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Abstract. The volcanic activity analysis by means of seismic signals is
a scenario typically treated by studies in the Artificial Intelligence area
under the assumption of invariant probability distribution over time.
The literature in geophysics, on the other hand, qualitatively claims
that the volcanic phenomenon evolves over long periods of time. This
article shows, by three methods, one supervised and two unsupervised,
the existence of significant changes in the intrinsic components of the
data (concept drifts) generated within the volcanic phenomenon. Here it
is also shown how the performance of a learning model is considerably
affected in a classification task, when concept drifts are not treated in
the analysis of a volcanic environment.

Keywords: Data stream · Change detection · Concept drift
Artificial Intelligence · Seismic signal · Volcanology

1 Introduction

The Signal Processing and Artificial Intelligence techniques can rarely be applied
in a direct way to data from real-world applications. In dynamic environments,
the properties of the generated data are usually time-varying; situation that
should be handled with assumptions in order to fit the reality to theoretical
frameworks. The most common assumption is that historical data come from
the same distribution when actually they tend to change over time, condition
known as concept drift [5]. Many sensor-based applications generate an increas-
ing volume of data that must be continuously stored and analyzed. In such data
stream environments, data arrive continuously, and concept drifts cause that pat-
terns and relations in data evolve over time. Then, predictive models designed
for either classification or regression tasks in those environments, may become
obsolete due to changes in underlying physical processes or in the environment
itself [11].
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Volcanic monitoring and the evaluation of the associated risks are issues
of continuous study due to the vital importance of risk mitigation related to
volcanic unrest. Nowadays, most of the active volcanoes around the world are
monitored through different techniques such as geodesy, geochemistry, magne-
tometry, and specially, through seismological measurements. Seismic signals are
the result of particular processes inside the volcano and, therefore, can be used to
understand the volcanic phenomenon [1]. Consequently, based on the geophysi-
cal literature [1,9,15], the volcanic phenomenon and especially its monitoring by
seismology, may be defined as a data stream and changing environment; however,
no reference in the engineering area was found where such drifts are quantified
or at least identified.

During the last two decades, Machine Learning studies have provided tools
and techniques to face the challenge of the volcanic monitoring, by facilitating
a time-consuming and repetitive task such as, for instance, the identification
of categories and label assignment of registered seismic events. Applications of
methods such as Hidden Markov Models, Artificial Neural Networks, Support
Vector Machines, among others (see details in [10]), have shown satisfactory
results in the state-of-the-art. However, these have been achieved with basic
experimental configurations, that is, with small samples sizes taken in a short
period of volcanic activity, and without taking into account the chronological
order of the examples. Under this arrangement, it is difficult to identify drifts in
the volcanic dynamics and, consequently, the classification performance might
deteriorate once the learning model is deployed on-line.

This paper is aimed to demonstrate the existence of concept drifts in the
volcanic phenomenon, exhibited in its seismic recordings. We maintained the
chronological order of the examples to simulate an on-line situation. We use a
straightforward supervised method that evaluates the performance of a classifier
by its accuracy over time (called DDM). We also tested this hypothesis with-
out the use of class labels through a semi-parametric method of log-likelihood
(called SPLL). Additionally, we present a simple but direct method to identify
time periods in which there is a change of a so-called context (components of
an environment with a common dynamics), based on a sum of distances gener-
ated with the k nearest neighbor (k-NN) rule. As an illustrative case, this work
analyzes the alterations of the dynamics of Villarrica volcano (Chile) over time
from its seismic recordings.

2 Concept Drift

In non-stationary environments, the distribution that generates the data can
change over time, yielding a phenomenon known as concept drift. This scenario
requires a different treatment to the traditional one when facing learning tasks.
The formal definition of concept drift between times t0 and t1 is [5]:

∃x : p (x, y)t0 �= p (x, y)t1 (1)

where p (x, y)t0 and p (x, y)t1 are the joint distributions at times t0 and t1, respec-
tively; x is a vector of input data (an observation or example), and y is the target
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variable, that for our case is the vector of class labels. In general terms, there
is a concept drift if any component of this relation is altered, that is: (1) if the
class prior probability p(y) changes, or (2) if the class conditional probability
p(x|y) changes. In consequence, the prediction is affected because the posterior
probability of classes p(y|x) may change. In this case, the drift is considered as
real. Other kinds of concept drifts can be found in [5].

In recent years, the study of change detection in data streams has become
more extensive because of its potential applications in real scenarios such as net-
work traffic control, market analysis, fraud detection, medical condition monitor-
ing, among others [5]. This is because most of this contexts may be environments
where new sources of data generation arise, and where the new yielded data are
detected and react to changes.

3 Methods

3.1 The Drift Detection Method (DDM)

We use the general framework (instead of the experimental one) proposed in [4],
denominated drift detection method (DDM). The aim of the proposed method is
to detect new “contexts”, by understanding them as sequences of examples with
a stationary distribution. According to DDM, a change in the data distribution
occurs when the error increases until reaching a warning level at observation ni,
and a drift level at observation nj , where i < j, in a sequence of n observations.
For each point of the sequence, the error rate (Ei) is the probability of mis-
classification, with standard deviation defined as si =

√
Ei (1 − Ei) /i. Machine

Learning theory assumes that, if the data distribution is stationary, the error of
a learning model will reduce when the number of observations grows.

3.2 The Semi-parametric Log-Likelihood Detector (SPLL)

The semi-parametric log-likelihood detector (SPLL), proposed in [7], is a method
that comes from joining the benefits of two log-likelihood frameworks, namely,
the Kullback-Leibler (K-L) criterion and the Hotelling’s t2 test, but overcoming
the weaknesses of both criteria and with a greater computational simplicity.

SPLL assumes that all the data come from the same distribution, generated
from a Gaussian mixture p1(x), corresponding to the number of classes or cate-
gories (denoted as c), with the same covariance matrix. Two data windows are
defined, W1 and W2. In the first one, the parameters of the Gaussian mixture
are estimated, while in W2 the change detection criterion is derived using an
upper bound of the log-likelihood, which is one standard deviation of the mean
of the criterion value in case the two distributions are the same. The criterion is
calculated as follows:

SPLL (W1,W2) =
1

M2

∑

x∈W2

(x − μi∗)
T

Σ−1 (x − μi∗) (2)
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where i∗ = arg
c

min
i=1

{
(x − μi)

T
Σ−1 (x − μi)

}
is the index of the component with

the smallest squared Mahalanobis distance between x and its center, and M2 as
the amount of observations in W2.

3.3 Sum of the Distances to the Nearest Neighbor

We propose to represent the differences between observation sets (or batches)
through distances by using the k-NN rule with its simplest case: k = 1. We do
not developed the k-NN rule as far as the label assignment but only until the
storing of the distance measured between each observation of the test set and its
nearest neighbor, using the Euclidean distance (dL2) as metric. Within a more
formal definition, let xi be one observation from the training set and x′

j one
observation from the test set, with i = 1, ..., N and j = 1, ...,M .

The distance D1-NNj
defined for each x′

j is D1-NNj
= min

{
dL2

(
x′
j ,xi

)}
,

and finally, the batch distance is computed as: DBatch =
M∑

j=1

D1-NNj
.

In summary, for a batch formed by a sliding window of test data, if we add
those distances from each observation x′

j to the one responsible of assigning the
label, we can estimate how far the test points are from the training set.

4 Experimental Setup

4.1 Data Set Description

The data used for the experiments are composed by seismic signals from the
Villarrica volcano, Chile. This volcano has a seismological network with eight
stations which are monitored by Observatorio Volcanológico de Los Andes del
Sur (OVDAS), located in Temuco and belonging to the Servicio Nacional de
Geoloǵıa y Mineŕıa of Chile.

The OVDAS distinguishes 9 types of events, whose class labels are assigned
by trained analysts, guided by, among others, the visual definition of parame-
ters on the shape and spectral content of the signal, namely: Volcano-Tectonic
(VT), Long Period (LP), Tremor (TR), Hybrid (HB), Ice Quakes (IC), Very
Long Period (VLP), “Tornillos” (TO), Volcano Distal (DVT) and Tectonics-
Seismic events (non-volcanic earthquakes); see a typical description of them in
[9]. Three types of seismic events predominate in the seismic activity of Villarrica
volcano: LP, TR and VT events, which are considered the most characteristic
ones. Therefore, we considered these three classes of events for the experiments.
The employed dataset includes seismic signals recorded during 7.3 years (from
January 2010 to April 2017), with a total of 317, 648 labeled events, distributed
into the three classes as follows: LP − 251, 123; TR − 55, 271 and VT − 2, 081
records. Each class was divided into two groups, one used for training and the
other one for testing, depending on the time stamps of the seismic events, as
explained in Sect. 4.3.
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4.2 Data Processing

Pre-processing. In this work, only records from the vertical axis (Z) of the
reference station (triaxial broadband seismometer) assigned by the OVDAS were
considered due to its better signal/noise ratio (SNR), compared to the registers
from the other two horizontal axes (N, E). Additionally, a data cleansing was
carried out, excluding those registers with a low SNR or because the reference
station was out of service, remaining a total of 260, 365 records. Next, the records
were filtered with a Butterworth band-pass filter of order 10 between 0.5 and
15 Hz, because most of the meaningful energy of the events is in this frequency
band. After this pre-processing, the number of labeled events per class is: LP −
222, 441; TR − 37, 735 and VT − 189 records.

Feature Extraction. In this stage several parameters were computed which,
according to the literature, have shown to be beneficial for classification tasks.
They can be grouped into three families according to the information that they
represent:

1. Morphological and geophysical features: those that provide information about
the nature of the events; some of them are used by experts in manual clas-
sification: signal impulsiveness, event duration and number of zero crossings
(dominant frequency of the signal within the trigger time window) [13].

2. Spectral features: which are obtained by converting the seismic register (con-
sidered as a time series) into the frequency domain using the Fourier Trans-
form. They are: dominant frequency, mean of the 5 largest frequency peaks
and pitch [2]. Other ones were obtained from the spectrogram: frequency
range defined by the spectral contour, frequency of spectral contour centroid
and frequency of the energy maximum in the spectrogram [13].

3. Transformed feature spaces: These features are obtained through transforma-
tions of either the signal waveform or the characterized signal to a domain
different from the original one. The features obtained by transformations are:
Wavelet energy from level 1 to 7 [2], 5 linear prediction coefficients (LPCs)
[3] and 13 cepstral coefficients [6] (see equations of the features in the cited
references).

After dividing the whole set into training and test sets, the extracted features
were normalized by subtracting the mean (μ) and dividing by the standard
deviation (s) of the training set. Next, μ and s were used to normalize the test
set. The characterized dataset was formed storing data in a matrix of 260, 365
rows (characterized events) and 34 columns (features).

Feature Selection. In order to find a subset of relevant features that provide
greater discrimination in the classification task, we chose a traditional filter-
type method called Relief, which uses a criterion independent from the learning
algorithm, and provides a feature ranking according to their estimated relevance.
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The Relief algorithm defines the quality of a feature (as strongly relevant)
according to how well it distinguishes between two examples of different classes
and, based on this criterion, it assigns the weight for each feature. However,
the original version of Relief is limited because it cannot deal with incomplete
data and only works for two-class problems. Its extended version, called ReliefF,
is able to solve the aforementioned problems and other additional ones. The
ReliefF algorithm searches for a nearest neighbor for each class and finds the
feature weights penalizing the ones that give different values to neighbors of the
same class, and rewards the features that give different values to neighbors of
different classes (see more details in [12]).

Applying the ReliefF algorithm, the initial set of 34 features was reduced to
4, namely: mean of the 5 largest frequency peaks, event duration and wavelet
energy at the levels 7 and 2.

4.3 Experiments

Three different methods were applied to demonstrate that the volcanic phe-
nomenon is a changing environment where there are concept drifts, which are
observable in the evolution of the seismic data over time.

Definition of Experimental Periods. Authors in geophysics have indicated
that alterations in the records of volcanic signals, in relation to other indica-
tors such as geochemical or geodesic parameters (among others), contribute to
determine a possible instability period in the dynamics of a volcano, or are
even precursors of eruptions [1,15]. In the case of volcanic seismology, the peri-
ods of variations in the internal dynamics of a volcano could generate underly-
ing changes, which are evident in indicators such as changes in the number of
recorded events, changes in the signal signatures and their intrinsic components
(usually the frequency ones), among others [1]. Since the aim of this work is to
identify a concept drift in volcanic phenomenon, it was necessary to acquire a
priori knowledge about the dynamics of volcanic activity through the records of
seismic signals in order to recognize such periods in time series processed with
change detection algorithms.

Since the last major eruptions (1984–1985 and 1991 [16]), Villarrica volcano
has established a “background” seismic activity, which, in several occasions and
for short periods, has increased its levels, but without necessarily ending in
an eruptive crisis (the most recent eruption was on March 3, 2015). Such a
background activity is permanently studied by the OVDAS. The seismic activ-
ity is usually measured by volcanological observatories in terms of Real-Time
Seismic Amplitude Measurements (RSAM), Spectral Seismic Amplitude Mea-
surement (SSAM), Reduced Desplacement (RD), Local Magnitude (ML), and
number/energy of the events [1]. Since the volcanic activity is dominated by fluid
activity (LP and TR), a baseline level measured with the RD could be considered
when it is below 10 cm2 and RSAM varies between 8 and 20 units [14].



Concept Drift in Seismic-Volcanic Signals 199

According to the analysis carried out by the OVDAS experts about the seis-
mic activity recorded in the Villarrica volcano from 2010 onwards, periods of vol-
canic stability and instability were defined in coherence with a study of records
obtained in the geochemical area. These definitions were based on the congru-
ence of either low or high levels of parameters such as number of daily events
recorded per class, RSAM, SSAM and RD −in seismology− and levels of SO2

−in geochemistry. Thus, the defined periods were:

– Stability: January 1, 2013 to December 31, 2013 (hereinafter referred to as
the “Stability Period” frame (SP frame)), with 13, 857 examples, from which
9, 762 are LP, 4, 065 are TR and 30 are VT.

– Instability: June 1, 2014 to April 21, 2017 (hereinafter referred to as the
“Instability Period” frame (IP frame)), with 213, 301 examples, from which
195, 941 are LP, 17, 297 are TR and 63 are VT.

Experiment 1. In Machine Learning, concept drifts are often managed either
with weighted examples according to their age or with sliding time windows; in
this case, we use the last option, with windows W of fixed size. The experimental
procedure (see Sect. 3.1) was developed as in [4] and is summarized as follows:

1. As learning model, we use the k-NN classifier, where the optimal number
of neighbors was defined heuristically, testing with k = {1, 3, 5, 7, 9, 11} and
keeping the W size fixed.

2. The examples were chronologically ordered to emulate the data stream con-
text where new examples arrive to be processed consecutively. The obser-
vations within the IP frame were arranged as the training set, and those
belonging to the SP frame as test set.

3. The learning model is generated from training data, and the validation is
carried out n times with Wn sliding windows that move over the IP frame
with an overlap of α% and a window size M , where, n = {1, 2, 3, ..., N}, with
N equals to the number of times that the window W of size M fits within
the IP frame. For this experiment, we iteratively tested with α = {20, 50, 80}
and M = {100, 200, 300, ..., NSP }, where NSP is the maximum number of
examples belonging to the SP frame that fit in a single window.

Experiment 2. This test demonstrates how the seismic data of volcanic origin
suffer changes in their distribution when they evolve over time, moving from a
period of stable activity to a period of volcanic crisis that ended up with an
eruption. This test is carried out through the SPLL criterion proposed in [7].

The procedure to implement this experiment was the following:

1. Given two (2) sliding data windows W1 and W2, a clustering is carried out on
W1 into cl clusters applying the k-Means algorithm, with k = 3 as suggested
in [8].

2. A weighted intra-cluster covariance matrix S is calculated.
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3. The squared Mahalanobis distance is computed for each example in W2 with
respect to the cluster centroids.

4. Calculate SPLL(W1,W2), by using Eq. 2, as the mean of the minimum dis-
tances computed previously.

5. Swap windows W1 and W2 and repeat from step 1 to 4: SPLL(W2,W1).
6. Take the maximum of the two values calculated in steps 4 and 5, and find

out its chi-squared distribution to define the p-value.

The following considerations were taken into account for executing the exper-
iment:

– Windows W1 and W2 were defined under the assumption that each one
comes from two different probability mass functions. For this purpose, W2
was located at the beginning of the IP frame, and slided with an overlap α%.
W1 was set to a fixed single window, centered within the SP frame. We ran
experiments with α = {20, 50, 80}.

– The size of the windows is a sensitive parameter in the performance of any
change detection algorithm [4,7], so we tested exhaustively with different
sizes. Proportional sizes were established for W1 and W2 windows as sug-
gested in [7] and [8], respectively: |W1| = |W2| and |W1| = 2 ∗ |W2|.

– We iteratively tried with different window sizes, M = {100, 200, 300, ..., NSP },
where NSP is the maximum number of examples belonging to the SP frame
that fit in a single window. We kept cl = 3 for the number of clusters, as
recommended in [8].

Experiment 3. With this experiment we intend to show the temporal changes
that can occur in the data of a recent period with respect to a previous one,
making use of a distance (see Sect. 3.3). Given a window of previously unseen
data, W2, which arrives in chronological order (test set), a sum of the distances
is done from each of them to the prototype responsible for the label assignment
in a 1-NN rule. This will serve as an estimation of how much the test data differ
(proportional to how far they are) from the prototypes belonging to W1 (PW1),
where W1 is a data window assumed coming from the same distribution, and
i = {1, 2, 3, ..., |W1|}.

For the execution of this experiment, the following considerations were taken
into account:

1. As W1, a fixed window consisting of the data located in the SP frame was
defined. W2 is a sliding window that moves across the IP frame, according
to an overlap of α%. Here we tested with α = {20, 50, 80}.

2. Calculate the distance from each point of W2 to its nearest neighbor, using
the Euclidean distance as a metric: D1-NN = min (dL2(XW2, PW1)).

3. A representative value for each sliding window W2 is obtained from the sum
of all the distances calculated for each (XW2).
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5 Results and Discussion

In this section, we evaluate the dynamics of the seismic volcanic activity in
three different ways in order to determine whether or not there is a concept drift
in this environment and, therefore, consider the need for a change detection
stage in a classification task. It is not the aim of this article to compare the
results for defining the best method for change detection, nor distinguishing
between gradual or abrupt changes. The objective is just to obtain evidence of
the presence of factors that generate changes in the volcano dynamics.

In order to validate the method used in the first experiment, we employed
13, 857 chronologically ordered observations to train the model, which belong to
a period of “quietness” in the volcanic activity, and tested with 4, 625 different
test sets with 100 observations (M = 100 was the chosen window size because
it showed the best resolution in the time), which resulted in sliding the time
window with an overlap of α = 50%, that is, forgetting 50 observations for each
new test set and including 50 new ones, also chronologically ordered. After trying
with different values for k in the k-NN rule, we saw that the performance of the
classifier did not show much difference. Results for k = 1 are shown below.

Figure 1 shows the deterioration of the classifier performance when the data
stream grows and facing an atypical period that produces data generated by a
different probability density function. The graph illustrates the predictive error
curve pointing out episodes of importance in volcano activity. It is observed how
the misclassification shows a significant increase centered between January and
May of 2015, period in which the last eruptive crisis took place, which led to the
eruption of March 3 of the same year. The error rate of the months of “quietness”
of the volcanic activity rose from a maximum of 4% to 27% during the months
that the critical phase occurred. Between June and August 2014 there was an
important rise of the LP type seismicity (these annotations are documented in
reports generated by the OVDAS found in [14]); this period requires a further
examination. The last statements are based on the statistical theory which indi-
cates that, if the class distribution is stationary, then the error of the decision
model will reduce while the examples increase [4]. Therefore, a significant rise
of the error rate of the learning algorithm performance suggests a change in the
class distribution and that, consequently, the decision model used has become
obsolete. Then, this experiment shows the importance of adding a detection
change stage and making a concept drift handling within a classification task.

The subsequent two experiments show that such a change in the volcanic
seismology dynamics can be dealt through unsupervised ways. According to
the method proposed by Kuncheva (Sect. 3.2), a too large value of the SPLL
criterion will indicate a change; however, she justifies that setting up a threshold
for defining a change or no change is an aside problem not analyzed in her work.
The author points out that such a threshold may be specific for each kind of
data, and can be tuned according to the desired level of false and true positives.

According to the latest, if we look at the values of the blue line (and more
specifically the red line that represents an average envelope of the blue one),
we can notice that Fig. 2 shows changes in the region of the graph between
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Fig. 1. Deterioration of the classifier accuracy going through different periods of vol-
cano activity. Level of alerts are also indicated (from highest to lowest: red, orange,
yellow, green [14])

Fig. 2. Definition of a changing environment according to the SPLL criterion on the
dynamics of the Villarrica volcano. (Color figure online)

January and May 2015, which coincides with those shown in Fig. 1. The black line
indicates the change/no-change criterion. Since we did not make a fine-tuning
of the threshold, an alternating variation of such a criterion will be understood
as a no change or a small and little significant change.
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Fig. 3. Identification of significant changes in volcanic activity through the sum of
1-NN distances.

Regarding the third experiment, as shown in Fig. 3, the sum of the distances
had the higher values in the region between February and May 2015, in par-
ticular, one of them coincides with the eruptive crisis. This is explained as a
movement of the points of such period to a region of lower density, which would
increase the distance (it can be understood as a mismatch between the compared
points) between the events that represents the “future” dynamics of the volcano
with respect to the prototypes of the past that within the 1-NN rule would assign
the label. If there are changes, then it is presumed that the assignment of the
label will be less reliable, and that a decrease in the confidence can be indirectly
measured through the distance from the prototype that assigns the label to the
test point.

6 Conclusion

Several techniques for the automatic analysis of seismic-volcanic signals have
been proposed but they are often limited because of having been designed and
trained under assumptions of unchanging data distribution over time. Within a
volcanic environment, it was demonstrated how a learning model can increase its
error rate up to 23% when the volcano faces a different dynamics, as it happens in
phases of eruptive crisis. Additionally, it was demonstrated by two unsupervised
methods (one of them very simple and straightforward, proposed by us) that, by
setting thresholds, concept drifts can be identified in certain periods that cause
changes in contexts. As future work, it is convenient to make a detailed analysis
of the deterioration of classification performance by class in order to determine
the contributions of each class. Also, the possibilities are open for verifying the



204 P. A. Castro-Cabrera et al.

improvement of the performance of an automatic system for identifying seismic-
volcanic events. This would be possible by adding a stage of change detection
which feedbacks the learning model.
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