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Abstract. Computational argumentation has been gaining momentum
as a solid theoretical research discipline for inference under uncertainty
with incomplete and contradicting knowledge. However, its practical
counterpart is underdeveloped, with a lack of studies focused on the
investigation of its impact in real-world settings and with real knowl-
edge. In this study, computational argumentation is compared against
non-monotonic fuzzy reasoning and evaluated in the domain of biological
markers for the prediction of mortality in an elderly population. Differ-
ent non-monotonic argument-based models and fuzzy reasoning models
have been designed using an extensive knowledge base gathered from an
expert in the field. An analysis of the true positive and false positive rate
of the inferences of such models has been performed. Findings indicate
a superior inferential capacity of the designed argument-based models.
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1 Introduction

Inferences through knowledge driven approaches have been researched exten-
sively in the field of Artificial Intelligence. Among such approaches computa-
tional argumentation has recently emerged as a solid theoretical research dis-
cipline for defeasible reasoning and inference under uncertainty. Unfortunately,
there is a lack of studies which examine its impact in real-world settings by
considering real knowledge surrounded by uncertainty, incompleteness and con-
tradictions. In certain settings, like in health care, large amounts of data are not
always available, due to the difficulties in gathering it and because of privacy
issues. Nonetheless, inferences have to be made. Knowledge-driven approaches
are likely better suited in such cases instead of data-driven approaches because
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they rely upon knowledge-bases derived by human experts and not automati-
cally extracted from data. Various quantitative approaches of reasoning under
uncertainty exist. One of these is Fuzzy reasoning which allows robust represen-
tation of linguistic information and provide designers with computational tools
to describe incomplete, inconsistent or ambiguous knowledge.

In this research, the inferential capacity of computational argumentation is
compared against the one of non-monotonic fuzzy reasoning. The domain that
has been chosen for such a comparison is survival prediction using biological
markers. Biomarkers can be defined as features of the state or condition of a
human which can be objectively measured and assessed as indicators of normal
or abnormal biological processes [10]. This domain has been chosen because of
the availability of a small dataset built over a number of months by a doctor in
medicine who also provided an extensive knowledge-base. The research question
under investigation is: to what extent can computational argumentation enhance
the prediction of survival in elderly using biomarkers features when compared to
non-monotonic fuzzy reasoning?

The remainder of this paper is organised as follows: Sect. 2 introduces related
work on computational argumentation, non-monotonic fuzzy reasoning and
biomarkers. The design of a comparative experiment and the methods for the
development of argument-based and fuzzy reasoning-based models are detailed
in Sect. 3. Section 4 provides the results followed by a discussion while Sect. 5
concludes the study suggesting future avenues of research.

2 Related Work

Many approaches in the field of Artificial Intelligence (AI) have been studied
for dealing with quantitative reasoning under uncertainty. Among them, Fuzzy
Logic and Argumentation Theory (AT) have already been used for modeling non-
monotonic (defeasible) reasoning, a type of reasoning characterised by incom-
plete, contradicting and uncertain knowledge.

Argumentation Theory (AT) provides computational models for the imple-
mentation of defeasible reasoning [14], or reasoning when a conclusion can be
changed in the light of new evidence. It has become progressively central in the
AI domain for implementing non-monotonic reasoning [2,5]. Furthermore, it is
getting momentum thanks to its higher capacity and transparency to justify
and retrace inferences [15,16]. In recent works [19,20] it is shown how different
knowledge-bases can be translated into different argument-based models follow-
ing a 5-layer schema upon which argumentation systems are generally built [13].
This schema includes the definition of the internal structure of arguments, the
attacks and the resolution of conflicts as well as the computation of their dialec-
tical status and the production of a final justifiable inference (schema adopted
in this study and detailed in Sect. 3.3).

Fuzzy reasoning is well suited for modelling linguistic information and han-
dling uncertain, imprecise knowledge providing a powerful framework for rea-
soning. However, not much work has been carried out on non-monotonic fuzzy
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reasoning. A few works have proposed some possible approaches for handling
non-monotonicity. For example, in [4], the resolution of conflicting rules was
tackled through aggregating their conclusions with an averaging function, or in
[9], a rule base compression method is proposed for the reduction of the set of
non-monotonic rules. A third approach can be found in [21]. It makes use of Pos-
sibility Theory [7] as a mechanism to solve conflicting information. Possibility
Theory generalises the traditional fuzzy system in the sense that propositions
have not one, but two truth values: possibility and necessity. Both are values
within [0, 1] ∈ R, but the first indicates the extent to which data fail to refute
its truth while the second indicates the extent to which data supports its truth.

An example of a domain where inferences have to be made in condition of
uncertainty, incomplete and contradicting knowledge is health care. Here, for
example, mortality of elderly individuals has to be predicted and this is mainly
caused by non-communicable diseases, such as cardiovascular disease [12]. Prog-
nostic information is then of essential value for clinical decision making, that
in turn is useful fort the development of advance care planning for higher risk
patients [11]. Some works have tackled this problem and attempted to use new
biomakers in the prediction of mortality. [6] compares a few biomarkers, such
as homocysteine, against other classic risk scores for predicting cardiovascular
mortality in older people. In another example [1] the use blood borne biomark-
ers is explored as potential predictors of mortality risk. Nonetheless, biomakers
validation as prognostic factors is still an open issue [22] given the uncertainty
of the knowledge applied. Also, when predicting mortality, available evidence
might be partial and conflicting, adding burden to the decision making process.

3 Design and Methodology

In order to answer the research question a primary research study was designed.
This includes a comparison between the inferences produced by AT and non-
monotonic fuzzy reasoning within the biomarkers domain. A knowledge-base on
mortality risk factors in elderly, produced by an expert in the field, was employed
for the development of non-monotonic fuzzy reasoning and argument-based mod-
els. Both approaches require that firstly, the knowledge-base is translated into
logical expressions that can be adapted as computational rules or arguments.
Three main units compose the non-monotonic fuzzy reasoning models: (1) a
fuzzification module, (2) an inference engine and (3) a defuzzification module
(Fig. 1 left). The argument-based models are structured over 5 layers, as pro-
posed in [13] (Fig. 1 right): (1) definition of the structure of arguments, (2) defi-
nition of their conflicts, (3) their evaluation (4) the computation of the dialectical
status of each argument and (5) their final accrual. A comparison of the infer-
ences produced by AT and fuzzy reasoning was done by assessing their true
positive (TPR) and false positive (FPR) rates on a dataset of 93 elderly patients
described by 51 biomarkers (feature set). This data was obtained in a primary
health care European hospital and the survival status of the 93 patients was
recorded 5 years after data collection. The design of the research is summarised
in Fig. 1.
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Fig. 1. Evaluation strategy schema.

3.1 Knowledge-Base

Fifty one biomarkers were described by a clinician and their association with
mortality risk levels was defined. Each description was encapsulated in one or
more sentences to facilitate their adaptation into formal rules and formal argu-
ments. Six out of 51 biomarkers were discarded given the contradictory informa-
tion in their descriptions. For instance, suppose the description given for serum
iron (iron in the blood when red blood cells and clotting factors have been
removed) and its respective encapsulation:

– Description 1: ‘Testing serum iron is a part of complete blood count test.
According to available knowledge, both, lower and upper extremes of the inter-
val values, recorded in the sample, might be unbeneficial for survival.’

– Encapsulation 1: low or high serum iron imply unbeneficial survival.

Mortality risks were subsequently classified into five different categories: no
risk (r1), low risk (r2), medium risk (r3), high risk (r4) and extremely risk (r5).
This classification was deducted from natural language descriptions such as:
“may be non beneficial for survival”, “major cause of mortality” and “unbene-
ficial for survival”. Encapsulation 1 can then be extended to:

– Encapsulation 2: low or high serum iron imply low risk (r2).

Contradictions and preferences among biomarkers were also provided by the
interviewed domain expert. Since the full knowledge-base is vast and due to
space limitations in this paper, it can be found online.1

3.2 Non-monotonic Fuzzy Reasoning Models

Fuzzification Module. Rules in the form “IF ... THEN ...” were constructed
given the encapsulated description. It is a straightforward process exemplified
by the definition of rule R1 given Encapsulation 2:
1 http://dx.doi.org/10.6084/m9.figshare.7028480.

http://dx.doi.org/10.6084/m9.figshare.7028480
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– R1: IF low serum iron OR high serum iron THEN r2.

Fuzzy membership functions (FMF) were defined for linguistic variables such
as low serum iron and high serum iron. Not all biomakers had a fuzzy rep-
resentation and they were incorporated into the fuzzy models as crisp vari-
ables (membership grade always 0 or 1). These include, for example, categorical
biomarkers, such as hypertension, or numerical biomarkers with a strict thresh-
old for their different levels, such as high-density lipoprotein cholesterol. Twenty
one out of 45 biomakers could be modelled as fuzzy variables and had a FMF
defined by the domain expert. Figure 2 depicts an example of FMF for low and
high serum iron. The categories representing the five mortality risks also had
an associated FMF (Fig. 3). Due to space limitation, the full list of FMFs can
be found in the online knowledge-base (see footnote 1).

Fig. 2. Membership function for low
serum iron (triangular) and high
serum iron (linear).

Fig. 3. Triangular membership functions
for risks r2−4 and linear membership func-
tions for risks r1 and r5.

Inference Engine. Once the knowledge-base has been fully operationalised in
the fuzzification module, then the model could be extended to perform fuzzy
inferences. Due to the presence of a high amount of contradicting information in
the knowledge-base, a mechanism for resolving contradictions was required. An
example of a contradiction for increased serum insulin (INS) and waist to hip
ratio (w/h) exist:

– Contradiction 1: IF low INS THEN w/h is not high.

This information indicates that if INS is low then any rule whose antecedent
contains “high w/h” is being refuted and its truth value should be re-evaluated.
For example:

– R2: IF high w/h THEN low risk (r2)
– Exception 1: low INS refutes R2.

A possible approach for dealing with these types of exceptions is through the
use of Possibility Theory. The work [21] presents an implementation of fuzzy
reasoning with rule-based systems. It expands the usual fuzzy system using not
one but two truth values named possibility (Pos) and necessity (Nec). Possibility
can be seen as the extent to which data fail to refute its truth, whereas the
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Necessity of a proposition can be seen as the extent to which data supports its
truth. Both possibility and necessity lies in the range [0, 1] ∈ R. Possibility of a
proposition can also be seen as the upper bound of the respective necessity (Pos
≥ Nec). Note that in a regular fuzzy system, necessity represents the membership
grade of a proposition and possibility is always 1 for all propositions. The effect
on the necessity of a proposition A by a set of propositions Q which refutes A
is derivable in [21] and given by:

Nec(A) = min(Nec(A),¬Nec(Q1), . . . ,¬Nec(Qn)) (1)

where ¬Nec(Q) = 1 − Nec(Q). In this study, there is no consideration of sup-
porting information but only attempts to refute information. Thus, Eq. (1) can
deal with the contradictions in the knowledge-base when the membership grade
of a proposition is interpreted as its necessity. It is important to highlight that
the approach developed in [21] was inspired by a multi-step forward-chaining
reasoning system. On the contrary, in this study, the reasoning is done in a sin-
gle step, and data is imported and all rules are fired at once. However, in order
to solve the conflicting information, it is possible to organise exceptions in a
tree structure in which the consequent of an exception is the antecedent of the
next exception. In this way Eq. 1 can be applied from the root or roots until the
leaves. The drawback is that cycles are not allowed, a situation that does not
occur in the knowledge-base considered in this study. Eventually, the effect of
Exception 1 on the truth value of R2 is:

– Truth value R2 = Nec(high w/h) = min (Nec(high w/h), 1 - Nec(low INS)).

Nec(high w/h) is the membership grade of the linguistic variable high of
biomarker w/h. If Nec(low INS) = 0 note that Exception 1 has no impact on R2
and if Nec(low INS) = 1 the new truth value of R2 is 0. Values between 1 and 0
indicates that R2 is partially refuted. The truth value of R2 represents the truth
value of low risk in this respective rule.

Having a mechanism to solve conflicts, fuzzy logic operators can now be
used to aggregate the antecedents of each rule and to aggregate the categories
of mortality risks of consequents. Traditional fuzzy operators are selected for
investigation: Zadeh, Product and Lukasiewicz. Table 1 lists the t-norms and t-
conorms (fuzzy AND and fuzzy OR respectively) for each of them. Antecedents
might employ OR or/and AND, while consequents (mortality risks) are aggre-
gated by the OR operator. For instance, the truth value of low risk (r2) in a
context where only R1 and R2 infer r2 is “Nec(R1) OR Nec(R2)”.

Table 1. T-Norms and t-Conorms employed for two propositions a and b

Fuzzy operator T-Norm T-Conorm

Zadeh min(a,b) max(a,b)

Lukasiewicz max(a + b − 1, 0) min(a + b, 1)

Product a.b a + b − a.b
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Defuzzification Module. The output of the inference engine is a graphic repre-
sentation of the aggregation of the consequents (r1−5) of rules as depicted in the
example of Fig. 4. Several methods can be used for calculating a single defuzzi-
fied scalar. Two are selected here: mean of max and centroid. The former returns
the average of all elements (in this case mortality risks) with maximal member-
ship grade. The latter returns the coordinates (x, y) of the center of gravity of
the geometric shape formed by the aggregation of the FMF of each mortality
risk (example in Fig. 4) In summary, a set of models is constructed with differ-
ent fuzzy logic operators and defuzzification techniques (Table 2). Each designed
model produces a single scalar in the range [0, 100] ∈ � as a final inference.
However, beside this output, a final inference has to be produced for predicting
mortality: death or survival. Several cutoffs of the scalar output are automati-
cally applied to investigate how to separate the two possible outcomes.

Fig. 4. Example of inference graph with truth values of r1 = 0 and r2−5 = 1. The
coordinates of the centroid are (58.52, 0.34) and the mean of max is 62.5.

Table 2. Set up of fuzzy models designed.

Model Operators Defuzzification method

F1 Zadeh Centroid

F2 Zadeh Mean of max

F3 Product Centroid

F4 Product Mean of max

F5 Lukasiewicz Centroid

F6 Lukasiewicz Mean of max

3.3 Argument-Based Models

The definition of argument based-models follows the 5-layer modelling approach
proposed in [13] (and depicted in Fig. 1 right).

Layer 1 - Definition of the Structure of Arguments. The first step consists
on the construction of forecast arguments. These can be represented like:



204 L. Rizzo et al.

Forecast argument : premises → conclusion
This structure is composed by a set of premises related to some biomarkers

from which a conclusion can be deducted by applying an inference rule →. These
are defeasible argument and informally it means that if the set of premises holds,
then the conclusion presumably holds. Here conclusions are represented by the
5 categories of mortality risks, r1−5 (Sect. 3.1). Arguments are constructed from
the encapsulated descriptions of biomarkers provided by the domain expert. For
example, the following argument is derived from Encapsulation 2:

A1: low or high serum iron → low risk (r2)

Layer 2 - Definition of the Conflicts of Arguments. The objective here is
to model possible inconsistencies among arguments. Mitigating arguments [17]
are constructed using the notion of attack. These are formed by a set of premises
and an attack relation ⇒ to an argument B (forecast or mitigating):

Mitigating argument : premises ⇒ B
Different typologies of mitigating arguments can be found in [18]. However,

only the notion of undercutting attack is employed in this study. It defines an
exception by which the application of the knowledge carried in the attacked
argument is no longer allowed. Below an example of a forecast argument and a
mitigating argument derived from Contradiction 1:

- A2: high w/h → low risk (r2) - UA1: low INS ⇒ A2
Differently than the conflict resolution strategy described in Sect. 3.2, here

an undercutting attack does not allow partial refutation, rather full refutation
whereby its target argument is always discarded. The set of arguments (forecast
and mitigating) and the set of undercutting attacks, originated from mitigating
arguments, form an argumentation framework (AF) (example in Fig. 5-Left).

Fig. 5. Argumentation framework (Left): graphical representation of the knowledge-
base employed in this primary research. Nodes are arguments, directed edges are
attacks. Sub-Argumentation framework (Right): activated arguments (blue nodes) and
surviving attacks for one record of the dataset. (Color figure online)

Layer 3 - Evaluation of the Conflicts of Arguments. The knowledge-
base operationalised as an AF can now be elicited with real data. Arguments
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whose premises evaluate true are activated otherwise discarded. Attacks between
activated arguments are considered valid. From activated arguments and valid
attacks a sub-argumentation framework (sub-AF) emerges (Fig. 5-Right).

Layer 4 - Definition of the Dialectical Status of Arguments. Given a
sub-AF, acceptability semantics are applied to compute the dialectical status
of each argument (accepted or rejected). Each record of the dataset activates a
different sub-AF and thus semantics have to be run for each of them. Among well-
known semantics such as grounded and preferred [8], the grounded semantics is
employed here. It returns only one extension (set) of arguments which is conflict
free (it can be empty). It represents the least questionable set of arguments.
Beside grounded semantics, also a ranking-based semantics is employed in this
study. The goal is to rank-order arguments from the most to the least acceptable
one. Note that, with a ranking-based semantics, arguments supporting different
conclusions (here mortality risks) can be part of the same extension since they
are simply ranked. Here, the categorizer semantic has been selected [3]. It ranks
arguments based on the number of direct attacks in a way that attacks, from
non attacked arguments, are stronger than attacks from arguments attacked
multiple times. The detailed implementation of the categorizer semantics can be
found in [3]. Figure 6 shows an example of a sub-AF evaluated by grounded and
categorizer semantics. Note that arguments attacked only by rejected arguments
can still be rejected under the categorizer semantics.

Fig. 6. Argumentation framework: acceptable arguments computed by the grounded
semantics (left) and categorizer semantics (right). Blue nodes are activated but do
not support a conclusion (mitigating arguments), so are not accepted neither rejected.
Red and green nodes are forecast arguments rejected and accepted respectively. (Color
figure online)

Layer 5 - Accrual of Acceptable Arguments. The last stage of the reasoning
process is to produce a final inference (here a single scalar). This is defined by
accrual of the accepted forecast arguments. Mitigating arguments do not support
a conclusion and so have their role finalized by contributing to the resolution of
conflicts. Each accepted forecast argument supports one mortality risk. In this
case mortality risks have crisp values: r1 = 0, r2 = 25, r3 = 50, r4 = 75, r5 = 100.
It is important to highlight that there is no correct values for mortality risks,
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but for comparison purposes, argument-based models adopts the same values
designed by the domain expert for the fuzzy membership functions (for the
consequents of rules). In this research, the final scalar is proposed to be equal to
the risk value supported by the highest number of accepted forecast arguments.
In case of a tie, their average is returned. In the same way as in the defuzzification
unit of the fuzzy reasoning approach, several cutoffs of the scalar inference are
automatically used to separate the possible outcomes (death or survival).

4 Results

Data from 93 elderly patients and 51 different biomarkers was obtained from pri-
mary health care European hospital during the time span of two years.2 This was
used to instantiate argument-based models employing grounded and categorizer
semantics and also fuzzy reasoning models as listed in Table 2 (Sect. 3.2). The
percentage of death and survival records is 39% and 61% respectively, so not per-
fectly balanced. The evaluation metrics selected were true positive rate (TPR)
and false positive rate (FPR), which can be visualised by a Receiver Operat-
ing Characteristic (ROC) curve and compared according to the Area Under the
Curve (AUC). Different thresholds to separate the two type of inferences pro-
duced, (death and survival), are automatically generated, providing one TPR
and one FPR for each model and each cutoff. The AUC of the Precision-Recall
(PR) curve is also investigated. This has been chosen because of the imbalanced
distribution of the grouth truth (death or survival). In this case the positive
predictive value (fraction of patients who had an inference of death and actually
died) is plotted against the true positive rate. Figure 7 depicts the results of
the comparison between all the designed models. Fuzzy reasoning models have
very low AUC for both the ROC curves (between 0.284 and 0.306), and the PR
curve (between 0.232 and 0.264) which suggests a low inferential capacity for
death regardless of the cutoff employed. In addition, the similar AUC among all
fuzzy models indicates that the different fuzzy logic operators and defuzzifica-
tion techniques had minimal impact in the final inferences produced. As for the
argument-based models, it is possible to observe a higher AUC for the ROC and
PR curves, 0.494 and 0.371 respectively for the model employing the grounded
semantic and 0.502 and 0.377 for the model employing the categorizer semantic,
which is significantly better than non-monotonic fuzzy reasoning.

4.1 Discussion

The AUC of the ROC curve for the fuzzy reasoning models shows a worse
performance when compared to that of the argument-based models (approxi-
mately 67% lower on average). One factor that can likely explain the better
performance of argumentation is its superior capacity in conflict resolution,
thus actually better handling non-monotonicity as well as capturing and rep-
resenting defeasible information. Another factor that might explain the lower
2 https://doi.org/10.6084/m9.figshare.7028516.v1.

https://doi.org/10.6084/m9.figshare.7028516.v1
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Fig. 7. True positive rate by false positive rate (left) and positive predictive value by
true positive rate (right), for fuzzy and argument-based models for different cutoffs in
the range [0, 100] ∈ �. The AUC is presented next to each model’s name (top).

performance of fuzzy reasoning models is the higher number of crisp variables
present in the knowledge-base. These variables can hide the vagueness associated
to information, undermining the capacity of fuzzy reasoning models to capture
non-monotonic reasoning. In relation to the PR curve, the peak of 0.5 positive
predictive value (for models F1, F3, F4, F6) suggests that the models based
upon fuzzy reasoning are able to achieve a higher fraction of correct death infer-
ences, but only with a very low true positive rate. In other words, AT presents
a more robust fraction of correct death inferences when the true positive rate is
higher, which is a clear advantage in the prediction of mortality. Nonetheless, it
is also important to highlight that the AUC of the ROC curve for all models is
very similar to the area associated to a random binary classifier (0.5). Although
someone can argue that this is very poor, the random classifier does not given
any insight on the inferences produced. Therefore, such a comparison is not
useful. However, findings here are in line to a previous work where it has been
shown that not even some data-driven approach for classifying mortality, using
the same dataset employed in this research, could significantly outperform a
random classifier [20]. This indeed suggests that the knowledge available is actu-
ally incomplete, uncertain and fragmented. Further work can be done to extend
the current knowledge-base with additional information and the argument-based
approach, described in this study, can actually support such a task. For exam-
ple, those cases that have been predicted incorrectly can be further analysed
individually. Since the concept of argument is always used across the layers of
the defeasible argumentative approach, this makes the retracement and expla-
nation of its inferences easier. Thus for a non-expert it is easier to grasp whether
something went wrong or some additional information is actually needed. If this
additional information become available, it can then be added to the previous
knowledge-base and the inferential process can be repeated again. This task is
more intuitive for a non-expert when compared to the fuzzy reasoning approach
which employes the fuzzification and defuzzification mechanisms that are not
really intuitive.
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5 Conclusion and Future Work

This study presented a comparison of the inferential capacity of different reason-
ing models built with defeasible argumentation and non-monotonic fuzzy logic.
These models were constructed upon an extensive knowledge-base gathered from
an expert in the domain of elderly survival prediction using biomakers and were
aimed at inferring death or survival of elderly people. This knowledge-base was
based upon assumptions, intuitions and it was highly characterised by incom-
pleteness, conflicting information and uncertainty. Argument-based models were
constructed based on a 5-layer schema upon which argumentation systems are
generally built: from the definition of arguments and attacks to the resolution of
their conflicts, the production of their dialectical status and their final accrual
towards a final inference. The fuzzy reasoning models adopted Possibility The-
ory for modeling conflicts among designed rules. This allowed the expansion of
an usual fuzzy system by using not only one but two truth values of a proposi-
tion namely possibility and necessity. The metrics selected for the investigation
of the inferential capacity of designed models were the true positive rate, the
false positive rate and the positive predictive value. Findings showed how the
argument-based models outperformed the fuzzy reasoning models. Future work
will be focused on the replication of this study by evaluating the impact of other
argument-based acceptability semantics on the computation of the dialectical
status of arguments and their final accrual. Other experts will be interviewed to
build additional knowledge-bases for the same problem. This will help strength-
ening current findings and better demonstrate the impact of argumentation for
defeasible inference across different knowledge-bases. Eventually, the explainabil-
ity of defeasible argumentation and its capacity of presenting justifiable infer-
ences will be investigated more precisely.
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