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Abstract. The performance of learning algorithms relies on factors such as the
training strategy, the parameter tuning approach, and data complexity; in this
scenario, extracted features play a fundamental role. Since not all the features
maintain useful information, they can add noise, thus decreasing the perfor-
mance of the algorithms. To address this issue, a variety of techniques such as
feature ex-traction, feature engineering and feature selection have been devel-
oped, most of which fall into the unsupervised learning category. This study
explores the generation of such features, using a set of k encoder layers, which
are used to produce a low dimensional feature set F. The encoder layers were
trained using a two-layer depth sparse autoencoder model, where PCA was used
to estimate the right number of hidden units in the first layer. Then, a set of four
algorithms, which belong to the gradient boosting and ensemble families were
trained using the generated features. Finally, a performance comparison, using
the encoder features against the original features was made. The results show
that by using the reduced features it is possible to achieve equal or better results.
Also, the approach improves more with highly imbalanced data sets.
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1 Introduction

In a supervised learning setting, algorithms use a set of feature vectors xi to predict a set
of targets yi, which can be discrete (classification) or continuous (regression). Typically
xi is grouped into a design matrix X(m, n) where m represents the total observations and
n the number of features. Algorithms use the learned features to predict new values ŷ
from unseen data. In this context, features play an important role in the algorithm’s
performance, due to the ability to increase or decrease it. Thus, learning the appropriate
set of features becomes a crucial task in the majority of practical applications.
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Therefore, it is necessary to apply some techniques or transformations to the original
features in order to improve them. Such techniques are usually grouped into feature
engineering, feature extraction and feature selection. Although certain debate exists
about the formalism of feature engineering, there is no doubt of its effectiveness as
observed in many machine learning competitions. An example of this is described in
[1], where a set of diverse features were generated in order to improve the final model
score.

Feature engineering can be defined as an iterative process, where a set of new
features are generated using a set of transformations, which can be very simple, like
obtaining the mean, or could involve a more complex set of calculations. Usually the
quality of the obtained features is related to the practitioner’s prior knowledge over the
problem domain. The lack of this prior knowledge represents an issue in the feature
generation process. To address this problem, different techniques have been proposed
to generate features in an automatic fashion [2, 3]. In this context, algorithms are
typically used to generate and evaluate the new features.

Some of those techniques involve the application of unsupervised algorithms such
as autoencoders, which are a type of unsupervised neural network. They were intro-
duced by Hinton [4] in 1986. Since then, many variants have been proposed, including
sparse autoencoders [5], variational autoencoders [6] and denoising autoencoders [7].
These architectures introduce different variations to the original autoencoder model, but
they are generally composed of two types of layers, namely encoder and decoder. The
encoder has the function to learn a compress representation of the data. Typically, the
encoder has k units such as k < n, where n represents the number of features in the data.
This ensures that the encoder learn a compact representation of the data, similarly to
what can be achieved with PCA. Meanwhile the decoder layer reconstructs the rep-
resentation learned by the encoder to its original form [8].

The complexity of the autoencoders to generate features are related to factors such
as the type of architecture used, the parameter tuning strategy, the preprocessing
techniques and the data complexity. In this context, the encoder units are learning a
certain type of fix features A 2 H, where H represents the total feature space.
Therefore, it is possible to assume that there are other feature spaces F that could also
be explored as features by introducing variations to the number of units in the encoder
layer. This represents the main topic of this study. But instead of using the common
reconstructions from the decoder layer, the encoder layer is being used to learn and
generate new features from the original data, using a different subset of encoder units.
Using these new representations, a set of learning algorithms which belong to the
gradient boosting and ensemble families are being trained. The results show that using
this approach enables to explore other feature spaces F. Also, the new features are less
dimensional than the original ones, obtaining similar or better auc scores, even in the
presence of highly imbalanced data sets.
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2 Main Idea and Motivation

Autoencoders are applied in diverse application domains. For example, due to their
innate capability to maintain the local variability in lower dimensions, they can be used
in feature embeddings [9]. In feature extraction tasks, they are capable of creating new
features, which can be used as training data for classifiers [10]. Also, they are very
efficient when applied to extract features from high dimensional data [11]. Another
interesting application of autoencoders is related to data augmentation [12]. Finally,
autoencoders can be used to automatize the feature generation process [13]. In all the
applications discussed, the encoder units are capable of generating a new rich set of
representations.

However, these representations correspond to a fix number of units in the encoder
layer. Moreover, they are the result of a very careful and laborious tuning process,
which correspond to the autoencoder architecture design. But if a different number of
units were used in the encoder layer, then the learned representations would signifi-
cantly change. In fact, a totally new set of features would be obtained. This makes us
asking, which set of obtained features are better [14]. Using this fact, it is possible to
hypothesize the existence of a more general feature space H. In this context, the
encoder layer is learning an optimal subset A 2 H.

Therefore, if variations are made to the encoder layer, then it is possible to obtain a
new set of features F. However, there are diverse types of variations and criteria that
can be implemented. For example, in [15], from a set of hidden layers, only the highest
activations were kept. Also, multiple layers and other algorithms can be implemented
to learn features as shown in [16]. Finally, it is also possible to introduce kernel
techniques to control the learned representations [17]. However, in this study, varia-
tions to the number of encoder units are instead been made, resulting in different k-
encoder layers.

However, in order to explore F a set of assumptions has to be made: (i) F must not
be an infinite space, and (ii) there has to be a reasonable number of original n features
to generate F. It is also important to pay attention to the autoencoder architecture used
to explore F. For example, if a single encoder layer is used, it would be equivalent to a
PCA reduction. Therefore, it is necessary that the autoencoder will be at least two
layers in depth to guarantee a set of more complex features. This idea is illustrated in
Fig. 1.

Also, the defined autoencoder in Fig. 1 must maintain sparsity in the learned
representations. Therefore, a series of L1 and L2 regularizations, which can guarantee
these criteria are been applied to the autoencoder layers.

Once the k-encoders learn F, it is possible to transform the original data using the
learned representations from the k-encoders. Section 3 will provide a detailed approach
describing the implementation of the main idea proposed here.
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3 Design Approach

3.1 Base Sparse Autoencoder

In order to consider the approach described in Sect. 2, a base sparse autoencoder [5] Ba

will be implemented. This sparse autoencoder Ba will be used to train the different k-
encoder layers. Since the architecture defined in Fig. 1 is composed by a two-layer
depth sparse autoencoder, it is necessary to determine the number of units in the
respective layers. Let be p the number of units in the first layer and k the number of
units in the k-encoder layers. Then the number of hidden units p can be defined as
follows:

p ¼ Pn
i¼1

cvar ið Þ [ e ð1Þ

Where the total hidden units p is determined by the total principal components ci
obtained from the data set Xi, which maintain a variance greater than �. In this context, �
becomes a parameter that must be tuned. We choose to keep � ¼ 0:9. This means that
the total number of units p will be equivalent to the total components that maintain a
variance equal to 90%. Using (1) also acts as a filter to discard features that could
represent noise or are irrelevant.

Once p is defined, it is possible to determine the total number of k-encoders units as
follows:

k ¼ 1; . . .; p� 1f g ð2Þ

Using (2), k is being constrained to explore a representative finite space from
F. Meanwhile (1) is removing unnecessary features from Xi. To guarantee the sparsity
in Ba, a set of L1 and L2 regularizations will be applied to the layers. The activation

Fig. 1. Feature space F generated by the k different encoder layers.
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functions used are: relu for the first layer, tanh for the encoder layer, relu for the first
layer of the decoder and finally sigmoid for the output layer. Also, the weights are
being initialized using a normal glorot distribution (3). Finally, to guarantee the
reconstruction from the original Xi, KL divergence (4) is used as a loss function.

stdev ¼
ffiffiffiffiffiffiffiffiffiffi

2
ui þ uo

q
ð3Þ

KL q jj pð Þ ¼ P
d
q dð Þ � log q dð Þ

p dð Þ
� �

ð4Þ

It is important to note that the number of k-encoders to be generated will be
restricted by three factors: (i) the total number of features n in Xi, (ii) the number of
units p obtained applying (1) on Xi and (iii) the number of k encoder units generated
from (2). This means that per each data set Xi a set of k-encoder layers will be
generated, varying only in the number of units k. Using the definition of Ba, the
architecture can be summarized in Fig. 2.

Libraries scikit-learn [18] and Keras [19] were used to implement Ba.

3.2 Data Sets

In order to test the proposed approach, library PMLB [20] was used. This library
contains a well-known easily accessible benchmark data set repository. The repository
can be used for regression and classification tasks. In this experiment, the data sets were
restricted to only binary classification tasks. It also included both balanced and
imbalanced data sets.

Fig. 2. Architecture representation of the Ba sparse autoencoder.
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From the repository, a total of 13 data sets were selected. Each data set was
partitioned into training (80%), development (10%) and test (10%), respectively. This
partition was used during training both the sparse autoencoders Ba and the algorithms.
Also, to guarantee the reproducibility of the results, a constant random seed was
maintained in each split during all the experiment. Table 1 shows the data sets
alongside their respectively properties.

3.3 Trained Algorithms

Algorithms trained with the k-encoder representations belong to the gradient boosting
and ensemble families. These algorithms were LightGBM [21] and CatBoost [22],
which apply gradient boosting techniques to grow trees, and Ada Boost [23] and
Random Forest [24], which combine a set of week learners in order to boost their
performance. To ensure that the algorithm’s parameter do not influence the results, no
parameter tuning was implemented. Therefore, their default configuration with a
constant random seed was used during training with the k-encoder features and with the
original ones.

3.4 Training Methodology

Using the definition described in (1) and (2) the right number of p units and k-encoder
layers were determined for each data set Xi. Then each k-encoder layer was trained
using a sparse architecture. Once the training was complete, the different k-encoders
were used to transform the original features into their new feature representation F for
each Xi. This process was carried out a total of ten times per each data set Xi. Then both
the ensemble and gradient boosting algorithms were trained using the generated

Table 1. Data sets description.

Data Sets # Features # Instances Class balance (%)
Positive Negative

mushroom 22 8124 48.20 51.80
twonorm 20 7400 49.96 50.04
ring 20 7400 50.49 49.51
agaricus-lepiota 22 8145 48.09 51.91
parity5+5 10 1124 50.44 49.56
threeOf9 9 512 46.48 53.52
monk1 6 556 50.00 50.00
vote 16 435 38.62 61.38
spect 22 267 79.40 20.60
tic-tac-toe 9 958 65.34 34.66
flare 10 1066 17.07 82.93
phoneme 5 5404 29.35 70.65
xd6 9 973 33.09 66.91

164 L. Aguilar and L. A. Aguilar



features and the original ones. Also, the auc score was averaged for the transformed test
features per each data set Xi. Finally, the hardware used was an Intel core i5-6200U
CPU – 2.30 GHz laptop with 8 GB RAM and running Ubuntu 16.04 LTS 64-bit.

4 Results

The experiment was performed ten times on the data sets. The table below shows the
average auc test scores obtained by each algorithm, alongside with the number of
p units and the best encoder layer (bk).

The results in Table 2 indicate that each algorithm obtain their maximum auc score
from different k-encoders. Also, LightGBM and CatBoost do not present much
improvement from the k-encoder representation. In fact, in most cases the auc scores
are equal or slightly better. However, it must be noted that these results are achieved
using just a smaller number of features than the original ones, which indicates that the
obtained features are relevant. On the other hand, AdaBoost and Random Forest have
received a more significant improvement over their auc scores, especially Ada Boost,
which achieves an average auc score greater than the normal Ada Boost model. Also,
there are two remarkable cases where all the algorithms benefit greatly from the
encoder representations: the spect and flare data sets.

When analyzing the impact of the different k-encoders over the auc performance,
two cases must be noted. First, there is a point where the maximum auc score is
achieved. Then, when more k-encoders units are added, the performance begins to

Table 2. ROC scores from transformed test data using the best encoder layers (bk).

Data sets p bk Ada Boost bk Random
forest

bk LightGBM bk CatBoost

Enc Norm Enc Norm Enc Norm Enc Norm

mushroom 13 12 0.97 1.00 7 1.00 1.00 9 1.00 1.00 8 1.00 1.00
twonorm 18 16 0.97 0.97 17 0.96 0.95 16 0.97 0.98 16 0.98 0.98
ring 18 17 0.90 0.96 12 0.89 0.93 16 0.92 0.97 16 0.91 0.97
agaricus-lepiota 13 11 0.95 1.00 9 1.00 1.00 11 1.00 1.00 9 1.00 1.00
parity5+5 9 6 0.65 0.43 8 0.72 0.57 6 0.69 1.00 6 0.68 1.00
threeOf9 9 5 0.82 0.81 8 0.81 0.96 5 0.84 1.00 7 0.81 1.00
monk1 6 5 0.75 0.70 3 0.79 0.93 5 0.88 1.00 5 0.86 1.00
vote 10 2 1.00 1.00 8 1.00 1.00 9 1.00 1.00 6 1.00 1.00
spect 14 8 0.78 0.53 1 0.75 0.68 8 0.73 0.58 3 0.70 0.68
tic-tac-toe 8 6 0.69 0.79 5 0.70 0.90 4 0.69 1.00 3 0.68 1.00
flare 7 5 0.62 0.55 1 0.62 0.59 2 0.64 0.59 5 0.65 0.59
phoneme 4 1 0.73 0.71 3 0.71 0.85 3 0.71 0.85 1 0.71 0.83
xd6 9 4 0.88 0.76 7 0.94 1.00 8 0.95 1.00 8 0.95 1.00
Total avg 0.82 0.79 0.85 0.87 0.85 0.92 0.84 0.93
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gradually decrease or oscillate. This pattern is more predominant with the spect and
flare data sets, as observed in Fig. 3. However, this is totally the opposite with other
data sets, where it seems that adding more k-encoder units improve the auc perfor-
mance as seen in Fig. 4. Taking this into consideration, it is necessary to train all the k-
encoders, in order to find a suitable set of features for a particular learning algorithm.

Fig. 3. Trained k-encoders on spect (left) and flare (right) data sets.

Fig. 4. Trained k-encoders on mushroom (left) and ring (right) data sets.

Table 3. Training time in balanced data sets.

Data sets mushroom twonorm ring agaricus-
lepiota

parity5
+5

threeOf9 monk1

Total features 22 20 20 22 10 9 6
Training
instances

6499 5920 5920 6516 899 409 444

K-encoders
trained

12 17 17 12 8 8 5

Training time (s) 39.44 66.20 84.73 77.66 33.38 33.73 19.42
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Another factor to consider is the time taken to train the k – encoders. This is
illustrated in Tables 3 and 4 for the balanced and imbalanced data sets. In both cases,
the k-encoders also reflect the new low dimensionally obtained features. Also,
observing the results in both tables, the data sets which take more time to train the k-
encoders are usually the ones that have more features. The number of training instances
also have impact on the training time.

5 Conclusions

The proposed approach allows us to observe how the different k-encoder features F
impacted the performance of the gradient boosting and ensemble algorithms. Also, the
proposed approach improved greatly the performance in two highly imbalanced data
sets, such as flare and spect. The proposed approach also allowed us to obtain better
results using less dimensions than the original features.

It was also observed that in some cases, using a reduced number of k-encoders was
enough to generate a good set of features F. At the same time, there were cases in
which adding more k-encoders further improved the performance. Therefore, both
cases are strongly related to the particular characteristics of the data sets. However, this
approach should be able to generate useful features in the presence of balanced and
imbalanced data sets.

When analyzing the average performance obtained by the algorithms, Ada Boost
was the one which beneficiated the most of the proposed approach. In fact, a normal
Ada model only obtains a 79% average auc score, in contrast with the 82% using the
proposed approach.

It is also important to note that each algorithm selected a different k-encoder, which
means that each k-encoder feature will have a different relevance for each algorithm.
Therefore, to put this approach into practice, all the k-encoders must be trained in order
to find the best representation suited for a particular algorithm.

During the experiments a limitation in the proposed approach for the k-encoder
generation was found. If the number of units p for a particular data set are equal to 1,
then (2) will become 0, thus, the k-encoders cannot be generated. Finally, it was
observed that the addition of regularization techniques such as L1 and L2 to the layers
improved significantly the results.

Table 4. Training time in imbalanced data sets.

Data sets vote spect tic-tac-toe flare phoneme xd6

Total features 16 22 9 10 5 9
Training instances 348 213 766 852 4323 778
K-encoders trained 9 13 7 6 3 8
Training time (s) 36.97 57.21 37.23 36.03 30.94 51.21
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