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Chapter 1
A Multi-objective Simulation-Based 
Optimization Approach Applied 
to Material Handling System

Chris S. K. Leung and Henry Y. K. Lau

1.1  Introduction

Simulation modelling is indeed a powerful industrial engineering technique for 
studying the functioning, performance and operation of complex systems. As such, 
it becomes a useful tool for decision makers in various industries. Unlike a mathe-
matical model, simulation can handle a variety of complex factors that are com-
monly found in real world. More importantly, the accuracy of the performance 
measures of the complex systems obtained from simulation models is normally 
higher than that of analytical methods because analytical methods in general involve 
making unrealistic assumptions for the systems or problems under investigation [1].

In real world, many problems no matter whether they are in the domain of engi-
neering, finance, business or science can be formulated into different forms of opti-
mization problems. These problems are characterized by the requirement of finding 
the best possible solution(s) that fulfils certain criteria. Most of the real-world opti-
mization problems normally involve multiple objectives rather than one single 
objective, in which some objectives conflict with others. However, using simulation 
modelling alone cannot provide us optimal solutions to these optimization prob-
lems. Therefore, an optimization algorithm is needed to guide the search process to 
the optimal solutions. The study reported in this paper demonstrates how a complex 
real-life multi-objective optimization problem in distribution industry where mate-
rial handling system (MHS) is involved can be solved by a simulation-based optimi-
zation approach that comprises a simulation tool together with a hybrid AIS-based 
algorithm.
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1.2  Literature Review

 Optimization of MHS via Simulation

In the literature, there are a number of studies that dedicatedly contribute to the 
optimization of MHS via simulation. For example, Elahi et  al. [2] studied the 
General Motors paint shop conveyor system by developing a simulation model. The 
model works firmly with a decision optimizer incorporating integer linear program-
ming model and dynamic programming model at critical points such as the begin-
ning and end of buffer conveyors in the system in order to regroup batches of 
different colour cars. Leung and Lau [3] proposed a simulation-based optimization 
framework that combines the processes of optimization and simulation for solving 
typical linear optimization problems related to logistics and production operation. 
The framework integrates an AIS-based algorithm with a simulation tool for the 
evaluation of optimal system parameters and to reveal the performance of systems. 
Subulan and Cakmakci [4] made use of ARENA simulation program and Taguchi 
experimental design method to build a solution model for effectively designing 
material handling–transfer systems and optimizing the performance of automation 
technologies in automobile industry. Chang et al. [5] proposed a framework that 
integrates simulation optimization and data envelopment analysis techniques to find 
out the optimal vehicle fleet size for a multi-objective problem in automated mate-
rial handling systems. Lin and Huang [6] extended the optimal computing budget 
allocation by adding genetic algorithm together with the help of a simulation model 
for optimizing the vehicle allocation for the automated material handling system in 
semiconductor industry.

 Multi-objective Optimization Problems

Finding the solutions to the multi-objective optimization problems has long been a 
challenge to researchers because both the Pareto optimality and the diversity of the 
generated solutions must be simultaneously addressed. Unlike solutions in single 
objective optimization problems, which can easily be compared according to the 
value of the objective function, solutions in multi-objective problems cannot directly 
be compared with each other unless employing classical techniques, such as 
weighted objective aggregation methods and constraint approaches. Nevertheless, 
many real-world problems involving complex and nonlinear properties do not read-
ily fit into these classical approaches [7]. Therefore, modern evolutionary algo-
rithms such as genetic algorithm (GA), evolutionary strategy (ES), artificial immune 
systems (AIS), etc. incorporating the concept of Pareto optimality are proposed and 
become popular. These methods have been proved to be effective for solving multi- 
objective optimization problems by finding the approximated Pareto front, for 
example, NSGA-II [8], SPEA2 [9], micro-GA [10], omni-aiNet [11], NNIA [12], 
omni-AIOS [13], etc.
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1.3  Multi-objective Simulation-Based Optimization 
Algorithm

This optimization approach adopted in this paper is a modified version of Leung and 
Lau’s work [3], which incorporates a multi-objective optimization algorithm instead 
of a single objective algorithm. The multi-objective algorithm is named Suppression- 
Controlled Multi-objective Immune Algorithm (SCMIA) proposed by Leung and 
Lau [14]. The fundamental of the algorithm was inspired from mechanisms of bio-
logical immune system and biological evolution. It was developed by hybridizing 
the clonal selection principle and immune network theory with the idea from GA. 
The algorithm makes use of the Pareto dominance for fitness assignment and some 
common AIS-based algorithm’s features for guiding the search process, such as 
clonal selection and expansion, affinity maturation, antibody concentration, meta-
dynamics and immune memory. The interesting feature of this algorithm is the 
introduction of an innovative suppression operator, which is used to help eliminate 
similar antibodies, hence significantly minimizing the number of unnecessary 
searches and increasing the population diversity. The similarity among antibodies is 
determined in terms of both the objective space and the decision variable space to 
ensure that only similar antibodies are eliminated in the suppression operation. 
Moreover, a modified crossover operator originated from the biological evolution 
was also developed to help further enhance the diversity of the clone population and 
the convergence of the algorithm because some good genes from the elite parents 
can be passed to the offspring for facilitating the search of optimal solutions; other-
wise it may take a longer time to converge towards the Pareto front [15] especially 
in simulation-based optimization context.

The algorithm comprises five immune operators, cloning operator, hypermuta-
tion operator, suppression operator, selection and receptor editing operator and 
memory updating operator, and one genetic operator, crossover operator. Each of 
them takes responsibility for different tasks for the purpose of finding uniformly 
distributed Pareto front. The cloning operator generates a number of copies to 
explore the solution space where better individuals are given more chances for 
being cloned. The hypermutation operator works on the clones to bring variation to 
the clone population, hoping for producing better offspring and increasing popula-
tion diversity. The crossover operator is used to enhance the diversity of the clone 
population and the convergence of the algorithm. The suppression operator works 
on the whole population including the mutated clones and parent cells to eliminate 
similar individuals in order to avoid a particular search space being overexploited. 
The selection and receptor editing operator works like a director to guide the search 
towards the promising regions of a given fitness landscape by selecting the best 
antibodies to form the next generation and allowing the genes of the less fit to be 
randomly restructured for changing their specificity through the receptor editing 
process. The memory updating operator works as an elitist mechanism for helping 
preserve the best solutions that represent the Pareto front found over the search 
process. Both the selection and receptor editing operator and memory updating 
operator can help avoid the problem of losing good solutions during the optimiza-
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tion process due to random effects. The algorithm is conducted by applying these 
heuristic and stochastic operators on the antibody population for balancing both the 
local and global search capabilities. For the details of this hybrid AIS-based algo-
rithm, one can refer to [14].

1.4  Simulation-Based Optimization Study

In this study, two experiments based on the complex real-life multi-objective opti-
mization problem were conducted to evaluate the performance and capability of the 
optimization approach. All these experiments were conducted using a computer 
with Xeon E5-2620 2 GHz CPU with 2 GB RAM, and the optimization algorithm 
was implemented with Excel VBA, whereas the simulation models were developed 
by using the FlexSim simulation tool [16].

 Performance Metrics

In this study, two performance metrics, namely, error ratio (ER) [17] and spacing 
(S) [18], were adopted to examine the quality of solution set in terms of the optimal-
ity and diversity. However, ER was modified by using reference Pareto front PFref 
instead of true Pareto front PFtrue for computing ER. This was because the PFtrue 
could hardly be found in simulation-based optimization, and hence we used the 
reference Pareto front, that is, the best approximation of the true Pareto front “PFref”, 
for measuring the optimality of each solution set instead. The PFref was found by 
using all of the algorithms used in this research. To achieve this, a Pareto front for 
each algorithm was firstly generated by running 100 iterations over 20 trials, and 
then, all the fronts obtained by all the trials of all the compared algorithms were 
merged together to form a reference Pareto front.

 Experimental Setup

The distribution operation of the material handling system (MHS) implemented at 
the distribution centre (DC) of SF Express (Hong Kong) Limited was studied 
through the simulation-based optimization approach. Its service network covers 
almost all areas of Hong Kong, which is mainly served by the DC located in Tin 
Shui Wai (TSW) in northern New Territories (Fig. 1.1). Its service stores are located 
in 30 areas of Hong Kong [19].

In this study, we focus on the physical goods flow at the DC, where the items are 
imported from China and then distributed to all parts of Hong Kong. At the DC, the 
items received at inbound docks are directly transferred to outbound docks and then 
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shipped to the final destinations with little material handling in between, such as 
deconsolidation and sortation. This approach is called cross-docking. To implement 
cross-docking effectively and efficiently, timely distribution of freight and better 
synchronization of all inbound and outbound shipments are required by making use 
of information systems and advanced automated MHS, such as automated conveyor 
system, warehouse management system, real-time material identification and track-
ing system (e.g. barcode).

Current Physical Layout and Labour Deployment of the MHS The MHS is a 
circular shaped automated conveyor system, which comprises a number of intercon-
nected conveyor units. The layout of the MHS is depicted in Fig. 1.2. Each conveyor 
unit has a programmable logic controller to control the movement (such as speed, 
direction, etc.) of the items being put on it and to communicate with the central 
computer. The conveyor system has 4 entrances connecting to 4 inbound docks and 
16 exits connecting 30 outbound docks (each outbound dock serves trucks for dis-
tributing parcels to one destination).

At each conveyor entrance, seven workers are deployed to unwrap the incoming 
bulky consolidated parcels uploaded from the big inbound truck (16 tonnes) for 
facilitating the subsequent sortation process. To enable the distribution process to go 
well and items to be accurately sorted according to customer requirements, four 
workers are assigned to each conveyor exit serving two destinations (except two 

Fig. 1.1 The distribution flow of SF Express’s imported goods in Hong Kong
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exits close to the entrances serving one destination, which require two workers) and 
equipped a barcode reader for confirming the destination of each small parcel and 
helping to load the parcel to the small outbound truck (5.5 tons).

Simulation Model The simulation model with specific system configuration and 
behaviour is implemented with FlexSim (Fig. 1.2). Details of model components 
and initial model settings (Table 1.1) are as follows:

• Entities are 400 bulky consolidated parcels and 4000 small parcels deconsoli-
dated from the bulky parcels, which are processed through the system causing 
changes in the system state over time.

• Activities are the deconsolidation of bulky consolidated parcels unloaded from 
each incoming truck (represented by a source in the simulation model) and the 
picking of small parcels from the circular conveyor to each outgoing truck (rep-
resented by a sink in the simulation model) according to their destinations.

• Item attribute is the product type associated with its destination (one product 
type corresponds to one specific destination).

Parameter Setting Based on the results of the sensitivity analysis, the parameters 
of SCMIA were set as follows: SCMIA, initial population size, N  =  30; size of 
active population, NA  =  12; size of the memory population, Nm  =  30; maximum 
number of clones for each cell, max_clone = 6; exponential distribution coefficient, 
ρ = 0.05; and number of simulation replications per fitness evaluation, replication = 
10. To allow a fair comparison among the algorithms compared, the parameters of 
the benchmarking algorithms were set with similar values and the values suggested 
by the authors.

Fig. 1.2 The simulation model of the MHS implemented with FlexSim
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Antibody Definition An antibody ab that has the direct impact on the system’s 
performance in terms of cycle time (CT) and workers’ utilization (WU) is defined 
as follows: x1 is taken to be the conveyor speed, x2 is the number of workers deployed 
for each conveyor entrance, x3 is the number of workers deployed for each conveyor 
exit (serving two destinations), and x4 is the number of workers deployed for each 
conveyor exit (serving one destination). Since the objective of the study is to opti-
mize the performance of the MHS by minimizing the system cycle time and maxi-
mizing the workers’ utilization, the optimization problem can be given by:

 ab
Optimize ab CT WU∈ ( ) = [ ]Ω



f E , ,ω
 

(1.1)

Subject to:

 1 ≤ x1 ≤ 2.5 (1.2)

 1 ≤ x2 ≤ 9 (1.3)

 1 ≤ x3 ≤ 6 (1.4)

 1 ≤ x4 ≤ 4 (1.5)

where a set of objective functions 


f ab( )  to be optimized in objective space are the 
expected values of the random output variables [CT, WU, ω] that are obtained from 
running the simulation model, ω is a sample path (i.e. the sequence of random num-
bers used in a simulation run), and Eqs. (1.2), (1.3), (1.4), and (1.5) define a set of 
physical constraints.

Table 1.1 Initial model settings

Item Value

Conveyor speed 2.5 m/s (limit: 1–2.5 m/s)
Conveyor spacing 1 parcel
Number of workers deployed for each conveyor 
entrance

7 workers (limit: 1–9 workers)

Number of workers deployed for each conveyor 
exit (serving 1 destination)

2 workers (limit: 1–4 workers)

Number of workers deployed for each conveyor 
exit (serving 2 destinations)

4 workers (limit: 1–6 workers)

Handling capacity of worker 1 parcel
Arrival pattern for each source Uniform distribution with a min. of 5 s and a 

max. of 10 s
Processing time of deconsolidation process Normal distribution with a mean of 30 s and 

a standard deviation of 2 s
Demand for each destination Uniform distribution with a min. of 220 

units and a max. of 280 units
The above model parameters are set based on the real system settings and observation
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 Experimental Results and Analysis

We conducted two experiments to evaluate the performance of the optimization 
approach based on the above-mentioned case study, that is, (1) to compare the 
results of integrating simulation and optimization with the results without using any 
optimization algorithm and (2) to benchmark SCMIA against two immune-inspired 
algorithms, MISA [20] and NNIA [12], and two other evolutionary algorithms, 
NSGA-II [8] and SPEA2 [9], under the same approach. All algorithms were run for 
30 generations over 20 trials to obtain the average performance of each algorithm on 
the same condition.

Simulation Without Optimization vs. Simulation with Optimization The 
results shown in Table 1.2 are the optimized results obtained by making use of all 
optimization algorithms studied in this research.

The table shows that the cycle time of the whole distribution system at the DC 
reduces by about 12–16% and the workers’ utilization increases by 40–51% when 
optimization algorithms are deployed in the simulation process. This proves that the 
use of the optimizers can enhance the performance in the system’s cycle time and 
the workers’ utilization. However, the higher the utilization achieved, the longer the 
cycle time spent, and vice versa. When comparing SCMIA with other benchmark 
algorithms, SCMIA is able to produce comparable results in both of the cycle time 
and the workers’ utilization.

Table 1.2 Performance comparison between simulation without optimization and simulation with 
optimization (the best results are bolded)

Cycle time (the improvement in 
% compared with the one without 
optimization)

Workers’ utilization (the 
improvement in % compared with 
the one without optimization)

Simulation without 
optimization

6788.64 s 45.04%

Simulation-based 
optimization with 
SCMIA

5775.45 s (14.92%) 65.60% (45.65%)

Simulation-based 
optimization with 
MISA

5792.67 s (14.67%) 64.43% (43.05%)

Simulation-based 
optimization with 
NNIA

5685.49 s (16.25%) 62.83% (39.50%)

Simulation-based 
optimization with 
NSGA-II

5687.71 s (16.22%) 63.09% (40.08%)

Simulation-based 
optimization with 
SPEA2

5950.84 s (12.34%) 67.06% (51.11%)
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Performance Comparison Between SCMIA and Other Benchmark 
Algorithms The performance of the algorithms studied was compared by using the 
graphical representation together with the performance metrics mentioned in sec-
tion “Performance Metrics”. The comparison between the known Pareto fronts 
shown in Fig. 1.3 suggests that the overall Pareto front patterns generated by the five 
algorithms are largely similar in which the cycle time ranges from around 5300 s to 
7000 s and the workers’ utilization ranges from around 50% to 75%. From the fig-
ure, it is shown that the higher the utilization achieved, the longer the cycle time 
spent, and vice versa. This implies that increasing the utilization does not mean that 
the efficiency of the system can be increased. Therefore, although the optimal solu-
tion with 75% utilization while spending almost 7000 s and another case achieving 
less than 50% utilization while spending only around 5300 s both fall within the 
reference Pareto front PFref, the latter case is preferred in practice because the cycle 
time is much shorter, and hence the efficiency and productivity of the system are 
much higher. The utilization becoming lower in the latter case is mainly due to the 
increased values in the decision variables, namely, conveyor speed and number of 
worker. This implies that in order to further enhance both objectives at the same 
time for the DC, the company may need to do something other than just changing 
the system parameters, such as redesigning the layout of the conveyor system.

The performance regarding the optimality and the diversity of SCMIA in this 
multi-objective optimization problem was then examined. In this experiment, we 
compared the results of the mean and standard deviation of the 2 metrics over 20 
trials obtained by SCMIA with that of the other benchmark algorithms. From the 
results shown in Table 1.3, we found that SCMIA generally is able to provide the 
best results in terms of the diversity and the optimality because it generates the low-

Fig. 1.3 Graphical comparison of the known Pareto fronts generated by the five algorithms
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est values in the metrics of ER (0.71) and S (38.83) and the latter metric is signifi-
cantly lower than most of the other algorithms. This implies that the generated front 
is very close to the PFref. In terms of the stability, SCMIA is also the best one among 
these five algorithms in error ratio and spacing because it has much lower standard 
deviations (0.12) and (11.82), respectively, than other algorithms except SPEA2, 
implying that SCMIA is able to provide a relatively consistent result for each trial.

Discussion Based on the results of the case study, SCMIA generally performs bet-
ter than other benchmark algorithms especially in the diversity aspect. This is 
largely attributed to the operators employed in the algorithm. For example, the 
selection operator incorporates the crowding distance as a measure to select non-
dominated antibodies for undergoing the subsequent evolutionary processes so that 
the antibodies in less crowded regions will have a higher priority to be selected. The 
cloning operator and hypermutation operator are based on the same measure to 
generate a number of copies for exploring the solution space and bringing variation 
to the clone population, respectively, where less crowded individuals are given more 
chances for cloning and hypermutation in order to hopefully produce better off-
spring and increase population diversity. The crossover operator helps further 
enhance the diversity of the clone population and the convergence of the algorithm 
because some good genes from the active parent can be passed to the offspring. The 
suppression operator helps reduce antibody redundancy by eliminating similar indi-
viduals, hence significantly minimizing the number of unnecessary searches and 
increasing the population diversity. The memory updating operator takes account of 
the antibody similarity in terms of both the objective space and the decision variable 
space to formulate the memory population. As a result, SCMIA is able to generate 
a well-distributed set of solutions, while it is a good approximation to the reference 
Pareto front.

The results overall demonstrate the ability of the simulation-based optimization 
approach to serve as a decision support tool for helping management to effectively 
and efficiently find near-optimal system operating conditions and parameters such 
as the number of workers, the speed of various kinds of machines or any other deci-
sion variables of interest to fulfil different objectives including cycle time, machine 
utilization, etc. As a result, significant savings in money, energy, etc. are achieved 
through the cost-effective and efficient deployment of material handling systems 
and well-coordinated processing activities based on the optimized results generated 
from the approach.

Table 1.3 Spacing and error ratio values generated by the five algorithms (the best results are 
bolded)

SCMIA MISA NNIA NSGA-II SPEA2
Mean (standard deviation)

Error ratio (ER) 0.71 (0.12) 0.83 (0.17) 0.79 (0.18) 0.77 (0.15) 0.74 (0.06)
Spacing (S) 38.83 (11.82) 60.79 (53.90) 49.44 (28.22) 51.45 (17.47) 39.00 (35.58)
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1.5  Conclusion

This study applies a multi-objective simulation-based optimization approach incor-
porating a hybrid AIS-based optimization algorithm SCMIA for evaluating the opti-
mality of the distribution system with respect to the two criteria – system cycle time 
and workers’ utilization through simulation modelling.

Based on the findings of the current undertaking, it is worthwhile to extend the 
approach to tackle other complex problems involving many objectives to be consid-
ered in an efficient and effective manner in the future. Future research could also 
extend this approach to solve real-world complex business problems with real- 
world dynamics such as time-varying demand and supply and to solve other large- 
scale problems with a large number of parameters, operators and equipment involved 
in order to establish the practical value of the approach in the simulation-based 
optimization context.
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