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Abstract. Order-preserving encryption emerged as a key ingredient
underlying the security of practical database management systems.
Boldyreva et al. (EUROCRYPT ’09) initiated the study of its security
by introducing two natural notions of security. They proved that their
first notion, a “best-possible” relaxation of semantic security allowing
ciphertexts to reveal the ordering of their corresponding plaintexts, is
not realizable. Later on Boldyreva et al. (CRYPTO ’11) proved that any
scheme satisfying their second notion, indistinguishability from a ran-
dom order-preserving function, leaks about half of the bits of a random
plaintext.

This unsettling state of affairs was recently changed by Chenette et al.
(FSE ’16), who relaxed the above “best-possible” notion and constructed
a scheme satisfying it based on any pseudorandom function. In addition
to revealing the ordering of any two encrypted plaintexts, ciphertexts in
their scheme reveal only the position of the most significant bit on which
the plaintexts differ. A significant drawback of their scheme, however, is
its substantial ciphertext expansion: Encrypting plaintexts of length m
bits results in ciphertexts of length m · � bits, where � determines the
level of security (e.g., � = 80 in practice).

In this work we prove a lower bound on the ciphertext expansion of
any order-preserving encryption scheme satisfying the “limited-leakage”
notion of Chenette et al. with respect to non-uniform polynomial-time
adversaries, matching the ciphertext expansion of their scheme up to
lower-order terms. This improves a recent result of Cash and Zhang (TCC
’18), who proved such a lower bound for schemes satisfying this notion
with respect to computationally-unbounded adversaries (capturing, for
example, schemes whose security can be proved in the random-oracle
model without relying on cryptographic assumptions). Our lower bound
applies, in particular, to schemes whose security is proved in the standard
model.

G. Segev and I. Shahaf—Supported by the European Union’s Horizon 2020 Framework
Program (H2020) via an ERC Grant (Grant No. 714253), by the Israel Science Founda-
tion (Grant No. 483/13), by the Israeli Centers of Research Excellence (I-CORE) Pro-
gram (Center No. 4/11), and by the US-Israel Binational Science Foundation (Grant
No. 2014632).

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 177–191, 2018.
https://doi.org/10.1007/978-3-030-03810-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03810-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-03810-6_7


178 G. Segev and I. Shahaf

1 Introduction

An order-preserving encryption (OPE) scheme is a private-key encryption
scheme whose ciphertexts preserve the numerical ordering of their correspond-
ing plaintexts. Such schemes were introduced in the database community by
Agrawal et al. [2] for enabling efficient indexing of encrypted data and efficient
range queries over encrypted databases. By now, order-preserving encryption
has become a key cryptographic ingredient underlying the security of database
management systems (see [17] for a long list of OPE-based commercial systems).

The Security of OPE. Given that the ciphertexts of any order-preserving
encryption scheme reveal the numerical ordering of their corresponding plain-
texts, such schemes clearly cannot satisfy the standard notion of semantic secu-
rity. This motivated Boldyreva, Chenette, Lee and O’Neill [3,4] to initiate a
foundational study of the security of order-preserving encryption. They intro-
duced two notions of security for such schemes. Their first notion is a “best-
possible” relaxation of the standard semantic security notion, allowing cipher-
texts to reveal only the numerical ordering of their corresponding plaintexts.
Informally, their notion asks that the encryptions of any two sequences of plain-
texts should be indistinguishable as long as the two sequences share the same
order pattern. Unfortunately, Boldyreva et al. then proved that such a notion
cannot be satisfied.

Their second notion asks that an order-preserving encryption scheme should
be indistinguishable from a random order-preserving function (similarly to the
standard notion of pseudorandomness for pseudorandom functions). Boldyreva
et al. provided an efficient scheme that satisfies this notion, but it was later
on demonstrated by Boldyreva, Chenette and O’Neill [5,6] that a random order-
preserving function may in fact reveal substantial information on its input (specif-
ically, about half of the bits of a random message) – and thus this notion may
not be sufficiently strong for most applications.

Limited-Leakage OPE. The absence of a strong (and realizable) notion of
security has somewhat questioned our confidence in the potential security guar-
antees of order-preserving encryption. This state of affairs, however, has recently
changed due to the work of Chenette, Lewi, Weis and Wu [13]. They rigorously
relaxed the “best-possible” notion introduced by Boldyreva et al. [3,4] to allow a
limited amount of well-defined “leakage” [11], and constructed a practical scheme
that satisfies it, based on pseudorandom functions. Concretely, in addition to
revealing the relative ordering of any two encrypted plaintexts, ciphertexts in
their scheme reveal the position of the most significant bit on which they dif-
fer – but no additional information is revealed. We refer to this specific leakage
as “CLWW-leakage”, and to schemes that satisfy their notion as LCLWW-secure
schemes.

Drawback: Ciphertext Expansion. Incorporating the limited-leakage scheme
of Chenette et al. in practical OPE-based systems finally enables to rigorously



Ciphertext Expansion in Limited-Leakage Order-Preserving Encryption 179

reason about their security. However, a significant drawback of their scheme is its
ciphertext expansion. Roughly speaking, encrypting plaintexts of length m bits
using their scheme results in ciphertexts of length m · � bits, where � determines
the level of security (i.e., “� bits of security” – we discuss the relation between the
ciphertext expansion and the security of their scheme in more detail in Sect. 1.1).

In fact, Chenette et al. first constructed an order-revealing encryption scheme
[5,9] with ciphertexts of length only �log2 3 · m� bits, and then showed that the
main ideas underlying their scheme can be used to construct an order-preserving
encryption scheme – but with significantly longer ciphertexts (see Sect. 1.2 for
more details on the less-strict notion of order-revealing encryption). Given the
practical importance of order-preserving encryption, this poses the question of
whether or not such a significant expansion is inherent.

Initial evidence indicating that such an expansion is inherent was recently
provided by Cash and Zhang [14]. They introduced an information-theoretic vari-
ant of the limited-leakage notion of security considered by Chenette et al. (that
is, a notion of security with respect to computationally-unbounded adversaries
and CLWW-leakage), and showed that any scheme satisfying it must suffer from
a significant ciphertext expansion, matching the ciphertext expansion in the
scheme of Chenette et al. up to lower-order terms.

As discussed by Cash and Zhang, although no scheme can satisfy their
information-theoretic notion in the standard model, they nevertheless capture
schemes whose security can be proved in the random-oracle model without rely-
ing on any cryptographic assumption. They do not capture, however, schemes
whose security is proved in the standard model based on cryptographic assump-
tions (such as the existence of pseudorandom functions, and specific number-
theoretic or combinatorial assumptions).

1.1 Our Contributions

In this paper we prove a tight lower bound on the ciphertext expansion of any
order-preserving encryption scheme that satisfies the “limited-leakage” notion of
security considered by Chenette et al. [13]. In its weakest form, this notion asks
that the encryptions of any two sequences of plaintexts should be indistinguish-
able as long as the two sequences share the same CLWW-leakage, as discussed
above (see Sect. 2 for the formal definition). We prove the following theorem:

Theorem (informal). Let Π be an order-preserving encryption scheme with
m-bit plaintexts and n-bit ciphertexts. Then, there exists a non-uniform
polynomial-time adversary A that breaks the LCLWW-security of the scheme with
probability at least 2−n/m · m−1.

Under the minimal requirement that the success probability of any efficient
adversary in breaking the LCLWW-security of the scheme should be negligible,
our theorem implies that ciphertexts must be of length at least n = m · ω(log λ)
bits, where λ ∈ N is the security parameter. Practically, when aiming at (say)
80 bits of security (and focusing, for simplicity, on the significant 2−n/m term),
this implies that ciphertexts must be of length at least roughly n = 80m bits.
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Comparison to the Cash-Zhang Lower Bound. When compared to the
lower bound proved by Cash and Zhang [14], our lower bound and their lower
bound are identical in terms of the attacker’s success probability (and, thus, in
terms of the implications on the ciphertext expansion). As discussed above, how-
ever, their lower bound applies to an information-theoretic variant of the notion
of security to which our lower bound applies. Concretely, Cash and Zhang prove
their lower bound by analyzing the statistical distance between ciphertext distri-
butions (which translates into a computationally-unbounded adversary), whereas
we prove our lower bound by presenting a non-uniform polynomial-time adver-
sary1. Thus, our lower bound applies to any LCLWW-secure order-preserving
encryption scheme, and most notably to such schemes whose security is proved
in the standard model.

The Tightness of Our Lower Bound. Looking into the security of the scheme
provided by Chenette et al. [13] (when adapted to offer perfect correctness as
suggested by Cash and Zhang), we observe that our lower bound is in fact tight
up to low-order terms. Specifically, their scheme is based on the existence of
any pseudorandom function F mapping inputs of length at most m = m(λ) bits
to outputs of length � = �(λ) bits, and encrypting plaintexts of length m bits
using their scheme results in ciphertexts of length n = m · � bits. An analysis
of the security of their construction shows that the advantage AdvOPE

Π,LCLWW,A of
any adversary A in breaking the LCLWW-security of their scheme can be upper
bounded as

AdvOPE
Π,LCLWW,A ≤ AdvPRF

F,B +
m · q

2�
,

where q = q(λ) denotes the number of encryption queries made by A, AdvPRF
F,B

denotes the advantage of an algorithm B (efficiently derived from A) in break-
ing the pseudorandomness of F, and recall that � = n/m. The above theorem
provides a lower bound on the advantage of our specific adversary (which issues
only q = 2 encryption queries), and this yields

1
2n/m · m

≤ AdvOPE
Π,LCLWW,A(λ) ≤ AdvPRF

F,B (λ) +
m · 2
2n/m

.

Up to the lower-order terms in the above expression2, our lower bound and
the security of the scheme constructed by Chenette et al. match.

1 Although utilizing non-uniformity in cryptographic constructions, reductions, and
impossibility proofs is rather standard [19,20,22] (e.g., given the practical bene-
fits of preprocessing-based attacks [8,10,12,16,23]), an interesting open question is
whether or not the above theorem can even be proved via a uniform polynomial-time
adversary.

2 Assuming, in addition, that the security of the pseudorandom function is not the
main bottleneck (for example, by choosing a sufficiently large security parameter, or
by using AES in practice).
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1.2 Related Work

Boldyreva, Chenette and O’Neill [5] introduced the notion of an order-revealing
encryption (ORE) scheme, which is a less-strict variant of order-preserving
encryption scheme3. Such schemes allow to compare plaintexts by invoking a
publicly-computable comparison algorithm on their ciphertexts (no secret key is
required), and can be viewed as a specific form of multi-input functional encryp-
tion [1,7,18,24]. The notion of order-preserving encryption is then obtained by
requiring, in addition, that the comparison algorithm is simply a numerical com-
parison. Based on assumptions involving multi-linear maps, Boneh et al. [9]
presented a (rather theoretical) construction of an ORE scheme that satisfies
the aforementioned “best-possible” security notion of Boldyreva et al. [3]. This
stands in contrast to the impossibility of Boldyreva et al. for constructing an
order-preserving encryption scheme satisfying the same “best-possible” security
notion.

As for ORE schemes that satisfy weaker notions of security, as mentioned
above Chenette et al. [13] constructed an efficient LCLWW-secure ORE scheme
that has ciphertexts of length only �log2 3 · m�, where m is the length of their
corresponding plaintexts, and their construction is based on pseudorandom func-
tions.

Finally, when dealing with encryption schemes that inherently leak non-
trivial information, one should always pay attention to potential attacks that
may be enabled by such leakage. Indeed, such attacks on order-revealing encryp-
tion are known in some specific settings (e.g., [15,21]), but this does not rule out
their deployment in other settings.

1.3 Overview of Our Approach

In this section we provide a brief overview of the main ideas underlying the proof
of our lower bound. In what follows, let Π = (KeyGen,Enc) be an order-preserving
encryption scheme with plaintexts of length m bits and ciphertexts of length n bits
(both m and n may be functions of the security parameter λ ∈ N – see Sect. 2 for the
formal definition of such a scheme). For any plaintext i ∈ {0, 1}m, viewed an inte-
ger 0 ≤ i ≤ 2m−1, we denote by Xi = EncK(i) the random variable corresponding
to an encryption of i with respect to a randomly-generated key K ← KeyGen(1λ).
Each such random variable Xi is distributed over {0, 1}n, and is viewed as an inte-
ger 0 ≤ Xi ≤ 2n − 1. In addition, we let ε = 2−n/m · m−1 (note that this is the
success probability stated by our theorem), and let Δ(X,Y ) denote the statistical
distance between the distributions X and Y .

The Proof of Cash and Zhang. Cash and Zhang [14] observed that for every
1 ≤ j ≤ m − 1 it holds that LCLWW(0, 2j+1 − 1) = LCLWW(2j − 1, 2j), where

3 Boldyreva et al. referred to such schemes as efficiently-orderable encryption schemes.
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LCLWW is the CLWW-leakage as discussed above4. Assuming towards a con-
tradiction that a scheme Π is LCLWW-secure in the statistical sense that no
computationally-unbounded adversary has advantage larger than ε, then the
distributions (EncK(0),EncK(2j+1 − 1)) and (EncK(2j − 1),EncK(2j)) must be
statistically close, as both (0, 2j+1 − 1) and (2j − 1, 2j) have the same CLWW-
leakage. That is, it must hold that

Δ((X0,X2j+1−1), (X2j−1,X2j )) ≤ ε.

Therefore, denoting Gj
1 = X2j+1−1 −X0 and Gj

2 = X2j −X2j−1, and noting that
applying the same function to two distributions cannot increase their statistical
distance, it also holds that Δ(Gj

1, G
j
2) ≤ ε. By the order-preserving property of

the scheme, it holds that Gj
1 ≥ 0, Gj

2 ≥ 0, and that

Gj
1 = X2j+1−1 − X0 ≥ (X2j − X2j−1) + (X2j−1 − X0) = Gj

2 + Gj−1
1 .

This shows that Gj
1 is ε-statistically-close to Gj

2, and that Gj
1 is larger than Gj

2

by at least Gj−1
1 . Equipped with this observation, Cash and Zhang inductively

proved that the support of Gj−1
1 must contain “large” values, and that the

support of Gj
1 must contain even larger values. As a final step, note that X2m−1 =

X0 + Gm−1
1 and also Δ(X0,X2m−1) ≤ ε as it trivially holds that LCLWW(0) =

LCLWW(2m −1). Using their reasoning once again, they deduced that the support
of X2m−1 must contain values larger than 2n−1, which contradicts the definition
of X2m−1 as an integer in the range {0, . . . , 2n − 1}.

Our Approach: A Non-uniform Polynomial-Time Adversary. When con-
sidering schemes that are LCLWW-secure in the standard computational sense, we
cannot take advantage of the fact that Δ(Gj

1, G
j
2) ≤ ε and apply the reasoning

of Cash and Zhang. Instead, we show that if the consequence of the reasoning
of Cash and Zhang does not hold (specifically, if the support of Gj

1 does not
contain large values), then there exists a polynomial-time test that distinguishes
between Gj

1 and Gj
2: Given a sample y from either Gj

1 or Gj
2, our distinguisher

checks whether y ≤ t for some fixed threshold value 0 ≤ t ≤ 2n − 1.
Then, assuming that the consequence of the reasoning of Cash and Zhang

does hold for every step 1 ≤ j ≤ m−1, we can then prove via an additional step
that either there is a threshold test for distinguishing between X0 and X2m−1,
or it holds that support of X2m−1 contains values larger than 2n − 1. Since
the second case contradicts the definition of X2m−1 as an integer in the range
{0, . . . , 2n − 1}, it must be that the first case holds.

As a result, either there exist 1 ≤ j ≤ m − 1 and 0 ≤ t ≤ 2n − 1 such that
given ciphertexts (c1, c2) ∈ {(X0,X2j+1−1), (X2j−1,X2j )}, the test c1 − c2 ≤ t

4 Specifically, for any distinct two plaintexts mi and mj it holds that LCLWW(mi, mj) =
(inddiff(mi, mj),1(mi < mj)), where inddiff(mi, mj) ∈ {1, . . . , m, ⊥} is the index of
the most significant bit on which mi and mj differ, and 1(mi < mj) ∈ {0, 1} indicates
whether or not mi < mj . For the full definition of LCLWW, which takes as input an
arbitrary number of messages, see Sect. 2.
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distinguishes between the two cases, or there exists 0 ≤ t ≤ 2n − 1 such that
given a ciphertext c ∈ {X0,X2m−1}, the test c ≤ t distinguishes between the two
cases. This translates into a non-uniform polynomial-time adversary that breaks
the LCLWW-security of any given scheme with probability at least ε, where the
non-uniform advice specifies which test out of the m possible tests to perform,
as well as which threshold value 0 ≤ t ≤ 2n − 1 to use. We refer the reader to
Sect. 3 for our proof.

2 Preliminaries

In this section we present the notation and definitions that are used in this
work. We denote by λ ∈ N the security parameter. For a distribution X we
denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x
from the uniform distribution over X . A function negl : N → R≥0 is negligible
if for every constant c > 0 there exists an integer Nc such that negl(n) < n−c

for all n > Nc. All logarithms in this paper are to the base of 2. The statistical
distance between two random variables X and Y over a finite domain Ω is
Δ(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω]|.

Order-Preserving Encryption [2,3]. An order-preserving encryption scheme
Π is a pair (KeyGen,Enc) of probabilistic polynomial-time algorithms satisfying
the following requirements for parameters m = m(λ) and n = n(λ):

– The key-generation algorithm KeyGen takes as input the security parameter
λ ∈ N in unary representation and outputs a secret key K.

– The encryption algorithm Enc takes as input a secret key K and a plaintext
x ∈ {0, 1}m interpreted as a numerical value 0 ≤ x ≤ 2m − 1, and outputs
ciphertext c ∈ {0, 1}n interpreted as a numerical value 0 ≤ c ≤ 2n − 1.

Note that a decryption algorithm is not required by this definition. We say
that Π is correct if for all λ ∈ N and 0 ≤ i < j ≤ 2m(λ) − 1 it holds that
Pr[EncK(i) < EncK(j)] = 1, where K ← KeyGen(1λ).

Remark. It is also possible to consider a relaxed game-based correctness notion,
where a probabilistic polynomial-time adversary (without explicit access to the
secret key) should not be able to come up with plaintexts 0 ≤ i < j ≤ 2m(λ) − 1
such that EncK(i) ≥ EncK(j), expect with a negligible probability. In Sect. 3, we
discuss the effect of such a relaxation on our lower bound.

Security. We prove our lower bound for any scheme that satisfies the following
non-adaptive indistinguishability-based security notion. This notion is (tightly)
implied by its (stronger) adaptive and/or simulation-based variants, and thus
our lower bound applies to those as well.
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More concretely, given a scheme Π = (KeyGen,Enc), a leakage function L,
an algorithm A, a bit b ∈ {0, 1}, and a security parameter λ, we consider the
following experiment.

The experiment IndOPE
Π,L,A,b(λ)

1. K ← KeyGen(1λ).
2. (m0,m1, state) ← A(1λ), where m0 and m1 are plaintext vectors of the

same length (which we denote by q).
3. c = (c1, . . . , cq), where ci ← EncK(mb[i]) for every 1 ≤ i ≤ q.
4. b′ ← A(state, c).
5. If L(m0) = L(m1) then the experiment outputs b′, and otherwise it

outputs 0.

The advantage of A is defined as

AdvOPE
Π,L,A(λ) =

∣
∣
∣Pr[IndOPE

Π,L,A,1(λ) = 1] − Pr[IndOPE
Π,L,A,0(λ) = 1]

∣
∣
∣ .

As discussed above, in this paper we consider security with respect to non-
uniform polynomial-time adversaries, captured by the following definition:

Definition 2.1. An order-preserving encryption scheme Π is L-secure if for
every non-uniform polynomial-time algorithm A it holds that AdvOPE

Π,L,A(λ) is
negligible.

In this work we consider the leakage function introduced by Chenette et al.
[13]:

LCLWW(x1, . . . , xq) = {(i, j, inddiff(xi, xj),1(xi < xj)) : 1 ≤ i < j ≤ q},

where inddiff(xi, xj) ∈ {1, . . . , m,⊥} is the index of the most significant bit on
which xi and xj differ (and is set to ⊥ if xi = xj), and 1(xi < xj) ∈ {0, 1}
indicates whether or not xi < xj .

3 Our Lower Bound

In this section we prove the following theorem, and then show that it can be
extended to schemes without perfect correctness.

Theorem 3.1. Let Π be an order-preserving encryption scheme with plaintext
length m = m(λ) bits and ciphertext length n = n(λ) bits, where λ ∈ N is the
security parameter. Then, there exists a non-uniform polynomial-time adversary
A such that AdvOPE

Π,LCLWW,A(λ) ≥ 2−n/m · m−1 for all λ ∈ N.
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Proof. For any 1 ≤ j(λ) ≤ m(λ) − 1 and 0 ≤ t(λ) ≤ 2n(λ) − 1, we define an
adversary Aj,t that participates in the experiment IndOPE

Π,L,A,b(λ) (see Sect. 2) as
follows:

The adversary Aj,t :

– Given a security parameter 1λ as input, Aj,t outputs (m0,m1, state) =
((0, 2j+1 − 1), (2j − 1, 2j),⊥).

– Given a state state = ⊥ and ciphertexts c = (c1, c2) as input, Aj,t outputs
1 if c2 − c1 ≤ t and 0 otherwise.

Additionally, we define an adversary Bt as follows:

The adversary Bt :

– Given a security parameter 1λ as input, Bt outputs (m0,m1, state) =
((2m − 1), (0),⊥).

– Given a state state = ⊥ and a single ciphertext c = (c1) as input, Bt

outputs 1 if c1 ≤ t and 0 otherwise.

It is easy to verify that both Aj,t and Bt output plaintext vectors with the
same CLWW-leakage, and thus these are valid adversaries.

From this point on we fix a security parameter λ ∈ N and omit it for ease of
notation. Denoting ε = 2−n/m·m−1, we show that either there exist 1 ≤ j ≤ m−1
and 0 ≤ t ≤ 2n − 1 such that AdvOPE

Π,LCLWW,Aj,t
≥ ε or there exists 0 ≤ t ≤ 2n − 1

such that AdvOPE
Π,LCLWW,Bt

≥ ε. This guarantees that the following non-uniform
polynomial-time adversary A satisfies AdvOPE

Π,LCLWW,A ≥ ε as claimed: Given a
non-uniform advise j ∈ {1, . . . , m − 1,⊥} and 0 ≤ t ≤ 2n − 1, if j 
= ⊥ then A
invokes Aj,m, and if j = ⊥ it invokes Bt.

For any 0 ≤ i ≤ 2m − 1 let Xi = EncK(i) where K ← KeyGen(1λ). Then, by
the definition of the above adversaries it holds that

AdvOPE
Π,LCLWW,Aj,t

= |Pr[X2j − X2j−1 ≤ t] − Pr[X2j+1−1 − X0 ≤ t]|
and

AdvOPE
Π,LCLWW,Bt

= |Pr[X0 ≤ t] − Pr[X2m−1 ≤ t]| .
For a parameter 1 ≤ j ≤ m − 1, consider the following property:

Property(j): For each t ∈ N it holds that

Pr[X2j+1−1 ≤ X0 + t] ≤ (t · j!)1/j · ε
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We proceed to consider three cases, according to what values 1 ≤ j ≤ m − 1
(if any) satisfy Property(j).

Case I: Property(1) does not hold. In this case we rely on the following
lemma, which we prove in Sect. 4.

Lemma 3.2. Let (X,Y ) be jointly distributed random variables, taking values
in Z≥0, such that X > Y , and let ε ≥ 0. Then, at least one of the following must
hold:

1. For every t ∈ Z≥0 it holds that Pr[X ≤ t] ≤ t · ε.
2. There exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε.

Observing that X3−X0 > X2−X1 and applying Lemma 3.2 for X = X3−X0

and Y = X2 −X1, since Property(1) does not hold the second case of the lemma
must hold. That is, there exists t ∈ Z≥0 such that Pr[X2−X1 ≤ t]−Pr[X3−X0 ≤
t] ≥ ε, and so A1,t is an adversary with an advantage of at least ε.

Case II: Property(m− 1) holds. In this case we rely on the following lemma,
which we prove in Sect. 4.

Lemma 3.3. Let (X,Y ) be jointly distributed random variables, taking values
in Z≥0, such that X ≥ Y . Suppose there exist i ∈ N and ε ≥ 0 such that for
every k ∈ Z≥0 it holds that Pr[X ≤ Y + k] ≤ (k · i!)1/i · ε. Then, at least one of
the following must hold:

1. For every t ∈ Z≥0 it holds that Pr[X ≤ t] ≤ (t · (i + 1)!)1/(i+1) · ε.
2. There exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε.

Applying Lemma 3.3 for X = X2m−1 and Y = X0, the conditions hold since
X2m−1 ≥ X0 and Property(m − 1) holds, and we obtain that either there exists
t ∈ Z≥0 such that Pr[X0 ≤ t] − Pr[X2m−1 ≤ t] ≥ ε, or for every t ∈ Z≥0 it
holds that Pr[X2m−1 ≤ t] ≤ (t · m!)1/m · ε. In the first case we get that Bt is an
adversary with an advantage of at least ε. In the second case, for t = 2n − 1 we
get that 1 = Pr[X2m−1 ≤ 2n − 1] < (2n · m!)1/m · ε. But then, using the bound
m! ≤ mm which holds for every positive m, we obtain that

ε > 2−n/m · (m!)−1/m

≥ 2−n/m · m−1,

which contradicts our definition of ε.

Case III: Property(1) holds but Property(m − 1) does not hold. In this
case let 2 ≤ j ≤ m − 1 be the smallest j for which Property(j) does not hold.
Observing that X2j+1−1 − X0 ≥ (X2j − X2j−1) + (X2j−1 − X0) and applying
Lemma 3.3 for X = X2j+1−1 − X0 and Y = X2j − X2j−1, the conditions hold
since Property(j − 1) holds, and we obtain that since Property(j) does not hold
then the second case of the lemma must hold. That is, there exists t ∈ Z≥0 such
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that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε, so Aj,t is an adversary with advantage of at
least ε. �
Extending the Proof to Schemes Without Prefect Correctness. We note
that our lower bound is only based on the correctness of the scheme with respect
to a polynomial number of pairs of plaintexts, that is, all pairs of plaintexts
from the set {2j : 1 ≤ j ≤ m − 1(λ)} ∪ {2j − 1 : 0 ≤ j ≤ m(λ)}. Therefore,
even for a scheme that satisfies a relaxed game-based correctness notion, it must
hold that the scheme is correct for all those pairs of plaintexts with probabil-
ity 1 − negl(λ), where negl is a fixed negligible function. Hence, similarly to
Theorem 3.1, there must exist a non-uniform polynomial-time adversary A such
that AdvOPE

Π,LCLWW,A(λ) ≥ 2−n/m · m−1 − negl(λ) for all λ ∈ N.

4 Proofs of Lemma 3.2 and Lemma 3.3

We restate and prove Lemma 3.2.
Lemma 3.2. Let (X,Y ) be jointly distributed random variables, taking values in
Z≥0 , such that X > Y , and let ε ≥ 0. Then, at least one of the following must
hold:

1. For every t ∈ Z≥0 it holds that Pr[X ≤ t] ≤ t · ε.
2. There exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε.

Proof. Assume that there exists t ∈ N such that Pr[X ≤ t] > t · ε (the case
t = 0 is impossible since then Y < 0), and let t0 be the first such t. Then, it
holds that Pr[X ≤ t0 − 1] ≤ (t0 − 1) · ε, but Pr[Y ≤ t0 − 1] ≥ Pr[X ≤ t0] > t0 · ε,
so it holds that Pr[Y ≤ t0 − 1] − Pr[X ≤ t0 − 1] ≥ ε. �

Next, we restate and prove Lemma 3.3.
Lemma 3.3. Let (X,Y ) be jointly distributed random variables, taking values
in Z≥0, such that X ≥ Y . Suppose there exist i ∈ N and ε ≥ 0 such that for
every k ∈ Z≥0 it holds that Pr[X ≤ Y + k] ≤ (k · i!)1/i · ε. Then, at least one of
the following must hold:

1. For every t ∈ Z≥0 it holds that Pr[X ≤ t] ≤ (t · (i + 1)!)1/(i+1) · ε.
2. There exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε.

Proof. We make use of the following lemma.

Lemma 4.1. Let (X,Y ) be jointly distributed random variables, taking values
in Z≥0, such that X ≥ Y , and let ε ≥ 0. Then, at least one of the following must
hold:

1. For every t ∈ Z≥0 and (possibly non-integer) s > 0 it holds that

Pr[X ≤ t] ≤ t

s
· ε +

1
s

s∫

0

Pr[X ≤ Y + k]dk.
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2. There exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε.

Assume for now the correctness of Lemma 4.1. We obtain that either there
exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε, or that for every t ∈ Z≥0 it
holds that

Pr[X ≤ t] ≤ t

s
· ε +

1
s

s∫

0

Pr[X ≤ Y + k]dk

≤ t

s
· ε +

1
s

s∫

0

(k · i!)1/i · εdk

=
(

t

s
+

i

i + 1
(s · i!)1/i

)

· ε,

and by choosing s = (i + 1)/(i + 1)!1/(i+1) · ti/(i+1) (which minimizes the above
term), we obtain that Pr[X ≤ t] ≤ (t · (i + 1)!)1/(i+1) · ε as claimed. �

We now prove Lemma 4.1.

Proof of Lemma 4.1. First, for t = 0 it always holds that

Pr[X ≤ 0] ≤ Pr[X ≤ Y ]

=
1
s

s∫

0

Pr[X ≤ Y ]dk

≤ 1
s

s∫

0

Pr[X ≤ Y + k]dk.

Now, for every t ∈ N we show that either it holds that

Pr[X ≤ t] ≤ t

s
· ε +

1
s

s∫

0

Pr[X ≤ Y + k]dk,

or there exists 0 ≤ k < t such that Pr[Y ≤ k] − Pr[X ≤ k] ≥ ε. We define the
random variables (W,Z) as follows

(W,Z) =

{
(X,Y ) X ≤ t

(0, 0) X > t.
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We bound E(W − Z) both from above and below. For the lower bound, it holds
that

E(W − Z) =
t∑

k=0

k · Pr[X = Y + k,X ≤ t]

≥ s ·
t∑

k=0

Pr[X = Y + k,X ≤ t] −
�s�∑

k=0

(s − k) · Pr[X = Y + k,X ≤ t]

≥ s · Pr[X ≤ t] −
�s�∑

k=0

(s − k) · Pr[X = Y + k]

= s · Pr[X ≤ t] −
s∫

0

Pr[X ≤ Y + �k
]dk

= s · Pr[X ≤ t] −
s∫

0

Pr[X ≤ Y + k]dk.

For the upper bound, we make use of the following lemma (a similar lemma
appears in [14]).

Lemma 4.2. Let (W,Z) be jointly distributed random variables, taking values
in {0, . . . , t}. Then, there exists 0 ≤ k < t such that Pr[Z ≤ k] − Pr[W ≤ k] ≥
E(W − Z)/t.

Assume for now the correctness of Lemma 4.2. We obtain that there exists
0 ≤ k < t such that Pr[Z ≤ k] − Pr[W ≤ k] ≥ E(W − Z)/t. Note that

Pr[Z ≤ k] − Pr[W ≤ k] = Pr[Y ≤ k, X ≤ t] − Pr[X ≤ k] ≤ Pr[Y ≤ k] − Pr[X ≤ k].

If Pr[Y ≤ k] − Pr[X ≤ k] ≥ ε then we are done. Otherwise, it holds that

t · ε > s · Pr[X ≤ t] −
s∫

0

Pr[X ≤ Y + k]dk,

and the lemma follows. �
We finish by proving Lemma 4.2.

Proof of Lemma 4.2. It holds that

E(W − Z) = EW − EZ

=
t∑

k=1

Pr[W ≥ k] −
t∑

k=1

Pr[Z ≥ k]

=
t∑

k=1

(1 − Pr[W < k]) −
t∑

k=1

(1 − Pr[Z < k])

=
t−1∑

k=0

(Pr[Z ≤ k] − Pr[W ≤ k]) .
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Hence, there exists 0 ≤ k < t such that Pr[Z ≤ k] − Pr[W ≤ k] ≥ E(W − Z)/t
as claimed.

Acknowledgments. We thank Gili Schul-Ganz and the anonymous referees for vari-
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