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3.1  Introduction

Behçet’s disease (BD) is a complex systemic syndrome characterized by inflamma-
tory lesions of blood vessels throughout the body, being small vessels the most 
frequently involved. This pathology is a rare and debilitating vasculitis, which pres-
ents a wide range of clinical phenotypes. The main clinical features are genital 
ulceration, ocular involvement (mainly uveitis), and skin lesions, but patients also 
can suffer gastrointestinal involvement, arthritis, and neurological disorders, among 
other symptoms, which lead to significant morbidity and mortality [1]. The lack of 
a pathognomonic sign and the absence of specific biomarkers of the disease make 
difficult the diagnosis of BD which is based on criteria and classification systems 
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being the most widely used those proposed by the International BD Study Group 
(ICBD) in 1990 [2]. BD is found worldwide; however, its prevalence varies along 
the different geographical regions. The highest prevalence is found in Turkey, fol-
lowed by Japan and Iran, and it is very low in North America and in Western coun-
tries; in fact, BD is also known as “Silk Road disease” given its particular 
geographical distribution overlap with the ancient trading route stretching from 
China to the Mediterranean area [3]. Regarding the gender distribution and onset, 
both genders are affected equally, although with geographical differences, and the 
disease typically arises in the third or fourth decade of life, being uncommon in 
children or patients above 50s [4].

With respect to the immunological data, multiple alterations have been described 
in the homeostasis of the T cells in BD patients. Accordingly, activation of γ/δ T 
lymphocytes in both peripheral blood and mucous lesions has been described [5, 6]. 
Besides, imbalances in T helper (Th) cell populations have been extensively studied 
in BD, and Th1 infiltrates have been observed in oral and genital ulcers and cutane-
ous and gastrointestinal lesions. Consistently, an increase in Th1 cytokines has also 
been found in blood [7–9]. In addition, high levels of IL23 and IL17 have been 
described in peripheral blood mononuclear cells of BD patients [10]. IL23 induces 
the production of IL17 by T lymphocytes, and this cytokine promotes a neutrophil- 
mediated inflammatory response. Therefore, high levels of IL23 are consistent with 
the hyperactivation of neutrophils observed in the early phases of the lesion infiltra-
tion [11], which leads to the increase in the levels of reactive oxygen species, endo-
thelial adhesion, chemotaxis, and phagocytosis [12–15]. All these data suggest that 
the Th17/Th1 balance plays an important role in the regulation of the inflammation 
in BD [16].

Despite high efforts, the etiology of BD remains unclear. However, cumulative 
evidences suggest that certain infectious agents and environmental factors may trig-
ger the disease in genetically predisposed individuals. It has been proposed that 
different virus and bacteria could play a role in the BD development. Of special note 
are Herpes simplex virus I, which DNA has been isolated from genital ulcers and 
saliva samples of patients [17], and Streptococcus sanguinis that has been related 
with the formation of recurrent aphthous lesions [18]. Nevertheless, the present 
chapter focuses on the genetic component, in which great advances have been made 
in recent years.

3.2  Genetic Component of Behçet’s Disease

The substantial genetic contribution to the pathogenesis of this disease is strongly 
supported by several facts. In addition to the aforementioned geographical variation 
in prevalence [3], familial aggregation has been extensively reported. The results of 
these studies revealed a higher frequency of the cases among the relatives of the 
patients than in the general population [19–22] with the highest sibling recurrence 
risk ratio, in the Turkish population (between 11.4 and 52.5) [20]. Besides, although 
there are few studies in BD, the disease concordance rate was higher in 
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monozygotic twins compared with dizygotic ones [23]. Finally, specific associa-
tions of different genes with BD susceptibility have been robustly described [24]. 
From a genetic point of view, BD is considered as a complex disease, in which 
multiple genes are involved, each of them with a modest effect in the disease, being 
able to be related with the onset as well as with its severity and progression.

We will examine throughout this chapter the current knowledge of the BD 
genetic background on the basis of the recent advances in this subject. Firstly, the 
HLA region (which represents the main genetic contributor to the disease) will be 
thoroughly reviewed together with the main confirmed associated loci outside the 
HLA region. Besides, we summarized the results of other studies that propose new 
susceptibility genetic factors, and, finally, we will highlight the most important 
molecular pathways implicated in the disease.

3.2.1  HLA Region

The major histocompatibility complex (MHC) region includes the largest number 
of genetic associations for a wide range of pathological conditions, including most 
of the immune-mediated diseases. The earliest association of BD with the human 
MHC (HLA) was reported in the 1970s [25]. These initial studies, using serologi-
cal typing method, revealed that HLA-B51 had a relevant relationship with the 
disease, so that it was detected with a relative small sample size. Decades later, 
with the availability of DNA-based methods and larger study cohorts, the specific 
association of HLA-B*51 with the disease was well established and repeatedly 
contrasted in different ethnic groups [24]. Multiple studies exploring other addi-
tional susceptibility loci in the HLA region have suggested the association of 
diverse HLA molecules with the disease. In this sense, in addition to other HLA-B 
molecules [26, 27], some studies have reported other classic class I HLA mole-
cules (HLA-A and HLA- C) as associated to the disease, although in general these 
results were less consistent [28–30]. As we stated above, the association between 
HLA-B*51 and BD is well established worldwide as the strongest genetic risk fac-
tor for this condition, but the functional basis of this association in the pathogene-
sis of BD has not been elucidated yet. For this reason, other loci located within the 
HLA region have been proposed as major contributors. Specifically, a study pub-
lished in 1999 in the Japanese population proposed for the first time that the caus-
ative gene of the HLA region was MICA, a gene located very close to HLA-B with 
strong linkage disequilibrium (LD) [31–33]. Although this idea was embraced by 
the scientific community at the beginning, later studies performed in different pop-
ulations were inconsistent [34–38]. The problems encountered to clarify which 
gene is true responsible of the association are related to the complexity of the HLA 
region, which is particularly dense in genes related with the immune system and 
shows a strong LD, making difficult to clarify whether the identified risk signals 
are independent each other or whether they are reflections of the primary associa-
tion. This problem is aggravated in the case of rare diseases, such as BD, because 
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the sample size, relatively low compared with other pathologies with more preva-
lence, limits the statistical power of the individual studies.

Given the advance of the new typing approaches during the last years, new data 
have been raised from fine-mapping studies, thus allowing the typing of the entire 
region. Four independent studies performed in different populations, and following 
a comprehensive approach that combines high-throughput genomics with the novel 
algorithms of HLA imputation [39, 40], have been published [41–44]. All of these 
studies concluded that the HLA-B*51 haplotype represents the strongest associa-
tion factor with the disease but also discarded an association of any HLA class II 
molecule, something that was previously proposed using older methodologies 
[41–44]. However, these studies showed discrepancies regarding the independent 
association of other HLA class I factors. In the context of the HLA-B locus, HLA-
B*15 and HLA-B*27 were identified as risk factors and HLA-B*49 as a protective 
factor with independent effects of HLA-B*51 in one study in the Turkish popula-
tion [42]. Additionally, the allelic group HLA-B*57 was shown to confer suscepti-
bility to BD in two studies conducted in the Spanish and Turkish populations [42, 
43]. With regard to the HLA-A locus, variation within the gene was also associated 
with disease predisposition in different studies. Specifically, three of these studies 
found that the HLA-A*03 group is an independent protective factor for BD [42–
44]. In addition, one of these studies reported suggested evidence that HLA-A*26 
could be also an independent risk factor for BD [42]. Only one study described an 
independent association of the HLA-C locus, specifically HLA-C*1602 [41], which 
had been previously suggested by two smaller studies from Southern European 
[45, 46]. However, it should be noted that this independent association of the HLA-
C haplotype was not consistent with the rest of the studies that evaluated the con-
tribution of this locus [26, 42–44]. On the other hand, although the results of one 
of these studies returned the idea of the MICA gene as the causal susceptibility 
marker for BD [41], the results of the other large-scale genetic studies did not 
support an independent association of the MICA gene with BD [34–38, 42, 43].

Many of the HLA class I molecules have a dual function, and they present pep-
tides to the CD8 T cells, but they also control the activity of the natural killer cells 
because they are ligands of some of their receptors (KIR). The relevant amino acid 
positions in one or the other function are located in different parts of the molecule. 
Therefore, deciphering the amino acid positions involved in BD susceptibility may 
definitively help to better understand the functional implications of the HLA system 
in the disease pathophysiology. In an effort to identify the motifs that may explain 
the variety of protective and risk effects conferred by HLA class I molecules in BD, 
the possible association of polymorphic amino acid residues has been analyzed in 
some studies [41, 43]. One of them proposed a model comprising five amino acids 
located in three positions of HLA-B, 67 (glutamic acid, Glu, or phenylalanine, Phe), 
97 (threonine, Thr), and 116 (leucine, Leu), as well as one position in HLA-A, 
161 (Glu) [41]. According to one of those studies in which an omnibus test was 
performed, the most relevant amino acid position for disease risk was HLA-B 97. 
Six possible residues can be harbored at this position, with two of them conferring 
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risk (Thr and valine, Val), another two conferring protection (arginine, Arg, and 
serine, Ser), and the remaining two being neutral (asparagine, Asn, and tryptophan, 
Trp). In addition, according to this model, the position 66 of HLA-A represented an 
independent association (with lysine, Lys conferring risk and Asn protection) [43]. 
Interestingly, the four more relevant positions (HLA-B 67, 97, 116 and HLA-A 66) 
are located in the binding groove of their corresponding molecules. These data 
brought additional evidences supporting the importance of the peptide binding by 
the class I HLA molecules in BD.  Nevertheless, the study of the most relevant 
amino acid positions has to be interpreted with caution, and it is evident that each 
HLA-B molecule has a specific set of amino acids in its polymorphic positions, with 
many of them in LD with each other, thus increasing the difficulty to evaluate 
dependency at the amino acid level. Therefore, it should be noted that dependency 
does not exclude biological influence. Therefore, only by complementing the 
knowledge gained by this type of approaches with those provided by functional 
studies, it would be possible to elucidate the precise etiopathogenic role of these 
molecules in disease, which would be essential for a personalized medicine [43].

3.2.2  Non-HLA Region

The contribution of the HLA region to the genetic component of BD has been esti-
mated to be approximately 20% [47], which indicates that other genes outside the 
region may have to be involved in this pathology. For many years, a large number 
of candidate gene studies tried to unravel the complex genetic architecture of BD 
outside of the HLA region. However, those studies yielded contradictory results 
that were not usually replicated in independent populations. The identification of 
the genetic factors involved in the susceptibility to complex diseases represents an 
enormous challenge, given that the effect of each gene in the development of this 
type of diseases is relatively low independently. To detect genes with low or 
medium effects, very large sample sizes are needed, and, given the condition of BD 
as a rare disease, most of candidate gene studies performed did not have enough 
statistical power. Additionally, the lack of replication among studies could be also 
related to specific population associations due to particular genetic architectures. 
Due to the above, few consistent associations with BD have been identified to date 
(Table 3.1).

3.2.2.1  Confirmed Risk Loci
Interleukin 23 receptor (IL23-R). This gene represents the most consistently asso-
ciated non-HLA locus with BD, as it has been repeatedly identified as a risk factor 
for this disease in different populations and multiple independent studies [26, 43, 44, 
48–56]. It is worth mentioning that this gene is a known risk factor for a multitude of 
immune-related diseases [57–59]. IL23R encodes a subunit of the IL-23 receptor 
which is expressed on the surface of Th17 cells and macrophages and binds the sub-
unit p19 of IL-23, a pro-inflammatory cytokine composed by p19 and p40 (which is 
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common with IL-12 and binds to IL12RB1). The IL-23/IL-23R complex promotes 
the polarization of the T cells to Th17 and increases the levels of inflammatory cyto-
kines such as IL-1, IL-6, IL-17, and TNFα [60]. Although there are strong evidences 
supporting that the variants of IL23R influence BD susceptibility through their effects 
on IL-23R itself, an additional role of these variants as markers of other nearby 
genes, such as IL12RB2, cannot be discarded [49]. IL12RB2 gene encodes the IL-12 
receptor beta 2, and the complex IL-12/IL12RB2 has a crucial role in Th1 cell dif-
ferentiation. Thus, although the causal mechanism of the association remains unclear, 
all these evidences support an important role of the IL-23/IL-17 pathway in the 
pathophysiology of immune-mediated diseases, including BD.

Table 3.1 Confirmed risk loci for Behçet’s disease outside the HLA region

Locus Location Gene name SNP SNP function References
IL23-R 1p31.3 Interleukin 23 

receptor
rs1495965 Intergenic [26, 43, 44, 

48–56]rs924080 Intergenic
rs10889664 Intergenic

IL-10 1q32.1 Interleukin 10 rs1518110 Intronic [26, 44, 
48–51, 55, 
61]

rs1518111 Intronic
rs1800871 Intronic

IL12A 3q25.33 Interleukin 12A rs17810546 Intergenic [43, 44, 55, 
67, 68]rs1874886 Intergenic

STAT4 2q32.2-q32.3 Signal transducer and 
activator of 
transcription-4

rs7574070 Intronic [53, 55, 68, 
71]rs7572482 Intronic

rs897200 Intergenic
ERAP1 5q15 Endoplasmic 

reticulum 
aminopeptidase 1

rs17482078 Missense 
(Arg725Gln)

[55, 68, 74, 
75]

rs10050860 Missense 
(Asp575Asn)

rs2287987 Missense 
(Met349Val)

rs13154629 Intronic
FUT2 19q13.33 Fucosyltransferase 2 rs681343 Synonymous [44, 104]

rs601338 Missense 
(Trp143Ter)

rs602662 Missense 
(Ser258Gly)

rs632111 3′-UTR
KLRC4 12p13.2 Killer cell lectin-like 

receptor C4
rs2617170 Missense 

(Asn104Ser)
[55, 68]

rs1841958 Missense 
(Ile129Ser)

CCR1- 
CCR3

3p21.31 C-C motif chemokine 
receptor

rs7616215 Intergenic [68, 90]
rs13084057 Intergenic
rs13092160 Exonic
rs13075270 Exonic

SNP single-nucleotide polymorphism
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Interleukin 10 (IL10). This gene was identified together with IL23R as suscep-
tibility factor for BD, and this association has been subsequently replicated in dif-
ferent populations [26, 44, 48–51, 55, 61, 62]. IL-10 is a potent anti-inflammatory 
molecule that inhibits the activation of macrophages and the synthesis of pro- 
inflammatory cytokines (including IL-1, IL-6, and TNFα); therefore, it suppresses 
Th1 cell activation [63]. Imbalances in the regulation of Th1 activation could cause 
deviations toward a Th1 profile, which could predispose to the disease. Interestingly, 
several genetic variants within this gene have been associated with the levels of 
expression. Specifically, the SNP reported by the Remmers group is associated with 
a decrease of the IL10 expression levels in monocytes [49, 64, 65]. Besides, it has 
been demonstrated that a low expression of IL10 in mouse leads to inflammation 
processes [66].

Interleukin 12A (IL12A). This gene encodes a subunit of IL-12, a cytokine that 
plays an important role in the polarization of the immune response toward Th1 and 
also in the production of IFNγ by both the T lymphocytes and the NK cells, so it is 
related to the production of pro-inflammatory cytokines [67]. Several studies 
reported association of this gene with BD [43, 44, 55, 68, 69], although further 
investigation is needed to clarify the causal variant.

The signal transducer and activator of transcription-4 (STAT4). This gene 
represents a shared genetic susceptibility factor for several autoimmune diseases, 
including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and 
Sjögren’s syndrome, among others [70, 71]. Regarding BD, the association with 
this gene has been extensively reported in different populations [53, 55, 69, 72]. 
STAT4 is a transcription factor that is activated by cytokines such as IL-12 and 
IL-23, which, as stated above, are involved in the differentiation of lymphocytes 
into Th1 and Th17 [73]. Two of the identified risk variants of this gene have been 
implicated in changes of STAT4 mRNA expression [69, 74], although further exper-
iments are needed to better understand the way in which this genetic variation affect 
the pathogenesis of BD.

The endoplasmic reticulum aminopeptidase 1 (ERAP1). The association of a 
missense variant of ERAP1, p.Arg725Gln, was described for the first time by Kirino 
and colleagues, whose data suggested that the associated variant contributes to dis-
ease susceptibility through a strong interaction or epistasis with HLA-B51 [69]. 
After that, additional studies have replicated these first results [55, 75, 76]. It is 
noteworthy that the association of this gene with other HLA class I-related diseases 
such as ankylosing spondylitis (AS) and psoriasis has been thoroughly investigated 
in the last years, and the implication of ERAP1 with these diseases has been always 
reported through an epistatic interaction with the corresponding associated HLA 
allele in each case [57, 77–79]. This gene encodes an aminopeptidase with an ubiq-
uitous distribution, which plays an important role trimming the N-terminal end of 
the peptides in the endoplasmic reticulum, a critical step of the processing of the 
peptides to optimize their length for HLA I molecule binding [80].

Fucosyltransferase 2 (FUT2). This association was firstly reported by Xavier 
and collaborators [81] but also in a recently published large-scale study [44]. This 
gene encodes the alpha [1, 2] fucosyltransferase, a molecule that produces in fluids 
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and intestinal mucosa the secreted H antigen, which is the precursor of the ABO 
histo-blood group antigens [82]. It has been described that homozygosity in two 
missense variants (p.Trp143Ter and p.Ile129Phe) leads to an ABO nonsecretor phe-
notype [82]. Of note, these variants are also linked with other immune-mediated 
disorders such as Crohn’s disease and type 1 diabetes [83–85]. The nonsecretor 
phenotype has also been associated with resistance to several infectious agents [86, 
87] and the gut microbiome composition [88, 89]. These evidences support the 
hypothesis that relationship between infectious agents and the genetic component is 
crucial for the development of BD.

Killer cell lectin-like receptor C4 (KLRC4). This gene has been found as a 
susceptibility locus in two large-scale genetic studies. Two non-synonymous 
variants in high LD (p.Ile29Ser and p.Asn104Ser) seem to be part of the suscep-
tibility haplotype for BD [55, 69]. The KLRC4 gene, also known as NKG2F, 
encodes a c-type lectin receptor expressed on NK cells. Although the specific 
function of this molecule is unknown, the haplotype related with the disease has 
reported to be associated with a high natural cytotoxic activity on peripheral 
blood cells [90].

CCR1-CCR3. This locus harbors a cluster of chemokine receptor genes with a 
high LD among them [69, 91]. Through binding to its ligands, these receptors act as 
a key regulator in leukocyte trafficking and in the homeostasis of the immune sys-
tem [92]. The risk allele reported by Hou et al. has been associated with a reduced 
expression of both, CCR1 and CCR3, in peripheral blood mononuclear cells 
(PBMCs) [91] and another variant located in the same region was also related with 
a lower expression of CCR1 in human primary monocytes [69].

3.2.2.2  Suggested Risk Loci
The number of genes identified in large-scale genetic studies is higher than that 
exposed in the previous section, and includes genes such as KIAA1529, CPVL, 
LOC100129342, UBASH3A, UBAC2 [93], GIMAP [94], JRKL-CNTN5 [43], 
IL1A- IL1B, IRF8, CEBPB-PTPN1 [44]. However, the association of these loci 
with BD remains unconfirmed. In some cases, specific replication studies have 
been performed in other populations but the results obtained are contradictories 
[26, 95]. In other cases the association has recently been described in only one 
population [44].

New approaches such as next-generation sequencing (NGS) have being recently 
implemented for the investigation of the rare polymorphisms. In a recent study, 21 
candidate genes were evaluated for BD association through deep exonic resequenc-
ing with the aim of identifying low-frequency non-synonymous variants [56]. The 
association of rare variants in four genes (IL23R, NOD2, TLR4, and MEFV) with 
BD is supported by the results obtained in this work. In a later study, seven genes 
related with immune-mediated diseases were analyzed using NGS. The findings of 
this second study suggested the influence of rare variants of, at least, NOD2, 
PSTPIP1, and MVK in the pathogenesis of BD [96]. More independent studies per-
formed in other populations and/or with other approaches are necessary to confirm 
or discard these suggested associations.
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3.3  Molecular Pathways

In the last years, large achievements have been accomplished to understand the 
genetic basis of BD. Although multiple studies will still be necessary for a fully 
comprehension of the pathophysiology underlying this disorder, given the last 
advances, we can outline a model that integrates the main molecular pathways 
involved in the development of this disease.

As it is described before, several functional studies have established that the T 
lymphocytes are the most important cell population involved in the immunopatho-
genesis of BD. These data are in concordance with the results yielded by genetic 
studies, because several of the BD susceptibility genes (e.g., STAT4, IL12, IL23R) 
are involved in the differentiation of naïve CD4+ T cells into mature Th1 effector 
cell or in the maintenance of Th17 cells [97] and others in the balance of Th1 cells 
(IL10). In addition, the association of the IL-23/IL-17 pathway with BD is also sup-
ported by genetic data and provides evidences of the essential role that this pathway 
has in the pathophysiology of multiple immune-mediated diseases, especially BD.

The genetic association of ERAP1, FUT2, and KLRC4 supports the hypothesis that 
the disease would be triggered by environmental agents in which microorganisms 
would play a key role. On this sense, the association of FUT2 could be related with the 
immune response to invasive microorganisms and the microbiota composition.

3.4  Conclusions and Future Perspectives

Despite the impressive increase in our knowledge of the genetic basis of BD during 
the last years, the list of the confirmed risk loci for this type of vasculitis remains 
significantly lower than other immune-mediated diseases [98, 99]. One of the main 
limitations in the genetic study of this disease is the lack of statistical power, which 
is conditioned by the low prevalence of this disorder and that does not permit to 
identify susceptibility signals with modest effects for which large sample size is 
required. Therefore, additional strategies are necessary to unravel the genetic com-
ponent underlying BD. In this sense, one new approach which is been successfully 
applied is the combination of the genetic data from different diseases with similar 
features considering them as a single phenotype (cross-phenotype meta-analysis), 
and numerous shared genetic components have been described in the last years 
using this methodology [100–102].

On the other hand, the way in which the information of genetics variants is trans-
lated into pathogenetic mechanisms remains unclear for most of the variants associ-
ated with BD, which are located mostly in noncoding region, as occurs in many 
immune-mediated diseases. This fact suggests that these variants could affect differ-
ent regulatory elements in the genome. Thus, further studies should be focused on 
the effects that the associated variants produce. In this sense, the role of epigenetics 
in the pathogenesis of immune-mediated diseases seems now undeniable, and the 
contribution of epigenetic dysregulation in vasculitis is increasingly recognized. 
The genetic-epigenetic relationships are taking on great importance in a field in 
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which functional data are emerging [103]. Expanding our knowledge of how these 
epigenetic mechanisms interact with the polymorphisms will help to better under-
stand the pathogenesis of this disease.
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