ ¼ tf : k1 þ 1ð Þ
k1: 1� bð Þþ b DL

AVDL

� �þ tf
: log

rþ 0:5ð Þ
n�rþ 0:5ð Þ
R�rþ 0:5ð Þ

N�n�Rþ rþ 0:5ð Þ
ð1Þ

where N is the total number of training documents; R is the number of relevant
documents; n is the number of documents which contain the term t; r is the number of
relevant documents which contain the term t; tf is the term frequency; DL and AVDL
are the document length and average document length, respectively; and k1 and b are
the tuning parameters.

The reason for using the BM25 to calculate term weight is that the BM25 is a
probabilistic model and in binary text classification we deal with uncertain information
[23]. Probability is the measure used to understand the uncertainty in the information.
Therefore, probability theory is the best way to quantify uncertainties. Next, the
weighted terms are used to calculate the scores for all training documents d 2 D as
follows:

score dð Þ ¼
X

t2T w tð Þ:s t; dð Þ ð2Þ

where w(t) = BM25(t, D+); and s (t, d) = 1 if t 2 d; otherwise s (t, d) = 0.
Once the scores of the documents are calculated, the documents are ranked in

descending order based on their scores.

3.2 Sliding Window Technique

After ranking the training documents in the previous step, the most related document
will be located at the top of the list, while irrelevant ones will be located at the bottom
of the ranked list, as shown in Fig. 1 (step1). However, in most cases there are regions
in which positive and negative document are mixed due to uncertain boundary. To find
this area with many noisy documents, a sliding window technique and entropy are used
to effectively determine the boundary region. Ko and Seo [24] used entropy and a
sliding window to remove noisy data and solve the problem of the One-Against-All
method. Our proposed model extends this idea to use a sliding window and entropy
measurement to construct the decision boundary.

In this research, the sliding window was used to identify the boundary values which
denote the region with the highest rate of noisy documents [24, 25]. The window size
in this paper was set to 5 documents. The model starts to slide the window from the top
documents in the ranked list, and then calculates the entropy value for the window. The
window then slides over one document and yields a new entropy value. It continues to
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slide and stop when the entropy is greater than the threshold. We choose a high entropy
threshold (95%). The same process applies from the bottom of the ranked list as shown
in Fig. 1 (step1).

3.3 Entropy Algorithm

Entropy is commonly used to define the uncertainty of variable [22, 25]. For example,
for data containing only two objectives, A and B, the entropy (E) can be denoted using
the following formula:

E ¼ �pA log2 pAð Þ � pB log2 pBð Þ ð3Þ

where pA and pB are the proportion of A and B separately.
In this paper, for each sliding window, the entropy value can be calculated using the

following function based on the number of positive and negative documents as follows:

E ¼ � P
PþN

log2
p

pþN

� �
þ N

PþN
log2

N
PþN

� �� �
ð4Þ

where P and N are the numbers of positive and negative documents in SW,
respectively.

Next, we select two windows with the greatest degree of entropy value. The first
window (W1) is from the top of the list and the second window (W2) is from the bottom
of the list. For W1, the irrelevant documents are denoted as sN. For W2, the relevant
documents are denoted as sP. In this study, the values of the boundary are calculated
based on the scores of the relevant documents (sP) and the irrelevant documents (sN);
we selected the highest score of irrelevant documents in W1 as a maximum threshold
(smax), and the lowest score of relevant documents in W2 as a minimum threshold (smin)
as shown in Fig. 1 (step2). Hence, the upper and lower decision boundary values smax
and smin are calculated as follows:

smax ¼ maxdi2D� \W1 Score dið Þf g ð5Þ

smin ¼ mindi2Dþ \W2 Score dið Þf g ð6Þ

3.4 Three Region for Partition the Training Set

Our proposed model aims to group training sets into three regions rather than two
classes. The training set D can be split into three regions based on the document scores
and threshold settings in the previous step: the positive region (POS, possible relevant);
the boundary region (BND, uncertain); and the negative region (NEG, possible irrel-
evant). The ranges of these regions are defined as follows:
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POS ¼ fd2Djscore dð Þ[ smaxg
BND ¼ fd2Djsmin � score dð Þ� smaxg

NEG ¼ fd2Djscore dð Þ\sming

The boundary region BND contains many positive and negative documents under
uncertain decisions, therefore, two other subsets of the BND region are produced:
Bþ ¼ BND\Dþ andB� ¼ BND\D�.

4 Design Multiple SVMs Based Classifier Using Three
Regions

The SW-based model attempts to use the training dataset effectively to improve the
accuracy of the classifier. Our model uses SVM as a high performance model and
generates new training data based on the three regions, as indicated in the previous
section. However, a single SVM may not be sufficient to classify all unknown testing
samples. Therefore, we propose to use multiple SVMs based classifier. This stage
contains two phases including a training phase and a testing phase, as shown in Fig. 2.

4.1 Training Phase

In the training phase, building a classifier is achieved by training the SVM using
chosen training documents via three regions. As shown on the left side of Fig. 2, we
constructed three different SVMs classifiers; SVMP, SVMN, and SVMB. To explain this
process, the Algorithm 1 describes the training phase to learn the classifiers. The First
classifier, SVMP (step 8), takes strong positive documents POS and all negative doc-
uments (B− [ NEG) as input, and uses the SVM classifier to build a predication model.
The SVMP generates the hyperplane between POS and (B− [ NEG) to maintain the
maximum margin between them. However, a potential problem with this approach can
arise when the number of training samples in the POS part is very low and, in this case,
the boundary of class would not be accurate due to insufficient positive training
samples provided for text classification. To overcome this issue, we use a pseudo
feedback technique. We select top-k scoring documents from the unlabelled testing set
U and add them to the POS part as shown in step 1 to step 6. Different numbers of top-
k have been tested and we found that using 5 documents improved the performance
compared with using k > 5, which reduced the performance. The second classifier,
SVMN, is constructed from the all positive documents (POS [ B+) and strong negative
documents NEG as in step 9. For SVMB, it is difficult to construct a classifier from the
documents in the boundary region because SVM is very sensitive to noise, especially
when noise is large, and in this case, the classifier will be very poor. Therefore, we used
the complete training set (D+, D−) to build SVMB in our model, as in step 10.
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Fig. 2. Architecture of a multiple SVMs classifier.
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4.2 Testing Phase

In the testing phase, each stage has a different classification model, as shown on the right
side of Fig. 2. The SVMP classification model concentrates on identifying positive doc-
uments. In this stage, the documents that are classified as positive are denoted by TP1 (true
positive one) if they are true positive or grouped as FP1 (false positive one) if they are
actually negative. The objective of this stage is to achieve a high precision rate for positive
documents and to minimize the FP rate, with an acceptable False Negative rate FN. The
SVMN classifier, which is generated in stage two, is applied to classify the documents that
were predicted as negative in stage one. This stage focuses on increasing the precision rate
for negative documents. In this stage, the documents that are classified as negative are
denoted by TN1 (true negative one) if they are negative or grouped into the FN1 if they
actually are positive. However, as the documents that were predicted as positive in this
stage are still uncertain, the classifier will collect them into the boundary set BND. To
classify these documents, we used the final classifier, SVMB. This classifier can then
assign those documents as positive or negative and produce four outputs, namely, TP2,
FP2, TN2, and FN2. In our proposed classifier model, true positive TP = TP1+ TP2, false
positive FP = FP1 + FP2, true negative TN = TN1 + TN2, and false negative FN =
FN1 + FN2. The testing phase of our proposed model is outlined in Algorithm 2.
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5 Evaluation

The main objective of this research is to set an effective decision boundary to increase
the performance of binary text classification using the SW technique and multiple
SVMs. To support this idea, we conducted an experimental to evaluate the performance
of our proposed model.

5.1 Dataset and Evaluation Metrics

We evaluated the performance of our proposed model on the RCV1 dataset, which is
most frequently used in text classification and information retrieval. It consists of 100
topics. Each topic has been divided into training and testing sets with relevance
judgements. The RCV1 corps has more than 804,000 documents which are news
stories in English published by Reuters journalists [26]. The first 50 topics were
developed by the National Institute of Standard and Technology (NIST). The last 50
topics were constructed artificially rather than by humans. Therefore, in our experi-
ments in this study, we used the first 50 topics where the experiments are more reliable.

Two evaluation metrics were used to measure the effectiveness of our proposed
model and the baselines. The measures are the F1- score and Accuracy. These evalu-
ation metrics are widely used in text classification research. For more details of these
measures refer to [6].

5.2 Baseline Models and Settings

We compared our proposed model with six different baseline models. These models are
the state-of- the-art influential models including statistical method libSVM, SVMperf
[27], J48 [28], NB [3], IBk (Instance-Based Learning), and Rocchio. All six models
were trained and tested with the same training dataset to conduct the experiments. The
baseline models were run with their best settings obtained through experimental
practice and a top-k terms are selected for final classification in the baselines and the
final proposed system. For libSVM, some default settings were utilized because the F1-
scores of the classifier are low when using the default setting. Different types of kernel
functions and values of C were conducted, and we found that if we set k = 0 (linear
kernel) and C = 1, we could get better results. In addition, we set the value of C in
SVMperf based on the recommended value of 10. Our proposed model is based on
SVM and we used the linear kernel because it is quick and efficient with very large
numbers of features as in document classification. We used the same parameter, C, for
all our experiments. For BM25, k1 and b values were set at 1.2 and 0.75, respectively.

5.3 Experimental Results

The evaluation results of our model and the baselines are presented in Table 1. These
results are the average of the 50 collections of the RCV1 dataset. The comparison
between the proposed model, SW-based model, and other six baseline models was
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completed using two measures, F1 and Accuracy. The results in Table 1 have been
categorised into two groups. The first group includes two SVM models (libSVM and
SVMperf); the second group includes a popular influential classifier.

Table 1 shows that our model outperformed all baseline models for text classifi-
cation. It was significantly better on average by a minimum improvement of 5% and a
maximum improvement of 45%. Compared with the SVM models, F1 and Accuracy of
the SW-based model were significantly improved by 32% and 5%, respectively.

In order to test the effectiveness of using multiple SVMs in our proposed model, we
performed the same experiments with a single SVM classifier which used the original
training set. The aims of using multiple SVMs is to provide a way to make the decision
boundary better. Table 2 shows the results of the performance of a single SVM clas-
sifier and multiple SVMs on the RCV1 dataset. We used the precision, F-measure and
the accuracy as measures for comparison. In Table 2 we found that using multiple
SVMs achieved an average increase of 27% for F1 and 2% for Accuracy.

When considering precision value, multiple SVMs showed the best performance,
especially for the relevant part (Precision+). It is clear that using multiple SVMs instead
of a single one can lead to better classification and improve the overall accuracy with
data having uncertainty.

Based on the results presented earlier, the SW-based model improved the binary
classification with the highest score in both F1 and Accuracy (and particularly in F1)

that best expresses the real situation in text classification.

Table 1. Evaluation results of our model compared with the baselines.

Models F1 Accuracy

SW-based model 0.402831 0.86743
libSVM 0.3271 0.8557
SVMperf 0.2864 0.8001
Improvement% 32% 5%
J48 0.3449 0.8263
Naïve Bayes 0.1851 0.8131
IBk 0.297 0.8404
Rocchio 0.3681 0.5646
Improvement% 45% 17%

Table 2. Result comparison using single SVM and multiple SVMs on RCV1.

Models Precision+ Precision− F1 Accuracy

Single SVM 0.5016 0.8623 0.3187 0.8543
SW-based model (multiple SVMs) 0.5509 0.8778 0.4028 0.8674
%improvement 9% 2% 27% 2%
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6 Conclusion

An SW-based model was proposed to address the uncertain decision boundary and to
improve the performance of binary text classification. This model uses the training set
effectively to achieve super machine learning with high classification accuracy. It tries
to establish an uncertain decision boundary by dividing the training set into three
regions, namely, positive, negative, and boundary in order to improve the certainty of
both relevant and irrelevant parts and reduces the impact of uncertainty in the boundary
part. The decision boundary was established by applying an effective SW technique
and threshold setting, and then organizing training samples to generate new training
sets. After the boundary region is identified, we used multiple SVMs instead of a single
one to learn the classifiers and to classify new incoming documents. The proposed
model was tested for binary classification on the standard RCV1 dataset and TREC
assessors’ relevance judgements. The experimental results show that our model
achieved significant improvements in F1 and Accuracy, especially F1 and outperforms
existing classifiers, including state of the art classifiers.
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Abstract. The word2vec model has been previously shown to be suc-
cessful in creating numerical representations of words (word embeddings)
that capture the semantic and syntactic meanings of words. This study
examines the issue of model stability in terms of how consistent these
representations are given a specific corpus and set of model parameters.
Specifically, the study considers the impact of word embedding dimen-
sion size and frequency of words on stability. Stability is measured by
comparing the neighborhood of words in the word vector space model.
Our results demonstrate that the dimension size of word embeddings has
a significant effect on the consistency of the model. In addition, the effect
of the frequency of the target words on stability is identified. An app-
roach to mitigate the effects of word frequency on stability is proposed.

Keywords: Word2vec · Embedding dimension · Similarity · Stability

1 Introduction

An analysis of the distributional structure of language, first formally described
by Harris [6], suggests that both the syntax and semantics of utterances can be
inferred. This assumes that words in a similar context should have similar prop-
erties, such as roles in the structure of the language (e.g. nouns), concepts (e.g.
country names) or relationships between words giving high-level meaning (e.g.
analogy). The concept of word co-occurrence is formally defined by the concept
of an n-gram model, where models use the ‘n’ neighbors of a word in a corpus
to build a representation for each unique word, and words with similar context
are clustered together. Early work by Schütze [12] proposed the creation of word
vectors that represent the semantic and syntactic meaning of a word. This was
achieved by performing unsupervised learning on a corpus for identifying the
“word vector space”. Proximity of words in the vector space implied semantic
similarity and was measured using Cosine distance. The technological limita-
tions restricted Schütze from putting his ideas into a computational model. The
concept was revived and gained popularity with the word2vec algorithm [8,9].
The vectors were subjected to analogy and similarity tests and the results were
comparable to human performance. The most famous example to show the suc-
cess of the model was its ability to answer the question: if man is to woman then
c© Springer Nature Switzerland AG 2018
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king is to what? These word vectors (more popularly known as word embed-
dings) were hence argued to contain both semantic and syntactic information.
Following word2vec’s success, two other models gained moderate attention for
creating word embeddings. The first model was GloVe (Global Vectors for Vec-
tor Representation), which in addition to utilizing the local context of words for
creating word embeddings (similar to word2vec) also used the co-occurrence of
words present in the corpus globally [10]. The second methodology, known as
SVD PPMI (Singular Value Decomposition on Positive Pointwise Mutual Infor-
mation Matrix) applied the singular value decomposition to a high dimensional
sparse matrix in which each row represents a word in the vocabulary and each
column a possible context [2,3].

After words have been embedded in a vector space, words with similar con-
texts should ideally be placed close to each other in terms of cosine distance
measured between their embedding vectors. Additionally, after training is com-
plete, the vector space should ideally be identical over multiple re-buildings of
the model with the same corpus and same hyper parameters. A recent study [7]
examined the embeddings generated from these three models from the perspec-
tive of “stability” and found that the word2vec model does not produce consis-
tent embeddings. The term stability in these studies refers to the consistency of
the neighborhood of words around a given target.

This paper will consider the stability of the word2vec model with regards to
the size of the word embeddings and the frequency of words in a given corpus.
We will explore the somewhat contradictory results from the literature and pro-
pose some solutions for using Skip-Gram Negative Sampling (SGNS) version of
word2vec in a stable manner.

2 Stability of Word2vec Model

There are two elements that make the word2vec model non-deterministic. First,
the weights of the hidden layer (which represent the word embeddings) are ran-
domly initialized. Hence, every run of the model (keeping all other factors con-
stant) will proceed from a different point in the vector space. Second, the training
example generation process brings another element of randomness. The selection
of words and their contexts through a sampling process results in variation in the
examples that are presented to the model. Even if similar examples might be pre-
sented to the model in different runs, their order will vary. The non-deterministic
nature of the model as seen above raises an issue about the stability of the model
and its corresponding word embeddings. For example running a stable model
with identical corpus and hyper parameter settings should result in the same
neighbors of a given word determined by a similarity measure. Although there
is an ordering to the similarity of words, this work will consider similarity by
treating a list of neighbors as a set (and therefore ignore ranking). For example
the nine nearest neighbors for the word “Nine” are identical.

Nine : eight, four, one, zero, seven, six, two, five, three
Nine : one, eight, two, seven, six, zero, five, four, three
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To measure the stability of a given word, the Jaccard similarity index is
calculated between the pairs of sets of neighbors generated during different runs
of the word2vec model. Jaccard similarity returns values in the range zero (no
matching) to one (both sets identical) with values closer to one indicating greater
consistency in the neighborhood of a given word. The model will be examined for
stability of word embeddings for words selected across the entire word frequency
range to allow the question of frequency and stability to be considered. The
frequency spectrum has been split into high, medium and low frequency words
to allow more general statements to be made regarding stability.

3 Background Literature

The stability of word embeddings came into prominence due to work by Hamilton
et al. [5], where the authors utilized word embeddings to study the change of word
neighborhoods over time and have cited the example of the change of meaning
of the word gay over time. This method seemed appropriate because, as per
the distributional hypothesis, the words belonging to a cluster help to identify
the category of each word. In order to achieve conclusive results for the above
study it was necessary to obtain consistent neighborhood of word embeddings
as the entire premise of understanding the meaning of a word relies on the
neighborhood. Hellrich and Hahn utilized English and German text for a similar
human diachronic language study and applied SGNS, GloVe [10] and the SVD
PPMI models [7]. Their results showed that only SVD PPMI produced consistent
results whereas the other two models produce inconsistent clusters. The authors
attribute the inconsistent behavior of SGNS to the non-deterministic nature of
the model. The SVD PPMI model performance matched the conclusions of Levy
et al. [4].

Following this previous work, other researchers began examining the consis-
tency issue of word embeddings. Pierrejean et al. [11] have listed some factors
behind the variability of word embeddings which they consider to be “intrin-
sic to the word, corpus or model”. One of these features is the frequency of
words in the corpus. Their experiments concluded that the words in the lower
and higher frequency ranges are more prone to variability compared to words
in the middle range. Antoniak and Mimno [1] considered the variability of word
embeddings in regards to three factors related to any corpus: order and presence
of documents, size of corpus, and the length of the documents in a corpus. They
segregated their data into “fixed”, “shuffled” and “bootstrap” categories based
on the sampling method applied to each corpus and applied this sampled data
on LSA, SGNS, GloVe and PPMI models. A common theme amongst all of these
recent papers is the inconsistent conclusions generated by the skip gram models
through word embeddings. None of the word embedding models has been a clear
winner and neither has there been a coherent identification of any features which
can reliably explain the variability of word embeddings.
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Fig. 1. Jaccard index for nearest neighbors of target words with different frequen-
cies selected from 3 different corpora for specific frequency range (left side) and over
aggregated frequency range (right side).

4 Experimental Setup

The experiment was performed on three corpora: Brown, Project Gutenberg and
Reuters. The Python gensim1 package has been used for creating the word2vec
models. Below are the steps for generating the results.

1. Split the corpus into sentences, remove all punctuations and zero length
strings and convert to lowercase.

2. Tokenize all the sentences and save the top 10,000 most common tokens and
their frequency. This step is executed to define a fixed vocabulary size over
multiple corpora. Replace the remaining words with “UNK”.

3. Select 10 words from the top (0–10), middle (4995–5005) and bottom (9990–
10000) frequency range.

4. For 100 runs of the model for a specific corpus and hyper parameters:
For each dimension size ranging from 1 to 377 following the Fibonacci series:
(a) Create a word2vec model with 100 iterations and window size of 2.
(b) Save the 10 nearest neighbors of top, middle and bottom frequency words

using the word embedding created in the previous step.
5. In every frequency range, calculate the average and standard deviation of

Jaccard index between pairs of sets of neighbors of all the words.

5 Results

Figure 1 shows the Jaccard index for the three corpora. There are two plots
for each corpus, one broken down into high-mid-low frequency groups, and one
aggregated over the entire frequency range of the vocabulary. The left hand side
graphs from all three corpora depict a consistent pattern: the similarity (hence
1 https://radimrehurek.com/gensim/.

https://radimrehurek.com/gensim/
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the stability) of high frequency words gradually increases and then eventually
decreases to a stable value. In contrast, the similarity values of both the mid
and low frequency terms initially decline and then gradually increase to a steady
value of around 50%. The right hand side graph depicts an almost static value
of stability of around 50% over the aggregate target words. The dimension size
at which the similarity index peaks for the high frequency words varies across
the corpora.

6 Discussion

Some of the results presented here align with our assumptions and the results
of previous work, with high frequency words showing greater stability. However,
there are also several observations which do not match the results seen in previ-
ous work. Much work using word2vec mentions use of an embedding size of 100
or 300 without providing justification for this choice. As can be seen from the
results presented here, optimal embedding dimension for maximum stability is
corpora-dependent. Given that word2vec is a standard single hidden layer feed
forward neural network model, the number of nodes in the hidden layer is an
important factor for the model to perform well both on training and test data
as it is a bias-variance trade-off. The vocabulary size and frequency distribution
of words will determine how many features (dimension size) are needed to cap-
ture the semantic and syntactic relationships in a consistent manner. Hence care
should be taken to identify the optimal size of the hidden layer (word embedding
dimension size) for a specific corpus and a specific natural language processing
problem. The other factor presented in this work is the influence on stability for
words based on their frequency. Words with high frequency are presented more
frequently as examples to the model. Hence the model is likely to have greater
accuracy when recognizing these high frequency words compared to both low
and mid frequency words. However our results show that both low and mid fre-
quency words perform equally worse. Additionally, the direction of the Jaccard
index is opposite for high frequency words (increasing) compared to both low
and mid ones (decreasing) when the embedding size is small. This effect cancels
out the positive impact of high frequency words on the stability and the aggre-
gate stability is around 50% over any embedding size. Hence the structure of the
model is preventing it from receiving a balanced set of training examples across
all the frequencies and therefore producing a consistent embedding relationship.

7 Conclusion

The word2vec algorithm has been a major milestone in developing represen-
tations of word structure, as evidenced by its popular application in natural
language processing. However, word2vec has recently come under scrutiny when
the word embeddings generated by this model were utilized in varied fields of
studies. The stability of word embeddings is one such factor that has been identi-
fied as being of concern. While some studies aimed to find models that performed
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better than word2vec in creating stable embeddings, others have tried to under-
stand the factors which cause this phenomenon. This work examined two factors
that might affect model stability, and contributes to this debate by examining
embedding dimension size as one causal factor. Even though the process of tun-
ing hyper-parameters to achieve good performance is now a standard practice
in machine learning, selecting an appropriate embedding size for a given corpus
should also be part of this process. Choosing an arbitrarily large value might
work well for some scenarios, but overall is not likely to be optimal over all
instances and hence care is required when choosing this parameter. The second
factor considered is the influence of embedding stability due to the frequency
of the target words. Even though high frequency words exhibit higher stability,
every English corpus will always have low and mid frequency words following
Zipf’s law, which will reduce the overall stability of the model. Further work is
required to determine how models might be able to overcome the issue of improv-
ing model embeddings on low and mid frequency words. One simple approach
would be to use the inverse of word frequency as a probability for repeated
re-sampling when training the skip-gram model, however this will lead to an
increased training time for stable results.
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Abstract. Text documents often contain information relevant for a par-
ticular domain in short “snippets”. The social science field of peace and
conflict studies is such a domain, where identifying, classifying and track-
ing drivers of conflict from text sources is important, and snippets are
typically classified by human analysts using an ontology. One issue in
automating this process is that snippets tend to contain infrequent “rare”
terms which lack class-conditional evidence. In this work we develop a
method to enrich a bag-of-words model by complementing rare terms in
the text to be classified with related terms from a Word Vector model.
This method is then combined with standard linear text classification
algorithms. By reducing sparseness in the bag-of-words, these enriched
models perform better than the baseline classifiers. A second issue is to
improve performance on “small” classes having only a few examples, and
here we show that Paragraph Vectors outperform the enriched models.

1 Introduction

In many domains the relevant information from documents is contained in short
“snippets” of the text. One such domain is the social science field of peace and
conflict studies, where documents are “coded” by human analysts who identify
important snippets in the text and classify them according to a domain-specific
ontology. This is a difficult task for human coders due to the limited amount
of text in a snippet, the large number of classes, the imbalanced class distri-
bution (with frequent overlap between smaller classes), the requirement for all
classes to be well-classified, and the amount of disagreement between human
coders. Towards the goal of automating such coding, the task addressed in this
paper is multiclass classification of short texts or snippets. Our task is further
characterized by having a large number of classes (in this paper a minimum of
64) and a highly imbalanced distribution of instances over the classes. Accurate
classification of instances in less-populated classes is important in this domain.

c© Springer Nature Switzerland AG 2018
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Two specific aspects of this task are addressed. These can both be seen as
problems of data “sparsity”, but in different senses. First is the problem of rare
terms in short text snippets. We investigate two methods to solve this prob-
lem: (i) a method using learned word embeddings [7] to augment short text
snippets before classification by a linear model; and (ii) a version of Paragraph
Vectors [5] to learn classified word embeddings. Our empirical evaluation com-
pares these classification methods on two corpora exemplifying different writing
styles. Second is the problem of classifying documents into “small” or sparsely
populated classes. The problem here is that because there is limited data in
smaller classes, supervised text classification methods are often less accurate for
these classes [3]. We use the same methods for this problem as for the problem
of rare terms, but compare classification performance on small and large classes.

2 Methods

2.1 The Bag-of-Words Model and Its Limitations

A text snippet T is defined to be a sequence of individual word tokens T =
[t1, t2, . . .]. The bag-of-words model maps each text snippet T to a vector MT

of dimension |V |, where the vocabulary V is the set of all tokens in the training
data. The bag-of-words vector MT contains the term frequency of each token
from V that occurs in T , where the value of the vector is 0 for every token in V
that does not occur in T .

The key limitations of the bag-of-words model addressed in this paper are:
Vocabulary Size – this can affect calculation of class-conditional term proba-
bilities, in classes with a small class-conditional vocabulary, or a small number
of training examples; and Rare and Out of Vocabulary Words – due to the
extremely skewed distribution of word usage in typical text (following Zipf’s law)
words that occur only very infrequently do not give a learning algorithm suffi-
cient information to determine their correct influence on classification and words
that do not occur in training data are discarded by the bag-of-words model.

2.2 Bag-of-Words Enrichment with Word Vectors

Word Vector (WV) models are constructed using neural networks [7] by pro-
jecting all the words from a corpus into a dense vector space. Word vectors are
widely used as input to neural networks, but since in this domain interpretable
models are valuable for analysts, we combine word vectors with linear classifiers.

The process of enriching the bag-of-words model involves a number of steps:

1. Obtain a Word Vector model W that models the vocabulary and language of
the training set. In this paper we always use the Google News model.

2. Given a text snippet T to be classified:
– For each token ti ∈ T with a frequency in the labelled training data less

than n (i.e., ti is a rare word), if ti is represented in W , find its m (here
10) nearest neighbours in W , then take up to k of these words that also
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occur in the training set (enriching words), chosen in order of closeness
to ti.

– For each such rare word ti, construct a new bag-of-words vector Mti with
the enriching words for ti that occur in the training set assigned a term
frequency of 1, and all other words in the vector assigned the value 0.

3. From the original bag-of-words vector MT , create an enriched bag-of-words
vector M+

T by adding MT and each individual rare token’s nearest neighbour
bag-of-words vector Mti :

M+
T = MT +

∑

i

Mti (1)

As a result of this process, T is now classified using the enriched bag-of-words
vector M+

T instead of the original bag-of-words vector MT .
The following example text snippet from the ICG dataset (see Sect. 3.1)

illustrates the enrichment process: “Army integration is a particularly delicate
subject, as many Banyamulenge soldiers in Kabila’s army were killed in camps at
the beginning of the RCD rebellion in 1998.” In this snippet there are 26 words
(“1998” is not counted and “army” is counted twice). Rare words are “delicate”
and “subject”. Both rare words have neighbours in the WV model. For the
word “delicate”, enriching words are “fragile”, “sensitive” and “complicated”,
and for “subject”, enriching words are “concerning”, “relating” and “subjects”.
The enriched vector has non-zero entries for these six additional words, so the
final vector for this text snippet has 32 non-zero values.

When evaluating word enrichment options, enriching rare words in both the
training and test sets was considered. However, the results of this method on
the ICG dataset were slightly worse than enriching only the test set.

Once a bag-of-words is extended with words from the Word Vector model, it
can be used by any machine learning method capable of using the bag-of-words
model. In this work, three classifiers are used to make predictions about the
classification of text: our implementation of Multinomial Naive Bayes (MNB),
Weka’s1 implementation of SVM using the SMO algorithm, plus the DeepLearn-
ing4J2 version of Paragraph Vectors (see Sect. 2.3). The classification perfor-
mance of these models is evaluated with and without enrichment of test instances
with word vectors.

2.3 Paragraph Vectors

Paragraph Vectors [5] (PV, also called doc2vec) extend the word2vec word
embedding algorithm [7] by introducing extra embeddings for “paragraph IDs”
which are then combined with word vectors when classifying text.

Paragraph IDs serve as proxies for the contexts in which words appear. In
the DeepLearning4J implementation, paragraph vectors and word vectors are
defined in the same vector space. Furthermore, in our setting the paragraph IDs
1 http://www.cs.waikato.ac.nz/ml/weka/.
2 https://deeplearning4j.org/.

http://www.cs.waikato.ac.nz/ml/weka/
https://deeplearning4j.org/
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are just the class labels so, in effect, the training phase produces an embedding
for each class label in the same space as the word vectors.

We also use a simpler method than [5] to classify new text. Our paragraph
vectors (which are vectors for class labels) are in the same space as the word
embeddings, so the following “nearest neighbour” approach is adopted. Given
an unseen new text, we simply calculate the centroid of all the word vectors
for those words in the text that are also in the original training vocabulary
(weighting word vectors by the number of times they occur in the text). The
label corresponding to the paragraph vector with the highest cosine similarity
to this centroid vector is then assigned as the label of the new text.

Since both the WV and PV models are constructed in similar way, no
improvement is expected by combining the two models, which was confirmed
by empirical evaluation.

3 Empirical Evaluation

3.1 Datasets

ICG DRC Dataset. This dataset contains text snippets from 15 International
Crisis Group (ICG) reports on the Democratic Republic of Congo (DRC) during
the period 2002–2006. To construct the dataset, a domain expert read 8,836
sentences across the 15 reports and extracted 2,159 text snippets which were
then each given one or more of 64 class labels. The dataset contains 3,366 unique
words, with a mean snippet length of 25 words. Previous work has shown that
classification of this dataset is very difficult for state-of-the-art algorithms [2].

Reuters-21578 Short Text Dataset. This corpus contains news reports from
1987 and is a benchmark dataset widely used in many previous text categoriza-
tion evaluations. For our evaluation on short text, we extract a subset of the
reports where the length of the article body is 100 words or fewer (approxi-
mately two sentences). Any article belonging to the ‘earn’ class is excluded, as
these documents have share ticker information and do not form full sentences.
This dataset, which we call Reuters-ST, contains 7,213 unique words in 3,003
articles labelled by 91 categories. The mean length of each document is 70 words.

3.2 Approach

Around 10–20% of the instances in both ICG and Reuters-ST datasets are clas-
sified into more than one class. To simplify this problem, our classifiers are
configured to only produce a single classification label and an article is consid-
ered to be correctly classified if the model correctly predicts one of its ground
truth labels. In this setting, micro precision is equal to micro recall. We also
measure class macro precision, recall and F1, as these metrics equally weight
all classes. Effectively, comparing micro and macro metrics gives an indication
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of performance for less frequent (smaller) classes. Separately, the methods are
evaluated for small (less frequent) and large classes.

The evaluation setup is a 10 × 10-fold cross validation. The Paragraph Vec-
tors model is trained using 60 epochs for each fold. Other parameters are default
in DeepLearning4J (learning rate = 0.025, vector dimensions = 100). For each
dataset we use Mikolov’s Word Vector model pre-trained on Google News. This
model is used for enrichment of the test set without any pre-processing of the
text.

For each dataset and classification model, hyperparameters are tuned for
word frequency n and the number of additional words from the Word Vector
model k using a grid search over the first fold of the dataset. Optimal values
of these parameters were n = 3 and k = 3 for both datasets and all methods.
These values are then used in all 10 × 10-fold cross validation runs. A publicly
available paired t-test calculator3 with p < 0.05 is used to determine statistical
significance.

3.3 Results

In Table 1, it is evident that on both datasets the word vector enrichment
improves the micro-averaged performance for the linear classifiers, with SVM
being better. Macro-averaged performance shows that enriched SVM obtains
the best F1 on both datasets, although MNB has the best precision on ICG and
unenriched SVM on Reuters-ST. PV has the best recall on both datasets and,
as expected, WV enrichment does not improve the PV model. On ICG, all com-
parisons of the enriched models to baseline models are statistically significant.

Table 1. Classification results for ICG and Reuters-ST datasets

ICG Reuters-ST

Micro Macro Micro Macro

Prec./Rec. Prec. Rec. F1 Prec./Rec. Prec. Rec. F1

MNB 0.2999 0.4515 0.1154 0.1833 0.7647 0.8087 0.1778 0.2909

MNB enriched 0.3247 0.4337 0.1307 0.2003 0.7729 0.8019 0.1863 0.3018

SVM 0.3745 0.4043 0.2151 0.2801 0.8417 0.8473 0.4434 0.5810

SVM enriched 0.3933 0.4078 0.2330 0.2961 0.8430 0.8340 0.4489 0.5825

PV 0.3697 0.2885 0.2576 0.2716 0.8254 0.6349 0.4792 0.5449

PV enriched 0.3600 0.2776 0.2445 0.2595 0.8217 0.6337 0.4761 0.5426

Overall, comparing the results in Table 1, it can be seen that word vector enrich-
ment improves macro recall and F1 for linear MNB and SVM, although the
baseline SVM for the ICG dataset is improved more than for the Reuters-ST
dataset. This is possibly because ICG categories are much more difficult to pre-
dict, which is reflected by the lower values in the above table.
3 http://www.socscistatistics.com/tests/ttestdependent/Default2.aspx.

http://www.socscistatistics.com/tests/ttestdependent/Default2.aspx


824 A. Krzywicki et al.

The micro-averaged metrics reflect more the performance on larger classes
(i.e., those containing more examples), whereas macro-averaged metrics give a
better indication of prediction performance over all classes.

3.4 Small and Large Classes

Of special interest is how enrichment affects classification accuracy for classes
with fewer instances. To investigate this, the set of classes was ordered by the
number of instances in each class and divided into two approximately equal-sized
subsets, the “large” classes and the “small” classes. This gave 32 ICG small
classes with 15% of all instances and 46 Reuters-ST small classes with only 4.4%
of all instances. The Reuters-ST dataset is much more skewed towards larger
classes, with the largest category containing 37% of all instances, whereas for
the ICG dataset, this value is only 6%. Results were obtained for each class
separately and aggregated for the small and large classes.

Table 2. Classification results for small and large ICG classes

Small classes Large classes

Micro Macro Micro Macro

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MNB 1.000 0.004 0.008 0.063 0.002 0.004 0.299 0.293 0.296 0.329 0.175 0.161

MNB Enr. 0.905 0.006 0.011 0.078 0.003 0.006 0.324 0.317 0.320 0.318 0.197 0.186

SVM 0.376 0.081 0.134 0.147 0.051 0.072 0.374 0.354 0.364 0.396 0.296 0.319

SVM Enr. 0.367 0.095 0.151 0.157 0.061 0.083 0.394 0.370 0.382 0.412 0.319 0.344

PV 0.150 0.181 0.164 0.112 0.156 0.120 0.419 0.335 0.372 0.364 0.307 0.322

PV Enr. 0.144 0.165 0.154 0.112 0.137 0.114 0.406 0.327 0.362 0.347 0.295 0.307

Table 3. Classification results for small and large Reuters-ST classes

Small classes Large classes

Micro Macro Micro Macro

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MNB 0.000 0.000 0.000 0.000 0.000 0.000 0.765 0.642 0.698 0.445 0.209 0.233

MNB Enr. 0.000 0.000 0.000 0.000 0.000 0.000 0.773 0.649 0.705 0.442 0.220 0.241

SVM 0.754 0.188 0.301 0.203 0.094 0.123 0.843 0.698 0.764 0.815 0.508 0.589

SVM Enr. 0.749 0.193 0.307 0.203 0.097 0.126 0.844 0.699 0.765 0.797 0.513 0.591

PV 0.348 0.228 0.275 0.147 0.118 0.121 0.843 0.683 0.754 0.662 0.548 0.563

PV Enr. 0.355 0.232 0.281 0.148 0.118 0.120 0.839 0.679 0.751 0.664 0.544 0.560

By decomposing the results for Table 1, we can see from Tables 2 and 3 that
the greater contribution to the classification performance for all three methods
is on the large classes (on both datasets), although PV performance on the small
classes is best (for ICG), or at least more balanced between precision and recall
(macro-averaged, Reuters-ST). This is evident on the large classes (for both
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datasets) in the macro results, which are more representative of all the classes
in the large class subset. Furthermore, the small class performance is reducing
overall performance (F1, both datasets), although not for MNB.

We can see that for SVM there is improvement due to enrichment on both
small and large classes on both datasets. However, while performance for the
small classes on both datasets as measured by micro-averaged F1 is approxi-
mately double that of macro-averaged F1, for the large classes it is approximately
equal. This can be interpreted as showing that, for the small classes, the smaller
the class, the harder it is to learn to predict. Although predictive performance of
PV is weaker, it is more balanced in terms of micro and macro-averaged results,
at least on ICG, which is the more difficult dataset.

Importantly it is evident that enrichment usually increases (and never
reduces) recall for both linear classifiers, on both datasets, for small and large
classes, measured by both micro- and macro-averaged metrics. This is a signifi-
cant advantage given the intended application of our approach, where it is often
more time-consuming for human analysts to search in a document for potential
indicators of conflict that have been missed by an automated method (i.e., false
negatives) than to correct for false positives [2].

This could be due to the fact that the Word Vector model is trained using an
unsupervised approach and thus lack class-conditional information. In contrast,
in our approach PV is trained in a supervised manner, consistent with a better
balance between precision and recall, although overall performance is less than
the linear classifiers, possibly since PV is a much simpler learning algorithm.

4 Related Work

Many approaches for transforming the bag-of-words model or modifying lin-
ear models to increase classification accuracy have been proposed in previous
work. Some of the most relevant to our approach involve using dictionaries [6]
or encyclopaedias [10] to find synonyms for rare terms. Use of word embeddings
in text processing includes query expansion [4] and named entity recognition
(NER) [1]. The research described in this paper differs from the above work
in that we use word vectors to classify short text snippets by enriching only
rare words or words unseen in the training set. Word vectors were used to aug-
ment short text for similarity measures [8]. Using a unified architecture for word
embeddings and classification (for example, a Convolutional Neural Network [9])
is something worth further investigation, although it does not result in the kind
of interpretable model required for our domain.

5 Conclusion

In this paper we were motivated by the social science goal of automatically pre-
dicting conflict-related categories for short text segments or “snippets”. Such
domains typically have a large number of classes, many of which are sparsely
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populated in datasets and are closely related semantically. Additionally, class
distributions tend to be imbalanced, and snippets often contain words or terms
appearing infrequently in the corpus. Since classification methods are eventually
intended as a tool to aid human analysts, it is desirable to have interpretable
models and to reduce the risk of missing information relating to potential con-
flict. Our hypothesis was that enrichment of the standard bag-of-words repre-
sentation by a Word Vector model (here the Google News model) would improve
the performance of standard linear classifiers on this multiclass problem. This
hypothesis was supported by empirical evaluation on two datasets, one on conflict
data from ICG reports and the other a subset of short texts from the bench-
mark Reuters datasets. A key benefit of the enrichment approach is that it does
not require any change to the training of linear classification models. However,
improvements due to enrichment for the linear classifiers were mainly due to
better performance on the larger classes. We also tested a classification-based
Word Vector model and found that it gave better recall on smaller classes. For
future work, a promising avenue is to investigate hybrids of these models.

Acknowledgment. This work was supported by Data to Decisions Cooperative
Research Centre. We thank Josie Gardner for coding the ICG DRC dataset.
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Abstract. In this paper, we explore challenges in compiling a pedagogic
resource like a textbook on a given topic from relevant Wikipedia arti-
cles, and present an approach towards assisting humans in this task. We
present an algorithm that attempts to suggest the textbook structure
from Wikipedia based on a set of seed concepts (chapters) provided by
the user. We also conceptualize a decision support system where users can
interact with the proposed structure and the corresponding Wikipedia
content to improve its pedagogic value. The proposed algorithm is imple-
mented and evaluated against the outline of online textbooks on five
different subjects. We also propose a measure to quantify the pedagogic
value of the suggested textbook structure.

1 Introduction

Nowadays, most self-learners depend heavily on online resources for learning.
Among online resources, Wikipedia has rich content in almost all areas. Hence,
online readers often tend to have a stopgap recourse to Wikipedia to satisfy their
learning goal. Though Wikipedia has good reference value and broad coverage, its
pedagogic value is typically less compared to carefully crafted learning resources
like textbooks. This is because Wikipedia content is not necessarily structured
with the goal of assisting graded learning of topics [13]. In contrast, a textbook
author organizes content to satisfy the intended tutoring goal. However, crafting
authoritative textbooks is an exercise that is highly demanding in terms of time,
effort and human expertise. Moreover, textbook content is relatively static and
may be inherently restricted in its coverage. It is thus intriguing to envisage
design of tools that, given a subject, can aid in composition of textbooks from
relevant pages in online resources like Wikipedia.

Agrawal et al. [11] studied the characteristics of well-written textbooks. An
ideal textbook presents concepts1 in a sequential manner, i.e. a concept is defined
or explained before it is being referred anywhere in the textbook in order to
explain other concepts (an exception being the set of concepts the textbook
1 The term “concept” is loosely used to refer to a topic or idea. Here, we use this term

interchangeably to correspond to either Wikipedia article titles or textbook topics.
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assumes the learner to be familiar with). In contrast, Wikipedia supports flexible
hyperlinking between related articles, with the goal of enhancing its value as
a ready reference. Mathew et al. [13] observed that Wikipedia tends to have
circular dependencies between articles, i.e. article A hyperlinks to article B and
vice versa. More generally, concepts in Wikipedia are not sequentially structured
in a way that ensures that all prerequisites of a given concept are presented
before they are used to explain the concept. This adversely affects the usefulness
of Wikipedia for a learner who wishes to be guided through a set of neatly
structured topics, graded in terms of learning difficulty.

It is hard for even humans to organize the content of a book. Hence, it would
be overtly ambitious to target a fully automated solution for this problem. A
more pragmatic goal would be to examine the extent to which tools can be
devised that can effectively aid humans in this task. A Wikipedia tool named
Book Creator2 provides an option to compile books from Wikipedia by manually
adding relevant Wikipedia articles in an order given by the end user. However,
this tool does not estimate the pedagogic value of the book, or guide the user in
enhancing the content with the goal of making it pedagogically richer. Another
project named Wikibooks3 allows editors to collaboratively organize and write
the content of book, and currently, Wikibooks contains only 66 featured books
(books with high quality). Hence, designing a tool that guides human in compil-
ing books from Wikipedia can help editors in contributing more featured books.
We propose an algorithm to suggest the book structure from Wikipedia on a
given subject. We also conceptualize a decision support system that allows the
user to interact with the proposed structure and the corresponding Wikipedia
content to improve its pedagogic value. The system flags regions which are largely
affected by circular dependencies. The process of resolving such circularities in
order to enhance the pedagogic content is referred to as grounding [13]. The
system can guide users in identifying concepts that need to be grounded. The
user then grounds a concept by rewriting part of the content, or adding images
or videos, so that prerequisites are satisfied. The tool intimates the user of the
impact of the change on the pedagogic value of the learning resource, and also
of any fresh circularities that may have formed as a result of the grounding.

To the best of our knowledge, this is the first attempt towards compiling
textbooks from Wikipedia on a given theme. The contributions of this paper
are: (i) an algorithm to suggest the book structure from Wikipedia based on
a set of seed concepts which act as chapters of the book, (ii) an approach to
identify regions that need to be grounded in the proposed structure, (iii) a score
to estimate the pedagogic value of the predicted textbook structure. We evaluate
the proposed book structure quantitatively, and also report findings based on
user studies.

2 https://en.wikipedia.org/w/index.php?title=Special:Book&bookcmd=book
creator.

3 https://en.wikibooks.org/wiki/Wikibooks.

https://en.wikipedia.org/w/index.php?title=Special:Book&bookcmd=book_creator
https://en.wikipedia.org/w/index.php?title=Special:Book&bookcmd=book_creator
https://en.wikibooks.org/wiki/Wikibooks
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2 Identification of Book Structure from Wikipedia

We first identify the book structure from Wikipedia based on a given set of
ordered seed concepts. This book structure can be used as reference for compil-
ing a textbook from Wikipedia. Figure 1 depicts an example of book outline for a
book on Automata Theory from the seed concepts Finite state automaton, Reg-
ular grammar , Context free grammar and Turing machine.The expected struc-
ture of a book from Wikipedia is a hierarchy of concepts recursively organized
in terms of chapters, sections, subsections and so on. We consider each chapter
as a parent of its sections and each section as a parent of its subsections. In this
hierarchy, we make simplifying assumptions that there is a relation between each
parent-child pair, i.e. the introduction to the parent concept is a prerequisite of
its child . For example, introduction to sorting is a prerequisite of bubble sort .

Seed Concepts: Finite state automaton, Regular grammar, Context free grammar, Turing Machine
Outline:

1. Finite state automaton
1.1 Deterministic finite automaton
1.2 Non-deterministic finite automaton
2. Regular grammar
2.1 Regular expression
2.2 Regular language

3. Context free grammar
3.1 Production(computer science)
3.2 Chomsky normal form
4. Turing machine
4.1 Multitape turing machine
4.2 Multitrack turing machine

Fig. 1. An example of book outline from Wikipedia for a given set of seed concepts

In our work, seed concepts act as chapters of the book. We propose an aug-
mentation algorithm to identify section concepts for augmentation under seed
concepts which can be recursively used to add subsection concepts and so on.
We then order concepts under each chapter, section, subsection, etc. We first
discuss the augmentation process and then the concept ordering process.

2.1 Concept Augmentation

At this step, an augmented graph AG = (V,E) is constructed where each vertex
represents a concept and each edge (u, v) ∈ E is a directed edge which signifies
that v is augmented to u. The construction of AG begins with seed concepts
as vertices. For each seed concept, a set of candidate concepts are selected for
augmentation from their corresponding Wikipedia articles; the mapping is cur-
rently done manually (see Sect. 4). These candidate concepts form candidate
edges (CandidateEdges) where for each (m,n) ∈ CandidateEdges, n is a candi-
date concept that is proposed to be augmented to concept m. Concepts from
these candidates are selected for augmentation by analyzing the extent of sub-
ordination of candidate concept under the concept to which it is proposed to be
augmented and any circular dependency that may result due to augmentation.
We characterize the extent to which a candidate concept is subordinated by its
parent concept based on (i) the prerequisite relation between them, (ii) semantic
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relatedness, (iii) non-violation of prerequisite relationships down the hierarchy.
In the rest of this section, we present measures to capture these factors.

Prerequisition Score. Liang et al. [14] proposed a simple link-based measure
called reference distance (RefD) to estimate the strength of prerequisite relations
among Wikipedia concepts. This method is based on the intuition that if a
concept c1 and its related concepts refer to another concept c2 a lot in their
description but not vice versa, c2 is more likely to be a prerequisite of c1. Liang
et al. [14] propose to use links in the Wikipedia article ci as related concepts
of ci. Thus RefD measure is based on the hyperlink structure of Wikipedia and
accounts for articles that are referred directly by a page. However, if a concept A
is referred to by B and B is referred to by C, then A is being indirectly referred
to by C. This kind of transitive or higher order reference is not captured by
RefD score. In order to address this gap, we propose a revised measure called
PReqScore for estimating the strength of prerequisite relation. The PReqScore
is defined based on the hyperlink network in Wikipedia, where an edge from
article A to article B indicates that article A is hyperlinked in article B (which
means concept A is used to explain concept B). The intuition of PReqScore is:
a concept ci is likely to be a prerequisite of cj , if there are more paths from ci to
cj compared to the paths from cj to ci in the hyperlink network.

To compare the paths between ci and cj , we propose a measure called
PathScore(ci, cj) for all directed paths from ci to cj . The presence of noisy edges
can lead to meaningless paths. Hence, we use RefD score to ensure that each
edge in a path results in a meaningful prerequisite relation. As the path length
increases, the prerequisite connections get digressed from the source concept.
Hence, we weigh paths based on their path lengths. PathScore(ci, cj) is defined
as,

PathScore (ci, cj) =
∑

path∈Paths(ci,cj)

1

length(path)

∏

(u,v)∈Edges(path)

1 +RefD(u, v)

2
(1)

where Paths(ci, cj) contains all paths from ci to cj . Since the range of RefD
varies between -1 and 1, we scale its value between 0 and 1 using the term (1 +
RefD(u, v))/2. The product of scaled RefD scores of edges in each path are taken
to consider the noise in the path. Using these scores, we define PReqScore(ci, cj)
which estimates the extent to which ci is a prerequisite of cj as,

PReqScore(ci, cj) = PathScore(ci, cj) − PathScore(cj , ci) (2)

PathScore(ci, cj) takes non-negative value. Hence, a concept ci is considered as
a prerequisite of cj if PReqScore(ci, cj) > 0. While computing PathScore, we
further limit the paths based on path length up to 4. This value is fixed based
on cross validation in CrowdComp dataset [12].

Augmentation Score. To characterize the extent to which a candidate is sub-
ordinated under its parent, we consider PReqScore, semantic relatedness, and the
prerequisite violation cases in the book structure when the candidate concept is
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augmented to its parent. Let seed(ci) be the seed concept that is the ancestor
of ci. A case of prerequisite relation violation occurs when a seed concept that
is ordered after seed(ci) is a prerequisite of the candidate ci, or any descendant
of a seed concept that is ordered after seed(ci) is a prerequisite of candidate ci.
The former case is shown in Fig. 2 and the latter one in Fig. 3. In Fig. 2, Finite
State Automaton(FSA) and Regular Expression(RE) are seed concepts; Regular
Language(RL) is a candidate concept for FSA and RE; RE follows FSA in order-
ing and is a prerequisite of RL. Hence, while finding the extent to which RL is
subordinated under FSA, prerequisite violation with RE has to be considered.
Figure 3 illustrates a case of higher (second) order prerequisite violation. Here
the concepts Deterministic Finite Automata(DFA) and Regular Language(RL)
are augmented in the first iteration; Pumping lemma for Regular Languages is
a candidate for DFA and RL; the seed(RL) (i.e. RE) follows seed(DFA) (i.e.
FSA) in seed concepts ordering. Hence, the prerequisite violation of Pumping
lemma for RL with RL has to be considered while estimating the extent to
which Pumping lemma for RL is subordinated under DFA.

Finite State Automaton Regular Expression

Regular Language

Fig. 2. An example for prerequisite
violation case during first iteration

Finite State Automaton Regular Expression

Deterministic Finite Automata Regular Language

Pumping lemma for Regular Languages

Fig. 3. An example for prerequisite
violation case during second iteration

We propose a measure called AugScore(ci, cj) which estimates the extent to
which cj is subordinated under ci based on PReqScore, semantic relatedness, and
the prerequisite violation case. It is defined as

AugScore(ci, cj) =
SemRel(ci, cj) × PReqScore(ci, cj)

1 +
∑

ck∈parents(cj)
Index(seed(ck))>Index(seed(ci))

PReqScore(ck, cj)
(3)

where Index(seed(cj)) is the position of seed(cj) in the seed concepts order. The
denominator accounts for the case where the ancestor of cj is a seed concept
which is positioned after seed(cj) in seed concepts ordering. In such cases the
AugScore(ci, cj) is penalized by the PReqScore(ck, cj). The addition of 1 in the
denominator is to handle the case when there are no prerequisite violations. The
SemRel(ci, cj) captures the semantic relatedness between ci and cj , for which
we use a measure called Normalized Wikipedia Distance (NWD) [9] which is
based on Wikipedia link structure. This measure is based on the occurrences of
Wikipedia concept links in Wikipedia articles. Wikipedia concepts with common
links indicate relatedness, while concepts without any common links suggest the
opposite. The normalized Wikipedia distance measure is defined as,

NWD (ci, cj) =
log(max(|L(ci)|, |L(cj)|)) − log(|L(ci) ∩ L(cj)|)

log(|W |) − log(min(|L(ci)|, |L(cj)|)) (4)
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where L(ci) is the set of Wikipedia concepts that link to ci and W is the set of
all Wikipedia concepts. SemRel(ci, cj) is measured as 1 − NWD(ci, cj).

Augmentation Algorithm. Algorithm 1 recursively augments concepts to the
augmented graph while ensuring that circular dependencies are minimized. This
algorithm inputs a set of seed concepts, and the number of levels in the hier-
archy to which the concepts are augmented (lvl). First, the seed concepts are
added to the augmented graph (AG). The candidate concepts of each seed con-
cept are generated from hyperlinks that are referred to by the corresponding
Wikipedia article. Candidate edges are drawn from each seed concept to its can-
didate concepts. The candidate concepts and candidate edges are tentatively
added to the augmented graph. The algorithm selects some candidate concepts
and corresponding candidate edges for final augmentation by retaining them in
the augmented graph. The final selection of concepts from candidates is based
on the extent to which a candidate concept is augmented by its parent.

Algorithm 1. Augmentation Algorithm
Input: Seed Concepts, No of levels (lvl)
Output: Augmented Graph AG
Initialize AG = (V,E) with V =Seed Concepts
AugmentedConcepts ←Seed Concepts
CurLevel = 0
while CurLevel < lvl do

CandidateEdges ← Empty
for each cpt in AugmentedConcepts do

C ← CandidateConcepts(cpt)
C ← C − AugmentedConcepts
CandidateEdges ← CandidateEdges ∪ {(cpt, cj) | ∀cj ∈ C}
V ← V ∪ C; E ← E ∪ {(cpt, cj) | ∀cj ∈ C}
Estimate PReqScore(cpt, cj)

Normalize PReqScore of all CandidateEdges
for each (ci, cj) in CandidateEdges do

Estimate AugScore(ci, cj)
Cluster CandidateEdges based on AugScore
AugmentedEdges ← CandidateEdges in the cluster with candidates having highest
AugScore
E ← E − {(ci, cj) | (ci, cj) ∈ CandidateEdges and (ci, cj) �∈ AugmentedEdges}
AugmentedConcepts ← {cj | (ci, cj) ∈ AugmentedEdges}
CurLevel = CurLevel + 1

The algorithm uses AugScore to measure the extent to which a candidate
concept is fit to be augmented to a graph. PReqScores are normalized at each
level to compute AugScore. We cluster candidate edges using jenks natural breaks
algorithm [21] based on AugScore and use elbow method [5] to find the best
number of clusters. The candidate edges in the cluster, which have the highest
AugScore are chosen as the edges for augmentation. Similarly, in subsequent
iterations, concepts are augmented to those suggested concepts in the previous
iteration. This process is repeated for lvl times. Although we restrict our scope
to augmenting concepts in the cluster with the highest score, the interface can
provide an option to the user to choose the candidates based on a threshold.
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2.2 Concept Ordering

We order concepts that are suggested for augmentation under a parent concept
based on the idea that if two concepts A and B are in the same level, and A
comes before B, then B may not need A as a prerequisite, but definitely A does
not need B as a prerequisite. Using this idea, we identify inequalities between
pairs of concepts that are taken for ordering. Let {c1, . . . , cm} be a set of con-
cepts taken for ordering. For a pair (ci, cj), if PReqScore (ci, cj) ≤ 0, cj does
not require ci as a prerequisite. Hence, ci can come after cj in the ordering.
This forms an inequality cj < ci. Thus, we find all such inequalities between
concept pairs in the given concept set. We construct a directed graph based on
these inequalities where vertices represent concepts and each edge (u, v) denotes
u < v. The PageRank [7] score of concepts in this graph is computed for aggre-
gating the pairwise comparisons to a global ranking of concepts [20]. A concept
with high PageRank should be ideally ordered after all other concepts. Hence,
we order concepts based on PageRank in the ascending order.

3 Identification of Regions for Grounding

The Wikipedia article contents are mostly affected by circular dependencies [13]
and due to these circular dependencies the user has to flip back and forth between
Wikipedia articles while reading the content. Hence, the pedagogic value of the
content of Wikipedia concepts in the proposed structure is expected to be less
compared to a well-written textbook. To guide the user in improving the peda-
gogic value of the content, we propose a method to identify regions which need
attention. These regions are addressed by (i) perceptual grounding by providing
links to videos, images etc. (ii) linguistic grounding by redefining the concept
[13]. In Fig. 4, we illustrate an example of suggestions of regions for grounding
in Deterministic finite automaton article in Wikipedia with respect to a book
outline. The suggested regions are highlighted in red.
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Fig. 4. An example of regions for grounding in deterministic finite automaton article
(Color figure online)

We construct an extended augmented graph (AGext) to check for circular
dependencies in the article content of concepts in the augmented graph. AGext

contains all vertices and edges of augmented graph AG, and apart from that
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the interlinks between concepts in the augmented graph based on Wikipedia
hyperlink structure is added to AGext. More precisely, if u is a hyperlink in article
v, and u and v are vertices in the augmented graph AG , we add an edge from u
to v in AGext. We propose a measure called CycleScore to estimate the extent
to which the addition of a concept in the extended augmented graph introduces
circular dependencies. This measure is inspired by the work of Levary et al.
[18] who studied the loops in dictionary network and observed that meaningful
loops (those that do not digress from the source) are quite short. The lesser
the number of concepts involved in cycles, the stronger the dependency between
concepts. Hence, for a concept that is involved in many short length circular
dependencies, we incur overheads in terms of learning difficulty. Based on these
aspects, we define CycleScore for each edge (ci, cj) in AGext as,

CycleScore(ci, cj) =
GraphScore(AGext) − GraphScore(AG′

ext)
GraphScore(AGext)

(5)

where AG ′
ext is a graph same as AGext except that the edge (ci, cj) is removed

in AG ′
ext and the GraphScore(AG) is

GraphScore(AG) =
∑

cyc∈Cycles(AG)

∏

(u,v)∈Edges(cyc)

PReqScore(u, v) (6)

where Cycles(AG) consists of all cycles in AG and Edges(cyc) is the set of edges
in a cycle cyc. The product term gives less weight to a cycle when there is a
noisy edge and its length is large. After computing CycleScore for all edges in
AGext, we suggest the edge with maximum CycleScore for grounding. Let (ci, cj)
be the edge with maximum CycleScore. So it will be suggested for grounding,
which means the hyperlink cj in article ci needs to be grounded with the help
of human by either perceptual or linguistic grounding.

4 Estimation of Pedagogic Value

In this section, we attempt to estimate the pedagogic value of the proposed
book structure. The proposed pedagogic value depends on three factors: (i) pre-
requisite and subordination conditions between every parent and child concepts
in the book structure(AG), (ii) ordering of concepts under each section in the
book structure(AG), (iii) percentage of concepts suggested for grounding in the
extended augmented graph(AGext); the lower the percentage, the higher the
pedagogic value. For each parent-child pair in AG, the first factor is captured by
AugScore. The ordering of child concepts under each parent concept is checked
based on the condition that there should not be any concept which acts as a pre-
requisite for a concept that is positioned before it in the given order of concepts.
Using this idea, we propose a measure called OrderScore as,

OrderScore(G) =

∑

(u,v)∈O

1 − P (v, u)

|O| (7)
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where O is a set of all ordered pairs of concepts within each parent section in
the book structure. P (v, u) = 1, if v is a prerequisite of u; 0 otherwise. The
higher the OrderScore, the lower the prerequisite violations of concepts at the
same level. Based on all these aspects, we define the pedagogic value for the
augmented graph AG = (V,E) as,

PedagogicV alue(AG) = OrderScore(AG) ∗

∑
(ci,cj)∈E

AugScore(ci, cj)

|E| ∗ (1 − |Eground|
|Eext|

)

(8)

where Eground is the set of edges suggested for grounding and Eext is the set of
edges in AGext. The PedagogicValue of an augmented graph (AG) is high when
the OrderScore is high, the edges in AG have high AugScore, and the percentage
of concepts suggested for grounding is less.

5 Experiments

We quantitatively evaluate the proposed method for predicting book structure
from Wikipedia by using the structure of actual books. We used five online
books, namely Automata, Data Structures and Algorithms (DSA), Compiler
Design(CD), Basic Electronics (BE) and PreCalculus (PC). The first four books
are from tutorialspoint4 which contains online content on various subjects, and
the last one is from openstax5 which is a collection of open-access books. From
the book outline, we manually mapped chapter/section/subsection titles to the
corresponding Wikipedia concepts. The number of Wikipedia concepts mapped
to chapters, sections, and subsections for each book are given in Table 1. The
Wikipedia concepts that are mapped to chapter titles of the book are used as
seed concepts. The order of seed concepts presented in the book is retained in
the predicted outline. We extracted candidates for each seed concept from the
corresponding Wikipedia articles. In our experiments, hyperlinks present in the
first three paragraphs of a Wikipedia article are used as candidates for augmen-
tation. This is based on the F1-score analysis on all five books with different
candidate sets taken from first k paragraphs where 1 ≤ k ≤ 5.

Evaluation of Book Structures Before Grounding: Using Algorithm 1, we
obtain the predicted structure for all five online textbooks. The chapter names
in the actual book structure are treated as seed concepts to predict till two
levels i.e., sections and subsections. We compare the predicted structure with
the actual structure by analyzing the tree edit distance [6] between them. The
intuition is to estimate the cost incurred in revising the predicted structure
to make it equivalent to the actual structure. We consider insertion, deletion
and relabel operations while computing edit distance with costs 0.5, 0.5 and 1
4 http://www.tutorialspoint.com.
5 https://openstax.org/details/books/precalculus.

http://www.tutorialspoint.com
https://openstax.org/details/books/precalculus
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Table 1. Textbook concepts
to wikipedia concepts map-
ping statistics

Textbook No of mapped concepts

Chapters Sections Subsections

DSA 9 24 3

Automata 6 19 0

CD 7 19 7

BE 13 17 9

PC 5 16 0

Table 2. Evaluation of suggested book structure
based on online textbook structure and the struc-
ture revised by human

Textbook Using online

textbook structures

Using human revised

structures

Pedagogic

value

Edit Precision Recall Edit Precision Recall

dist. dist.

DSA 0.428 0.296 0.94 0.295 0.634 0.972 0.266

Automata 0.449 0.358 0.96 0.229 0.719 0.977 0.358

CD 0.479 0.253 0.815 0.372 0.373 0.921 0.405

BE 0.484 0.158 0.75 0.424 0.271 0.846 0.265

PC 0.478 0.138 0.904 0.287 0.549 0.997 0.342

respectively. The edit distance is computed for all five textbooks and normalized
with respect to the size of the actual and predicted structure [2]. We also analyze
the precision and the recall of concepts augmented in the proposed structure
based on the actual book structure. The results are shown in Table 2 and we
can see that Basic Electronics has the highest edit distance and least pedagogic
value. We can also observe that the recall over all five books are high whereas the
precision is less. This is because while the system is able to correctly recommend
most sections and subsections mentioned in the actual textbook, many concepts
that are augmented are not present in the actual book structure.

We perform human evaluation of predicted structures by asking humans to
revise the structure by removing undesirable sections or subsections, reorder-
ing and inserting concepts if required. Each predicted structure is revised by 5
experts in the given field. We use the structures revised by humans to evaluate
the predicted structure by computing tree edit distance between the predicted
and the revised structure. We also estimate the precision and the recall of aug-
mented concepts in the predicted structure with respect to the revised structure.
The average of the edit distance, precision and recall based on the revised struc-
tures by humans are given in Table 2. Based on the edit distances, it is observed
that the predicted structures are closer to the revised structures than to the
actual book structures across all five books. We can also notice that the preci-
sions are increased for all books when evaluated based on revised structures. This
shows that many desirable concepts are recommended by our system which are
not present in the actual book structures. The recall based on revised structures
depends on the number of concepts inserted in the revised one.

Evaluation of Book Structures After Grounding: To evaluate the effect of
grounding, we make a simplistic assumption that links contributing to cycles are
removed. Hence, for grounding, we remove the edge with maximum CycleScore.
Once a concept is grounded, the book structure is again generated based on the
updated link structure. This process of grounding is continued until contents
of the proposed structure are cycle-free, or the user chooses to ignore any fur-
ther suggestions made by the tool. The final book structure is evaluated both
quantitatively and qualitatively as was done on the predicted structure before
grounding. For these evaluations, we use tree edit distance, precision and recall
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of the predicted final structures with respect to the actual book structures and
the revised structures provided by humans respectively. It can be seen in Table 3
that for both qualitative and quantitative evaluations, the edit distances are less
after grounding compared to the corresponding edit distances before grounding
which is given in Table 2; precision values also improve after grounding for all
textbooks. We can also observe that the PedagogicValue of all predicted struc-
tures increase while their edit distances decrease after grounding. This signifies
that this score can be used to guide the user as she interacts with the system to
edit concepts by iteratively resolving prerequisite violations and circular depen-
dencies. The result shows that in both evaluations, Basic Electronics has the
highest edit distance, least precision and least PedagogicValue. This points out
that certain books are difficult to compile from Wikipedia. It may be noted that
while the actual process of grounding may involve editing content in addition to
links, the scope of the paper with respect to evaluating effects of grounding is
restricted to evidences that can be gathered from links.

Table 3. Evaluation of book structure obtained after grounding based on online text-
book structure and the structure revised by human

Textbook Using online textbook structures Using human revised structures Pedagogic

Edit dist. Precision Recall Edit dist. Precision Recall value

DSA 0.352 0.398 0.972 0.224 0.694 0.976 0.393

Automata 0.375 0.538 0.96 0.076 0.768 0.977 0.449

CD 0.438 0.318 0.815 0.225 0.585 0.995 0.453

BE 0.473 0.188 0.813 0.423 0.49 0.994 0.329

PC 0.4442 0.221 0.904 0.272 0.627 0.994 0.449

Outline:
1. Finite state automaton
1.1 Deterministic finite automaton
1.2 Non-deterministic finite automaton
2. Regular grammar
2.1 Regular expression
2.2 Regular language

In the theory of computation, a branch of theoretical computer science,
a deterministic finite automaton (DFA) is a finite-state machine that
accepts and rejects strings of symbols and only produces a unique com-
putation (or run) of the automaton for each input string. DFAs recognize
exactly the set of regular languages , which are, among other things, use-
ful for doing lexical analysis and pattern matching. DFAs can be built
from nondeterministic finite automata using the powerset construction
method.

Fig. 5. PedagogicValue analysis: using an online textbook

Sanity of PedagogicValue : The sanity of the proposed measure to estimate
the pedagogic value of a book structure is evaluated using Stanford online
textbook on Information Retrieval6. This book contains hyperlinks to navigate

6 https://nlp.stanford.edu/IR-book/html/htmledition.

https://nlp.stanford.edu/IR-book/html/htmledition


Towards Compiling Textbooks from Wikipedia 839

between pages. We extracted the hyperlink network in this online book and it
is used to compute its PedagogicValue. Then, the sections and subsections in
the book are randomly shuffled to observe the variation in PedagogicValue. The
extent of shuffling is measured using tree edit distance. The PedagogicValue of
each shuffled book structure and its tree edit distance with the actual book
structure is illustrated in Fig. 5 and it shows that the PedagogicValue is high
when edit distance is 0 and it decreases with increase in edit distance.

Fig. 6. A screenshot of the interface
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Fig. 7. PedagogicValue
Analysis: using interface

We designed an interface to assist user in compiling the book from
Wikipedia7. A screenshot of the interface is shown in Fig. 6 where the book
outline generated by the proposed algorithm is given along with the content of
a section with regions flagged for grounding. The pedagogic value of the book
structure and scores for computing pedagogic value are also shown in the screen-
shot. We compiled a book on “Automata Theory” using the interface. The ped-
agogic value of the book structure is analyzed while editing the content during
the compilation process and the pedagogic value after each edit is show in Fig. 7.
We can observe fluctuations during the initial edits. This is because some revi-
sions create new circular dependencies and some eliminate quite a few existing
circularities.

Comparison of PReqScore and RefD : We evaluate the effectiveness of the
PReqScore by comparing it with RefD score using CrowdComp dataset [12].
This dataset includes binary labelled concept pairs from five different domains
- Global Warming, Parallel Postulate, Public Key Cryptography, Meiosis and
Newton’s Laws. The classes are balanced by oversampling the minority class
and we analyzed the accuracy of test data based on 5-fold train-test splits. The
accuracies obtained when trained using PReqScore are 74.2% (Global Warming),
74.8% (Parallel Postulate), 72.2% (Public Key Cryptography), 72.6% (Meosis),
and 80.1% (Newton’s Laws) which are conspicuously better compared to the
accuracy figures obtained when trained using RefD, which are 60.1%, 69.9%,
65.3%, 65.1% and 56.9% respectively. The improvements are statistically signif-
icant (p<0.05, paired t-test).
7 A demonstration of the interface and a book compiled using the interface can be

found at https://sites.google.com/site/compiletextbooks/.

https://sites.google.com/site/compiletextbooks/
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Comparison of AugScore with Baselines: We compare the AugScore used in
augmentation algorithm with baseline measures such as semantic relatedness and
Wikipedia category tree based score. The semantic relatedness between concepts
(SemRel(ci, cj)) is measured as discussed in Sect. 2.1 The intuition of Wikipedia
category tree based score is that a concept ci is a prerequisite of cj if there is a
category of ci that is an ancestor of any category of cj in the category tree. The
extent to which ci is a prerequisite of cj is measured by the path length between
those categories. Thus the Wikipedia category based score is,

CatScore(ci, cj) = min
u∈Cat(ci),v∈Cat(cj)
u is ancestor of v

1
pathlength(u, v)

(9)

where Cat(ci) implies Wikipedia categories of concept ci. These baselines are
compared based on the F1-score of book structure generated by using these
scores with respect to the actual book structure and the F1-score values are
given in Table 4. It is clear that empirically, the augmentation algorithm based
on AugScore performs significantly better than the baselines.

Table 4. Comparison of AugScore with baselines

Dataset SemRel CatScore AugScore

Automata 0.38 0.22 0.52

DSA 0.37 0.29 0.45

Compiler 0.33 0.32 0.39

BE 0.13 0.18 0.26

Precalculus 0.13 0.12 0.24

6 Discussion and Related Work

Authoring a textbook is hard even for experts. This paper aims at a relatively
modest goal of helping humans in compiling books from Wikipedia by utilizing
its hyperlink structure. Although there are different aspects to be considered in
pedagogically organizing the content, experimental results provide support for
using PedagogicValue to guide humans in adapting Wikipedia content to meet
pedagogic goals. Even though we made a simplifying assumption that in a book
structure, introduction to a parent concept is a prerequisite of its child, it may be
noted that links in Wikipedia do not necessarily carry the semantics of referring
to the introduction to the target article. To address this issue, we need to classify
each Wikipedia link based on its context to decide if it refers to the introduction
of the target or the whole content. While we have assumed that the user provides
as input a set of ordered concepts, it should be straightforward to adapt the tool
to take advantage of the proposed ordering method in situations where the user is
unsure of the ordering between seed concepts. Also, while we have demonstrated
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the effectiveness of grounding in an automated way, the grounding of a concept
by redefining content can lead to creation of fresh circular dependencies. In such
cases, changes in PedagogicValue scores can be exploited by the interface to guide
the user to choose a grounding operation that can reduce such side effects.

A method to increase the coverage of textbooks by linking textbook content
to web resources is proposed in [1]. Mathew et al. [13] distinguished between
pedagogic and encyclopedic resources and observed that circular dependencies
tend to occur more often in encyclopedic resources like Wikipedia; the authors
do not, however, prescribe a concrete approach to semi-automate the task of
converting encyclopedic resources to pedagogic ones. A study towards measur-
ing the extent to which prerequisite relation between knowledge concepts in
MOOCs is performed in [3]. A computer facilitated interactive system to create
books using open access textbooks is proposed in [10]. Wang et al. [16] proposed
an approach for extracting concept map from textbooks which use prerequisite
relations that are estimated based on topical relatedness and complexity level
differences between concepts. Our work differs from most of these approaches
in terms of its overall goal, and is motivated by the goal of aiding humans to
construct a textbook out of relevant Wikipedia articles. It aims at an end to end
interface that uses human feedback to structure the content of the textbook and
help users in grounding concepts that are involved in circular dependencies.

7 Conclusion

We presented an approach to help users in compiling books from Wikipedia.
This involves two steps (i) identify book structure on a given subject (ii) flag
regions for grounding in Wikipedia content corresponding to topics in book struc-
ture. We evaluate the effectiveness of proposed algorithm for identifying book
structure both quantitatively and qualitatively and also propose a measure to
estimate pedagogic value of a book. We could also characterize the books empir-
ically based on how hard it is to compile them from Wikipedia resources. While
the results presented are encouraging, practical deployment of the tool may need
significant work to go into building of better interfaces and empirically evaluat-
ing the end-to-end effectiveness of the tool using ablation studies over different
configurations of the proposed modules.

Acknowledgements. We thank Prof. Marti A. Hearst for the fruitful discussion and
feedback, and the members of AIDB lab for their insightful comments. This work is
partially funded by TCS Research Scholar Program, India.
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Abstract. The analysis of word patterns from a corpus has previously
been examined using a number of different word embedding models.
These models create a numeric representation of word co-occurrence and
are able to capture some of the syntactic and semantic relationships of
words in a document. Assessing language complexity has been consid-
ered for many years through the use of simple indexes and basic statisti-
cal properties (word frequency, etc.), however little work has been done
on using word embeddings to develop language complexity measures.
This paper describes preliminary work on measuring language complex-
ity using clustered word embeddings to produce network transition mod-
els. The structural measures of these transition networks are shown to
represent basic properties of language complexity and may be used to
infer some aspects of the underlying generative grammar.

Keywords: Word embedding · Language complexity · Word2vec
Grammar · Network

1 Introduction

This paper considers the use of word embeddings to estimate the structural com-
plexity of English sentences. The concept of word embeddings involve the map-
ping of a vocabulary to a low dimensional vector that represents the positional
context between words within a sentence or stream of words. Several models
for word embedding have been proposed, including Skip-Gram with Negative
Sampling (SGNS) [13,14], Latent Semantic Analysis (LSA), Global Vectors for
Word Representation (GloVe) [16] and PPMI [7]. The reader is referred to the
review paper by Li and Yang [12] for further details regarding these and other
methods. These models vary in the way in which they construct the embedding
vectors, however they all have the same goal of creating a mapping from a high
dimensional n-gram space to a lower dimensional representation. Although word
embeddings have been previously used as structural information to enhance pars-
ing methods [1], they have not been used for evaluating structural language com-
plexity in terms of clustering and graph representations. This work is motivated
by an early discussion paper by Harris [10], where he described the distributional
c© Springer Nature Switzerland AG 2018
T. Mitrovic et al. (Eds.): AI 2018, LNAI 11320, pp. 843–854, 2018.
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structure of language and the implications of their meaning. Harris considered
grouping the words of a corpus language as classes (sets) with certain prop-
erties and argued that co-occurring words with different meanings would have
different distributions. Further, he suggested that having produced a method for
grouping elements of a language that these could be combined if a measure of
similarity was constructed, thereby identifying roles such as nouns, adjectives,
etc. The implication was that the underlying structural properties (i.e. com-
plexity) of a grammatical generator for a language could be inferred by suitable
operations on the distributional properties of sentences. The model presented
here is one approach to capture these underlying distributional properties and
resulting structural features by creating generalised hierarchical representations
of word dependencies.

This paper is structured as follows: Sect. 2 presents related work in the field
of language complexity and the use of word embeddings; Sect. 3 presents the pro-
posed model for measuring language structure; Sect. 3.1 shows a toy example to
motivate the work; Sect. 4 describes the corpus data and model parameters used
for the experiments; Sect. 5 presents the results and discusses the implications
of the model; and Sect. 6 concludes the work.

2 Related Work

Language complexity has a long history in natural language processing (NLP) [2],
often framed around the issue of readability [11,18]. Simple statistical methods,
such as the Gunning Fog Index [9] (a measure of the proportion of the number of
words versus number of sentences, and complex words versus simple) are often
used to measure readability, and this in turn is used as a surrogate for complex-
ity. The work of Yasseri et al. [18] considered complexity in terms of the Gunning
Fog index and n-grams of speech and part of speech tags. Although these tra-
ditional methods do capture complexity, they are simple statistical measures.
More relevant to the work described here is the use of word embedding vectors
as inputs to complexity measures.

Early work on the use of n-grams and statistical co-occurrence [4] discussed
the concept of partitioning a vocabulary of words into classes using a greedy
mutual information measure. There concepts were framed around information
theory and the statistical properties of word occurrence. Although word embed-
ding models such as word2vec were not available at the time of this research, they
showed that both syntactic relationships and their semantic similarity could be
constructed. The mathematical basis of this work was limited to bi-grams, how-
ever the implications of the work clearly support the methods presented here.
The work by Bullinaria and Levy [5] examined how models of co-occurrence
could be used for semantic analysis of words. Although they do not address
language complexity directly, the work showed that a range of statistical mea-
sures could be created and used as a basis for psychological models to evaluate
meaning in documents. Andreas and Klein [1] posed the question: “How much
do word embeddings encode about syntax?”. They used word embeddings to
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support statistical parsing by using neighbourhood relationships in the embed-
ding vector to enforce common behaviours between words. In addition they used
the vectors to create features (based on the first two principle components of
a PCA projection of the embeddings) that could be used as input to a lexical
parser. Although they did demonstrate that the embeddings captured syntac-
tic information they could only demonstrate marginal improvements in terms
of state-of-the-art parsers. Of relevance here is that they showed the syntactic
concepts of a language were represented in the word embeddings.

Recent work has examined the use of clustering for word embeddings [6] for
readability prediction. Here a K-means clustering method was used with the
word embedding vectors (K was tuned between 10–200 using validation data),
and the text then pooled into the clusters. A histogram of the distribution of
words in each cluster was then used as input to a support vector machine to
produce a regression model for readability. Here the clustering model was used
to just produce one set of clusters (with a fixed K for any corpus). Our model
extends the use of clustering by creating a set of different models defined by a
range of dissimilarity measures. These clusters and the text corpus can then be
used to construct transition networks represented as a Markov chain model of
transitions between words and groups of words. We propose that this type of
model captures a generalised representation of the underlying grammar used to
create the corpus, and can therefore be used as a measure of complexity.

3 Methods

The approach taken here is to assume that word embeddings represent under-
lying syntactic structures that can be used to estimate the complexity of sen-
tences. Although previous work has shown that syntactic information from word
embeddings is redundant [1] for constituency parsing, we do not aim to con-
struct a formal parser, but to assess the structural complexity of the language
represented by the embedding. To demonstrate this concept we use the Python
gensim1 package to create the word embeddings (word2vec), clustering using
a dendrogram, and a transitional network (graph) to measure complexity. The
finite-state machine (network) model and dendrogram were implemented in the
basic R [17] implementation, and used the igraph package [8] for measuring the
network properties and display purposes. The model steps are defined as follows:

1. Create an embedding E for the corpus C using an embedding size S and
vocabulary size |V |;

2. Cluster the embedding E using a dendrogram using a Euclidean distance
metric for similarity and inter-cluster agglomeration method “average”;

3. For a range of dissimilarity cut-points di in the dendrogram:
(a) Create a finite state machine F where each state represents cluster of

words at di. Include two additional states: S (the start symbol that links
to the first word in a sentence) and END (the end state linked from the
last word in a sentence);

1 https://radimrehurek.com/gensim/.

https://radimrehurek.com/gensim/
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(b) Sample sentences from C, updating the transition matrix for F based on
the order of words from a sentence and their associated states (clusters);

(c) Construct a directed graph Di that represents F ; and
(d) Measure the structure of Di using the graph properties of clustering coef-

ficient (transitivity) and mean path length.
4. The structural measurements of Di can be used as features to infer the com-

plexity of the language that generated C.

We note that there are many possible graph measures of Di. Our choice of tran-
sitivity and mean path length was that they are relatively fast to calculate for
large networks, and they capture basic structural information for graphs. Transi-
tivity measures the probability that adjacent vertices of a vertex are connected,
and therefore represents the clustering of words or concepts in a language. The
mean path length calculates the average directed path length between all pairs of
vertices. A language with no structure would therefore likely have a large mean
path length.

3.1 Motivational Example

The following example shows how the structure of Di varies by creating a sim-
ple language defined by a context-free grammar (CFG). The purpose here is to
demonstrate that structural information regarding the grammar used to pro-
duce a text can be inferred by using the dendrogram and associated transition
networks for a range of similarity cuts.

A context-free grammar is a tuple (N,
∑

, S, P ), where N is the set of non-
terminals,

∑
is the set of terminals, S ∈ N is the designated start symbol and

P is the set of rules or productions. A rule is a pair (l, G), where l ∈ N is the
left-hand side, and G = g0g1 . . . gn is the right-hand side, with gi ∈ N ∪ T .

The grammar Gsimple generates a simple language with a small amount of
structure based on the position in a sentence of nouns, verbs, adjectives, con-
junctions, pronouns and determinants.

Gsimple =
S = S
N = {NP, V P, . . . , Conjunction},∑

= {nouns, verbs, . . . , and, or, but},
P =

{S → NP V P | NP V P Conjunction S
NP → Pronoun | Det Nominal
Nominal → Noun | Adjective Nominal
V P → V erb
Conjunction → and | or | but
Pronoun → we | me | you | it | . . . | most
Det → the | a | an | this | these | that
Noun → n0 | n1 | . . . | n19
V erb → v0 | v1 | . . . | v19
Adjective → a0 | a1 | . . . | a19

}
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Twenty unique nouns (n0-n19), verbs (v0-v19) and adjectives (a0-a19) were
used in the language so that the dendrogram could be easily visualised. One
example sentence generated by Gsimple is “these n1 v0 but this a2 n8 v6”. A
small number of terminals were used for each of the non-terminals Conjunction,
Pronoun and Det. A corpus of 5000 sentences was generated using Gsimple and
embedded using the method previously described. Figure 1 shows the dendro-
gram and two transition networks (Di) produced using one embedding of the
corpus generated from Gsimple. The dendrogram shows that the nouns, verbs,
adjectives, conjunctions, pronouns and determinants all form initial clusters,
indicating that the structural roles these words play in the language have been
represented by the word embeddings. The network shown in panel B was pro-
duced by cutting the dendrogram at a dissimilarity height of six. Of interest here
is that this transition network in panel B represents the underlying structural
relationships defined by Gsimple. The network in panel C is more complex since
some nouns and adjectives are still treated as separate groups.

4 Corpora

A simple set of different styles of text from the Brown Corpus have been selected
to examine the properties of the proposed model. The Brown Corpus is a com-
monly used collection of text for NLP problems with a set of corpora divided
into 15 theme categories. Figure 2 shows a summary of the structure for each
category. Panel A shows word frequency (note outliers to the box plots not
shown), panel B shows the distribution of sentence length, and panel C plots the
number of sentences versus number of unique words in each corpus. The corpora
were accessed using the Python interface to the nltk package [3]. The following
preprocessing steps were carried out for each category of text:

1. remove all punctuation from the text;
2. convert all text to lower-case;
3. construct a unique word table and calculate word frequency; and
4. keep only the first 10, 000 most frequent words, replacing the remaining words

in the text with the symbol UNK.

Figure 2 shows that the different categories vary in their basic structure. In
particular, panel C shows that the science fiction, humor and religion categories
have fewer unique words and number of sentences. Panel A also shows that word
frequency is low for science fiction, reviews and humor. The sentence length
(Panel B) shows some differences, with adventure, fiction, mystery, romance and
science fiction having somewhat shorter sentences than other categories.

Early experiments with the model described in Sect. 3 indicated that direct
comparison between corpora may not be appropriate due to behavioral differ-
ences caused by word frequency, sentence length and the size of the documents.
Hence a set of baseline text documents were created for each corpus that directly
reflected the structure of each document. Three baseline texts were created as
follows:
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Fig. 1. The dendrogram (A) of an embedding for text generated by Gsimple. The
resulting graph structure when cut at a dissimilarity height of 5 (C) and 6 (B). Note
that the graph nodes are labeled with an example from the cluster (class) represented
by that node.

1. Random: For each sentence in the document, create sentences of the same
length with words randomly selected from the corpus.

2. Random Frequency: For each sentence in the document, create sentences of
the same length with words selected proportional to their frequency.

3. Random Sentence: For each sentence in the document, create sentences by
randomly reordering the words in the sentence.

Each category corpus will be compared against these three random texts based
on structural measures of the transition networks for a range of dissimilarity cuts
in the dendrogram. The similarity ordering for the random models compared to
their original text should be that the Random Sentence text is more similar
than the Random Frequency which is more similar than Random. Comparisons



Measuring Language Complexity 849

0

5

10

15
ad

ve
nt

ur
e

be
lle

s_
le

ttr
es

ed
ito

ria
l

fic
tio

n
go

ve
rn

m
en

t
ho

bb
ie

s
hu

m
or

le
ar

ne
d

lo
re

m
ys

te
ry

ne
w

s
re

lig
io

n
re

vi
ew

s
ro

m
an

ce
sc

ie
nc

e_
fic

tio
n

category

w
or

d 
fre

qu
en

cy
A

0

10

20

30

40

50

ad
ve

nt
ur

e
be

lle
s_

le
ttr

es
ed

ito
ria

l
fic

tio
n

go
ve

rn
m

en
t

ho
bb

ie
s

hu
m

or
le

ar
ne

d
lo

re
m

ys
te

ry
ne

w
s

re
lig

io
n

re
vi

ew
s

ro
m

an
ce

sc
ie

nc
e_

fic
tio

n

category

se
nt

en
ce

 le
ng

th

B

adventure

belles_lettres
editorial

fiction

government

hobbies

humor

learned

lore

mystery

news

religion

reviews romance

science_fiction

2000

4000

6000

8000

10000

0 4000 8000
Number of Sentences

U
ni

qu
e 

W
or

ds

C

Fig. 2. Word frequency (A), sentence length (B) and total sentences vs unique words
(C) for each category. Note that outliers are not shown in A and B, and the axes in C
are drawn with different scales.

between corpora can then be made be considering how they behave against these
baseline random texts. The word embedding dimensionality has been set to 20,
based on [15], and each category corpus is iterated through word2vec 100 times.
The context (skip-gram) window was set to 2. The model was run 10 times per
category corpus and random data, with the network measures presented with a
95% confidence interval about the mean for transitivity and mean path length.
Although these parameters may not be optimal for each corpus (this is a general
issue when using any neural model) they are suitable for our initial investigations
given the small corpus size - in addition, since we are using aggregated clusters
the issues with inconsistent word distances in the vector space should be reduced.

5 Results

The results for both network measures as the dissimilarity measure for the den-
drogram is increased from 1 to 8 are shown in Figs. 3 and 4. The mean distance
between vertices (Fig. 3) has a similar pattern for all corpora in that the ran-
dom text model has the greatest distance for large networks (small values of the
dissimilarity cut) and gradually decreases to be similar to all other text models
as the agglomeration process increases. In particular, the ordering of distance is
consistent for all corpora, with the original text having a slightly larger mean
distance than the random sentence text, with the random frequency text having
the lowest distance. The random frequency is likely to have the lowest distance
measure since words that are more commonly selected will also be more likely
to be in the same sentence. Therefore, although in the original text a word may
appear commonly, it might be that is only occurs once in each sentence - by
sampling the words using a probability these common words are more likely to
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Fig. 3. Graph mean distance between vertex pairs for each category cut at dendrogram
dissimilarity measures 1–8.

be co-occurring and therefore the network structure will cluster more rapidly.
Therefore this would result in shorter mean paths in the network. Of more inter-
est is the two categories where random text distance is close to the original text:
“belles lettres” and “learned”. These texts have the largest number of sentences
and unique words (see Fig. 2) and large sentence length distributions and word
frequency counts. Clearly this measure is representing the overall complexity of
the corpus in a similar manner to the concept of readability.

The transitivity coefficient (Fig. 4) captures a different measure of complex-
ity. Of interest here is that the three corpora (“humor”,“reviews” and “science
fiction”) show very different patterns compared to their corresponding random
models. Examining Fig. 2 would suggest that this is a result of word frequency,
given these three corpora have very low word frequency distributions (panel
A). These texts also have the smallest number of sentences and unique words
(panel C). Since transitivity measures the clustering of nodes in the network
this implies that these text documents have a more rigid structure and do not
use different words for the same semantic role. There is also some support for
this from Fig. 3 where these texts have a slightly larger mean path length com-
pared with other corpora. All other texts in Fig. 4 show a consistent ordering of
transitivity with random frequency > text > random sentences. In addition, the
spike in transitivity for the random text around a dissimilarity cut of approx.
Six is consistent across all of these corpora. Why this spike occurs, and what it
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dissimilarity measures 1–8.

represents in terms of the underlying sentence structure, is currently not known,
but certainly identifies future work. Given the three corpora mentioned above
do not show this spike with the random model suggests that it is a consequence
of word frequency, but currently we do not have a good explanation as to why
this should occur at these particular levels of clustering.

These preliminary results demonstrate that the model has captured some
structural measures of complexity and therefore achieves our original goal. How-
ever, this preliminary work does not demonstrate that new insights regarding
the underlying grammatical structure of the language used to generate these
texts can be inferred. Our choice of graph measures was made largely based
on simplicity and computational efficiency, rather than from a theoretical argu-
ment regarding finite-state machines and language structure. There is clearly an
opportunity here to investigate different graph properties and develop a range
of measures that can be interpreted for complexity. In addition, we have used
a comparison against a set of random models rather than a direct compari-
son between corpora (although this has been done to some extent). It is an open
question whether network measurements from this model can be used to directly
compare against different documents and what inferences can be made with this
model. Finally, the model uses Euclidean distance for the dendrogram clustering,
whereas cosine distance is often used for measuring word embedding similarity.
Since a distance measure is fundamental for determining clustering future work
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Fig. 5. Network structures for each text category where the number of clusters is
fixed at 9. In the caption for each network D shows the mean path length, and T the
transitivity.

is needed to determine the most appropriate metric to use when measuring simi-
larity. In addition, the assessments of structure have cut the dendrogram using a
dissimilarity measure, whereas the networks could also be constructed by fixing
the number of clusters. An example is shown in Fig. 5, where a network for each
corpus has been constructed with exactly 9 clusters. Variation in the complexity
of these networks could be used as a tool for direct comparison, and is left for
future work.

6 Conclusion

This work has introduced a new method for measuring the complexity of a
text document using word embeddings, clustering and finite-state machines (net-
works). The use of graph measures to represent the underlying structure of the
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networks appears to capture several properties of the corpora that have been
examined, however there are several issues that require future work. In par-
ticular, for a method to be useful it must provide information regarding the
complexity of a language that cannot be derived from a simple set of statistical
measures. This work shows some promise in extending the ability to understand
language complexity from the perspective of grammatical structure, however at
this stage there are many open questions that still need to be addressed.
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