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Abstract. All known multilinear map candidates have suffered from
a class of attacks known as “zeroizing” attacks, which render them
unusable for many applications. We provide a new construction of
polynomial-degree multilinear maps and show that our scheme is prov-
ably immune to zeroizing attacks under a strengthening of the Branching
Program Un-Annihilatability Assumption (Garg et al., TCC 2016-B).

Concretely, we build our scheme on top of the CLT13 multilinear
maps (Coron et al., CRYPTO 2013). In order to justify the security of
our new scheme, we devise a weak multilinear map model for CLT13 that
captures zeroizing attacks and generalizations, reflecting all known clas-
sical polynomial-time attacks on CLT13. In our model, we show that our
new multilinear map scheme achieves ideal security, meaning no known
attacks apply to our scheme. Using our scheme, we give a new multiparty
key agreement protocol that is several orders of magnitude more efficient
that what was previously possible.

We also demonstrate the general applicability of our model by showing
that several existing obfuscation and order-revealing encryption schemes,
when instantiated with CLT13 maps, are secure against known attacks.
These are schemes that are actually being implemented for experimen-
tation, but until our work had no rigorous justification for security.

1 Introduction

Cryptographic multilinear maps have proven to be a revolutionary tool. Very
roughly, a multilinear map is an encoding scheme where one can blindly compute
polynomials over encoded elements, without any knowledge of the underlying
elements. They have been used for numerous cutting-edge cryptographic appli-
cations, such as multiparty non-interactive key agreement [2], attribute-based
encryption for circuits [3], asymptotically optimal broadcast encryption [4], wit-
ness encryption [5], functional encryption [6,7], and most notably mathematical
program obfuscation [6]. In turn, obfuscation has been used to construct many
more amazing applications [8–15] as well as establish interesting connections to
other areas of computer science [16,17].

The full version of this paper is available on the IACR ePrint Archive [1].
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Unfortunately, all known multilinear maps for degree d > 2 [18–20] have suf-
fered from devastating attacks known as “zeroizing” attacks [18,21–23]. These
attacks have rendered most of the applications above insecure. In response, many
authors introduced “fixes”; these fixes came in many forms, from tweaking how
information is extracted from the map [24] to compiling the existing weak mul-
tilinear maps into new ones that were presumably stronger [7,25,26]. However,
these fixes were largely ad hoc, and indeed it was quickly shown how to generalize
the zeroizing attacks to circumvent the fixes [25–29].

Given the many attacks and the speed at which fixes were subsequently bro-
ken, researchers have begun attempting to build applications in a sound way
using weak maps. The initial observation by Badrinarayanan, Miles, Sahai, and
Zhandry [30] is that all (classical polynomial-time1) attacks require the ability
to obtain an encoding of zero. Miles, Sahai, and Zhandry [36] observed moreover
that all zeroizing attacks on the original GGH13 multilinear map have a very
similar structure. They define an abstract attack model, called the “annihilating
attack model,” that encompasses and generalizes all existing zeroizing attacks
on these specific maps. Since their initial publication, all subsequent attacks on
GGH13 have either relied on quantum procedures [35] or on the specific setting of
parameters [34]. On the other hand, zeroizing attacks are inherently parameter-
independent, as they only depend on the functionality of the zero-testing proce-
dure. It remains the case today that all classical, parameter-independent attacks
on GGH13 fit in the “weak model” of Miles et al. [36]. Therefore, this annihilat-
ing model appears to be a fully general abstraction of the inherent vulnerabilities
of the GGH13 multilinear maps.

Within the weak model, Badrinaryanan et al. [30] constructed a secure wit-
ness encryption scheme, while Garg, Miles, Mukherjee, Sahai, Srinivasan, and
Zhandry [37] built secure obfuscation and order revealing encryption. Since these
constructions have been proven secure in the weak model, they are secure against
all known attacks on GGH13. To date, these are the only direct applications of
multilinear maps that have been proved secure in the weak multilinear map
model for GGH13.2 Moreover, GGH13 is the only multilinear map for which an
accurate weak model has been devised. This leads to the following goals:

Devise weak multilinear map models for other multilinear maps — such as
CLT13 or GGH15 — that capture all known attack strategies on the maps.

Give new applications of multilinear maps that can be constructed
and proven secure in weak multilinear map models.

1 Sub-exponential [31–33], parameter-dependent [34], and quantum attacks [35] have
been discovered on multilinear map candidates. In this work we will focus on
classical adversaries, and will not consider quantum attacks. We will also not
consider parameter-dependent or sub-exponential attacks as a break, since they can
be defeated by increasing the security parameter.

2 Most other applications are possible by using obfuscation as a building block.
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A weak multilinear map model for CLT13 is especially important, as it is
currently the most efficient multilinear map known [38], and therefore most
likely to eventually become usable in practice.

In addition, the vulnerabilities of existing multilinear map candidates lead
to a natural third goal:

Construct multilinear maps that are not vulnerable to zeroizing attacks.

There has been some initial progress toward this goal. Several authors [39,40]
have shown how to construct a version of multilinear maps from obfuscation, which
can in turn be built from weak multilinear maps using the aforementioned con-
structions. This gives a compelling proof of concept that multilinear maps immune
to zeroizing attacks should be possible. However, as obfuscation is currently incred-
ibly inefficient, such multilinear map constructions are entirely impractical today.
Moreover, obfuscation can be used to directly achieve most applications of multi-
linear maps, so adding a layer of multilinear maps between obfuscation and appli-
cation will likely compound the efficiency limitations. Therefore, it is important
to build multilinear maps without obfuscation.

1.1 Our Work: New Multilinear Maps

In this paper, we make additional progress on all three goals above. We revisit the
idea of “fixing” multilinear maps by using weak maps to build strong maps. We
do not use obfuscation, though our scheme is inspired by obfuscation techniques.
Unlike the fixes discussed above that were quickly broken, we develop our fix
in a methodical way that allows us to formally argue our fix is immune to
generalizations of zeroizing attacks. Specifically, our results are the following:

Weak CLT13 Model. First, we need a framework in which to argue security
against zeroizing attacks. Our first result is a new weak multilinear map model
for CLT13 maps. We demonstrate that this model naturally captures all known
attack strategies on CLT13. The model is somewhat different from the model
for the GGH13 maps, owing to the somewhat different technical details of the
attacks. Unlike the GGH13 case, where the common thread amongst all the
attacks was rather explicit3, the common features of CLT13 attacks are a bit
more nebulous, and require additional effort to pull out and formalize.

Model Conversion Theorem. To aid the analysis of schemes in our model, we
prove that an attack in the weak CLT13 model requires the existence of a certain
type of “annihilating polynomial,” analogous to the annihilating polynomials in
the weak GGH13 model, but simpler. This “plain annihilating model” makes it
very easy to test if a particular usage of CLT13 is safe. For example, it is immedi-
ate from known results that an existing class of obfuscation constructions [30,41]
is secure in our plain annihilating model, under the same algebraic complexity

3 Namely, all attacks compute the ideal 〈g〉 generated by some element g.
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assumption as in [37]. Hence, these schemes are also secure in our weak CLT13
model. This is the first rigorous argument for security of these schemes. We note
that these obfuscation constructions are currently being implemented [38], so
justifying their security is important.

Note that [30,41] are not secure in the weak GGH13 model, indicating that
the weak CLT13 model may be somewhat more useful.

New Multilinear Map Scheme. Armed with a weak model for CLT13, we devise
a new polynomial-degree multilinear map scheme built on top of CLT13. We
then prove that within our weak CLT13 model, there are no attacks on our new
scheme under a new “Vector-Input Branching Program Un-Annihilatability”
Assumption. That is, under our new assumption, any attack at all on our scheme
will yield an attack that does not fit in our CLT13 model, and hence gives a
brand new attack technique on CLT13 maps. Our scheme is based on obfuscation
techniques, but avoids building a full obfuscation scheme, making our scheme
significantly more efficient than obfuscation-based multilinear maps, at least for
simple settings.

Concretely, to implement a 4-Party Non-Interactive Key Exchange with
80 bits of security, our scheme requires approximately 231 CLT13 encodings
with degree 281. For comparison, the most efficient obfuscation-based approach
requires at least 244 CLT13 encodings from a much higher-degree map [42]. These
estimates are derived in the full version of this paper [1].

The lack of a zeroizing attack means we can be more liberal in the types
of encodings that are made public. This allows for greatly enhanced functional-
ity compared to existing multilinear map schemes: for example, we can encode
arbitrary ring elements and give out encodings of zero.

The notable limitation of our construction and analysis is that our secu-
rity proof relies on the Vector-Input Branching Program Un-Annihilatability
Assumption, a new algebraic complexity assumption about annihilating polyno-
mials. The assumption is similar to the Branching Program Un-Annihilatability
Assumption used in [37], though our new assumption is somewhat stronger and
less justified than theirs.

While our scheme is far from practical, we believe this result is a proof of
concept that multilinear maps without zeroizing attacks are possible without
first building obfuscation. Hopefully, future work will be able to streamline our
construction to obtain much more efficient multilinear maps.

Applications. Despite some minor functionality limitations, our multilinear maps
can still be used to solve problems that were not previously possible without first
building obfuscation. For example, we show how to use it for multiparty non-
interactive key exchange (NIKE) for a polynomial number of users. This is the
most efficient scheme for n > 3 users that is immune to known attacks. Hopefully,
our maps can be used to make other applications much more efficient as well.
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Ideal Multilinear Maps from GGH13. We note that our techniques for construct-
ing multilinear maps from CLT13 can be combined with the techniques of Garg
et al. [37] to give new multilinear maps in the weak model for GGH13.

1.2 Techniques

Weak CLT13 Model. In CLT13, there is a composite modulus N =
∏

i pi.4

An encoding s is an integer mod N . Let si = s mod pi be the vector of Chinese
Remainder Theorem components. Each component si encodes a component mi

of the plaintext element. An element in the plaintext space can therefore be
interpreted as a vector of integers. Each encoding is associated to a level, which
is a subset of {1, . . . , d}, where d is the multilinearity of the map. Encodings can
be added and multiplied, following certain level-restrictions, until a “top-level”
encoding is obtained, which is an encoding relative to the set {1, . . . , d}. For
singleton sets, we drop the set notation and let level {i} be denoted as level i.

In CLT13, if s is a top-level encoding of zero — meaning all components of
the plaintext are 0 — then one can obtain from it t =

∑
i γisi, where γi is a

rational number, and equality holds over the rationals. The γi are unknown, but
global constants determined by the parameters of the scheme. That is, for each
s, the derived t will use the same γi.

All known attacks on the CLT13 multilinear maps follow a particular form.
First, public encodings are combined to give top-level encodings, using operations
explicitly allowed by the maps. If these top-level encodings are zero, then one
obtains a t term. The next step in the attack is to solve a polynomial equation
Q where the coefficients are obtained from the t terms. In current attacks, the
polynomial equation is the characteristic polynomial of a matrix whose entries
are rational functions of the zeros.

The next step is to show that the solutions to Q isolate the various si com-
ponents of the initial encodings. Then by performing some GCD computations,
one is then able to extract the prime factors pi, which leads to a complete break
of the CLT13 scheme. We show how to capture this attack strategy, and in
fact much more general potential strategies, in a new abstract attack model for
CLT13. Our model is defined as follows:

– Denote the set of encodings provided to the adversary as 〈s〉, where each s
encodes some plaintext element.

– The adversary is allowed to combine the encodings as explicitly allowed by the
multilinear map. Operations are performed component-wise on the underlying
plaintext elements.

– If the adversary ever gets a top-level encoding of zero — meaning that the
plaintext element is zero in all coordinates — this zero is some polynomial p
in the underlying plaintext elements. The adversary obtains a handle to the
corresponding element t =

∑
i γip(〈s〉i). Here, 〈s〉i represents the collection

of ith components of the various encodings provided.

4 In [19], this modulus is referred to as x0.
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– The adversary then tries to construct a polynomial Qi that isolates the ith
component for some i. The way we model a successful isolation is that Qi

is a polynomial in two sets of variables: T variables — which correspond
to the t terms obtained above — and S variables — which correspond to
the ith components of the s encodings. The adversary’s goal is to devise a
polynomial Qi such that Q evaluates to 0 when S is substituted for 〈s〉i and
T is substituted for the set of t obtained above. We say the adversary wins if
she finds such a Q.

In a real attack, roughly, the adversary takes Q, plugs in the values of t,
and then solves over the rationals for 〈s〉i. Then by taking GCD(N, s − si)
for some encoding s, she obtains the prime factor pi. The real adversary does
this for every i until she completely factors N . In general, solving Q for 〈s〉i

is a computationally intractable task and may not yield unique solutions. The
attacks in the literature build a specific Q that can be solved efficiently. In our
model, we conservatively treat any Q the adversary can find, even ones that are
intractable to solve, as a successful attack.

We note that the attacks described in the literature actually build a Q that
is a rational function. However, such rational functions can readily be converted
into polynomial functions. We indeed demonstrate that such a polynomial Q is
implicit in all known attack strategies.

Next, we prove a “model conversion theorem” that implies any attack in our
CLT13 model actually yields an attack in a much simpler model that we call the
“plain annihilating model.” Here, the adversary still constructs polynomials p of
the underlying encodings, trying to find a top-level zero. However now, instead
of trying to find a Qi as above, the adversary simply tries to find a polynomial
R that annihilates the p polynomials. That is, R({p(〈S〉)}p) is identically zero
as a polynomial over 〈S〉, where 〈S〉 are now treated as formal variables.

With this simpler model in hand, we immediately obtain the VBB-security of
existing obfuscation constructions [30,41] based on branching programs. Those
works show that the only top-level zeros that can be obtained correspond to the
evaluations of branching programs. Therefore, relying on the Branching Program
Un-Annihilatability Assumption (BPUA) of [37], we find that it is impossible
to find an annihilating polynomial R, and hence a polynomial Qi. This gives
security in our CLT13 model.

New Multilinear Maps. We now turn to developing a new multilinear map
scheme that we can prove secure in our weak model for CLT13. Guided by our
annihilation analysis, we design the scheme to only release encodings for which
the successful zero-test polynomials cannot be annihilated by polynomial-size
circuits; our model conversion theorem shows that such encodings will be secure
in the weak CLT13 model.

In this work, we focus on building an asymmetric scheme, where levels are
subsets of {1, . . . , d}, and elements can only be multiplied if they belong to
disjoint levels. It is straightforward to extend to symmetric multilinear maps.
The scheme will be based heavily on obfuscation techniques, plus some new
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techniques that we develop; however, we will not build a full obfuscation scheme.
Therefore, we expect that our multilinear maps will be much more efficient than
those that can be built using obfuscation.

Our starting point is Garg, Gentry, Halevi, and Zhandry [7]5, which offered a
potential fix to block zeroizing attacks that we call the GGHZ16 fix. The fix was
quickly broken, but we show how to further develop the idea into a complete fix.
Garg et al. define a level-i “meta-encoding” of x to be a matrix of level-i CLT13
encodings, obtained by encoding component-wise matrices of the form:

R ·

⎛

⎜
⎜
⎜
⎝

x 0 . . . 0
0 $ · · · $
...

...
. . .

...
0 $ · · · $

⎞

⎟
⎟
⎟
⎠

· R−1

where $ represent plaintexts drawn at random6, and R is a random matrix of
plaintext elements.

Such meta-encodings can be added and multiplied just like CLT13 encodings,
since the matrices R cancel out. However, due to the R matrices, it is no longer
possible to isolate the upper-left corner to perform a zero-test on x. Instead, also
handed out are “bookend” vectors s, t which encode the plaintext vectors

(
1 0 · · · 0

) · R−1 and R · (1 0 · · · 0
)T

,

respectively. Now by multiplying a meta-encoding by the bookend vectors on
the left and right, one obtains a CLT13 encoding of the plaintext x, which can
then be zero-tested.

Next, Garg et al. include with the public parameters meta-encodings of vari-
ous powers of 2, as well as many meta-encodings of 0. Powers of 2 allow for anyone
to encode arbitrary elements, and the encodings of 0 allow for re-randomizing
encodings. Unfortunately, as shown in [27], this fix does not actually protect
against zeroizing attacks: with a bit more work, the meta-encodings of 0 can be
used just like regular encodings of zero in the attacks to break the scheme.

To help motivate our new scheme, think of the GGHZ16 fix as follows: arrange
the matrices in a grid where the columns of the grid correspond to the levels,
and the matrices for level i are listed out in column i in an arbitrary order. We
will call a “monomial” the product of one meta-encoding from each level, in level
order (e.g. the level-1 encoding comes first, then level-2, etc.). Such monomials
correspond to an iterated matrix product that selects one matrix from each
column. We re-interpret these monomials as evaluations of a certain branching
program. In this branching program, there are t inputs, and each input is not
a bit, but a digit from 0 to k − 1 where k is the number of matrices in each
5 We actually need the version of [7] dated November 12, 2014 from https://eprint.

iacr.org/eprint-bin/versions.pl?entry=2014/666. More recent versions and the pro-
ceedings version removed the CLT13 fix that we start from.

6 Actually, in [7], some of the zeros are also set to be random elements, but the above
form suffices for our discussion and more naturally leads to our construction.

https://eprint.iacr.org/eprint-bin/versions.pl?entry=2014/666
https://eprint.iacr.org/eprint-bin/versions.pl?entry=2014/666
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column. Each input digit selects the matrix from the corresponding column, and
the result of the computation is the result of the corresponding iterated matrix
product.

Note that this branching program is read-once, and this is fundamentally
why the fix does not succeed. One way to see this is through the lens of our
model conversion theorem: a read-once branching program can be annihilated,
in the sense that it is possible to construct a set of inputs and an annihilating
polynomial Q such that Q always evaluates to zero on the set of branching
program outputs. For example, one can partition the input bits into two sets,
and select subsets S and T of partial inputs from each half of the input partition.
Evaluate the branching program on all points in the combinatorial rectangle
defined by S, T , and arrange as a matrix. The rank of this matrix is at most
the width of the branching program. Therefore, as long as the number of partial
inputs is larger than the width, this branching program will be annihilated by
the determinant. This is true for arbitrary branching programs, not just the
branching programs derived above.

One possible way to block the attack above is to make the branching program
so wide that even if the adversary queries on the entire domain, the matrix
obtained above is still full rank. While it is possible to do this to build a constant
degree multilinear map over CLT13, the map will be of little use. Roughly, the
reason is that the branching program is now so wide that adding a random
subset-sum of zero encodings is insufficient to fully re-randomize.

Instead, we turn to Garg et al. [37]’s obfuscator, which blocks this anni-
hilating attack for obfuscation by explicitly requiring the branching program
being obfuscated to read each input many times. By reading each input multi-
ple times, the rank of the matrix above grows exponentially in the number of
reads, blocking determinant-style attacks. Moreover, under the assumption that
there are PRFs that can be computed by branching programs, such read-many
programs cannot be annihilated in general. Garg et al. therefore conjecture a
branching program un-annihilatability assumption, which says that read-many
branching programs cannot be annihilated. Under this assumption, Garg et al.
prove security in the weak GGH13 model.

Inspired by this interpretation and by techniques used to prove security of
obfuscation, we modify GGHZ16 to correspond to a read-many branching pro-
gram. This will allow us to block determinant-style attacks without increasing
the width, allowing for re-randomization. Toward that end, we associate each
meta-level i with � different CLT13 levels, interleaving the levels for different i.
This means that for a d-level meta-multilinear map, we will need d� + 2 CLT13
levels (the extra 2 levels for the bookends). An encoding at level i will be a
sequence of � different matrices of encodings, where the � matrices are encoded
at the � corresponding CLT13 levels. The matrices (in the 3 × 3 case) have the
form:

Ri−1

⎛

⎝
x 0 0
0 $ $
0 $ $

⎞

⎠ R−1
i , Rd+i−1

⎛

⎝
0 0 0
0 $ $
0 $ $

⎞

⎠ R−1
d+i, · · · , R(�−1)d+i−1

⎛

⎝
0 0 0
0 $ $
0 $ $

⎞

⎠ R−1
(�−1)d+i
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Essentially, each of our meta-encodings is a list of GGHZ16 meta-encodings,
where the first meta-encoding encodes x, and the rest encode 0. Our bookend
vectors have the form

(
1 $ · · · $

) · R−1
0 and Rd� · (

1 $ · · · $
)T and are encoded,

respectively, in the two remaining CLT13 levels. Unlike GGHZ16, we will not
have the $ terms be random, but instead chosen more carefully (details below).
Note that we choose different randomizing matrices R in each position; this
corresponds to the randomizing matrices used for Kilian [43] randomization of
branching programs in obfuscation. Such randomization forces matrices to be
multiplied in order as in a branching program.

Addition is component-wise. For this discussion, we will only allow a pairing
operation that goes directly to the top level; this is the kind of multilinear map
envisioned by [2]. We explain how to give intermediate levels below.

The pairing operation takes one meta-encoding for each meta-level, and
arranges all the matrices in branching-program order. Then, roughly, it mul-
tiplies the matrices together, along with the bookends. The result is a single
top-level CLT13 encoding, which can be zero-tested as in CLT13. We have to
slightly tweak the procedure scheme for this to work, as multiplying all the
matrices of a top-level encoding will always give an encoding of zero, owing to
most of the GGHZ16 meta-encodings containing 0. Instead, we add an offset
vector midway through the pairing operation to make the CLT13 encoding an
encoding of the correct value; see Sect. 4 for details. For the purposes of this
discussion, however, this tweak can be ignored.

The good news is that if one restricts to adding and pairing encodings as
described, this blocks the zeroizing attack on GGH16 meta-encodings, assuming
� is large enough. We would now like to prove our scheme is actually secure, using
the branching program un-annihilatability assumption as was done in obfusca-
tion. Unfortunately, there are several difficulties here:

– First, we need to force the adversary to follow the prescribed pairing pro-
cedure. While the pairing operation is basically just a branching program
evaluation, this ends up being quite different than in the setting of obfus-
cation. For example, in obfuscation, forcing input consistency can be done
with the level structure of the underlying multilinear map. In our case, this
appears impossible. The reason is that we want to be able to add two encod-
ings at the same meta-level before pairing, meaning the underlying encodings
must be at the same CLT13 level. In obfuscation, the different encodings for
a particular input are encoded at different levels. There are other ways to
force input consistency [6,44], but they appear to run into similar problems.

– Second, the ability to add encodings means we cannot quite interpret allowed
operations as just evaluations of a branching program. For example, if one
adds two meta-encodings, and then multiplies them by a third, the result is
a linear combination of iterated matrix products containing cross terms of
the branching program that mix inputs. This is a result of the degree of zero-
testing being non-linear. Therefore, prior means of forcing input consistency
will be too restrictive for our needs.

We overcome these issues by developing several new techniques:



522 F. Ma and M. Zhandry

– First, we prove a generalization of a lemma by Badrinarayanan et al. [30]
which tightly characterizes the types of iterated matrix products that an
adversary is allowed to create. Our lemma works in far more general settings
so as to be applicable to our scheme.

– Second, we re-interpret the allowed operations not as branching program
evaluations, but as vector-input branching program evaluations, a new notion
we define. In a vector-input branching program, inputs are no longer digits,
but a list of vectors. The vectors specify a linear combination. To evaluate, for
each column apply the corresponding linear combination, and then multiply
all the results together. By being able to take linear combinations of the input
matrices, we now capture the ability of an adversary to add encodings.

– Finally, we introduce new “enforcing” matrices that we place in the $ entries.
The goal of our enforcing matrices is to force the adversary’s operations to
correspond to vector-input branching program evaluations.

Using our enforcing matrices and our new analysis techniques, we show that
the adversary is limited to producing linear combinations of vector-input branch-
ing program evaluations. Therefore, by our model conversion theorem, if the
adversary can attack in our weak CLT13 model, it can find an annihilating
polynomial for vector-input branching programs. We therefore formulate a con-
crete conjecture that, like regular branching programs, vector-input branching
programs cannot be annihilated. Under this assumption, no zeroizing attacks
exist on our scheme.

Discussion. We now discuss some limitations of our construction above.

– We do not know how to justify our vector-input branching program assump-
tion based on PRFs, unlike the corresponding assumption for standard
branching programs. The reasons are twofold:

• Most importantly, we do not know of any PRFs that can be evaluated by
vector-input branching programs.

• In our analysis, the adversary can produce a linear combination of expo-
nentially many vector-input branching program evaluations. Therefore,
an annihilating polynomial annihilates exponentially-many inputs, and
therefore would not correspond to a polynomial-time attack on a PRF,
even if one were computable by vector-input branching programs. We
note that, if we were to ignore the first issue, it is straightforward to
overcome the second issue using a sub-exponentially secure PRF, since
a sub-exponential time algorithm can potentially query a PRF on the
entire domain and construct exponential-sized linear combinations. Fur-
thermore, we hope that this second limitation arises from our analysis
and is not a fundamental problem, leaving room for subsequent work.

We observe that if a sub-exponentially secure PRF can be computed by
vector-input branching programs, it should be possible to prove our assump-
tion based on the security of said PRF.
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Even without a justification based on general hardness assumptions, the only
efficient annihilating polynomials we could find for vector-input branching
programs are determinant polynomials as described above. These are inter-
estingly also the only annihilating polynomials we know of for plain branching
programs. Therefore, it seems reasonable at this time to conjecture that deter-
minants are the only annihilating polynomials. If this conjecture holds, then
any annihilating polynomial will require circuits of size roughly w�, where w
is the width of matrices in the branching program. By setting w� to be 2λ

for desired security parameter λ, this will block known attacks. In the full
version of this work [1], we give some evidence for why this conjecture should
hold in restricted settings.

– Our discussion above only allows for directly pairing to the top level. If we
are willing to sacrifice polynomial degree for constant degree, we can define
pairing operations for intermediate levels. Adjacent levels (say 1,2) can easily
be paired by simply constructing � matrices that are the pairwise products
of the � matrices in the two levels. Due to the different Kilian randomization
matrices between each pair of levels, we cannot directly pair non-adjacent
levels, such as 1 and 3. For non-adjacent levels, instead of matrix multiplica-
tions, we can tensor the encodings, generating all degree 2 monomials. This
tensoring can also be extended to higher levels. Unfortunately, this greatly
expands the size of encodings and thus can only be done when the degree is
constant.

Alternatively, we note that the ability to only multiply adjacent levels corre-
sponds to the “graph induced” multilinear map notion [20] for the line graph.
Hence, we obtain a multilinear map for general line graphs. Such maps are
sufficient for most applications. Moreover, such graphs can easily be used to
build symmetric multilinear maps, by simply encoding at all possible single-
ton levels.

– Finally, it is not possible to multiply an encoding by scalar. One could try
repeated doubling, but our scheme inherits the noisiness of CLT13, and this
repeated doubling will cause the noise to increase too much. One potential
solution is that an encoding of x actually consists of encodings of x, 2x, 4x, 8x,
etc. Now instead of repeated doubling, multiplying by a scalar is just a subset
sum. Of course, this operation “eats up” the powers of 2, so it can only be
done a few times before one runs out of encodings.

Another potential option, depending on the application, is to introduce addi-
tional “dummy” levels. To multiply by a scalar, first encode it in the “dummy”
level, and then pair with the element. This of course changes the level at which
the element is encoded, but for some applications this is sufficient. Below, we
show how to use this idea to give a multiparty NIKE protocol for a polynomial
number of users.

Multiparty Non-interactive Key Exchange (NIKE). Here, we very briefly
describe how to use our new multilinear maps to construct multiparty NIKE. The
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basic scheme shown by Boneh and Silverberg [2] will not work because (1) they
need an symmetric multilinear map, and (2) they need to be able to multiply
encodings by ring elements. We show how to tweak the scheme to work with an
asymmetric map that does not allow multiplying encodings by ring elements.
For d users, instantiate our scheme with d levels, one more than is needed by [2].

User i chooses a random ring element ai, and then computes encodings [ai]u
of ai at every singleton level u. User i publishes all the encodings (after re-
randomization), except the encoding at level 1.

Upon receiving the encodings from all other users, user i arbitrarily assigns
each of the other d − 1 users to the levels 2, . . . , d. Let uj be the level assigned
to user j. Then it pairs its private elements [ai]1 together with [aj ]uj

for each
j �= i. The result is an encoding of

∏
j aj at the top level. Everyone computes

the same encoding, which can be extracted to get the shared secret key.
Meanwhile, an adversary, who never sees an encoding of ai at level 1, cannot

possibly construct an encoding of
∏

j aj without using the same level twice. Using
a variant of the multilinear Diffie-Hellman assumption, this scheme can be proven
secure. This assumption can be justified in the generic multilinear map model, and
hence our scheme can be proven secure in the weak CLT13 model.

Concurrent Work: A Weak Model for GGH15. In a concurrent work,
Bartusek, Guan, Ma, and Zhandry [45] propose a weak multilinear map model
for the GGH15 maps [20]. They demonstrate that all known zeroizing attacks on
the GGH15 construction are captured by their weak model, and they construct
an obfuscation scheme that is provably secure in their weak model. We compare
and contrast our models and results below.

– The CLT13 and GGH15 schemes are quite different, and the respective zeroiz-
ing attacks exploit different vulnerabilities. The security of CLT13 crucially
depends on the secrecy of the primes pi, for which there is no analogue in
the GGH15 scheme. Thus, our weak model captures the adversary’s ability
to perform a certain step that all known attacks on CLT13 go through in
order to recover the pi’s. The Bartusek et al. [45] weak model uses a different
condition that captures an adversary’s ability to learn non-trivial information
about an encoded plaintext.

– Bartusek et al. [46] prove security against a slightly larger class of “arithmetic
adversaries,” initially considered by Miles, Sahai, and Weiss [47]. To achieve
obfuscation secure against such adversaries, Bartusek et al. [45] rely on an
additional p-Bounded Speedup Hypothesis of Miles et al. [47] (a strengthening
of the Exponential Time Hypothesis).

– Our work proposes a candidate “fix” for the CLT13 multilinear maps that
enables a direct Non-Interactive Key Exchange (NIKE) construction secure
against zeroizing attacks under a new VBPUA assumption. Bartusek et al.
do not propose a corresponding fix for the GGH15 maps.
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– All of the constructions in this paper are trivially broken by quantum attacks
that factor the public CLT13 modulus N .7 In contrast, all currently known
quantum attacks on GGH15 [49] fall under the class of zeroizing attacks, and
as a result the obfuscation construction of Bartusek et al. resists all known
classical and quantum attacks.

2 Preliminaries

2.1 Multilinear Maps and the Generic Model

A multilinear map (also known as a graded encoding scheme) with universe
set U and a plaintext ring Rptxt supports encodings of plaintext elements in
Rptxt at levels corresponding to subsets of U. A plaintext element a encoded at
S ⊆ U is denoted as [a]S . Multilinear maps support some subset of the following
operations on these encodings:

– (Encoding) Given an element a ∈ Rptxt and level set S ∈ U, output [a]S .
– (Addition) Two encodings at the same level S ⊆ U can be added / subtracted.

Informally, [a1]S ± [a2]S = [a1 ± a2]S .
– (Multiplication) An encoding at level S1 ⊆ U can be multiplied with an

encoding at level S2 ⊆ U, provided S1 ∩ S2 = ∅. The product is an encoding
at level S1 ∪ S2. Informally: [a1]S1 · [a2]S2 = [a1 · a2]S1∪S2 .

– (Re-randomization) We will allow for schemes with non-unique encodings. In
this case, we may want a re-randomization procedure, which takes as input an
encoding of a potentially unknown element a, and outputs a “fresh” encoding
of a, distributed statistically close to a direct encoding of a.

– (Zero-Testing) An encoding [a]U at level U can be tested for whether a = 0.
– (Extraction) An encoding [a]U at level U can be extracted, obtaining a string

r. Different encodings of the same a must yield the same r.

Most multilinear map schemes, due to security vulnerabilities, only support
addition, multiplication, and zero-testing/extraction, but do not support public
re-randomization or encoding. Instead, encoding must be performed by a secret
key holder.

2.2 Overview of the CLT13 Multilinear Maps

We give a brief overview of the CLT13 multilinear maps, adapted from text in
[50]. For a full description of the scheme, see [19]. The CLT13 scheme relies on
the Chinese Remainder Theorem (CRT) representation. For large secret primes
pk, let N =

∏n
k=1 pk. Let CRT(s1, s2, . . . , sn) or CRT(sk)k denote the number

s ∈ ZN such that s ≡ sk (mod pk) for all k ∈ [n]. The plaintext space of the
CLT13 scheme is Zg1 × Zg2 × · · · × Zgn

for small secret primes gk. An encoding
of a vector m = (m1, . . . ,mn) at level set S = {i0} is an integer α ∈ ZN such
7 Our work leaves open the problem of devising composite-order multilinear maps

whose security does not rely on the hardness of factoring [48].
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that α = CRT(m1 + g1r1, . . . ,mn + gnrn)/zi0 (mod N) for small integers rk,
and where zi0 is a secret mask in ZN uniformly chosen during the parameters
generation procedure of the multilinear map. To support κ-level multilinearity,
κ distinct zi’s are used.

Additions between encodings in the same level set can be done by modular
additions in ZN . Multiplication between encodings can be done by modular
multiplication in ZN , only when those encodings are in disjoint level sets, and
the resulting encoding level set is the union of the input level sets. At the top
level set [κ], an encoding can be tested for zero by multiplying it by the zero-
test parameter pzt =

∑n
k=1 p∗

khk((
∏

i∈[κ] zi)g−1
k mod pk) (mod N) in ZN where

p∗
k = N/pk, and comparing the result to N . An encoding α can be expressed

as 1∏κ
i=1 zi

CRT(sk)k where sk denotes the numerator of its kth CRT component.
When α is an encoding of zero, it can be shown that

pztα (mod N) =
n∑

k=1

γksk,

where γk = p∗
khkg−1

k are “smallish” global secret parameters that depend on
the other CLT13 parameters. For encodings of zero, each sk is “small”, so
pztα (mod N) is small relative to N . If α does not encode 0, then one heuris-
tically expects pztα (mod N) to be large relative to N . Thus, we can zero test
by determining if this quantity is small.8 We can also extract a unique repre-
sentation of any encoded element by computing pztα (mod N), and rounding
appropriately.

2.3 Vector-input Branching Programs

We generalize matrix branching programs to vector-input branching programs,
a new notion we define (for the formal definition of matrix branching programs
we consider, see the full version [1]). Single-input branching programs consist
of a sequence of pairs of matrices, where an input bit is read for each pair to
select one of them. Our vector input generalization allows for selecting a linear
combination of matrices. In addition, we replace pairs of matrices with sets of
k matrices. Thus, a program input is a d-tuple of vectors of dimension k, each
consisting of non-negative integers. We can stack these d column vectors into a
matrix (Z)k×d, so for any input x ∈ (Z)k×d, xi,j ∈ Z denotes the jth component
of the ith vector.

These vector-input branching programs arise in the security proof of our new
multilinear map construction in Sect. 5. Thus, we will only consider a restricted

8 In the full CLT13 scheme, there is a vector of zero-testing elements created in a
way to prove that the result is large for non-zero encodings. However, in practice
this is far less efficient, so most implementations only use a single zero test vector as
described here (see e.g. [38]). We stress that giving out fewer zero-testing parameters
can only make the scheme more secure, and parameters can be set so that correctness
of zero-testing still holds with overwhelming probability.
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class of vector-input branching programs tailored to fit the requirements of our
analysis. Specifically, we use read-� programs, meaning that each vector in the
input is read exactly � times. These programs are single-input, so there are d�
sets of matrices. Furthermore, the input selection is fixed so that the ith input
vector is read for matrix sets i, d + i, . . . , (� − 1)d + i. In other words, the input
selection function is simply inp(j) = j (mod d).

Definition 1. A read-� vector-input branching program over a ring R with input
length n, vector dimension k, and matrix width w is given by a sequence

V BP =
(
s, t, {Bi,j}i∈[d�],j∈[k]

)

where each Bi,j is a w × w matrix, s is a w-dimensional row vector, and t is
a w-dimensional column vector. All entries are elements in R. Then V BP :
(Z)k×d → R is computed as

V BP (x) = s ·
⎛

⎝
d�∏

i=1

⎛

⎝
k∑

j=1

xi(mod d),jBi,j

⎞

⎠

⎞

⎠ · t.

For further intuition and examples of vector-input branching programs, refer
to the full version [1].

We remark that vector-input branching programs are reminiscent of arith-
metic branching programs [51,52], where an input string specifies a set of accept-
ing s-t paths in a weighted directed acyclic graph, and the output is a sum of
the products of all edge weights on each accepting path. With some care, we
can re-express vector-input branching programs as a certain type of arithmetic
branching program. However, we use the vector-input formulation as it intu-
itively captures the structure of our multilinear map construction in Sect. 4.

2.4 Kilian Randomization of Matrix Sequences

Consider a collection of n columns of matrices, where each column may contain
an arbitrary polynomial number of matrices. Denote the jth matrix in column i
as Ai,j . Suppose the matrices within each column have the same dimensions, and
across columns have compatible dimensions so that matrices in adjacent columns
can be multiplied together, and multiplying one matrix from each column results
in a scalar. Kilian [43] describes a method to partially randomize such branching
programs. Randomly sample invertible square matrices Ri. Then matrix Ai,j

is left-multiplied by R−1
i and right-multiplied by Ri+1. When performing an

iterated matrix product selecting one matrix from each column, the Ri and R−1
i

cancel out, so the product is unchanged by this randomization.

3 The Model

In this section, we define two models. The first is the weak CLT13 model,
intended to capture all known classical attacks on the CLT13 multilinear maps.
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The second is the CLT13 annihilation model, a modification of the weak CLT13
model with different winning conditions. We justify our first model by demon-
strating that it captures known attacks from the literature. The main theorem of
this section is that an adversary in the weak CLT13 model implies the existence
of an adversary in the CLT13 annihilation model. Combining this theorem with
the Branching Program Un-Annihilatability Assumption of [37], we immediately
obtain virtual black box (VBB) security of the obfuscator of Badrinarayanan et
al. [30]. Additionally, this shows that the order-revealing encryption scheme of
Boneh et al. [53] is secure in our model.

3.1 CLT13 Weak Multilinear Map Model

Notation. We will let uppercase letters such as M,S, Γ denote formal variables,
and lower case letters such as m, s, γ denote actual values. Bold letters will be
used to distinguish vectors from scalars. Let mji be a set of elements indexed by
j and i. We introduce 〈m〉i as shorthand for the set {mji}j of all elements with
index i, and 〈m〉 to denote the set {〈m〉i}i. For a set Mj,i of formal variables
indexed by j and i, define 〈M〉i and 〈M〉 analogously.

We now define our weak CLT13 model, with the following interfaces:

Initialize Parameters. At the beginning of the interaction with the model M,
M is initialized with the security parameter λ and the multilinearity parame-
ter κ ≤ poly(λ). We generate the necessary parameters of the CLT13 scheme
(including the vector dimension n, the primes gi, pi for i ∈ [n]) according to
the distributions suggested by Coron et al. [19]. Let Rptxt = Z∏

i gi
= ⊗iZgi

be
the plaintext ring. Let Rctxt = Z∏

i pi
= ⊗iZpi

. We will usually interpret ele-
ments in Rptxt and Rctxt as vectors of their Chinese Remaindering components.

Initialize Elements. Next, M is given a number of plaintext vectors mj ∈ R as
well as an encoding level Sj for each plaintext. M generates the CLT13 numer-
ators sj where sji = mji + girji as in the CLT13 encoding procedure. For each
j, M stores the tuple (mj , sj , Sj) in the a pre-zero test table.

Zero-testing. The adversary submits a polynomial pu to M, represented as a
polynomial-size level-respecting algebraic circuit. Here, level-respecting means
that all wires are associated with a level S, input wires are associated to the sets
Sj , add gates must add wires with the same level and output a wire with the
same level, multiply gates must multiply wires with sets S0 ∩S1 = ∅ and output
a wire with the level S0 ∪S1, and the final output wire must have set {1, . . . , κ}.

Next, M checks whether pu(〈m〉i) = 0 for all i. If the check fails for any i,
M returns “fail”. If the check passes for all i, M returns “success”. We assume
without loss of generality that the set {pu} of successful zero tests are linearly
independent as polynomials (since otherwise a zero-test on one pu can be derived
from the result of a zero-test on several other pu).

If we stop here, we recover the plain generic multilinear map model [44].
However, in our model, a successful zero test does more. If zero testing is suc-
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cessful, pu corresponds to a valid construction of a top-level zero encoding. M
then additionally returns a handle Tu to the value tu(〈γ〉, 〈s〉) =

∑
i γipu(〈s〉i),

the result of the zero-test computation. Each handle Tu along with the corre-
sponding the zero-test result is stored in a zero-test table.

Post-zero-test. Finally, the adversary submits a polynomial Q on the handles
{Tu}u and the formal variables 〈S〉i for some i ∈ [n] (that A picks). This Q must
be represented by a polynomial-sized algebraic circuit, and the degree must be
at most 2o(λ).9 The model looks up each handle Tu in the zero-test table and
plugs in the corresponding values tu. The model outputs “WIN” if the following
two conditions are satisfied.

1. Q({tu(〈γ〉, 〈s〉)}u, 〈S〉i) �≡ 0 as a polynomial over the formal variables 〈S〉i.
2. Q({tu(〈γ〉, 〈s〉)}u, 〈s〉i) = 0.

Intuitively, these conditions imply that Q is a polynomial with non-zero degree
over the 〈S〉i formal variables that is “solved” when the correct values 〈s〉i are
plugged in.

Plain Annihilation Model. We define a modification of the above CLT13
weak multilinear map model, which is identical except for post-zero-test queries:

Post-zero-test. A submits a polynomial Q′ on a set of formal variables {Pu}u,
where Pu represents the successful zero test polynomial pu. Again, this Q′ must
be represented by a polynomial-sized algebraic circuit, and the degree must be
at most 2o(λ). The model outputs “WIN” if the following conditions are satisfied.

1. Q′({Pu}u) is not identically zero over the {Pu}u formal variables.
2. Q′({pu(〈S〉i)}u) is identically zero over the 〈S〉i formal variables.

In other words, A wins if it submits a Q′ that annihilates the {pu}u polynomials.

3.2 Classical Attacks in the Weak CLT13 Model

We first show that the original attack on the CLT13 multilinear maps by Cheon
et al. fits into this framework [21].

Mounting this attack requires that the set of plaintext vectors {mj} given
to M can be divided into three distinct sets of vectors, A,B,C that satisfy
certain properties. We can discard/ignore any other plaintext vectors. For ease
of exposition, we relabel the vectors in these sets as:

A = {mA
1 , . . . ,mA

n } B = {mB
1 ,mB

2 } C = {mC
1 , . . . ,mC

n }
These vectors can be encoded at arbitrary levels, as long as for any j, σ, k,

mA
j · mB

σ · mC
k is a plaintext of zeros at the top level. Accordingly, A submits

polynomials pj,σ,k for all j, k ∈ [n], σ ∈ [2] for zero-testing where

pj,σ,k(mA
1 , . . . ,mA

n ,mB
1 ,mB

2 ,mC
1 , . . . ,mC

n ) = mA
j · mB

σ · mC
k

9 We note that these restrictions are analogous to restrictions made for annihilation
attacks on GGH13 [37].
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Each of these polynomials clearly gives a successful zero-test. In response to
each query, M returns a handle Tj,σ,k to the value

tj,σ,k =
n∑

i=1

γis
A
j,i · sB

σ,i · sC
k,i.

For σ ∈ {1, 2}, define Wσ to be the n × n matrix whose (j, k)th entry is
Tj,σ,k. In the real attack, the adversary computes the matrix W1W

−1
2 , which

Cheon et al. [21] show has eigenvalues sB
1,i

sB
2,i

. The adversary solves the character-

istic polynomial of W1W
−1
2 for these eigenvalues. In our model A cannot imme-

diately submit this characteristic polynomial, as it involves rational functions of
the handles T , and can only be solved for ratios of the sji values. However, we
observe that the characteristic polynomial

det
(
W1W

−1
2 − λI

)
= det

(

W1W
−1
2 −

(
SB
1,i

SB
2,i

)

I

)

= 0

can be re-written by substituting W−1
2 = W adj

2
det(W2)

. (where W adj
2 denotes the

adjoint matrix of W2). Applying properties of the determinant then gives

det(W1W
adj
2 SB

2,i − SB
1,i det(W2)I) = 0

A submits the left-hand side expression above as its polynomial Q in a post-
zero-test query. Since the Cheon et al. attack is successful, we know Q is nonzero
over the formal variables 〈S〉i after the values associated with the handles T are
plugged in. Additionally, plugging in the appropriate solutions 〈s〉i satisfies the
above expression, so both win conditions are satisfied. Thus, A wins in our model.

In the full version of this work [1], we show how the general attack framework
of Coron et al. [27] can be expressed in our model.

3.3 Model Conversion Theorem

Theorem 1. If there exists an adversary A that wins with non-negligible prob-
ability in the weak CLT13 multilinear map model, there exists an adversary A′

that wins with non-negligible probability in the CLT13 annihilation model. A′ is
the same as A up to and including the zero-test queries, and only differs on the
post-zero test queries.

We give a brief outline of the proof strategy (for the whole proof, refer to the
full version of this paper [1]). An adversary that wins in the weak CLT13 model
produces a non-trivial polynomial Q that evaluates to 0 on the actual CLT13
parameters and the numerators of the encodings. Since the CLT13 parameters
and encodings are sampled using randomness hidden from the adversary, we can
use a generalization of the Schwartz-Zippel lemma to conclude that the polyno-
mial must be identically zero over its formal variables. We can view this polyno-
mial as being over the formal variables corresponding to the CLT13 parameters,
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where the remaining formal variables constitute “coefficients”. Since the overall
polynomial is identically zero, all coefficients must also be identically zero. To
conclude, we use the fact that the polynomial is non-trivial to show that there
must exist a coefficient which acts as an annihilating polynomial for the zero-test
polynomials.

3.4 Secure Obfuscation and Order-revealing Encryption in the
Weak CLT13 Model

Security in our weak CLT13 model means security in the plain generic multilin-
ear map model, plus the inability to construct an annihilating polynomial. We
observe that Badrinarayanan et al. [30] show for their obfuscator (which is a
tweak of the obfuscator of Barak et al. [41]), the only successful zero tests an
adversary can perform are linear combinations of honest obfuscation evaluations
on some inputs. Moreover, the linear combinations can only have polynomial
support. Recall that in [30], evaluation is just a branching program evaluation
over the encoded values. Therefore, any annihilating polynomial in the plain
annihilation model is actually an annihilating polynomial for branching pro-
grams. Therefore, using the branching program un-annihilatability assumption
of Garg et al. [37], we immediately conclude that no such annihilating polynomial
is possible. Thus, there is no weak CLT13 attack on this obfuscator.10

We similarly observe that in the order-revealing encryption (ORE) scheme of
Boneh et al. [53], any successful zero is also a linear combination of polynomially-
many branching program evaluations. Therefore, by a similar argument, we
immediately obtain that Boneh et al.’s scheme is secure in our weak CLT13
model.

4 A New Multilinear Map Candidate

In this section, we give a candidate polynomial-degree multilinear map scheme.
We show, given an assumption about annihilating vector-input branching pro-
grams, that this multilinear map is secure in the weak CLT13 model. Here, we
discuss our basic scheme; in the full version of this work, we show how to leverage
the “slotted” structure of CLT13 encodings to obtain efficiency improvements [1].

4.1 Construction Overview

The levels will be non-empty subsets of [d] for some polynomial d. For simplicity,
here we describe how to build a multilinear map that only allows a pairing
10 The Garg et al. obfuscator is defined as a dual-input obfuscator, which is the ver-

sion we consider. The dual-input requirement is crucial; a single-input variant of
this obfuscator is insecure and was attacked by Coron et al. [54]. The key point is
that the branching program un-annihilatability assumption only holds for branch-
ing programs with significant interleaving of input bits, which can be ensured by a
dual-input requirement.
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operation that takes d elements, one from each singleton set, directly to a top-
level encoding. This is the style of multilinear map envisioned by Boneh and
Silverberg [2].

Our construction is logically organized into d� columns, numbered from 1 to
d�. The columns are further partitioned into d groups numbered 1 through d of
� columns, where the columns in each group are interleaved: group u consists of
columns u, u+d, u+2d, . . . , u+(�−1)d. Each column will correspond to one level
of the underlying CLT13 maps, and each group of columns will correspond to
one meta-level of our scheme. We set the plaintext space of both the underlying
CLT13 scheme and our scheme to be Rptxt = ZM where M =

∏
i gi. Recall that

in the CLT13 scheme, M is not public.
We first describe the format of a meta-encoding in our scheme. An encoding

at singleton level u will consist of � matrices of CLT13 encodings, one in each of
the columns corresponding to column group u. We will denote by A

(u)
i the ith

matrix in the encoding for level u. To construct A
(u)
i , we first define the diagonal

matrix
˜
A

(u)
i , of the form

diag(mi, vi, wi, ξ1I, . . . , ξu−1I, E
(u)
i , ξu+1I, . . . , ξdI).

These components of the diagonal matrix work as follows:

– mi is a plaintext element used for the actual plaintext encoding.
– vi and wi are freshly sampled uniformly random elements from the plain-

text space ZM . Their sole purpose is to enforce a requirement called non-
shortcutting, which will arise in the security proof. They are canceled out in
valid products by 0’s in the bookend vectors, defined later.

– The remainder of the diagonal consists of d block matrices, where d−1 blocks
are essentially unused and set to random multiples of the identity, while the
uth matrix is set to be an “enforcing matrix” E

(u)
i . Note that i corresponds

to this being the ith matrix for encoding u. The purpose of these matrices
is roughly to prevent an adversary from arbitrarily mixing and matching the
matrices from different encodings. We defer the details of these matrices to
Sect. 4.2.

Next, d� + 1 Kilian randomization matrices Ri are generated [43] to left and
right multiply each of the d� columns. All encodings will share the same Kilian

matrices. Each
˜
A

(u)
i matrix at meta-level u is left- and right- multiplied by the

appropriate Kilian matrices, giving

R−1
u+(i−1)d−1

˜
A

(u)
i Ru+(i−1)d.

Each element of this Kilian-randomized matrix is encoded in an asymmetric
CLT13 multilinear map at level {u+(i−1)d}CLT13 (we differentiate levels of the
underlying CLT13 map with this subscript, to avoid confusion with the levels of
our multilinear map) corresponding to the column it belongs to. The resulting
matrix of CLT13 encodings is taken to be A

(u)
i .
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For a matrix A
(u)
i , we refer to the underlying ring element mi as the matrix

plaintext. This is the only component of the matrix used for encoding actual
plaintext elements. Therefore, as described so far, every meta-encoding in our
scheme encodes a length-� vector of ring elements.

We also give out “bookends” s, t, which are CLT13 encodings of the vectors

ŝ = (1, 1, 0, F1, . . . , Fd) · R0 , t̂ = R−1
d� · (1, 0, 1, G1, . . . , Gd)T .

For the sake of clarity, we defer discussing the F,G vectors until Sect. 4.2.
The 1 in the first position is used to extract the matrix plaintexts. The 0 in the
second position of t̂ will zero-out the vi terms, while the 0 in the third position
of ŝ will zero-out the wi terms. s is encoded at CLT13 level 0, while t is encoded
at level d� + 1.

A meta-encoding of x ∈ Rptxt = ZM at singleton level {u} is simply a
sequence of matrices (A(u)

i )i∈[�] whose corresponding sequence of matrix plain-
texts is (x, 0, 0, . . . , 0).

At instance generation, we generate and publish a set of initial public encod-
ings.

– For each singleton level {u} ⊆ [d], we publish encodings of 1, 2, 4, . . . , 2ρ−1,
where ρ is specified later.

– For each singleton level {u} ⊆ [d], we publish τ encodings of zero, where τ is
specified later.

– For the top level [d], we publish a special pre-zero-test encoding that will
have most of the structure of a valid top level encoding, except that it will not
correctly encode an actual plaintext element. Its sequence of matrix plaintexts
will be (0, 1, 1, . . . , 1), which differs from a normal encoding where the matrix
plaintexts are all 0 after the first slot. The sole purpose of this encoding is to
be added to any top level encoding we seek to zero test. Roughly, the element
submitted for zero testing is the product of an encoding’s matrix plaintexts,
and without this step the product would always be zero.

To add/subtract two meta-encodings at the same singleton level {u},
which are two sequences of � matrices, we line up the sequences of matrices
and add/subtract the corresponding matrices component-wise. The resulting
sequence of � matrices is taken as the encoding of the sum. Intuitively, this works
because adding these matrices also adds the sequence of matrix plaintexts. As
we show in Sect. 4.2, the structure of the enforcing matrices is also preserved. If
the input encodings have matrix plaintexts (x1, 0, . . . , 0) and (x2, 0, . . . , 0), the
result of addition/subtraction has matrix plaintexts (x1 ± x2, 0, . . . , 0).

To pair d meta-encodings, one from each singleton level, we do the following.
For each i ∈ [�], we line up the ith matrix from each encoding, in the order
specified by the columns of our scheme, and multiply the matrices together.
The resulting i matrices are then added to the corresponding i matrices from
the pre-zero-test encoding. Based on the structure of our encoding scheme, the
resulting i matrices have the matrix plaintext sequence (

∏
u xu, 1, . . . , 1), where

xu was the value encoded at level {u}. Finally, we multiply all of these matrices
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together. The resulting matrix will have
∏

u xu in the upper-left corner. Finally,
we multiply by the bookends s, t to obtain a single top-level CLT13 encoding. We
set up the enforcing matrices in Sect. 4.2 to guarantee that this product becomes
a CLT13 encoding of

∏
u xu.

The remaining procedures work as follows.

Encode. To encode a plaintext x ∈ Z2ρ at a singleton level {u}, write the
plaintext in base 2, and then sum the appropriate public encodings of powers of
2. We note that we do not publish a description of the plaintext ring Rptxt = ZM ,
where M =

∏
i gi. Therefore, the input to the encoding procedure is some integer

x ∈ Z2ρ , and the output is an encoding of x mod M , where Rptxt = ZM . We
set ρ = M × 2λ for a security parameter λ so that a random x ∈ Z2ρ yields an
element x mod M that is statistically close to random in Rptxt.

Re-randomize. To re-randomize this encoding, add a random subset sum of
the public encodings of zero available for the level. We choose the parameter
τ , roughly, to be large enough so that the result is statistically close to a fresh
random encoding. For further discussion, see the full version [1].

Zero-test and Extract. Zero testing and extraction on top-level encodings
(which are just top-level CLT13 encodings) are performed exactly as in CLT13.

4.2 Enforcing Matrix Structure

We now describe the enforcing matrix structure used in the matrices of our
scheme. Consider the � matrices associated to an encoding at any singleton
level {u}, which all have a block diagonal form. For each matrix, all the diag-
onal entries except the top left three entries are responsible for providing the
enforcing structure. As described in Sect. 4.1, the rest of the diagonal entries
are divided into d equally-sized diagonal matrices. The uth block is set to E

(u)
i ,

which provides the enforcing structure for level {u}, while the other d−1 blocks
are set to random multiples of the identity to avoid interfering with the enforcing
structure of the other singleton levels.

To construct E
(u)
i for a new encoding, we sample a random vector α of

dimension �. Denote the ith component as αi. The matrix E
(u)
i is set to be the

following diagonal matrix of width 2(� − 1):

E
(u)
i = diag(αi, ασ(12)(i), αi, ασ(23)(i), . . . , αi, ασ(�−1,�)(i))

Here, σ(ab) denotes the transposition swapping a and b. We additionally have
two bookend vectors F,G, used by all enforcing matrices for a particular single-
ton level. The left bookend vector F is simply the all 1’s row vector of dimension
2(� − 1). The right bookend vector G is a column vector of dimension 2(� − 1).
To set the entries of G, we sample � − 1 random values {ηi}i∈[�−1], and set the
entry in position 2i−1 to ηi, and the entry in position 2i to −ηi for all i ∈ [�−1].
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Restrictions on Matrix Products. The sole purpose of the enforcing matri-
ces is to ensure that the adversary respects the meta-encoding structure. For
example, since each meta-encoding consists of � separate matrices, an adversary
may try to swap some of these matrices for matrices from other meta-encodings.
We show that any attempt to do so will inevitably lead to a useless top-level
encoding of a random plaintext.

Consider a setting where the adversary has access to dk meta-encodings of
various matrix plaintext vectors, k in each singleton level. These encodings form
a k×d� grid, with k matrices in each of the d� columns. Since we have k encodings
per singleton level, we modify our notation slightly; now A

(u)
i,j will denote the jth

encoding of the ith matrix for meta-level u. Furthermore, we can ignore the first
three rows and columns of each A

(u)
i,j matrix, as they play no role in the enforcing

structure. Let C
(u)
i,j be the width 2d(� − 1) diagonal matrix that remains.

To recap, d − 1 of the blocks of C
(u)
i,j are set to be width-2(� − 1) identity

matrices (randomly scaled) and the uth block is set to E
(u)
i,j . For any meta-

encoding j at level u, a fresh random set of {E
(u)
i,j }i∈[�] is generated. The book-

ends are formed by concatenating d independently generated instances of our
2(� − 1) dimensional bookends. The arrangement of the C

(u)
i,j matrices (without

the bookends) in the k × d� grid is shown below:

C
(1)
1,1 C

(2)
1,1 · · · C

(d)
1,1

C
(1)
1,2 C

(2)
1,2 · · · C

(d)
1,2

...
...

...

C
(1)
1,k C

(2)
1,k · · · C

(d)
1,k

C
(1)
2,1 C

(2)
2,1 · · · C

(d)
2,1

C
(1)
2,2 C

(2)
2,2 · · · C

(d)
2,2

...
...

...

C
(1)
2,k C

(2)
2,k · · · C

(d)
2,k

· · ·
C

(1)
�,1 C

(2)
�,1 · · · C

(d)
�,1

C
(1)
�,2 C

(2)
�,2 · · · C

(d)
�,2

...
...

...

C
(1)
�,k C

(2)
�,k · · · C

(d)
�,k

The matrices are divided into � groups, each consisting of k rows and d
columns of matrices. Picking the matrix in row j and column u for each group
gives the � matrices that comprise the enforcing component of the jth meta-
encoding at level u.

Notice that adding point-wise C
(u)
1,j0

, . . . , C
(u)
�,j0

to C
(u)
1,j1

, . . . , C
(u)
�,j1

or scaling

C
(u)
1,j , . . . , C

(u)
�,j preserves the form of the matrices (though now the α’s are dif-

ferent). Notice also that multiplying all the matrices in C
(u)
1,j , . . . , C

(u)
�,j together

along with our bookend vectors gives 0. Therefore, we can take arbitrary linear
combinations of meta-encodings, multiply them together, and still get 0. We will
show that this is essentially the only way to combine different C

(u)
i,j to get zero.

Applied to our construction, the matrices are the various meta-encodings of
0 and powers of 2 that the adversary is given in the public parameters. The
adversary also has access to a pre-zero-test encoding, which does not fit this
pattern. However, we can think of the pre-zero-test encoding as arising from d
meta-encodings with matrix plaintext sequence (0, 1, . . . , 1), one encoding per
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singleton level. The actual pre-zero-test encoding is obtained by multiplying
these encodings together.

While the CLT13 level structure allows an adversary to multiply together
any collection of matrices that picks one from each column, our enforcing matrix
structure will restrict the adversary to taking products of linear combinations of
meta-encodings (or linear combinations of such products).

To formalize this notion, we first introduce the following definition.

Definition 2. We define a valid monomial to be a polynomial representing a
product of the C

(u)
i,j matrices, so that exactly one matrix is taken from each

column, in column order, along with the bookends.

Next, we re-cast the C
(u)
i,j matrices as the matrices of a read-� vector-

input branching program (an extension of matrix branching programs defined
in Sect. 2.3) that takes inputs x ∈ (Z)k×d. The point of adopting the vector-
input branching program (VBP) view is that read-� VBP evaluations correspond
exactly to valid manipulations of meta-encodings.

If we expand out any linear combination of read-� VBP evaluations, the
resulting polynomial is a linear combination of valid monomials. However, given
an arbitrary linear combination of valid monomials, it is not immediately clear
if it can be expressed as a linear combination of read-� VBP evaluations (and
hence a valid combination of meta-encodings). The following lemma characterizes
precisely when this occurs.

Lemma 1. Let Q be a linear combination of valid monomials. If Q evaluates to
0 as a polynomial over the underlying randomness of the C

(u)
i,j matrices, Q is a

linear combination of read-� VBP evaluations, where the VBP is the one defined
by the same C

(u)
i,j matrices.

For a more precise statement of this lemma and its proof, see the full
version [1].

5 Security of Our Multilinear Map

Strategy Overview. To prove the security of our multilinear map construc-
tion within the CLT13 weak model, we define “real” and “ideal” experiments.
Recall that an encoding of a plaintext in our scheme consists of numerous CLT13
plaintexts at different CLT13 levels. The “real” experiment allows the adversary
to perform operations on any of these individual CLT13 encodings, and win
through any of the victory conditions in the weak model. The “ideal” experi-
ment provides the same interface to the adversary, but is run by a simulator
that only has access to the vanilla generic multilinear map model. Intuitively, if
there exists a simulator for which the adversary cannot distinguish between the
two experiments, then no extra information is leaked in the real world and our
multilinear map achieves ideal security.
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Real and Ideal Experiments. Suppose the multilinear map is used to encode
a sequence m1, . . . ,mv of plaintexts at levels S1, . . . , Sv.

In the “real” world experiment, denoted EXPreal, the adversary interacts
with our weak CLT13 model, whose plaintexts consist of all the elements of
all the matrices output by our multilinear map encoding procedure as well as all
the elements of the public parameter matrices. These plaintexts are encoded at
the appropriate levels derived from S1, . . . , Sv. The adversary can submit level-
respecting polynomials over these plaintexts as zero-test queries, and receives a
handle to the result of the zero-test computation for successful queries. Then the
adversary enters a post-zero test stage, and can win by submitting a polynomial
Q that satisfies the win conditions of the CLT13 weak model.

In the “ideal” world experiment, denoted EXPideal, the adversary interacts
with a simulator S that can interact with a vanilla generic multilinear map
model. In this world, the model only stores the actual plaintexts m1, . . . ,mv

and levels S1, . . . , Sv. The adversary submits level-respecting polynomials over
the plaintexts of the real world. The simulator S answers these queries using
only queries to its model over the actual plaintexts. As in the real world, the
adversary enters a post-zero test stage, which the simulator must respond to.

For any adversary A, let EXPreal(A) (respectively EXPideal(S,A)) denote the
probability that A can win in the “real” (respectively “ideal”) world.

5.1 The Vector-input Branching Program Un-annihilatability
(VBPUA) Assumption

The security of our multilinear map rests on a new assumption about anni-
hilating vector-input branching programs (VBPs), defined in Sect. 2.3. Define
a generic vector-input branching program (VBP) to be a VBP whose matrix
entries are all distinct formal variables, instead of fixed ring elements. A generic
VBP is evaluated just like a regular VBP, but the program output is a polyno-
mial over formal variables. We refer to these outputs as generic VBP evaluation
polynomials.

Note to the reader: The following is the simplest formal statement of our
assumption. As the assumption relies on a number of newly introduced terms, it
may be helpful to refer to the full version of this work [1] where we give concrete
illustrations of our assumption for small cases.

We now define the polynomial-size arithmetic circuits Ar that will be nec-
essary for the assumption statement. Ar takes the matrices of the vector-input
branching program as input. The output of Ar is restricted to be a linear com-
bination of vector-input branching program evaluations (though note that a
polynomial-size arithmetic circuit can compute exponentially large linear com-
binations).

Assumption 1 (The (�, w, k)-VBPUA Assumption). Let � = poly(d, λ),
w = poly(d, λ), k = poly(d, λ) be parameters, and let f(x) for (x1, . . . , xd) ∈
(Zk)d (where each input vector xi is a k-dimensional integer vector) be a generic
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vector-input branching program that reads each input vector xi � times and con-
sists of w × w matrices. For each r = 1, . . . , m, let Ar be any arithmetic circuits
satisfying the definition above, each with size poly(d, k, λ). The output of Ar

is a polynomial over the formal variables of the generic vector-input branch-
ing program, and denote it by Pr. Suppose further that P1, . . . , Pm are linearly
independent as polynomials over the formal variables of the generic vector-input
branching program. Then there does not exist any polynomial-sized circuit Q of
degree at most 2o(λ) such that Q({Pr}r) ≡ 0 as a polynomial over the formal
variables of the generic VBP.

Note that each pair of functions �, w, k gives a distinct assumption. In gen-
eral, increasing � or w intuitively gives a harder problem (and therefore milder
assumption), while increasing k gives a potentially easier problem (and there-
fore stronger assumption. Our construction is quite flexible, and can be tailored
to work with multiple possible settings of �, w, k. Importantly, however, we will
usually need k to be substantially larger than w2�. For more precise bounds on
�, w, k, refer to the full version [1].

We conjecture that the assumption is for any choices of �, w, k provided w�

is exponential in λ, d. We conjecture that determinant-style annihilating attacks
(discussed in the full version [1]) give the lowest-complexity annihilating polyno-
mials for VBPs, as this appears to be the case for matrix branching programs.
w� lower bounds the size of such determinant-style annihilations. Verifying this
would imply security for the choices of �, w, k that we require.

This assumption is similar to the Branching Program Un-Annihilatability
Assumption of Garg et al. [37], but we do not know how to base our assumption
on PRFs. For a detailed comparison of the statements of these assumptions,
refer to the full version [1].

Note that the assumption states that no polynomial-size circuits Q of degree
at most 2o(λ) can annihilate a non-trivial set of VBP evaluations (generated by
polynomial-size circuits). As evidence that this assumption is not trivially false,
we heuristically argue in the full version of this work [1] that there are no circuits
Q that can annihilate VBP evaluations up to a certain polynomial degree, even
if we allow Q to have exponential size.

5.2 Security Proof

Our multilinear map is secure as long as (1) the adversary can never create a
successful polynomial Q in the real world, and (2) any information the adversary
gets in the real world, the adversary can also obtain in the ideal world. Formally,
this requires proving the existence of a simulator such that no PPT adversary
can distinguish between the two worlds.

Let d be the desired asymmetric degree of the multilinear map. We instantiate
the construction with the number of meta-encodings k released per level set
large enough to support secure re-randomization of meta-encodings under the
Leftover Hash Lemma, and the number of matrices per meta-encoding � set large
enough so that brute-force determinant attacks are blocked. The width w of each
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matrix is set to 3 + 2d(� − 1) to fit the construction. For further details on the
recommended parameter choices, refer to the full version [1].

With this setting of �, w, k, security of our construction follows from the
(�, w, k)-VBPUA assumption.

Theorem 2. Under the (�, w, k)-VBPUA Assumption, our construction with
the above parameter choices is secure in the CLT13 weak model. That is, there
exists a PPT simulator S such that for all PPT adversaries A,

Pr[EXPreal(A) = EXPideal(S,A)] = 1 − negl(λ)

Moreover, S always responds to post-zero test queries with 0.

Due to space restrictions, we give a high level overview of the major proof
techniques and defer the full proof to [1].

Proof Sketch. We start with an application of Theorem 1, which states that if
an adversary A can break our scheme in the weak CLT13 model, there exists an
adversary A′ in the CLT13 annihilating model. Recall that in the annihilating
model, A′ wins if it can annihilate the formal polynomials that correspond to
successful zero-tests. Therefore, our first task is to show that the only successful
zero-tests the adversary can compute are those that correspond to valid manip-
ulations of our multilinear map meta-encodings. Then if we view the matrices in
our scheme as the matrices of a read-� vector-input branching program (VBP),
a valid top-level meta-encoding corresponds to a linear combination of honest
VBP evaluations. Given the VBPUA assumption, an adversary cannot success-
fully annihilate these evaluations.

Recall that the meta-encodings are themselves sequences of individual matri-
ces. We must first show that the adversary must respect the structure of these
individual matrices. We rely on an extension of Lemma 5.2 in [30], which we
state and prove in the full version of this paper [1]. At a high level, our lemma
shows that Kilian randomization matrices force the adversary to respect the
original matrix structure; if the adversary attempts to pluck individual scalar
entries out of these matrices and obtain zero-tests that do not correspond to
products of matrices, then it will be unable to obtain successful zero-tests with
any non-negligible probability. The next step is to show, roughly speaking, that
an adversary cannot manipulate (i.e. add/multiply) one matrix from a meta-
encoding without simultaneously performing the same operation on all of them.
This follows from Lemma 1 (proven in the full version [1]), which implies that
if the adversary does not respect the meta-encoding structure, our “enforcing
matrices” will guarantee it does not obtain a successful zero-test except with
negligible probability.

Taken together, these steps show that the adversary can never be successful in
the post-zero-test stage of the CLT13 annihilating model. Therefore it can only
distinguish the real experiment from the ideal experiment by making ordinary
zero-test queries. In the full proof [1], we conclude by showing how a simulator
S with access to an ideal implementation of our multilinear map can correctly
simulate the 0/1 response to any zero-test query.
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map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

22. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 21

23. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multi-
linear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 21

24. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 13

25. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. Cryptology ePrint Archive, Report 2014/930 (2014). http://eprint.
iacr.org/2014/930

26. Halevi, S.: Graded encoding, variations on a scheme. Cryptology ePrint Archive,
Report 2015/866 (2015). http://eprint.iacr.org/2015/866

27. Coron, J.S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 12

28. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Crypt-
analysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report
2015/845 (2015). http://eprint.iacr.org/2015/845

https://doi.org/10.1007/978-3-662-49096-9_6
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-49096-9_8
https://doi.org/10.1007/978-3-662-49096-9_8
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-47989-6_13
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2015/866
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
http://eprint.iacr.org/2015/845


542 F. Ma and M. Zhandry

29. Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 20

30. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 27

31. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

32. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

33. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low level encoding of zero. Cryptology ePrint
Archive, Report 2016/139 (2016). http://eprint.iacr.org/2016/139

34. Cheon, J.H., Hhan, M., Kim, J., Lee, C.: Cryptanalyses of branching program
obfuscations over GGH13 multilinear map from the NTRU problem. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 184–210. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 7

35. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved
secure in the weak multilinear map model. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 153–183. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 6

36. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

37. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53644-5 10

38. Lewi, K., et al.: 5Gen: A framework for prototyping applications using multilinear
maps and matrix branching programs, pp. 981–992 (2016)

39. Paneth, O., Sahai, A.: On the equivalence of obfuscation and multilinear maps.
Cryptology ePrint Archive, Report 2015/791 (2015). http://eprint.iacr.org/2015/
791

40. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9562, pp. 446–473. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 19

41. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

https://doi.org/10.1007/978-3-662-49890-3_20
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
http://eprint.iacr.org/2016/139
https://doi.org/10.1007/978-3-319-96878-0_7
https://doi.org/10.1007/978-3-319-96878-0_6
https://doi.org/10.1007/978-3-319-96878-0_6
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
http://eprint.iacr.org/2015/791
http://eprint.iacr.org/2015/791
https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13


The MMap Strikes Back 543

42. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their appli-
cation to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 9

43. Kilian, J.: Founding cryptography on oblivious transfer, pp. 20–31 (1988)
44. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via

generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

45. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Preventing zeroizing attacks on
GGH15. Cryptology ePrint Archive, Report 2018/511 (2018). https://eprint.iacr.
org/2018/511

46. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Return of GGH15: provable security
against zeroizing attacks. In: TCC 2018 (2018)

47. Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks.
Cryptology ePrint Archive, Report 2014/878 (2014). http://eprint.iacr.org/2014/
878

48. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

49. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 10

50. Coron, J.S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistin-
guishability obfuscation over CLT13. Cryptology ePrint Archive, Report 2016/1011
(2016). http://eprint.iacr.org/2016/1011

51. Beimel, A., Gál, A.: On arithmetic branching programs. J. Comput. Syst. Sci.
59(2), 195–220 (1999)

52. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

53. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 19

54. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indis-
tinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-
54365-8 3

https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-642-54242-8_1
https://eprint.iacr.org/2018/511
https://eprint.iacr.org/2018/511
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878
https://doi.org/10.1007/978-3-662-46803-6_15
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
http://eprint.iacr.org/2016/1011
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3

	The MMap Strikes Back: Obfuscation and New Multilinear Maps Immune to CLT13 Zeroizing Attacks
	1 Introduction
	1.1 Our Work: New Multilinear Maps
	1.2 Techniques

	2 Preliminaries
	2.1 Multilinear Maps and the Generic Model
	2.2 Overview of the CLT13 Multilinear Maps
	2.3 Vector-input Branching Programs
	2.4 Kilian Randomization of Matrix Sequences

	3 The Model
	3.1 CLT13 Weak Multilinear Map Model
	3.2 Classical Attacks in the Weak CLT13 Model
	3.3 Model Conversion Theorem
	3.4 Secure Obfuscation and Order-revealing Encryption in the Weak CLT13 Model

	4 A New Multilinear Map Candidate
	4.1 Construction Overview
	4.2 Enforcing Matrix Structure

	5 Security of Our Multilinear Map
	5.1 The Vector-input Branching Program Un-annihilatability (VBPUA) Assumption
	5.2 Security Proof

	References




