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Preface

The 16th Theory of Cryptography Conference (TCC 2018) was held during November
11–14, 2018, at the Cidade de Goa hotel, in Panaji, Goa, India. It was sponsored by the
International Association for Cryptologic Research (IACR). The general chairs of the
conference were Shweta Agrawal and Manoj Prabhakaran. We would like to thank
them for their hard work in organizing the conference.

The conference received 168 submissions, of which the Program Committee
(PC) selected 50 for presentation (with two pairs of papers sharing a single presentation
slot per pair). Each submission was reviewed by at least three PC members, often more.
The 30 PC members (including PC chairs), all top researchers in our field, were helped
by 211 external reviewers, who were consulted when appropriate. These proceedings
consist of the revised version of the 50 accepted papers. The revisions were not
reviewed, and the authors bear full responsibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent Web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions. Based on the experience from previous years,
we again made use of the interaction feature supported by the review software, where
PC members may anonymously interact with authors. This was used to ask specific
technical questions, such as suspected bugs. We felt this approach helped us prevent
potential misunderstandings and improved the quality of the review process.

This was the fifth year that TCC presented the Test of Time Award to an outstanding
paper that was published at TCC at least eight years ago, making a significant con-
tribution to the theory of cryptography, preferably with influence also in other areas of
cryptography, theory, and beyond. This year the Test of Time Award Committee
selected the following paper, published at TCC 2005: “Evaluating 2-DNF Formulas on
Ciphertexts” by Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. This paper was selected
for introducing compact two-operation homomorphic encryption and developing new
bilinear map techniques that led to major improvements in the design of cryptographic
schemes. The authors were also invited to deliver a talk at TCC 2018. A Best Student
Paper Award was given to Tianren Liu for his paper “On Basing Search SIVP on
NP-Hardness.”

The conference also featured two other invited talks, by Moni Naor and by Daniel
Wichs.

We are greatly indebted to many people who were involved in making TCC 2018 a
success. First of all, a big thanks to the most important contributors: all the authors who
submitted papers to the conference. Next, we would like to thank the PC members for
their hard work, dedication, and diligence in reviewing the papers, verifying the cor-
rectness, and in-depth discussion. We are also thankful to the external reviewers for
their volunteered hard work and investment in reviewing papers and answering
questions, often under time pressure. For running the conference itself, we are very
grateful to the general chairs, Shweta Agrawal and Manoj Prabhakaran. We appreciate



the sponsorship from the IACR, Microsoft Research, IBM, and Google. We also wish
to thank IIT Madras and IIT Bombay for their support. Finally, we are thankful to the
TCC Steering Committee as well as the entire thriving and vibrant TCC community.

November 2018 Amos Beimel
Stefan Dziembowski

TCC 2018 Program Chairs
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Topology-Hiding Computation Beyond
Semi-Honest Adversaries

Rio LaVigne1(B), Chen-Da Liu-Zhang2, Ueli Maurer2, Tal Moran3,
Marta Mularczyk2, and Daniel Tschudi4

1 MIT, Cambridge, USA
rio@mit.edu

2 ETH Zurich, Zürich, Switzerland
{lichen,maurer,mumarta}@inf.ethz.ch

3 IDC Herzliya, Herzliya, Israel
talm@idc.ac.il

4 Aarhus University, Aarhus, Denmark
tschudi@cs.au.dk

Abstract. Topology-hiding communication protocols allow a set of par-
ties, connected by an incomplete network with unknown communication
graph, where each party only knows its neighbors, to construct a com-
plete communication network such that the network topology remains
hidden even from a powerful adversary who can corrupt parties. This
communication network can then be used to perform arbitrary tasks, for
example secure multi-party computation, in a topology-hiding manner.
Previously proposed protocols could only tolerate passive corruption.
This paper proposes protocols that can also tolerate fail-corruption (i.e.,
the adversary can crash any party at any point in time) and so-called
semi-malicious corruption (i.e., the adversary can control a corrupted
party’s randomness), without leaking more than an arbitrarily small frac-
tion of a bit of information about the topology. A small-leakage protocol
was recently proposed by Ball et al. [Eurocrypt’18], but only under the
unrealistic set-up assumption that each party has a trusted hardware
module containing secret correlated pre-set keys, and with the further
two restrictions that only passively corrupted parties can be crashed by
the adversary, and semi-malicious corruption is not tolerated. Since leak-
ing a small amount of information is unavoidable, as is the need to abort

R. Lavigne—This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 1122374. Any opinion,
findings, and conclusions or recommendations expressed in this material are those of the
authors(s) and do not necessarily reflect the views of the National Science Foundation.
Research also supported in part by NSF Grants CNS-1350619 and CNS-1414119, and
by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
T. Moran—Supported in part by ISF grant no. 1790/13 and by the Bar-Ilan Cyber-
center.
M. Mularczyk—Research was supported by the Zurich Information Security and Pri-
vacy Center (ZISC).
D. Tschudi—Work partly done while author was at ETH Zurich. Author was supported
by advanced ERC grant MPCPRO.
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the protocol in case of failures, our protocols seem to achieve the best
possible goal in a model with fail-corruption.

Further contributions of the paper are applications of the protocol
to obtain secure MPC protocols, which requires a way to bound the
aggregated leakage when multiple small-leakage protocols are executed
in parallel or sequentially. Moreover, while previous protocols are based
on the DDH assumption, a new so-called PKCR public-key encryption
scheme based on the LWE assumption is proposed, allowing to base
topology-hiding computation on LWE. Furthermore, a protocol using
fully-homomorphic encryption achieving very low round complexity is
proposed.

1 Introduction

1.1 Topology-Hiding Computation

Secure communication over an insecure network is one of the fundamental goals of
cryptography. The security goal can be to hide different aspects of the communica-
tion, ranging from the content (secrecy), the participants’ identity (anonymity),
the existence of communication (steganography), to hiding the topology of the
underlying network in case it is not complete.

Incomplete networks arise in many contexts, such as the Internet of Things
(IoT) or ad-hoc vehicular networks. Hiding the topology can, for example, be
important because the position of a node within the network depends on the
node’s location. This could in information about the node’s identity or other con-
fidential parameters. The goal is that parties, and even colluding sets of parties,
can not learn anything about the network, except their immediate neighbors.

Incomplete networks have been studied in the context of communication
security, referred to as secure message transmission (see, e.g. [DDWY90]), where
the goal is to enable communication between any pair of entities, despite an
incomplete communication graph. Also, anonymous communication has been
studied extensively (see, e.g. [Cha81,RC88,SGR97]). Here, the goal is to hide
the identity of the sender and receiver in a message transmission. A classical
technique to achieve anonymity is the so-called mix-net technique, introduced
by Chaum [Cha81]. Here, mix servers are used as proxies which shuffle mes-
sages sent between peers to disable an eavesdropper from following a message’s
path. The onion routing technique [SGR97,RC88] is perhaps the most known
instantiation of the mix-technique. Another anonymity technique known as Din-
ing Cryptographers networks, in short DC-nets, was introduced in [Cha88] (see
also [Bd90,GJ04]). However, none of these approaches can be used to hide the
network topology. In fact, message transmission protocols assume (for their exe-
cution) that the network graph is public knowledge.

The problem of topology-hiding communication was introduced by Moran
et al. [MOR15]. The authors propose a broadcast protocol in the cryptographic
setting, which does not reveal any additional information about the network
topology to an adversary who can access the internal state of any number of
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passively corrupted parties (that is, they consider the semi-honest setting). This
allows to achieve topology-hiding MPC using standard techniques to transform
broadcast channels into secure point-to-point channels. At a very high level,
[MOR15] uses a series of nested multi-party computations, in which each node
is emulated by a secure computation of its neighbor. This emulation then extends
to the entire graph recursively. In [HMTZ16], the authors improve this result and
provide a construction that makes only black-box use of encryption and where
the security is based on the DDH assumption. However, both results are feasible
only for graphs with logarithmic diameter. Topology hiding communication for
certain classes of graphs with large diameter was described in [AM17]. This result
was finally extended to allow for arbitrary (connected) graphs in [ALM17a].

A natural next step is to extend these results to settings with more powerful
adversaries. Unfortunately, even a protocol in the setting with fail-corruptions
(in addition to passive corruptions) turns out to be difficult to achieve. In fact,
as shown already in [MOR15], some leakage in the fail-stop setting is inherent.
It is therefore no surprise that all previous protocols (secure against passive
corruptions) leak information about the network topology if the adversary can
crash parties. The core problem is that crashes can interrupt the communication
flow of the protocol at any point and at any time. If not properly dealt with
by the protocol, those outages cause shock waves of miscommunication, which
allows the adversary to probe the network topology.

A first step in this direction was recently achieved in [BBMM18] where a
protocol for topology-hiding communication secure against a fail-stop adversary
is given. However, the resilience against crashes comes at a hefty price; the
protocol requires that parties have access to secure hardware modules which
are initialized with correlated, pre-shared keys. Their protocol provides security
with abort and the leakage is arbitrarily small.

In the information-theoretic setting, the main result is negative [HJ07]: any
MPC protocol in the information-theoretic setting inherently leaks information
about the network graph. They also show that if the routing table is leaked, one
can construct an MPC protocol which leaks no additional information.

1.2 Comparison to Previous Work

In [ALM17a] the authors present a broadcast protocol for the semi-honest setting
based on random walks. This broadcast protocol is then compiled into a full
topology-hiding computation protocol. However, the random walk protocol fails
spectacularly in the presence of fail-stop adversaries, leaking a lot of information
about the structure of the graph. Every time a node aborts, any number of walks
get cut, meaning that they no longer carry any information. When this happens,
adversarial nodes get to see which walks fail along which edges, and can get a
good idea of where the aborting nodes are in the graph.

We also note that, while we use ideas from [BBMM18], which achieves the
desired result in a trusted-hardware model, we cannot simply use their protocol
and substitute the secure hardware box for a standard primitive. In particular,
they use the fact that each node can maintain an encrypted “image” of the entire
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graph by combining information from all neighbors, and use that information to
decide whether to give output or abort. This appears to require both some form
of obfuscation and a trusted setup, whereas our protocol uses neither.

1.3 Contributions

In this paper we propose the first topology-hiding MPC protocol secure against
passive and fail-stop adversaries (with arbitrarily small leakage) that is based
on standard assumptions. Our protocol does not require setup, and its security
can be based on either the DDH, QR or LWE assumptions. A comparison of our
results to previous works in topology-hiding communication is found in Table 1.

Theorem 1 (informal). If DDH, QR or LWE is hard, then for any MPC func-
tionality F, there exists a topology-hiding protocol realizing F for any network
graph G leaking at most an arbitrarily small fraction p of a bit, which is secure
against an adversary that does any number of static passive corruptions and
adaptive crashes. The round and communication complexity is polynomial in the
security parameter κ and 1/p.

Table 1. Adversarial model and security assumptions of existing topology-hiding
broadcast protocols. The table also shows the class of graphs for which the proto-
cols have polynomial communication complexity in the security parameter and the
number of parties.

Adversary Graph Hardness Asm. Model Reference

Semi-honest log diam. Trapdoor Perm. Standard [MOR15]

log diam. DDH Standard [HMTZ16]

cycles, trees, log
circum.

DDH Standard [AM17]

arbitrary DDH or QR Standard [ALM17a]

Fail-stop arbitrary OWF Trusted Hardware [BBMM18]

Semi-malicious
& fail-stop

arbitrary DDH or QR or LWE Standard [This work]

Our topology-hiding MPC protocol is obtained by compiling a MPC protocol
from a topology-hiding broadcast protocol leaking at most a fraction p of a bit.
We note that although it is well known that without leakage any functionality
can be implemented on top of secure communication, this statement cannot
be directly lifted to the setting with leakage. In essence, if a communication
protocol is used multiple times, it leaks multiple bits. However, we show that
our broadcast protocol, leaking at most a fraction p of a bit, can be executed
sequentially and in parallel, such that the result leaks also at most the same
fraction p. As a consequence, any protocol can be compiled into one that hides
topology and known results on implementing any multiparty computation can
be lifted to the topology hiding setting. However, this incurs a multiplicative
overhead in the round complexity.
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We then present a topology hiding protocol to evaluate any poly-time func-
tion using FHE whose round complexity will amount to that of a single broadcast
execution. To do that, we first define an enhanced encryption scheme, which we
call Deeply Fully-Homomorphic Public-Key Encryption (DFH-PKE), with simi-
lar properties as the PKCR scheme presented in [AM17,ALM17a] and provide an
instantiation of DFH-PKE under FHE. Next, we show how to obtain a protocol
using DFH-PKE to evaluate any poly-time function in a topology hiding manner.

We also explore another natural extension of semi-honest corruption, the so-
called semi-malicious setting. As for passive corruption, the adversary selects a
set of parties and gets access to their internal state. But in addition, the adver-
sary can also set their randomness during the protocol execution. This mod-
els the setting where a party uses an untrusted source of randomness which
could be under the control of the adversary. This scenario is of interest as
tampered randomness sources have caused many security breaches in the past
[HDWH12,CNE+14]. In this paper, we propose a general compiler that enhances
the security of protocols that tolerate passive corruption with crashes to semi-
malicious corruption with crashes.

2 Preliminaries

2.1 Notation

For a public-key pk and a message m, we denote the encryption of m under pk
by [m]pk. Furthermore, for k messages m1, . . . ,mk, we denote by [m1, . . . ,mk]pk
a vector, containing the k encryptions of messages mi under the same key pk.

For an algorithm A(·), we write A(· ;U∗) whenever the randomness used in
A(·) should be made explicit and comes from a uniform distribution. By ≈c we
denote that two distribution ensembles are computationally indistinguishable.

2.2 Model of Topology-Hiding Communication

Adversary. Most of our results concern an adversary, who can statically pas-
sively corrupt an arbitrary set of parties Zp, with

∣
∣Zp

∣
∣ < n. Passively corrupted

parties follow the protocol instructions (this includes the generation of random-
ness), but the adversary can access their internal state during the protocol.

A semi-malicious corruption (see, e.g., [AJL+12]) is a stronger variant of a
passive corruption. Again, we assume that the adversary selects any set of semi-
malicious parties Zs with

∣
∣Zs

∣
∣ < n before the protocol execution. These parties

follow the protocol instructions, but the adversary can access their internal state
and can additionally choose their randomness.

A fail-stop adversary can adaptively crash parties. After being crashed, a
party stops sending messages. Note that crashed parties are not necessarily cor-
rupted. In particular, the adversary has no access to the internal state of a
crashed party unless it is in the set of corrupted parties. This type of fail-stop
adversary is stronger and more general than the one used in [BBMM18], where
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only passively corrupted parties can be crashed. In particular, in our model the
adversary does not necessarily learn the neighbors of crashed parties, whereas
in [BBMM18] they are revealed to it by definition.

Communication Model. We state our results in the UC framework. We
consider a synchronous communication network. Following the approach in
[MOR15], to model the restricted communication network we define the Fnet-
hybrid model. The Fnet functionality takes as input a description of the graph
network from a special “graph party” Pgraph and then returns to each party Pi

a description of its neighborhood. After that, the functionality acts as an “ideal
channel” that allows parties to communicate with their neighbors according to
the graph network.

Similarly to [BBMM18], we change the Fnet functionality from [MOR15] to
deal with a fail-stop adversary.

The functionality keeps the following variables: the set of crashed parties C and the
graph G. Initially, C = ∅ and G = (∅, ∅).

Initialization Step:

1: The party Pgraph sends graph G′ to Fnet. Fnet sets G = G′.
2: Fnet sends to each party Pi its neighborhood NG(Pi).
Communication Step:

1: If the adversary crashes party Pi, then Fnet sets C = C ∪ {Pi}.
2: If a party Pi sends the command (Send, j, m), where Pj ∈ NG(Pi) and m is the

message to Pj , to Fnet and Pi /∈ C, then Fnet outputs (i, m) to party Pj .

Functionality Fnet

Observe that since Fnet gives local information about the network graph to
all corrupted parties, any ideal-world adversary should also have access to this
information. For this reason, similar to [MOR15], we use in the ideal-world the
functionality Finfo, which contains only the Initialization Step of Fnet.

To model leakage we extend Finfo by a leakage phase, where the adversary
can query a (possibly probabilistic) leakage function L once. The inputs to L
include the network graph, the set of crashed parties and arbitrary input from
the adversary.

We say that a protocol leaks one bit of information if the leakage function L
outputs one bit. We also consider the notion of leaking a fraction p of a bit. This is
modeled by having L output the bit only with probability p (otherwise, L outputs
a special symbol ⊥). Here our model differs from the one in [BBMM18], where
in case of the fractional leakage, L always gives the output, but the simulator is
restricted to query its oracle with probability p over its randomness. As noted
there, the formulation we use is stronger. We denote by FL

info the information
functionality with leakage function L.
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The functionality keeps the following variables: the set of crashed parties C and the
graph G. Initially, C = ∅ and G = (∅, ∅).

Initialization Step:

1: The party Pgraph sends graph G′ = (V, E) to FL
info. FL

info sets G = G′.
2: FL

info sends to each party Pi its neighborhood NG(Pi).
Leakage Step:

1: If the adversary crashes party Pi, then FL
info sets C = C ∪ {Pi}.

2: If the adversary sends the command (Leak, q) to FL
info for the first time, then

FL
info outputs L(q, C, G) to the adversary.

Functionality FL
info

Security Model. Our protocols provide security with abort. In particular, the
adversary can choose some parties, who do not receive the output (while the
others still do). That is, no guaranteed output delivery and no fairness is pro-
vided. Moreover, the adversary sees the output before the honest parties and
can later decide which of them should receive it.

Technically, we model such ability in the UC framework as follows: First,
the ideal world adversary receives from the ideal functionality the outputs of the
corrupted parties. Then, it inputs to the functionality an abort vector containing
a list of parties who do not receive the output.

Definition 1. We say that a protocol Π topology-hidingly realizes a functional-
ity F with L-leakage, in the presence of an adversary who can statically passive
corrupt and adaptively crash any number of parties, if it UC-realizes (FL

info ‖ F)
in the Fnet-hybrid model.

2.3 Background

Graphs and Random Walks. In an undirected graph G = (V,E) we denote
by NG(Pi) the neighborhood of Pi ∈ V . The k-neighborhood of a party Pi ∈ V
is the set of all parties in V within distance k to Pi.

In our work we use the following lemma from [ALM17a]. It states that in
an undirected connected graph G, the probability that a random walk of length
8|V |3τ covers G is at least 1 − 1

2τ .

Lemma 1 ( [ALM17a]). Let G = (V,E) be an undirected connected graph. Fur-
ther let W(u, τ) be a random variable whose value is the set of nodes covered by
a random walk starting from u and taking 8|V |3τ steps. We have

Pr
W

[W(u, τ) = V ] ≥ 1 − 1
2τ

.

PKCR Encryption. As in [ALM17a], our protocols require a public key encryp-
tion scheme with additional properties, called Privately Key Commutative and
Rerandomizable encryption. We assume that the message space is bits. Then,
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a PKCR encryption scheme should be: privately key commutative and homo-
morphic with respect to the OR operation1. We formally define these properties
below.

Let PK, SK and C denote the public key, secret key and ciphertext spaces.
As any public key encryption scheme, a PKCR scheme contains the algorithms
KeyGen : {0, 1}∗ → PK×SK, Encrypt : {0, 1}×PK → C and Decrypt : C×SK →
{0, 1} for key generation, encryption and decryption respectively (where KeyGen
takes as input the security parameter).

Privately Key-Commutative. We require PK to form a commutative group
under the operation �. So, given any pk1, pk2 ∈ PK, we can efficiently compute
pk3 = pk1 � pk2 ∈ PK and for every pk, there exists an inverse denoted pk−1.

This group must interact well with ciphertexts; there exists a pair of efficiently
computable algorithms AddLayer : C × SK → C and DelLayer : C × SK → C such
that

– For every public key pair pk1, pk2 ∈ PK with corresponding secret keys sk1
and sk2, message m ∈ M, and ciphertext c = [m]pk1 ,

AddLayer(c, sk2) = [m]pk1�pk2
.

– For every public key pair pk1, pk2 ∈ PK with corresponding secret keys sk1
and sk2, message m ∈ M, and ciphertext c = [m]pk1 ,

DelLayer(c, sk2) = [m]pk1�pk−1
2

.

Notice that we need the secret key to perform these operations, hence the prop-
erty is called privately key-commutative.

OR-Homomorphic. We also require the encryption scheme to be OR-homo-
morphic, but in such a way that parties cannot tell how many 1’s or 0’s were
OR’d (or who OR’d them). We need an efficiently-evaluatable homomorphic-OR
algorithm, HomOR : C × C → C, to satisfy the following: for every two messages
m,m′ ∈ {0, 1} and every two ciphertexts c, c′ ∈ C such that Decrypt(c, sk) = m
and Decrypt(c, sk) = m′,

{(m,m′, c, c′, pk,Encrypt(m ∨ m′, pk;U∗))}
≈c

{(m,m′, c, c′, pk,HomOR(c, c′, pk;U∗))}
Note that this is a stronger definition for homomorphism than usual; usually we
only require correctness, not computational indistinguishability.

In [HMTZ16], [AM17] and [ALM17a], the authors discuss how to get this kind
of homomorphic OR under the DDH assumption, and later [ALM17b] show how

1 PKCR encryption was introduced in [AM17,ALM17a], where it had three addi-
tional properties: key commutativity, homomorphism and rerandomization, hence,
it was called Privately Key Commutative and Rerandomizable encryption. However,
rerandomization is actually implied by the strengthened notion of homomorphism.
Therefore, we decided to not include the property, but keep the name.
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to get it with the QR assumption. For more details on other kinds of homomor-
phic cryptosystems that can be compiled into OR-homomorphic cryptosystems,
see [ALM17b].

Random Walk Approach [ALM17a]. Our protocol builds upon the protocol
from [ALM17a]. We give a high level overview. To achieve broadcast, the protocol
computes the OR. Every party has an input bit: the sender inputs the broadcast
bit and all other parties use 0 as input bit. Computing the OR of all those bits
is thus equivalent to broadcasting the sender’s message.

First, let us explain a simplified version of the protocol that is unfortunately
not sound, but gets the basic principal across. Each node encrypts its bit under
a public key and forwards it to a random neighbor. The neighbor OR’s its own
bit, adds a fresh public key layer, and it forwards the ciphertext to a randomly
chosen neighbor. Eventually, after about O(κn3) steps, the random walk of every
message visits every node in the graph, and therefore, every message will contain
the OR of all bits in the network. Now we start the backwards phase, reversing
the walk and peeling off layers of encryption.

This scheme is not sound because seeing where the random walks are coming
from reveals information about the graph! So, we need to disguise that infor-
mation. We will do so by using correlated random walks, and will have a walk
running down each direction of each edge at each step (so 2× number of edges
number of walks total). The walks are correlated, but still random. This way, at
each step, each node just sees encrypted messages all under new and different
keys from each of its neighbors. So, intuitively, there is no way for a node to tell
anything about where a walk came from.

3 Topology-Hiding Broadcast

In this section we present a protocol, which securely realizes the broadcast func-
tionality FBC (with abort) in the Fnet-hybrid world and leaks at most an arbi-
trarily small (but not negligible) fraction of a bit. If no crashes occur, the protocol
does not leak any information. The protocol is secure against an adversary that
(a) controls an arbitrary static set of passively corrupted parties and (b) adap-
tively crashes any number of parties. Security can be based either on the DDH,
the QR or the LWE assumption. To build intuition we first present the simple
protocol variant which leaks at most one bit.

When a party Pi sends a bit b ∈ {0, 1} to the functionality FBC, then FBC sends b
to each party Pj ∈ P.

Functionality FBC
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3.1 Protocol Leaking One Bit

We first introduce the broadcast protocol variant BC-OB which leaks at most
one-bit. The protocol is divided into n consecutive phases, where, in each phase,
the parties execute a modification of the random-walk protocol from [ALM17a].
More specifically, we introduce the following modifications:

Single Output Party: There will be n phases. In each phase only one party,
Po, gets the output. Moreover, it learns the output from exactly one of the
random walks it starts.
To implement this, in the respective phase all parties except Po start their
random walks with encryptions of 1 instead of their input bits. This ensures
that the outputs they get from the random walks will always be 1. We call
these walks dummy since the contain no information. Party Po, on the other
hand, starts exactly one random walk with its actual input bit (the other
walks it starts with encryptions of 1). This ensures (in case no party crashes)
that Po actually learns the broadcast bit.

Happiness Indicator: Every party Pi holds an unhappy-bit ui. Initially, every
Pi is happy, i.e., ui = 0. If a neighbor of Pi crashes, then in the next phase Pi

becomes unhappy and sets ui = 1. The idea is that an unhappy party makes
all phases following the crash become dummy.
This is implemented by having the parties send along the random walk,
instead of a single bit, an encrypted tuple [b, u]pk. The bit u is the OR of
the unhappy-bits of the parties in the walk, while b is the OR of their input
bits and their unhappy-bits. In other words, a party Pi on the walk homo-
morphically ORs bi ∨ ui to b and ui to u.
Intuitively, if all parties on the walk were happy at the time of adding their
bits, b will actually contain the OR of their input bits and u will be set to 0.
On the other hand, if any party was unhappy, b will always be set to 1, and
u = 1 will indicate an abort.

Intuitively, the adversary learns a bit of information only if it manages to
break the one random walk which Po started with its input bit (all other walks
contain the tuple [1, 1]). Moreover, if it crashes a party, then all phases following
the one with the crash abort, hence, they do not leak any information.

More formally, parties execute, in each phase, protocol RandomWalkPhase.
This protocol takes as global inputs the length T of the random walk and the Po

which should get output. Additionally, each party Pi has input (di, bi, ui) where
di is its number of neighbors, ui is its unhappy-bit, and bi is its input bit.

Initialization Stage:

1: Each party Pi generates T · di keypairs (pk
(r)
i→j , sk

(r)
i→j) � KeyGen(1κ) where

r ∈ {1, . . . , T} and j ∈ {1, . . . , di}.

Protocol RandomWalkPhase(T, Po, (di, bi, ui)Pi∈P)
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2: Each party Pi generates T − 1 random permutations on di elements{
π
(2)
i , . . . , π

(T)
i

}

3: For each party Pi, if any of Pi’s neighbors crashed in any phase before the
current one, then Pi becomes unhappy, i.e., sets ui = 1.

Aggregate Stage: Each party Pi does the following:

1: if Pi is the recipient Po then
2: Party Pi sends to the first neighbor the ciphertext [bi ∨ ui, ui]

pk
(1)
i→1

and

the public key pk
(1)
i→1, and to any other neighbor Pj it sends ciphertext

[1, 1]
pk

(1)
i→j

and the public key pk
(1)
i→j .

3: else
4: Party Pi sends to each neighbor Pj ciphertext [1, 1]

pk
(1)
i→j

and the key pk
(1)
i→j .

5: end if
6: // Add layer while ORing own input bit
7: for any round r from 2 to T do
8: For each neighbor Pj of Pi, do the following (let k = π

(r)
i (j)):

9: if Pi did not receive a message from Pj then

10: Party Pi sends ciphertext [1, 1]
pk

(r)
i→k

and key pk
(r)
i→k to neighbor Pk.

11: else // AddLayer and HomOR are applied component-wise

12: Let c
(r−1)
j→i and pk

(r−1)
j→i be the ciphertext and the public key Pi received

from Pj . Party Pi computes pk
(r)
i→k = pk

(r−1)
j→i � pk

(r)
i→k and

ĉ
(r)
i→k ← AddLayer

(
c
(r−1)
j→i , sk

(r)
i→k

)
.

13: Pi computes [bi ∨ ui, ui]
pk

(r)
i→k

and

c
(r)
i→k = HomOR

(
[bi ∨ ui, ui]

pk
(r)
i→k

, ĉ
(r)
i→k, pk

(r)
i→k

)
.

14: Party Pi sends ciphertext c
(r)
i→k and public key pk

(r)
i→k to neighbor Pk.

15: end if
16: end for

Decrypt Stage: Each party Pi does the following:

1: For each neighbor Pj of Pi, if Pi did not receive a message from Pj at round

T of the Aggregate Stage, then it sends ciphertext e
(T)
i→j = [1, 1]

pk
(T)
j→i

to Pj .

Otherwise, Pi sends to Pj e
(T)
i→j = HomOR

(
[bi ∨ ui, ui]

pk
(T)
j→i

, c
(T)
j→i, pk

(T)
j→i

)
.

2: for any round r from T to 2 do
3: For each neighbor Pk of Pi:
4: if Pi did not receive a message from Pk then
5: Party Pi sends e

(r−1)
i→j = [1, 1]

pk
(r−1)
j→i

to neighbor Pj , where k = π
(r)
i (j).

6: else
7: Denote by e

(r)
k→i the ciphertext Pi received from Pk, where k = π

(r)
i (j).

Party Pi sends e
(r−1)
i→j = DelLayer

(
e
(r)
k→i, sk

(r)
i→k

)
to neighbor Pj .

8: end if
9: end for
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10: If Pi is the recipient Po, then it computes (b, u) = Decrypt(e
(1)
1→i, sk

(1)
i→1) and

outputs (b, u, ui). Otherwise, it outputs (1, 0, ui).

The actual protocol BC-OB consists of n consecutive runs of the random walk
phase protocol RandomWalkPhase.

Each party Pi keeps bits bout
i , uout

i and ui, and sets ui = 0.
for o from 1 to n do

Parties jointly execute(
(btmp

i , vtmp
i , utmp

i )Pi∈P
)

= RandomWalkPhase(T, Po, (di, bi, ui)Pi∈P).

Each party Pi sets ui = utmp
i .

Party Po sets bout
o = btmp

o , uout
o = vtmp

o .
end for
For each party Pi, if uout

i = 0 then party Pi outputs bout
i .

Protocol BC-OB(T, (di, bi)Pi∈P)

The protocol BC-OB leaks information about the topology of the graph
during the execution of RandomWalkPhase, in which the first crash occurs.
(Every execution before the first crash proceeds almost exactly as the proto-
col in [ALM17a] and in every execution afterwards all values are blinded by the
unhappy-bit u.) We model the leaked information by a query to the leakage func-
tion LOB . The function outputs only one bit and, since the functionality FL

info

allows for only one query to the leakage function, the protocol leaks overall one
bit of information.

The inputs passed to LOB are: the graph G and the set C of crashed parties,
passed to the function by FL

info, and a triple (F, Ps, T′), passed by the simulator.
The idea is that the simulator needs to know whether the walk carrying the
output succeeded or not, and this depends on the graph G. More precisely, the
set F contains a list of pairs (Pf , r), where r is the number of rounds in the
execution of RandomWalkPhase, at which Pf crashed. LOB tells the simulator
whether any of the crashes in F disconnected a freshly generated random walk
of length T′, starting at given party Ps.

if for any (Pf , r) ∈ F , Pf �∈ C then Return 0.
else

Generate in G a random walk of length T′ starting at Ps.
Return 1 if for any (Pf , r) ∈ F removing party Pf after r rounds disconnects
the walk and 0 otherwise.

end if

Function LOB((F, Ps, T
′), C, G)

We prove the following theorem in Sect.A.1.

Theorem 2. Let κ be the security parameter. For T = 8n3(log(n) + κ) the pro-
tocol BC-OB(T, (di, bi)Pi∈P)) topology-hidingly realizes FLOB

info ||FBC (with abort)
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in the Fnet hybrid-world, where the leakage function LOB is the one defined as
above. If no crashes occur, then there is no abort and there is no leakage.

3.2 Protocol Leaking a Fraction of a Bit

We now show how to go from BC-OB to the actual broadcast protocol BC-FBp

which leaks only a fraction p of a bit. The leakage parameter p can be arbitrarily
small. However, the complexity of the protocol is proportional to 1/p. As a
consequence, 1/p must be polynomial and p cannot be negligible.

The idea is to leverage the fact that the adversary can gain information
in only one execution of RandomWalkPhase. Imagine that RandomWalkPhase
succeeds only with a small probability p, and otherwise the output bit b is 1.
Moreover, assume that during RandomWalkPhase the adversary does not learn
whether it will fail until it can decrypt the output.

We can now, for each phase, repeat RandomWalkPhase ρ times, so that with
overwhelming probability one of the repetitions does not fail. A party Po can
then compute its output as the AND of outputs from all repetitions (or abort
if any repetition aborted). On the other hand, the adversary can choose only
one execution of RandomWalkPhase, in which it learns one bit of information
(all subsequent repetitions will abort). Moreover, it must choose it before it
knows whether the execution succeeds. Hence, the adversary learns one bit of
information only with probability p.

What is left is to modify RandomWalkPhase, so that it succeeds only with
probability p, and so that the adversary does not know whether it will succeed.
We only change the Aggregate Stage. Instead of an encrypted tuple [b, u], the
parties send along the walk 	1/p
 + 1 encrypted bits [b1, . . . , b�1/p�, u], where
u again is the OR of the unhappy-bits, and every bk is a copy the bit b in
RandomWalkPhase, with some caveats. For each phase o, and for every party
Pi �= Po, all bk are copies of b in the walk and they all contain 1. For Po, only
one of the bits, bk, contains the OR, while the rest is initially set to 1.

During the Aggregate Stage, the parties process every ciphertext corre-
sponding to a bit bk the same way they processed the encryption of b in the
RandomWalkPhase. Then, before sending the ciphertexts to the next party on
the walk, the encryptions of the bits bk are randomly shuffled. (This way, as long
as the walk traverses an honest party, the adversary does not know which of the
ciphertexts contain dummy values.) At the end of the Aggregate Stage (after T
rounds), the last party chooses uniformly at random one of the 	1/p
 cipher-
texts and uses it, together with the encryption of the unhappy-bit, to execute
the Decrypt Stage as in RandomWalkPhase.

The information leaked by BC-FBp is modeled by the following func-
tion LFBp

.
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Let p′ = 1/�1/p�. With probability p′, return LOB((F, Ps, T
′), C, G) and with

probability 1 − p′ return ⊥.

Function LFBp((F, Ps, T
′), C, G)

A formal description of the modified protocol ProbabilisticRandomWalkPhasep

and a proof of the following theorem can be found in Sect.A.2.

Theorem 3. Let κ be the security parameter. For τ = log(n) + κ, T = 8n3τ ,
and ρ = τ/(p′ − 2−τ ), where p′ = 1/	1/p
, protocol BC-FBp(T, ρ, (di, bi)Pi∈P))
topology-hidingly realizes FLF Bp

info ||FBC (with abort) in the Fnet hybrid-world,
where the leakage function LFBp

is the one defined as above. If no crashes occur,
then there is no abort and there is no leakage.

4 From Broadcast to Topology-Hiding Computation

We showed how to get topology-hiding broadcasts. To get additional function-
ality (e.g. for compiling MPC protocols), we have to be able to compose these
broadcasts. When there is no leakage, this is straightforward: we can run as
many broadcasts in parallel or in sequence as we want and they will not affect
each other. However, if we consider a broadcast secure in the fail-stop model
that leaks at most 1 bit, composing t of these broadcasts could lead to leaking
t bits.

The first step towards implementing any functionality in a topology-hiding
way is to modify our broadcast protocol to a topology-hiding all-to-all multi-
bit broadcast, without aggregating leakage. Then, we show how to sequentially
compose such broadcasts, again without adding leakage. Finally, one can use
standard techniques to compile MPC protocols from broadcast. In the follow-
ing, we give a high level overview of each step. A detailed description of the
transformations can be found in the full version [LLM+18].

All-to-all Multibit Broadcast. The first observation is that a modification
of BC-FBp allows one party to broadcast multiple bits. Instead of sending a
single bit b during the random-walk protocol, each party sends a vector �b of bits
encrypted separately under the same key. That is, in each round of the Aggregate
Phase, each party sends a vector [�b1, . . . , �b�, u].

We can extend this protocol to all-to-all multibit broadcast, where each
party Pi broadcasts a message (b1, . . . , bk), as follows. Each of the vectors �bi

in [�b1, . . . , �b�, u] contains nk bits, and Pi uses the bits from n(i−1) to ni to com-
municate its message. That is, in the Aggregate Stage, every Pi homomorphically
OR’s �bi = (0, . . . , 0, b1, . . . , bk, 0, . . . , 0) with the received encrypted vectors.

Sequential Execution. All-to-all broadcasts can be composed sequentially by
preserving the state of unhappy bits between sequential executions. That is, once
some party sees a crash, it will cause all subsequent executions to abort.

Topology-Hiding Computation. With the above statements, we conclude
that any MPC protocol can be compiled into one that leaks only a fraction p of
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a bit in total. This is achieved using a public key infrastructure, where in the
first round the parties use the topology hiding all-to-all broadcast to send each
public key to every other party, and then each round of the MPC protocol is
simulated with an all-to-all multibit topology-hiding broadcast. As a corollary,
any functionality F can be implemented by a topology-hiding protocol leaking
any fraction p of a bit.

5 Efficient Topology-Hiding Computation with FHE

One thing to note is that compiling MPC from broadcast is rather expensive,
especially in the fail-stop model; we need a broadcast for every round. How-
ever, we will show that an FHE scheme with additive overhead can be used to
evaluate any polynomial-time function f in a topology-hiding manner. Additive
overhead applies to ciphertext versus plaintext sizes and to error with respect to
all homomorphic operations if necessary. We will employ an altered random walk
protocol, and the total number of rounds in this protocol will amount to that of
a single broadcast. We remark that FHE with additive overhead can be obtained
from subexponential iO and subexponentially secure OWFs (probabilistic iO),
as shown in [CLTV15].

5.1 Deeply-Fully-Homomorphic Public-Key Encryption

In the altered random walk protocol, the PKCR scheme is replaced by a deeply-
fully-homomorphic PKE scheme (DFH-PKE). Similarly to PKCR, a DFH-PKE
scheme is a public-key encryption scheme enhanced by algorithms for adding
and deleting layers. However, we do not require that public keys form a group,
and we allow the ciphertexts and public keys on different levels (that is, for
which a layer has been added a different number of times) to be distinguishable.
Moreover, DFH-PKE offers full homomorphism.

This is captured by three additional algorithms: AddLayerr, DelLayerr, and
HomOpr, operating on ciphertexts with r layers of encryption (we will call such
ciphertexts level-r ciphertexts). A level-r ciphertext is encrypted under a level-r
public key (each level can have different key space).

Adding a layer requires a new secret key sk. The algorithm AddLayerr takes
as input a vector of level-r ciphertexts ��m�pk encrypted under a level-r public
key, the corresponding level-r public key pk, and a new secret key sk. It outputs
a vector of level-(r +1) ciphertexts and the level-(r +1) public key, under which
it is encrypted. Deleting a layer is the opposite of adding a layer.

With HomOpr, one can compute any function on a vector of encrypted mes-
sages. It takes a vector of level-r ciphertexts encrypted under a level-r public
key, the corresponding level-r public key pk and a function from a permitted set
F of functions. It outputs a level-r ciphertext that contains the output of the
function applied to the encrypted messages.

Intuitively, a DFH-PKE scheme is secure if one can simulate any level-r
ciphertext without knowing the history of adding and deleting layers. This is
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captured by the existence of an algorithm Leveled-Encryptr, which takes as input
a plain message and a level-r public key, and outputs a level-r ciphertext. We
require that for any level-r encryption of a message �m, the output of AddLayerr
on that ciphertext is indistinguishable from the output of Leveled-Encryptr+1

on �m and a (possibly different) level-(r + 1) public key. An analogous property
is required for DelLayerr. We will also require that the output of HomOpr is
indistinguishable from a level-r encryption of the output of the functions applied
to the messages. We refer to the full version [LLM+18] for a formal definition of
a DFH-PKE scheme and an instantiation from FHE.

Remark. If we relax DFH-PKE and only require homomorphic evaluation of
OR, then this relaxation is implied by any OR-homomorphic PKCR scheme (in
PKCR, additionally, all levels of key and ciphertext spaces are the same, and the
public key space forms a group). Such OR-homomorphic DFH-PKE would be
sufficient to prove the security of the protocols BC-OB and BC-FBp. However, for
simplicity and clarity, we decided to describe our protocols BC-OB and BC-FBp

from a OR-homomorphic PKCR scheme.

5.2 Topology-Hiding Computation from DFH-PKE

To evaluate any function f , we modify the topology-hiding broadcast protocol
(with PKCR replaced by DFH-PKE) in the following way. During the Aggregate
Stage, instead of one bit for the OR of all inputs, the parties send a vector of
encrypted inputs. At each round, each party homomorphically adds its input
together with its id to the vector. The last party on the walk homomorphically
evaluates f on the encrypted inputs, and (homomorphically) selects the output
of the party who receives it in the current phase. The Decrypt Stage is started
with this encrypted result.

Note that we still need a way to make a random walk dummy (this was
achieved in BC-OB and BC-FBp by starting it with a 1). Here, we will have
an additional input bit for the party who starts a walk. In case this bit is set,
when homomorphically evaluating f , we (homomorphically) replace the output
of f by a special symbol. We refer to the full version [LLM+18] for a detailed
description of the protocol and a proof of the following theorem.

Theorem 4. For security parameter κ, τ = log(n) + κ, T = 8n3τ , and ρ =
τ/(p′ − 2−τ ), where p′ = 1/	1/p
, the protocol DFH-THC(T, ρ, (di, inputi)Pi∈P))
topology-hidingly evaluates any poly-time function f , FLF Bp

info ||f in the Fnet hy-
brid-world.

6 Security Against Semi-malicious Adversaries

In this section, we show how to generically compile our protocols to provide in
addition security against a semi-malicious adversary. The transformed protocol
proceeds in two phases: Randomness Generation and Deterministic Execution.
In the first phase, we generate the random tapes for all parties and in the second
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phase we execute the given protocol with parties using the pre-generated random
tapes. The tapes are generated in such a way that the tape of each party Pi is
the sum of random values generated from each party. Hence, as long as one party
is honest, the generated tape is random.

Randomness Generation. The goal of the first phase is to generate for each
party Pi a uniform random value ri, which can then be used as randomness tape
of Pi in the phase of Deterministic Execution.2

1: Each party Pi generates n+1 uniform random values s
(0)
i , s

(1)
i , . . . , s

(n)
i and sets

r
(0)
i := s

(0)
i .

2: for any round r from 1 to n do
3: Each party Pi sends r

(r−1)
i to all its neighbors.

4: Each party Pi computes r
(r)
i as the sum of all values received from its (non-

crashed) neighbors in the current round and the value s
(k)
i .

5: end for
6: Each party Pi outputs ri := r

(n)
i .

Protocol GenerateRandomness

Lemma 2. Let G′ be the network graph without the parties which crashed dur-
ing the execution of GenerateRandomness. Any party Pi whose connected com-
ponent in G′ contains at least one honest party will output a uniform value
ri. The output of any honest party is not known to the adversary. The proto-
col GenerateRandomness does not leak any information about the network-graph
(even if crashes occur).

Proof. First observe that all randomness is chosen at the beginning of the first
round. The rest of the protocol is completely deterministic. This implies that
the adversary has to choose the randomness of corrupted parties independently
of the randomness chosen by honest parties.

If party Pi at the end of the protocol execution is in a connected component
with honest party Pj , the output ri is a sum which contains at least one of the
values s

(r)
j from Pj . That summand is independent of the rest of the summands

and uniform random. Thus, ri is uniform random as well.
Any honest party will (in the last round) compute its output as a sum which

contains a locally generated truly random value, which is not known to the
adversary. Thus, the output is also not known to the adversary.

Finally, observe that the message pattern seen by a party is determined by
its neighborhood. Moreover, the messages received by corrupted parties from
honest parties are uniform random values. This implies, that the view of the
adversary in this protocol can be easily simulated given the neighborhood of

2 To improve overall communication complexity of the protocol the values generated
in the first phase could be used as local seeds for a PRG which is then used to
generate the actual random tapes.
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corrupted parties. Thus, the protocol does not leak any information about the
network topology. �
Transformation to Semi-malicious Security. In the second phase of Deter-
ministic Execution, the parties execute the protocol secure against passive and
fail-stop corruptions, but instead of generating fresh randomness during the pro-
tocol execution, they use the random tape generated in the first phase.

1: The parties execute GenerateRandomness to generate random tapes.
2: If a party witnessed a crash in GenerateRandomness, it pretends that it wit-

nessed this crash in the first round of the protocol Π.

3: The parties execute Π, using the generated randomness tapes, instead of gen-
erating randomness on the fly.

Protocol EnhanceProtocol(Π)

Theorem 5. Let F be an MPC functionality and let Π be a protocol that topol-
ogy-hidingly realizes F in the presence of static passive corruptions and adaptive
crashes. Then, the protocol EnhanceProtocol(Π) topology-hidingly realizes F in
the presence of static semi-malicious corruption and adaptive crashes. The leak-
age stays the same.

Proof. (sketch) The randomness generation protocol GenerateRandomness used
in the first phase is secure against a semi-malicious fail-stopping adversary.
Lemma 2 implies that the random tape of any semi-malicious party that can
interact with honest parties is truly uniform random. Moreover, the adver-
sary has no information on the random tapes of honest parties. This implies
that the capability of the adversary in the execution of the actual protocol in
the second phase (which for fixed random tapes is deterministic) is the same
as for an semi-honest fail-stopping adversary. This implies that the leakage of
EnhanceProtocol(Π) is the same as for Π as the randomness generation protocol
does not leak information (even if crashes occur). �

As a corollary of Theorems 3 and 5, we obtain that any MPC functionality can
be realized in a topology-hiding manner secure against an adversary that does
any number of static semi-malicious corruptions and adaptive crashes, leaking
at most an arbitrary small fraction of information about the topology.

7 LWE Based OR-Homomorphic PKCR Encryption

In this section, we show how to get PKCR encryption from the LWE. The basis
of our PKCR scheme is the public-key crypto-system proposed in [Reg09].
LWE PKE scheme [Reg09] Let κ be the security parameter of the cryptosys-
tem. The cryptosystem is parameterized by two integers m, q and a probability
distribution χ on Zq. To guarantee security and correctness of the encryption
scheme, one can choose q ≥ 2 to be some prime number between κ2 and 2κ2, and



Topology-Hiding Computation Beyond Semi-Honest Adversaries 21

let m = (1 + ε)(κ + 1) log q for some arbitrary constant ε > 0. The distribution
χ is a discrete gaussian distribution with standard deviation α(κ) := 1√

κlog2κ
.

Key Generation: Setup: For i = 1, . . . , m, choose m vectors a1, . . . ,am ∈ Zκ
q

independently from the uniform distribution. Let us denote A ∈ Zm×κ
q the

matrix that contains the vectors ai as rows.
Secret Key : Choose s ∈ Zκ

q uniformly at random. The secret key is sk = s.
Public Key : Choose the error coefficients e1, . . . , em ∈ Zq independently
according to χ. The public key is given by the vectors bi = 〈ai, sk〉 + ei.
In matrix notation, pk = A · sk + e.

Encryption: To encrypt a bit b, we choose uniformly at random x ∈ {0, 1}m.
The ciphertext is c = (xᵀA,xᵀpk + b q

2 ).
Decryption: Given a ciphertext c = (c1, c2), the decryption of c is 0 if c2−c1 ·sk

is closer to 0 than to 	 q
2
 modulo q. Otherwise, the decryption is 1.

Extension to PKCR. We now extend the above PKE scheme to satisfy the
requirements of a PKCR scheme. For this, we show how to rerandomize cipher-
texts, how add and remove layers of encryption, and finally how to homomorphi-
cally compute XOR. We remark that it is enough to provide XOR-Homomorphic
PKCR encryption scheme to achieve an OR-Homomorphic PKCR encryption
scheme, as was shown in [ALM17a].

Rerandomization: We note that a ciphertext can be rerandomized, which is
done by homomorphically adding an encryption of 0. The algorithm Rand
takes as input a cipertext and the corresponding public key, as well as a
(random) vector x ∈ {0, 1}m.

return (c1 + xᵀA, c2 + xᵀpk).

Algorithm Rand(c = (c1, c2), pk,x)

Adding and Deleting Layers of Encryption: Given an encryption of a bit
b under the public key pk = A·sk+e, and a secret key sk′ with corresponding
public key pk′ = A · sk′ + e′, one can add a layer of encryption, i.e. obtain a
ciphertext under the public key pk · pk′ := A · (sk + sk′) + e + e′. Also, one
can delete a layer of encryption.

return (c1, c1 · sk + c2)

Algorithm AddLayer(c = (c1, c2), sk)

return (c1, c2 − c1 · sk)
Algorithm DelLayer(c = (c1, c2), sk)
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Error Analysis. Every time we add a layer, the error increases. Hence, we
need to ensure that the error does not increase too much. After l steps, the
error in the public key is pk0...l =

∑l
i=0 ei, where ei is the error added in

each step.
The error in the ciphertext is c0...l =

∑l
i=0 xi

∑i
j=0 ej , where the xi is the

chosen randomness in each step. Since xi ∈ {0, 1}m, the error in the ciphertext
can be bounded by m · maxi{

∣
∣ei

∣
∣
∞} · l2, which is quadratic in the number of

steps.
Homomorphic XOR: A PKCR encryption scheme requires a slightly stronger

version of homomorphism. In particular, homomorphic operation includes the
rerandomization of the ciphertexts. Hence, the algorithm hXor also calls Rand.
The inputs to hXor are two ciphertexts encrypted under the same public key
and the corresponding public key.

Set c′′ = (c1 + c′
1, c2 + c′

2).
Choose x ∈ {0, 1}m uniformly at random.
return Rand(c′′, pk,x)

Algorithm hXor(c = (c1, c2), c
′ = (c′

1, c
′
2), pk)

Appendix

A Topology-Hiding Broadcast

This section contains supplementary material for Sect. 3.

A.1 Protocol Leaking One Bit

In this section we prove Theorem 2 from Sect. 3.1.

Theorem 2. Let κ be the security parameter. For T = 8n3(log(n)+κ) the protocol
BC-OB(T, (di, bi)Pi∈P)) topology-hidingly realizes FLOB

info ||FBC (with abort) in the
Fnet hybrid-world, where the leakage function LOB is the one defined as above.
If no crashes occur, then there is no abort and there is no leakage.

Proof. Completeness. We first show that the protocol is complete. To this end,
we need to ensure that the probability that all parties get the correct output is
overwhelming in κ. That is, the probability that all non-dummy random walks
(of length T = 8n3(log(n) + κ)) reach all nodes is overwhelming.

By Lemma 1, a walk of length 8n3τ does not reach all nodes with probability
at most 1

2τ . Then, using the union bound, we obtain that the probability that
there is a party whose walk does not reach all nodes is at most n

2τ . Hence, all n
walks (one for each party) reach all nodes with probability at least 1 − n

2τ . If we
want this value to be overwhelming, e.g. 1 − 1

2κ , we can set τ := κ + log(n).
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Soundness. We now need to show that no environment can distinguish between
the real world and the simulated world, when given access to the adversarially-
corrupted parties. We first describe on a high level the simulator SOB and argue
that it simulates the real execution.

In essence, the task of SOB is to simulate the messages sent by honest parties
to passively corrupted parties. Consider a corrupted party Pc and its honest
neighbor Ph. The messages sent from Ph to Pc during the Aggregate Stage are
ciphertexts, to which Ph added a layer, and corresponding public keys. Since
Ph is honest, the adversary does not know the secret keys corresponding to the
sent public keys. Hence, SOB can simply replace them with encryptions of a pair
(1, 1) under a freshly generated public key. The group structure of keys in PKCR
guarantees that a fresh key has the same distribution as the composed key (after
executing AddLayer). Semantic security implies that the encrypted message can
be replaced by (1, 1).

Consider now the Decrypt Stage at round r. Let pk
(r)
c→h be the public key

sent by Pc to Ph in the Aggregate Stage (note that this is not the key discussed
above; there we argued about keys sent in the opposite direction). SOB will send
to Pc a fresh encryption under pk

(r)
c→h. We now specify what it encrypts.

Note that the only interesting case is when the party Po receiving output is
corrupted and when we are in the round r in which the (only one) random walk
carrying the output enters an area of corrupted parties, containing Po (that is,
when the walk with output contains from Ph all the way to Po only corrupted
parties). In this one message in round r the adversary learns the output of Po.
All other messages are simply encryptions of (1, 1).

For this one meaningful message, we consider three cases. If any party crashed
in a phase preceding the current one, SOB sends an encryption of (1, 1) (as in
the real world the walk is made dummy by an unhappy party). If no crashes
occurred up to this point (round r in given phase), SOB encrypts the output
received from FBC. If a crash happened in the given phase, SOB queries the
leakage oracle LOB , which essentially executes the protocol and tells whether
the output or (1, 1) should be sent.

Simulator. Below, we present the pseudocode of the simulator. The essential
part of it is the algorithm PhaseSimulation, which is also illustrated in Fig. 1.

1. SOB corrupts passively Zp.
2. SOB sends inputs for all parties in Zp to FBC and receives the output bit bout.
3. For each Pi ∈ Zp, SOB receives NG(Pi) from FL

info.
4. Throughout the simulation, if A crashes a party Pf , so does SOB .
5. Now SOB has to simulate the view of all parties in Zp.

In every phase in which Po should get the output, first of all the Initialization
Stage is executed among the parties in Zp and the T key pairs are generated for
every Pi ∈ Zp. Moreover, for every Pi ∈ Zp the permutations π

(r)
i are generated,

defining those parts of all random walks, which pass through parties in Zp.

Simulator SOB
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The messages sent by parties in Zp are generated by executing the protocol
RandomWalkPhase. The messages sent by correct parties Pi �∈ Zp are generated
by executing PhaseSimulation(Po, Pi), described below.

6. SOB sends to FBC the abort vector (in particular, the vector contains all parties
Po who should receive their outputs in phases following the first crash and,
depending on the output of LOB , the party who should receive its output in the
phase with first crash).

If Po ∈ Zp, let w denote the random walk generated in the Initialization Stage (at
the beginning of the simulation of this phase), which starts at Po and carries the
output bit. Let � denote the number of parties in Zp on w before the first correct
party. If Po �∈ Zp, w and � are not defined.

For every Pj ∈ Zp ∩ NG(Pi), let pk
(r)
j→i denote the public key generated in the

Initialization Stage by Pj for Pi and for round r.
Initialization Stage

1: For every neighbor Pj ∈ Zp of the correct Pi, SOB generates T key pairs

(pk
(1)
i→j , sk

(1)
i→j), . . . , (pk

(T)
i→j , sk

(T)
i→j).

Aggregate Stage

1: In round r, for every neighbor Pj ∈ NG(Pi)∩Zp, SOB sends ([1, 1]
pk

(r)
i→j

, pk
(r)
i→j)

to Pj .

Decrypt Stage

1: if A crashed any party in any phase before the current one or Po �∈ Zp then
2: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SOB sends

[1, 1]
pk

(r)
j→i

to Pj .

3: else
4: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SOB sends

[1, 1]
pk

(r)
j→i

to Pj unless the following three conditions hold: (a) Pi is the

first party not in Zp on w, (b) Pj is the last party in Zp on w, and (c)
r = 2T − �.

5: If the three conditions hold (in particular r = 2T − �), SOB does the
following. If A did not crash any party in a previous round, SOB sends
[bout, 0]

pk
(r)
j→i

to party Pj .

6: Otherwise, let F denote the set of pairs (Pf , s − �+1) such that A crashed

Pf in round s. SOB queries FLOB
info for the leakage on input (F, Pi, T − �).

If the returned value is 1, it sends [1, 1]
pk

(r)
j→i

to Pj . Otherwise it sends

[bout, 0]
pk

(r)
j→i

to party Pj .

7: end if

Algorithm PhaseSimulation(Po, Pi)
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We prove that no environment can tell whether it is interacting with Fnet

and the adversary in the real world or with FL
info and the simulator in the ideal

world.

Pi

Pj

Po

Fig. 1. An example of the algorithm executed by the simulator SOB . The filled circles
are the corrupted parties. The red line represents the random walk generated by SOB in
Step 5, in this case of length � = 3. SOB simulates the Decrypt Stage by sending fresh
encryptions of (1, 1) at every round from every honest party to each of its corrupted
neighbors, except in round 2T− 3 from Pi to Pj . If no crash occurred up to that point,
SOB sends encryption of (bout, 0). Otherwise, it queries the leakage oracle about the
walk of length T − 3, starting at Pi.

Hybrids and Security Proof.

Hybrid 1. S1 simulates the real world exactly. This means, S has information
on the entire topology of the graph, each party’s input, and can simulate
identically the real world.

Hybrid 2. S2 replaces the real keys with the simulated public keys, but still
knows everything about the graph as in the first hybrid.
More formally, in each random walk phase and for each party Pi ∈ P \
Zp where NG(Pi) ∩ Zp �= ∅, S2 generates T key pairs (pk(1)i→j , sk

(1)
i→j), . . . ,

(pk(T)i→j , sk
(T)
i→j) for every neighbor Pj ∈ NG(Pi) ∩ Zp. In each round r of the

corresponding Aggregate Stage and for every neighbor Pj ∈ NG(Pi)∩Zp, S2

does the following. Pi receives ciphertext [b, u]
pk

(r)
∗→i

and the public key pk
(r)
∗→i

destined for Pj . Instead of adding a layer and homomorphically OR’ing the
bit bi, S2 computes (b′, u′) = (b ∨ bi ∨ ui, u ∨ ui), and sends [b′, u′]

pk
(r)
i→j

to Pj .
In other words, it sends the same message as S1 but encrypted with a fresh
public key. In the corresponding Decrypt Stage, Pi will get back a ciphertext
from Pj encrypted under this exact fresh public key.
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Hybrid 3. S3 now simulates the ideal functionality during the Aggregate Stage.
It does so by sending encryptions of (1, 1) instead of the actual messages and
unhappy bits. More formally, in each round r of the Aggregate Stage and for
all parties Pi ∈ P \ Zp and Pj ∈ NG(Pi) ∩ Zp, S3 sends [1, 1]

pk
(r)
i→j

instead of

the ciphertext [b, u]
pk

(r)
i→j

sent by S2.
Hybrid 4. S4 does the same as SOB during the Decrypt Stage for all steps

except for round 2T− 
 of the first random walk phase in which the adversary
crashes a party. This corresponds to the original description of the simulator
except for the ‘Otherwise’ condition of Step 6 in the Decrypt Stage.

Hybrid 5. S5 is the actual simulator SOB .

In order to prove that no environment can distinguish between the real world
and the ideal world, we prove that no environment can distinguish between any
two consecutive hybrids when given access to the adversarially-corrupted nodes.

Claim 1. No efficient distinguisher D can distinguish between Hybrid 1 and
Hybrid 2.

Proof: The two hybrids only differ in the computation of the public keys
that are used to encrypt messages in the Aggregate Stage from any honest party
Pi ∈ P \ Zp to any dishonest neighbor Pj ∈ NG(Pi) ∩ Zp.

In Hybrid 1, party Pi sends to Pj an encryption under a fresh public key
in the first round. In the following rounds, the encryption is sent either under
a product key pk

(r)
i→j = pk

(r−1)
k→i � pk

(r)
i→j or under a fresh public key (if Pi is

unhappy). Note that pk
(r−1)
k→i is the key Pi received from a neighbor Pk in the

previous round.
In Hybrid 2, party Pi sends to Pj an encryption under a fresh public key

pk
(r)
i→j in every round.
The distribution of the product key used in Hybrid 1 is the same as the

distribution of a freshly generated public-key. This is due to the (fresh) pk(r)i→j key
which randomizes the product key. Therefore, no distinguisher can distinguish
between Hybrid 1 and Hybrid 2. �

Claim 2. No efficient distinguisher D can distinguish between Hybrid 2 and
Hybrid 3.

Proof: The two hybrids differ only in the content of the encrypted messages
that are sent in the Aggregate Stage from any honest party Pi ∈ P \ Zp to any
dishonest neighbor Pj ∈ NG(Pi) ∩ Zp.

In Hybrid 2, party Pi sends to Pj in the first round an encryption of (bi ∨
ui, ui). In the following rounds, Pi sends to Pj either an encryption of (b ∨ bi ∨
ui, u ∨ ui), if message (b, u) is received from neighbor π−1

i (j), or an encryption
of (1, 1) if no message is received.

In Hybrid 3, all encryptions that are sent from party Pi to party Pj are
replaced by encryptions of (1, 1).
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Since the simulator chooses a key independent of any key chosen by parties
in Zp in each round, the key is unknown to the adversary. Hence, the semantic
security of the encryption scheme guarantees that the distinguisher cannot distin-
guish between both encryptions. �

Claim 3. No efficient distinguisher D can distinguish between Hybrid 3 and
Hybrid 4.

Proof: The only difference between the two hybrids is in the Decrypt Stage.
We differentiate two cases:

– A phase where the adversary did not crash any party in this or any previous
phase. In this case, the simulator S3 sends an encryption of (bW , uW ), where
bW =

∨

Pj∈W bj is the OR of all input bits in the walk and uW = 0, since no
crash occurred. S4 sends an encryption of (bout, 0), where bout =

∨

Pi∈P bi.
Since the graph is connected, bout = bW with overwhelming probability, as
proven in Corollary 1. Also, the encryption in Hybrid 4 is done with a fresh
public key which is indistinguishable with the encryption done in Hybrid 3
by OR’ing many times in the graph, as shown in Claim 2.1 in [ALM17a].

– A phase where the adversary crashed a party in a previous phase or any round
different than 2T − 
 of the first phase where the adversary crashes a party.
In Hybrid 4 the parties send an encryption of (1, 1). This is also the case
in Hybrid 3, because even if a crashed party disconnected the graph, each
connected component contains a neighbor of a crashed party. Moreover, in
Hybrid 4, the messages are encrypted with a fresh public key, and in Hybrid
3, the encryptions are obtained by the homomorphic OR operation. Both
encryptions are indistinguishable, as shown in Claim 2.1 in [ALM17a]. �

Claim 4. No efficient distinguisher D can distinguish between Hybrid 4 and
Hybrid 5.

Proof: The only difference between the two hybrids is in the Decrypt Stage,
at round 2T − 
 of the first phase where the adversary crashes.

Let F be the set of pairs (Pf , r) such that A crashed Pf at round r of the
phase. In Hybrid 4, a walk W of length T is generated from party Po. Let W1 be
the region of W from Po to the first not passively corrupted party and let W2

be the rest of the walk. Then, the adversary’s view at this step is the encryption
of (1, 1) if one of the crashed parties breaks W2, and otherwise an encryption of
(bW , 0). In both cases, the message is encrypted under a public key for which
the adversary knows the secret key.

In Hybrid 5, a walk W ′
1 is generated from Po of length 
 ≤ T ending at the

first not passively corrupted party Pi. Then, the simulator queries the leakage
function on input (F, Pi, T−
), which generates a walk W ′

2 of length T−
 from Pi,
and checks whether W ′

2 is broken by any party in F . If W ′
2 is broken, Pi sends an

encryption of (1, 1), and otherwise an encryption of (bW , 0). Since the walk W ′

defined as W ′
1 followed by W ′

2 follows the same distribution as W , bW = bout with
overwhelming probability, and the encryption with a fresh public key which is
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indistinguishable with the encryption done by OR’ing many times in the graph,
then it is impossible to distinguish between Hybrid 4 and Hybrid 5. �

This concludes the proof of soundness. �

A.2 Protocol Leaking a Fraction of a Bit

In this section, we give a formal description of the random-walk phase pro-
tocol ProbabilisticRandomWalkPhasep for the broadcast protocol BC-FBp from
Sect. 3.2. Note that this protocol should be repeated ρ times in the actual
protocol. The boxes indicate the parts where it differs from the random-walk
phase protocol RandomWalkPhase for the broadcast protocol leaking one bit (cf.
Sect. 3.1).

Initialization Stage:

1: Each party Pi generates T · di keypairs (pk
(r)
i→j , sk

(r)
i→j) � KeyGen(1κ) where

r ∈ {1, . . . , T} and j ∈ {1, . . . , di}.
2: Each party Pi generates T − 1 random permutations on di elements{

π
(2)
i , . . . , π

(T)
i

}

3: For each party Pi, if any of Pi’s neighbors crashed in any phase before the
current one, then Pi becomes unhappy, i.e., sets ui = 1.

Aggregate Stage: Each party Pi does the following:

1: if Pi is the recipient Po then
2: Party Pi sends to the first neighbor the public key pk

(1)
i→1 and the ciphertext

[bi ∨ ui, 1, . . . , 1, ui]
pk

(1)
i→1

(�1/p� − 1 ciphertexts contain 1), and to any

other neighbor Pj it sends [1, . . . , 1, 1]
pk

(1)
i→j

and the public key pk
(1)
i→j .

3: else
4: Party Pi sends to each neighbor Pj ciphertext [1, . . . , 1, 1]

pk
(1)
i→j

and the

public key pk
(1)
i→j .

5: end if
6: // Add layer while ORing own input bit
7: for any round r from 2 to T do
8: For each neighbor Pj of Pi, do the following (let k = π

(r)
i (j)):

9: if Pi did not receive a message from Pj then

10: Party Pi sends [1, . . . , 1, 1]
pk

(r)
i→k

and pk
(r)
i→k to neighbor Pk.

11: else
12: Let c

(r−1)
j→i and pk

(r−1)
j→i be the ciphertext and the public key Pi received

from Pj . Party Pi computes pk
(r)
i→k = pk

(r−1)
j→i � pk

(r)
i→k and

ĉ
(r)
i→k ← AddLayer

(
c
(r−1)
j→i , pk

(r)
i→k

)
.

Protocol ProbabilisticRandomWalkPhasep(T, Po, (di, bi, ui)Pi∈P)
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13: Party Pi computes [bi ∨ ui, . . . , bi ∨ ui, ui]
pk

(r)
i→k

and

c
(r)
i→k = HomOR

(
[bi ∨ ui, . . . , bi ∨ ui, ui]

pk
(r)
i→k

, ĉ
(r)
i→k

)
.

14: Party Pi sends ciphertext c
(r)
i→k and public key pk

(r)
i→k to neighbor Pk.

15: end if
16: end for

Decrypt Stage: Each party Pi does the following:

1: For each neighbor Pj of Pi:
2: if Pi did not receive a message from Pj at round T of the Aggregate Stage then

3: Party Pi sends ciphertext e
(T)
i→j = [1, 1]

pk
(T)
j→i

to Pj .

4: else

5: Party Pi chooses uniformly at random one of the first �1/p� ciphertexts

in c
(T)
j→i. Let c̄

(T)
j→i denote the tuple containing the chosen ciphertext and

the last element of c
(T)
j→i (the encryption of the unhappy bit). Party Pi

computes and sends e
(T)
i→j = HomOR

(
[bi ∨ ui, ui]

pk
(T)
j→i

, c̄
(T)
j→i

)
to Pj .

6: end if
7: for any round r from T to 2 do
8: For each neighbor Pk of Pi:
9: if Pi did not receive a message from Pk then

10: Party Pi sends e
(r−1)
i→j = [1, 1]

pk
(r−1)
j→i

to neighbor Pj , where k = π
(r)
i (j).

11: else
12: Denote by e

(r)
k→i the ciphertext Pi received from Pk, where k = π

(r)
i (j).

Party Pi sends e
(r−1)
i→j = DelLayer

(
e
(r)
k→i, sk

(r)
i→k

)
to neighbor Pj .

13: end if
14: end for
15: If Pi is the recipient Po, then it computes (b, u) = Decrypt(e

(1)
1→i, sk

(1)
i→1) and

outputs (b, u, ui). Otherwise, it outputs (1, 0, ui).

Security Proof of the Protocol Leaking a Fraction of a Bit.
In this section we prove Theorem 3 from Sect. 3.2.

Theorem 3. Let κ be the security parameter. For τ = log(n) + κ, T = 8n3τ and
ρ = τ/(p′ − 2−τ ), where p′ = 1/	1/p
, the protocol BC-FBp (T , ρ, (di, bi)Pi∈P))
topology-hidingly realizes FLF Bp

info ||FBC (with abort) in the Fnet hybrid-world,
where the leakage function LFBp

is the one defined as above. If no crashes occur,
then there is no abort and there is no leakage.

Proof. Completeness. We first show that the protocol is complete. That is, that
if the adversary does not crash any party, then every party gets the correct output
(the OR of all input bits) with overwhelming probability. More specifically, we
show that if no crashes occur, then after ρ repetitions of a phase, the party Po

outputs the correct value with probability at least 1 − 2−(κ+log(n)). The overall
completeness follows from the union bound: the probability that all n parties
output the correct value is at least 1 − 2−κ.
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Notice that if the output of any of the ρ repetitions intended for Po is cor-
rect, then the overall output of Po is correct. A given repetition can only give
an incorrect output when either the random walk does not reach all parties,
which happens with probability at most 2−τ , or when the repetition fails, which
happens with probability 1 − p′. Hence, the probability that a repetition gives
the incorrect result is at most 1 − p′ + 2−τ . The probability that all repetitions
are incorrect is then at most (1 − p′ + 2−τ )ρ ≤ 2−(κ+log(n)) (the inequality holds
for 0 ≤ p′ − 2−τ ≤ 1).

Soundness. We show that no environment can distinguish between the real
world and the simulated world, when given access to the adversarially-corrupted
nodes. The simulator SFB for BC-FBp is a modification of SOB . Here we only
sketch the changes and argue why SFB simulates the real world.

In each of the ρ repetitions of a phase, SFB executes a protocol very similar to
the one for SOB . In the Aggregate Stage, SFB proceeds almost identically to SOB

(except that it sends encryptions of vectors (1, . . . , 1) instead of only two values).
In the Decrypt Stage the only difference between SFB and SOB is in computing
the output for the party Po (as already discussed in the proof of Theorem 2, SFB

does this only when Po is corrupted and the walk carrying the output enters
an area of corrupted parties). In the case when there were no crashes before or
during given repetition of a phase, SOB would simply send the encrypted output.
On the other hand, SFB samples a value from the Bernoulli distribution with
parameter p and sends the encrypted output only with probability p, while with
probability 1 − p it sends the encryption of (1, 0). Otherwise, the simulation is
the same as for SOB .

It can be easily seen that SFB simulates the real world in the Aggregate
Stage and in the Decrypt Stage in every message other than the one encrypting
the output. But even this message comes from the same distribution as the
corresponding message sent in the real world. This is because in the real world,
if the walk was not broken by a crash, this message contains the output with
probability p. The simulator encrypts the output also with probability p in the
two possible cases: when there was no crash (SFB samples from the Bernoulli
distribution) and when there was a crash but the walk was not broken (LFB is
defined in this way).

Simulator. The simulator SFB proceeds almost identically to the simulator SOB

given in the proof of Theorem 2 (cf. Sect. A.1). We only change the algorithm
PhaseSimulation to ProbabilisticPhaseSimulation and execute it ρ times instead of
only once.

If Po ∈ Zp, let w denote the random walk generated in the Initialization Stage (at
the beginning of the simulation of this phase), which starts at Po and carries the
output bit. Let � denote the number of parties in Zp on w before the first correct
party. If Po �∈ Zp, w and � are not defined.

Algorithm ProbabilisticPhaseSimulation(Po, Pi)
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For every Pj ∈ Zp ∩ NG(Pi), let pk
(r)
j→i denote the public key generated in the

Initialization Stage by Pj for Pi and for round r.
Initialization Stage

1: For every neighbor Pj ∈ Zp of the correct Pi, SFB generates T key pairs

(pk
(1)
i→j , sk

(1)
i→j), . . . , (pk

(T)
i→j , sk

(T)
i→j).

Aggregate Stage

1: In round r, for every neighbor Pj ∈ NG(Pi) ∩ Zp, SFB sends the tuple

([1, . . . , 1]
pk

(r)
i→j

, pk
(r)
i→j) (with �1/p� + 1 ones) to Pj .

Decrypt Stage

1: if Po �∈ Zp or A crashed any party in any phase before the current one

2: or in any repetition of the current phase then

3: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SFB sends
[1, 1]

pk
(r)
j→i

to Pj .

4: else
5: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SFB sends

[1, 1]
pk

(r)
j→i

to Pj unless the following three conditions hold: (a) Pi is the

first party not in Zp on w, (b) Pj is the last party in Zp on w, and (c)
r = 2T − �.

6: If the three conditions hold (in particular r = 2T− �), SFB does the follow-
ing. If A did not crash any party in a previous round,

7: SFB samples a value x from the Bernoulli distribution with parameter p′.
If x = 1 (with probability p′), SFB sends to Pj the ciphertext [bout, 0]

pk
(r)
j→i

and otherwise it sends [1, 0]
pk

(r)
j→i

.

8: Otherwise, let F denote the set of pairs (Pf , s− �+1) such that A crashed

Pf in round s. SFB queries FLF Bp
info for the leakage on input (F, Pi, T− �).

If the returned value is 1, it sends [1, 1]
pk

(r)
j→i

to Pj . Otherwise it sends

[bout, 0]
pk

(r)
j→i

to party Pj .

9: end if

Hybrids and Security Proof. We consider similar steps as the hybrids from
Sect. A.1.

Hybrid 1. S1 simulates the real world exactly. This means, S1 has information
on the entire topology of the graph, each party’s input, and can simulate
identically the real world.

Hybrid 2. S2 replaces the real keys with the simulated public keys, but still
knows everything about the graph as in the first hybrid.
More formally, in each subphase of each random walk phase and for each
party Pi ∈ P \ Zp where NG(Pi) ∩ Zp �= ∅, S2 generates T key pairs
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(pk(1)i→j , sk
(1)
i→j), . . . , (pk

(T)
i→j , sk

(T)
i→j) for every neighbor Pj ∈ NG(Pi) ∩ Zp.

Let α := 	 1
p
. In each round r of the corresponding Aggregate Stage and

for every neighbor Pj ∈ NG(Pi) ∩ Zp, S2 does the following: Pi receives
ciphertext [b1, . . . , bα, u]

pk
(r)
∗→i

and the public key pk
(r)
∗→i destined for Pj .

Instead of adding a layer and homomorphically OR’ing the bit bi, S2 com-
putes (b′

1, . . . , b
′
α, u′) = (b1 ∨ bi ∨ ui, · · · , bα ∨ bi ∨ ui, u ∨ ui), and sends

[b′
σ(1), · · · , b′

σ(α), u
′]
pk

(r)
i→j

to Pj , where σ is a random permutation on α ele-
ments. In other words, it sends the same message as S1 but encrypted with
a fresh public key. In the corresponding Decrypt Stage, Pi will get back a
ciphertext from Pj encrypted under this exact fresh public key.

Hybrid 3. S3 now simulates the ideal functionality during the Aggregate Stage.
It does so by sending encryptions of (1, . . . , 1) instead of the actual messages
and unhappy bits. More formally, let α := 	 1

p
. In each round r of a subphase
of a random walk phase and for all parties Pi ∈ P \Zp and Pj ∈ NG(Pi)∩Zp,
S3 sends [1, 1, . . . , 1]

pk
(r)
i→j

instead of the ciphertext [b1, . . . , bα, u]
pk

(r)
i→j

sent by
S2.

Hybrid 4. S4 does the same as SFB during the Decrypt Stage for all phases
and subphases except for the first subphase of a random walk phase in which
the adversary crashes a party.

Hybrid 5. S5 is the actual simulator SFB .

The proofs that no efficient distinguisher D can distinguish between Hybrid 1,
Hybrid 2 and Hybrid 3 are similar to the Claims 1 and 2. Hence, we prove
indistinguishability between Hybrid 3, Hybrid 4 and Hybrid 5.

Claim 5. No efficient distinguisher D can distinguish between Hybrid 3 and
Hybrid 4.

Proof: The only difference between the two hybrids is in the Decrypt Stage.
We differentiate three cases:

– A subphase l of a phase k where the adversary did not crash any party in this
phase, any previous subphase, or any previous phase. In this case, S3 sends
with probability p an encryption of (bW , uW ), where bW =

∨

u∈W bu is the
OR of all input bits in the walk and uW = 0 (since no crash occurs), and with
probability 1−p an encryption of (1, 0). On the other hand, S4 samples r from
a Bernoulli distribution with parameter p, and if r = 1, it sends an encryption
of (bout, 0), where bout =

∨

i∈[n] bi, and if r = 0 it sends an encryption of (1, 0).
Since the graph is connected, bout = bW with overwhelming probability, as
proven in Corollary 1. Also, the encryption in Hybrid 4 is done with a fresh
public key which is indistinguishable with the encryption done in Hybrid 3
by OR’ing many times in the graph, as shown in Claim 2.1. in [ALM17a].

– A subphase l of a phase k where the adversary crashed a party in a previous
subphase or a previous phase.
In Hybrid 3 the parties send encryptions of (1, 1). This is also the case in
Hybrid 4, because even if a crashed party disconnected the graph, each con-
nected component contains a neighbor of a crashed party. Moreover, in Hybrid
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4, the messages are encrypted with a fresh public key, and in Hybrid 3, the
encryptions are obtained by the homomorphic OR operation. Both encryp-
tions are indistinguishable, as shown in Claim 2.1. in [ALM17a].

�

Claim 6. No efficient distinguisher D can distinguish between Hybrid 4 and
Hybrid 5.

Proof: The only difference between the two hybrids is in the Decrypt Stage
of the first subphase of a phase where the adversary crashes.

Let F be the set of pairs (Pf , r) such that A crashed Pf at round r of the
phase. In Hybrid 4, a walk W of length T is generated from party Po. Let W1 be
the region of W from Po to the first not passively corrupted party and let W2 be
the rest of the walk. Then, the adversary’s view at this step is the encryption of
(1, 1) if one of the crashed parties breaks W2 or if the walk became dummy (which
happens with probability 1−p, since the ciphertexts are permuted randomly and
only one ciphertext out of 1

p contains bW ). Otherwise, the adversary’s view is
an encryption of (bW , 0). In both cases, the message is encrypted under a public
key for which the adversary knows the secret key.

In Hybrid 5, a walk W ′
1 is generated from Po of length 
 ≤ T ending at the

first not passively corrupted party Pi. Then, the simulator queries the leakage
function on input (F, Pi, T− 
). Then, with probability p it generates a walk W ′

2

of length T − 
 from Pi, and checks whether W ′
2 is broken by any party in F .

If W ′
2 is broken, Pi sends an encryption of (1, 1), and otherwise an encryption

of (bW , 0). Since the walk W ′ defined as W ′
1 followed by W ′

2 follows the same
distribution as W , bW = bout with overwhelming probability, and the encryption
with a fresh public key which is indistinguishable with the encryption done by
OR’ing many times in the graph, then it is impossible to distinguish between
Hybrid 4 and Hybrid 5. �

This concludes the proof of soundness. �
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Abstract. Most secure computation protocols can be effortlessly
adapted to offload a significant fraction of their computationally and
cryptographically expensive components to an offline phase so that the
parties can run a fast online phase and perform their intended compu-
tation securely. During this offline phase, parties generate private shares
of a sample generated from a particular joint distribution, referred to as
the correlation. These shares, however, are susceptible to leakage attacks
by adversarial parties, which can compromise the security of the secure
computation protocol. The objective, therefore, is to preserve the secu-
rity of the honest party despite the leakage performed by the adversary
on her share.

Prior solutions, starting with n-bit leaky shares, either used 4 mes-
sages or enabled the secure computation of only sub-linear size circuits.
Our work presents the first 2-message secure computation protocol for
2-party functionalities that have Θ(n) circuit-size despite Θ(n)-bits of
leakage, a qualitatively optimal result. We compose a suitable 2-message
secure computation protocol in parallel with our new 2-message correla-
tion extractor. Correlation extractors, introduced by Ishai, Kushilevitz,
Ostrovsky, and Sahai (FOCS–2009) as a natural generalization of pri-
vacy amplification and randomness extraction, recover “fresh” correla-
tions from the leaky ones, which are subsequently used by other crypto-
graphic protocols. We construct the first 2-message correlation extractor
that produces Θ(n)-bit fresh correlations even after Θ(n)-bit leakage.

Our principal technical contribution, which is of potential indepen-
dent interest, is the construction of a family of multiplication-friendly
linear secret sharing schemes that is simultaneously a family of small-bias
distributions. We construct this family by randomly “twisting then per-
muting” appropriate Algebraic Geometry codes over constant-size fields.
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1 Introduction

Secure multi-party computation (MPC) allows mutually distrusting parties to
compute securely over their private data. Secure computation of most function-
alities requires expensive public-key primitives such as oblivious transfer, even
in the semi-honest setting.1 We can effortlessly adjust most of these existing
secure computation protocols so that they offload a significant fraction of their
complex operations to an offline preprocessing phase. Subsequently, during an
online phase, parties can implement extremely fast secure computation proto-
cols. In fact, several specialized protocols optimize MPC for this online-offline
paradigm [4,6,7,15,18,28,29,31,37].

For instance, in the two-party setting, we envision this offline phase as a
secure implementation of a trusted dealer who generates private albeit corre-
lated shares (rA, rB) for Alice and Bob, respectively, sampled from an appro-
priate joint distribution (RA, RB), referred to as a correlation. This versatile
framework allows the implementation of this trusted dealer using computational
hardness assumptions, secure hardware, trusted hardware, or physical processes.
Furthermore, this offline phase is independent of the final functionality to be
computed, as well as the parties’ private inputs.

A particularly useful correlation is the random oblivious transfer correlation,
represented by ROT. One sample of this correlation generates three random bits
x0, x1, b and provides private shares rA = (x0, x1) to Alice, and rB = (b, xb) to
Bob. Note that Alice does not know the choice bit b, and Bob does not know
the other bit x1−b. Let F be the class of functionalities that admit 2-message
secure computation protocols in the ROT-hybrid [10,26]. Note that F includes
the powerful class of functions that have a decomposable randomized encoding
[3,5,25]. Alice and Bob can compute the required ROTs in the offline phase.
Then, they can compute any functionality from this class using 2-messages, a
protocol exhibiting optimal message complexity2 and (essentially) optimal effi-
ciency in the usage of cryptographic resources.

However, the private share of the honest party is susceptible to leakage
attacks by an adversary, both during the generation of the shares and the dura-
tion of storing the shares. We emphasize that the leakage need not necessarily
reveal individual bits of the honest party’s share. The leakage can be on the
entire share and encode crucial global information that can potentially jeop-
ardize the security of the secure computation protocol. This concern naturally
leads to the following fundamental question.

“Can we preserve the security and efficiency of the secure computation during
the online phase despite the adversarial leakage on the honest party’s shares?”

Using the class F of functionalities (defined above) as a yardstick, let us
determine the primary hurdle towards a positive resolution of this question. In
1 A semi-honest adversary follows the prescribed protocol but is curious to find addi-

tional information.
2 Message complexity refers to the number of messages exchanged between Alice and

Bob.
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the sequel, Fm/2 ⊂ F is the set of all two-party functionalities that have a 2-
message protocol in ROTm/2-hybrid, i.e., parties start with m/2 independent
samples3 from the ROT correlation. In the leaky correlation setting where an
adversary has already leaked global information from the private share of the
honest party, our objective is to design an (asymptotically) optimal secure com-
putation protocol for the functionalities in Fm/2. That is, starting with leaky
correlations (of size n), we want to compute any F ∈ Fm/2 such that m = Θ(n)
via a 2-message protocol despite t = Θ(n) bits of leakage. We note that this
task is equivalent to the task of constructing a secure computation protocol for
the particular functionality ROTm/2 that also belongs to Fm/2. This observa-
tion follows from the parallel composition of the secure protocol implementing
the functionality ROTm/2 from leaky correlations with the 2-message protocol
for F in the ROTm/2-hybrid. To summarize, our overall objective of designing
optimal secure computation protocols from leaky ROT correlations reduces to
the following equivalent goal.

“Construct a 2-message protocol to compute ROTm/2 securely, where
m=Θ(n), from the leaky ROTn/2 correlation in spite of t = Θ(n) bits of

leakage.”

Note that in the ROTn/2-hybrid, both parties have private share of size n bits.
The above problem is identical to correlation extractors introduced in the seminal
work of Ishai, Kushilevitz, Ostrovsky, and Sahai [26].
Correlation Extractors. Ishai et al. [26] introduced the notion of correlation
extractors as an interactive protocol that takes a leaky correlation as input and
outputs a new correlation that is secure. Prior correlation extractors either used
four messages [26] or had a sub-linear production [9,22], i.e., m = o(n). We
construct the first 2-message correlation extractor that has a linear production
and leakage resilience, that is, m = Θ(n) and t = Θ(n). Note that even compu-
tationally secure protocols can use the output of the correlation extractor in the
online phase. Section 1.1 formally defines correlation extractors, and we present
our main contributions in Sect. 1.2.

1.1 Correlation Extractors and Security Model

We consider the standard model of Ishai et al. [26], which is also used by the
subsequent works, for 2-party semi-honest secure computation in the preprocess-
ing model. In the preprocessing step, a trusted dealer draws a sample of shares
(rA, rB) from the joint distribution of correlated private randomness (RA, RB).
The dealer provides the secret share rA to Alice and rB to Bob. Moreover, the
adversarial party can perform an arbitrary t-bits of leakage on the secret share
of the honest party at the end of the preprocessing step. We represent this leaky
correlation hybrid4 as (RA, RB)[t].
3 Each sample of ROT gives two bits to each party; (x0, x1) to the first party and

(b, xb) to the second party. Therefore each party receives m-bit shares.
4 That is, the functionality samples secret shares (rA, rB) according to the correlation

(RA, RB). The adversarial party sends a t-bit leakage function L to the functionality
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Definition 1 (Correlation Extractor). Let (RA, RB) be a correlated private
randomness such that the secret share of each party is n-bits. An (n,m, t, ε)-
correlation extractor for (RA, RB) is a two-party interactive protocol in the
(RA, RB)[t]-hybrid that securely implements the ROTm/2 functionality against
information-theoretic semi-honest adversaries with ε simulation error.

Note that the size of the secret shares output by the correlation extractor is
m-bits. We emphasize that no leakage occurs during the correlation extractor
execution. The t-bit leakage cumulatively accounts for all the leakage before the
beginning of the online phase. We note that, throughout this work, we shall
always normalize the total length of the input shares of each party to n-bits.

1.2 Our Contribution

Recall that Fm/2 ⊂ F is the set of all two-party functionalities that have a
2-message protocol in the ROTm/2-hybrid. We prove the following results.

Theorem 1 (Asymptotically Optimal Secure Computation from
Leaky Correlations). There exists a correlation (RA, RB) that produces n-bit
secret shares such that for all F ∈ Fm/2 there exists a 2-message secure com-
putation protocol for F in the leaky (RA, RB)[t]-hybrid, where m = Θ(n) and
t = Θ(n), with exponentially low simulation error.

The crucial ingredient of Theorem 1 is our new 2-message (n,m, t, ε)-correlation
extractor for ROTn/2. We compose the 2-message secure computation protocol
for functionalities in Fm/2 in the ROTm/2-hybrid with our correlation extractor.
Our work presents the first 2-message correlation extractor that has a linear pro-
duction and a linear leakage resilience (along with exponentially low insecurity).

Theorem 2 (Asymptotically Optimal Correlation Extractor for ROT).
There exists a 2-message (n,m, t, ε)-correlation extractor for ROTn/2 such that

m = Θ(n), t = Θ(n), and ε = exp(−Θ(n)).

The technical heart of the correlation extractor of Theorem 2 is another cor-
relation extractor (see Theorem 3) for a generalization of the ROT correlation.
For any finite field F, the random oblivious linear-function evaluation correlation
over F [36,42], represented by ROLE

(
F
)
, samples random a, b, x ∈ F and defines

rA = (a, b) and rB = (x, z), where z = ax + b. Note that, for F = GF [2], we
have (x0 + x1)b + x0 = xb; therefore, the ROLE

(
GF [2]

)
correlation is identical

to the ROT correlation. One share of the ROLE
(
F
)

correlation has secret share

size 2 lg |F|. In particular, the correlation ROLE
(
F
)n/2 lg|F| provides each party

with n/2 lg |F| independent samples from the ROLE(F) correlation and the secret
share size of each party is n-bits for suitable constant sized field F.

and receives the leakage L(rA, rB) from the functionality. The functionality sends
rA to Alice and rB to Bob. Note that the adversary does not need to know its secret
share to construct the leakage function because the leakage function gets the secret
shares of both parties as input.
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Theorem 3 (Asymptotically Optimal Correlation Extractor for
ROLE(F)). There exists a 2-message (n,m, t, ε)-correlation extractor for
ROLE

(
F
)n/2 lg|F| such that m = Θ(n), t = Θ(n), and ε = exp(−Θ(n)).

In Fig. 4, we present our correlation extractor that outputs fresh samples from
the same ROLE

(
F
)

correlation. Finally, our construction obtains multiple ROT

samples from each output ROLE
(
F
)

sample using the OT embedding technique
of [9]. Figure 1 positions our contribution vis-à-vis the previous state-of-the-art.
In particular, Fig. 1 highlights the fact that our result simultaneously achieves
the best qualitative parameters. Our results are also quantitatively better than
the previous works and we discuss the concrete performance numbers we obtain
for Theorem 3 and Theorem 2 below. For more detailed numerical comparison
with prior works [9,22,26], refer to Sect. 5.

Fig. 1. A qualitative summary of our correlation extractor constructions and a com-
parison to prior relevant works. Here K is a finite field and F is a finite field of constant
size. The IP

(
K

s
)

is a correlation that samples random rA = (u1, . . . , us) ∈ K
s and

rB = (v1, . . . , vs) ∈ K
s such that u1v1 +· · · + usvs = 0. All correlations are normalized

so that each party gets an n-bit secret share. The parameter g is the gap to maximal
leakage resilience such that. g > 0.

Performance of Correlation Extractors for ROLE
(
F
)

(Theorem 3). Our
correlation extractor for ROLE

(
F
)

relies on the existence of suitable Algebraic
Geometry (AG) codes5 over finite field F, such that |F| is an even power of a
prime and |F| � 49. We shall use F that is a finite field with characteristic 2.

As the size of the field F increases, the “quality” of the Algebraic Geometry
codes get better. However, the efficiency of the BMN OT embedding protocol
[9] used to obtain the output ROT in our construction decreases with increas-
ing |F|. For example, with F = GF

[
214

]
we achieve the highest production rate

m/n = 16.32% if the fractional leakage rate is t/n = 1%. For leakage rate
t/n = 10%, we achieve production rate m/n = 10%. Figure 7 (Sect. 5) and Fig. 9
(Sect. 6) summarize these tradeoffs for various choices of the finite field F.

5 Once the parameters of the AG code are fixed, it is a one-time cost to construct its
generator matrix.
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Performance of Correlation Extractors for ROT (Theorem 2). We know
extremely efficient algorithms that use multiplications over GF [2] to emulate
multiplications over any GF [2s] [12,14]. For example, we can use 15 multipli-
cations over GF [2] to emulate one multiplication over GF

[
26

]
. Therefore, we

can use 15 samples of ROLE
(
GF [2]

)
to perform one ROLE

(
GF

[
26

])
with per-

fect semi-honest security. Note that, by applying this protocol, the share sizes
reduce by a factor of 6/15. In general, using this technique, we can convert
the leaky ROLE

(
GF [2]

)
(equivalently, ROT) correlation, into a leaky ROLE

(
F
)

correlation, where F is a finite field of characteristic 2, by incurring a slight mul-
tiplicative loss in the share size. Now, we can apply the correlation extractor for
ROLE

(
F
)

discussed above. By optimizing the choice of the field F (in our case
F = GF

[
210

]
), we can construct a 2-message correlation extractor for ROT with

fractional leakage rate t/n = 1% and achieve production rate of m/n = 4.20%
(see Fig. 8, Sect. 5). This is several orders of magnitude better than the produc-
tion and resilience of the IKOS correlation extractor and uses less number of
messages.6

High Leakage Resilience Setting. Ishai et al. [27] showed that t < n/4 is
necessary to extract even one new sample of ROT from the leaky ROLE

(
F
)n/2 lg F

correlation. Our construction, when instantiated with a suitably large constant-
size field F, demonstrates that if t � (1/4 − g)n then we can extract Θ(n) new
samples of the ROT correlation. The prior construction of [22] only achieves a
sub-linear production by using sub-sampling techniques.

Theorem 4 (Near Optimal Resilience with Linear Production). For
every g ∈ (0, 1/4], there exists a finite field F with characteristic 2 and a
2-message (n,m, t, ε)-correlation extractor for (RA, RB) = ROLE

(
F
)n/2 lg |F|,

where t = (1/4 − g)n, m = Θ(n), and ε = exp(−Θ(n)).

The production m = Θ(n) depends on the constant g, the gap to optimal frac-
tional resilience. We prove Theorem 4 in the full version of our work [8]. Section 5
shows that we can achieve linear production even for t = 0.22n bits of leakage
using F = GF

[
210

]
.

Correlation Extractors for Arbitrary Correlations. Similar to the con-
struction of IKOS, we can also construct a correlation extractor from any cor-
relation and output samples of any correlation; albeit it is not round optimal
anymore. However, our construction achieves overall better production and leak-
age resilience than IKOS because our correlation extractor for ROT has higher
production and resilience. Figure 2 outlines a comparison of these two correlation
extractor construction for the general case.

6 Even optimistic estimates of the parameters m/n and t/n for the IKOS construction
are in the order of 10−6.



42 A. R. Block et al.

Fig. 2. General correlation extractors that extract arbitrary correlations from arbi-
trary correlations. Above is the expanded IKOS [26] correlation extractor and below
is ours. Our main contribution is shown in highlighted part. For brevity, it is implicit
that there are multiple samples of the correlations. The ROLE correlations are over
suitable constant size fields. The superscript “(t]” represents that the correlation is
secure against adversarial leakage of only one a priori fixed party.

1.3 Other Prior Relevant Works

Figure 1 already provides the summary of the current state-of-the-art in cor-
relation extractors. In this section, we summarize works related to combiners:
extractors where the adversary is restricted to leaking individual bits of the hon-
est party’s secret share. The study of OT combiners was initiated by Harnik et al.
[24]. Since then, there has been work on several variants and extensions of OT
combiners [23,28,33,34,39]. Recently, Ishai et al. [27] constructed OT combiners
with nearly optimal leakage resilience. Among these works, the most relevant to
our paper are the ones by Meier, Przydatek, and Wullschleger [34] and Przy-
datek, and Wullschleger [39]. They use Reed-Solomon codes to construct two-
message error-tolerant7 combiners that produce fresh ROLEs over large fields8

from ROLEs over the same field. Using multiplication friendly secret sharing
schemes based on Algebraic Geometry Codes introduced by Chen and Cramer
[13], a similar construction works with ROLEs over fields with appropriate con-
stant size. We emphasize that this construction is insecure if an adversary can
perform even 1-bit global leakage on the whole secret of the other party. In our
construction, we crucially rely on a family of linear codes instead of a particular
choice of the linear code to circumvent this bottleneck. Section 1.4 provides the
principal technical ideas underlying our correlation extractor construction.

In the malicious setting, the feasibility result on malicious-secure combiners
for ROT is reported in [28]. Recently, Cascudo et al. construct a malicious-secure
combiner with high resilience, but m = 1 [11]. The case of malicious-secure
correlation extractors remains entirely unexplored.

7 A sample (rA, rB) is an erroneous sample if it is not in the support of the distribution
(RA, RB), i.e., it is an incorrect sample. An error-tolerant combiner is a combiner
that is secure even if a few of the input samples are erroneous.

8 The size of the fields increases with n, the size of the secret shares produced by the
preprocessing step.
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1.4 Technical Overview

At the heart of our correlation extractor constructions is a 2-message
ROLE(F)-to-ROLE(F) extractor, where we start with leaky (RA, RB)[t] =
(
ROLE

(
F
)n/2 lg|F|)[t]

and produce fresh secure sample of ROLE
(
F
)m/2 lg|F|. The

field F is a constant-size field with characteristic 2, say F = GF
[
26

]
, and each

party gets n-bit shares. Below, we discuss some of the technical ideas underlying
this construction.

This correlation extractor relies on the existence of a family of linear codes
over F with suitable properties that we define below. For this discussion, let us
assume that s ∈ N is the block-length of the codes. Let J be an index set, and we
denote the family of linear codes with block-length s as follows: C = {Cj : j ∈ J }.
This family of code C needs to have the following properties.

1. Multiplication Friendly Good Codes. Each code Cj ⊆ F
s in the family C

is a good code, i.e., its rate and distance is Θ(s). Further, the Schur-product9

of the codes, i.e., Cj ∗ Cj , is a linear code with distance Θ(s). Such codes
can be used to perform the multiplication of two secrets by multiplying their
respective secret shares in secure computation protocols, hence the name.

2. Small Bias Family. Intuitively, a small bias family defines a pseudorandom
distribution for linear tests. Let S = (S1, . . . , Ss) ∈ F

s and its corresponding
linear test be defined as LS(x1, . . . , xs) := S1x1+· · ·+Ssxs. Consider the dis-
tribution D of LS(c) for a random j ∈ J and a randomly sampled codeword
c ∈ Cj . If C is a family of ρ-biased distributions, then the distribution D has
statistical distance at most ρ from the output of LS(u) for random element
u ∈ F

s. For brevity, we say that the family C “ρ-fools the linear test LS .” The
concept of small bias distributions was introduced in [1,35] and has found
diverse applications, for example, [2,17,20,35].
An interesting property of any linear code C ⊆ F

s is the following. A random
codeword c ∈ C can 0-fool every linear test LS such that S is not a codeword
in the dual of C. However, if S is a codeword in the dual of the code C, then
the linear test LS is clearly not fooled.
So, a randomly chosen codeword from one fixed linear code cannot fool all
linear tests. However, when we consider an appropriate family of linear codes,
then a randomly chosen codeword from a randomly chosen code in this family
can fool every linear test.

We construct such a family of codes over small finite fields F that can be
of potential independent interest. Our starting point is an explicit Algebraic
Geometry code C ⊆ F

s that is multiplication friendly [19,21]. Given one such
code C, we randomly “twist then permute” the code to define the family C. We
emphasize that the production of our correlation extractor relies on the bias

9 Consider a linear code C ⊆ F
s. Let c = (c1, . . . , cs) and c′ = (c′

1, . . . , c
′
s) be two

codewords in the code C. We define c∗c′ = (c1c
′
1, . . . , csc

′
s) ∈ F

s. The Schur-product
C ∗ C is defined to be the linear span of all c ∗ c′ such that c, c′ ∈ C.
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being small. So, it is crucial to construct a family with extremely small bias.
Next, we describe our “twist then permute” operation.

Twist then Permute.10 Suppose C ⊆ F
s is a linear code. Pick any λ =

(λ1, . . . , λs) ∈ (F∗)s, i.e., for all i ∈ [s], λi �= 0. A λ-twist of the code C is defined
as the following linear code

Cλ := {(λ1c1, . . . , λscs) : (c1, . . . , cs) ∈ C} .

Let π : {1, . . . , s} → {1, . . . , s} be a permutation. The π-permutation of the
λ-twist of C is defined as the following linear code

Cπ,λ := {(
λπ(1)cπ(1), . . . , λπ(s)cπ(s)

)
: (c1, . . . , cs) ∈ C}.

Define J as the set of all (π, λ) such that λ ∈ (F∗)s and π is a permutation of
the set {1, . . . , s}. Note that if C is multiplication friendly good code, then the
code Cπ,λ continues to be multiplication friendly good code. A key observation
towards demonstrating that C is a family of small bias distributions is that the
following two distributions are identical (see Claim 2).

1. Fix S ∈ F
s. The output distribution of the linear test LS on a random

codeword c ∈ Cj , for a random index j ∈ J .
2. Let T ∈ F

s be a random element of the same weight11 as S. The output
distribution of the linear test LT on a random codeword c ∈ C.

Based on this observation, we can calculate the bias of the family of our codes.
Note that there are a total of ( s

w )(q − 1)w elements in F
s that have weight w.

Let Aw denote the number of codewords in the dual of C that have weight w.
Our family of codes C fools the linear test LS with ρ = Aw · ( s

w )−1(q − 1)−w,
where w is the weight of S ∈ F

s.
We obtain precise asymptotic bounds on the weight enumerator Aw of the

dual of the code C to estimate the bias ρ, for w ∈ {0, 1, . . . , s}. This precise
bound translates into higher production m, higher resilience t, and exponentially
low simulation error ε of our correlation extractor. We remark that for our
construction if C has a small dual-distance, then the bias cannot be small.

Remark. The performance of the code C supersedes the elementary Gilbert-
Varshamov bound. These Algebraic Geometry codes are one of the few codes
in mathematics and computer science where explicit constructions have signif-
icantly better quality than elementary randomized constructions. So, elemen-
tary randomization techniques are unlikely to produce any (qualitatively) better

10 In the literature there are multiple definitions for the equivalence of two linear codes.
In particular, one such notion (cf., [38]), states that two codes are equivalent to each
other if one can be twisted-and-permuted into the other code. For clarity, we have
chosen to explicitly define the “twist then permute” operation.

11 The weight of S ∈ F
s is defined as the number of non-zero elements in S.
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parameters for this approach, given that the estimations of the weight enumera-
tor in this work are asymptotically optimal. Therefore, finding better randomized
techniques to construct the family of multiplication friendly good codes that is
also a family of small-bias distributions is the research direction that has the
potential to reduce the bias. This reduction in the bias can further improve the
production and leakage resilience of our correlation extractors.

2 Preliminaries

We denote random variables by capital letters, for example X, and the values
taken by small letters, for example X = x. For a positive integer n, we write [n]
and [−n] to denote the sets {1, . . . , n} and {−n, . . . ,−1}, respectively. Let Sn

be the set of all permutations π : [n] → [n]. We consider the field F = GF [q],
where q = pa, for a positive integer a and prime p. For any c = (c1, . . . , cη) ∈ F

η,
define the function wt(c) as the cardinality of the set {i : ci �= 0}. For any
two x, y ∈ F

η, we let x ∗ y represent the point-wise product of x and y. That
is, x ∗ y = (x1y1, x2y2, . . . , xηyη) ∈ F

η. For a set Y , UY denotes the uniform
distribution over the set Y , and y

$←Y denotes sampling y according to UY . For
any vector x ∈ F

η and a permutation π ∈ Sη, we define π(x) := (xπ(1), . . . , xπ(η)).

2.1 Correlation Extractors

We denote the functionality of 2-choose-1 bit Oblivious Transfer as OT and
Oblivious Linear-function Evaluation over a field F as OLE(F). Also, we denote
the Random Oblivious Transfer Correlation as ROT and Random Oblivious
Linear-function Evaluation Correlation over the field F as ROLE(F). When
F = GF [2], we denote ROLE

(
F
)

by ROLE.
Let η be such that 2η lg |F| = n. In this work, we consider the setting when

Alice and Bob start with η samples of the ROLE(F) correlation and the adversary
performs t-bits of leakage. We give a secure protocol for extracting multiple
secure OTs in this hybrid. Below we define such an correlation extractor formally
using initial ROLE(F) correlations.

Leakage Model. We define our leakage model for ROLE(F) correlations as follows:

1. η-ROLE correlation generation phase. Alice gets rA = {(ai, bi)}i∈[η] ∈
F
2η and Bob gets rB = {(xi, zi)}i∈[η] ∈ F

2η such that for all i ∈ [η], ai, bi, xi

is uniformly random and zi = aixi + bi. Note that the size of secret share of
each party is n bits.

2. Corruption and leakage phase. A semi-honest adversary corrupts either
the sender and sends a leakage function L : Fη → {0, 1}t and gets back L(x[η]).
Or, it corrupts the receiver and sends a leakage function L : Fη → {0, 1}t and
gets back L(a[η]). Note that w.l.o.g. any leakage on the sender (resp., receiver)
can be seen as a leakage on a[η] (resp., x[η]). We again emphasize that this
leakage need not be on individual bits of the shares, but on the entire share,
and thus can encode crucial global information.
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We denote by (RA, RB) the above correlated randomness and by (RA, RB)[t]

its t-leaky version. Recall the definition for (n,m, t, ε)-correlation extractor (see
Definition 1, Sect. 1.1). Below, we give the correctness and security requirements.

The correctness condition says that the receiver’s output is correct in all m/2
instances of ROT. The privacy requirement says the following: Let (s

(i)

0 , s
(i)

1 ) and
(c

(i)
, z

(i)
) be the output shares of Alice and Bob, respectively, in the ith ROT

instance. Then a corrupt sender (resp., receiver) cannot distinguish between
{c

(i)}i∈[m/2] (resp.,
{

s
(i)

1−c
(i)

}

i∈[m/2]
) and r

$← {0, 1}m/2 with advantage more

than ε. The leakage rate is defined as t/n and the production rate is defined as
m/n.

2.2 Fourier Analysis over Fields

We give some basic Fourier definitions and properties over finite fields, following
the conventions of [40]. To begin discussion of Fourier analysis, let η be any
positive integer and let F be any finite field. We define the inner product of two
complex-valued functions.

Definition 2 (Inner Product). Let f, g : Fη → C. We define the inner prod-
uct of f and g as

〈f, g〉 := E

x
$←Fη

[
f(x) · g(x)

]
=

1
|F|η

∑

x∈Fη

f(x) · g(x),

where g(x) is the complex conjugate of g(x).

Next, we define general character functions for both F and F
η.

Definition 3 (General Character Functions). Let ψ : F → C
∗ be a group

homomorphism from the additive group F to the multiplicative group C
∗. Then

we say that ψ is a character function of F.
Let χ : Fη × F

η → C
∗ be a bilinear, non-degenerate, and symmetric map

defined as χ(x, y) = ψ(x · y) = ψ(
∑

i xiyi). Then, for any S ∈ F
η, the function

χ(S, ·) := χS(·) is a character function of Fη.

Given χ, we have the Fourier Transformation.

Definition 4 (Fourier Transformation). For any S ∈ F
η, let f : Fη →

C and χS be a character function. We define the map f̂ : F
η → C as

f̂(S) := 〈f, χS〉. We say that f̂(S) is a Fourier Coefficient of f at S and the
linear map f �→ f̂ is the Fourier Transformation of f .

Note that this transformation is an invertible linear map. The Fourier inver-
sion formula is given by the following lemma.

Lemma 1 (Fourier Inversion). For any function f : Fη → C, we can write
f(x) =

∑
S∈Fη f̂(S)χS(x).
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2.3 Distributions and Min-Entropy

For a probability distribution X over a sample space U , entropy of x ∈ X
is defined as HX(x) = − lg Pr[X = x]. The min-entropy of X, represented
by H∞(X), is defined to be minx∈Supp(X) HX(x). The binary entropy function,
denoted by h2(x) = −x lg x − (1 − x) lg(1 − x) for every x ∈ (0, 1).

Given a joint distribution (X,Y ) over sample space U × V , the marginal
distribution Y is a distribution over sample space V such that, for any y ∈ V , the
probability assigned to y is

∑
x∈U Pr[X = x, Y = y]. The conditional distribution

(X|y) represents the distribution over sample space U such that the probability
of x ∈ U is Pr[X = x|Y = y]. The average min-entropy [16], represented by
H̃∞(X|Y ), is defined to be − lgEy∼Y [2−H∞(X|y)].

Imported Lemma 1 ([16]). If H∞(X) ≥ k and L is an arbitrary 
-bit leakage
on X, then H̃∞(X|L) � k − 
.

Lemma 2 (Fourier Coefficients of a Min-Entropy Distribution). Let
X : Fη → R be a min-entropy source such that H∞(X) � k. Then

∑
S |X̂(S)|2 �

|F|−η · 2−k.

2.4 Family of Small-Bias Distributions

Definition 5 (Bias of a Distribution). Let X be a distribution over Fη. Then
the bias of X with respect to S ∈ F

η is defined as BiasS(X) := |F|η · |X̂(S)|.
Dodis and Smith [17] defined small-bias distribution families for distributions

over {0, 1}η. We generalize it naturally for distributions over F
η.

Definition 6 (Small-bias distribution family). A family of distributions
F = {F1, F2, · · · , Fk} over sample space F

η is called a ρ2-biased family if for
every non-zero vector S ∈ F

η following holds:

E

i
$←[k]

BiasS(Fi)2 � ρ2.

Following extraction lemma was proven in previous works over {0, 1}η.

Imported Lemma 2 ([2,17,20,35]). Let F = {F1, . . . , Fμ} be ρ2-biased family
of distributions over the sample space {0, 1}η. Let (M,L) be a joint distribution
such that the marginal distribution M is over {0, 1}η and H̃∞(M |L) ≥ m. Then,
the following holds: Let J be a uniform distribution over [μ]. Then,

SD
(
(FJ ⊕ M,L, J),

(
U{0,1}η , L, J

)) ≤ ρ

2

(
2η

2m

)1/2

.

A natural generalization of above lemma for distributions over F
η gives the

following.



48 A. R. Block et al.

Theorem 5 (Min-entropy extraction via masking with small-bias dis-
tributions). Let F = {F1, . . . , Fμ} be a ρ2-biased family of distributions over
the sample space F

η for field F of size q. Let (M,L) be a joint distribution such
that the marginal distribution M is over F

η and H̃∞(M |L) � m. Then, the
following holds: Let J be a uniform distribution over [μ]. Then,

SD ((FJ ⊕ M,L, J), (UFη , L, J)) � ρ

2

( |F|η
2m

)1/2

.

We provide the proof of this result in the full version of our work [8].

2.5 Distribution over Linear Codes

Let C = [η, κ, d, d⊥, d(2)]F be a linear code over F with generator matrix G ∈
F

κ×η. We also use C to denote the uniform distribution over codewords generated
by G. For any π ∈ Sη, define Gπ = π(G) as the generator matrix obtained by
permuting the columns of G under π.

The dual code of C, represented by C⊥, is the set of all codewords that
are orthogonal to every codeword in C. That is, for any c⊥ ∈ C⊥, it holds that
〈c, c⊥〉 = 0 for all c ∈ C. Let H ∈ F

(η−κ)×η be a generator matrix of C⊥. The
distance of C⊥ is d⊥.

The Schur product code of C, represented by C(2), is the span of all
codewords obtained as a Schur product of codewords in C. That is, C(2) =
C ∗C := 〈c ∗ c′ : c, c′ ∈ C〉 ⊆ F

η, where c∗c′ denotes the coordinate-wise product
of c and c′. The distance of C(2) is d(2).

3 Family of Small-Bias Distributions with Erasure
Recovery

In this section, we give our construction of the family of small-bias distributions
{Cj}j∈J such that each Cj is a linear code and Cj ∗Cj supports erasure recovery.
Recall that Cj ∗Cj is the linear span of all c∗c′ such that c, c′ ∈ Cj . We formally
define the requirements for our family of distributions in Property 1.

Property 1. A family of linear code distributions C = {Cj : j ∈ J } over F
η∗

satisfy this property with parameters δ and γ if the following conditions
hold.

1. 2−δ-bias family of distributions. For any 0η∗ �= S ∈ F
η∗

,
E [BiasS(Cj)2] � 2−δ, where the expectation is taken over j

$← J .
2. γ-erasure recovery in Schur Product. For all j ∈ J , the Schur prod-

uct code of Cj , that is Cj ∗ Cj = C
(2)
j , supports the erasure recovery of

the first γ coordinates. Moreover, the first γ coordinates of Cj and C
(2)
j

are linearly independent of each other.
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3.1 Our Construction

Figure 3 presents our construction of a family of linear codes which satisfies
Property 1 and Theorem 6 gives the parameters for our construction.

Fig. 3. Our construction of a family of small bias linear code distributions.

At a high level, the linear code C is a suitable algebraic geometric code over
constant size field F of block length η∗ = γ+η. The parameters of the code C are
chosen such that C is a 2−δ-biased family of distributions under our “twist-then-
permute” operation, and C ∗ C supports erasure recovery of any γ coordinates.
The precise calculation of the parameters of the code C can be found in the full
version of our work [8]. Our family of linear codes satisfies the following theorem.

Theorem 6. The family of linear code distributions {Cπ,λ : π ∈ Sη∗ , λ ∈
(F∗)η∗} over F

η∗
given in Fig. 3 satisfies Property 1 for any γ < d(2), where

d(2) is the distance of the Schur product code of C, and δ = [d⊥ + η∗/(√q−1)− 1] ·
[lg(q − 1) − h2(1/(q+1))] − (η∗

/(√q−1)) lg q, where h2 denotes the binary entropy
function.
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Proof. We first prove erasure recovery followed by the small-bias property.

γ-erasure Recovery in Schur Product code. First we note that permuting or re-
ordering the columns of a generator matrix does not change its distance, distance
of the Schur product, or its capability of erasure recovery (as long as we know
the mapping of new columns vis-à-vis old columns). Let Iγ = {i1, . . . , iγ} be the
indices of the erased coordinates of codeword in C

(2)
π,λ. Hence to show erasure

recovery of the coordinates Iγ of a codeword of C
(2)
π,λ, it suffices to show erasure

recovery of the γ erased coordinates Jγ = {j1, . . . , jγ} of a codeword of C
(2)
λ ,

where Cλ is the uniform codespace generated by Gλ, and π(jk) = ik, ∀k ∈ [γ].
Note that since γ < d(2), the code C(2) supports erasure recovery of any γ

coordinates. Thus it suffices to show that this implies that C
(2)
λ also supports the

erasure recovery of any γ coordinates. Note that since λ ∈ (F∗)η∗
, multiplication

of the columns of G according to λ does not change its distance or distance of
the Schur product. Then we do the following to perform erasure recovery of
γ coordinates in C

(2)
λ . Let c(2) ∈ C

(2)
λ be a codeword with erased coordinates

Jγ = {j1, . . . , jγ}, and let Jη = {j′
1, . . . , j

′
η} be the coordinates of c(2) that have

not been erased. For every j ∈ Jη, compute cj = (λ-1
j )2c(2)j . Then the vector

(cj)j∈Jη
is a codeword of C(2) with coordinates ci erased for i ∈ Jγ . Since C(2)

has γ erasure recovery, we can recover the ci for i ∈ Jγ . Once recovered, for
every i ∈ Jγ , compute c

(2)
i = λ2

i ci. This produces the γ erased coordinates of
c(2) in C

(2)
λ . Finally, one can map the c

(2)
i for i ∈ Jγ to the coordinates Iγ using

π, recovering the erasures in C
(2)
π,λ.

2−δ-bias Family of Distributions. Let C,Cλ, Cπ,λ be the uniform distribution
over the linear codes generated by G,Gλ, Gπ,λ, respectively. Recall that d⊥ is
the dual distance for C. Note that Cλ, Cπ,λ have dual-distance d⊥ as well. Let
η∗ = η + γ. Since BiasS(Cπ,λ) = |F|η∗ |Ĉπ,λ(S)| for every S ∈ F

η∗
, it suffices to

show that

E
π,λ

[
Ĉπ,λ(S)2

]
� 1

|F|2η∗ · 2δ
.

To begin, first recall the definition of Cπ,λ:

Cπ,λ := {π(λ1c1, . . . , λη∗cη∗) | (c1, . . . , cη∗) ∈ C}.

Next, given any S ∈ F
η∗

, define S(S) := {π(λ1S1, . . . , λη∗Sη∗) ∈ F
η∗ | ∀π ∈

Sη∗ ∧ λ ∈ (F∗)η∗}. Note that S(S) is equivalently characterized as

S(S) = {T = (T1, . . . , Tη∗) ∈ F
η∗ | wt(T ) = wt(S)}.
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It is easy to see that |S(S)| =
(

η∗

w0

)
(q − 1)η∗−w0 , where w0 = η∗ −wt(S); i.e., w0

is the number of zeros in S. We prove the following claim.

Claim 1. For any S ∈ F
η∗
, we have Ĉπ,λ(S) = Ĉ(π-1(S) ∗ λ).

Proof. Notice that by definition for any x ∈ Cπ,λ, we have Cπ,λ(x) = C(c) since
x = π(λ1c1, . . . , λη∗cη∗) for c ∈ C. This is equivalently stated as Cπ,λ(π(c∗λ)) =
C(c). For x = π(λ1y1, . . . , λη∗yη∗) ∈ F

η∗
and any S ∈ F

η∗
, we have

S · x =
η∗
∑

i=1

Sixi =
η∗
∑

i=1

Si(λπ(i)yπ(i)) =
η∗
∑

i=1

(Sπ-1(i))λiyi = (π-1(S) ∗ λ) · y.

where S ·x is the vector dot product. By definition of χS(x), this implies χS(x) =
χy(π-1(S) ∗ λ). Using these two facts and working directly from the definition of
Fourier Transform, we have

Ĉπ,λ(S) =
1

|F|η∗

∑

x∈Fη∗
Cπ,λ(x)χS(x)

=
1

|F|η∗

∑

c∈Fη∗
Cπ,λ(π(λ1c1, . . . , λη∗cη∗))χS(π(λ1c1, . . . , λη∗cη∗))

=
1

|F|η∗

∑

c∈Fη∗
C(c)χc(π-1(S) ∗ λ) = Ĉ(π-1(S) ∗ λ).

This proves Claim 1. ��
It is easy to see that wt(π-1(S) ∗ λ) = wt(S), so (π-1(S) ∗ λ) = T ∈ S(S). From
this fact and Claim 1, we prove the following claim.

Claim 2. For any S ∈ F
n, E

π,λ

[
Ĉπ,λ(S)2

]
= E

T
$←S(S)

[
Ĉ(T )2

]
.

Proof. Suppose we have codeword x ∈ Cπ,λ such that π(λ1c1, . . . , λ
∗
ηc∗

η) = x,
for some codeword c ∈ C. Let {i1, . . . , iw0} be the set of indices of 0 in c;
that is, cj = 0 for all j ∈ {i1, . . . , iw0}. Then for any permutation π, the set
{π(i0), . . . , π(iw0)} is the set of zero indices in x. Note also that for any index
j �∈ {π(i0), . . . , π(iw0)}, we have xj �= 0. If this was not the case, then we have
xj = cπ-1(j)λπ-1(j) = 0. Since j �∈ {π(i0), . . . , π(iw0)}, this implies π-1(j) �∈
{i0, . . . , iw0}, which further implies that cπ-1(j) �= 0. This is a contradiction since
λ ∈ (F∗)η∗

. Thus any permutation π must map the zeros of S to the zeros of c,
and there are w0!(η∗ − w0)! such permutations. Notice now that for any ck = 0,
λk can take any value in F

∗, so we have (q − 1)w0 such choices. Furthermore, if
ck �= 0 and λkck = xπ-1(k) �= 0, then there is exactly one value λk ∈ F

∗ which
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satisfies this equation. Putting it all together, we have

E
π,λ

[
Ĉπ,λ(S)2

]
=

1
η∗!(q − 1)η∗

∑

π,λ

Ĉπ,λ(S)2 =
1

η∗!(q − 1)η∗

∑

π,λ

Ĉ
(
π-1(S) ∗ λ

)2

=
(w0!(η∗ − w0)!(q − 1)w0)

η∗!(q − 1)η∗

∑

T∈S(S)

Ĉ(T )2

=
w0!(η∗ − w0)!

η∗!(q − 1)η∗−w0

∑

T∈S(S)

Ĉ(T )2

=
((

η∗

w0

)
(q − 1)η∗−w0

)-1 ∑

T∈S(S)

Ĉ(T )2 = E

T
$←S(S)

[
Ĉ(T )2

]
.

where the first line of equality follows from Claim 1. This proves Claim 2. ��
With Claim 2, we now are interested in finding δ such that for 0η∗ �= S ∈ F

η∗

E

T
$←S(S)

[
Ĉ(T )2

]
≤ 1

|F|2η∗2δ
.

We note that since C is a linear code, C has non-zero Fourier coefficients only
at codewords in C⊥.

Claim 3. For all S ∈ F
η∗
, Ĉ(S) =

⎧
⎨

⎩

1
|F|η∗ S ∈ C⊥

0 otherwise.

Let Aw = |C⊥∩S(S)|, where w = η∗−w0 = wt(S). Intuitively, Aw is the number
of codewords in C⊥ with weight w. Then from Claim 3, we have

E

T
$←S(S)

[
Ĉ(T )2

]
=

|C⊥ ∩ S(S)|
|F|2η∗(

η∗
η∗−wt(S)

)
(q − 1)wt(S)

=
Aw

|F|2η∗(
η∗
w

)
(q − 1)w

Now, our goal is to upper bound Aw. Towards this goal, the weight enumerator
for the code C⊥ is defined as the following polynomial:

WC⊥(x) =
∑

c∈C⊥
xη∗−wt(c).

This polynomial can equivalently be written in the following manner:

WC⊥(x) =
∑

w∈{0,...,η∗}
Awxη∗−w.

Define a = η∗ − d⊥.

Imported Theorem 1 (Exercise 1.1.15 from [41]). We have the relation

WC⊥(x) = xη∗
+

a∑

i=0

Bi(x − 1)i,where
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Bi =
η∗−i∑

j=η∗−a

(
η∗−j

i

)
Aj ≥ 0 Ai =

a∑

j=η∗−i

(−1)η∗+i+j
(

j
η∗−i

)
Bj .

For weight w ∈ {
d⊥, . . . , η∗}, we use the following expression to estimate Aw.

Aw =
(

η∗−w
η∗−w

)
Bη∗−w −

(
η∗−w+1

η∗−w

)
Bη∗−w+1 +· · · ±

(
η∗−d⊥

η∗−w

)
Bη∗−d⊥

Since we are interested in the asymptotic behavior (and not the exact value)
of Aw, we note that lg Aw ∼ lg Γ (w), where

Γ (w) = max
{(

η∗−w
η∗−w

)
Bη∗−w,

(
η∗−w+1

η∗−w

)
Bη∗−w+1, . . . ,

(
η∗−d⊥

η∗−w

)
Bη∗−d⊥

}
.

Thus, it suffices to compute Γ (w) for every w, and then the bias. We present this
precise asymptotic calculation in the full version of our work [8]. This calculation
yields

δ =
(

d⊥ +
η∗

√
q − 1

− 1
) (

lg(q − 1) − h2

(
1

q + 1

))
− η∗

√
q − 1

lg q,

which completes the proof. ��

4 Construction of Correlation Extractor

Our main sub-protocol for Theorem 3 takes ROLE(F) as the initial correlation
and produces secure ROLE(F). Towards this, we define a ROLE(F)-to-ROLE(F)
extractor formally below.

Definition 7 ((η, γ, t, ε)-ROLE(F)-to-ROLE(F) extractor). Let (RA, RB) =
(ROLE(F))η be correlated randomness. An (η, γ, t, ε)-ROLE(F)-to-ROLE(F)
extractor is a two-party interactive protocol in the (RA, RB)[t]-hybrid that
securely implements the (ROLE(F))γ functionality against information-theoretic
semi-honest adversaries with ε simulation error.

Let (ui, vi) ∈ F
2 and (ri, zi) ∈ F

2 be the shares of Alice and Bob, respec-
tively, in the ith output ROLE instance. The correctness condition says that the
receiver’s output is correct in all γ instances of ROLE, i.e., zi = uiri + vi for
all i ∈ [γ]. The privacy requirement says the following: A corrupt sender (resp.,
receiver) cannot distinguish between {ri}i∈[γ] (resp., {ui}i∈[γ]) and UFγ with
advantage more than ε.

In Sect. 4.1, we give our construction for Theorem 3. Later, in Sect. 4.3, we
build on this to give our construction for Theorem 2.
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4.1 Protocol for ROLE(F) correlation extractor

As already mentioned in Sect. 1.4, to prove Theorem 3, our main building block
will be (η, γ, t, ε)-ROLE(F)-to-ROLE(F) extractor (see Definition 7). That is, the
parties start with η samples of the ROLE(F) correlation such that size of each
party’s share is n = 2η log |F| bits. The adversarial party gets t bits of leakage.
The protocol produces (ROLE(F))γ with simulation error ε. We give the formal
description of the protocol, inspired by the Massey secret sharing scheme [32], in
Fig. 4. Note that our protocol is round-optimal and uses a family of distributions
C = {Cj}j∈J that satisfies Property 1 with parameters δ and γ.

Fig. 4. ROLE(F)-to-ROLE(F) extractor protocol.

Next, we use the ROT embedding technique from [9] to embed σ ROTs in
each fresh ROLE(F) obtained from above protocol. For example, we can embed
two ROTs into one ROLE(GF

[
26

]
). Using this we get production m = 2σγ, i.e.,

we get m/2 = σγ secure ROTs. We note that the protocol from [9] is round-
optimal, achieves perfect security and composes in parallel with our protocol in
Fig. 4. Hence, we maintain round-optimality (see Sect. 4.2).

Correctness of Fig. 4. The following lemma characterizes the correctness of
the scheme presented in Fig. 4.

Lemma 3 (Correctness). If the family of distributions C = {Cj}j∈J satisfies
Property 1, i.e., erasure recovery of first γ coordinates in Schur product, then
for all i ∈ {−γ, . . . ,−1}, it holds that ti = uiri + vi.
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Proof. First, we prove the following claim.

Claim 4. For all i ∈ [η], it holds that ti = uiri + vi.

This claim follows from the following derivation.

ti = αiri + βi − zi = (ui − ai)ri + (aimi + bi + vi) − zi

= uiri − airi + ai(ri + xi) + bi + vi

= uiri + aixi + bi + vi − zi

= uiri + vi

From the above claim, we have that t[η] = u[η] ∗r[η] +v[η]. From the protocol,
we have that u, r ∈ Cj and v ∈ C

(2)
j . Consider t̃ = u ∗ r + v ∈ C

(2)
j . Note that

ti = t̃i for all i ∈ [η]. Hence, when client B performs erasure recovery on t[η]

for a codeword in C
(2)
j , it would get t̃[−γ]. This follows from erasure recovery

guarantee for first γ coordinates by Property 1. ��
Security of Fig. 4. To argue the security, we prove that the protocol is a secure
implementation of (ROLE(F))γ functionality against an information-theoretic
semi-honest adversary that corrupts either the sender or the receiver and leaks
at most t-bits from the secret share of the honest party at the beginning of the
protocol. At a high level, we prove the security of our protocol by reducing it
exactly to our unpredictability lemma.

Lemma 4 (Unpredictability Lemma). Let C = {Cj : j ∈ J } be a 2−δ-biased
family of linear code distributions over F

η∗
, where η∗ = γ + η. Consider the

following game between an honest challenger H and an adversary A:

1. H samples m[η] ∼ UFη .
2. A sends a leakage function L : Fη → {0, 1}t.
3. H sends L(m[η]) to A.

4. H samples j
$← J . H samples a uniform random (r−γ , . . . , r−1, r1, . . . , rη) ∈ Cj.

H computes y[η] = r[η] + m[η] and sends (y[η], j) to A.

H picks b
$← {0, 1}. If b = 0, then H sends chal = r[−γ] to A; otherwise (if b = 1)

H sends chal = u[γ] ∼ UFγ .

5. A sends b̃ ∈ {0, 1}.

The adversary A wins the game if b = b̃. For any A, the advantage of the

adversary is ε ≤ 1
2

√
|F|γ2t

2δ .

Proof. Let M[η] be the distribution corresponding to m[η]. Consider M ′
[η+γ] =

(0γ ,M[η]). By Imported Lemma 1, H̃∞(M ′|L(M ′)) ≥ η log |F| − t. Recall that
C = {Cj : j ∈ J } is a 2−δ-bias family of distributions over F

η+γ . Then, by
Theorem 5, we have the following as desired:

SD
(
(CJ ⊕ M ′, L(M ′), J ), (UFη+γ , L(M ′), J )

) ≤ 1

2

(
2t · |F|η+γ

2δ · |F|η
) 1

2

=
1

2

√
|F|γ2t

2δ
.

��
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We note that this lemma crucially relies on a family of small-bias distributions.
Next, we prove the following security lemma.

Lemma 5. The simulation error of our protocol is ε ≤
√

|F|γ2t

2δ , where t is the
number of bits of leakage, and γ and δ are the parameters in Property 1 for the
family of distributions C.
Proof. We first prove Bob privacy followed by Alice privacy.

Bob Privacy. In order to prove privacy of client B against a semi-honest client
A, it suffices to show that the adversary cannot distinguish between Bob’s
secret values (r−γ , . . . , r−1) and UFγ . We show that the statistical distance of
(r−γ , . . . , r−1) and UFγ given the view of the adversary is at most ε, where ε is
defined above.

We observe that client B’s privacy reduces directly to our unpredictability
lemma (Lemma 4) for the following variables. Let X[η] be the random variable
denoting B’s input in the initial correlations. Then, X[η] is uniform over F

η.
Note that the adversary gets L = L(X[η]) that is at most t-bits of leakage. Next,
the honest client B picks j

$← J and a random r = (r−γ , . . . , r−1, r1, . . . , rη) ∈
Cj . Client B sends m[η] = r[η] + x[η]. This is exactly the game between the
honest challenger and an semi-honest adversary in the unpredictability lemma
(see Lemma 4). Hence, the adversary cannot distinguish between r[−γ] and UFγ

with probability more than ε.

Alice Privacy. In order to prove privacy of client A against a semi-honest client
B, it suffices to show that the adversary cannot distinguish between Alice’s
secret values (u−γ , . . . , u−1) and UFγ . We show that the statistical distance of
(u−γ , . . . , u−1) and UFγ given the view of the adversary is at most ε, where ε is
defined above by reducing to our unpredictability lemma (see Lemma 4).

Let A[η] denote the random variable corresponding to the client A’s input
a[η] in the initial correlations. Then, without loss of generality, the adversary
receives t-bits of leakage L(A[η]). We show a formal reduction to Lemma 4 in
Fig. 5. Given an adversary A who can distinguish between (u−γ , . . . , u−1) and
UFγ , we construct an adversary A′ against an honest challenger H of Lemma
4 with identical advantage. It is easy to see that this reduction is perfect. The
only differences in the simulator from the actual protocol are as follows. In the
simulation, the index j of the distribution is picked by the honest challenger H
instead of client B. This is identical because client B is a semi-honest adversary.

Also, the simulator A′ generates β[η] slightly differently. We claim that the
distribution of β[η] in the simulation is identical to that of real protocol.

This holds by correctness of the protocol: t[η] = u[η]∗r[η]+v[η] = (α[η]∗r[η])+
β[η]−z[η]. Hence, β[η] = (u[η]∗r[η]+v[η])−(α[η]∗r[η])+z[η] = w[η]−(α[η]∗r[η])+z[η],
where w[−γ,η] is chosen as a random codeword in C

(2)
j . This holds because in the

real protocol v[−γ,η] is chosen as a random codeword in C
(2)
j and u[−γ,η]∗r[−γ,η] ∈

C
(2)
j . Here, we denote by [−γ, η] the set {−γ, . . . ,−1, 1, . . . , η}. ��
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Fig. 5. Simulator for Alice Privacy.

4.2 OT Embedding

The second conceptual block is the ROT embedding protocol from [9], referred
to as the BMN embedding protocol, that embeds a constant number of ROT
samples into one sample of ROLE

(
F
)
, where F is a finite field of characteristic

2. The BMN embedding protocol is a two-message perfectly semi-honest secure
protocol. For example, asymptotically, [9] embeds (s)1−o(1) samples of ROT into
one sample of the ROLE

(
GF [2s]

)
correlation. However, for reasonable values of

s, say for s ≤ 250, a recursive embedding embeds slog 10/ log 32 samples of ROT
into one sample of the ROLE

(
GF [2s]

)
correlation, and this embedding is more

efficient than the asymptotically good one. Below, we show that this protocol
composes in parallel with our protocol in Fig. 4 to give our overall round optimal
protocol for (n,m, t, ε)-correlation extractor for ROLE(F) correlation satisfying
Theorem 3.

We note that the BMN embedding protocol satisfies the following additional
properties. (1) The first message is sent by client B, and (2) this message depends
only on the first share of client B in ROLE(F) (this refers to ri in Fig. 4) and does
not depend on the second share (this refers to ti in Fig. 4). With these properties,
the BMN embedding protocol can be run in parallel with the protocol in Fig. 4.
Also, since the BMN protocol satisfies perfect correctness and perfect security,
to prove overall security, it suffices to prove the correctness and security of our
protocol in Fig. 4. This holds because we are in the semi-honest information
theoretic setting.
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4.3 Protocol for ROT Extractor (Theorem 2)

In this section, we describe a protocol to construct (ROLE(F)η)[t] using
(ROLEn)[t], that is the starting point of our protocol in Sect. 4.1. This would
prove Theorem 2. Here, ROLE := ROLE

(
GF [2]

)
. Recall that ROLE and ROT are

equivalent.
One of the several fascinating applications of algebraic function fields pio-

neered by the seminal work of Chudnovsky and Chudnovsky [14], is the appli-
cation to efficiently multiply over an extension field using multiplications over
the base field. For example, 6 multiplications over GF [2] suffice to perform one
multiplication over GF

[
23

]
, or 15 multiplications over GF [2] suffice for one mul-

tiplication over GF
[
26

]
(cf., Table 1 in [12]).

Our first step of the correlation extractor for (ROLEn)[t] uses these efficient
multiplication algorithms to (perfectly and securely) implement (ROLE(F)η)[t],
where F = GF(2α) is a finite field with characteristic 2.

We start by describing a protocol for realizing one ROLE
(
F
)

using ROLE	,
i.e., 
 independent samples of ROLE (in the absence of leakage) in Fig. 6. Our pro-
tocol implements, for instance, one sample of ROLE

(
GF

[
23

])
correlation using

6 samples from the ROT correlation in two rounds. Our protocol uses a mul-
tiplication friendly code D over {0, 1}	 and encodes messages in F. That is,
D ∗ D = D(2) ⊂ {0, 1}	 is also a code for F. Later, we show how to extend this
to the leakage setting.

Fig. 6. Perfectly secure protocol for ROLE(F) in ROLE� hybrid.

Security Guarantee. It is easy to see that the protocol in Fig. 6 is a perfectly
secure realization of ROLE(F) in the ROLE	-hybrid against a semi-honest adver-
sary using the fact that D is a multiplication friendly code for F. Moreover, [26]
proved the following useful lemma to argue t-leaky realization of ROLE(F) if the
perfect oracle call to ROLE	 is replaced by a t-leaky oracle.
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Imported Lemma 3 ([26]). Let π be a perfectly secure (resp., statistically ε
secure) realization of f in the g-hybrid model, where π makes a single call to g.
Then, π is also a perfectly secure (resp., statistically ε secure) realization of f [t]

in the g[t]-hybrid model.

Using the above lemma, we get that the protocol in Fig. 6 is a perfect real-
ization of (ROLE(F))[t] in (ROLE	)[t]-hybrid. Finally, by running the protocol of
Fig. 6 in parallel for η samples of ROLE(F) and using Imported Lemma 3, we get
a perfectly secure protocol for (ROLE(F)η)[t] in (ROLEη	)[t]-hybrid.

Round Optimality. To realize the round-optimality in Theorem 2, we can
run the protocols in Figs. 6 and 4 in parallel. We note that the first messages of
protocols in Figs. 6 and 4 can be sent together. This is because the first message of
client B in protocol of Fig. 4 is independent of the second message in Fig. 6. The
security holds because we are in the semi-honest information theoretic setting.
Hence, overall round complexity is still 2.

5 Parameter Comparison

5.1 Correlation Extractor from ROLE
(
F
)

(Theorem 3)

In this section, we compare our correlation extractor for ROLE
(
F
)

correlation,
where F is a constant size field, with the BMN correlation extractor [9].

BMN Correlation Extractor [9]. The BMN correlation extractor emphasizes
high resilience while achieving multiple ROTs as output. Roughly, they show
the following. If parties start with the IP

(
GF

[
2Δn

]1/Δ)
correlation, then they

(roughly) achieve 1
2 − Δ fractional resilience with production that depends on

(Δn). Here, Δ has to be the inverse of an even natural number � 4.
In particular, the IP

(
GF

[
2n/4

]4)
correlation12 achieves the highest produc-

tion using the BMN correlation extractor. The resilience of this correlation is
( 14 − g), where g ∈ (0, 1/4] is a positive constant. Then the BMN correlation
extractor produces at most (n/4)log 10/ log 38 ≈ (n/4)0.633 fresh samples from the
ROT correlation as output when n ≤ 250. This implies that the production is
m ≈ 2 · (n/4)0.633, because each ROT sample produces private shares that are
two-bits long. For n = 103, the production is m � 66, for n = 106 the production
is m � 5, 223, and for n = 109 the production is m � 413, 913. We emphasize
that the BMN extractor cannot increase its production any further by sacrificing
its leakage resilience and going below 1/4.

Our Correlation Extractor for ROLE
(
F
)
. We shall use F such that q = |F|

is an even power of 2. For the suitable Algebraic Geometry codes [19] to exist,
we need q � 49. Since, the last step of our construction uses the OT embedding

12 Recall that the inner-product correlation IP
(
K

s
)

over finite field K samples random
rA = (u1, . . . , us) ∈ K

s and rB = (v1, . . . , vs) ∈ K
s such that u1v1 + · · · + usvs = 0.
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Fig. 7. The production rate of our correlation extractor for ROLE
(
F
)
, where β = t/n =

1% rate of leakage using different finite fields.

Fig. 8. The production rate of our correlation extractor for ROT. We are given n-bit
shares of the ROTn/2 correlation, and fix β = t/n = 1% fractional leakage. Each row
corresponds to using our ROLE

(
F
)
-to-ROT correlation extractor as an intermediate

step. The final column represents the production rate α = m/n of our ROT-to-ROT
correlation extractor corresponding to the choice of the finite field F.

technique introduced by BMN [9], we need to consider only the smallest fields
that allow a particular number of OT embeddings. Based on this observation, for
fractional resilience β = (t/n) = 1%, Fig. 7 presents the achievable production
rate α = (m/n). Note that the Algebraic Geometry codes become better with
increasing q, but the BMN OT embedding becomes worse. So, the optimum α =
16.32% is achieved for F = GF

[
214

]
. For n = 103, for example, the production

is m = 163, for n = 106 the production is m = 163, 200, and for n = 109 the
production is m = 163, 200, 000. In Fig. 9 (Sect. 6), we demonstrate the trade-off
between leakage rate (Y-axis) with production rate (X-axis). We note that even
in the high leakage setting, for instance, for β = 20%, we have α ≈ 3%. Hence,
the production is m ≈ 30, for n = 106 the production is m ≈ 30, 000, and for
n = 109 the production is m ≈ 30, 000, 000. Our production is overwhelmingly
higher than the BMN production rate.

5.2 Correlation Extractor for ROT (Theorem 2)

In this section we compare our construction with the GIMS [22] correlation
extractor from ROT. The IKOS [26] correlation extractor is a feasibility result
with minuscule fractional resilience and production rate.
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Fig. 9. A comparison of the feasibility regions for our correlation extractors for
ROLE

(
F
)

for various finite fields F of characteristic 2. For each plot, the X-axis rep-
resents the relative production rate α = m/n and the Y -axis represents the fractional
leakage resilience β = t/n.
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GIMS Production. The GIMS correlation extractor for ROT [22] trades-off
simulation error to achieve higher production by sub-sampling the precomputed
ROTs. For β = (t/n) = 1% fractional leakage, the GIMS correlation extractor
achieves (roughly) m = n/4p production with ε = m · 2−p/4 simulation error.
To achieve negligible simulation error, suppose p = log2(n). For this setting, at
n = 103, n = 106, and n = 109, the GIMS correlation extractor obtains m = 3,
m = 625, and m = 277, 777, respectively. These numbers are significantly lower
than what our construction achieves.

Our Production. We use a bilinear multiplication algorithm to realize one
ROLE

(
F
)

by performing several ROT. For example, we use μ2(s) = 15 ROTs
to implement one ROLE

(
GF [2s]

)
, where s = 6. Thus, our original n-bit share

changes into n′-bit share, where n′ = (6/15)n while preserving the leakage t =
βn. So, the fractional leakage now becomes t = β′n′, where β′ = (15/6)β. Now,
we can compute the production m′ = α′n′ = αn.

The highest rate is achieved for s = 10, i.e., constructing the correlation
extractor for ROT via the correlation extractor for ROLE

(
GF

[
210

])
. For this

choice, our correlation extractor achieves production rate α = (m/n) = 4.20%, if
the fractional leakage is β = (t/n) = 1%. For n = 103, n = 106, and n = 109, our
construction obtains m = 42, m = 42, 000, and m = 42, 000, 000, respectively.

5.3 Close to Optimal Resilience

An interesting facet of our correlation extractor for ROLE
(
F
)

is the following.
As q = |F| increases, the maximum fractional resilience, i.e., the intercept of the
feasibility curve on the Y -axis, tends to 1/4. Ishai et al. [27] showed that any
correlation extractor cannot be resilient to fractional leakage β = (t/n) = 25%.
For every g ∈ (0, 1/4], we show that, by choosing sufficiently large q, we can
achieve positive production rate α = (m/n) for β = (1/4−g). Thus, our family of
correlation extractors (for larger, albeit constant-size, finite fields) achieve near
optimal fractional resilience. Figure 9 (Sect. 6) demonstrates this phenomenon
for a few values of q. The proof of this result, which proves Theorem 4, can be
found in the full version of our work [8].

6 Parameter Comparison Graphs

In this section we highlight the feasibility of parameters for our ROT to ROT
correlation extractor (Theorem 2) for a few representative values of q = |F|.

The shaded regions in the graphs in Fig. 9 represent the feasible parameter
choices. In particular, the X-axis represents the production rate m/n and the Y -
axis represents the leakage rate t/n given our parameter choices. The full version
of the paper [8] details the calculation of the feasible parameters.

Note that, as the size of the field F increases, the quality of the algebraic
geometric code used in our construction increases. This observation translates
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into higher possible production values and leakage resilience, which is illustrated
by increasing q = 26 to q = 214. However, as the size of the field F increases, the
efficiency of the BMN embedding [9] reduces, potentially reducing the overall
production rate (for example, increasing q = 214 to q = 220).

Finally, as noted earlier, the feasibility graphs demonstrate that our family
of correlation extractors achieve near optimal fractional resilience. That is, as
the size of the field F increases, the fractional leakage resilience approaches 1/4,
which is optimal [27].
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Abstract. This paper initiates a study of Fine Grained Secure
Computation: i.e. the construction of secure computation primitives
against “moderately complex” adversaries. We present definitions and
constructions for compact Fully Homomorphic Encryption and Verifi-
able Computation secure against (non-uniform) NC1 adversaries. Our
results do not require the existence of one-way functions and hold under a
widely believed separation assumption, namely NC1 � ⊕L/poly. We also
present two application scenarios for our model: (i) hardware chips that
prove their own correctness, and (ii) protocols against rational adver-
saries potentially relevant to the Verifier’s Dilemma in smart-contracts
transactions such as Ethereum.

1 Introduction

Historically, Cryptography has been used to protect information (either in tran-
sit or stored) from unauthorized access. One of the most important developments
in Cryptography in the last thirty years, has been the ability to protect not only
information but also the computations that are performed on data that needs
to be secure. Starting with the work on secure multiparty computation [Yao82],
and continuing with ZK proofs [GMR89], and more recently Fully Homomor-
phic Encryption [Gen09], verifiable outsourcing computation [GKR08,GGP10],
SNARKs [GGPR13,BCI+13] and obfuscation [GGH+16] we now have crypto-
graphic tools that protect the secrecy and integrity not only of data, but also of
the programs which run on that data.

Another crucial development in Modern Cryptography has been the adoption
of a more “fine-grained” notion of computational hardness and security. The
traditional cryptographic approach modeled computational tasks as “easy” (for
the honest parties to perform) and “hard” (infeasible for the adversary). Yet
we have also seen a notion of moderately hard problems being used to attain
certain security properties. The best example of this approach might be the use of
moderately hard inversion problems used in blockchain protocols such as Bitcoin.
Although present in many works since the inception of Modern Cryptography,
this approach was first formalized in a work of Dwork and Naor [DN92].

In the second part of this work we consider the following model (which can be
traced back to the seminal paper by Merkle [Mer78] on public key cryptography).
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Honest parties will run a protocol which will cost1 them C while an adversary
who wants to compromise the security of the protocol will incur a C ′ = ω(C) cost.
Note that while C ′ is asymptotically larger than C, it might still be a feasible
cost to incur – the only guarantee is that it is substantially larger than the work
of the honest parties. For example in Merkle’s original proposal for public-key
cryptography the honest parties can exchange a key in time T but the adversary
can only learn the key in time T 2. Other examples include primitives introduced
by Cachin and Maurer [CM97] and Hastad [Has87] where the cost is the space
and parallel time complexity of the parties, respectively.

Recently there has been renewed interest in this model. Degwekar et al.
[DVV16] show how to construct certain cryptographic primitives in NC1 [resp.
AC0] which are secure against all adversaries in NC1 [resp. AC0]. In conceptually
related work Ball et al. [BRSV17] present computational problems which are
“moderately hard” on average, if they are moderately hard in the worst case, a
useful property for such problems to be used as cryptographic primitives.

The goal of this paper is to initiate a study of Fine Grained Secure
Computation. By doing so we connect these two major developments in Modern
Cryptography. The question we ask is if it is possible to construct secure com-
putation primitives that are secure against “moderately complex” adversaries.
We answer this question in the affirmative, by presenting definitions and con-
structions for the task of Fully Homomorphic Encryption and Verifiable Com-
putation in the fine-grained model. In our constructions, our goal is to optimize
at the same time (for the extent to which it is possible) in terms of depth,
size, round and communication complexity. Our constructions rely on a widely
believed complexity separation2. We also present two application scenarios for
our model: (i) hardware chips that prove their own correctness and (ii) proto-
cols against rational adversaries including potential solutions to the Verifier’s
Dilemma in smart-contracts transactions such as Ethereum.

1.1 Our Results

Our starting point is the work in [DVV16] and specifically their public-key
encryption scheme secure against NC1 circuits. Recall that AC0[2] is the class of
Boolean circuits with constant depth, unbounded fan-in, augmented with parity
gates. If the number of AND (and OR) gates of non constant fan-in is constant
we say that the circuit belongs to the class AC0

Q[2] ⊂ AC0[2].
Our results can be summarized as follows:

– We first show that the techniques in [DVV16] can be used to build a somewhat
homomorphic encryption (SHE) scheme. We note that because honest parties
are limited to NC1 computations, the best we can hope is to have a scheme
that is homomorphic for computations in NC1. However our scheme can only
support computations that can be expressed in AC0

Q[2].

1 We intentionally refer to it as “cost” to keep the notion generic. For concreteness
one can think of C as the running time required to run the protocol.

2 A separation implied by L �= NC1. See Sect. 1.1 for more details.
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– We then use our SHE scheme, in conjunction with protocols described in
[GGP10,CKV10,AIK10], to construct verifiable computation protocols for
functions in AC0

Q[2], secure and input/output private against any adversary
in NC1.

Our somewhat homomorphic encryption also allows us to obtain the following
protocols secure against NC1 adversaries: (i) constant-round 2PC, secure in the
presence of semi-honest static adversaries for functions in AC0

Q[2]; (ii) Private
Function Evaluation in a two party setting for circuits of constant multiplicative
depth without relying on universal circuits. These results stem from well-known
folklore transformations and we do not prove them formally.

The class AC0
Q[2] includes many natural and interesting problems such as:

fixed precision arithmetic, evaluation of formulas in 3CNF (or kCNF for any
constant k), a representative subset of SQL queries, and S-Boxes [BP11] for
symmetric key encryption.

Our results (like [DVV16]) hold under the assumption that NC1
� ⊕L/poly,

a widely believed worst-case assumption on separation of complexity classes.
Notice that this assumption does not imply the existence of one-way functions
(or even P �= NP). Thus, our work shows that it is possible to obtain “advanced”
cryptographic schemes, such as somewhat homomorphic encryption and verifi-
able computation, even if we do not live in Minicrypt34.

Comparison with other approaches. One important question is: on what
features are our schemes better than “generic” cryptographic schemes that after
all are secure against any polynomial time adversary.

One such feature is the type of assumption one must make to prove secu-
rity. As we said above, our schemes rely on a very mild worst-case complexity
assumption, while cryptographic SHE and VC schemes rely on very specific
assumptions, which are much stronger than the above.

For the case of Verifiable Computation, we also have information-theoretic
protocols which are secure against any (possibly computationally unbounded)
adversary. For example the “Muggles” protocol in [GKR08] which can compute
any (log-space uniform) NC function, and is also reasonably efficient in practice
[CMT12]. Or, the more recent work [GR18], which obtains efficient VC for func-
tions in a subset of NC ∩ SC. Compared to these results, one aspect in which
our protocol fares better is that our Prover/Verifier can be implemented with a
constant-depth circuit (in particular in AC0[2], see Sect. 4) which is not possible
for the Prover/Verifier in [GKR08,GR18], which needs5 to be in TC0. More-
over our protocol is non-interactive (while [GKR08,GR18] requires Ω(1) rounds
of interaction) and because our protocols work in the “pre-processing model”
3 This is a reference to Impagliazzo’s “five possible worlds” [Imp95].
4 Naturally the security guarantees of these schemes are more limited compared to

their standard definitions.
5 The techniques in [GKR08,GR18] are based on properties of finite fields. Arithmetic

in such fields can be carried out by circuits of constant depth with threshold gates
(TC0), but not in AC0[2].
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we do not require any uniformity or regularity condition on the circuit being
outsourced (which are required by [GKR08,CMT12]). Finally, out verification
scheme achieves input and output privacy.

Another approach to obtain information-theoretic security for Verifiable
Computation is to use the framework of randomized encodings (RE) [IK00a,
AIK04] (e.g. [GGH+07] which uses related techniques). In this work we build
scheme with additional requirements: compact homomorphic encryption6 and
overall efficient verification for verifiable computation7. We do not see how to
achieve these additional requirements via current RE-based approaches. We fur-
ther discuss these and other limitations of directly using RE in AppendixD.

1.2 Overview of Our Techniques

Homomorphic Encryption. In [DVV16] the authors already point out that
their scheme is linearly homomorphic. We make use of the re-linearization tech-
nique from [BV14] to construct a leveled homomorphic encryption.

Our scheme (as the one in [DVV16]) is secure against adversaries in the
class of (non-uniform) NC1. This implies that we can only evaluate functions
in NC1 otherwise the evaluator would be able to break the semantic security of
the scheme. However we have to ensure that the whole homomorphic evaluation
stays in NC1. The problem is that homomorphically evaluating a function f
might increase the depth of the computation.

In terms of circuit depth, the main overhead will be (as usual) the com-
putation of multiplication gates. As we show in Sect. 3 a single homomorphic
multiplication can be performed by a depth two AC0[2] circuit, but this requires
depth O(log(n)) with a circuit of fan-in two. Therefore, a circuit for f with
ω(1) multiplicative depth would require an evaluation of ω(log(n)) depth, which
would be out of NC1. Therefore our first scheme can only evaluate functions with
constant multiplicative depth, as in that case the evaluation stays in AC0[2].

We then present a second scheme that extends the class of computable func-
tions to AC0

Q[2] by allowing for a negligible error in the correctness of the scheme.
We use techniques from a work by Razborov [Raz87] on approximating AC0[2]
circuits with low-degree polynomials – the correctness of the approximation
(appropriately amplified) will be the correctness of our scheme.

Reusable Verifiable Computation. The core of our approach is the con-
struction in [CKV10], to derive Verifiable Computation from Homomorphic
Encryption. The details of this approach follow. Recall that we are working
in a model with an expensive preprocessing phase (executed by the Client only
once and before providing any inputs to the Server) and an inexpensive online
phase. The online phase is in turn composed by two algorithms, an algorithm

6 Where the ciphertexts do not grow in size with each homomorphic operation.
7 Where not only the circuit depth is constant but also the size of the circuit is

quasilinear – the size of the verification circuit should be O(poly(λ)(n + m)) where
n and m are the size of the input and output respectively.
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to encode the input for the Server and one to check its response. In the prepro-
cessing phase in [CKV10], the Client selects a random input r, encrypts it as
cr = E(r) and homomorphically compute cf(r) an encryption of f(r). During
the online phase, the Client, on input x, computes cx = E(x) and submits the
ciphertexts cx, cr in random order to the Server, who homomorphically com-
putes cf(r) = E(f(r)) and cf(x) = E(f(x)) and returns them to the Client. The
Client, given the message c0, c1 from the Server, checks that cb = cf(r) (for the
appropriate bit b) and if so accepts y = D(cf(x)) as y = f(x). The semantic
security of E guarantees that this protocol has soundness error 1/2. This error
can be reduce by “scaling” this approach replacing the two ciphertexts cx and
cr with 2t ciphertexts (t distinct encryptions of x and t encryptions of random
values r1, . . . , rt ) sent to the prover after being shuffled through a random per-
mutation. The scheme as described is however one-time secure, since a malicious
server can figure out which one is the test ciphertext cf(r) if it is used again. To
make this scheme “many-times secure”, [CKV10] uses the paradigm introduced
in [GGP10] of running the one-time scheme “under the hood” of a different
homomorphic encryption key each time.

When applying these techniques in our fine-grained context the main techni-
cal challenge is to guarantee that they would also work within NC1. In particular,
we needed to ensure that: (i) the constructions can be computed in low-depth;
(ii) the reductions in the security proofs can be carried out in low-depth. We rely
on results from [MV91] to make sure a random permutation can be sampled by
an appropriately low-depth scheme8 Moreover, we cannot simply make black-
box use of the one-time construction in [CKV10]. In fact, their construction
works only for homomorphic encryption schemes with deterministic evaluation,
whereas the more expressive of our constructions (Sect. 3.3) is randomized9.

1.3 Application Scenarios

The applications described in this section refer to the problem of Verifying
Computation, where a Client outsources an algorithm f and an input x to a
Server, who returns a value y and a proof that y = f(x). The security property
is that it should be infeasible to convince the verifier to accept y′ �= f(x), and
the crucial efficiency property is that verifying the proof should cost less than
computing f (since avoiding that cost was the reason the Client hired the Server
to compute f).

Hardware Chips That Prove Their Own Correctness Verifiable Com-
putation (VC) can be used to verify the execution of hardware chips designed
by untrusted manufacturers. One could envision chips that provide (efficient)
proofs of their correctness for every input-output computation they perform.
These proofs must be efficiently verified in less time and energy than it takes to
re-execute the computation itself.
8 More precisely, that a permutation statistically indistinguishable from a random one

can be sampled in AC0.
9 See also Remark C.1.
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When working in hardware, however, one may not need the full power of
cryptographic protection against any malicious attacks since one could bound
the computational power of the malicious chip. The bound could be obtained
by making (reasonable and evidence-based) assumptions on how much compu-
tational power can fit in a given chip area. For example one could safely assume
that a malicious chip can perform at most a constant factor more work than the
original function because of the basic physics of the size and power constraints.
In other words, if C is the cost of the honest Server in a VC protocol, then in
this model the adversary is limited to O(C)-cost computations, and therefore a
protocol that guarantees that successful cheating strategies require ω(C) cost,
will suffice. This is exactly the model in our paper. Our results will apply to the
case in which we define the cost as the depth (i.e. the parallel time complexity)
of the computation implemented in the chip.

Rational Proofs. The problem above is related to the notion of composable
Rational Proofs defined in [CG15]. In a Rational Proof (introduced by Azar and
Micali [AM12,AM13]), given a function f and an input x, the Server returns
the value y = f(x), and (possibly) some auxiliary information, to the Client.
The Client in turn pays the Server for its work with a reward based on the
transcript exchanged with the server and some randomness chosen by the client.
The crucial property is that this reward is maximized in expectation when the
server returns the correct value y. Clearly a rational prover who is only interested
in maximizing his reward, will always answer correctly.

The authors of [CG15] show however that the definition of Rational Proofs
in [AM12,AM13] does not satisfy a basic compositional property needed for the
case in which many computations are outsourced to many servers who compete
with each other for rewards (e.g. the case of volunteer computations [ACK+02]).
A “rational proof” for the single-proof setting may no longer be rational when a
large number of “computation problems” are outsourced. If one can produce T
“random guesses” to problems in the time it takes to solve 1 problem correctly, it
may be preferable to guess! That’s because even if each individual reward for an
incorrect answer is lower than the reward for a correct answer, the total reward
of T incorrect answers might be higher (and this is indeed the case for some of
the protocols presented in [AM12,AM13]).

The question (only partially answered in [CG15,CG17] for a limited class
of computations) is to design protocols where the reward is strictly connected,
not just to the correctness of the result, but to the amount of work done by the
prover. Consider for example a protocol where the prover collects the reward
only if he produces a proof of correctness of the result. Assume that the cost to
produce a valid proof for an incorrect result, is higher than just computing the
correct result and the correct proof. Then obviously a rational prover will always
answer correctly, because the above strategy of fast incorrect answers will not
work anymore. While the application is different, the goal is the same as in the
previous verifiable hardware scenario.

The Verifier’s Dilemma. In blockchain systems such as Ethereum, transac-
tions can be expressed by arbitrary programs. To add a transaction to a block
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miners have to verify its validity, which could be too costly if the program is too
complex. This creates the so-called Verifier’s Dilemma [LTKS15]: given a costly
valid transaction Tr a miner who spends time verifying it is at a disadvantage
over a miner who does not verify it and accept it “uncritically” since the latter
will produce a valid block faster and claim the reward. On the other hand if
the transaction is invalid, accepting it without verifying it first will lead to the
rejection of the entire block by the blockchain and a waste of work by the uncrit-
ical miner. The solution is to require efficiently verifiable proofs of validity for
transactions, an approach already pursued by various startups in the Ethereum
ecosystem (e.g. TrueBit10). We note that it suffices for these proofs to satisfy
the condition above: i.e. we do not need the full power of information-theoretic
or cryptographic security but it is enough to guarantee that to produce a proof
of correctness for a false transaction is more costly than producing a valid trans-
action and its correct proof, which is exactly the model we are proposing.

1.4 Future Directions

Our work opens up many interesting future directions.
First of all, it would be nice to extend our results to the case where cost is the

actual running time, rather than “parallel running time”/“circuit depth” as in
our model. The techniques in [BRSV17] (which presents problems conjectured to
have Ω(n2) complexity on the average), if not even the original work of Merkle
[Mer78], might be useful in building a verifiable computation scheme where if
computing the function takes time T , then producing a false proof of correctness
would have to take Ω(T 2).

For the specifics of our constructions it would be nice to “close the gap”
between what we can achieve and the complexity assumption: our schemes can
only compute AC0

Q[2] against adversaries in NC1, and ideally we would like to
be able to compute all of NC1 (or at the very least all of AC0[2]).

Finally, to apply these schemes in practice it is important to have tight
concrete security reductions and a proof-of-concept implementations.

2 Preliminaries

For a distribution D, we denote by x ← D the fact that x is being sampled
according to D. We remind the reader that an ensemble X = {Xλ}λ∈N is a family
of probability distributions over a family of domains D = {Dλ}λ∈N. We say two
ensembles D = {Dλ}λ∈N and D′ = {D′

λ}λ∈N are statistically indistinguishable if
1
2

∑

x

|D(x) − D′(x)| < neg(λ). Finally, we note that all arithmetic computations

(such as sums, inner product, matrix products, etc.) in this work will be over
GF(2) unless specified otherwise.

10 TrueBit: https://truebit.io/.

https://truebit.io/
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Definition 2.1 (Function Family). A function family is a family of (possibly
randomized) functions F = {fλ}λ∈N, where for each λ, fλ has domain Df

λ and
co-domain Rf

λ. A class C is a collection of function families.

In most of our constructions Df
λ = {0, 1}df

λ and Rf
λ = {0, 1}rf

λ for sequences
{df

λ}λ, {df
λ}λ.

In the rest of the paper we will focus on the class of C = NC1 of functions
for which there is a polynomial p(·) and a constant c such that for each λ, the
function fλ can be computed by a Boolean (randomized) fan-in 2, circuit of
size p(λ) and depth c log(λ). In the formal statements of our results we will
also use the following classes: AC0, the class of functions of polynomial size and
constant depth with AND,OR and NOT gates with unbounded fan-in; AC0[2],
the class of functions of polynomial size and constant depth with AND,OR,NOT
and PARITY gates with unbounded fan-in.

Given a function f , we can think of its multiplicative depth as the degree
of the lowest-degree polynomial in GF(2) that evaluates to f . We denote by
AC0

CM[2] the class of circuits in AC0[2] with constant multiplicative depth. We
say that a circuit has quasi-constant multiplicative depth if it has a constant
number of gates with non-constant fan-in (an example is a circuit composed by
a single AND of fan-in n). We denote the class of such circuits by AC0

Q[2]. See
Appendix A for a formal treatment.

Limited Adversaries. We define adversaries also as families of randomized
algorithms {Aλ}λ, one for each security parameter (note that this is a non-
uniform notion of security). We denote the class of adversaries we consider as
A, and in the rest of the paper we will also restrict A to NC1.

Infinitely-Often Security. We now move to define security against all adver-
saries {Aλ}λ that belong to a class A. Our results achieve an “infinitely often”
notion of security, which states that for all adversaries outside of our permitted
class A our security property holds infinitely often (i.e. for an infinite sequence of
security parameters rather than for every sufficiently large security parameter).
This limitation seems inherent to the techniques in this paper and in [DVV16].
We informally denote with X ∼Λ Y the fact that two ensembles X and Y are
indistinguishable by NC1 adversaries for an infinite sequence of parameters Λ.
See also Appendix A.

3 Fine-Grained SHE

We start by recalling the public key encryption from [DVV16] which is secure
against adversaries in NC1.

The scheme is described in Fig. 1. Its security relies on the following result,
implicit in [IK00a]11. We will also use this lemma when proving the security of
our construction in Sect. 3.

11 Stated as Lemma 4.3 in [DVV16].
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Lemma 3.1 ([IK00a]). If NC1
� ⊕L/poly then there exist distribution Dkg

λ over
{0, 1}λ×λ, distribution Df

λ over matrices in {0, 1}λ×λ of full rank, and infinite
set Λ ⊆ N such that

Mkg ∼Λ Mf

where Mf ← Df
λ and Mkg ← Dkg

λ .

The following result is central to the correctness of the scheme PKE in Fig. 1
and is implicit in [DVV16].

Lemma 3.2 ([DVV16]). There exists sampling algorithm KSample such that
(M,k) ← KSample(1λ), M is a matrix distributed according to Dkg

λ (as in
Lemma 3.1), k is a vector in the kernel of M and has the form
k = (r1, r2, . . . , rλ−1, 1) ∈ {0, 1}λ where ri-s are uniformly distributed bits.

Fig. 1. PKE construction [DVV16]

Theorem 3.1 ([DVV16]). Assume NC1
� ⊕L/poly. Then, the scheme PKE =

(PKE.Keygen,PKE.Enc,PKE.Dec) defined in Fig. 1 is a Public Key Encryption
scheme secure against NC1 adversaries. All algorithms in the scheme are com-
putable in AC0[2].

3.1 Leveled Homomorphic Encryption for AC0
CM[2] Functions

Secure Against NC1

We denote by x[i] the i-th bit of a vector of bits x . Below, the scheme PKE =
(PKE.Keygen,PKE.Enc,PKE.Dec) is the one defined in Fig. 1. Our SHE scheme
is defined by the following four algorithms:

– HE.Keygensk(1λ, L) : For key generation, sample L + 1 key pairs
(M0,k0), . . . , (ML,kL) ← PKE.Keygen(1λ), and compute, for all � ∈
{0, . . . , L − 1}, i, j ∈ [λ], the value

a�,i,j ← PKE.EncM�+1(k�[i] · k�[j]) ∈ {0, 1}λ
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We define A := {a�,i,j}�,i,j to be the set of all these values. t then outputs
the secret key sk = kL, and the public key pk = (M0,A). In the following we
call evk = A the evaluation key.
We point out a property that will be useful later: by the definition above, for
all � ∈ {0, . . . , L − 1} we have

〈k�+1 ,a�+1,i,j〉 = k�[i] · k�[j] . (1)

– HE.Encpk(μ)) : Recall that pk = M0. To encrypt a message μ we compute v ←
PKE.EncM0(μ). The output ciphertext contains v in addition to a “level tag”,
an index in {0, . . . , L} denoting the “multiplicative depth” of the generated
ciphertext. The encryption algorithm outputs c := (v, 0).

– HE.DeckL
(c) : To decrypt a ciphertext12 c = (v, L) compute PKE.DeckL

(v),
i.e.

〈kL ,v〉
– HE.Evalevk(f, c1, . . . , cn) : where f : {0, 1}n → {0, 1}: We require that f is rep-

resented as an arithmetic circuit in GF(2) with addition gates of unbounded
fan-in and multiplication gates of fan-in 2. We also require the circuit to be
layered, i.e. the set of gates can be partitioned in subsets (layers) such that
wires are always between adjacent layers. Each layer should be composed
homogeneously either of addition or multiplication gates. Finally, we require
that the number of multiplications layers (i.e. the multiplicative depth) of f
is L.
We homomorphically evaluate f gate by gate. We will show how to perform
multiplication (resp. addition) of two (resp. many) ciphertexts. Carrying out
this procedure recursively we can homomorphically compute any circuit f of
multiplicative depth L.

Ciphertext Structure During Evaluation. During the homomorphic eval-
uation a ciphertext will be of the form c = (v, �) where � is the “level tag”
mentioned above. At any point of the evaluation we will have that � is between
0 (for fresh ciphertexts at the input layer) and L (at the output layer). We
define homomorphic evaluation only among ciphertexts at the same level. Since
our circuit is layered we will not have to worry about homomorphic evaluation
occurring among ciphertexts at different levels. Consistently with the fact a level
tag represents the multiplicative depth of a ciphertext, addition gates will keep
the level of ciphertexts unchanged, whereas multiplication gates will increase it
by one. Finally, we will keep the invariant that the output of each gate evaluation
c = (v, �) is such that

〈k� ,v〉 = μ (2)

where μ is the correct plaintext output of the gate. We prove our construction
satisfies this invariant in Appendix B.

12 We are only requiring to decrypt ciphertexts that are output by HE.Eval(· · · ).
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Homomorphic Evaluation of Gates:

• Addition gates. Homomorphic evaluation of an addition gates on inputs
c1, . . . , cn where ci = (vi, �) is performed by outputting

cadd = (vadd, �) :=
(∑

i

vi, �
)

• Multiplication gates. We show how to multiply ciphertexts c, c′ where c =
(v, �) and c′ = (v′, �) to obtain an output ciphertext cmult = (vmult, � + 1).
The homomorphic multiplication algorithm will set

vmult :=
∑

i,j∈[λ]

hi,j · a�+1,i,j

where hi,j = v[i] · v′[j] for i, j ∈ [λ].
The final output ciphertext will be

cmult := (vmult, � + 1).

The following theorem states the security of our scheme under our complexity
assumption.

Theorem 3.2 (Security). The scheme HE is CPA secure against NC1 adver-
saries (Definition A.5) under the assumption NC1

� ⊕L/poly.

3.2 Efficiency and Homomorphic Properties of Our Scheme

Our scheme is secure against adversaries in the class NC1. This implies that we
can run HE.Eval only on functions f that are in NC1, otherwise the evaluator
would be able to break the semantic security of the scheme. However we have
to ensure that the whole homomorphic evaluation stays in NC1. The problem is
that homomorphically evaluating f has an overhead with respect to the “plain”
evaluation of f . Therefore, we need to determine for which functions f , we can
guarantee that HE.Eval(F, . . . ) will stay in NC1. The class of such functions turns
out to be the class of functions implementable in constant multiplicative depth,
i.e. AC0

CM[2]13.
These observations, plus the fact that the invariant in Eq. 2 is preserved

throughout homomorphic evaluation, imply the following result.

Theorem 3.3. The scheme HE is leveled AC0
CM[2]-homomorphic. Key genera-

tion, encryption, decryption and evaluation are all computable in AC0
CM[2].

13 In terms of circuit depth, the main overhead when evaluating f homomorphically is
given by the multiplication gates (addition, on the other hand, is “for free” — see
definition of HE.Eval above). A single homomorphic multiplication can be performed
by a depth two AC0[2] circuit, but this requires depth Ω(log(n)) with a circuit of
fan-in two. Therefore, a circuit for f with ω(1) multiplicative depth would require an
evaluation of ω(log(n)) depth, which would be out of NC1. On the other hand, observe
that for any function f in AC0[2] with constant multiplicative depth, the evaluation
stays in AC0[2]. This because there is a constant number (depth) of homomorphic
multiplications each requiring an AC0[2] computation.
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3.3 Beyond Constant Multiplicative Depth

In the previous section we saw how our scheme is homomorphic for a class
of constant-depth, unbounded fan-in arithmetic circuits in GF(2) with con-
stant multiplicative depth. We now show how to overcome this limitation by
first extending techniques from [Raz87] to approximate AC0[2] circuits with low-
degree polynomials and then designing a construction that internally uses our
scheme HE from Sect. 3.1.

Approximating AC0
Q[2] in AC0

CM[2]. Our approach to homomorphically eval-
uate a function f ∈ AC0

Q[2] is as follows. Instead of evaluating f we evaluate f∗,
an approximate version of f that is computable in AC0

CM[2]. The function f∗

is randomized and we will denote by n′ the number of random bits f∗ takes in
input (in addition to the n bits of the input x). If x̂ = Enc(x) and r̂ = Enc(r)
where r is uniformly random in {0, 1}n′

, then decrypting HE.Eval(f∗, x̂, r̂)14

yields f(x) with constant error probability. One way to reduce error could be to
let evaluation compute f∗ s times with s random inputs. However, this requires
particular care to avoid using majority gates in the decryption algorithm. With
this goal in mind we extend the output of the approximating function f∗. When
performing evaluation we will then perform s evaluations of f ′, the “extension”
of f∗ This additional information will be returned (encrypted) from the evalua-
tion algorithm and will allow correct decryption with overwhelming probability
and in low-depth (and without majority gates).

In the next constructions we will make use of the functions GenApproxFun,
GenDecodeAux and DecodeApprox, here only informally defined15. The function
GenApproxFun(f) returns the (extended) approximating function f ′; the function
GenDecodeAux(f) returns a constant-size string auxf used to decode (multiple)
output of f ′(x); the function DecodeApprox(auxf ,yout

1 , . . . ,yout
s ) returns f(x)

w.h.p. if each yout
s is an output of f ′(x; r) for random r.

Homomorphic Evaluations of AC0
Q[2] Circuits. Below is our construction

for a homomorphic scheme that can evaluate all circuits in AC0
Q[2] in AC0[2]. This

time, in order to evaluate circuit C, we perform several homomorphic evaluations
of the randomized circuit C ′ (as in Lemma B.2). To obtain the plaintext output
of C we can decrypt all the ciphertext outputs and use DecodeApprox. Notice
that this scheme is still compact. As we use a randomized approach to evaluate
f , the scheme HE′ will be implicitly parametrized by a soundness parameter s.
Intuitively, the probability of a function f being evaluated incorrectly will be
upper bounded by 2−s.

For our new scheme we will use the following auxiliary functions:

14 In the evaluation algorithm we ignore the distinction between deterministic and
random input.

15 The reader can find additional details in Appendix B.
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Definition 3.1 (Auxiliary Functions for HE′). Let f : {0, 1}n → {0, 1} be
represented as an arithmetic circuit as in HE and pk a public key for the scheme
HE that includes the evaluation key. Let s be a soundness parameter. We denote
by f ′ be as above; let n′ = O(n) be the number of additional bits f ′ will take as
random input.

– SampleAuxRandomnesss(pk, f ′) :
1. Sample s · n′ random bits r

(1)
1 , . . . , r

(1)
n′ , . . . , r

(s)
1 , . . . , r

(s)
n′ ;

2. Compute r̂aux := {r̂
(i)
j | r̂

(i)
j ← HE.Encpk(r

(i)
j ), i ∈ [s], j ∈ [n′]};

3. Output r̂aux.
– EvalApproxs(pk, f ′, c1, . . . , cn, r̂aux) :

1. Let r̂aux = {r̂
(i)
j | i ∈ [s], j ∈ [n′]}.

2. For i ∈ [s], compute couti ← HE.Evalevk(f ′, c1, . . . cn, r̂
(i)
1 , . . . , r̂

(i)
n′ );

3. Output c = (cout1 , . . . , couts )16.

The new scheme HE′ with soundness parameter s follows. Notice that the
evaluation function outputs an auxiliary string auxf together with the proper
ciphertext c. This is necessary to have a correct decoding in decryption phase.

– Key generation and encryption are the same as in HE.
– HE′.Evalpk(f, c1, . . . , cn):

1. Compute f ′ ← GenApproxFun(f);
2. Compute r̂aux ← SampleAuxRandomnesss(pk, f ′);
3. auxf ← GenDecodeAux(f);
4. c ← EvalApproxs(pk, f ′, c1, . . . , cn, r̂aux);
5. Output (c,auxf ).

– HE′.Decsk(c = (cout1 , . . . , couts ),auxf ):
1. Let yout

i ← HE.Decsk(couti ) for i ∈ [s];
2. Output DecodeApproxf (auxf ,yout

1 , . . . ,yout
s ).

The following theorem summarizes the properties of this construction.

Theorem 3.4. The scheme HE′ above with soundness parameter s = Ω(λ) is
leveled AC0

Q[2]-homomorphic. Key generation, encryption and evaluation can be
computed in AC0

CM[2]. Decryption is computable in AC0
Q[2].

4 Fine-Grained Verifiable Computation

In this section we describe our private verifiable computation scheme. Our con-
structions are based on the techniques in [CKV10] to obtain (reusable) verifiable
computation from fully homomorphic encryption; see Sect. 1.2 for a high-level
description.
16 Recall that the output of the expanded approximating function f ′ is a bit string and

thus each couti encrypts a bit string.
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4.1 A One-time Verification Scheme

In Figure 2 we describe an adaptation of the one-time secure delegation scheme
from [CKV10]. We make non-black box use of our homomorphic encryption
scheme HE′ (Sect. 3.3) with soundness parameter s = λ. Notice that. during
the preprocessing phase, we fix the “auxiliary randomness” for EvalApprox (and
thus for HE′.Eval) once and for all. We will use that same randomness for all the
input instances. This choice does not affect the security of the construction. We
remind the reader that we will simplify notation by considering the evaluation
key of our somewhat homomorphic encryption scheme as part of its public key.

If x is a vector of bits x1, . . . , xn, below we will denote with HE′.Enc(x) the
concatenation of the bit by bit ciphertexts HE′.Enc(x1), . . . ,HE′.Enc(xn). We
denote by HE′.Enc(0̄) the concatenation of n encryptions of 0, HE′.Enc(0).

Fig. 2. One-Time Delegation Scheme VC

The scheme VC in Figure 2 has overwhelming completeness and is one-time
secure when t is chosen ω(log(λ)). We prove these results in Appendix C.

Remark 4.1 (Efficiency of VC). In the following we consider the verifiable com-
putation of a function f : {0, 1}n → {0, 1}m computable by an AC0

Q[2] circuit of
size S.
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– VC.KeyGen is computable by an AC0[2] circuit of size O(poly(λ)S);
– VC.ProbGen is computable by an AC0[2] circuit of size O(poly(λ)(m + n));
– VC.Compute is computable by an AC0[2] circuit of size O(poly(λ)S);
– VC.Verify is computable by a AC0[2] circuit of size O(poly(λ)(m + n)).

The (constant) depth of VC.ProbGen and VC.Verify is independent of the depth
of f17.

4.2 A Reusable Verification Scheme

We obtain our reusable verification scheme VC applying the transformation in
[CKV10] from one-time sound verification schemes through fully homomorphic
encryption. The core idea behind this transformation is to encapsulate all the
operations of a one-time verifiable computation scheme (such as VC in Fig. 2)
through homomorphic encryption. We instantiate this transformation with the
simplest of our two somewhat homomorphic encryption schemes, HE (described
in Sect. 3.1). The full construction of VC is in AppendixC (Fig. 3).

Remark 4.2 (Efficiency of VC). The efficiency of VC is analogous to that of VC
with the exception of a circuit size overhead of a factor O(λ) on the problem
generation and verification algorithms and of O(λ2) for the computation algo-
rithm. The (constant) depth of VC.ProbGen and VC.Verify is independent of the
depth of f .

Theorem 4.1 (Completeness of VC). The verifiable computation scheme VC
has overwhelming completeness (Definition A.10) for the class AC0

Q[2].

Theorem 4.2 (Many-Times Soundness of VC). Under the assumption that
NC1

� ⊕L/poly the scheme VC is many-times secure against NC1 adversaries
whenever t is chosen to be ω(log(λ)) in the underlying scheme VC.

A Additional Preliminaries

A.1 Infinitely-Often Computational Indistinguishability

Definition A.1 (Infinitely-Often Computational Indistinguishability).
Let X = {Xλ}λ∈N Let Y = {Yλ}λ∈N be ensembles over the same domain family,
A a class of adversaries, and Λ an infinite subset of N. We say that X and Y
17 Further details on the complexity of VC follow. All the algorithms are in AC0

CM[2],
except for the online stage. In fact, VC.Verify and VC.ProbGen are in AC0[2]. More-
over, they are not in AC0

Q[2] as they perform in parallel a non-constant (polylog-
arithmic) number of decryptions and permutations respectively, and these involve
non-constant fan-in gates. Notice that even though the online stage is not in AC0

Q[2]
we still have a gain at verification time (although not in an asymptotic sense). This
because of the specific structure of these circuits. Consider for example what hap-
pens when implementing VC.Verify or VC.ProbGen with a fan-in two circuit. Their
depth will be c(log(n) + log(λ)) for a constant c. Contrast this with a circuit f in
AC0

Q[2] of constant depth D that we may want to verify. With fan-in two, the depth
of f will become c′D log(n) (for a constant c′), which may be significantly larger.
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are infinitely often computational indistinguishable with respect to set Λ and the
class A, denoted by X ∼Λ,A Y if there exists a negligible function ν such that
for any λ ∈ Λ and for any adversary A = {Aλ}λ ∈ A

|Pr[Aλ(Xλ) = 1] − Pr[Aλ(Yλ) = 1]| < ν(λ)

When A = NC1 we will keep it implicit and use the notation X ∼Λ Y and say
that X and Y are Λ-computationally indistinguishable.

In our proofs we will use the following facts on infinitely-often computa-
tionally indistinguishable ensembles. We skip their proof as, except for a few
technicalities, it is analogous to the corresponding properties for standard com-
putational indistinguishability18.

Lemma A.1 (Facts on Λ-Computational Indistinguishability).

– Transitivity: Let m = poly(λ) and X (j) with j ∈ {0, . . . ,m} be ensembles.
If for all j ∈ [m] X (j−1) ∼Λ X (j), then X (0) ∼Λ X (m).

– Weaker than statistical indistinguishability: Let X ,Y be statistically
indistinguishable ensembles. Then X ∼Λ Y for any infinite Λ ⊆ N.

– Closure under NC1: Let X ,Y be ensembles and {fλ}λ∈N ∈ NC1. If X ∼Λ Y
for some Λ then fλ(X ) ∼Λ fλ(Y).

A.2 Circuit Classes

For a gate g we denote by typeC(g) the type of the gate g in the circuit C and
by parentsC(g) the list of gates of C whose output is an input to C (such list
may potentially contain duplicates).
We define the multiplicative depth of a circuit as follows:

Definition A.2 (Multiplicative Depth). Let C be a circuit, we define the
multiplicative depth of C as md(gout) where gout is its output gate and the func-
tion md, from the set of gates to the set of natural numbers is recursively defined
as follows:

md(g) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if typeC(g) = input

max{md(g′) : g′ ∈ parentsC(g)} if typeC(g) = XOR
∑

g′∈parentsC(g)

md(g′) if typeC(g) ∈ {AND,OR}

where the sum in the last case is over the integers.

The following two circuit classes will appear in several of our results.

Definition A.3 (Circuits with Constant Multiplicative Depth). We
denote by AC0

CM[2] the class of circuits in AC0[2] with constant multiplicative
depth.
18 We refer the reader to [Gol01].
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Definition A.4 (Circuits with Quasi-Constant Multiplicative Depth).
For a circuit C we denote by Sω(1)(C) the set of AND and OR gates in C

with non-constant fan-in. We say that C has quasi-constant multiplicative depth
if |Sω(1)(C)| = O(1). We shall denote by AC0

Q[2] the class of circuits in AC0[2]
with quasi-constant multiplicative depth.

A.3 Public-Key Encryption

A public-key encryption scheme
PKE = (PKE.Keygen,PKE.Enc,PKE.Dec) is a triple of algorithms which operate
as follow:

– Key Generation. The algorithm (pk, sk) ← PKE.Keygen(1λ) takes a unary
representation of the security parameter and outputs a public key encryption
key pk and a secret decryption key sk.

– Encryption. The algorithm c ← PKE.Encpk(μ) takes the public key pk and
a single bit message μ ∈ {0, 1} and outputs a ciphertext c. The notation
PKE.Encpk(μ; r) will be used to represent the encryption of a bit μ using
randomness r.

– Decryption. The algorithm μ∗ ← PKE.Decsk(c) takes the secret key sk and
a ciphertext c and outputs a message μ∗ ∈ {0, 1}.

Obviously we require that μ =PKE.Decsk(PKE.Encpk(μ))

Definition A.5 (CPA Security for PKE). A scheme PKE is IND-CPA
secure if for an infinite Λ ⊆ N we have

(pk,PKE.Encpk(0)) ∼Λ (pk,PKE.Encpk(1))

where (pk, sk) ← PKE.Keygen(1λ).

Remark A.1 (Security for Multiple Messages). Notice that by a standard hybrid
argument and Lemma A.1 we can prove that any scheme secure according to
Definition A.5 is also secure for multiple messages (i.e. the two sequences of
encryptions bit by bit of two bit strings are computationally indistinguishable).
We will use this fact in the constructions in Sect. 4, but we do not provide the
formal definition for this type of security. We refer the reader to 5.4.2 in [Gol09].

Somewhat Homomorphic Encryption. A public-key encryption scheme is
said to be homomorphic if there is an additional algorithm Eval which takes a
input the public key pk, the representation of a function f : {0, 1}l → {0, 1} and
a set of l ciphertexts c1, . . . , cl, and outputs a ciphertext cf

19.
We proceed to define the homomorphism property. The next notion of C-

homomorphism is sometimes also referred to as “somewhat homomorphism”.
19 Notice that the syntax of Eval can also be extended to return a sequence of encryp-

tions for the case of multi-output functions. We will use this fact in Sect. 3.3. See
also Remark A.1.
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Definition A.6 (C-homomorphism). Let C be a class of functions (together
with their respective representations). An encryption scheme PKE is
C-homomorphic (or, homomorphic for the class C) if for every function fλ where
fλ ∈ F{fλ}λ∈N ∈ C and respective inputs μ1, . . . , μn ∈ {0, 1} (where n = n(λ)),
it holds that if (pk, sk) ← PKE.Keygen(1λ) and ci ← PKE.Encpk(μi) then

Pr[PKE.Decsk(Evalpk(F, c1, . . . , cn)) �= F (μ1, . . . , μn)] = neg(λ),

As usual we require the scheme to be non-trivial by requiring that the output
of Eval is compact:

Definition A.7 (Compactness). A homomorphic encryption scheme PKE is
compact if there exists a polynomial s in λ such that the output length of Eval is
at most s(λ) bits long (regardless of the function f being computed or the number
of inputs).

Definition A.8. Let C = {Cλ}λ∈N of arithmetic circuits in GF(2). A scheme
PKE is leveled C-homomorphic if it takes 1L as additional input in key genera-
tion, and can only evaluate depth-L arithmetic circuits from C. The bound s(λ)
on the ciphertext must remain independent of L.

A.4 Verifiable Computation

In a Verifiable Computation scheme a Client uses an untrusted server to compute
a function f over an input x. The goal is to prevent the Client from accepting
an incorrect value y′ �= f(x). We require that the Client’s cost of running this
protocol be smaller than the cost of computing the function on his own. The
following definition is from [GGP10] which allows the client to run a possibly
expensive pre-processing step.

Definition A.9 (Verifiable Computation Scheme). We define a verifiable
computation scheme as a quadruple of algorithms VC = (VC.KeyGen,
VC.ProbGen,VC.Compute,VC.Verify) where:

1. VC.KeyGen(f, 1λ) → (pkW, skD): Based on the security parameter λ, the ran-
domized key generation algorithm generates a public key that encodes the
target function f , which is used by the Server to compute f . It also computes
a matching secret key, which is kept private by the Client.

2. VC.ProbGenskD(x) → (qx, sx): The problem generation algorithm uses the
secret key skD to encode the function input x as a public query qx which
is given to the Server to compute with, and a secret value sx which is kept
private by the Client.

3. VC.ComputepkW(qx) → ax: Using the Client’s public key and the encoded
input, the Server computes an encoded version of the function’s output
y = F (x).

4. VC.VerifyskD(sx, ax) → y ∪ {⊥}: Using the secret key skD and the secret
“decoding” sx, the verification algorithm converts the worker’s encoded output
into the output of the function, e.g., y = f(x) or outputs ⊥ indicating that
ax does not represent the valid output of f on x.
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The scheme should be complete, i.e. an honest Server should (almost) always
return the correct value.

Definition A.10 (Completeness). A delegation scheme VC, with VC =
(VC.KeyGen,VC.ProbGen,VC.Compute,VC.Verify), has overwhelming complete-
ness for a class of functions C if there is a function ν(n) = neg(λ) such that
for infinitely many values of λ, if fλ ∈ F ∈ C, then for all inputs x the fol-
lowing holds with probability at least 1 − ν(n): (pkW, skD) ← VC.KeyGen(fλ, λ),
(qx, sx) ← VC.ProbGenskD(x) and ax ← VC.ComputepkW(qx) then y = fλ(x) ←
VC.VerifyskD(sx, ax).

To define soundness we consider an adversary who plays the role of a mali-
cious Server who tries to convince the Client of an incorrect output y �= f(x).
The adversary is allowed to run the protocol on inputs of her choice, i.e. see the
queries qxi

for adversarially chosen xi’s before picking an input x and attempt
to cheat on that input. Because we are interested in the parallel complexity of
the adversary we distinguish between two parameters l and m. The adversary
is allowed to do l rounds of adaptive queries, and in each round she queries m
inputs. Jumping ahead, because our adversaries are restricted to NC1 circuits, we
will have to bound l with a constant, but we will be able to keep m polynomially
large.

Experiment ExpVerif
A [VC, f, λ, l,m]

(pkW, skD) ← VC.KeyGen(f, λ);
I ← ∅;
For i = 1, . . . , i = l;

{x(i−1)m, . . . xim−1} ← Aλ(pkW, I);
{(qj , sj) : (qj , sj) ← VC.ProbGenskD(xj), j ∈ {(i − 1)m, . . . , im}}
I ← I ∪ {x(i−1)m, . . . xim−1} ∪ {q(i−1)m, . . . qim−1};

â ← Aλ(pkW, I);
ŷ ← VC.VerifyskD(slm, â)
If ŷ �= ⊥ and ŷ �= f(xlm), output 1, else 0.

Remark A.2 In the experiment above the adversary “tries to cheat” on the last
input presented in the last round of queries (i.e. xlm). This is without loss of
generality. In fact, assume the adversary aimed at cheating on an input presented
before round l, then with one additional round it could present that same input
once more as the last of the batch in that round.

Definition A.11 (Soundness). We say that a verifiable computation scheme
is (l,m)-sound against a class A of adversaries if there exists a negligible function
neg(λ), such that for all A = {Aλ}λ ∈ A, and for infinitely many λ we have that

Pr[ExpVerif
A [VC, f, λ, l,m] = 1] ≤ neg(λ)

Assume the function f we are trying to compute belongs to a class C which
is smaller than A. Then our definition guarantees that the “cost” of cheating
is higher than the cost of honestly computing f and engaging in the Verifiable
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Computation protocol VC. Jumping ahead, our scheme will allow us to compute
the class C = AC0[2] against the class of adversaries A = NC1.

Efficiency The last thing to consider is the efficiency of a VC protocol. Here
we focus on the time complexity of computing the function f . Let n be the
number of input bits, and m be the number of output bits, and S be the size of
the circuit computing f .

– A verifiable computation scheme VC is client-efficient if circuit sizes of
VC.ProbGen and VC.Verify are o(S). We say that it is linear-client if those
sizes are O(poly(λ)(n + m)).

– A verifiable computation scheme VC is server-efficient if the circuit size of
VC.Compute is O(poly(λ)S).

We note that the key generation protocol VC.KeyGen can be expensive, and
indeed in our protocol (as in [GGP10,CKV10,AIK10]) its cost is the same as
computing f – this is OK as VC.KeyGen is only invoked once per function, and
the cost can be amortized over several computations of f .

B Proofs for Homomorphic Encryption Constructions

B.1 Constant Multiplicative Depth

Lemma B.1. The construction of HE (Sect. 3.1) satisfies Eq. 1 (ibid).

Proof. For homomorphic addition:

〈k� ,vadd〉 = 〈k� ,
∑

i

vi〉 =
∑

i

〈k� ,vi〉 =
∑

i

μi

where μi is the plaintext corresponding to vi.
For homomorphic multiplication:

〈k�+1 ,vmult〉 = 〈k�+1 ,
∑

i,j∈[λ]

hi,j · a�+1,i,j〉

=
∑

i,j∈[λ]

(hi,j · 〈k�+1 ,a�+1,i,j〉)

=
∑

i,j∈[λ]

(hi,j · k�[i] · k�[j])

=
∑

i,j∈[λ]

(v[i] · v′[j] · k�[i] · k�[j])

=
(∑

i∈[λ]

v[i] · k�[i]
)

·
(∑

j∈[λ]

v′[j] · k�[j]
)

= 〈k� ,v〉 · 〈k� ,v′〉
= μ · μ′
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where in the third and fourth equality we used respectively Eq. 1 and the defi-
nition of hi,j , and μ, μ′ are the plaintexts corresponding to v v′ respectively.

��
Theorem B.1 (Security). The scheme HE is CPA secure against NC1 adver-
saries (Definition A.5) under the assumption NC1

� ⊕L/poly.

Proof. We are going to prove that there exists infinite Λ ⊆ N such that
(pk, evk,HE.Encpk(0)) ∼Λ (pk, evk,HE.Encpk(1)).

When using the notations Mf and Mkg we will always denote matrices
distributed respectively according to Df

λ and Dkg, where Df
λ and Dkg are the

distributions defined in Lemma 3.1.
We will define the (randomized) encoding procedure E : {0, 1}λ×λ → {0, 1}λ

defined as
E(M, b) = rᵀM + (0 . . . 0 b)ᵀ

,

where r is uniformly distributed in {0, 1}λ. The functions we will pass to E
will be distributed either according to Mkg or Mf. Notice that: (i) E(Mkg, b) is
distributed identically to HE.Encpk(b); (ii) E(Mf, b) corresponds to the uniform
distribution over {0, 1}λ because (by Lemma 3.1) Mf has full rank and hence
rᵀMf must be uniformly random.

We will denote with Mkg
1 , . . . ,Mkg

L the matrices M1, . . . ,ML used to con-
struct the evaluation key in HE.Keygen (see definition). Recall these matrices are
distributed according to Dkg as in Lemma 3.1.

We will also define the following vectors:

αkg
� := {E(Mkg

�+1,k�[i]·k�[j]) | i, j ∈ [λ]} αf
� := {E(Mf

�+1,k�[i]·k�[j]) | i, j ∈ [λ]} ,

where k� is defined as in HE.Keygen and the matrices in input to E will be clear
from the context. Notice that all the elements of αkg

� are encryptions, whereas
all the elements of αf

� are uniformly distributed.
We will use a standard hybrid argument. Each of our hybrids is parametrized

by a bit b. This bit informally marks whether the hybrid contains an element
indistinguishable from an encryption of b.

– Eb := (Mkg
0 ,E(Mkg

0 , b), αkg
1 , . . . , αkg

L ) where Mkg
0 corresponds to the public key

of our scheme. Notice that αkg
� ≡ {a�,i,j | i, j ∈ [λ]} where a�,i,j is as defined in

HE.Keygen. This hybrid corresponds to the distribution (pk, evk,HE.Encpk(b)).
– Hb

0 := (Mf
0,E(Mf, b), αkg

1 , . . . , αkg
L ). The only difference from E is in the first

two components where we replaced the actual public key and ciphertext with
a full rank matrix distributed according to Df

λ and a random vector of bits.
– For � ∈ [L] we define

Hb
� := (Mf

0,E(Mf, b), αf
1, . . . , α

f
�, α

kg
�+1, . . . , α

kg
L ) .
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We will proceed proving that

E0 ∼Λ H0
0 ∼Λ H0

1 ∼Λ . . . ∼Λ H0
L ∼Λ H1

L ∼Λ . . . ∼Λ H1
1 ∼Λ H1

0 ∼Λ E1

through a series of smaller claims. In the remainder of the proof Λ refers to the
set in Lemma 3.1.

– E0 ∼Λ H0
0: if this were not the case we would be able to distinguish Mkg

0 from
Mf

0 for some of the values in the set Λ thus contradicting Lemma 3.1.
– H0

�−1 ∼Λ H0
� for � ∈ [L]: assume by contradiction this statement is false for

some � ∈ [L]. That is

(Mf
0,E(Mf

0, b), α
f
1, . . . , α

f
�−1, α

kg
� , . . . , αkg

L )
�∼Λ

(Mf
0,E(Mf

0, b), α
f
1, . . . , α

f
�, α

kg
�+1, . . . , α

kg
L )

Recall that, by definition, the elements of αkg
� are all encryptions whereas

the elements of αf
� are all randomly distributed values. This contradicts the

semantic security of the scheme PKE (by a standard hybrid argument on the
number of ciphertexts).

– H0
L ∼Λ H1

L: the distributions associated to these two hybrids are identical.
In fact, notice the only difference between these two hybrids is in the second
component: E(Mf, 0) in H0

L and E(Mf, 1) in H1
L. As observed above E(Mf, b)

is uniformly distributed, which proves the claim.

All the claims above can be proven analogously for E1,H1
0 and H1

� -s.

��

B.2 Quasi-constant Multiplicative Depth

Lemma B.2 ([Raz87]). Let C be an AC0
Q[2] circuit of depth d. Then there

exists a randomized circuit C ′ ∈ AC0
CM[2] such that, for all x,

Pr[C ′(x) �= C(x)] ≤ ε ,

where ε = O(1). The circuit C ′ uses O(n) random bits and its representation
can be computed in NC0 from a representation of C.

Proof. Consider a circuit C ∈ AC0
Q[2] and let K = O(1) be the total number of

AND and OR gates with non-constant fan-in. We can replace every OR gate of
fan-in m = ω(1) with a randomized “gadget” that takes in input m additional
random bits and computes the function

ĝOR(x1, . . . , xm; r1, . . . , rm) :=
∑

i∈[m]

xiri .
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This function can be implemented in constant multiplicative depth with one XOR
gate and m AND gates of fan-in two. Let x = (x1, . . . , xm) and r = (r1, . . . , rm).
The probabilistic gadget ĝOR has one-sided error. if xi = 0 (i.e. if OR(x) = 0)
then Pr[ĝOR(x; r) = 0] = 1; otherwise Pr[ĝOR(x; r) = 1] = 1

2 .
In a similar fashion, we can replace every unbounded fan-in AND gate with

a randomized gadget in computing

ĝAND(x1, . . . , xm; r1, . . . , rm) := 1 −
∑

i∈[m]

(1 − xi)ri .

This gadget can also be implemented in constant-multiplicative depth and has
one-sided error 1/2. Finally, by applying the union bound we can observe that
Pr[C ′(x) �= C(x)] ≤ ε for a constant ε, because we have only a constant number
of gates to be replaced with gadgets for ĝOR or ĝAND.

We only provide the intuition for why the transformations above can be
carried out in NC0. Assume the encoding of a circuit as a list of gates in the
form (g, tg, in1, . . . , inm) where g and t are respectively the index of the output
wire of the gate and its type (possibly of the form “input” or “random input”)
and the ini-s are the indices of the input wire of g. The transformation from
C to C ′ needs to simply copy all the items in the list except for the gates of
unbounded fan-in. We will assume the encoding conventions of C always puts
these gates at the end of the list20. For each of such gates the transformation
circuit needs to: add appropriate r1, . . . , rm to the list, add m AND gates and
one XOR, possibly (if we are transforming an AND gate) add negation gates. All
this can be carried out based on wire connections and the type of the gate (a
constant-size string) and thus in NC0.

��
In the construction above, we built C ′ by replacing every gate g ∈ Sω(1)(C)

(as in Definition A.4) with a (randomized) gadget Gg. The output of each of
these gadgets will be useful in order to keep the low complexity of the decryp-
tion algorithm in our next homomorphic encryption scheme. We shall use an
“expanded” version of C ′, the multi-output circuit C ′

exp.

Definition B.1 (Expanded Approximating Function). Let C be a circuit
in AC0

Q[2] and let C ′ be a circuit as in the proof of Lemma B.2. We denote
by Gg(x; r) the output of the gadget Gg when C ′ is evaluated on inputs (x; r).
On input (x; r), the multi-output circuit C ′

exp output C ′(x; r) together with the
outputs of the O(1) gadgets Gg for each g ∈ Sω(1)(C). Finally, we denote with
GenApproxFun the algorithm computing a representation of C ′

exp from a repre-
sentation of C.

20 This allows our NC0 circuit to “know” which gates to copy and which ones to trans-
form based on their position only.
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Lemma B.3. There exists a deterministic algorithm DecodeApprox computable
in AC0[2] with the following properties. For every circuit C in AC0

Q[2] computing
the function f , there exists auxf ∈ {0, 1}O(1) such that for all x ∈ {0, 1}n

Pr[DecodeApprox(auxf , C ′
exp(x; r(1)), . . . , C ′

exp(x; r(s))) = C(x)] ≥ 1 − neg(s) ,

where C ′ is an approximating circuit as in Lemma B.2, the probability is taken
over the uniformly distributed bit vectors r(i)-s for i ∈ [s], C ′

exp is as in Definition
B.1. Finally, there exists a function GenDecodeAux that computes auxf from a
representation of C in NC0.

Proof. Before we provide a construction for DecodeApprox, let us observe how
we can amplify the error of C ′. Consider for example a gadget ĝOR constructed
as in the proof of Lemma B.2, approximating an OR gate in C. If we repeat
the execution of the gadget s times, every time using fresh random bit vec-
tors r′(1), . . . , r′(s), then we can correctly compute OR(x′) with overwhelming
probability. Define hOR(x′; r′(1), . . . , r′(s)) := OR(ĝOR(x; r′(1)), . . . , ĝOR(x′; r′(s))).
Clearly Pr[hOR(x′; r′(1), . . . , r′(s)) = OR(x′)] ≥ 1 − 2−s. In a similar fashion we
can define hAND(x′; r′(1), . . . , r′(s)) := AND(ĝAND(x; r′(1)), . . . , ĝAND(x′; r′(s))). It
holds that Pr[hAND(x′; r′(1), . . . , r′(s)) = AND(x′)] ≥ 1 − 2−s.

If C ′ were composed by a single gadget ĝOR (resp. ĝAND) we could just let
DecodeApprox be the same as hOR (resp. hAND) and we would be done. To deal
with multiple gadgets, however, we need a more general approach. Consider
some ordering on the gates in Sω(1), i.e. let Sω(1) = {g1, . . . , gK}. For sake of
presentation, assume there are only gadgets approximating OR gates and let
us temporarily ignore auxf . We can write each of the C ′

exp(x; r(j)) input to

DecodeApprox as (z(j), y(j)
1 , . . . , y

(j)
K ) where z(j) is the output of C ′(x, r(j)) and

y
(j)
i is the output of the gadget corresponding to gi when provided random

bits from r(j). Define y∗
i as y∗

i := OR(y(1)
i , . . . , y

(s)
i ). We then let the output

of DecodeApprox be zĵ where ĵ is such that for all i ∈ [K] it is the case that
y
(ĵ)
i = y∗

i . We let DecodeApprox output an arbitrary value if such ĵ does not exist.
However we can prove (Lemma B.4) that ĵ exists with overwhelming probability.
Denote by VC,x(gi) the value of the output wire of gi when evaluating C on input

x. Clearly, by construction of C ′
exp, Pr[z(ĵ) = C(x)] ≥ Pr[∀i y

(ĵ)
i = VC,x(gi)] and

by the proof of Lemma B.4 we can show that the right hand side probability is
overwhelming.

To generalize this same approach to the scenario including both OR and
AND gadgets we let the string auxf include information on the type of gates
in Sω(1). This way DecodeApprox can use ĝOR or ĝAND accordingly. Clearly the
representation of auxf can be computed by a representation of C in NC0.

��
Lemma B.4. Pr[∃ĵ ∀i y

(ĵ)
i = y∗

i ] ≥ 1 − neg(s).
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Proof. Let Sω(1) = {g1, . . . , gK} and VC,x(gi) for i ∈ [K] defined as in the proof
of Lemma B.3. We have that

Pr[∃ĵ ∀i y
(ĵ)
i = y∗

i ] ≥ Pr[(∃ĵ ∀i y
(ĵ)
i = y∗

i ) ∧ ∀i y∗
i = VC,x(gi)]

= Pr[∃ĵ ∀i y
(ĵ)
i = VC,x(gi)] Pr[∀i y∗

i = VC,x(gi)]

We now bound each of the two probabilities in the last product. Denote by
Ei,j the event “y

(j)
i = VC,x(gi)” and by E i,j its negation. Observe that

Remark B.1 (Efficiency of HE′ in Sect. 3.3). Given in input a function f not
necessarily of constant multiplicative depth, GenApproxFun returns a function
f ′ of constant multiplicative depth that approximates it. As stated in Lemma
B.2, GenApproxFun is computable in NC0 and so is GenDecodeAux. The function
SampleAuxRandomness in AC0

CM[2] and EvalApprox makes parallel invocations to
HE.Eval which is computable in AC0

CM[2] when provided in input a function in
AC0

CM[2] (Theorem 3.3). This fact will be useful when showing the completeness
of the verifiable computation constructions in Sect. 4.

C Proofs for Verifiable Computation Constructions

The following two auxiliary lemmas guarantee that the constructions in Figs. 2
and 3 are computable in AC0[2]. We refer the reader to [Hag91,MV91] for the
proof Lemma C.1.

Lemma C.1. [Hag91,MV91] There are uniform AC0 circuits C : {0, 1}poly(l) →
[l]l of size poly(l) and depth O(1) whose output distribution have statistical dis-
tance ≤ 2−l from the uniform distribution over permutations of [l].

Lemma C.2. There are uniform AC0[2] circuits C : [l]l × {0, 1}l → {0, 1}l of
size O(l2) where C(π, (x1, . . . , xl)) = (π(1), . . . , π(l)) and π is a permutation.

Proof. Let x = (x1, . . . , xl) the bits to permute and let π be a permutation If π is
represented as a permutation matrix with rows r1, . . . , rl, we can permute x by
simply performing l parallel inner products 〈x , ri〉-s, which is in AC0[2]. We now
describe how to generate the permutation matrix from a binary representations
x1, . . . , xlg(l) of the integers in [l]. Let fi : {0, 1}lg(l) → {0, 1}l be the function that
computes the i-th row of the permutation matrix. We can define fi as follows:

fi(x1, . . . , xlg(l)) := eq([i − 1]2, (x1, . . . , xlg(l)) ,

where [i − 1]2 is the binary representation of i − 1 and eq returns 1 if its two
inputs (each of lenght lg(l)) are equal. The function fi is clearly in AC0[2].

��
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C.1 One-time scheme

Remark C.1 (On deterministic homomorphic evaluation). As pointed out in
[CKV10], one requirement for the approach in Fig. 2 to work is for the homo-
morphic evaluation to be deterministic. We point out that once r̂aux are fixed
once and for all the homomorphic evaluation in VC.Compute is deterministic.

Lemma C.3 (Completeness of VC). The verifiable computation scheme VC
in Fig. 2 has overwhelming completeness (Definition A.10) for the class AC0

Q[2].

Proof. The proof is straightforward and stems directly from the homomorphic
properties of HE′ (Theorem 3.4). In fact, by construction and by definition of
HE′ (Sect. 3.3), the distribution of the ŵi-s is identical to HE′.Evalpk(f, r̂i). Anal-
ogously, the distribution of ŷi-s is identical to HE′.Evalpk(f, ẑi).

��
Lemma C.4 (One-time Soundness). Under the assumption that NC1

�

⊕L/poly the scheme in Fig. 2 is (1, 1)-sound (one time secure) against NC1 adver-
saries whenever t is chosen to be ω(log(λ)).

Proof. We follow the same proof structure as in the proof of Lemma 12 in
[CKV10]. We will keep part of the analysis informal, emphasizing why this proof
still works for low-depth circuits. We refer the reader to [CKV10] for further
details.

The following observation will be crucial in the rest of the proof. Notice that,
by construction and by definition of HE′ (Sect. 3.3), the distribution of the ŵi-s
is identical to HE′.Evalpk(f, r̂i). Analogously, the distribution of ŷi-s is identical
to HE′.Evalpk(f, ẑi).

Consider an NC1 adversary A∗ that cheats with non-negligible probability
in the one-time security experiment ExpVerif

A [VC, f, λ, 1, 1] (Definition A.11). Let
(r̂1, . . . , r̂t) be the independent copies of HE′.EncpkW(0̄) and (r̂t+1, . . . , r̂2t) the t
independent copies of HE′.EncpkW(x) as above. Whenever the verification algo-
rithm accepts, the adversary must have responded correctly on r̂1, ..., r̂t and
incorrectly (and consistently) on r̂t+1, . . . , r̂2t. Our goal is to bound the proba-
bility that the adversary succeeds in doing that.

First, notice that the view of the adversary is (pkW, r̂1, . . . , r̂2t), and identical
to (pkW,HE′.EncpkW(0̄)t,HE′.EncpkW(x)t). By semantic security of the homomor-
phic encryption scheme, there exists an infinitely large set of parameters Λ such
that (pkW,HE′.EncpkW(0̄)t,HE′.EncpkW(x)t) ∼Λ (pkW,HE′.EncpkW(0̄)2t). Consider
a modified game where the adversary receives (pkW,HE′.EncpkW(0̄)2t). Denote by
p the probability that the adversary succeeds in this game. By computational
indistinguishability we have

Pr[A∗ is correct on (r̂1, . . . , r̂t) and incorrect on (r̂t+1, . . . , r̂2t)] ≤ p + neg(λ)

for all λ ∈ Λ. This inequality holds because we can test in NC1 whether A∗

cheats only on (r̂t+1, . . . , r̂2t). Therefore, if the adversary’s behavior differed
significantly between the two games, one would be able to break the semantic
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security of the homomorphic scheme. Here we made use of the third fact in
Lemma A.1.

We now proceed to upper bound p. Observe that

p = Pr[A∗ is correct on (ẑπ(1), . . . , ẑπ(t)) and incorrect on (ẑπ(t+1), . . . , ẑπ(2t))]

where the ẑπ(i)-s are defined as in Fig. 2. Because of Lemma C.1 that the dis-
tribution of π is statistically indistinguishable from that of a uniformly random
permutation. Also, observe that the answers ŷi of the adversary are independent
of π. We can then conclude that p ≤ 1

(2t
t )

+ neg(t), which concludes the security

analysis.

��

C.2 Reusable scheme

Fig. 3. Transformation from one-time VC scheme to a reusable VC scheme

The following is a proof of the completeness of VC.

Proof (Of Theorem 4.1). The completeness of the reusable scheme follows
directly from the completeness of the one-time scheme VC and the homomorphic
properties of HE. Notice that we can use HE.Eval to homomorphically compute
VC.Compute as the latter carries out a computation in AC0

CM[2] (although it is
approximating a computation in AC0

Q[2]).

��
The following is a restatement of Theorem 4.2.
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Theorem C.1 (Many-Times Soundness). Under the assumption that
NC1

� ⊕L/poly the scheme VC in Fig. 3 is (O(1), poly(λ))-sound (many-times
secure) against NC1 adversaries whenever t is chosen to be ω(log(λ)) in the
underlying scheme VC.

Proof. By Lemma C.4 there exists an infinite set Λ ⊆ N of security parame-
ters for which VC “is secure”. By the proof of Lemma C.4, this set is also the
set of parameters where the somewhat homomorphic encryption scheme HE “is
secure”. We will show that for all values in this same set Λ, the probability of
success of any NC1 adversary in ExpVerif

A [VC, f, λ,O(1), poly(λ)] is negligible.
Assume by contradiction there exists an NC1 adversary A∗ that achieves

non-negligible advantage in ExpVerif
A [VC, f, λ,O(1), poly(λ)] for some λ ∈ Λ.

Claim: If VC is not secure for some λ∗ ∈ Λ then we can break the
one-time security of VC. Let l = O(1) be the number of rounds in the many-
time soundness experiment for VC. Consider the following NC1 adversary A1 for
the experiment ExpVerif

A [VC, f, λ, 1, 1]:

– A1 obtains a pair a public key pkW and sends it to A∗;
– For all rounds i ∈ {1, . . . , l − 1}, A1 replies to A∗ queries by generating a

fresh pair of keys (pk, sk) and sending back encryptions of HE.Encpk(0̄);
– At round l, A1 responds to all input queries but the last one as above. This,

by experiment definition, is the input where A∗ will try to cheat; we denote
this input by x∗. Now A1 sends x∗ as the only input query in the one-time
security experiment and will receive back q∗. It will then obtain a fresh pair
of keys (pk∗, sk∗) and send HE.Encpk∗(q∗) to A∗.

– A∗ will respond with â∗ and A1 will send HE.Decsk∗(â) to the challenger for
one-time security experiment.

The advantage of A1 depends on how likely is A∗ can successfully cheat in
that interaction. Let p be the advantage of A1 in the one-time security exper-
iment. Clearly, if p is close to the advantage of A∗ in the many-times security
experiment A1 breaks the security of the one-time scheme.

Claim: the advantage of A1 is negligibly close to that of A∗ in the
many-time security game for security parameter λ∗. We can prove this
by relying on the semantic security of the homomorphic encryption and on a
hybrid argument.

Let L = lm, the total number of input queries in the many-times security
experiment. We now define the hybrids H(j) with j ∈ {0, . . . , L}. We define
H(0) to be the exactly the many-time security experiment. For j ∈ [L] we define
H(j) to be an experiment where we respond to input queries with HE.Encpkf

(0̄)
where pkf is a fresh public key up to input query j and behaves the many-time
security experiment from input query j + 1 on. Notice that H(L) corresponds to
the interaction with A1 above.

Denote by A(j) the output distribution of A∗ when interacting with H(j).
Intuitively, if the advantage of the A1 in the one-time experiment is significantly
different from the advantage of A∗ in the many-times security games, then A(0)
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and A(L) are not Λ-computationally indistinguishable. Therefore (by Lemma
A.1), there exists j ∈ [L] such that A(j−1) �∼Λ A(j).

Claim: If there exists j ∈ [L] such that A(j−1) �∼Λ A(j) then we can
break the semantic security of HE. Consider the following NC1 adversary
ACPA which receives in input a “challenge” public key pk∗. ACPA will interact
with A∗ simulating H(j) until receiving input query xj . At this point it will
compute qj from VC.ProbGen(xj) and send to the CPA challenger (see Remark
A.1) qj and 0̄, receiving back an encryption c∗ of either message under the public
key pk∗. ACPA will now send (pk∗, c∗) to A∗ and continue simulating H(j) till
the end of the experiment. The adversary ACPA will check whether A∗ cheated
successfully at the end of the experiment and output (in the multiple-message
CPA experiment) 1 if that is the case and 0 otherwise. This would allow ACPA

to have a noticeable advantage in the experiment thus breaking the semantic
security of HE.

��

D On Approaches Based on Randomized Encodings

A randomized encoding of a function f is a randomized function f̂ such that
for any input x, the distribution of f̂(x) reveals f(x), but nothing more about
x. We observe that approaches based on low-depth information-theoretic affine
randomized encodings (as constructed in [IK00a,IK02,AIK04] or as applied in
[SYY99,AIK10,GGH+07]) may be used to obtain results similar to ours. Known
ways to construct these tools, however, all seem to have significant limitations,
which pushed us to look for different solutions.

Example Constructions. An example construction for homomorphic
encryption: the encryptor could send to the evaluator a linearly homomorphic
encryption of the inputs and the evaluator could reply with an affine (requiring
only linear operations) randomized encoding of f computed on the ciphertexts.
Possible constructions for verifiable computation could be based on [AIK10] or
using a constant-round variant of [GKR08] for NC1 circuits together with the
approach in [GGH+07].

Limitationsofconstructions fromRE. Such approaches can yield homo-
morphic encryption for NC1 circuits and verifiable computation in low-depth.
Noticeably, such schemes would be (partly) implementable in NC0 and the sound-
ness of the (one-time) verifiable computation could hold unconditionally.

In our work, however, we are interested in compact homomorphic encryption
schemes (where the ciphertexts do not grow in size with each homomorphic oper-
ation) and in verifiable computation schemes where the total (online) work of the
verifier is approximately linear in the I/O size21. When using currently known
constructions the techniques mentioned above seem to fail in both respects. One
reason for this is that having the verifier (resp. evaluator) compute (resp. send)

21 I.e. the size of the verification circuit should be O(poly(λ)(n + m)) where n and m
are the size of the input and output respectively.
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an information-theoretic22 randomized encoding would require verification time
(resp. communication complexity) to be at best Ω(n2) (resp. Ω(2d), where d is
the depth of the fan-in two evaluation circuit). These lower bounds refer to the
complexity of known constructions for information-theoretic randomized encod-
ings [AIK04], which stem from two main approaches: the branching-program
based one in [IK00a] and the “Yao-like” in [IK02] (Sect. 3). The former con-
structs randomized encodings computable in time Ω(�2) and of the same size,
where � is the size of the (polynomial-size) branching program describing f (the
related approach in [GGH+07] has output size and computation time of �3).
The latter describes randomized encodings of size 2d and computable in s2 for
circuits of size s and (logarithmic) depth d. The complexity of these encodings
can be improved under the existence of PRGs with linear stretch (e.g. [AIK10]
uses this fact to build verifiable computation with low online communication).
Unfortunately it is not known how to build such primitives under the assumption
NC1

� ⊕L/poly [DVV16].
It would be worth investigating exactly the extent to which we can exploit

such techniques in a context where low communication complexity and low
sequential verification complexity are not constraints. We leave this as an open
problem. We finally point out that some of these depth-reduction techniques can
be applied to our results (naturally, with overheads similar to the ones pointed
out above).
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Abstract. We study the problem of secure two-party computation in
the presence of a trusted setup. If there is an unconditionally UC-secure
protocol for f that makes use of calls to an ideal g, then we say that f
reduces to g (and write f � g). Some g are complete in the sense that
all functions reduce to g. However, almost nothing is known about the
power of an incomplete g in this setting. We shed light on this gap by
showing a characterization of f � g for incomplete g.

Very roughly speaking, we show that f reduces to g if and only if it
does so by the simplest possible protocol: one that makes a single call
to ideal g and uses no further communication. Furthermore, such simple
protocols can be characterized by a natural combinatorial condition on
f and g.

Looking more closely, our characterization applies only to a very wide
class of f , and only for protocols that are deterministic or logarithmic-
round. However, we give concrete examples showing that both of these
limitations are inherent to the characterization itself. Functions not
covered by our characterization exhibit qualitatively different proper-
ties. Likewise, randomized, superlogarithmic-round protocols are quali-
tatively more powerful than deterministic or logarithmic-round ones.

1 Introduction

In 2-party secure function evaluation (SFE), Alice holds a private input x ∈ X,
Bob holds a private input y ∈ Y , and the parties interact to learn f(x, y) for some
agreed-upon function f : X × Y → Z. Each party should learn no more than
can be inferred from f(x, y) alone, even when that party behaves adversarially.

Different functions f have different inherent complexities, and one way to
compare the “cryptographic complexity” of functions is to use a reduction. The
most natural reduction from f to g is a secure protocol for f where the parties are
allowed to use an ideally-secure black-box for g (ideal here means that this black-
box takes inputs from both parties, and reveals only the output of g). Depending
on the security required of the protocol for f , we obtain reductions of various
strengths that can resolve finer distinctions in cryptographic complexity.
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Cryptographic Complexity and Related Work. In this work we exclusively focus
on reductions between two-party, deterministic SFE functions with constant-size
truth tables (meaning the function that is computed does not depend on the
security parameter). We consider a reduction defined in terms of UC security [4]
against computationally unbounded adversaries. We write f � g to denote that
there is a UC-secure protocol securely realizing f against unbounded adversaries,
that makes calls to an ideal g functionality (i.e., a protocol in the “g-hybrid
model”).

After defining a notion of reducibility, the most natural step is to identify
which objects are complete for the reduction. A function g is complete (under
�) if f � g for all f . Otherwise we say that g is incomplete.

Kilian [8] was the first to consider completeness of SFE functionalities, prov-
ing that the oblivious transfer function is complete. Although the result pre-
dates the UC model, a variant of the construction from [9] is likely to achieve
UC security — i.e., oblivious transfer is complete under the � reduction that
we consider in this work. Later work characterized exactly which functions are
complete (w.r.t. malicious, unconditional security): for symmetric SFE (where
both parties receive the same output) [10], for asymmetric SFE (where only one
party receives output) [11], for SFE where parties may receive different outputs
[13], and even for randomized SFE functions [12,20].

When one or both of f, g are complete, the question of f � g is simple to
answer. If g is complete, then f � g. If f is complete but g is not, then f �� g.
The goal of this line of work is to therefore understand when f � g, for f
and g which are incomplete.

Prabhakaran and Rosulek [21] gave an example of four functions that satisfy
f1 � f2 � f3 � f4 (where f � g means that f � g but g �� f). Maji, Prabhakaran
and Rosulek [17] extended this result to show an infinite strict hierarchy f1 �
f2 � · · · � fi � · · · , and also showed an example of a pair of functions that are
incomparable (f �� g and g �� f). The same authors in [18] later proved several
additional results of the form f �� g.

These results hint at a rich landscape of complexity with respect to the �
reduction, but fall well short of revealing the entire picture. First, they are not
complete characterizations, but give only necessary conditions for f � g. Second,
the techniques in these works apply only to f and g that have semi-honest-secure
protocols. This leaves a large class of functions that are neither complete nor
admit any semi-honest protocol (simple characterizations of both properties are
known [1,10,14]). A canonical example of such a function is the so-called “spiral”
function shown in Fig. 1c. Currently almost nothing is known about reductions
involving such intermediate functions.

Other Related Work. We consider a reduction based on UC security against
unbounded adversaries. Weaker reductions have been studied, but they do not
turn out to illuminate many distinctions in complexity. For example, one may
define a reduction based on polynomial-time UC security. It turns out that every
SFE is either complete or trivial (it reduces to every other function) under this
reduction [19].
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In this paper we prove qualitative differences in the power of randomized
and deterministic protocols, even when realizing deterministic functions using
other deterministic functions (i.e., we show specific, deterministic f and g where
f � g via a randomized protocol but not by any deterministic protocol). In the
two-party setting, Dodis and Micali [5] show such a separation among complete
f and g, for a special class of protocols (in which one party does not speak).
Beimel and Malkin [2] show specific f and (complete) g for which randomized
protocols make exponentially fewer calls to g than deterministic protocols.

2 Overview of Our Results

Scope of Results: Incomplete, Non-Unilateral Functions. As mentioned in the
introduction, the question of f � g is straight-forward when one of {f, g} are
complete. We therefore focus on characterizing f � g when both are incomplete.

We say that f is unilateral if there exists an input y∗ for one of the parties
(by symmetry, Bob) such that f(·, y∗) is a constant function. That is, by choosing
input y∗ Bob can unilaterally fix the output of f . We characterize f � g, when
f is non-unilateral. In Sect. 7.1 we show an example of unilateral f, g that do
not obey the characterization, demonstrating that this restriction is tight.

Statement of Main Result. We show a complete and combinatorial characteriza-
tion of f � g, for a natural class of protocols. For this characterization, identify
each function f with its 2-dimensional truth table (rows corresponding to Alice-
inputs and columns to Bob-inputs). We say that f embeds in g if f appears as
a submatrix of g, subject to some other restrictions (essentially, the other parts
of g can’t “interfere” with the f -submatrix—the formal definition is in Sect. 4).
We then prove our main theorem:

Theorem 1. The following are equivalent, when f and g are incomplete and f
is non-unilateral.

1. f � g via a worst-case O(log κ)-round protocol (where κ is the security param-
eter).

2. f � g via a deterministic protocol.
3. f � g via a deterministic protocol consisting of a single call to g and no

additional communication.
4. f embeds in g.

Technical Approach. The most involved part of our main theorem is proving
(1) ⇒ (3) and (2) ⇒ (3). Intuitively this involves “compressing” an arbitrary
protocol for f � g into a single call to g.

Our first step is to show that every secure protocol for f � g can be trans-
formed into one with the following instantaneous property:

– With overwhelming probability, the protocol terminates immediately follow-
ing some call to g.
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– Strictly before this terminal call to g, the protocol transcript leaks negligible
information about either party’s inputs.

Our main technical tool is that of frontier analysis, which was introduced in [17]
and extended in [16]. A frontier in the protocol is simply the collection of partial
transcripts where some statistical condition is true for the first time. Roughly
speaking, we define two frontiers for each party: one expressing “the first time the
simulator is likely to extract” and another for “the first time honest parties can
reliably predict the final output.” We then argue that these frontiers must all be
reached simultaneously, with overwhelming probability. As such, these events can
happen only as the result of a call to g. Furthermore, the protocol can be safely
truncated after reaching the frontiers (since both parties can already predict the
final output). The result of truncation is a protocol with the “instantaneous”
property described above. We complete the argument by showing how such an
instantaneous protocol can be compressed from O(log κ) rounds to one round.

Tightness of the Characterization. Our main theorem does not characterize f �
g when f is unilateral. This restriction is inherent, as we demonstrate with an
example in Sect. 7.1. In Sect. 7.2 we also demonstrate an example f and g with
the following properties:

1. f does not embed in g. Hence, by the classification theorem, f �� g via any
deterministic protocol or (randomized) logarithmic-round protocol.

2. f � g via a randomized protocol whose expected round complexity is constant,
but whose worst-case round complexity is r(κ) for any r(κ) = ω(log κ).

This example demonstrates that our main characterization’s limitation to
O(log κ)-round protocols is inherent.

Interestingly, the ω(log κ)-round protocol for f � g has the instantaneous
property described above. Hence, the protocol leaks no information about the
parties’ inputs, until f(x, y) is completely revealed in a single call to g. Yet there
is no way to securely compress the protocol to just the “meaningful” call to g.
Somehow, it is important that the “output-fixing” round is unpredictable.

Mysteriously, a similar structure appears in the protocols of Gordon et al. [6]
that achieve fairness. These protocols leak nothing about the inputs until, in
some secret round, the output is completely revealed. Analogously, Lindell and
Rabin [15] show that the “output-fixing” round in a fair protocol cannot be
predictable. We are not sure what fairness has to do with unfair multi-party
computation with an incomplete hybrid functionality, and leave open this explo-
ration for future work.

Ours is also one of the few examples of a ω(1) round-complexity lower bound
for information-theoretic multi-party computation. Indeed, when g is complete,
f � g is possible in constant rounds, for any f : first, obtain oblivious trans-
fer from g in constant rounds [10,13], and from oblivious transfer obtain f in
constant rounds [7].1

1 Note that the round complexity of these protocols may depend on f and g (e.g., the
circuit depth of f), but is constant with respect to the security parameter since we
consider only functions with constant-size truth table.
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3 Preliminaries

3.1 Secure Function Evaluation, UC Security

We assume the reader has familiarity with the UC framework (a brief overview
is given in AppendixA). In this work we study deterministic 2-party secure
function evaluation (SFE), in the universal composability (UC) framework [4]
against computationally unbounded adversaries that corrupt parties statically
(i.e., once and for all before the protocol begins). We consider security-with-
abort, meaning that malicious parties are allowed to learn their output first,
and delay the honest parties from receiving output (perhaps indefinitely).

We use the following notation:

f � g: there is a secure protocol (UC, unconditional) for f that uses calls to
an ideal g (i.e., a secure protocol in the g-hybrid model).

f �1 g: f � g via a protocol that makes only a single call to g and uses no
additional communication.

3.2 Combinatorial Properties of Complete/Incomplete f

We review some basics of 2-party SFE. Let f be a 2-party SFE with domain
X ×Y . A fundamental property of SFE has to do with decomposing the function
into “rectangles.” Define rectf (x, y) = {x′ | f(x, y) = f(x′, y)} × {y′ | f(x, y) =
f(x, y′)}. We refer to rectf (x, y) as a rectangle of f .

The characterization of [in]completeness for 2-party SFE is due to Kilian:

Theorem 2 ([10]). f is incomplete if and only if: for all x, x′, y, y′,

f(x, y) = f(x′, y) = f(x, y′) =⇒ f(x′, y′) = f(x, y).

A useful consequence of Theorem 2 is the following:

Observation 3. Let f be incomplete. Then for all x, y, the value rectf (x, y)
is uniquely determined by f(x, y) and just one of {x, y}. Likewise, f(x, y) is
uniquely determined by rectf (x, y) and just one of {x, y}.

Observation 3 implies that without loss of generality we can think of the
parties as computing the function (x, y) �→ rectf (x, y) instead of the function
f(x, y).

Figure 1 shows three example functions, with the partition into rectangles
given for the incomplete functions. Note that the second function has 4 rectan-
gles: two rectangles with output 1, and two with output 2.

In this work we restrict our attention to symmetric functions, which give
the same output f(x, y) to both parties. One could easily consider asymmetric
functions f = (fA, fB) which give output fA(x, y) to Alice and fB(x, y) to
Bob. However, a result of Kraschewski and Müller-Quade [13] shows that all
incomplete functions (even asymmetric ones) are isomorphic to some symmetric
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Fig. 1. Example SFE functions.

one.2 Hence, our restriction to symmetric functions is without loss of generality,
and our theorem statements can be interpreted to apply to asymmetric functions
as well.

3.3 Properties of g-Hybrid Protocols for Incomplete g

Fix a 2-party protocol π, and let t be a partial transcript (i.e., a prefix of a
complete protocol transcript). We use Prπ[t|xy] to denote the probability of
obtaining a protocol transcript with prefix t, when both parties run the protocol
honestly with respective inputs x and y.

Write t as a sequence of messages t = (m1, . . . , mk). Suppose Alice sends
the odd-numbered messages. Then the choice of the odd-numbered (resp. even-
numbered) messages depends only on the previous messages and x (resp. y), but
not on y (resp. x). We can therefore write:

Prπ[t|xy] =
∏k

i=1 Prπ[mi|xy,m1 · · · mi−1]

=
(∏

i odd Prπ[mi|x,m1 · · · mi−1]
)( ∏

i even Prπ[mi|y,m1 · · · mi−1]
)

def= Prπ[t|x] Prπ[t|y] (�)

Here we are defining Prπ[t|x] and Prπ[t|y] to be equal to the parenthesized quan-
tities. Essentially, Prπ[t|x] is the probability that Alice behaves consistently with
t when her input is x.
In the g-Hybrid Model. A similar property also holds when the parties can call
an ideal functionality g (i.e., protocols in the g-hybrid model), but only when g
is incomplete, as we describe below.

When parties invoke g, its output is added to the joint transcript. From
Observation 3 this is equivalent to adding rectg(x̃, ỹ) to the transcript, where x̃

and ỹ were the inputs that the parties gave to this instance of g. Let X̃ × Ỹ be
a particular rectangle in g. Then when g is incomplete we have:

Pr[rectg(x̃, ỹ) = X̃ × Ỹ ] = Pr[x̃ ∈ X̃] Pr[ỹ ∈ Ỹ ]
2 If f = (fA, fB) is incomplete then there is a symmetric function g such that

(1) g(x, y) can be computed from x, fA(x, y); (2) g(x, y) can be computed from
y, fB(x, y); (3) fA(x, y) can be computed from x, g(x, y); (4) fB(x, y) can be com-
puted from y, g(x, y).
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Alice’s choice of x̃ depends only on her f -protocol input and the transcript so
far; similarly ỹ depends only on Bob’s input and the transcript so far. Hence,
even though the parties contribute simultaneously to the transcript via a call
to g (unlike when they alternate exchanging plain messages), the probability of
a transcript can still be factored into independent contributions from the two
parties, as in (�).

Stateless Parties/Adversaries. The “standard” way of defining a protocol is for
each party to initially choose a random tape. Their subsequent behavior is a
deterministic function of the random tape, their input, and the transcript so far.

However, (�) shows that Alice’s view (including her private randomness)
is independent of Bob’s view (including his randomness), given the transcript.
Therefore, any g-hybrid protocol π can be purged of stateful randomness in the
following way. At each step, a stateless party can (1) sample a random tape con-
ditioned on it being consistent with their private input and transcript so far; (2)
use that (ephemeral) random tape to choose the next move in the protocol; (3)
discard the ephemeral random tape. Note that this transformation may require
exponential time, but we consider all parties to have unbounded computation.
This transformation also applies to adversaries, so without loss of generality we
consider only stateless adversaries.

4 Reducibility Characterization

We define the combinatorial condition at the heart of our main theorem. Intu-
itively, f embeds to g if one can identify a submatrix of g that “looks like” f .
Of course, the outputs of f might be renamed relative to g. Such a submatrix
property suffices for a semi-honest protocol for f using g, where parties simply
use the subset of inputs of g that comprise the f -submatrix. However, such a
protocol need not be secure in the presence of malicious adversaries, because
other inputs of g may “interfere” with the f -submatrix. There are two main
things that can go wrong, epitomized in the following examples:

f1 =
2
1
1

4
4
3

��
2
1
1

4
4
3

7
6
5

= g1; f2 =
2
1

4
3 ��

2
1

2
3

4
3

= g2

Note that f1 appears as the white submatrix of g1. However, when a corrupt
column-player cheats and uses the shaded column of g1, he completely learns
the row-players input, even though no column of f1 legally allows this.

Similarly, f2 appears as a submatrix of g2. Consider a corrupt column-player
who uses the shaded column of g2. There is no single input for f2 that “explains”
the effect of this behavior for all possible inputs of the row-player. Concretely,
there is no input of f2 that guarantees an output in {2, 3}.

The requirements for embedding are formalized in the following definition:
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Definition 4. For two functions α and β we say that α leaks no more than
β if β(y) = β(y′) ⇒ α(y) = α(y′) for all inputs y, y′. We say that α refines β
if β(y) ∈ {α(y),⊥} for all inputs y.

Let f : X × Y → Z and g : X̂ × Ŷ → Ẑ. Without loss of generality, assume
f(x, y) = rectf (x, y) and g(x, y) = rectg(x, y). We say that f embeds in g if:

1. (f appears as a submatrix in g) There exist two injective mappings, A : X →
X̂ and B : Y → Ŷ , and a third mapping, C : Ẑ → Z ∪ {⊥}, such that
∀x ∈ X, y ∈ Y : f(x, y) = C(g(A(x), B(y))).

2. (security guarantees) There exist mappings Â : X̂ → X and B̂ : Ŷ → Y such
that the following hold:
(a) (g doesn’t reveal too much information)

– for all x̂ ∈ X̂, g(x̂, B(·)) leaks no more than f(Â(x̂), ·)
– for all ŷ ∈ Ŷ , g(A(·), ŷ) leaks no more than f(·, B̂(ŷ))

(b) (there are no ambiguous g-inputs)
– for all x̂ ∈ X̂, f(Â(x̂), ·) refines C(g(x̂, B(·))).
– for all ŷ ∈ Ŷ , f(·, B̂(ŷ)) refines C(g(A(·), ŷ)).

To understand this definition, it helps to see how the mappings A,B,C, Â, B̂
relate to a secure protocol demonstrating f �1 g:

Lemma 5. If f embeds in g, then f �1 g via a deterministic protocol. This
proves (4) ⇒ [(1) ∧ (2) ∧ (3)] of Theorem1 (stated in Sect. 2).

Proof. Let f embed in g, with associated mappings as in Definition 4. The pro-
tocol for f is as follows:

– Alice sends input A(x) to g where x is her f -input.
– Bob sends input B(y) to g where y is his f -input.
– The parties both output C(z) where z is the output they receive from g (they

output ⊥ if g gives output ⊥).

Correctness follows from the first condition of Definition 4. Due to the symmetry
in the definitions/protocol, we show security only against a malicious Alice.

Suppose Alice sends input x̂ to g. In the real protocol, Alice’s view will
consist of g(x̂, B(y)) and Bob’s output will be C(g(x̂, B(y))). In the ideal world,
the simulator will do the following:

– The simulator sends x∗ = Â(x̂) to the ideal f , and obtains output f(x∗, y) =
C(g(A(x∗), B(y))).

– The simulator does not know Bob’s input y but can choose any y′ such that
f(x∗, y′) = f(x∗, y). The simulator can give g(x̂, B(y′)) to Alice as her simu-
lated view. From part 2a of Definition 4, we have that this is identical to the
real view g(x̂, B(y)).

– The simulator checks whether C(g(x̂, B(y))) = ⊥, and if so sends (deliver, 0)
to f . In this case, Bob’s real and ideal outputs will both be ⊥. Otherwise, it
sends (deliver, 1) to f and Bob will receive output f(x∗, y).
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Bob’s ideal output is f(x∗, y) = C(g(A(x∗), B(y))). From condition 2b of Defi-
nition 4, this matches the real output C(g(x̂, B(y))).

Lemma 6. For non-unilateral f , if f �1 g via a deterministic protocol with
simulation error3 less than 1, then f embeds in g. This proves (3) ⇒ (4) of
Theorem1 (stated in Sect. 2).

Proof (Sketch). The full proof is in AppendixB. The fact that f �1 g by some
deterministic protocol immediately reveals part 1 of the embedding: there must
be some set of mappings that Alice and Bob use to map f -inputs to g-inputs
and g-outputs to f -outputs.

The main technical portion of this proof is that, if simulator mappings Â and
B̂ do not follow the rules in parts 2a and 2b of Definition 4, then the simulation
error is 1, which contradicts our assertion that the simulation error is less than
1. The intuition for these attacks is clear from the examples above.

5 Instantaneous Protocols

In this section we show how to transform any secure protocol in the g-hybrid
model into one that has an “instantaneous” property (described further in
Sect. 5.4). The results in this section apply to arbitrary protocols. Later in
Sect. 6 we give further transformations that are restricted to deterministic or
logarithmic-round protocols.

5.1 Frontier Basics

Recall that Prπ[t|xy] refers to the probability that the protocol results in tran-
script with prefix t, when run honestly on inputs x and y. We write Prπ[E|txy] to
denote the probability that event E happens, given that the parties run honestly
with inputs x and y, and conditioned on t being a prefix of the transcript.

Let F be any set of partial protocol transcripts, with the property that if
t ∈ F , and t is a prefix of t′, then t′ ∈ F . In other words, F describes an event
in the protocol that happens and does not “unhappen.” In this case we call F a
frontier, using the terminology of [17].

It is sometimes helpful to associate the frontier F with its set of prefix-
minimal elements, as these represents transcript where some condition happened
for the first time. Let first(F ) denote the prefix-minimal elements of F .

If F is a frontier, we use notation Prπ[F |xy] to denote the probability that
F is encountered when running the protocol honestly on inputs x and y. More
formally:

Prπ[F |xy] def=
∑

t∈first(F ) Prπ[t|xy]

3 The simulation error of a protocol π is the maximum (supremum) over all environ-
ments of |preal − pideal|, where preal is the probability that the environment outputs
1 in the real interaction and pideal is the probability that it outputs 1 in the ideal
interaction.
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Finally, if F and G are two frontiers, then “F < G” denotes the event “either
F happens strictly before G, or F happens and G never happens.” More formally,

Prπ[F < G|xy] def=
∑

t∈first(F\G) Prπ[t|xy]

5.2 Our Frontiers

Our analysis relies on two types of frontiers that we introduce:

F x
A-ext: captures the first time that the simulator has extracted with reasonable

probability, in an ideal-world interaction involving a corrupt Alice running
honestly on input x.

F x
A-out: captures the first time that Alice’s output becomes relatively fixed, in

the following sense. If the parties continue with honest behavior from such a
point in the protocol, and Alice has input x, then Alice has only one likely
output, no matter what Bob’s input is.

We define such a frontier for every input x. We also define analogous frontiers
with respect to Bob.

We have already defined Prπ[ · |xy] notation with respect to an honest exe-
cution of the protocol on inputs x, y. Since F x

A-ext refers to probabilities in an
ideal-model interaction, we introduce notation to differentiate between the prob-
abilities in real and ideal interactions. We write PrA-sim[ · |xy] to refer to proba-
bilities induced by an ideal-model interaction among malicious Alice running the
protocol honestly on input x, the simulator for corrupt Alice, and ideal honest
Bob with input y. PrB-sim is defined analogously.

Definition 7. At some point in an ideal interaction between corrupt Alice and
the simulator, the simulator will at some point “extract” by sending an input to
the ideal f . Define:

σA(t, x) def= PrA-sim[simulator has previously extracted|txy]

That is, σA(t, x) is the probability that the simulator has extracted, given that the
transcript so far is t. We define σB analogously.

In somewhat more detail, consider formally defining a simulator in terms of
a its next-message function. Given as input its view so far (messages exchanged
with the adversary and functionality and internal state), it outputs either
(Prot,m) to indicate sending a simulated protocol message m to the adver-
sary, or (Ext, x) to indicate sending an input x to the ideal functionality. Until
the simulator talks to the ideal functionality, the only interaction is between the
adversary and the simulator. As such, the simulator may be stateless for this
period of time without loss of generality (by the same reasoning as in Sect. 3.3).
The simulator’s view certainly indicates whether extraction has happened (i.e.,
whether the view contains a Ext message). Since the moment of extraction (Ext
message) is the first place that the simulator’s view and the adversary-simulator
transcript diverge, σA can be defined as a function of the transcript only.
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Let σ∗
A(t, x) denote the probability that the simulator has decided to extract

“at this instant,” i.e., in response to the most recent protocol message sent by
the adversary. Formally, let t = (t1, . . . , tn) be the partial transcript, where Alice
is corrupt and speaks first:

σ∗
A(t, x) def= Prπ[t|x]

⎛

⎜
⎝

∏

i even
i<n

Pr[S(t1 · · · ti) = (Prot, ti+1)]

⎞

⎟
⎠ Pr[S(t) = (Ext, ·)]

where S is the simulator’s next-message function. Then

σA(t, x) =
∑

i<n

σ∗
A

(
(t1, . . . , ti), x

)

Note that before the simulator extracts, its view is perfectly independent
of y in the ideal interaction. Its decision to extract, and hence the probability
σA(t, x), depends only on x and not on y.

With that in mind, note that we have defined σA to refer to the probability
that extraction has happened strictly in the past (note i < n in the summation
above). Another way to interpret σA is “the probability that the transcript might
be affected by the honest party’s input y.” Hence, as the transcript evolves, the
value of σA cannot change as a result of a message sent by Alice. It can only
change as a result of a message generated by the simulator, hence an output of
g or a simulated Bob-message.

Finally, note that our terminology considers when the simulator actually
extracts, and not when the simulator has in principle enough information to
extract. Again, the important issue is whether the simulator has already con-
tacted the ideal functionality, and therefore the transcript may be influenced by
the honest party’s input.

Definition 8. Given a secure protocol π with simulation error ε, define the
following for all inputs x, y:

F x
A-ext = {t | σA(t, x) > 4

√
ε}

F y
B-ext = {t | σB(t, y) > 4

√
ε}

F x
A-out = {t | ∀y, y′ : f(x, y) �= f(x, y′) ⇒ min

{
Prπ[out f(x, y)|txy],
Prπ[out f(x, y′)|txy′]

}
< 1 − √

ε}

F y
B-out = {t | ∀x, x′ : f(x, y) �= f(x′, y) ⇒ min

{
Prπ[out f(x, y)|txy],
Prπ[out f(x′, y)|tx′y]

}
< 1 − √

ε}
Here Prπ[out z|txy] refers to the probability that honest parties output z when
starting the protocol at partial transcript t and running honestly with inputs x
and y.

To understand F x
A-out, observe that for t ∈ F x

A-out there is at most one output
that can be induced with probability at least 1−√

ε. It may be the case that no
valid output can be induced with this probability, in which case only ⊥ output
is likely from starting point t.

Note that if ε is a negligible function of the security parameter, then
√

ε is a
larger function but also still negligible.
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5.3 Properties of the Frontiers

We now show that, roughly speaking, all the frontiers that we have defined must
occur simultaneously, with overwhelming probability. Proofs for the lemmas in
this section are given in AppendixC. Note that all lemmas hold with the roles
of Alice and Bob reversed.

Lemma 9. For all x, y: Prπ[F x
A-ext < F y

B-out | xy] < 2
√

ε.

Proof (sketch). A partial transcript t ∈ F x
A-ext\F y

B-out represents a situation where
there is reasonable probability that the simulator would have extracted from
Alice in the ideal-interaction (t ∈ F x

A-ext), but in the real-interaction Alice can
still induce two different outputs for Bob, each with good probability (t �∈ F y

B-out).
Intuitively, the simulator has extracted prematurely. This event should be rare.

Next we show that F x
A-out is a point at which the honest parties can predict

their eventual output.

Definition 10. Fix x and let t ∈ F x
A-out. Then there is at most one value z such

that ∃y : Prπ[out z|xyt] > 1 − √
ε. Let guessA(t, x) denote this value z, and note

that the value could be ⊥. We extend the notation guessA(t, x) = ⊥ in the case
that t �∈ F x

A-out.

Lemma 11. For z �= ⊥ define Gz = {t | guessA(t, x) = z}. Then for all x, y:
Prπ[Gf(x,y)|xy] > 1 − ε/2. Intuitively, upon reaching F x

A-out, Alice can predict
her eventual output with error at most ε/2.

Lemma 12. For all x, y (x not unilateral for f), Prπ[F x
A-out < F x

A-ext | xy] <
16ε.

Proof (Sketch). A partial transcript t ∈ F x
A-out \ F x

A-ext represents a situation
where Alice can predict what the output will be (t ∈ F x

A-out), but the simulator
probably has not extracted yet (t �∈ F x

A-ext). This event should be rare, since in
the ideal interaction Alice can gain no information about the f -output before
the simulator extracts (assuming x is not a unilateral input, so that the output
indeed depends on Bob’s input).

Lemma 13. For all x, y (y not unilateral), Prπ[F y
B-out < F x

A-out|xy] < 18
√

ε.

Proof (Sketch). This follows from the fact that if F y
B-out < F x

A-out then either
F y
B-out < F y

B-ext or F y
B-ext < F x

A-out, both of which are negligibly likely from Lem-
mas 9 and 12.

Lemma 14. For all x, y′, y (x, y′ not unilateral), Prπ[F y′
B-out < F y

B-out|xy] <
42

√
ε.

Proof (Sketch). If F y′
B-out < F y

B-out then either F y′
B-out < F x

A-ext or F x
A-ext < F y

B-out.
We can argue that the first case F y′

B-out < F x
A-ext would be negligibly likely, if

the parties run honestly on inputs x, y′. Unfortunately here we are using input y
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for Bob. But consider the ideal interaction with corrupt Alice. We are interested
in an event in which the simulator is not likely to have extracted from Alice
(t �∈ F x

A-ext). Conditioned on the simulator not extracting, the protocol transcript
is independent of Bob’s input. Hence whatever is unlikely with input y′ for Bob
is also unlikely with input y for Bob.

The second case F x
A-ext < F y

B-out is negligibly likely by Lemma9.

5.4 Securely Truncating a Protocol

Lemma 15. Let π be a secure protocol for f in the g-hybrid model. Define π′

to be the following:

– On input x for Alice and y for Bob, both parties run π honestly on their given
inputs.

– When the protocol transcript t reaches F x̃
A-out for any x̃, or reaches F ỹ

B-out for
any ỹ, the parties terminate the protocol.

– Alice outputs guessA(t, x) and Bob outputs guessB(t, y).

Then the truncated protocol π′ is also a secure protocol for f .

Proof. Let ε denote the simulation error of π. First, we argue that π′ is correct.
Alice’s output is guessA(t, x), which differs from the correct answer f(x, y) only
in the following events:

– t �∈ F x
A-out because the protocol reached F x′

A-out and terminated strictly before
reaching F x

A-out for x′ �= x. By Lemma 14, this can happen only with proba-
bility O(

√
ε).

– t �∈ F x
A-out because the protocol reached F y

B-out and terminated strictly before
reaching F x

A-out. By Lemma 13, this can happen only with probability O(
√

ε).
– t ∈ F x

A-out but guessA(t, x) �= f(x, y). By Lemma 11, this can only happen
with probability O(ε).

As for security, the only difference between π and π′ is that π′ truncates early
based on some condition. But this condition is public and independent of either
party’s private inputs. Hence the simulation for π′ works as follows. It simply
runs the simulator for π but terminates the protocol when the transcript reaches
the public termination condition.

Overall π′ is a secure protocol with negligible simulation error O(
√

ε).

Observe that the new protocol π′ has the “instantaneous” property discussed
in Sect. 2. Importantly for our purposes in the next section, with overwhelming
probability 1 − O(

√
ε) the protocol terminates on a transcript that is both in

F x
A-out and F y

B-out. Such a transcript must end with a message produced by the
simulator in both ideal interactions (i.e., when either party is corrupt). Hence
the last protocol message must be an output of g, with overwhelming probability.
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6 Collapsing Protocols to a Single Call to g

We complete our main theorem with the following lemmas.

Lemma 16. If, for incomplete and non-unilateral f and g, f � g via a protocol
with strict upper bound on number of rounds r = O(log κ), then f embeds in g.
This proves (1) ⇒ (4) of Theorem1 (stated in Sect. 2).

Proof (Sketch). The full proof is in AppendixD. Without loss of generality (from
Lemma 15) the last step in π (in particular, the action in final round r) is a call
to g with overwhelming probability.

We consider two cases. Consider a call to g that happens in the last round,
following some partial transcript t. Imagine a new protocol where the parties
simply “fast-forward” directly to this g-call by behaving as if the transcript so
far was t. The result is a protocol consisting of a single call to g. If any call to
g yields a secure protocol for f in this way, then we are done (we in fact have a
1-round protocol for f).

In the other case, there may be no call to g during the final round of π that
yields a secure protocol for f in this way. Intuitively, every time the protocol
runs for the full r rounds there would have been a successful attack on the final
call to g! Hence it must be negligibly unlikely that π would ever run for r rounds.
We show that, in this case, truncating π after r − 1 rounds results in a secure
protocol for f .

We can repeatedly apply this argument at most r − 1 times until we are
guaranteed to obtain a 1-round protocol demonstrating f �1 g. The parameters
are such that after truncating r−1 rounds, the resulting protocol has simulation
error cr−1

√
ε for some constant c. Such a protocol is secure as long as r =

O(log κ), since cO(log κ)
√

ε = poly(κ)
√

ε, which is negligible.

Corollary 17. If f � g via a deterministic protocol (of any number of rounds)
then f embeds in g. This proves (2) ⇒ (4) of Theorem1 (stated in Sect. 2).

Proof. Deterministic protocols have zero simulation error (without loss of gener-
ality). Therefore, the same reasoning as in the previous proof applies but without
any error accumulating with each round.

7 Tightness of the Characterization, Limitations

In this section we discuss why our main characterization does not extend (with-
out modification) to consider unilateral functions or superlogarithmic-round,
randomized protocols.

In AppendixE we discuss the possibility of extending our protocol model to
allow parallel calls to g.
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7.1 Unilateral Functions

Failure of Our Characterization on Unilateral Functions. In Fig. 2 we give f and
g which are unilateral. Bob is the column-player and thus has 2 unilateral inputs
labeled B and C.

First, we argue that f ��1 g. Suppose for sake of contradiction that such a
protocol exists. Consider the simulator for a corrupt Bob who runs the protocol
semi-honestly, on f -input that is chosen uniformly at random. The only message
that the simulator sees is Bob’s input to g, after which the simulator must extract
an output to send to f . The simulator gets only one bit of information about
Bob’s input (as there are only 2 possible g-inputs), while there are 3 possibilities
for the extracted f -input. It follows that with constant probability the simulator
must extract the wrong input, and this error will be evident in the output of f .

1
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2

3

3
A B C
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2
A′ B′

g

Fig. 2. Unilateral functions
violating the main theorem.
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Fig. 3. Functions violating the main theorem via
a superlogarithmic-round protocol. Note that the
bottom-right 3 × 3 submatrix is unlike the others.

However, there is a simple protocol for f using g: Alice sends her f input
directly to g. If Bob has f -input A, he should choose g-input A′. In this case,
the parties will see that the g-output is in {0, 1} and they terminate with this as
their f -output. Otherwise, if Bob has f -input B or C, he should choose g-input
B′. In this case, the parties will see that the g output is 2, and then Alice will
wait for Bob to send a plain message containing either “2” or “3.” Alice takes
this message to be her output.

It is simple to see that this protocol is secure against a malicious Alice. For
a malicious Bob, the simulator does the following. If Bob chooses g-input A′,
then the simulator extracts Bob’s ideal f -input as A and simulates the g-output
to equal the ideal f -output. If Bob chooses g-input B′, then the simulator gives
2 as the simulated g-output, then waits for a message from Bob (either “2” or
“3”) and uses this as the extracted ideal f -input. The reason the simulation is
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secure is that in the second case (Bob chooses g-input B′), the fact that this is a
unilateral input means that the simulator doesn’t need to know Alice’s input to
perfectly simulate the g-output. Hence the simulator can delay extraction until
the second protocol message, where intuitively Bob resolves which unilateral
input he has.

Hence, we have f � g via a protocol consisting of a single call to g, plus (in
some cases) one extra message. It is a deterministic, constant-round protocol,
and yet f ��1 g. This example shows that our classification does not extend to
unilateral functions.

7.2 Deterministic/Logarithmic-Round Protocols

Consider the functions f and g in Fig. 3. We first claim that f does not embed in
g. Any embedding would map 3 f -columns into 3 distinct g-columns.4 For any
3 columns of g, there exists a row for which these columns have distinct entries
– this is simple (albeit time-consuming) to verify. However, there is no row in f
that has three distinct values. Hence the embedding would contradict rule 2a of
the embedding definition. Concretely, any candidate protocol for f �1 g would
allow a corrupt row-player to learn the column-player’s input in its entirety,
which is not allowed by f .

However, there is a protocol for f that uses g. We group the rows and columns
of g into groups of three, as distinguished by the dotted lines in the figure.
Associate the first row of f with the first row group of g, etc. Similarly, associate
the first column of f with the first column group of g, etc. The protocol for f is
as follows:

– Alice chooses a g-input from the row group associated with her f -input,
uniformly at random.

– Bob chooses a g-input from the column group associated with his f -input,
uniformly at random.

– They call g with their selected g-inputs.
– If the output of the g-call was in {A, B, C, D, E}, terminate the protocol with

that output. Otherwise, repeat (with fresh random choices for the g-inputs).

The correctness of this protocol is clear. By only sending g-inputs in the group
associated with their f -inputs, each party restricts any terminating output of g
to be one that was possible given their f -input.

To see that the protocol is secure, consider the following simulation. Suppose
corrupt Alice chooses some g-input (row). With probability 1/3, the simulator
decides that the protocol will terminate at this round. It converts the g-input to
an f -input (according to its row group), sends that f -input to the ideal f , then
simulates the g-output as the ideal f -input. With probability 2/3, the simulator
decides that the protocol will continue. Note that in any row, there are 2 non-
terminal g-outputs (for example, in the second row only 3 and 4 are possible),

4 Perhaps columns are mapped to rows if the roles of Alice and Bob are swapped
during the embedding. The analysis is the same for this scenario.
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which are equally likely no matter which column group Bob has selected. The
simulator simply chooses one of these two with equal probability as the simulated
g-output. Then the same process repeats.

The parties’ inputs will “match” by giving a terminal output with probability
1/3, meaning that the expected number of rounds is 3. The probability that the
protocol continues for at least r rounds is (2/3)r. We can get a protocol with a
strict upper bound on round complexity by having the parties simply abort after
some limit r number of rounds. If we set this limit as r(κ) = ω(log κ), then the
correctness of the protocol suffers by an amount (2/3)ω(log κ) = κ−ω(1), which is
negligible. However, the simulation is still perfect, and the protocol is secure.

In summary, f � g via a randomized, (worst-case) superlogarithmic-round
protocol, but f does not embed in g and so f �� g via any deterministic protocol
or any strict logarithmic-round protocol.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.

A UC Security Recap

A 2-party SFE task is a deterministic function f : X × Y → Z. We identify f
with the following ideal functionality: The functionality waits for input x ∈ X
from Alice and input y ∈ Y from Bob. If no party is corrupt, the functionality
gives output f(x, y) to both parties. If any party is corrupt, the functionality
gives f(x, y) to the adversary and waits for a command (deliver, b) from the
adversary, where b ∈ {0, 1}. If b = 0, the functionality gives output ⊥ to the hon-
est party; if b = 1, the functionality gives f(x, y) to the honest party. Hence, we
consider security with abort — the functionality does not guarantee fairness
or output delivery.

We assume basic familiarity with the UC framework, but briefly review the
main concepts (specialized here for 2-party SFE). An execution in the framework
begins with an environment Z (an arbitrary interactive TM) that chooses inputs
for both of the parties. The parties interact with each other, and an ideal func-
tionality for some function g, according to the protocol. The parties eventually
give an output to the environment, who outputs a single bit. Throughout the
entire interaction, there is an adversary A (an arbitrary interactive TM) who
interacts arbitrarily with the environment. The adversary may also choose to
corrupt one of the parties, which causes the party to come under complete con-
trol of the adversary. In that case, the party may deviate from the protocol. In
this work we consider only static corruption, where the adversary must choose
to corrupt a party before the protocol begins.

Given the description above, exec[π, g,A,Z, 1κ] denotes the probability that
the environment outputs 1, when κ is the security parameter of the protocol.

A particular protocol of interest is the dummy protocol πdummy. In this pro-
tocol, each party receives an input from the environment and sends it directly
to the ideal functionality. When the ideal functionality delivers an output, the
party gives it directly to the environment as output.
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Definition 18. We say f reduces to g, and write f � g, if there exists a protocol
π such that for all A there exists a S such that for all environments Z, we have:

∣
∣
∣exec[π, g,A,Z, 1κ] − exec[πdummy, f,S,Z, 1κ]

∣
∣
∣ is negligible in κ

We write f �1 g if furthermore π has the following property: the parties make
only one call to g and exchange no other messages.

In the execution of πdummy we can think of S as simulating protocol π with
A. The security arises from the fact that the simulator communicates with the
honest party via a single call to ideal f . This means that everything prior to the
call S makes to ideal f must be independent of the honest party’s input, and
everything after that call must not affect the honest party’s output. We call this
event the extraction, as S must “extract” enough information about the input
of A in order to correctly call f .

B Proofs for the Reducibility Characterization

Lemma (Restatement of Lemma 6). For non-unilateral f , if f �1 g via a
deterministic protocol with simulation error less than 1, then f embeds in g.

Proof. During the deterministic protocol, Alice and Bob both map their f -inputs
to g-inputs and then immediately terminate the protocol, meaning that they were
each able to map the g-output to the same f -output. The input maps are A and
B in the embedding. The output map is C in the embedding.

By symmetry, we only consider security against a malicious Alice.
Clearly, A is injective. If it is not, then choose some pair (x, x′) where A(x) =

A(x′). Choose y so that f(x, y) �= f(x′, y) – since f is not unilateral, such an
input exists. Consider two environments – they ask the parties to honestly run
the protocol with inputs x, y and x′, y respectively, and return 1 if the output is
correct. In the real world, in both cases the parties will return the same output,
so one of them is incorrect. Therefore, one of the environments has simulation
error 1.

Because this protocol is UC-secure, there must be some method by which
the simulator takes the parties’ g-inputs and translate them to f -inputs upon
extraction. Call these mappings for Alice and Bob Â and B̂, respectively. It
suffices to show that these mappings satisfy 2a and 2b of Definition 4. We show
that if the mappings violate Definition 4, then the simulation error of the protocol
is 1.

(2a) Assume that Â violates part 2a. That is, there exists an x̂ where it is not
the case that g(x̂, B(·)) leaks no more than f(Â(x̂), ·). In particular, there is
some pair (y, y′) where f(Â(x̂), y) = f(Â(x̂), y′) but g(x̂, B(y)) �= g(x̂, B(y′)).

Consider two environments:

– Adversary Alice uses input x̂, honest Bob uses input y, return 1 if Alice’s
view is g(x̂, B(y)).
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– Adversary Alice uses input x̂, honest Bob uses input y′, return 1 if Alice’s
view is g(x̂, B(y′)).

In the real world, both environments output 1 with probability 1. In the ideal
world, the simulator’s view in both environments is f(Â(x̂), y) = f(Â(x̂), y′).
Since the simulator is deterministic, it must give the same simulated g-output
for both environments. However, g(x̂, B(y)) �= g(x̂, B(y′)), so in at least one of
the environments the probability of outputting 1 is 0. Therefore, the simulation
error is 1.

(2b) Assume that Â violates part 2b. Then there exists some x̂ and y where
C(g(x̂, B(y))) �∈ {f(Â(x̂), y),⊥}. Consider the environment in which corrupt
Alice uses g-input x̂ and honest Bob uses input y, and the environment outputs
1 if Bob’s output is C(g(x̂, B(y))). The environment outputs 1 with probability
1 in the real world. But in the ideal world, Bob’s output is either f(Â(x̂), y) or
⊥. This environment demonstrates a simulation error of 1.

C Proofs for Frontier Properties

Lemma (Restatement of Lemma 9). For all x, y: Prπ[F x
A-ext < F y

B-out | xy] <
2
√

ε.

Proof. Let bad = first(F x
A-ext \ F y

B-out), whose probability we wish to bound.
A partial transcript t ∈ bad represents a situation where there is reasonable
probability that a simulator would have extracted an effective input for Alice
(t ∈ F x

A-ext), but in the protocol Alice can still induce two different outputs
for Bob, each with good probability (t �∈ F y

B-out). Intuitively, the simulator has
extracted prematurely. This event should be rare.

Consider the following strategy for corrupt Alice and environment:

– Run the protocol with input y for honest Bob, and Alice initially behaving
semi-honestly with input x.

– If the protocol transcript avoids bad, then the adversary gives up and the
environment outputs 0.

– Otherwise, when the partial transcript reaches t ∈ bad for the first time, then
the properties of bad guarantee that there are two values x0, x1 such that
f(x0, y) �= f(x1, y) and Prπ[out f(xc, y)|txcy] ≥ 1 − √

ε for both c ∈ {0, 1}.
– The adversary sends x0, x1 to the environment, who chooses a random c ←

{0, 1}.
– The adversary switches strategies to run the protocol honestly with input xc.

The environment outputs 1 if Bob’s eventual output is f(xc, y). Otherwise
the environment outputs 0.

Let succ denote the event that the environment outputs 1.
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In the real interaction, the environment outputs 1 only when the transcript
hits bad and the adversary is successful in forcing Bob’s output, which happens
with probability at least 1 − √

ε by the properties of bad. So:

Prπ[succ] ≥ Prπ[bad|xy](1 − √
ε)

In the ideal interaction (between the adversary and simulator), Bob’s output
is now determined differently, as the output of the ideal f . There are two ways the
environment outputs 0: (1) when the simulated transcript avoids bad; (2) when
the transcript reaches bad but the simulator has already extracted. In the latter
case, the environment’s choice of c is independent of the simulator’s extraction,
so with further probability at least 1/2 the honest Bob will not output f(xc, y).
So:

PrA-sim[succ] ≤ (1 − (4
√

ε)/2)PrA-sim[bad|xy]

From the security of the protocol:

|Prπ[succ] − PrA-sim[succ]| < ε

|Prπ[bad|xy] − PrA-sim[bad|xy]| < ε

Hence:

ε > Prπ[succ] − PrA-sim[succ]
≥ Prπ[bad|xy](1 − √

ε) − (1 − 2
√

ε) PrA-sim[bad|xy]
≥ Prπ[bad|xy](1 − √

ε) − (1 − 2
√

ε)(Prπ[bad|xy] + ε)
= Prπ[bad|xy]

√
ε − ε(1 − 2

√
ε)

> Prπ[bad|xy]
√

ε − ε

Solving for Prπ[bad|xy]:

Prπ[bad|xy] <
2ε√

ε
= 2

√
ε

Lemma (Restatement of Lemma 11). For z �= ⊥ define Gz = {t |
guessA(t, x) = z}. Then for all x, y: Prπ[Gf(x,y)|xy] > 1 − ε/2. Intuitively, upon
reaching F x

A-out, Alice can predict her eventual output with error at most ε/2.

Proof. Define bad = F x
A-out \ Gf(x,y). Intuitively, these are the places in the

protocol where guessA(t, x) �= f(x, y).
From the correctness of the protocol, we have:

ε > Prπ[output not f(x, y)|xy]

≥
∑

t∈first(bad)

Prπ[t|xy] Prπ[out guessA(t, x)|txy]

≥
∑

t∈first(bad)

Prπ[t|xy](1 − √
ε) = (1 − Prπ[Gf(x,y)|xy])(1 − √

ε)

Solving for the probability expression:

Prπ[Gf(x,y)|xy] ≥ 1 − ε
1−√

ε
> 1 − ε/2
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Lemma (Restatement of Lemma 12). For all x, y, if x is not a unilateral
input for f , then Prπ[F x

A-out < F x
A-ext | xy] < 16ε.

Proof. Let bad = first(F x
A-out \ F x

A-ext), whose probability we wish to bound. A
partial transcript t ∈ bad represents a situation where Alice can predict what
the output will be (t ∈ F x

A-out), but the simulator probably has not extracted yet
(t �∈ F x

A-ext). This event should be rare, since in the ideal world Alice can gain
no information about the f -output before the simulator extracts.

Let x, y be given as in the premise of the lemma. Since x is not a unilateral
input, let y′ be such that f(x, y) �= f(x, y′). Consider the following interaction
with a corrupt Alice and environment:

– Alice initially runs the protocol honestly with input x. The environment ran-
domly chooses input y∗ ← {y, y′} for Bob. If the transcript avoids bad then
the adversary gives up and the environment outputs 0.

– Otherwise, if the partial transcript reaches t ∈ bad, there is a unique z =
guessA(t, x) such that Prπ[out z|tx] > 1−√

ε. The adversary reports z to the
environment.

– The environment outputs 1 if z = f(x, y∗).

Let succ denote the probability that the environment outputs 1.
In the real interaction, the environment outputs 0 only if the transcript avoids

bad or if guessA(t, x) is incorrect. By the union bound and Lemma11,

Prπ[¬succ] ≤ Prπ[¬bad|xy∗] + Prπ[¬Gf(x,y∗)|xy∗] ≤ 1 − Prπ[bad|xy∗] + ε/2

In the ideal interaction, the environment outputs 0 in the following (mutually
exclusive) scenarios: (1) the simulated transcript avoids bad; (2) the transcript
reaches bad and the simulator has not yet extracted. In the latter case, the
adversary’s view is independent of the environment’s choice of y∗, and so the
environment outputs 0 with probability at least 1/2. Hence:

PrA-sim[¬succ] ≥ PrA-sim[¬bad|xy∗] + PrA-sim[bad ∧ no extract|xy∗]/2
≥ 1 − PrA-sim[bad|xy∗] + PrA-sim[bad|xy∗](1 − 4

√
ε)/2

= 1 − PrA-sim[bad|xy∗](12 + 2
√

ε)

Combining:

ε > Prπ[succ] − PrA-sim[succ]

≥ Prπ[bad|xy∗] − ε/2 − PrA-sim[bad|xy∗](12 + 2
√

ε)

≥ Prπ[bad|xy∗] − ε/2 − (Prπ[bad|xy∗] + ε)( 12 + 2
√

ε)

= Prπ[bad|xy∗](12 − 2
√

ε) − ε(1 − 2
√

ε)

Solving for the probability expression:

Prπ[bad|xy∗] ≤ ε(2 − 2
√

ε)
( 12 − 2

√
ε)

<
2ε

1/4
= 8ε

Since Prπ[bad|xy∗] is the average of Prπ[bad|xy] and Prπ[bad|xy′], it follows that
Prπ[bad|xy] < 16ε.
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Lemma (Restatement of Lemma 13). For all x, y, if y is not a unilateral
input, then Prπ[F y

B-out < F x
A-out|xy] < 18

√
ε.

Proof. By a union bound,

Prπ[F y
B-out < F x

A-out|xy] ≤ Prπ[F y
B-out < F y

B-ext|xy] + Prπ[F y
B-ext < F x

A-out|xy]

≤ 16ε + 2
√

ε < 18
√

ε

Before proving Lemma 14, we introduce two helper lemmas:

Lemma 19. For all x, y, if neither x nor y are a unilateral input, then
Prπ[F y

B-out < F x
A-ext|xy] < 34

√
ε.

Proof. By a union bound,

Prπ[F y
B-out < F x

A-ext|xy] ≤ Prπ[F y
B-out < F y

B-ext|xy]
+ Prπ[F y

B-ext < F x
A-out|xy]

+ Prπ[F x
A-out < F x

A-ext|xy]

≤ 16ε + 2
√

ε + 16ε < 34
√

ε

Lemma 20. Let F be any frontier in the protocol. For all x, y, y′,
∣
∣
∣ Prπ[F < F x

A-ext|xy] − Prπ[F < F x
A-ext|xy′]

∣
∣
∣ < 6

√
ε

Proof. Let G = F \ F x
A-ext. The main idea is that in the ideal interaction with

corrupt Alice, it is unlikely that the simulator has extracted before the protocol
has reached G. Conditioned on the simulator not yet extracting, the transcript
is completely independent of Bob’s input.

Consider running the ideal interaction and halting it when the transcript
reaches either F or F x

A-ext. Halting at this point is sufficient to determine whether
the event F < F x

A-ext happened. We obtain two interactions depending on
whether Bob is given input y or y′. In the terminology of Bellare-Rogaway [3],
these are two identical-until-bad games, where the “bad” event is that the simu-
lator extracts but F x

A-ext is not immediately reached. By the definition of F x
A-ext,

the bad event happens with probability at most 4
√

ε. By the lemma in [3], this
probability of the bad event bounds the distinguishing bias between the two
games.

Then applying the security of the protocol we have:
∣
∣
∣ Prπ[F < F x

A-ext|xy]−Prπ[F < F x
A-ext|xy′]

∣
∣
∣

≤
∣
∣
∣ PrA-sim[F < F x

A-ext|xy] − PrA-sim[F < F x
A-ext|xy′]

∣
∣
∣ + 2ε

< 4
√

ε + 2ε < 6
√

ε

Lemma (Restatement of Lemma 14). For all x, y′, y, with x, y′ not unilat-
eral, Prπ[F y′

B-out < F y
B-out|xy] < 42

√
ε.
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Proof. Let bad = first(F y′
B-out \ F y

B-out), whose probability we wish to bound. We
partition bad into two parts: bad1 = bad ∩ F x

A-ext and bad2 = bad \ F x
A-ext.

Since bad1 ⊆ F x
A-ext \ F y

B-out (i.e., the event F x
A-ext < F y

B-out is true for these
transcripts), Lemma 9 implies that

Prπ[bad1|xy] < 2
√

ε.

Since bad2 happens strictly before the F x
A-ext event, Lemma 20 implies that

∣
∣
∣ Prπ[bad2|xy] − Prπ[bad2|xy′]

∣
∣
∣ < 6

√
ε.

Since bad2 ⊆ F y′
B-out \ F x

A-ext, Lemma 19 implies that

Prπ[bad2|xy′] < 34
√

ε.

Putting everything together, we have:

Prπ[bad|xy] ≤ Prπ[bad1|xy] + Prπ[bad2|xy]

< 2
√

ε + Prπ[bad2|xy′] + 6
√

ε

< 2
√

ε + 34
√

ε + 6
√

ε

= 42
√

ε

D Proofs for Collapsing Protocols

In order to collapse a protocol to a single round, we use two important properties
of instantaneous protocols. First, by Lemma 15 we can consider only protocols
that end with a call to g. Second, by Lemma 20 before the final call to g the
parties’ inputs do not have a noticeable effect on the distribution of transcripts.

Lemma 21. For all f and g there is a constant cf,g such that if f �1 g via a
protocol π with simulation error ε, then f �1 g via a deterministic protocol π′

with simulation error at most cf,gε.

Proof. Since π consists of only one call to g, the only choices Alice, Bob, and
the simulator can make in the protocol are:

– The mapping of Alice’s f -input to her g-input
– The mapping of Bob’s f -input to his g-input
– The mappings of either party’s g-input to a suitable f -input in the simulator
– The mapping of the g-output to an f -output

The only ways that randomness can manifest in the protocol are in the choice
of these mappings.

Let cf,g be the number of possible combinations of such mappings based on
these random coins. This is certainly a constant, although it is perhaps very
large.
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Select the mapping combination that was most likely to be chosen in π.
Consider the deterministic protocol π′ constructed by locking in these choices
at the start of the protocol. The probability that Alice, Bob, and the simulator
in π match the behavior of π′ is at least 1/cf,g. Then, if the simulation error
of π′ is δ, the simulation error of π must be at least δ/cf,g. Therefore, if π has
simulation error ε, then π′ must have simulation error at most cf,gε.

Given a protocol π with a strict upper limit of r rounds, trunc(π, i) is the
protocol constructed by truncating π after r − i rounds, outputting ⊥ if π was
not finished. Note that trunc(π, 0) = π.

Let R be the transcripts of trunc(π, i) which are r − i − 1 rounds (that is,
there is one action to go in the protocol) but have not terminated yet.

Lemma 22. If π has simulation error ε, then for all x, y, y′ and all i:
∣
∣
∣ Pr
trunc(π,i)

[R|xy] − Pr
trunc(π,i)

[R|xy′]
∣
∣
∣ < 6

√
ε

Proof. By Lemma 20 (in AppendixC) we know that this is true in trunc(π, 0) =
π, as these R transcripts are strictly before F x

A-ext. Truncating doesn’t change
simulator extraction probabilities, as the simulator for trunc(π, i) just runs the
simulator for π up until the truncated transcript. Therefore, the lemma still
holds with respect to trunc(π, i).

Lemma 23. If a protocol π is not ε-secure against malicious Alice, then there
is an environment ENV for π with the following properties:

1. ENV chooses inputs for Bob uniformly at random
2. Prπ[ENV outputs 1] > 1

2 + ε
4|Y | .

3. PrA-sim[ENV outputs 1] < 1
2 − ε

4|Y |

Of course, a symmetrical lemma holds for protocol π that is insecure against
malicious Bob.

Proof. Take an environment ENV0 for which π has simulation error ε. Construct
ENV as follows.

– Choose Bob’s input y∗ uniformly at random.
– Let p(y) be the probability that ENV0 chooses y. Let pmax be the maximum

p(y).
– Flip a coin with probability 1− (p(y∗)/pmax). If it comes up heads, abort and

return 0.
– Otherwise, run ENV0.

Note that ENV ≡ ENV0 conditioned on ENV not aborting. We abort with
probability at most (|Y |−1)/|Y | (as we never abort for the y where p(y) = pmax).
(|Y |−1)/|Y | is a constant. The simulation error of ENV is therefore at least ε/|Y |.
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At this point, possibly invert the output of ENV such that
Prπ[ENV outputs 1] is greater than PrA-sim[ENV outputs 1]. This will not affect
the simulation error.

The probability of ENV returning 1 in the real or simulated environments
differs by ε/|Y |, and is centered around some constant p. That is, the probabili-
ties are at least p+δ and at most p−δ respectively, where δ = ε/(2|Y |). Perform
the following operations to ensure that the probability is centered around 1/2
as required by the lemma.

1. If p > 1/2, run normally with probability 1
2p . Otherwise, return 0.

2. if p < 1/2, run normally with probability 1
2(1−p) . Otherwise, return 1.

This will “normalize” the average of the probabilities in the real and ideal
world to 1/2. This might shrink δ slightly – up to a factor of 2. The minimum
value of δ is ε

4|Y | , as required by the lemma.

Define ε0 =
√

ε and εi = (52nc)εi−1 = (52nc)iε0 where c = cf,g is the
constant defined in Lemma 21 and n is the maximum of |X| and |Y |.
Lemma 24. If trunc(π, i) has simulation error at most εi then either f embeds
in g or trunc(π, i + 1) has simulation error at most εi+1.

Proof. Consider any partial transcript t where the next action in trunc(π, i) is
for the parties to make a call to g. Let protocol πt be defined as follows: the
parties “fast-forward” to t by imagining the transcript up to that round. They
then complete the call to g and exit immediately afterwards.

If there is any πt with simulation error less than 1/c (call such a t good), f
embeds in g: by Lemma 21, there exists a single-round deterministic protocol for
f in a g-hybrid world with simulation error less than 1. Then, by Lemma6, f
embeds in g.

Assume that there is no good t in round r − i − 1 of trunc(π, i) (that is, in
R). We wish to bound the probability Prtrunc(π,i)[R|xy] for all x, y in this case.
Note that some t ∈ R may have simulation error when run against one malicious
party but not the other. Let RA be those t which have unacceptable simulation
error against Alice, and let RB be similarly defined for Bob. Then:

Pr
trunc(π,i)

[R|xy] ≤ Pr
trunc(π,i)

[RA|xy] + Pr
trunc(π,i)

[RB |xy]

Consider, then, the probability Prtrunc(π,i)[RA|xy]. A symmetric argument
will work for RB , and therefore we can use these to get a bound on the overall
probability Prtrunc(π,i)[R|xy].

For each t in R, consider πt. The simulation error is at least 1/c, so by
Lemma 23 we can construct an environment ENVt satisfying:

1. ENVt chooses inputs for Bob uniformly at random
2. Prπt

[ENVt outputs 1] > 1
2 + 1

4|Y |c
3. PrA-sim-for-πt

[ENVt outputs 1] < 1
2 − 1

4|Y |c
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Fix a particular x and y. Consider the following attack:

– Alice runs on x, and the environment chooses input y∗ for Bob uniformly at
random.

– If the parties reach t ∈ R, let ENVt sample an input for Bob. If it samples y∗,
run ENVt, possibly allowing Alice to change her input maliciously. Otherwise,
output 0.

The probability that during this attack we output 1 is the probability that we
reached R times the probability that ENVt chooses input y∗ times the probability
that ENVt succeeds at its attack given y∗. These probabilities are independent.

∑

t∈RA

∑

y∗
Pr

trunc(π,i)
[t|xy∗]

1
|Y | Pr

πt

[ENVt returns 1|y∗]

If we eliminate the summations, we get the following expression:
(

Pr
trunc(π,i)

[RA|xy∗]
)(

1
2

+
1

4|Y |c
)

By Lemma 22 we can replace y∗ with the input for Bob we desire to bound
probability against, y, with a small change in probability of reaching a transcript.

The probability the environment outputs 1 in the real world is therefore at
least:

(

Pr
trunc(π,i)

[RA|xy] − 6
√

ε

) (
1
2

+
1

4|Y |c
)

By a similar series of arguments, the probability the environment outputs 1
in the ideal world is at most:

(

Pr
A-sim-for-trunc(π,i)

[RA|xy] + 6
√

ε

)(
1
2

− 1
4|Y |c

)

Because the simulation error of trunc(π, i) is εi, the above expression is at
most the following value:

(

Pr
trunc(π,i)

[RA|xy] + 6
√

ε + εi

)(
1
2

− 1
4|Y |c

)

We know that, because trunc(π, i) has a simulation error of εi, the difference
between the output probabilities in the real and ideal worlds is at most εi, which
means that, in particular:

εi ≥ Pr
trunc(π,i)

[RA|xy]
1

2|Y |c − 12
√

ε − εi

(
1
2

− 1
4|Y |c

)

⇒ Pr
trunc(π,i)

[RA|xy] ≤
(

|Y |c +
1
2

)

εi + 24|Y |c√ε

⇒ Pr
trunc(π,i)

[RA|xy] ≤ (26|Y |c) εi
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Recall that this is only against malicious Alice. We get the following bound
without restricting which party is adversarial:

Pr
trunc(π,i)

[R|xy] ≤ (52|Y |c) εi = εi+1

Truncating directly before R, then, will only increase the simulation error to
εi+1.

Lemma (Restatement of Lemma 16). If, for incomplete and non-unilateral
f and g, f � g using a protocol with security parameter κ and strict upper bound
on number of rounds r = O(log κ), then f embeds in g.

Proof. trunc(π, 0) has simulation error ε which is surely less than ε0.
Either f embeds in g or we can apply the argument in Lemma 24 up to r − 1

times. If r = O(log κ), then we are left with a 1-round protocol trunc(π, r − 1)
with simulation error εr = (52nc)O(log κ)

√
ε = poly(κ)κ−ω(1) = κ−ω(1) which is

negligible. Then f �1 g, which by Lemma 6 means that f actually does embed
in g.

E Round Complexity and Parallel Calls to g

Our model encompasses protocols that make only a single call to g in each
round. Requiring sequential calls to g is without loss of generality with respect
to security, since in the UC model it cannot be guaranteed that calls happen
in parallel. The adversary can without loss of generality schedule all the calls
sequentially (learning the output of one before choosing an input to the next),
resulting in a protocol in our model.

However, when considering round complexity, it is more realistic to allow
protocols that make parallel calls to g. Although the adversary can schedule these
parallel calls in sequence, we still consider the round complexity as that required
by the honest parties. Most of our technical results apply to such protocols. More
formally, consider protocols where at each step the parties may call n parallel
instances of g, where n is agreed-upon by both parties. All of our results in
Sect. 5.3 and most of the results in Sect. 6 apply to such protocols. In particular,
we can collapse any f � g protocol of O(log κ) rounds to a single-round protocol
that may make many parallel calls to g but uses no additional communication.

To extend our results, it suffices to show that such a protocol (many parallel
calls to g, no additional communication) implies that f embeds in g. We have
been currently unable to extend this step. The way we currently extract an
embedding from a single-call protocol (Lemma 6) works by derandomizing the
protocol, crucially using the fact that the number of possible actions in the
protocol is constant. This property is not true when a protocol makes, say, O(κ)
parallel calls to g.5

5 Our results hold as stated for protocols that call at most O(log κ) instances of g in
parallel at a time, where the number of possible actions is polynomial in κ.
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In Sect. 7.2 we gave a ω(log κ)-round protocol for specific f using specific g.
We point out that this particular protocol cannot be made constant-round by
making all the g-calls in parallel. The simple attack is to split the g-calls into
two groups and use different effective inputs in both (e.g., Alice uses inputs from
the first row-group in half of the calls, and second row-group in the other half).
With very good probability, this attack leaks as much as evaluating f on two
inputs. In particular, Alice can learn Bob’s input in its entirety from this attack.

We conjecture that there is no O(log κ)-round protocol for this f using this
g, even when the protocol allows unlimited parallel calls to g in each round.
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Abstract. An Order-Revealing Encryption (ORE) scheme gives a pub-
lic procedure by which two ciphertexts can be compared to reveal the
order of their underlying plaintexts. The ideal security notion for ORE
is that only the order is revealed—anything else, such as the distance
between plaintexts, is hidden. The only known constructions of ORE
achieving such ideal security are based on cryptographic multilinear maps
and are currently too impractical for real-world applications.

In this work, we give evidence that building ORE from weaker tools
may be hard. Indeed, we show black-box separations between ORE and
most symmetric-key primitives, as well as public key encryption and
anything else implied by generic groups in a black-box way. Thus, any
construction of ORE must either (1) achieve weaker notions of security,
(2) be based on more complicated cryptographic tools, or (3) require
non-black-box techniques. This suggests that any ORE achieving ideal
security will likely be somewhat inefficient.

Central to our proof is a proof of impossibility for something we call
information theoretic ORE, which has connections to tournament graphs
and a theorem by Erdös. This impossibility proof will be useful for prov-
ing other black box separations for ORE.

Keywords: Black-box separations · Order-revealing encryption
Random oracle model · Generic group model

1 Introduction

Order preserving encryption (OPE) [1,3,4] and order revealing encryption
(ORE) [5] have been proposed as useful tools to facilitate fast operations on
encrypted databases, such as lookup and range queries.

Order Preserving Encryption (OPE). In OPE, plaintexts and ciphertexts are
both integers, and encryption is monotonic: if m0 < m1, then Enc(k,m0) <
Enc(k,m1). Such a scheme allows, e.g., for binary search and range queries to
be easily performed over encrypted data by replacing the plaintext comparisons
with ciphertext comparisons. Boldyreva et al. [3] give an efficient construction
using pseudorandom functions.
c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 129–158, 2018.
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While clearly, such a scheme will reveal the order of the underlying plain-
texts, one may hope that nothing else is revealed; for example, the distance
between plaintexts should not be learnable from the ciphertexts without the
secret key. However, Boldyreva et al. also show that some additional leakage
is necessary in OPE: any such scheme with polynomially-large ciphertexts will
reveal some information beyond just the order of the plaintexts; in essence, their
proof shows that the approximate distance of two plaintexts will be revealed.
For their scheme, they instead prove a different notion of security, namely that
encryption is indistinguishable from a random monotone function. Characteriz-
ing the kind of information revealed by such a scheme is non-trivial, and has
only been analyzed in certain cases such as uniformly random plaintexts [4].
Despite being limited to non-ideal security notions, OPE has been deployed in
real products1 and been studied in applied research [21,25,27].

Order Revealing Encryption (ORE). In order to circumvent Boldyreva et al.’s [3]
impossibility result, Boneh et al. [5] define a relaxation called order revealing
encryption. Here, ciphertexts are no longer necessarily integers. Instead, integer
comparison for ciphertexts is replaced by a more general comparison procedure
Comp. The correctness requirement is, roughly, that

Comp( Enc(k,m0), Enc(k,m1) ) =

⎧
⎪⎨

⎪⎩

“ < ” if m0 < m1

“ = ” if m0 = m1

“ > ” if m0 < m1

Boneh et al. give a construction using multilinear maps [7,13,16], and argue
that their scheme reveals no information beyond the ordering of the plaintexts.
We will call such an ORE scheme ideal. Alternate constructions achieving ideal
leakage have since been proposed using multi-input functional encryption [5] or
even single input functional encryption [9]. Unfortunately, as all known instan-
tiations of functional encryption rely on multilinear maps anyway, all known
constructions of ORE require multilinear maps as well.

Attacks on ORE. By considering more general comparison procedures for cipher-
texts, ideal ORE provably leaks less information than OPE. Nevertheless, a series
of works starting with Naveed et al. [14,18,23] have shown that when the adver-
sary has a good estimate of the distribution of the data, even ideal ORE provides
little protection. The problem is that the definition of ideal ORE, while precise,
does not immediately provide any “semantically meaningful” guarantees for the
privacy of the underlying data.

Despite these attacks, we still believe ORE is an interesting object to study
for several reasons:

– ORE can still provide meaningful notions of security in some settings. For one
example, suppose that each data point is sampled i.i.d. from some underlying

1 e.g. https://www.skyhighnetworks.com, https://www.ciphercloud.com/, https://
www.bluecoat.com/ and Cipherbase [2].

https://www.skyhighnetworks.com
https://www.ciphercloud.com/
https://www.bluecoat.com/
https://www.bluecoat.com/
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secret distribution D with large min-entropy (so all samples are distinct),
and suppose the adversary has no side information about the data. Then
ideal ORE provably hides the distribution D, since all the adversary will see
is a random ordering. Note that in contrast, since OPE reveals approximate
differences, it will also reveal the approximate scale of D.

– ORE represents one of the simplest functionalities for functional encryption
that we do not know how to construct from traditional tools. As such, ORE
represents a potential stepping stone toward more advanced functionalities.

– Finally, the comparison structure of ORE is shared with several other con-
cepts in cryptography. For example, most collusion-resistant traitor tracing
systems are built on top of private linear broadcast encryption [6], which is a
form of encryption where there are N secret keys sk1, . . . , skN , and messages
are encrypted to numbers j. Any ski for i ≥ j can decrypt, but any ski for
i < j cannot. For another example, positional witness encryption [17] also
has a similar comparison structure, and is currently the best way to prove
security of witness encryption under “instance-independent” assumptions.

However, all known ideal ORE schemes are built on heavy tools, such as multilin-
ear maps, and current multilinear map candidates are quite inefficient, meaning
the resulting constructions of order-revealing encryption are far from practical
use. Therefore, a natural question is:

Is it possible to build ideal ORE from efficient tools so that it can be
practical?

1.1 Our Work

We make a first attempt toward answering the above question by showing that
natural constructions of ORE from several simple tools are impossible. Specifi-
cally, we give black box impossibility results for building ORE from symmetric
key cryptography or public key encryption.

Theorem 1 (Informal). There is no fully black box construction of an ORE
scheme for a super-polynomial plaintext space from random oracles, or any object
that can be constructed from random oracles in a black box way, including one-
way functions, collision resistant hashing, PRGs, PRFs, and block ciphers.

Theorem 2 (Informal). There is no fully black box construction of an ORE
scheme for a super-polynomial plaintext space from generic groups, or any object
that can be constructed from cryptographic groups in a black box way, including
public key encryption and non-interactive key agreement.2

2 There is some overlap in the implications of Theorems 1 and 2, as generic groups
can also be used to build much of symmetric key cryptography. However, we still
separate our black-box separations into these two theorems for a couple reasons.
First, Theorem 1 is simpler, and serves to highlight the ideas that will be needed
for Theorem 2. Second, the random oracle model is a very natural way to model
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Thus, any black-box construction of order-revealing encryption will require
tools with more involved structure, such as bilinear maps, multilinear maps, or
lattice assumptions. Such tools tend to be less efficient than those needed to
build symmetric cryptography or public key encryption. While we do not rule
out non-black-box constructions, such constructions tend to be very inefficient.
We, therefore, take our separations as evidence that some inefficiency is required
to achieve order revealing encryption with ideal leakage.

In addition to proving Theorems 1 and 2, we also give a framework for proving
black box separations for ORE from other cryptographic tools, which may be
useful for extending our results.

1.2 Our Techniques

To prove our separation results, we start with an idealized model M capturing
the primitive that we want to separate ORE from: in this work, we take M to
be a random oracle or the generic group model [26].

We now imagine a very relaxed notion of order-revealing encryption using
the model (relaxing the notion of ORE we consider only makes our separations
stronger):

– There is no explicit decryption procedure.3
– The scheme is only partially correct, in that Comp may result in an incorrect

answer, but is noticeably biased towards the correct answer.4
– The scheme (Gen,Enc,Comp) may make queries to the model M.
– The algorithms are allowed to run arbitrary computations; the only restric-

tions are that (1) the number of queries to M is polynomially bounded, and
(2) that the length of ciphertexts is polynomially bounded. Running times
and key sizes can be unbounded.

– For simplicity in the following discussion, we will also assume the algorithms
are deterministic, although our analysis readily applies to randomized schemes
as well.

– The adversary can only make polynomially-many queries to M and can only
see a polynomial number of ciphertexts, but we do not consider its computa-
tional power.

We next give a general recipe for proving that such a relaxed order-revealing
encryption scheme does not exist. To prove impossibility, we proceed in three
steps:

hash functions, and may capture many security properties desired of hash functions
in addition to one-wayness and collision resistance (such as universal computational
extractors). Our random oracle proof shows that any property that follows from
a random oracle is insufficient for constructing ORE in a black-box way. In addi-
tion, to the best of our knowledge the random oracle and generic group models are
incomparable, so providing both proofs gives the most complete separations.

3 Though note that this is actually without loss of generality, since decryption can be
derived from encryption and comparison by using a binary search.

4 This is also essentially without loss of generality, as correctness can be boosted by
running multiple instances of the scheme in parallel.
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1. Compile any scheme satisfying the above requirements into one where Comp
does not make any queries to M.

2. Compile the resulting scheme into one where the entire scheme completely
ignores M. We call such ORE scheme information-theoretic ORE. This step
may lose some level of correctness, so even starting from a perfectly correct
scheme, the information-theoretic scheme will no longer be perfectly correct.

3. Finally, show that (even partially correct) information-theoretic ORE does
not exist.

We now expand on the three steps above in reverse order:

Impossibility of Information-Theoretic ORE. In information-theoretic
ORE, the public/secret key are allowed to be arbitrarily (e.g. exponentially)
large, the running times of Gen,Enc, Comp are allowed to be arbitrary, while
security must hold for arbitrary adversaries. There is no mention of a model M;
the only constraints are that ciphertexts must be polynomially bounded, and
that the adversary sees only a polynomial number of ciphertexts.

First, since the scheme is deterministic, we can assume that Comp(u, v) only
outputs “=” if u and v are actually the same. Indeed, if Comp(u, v) = “=”
for u �= v, it means that u, v could not simultaneously be valid encryptions of
two messages under the same secret key (since then Comp would report “=”
when the plaintexts are in fact not equal). Therefore, for u �= v, if Comp(u, v) =
“=”, we can simply change the answer arbitrarily without affecting correctness.
Hence, we will choose arbitrarily Comp(u, v) = “<” or Comp(u, v) = “>”. By
a similar argument, we can also assume that Comp(u, v) = “<” if and only if
Comp(v, u) = “>”.

Now, for such a scheme, we can construct an (exponentially large) graph G
associated with the public key where nodes are all possible ciphertexts. There
is a directed edge from node u to node v if Comp(u, v) = “<”. Notice that any
two distinct nodes have exactly one edge between them. G is therefore what is
known as a tournament graph.

Let s be the number of nodes in G, equivalently the number of ciphertexts. Let
[1, t] be plaintext space, which is assumed to be superpolynomial5. We show that
log s—the bit length of ciphertexts—must be superpolynomial, a contradiction.

This graph must have a significant amount of structure. In our setting, every
key k corresponds to a set S of t nodes in G, the encryptions of each of the
plaintext elements. Assuming the scheme is perfectly correct, these nodes form
a complete DAG, with the encryption of 1 at the beginning and the encryption
of t at the end. Therefore, G must contain many complete DAGs on t nodes.

Moreover, security imparts additional structure on G. Security says, roughly,
that the encryptions of any two polynomial-length sequences of ordered messages
must be indistinguishable. If we insist on perfect security, we have the follow-
ing. For a given key k, consider the set T of encryptions of 1, . . . , p for some

5 In reality, we would want the number of plaintexts to be exponential, but our impos-
sibility rules out even superpolynomial message spaces.
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polynomial p. Then by security, there must be some key k′ such that T are the
encryptions under k′ of 2, . . . , p + 1. Therefore, the encryption of 1 under k′ will
have an edge to each of the nodes in T . Notice that this property must hold for
any set T that can be represented as the encryptions of 1, . . . , p for some key k.

The situation above is reminiscent of a problem studied by Erdös [15]. He
asked the question: suppose every set of p nodes is dominated by another node;
that is, for every set T of p nodes, there is a node u such that u has an edge to
each node in T . He showed that the number of nodes in any tournament graph
satisfying this property must be exponential in p. The proof is by induction: for
any graph G satisfying the property for p, there is a graph on half as many nodes
that satisfies the property for p−1. Continuing until the base case p = 1, we see
that there must be a graph G′ that is exponentially smaller than G, meaning G
must be exponentially-large.

We prove an analog of Erdös’s proof in our setting. Namely, we show that for
any polynomial p, the number of nodes s in G must be exponential in p. Since
s is exponential in any polynomial, then log s must larger than any polynomial,
a contradiction. Our proof is inspired by Erdös’s proof, except complicated in
several ways:

– Our structure, while superficially similar, has several key differences. For
example, there will be sets T that do not correspond to encryptions of 1, . . . , p
under one key. For example, T may be formed by encrypting 1, . . . , p/2 under
k1 and 1, . . . , p/2 under k2.

– We do not insist on perfect security, but instead on statistical security. This
means, for example, that the dominating property may not hold for all sets
T that are encryptions of 1, . . . , p.

Nonetheless, we show an inductive argument that resolves these difficulties, and
proves that s must be exponential in p for any polynomial p. Hence, log s must
be larger than any polynomial, as desired.

The above discussion assumed that the scheme was perfectly correct. How-
ever, looking ahead, we would like to prove the impossibility for even partially
correct schemes, where the output of Comp may be incorrect, but is biased toward
the right answer. We show how to compile such a partially correct scheme into
one that is perfectly correct. Then invoking the impossibility above, we see that
even a partially correct scheme is impossible. The compilation is simple: first we
run multiple instances of the scheme in parallel to boost correctness arbitrar-
ily high, but still not necessarily perfect. However, we argue that we can boost
correctness high enough so that, with high probability over the key, Comp will
produce the right answer for all ciphertexts. Then we just change the scheme so
that the key is chosen randomly from the set of “good” keys. This only negligibly
affects security (since the key is “good” with high probability anyway). Verifying
that a key is “good” will of course take exponential time since one must verify
that it outputs the right answer for any possible pair of messages; however, this
is fine since we do not place any computational restrictions.
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Comparison to Boldyreva et al. [3]. Order preserving encryption is the spe-
cial case of ORE where the entire ciphertext graph is actually one large DAG.
Boldyreva et al.’s impossibility can be interpreted as a special case of our proof
above where the graph is restricted to DAG. Our proof is much stronger, as it
applies to much less structured graphs—any structure we use is solely a func-
tion of the correctness and security requirements, and no additional structure is
assumed.

Compiling Schemes Where Comp Does Not Make Queries to M. We
show that if Comp does not make queries to M, then it can be compiled into an
information-theoretic scheme, and then we can apply the above impossibility to
rule out the original scheme. Our compilation process works even if the start-
ing scheme was only partially correct; since the impossibility above works with
partially-correct schemes, we can still rule out partially correct schemes where
Comp makes no oracle queries.

The process is simple. Since Comp does not make any queries to M, the
model is not needed outside of encryption. This means, in particular, that it
makes sense to restrict the adversary from querying M. Doing so only enhances
security.

Next, we can simply have the secret key holder construct the oracle M for
himself, and include it as part of the secret key. The description of the oracle
might be exponential in size, but this is acceptable since we do not place any
bounds on the key size or running time of the honest users. The result is a scheme
which makes no reference to an idealized model.

Removing Oracle Queries From Comp. The final step is to remove ora-
cle queries from Comp. This is the only part that is specific to the model M
being considered. This step can be seen as an ORE analog of several recent
results showing black box impossibilities for constructing obfuscation from sim-
ple objects. We note however, as expanded on below, that there are some crucial
differences from obfuscation that make our proofs significantly different.

The Random Oracle Model. This first model M we consider is the random
oracle model. Here, M just implements a random function O. At a very high
level, our compilation is conceptually similar to Canetti et al.’s [10] analogous
compilation for program obfuscation. They show how to compile out a random
oracle from the evaluation of an obfuscation scheme. Roughly, the idea is that
evaluation of the obfuscated program will be “sensitive” only to the query points
that were queried during the obfuscation; all other points will be independent
of the obfuscated code, and hence can be answered randomly. Therefore, the
obfuscator can just give the (polynomially-many) sensitive query answers out as
part of the obfuscated code, and now the evaluator can answer any oracle query
without actually making a call to the oracle.

In more detail, the sensitive queries can be split into two classes: “heavy”
queries that are somewhat likely to be queried when evaluating the program on a
random input, and “light” queries that are unlikely to be queried. Canetti et al.
first run the obfuscated code on a handful of random “test” points, and collect



136 M. Zhandry and C. Zhang

the random oracle queries and responses. By setting the number of test queries
to be sufficiently large, they guarantee that all heavy queries will make it into
the list of query/response pairs. Then they just output this list as part of the
obfuscated code. Since an adversary could always run the code on random inputs
and make the oracle queries, this cannot impact the security of the obfuscator.
However now the evaluator, on a random input, will usually not need to make
any oracle queries. Indeed, on a random input, the evaluator will likely only
need to query on heavy inputs (or non-sensitive inputs, which can be answered
randomly), which it already has included as a part of the obfuscated code.

The straightforward attempt at translating this approach to our setting is to
first encrypt a handful of random test plaintexts, run the comparison procedure
between each pair of test ciphertexts, and collect all of the oracle queries made.
Then hand out the list of query/response pairs as part of the public key.

Unfortunately, this strategy does not work, for at least three reasons:

– First, the test ciphertexts will allow one to learn the approximate difference
between points, violating ORE security. In particular, using the ORE compar-
ison procedure, one can compute the fraction of test ciphertexts lying between
any two given ciphertexts. This fraction, scaled up by the size of the plaintext
space, will approximately equal the difference between the plaintexts.

– Second, the notion of “sensitive” and “heavy” queries are specific to each
individual plaintext, and not a global property of the encryption scheme. For
example, it could be that to encrypt a message m, the oracle is queried on
m. m will be a sensitive and heavy query point only for the message m.
Therefore, as we increase the number of test ciphertexts, we also increase the
number of sensitive and heavy queries, making it more difficult to ensure that
we eventually capture all heavy queries for each ciphertext in question.

– Third, correctness will only hold for a plaintext drawn from the same dis-
tribution as the test points—namely random plaintexts—whereas our steps
above require correctness to hold for any plaintexts.

To overcome the first limitation, we will simply set our test ciphertexts to be
the smallest and largest several elements of the plaintext space. Now for any two
ciphertexts not at the extremes of the domain, there will be no test ciphertexts
between; we can therefore restrict the domain of actual ciphertexts to a smaller
interval so as to not collide with the test ciphertexts. This change unfortunately
makes the third limitation even worse: the test elements now are the extreme
elements in the plaintext space, but we need correctness to hold for all possible
points in between.

To remedy the second limitation, we further modify the compiled scheme so
that in addition to comparing all pairs of test ciphertexts, any new ciphertext
is also compared to all of the test ciphertexts. If we set the number of test
ciphertexts to be much larger than the number of heavy queries for a ciphertext,
then hopefully these comparisons will generate all heavy queries. Indeed, each
comparison will generate heavy queries for one of the two ciphertexts being
compared. Note, however, that at this point in the discussion, it could be the
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case that the comparisons only generate heavy queries for the test ciphertexts,
which would be useless for establishing the correctness of the scheme.

To overcome this issue, as well as the third limitation above, we will invoke
ORE security to switch back and forth between points in the middle of the
plaintext space and the extreme points at the ends of the plaintext space. Using
security (as opposed to an information-theoretic argument) means that the proof
has to be phrased as a reduction, which requires a delicate analysis. For example,
an adversary cannot necessarily test whether a query is sensitive or heavy, so our
reduction cannot know if it learned all of the important queries for a particular
ciphertext. We give the full details in Sect. 5.

The Generic Group Model. Next, we consider the generic group model. Here,
there is a cyclic group G. We will consider the group represented additively. Each
group element is associated with a handle (that is, a bit string), and only the
model M has access to the mapping. Everyone can query M on a group element
g to get a handle h, and can also query M on two handles h1, h2, receiving the
handle for the sum of corresponding group elements. However, it is not possible
to query M on a handle h and recover the original group element g.

An equivalent formulation is the following. Instead of being able to query on
two handles h1, h2 to get the handle for the sum, only the following is possible:
query on a vector h = (h1, . . . , hi) of handles corresponding to group elements
g = (g1, . . . , gi), and a vector v = (v1, . . . , vi) of integers. The response will be
a single bit: 0 if

∑
j vjgj = 0, and 1 otherwise. We call these queries zero test

queries.
Our high-level proof strategy will be conceptually similar to Pass and She-

lat [24], which show how to remove generic groups from obfuscation construc-
tions6. However, our setting faces similar complications as to the random oracle
setting above, requiring a much more delicate proof.

During encryption of a message m, Enc will query the generic group on several
new group elements g

(m)
1 , . . . , g

(m)
t , obtaining handles. Now, when comparing two

ciphertexts, Comp will make several zero test queries on various handles coming
from m0,m1. Whenever Comp gets a 0 in response, it learns a linear constraint on
the unknown g elements. Suppose the probability of getting a 0 in comparison
is μ. We will assume that μ is noticeably large, since otherwise the zero test
queries would be useless, as one could simulate them reasonably accurately just
by always answering 1.

If the adversary sees q ciphertexts, the total number of constraints she can
find will be O(μq2). And yet, the total number of unknown variables is only qt.
For large enough q, this is much smaller than the number of constraints. The
constraints are then necessarily linearly dependent. This means that, analogous
to the random oracle case above, the adversary will be able to answer zero test
queries for herself based on the results of previous queries. We show using a

6 We note that Mahmoody et al. [22] extend the Pass and Shelat result to any
(even non-commutative) finite ring; we leave extending our impossibility to the non-
commutative setting as an interesting open problem.
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similar strategy to the random oracle setting how to compile the ORE scheme in
a way that preserves security and correctness, while removing the generic group
oracle queries from Comp. Of course, formalizing this intuition is non-trivial, and
we give the details in Sect. 6.

Difficulties for Extending to Bilinear and Multilinear Maps. Pass and She-
lat’s [24] proof naturally extends to bilinear maps and more generally constant-
degree multilinear maps. A natural question is whether or not our techniques
can be extended to these settings as well. Roughly, a bilinear map allows for
zero-test queries that are degree 2 polynomials, and a multilinear map allows for
even higher degree.

Pass and Shelat’s proof, as well as ours, inherently relies on linear algebra, so
does not immediately extend to non-linear settings. Indeed, their proofs and ours
cannot possibly work for general multilinear maps, as there do exist black box
constructions of obfuscation [8] and ORE [5] from polynomial-degree multilinear
maps.

Nonetheless, Pass and Shelat show how to extend their result to constant
degree multilinear maps. Essentially, the idea is to linearize the constant-degree
polynomials by describing them as linear combinations of monomials. Then using
similar arguments as in the generic group case, they show how to remove oracle
queries from obfuscation.

Unfortunately, such linearization will not work in our setting, even in the
bilinear map case. Once we linearize, the total number of variables grows
O((qt)2), while the number of constraints is still only O(μq2). Since both grow
with q2, the number of variables always remains large than the number of con-
straints, so there is no linear dependence amongst the constraints. Without this
linear dependence the proof falls apart. Another perspective for why the lin-
earization does not work: in the bilinear group model, Enc(m) will query the
generic group on new group elements g

(m)
1 , . . . , g

(m)
t , while the comparison on

Enc(m0),Enc(m1) learns a degree-2 constraint on the variables, containing mono-
mials such as g

(m0)
1 · g

(m1)
1 . However, note that this monomial only appears in

constraints obtained when comparing encryptions of m0 and m1; any other pair
of messages will give different monomials. Hence, the constraints for different
pairs of ciphertexts are linearly independent, making it difficult (if not impossi-
ble) to argue that the results of certain comparisons will help us answer other
comparisons. We leave it as an interesting open question whether our impos-
sibility can be extended to, say, the bilinear map setting, and if not, giving a
black-box construction of ORE from bilinear maps.

1.3 Discussion

In light of our impossibility, it is natural to ask: now what? Here, we briefly
discuss possible other directions.

Weaker Notions of Security. One possibility is to consider weaker notions of
security, where more than just the order is revealed. For example, [12] give a
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construction of ORE where the position of the most significant differing bit of
two plaintexts is revealed, but nothing else (put another way, the difference is
revealed, rounded to a power of two). Their construction is efficient, using only
PRFs (which can in turn be built from one-way functions). [11] give a still-
practical construction using bilinear maps which reveals even less, though still
more than the ideal security notion. [19] give a notion of functional revealing
encryption and build an efficient ORE under the standard DLIN assumption,
while it leaks no less than [11].

An interesting direction is to extend our impossibility result to other leakage
profiles, perhaps showing that the leakage profile of [12] is optimal for construc-
tions based on one-way functions. Such an impossibility would require reworking
several parts of our proof, since we use the ideal ORE leakage in several parts,
including the impossibility of information-theoretic ORE, as well as the step
removing random oracle queries from Comp.

Non-Black-Box Constructions. Another option is to resort to non-black-box con-
struction. We do not know if such a construction is possible. However, non-black-
box techniques tend to result in inefficient schemes, as such a non-black-box
construction is likely to be inefficient.

Other Cryptographic Tools. We only rule out black-box constructions from cer-
tain building blocks; other building blocks are still possible. For example, it
may be possible to build ORE from the Learning With Errors (LWE) assump-
tion, RSA or integer factorization, or bilinear/multilinear maps. Indeed, using
multilinear maps of polynomial degree, it is possible to build ORE with ideal
leakage, as shown by Boneh et al. [5]. However, many of the tools not covered
by our impossibility, including polynomial-degree multilinear maps or learning
with errors, involve large parameter sizes, likely resulting in somewhat imprac-
tical schemes. Nonetheless, we believe that constructing ideal ORE from weaker
tools including LWE or bilinear maps, or providing black-box separations for
these tools by building on our techniques, are fascinating open questions.

2 Background

Notation. For n, n1, n2 ∈ N, let [n] := {1, . . . , n}, [n1, n2] := {n1, . . . , n2}.
Throughout this paper, λ ∈ N denote the security parameter. For a finite set S,
we denote s ← S the process of sampling s uniformly from S. For a probabilistic
algorithm A, we denote y ← A(x;R) the process of running A on input x and
randomness R, and assigning y the result. We let RA denote the randomness
space of A; we require RA to be the form RA = {0, 1}r. We write y ← A(x) for
y ← A(x,R) with uniformly chosen R ∈ RA, and we write y1, . . . , ym ← A(x)
for y1 ← A(x), . . . , ym ← A(x) with fresh randomness in each execution. If A’s
running time is polynomial in λ, then A is called probabilistic polynomial-time
(PPT).

We say a function μ(n) is negligible if μ ∈ o(n−ω(1)), and is non-negligible
otherwise. We let negl(n) denote an arbitrary negligible function. If we say some
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p(n) is poly, we mean that there is some polynomial q such that for all suf-
ficiently large n, p(n) ≤ q(n). We say a function ρ(n) is noticeable if the
inverse 1/ρ(n) is poly. We use boldface to denote vector, i.e. m; we denote
mi as the i-th component of m and |m| as the length of m. The statistical
distance of two random variables X and Y over some countable domain S is
defined as SD(X;Y ) = 1

2

∑
s∈S |Pr[X = s] − Pr[Y = s]|. We write X

d≈ Y for

SD(X;Y ) ≤ d, and X
stat≈ Y for SD(X;Y ) ≤ 2−λ.

ORE. The following definition of syntax for order-revealing encryption makes
explicit that comparison may use helper information (e.g. a description of a
particular group) by incorporating a public key, denote pk.

Definition 3 (ORE). An ORE scheme with message space [N ] is a tuple of
algorithms Π = Gen,Enc,Comp with the following syntax.

– The key generation algorithm Gen is randomized, takes inputs (1λ, N), and
always emits two outputs (pk, sk). We refer to the first output pk as the public
key and the second output sk as the secret key.

– The encryption algorithm Enc takes inputs (sk,m) where m ∈ [N ], and always
emits a single output c, that we refer to as a ciphertext.

– The comparison algorithm Comp takes inputs (pk, c1, c2), and emits “¡”, “=”
or “¿”, which indicates the order of the underlying plaintexts.

If Comp is simple integer comparison (i.e., if Comp(pk, c1, c2) is a canonical
algorithm that treats its the ciphertexts and binary representations of integers
and tests which is greater) then the scheme is said to be an order-preserving
encryption (OPE) scheme.

Correctness for ORE. Intuitively, an ORE scheme is correct if the comparison
algorithm can output the order of the underlying plaintexts. For any two message
pair (m0,m1), let Comp(m0,m1) be the order of (m0,m1), where:

Comp(m0,m1) =

⎧
⎪⎨

⎪⎩

“ < ” m0 < m1

“ = ” m0 = m1

“ > ” m0 > m1

we consider four notions of correctness:

– Perfect Correctness. For any message pair (m0,m1), we have

Pr[Comp(pk, C0, C1) = Comp(m0,m1) : (pk, sk) ← Gen(), Cb = Enc(sk,mb)] = 1

– Almost Perfect Correctness. There is a negligible function μ = negl(λ)
such that

Pr[∃(m0,m1),Comp(pk, Cm0 , Cm1) �= Comp(m0,m1) : Cb = Enc(sk,mb)] ≤ μ

where the probability is taken over the choice of (pk, sk) ← Gen().
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– Statistical Correctness. There is a negligible function μ = negl(λ) such
that for any (m1,m2)

Pr[Comp(pk, C0, C1) = Comp(m0,m1) : Cb = Enc(sk,mb)] ≥ 1 − μ

where the probability is taken over the choice of (pk, sk) ← Gen().
– Partial Correctness. There is a noticeable function ρ(λ) such that, for any

(m1,m2),

Pr[Comp(pk, C0, C1) = Comp(m0,m1) : (pk, sk) ← Gen()] ≥ 1
2

+ ρ

In this work, we also consider ORE in idealized models, where the scheme’s
algorithms have access to an oracle.

Definition 4 (Idealized Model). An idealized model is a deterministic function
M. M takes two inputs: a string k which is the seed for the model, and a query
q. Unless otherwise stated, we allow all players—the honest parties, the protocol
algorithms, and the adversary—to query M. In a query to M:

– Any player sends q to M;
– The player receives M(k, q) in return.

We will denote an ORE scheme Π in an idealized model M as ΠM =
(GenM,EncM,CompM). This notation means that key generation, encryption,
and comparison have access to M and the outputs also depend on M’s response.
Our definitions of security and correctness for ORE easily extend to the idealized
model, where the probabilities are over the random seed k that generates M.

Efficiency for ORE. Typically in the literature, ORE is defined as having
computationally efficient algorithms:

Definition 5. Let Π = (Gen,Enc,Comp) be an ORE scheme with respect to the
message space [N ]. We say Π is computationally efficient if Gen,Enc,Comp run
in time polynomial in (log N,λ). If Π is a scheme in an idealized model M,
we additionally require that the algorithms only make a polynomial number of
queries to M.

Here, we will generally not impose any such restrictions, and allow for com-
putationally inefficient algorithms. We only impose two efficiency constraints.
First, if the scheme is an ideal-model scheme, we still require the number of
queries to be polynomial.

Definition 6. Let ΠM = (GenM,EncM,CompM) be an ORE scheme in an
idealized model M. We say Π is query efficient if Gen,Enc,Comp only make a
number of queries that is polynomial in (log N,λ).

The second efficiency requirement (for both idealized model schemes and
standard model schemes) is that the ciphertexts produced by the scheme are
polynomial sized.
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Definition 7. Let Π(resp. ΠM) be an ORE with respect to the message space
[N ] (resp. in idealized model). We say Π(ΠM) has succinct ciphertexts if the
ciphertext length is polynomial in (log N,λ).

We call a scheme for which there is no idealized model but which still has
succinct ciphertexts an information-theoretic scheme.

Security for ORE. An ORE scheme leaks the order of the underlying
plaintexts, so the ideal security notion for ORE is that only the order is
revealed. Roughly speaking, given two sequences of message m,m′ such that
Comp(mi,mj) = Comp(m′

i,m
′
j),∀i, j ∈ |m|, the distribution of Enc(m) and

Enc(m′) are statistically indistinguishable. We firstly consider a weak version,
which we call t-time secure, with the restriction that |m| = |m′| ≤ t, then we
define an interactive game with an unbounded adversary in the following:

Fig. 1. t-time static indistinguishable game

Definition 8. Let Π = (Gen,Enc,Comp) be an ORE scheme with respect to the
message space [N ]. For any PPT (resp. unbounded) adversary A we define the
game t-SIND(A) in Fig. 1. The advantage of A for the t-time static indistin-
guishable game is defined to be:

Advt-SINDA (1λ) = 2Pr[t-SIND(A)] − 1

We say that Π is t-time computationally (resp. statistically) secure if for any
PPT (resp. unbounded) adversary A, Advt-SINDA (1λ) is negligible. And we say
Π is fully (computationally/statistically) secure if Π is t-time (computation-
ally/statistically) secure for any polynomial t = poly(logN,λ).

If Π is an ORE scheme in the idealized model M, we extend the security
notions above by allowing A to make a polynomial number of queries to M, and
all probabilities are taken over the seed for M.

3 Impossibility of Information-Theoretic ORE

In this section, we show that for information-theoretic ORE, full statistical secu-
rity is impossible if the message space is super-polynomial. Note that this is
qualitatively tight, as [20]7 shows how to construct information-theoretic ORE
where the ciphertext size is polynomial in the size of the message space.
7 Here we treat the PRFs and PRPs in [20] as real random functions and permutations,

which achieving statistical security, rather than only computational security.



Impossibility of Order-Revealing Encryption in Idealized Models 143

Note that our impossibility applies to schemes where the public/secret key
are allowed to be arbitrarily (e.g., exponentially) large, the running time of
Enc,Comp are allowed to be arbitrary. However, the following restrictions must
hold: (1) the size of ciphertexts must be polynomially bounded, (2) the security
must hold for arbitrary adversaries (even for unbound adversary), (3) the adver-
sary sees only a polynomial number of ciphertexts. Now, we prove our theorem.

Theorem 9. In standard model, there does not exist a fully statistically secure
ORE Π such that

– Π is partially correct;
– Π’s message space is super-polynomial;
– Π has succinct ciphertexts.

Roughly speaking, our proof strategy is: (1) prove the result in the simpler
setting where we insist on perfect correctness, and then (2) show how to convert
any partially correct information-theoretic ORE into a perfectly correct one.

3.1 Impossibility for Perfect Correct ORE

In this part, we consider the ORE scheme in the perfectly correct setting.

Theorem 10. In standard model, there does not exist a statistically secure ORE
Π such that

– Π is perfectly correct;
– Π’s message space is super-polynomial;
– Π has succinct ciphertexts.

Firstly, we give a brief description of our proof strategy. Let Π be an ORE
scheme on message space [t + 1], where t = poly(λ), such that Π is perfectly
correct and statistically secure. We immediately observe that Π is t-time secure,
next we show, for any such an ORE, there exists an exponential lower bound
on the size of the ciphertext space (roughly O(2t/2)), which means the size of
ciphertext is at least poly(t). Based on that, it’s trivial to note that, for any ORE
with super-polynomial message space, the ciphertext size is at least poly(t)(for
arbitrary t = poly(λ)). Then we set t to be sufficiently large to contradict the
theorem statement.

The core technique we use is inspired by Erdös [15]. Roughly, for any Π
with plaintext space [t + 1], we interpret its ciphertext space as a graph Gt+1,
which has a similar structure to the graphs studied in [15]. Then we sample a
sequence of sub-graphs such that Gt+1 ⊇ Gt−1 ⊇ . . . G1

8 in a specific way (based
on our ORE). After that, we prove for any adjacent pair, we have E[log |Gi|] ≥
E[log |Gi−2|] + log(1.6),∀i ∈ {t + 1, t − 1, . . . , 3}, which means E[log |Gt+1|] ≥
� t−1

2 � log 1.6. More precisely:

8 Here we assume t is even.
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Lemma 11. In standard model, let Π be a perfectly correct t-time secure ORE
on message space [t+1], then Π requires ciphertexts of size at least � t−1

2 � log 1.6.

Proof. This proof applies a similar spirit to a proof technique used by Erdös [15].
Let Πt+1 = (Gen,Enc,Comp) be a perfect correct t-time secure ORE, with

respect to message space [t + 1] and ciphertext space C. We construct a new
ORE Π∗

t+1 as follows. The public key for Πt+1 defines a graph Gt+1, where the
nodes of Gt+1 represent the ciphertexts in C. We set the edges for Gt+1 as:

– If Comp(C0, C1) = “<”, then there is a directed edge from C0 to C1

– Otherwise, we arbitrarily assign a single directed edge between the two nodes.

By perfect correctness of Πt+1, we note that there is at most one directed edge
between any two nodes, and if C0 and C1 are not simultaneously valid ciphertexts
under the same secret key (we can view this as C0 = Enc(sk0, i), C1 = Enc(sk1, j),
and in such a case they are the ciphertexts encrypted under distinct secret keys),
we set an arbitrary edge for these two nodes. Hence Gt+1 is a “tournament”
graph. Now we define Π∗

t+1 = (Gen∗
t+1,Enc

∗
t+1,Comp∗

t+1):

– Gen∗() Runs (pk, sk) ← Gen(), computes Gt+1 as above, and outputs pk∗ =
(pk, Gt+1), sk∗ = sk;

– Enc∗(sk∗,m) It runs C = Enc(sk∗,m), and outputs C∗ = C;
– Comp∗(pk∗, C∗

0 , C∗
1 ) If C∗

0 = C∗
1 , outputs “=”, else outputs “<” if there is

directed edge from C∗
0 to C∗

1 in Gt+1, and “>” otherwise.

The only difference between Πt+1 and Π∗
t+1 is adding Gt+1 to the public key,

which only affects the efficiency of Gen and Comp, while perfect correctness and
t-time security are preserved.

Then, we sample the sub-graphs Gt−1 ⊇ . . . ⊇ G1(assume t is even). For any
j ∈ {2, 4, . . . , t}, graph Gt+1−j is sampled as:

– Run (pk∗, sk∗) ← Gen∗
t+1, compute Ci

L = Enc(sk∗, i), Ci
R = Enc(sk∗, t + 1 − i)

for i ∈ [j/2];
– Set Gt+1−j be the sub-graph of Gt+1 consisting of all nodes v dominated by

{C1
L, . . . , C

j/2
L } (that is, there is an edge from Ci

L to v for all i) and dominate
{C1

R, . . . , C
j/2
R } (that is, there is an edge from v to Ci

R for all i).

Clearly, |G1| ≥ 1, therefore it’s sufficient to prove that for j ∈ {2, 4 . . . , t},

E(log |Gt+3−j |) ≥ E(log |Gt+1−j |) + log 1.6

First, recall that Π∗ is t-time secure, implying the distribution of the encryp-
tions for M0 and M1 are statistically close, over the probability (pk∗, sk∗) ←
Gen∗

t+1, where,

M0 = (1, 2, . . . , j/2, j/2 + 1, t + 1 − j/2, . . . , t + 1)
M1 = (1, 2, . . . , j/2, t − j/2, t + 1 − j/2, . . . , t + 1)
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Then, let fL, fR be the expected fraction of nodes in Gt+3−j that are domi-
nated by Enc(j/2 + 1),Enc(t − j/2), respectively. Due to security, we have

(pk∗,Enc(M0))
stat≈ (pk∗,Enc(M1)) ⇒ |fL − fR| ≤ negl ≤ 1/4

Besides, Gt+3−j is also tournament, which indicates the expected fraction of
nodes in Gt+3−j that dominate Enc(t − j/2) is

1 − fR ≤ 1 − fL + 1/4

Moreover, Gt+1−j is the intersection of the nodes in Gt+3−j which dom-
inate Enc(t − j/2) and which are dominated by Enc(j/2 + 1), the ratio
|Gt+1−j |/|Gt+3−j | is at most the minimum of:

– The fraction of nodes in Gt+3−j which dominate Enc(t − j/2)
– The fraction of nodes in Gt+3−j dominated by Enc(j/2 + 1).

Now, we can upper bound E[log |Gt+1−j |] as:

E[log |Gt+1−j |] = E[log |Gt+3−j |] + E[log
|Gt+1−j |
|Gt+3−j | ]

≤ E[log |Gt+3−j |] + logE[
|Gt+1−j |
|Gt+3−j | ] Jensen’s inequality

≤ E[log |Gt+3−j |] + log min(fL, 1 − fL + 1/4)

≤ E[log |Gt+3−j |] + log
1 + 1/4

2
= E[log |Gt+3−j |] − log 1.6

For the last line, we used the fact that for any fL, min(fL, c − fL) ≤ c
2 . Putting

everything together, we have

E[log |Gt+1|] ≥ E[log |G1|] + � t − 1
2

� log 1.6

In addition, applying exactly the same technique, the theorem also holds when
t is odd. ��

Now, we complete the entire proof for Theorem 10. Suppose Π is an ORE
such that: (1) Π is perfect correct and statistically secure; (2) Π’s message space
is [N ], where N is super-polynomial; (3) Π has succinct ciphertexts, which is
bounded by r = poly(λ, log N). Then, let t = 4r (t is still polynomial here), we
know that Π is t-time secure. According to Lemma 11, r ≥ � t−1

2 � · log 1.6 > r,
a contradiction. ��

3.2 Boosting to Perfect Correctness

To strengthen our result, we also consider ORE scheme that is only partially
correct, and in this part, we show how to boost any partially correct scheme to
a perfectly correct one.
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Theorem 12. If there exists partially correct and statistically secure ORE in
the standard model that has succinct ciphertexts and super-polynomial message
space, then statistically secure ORE in standard model with succinct ciphertexts
and perfect correctness on the same message space exists.

Proof. Let Π = (Gen,Enc,Comp) be an ORE in the standard model such that

1. Π is 1
2 + ρ correct, where ρ is noticeable;

2. Π’s message space is [N ], where N is super-polynomial;
3. Π∗ has succinct ciphertexts, which is bounded by r = poly(λ, log N).

Then we construct a new ORE Π ′ = (Gen′,Enc′,Comp′) that is statistically
correct. More precisely, let s = 2

ρ2 log N2λ, we define Π ′ as

– Gen′(ρ, log N,λ) runs (pki, ski)s
i=1 ← Gen(), and outputs pk′ = (pki)s

i=1; sk
′ =

(ski)s
i=1;

– Enc′(sk′,m) runs Ci = Enc(ski,m), i ∈ [s] Outputs C = (C1, . . . , Cs);
– Comp′(pk′,C0,C1) let C0 = (C0

1 , . . . , C0
s ),C1 = (C1

1 , . . . , C1
s ), outputs the

majority of (Comp(pki, C
0
i , C1

i ))s
i=1.

We immediately observe that Π ′ also has succinct ciphertexts, and by hybrid
argument, it’s easy to have that Π ′ is statistically secure. Now, applying Chernoff
Bound, we have

Pr[Π ′ is correct] ≥ 1 − e− 1
1+2ρ sρ2 ≥ 1 − 1

N2
e−λ

We note Π ′ is statistically correct such that: within overwhelming probability
over the choice of (pk′, sk′), the comparison is correct for all message pairs. Then
we construct the perfectly correct ORE Π∗ = (Gen∗,Enc∗,Comp∗), same as Π ′

except we modify Gen∗: it draws (pk∗, sk∗), conditioned on correctness holding

for all message pairs. As Π ′ stat≈ Π∗, this only negligibly changes the distribution
of keys, Π∗ is also statistically secure. Notice that Gen∗ is no longer efficient
even if Gen was. Fortunately, our notion in standard model allows us to have
inefficient Gen. Thus, statistically secure ORE in standard model with succinct
ciphertexts and perfect correctness on the same message space exists.

��
Combing Theorems 10 and 12, we establish Theorem 9.

4 Impossibility of Statistically Secure ORE in Idealized
Models

In this section, we begin our investigation of ORE in idealized models, where
the algorithms of ORE have access to the model M (M is deterministic and
computable). We give a unified strategy to help answer prove statements of the
form:
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For some particular idealized model M, there does not exist randomized,
partially correct and statistically secure ORE that has succinct ciphertexts with
super-poly message space

Roughly speaking, our strategy is consist of four steps:

– Convert a randomized, partially correct and statistically secure ORE in an
idealized model into a deterministic, partially correct and statistically secure
ORE in the same model;

– Compile the scheme to remove the oracle queries from the comparison proce-
dures;

– Remove the model from ORE completely;
– Invoke Theorem 9 to finish the impossibility.

In this section, we show that step 1 and 3 is achievable for any deterministic and
computable model M, and we note that when achieving step 3, it indicates the
existence of partially correct and statistically secure ORE in standard model,
which conflicts our result in Theorem 9. Hence the only step that depends on
the exact model in question is step 2, removing the oracle query access from the
comparison while still preserving the partial correctness and statistical security.
In later sections, we will show how to do this for the random oracle model and
generic group model.

Theorem 13. If there exists a randomized partially correct and statistically
secure ORE in idealized model M that has succinct ciphertexts and super-
polynomial message space, then deterministic, partially correct and statistically
secure ORE in the same model M with succinct ciphertexts on the same message
space exists.

Proof. ORE typically allows for randomized encryption. We may even allow for
randomized comparison. However, we will show how to convert such a scheme
into a deterministic one.

To handle a randomized comparison, we simply add a sequence of random
coins to the secret key and every individual ciphertext. These random coins will
be used for any run of Comp. While in the original scheme, each run of Comp
uses independent randomness, here we use the same randomness every time.
However, since the experiment defining correctness only considers a single run
of Comp, the correctness probability is not affected by this change.

To handle a randomized encryption, we just generate the random coins rm for
every message m, and include rm in the secret key. When encrypting a message
m, encrypt using the random coins rm. Notice that this blows up the secret key
size. However, note that for this work we do not care about the size of the secret
key; it can be exponential in size, and still our impossibility will hold. We note
that another approach is to have rm be the output of a PRF evaluated on m;
suitable PRFs can be built from most interesting models, including the random
oracle and generic group models we consider. This prevents the secret key length
from exploding. However, this is unnecessary for our purposes.
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Suppose Π = (GenM,EncM,CompM) be a randomized ORE where encryp-
tion and comparison procedures are both randomized, then we construct Π∗

as:

– Gen∗ runs (pk, sk) ← Gen, samples N + 1 randomness (r, r1, . . . , rN ), and
outputs pk∗ = pk, sk∗ = (sk, r, r1, . . . , rN );

– Enc∗(sk∗,m) runs C = EncM(sk,m, rm) and outputs C∗ = (C||r);
– Comp∗(pk∗, C∗

0 , C∗
1 ) outputs CompM(pk, C0, C1, r).

We note that Π∗ is a deterministic ORE now, both in encryption and compari-
son. Moreover, ignoring r for ciphertexts, as long as we do not encrypt the same
message twice, the distribution of the ciphertext in Π∗ is exactly the same as
Π’s. We note that the correctness is well preserved. In fact, according to the
partial correctness definition, the randomness used in Comp is uniform just as
in the original scheme.

For statistical security, we see that the adversary only additionally learns a
random string (r, used for Comp) after it submits the message sequence, and the
random string is independent of the message sequence, hence the adversary does
not gain more information than in Π. Thus, statistical security is also preserved.

From now on, we treat ORE scheme as deterministic encryption and the message
space is super-polynomial, unless otherwise specified.

Theorem 14. If there exists partially correct and statistically secure ORE in
idealized model that makes no query to M in comparison procedure and has suc-
cinct ciphertext, then partially correct and statistically secure ORE in standard
model exists that has succinct ciphertexts.

Proof. This proof is very straightforward. Since there is no access to M during
the comparison procedure, there is no need for the idealized model to be public.
Instead, we set M as part of the secret key and only the encrypter has access to
it. Not giving the adversary access to M only helps security. Of course, in such
a setting, the secret key is now exponentially large, and encryption is no longer
efficient. However, our notion of ORE in standard model allows such large key
and inefficiencies of encryption, which completes the proof.

The only remaining part is step 2, which is model-specific and non-trivial. We
need to remove M from comparison procedures, while the input of Comp only
includes the public key and ciphertext, and we cannot just absorb the model to
the public key as we did in Theorem 14. Otherwise, the adversary would have
the complete access to the oracle, indicating that it gains more information than
it has in t-time statistical security game, and might break the game. Hence,
we need to find ways to simulate the model while still preserving the statistical
security. In the next two sections, we present our methods on two specific models:
random oracle model and generic group model.
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5 The Random Oracle Model

In this section, we finish the separation result in the case that M is a random
oracle, which we denote by O. Using the results of Sects. 3 and 4, it remains
to show that the random oracle model can be removed from the comparison
procedure of an ORE scheme. Our proof is inspired by [10], which shows how
to remove random oracles from obfuscation schemes. However, for reason’s out-
lined in the introduction, the technical details of our proof will be substantially
different.

We first observe the following. Consider running CompO(C0, C1) where C0, C1

encrypt m0,m1 respectively. Consider an oracle query x made by Comp. If x was
not a query made during encryption (EncO(m0),EncO(m1)), then we claim Comp
must output the right answer, even if it is given the incorrect query response.
Indeed, for any possible response y′, there is an oracle O′ that is consistent with
O on the points queried during encryption of m0,m1, but where O′(x) = y′.
Therefore, any potentially incorrect query answer can be “explained” by an
oracle O′, and correctness of the scheme says that Comp must still output the
right value in this case.

For a particular run of Comp on encryptions of m0,m1, we therefore call
the oracle queries made during encryption “sensitive” queries. Comp only needs
access to O on sensitive queries; for all others, it can answer randomly. The
difficulty, then, is (1) allowing Comp to figure out the sensitive queries, and (2)
giving it the right oracle answers in this case.

For simplicity, consider two extremes. On the one end, suppose none of
Comp’s queries are ever sensitive. In this case, Comp can just ignore its ora-
cle entirely, simulating the responses with random answers. In this case, we are
already done. In the other extreme, suppose all of Comp’s queries are always
sensitive. In this case, if the adversary sees � ciphertexts, she expects to make at
least Ω(�2) oracle queries on sensitive queries. However, there are only q� possi-
ble query values, where q is the number of queries made during each encryption.
Therefore, heuristically, we may expect to eventually pick of all of the sensi-
tive queries made during encryption by setting � large enough (namely, bigger
than q). Even so, security must hold. Therefore, we can construct a modified
scheme where Enc simply outputs all the queries it makes and the corresponding
answers along with the ciphertext. Then all the sensitive queries Comp needs are
provided as input, and it does not need to make any oracle queries.

To formalize the above sketch, we must show how to handle cases between
the two extremes, where some of Comp’s queries are sensitive, and others are
not, and we cannot necessarily tell which is the case. Moreover, we need to deal
with the fact that we may not actually get all of the sensitive queries if there
are sufficiently many collisions. In this case, handing out all of the queries made
during encryption could actually hurt security (for example, if a query is made
on the message itself). Nonetheless, we now prove the following theorem:

Theorem 15. If there exists partially correct and statistically secure ORE in
random oracle model that has succinct ciphertexts, then there exists partially
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correct and statistically secure ORE with succinct ciphertexts such that the com-
parison procedures makes no queries to the random oracle.

Proof. Let Π0 = (Gen0,EncO
0 ,CompO

0 ) be a statistically secure ORE in the ran-
dom oracle model with plaintext space [N ]. Here, we assume Gen0 makes no
queries to O. This is actually without loss of generality: since O is a determin-
istic oracle, we can always treat sk as the random coins inputted to Gen0, and
run Gen0 every time we encrypt a message.

For convenience, we denote Pr[Π0] as the lower bound on the correctness
probability:

Pr[Π
0
] = min

m0,m1
Pr[CompO0 (pk, C0, C1) = Comp(m0, m1) : (pk, sk) ← Gen0();Cb ← EncO0 (sk, mb)]

We assume that Comp0(pk0, C0, C1) does not query the same point twice;
since O is deterministic, Comp0 can always store a table of query/response pairs
already seen, and use this table to answer subsequent queries on the same point.

Here we specify some parameters:

1. Pr[Π0] ≥ 1
2 + 2ρ, where ρ is noticeable; q, u = poly(λ) by query efficiency;

s := 110u4·q2

ρ3 ; si := 110u3·q2·i
ρ3 , i ∈ [u].

2. EncO
0 makes q queries to the oracle O. Let Qsk,m be the set of query-answer

pairs made when encrypting m under key sk. Notice that the set Qsk,m is fully
determined by sk and m since Enc and O are deterministic.

3. CompO
0 makes u queries to the oracle O. Let Spk,m0,m1 be the set of query-

answer pairs made when comparing the encryptions of (m0,m1) under key
pk. Again, Spk,m0,m1 is fully determined by pk, sk,m0,m1.

4. D := [s] ∪ [N − s + 1, N ];Di := [si] ∪ [N − si + 1, N ], i ∈ [u].
5. Ti = [i] ∪ [N − i + 1, N ], i ∈ [N ].

Next we construct a new ORE Π∗ = (Gen,EncO,Comp) with plaintext space
[s + 1, N − s] as:

– Gen() runs (pk0, sk0) ← Gen0(), computes Ci = EncO
0 (sk0, i), i ∈ D and out-

puts pk = pk0, sk = (sk0, {Ci}i∈D);
– EncO(sk,m) runs C ← EncO

0 (sk0,m). Then it runs CompO
0 (pk0, Ci, C) for all

i ∈ D, recording all query-answer pairs Spk,m = ∪i∈DSpk,m,i. Then it outputs
C∗ = (C,Spk,m);

– Comp(pk, C∗
0 , C∗

1 ) : let C∗
0 = (C0, S0), C∗

1 = (C1, S1). Run CompO
0

(pk0, C0, C1), except that when querying the oracle with input x, do the
following:
1. If there is a pair (x, y) in S0 ∪ S1, Comp responds to the query with y;
2. Otherwise, returns a random string.

We note that in the comparison procedure of Π∗, we remove the oracle access,
so it remains to show that Π∗ is statistically secure and partially correct.

Lemma 16. If Π0 is t+2s statically secure, then Π∗ is t-time statically secure.
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Proof. The entire view of the adversary A in the t-time experiment for Π∗ can
be simulated by a t+2s-time adversary B for Π0: the lists of messages are those
produced by A, plus all the messages in D. Then, the lists S associated with
ciphertext C can be constructed by comparing C to each of the Ci for i ∈ D. ��

It’s obvious that Lemma 16 holds for any t = poly(log N,λ), which means
Π∗ is statistically secure. And what’s more interesting is that Π∗’s partial cor-
rectness. In the following, we prove that Π∗ also preserves partial correctness,
though there is some loss in the concrete correctness parameter.

Lemma 17. Pr[Π∗] ≥ 1
2 + ρ.

Proof. We establish our proof by hybrid argument, and define u alternative ORE
schemes Πj = (Genj ,Enc

O
j ,CompO

j ), j ∈ [u] on message space [sj + 1, N − sj ]:

– Genj() runs (pk0, sk0) ← Gen0(), computes Ci = EncO
0 (sk0, i) for i ∈ Dj and

outputs pkj = pk0, skj = (sk0, {Ci}i∈Dj
);

– EncO
j (skj ,m) runs C ← EncO

0 (sk0,m) and CompO
0 (pk0, Ci, C) for i ∈ Dj ,

records all query-answer pairs Spk,m = ∪i∈Dj
Spk,m,i and outputs C∗ =

(C,Spk,m);
– CompO

j (pkj , C
∗
0 , C∗

1 ) : let C∗
0 = (C0, S0), C∗

1 = (C1, S1). It runs CompO
0 (pkj ,

C0, C1), except that when querying O with input x, it does the following:
1. If x is one of the first u − j queries, make a query to O as usual.
2. If x is one of the final j queries and there is a pair (x, y) ∈ S0 ∪ S1, then

respond with y.
3. Otherwise, returns a random string.

We observe that Πu = Π∗, hence it suffices to prove the following lemma,

Lemma 18.

Pr[Πj ] ≥ Pr[Πj−1] − ρ

u
,∀j ∈ [u]

We here only prove the case j = 1, the rest can be handled analogously. Specif-
ically, we show Pr[Π1] ≥ 1

2 + 2ρ − ρ
u .

According to the definition, we see that Comp1 works the same as Comp0,
except for the final query x to O in which we use the list of oracle outputs
provided with the ciphertext to answer the oracle query. We prove that the
response made by Π1 for x does not significantly harm the ability of Comp1 to
output the correct answer. To do so, we introduce yet another sequence of s1
ORE schemes Π1,j , j ∈ [s1] on message space [j + 1, N − j]. The only difference
between Π1,j and Π1 is the number of test ciphertexts that are generated.

– Gen1,j() runs (pk0, sk0) ← Gen0(), computes Ci = EncO
0 (sk0, i) for i ∈ Tj and

outputs pk1,j = pk0, sk = (sk0, {Ci}i∈Tj
);

– EncO
1,j(sk1,j ,m) runs C ← EncO

0 (sk0,m) and CompO
0 (pk0, Ci, C) for i ∈ Tj ,

records all query-answer pairs S
(j)
pk,m = ∪iSpk,m,i and outputs C∗ = (C,S

(j)
pk,m);
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– CompO
1,j(pk1,j , C

∗
0 , C∗

1 ) : let C∗
0 = (C0, S0), C∗

1 = (C1, S1). It runs
CompO

0 (pk1,j , C0, C1), except that when querying O with input x, it does
the following:
1. If x is one of the first u − 1 queries, make a query to O as usual.
2. If x is the final query and there is a pair (x, y) ∈ S0 ∪ S1, then respond

with y.
3. Otherwise, returns a random string.

We note that Π1 = Π1,s1 . We now claim that increasing j must improve the
correctness of the scheme:

Claim. If Pr[Π1,j ] < 1
2 + 2ρ − ρ

u , then Pr[Π1,j+1] ≥ Pr[Π1,j ] + ρ3

110u3·q2 .

Notice that this means as j increases, Pr[Π1,j ] must increase by increments
of at least 1

s1
= ρ3

110u3·q2 until Pr[Π1,j ] ≥ 1
2 +2ρ− ρ

u . Therefore, by setting j = s1,
we get that Pr[Π1] = Pr[Π1,j ] ≥ 1

2 + 2ρ − ρ
u as desired. It remains to prove the

claim.
Assuming Pr[Π1,j ] < 1

2 + 2ρ − ρ
u , there are two messages m∗

0,m
∗
1 minimizing

the correctness probability; that is, the comparison procedure on encryptions of
m∗

0,m
∗
1 outputs the correct answer with probability less than 1

2 + 2ρ − ρ
u . Since

comparison succeeding is a detectable event, we can invoke the security of ORE
to conclude that, for any m0,m1, comparison must output the correct answer
with probability at most 1

2 + 2ρ − ρ
u + negl < 1

2 + 2ρ − 2ρ
3u .

Fix two messages m0,m1 ∈ [s1 + 1, N − s1]. We denote S(j) := S
(j)
pk,m0

∪
S
(j)
pk,m1

;Q := Qsk,m0 ∪Qsk,m1 . Let x be the final query made when comparing the
encryptions of m0,m1.

Define the event Badj where the following happens:

– x ∈ Q \ S(j), so that x was queried during the encryption of m0 or m1, but
not during any of the comparisons to the test ciphertexts.

– CompO
0 outputs the correct answer on encryptions of m0,m1.

– CompO
1,j outputs the incorrect answer on encryptions of m0,m1.

We consider four cases:

– x ∈ S(j) In this case, Π1 answers the same as Π1,j since it has access to O(x).
– x /∈ Q Then the ciphertexts components C0, C1 under Π0 are independent

of O(x), meaning that during the correctness experiment, O(x) in Π0 is a
random string. Hence Π1 answers the query with the correct distribution.

– x ∈ Q \S(j), but Badj does not occur. Here, we must have that Comp0 either
produced the incorrect answer, or Comp1,j produced the correct answer.

– Badj occurs In this case, C0, C1 will depend on O(x), while Π1,j cannot
find it in S(j). Hence, Π1,j will answer randomly, but Comp may expect an
answer correlated with C0, C1. Moreover, we know that by answering ran-
domly, Comp1,j goes from outputting the correct answer to the incorrect
answer.
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We note in the first three cases above, the expected correctness probability does
not decrease relative to Π1,j . Indeed, in the first and third cases, Π1,j is at
least as correct as Π0, and in the second case, Π1,j in expectation has the same
correctness as Π0. Only in the final case might answering randomly decrease
the probability of correctness. Therefore, since comparison in Π1,j outputs the
correct answer with probability less than 1

2+2ρ− 2ρ
3u , we must have Pr[Badj ]> 2ρ

3u .
We consider two sub-events of Badj , denoted Bad

(b)
j , corresponding to

x ∈ Qsk,mb
/S. Notice that Pr[Badj ] ≤ Pr[Bad(0)j ] + Pr[Bad(1)j ]. By our assump-

tion above, we have max{Pr[Bad(0)j ],Pr[Bad(1)j ]} > ρ
3u . We will assume that

Pr[Bad(0)j ] > ρ
3u , the other case handled analogously.

Next we split the message space into two parts: [j +1, N
2 ] and [N

2 +1, N − j],
and sample w ← [j + 1, N

2 ] and z1, . . . , z� ← [N
2 + 1, N − j], where � = 6u·q

ρ . Let
ti be the indicator as:

ti =

{
1 if Bad(0)j occurs for message pair (w, zi)
0 Otherwise

and T be the event that
∑�

i=1 ti > q, we must have that:

Pr[T ] · � + q · (1 − Pr[T ]) ≥ E(
�∑

i=1

ti) > 2q ⇒ Pr[T ] >
ρ

6u

as Pr[ti = 1] > ρ
3u , which refers E

[∑�
i=1 ti

]
> � · ρ

3u > 2q.
For three messages m0,m1,m2, m0 < m1 < m2, we define the event Collision

as the following: the final queries x1, x2 when comparing encryptions of m0 to
m1 and respectively m0 to m2 satisfy: (1) Bad(0)j occurs simultaneously for both
(m0,m1) and (m0,m2), and (2) x1 = x2.

We observe that if T occurs, there are at least q + 1 index such that ti = 1.
Moreover, in EncO

1,j(w), there are at most q distinct queries. This means there is

some zi1 < zi2 such that Bad(0)j occurs for both (w, zi1) and (w, zi2) and moreover
the final query in both comparisons is identical. This in particular means that
Collision happens for (w, zi1 , zi2).

Now we bound the probability of Collision for a random message w in [j+1, N
2 ]

and random distinct z∗
1 , z

∗
2 in [N

2 +1, N −j]. One way to sample random w, z∗
1 , z∗

2

is to sample w at random in [j + 1, N
2 ], and sample � random distinct zi in

[N
2 + 1, N − j]. Then we choose two random indices i1, i2, and set z∗

b = zib
. The

above analysis shows that with probability at least ρ/6u, there some Collision
among the zi. Since z∗

b are chosen as a random pair from this set, there is a
collision in z∗

1 , z
∗
2 with probability at least

Pr[ Collision for random (w, z∗
1 , z∗

2)]} ≥ 1
(

�
2

) · Pr[T ] >
ρ3

108u3 · q2
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Now, we would like to use security of ORE to show that Collision happens
for arbitrary fixed triples m0,m1,m2. Unfortunately, Collision is not necessarily
detectable by an adversary, since an adversary does not know Q. Instead, we
define a slightly different event Collision′. Collision′ is the same as Collision except
that it removes the requirement that the common query x is in Q for either w, z∗

1

or w, z∗
2 . Since Collision implies Colision′, we must have that Collision′ happens

with probability at least ρ3

108u3·q2 for a random w, z∗
1 , z∗

2 .
Now, Collision′ is an event that can be detected by an adversary, thus by

statistical security, we have that for arbitrary (m0,m1,m2) ∈ [j + 1, N − j],

Pr[ Collision′ for (m0,m1,m2)] ≥ ρ3

108u3 · q2
− negl >

ρ3

110u3 · q2

Specifically, let m2 = N − j, we see that for any (m0,m1) ∈ [j +2, N − j −1],
if we move to Π1,j+1, m2 is included in the test queries for the scheme. Notice
that Collision′ means that in Π1,j , comparing m0,m1 would have been incorrect
(since the final query is answered randomly), but in Π1,j+1 comparing m0,m1

would be correct due to the additional queries provided from comparing m0,m2

(since comparing m0,m2 would add the missing query x to the list of queries
included in the encryption of m0). Thus:

Pr[Π1,j+1] ≥ Pr[Π1,j ] +
ρ3

110u3 · q2
⇒ Pr[Π1] ≥ Pr [Π0] − ρ

u

Now we have shown that Pr[Π1] ≥ Pr [Π0] − ρ
u . This handles the case of Π1.

However, note that at this point, what use to be the second-to-last query is now
the last query (since the last query is no longer made). Therefore, we can apply
the exact same techniques as above to handle the general case of Πj , giving

Pr[Πj+1] ≥ Pr [Πj ] − ρ

u

Combing together, we get

Pr[Π∗] ≥ 1
2

+ ρ

which completes the entire proof. ��

6 The Generic Group Model

In this section, we finish the separation result in generic group model, which
we denote by G. It remains to show that the generic group oracle model can
be removed from the comparison procedure of any ORE scheme. Our strategy
is inspired by [24], which shows how to remove constant graded encoding from
obfuscation schemes. Before we illustrate the main idea of our proof, we recall
a simple variant of the generic group model, which is equivalent to the usual
generic group model [26]:
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Definition 19. (Variant Generic Group Model) Let (G,�) be any group of size
N and let S be any set of size at least N . The generic group oracle G : G �→ S.
At first an injective random function σ : G �→ S is chosen, and two type of
queries are answered as:

– Type 1: Labeling queries. Given g ∈ G, oracle returns handle h = σ(g);
– Type 2: Zero-test queries. Given h = (h1, . . . hn) ∈ S, a vector v =

(v0, . . . , vn) of integers, oracle returns a single bit: 0 if there exists g1, . . . , gn ∈
G such that hi = σ(gi) and v0 + �jvjgj = 0; 1 otherwise.

WLOG, we can assume that the ORE scheme Π = (Gen,EncG ,CompG) satisfies
the following:

– Gen makes no queries to G.
– Enc has the access of both labeling and zero-test query, while Comp only

makes zero-test queries. This is because Comp gains no advantage by making
labeling queries; it can always keep track of any group element it would have
made a labeling query on, and adjust the v0 term in a zero-test query to
compensate.

– Let hm be the vector of handles returned by the labeling queries during the
encryption of m. We will assume the comparison procedure, when comparing
encryptions of m0,m1, only makes zero-test queries using handles derived dur-
ing the encryption. In other words, it will always have the form (hm0 ,hm1 ,v).
We can assume this as Comp′s view only depends on those labels; if it queried
the zero-test on other labels, then it would somehow be guessing labels it never
saw before, which is statistically unlikely.

– For any m, |hm| = |gm| = q, where q = poly(λ) is a fixed integer.

Then we present a brief description of our strategy. Similar to our ran-
dom oracle proof, given an ORE scheme Π = (Gen,EncG ,CompG) on mes-
sage space [N ] with partial correctness 1

2 + 2ρ, we construct an new ORE
Π∗ = (Gen∗,Enc∗,Comp∗) on message space [s + 1, N − d](s, d = poly(log N,λ))
with correctness 1

2 + ρ, where we remove G from Comp∗. In the key generation
procedure, Π∗ additionally outputs the encryption of i, i ∈ [s] ∪ [N − d + 1, N ].

Next, Enc(k,m) runs Enc(k,m),Comp(Enc(k,m), Enc(k, i)),Comp(Enc(k, i),
Enc(k, j)), i, j ∈ [s] ∪ [N − d + 1, N ]. It collects all of the zero test queries and
responses produced during the comparisons. It deletes all queries that outputted
1. It is left with a set of linear constraints on the g1, . . . , gs, gm, gN−d+1, . . . , gN

terms. It therefore produces a set Sm of linearly independent constrains over
these variables. It finally outputs (Enc(m), Sm).

Meanwhile, Comp∗(Cm0 , Cm1), runs Comp on the two Π-ciphertexts con-
tained in Cm0 , Cm1 . Whenever Comp1,j tries to make a zero-test query, Comp∗

1,j

intercepts, and answers using the sets Sm0 , Sm1 as follows. It determines if the
zero test query is linearly dependent on the constraints in Sm0 ∪ Sm1 . If so, it
knows that the answer to the zero test query is 0. Otherwise, it guesses that the
zero test query answer is non-zero.

We claim that this modified comparison procedure answers all zero test
queries right except with small probability. Roughly, the idea is that Comp only
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needs to learn the constraint space when restricted to gm0
, gm1

, and does so
using the constraints it obtains through the test ciphertexts. Notice that the
number of constraints we obtain grows quadratically with the number of test
ciphertexts computed, while the dimension of the space of constraints only grows
linearly. Therefore, by using enough test elements, we “should” exhaust all linear
constraints and recover the entire constraints space. Indeed, we show that with
sufficiently large s, d, Sm0 ∪ Sm1 has either recovered the full basis of the space
(which allows one to correctly answer all remaining zero-test queries), or it’s very
unlikely that a new constraint appears, which in turn means that Comp∗ sim-
ulates the oracle itself properly except with a small probability. We now prove
the following theorem:

Theorem 20. If there exists partially correct and statistically secure ORE in
generic group model that has succinct ciphertexts, then partially correct and sta-
tistically secure ORE with succinct ciphertexts that makes no query to generic
group oracle in comparison procedures exists.

Due to the space limit, we skip the rigorous proof here, and refer the whole
proof in our full version [28].
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Abstract. We consider a security definition of Chenette, Lewi, Weis, and
Wu for order-revealing encryption (ORE) and order-preserving encryp-
tion (OPE) (FSE 2016). Their definition says that the comparison of two
ciphertexts should only leak the index of the most significant bit on which
they differ. While their work could achieve order-revealing encryption
with short ciphertexts that expand the plaintext by a factor ≈ 1.58, it
could only find order-preserving encryption with longer ciphertexts that
expanded the plaintext by a security-parameter factor. We give evidence
that this gap between ORE and OPE is inherent, by proving that any OPE
meeting the information-theoretic version of their security definition (for
instance, in the random oracle model) must have ciphertext length close
to that of their constructions. We extend our result to identify an abstract
security property of any OPE that will result in the same lower bound.

Keywords: Symmetric encryption · Searchable encryption
Lower bound

1 Introduction

To enable fast operations on encrypted databases, several variants of encryption
have been suggested that trade security or efficiency for processing functional-
ity on the server. Amongst the suggested constructions, order-revealing encryp-
tion (ORE) and its special case order-preserving encryption (OPE) [1,3,4] have
seen deployments in products1 and usage in applied research [12,13,15]. ORE
schemes are symmetric key encryption schemes E such that, given ciphertexts
EK(x), EK(y) for messages x, y, one can decide if x < y or not without the decryp-
tion key. OPE schemes are the subset of ORE schemes for which the ciphertexts
themselves are numbers that can be compared (so EK(x) < EK(y) ⇐⇒ x < y).

1 e.g. https://www.skyhighnetworks.com, https://www.ciphercloud.com/, SAP’s
SEEED https://www.sics.se/sites/default/files/pub/andreasschaad.pdf, https://
www.bluecoat.com/ and Cipherbase [2].

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 159–176, 2018.
https://doi.org/10.1007/978-3-030-03810-6_6
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A typical application of ORE is in databases, where one party encrypts
numeric columns of a database table. Later, to issue a range query on the col-
umn, that party encrypts the endpoints of the range and requests all ciphertexts
between them, an operation that can be processed by anyone who holds the
encrypted column. In these settings, OPE is preferable because it can more eas-
ily be added to a database application, as the server can be oblivious to the
fact that encryption is used at all. With more general ORE schemes, one needs
to implement the specialized comparison operation in the database, which can
be inconvenient (e.g. in a slow SQL implementation) or impossible, for instance
when adding encryption to legacy systems.

This work studies the ciphertext length of any OPE construction achieving a
certain new security notion recently given by a recent work of Chenette et al. [6]
(we refer to this work as CLWW below). This notion is currently the best known
security property for OPE that can be implemented and deployed. In particular,
it results in strictly better security when combined with prior OPE via double-
encryption. It seems likely that deployments using OPE (like those mentioned
above) will be extended to use CLWW OPE if possible. And although recent
attacks have shown that existing OPE is insecure in many contexts [8,11], it
will likely continue to be used in practice in scenarios where the attacks do not
apply.

CLWW constructed ORE with their security notion that has ciphertext
length log2(3)m ≈ 1.58m bits, where m is the plaintext length, and showed
how to convert their scheme to the more convenient OPE, but at the cost of
increasing the ciphertext length to λm, where λ is the security parameter. This
means that achieving OPE comes at a cost of increasing storage of the column
by a factor typically in the range of 80 to 256, compared to the 1.58 expansion
of ORE. Achieving smaller OPE ciphertexts with the same security would be
highly desirable if possible, as large plaintext data sizes are often the motivating
factor for outsourcing data to untrusted server in the first place. (We note that
a different, incomparable ORE security notion of [3] can be achieved with ≈ m
bit ciphertexts, although this fact will not be used in our work below.)

Below we give evidence that the large ciphertext size of the OPE in CLWW is
inherent, by proving that any scheme meeting the information-theoretic version
of their security notion must have ciphertexts of length

λm − m log m + m log e,

where again m is the message length, logarithms are base 2, and e is the base
of the natural logarithm. This bound shows that CLWW has almost optimal
ciphertext size, as it has leading term λm instead of (λ − log m)m.

In the remainder of this section we describe the prior work on ORE in more
detail, and then sketch our results.

ORE security. It is immediate that an ORE scheme cannot be semantically
secure against passive attacks, because one can compute information about plain-
texts. But meaningful and formally-defined security targets for ORE have been
suggested, starting with the work of [3]. This work defined two notions, one of
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which was a ideal ORE security that requires all plaintext information except
order to be hidden. They also showed that no efficient OPE scheme (in particu-
lar, one with poly(λ,m)-size ciphertexts) could achieve ideal security. However,
it was later shown [5] that ideal security for ORE is achievable using crypto-
graphic multilinear pairings [9] or indistinguishability obfuscation [10]. This was
apparently the first separation of OPE and ORE as primitives.

Motivated by the lack of a practical ideal construction, Boldyreva et al. [3]
investigated a particular weaker notion called ROPF2. It was later shown [4] that
ROPF-secure ciphers allow a passive adversary to compute the most-significant
half of the bits of a random message with high probability, which may be
too weak for some applications. The notion was however instantiated with fast
blockcipher-based constructions under standard assumptions.

The recent CLWW work [6] introduced a different notion of security for ORE
and demonstrated that it is stronger than ROPF-security by certain measures. In
particular, that work gave a construction of ORE that could provably hide all but
a logarithmic number of bits of a random plaintext. Moreover, the construction is
simple to implement and uses only a blockcipher and standard assumptions. The
CLWW security notion allows an adversary, given ciphertexts EK(x), EK(y), to
learn the index of the most significant bit on which x and y differ. As mentioned
above, the ORE version of their construction has ciphertext size ≈ 1.58m while
the OPE version has ciphertext size λm.

Our result. For technical reasons discussed below, we consider an informa-
tion theoretic version of CLWW security, which requires the same security but
against unbounded adversaries. The CLWW construction achieves this notion
in the random oracle model, and we show that their construction is essentially
optimal in terms of ciphertext length. Thus their large overhead in converting
their construction from ORE to OPE is inherent, and should OPE with lower
storage overhead be required, one will have to investigate other security notions
for OPE.

We also generalize our lower bound to apply to any OPE with a new secu-
rity notion that we call inner-distance indistinguishability. While not necessarily
interesting as a security goal on its own (one would prefer something stronger),
it encapsulates a property that must be avoided in order to build OPE with
O(m) size ciphertexts.

Our techniques start from first principles regarding when relations between
random variables force their distributions to have large statistical distance. We
sketch our proof in Sect. 4. We note that the big-jump attack of Boldyreva
et al. [4] proves an exponential lower bound on ideal OPE, and bears some
resemblance to our attack. But our attack treats a different and weaker security
notion and obtains a fine-grained, polynomial lower bound.

2 We will not need this definition in this paper. Roughly, ROPF security requires that
a deterministic cipher be indistinguishable from a random order preserving function
with the same domain and range.
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Information-theoretic versus computational security. We attempted
to prove our result for any computationally-CLWW-secure ORE scheme, but
our techniques do not seem suited to this case. An information-theoretic bound,
however, applies to any construction secure in the random-oracle model and
includes the CLWW construction. Moreover, if a scheme uses a PRF as its only
cryptographic component, then our lower bound applies to a version of that
scheme that uses a random-oracle in place of the PRF and thus to the original
as well. We are unaware of any technique for building computationally-CLWW-
secure OPE that circumvents our bound, and we conjecture that a ciphertext
length lower bound also holds in the computational case.

Comparison to concurrent work. Recently, Segev and Shahaf [14] extend
our result to computational security level, and our lower bound and their lower
bound are identical in terms of the attacker’s success probability, which implies
the ciphertext expansion is inherent. Concretely, Segev and Shahaf prove their
lower bound by presenting a non-uniform polynomial-time adversary, whereas we
prove it via analyzing the statistical distance between ciphertexts distribution,
which requires unbounded adversary. In their proof, Segev and Shahaf show
that, if the lower bound N does not hold, then there exists a value t ∈ [N ] and
ciphertexts (c0, c1) = {(E(0), E(2j+1−1), (E(2j −1), E(2j))}, 1 ≤ j ≤ m−1, such
that the test c1 − c1 ≥ t can distinguish the two cases. We note that the two
cases have the same leakage profile, which refers the evidence that there exists
a non-uniform polynomial-time adversary.

Why it’s hard for uniform adversary? Our result only allows unbounded
adversary, and Segev and Shahaf just improve the result to non-uniform com-
putational setting3, it would be nicer if we can have a tight lower bound be
proved via a uniform polynomial adversary. According to our observation, we
note that in both our result and [14], the distinguishing/testing algorithm is a
simply comparison: 1(c1 − c0 ≥ t), and locating “t” is a super-poly algorithm.
One hope might be extracting a more involved but still polynomial-time testing
algorithm, and we leave it as an open problem.

Organization. In Sect. 2 we recall definitions for ORE/OPE syntax and secu-
rity and in Sect. 3 we recall the specific security notion that we study. In Sect. 4
we state our lower bound and sketch its proof, which is given in Sects. 5, 6 and
7. Finally in Sect. 8 we show how to generalize our result to an abstract security
property.

2 Preliminaries

Notation and basic results. We always use λ to denote the security param-
eter. For non-negative integers a ≤ b we write [a, b] for the set {a, a + 1, . . . , b},
[n] for the set {1, . . . , n}, and [n]′ for the set {0, 1, . . . , n}. We use boldface to
3 Also utilizing non-uniformity (or even unbounded computational power) in impos-

sibility proofs is rather fair.
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denote vector, i.e. m; we denote m[i] as the i-th component of m. If X1,X2 are
r.v.s, we let

Δ(X1,X2) =
1
2

∑

k

|Pr[X1 = k] − Pr[X2 = k]|

denote their statistical distance. We will use the following well-known data pro-
cessing lemma (c.f. [7]) in our proof.

Lemma 1. Let X and Y be r.v.s, and f be any function that includes the support
of X and Y in its domain. Then Δ(f(X), f(Y )) ≤ Δ(X,Y ).

For a randomized algorithm A we write y
$← A(w) to denote running A on input

w, and letting y be the random variable denoting its output. If A is deterministic,
we denote y ← A(w) to denote running A and letting y be its output.

We write 1(x < y) to mean 1 if x < y and 0 otherwise.

ORE and OPE. An ORE scheme Π is a tuple of algorithms (K, E , C) for key
generation, encryption, and comparison respectively, and always has an associ-
ated message space {0, 1}m and ciphertext space {0, 1}n. The key generation
algorithm K is randomized, and on input 1λ, outputs a key K. The encryption
algorithm E is deterministic and takes as input a key K and message x ∈ {0, 1}m

and outputs a ciphertext c ← EK(x). The comparison algorithm takes as input
two ciphertexts c1, c2 generated with the same K on messages x1, x2 and outputs
a bit b.

We assume that all ORE schemes in this paper are correct, meaning that for
all λ, keys K in the support of K(1λ), and all x, y ∈ {0, 1}m, C(EK(x), EK(y))
outputs 1(x < y). Note that this allows testing if x = y by running the compar-
ison algorithm twice.

When an ORE scheme Π has a canonical comparison algorithm C that
directly compares its inputs as numbers in [2n − 1]′, we say that the scheme
is an order-preserving encryption (OPE) scheme. In this case we omit the com-
parison algorithm and write Π = (K, E).

ORE security. Chenette et al. [6] gave a simulation-based definition for ORE
security that used a leakage profile L as a parameter, where L is an efficient algo-
rithm. We will use a weaker non-interactive indistinguishability-based version of
their definition for our lower bounds (which makes our result stronger).

For an ORE scheme Π = (K, E , C), leakage profile L, and adversary A we
consider the following game:

Game OREΠ,L,A(λ):

K
$← K(1λ)

(m0,m1, s)
$← A(λ)

If L(m0) 	= L(m1) then output 0.
For i = 1, . . . q: c[i] ← EK(mb[i])
b′ $← A(s, c)
If b′ = b then output 1, Else output 0,
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We define the L-advantage of A against Π to be

Advore
Π,L,A(λ) = 2Pr[OREΠ,L,A(λ) = 1] − 1.

We say that Π is L-computationally secure if for all efficient A, Advore
Π,L,A(λ) is

a negligible function i.e. is o(1/poly(λ)). We say that Π is L-statistically-secure
if the same condition holds for all (unbounded, wlog deterministic) adversaries
A; more specifically, we say Π is 2λ-L-statistically-secure if for all unbounded
adversaries, the advantage is at least 2λ.

We recall, as an example, that the ideal leakage profile only leaks order.
Formally, this is

Lideal(m1, . . . ,mq) = {(i, j,1(mi < mj)) : 1 ≤ i < j ≤ q}.

3 CLWW Security and Constructions

In this section we recall and discuss the CLWW leakage profile and constructions.

CLWW leakage. CLWW considered the following leakage profile Lclww. On
input x = (x1, . . . , xq) ∈ ({0, 1}m)q, the leakage profile is defined by

Lclww(x1, . . . , xq) := {(i, j, inddiff(xi, xj),1(xi < xj)) : 1 ≤ i < j ≤ q},

where inddiff(xi, xj) ∈ {1, . . . , m+1} is the left-most bit on which xi and xj differ,
or m + 1 if they are equal. Compared to the ideal profile, only the inddiff(xi, xj)
indices are extra leakage.

The intuition for the leakage is that, when comparing two numbers, an adver-
sary will learn the length of the longest common prefix, and also which is larger.
This information combines to reveal one bit of each of the plaintexts.

The CLWW ORE and OPE constructions. Our results will not need the
CLWW construction, but it provides intuition for the lower bound and we recall
it now, starting with a basic ORE construction Πclww-ore and then describing
an ORE variant with shorter ciphertexts, and how to build OPE Πclww-ope. We
recall a version that is slightly different from theirs in that it is perfectly correct.

The scheme Πclww-ore = (Kore, Eore, Core) uses a PRF

F : {0, 1}λ × ([m] × {0, 1}m) → ({0, 1}λ \ {1λ}).

Thus the input domain of F is [m] × {0, 1}m, and it outputs a λ-bit string that
is assumed to never be 1λ (of course we can modify any PRF so that this is true
without affecting asymptotic security).

– Key generation Kore(1λ) outputs a random PRF key K
$← {0, 1}λ.

– Encryption Eore
K (x), on input a message x ∈ {0, 1}m, the algorithm computes

for each i = 1, . . . , m the value

ui = F (K, i ‖ x[1, . . . , i − 1] ‖ 0m−i+1) + x[i], (1)

where the addition is done by interpreting the bitstrings as members of
{0, . . . , 2λ − 1}. Encryption outputs (u1, . . . , um).
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– The comparison algorithm Core((u1, . . . , um), (u′
1, . . . , u

′
m)) takes as input two

ciphertexts. It finds the smallest i such that ui 	= u′
i, and it outputs 1 if

1(ui < u′
i).

Correctness follows by observing that the ui will be equal until the ui, u
′
i

corresponding to the first differing bit in the plaintexts. At that position, ui

and u′
i will differ by 1 (additively) and the smaller plaintext has the smaller

value. CLWW proved that Πclww-ore (and the variants below) are Lclww-secure,
assuming that F is a PRF. It is straightforward to derive from their proof that
Πclww-ore is also statistically-secure with the same leakage profile in the random-
oracle model.

Conversion to OPE. Chenette et al. showed how to convert this construc-
tion to an OPE scheme Πclww-ope by simply concatenating the members of a
ciphertext to form a bitstring in {0, 1}λm that is interpreted as a number for
comparison. This scheme is perfectly correct because of our assumption that F
never outputs the all-ones string, and thus the addition in (1) will never wrap
modulo 2λ.

Compressing ORE ciphertexts. Chenette et al. showed that one can modify
Πclww-ore to a new ORE scheme which has shorter ciphertext. More precisely,
the new scheme use a PRF F ′ with range only {0, 1, 2} instead of F , where

F ′ : {0, 1}λ × ([m] × {0, 1}m) → {0, 1, 2}.

Now encryption uses F ′, and for i = 1, . . . , m computes

ui = F ′(K, i ‖ x[1, . . . , i − 1] ‖ 0m−i+1) + x[i] mod 3. (2)

It outputs the vector (u1, . . . , un) ∈ {0, 1, 2}m.
Comparison now takes as input (u1, . . . , um) (u′

1, . . . , u
′
m). As before, it finds

the first i such that ui 	= u′
i. But now it outputs 1 if u′

i = ui + 1 mod 3, and
otherwise it outputs 0.

A ciphertext for an m-bit input is now a vector in {0, 1, 2}m, which can be
represented using log2(3)m + O(1) ≈ 1.58m bits.

4 Lower Bound Statement and Proof Sketch

We can now state our lower bound formally.

Theorem 2. Suppose Π = (K, E , C) is an order-preserving encryption scheme
with associated message space {0, 1}m and ciphertext space {0, 1}n, and that Π
is 2−λ-Lclww-statistically-secure. Then we have

n ≥ λm − m log m + m log e

In any practical OPE scenario we are aware of, we have log m − log e < λ and
thus our bound is nontrivial. For example, considering the message space is 40
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bytes, log m − log e = log 320/e < 7, while in real world encryption, the secure
parameter is always set to be 80 or larger.

Notation for the proof. To explain why this theorem is true we start with a
change of notation that is more convenient for the underlying statistical problem.
We will freely treat a string i ∈ {0, 1}m as a member of [2m−1]′ = {0, . . . , 2m−1}
when convenient (and similarly for strings in {0, 1}n). For each i ∈ {0, 1}m we
define a random variable Xi by Xi = EK(i), where K

$← K(1λ). These random
variables are dependent, and perfect correctness implies that X0 < X1 < · · · <
X2m−1 with probability one (here we are treating the Xi as numbers).

Now we consider what the ε-Lclww-statistical security implies about our r.v.s
X0, . . . , X2m−1. For every possible pair of vectors of messages m0,m1 that does
not automatically lose the game because of the leakage requirement, we get
a condition about the statistical distance of the distributions of two tuples of
random variables. For instance, if the adversary requests singleton vectors m0 =
i or m1 = j ∈ {0, 1}m then the leakage Lclww(i) = Lclww(j) = ∅, so we must
have that

Δ(Xi,Xj) ≤ ε

for every i, j. More generally, for any two vectors i = (i1, . . . , iq) and j =
(j1, . . . , jq) in ({0, 1}m)q with Lclww(i) = Lclww(j), we must have

Δ((Xi1 , . . . , Xiq ), (Xj1 , . . . , Xjq )) ≤ ε.

Thus we need to understand which i, j satisfy Lclww(i) = Lclww(j). Fortunately,
our proof will only require inputs of a particular structure. We observe that the
following qualify for t = 0, . . . ,m − 1:

i = (0, 2t+1 − 1) and j = (2t − 1, 2t).

In binary, i is (0m, 0m−t−11t+1) and j is (0m−t1t, 0m−t−110t). In both cases,
the most significant differing bit is in the t + 1-st least significant position (and
the messages are in the same order), so the leakage in the same.

But why should this choice be useful? It represents the most extreme cases of
two “distant” plaintexts and two “close” plaintexts that must appear indistin-
guishable. At a very high level, the scheme must “waste” a lot of its ciphertext
space in order to make pairs like this appear indistinguishable. This is because
the i side must have ciphertexts that are far apart (by roughly 2t+1) simply
because correctness forces many ciphertexts to be between X0 and X2t+1−1,
namely X1,X2, . . . , X2t+1−2. In order to appear indistinguishable, X2t−1 and
X2t must also be far apart, with no other ciphertexts between them (again by
correctness). Moreover, as t grows we get a nested sequence of pairs, where the
space wasted by the previous pair force the next to waste even more.

Our proof will argue that this wasted space grows to the quoted bound.
We consider the nested sequence of these tuples above, and then proceed by
induction to show that a large ciphertext-space is needed for security. The key



A Ciphertext-Size Lower Bound for OPE with Limited Leakage 167

X0 X2t−1 X2t X2t+1−1

Fig. 1. Two pairs of r.v.s that are required to be indistinguishable by the security
definition. The top arc represents the gap G1 and the bottom arc represents the gap G2.

step in our induction is that, since the tuples (X0,X2t+1−1) and (X2t−1,X2t)
must have statistical distance at most ε, then their gaps

G1 = X2t+1−1 − X0 and G2 = X2t − X2t−1

must also satisfy Δ(G1, G2) ≤ ε by the data processing inequality. But the gap
measured by G2 is a subset of the gap measured by G1, so G2 < G1. In fact, as we
show via induction on t, G2 must often be much less than G1 (since G1 contains
the gap from X2t−1 and X0, which is the previous step of the induction). Using
this fact, we apply the following lemma that is proved in Sect. 6 (Fig. 1).

Lemma 3. For any two variables X ≥ Y ∈ [N − 1]′, and distinct positive
integers d1, . . . , dk such that Pr[X = Y + di] = pi, we have

Δ(X,Y ) ≥
∑k

i=1 pi · di

N − 1
.

Intuitively, this lemma says that if one of the random variables is often much
bigger than the other, then they must have large statistical distance.

Contrast with big jump. The big jump attack of [4] gave a ciphertext-size
lower bound for any ideal OPE. With ideal ORE, every pair of two random
variables Xi1 < Xi2 and Xj1 < Xj2 must be indistinguishable, which gives the
attack more flexibility and results in an exponential bound (without resorting
to recursion). Instead our bound works with a particular nested set of m pairs,
with each step using a pair to increase the bound by roughly λ bits.

5 Proof of Theorem 2

We start with an additional technical lemma (proved in Sect. 7), and then give
the proof.

Lemma 4. Let X > Y ∈ [N − 1]′ be random variables such that Δ(X,Y ) ≤ δ.
Let i ≥ 1 and assume that for all q ∈ [0, 1], Pr[X > Y + (1−q)i

δi·i! ] ≥ q. Then for
all q ∈ [0, 1] we have

Pr[X >
(1 − q)i+1

δi+1(i + 1)!
] ≥ q.
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This lemma says that if X is often much larger Y , but also has small statistical
distance, then the support of X must include some very large elements, and in
fact X concentrates a significant portion of its mass on those large elements.
The proof of this lemma (and the proof of the theorem) depends on Lemma 3
from above. We remark that it is crucial that we have the same probability q
in the lemma assumption and conclusion, and achieving this requires a delicate
argument. A weaker conclusion, where q changes, is more easily achieved using
a Markov-type argument (and indeed earlier versions of this paper did exactly
this, resulting in a weaker bound).

5.1 Proof

Let Π = (K, E) be an OPE scheme with associated message space {0, 1}m and
ciphertext space {0, 1}n, and assume Π is 2−λ-Lclww-statistically-secure.

Below, for i ∈ [2m − 1]′, we let Xi = EK(i) where K
$← K(1λ) as in the

proof sketch. That is, the Xi are dependent random variables that represent the
encryption of message i under a random key. Note that X0 < X1 < · · · < X2m−1.

We will prove the theorem using following claim. Here, we let ε = 2−λ.

Lemma 5. For i ∈ [2m − 1]′, let Xi be defined as above. Then for 1 ≤ j ≤ m
and q ∈ [0, 1],

Pr[X2j−1 − X0 ≥ (1 − q)j−1

εj−1 · (j − 1)!
] ≥ q

Proof (of Lemma 5). The proof is by induction on j.

Case j = 1. This case reduces to Pr[X1 − X0 ≥ 1] = 1, which is true by the
correctness of the scheme.

Case j =⇒ j + 1. We need to show that for any q ∈ [0, 1]

Pr[X2j+1−1 − X0 ≥ (1 − q)j

εj · (j)!
] ≥ q.

By the correctness of the scheme, we have that

X2j+1−1 − X0 ≥ (X2j − X2j−1) + (X2j−1 − X0) + 1 (3)

Now define “gap” random variables G1 = X2j+1−1−X0 and G2 = (X2j −X2j−1).
By induction we know that for any q ∈ [0, 1]

Pr[X2j−1 − X0 ≥ (1 − q)j−1

εj−1 · (j − 1)!
] ≥ q.

Plugging this, and the definitions of G1, G2 into (3), we have

Pr[G1 > G2 +
(1 − q)j−1

εj−1 · (j − 1)!
] ≥ q.
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Moreover, we know by the ε-Lclww-statistical security of Π and Lemma 1 that
Δ(G1, G2) ≤ ε.

We now want to apply Lemma 4 to G1 and G2, to show that G1 must be large
and then conclude the induction. In the lemma, we set G1 = X,G2 = Y, i = j,
and δ = ε. The lemma gives

Pr[G1 >
(1 − q)j

εj · (j)!
] ≥ q,

obtaining the induction step.

We can now complete the proof of Theorem 2. The above lemma with j = m
tells us that for any q ∈ [0, 1]

Pr[X2m−1 > X0 +
(1 − q)m−1

εm−1 · (m − 1)!
] ≥ q,

and thus for any j ≤ D = 1/εm−1(m − 1)!,

Pr[X2m−1 > X0 + j] ≥ 1 − ((m − 1)! · j)1/m−1ε

and

j∑

�=1

Pr[X2m−1 = X0 + �] ≤ ((m − 1)! · j)1/m−1ε.

Besides, we claim D ≤ N − 1, if not, then there exists q > 0 such that

N − 1 =
(1 − q)m−1

εm−1 · (m − 1)!

referring to

Pr[X2m−1 > X0 + N − 1] ≥ q > 0

which contradicts Xi ∈ [N − 1]′.
Now we denote p� = Pr[X2m−1 = X0 + �], and according to Lemma 3, we get

that

ε ≥ Δ(X2m−1,X0) ≥
∑N−1

�=1 p� · �

N − 1
(4)
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and

N−1∑

�=1

p� · � = (p1 + · · · + pN−1) + (p2 + · · · + pN−1) + · · · + pN−1

≥ 1 + (1 − p1) + (1 − p1 − p2) + · · · + (1 − p1 − · · · − pD−1)

≥ 1 +
D−1∑

�=1

(1 − ((m − 1)!�)
1

m−1 · ε)

= D − (m − 1)!
1

m−1 · ε

D−1∑

�=1

�
1

m−1

≥ D − (m − 1)!
1

m−1 · ε ·
∫ D

0

x
1

m−1 dx

=
1

εm−1(m − 1)!
· 1
m

=
1

εm−1m!
.

Returning to (4), we have

N − 1 ≥ 1/εmm!.

By setting ε = 2−λ, we get

n ≥ λm − log(m!) ≥ λm − log((m/e)m) = λm − m log m + m log e.

�

6 Proof of Lemma 3

We recall the lemma.

Lemma 3. For any two variables X ≥ Y ∈ [N − 1]′, and distinct positive
integers d1, . . . , dk such that Pr[X = Y + di] = pi, we have

Δ(X,Y ) ≥
∑k

i=1 pi · di

N − 1
.

Proof. We will show that one of the distinguishers Di, i ∈ [N −1], has the needed
advantage, where Di is defined as follows: Given input T ∈ [N − 1]′, Di outputs
1 if and only if T ≥ i.
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The advantage of Di is δi = Pr[X ≥ i] − Pr[Y ≥ i]. We have that

N−1∑

i=1

δi =
N−1∑

i=1

Pr[X ≥ i] −
N−1∑

i=1

Pr[Y ≥ i]

=
N−1∑

i=0

Pr[X ≥ i] −
N−1∑

i=0

Pr[Y ≥ i] = E(X − Y ) ≥
k∑

i=1

pidi.

Thus some δi must be at least this sum divided by N − 1. �

7 Proof of Lemma 4

We first recall the lemma.

Lemma 4. Let X > Y ∈ [N − 1]′ be random variables such that Δ(X,Y ) ≤ δ.
Let i ≥ 1 and assume that for all q ∈ [0, 1], Pr[X > Y + (1−q)i

δi·i! ] ≥ q. Then for
all q ∈ [0, 1] we have

Pr[X >
(1 − q)i+1

δi+1(i + 1)!
] ≥ q.

Proof. Suppose for contradiction that there exists q∗ ∈ [0, 1] such that

q̂ := Pr[X > t] < q∗,

where t = (1 − q∗)i+1/δi+1(i + 1)!.
We will show that Δ(X,Y ) > δ, violating the assumption in the lemma. We

will prove this by showing the following “truncated” r.v.s W,Z satisfy Δ(X,Y ) ≥
Δ(W,Z) > δ, where W,Z are defined via the joint distribution

Pr[W = a, Z = b] =

⎧
⎪⎨

⎪⎩

Pr[X = a, Y = b] if (a, b) ∈ [t]2 \ (0, 0),
q̂ if (a, b) = (0, 0)
0 otherwise

.

According to the definition of (W,Z), we show Δ(X,Y ) ≥ Δ(W,Z). For simpli-
fying, we denote

pi,j = Pr[X = i, Y = j]; pj =
t∑

k=0

pk,j ; p∗
j =

N−1∑

k=t+1

pk,j ; ∀i, j ∈ [t]

and it’s obvious to note that for j ∈ [t]: (1) Pr[X = j] = Pr[W = j]; (2) Pr[Z =
j] = pj ; (3) Pr[Y = j] = pj +p∗

j ; (4)
∑t

k=0 p∗
j =

∑N−1
k=t+1(Pr[X = k]−Pr[Y = k]).
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Hence:

2Δ(X,Y ) =
N−1∑

j=0

|Pr[X = j] − Pr[Y = j]|

=
t∑

j=0

|Pr[X = j] − Pr[Y = j]| +
N−1∑

j=t+1

|Pr[X = j] − Pr[Y = j]|

≥
t∑

j=0

|Pr[X = j] − Pr[Y = j]| +
N−1∑

j=t+1

(Pr[X = j] − Pr[Y = j])

=
t∑

j=0

|Pr[X = j] − Pr[Y = j]| +
t∑

j=0

p∗
j

=
t∑

j=0

|Pr[W = j] − Pr[Z = j] − p∗
j | +

t∑

j=0

p∗
j

≥
t∑

j=0

|Pr[W = j] − Pr[Z = j]| = 2Δ(W,Z)

In the following, it suffices to show that Δ(W,Z) > δ. We denote dj = Pr[W =
Z + j]. Applying Lemma 3,

Δ(W,Z) ≥
∑t

�=1 d� · �

t
.

We now show that
∑t

�=1 d� · � > δt, completing the proof. Below we use the
following technical claim, which we establish below:

Claim. In the notation of the proof, we have the following:

1.
∑t

�=1 d� = 1 − q̂,
2. For each j,

∑j
�=1 d� ≤ (i! · j)1/iδ,

3. t ≥ t̂, where t̂ = (1 − q̂)i/δii!.

Using the claim, we have

t∑

�=1

d� · � ≥
t̂∑

�=1

d� · � = (d1 + . . . + dt̂) + (d2 + . . . + dt̂) + . . . + (dt̂)

≥ (1 − q̂) + ((1 − q̂) − d1) + ((1 − q̂) − d1 − d2) + . . . + ((1 − q̂) − d1 − . . . − dt̂−1)

≥ (1 − q̂)t̂ −
t̂−1∑

�=1

(�i!)1/iδ

≥ (1 − q̂)t̂ − (i!)1/iδ

∫ t̂

0
x1/idx

= (1 − q̂)i+1 t̂ − (i!)1/iδ · i

i + 1
t̂
i+1
i =

(1 − q̂)i+1

δi(i + 1)!
> δt.
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We now prove the claim. The first part follows easily from the definition of
W,Z. For the second part, we have

j∑

�=1

d� ≤
j∑

�=1

Pr[X = Y + �] = 1 − Pr[X > Y + j] ≤ (i!j)1/iδ,

where the last inequality follows since Pr[X > Y + (1 − q)i/δii!] ≥ q holds for
all q ∈ [0, 1], and particular q = 1 − (i!j)1/iδ.

For the third part of the claim, suppose for contradiction that t < t̂. Then

Pr[X > t] ≥ Pr[X > Y + t] ≥ 1 − (i!t)1/iδ > 1 − (i!t̂)1/iδ = q̂.

(The second inequality is another application of the condition in the lemma,
similar to the proof of the second part.) But this contradicts the definition q̂ =
Pr[X > t] and proves the third part of the claim. �

8 Extensions of the Lower Bound

Our lower bound applies to the specific definition achieved by Chenette et al.,
and it is possible to circumvent the bound by targeting a different, but hopefully
satisfactory, notion of security. In this section we identify an abstract property,
which we term inner-distance-indistinguishablity, for which a similar lower bound
applies. Thus, to avoid the bound for OPE with another definition, one must
avoid this property, and the authors are not aware of an approach for doing so.

We also show how to apply our proof technique to give an essentially-tight
lower bound on the ciphertext length of the “base-d” OPE variants suggested
by Chenette et al., which achieve a weakened version of security with shorter
ciphertexts.

Inner-distance-indistinguishablity. The following property seems mostly
useful as a tool for understanding and generalizing the lower bound, and not as
a stand-alone target for OPE security in practice.

Definition 6. Let Π = (K, E , C) be an OPE scheme with associated message
space M , d ≥ 1 be an integer, and ε > 0. We say that Π is (statistically) ε- inner-
distance-indistinguishable for width d (denoted ε-IDId ) if for all i < j ∈ M such
that j − i > d, there exist k, � ∈ M such that

1. i ≤ k < � ≤ j
2. � − k ≤ d
3. Δ(D1,D2) ≤ ε, where D1 = EK(j) − EK(i) and D2 = EK(k) − EK(�) and K

is random key.

Intuitively, ε-IDId says that the distance between every encrypted pair of
messages must be indistinguishable from the gap between two encrypted mes-
sages which both lie between them, and moreover the latter gap is required to
be small, namely d or less.
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The CLWW notion implies ε-IDI1 security. That is, for every pair i < j,
EK(j) − EK(i) is distinguishable from EK(k + 1) − EK(k) for some k between i
and j (when d = 1, we must have � = k + 1 in the definition).

To see this, fix some i, j, with j > i+1, and consider their binary expansions.
We may write i in the form p ‖ 0 ‖ x and j in the form p ‖ 1 ‖ y, where p is the
longest common prefix and i and j, and x, y ∈ {0, 1}L for some L ≥ 1. Then
consider

k = p ‖ 0 ‖ 1L and � = p ‖ 1 ‖ 0L.

We have that � = k+1 (treating �, k as numbers), and that either k 	= i or � 	= j.
Moreover the CLWW security notion ensures that the condition of IDI1 security
holds for this choice of k, �.

The following theorem generalizes Theorem 2.

Theorem 7. Suppose Π = (K, E , C) is an order-preserving encryption scheme
with security parameter λ and associated message space {0, 1}m and ciphertext
space {0, 1}n, and Π is 2−λ-IDId secure for some d ≥ 1. Let m′ = m − �log d�.
Then we have

n ≥ λm′ − m′ log m′ + m′ log e

Proof. Let Π = (K, E , C) be an OPE scheme with the syntax and conditions
in the theorem. Below, for i ∈ {0, 1}m, we write Xi = EK(i), and let m′ be as
defined in the theorem.

We will show how to carry out the same strategy used in the proof of
Theorem 2. We will prove a version of Lemma 5 for a different nested sequence
of pairs of messages (iLj , iRj )m′

j=1 that we define inductively from m′ down to 1
now.

– Base: iLm′ = 0, iRm′ = 2m − 1.
– Step: Given (iLj , iRj ), let k < � be the pair between iLj and iRj guaranteed by

IDId security. We distinguish two cases:
1. If k − iLj > iRj − � then set (iLj−1, i

R
j−1) to be (iLj , k).

2. Otherwise, set (iLj−1, i
R
j−1) to (�, iRj ).

Intuitively, we use the IDId security property to find a nested sequence by moving
to the “larger” gap at each step, and this continues for at least m′ steps. Using
this sequence, the rest of the proof of Lemma 5 can be carried out. Finally, the
rest of the proof of Theorem 2 can be applied exactly as before. �

Extension to OPE variants. We can also extend our proof of Theorem 2 to
the “d-ary” variants of Chenette et al. That construction saved a modest amount
of space over the main CLWW construction via additional leakage, which is
described via the following leakage profile Ld

clww:

Ld
clww(x1, . . . , xq) := {(i, j, ind(d)diff(xi, xj),1(xi < xj)) : 1 ≤ i < j ≤ q},
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where ind
(d)
diff(a, b) writes its inputs in base d as a = (a[1], . . . , a[m]) and b =

(b[1], . . . , b[m]), and outputs (k, |b[k] − a[k]|), where k is the smallest index such
that b[k] 	= a[k]. If there is not such index (i.e. a = b) then it outputs (m + 1, 0).

Intuitively, this leakage outputs the index of the first base-d digit where each
pair of messages differ, and additionally outputs the absolute difference in that
digit. (When d = 2 the additional output is trivial, since it is always 1.)

We will show how to carry out the same strategy used in the proof of
Theorem 2. Here we denote m∗ = m/ log d − 1, and we will prove a version
of Lemma 5 for a different nested sequence of pairs of messages (iLj , iRj )m∗

j=1 that
we define as follows:

iLj = 0, iRj = 0m∗−j ||1||(d − 1)j

And we define the pair îLj , îRj as:

îLj = 0m∗−j ||0||(d − 1)j , îRj = 0m∗−j ||1||0j

According to the leakage profile, we have (EK(iLj ), EK(iRj ) ) and (EK (̂iLj ), EK (̂iRj ))
are statistical indistinguishable. Using the sequence (iLj , iRj )m∗

j=1, the rest of the
proof of Lemma 5 can be carried out. Finally, the rest of the proof of Theorem 2
can be applied exactly as before. Hence we have the lower bound:

n ≥ λ(m/ log d) − (m/ log d) log(m/ log d)

referring to d-ary CLWW is also almost optimal.
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Abstract. Order-preserving encryption emerged as a key ingredient
underlying the security of practical database management systems.
Boldyreva et al. (EUROCRYPT ’09) initiated the study of its security
by introducing two natural notions of security. They proved that their
first notion, a “best-possible” relaxation of semantic security allowing
ciphertexts to reveal the ordering of their corresponding plaintexts, is
not realizable. Later on Boldyreva et al. (CRYPTO ’11) proved that any
scheme satisfying their second notion, indistinguishability from a ran-
dom order-preserving function, leaks about half of the bits of a random
plaintext.

This unsettling state of affairs was recently changed by Chenette et al.
(FSE ’16), who relaxed the above “best-possible” notion and constructed
a scheme satisfying it based on any pseudorandom function. In addition
to revealing the ordering of any two encrypted plaintexts, ciphertexts in
their scheme reveal only the position of the most significant bit on which
the plaintexts differ. A significant drawback of their scheme, however, is
its substantial ciphertext expansion: Encrypting plaintexts of length m
bits results in ciphertexts of length m · � bits, where � determines the
level of security (e.g., � = 80 in practice).

In this work we prove a lower bound on the ciphertext expansion of
any order-preserving encryption scheme satisfying the “limited-leakage”
notion of Chenette et al. with respect to non-uniform polynomial-time
adversaries, matching the ciphertext expansion of their scheme up to
lower-order terms. This improves a recent result of Cash and Zhang (TCC
’18), who proved such a lower bound for schemes satisfying this notion
with respect to computationally-unbounded adversaries (capturing, for
example, schemes whose security can be proved in the random-oracle
model without relying on cryptographic assumptions). Our lower bound
applies, in particular, to schemes whose security is proved in the standard
model.
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1 Introduction

An order-preserving encryption (OPE) scheme is a private-key encryption
scheme whose ciphertexts preserve the numerical ordering of their correspond-
ing plaintexts. Such schemes were introduced in the database community by
Agrawal et al. [2] for enabling efficient indexing of encrypted data and efficient
range queries over encrypted databases. By now, order-preserving encryption
has become a key cryptographic ingredient underlying the security of database
management systems (see [17] for a long list of OPE-based commercial systems).

The Security of OPE. Given that the ciphertexts of any order-preserving
encryption scheme reveal the numerical ordering of their corresponding plain-
texts, such schemes clearly cannot satisfy the standard notion of semantic secu-
rity. This motivated Boldyreva, Chenette, Lee and O’Neill [3,4] to initiate a
foundational study of the security of order-preserving encryption. They intro-
duced two notions of security for such schemes. Their first notion is a “best-
possible” relaxation of the standard semantic security notion, allowing cipher-
texts to reveal only the numerical ordering of their corresponding plaintexts.
Informally, their notion asks that the encryptions of any two sequences of plain-
texts should be indistinguishable as long as the two sequences share the same
order pattern. Unfortunately, Boldyreva et al. then proved that such a notion
cannot be satisfied.

Their second notion asks that an order-preserving encryption scheme should
be indistinguishable from a random order-preserving function (similarly to the
standard notion of pseudorandomness for pseudorandom functions). Boldyreva
et al. provided an efficient scheme that satisfies this notion, but it was later
on demonstrated by Boldyreva, Chenette and O’Neill [5,6] that a random order-
preserving function may in fact reveal substantial information on its input (specif-
ically, about half of the bits of a random message) – and thus this notion may
not be sufficiently strong for most applications.

Limited-Leakage OPE. The absence of a strong (and realizable) notion of
security has somewhat questioned our confidence in the potential security guar-
antees of order-preserving encryption. This state of affairs, however, has recently
changed due to the work of Chenette, Lewi, Weis and Wu [13]. They rigorously
relaxed the “best-possible” notion introduced by Boldyreva et al. [3,4] to allow a
limited amount of well-defined “leakage” [11], and constructed a practical scheme
that satisfies it, based on pseudorandom functions. Concretely, in addition to
revealing the relative ordering of any two encrypted plaintexts, ciphertexts in
their scheme reveal the position of the most significant bit on which they dif-
fer – but no additional information is revealed. We refer to this specific leakage
as “CLWW-leakage”, and to schemes that satisfy their notion as LCLWW-secure
schemes.

Drawback: Ciphertext Expansion. Incorporating the limited-leakage scheme
of Chenette et al. in practical OPE-based systems finally enables to rigorously
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reason about their security. However, a significant drawback of their scheme is its
ciphertext expansion. Roughly speaking, encrypting plaintexts of length m bits
using their scheme results in ciphertexts of length m · � bits, where � determines
the level of security (i.e., “� bits of security” – we discuss the relation between the
ciphertext expansion and the security of their scheme in more detail in Sect. 1.1).

In fact, Chenette et al. first constructed an order-revealing encryption scheme
[5,9] with ciphertexts of length only �log2 3 · m� bits, and then showed that the
main ideas underlying their scheme can be used to construct an order-preserving
encryption scheme – but with significantly longer ciphertexts (see Sect. 1.2 for
more details on the less-strict notion of order-revealing encryption). Given the
practical importance of order-preserving encryption, this poses the question of
whether or not such a significant expansion is inherent.

Initial evidence indicating that such an expansion is inherent was recently
provided by Cash and Zhang [14]. They introduced an information-theoretic vari-
ant of the limited-leakage notion of security considered by Chenette et al. (that
is, a notion of security with respect to computationally-unbounded adversaries
and CLWW-leakage), and showed that any scheme satisfying it must suffer from
a significant ciphertext expansion, matching the ciphertext expansion in the
scheme of Chenette et al. up to lower-order terms.

As discussed by Cash and Zhang, although no scheme can satisfy their
information-theoretic notion in the standard model, they nevertheless capture
schemes whose security can be proved in the random-oracle model without rely-
ing on any cryptographic assumption. They do not capture, however, schemes
whose security is proved in the standard model based on cryptographic assump-
tions (such as the existence of pseudorandom functions, and specific number-
theoretic or combinatorial assumptions).

1.1 Our Contributions

In this paper we prove a tight lower bound on the ciphertext expansion of any
order-preserving encryption scheme that satisfies the “limited-leakage” notion of
security considered by Chenette et al. [13]. In its weakest form, this notion asks
that the encryptions of any two sequences of plaintexts should be indistinguish-
able as long as the two sequences share the same CLWW-leakage, as discussed
above (see Sect. 2 for the formal definition). We prove the following theorem:

Theorem (informal). Let Π be an order-preserving encryption scheme with
m-bit plaintexts and n-bit ciphertexts. Then, there exists a non-uniform
polynomial-time adversary A that breaks the LCLWW-security of the scheme with
probability at least 2−n/m · m−1.

Under the minimal requirement that the success probability of any efficient
adversary in breaking the LCLWW-security of the scheme should be negligible,
our theorem implies that ciphertexts must be of length at least n = m · ω(log λ)
bits, where λ ∈ N is the security parameter. Practically, when aiming at (say)
80 bits of security (and focusing, for simplicity, on the significant 2−n/m term),
this implies that ciphertexts must be of length at least roughly n = 80m bits.



180 G. Segev and I. Shahaf

Comparison to the Cash-Zhang Lower Bound. When compared to the
lower bound proved by Cash and Zhang [14], our lower bound and their lower
bound are identical in terms of the attacker’s success probability (and, thus, in
terms of the implications on the ciphertext expansion). As discussed above, how-
ever, their lower bound applies to an information-theoretic variant of the notion
of security to which our lower bound applies. Concretely, Cash and Zhang prove
their lower bound by analyzing the statistical distance between ciphertext distri-
butions (which translates into a computationally-unbounded adversary), whereas
we prove our lower bound by presenting a non-uniform polynomial-time adver-
sary1. Thus, our lower bound applies to any LCLWW-secure order-preserving
encryption scheme, and most notably to such schemes whose security is proved
in the standard model.

The Tightness of Our Lower Bound. Looking into the security of the scheme
provided by Chenette et al. [13] (when adapted to offer perfect correctness as
suggested by Cash and Zhang), we observe that our lower bound is in fact tight
up to low-order terms. Specifically, their scheme is based on the existence of
any pseudorandom function F mapping inputs of length at most m = m(λ) bits
to outputs of length � = �(λ) bits, and encrypting plaintexts of length m bits
using their scheme results in ciphertexts of length n = m · � bits. An analysis
of the security of their construction shows that the advantage AdvOPE

Π,LCLWW,A of
any adversary A in breaking the LCLWW-security of their scheme can be upper
bounded as

AdvOPE
Π,LCLWW,A ≤ AdvPRF

F,B +
m · q

2�
,

where q = q(λ) denotes the number of encryption queries made by A, AdvPRF
F,B

denotes the advantage of an algorithm B (efficiently derived from A) in break-
ing the pseudorandomness of F, and recall that � = n/m. The above theorem
provides a lower bound on the advantage of our specific adversary (which issues
only q = 2 encryption queries), and this yields

1
2n/m · m

≤ AdvOPE
Π,LCLWW,A(λ) ≤ AdvPRF

F,B (λ) +
m · 2
2n/m

.

Up to the lower-order terms in the above expression2, our lower bound and
the security of the scheme constructed by Chenette et al. match.

1 Although utilizing non-uniformity in cryptographic constructions, reductions, and
impossibility proofs is rather standard [19,20,22] (e.g., given the practical bene-
fits of preprocessing-based attacks [8,10,12,16,23]), an interesting open question is
whether or not the above theorem can even be proved via a uniform polynomial-time
adversary.

2 Assuming, in addition, that the security of the pseudorandom function is not the
main bottleneck (for example, by choosing a sufficiently large security parameter, or
by using AES in practice).
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1.2 Related Work

Boldyreva, Chenette and O’Neill [5] introduced the notion of an order-revealing
encryption (ORE) scheme, which is a less-strict variant of order-preserving
encryption scheme3. Such schemes allow to compare plaintexts by invoking a
publicly-computable comparison algorithm on their ciphertexts (no secret key is
required), and can be viewed as a specific form of multi-input functional encryp-
tion [1,7,18,24]. The notion of order-preserving encryption is then obtained by
requiring, in addition, that the comparison algorithm is simply a numerical com-
parison. Based on assumptions involving multi-linear maps, Boneh et al. [9]
presented a (rather theoretical) construction of an ORE scheme that satisfies
the aforementioned “best-possible” security notion of Boldyreva et al. [3]. This
stands in contrast to the impossibility of Boldyreva et al. for constructing an
order-preserving encryption scheme satisfying the same “best-possible” security
notion.

As for ORE schemes that satisfy weaker notions of security, as mentioned
above Chenette et al. [13] constructed an efficient LCLWW-secure ORE scheme
that has ciphertexts of length only �log2 3 · m�, where m is the length of their
corresponding plaintexts, and their construction is based on pseudorandom func-
tions.

Finally, when dealing with encryption schemes that inherently leak non-
trivial information, one should always pay attention to potential attacks that
may be enabled by such leakage. Indeed, such attacks on order-revealing encryp-
tion are known in some specific settings (e.g., [15,21]), but this does not rule out
their deployment in other settings.

1.3 Overview of Our Approach

In this section we provide a brief overview of the main ideas underlying the proof
of our lower bound. In what follows, let Π = (KeyGen,Enc) be an order-preserving
encryption scheme with plaintexts of length m bits and ciphertexts of length n bits
(both m and n may be functions of the security parameter λ ∈ N – see Sect. 2 for the
formal definition of such a scheme). For any plaintext i ∈ {0, 1}m, viewed an inte-
ger 0 ≤ i ≤ 2m−1, we denote by Xi = EncK(i) the random variable corresponding
to an encryption of i with respect to a randomly-generated key K ← KeyGen(1λ).
Each such random variable Xi is distributed over {0, 1}n, and is viewed as an inte-
ger 0 ≤ Xi ≤ 2n − 1. In addition, we let ε = 2−n/m · m−1 (note that this is the
success probability stated by our theorem), and let Δ(X,Y ) denote the statistical
distance between the distributions X and Y .

The Proof of Cash and Zhang. Cash and Zhang [14] observed that for every
1 ≤ j ≤ m − 1 it holds that LCLWW(0, 2j+1 − 1) = LCLWW(2j − 1, 2j), where

3 Boldyreva et al. referred to such schemes as efficiently-orderable encryption schemes.
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LCLWW is the CLWW-leakage as discussed above4. Assuming towards a con-
tradiction that a scheme Π is LCLWW-secure in the statistical sense that no
computationally-unbounded adversary has advantage larger than ε, then the
distributions (EncK(0),EncK(2j+1 − 1)) and (EncK(2j − 1),EncK(2j)) must be
statistically close, as both (0, 2j+1 − 1) and (2j − 1, 2j) have the same CLWW-
leakage. That is, it must hold that

Δ((X0,X2j+1−1), (X2j−1,X2j )) ≤ ε.

Therefore, denoting Gj
1 = X2j+1−1 −X0 and Gj

2 = X2j −X2j−1, and noting that
applying the same function to two distributions cannot increase their statistical
distance, it also holds that Δ(Gj

1, G
j
2) ≤ ε. By the order-preserving property of

the scheme, it holds that Gj
1 ≥ 0, Gj

2 ≥ 0, and that

Gj
1 = X2j+1−1 − X0 ≥ (X2j − X2j−1) + (X2j−1 − X0) = Gj

2 + Gj−1
1 .

This shows that Gj
1 is ε-statistically-close to Gj

2, and that Gj
1 is larger than Gj

2

by at least Gj−1
1 . Equipped with this observation, Cash and Zhang inductively

proved that the support of Gj−1
1 must contain “large” values, and that the

support of Gj
1 must contain even larger values. As a final step, note that X2m−1 =

X0 + Gm−1
1 and also Δ(X0,X2m−1) ≤ ε as it trivially holds that LCLWW(0) =

LCLWW(2m −1). Using their reasoning once again, they deduced that the support
of X2m−1 must contain values larger than 2n−1, which contradicts the definition
of X2m−1 as an integer in the range {0, . . . , 2n − 1}.

Our Approach: A Non-uniform Polynomial-Time Adversary. When con-
sidering schemes that are LCLWW-secure in the standard computational sense, we
cannot take advantage of the fact that Δ(Gj

1, G
j
2) ≤ ε and apply the reasoning

of Cash and Zhang. Instead, we show that if the consequence of the reasoning
of Cash and Zhang does not hold (specifically, if the support of Gj

1 does not
contain large values), then there exists a polynomial-time test that distinguishes
between Gj

1 and Gj
2: Given a sample y from either Gj

1 or Gj
2, our distinguisher

checks whether y ≤ t for some fixed threshold value 0 ≤ t ≤ 2n − 1.
Then, assuming that the consequence of the reasoning of Cash and Zhang

does hold for every step 1 ≤ j ≤ m−1, we can then prove via an additional step
that either there is a threshold test for distinguishing between X0 and X2m−1,
or it holds that support of X2m−1 contains values larger than 2n − 1. Since
the second case contradicts the definition of X2m−1 as an integer in the range
{0, . . . , 2n − 1}, it must be that the first case holds.

As a result, either there exist 1 ≤ j ≤ m − 1 and 0 ≤ t ≤ 2n − 1 such that
given ciphertexts (c1, c2) ∈ {(X0,X2j+1−1), (X2j−1,X2j )}, the test c1 − c2 ≤ t

4 Specifically, for any distinct two plaintexts mi and mj it holds that LCLWW(mi, mj) =
(inddiff(mi, mj),1(mi < mj)), where inddiff(mi, mj) ∈ {1, . . . , m, ⊥} is the index of
the most significant bit on which mi and mj differ, and 1(mi < mj) ∈ {0, 1} indicates
whether or not mi < mj . For the full definition of LCLWW, which takes as input an
arbitrary number of messages, see Sect. 2.
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distinguishes between the two cases, or there exists 0 ≤ t ≤ 2n − 1 such that
given a ciphertext c ∈ {X0,X2m−1}, the test c ≤ t distinguishes between the two
cases. This translates into a non-uniform polynomial-time adversary that breaks
the LCLWW-security of any given scheme with probability at least ε, where the
non-uniform advice specifies which test out of the m possible tests to perform,
as well as which threshold value 0 ≤ t ≤ 2n − 1 to use. We refer the reader to
Sect. 3 for our proof.

2 Preliminaries

In this section we present the notation and definitions that are used in this
work. We denote by λ ∈ N the security parameter. For a distribution X we
denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x
from the uniform distribution over X . A function negl : N → R≥0 is negligible
if for every constant c > 0 there exists an integer Nc such that negl(n) < n−c

for all n > Nc. All logarithms in this paper are to the base of 2. The statistical
distance between two random variables X and Y over a finite domain Ω is
Δ(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω]|.

Order-Preserving Encryption [2,3]. An order-preserving encryption scheme
Π is a pair (KeyGen,Enc) of probabilistic polynomial-time algorithms satisfying
the following requirements for parameters m = m(λ) and n = n(λ):

– The key-generation algorithm KeyGen takes as input the security parameter
λ ∈ N in unary representation and outputs a secret key K.

– The encryption algorithm Enc takes as input a secret key K and a plaintext
x ∈ {0, 1}m interpreted as a numerical value 0 ≤ x ≤ 2m − 1, and outputs
ciphertext c ∈ {0, 1}n interpreted as a numerical value 0 ≤ c ≤ 2n − 1.

Note that a decryption algorithm is not required by this definition. We say
that Π is correct if for all λ ∈ N and 0 ≤ i < j ≤ 2m(λ) − 1 it holds that
Pr[EncK(i) < EncK(j)] = 1, where K ← KeyGen(1λ).

Remark. It is also possible to consider a relaxed game-based correctness notion,
where a probabilistic polynomial-time adversary (without explicit access to the
secret key) should not be able to come up with plaintexts 0 ≤ i < j ≤ 2m(λ) − 1
such that EncK(i) ≥ EncK(j), expect with a negligible probability. In Sect. 3, we
discuss the effect of such a relaxation on our lower bound.

Security. We prove our lower bound for any scheme that satisfies the following
non-adaptive indistinguishability-based security notion. This notion is (tightly)
implied by its (stronger) adaptive and/or simulation-based variants, and thus
our lower bound applies to those as well.
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More concretely, given a scheme Π = (KeyGen,Enc), a leakage function L,
an algorithm A, a bit b ∈ {0, 1}, and a security parameter λ, we consider the
following experiment.

The experiment IndOPE
Π,L,A,b(λ)

1. K ← KeyGen(1λ).
2. (m0,m1, state) ← A(1λ), where m0 and m1 are plaintext vectors of the

same length (which we denote by q).
3. c = (c1, . . . , cq), where ci ← EncK(mb[i]) for every 1 ≤ i ≤ q.
4. b′ ← A(state, c).
5. If L(m0) = L(m1) then the experiment outputs b′, and otherwise it

outputs 0.

The advantage of A is defined as

AdvOPE
Π,L,A(λ) =

∣
∣
∣Pr[IndOPE

Π,L,A,1(λ) = 1] − Pr[IndOPE
Π,L,A,0(λ) = 1]

∣
∣
∣ .

As discussed above, in this paper we consider security with respect to non-
uniform polynomial-time adversaries, captured by the following definition:

Definition 2.1. An order-preserving encryption scheme Π is L-secure if for
every non-uniform polynomial-time algorithm A it holds that AdvOPE

Π,L,A(λ) is
negligible.

In this work we consider the leakage function introduced by Chenette et al.
[13]:

LCLWW(x1, . . . , xq) = {(i, j, inddiff(xi, xj),1(xi < xj)) : 1 ≤ i < j ≤ q},

where inddiff(xi, xj) ∈ {1, . . . , m,⊥} is the index of the most significant bit on
which xi and xj differ (and is set to ⊥ if xi = xj), and 1(xi < xj) ∈ {0, 1}
indicates whether or not xi < xj .

3 Our Lower Bound

In this section we prove the following theorem, and then show that it can be
extended to schemes without perfect correctness.

Theorem 3.1. Let Π be an order-preserving encryption scheme with plaintext
length m = m(λ) bits and ciphertext length n = n(λ) bits, where λ ∈ N is the
security parameter. Then, there exists a non-uniform polynomial-time adversary
A such that AdvOPE

Π,LCLWW,A(λ) ≥ 2−n/m · m−1 for all λ ∈ N.
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Proof. For any 1 ≤ j(λ) ≤ m(λ) − 1 and 0 ≤ t(λ) ≤ 2n(λ) − 1, we define an
adversary Aj,t that participates in the experiment IndOPE

Π,L,A,b(λ) (see Sect. 2) as
follows:

The adversary Aj,t :

– Given a security parameter 1λ as input, Aj,t outputs (m0,m1, state) =
((0, 2j+1 − 1), (2j − 1, 2j),⊥).

– Given a state state = ⊥ and ciphertexts c = (c1, c2) as input, Aj,t outputs
1 if c2 − c1 ≤ t and 0 otherwise.

Additionally, we define an adversary Bt as follows:

The adversary Bt :

– Given a security parameter 1λ as input, Bt outputs (m0,m1, state) =
((2m − 1), (0),⊥).

– Given a state state = ⊥ and a single ciphertext c = (c1) as input, Bt

outputs 1 if c1 ≤ t and 0 otherwise.

It is easy to verify that both Aj,t and Bt output plaintext vectors with the
same CLWW-leakage, and thus these are valid adversaries.

From this point on we fix a security parameter λ ∈ N and omit it for ease of
notation. Denoting ε = 2−n/m·m−1, we show that either there exist 1 ≤ j ≤ m−1
and 0 ≤ t ≤ 2n − 1 such that AdvOPE

Π,LCLWW,Aj,t
≥ ε or there exists 0 ≤ t ≤ 2n − 1

such that AdvOPE
Π,LCLWW,Bt

≥ ε. This guarantees that the following non-uniform
polynomial-time adversary A satisfies AdvOPE

Π,LCLWW,A ≥ ε as claimed: Given a
non-uniform advise j ∈ {1, . . . , m − 1,⊥} and 0 ≤ t ≤ 2n − 1, if j 
= ⊥ then A
invokes Aj,m, and if j = ⊥ it invokes Bt.

For any 0 ≤ i ≤ 2m − 1 let Xi = EncK(i) where K ← KeyGen(1λ). Then, by
the definition of the above adversaries it holds that

AdvOPE
Π,LCLWW,Aj,t

= |Pr[X2j − X2j−1 ≤ t] − Pr[X2j+1−1 − X0 ≤ t]|
and

AdvOPE
Π,LCLWW,Bt

= |Pr[X0 ≤ t] − Pr[X2m−1 ≤ t]| .
For a parameter 1 ≤ j ≤ m − 1, consider the following property:

Property(j): For each t ∈ N it holds that

Pr[X2j+1−1 ≤ X0 + t] ≤ (t · j!)1/j · ε
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We proceed to consider three cases, according to what values 1 ≤ j ≤ m − 1
(if any) satisfy Property(j).

Case I: Property(1) does not hold. In this case we rely on the following
lemma, which we prove in Sect. 4.

Lemma 3.2. Let (X,Y ) be jointly distributed random variables, taking values
in Z≥0, such that X > Y , and let ε ≥ 0. Then, at least one of the following must
hold:

1. For every t ∈ Z≥0 it holds that Pr[X ≤ t] ≤ t · ε.
2. There exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε.

Observing that X3−X0 > X2−X1 and applying Lemma 3.2 for X = X3−X0

and Y = X2 −X1, since Property(1) does not hold the second case of the lemma
must hold. That is, there exists t ∈ Z≥0 such that Pr[X2−X1 ≤ t]−Pr[X3−X0 ≤
t] ≥ ε, and so A1,t is an adversary with an advantage of at least ε.

Case II: Property(m− 1) holds. In this case we rely on the following lemma,
which we prove in Sect. 4.

Lemma 3.3. Let (X,Y ) be jointly distributed random variables, taking values
in Z≥0, such that X ≥ Y . Suppose there exist i ∈ N and ε ≥ 0 such that for
every k ∈ Z≥0 it holds that Pr[X ≤ Y + k] ≤ (k · i!)1/i · ε. Then, at least one of
the following must hold:

1. For every t ∈ Z≥0 it holds that Pr[X ≤ t] ≤ (t · (i + 1)!)1/(i+1) · ε.
2. There exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε.

Applying Lemma 3.3 for X = X2m−1 and Y = X0, the conditions hold since
X2m−1 ≥ X0 and Property(m − 1) holds, and we obtain that either there exists
t ∈ Z≥0 such that Pr[X0 ≤ t] − Pr[X2m−1 ≤ t] ≥ ε, or for every t ∈ Z≥0 it
holds that Pr[X2m−1 ≤ t] ≤ (t · m!)1/m · ε. In the first case we get that Bt is an
adversary with an advantage of at least ε. In the second case, for t = 2n − 1 we
get that 1 = Pr[X2m−1 ≤ 2n − 1] < (2n · m!)1/m · ε. But then, using the bound
m! ≤ mm which holds for every positive m, we obtain that

ε > 2−n/m · (m!)−1/m

≥ 2−n/m · m−1,

which contradicts our definition of ε.

Case III: Property(1) holds but Property(m − 1) does not hold. In this
case let 2 ≤ j ≤ m − 1 be the smallest j for which Property(j) does not hold.
Observing that X2j+1−1 − X0 ≥ (X2j − X2j−1) + (X2j−1 − X0) and applying
Lemma 3.3 for X = X2j+1−1 − X0 and Y = X2j − X2j−1, the conditions hold
since Property(j − 1) holds, and we obtain that since Property(j) does not hold
then the second case of the lemma must hold. That is, there exists t ∈ Z≥0 such
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that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε, so Aj,t is an adversary with advantage of at
least ε. �
Extending the Proof to Schemes Without Prefect Correctness. We note
that our lower bound is only based on the correctness of the scheme with respect
to a polynomial number of pairs of plaintexts, that is, all pairs of plaintexts
from the set {2j : 1 ≤ j ≤ m − 1(λ)} ∪ {2j − 1 : 0 ≤ j ≤ m(λ)}. Therefore,
even for a scheme that satisfies a relaxed game-based correctness notion, it must
hold that the scheme is correct for all those pairs of plaintexts with probabil-
ity 1 − negl(λ), where negl is a fixed negligible function. Hence, similarly to
Theorem 3.1, there must exist a non-uniform polynomial-time adversary A such
that AdvOPE

Π,LCLWW,A(λ) ≥ 2−n/m · m−1 − negl(λ) for all λ ∈ N.

4 Proofs of Lemma 3.2 and Lemma 3.3

We restate and prove Lemma 3.2.
Lemma 3.2. Let (X,Y ) be jointly distributed random variables, taking values in
Z≥0 , such that X > Y , and let ε ≥ 0. Then, at least one of the following must
hold:

1. For every t ∈ Z≥0 it holds that Pr[X ≤ t] ≤ t · ε.
2. There exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε.

Proof. Assume that there exists t ∈ N such that Pr[X ≤ t] > t · ε (the case
t = 0 is impossible since then Y < 0), and let t0 be the first such t. Then, it
holds that Pr[X ≤ t0 − 1] ≤ (t0 − 1) · ε, but Pr[Y ≤ t0 − 1] ≥ Pr[X ≤ t0] > t0 · ε,
so it holds that Pr[Y ≤ t0 − 1] − Pr[X ≤ t0 − 1] ≥ ε. �

Next, we restate and prove Lemma 3.3.
Lemma 3.3. Let (X,Y ) be jointly distributed random variables, taking values
in Z≥0, such that X ≥ Y . Suppose there exist i ∈ N and ε ≥ 0 such that for
every k ∈ Z≥0 it holds that Pr[X ≤ Y + k] ≤ (k · i!)1/i · ε. Then, at least one of
the following must hold:

1. For every t ∈ Z≥0 it holds that Pr[X ≤ t] ≤ (t · (i + 1)!)1/(i+1) · ε.
2. There exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε.

Proof. We make use of the following lemma.

Lemma 4.1. Let (X,Y ) be jointly distributed random variables, taking values
in Z≥0, such that X ≥ Y , and let ε ≥ 0. Then, at least one of the following must
hold:

1. For every t ∈ Z≥0 and (possibly non-integer) s > 0 it holds that

Pr[X ≤ t] ≤ t

s
· ε +

1
s

s∫

0

Pr[X ≤ Y + k]dk.
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2. There exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε.

Assume for now the correctness of Lemma 4.1. We obtain that either there
exists t ∈ Z≥0 such that Pr[Y ≤ t] − Pr[X ≤ t] ≥ ε, or that for every t ∈ Z≥0 it
holds that

Pr[X ≤ t] ≤ t

s
· ε +

1
s

s∫

0

Pr[X ≤ Y + k]dk

≤ t

s
· ε +

1
s

s∫

0

(k · i!)1/i · εdk

=
(

t

s
+

i

i + 1
(s · i!)1/i

)

· ε,

and by choosing s = (i + 1)/(i + 1)!1/(i+1) · ti/(i+1) (which minimizes the above
term), we obtain that Pr[X ≤ t] ≤ (t · (i + 1)!)1/(i+1) · ε as claimed. �

We now prove Lemma 4.1.

Proof of Lemma 4.1. First, for t = 0 it always holds that

Pr[X ≤ 0] ≤ Pr[X ≤ Y ]

=
1
s

s∫

0

Pr[X ≤ Y ]dk

≤ 1
s

s∫

0

Pr[X ≤ Y + k]dk.

Now, for every t ∈ N we show that either it holds that

Pr[X ≤ t] ≤ t

s
· ε +

1
s

s∫

0

Pr[X ≤ Y + k]dk,

or there exists 0 ≤ k < t such that Pr[Y ≤ k] − Pr[X ≤ k] ≥ ε. We define the
random variables (W,Z) as follows

(W,Z) =

{
(X,Y ) X ≤ t

(0, 0) X > t.
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We bound E(W − Z) both from above and below. For the lower bound, it holds
that

E(W − Z) =
t∑

k=0

k · Pr[X = Y + k,X ≤ t]

≥ s ·
t∑

k=0

Pr[X = Y + k,X ≤ t] −
�s�∑

k=0

(s − k) · Pr[X = Y + k,X ≤ t]

≥ s · Pr[X ≤ t] −
�s�∑

k=0

(s − k) · Pr[X = Y + k]

= s · Pr[X ≤ t] −
s∫

0

Pr[X ≤ Y + �k]dk

= s · Pr[X ≤ t] −
s∫

0

Pr[X ≤ Y + k]dk.

For the upper bound, we make use of the following lemma (a similar lemma
appears in [14]).

Lemma 4.2. Let (W,Z) be jointly distributed random variables, taking values
in {0, . . . , t}. Then, there exists 0 ≤ k < t such that Pr[Z ≤ k] − Pr[W ≤ k] ≥
E(W − Z)/t.

Assume for now the correctness of Lemma 4.2. We obtain that there exists
0 ≤ k < t such that Pr[Z ≤ k] − Pr[W ≤ k] ≥ E(W − Z)/t. Note that

Pr[Z ≤ k] − Pr[W ≤ k] = Pr[Y ≤ k, X ≤ t] − Pr[X ≤ k] ≤ Pr[Y ≤ k] − Pr[X ≤ k].

If Pr[Y ≤ k] − Pr[X ≤ k] ≥ ε then we are done. Otherwise, it holds that

t · ε > s · Pr[X ≤ t] −
s∫

0

Pr[X ≤ Y + k]dk,

and the lemma follows. �
We finish by proving Lemma 4.2.

Proof of Lemma 4.2. It holds that

E(W − Z) = EW − EZ

=
t∑

k=1

Pr[W ≥ k] −
t∑

k=1

Pr[Z ≥ k]

=
t∑

k=1

(1 − Pr[W < k]) −
t∑

k=1

(1 − Pr[Z < k])

=
t−1∑

k=0

(Pr[Z ≤ k] − Pr[W ≤ k]) .
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Hence, there exists 0 ≤ k < t such that Pr[Z ≤ k] − Pr[W ≤ k] ≥ E(W − Z)/t
as claimed.

Acknowledgments. We thank Gili Schul-Ganz and the anonymous referees for vari-
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References

1. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

2. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for
numeric data. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 563–574 (2004)

3. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 13

4. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. Cryptology ePrint Archive, Report 2012/624 (2012)

5. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 33

6. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited:
improved security analysis and alternative solutions. Cryptology ePrint Archive,
Report 2012/625 (2012)

7. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

8. Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power of free
precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8270, pp. 321–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 17

9. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 19

10. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random Oracles and non-
uniformity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 9

11. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

12. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocessing.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 415–
447. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 14

https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-319-78375-8_14


Ciphertext Expansion in Limited-Leakage Order-Preserving Encryption 191

13. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption
with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 24

14. Cash, D., Zhang, C.: A ciphertext-size lower bound for order-preserving encryp-
tion with limited leakage. In: Proceedings of the 16th Theory of Cryptography
Conference (2018, to appear)

15. Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-revealing
encryption? In: Proceedings of the 2016 ACM Conference on Computer and Com-
munications Security, pp. 1155–1166 (2016)

16. Fiat, A., Naor, M.: Rigorous time/space trade-offs for inverting functions. SIAM
J. Comput. 29(3), 790–803 (1999)

17. Fuller, B., et al.: SoK: cryptographically protected database search. In: Proceedings
of the 38th IEEE Symposium on Security and Privacy, pp. 172–191 (2017)

18. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

19. Goldwasser, S., Kalai, Y.T.: Cryptographic assumptions: a position paper. In: Pro-
ceedings of the 13th Theory of Cryptography Conference, pp. 505–522 (2016)

20. Goldreich, O.: Foundations of Cryptography - Volume 2: Basic Applications. Cam-
bridge University Press, Cambridge (2004)

21. Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-
abuse attacks against order-revealing encryption. In: Proceedings of the 38th IEEE
Symposium on Security and Privacy, pp, 655–672 (2017)

22. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Proceedings of the 43rd ACM Annual Symposium on
Theory of Computing, pp. 99–108 (2011)

23. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theor.
26(4), 401–406 (1980)

24. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 5

https://doi.org/10.1007/978-3-662-52993-5_24
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5


Towards Tight Security of Cascaded
LRW2

Bart Mennink(B)

Digital Security Group, Radboud University, Nijmegen, The Netherlands
b.mennink@cs.ru.nl

Abstract. The Cascaded LRW2 tweakable block cipher was introduced
by Landecker et al. at CRYPTO 2012, and proven secure up to 22n/3

queries. There has not been any attack on the construction faster than
the generic attack in 2n queries. In this work we initiate the quest towards
a tight bound. We first present a distinguishing attack in 2n1/223n/4

queries against a generalized version of the scheme. The attack is sup-
ported with an experimental verification and a formal success probabil-
ity analysis. We subsequently discuss non-trivial bottlenecks in proving
tight security, most importantly the distinguisher’s freedom in choosing
the tweak values. Finally, we prove that if every tweak value occurs at
most 2n/4 times, Cascaded LRW2 is secure up to 23n/4 queries.

Keywords: LRW2 · Cascaded LRW2 · Tweakable block cipher
Tightness

1 Introduction

A block cipher is a family of permutations that is indexed via a secret key. While
block ciphers are omnipresent in cryptographic permutations, they inherently
lack flexibility and many applications of block ciphers are either implicitly or
explicitly designed from a tweakable block cipher: a function ˜E : K × T × M →
M that is a family of permutations indexed by secret key k ∈ K and public
tweak t ∈ T . Tweakable block ciphers were formalized by Liskov, Rivest, and
Wagner [19] and find a broad range of applications, most notably in the direction
of authenticated encryption (such as OCB [15,32,33], COPA [1], AEZ [11], and
Deoxys [13,29]) and in XTS disk encryption [9].

This work centers around a generic tweakable block cipher design that was
introduced in Liskov et al.’s original paper [19]. It internally uses a block cipher
E, and is defined as follows:

LRW2((k, h), t,m) = E(k,m ⊕ h(t)) ⊕ h(t) , (1)

where k is a block cipher key and h an XOR universal hash function. The con-
struction is strongly related with Rogaway’s XEX [32] (in turn used in OCB1,
OCB2, OCB3, and XTS disk encryption), and extensions by Chakraborty and
c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 192–222, 2018.
https://doi.org/10.1007/978-3-030-03810-6_8
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Sarkar [3], Minematsu [21], and Granger et al. [10]. The LRW2 tweakable block
cipher is proven to achieve security up to approximately 2n/2 queries. This bound
is tight: for any two queries (t,m), (t′,m′) with m⊕h(t) = m′ ⊕h(t′), the corre-
sponding ciphertexts satisfy c ⊕ c′ = h(t) ⊕ h(t′) = m ⊕ m′, and such a collision
can be found in approximately 2n/2 queries.

A notable approach towards beyond birthday bound secure tweakable block
ciphers is by Landecker et al. [17], who suggested to cascade two independent
evaluations of LRW2:

CLRW2((k1, k2, h1, h2), t,m) = LRW2((k2, h2), t,LRW2((k1, h1), t,m)) ,

= Ek2(Ek1(m ⊕ h1(t)) ⊕ h1(t) ⊕ h2(t)) ⊕ h2(t) ,

where k1, k2 are two block cipher keys and h1, h2 XOR universal hash func-
tions. They proved that this construction is indistinguishable from random up to
approximately 22n/3 queries. This proof was very technical, and Procter [30]
pointed out that it was, in fact, flawed. The proof was subsequently fixed by
both Landecker et al. and Procter, but it does not generalize to higher security,
either for the construction as is or for a generalization to multiple cascades. So
far, there has never been any attack justifying tightness of the bound; the best
attack so far is a generic one in 2n queries.

The state of affairs stands in sharp contrast with that of two rounds of
Tweakable Even-Mansour, LRW2’s sibling based on public permutations [6]:

CTEM((h1, h2), t,m) = p2(p1(m ⊕ h1(t)) ⊕ h1(t) ⊕ h2(t)) ⊕ h2(t) ,

where p1, p2 are two permutations and h1, h2 uniform and XOR universal hash
functions. Cogliati et al. [6] proved that CTEM is indistinguishable from random
up to approximately 22n/3 queries, and this bound is tight: keeping the tweak
constant reduces the scheme to a key alternating cipher for which Bogdanov et
al. [2] derived an attack in query complexity approximately 22n/3. This attack
uses availability of the public permutations and is therefore not applicable to
CLRW2.

1.1 Attack on Generalized Cascaded LRW2

We consider a generalized version of Cascaded LRW2, for brevity called “GCL:”

GCLf1,f2,f3((k1, k2, kf ), t,m) = E(k2, E(k1,m ⊕ f1(t)) ⊕ f2(t)) ⊕ f3(t) , (2)

where k1, k2 are two block cipher keys and kf a key to the masking func-
tions (f1, f2, f3) (for ease of presentation, the key input to the fi’s is left
implicit throughout). GCLf1,f2,f3 is depicted in Fig. 1. If h1, h2 are two XOR
universal hash functions, then GCLh1,h1⊕h2,h2 matches CLRW2 (where we set
kf = (h1, h2)).

We derive a generic attack against GCLf1,f2,f3 with arbitrary masking in
2n1/223n/4 evaluations. The information-theoretic attack is given in Sect. 3 and
relies on a boomerang-style observation on the mode, based on the observation
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m Ek1 Ek2 c

f1(t) f2(t) f3(t)

Fig. 1. Depiction of GCLf1,f2,f3 .

that if there exist four queries where the first and second collide on the input
to Ek1 , the second and third on the output of Ek2 , and the third and fourth
on the input to Ek1 , then the first and fourth collide at the output of Ek2 with
probability 1 if the tweak values are selected delicately.

In support of its correctness, the attack is backed up with a formal success
probability computation in Sect. 3.3 as well as an implementation in Sect. 3.4.
The formal success analysis demonstrates that for n ≥ 27, the distinguisher’s
success probability is at least 1/2. The small-scale implementation demonstrates
that for GCLf1,f2,f3 based on random permutations on n = 16, 20, 24 bits, the
special collisions as searched for in the attack indeed appear more often than
usual. The gap between the accuracy in n of the experimental verification and
the security proof is caused by the fact that some loose probability bounds had
to be used in the rather conservative proof.

The attack is independent of the masking functions f1, f2, f3. It implies that
GCLf1,f2,f3 cannot achieve optimal security, regardless of the choice of masking.
The attack particularly applies to CLRW2, therewith improving the best known
attack to date.

1.2 Towards Tight Security?

In Sect. 4 we approach the attack from a more theoretical perspective, and
describe the main limitations in proving security of GCLf1,f2,f3 beyond 22n/3.
The quasi-formal discussion relies on equating executions of GCLf1,f2,f3 with
a bipartite graph, and by drawing a parallel with Patarin’s mirror the-
ory [20,22,26,28] we indicate various issues in trying to prove security beyond
22n/3. The most notable one of these, namely the potential existence of four
queries which alternatively collide on the input of Ek1 or output of Ek2 is pre-
cisely the one exploited in our attack in 2n1/223n/4 queries. We also pinpoint
where and how the current gap between a security lower bound of 22n/3 and
an attack upper bound of 23n/4 arises. Most importantly, as the distinguisher
can freely choose the value of the tweak for every query, it can set a certain
distinguishing event with a significant probability.

1.3 Improved Security of Cascaded LRW2 Under Tweak Limits

In Sect. 5 we use these insights obtained in our quest towards tight security.
We return to CLRW2, or equivalently GCLh1,h1⊕h2,h2 , and prove that if (i) h1
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and h2 are 4-wise independent XOR universal hash functions and (ii) every
tweak value occurs at most q1/3 times, where q is the total amount of queries,
then Cascaded LRW2 is secure up to 23n/4 queries. In Sect. 2.2 we describe two
possibilities of designing 4-wise independent XOR universal hash functions. The
condition on the occurrence of the tweak seems restrictive, but many modes of
operation based on a tweakable block cipher query their primitives for tweaks
that are constituted of a nonce or random number concatenated with a counter
value [10,12,15,29]: in a nonce-respecting setting, every nonce appears at most
1 + qf times, where qf is the amount of forgery attempts.

The proof relies on Patarin’s mirror theory up to the first recursion, i.e., up to
3n/4-bit security. It shares ideas with the analysis of Mennink and Neves [20]
on Encrypted Davies-Meyer [7], namely that an evaluation (t,m, c) of CLRW2
can be rewritten as a sum of permutations “in the middle.” Adversarial power
to choose tweak values, however, precludes optimal security, and security up to
23n/4 is the best possible bound.

1.4 Longer Cascades?

Lampe and Seurin [16] suggested the cascade of ρ ≥ 1 evaluations of LRW2, and
proved that for even ρ this construction is secure up to approximately 2ρn/(ρ+2)

queries. Lee et al. [18] proved that if the universal hash functions are replaced by
random functions, security up to 2ρn/(ρ+1) is achieved. It is generally conjectured
that the security of the cascade of ρ LRW2’s is 2ρn/(ρ+1) [16–18], but also for this
larger cascade, nothing is known on the attack side, besides the trivial attack
in 2n queries. Unfortunately, it does not seem possible to generalize the attack
of Sect. 3 nor the security proof of Sect. 5 to larger cascades. As before, it is
noteworthy that a cascade of ρ ≥ 1 evaluations of TEM can be attacked in
approximately 2ρn/(ρ+1) queries [2].

2 Preliminaries

For n ∈ N, {0, 1}n denotes the set of bit strings of length n, and perm(n) the
set of all permutations on {0, 1}n. Extending notation, for κ ∈ N, we denote
by iperm(κ, n) the set of all “indexed permutations,” families of permutations
pk ∈ perm(n), indexed by k ∈ {0, 1}κ. We additionally denote by iperm(κ, τ, n)
for τ ∈ N the set of all indexed permutations where the index consists of two
elements (k, t) ∈ {0, 1}κ × {0, 1}τ . For m,n ∈ N such that m ≥ n, the falling
factorial is defined as (m)n = m(m−1) · · · (m−n+1) = m!/(m−n)!. For n ∈ N

and m ∈ {0, . . . , 2n−1}, we denote by 〈m〉n the encoding of m as an n-bit string.
If X is a finite set, x

$←− X denotes the event of uniformly randomly drawing x
from X .

2.1 Block Ciphers and Tweakable Block Ciphers

A block cipher with key size κ and state size n is a function E ∈ iperm(κ, n).
For fixed key k ∈ {0, 1}κ we denote Ek(·) = E(k, ·), and its inverse is denoted
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E−1
k (·). A tweakable block cipher with key size κ, tweak size τ , and state size

n is a function ˜E ∈ iperm(κ, τ, n). For fixed key k ∈ {0, 1}κ and t ∈ {0, 1}τ we
denote ˜Ek(t, ·) = ˜E(k, t, ·), and its inverse is denoted ˜E−1

k (t, ·).
Let κ, n ∈ N and let E ∈ iperm(κ, n) be a block cipher. The advantage of

a distinguisher D in breaking the SPRP (strong pseudorandom permutation)
security of E is defined as

Advsprp
E (D) = Pr

(

DE±
k = 1

)

− Pr
(

Dp±
= 1

)

, (3)

where the probabilities are taken over the random drawing of k
$←− {0, 1}κ,

p
$←− perm(n), and the randomness used by D. The resources that D may use

are typically expressed in terms of query complexity (to the oracle) and time
complexity (for offline computations).

As block ciphers are a special case of tweakable block ciphers with tweak
space of size 1 (τ = 0), the security definition straightforwardly generalizes to
the latter. Let κ, τ, n ∈ N and let ˜E ∈ iperm(κ, τ, n) be a tweakable block cipher.
The advantage of a distinguisher D in breaking the STPRP (strong tweakable
pseudorandom permutation) security of ˜E is defined as

Advstprp
˜E

(D) = Pr
(

D ˜E±
k = 1

)

− Pr
(

Dp̃±
= 1

)

, (4)

where the probabilities are taken over the random drawing of k
$←− {0, 1}κ,

p̃
$←− iperm(τ, n), and the randomness used by D. The resources that D may use

are typically bounded as before.

2.2 XOR Universal Hash Functions

We use the notion of �-wise independent XOR universal hash functions, a slight
adaptation of the original definition of Wegman and Carter [34]. For two non-
empty sets X ,Y, a hash function family H = {h : X → Y} is called �-wise
independent almost XOR universal up to bound ε, denoted ε-AXU�, if for any j ∈
{2, . . . , �}, any distinct x1, . . . , xj ∈ X and (not necessarily distinct) y2, . . . , yj ∈
Y,

Pr
(

h
$←− H : h(x1) ⊕ h(x2) = y2 , . . . , h(x1) ⊕ h(xj) = yj

)

≤ εj−1 .

For X = Y = {0, 1}n, a 2−n-AXU2 hash function family can be defined using
finite field multiplication with respect to some irreducible polynomial to repre-
sent the field, i.e., h(x) := h ⊗ x. It is not ε-AXU� for � > 2. Defining the hash
function family as

h(x) :=
�−1
⊕

i=1

hi ⊗ xi

for h = (h1, . . . , h�−1) gives a 2−n-AXU� hash function family for any � ≥ 2. One
can alternatively obtain a (2n − (� − 1))−1-AXU� by defining the hash function
family using an ideal cipher or a family of random permutations.
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3 Generic Attack

We present a generic attack against GCLf1,f2,f3 in 2n1/223n/4 queries. The attack
is generic in nature, it does not exploit any weaknesses in the underlying cipher,
and as such we simply assume that E

$←− iperm(κ, n) is an ideal cipher. It is
fair to assume that the success probability of the attack simply improves if E
is less than ideal, except for degenerate cases, e.g., if Ek1 and Ek2 are almost
perfect nonlinear permutations (APNPs, cf., [8,23,24]). Throughout the attack,
we simply denote p1 = Ek1 and p2 = Ek2 for brevity.

An informal rationale of our attack is given in Sect. 3.1, and the formal distin-
guisher in Sect. 3.2. Its advantage is lower bounded in Sect. 3.3, and the analysis
is backed up with experimental verification in Sect. 3.4.

3.1 Informal Rationale of Attack

Suppose a distinguisher obtains four queries (t,m1, c1), (t′,m′
2, c

′
2), (t,m3, c3),

and (t′,m′
4, c

′
4) of GCLf1,f2,f3 such that

m1 ⊕ f1(t) = m′
2 ⊕ f1(t′) ,

c′
2 ⊕ f3(t′) = c3 ⊕ f3(t) ,

m3 ⊕ f1(t) = m′
4 ⊕ f1(t′) .

(5)

In other words, the first and second query collide at the input to Ek1 , the second
and third at the output of Ek2 , and the third and fourth at the input to Ek1 .
As the four queries are performed using only two tweak values, each occurring
twice, we have f2(t) ⊕ f2(t′) ⊕ f2(t) ⊕ f2(t′) = 0, and from a simple inspection
of the scheme (see also Fig. 2) one can conclude that, necessarily,

c1 ⊕ f3(t) = c′
4 ⊕ f3(t′) . (6)

Stated differently, under the assumption that (5) is satisfied, (6) is implied, and
therefore the four equations combine to

m1 ⊕ m′
2 = m3 ⊕ m′

4 = f1(t) ⊕ f1(t′) ,

c′
2 ⊕ c3 = c1 ⊕ c′

4 = f3(t) ⊕ f3(t′) .

Unfortunately, the distinguisher does not know f1(t) ⊕ f1(t′) and f3(t) ⊕ f3(t′),
but if we ignore these two values in above equations, we obtain

m1 ⊕ m′
2 = m3 ⊕ m′

4 ,

c′
2 ⊕ c3 = c1 ⊕ c′

4 ,
(7)

which necessarily holds if m1 ⊕ m′
2 = f1(t) ⊕ f1(t′) and c′

2 ⊕ c3 = f3(t) ⊕ f3(t′),
but may hold by accident as well. Stated differently, if for some d ∈ {0, 1}n,
there are about 2n choices for the four queries such that

m1 ⊕ m′
2 = m3 ⊕ m′

4 = d , (8)
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the expected number of solutions to (7) is close to 2 if d = f1(t) ⊕ f1(t′) but
close to 1 if d �= f1(t) ⊕ f1(t′). For an ideal permutation, the expected number
of solutions is always close to 1 for any d ∈ {0, 1}n. By making approximately
23n/4 queries, the distinguisher can ensure that there are about 2n solutions to
(8) for all d, including d = f1(t) ⊕ f1(t′).

This almost allows for a distinguishing attack, but not quite: as the distin-
guisher does not actually know f1(t) ⊕ f1(t′), it must simply hope that for some
d there is a significant difference, but d may take 2n values and false positives
are likely to occur. By extending the number of queries slightly, i.e., by making
about n1/2 · 23n/4 queries, the case of f1(t) ⊕ f1(t′) will stand out.

We remark that the attack is effectively an XOR subkey recovery attack,
as the distinguisher learns f1(t) ⊕ f1(t′) and f3(t) ⊕ f3(t′). In case of Cascaded
LRW2, where f1 = h1, f2 = h1 ⊕ h2, and f3 = h2 for two XOR universal hash
functions h1, h2, this immediately gives f2(t) ⊕ f2(t′), and potentially more,
depending on the specific hash functions.

m1

m3

m2

m4

p1

p1

p1

p1

p2

p2

p2

p2

c1

c3

c2

c4

f1(t)

f1(t )

f2(t)

f2(t )

f3(t)

f3(t )

Fig. 2. Attack idea: the red (solid) collisions are targeted, the blue (dashed) one is
implied by the red ones. (Color figure online)

3.2 Formal Description of Distinguisher

Let ε = log2(n)/2 (assumed to be integral), and consider the following distin-
guisher D making q = 23n/4+ε queries.

(i) Fix arbitrary distinct t, t′ ∈ {0, 1}τ ;
(ii) For i = 0, . . . , 23n/4+ε − 1, put mi = 0n/4−ε‖〈i〉3n/4+ε and query (t,mi) to

obtain ci;
(iii) For i = 0, . . . , 23n/4+ε − 1, put m′

i = 〈i〉3n/4+ε‖0n/4−ε and query (t′,m′
i) to

obtain c′
i;
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(iv) For d ∈ {0, 1}n, define Id = {(i, j) | mi ⊕m′
j = d}. Note that |Id| = 2n/2+2ε

for all d ∈ {0, 1}n, and define q′ := 2n/2+2ε;
(v) For all d ∈ {0, 1}n do:

– Define Nd = 0;
– For all distinct (i, j), (k, l) ∈ Id: if ci ⊕ c′

l = c′
j ⊕ ck, put Nd = Nd + 1;

(vi) Briefly looking forward, for a random tweakable block cipher we have
Ex (Nd) =

(

q′

2

)

/(2n − 1) for any d ∈ {0, 1}n, whereas for GCLf1,f2,f3 ,
Ex

(

Nf1(t)⊕f1(t′)
)

≥ 2
(

q′

2

)

/2n. Inspired by this, define

β :=
3
2

(

q′

2

)

/2n .

If there exists a d ∈ {0, 1}n such that Nd ≥ β, output 1. Otherwise, output
0.

3.3 Analysis of Distinguisher Advantage

A formal analysis confirms that the distinguisher succeeds with non-negligible
probability.

Theorem 1. Let κ, τ, n ∈ N with n ≥ 16, let E
$←− iperm(κ, n), denote the size of

the key space of (f1, f2, f3) by κf , and consider GCLf1,f2,f3 : {0, 1}2κ×{0, 1}κf ×
{0, 1}τ × {0, 1}n → {0, 1}n. Distinguisher D of Sect. 3.2 with query complexity
2n1/2 · 23n/4 has advantage

Advstprp
GCLf1,f2,f3

(D) ≥ 1 − 32
n2

− 80
n2n/2

− 5 · 2n

(

10
n

)3/100·n2

− n7

23n/2
. (9)

One can verify that the lower bound of (9) is at least 1/2 for n ≥ 27. This
theorem is not the core contribution of the article (which is Theorem 2), and its
proof is given Appendix A.

Note that the attack is de facto a TPRP-attack, only requiring forward access
to the scheme. In addition, it is information-theoretical: the distinguisher’s com-
plexity is solely measured in its number of queries. The offline complexity is
around 23n/2.

3.4 Experimental Verification

We have implemented the distinguisher of Sect. 3.2 on a small scale, for n =
16, 20, 24 and with p1, p2, f1, f2, f3 instantiated as independent uniform random
permutations, noting that a uniform random permutation is a (2n − 1)−1-AXU2

hash function (see Sect. 2.2). In each case, two distinct tweaks t, t′ are evalu-
ated for q = 23n/4+ε queries, with ε = 0, 1, 2 (note that 2 � log2(n)/2 for n =
16, 20, 24). The average values Nd for both the real and ideal world and both d =
f1(t) ⊕ f1(t′) and random d are summarized in Table 1. The computations con-
firm soundness of the rationale of Sect. 3.1 and the expected values of Sect. 3.2.
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In more detail, the expected values given in Sect. 3.2 suggest that Nd ≈ 24ε for
d = f1(t)⊕f1(t′) in the real world and Nd ≈ 24ε−1 in any other case (real or ideal
world), and the statistics in Table 1 reasonably accurately match these numbers.

Note that, in particular, for ε = 0 the value Nf1(t)⊕f1(t′) already shows a
small peak in the real world (for each of n = 16, 20, 24), but outliers in Nd for
d �= f1(t) ⊕ f1(t′) are hidden by the statistics. For increasing ε, the gap becomes
more significant and the success probability increases.

Table 1. Number of elements in Nd for the real and ideal world, for d = f1(t) ⊕ f1(t
′)

and for random d. For the cases n = 16, 20, the numbers are averaged over 32 attacks;
for n = 24 the numbers are averaged over 8 attacks.

Nd in real world for d = Nd in ideal world for d =

n ε q f1(t) ⊕ f1(t
′) random f1(t) ⊕ f1(t

′) random

16 0 1 · 212 0.843750 0.437500 0.343750 0.687500

1 2 · 212 16.343750 6.656250 7.625000 8.500000

2 4 · 212 256.593750 129.781250 127.093750 127.375000

20 0 1 · 215 0.968750 0.500000 0.687500 0.593750

1 2 · 215 17.156250 7.593750 8.343750 8.187500

2 4 · 215 265.531250 133.312500 125.625000 128.750000

24 0 1 · 218 1.125000 0.875000 0.250000 0.125000

1 2 · 218 16.375000 7.625000 8.375000 7.125000

2 4 · 218 246.750000 131.375000 120.625000 129.875000

4 Towards Tight Security?

Consider a simplification of GCLf1,f2,f3 with its two block ciphers replaced by
random permutations p1, p2 (this is a typical hybrid argument in security proofs
performed at the cost of 2Advsprp

E (D′) for some distinguisher D′). For simplicity,
assume that f2 is injective (the scheme turns out to be significantly weakened if
f2 is non-injective). For an evaluation GCLf1,f2,f3(t,m) = c, denote

x = p1(m ⊕ f1(t)) ,

y = p−1
2 (c ⊕ f3(t)) ,

in such a way that x ⊕ y = f2(t).
Intuitively, one may think of a proof going “fine” if there is always some

randomness available. For example, consider just a single forward query (t,m)
to GCLf1,f2,f3 . The value m ⊕ f1(t) has never been evaluated by p1, hence the
value x will look uniformly randomly drawn from {0, 1}n; the value y satisfies
y = x ⊕ f2(t), and also y has never been evaluated by p2 so the value c ⊕ f3(t)
is uniformly randomly drawn from {0, 1}n.
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A more complicated case appears if there exist two distinct queries (m1, t1)
and (m2, t2) such that m1 ⊕ f1(t1) = m2 ⊕ f1(t2). The first query is handled as
before, rendering fresh x1 and c1⊕f3(t1). The second query satisfies m1⊕f1(t1) =
m2 ⊕ f1(t2), meaning that x2 = x1. However, as the two queries are distinct,
this equation implies that t1 �= t2. As f2 is injective, we subsequently have
f2(t1) �= f2(t2) and thus y2 �= y1. The evaluation of p2 on y2 yields a value
uniformly drawn from {0, 1}n\{c1 ⊕ f3(t1)}.

Likewise, two queries could also collide at the right side, i.e., c1 ⊕ f3(t1) =
c2 ⊕ f3(t2). It is unlikely, though, that two queries collide at both the left and
right side, at least if f1 and f3 are two randomized functions (as is the case in
CLRW2), and we will ignore this case. If more than two queries are involved,
one could visualize queries as a bipartite graph G = (U, V,E). U = {0, 1}n

corresponds to the input values to p1, V = {0, 1}n to the output values of p2,
and for every query tuple (ti,mi, ci), the edge (mi ⊕f1(ti), ci ⊕f3(ti)) with label
f2(ti) from U to V is added to E. An example graph G is depicted in Fig. 3.

m̄1 m̄2 = m̄3 m̄4 = m̄5 = m̄6 m̄7

c̄1 c̄2 c̄3 c̄4 c̄5 c̄6 = c̄7

f2(t1) f2(t2) f2(t3) f2(t4)

f2(t5)

f2(t6) f2(t7)

Fig. 3. Example of a bipartite graph G representing seven evaluations of GCLf1,f2,f3 .
For brevity, we denote m̄i = mi ⊕ f1(ti) and c̄i = ci ⊕ f3(ti). Graph view rotated for
economical reasons.

What the above comprises is an informal introduction to a potential use of
Patarin’s mirror theory [20,22,26,28], a powerful approach towards counting the
number of solutions to a system of equations of the form x ⊕ y = λ, where λ
is known. If, in above graph, two queries touch on the left, i.e., m1 ⊕ f1(t1) =
m2 ⊕ f1(t2), they share the same x1 = x2 but have different y1, y2.

Unfortunately, the mirror theory does not turn out to be particularly suited
here, most importantly as it is tailored towards comparing systems to random
functions and we aim to compare our scheme to a family of permutations. Yet,
closer inspection of the theory reveals that it puts two conditions on the graph
that are “reasonably easily” violated:

(i) The graph should not contain a path of even length whose labels sum to 0;
(ii) The graph should not contain a circle.

The first condition prevents that there are two different inputs to p1 with
the same output (or two different outputs of p2 with the same input). The
second condition prevents that there exists a query with “no randomness.” Both
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conditions are harmful for any possible even length, in the sense that Patarin’s
mirror theorem cannot be applied.

The attack of Sect. 3 relies on the fact that condition (i) can be violated easier
than expected. Note that there cannot exist a path of length 2 whose labels sum
to 0 (as f2 is injective). A path of length 4 whose labels sum to 0 requires the
existence of four queries (t1,m1, c1), . . . , (t4,m4, c4) such that

m1 ⊕ f1(t1) = m2 ⊕ f1(t2) ,

c2 ⊕ f3(t2) = c3 ⊕ f3(t3) ,

m3 ⊕ f1(t3) = m4 ⊕ f1(t4) ,

f2(t1) ⊕ f2(t2) ⊕ f2(t3) ⊕ f2(t4) = 0 .

(10)

As the four queries are distinct, the path may only appear if t1 �= t2 �= t3 �= t4.
However, it may be that t1 = t3 and t2 = t4, and this is how the attack of Sect. 3
exploits a path: in this case, the fourth equation of (10) is satisfied by design
and the remaining three can be rewritten as

m1 ⊕ m2 = m3 ⊕ m4 = f1(t1) ⊕ f1(t2) ,

c2 ⊕ c3 = f3(t1) ⊕ f3(t2) .
(11)

The attack of Sect. 3 relies on the additional fact that if these conditions are
met, then the condition

c4 ⊕ f3(t2) = c1 ⊕ f3(t1) (12)

holds with probability 1 in the real world (i.e., there is a circle as depicted
in Fig. 4, violating condition (ii)), but with negligible probability in the ideal
world. This property (that (11) implies (12)) gives a clean and well-verifiable
distinguishing event.

m̄1 = m̄2 m̄3 = m̄4

c̄1 = c̄4 c̄2 = c̄3

f2(t1)

f2(t2)

f2(t3)

f2(t4)

Fig. 4. A circle in bipartite graph G with f2(t1) ⊕ f2(t2) ⊕ f2(t3) ⊕ f2(t4) = 0, as
exploited in the attack of Sect. 3. We use the same convention as in Fig. 3.

A distinguisher can choose the mi’s smartly to make sure that m1 ⊕ m2 =
m3⊕m4 is satisfied. Consider a distinguisher that makes queries for at most two
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tweaks t, t′, each queried q times, say for queries (m0, c0), . . . , (mq−1, cq−1) and
(m′

0, c
′
0), . . . , (m

′
q−1, c

′
q−1). Inspired by Sect. 3, denote

Id = {(i, j) ∈ {0, . . . , q − 1}2 | mi ⊕ m′
j = d} .

The probability that there exist four queries (i, j) �= (i′, j′) that comply with the
equations of (11), denoted X, is

Pr (X) =
∑

d∈{0,1}n

Pr (X | f1(t1) ⊕ f1(t2) = d) · Pr (f1(t1) ⊕ f1(t2) = d)

≈
∑

d∈{0,1}n

(|Id|
2

)

2n
· Pr (f1(t1) ⊕ f1(t2) = d)

≈
∑

d∈{0,1}n

(|Id|
2

)

2n
· 1
2n

, (13)

where the first approximation assumes independence of events and that the ci’s
are generated using a random function (for simplicity of reasoning), and the
second approximation assumes that f1 is close to a 2−n-AXU2 hash function.
The two extremes in selecting the mi’s are the following:

– Choose the mi’s and m′
i’s such that |Id| = q for q values of d and |Id| = 0

for the remaining 2n − q values. This is achieved by setting mi = m′
i =

0n−log2(q)‖〈i〉log2(q)
for i = 0, . . . , q − 1. In this case, we obtain for (13):

(13) = q ·
(

q

2

)

/22n ≈ q3/22n ;

– Choose the mi’s and m′
i’s such that |Id| = q2/2n for all values of d, i.e., Id is

equally large for all d. This is achieved by setting mi = 0n−log2(q)‖〈i〉log2(q)

and m′
i = 〈i〉log2(q)

‖0n−log2(q) for i = 0, . . . , q − 1 (as in the attack of Sect. 3).
In this case, we obtain for (13):

(13) = 2n ·
(

q2/2n

2

)

/22n ≈ q4/23n .

A security analysis, i.e., an upper bound on the distinguisher’s success probabil-
ity, would have to take into account any possible distinguisher, and it therefore
seems such analysis caps at around q3/22n. Yet, if the attack of Sect. 3 would
have been based on the former strategy instead of the latter, it would have suc-
ceeded only if |If1(t1)⊕f1(t2)| �= 0, and the attack should have been evaluated
2n/q times to succeed (resulting in total complexity of about 2n). By making
23n/4 queries, the distinguisher makes sure that |Id| is equally large for all d’s
and that way spreads its chances, but unfortunately, we see little opportunities
in improving the attack.

It is important to remark that the attack of Sect. 3 and the discussion on the
distinguishing event (11) consider the case where the distinguisher can choose
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the tweak values. This implies that an improved security bound can be achieved
if the maximum number of queries for each tweak is fixed.

We explicitly remark that this limitation is not a necessary condition. In
particular, above reasoning is informal and only included for intuitive reasons,
and we cannot draw any formal conclusion from it. However, even for this limited
scenario, improved security of CLRW2 is still a non-trivial open problem. We
elaborate on the possibility of releasing the tweak usage limitation in Sect. 5.7.
A final condition that the mirror theory puts on the graph, in addition to (i)
and (ii) above, is the following:

(iii) The graph should not contain an excessively large tree.

This is a merely technical requirement to make the proof argument of the
mirror theory work, and it is not clear how a violation of condition (iii) may break
the scheme. That said, also condition (iii) can be easily violated, depending on
the mixing functions in use. For example, if f1(t) = f1 ⊗ t (i.e., the example
AXU2 hash function of Sect. 2), a collision of the form

m1 ⊕ f1(m1) = m2 ⊕ f1(m2) ,

for m1,m2 �= 0 implies that also

m2 ⊕ f1(m2) = m−1
1 m2

2 ⊕ f1(m−1
1 m2

2) = · · · = m−λ
1 mλ+1

2 ⊕ f1(m−λ
1 mλ+1

2 ) ,

for any λ ≥ 0, potentially rendering an excessively large tree. The issue can be
resolved by resorting to 4-wise independent XOR universal hash functions (see
Sect. 2.2).

5 Improved Security of Cascaded LRW2 Under Tweak
Limits

Based on the two conclusions from Sect. 4, we prove that if h1 and h2 are two 4-
wise independent XOR universal hash functions and every tweak occurs at most
q1/3 times, the Cascaded LRW2 construction GCLh1,h1⊕h2,h2 of (2) achieves
security up to complexity approximately 23n/4.

Theorem 2. Let κ, τ, n ∈ N, let E ∈ iperm(κ, n), H be an ε-AXU4 hash func-
tion family, and consider GCLh1,h1⊕h2,h2 : {0, 1}2κ × H2 × {0, 1}τ × {0, 1}n →
{0, 1}n. Let γ ∈ N such that 2 ≤ γ ≤ q/4 be a threshold. For any distinguisher
D with query complexity at most q ≤ 2n/1600 that queries each tweak at most γ
times, there exists a distinguisher D′ that makes at most q queries such that

Advstprp

GCLh1,h1⊕h2,h2
(D) ≤ 6

(
q

4

)
2nε4 +

(
q

2

)
(2γ + 1)ε2 +

(γ + 3)q

2n
+ 2Advsprp

E (D′) .

(14)
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Putting γ = q1/3, the bound of (14) yields security up to q ≤ 23n/4 queries. The
limitation γ on the number of tweak repeats sounds restrictive, but it is not.
In practical applications [10,12,29], the tweak is constituted of a random value
concatenated with a counter.

The proof of Theorem 2 is based on Patarin’s mirror theory [22,26,28], which
found popularization in the work of Mennink and Neves on Encrypted Davies-
Meyer and its dual [20]. Although the mirror theory is quite simple to understand
and apply, its proof is heavy and the recursive argument underneath it is debated
by some. In this work, however, we will only use the mirror theory up to 3n/4-bit
security, i.e., rely on the first recursion in the mirror theory proof only.

The security proof is comparable to that of EDM [20], and in particular also
relies on the observation that any evaluation of c = GCLh1,h1⊕h2,h2(k, t,m) for
k = (k1, k2, h1, h2) can be rewritten as

Ek1(m ⊕ h1(t)) ⊕ E−1
k2

(c ⊕ h2(t)) = h1(t) ⊕ h2(t) . (15)

Differences in the analysis occur due to the possibility of the adversary to choose
the tweak and the fact that the tweak occurs in all three parts of the equation
(input to Ek1 , to E−1

k2
, and in the right hand side h1(t) ⊕ h2(t)). These differ-

ences cause that only security up to 23n/4 is achievable. However, the differences
compared with the analysis in [20] mostly affect description of oracle views and
analysis of bad views; the application of the mirror theory is fairly the same.
Therefore, we discard much of the details on mirror theory from the proof and
include it in Appendix B; the proof is fully intelligible without this appendix.

The proof is given in Sects. 5.1–5.6. We discuss the possibility of releasing
the limitation γ on the tweak usage in Sect. 5.7.

5.1 H-Coefficient Technique

We will use Patarin’s H-coefficient technique [25,27], for which we follow the
description by Chen and Steinberger [5]. Consider two oracles O and P with iden-
tical interfaces, and a deterministic distinguisher D with query complexity q and
unbounded computational power that tries to distinguish both oracles. Denote
its success probability by ΔD(O ; P). Let XO denote the probability distribution
of views when D is interacting with O, and similarly XP the distribution of views
for interaction with P. A view ν is called “attainable” if Pr (XP = ν) > 0, and
denote by V the set of all attainable views. The H-coefficient technique states
the following:

Lemma 1 (H-coefficient technique). Let D be a deterministic distinguisher,
and consider a partition V = Vbad ∪ Vgood of the set of attainable views. Let

δ, ε ∈ [0, 1] be such that Pr (XP ∈ Vbad) ≤ δ, and
Pr (XO = ν)
Pr (XP = ν)

≥ 1 − ε for all

ν ∈ Vgood. Then, the distinguishing advantage satisfies ΔD(O ; P) ≤ δ + ε.

A proof of the technique is given among others in [4,5,20].
For view ν = {(x1, y1), . . . , (xq, yq)} consisting of q input/output tuples, an

oracle O is said to extend ν, denoted O � ν, if O(xi) = yi for all i = {1, . . . , q}.
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5.2 General Setting and Views

Let p̃
$←− iperm(τ, n), k $←− {0, 1}2κ × H2, and p1, p2

$←− perm(n). Consider any
distinguisher D whose goal is to distinguish GCLh1,h1⊕h2,h2

k from p̃.
As a first step, we replace (Ek1 , Ek2) by (p1, p−1

2 ) at the cost of 2Advsprp
E (D′),

where D′ is some distinguisher with the same query complexity q as D. (Note that
we replaced Ek2 by the inverse of p2 for simplicity of further analysis.) Denote
the resulting scheme with F for brevity; it remains to bound the advantage of D
in distinguishing O = F (the real world) from P = p̃ (the ideal world). As of now,
we give the distinguisher unbounded computational power, and its complexity
will only be measured by the number of oracle queries it makes. Without loss of
generality, we can consider it to be deterministic, and will apply the H-coefficient
technique of Lemma 1.

D makes q construction queries which are recorded in view ν′ =
{(t1,m1, c1), . . . , (tq,mq, cq)}. After D’s interaction with its oracle, but before
it outputs its decision bit, its oracle will reveal the subkeys h1, h2. In the real
world, these are the XOR universal hash functions used in F , whereas in the
ideal world these are dummy functions randomly drawn from H. We denote the
complete view by

ν = (ν′, h1, h2) . (16)

Without loss of generality, we assume that D never repeats queries, and hence
that (ti,mi) �= (tj ,mj) and (ti, ci) �= (tj , cj) for any i �= j.

5.3 Attainable Index Mappings

In the real world O, each tuple (ti,mi, ci) ∈ ν′ corresponds to an evaluation of
F and satisfies

p1(mi ⊕ h1(ti)) ⊕ p2(ci ⊕ h2(ti)) = h1(ti) ⊕ h2(ti) ,

where we recall that Ek2 was replaced with p−1
2 . Writing Pai

:= p1(mi ⊕ h1(ti))
and Pbi

:= p2(ci ⊕ h2(ti)), view ν defines the following q equations:

Pa1 ⊕ Pb1 = h1(t1) ⊕ h2(t1) ,

Pa2 ⊕ Pb2 = h1(t2) ⊕ h2(t2) ,

...
Paq

⊕ Pbq
= h1(tq) ⊕ h2(tq) .

(17)

Here, some of the unknowns may be equal to each other. We have that Pai
�= Paj

if and only if mi ⊕h1(ti) �= mj ⊕h1(tj), and Pbi
�= Pbj

if and only if ci ⊕h2(ti) �=
cj ⊕ h2(tj). No condition a priori holds for Pai

versus Pbj
, as these are defined

by independent permutations. We have

r = |{mi ⊕ h1(ti) | i ∈ {1, . . . , q}}| + |{ci ⊕ h2(ti) | i ∈ {1, . . . , q}}| (18)

unknowns.
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5.4 Bad Views

Inspired by the discussion in Sect. 4, we associate a bipartite graph G(ν) =
(U, V,E(ν)) with the view ν. U = {0, 1}n corresponds to the input values to p1,
V = {0, 1}n to the output values of p−1

2 , and for every (ti,mi, ci) ∈ ν′, the edge
(mi ⊕h1(ti), ci ⊕h2(ti)) with label h1(ti)⊕h2(ti) from U to V is added to E(ν).
The example graph of Fig. 3 still applies, be it with f1 = h1, f2 = h1 ⊕ h2, and
f3 = h2.

In Sect. 4, we already informally discussed what problems could occur in
such a graph, i.e., what properties would make the mirror theory inapplicable:
it should not contain a path of even length whose labels sum to 0, a circle, or an
excessively large tree. The latter is informal, it is often based on a pre-defined
threshold on the maximum size of the tree. As our security analysis will cap on
3n/4-bit security anyway, we can keep it simple, and put as one of the bad events
that G(ν) should not contain a subgraph of ≥ 4 edges. This would imply the
non-existence of an excessively large tree, as well as circles and paths of length
≥ 4. We still have to rule out the existence of a path of length 2 whose labels
sum to 0 and a circle of length 2.

Formally, we say that a view ν is a bad view if its corresponding tree G(ν)
contains

(i) a path of length 2 whose labels sum to 0;
(ii) a circle of length 2;
(iii) a subgraph of ≥ 4 edges.

5.5 Probability of Bad Views (δ)

By Lemma 1, we have to analyze the probability that a view generated in the
ideal world is bad, and the analysis will rely on the fact that h1 and h2 are 4-wise
independent universal hash functions. We have

Pr (Xp̃ ∈ Vbad) ≤ Pr (path) + Pr (circle) + Pr (subgraph) , (19)

where the sizes of the path, circle, and subgraph, are left implicit.

(i) a path. Consider any two distinct queries (ti,mi, ci), (tj ,mj , cj). They yield
a 0-label-sum path if either

mi ⊕ h1(ti) = mj ⊕ h1(tj) and h1(ti) ⊕ h2(ti) = h1(tj) ⊕ h2(tj) ,

or

ci ⊕ h2(ti) = cj ⊕ h2(tj) and h1(ti) ⊕ h2(ti) = h1(tj) ⊕ h2(tj) .

If ti = tj , then necessarily mi �= mj and ci �= cj (as the two queries are distinct)
and the conditions happen with probability 0. Otherwise, as h1 and h2 are ε-
AXU4, both conditions happen with probability at most ε2. Thus,

Pr (path) ≤ 2
(

q

2

)

ε2 . (20)
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(ii) a circle. Consider any two distinct queries (ti,mi, ci), (tj ,mj , cj). They yield
a circle if

mi ⊕ h1(ti) = mj ⊕ h1(tj) and ci ⊕ h2(ti) = cj ⊕ h2(tj) ,

which, as before, happens with probability at most ε2. Thus,

Pr (circle) ≤
(

q

2

)

ε2 . (21)

(iii) a subgraph. Consider any four distinct queries (ti1 ,mi1 , ci1), . . . ,
(ti4 ,mi4 , ci4) to yield a subgraph. We can consider six possible configurations,
as described in Fig. 5. In these configurations, only collisions are explicitly indi-
cated; two nodes that are different in the configuration may or may not collide.
We treat all configurations independently, where we will rely on the fact that h1

and h2 are ε-AXU4.

(A) (B) (C) (D) (E) (F)

Fig. 5. Possible configurations of subgraphs of 4 edges. Upper shore is U , lower shore
is V , and labels are omitted for brevity. Two nodes in the same shore may or may not
be equal.

(A) Configuration (A) happens only if

mi1 ⊕ h1(ti1) = mi2 ⊕ h1(ti2) = mi3 ⊕ h1(ti3) = mi4 ⊕ h1(ti4) .

If the tweaks are not all distinct, the condition is satisfied with probability 0.
On the other hand, if ti1 , ti2 , ti3 , ti4 are all distinct, the condition is satisfied
with probability at most ε3. There are at most

(

q
4

)

possible choices of queries
that satisfy this condition on the tweaks;

(B) Configuration (B) happens only if

mi1 ⊕ h1(ti1) = mi2 ⊕ h1(ti2) = mi3 ⊕ h1(ti3) ,

ci3 ⊕ h2(ti3) = ci4 ⊕ h2(ti4) .

Further analysis depends on the values of the tweaks.
– If ti1 , ti2 , ti3 , ti4 are all distinct, the condition is satisfied with probability

at most ε3. There are at most
(

q
4

)

possible choices of queries that satisfy
this condition on the tweaks;
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– If ti1 = ti2 , ti1 = ti3 , ti2 = ti3 , or ti3 = ti4 , the condition is satisfied with
probability 0;

– If ti1 = ti4 , but ti1 , ti2 , ti3 are all distinct, the condition is satisfied with
probability at most ε3. There are at most

(

q
3

)

· (γ − 1) possible choices of
queries that satisfy this condition on the tweaks, noting that every tweak
occurs at most γ times;

– If ti2 = ti4 , but ti1 , ti2 , ti3 are all distinct, a similar reasoning applies.
Overall, configuration (B) is satisfied with probability at most

max
{(

q

4

)

ε3,

(

q

3

)

(γ − 1)ε3
}

≤
(

q

4

)

ε3 ,

for γ ≤ q/4;
(C) Configuration (C) happens only if

mi1 ⊕ h1(ti1) = mi2 ⊕ h1(ti2) ,

ci2 ⊕ h2(ti2) = ci3 ⊕ h2(ti3) ,

mi3 ⊕ h1(ti3) = mi4 ⊕ h1(ti4) .

Further analysis depends on the values of the tweaks.
– If ti1 , ti2 , ti3 , ti4 are all distinct, the condition is satisfied with probability

at most 2nε4 (obtained by summing over all possible connections between
the first and third equation, and then applying the ε-AXU4 bound). There
are at most

(

q
4

)

possible choices of queries that satisfy this condition on
the tweaks;

– If ti1 = ti2 , ti2 = ti3 , or ti3 = ti4 , the condition is satisfied with probability
0;

– If ti1 = ti3 , but ti1 , ti2 , ti4 are all distinct, the condition is satisfied with
probability at most ε3. There are at most

(

q
3

)

· (γ − 1) possible choices of
queries that satisfy this condition on the tweaks, noting that every tweak
occurs at most γ times;

– If ti2 = ti4 , but ti1 , ti2 , ti3 are all distinct, a similar reasoning applies;
– If ti1 = ti4 , but ti1 , ti2 , ti3 are all distinct, a similar reasoning applies;
– If ti1 = ti3 and ti2 = ti4 but ti1 , ti2 are distinct, the condition is satisfied

with probability at most ε2. There are at most
(

q
2

)

· (γ − 1) possible
choices of queries that satisfy this condition on the tweaks, noting that
every tweak occurs at most γ times and that there is at most one option
for (ti4 ,mi4 , ci4) once the other three queries are fixed.

Overall, configuration (C) is satisfied with probability at most

max
{(

q

4

)

2nε4,

(

q

3

)

(γ − 1)ε3,
(

q

2

)

(γ − 1)ε2
}

≤
(

q

4

)

2nε4 +
(

q

2

)

(γ − 1)ε2 ,

for γ ≤ q/4 and 2nε ≥ 1;
(D) Configuration (D) is symmetrical to configuration (C);
(E) Configuration (E) is symmetrical to configuration (B);
(F) Configuration (F) is symmetrical to configuration (A).
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Thus,

Pr (subgraph) ≤ 4
(

q

4

)

ε3 + 2
(

q

4

)

2nε4 + 2
(

q

2

)

(γ − 1)ε2

≤ 6
(

q

4

)

2nε4 + 2
(

q

2

)

(γ − 1)ε2 . (22)

Conclusion for bad events. From (19) and the individual probabilities of (20),
(21), and (22), we obtain

Pr (Xp̃ ∈ Vbad) ≤ 3
(

q

2

)

ε2 + 6
(

q

4

)

2nε4 + 2
(

q

2

)

(γ − 1)ε2

≤ 6
(

q

4

)

2nε4 +
(

q

2

)

(2γ + 1)ε2 ,

for γ ≥ 2.

5.6 Ratio for Good Views (ε)

Consider a given view ν = (ν′, h1, h2) where ν = {(t1,m1, c1), . . . , (tq,mq, cq)}.
Define

r1 = |{mi ⊕ h1(ti) | i ∈ {1, . . . , q}}| , (23)
r2 = |{ci ⊕ h2(ti) | i ∈ {1, . . . , q}}| . (24)

Note that r1 + r2 is equal to the number of unknowns in the system of equations
(see (18)). For any t ∈ {0, 1}τ , we denote ut = |{i ∈ {1, . . . , q} | ti = t}|.

For the ideal world p̃, we have

Pr (Xp̃ = ν) = Pr
(

p̃
$←− iperm(τ, n) : p̃ � ν′

)

· Pr
(

(h1, h2) = (h′
1, h

′
2)

$←− H2
)

=
1

∏

t∈{0,1}τ (2n)ut

· 1
|H|2 , (25)

where for the first probability we use that p̃ is a family of permutations and for
every t ∈ {0, 1}τ the view defines ut values.

For the real world F , recall that it is built from two permutations p1, p
−1
2 .

We have

Pr (XF = ν) = Pr
(
p1, p−1

2
$←− perm(n) : F � ν′ | h1, h2

)
· Pr

(
(h1, h2) = (h′

1, h′
2)

$←− H2
)

= Pr
(
p1, p−1

2
$←− perm(n) : F � ν′ | h1, h2

)
· 1

|H|2 . (26)

As has become clear from (17), ν = (ν′, h1, h2) fixes exactly q equations on r1
unknowns for p1 and r2 unknowns for p−1

2 , where the inputs to p1 and p−1
2 are

fixed. We rely on the following lemma that is based on Patarin’s mirror theory.
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Lemma 2. Consider good view ν = (ν′, h1, h2) whose system of q equations
(17) has no subgraph of ≥ 4 edges, has no path of length 2 whose labels sum to
0, and no circle of length 2. As long as 52 · q ≤ 2n/64, the number of solutions
to the r1 + r2 unknowns is at least

(2n)r1(2
n − 4)r2

2nq
.

The proof of Lemma 2 is omitted: it is very similar to the reasoning on EDM in
[20] and follows straightforwardly from Patarin’s mirror theory as reviewed in
Appendix B. The side condition 52 · q ≤ 2n/64 is slightly different from that in
[20], as we have adopted the bound from Nachef, Patarin, and Volte [22].

Every such solution defines r1 evaluations of p1, and r2 evaluations of p2, and
hence the remaining probability in (26) satisfies

Pr
(

p1, p
−1
2

$←− perm(n) : F � ν′ | h1, h2

)

≥ (2n)r1(2
n − 4)r2

2nq · (2n)r1(2n)r2

.

We obtain for the ratio:

Pr (XF = ν)
Pr (Xp̃ = ν)

≥
∏

t∈{0,1}τ (2n)ut
· |H|2

1
· (2n)r1(2

n − 4)r2

2nq · (2n)r1(2n)r2 · |H|2

=

∏

t∈{0,1}τ (2n)ut
· (2n − 4)r2

2nq · (2n)r2

. (27)

Using that for all t, ut ≤ γ, and that
∑

t∈{0,1}τ ut = q:

(27) ≥
∏

t∈{0,1}τ (2n − (γ − 1))ut · (2n − 4)r2

2nq · (2n)r2

=
(

2n − (γ − 1)
2n

)q

·
3

∏

i=0

(

1 − r2
2n − i

)

. (28)

Using that r2 ≤ q − 1, and by simple algebra for q ≤ 2n/3:

(28) ≥ 1 −
(

(γ − 1)q
2n

+
q − 1
2n

+
q − 1
2n − 1

+
q − 1
2n − 2

+
q − 1
2n − 3

)

≥ 1 − (γ + 3)q
2n

.

We have obtained ε = (γ+3)q
2n , provided 52 · q ≤ 2n/64.

5.7 Releasing Tweak Usage Limitation

The limitation on the tweak usage, namely that the distinguisher can query each
tweak at most γ times, is used at two places in the proof.

The first place is the last case of configuration (C) in Sect. 5.5, namely the
case where ti1 = ti3 and ti2 = ti4 . For upper bounding the number of choices for
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the four queries without relying on parameter γ, one may take into account that
mi1 ⊕ mi2 = mi3 ⊕ mi4 is necessarily needed. This value needs to be equal to
the random value h1(ti1) ⊕ h2(ti2). However, we see no possibility for deriving a
formal bound here.

The second place is in the application of the mirror theory in Sect. 5.6. Our
approach to achieve improved 3n/4-bit security relies on Patarin’s mirror the-
ory, which is specifically developed to work well if a scheme is compared with a
random function. Obviously, evaluations of CLRW2 under the same tweak will
always give distinct responses. In particular, if a distinguisher uses the same
tweak for all queries, all responses will be distinct, and the scheme can be distin-
guished from a random function with probability about

(

q
2

)

/2n. More generally,
if every tweak is evaluated at most γ times, the scheme can be distinguished from
a random function with probability at most around γq/2n. Resolving the γ lim-
itation here requires improving Patarin’s mirror theory or employing a different
proof technique.
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A A Proof of Theorem 1

Consider the distinguisher of Sect. 3.2 for any ε ≥ 0. Its success advantage sat-
isfies

Advstprp
GCLf1,f2,f3

(D) = Pr
(

DGCLf1,f2,f3 = 1
)

− Pr
(

Dp̃ = 1
)

= 1 − Pr
(

DGCLf1,f2,f3 = 0
)

− Pr
(

Dp̃ = 1
)

. (29)

The derivation relies on the following two lemmas, the proofs of which are in
Sects. A.1 and A.2.

Lemma 3. Provided n ≥ 6, Pr
(

DGCLf1,f2,f3 = 0
)

≤ 32
24ε + 80

2n/2+2ε .

Lemma 4. For any integral 1 ≤ α ≤
√

β − 1, provided n ≥ 16, Pr
(

Dp̃ = 1
)

≤
α2n

(

2α
22ε

)3/(4α2)·24ε

+ 2(α+2)2ε

2(α−2)n/2 .

Putting ε = log2(n)/2, we derive from (29) and Lemmas 3 and 4 that

Advstprp
GCLf1,f2,f3

(D) ≥ 1 − 32
n2

− 80
n2n/2

− α2n

(

2α

n

)3/(4α2)·n2

− n(α+2)

2(α−2)n/2
,

provided n ≥ 16, and for any integral 1 ≤ α ≤
√

3/8n − 1. Clearly, the bound is
meaningless for α = 1, 2. Computer verification yields optimal choice α = 5.
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A.1 Proof of Lemma 3

Putting d∗ = f1(t) ⊕ f1(t′), we have

Pr
(

DGCLf1,f2,f3 = 0
)

= Pr
(

∀d∈{0,1}nNd < β
)

≤ Pr (Nd∗ < β) . (30)

Clearly, if f2(t) ⊕ f2(t′) = 0, then ci ⊕ c′
j = f3(t) ⊕ f3(t′) for all (i, j) ∈ Id∗

and thus Nd∗ =
(

q′

2

)

> β, implying Pr (Nd∗ < β) = 0. Henceforth, assume that
d∗∗ := f2(t) ⊕ f2(t′) �= 0.

By Chebychev’s inequality:

Pr (Nd∗ < β) = Pr (Nd∗ − Ex (Nd∗) < β − Ex (Nd∗))

≤ Pr
(∣

∣Nd∗ − Ex (Nd∗)
∣

∣ ≥ Ex (Nd∗) − β
)

≤ Var (Nd∗)
(Ex (Nd∗) − β)2

=
Ex

(

(

Nd∗
)2

)

−
(

Ex (Nd∗)
)2

(Ex (Nd∗) − β)2
. (31)

For distinct (i, j), (k, l) ∈ Id∗ , define

N
(i,j),(k,l)
d∗ =

{

1, if ci ⊕ c′
j = ck ⊕ c′

l ,

0, otherwise ,
(32)

such that

Nd∗ =
∑

(i,j),(k,l)∈Id∗
(i,j) �=(k,l)

N
(i,j),(k,l)
d∗ . (33)

We have

Ex (Nd∗) =
∑

(i,j),(k,l)∈Id∗
(i,j) �=(k,l)

Pr
(

ci ⊕ c′
j = ck ⊕ c′

l

)

, (34)

and

Ex
((

Nd∗
)2)

= Ex

⎛
⎜⎜⎜⎝

∑
(i,j),(k,l)∈Id∗

(i,j) �=(k,l)

∑

(i′,j′),(k′,l′)∈Id∗
(i′,j′) �=(k′,l′)

N
(i,j),(k,l)
d∗ N

(i′,j′),(k′,l′)
d∗

⎞
⎟⎟⎟⎠

=
∑

(i,j),(k,l)∈Id∗
(i,j) �=(k,l)

∑

(i′,j′),(k′,l′)∈Id∗
(i′,j′) �=(k′,l′)

Pr
(
ci ⊕ c′

j = ck ⊕ c′
l , ci′ ⊕ c′

j′ = ck′ ⊕ c′
l′

)
.

(35)
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Above summation consists of
(

q′

2

)2
terms of independent probabilities, but their

values differ depending on overlaps in the two sets {(i, j), (k, l)}, {(i′, j′), (k′, l′)}.
For any distinct (i1, j1), (i2, j2), (i3, j3), (i4, j4) ∈ Id∗ , define

P2 := Pr
(

ci1 ⊕ c′
j1 = ci2 ⊕ c′

j2

)

,

P3 := Pr
(

ci1 ⊕ c′
j1 = ci2 ⊕ c′

j2 = ci3 ⊕ c′
j3

)

,

P4 := Pr
(

ci1 ⊕ c′
j1 = ci2 ⊕ c′

j2 , ci3 ⊕ c′
j3 = ci4 ⊕ c′

j4

)

.

We can observe that the sum in (35) consists of exactly
(

q′

2

)

terms satisfying
∣

∣{(i, j), (k, l)} ∪ {(i′, j′), (k′, l′)}
∣

∣ = 2, in which case the corresponding proba-
bility is of the form P2, exactly

(

q′

2

)

2
(

q′−2
1

)

terms satisfying
∣

∣{(i, j), (k, l)} ∪
{(i′, j′), (k′, l′)}

∣

∣ = 3, in which case the corresponding probability is of the form
P3, and exactly

(

q′

2

)(

q′−2
2

)

terms satisfying
∣

∣{(i, j), (k, l)}∪{(i′, j′), (k′, l′)}
∣

∣ = 4,
in which case the corresponding probability is of the form P4. We obtain (using
independence of the probabilities)

Ex
(

(

Nd∗
)2

)

=
(

q′

2

)

· P2 +
(

q′

2

)

2
(

q′ − 2
1

)

· P3 +
(

q′

2

)(

q′ − 2
2

)

· P4 .

We likewise have Ex (Nd∗) =
(

q′

2

)

· P2, and using that β = 3
2

(

q′

2

)

/2n, we obtain
for (30–31):

Pr
(
DGCLf1,f2,f3

= 0
)

≤
(
q′
2

) · P2 +
(
q′
2

)
2
(
q′−2

1

) · P3 +
(
q′
2

)(
q′−2

2

) · P4 −
((

q′
2

) · P2

)2

(
(
q′
2

) · P2 − 3
2

(
q′
2

)
/2n)2

=
P2 + 2

(
q′−2

1

) · P3 +
(
q′−2

2

) · P4 − (
q′
2

) · P2
2(

q′
2

)
(P2 − 3

2
/2n)2

. (36)

We can derive the following bounds on P2,P3,P4.

Claim. Provided n ≥ 6, P2 ≥ 2/2n, P3 ≤ 5/22n, and P4 ≤ 4
(2n−6)(2n−7) .

Proof (proof of claim). Before bounding the probabilities separately, note that
in general for any distinct (i, j), (k, l) ∈ Id∗ , we have i �= k and j �= l. Write

xi1 = p1(mi1 ⊕ f1(t)) = p1(m′
j1 ⊕ f1(t′)) ,

xi2 = p1(mi2 ⊕ f1(t)) = p1(m′
j2 ⊕ f1(t′)) ,

xi3 = p1(mi3 ⊕ f1(t)) = p1(m′
j3 ⊕ f1(t′)) ,

xi4 = p1(mi4 ⊕ f1(t)) = p1(m′
j4 ⊕ f1(t′)) ,
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where we recall that d∗ = f1(t) ⊕ f1(t′) = mi1 ⊕ m′
j1

= · · · = mi4 ⊕ m′
j4

. Above
values xi1 , xi2 , xi3 , xi4 are pairwise distinct as mi1 ,mi2 ,mi3 ,mi4 are pairwise
distinct as i1, i2, i3, i4 are. Furthermore, write

yi1 = p−1
2 (ci1 ⊕ f3(t)) = xi1 ⊕ f2(t) ,

y′
j1 = p−1

2 (c′
j1 ⊕ f3(t′)) = xi1 ⊕ f2(t′) ,

yi2 = p−1
2 (ci2 ⊕ f3(t)) = xi2 ⊕ f2(t) ,

y′
j2 = p−1

2 (c′
j2 ⊕ f3(t′)) = xi2 ⊕ f2(t′) ,

yi3 = p−1
2 (ci3 ⊕ f3(t)) = xi3 ⊕ f2(t) ,

y′
j3 = p−1

2 (c′
j3 ⊕ f3(t′)) = xi3 ⊕ f2(t′) ,

yi4 = p−1
2 (ci4 ⊕ f3(t)) = xi4 ⊕ f2(t) ,

y′
j4 = p−1

2 (c′
j4 ⊕ f3(t′)) = xi4 ⊕ f2(t′) .

Recall that d∗∗ := f2(t) ⊕ f2(t′) �= 0.
We start with bounding P2:

P2 = Pr
(

ci1 ⊕ c′
j1 = ci2 ⊕ c′

j2

)

= Pr
(

ci1 ⊕ c′
j1 = ci2 ⊕ c′

j2 | xi1 ⊕ xi2 = d∗∗)Pr (xi1 ⊕ xi2 = d∗∗)

+ Pr
(

ci1 ⊕ c′
j1 = ci2 ⊕ c′

j2 | xi1 ⊕ xi2 �= d∗∗)Pr (xi1 ⊕ xi2 �= d∗∗) .

Given that xi1 �= xi2 , we have

Pr (xi1 ⊕ xi2 = d∗∗) =
1

2n − 1
.

Conditioned on xi1 ⊕ xi2 = d∗∗, we have yi1 = y′
j2

and y′
j1

= yi2 , and ci1 ⊕ c′
j1

=
ci2 ⊕ c′

j2
holds with probability 1. Conditioned on xi1 ⊕xi2 �= d∗∗ and using that

d∗∗ �= 0, the values yi1 , y
′
j1

, yi2 , y
′
j2

are pairwise distinct and

Pr
(

p2(yi1) ⊕ p2(y′
j1) = p2(yi2) ⊕ p2(y′

j2) | xi1 ⊕ xi2 �= d∗∗) ≤ 1
2n − 3

.

We therefore obtain

P2 =
1

2n − 1
+

1
2n − 3

(

1 − 1
2n − 1

)

=
2 · 2n − 5

(2n − 1)(2n − 3)
≥ 2

2n
.

We next bound P3:

P3 = Pr
(
ci1 ⊕ c′

j1 = ci2 ⊕ c′
j2 = ci3 ⊕ c′

j3

)
= Pr

(
ci1 ⊕ c′

j1 = ci2 ⊕ c′
j2 = ci3 ⊕ c′

j3 | xi1 ⊕ xi2 = d∗∗)
Pr (xi1 ⊕ xi2 = d∗∗)

+ Pr
(
ci1 ⊕ c′

j1 = ci2 ⊕ c′
j2 = ci3 ⊕ c′

j3 | xi1 ⊕ xi3 = d∗∗)
Pr (xi1 ⊕ xi3 = d∗∗)

+ Pr
(
ci1 ⊕ c′

j1 = ci2 ⊕ c′
j2 = ci3 ⊕ c′

j3 | xi2 ⊕ xi3 = d∗∗)
Pr (xi2 ⊕ xi3 = d∗∗)

+ Pr
(
ci1 ⊕ c′

j1 = ci2 ⊕ c′
j2 = ci3 ⊕ c′

j3 | xi1 ⊕ xi2 , xi1 ⊕ xi3 , xi2 ⊕ xi3 �= d∗∗)
· Pr (xi1 ⊕ xi2 , xi1 ⊕ xi3 , xi2 ⊕ xi3 �= d∗∗) ,
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using that no two or more of the events “xi1 ⊕xi2 = d∗∗,”“xi1 ⊕xi3 = d∗∗,” and
“xi2 ⊕ xi3 = d∗∗” can hold simultaneously. Starting with the first line, as before
we have

Pr (xi1 ⊕ xi2 = d∗∗) =
1

2n − 1
.

Conditioned on xi1 ⊕ xi2 = d∗∗, we have yi1 = y′
j2

and y′
j1

= yi2 , and ci1 ⊕ c′
j1

=
ci2 ⊕ c′

j2
holds with probability 1. On the other hand, xi1 ⊕ xi3 �= d∗∗, and thus,

the values yi1 , y
′
j1

, yi3 , y
′
j3

are pairwise distinct and

Pr
(

ci1 ⊕ c′
j1 = ci2 ⊕ c′

j2 = ci3 ⊕ c′
j3 | xi1 ⊕ xi2 = d∗∗) ≤ 1

2n − 3

(we now need to consider an upper bound, as the probability may be 0 if the
targeted value is already sampled).

The second and third line go identically. For the fourth line, conditioned on
the fact that xi1 ⊕ xi2 , xi1 ⊕ xi3 , xi2 ⊕ xi3 �= d∗∗ and using that d∗∗ �= 0, the
values yi1 , y

′
j1

, yi2 , y
′
j2

, yi3 , y
′
j3

are pairwise distinct and

Pr
(

ci1 ⊕ c
′
j1

= ci2 ⊕ c
′
j2

= ci3 ⊕ c
′
j3

| xi1 ⊕ xi2 , xi1 ⊕ xi3 , xi2 ⊕ xi3 �= d
∗∗)

≤ 1

(2n − 4)(2n − 5)
.

We therefore obtain

P3 ≤ 3
(2n − 1)(2n − 3)

+
1

(2n − 4)(2n − 5)
≤ 4

(2n − 4)(2n − 5)
≤ 5

22n
,

provided 2n ≥ 45.
We finally bound P4:

P4 = Pr
(
ci1 ⊕ c′

j1
= ci2 ⊕ c′

j2
, ci3 ⊕ c′

j3
= ci4 ⊕ c′

j4

)

= Pr
(
ci1 ⊕ c′

j1
= ci2 ⊕ c′

j2
, ci3 ⊕ c′

j3
= ci4 ⊕ c′

j4
| xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 = d∗∗)

· Pr (xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 = d∗∗)
+Pr

(
ci1 ⊕ c′

j1
= ci2 ⊕ c′

j2
, ci3 ⊕ c′

j3
= ci4 ⊕ c′

j4
| xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 �= d∗∗)

· Pr (xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 �= d∗∗)
+Pr

(
ci1 ⊕ c′

j1
= ci2 ⊕ c′

j2
, ci3 ⊕ c′

j3
= ci4 ⊕ c′

j4
| xi1 ⊕ xi2 �= d∗∗ ∧ xi3 ⊕ xi4 = d∗∗)

· Pr (xi1 ⊕ xi2 �= d∗∗ ∧ xi3 ⊕ xi4 = d∗∗)
+Pr

(
ci1 ⊕ c′

j1
= ci2 ⊕ c′

j2
, ci3 ⊕ c′

j3
= ci4 ⊕ c′

j4
| xi1 ⊕ xi2 �= d∗∗ ∧ xi3 ⊕ xi4 �= d∗∗)

· Pr (xi1 ⊕ xi2 �= d∗∗ ∧ xi3 ⊕ xi4 �= d∗∗) ,

For the first line, the event xi1 ⊕xi2 = d∗∗∧xi3 ⊕xi4 = d∗∗ holds with probability
1/(2n − 2)(2n − 3), and conditioned on xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 = d∗∗, the
equations ci1 ⊕ c′

j1
= ci2 ⊕ c′

j2
and ci3 ⊕ c′

j3
= ci4 ⊕ c′

j4
hold with probability 1

(see the analysis of P2). The second and third line go as in the analysis of P3,
giving

Pr (xi1 ⊕ xi2 = d∗∗ ∧ xi3 ⊕ xi4 �= d∗∗) ≤ 1
2n − 1

,
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and

Pr
(

ci1 ⊕ c
′
j1

= ci2 ⊕ c
′
j2

, ci3 ⊕ c
′
j3

= ci4 ⊕ c
′
j4

| xi1 ⊕ xi2 = d
∗∗ ∧ xi3 ⊕ xi4 �= d

∗∗)

≤ 1

2n − 3
.

For the fourth line, conditioned on the fact that xi1 ⊕xi2 �= d∗∗ ∧xi3 ⊕xi4 �= d∗∗

and using that d∗∗ �= 0, the values yi1 , y
′
j1

, yi2 , y
′
j2

are pairwise distinct and
so are yi3 , y

′
j3

, yi4 , y
′
j4

, and in addition, yi1 , yi2 , yi3 , yi4 are pairwise distinct and
y′

j1
, y′

j2
, y′

j3
, y′

j4
are. We obtain

Pr
(

ci1 ⊕ c
′
j1

= ci2 ⊕ c
′
j2

, ci3 ⊕ c
′
j3

= ci4 ⊕ c
′
j4

| xi1 ⊕ xi2 , xi3 ⊕ xi4 �= d
∗∗)

≤ 1

(2n − 6)(2n − 7)
.

We therefore obtain

P4 ≤ 1

(2n − 2)(2n − 3)
+

2

(2n − 1)(2n − 3)
+

1

(2n − 6)(2n − 7)
≤ 4

(2n − 6)(2n − 7)
.

��

To suit further analysis of (36), we claim that the P4-term cancels out to the
P2

2-term.

Claim. Provided 6q′ ≤ 2n,
(

q′−2
2

)

· P4 ≤
(

q′

2

)

· P2
2.

Proof (proof of claim). By above claim, P4 ≤ 4
(2n−6)(2n−7) and P2 ≥ 2/2n, and

it remains to prove that

(q′ − 2)(q′ − 3)
(2n − 6)(2n − 7)

≤ q′(q′ − 1)
22n

.

This in turn follows from the fact that

q′ − 3
2n − 7

≤ q′ − 2
2n − 6

≤ q′ − 1
2n

,

as 6q′ ≤ 2n. ��

From (36) and the bounds of above two claims, we directly obtain

Pr
(

DGCLf1,f2,f3 = 0
) a

≤
P2 + 2

(

q′−2
1

)

· P3
(

q′
2

)

(P2 − 3
2/2n)2

b
≤

2/2n + 2
(

q′−2
1

)

· 5/22n

(

q′
2

)

(2/2n − 3
2/2n)2

=
8 · 2n + 40(q′ − 2)

(

q′
2

)

c
≤ 32

24ε
+

80
2n/2+2ε

,

where
a
≤ holds due to the second claim,

b
≤ holds as P2 ≥ 2/2n and P3 ≤ 5/22n

(note that a lower bound on P2 suffices for both the numerator and denominator

as A/(A − C) ≤ B/(B − C) for A ≥ B > C > 0), and
c
≤ holds as

(

q′

2

)

≥ (q′)2/4
and q′ = 2n/2+2ε.
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A.2 Proof of Lemma 4

For any d ∈ {0, 1}n, recall that Nd counts the number of collisions ci⊕c′
j = ck⊕c′

l

for distinct (i, j), (k, l). There could be multi-collisions; for λ ≥ 2 we say that
(i1, j1), . . . , (iλ, jλ) ∈ Id form a λ-collision if ci1 ⊕ c′

j1
= · · · = ci5 ⊕ c′

j5
. Denote

by Nλ
d the number of λ-collisions that are not part of a (λ+1)-collision. Denote

by N≥λ
d the number of λ-collisions (that may be part of a (λ + 1)-collision).

Fix any 1 ≤ α ≤
√

β − 1. By basic probability theory,1

Pr
(

Dp̃ = 1
)

≤
∑

d∈{0,1}n

Pr (Nd ≥ β)

≤
∑

d∈{0,1}n

Pr
(

Nd ≥ β | N≥α+2
d = 0

)

+ Pr
(

N≥α+2
d ≥ 1

)

≤
∑

d∈{0,1}n

Pr
(

Nd ≥ β | N≥α+2
d = 0

)

+
(

q′

α + 2

)

1
(2n)α+1

. (37)

Conditioned on the fact that there is no (α + 2)-collision, by the pigeonhole
principle, Nd ≥ β only if the number of collisions arising from either 2-collisions,
3-collisions, . . . , or (α + 1)-collisions is at least β/α. Clearly, a 2-collision con-
tributes 1 to Nd, a 3-collision contributes 3 to Nd, and generally, an i-collision
contributes

(

i
2

)

to Nd. Therefore, denoting Pr
(X) = Pr
(

X
∣

∣

∣ N≥α+2
d = 0

)

for
brevity,

Pr
(Nd ≥ β) ≤
α+1
∑

i=2

Pr

(

N i
d ≥ β/α

)

≤
α+1
∑

i=2

(

q′

i · β/(α
(

i
2

)

)

)

1
(2n)(i−1)·β/(α(i

2))
. (38)

As α ≤
√

β − 1, we particularly have (i − 1) · β/(α
(

i
2

)

) ≥ 2 for all i, and we
obtain

( q′

i · β/(α
(i
2

)

)

) 1

(2n)
(i−1)·β/(α

(

i
2

)

)

a
≤

(q′)
(i−1)·β/(α

(

i
2

)

)
· (q′ − 2)

β/(α
(

i
2

)

)

(2n)
(i−1)·β/(α

(

i
2

)

)

·
(

e

i · β/(α
(i
2

)

)

)i·β/(α
(

i
2

)

)

b
≤

(

(

eα(i − 1)

2

)i

· (q′)i−1(q′ − 2)

2(i−1)n
· 1

βi

)β/(α
(

i
2

)

)

c
≤

(

(

2eα

3

)i

· (i − 1)i

24ε(2n/2+2ε − 1)i−2

)(3·24ε)/(8α
(

i
2

)

)

d
≤

(

2α

22ε

)3/(4α(i−1))·24ε

,

1 Note that a plain Markov bound or Chebychev’s inequality do not help, as we have
to sum over all possible d ∈ {0, 1}n.
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where
a
≤ holds as

(

A
B

)

≤ (A)B · (e/B)B by Stirling’s approximation,
b
≤ holds as

(A)m/(B)m ≤ (A/B)m if A ≤ B,
c
≤ uses β = 3

2

(

q′

2

)

/2n, q′(q′ − 2) ≤ (q′ − 1)2,

and q′ = 2n/2+2ε, and, finally
d
≤ holds as (i − 1)i ≤ (2n/2−1)i−2 is satisfied for

all i, provided that n ≥ 16.
We obtain for (38):

Pr
(Nd ≥ β) ≤
α+1
∑

i=2

(

2α

22ε

)3/(4α(i−1))·24ε

≤ α

(

2α

22ε

)3/(4α2)·24ε

,

and for (37):

Pr
(

Dp̃ = 1
)

≤ α2n

(

2α

22ε

)3/(4α2)·24ε

+
2(α+2)2ε

2(α−2)n/2
,

again using that (A)m/(B)m ≤ (A/B)m if A ≤ B. This bound holds for all
1 ≤ α ≤

√
β − 1.

B Mirror Theory

We will follow the description of Patarin’s mirror theory [22,26,28] by Mennink
and Neves [20]. We will restrict ourselves to the simplified setting where the
equations are of the form Pa ⊕ Pb = λ, where the Pa’s and Pb’s come from
independent permutations, and we will use the theory for 3n/4-bit security at
most.

B.1 System of Equations

Consider a system of q ≥ 1 equations

E = {Pϕ(a1) ⊕ Pϕ(b1) = λ1, · · · , Pϕ(aq) ⊕ Pϕ(bq) = λq} (39)

over r ≥ 1 unknowns P = {P1, . . . , Pr}, where ϕ is some surjective index map-
ping

ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r} .

In our work we consider the case that the Pa’s and Pb’s come from independent
permutations, hence ϕ(ai) �= ϕ(bj) for any i, j. We write I1 = {ϕ(ai) | i ∈
{1, . . . , q}} and I2 = {ϕ(bi) | i ∈ {1, . . . , q}}, such that {1, . . . , r} = I1 ∪ I2 is a
partition. For a subset I ⊆ {1, . . . , q}, define the multiset MI as

MI =
⋃

i∈I

{ϕ(ai), ϕ(bi)} .

We give three definitions with respect to the system of equations E .
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Definition 1 (circle-freeness). For any I ⊆ {1, . . . , q}, MI has an element
of odd multiplicity.

Definition 2 (ξ-block-maximality). There is a partition {1, . . . , r} = R1 ∪
· · · ∪ Rs of the r indices, all of size at most ξ, such that for any i ∈ {1, . . . , q}
there is an � ∈ {1, . . . , s} such that {ϕ(ai), ϕ(bi)} ⊆ R�.

Definition 3 (non-degeneracy). For any I ⊆ {1, . . . , q} such that MI has
exactly two odd multiplicity element from either I1 or I2, it satisfies

⊕

i∈I λi �= 0.

Circle-freeness implies that there is no linear combination of the equations E
that is independent of the unknowns, ξ-block maximality implies that there are
not too many unknowns that are jointly related, and non-degeneracy implies
that there is no linear combination of the equations E that implies equality of
two distinct unknowns from either I1 or I2.

B.2 Main Result

The main theorem of Patarin’s mirror theory, tailored to the case where we have
a partition of the unknowns into two disjoint sets, is given below. We follow [20],
with the side condition on 2n/64 from [22].

Theorem 3 (mirror theorem). Let {1, . . . , r} = I1 ∪ I2 be a partition of
the indices. Let E be a system of equations over the unknowns P that is (i)
circle-free, (ii) ξ-block-maximal, and (iii) non-degenerate. Then, as long as ξ2 ·
max{|I1|, |I2|} ≤ 2n/64, the number of solutions for P such that Pi �= Pj for all
i, j ∈ I� (� = 1, 2) is at least

NonEq(I1, I2; E)
2nq

,

where NonEq(I1, I2; E) denotes the number of solutions to P that satisfy Pi �= Pj

for all i, j ∈ I� (� = 1, 2) as well as the inequalities imposed by E (but the
equalities themselves released).

A lower bound on the technical quantity NonEq(I1, I2; E) can be derived as
follows. Every equation Pϕ(a) ⊕ Pϕ(b) = λ �= 0 in E imposes Pϕ(a) �= Pϕ(b). As
ϕ(a) ∈ I1 and ϕ(b) ∈ I2 are in distinct index sets, this inequality Pϕ(a) �= Pϕ(b)

imposes an extra inequality over the ones suggested by I1, I2. An obvious lower
bound thus is

NonEq(I1, I2; E) ≥ (2n)|I1|(2n − (ξ − 1))|I2| ,

because every unknown of I2 is in exactly one block, and connects with at most
ξ − 1 unknowns of I1 (as the system is ξ-block-maximal).
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Abstract. Non-Malleable Codes (NMC) were introduced by Dziem-
bowski, Pietrzak and Wichs in ICS 2010 as a relaxation of error correcting
codes and error detecting codes. Faust, Mukherjee, Nielsen, and Venturi
in TCC 2014 introduced an even stronger notion of non-malleable codes
called continuous non-malleable codes where security is achieved against
continuous tampering of a single codeword without re-encoding.

We construct information theoretically secure CNMC resilient to bit
permutations and overwrites, this is the first Continuous NMC con-
structed outside of the split-state model.

In this work we also study relations between the CNMC and parallel
CCA commitments. We show that the CNMC can be used to bootstrap
a Self-destruct parallel CCA bit commitment to a Self-destruct parallel
CCA string commitment, where Self-destruct parallel CCA is a weak
form of parallel CCA security. Then we can get rid of the Self-destruct
limitation obtaining a parallel CCA commitment, requiring only one-way
functions.

1 Introduction

In this paper, we study the interesting relationship between the notions of non-
malleable codes and non-malleable commitments, and advance state of art for
both of them. Before giving our results, we introduce the notions.
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1.1 Introduction to Non-malleable Codes

Non-Malleable Codes (NMC) were introduced by Dziembowski, Pietrzak and
Wichs [27] as a relaxation of error correcting codes and error detecting codes.
An NMC takes a message m and encodes it as a possibly longer and randomized
codeword c ← Enc(m). The adversary chooses and submits a tampering function
Tamper, that is applied to the code word to yield c′ = Tamper(c). Applying the
decoding algorithm yields a message m′ = Dec(c′). The security guarantee for
an NMC now is that the decoded message m′ is either identical to the original
message m or, in case of a decoding error, a message unrelated to m. Corre-
spondingly, the adversary is given either m′ or a symbol “same” indicating that
decoding was successful. Technically, we require that if m′ �= m, then m′ can
be simulated using just the tampering function Tamper, but without knowing
anything about the tampered codeword c′.

It is generally impossible to give any meaningful guarantees if the tampering
function is unrestricted (the tamper function could decode, and then encode a
modified message). Therefore, the tampering function Tamper is always assumed
to come from some class T of functions. An immediate example application of
NM codes is for tamper resilient cryptography: if a secret key is stored in a
hardware device, the adversary could try to tamper with the device and observe
its behavior after the modification. But if the key is encoded with an NM code,
the security guarantees immediately imply that either the tampering had no
effect or the effect can be simulated without the device.

Continuous Non-Malleable Codes (CNMC). As mentioned in [37], non-
malleable codes can provide protection against these kind of attacks if the device
is allowed to freshly re-encode its state after each invocation to make sure that
the tampering is applied to a fresh codeword at each step. After each execution
the entire content of the memory is erased. While such perfect erasures may be
feasible in some settings, they are rather problematic in the presence of tam-
pering. Due to this reason, Faust et al. [28] introduced an even stronger notion
of non-malleable codes called continuous non-malleable codes where security is
achieved against continuous tampering of a single codeword without re-encoding.
In this model the adversary can iteratively submit tampering functions Tamperi
and learn mi = Dec(Tamperi(c)). We call this the continuous tampering model.
This stronger security notion is needed in many setting, for instance when using
NMCs to make tamper resilient computations on von Neumann architectures
[29].

Some additional restrictions are, however, necessary in the continuous tam-
pering model. If the adversary was given an unlimited budget of tampering
queries, then, given that the class of tampering functions is sufficiently expres-
sive (e.g. it allows to overwrite single bits of the codeword), the adversary can
efficiently learn the entire message just by observing whether tampering queries
leave the codeword unmodified or lead to decoding errors, see e.g. [31].

To overcome this general issue, [28] assume a self-destruct mechanism which
is triggered by decoding errors. In particular, once the decoder outputs a special
symbol ⊥ the device self-destructs and the adversary loses access to his tamper-
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ing oracle. This model still allows an adversary many tamper attempts, as long
as his attack remains covert. Jafargholi and Wichs [37] considered four variants
of continuous non-malleable codes depending on

– Whether tampering is persistent in the sense that the tampering is always
applied to the current version of the tampered codeword, and all previous
versions of the codeword are lost. The alternative definition considers non-
persistent tampering where the device resets after each tampering, and the
tampering always occurs on the original codeword.

– Whether tampering to an invalid codeword (i.e., when the decoder outputs
⊥) causes a “self-destruct” and the experiment stops and the attacker cannot
gain any additional information, or alternatively whether the attacker can
always continue to tamper and gain information.

A long line of research has tried to optimize the performance of NM codes
with respect to the number of allowed tampering queries and the class of allowed
tampering functions (see the related work section for details). In this paper we
will be concerned with the case of CNMCs where there is no a priori bound on the
number of queries. This model must include a self-destruct mechanism. Further
we will be concerned with information theoretic NM codes where security holds
for an unbounded adversary, and we will look at the single state model, where the
tampering function is allowed to access the entire codeword. This is in contrast
to the split-state model where the tamper function must consider disjoint parts
of the codeword separately.

1.2 NMC- Our Result

We give a construction of a self-destruct, non-persistent continuous NMC (see
Corollary 1 of Theorem 1) unconditionally secure against bit permutations com-
posed with bit overwrites.

[5] gives a one time Non-Malleable Code resilient against bit permutations
composed with bit-wise tampering. In [22] they construct a CNMC secure against
bitwise tampering (but permutations are not allowed).

Unconditionally secure Continuous Non-Malleable Codes are notoriously
hard to construct. Very little progress was made since CNMC were proposed
in 2015:

– [22] authors construct a CNMC secure against bitwise tampering which is the
variant of split-state model.

– [14] authors achieve a so-called many-many non-malleable code in the 2-split
state model. Their construction achieves non-malleability as long as the num-
ber of rounds of tampering is at most nγ for some constant γ < 1, where n
is the length of the codeword.

– [4] authors give the persistent continuous NMC construction for 2–split state.
– [3] gives Continuous NMC against 8–split state tampering (optimal number

of states would be 3).

This makes our result the first known unconditionally secure construction of
CNMC outside of split-state model.
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1.3 NMC- Related Work

In [27] the authors construct an efficient code which is non-malleable with respect
to bit-wise tampering, i.e., tampering functions that modify each bit of the
codeword arbitrarily but independently of the value of the other bits of the
codeword. Later works [2,15,17,26,42] provided stronger results by considering
a model where the codeword is split into s parts called states, which can each be
tampered arbitrarily but independently of the other states. explicit constructions
were later given in [16,30]. Other works considered tampering via permutations
and perturbations [6], which are not captured in the split-state model. In [7]
authors show how to construct efficient, unconditionally secure non-malleable
codes for bounded output locality (i.e. when every bit of tampering output can
depend on at most some nδ bits of input for δ < 1).

The definition in [27] allows the adversary to be computationally unbounded.
We call this an information theoretic NMC. Later works considered a notion of
computational NMC where the adversary and tampering functions are restricted
to efficient computations, see for instance [1,8,18,46]. The definition in [27]
allows the adversary to tamper the codeword only once. We call this one-
shot tampering. Faust et al. [28] consider a stronger model where the adver-
sary can iteratively submit tampering functions Tamperi and learn mi =
Dec(Tamperi(c)). We call this the continuous tampering model. This stronger
security notion is needed in many setting, for instance when using NMCs to make
tamper resilient computations on von Neumann architectures [29]. Some addi-
tional restrictions are, however, necessary in the continuous tampering model. If
the adversary was given an unlimited budget of tampering queries, then, given
that the class of tampering functions is sufficiently expressive (e.g. it allows to
overwrite single bits of the codeword), the adversary can efficiently learn the
entire message just by observing whether tampering queries leave the codeword
unmodified or lead to decoding errors, see e.g. [31].

To overcome this general issue, [28] assume a self-destruct mechanism which
is triggered by decoding errors. In particular, once the decoder outputs a special
symbol ⊥ the device self-destructs and the adversary loses access to his tamper-
ing oracle. This model still allows an adversary many tamper attempts, as long
as his attack remains covert. Jafargholi and Wichs [37] provide a general study
of when CNMCs can be built assuming a self-destruct mechanism.

Faust et al. [28] constructed a CNMC in the 2-state model which is secure
against computationally bounded adversaries. It was shown in the same work
that it is impossible to construct an information theoretic CNMC for the 2-state
model.

Information-theoretic results for CNMC. In [22] authors construct a CNMC
secure against bitwise tampering which is the simplest variant of split-state
model. In [4] authors give the first information theoretic persistent continuous
NMC construction for 2–split state. Finally in [3] authors give the first infor-
mation theoretic construction of CNMC in 8–split state. Before [3] the only
known result that achieves some sort of non-malleable codes secure against non-
persistent continuous tampering was the result by Chattopadhyay, Goyal, and



CNMC Against Permutations and Overwrites, and its Applications 229

Li [14]. They achieve this by constructing a so-called many-many non-malleable
code in the 2-split state model. Their construction achieves non-malleability as
long as the number of rounds of tampering is at most nγ for some constant
γ < 1, where n is the length of the codeword.

1.4 Application to Commitment Schemes

Commitment Schemes. The notion of commitment is perhaps the most fun-
damental concept in cryptographic protocol design. The idea is that a sender
binds herself to a choice of a message m by exchanging some information with a
receiver. The commitment should be hiding, i.e., the verifier does not learn the
committed message. Later, the sender can choose to open the commitment, i.e.,
release more information allowing the receiver to determine m. The commitment
should be binding, i.e., the sender cannot make the receiver output a message
different from the one she had in mind at commit time.

The strongest possible security notion for commitment schemes is UC secu-
rity, which intuitively asks that using the scheme is equivalent to giving m to
a trusted party who will only release it on request from the committer. This is
much stronger than simply asking for hiding and binding, e.g., we get security
under general composition. But unfortunately, we know that UC security can-
not be achieved without set-up assumptions. So a long line of research has been
aimed at achieving weaker but meaningful security guarantees without set-up.

An important example of this is the notion of non-malleable (NM) com-
mitments [24]. Here we consider an adversarial Man-in-the-middle (MiM), who
on side receives a commitment from an honest sender to message m (the “left
session”) and on the other side sends a commitment to an honest receiver
(the“right session”), containing m′. The MiM wins if he succeeds in forming
a new commitment on the right such that m′ has some non-trivial relation to m.
The NM property does not follow from hiding and binding and is very impor-
tant, for instance in making auctions where committed bid is fair, or towards
implementing secure coin-flipping. Technically the NM property is captured by
requiring a simulator that will simulate the left session without knowing m and
still the MiM wins with essentially the same probability.

The strongest form of NM commitment security is concurrent NM commit-
ments. Here, the MiM is allowed to start any number of left sessions and right
sessions and can schedule them as he likes. One can also consider restricted ver-
sions of this, for instance a 1–1 NM commitment is secure if only 1 left and 1 right
session is allowed. A restriction that we want to consider is self-destruct (SD)
concurrent non-malleable commitment. In this version, once the MiM makes a
invalid commitment in a right session, all commitment computed after that ses-
sion are considered invalid and cannot be used to win the game. This notion
is close in spirit to the one of the weak non-malleable commitments, which has
been applied in multiple works.

An even stronger notion of commitment security is CCA security ([12]): we
consider again a MiM, but he is now given an oracle that he can query on input
a commitment from (one of) the right session(s), as long as it is not a copy of



230 I. Damg̊ard et al.

something from a left session. The requirement is that hiding holds for the left
session(s), even in presence of the oracle. Intuitively, a CCA secure commitment
is also NM secure, all other things being equal: if the MiM could break NM
security and come up with a new commitment on the right side that is related
to one from the left, he could submit it to the oracle in the CCA game and use
the reply to break hiding on the left side. One restriction on CCA commitments
that has been considered is parallel CCA security, where the MiM can ask only
one query that may, however, contain an unbounded number of commitments.
Another restriction is that of self-destruct (SD)-CCA, where the oracle stops
working if the MiM submits an invalid commitment.

Parallel CCA Commitments from CNMC. In this second part we investigate
possible applications our CNMC. In particular, we will show a bridge between
(unconditionally secure) CNMC and (computational) cryptographic primitives
secure in the concurrent setting.

For the stand-alone setting the result of [5] shows how to use a bit parallel
CCA commitment1 to construct a 1-1 string non-malleable commitment relying
on stand-alone NM code. In particular, constructing string commitment from
the corresponding 1-bit primitive, they first encode the input message with an
NM code and then apply a 1-bit commitment scheme.

Following the same approach of [5] but using a CNMC (resilient to the same
class of tampering functions of [5]) we are asking which flavor of non-malleability
w.r.t. commitment we can achieve. In particular, is it enough to plug-in our
CNMC in the construction of [5] to obtain a concurrent NM string commit-
ment? The answer is only partially yes, due to the self-destruct limitation of
CNMC. Indeed, a MiM adversary of NM commitments can compute multiple
invalid commitments. Then, we show how to bypass this limitations requiring
only OWFs.

In more details, we obtain a compiler that takes a CCA bit commitment and
constructs an SD concurrent NM commitment. Due to the adaptiveness of our
NM code we actually achieve a stronger security notion, namely a string SD-CCA
commitment scheme. Furthermore we can relax the requirements on the CCA
bit commitment: it just needs to be SD-CCA-secure instead of CCA-secure.

Summarizing, we show a compiler that on input a (non-tag based) SD-CCA
bit commitment scheme and a continuous non-malleable code resilient against
permutations and bit overwrites, outputs a (non-tag based) SD-CCA string
commitment scheme. Our construction, like the one of [5], preserves the round
complexity of the bit commitment scheme and does not require any additional

1 Note that a particular accent is placed on the fact that the compiler requires as input
a possible (non-tag based) n-parallel bounding CCA bit commitment because. The
reduction is non-trivial only because they are working in the standard non-tag based
setting. Otherwise, in case of tags, one can simply sign the entire transcript using the
tags and obtain a non-malleable string commitment. In case of bit commitments, tag-
based non-malleability is a stronger requirement than the standard (non-tag-based)
non-malleability. Pass and Rosen [47] argue that for string commitments, the two
notions are equivalent since one can simply commit the tag as part of the string, if
there are no tags. Since we only have bit commitments, this does not work.
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assumption. Finally, we show that a SD-parallel CCA string commitment scheme
can be upgraded to a parallel string commitment scheme without self-destruct,
assuming only one-way functions. The construction is non-trivial (it requires
very recent developed tecniques) and adds only two rounds of interaction.

Together with our compiler described above, this implies the first construc-
tion that exploit the CNMC property to obtain a parallel CCA commitment. Fur-
thermore, parallel CCA commitment founds multiple applications like [10,41].
Observe that parallel CCA commitment is not implied by parallel NM commit-
ment (see [11]).

Previous Work on NMCs and NM Commitments. The literature presents
works that exploit the properties of the non-malleable code to construct non-
malleable commitments. Goyal et al. [35] use non-malleable codes in the split-
state model to realize a 3-round one-one non-malleable commitment relying
on one way permutations secure against a quasi-polynomial time adversary.
Chandran et al. [13] show that block non-malleable codes with t blocks imply
non-malleable commitments of t − 1 rounds. As we discuss above, Agrawal et
al. [5] showed that is possible to construct a one-one non-malleable commitment
relying on a non-malleable code and a bounded parallel CCA bit commitment.
However, no one before uses non-malleable codes to construct a parallel CCA
commitment scheme. The aim of this second part is to build bridges between dif-
ferent notions of non-malleability, and to not construct a new NM commitment
or a CCA commitment that are already available in literature. Indeed, there is
a long line of research that tries to reduce the round complexity of NM commit-
ment (e.g. [9,19,20,24,32,33,35,36,38,39,43,45,47–49]). Several constructions of
CCA commitment are also available in literature (e.g. [12,34,40,44]).

1.5 Technical Overview of Our CNMC Secure Against
Permutations-and-Overwrites

Construction of Continuous Non-Malleable Code. Our code consists of an amal-
gamation of two different layers of encoding schemes.

The top layer is a Reed-Solomon code used here as a sharing scheme. We take
a message m, append a random suffix and then encode it using Reed-Solomon
to receive a codeword consisting of N blocks that may be seen as shares of �N

3 �-
out-of-N secret sharing scheme. The intuition behind this scheme is that the
adversary needs to learn at least N

3 shares to learn anything about the initial
message.

The bottom layer is using a Two-Split State Super Strong Non-Malleable
Code (instantiated either by [4] or [42]). Each share si from the above secret
sharing scheme is converted into (si||i) and then encoded using the two-split
state code to get two shares (Li, Ri) (We also expect the bit-parity of Li to be
0 and the bit-parity of Ri to be 1). The final code is (L1, R1, ..., RN , LN ).

To prove that the just described code is actually continuous non-malleable
code, we first redefine the experiment in the definition of continuous codes. The
new definition is obviously stronger, so it is sufficient to work with it. In the
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new definition, whenever an adversary tampers with a block (Li, Ri) with non-
constant functions and succeeds in creating valid (from the point of view of
Super Strong NMC decoder) output blocks (L′

i, R
′
i) (In particular, the parities

of all (L′
i, R

′
i) must be correct), we will reveal blocks (Li, Ri) to the adversary.

As observed earlier, the adversary’s necessary task is to learn at least �N
3 �

blocks of the underlying si shares.
Since the adversary can only tamper bitwise and permute bits we can prove

that if the adversary doesn’t know N
3 blocks and he tries to modify the codeword

he will either get detected with probability exponentially close to 1, or he can
attempt to learn some small amount information about the codeword (i.e. tamper
with few blocks Li, Ri with non-constant function). However, using the bottom
layer, we show that every attempt to learn even the smallest information about
the codeword (i.e. by overwriting all but only few bits) yields some probability
of detection which amplifies with amount of information adversary is trying to
learn. We will therefore show that adversary can not (i.e. the probability is
negligable) breach �N

3 � blocks threshold.
The argument consists of two main technical observations:

– If the adversary applies any non-constant functions f, g to single block Li, Ri

then, due to combination of super strong nmc properties and parity require-
ments we have placed on Li, Ri, adversary risks close to 1

2 detection proba-
bility.

– If the adversary decides to mix bits between different blocks (Li, Ri) he has to
risk violation of parity requirements on these blocks. This lemma is inspired
by similar lemma for unary schemes from [6].

Using these ideas we can claim that if adversary tampers with k blocks using
non-constant functions he also gets detected with a probability 1 − p−k. The
proof of this fact is more involved because we have to deal with minute cases.
For example if we prove that mixing of bits will make the parity unpredictable
for each block it still may happen that the events of error are correlated so not
obviously amplify the error rate. Example 1. Assume adversary tampers only
with L1 and L2, if he permutes bits in a way that output L′

1 contains first halfs
of vectors L1, L2, L′

2 contains second halfs of L1, L2. Then parity of L′
1 is correct

if and only if parity of L′
2 is correct. We handle this by picking only largest

possible subset of independent parity checks. In this case we would focus only
on parity of L′

1 and discard any other checks generated by L1, L2, R1, R2.
Example 2. Consider a tampering function which takes one bit from some

blocks (Li, Ri) and permutes them to the last block (L′
N , R′

N ) while fixing
all other (Li, Ri) to some constants. If (L′

N , R′
N ) has a correct parity and

valid Super-Strong NMC decoding then we will reveal, to adversary, all blocks
that’donated’ bits to (L′

N , R′
N ). Notice however that this will not reveal more

bits then |LN | + |RN | blocks.
Above examples illustrate how we bound number of blocks adversary can

learn for each independent validity check he has to create.
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1.6 Technical Overview of Our Self-destruct CCA Commitment
and Parallel CCA Commitment

The Self-destruct CCA commitment scheme. We want to show that given a Self-
destruct CCA bit commitment scheme (non-tag based), committing to each bit
of the codeword individually, results in a Self-destruct CCA string commitment
scheme. The security proof is based on the following high-level idea: if the adver-
sary of the Self-destruct CCA string commitment is mauling, then, the attack on
the commitment level can be “translated” into an attack on the non-malleable
code. In other word, we can show an adversary ANMCode that breaks the secu-
rity of the non-malleable code using the adversary A on the commitment level
that distinguish a commitment of message m0 from a commitment of message
m1. ANMCode will act as the sender in the left session with A. Instead in the
k-th right session (for k = 1, . . . , poly(λ)) ANMCode will act as a receiver of the
string commitment. Then he needs to emulate the oracle O of the string com-
mitment computing the following steps: (1) define a tamper function fk based
on value v committed in the right session (note that he can obtain v querying
the oracle of the bit commitment Obit2) (2) send back to A the decoding of
fk(encmb

), where encmb
is an encoding of mb (received from the challenger of

the non-malleable code game). At the end, ANMCode will output what A outputs.
However we notice that the adversary that we described is not yet an adversary
against the non-malleable code since the tamper functions can be dependent
on what is committed on the left. We can demonstrate that the hiding of the
Self-destruct CCA bit commitment ensures that the distribution of the tam-
per functions is computational independent from the message committed by the
sender. Therefore the final adversary against the non-malleable code will sim-
ply commits to a random message on the left session. Finally, we crucially need
that the non-malleable code is information theoretic secure since we have no
guarantee that Obit works in polynomial time.

Upgrade SD-PCCA Commitment Scheme to PCCA Commitment Scheme.
At a very high level our PCCA string commitment scheme works as follows.
The sender interacts with the receiver in order to compute a commitment τ of
m using a Self-destruct PCCA string commitment. Furthermore, the receiver
engages with the sender a protocol to allow the extraction of a trapdoor. We
use the “trapdoor protocol” described in [20] where the trapdoor is represented
by the knowledge of two signatures under a verification key sent by receiver in
the 4th last round. In order to allow the extraction of the trapdoor, the receiver
sends a signature of a randomly chosen message in the 3rd last round by the
sender. Then, the sender executes a special witness-indistinguishable proof of
knowledge (WIPoK) with the receiver in order to prove that he computed a
valid commitment of m or that he knows a trapdoor.

Observe that if we use a 3-round WIPoK it is not clear how the proof of
security will proceed. In particular, in the security proof there are some hybrids
were we simulate the oracle of the parallel CCA commitment in polynomial time

2 The definition of the tamper function is more complicated, see Sect. 4 for the details.
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extracting the committed messages from the WIPoKs. Let us consider the hybrid
were we switch the witness in one of the WIPoK. In the reduction to the WI we
have to emulate the oracle of the parallel CCA commitments, since the reduction
has to work in polynomial time. As we said, our hope to emulate the oracle is
to extract the committed messages from the WIPoKs, however the extraction
procedure rewinds also the challenger of the WI.

To overcome this problem we adopt the approach proposed in [20] relying on
non-interactive primitives instead of 3-rounds WIPoK.

Therefore, similarly to [20], we construct this WIPoK relying on: instance-
dependent trapdoor commitments (IDTC) and special honest-verifier zero knowl-
edge (SHVZK).

In more details, let (ls1trap, ls
2
trap, ls

3
trap, ls

4
trap) be the transcript of a 4-

round special HVZK delayed-input3 proof of knowledge (PoK). The transcript
(ls1trap, ls

2
trap, ls

3
trap, ls

4
trap) is used to prove knowledge of two signatures of two dif-

ferent message w.r.t. a verification key sent by the receiver. The transcript
(ls1trap, ls

2
trap, ls

3
trap, ls

4
trap) is used to prove the knowledge of the trapdoor.

At the 4th last round the sender sends an equivocal com obtained running
IDTC. At last round the sender will equivocate com in order to send as opening
(dec, ls2trap). In the last round also ls4trap is sent. The instance used for the IDTC is
τ , this means that the commitment com (computed using IDTC) can be opened
to any value because τ is a well-formed commitment.

In the opening phase the sender sends the opening of the Self-destruct PCCA
string commitment.

Note that the first two rounds of the “trapdoor protocol” can be run with
the last two rounds of the Self-destruct commitment. Therefore the described
construction has t+2 rounds (where t is the number of rounds of the Self-destruct
PCCA string commitment).

Overview of the Security Proof. In the 1st experiment (the real game RG0)
the sender commits to m0. We observe that due to the security of the signature
scheme we can demonstrate that in the real game A is committing to a well-
formed commitments in all parallel right sessions with non-negligible probability.
Symmetrically there is the experiment RG1 where the sender commits to m1 and
A is committing to a well-formed commitment in all parallel right sessions. Then
we consider a hybrid game H0

b , for b ∈ {0, 1}, where the sender commits to mb

and the oracle is emulated extracting the committed values from the special
WIPoK. Note that H0

b is distributed statistically close to RGb until A receives
the committed values, therefore we are ensured that we can extract the values
committed in the right sessions. The 2nd hybrid game that we consider is H1

b

in which we switch the witness used to compute the transcript of the special
WIPoK in the left sessions (i.e. we are using the trapdoor that is extracted by
rewinding A in the left session). Using techniques that are similar to the one
showed in [20] we are able to demonstrate that also in H1

b we can extract the
committed values in all parallel right sessions with non-negligible probability.

3 By delayed-input we mean that the witness and the instance are needed only to play
the last round.
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Moreover, we can demonstrate that the distribution of the commitment values
along with the view of A is indistinguishable between H0

b and H1
b , for b ∈ {0, 1}.

Indeed, both in H1
0 and in H1

1 we are guaranteed that A is committing to a well-
formed commitment in all parallel right sessions with non-negligible probability.
Summing up, a detectable deviation from H1

0 and H1
1 implies a contradiction

of the Self-destruct PCCA security of the underlining commitment. Finally we
observe that the extraction procedure of the signatures does not interfere with
the reductions since in the parallel right sessions the commitment phase made
by A ends in the third last round. This observation concludes the high-level
overview of the security proof.

2 Preliminaries

We denote the security parameter by λ and use “||” as concatenation operator
(i.e., if a and b are two strings then by a||b we denote the concatenation of a and
b). We use the abbreviation ppt that stands for probabilistic polynomial time.
We use poly(·) to indicate a generic polynomial function and N to denote the
set of positive integer.

A polynomial-time relation Rel (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in
time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness
for x. For a polynomial-time relation Rel, we define the NP-language LRel as
LRel = {x|∃w : (x,w) ∈ Rel}.Analogously, unless otherwise specified, for an NP-
language L we denote by RelL the corresponding polynomial-time relation (that
is, RelL is such that L = LRelL). We denote by L̂ the language that includes both
L and all well formed instances that do not have a witness. Moreover we require
that membership in L̂ can be tested in polynomial time. We implicitly assume
that a PPT algorithm that is supposed to receive an instance in L̂ will abort
immediately if the instance does not belong to L̂. Let A and B be two interactive
probabilistic algorithms. We denote by 〈A(α), B(β)〉(γ) the distribution of B’s
output after running on private input β with A using private input α, both
running on common input γ. Typically, one of the two algorithms receives 1λ as
input. A transcript of 〈A(α), B(β)〉(γ) consists of the messages exchanged during
an execution where A receives a private input α, B receives a private input β and
both A and B receive a common input γ. Moreover, we will refer to the view of
A (resp. B) as the messages it received during the execution of 〈A(α), B(β)〉(γ),
along with its randomness and its input. We say that a protocol (A,B) is public
coin if B sends to A random bits only.

If Z is a set then Z ← Z will denote a random variable sampled uniformly
from Z. We start with some standard definitions and lemmas about the statis-
tical distance. Recall that if X and X ′ are random variables over the same set
X then the statistical distance between X and X ′ is denoted by Δ(X;X ′), and
defined as Δ(X;X ′) = 1

2

∑
x∈X |Pr X = x − Pr X ′ = x|. If the variables X and

X ′ are such that Δ(X;X ′) ≤ ε then we say that X is ε-close to X ′, and write
X ≈ε X ′. If E , E ′ are some events then by Δ(X|E ; X ′|E ′) we will denote the
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distance between variables X̃ and X̃ ′, distributed according to the conditional
distributions PX|E and PX′|E′ .

If UX is the uniform distribution over X then d(X|E) := Δ(X|E ;UX ) is
called statistical distance of X from uniform given the event E . Moreover, if Y
is independent from X then d(X|Y ) := Δ((X,Y ); (UX , Y )) is called statistical
distance of X from uniform given the variable Y . More generally, if E is an event
then d(X|Y, E) := Δ((X,Y )|E ; (UX , Y )|E). It is easy to see that d(X|Y ) is equal
to the average

∑
y Pr(Y = y) · d(X|Y = y) = Ey(d(X|Y = y)).

Definition 1 ((Average-) Min-Entropy). Let X have finite support X . The
min-entropy H∞(X) of X is defined by

H∞(X) = − log max
x∈X

Pr(X = x).

For an event E, the conditional min-entropy H∞(X|E) of X given E is defined
by

H∞(X|E) = − log max
x∈X

Pr(X = x|E).

For an event E and a random variable Y with finite support Y, the average
min-entropy H̃∞(X|Y, E) of X given Y and E is defined by

H̃∞(X|Y, E) = − logEy max
x∈X

Pr(X = x|Y = y, E).

Randomness extractors will be the workhorses of our non-malleable code con-
structions.

Definition 2 (Flexible Two-Source Extractors). A function Ext : X1 ×
X2 → Z is called a flexible (ε, δ)-two-source extractor, if it holds for all
tuples ((X1, Y1), (X2.Y2)) for which (X1, Y1) is independent of (X2, Y2) and
H̃∞(X1|Y1) + H̃∞(X2|Y2) ≥ log(|X |) + log(|Y|) − δ that

d(Ext(X1,X2)|Y1, Y2) ≤ ε.

A well known example of a flexible two-source extractor is the Hadamard
extractor or inner-product-extractor.

Lemma 1 (Hadamard Extractor [2]). The function Ext : Fn
q ×F

n
q → Fq given

by Ext(x, y) = 〈x, y〉 is a flexible (ε, δ) extractor for δ ≤ (n−1) log(q)−2 log(1/ε).

Lemma 2 (Entropy-preservation of inner-product for correlated dis-
tributions). Let X be random variable over X l, let C be random variable such
that for every c we have H∞(X|C = c) ≥ l · log |X |− d, where d < log |X |. Then
for any non-zero v ∈ X l

H∞(〈X, v〉X | C = c) ≥ log |X | − d

for every c in supp(C).
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We will now assemble a few basic technical lemmata that we will need for
our proofs.

Lemma 3 (Bayes’ rule for statistical distance [26]). Let (X,Y ) ∈ X × Y
be a random variables, such that d(X|Y ) ≤ ε. Then for every x ∈ X we have

Δ(Y |X = x ; Y ) ≤ 2|X |ε.

Also if A is a random event such that d(X|Y,A) ≤ ε, we have:

Δ(Y |X = x,A ; Y |A) ≤ 2|X |ε.

Lemma 4 ([25]). Let X,T be any arbitrarily correlated random variables and
let E be random event then

H̃∞(X|T, E) ≥ H̃∞(X|T ) − log
1

Pr(E)
.

In the Appendix A the reader can find a series of standard definitions used
in the rest of the paper.

2.1 Definitions Related to Non-Malleable Codes

Definition 3 (Coding Schemes). A coding scheme is a pair (Enc,Dec), where
Enc : M → C is a randomized function and Dec : C → M∪{⊥} is a deterministic
function, such that it holds for all M ∈ M that Dec(Enc(M)) = M .

Definition 4 (Two-State Code). A coding scheme (Enc,Dec) where the coun-
terdomain of Enc has the form C = {0, 1}k × {0, 1}k is called a two-state code.

Definition 5 (Paritied Two-State Code). Let (Enc,Dec) (where Enc : M →
C = C1 × C2 = {0, 1}k × {0, 1}k) be a two-state code. Now let Encpar : M → C
be a randomized function restricted to a condition that parity(Enc(m)1) = 0 and
parity(Enc(m)2) = 1, where parity is a function calculating the parity of number
of ones in a given vector (i.e. parity(0101011) = 0 and parity(011111) = 1).

More formally, the procedure computing Encpar(m) can be described as
follows: we run in a loop the encoding procudure (c1, c2) ← Enc(m) until
parity(c1) = 0 and parity(c2) = 1.

Similarily, let Decpar : C → M ∪ {⊥} be defined as follows: for c =
(c1, c2) ∈ C, if parity(c1) �= 0 or parity(c2) �= 1 then Decpar(c) := ⊥, other-
wise Decpar(c) := Dec(c).

Now, the coding scheme (Encpar,Decpar) is called a paritied two-state code.

We will now define the continuous tampering experiment. Our definition is
a weaker version of [37]: instead of Super Strong Tampering experiment we will
use the standard tamper experiment from [27].
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Definition 6 ((Continuous-) Tampering Experiment). We will define
continuous non-persistent self-destruct non-malleable codes using [4] experiment,
which is equivalent to original [27] experiment. Fix a coding scheme (Enc,Dec)
with message space M and codeword space C. Also fix a family of functions
F : C → C. Let D = {Df

C}f∈F,C∈C be some family of distributions over {0, 1},
indexed by tampering function f and a codeword C. We will first define the tam-
pering oracle TamperstateC,D (f), for which initially state = alive. For a tampering
function f ∈ F and a codeword C ∈ C define the tampering oracle by

TamperstateC,D (f) :
If state = dead output ⊥
C ′ ← f(C)
If Dec(C ′) = Dec(C) and Df

C = 0 output same
M ′ ← Dec(C ′)
If M ′ = ⊥ set state ← dead and output ⊥
Otherwise output C ′

Fix a tampering adversary A and a codeword C ∈ C. We define the continuous
tampering experiment CTC,D(A) by

CTC,D(A) :
state ← alive

v ← ATamperstateC,D(·)

Output v

Definition 7. Let (Enc,Dec) be a coding scheme and CT be its corresponding
continuous tampering experiment for a class F of tampering functions. We say
that (Enc,Dec) is an ε-secure continuously non-malleable code against F , if there
exists a family of distributions D = {Df

C}f∈F,C∈C over {0, 1} such that for all
tampering adversaries A and all pairs of messages M0,M1 ∈ M that

CTC0,D(A) ≈ε CTC1,D(A),

where C0 ← Enc(M0) and C1 ← Enc(M1).

3 Continuous Non-Malleable Code Against
Permutations-With-Overwrites

In this section we define a coding scheme (Encc,Decc) and prove it is a continuous
non-malleable code against a class PermOver of permutations-with-overwrites
(the actual definition will follow).

3.1 Coding Scheme

Let M = {0, 1}n and C = C1 × · · · × CN , where each Ci = {0, 1}k1 × {0, 1}k1 .
Let also (Enc2,Dec2) denote a two-state code (actually we need a two-state
strong non-malleable code here, however the specific instantiation will be given
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later) and hN denote a �N/3�-out-of-N secret sharing scheme (again, the specific
instantiation will be given later). Now we are ready to introduce the (random-
ized) function (procedure) Encc : M → C:

For m ∈ M and a random r ∈ {0, 1}n, let (d1, . . . , dN ) ← hN (m||r) where
(d1, . . . , dN ) ∈ ({0, 1}k2)N are shares for (m||r). Now, for each di let (Li, Ri) ←
Encpar

2 (di||i).
Finally, we state ci ← (Li, Ri) and Encs(m) outputs (c1, . . . , cN ).
The definition of Decc is simple and straightforward (forced by the definition

of a coding scheme).

Remark 1. The above construction is not tight for a given message length n
since it also depends on the choice of parameters (N, k1, k2) and the specific
definitions of both: the two-state code (Enc2,Dec2) and the secret sharing scheme
hN . However, before we pick adequate parameters and schemes, we need one
definition more:

Definition 8. We call a two-split code (Enc2,Dec2) ε-admissible if the scheme
(Encpar

2 ,Decpar
2 ) fulfills the following requirements:

1. [Canonical encoding procedure:] Encpar
2 (m) is uniform in {c : Decpar

2 (c) = m}.
2. [Detection of close to bijective tampering:] For any message m, if Encpar

2 (m) =
(X,Y ) then for any functions f, g : {0, 1}k1 → {0, 1}k1 such that
H∞(f(X)),H∞(g(Y )) ≥ 2/3 · k1 − 1 and (for any x or y) f(x) �= x or
g(y) �= y it holds:

Pr(Decpar
2 (f(X), g(Y )) = ⊥) ≥ 1 − ε.

3. [Detection of complete overwrite of one part:] For any constant c ∈ {0, 1}k1 ,
and any uniform X,Y ∈ {0, 1}k1 , such that parity of X is 0 and parity of Y
is 1 we get,

Pr(Dec2(X, c) = ⊥) ≥ 1 − ε,

Pr(Dec2(c, Y ) = ⊥) ≥ 1 − ε

4. [Leakage resilient storage:] For any message m, if Encpar
2 (m) = (X,Y ) then

for any functions f, g : {0, 1}k1 → {0, 1}k1 such that H̃∞(X|f(X)) ≥ 1/3 · k1
and H̃∞(Y |f(Y )) ≥ 1/3 · k1 we get

Δ [(f(X), Y ) ; (f(U0), U1)] ≤ ε ,

Δ [(X, g(Y )) ; (U0, g(U1))] ≤ ε ,

where U0, U1 are independent uniformly distributed over {0, 1}k1 , such that
parity of Ui is equal i.

In the full version of the paper [23], we discuss possible instantiations (for an
appropriate εc) of Definition 8:

with [4]: EncAKO : {0, 1}m →
(
{0, 1}O(m6)

)2

is 2−O(m)− admissible,
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with [42]:EncLi : {0, 1}m → ({0, 1}O(m·log m)
)2

is 2−O(m)− admissible.

(Of course the second code of the above gives better parameters. However we
argue for both above statements.)

Through the rest of the paper we always refer to the second of the above spe-
cific two-state code and the specific error probability when notation (Enc2,Dec2)
and εc is used.

3.2 Definition of the Class of Tampering Functions

Here we define the class PermOver of tampering functions. Through this paper
functions from this class PermOver are called permutations-with-overwrites.

Let us consider a set {0, 1}q of vectors of q bits (q-vectors, for short). Now,
let denote Πq the class of permutations of bits of q-vectors. Denote also Oq the
class of functions f : {0, 1}q → {0, 1}q, such that:

for all i, either f(x)i = xi or f(x)i = bi for a fixed bi.
Loosely speaking: any function from Oq, independently for each bit, either

leaves it unchanged or sets it into a fixed value (i.e. overwrites it).
Now we simply define the class PermOverq = Oq ◦Πq. For our application we

will equate C = ({0, 1}k1 × {0, 1}k1)N with {0, 1}2k1N and consider PermOver =
PermOver2k1N as a tampering class for C.

The above description of course finishes the definition of our class of tamper-
ing functions, however we want a few further related definitions.

Related definitions. Let us fix a tampering function t ∈ PermOver. As men-
tioned above we will think of t as a function from C1 ×· · ·×CN to C1 ×· · ·×CN .
Now, for each i ∈ {1, . . . , N} we say that t either leaves or overwrites or modifies
the i-th block. These phrases stand for the following:

If t(c)i = ci then t leaves the i-th block. If t(c)i = a for some a independent
of c then t overwrites the i-th block. Finally, if none of the previous occurs, then
we say that t modifies the i-th block.

If t overwrites i-th block, two cases are possible. Either ci is independent of
f(c) or some bits of ci are moved to some modified blocks. In the first case we say
that t strong-overwrites i-th block and in the second case, it weak-overwrites.

Touched blocks are blocks either modified or weak-overwritten. In that case
we say that t touches these blocks.

For a function t ∈ PermOver and a codeword c ∈ C we denote touch(t, c)
the set of all touched blocks and its indices, more formally: touch(t, c) =
{(ci, i)|t touches ci}.

Example. The above definitions may look a little bit obscure at first sight, so
– to make things clearer – we give an example.

Let N = 4 and each Ci = {0, 1}6. Now let us consider:
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.
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Obviously t ∈ PermOver and we have that: t leaves the second block, over-
writes the first and the 3-rd block and modifies the 4-th block. The first block
is weak-overwritten (because the 5-th block gets one bit from the first block)
and the 3-rd block is strongly overwritten. Function t touches the blocks of the
indices 1 and 4 so, for exemplary

c = ((0, 0, 1, 1, 0, 0), (0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 0, 0), (1, 0, 0, 0, 0, 1)),

we have:
touch(t, c) = {(

(0, 0, 1, 1, 0, 0), 1
)
,
(
(1, 0, 0, 0, 0, 1), 4

)}.

3.3 Statement and Proof

The main statements for the whole Sect. 3 are the following:

Theorem 1. The coding scheme (Encc,Decc) is an (α + 2εc)�N/3�-secure con-
tinuous non-malleable code against PermOver for α = (0.5)

1
8·k1 .

Corollary 1. Instantiation for the above code with (N, k2, k1) =
(6�n2/3�, �n1/3�, c�n1/3� log �n1/3�), with (Enc2,Dec2) = (EncLi,DecLi) (see the
end of Sect. 3.1) and hN = RSN (see Appendix B) gives us a continuous non-
malleable code against PermOver such that:

– the code rate is O(log n), and
– the error rate is O(2−O(n1/3)).

Proof. The message length is n and the codeword length is N · 2 · k1 ≈ 6n2/3 · 2 ·
cn1/3 1

3 log n = 4cn log n, so the code rate is approximately 4c log n = O(log n).
(Remark: c is a constant from EncLi rate.) The error rate is:

(α+2εc)
�N/3� = ((0.5)

1
8·k1 +2εc)

�N/3� ≤ (2
−O

(
1

n1/3 log n

)

+2−O(n))n2/3+1 = 2−O(n1/3).

Before the actual proof of Theorem 1 we want to introduce a slightly modified
version of continuous tampering experiment for (Encc,Decc) and PermOver and
a definition of a specific type of distribution that we call block-wise distribution.

The described below experiment is obviously stronger (from adversary’s point
of view) then the original one so it is sufficient to prove that our coding scheme
is secure against PermOver for the modified experiment:

Definition 9 ((Modified) Continuous Tampering Experiment). Let us
consider a tampering oracle ModTampstateC (t), for which initially state = alive.
For a tampering function t ∈ PermOver and a codeword C ∈ C define the tam-
pering oracle by

ModTampstateC (t) :
If state = dead output ⊥
C ′ ← t(C)
If Decc(C ′) = Decc(C) output (same, touch(t, c))
M ′ ← Decc(C ′)
If M ′ = ⊥ set state ← dead and output ⊥
Otherwise output C ′



242 I. Damg̊ard et al.

Fix a tampering adversary A and a codeword C ∈ C. We define the (modified)
continuous tampering experiment MCTC(A) by

MCTC(A) :
state ← alive

v ← AModTampstateC (·)

Output v

Remark 2. The main difference of the above experiment and the original one is
the output of the oracle when Decc(C ′) = Decc(C). In this case in our definition
we give the adversary additionally all touched blocks.

Definition 10 (Block-wise Distribution). For C = C1 × . . . × CN the distri-
bution D over C is a block-wise distribution if (informally speaking) each block
Ci is either fixed or uniform and independent of the other blocks.

Formally, we say that D is a block-wise distribution if there exists a set of
indices I ⊂ [1, 2, . . . , N ] such that for all i ∈ I there exists ci ∈ Ci such that:

PD(Ci = ci) = 1, and
the conditional distribution (D|Ci = ci for all i) is uniform.

Remark 3. If |I| = l in the above definition, then we will sometimes say that D
has l constant blocks or that the adversary knows l blocks.

Proof sketch for Theorem 1. Our key observation is that after each oracle call
in the tampering experiment, the distribution of the codewords (from the per-
spective of the adversary) is almost always block-wise. Moreover, to increase the
number of known (constant) blocks, the adversary must take a risk of receiving
⊥. This idea is expressed in the following Lemma 5. Notice, that from basic
properties of secret sharing schemes, the tampering experiment is independent
from the message m while the number of known blocks is smaller then �N/3�.
So, the only way for the adversary to distinguish between two different messages
is to learn at least �N/3� blocks. However (from Lemma 5) this happens with
probability at most (α+2εc)�N/3� (for α = (0.5)

1
8·k1 ) so this observation finishes

the proof for Theorem 1. ��
Before the statement of the key Lemma 5, we need one definition more:

Definition 11. For a block-wise distribution D and a tampering function t ∈
PermOver we say that t freshly-touches the i-th block if t touches this block and
this block is not known in context of D.

Lemma 5. Let α = (0.5)
1

8·k1 , let l1, l2 ∈ N such that l1 + l2 < �N/3�, and let D
be a block-wise distribution over C with l1 constant blocks and let t ∈ PermOver
be a tampering function freshly-touching l2 blocks. Then, with probability at least
(1−(α+2εc)l2) a call ModTampstateC (t) will return ⊥. Moreover – with probability
at least (1−2−n) – the distribution D conditioned on the answer from the oracle
will be block-wise with l1 + l2 constant blocks.

The formal proof can be found in the full version of the paper [23].
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4 SD-CCA Commitment Scheme

4.1 Definition of CCA Secure Commitment Schemes

We assuming that the reader has familiarity with the standard definition of
commitment scheme and proof system.

Self-destruct CCA Secure Commitment Schemes. Let Π = (Sen,Rec)
be a commitment scheme. The Self-destruct CCA-oracle Osdcca for Π =
(Sen,Rec) acts as follows in an interaction with an adversary A: it participates
with A in polynomially many sessions of the commit phase of Π as an honest
receiver. At the end of each session, if the session is valid, the oracle returns
the unique value m committed in the interaction. The oracle outputs ⊥ and
implements the Self-destruct mode, (i.e. the oracle will respond with ⊥ for all
subsequent commitment queries) if one of the following cases happen: (1) a ses-
sion has multiple valid committed values4; (2) the commitment is invalid; (3) if
the committed value m is equal to a special Self-destruct symbol ⊥.

More precisely, let us consider the following probabilistic experiment
INDsdcca

b (Π = (Sen,Rec), λ, z,A). Let Osdcca be the SD CCA-oracle for Π. The
adversary has access to Osdcca during the entire course of the experiment. On
input 1λ, and z ∈ {0, 1}� the adversary AOsdcca

sends two strings m0 and m1 with
|m0| = |m1| to the experiment. The experiment randomly selects a bit b ← {0, 1}
and commits to mb to AOsdcca

. Note that if A queries the oracle with a commit-
ment of m s.t. m ∈ {m0,m1}5 then, the oracle returns the special symbol same.
Finally AOsdcca

sends a bit y to the experiment. The output of the experiment is
replaced by ⊥ if AOsdcca

sends a commitment to Osdcca whose transcript is iden-
tical to the one computed on the left. Otherwise, the output of the experiment
is y. Let INDsdccab (Π = (Sen,Rec), λ, z,A) denote the output of the experiment
described above.

Definition 12 (Self-destructCCA (SD-CCA) secure string commit-
ment scheme). Let Π(Sen,Rec) be a commitment scheme and Osdcca be the
Self-destruct CCA-oracle for Πsdcca. We say that Πsdcca is Self-destruct CCA-
secure (w.r.t. the committed-value oracle), if for every ppt-adversary A and all
z ∈ {0, 1}� it holds that:

{INDsdcca0 (Π = (Sen,Rec), λ, z,A)} ≈ {INDsdcca1 (Π = (Sen,Rec), λ, z,A)}

Definition 13 (Self-destruct parallel CCA (SD-PCCA) secure string
commitment scheme). The Self-destruct parallel CCA oracle is defined like
the Self-destruct CCA-oracle, except that the adversary is restricted to a parallel

4 The statistical binding property guarantees that this happens with only negligible
probability.

5 As noted in [5], following [24], this definition allows MIM to commit to the same
value. It is easy to prevent MIM from committing the same value generically in case
of string commitments: convert the scheme to tag based by appending the tag with
v, and then sign the whole transcript using the tag.
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query, i.e., the adversary can only send a single query that may contain multiple
commitments sent in parallel. Let INDsdpccab (Π = (Sen,Rec), λ, z,A) define the
output of the security game for Self-destruct parallel CCA security. The formal
definition is then analogous to the definition of SD-CCA security.

Note that any SD-CCA commitment scheme is also a SD-PCCA commitment
scheme.

Definition 14 (Parallel CCA secure (PCCA) string commitment
scheme [11,41]). The parallel CCA oracle is defined like Self-destruct parallel
CCA-oracle, except that the oracle does not implement the Self-destruct mode.
In more details, when a commitment is not valid, or a session has multiple valid
committed values the oracle returns ⊥, and the committed messages (or the sym-
bol same) in all the other cases. Let INDsdpccab (Π = (Sen,Rec), λ, z,A) define the
output of the security game for parallel CCA security (PCCA). The formal def-
inition is then analogous to the definition of SD-PCCA security.

In this paper we also consider a Self-destruct (parallel) CCA secure bit com-
mitment scheme that is defined as in Definition 12 (13), except that the message
space is {0, 1} and the oracle never returns same.

In all the paper we denote by δ̃ a value associated with the right session
(where the adversary A plays with the oracle) where δ is the corresponding
value in the left session. For example, the sender commits to v in the left session
while A commits to ṽ in the right session.

4.2 SD-CCA Commitment Scheme from NMCode

In this subsection we describe our Πsdcca = (Sensdcca,Recsdcca) a t-round (non-
tag based) Self-destruct CCA string commitment scheme, that makes use of the
following tools.

1. Πbit
sdcca = (Combit

sdcca,Dec
bit
sdcca) is a t-round (non-tag based) Self-destruct CCA

bit commitment scheme.
2. ΠNMCode = (Enc,Dec) is a continuos non-malleable code resilient against

PermOver. The procedure Enc outputs a codeword that is n-bits long.

Our SD-CCA commitment scheme is described in Fig. 1.

Theorem 2. If Πbit
sdcca = (Combit

sdcca,Dec
bit
sdcca) is a t-round (non-tag based) Self-

destruct CCA bit commitment scheme and ΠNMCode = (Enc,Dec) is a continuous
non-malleable code resilient against PermOver, then Πsdcca = (Sensdcca,Recsdcca)
is a a t-round (non-tag based) Self-destruct CCA string commitment scheme.

The formal proof can be found in the full version of the paper [23].
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Fig. 1. Description of our SD-CCA string commitment scheme.

4.3 Parallel CCA Commitment Scheme from SD-PCCA
Commitment Scheme

In this subsection we describe our Πpcca = (Senpcca,Recpcca) a t + 2-round (non-
tag based) PCCA string commitment scheme, that makes use of the following
tools.

1. Πsdpcca = (Sensdcca,Recsdcca) is a t-round (non-tag based) SD-PCCA string
commitment scheme.

2. a 2-round IDTC scheme Π = (Sen,Rec,TFake) for the following NP-language
L = {τsdcca : (m, decsdcca) s.t. Recsdcca on input (m, decsdcca) accepts m as a
decommitment of τsdcca}.

3. Πsign = (Gen,Sign,Verify) is a signature scheme.
4. A 4-round delayed-input public coin LStrap = (Ptrap,Vtrap) with SHVZK sim-

ulator Strap. LStrap = (Ptrap,Vtrap) is adaptive-input PoK for the NP-relation
RelLtrap where Ltrap = {(vk : ∃ (σ1,msg1, σ2,msg2) s.t. Verify(vk,msg1, σ1) =
1 AND Verify(vk,msg2, σ2) = 1 AND msg1 �= msg2}. We denote with �trap the
dimension of the instances belonging to LStrap.

Our Πpcca = (Senpcca,Recpcca) is described in Fig. 2.

Theorem 3. If Πsdpcca = (Sensdpcca,Recsdpcca) is a t-round (non-tag based) Self-
destruct PCCA string commitment scheme and OWFs exists, then Πsdcca =
(Senpcca,Recpcca) is a a t + 2-round (non-tag based) PCCA string commitment
scheme.
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Fig. 2. Description of our Parallel CCA string commitment scheme.

The formal proof can be found in the full version of the paper [23].

Acknowledgments. We thank Michele Ciampi for several discussions on the appli-
cations of our CNMC.

A Definition and Tools

Definition 15 (One-way function (OWF)). A function f : {0, 1}� →
{0, 1}� is called one way if the following two conditions hold:

– there exists a deterministic polynomial-time algorithm that on input y in the
domain of f outputs f(y);

– for every ppt algorithm A there exists a negligible function ν, such that for
every auxiliary input z ∈ {0, 1}poly(λ):

Prob[y←{0, 1}� : A(f(y), z) ∈ f−1(f(y))] < ν(λ).
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Definition 16 (Following the notation of [50]). A triple of ppt algorithms
(Gen,Sign,Verify) is called a signature scheme if it satisfies the following prop-
erties.

Validity: For every pair (s, v) ← Gen(1λ), and every m ∈ {0, 1}λ, we have that

Verify(v,m,Sign(s,m)) = 1.

Security: For every ppt A, there exists a negligible function ν, such that for
all auxiliary input z ∈ {0, 1}� it holds that:

Pr[(s, v) ← Gen(1λ); (m, σ) ← ASign(s,·)(z, v) ∧ Verify(v, m, σ) = 1 ∧ m /∈ Q] < ν(λ)

where Q denotes the set of messages whose signatures were requested by A to
the oracle Sign(s, ·).

Definition 17 (Proof/argument system). A pair of ppt interactive algo-
rithms Π = (P,V) constitute a proof system (resp., an argument system) for
an NP-language L, if the following conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:

Pr [ 〈P(w),V〉(x) = 1 ] = 1.

Soundness: For every interactive (resp., ppt interactive) algorithm P�, there
exists a negligible function ν such that for every x /∈ L and every z:

Pr [ 〈P�(z),V〉(x) = 1 ] < ν(|x|).
A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-

input completeness if P needs x and w only to compute the last round and V
needs x only to compute the output. Before that, P and V run having as input
only the size of x. The notion of delayed-input completeness was defined in [21].
An interactive protocol Π = (P,V) is public coin if, at every round, V simply
tosses a predetermined number of coins (i.e. a random challenge) and sends the
outcome to the prover. Moreover we say that the transcript τ of an execution
b = 〈P(z),V〉(x) is accepting if b = 1.

Definition 18 (Proof of Knowledge [43]). A protocol Π = (P,V) that enjoys
completeness is a proof of knowledge (PoK) for the relation RelL if there exists
a probabilistic expected polynomial-time machine Ext, called the extractor, such
that for every algorithm P�, there exists a negligible function ν, every statement
x ∈ {0, 1}λ, every randomness r ∈ {0, 1}� and every auxiliary input z ∈ {0, 1}�,

Pr [ 〈P�
r (z),V〉(x) = 1 ] ≤ Pr

[
w ← ExtP

�
r (z)(x) : (x,w) ∈ RelL

]
+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK)
if the above condition holds w.r.t. any ppt P�.
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In this paper we also consider the adaptive-input PoK/AoK property for all
the protocols that enjoy delayed-input completeness. Adaptive-input PoK/AoK
ensures that the PoK/AoK property still holds when a malicious prover can
choose the statement adaptively at the last round.

A 3-round protocol Π = (P,V) for a relation RelL is an interactive protocol
played between a prover P and a verifier V on common input x and private input
w of P s.t. (x,w) ∈ RelL. In a 3-round protocol the first message a and the third
message z are sent by P and the second messages c is played by V. At the end
of the protocol V decides to accept or reject based on the data that he has seen,
i.e. x, a, c, z.

We usually denote the message c sent by V as a challenge, and as challenge
length the number of bit of c.

Definition 19 (Σ-Protocol). A 3-round public-coin protocol Π = (P,V) for
a relation RelL is a Σ-Protocol if the following properties hold:

– Completeness: if (P,V) follow the protocol on input x and private input w to
P s.t. (x,w) ∈ RelL, V always accepts.

– Special soundness: if there exists a polynomial time algorithm such that, for
any pair of accepting transcripts on input x, (a, c1, z1), (a, c2, z2) where c1 �=
c2, outputs witness w such that (x,w) ∈ RelL.

– Special Honest Verifier Zero-knowledge (Special HVZK): there exists a ppt
simulator algorithm S that for any x ∈ L, security parameter λ and any
challenge c works as follow: (a, z) ← S(1λ, x, c). Furthermore, the distribution
of the output of S is computationally indistinguishable from the distribution
of a transcript obtained when V sends c as challenge and P runs on common
input x and any w such that (x,w) ∈ RelL.

A.1 2-Round Instance-Dependent Trapdoor Commitments

Here we define a special commitment scheme based on an NP-language L where
sender and receiver also receive as input an instance x. While correctness and
computational hiding hold for any x, we require that statistical binding holds
for x �∈ L and knowledge of a witness for x ∈ L allows to equivocate. Finally, we
require that a commitment along with two different openings allows to compute
the witness for x ∈ L. We recall that L̂ denotes the language that includes L
and all well formed instances that are not in L.

Definition 20. Let 1λ be the security parameter, L be an NP-language and
RelL be the corresponding NP-relation. A triple of ppt algorithms Π =
(Sen,Rec,Sen) is a 2-Round Instance-Dependent Trapdoor Commitment scheme
if the following properties hold.

Correctness. In the 1st round, Rec on input 1λ and x ∈ L̂ outputs ρ. In the
2nd round Sen on input the message m, 1λ, ρ and x ∈ L outputs (com, dec).
We will refer to the pair (ρ, com) as the commitment of m. Moreover we will
refer to the execution of the above two rounds including the exchange of the
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corresponding two messages as the commitment phase. Then Rec on input
m, x, com, dec and the private coins used to generate ρ in the commitment
phase outputs 1. We will refer to the execution of this last round including
the exchange of dec as the decommitment phase. Notice that an adversarial
sender Sen� could deviate from the behavior of Sen when computing and send-
ing com and dec for an instance x ∈ L̂. As a consequence Rec could output
0 in the decommitment phase. We will say that dec is a valid decommitment
of (ρ, com) to m for an instance x ∈ L̂, if Rec outputs 1.

Hiding. Given a ppt adversary A, consider the following hiding experiment
ExpHidingb

A,Π(λ, x) for b = 0, 1 and x ∈ L̂R:
– On input 1λ and x, A outputs a message m, along with ρ.
– The challenger on input x,m, ρ, b works as follows: if b = 0 then it runs

Sen on input m, x and ρ, obtaining a pair (com, dec), otherwise it runs
TFake on input x and ρ, obtaining a pair (com, aux). The challenger out-
puts com.

– A on input com outputs a bit b′ and this is the output of the experiment.
We say that hiding holds if for any ppt adversary A there exist a negligible
function ν, s.t.:
∣
∣
∣Prob

[
ExpHiding0A,Π(λ, x) = 1

] − Prob
[
ExpHiding1A,Π(λ, x) = 1

] ∣
∣
∣ < ν(λ).

Special Binding. There exists a ppt algorithm Ext that on input a commitment
(ρ, com), the private coins used by Rec to compute ρ, and two valid decommit-
ments (dec, dec′) of (ρ, com) to two different messages m and m′ w.r.t. an
instance x ∈ L, outputs w s.t. (x,w) ∈ RelL with overwhelming probability.

Trapdoorness. For any ppt adversary A there exist a negligible function ν, s.t.
for all x ∈ L it holds that:

∣
∣
∣Prob

[
ExpComA,Π(λ, x) = 1

]−
Prob

[
ExpTrapdoorA,Π(λ, x) = 1

] ∣
∣
∣ < ν(λ) where ExpComA,Π(λ, x) and

ExpTrapdoorA,Π(λ, x) are defined below6.

ExpComA,Π(λ, x): ExpTrapdoorA,Π(λ, x):
-On input 1λ and x, A outputs
(ρ,m).

-On input 1λ and x, A outputs
(ρ,m).

-Senon input 1λ, x, m and ρ,
outputs (com, dec).

-TFake on input 1λ, x and ρ,
outputs (com, aux).
-TFake on input tk s.t. (x, tk) ∈
RelL, x, ρ, com, aux and m out-
puts dec.

-A on input (com, dec) outputs
a bit b and this is the output of
the experiment.

-A on input (com, dec) outputs
a bit b and this is the output of
the experiment.

6 We assume w.l.o.g. that A is stateful.
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B Instantiation of a Secret Sharing Scheme

In this section we aim for a coding scheme RSN : {0, 1}2n → ({0, 1}k2)N that
holds the �N/3�-out-of-N secret sharing property. We show such construction
for all parameters such that �N/3� · k2 ≥ 2n.

It turns out that the only we need for this purpose is the Reed-Solomon error
correcting code c with following parameters:

– alphabet size = 2k2 ,
– block length = N ,
– message length M = 2 · � 2n

k2
�.

Now our coding scheme may be defined as: RSN (m) = c(m||x), where x is a
randomness of the same size as m.

We omit the simple proof that the above code actually holds the �N/3�-out-
of-N secret sharing property.
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Abstract. We reconsider the security guarantee that can be achieved by
general protocols for secure multiparty computation in the most basic of
settings: information-theoretic security against a semi-honest adversary.
Since the 1980s, we have elegant solutions to this problem that offer
full security, as long as the adversary controls a minority of the par-
ties, but fail completely when that threshold is crossed. In this work, we
revisit this problem, questioning the optimality of the standard notion of
security. We put forward a new notion of information-theoretic security
which is strictly stronger than the standard one, and which we argue
to be “best possible.” This notion still requires full security against dis-
honest minority in the usual sense, and adds a meaningful notion of
information-theoretic security even against dishonest majority.

We present protocols for useful classes of functions that satisfy this
new notion of security. Our protocols have the unique feature of combin-
ing the efficiency benefits of protocols for an honest majority and (most
of) the security benefits of protocols for dishonest majority. We further
extend some of the solutions to the malicious setting.

Keywords: Information-theoretic security
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1 Introduction

In this work we revisit a question that seemed to be well understood since the
1980s: What is the best security guarantee that can be achieved by general
protocols for secure multiparty computation in the simplest of all models? We put
forward and study a new notion of information-theoretic security that provides
a strictly stronger security guarantee than the standard notion. This security

S. Halevi and T. Rabin—Supported by the Defense Advanced Research Projects
Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-
15-C-0236.
Y. Ishai and E. Kushilevitz—Supported by ISF grant 1709/14, NSF-BSF grant
2015782, and a grant from the Ministry of Science and Technology, Israel and Depart-
ment of Science and Technology, Government of India. Ishai was also supported by
ERC grant 742754 (project NTSC).

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 255–281, 2018.
https://doi.org/10.1007/978-3-030-03810-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03810-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-03810-6_10


256 S. Halevi et al.

guarantee is in a sense the best possible. Before defining and motivating our
new notion, we give some relevant background.

Protocols for secure multiparty computation (MPC) can be divided into
two broad categories: information-theoretic MPC protocols, which offer uncon-
ditional security against computationally unbounded adversaries, and compu-
tational MPC protocols, which offer security against computationally bounded
adversaries under standard cryptographic assumptions.

Information-theoretic MPC protocols not only provide unconditional secu-
rity guarantees, but they are also typically simpler and have better concrete
communication and computation costs than their computational counterparts.
The efficiency gap can even grow with the number of parties by using efficient
“packed secret-sharing” techniques [3,17,20], which divide the communication
and computation costs between the parties (at the expense of slightly lowering
the number of corruptions that can be tolerated).

A significant drawback of most information-theoretic MPC protocols, how-
ever, is that their security guarantees completely break down in the presence of
a dishonest majority. Standard protocols, such as the so-called “BGW protocol”
and its variants [6,11,34], allow a dishonest majority to learn the secret inputs of
all parties. This is in contrast to computational protocols that can offer security
even when all but one of the parties are dishonest. The above state of affairs
gives rise to the following natural question:

Can we achieve the standard notion of information-theoretic security in the
presence of an honest majority, while hiding the inputs of honest parties
from a computationally unbounded dishonest majority?

Classical negative results rule out information-theoretic protocols with the
standard notion of security in the presence of a dishonest majority, even for a
function as simple as the OR of n input bits [6,13]. Unfortunately, these results
further suggest that the answer to the question above may be negative. However,
we observe that this does not imply that all inputs of the minority parties must
be compromised, as is the case for existing protocols. This raises the possibility
of finding a middle ground where only partial information about the inputs of
honest parties is exposed.

Consider the following simple protocol for the OR function. Let G be a
finite Abelian group, and let each party Pi locally map its input bit xi to the
group element yi = 0 if xi = 0 and to a uniformly random element yi ∈ G if
xi = 1. Now the parties run a secure addition protocol that computes the sum
Y =

∑n
i=1 yi without revealing additional information to any subset of parties

(even to a dishonest majority). Such addition protocol is easy to implement in the
information-theoretic setting using the homomorphic property of additive secret
sharing [7]. If Y = 0, then the parties output 0 and otherwise they output 1.

It is easy to see that the above protocol produces the correct output (i.e.,
the disjunction of the n inputs) except with 1/|G| error probability, which can
be made arbitrarily small by choosing a large enough G. A key feature of this
protocol is that even an adversary who corrupts a majority of the parties only
learns limited information about the inputs of the uncorrupted parties, namely
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the OR of their input bits. This can provide in many cases a reasonable security
guarantee. For instance, if the OR function is used to make a veto decision, then
the adversary can only learn whether at least one of the uncorrupted parties
decided to veto, without learning additional information about the number or
identity of parties who vetoed. This provides deniability even in the case where
all but two of the parties are corrupted.

However, the above protocol fails to meet the standard security requirement
for information-theoretic MPC in the presence of a dishonest minority, i.e. that
a minority adversary learns nothing about the inputs of the uncorrupted parties
as long as at least one of the adversary’s inputs is xi = 1. In this case, the
(semi-honest) adversary can both learn the OR of the honest parties’ inputs and
force the output to be 1. Thus, there is room to do better.

1.1 Our Contribution

In this work we initiate a systematic study of the “best-possible information-
theoretic security” for MPC protocols, when the adversary can corrupt an arbi-
trary number of parties. For the case of passive (semi-honest) adversary, we
characterize the information that must be leaked to a dishonest majority. Then,
restricting the adversary to learn only that amount of information would yield
the best possible security that can be obtained in this setting. For some inter-
esting functions, we also design information theoretic protocols that achieve this
notion, namely provide standard security for honest majority, and leak only the
necessary information to a dishonest majority.1 We now give a more detailed
account of our results.

New Notion of Security. We formally define our new notion of Best-possible
Information-Theoretic MPC (BIT-MPC) as one that offers the standard notion
of security against a corruption of a minority of parties and, additionally, offers
the following kind of residual security against an adversary who corrupts a major-
ity of the parties: the adversary cannot learn anything more than the residual
function of the honest parties’ inputs. By this, we mean that the adversary is
allowed to learn only the value of the function on the inputs of the honest parties
combined with every choice of inputs for the corrupted parties. In the case of OR
from the above example (and similarly for the dual case of AND), this means
that the adversary can only learn the OR of uncorrupted inputs, because the
output for any choice of corrupted inputs can be derived from this information.
As another example, consider the maximum function; in this case a dishonest
majority can only learn the maximum of the honest parties’ inputs.

Positive Results. For some special functions of interest, we design protocols that
realize the notion of BIT-MPC. This includes protocols for AND/OR, for decid-
ing whether the inputs xi satisfy a linear system of equations Ax = b over a finite
1 Our notion of best-possible security, as well as both positive and negative results,

apply not only in the threshold case but also to general adversary structures, replac-
ing “honest majority” by any Q2 structure [28].
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field, and for computing functions like the maximum/minimum of the inputs,
where the inputs come from a finite domain. While these functions are simple,
they are useful for natural application scenarios. For instance, securely com-
puting many parallel instances of AND can be useful for realizing multi-party
instances of secure set intersection where sets come from a universe of bounded
size. This in turn can be helpful for many real-world scenarios (consider a secure
Doodle poll as a concrete example). Our protocols for these functions, espe-
cially when combined with other optimizations such as share-packing [17,20] and
pseudo-random secret sharing [14], lead to protocols that retain the efficiency
advantages of honest-majority MPC and additionally offer a very meaningful
protection against corrupted majorities. We expect such protocols to be attrac-
tive for implementations. See Sect. 6 for discussion of applications and concrete
efficiency. Finally, most (but not all) of our results are easy to extend to the
setting of security against malicious adversaries. This extension is discussed in
Sect. 7.

Our BIT-MPC protocols build on protocols for non-interactive MPC
(NIMPC) in the model of [4]. We rely on a restricted type of NIMPC pro-
tocols in which the correlated randomness is sampled uniformly from a linear
vector space. We design such protocols for the above functions and show how
to generally transform any such restricted NIMPC protocol into a BIT-MPC
protocol.

Our results on NIMPC are independently motivated by the goal of making
correlated randomness in NIMPC reusable or replacing it by a PKI setup under
standard assumptions. It was previously known that both goals can be achieved
for general functions by using indistinguishability obfuscation (see [25] and [24]
respectively). Our work gives the first nontrivial examples for functions that
admit NIMPC protocols with these useful features under weaker assumptions:
one-way functions for reusability, and non-interactive key exchange (NIKE) for
PKI setup.

Negative Results. We complement our positive results by several negative results.
First, by strengthening known results about characterizations of two-party secure
computation (e.g., [5,6,12,32]) and applying partition arguments (e.g., [12]), we
show that our notion of BIT-MPC, indeed provides the best possible security.
Namely, we prove that, for every (non-trivial) function f and for any coalition
T , if standard security holds against the set of parties T , then the parties in T
must learn the corresponding residual function and, therefore, residual security
is the best one can hope for.

Contrary to the general feasibility results for the standard notion of secu-
rity, e.g. [6,11], for our notion we rule out the possibility of efficient BIT-MPC
protocols for all efficiently computable functions. More precisely, we show that
such a positive result would imply that the polynomial hierarchy collapses. The
proof of this fact is similar to the analogous negative result for best-possible
indistinguishability obfuscation [23] (and implicitly in the context of instance
hiding [1]). Our results do not rule out the possibility that every function f
admits a BIT-MPC protocol if one does not take computational complexity into
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account. This is the main question left open by our work. We do provide a first
step towards resolving this question, by showing that such protocols exist for all
4-input functions (see Sect. 4.4).

Finally, we show a negative result that applies to a restricted class of protocols
that captures most of our positives results. When considering Boolean functions
f (outputting a single bit), protocols that have a certain “bilinear” structure
over a finite field F are limited to only functions f(x) that can be expressed as
a linear test“Ax = b?” over F. This relies on analogous results on the power of
degree-2 randomized encodings of functions [30].

1.2 Related Work

Several prior works, including the works of Chaum [10], Ishai et al. [31], and Hirt
et al. [27], provide a hybrid security guarantee of information-theoretic security
for honest majority but need to switch to computational security against dis-
honest majority. This is contrasted with our work, where in both cases secu-
rity is information-theoretic. Beyond the fact that we manage to preserve the
information-theoretic setting, our results enjoy the efficiency benefits of this set-
ting while the protocols in the hybrid model do not and, in fact, are even less
efficient than their purely computational counterparts.

The problem of MPC with “residual security,” extending the NIMPC model
from [4] to the interactive setting, was recently considered in an independent
work of Agarwal et al. [2]. Like our work, they show that residual security is the
best possible in the presence of a corrupted majority. Furthermore, they give a
combinatorial characterization for the class of functions for which residual secu-
rity is equivalent to standard security. Similarly to our work, they also suggest a
compiler from NIMPC to MPC, but their compiler is more restrictive than ours
in that it does not allow interaction for emulating the NIMPC evaluator. Unlike
our work, they do not consider the question of combining standard security for
dishonest minority with residual security for dishonest majority, nor do they
consider the class of functions to which our positive results apply.

2 Definitions

Notation. For a vector v = (v1, ...vn) and T = {i1, . . . , in′} ⊆ [n] a subset of size
n′ we define vT to be (vi1 , ...vin′ ).

Our notion of Best-possible Information-Theoretically-secure MPC protocols
(BIT-MPC) begins with the standard notion of secure protocols that only pro-
vides security against some sets of corrupted parties, but not other (e.g., only
against a corrupted minority).2 We augment the standard notion by requiring
that even corrupted sets for which it is impossible to guarantee standard secu-
rity, do not learn anything more than the residual function of the honest parties’
2 We note that in the pure information-theoretic setting we consider, the standard def-

initions below are equivalent to the definitions using a (computationally unbounded)
simulator.
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inputs (which we later show is necessary). We start by recalling the definition of
the residual function.

Definition 2.1 (Residual Function [26]). Consider a fixed n-input function
f : ({0, 1}∗)n → {0, 1}∗, let x = (x1, . . . , xn) be an input to f , and let T =
{i1, . . . , in′} ⊆ [n] be a subset of size n′. The residual function for T and x is an
n′-input function fT,x : ({0, 1}∗)n′ → {0, 1}∗, obtained from f by restricting the
input variables indexed by [n]\T to their values in x. That is, fT,x(y1, . . . , yn′) =
f(z1, . . . , zn), where for � /∈ T we have z� = x�, while for � = ij ∈ T we have
z� = yj.

Definition 2.2 (Standard and Residual Security). Let f be an n-input
function, let Π[κ] be an n-party protocol, for parties P1, . . . , Pn, that depends on
a parameter κ, and fix some subset of parties T ⊆ [n]. Define ViewPi

(x) as the
local view of party Pi (including its randomness and the messages it received)
during the execution of Π(x).

Standard Security. Π provides standard security against T if for any two
inputs x, x′ such that xT = x′

T and f(x) = f(x′), the two views ViewT (x) =
{{ViewPi

(x)}i∈T , f(x)} and ViewT (x′) = {{ViewPi
(x′)}i∈T , f(x′)} are sta-

tistically close, upto a distance of at most 2−κ.
Residual Security. Π provides residual security against T if for any two

inputs x, x′ such that xT = x′
T and the residual function, fT,x ≡ fT,x′ ,

the two views ViewT (x) = {{ViewPi
(x)}i∈T , fT,x} and ViewT (x′) =

{{ViewPi
(x′)}i∈T , fT,x′} are statistically close, upto a distance of at most

2−κ.

Definition 2.3 (BIT-MPC). Let f be an n-input function, let Π[κ] be an n-
party protocol that depends on parameter κ, and consider some threshold t ≤ n.
We say that Π is a t-private, best-possible, information-theoretic protocol for f
(t-BIT-MPC) if the following conditions hold:

– Correctness: For all x ∈ ({0, 1}∗)n it holds that Π[κ](x) = f(x) with all but
probability 2−κ (taken over the randomness of Π).

– For any set T ⊆ [n], |T | ≤ t, Π provides standard security against T .
– For any set T ⊆ [n], |T | > t, Π provides residual security against T .

We note that the definitions above were written in terms of an n-input/1-
output function, but they extend naturally also to n-input/n-output functions
(and later in this paper we sometimes need that extension). The only difference
is that when considering a set T ⊆ [n] we only look at the outputs of parties
in the set T (i.e. f(x)T ). Hence, the residual function for T and x will be an
n′-input/n′-output function, and the standard security notion will refer to every
x, x′ such that f(x)T = f(x′)T (even if f(x) �= f(x′) when considering also the
outputs outside T ).

We also note that there is nothing special about threshold, and Definition 2.3
extends to any adversary structure (so, rather than considering t-BIT-MPC, we
can talk about T -BIT-MPC for an arbitrary adversary structure T ).
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3 NIMPC with Restricted Correlated Randomness

The main technical tool that we use for our positive results on BIT-MPC are
non-interactive MPC (NIMPC) protocols [4,19], where parties cannot interact
with each other. To provide security in this setting, the parties are provided
with some correlated randomness, which is chosen ahead of time, independently
of the secret inputs. With this setup in hand, each party simply announces a
single message to all parties and the output of the function is computed locally
(possibly by all parties) on these messages.

Definition 3.1 (Non-interactive MPC (NIMPC)). A non-interactive
MPC protocol Π[κ] for n parties, P1, . . . , Pn, holding inputs x = (x1, . . . , xn)
resp. (and parameter κ) is comprised of three parts:

(1) randomness generation, (r1, . . . , rn) ← Gen(κ), generating n random but
correlated variables;

(2) local message functions, Msg = (Msg1, . . . ,Msgn), with Msgi taking random-
ness ri and local input xi and outputting a message mi ← Msgi(xi, ri);

(3) evaluation function, y ← Eval(m1, . . . ,mn), taking n messages {mi}i and
computing the output y.

We define the view of a subset T ⊆ [n] in the execution of Π[κ](x) as consisting
of their own input and randomness, as well as everyone’s messages,

ViewT (x) = {(xi, ri)|i ∈ T} ∪ {m1, . . . ,mn}.

We say that Π is a private non-interactive MPC protocol for an n-input function
f(x1, . . . , xn) if the following conditions hold.

Correctness. For any x ∈ ({0, 1}∗)n it holds that Π[κ](x) = f(x) with all but
probability 2−κ (taken over the randomness of Π).

Privacy. Π provides residual security against any subset. That is, for any set
T ⊂ [n] and any two inputs x, x′ such that xT = x′

T and fT,x ≡ fT,x′ , the
two views ViewT (x) and ViewT (x′) are statistically close, upto distance of at
most 2−κ.

When using an NIMPC protocol Π as a tool in our interactive setting, we
must address the issues of how to generate the randomness, how messages are
announced, and how to compute the output. It will be helpful to consider the
following hierarchy of correlated randomness setups. Each level in the hierar-
chy has features that are useful independently of our main goal of constructing
interactive BIT-MPC protocols.

1. Unrestricted correlation: Here the joint distribution of (r1, . . . , rn) out-
put by Gen is arbitrary. This setting enables the strongest known results for
NIMPC. In particular, every finite function f has a perfectly secure NIMPC
protocol (as per Definition 3.1) in which the length of the messages is compa-
rable to the truth-table size of f , and symmetric functions over {0, 1}n have
protocols in which the message length is quasi-polynomial in n [8].
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2. Linear correlation: This is the type of setup most relevant to our work. A
linear correlation is one that is uniform over some vector space V ⊂ F

m (for
some m ≥ n). More concretely, Gen is defined by a k × m matrix G over F

and a partition of the m column indices of G into n sets Si. The algorithm
Gen proceeds by computing r = sG for a random vector s ∈ F

k and letting
ri be r restricted to its Si-entries. We will often let m = n so that each ri is
a single field element.

3. Replicated correlation: This is a special case of linear correlation obtained
by picking N random and independent field elements si and distributing each
si to a fixed subset Si of parties. An advantage of replicated correlations is
that many copies of them can be generated by using a pseudo-random func-
tion. Thus, NIMPC with correlated randomness can be made reusable by
using only a one-way function, or fast symmetric cryptography in practice.
Using the share conversion technique from [14,21], any n-party NIMPC pro-
tocol that uses a linear correlation setup can be compiled into one that uses
the weaker replicated correlation setup, at the cost of increasing the size of
the correlated randomness by at most a factor of 2n.

4. Pairwise-replicated correlation: This is a special case of replicated corre-
lation where each Si is of size 2. Namely, each pair of parties share some secret
randomness, independent of the randomness of other pairs. An advantage of
this setup is that it can be implemented with a public-key infrastructure
(PKI), using any 2-party non-interactive key agreement (NIKE) (which can
be based on standard assumptions such as DDH). In contrast, replacing more
general types of correlated or even replicated randomness by PKI is only
known under stronger primitives such as multilinear maps or indistinguisha-
bility obfuscation [24].

Our BIT-MPC protocols will employ NIMPC protocols with linear correla-
tions, which can be reduced to replicated correlations. Some useful special cases
can be even based on NIMPC with pairwise correlations. Such special NIMPC
protocols are independently motivated by the features discussed above.

4 Protocols

4.1 Compiler from NIMPC to BIT-MPC

Our main positive result is a compiler, that starts with an NIMPC protocol for
a function f , and constructs a BIT-MPC protocol for f . In more detail, the
ingredients for our compiler are protocols for parties P1, ..., Pn:

– An n-party NIMPC protocol Π = {Gen,Msg,Eval} for an n-input function f ;
– An n-party interactive MPC protocol ΨGen for the randomized Gen function

of Π.
– An n-party interactive MPC protocol ΨEval for the Eval function of Π.

Given these protocols, the resulting interactive protocol Φ = Compile(Π,ΨGen,
ΨEval) is as follows. On inputs x1, . . . , xn held by P1, . . . , Pn resp.:
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1. The parties run ΨGen to evaluate Gen; ri is the output of party Pi;
2. Each party Pi computes locally mi = Msgi(xi, ri);
3. The parties run ΨEval each using mi as its input to the protocol, to get y =

Eval(m1, . . . ,mn).

Lemma 4.1. Let f be an n-input function, Π a private NIMPC protocol for f ,
and let ΨGen, ΨEval, and the resulting Φ = Compile(Π,ΨGen, ΨEval) be as above.

Correctness. If ΨGen and ΨEval, are correct then Φ is a correct protocol for f .

Security. For any subset T ⊆ [n], the following holds:

Residual Security. If ΨGen is correct and provides standard security against T , then
Φ provides (at least) residual security against T .

Standard Security. If ΨGen is correct and ΨEval is correct and provides stan-
dard security against T then the resulting Φ also provides standard security
against T .

Proof. Correctness can be verified by inspection. It remains to show security.

Residual Security. The argument here is that, due to the security of ΨGen, we
are essentially in the world of NIMPC where members of T see only their own
randomness and everyone’s messages, hence we get (at least) residual security.

In more detail, since ΨGen provides standard security against T , and as Gen
has no secret inputs, then the transcript of ΨGen does not reveal to the parties
in T anything beyond their collective outputs, namely the (correlated) random
values, {ri : i ∈ T}.

Moreover, the transcript of ΨEval is a randomized function of the inputs of
that protocol, namely the mi’s, so at worst it reveals these mi’s to the parties
in T . Hence, at worst, the view of the parties in T in the protocol Φ(x) consists
of their own xi, ri’s, and all the mi’s, which is exactly ViewT (x) in Π, as defined
in Definition 3.1. Similarly their view in Φ(x′) is, at worst, ViewT (x′) in Π.

By the NIMPC security of Π, the views ViewT (x) and ViewT (x′) are sta-
tistically close for any two x, x′ with xT = x′

T and the same residual function
relative to T , fT,x ≡ fT,x′ .

Standard Security. Here the argument is that (a) Gen is independent of the
inputs, and (b) the transcript of ΨEval does not leak to T anything about the
inputs other than the function value.

Fix x, x′ such that xT = x′
T and f(x) = f(x′), and denote the mes-

sages that the parties compute on these inputs by m = (m1, . . . ,mn) and
m′ = (m′

1, . . . ,m
′
n), respectively (i.e., mi = Msgi(xi, ri) and m′

i = Msgi(x′
i, ri)).

By correctness, we have that Eval(m) = Eval(m′) except with exponentially small
probability. Since, by the locality of the messages in NIMPC protocols, we have
mT = m′

T , and as Eval(m) = Eval(m′), then the standard security against T of
ΨEval implies that the views of T in the executions ΨEval(m) and ΨEval(m′) are
statistically close.

Together with the fact that the protocol ΨGen is independent of the inputs
x, x′, we conclude that the views of T in the executions ΨEval(x) and ΨEval(x′)
are also statistically close. �
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Using Lemma 4.1, we can deliver Best-possible Information-Theoretic MPC
protocols in many interesting cases. Consider attempting a t-BIT-MPC for some
function f , with a threshold t < n/2. By the lemma, all we need is some NIMPC
protocol Π for f , together with:

– A protocol ΨEval providing standard security against dishonest minority; and
– A protocol ΨGen that provides complete privacy, even against dishonest major-

ity, but only for the input-less function Gen.3

If we find an NIMPC protocol Π with a simple enough randomness generation
function Gen, then we could hope to find a protocol ΨGen with complete privacy.
Adding a standard protocol for Eval (e.g., using the BGW construction), we
would have standard security against dishonest minority, and residual security
against dishonest majority, as needed. If we are willing to settle for a smaller
threshold (say t < 2n/5), then we can use even more efficient protocols for
ΨEval (see, e.g., [17,20]). This could give truly practical protocols, that provide
meaningful (residual) security, no matter how many parties are corrupted.

Theorem 4.1. Let f(·) be an n-input function. If there exists a private NIMPC
protocol for f , Π = {Gen,Msg,Eval}, and a protocol ΨGen that computes Gen with
standard security for all T ⊂ [n] then, for any threshold t < n/2, there exists a
t-private BIT-MPC protocol for f . �

We remark again that there is nothing special about threshold, and an anal-
ogous theorem holds for any realizable adversary structure.

The main condition in Theorem 4.1 is that we have a protocol ΨGen for the
randomness-generation function with complete privacy. As discussed in Sect. 3,
there is a hierarchy of correlated-randomness types that can enable the com-
putation of different functions of increasing complexity. In the following, we
examine various correlations that can be generated with complete privacy. The
ideas behind some of the schemes that follow have been previously suggested
but are presented here for self-containment and, even more so, because they are
good examples for the application of our BIT-MPC theorem.

4.2 BIT-MPC from NIMPC with Pairwise Shared Randomness

One class of correlated randomness that can be generated with complete privacy
(i.e., standard security against any set T ⊂ [n]), is pairwise shared randomness.
The protocol ΨGen is obvious: For i < j, party Pi sends to party Pj a random
value ri,j ∈ Zp, and the randomness of each Pi is set as {rk,i : k < i} ∪ {ri,k :
i < k}. It can easily be verified that this

(
n
2

)
-message protocol offers the desired

security guarantees: Every party Pi sees only the values ri,j that it sent and rj,i

that it received, and any value shared between two honest parties is not known
to the attacker. Below, we examine some functions that can be computed using
such pairwise shared randomness.
3 We sometimes use the term complete privacy to refer to protocols that provide

standard security against every subset T ⊆ [n].
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Shares of Zero. Pairwise shared randomness can be easily converted into a cor-
related sharing of 0, just using local computation [9,14]: Each party Pi sets its
share to ri =

∑
k<i rk,i −

∑
i<k ri,k. It can be easily verified that, for any set of

parties T , the only information revealed about the shares of the parties in T is
their sum (and otherwise the shares of T are random).

Sum of Inputs. Shares of zero are used in the following simple private NIMPC
protocol for computing the sum [9,14] in a finite Abelian group.

Fig. 1. Sum of Parties’ Inputs in a finite Abelian group G

We remark that applying our BIT-MPC compiler to the NIMPC protocol in
Fig. 1 is pointless, since the output of the SUM function by itself always exposes
the residual function (i.e. the sum of the inputs of the honest parties), even to
a dishonest minority. However, this NIMPC protocol will be a useful tool in
compiling other functions into BIT-MPC.

Bitwise OR. Beimel et al. [4] present a private NIMPC for computing the OR
function, assuming a (correlated randomness) sharing of 0. Each party chooses a
new random value if its bit is 1 and uses the randomness from the zero-sharing
if its input bit is 0. Then, the parties run the sum protocol on these values. If
all the original bits are 0 then each party entered the randomness from the zero-
sharing and thus the sum will be zero, and otherwise the sum will be nonzero
with high probability. The parties output 0 if the sum is zero, and 1 otherwise.
See Fig. 2.

The above protocol exemplifies nicely how applying our BIT-MPC compiler
and Theorem 4.1 adds privacy to the inputs of the parties. Observe that this
protocol by itself reveals the OR of the honest parties’ bits to the adversary,
regardless of the number of corrupted parties and their inputs. (For example,
a single corrupted Pj can check the equality rj

?= −
∑

i�=j mi.) Applying our
compiler, we improve security by ensuring that the sum of mi’s is never exposed
to any minority group. In particular a single adversarial Pi with input value 1
learns nothing about the inputs of the other parties.

Computing the Maximum. To compute MAX(x1, . . . , xn) (with the xi’s taken
from [p] for some p ∈ Z), each party i with input xi locally computes the p bits
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Fig. 2. NIMPC protocol for the OR of Parties’ Inputs

χi,� := (xi ≥ �), for all � ∈ [p]. Then, the parties run p copies of the OR protocol,
computing ψ� := ORi∈[n]χi,�, for all �. The maximum value is the largest index
� for which ψ� = 1. See Fig. 3.

Fig. 3. NIMPC protocol for MAX, Maximum of Parties’ Inputs

Lemma 4.2. The protocol from Fig. 3 is a private NIMPC protocol for comput-
ing the maximum value of the inputs of the parties. �

We remark that since we are dealing with semi-honest parties, then we do not
have issues of consistency between the inputs in the different OR instances. The
protocol from Fig. 3, though constant round, is inefficient for large p as it requires
p invocations of the OR protocol and thus pn messages over all. This means that
also the BIT-MPC protocol that we get by compiling it will be inefficient.
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Although we do not know of a more efficient non-interactive MPC protocol
from pairwise shared randomness, we are able to get a more efficient interactive
BIT-MPC protocol for MAX. In the interactive setting, we can run the multiple
copies of the OR protocol sequentially, rather than all at once, hence using binary
search to get only log p invocations of the underlying OR protocol. See Fig. 4.
Note that the bits ψj that are exposed by the protocol from Fig. 4 are actually
implied by the output value maxi xi. We get:

Fig. 4. A more efficient interactive BIT-MPC protocol for MAX

Lemma 4.3. For any threshold t ≤ n/2, if ΨOR
Eval(mi,j) from Fig. 4 provides

standard security against sets of size up to t, then the protocol from Fig. 4 is an
interactive t-BIT-MPC for computing the MAX function. �

4.3 BIT-MPC Based on Linearly-Correlated Randomness

As stated earlier, linear correlation is a powerful class of correlated random-
ness that can handle many interesting functions. The simplest format of linear
correlation has each party Pi holds a piece of randomness ri, where the vector
r = (r1, . . . , rn) was chosen at random in some known linear subspace in F

n.
Namely r = s · A, where A is a fixed, public k × n matrix that defines the linear
space, and s is a uniformly random vector in F

k.
This class generalizes the secret-sharing of zero that we used above, and

we can compute the randomness generation for it with complete privacy, using
similar techniques as for zero-sharing [7,16]. Specifically, each party Pi chooses
a random vector si and computes ti = si × A, then sends the entry ti[j] to
Pj (for every j). The correlated-randomness element of each Pj is then set as
rj =

∑
i ti[j] = ((

∑
i si) × A)[j].
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To show complete privacy, fix a set T ⊂ [n] of corrupted parties and note
that the values {ti[T ] : i /∈ T} seen by the parties in T determine the si’s only
upto the solution of the system (sT × A)[T ] = tT [T ] (with sT [T ] =

∑
i/∈T si[T ],

tT [T ] =
∑

i/∈T ti[T ]), which are exactly all the inputs with the same output at T .
We also note that using the share conversion technique from [14,21], we can

localy convert “replicated correlated randomness” to linearly correlated random-
ness. In a little more detail, by giving every subset T ⊂ [n] a different random
seed for a PRG/PRF, the parties can locally generate unbounded number of
pseudo-random vectors in the range of fA(s) = s · A, without any interac-
tion. This means that every party must keep 2n−1 seeds, but for small val-
ues of n this still yields a very practical way of generating linearly-correlated
(pseudo)randomness, which can then be used in the protocols that we describe
below.

Testing for Membership in an Affine Space. We next show that linear corre-
lations allow us to compute, for any matrix A, the function that determines
whether an input vector belongs to the kernel of the rows of A. Namely

AffineA,0(x) =

{
1 if Ax = 0
0 otherwise

.

Since the parties have the vector r = sA which is uniform in the columns space
of A, it is sufficient to check if the inner product of x and r is zero. Hence each
party computes yi = xiri, and the parties then run the SUM protocol from
Fig. 1.

This protocol can be modified to compute the function AffineA,b(x), i.e., to
check whether Ax = b for a matrix A, as before, and a known vector b (rather
than equality to zero). This is done by fixing a known vector w such that Aw = b
and having each party set yi = (xi − wi)ri and run the SUM protocol. The
resulting protocol is described in Fig. 5.

Fig. 5. NIMPC protocol for affine space membership, testing whether Ax = b for public
A, b,
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Lemma 4.4. The protocol from Fig. 5 is a private NIMPC protocol for affine
space membership. Moreover, there exists a completely private protocol ΠGen for
computing the randomness generation function, with standard privacy against
any set T ⊂ [n].

Proof. For correctness, note that y = 〈r, x − w〉 = sA(x − w) = 〈s,Ax − b〉.
Hence y = 0 with probability one when Ax = b, and y �= 0 whp when Ax �= b.

For privacy of the NIMPC protocol, we show that for any set T ⊂ [n] and
any two inputs x, x′ such that xT = x′

T and fT,x ≡ fT,x′ , the views of T on x
and x′ are distributed identically. It is convenient to first consider the case b = 0
(and thus w.l.o.g. w = 0). These views consist of (the public A and)

rT = {ri : i ∈ T}, ρT = {ρi : i ∈ T}, xT = {xi : i ∈ T} or x′
T = {x′

i : i ∈ T}, and
mT = {mi = xiri + ρi : i /∈ T} or m′ = {m′

i = x′
iri + ρi : i /∈ T}, respectively.

Since the ρi’s are a random n-out-of-n sharing of zero, then the mi’s (or m′
i are

uniformly random subject to their sum, regardless of rT , ρT , xT . It is thus enough
to show that for any fixed r, we have

∑
i/∈T mi =

∑
i/∈T m′

i iff fT,x ≡ fT,x′ .
To see this, notice that fT,x ≡ fT,x′ iff AT xT = AT x′

T
, where AT xT is

the sum of the columns of A corresponding to i /∈ T , each multiplied by the
corresponding xi’s (and similarly for AT x′

T
). Namely AT xT =:

∑
i/∈T xiAi and

AT =:
∑

i/∈T xiAi. This is true since, for any x∗
T , we have fT,x(x∗

T ) = AT xT +
AT x∗

T and fT,x′(x∗
T ) = AT x′

T
+ AT x∗

T .
Consider therefore x, x′ such that AT xT = AT x′

T
, and fix r and ρ. Then

∑

i/∈T

mi −
∑

i/∈T

ρi = 〈rT , xT 〉 = (sA)T xT = sAT xT

= sAT x′
T

= (sA)T x′
T

= 〈rT , x′
T
〉 =

∑

i/∈T

m′
i −

∑

i/∈T

ρi,

and therefore
∑

i/∈T mi =
∑

i/∈T m′
i. This completes the proof of privacy for the

NIMPC protocol from Fig. 5 for the case of b = 0. The case of arbitrary b is
similar (except that in the last equality we have another term AT wT which is
independent of x, x′).

Finally, we note that the shared randomness in this protocol consists of r =
sA and a sharing of zero ρ, both of which can be computed with perfect privacy
as we explained earlier. �

Corollary 4.1 (Affine Membership Over A Field). For any fixed A ∈ F
k×n

and b ∈ F
k, there is a n/2-BIT-MPC protocols for checking Ax = b over F. �

Some Applications of the Affine Membership Protocol. Computing affine mem-
bership is more useful than it may seem. In particular, it captures most functions
considered in the previous section as special cases, as well as additional useful
functions. For example, the AND function can be realized utilizing the identity
matrix A = I and checking Ax = b for b = (1, . . . , 1). The OR function is identi-
cal to AND up to relabeling of inputs and outputs, but can be realized directly
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using any invertible matrix A and b = 0, since Ax = 0 holds if and only if all the
xi’s are 0. Affine membership can also be used to check equality of all inputs,
namely the function AllEq(x1, . . . , xn) which outputs 1 if x1 = x2 = . . . = xn

and 0 otherwise. Here we use a matrix A ∈ F
(n−1)×n that reflects the equations

x1 − x2 = 0, x2 − x3 = 0, . . ., xn−1 − xn = 0, namely, the rows of A are all of
the form (0, . . . , 0, 1,−1, 0, . . . , 0). For this matrix A, the function AffineA,0(x) is
exactly AllEq(x).

4.4 Four-Input Functions

A somewhat surprising corollary of the per-subset nature of Lemma 4.1 is that
any 4-input function can be computed with BIT-security against dishonest
minority. Namely, we get standard security for a single corrupted party, and
(at least) residual security for two or more corrupted parties.

Theorem 4.2. For every 4-input function f , there is a 1-BIT-MPC interactive
protocol for computing f .

Proof. (Sketch) Let Π = (Gen,Msg,Eval) be an NIMPC protocol for f with gen-
eral correlated randomness (e.g., from [4]), and we describe interactive protocols
for Gen,Eval as needed.

– For ΨGen, we use a 1-of-3 BGW protocol, run by P2, P3, P4, to generate the
needed correlated randomness.

– For ΨEval, we use a 2-of-5 BGW protocol for evaluation, where P2, P3, P4 each
play a single party, and P1 plays the role of two parties.

The reason that this construction works is that if there are three corruptions
then the corrupted parties are allowed to learn the input of the honest party, so
there is no security requirement. If there is only one corruption then the BGW
protocols ensure standard security (even if the corrupted party is P1 who plays
a double role in the second BGW invocation).

It remains to show that we get (at least) residual security when two parties
are corrupted. If the corrupted parties do not include P1 then the 2-of-5 BGW
protocol actually gives standard security. If P1 is corrupted then two of P2, P3, P4

are honest, hence we get standard security for the randomness generation step
and therefore residual security for the combined protocol. �

5 Negative Results

5.1 When “Best-Possible” Is the Best Possible

The first negative result justifies the term “best-possible” security, showing that
in the information-theoretical regime, the security requirement against majority
sets typically cannot be further strengthened. We start by considering two-party
protocols and strengthen standard impossibility results for this setting (e.g., [5,6,
12,32]). Specifically, we show that in a two-party protocol between Alice and Bob
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to compute a function f(x, y), standard information-theoretic security against
Bob (i.e. if Bob learns the output and nothing else), implies that Alice necessarily
learns Bob’s input y. More concretely:

Lemma 5.1. Let f(x, y) be a boolean function and assume that each y is dis-
tinct; namely, for all y �= y′ there exists an x such that f(x, y) �= f(x, y′) (this
is without loss of generality as otherwise Bob can pick one y from each “equiva-
lence class”). Let P be any protocol where Bob learns f(x, y) (with prob. 1) but
no other information about x, then Alice can always identify y.

Proof. Assume not. Then, for some pair of Bob inputs y, y′ there is an Alice
input x on which she cannot distinguish y from y′. Namely Alice’s view (which
consists of the transcript, as well as her input and randomness) on (x, y), (x, y′)
is identically distributed and, in particular, it follows that f(x, y) = f(x, y′) = v,
for some v ∈ {0, 1}. Since y, y′ are “distinct” then, for some other Alice input x′,
we have f(x′, y) �= f(x′, y′). Since f is boolean then, without loss of generality,
f(x′, y) = v. Since Bob is assumed to learn nothing beyond the output, his
distribution of views on (x, y) and on (x′, y) (in particular, the distribution
of transcripts) is the same. By a standard“corners lemma“ (see, e.g., [12,32]),
it follows that the transcript on (x′, y′) is also distributed in the same way,
contradicting the correctness of the protocol P. �

Extensions. As stated, Lemma 5.1 assumes perfect correctness and perfect pri-
vacy. This however need not be the case and indeed some of the above papers
(e.g., [12]) show that the same holds even when allowing ε-error and δ-privacy
(i.e., where the statistical distance between the corresponding distributions is
bounded by δ). The same modification applies in our case.

Another important extension is to deal with non-boolean functions f . Here,
rather than asking for distinctness of the y’s, we need a slightly more demanding
(but still quite simple) richness requirement. Specifically, we ask that for any pair
of Bob inputs y, y′ that are not trivially distinguishable by Alice (i.e., where for
some Alice input x we have f(x, y) = f(x, y′) = v), there must also exists another
Alice input x′ for which f(x′, y) �= f(x′, y′) and that one of these two values is
equal to v. To illustrate this condition, consider the function min(x, y) (over
some interval), where for all y < y′ the above condition holds with x = y and
x′ = y′. This condition is a generalization of the distinctness property for boolean
functions, used above; if this property holds then we will refer to the function
f as being non-trivial. One can readily verify that the proof of Lemma 5.1 still
holds for all non-trivial functions f (boolean or non-boolean).

Next, we deal with the case of n-input functions f , by applying a standard
partition argument. It shows that, for any subset of parties T , if a protocol P
satisfies standard security against a corrupted T then it can do no better than
offering residual security against a corrupted T . (We usually think of T as a
majority set, where it is always possible to ensure standard security against a
corrupted T , but the statement holds for any set T and this is important for
generalizing the negative result to non-threshold access structures.) Formally,
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Theorem 5.1. Let f be an n-input function. Let T ⊂ [n] be a
subset of parties. Define the corresponding induced 2-argument function
fT ({xi}i∈T , {xi}i/∈T )=:f(x1, . . . , xn) and assume that fT is non-trivial. Let P
be any protocol where the parties in T learn f(x1, . . . , xn) but no other informa-
tion about the input (information theoretically). Then, the parties in T learn the
residual function fT,x.

Proof. Consider the two-party protocol PT derived from P by Alice simulating
the parties in T , Bob simulating the parties in T and together they compute the
value fT ({xi}i∈T , {xi}i/∈T ). By the assumption on P, Bob learns the output of
fT but nothing else. Hence, by Lemma 5.1 (and the following discussion), Alice
learns Bob’s input. In the terminology of the n-party protocol P, this means
that the view of the parties in T necessarily identifies the residual function fT,x

(note that if two n-argument inputs x, x′ induce the same residual function,
i.e. fT,x = fT,x′ , then they are mapped to equivalent inputs for the two-input
function fT ). �

5.2 Efficient BIT-MPC Protocols Are Rare

Our next goal is to show that computationally efficient BIT-MPC protocols are
unlikely to exist even for simple families of functions. (Specifically, their existence
would imply the collapse of the polynomial hierarchy.) We mimic similar results
in the context of obfuscation [23] showing that if, for example, the family of 3-
CNF formulas has efficient statistical-indistinguishability obfuscation, then the
Polynomial Hierarchy collapses to its second level. This, in particular, relies on
the following claim (implicit in [23]; see also [1] for a similar proof in the context
of instance-hiding schemes):

Lemma 5.2. Let C be a family of circuits where checking equivalence is co-NP
complete (e.g., a simple family such as the family of all 3CNF formulae satisfies
this). Assume that there exists a probabilistic polynomial time machine S that is
given a circuit C ∈ C as its input and that its output is a probability distribution
satisfying the following properties:

– If C1 ≡ C2 then S(C1) ≈ S(C2) (i.e., the statistical distance between
S(C1),S(C2) is bounded by some constant, say 1/3).

– If C1 �≡ C2 then S(C1) and S(C2) are far (i.e., the statistical distance between
S(C1),S(C2) is bounded from below by some constant, say 2/3).

Then, the polynomial hierarchy collapses.

Consider the 3-input universal function UC(C, x,⊥), where C is a boolean
circuit from a family of circuits C, as above, x is an input for the circuit C (and
⊥ indicates that the third party has no input). We argue that there is no efficient
BIT-MPC protocol for this function.

Theorem 5.2. If there is a computationally efficient 3-party BIT-MPC protocol
P for UC, then the polynomial hierarchy collapses.
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Proof. We use the protocol P to construct a machine S, as required by
Lemma 5.2. Doing so, the theorem follows.

We first turn P into a two-party protocol P ′ for computing the two-argument
function f(x,C) = UC(C, x,⊥), with Bob simulating the party in P holding the
circuit C (i.e., a minority among the 3 parties) and Alice simulating the two
others (i.e., the majority). By the best possible security of P, Alice learns the
function fC and only this function (note that now the inputs of Bob are not
distinct, as there may be several circuits that compute the same function fC ; an
argument similar to that of Lemma 5.1 shows that Alice indeed learns fC with
any input x she may have).

We now construct S(C) as follows. Run P ′ on inputs (x0, C), where x0 is an
arbitrary (fixed) input for Alice, and output her view in the protocol. On one
hand, if C1 ≡ C2 then fC1 ≡ fC2 and so Alice’s view in both cases is identically
distributed. On the other hand, if C1 �≡ C2, then Alice’s view in the two cases
is far apart. �

5.3 Simple BIT-MPC Protocols Have Limited Reach

Our last negative result shows that a natural class of “bilinear” NIMPC proto-
cols, which captures most of our positive results, is limited in power. A bilinear
NIMPC protocol over a finite field F is one in which the randomness r1, . . . , rn

is linearly correlated, i.e., generated by applying a linear transformation A to
a vector of random elements (ρ1, . . . , ρm), and where each message mi can be
computed using a bilinear function Msgi(x, r). That is, Msgi is linear in both
x (the inputs) and r (the randomness). Our goal is to show that“bilinear” pro-
tocols and, more generally, protocols where messages are computed as degree-2
polynomials in x and r, are limited in power. This negative result relies on a
negative result for degree-2 randomizing polynomials from [30]. Concretely, [30]
proved the following:

Lemma 5.3. Suppose f : {0, 1}n → {0, 1} admits a degree-2 randomized encod-
ing over a finite field F. Then, either of the following holds:

– f or its negation test a linear condition over F; namely, are of the form
fA,b(x) = 1 iff Ax = b, for some A ∈ F

�×n, b ∈ F
�; or

– f is a (deterministic) degree-2 polynomial.

We observe that a bilinear protocol for a function f gives rise to a randomized
degree-2 representation of f (of the first type). The degree is bounded by 2
because each message mi is computed via a bilinear function Msgi(x, r) and
because r itself is a linear function of the underlying vector (ρ1, . . . , ρm). The
correctness and full robustness of the protocol imply that m1, . . . ,mn encode
f(x) but give no other information about x. Thus, using Lemma 5.3, we get:

Theorem 5.3. Let f : {0, 1}n → {0, 1} be a boolean function that has a bilin-
ear NIMPC protocol over a finite field F. Then, f or its negation test a linear
condition over F (as defined above).
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6 Concrete Efficiency

In this section we make the case that our protocols, while restricted in the class of
functionalities they apply to, can be useful for improving the concrete efficiency
of natural secure computation tasks. We start by recalling some functions for
which we present BIT-MPC protocols and discuss their relevance to natural
secure computation tasks that can be motivated by real-world applications.

– AND/OR: Bitwise AND of long vectors of inputs can be used to realize multi-
party Private Set Intersection (PSI) of sets over a universe of size [N ], where
the input of each party is the length-N characteristic vector of its set. PSI has
many real-world applications. One example is a secure Doodle poll, where the
universe includes possible date and time slots, and each party’s input is the
subset of these slots in which he or she are available. See, e.g., [33] and ref-
erences therein for pointers on existing PSI protocols and their applications.
Many of these applications are relevant even with feasible domain size, and
even in the multiparty case.

– MIN/MAX: This is generally useful for auctions. Note that the variant in
which the identity of the winner is revealed is reducible to the plain variant
by encoding the identity of the owner of each input in the least significant
bits of the input.

– Multiparty equality: Deciding whether all inputs are equal can be useful for
checking whether there is agreement on the same candidate, whether different
copies of the same information are identical, etc. In some of these cases, it
is important to hide the identity of the outliers. See [18] for applications of
secure two-party equality computation, some of which are relevant also in the
multi-party case.

In all of the above cases, the residual security guarantee that we get in the
presence of a dishonest majority is meaningful. In particular, it only reveals a
very small amount of joint information about the inputs of honest parties, and
moreover this information can typically be obtained in the ideal model via an
adversarial choice of the input.

We now discuss the asymptotic and concrete efficiency features of optimized
variants of our BIT-MPC protocols that make them more attractive than stan-
dard protocols for MPC with no honest majority. For concreteness we focus
on the AND function, but similar optimizations apply to the other functions
as well. We exclude from the discussion protocols based on fully homomorphic
encryption (let alone general-purpose obfuscation) that do not seem to offer a
competitive alternative for such simple computational tasks.

Existing “GMW-style” protocols for n-party AND that remain secure in
the presence of an arbitrary number of (semi-honest) corrupted parties require
O(n3) instances of oblivious transfer. This makes the total communication com-
plexity O(kn3), where k is a computational security parameter. While some opti-
mizations are possible using pseudo-random secret sharing (PRSS) [14], we are
not aware of an OT-based protocol whose communication complexity is below
O(kn2). In particular, even for a small number of parties such as n = 10, each
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party should communicate thousands of bits for a single AND computation.
The main barrier is the use of oblivious transfers: the protocol consumes many
of them, and efficient OT extension techniques [29] still require a significant
amount of communication per OT instance.

Our BIT-MPC protocols replace OT with linear secret sharing, whose effi-
ciency can be amortized via PRSS and/or share packing [20]. We note that the
PRSS technique, when applied to threshold secret sharing schemes, incurs a com-
putational cost (e.g., number of PRG invocations) that grows exponentially with
the number of parties. Thus, this optimization can only be applied in practice
when the number of parties is not too big.

Concretely, given a PRSS setup of replicated PRG seeds, our BIT-MPC pro-
tocol for AND of n input bits with 2−s error probability needs only two rounds
of interaction, where each party broadcasts s + 1 bits in each round (or sends
a total of (n − 1)(s + 1) bits over point-to-point channels). The computational
complexity is dominated by roughly

(
n

n/2

)
PRG calls (that can be implemented

in practice via AES) per party. We do not know how to get MPC protocols that
achieve a similar level of efficiency in the setting of standard MPC with no hon-
est majority. Note that these efficiency advantages become very relevant when
computing a large number N of instances. This case is motivated by some of the
applications discussed above.

When the number of parties n is big, the PRSS technique no longer applies,
but can be replaced by the use of packed secret sharing. This gives an amortized
communication cost of O(s) bits of point-to-point communication per AND com-
putation per party, at the price of a slightly reduced (full) security threshold.
Here one does not need any setup nor a direct implementation of broadcast to
get this level of efficiency.

7 BIT-MPC with Security Against Malicious Parties

Our main focus in this paper is on BIT-MPC in the presence of a semi-honest
(i.e., passive) adversary, who does not modify the messages sent by corrupted
parties. In this section, we briefly discuss an extension of our notion of BIT-MPC
and some of our results to the setting of a malicious (i.e., active) adversary.

We start by discussing the modified security definition for this case. In the
case of security against a malicious adversary, we need to replace the direct
definitions of standard and residual security, from Definition 2.2, by a simulation-
based definition that compares the real-world execution of the protocol in the
presence of a malicious adversary to an ideal-world execution in the presence of
a simulator. Moreover, whereas in the case of an honest majority one can achieve
full security (either when t < n/3 over secure point-to-point channels [6,11] or
with t < n/2 if broadcast is additionally available [34]), for the case of a dishonest
majority we generally need to settle for “security with abort.”
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7.1 Defining BIT-MPC with a Malicious Adversary

At a high level, we modify the standard security definition of MPC (see [22])
by changing the ideal model experiment so that the adversary gets an explicit
description of the residual function.4

For a set T of parties, we can consider four “types” of security that a protocol
can offer against a corrupted T : ensuring either standard or residual security,
and either guaranteed output delivery or security with abort. For simplicity,
the definition below only deals with two types of sets, “minority sets” against
which we have full security with guaranteed output delivery, and“majority sets”
against which we can only ensure residual security with abort. (Dealing with four
different “types” is of course possible, but cumbersome.) Also for simplicity we
only deal with the threashold variants of the definition (rather than arbitrary
access structures). Hence, below we have a single threshold t upto which we
ensure full security with guaranteed output delivery, whereas for more than t
corrupted parties we settle for residual security with abort. The typical threshold
t is t < n/3, for protocols over secure point-to-point channels, or t < n/2 with
broadcast.

Definition 7.1. Let f be an n-input function. let Π[κ] be an n-party protocol
that depends on parameter κ, and consider some threshold t ≤ n. We say that Π
is a t-secure, best-possible, information-theoretic protocol for f in the presence of
malicious adversaries (or malicious t-BIT-MPC) if for every (malicious, static,
computationally unbounded) adversary A attacking Π[κ] there exists a simula-
tor S, with 2−κ simulation error, that corrupts the same set of parties in the
following ideal model:

– Standard security for up to t corruptions: If A corrupts at most t par-
ties, the ideal model is as in the original definition from [22] for MPC with
full security: each party sends its input to the trusted party (where the simu-
lator S can change inputs of corrupted parties), the trusted party computes f
and delivers the outputs to all parties.

– Residual security with abort beyond t corruptions: If A corrupts more
than t parties, the ideal model is defined as follows: (1) each party sends its
input to the trusted party; (2) the trusted party sends a description of the
residual function of f (defined by the inputs of uncorrupted parties) to S; (3)
S decides whether to abort or to have the trusted party deliver the outputs of
uncorrupted parties.

7.2 BIT-MPC Protocols with Malicious Adversaries

In this section, we discuss the possibility of applying variants of the protocols
from Sect. 4 in the presence of malicious adversaries. For this, we need to examine
4 Clearly, this definition can only be satisfied with efficient simulation for functions

whose residual function has a small description, such as functions on a small input
domain or symmetric functions. Our negative results suggest that this restriction is
inevitable.
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the effect of malicious behavior in all three components: the generation of the
correlated randomness, the local computation of the NIMPC messages, and the
distributed NIMPC evaluation. We discuss each of these components separately.

Correlated Randomness Generation. In the semi-honest case, we could
generate any linear correlation n-securely using a simple information-theoretic
protocol based on additive secret sharing. This protocol fails to be secure against
malicious parties. In fact, the impossibility of information-theoretic coin-tossing
with dishonest majority means that this insecurity is inherent. To get around this
impossibility, we consider the following “semi-malicious” relaxation of NIMPC
with replicated correlation: when considering security against a collusion of the
evaluator and a set of parties T , all of the random inputs involving T can be cho-
sen adversarially (independently of the random inputs that are owned only by
uncorrupted parties) but they are restricted to satisfy the prescribed replication
pattern. It is easy to check that all of the previous protocols in this model remain
secure even in this slightly more adversarial setting. Intuitively, this follows from
the fact that even in the semi-honest model, the security of the uncorrupted par-
ties is only protected by the random inputs that are unknown to the adversary.
Finally, we observe that in the special case of pairwise-replicated correlation,
we can generate the randomness in the straightforward way by making one of
each pair of parties Pi, Pj pick the common randomness ri,j and send it to the
other. Here the effect of a malicious adversary is equivalent to that of a semi-
malicious adversary who can pick the random inputs adversarially but otherwise
behaves honestly. Note that this is not the case for general replicated random-
ness, where the adversary can make replicated randomness owned by different
honest parties inconsistent. From here on, we focus on BIT-MPC protocols that
are obtained via NIMPC with pairwise-replicated randomness. This captures
most of the examples from the previous section, including AND/OR and AllEq.

Local Computation of NIMPC Messages. Here we need to ensure that any
malicious strategy of picking NIMPC messages by the adversary (independently
of the honest parties’ NIMPC messages) can be simulated by an honest strategy.
Consider for example the direct protocol for the OR function. Here each party
first maps a 0 input to 0 or a 1 input to a random nonzero group element, and
then adds the correlated randomness (obtained via pairwise-replicated random-
ness). Note that for any fixed choice of the correlated randomness, every group
element is a valid message, and moreover it is easy for the simulator to extract
the input from the correlated randomness and the message (namely, the input
is 0 if the two values are equal and 1 otherwise). One can check that the same
is true for the more general NIMPC protocol for affine space membership. Here
each party multiplies its (shifted) input by the correlated randomness ri. Unless
ri = 0, which occurs with negligible probability, the simulator can extract an
effective input from ri and the NIMPC message.

Distributed NIMPC Evaluation. This is the easiest part to handle, since we
can simply apply off-the-shelf information-theoretic protocols that provide secu-
rity against malicious adversaries. Depending on the setting, we can either use
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protocols such as [6,11] for perfect t-security over secure point-to-point channels
when t < n/3, or alternatively protocols such as [34] for statistical security over
secure point-to-point channels and broadcast when t < n/2.

Beyond Affine Space Membership. Using the above methodology, we can
get BIT-MPC protocols for affine space membership whenever the correlated
randomness can be obtained via pairwise-replicated correlation. This captures
the most useful examples of AND/OR and AllEq, but does not directly capture
applications that build on top of them, such as the protocols for the MAX func-
tion. Recall that the MAX function computes the maximum of n integers in Zp.
We presented two BIT-MPC protocols for MAX in Figs. 3 and 4. The first has
constant round complexity but high communication complexity (linear in p),
while the second uses binary search and multiple rounds to make the communi-
cation complexity grow only logarithmically with p. Both of these protocols use
a BIT-MPC protocol for OR as a subroutine. However, they are both insecure
against a malicious adversary even if the underlying OR protocol is fully secure
against a malicious adversary. The attack is the same in both cases: even a single
malicious party chooses its inputs for the OR protocol non-monotonically it can
both simultaneously “win” (i.e., determine the output) and learn the maximum
of the honest parties’ inputs. This contradicts the full security requirement for
the case of dishonest minority.

We propose two solutions to overcome the above attack and obtain a BIT-
MPC protocol for MAX with security against malicious adversaries. The first
solution is a sequential version of the protocol from Fig. 3, where in round � the
input for the OR function of party Pi is a bit χi,� which equals 1 if its input
is at least p − � and 0 otherwise. The protocol terminates with output p − �0
after the first round �0 in which the OR-output is 1. In the protocol, the only
degree of freedom the adversary has is to choose the first round in which one of
its inputs is 1 (assuming that the protocol did not terminate before this round),
and this choice can be simulated by an honest strategy. Finally, we note that it
is also possible to get a constant-round protocol for MAX via a non-interactive
reduction to secure modular addition that uses the nested subgroup technique
from [15]. The idea is that MAX of inputs in [m] can be reduced to addition in
the group Zqm (where q is a prime of size > 2κ) in the following way. Each input
xi is locally encoded as a random multiple of qm−xi in Zqm , and then the n
encoded inputs x′

i are added via a BIT-MPC protocol for addition in Zqm . Due
to the nested subgroup structure, the maximal multiple of q which divides the
output will reveal the MAX value except with 1/q probability. Moreover, in this
protocol a malicious adversary has no cheating space, as every possible choice
of the encoded input x′

i in Zqm corresponds to an honest input. We leave open
the question of obtaining a BIT-MPC protocol for MAX, with security against a
malicious adversary, where the communication complexity grows logarithmically
with m.
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Abstract. We investigate sampling procedures that certify that an arbi-
trary quantum state on n subsystems is close to an ideal mixed state ϕ⊗n

for a given reference state ϕ, up to errors on a few positions. This task
makes no sense classically: it would correspond to certifying that a given
bitstring was generated according to some desired probability distribu-
tion. However, in the quantum case, this is possible if one has access to
a prover who can supply a purification of the mixed state.

In this work, we introduce the concept of mixed-state certification,
and we show that a natural sampling protocol offers secure certification
in the presence of a possibly dishonest prover: if the verifier accepts then
he can be almost certain that the state in question has been correctly
prepared, up to a small number of errors.

We then apply this result to two-party quantum coin-tossing. Given
that strong coin tossing is impossible, it is natural to ask “how close
can we get”. This question has been well studied and is nowadays well
understood from the perspective of the bias of individual coin tosses.
We approach and answer this question from a different—and somewhat
orthogonal—perspective, where we do not look at individual coin tosses
but at the global entropy instead. We show how two distrusting parties
can produce a common high-entropy source, where the entropy is an
arbitrarily small fraction below the maximum.

1 Introduction

1.1 Background and Motivation

Certifying correctness by means of cut-and-choose techniques is at the core of
many – classical and quantum – cryptographic protocols. This goes back as far
as Yao’s garbled circuits, introduced in the 80s, where cut-and-choose is the
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main technique used to obtain active security. Even more so, cut-and-choose
is at the very heart of essentially any quantum-cryptographic protocol, where
participants are often asked to prepare states that agree with some specification.
Certifying that quantum states satisfy this specification is essential to proving
the security of these protocols.

Underlying these techniques is one of the most fundamental tasks in statistics:
sampling. It allows one to infer facts about a large set of data by only looking
at a small subset of it. For example, one can estimate the number of zeros in
an n-bit string with very high accuracy by looking only at a small, randomly
selected subset of the bits. This is also true in quantum mechanics: given an
n-qubit system, one can infer that it is almost entirely contained in a subspace
span{|s〉 : s is a bitstring with (δ ± ε)n 1’s} by measuring a small subset of the
qubits and observing that a fraction δ of the bits are ones [6].

One thing that a classical sampling procedure cannot do, however, is to infer
the probability distribution from which the bitstring was generated. While a
sampling procedure might be able to tell us that a bitstring contains roughly
n/2 zeros and n/2 ones, that does not mean that it originally came from n fair
coin flips—for all we know, it might be a fixed string that happens to have the
right number of zeros and ones. If we were somehow able to do this, it would
have interesting consequences for cryptography: for instance, we could get a coin-
flipping protocol by getting one party to generate the coin flips, send them to
the other party, and have the other party perform this hypothetical sampling
procedure to certify that most of the bits indeed came from fair coin flips.

While this is clearly impossible in the classical case, it turns out that, perhaps
surprisingly, this makes sense in the quantum scenario. This is due to the phe-
nomenon of purification: given a mixed quantum state ρA on system A (which
corresponds to a probability distribution on quantum states), it is possible to
define a bipartite pure (i.e. deterministic) state |ψ〉AR which is in the same mixed
state as ρA when looking at A only. Hence, one can certify that A is in the mixed
state ρA by asking someone to produce the purifying system R and measuring
that the combined system AR is indeed in state |ψ〉AR. To give a more concrete
example, suppose ρA is a uniformly random qubit, i.e. ρA = 1

2 |0〉〈0| + 1
2 |1〉〈1|.

Then, the pure state |Φ〉AR = 1√
2
(|00〉 + |11〉) purifies it, and checking that AR

is in state |Φ〉 certifies that A was uniformly distributed in the first place. Note
also that one does not need to trust the party who gives us the purification,
making this suitable for an adversarial setting.

This leads to the following natural sampling protocol. Consider a sampler
Sam who holds an arbitrary quantum state ρAn on n subsystems, prepared by a
possibly dishonest prover Paul. Sam would like to certify that this state is close
to the ideal mixed state ϕ⊗n, possibly with errors on a small number of positions,
for a given reference state ϕ. To do this, he selects a small subset of k positions at
random, and he asks the distrusted prover Paul to deliver the purifying systems
Rk for these positions. He then measures the POVM {|ϕ〉〈ϕ|AR,1 − |ϕ〉〈ϕ|AR}
on each of the selected systems in the sample to ensure that all of them are in
the state |ϕ〉AR which purifies ϕA. He rejects if any errors are detected.
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We emphasize that for verifying a mixed reference state, interaction with a
prover is necessary, as there is no local measurement on Sam’s side that can
distinguish between the correct state ϕ⊗n and a state that consists of the eigen-
vectors of ϕ in the correct proportions (given by the eigenvalues).

1.2 Our Contribution

In this paper, we investigate this type of sampling procedure in detail. Several
challenges arise in the analysis of this protocol. First, defining what we mean
when we say that the sampling works is not trivial. In the case of regular quantum
sampling, we usually want to say that the state has a very small probability of
being outside of a low-error subspace that corresponds to the statistics that we
have observed. For mixed states, this definition fails completely: every subspace
contains pure states, which we would want to exclude since they are very far from
the ideal mixed state. We might then be tempted to include the purifying systems
in the definition of the low-error subspace, but then we have no guarantee that an
adversarial prover will respect the structure we want to impose on his part of the
state—we don’t even know that it consists of n subsystems. A second difficulty
comes from the fact that the prover might not necessarily want to provide the
state that gives him the best chance of passing the test, even if he has it. If we
again look at the case of certifying uniformly random qubits, even if Sam has the
ideal state before the sampling begins, Paul might want to bias the outcome, for
example by passing the test if he measures |0〉 on all of the non-sampled qubits,
and failing on purpose otherwise. Because of these difficulties, our main result
does not follow from traditional sampling theorems.

We overcome these challenges and present a general class of mixed state
certification protocols which contains the natural protocol described above. We
show that any protocol that fits this class, and that satisfies the simple criteria of
being invariant under permutations and performing well on i.i.d. states, allows us
to control the post-sampling state in a meaningful way. A positive consequence
of this modular analysis is that previous results on pure state certification also
fit our framework, and thus fall under a special case of our analysis – just as
pure states are a special case of mixed states. Because pure state certification
has already found many applications in cryptography [6,10–12,29], the fact that
we recover it as a special case positions our result as a powerful tool for quantum
cryptography.

Another part of the paper is devoted to applying this result to coin tossing—or
randomness generation. Given that strong coin tossing is known to be impossi-
ble, it is natural to ask “how close can we get?”. This question has been well stud-
ied and is nowadays well understood from the perspective of the bias of individ-
ual coin tosses (see Sect. 1.3 below). We approach and answer this question from a
different—and somewhat orthogonal—perspective, where we do not optimize indi-
vidual coin tosses but the global entropy instead. From this entropic perspective,
we show that “the next best” after strong coin tossing is possible. We show that
the coin-flipping protocol loosely described above allows two distrusting parties to
produce a common high-entropy source, where the entropy is an arbitrarily small
fraction below the maximum (except with negligible probability).
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Our protocol for the task of two party randomness generation outperforms
any classical protocol in the information theoretical setting. The trivial classical
protocol—where each party tosses n/2 unbiased coins and the output is the
result of the n tosses—is optimal for this task [15].

The paper is organized as follows. First, in the next subsections, we discuss
some previous work in the area and the relevance of our work for cryptography. In
Sect. 2, we introduce the notation and recall some useful facts. Section 3 presents
the main result in more detail. The coin-flipping protocol described above is
presented in Sect. 4, and the proof of our main result then follows in Sect. 5.

1.3 Previous Work

Classical sampling results have been around since the foundations of modern
probability theory, dating back to the work of Bernstein, Hoeffding and Cher-
noff on concentration of measure in the 1920s and 1930s. More recently, several
quantum generalizations of these classics have been proven. These generaliza-
tions include, for instance, Ahlswede and Winter’s operator Chernoff bound [1]
and the quantum Chernoff bound of [4]. However, these generalizations are not
easily amenable to giving results about sampling, unlike their classical counter-
parts. Other quantum results can be used to analyze sampling in certain contexts,
such as quantum de Finetti theorems for quantum key distribution [9,23,24].

But perhaps the most direct analogues of the classical sampling results are
those of [6]. There, the authors give a generic way to transpose classical sam-
pling procedures to the quantum case. Roughly speaking, they show that if a
classical sampling protocol says that a string of random variables X1, · · · ,Xn is
contained in some “good” subset Xgood except with negligible probability, then
the quantum version of the same sampling procedure (defined in a precise way
in [6]) would say that the final state ρX1,...,Xn

is almost entirely contained in the
good subspace span{|x1〉 ⊗ · · · ⊗ |xn〉 : x1, · · · , xn ∈ Xgood}, except with negligi-
ble probability. This “good” set would normally correspond to strings that are
consistent with what was observed in the sample. Our main result can be viewed
as extending this to the case of mixed state sampling.

Our main application, coin flipping, also has a long history. The basic task was
first defined in 1981 by Manuel Blum [5]. Since the early 2000’s, it has received
a lot of attention in the quantum cryptography community, as it is one of the
most natural tasks for which quantum protocols can perform something that is
impossible classically. There are two versions of coin flipping: strong coin flipping,
in which we require the protocol to be equivalent to a black box that produces
the coin flip and distributes the result, and weak coin flipping, in which each
participant has a known preferred outcome and must be prevented from biasing
the outcome in that direction. Several quantum protocols for strong coin flipping
have been developed with various biases [3,27], but a fundamental lower bound
of ( 1√

2
− 1

2 ) on the bias of such protocols was proven in [17] (see also [13]). Finally,
a protocol with a bias matching the lower bound was proven in [7]. For weak
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coin flipping, we have had several protocols [16,18,19,28], again with various
biases, but this time culminating in a protocol with arbitrarily small bias [20].
Quantum coin flipping has even been implemented in the lab [22]. Here, we go
in a somewhat different direction: we show that even though strong coin flipping
with negligible bias is impossible without assumptions, two distrustful parties
can produce a common string of min-entropy arbitrarily close to maximum.

A strong quantum coin tossing protocol using ideas similar to that of the
protocol described in Sect. 4 has been previously considered by Høyer and Salvail
(unpublished) for achieving in a slightly simpler way the same 1

4 bias than the
one in [2]. Alice prepares two EPR pairs and sends one half of each to Bob.
Bob picks at random one qubit out of the two and verifies that Alice holds the
corresponding purification register of an EPR pair by asking her to measure it
in a random BB84 basis before comparing the result with his own. If this test
succeeds, Bob gets some evidence that the remaining pair of qubits can be used
as a coin toss after measuring it in the canonical basis. Our protocol extends this
test to a random sample of a population of N qubits, increasing the confidence
that Bob has about the remaining qubits being “close” to ideal coin tosses when
the test is successful.

1.4 Applications to Cryptography

Sampling with a Pure Reference State. Previous results on sampling from a quan-
tum population have dealt with pure reference states. In this case, the sampler
can choose its sample and perform local measurements on the sampled positions
without any help from the prover. This setting allows for standard classical tools
such as Hoeffding’s inequality to be used to derive the probability that the sam-
pled positions’ proximity to the reference state is not a good indicator for the
unsampled positions’ proximity to the same reference state.

Since pure states are a special case of mixed states, a natural property that
we would want for our mixed state sampling result is to recover a statement
similar to the one for pure state sampling in the framework of [6]. This is indeed
the case when we restrict our attention to the task of certification, i.e. when
we do not tolerate any error in the sample. Although our results do not use
the same tools, and are expressed in terms of a post-selected operator instead
of in terms of proximity to an ideal state (see Sect. 3), we recover a statement
equivalent to that of [6], albeit with slightly worse parameters, when we apply
our results to pure reference states. Since most applications [6,11,12,29] of pure
state sampling has been in the setting of certification, our results can also be
used to prove those applications.

Sampling with a Distributed Pure Reference State. Our mixed state sampling
result is also applicable to an instance of pure state certification that falls outside
the framework of [6] and which was presented and analyzed in an ad hoc way
in [10]. Their sampling algorithm was used as part of a protocol for leakage
resilient computation.
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The sampling task considered in [10] is as follows: spacially separated Alice
and Bob want to certify that their joint registers – which was prepared by an
untrusted third party – is of the form |ϕ〉⊗n

AB for some entangled state |ϕ〉 where
Alice holds the A part of each of the n states and Bob the B part. The fact
that the state is distributed between Alice and Bob means that the techniques
of [6] do not apply: the two samplers cannot perform a projective measurement
to check that their shared registers are in the reference state |ϕ〉AB .

Our results of Sect. 5 only requires that the sampling protocol’s verification
procedures is invariant under the permutation of the quantum population, and
that it aborts when performed on an obviously bad state. Since the pure state
certification protocol of [10] satisfies these properties, our techniques readily
apply and can be used to analyze their protocol.

Application to Two-Party Computation. In [26], the power of quantum commu-
nication for secure unconditional two-party computation is investigated. Among
other results, it was shown that correct quantum implementations of two-party
classical cryptographic primitives must leak at least some minimal amount of
information to one of the parties. For example, randomized variants1 of one-out-
of-two OT and secure AND sharing must leak at least 1

2 bit on average. Proto-
cols exist in the quantum honest-but-curious model that minimize the amount of
leakage for a given primitive. The simplest such protocol consists of an adversary
preparing and distributing an embedding of the primitive. An embedding of a
cryptographic primitive is a pure state that yields the correct outcomes when
measured in the computational basis, i.e. from each party’s point of view, the
state shared before the final measurement is a purification of the probability
distribution for this party’s output.

A protocol that achieves minimal leakage against active adversaries under
the sole assumption that the parties have access to strong coin-tosses is easily
obtained from mixed-state certification. One of the parties would generate many
copies of the embedding of the primitive that minimizes leakage and the other
party certifies correctness using our sampling procedure. They then choose one
of the remaining embeddings, the target embedding, and measure it; the out-
come acts as the output of the protocol. If the sampling succeeds, the unsampled
positions are close to ideal embeddings from the sampler’s perspective and ran-
domly picking the target embedding would then have close to minimal leakage
with good probability. However, without additional resources, an adversary (the
sampler say) could measure its part of a few embeddings before choosing the
target embedding as one that produces the output the adversary wants to see.
Coin-tosses are therefore required to pick the target embedding without bias.

1 Variants where the primitives considered are applied to random inputs.
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2 Preliminaries

2.1 Notation

Let HA,HB be two Hilbert spaces, we write L(HA,HB) for the set of linear
operators from HA to HB and we write L(HA) for L(HA,HA). Let D≤(H) be
the set of positive semi-definite operators with trace less than or equal to 1,
and let D(H) be the set of density operators on H. The set of isometries from
HA to HB is denoted U(HA,HB). We use the notation UA→B to illustrate that
UA→B ∈ U(HA,HB). When there is no ambiguity from doing so, we write UA

instead of UA→B. For an arbitrary isometry U , we sometimes write [U ](ρ) as
shorthand for UρU†. For a pure state |ψ〉, we write ψ as shorthand for |ψ〉〈ψ|
when this creates no ambiguity. For a linear operator A, ‖A‖1 := tr(

√
A†A)

denotes the trace norm. We denote 1A as the identity operator on HA and idA

as the CPTP map that acts trivially on register A.
We let [n] := {1, . . . , n} denote the set of the first n positive integers for

n ∈ N. For a fixed finite set Y and any subset X ⊆ Y , X̄ denotes the complement
of X in Y , i.e. X̄ = Y \X. Let h(p) := −p log2(p)−(1−p) log2(1−p) be the binary
entropy function; we make use of the fact that

(
n

βn

) ≤ 2h(β)n for 0 < β < 1.
Let A be a quantum register, we use the notation An to denote n identical

copies of A and label them A1, . . . , An when the need arises to distinguish indi-
vidual registers. For t ⊆ [n], we write At as the composite register containing
registers Ai for each i ∈ t.

2.2 Permutation Invariance and the Symmetric Subspace

Let Sn denote the symmetric group on n elements and let A1, . . . , An be n
quantum registers with identical state space H. For π ∈ Sn, we use the same
symbol to denote the unitary operation that acts on H⊗n by

π(|φ1〉A1
⊗ · · · ⊗ |φn〉An

) =
∣
∣φπ−1(1)

〉
A1

⊗ · · · ⊗ ∣
∣φπ−1(n)

〉
An

. (1)

Definition 1. The symmetric subspace of H⊗n, denoted Symn(H), is the space
spanned by all vectors |φ〉 ∈ H⊗n with π|φ〉 = |φ〉 for any π ∈ Sn. A pure state
|φ〉 ∈ Symn(H) is referred to as a symmetric state.

A density operator ρ ∈ D(H⊗n) is called permutation invariant if πρπ† = ρ
for all π ∈ Sn.

Remark 1 ([8,23]). Although not all permutation invariant operators have sup-
port in the symmetric subspace, the next lemma asserts that they have a purifi-
cation that does: for any permutation invariant density operator ρAn on H⊗n

A

there exists a pure state |ρAnBn〉 ∈ Symn(HA ⊗HB) where HA 
 HB , such that
trBn(ρAnBn) = ρAn .

Remark 2 ([23,25]). Let H be a d-dimensional Hilbert space. The projector onto
the symmetric subspace Symn(H) can be expressed as

cn,d

∫
|θ〉〈θ|⊗n

d|θ〉
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where d|θ〉 is the measure on the set of pure states of H induced by the Haar
measure on the set of unitaries acting on H and where cn,d :=

(
n+d−1

n

) ≤ (n +
1)d−1 is the dimension of Symn(H).

2.3 Mathematical Tools and Definitions

We say that an operator ρ̃B is post-selected from register A of ρAB if there
exists a POVM element 0 ≤ EA ≤ 1A such that ρ̃B = trA((EA ⊗ 1B)ρAB). The
following remark on relation between the reduced operator of a joint system
before and after a post-selected measurement takes place will be useful.

Remark 3. Let ρAB be an arbitrary positive semi-definite operator on registers
AB. Let 0 ≤ EA ≤ 1A be a positive semidefinite operator acting on register A.
Then it holds that

trA ((EA ⊗ 1B)ρAB) ≤ trA (ρAB) .

The following observation shows that there is a strong relation between post-
selected operators and upper-bounded operators.

Proposition 1. Let c ≥ 0 and let ρQ, σQ be two positive semi-definite operators.
Then ρQ ≤ c · σQ if and only if for any purification |σR1Q〉 of σQ and |ρR2Q〉 of
ρQ, there exists a linear operator AR1→R2 such that A†

R1
AR1 ≤ 1R1 and

|ρR2Q〉 =
√

c · (AR1→R2 ⊗ 1Q)|σR1Q〉. (2)

Proof. Let’s start with the easier direction of the proof. Let |σR1Q〉 be a purifi-
cation of σQ, let |ρR2Q〉 be a purification of ρQ and let AR1→R2 be as in (2).
Then by Remark 3, ρQ is equal to

trR2 (ρR2Q) = c · trR1

(
(A†

R1→R2
AR1→R2 ⊗ 1Q)σR1Q

)
≤ c · trR1 (σR1Q) = c · σQ.

For the other direction, write σQ as σQ = 1
c (ρQ + σ̃Q) where σ̃Q := c ·

σQ − ρQ ≥ 0. Let |ρR2Q〉 be an arbitrary purification of ρQ and let |σ̃R2Q〉 be
a purification of σ̃Q that lives in the same space. Then consider the following

purification of σQ: |σR′R2Q〉 :=
√

1
c (|0〉R′ |ρR2Q〉 + |1〉R′ |σ̃R2Q〉). Let |σR1Q〉 be

an arbitrary purification of σQ and let AR1→R2 := (〈0|R′ ⊗1R2)VR1→R′R2 where
VR1→R′R2 is an isometry that maps |σR1Q〉 to |σR′R2Q〉. Then

(AR1→R2 ⊗ 1Q)|σR1Q〉 = (〈0|R′ ⊗ 1R)|σR′R2Q〉 =

√
1
c
|ρR2Q〉.

�
The following proposition is a simple corollary of the pinching inequality [14,

Lemma 9]. A direct consequence of this is that a superposition of a few states
can be approximated by a mixture of the same few states.
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Proposition 2. Let {|ψi〉}i∈J be a family of vectors living on a Hilbert space
H indexed by some finite set J . Define operators

ρ =
∑

i,j∈J
|ψi〉〈ψj | and ρmix =

∑

i∈J
|ψi〉〈ψi|.

Then, ρ ≤ |J | · ρmix.

Definition 2 (Quantum “Hamming Ball”). Let |Ψ〉 ∈ H⊗n for n ∈ N and
let r ∈ [n]. We define the quantum Hamming ball of radius r around |Ψ〉, denoted
Δr(|Ψ〉), as the space spanned by all vectors of the form U |Ψ〉 where U is a
unitary that acts as the identity on at least n − r subsystems.

For the special case where |Ψ〉 = |ν〉⊗n,

Δr(|ν〉⊗n) = span{π(|ν〉⊗n−r ⊗ |u〉) : |u〉 ∈ B, π ∈ Sn}

where B is an orthonormal basis of H⊗r.

The projector onto the quantum Hamming ball of radius r around an i.i.d.
state |ν〉⊗n ∈ HA1 ⊗ · · · ⊗ HAn

can be written as

P
r,|ν〉
An =

∑

E⊆[n] : |E|≤r

(
⊗

i∈E

(1 − |ν〉〈ν|)Ai

⊗

i/∈E

|ν〉〈ν|Ai

)

.

The following Lemma says that n i.i.d. copies of a state close to |ν〉 is almost
entirely contained in a Hamming ball around |ν〉⊗n.

Lemma 1. Let |ν〉, |θ〉 ∈ H be such that |〈θ|ν〉|2 ≥ 1 − ε. Then, for any α > 0,

tr
(
P

r,|ν〉 · |θ〉〈θ|⊗n
)

≥ 1 − exp(−2α2n)

where P
r,|ν〉 is the projector onto Δr(|ν〉⊗n) for r = (ε + α)n.

Proof. Observe that

tr
(
P

r,|ν〉|θ〉〈θ|⊗n
)

= Pr[wt(Xθ) ≤ r] = Pr[wt(Xθ) − εn ≤ αn]

where Xθ is a random variable obtained by measuring n copies of |θ〉 with observ-
ables M0 = |ν〉〈ν| and M1 = 1 − |ν〉〈ν| and where wt(·) is the Hamming weight
function, i.e. the number of ones. Since Xθ consists of n i.i.d. Bernoulli trials
with parameter 1−F (ν, θ)2 ≤ ε, Hoeffding’s inequality allows us to lower-bound
the above quantity: tr(Pr,|ν〉 |θ〉〈θ|⊗n) ≥ 1 − exp(−2α2n). �
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3 Certification of Mixed States

The task we analyze can be understood as an interactive game between two par-
ticipants: a prover Paul, and a sampler Sam. Paul is supposed to prepare multiple
copies of some reference state ϕ before sending them to Sam, and the purpose
of the game is for Sam to detect when the state produced by Paul is (close to)
what it is supposed to be, no matter how maliciously Paul behaves. Here, the
reference state ϕ may be an arbitrary but known mixed state. A canonical exam-
ple of such a quantum sampling protocol is depicted in Fig. 1. It consists of Sam
asking Paul to deliver the purification registers of k randomly chosen positions.
Sam then measures these purifications in order to learn if they were in the right
state.2

Fig. 1. The purification-based mixed state quantum sampling protocol with reference
state ϕS . Paul and Sam need to have previously agreed on a purification |ϕPS〉 of ϕS .

In the extreme case of a reference state that is empty on Paul’s side, and
thus pure on Sam’s side (and so there is no purification for Paul to provide in
step 2), the sampling protocol of Fig. 1 pretty much coincides with the pure-state
sampling procedure considered and analyzed in [6]. For a true mixed reference
state, however, it is significantly harder to prove that the sampling protocol
“does its job” because of the additional freedom that Paul has in preparing
the purification registers that may depend on the choice of t. This very much
renders the techniques from [6] useless. Indeed, the idea of the analysis in [6]
was to assume, for the sake of the argument, that the positions outside of t are
measured as well, and then to delay the choice of t to after the measurement
so as to reduce to a classical sampling procedure. Because of Paul’s freedom in
choosing the purifications dependent on t, it makes no sense to speak about the

2 Note that there is no loss in generality in announcing the positions that Sam wants
to check in one go as is done in Fig. 1, compared to announcing them one-by-one;
doing it the latter way only makes it harder for Paul.
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outcome of the reference measurement {|ϕ〉〈ϕ|,1 − |ϕ〉〈ϕ|} before t is chosen, or
about the measurement being applied to a position outside of t. As such, we
need an entirely different approach.

Before worrying about analyzing the mixed-state sampling protocol of Fig. 1,
we first need to specify what it should actually mean for it to “do its job”; this is
not entirely obvious. Intuitively, we want that after the sampling, if Sam accepts
then his part of the state should be “somehow close” to what it is supposed to
be, namely ϕ⊗n where we set n = N − k. However, Paul can obviously cheat
in a small number of positions, i.e., start off with a state that consists of i.i.d.
copies of |ϕ〉 except for a small number of positions where the state may deviate
arbitrarily, and he still has a fair chance of not being caught. Of course, the
same holds for a mixture of such states, and therefore, by purification, also for
a superposition of such states. This motivates the definition below of an “ideal
state”, which captures the best we can hope for. The formal statement of what
the sampling protocol of Fig. 1 achieves is then in terms of controlling Sam’s part
of the state after the protocol by means of Sam’s part of such an ideal state.
This is somewhat similar in spirit as the approach in [6] for pure-state sampling,
though there are some technical differences.

Definition 3 (Ideal States). For ε > 0, a state ψSn ∈ D≤(H⊗n
S ) is said to be

ε–ideal if there exists a purification |ψRP nSn〉 of ψSn such that

|ψ〉RP nSn ∈ HR ⊗ Δεn(|ϕ〉⊗n
P nSn).

We loosely say that ψSn is ideal when it is ε–ideal for small ε.

This basically means that an ideal state is one where Paul could transform
his system into one where he holds n systems Pn and an additional purifying R
system, and where the PnSn part of the state lives in a low-error subspace.

Our analysis of the sampling protocol described in Fig. 1 (and some variants
of it) preserves many aspects of the operational interpretation provided in [6]
when sampling with respect to a pure reference state. We establish that Sam’s
subnormalized final state of register Sn upon acceptance can be controlled by an
ideal state. The subnormalized state is simply the state Sam is left with when he
accepts scaled down by the probability of acceptance (i.e. its trace corresponds
to the probability for Sam to accept). Let d := dim (HS) be the size of the
register holding ϕS and let ε > 0 be a parameter. Informally, our main theorem
(Theorem 2 and Corollary 2) establishes that Sam’s subnormalized final state
upon acceptance ρaccSn ∈ D≤(H⊗n

S ) is such that

ρaccSn ≤ (N + 1)d2−1ψSn + σSn , (3)

where ψSn is ideal and ‖σSn‖1 is negligible in N .
Any state ρaccSn that satisfies (3) can be considered to be an ideal state in

many applications. Let Q be a completely positive trace non-increasing super-
operator modelling a task that we would like to apply upon ρaccSn . Suppose that
Q behaves nicely when it is executed from an ideal state ψSn . That is, the bad
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event represented by a POVM element Ebad has negligible probability on the
ideal state pidbad := tr(EbadQ(ψSn)) ≤ 2−αN for α > 0. Running Q upon ρaccSn

instead produces the state Q(ρaccSn ) ≤ Q((N + 1)d2−1ψSn + σSn). We then have
that the probability of the bad event in the real case is prealbad := tr(EbadQ(ρaccSn )) ≤
(N +1)d2−1pidbad+‖σSn‖1, which remains negligible when pidbad is negligible and d
is small enough (i.e. a constant). In other words, any negligible upper bound on
the probability of some “bad” event occurring when processing the ideal state
translates to a negligible upper bound on the “bad” event when processing the
real state instead. In these cases, it is good enough to analyze the ideal state, for
which an analysis is typically simpler because of the specific form of the state as
given by Definition 3.

Our main result can also be interpreted as a statement about Paul and Sam’s
joint state when Sam accepts. To do so, we invoke Proposition 1 upon (3). For
the sake of simplicity, assume that ρaccSn ≤ c · ψSn , which is essentially what (3)
means for c := (N + 1)d2−1. Proposition 1 then establishes the existence of a
linear operator A acting upon registers RPn for which A†A ≤ 1 such that

|ρacc〉RP nSn =
√

c(A ⊗ 1Sn)|ψ〉RP nSn , (4)

where |ρacc〉RP nSn and |ψ〉RP nSn are purifications of ρaccSn and ψSn , respectively.
The operator E := AA† can be viewed as the outcome of a POVM applied upon
registers RPn implemented by the detection operator A. It follows from (4)
that ρaccRP nSn can be obtained with a non-negligible probability of success 1/c by
applying a measurement upon an ideal state ψRP nSn . Therefore, any application
having a negligible probability for Paul to generate a bad shared state from an
ideal one has also a negligible probability to generate a bad shared state from
the real one.

We now state our main result in the special case of the basic protocol given
in Fig. 1. To do so, we define Eacc

RSN →Sn as a completely positive, trace non-
increasing map that represents the execution of the protocol in the accepting
case, meaning that given an initial state ρRSn , Eacc

RSN →Sn(ρRSn) will be a subnor-
malized density matrix representing the output given that the verifier accepted,
and tr[Eacc

RSN →Sn(ρ)] will be the probability of acceptance on that input state.
The statement is the following:

Theorem 1. Let Eacc
RSN →Sn be defined as above, and let ρRSN ∈ D(HR ⊗ H⊗N

S )
be an arbitrary input state. For any ε > 0, there exist a subnormalized ε-ideal
operator ψSn ∈ D≤(H⊗n

S ) and σSn such that

Eacc
RSN →Sn(ρRSN ) ≤ cN,d2 · ψSn + σSn

where ‖σSn‖1 ≤ exp(−Ω(N)).

The proof is deferred to Sect. 5 (Theorem 2 and Corollary 2), where it will
be a corollary of a more general statement.
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3.1 Sampling Protocol Using LOCC only

Our analysis of mixed state sampling protocols is not limited to the protocol of
Fig. 1. In Sect. 5, we show that any sampling protocol that satisfy certain criteria
can be analyzed using our techniques. One such protocol is the one depicted in
Fig. 2. It is a protocol for certifying that Paul prepares—and purifies—halves
of EPR pairs that requires only local operations and classical communication
(LOCC) after the initial state preparation and distribution phase. EPR pairs
are states of the form |Φ+〉 = 1√

2
(|00〉 + |11〉) that have the unique property

that measurements in both the computational and diagonal bases are perfectly
correlated. The protocol exploits this fact in the following way: for each position
in the sample, Sam asks Paul for the result of measuring his purifying register in
a random basis, and checks that this result corresponds to his own measurement
in the same basis.

Fig. 2. The sampling protocol with local measurements for sampling halves of EPR
pairs, i.e. with reference state ϕ = 1

2
.

4 Two-Party Randomness Generation

Before we prove our main result, we first apply the protocol in Fig. 1 to a two-
party randomness generation problem.

4.1 The Protocol

The protocol for randomness generation is depicted in Fig. 3. The protocol works
as follows: Alice first has to generate N EPR pairs and send half of each to Bob.
Bob then uses our sampling protocol of Fig. 1 to certify that the state Alice
sent him is (close to) the prescribed state. If Bob’s check succeeds, then our
quantum sampling result says that Alice basically prepared the right state, up to
a few errors. Bob’s measurement outcome will then have very high min-entropy
(arbitrarily close to the maximum n).
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Fig. 3. The randomness generation protocol. N is the security parameter, β determines
the size of the sample.

4.2 Entropy of Alice and Bob’s Outputs

Since Alice is the preparer of the N EPR pairs, her output will have high min-
entropy. The tricky part of the following proof is showing that Bob’s freedom in
choosing t and accepting or refusing the sampling outcome cannot influence too
much the distribution of Alice’s measurement outcome.

Lemma 2 (Entropy of Alice’s output). If Alice follows the protocol, then
for any γ > 0, her output XA ∈ {0, 1}n satisfies

H∞(XA) ≥ (1 − γ)n,

except with probability negligible in n.

Proof. Let ρAN BN be the joint state of Alice and Bob before the sampling phase.
As the preparer of the quantum state, Alice prepares N perfect EPR pairs (i.e.
ρAN BN = |Φ+〉〈Φ+|⊗N ), so her measurement outcome would have maximal min-
entropy for the n remaining qubits were it not for Bob’s actions. Bob can bias
the outcome of Alice’s measurement in two possible ways: (1) he can measure his
register BN before choosing t and make t depend on this measurement outcome
and (2) he can make the sampling abort even though Alice was honest. We
analyze both possibilities separately, showing that each cannot reduce the min-
entropy by more than a small linear amount, except with negligible probability.

For (1), suppose Bob performs some measurement on his register BN that
yields sample choice t ⊂ [N ] with probability pt and results in the reduced
density operator ρt

AN on Alice’s side. Suppose also that Alice was to measure
her whole state at this point, resulting in a measurement outcome XA ∈ {0, 1}N .
Observe that by the law of total probability,

2−N = 2−H∞(XA)ρ =
∑

t

pt · 2−H∞(XA|T=t)ρt ,
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where 2−H∞(XA|T=t)ρt gives the maximal probability of guessing XA given T = t
when XA was obtained by measuring ρt

AN . It holds by Markov’s inequality that

∑

t

pt · [H∞(XA | T = t)ρt ≤ N − (αN)] ≤ 2−αN

where [·] is the Iverson bracket which evaluates to 1 if the contents is true and
to 0 otherwise. In other words, the values of t for which H∞(XA | T = t)ρt is
less than (1 − α)N have combined probability less than 2−αN . Now, Alice does
not measure her whole state, but instead only those positions that do not belong
to t, so let X t̄

A be the outcome of measuring the qubits outside of t and let Xt
A

be the outcome for the positions in t. The following holds except with negligible
probability over the choice of t:

H∞(X t̄
A | T = t) ≥ H∞(XA | T = t,Xt

A) ≥ (1 − α − β)N (5)

where the last inequality follows from the chain rule for the min-entropy with
H0(X

t
A) = βN .

To deal with (2), observe that

2−H∞(X t̄
A|T=t,acc) ≤ 2−H∞(X t̄

A|T=t)/Pr[acc] ≤ 2−H∞(X t̄
A|T=t)+αN (6)

whenever Pr[acc] ≥ 2−αN .
We can conclude that, except with negligible probability upper bounded by

2 · 2−αN , the min-entropy of Alice’s output is

H∞(X t̄
A | T = t, acc) ≥ (1 − 2α − β)N

by combining the bounds (5) and (6) and the respective probabilities that these
bounds hold. The statement is satisfied by choosing α and β such that γ = 2α+β
and noting that N > n. �

We rely on the next Lemma to lower-bound the amount of min-entropy in
the measurement outcome of Bob. It says that if the joint state of Alice and Bob
lives in a quantum Hamming ball of small radius around n copies of an EPR
pair, then Bob’s reduced density operator has high min-entropy.

Lemma 3. Let ε > 0 and |σRP nSn〉 ∈ HR ⊗ Δεn(|Φ+〉⊗n
P nSn). It holds that

H∞(Sn)σ ≥ (1 − ε − h(ε))n.

Proof. Let Πε = {E ⊆ [n] : |E| ≤ εn} and let P
εn,|Φ+〉
P nSn =

∑
E∈Πε

P
E
P nSn be the

projector onto Δεn(|Φ+〉⊗n
P nSn) where

P
E
P nSn =

⊗

i∈E

(1 − ∣
∣Φ+

〉〈
Φ+

∣
∣)PiSi

⊗

i/∈E

∣
∣Φ+

〉〈
Φ+

∣
∣
PiSi

.
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Define |σ̃E
RP nSn〉 = (1R ⊗ P

E
P nSn)|σRP nSn〉 for each E ∈ Πε. It holds by Propo-

sition 2 that

σRP nSn =
∑

E,E′∈Πε

|σ̃E
RP nSn〉〈σ̃E′

RP nSn | ≤ 2h(ε)n
∑

E∈Πε

∣
∣σ̃E

RP nSn

〉〈
σ̃E

RP nSn

∣
∣

because the set Πε contains at most 2h(ε)n elements. Furthermore, we know by
the definition of |σ̃E

RP nSn〉 that

σ̃E
Sn

‖σ̃E
Sn‖1 =

(
⊗

i/∈E

1Si

2

)

⊗ ψSE
≤ 2−n+|E|1Sn

for some normalized state ψSE
living on register SE =

⊗
i∈E Si. Since |E| ≤ εn,

it directly follows that

σSn ≤ 2h(ε)n
∑

E∈Πε

σ̃E
Sn ≤ 2−(1−ε−h(ε))n1Sn

and we can thus conclude that H∞(Sn)σ ≥ (1 − ε − h(ε))n. �
Lower-bounding Bob’s output min-entropy is essentially applying Lemma 3

to Bob’s state after the sampling step of protocol of Fig. 3 which can be approx-
imated by an ideal state by means of our main result (Theorem 1).

Lemma 4 (Entropy of Bob’s output). If Bob follows the protocol, for any
γ > 0, his output XB ∈ {0, 1}n satisfies

H∞(XB) ≥ (1 − γ)n,

except with probability negligible in n.

Proof. The security of the protocol against dishonest Alice is almost a direct
consequence of our quantum sampling result (Theorem 1). Let ρBn ∈ D(H⊗n

2 )
be the normalized state of Bob after step 2 of the protocol of Fig. 3 given that
Bob did not reject and let Pacc be the probability that he did not reject the
sampling. By Theorem 1, it holds that for any ε > 0 there exists an ideal ψBn

and an operator σBn with negligible norm such that

ρBn ≤ P−1
acc(cN,d2ψBn + σBn). (7)

Let ψ̃Bn =
cN,d2

Pacc
· ψBn . Then

∥
∥
∥
∥

cN,d2

Pacc
(ψBn + σBn) − ψ̃Bn

∥
∥
∥
∥
1

=
1

Pacc
‖σBn‖1,

which is negligible in N whenever Pacc is non-negligible. It follows that except
with negligible probability, the right-hand side of (7) will behave exactly like
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ψ̃Bn , in which case their min-entropy will be equal. This min-entropy is bounded
below by

H∞(ψ̃Bn) = H∞(ψBn) − log
cN,d2

Pacc
≥ (1 − ε − h(ε))n − log

cN,d2

Pacc
(8)

by Lemma 3.
Using the bound of (8), we can claim that the min-entropy of ρBn is lower-

bounded by
(1 − ε − h(ε) − α)n

unless one of two negligible probability events occurred. The first event is that
ρBn behaves like σBn instead of ψ̃Bn and the second event is that Bob accepted
the outcome of a sampling that had probability Pacc ≤ cN,d2 · 2−αn of being
accepted. We can conclude that the result XB of measuring ρBn in the compu-
tational basis will have min-entropy at least (1 − ε − h(ε) − α)n, except with
negligible probability. The statement follows by choosing ε and α in the above
such that γ = ε + h(ε) + α. �

5 Proof of Our Main Result

We now turn to the proof of our main result. In this section, we present the
techniques that allow to analyze sampling protocols similar to that of Fig. 1.
The key property of the sampling protocol that makes the tools of this section
applicable is that it is invariant under the permutation of the sampler’s register,
up to an adjustment of the adversary’s attack and of the output state. In order
to make this more explicit, we actually consider and analyze a general class of
sampling protocols that are permutation invariant and perform well on i.i.d.
states, and we then show (1) that the protocol of Fig. 1 falls into that class and
(2) that any protocol from that class allows us to control the post-sampling state
the way we want. As an additional bonus of this modular analysis is that we
can then easily extend our results to other sampling protocols. For instance, the
sampling protocol of Fig. 2 for certifying EPR pairs presented in Sect. 3.1 also
falls into the class of protocols that we consider. In that protocol, Paul is not
asked to provide his respective parts of the EPR pairs from within the sampled
subset, but he is instead asked to provide the measurement outcome of those,
when measured in a random basis chosen and announced by Sam, and Sam
compares with the corresponding measurement outcomes on his side.

5.1 Mixed State Sampling Protocols and Permutation Invariance

The general form of the sampling protocols we consider is depicted in Fig. 4.
For simplicity, we assume that the protocol always outputs the same number of
qudits n = N − k, i.e. that it lives in the Hilbert space H⊗n

S . Note that this
means that there is no freedom in the way we choose the sample t; the only
permutation invariant probability distribution on the subsets of [N ] of size k is
the uniform distribution. We also assume that k is of the order of N .
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Fig. 4. The general form of a mixed state sampling protocol for sampling a mixed
reference state ϕ.

The obvious example instantiation of such a sampling protocol is the sam-
pling protocol of Fig. 1, where c is empty and Sam’s measurement consists of
projecting onto |ϕ〉〈ϕ|⊗k. Another example is the one we discuss in Sect. 3.1 for
certifying EPR pairs, where c then is a randomly chosen sequence of bases that
specifies how Paul is supposed to measure his parts of the EPR pairs.

Clearly, for a given instantiation of the general protocol of Fig. 4, the adver-
sary’s attack strategy consists of the choice of ρRSN and of the quantum opera-
tion (that depends on t and c) that produces Q in step 3.

We now define the notion of permutation invariance that sampling strategies
must satisfy for our techniques to apply.

Definition 4 (Permutation Invariance for Sampling Protocols). A sam-
pling protocol that implements the framework of Fig. 4 is invariant under the
permutation of the sampler’s register if for any adversarial strategy for Paul,
the completely positive trace non-increasing map Eacc

RSN →Sn , which represents the
output state of the sampler when he accepts, satisfies

1. for any input ρRSN ∈ D(HR ⊗ H⊗N
S ) there exists Ēacc

P N SN →ΠSn such that

1
n!

∑

π∈Sn

|π〉〈π|Π ⊗ πSnEacc
RSN →Sn(ρRSN )π†

Sn = Ēacc
P N SN →ΠSn(ρ̄P N SN ) (9)

for some symmetric purification |ρ̄P N SN 〉 ∈ SymN (HP ⊗ HS) of 1
N !

∑
π∈SN

πSN ρSN π†
SN ,

2. for any ε > 0, ‖Ēacc
P N SN →ΠSn(|θ〉〈θ|⊗N )‖1 ≤ exp(−Ω(N)) whenever

F (θS , ϕS)2 < 1 − ε, and
3. Ēacc

P N SN →ΠSn acts trivially on the unsampled systems, up to reordering. For-
mally, Ēacc

P N SN →ΠSn satisfies

trΠ

(
Ēacc

P N SN →ΠSn(|θ〉〈θ|⊗N
PS )

)
≤ θ⊗n

S .



300 F. Dupuis et al.

The first criterion effectively requires that any attack against the sampling proto-
col of Fig. 4 can be transformed into an equivalent attack on a symmetric state—
up to a random reordering of the positions. The second criterion demands that
Bob rejects with overwhelming probability in case of an “obviously bad” state,
i.e., in case of i.i.d. copies of a state that is far from the reference state ϕ. The
third criterion simply asks that the sampling protocol (and the corresponding
symmetrized map Ēacc

P N SN →ΠSn) does not measure registers outside the sample.
From a technical perspective, the first criterion allows us to apply the obser-

vations from Sect. 2.2 to the promised symmetric state, so that we can upper
bound the latter by a convex linear combination of i.i.d. states, and the second
criterion then allows us to control the “bad part” of this convex linear combina-
tion (see Sect. 5.3). What then still turns out to be cumbersome to deal with is
the random permutation, which got introduced by the first criterion, and to get
a bound on the actual state Eacc

RSN →Sn(ρRSN ) instead; we show how to do this
in Sect. 5.4.

We point out that the “cheap” way to deal with the random permutation
would be to simply modify the sampling protocol by really permuting the reg-
isters at the end of the protocol, so that the permuted state is the final state
after the sampling protocol. Besides being esthetically less appealing, because it
would mean a less natural and more complicated sampling protocol than really
necessary, this would also give more freedom to the party who chooses the per-
mutation in choosing it adversarially. For instance, in our application in Sect. 4,
where the final state is used to produce a high min-entropy source, we can-
not allow that either player can rearrange the registers and so, say, move the
zero-outputs into the positions he wants them to be.

5.2 Permutation Invariance of Our Sampling Protocols

As a first step in analyzing the sampling protocol Purification-Based Sam-
pling of Fig. 1, we show that it satisfies the above definition of permutation
invariance. Given that Sam’s actions are obviously symmetric with respect to
permuting his registers, this is probably not very surprising; spelling out the
details though still turns out to be somewhat cumbersome. We therefore move
the proof to AppendixA.1 and simply give a high-level proof sketch below.

Proposition 3. The protocol Purification-Based Sampling of Fig. 1 satis-
fies Definition 4.

Proof (sketch). For the first criterion, we need to argue that any adversary
against the real sampling protocol can be adapted into an adversary against
a symmetrized version of the protocol that will yield the same output state,
up to a random permutation.

We first observe that when sampling from a permutation invariant operator,
it doesn’t matter which registers we sample from since the reduced density oper-
ator of any subset of k registers is the same, i.e. ρSt

= ρSt′ for any t, t′ ⊆ [N ] of
size k. Therefore we can make the simplifying assumption that we always sample
from the first k registers of SN .
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We construct the symmetric adversary: from the symmetric state ρ̄P N SN from
the first criterion of Definition 4, the adversary will compute the permutation
π ∈ SN applied on SN . This permutation defines the set tπ ⊂ [N ] of positions
to which π sends positions 1, . . . , k. The symmetric adversary will then simulate
the real adversary on this sample tπ and will permute the output according to
π before sending it to Sam (such that each register sent by the adversary aligns
with the corresponding register on Sam’s side).

The second criterion follows from the observation that the maximal proba-
bility of measuring |ϕ〉〈ϕ|⊗k in the sampling protocol on input |θ〉〈θ|⊗N is the
fidelity between θ⊗k and ϕ⊗k which is negligible in k when F (θS , ϕS)2 < 1 − ε.

The third criterion follows from the fact that the unsampled positions are
untouched in both the real and the symmetrized protocols. �

The following proposition allows us to apply the techniques of this section
to the LOCC sampling protocol presented in Fig. 2. Its proof can be found in
AppendixA.2.

Proposition 4. The sampling protocol EPR-LOCC Sampling from Fig. 2
satisfies Definition 4.

Proof (sketch). We need to argue that the protocol is permutation invariant in
the sense of Definition 4, and that it performs well on i.i.d. states. The first
part follows from the permutation invariance of the choice of t and c and of
the measurement on the sampler’s qubits. Suppose Sam was to permute his
register with π ∈ SN before performing the sampling. Then we can modify the
adversary such that it attacks the sampling protocol with this new ordering of
Sam’s register: if Sam chooses sample t, announce π(t) to Paul instead, the same
goes for c. Let x be Paul’s message to Sam, then permute x such that it aligns
correctly with the corresponding qubits on Sam’s register. The probability of
accepting is exactly the same and the output of the protocol will be shuffled
according to π’s action on the unsampled qubits.

The second criterion follows from the fact that the only state that is perfectly
correlated in both the computational and the diagonal bases is the EPR pair
|Φ+〉. Therefore if all of Paul and Sam’s measurement outcomes are perfectly
correlated in the randomly chosen basis, it should hold that they shared states
close to perfect EPR pairs. More precisely, if they share a state |θ〉⊗N where each
θ has fidelity at most 1 − ε with |Φ+〉, then their outputs cannot be perfectly
correlated in at least one of the bases, except with negligible probability. The
third criterion follows trivially from the fact that the unsampled qubits are not
measured or acted upon. �

5.3 Proof of Sampling Against Symmetric Adversaries

By considering sampling protocols that are permutation invariant in the sense
of Definition 4, we can use the specific properties of symmetric states to upper-
bound the failure probability of such protocols for symmetric adversaries (adver-
saries which prepare a state |ρ̄P N SN 〉 that lives in the symmetric subspace
SymN (HP ⊗ HS)).
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Lemma 5 below shows that since symmetric states are approximated by a
mixture of i.i.d. states, then the output of the sampling executed on such a
mixture is approximated by a mixture of states i.i.d. in states that are close to
the reference state ϕ.

Lemma 5. Let Eacc
RSN →Sn be the output of a sampling protocol that satisfies Def-

inition 4 and let ρRSN ∈ D(HR ⊗ H⊗N
S ). For any ε > 0 there exists a sub-

normalized measure dθS on the set of mixed states θS ∈ D(HS) which satisfy
F (θS , ϕS)2 ≥ 1 − ε and an operator σ̃Sn such that

1
n!

∑

π∈Sn

πSnEacc
RSN →Sn(ρRSN )π†

Sn ≤ cN,d2 ·
∫

θ⊗n
Sn dθS + σ̃Sn (10)

and ‖σ̃Sn‖1 ≤ exp(−Ω(N)), where cN,d2 is the dimension of SymN (HP ⊗ HS).

Proof. By Definition 4, there exists Ēacc
P N SN →ΠSn and ρ̄P N SN ∈ SymN (HP ⊗HS)

such that
1
n!

∑

π∈Sn

|π〉〈π|Π ⊗ πSnEacc
RSN →Sn(ρRSN )π†

Sn = Ēacc
P N SN →ΠSn(ρ̄P N SN ). (11)

Therefore it suffices to prove the statement for Ēacc
P N SN →Sn obtained by tracing

out the register Π from the output of Ēacc
P N SN →ΠSn .

Since |ρ̄P N SN 〉 ∈ SymN (HP ⊗ HS), it holds by Remark 2 that ρ̄P N SN ≤
cN,d2 · ∫ |θ〉〈θ|⊗N

P N SN d|θPS〉 where d|θPS〉 is the normalized Haar measure on the
set of pure states on HP ⊗ HS . It follows that

Ēacc
P N SN →Sn(ρ̄P N SN ) ≤ Ēacc

P N SN →Sn

(
cN,d2 ·

∫
|θ〉〈θ|⊗N

P N SN d|θ〉
)

= cN,d2 · Ēacc
P N SN →Sn

(∫

θS≈εϕS

|θ〉〈θ|⊗N
P N SN d|θ〉

+
∫

θS ≈εϕS

|θ〉〈θ|⊗N
P N SN d|θ〉

)

≤ cN,d2 ·
∫

θS≈εϕS

θ⊗n
Sn dθS + σ̃Sn

where θS ≈ε ϕS means that F (θS , ϕS)2 ≥ 1 − ε and where the operator σ̃Sn :=
cN,d2 · Ēacc

P N SN →Sn

(∫
θ ≈εϕ

|θ〉〈θ|⊗N
d|θ〉

)
satisfies ‖σ̃Sn‖1 ≤ exp(−Ω(N)) by the

second criterion of Definition 4. The last inequality of the above follows from the
third criterion of Definition 4 and from Remark 3: since the trace non-increasing
map Ēacc

P N SN →Sn does not act on the unsampled qubits, the state of Sn after the
application of this map is upper-bounded by the state of the unsampled qubits
before its application.

Finally, the measure dθS is obtained by taking the partial trace over P on the
measure d|θPS〉 on the restricted set of |θPS〉 where F (θS , ϕS)2 ≥ 1 − ε. This cor-
responds to a measure proportional to the Hilbert-Schmidt measure [25,31] over
density operators on HS which have fidelity squared at least 1 − ε with ϕS . �
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From the above Lemma, we can conclude that the permuted output of the
sampling protocol is upper bounded by an ideal state in the spirit of (3).

Corollary 1. Let Eacc
RSN →Sn be the output of a sampling protocol that satisfies

Definition 4 and let ρRSN ∈ D(HR ⊗ H⊗N
S ). For any ε > 0, there exist a sub-

normalized ε-ideal operator ψSn ∈ D≤(H⊗n
S ) and σSn such that

1
n!

∑

π∈Sn

πSnEacc
RSN →Sn(ρRSN )π†

Sn ≤ cN,d2 · ψSn + σSn (12)

where ‖σSn‖1 ≤ exp(−Ω(N)).

Proof. Fix β = ε/2 and let dθS and σ̃Sn be as in Lemma 5 for parameter β, i.e.
such that

1
n!

∑

π∈Sn

πSnEacc
RSN →Sn(ρRSN )π†

Sn ≤ cN,d2 ·
∫

θ⊗n
Sn dθS + σ̃Sn (13)

where dθS is a subnormalized measure on the set of mixed states which satisfy
F (θS , ϕS)2 ≥ 1 − β and where σ̃Sn has negligible norm.

Let τP nSn :=
∫ |θ〉〈θ|⊗n

P nSndθS be an extension of
∫

θ⊗n
Sn dθS where each |θPS〉

is such that |〈θPS |ϕPS〉|2 = F (θS , ϕS)2 ≥ 1 − β and let σ̃P nSn be an extension
of σ̃Sn . Then from Lemma 1, we have

tr
(
(1 − P

2βn,|ϕ〉
P nSn ) (τP nSn)

)
≤ exp(−2β2n). (14)

Choose ψSn = trP n(P2βn,|ϕ〉
P nSn τP nSnP

2βn,|ϕ〉
P nSn ). Then, using (13), we have

1
n!

∑

π∈Sn

πSnEacc
RSN →Sn(ρRSN )π†

Sn ≤ cN,d2 ·
∫

θ⊗n
Sn dθS + σ̃Sn

= trP n

(
cN,d2 · τP nSn + σ̃P nSn

)
= cN,d2 · ψSn + σSn

where σSn := trP n(cN,d2(τP nSn − P
2βn,|ϕ〉
P nSn τP nSnP

2βn,|ϕ〉) + σ̃P nSn) has norm
upper bounded by

‖σP nSn‖1 ≤ cN,d2‖τP nSn −P
2βn,|ϕ〉
P nSn τP nSn P

2βn,|ϕ〉
P nSn ‖1+‖σ̃P nSn‖1 ≤ exp(−Ω(N))

by first applying the triangle inequality and then the Gentle Measurement’s
Lemma [21,30] with the bound of (14). �
It should be noted that the operator σSn from the above Corollary is not positive
semidefinite in general, but since its norm is negligible, this shouldn’t matter
because it can simply be ignored for most applications.
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5.4 Proof Against Arbitrary Adversaries: Unpermuting the Output

In order to conclude that the sampling protocol works as intended on an arbitrary
input state and adversarial strategy, we need to argue that if we remove the
permutation from the contents of (12), then the left-hand side, which becomes
the post-sampling state, is still approximated by a state having a purification in
a low-error subspace. It turns out that the intuitive statement “if the permuted
output is ideal then the non-permuted output is also ideal” that we want to
show is quite tricky to prove. We stress that this step is necessary if we want
to keep the permutation “under the hood” and have a statement that doesn’t
require to physically shuffle the systems, which would lead to unnatural sampling
protocols.

Lemma 6 below is the first step in this proof, it shows that the property
of having a purification in a low-error subspace, i.e. of being ideal, does indeed
persist after “unpermutation” of the registers.

Lemma 6. Let ε > 0 and let σSn ∈ D(H⊗n
S ) be such that 1

n!

∑
π∈Sn

πSnσSnπ†
Sn

is ε-ideal, then σSn is also ε-ideal.

Proof. Let r = εn. We need to show that if σ̄Sn := 1
n!

∑
π∈Sn

πSnσSnπ†
Sn has

a purification in HR ⊗ Δr(|ϕ〉⊗n
P nSn) for some register R, then σSn also has a

purification in HR ⊗ Δr(|ϕ〉⊗n
P nSn). Let |σ̄RP nSn〉 ∈ HR ⊗ Δr(|ϕ〉⊗n

P nSn) be the
purification of σ̄Sn that exists by assumption and let

∑
i pi|iSn〉〈iSn | be the

spectral decomposition of σSn . Define the pure state

|σ̄ΠP nSn〉 =

√
1
n!

∑

π∈Sn

|π〉Π ⊗
(

∑

i

√
pi|iP n〉 ⊗ πSn |iSn〉

)

where {|iP n〉}i is an orthonormal basis of HP n . Note that this state is
a purification of σ̄Sn , so there exists an isometry VΠP n→RP n such that
VΠP n→RP n |σ̄ΠP nSn〉 = |σ̄RP nSn〉 ∈ HR ⊗ Δr(|ϕ〉⊗n

P nSn). We can express
|σ̄RP nSn〉 as:

|σ̄RP nSn〉 = (VΠP n→RP n ⊗ 1Sn)|σΠP nSn〉

=
∑

π,i

√
pi

n!
VΠP n→RP n |π〉Π |iP n〉 ⊗ πSn |iSn〉 =

∑

π,i

√
pi

n!
|ξπ,i〉RP n ⊗ πSn |iSn〉

where the vectors |ξπ,i〉RP n := VΠP n→RP n |π〉Π |iP n〉 are orthogonal to each
other. Then by acting on this state with an isometry that extracts π from reg-
isters RPn and that undoes π on registers Pn and Sn, we get

∑

π,i

√
pi

n!
(1R ⊗ π−1

P n)|ξπ,i〉RP n ⊗ |iSn〉

Note that both before and after this isometry is applied, the state of registers
Pn and Sn has support in Δr(|ϕ〉⊗n

P nSn) because this subspace is invariant under
permutation of these registers. The proof is then completed since the above state
is a purification of σSn that lies in HR ⊗ Δr(|ϕ〉⊗n

P nSn). �
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We now have all the tools we need to prove our main result, Theorem 2
below. Its proof combines the above lemma with Lemmas 1 and 5 to show that
the output of the sampling is negligibly close to a state that is post-selected from
a purification of an ideal state.

Theorem 2 (Main Result). Let Eacc
RSN →Sn be the output of a sampling pro-

tocol that satisfies Definition 4 and let ρRSN ∈ D(HR ⊗ H⊗N
S ). For any ε > 0,

there exists a non-normalized vector
∣
∣
∣ψ̃R′P nSn

〉
∈ HR′ ⊗ Δεn(|ϕ〉⊗n

P nSn)

and a completely positive trace non-increasing superoperator K̃R′P n→C such that
∥
∥
∥Eacc

RSN →Sn(ρRSN ) − cN,d2(K̃R′P n ⊗ idSn)(ψ̃R′P nSn)
∥
∥
∥
1

≤ exp(−Ω(N))

By means of Proposition 1 and Remark 3, we can express the statement of
Theorem 2 in terms of an operator inequality as suggested in (3), rather than
by means of post-selection.

Corollary 2. Let Eacc
RSN →Sn be the output of a sampling protocol that satisfies

Definition 4 and let ρRSN ∈ D(HR ⊗ H⊗N
S ). For any ε > 0, there exist a sub-

normalized ε-ideal operator ψSn ∈ D≤(H⊗n
S ) and σSn such that

Eacc
RSN →Sn(ρRSN ) ≤ cN,d2 · ψSn + σSn

where ‖σSn‖1 ≤ exp(−Ω(N)).

Proof (of Theorem 2). Let ψSn and σSn be as in the statement of Corollary 1,
i.e. such that

1
n!

∑

π∈Sn

πSnEacc
RSN →Sn(ρRSN )π†

Sn ≤ cN,d2 · ψSn + σSn (15)

and define τSn := ψSn + c−1
N,d2 · σSn . Since ψSn is ε-ideal, let |ψR′P nSn〉 be

the purification of ψSn that lives in the low error subset HR′ ⊗ Δεn(|ϕ〉⊗n
P nSn).

Let |τR′P nSn〉 be a purification3 of τSn such that ‖ψR′P nSn − τR′P nSn‖1 ≤
exp(−Ω(N)). From (15) and Proposition 1 we can show that there exists a
trace non-increasing completely positive map KR′P n→Π that produces a classi-
cal register Π from purification registers R′Pn with the property that

1
n!

∑

π∈Sn

|π〉〈π|Π ⊗ πSnEacc
RSN →Sn(ρRSN )π†

Sn = cN,d2(KR′P n→Π ⊗ idSn)(τR′P nSn).

3 The existence of a purification of τSn with this property can be argued by
using Uhlmann’s Theorem: since τSn is close in fidelity to ψSn , for any purifica-
tion |ψR′P nSn〉 of ψSn , there exists a purification |τR′P nSn〉 that is also close to
|ψR′P nSn〉.
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Suppose now we were to submit both sides of the above equality to the follow-
ing quantum operation: measure register Π and undo the observed permutation
on register Sn. The left-hand side of the above would become Eacc

RSN →Sn(ρRSN )
whereas the right-hand side becomes

cN,d2 ·
∑

π∈Sn

(〈π|Π ⊗ π−1
Sn )(KR′P n→Π ⊗ idSn)(τR′P nSn)(|π〉Π ⊗ (π−1

Sn )†).

We now show how to represent this operator in a way that corresponds to
the statement we need to prove, i.e. as post-selected from a rank-one operator
living almost entirely in the low-error subspace. To this end, define4 an isometry
UR′P n→ZΠ that purifies the action of KR′P n→Π , i.e. such that for any νR′P n ,

KR′P n→Π(νR′P n) := trZ

(
(PZ ⊗ 1Π) · UR′P n→ZΠ · νR′P n · (UR′P n→ZΠ)†)

for some projector PZ . Using this representation, the post-sampling operator can
be expressed as

Eacc
RSN →Sn(ρRSN ) = cN,d2 · trZ

(

(PZ ⊗ 1Sn) ·
∑

π∈Sn

[Uπ
R′P n→Z ⊗ π−1

Sn ](τR′P nSn)

)

(16)
where Uπ

R′P n→Z := (1Z ⊗〈π|Π) ·UR′P n→ZΠ and where [U ](ρ) is short for UρU†.
Define the operator

ψ̃ZSn :=
∑

π∈Sn

(Uπ
R′P n→Z ⊗ π−1

Sn )ψR′P nSn(Uπ
R′P n→Z ⊗ π−1

Sn )†.

where ψR′P nSn is the purification of ψSn defined earlier. It isn’t too hard to show
that ψ̃Sn is such that ψSn = 1

n!

∑
π∈Sn

πSn ψ̃Snπ†
Sn . Since ψSn has a purification

in the low-error subspace, Lemma 6 implies that ψ̃Sn itself admits a purifi-
cation in this subspace. Let |ψ̃R′P nSn〉 be this purification and let K̃R′P n→C

be the superoperator that first maps |ψ̃R′P nSn〉 to ψ̃ZSn and then applies
σZ �→ trZ(PZσZ) to register Z. Then, using the definition of ψ̃R′P nSn and
K̃R′P n , and since completely positive trace non-increasing maps cannot increase
the trace distance,

4 It is always possible to define such an isometry and projector for any
trace non-increasing completely positive superoperator EA→B . To see this, let
E(σA) =

∑
k EkσAE†

k where Ek ∈ L(HA, HB) are the Kraus operators of
E and define the isometry UA→BZ as mapping an arbitrary state |ψ〉A to
∑

k Ek|ψ〉A|k〉Z +
√

1 − ∑
k E†

kEk|ψ〉A|⊥〉Z where |⊥〉Z is orthogonal to |k〉Z for

every k. Then PZ =
∑

k |k〉〈k|Z suffices as the required projector since trZ((1B ⊗
PZ)UA→BZσAU†

A→BZ) =
∑

k EkσAE†
k = EA→B(σA).



Secure Certification of Mixed Quantum States with Application 307

‖Eacc
RSN →Sn(ρRSN ) − cN,d2(K̃R′P n ⊗ idSn)(ψ̃R′P nSn)‖1

=
∥
∥
∥
∥cN,d2 · trZ

(
PZ ⊗ 1Sn)·

∑

π∈Sn

[Uπ
R′P n→Z ⊗ π−1

Sn ]
(
τR′P nSn − ψR′P nSn

))∥
∥
∥
∥
1

≤ cN,d2 · ‖τR′P nSn − ψR′P nSn‖1
≤ exp(−Ω(N))

where in the first inequality Eacc
RSN →Sn(ρRSN ) is replaced with (16) and the last

inequality follows from our choice of |τR′P nSn〉. �

6 Conclusion and Open Questions

Statistical sampling is a natural task that is well understood from a classical
perspective. Classical tools such as Hoeffding’s inequality, Azuma’s inequality
and other results on concentration of measure that are used to analyze classical
sampling (and quantum sampling to a certain degree [6]) are of no use when
trying to sample from quantum data with a mixed reference state. The tools of
symmetric invariance can substitute the classical tools up to a certain degree
when analyzing fully quantum sampling protocols. We have introduced a frame-
work for sampling mixed states by presenting a general sampling protocol and
we have shown that if an instantiation of that general protocol respects simple
criteria, then it can be used to certify that a quantum population is close to an
n-fold tensor product of a reference state ϕ in an adversarial setting.

We have also shown that this result can be applied to yield a two-party
randomness generation protocol. While perfect coin tossing is impossible without
assumptions, we can achieve the “next best thing” by producing a string that
has an almost-maximal min-entropy from the point of view of both participants.

Sampling of a quantum population is a new concept and many questions are
left unanswered, especially when sampling with a mixed reference state where
the usual (classical) tools do not apply. Precisely, future directions for this work
include:

1. A formulation of our results where a conclusion can be made when an error
rate significantly larger than 0 has been observed. From an observed error
rate of δ > 0 within the sample, we would want to conclude that the state of
the remaining positions can be controlled by means of an (ε + δ)-ideal state
for small ε > 0.

2. An extension of our results to multiple reference states for the same popu-
lation instead of a fixed reference state ϕ, e.g. with reference states ϕ0, ϕ1

where register i of the population is tested against ϕxi
for x ∈ {0, 1}n. While

sampling according to an arbitrary (pure) reference state is given “for free”
for pure state sampling (since all pure states are related by a unitary transfor-
mation on the sampler’s register), it requires more work in the case of mixed
state sampling.
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3. On top of the previous point, it is often useful for quantum sampling appli-
cations to have a statement in terms of an adaptive sampling protocol where
the reference states (i.e. the bits of x) are chosen adaptively by the adversary
based on what positions were sampled. Such an extension would have appli-
cations in two-party cryptography where sampling is done in a sequential
manner using a 1- or 2-bit cryptographic primitive, such as cut-and-choose.
In fact, if our results were extended in such a way, it would allow to certify
states with a 2-bit description (such as the BB84 encoding) using a 1-bit
cut-and-choose, a task that is not known to be possible relying on existing
sampling tools. The pure-state sampling framework of [6] was shown to apply
in the adaptive setting in [12].

Acknowledgments. FD acknowledges funding from GAČR grant GA16-22211S, and
LS is funded by NSERC discovery and acceleration to discovery grants.

A Permutation Invariance of Sampling Protocols

A.1 Proof of Proposition 3

We can assume w.l.o.g. that the state ρRSN ∈ D(HR ⊗ H⊗N
S ) is pure and that

adversarial strategies against the protocol depicted in Fig. 1 is described by a
family of isometries of the form U t

R→R′P k for t ⊆ [N ] of size k, where P k repre-
sents the register sent to Sam and supposed to contain the purifications of ϕS ,
and R′ is a register kept by Paul.

For convenience, define the isometry V t
SN →SnSk that, for any t ⊆ [N ], maps

subsystems Si for i ∈ t into the last k subsystems (denoted Sk) and subsystems
Si for i /∈ t into the first n = N − k subsystems (denoted Sn). In other words,
isometry V t

S simply groups together the registers to be sampled.
For an adversarial strategy as described above, the completely positive trace

non-increasing map Eacc
RSN →Sn that maps the input state ρRSN to the sampler’s

conditional output is defined by

Eacc
RSN →Sn(ρRSN ) :=

1
(
N
k

)
∑

t⊆[N ]

trR′
(
〈ϕ|⊗k

P kSk · [U t
R ⊗ V t

SN ](ρPS) · |ϕ〉⊗k
P kSk

)
.

where we left the identity operator acting on R′Sn implicit and where [U ](ρ) is
short for UρU† for any isometry U .

The following property of V t
SN →SnSk will be useful for proving Lemma 7

below.

Remark 4. Let π ∈ SN , and let tπ = {π−1(i) | i ∈ [k]}. There exist τπ ∈ Sk

and τ̄π ∈ Sn such that V
[k]

SN →SnSk · πS = (τ̄π
Sn ⊗ τπ

Sk) · V tπ

SN →SnSk . Furthermore,
there is a one-to-one correspondence between permutations π ∈ SN and triplets
(tπ, τπ, τ̄π).

Lemma 7. Protocol Purification-Based Sampling from Fig. 1 satisfies the
first criterion of Definition 4.
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Proof. We need to show the existence of a completely positive trace non-
increasing map Ēacc

P N SN →ΠSn such that for any ρRSN ,

1
n!

∑

π∈Sn

|π〉〈π|Π ⊗ πS′Eacc
RSN →Sn(ρRSN )π†

S′ = Ēacc
P N SN →ΠSn(ρ̄P N SN ) (17)

for some symmetric purification |ρ̄P N SN 〉 of 1
N !

∑
π∈SN

πSN ρSN π†
SN where

Eacc
RSN →Sn is defined earlier in this section.

Let |ρ̄P N SN 〉 ∈ SymN (HP ⊗ HS) be an arbitrary purification of
1

N !

∑
π∈SN

πSN ρSN π†
SN . Since all purifications are equivalent up to an isome-

try on the purifying register, there exists an isometry WP N →RΠ̄ such that

(WP N ⊗ 1SN )|ρ̄P N SN 〉 =
1√
N !

∑

π∈Sn

(1R ⊗ πSN )|ρRSN 〉 ⊗ |π〉Π̄ .

Let ŪP N →R̄P k be the isometry that performs the following actions unitarily on
register PN of |ρ̄P N SN 〉:
1. Apply WP N , producing registers R and Π̄.
2. From permutation π ∈ SN held in register Π̄, compute tπ, τπ ∈ Sk and

τ̄π ∈ Sn as in Remark 4, i.e. such that V
[k]

SN →SnSk ·πS = (τπ
Ŝ

⊗ τ̄π
S′)·V tπ

SN →SnSk .
3. Apply attack U tπ

R→R′P k on register R, producing registers R′ and P k and
reorder register P k using permutation τπ so that each Pi aligns with the
right sampled Si.

4. Let register R̄ be composed of registers R′, Π̄. Output registers P k, R̄ and
register Π containing the permutation τ̄π that acts on the output Sn (i.e. on
the unsampled registers).

From the definition of the above isometry,

(ŪP N →R̄P k ⊗ V
[k]

SN →SnSk)|ρ̄P N SN 〉
=

1√
N !

∑

π∈SN

(τπ
P k ⊗ τπ

Sk ⊗ τ̄π
Sn)(U tπ

R→R′P k ⊗ V tπ

SN →SnSk)|ρRSN 〉|π〉Π̄ |τ̄π〉Π

Tracing out register Π̄ from the above and using the one-to-one correspondence
between π and (tπ, τπ, τ̄π) to break the sum over π into sums over t, τ and τ̄ ,
we get

1

N !

∑

π∈SN

[(τπ
P k ⊗ τπ

Sk ⊗ 1R′ ⊗ τ̄π
Sn)(U tπ

R→R′P k ⊗ V tπ

SN →SnSk)](ρRSN ) ⊗ |τ̄π〉〈τ̄π|Π

=
1

n!

1

k!

1
(N

k

)
∑

τ̄∈Sn

τ̄Sn

(
∑

τ∈Sk
t⊆[N ]:|t|=k

[(τP k ⊗ τSk)(U t
R ⊗ V t

SN )](ρRSN )

)

(τ̄Sn)† ⊗ |τ̄π〉〈τ̄π|Π
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Taking the partial inner product with |ϕ〉⊗k
P kSk and tracing out R′ leaves us with

1

n!
(N

k

)
∑

τ̄∈Sn

τ̄Sn

(
∑

t

trR′
(
〈ϕ|⊗k

P kSk · [U t
R ⊗ V t

SN ](ρRSN ) · |ϕ〉⊗k
P kSk

)
)

(τ̄Sn)† ⊗ |τ̄π〉〈τ̄π|Π

=
1

n!

∑

τ̄∈Sn

τ̄SnEacc
RSN →Sn(ρRSN )τ̄ †

Sn ⊗ |τ̄π〉〈τ̄π|Π

where the sum over τ disappeared because |ϕ〉⊗k
P kSk is invariant under permuta-

tion. Then Ēacc
P N SN →ΠSn defined as

Ēacc
P N SN →ΠSn(ρ̄P N SN ) := trR̄

(
〈ϕ|⊗k

P kSk · [ŪP N ⊗ V
[k]

SN ](ρ̄P N SN ) · |ϕ〉⊗k
P kSk

)
.

satisfies (17). �
Lemma 8. Protocol Purification-Based Sampling from Fig. 1 satisfies the
second criterion of Definition 4.

Proof. We need to show that for any ε > 0, ‖Ēacc
P N SN →ΠSn(|θ〉〈θ|⊗N

P N SN )‖1 ≤
exp(−Ω(N)) whenever F (θS , ϕS)2 < 1 − ε where

Ēacc
P N SN →ΠSn(ρ̄P N SN ) := trR̄

(
〈ϕ|⊗k

P kSk · [ŪP N ⊗ V
[k]

SN ](ρ̄P N SN ) · |ϕ〉⊗k
P kSk

)
.

The proof is based on the simple observation that the isometry Ū that maximizes
the probability of observing |ϕ〉⊗k on registers P kSk is the one that matches the
fidelity with ϕ⊗k by the fact that the fidelity is monotonous. Therefore it holds
that, since the fidelity is multiplicative for product states,

‖Ēacc
P N SN →ΠSn

(
|θ〉〈θ|⊗N

P N SN

)
‖1 ≤ F (θ⊗k

Sk , ϕ⊗k
Sk )2 ≤ (1 − ε)2k ≤ exp(−2εk)

whenever F (θS , ϕS)2 < 1 − ε . �
The third criterion of Definition 4 follows trivially from the observation that

neither Eacc
RSN →Sn nor Ēacc

P N SN →ΠSn acts on the unsampled qubits other than by
rearranging them.

A.2 Proof of Proposition 4

As in AppendixA.1, let us establish that the protocol satisfies the each criterion
of Definition 4.

Lemma 9 (First criterion). Let Eacc
RSN →Sn be the output of the sampling pro-

tocol EPR-LOCC Sampling from Fig. 2. For any ρRSN ∈ D(HR⊗H⊗N
S ) there

exists Ēacc
P N SN →ΠSn such that

1
n!

∑

π∈Sn

|π〉〈π|Π ⊗ πSnEacc
RSN →Sn(ρRSN )π†

Sn = Ēacc
P N SN →ΠSn(ρ̄P N SN ) (18)

for some symmetric purification |ρ̄P N SN 〉 of 1
N !

∑
π∈SN

πSN ρSN π†
SN .
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Proof. Recall the linear operator V t
SN →SnSk from AppendixA.1 that maps St to

Sk and St̄ to Sn (where Sk is understood to represent the last k registers). The
completely positive trace non-increasing map Eacc

RSN →Sn that models the action
of the protocol on the state ρRSN when Sam accepts can be represented as

2−k

(
N

k

)−1 ∑

t,c,x

trRSk

(
(Et,c

x ⊗ P
x,c
Sk )V t

SN →SnSkρRSN V t
SN →SnSk

)

where the sum is over t ⊂ [N ] such that |t| = k, c ∈ {+,×}k and x ∈ {0, 1}k and
where, for t and c sent by Sam, Et,c = {Et,c

x }x∈{0,1}k is the POVM measurement
on R that produces x and P

x,c
Sk := H⊗c|x〉〈x|H⊗c is the projector onto x in basis c.

Let ρ̄P N SN be an arbitrary purification of 1
N !

∑
π∈SN

πSN ρSN π†
SN . Define the

map Ēacc
P N SN →ΠSn as follows:

1. Map state ρ̄P N SN to 1
N !

∑
π∈SN

|π〉〈π|Π̄ ⊗ (1R ⊗ πSN )ρRSN (1R ⊗ π†
SN ).

2. From permutation π ∈ SN held in register R, compute tπ, τπ ∈ Sk and
τ̄π ∈ Sn as in Remark 4.

3. Apply V
[k]

SN →SnSk on SN , choose c ∈ {+,×}k at random and apply POVM
Etπ,c on R producing output x.

4. Measure the sampled registers Sk by projecting on H⊗τπ(c)|τπ(x)〉Sk =
τπH⊗c|x〉Sk .

5. Output τ̄π in register Π and register Sn.

The output of Ēacc
P N SN →ΠSn applied on ρ̄P N SN is

2−k

N !

∑

π,c,x

trRSk

(
(Etπ,c

x ⊗ τπ
SkP

x,c
Sk (τπ

Sk)†) · [V [k]

SN →SnSkπSN ](ρRSN )
)

⊗ |τ̄π〉〈τ̄π|Π

=
2−k

N !

∑

π,c,x

τ̄π
Sn trRSk

(
Etπ,c

x ⊗ P
x,c
Sk )[V tπ

SN →SnSk ](ρRSN )
)
τ̄π
Sn ⊗ |τ̄π〉〈τ̄π|Π

=
2−k

n!

(
N

k

)−1 ∑

τ̄π∈Sn

[τ̄π
Sn ]

(
∑

t,c,x

trRSk

(
(Et,c

x ⊗ P
x,c
Sk )[V t

SN ](ρRSN )
)
)

⊗ |τ̄π〉〈τ̄π|Π

=
1
n!

∑

τ̄π∈Sn

τ̄π
SnEacc

RSN →Sn(ρRSN )τ̄π
Sn ⊗ |τ̄π〉〈τ̄π|Π

where the second equality uses Remark 4. �
Lemma 10 (Second criterion). Let Ēacc

P N SN →ΠSn be as in the proof of
Lemma 9. For any ε > 0, ‖Ēacc

P N SN →ΠSn(|θ〉〈θ|⊗N
P N SN )‖1 ≤ exp(−Ω(N)) when-

ever F (θS , ϕS)2 < 1 − ε.

Proof. For any c ∈ {+,×}k, let Ēc
x be the POVM element on PN that gives the

probability of x being outputted in Step 3 of Ēacc
P N SN →ΠSn when c is chosen in

the same step. In essence, Ēc
x is to Ēacc

P N SN →ΠSn what Etπ,c is to Eacc
RSN →Sn ; it

gives the probability of observing x when the following measurement is done on
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PN : produce registers Π̄R from PN , measure π from register Π̄, compute the
corresponding sample tπ, and apply the measurement corresponding to POVM
Etπ,c.

Using these POVM operators Ēc
x, we can express the norm we wish to upper-

bound as

‖Ēacc
P N SN →ΠSn(|θ〉〈θ|⊗N

P N SN )‖1 = 2−k
∑

c,x

tr
(
(Ēc

x ⊗ P
x,c
Sk ⊗ 1Sn)|θ〉〈θ|⊗N

P N SN

)
(19)

where P
x,c
Sk is the projector onto x in basis c. Note that the right-hand side

of (19) can be interpreted as the probability of guessing the outcome of measuring
register Sk in a known but random basis c by observing the reduced operator
of register PN . We now analyze this guessing probability to provide an upper-
bound on (19).

Since each measurement on Sk is independent of each other and since the
joint state is in an i.i.d. form, the probability of Paul guessing outcome x is of
the form γk where γ corresponds to the probability of guessing a single bit of x.
This probability is given by the expression

γ =
1
2

Pr(guess X | C = +) +
1
2

Pr(guess X | C = ×)

We show that at least one of the above conditional term is bounded above by a
constant strictly smaller than 1 when F (θS , ϕS) < 1 − ε, which means that γk

is negligible in k.
The maximum probability of guessing X when C = + is given by the prob-

ability of distinguishing states
∣
∣θ0P

〉
= (1p ⊗ 〈0|S)|θPS〉 and

∣
∣θ1P

〉
= (1p ⊗ 〈1|S)|θPS〉

and the same holds when C = × for similarly defined |θ+P 〉 and |θ−
P 〉. Let

√
λ0|f0〉P |e0〉S +

√
λ1|f1〉P |e1〉S

be the Schmidt decomposition of |θPS〉 and consider the quantity
∣
∣〈θ0P

∣
∣θ1P

〉∣∣ +
∣
∣〈θ+P

∣
∣θ−

P

〉∣∣ ≥ ∣
∣〈θ0P

∣
∣θ1P

〉
+

〈
θ+P

∣
∣θ−

P

〉∣∣

= |〈θPS |(1P ⊗ |0〉〈1|S)|θPS〉 + 〈θPS |(1P ⊗ |+〉〈−|S)|θPS〉|
=

1
2

|〈θPS |(1P ⊗ HS)|θPS〉| =
1
2

|λ0〈e0|SHS |e0〉S + λ1〈e1|SHS |e1〉S |

=
1
2

|λ0 − λ1|

where HS =
(

1 1
1 −1

)
, the only inequality above is the triangle inequality and the

last equality follows from the fact that 〈e0|SHS |e0〉S = −〈e1|SHS |e1〉S for any
two orthogonal vectors |e0〉S and |e1〉S . The last term from the above equation
can be bounded above by ε since

|λ0 − λ1| =
∣
∣
∣
∣λ0 − 1

2

∣
∣
∣
∣ +

∣
∣
∣
∣λ1 − 1

2

∣
∣
∣
∣ =

∥
∥
∥
∥θS − 1S

2

∥
∥
∥
∥
1

≥ 2(1 − F (θS ,
1S

2
)) ≥ 2ε
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Suppose that
∣
∣〈θ0P |θ1P 〉∣∣ ≥ ε/2 (otherwise,

∣
∣〈θ+P |θ−

P 〉∣∣ ≥ ε/2 and the same
argument holds for those two states), this means that Paul cannot distinguish
between the two reduced states |θ0P 〉 and |θ1P 〉 with probability better than one
minus some constant (that depends on ε). We conclude that γ is bounded above
by a constant strictly less than 1 and that the probability γk of guessing all
measurement outcomes correctly declines exponentially fast in k. �

The third criterion of Definition 4 follows trivially from the observation that
neither Eacc

RSN →Sn nor Ēacc
P N SN →ΠSn acts on the unsampled qubits other than by

relabeling them.
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Abstract. Hash functions are of fundamental importance in theoretical
and in practical cryptography, and with the threat of quantum computers
possibly emerging in the future, it is an urgent objective to understand
the security of hash functions in the light of potential future quantum
attacks. To this end, we reconsider the collapsing property of hash func-
tions, as introduced by Unruh, which replaces the notion of collision
resistance when considering quantum attacks. Our contribution is a for-
malism and a framework that offers significantly simpler proofs for the
collapsing property of hash functions. With our framework, we can prove
the collapsing property for hash domain extension constructions entirely
by means of decomposing the iteration function into suitable elemen-
tary composition operations. In particular, given our framework, one can
argue purely classically about the quantum-security of hash functions;
this is in contrast to previous proofs which are in terms of sophisticated
quantum-information-theoretic and quantum-algorithmic reasoning.

1 Introduction

Background. Given the threat of possible future quantum computing capabil-
ities, it is an important and urgent objective to evaluate the security of classical
cryptographic schemes against quantum attacks. There are different places where
security can break down when using quantum computing techniques to attack a
cryptographic scheme that was designed to withstand standard classical attacks.
The most prominent place is the computational hardness assumption, which is
typically well justified to hold for classical models of computation but may be
false with respect to quantum computation. Another place is the security proof,
which may use techniques that fail to work in the context of a quantum attacker,
like proofs that rely on rewinding techniques. Finally, another place where things
can go wrong is the security definition, which may not capture anymore what it
is supposed to capture when allowing quantum attacks.

An example of the latter is the computational binding property of a commit-
ment scheme. Our intuitive understanding of what a commitment should achieve
is that once a commitment is “on the table” there should be no freedom left for
the (computationally bounded) committer in choosing the value to which he can

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 315–338, 2018.
https://doi.org/10.1007/978-3-030-03810-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03810-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-03810-6_12


316 S. Fehr

open the commitment. The formal definition of the binding property expresses
this requirement by demanding that no (computationally bounded) dishonest
committer should be able to open a commitment in two distinct ways. While
for classical committers this captures precisely what we want, it fails to do so
for quantum committers. Indeed, a quantum committer can potentially open a
commitment to one value that he freely chooses after he has put the commitment
“on the table”, without contradicting the requirement of being unable to pro-
duce two distinct openings; this is because producing the opening information
may involve a destructive quantum measurement that can only be applied once.

We stress that being able to open a given commitment to an arbitrary value
that one can freely choose renders a commitment scheme useless in essentially all
applications. So, when considering the security of commitment schemes against
quantum attacks, it is essential that one uses a stronger notion of security than
the standard computational binding property extended to quantum attackers.

A similar and related example is the collision resistance of hash functions.
Also here, in the presence of a quantum attacker, the standard formal require-
ment that it should be computationally hard to produce two colliding inputs
does not capture our intuitive understanding of a hash value as acting as a “fin-
gerprint” that removes any freedom in the message to which it fits. As such, also
here, when considering security against quantum attacks, the standard security
notion, i.e. collision resistance, needs to be replaced by something stronger.

The Collapsing Property. Unruh [5] proposed the notion of collapsing; in
the context of commitment schemes as a counterpart for the computational
binding property when considering quantum attacks, and in the context of hash
functions as a counterpart for collision resistance. In essence, for hash functions,
the collapsing property requires that for any computationally bounded adversary
that output a hash value together with a quantum superposition of corresponding
preimages, he should not be able to tell if the superposition gets measured or not.
The details of the notion, and why it indeed restores the right security properties
when considering quantum attacks, are not so important for the discussion here.
In terms of achievability, Unruh proved that the random oracle is collapsing as
a hash function, and thus that simple hash-function-based commitment schemes
are collapsing in the random oracle model. In the context of hash functions,
he proved in a follow-up work [6] that the Merkle-Damg̊ard construction for
hash functions is collapsing (under some mild restriction on the padding) if the
underlying compression function is. Given that the random oracle is collapsing,
this in particular implies that the Merkle-Damg̊ard construction is collapsing in
the random oracle model, and thus gives heuristic evidence that certain practical
hash functions like SHA-2 are collapsing. Recently, Czajkowski et al. [2] showed
a similar result for the Sponge construction [1], which for instance underlies the
hash function standard SHA-3: the Sponge construction is collapsing if both
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parts of the underlying round function, i.e., the so-called inner and outer parts,
are collapsing, and if the inner part is “zero-preimage resistant”.1

Our Contribution. In this work, we introduce a new formalism and a new
framework for arguing about the collapsing property of (hash) functions. The
advantage of our new approach is that it allows for significantly simper proofs
compared to the previous work above.

At the heart of our new formalism is a pseudo-metric that abstracts away
computational aspects, and which allows for an “algebraic” formulation of the
collapsing property. This in turn allows for simple proofs of basic composability
results for the collapsing property. Some of those have already been claimed and
proven in the work mentioned above; however, our proofs are much simpler.
For instance, proving that the collapsing property is preserved under nested
composition takes 2 full pages in [5] (see Lemma 27 in the full version of [5]), with
various quantum circuits depicted; our proof (see Lemma 5) is a few lines. The
main reason for this difference lies in the “algebraic” nature of our formulation,
compared to the “algorithmic” approach used in prior work. This means that
instead of specifying quantum reduction algorithms and arguing that they “do
the job”, our proofs are almost entirely by means of term-manipulations, where
we manipulate the terms of interest by using a small set of basic rules that come
along with our formalism. This not only results in very compact proofs, these
proofs are also mathematically very clean in that in every term-manipulation
step we can—and typically do—specify what basic rule was used.

These composability results for the collapsing property, together with a cou-
ple of basic features when “disallowing” certain inputs, form what we call our
framework. With this framework, proving the collapsing property of hash domain
extensions boils down to decomposing the iteration function under consideration
into a few simple composition operations.

We demonstrate this new proof methodology on various examples. Applied
to Merkle-Damg̊ard, we obtain a proof of the collapsing property without any
restriction on the padding as in [6], but with the additional assumption on the
compression function to be “iv-preimage resistant” (which is satisfied in the ran-
dom oracle model). We can also recover Unruh’s original result, which requires
a restriction on the padding but avoids the “iv-preimage resistance”. By adding
a counter and “salt” to the compression function but otherwise using the same
kind of reasoning, we get a proof of the collapsing property of HAIFA [3], as pro-
posed by Biham and Dunkelman. Applied to the Sponge construction, we recover
the result from [2] up to an insignificant difference in the exact parameter.

The distinguishing feature of our proofs lies in their conceptual simplicity
and low technical complexity. Our proofs are entirely in terms of decomposing
the iteration function into elementary composition operations that are ensured
to preserve the collapsing property. In particular, our proofs are purely classical.
In contrast, the proofs provided in [2,6] are in terms of lengthy hybrid arguments

1 This again implies security in the random oracle model, but a subtle issue here is that
if the round function is efficiently invertible then the assumptions on the two parts are
not satisfied. Hence, this is not so strong evidence yet that e.g. SHA-3 is collapsing.
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that consider sequences of “quantum games” and in terms of quantum informa-
tion theoretic arguments and quantum reduction algorithms for reasoning that
every game in the sequence behaves similarly to its predecessor.

As such, even though the collapsing property of HAIFA is new, we consider
our main contribution more in terms of offering a simple understanding of why
certain hash function are collapsing, and in providing a tool to easily check if
similar results also hold for other hash functions (as we demonstrate on HAIFA).

The Framework in Action. To give a better idea, we illustrate here on the
various examples how our framework enables to argue for the collapsing prop-
erty by means of decomposing the iteration function into suitable elementary
decomposition operations, and thus in particular by means of purely classical
reasoning. We challenge the reader to compare our proofs with those in [2,6].

Merkle-Damg̊ard. The Merkle-Damg̊ard hash of a message x1, . . . , xi, consist-
ing of i blocks, is given by IHi(x1, . . . , xi), where IHi is iteratively defined as

IHi(x1, . . . , xi) := f
(
IHi−1(x1, . . . , xi−1), xi

)

with IH0() = iv. The round function f is assumed to be collapsing. We observe
that IHi is the nested composition of f with the concurrent composition of IHi−1

with the identity xi �→ xi. Our framework ensures that these compositions pre-
serve the collapsing property; thus, by recursive application, given that IH0 is
trivially collapsing, we get that IHL is collapsing for every fixed L, and hence
the Merkle-Damg̊ard hash is collapsing when restricted to inputs of fixed size.

In order to deal with messages of variable size, we allow in the definition of
IHi(x1, . . . , xi) the left-most message blocks to be “empty”, i.e., x1 up to some
xj may be ⊥, and we set IHi(⊥, . . . ,⊥) := iv (for any i) and keep to recursive
definition above if xi �= ⊥. This extended version of IHi is then the disjoint union
of the trivial function {⊥i} → {iv} and the restriction of IHi to inputs different
than ⊥i, if we “disallow” non-⊥i inputs that are mapped to iv.2 Thus, as long
as we “disallow” such inputs (which is something our framework can capture),
we still have that the recursive definition of IHi decomposes into composition
operations that are covered by our framework, and thus we can conclude that
IHL is collapsing for every fixed L, but now for inputs that may have ⊥-prefixes,
i.e., variable length. Finally, by the assumed “iv-preimage resistant” of f , inputs
(�= ⊥i) that IHi maps to iv are hard to find, and therefore “disallowing” those
has no noticeable effect.

HAIFA. The HAFIA hash function is a variant of Merkle-Damg̊ard that
includes a counter in the iteration function, and it uses a “salt” (which we
though treat as ordinary input). Formally,

IHi(salt, x1, . . . , xi) := f
(
salt, IHi−1(salt, x1, . . . , xi−1), xi, i

)
.

Here, we can reason exactly as above, except that now the iteration function is
a nested composition of the function f(·, ·, ·, i), which is collapsing if f is, with
2 The latter is because (our notion of) the disjoint union of two functions requires not

only the two respective domains but also the two respective ranges to be disjoint.
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the parallel composition of the projection function (salt, x1, . . . , xi) �→ salt with
the concurrent composition of IHi−1 with the identity function xi �→ xi. All
these composition operations are covered by our framework, and so the collaps-
ing property follows as for the original Merkle-Damg̊ard construction, assuming
again that f is “iv-preimage resistance” in case of arbitrary length messages.

Sponge. The Sponge hash3 of a message x1, . . . , xi of i blocks is given by
S0

i (x1, . . . , xi), where Sb
i is iteratively defined as

Sb
i (x1, . . . , xi) := f b

(
S0

i−1(x1, . . . , xi−1) ⊕ xi, S
1
i−1(x1, . . . , xi−1)

)

for b ∈ {0, 1}, with S0
0() = 0 = S1

0(), and it is assumed that both components of
the round function f = (f0, f1) are collapsing. Here, Sb

i is the nested composition
of f b with a function that is yet another composition of the functions S0

i−1 and
S1

i−1, and our framework immediately ensures that S0
i and S1

i stay collapsing as
long as S1

i−1 is. Thus, again, the iteration function decomposes into composition
operations that are ensured to preserve the collapsing property, and so by recur-
sive application we get that S1

1 , . . . , S1
L−1 and eventually S0

L are collapsing. The
only difference to above is that here, we have to set Sb

i (⊥, . . . ,⊥) := Sb
0() = 0

to ensure that S0
L acts correctly on messages of smaller block size, i.e., that

Sb
j (x1, . . . , xj) = Sb

L(⊥, . . . ,⊥, x1, . . . , xj). As a consequence, for the recursive
reasoning, to have S1

i be the disjoint union of the trivial function {⊥i} → {0}
and the restriction of S1

i to non-⊥i inputs, we need to “disallow” inputs (�= ⊥i)
which S1

i maps to 0; this has no noticeable effect though if f1 is “zero-preimage
resistant”.

2 Preliminaries

2.1 Basic Quantum Formalism

Knowledge of basic concepts of quantum information science is necessary in order
to prove “correctness” of our framework (but not to apply the framework); we
fix here some notation and conventions, which both are not fully standard.

Typically, the state of a quantum system with state space H is given by a
density matrix ρ, i.e., by a trace-1 positive-semidefinite matrix that acts on H,
and a quantum operation is expressed by a CPTP map T which maps a state ρ to
a new state T(ρ) over a possibly different state space. In this work, for technical
reasons, we allow states to be subnormalized, and we consider the more general
notion of completely-positive trace-nonincreasing (CPTN) maps, which are of
the form T =

∑
i Ti with Ti : ρ �→ TiρT †

i and
∑

i T †
i Ti ≤ I (the identity on H).4

For the purpose of this work, a measurement is a CPTN map P =
∑

i Pi with
Pi : ρ �→ PiρP †

i as above, but with the restriction that the Pi’s are mutually

3 For simplicity, we consider one block of output only; multiple output blocks are
argued by means of composition too.

4 This can be understood in that quantum operations may “abort”, and the trace
tr(ρ) ≤ 1 expresses the probability that the process that produces ρ does not abort.
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orthogonal Hermitian projections on H. If P is in fact a CPTP map, i.e.,
∑

i Pi =
I, then we speak of a total measurement, and otherwise of a partial measurement.
The individual “components” Pi of such a (partial or total) measurement are
sometimes also referred to as measurements with post-selection.

We write Pr[P(ρ) = i ] for tr ◦ Pi(ρ) = tr(PiρPi), i.e., the probability that
“outcome i is observed”. An elementary property of any (projective, as consid-
ered here) measurement P, is Winter’s “gentle-measurement lemma” [7], which
captures that the measurement does not disturb the state much if the outcome
is almost certain. Formally,5 for any state ρ and any β ≥ 0:

∃ i : Pr[P(ρ)= i ] ≥ tr(ρ) − β =⇒ δ
(
P(ρ), ρ

) ≤
√

β + β . (1)

where δ is the trace distance, given by δ(ρ, σ) := 1
2‖ρ − σ‖tr.

Different quantum systems are identified by means of “labels” X,Y etc., and
we write ρX for the state of system X and HX for its state space, etc. For a
CPTN map T, we may write TX to emphasize that it acts on system X, and
TX→X′ to additionally emphasize that it maps into system X ′. For simplicity,
we tend to write ρT(X)Y rather than

(
TX ⊗ IY

)
(ρXY ).

For any state space we consider a fixed orthonormal basis, referred to as the
computational basis. For state spaces HX and HY with respective computational
bases {|x〉}x∈X and {|y〉}y∈Y , we associate to any function f : X → Y the
CPTP “evaluation” map E[f ]X→XY : ρ �→ V [f ] ρ V [f ]† given by the isometry
V [f ] : |x〉 �→ |x〉|f(x)〉. Here, we also write ρXf(X)Z instead of ρE[f ](X)Z .6 We
note that E[f ] admits a left inverse, i.e., a CPTP map E

inv[f ]XY →X such that
E

inv[f ] ◦ E[f ] = IX .
The composition trY ◦E[f ]X→XY of a CPTP evaluation map with the partial

trace trY equals the measurement M[f ] =
∑

y M[f = y], where M[f = y] is the
CPTN map given by the projection into the span of {|x〉 | f(x)=y}. To simplify
notation, we may also write ρXf Z instead of ρM[f ](X)Z , and, similarly, ρXf=yZ

instead of ρM[f=y](X)Z .
The usual “measurement in the computational basis”, given by the projec-

tions |x〉〈x|, is simply denoted by M. For lighter notation, we often use (·) instead
of M and write ρX̄Y instead of ρM(X)Y . A quantum system X of a (possibly)
joint state ρXY is called classical if ρX̄Y = ρXY .

When the state is clear from the context, then we may do the “arithmetic”
on the labels. For instance, using this convention, we can then say that any state
ρXZ satisfies

X̄f(X)Z = X̄f(X̄)Z = X̄f(X̄)Z = X̄f(X)Z , (2)

to express that MX and E[f ]X commute, and that f(X̄) is classical given that
X̄ is. Similarly, we may then write Pr

[
M[f ](X) = y

]
= Pr

[
M

(
f(X)

)
= y

]
=

Pr
[
f(X̄) = y

]
, which may be interpreted differently but coincide.

5 This bound can e.g. be derived from [8]. [2] claims the bound
√

β, but their proof has
a small flaw; fixing it gives

√
2β instead (but only works for total measurements). .

6 A subtle issue with this notation is that trY (ρXf(X)Z) �= ρXZ , but rather = ρM[f ](X)Z

(see below).
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2.2 Randomized Functions and States, and Their Complexity

In Appendix A, we offer a formal discussion of randomized functions, randomized
CPTN maps, and randomized quantum states. As one would expect, these are
simply functions, CPTN maps and states that depend on some global random-
ness r, which is randomly chosen once and for all from some finite set R.

Informally, when considering randomized functions, one can make the fol-
lowing distinction. In one case, r is given as input to the function f (or to the
algorithm that computes f , if you prefer); one then typically speaks of keyed or
seeded functions. In the other case, f makes queries to an oracle that computes
every reply dependent on r, in which case one refers to f as an oracle function.
A similar distinction can be made for randomized CPTN maps, and thus for
randomized states, which are simply randomized CPTN maps that act on the
trivial state space C.

Formally, the way the two variants differ is by the way complexity is captured:
for keyed functions one consider the computational complexity of computing the
function whereas for oracle functions one considers the query complexity.

Our results apply to both variants in that we consider an abstract complexity
measure c that assigns to every randomized function f a non-negative integer
c(f), also denoted cf , and similarly for randomized CPTN maps, and which
satisfies natural properties that one would expect from a complexity measure.
The details of this are given in Appendix B. The computational complexity and
the query complexity are then just specific instantiations.

2.3 The Distinguishing Advantage

The following parameterized indistinguishability measure, and our understand-
ing of it as an abstract metric, is one of the central notions of our formalism.

Definition 1. For randomized states ρX and ρY (with randomness r) over a
common Hilbert space HX = HY , and for any non-negative integer q, we set

δq

(
ρX , ρY

)
:= sup

T

1
|R|

∑

r

∣
∣ Pr

[
M

(
T(X)

)
=0

] − Pr
[
M

(
T(Y )

)
=0

]∣∣

= sup
T

1
|R|

∑

r

δ
(
M ◦ T(ρX),M ◦ T(ρY )

)
,

where the supremum is over all randomized CPTN maps T (with randomness r)
that map into the two-dimensional qubit state space and have complexity c(T) ≤ q
and, by convention, M is the measurement in the computational basis.

Following the convention of doing the “arithmetic” on the labels, we typically
write δq(X,Y ) instead of δq

(
ρX , ρY

)
. Also, we write δq(X,Y |Z) as a short hand

for δq

(
ρXZ , ρY Z

)
.

We emphasize that δq is a pseudometric: it is non-negative, symmetric, and
satisfies triangle inequality, but it may potentially vanish for non-identical states.
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Furthermore, δq is upper bounded by the trace distance δ, and it coincides with
δ in case q = ∞, i.e., there is no restriction on c(T). Finally, δq inherits several
properties from the ordinary trace distance, which can easily be verified. For
instance, it is monotone under randomized CPTN maps as

δq

(
T(X),T(Y )

) ≤ δq+c(T)(X,Y ) ,

and for any randomized CPTN map T =
∑

i Ti, we have subadditivity as

δq

(
T(X),T(Y )

) ≤
∑

i

δq

(
Ti(X),Ti(Y )

)
.

To simplify terminology, from now on we drop on the word “randomized” and
take it as understood that functions, CPTN maps and states may be randomized,
either in the form of keyed functions or as oracle functions, etc.

3 The Collapsing Property

We state here (a slight variation of) the definition of the collapsing property of
functions, as proposed by Unruh [5], but using the formalism introduced above.
In Sect. 3.2 we then discuss the straightforward extension to partial functions,
which will turn out to be useful, and in Sect. 3.3 we show that the collapsing
property behaves nicely under various composition operations. These compos-
ability results are all rather natural, and—with our formalism!—have simple
short proofs. All together, this section then stands as “the framework” that we
propose for arguing about the collapsing property of hash functions.

3.1 The Definition

The original formulation of the collapsing property for a function h is by means
of two “games”, where an “adversary” produces a (normalized) state ρXY E of
a certain form, namely Y must be classical and equal to h(X), and then in one
game X is measured in the computation basis whereas in the other game it is
left untouched instead, and the definition requires that it should be hard for any
“distinguisher” to distinguish between the two games.

As for the notion of collision resistance, the collapsing property is meaningful
only for randomized functions h.7 In case of a keyed variant of such a function,
one can aim for conditional results that state that h is collapsing (against compu-
tationally bounded adversaries) under some computational hardness assumption.
In case of an oracle function and aiming for unconditional results, there is no
exploitable effect in restricting the computational power of the parties, as long
as the query complexity is limited. Our approach of using an abstract complexity
notion allows us to cover both these settings simultaneously.

Our formal definition of the collapsing property is given below. Compared
to the original definition by Unruh (which comes in a couple of different flavors,
7 See the discussion in Appendix C for an exception to the rule.
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which we discuss in Appendix C), we use a somewhat different terminology and
formalism. For instance we do not explicitly speak of “games”, and instead of
quantifying over the possible adversaries we quantify over the states that may
possibly be prepared by an adversary, and the quantification over the distin-
guishers is absorbed into the pseudometric δq. These modifications to the math-
ematical language have obviously no effect on the notion. There are a few more
differences compared to the definition proposed by Unruh, but they all have no
more than a small quantitative effect, as we discuss below.

Definition 2. A function h : X → Y is called ε(q)-collapsing if

cAdv[h](q) := sup
ρXY E

δq

(
X, X̄ | Ȳ E

) ≤ ε(q)

for all q, where the supremum is over all states8 ρXY E = ρXh(X)E with complex-
ity c(ρXY E) ≤ q. The measure cAdv[h] is called the collapsing advantage of h.

Beyond the change in mathematical language, another difference is that
in the original definition the system Y of the state ρXY E , as produced by
the adversary, is required to be classical, whereas in Definition 2 we allow
it to be non-classical but then “make it classical” by measuring it; this is
obviously equivalent (given that measuring has zero complexity). A slightly
more substantial difference is that we allow the state ρXY E to be subnormal-
ized; i.e., we allow the adversary to abort. However, the collapsing advantage
δq

(
X, X̄ | Ȳ E

)
of any subnormalized state ρXY E is the same as of the normalized

state ρ̃XY E := ρXY E +(1−tr(ρXY E))|x◦〉〈x◦|⊗|h(x◦)〉〈h(x◦)|⊗|0〉〈0| for an arbi-
trary choice of x◦ ∈ X on which h is defined. Since c(ρ̃XY E) ≤ c(ρXY E) + c(h),
this has only a small quantitative effect that is insignificant if c(h) is insignificant
compared to q. In other words, we can easily transform an adversary that aborts
into one that does not abort but outputs x◦ and y◦ = h(x◦) instead.

Finally, in the original definition, the complexity of the adversary and the
distinguisher together is bounded (by q), whereas we bound the individual com-
plexities (both by q). This is merely for simplicity, and has only a factor-2 quan-
titative effect.

3.2 Partial versus Total Functions

In Definition 2, we implicitly considered the function h : X → Y to be a total
function, i.e., a function that is defined on its entire domain X . However, it will
be useful to extend the definition to partial functions, which are defined only
on a subset Xeff ⊆ X of the domain.9 In the context of randomized functions,
as considered here, we allow Xeff to depend on the global randomness r; this is

8 We recall that the requirement ρXY E = ρXh(X)E is a shorthand for asking ρXY E to
be equal to a state obtained by applying E[h] to system X.

9 This may be understood in that the computation of h “fails” on inputs not in Xeff.
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what distinguishes such a partial function from a total function with a smaller
domain, since the domain X of a function is declared fixed and independent of r.

Definition 2 applies directly to such partial functions as well, given that the
definition of the evaluation map E[h] is naturally extended to partial functions
h by having the defining operator V [h] map |x〉 to 0 for any x �∈ Xeff. The effect
of this is that the requirement ρXY E = ρXh(X)E enforces X to contain no inputs
from outside of Xeff. Hence, considering partial functions in Definition 2 serves
as a convenient way to “disallow” certain inputs.

Formally, consider a function h : X → Y (which may be partial but let us
think of it as a total function for now), and let π : X → {0, 1} be a predicate,
which will always be understood to be a total function. Then, we define h|π to
be the partial function h|π : X → Y that is undefined for x ∈ X with π(x) = 0,
and that coincides with h for the remaining x ∈ X . The collapsing advantage
of h|π then coincides with the collapsing advantage of h modified in that the
quantification over ρXY E is restricted to states for which Pr[π(X̄)=0 ] = 0.

Below, in Lemmas 1 and 2, we show how cAdv[h] and cAdv[h|π] relate to each
other. Lemma 1 follows trivially from the above observation, i.e., that ρXY E =
ρXh|π(X)E implies ρXY E = ρXh(X)E .

Lemma 1. If h is ε(q)-collapsing then so is h|π, i.e., cAdv[h|π] ≤ cAdv[h].

Applied to h of the form h|τ , and noting that (h|τ )|π = h|π∧τ , we get the
following, which captures that disallowing more inputs can only decrease the
collapsing advantage.

Corollary 1. For any predicates π and τ , it holds that cAdv[h|π∧τ ] ≤ cAdv[h|τ ].
In particular, if π implies τ , i.e. π(x)=1 ⇒ τ(x)=1, then cAdv[h|π] ≤ cAdv[h|τ ].

For the other direction, disallowing some inputs has little effect if those are hard
to find. For the formal statement, we need the following definition.

Definition 3. A predicate π : X → {0, 1} is called β(q)-almost-certain if it
holds that Pr[π(X̄)=0] ≤ β(q) for any state ρX with complexity q.

Lemma 2. If π is β(q)-almost-certain then

cAdv[h](q) ≤ cAdv[h|π](q + cπ) +
√

β(q) · min
{√

2, 1+
√

β(q)
}

.

Proof. Let ρXY Z = ρXh(X)E be with complexity q. Consider the measurement
P = P0 + P1 given by P0 := M ◦ M[π = 0] and P1 := M[π = 1].10 By triangle
inequality and since M = P ◦ M, we have

δq

(
X,X̄ | Ȳ E

) ≤ δq

(
X,P(X) | Ȳ E

)
+ δq

(
P(X),P(X̄) | Ȳ E

)

≤ δ
(
X,P(X) | Ȳ E

)
+ δq

(
Xπ=1, X̄π=1 | Ȳ E

)
+ δq

(
X̄π=0, X̄π=0 | Ȳ E

)

≤
√

β(q) + β(q) + cAdv[h|π](q + cπ) ,

10 I.e., P first performs the measurement M[π], and then measures the resulting state
in the computation basis if (and only if) the measurement outcome was 0.
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where the second inequality is because δq ≤ δ, and by subadditivity and choice
of P, and the last inequality is by the “gentle-measurement lemma” (1), plus
footnote 5, given that Pr

[
P(X) = 1

]
= Pr

[
π(X̄) = 1

] ≥ tr(ρX) − β(q), plus the
observation that ρXπ=1Y E has complexity q + cπ. ��
We conclude with the following simple observation, which follows from the fact
that under the given assumptions, Pr[τ(X̄)=0] ≤ Pr[π ◦λ(X̄)=0] ≤ β(q + c(λ))
for any state ρX with complexity q.

Lemma 3. Consider predicates π : X ′ → {0, 1} and τ : X → {0, 1} and a total
function λ : X ′ → X such that π ◦ λ implies τ , i.e., π(λ(x))=1 ⇒ τ(x)=1. If
π is β(q)-almost-certain then τ is β(q + c(λ))-almost-certain.

3.3 Composability Properties

We show composability of the collapsing property under different means of com-
posing functions. In one or another form, some of these composability properties
are also present in previous work (see e.g. Lemma 27 in the full version of [5]
for the corresponding claim on nested composition); we cover them here for
completeness and since our notion differs in minor ways, but also in order to
demonstrate how succinctly these composability properties can be phrased and
proven using our formalism.

We take it as understood that for partial functions g and h, the considered
composition is defined whenever g and h are both defined on their respective
inputs.

Lemma 4 (Concurrent composition). For g : X → Y and h : W → Z, the
concurrent composition g‖h : X × W → Y × Z, (x,w) �→ (

g(x), h(w)
)

satisfies

cAdv[g‖h] ≤ cAdv[g] + cAdv[h] .

Proof. Let ρXWY ZE = ρXWg(X)h(W )E be with complexity q. Then, by triangle
inequality,

δq

(
XW, X̄W̄ |Ȳ Z̄E

) ≤ δq

(
XW,XW̄ |Ȳ Z̄E

)
+ δq

(
XW̄ , X̄W̄ |Ȳ Z̄E

)

= δq

(
W, W̄ |Z̄XȲ E

)
+ δq

(
X, X̄|Ȳ W̄ Z̄E

)

≤ cAdv[g](q) + cAdv[h](q) . ��
Lemma 5 (Nested composition). For g : X → Y and h : Y → Z, the nested
(or sequential) composition h ◦ g : X → Z, x �→ h

(
g(x)

)
satisfies

cAdv[h ◦ g](q) ≤ cAdv[g](q + cg) + cAdv[h](q + cg) .
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Proof. Let ρXZE = ρX(h◦g)(X)E be with complexity q. Then, ρXY ZE =
ρXg(X)ZE has complexity at most q + cg. Recalling that ρXZE is recovered from
ρXY ZE by applying E

inv[g]XY →X , we get

δq

(
X, X̄|Z̄E

) ≤ δq+cg

(
XY, X̄Y |Z̄E

)
(monotonicity)

≤ δq+cg

(
XY,XȲ |Z̄E

)
+ δq+cg

(
XȲ , X̄Y |Z̄E

)
(� inequality)

≤ δq+cg

(
Y, Ȳ |Z̄XE

)
+ δq+cg

(
X, X̄|Ȳ Z̄E

)
(X̄Y =X̄Ȳ by (2))

≤ cAdv[g](q + cg) + cAdv[h](q + cg) . ��
Lemma 6. For g : X → Y and h : W × X → Z, where the latter function is
such that h(·, x) is injective for any x ∈ X , the composition f : W ×X → Y ×Z,
(w, x) �→ (

g(x), h(w, x)
)

satisfies

cAdv[f ] ≤ cAdv[g] .

We emphasize that the statement includes the special case where W is empty,
i.e., h : X → Z, in which case the the injectivity requirement becomes void, so
that in particular the following holds.

Corollary 2 (Parallel composition). For g : X → Y and h : X → Z, the
parallel composition (g, h) : X → Y × Z, x �→ (

g(x), h(x)
)

satisfies

cAdv[(g, h)] ≤ min
{
cAdv[g], cAdv[h]

}
.

Proof (of Lemma 6). Let ρWXY ZE = ρWXg(X) h(W,X)E be with complexity q.
Then, using that W̄ X̄Z̄ = WX̄Z̄, which holds by (2) because w is a function of
x and z = h(w, x),

δq

(
WX, W̄X̄|Ȳ Z̄E

)
= δq

(
X, X̄|Ȳ Z̄WE

) ≤ cAdv[g](q) . ��
Lemma 7 (Disjoint union). For g : X → Y and h : W → Z with disjoint
domains and images, the disjoint union g � h : X ∪ W → Y ∪ Z, which maps
x ∈ X to g(x) and w ∈ W to h(w), satisfies

cAdv[g � h] ≤ cAdv[g] + cAdv[h] .

Proof. Let ρUV E = ρU(g � h)(U)E , and consider the “distinguishing function”
dis : X ∪ W → {0, 1} that maps x ∈ X to 1 and w ∈ W to 0. By our convention
on function domains being recognizable, dis has zero complexity. Furthermore,
ρUdisV E = ρM[dis](U)V E is of the form

ρUdisV E = ρUdis=0V E + ρUdis=1V E = ρXg(X)E + ρWh(W )E

and, by the disjointness of the images, ρUV̄ E = ρUdisV̄ E , and so it follows from
subadditivity that

δq

(
U, Ū |V̄ E

)
= δq

(
Udis, Ūdis|V̄ E

) ≤ δq

(
X, X̄|Ȳ E

)
+ δq

(
W, W̄ |Z̄E

)

which is bounded by cAdv[g] + cAdv[h]. ��
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4 Application I: Merkle-Damg̊ard and HAIFA

We demonstrate the usefulness of our framework. Here, we do so by (re)proving
the collapsing property Merkle-Damg̊ard, and by showing that the proof trivially
translates to the HAIFA variation [3]. In the subsequent section we analyze the
Sponge construction [1]. Our proofs argue entirely by means of decomposing the
iteration function under consideration into a few composition operations.

Here and in the remainder, for b ∈ {0, 1,⊥} and positive integer i ∈ N, we
write bi ∈ {0, 1,⊥}i for the i-fold concatenation (b, . . . , b) of b with itself.

4.1 The Construction

Let f : {0, 1}c × {0, 1}r → {0, 1}c be a (total) function, which will act as the
round function in the Merkle-Damg̊ard construction. For any positive integer i,
we consider the function IHi :

({0, 1}r
)i → {0, 1}c given recursively by

IHi(x1, . . . , xi) := f
(
IHi−1(x1, . . . , xi−1), xi

)
(3)

with IH0() := iv, some fixed string in {0, 1}c called the initialization vector. The
Merkle-Damg̊ard hash function is then formally given by11

MD :
({0, 1}r

)∗ → {0, 1}c, (x1, . . . , xi) �→ IHi(x1, . . . , xi).

For technical reasons, we extend the domain of IHi above to

Xi :=
{
(x1, . . . , xi) ∈ ({⊥} ∪ {0, 1}r

)i ∣
∣ xj =⊥ ⇒ x1 = · · ·=xj =⊥}

by setting IHi(⊥, . . . ,⊥) := iv and keeping the recursive definition (3) for xi �= ⊥.
We can now apply IHL to messages of size i < L blocks by pre-padding it with
⊥’s: IHi(x1, . . . , xi) = IHi+1(⊥, x1, . . . , xi) = · · · = IHL(⊥, . . . ,⊥, x1, . . . , xi),
and thus the restriction of MD to messages of block size 0 ≤ i ≤ L can be
expressed as MD≤L(x1, . . . , xi) = IHL(⊥, . . . ,⊥, x1, . . . , xi).

4.2 The Analysis

Using our framework, we will now prove the following security statement for
Merkle-Damg̊ard. The assumption on c(f) is simply for normalization, and for
f to be β-iv-preimage-resistant means, by definition, that the predicate 1f(y) �=iv,
which is 1 if y satisfies f(y) �= iv and 0 otherwise, is β-almost-certain.

Theorem 1. If f has complexity c(f) = 1, is ε-collapsing and β-iv-preimage-
resistant, then, for any integer L ≥ 0, the function MD≤L is γ-collapsing with

γ(q) = L · ε
(
q + 1

2L(L + 1)
)

+
√

2β(q + L) .

11 Since the bit size of the input to MD must be an integer multiple of r, the Merkle-
Damg̊ard construction usually comes with a padding that maps a string of arbitrary
size into a sequence of blocks of bit size r. We can safely ignore this since any injective
padding preserves the collapsing property by Lemma 5.
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For the purpose of the proof, we define for any i the predicate πi : Xi → {0, 1} as

πi(x1, . . . , xi) = 1 ⇐⇒ ∀ j ∈ {1, . . . , i} : xj = ⊥ ∨ IHj(x1, . . . , xj) �= iv ,

i.e., the bit is set unless the input is a non-trivial iv-preimage of some IHj . In
particular, if πi(x1, . . . , xi) = 0 then it must be that IHj(x1, . . . , xj) = iv for
some j with xj �= ⊥, and thus y :=

(
IHj−1(x1, . . . , xj−1), xj

)
satisfies f(y) =

IHj(x1, . . . , xj) = iv by (3). So, by Lemma 3, the following holds.

Lemma 8. If f is β-iv-preimage-resistant then πi is β(q+cIHi−1)-almost-certain.

Recall that IHi|πi
is the partial function that is defined only for the inputs

which satisfy πi. The heart of the proof of Theorem 2 is the following recursive
statement, which ensures that if IHi−1|πi−1 is collapsing then so is IHi|πi

. By
repeated application, we then get that IHL|πL

is collapsing, and since πL is
almost-certain, IHL is collapsing as well (by Lemma 2).

Proposition 1. For any positive integer i:

cAdv
[
IHi|πi

]
(q) ≤ cAdv

[
IHi−1|πi−1

](
q + cIHi−1

)
+ ε

(
q + cIHi−1

)
.

Proof. We let ˙IHi and π̇i be the respective restrictions of IHi and πi to the
domain Ẋi := Xi \ {⊥i}. Then, we see that IHi|πi

is the disjoint union of the
trivial function {⊥i} → {iv} and ˙IHi|π̇i

; the crucial observation here is that the
image of ˙IHi|π̇i

is disjoint with {iv}. Therefore, by Lemma 7,

cAdv
[
IHi|πi

]
(q) ≤ cAdv

[ ˙IHi|π̇i

]
(q) ≤ cAdv

[ ˙IHi|πi−1

]
(q) ,

where the latter inequality is by Lemma 1, given that π̇i implies πi−1.12 Fur-
thermore, since

˙IHi(x1, . . . , xi) = f
(
IHi−1(x1, . . . , xi−1), xi

)

on its domain Ẋi, i.e., it is the nested composition of f with the concurrent
composition of IHi−1 and the identity function xi �→ xi, Lemma 4 and 5 imply

cAdv
[ ˙IHi|πi−1

]
(q) ≤ cAdv

[
IHi−1|πi−1

](
q + cIHi−1

)
+ cAdv

[
f
](

q + cIHi−1

)
,

which completes the proof. ��
Proof (of Theorem 1). IH0|π0 = IH0 is trivially 0-collapsing. For convenience,
we let ni be the sum of integers ni := 1 + 2 + · · · i = 1

2 i(i + 1). Assuming by
induction that cAdv[IHi|πi

](q) ≤ i · ε(q + ni−1), we get from Proposition 1 that

cAdv
[
IH1

i+1|πi+1

]
(q) ≤ ε(q + i) + i · ε(q + ni−1 + i) ≤ (i + 1) · ε(q + ni) ,

using that cIHi
= i · cf = i and ni−1 + i = ni. Hence, the induction assumption

holds for all i, and

cAdv
[
IHL

]
(q) ≤ cAdv

[
IHL|πL

]
(q + L) +

√
2β(q + L) (Lemma 2 & 8)

≤ L · ε
(
q + L + nL−1

)
+

√
2β(q + L) . ��

12 Here, we understand πi−1 as πi−1 : Ẋi → {0, 1}, (x1, . . . , xi) �→ πi−1(x1, . . . , xi−1).
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4.3 Instantiation with a Random Oracle

If f is a random oracle, which formally means that we consider the oracle O that
is a uniformly random function {0, 1}c × {0, 1}r → {0, 1}c and f is the trivial
oracle function that outputs whatever O outputs on the given input, then, as
shown by Unruh in [5], f is O

(√
q3/2c

)
-collapsing.13 Furthermore, by the results

on the hardness of quantum search from [4, Theorem 1], applied to the oracle
function F : {0, 1}c ×{0, 1}r → {0, 1} given by F (y) = 1 if and only if f(y) = iv,
we immediately get that f is 8(q+1)2/2c -iv-preimage-resistant. As such, we obtain
that for messages of block-size at most L, the Merkle-Damg̊ard hash function
MD≤L is ε-collapsing with

ε(q) = O
(
L

√
(q + L2)3/2c

)
.

As far as we understand, the results of [6] imply a collapsing advantage of
O

(
L

√
(q + L)3/2c

)
, which is slightly better because of the L2 that we have

in our bound, but this is insignificant in typical settings where q � L.

4.4 HAIFA

Along the very same lines as for the original Merkle-Damg̊ard construction, we
can easily show that also HAIFA, a variant proposed by Biham and Dunkel-
mann [3], is collapsing, under the same assumptions. HAIFA works similarly to
Merkle-Damg̊ard except that

IHi(salt, x1, . . . , xi) := f
(
salt, IHi−1(salt, x1, . . . , xi−1), xi, i

)

i.e., the round function takes as additional inputs the round number i and some
salt (that is the same for every round).14 Proposition 1 immediately extends to
HAIFA; the only thing that changes in the proof is that f becomes fi = f(·, ·, ·, i),
which is collapsing if f is, and we also have to use Corollary 2 to argue that the
parallel composition of (salt, x1, . . . , xi) �→ salt with the concurrent composition
of IHi−1 and xi �→ xi stays collapsing. The collapsing property of HAIFA then
follows easily by inductively applying this variation of Proposition 1 as in the
proof of Theorem 1.

4.5 Merkle-Damg̊ard Without iv-Preimage-Resistance

We can also recover Unruh’s original result on MD, which does not require f to
be iv-preimage-resistant but instead restricts the set of inputs to be suffix-free.
13 Even though our definition of the collapsing property differs slightly from the defi-

nition in [5], these differences disappear in such asymptotic statements, as discussed
in Sect. 3. See also Appendix C.

14 For the purpose of collisions and the collapsing property, we can think of the salt
simply as part of the input: we do not want collisions even for different choices of
the salt.
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For that, given a fixed integer L > 0 and arbitrary 0 ≤ i ≤ L, consider the map
IH∗

i given by

IH∗
i : (x1, . . . , xL) �→ (

IHi(x1, . . . , xi), xi+1, . . . , xL

)
,

defined on the considered suffix-free inputs of size at most L blocks, left-padded
with ⊥’s, and we argue the following variant of Proposition 1: if IH∗

i |xi �=⊥ is
collapsing then IH∗

i+1|xi+1 �=⊥ is collapsing too (for i < L). This variant of Propo-
sition 1 follows from the observation that the latter is obtained as the nested
composition IH∗

i+1|xi+1 �=⊥ = (f‖id) ◦ IH∗
i |xi+1 �=⊥ of IH∗

i |xi+1 �=⊥ with the concur-
rent composition of f and the identity id acting on xi+2, . . . , xL. Furthermore,

IH∗
i |xi+1 �=⊥(x1,..., xL) =

{
IH∗

i |xi �=⊥(x1,..., xL) =
(
IHi(x1,..., xi), xi+1,..., xL

)
if xi �= ⊥(

iv, xi+1, xi+2,..., xL

)
if xi = ⊥

and therefore IH∗
i |xi+1 �=⊥ is the disjoint union of IH∗

i |xi �=⊥ and the func-
tion (⊥i, xi+1, . . . , xL) �→ (iv, xi+1, xi+2, . . . , xL). Here, we are using the suffix-
freeness of the considered inputs x1, . . . , xL; this ensures that not only the
domains but also the images of the two functions are disjoint: if (⊥i, xi+1, . . . , xL)
is “allowed” then (x1, . . . , xL) is not unless x1 up to xi are all ⊥. The above vari-
ant of Proposition 1 then follows from the preservation of the collapsing property
under the different compositions, and then, by inductively applying this variant
of Proposition 1, we obtain that IH∗

L|xL �=⊥ is collapsing, and thus MD≤L is,
given that the input is from a suffix-free set.

5 Application II: The Sponge

Here, we apply our framework to the Sponge construction [1]. As one can see,
we follow the exact same blueprint as in Sect. 4.

5.1 The Construction

Let f = (f0, f1) : {0, 1}r ×{0, 1}c → {0, 1}r ×{0, 1}c be a (total) function, which
will act as the round function in the Sponge construction. For any positive integer
i, consider the function

Si = (S0
i , S1

i ) :
({0, 1}r

)i → {0, 1}r × {0, 1}c

given recursively by

Si(x1, . . . , xi) := f
(
S0

i−1(x1, . . . , xi−1) ⊕ xi, S
1
i−1(x1, . . . , xi−1)

)
(4)

with S0() := 0. The sponge function (with s rounds of “squeezing”) is then
formally given by15

Sponge[s] :
({0, 1}r)∗ → ({0, 1}r)s

(x1,..., xi) �→ (
S0
i (x1,..., xi), S

0
i+1(x1,..., xi, 0

r),..., S0
i+s−1(x1,..., xi, 0

r,..., 0r)
)
.

15 Like for Merkle-Damg̊ard, we can safely ignore the padding here.
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For technical reasons, we extend the domain of Si above to

Xi :=
{
(x1, . . . , xi) ∈ ({⊥} ∪ {0, 1}r

)i ∣
∣ xj =⊥ ⇒ x1 = · · ·=xj =⊥}

i.e., to strings that may have ⊥-prefixes. We do so by setting

Si(⊥, . . . ,⊥) := 0r+c

and keeping the recursive definition (4) for xi �= ⊥. This extension allows
us to apply SL to messages (x1, . . . , xi) ∈ ({0, 1}r)i of size i < L blocks
by pre-padding it with ⊥’s: Si(x1, . . . , xi) = Si+1(⊥, x1, . . . , xi) = · · · =
SL(⊥, . . . ,⊥, x1, . . . , xi), and thus the restriction of Sponge[s] to messages of
block size 1 ≤ i ≤ L can be expressed as:

Sponge[s]≤L(x1,..., xi) =
(
S0

L(⊥L−i, x1,..., xi), S0
L+1(⊥L−i, x1,..., xi, 0r),...

)
(5)

where we note that we insist here on i ≥ 1, i.e., the message is non-empty.

5.2 The Analysis

Here, we prove the following. Also here, the assumption on c(f) is simply for
normalization, and for f1 to be β-zero-preimage-resistant means, by definition,
that the predicate 1f1(y) �=0c is β-almost-certain.

Theorem 2. If f has complexity 1, and f0 and f1 are ε0- and ε1-collapsing,
and f1 is β-zero-preimage-resistant, then, for any integer L ≥ 0, the Sponge
function Sponge[s]≤L is γ-collapsing with

γ(q) ≤ ε0(q + 2L − 1) + (L − 1) · ε1
(
q + 1

2L(L+1)
)

+
√

2β(q + L) .

For the purpose of the proof, we define for any i the predicate πi : Xi → {0, 1} as

πi(x1, . . . , xi) = 1 ⇐⇒ ∀ j ∈ {1, . . . , i} : xj = ⊥ ∨ S1
j (x1, . . . , xj) �= 0c ,

i.e., the bit is set unless the input is a non-trivial zero-preimage of some S1
j .

In particular, if πi(x1, . . . , xi) = 0 then S1
j (x1, . . . , xj) = 0c for some j with

xj �= ⊥, and thus y :=
(
S0

j−1(x1, . . . , xj−1) ⊕ xj , S
1
j−1(x1, . . . , xj−1)

)
satisfies

f1(y) = S1
j (x1, . . . , xj) = 0c by (4). Thus, by Lemma 3, the following holds.

Lemma 9. If f1 is β-zero-preimage-resistant then πi is β(q + cSi−1)-almost-
certain, and the same holds for π̇i, defined as below.

For any i, let Ṡb
i and π̇i be the respective restrictions of Sb

i and πi to the domain
Ẋi := Xi \ {⊥i}. The heart of the proof of Theorem 2 is the following recursive
statement, which ensures that if S1

i−1|πi−1 is collapsing then so are Ṡ0
i |π̇i

and
S1

i |πi
. By repeated application, we then get that Ṡ0

L|π̇L
is collapsing, and since

π̇L is almost-certain, Ṡ0
L is collapsing as well (by Lemma 2).
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Proposition 2. For any positive integer i:

cAdv
[
Ṡ0

i |π̇i

]
(q), cAdv

[
S1

i |πi

]
(q) ≤ cAdv

[
S1

i−1|πi−1

](
q + cSi−1

)
+ εb

(
q + cSi−1

)
.

Proof. We note that S1
i |πi

is the disjoint union of the trivial function {⊥i} →
{0c} and Ṡ1

i |π̇i
; the crucial observation here is that the image of Ṡ1

i does not
contain 0c. Therefore, by Lemma 7,

cAdv
[
S1

i |πi

]
(q) ≤ cAdv

[
Ṡ1

i |π̇i

]
(q) ≤ cAdv

[
Ṡ1

i |πi−1

]
(q) .

where the latter inequality is by Lemma 1, given that π̇i implies πi−1.16 Fur-
thermore, since

Ṡ1
i (x1, . . . , xi) = f1

(
S0

i−1(x1, . . . , xi−1) ⊕ xi, S
1
i−1(x1, . . . , xi−1)

)

on its domain Ẋi, i.e., it is a nested composition of f1 with a function that is
obtained as a composition as considered in Lemma 6, Lemmas 5 and 6 imply
that

cAdv
[
Ṡ1

i |πi−1

]
(q) ≤ cAdv

[
S1

i−1|πi−1

](
q + cSi−1

)
+ cAdv

[
f b

](
q + cSi−1

)
,

which was to be proven. The reasoning for Ṡ0
i |π̇i

is exactly as for Ṡ1
i |π̇i

above. ��
Proof (of Theorem 2). S1

0 |π0 = S1
0 is trivially 0-collapsing. For convenience, we

let ni be the sum of integers ni := 1+2+· · · i = 1
2 i(i+1). Assuming by induction

that cAdv[S1
i |πi

](q) ≤ i · ε1(q + ni−1), we get from Proposition 2 that

cAdv
[
S1

i+1|πi+1

]
(q) ≤ ε1(q + i) + i · ε1(q + ni−1 + i) ≤ (i + 1) · ε1(q + ni) ,

using that cSi
= i · cf = i and ni−1 + i = ni. Hence, the induction assumption

holds for all i, and

cAdv
[
Ṡ0

L

]
(q) ≤ cAdv

[
Ṡ0

L|π̇L

]
(q + L) +

√
β(q + L)

≤ ε0(q + 2L − 1) + cAdv
[
S1

L−1|πL−1

]
(q + 2L − 1) +

√
2β(q + L)

≤ ε0(q + 2L − 1) + (L − 1) · ε1
(
q + nL

)
+

√
2β(q + L) .

where the first inequality is by Lemmas 2 and 9, and the second by Proposition 2.
The claim on Sponge[s]≤L follows now from (5) and Corollary 2. ��

5.3 Instantiation with a Random Oracle

If f = (f0, f1) is a random oracle, then it follows easily from the work of
Unruh in [5] on the collapsing property of the random oracle that f0 and f1 are
respectively O

(√
q3/2r

)
- and O

(√
q3/2c

)
-collapsing. Furthermore, as pointed

out in [2], by the results on the hardness of quantum search from [4, Theorem 1]
to the oracle function F : {0, 1}r × {0, 1}c → {0, 1} given by F (y) = 1 if and

16 Here, we understand πi−1 as πi−1 : Ẋi → {0, 1}, (x1, . . . , xi) �→ πi−1(x1, . . . , xi−1).
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only if f1(y) = 0c, we immediately get that the function f1 is 8(q + 1)2/2c-zero-
preimage-resistant. Therefore, we get that for messages of block-size at most L,
the sponge function Sponge[s]≤L, with the round function modeled by a random
oracle, is ε-collapsing with

ε(q) = O
(√

(q + L)3/2r + L
√

(q + L2)3/2c
)
.

This matches with single-execution-variant (i.e. t = 1) of Theorem 33 of [2],
except for the square in the L2 term. When considering a t-fold parallel com-
position Sponge[s]≤L‖ · · · ‖Sponge[s]≤L, it follows immediately from Lemma 6
that the collapsing parameter grows linearly with t, i.e., as

O
(
t
√

(q + L)3/2r + tL
√

(q + L2)3/2c
)

,

which is comparable to Theorem 33 of [2] with a general t, which states a col-
lapsing advantage of

O
(
t
√

(q + tL)3/2r + tL
√

(q + tL)3/2c
)

.

6 Conclusion

We consider the quantum collapsing property of classical hash functions, which
replaces the notion of collision resistance in the presence of quantum attacks,
and we propose a formalism and a framework that enables to argue about the
collapsing property of hash domain extension constructions simply by means of
decomposing the iteration function under consideration into elementary com-
position operations. In particular, our framework allows us to argue by purely
classical means that hash functions are secure against quantum attacks.

We demonstrate this proof methodology on several examples. For Merkle-
Damg̊ard and the Sponge construction, we recover what has already been proven
in [2,6], up to insignificant differences, whereas our result for HAIFA is, strictly
speaking, new. It is well possible that the respective proof provided in [6] extends
to HAIFA as well; however, this is cumbersome to verify (we challenge the reader
to do so). With our approach, on the other hand, it is trivial to see that our proof
for Merkle-Damg̊ard extends to this variation: the only thing that needs to be
verified is that the modified iteration function still decomposes into composition
operations that are covered by our framework.

We think it is fair to say that, compared to previous work which proves that
some hash domain extension constructions are collapsing, our approach gives
much more insight into why they are collapsing. Furthermore, our framework
should be a helpful tool when designing new hash functions that are meant to
withstand quantum attacks.

Last but not least, from a conceptual perspective, we find it particularly
interesting to see that our simplified proofs are the result of departing from the
common methodology of proving a conditional security statement by means of
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an algorithmic reduction. Instead of assuming an attack against the construc-
tion and then building an attack against the underlying component, we argue
directly—and in some sense “algebraically”—that if the underlying component
is secure then so is the construction.

A Randomized Functions and CPTN Maps

In this work, we will consider two variants of the notion of a randomized func-
tion, and our techniques will apply to both. Formally, a randomized function is
a function f : R×X → Y for a fixed choice of the (finite) set R, and it is under-
stood that r ∈ R is chosen uniformly at random once-and-for-all. Informally, we
think of such a randomized function as a function f : X → Y that produces its
output f(x) = f(r, x) for any input x dependent on some “global randomness”
r, which is the same for all inputs and all randomized functions considered at a
time.

Informally, the two variants we consider in this work differ in the way the
randomness r is accessed by the function. In one case, r is explicitly given as
input to the function f (or to the algorithm that computes f , if you prefer);
one then typically speaks of keyed (or seeded) functions. In the other case, r
is not explicitly given to f but instead, f makes oracle queries to a designated
randomized function O, called the oracle, which computes every reply dependent
on r. This latter case is typically referred to as an oracle function.

We point out that from a mathematical perspective, there is no distinction yet
between a keyed and an oracle function, in that both are merely functions that
additionally act on some global randomness r. The way the two variants differ
formally is by the way we capture complexity: for keyed functions we consider
the computational complexity whereas for oracle functions we consider the query
complexity.17 We address this in more detail in the subsequent section.

In line with the above, we can also consider the notion of a randomized
CPTN map T, which is a CPTN map whose action on a quantum state depends
on the global randomness r, and we can distinguish between keyed CPTN maps
that have direct access to r, and oracle CPTN maps that have quantum oracle
access to a designated randomized function O : R × U → V. Here, “quantum
oracle access” means that T can query O in superposition, i.e., it may ask to
have the unitary |u〉|v〉 �→ |u〉|v + O(r, u)〉 applied to any state (of appropriate
dimension). Again, the formal distinction between the two variants is in terms
of the complexity measure.

We point out that by considering randomized CPTN maps T (of either flavor)
that act on the empty system with trivial one-dimensional state space, we may
also speak of randomized states (of either flavor) as the states ρ produced as
ρ = T(1) for such a randomized CPTN map. We take it as understood here
that the description of such a randomized state includes the dependency on the
randomness r.

17 For the latter, one could actually consider both simultaneously.
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B Complexity

We introduce here the abstract notion of complexity that we consider in this work
and discuss below the two main instantiations that are relevant for us. In the
context of randomized functions f : X → Y, we consider a map that assigns to
any such function a non-negative integer c(f), called the complexity of f , which
is meant to express how hard it is to “compute” f . We assume that our abstract
notion satisfies natural properties, like that the identity function on any set has
zero complexity, and that it behaves well under composition, so that

c(g ◦ f) ≤ c(f) + c(g) and c(f‖g) ≤ c(f) + c(g)

for any f and g with appropriate domain/range, where g ◦ f : x �→ g
(
f(x)

)

and f‖g : (x,w) �→ (
f(x), g(w)

)
. For simplicity, we additionally assume that

certain “simple” functions have zero complexity. These are: constants, copying,
deleting, swapping, checking equality, as well as bit-wise XOR. Also, to avoid
certain technical complications, once c is fixed we only consider randomized
functions f : X → Y for which X can be recognized with zero complexity.18 For
lighter notation, we may also write cf instead of c(f).

We also consider a notion of complexity for randomized CPTN maps, which,
as above, assigns a non-negative integer c(T) to any randomized CPTN map T.
Similarly to above, we assume that the identity I has zero complexity, that

c(S ◦ T) ≤ c(T) + c(S) and c(T ⊗ S) ≤ c(T) + c(S) ,

and that certain “simple” maps have zero complexity, namely: the preparation of
states in the computational basis, measurements (with or without post-selection)
in the computational basis, partial traces, and swapping registers. On top, we
assume the complexity notion for CPTN maps to be consistent with that of
functions, in that we require that

c
(
E[f ]

)
, c

(
E

inv[f ]
)
, c

(
M[f ]

)
, c

(
M[f =y]

) ≤ c(f)

where the latter two actually follow from the first, given that partial traces and
measurements in the computational basis are “for free”.

Given such a notion of complexity (for randomized CPTN maps), we can
define the complexity of a randomized state ρ as c(ρ) := c(T) where T is the
randomized CPTN map with minimal complexity that produces ρ as ρ = T(1).
It obviously holds that c

(
T(ρ)

) ≤ c(ρ) + c(T) for any randomized CPTN map.
A last requirement we pose onto our abstract complexity measure c is that
c
(
ρ +

(
1−tr(ρ)

)
σ
) ≤ c(ρ) + c(σ) for all randomized states.19

18 Meaning that for any X ′ ⊃ X , the function X ′ → {0, 1} that maps x ∈ X to 1 and
x ∈ X ′ \ X to 0 has zero complexity. This is trivially satisfied for any function f in
case of cquery (given in Example 2).

19 This is in line with our interpretation of tr(ρ) < 1 as capturing an “abort” of the
preparation process.
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Example 1. An important class of examples for such a complexity measure arises
by considering keyed functions and keyed CPTN maps and writing them as
circuits that get the global randomness as additional input. The complexity can
then be specified to be the minimal number of gates (of certain types) of any
such circuit representation. For instance, writing any randomized function f as
a binary circuit with AND and XOR gates, one may define ccomp(f) to be the
minimal necessary number of AND gates.20 Similarly for randomized CPTN
maps, where one could for instance count the number of gates (or the number
of non-Clifford gates) with respect to a fixed universal set of gates. These kinds
of notions of complexity are referred to as computational complexity.

Example 2. Another example that is relevant for us is the query complexity cquery

for oracle functions and oracle CPTN maps, which counts the number of (quan-
tum) oracle queries that the function or CPTN map makes to the oracle O.

We note that this abstract treatment of complexity allows us to explicitly
cover computational complexity and query complexity in one go, using one lan-
guage. Also, all results expressed using this language do explicitly not depend
on the technical details of any model of computation. Related to the latter, this
approach allows us to reason about functions (and CPTN maps etc.), which are
unambiguously defined objects that do not depend on any model of computation.

C On the Definitions of the Collapsing Property in [5,6]

As already mentioned in Sect. 3, the definition of the collapsing property intro-
duced by Unruh comes in a few different variations in [5,6], which we want to
briefly recall here, and we discuss how they compare to our definition. Some
differences (like allowing non-normalized states), which have some minor quan-
titative impact, have already been discussed in Sect. 3; here, we focus on some
technical differences that are orthogonal to those.

The definition originally proposed in [5, Definition 20] (respectively Defini-
tion 23 in the full version) is of asymptotic nature and for a deterministic func-
tion h (that depends on a security parameter κ): it requires that every (uniform)
quantum-polynomial time adversary has a negligible collapsing advantage. Note
that it makes sense to consider a deterministic hash function h in this case since
a uniform model of computation is considered, i.e., the adversary that has a col-
lision hard-wired into its code (for any κ) is not allowed. In the formal statement
on the collapsing property of a random oracle [5, Theorem 31], which bounds the
advantage by O(q3/size of the range), an obvious variation (in terms of oracle
algorithms, and with the randomness also over the oracle’s random choices) of
this definition is then (implicitly) considered. It also remains implicit that the
bound (and in particular the hidden constant) is independent of the running time
of the adversary; indeed, the proof considers “q-query adversaries”, which have
bounded query complexity but (possibly) unbounded running time. As such, the

20 Remember that we want XOR’s to be “for free”.
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bound O(q3/size of the range) carries over to our non-asymptotic definition of
the collapsing property (with the complexity measure being the query complex-
ity), with the understanding that the bound includes a hidden constant and only
applies for a large enough range of h (compared to q).

In terms of comparing Unruh’s original definition [5, Definition 20] with our
Definition 2, though being similar in spirit (up small differences as discussed in
Sect. 3), they are technically incomparable: an asymptotic definition as [5, Defi-
nition 20] makes no meaningful statement about a fixed instance, while, on the
other hand, our non-asymptotic definition is meaningless for a deterministic hash
function, for instance. If we consider an asymptotic variant of our Definition 2,
which would ask cAdv[hκ](q(κ)) to be negligible in the security parameter κ for
any polynomially bounded function q, we get a non-uniform (and thus stronger)
variant of [5, Definition 20]. It is easy to see that all our results directly carry
over to such an asymptotic variant.

In [6, Definition 8], Unruh also considers a non-asymptotic “concrete secu-
rity” variant of his original definition, which considers a keyed hash function
(using our terminology) and defines the “collapsing advantage” of an arbitrary
but fixed adversary in the obvious way, as the advantage of this adversary distin-
guishing the two games.21 For a function h being ε(q)-collapsing according to our
definition thus immediately implies that the “collapsing advantage” according to
[6, Definition 8] is bounded by ε(q) (up to a small constant factor, as explained
in Sect. 3) for any adversary that is bounded by q, and vice versa. In that sense,
our Definition 2 and Unruh’s “concrete security” variant [6, Definition 8] are
equivalent (again, up to negligible quantitative differences).

However, formalized as in [6], i.e., not as a security property of h but as a
property of an arbitrary but fixed adversary that is attacking h, security state-
ments are bound to be in reductionistic form. Indeed, all the concrete-security
statements in [6] are like:

“Let A be a q-time (or query) adversary with collapsing advantage ε
against function h, then there exists a 2q-time (or query) adversary A′

with collapsing advantage ε2 against h′ ”

where we consider concrete example functions for the “security loss”. On the
other hand, our definition allows us to express such a statement simply as:

“If the function h′ is ε′(q′)-collapsing then h is
√

ε′(2q)-collapsing”

or even more compactly as

cAdv[h](q) ≤
√

cAdv[h](2q) .

Again, these statements are equivalent (up to the minor quantitative differences
discussed in Sect. 3), so it is merely a matter of taste what sort of language one
prefers.
21 As a matter of fact, [6, Definition 8] considers a t-fold parallel repetition of the game,

where t is an additional parameter of the definition. We ignore this for the discussion
here, recalling that we obtain immediately a similar variant of our definition by means
of concurrent composition.
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A more crucial difference is that we not only can state but also prove these
kinds of security claims “in the forward direction”, i.e., not via the counter
position of assuming an attacker A that breaks the target primitive and turning
it into an attacker A′ that breaks something else. Indeed, we have “algebraic”
proofs that avoid reasoning about algorithms altogether. On the other hand, the
proofs in [2,5,6] are typically constructive, in that the adversary A′ is explicitly
constructed from the adversary A. One can then for instance easily check that
A′ does not rely on any non-uniform auxiliary information, and thus that the
reductions are uniform. Our proofs do not spell out the reductions; however,
if desired, they could still be extracted by backtracking the proofs all the way
down to the basic properties of the pseudometric δq upon which the proofs rely,
and which all have simple—uniform—reduction proofs. This ensures that also
our implicitly defined reductions are uniform.
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Abstract. A traitor tracing scheme is a public key encryption scheme
for which there are many secret decryption keys. Any of these keys can
decrypt a ciphertext; moreover, even if a coalition of users collude, put
together their decryption keys and attempt to create a new decryption
key, there is an efficient algorithm to trace the new key to at least one
the colluders.

Recently, Goyal, Koppula and Waters (GKW, STOC 18) provided
the first traitor tracing scheme from LWE with ciphertext and secret key
sizes that grow polynomially in log n, where n is the number of users. The
main technical building block in their construction is a strengthening of
(bounded collusion secure) secret-key functional encryption which they
refer to as mixed functional encryption (FE).

In this work, we improve upon and extend the GKW traitor tracing
scheme:

– We provide simpler constructions of mixed FE schemes based on
the LWE assumption. Our constructions improve upon the GKW
construction in terms of expressiveness, modularity, and security.

– We provide a construction of attribute-based traitor tracing for all
circuits based on the LWE assumption.

1 Introduction

A traitor tracing scheme [14] is a public key encryption scheme for which there
are many secret decryption keys, so that any of these keys could decrypt the
ciphertext. In addition, if a coalition of users collude to create a new decryption
key, then there is an efficient algorithm to trace the new key to (at least one of)
its creators.
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Recently, Goyal, Koppula and Waters (GKW) [20] constructed the first
traitor tracing scheme from standard assumptions with ciphertext and secret
key sizes that grow polynomially in log n, where n is the number of users. The
security of the scheme relies on the polynomial hardness of the LWE assumption
with sub-exponential modulus-to-noise ratio. The main technical building block
in their construction is a strengthening of bounded-collusion-secure secret-key
functional encryption which they refer to as mixed functional encryption (mixed
FE), and the bulk of the paper (over 60 pages) is dedicated to constructing
mixed FE for branching programs.

Mixed FE. A functional encryption (FE) scheme allows us to encrypt a program
f and create secret keys for inputs x, so that given an encryption of f and a key
for x, we learn f(x) and nothing else about f . In this work, we focus on secret-
key FE schemes where encryption requires the master secret key, and security
is guaranteed for an a-priori bounded number of ciphertexts, but an unbounded
number of secret keys. A mixed FE scheme is a secret-key FE scheme with an
additional “restricted” public-key encryption algorithm that enables encrypting
only the “all accept” program; roughly speaking, we can obliviously sample
encryptions of the “all accept” programs without knowing the master secret key.

This Work. In this work, we improve upon and extend the GKW traitor tracing
scheme:

– We provide simpler and more modular constructions of mixed FE schemes
based on the LWE assumption. Our constructions improve upon the GKW
construction in terms of both expressiveness and security. Our first construc-
tion obtains mixed FE for all circuits and with adaptive security, whereas
the prior construction [20] only achieves selective security for branching pro-
grams. Our second construction achieves selective security for all circuits with
tighter overhead growth for the number of secret key ciphertexts generated.

– We provide a construction of attribute-based traitor tracing schemes for all
circuits based on the LWE assumption.

1.1 Technical Overview

In the technical overview, we focus on our simpler constructions of mixed FE
schemes. See Fig. 1 for a brief summary. In addition to the algorithms (Setup,
SKGen, SK-Enc, Dec) in a standard secret-key FE scheme, a mixed FE scheme
has an additional PK-Enc algorithm that is able to encrypt “all-1” program
without knowing the master secret key.

Both of our new constructions work for any arbitrary polynomial bound t
on the number of ciphertexts. The GKW construction focused on the setting
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Construction Function class blow-up security
[20 CN] 1 O(t2) selective
Lockable obfuscation + [18] poly-size circuits O(t4) adaptive
Lockable obfuscation + [4] poly-size circuits O(t2) selective
Key-homomorphic PCPRF poly-size circuits O(t) selective

Fig. 1. Summary of our t-CT mixed FE schemes. PCPRF refers to private constrained
PRF. Here, selective means that all t ciphertexts queries come before the (unbounded)
secret key queries, whereas adaptive allows arbitrary interweaving of these queries. Note
that “FULL-SIM security” in [4] correspond to selective security here (in Definition 2.2
for FULL-SIM in the paper, secret keys in the security game correspond to ciphertexts
in our setting). As noted earlier, the work of [20] proved security for the case of t = 2
and the more general case with O(t2) blowup was only sketched.

t = 2 which already suffices for traitor-tracing, and provided a brief sketch for
extending the construction to arbitrary t but without any analysis.1

We provide two constructions achieving incomparable guarantees, based on
two natural and complementary approaches:

1. The first construction shows how to generically transform a t-CT secret-key
functional encryption (SKFE) into a t-CT mixed FE using lockable obfusca-
tion (a.k.a. “compute-and-compare obfuscator”) [19,28], which can be based
on LWE. This construction extends the coverage of mixed FE in [20] from
branching programs to all circuits. It also carries over the adaptivity achieved
by the underlying t-CT SKFE schemes (e.g. in [2,4,18]2) to the final mixed
FE scheme. A t-CT SKFE schemes can be constructed from any one-way
function [18,27]; thus, this construction shows how to leverage lockable obfus-
cation to add a “restricted public-key mode” to any t-CT SKFE scheme and
give us a mixed-FE scheme. The construction and proof fit in a little over a
page.

2. The second construction starts from the observation that the LWE-based
private-constrained PRFs in [11–13] already give a 1-CT mixed FE scheme.
Furthermore, we show how to construct a t-CT mixed FE in a natural way
leveraging the key-homomorphic property of the private constrained PRFs.
Therefore we get a construction of t-CT mixed FE for circuits for which
security follows directly from the key-homomorphic PCPRF.

1 In this work we use a simulation based definition of security where t refers to the
(maximum) total number of ciphertexts seen by the attacker. The work of [20] uses an
indistinguishability notion of security where they refer to the number of encryption
oracle queries given to the attacker in addition to the challenge ciphertext. Roughly,
a t ciphertext scheme in our definition corresponds to a t − 1 query scheme in [20].

2 These prior works construct 1-CT t-SK public-key FE scheme, which implies a
many-CT t-SK public-key FE scheme, and therefore a many-CT, t-SK secret-key
FE scheme. By flipping the ciphertexts and secret keys, we obtain a t-CT, many-SK
SKFE.
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The blow-up of our t-CT mixed-FE is only O(t). Previously for simulation-
secure secret-key FE with bounded collusion, the blow-up is at least O(t2)
[2,4] (let us remark that these constructions are public-key FE schemes). We
sketch this construction and proof later in the introduction, again in a little
over a page.

1.2 Mixed FE from Lockable Obfuscation

Our first construction adds lockable obfuscation on top of a plain t-CT SKFE
to produce the public-key ciphertext, i.e. let the public-key ciphertext be the
dummy obfuscated programs that always evaluate to “⊥”.

In more detail, we construct the mixed-FE scheme as follows:

– Setup: Choose a master secret key (msk) for the SKFE.
– SKGen(msk, x): use the SKFE msk to generate skx.
– SK-Enc(msk, f): sample a random “lock” α, then run the SKFE secret-key

encryption for a function Hα,f which computes the following multiple-output-
bit functionality

Hα,f (x) =

{
α if f(x) = 0
0 else

.

Then, produce the lockable obfuscation Obf[PFE.ctH , α] as the ciphertext,
where PFE.ctH (Y ) parses Y as a SKFE secret key and computes the SKFE
decryption functionality.

– PK-Enc: Use the simulator of lockable obfuscation to get a dummy obfuscated
program of appropriate size. The program outputs “⊥” on every input.

– Dec: Run the obfuscated program, if it outputs “⊥” then output 1, else out-
put 0.

We need mixed-FE to satisfy two security conditions. First, an adversary’s
view given polynomially many secret keys for inputs x, and at most t (secret
key) ciphertexts for functions f1, . . . , ft can be simulated given only the func-
tion evaluations fi(x) for all x. This property, called functional indistinguisha-
bility, follows directly from the security of the SKFE. Indeed, we do not rely
on obfuscation security here. The second security property, called secret/public
mode indistinguishability, says that a public-key encryption and a secret key
encryption of the trivial branching program f (which outputs 1 on all inputs)
are computationally indistinguishable. Furthermore, this should hold even given
polynomially many SKFE keys and t − 1 SKFE ciphertexts for arbitrary func-
tions. This property follows from a combination of symmetric-FE security and
lockable obfuscation, by first changing the symmetric-FE ciphertext from Hα,f

to the “all ⊥” function, then changing real obfuscation to simulated using the
lockable obfuscation security.
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1.3 Mixed FE from Private Constrained PRFs

A constrained PRF is a standard PRF with the additional property that given
a program M and a PRF key K, we can create a constrained key that allows
someone to evaluate the PRF at inputs x where M(x) = 0 while randomizing
the outputs of all other inputs. A private constrained PRF (PCPRF) satisfies
the additional requirement that the constrained key hides M (in the appropriate
sense). We will work with a strengthening of this requirement, which says that
given M along with a sequence of inputs {xi} such that M(xi) = 1, the joint
distribution of the constrained key for M along with the PRF evaluations at
{xi} are pseudorandom.

We show how to construct a 1-CT mixed-FE scheme starting from any
PCPRF. We then show how to “boost” this basic construction to a t-CT
mixed-FE, assuming that the underlying PCPRF is also key-homomorphic [5],
namely for all K,K ′, x, we have PRFK+K′(x) ≈ PRFK(x) + PRFK′(x). Our
schemes achieve simulation-based security, and support functions computable
by polynomial-size circuits.

1-CT Scheme. We observe that a PCPRF scheme already gives a 1-CT mixed
FE scheme:

– Setup: Choose a master secret key msk for the PCPRF.
– SKGen(msk, x): A secret key for x is a PRF evaluation at x;
– SK-Enc(msk,M): An encryption of a program M is a constrained key for M ;
– PK-Enc: Use the simulator of the PCPRF to produce a simulated constrained

key.
– Dec: To decrypt, we compare the constrained evaluation at x with the PRF

evaluation at x; if they are equal, we output 0, and otherwise, we output 1.

The existing security proofs show that, if for all xi we have M(xi) = 1, then
the constrained key for the program is computationally indistinguishable from a
random key that is independent of the PRF evaluations. This means that we can
obliviously sample encryptions of the “always-1” program by sampling a random
ciphertext.

From 1-CT to 2-CT. We provide an almost generic transformation from a 1-CT
to a 2-CT scheme, assuming that the underlying scheme is key-homomorphic,
and also satisfies a natural distribution requirement. Namely, we require that for
msk1,msk2,msk′ that are correctly generated from the 1-CT mixed FE scheme,
the distributions of msk1+msk2, msk1−msk2, and msk′ are identical. In addition,
for all x, we have

skGen(msk1, x) + skGen(msk2, x) = skGen(msk1 + msk2, x)

When the 1-CT mixed FE schemes are instantiated by the PCPRFs in [11–
13], they satisfy an approximate notion of key-homomorphism, which suffices
for the purpose of constructing collusion resistant mixed FE. In the rest of the
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introduction we assume the underlying PCPRFs are exact key-homomorphic for
simplicity, and leave the instantiations from the approximate ones in the main
body.

Our 2-CT mixed FE scheme works as follows:

– Setup: choose λ pairs of mski,b as the master secret keys for the 1-CT scheme;
– SKGen(msk, x): The secret key for x runs the secret-key generation algo-

rithm for the 1-CT scheme over all the λ pairs of mski,b, outputs
{skGen(mski,b, x)}i∈[λ],b∈{0,1};

– SK-Enc(msk,M): To encrypt a program M , we pick a random z ∈ {0, 1}λ,
output z and the 1-CT encryption SK-Enc(mskz,M) as the ciphertext, where
mskz := msk1,z1 + · · · + mskλ,zλ

;
– PK-Enc: pick a random z ∈ {0, 1}λ, then run the PK-Enc mode of the 1-CT

scheme.
– Dec: To decrypt, first derive skGen(mskz, x) =

∑λ
i=1 skGen(mski,zi

, x) and
then run the 1-CT decryption algorithm.

Next, we sketch a proof of security by constructing a simulator for the 2-CT
scheme, starting from that for the 1-CT scheme. Suppose we want to simulate
encryptions of two programs M1,M2 under tags z1, z2. The only property we
need from z1, z2 is that they differ in one bit position, which happens with
probability 1 − 2−λ. For notational simplicity, assume that

z1 = 00 · · · 0, z2 = 10 · · · 0

Now, using the simulator for the 1-CT scheme (and a hybrid argument),
we can simulate the 1-CT encryptions SK-Enc(m̃sk1,M

1),SK-Enc(m̃sk2,M
2)

for two random m̃sk1, m̃sk2, along with skGen(m̃sk1, x) and skGen(m̃sk2, x) for
arbitrarily many x’s.

To construct a simulator for the 2-CT scheme, we follow the natural simula-
tion strategy where we pick mski,b and program

mskz1 = m̃sk1,mskz2 = m̃sk2

as follows:

– We sample (mski,0,mski,1), i = 2, . . . , λ ourselves;
– We implicitly program

msk1,0 = m̃sk1 −
λ∑

i=2

mski,0,msk1,1 = m̃sk2 −
λ∑

i=2

mski,0

Simulating the ciphertexts is straight-forward. To simulate a key
{skGen(mski,b, x)} for x,

– We can compute skGen(mski,0, x), skGen(mski,1, x), i = 2, . . . , λ ourselves
since we know mski,0,mski,1;
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– We can compute skGen(msk1,0, x) using the key-homomorphic property via

skGen(msk1,0, x) = skGen(m̃sk1, x) −
λ∑

i=2

skGen(mski,0, x)

We can similarly compute skGen(msk1,1, x).

From 2-CT to t-CT. To obtain a scheme that is secure for t ciphertexts, we
follow [20, Remark 8.1] and sample each entry of the tag z from a larger alpha-
bet. The natural extension of the previous argument is to require that with
high probability over z(1), . . . , z(t), there exists j∗ ∈ [λ] such that z

(1)
j∗ , . . . , z

(t)
j∗

are all distinct. This would require an alphabet of size Ω(t2). Instead, we
observe that it suffices that there exists j∗

1 , . . . , j∗
t ∈ [λ] such that the t pairs

(j∗
1 , z

(1)
j∗
1

), . . . , (j∗
t , z

(t)
j∗
t

) are distinct (the natural extension corresponds to the
special case j∗

1 = · · · = j∗
t = j∗); this relaxation allows us to work with an alpha-

bet of size O(t). In the security proof, we will receive ciphertexts and secret
keys corresponding to t independent m̃sk1, . . . , m̃skt, which we “embed” into
msk

j∗
1 ,z

(1)
j∗
1

, . . . ,msk
j∗
t ,z

(t)
j∗
t

.

We proceed to describe our construction in a bit more detail. We replace
λ pairs of master secret keys {mskj,d}j∈[λ],d∈{0,1} (in the 2-CT scheme) with λ

many (2t − 2)-tuples of {mskj,d}j∈[λ],d∈[2t−2], and sample the tag z from [2t −
2]λ. For each tag z(i), i ∈ [t], the probability that the jth coordinate of z(i)

does not show up in the other t − 1 tags is ≥ (2t−2)−(t−1)
2t−2 = 1

2 , therefore the
probability that one of the coordinate of z(i) is unique is at least 1 − 2−λ (this
unique coordinate corresponds to j∗

i ). By a union bound, with probability at
least 1 − t · 2−λ, all the tags has one unique coordinate.

1.4 Attribute-Based Traitor Tracing

Finally, we very briefly describe our results on attribute-based traitor tracing.
An attribute-based traitor-tracing (AB-TT) scheme is like an ABE with tracing
capabilities. The key generation algorithm gives out secret keys skf,i for functions
f with respect to some identity i. The encryption procedure encrypts a message
m with respect to an attribute x and the resulting ciphertext can be correctly
decrypted by skf,i if f(x) = 1. The identity i is completely irrelevant from
the point of view of ABE correctness/security. The tracing algorithm is given
a decoder D which is able to distinguish between the encryptions of some two
messages m0,m1 with respect to some attribute x. The goal is to recover some
traitor i whose key skf,i was used in the creation of the decoder and who is
qualified to decrypt meaning that f(x) = 1. Note that there may be many other
traitors that participate in the creation of the decoder and who are not qualified
to decrypt (e.g., have keys skg,j for some g such that g(x) = 0) but the tracing
algorithm must find a traitor who is qualified to decrypt.
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We argue that catching a qualified user is the correct definition for tracing.
For example, imagine that a system is setup such that for a certain attribute
x corresponds to extremely sensitive information that only highly positioned
individuals can access. By the ABE security properties, if a decoder D were
discovered that could decrypt such ciphertexts it must be the case that such a
highly positioned user contributed to it. It would be rather unsatisfying if a trac-
ing algorithm were only able to finger a lower level individual that contributed to
it. We note that such tracing definitions were considered in prior works [1,21–23],
however, any black box tracing in such works required a

√
n factor of ciphertext

blowup for n users which was inherited from [7,8]. We improve this to polylog(n),
by constructing AB-TT from attribute-based mixed FE, which can be obtained
from ABE and mixed-FE for all polynomial-time computations. For more details,
we refer the reader to Sect. 5.

Additional Related Work on Tracing. Our work and comparisons focus on trac-
ing schemes that are collusion resistant. Starting with [14] there existed many
cryptosystems that would be collusion resistant up to t corrupted users where t
was some parameter of system setup. See [3] and the references therein for fur-
ther discussion of collusion bounded systems. Boneh, Sahai and Waters [7] gave
the first collusion resistant tracing schemes with ciphertext size that was sub-
linear in the number of users n. They achieved ciphertext growth proportional
to

√
n using composite order bilinear groups. Later variants [8,15,16] achieved

similar ciphertext size under improved bilinear assumptions. Several years later
Boneh and Zhandry [9] utilized indistinguishability obfuscation to achieve the
ideal case where ciphertexts grow polynomially in log(n) and λ. However, indis-
tinguishability obfuscation is not known from standard assumptions.

2 Preliminaries

Notations and Terminology. In cryptography, the security parameter (denoted as
λ) is a variable that is used to parameterize the computational complexity of the
cryptographic algorithm or protocol, and the adversary’s probability of breaking
security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time
over λ.

When a variable v is drawn randomly from the set S we denote as v
$←

S or v ← U(S), sometimes abbreviated as v when the context is clear. We
use ≈s and ≈c as the abbreviation for statistically close and computationally
indistinguishable.

Let R,Z,N be the set of real numbers, integers and positive integers. Denote
Z/(qZ) by Zq. For n ∈ N, [n] := {1, ..., n}. A vector in R

n (represented in column
form by default) is written as a bold lower-case letter, e.g. v. For a vector v, the
ith component of v will be denoted by vi. A matrix is written as a bold capital
letter, e.g. A. The ith column vector of A is denoted ai. The length of a vector
is the �p-norm ‖v‖p = (

∑
vp

i )1/p. The length of a matrix is the norm of its
longest column: ‖A‖p = maxi ‖ai‖p. By default we use �2-norm unless explicitly
mentioned. When a vector or matrix is called “small”, we refer to its norm.
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2.1 Learning with Errors

We recall the learning with errors problem.

Definition 2.1 (Decisional learning with errors (LWE) [26]). For n,m ∈
N and modulus q ≥ 2, distributions for secret vectors, public matrices, and error
vectors θ, π, χ ⊆ Zq. An LWE sample is obtained from sampling s ← θn, A ←
πn×m, e ← χm, and outputting (A, sTA + eT mod q).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE
sample from a random sample distributed as πn×m × U(Z1×m

q ) with probability
bigger than 1/2 plus non-negligible.

Lemma 2.2 (Standard form [10,24–26]). Given n ∈ N, for any m = poly(n),
q ≤ 2poly(n). Let θ = π = U(Zq), χ = DZ,σ where σ ≥ 2

√
n. If there exists an effi-

cient (possibly quantum) algorithm that breaks LWEn,m,q,θ,π,χ, then there exists
an efficient (possibly quantum) algorithm for approximating SIVP and GapSVP
in the �2 norm, in the worst case, to within Õ(nq/σ) factors.

We drop the subscripts of LWE when referring to standard form of LWE with
the parameters specified in Lemma 2.2.

2.2 Secret-Key and Mixed Functional Encryption

t-CT SKFE. We begin with the definition for SKFE:

Definition 2.3 (Secret-key functional encryption (SKFE)). A secret-key
functional encryption scheme for a class of functions Fμ = {f : {0, 1}μ →
{0, 1}} is a tuple of probabilistic polynomial time (p.p.t) algorithms (Setup,
skGen, skEnc,Dec) such that:

– Setup(1λ) takes as input the security parameter 1λ, and outputs the master
secret key msk and the public parameters pp.

– skGen(msk,m) takes as input msk and a message m ∈ {0, 1}μ, and outputs a
decryption key skm.

– skEnc(msk, f) takes as input msk and a function f ∈ Fμ, and outputs a
ciphertext ct.

– Dec(skm, ct) takes as input skm and ct, and outputs a single bit.

Correctness. For every message m ∈ {0, 1}μ and function f ∈ Fμ we have:

Pr[msk ←Setup(1λ); skm ← skGen(msk,m) :
Dec(skm, skEnc(msk, f)) = f(m)] = 1 − negl(λ),

where the probability is taken over the randomness of the algorithms
Setup, skGen, skEnc,Dec.

Function-Hiding Security. For all p.p.t stateful algorithms Adv, there is a
p.p.t. stateful algorithm Sim such that:{

Experiment REALAdv(1
λ)

}
λ∈N

≈c

{
Experiment IDEALAdv,Sim(1λ)

}
λ∈N

where the real and ideal experiments of stateful algorithms Adv,Sim are as
follows:
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Experiment REALAdv(1
λ) Experiment IDEALAdv,Sim(1λ)

msk ← Gen(1λ), Sim ← 1λ

For i ∈ [t]: For i ∈ [t]:

Adv → f [i]; Adv → f [i];

Adv ← ct[i] = skEnc(pp,msk, f [i]); Adv ← ct[i] = Sim(1|f [i]|);

Repeat polynomially many times: Repeat polynomially many times:

Adv → m; Adv ← skGen(pp,msk,m) Adv → m; Adv ← Sim(m,
{
f [i](m)

}
i∈[t]

)

Adv → b; Output b Adv → b; Output b

In the experiments, the adversary Adv can ask for t ciphertexts followed
by polynomially many decryption key queries. Once Adv makes a ciphertext
query for a function f ∈ Fλ, in the real experiment Adv obtains the ciphertext
generated by the secret-key encryption algorithm; in the ideal experiment Adv
obtains the ciphertext generated by Sim given only the (circuit) size of f . Once
Adv makes a message query m, in the real experiment Adv obtains skm from the
decryption key generation algorithm; in the ideal experiment, Adv obtains the
decryption key generated by the simulator who is given m, and

{
f [i](m)

}
i∈[t]

.
The output of the experiment is the final output bit of Adv.

Remark 2.4 (adaptive security). A t-CT SKFE scheme is called adaptively
secure if the function and ciphertext queries can be made adaptively in any
order. Some constructions achieve partially adaptive security and we will explic-
itly mention the restrictions.

t-CT Mixed FE. We provide a simulation-based definition for t-ciphertext (t-CT)
mixed-FE, which is same as the definition in [20, Sect. 5] where it is referred to
as (t − 1)-bounded mixed-FE.

Definition 2.5 (Mixed functional encryption). A mixed functional encryp-
tion scheme for a class of functions Fμ = {f : {0, 1}μ → {0, 1}} is a tuple of
probabilistic polynomial time (p.p.t) algorithms (Setup, skGen, skEnc,Dec, pkEnc)
such that:

– (Setup, skGen, skEnc,Dec) are the same as SKFE.
– pkEnc(pp) takes as input pp, and outputs a ciphertext ct.

Correctness and Function-Hiding Security. Same as SKFE.

Public/Secret-Key Mode Indistinguishability. In addition to the security
requirement above for a normal secret-key functional encryption, a mixed-FE
further requires that for a function f queried to the encryption oracle, if for
all message m queried by the adversary, f(m) = 1 (the other potential t − 1
functions does not have to satisfy this requirement), then the secret-key ciphertext
skEnc(msk, f) is indistinguishable from a sample from pkEnc(pp). Formally, we



Traitor-Tracing from LWE Made Simple and Attribute-Based 351

require that for all p.p.t stateful algorithms Adv, the following two experiments
produce indistinguishable outputs:{

Experiment SKEXPAdv(1
λ)

}
λ∈N

≈c

{
Experiment PKEXPAdv(1

λ)
}

λ∈N

The experiments are as follows:

Experiment SKEXPAdv(1
λ) Experiment PKEXPAdv(1

λ)

pp,msk ← Gen(1λ), pp,msk ← Gen(1λ),
For i in [i∗ − 1]: For i in [i∗ − 1]:

Adv → f [i]; Adv → f [i];

Adv ← ct[i] = skEnc(msk, f [i]); Adv ← ct[i] = skEnc(msk, f [i]);

Adv → f [i∗]; Adv → f [i∗];

Adv ← ct[i
∗] = skEnc(msk, f [i∗]); Adv ← ct[i

∗] = pkEnc(pp);
For i in [i∗ + 1, t]: For i in [i∗ + 1, t]:

Adv → f [i]; Adv → f [i];

Adv ← ct[i] = skEnc(msk, f [i]); Adv ← ct[i] = skEnc(msk, f [i]);
Repeat polynomially many times: Repeat polynomially many times:

Adv → m; Adv ← skGen(msk,m) Adv → m; Adv ← skGen(msk,m)
Adv → b; Output b Adv → b; Output b

Remark 2.6 (comparison with [20]). What we call a t-CT mixed FE is referred
as a (t − 1)-query mixed FE in [20]. In the latter, security is formalized using
a indistinguishability-based paradigm. For the public/secret-key mode indistin-
guishability, they require that the two ciphertexts are indistinguishable given
honestly generated secret keys from skGen.

3 t-CT Mixed-FE from Lockable Obfuscation and t-CT
SKFE

In this section, we present a construction of t-ciphertext mixed-FE for the class
of all poly-time computable functions from any lockable obfuscation for all poly-
time computable functions and t-ciphertext secret key functional encryption for
all poly-time computable functions. Thus, our construction shows how to use
lockable obfuscation to generically add a public-key oblivious sampling mode to
a SKFE.

3.1 Lockable Obfuscation

Recall the definition of lockable obfuscation from [19,28].
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Definition 3.1 (Lockable (or compute-and-compare) obfuscation).
Consider a family of functions F = {Fλ}λ∈N where Fλ ={
f : {0, 1}�(λ) → {0, 1}ν(λ)

}
, ν(λ) = ω(log λ). A lockable obfuscator takes a func-

tion f ∈ F and a target α ∈ {0, 1}ν , outputs an obfuscated program Obf[f, α]
which satisfies the following properties:

Functionality. Obf[f, α] takes an input x ∈ {0, 1}�, output 1 if f(x) = α; ⊥
otherwise.

Virtual Black-Box Security. A lockable obfuscator is said to satisfy virtual black-
box security if there is a p.p.t. simulator S such that for all f ∈ F ,

Obf[f, α] ≈c S(1λ, 1|f |)

over α
$← {0, 1}ν and the randomness of the obfuscator and S.

3.2 The Mixed-FE Construction

Construction 3.2. Given a t-CT SKFE FE = (FE.Gen,FE.skGen,FE.skEnc,
FE.Dec) and a lockable obfuscator Obf, construct a t-CT mixed-FE as follows.

– Setup(1λ) runs FE.msk ← FE.Gen(1λ), and treat it as the master secret key.
– skGen(msk, x) outputs FE.skx ← FE.skGen(FE.msk, x).
– pkEnc(pp) outputs the simulated code for the lockable obfuscation

Obf.S(1λ, 1poly(|f |)).
– skEnc(msk, f) samples a random string α ← {0, 1}λ, runs FE.ctH ← FE.skEnc

(msk,Hα,f ) where Hα,f computes the following multiple-output-bit function-
ality

Hα,f (x) =

{
α if f(x) = 0
0 else

.

Then, produce the lockable obfuscation Obf[PFE.ctH , α] as the ciphertext, where
PFE.ctH (Y ) computes FE.Dec(FE.ctH , Y ).

– Dec(skx, ct) parses skx as FE.skx, and ct as Obf[PFE.ctH , α], outputs
Obf[PFE.ctH , α](FE.skx).

3.3 The Security Analysis

Theorem 3.3. Construction 3.2 is a t-CT mixed-FE assuming the underlying
obfuscator Obf is a lockable obfuscation and FE is a t-CT secure secret-key FE.

The only additional property (compared to a normal SKFE) is the indistin-
guishability of the public-key and the secret-key ciphertext for a function f s.t.
for all x queried in the game, f(x) = 1. The intuition is that in that case, the α
in the SKFE ciphertexts is hidden following the plain SKFE security. Therefore
the α in the lockable obfuscation target is random and independent, and we can
trigger the simulation security of the lockable obfuscation.
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Proof. We prove the indistinguishability of the public and secret-key modes.
Consider the following intermediate distribution for the t-CT mixed-FE

experiment. Once Adv makes a ciphertext query for a function f (i) ∈ Fλ,
i ∈ [t], the challenger responds by sampling a random string α(i) ←
{0, 1}λ, runs FE.ctH ← FE.Sim(1poly |H

f(i) |). Then produces the lockable
obfuscation Obf[PFE.ctH , α(i)] as the ciphertext, where PFE.ctH (Y ) computes
FE.Dec(FE.ctH , Y ). Once Adv makes a message query m, the challenger responds
with a decryption key FE.skm ← FE.Sim(m,

{
1(i)

}
i∈[t]

).
So if there is an adversary that distinguishes the real distribution and the

intermediate distribution, then there is an adversary that breaks the simula-
tion security for the t-CT SKFE. If there is an adversary that distinguishes the
intermediate distribution from the public key mode, then we build an adversary
that breaks the lockable obfuscation, due to the fact that the PFE.ctH in the
intermediate distribution does not depend on α(i).

4 t-CT Mixed-FE from Key-Homomorphic Private
Constrained PRF

In this section we present a construction of mixed-FE from key-homomorphic
PCPRF.

4.1 Background of Key-Homomorphic Private Constrained PRFs

We first give the definition of a key-homomorphic private constrained PRF,
which literally combines key-homomorphism [5] with private constrained PRFs
[6,12]. For the purpose of this paper we work with the KHPCPRFs that sat-
isfy the simulation-based definition given one constrained key and many input
queries. We then explain that the PCPRF constructions in [11–13] satisfy
an approximate version of key-homomorphism, which suffices for constructing
mixed-FE.

Definition 4.1 (Key-homomorphic private constrained PRF
(KHPCPRF)). Consider a family of functions F = {Fλ}λ∈N where Fλ = {Fk :
Dλ → Rλ}, along with a tuple of efficient functions (ppGen, skGen, Constrain,
Eval, Constrain.Eval). For a constraint family C = {Cλ = {C : Dλ → {0, 1}}}λ∈N

,

– The public parameter generation algorithm ppGen(1λ,Fλ) takes the security
parameter λ and the description of the constraint class Fλ, generates the
public parameter pp.

– The secret key generation algorithm skGen(1λ, pp) takes the security parame-
ter λ, and the public parameter pp, generates the secret key sk.

– The evaluation algorithm Eval(sk, x) takes sk, an input x, outputs Fsk(x).
– The constraining algorithm Constrain(1λ, pp, sk, C) takes sk, a constraint C ∈

Cλ, outputs the constrained key ckC .
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– The constrained evaluation algorithm Constrain.Eval(ckC , x) takes a con-
strained key ckC , an input x, outputs FckC

(x).

F is called a family of key-homomorphic private constrained PRF for C if
it satisfies the following properties:

Functionality preservation for C(x) = 0. For any constraint C ∈ Cλ, any
input x ∈ Dλ s.t. C(x) = 0,

Pr[Eval(sk, x) = Constrain.Eval(ckC , x)] ≥ 1 − negl(λ),

where the probability is taken over the randomness in algorithms ppGen, skGen
and Constrain.

Pseudorandomness and Constraint-Hiding. For any polynomial time algorithm
Adv, there is a polynomial time algorithm Sim such that:{

Experiment REALAdv(1
λ)

}
λ∈N

≈c

{
Experiment IDEALAdv,Sim(1λ)

}
λ∈N

.

where the ideal and real experiments are defined as follows. In the experiments the
adversary can ask a single constraint query followed by polynomially many input
queries. Once Adv makes the constraint query C ∈ Cλ, in the real experiment Adv
obtains the constrained key generated by the constraining algorithm; in the ideal
experiment Adv obtains a key generated by Sim, whereas Sim is given only the
size of C. Once Adv makes an input query x, Adv is expected to provide a bit dx

indicating the value of C(x). In the real experiment Adv obtains the unconstrained
function value at x. In the ideal experiment Sim learns the indicator bit dx; if
dx = 0 then Adv gets a value generated by Sim, and if dx = 1 then Adv obtains
a random value from the range R of the function. The output of the experiment
is the final output bit of Adv.

Experiment REALAdv(1
λ) Experiment IDEALAdv,Sim(1λ)

pp ← ppGen(1λ), Sim ← 1λ

sk ← skGen(1λ, pp), Sim ← 1λ

Adv → C; Adv → C;

Adv ← Constrain(pp, sk, C) Adv ← Sim(1|C|)
Repeat : Repeat :

Adv → x; y = Eval(sk, x) Adv → x; y = Sim(x, dx)
Adv ← y if dx = 1 then y = U(R);Adv ← y

Adv → b; Output b Adv → b; Output b

Key-Homomorphism for the SK. Let ◦ denote the group operation. For pp ←
ppGen(1λ,Fλ), sk1, sk2 ← skGen(1λ, pp), and any input x ∈ Dλ.

Pr[Eval(sk1 ◦ sk2, x) = Eval(sk1, x) ◦ Eval(sk2, x)] ≥ 1 − negl(λ).
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The Distribution Requirement on the Secret Keys. Let ◦ denote the group opera-
tion. We additionally require that for pp ← ppGen(1λ,Fλ), for sk1, sk2, sk

′ sam-
pled from skGen(1λ, pp) with independent randomness, sk1◦sk2, sk1◦(−sk2), and
sk′ are from the same distribution.

Almost Key-Homomorphic PCPRF and the LWE-Based Constructions. The
existing LWE-based PCPRFs satisfies the notion of almost-key-homomorphism.
For simplicity we focus on the case where the range of the PRF is Zn

p for n, p ∈ N,
and let the operation be +, which is what the LWE-based PCPRFs work with.

Definition 4.2 (Almost-Key-Homomorphism). For B, p, n ∈ N such that
B < p. Let + be the group operation. A family of PRFs F = {Fλ}λ∈N with
domain Dλ and range Z

n
p is called B-almost-key-homomorphic if for pp ←

ppGen(1λ,Fλ), sk1, sk2 ← skGen(1λ, pp), and any input x ∈ Dλ.

‖Eval(sk1, x) + Eval(sk2, x) − Eval(sk1 ◦ sk2, x)‖∞ ≤ B

Next we briefly explain how to set the parameters for the existing lattice-
based PCPRFs to achieve almost-key-homomorphism.

Let q > p ≥ 2 be the moduli. In all the LWE-based PCPRF constructions,
the evaluation algorithms first work entirely over Z

n
q , then finalize by applying

a (coordinate-wise) rounding operation a�p : Zq → Zp by multiplying a by p/q
and rounding the result to the nearest integer. For any a, b ∈ Zq, we have

| a�p + b�p − a + b�p | ≤ 1

For the two PCPRF constructions [12,13] for branching programs from the
GGH15 approach [17]. Let h be the length of the branching program (i.e. the
number of indexes), � be the bit-length of the input, and π be the index-to-
input mapping. Recall that the (secret-key) evaluation algorithm takes as input
a sequence of matrices

{
Si,b ∈ Zn×n

q

}
i∈[h],b

and a vector a sampled uniformly

random from Z
n
q , computes the output on x ∈ {0, 1}� as

y =

⎢⎢⎢⎣ ∏
i∈[h]

Si,xπ(i) · a

⎤
⎥⎥⎥

p

By treating a as the secret key, the matrices in
{
Si,b ∈ Zn×n

q

}
i∈[h],b

as the
public parameters (which is explicit proved in [13] and generalizable to the set-
ting in [12]), we have 1-almost-key-homomorphism since for all x ∈ {0, 1}�,⎢⎢⎢⎣ ∏

i∈[h]

Si,xπ(i) · a1

⎤
⎥⎥⎥

p

+

⎢⎢⎢⎣ ∏
i∈[h]

Si,xπ(i) · a2

⎤
⎥⎥⎥

p

∈

⎢⎢⎢⎣ ∏
i∈[h]

Si,xπ(i) · (a1 + a2)

⎤
⎥⎥⎥

p

+{−1, 0, 1}

So setting p to be a bit larger than the appropriated number of key addition suf-
fices for achieving a meaningful key-homomorphism. The distribution property
holds since the secret key is sampled uniformly random from Z

n
q .
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For the PCPRF constructions for all poly-size circuits in [11], the first con-
struction [11, Sect. 4] satisfies almost-key homomorphism and the distribution
requirement. Very briefly, the construction uses a secret key s sampled uniformly
random from Z

n
q , and a set of matrices in the public parameter pp. The evalua-

tor takes an input x and pp, derives a matrix pp(x) which is independent of the
secret key, then computes

⌊
sT · pp(x)

⌉
p
. The approximate-key homomorphism

and the distribution property follow immediately.

Remark 4.3. One can also define key-homomorphism for the constrained keys in
the natural way, although it is not used in this paper. Let us remark that the
constrained keys of the PCPRFs from [12,13] are also key-homomorphic.

4.2 Constructing t-CT Mixed-FE from KHPCPRF

Next we construct a t-CT secure mixed-FE from key-homomorphic PCPRF.
The construction achieves t-CT security with a O(t) blow-up in the size of the
functional decryption key, which is smaller than the other existing secret-key
functional encryptions with bounded collusion.

We first describe the construction of a mixed-FE from a PCPRF with exact
key-homomorphism, then explain how to modify the construction and secu-
rity analysis slightly to work with the LWE-based almost-key-homomorphic
PCPRFs.

Let us remark that the construction and security analysis for a 1-CT secure
mixed-FE from PCPRF (even without key-homomorphism) is implicit in [12,
Sect. 6] and is explained in the introduction. So we deal with the case of 2 ≤ t ≤
poly(λ) directly.

Let T = {1, 2, ..., 2t − 2}. The idea is to pick λ × (2t − 2) independently
sampled secret keys for the KHPCPRF scheme, denote each of them as skj,d,
j ∈ [λ], d ∈ T . To generate a ciphertext for a function f , pick a random vector
z ∈ T λ, and encrypt the function f in the constrained key derived from the
secret key

∑
j∈[λ] skj,zj

. We then prove each encryption is a constrained key
derived from an independently generated master secret key with overwhelming
probability.

Construction 4.4. Given a key-homomorphic PCPRF F with group operation
+, domain D and range R, construct a t-CT secure mixed-FE MFE as follows.

– MFE.Setup(1λ) runs F.ppGen(1λ) to generate F.pp. Then runs F.skGen(1λ, pp)
for λ · (2t − 2) times with independent randomness, denote the resulting set
of secret keys as {F.skj,d}j∈[λ],d∈T . Let MFE.msk := F.pp, {F.skj,d}j∈[λ],d∈T ,
let MFE.pp := F.pp.

– MFE.skGen(MFE.msk, x) takes a message x ∈ Dλ, outputs

skx = x, {F.Eval(F.skj,d, x)}j∈[λ],d∈T .

– MFE.skEnc(MFE.msk, f) samples z $← T λ. Then let F.skf =
∑

j∈[λ] F.skj,zj
.

Outputs
ctf = z,F.Constrain(F.pp,F.skf , f).
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– MFE.pkEnc(MFE.pp) runs the simulator of F on the size of the maximum
constraint 1|Cλ| to generate a simulated constrained key F.Sim.ck, outputs

ctf = z $← T λ,F.Sim.ck

– MFE.Dec(skx, ctf ) parses skx as x, {yj,d}j∈[λ],d∈T and ctf as z, ckf , outputs

{
0 if F.Constrain.Eval(ckf , x) =

∑
j∈[λ] yj,zj

1 else
.

Correctness. For f and x such that f(x) = 0, then

F.Constrain.Eval(ckf , x) = F.Eval(F.skf , x) =
∑
j∈[λ]

F.Eval(F.skj,zj
, x),

where the first equality follows the correctness of the PCPRF, the second equality
follows the exact key-homomorphism.

For f and x such that f(x) = 1, by the pseudorandomness of the PRF eval-
uations on x such that f(x) = 1, F.Eval(F.skf , x) looks random, and is therefore
unlikely to be equal to F.Constrain.Eval(ckf , x) as long as the range R is super-
polynomially large.

Theorem 4.5. Assuming F is a key-homomorphic PCPRF, Construction 4.4
gives a t-CT secure mixed-FE.

Proof. We construct the mixed-FE simulator MFE.Sim(1λ) as follows:

1. Preprocessing: Sample a set of tags
{
z[i] $← T λ

}
i∈[t]

. We define t+1 sets H[i],

for i ∈ [t], and G w.r.t. the tags, where H[i] contains the coordinates that only
appear in z[i]; G contains the indexes that either appear in the tags for more
than once, or never appear in the tags. Later we will prove that w.h.p. all the
sets H[i], i ∈ [t], are non-empty.
Formally, first initialize all the sets as empty sets. Then for (j, d) ∈ [λ] × T :

– If there exists an i∗ ∈ [t] such that z[i
∗]

j = d and ∀i �= i∗, z[i
∗]

j �= d, then
add (j, d) in H[i∗].

– Else, add (j, d) in G.
2. Given the ith ciphertext query, MFE.Sim(1λ) calls for F.Sim.ck[i] ←

F.Sim(1|C|), outputs z[i],F.Sim.ck[i] as the simulated ciphertext ct[i].
3. Given a decryption key query on the input x with the indicators{

f [i](x)
}

i∈[t]
, the mixed-FE simulator MFE.Sim(1λ, x,

{
f [i](x)

}
i∈[t]

) outputs
x and {yx,j,d}j∈[λ],d∈T , where each yx,j,d is computed in the following way:

– First go over all (j, d) ∈ G, and let yx,j,d
$← Rλ, where Rλ is the range of

the KHPCPRF.
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– Then, for each i ∈ [t], let p[i] := |H[i]|.
For the first p − 1 indexes (j, d) ∈ H[i], let yx,j,d

$← Rλ.
For the last index (j∗, d∗) ∈ H[i], let

yx,j∗,d∗ :=

⎧
⎨

⎩

F.Constrain.Eval(F.Sim.ck[i], x)− ∑
j∈[λ],j �=j∗ y

x,j,z
[i]
j

if f [i](x) = 0

U(Rλ) if f [i](x) = 1
.

(1)

We first prove that with all but negligible probability, all the sets H[i], i ∈ [t],
are non-empty.

Lemma 4.6. With probability greater or equal to 1 − t · 2−λ, |H[i]| ≥ 1 for all
i ∈ [t].

Proof. For each tag z[i], i ∈ [t], the probability that the jth coordinate of z[i]

does not show up in the other t − 1 tags is ≥ (2t−2)−(t−1)
2t−2 = 1

2 . Therefore the
probability that |H[i]| ≥ 1 is 1−2−λ. Therefore with probability greater or equal
to 1 − t · 2−λ, |H[i]| ≥ 1 for all i ∈ [t].

Next we reduce the simulation security of the KHPCPRF (with the same
public parameter and many independent secret keys) to the indistinguishability
of the real experiment and the simulated one for the mixed-FE scheme. Suppose
there is a p.p.t. adversary A that breaks the t-CT secure mixed-FE MFE with
non-negligible probability η, we build a p.p.t. adversary A′ for the KHPCPRF
F. A′ goes through the following stages.

1. Preprocessing: A′ sample a set of tags
{
z[i] $← T λ

}
i∈[t]

. Define the sets H[i],

for i ∈ [t], and G w.r.t. the tags in the same way as was defined for the MFE
simulator.

2. The mixed-FE ciphertext queries: Once the mixed-FE adversary A makes
the encryption queries for

{
f [i]

}
i∈[t]

, A′ then forwards the t functions
as the KHPCPRF constrained key queries. A′ gets back t constrained
keys

{
ck[i]

}
i∈[t]

, each of them is either a real constrained key ck[i] ←

F.Constrain(F.pp,F.sk[i], f [i]) derived from some secret key F.sk[i], or a sim-
ulated constrained key ck[i] ← F.Sim(1|C|).
A′ then responses z[i], ck[i] to A as the ciphertext ct[i], for i ∈ [t].

3. The mixed-FE decryption key queries: Once the mixed-FE adversary A makes
a functional decryption key query on x, A′ forwards x with the indicators{
f [i](x)

}
i∈[t]

as a KHPCPRF evaluation query. A′ gets back t evaluations{
y[i]

}
i∈[t]

, each of them is either the real evaluation y[i] = F.Eval(F.sk[i], x)

on some secret key F.sk[i], or a simulated evaluation y[i] = F.Sim(x, f [i](x)).
A′ then produces the set {yx,j,d}j∈[λ],d∈T as follows:

– First go over all (j, d) ∈ G, and let yx,j,d
$← Rλ, where Rλ is the range of

the KHPCPRF.
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– Then, for each i ∈ [t], let p[i] := |H[i]|.
For the first p − 1 indexes (j, d) ∈ H[i], let yx,j,d

$← Rλ.
For the last index (j∗, d∗) ∈ H[i], let yx,j∗,d∗ = y[i] −

∑
j∈[λ],j �=j∗ y

x,j,z
[i]
j

.

A′ then responses x, {yx,j,d}j∈[λ],d∈T to A as the functional decryption key
for x.

4. Finally A′ forwards the answer of A on whether the scheme is real or simu-
lated.

We justify that the distributions produced by A′ are computationally close to
the desired distributions in the mixed-FE security game. Recall that all the sets
H[i], for i ∈ [t], are non-empty with probability ≥ 1 − t · 2−λ due to Lemma 4.6.

If the KHPCPRF samples A′ received are from the real distribution, then

– The correct distribution of a mixed-FE ciphertext is

U(T λ),F.Constrain(F.pp,F.skf , f), where F.skf =
∑
j∈[λ]

F.skj,zj
.

The distribution of the mixed-FE ciphertext produced by A′ is

U(T λ),F.Constrain(F.pp,F.sk, f), with some correctly generated secret key F.sk.

These two distributions are the same due to the distribution requirement for
the correctly generated secret keys for F. Recall that for sk1, sk2, sk

′ sampled
from F.skGen(1λ, pp) with independent randomness, sk1 + sk2 and sk′ are
required to be from the same distribution. This immediately implies that the
sum of many correctly generated secret keys distributes the same as a single
secret key.

– The correct mixed-FE functional decryption key for x is skx =
x, {F.Eval(F.skj,d, x)}j∈[λ],d∈T . We argue that the mixed-FE functional
decryption key for x produced by A′ is computationally indistinguishable
to the real one due to the pseudorandomness of the PRF evaluations w.r.t.
the secret keys whose constrained keys are not giving out.

• For all (j, d) ∈ G, the PRF secret keys on these indexes are independent
from the constrained keys that are given out, so the PRF evaluations on
these indexes are indistinguishable from random.

• For each i ∈ [t], pick an index (j∗, d∗) ∈ H[i], the real PRF evaluation
yx,j∗,d∗ can be re-written following the key-homomorphism as

F.Eval(F.skf , x) −
∑

j∈[λ],j �=j∗
F.Eval(F.sk

j,z
[i]
j

, x) = F.Eval((F.skf −
∑

j∈[λ],j �=j∗
F.sk

j,z
[i]
j

), x).

Therefore, yx,j∗,d∗ distributes correctly due to the distribution require-
ment of the KHPCPRF secret keys. The PRF evaluations on the rest
of the indexes in H[i] are using independent PRF secret keys, so these
evaluations are pseudorandom.
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If the KHPCPRF samples A′ received are from the simulated distribution,
then

– The correct simulated distribution of the mixed-FE ciphertexts is
U(T λ),F.Sim(1|C|), which is exactly what A′ produces.

– For the simulated mixed-FE functional decryption key for x. Observe
that the constrained PRF simulator outputs U(Rλ) if f(x) = 1, outputs
F.Constrain.Eval(F.Sim.ck, x) if f(x) = 0. So the functional decryption key
produced by A′ follows the correct distribution.

Hence A′ wins with η − negl(λ) advantage in the KHPCPRF simulation
security game.

Finally we verify the public/secret-key mode indistinguishability. It follows
from observing that if f [i](x) = 1 for all x being queried, the simulated ciphertext
is independent from the simulated functional decryption keys, and has the same
distribution as the public-key mode.

The Instantiation from the LWE-Based Almost-Key-Homomorphic PCPRFs.
We provide the details for instantiating the mixed-FE from the LWE-based
1-almost-key-homomorphic PCPRFs. Note that the maximum number of key
addition is λ in both the construction and the analysis, so we can choose the
modulus p to be ≥ 4λ, the range R as Z

n
p where n = Ω(λ), and the rest of the

parameters under the restrictions mentioned in the original PCPRF construc-
tions.

In the construction of the mixed-FE, we change the decryption algorithm as:
MFE.Dec(skx, ctf ) parses skx as x, {yj,d}j∈[λ],d∈T and ctf as z, ckf , outputs

{
0 if

∥∥∥F.Constrain.Eval(ckf , x) −
(∑

j∈[λ] yj,zj

)∥∥∥
∞

≤ λ

1 else
.

In the simulation, we change one piece in the simulated functional decryption
key for each i ∈ [t]. That is, for the last index (j∗, d∗) ∈ H[i], we let

yx,j∗,d∗ :=

⎧
⎨

⎩
F.Constrain.Eval(F.Sim.ck[i], x) + N(λ) −

∑
j∈[λ],j �=j∗ y

x,j,z
[i]
j

if f [i](x) = 0

U(Rλ) if f [i](x) = 1
. (2)

where N(λ) is a noise factor added to compensate the error caused by the
almost-hey-homomorphism. The distribution of N(λ) is efficiently sampleable
and identical to the distribution of∑

j∈[λ]

F.Eval(F.skj , x) − F.Eval(F.skΣ , x)

where
{
F.skj ← F.skGen(1λ,F.pp)

}
j∈[λ]

and F.skΣ =
∑

j∈[λ] F.skj .
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5 Attribute-Based Traitor Tracing

5.1 Definition of Attribute-Based Traitor Tracing

Definition 5.1 (Attribute-Based Traitor Tracing (AB-TT)). An
attribute-based traitor-tracing (AB-TT) scheme for a class of functions Fμ =
{f : {0, 1}μ → {0, 1}} and a message length � (where μ, � are functions of
the security parameter λ) is a tuple of p.p.t. algorithms (Setup, skGen,Enc, Dec,
Trace) such that:

– Setup(1λ) takes as input the security parameter 1λ, outputs the master secret
key msk and the public parameter pp.

– skGen(msk, f, i) takes msk, a function f ∈ Fμ and an identity i ∈ [2λ] and
outputs a decryption key skf,i.

– Enc(pp, x,m) takes as input pp, the attribute x ∈ {0, 1}μ and a message
m ∈ {0, 1}� and outputs a ciphertext ct.

– Dec(skf,i, ct) takes skf,i and ct, outputs the message m or ⊥.
– TraceD(msk, 1n, 1h, x,m0,m1) takes as input msk the number of identities n ∈

Z, a correctness parameter h, an attribute x ∈ {0, 1}μ and two messages
m0,m1 as well as oracle-access to a “decoder” D. Outputs an identity t ∈ [2λ]
or ⊥ to indicate that no identity was traced.

The scheme satisfies the following properties:

– Correctness: This is the same as in standard ABE if we ignore the index i
(allow it to be arbitrary).

– ABE Security: This is the same as in standard ABE if we ignore the index i
(allow the adversary to choose it arbitrarily).

– Tracing Security: For any ε(λ) = 1/poly(λ). We define the following experi-
ment between an adversary A and a challenger:
1. 1n ← A(1λ).
2. (mpk,msk) ← Setup(1λ)
3. (D,x,m0,m1) ← AskGen(msk,·,·)(pp) : x ∈ {0, 1}μ,m ∈ {0, 1}� and oracle

queries (f, t) must satisfy f ∈ Fμ and t ∈ [n].
4. t ← TraceD(msk, 1n, 1�1/ε	, x,m0,m1)

Within the above experiment, define the event GoodDecoder to occur if

Pr[D(ct) = b : b ← {0, 1}, ct ← Enc(pp, x,mb)] ≥ 1/2 + ε(λ)

where D,x,m0,m1 are defined in step 3 of the experiment. Define the event
BadTrace to occur if, for the t output by the trace algorithm in step 4, the
adversary never made a skGen query of the form (f, t) where f(x) = 1. We
require that Pr[GoodDecoder ∧ BadTrace] ≤ negl(λ).

We make several remarks about the above definition. Firstly, while syntac-
tically the scheme allows the identities i to come from a large space [2λ], for
tracing security we assume that the range of identities [n] is polynomially sized
where the polynomial can be chosen arbitrarily by the adversary. Secondly, we
think of the identities i as corresponding to users but each user can get several
different keys skf,i for different functions f .



362 Y. Chen et al.

5.2 Tool: Attribute-Based Mixed FE

An attribute-based Mixed FE (AB-MFE) combines aspects of MFE and ABE.
In particular, like in ABE, a secret key is associated with an ABE function
f and a (public-key) ciphertext is associated with an ABE attribute x and a
message m and decryption works if f(x) = 1. However, like in MFE, the secret
key is also associated with an MFE function g. The MFE function is irrelevant
when decrypting public-key ciphertexts. But there is also a secret-key encryption
algorithm that additionally associates a ciphertext with an MFE attribute y. A
secret-key ciphertext decrypts correctly if f(x) = 1 and g(y) = 1. The security
requirements are a combination of MFE and ABE security.

(Note that, from the point of view of MFE, we switched the role of attributes
and functions from the original definition by associating secret keys with func-
tions and ciphertexts with attributes. This change is essentially cosmetic to
better fit the connection with ABE and one can convert back and forth easily
using universal circuits).

Definition 5.2 (Attribute-Based Mixed FE). An attribute-based mixed-
FE (AB-MFE) scheme for a class of ABE functions Fμ = {f : {0, 1}μ →
{0, 1}}, MFE functions Gν = {g : {0, 1}ν → {0, 1}} and message length � (where
μ, ν, � are functions of the security parameter λ) is a tuple of p.p.t. algorithms
(Setup, skGen, pkEnc, skEnc,Dec) such that:

– Setup(1λ) takes as input the security parameter 1λ, outputs the master secret
key msk and the public parameter pp.

– skGen(msk, f, g) takes msk, an ABE function f ∈ Fμ, a MFE function g ∈ Gν

and outputs a decryption key skf,g.
– pkEnc(pp, x,m) takes as input pp, the ABE attribute x ∈ {0, 1}μ and a mes-

sage m ∈ {0, 1}� and outputs a ciphertext ct.
– skEnc(msk, x, y,m) takes as input pp, the ABE attribute x ∈ {0, 1}μ the MFE

attribute y ∈ {0, 1}ν and a message m ∈ {0, 1}� and outputs a ciphertext ct.
– Dec(skf,g, ct) takes skf,g and ct, outputs a message m or ⊥.

The scheme is q-query secure for some polynomial q = q(λ) if it satisfies the
following properties:

– Correctness: For all f ∈ Fμ and all x ∈ {0, 1}μ such that f(x) = 1, for all
g ∈ Gν and all m ∈ {0, 1}� it holds that

Pr

⎡
⎣Dec(skf,g, ct) = m :

(pp,msk) ← Setup(1λ),
skf,g ← skGen(msk, f, g),
ct ← pkEnc(pp, x,m)

⎤
⎦ ≥ 1 − negl(λ)

Furthermore, for all f, x,m as above and all y ∈ {0, 1}ν such that g(y) = 1
it holds that:

Pr

⎡
⎣Dec(skf,g, ct) = m :

(pp,msk) ← Setup(1λ),
skf,g ← skGen(msk, f, g),
ct ← skEnc(pp, x, y,m)

⎤
⎦ ≥ 1 − negl(λ)
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– ABE Security: The algorithms (Setup, skGen, pkEnc,Dec) satisfy ABE secu-
rity if we ignore the g part of skGen.

– Public/Secret Hiding: Consider the following experiment with an adver-
sary A
1. (mpk,msk) ← Setup(1λ)
2. (x∗, y∗,m∗) ← AskGen(msk,·,·),skEnc(msk,·,·,·)(mpk)
3. b ← {0, 1}. If b = 0 then set ct ← pkEnc(pp, x∗,m∗) else if b = 1 set

ct ← skEnc(msk, x∗, y∗,m∗).
4. b′ ← A(ct).

An adversary A in the above experiment is legal if (a) it makes at most q
queries to the skEnc oracle, and (b) every query (f, g) made to the skGen oracle
satisfies g(y∗) = 1, meaning that the MFE component is always qualified to
decrypt. We require that for any legal A in the above game we have Pr[b′ =
b] ≤ 1

2 + negl(λ).
– MFE Attribute Hiding: Consider the following experiment with an adver-

sary A
1. (mpk,msk) ← Setup(1λ)
2. (x∗,m∗, y0, y1) ← AskGen(msk,·,·),skEnc(msk,·,·,·)(mpk)
3. b ← {0, 1}, ct ← skEnc(msk, x∗, yb,m

∗).
4. b′ ← A(ct).

An adversary A in the above experiment is legal if (a) it makes at most q
queries to the skEnc oracle, and (b) every query (f, g) made to the skGen
oracle satisfies g(y0) = g(y1). We require that for any legal A in the above
game we have Pr[b′ = b] ≤ 1

2 + negl(λ).
– Message Hiding: Consider the following experiment with an adversary A

1. (mpk,msk) ← Setup(1λ)
2. (x∗, y∗,m0,m1) ← AskGen(msk,·,·),skEnc(msk,·,·,·)(mpk)
3. b ← {0, 1}, ct ← skEnc(msk, x∗, y∗,mb).
4. b′ ← A(ct).

An adversary A in the above experiment is legal if (a) it makes at most q
queries to the skEnc oracle, and (b) every query (f, g) made to the skGen
oracle satisfies g(y∗) = 0 or f(x∗) = 0. We require that for any legal A in the
above game we have Pr[b′ = b] ≤ 1

2 + negl(λ).

Decoder-Based Security. In the above definition of AB-MFE security we con-
sidered three security properties each of which consists of a 4-step experiment.
For each of them, the adversary can make at most q queries to skEnc(msk, ·)
oracle during the experiment and at the end of the experiment gets as input a
ciphertext ct and outputs a bit b. We now consider a variant of the three secu-
rity properties which we call decoder-based security. Firstly, the adversary loses
access to the skEnc(msk, ·) oracle entirely in each of the experiments. Secondly,
in step 2 of each of the experiments the adversary additionally outputs a decoder
circuit D and the experiment ends. For some ε = ε(λ), we say that the decoder is
ε-good if Pr[D(ct) = b] ≥ 1/2+ε where b and ct are sampled as in step 3 of each
of the original experiments. For decoder-based security we will require that in
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each of the experiments, for any legal adversary A and for any ε(λ) = 1/poly(λ)
it holds that

Pr[D is ε(λ)-good] ≤ negl(λ)

where D is the output of the adversary in step 2 of the experiment.
The reason for defining both standard and decoder-based security properties

is that the standard definitions are more natural to target when constructing
Attribute-Based Mixed-FE, while the decoder definitions are directly compatible
with tracing definitions. The lemma below connects them, allowing us to get the
best of both worlds.

Lemma 5.3. An AB-MFE with (q = 1)-query security also satisfies decoder-
based security.

A variant of the above lemma for MFE was given in [20] (Sect. 4). The proof
of our lemma for AB-MFE is identical, up to minor syntactic changes needed to
account for the expanded ABE syntax.

5.3 From Attribute-Based Mixed-FE to Attribute-Based Traitor
Tracing

We now move on to building Attribute-Based Traitor Tracing from Attribute-
Based Mixed-FE using the decoder-based security properties. We begin with
some high level intuition. Suppose an attacker produces a decoder D that can
decrypt ciphertexts associated with some attribute x. A natural approach would
be to follow [20] using the Mixed-FE piece to remove each user one index at a time
until we reach an index i where the decryption probability between encryptions
to index i and i+1 differ. At this point we can finger user i as having contributed
to creating the box D. However, the problem with this strategy is that the
decoder algorithm might catch (and only catch) a user i who was not qualified
to decrypt the ABE ciphertext to begin with. As argued earlier a meaningful
trace will catch a user with a private key for f where f(x) = 1.

For that reason the MixedFE component will be used to gradually remove
only qualified decryptors one index at a time. That is the function g will be of the
form if f(x) = 0 or j ≥ i. So a user with index i and f(x) = 0 will always have
the Mixed-FE component output 1 even if j ≥ i. Therefore if there is some index
i where the decoding probability differs between encryptions to index i − 1 and
i it must be the case that user i was a contributor and was qualified to decrypt.
This is perhaps slightly counterintuitive as our tracing strategy explicitly always
allows non-qualified users to pass the Mixed-FE portion.

We observe that for any good decoder box there must be some such i. The
public/secret hiding property guarantees that any good decryptor box for the
public key encryption will still decrypt well on index i = 0. The Message hiding
property guarantees that when encrypting to index i = n that no user will
be able to decrypt. This is either because f(x) = 0 or due to the way g was
selected. Thus there must exists some i where the decoder has a non-negligible
gap in decrypting.
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A formal description of the tracing system appears below.
Let Fμ = {f : {0, 1}μ → {0, 1}} be a function family. Define the family

Gν = {g : {0, 1}ν → {0, 1}} consisting of functions

gf,i(x, j) =
{

1 if f(x) = 0 or j ≥ i
0 otherwise

where i ∈ [2λ], j ∈ [2λ] ∪ {0} and f ∈ Fμ.
Assume that ABMFE = (Setup, skGen, pkEnc, skEnc,Dec) is an AB-MFE for

the class of ABE functions Fμ and the class of MFE functions Gν . Further assume
that ABMFE satisfies decoder-based security.

We show how to construct an AB-TT scheme ABTT = (Setup′, skGen′,
Enc′,Dec′,Trace) for the function class Fμ = {f : {0, 1}μ → {0, 1}} as follows.

– Setup′ is the same as Setup.
– skGen′(msk, f, i): Construct gf,i ∈ Gν and let skf,i ← skGen(msk, f, gf,i).
– Enc′ is the same as pkEnc.
– Dec′ is the same as Dec.
– TraceD(msk, 1n, 1h, x,m0,m1): Let ε = 1/h and W = λ · (n · h)2. For i = 0 to

n, the trace algorithm does the following:
1. It first sets ci := 0. For j = 1 to W , it does the following:

(a) It chooses bi,j ← {0, 1}, sets cti,j ← skEnc(msk, x, (x, i),mbi,j
). If

D(cti,j) = bi,j , it sets ci = ci + 1.
2. It sets p̂i = ci/W .

The trace algorithm outputs the first index i ∈ {1, 2, . . . , n} such that p̂i−1 −
p̂i ≥ ε/4n. If no such index exists output ⊥.

Theorem 5.4. For any Fμ with a corresponding Gν , if ABMFE is a secure AB-
MFE for the ABE class Fμ and the MFE class Gν satisfying decoder-based secu-
rity then the scheme ABTT is a secure attribute-based traitor tracing scheme
(AB-TT).

A variant of the above theorem showing that (non attribute-based) MFE
implies traitor-tracing was given in [20] (Sect. 4.2.2). The proof of our theorem
for AB-MFE is essentially identical. We give a high level proof below.

Proof. Assume that, in the tracing game, the adversary outputs a good decoder
D meaning that the event GoodDecoder occurs. This means D can find b given
pkEnc(pp, x,mb) with some noticeable advantage ε.

– By (decoder-based) public/secret hiding, it must be the case that D can find
b given skEnc(msk, x, (x, 0),mb) with advantage ε − negl(λ). Otherwise D
could distinguish between pkEnc(pp, x,mb) and skEnc(msk, x, (x, 0),mb) even
though for all f, i we have gf,i(x, 0) = 1.

– By (decoder-based) message hiding, D can only have negligible advantage
in finding b given skEnc(msk, x, (x, n + 1),mb). Not that for every AB-MFE
secret key obtained by the adversary associated with functions (f, gf,i) we
have that either f(x) = 0 or gf,i(x, n + 1) = ¬f(x) = 0.
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– Combining the above two points, there must be at least one index j such
that the advantage of D in finding b given skEnc(msk, x, (x, j),mb) is at least
(ε − negl(λ))/n ≥ ε/(2n) larger for j versus j + 1. We can use the Chernoff
bound to argue that, with overwhelming probability, the tracing algorithm
outputs some t for which the difference in advantage is at least ε′/8n. For
this t there must be at least one b ∈ {0, 1} such that the decoder D can
distinguish between skEnc(msk, x, (x, t),mb) and skEnc(msk, x, (x, t + 1),mb)
with noticeable advantage.

– By (decoder-based) attribute-hiding security, the above can only happen if
the adversary got an AB-MFE secret key for the functions (f, gf,j) such that
gf,j(x, t) �= gf,j(x, t + 1), which can only happen if f(x) = 1 and j = t.
This means that the adversary must have queried an AB-TT secret key for
the function f such that f(x) = 1 with the identity t. Therefore the tracing
algorithm succeeds in finding a valid traitor t and the event BadTrace does
not occur whenever GoodDecoder occurs as we wanted to show.

5.4 From Mixed-FE to Attribute-Based Mixed-FE

Let ABE = (ABE.Setup,ABE.skGen,ABE.Enc,ABE.Dec) be an ABE scheme
for all circuits. Let MFE = (MFE.Setup,MFE.skGen,MFE.pkEnc,MFE.skEnc,
MFE.Dec) be an MFE scheme (without a message) for some function class Fμ =
{f : {0, 1}μ → {0, 1}}; for simplicity we switch the roles of attribute/function
and associate keys with functions and ciphertexts with attributes. We construct
and AB-MFE scheme ABMFE = (Setup, skGen, pkEnc, skEnc,Dec) as follows:

– Setup: Run (ABE.pp,ABE.msk) ← ABE.Setup(1λ) and (MFE.pp,MFE.msk)
← MFE.Setup(1λ). Output pp = (ABE.pp,MFE.pp) and msk = (ABE.msk,
MFE.msk).

– skGen(msk, f, g): Let MFE.skg ← MFE.skGen(MFE.msk, g). Let C be a cir-
cuit which has f,MFE.skg hard-coded inside it, takes as input x,MFE.ct
and outputs 1 if f(x) = 1 and MFE.Dec(MFE.skg, ct) = 1. Output skf,g ←
ABE.skGen(ABE.msk, C).

– pkEnc(pp, x,m): Let MFE.ct ← MFE.pkEnc(MFE.pp).
Output ct ← ABE.Enc(ABE.pp, (x,MFE.ct),m).

– skEnc(msk, x, y,m): Let MFE.ct ← MFE.skEnc(MFE.msk, y).
Output ct ← ABE.Enc(ABE.pp, (x,MFE.ct),m).

– Dec(skf,g, ct): Output ABE.Dec(skf,g, ct).

Theorem 5.5. If ABE is a secure ABE scheme and MFE is a secure MFE
scheme then ABMFE is a secure AB-MFE scheme.

Proof. The correctness of the AB-MFE follows directly from that of the ABE
and MFE schemes. The ABE security of the AB-MFE follows directly from
the ABE security of the ABE. The “public/secret hiding” security of the AB-
MFE follows directly from that of the MFE. The “attribute-hiding” security of
the AB-MFE follows directly from the “attribute-hiding” security of the MFE
(previously we called this “function hiding” but since we switched the roles of
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attributes and functions this is now “attribute hiding”). Lastly for message-
hiding security of the AB-MFE we rely on the security of the ABE. In par-
ticular, the adversary gets as a challenge an ABE ciphertext with attribute
(x∗,MFE.ct = MFE.skEnc(MFE.msk, y∗)) but only has ABE keys for circuits C
such that C(x,MFE.ct) = 1 if f(x∗) = 1 and MFE.Dec(MFE.skg, ct) = 1 ⇔
g(y∗) = 1. Therefore if one of f(x∗) = 0 or g(y∗) = 0 always holds, it must
mean that none of the ABE secret keys are qualified to decrypt the challenge
ciphertext.
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Abstract. We construct a two-message oblivious transfer (OT) proto-
col without setup that guarantees statistical privacy for the sender even
against malicious receivers. Receiver privacy is game based and relies on
the hardness of learning with errors (LWE). This flavor of OT has been
a central building block for minimizing the round complexity of witness
indistinguishable and zero knowledge proof systems, non-malleable com-
mitment schemes and multi-party computation protocols, as well as for
achieving circuit privacy for homomorphic encryption in the malicious
setting. Prior to this work, all candidates in the literature from stan-
dard assumptions relied on number theoretic assumptions and were thus
insecure in the post-quantum setting. This work provides the first (pre-
sumed) post-quantum secure candidate and thus allows to instantiate
the aforementioned applications in a post-quantum secure manner.

Technically, we rely on the transference principle: Either a lattice or
its dual must have short vectors. Short vectors, in turn, can be trans-
lated to information loss in encryption. Thus encrypting one message
with respect to the lattice and one with respect to its dual guarantees
that at least one of them will be statistically hidden.

1 Introduction

Oblivious transfer (OT), introduced by Rabin [32], is one of the most fundamen-
tal cryptographic tasks. A sender (S) holds two values μ0, μ1 and a receiver (R)
holds a bit β. The functionality should allow the receiver to learn μβ and noth-
ing else, the sender should learn nothing. OT has been a fundamental building
block for many cryptographic applications, in particular ones related to secure
multi-party computation (MPC), starting with [15,35].

A central measure for the complexity of a protocol or a proof system is its
round complexity. One could imagine a protocol implementing the OT function-
ality with only two messages: a first message from the receiver to the sender, and
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a second message from the sender to the receiver. Indeed, in the semi-honest set-
ting, where parties are assumed to follow the protocol, this can be achieved based
on a variety of concrete cryptographic assumptions (Decisional Diffie-Hellman,
Quadratic Residuosity, Decisional Composite Residuosity, Learning with Errors,
to name a few), as well as based on generic assumptions such as trapdoor per-
mutations, additively homomorphic encryption and public key encryption with
oblivious public key generation (e.g. [7,13]).

In the malicious setting, where an adversarial party might deviate from the
designated protocol, the ultimate simulation based security notion cannot be
achieved in a two message protocol (without assuming setup such as a common
random string or a random oracle) [16]. The standard security notion in this
setting, which originated from the works of Naor and Pinkas [27] and Aiello
et al. [1], and was further studied in [3,18,21], provides a meaningful relaxation
of the standard (simulation-based) security notion. This definition requires that
the receiver’s only message is computationally indistinguishable between the
cases of β = 0 and β = 11, and that regardless of the receiver’s first message, the
sender’s message statistically hides at least one of μ0, μ1. Alternative equivalent
formulations are simulation using a computationally unbounded (or exponential
time) simulator, or the existence of a computationally unbounded (or exponential
time) extractor, that can extract a β value from any receiver message.

With the aforementioned connection to secure MPC, it is not surprising that
this notion of malicious statistical sender-private OT (SSP-OT) found numerous
applications. In particular in recent years as the round complexity of MPC and
related objects is taken to the necessary minimum. Badrinarayanan et al. [3],
Jain et al. [19] and Kalai et al. [22] used it to construct two-message witness
indistinguishable proof systems, and even restricted forms of zero-knowledge
proof systems.

Badrinarayanan et al. [4] used similar techniques to present malicious MPC
with minimal round complexity (4-rounds). In particular, their building blocks
are SSP-OT and a 3-round semi-malicious MPC protocol (a comparable result
was achieved by Halevi et al. [17] using different techniques, in particular requir-
ing NIZK/ZAP). Khurana and Sahai [24] used SSP-OT to construct two-message
non-malleable commitment schemes (with respect to the commitment), and
Khurana [23] used it (together with ZAPs) to achieve 3-round non-malleable
commitments from polynomial assumptions. Badrinarayanan et al. [5] relied on
SSP-OT to construct 3-round concurrent MPC.

Ostrovsky, Paskin-Cherniavsky and Paskin-Cherniavsky [28] used SSP-OT to
show that any fully homomorphic encryption scheme (FHE) can be converted to
one that is statistically circuit private even against maliciously generated public
keys and ciphertexts.

Our Results and Applications. Prior to this work it was only known how
to construct SSP-OT from number theoretic assumptions such as DDH [1,27],
QR and DCR [18]. If setup is allowed, specifically a common random string,
1 Notice that it is impossible to achieve statistical indistinguishability in this setting,

at least against non-uniform malicious receivers.
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then an LWE-based construction by Peikert, Vaikuntanathan and Waters [31]
achieves strong simulation security (even in the UC model). However, the afore-
mentioned applications require a construction without setup and could therefore
not be instantiated in a post-quantum secure manner. In this work, we construct
SSP-OT from the learning with errors (LWE) assumption [33], with polyno-
mial noise-ratio, which translates to the hardness of polynomially approximating
short-vector problems (such as SIVP or GapSVP) to within a polynomial factor.
Currently, no polynomial time quantum algorithm is known for these problems,
and thus they serve as a major candidate for constructing post-quantum secure
cryptography.

Relying on our construction, it is possible for the first time, to instantiate the
works of [3,5,19,22,24] from LWE, i.e. in a post-quantum secure manner, and
obtain proof systems with witness-indistinguishable or (limited) zero-knowledge
properties, as well as non-malleable commitment schemes and concurrent MPC
protocols. It is also possible to construct a round-optimal malicious MPC from
LWE by applying the result of [4] using our SSP-OT and the LWE-based 3-
round semi-malicious MPC of Brakerski et al. [8]. Lastly, our result allows to
achieve malicious circuit private FHE from LWE by instantiating the [28] result
with our LWE-based SSP-OT and relying on the numerous existing LWE-based
FHE schemes. We stress that none of these applications had prior post-quantum
secure candidates.

1.1 Technical Overview

Our construction relies on some fundamental properties of lattices. For our pur-
poses we will only consider the so called q-ary lattices that can be described
as follows. Given a matrix A ∈ Z

n×m
q for some modulus q and m ≥ n, we can

define Λq(A) = {y ∈ Z
m : y = sA (mod q)} which is the lattice defined by

the row-span of A, and Λ⊥
q (A) = {x ∈ Z

m : Ax = 0 (mod q)} which is the
lattice defined by the kernel of A. Note that both lattices have rank m over
the integers, i.e. they contain a set of m linearly independent vectors over the
integers (but not modulo q), since they contain q ·Zm. There is a duality relation
between these two lattices, both induced by the matrix A, and this relation will
be instrumental for our methods.

An important fact about lattices is that a good basis implies decoding. Specif-
ically, if Λ⊥

q (A) contains m linearly independent vectors (over the integers) of
length at most �, then it is possible to decode vectors of the form sA+e (mod q),
if ‖e‖ is sufficiently smaller than q/�. Namely, to recover s, e. Such a short basis
is sometimes called a trapdoor for A.2

Consider sampling s uniformly in Z
n
q and e from a Gaussian s.t. ‖e‖ is slightly

below the decoding capability q/�. Then if Λ⊥
q (A) indeed has an �-basis then s, e

can be recovered from sA+ e (mod q). However, a critical observation for us is

2 While the form sA+e (mod q) bears resemblance to an instance of the LWE problem
(to be discussed below), the matrix A in our setting might be chosen by a malicious
party and therefore cannot be assumed to be close to uniform.
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that this encoding becomes lossy if the lattice Λq(A) contains a vector of norm
�q/�. That is, in this case it is information theoretically impossible to recover
the original s. This is because the component of sA that is in the direction of
the short vector is masked by the noise e (which is Gaussian and thus has a
component in every direction). This property was also used by Goldreich and
Goldwasser [14] to show that some lattice problems are in coAM.

To utilize this structure for our purposes, we specify the OT receiver message
to be a matrix A. Then the OT sender generates sA + e (mod q) and encodes
one of its inputs, say μ1 using entropy from the vector s (e.g. using a randomness
extractor). We get that this value is recoverable if A has �-basis and information-
theoretically hidden if Λq(A) has a short vector. If the receiver’s choice bit is 1,
all it needs to do is generate A that has an �-trapdoor, for which there are many
well known methods to generate such A’s that are statistically indistinguishable
from uniform (starting from [2] with numerous followups). In order to complete
the OT functionality we need to find a way to encode μ0 in a way that is lossy if
Λq(A) has no short vector. This will guarantee that regardless of the (possibly
malicious) choice of matrix A, either μ0 or μ1 are information theoretically
hidden.

Let us examine the case where all vectors in Λq(A) are of length �t for some
parameter t. Then the duality relations expressed in Banaszczyk’s transference
theorems [6] guarantees that Λ⊥

q (A) has a basis of length �q/t. In such case we
can use the smoothing principle to conclude that if x is a discrete Gaussian with
parameter q/t then Ax (mod q) is statistically close to uniform. We can thus
instruct the sender to compute Ax+d (mod q) for some vector d, and encode μ1

using entropy extracted from d. This guarantees lossiness if Λq(A) has no short
vectors as required. Furthermore, it is possible to generate a pseudorandom A
(under the LWE assumption) and specify d such that d is recoverable (this A
corresponds to the public key in Regev’s original encryption scheme [33]).

All that is left is to set the relation between �, t, q so as to make sure that if
one mode of the OT is decodable then the other is lossy. One may be suspicious
whether there is a valid setting of parameters, but in fact there is quite some
slackness in the choice of parameters. We can start by setting �, t to be some
fixed polynomial in n that is sufficient to guarantee correct recovery in the
respective cases. This can be done regardless of the value of q. We will set the
parameter q to ensure that if μ1 is recoverable then μ0 is not, which is sufficient to
guarantee statistical sender privacy against malicious receiver. Specifically, if μ1

is recoverable then Λq(A) does not have vectors of length q/(k�), where k is some
polynomial in n (that does not depend on q), and thus Λ⊥

q (A) has a k� basis.
We therefore require that q/t � k�, or equivalently q � k�t, which guarantees
that μ0 is not recoverable in this case. Since k, �, t are fixed polynomials in
n, it is sufficient to choose q to be a sufficiently larger polynomial than the
product k�t to guarantee security. Receiver privacy is guaranteed since A is
either statistically indistinguishable from uniform if the choice bit β is 1, or
computationally indistinguishable from uniform if β = 0.
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Disadvantages of the Basic Solution, and Our Actual Improved
Scheme. The proposal above can indeed be used to implement an SSP-OT.
However, when actual parameters are assigned, it becomes apparent that the
argument about the lossiness of s given sA + e (mod q) when Λq(A) has some
short vector does not produce sufficient randomness to allow extraction. This
can be resolved by repetition (many s values with the same A). However, the
lossiness argument for d guarantees much more and in fact allows to extract
random bits from d deterministically. The consequence is an unnecessarily inef-
ficient scheme. In particular, the information rate is inverse polynomial in the
security parameter of the scheme.

The scheme we actually introduce and analyze is therefore a balanced version
of the above outline, where we “pay” in weakening the lossiness in d in exchange
for strengthening the lossiness for s, which leads to a scheme with information
rate ˜Ω(1) (achieving constant information rate while preserving statistical secu-
rity remains an intriguing question). Towards this end, we introduce refinements
of known lattice tools that may be of independent interest.

The idea is to improve the lossiness in s by considering the case where Λq(A)
has multiple short vectors, instead of just one. Intuitively, this will introduce
entropy into additional components of s, thus increasing the lossiness. We for-
malize this by considering the Gaussian measure of Λq(A). A high Gaussian
measure translates (at least intuitively) to the existence of a multitude of short
vectors, formally it characterizes the potency of e to hide information about s.
The formal argument goes through the optimal Voronoi cell decoder, see Sect. 3
for formal statement and additional details.

Of course the lossiness in s needs to be complemented by lossiness in d if the
Gaussian measure of Λq(A) is small, which translates to having few independent
short vectors in Λq(A). We show that in this case we can derive partial smoothing
where for a Gaussian x, the value Ax (mod q) is no longer uniform, but rather
is uniform over some subspace modulo q. If the dimension of this subspace is
large enough, we can get lossiness for the vector d and complete the security
proof. Partial smoothing and implications are discussed in Sect. 4.

To apply these principles we need to slightly modify the definition of the
vector d and the matrix A in the case of β = 0. Now A will no longer correspond
to the public key of the Regev scheme but rather, interestingly, to the public
key of the batched scheme introduced in [31] (which is also concerned with
constructing OT, but allowing setup). The complete construction and analysis
can be found in Sect. 5.

2 Preliminaries

2.1 Statistical Sender-Private Two-Message Oblivious Transfer

We now define the object of main interest in this work, namely SSP-OT. We only
define the two-message perfect-correctness variant since this is what we achieve
in this work. A two-message oblivious transfer protocol consists of a tuple ppt
algorithms (OTR,OTS,OTD) with the following syntax.
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– OTR(1λ, β) takes the security parameter λ and a selection bit β and outputs
a message ot1 and secret state st.

– OTS(1λ, (μ0, μ1), ot1) takes the security parameter λ, two inputs (μ0, μ1) ∈
{0, 1}len (where len is a parameter of the scheme) and a message ot1. It outputs
a message ot2.

– OTD(1λ, β, st, ot2) takes the security parameter, the bit β, secret state st and
message ot2 and outputs μ′ ∈ {0, 1}len.
Correctness and security are defined as follows.

Definition 2.1. A tuple (OTR,OTS,OTD) is a SSP-OT scheme if the following
hold.

– Correctness. For all λ, β, μ0, μ1, letting (ot1, st) = OTR(1λ, β), ot2 =
OTS(1λ, (μ0, μ1), ot1), μ′ = OTD(1λ, β, st, ot2), it holds that μ′ = μβ with
probability 1.

– Receiver Privacy. Consider the distribution Dβ(λ) defined by running
(ot1, st) = OTR(1λ, β) and outputting ot1. Then D0,D1 are computationally
indistinguishable.

– Statistical Sender Privacy. There exists an extractor OTExt (possi-
bly computationally unbounded) s.t. for any sequence of messages ot1 =
ot1(λ) and inputs (μ0, μ1) = (μ0(λ), μ1(λ)), the distribution ensembles
OTS(1λ, (μ0, μ1), ot1) and OTS(1λ, (μβ′ , μβ′), ot1), where β′ = OTExt(ot1),
are statistically indistinguishable.

2.2 Linear Algebra, Min-Entropy and Extractors

Random Matrices: The probability that a uniformly random matrix A $←
Z

n×m
2 (with m ≥ n) has full rank is given by

Pr
A

[rank(A) < n] = 1 −
n−1
∏

i=0

(1 − 2i−m) ≤
n−1
∑

i=0

2i−m ≤ 2n−m,

where the first inequality follows from the union-bound.

Average Conditional Min-Entropy. Let X be a random-variable supported
on a finite set X and let Z be a (possibly correlated) random variable supported
on a finite set Z. The average-conditional min-entropy H̃∞(X|Z) of X given Z
is defined as

H̃∞(X|Z) = − log
(

Ez

[

max
x∈X

Pr[X = x|Z = z]
])

.

We will use the following easy-to-establish fact about uniform distributions on
binary vector-spaces: If U,V ⊆ Z

n
2 are sub-vectorspaces of Zn

2 , and if u $← U and
v $← V, then it holds that

H̃∞(u|u + v) = dim(U ∩ V).
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Extractors. A function Ext : {0, 1}d × X → {0, 1}� is called a seeded strong
average-case (k, ε)-extractor, if it holds for all random variables X with support
X and Z defined on some finite support that if H̃∞(X|Z) ≥ k, then it holds
that

(s,Ext(s,X), Z) ≈ε (s, U, Z),

where s $← {0, 1}d and U
$← {0, 1}�. Such extractors can be constructed from uni-

versal hash functions [11,12]. In fact, any extractor is an average-case extractor
for slightly worse parameters by the averaging principle3.

2.3 Lattices

We recall the standard facts about lattices. A lattice Λ ⊆ R
m is the set of

all integer-linear combinations of a set of linearly independent basis-vectors,
i.e. for every lattice Λ there exists a full-rank matrix B ∈ R

k×m such that
Λ = Λ(B) = {z ·B | z ∈ Z

k}. We call k the rank of Λ and B a basis of Λ. More
generally, for a set S ⊆ Λ we denote by Λ(S) the smallest sub-lattice of Λ which
contains S. Moreover, we will write rank(S) to denote rank((Λ(S)).

The dual-lattice Λ∗ = Λ∗(Λ) of a lattice Λ is defined by Λ∗(Λ) = {x ∈
R

n | ∀y ∈ Λ : 〈x,y〉 ∈ Z}. Note that it holds that (Λ∗)∗ = Λ. The determinant
of a lattice Λ is defined by detΛ =

√

det(B · B�) where B is any basis of Λ.
It holds that detΛ∗ = 1/det Λ. If Λ = Λ(B) and the norm of each row of B is
at most �, then an argument using Gram-Schmidt orthogonalization establishes
detB ≤ �k.

For a basis B ∈ R
k×m of Λ, we define the parallel-epiped of B by P(B) =

{x · B | x ∈ [−1/2, 1/2)k}. In abuse of notation we write P(Λ) to denote P(B)
for some canonic basis B of Λ (such as e.g. a Hermite basis). For lattices Λ ⊆ Λ0,
we will use P(Λ) ∩ Λ0 as a system of (unique) representatives for the quotient
group Λ0/Λ.

We say that a lattice is q-ary if (qZ)m ⊆ Λ ⊆ Z
m. In particular, for every

q-ary lattice Λ there exists a matrix A ∈ Z
k×m
q such that Λ = Λq(A) = {y ∈

Z
m | ∃x ∈ Z

k
q : y = x · A( mod q)}. We also define the lattice Λ⊥

q (A) = {y ∈
Z

m
q | A · y = 0( mod q)}. It holds that (Λq(A))∗ = 1

q Λ⊥
q (A).

Gaussians. The Gaussian function ρσ : Rm → R is defined by

ρσ(x) = e−π· ‖x‖2

σ2 .

For a lattice Λ ⊆ R
m and a parameter σ > 0, we define the discrete Gaussian

distribution DΛ,σ on Λ as the distribution with probability-mass function Pr[x =
x′] = ρσ(x′)/ρσ(Λ) for all x′ ∈ Λ. Let in the following B = {x ∈ R

m | ‖x‖ ≤ 1}
be the closed ball of radius 1 in R

m. A standard concentration inequality for
discrete gaussians on general lattices is provided by Banaszczyk’s Theorem.

3 I.e. a simple application of Markov’s inequality.
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Theorem 2.2 ([6]). For any lattice Λ ∈ R
m, parameter σ > 0 and u ≥ 1/

√
2π

it holds that

ρσ(Λ\uσ
√

mB) ≤ 2−cu·m · ρσ(Λ),

where cu = − log(
√

2πeu · e−πu2
).

Setting Λ = Z
m and u = 1 in Theorem 2.2 we obtain the following corollary.

Corollary 2.3. Let σ > 0 and x $← DZm,σ. Then it holds that ‖x‖ ≤ σ · √
m,

except with probability 2−m.

Uniform Matrix Distributions with Decoding Trapdoor. For our con-
struction we will need an efficiently samplable ensemble of matrices which is
statistically close to uniform and is equipped with an efficient bounded-distance-
decoder. Such an ensemble was first constructed by Ajtai [2] for q-ary lattices
with prime q. We use a more efficient ensemble due to Micciancio and Peikert
[25] which works for arbitrary modulus.

Lemma 2.4 ([25]). Let κ(n) = ω(
√

log(n)) be any function that grows
faster than

√

log(n) and τ be a sufficiently large constant. There exists
a pair of algorithms (SampleWithTrapdoor,Decode) such that if (A, td) ←
SampleWithTrapdoor(q, n), then A is of size n × m with m = m(q, n) =
O(n · log(q)) and A is 2−nclose to uniform. For any s ∈ Z

m
q and η ∈ Z

m
q with

‖η‖ < q√
m·κ(n) the algorithm Decode on input td and s · A + η will output s.

2.4 Learning with Errors

The learning with errors (LWE) problem was defined by Regev [33]. In this
work we exclusively use the decisional version. The LWEn,m,q,χ problem, for
n,m, q ∈ N and for a distribution χ supported over Z is to distinguish between
the distributions (A, sA+ e (mod q)) and (A,u), where A is uniform in Z

n×m
q ,

s is a uniform row vector in Z
n
q , e is a uniform row vector drawn from χm,

and u is a uniform vector in Z
m
q . Often we consider the hardness of solving

LWE for any m = poly(n log q). This problem is denoted LWEn,q,χ. The matrix
version of this problem asks to distinguish (A,S · A + E) from (A,U), where
S $← Z

k×n
q , E $← χk×m and U ← Z

k×m
q . The hardness of the matrix version

for any k = poly(n) can be established from LWEn,m,q,χ via a routine hybrid-
argument.

As shown in [30,33], the LWEn,q,χ problem with χ being the discrete Gaus-
sian distribution with parameter σ = αq ≥ 2

√
n (i.e. the distribution over Z

where the probability of x is proportional to e−π(|x|/σ)2 , see more details below),
is at least as hard as approximating the shortest independent vector problem
(SIVP) to within a factor of γ = ˜O(n/α) in worst case dimension n lattices.
This is proven using a quantum reduction. Classical reductions (to a slightly
different problem) exist as well [9,29] but with somewhat worse parameters.
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The best known (classical or quantum) algorithms for these problems run in
time 2 ˜O(n/ log γ), and in particular they are conjectured to be intractable for
γ = poly(n).

3 Lossy Modes for q-Ary Lattices

The following lemmata borrow techniques of the proofs of two lemmata by Chung
et al. [10] (Lemmas 3.3 and 3.4), but are not directly implied by these lemmata.
In this section and Sect. 4, it will be instructive to think of Λ0 as Z

n, which will
be the case in our application in Sect. 5.

Lemma 3.1. Let Λ ⊆ Λ0 ⊆ R
m be full rank lattices and let T ⊆ Λ0 be a system

of coset representatives of Λ0/Λ, i.e. we can write every x ∈ Λ0 as x = t+ z for
unique t ∈ T and z ∈ Λ. Then it holds for any parameter σ > 0 that

ρσ(T )
ρσ(Λ0)

≤ 1
ρσ(Λ)

.

Proof. As the T + y cover Λ0 it holds that

ρσ(Λ0) =
∑

y∈Λ

1
2
(ρσ(T + y) + ρσ(T − y))

=
∑

y∈Λ

∑

t∈T

1
2
(ρσ(t + y) + ρσ(t − y))

=
∑

y∈Λ

∑

t∈T

ρσ(y) · ρσ(t) · 1
2
(e−2π〈t,y〉/σ2

+ e2π〈t,y〉/σ2
)

︸ ︷︷ ︸

≥1

≥
∑

y∈Λ

ρσ(y)
∑

t∈T

ρσ(t)

= ρσ(Λ) · ρσ(T ),

where the first equality follows from the fact that
∑

y∈Λ ρσ(T + y) =
∑

y∈Λ ρσ(T − y) = ρσ(Λ0). The claim follows immediately.

Lemma 3.2. Fix a matrix A ∈ Z
n×m
q with m = O(n log(q)) and a parameter

0 < σ < q
2
√

m
. Let s $← Z

n
q and e $← DZm,σ. Then it holds that H̃∞(s|sA +

e mod q) ≥ − log
(

1
ρσ(Λq(A)) + 2−m

)

.



Two-Message Statistically Sender-Private OT from LWE 379

Proof. Given arbitrary A and y, we would like to find an s∗ that maximizes the
probability Pr[s = s∗|y = sA + e]. By Bayes’ rule, it holds that

Pr[s = s∗|y = sA + e] = Pr[y = sA + e|s = s∗] · Pr[s = s∗]
Pr[y = sA + e]

= Pr[e = y − s∗A] · Pr[s = s∗]
∑

s′ Pr[y = sA + e|s = s′] Pr[s = s′]

= Pr[e = y − s∗A] · q−n

∑

s′ Pr[e = y − s′A]q−n

=
Pr[e = y − s∗A]

∑

s′ Pr[e = y − s′A]
.

As the denominator
∑

s′ Pr[e = y − s′A] is independent of s∗, it suffices to
maximize the numerator Pr[e = y − s∗A] with respect to s∗. As Pr[e = y −
s∗A] = ρσ(y−s∗A)

ρσ(Zm) is monotonically decreasing in ‖y − s∗A‖, this probability is
maximal for the s∗ that minimizes ‖y − s∗A‖.

Let V ⊆ Z
n be the discretized Voronoi-cell of Λq(A), that is V consists of

all the points in Z
m that are (strictly) closer to 0 than to any other point in Λ

and, for any point x ∈ Z
m that is equi-distant to several lattice-points z1, . . . , z�

(where z1 = 0), assume that there is some tie-breaking rule x �→ i(x), such that
x−zi(x) ∈ V , but for all j ∈ [�]\{i(x)} it holds that x−zj /∈ V . By construction,
V is a system of coset representatives of Zm/Λq(A).

Moreover, for the maximum-likelihood s∗ it holds that Pr[s = s∗|y = sA +
e] = Pr[e mod q ∈ V ]. By Corollary 2.3 it holds that ‖e‖ ≤ σ · √

m < q/2,
except with probability 2−m. Moreover, conditioned on ‖e‖ < q/2 the events
e mod q ∈ V and e ∈ V are equivalent. We can therefore bound Pr[e mod q ∈
V ] ≤ Pr[e ∈ V ]+2−m. By Lemma 3.1 we obtain Pr[e ∈ V ] ≤ ρσ(V )

ρσ(Zm) ≤ 1
ρσ(Λq(A))

and therefore Pr[e mod q ∈ V ] ≤ 1
ρσ(Λq(A)) + 2−m

We conclude that maxs∗∈Zn
q

Pr[s = s∗|y = sA + e] = Pr[e mod q ∈ V ] ≤
1

ρσ(Λq(A)) + 2−m. Thus, it holds that

H̃∞(s|sA + e) = − log(Ey

[

max
s∗ Pr

s,e
[s = s∗|y = sA + e]

]

)

= − log(Ey[Pr[e mod q ∈ V ]])
= − log(Pr[e mod q ∈ V ])

≥ − log
(

1
ρσ(Λq(A))

+ 2−m

)

4 Partial Smoothing

In this section we will state a variant of the smoothing lemma of Micciancio
and Regev [26]. Consider a discrete gaussian DΛ0,σ on a lattice Λ0. As in the
setting of the smoothing Lemma of [26], we want to analyze what happens to the
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distribution of this Gaussian when we reduce it modulo a sublattice Λ ⊆ Λ0. The
new lemma states that if the mass of the Fourier-transform of the probability-
mass function of DΛ0,σ mod Λ is concentrated on short vectors of the dual
lattice Λ∗, then DΛ0,σ mod Λ will be uniform on a certain sublattice Λ1 with
Λ0 ⊆ Λ1 ⊆ Λ.

Lemma 4.1. Let σ > 0 and let Λ ⊆ Λ0 ⊆ R
n be full-rank lattices where

det(Λ0) = 1. Furthermore, let γ > 0. Define Λ1 = {z ∈ Λ0 | ∀y ∈ Λ∗ ∩ γB :
〈y, z〉 ∈ Z}. Given that ρ1/σ(Λ∗\γB) ≤ ε, it holds that

x mod Λ ≈ε (x + u) mod Λ,

where x $← DΛ0,σ and u $← P(Λ) ∩ Λ1.

Notice that for the case of Λ∗ ∩γB = {0} we recover the standard smoothing
lemma of [26]. The proof of Lemma 4.1 uses standard Fourier-analytic techniques
akin to [26] and is deferred to AppendixA. We will make use of the following
consequence of Lemma 4.1.

Corollary 4.2. Let q > 0 be an integer and let γ > 0. Let A ∈ Z
m×n
q and let

σ > 0 and ε > 0 be such that ρq/σ(Λq(A)\γB) ≤ ε. Let D ∈ Z
k×m
q be a full-rank

(and therefore minimal) matrix with Λ⊥
q (D) = {x ∈ Z

m | ∀y ∈ Λq(A) ∩ γB :

〈x,y〉 = 0 (mod q)}. Let x $← DZm,σ and u $← Λ⊥
q (D) mod q. Then it holds

that

Ax mod q ≈ε A · (x + u) mod q.

Proof. Setting Λ0 = Z
n, Λ = Λ⊥

q (A) and γ′ = γ/q, it holds that Λ∗ = 1
q Λq(A)

and

ε ≥ ρq/σ(Λq(A)\γB) = ρ1/σ

(

1
q
Λq(A)\γ

q
B

)

= ρ1/σ(Λ∗\γ′B).

Therefore, we can set

Λ1 = {x ∈ Z
m | ∀y ∈ Λ∗ ∩ γ′B : 〈x,y〉 ∈ Z}

= {x ∈ Z
m | ∀y ∈ Λq(A) ∩ γB : 〈x,y〉 = 0( mod q)}

= Λ⊥
q (D).

Now it holds by Lemma 4.1 as u $← Λ⊥
q (D) that x mod Λ⊥

q (A) ≈ε (x +
u) mod Λ⊥

q (A). Write y1 = x mod Λ⊥
q (A) as y1 = x + z1 mod q for a

suitable z1 ∈ Λ⊥
q (A). Likewise, we can write y2 = x + u mod Λ⊥

q (A) as
y2 = x + u + z2 mod q for a suitable z2. Thus it holds that

Ax = A(x + z1) ≈ε A(x + u + z2) = A(x + u) ( mod q).

We will also use the following lower bound on the gaussian measure of lattices
that have many short linearly independent vectors. The proof of Lemma4.3 is
technically similar to the proof of the transference theorem in [6].
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Lemma 4.3. Let Λ ∈ R
m, σ > 0 and γ > 0 be such that Λ ∩ γB contains at

least k linearly independent vectors. Then it holds that ρσ(Λ) ≥ (σ/γ)k.

Proof. Let Λ′ ⊆ be the sublattice generated by the vectors in Λ ∩ γB. Let k be
the dimension of the span of Λ′. As Λ′ ⊆ Λ, it holds that ρσ(Λ) ≥ ρσ(Λ′). As
Λ′ has a basis of length at most γ, we we have that det(Λ′) ≤ γk and conclude
det((Λ′)∗) = 1/det(Λ′) ≥ 1

γk . By the Poisson-summation formula, we get that

ρσ(Λ′) = σk · det((Λ′)∗) · ρ1/σ((Λ′)∗)

≥ (σ/γ)k,

as ρ1/σ((Λ′)∗) ≥ 1. Thus we conclude that ρσ(Λ) ≥ (σ/γ)k.

5 Our Oblivious Transfer Protocol

We are now ready to provide our statistically sender private oblivious transfer
protocol. In the following, let q, n, � = poly(λ) and assume that q is of the
form q = 2p for an odd p. Let (SampleWithTrapdoor,Decode) be the pair of
algorithms provided in Lemma2.4 and let m = m(q, n) be such that the matrices
A generated by SampleWithTrapdoor(q, 2n) are elements of Z

2n×m. Let Ext0 :
{0, 1}d×{0, 1}n → {0, 1}� and Ext1 : {0, 1}d×Z

2n
q → {0, 1}� be seeded extractors,

both with seed-length d and � bits of output. Finally, let σ0, σ1 > 0 be parameters
for discrete Gaussians and χ be an LWE error-distribution.

The protocol OT = (OTR,OTS,OTD) is given as follows.

– OTR(1λ, β ∈ {0, 1}):
• If β = 0, choose a matrix A1

$← Z
n×m
q , a matrix S ← Z

n×n
q , E $← χn×m.

Set A2 ← S ·A1 +E and A ← [

A1
A2

]

. Repeat this step until A mod 2 has
full rank.
Output ot1 ← A and st ← S.

• If β = 1, sample (A, td) $← SampleWithTrapdoor(q, 2n). Repeat this step
until A mod 2 has full rank. Output ot1 ← A and st ← td.

– OTS(1λ, (μ0, μ1) ∈ ({0, 1}�)2, ot1 = A):
• Check if A mod 2 has full rank, if not output ⊥.
• Parse A =

[

A1
A2

]

. Sample and reject a discrete Gaussian x $← DZm,σ0

until ‖x‖ < σ0
√

m. Choose a uniformly random r ← {0, 1}n and choose
a random seed s0

$← {0, 1}d for the extractor Ext0. Compute y1 ← A1x
and y2 ← A2x + q

2 · r. Set c0 ← (y1,y2, s0,Ext0(s0, r) ⊕ μ0).
• Sample and reject η

$← DZm,σ1 until ‖η‖ < σ1
√

m. Choose a uniformly
random t $← Z

2n
q and a seed s1

$← {0, 1}d for the extractor Ext1. Compute
y ← t · A + η set c1 ← (y, s1,Ext1(s1, t) ⊕ μ1).

• Output ot2 ← (c0, c1).
– OTD(β, st, ot2 = (c0, c))

• If β = 0: Parse st = S and c0 = (y1,y2, s0, τ). Compute r′ ←
�y2 − S · y1�q/2 and output μ′

0 ← Ext0(s0, r′) ⊕ τ .
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• If β = 1: Parse st = td and c1 = (y, s1, τ). Compute t′ ← Decode(td,y)
and output μ′

1 ← Ext1(s1, t′) ⊕ τ .

We will first show correctness of our protocol.

Lemma 5.1 (Correctness). Assume that the distribution χ is a B-bounded.
Provided that σ0 ≤ q

4B·m and σ1 ≤ q
m·κ(n) (where κ(n) = ω(

√

log(n)) as in
Lemma 2.4), the protocol OT is perfectly correct.

Proof. First note that as m ≥ n · log(q), it holds for a uniformly random
A $← Z

2n×m
q that A mod 2 has full rank, except with negligible probability

2n−m (as detailed in Sect. 2.2). Moreover for x ← DZm,σ0 and η
$← DZm,σ1 it

holds by Corollary 2.3 that ‖x‖ < σ0
√

m and ‖η‖ < σ1
√

m, except with negli-
gible probability. Thus, rejection in OTR and OTS happens only with negligible
probability.

In the case of β = 0, it holds that

y2 − S · y1 = (SA1 + E)x +
q

2
r − SA1x

= E · x +
q

2
· r.

By the Cauchy-Schwarz inequality it holds for each row ei of E that |〈ei,x〉| ≤
‖ei‖ · ‖x‖. As the entries of ei are chosen according to χ, we can bound ‖ei‖ by
‖ei‖ ≤ B · √m. As ‖x‖ < σ0 · √

m, we have that

|〈ei,x〉| ≤ B · σ0 · m <
q

4

as σ0 ≤ q
4B·m . We conclude that r′ = �y2 − S · y1�q/2 is identical to the vector

r used during encryption. Consequently, it holds that μ′
0 = Ext0(s0, r′) ⊕ τ =

Ext0(s0, r′) ⊕ Ext0(s0, r) ⊕ μ0 = μ0.
For the case of β = 1, as ‖η‖ < σ1

√
m ≤ q√

m·κ(n) it holds by Lemma 2.4 that
Decode(td,y1) outputs the correct t′ = t. We conclude that μ′

1 = Ext1(s1, t′) ⊕
τ = Ext1(s1, t′) ⊕ Ext1(s1, t) ⊕ μ = μ1.

We now show that OT has computational receiver privacy under the deci-
sional matrix LWE assumption.

Lemma 5.2 (Computational Receiver Security). Given that the decisional
LWEn,q,χ-assumption holds, the protocol OT = (OTR,OTS,OTD) has receiver
privacy.

Proof. Let (A, st0) ← OTR(1λ, 0) and (A′, st1) ← OTR(1λ, 1). Assume towards
contradiction that there exists a PPT-distinguisher D which distinguishes A
and A′ with non-negligible advantage ε. We can immediately use D to dis-
tinguish decisional matrix LWE. Decomposing A =

[

A1
A2

]

, it holds that A1

is uniformly random and A2 = S · A1 + E, i.e. (A1,A2) is a sample of the
matrix LWE distribution. On the other hand, due to the uniformity property
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of SampleWithTrapdoor (provided in Lemma2.4) it holds that A′ ≈s A∗ for a
uniformly random A∗ $← Z

2n×m
q . Consequently

AdvLWE(D) = | Pr[D(A) = 1] − Pr[D(A∗) = 1]|
≥ | Pr[D(A) = 1] − Pr[D(A′) = 1]| − | Pr[D(A∗) = 1] − Pr[D(A′) = 1]|
≥ ε − negl,

which contradicts the hardness of decisional matrix LWE.

We will now show that OT is statistically sender-private.

Theorem 5.3. (Statistical Sender Security). Let q = 2p for an odd p. Given
that σ0 ·σ1 ≥ 4

√
m ·q, σ1 < q

2
√

m
and both Ext0 and Ext1 are strong average-case

(n/2,negl)-extractors, then the above scheme enjoys statistical sender security.

Proof. Fix a maliciously generated ot1-message ot1 = A. Let in the following
γ :=

√
m · q

σ0
. Consider the following two cases.

1. ρq/σ0(Λq(A)) > 2n/2+1 or rank(Λq(A) ∩ γB)) > n/2.
2. ρq/σ0(Λq(A)) ≤ 2n/2+2 and rank(Λq(A) ∩ γB) ≤ n/2.

First notices that the two cases are slightly overlapping, but for any choice
of A one of the two cases must be true.

The unbounded message extractor OTExt takes input A and decides if item 1
or item 2 holds. If item 1 holds it outputs 0, otherwise 1. Note that rank(Λq(A)∩
γB) can be computed exactly. On the other hand, it is sufficient approximate
ρq/σ0(Λq(A)) to a certain precision to determine which case holds.

We will now show that in case 1 the sender-message μ1 is statistically hidden,
whereas in case 2 the sender-message μ0 is statistically hidden.

Case 1. We will start with the (easier) first case. We will show that either
statement implies ρσ1(Λq(A)) ≥ 2n/2+1. If it holds that ρq/σ0(Λq(A)) > 2n/2+1,
we can directly conclude that

ρσ1(Λq(A)) ≥ ρ4
√

m· q
σ0

(Λq(A)) ≥ ρ q
σ0

(Λq(A)) > 2n/2+1.

If the second statement rank(Λq(A) ∩ γB)) > n/2 holds, Lemma 4.3 implies

ρσ1(Λq(A)) ≥ (σ1/γ)n/2+1 ≥ 2n+2 ≥ 2n/2+1,

as σ1 ≥ 4γ.
Now let c1 = (y, s1, τ), where y ← t · A + η. Note that we can switch to a

hybrid in which the distribution of η is DZm,σ1 instead of the truncated version
while only incurring a negligible statistical error.

As ρσ1(Λq(A)) ≥ 2n/2+1 and σ1 < q
2
√

m
, Lemma 3.2 implies that

H̃∞(t|y) ≥ − log(1/ρσ1(Λq(A)) + 2−m) ≥ − log(2−n/2−1 + 2−m) ≥ n/2
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Thus, as Ext1 is a strong (n/2,negl)-extractor, we get that Ext1(s1, t) is statisti-
cally close to uniform given y. Consequently, τ = Ext1(s1, t) ⊕ μ1 is statistically
close to uniform given s1 and y, which concludes the first case.

Case 2. We will now turn to the second case, i.e. it holds that ρq/σ0(Λq(A)) ≤
2n/2+2 and rank(Λq(A) ∩ γB)) ≤ n/2. Theorem 2.2 yields that

ρq/σ0(Λq(A)\γB) = ρq/σ0

(

Λq(A)\
√

m · q

σ0
B

)

≤ 2−C·m · ρq/σ0(Λq(A))

≤ 2−C·m · 2n/2+2 = 2n/2+2−C·m

where C > 0 is a constant. This expression is negligible as m ≥ n · log(q). Con-
sequently, the precondition ρq/σ0(Λq(A)\γB) ≤ negl of Corollary 4.2 is fulfilled.

Now let D ∈ Z
k×m
q be a full-rank matrix with Λ⊥

q (D) = {z ∈ Z
m | ∀v ∈

Λq(A) ∩ γB : 〈z,v〉 = 0( mod q)). Thus it holds that Λq(A) ∩ γB ⊂ Λq(D) and
there is no matrix with fewer than k rows with this property. As rank(Λq(A) ∩
γB) ≤ n/2, it holds that k ≤ n/2.

Decompose the matrix A into A =
[

A1
A2

]

with A1 ∈ Z
n×m
q and A2 ∈ Z

n×m
q .

Let c0 = (y1,y2, s0, τ), where y1 = A1x and y2 = A2x + q
2r with x $← DZm,σ0

and r $← {0, 1}n. As ρq/σ0(Λq(A)\γB) ≤ ε, Corollary 4.2 implies that

(y1,y2) = (A1x,A2x +
q

2
r) ≈ε (A1(x + u),A2(x + u) +

q

2
r) =: (y′

1,y
′
2)

where u $← Λ⊥
q (D). We can therefore switch to a hybrid experiment in which we

replace x with x+u while only incurring negligible statistical distance. We will
now show that H̃∞(r|y′

1,y
′
2) ≥ n/2.

As q = 2p and p is odd, it holds by the Chinese remainder theorem that

y′
1 ≡ (A1(x + u) mod 2,A1(x + u) mod p)

y′
2 ≡ (A2(x + u) + r mod 2,A1(x + u) mod p)

Note that u mod 2 and u mod p are independent. As the mod p part does
not depend on r, we only need to consider the mod 2 part. Let in the following
variables with a hat denote this variable is reduced modulo 2, e.g. x̂ = x mod 2.
It holds that û is chosen uniformly from ker(D̂) = {w ∈ Z

m
2 | D̂ · w = 0}.

The dimension of ker(D̂) is at least m − k ≥ m − n/2. Let B̂ ∈ Z
m×m
2 be

a basis of ker(D̂). As Â has full rank and therefore rank(ker(Â)) = m − 2n,
it holds that rank(Â · B̂) ≥ 3

2n. Therefore Â · û is uniformly random in an 3
2n

dimensional subspace. But this means that (ŷ′
1, ŷ

′
2) = (Â1x̂+Â1û, Â2x̂+Â2û+

r) loses at least n/2 bits of information about r (c.f. Sect. 2.2). Consequently,
it holds that H̃∞(r|y′

1,y
′
2) ≥ n/2. Therefore, as Ext0 is a strong (n/2,negl)-

extractor, we get that Ext0(s0, r) is statistically close to uniform given y′
1,y

′
2.

Finally, τ = Ext0(s0, r) ⊕ μ0 is statistically close to uniform given s0 and y′
1,y

′
2,

which concludes the second case.
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5.1 Setting the Parameters

We will now show that the parameters of the scheme can be chosen such that
correctness, statistical sender privacy and computational receiver privacy hold.

– By Lemma 5.1, OT is correct if σ0 ≤ q
4B·m and σ1 ≤ q

m·κ(n) (where κ(n) =

ω(
√

log(n))).
– By Theorem 5.3, OT is statistically sender private if σ0 · σ1 ≥ 4

√
m · q and

σ1 < q
2
√

m
.

These requirements can be met if

q2

4κ(n)Bm2
≥ 4

√
m · q,

which is equivalent to

q ≥ 16κ(n) · B · m2.5. (1)

If χ is a discrete Gaussian on Z with parameter αq, i.e. χ = DZ,αq, then, given
that αq ≥ ηε(Z) = ω(

√

log(n)) it holds that χ is αq bounded, i.e. B ≤ αq (with
overwhelming probability). This means that

α ≤ 1
16 · κ(n)m2.5

= Õ(n−2.5)

implies inequality (1). Thus, we get a worst-case approximation factor Õ(n/α) =
Õ(n3.5) for SIVP (compared to Õ(n1.5) for primal Regev encryption). With this
choice of α, we can choose q = Õ(n3), σ0 = Õ(n2.5) and σ1 = Õ(n).

Acknowledgement. We would like to thank the anonymous TCC 2018 reviewers for
insightful comments that helped to improve the presentation of the paper.

A Appendix

In this Section we will provide the proof for Lemma4.1. We will first provide
some additional preliminaries.

A.1 Additional Preliminaries

Fourier Transforms. We now recall a few basic facts about Fourier-transforms
on lattices. Let f : R

m → C and Λ be a lattice, if it exists, we will write
f(Λ) :=

∑

x∈Λ f(x). For a nice enough4 function f : Rm → C, we define the
continuous Fourier-transform f̂ : Rm → C by f̂(ω) =

∫

x∈Rm f(x) · e−2πi·〈ω ,x〉dx.

4 Where nice enough means that
∫
x∈Rm |f(x)|dx is finite.
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The Poisson summation formula states that f(Λ) = det(Λ∗)·f̂(Λ∗). The Fourier-
transform of the Gaussian function ρσ(x) is σm · ρ1/σ(ω). Consequently, we get
by the Poisson summation formula that

ρσ(Λ) = σm · det(Λ∗) · ρ1/σ(Λ∗).

Fix a full-rank lattice Λ0 ⊆ R
m and assume henceforth that Λ ⊆ Λ0. We say

a function f : Λ0 → C is Λ-periodic if it holds for all x ∈ Λ0 and all z ∈ Λ that
f(x + z) = f(x). Now let f : Λ0 → C be a Λ-periodic function. We define the
discrete Fourier transform f̂ : Λ∗ → C of f by

f̂(ω) =
∑

x∈P(Λ)∩Λ0

f(x) · e−2πi〈x,ω〉.

Here, P(Λ)∩Λ0 can be replaced by any system of representatives for the quotient
group Λ0/Λ. Using Fourier-inversion, we can express f as

f(x) =
det Λ0

det Λ
·

∑

ω∈P(Λ∗
0)∩Λ∗

f̂(ω) · e2πi〈ω ,x〉.

Note that f̂ is Λ∗
0 periodic.

Let x and y be random variables defined on Λ0/Λ. Let the probability-mass
function of the distribution of x be given by a Λ-periodic function X : Λ0 → R,
and let the probability-mass function of y be given by a Λ-periodic function
Y : Λ0 → R. Finally, let Z : Λ0 → R be the probability mass function of x + y.
The convolution theorem states that it holds that

Ẑ(ω) = X̂(ω) · Ŷ (ω),

for all ω ∈ Λ∗.
If x is distributed according to a discrete Gaussian DΛ0,σ and Λ ⊆ Λ0, then

x mod Λ has the probability-mass function of a periodic gaussian given by

ψσ(x′) = Pr[x = x′] =
1

ρσ(Λ0)
·
∑

z∈Λ

ρσ(x′ + z)

and it holds that

̂ψσ(ω) =
1

det(Λ∗
0) · ρ1/σ(Λ∗

0)
·

∑

ξ∈Λ∗
0

ρ1/σ(ω + ξ)

for ω ∈ Λ∗.
We define the Dirac-function δ : Λ0 → R as δ(0) = 1 and δ(x) = 0 for x �= 0.

If Λ ⊆ Λ1 ⊂ Λ0 and u is distributed uniformly random on P(Λ) ∩ Λ1, then u
has the probability-mass function

U(x) =
det Λ1

det Λ

∑

y∈Λ1

δ(x + y)

and the Fourier-transform

Û(ω) =
∑

ξ∈Λ∗
1

δ(ω + ξ).
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A.2 Proof of the Partial Smoothing Lemma

Lemma A.1. Let σ > 0 and let Λ ⊆ Λ0 ⊆ R
n be full-rank lattices where

det(Λ0) = 1. Furthermore, let γ > 0. Define Λ1 = {z ∈ Λ0 | ∀y ∈ Λ∗ ∩ γB :
〈y, z〉 ∈ Z}. Given that ρ1/σ(Λ∗\γB) ≤ ε, it holds that

y mod Λ ≈ε (y + u) mod Λ,

where y $← DΛ0,σ and u $← P(Λ) ∩ Λ1.

Proof. First notice that Λ ⊆ Λ1 ⊆ Λ0 and Λ∗ ∩ γB ⊆ Λ∗
1. The probability-mass

function of y is given by

Y (x) =
1

ρσ(Λ0)

∑

z∈Λ

ρσ(x + z)

for x ∈ P(Λ) ∩ Λ0. The Fourier-transform of Y is

Ŷ (ω) =
1

det(Λ∗
0) · ρ1/σ(Λ∗

0)
·

∑

ξ∈Λ∗
0

ρ1/σ(ω + ξ) =
1

ρ1/σ(Λ∗
0)

·
∑

ξ∈Λ∗
0

ρ1/σ(ω + ξ)

for ω ∈ P(Λ∗
0) ∩ Λ∗.

The probability-mass function of u is

U(x) =
det Λ1

det Λ

∑

y∈Λ1

δ(x + y)

for x ∈ P(Λ) ∩ Λ0.
Note that U(x) is Λ-periodic as Λ ⊆ Λ1. We can therefore compute the

Fourier-transform of U and obtain

Û(ω) =
∑

ξ∈Λ∗
1

δ(ω + ξ),

i.e. Û(ω) is constant 1 on P(Λ∗
0) ∩ Λ�

1 and 0 everywhere else.
By the convolution theorem, the Fourier-transform of the probability mass

function of r = y + u mod Λ is

R(ω) = Ŷ (ω) · Û(ω)

for ω ∈ P(Λ∗
0) ∩ Λ∗.
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Consequently, we can bound the statistical distance between y and r by

2 · Δ(y, r) =
∑

x∈P(Λ)∩Λ0

|Y (x) − R(x)|

≤ det Λ

det Λ0
· max
x∈P(Λ)∩Λ0

|Y (x) − R(x)|

=
det Λ

det Λ0
· max
x∈P(Λ)∩Λ0

∣

∣

∣

∣

∣

∣

det Λ0

det Λ
·

∑

ω∈P(Λ∗
0)∩Λ∗

Ŷ (ω)(1 − Û(ω))e2πi〈ω ,x〉

∣

∣

∣

∣

∣

∣

= max
x∈P(Λ)∩Λ0

|
∑

ω∈P(Λ∗
0)∩Λ∗\Λ∗

1

Ŷ (ω)e2πi〈ω ,x〉|

= max
x∈P(Λ)∩Λ0

|
∑

ω∈P(Λ∗
0)∩Λ∗\Λ∗

1

1
ρ1/σ(Λ∗

0)

∑

ξ∈Λ∗
0

ρ1/σ(ω + ξ)e2πi〈ω ,x〉|

≤ max
x∈P(Λ)∩Λ0

|
∑

ω∈Λ∗\Λ∗
1

ρ1/σ(ω)e2πi〈ω ,x〉|

≤ max
x∈P(Λ)∩Λ0

∑

ω∈Λ∗\Λ∗
1

|ρ1/σ(ω)e2πi〈ω ,x〉|

=
∑

ω∈Λ∗\Λ∗
1

ρ1/σ(ω) = ρ1/σ(Λ∗\Λ∗
1) ≤ ρ1/σ(Λ∗\γB) ≤ ε

The second inequality holds as 1
ρ1/σ(Λ

∗
0)

≤ 1 and the third inequality is an appli-
cation of the triangle inequality.
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Abstract. In distributed pseudorandom functions (DPRFs), a PRF
secret key SK is secret shared among N servers so that each server
can locally compute a partial evaluation of the PRF on some input X.
A combiner that collects t partial evaluations can then reconstruct the
evaluation F (SK,X) of the PRF under the initial secret key. So far, all
non-interactive constructions in the standard model are based on lattice
assumptions. One caveat is that they are only known to be secure in
the static corruption setting, where the adversary chooses the servers
to corrupt at the very beginning of the game, before any evaluation
query. In this work, we construct the first fully non-interactive adap-
tively secure DPRF in the standard model. Our construction is proved
secure under the LWE assumption against adversaries that may adap-
tively decide which servers they want to corrupt. We also extend our
construction in order to achieve robustness against malicious adversaries.

Keywords: LWE · Pseudorandom functions · Distributed PRFs
Threshold cryptography · Adaptive security

1 Introduction

A pseudorandom function (PRF) family [35] is a set F of keyed functions with
common domain Dom and range Rng such that no ppt adversary can distinguish
a real experiment, where it has oracle access to a random member f ←↩ F of the
PRF family, from an ideal experiment where it is interacting with a truly random
function R : Dom → Rng. To be useful, a PRF should be efficiently computable
– meaning that Fs(x) must be deterministically computable in polynomial time
given the key s and the input x ∈ Dom – and the key size must be polynomial.

Pseudorandom functions are fundamental objects in cryptography as most
central tasks of symmetric cryptography (like secret-key encryption, message
authentication or identification) can be efficiently realized from a secure PRF
family. Beyond their use for cryptographic purposes, they can also be used to
prove circuit lower bounds [56] and they are strongly connected to the hardness
of certain tasks in learning theory [62].
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Goldreich, Goldwasser and Micali (GGM) [35] showed how to build a PRF
from any length-doubling pseudorandom generator (PRG). In turn, PRGs are
known [39] to exist under the sole assumption that one-way functions exist.
However, much more efficient constructions can be obtained by relying on specific
number theoretic assumptions like the Decision Diffie-Hellman assumption [51]
and related variants [17,21,28,44] or the hardness of factoring [51,52].

In the context of lattice-based cryptography, the noisy nature of hard-on-
average problems, like Learning-With-Errors (LWE) [57], makes it challenging
to design efficient PRF families. The LWE assumption for a modulus q states
that, given a random matrix A ∈ Z

m×n
q with m > n, the vector A · s + e is

computationally indistinguishable from a uniform vector over Z
m
q when s ∈ Z

n
q

is uniformly chosen in Z
n
q and e ∈ Z

m is a small-norm noise vector sampled from
a Gaussian distribution. In order to design PRFs with small-depth evaluation
circuits, several works [7,8,16] rely on the Learning-With-Rounding (LWR) tech-
nique [8], which is a “de-randomization” of LWE where noisy vectors A ·s+e are
replaced by rounded vectors �(p/q) · (A · s)� ∈ Z

m
p for a smaller modulus p < q.

An appealing advantage of lattice-based techniques is that they enable the
design of key-homomorphic PRF families [7,16]. Namely, assuming that their
range and key space form an additive group, for any input x and keys s, t, we
have Fs+t(x) ≈ Fs(x) + Ft(x). In turn, key-homomorphic PRFs provide simple
and non-interactive constructions of distributed pseudorandom functions [50].
In a (threshold) distributed PRF (DPRF), secret keys are broken into N shares
s1, . . . , sN , each of which is given to a different server. Using its secret key
share si, the i-th server can locally compute a partial evaluation Fsi

(x) of the
function. A dedicated server can then gather at least t ≤ N correct partial evalu-
ations Fsi1

(x), . . . , Fsit
(x) and reconstruct the evaluation Fs(x) for the long-term

key s. As such, threshold PRFs inherit the usual benefits of threshold cryptog-
raphy [25]. First, setting t < N allows for fault-tolerant systems that can keep
running when some server crashes. Second, the adversary is forced to break into t
servers to compromise the security of the whole scheme. Ideally, servers should be
able to generate their partial evaluations without interacting with one another.

Boneh et al. [16] gave a generic construction of non-interactive DPRF from
any almost key homomorphic PRF (where “almost” means that Fs+t(x) only
needs to be sufficiently “close” to Fs(x) + Ft(x)). Their construction, however,
is only proved to be secure under static corruptions. Namely, the adversary has
to choose the corrupted servers all-at-once and before making any evaluation
query.

Contribution. We consider the problem of proving security in the stronger
adaptive corruption model, where the adversary chooses which servers it wants
to corrupt based on the previously obtained information. In particular, an adap-
tive adversary is allowed to obtain partial evaluations before corrupting any
server.

In this stronger adversarial model, we provide the first realization of non-
interactive distributed pseudorandom function with a security proof under
a polynomial reduction. We prove the security of our construction in the
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standard model under the Learning-With-Errors (LWE) assumption [57] with
super-polynomial approximation factors.

In its basic version, our DPRF is only secure against passive adversaries.
However, robustness against malicious adversaries can be readily achieved using
leveled homomorphic signatures [37], as was suggested by earlier works on thresh-
old lattice-based cryptography [14,15]. To our knowledge, we thus obtain the first
DPRF candidate which is simultaneously: (i) secure under adaptive corruptions
in the standard model under a well-studied assumption; (ii) robust against mali-
cious adversaries; (iii) non-interactive (i.e., each server only sends one message
to the combiner that reconstructs the final output of the PRF).

Techniques. For a polynomial N and when t ≈ N/2, proving adaptive secu-
rity is considerably more challenging as a trivial complexity leveraging argument
(i.e., guessing the set of corrupted servers upfront) makes the reduction super-
polynomial. Moreover, we show that allowing a single partial evaluation query
before the first corruption query already results in a definition which is strictly
stronger than that of static security. In the adaptive corruption setting, the dif-
ficulty is that, by making N partial evaluation queries before corrupting any
server, the adversary basically commits the challenger to all secret key shares.
Hence, a reduction that only knows t − 1 ≈ N/2 shares is unlikely to work as it
would have to make up its mind on which set of t − 1 shares it wants to know
at the outset of the game. In particular, this hinders a generic reduction from
the security of an underlying key-homomorphic PRF. This suggests to find a
reduction that knows all shares of the secret key, making it easier to consistently
answer adaptive corruption queries.

To this end, we turn to lossy trapdoor functions [54], which are function
families that contain both injective and lossy functions with computationally
indistinguishable evaluation keys. We rely on the fact that the LWE function and
its deterministic LWR variant [8] are both lossy trapdoor functions (as shown
in [6,9,36]). Namely, the function that maps s ∈ Z

n to �A · s�p is injective
when A ∈ Z

m×n
q is a random matrix and becomes lossy when A is of the form

Ā · C + E, where Ā ∈ Z
m×n′
q , C ∈ Z

n′×n
q are uniformly random and E ∈ Z

m×n

is a small-norm matrix. Our idea is to first construct a PRF which maps an
input x to �A(x) · s�p, where s ∈ Z

n is the secret key and A(x) ∈ Z
m×n
q is

derived from public matrices. We thus evaluate a lossy trapdoor function on an
input consisting of the secret key using a matrix that depends on the input. In
the security proof, we use admissible hash functions [13] and techniques from
fully homomorphic encryption [33] to “program” A(x) in such a way that, with
non-negligible probability, it induces a lossy function in all evaluation queries
and an injective function in the challenge phase.1 (We note that this use of lossy
trapdoor functions is somewhat unusual since their injective mode is usually
used to handle adversarial queries while the lossy mode comes into play in the
challenge phase.) By choosing a large enough ratio q/p, we can make sure that
1 We use a “find-then-guess” security game where the adversary obtains correct eval-

uation for inputs of its choice before trying to distinguish a real function evaluation
from a random element of the range.
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evaluation queries always reveal the same information about the secret s. Since
�A(x�) · s�p is an injective function in the challenge phase, we can argue that
it has high min-entropy, even conditionally on responses to evaluation queries.
At this point, we can extract statistically uniform bits from �A(x�) · s�p using a
deterministic randomness extractor: analogously to the deterministic encryption
case [55], we need to handle a source that may be correlated with the seed.

We note that the above approach bears resemblance with key-homomorphic
PRFs [7,16] which also evaluate functions of the form �A(x) · s�p. However, our
proof method is very different in that it relies on the lossy mode of LWE and the
homomorphic encryption scheme of [33]. The advantage of our approach is that
the challenger knows the secret key s at all steps of the security proof. In the
distributed setting, this makes it easier to handle adaptive adversaries because
the reduction can always correctly answer corruption queries. In order to share
the secret key s among N servers, we rely on the Linear Integer Secret Sharing
(LISS) schemes of Damg̊ard and Thorbek [24], which nicely fit the requirements
of our security proof. Among other properties, they allow secret key shares to
remain small with respect to the modulus, which helps us making sure that
partial evaluations – as lossy functions of their share – always reveal the same
information about uncorrupted shares. Moreover, they also enable small recon-
struction constants: the secret s can be recovered as a linear combination of
authorized shares with coefficients in {−1, 0, 1}, which is useful to avoid blow-
ing up error terms when partial evaluations are combined together. A notable
difference with [24] is that our DPRF uses a LISS scheme with Gaussian entries
(instead of uniform ones), which makes it easier to analyze the remaining entropy
of the key in the final step of the proof.

Related Work. Distributed pseudorandom functions were initially suggested
by Micali and Sidney [47] and received a lot of attention since then [27,29,50,51,
53]. They are motivated by the construction of distributed symmetric encryption
schemes, distributed key distribution centers [50], or distributed coin tossing and
asynchronous byzantine agreement protocols [18]. They also provide a distributed
source of random coins that allows removing interaction from threshold decryption
mechanisms, such as the one of Canetti and Goldwasser [20].

As mentioned in [16], the early DPRF realizations [47] were only efficient when
the threshold t was very small or very large with respect to N . Before 2010, other
solutions [27,29,50,51,53] either required random oracles [50] or multiple rounds
of interaction [27,29,51,53]. Boneh, Lewi, Montgomery and Raghunathan [16]
(BLMR) suggested a generic construction of non-interactive DPRF from key-
homomorphic PRFs. They also put forth the first key-homomorphic PRF in the
standard model assuming the hardness of LWE. Banerjee and Peikert [7] gener-
alized the BLMR construction and obtained more efficient constructions under
weaker LWE assumptions. Boneh et al. [14,15] described another generic DPRF
construction from a general “universal thresholdizer” tool, which allows distribut-
ing many cryptographic functionalities. So far, none of these solutions is known to
provide security under adaptive corruptions.
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In the context of threshold cryptography, adaptive security has been addressed
in a large body of work [1,5,19,30,42,46]. These techniques, however, require inter-
action (except in some cases when all players always correctly provide their con-
tribution to the computation) and none of them is known to be compatible with
existing non-interactive DPRFs. While lattice-based threshold protocols were
studied by Bendlin et al. back in 2010 [11,12], they focused on distributing decryp-
tion operations or sharing lattice trapdoors and it is not clear how to apply them in
our setting. Boneh et al. [14,15] showed how to generically compile cryptographic
functionalities into threshold functionalities using distributed FHE. However, they
do not consider adaptive corruptions and proceed by generically evaluating the
circuit of the functionality at hand. While we follow their approach of using fully
homomorphic signatures to acquire robustness, our basic PRF is a direct and more
efficient construction.

To our knowledge, the approach of using lossy trapdoor functions to con-
struct advanced PRFs was never considered before. In spirit, our construction is
somewhat similar to a random-oracle-based threshold signature proposed in [45],
which also relies on the idea of always revealing the same information about the
key in all evaluation queries. This DDH-based threshold signature can be turned
into an adaptively secure DPRF in the random oracle model (like a variant of the
Naor-Pinkas-Reingold DPRF [50]) but it has no standard-model counterpart.

The idea of using randomness extraction as part of the security proof of a
PRF appears in [38, Sect. 6.2], where the function only needs to be secure in a
model without evaluation queries. Here, we have to handle a different setting
which prevents us from using the standard Leftover Hash Lemma.

Organization. Sect. 2 recalls some relevant material about lattices, pseudoran-
dom functions and integer secret sharing. A centralized version of our DPRF is
presented in Sect. 3 as a warm-up. We describe its distributed variant in Sect. 4.
In the full version of the paper, we explain how the techniques of [14,15] apply
to obtain robustness without using interaction nor random oracles.

2 Background

For any q ≥ 2, we let Zq denote the ring of integers with addition and multipli-
cation modulo q. We always set q as a prime integer. For 2 ≤ p < q and x ∈ Zq,
we define �x�p := �(p/q) · x� ∈ Zp. This notation is readily extended to vectors
over Zp. If x is a vector over R, then ‖x‖ denotes its Euclidean norm. If M is a
matrix over R, then ‖M‖ denotes its induced norm. We let σn(M) denote the
least singular value of M, where n is the rank of M. For a finite set S, we let U(S)
denote the uniform distribution over S. If X is a random variable over a countable
domain, the min-entropy of X is defined as H∞(X) = minx(− log2 Pr[X = x]).
If X and Y are distributions over the same domain, then Δ(X,Y ) denotes their
statistical distance.
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2.1 Lattices

Let Σ ∈ R
n×n be a symmetric positive definite matrix, and c ∈ R

n. We define
the Gaussian function on R

n by ρΣ,c(x) = exp(−π(x − c)�Σ−1(x − c)) and if
Σ = σ2 · In and c = 0 we denote it by ρσ.

For a lattice Λ, we define ηε(Λ) as the smallest r > 0 such that ρ1/r( ̂Λ \
0) ≤ ε with ̂Λ denoting the dual of Λ, for any ε ∈ (0, 1). In particular, we
have η2−n(Zn) ≤ O(

√
n). We define λ∞

1 (Λ) = min(‖x‖∞ : x ∈ Λ \ 0).
For a matrix A ∈ Z

n×m
q , we define the lattices Λ⊥(A) = {x ∈ Z

m : A · x =
0 mod q} and Λ(A) = A� · Zn + qZm.

Lemma 2.1 ([32, Lemma 5.3]). Let m ≥ 2n · log q and q ≥ 2 prime and let
A ←↩ U(Zn×m

q ). With probability ≥ 1 − 2−Ω(n), we have λ∞
1 (Λ(A)) ≥ q/4.

Lemma 2.2 (Adapted from [49, Lemma 4.4]). For any n-dimensional lat-
tice Λ, x′, c ∈ R

n and symmetric positive definite Σ ∈ R
n×n satisfying

σn(
√

Σ) ≥ η2−n(Λ), we have

ρΣ,c(Λ + x′) ∈ [1 − 2−n, 1 + 2−n] · det(Σ)1/2
/det(Λ).

Lemma 2.3. For c ∈ R and σ > 0 such that σ ≥ √

ln 2(1 + 1/ε)/π, we have

H∞(DZ,σ,c) ≥ log(σ) + log(1 + 2e−πσ2
) − log

(

1 +
2ε

1 − ε

)

Proof. From [49, Lemma 3.3] we know that ηε(Z) ≤ √

ln 2(1 + 1/ε)/π. So
σ ≥ ηε(Z). By [48, Lemma 2.5], this implies that 1−ε

1+ε · ρσ(Z) ≤ ρσ,c(Z), which
translates into

H∞(DZ,σ,c) ≥ H∞(DZ,σ) − log
(

1 + ε

1 − ε

)

From [58, Claim 8.1], we have ρσ(Z) ≥ σ · (1 + 2e−πσ2
), so

H∞(DZ,σ) ≥ log σ + log(1 + 2e−πσ2
)

�
Remark 2.4. For σ = Ω(

√
n), we get H∞(DZ,σ,c) ≥ log(σ) − 2−n.

Definition 2.5 (LWE). Let m ≥ n ≥ 1, q ≥ 2 and α ∈ (0, 1) be functions of
a security parameter λ. The LWE problem consists in distinguishing between the
distributions (A,As+ e) and U(Zm×n

q ×Z
m
q ), where A ∼ U(Zm×n

q ), s ∼ U(Zn
q )

and e ∼ DZm,αq. For an algorithm A : Zm×n
q × Z

m
q → {0, 1}, we define:

AdvLWE
q,m,n,α(A) = |Pr[A(A,As + e) = 1] − Pr[A(A,u) = 1| ,

where the probabilities are over A ∼ U(Zm×n
q ), s ∼ U(Zn

q ), u ∼ U(Zm
q ) and

e ∼ DZm,αq and the internal randomness of A. We say that LWEq,m,n,α is hard
if for all ppt algorithm A, the advantage AdvLWE

q,m,n,α(A) is negligible.
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Micciancio and Peikert [48] described a trapdoor mechanism for LWE. Their
technique uses a “gadget” matrix G ∈ Z

n×m
q for which anyone can publicly

sample short vectors x ∈ Z
m such that G · x = 0. As in [48], we call R ∈ Z

m×m

a G-trapdoor for a matrix A ∈ Z
n×2m
q if A · [R� | Im]� = H · G for some

invertible matrix H ∈ Z
n×n
q which is referred to as the trapdoor tag. If H = 0,

then R is called a “punctured” trapdoor for A.

Lemma 2.6 ([48, Section 5]). Assume that m ≥ 2n log q. There exists a ppt
algorithm GenTrap that takes as inputs matrices Ā ∈ Z

n×m
q , H ∈ Z

n×n
q and

outputs matrices R ∈ {−1, 1}m×m and

A = [Ā | −ĀR + HG] ∈ Z
n×2m
q

such that if H ∈ Z
n×n
q is invertible, then R is a G-trapdoor for A with tag H;

and if H = 0, then R is a punctured trapdoor.
Further, in case of a G-trapdoor, one can efficiently compute from A,R

and H a basis (bi)i≤2m of Λ⊥(A) such that maxi ‖bi‖ ≤ O(m3/2).

Micciancio and Peikert also showed that a G-trapdoor for A ∈ Z
n×2m
q can

be used to invert the LWE function (s, e) �→ A� · s + e, for any s ∈ Z
n
q and any

sufficiently short e ∈ Z
2m.

2.2 Admissible Hash Functions

Admissible hash functions were introduced by Boneh and Boyen [13] as a com-
binatorial tool for partitioning-based security proofs for which Freire et al. [31]
gave a simplified definition. Jager [41] considered the following generalization in
order to simplify the analysis of reductions under decisional assumption.

Definition 2.7 ([41]). Let �(λ), L(λ) ∈ N be functions of a security parameter
λ ∈ N. Let AHF : {0, 1}	 → {0, 1}L be an efficiently computable function. For
every K ∈ {0, 1,⊥}L, let the partitioning function PK : {0, 1}	 → {0, 1} be
defined as

PK(X) :=
{

0 if ∀i ∈ [L] (AHF(X)i = Ki) ∨ (Ki =⊥)
1 otherwise

We say that AHF is a balanced admissible hash function if there exists
an efficient algorithm AdmSmp(1λ, Q, δ) that takes as input Q ∈ poly(λ) and a
non-negligible δ(λ) ∈ (0, 1] and outputs a key K ∈ {0, 1,⊥}L such that, for all
X(1), . . . , X(Q),X� ∈ {0, 1}	 such that X� �∈ {X(1), . . . , X(Q)}, we have

γmax(λ) ≥ Pr
K

[

PK(X(1)) = · · · = PK(X(Q)) = 1 ∧ PK(X�) = 0
]

≥ γmin(λ),

where γmax(λ) and γmin(λ) are functions such that

τ(λ) = γmin(λ) · δ(λ) − γmax(λ) − γmin(λ)
2

is a non-negligible function of λ.
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Intuitively, the condition that τ(λ) be non-negligible requires γmin(λ) to be
noticeable and the difference of γmax(λ) − γmin(λ) to be small.

It is known [41] that balanced admissible hash functions exist for �, L = Θ(λ).

Theorem 2.8 ([41, Theorem 1]). Let (C	)	∈N be a family of codes C	 :
{0, 1}	 → {0, 1}L with minimal distance c · L for some constant c ∈ (0, 1/2).
Then, (C	)	∈N is a family of balanced admissible hash functions. Furthermore,
AdmSmp(1λ, Q, δ) outputs a key K ∈ {0, 1,⊥}L for which η = � ln(2Q+Q/δ)

− ln((1−c)) �
components are not ⊥ and

γmax = 2−η, γmin =
(

1 − Q(1 − c)
)η · 2−η,

so that τ = (2δ − (2δ + 1) · Q · (1 − c)η)/2η+1 is a non-negligible function of λ.

Lemma 2.9 ([43, Lemma 8], [2, Lemma 28]). Let an input space X and con-
sider a mapping γ that maps a (Q+1)-tuple of elements (X�,X1, . . . , XQ) in X
to a probability value in [0, 1]. We consider the following experiment where we
first execute the PRF security game, in which the adversary eventually outputs
a guess b̂ ∈ {0, 1} of the challenger’s bit b ∈ {0, 1} and wins with advantage ε.
We denote by X� ∈ X the challenge input and X1, . . . , XQ ∈ X the evaluation
queries. At the end of the game, we flip a fair random coin b′′ ←↩ U({0, 1}).
With probability γ = γ(X�,X1, . . . , XQ), we define b′ = b̂ and, with probability,
1 − γ, we define b′ = b′′. Then, we have

|Pr[b′ = b] − 1/2| ≥ γmin · ε − γmax − γmin

2
,

where γmin and γmax are the maximum and minimum of γ(X) for any X ∈ X Q+1.

2.3 (Deterministic) Randomness Extractors

A consequence of the Leftover Hash Lemma was used by Agrawal et al. [2] to
re-randomize matrices over Zq by multiplying them with small-norm matrices.
We also rely on the following generalization of [2, Lemma 13].

Lemma 2.10. Let integers m,n, � such that m > 2(n + �) · log q, for some
prime q > 2. Let B, ˜B ←↩ U(Zm×	

q ) and R ←↩ U({−1, 1}m×m). For any matrix
F ∈ Z

m×n
q , the distributions (B,R ·B,R ·F) and (B, ˜B,R ·F) are within 2−Ω(n)

statistical distance.

In our security proof, we will need to extract statistically uniform bits from a
high-entropy source. Here, we cannot just apply the Leftover Hash Lemma since
the source may not be independent of the seed. For this reason, we will apply
techniques from deterministic extraction [26,60] and seeded extractors with seed-
dependent sources [55]. In particular, we will apply a result of Dodis [26] which
extends techniques due to Trevisan and Vadhan [60] to show that, for a suffi-
ciently large ξ > 0, a fixed ξ-wise-independent functions can be used to deter-
ministically extract statistically uniform bits.
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Lemma 2.11 ([26, Corollary 3]). Fix any integers n̄, m, M , any real ε < 1
and any collection X of M distributions over {0, 1}m̄ of min-entropy n̄ each.
Define

ξ = n̄ + log M, k̄ = n̄ −
(

2 log
1
ε

+ log log M + log n̄ + O(1)
)

,

and let F be any family of ξ-wise independent functions from m̄ bits to k̄ bits.
With probability at least (1−1/M), a random function f ←↩ U(F) is a good deter-
ministic extractor for the collection X . Namely, f(X) is ε-close to U({0, 1}k̄) for
any distribution X ∈ X .

It is well-known that ξ-wise independent function can be obtained by choos-
ing random polynomials of degree ξ − 1 over GF (2m̄) (which cost O(ξm̄) bits to
describe) and truncating their evaluations to their first k̄ bits.

2.4 Linear Integer Secret Sharing

This section recalls the concept of linear integer secret sharing (LISS), as defined
by Damg̊ard and Thorbek [24]. The definitions below are taken from [59] where
the secret to be shared lives in an interval [−2l, 2l] centered in 0, for some l ∈ N.

Definition 2.12. A monotone access structure on [N ] is a non-empty collec-
tion A of sets A ⊆ [N ] such that ∅ �∈ A and, for all A ∈ A and all sets B such
that A ⊆ B ⊆ [N ], we have B ∈ A. For an integer t ∈ [N ], the threshold-t
access structure Tt,N is the collection of sets A ⊆ [N ] such that |A| ≥ t.

Let P = [N ] be a set of shareholders. In a LISS scheme, a dealer D wants to
share a secret s in a publicly known interval [−2l, 2l]. To this end, D uses a share
generating matrix M ∈ Z

d×e and a random vector ρ = (s, ρ2, . . . , ρe)�, where s
is the secret to be shared {ρi}e

i=2 are chosen uniformly in [−2l0+λ, 2l0+λ]e, for a
large enough l0 ∈ N. The dealer D computes a vector s = (s1, . . . , sd)� of share
units as

s = (s1, . . . , sd)� = M · ρ ∈ Z
d.

Each party in P = {1, . . . , N} is assigned a set of share units. Letting ψ :
{1, . . . , d} → P be a surjective function, the i-th share unit si is assigned to
the shareholder ψ(i) ∈ P , in which case player ψ(i) is said to own the i-th row
of M . If A ⊆ P is a set of shareholders, MA ∈ Z

dA×e denotes the set of rows
jointly owned by A. Likewise, sA ∈ Z

dA denotes the restriction of s ∈ Z
d to

the coordinates jointly owned by the parties in A. The j-th shareholder’s share
consists of sψ−1(j) ∈ Z

dj , so that it receives dj = |ψ−1(j)| out of the d =
∑n

j=1 dj

share units. The expansion rate μ = d/N is defined to be the average number
of share units per player. Sets A ∈ A are called qualified and A /∈ A are called
forbidden.

Definition 2.13. A LISS scheme is private if, for any two secrets s, s′, any
independent random coins ρ = (s, ρ2, . . . , ρe), ρ′ = (s′, ρ′

2, . . . , ρ
′
e) and any for-

bidden set A of shareholders, the distributions {si(s,ρ) = Mi · ρ | i ∈ A} and
{si(s′,ρ′) = Mi · ρ′ | i ∈ A} are 2−Ω(λ) apart in terms of statistical distance.
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Damg̊ard and Thorbek [24] showed how to build LISS scheme from integer
span programs [23].

Definition 2.14 ([23]). An integer span program (ISP) is a tuple M =
(M,ψ, ε), where M ∈ Z

d×e is an integer matrix whose rows are labeled by a
surjective function ψ : {1, . . . , d} → {1, . . . , N} and ε = (1, 0, . . . , 0) is called
target vector. The size of M is the number of rows d in M .

Definition 2.15. Let Γ be a monotone access structure and let M = (M,ψ, ε)
an integer span program. Then, M is an ISP for Γ if it computes Γ : namely,
for all A ⊆ {1, . . . , N}, the following conditions hold:

1. If A ∈ Γ , there exists a reconstruction vector λ ∈ Z
dA such that λ�·MA = ε�.

2. If A �∈ Γ , there exists κ = (κ1, . . . , κe)� ∈ Z
e such that MA · κ = 0 ∈ Z

d and
κ� · ε = 1 (i.e., κ1 = 1). In this case, κ is called a sweeping vector for A.

We also define κmax = max{|a| | a is an entry in some sweeping vector}.
Damg̊ard and Thorbek showed [24] that, if we have an ISP M = (M,ψ, ε)

that computes the access structure Γ , a statistically private LISS scheme for Γ
can be obtained by using M as the share generating matrix and setting l0 =
l + �log2(κmax(e − 1))� + 1, where l is the length of the secret.

A LISS scheme L = (M = (M,ψ, ε), Γ,R,K) is thus specified by an ISP for
the access structure Γ , a space R of reconstruction vectors satisfying Condition 1
of Definition 2.15, and a space K of sweeping vectors satisfying Condition 2.

Lemma 2.16 ([59, Lemma 3.1]). Let l0 = l + �log2(κmax(e − 1))� + 1.
If s ∈ [−2l, 2l] is the secret to be shared and ρ is randomly sampled
from [−2l0+λ, 2l0+λ]e conditionally on 〈ρ, ε〉 = s, the LISS scheme derived
from M is private. For any arbitrary s, s′ ∈ [−2l, 2l] and any forbid-
den set of shareholders A ⊂ [N ], the two distributions {sA = MA · ρ |
ρ ←↩ U([−2l0+λ, 2l0+λ]e) s.t. 〈ρ, ε〉 = s}, and {s′

A = MA · ρ | ρ ←↩
U([−2l0+λ, 2l0+λ]e) s.t. 〈ρ, ε〉 = s′} are within statistical distance 2−λ.

In the following, we do not rely on the result of Lemma 2.16 as we will
share vectors sampled from Gaussian (instead of uniform) distributions using
Gaussian random coins. We also depart from Lemma 2.16 in that the random
coins (ρ2, . . . , ρe) are not sampled from a wider distribution than the secret:
the standard deviation of (ρ2, . . . , ρe) will be the same as that of s. While this
choice does not guarantee the LISS to be private in general, we will show that
it suffices in our setting because we only need the secret to have sufficient min-
entropy conditionally on the shares observed by the adversary. Aside from the
distribution of secrets and random coins, we rely on the technique of Damg̊ard
and Thorbek [24] for building share generating matrices.

It was shown in [24] that LISS schemes can be obtained from [10,23]. While
the Benaloh-Leichter (BL) secret sharing [10] was initially designed to work over
finite groups, Damg̊ard and Thorbek generalized it [24] so as to share integers
using access structures consisting of any monotone Boolean formula. In turn,
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this implies a LISS scheme for any threshold access structure by applying a
result of Valiant [34,61]. Their LISS scheme built upon Benaloh-Leichter [10]
comes in handy for our purposes because the reconstruction coefficients and the
sweeping vectors are small: as can be observed from [24, Lemmas 4], the entries
of λ live in {−1, 0, 1} and [24, Lemma 5] shows that κmax = 1. For a monotone
Boolean f , the BL-based technique allows binary share distribution matrices
M ∈ {0, 1}d×e such that d, e = O(size(f)) and which have at most depth(f) + 1
non-zero entries, so that each share unit si has magnitude O(2l0+λ · depth(f)).

Valiant’s result [61] implies the existence of a monotone Boolean formula of
the threshold-t function Tt,N , which has size d = O(N5.3) and depth O(log N).
Since each player receives d/N rows of M on average, the average share size is
thus O(N4.3 · (l0 + λ + log log N)) bits. Valiant’s construction was improved by
Hoory et al. [40] who give a monotone formula of size O(N1+

√
2) and depth

O(log N) for the majority function.2 This reduces the average share size to
O(N

√
2 · (l0 + λ + log log N)) bits.

2.5 Some Useful Lemmas

Lemma 2.17 ([49, Lemma 4.4]). For σ = ω(
√

log n) there is a negligible func-
tion ε = ε(n) such that:

Pr
x∼DZn,σ

[‖x‖ > σ
√

n
] ≤ 1 + ε

1 − ε
· 2−n

Lemma 2.18 ([6, Lemma 2.7]). Let p, q be positive integers such that p < q.
Given R > 0 an integer, the probability that there exists e ∈ [−R,R] such that
�y�p �= �y + e�p, when y ←↩ U(Zq), is smaller than 2Rp

q .

Lemma 2.19. If q is prime and M be a distribution over Zm×n
q , and V a distri-

bution over Z
n
q such that Δ

(M, U(Zm×n
q )

) ≤ ε. We have Δ
(M · V,U(Zm

q )
) ≤

ε + α · (1 − 1
qm

)

, where α := Pr[V = 0].

2.6 (Distributed) Pseudorandom Functions

A pseudorandom function family is specified by efficient algorithms
(Keygen,Eval), where Keygen a randomized key generation algorithm that takes
in a security parameter 1λ and outputs a random key K ←↩ K from a key space
K. Eval is a deterministic evaluation algorithm, which takes in a key K ∈ K and
an input X in a domain D = {0, 1}	 and evaluates a function F (K,X) in a range
R = {0, 1}μ. The standard security definitions for PRFs are recalled in the full
version of the paper.

2 Note that a threshold-t function can be obtained from the majority function by
fixing the desired number of input bits, so that we need a majority function of size
≤ 2N to construct a threshold function Tt,N .
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A distributed pseudorandom function (DPRF) is a tuple of algorithms (Setup,
Share,PEval,Eval,Combine) of efficient algorithms with the following specifica-
tion. Setup takes as input a security parameter 1λ, a number of servers 1N , a
threshold 1t and a desired input length 1	 and outputs public parameters pp.
The key sharing algorithm Share : K → KN inputs a random master secret
key SK0 ∈ K and outputs a tuple of shares (SK1, . . . , SKN ) ∈ KN , which
form a (t,N)-threshold secret sharing of SK0. The partial evaluation algorithm
Eval : K × D → R takes as input a key share SKi and an input X and outputs
a partial evaluation Yi = PEval(SKi,X) ∈ R. Algorithm Combine : S ×Rt → R
takes in a t-subset S ⊂ [N ] together with t partial evaluations {Yi}i∈S , where
Yi ∈ R for all i ∈ S, and outputs a value Y ∈ R. The centralized evaluation
algorithm Eval : K × D → R operates as in a ordinary PRF and outputs a value
Y = Eval(SK0,X) ∈ R on input of X ∈ D and a key SK0 ∈ K.

Consistency. A DPRF is consistent if, for any pp ← Setup(1λ, 1	, 1t, 1N ), any
master key SK0 ←↩ K shared according to (SK1, . . . , SKN ) ← Share(SK0), any
t-subset S = {i1, . . . , it} ⊂ [N ] and any input X ∈ D, if Yij

= PEval(SKij
,X)

for each j ∈ [t], then we have Eval(SK0,X) = Combine(S, (Yi1 , . . . , Yit
)) with

overwhelming probability over the random coins of Setup and Share.
We say that a DPRF provides adaptive security if it remains secure against

an adversary that can adaptively choose which servers it wants to corrupt. In
particular, the adversary can arbitrarily interleave evaluation and corruption
queries as long as they do not allow it to trivially win.

Definition 2.20 (Adaptive DPRF security). Let λ be a security parameter
and let integers t,N ∈ poly(λ). We say that a (t,N)-DPRF is pseudorandom
under adaptive corruptions if no PPT adversary has non-negligible advantage in
the following game:

1. The challenger generates pp ← Setup(1λ, 1	, 1t, 1N ) and chooses a random key
SK0 ←↩ K, which is broken into N shares (SK1, . . . , SKN ) ← Share(SK0).
It also initializes an empty set C ← ∅ and flips a random coin b ←↩ U({0, 1}).

2. The adversary A adaptively interleaves the following kinds of queries.
Corruption: A chooses an index i ∈ [N ]\C. The challenger returns SKi to

A and sets C := C ∪ {i}.
Evaluation: A chooses a pair (i,X) ∈ [N ] × D and the challenger returns

Yi = PEval(SKi,X).
3. The adversary chooses an input X�. At this point, the challenger randomly

samples Y0 ←↩ U({0, 1}μ) and computes Y1 = Eval(SK0,X
�). Then, it returns

Yb to the adversary.
4. The adversary A adaptively makes more queries as in Stage 2 under the

restriction that, at any time, we should have |C ∪ E| < t, where E ⊂ [N ]
denotes the set of indexes for which an evaluation query of the form (i,X�)
was made in Stage 2 or in Stage 4.

5. A outputs a bit b̂ ∈ {0, 1} and wins if b̂ = b. Its advantage is defined to be
AdvDPRF

A (λ) := |Pr[b̂ = b] − 1/2|.
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Definition 2.20 is a game based definition, which may not imply security in the
sense of simulation-based definitions. Still, we show it is strictly stronger than the
definition of static security used in [16]. It is well-known that static security does
not imply adaptive security in distributed threshold protocols (see, e.g., [22]). In
the case of DPRFs, we show in the full version of the paper that allowing even
a single evaluation query before any corruption query already gives a stronger
game-based definition than the game-based security definition of static security.

Theorem 2.21. For any t,N ∈ poly(λ) such that t < N/2, there is a DPRF
family which is secure in the sense of Definition A.1 (in Appendix A) but insecure
in the sense of Definition 2.20.

Note that the above separation still holds for small non-constant values of t
and N if we assume polynomial or slightly super-polynomial adversaries.

3 A Variant of the BLMR PRF

Before describing our distributed PRF, we present its centralized version which
can be seen as a variant of the key-homomorphic PRFs described by Boneh
et al. [16] and Banerjee-Peikert PRFs [7]. However, the security proof is very
different in that it does not use a hybrid argument over the input bits. Instead,
it applies the strategy of partitioning the input space into disjoint subspaces
(analogously to proof techniques for, e.g., identity-based encryption [63]) and
builds on the lossy mode of LWE [36].

In [7,16], a PRF evaluation of an input x is of the form y = �A(x)�·s�p ∈ Z
m
p ,

where s ∈ Z
n
q is the secret key and A(X) ∈ Z

n×m
q is an input-dependent matrix

obtained from public matrices A0,A1 ∈ Z
n×m
q . Our variant is similar at a high

level, with two differences. First, we derive A(x) from a set of 2L public matrices
{Ai,0,Ai,1}L

i=1. Second, �A(x)� · s�p is not quite our PRF evaluation. Instead,
we obtain the PRF value by using �A(x)� · s�p as a source of entropy for a
deterministic randomness extractor.

The security proof departs from [7,16] by exploiting the connection between
the schemes and the Gentry-Sahai-Waters FHE [33]. For each i ∈ [L] and b ∈
{0, 1}, we interpret Ai,b ∈ Z

n×m
q as a GSW ciphertext Ai,b = A ·Ri,b + μi,b ·G,

where Ri,b ∈ {−1, 1}m×m, μi,b ∈ {0, 1} and G ∈ Z
n×m
q is the gadget matrix

of [48]. Before evaluating the PRF on an input X, we encode X ∈ {0, 1}	 into
x ∈ {0, 1}L using an admissible hash function. Then, we homomorphically derive
A(x) as a GSW ciphertext A(x) = A · Rx + (

∏L
i=1 μi,x[i]) · G, for some small-

norm Rx ∈ Z
m×m. By carefully choosing {μi,b}i∈[L],b∈{0,1}, the properties of

admissible hash functions ensure that the product
∏L

i=1 μi,x[i] cancels out in all
evaluation queries but evaluates to 1 on the challenge input X�.

In the next step of the proof, we move to a modified experiment where the
random matrix A ∈ Z

n×m
q is replaced by a lossy matrix A� = Ā� ·C+E, where

Ā ←↩ U(Zn′×m
q ), C ←↩ U(Zn′×n

q ) and E ∈ Z
m×n is a short Gaussian matrix. This

modification has the consequence of turning �A(x)� · s�p into a lossy function
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of s on all inputs X for which
∏L

i=1 μi,x[i] = 0. At the same time, the function
remains injective whenever

∏L
i=1 μi,x[i] = 1. Using the properties of admissible

hash functions, we still have a noticeable probability that the function be lossy in
all evaluation queries and injective in the challenge phase. Moreover, by using a
small-norm secret s ∈ Z

n and setting the ratio q/p large enough, we can actually
make sure that evaluation queries always reveal the same information (namely,
the product C · s) about s. As long as we have

∏L
i=1 μi,x�[i] = 1 for the challenge

input X�, the value z̃ = �A(x�)� · s�p = �(A · Rx� + G)� · s�p is guaranteed
to have a lot of entropy as an injective function of an unpredictable s. At this
point, we can extract statistically uniform bits from the source z̃. Since the
latter depends on x� (which can be correlated with the seed included in public
parameters), we need an extractor that can operate on seed-dependent sources.
Fortunately, deterministic extractors come in handy for this purpose.

3.1 Decomposing Random Matrices into Invertible Binary Matrices

In the following, we set k = n�log q� and m = 2k and define

G = [ In ⊗ (1, 2, 4, . . . , 2�log q�−1) | In ⊗ (1, 2, 4, . . . , 2�log q�−1)] ∈ Z
n×m
q

which is a variant of the gadget matrix of [48]. We also define G−1 : Zn×m
q →

Z
m×m to be a deterministic algorithm that inputs A ∈ Z

n×m
q and outputs a

binary matrix G−1(A) ∈ {0, 1}m×m such that G ·G−1(A) = A. We will require
that, for any A ∈ Z

n×m
q , G−1(A) be invertible over Zq with sufficiently high

probability. The next lemma shows a function G−1(·) satisfying this condition.

Lemma 3.1 (Adapted from [16, Lemma A.3]). Let k = n�log q�. If q ≥
2k/n · (1 − 1

2n ), there exists an efficient algorithm that samples a statistically
uniform matrix A ←↩ U(Zn×m

q ) such that G−1(A) ∈ {0, 1}m×m is Zq-invertible.

Proof. We first show how to sample a sequence of k = n�log q� uniform vectors
over Zn

q whose binary decompositions form a full-rank binary matrix over Zq. In
turn, this will allow us to sample a random A ←↩ U(Zn×m

q ), where m = 2k, such
that G−1(A) ∈ {0, 1}m×m is invertible. As in the proof of [16, Lemma A.3], we
use the observation that, for any i linearly independent vectors v1, . . . ,vi ∈ Z

k
q

over Zq, if V = span
Zq

(v1, . . . ,vi), we have |V ∩ {0, 1}k| ≤ 2i.
For an index i ∈ [k−1], suppose that we have chosen Zq-independent vectors

b1, . . . ,bi ∈ {0, 1}k and that bi+1 ∈ {0, 1}k is obtained as the binary decompo-
sition of a random ai+1 ←↩ U(Zn

q ). The probability that bi+1 is independent of
b1, . . . ,bi is ≥ (qn − 2i)/qn. If we sample a1, . . . ,ak ←↩ U(Zn

q ), the probability
that their binary decompositions are linearly independent over Zq is

k−1
∏

i=0

Pr[bi+1 �∈ span
Zq

(b1, . . . ,bi)] =
k−1
∏

i=0

qn − 2i

qn
(1)

Note that the factors the right-hand-side member of (1) are all positive: indeed,
we have 2k/n · (1− 1

2n ) ≤ q ≤ 2k/n. Since (1− 1
2n )n ≈ exp(−1/2) for large values
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of n, this implies 2k/
√

exp(1) ≤ qn ≤ 2k and thus 2k−1/qn ≤ √

exp(1)/2 < 1.
We now proceed to bound (1) as

k−1
∏

i=0

(

1 − 2i

qn

)

= exp
(

k−1
∑

i=0

ln
(

1 − 2i

qn

)

)

≥ exp
(

− 3
qn

·
k−1
∑

i=0

2i
)

= exp
(

− 3
qn

· 2k
)

= exp(−3 ·
√

exp(1)),

where the inequality holds because ln(1 − x) ≥ −3x for all x ∈ (

0,
√

exp(1)/2
)

.
Hence, if we sample 141 · k > k/ exp(−3 · √exp(1)) vectors ai ←↩ U(Zn

q )
and stack up the binary decompositions of a�

i , the probability that the resulting
matrix contains a Zq-invertible sub-matrix over {0, 1}k is at least 1 − 2−Ω(k).

We can thus sample a random matrix A = [AL|AR] ←↩ U(Zn×m
q ) that

satisfies the required conditions by defining G−1(A) ∈ {0, 1}m×m so that it
contains the binary decomposition BD(AL) ∈ {0, 1}k×k in its upper-left corner
and BD(AR) ∈ {0, 1}k×k in its lower-right corner. �

3.2 A Centralized Construction

Let λ be a security parameter and let � ∈ Θ(λ), L ∈ Θ(λ). We use parameters
consisting of prime moduli p and q such that q/p > 2L+λ ·r, dimensions n,m, k ∈
poly(λ) such that m ≥ 2n·�log q�, an integer β > 0, α > 0 and r = mL+2 ·n·β ·αq.
We rely on the following ingredients.

• A balanced admissible hash function AHF : {0, 1}	 → {0, 1}L.
• A family Πλ of ξ-wise independent hash functions πi : Zm

p → Z
k
p for a suitable

ξ > 0 that will be determined later on. Let a random member π of Πλ. For
example, the function π can be a random polynomial π(Z) ∈ GF (pm)[Z] of
degree ξ − 1 with outputs truncated to their k first coordinates.

We also choose a Gaussian parameter σ > 0, which will specify an interval
[−β, β] = [−σ

√
n, σ

√
n] where the coordinates of the secret will be confined (with

probability exponentially close to 1). We also need a rounding parameter r > 0,
set as indicated above.

The pseudorandom function family assumes the availability of public param-
eters

pp :=
(

q, π, A0, {Ai,0,Ai,1 ∈ Z
n×m
q }L

i=1, AHF, r, σ
)

,

where A0 ∼ U(Zn×m
q ) and Ai,0,Ai,1 ∼ U(Zn×m

q ) for each i ∈ [L]. Importantly,
{Ai,0,Ai,1}L

i=1 should be chosen in such a way that G−1(Ai,b) ∈ Z
m×m is Zq-

invertible for all i ∈ [L] and b ∈ {0, 1}.

Keygen(pp): Given pp, sample a vector s ←↩ DZn,σ so that ‖s‖∞ < β = σ
√

n
with overwhelming probability. The secret key is SK := s ∈ [−β, β]n.
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Eval(pp, SK,X): Given SK = s ∈ Z
n and an input X ∈ {0, 1}	,

1. Compute x = AHF(X) ∈ {0, 1}L and parse it as x = x1 . . . xL.
2. Compute

z =
⌊

(

A(x)
)� · s

⌋

p
∈ Z

m
p , (2)

where

A(x) = A0 ·
L
∏

i=1

G−1
(

Ai,xi

)

,

and output y = π(z) ∈ Z
k
p.

We remark that the way to compute z ∈ Z
m
p in (2) is reminiscent of the key-

homomorphic PRFs of [7,16]. Unlike [7,16], our security proof requires the secret
s to have small entries. Also, our PRF is not key-homomorphic as the output is
y = π(z) ∈ Z

k
p instead of z ∈ Z

m
p . Fortunately, losing the key-homomorphic prop-

erty does not prevent us from building a DPRF since the randomness extraction
step is only applied to the result of combining t partial evaluations.

Theorem 3.2. Set an entropy lower bound n̄ = �n · log σ − n′ · log q� − 1 as
Ω(λ). If we choose the output length k̄ = k · log p in such a way that

ξ = n̄ + �, k̄ = n̄ − 2 · (λ + log � + log n̄),

then the construction above is a secure PRF family under the LWEq,m,n′,α
assumption.

The proof is given in the full version of the paper. It may be inferred as a
sub-proof of the security proof of the upcoming DPRF construction.

4 The DPRF Construction

We design the distributed PRF by using a LISS inside the PRF construction of
Sect. 3. As mentioned earlier, the latter is well-suited to our purposes because,
in the security proof, the secret key is known to the challenger at any time.
When the secret key s is shared using a LISS, the challenger is always able to
consistently answer corruption queries because it has all shares at disposal.

In the construction, we rely on the specific LISS construction of Damg̊ard
and Thorbek [24], which is based on the Benaloh-Leichter secret sharing [10].
This particular LISS scheme is well-suited to our needs for several reasons. First,
it has binary share generating matrices, which allows obtaining relatively short
shares of s ∈ Z

n: in the security proof, this is necessary to ensure that the adver-
sary always obtains the same information about uncorrupted shares in partial
evaluation queries. Another advantage of the Benaloh-Leichter-based LISS is
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that its reconstruction constants live in {−1, 0, 1}, which avoids blowing up the
homomorphism errors when partial evaluations are combined together. Finally,
its sweeping vectors also have their coordinates in {−1, 0, 1} (whereas they may
be exponentially large in the number N of servers in the construction based on
Cramer-Fehr [23]) and we precisely need sweeping vectors κ to be small in the
proof of our Lemma 4.4.

4.1 Description

Setup(1λ, 1	, 1t, 1N ): On input of a security parameter λ, a number of servers N ,
a threshold t ∈ [1, N ] and an input length � ∈ Θ(λ), set d, e = O(N1+

√
2).

Then, choose a real α > 0, a Gaussian parameter σ =
√

e ·Ω(
√

n), which will
specify an interval [−β, β] = [−σ

√
n, σ

√
n] where the coordinates of the secret

will live (with probability exponentially close to 1). Next, do the following.

1. Choose prime moduli p, q and u such that p/u > d · 2λ+L and q/p >
2L+λ · r, where dimensions n,m, k ∈ poly(λ) such that m ≥ 2n · �log q�,
and r = mL+2 · n · β∗ · αq with β∗ = O(β · log N).

2. Choose a balanced admissible hash function AHF : {0, 1}	 → {0, 1}L, for
a suitable L ∈ Θ(λ). Choose a family Πλ of ξ-wise independent hash
functions πi : Zm

u → Z
k
u, for a suitable integer ξ > 0, with π ←↩ U(Πλ).

3. Choose random matrices A0 ←↩ U(Zn×m
q ) and Ai,b ←↩ U(Zn×m

q ), for each
i ∈ [L], b ∈ {0, 1}, subject to the constraint that G−1(Ai,b) ∈ Z

m×m be
Zq-invertible for all i ∈ [L] and b ∈ {0, 1}.

Output

pp :=
(

q, p, u, π, A0, {Ai,0,Ai,1 ∈ Z
n×m
q }L

i=1, AHF
)

,

Share(pp, SK0): Given pp and a key SK0 = s consisting of an integer vector
s sampled from the Gaussian distribution DZn,σ, return ⊥ if s �∈ [−β, β]n,
where β = σ

√
n. Otherwise, generate a LISS of s as follows.

1. Using the BL-based LISS scheme, construct the matrix M ∈ {0, 1}d×e

that computes the Boolean formula associated with the Tt,N threshold
function. By using [40], we obtain a matrix M ∈ {0, 1}d×e, so that each
row of M contains O(log N) non-zero entries.

2. For each k ∈ [n], generate a LISS of the k-th coordinate sk of s ∈ Z
n. To

this end, define a vector ρk = (sk, ρk,2, . . . , ρk,e)�, with Gaussian entries
ρk,2, . . . , ρk,e ←↩ DZ,σ, and compute

sk = (sk,1, . . . , sk,d)� = M · ρk ∈ Z
d,

whose entries are smaller than ‖sk‖∞ ≤ β∗ = O(β · log N).
3. Define the matrix S = [s1 | . . . | sn] ∈ Z

d×n. For each j ∈ [N ], define the
share of server Pj to be the sub-matrix SIj

= MIj
· [ρ1 | . . . | ρn] ∈ Z

dj×n,
where Ij = ψ−1(j) ⊂ {1, . . . , d} is the set of indexes such that Pj owns
the sub-matrix MIj

∈ {0, 1}dj×e.
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For each j ∈ [N ], the share SKj = SIj
∈ Z

dj×n is privately sent to Pj .

PEval(pp, SKj ,X): Given SKj = SIj
∈ Z

dj×n and an input X ∈ {0, 1}	,

1. Compute x = AHF(X) ∈ {0, 1}L and parse it as x = x1 . . . xL.
2. Parse S�

Ij
= [ρ1 | . . . | ρn]� · M�

Ij
∈ Z

n×dj as [s̄j,1 | . . . | s̄j,dj
]. For each

θ ∈ {1, . . . , dj}, compute

zj,θ =
⌊

(

A(x)
)� · s̄j,θ

⌋

p
∈ Z

m
p , (3)

where

A(x) = A0 ·
L
∏

i=1

G−1
(

Ai,xi

)

,

and output the partial evaluation Yj = [zj,1 | . . . | zj,dj
] ∈ Z

m×dj
p .

Eval(pp, SK0,X): Given SK0 = s ∈ Z
n and an input X ∈ {0, 1}	,

1. Compute x = AHF(X) ∈ {0, 1}L and write it as x = x1 . . . xL.
2. Compute

z̃ =
⌊

(

A(x)
)� · s

⌋

p
∈ Z

m
p ,

where A(x) = A0 ·∏L
i=1 G−1

(

Ai,xi

)

, and output y = π(�z̃�u) ∈ Z
k
u.

Combine(S, (Yj1 , . . . ,Yjt
)): Write S = {j1, . . . , jt} and parse each Yjκ

∈
Z

m×djκ
p as [zjκ,1 | . . . | zjκ,djκ

] for all κ ∈ [t].

1. Determine the vector λS ∈ {−1, 0, 1}dS such that λ�
S · MS =

(1, 0, . . . , 0)�, where MS ∈ {0, 1}dS×e is the sub-matrix of M owned by
the parties in S and dS =

∑t
κ=1 djκ

with djκ
= |ψ−1(jκ)| for all κ ∈ [t].

Then, parse λS as [λ�
j1 | . . . | λ�

jt
]�, where λjκ

∈ {−1, 0, 1}djκ for all
κ ∈ [t].

2. Compute z̃ =
∑t

κ=1 Yjκ
· λjκ

∈ Z
m
p , which equals

z̃ =
⌊

(

A(x)
)� · s

⌋

p
+ ez ∈ Z

m
p ,

for some ez ∈ {−2dS , . . . , 2dS}m.
3. Compute z = �z̃�u ∈ Z

m
u , which equals

z =
⌊

⌊

(

A(x)
)� · s

⌋

p

⌋

u

∈ Z
m
u

with overwhelming probability. Finally, output y = π(z) ∈ Z
k
u.
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By setting σ =
√

e · n = O(N
1+

√
2

2 )·√n as allowed by [40], we have share units
of magnitude β∗ = Θ(σ

√
n log N) = O

(

N
1+

√
2

2 log N
)

· n. Since d = O(N1+
√
2),

the average share size amounts to d·n·log β�

N = n · N
√
2 · (log n + O(log N)) bits.

Regarding the parameters, Theorem 4.2 allows us to rely on the presumed
hardness of LWEq,m,n′,α for n′ which may be set as Θ(n(log Nn)/(log q)) if
n(log Nn) = Ω(λ). To make sure that the best known attacks on LWE require 2λ

bit operations, it suffices that αq = Ω(
√

n′) and n′ log q/ log2 α = Ω(λ/ log λ).
We may set n = poly(λ) (for a small degree polynomial) and q = 2Ω(λ log λ) since
r contains a term mL = poly(λ)Θ(λ) = 2O(λ log λ).

We remark that our modulus q is exponential in the input length L, but not
in the number of servers N . In contrast, the DPRF of [16] requires an exponential
modulus in N incurred by the use of Shamir’s secret sharing and the technique
of clearing out the denominators [3].

4.2 Security and Correctness

We now show that the construction provides statistical consistency.

Lemma 4.1. Let pp ← Setup(1λ, 1	, 1t, 1N ) and let a secret key SK0 = s ←
DZn,σ, which is shared as (SK1, . . . , SKN ) ← Share(pp, SK0). For any t-subset
S = {j1, . . . , jt} ⊂ [N ] and input X ∈ {0, 1}	, if Yjk

= PEval(pp, SKjk
,X) for

all κ ∈ [t], we have

Combine(S, (Yj1 , . . . , Yjt
)) = Eval(pp, SK0,X)

with probability exponentially close to 1.

Proof. Let λS ∈ {−1, 0, 1}dS such that λ�
S · MS = (1, 0, . . . , 0) ∈ Z

e. If we parse
λS as [λ�

j1 | . . . | λ�
jt

]� we have

s = [ρ1 | · · · | ρn]� · M�
S · λS =

t
∑

k=1

S�
Ijk

· λjk
.

In turn, this implies

�A(x)� · s�p =

⌊

t
∑

k=1

A(x)� · S�
Ijk

· λjk

⌋

p

=
t
∑

k=1

⌊

A(x)� · S�
Ijk

⌋

p
· λjk

+ e, (4)

where the last equality of (4) stems from fact that, for any two vectors v1,v2 ∈
Z

m
q , we have �v1 + v2�p = �v1�p + �v2�p + e+, for some vector e+ ∈ {0, 1}m,

and �v1 − v2�p = �v1�p − �v2�p + e−, where e− ∈ {−1, 0}m. The error vector e
of (4) thus lives in {−dS , . . . , dS}m. By the definition of Yjk

= �A(x)� · S�
Ijk

�p,

if we define z̃ :=
∑t

k=1 Yjk
· λjk

and ez := −e ∈ {−dS , . . . , dS}m, we have

z̃ =
⌊

(

A(x)
)� · s

⌋

p
+ ez ∈ Z

m
p .
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Then, we observe that A(x)� · s is of the form Tq · A�
0 · s, for some matrix

Tq = (
∏L

i=1 G−1(Ai,xi
))� which is a product of Zq-invertible matrices. By

Lemma 2.19, A�
0 · s is statistically close to the uniform distribution U(Zm

q ).
Since Tq is invertible, the vector A(x)� · s is itself statistically close to U(Zm

q ).
Hence, the vector �A(x)� ·s�p is statistically close to U(Zm

p ) since the statistical
distance between �U(Zm

q )�p and U(Zm
p ) is at most m · (p/q). Therefore we can

apply Lemma 2.18, which implies that
⌊�A(x)� · s�p

⌋

u
=
⌊�A(x)� · s�p + ez

⌋

u

except with probability 2L · m · 4dS ·u
p ≤ 2L · m · 4d·u

p ≤ m · 2−λ.
This shows that the equality �z̃�u =

⌊�A(x)� · s�p

⌋

u
holds with overwhelm-

ing probability if the vector z̃ :=
∑t

k=1 Yjk
· λjk

in the left-hand-side member
is computed by the Combine algorithm and the right-hand-side member is the
�z̃�u computed by Eval. �
Theorem 4.2. Assume that an entropy lower bound n̄ = �n · log σ − n

2 · log e −
n′ · log q� − 1 is Ω(λ). If we set the output length k̄ = k · log u so as to have

ξ = n̄ + �, k̄ = n̄ − 2 · (λ + log � + log n̄),

then the construction above is an adaptively secure DPRF family under the
LWEq,m,n′,α assumption.

Proof. The proof considers a sequence of hybrid games. In each game, we call
Wi the event that b′ = b.

Game0: This is the experiment, as described by Definition 2.20. Namely, the
challenger initially samples a secret Gaussian vector SK0 = s ←↩ DZn,σ,
which is shared by computing

SIj
= MIj

· [ρ1 | . . . | ρn] = MIj
· Γ ∈ Z

dj×n ∀j ∈ [N ],

where

Γ =
[

ρ1 | . . . | ρn

]

=

⎡

⎢

⎢

⎢

⎣

s�

ρ1,2 . . . ρn,2

...
. . .

...
ρ1,e . . . ρn,e

⎤

⎥

⎥

⎥

⎦

∈ Z
e×n,

with ρk,ν ←↩ DZ,σ for all (k, ν) ∈ [1, n] × [2, e]. At each partial evaluation
query (j,X(i)) ∈ [N ] × {0, 1}	, the adversary A obtains

Yj =
⌊

(A(x))� · S�
Ij

⌋

p
∈ Z

m×dj
p . (5)

In the challenge phase, the adversary chooses an input X� ∈ {0, 1}	. It obtains
a random vector y� ←↩ U(Zk

u) if the challenger’s bit is b = 0. If b = 1, it
obtains the real evaluation y� = π(�z̃��u) ∈ Z

k
u, where

z̃� =
⌊

(

A(x�)
)� · s

⌋

p
∈ Z

m
p ,
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with A(x�) = A0 · ∏L
i=1 G−1

(

Ai,x�
i

)

and x� = AHF(X�) ∈ {0, 1}L. At the
end of the game, we define C� ⊂ [N ] to the set of servers that were corrupted
by A or such that an evaluation query of the form (i,X�) was made. By
hypothesis, we have |C�| < t. When the adversary halts, it outputs b̂ ∈ {0, 1}
and the challenger defines b′ := b̂. The adversary’s advantage is Adv(A) :=
|Pr[W0] − 1/2|, where W0 is event that b′ = b.

Game1: This game is identical to Game0 with the following changes. First, the
challenger runs K ← AdmSmp(1λ, Q, δ) to generate a key K ∈ {0, 1,⊥}L

for a balanced admissible hash function AHF : {0, 1}	 → {0, 1}L, with δ :=
Adv(A) and Q is an upper bound on the number of queries that the adversary
makes. When the adversary halts and outputs b̂ ∈ {0, 1}, the challenger checks
if the conditions

PK(X(1)) = · · · = PK(X(Q)) = 1 ∧ PK(X�) = 0 (6)

are satisfied, where X� is the challenge input and X(1), . . . , X(Q) are the
adversarial queries. If these conditions do not hold, the challenger ignores A’s
output b̂ ∈ {0, 1} and overwrites it with a random bit b′′ ←↩ {0, 1} to define
b′ = b′′. If conditions (6) are satisfied, the challenger sets b′ = b̂. By Lemma
2.9, we have

|Pr[W1] − 1/2| = |Pr[b′ = b] − 1/2|
≥ γmin · Adv(A) − 1

2
· (γmax − γmin) = τ,

where τ(λ) is a noticeable function.
Game2: In this game, we modify the generation of pp in the following way.

Initially, the challenger samples a uniformly random matrix A ←↩ U(Zn×m
q ).

Next, for each i ∈ [L], it samples Ri,0,Ri,1 ←↩ U({−1, 1})m×m and defines
{Ai,0,Ai,1}L

i=1 as follows for all i ∈ [L] and j ∈ {0, 1}:

Ai,j :=
{

A · Ri,j if (j �= Ki) ∧ (Ki �=⊥)
A · Ri,j + G if (j = Ki) ∨ (Ki =⊥) (7)

It also defines A0 = A · R0 + G for a randomly sampled R0 ←↩
U({−1, 1}m×m). Since A ∈ Z

n×m
q was chosen uniformly, the Leftover Hash

Lemma ensures that {Ai,0,Ai,1}L
i=1 are statistically independent and uni-

formly distributed over Z
n×m
q . It follows that |Pr[W2] − Pr[W1]| ≤ L · 2−λ

since the distribution of pp is statistically unchanged.

We note that, at each query X, we can view A(x) as a GSW encryption

A(x) = A · Rx + (
n
∏

i=1

μi) · G,

for some small norm Rx ∈ Z
m×m, where

μi :=
{

0 if (AHF(X)i �= Ki) ∧ (Ki �=⊥)
1 if (AHF(X)i = Ki) ∨ (Ki =⊥)
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If conditions (6) are satisfied, at each query X(i), the admissible hash function
ensures that x(i) = AHF(X(i)) satisfies

A(x(i)) = A · Rx(i) , (8)

for some small norm Rx(i) ∈ Z
m×m. Moreover, the admissible hash function

maps the challenge input X� to an L-bit string x� = AHF(X�) such that

A(x�) = A · Rx� + G. (9)

Game3: In this game, we modify the distribution of pp and replace the uniform
matrix A ∈ Z

n×m
q by a lossy matrix such that

A� = Ā� · C + E ∈ Z
m×n
q , (10)

where Ā ←↩ U(Zn′×m
q ), C ←↩ U(Zn′×n

q ) and E ←↩ DZm×n,αq, for n′ signif-
icantly smaller than n. The matrix in (10) is thus “computationally close”
to a matrix Ā� · C of much lower rank than n. Under the LWE assump-
tion with in dimension n′, this change should not significantly alter A’s
behavior and a straightforward reduction B shows that |Pr[W3] − Pr[W2]| ≤
n · Adv

LWEq,m,n′,α

B (λ), where the factor n comes from the use of an LWE
assumption with n secrets.

The modification introduced in Game3 has the following consequence. Assuming
that conditions (6) are satisfied, for each partial evaluation query X(i) such that
X(i) �= X�, the response is of the form Yj = [zj,1 | . . . | zj,dj

] ∈ Z
m×dj
p , where

zj,θ = �(A · Rx(i)

)� · s̄j,θ�p

= �(R�
x(i) · Ā� · C + R�

x(i) · E) · s̄j,θ�p ∀θ ∈ [dj ].

Game4: In this game, we modify the evaluation oracle and introduce a bad
event. We define BAD to be the event that the adversary makes a partial
evaluation query (j,X) such that the AHF-encoded input x = AHF(X) ∈
{0, 1}L corresponds to a matrix A(x) = A · Rx, for some small-norm Rx ∈
Z

m×m, such that we have

zj,θ = �(A · Rx

)� · s̄j,θ�p �= �(R�
x · Ā� · C) · s̄j,θ�p. (11)

for some θ ∈ [dj ]. Note that the challenger can detect this event since it knows
Ā ∈ Z

n′×m
q , C ∈ Z

n′×n
q and E ∈ Z

m×n satisfying (10). If BAD occurs, the
challenger overwrites A’s output b̂ with a random bit b′′ ←↩ {0, 1} and sets
b′ = b′′ (otherwise, it sets b′ = b̂ as before). Lemma 4.3 shows that we have
the inequality |Pr[W4] − Pr[W3]| ≤ Pr[BAD] ≤ 2−Ω(λ).

We note that, if BAD does not occur, we have
⌊

(

A · Rx(i)

)� · s̄j,θ

⌋

p
=
⌊(

R�
x(i) · Ā� · C) · s̄j,θ

⌋

p
∀(j, θ) ∈ [N ] × [dj ] (12)
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at each query (j,X(i)) for which X(i) �= X� . We note that the right-hand-side
member of (12) is fully determined by R�

x(i) · Ā� and the product C · s̄j,θ ∈ Z
n′
q .

This means that partial evaluation queries (j,X(i)) such that X(i) �= X� always
reveal the same information (namely, C · s̄j,θ ∈ Z

n′
q ) about s̄j,θ ∈ Z

n.
Conversely, the right-hand-side member of (12) uniquely determines C · s̄j,θ

with high probability: observe that R�
x(i) ·Ā� is statistically uniform over Zm×n′

q ,
so by Lemma 2.1, the quantity �R�

x(i) · Ā� · (C · s)�p is an injective function of
C · s mod q. It comes that partial evaluation queries information-theoretically
reveal C · s mod q, but we will show that s still retains high entropy in A’s view.

Game5: In this game, we modify the challenge value for which, if b = 1, the
adversary is given a random y� ←↩ U(Zk

u). Clearly, we have Pr[W5] = 1/2
since the distribution of the challenge value does not depend on b ∈ {0, 1}.
Moreover, we will show that |Pr[W5] − Pr[W4]| ≤ 2−Ω(λ).

Indeed, we claim that, conditionally on A’s view, the vector y� is already sta-
tistically uniform over Z

k
u in Game4. Indeed, the source �z̃��u depends on an

injective function G� · s ∈ Z
m
q of the vector s. In Lemma 4.4, we show that this

vector has high min-entropy if BAD does not occur.
We observe that the source �z̃��u can be written

�z̃��u =

⌊⌊(
A · Rx� + G

)� · s
⌋

p

⌋
u

(13)

=
⌊(

A · Rx� + G
)� · s

⌋
u

+ es,x,u with es,x,u ∈ {−1, 0}m

= �R�
x� · A� · s�u + �G� · s�u + es,x,u + es,x, with es,x ∈ {0, 1}m

= �R�
x� · A� · s�u + �G� · s�u + e′

s,x, with e′
s,x ∈ {−1, 0, 1}m. (14)

The proof of Lemma 4.3 (see also the proof of the claim in Game 4 in the proof of
Theorem 3.2) implies that �R�

x� ·A� ·s�p = �R�
x� ·Ā� ·C ·s�p with overwhelming

probability. In turn, this implies H∞
(�R�

x� · A� · s�u | C · s
)

= 0 with high
probability. In the expression of z̃� in (14), we also remark that �G� · s�u + e′

s,x

is an injective function of s ∈ Z
n. To see this, observe that

�G� · s�u + e′
s,x = (u/q) · G� · s′ − ts,x + e′

s,x

for some ts,x ∈ (0, 1)m, so that

(q/u) · (�G� · s�u + e′
s,x) = G� · s + e′′

s,x (15)

for some e′′
s,x ∈ (−q/u, 2·q/u)m. The vector s is thus uniquely determined by (15)

using the public trapdoor of G so long as q/u � q.
Consider the entropy of z̃� conditionally on A’s view. We have

H∞
(�z̃��u | C · Γ�, {SIj

}j∈C�

)

= H∞
(�R�

x� · A� · s�u + �G� · s�u + e′
s,x | C · Γ�, {SIj

}j∈C�

)

= H∞
(�G� · s�u + e′

s,x | C · Γ�, {SIj
}j∈C�

)

= H∞
(

s | C · Γ�, {SIj
}j∈C�

) ≥ n · log σ − n

2
· log e − n′ · log q − 1.
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Here, the last inequality is given by Lemma 4.4. The second equality follows
from the fact that, for any random variables X,Y,Z defined over an additive
group, we have H∞(Y + Z | X) = H∞(Z|X) if H∞(Y |X) = 0.

In order to extract statistically random bits from z̃�, we must take into
account that it possibly depends on x� which may depend on pp. As long as
PK(X�) = 0, the source z̃� is taken from a distribution determined by the
challenge input X� ∈ {0, 1}	 within a collection of less than 2	 distributions
(namely, those inputs X for which PK(X) = 0), which all have min-entropy
n̄ ≥ n log σ − n

2 · log e − n′ log q − 1. By applying Lemma 2.11 with ε = 2−λ for
a collection X of at most M = 2	 distributions, we obtain that the distribution
of π(�z̃��u) is 2−Ω(λ)-close to the uniform distribution over Z

k
u. �

Lemma 4.3. Assume that q/p > 2L+λ · r, where r = mL+2 · n · β∗ · αq with
β∗ = O(β · log N). Then, we have the inequality

|Pr[W4] − Pr[W3]| ≤ Pr[BAD] ≤ 2−Ω(λ).

(The proof is given in the full version of the paper.)

Lemma 4.4. In Game4, the min-entropy of s conditionally on A’s view is at
least n · log σ − n

2 · log e − n′ · log q − n
2n .

Proof. Let us assume that BAD does not occur in Game4 since, if it does, the
challenger replaces the adversary’s output with a random bit, in which case both
games have the same outcome. We show that, assuming ¬BAD, the shared secret
vector s retains high min-entropy conditionally on the adversary’s view.

Let us first recap what the adversary can see in Game4. For each partial
evaluation query (j,X�), the response �(A · Rx� + G

)� · S�
Ij

�p consists of non-
lossy functions of S�

Ij
∈ Z

n×dj . We thus consider partial evaluation queries
of the form (j,X�) as if they were corruption queries and assume that they
information-theoretically reveal SIj

(we thus merge the two sets C and E of Def-
inition 2.20 into one set C�). As for uncorrupted shares {SIj

}j∈[N ]\C� , partial
evaluation queries (j,X(i)) for which X(i) �= X� only reveal the information
{C · S�

Ij
}j∈[N ]\C� . More precisely, those partial evaluations {Yj}j∈[N ]\C� can be

written

Yj =
⌊

(A(x(i)))� · S�
Ij

⌋

p
=
⌊

(Rx(i) · Ā� · C) · S�
Ij

⌋

p
(16)

where

S�
Ij

=

⎡

⎢

⎣

ρ�
1
...

ρ�
n

⎤

⎥

⎦ · M�
Ij

∈ Z
n×dj

is a product of M�
Ij

with the matrix [ρ1 | . . . | ρn]� ∈ Z
n×e whose first column is

the secret SK0 = s ∈ Z
n. Hence, the information revealed by (16) for j ∈ [N ]\C�

is only a lossy function C · S�
Ij

of the share SIj
: namely,
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C ·

⎡

⎢

⎣

ρ�
1
...

ρ�
n

⎤

⎥

⎦ · M�
Ij

=

⎡

⎢

⎣ C · s C ·

⎛

⎜

⎝

ρ2,2

...
ρn,2

⎞

⎟

⎠ . . . C ·

⎛

⎜

⎝

ρ2,e

...
ρn,e

⎞

⎟

⎠

⎤

⎥

⎦ · M�
Ij

, (17)

= C · Γ� · M�
Ij

,

where

Γ =
[

ρ1 | . . . | ρn

]

=

⎡

⎢

⎢

⎢

⎣

s�

ρ2,2 . . . ρn,2

...
. . .

...
ρ2,e . . . ρn,e

⎤

⎥

⎥

⎥

⎦

∈ Z
e×n

is the matrix of Gaussian entries which is used to compute secret key shares

SIj
= MIj

· Γ ∀j ∈ [N ].

The information revealed by exposed shares {SIj
}j∈C� can thus be written

SIj
= [sIj ,1 | . . . | sIj ,n] = MIj

· Γ ∈ Z
dj×n ∀j ∈ C�. (18)

At this stage, we see that proving the following fact on distributions is sufficient
to complete the proof of the lemma.

Fact. Let MC� to be the sub-matrix of M obtained by stacking up the rows
assigned to corrupted parties j ∈ C�. Conditionally on

(

C, C · Γ� · M�, MC� , MC� · Γ), (19)

the vector s� = (1, 0, . . . , 0)� · Γ has min-entropy at least

n · log σ − n

2
· log e − n′ · log q − n

2n
.

To prove this statement, we apply arguments inspired from [4, Lemma 1].
First, we observe that conditioning on (19) is the same as conditioning on

(

C,C·
Γ� ·M�

[N ]\C� ,MC� ,MC� ·Γ) since MC� ·Γ and C are given. In fact, it is sufficient
to prove the result when conditioning on

(

C,C · Γ�,MC� ,MC� · Γ),
as C · Γ� · M�

[N ]\C� is computable from C · Γ�. By the definition of an Integer
Span Program, we know that there exists a sweeping vector κ ∈ Z

e whose first
coordinate is κ1 = 1 and such that MC� · κ = 0. The rows of MC� thus live
in the lattice LC� = {m ∈ Z

e : 〈m,κ〉 = 0}. Hence, if we define a matrix
LC� ∈ Z

(e−1)×e whose rows form a basis of LC� , we may prove the min-entropy
lower bound conditioned on

(

C,C · Γ�, LC� , LC� · Γ).
This is because LC� · Γ provides at least as much information as MC� · Γ.
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We first consider the distribution of Γ, conditioned on (LC� , LC� ·Γ). Since the
columns of Γ are statistically independent, we may look at them individually. For
each i ∈ [n], we let ρ∗

i ∈ Z
e be an arbitrary solution of LC� ·ρ∗

i = LC� ·ρi ∈ Z
e−1
q .

The distribution of ρi ∈ Z
e conditionally on

(

LC� , LC� · ρi

)

is ρ∗
i + DΛ,σ,−ρ∗

i
,

where Λ = {x ∈ Z
e | LC� · x = 0} is the 1-dimensional lattice Λ = κ · Z.

At this stage, we know that conditioned on (LC� , LC� · Γ), each row ρi =
(si, ρi,2, . . . , ρi,e)� of Γ� is Gaussian over an affine line. We use this observation
to show that conditioning on (C,C ·Γ�, LC� , LC� ·Γ) is the same as conditioning
on (C,C · s, LC� , LC� · Γ).3 In fact, we claim that, conditioned on (LC� , LC� · Γ),
the last e − 1 columns of Γ� do not reveal any more information than its first
column. Indeed, conditioned on (LC� , LC� · Γ), each ρi can be written ρi =
ξi · κ + ρ∗

i for some integer ξi ∈ Z. We may assume that the shifting vector
ρ∗

i = (ρ∗
i,1, . . . , ρ

∗
i,e)

� ∈ Z
e
q is known to A as it can be obtained from LC� · ρi via

de-randomized Gaussian elimination. Writing κ = (κ1, . . . , κe), the j-th column
(Γ�)j of Γ� is

(Γ�)j = κj ·

⎛

⎜

⎝

ξ1
...

ξn

⎞

⎟

⎠+

⎛

⎜

⎝

ρ∗
1,j
...

ρ∗
n,j

⎞

⎟

⎠ ∀j ∈ [e].

As κ1 = 1, we have

(Γ�)j = κj · (Γ�)1 − κj ·

⎛

⎜

⎝

ρ∗
1,1
...

ρ∗
n,1

⎞

⎟

⎠+

⎛

⎜

⎝

ρ∗
1,j
...

ρ∗
n,j

⎞

⎟

⎠ ∀j ∈ [e].

In the latter, the last two terms are information-theoretically known to A (once
we have conditioned on (LC� , LC� · Γ)) and so is κj .

We now study the distribution of s = (Γ�)1 conditioned on (LC� , LC� ·Γ). By
statistical independence, we may consider each coordinate si = (1, 0, . . . , 0)� ·ρi

of s individually. Recall that, conditioned on (LC� , LC� ·Γ), each ρi is distributed
as ρ∗

i + DκZ,σ,−ρ∗
i
. Write ρ∗

i = y · κ + (ρ∗
i )

⊥, with y ∈ R and (ρ∗
i )

⊥ orthogonal
to κ. Then,

ρ∗
i + DκZ,σ,−ρ∗

i
= (ρ∗

i )
⊥ + y · κ + DκZ,σ,−y·κ−(ρ∗

i )
⊥

= (ρ∗
i )

⊥ + y · κ + κ · DZ,σ/‖κ‖,−y.

We now take the inner product with (1, 0, . . . , 0) and use the fact that κ1 = 1
to obtain that, conditioned on (LC� , LC� · Γ), the coordinate si is distributed
as (ρ∗

i )
⊥
1 + y + DZ,σ/‖κ‖,−y. As κ ∈ {−1, 0, 1}e with the Benaloh-Leichter-based

LISS scheme of [24], and by our choice of σ, we have that σ/‖κ‖ = Ω(
√

n).
Using Lemma 2.3 (Remark 2.4), this implies that each si has min-entropy ≥

3 Note that conditioned on (LC� , LC� ·Γ), the rows of Γ� are Gaussian on affine lines,
but a column of Γ� is an inner product of unit vector with all these rows.
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log (σ/‖κ‖) − 2−n ≥ log σ − 1
2 log e − 2−n . Overall, we obtain

H∞
(

s | LC� , LC� · Γ) ≥ n · log σ − n

2
· log e − n

2n
.

We are now ready to conclude. By the above, to prove the fact (and hence the
lemma), it suffices to obtain a lower bound on the min-entropy of s conditioned
on (C,C · s, LC� , LC� · Γ). We then use the above min-entropy lower bound on s
conditioned on (LC� , LC� ·Γ) and the fact that given C, the quantity C · s ∈ Z

n′
q

reveals at most n′ log q bits. �
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A Definition of Static DPRF Security

In this section, we recall the definition of static security used in [16].

Definition A.1. Let λ be a security parameter and let integers t,N ∈ poly(λ).
A (t,N)-DPRF is pseudorandom under static corruptions if no PPT adversary
has non-negligible advantage in the following game:

1. The challenger generates pp ← Setup(1λ, 1	, 1t, 1N ) and chooses a random key
SK0 ←↩ K, which is broken into N shares (SK1, . . . , SKN ) ← Share(SK0).
It also initializes empty sets C,V ← ∅ and flip a random coin b ←↩ U({0, 1}).

2. The adversary A chooses a set S� = {i1, . . . , it−1} and the challenger returns
the secret key shares {SKi1 , . . . , SKit−1}.

3. The adversary A adaptively interleaves the following kinds of queries.

Evaluation: A chooses an input X ∈ D. The challenger replies by returning
{Yi = PEval(SKi,X)}i∈[N ]\S� and updating V := V ∪ {X}.

Challenge: A chooses an input X ∈ D. If X previously occurred in a
challenge query, the challenger returns the same output as before. Oth-
erwise, it randomly chooses YX,0 ←↩ U({0, 1}μ) and computes YX,1 =
Eval(SK0,X). It returns YX,b and updates C := C ∪ {X}.

It is required that C ∩ V = ∅ at any time.
4. The adversary A outputs a bit b̂ ∈ {0, 1} and wins if b̂ = b. Its advantage is

defined to be AdvDPRF
A (λ) := |Pr[b̂ = b] − 1/2|.

We may assume w.l.o.g. that the adversary only makes one challenge query
in the experiment of Definition A.1. Indeed, a standard hybrid argument
allows showing that security in the single-challenge sense implies security when
polynomially-many queries are allowed.
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systems. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 4–27. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48481-7 2

31. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 28

32. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of STOC, pp. 197–206. ACM (2008)

33. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

34. Goldreich, O.: Valiant’s polynomial-size monotone formula for majority (2014)
35. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.

ACM 33, 792 (1986)
36. Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learn-

ing with errors assumption. In: ICS (2010)
37. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-

tures from standard lattices. In: STOC (2015)
38. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-

structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 18

39. Hastad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from
any one-way function. SIAM J. Comput. 8(4), 1364–1396 (1999)

40. Hoory, S., Magen, A., Pitassi, T.: Monotone circuits for the majority function. In:
Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM -2006.
LNCS, vol. 4110, pp. 410–425. Springer, Heidelberg (2006). https://doi.org/10.
1007/11830924 38

41. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 5

42. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: introduc-
ing concurrency, removing erasures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 16

43. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more
compact IBEs from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 682–712. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 23

44. Lewko, A., Waters, B.: Efficient pseudorandom functions from the decisional linear
assumption and weaker variants. In: ACM-CCS (2009)

45. Libert, B., Joye, M., Yung, M.: Born and raised distributively: fully distributed
non-interactive adaptively secure threshold signatures with short shares. In: PODC
(2014)

46. Lysyanskaya, A., Peikert, C.: Adaptive security in the threshold setting: from cryp-
tosystems to signature schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 331–350. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45682-1 20

https://doi.org/10.1007/3-540-48481-7_2
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-40041-4_28
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/11830924_38
https://doi.org/10.1007/11830924_38
https://doi.org/10.1007/978-3-662-46497-7_5
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/978-3-662-53890-6_23
https://doi.org/10.1007/3-540-45682-1_20
https://doi.org/10.1007/3-540-45682-1_20


Adaptively Secure Distributed PRFs from LWE 421

47. Micali, S., Sidney, R.: A simple method for generating and sharing pseudo-random
functions, with applications to clipper-like key escrow systems. In: Coppersmith,
D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 185–196. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-44750-4 15

48. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

49. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

50. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 23

51. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: FOCS (1997)

52. Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring. In:
STOC (2000)

53. Nielsen, J.B.: A threshold pseudorandom function construction and its applica-
tions. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 401–416. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 26

54. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC,
pp. 187–196. ACM (2008)

55. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38348-9 6

56. Razborov, A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1987)
57. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. In: STOC (2005)
58. Regev, O., Stephens-Davidowitz, S.: A reverse Minkowski theorem. In: STOC

(2017)
59. Thorbek, R.: Linear integer secret sharing. Ph.D. thesis, Department of Computer

Science - University of Arhus (2009)
60. Trevisan, L., Vadhan, S.: Extracting randomness from samplable distributions. In:

FOCS (2000)
61. Valiant, L.: Short monotone formulae for the majority function. J. Alg. 5(3), 363

(1984)
62. Valiant, L.: A theory of the learnable. Commun. ACM 27(11), 1134 (1984)
63. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,

R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

https://doi.org/10.1007/3-540-44750-4_15
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-45708-9_26
https://doi.org/10.1007/978-3-642-38348-9_6
https://doi.org/10.1007/11426639_7


iO and Authentication



A Simple Construction of iO for Turing
Machines

Sanjam Garg(B) and Akshayaram Srinivasan

University of California, Berkeley, USA
{sanjamg,akshayaram}@berkeley.edu

Abstract. We give a simple construction of indistinguishability obfus-
cation for Turing machines where the time to obfuscate grows only with
the description size of the machine and otherwise, independent of the
running time and the space used. While this result is already known
[Koppula, Lewko, and Waters, STOC 2015] from iO for circuits and
injective pseudorandom generators, our construction and its analysis
are conceptually much simpler. In particular, the main technical com-
ponent in the proof of our construction is a simple combinatorial peb-
bling argument [Garg and Srinivasan, EUROCRYPT 2018]. Our con-
struction makes use of indistinguishability obfuscation for circuits and
somewhere statistically binding hash functions.

1 Introduction

Indistinguishability Obfuscation (iO) [BGI+12,GGH+13] is a central primi-
tive in cryptography giving rise to new and powerful cryptographic applica-
tions [SW14,GGHR14]. iO requires that for any two circuits C0 and C1 com-
puting the exact same functionality, obfuscation of C0 is computationally indis-
tinguishable from the obfuscation of C1. While circuits are powerful enough
to simulate other models of computation such as Turing machines or RAM pro-
grams [PF79], a drawback of using them is that size of the circuit (and hence the
size of obfuscation) grows with both the running time and the space of the com-
putation. In a beautiful work Koppula, Lewko and Waters [KLW15] (building
on prior work [BGL+15,CHJV15]) showed a method for removing this limita-
tion by giving a construction of succinct iO for Turing machines from iO for
circuits and injective pseudorandom generators. By succinct, we mean that the
time to obfuscate a machine grows only with its description size and is otherwise
independent of its running time and its space complexity.

Our Contribution. In this paper, we give a simple construction of succinct
indistinguishability obfuscation for Turing machines from sub-exponentially
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secure iO for circuits and sub-exponentially secure somewhere statistically bind-
ing hash functions [HW15,KLW15]. Our new construction is simple to describe
and its analysis is much simpler than the previous works. Inspired by [GS18a],
the main technical component in our security proof is a simple combinatorial
pebbling argument.

In a bit more detail, we achieve the above new result by first giving a new
construction of succinct randomized encoding [AIK04,CHJV15,BGL+15,App17]
from polynomially hard indistinguishability obfuscation for circuits and laconic
oblivious transfer [CDG+17,DG17,BLSV18,DGHM18].1 A randomized encod-
ing allows to encode a Turing machine M , an input x and a time bound t to
̂Mx,t. Given ̂Mx,t, the decoding procedure recovers M(x) which is the output
of M on input x obtained in time t. The security property requires that the
distribution of ̂Mx,t does not leak anything about x except M(x). A randomized
encoding is said to be succinct if the encoding procedure runs in time that is
polynomial in the security parameter, the machine description size and the input
size and is otherwise independent of the time and space complexity of M . Next,
to construct succinct iO for Turing machines, we use a transformation from any
succinct randomized encoding (with sub-exponential security) to succinct iO
for Turing machines given in the works of [CHJV15,BGL+15]. This yields the
desired result.

1.1 Overview

In this section, we give a high level overview of our construction of succinct
randomized encodings and the security proof.

Starting Point. The starting point of our work is the construction of semi-
succinct randomized encodings for Turing machines in [CHJV15,BGL+15] based
on iO for circuits and Yao’s garbling scheme. Semi-succinct randomized encod-
ings require that the time to encode a machine to be independent of its running
time but could depend on the space complexity of the computation. In partic-
ular, it is a weaker requirement when compared to full succinctness wherein we
also require the time to encode a machine to be independent of the space com-
plexity. Below we start by recalling this construction and explain why it achieves
only semi-succinctness when compared to full succinctness.

The encoding procedure is given as input a Turing machine M , an input x
and a time bound t and it has to output a randomized encoding ̂Mx,t. The first
step in the above works is to reduce the machine M to a “succinctly describ-
able” circuit C that computes the same function as that of M . We say that
a circuit is succinctly describable if there exists a“small” circuit Csc that on

1 Note that [CDG+17] also described a construction of laconic oblivious transfer from
witness encryption [GGSW13] and somewhere statistically binding hash functions.
Since witness encryption can be instantiated from iO for circuits and one-way func-
tions (which is implied by somewhere statistically binding hash functions), we obtain
our main result from iO for circuits and somewhere statistically binding hash func-
tions.
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input any gate index, outputs the binary function computed by that gate along
with the description of its input and output wires. Next, these works observed
that Yao’s garbling procedure is highly “local”, meaning that given only the
local information about a gate (which includes its input, output wires and the
functionality computed by it), Yao’s garbling procedure can output the garbled
encryption table corresponding to that gate. Now, these two ideas are combined
in an elegant way to obtain a randomized encoding of a Turing machine. To
give more details, the encoding consists of an obfuscated circuit that on input
any gate index, outputs the garbled encryption table corresponding to that gate.
Specifically, this circuit uses the succinct description to obtain the binary logic
computed by the gate along with the description of the input and output wires.
It uses a (puncturable) PRF key to obtain the labels corresponding to the input
and the output wires and outputs the Yao’s garbled table corresponding to that
gate (using randomness derived from the puncturable PRF key). The encoding
procedure outputs this obfuscation along with the labels corresponding to the
input x. The decoding procedure evaluates this obfuscation on every gate index
to obtain the garbled tables corresponding to every gate and then evaluates the
garbled circuit to obtain the output.

Let us now describe the simulator for the above construction. Recall that the
simulator on input M(x) must output a randomized encoding such that the dis-
tribution of the simulator’s output is computationally indistinguishable to the
distribution of an honestly generated encoding. The simulator in these works
obfuscates a circuit that on input any gate number, outputs the simulated Yao’s
garbled table. Intuitively, it should follow from the security of Yao’s garbled
circuit construction that the real garbled tables are computationally indistin-
guishable to the simulated garbled tables. However, for the proof to go through,
these works cannot change the distribution of all the garbled gates from the real
to simulated in one shot. Rather, they use a careful hybrid argument wherein
they change the distribution of the garbled tables from the real to simulated
for one gate at a time and this where the succinctness takes a hit. Let us now
explain this in more detail.

Recall from the proof of Yao’s garbled circuit construction [LP09], that each
hybrid corresponds to a particular distribution of garbled encryption tables (also
called as configurations in [HJO+16]). In a particular configuration, a garbled
gate can either be in three modes: the real mode, or the input dependent sim-
ulation mode, or the simulated mode. The real mode is one where in the gar-
bled encryption tables are distributed exactly as in the construction. In the
input dependent simulation mode, all the entries of the garbled encryption table
encrypt a single label and this label corresponds to the output of that gate.
In the simulated mode, every entry of the garbled encryption table encrypts a
single label and this label corresponds to the bit 0. The real world distribution
corresponds to a configuration wherein each garbled gate is in the real mode and
the simulated configuration is one in which each garbled gate is in the simulated
mode. In order to go from the real world distribution to the simulated distribu-
tion, we need to go over a sequence of hybrids. Each hybrid change corresponds
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to changing the configuration of a particular gate. These changes can be made
according to the following two rules:

– Rule A: A garbled gate can be changed from the real mode to input depen-
dent simulation mode if all its fan-in gates are in input dependent simulation
mode.

– Rule B: A garbled gate can be changed from an input dependent simulation
mode to the simulated mode if all its fan-out gates are in input dependent
simulation mode.

A direct consequence of such a hybrid argument is that the obfuscated cir-
cuit (in the construction of succinct randomized encoding) in a particular hybrid
must somehow encode the outputs of all the gates that are in the input depen-
dent simulation mode. Notice that in general, the fan-out of a gate could be
as large as the space of the computation (denoted by s). Thus, to change one
garbled gate from input dependent simulation mode to the simulated mode, we
must encode the outputs of at most s gates in the obfuscated circuit. Thus,
the size of the obfuscated circuit in this intermediate hybrids grows with s.
Thus, to use iO security, the real world obfuscation must also be padded to the
size of the circuit in the intermediate hybrid and hence, these works could only
achieve semi-succinctness. Because of the above-mentioned challenges, this app-
roach seemed insufficient for realizing full succinctness. Thus, Koppula, Lewko
and Waters [KLW15] gave a very different approach for realizing full succinct-
ness. However, unfortunately, their realization is rather involved.

Our Approach. In this work, we start with the above-mentioned approach fol-
lowed in the realization of semi-succinct iO constructions but employ a crucial
technique to achieve full succinctness. Specifically, to achieve full succinctness, we
use a linearized garbling scheme (introduced in the work of Garg and Srinivasan
[GS18a]) in place of Yao’s garbling scheme. Informally, a linearized garbled cir-
cuit helps in “flattening” the underlying circuit which may have large width into
a circuit with width 1. Intuitively, such a flattening would be helpful as the size
of intermediate obfuscations may not have to grow with the width of the circuit
(which is proportional to the space complexity). In the rest of the overview, we
give an informal description of the linearlized garbled circuit, state its properties
and explain the combinatorial pebbling game that forms the main crux of the
proof. This approach allows us to achieve a simpler construction than Koppula,
Lewko and Waters [KLW15].

Linearized Garbled Circuits. To understand the concept of a linearized gar-
bled circuits2, it is best to view the circuit C as a sequence of step circuits.
In more details, we will consider C as a sequence of step circuits along with a
database/memory D. The i-th step circuit implements the i-th gate (with some
topological ordering of the gates) in the circuit C. The database D is initially
loaded with the input x and contents of the database represent the state of the
computation. That is, the snapshot of the database before the evaluation of the
2 This paragraph is taken verbatim from [GS18a].
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i-th step circuit contains the output of every gate g < i in the execution of C on
input x. The i-th step circuit reads contents from two pre-determined locations
in the database and writes a bit to location i. The bits that are read correspond
to the values in the input wires for the i-th gate. The output of the circuit is
easily derived from the contents of the database at the end of the computation.

To garble a circuit C, we must garble each of the step circuits and the
database D. To draw a parallel with the Yao’s garbling scheme, the garbled
encryption tables are now replaced with garbled step circuits. As in the of Yao’s
garbling procedure, the task of garbling the step circuits has the desired locality
property, meaning that given only the locations accessed by the step circuit and
the functionality computed by it, we can computed the garbled version of that
particular step circuit. Furthermore, we can think of the distributions wherein a
step circuit is in real mode, or in input dependent simulation mode, or in simu-
lated mode as natural extensions of the same notions for a garbled gate. For the
sake of keeping things simple in the introduction, we wouldn’t be going into the
exact details of the actual distributions in these three modes.

Now we are ready to state the properties of a linearized garbled circuit. We
say a garbling scheme to be linearized if it satisfies the following two properties:

1. Rule A: A step circuit can be changed from the real mode to an input
dependent simulation mode (or, vice-versa) if the previous step circuit is in
input dependent simulation mode. This restriction however, does not apply
to the first step circuit i.e., it can always be changed from real to input
dependent simulation mode (or, vice-versa).

2. Rule B: A step circuit can be changed from input dependent simulation
mode to the simulated mode if the previous step circuit is in input depen-
dent simulation mode and all the subsequent step circuits are in simulated
mode. This rule must be contrasted with the corresponding rule for Yao’s
garbled circuits wherein we must maintain all the gates which fan-out from
this particular gate in input dependent simulation mode.

Garg and Srinivasan [GS18a] constructed such a linearized garbling scheme from
laconic oblivious transfer [CDG+17].3 We will now show that how this linearized
garbling structure is helpful in obtaining a fully succinct randomized encoding
scheme.

Pebbling Game. Now, let us explain how the concept of linearized garbled
circuit helps us in achieving full succinctness. The simulator for our construc-
tion of succinct randomized encoding is exactly the same as in the previous
constructions [CHJV15,BGL+15]. In particular, it obfuscates a circuit that on
input any step circuit index, outputs the garbled version of that step circuit in
the simulated mode. In the real world distribution, all the step circuits are gar-
bled in the real mode whereas in the simulated distribution all the step circuits
are garbled in the simulated mode. The goal is to change all the step circuits

3 As mentioned in the introduction, a laconic oblivious transfer can be constructed
from iO for circuits and somewhere statistically binding hash functions.
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from the real mode to the simulated mode where in each step/hybrid, we can
use either one of the above two rules to change the configuration of a particular
gate. In order to keep the size of the intermediate obfuscations small, we need
to minimize the number of step circuits that are present in the input dependent
simulation mode. This is because for every step circuit that is present in the
input dependent simulation mode, we must hardcode the output of the gate in
the obfuscation and hence the size of the obfuscation grows with this number.
These requirements can be abstractly modeled as the following pebbling game
whose description is taken verbatim from [GS18a].

Consider the positive integer line 1, 2, . . . , N . We are given pebbles of two
colors: gray and black . A black pebble corresponds to a step circuit in the
simulated mode and a gray pebble corresponds to a step circuit in the input
dependent simulation mode. A position without any pebble corresponds to real
garbling. We can place the pebbles on this positive integer line according to the
following two rules:

Rule A: We can place or remove a gray pebble in position i if and only if there
is a gray pebble in position i−1. This restriction does not apply to position 1:
we can always place or remove a gray pebble at position 1. This rule captures
the first requirement of a linearized garbling scheme.

Rule B: We can replace a gray pebble in position i with a black pebble as
long as all the positions > i have black pebbles and there is a gray pebble
in position i − 1 or if i = 1. This rule captures the second requirement of a
linearized garbling scheme.

Optimization Goal of the Pebbling Game. The goal is to pebble the line
[1, N ] such that every position has a black pebble while minimizing the number
of gray pebbles that are present on the line at any point in time.

Any strategy for the above pebbling game that uses a maximum of � gray
pebbles gives a randomized encoding scheme where the time to encode grows
with �. We note that the same pebbling game was considered in the work of
[GS18a] in the context of constructing adaptive garbled circuits with optimal
online complexity. Using the pebbling strategy considered in their work (that
uses log N gray pebbles), we give a construction of randomized encoding scheme
where the time to encode grows only with poly(|M |, |x|, λ, log T ) where T is the
running time of the computation. This gives us the desired succinctness.

1.2 Concurrent Work

In a concurrent and independent work, Ananth and Lombardi [AL18] gave a
construction of succinct randomized encoding from polynomially hard compact
functional encryption and laconic oblivious transfer. They defined an abstrac-
tion called as strong locally simulatable garbling schemes and then used it to
construct a succinct randomized encoding. At a conceptual level, the notion of
strong locally simulatable garbling scheme is similar to our notion of linearized
garbling schemes and hence the underlying techniques used in both these papers
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are similar. We remark that even our construction can be instantiated from poly-
nomially hard compact functional encryption using the works of [AJ15,BV15]
as the size of the input to the obfuscation scheme is O(log λ) where λ is the
security parameter.

2 Preliminaries

Let λ denote the security parameter. A function μ(·) : N → R
+ is said to be

negligible if for any polynomial poly(·) there exists λ0 ∈ N such that for all λ > λ0

we have μ(λ) < 1
poly(λ) . For a probabilistic algorithm A, we denote A(x; r) to

be the output of A on input x with the content of the random tape being r.
When r is omitted, A(x) denotes a distribution. For a finite set S, we denote
x ← S as the process of sampling x uniformly from the set S. We will use PPT
to denote Probabilistic Polynomial Time. We denote [a] to be the set {1, . . . , a}
and [a, b] to be the set {a, a + 1, . . . , b} for a ≤ b and a, b ∈ Z. For a binary
string x ∈ {0, 1}n, we will denote the ith bit of x by xi. We assume without
loss of generality that the length of the random tape used by all cryptographic
algorithms is λ. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

2.1 Succinct Circuits

We now recall the definition of succinct circuits. Most of this subsection is taken
verbatim from [BGT14].

Definition 1 (Succinct Circuits). Let C : {0, 1}n → {0, 1} be a circuit with
N − n binary gates. The gates of the circuit are numbered as follows. The input
gates are given the numbers {1, . . . , n}. The intermediate gates are numbered
{n+1, n+2, . . . , N − 1} such that a gate that receives its input from gates i and
j is given a number greater than i and j. The output gate is numbered N . Each
gate g ∈ [n + 1, N ] is described by a tuple (i, j, fg) ∈ [g − 1]2 × GType where
outputs of gates i and j serves as inputs to gate g and fg denotes the binary
functionality computed by the gate. Here, GType denotes the set of all binary
functions.

We say that C is succinctly represented by a circuit Csc, if Csc given a gate
label g ∈ [n + 1, N ] gives out its description (i, j, fg). Furthermore, |Csc| < |C|.

We now recall the lemma from [PF79] that converts any uniform Turing
machine to a succinct circuit.

Lemma 1 ([PF79]). Any Turing machine M , which for inputs of size n,
requires a maximal running time t(n) and space s(n), can be converted in time
O(|M |+log(t(n))) to a circuit Csc that succinctly represents C : {0, 1}n → {0, 1}
where C computes the same function as M (for inputs of size n), and is of size
˜O(t(n) · s(n)).
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2.2 Succinct Randomized Encoding

We now recall the definition of succinct randomized encoding.

Definition 2 ([BGT14]). A succinct randomized encoding (SRE) consists of
two algorithms (sRE.Enc, sRE.Dec) with the following syntax:

– ̂Mx,t ← sRE.Enc(1λ,M, x, t) : takes as input the security parameter λ, a
machine M , input x, time bound (encoded in binary) t and outputs the ran-
domized encoding ̂Mx,t.

– y ← sRE.Dec(M, ̂Mx,t) : takes as input the machine M and the randomized
encoding ̂Mx,t and deterministically computes the output y.

We require the scheme to satisfy the following three properties.

– Correctness: For every x and M such that M halts on input x within t
steps, it holds that y = M(x) with probability 1 over the random coins of
sRE.Enc.

– Security: there exists a PPT simulator Sim such that for any poly size adver-
sary A there exists a negligible negl(·) such that for all λ ∈ N, machine M ,
input x, and time bound t:

∣

∣

∣Pr[A(̂Mx,t) = 1] − Pr[A(Sim(1λ, y,M, t, 1|x|)) = 1]
∣

∣

∣ ≤ negl(λ) · p(t)

where ̂Mx,t ← sRE.Enc(1λ,M, x, t), y is the output of M(x) after t steps and
p(·) is a fixed polynomial that does not depend on (M,x, t).4

– Succinctness: The running time of sRE.Enc and the size of the encoding
̂Mx,t are poly(|M |, |x|, log t, λ). The running time of sRE.Dec is poly(t, λ).

Remark 1. We note that our definition of succinct randomized encoding differs
from the original definition given in [BGT14] as the procedure sRE.Dec addition-
ally takes in M as input. We note that this is without loss of generality as we can
always set M to be the universal Turing machine and include the description of
the machine that has to be encoded as part of the input.

2.3 Indistinguishability Obfuscation

We now define indistinguishability obfuscator from [BGI+12,GGH+13].

Definition 3. A PPT algorithm iO is an indistinguishability obfuscator for a
family of circuits {Cλ}λ that satisfies the following properties:

– Correctness: For all λ and for all C ∈ Cλ and for all x,

Pr[iO(C)(x) = C(x)] = 1

where the probability is over the random choices of iO.
4 When t bounded by a polynomial then RHS can just be negl(λ).
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– Security: For all C0, C1 ∈ Cλ such that for all x, C0(x) = C1(x) and for all
poly sized adversaries A,

|Pr[A(iO(C0)) = 1] − Pr[A(iO(C1)) = 1]| ≤ negl(λ)

We now give the definition of a succinct indistinguishability obfuscation.

Definition 4 (Succinct Indistinguishability Obfuscator [BGL+15]). A
succinct indistinguishability obfuscator for a machine class {Mλ}λ∈N consists
of a uniform PPT machine iOM that works as follows:

– iOM takes as input the security parameter 1λ, the machine M to obfuscate,
and an input length n and time bound t for M .

– iOM outputs a machine obM which is an obfuscation of M corresponding to
input length n and time bound t. obM takes as input x ∈ {0, 1}n and t′ ≤ t.

The scheme should satisfy the following three requirements.

– Correctness: For all security parameters λ ∈ N, for all M ∈ Mλ, for all
inputs x ∈ {0, 1}n, time bounds t and t′ ≤ t, let y be the output of M on t′

steps, then we have that:

Pr[obM(x, t′) = y : obM ← iOM(1λ, 1n, 1log t,M)] = 1

– Security: For any (not necessarily uniform) PPT distinguisher D, there
exists a negligible function α such that the following holds: For all security
parameters λ ∈ N, time bounds t, and pairs of machines M0,M1 ∈ Mλ of
the same size such that for all running times t′ ≤ t and for all inputs x,
M0(x) = M1(x) when M0 and M1 are executed for time t′, we have that:

∣
∣
∣ Pr

[

D(iOM(1λ, 1n, 1log t, M0)) = 1
] − Pr

[

D(iOM(1λ, 1n, 1log t, M1)) = 1
]
∣
∣
∣ ≤ α(λ)

– Efficiency and Succinctness: We require that the running time of iOM
and the length of its output, namely the obfuscated machine obM , is
poly(|M |, log t, n, λ). We also require that the obfuscated machine on input
x and t′ runs in time poly(|M |, t′, n, log t, λ) (or poly(t′, λ) for short).

2.4 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao82,Yao86,
AIK04] with selective security (see Lindell and Pinkas [LP09] and Bellare et al.
[BHR12] for a detailed proof and further discussion). A garbling scheme for cir-
cuits is a tuple of PPT algorithms (GarbleCkt,EvalCkt). Very roughly, GarbleCkt
is the circuit garbling procedure and EvalCkt is the corresponding evaluation
procedure. We use a formulation where input labels for a garbled circuit are
provided as input to the garbling procedure rather than generated as output.
(This simplifies the presentation of our construction.) More formally:
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– ˜C ← GarbleCkt
(

1λ, C, {labw,b}w∈x,b∈{0,1}
)

: GarbleCkt takes as input a security
parameter λ, a circuit C, and input labels labw,b where w ∈ x (x is the set
of input wires to the circuit C) and b ∈ {0, 1}. This procedure outputs a
garbled circuit ˜C. We assume that for each w, b, labw,b is chosen uniformly
from {0, 1}λ.

– y ← EvalCkt
(

˜C, {labw,xw
}w∈x

)

: Given a garbled circuit ˜C and a sequence of
input labels {labw,xw

}w∈x (referred to as the garbled input), EvalCkt outputs
a string y.

Correctness. For correctness, we require that for any circuit C, input x ∈
{0, 1}|x| and input labels {labw,b}w∈x,b∈{0,1} we have that:

Pr
[

C(x) = EvalCkt
(

˜C, {labw,xw
}w∈x

)]

= 1

where ˜C ← GarbleCkt
(

1λ, C, {labw,b}w∈x,b∈{0,1}
)

.

Selective Security. For security, we require that there exists a PPT simulator
SimCkt such that for any circuit C and input x ∈ {0, 1}|x|, we have that

{

˜C, {labw,xw
}w∈x

}

c≈
{

SimCkt

(

1λ, 1|C|, C(x), {labw,xw
}w∈x

)

, {labw,xw
}w∈x

}

where ˜C ← GarbleCkt
(

1λ, C, {labw,b}w∈x,b∈{0,1}
)

and for each w ∈ x and b ∈
{0, 1} we have labw,b ← {0, 1}λ. Here

c≈ denotes that the two distributions are
computationally indistinguishable.

Theorem 1 ([Yao86,LP09]). Assuming the existence of one-way functions,
there exists a construction of garbling scheme for circuits.

2.5 Updatable Laconic Oblivious Transfer

In this subsection, we recall the definition of updatable laconic oblivious transfer
from [CDG+17].

Definition 5 ([CDG+17]). An updatable laconic oblivious transfer consists of
the following algorithms:

– crs ← crsGen(1λ) : It takes as input the security parameter 1λ (encoded in
unary) and outputs a common reference string crs.

– (d, ̂D) ← Hash(crs,D) : It takes as input the common reference string crs

and database D ∈ {0, 1}∗ as input and outputs a digest d and a state ̂D. We
assume that the state ̂D also includes the database D.

– d∗ ← HashUpdate(crs, d, (L, b), aux) : It takes as input the common reference
string crs, a digest d, position L ∈ N , a bit b and some auxiliary information
of size poly(log |D|, λ) and outputs d∗.
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– e ← Send(crs, d, L,m0,m1) : It takes as input the common reference string
crs, a digest d, a location L ∈ N and two messages m0,m1 ∈ {0, 1}p(λ) and
outputs a ciphertext e.

– m ← Receive
̂D(crs, e, L) : This is a RAM algorithm with random read access

to ̂D. It takes as input a common reference string crs, a ciphertext e, and a
database location L ∈ N and outputs a message m.

– ew ← SendWrite(crs, d, L, b, {mj,0,mj,1}|d|
j=1) : It takes as input the common

reference string crs, a digest d, a location L ∈ N, a bit b ∈ {0, 1} to be written,
and |d| pairs of messages {mj,0,mj,1}|d|

j=1, where each mj,c is of length p(λ)
and outputs a ciphertext ew.

– {mj}|d|
j=1 ← ReceiveWrite

̂D(crs, L, b, ew) : This is a RAM algorithm with ran-
dom read/write access to ̂D. It takes as input the common reference string
crs, a location L, a bit b ∈ {0, 1} and a ciphertext ew. It updates the state ̂D

(such that D[L] = b) and outputs messages {mj}|d|
j=1.

We require an updatable laconic oblivious transfer to satisfy the following prop-
erties.

Correctness: We require that for any database D of size at most M = poly(λ),
any memory location L ∈ [M ], any pair of messages (m0,m1) ∈ {0, 1}p(λ)

where p(·) is a polynomial that

Pr

⎡

⎢

⎢

⎣

m = mD[L]

crs ← crsGen(1λ)
(d, ̂D) ← Hash(crs,D)

e ← Send(crs, d, L,m0,m1)
m ← Receive

̂D(crs, e, L)

⎤

⎥

⎥

⎦

= 1,

Correctness of Hash Updates: We require that for any database D of size
M = poly(λ), any memory location L ∈ [M ], any bit b ∈ {0, 1}, we require
HashUpdate(crs, d, (L, i), aux) to be same as Hash(crs,D∗) where D∗ is same
as D except that D∗[L] = b. Here, aux corresponds to an auxiliary information
that is specific to position L.

Correctness of Writes: Let database D be of size at most M = poly(λ) and
let L ∈ [M ] be any memory location. Let D∗ be a database that is identical to
D except that D∗[L] = b. For any sequence of messages {mj,0,mj,1}j∈[λ] ∈
{0, 1}p(λ) we require that

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

m′
j = mj,d∗

j

∀j ∈ [|d|]

crs ← crsGen(1λ)
(d, ̂D) ← Hash(crs,D)

(d∗, ̂D∗) ← Hash(crs,D∗)
ew ← SendWrite

(

crs, d, L, b, {mj,0,mj,1}|d|
j=1

)

{m′
j}|d|

j=1 ← ReceiveWrite
̂D(crs, L, b, ew)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 1,

Sender Privacy: There exists a PPT simulator Sim�OT such that the for any
non-uniform PPT adversary A = (A1,A2) there exists a negligible function
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negl(·) s.t.,
∣

∣ Pr[SenPrivExptreal(1λ,A) = 1] − Pr[SenPrivExptideal(1λ,A) = 1]
∣

∣ ≤ negl(λ)

where SenPrivExptreal and SenPrivExptideal are described in Fig. 1.
Sender Privacy for Writes: There exists a PPT simulator Sim�OTW such that

the for any non-uniform PPT adversary A = (A1,A2) there exists a negligible
function negl(·) s.t.,
∣

∣Pr[WriSenPrivExptreal(1λ, A) = 1] − Pr[WriSenPrivExptideal(1λ, A) = 1]
∣

∣ ≤ negl(λ)

where WriSenPrivExptreal and WriSenPrivExptideal are described in Fig. 2.
Efficiency: The algorithm Hash runs in time |D|poly(log |D|, λ). The algo-

rithms HashUpdate, Send, SendWrite, Receive, ReceiveWrite run in time
poly(log |D|, λ).

Fig. 1. Sender privacy security game

Fig. 2. Sender privacy for writes security game
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Theorem 2 ([CDG+17]). Assuming iO for circuits and somewhere statisti-
cally binding hash functions, there exists a construction of updatable laconic
oblivious transfer.

Remark 2. We note that the security requirements given in Definition 5 is
stronger than the one in [CDG+17] as we require the crs to be generated before
the adversary provides the database D and the location L. However, the con-
structions given in [CDG+17] already satisfies this stronger definition and this
was noted in [GS18a].

A Note on Hash Updates. The construction of updatable Laconic Oblivious
Transfer given in [CDG+17] uses a Merkle Hash to hash the database. Thus, to
compute the hash we need the contents of the entire database to be specified. But
in our construction of succinct randomized encodings, we need a methodology
to compute the Merkle tree “on the fly.” More specifically, let us consider a
scenario wherein we are not initially specified the entire database D ∈ {0, 1}M

but are only given the contents of the first n locations. We give a methodology
to compute the Merkle hash which“binds” the first n locations, keeps the other
locations to be unspecified and runs in time poly(n, λ, log M). A similar trick has
been used in [OPWW15].

Let us assume that we are given a hash function H : {0, 1}2λ → {0, 1}λ.
To store a database of size M , the Merkle tree consists of M leaves where each
leaf stores a λ bit string which either corresponds to the bit 0, or the bit 1 or
a special symbol ⊥ (using some canonical encoding). We construct the Merkle
tree in a bottom-up fashion by labeling all the internal nodes. The label of the
root node gives the hash value. We label each internal node of the Merkle tree
with children given labels lab� and labr as follows:

– If both lab� and labr are given labels ⊥, then node is given ⊥ as its label.
– Otherwise, the node is given H(lab�‖labr) as the label where ‖ denotes con-

catenation.

Note that if all the locations are unspecified then the label of the root corresponds
to ⊥. For each additional location L that is specified, we just fix the auxiliary
information aux to be labels of the all the nodes in the root to the leaf given
by L along with their siblings. Note we only need to maintain the state of
all labels which are not equal ⊥ when performing an hash update. Given this
information, we can easily recompute the label of the root. This gives the required
methodology to update the hash value in time poly(n, λ, log M) where n is the
number of specified locations.

2.6 Puncturable Pseudorandom Function

We recall the notion of puncturable pseudorandom function from [SW14]. The
construction of pseudorandom function given in [GGM86] satisfies the following
definition [BW13,KPTZ13,BGI14].
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Definition 6. A puncturable pseudorandom function PPRF is a tuple of PPT
algorithms (KeyGenPPRF,PRF,Punc) with the following properties:

– Efficiently Computable: For all λ and for all S ← KeyGenPPRF(1λ), PRFS :
{0, 1}λ → {0, 1}λ is polynomial time computable.

– Functionality is preserved under puncturing: For all λ, for all y ∈
{0, 1}λ and ∀x 
= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPPRF(1λ) and S{y} ← Punc(S, y).
– Pseudorandomness at punctured points: For all λ, for all y ∈ {0, 1}λ,

and for all poly sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1] − Pr[A(Uλ, S{y}) = 1]| ≤ negl(λ)

where S ← KeyGenPPRF(1λ), S{y} ← Punc(S, y) and Uλ denotes the uniform
distribution over {0, 1}λ.

Remark 3. We can generalize the puncturing procedure to puncture at multiple
points y1, . . . , ym. The security requirement now is that even given the punc-
tured key S{y1, . . . , ym}, the PRF evaluations on inputs y1, . . . , ym are com-
putationally indistinguishable to random. We note that in the case of multiple
puncturings, the size of the punctured key S{y1, . . . , ym} grows polynomially in
m and λ.

3 Construction of Succinct Randomized Encoding

In this section, we give a construction of succinct randomized encoding for suc-
cinctly describable Turing machines. More formally, we show that:

Theorem 3. Assuming the existence of indistinguishability obfuscation and
updatable laconic oblivious transfer, there exists a construction of succinct ran-
domized encoding.

As shown in [BGL+15], a succinct randomized encoding with sub-exponential
security gives a construction of succinct iO for Turing machines. For complete-
ness, we sketch the details of this transformation in the full version of our
paper [GS18b]. We give the formal description of our construction of succinct
randomized encodings in Fig. 3 and give an overview below.

Overview. Let us start with an overview of the encoding scheme. The encoding
procedure takes as input a description of the Turing machine M and an input
x on which the machine has to be evaluated. The procedure first reduces M
to a circuit Csc (as given in Lemma 1) that succinctly represents the circuit C
which computes the same function as that of M . Let C consist of N − n binary
gates with N being the output gate. Each gate g ∈ [n + 1, N ] is described by a
tuple (i, j, fg) ∈ [g − 1]2 ×GType where outputs of gates i and j serves as inputs
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to gate g and fg is the binary function computed by gate g. Given an input
g ∈ [n + 1, N ], the succinct circuit Csc outputs (i, j, fg).

For our construction, we consider an alternate view of the circuit C. We view
the circuit C as a sequence of step circuits SCn+1, . . . ,SCN along with a database
D. The database is initially loaded with the input x and each step circuit writes
a single bit to the database. More precisely, for each g ∈ [n + 1, N ], the step
circuit SCg implements the functionality of the gate g and writes the output
of that gate to position g in the database. Further, the step circuits access the
database via an updatable laconic OT. Specifically, the step circuit SCg takes as
input the digest of the database where the first g−1 cells are filled appropriately
and the rest of the positions being ⊥. Using the digest, it reads the contents of
the database in positions i and j (where (i, j) are the inputs to gate g) using
the Send function of laconic OT. Once it has read the contents of those two
locations, it applies the function fg on those two bits and writes the output
to the location g using the SendWrite function. It passes on the updated digest
to the next circuit SCg+1. Thus, each of the step circuits faithfully model the
computation of the corresponding gate and the contents in location N of the
database gives the output of the circuit C.

Let us now explain how the encoding procedure uses the above view of the
circuit. The encoding procedure obfuscates the function Gate (formally described
in Fig. 4). The function Gate on input g ∈ [n+1, N ], uses the succinct circuit Csc

to get the description of gate g. Next, it constructs the step circuit SCg (formally
described in Fig. 5) and garbles the circuit (the randomness and the labels are
derived using a puncturable pseudorandom function). The Gate function finally
outputs the garbled step circuit ˜SCg. The output of the encoding function is
this obfuscation along with the labels corresponding to the initial digest of the
database (where the input is loaded).

Given an obfuscation of the function Gate, a decoder can run this obfuscation
on every gate g ∈ [n + 1, N ] to obtain the garbled step circuit ˜SCg. Given
the labels corresponding to the initial digest, the decoder evaluates each of the
garbled step circuits from n+1 to N (labels corresponding to the gth step circuit
are output by the (g − 1)th circuit). At the end of the computation, the content
of the database at location N gives the output.

However, there is one technical issue. Recall that the laconic OT is not guar-
anteed to hide the contents of the database. In order to hide the contents of the
database, we use a one-time pad to mask each bit that is written. This one time
pad is succinctly derived using a puncturable pseudorandom function.

Correctness. This argument is based on the correctness proof in [GS18a]. Let
Dg∗ be the contents of the database at the beginning of g∗-th iteration of the
for loop in sRE.Dec. We first argue via an inductive argument that for each gate
g∗ ∈ [1, N ], Dg∗+1,g is the output of gate g masked with rg for every g ∈ [1, g∗].
Given this, the correctness follows by setting g∗ := N and observing that the
DN+1,N is unmasked using rN in Step 7 of sRE.Dec.

The base case is g∗ = n which is clearly true since in the beginning Dn+1

is set as (r[1,n] ⊕ x||⊥N−n). In order to prove the inductive step for a gate g∗
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Fig. 3. Succinct randomized encoding

(with description (i, j, fg∗)), we now argue that that the γ recovered in Step 4.(b)
of sRE.Dec corresponds to fg∗(Dg∗,i ⊕ riDg∗,j ⊕ rj) ⊕ rg∗ which by inductive
hypothesis corresponds to output of the gate g∗ masked with rg∗ . This is shown
as follows.

(γ, e) := Receive
̂D(crs,Receive

̂D(crs,EvalCkt(S̃Cg , lab), i), j)

= Receive
̂D(crs,Receive

̂D(crs,Send (crs, d, i, c0, c1) , i), j)

= Receive
̂D(crs, cDg∗,i

, j)

= Receive
̂D

(

crs,Send
(

crs, d, j, (γ(Dg∗,i, 0), eγ(Dg∗,i,0)), (γ(Dg∗,i, 1), eγ(Dg∗,i,1))
)

, j
)

=
(

γ(Dg∗,i, Dg∗,j), eγ(Dg∗,i,Dg∗,j)

)

=
(

fg∗ (Dg∗,i ⊕ riDg∗,j ⊕ rj) ⊕ rg∗ , efg∗ Dg∗,i⊕riDg∗,j⊕rj⊕rg∗

)
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Fig. 4. Description of Gate

Fig. 5. Description of the step circuit

4 Security Proof

In this section, we prove that the construction presented in the Sect. 3 satisfies
security property given in Definition 2. In Subsect. 4.1, we start by defining
circuit configurations. Next, in Subsect. 4.2 we show that both the real world
garbling procedure and the simulated distributions are special cases of this circuit
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configuration. Finally, in the rest of the subsection we show that the real garbling
and the simulated distributions are indistinguishable.

4.1 Circuit Configuration

Our proof of security proceeds via a hybrid argument over different circuit con-
figurations which we describe in this section. A circuit configuration denoted
by conf = (I, i) consists of a set I ⊆ [n + 1, N ] and an index i ∈ [n + 1, N ].
Intuitively, each circuit configuration defines a distribution of the randomized
encoding ̂M conf

x,t . Let us now explain the semantics of the set I and the index i.
Recall that from our construction described in Fig. 3, iO(pad�(Gate)) outputs

˜SCg when given a gate g ∈ [n + 1, N ] as input. Intuitively, a configuration of
a circuit defines a particular distribution of ˜SCg for each g ∈ [n + 1, N ]. In
particular, for each gate g, the distribution of ˜SCg can be in one of the three
modes: White mode, Gray mode and the Black mode. We say that ˜SCg is said to
be in White mode if for the distribution of ˜SCg is same as the honest garbling
procedure given in Fig. 4. We say that ˜SCg is in Gray mode if its distribution
depends only on the output of the gate g when the circuit C is evaluated with
input x. We say that ˜SCg is in Black mode if its distribution is independent of
the input x. Looking ahead, initially all the step circuits will be in White mode
and the goal will be to convert all of them to Black in the simulation. We will
achieve this in the reverse order i.e., we first change SCN to Black mode and
then change SCN−1 and so on. The index i (given as part of defining the circuit
configuration) is such that for all g > i the distribution of the garbled step circuit
˜SCg is in Black mode. We can also extend the notion of Black mode to input
gates [1, n]. So i can be any element in the set [0, N ]. The subset I indicates
the set of gates g such that the distribution of the garbled step circuit ˜SCg is in
Gray mode. The rest of the garbled step circuits ˜SCg where g 
∈ I and g ≤ i are
generated in White mode. We say a configuration is valid if I ∩ [i + 1, N ] = ∅.

Simulation in a Valid Configuration. In Fig. 6, we describe the simulated
encoding procedure SimsRE.Enc for any given configuration conf. Note that these
simulated encoding function also takes x as input whereas the ideal world simu-
lation does not. We describe our simulator functions with these additional inputs
so that it captures simulation in all of our intermediate hybrids. We note that
final ideal world simulation does not use these values.

4.2 Our Hybrids

For every circuit configuration conf = (I, i), we define Hybridconf to be a distri-
bution of ̂Mx,t as given in Fig. 6. We start by observing that both real world and
ideal distribution from Definition 2 can be seen as instance of Hybridconf where
conf = (∅, N) and conf = (∅, 0), respectively. In other words, the real world
distribution corresponds to having all gates in White mode and the ideal world
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Fig. 6. Succinct randomized encoding in configuration conf = (I, i).

distribution corresponds to having all gates in Black mode. The goal is to move
from the real world distribution to the ideal world distribution while minimizing
the maximum number of gates in the Gray mode in any intermediate hybrid.5

4.2.1 Rules of Indistinguishability
We will now describe the two rules (we call these rule A and rule B) to move
from one valid circuit configuration conf to another valid configuration conf′

such that Hybridconf is computationally indistinguishable from Hybridconf′ .

5 This is because the number of gates in the Gray mode increases the circuit size of
SimGate by a proportional factor.
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Fig. 7. Description of SimGate

Rule A: Rule A says that for any valid configuration conf we can indistinguish-
ably change gate g∗ in White mode to Gray mode if it is the first gate or
if its predecessor is also in Gray mode. More formally, let conf = (I, i) and
conf ′ = (I ′, i′) be two valid circuit configurations and g∗ ∈ [n + 1, N ] be a
gate such that:

– i = i′.
– g∗ 
∈ I, I ′ = I ∪ {g∗} and g∗ ≤ i.
– Either g∗ = n + 1 or g∗ − 1 ∈ I.

In Lemma 4, we will show that for two valid configurations conf, conf ′ satisfy-
ing the above constraints we have that Hybridconf

c≈ Hybridconf′ . Note that we
can also use this rule to move a gate g∗ from Gray mode to White mode. We
refer to those invocations of the rule as inverse A rule. Rule A is illustrated
in Fig. 8.

Rule B: Rule B says that for any configuration for any valid configuration conf
we can indistinguishably change gate g∗ in Gray mode to Black mode if all
gates subsequent to g∗ is in Black mode and the predecessor is in Gray mode.
More formally, let conf = (I, g∗) and conf′ = (I ′, g′) be two valid circuit
configurations such that:

– g∗ = g′ + 1.
– g∗ ∈ I, I ′ = I \ {g∗}.
– Either g∗ = n + 1 or g∗ − 1 ∈ I.
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In Lemma 5, we will show that for an valid configurations conf, conf ′ satis-
fying the above constraints we have that Hybridconf

c≈ Hybridconf′ . Rule B is
illustrated in Fig. 9.

conf g∗ i

conf g∗ i

Fig. 8. Example of Rule A

conf g∗

conf g g∗

Fig. 9. Example of Rule B

4.2.2 Interpreting the Rules of Indistinguishability
as a Pebbling Game

Sections 4.2.2 and 4.2.3 are taken verbatim from [GS18a]. Our sequence of
hybrids from the real to the ideal world follow an optimal strategy for the fol-
lowing pebbling game. The two rules described above correspond to the rules of
our pebbling game below.

Consider the positive integer line n + 1, n + 2, . . . N . We are given pebbles of
two colors: gray and black . A black pebble corresponds to a gate in the Black
(i.e., input independent simulation) mode and a gray pebble corresponds to a
gate in the Gray (i.e., input dependent simulation) mode. A position without
any pebble corresponds to real garbling or in the White mode. We can place the
pebbles on this positive integer line according to the following two rules:

Rule A: We can place or remove a gray pebble in position i if and only if there
is a gray pebble in position i − 1. This restriction does not apply to position
n + 1: we can always place or remove a gray pebble at position n + 1.

Rule B: We can replace a gray pebble in position i with a black pebble as
long as all the positions > i have black pebbles and there is a gray pebble in
position i − 1 or if i = n + 1.
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Optimization Goal of the Pebbling Game. The goal is to pebble the line
[n + 1, N ] such that every position has a black pebble while minimizing the
number of gray pebbles that are present on the line at any point in time.

4.2.3 Optimal Pebbling Strategy
To provide some intuition, we start with the näıve pebbling strategy. The näıve
pebbling strategy involves starting from position n+1 and placing a gray pebble
at every position in [n + 1, N ] and then replacing them with black pebbles from
N to n + 1. However, this strategy uses a total of N − n gray pebbles. Using a
more clever strategy, it is actually possible to do the same using only log(N −n)
gray pebbles. We first recall the following lemma from [GPSZ17].

Lemma 2 ([GPSZ17]). For any integer n+1 ≤ p ≤ n+2k −1, it is possible to
make O((p − n)log2 3) ≈ O((p − n)1.585) moves and get a gray pebble at position
p using k gray pebbles.

Proof. For completeness we give the proof. This proof is taken verbatim from
[GPSZ17].

First we observe to get a gray pebble placed at p, for each i ∈ [n + 1, p − 1]
there must have been at some point a gray pebble placed at location i.

Next, we observe that it suffices to show we can get a gray pebble at position
p = n+2k − 1 for every k using O(3k) = O((p−n)log2 3) steps. Indeed, for more
general p, we run the protocol for p′ = n + 2k − 1 where k = �log2(p − n − 1)�,
but stop the first time we get a gray pebble at position p. Since p′/p ≤ 3, the
running time is at most O((p − n)log2 3).

Now for the algorithm. The sequence of steps will create a fractal pattern,
and we describe the steps recursively. We assume an algorithm Ak−1 using k −1
gray pebbles that can get a gray pebble at position n + 2k−1 − 1. The steps are
as follows:

– Run Ak−1. There is now a gray pebble at position n + 2k−1 − 1 on the line.
– Place the remaining gray pebble at position n + 2k−1, which is allowed since

there is a gray pebble at position n + 2k−1 − 1.
– Run Ak−1 in reverse, recovering all of the k − 1 gray pebbles used by A. The

result is that there is a single gray pebble on the line at position n + 2k−1.
– Now associate the portion of the number line starting at n + 2k−1 + 1 with a

new number line. That is, associate n + 2k−1 + a on the original number line
with n′ +a (where n′ = n+2k−1) on the new number line. We now have k−1
gray pebbles, and on this new number line, all of the same rules apply. In
particular, we can always add or remove a gray pebble from the first position
n′ +1 = n+2k−1 +1 since we have left a gray pebble at n+2k−1. Therefore,
we can run Ak+1 once more on the new number line starting at n′+1. The end
result is a pebble at position n′+2k−1 − 1 = n+2k−1+(2k−1−1) = n+2k−1.

It remains to analyze the running time. The algorithm makes 3 recursive calls
to Ak−1, so by induction the overall running time is O(3k), as desired.
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Using the above lemma, we now give an optimal strategy for our pebbling
game.

Lemma 3 ([GS18a]). For any N ∈ N, there exists a strategy for pebbling the
line graph [n+1, N ] according to rules A and B by using at most log N gray peb-
bles and making poly(N) moves.

Proof. The proof is taken verbatim from [GS18a].
The strategy is given below. For each g from N down to n + 1 do:

1. Use the strategy in Lemma 2 to place a gray pebble in position g. Note that
there exists a gray pebble in position g − 1 as well.

2. Replace the gray pebble in position g with a black pebble. This replacement
is allowed since all positions > g have black pebbles and there is a gray pebble
in position g − 1.

3. Recover all the gray pebbles by reversing the moves.

The correctness of this strategy follows by inspection and the number of moves
is polynomial in N .

4.3 Proof of Indistinguishability for the Rules

In this subsection, we will use the security of underlying primitives to implement
the two rules.

4.3.1 Implementing Rule A
Lemma 4 (Rule A). Let conf and conf ′ be two valid circuit configurations
satisfying the constraints of rule A, then assuming the security of garbling scheme
for circuits, updatable laconic oblivious transfer, indistinguishability obfuscation
and puncturable PRFs we have that Hybridconf

c≈ Hybridconf′ .

Proof. We prove this via a hybrid argument.

– Hybridconf : This is our starting hybrid and is distributed as Hybrid(I,i).
– Hybrid1 : In this hybrid, instead of hardwiring the PPRF keys K and S in

the circuit SimGate, we hardwire the key K that is punctured at (g∗, k, b) for
every k ∈ [λ], b ∈ {0, 1} and S punctured at g∗. We additionally hardwire
{labg∗

k,b}k∈[λ],b∈{0,1} and PRFS(g∗). This blows up the size of the circuit by a
factor poly(λ). On input g∗ − 1 and g∗, the circuit now uses the hardwired
labels/randomness instead of computing them using the PPRF.
It can be noted that the SimGate circuits in both Hybridconf and Hybrid1 com-
putes the exact same functionality and hence the indistinguishability between
Hybridconf and Hybrid1 follows from the security of iO.

– Hybrid2 : We make three changes to the SimGate.
• By conditions of Rule A, we have that g∗−1 ∈ I (if g∗ 
= n+1). Therefore,

we note that all the input labels {labg∗
k,b} are not used in SimGate but only

the labels corresponding to dg∗ i.e., {labg∗
k,dg∗,k

}k∈[λ]. We just hardwire
these labels in SimGate.
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• We also hardwire ˜SCg∗ (that is computed using randomness PRFS(g∗))
in SimGate instead of generating it inside SimGate.

• We remove the hardwired randomness PRFS(g∗).
The computational indistinguishability between Hybrid2 from Hybrid1 follows
from the security of iO since the function computed by SimGate in Hybrid1
and Hybrid2 is exactly the same.

– Hybrid3 : In this hybrid, we sample the labels {labk,dg∗,k
}k∈[λ] and the ran-

domness used in generating ˜SCg∗ uniformly at random instead of generating
them as outputs of the puncturable PRF. The computational indistinguisha-
bility between Hybrid2 and Hybrid3 follows from the security of puncturable
PRF.

– Hybrid4 : In this hybrid, we generate ˜SCg∗ (that is hardwired inside SimGate)
from the simulated distribution. More formally, we generate

˜SCg∗ ← Simckt(1λ, 1|SC|, out, {labg∗
k,dg∗,k

}k∈[λ])

where out ← SC[crs, (ri, rj , rg), (i, j, fg), {labg∗+1
k,b }, 0](dg∗).

The only change in hybrid Hybrid3 from Hybrid2 is in the generation of the gar-
bled circuit ˜SCg∗ and the security follows directly from the selective security
of the garbling scheme.

– Hybrid5 : In this hybrid, we change how the output value out hardwired in
˜SCg∗ is generated. Recall that in Hybrid4 this value is generated by first com-
puting c0 and c1 as in Fig. 5 and then generating out as Send (crs, d, i, c0, c1).
In this hybrid, we just generate cDg∗,i

and use the laconic OT simulator to
generate out. More formally, out is generated as

out ← Sim�OT

(

crs,Dg∗ , i, cDg∗,i

)

.

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 fol-
lows directly from the sender privacy of the laconic OT scheme.

– Hybrid6 : In this hybrid, we change how the value cDg∗,i
is generated.

Recall from Fig. 5 that cDg∗,i
is set as Send(crs, d, j, (γ(Dg∗,i, 0), eγ(Dg∗,i,0)),

(γ(Dg∗,i, 1), eγ(Dg∗,i,1))). We change the distribution of cDg∗,i
to Sim�OT(crs,

Dg∗ , j, eDg∗+1,g∗ ), where eDg∗+1,g∗ is sampled as in Fig. 5.
Computational indistinguishability between hybrids Hybrid6 and Hybrid5 fol-
lows directly from the sender privacy of the laconic OT scheme. The argu-
ment is analogous to the argument of indistinguishability between Hybrid4
and Hybrid5.

– Hybrid7 : In this hybrid, we change how eDg∗+1,g∗ is generated. More specifi-
cally, we generate it using the simulator Sim�OTW. In other words, eDg∗+1,g is
generated as

Sim�OTW(crs,Dg∗ , g∗,Dg∗+1,g∗ , {labg∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid6 and Hybrid7 fol-
lows directly from the sender privacy for writes of the laconic OT scheme.
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– Hybrid8 − Hybrid10 : In this hybrid, we reverse the changes made in Hybrid1
to Hybrid3 except that we hardwire {outg∗ , dg∗} in SimGate and use it to
generate ˜SCg∗ . The indistinguishability between Hybrid7 to Hybrid10 follows
in analogous manner to the indistinguishability between Hybridconf to Hybrid3.
Finally, observe that hybrid Hybrid10 is the same as Hybridconf′ .

This completes the proof of the lemma. We additionally note that the above
sequence of hybrids is reversible. This implies the inverse rule A.

4.3.2 Implementing Rule B
Lemma 5 (Rule B). Let conf and conf′ be two valid circuit configurations
satisfying the constraints of rule B, then assuming the security of somewhere
equivocal encryption, garbling scheme for circuits and updatable laconic oblivious
transfer, we have that Hybridconf

c≈ Hybridconf′ .

Proof. We prove this via a hybrid argument starting with Hybridconf′ and ending
in hybrid Hybridconf . We follow this ordering of the hybrids as this keeps the
proof very close to the proof of Lemma 4.

– Hybridconf′ : This is our starting hybrid and is distributed as Hybrid(I′,g′).
– Hybrid1 : In this hybrid, instead of hardwiring the PPRF keys K, R and S

in the circuit SimGate, we hardwire the key K that is punctured at (g∗, k, b)
for every k ∈ [λ], b ∈ {0, 1}, R and S are punctured at g∗. We additionally
hardwire {labg∗

k,b}k∈[λ],b∈{0,1}, (ri, rj ,g ), PRFR(g∗) and PRFS(g∗). This blows
up the size of the circuit by a factor poly(λ). On input g∗ − 1 and g∗, the
circuit now uses the hardwired labels/randomness instead of computing them
using the PPRF. Note that by constraints on conf and conf ′, PRFR(g∗) is only
needed on input g∗. This is because all gates g > g∗ are in Black mode. It
can be noted that the SimGate circuits in both Hybridconf and Hybrid1 com-
putes the exact same functionality and hence the indistinguishability between
Hybridconf and Hybrid1 follows from the security of iO.

– Hybrid2 : We make three changes to the SimGate.
• By conditions of Rule A, we have that g∗−1 ∈ I (if g∗ 
= n+1). Therefore,

we note that all the input labels {labg∗
k,b} are not used in SimGate but only

the labels corresponding to dg∗ i.e., {labg∗
k,dg∗,k

}k∈[λ]. We just hardwire
these labels in SimGate.

• We also hardwire ˜SCg∗ (where SCg∗ has rg∗ hardwired and ˜SCg∗ is com-
puted using randomness PRFS(g∗)) in SimGate instead of generating it
inside SimGate.

• We remove the hardwired randomness PRFS(g∗) and PRFR(g∗).
The computational indistinguishability between Hybrid2 from Hybrid1 follows
from the security of iO since the function computed by SimGate in Hybrid1
and Hybrid2 is exactly the same.

– Hybrid3 : In this hybrid, we sample the labels {labk,dg∗,k
}k∈[λ], PRFR(g∗)

and the randomness used in generating ˜SCg∗ uniformly at random instead
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of generating them as outputs of the puncturable PRF. The computational
indistinguishability between Hybrid2 and Hybrid3 follows from the security of
puncturable PRF.

– Hybrid4 : In this hybrid, we generate ˜SCg∗ (that is hardwired inside SimGate)
from the simulated distribution. More formally, we generate

˜SCg∗ ← Simckt(1λ, 1|SC|, out, {labg∗
k,dg∗,k

}k∈[λ])

where out ← SC[crs, (0, 0, rg), (i, j, fg), {labg∗+1
k,b }, 1](dg∗).

The only change in hybrid Hybrid3 from Hybrid4 is in the generation of the gar-
bled circuit ˜SCg∗ and the security follows directly from the selective security
of the garbling scheme.

– Hybrid5 : In this hybrid, we set change how the output value out hard-

wired in ˜SCg∗ is generated. Recall that in hybrid Hybrid4 this value is gen-
erated by first computing c0 and c1 as in Fig. 5 and then generating out as
Send (crs, d, i, c0, c1). In this hybrid, we just generate cDg∗,i

and use the laconic
OT simulator to generate out. More formally, out is generated as

out ← Sim�OT

(

crs,Dg∗ , i, cDg∗,i

)

.

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 fol-
lows directly from the sender privacy of the laconic OT scheme.

– Hybrid6 : In this hybrid, we change how the how the value cDg∗,i

is generated in hybrid Hybrid5. Recall from Fig. 5 that cDg∗,i
is set

as Send
(

crs, d, j, erg∗ , erg∗
)

. We change the distribution of cDg∗,i
to

Sim�OT

(

crs,Dg, j, erg∗
)

, where erg∗ is sampled as in Fig. 5.
Computational indistinguishability between hybrids Hybrid5 and Hybrid6 fol-
lows directly from the sender privacy of the laconic OT scheme. The argu-
ment is analogous to the argument of indistinguishability between Hybrid4
and Hybrid5.

– Hybrid7 : In this hybrid, we change how erg∗ is generated. More specifically,
we generate it using the simulator Sim�OTW. In other words, erg∗ is generated
as

Sim�OTW(crs,Dg∗ , g∗, rg∗ , {labg∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid6 and Hybrid7 fol-
lows directly from the sender privacy for writes of the laconic OT scheme.

– Hybrid8 : The only difference between Hybrid7 and Hybrid8 is how Dg∗+1,g∗ is
set. Namely, in Hybrid7 this value is set to be rg∗ while in Hybrid8 this value
is set as rg∗ ⊕ fg∗(Dg∗,i ⊕ ri,Dg∗,j ⊕ rj). We argue that the distributions
Hybrid7 and Hybrid8 are identical. Two cases arise:

• g∗ ≤ N − 1: In this case, note that since rg∗ is not hardwired anywhere
else, we have that the distribution rg∗ and rg∗ ⊕fg∗(Dg∗,i ⊕ riDg∗,j ⊕ rj)
are both uniform and identical.

• g∗ = N : In this case, we have that rg∗ = M(x) ⊕ r′
g∗ which is again

identical to the distribution of rg∗ in Hybrid8.
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– Hybrid9 − Hybrid11 : In this hybrid, we reverse the changes made in Hybrid1
to Hybrid3 except that we hardwire {outg∗ , dg∗} in SimGate and use it to
generate ˜SCg∗ .. The indistinguishability between Hybrid8 to Hybrid11 follows
in analogous manner to the indistinguishability between Hybridconf′ to Hybrid3.
Observe that Hybrid11 is distributed identically to Hybridconf .

This completes the proof of the lemma.

4.3.3 Completing the Hybrids
The strategy given in Lemma 3 yields a sequence of configurations conf0 . . . confm
for an appropriate polynomial m with conf0 = (∅, N) and confm = (∅, n), where
Hybridconfi−1

c≈ Hybridconfi either using rule A (i.e., Lemma 4) or using rule B (i.e.,
Lemma 5). We now show that Hybridconfm is computationally indistinguishable
to the ideal world distribution given by Hybrid(∅,0). This is argued using the
security property of puncturable PRF using the key R and the security of iO as
follows.

– Hybrid1 : In this hybrid, we puncture the PRF key R at points {1, . . . , n}
and hardwire it in SimGate. Note that in Hybrid(∅,n), the function SimGate
never uses the PRF key on inputs {1, . . . , n} and hence the functionality
computed by the SimGate is exactly the same in this hybrid and Hybrid(∅,n).
The computational indistinguishability follows from the security of iO.

– Hybrid2 : In this hybrid, we replace yw with a random bit rw for each w ∈ [n].
The computational indistinguishability between Hybrid1 and Hybrid2 follows
from the security of puncturable PRF.

– Hybrid3 : In this hybrid, we replace yw with PRFR(w) for every w ∈ [n]. The
computational indistinguishability between Hybrid2 and Hybrid3 follows from
the security of puncturable PRF.

– Hybrid4 : In this hybrid, we reverse the change made in Hybrid1 and the
indistinguishability follows from the security of iO. Notice that Hybrid4 is
distributed identically to Hybrid(∅,φ).

Finally, the padding size � is set to be maximum over the sizes of SimGate in
every intermediate hybrid in the proof of Lemmas 4 and 5 and in the proof of
indistinguishability between Hybrid(∅,n) and Hybrid(∅,0). This is observed to be
poly(|M |, log N,λ, n). This completes the proof of security.

References

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz E.: Cryptography in NC0. In: 45th
Annual Symposium on Foundations of Computer Science, pages 166–175,
Rome, Italy, 17–19 October 2004. IEEE Computer Society Press (2004)

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 15

https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15


452 S. Garg and A. Srinivasan

[AL18] Ananth, P., Lombardi, A.: Succinct garbling schemes from functional
encryption through a local simulation paradigm (2018 to appear in TCC).
https://eprint.iacr.org/2018/759

[App17] Applebaum, B.: Garbled circuits as randomized encodings of functions:
a primer. Cryptology ePrint Archive, Report 2017/385 (2017). http://
eprint.iacr.org/2017/385

[BGI+12] Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM
59(2), 6 (2012)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54631-0 29

[BGL+15] Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized
encodings and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.)
47th Annual ACM Symposium on Theory of Computing, pp. 439–448,
Portland, OR, USA, 14–17 June 2015. ACM Press (2015)

[BGT14] Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and
their applications. Cryptology ePrint Archive, Report 2014/771 (2014).
http://eprint.iacr.org/2014/771

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12: 19th Conference
on Computer and Communications Security, pp. 784–796, Raleigh, NC,
USA, 16–18 October 2012. ACM Press (2012)

[BLSV18] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 20

[BV15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: Guruswami, V. (ed.) 56th Annual Symposium
on Foundations of Computer Science, pp. 171–190, Berkeley, CA, USA,
17–20 October 2015. IEEE Computer Society Press (2015)

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS,
vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 15
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Abstract. We study a simulation paradigm, referred to as local sim-
ulation, in garbling schemes. This paradigm captures simulation proof
strategies in which the simulator consists of many local simulators that
generate different blocks of the garbled circuit. A useful property of such
a simulation strategy is that only a few of these local simulators depend
on the input, whereas the rest of the local simulators only depend on the
circuit.

We formalize this notion by defining locally simulatable garbling
schemes. By suitably realizing this notion, we give a new construction of
succinct garbling schemes for Turing machines assuming the polynomial
hardness of compact functional encryption and standard assumptions
(such as either CDH or LWE). Prior constructions of succinct garbling
schemes either assumed sub-exponential hardness of compact functional
encryption or were designed only for small-space Turing machines.

We also show that a variant of locally simulatable garbling schemes
can be used to generically obtain adaptively secure garbling schemes
for circuits. All prior constructions of adaptively secure garbling that
use somewhere equivocal encryption can be seen as instantiations of our
construction.

1 Introduction

Garbling schemes are ubiquitous to cryptography. Their notable applications
include secure computation on the web [GHV10,HLP11], constructions of func-
tional encryption [SS10,GVW12,GKP+12], one-time programs [GKR08], dele-
gation of computation [GGP10,AIK10], and garbled RAMs [GHL+14,GLOS15].
In fact, there are many more applications under the umbrella of randomized
encodings, which are implied by garbling schemes. These applications include
parallel cryptography [AIK04,AIK06], bootstrapping theorems in functional
encryption and indistinguishability obfuscation [ABSV15,App14a], and key-
dependent message security [BHHI10,App14b]. More recently, garbling schemes
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were also crucially used to solve two longstanding open problems in cryp-
tography: achieving two-round passively secure MPC [GS17,BL18,GS18c] and
identity-based encryption from weaker assumptions [DG17,BLSV18,DGHM18].

A garbling scheme allows for efficiently encoding a circuit C, represented by
〈C〉 (also referred to as garbled circuit), and separately encoding an input x,
represented by 〈x〉. We require that given 〈C〉 and 〈x〉, it is possible to efficiently
recover C(x) and moreover, the encodings should not leak anything beyond
(C,C(x))1. This notion was first introduced by Yao [Yao82,Yao86] as a technique
to solve two-party secure computation (a full proof of this application was only
given much later by Lindell and Pinkas [LP09]). More than three decades later,
proposing new constructions of garbling schemes is still an active and fascinating
research direction.

While the traditional notion of garbling schemes considers encoding circuits,
this notion can be generalized for other models of computation. In particular, we
consider garbling Turing machines; this notion is often referred to as succinct
garbling schemes [BGL+15,CHJV15,KLW15]. The non-triviality in this setting
is to encode both the Turing machine M and the input x in time independent
of the runtime of M . In more detail, we require that the time to garble a Turing
machine M should be polynomial in λ (security parameter) and |M | while the
time to encode an input x should be polynomial in λ and |x|. For decoding, we
require that it should only take time polynomial in λ and t to recover M(x),
where t is the runtime of M on x.

Succinct garbling schemes have been used in many applications including
time-lock puzzles [BGJ+16], concurrent zero-knowledge [CLP15], indistinguisha-
bility obfuscation for Turing machines [BGL+15,CHJV15,KLW15] and dele-
gation for deterministic computations [BGL+15,CHJV15,KLW15]. In terms of
constructions, the initial works of [BGL+15,CHJV15] proposed succinct gar-
bling schemes with the caveat that the size of the garbled Turing machine grows
with the maximum space taken by the Turing machine during its execution.
Subsequently, Koppula et al. [KLW15] showed how to get rid of this caveat
and presented a construction of succinct randomized encodings (a notion where
M and x are encoded together) assuming indistinguishability obfuscation and
one-way functions.

It is worth noting that the approach taken by [BGL+15] differs substantially
from the approach taken by [CHJV15,KLW15] to obtain succinct randomized
encodings. The construction of [BGL+15] is very simple to describe: they suc-
cinctly garble a Turing machine M (running in time at most T ) by outputting
an obfuscated program that on input i ≤ T outputs the ith garbled table of a
Yao garbled circuit [Yao82,Yao86,LP09] associated to a circuit C representing
M ’s computation. One might hope that this already yields a fully succinct gar-
bling scheme, but the security proof of [BGL+15] requires hardwiring O(s) bits

1 In this work, we only consider the case of hiding the input x. To hide the circuit C
being garbled, we can garble an universal circuit with an encryption of C hardwired
inside it and produce an input encoding of x along with the decryption key.
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of information in the obfuscated program when M requires space s, so this does
not yield a fully succinct garbling scheme (which [KLW15] does achieve).

While the final result has an undesirable dependence on s, the [BGL+15]
approach has the advantage of relying only on obfuscation for circuits of input
length log(T ) = O(log(λ)) and hence can be proved secure assuming the exis-
tence of polynomially secure functional encryption [AJ15,BV15,LZ17,LT17].
The approach of [CHJV15,KLW15] does not share this property, and indeed
there is currently no known construction of fully succinct garbling from
(poly-secure) FE. In general, there are a few primitives (such as trapdoor
permutations and non-interactive key exchange) known to follow from FE
[GPS16,GS16,GPSZ17,LZ17] while many others (such as NIZK [SW14,BP15],
deniable encryption [SW14], and long output secure function evaluation [HW15])
we know only how to construct from IO (see [LZ17] for a more detailed discus-
sion). One of our main goals is to understand whether constructing succinct
garbling schemes requires the full power of IO in this sense.

Rather intriguingly, the progress on succinct randomized encodings followed
a similar pattern to progress on the problem of constructing adaptively secure
circuit garbling schemes. There is a simple transformation [BHR12] from selec-
tively secure garbling schemes to adaptively secure garbling schemes in which
the online complexity (that is, the size of the input encoding) grows with the cir-
cuit size. Subsequent to [BHR12], the work of [HJO+16] showed how to achieve
adaptive schemes with online complexity that only depends on the width w of
the circuit (from one-way functions) or depth d of the circuit (from 2−O(d)-secure
one-way functions). Following [HJO+16], the works of [JW16,JSW17] present
additional constructions of adaptive circuit garbling schemes. Finally, a beautiful
work of Garg and Srinivasan [GS18a] showed how to achieve adaptive garbling
schemes with online complexity |x| + poly(log(|C|, λ) assuming either the com-
putational Diffie-Hellman (CDH) or learning with errors (LWE) assumption.

We note that the measure of width complexity in the case of circuits is related
to the measure of space complexity in the case of Turing machines. Indeed, we
can transform a Turing machine M that requires space s on inputs of length n
into a circuit of width O(n+s); similarly, a circuit of width w can be simulated by
a Turing machine which takes space at most O(w). Moreover, there are actually
major similarities between the security proofs of [HJO+16] (for their width-
dependent adaptive garbling scheme) and [BGL+15] (for their space-dependent
succinct garbling scheme). At a high level, both require opening up the [LP09]
proof of security for Yao’s garbling scheme and make use of the fact that security
is argued by a gate-by-gate hybrid argument.

These similarities present the possibility of transporting some of the tech-
niques from the adaptive garbling literature in order to construct new and
improved succinct garbling schemes. In particular, we ask: can the ideas from
[GS18a] be used to construct succinct garbling?
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1.1 Our Contributions

We give a new construction of succinct garbling schemes using the ideas of
[GS18a]. Unlike the work of [KLW15]2 based on sub-exponentially secure com-
pact functional encryption, our construction is based on polynomially secure
compact functional encryption and polynomially secure CDH/LWE. As an added
advantage, our construction is conceptually simpler. Instead of using IO/FE to
compress a Yao garbled circuit as in [BGL+15], we compress an appropriately
modified [GS18a] garbled circuit.

To prove security, we identify a property, termed as local simulation, of selec-
tively secure garbling schemes for circuits that when combined with other tools
yields succinct garbling schemes. To describe this property, we first recall the
security experiment of garbling schemes. To prove that a given garbling scheme
is secure, one needs to exhibit a simulator with the following property: given
just the circuit C and the output C(x), it can output a simulated garbled cir-
cuit and input encoding that is indistinguishable from an honest garbled circuit
and input encoding. Typically this indistinguishability is shown by a sequence
of hybrids: in every step, a hybrid simulator is defined to take an input C and x
produces the simulated garbling and input encoding. The first hybrid defines the
honest garbling of C and the honest encoding of x, while the final hybrid defines
the simulated distribution. At a bare minimum, our notion of local simulation
captures a class of such hybrid arguments wherein the simulation of garbled cir-
cuit is divided into blocks and in every hybrid, only a small Lsim-sized subset of
blocks are simulated using C and x while the rest are simulated only using C.
We observe that this seemingly artificial property is already satisfied by current
known schemes [Yao86,GS18a].

To make the local simulation notion useful for applications, we need to con-
sider strengthenings of this notion. We formalize the above informal description
of local simulation and call this weak local simulation; correspondingly the gar-
bling scheme will be called a weak locally simulatable garbling scheme (weak
LSGS). We consider two strengthenings: (i) strong locally simulatable garbling
schemes (strong LSGS) and (ii) semi-adaptive locally simulatable garbling
schemes (semi-adaptive LSGS). Both the notions of semi-adaptive LSGS and
strong LSGS imply weak LSGS and will be parameterized by (Lsim, Linp), where
Linp refers to the online complexity of the garbling scheme.

We now state our results on succinct garbling.

Succinct Garbling. We prove the following theorem.

2 We note that [KLW15] construct succinct randomized encodings scheme and not gar-
bling schemes. However, their construction can be adapted to get succinct garbling
schemes.
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Theorem 1. (Main Theorem) Assuming single-key compact3 public-key func-
tional encryption for circuits4 and X, where X ∈{Computational Diffie-Hellman,
Factoring, Learning with Errors}, there exists a succinct garbling scheme for Tur-
ing machines.

Previous constructions of succinct garbling schemes were based on indis-
tinguishability obfuscation5 (implied by sub-exponentially secure compact func-
tional encryption) and one-way functions [KLW15]. This is the first work to show
the feasibility of succinct garbling schemes from falsifiable assumptions. More-
over, [KLW15] is significantly more involved whereas our construction is concep-
tually simpler. We note that several works subsequent to [KLW15] use their con-
struction to achieve various primitives including garbled RAM [CH16,CCC+16,
CCHR16,ACC+16], constrained PRFs for Turing machines [DKW16], indistin-
guishability obfuscation for Turing machines with constant overhead [AJS17a],
patchable indistinguishability obfuscation [AJS17b,GP17] and so on. We hope
that our simpler construction will correspondingly yield simpler presentation of
these applications as well.

One new consequence of the above theorem is that we obtain collusion-
resistant functional encryption for Turing machines from collusion-resistant func-
tional encryption for circuits and standard assumptions; this follows from [AS16].

We prove Theorem 1 in two steps. First, we prove the following proposition.

Proposition 1 (Informal). Assuming strong (Lsim, Linp)-LSGS and compact
functional encryption for circuits, there exists a succinct garbling scheme in
which the complexity of garbling a Turing machine M is poly(λ, |M |, Lsim) and
the complexity of encoding x is Linp(λ, |x|,m), where m is the output length of
M .

Once we prove the above proposition, we show how to instantiate strong LSGS
from laconic oblivious transfer6 to obtain our result.

Proposition 2 (Informal). Assuming laconic oblivious transfer, there exists a
strong (Lsim, Linp)-LSGS with Lsim = poly(λ).

3 From prior works [BV15,AJS15], we can replace compact public-key FE with
collusion-resistant FE in the theorem statement.

4 A public-key functional encryption scheme is a public-key encryption scheme with
the additional key generation procedure that takes as input circuit C and produces a
functional key for C that can be used to decrypt an encryption of x to obtain C(x).
A compact functional encryption is a functional encryption scheme where the com-
plexity to encrypt a message x is a fixed polynomial in (λ, |x|) and in particular, the
encryption complexity grows only with log(|C|). A functional encryption scheme is a
single-key scheme if it satisfies {PK,Enc(PK, x0), skC} ∼=c {PK,Enc(PK, x1), skC}
for an adversarially chosen C and x and specifically, the adversary is only issued a
single key in the security experiment.

5 See the full version for a formal definition.
6 We actually use the existentially equivalent notion of appendable laconic OT, which

we define in the full version.
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Since laconic oblivious transfer can be instantiated from CDH, factoring, LWE
and other assumptions [CDG+17,DG17,BLSV18,DGHM18], this proves Theo-
rem 1. In addition, we note (in full version) that laconic OT7 can be constructed
from IO and one-way functions; combined with the above propositions, this says
that our succinct garbling scheme can also be instantiated from IO and OWFs
alone (giving an alternative construction to [KLW15]).

We note that the garbling scheme of Yao [Yao86] also yields a strong
(Lsim, Linp)-LSGS with Lsim proportional to the width of the circuit being gar-
bled. Combining this with Proposition 1, we get a succinct garbling scheme
for small space Turing machines; this is essentially the same scheme as that of
[BGL+15].

Adaptive circuit garbling. Next, we show how to construct adaptive circuit
garbling schemes using our notion of (semi-adaptive) LSGS. First, we recall the
definition of adaptive circuit garbling schemes. In the adaptive security exper-
iment, an adversary can submit the circuit C and the input x in any order;
specifically, it can choose the input as a function of the garbled circuit or vice
versa. We show,

Theorem 2 (Informal). Assuming semi-adaptive (Lsim, Linp)-LSGS and one-
way functions, there exists an adaptively secure circuit garbling scheme with
online complexity Linp + poly(λ,Lsim).

This theorem can be seen as an abstraction of what the somewhere equivocal
encryption-based technique of [HJO+16] can accomplish. For example, the semi-
adaptive LSGS can be instantiated from laconic oblivious transfer, recovering the
result of [GS18a]. The theorem below follows from a previous work [GS18a].

Theorem 3 ([GS18a]). Assuming laconic oblivious transfer, there exists a semi-
adaptive (Lsim, Linp)-LSGS scheme with online complexity Linp(λ, n,m) = n+m+
poly(λ) and Lsim = poly(λ), where n and m denote the input and output lengths
for the circuit.

We note that Yao’s garbling scheme is also a semi-adaptive (Lsim, Linp)-LSGS
with Lsim being proportional to the width of the circuit and thus, combining the
above two theorems we get an adaptively secure circuit garbling scheme with the
online complexity proportional to the width of the circuit. This construction is
essentially the same as the width-based construction of [HJO+16], with a more
modular security proof.

We summarise the results in Fig. 1.

1.2 Concurrent Work

In concurrent and independent work, Garg and Srinivasan [GS18b] give a
construction of succinct randomized encodings from IO (and laconic OT)
7 We can only achieve laconic OT satisfying selective security, which suffices for Propo-

sition 2.
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Fig. 1. Summary of results.

that implicitly relies on only IO for logarithmic length inputs, and hence
polynomially-secure functional encryption. While their work is phrased differ-
ently from this work (in particular, they give a direct construction without con-
sidering the abstraction of local simulatability), the basic SRE constructions are
essentially the same.

1.3 Technical Overview

We first recall the garbling scheme of Yao [Yao86] and describe an overview of
its security proof. Yao’s scheme will serve as a starting point to understanding
the definition of locally simulatable garbling schemes.

Yao’s Garbling Scheme [Yao86]. Consider a boolean circuit C : {0, 1}� → {0, 1}
comprising only of NAND gates. For ease of presentation, we assume that C
is layered such that all gates that are at the same distance from the output
gate belong to the same layer. Moreover, every intermediate wire in the circuit
connects two gates in adjacent layers.

The first step in the garbling of a circuit C is to generate two wire keys
K0

w and K1
w for every wire w in the circuit. Next, associate with every gate G

a garbled table consisting of four entries (CT00,CT01,CT10,CT11). For b0, b1 ∈
{0, 1}, CTb0b1 is an encryption of K

NAND(b0,b1)
wc under the two keys8 Kb0

wa
and

Kb1
wb

. Wires wa and wb are input wires of G and wc is the output wire of G.

8 There are many ways of realizing an encryption scheme under two different secret
keys. One convenient method is to secret share the message and encrypt the two
shares using the two keys.
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Finally, permute the garbled table (CT00,CT01,CT10,CT11). The garbling of C
consists of permuted garbled tables associated with every gate in the circuit.
The input encoding of x consists of keys Kxi

wi
, where wi is the ith input wire of

C and xi is the ith bit of x. Also part of the input encoding is a translation table
that maps 0 to K0

wout
and 1 to K1

wout
, where wout is the output wire of C.

Selective Security of Yao’s Garbling Scheme: To show that Yao’s gar-
bling scheme is secure we need to demonstrate a probabilistic polynomial time
simulator Sim that given (C,C(x)) (and in particular, x is not given) outputs
a simulated garbling of C and a simulated input encoding. Sim is defined as
follows: every wire w is only associated with a single key Kw. Associated with
every gate G is a garbled table consisting of (CT1,CT2,CT3,CT4), where: for
a randomly picked index i∗ ∈ [4], (i) CTi∗ is an encryption of Kwc

under keys
Kwa

and Kwb
, (ii) for i �= i∗, CTi is an encryption of 0 under two randomly

chosen secret keys (and in particular these two keys are not used anywhere).
The simulated garbling of C consists of the simulated garbled tables associated
with every gate in the circuit. The input encoding consists of the keys {Kw} for
every input wire w. In addition, it consists of the translation table that maps
C(x) to Kwout and maps C(x) to K ′

wout
, where K ′

wout
is generated afresh.

The indistinguishability of the output of Sim from an honestly generated
garbled circuit and input encoding can be argued by a hybrid argument explicitly
described in [HJO+16]. This hybrid argument will be associated with a sequence
of intermediate simulators Sim1, . . . ,Simq. Except Simq, all the other simulators
take as input circuit and the input; (C, x). The final simulator Simq takes as
input (C,C(x)). Sim1 computes the garbling of C and the input encoding of x
as dictated by the scheme. The final intermediate simulator Simq is identical to
Sim.

The ith intermediate simulator Simi works as follows: for every wire w such
that w is the output wire of a jth layer for j ≥ i, sample two keys K0

w and K1
w.

For any other wire w, sample a single wire key Kw. The simulator consists of
two components:

– Input-Dependent Simulation. This component takes as input (C, x) and
simulates all the garbled gates in the ith layer of C. For every gate G (with
input wires wa, wb and output wire wc) in the ith layer, generate a garbled
table (CT1,CT2,CT3,CT4), where for a randomly picked index i∗ ∈ [4], (i)
CTi∗ is an encryption of K

val(wc)
wc under keys Kwa

and Kwb
, (ii) for i �= i∗,

CTi is an encryption of 0 under two randomly chosen secret keys (and in
particular these two keys are not used anywhere). Here, val(wc) denotes the
value assigned to the wire wc during the evaluation of C on x.

– Input-Independent Simulation. This component only takes as input C
and simulates the garbled gates in all the layers except the ith layer. There
are two cases:

- for a gate G in the jth layer, for j < i, the simulation of the garbled gate
for G is performed according to Sim.

- for a gate G in the jth layer, for j > i, the garbled gate for G is generated
according to the scheme.
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Once the computational indistinguishability of Simi and Simi+1 is shown for
every i, the security of the scheme follows.

Complexity of Input-Dependent Simulation. Observe that the output length of
the input-dependent simulation component of every simulator Simi is only pro-
portional to the width of the circuit (in other words, the maximum length of any
layer in C). This observation has been crucially exploited in two lines of work:

– The work of [HJO+16] introduced the powerful tool of somewhere equivocal
encryption (SEE) and showed how to combine it with the garbling scheme of
Yao to obtain adaptive garbling schemes with online complexity that grows
with the width of the circuit. Informally, somewhere equivocal encryption
is used in conjunction with the above proof of security for Yao’s scheme:
in each step of a hybrid argument, the input-dependent simulated gates are
equivocated in the online phase of the adaptive security game. Since the
number of input-dependent simulated gates is bounded by the width w of the
circuit, the online complexity of this garbling scheme is proportional to w.
Alternative proof strategies for Yao’s garbling scheme can be used instead of
our sketch above to obtain, for example, the depth-based result of [HJO+16].

– The work of [BGL+15] showed how to combine indistinguishability obfusca-
tion for circuits and the garbling scheme of Yao to obtain a succinct garbling
scheme for small-space Turing machines. To garble a Turing machine M that
has worst-case runtime T , they construct an obfuscation of a circuit that
takes as input an index i and outputs the garbled table corresponding to
the ith gate of C9. Security is argued by sequentially invoking the simulators
(Sim1, . . . ,Simq) of Yao’s garbling scheme. Hardwiring the entire simulator’s
output in the obfuscated circuit would ruin the encoding complexity of the
succinct garbling scheme. However, it turns out that security can be argued
when only the input-dependent simulation component is hardwired. This is
exactly the reason why the encoding complexity of this succinct garbling
scheme grows with the maximum space complexity of the Turing machines.

Locally Simulatable Garbling Schemes. We introduce the notion of a locally
simulatable garbling scheme as an abstraction that connects the above proofs of
adaptive security and succinctness for garbling schemes. We give a brief overview
of the security property associated with a locally simulatable garbling scheme.
The security property is parameterized by an integer Lsim and a sequence of
simulators (Sim1, . . . ,Simq) for some polynomial q. Every simulator Simi consists
of an input-dependent component and an input-independent component.

– The input-dependent component of Simi takes as input circuit C and input
x to be simulated. We require that this component of Simi is of size at most
Lsim · poly(λ) for some fixed polynomial poly.

– The input-independent component of Simi takes as input only the circuit C.
9 Their actual scheme instead outputs an entire layer of garbled tables at once, but

this variant has the same efficiency and security proof.
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We require that the output distribution of Sim1 is computationally indis-
tinguishable from an honest generated garbling of C and honestly generated
encoding of x. The output distributions of Simi and Simi+1 are required to be
computationally indistinguishable. Finally, we require that the final simulator
Simq does not have any input-dependent component and in particular, Simq can
simulate the garbled circuit and input encoding on input (C,C(x)). We refer to
this security property as weak local simulation security.

Note that Yao’s garbling scheme, using the security proof given in our outline,
is a particular instantiation of a locally simulatable garbling scheme with Lsim

set to be the width of the circuit being garbled. The depth-based analysis of
Yao’s garbling scheme given in [HJO+16] can also be seen as an instantiation of
weak local simulation, albeit with q = 2O(d) hybrids.

While the above security property captures the essence of local simulation, it
does not suffice for either the application of adaptively secure garbling schemes or
the application of succinct garbling schemes. To get around this, we strengthen
the security definition in two ways, resulting in notions of semi-adaptive locally
simulatable garbling schemes and strong locally simulatable garbling schemes.

Succinct Garbling from Strong LSGS. We define the notion of a strong locally
simulatable garbling scheme and use it as an intermediate tool to construct a
succinct garbling scheme. To motivate our definition, we will consider a candidate
succinct garbling scheme (and proof strategy) from IO and a weak LSGS, and
see what additional properties are required from the LSGS.

Generalizing the approach of [BGL+15], our candidate succinct garbling
scheme is as follows: garbling a Turing machine M with a runtime bound T
consists of computing an indistinguishability obfuscation of a circuit HM,T,MSK

with hardwired values M , T and a master secret key MSK. This circuit takes
as input an index i ≤ T , constructs the ith gate of C, where C is the circuit
representing T steps of M ’s computation on inputs of length n, and then outputs
a garbling of this gate computed with respect to MSK. Encoding x consists of
computing the input encoding of x with respect to the LSGS. Decoding proceeds
by evaluating the obfuscated circuit on all indices ranging from 1 to T to obtain
the different gate encodings. These encodings are then decoded to obtain the
result.

We are already implicitly assuming some properties of the underlying LSGS
in order for the above construction to make any sense at all. Specifically,

– Our candidate implicitly assumes that a garbling of C is computed in a gate-
by-gate fashion. To enable this, we introduce the notion of a local encoding
of an LSGS, which guaratees that a garbling of C consists of components
that are each computed in time independent of |C|; in particular, it must be
computable from a small amount of information about C. In fact, we further
require that this information about C is efficiently computable from M . In
the case of Yao, this amounts to saying that an individual gate of C can be
computed very efficiently from M .

– A priori, the master secret key MSK could be as large as |C| = poly(T ).
Strictly speaking, this means that the above candidate is not succinct. To
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overcome this, we think of MSK = (sk1, . . . , skN ) and define a local key gen-
eration procedure that takes as input an index j and only generates the local
secret key skj . Then, the program H in our scheme takes as input an index
i, determines the keys skj that are necessary to encode the ith component of
C, and then computes the ith garbled component.

– To identify the subset of keys to be locally generated for the ith component,
we define a key list generation procedure that takes as input i and outputs a
list Li. This allows us to compress the potentially large MSK using a pseudo-
random function key.

– The size of the input encoding of the succinct garbling candidate is exactly
the same as the online complexity of the underlying strong LSGS scheme.
Thus, in order for our scheme to be succinct, the online complexity of the
underling LSGS scheme will have to be independent of T .

By carefully defining the above notions, we can guarantee that the program H
is sufficiently small (polynomial in λ) so that the candidate garbling scheme is
succinct. What remains is to prove security in a way such that programs H ′ that
are obfuscated in the security proof are also small. This is the most subtle step; in
particular, this is the step where [BGL+15] is limited to achieving succinctness
that depends on the space of the Turing machine.

To prove the security of the above scheme, a naive approach would be to
hardwire the entire simulated garbled circuit inside the obfuscation of HM,T,MSK;
however, this would violate succinctness. Instead, we want to leverage local simu-
lation in the following way: in each of a sequence of hybrid circuits (H1, . . . , Hq),
only hardwire the input-dependent components of Simi, and instead include the
code of the input-independent components of Simi (which naively contains all
of MSK) inside Hi. We would then hope to argue using some combination of IO
security and LSGS security that adjacent hybrid programs in this sequence are
indistinguishable.

If the size of the input-dependent portion is small, meaning polynomial in
λ, then we can hope to achieve succinctness using this proof strategy. This app-
roach again implicitly assumes properties of the LSGS; namely, that the input-
independent local simulators each require only a small portion of the master
secret key (just as in the honest garbling case). This is required so that the
hybrid circuit Hi is still small.

Unfortunately, the security argument above is flawed. The problem is that
information about the master secret key MSK is contained within the obfuscated
program H̃, so it is unclear how to argue that the input-dependent components of
Simi and Simi+1 (i.e. the components that are hardwired) are indistinguishable.
Indeed, if the above strategy is not carefully implemented (e.g. if the program
Hi actually reveals the entire MSK), they will be distinguishable.

To circumvent these issues, we require that the input-dependent portion of
the garbled circuit output by Simi is indistinguishable from the correspond-
ing input-dependent portion of the garbled circuit output by Simi+1 even
in the presence of {skj}j∈S, where S consists of all indices accessed by the



466 P. Ananth and A. Lombardi

input-independent portion of the garbled circuit. In fact, we define a stronger
property that allows the adversary to choose the keys {skj}j∈S .

In order to complete the hybrid argument, our proof strategy then works in
two steps: first switch the input-dependent components of the simulated circuit
from Simi to Simi+1 (using the above strong LSGS security), and then switch
the input-independent components from Simi to Simi+1. Since we are actually
including the code of these input-independent simulators within the obfuscated
circuit, we must require that the input-independent components of Simi and
Simi+1 are functionally equivalent to invoke IO security.

To summarize, a strong LSGS must satisfy two main properties in order for
the security of our succinct garbling scheme to be proved:

– The input-dependent components of Simi and Simi+1 must be indistinguish-
able even given all of the local secret keys necessary to compute the input-
independent components of Simi.

– The algorithms computing the input-independent components of Simi and
Simi+1 must be functionally equivalent.

Indeed, the security proof of [BGL+15] can be retroactively seen as invoking
the above properties of Yao’s garbling scheme. For completeness, we sketch a
proof (see the full version) that Yao’s garbling scheme satisfies this definition
with Lsim proportional to the width of the circuit.

Constructing Strong LSGS from Laconic OT. In order to complete the proof
of Theorem 1, we show that the garbling scheme of [GS18a] can be adapted to
satisfy our strong LSGS notion with Lsim = poly(λ). We begin by giving a high
level description of the [GS18a] garbling scheme:

– An encoding of an input x consists of (1) a somewhere equivocal encryp-
tion secret key, (2) a one-time pad encryption r ⊕ x of x, (3) a hash value
h0 = H(r ⊕ x||0|C|−n) of an initial memory state for the computation, (4)
a signature on h0, and (5) the one-time pads corresponding to each output
gate. The hash function H is associated to a laconic OT scheme (we omit a
discussion of laconic OT from this overview).

– An encoding of a circuit C consists of s = |C| “garbled programs” maintaining
the following invariant: after executing i such programs, the evaluator will
have obtained a one-time pad encryption of the first n+i gates of C evaluated
on the input x along with a hash of this one-time padded state and a signature
on this hash value. The garbled programs are then jointly encrypted using a
somewhere equivocal encryption scheme.

– Simulation security is argued by a sequence of hybrid simulators; in a hybrid
simulator, each garbled program is either computed via an input-independent
simulator or an input-dependent simulator, and moreover only poly(λ) gar-
bled programs require input-dependent simulation. To prove adaptive secu-
rity, the input-dependent simulated gates are equivocated as part of the input
encoding.
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We interpret the scheme of [GS18a] – after removing the somewhere equivocal
encryption layer – as a LSGS by thinking of each garbled program above as one
component of the LSGS. Indeed, we show that each garbled program in the
[GS18a] scheme only requires a small amount of the garbling secret key and that
the input-dependent components of Simi and Simi+1 are indistinguishable even
in the presence of adversarially chosen secret keys used for the other components.
In fact, all but one of the properties of a strong LSGS as defined earlier can be
demonstrated to hold for the [GS18a] scheme without modification.

The only problem with using the [GS18a] scheme as a strong LSGS is that
computation of the initial hash value H(r ⊕ x||0|C|−n) requires O(|C|) time.
Naively, this means that computing even the input encoding would take O(|C|)
time, but [GS18a] note that if H is computed via a Merkle tree, the computation
of H(0|C|−n) can be delegated to the garbled circuit and only H(r ⊕ x) need be
computed during the input encoding. However, computing H(0|C|−n) cannot be
done locally (i.e. distributed in pieces to local components of the garbled circuit),
which violates the local encoding property of a strong LSGS.

To circumvent this problem, we modify the [GS18a] scheme so that the initial
hash value h0 = H(r ⊕ x) is a hash of only an n-bit string, and we redesign the
garbled programs so that each step updates the one-time padded computation
state by appending the next value. Instantiating this corresponds to a new notion
of appendable laconic OT, which we define and construct generically from laconic
OT. The local simulators for our new scheme remain essentially the same, and
our previous security proof carries over to this modified version. We note that
the same modification could be made to the [GS18a] adaptive garbled circuit
construction, with the advantage that the more complicated notion of updatable
laconic OT is not required, and hence the [GS18a] scheme can be somewhat
simplified.

Combining this construction of strong LSGS from laconic OT with our con-
struction of succinct garbling from FE and strong LSGS, we obtain Theorem1.

Adaptive Garbling from Semi-Adaptive LSGS. In order to construct adaptive
garbling schemes, it turns out that the notion of strong LSGS does not capture
the essence of the adaptive security proof. We define a notion of semi-adaptive
LSGS and show that a semi-adaptive LSGS can be used to construct adaptive
circuit garbling schemes. We define the notion below.

The semi-adaptive security property is associated with a sequence of simu-
lators (Sim1, . . . ,Simq) for some polynomial q = q(λ). As before, the output of
Simi consists of an input-dependent component and an input-independent com-
ponent. However, in this security definition, we allow the adversary to choose the
input after he receives the input-independent component of the garbled circuit
from the challenger. In particular, the adversary can choose the instance as a
function of the input-independent component.

Our transformation from semi-adaptive LSGS to adaptive garbling is inspired
by the work of [HJO+16]. In particular, our transformation abstracts out the
usage of somewhere equivocal encryption in this and other prior works. In this
transformation, the size of the input-dependent component (i.e. Lsim) determines
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the size of the secret key in a somewhere equivocal encryption scheme, and hence
plays a role in determining the online complexity of the adaptive garbling scheme.
The online complexity of the resulting adaptively secure garbling scheme is the
sum of poly(λ,Lsim) and the online complexity Linp of the semi-adaptive LSGS.
This can be used to recover the result of [GS18a] (as well as that of [HJO+16]).
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Abstract. We construct Indistinguishability Obfuscation (iO) and
Functional Encryption (FE) schemes in the Turing machine model from
the minimal assumption of compact FE for circuits (CktFE). Our con-
structions overcome the barrier of sub-exponential loss incurred by all
prior work. Our contributions are:
1. We construct iO in the Turing machine model from the same assump-

tions as required in the circuit model, namely, sub-exponentially
secure FE for circuits. The previous best constructions [6,41] require
sub-exponentially secure iO for circuits, which in turn requires sub-
exponentially secure FE for circuits [5,15].

2. We provide a new construction of single input FE for Turing machines
with unbounded length inputs and optimal parameters from polyno-
mially secure, compact FE for circuits. The previously best known
construction by Ananth and Sahai [7] relies on iO for circuits, or
equivalently, sub-exponentially secure FE for circuits.

3. We provide a new construction of multi-input FE for Turing
machines. Our construction supports a fixed number of encryptors
(say k), who may each encrypt a string xi of unbounded length. We
rely on sub-exponentially secure FE for circuits, while the only previ-
ous construction [10] relies on a strong knowledge type assumption,
namely, public coin differing inputs obfuscation.

Our techniques are new and from first principles, and avoid usage of
sophisticated iO specific machinery such as positional accumulators and
splittable signatures that were used by all relevant prior work [6,7,41].

1 Introduction

The notion of indistinguishability obfuscation (iO) [11] seeks to garble programs
such that the obfuscations of any two functionally equivalent programs are indis-
tinguishable. While non-obvious at first what such a guarantee is good for,
iO has emerged as a surprisingly powerful notion in cryptography, leading to
many advanced cryptographic applications that were previously out of reach
[12,14,22–24,26,27,41,44,46,50].

Functional encryption (FE) [16,48,49] is a generalization of public key encryp-
tion that enables fine grained access control on encrypted data. In FE, a secret
key corresponds to a function f and ciphertexts correspond to strings from the
c© International Association for Cryptologic Research 2018
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domain of f . Given a function key SKf and a ciphertext CTx, the decryptor
learns f(x) and nothing else.

While an important primitive in its own right, FE has also been shown to
imply iO, albeit with sub-exponential loss [5,15]. Over the last few years, both
primitives have received significant attention, with a rich body of work that
attempts to support more general models of computation [4,12,20–22,25,41],
rely on weaker assumptions [8,13,19,30,37–40,42,43,45], achieve stronger secu-
rity [3,19] and greater efficiency [6].

In this work, we make further progress towards the goal of basing iO and
FE on minimal assumptions, in the Turing machine model of computation. This
question has been studied extensively [4,6,7,12,20–22,25,34,41] – we refer the
reader to [6,7] for a detailed discussion. Below, we summarize the state of art:

1. iO for Turing Machines with unbounded memory and bounded inputs are
constructed in the works of Koppula et al. and Ananth et al. [6,41]. Both
works rely on the existence of sub-exponentially secure iO for circuits along
with other standard assumptions. We note that FE for circuits implies iO
with sub-exponential loss, so when relying on FE for circuits, these works
incur double sub-exponential loss.

2. For single input FE for Turing machines that accept unbounded length inputs
and place no restriction on the description size or space complexity of the
machine, the state of art is the work of Ananth and Sahai [7], which relies on
the existence of iO for circuits.

3. For multi-input FE in the Turing machine model, the only known construction
is [10], which relies on the existence of public coin differing inputs obfuscation
(diO).

Our Results. We construct Indistinguishability Obfuscation (iO) and Functional
Encryption (FE) schemes in the Turing machine model from the minimal assump-
tion of compact FE for circuits (CktFE). Our constructions overcome the barrier
of sub-exponential loss incurred by all prior work. Our contributions are:

1. We construct iO for Turing machines with bounded inputs and unbounded
memory from the same assumptions as required by iO for circuits, namely,
sub-exponentially secure FE for circuits. The previous best constructions [6,
41] require sub-exponentially secure iO for circuits, which in turn requires sub-
exponentially secure FE for circuits [5,15], resulting in double sub-exponential
loss.

2. We provide a new construction of single input FE for Turing machines with
unbounded inputs, achieving optimal parameters from polynomially secure,
compact FE for circuits. The previously best known construction by Ananth
and Sahai [7] relies on iO for circuits, or equivalently, sub-exponentially secure
FE for circuits. We note that iO for circuits implies decomposable compact
FE for circuits [27] (please see the full version [1]), so our construction also
implies FE for TMs from iO for circuits.
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3. We provide a new construction of multi-input FE for Turing machines. Our
construction supports a fixed number of encryptors (say k), who may each
encrypt a string xi of unbounded length. We rely on sub-exponentially secure
FE for circuits, while the only previous construction [10] relies on a strong
knowledge type assumption, namely, public coin differing inputs obfuscation.
The arity k supported by our scheme depends on the underlying multi-input
CktFE scheme, for instance using [40], we can support k = polylog(λ).

Our constructions make use of FE for circuits that satisfy a mild property called
decomposablity, which in turn can be constructed generically from FE for cir-
cuits (please see Appendix A). Decomposable FE, analogously to decomposable
randomized encodings [9], roughly posits that a long string be encrypted bit by
bit using shared randomness across bits. This property is already satisfied by all
known constructions of CktFE in the literature to the best of our knowledge.

Our techniques are new and from first principles, and avoid usage of sophisti-
cated iO specific machinery such as positional accumulators and splittable signa-
tures that were used by all prior work [6,7,41]. Our work leverages the security
notion of distributional indistinguishability (DI) for CktFE which was first con-
sidered by [31], who provided a construction for single input FE satisfying DI
security assuming the existence of iO. We strengthen this result by constructing
DI secure CktFE from standard CktFE. Please see Fig. 1 for an overview of our
results.

Additional Prior Work. Since iO is considered an inherently sub-exponential
assumption and much stronger than the polynomial assumption of compact
FE, replacing iO by FE in cryptographic constructions has already been stud-
ied extensively, for instance in the context of PPAD hardness [28], multi-input
FE for circuits [19,40] as well as trapdoor one-way permutations and universal
samplers [29]. We note that aside from reliance on weaker, better understood
assumptions, avoiding sub-exponential loss results in significantly more efficient
schemes. We refer the reader to [29] for a detailed discussion.

Distributional indistinguishability was also considered in the context of out-
put compressing randomized encodings [44]; indeed, this work implies that
achieving DI security for FE for Turing machines with long outputs is impossible
in the plain model. We note that our construction sidesteps this lower bound by
considering Turing machines with a single output bit.

iO for TMs with unbounded memory has been constructed by [6,41] as dis-
cussed above, other prior works were limited to bounded space constraints. We
note that [6] additionally achieve constant overhead in the size of the obfuscated
program as well as amortization, which we do not consider in this work. We also
note that the work of [10] achieve miFE for TMs where the number of encrypt-
ing parties can be arbitrary, whereas we only support a-priori fixed, bounded
number of parties.

The approach of using decomposable FE for circuits to construct FE for deter-
ministic finite automata (DFA) in the single key setting was suggested by [2].
In this work we develop and significantly generalize their ideas. In particular,
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we handle the unbounded key setting in FE for TMs which necessitates dealing
with the much more complex indistinguishability style definition, for which we
develop new proof techniques which use a novel “sliding trapdoor” approach
and leverage distributional indistinguishability. In contrast, since [2] use simula-
tion security for single key FE, their proof must not contend with any of these
challenges. Please see below for details.

iO for TMs

FE for circuits

iO for circuits

Subexp

Subexp

Rerandomizable
encryption 

DDH, LWE, etc

Subexp

FE for circuits

iO for circuits

FE for TMs

Subexp

AS16 AJS17 This

iO for circuitsFE for circuits

FE for TMs MIFE for TMs

iO for TMs

Subexp

Subexp

Poly

Fig. 1. Prior work and our results. The reductions with subexponential loss are speci-
fied, no specification implies standard polynomial loss. The dashed blue lines indicate
primitives that are not actually used by the work in question; we add these to elucidate
the relationship between primitives. We do not include [10] here since it relies on public
coin diO.

Our Techniques. We describe an overview of our constructions, starting with
single input FE, generalizing to multi-input FE and then building iO. All our
constructions support the Turing machine model of computation. Our construc-
tions rely on a single input FE scheme for circuits, denoted by CktFE, which
satisfies decomposability. In Appendix A, we show that decomposable FE for
circuits is implied by FE for circuits. Intuitively, decomposability means that
the ciphertext CTx for a multi-bit message x be decomposable into multiple
ciphertext components CTi for i ∈ |x|, one for each bit xi of the message. More-
over, the ciphertext components encoding individual bits of a single input are
tied together by common randomness, that is CTi = E(PK, r, xi) where E is an
encoding function and r is common randomness used for all i ∈ |x|1. The notion
of decomposability has been widely studied and used in the context of random-
ized encodings, which may be seen as a special case of functional encryption;
please see [9] as an example.
1 Encoding of each bit may also use additional independent randomness, which is not

relevant to the discussion here, and hence omitted.



FE and iO for Turing Machines from Minimal Assumptions 477

Single Input. TMFE. Recall that a Turing machine at any time step reads a
symbol, state pair and produces a new symbol which is written to the work
tape, a new state and a left or right head movement. By assuming the Turing
machine is oblivious, the head movements of the TM may be fixed; thus, at any
given time step when a work tape cell is read, we can compute the next time
step when the same work tape cell will be accessed. This reduces the output at
any time step t to a symbol, state pair, where the state is read in the next time
step t + 1 and the symbol is read at a future (fixed) time step t′ > t.

Our construction uses two CktFE schemes, 1FE1 and 1FE2, where 1FE2

is decomposable. Intuitively, 1FE1 is used by the encryptor to encode the
unbounded length input, while 1FE2 is used to mimic the computation of the
Turing machine, as we describe next. The ciphertext of 1FE2 is divided into two
parts, encoding input components (t, σ) and q respectively. Here, t is the current
time step in the computation and σ, q are the current work-tape symbol and
state respectively. We maintain the invariant that at any time step t in the com-
putation, both components of the ciphertext have been computed using common
randomness derived from PRFK((t‖salt)), where salt is an input chosen by the
key generator and the PRF key K is chosen by the encryptor.

Now, to mimic the TM computation, we provide a function key for the Next
functionality, that stores the transition table, receives as input the current (sym-
bol, state) pair, computes the symbol to be written on the work tape and the
next state using the transition table, derives the randomness using the PRF for
the appropriate time step and outputs the encodings of the new (symbol, state)
pair. In more detail, say the encryptor provides encodings of each input symbol
xi, for i ∈ [|x|], in addition to an encoding for the first (fixed) state qst, where
the encodings of (1, x1) and qst share the same randomness so that they may be
concatenated to yield a complete ciphertext for (1, x1, qst). Now, the function key
may read input (1, x1, qst), lookup the transition table and produce an encryp-
tion of the next state q2 and the symbol to be written x′

2. The randomness used
to encrypt q2 is derived using a PRF as described above, and is the same as the
randomness used by the encryptor to encode (2, x2). Hence, the two ciphertext
components encoding (2, x2) and q2 may be concatenated to yield a complete
1FE2 ciphertext which may be again decrypted using the function key.

Now consider how to support writing on tape. Say the symbol x′
2 will be

read at future fixed time step t′. Then the function key encodes the tuple (t′, x′
2)

using randomness PRFK((t′‖salt)). The state for time step t′, say q′ is computed
at time step t′ − 1, also using randomness PRFK((t′‖salt)). Thus, encodings of
(t′, x′

2) and q′ may be joined together to yield a complete 1FE2 ciphertext which
may be decrypted to propagate the computation.

A detail brushed away by the above description is that the encryptor, given
input x, cannot compute randomness generated by a PRF which has input a
value salt chosen by the key generator. This is handled by making use of an
additional scheme 1FE1, which re-encrypts ciphertexts provided by the encryptor
via a ReRand functionality, using the requisite randomness. Note that we support
inputs of unbounded length by leveraging the fact that CktFE schemes 1FE1, 1FE2
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support encryption of unbounded number of inputs, even if each must be of
bounded length. Thus, the encryptor provides an unbounded number of 1FE1

ciphertexts which are rerandomized and translated to ciphertexts under 1FE2

using the ReRand function key provided by the key generator.

Encoding the PRF key. The above informal description hides an important detail
– for the function key to produce ciphertext components using a PRF, it must
have the key of the PRF, chosen by the encryptor2, passed to it as input. Thus
the ciphertext must additionally encode the PRF key along with inputs (t, x, q).
However, the ciphertext is constructed using randomness derived from the same
PRF- resulting in circularity. We resolve this difficulty by using constrained PRFs
[17,18,36], and having a ciphertext encode a PRF key that only allows compu-
tation of randomness for time steps of the future; this does not compromise its
own security. For this constraint family, we provide a construction of cPRFs
from standard assumptions. We believe this construction and the method of its
application may be useful elsewhere3.

More formally, our construction makes use of constrained, delegatable PRF
for the function family ft : {0, 1}2·λ → {0, 1} defined as follows.

ft(x‖z) = 1 if x ≥ t

= 0 otherwise

We denote the constrained PRF key Kft
by Kt for brevity. By the delegation

property of constrained PRFs, we have that if t′ ≥ t then Kt′ can be derived from
Kt. The proof requires the PRF to be punctured at a fixed point in each hybrid,
we provide a construction of delegatable punctured PRF in the full version of
the paper [1].

Proof Overview. While the above description of single input TMFE is natural
and intuitive, the proof of indistinguishability based security is quite subtle and
requires new techniques as we discuss next. For ease of exposition, we describe
the proof overview for the case where the adversary makes a single key request
corresponding to some TM M . We must argue that the challenge ciphertext,
which is a sequence of 1FE1 ciphertexts, together with ReRand and Next keys
corresponding to a TM M , do not distinguish the bit b.

As discussed above, the 1FE1 ciphertexts are decrypted using the ReRand
key to produce a sequence of 1FE2 ciphertexts, each corresponding to a time
step in the TM execution (when the encoded symbol is read), which are in
turn decrypted by Next keys to compute new 1FE2 ciphertexts for future time
steps. We may view the 1FE2 ciphertexts as forming a chain, with each link
of the chain corresponding to a single step of the TM computation, and each
ciphertext producing (via decryption) a new ciphertext for the next time step,

2 Note that the PRF key must be encoded in the ciphertext rather than function key
since it is required to be hidden.

3 For instance, a similar situation w.r.t circularity arises in the original garbled RAM
construction of Lu and Ostrovsky [47].
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finally yielding the output when the TM halts (after T steps, say). Intuitively,
since the output of the TM does not distinguish the bit b by admissibility of
the TMFE adversary, we may argue by security of 1FE2 that the ciphertext at
the penultimate step T − 1 also does not distinguish b, which implies that the
ciphertext at step T −2 hides b and so on, ultimately yielding indistinguishability
of the entire chain, and hence of the 1FE1 challenge ciphertext.

Formalizing this intuitive argument is quite tricky. A natural approach would
be to consider a sequence of hybrids, one corresponding to each link in the chain,
and switch the 1FE2 ciphertexts one by one starting from the end of the chain.
While intuitive, this idea is misleading – note that a naive implementation of this
idea would lead to a chain which is “broken”: namely, its first links correspond
to b = 0, and last links to b = 1. Since the ciphertext at a given step is decrypted
to compute the ciphertext at the next step, a ciphertext corresponding to b = 0
cannot in general output a ciphertext for b = 1.

A standard approach to deal with this difficulty is to embed a “trapdoor”
mode within the functionality [3,5,19] which lets us“hardwire” the ciphertexts
that must be output by decryption directly in the key, allowing decryption to
yield an inconsistent chain. However, this approach also fails in our case, since
the length of the chain is unbounded and there isn’t sufficient space in the key
to incorporate all its values.

Our Approach: “Sliding” Trapdoors. We deal with this difficulty by designing a
novel “sliding-window” trapdoor approach which lets us hardwire the decryption
chain“piece by piece”. In more detail, we start with the last two time steps (T, T−
1), program the key to produce the output corresponding to b = 1 for time step
T and b = 0 for T − 1, then transition to a world where the output corresponds
to b = 1 for both T and T − 1. At this point, the hardwiring of the output for
time step T is redundant, since the ciphertext output by the decryption process
at time step T − 1 automatically computes the output coresponding to b = 1 at
time step T . Thus, we may now slide the trapdoor to program to the next pair
(T − 1, T − 2), switching the decryption output at time step T − 2 to b = 1 and
so on, until the entire chain corresponds to b = 1.

Intuitively, we are “programming” the decryption only for outputs at both
ends of the“broken link”, so that preceding links are generated using b = 0
and subsequent links are generated using b = 1. We leverage the fact that the
chain links corresponding to future time-steps are encoded implicitly in a given
time step – hence if we manage to hide the chain inconsistency at a certain
position i, this implies that the remainder of the chain is constructed using the
bit encoded at step i. Formalizing this argument requires a great deal of care, as
we must keep track of the “target” time steps corresponding to the two ends of
the broken link that are being programmed, the time steps at which the symbol
and state ciphertexts are generated to be“consumed” at the target time-steps,
the particular values that must be encoded in the symbol, state fields in both
cases as well as the key that is being handled at a given time in the proof. For
more details, please see Sect. 3.3.
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Generalising to Multi-input FE for Turing Machines. For the k party setting, a
natural idea is to have each party encrypt its own input xi, and use a k input
CktFE scheme kFE [19,40], to “aggregate” these into the“input” ciphertext CT(x)
for one long input x = (x1‖x2‖ . . . ‖xk), under a different CktFE scheme 1FE.
Note that the length of x is unknown hence it may not be encoded “all at once”
but must be encoded bit by bit as in the previous scheme. Now, by additionally
providing the 1FE ciphertext encoding the start state of the Turing machine
CT(qst), and a function key to compute the transition table of the TM as in the
previous scheme, we may proceed with the computation exactly as before.

Formalizing this idea must contend with several hurdles. In the multi-input
setting, the ith encryptor may encode multiple inputs and functionality permits
“mix and match” of ciphertexts in the sense that any input encoded by party i
may be combined with any input encoded by parties j ∈ [k], j �= i. Therefore, if
each of k parties encodes T ciphertexts, there are T k valid input combinations
that the TM may execute on. However, when the TM is executing on any input
combination, we must ensure that it cannot mix and match symbol, state pairs
across different input combinations. Moreover, an encryption for a symbol, state
pair produced by some machine Mi should not be decryptable by any machine
Mj for j �= i. These issues are handled by careful design of the aggregate func-
tionality to ensure that an execution thread of any input combination by any
machine is separate from any other. The proof extends naturally from the single
input case. Please see Sect. 4 for details.

Distributional Indistinguishability. As discussed above, our constructions rely
on the security notion of distributional indistinguishability (DI) for functional
encryption for circuits [31]. Intuitively, this notion says that if the outputs pro-
duced by a circuit on two input distributions are merely indistinguishable (as
against exactly equal), then the ciphertexts encoding those inputs must also be
indistinguishable. In the full version [1] we give a construction of DI secure single
input FE from standard FE.

Indistinguishability Obfuscation. Constructing iO for TMs given miFE for TM is
straightforward, and adapts the miFE to iO circuit compiler by [33] to the TM
setting. As in the circuit case, an miFE for TM that supports two ciphertext
queries and single key query suffices for this transformation. Please see Sect. 5
for details. Since our security proof for miFE for TM is tight, this compiler
yields iO for TM from sub-exponentially secure FE for circuits rather than sub-
exponentially secure iO for circuits.

Organization of the Paper. Definitions and preliminaries are provided in Sect. 2
as well as the full version [1]. In Sect. 3, we provide our construction for single
input FE for Turing machines. In Sect. 4, we provide our construction for multi-
input FE for Turing machines for any fixed arity k and in Sect. 5 we describe
our iO for TMs for bounded inputs.
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2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We begin by defining the notation that we will use throughout the
paper. We use bold letters to denote vectors and the notation [a, b] to denote
the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n].
Concatenation is denoted by the symbol ‖.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use
negl(n) to denote a negligible function of n. We say f(n) is polynomial if it is
O(nc) for some c > 0, and we use poly(n) to denote a polynomial function of
n. We use the abbreviation PPT for probabilistic polynomial-time. We say an
event occurs with overwhelming probability if its probability is 1 − negl(n). The
function log x is the base 2 logarithm of x.

2.1 Definitions: FE for Circuits

In this section, we define functional encryption for circuits, in both the single
and multi-input setting.

Single Input Functional Encryption for Circuits. Let X = {Xλ}λ∈N and
Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set. Let F ={Fλ

}
λ∈N

denote an ensemble where each Fλ is a finite collection of circuits, and
each circuit f ∈ Fλ takes as input a string x ∈ Xλ and outputs f(x) ∈ Yλ.

A functional encryption scheme CktFE for F consists of four algorithms
CktFE = (CktFE.Setup,CktFE.Keygen, CktFE.Enc,CktFE.Dec) defined as follows.

– CktFE.Setup(1λ) is a PPT algorithm that takes as input the unary represen-
tation of the security parameter and outputs the master public and secret
keys (PK,MSK). Sometimes, the CktFE.Setup algorithm may also accept as
input a parameter 1�, denoting the length of the input. In this case, the input
lives in domain X �.

– CktFE.Keygen(MSK, f) is a PPT algorithm that takes as input the master
secret key MSK and a circuit f ∈ Fλ and outputs a corresponding secret key
SKf .

– CktFE.Enc(PK,x) is a PPT algorithm that takes as input the master public
key PK and an input message x ∈ Xλ and outputs a ciphertext CT.

– CktFE.Dec(SKf ,CTx) is an (a deterministic) algorithm that takes as input
the secret key SKf and a ciphertext CTx and outputs f(x).

Definition 1 (Correctness). A functional encryption scheme CktFE is correct
if for all λ ∈ N, all f ∈ Fλ and all x ∈ Xλ,

Pr

[
(PK,MSK) ← CktFE.Setup(1λ);
CktFE.Dec

(
CktFE.Keygen(MSK, f),CktFE.Enc(PK,x)

)
�= f(x)

]

= negl(λ)

where the probability is taken over the coins of CktFE.Setup, CktFE.Keygen, and
CktFE.Enc.
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Definition 2 (Compactness [5]). A functional encryption scheme for circuits
is said to be compact if for any input message x, the running time of the encryp-
tion algorithm is polynomial in the security parameter and the size of x. In
particular, it does not depend on the circuit description size or the output length
of any function f supported by the scheme.

A weaker version of compactness, known as succinct or semi-compact FE,
allows the run time of the encryption algorithm to depend on the output length
of the functions. Equivalently, a semi-compact FE scheme is simply a compact
FE scheme when we restrict our attention to functions with single-bit outputs.

Distributional Indistinguishability for Circuit FE. In this section we define the
notion of distributional indistinguishability for functional encryption for circuits.
The notion was first defined by [31, Sect. 3.4] in the context of reusable garbled
circuits, i.e. single key functional encryption but may be generalized to the multi-
key setting in a straightforward way. Intuitively, this notion says that if the
outputs produced by a circuit on two input distributions are indistinguishable,
then the ciphertexts encoding those inputs must also be indistinguishable.

Definition 3. A functional encryption scheme F for a circuit family G is secure
in the distributional indistinguishability game, if for all PPT adversaries A, the
advantage of A in the following experiment is negligible in the security parameter
λ:

1. Public Key: Challenger returns PK to the adversary.
2. Pre-Challenge Key Queries: A may adaptively request keys for any circuits

gi ∈ G. In response, A is given the corresponding keys SKgi
. This step may

be repeated any polynomial number of times by the attacker.
3. Challenge Declaration: A(1λ,PK) outputs two ensembles of challenge distri-

butions
(
D0(λ),D1(λ)

)
4 to the challenger, subject to the restriction that for

any x0 ← D0,x1 ← D1, it holds that gi(x0)
c≈ gi(x1) for all i.

4. Challenge CT: A requests the challenge ciphertext, to which challenger
chooses a random bit b, samples xb ← Db and returns the ciphertext CTxb

.
5. Key Queries: The adversary may continue to request keys for additional func-

tions gi, subject to the same restriction that for any x0 ← D0,x1 ← D1, it
holds that gi(x0)

c≈ gi(x1) for all i.
6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success
probability and 1/2. In the selective game, the adversary is required to declare
the challenge distributions in the very first step, without seeing the public key.

Comparison with Standard Indistinguishability. We note that the stan-
dard indistinguishably game is implied by the above by restricting the adversary
to choose distributions D0,D1 above to simply be two messages x0,x1 with
probability 1 and requesting keys that satisfy gi(x0) = gi(x1) for all i, which is
a special case of gi(x0)

c≈ gi(x1).
4 We omit the parameter λ in what follows for brevity of notation.
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Decomposable Functional Encryption for Circuits. In this section, we
recall the notion of decomposable functional encryption (DFE) defined by [2].
Decomposable functional encryption is analogous to the notion of decomposable
randomized encodings [9]. Intuitively, decomposability requires that the public
key PK and the ciphertext CTx of a functional encryption scheme be decom-
posable into components PKi and CTi for i ∈ [|x|], where CTi depends on a
single deterministic bit xi and the public key component PKi. In addition, the
ciphertext may contain components that are independent of the message and
depend only on the randomness.

Formally, let x ∈ {0, 1}k. A functional encryption scheme is said to be decom-
posable if there exists a deterministic function E : P × {0, 1} × R1 × R2 → C
such that:

1. The public key may be interpreted as PK = (PK1, . . . ,PKk,PKindpt) where
PKi ∈ P for i ∈ [k]. The component PKindpt ∈ Pj for some j ∈ N.

2. The ciphertext may be interpreted as CTx = (CT1, . . . ,CTk,CTindpt), where

CTi = E (PKi, xi, r, r̂i) ∀i ∈ [k] and CTindpt = E (PKindpt, r, r̂)

Here r ∈ R1 is common randomness used by all components of the encryption.
Apart from the common randomness r, each CTi may additionally make use
of independent randomness r̂i ∈ R2.

We note that if a scheme is decomposable “bit by bit”, i.e. into k compo-
nents for inputs of size k, it is also decomposable into components correspond-
ing to any partition of the interval [k]. Thus, we may decompose the public
key and ciphertext into any i ≤ k components of length ki each, such that∑

ki = k. We will sometimes use Ē(y) to denote the tuple of function val-
ues obtained by applying E to each component of a vector, i.e. Ē(PK,y, r) �(
E(PK1, y1, r, r̂1), . . . , E(PKk, yk, r, r̂k)

)
, where |y| = k. We assume that given

the security parameter, the spaces P, R1, R2, C are fixed, and the length of
the message |x| can be any polynomial.

Multi-input Functional Encryption for Circuits. We define the notion of
private-key t-input functional encryption for circuits here. Our definition follows
that of [40].

Let ∀i ∈ [t],Xi = {(Xi)}λ∈N and Y = {Yλ}λ∈N be ensembles of finite sets,
and let F = {Fλ}λ∈N be an ensemble of finite t-ary function families. For each
λ ∈ N, each function f ∈ Fλ takes as input t strings, x1 ∈ (X1)λ, . . . ,xt ∈ (Xt)λ,
and outputs a value f(x1, . . . ,xt) ∈ Yλ.

A private-key t-input functional encryption scheme t-CktFE for F
consists of four algorithms t-CktFE = (t-CktFE.Setup, t-CktFE.Keygen,
t-CktFE.Enc, t-CktFE.Dec) defined as follows.
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– t-CktFE.Setup(1λ) is a PPT algorithm that takes as input the unary repre-
sentation of the security parameter and outputs the master secret key MSK.

– t-CktFE.Keygen(MSK, f) is a PPT algorithm that takes as input the master
secret key MSK and a circuit f ∈ Fλ and outputs a corresponding secret key
SKf .

– t-CktFE.Enc(MSK,m, ind) is a PPT algorithm that takes as input the master
secret key MSK, an input message m = xi ∈ (Xi)λ if ind = i, i ∈ [t], and
outputs a ciphertext CTind.

– t-CktFE.Dec(SKf , (CT1, . . . ,CTt)) is an (a deterministic) algorithm that takes
as input the secret key SKf and t ciphertexts CT1, . . . ,CTt and outputs a
string y ∈ Yλ ∪ ⊥.

Definition 4 (Correctness). A private-key t-input functional encryption
scheme t-CktFE is correct if for all λ ∈ N, f ∈ Fλ and all (x1, . . . ,xt) ∈
(X1)λ × . . . × (Xt)λ,

Pr

[
t-CktFE.Dec

(
t-CktFE.Keygen(MSK, f),

(
t-CktFE.Enc(MSK,x1, 1), . . . ,

t-CktFE.Enc(MSK,xt, t)
)) �= f(x1, . . . ,xt)

]
= negl(λ)

Here, MSK ← t-CktFE.Setup(1λ) and probability is taken over the random coins
of t-CktFE.Setup, t-CktFE.Enc and t-CktFE.Keygen.

Distributional Indistinguishability. We define the notion of distributional indis-
tinguishability for a t-input functional encryption scheme for circuits. To begin,
we describe a valid t-input adversary.

Definition 5 (Valid t-Input Adversary). A PPT algorithm A is a valid
t-input adversary if for all private-key t-input functional encryption schemes
over message space (X1)λ × . . . × (Xt)λ, and a circuit space F , for any (f0, f1)
queried by the adversary, and any t pairs of input distribution ensembles
(D01(λ),D11(λ)), . . . , (D0t(λ),D1t(λ))5 output by the adversary such that Dbj

is a distribution over Xj for b ∈ {0, 1}, j ∈ [t], it holds that

f0(x01, . . . ,x0t)
c≈ f1(x11, . . . ,x1t),

where xbj ← Dbj for b ∈ {0, 1}, j ∈ [t].

We define the following game between a challenger and an adversary:

1. Key Queries. A may adaptively submit key requests for pairs of functions
(f0, f1) ∈ F . In response, A is given the corresponding keys SKfb

for some
random bit b chosen by the challenger. This step may be repeated any poly-
nomial number of times by the attacker.

5 We omit the argument λ where it is implicit for notational brevity.
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2. Ciphertext Queries. A(1λ) submits ciphertext requests for pairs of
challenge distribution ensembles (D01,D11), . . . , (D0t,D1t) to the chal-
lenger. The challenger samples xj ← Dbj for j ∈ [t] and returns
t-CktFE.Enc(MSK,xj , j),∀j ∈ [t]. This step may be repeated any polynomial
number of times by the attacker.

3. Guess. A outputs a bit b′, and succeeds if b′ = b.

In the above definition, ciphertext and key queries may be interspersed in any
order. The advantage of A is the absolute value of the difference between its
success probability and 1/2. In the selective game, the adversary is required
to declare the challenge ciphertext distributions in the very first step, without
seeing the public key.

Definition 6. A t-input functional encryption scheme t-CktFE for a circuit
family F is secure in the distributional indistinguishability game, if for all valid
PPT adversaries A, the advantage of A in the above game is negligible in the
security parameter λ.

We note that the standard indistinguishability game is the special case where
the adversary submits challenge messages rather than distributions and all
queried functions must output exactly the same rather than indistinguishable
values.

2.2 Definitions: FE for Turing Machines

In this section, we will define functional encryption for Turing Machines (TM).
We denote the runtime (i.e. number of steps the head takes) by runtime(M,w).

Let M = {Mλ}λ∈N be a family of Turing machines with alphabet Σ =
{Σλ}λ∈N and the running time upper-bounded by a polynomial in λ. A func-
tional encryption scheme TMFE for a Turing machine family M consists of
four algorithms TMFE = (TMFE.Setup,TMFE.KeyGen, TMFE.Enc,TMFE.Dec)
defined as follows.

– TMFE.Setup(1λ) is a PPT algorithm that takes as input the unary represen-
tation of the security parameter and outputs the master public and secret
keys (PK,MSK).

– TMFE.KeyGen(MSK,M ) is a PPT algorithm that takes as input the master
secret key MSK and a TM M and outputs a corresponding secret key SKM .

– TMFE.Enc(PK,x) is a PPT algorithm that takes as input the master public
key PK, and an input message x ∈ Σ∗

λ of arbitrary length, outputs a ciphertext
CTx.

– TMFE.Dec(SKM ,CTx) is an (a deterministic) algorithm that takes as input
the secret key SKM and a ciphertext CTx and outputs a bit b.

Correctness is defined analogously to the circuit setting.
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Efficiency [7]. The efficiency property of a public-key FE scheme for Turing
machines says that the algorithm TMFE.Setup on input 1λ should run in time
polynomial in λ, TMFE.KeyGen on input the Turing machine M and the mas-
ter key MSK should run in time polynomial in (λ, |M |), TMFE.Enc on input a
message x and the public key should run in time polynomial in (λ, |x|). Finally,
TMFE.Dec on input a functional key of M and an encryption of x should run in
time polynomial in (λ, |M |, |x|, runtime(M,x)).

The multi-input case may be defined as in the circuit setting.

Indistinguishability Obfuscation for Turing Machines. As in prior work,
we construct iO for Turing machines (TMs) in the setting where the input length
is fixed a-priori. A uniform P.P.T machine iO is an indistinguishability obfuscator
for a class of Turing machines {Mλ}λ∈N with input length L, if the following
conditions are satisfied:

1. Correctness. For all security parameters λ ∈ N, for any M ∈ Mλ and every
input x ∈ {0, 1}≤L, we have that:

Pr
[
M ′ ← iO(1λ,M,L) : M ′(x) = M(x)

]
= 1

where the probability is taken over the coin-tosses of the obfuscator iO.
2. Indistinguishability of Equivalent TMs. For every ensemble of pairs of

Turing machines {M0,λ,M1,λ}λ∈N, such that M0,λ(x) = M1,λ(x) for every
x ∈ {0, 1}≤L and runtime(M0,λ,x) = runtime(M1,λ,x), we have that the
following ensembles of pairs of distributions are indistinguishable to any PPT
Adv: {

M0,λ,M1,λ, iO(1λ,M0,λ)
}

c≈
{

M0,λ,M1,λ, iO(1λ,M1,λ)
}

3. Succinctness. For all security parameters λ ∈ N, for any M ∈ Mλ , we have
that the running time of iO(1λ,M,L) is poly(λ, |M |, L) and the evaluation
time of iO(M) on input x where x ∈ {0, 1}≤L, is poly(|M |, L, t) where t =
runtime(M,x).

2.3 Constrained Pseudorandom Functions

Constrained pseudorandom functions (introduced concurrently by Boneh and
Waters (CCS 2013), Boyle, Goldwasser, and Ivan (PKC 2014), and Kiayias,
Papadopoulos, Triandopoulos, and Zacharias (CCS 2013)), are pseudorandom
functions (PRFs) that allow the owner of the secret key K to compute a con-
strained key Kf , such that anyone who possesses Kf can compute the output
of the PRF on any input x such that f(x) = 1 for some predicate f . The secu-
rity requirement of constrained PRFs state that the PRF output must still look
indistinguishable from random for any x such that f(x) = 0. We will also require
the property of delegatability, formalized below.
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Definition 7 ([17]). Let F : {0, 1}seed(λ) × {0, 1}in(λ) → {0, 1}out(λ) be an
efficient function, where seed, in and out are all polynomials in the secu-
rity parameter λ. We say that F is a delegatable constrained pseudorandom
function with respect to a set system S ⊆ 2{0,1}in(λ)

if there exist algorithms
(Setup,Constrain,Eval,KeyDel) that satisfy the following:

– Setup(1λ, 1in(λ)) outputs a pair of keys pk, sk.
– Constrain(sk, S) outputs a constrained key KS which enables evaluation of

F (sk,x) on all x ∈ S and no other x.
– KeyDel(KS , S′) outputs a constrained key KS∩S′ which enables the evaluation

of F (sk,x) for all x ∈ S ∩ S′ and no other x. We note that in systems
where KeyDel is supported, the Constrain algorithm above can be expressed as
a special case of KeyDel by letting sk correspond to the set of all inputs, i.e.
sk = K{0,1}in(λ) .

– Eval(KS ,x) outputs F (sk,x) if x ∈ S, ⊥ otherwise.

Please refer to the full version [1] for the definition of security.

3 Construction: Single Input FE for Turing Machines

In this section, we construct a single input functional encryption scheme for
Turing machines, denoted by TMFE from the following ingredients:

1. Two compact functional encryption schemes for circuits, 1FE1 and 1FE2. We
will assume that the scheme 1FE2 is decomposable as defined in the prelimi-
naries.

2. A symmetric encryption scheme SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec).
3. A delegatable constrained pseudorandom function (cPRF), denoted by F

which supports T delegations for the function family ft : {0, 1}2·λ → {0, 1}
defined as follows. Let x, t denote integers whose binary representations are
x, t of λ bits. Then,

ft(x‖z) = 1, if x ≥ t and 0 otherwise

Intuitively, the function is parametrized by a value t and evaluates to 1 if the
first half of its input, x ≥ t. We will denote the constrained PRF key Kft

corre-
sponding to function ft by Kt for ease of notation. By the delegation property of
constrained PRFs, we have that if t′ ≥ t then Kt′ can be derived from Kt. In our
construction the parameter t will represent the time step in the computation,
which means that a PRF key of the current time step can be used to derive PRF
keys for future time steps. We will denote a PRF for this functionality by F. The
security proof makes use a punctured version of the above cPRF, please see the
full version [1] for details.
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3.1 Construction

Below we provide our construction for single input FE for Turing machines.
Notation. Note that since 1FE2 is decomposable, there exists an encoding

function E which encodes each bit of the input and since it is compact, the
output length of E is independent of the circuit class supported by 1FE2. Thus,
by choosing the encoding function first, the CktFE scheme may support a circuit
class that outputs its own ciphertext components. We denote by Ē the encoding
function E applied bitwise to a vector, i.e. Ē(w) = E(w1) . . . E(wn).

TMFE.Setup(1λ): Upon input the security parameter 1λ, do the following:

1. Let (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1λ), where 1FE2 is a decompos-
able functional encryption scheme for the circuit family

Next :
( (

{SYM} × {0, 1}4λ × Σ × Trap
)

×
(
{ST}×Q

))
→

(
C1FE2

)2 ∪{ACC,REJ, ⊥}

Here, Σ and Q are the alphabet and state space respectively of the Turing
machine family. The tokens SYM and ST are flags denoting a symbol and
a state respectively. The set {0, 1}4λ encodes in order, a random value
key-id associated with a TM M , a cPRF key, the current time step in the
computation and the length of the input string, each of λ bits. Here, Trap
is a data structure of fixed polynomial length which will be used in the
proof. Since we do not need it in the construction, we do not discuss it
here, please see Fig. 6 for its definition. C1FE2 denotes the ciphertext space
of 1FE2, and ACC and REJ are bits indicating accepting and a rejecting
states of a TM respectively.

2. Let (1FE1.PK, 1FE1.MSK) ← 1FE1.Setup(1λ), where 1FE1 is a compact,
public-key CktFE scheme for the circuit family

ReRand :
(
{0, 1}3λ × Σ × Trap

)
→ C1FE2 × (C1FE2 ∪ {⊥})

Again, {0, 1}3λ encodes in order, a root cPRF key, a time step and the
length of the input string respectively, while Σ, Trap and C1FE2 are as
described above.

3. Output PK = 1FE1.PK and MSK = (1FE1.MSK, (1FE2.PK, 1FE2.MSK)).
TMFE.Enc(PK,w): Upon input the public key PK, and message w of arbitrary

length � = |w|, do the following:
1. Sample the root key K0 for function ft where t = 0 for the cPRF F

described above.
2. For i ∈ [�], let CTi = 1FE1.Enc(PK, (K0, i, �, wi,Trap)), where Trap is a

data structure which is only relevant in the proof. Here, all fields of Trap
are set to ⊥ except a flag Trap.mode-real = 1 which indicates that we are
in the real world. Please see Fig. 6 for the definition of Trap.

3. Output CTw = {CTi}i∈[�].
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TMFE.KeyGen(MSK,M ): Upon input the master secret key MSK and the
description of a Turing machine M , do the following. We will assume, w.l.o.g.
that the TM is oblivious (see [1] for a justification) and qst ∈ Q is the start
state of M .
1. Sample a random value salt ← {0, 1}λ.
2. Interpret MSK = (1FE1.MSK, (1FE2.PK, 1FE2.MSK)).
3. Let SKReRand = 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥) where

Fig. 2 defines the circuit ReRand1FE2.PK,salt,qst,⊥,⊥.
4. Let SKNext = 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,⊥,⊥) where Fig. 4

defines the circuit Next1FE2.PK,salt,M ,⊥,⊥.
5. Output SKM = (SKReRand,SKNext).

TMFE.Dec(SKM ,CTw): Upon input secret key SKM and ciphertext CTw, do the
following:
1. Interpret SKM = (SKReRand,SKNext) and CTw =

(
CT1, . . . ,CT|w|

)
.

2. For i ∈ [|w|], do the following:
(a) If i = 1, invoke 1FE1.Dec(SKReRand,CT1) to obtain (CTsym,1,CTst,1).
(b) Else, invoke 1FE1.Dec(SKReRand,CTi) to obtain (CTsym,i,⊥).

3. Denote
(
(CTsym,1,CTst,1),CTsym,2, . . . ,CTsym,|w|

)
as the new sequence of

ciphertexts obtained under the Next scheme.
4. Let t = 1. While the Turing machine does not halt, do:

(a) Invoke 1FE2.Dec
(
SKNext, (CTsym,t,CTst,t)

)
to obtain:

– ACC or REJ. In this case, output “Accept” or “Reject” respec-
tively, and exit the loop.

–
(
CTsym,t′ ,CTst,t+1

)
.

Note that t′ is the next time step that the work tape cell accessed at
time step t will be accessed again.

(b) Let t = t + 1 and go to start of loop.

3.2 Correctness and Efficiency of Single Input TMFE

We now argue that the above scheme is correct. The TMFE.Dec algorithm
takes as input a secret key SKM = (SKReRand,SKNext) and a ciphertext CTw =(
CT1, . . . ,CT|w|

)
under the 1FE1 scheme supporting the functionality ReRand :=

ReRand1FE2.PK,salt,qst,C2,C2 . Firstly, note that given a secret key SKReRand along with
a ciphertext CTw, we have as follows.

1. Since CT1 encodes Trap with Trap.mode-real = 1, hence by the correctness
of the 1FE1 scheme, we get 1FE1.Dec(SKReRand,CT1) = (CTsym,1,CTst,1) as
output.

2. For i ∈ [2, |w|], since CTi encodes Trap with Trap.mode-real = 1, hence by the
correctness of the 1FE1 scheme, we get 1FE1.Dec(SKReRand,CTi) = (CTsym,i,⊥)
as the correct output.
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Fig. 2. This circuit re-randomizes the ciphertexts provided during encryption to use
randomness derived from a cPRF. The seed for the cPRF is specified in the ciphertext
and the input is specified by the key. This ensures that each ciphertext, key pair form
a unique “thread” of execution.

Fig. 3. Subroutine handling the trapdoor modes in ReRand. This is “active” only in
the proof.
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Fig. 4. Function to mimic TM computation. It reads the current symbol, state pair and
outputs an encryption of the new state and symbol to be written under the appropriate
randomness generated using a cPRF.

Fig. 5. Subroutine handling the trapdoor modes in Next. This is “active” only in the
proof.
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The new sequence of 1FE2 ciphertexts output by ReRand are now sequenced as(
(CTsym,1,CTst,1), CTsym,2, . . . ,CTsym,|w|

)
. The 1FE2 scheme supports the func-

tionality Next := Next1FE2.PK,salt,M ,C1,C2 . Throughout the 1FE2 decryption, we
maintain the invariant that at any time step t, apart from a secret key SKNext, the
input to the 1FE2.Dec algorithm is an entire 1FE2 ciphertext decomposed into two
components corresponding to a symbol and a state ciphertext both of which are
computed with the same randomness, which is computed as F.Eval(K0, (t‖salt))6.

We show that given a secret key SKNext and the sequence of ciphertexts(
(CTsym,1,CTst,1), CTsym,2, . . . ,CTsym,|w|

)
generated from the outputs of the

1FE1.Dec algorithm, 1FE2.Dec correctly computes the decomposed ciphertext
components of a symbol and a state that occur along the computation path
and finally outputs the value of machine M on the sequenced input. Define
τ = runtime(M,w). Formally, by the correctness of 1FE2 scheme, at any time
step t ∈ [τ − 2], 1FE2.Dec(SKNext, (CTsym,t,CTst,t)) correctly outputs either
(CTsym,t′ ,CTst,t+1) with t < t′ ≤ τ − 1. Further, for any time step t ∈ [τ − 2], we
have:

1. Let t ∈ [τ − 2] \ [�]. If the current work tape cell was accessed7, at some
time step t̃ < t, then CTsym,t encoding (SYM, key-id,Kt+1, t, �, σt,Trap) was
constructed at time step t̃. Note that σt may be the blank symbol β. When
t ∈ [�], CTsym,t is constructed at time step t via the ReRand circuit.

2. The ciphertext component CTst,t encoding (ST, qt) at time step t was con-
structed at time step t − 1 for t > 1 and at time step 1, when t = 1.

3. The randomness rt = F.Eval(Kt̃+1, (t‖salt)) = F.Eval(Kt, (t‖salt)) binds the
components CTsym,t and CTst,t .

Thus, at any given time step t ∈ [τ − 2], we have a complete ciphertext of 1FE2

which may be fed again with SKNext to 1FE2.Dec in order to proceed with the
computation. Thus, the execution of 1FE2.Dec at the (τ −2)th time step provides
the complete pair (CTsym,τ−1,CTst,τ−1). By the correctness of 1FE2 scheme again,
at time step t = τ − 1, invoking 1FE2.Dec(SKNext, (CTsym,τ−1,CTst,τ−1)) outputs
either “Accept” or“Reject” by simulating the execution of M for the final time
step τ inside the function Next, thus correctly outputting M(w).

Efficiency. The TMFE construction described above inherits its efficiency from
the underlying CktFE constructions. Note that the ciphertext is compact and is
of size poly(λ, |w|). Also, the running time of the decryption procedure is input
specific since it mimics the computation of M on w using secret key encoding M
and ciphertext encoding all the intermediate states of the computation. Addi-
tionally, the public parameters are short poly(λ), since these are just the public

6 We do not explicitly construct ciphertext components corresponding to blank tape
cells in the Next functionality for ease of exposition; we assume w.l.o.g that any non-
input cell that is accessed by the OTM has been written to by the Next functionality
in a previous step, thus generating the requisite symbol ciphertext.

7 We assume that every time a cell is accessed, it is written to, by writing the same
symbol again if no change is made.
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parameters of a compact CktFE scheme. The function keys are also short, since
they are CktFE function keys for circuits ReRand and Next which are of size
poly(λ) and poly(|M |, λ) respectively.

3.3 Proof of Security for Single Input TMFE

Next, we prove that the above TMFE scheme satisfies distributional indistin-
guishability (DI) for single (or constant) length outputs, as long as the under-
lying CktFE scheme satisfies distributional indistinguishability for any output
length. In the full version [1], we provide an instantiation of a CktFE scheme
satisfying distributional indistinguishability.

Theorem 1. Assume that the functional encryption schemes for circuits 1FE1

and 1FE2 are DI secure and that F is a secure cPRF for the function fam-
ily defined above. Then, the construction of functional encryption for Turing
machines TMFE is selective DI secure for single bit outputs.

The Trapdoor Data Structure. To implement the approach discussed in Sect. 1,
we will make use of a data-structure Trap that lets us store all the requisite
trapdoor information needed for the security proof within the ciphertext. In our
construction, decryption of a particular input by a particular function key results
in a chain of ciphertexts, each of which contain the trapdoor data structure. In
the real world, this information is not used but as we progress through the proof,
different fields become relevant. The data structure is outlined in Fig. 6.

Fig. 6. Data structure Trap used for proof

Row 1. Above, key-id refers to the particular function key being considered
and we switch the execution chain from b = 0 to b = 1 key by key. All the
ciphertexts in a given execution chain share the key-id value. We assume a
lexicographic order on the key-id fields, this can be easily ensured by having
a counter as part of the key-id field. We do not make this explicit below for
notational brevity. If key-id∗ is the key identity programmed in a particular
execution chain, then all keys with values smaller than key-id∗ will decrypt
the chain using the input bit b = 1, and all keys with values larger than
key-id∗ will use b = 0. Hence, the 1FE1 ciphertexts provided by the encryptor
must encode messages corresponding to both values of b, the fields val0 and
val1 are designed for this purpose8. Note that 1FE2 ciphertexts computed by

8 For the knowledgeable reader, this is similar to what was done by [5].
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decryption need not track messages corresponding to both values of b, since
the “chain is extended” via decryption corresponding to exactly one of b = 0
or b = 1 depending on the relation between the key identities in the ciphertext
and the function key. The field SKE.K refers to the key of a symmetric key
encryption scheme, which is used to decrypt some encrypted value embedded
in the function key. This is a standard trick when the key must hide something
in the public key setting. The flag mode-real means the scheme operates in
the real world mode and the trapdoor information is not used.

Rows 2 and 3. The fields Target TS1 and Target TS2 refer to the time steps
corresponding to the “broken link” in the decryption chain, namely the two
time steps for which the ciphertext and function key are being programmed
so as to switch from b = 0 to b = 1. The fields Sym TS1 and ST TS1 are the
time steps when the symbol and state ciphertexts for time step Target TS1 are
generated; for instance ST TS1 = Target TS1 − 1 since the state ciphertext
for a given time step is always generated in the previous time step, while
the symbol ciphertext for a given time step may be generated much earlier.
Sym TS2 and ST TS2 are defined analogously. The fields Sym val1 and ST val1
contain the symbol and state values which will be encrypted in the hybrid at
the time steps Sym TS1 and ST TS1 when mode-trap1 is set; Sym val2 and
ST val2 are defined analogously.

Row 4. When mode-trap3 is set, the symbol and state values are set to ⊥, and
the values hard coded in the function key are used for the target time step. In
more detail, the function key contains SKE encryptions of symbol and state
ciphertexts corresponding to time step Target TS hard-coded within itself. If
key-id∗ = key-id, where key-id∗ is the key identity programmed in a particular
execution chain and key-id is the key identity of the function key in question,
and mode-trap3 = 1, then at time steps SYM TS and ST TS the SKE secret
key in row 1 of the Trap data structure is used to decrypt the SKE encryptions
and output the encrypted values.

The Hybrids. We now proceed to describe our hybrids. For simplicity we first
describe the hybrids for a single function request, for some Turing machine M .
We denote by T the time taken by M to run on the challenge messages. Since
the proof is very involved, we describe it first for the weak selective game, where
the adversary specifies the challenge vectors and machine at the same time. In
the full version [1] we discuss how to remove this restriction.

H(0): This is the real world, when mode-real = 1 and mode-trap1 = mode-trap2 =
mode-trap3 = ⊥.

H(1, 1): In this world, all ciphertexts (constructed by the encryptor as well
as function keys) have mode-real = ⊥, mode-trap1 = 1, mode-trap2 =
1, mode-trap3 = ⊥. We program the last link in the decryption chain for
switching bit b by setting:

Target TS1 = T − 1,Target TS2 = T − 2

The fields Sym TS1 and ST TS1 contain the time steps when the symbol
and state ciphertext pieces are generated for time step T − 1, and the fields
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Sym val1 and ST val1 contain the symbol and state values which must be
encrypted by the function key in the above time steps when mode-trap1 is set.
Note that these fields exactly mimic the behaviour in the real world, namely
the time steps and values are set to be exactly what the real world decryption
would output. The fields corresponding to TS2 are defined analogously.
Indistinguishability follows from security of 1FE1, since the decryption values
in both hybrids are exactly the same.

H(1, 2): Hardwire the key with an SKE encryption of symbol and state cipher-
texts output at step T − 1 for b = 0. Use the same ciphertexts as would be
generated in the previous hybrid.
Indistinguishability follows from security of SKE, since the only difference is
the value of the message encrypted using SKE which is embedded in the key.

H(1, 3): Set mode-trap1 = ⊥, mode-trap2 = 1, mode-trap3 = 1 and Target TS =
T − 1. In this hybrid the hardwired value in the key is used to be output as
step T − 1 ciphertext.
Indistinguishability follows from security of 1FE1, since the decryption values
in both hybrids are exactly the same.

H(1, 4): Change normal root key K0 to punctured root key KT−1
0 which punctures

all delegated keys at point (T − 1‖key-id).
Indistinguishability follows from security of 1FE1. Note that we evaluate the
cPRF at point (T − 1‖key-id) only to construct the 1FE2 ciphertext output at
time step T − 1 identified with key-id. This ciphertext is currently hardwired
in the function key, and is computed exactly the same way in both hybrids.
Thus, the cPRF key is only required to compute randomness of points �=
(T − 1‖key-id), for which the punctured key suffices, and which moreover
evaluates to the same value as the normal key on all such points. Hence, we
have that the decryption values in both hybrids are exactly the same. Note
that the punctured key is not used to evaluate on the punctured points.

H(1, 5): Switch the randomness in the 1FE2 ciphertexts for time step T −1 which
are hardwired in the key to true randomness.
Indistinguishability follows from security of punctured cPRF for the afore-
mentioned function family, since the remainder of the distribution only uses
the punctured key.

H(1, 6): Switch the value encoded in the 1FE2 ciphertexts for time step T − 1
which are hardwired in the key to correspond to b = 1.
Indistinguishability follows from security of 1FE2. Formally, we do a reduction
which plays the security game against the 1FE2 challenger and simulates the
TMFE adversary. The reduction simulates 1FE1 itself and receives the 1FE2

public and function keys from the challenger. The only difference between the
two hybrids is the 1FE2 ciphertext for time step T − 1 which is embedded in
the function key as received from the 1FE2 challenger.

H(1, 7): Switch randomness back to PRF randomness in the ciphertext hard-
wired in key, using the punctured key for all but the hardwired ciphertext.
Indistinguishability follows from security of cPRF as discussed above.

H(1, 8): Switch the punctured root key to the normal root key.
Indistinguishability follows from security of 1FE1 as discussed above.
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H(2, 1): Switch ciphertext in slot 1 for target T −1 to be for b = 1. Slot 2 remains
b = 0. Set mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.
Indistinguishability follows from security of 1FE1, since the decryption values
in both hybrids are exactly the same.

H(2, 2): Hardwire key with SKE encryption of 1FE2 ciphertext for time step T −2
and bit b = 0 (same as hybrid (1, 2) but for T − 2).
Indistinguishability follows from security of SKE as above.

H(2, 3): Set mode-trap1 = 1 with target T−1, mode-trap2 = ⊥, and mode-trap3 =
1 with target T − 2.
Indistinguishability follows from security of 1FE1, since the decryption values
in both hybrids are exactly the same.

H(2, 4): Switch normal root key to punctured key at point (T − 2‖key-id).
Indistinguishability follows from security of 1FE1 as discussed above.

H(2, 5): Switch randomness to true in the ciphertext hardwired in key.
Indistinguishability follows from security of cPRF as discussed above.

H(2, 6): Switch hardwired 1FE2 ciphertext for step T − 2 to correspond to bit
b = 1.
Indistinguishability follows from security of 1FE2.

H(2, 7): Switch randomness back to use the PRF in the ciphertext hardwired in
key.
Indistinguishability follows from security of cPRF as discussed above.

H(2, 8): Switch punctured root key to normal root key.
Indistinguishability follows from security of 1FE1 as discussed above.

H(3, 1): Intuitively, we slide the trapdoor left by one step, i.e. change target time-
steps to T − 2 and T − 3 in the ciphertext. Now slot 1 for T − 2 corresponds
to b = 1 and slot 2 for T − 3 to b = 0. Set mode-real = mode-trap3 = ⊥ and
mode-trap1 = mode-trap2 = 1.
Indistinguishability follows from security of 1FE1, since the decryption values
in both hybrids are exactly the same. Note that now slot T − 1 is redundant,
since T − 2 ciphertext is already switched to b = 1.
Hybrid H(3, i) will be analogous to H(2, i) for i ∈ [8].
As we proceed left in the execution chain one step at a time, we reach step
� where � = |w|, i.e. time steps for which 1FE1 ciphertexts are provided by
the encryptor. At this point we will hardwire the ReRand key with symbol
ciphertexts for � time steps, one at a time, and the Next key for the state
ciphertexts9. Moreover, we must now add an additional hybrid in which the
challenge 1FE1 ciphertext at position � contains the message bit corresponding
to b = 1; intuitively, we must switch the bit before we slide the trapdoor since
the ciphertext for this position is not generated by decrypting the previous
ciphertext. In more detail, in H(T − �, 8), analogously to hybrid (1, 8), the
T − (T − �) = �th bit hard-wired in the trapdoor is changed to 1. We now
add one more hybrid, namely:

9 There is an exception at time step 1 when both the symbol ciphertext and the start
state ciphertexts are hardwired in the ReRand key.
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H(T − �, 9) : In this hybrid, we modify the 1FE1 challenge ciphertext in position
� as follows: the encoded message is changed corresponding to b = 1 and flag
mode-real = 1. The other flags mode-trap1 = mode-trap2 = mode-trap3 = ⊥.
Note that all ciphertexts previous to time step � remain unchanged, and out-
put their corresponding symbol ciphertexts correctly. The Next circuit outputs
the state ciphertext for time step � corresponding to bit b = 1. The only dif-
ference between this hybrid and the previous one is that here we use the real
mode to output the symbol ciphertext for b = 1 whereas previously we used
the trapdoor mode to output the same symbol ciphertext. Hence, decryption
values in both hybrids are exactly the same, and indistinguishability follows
from security of 1FE1.
Finally in H(T − 1, 9), the entire chain has been replaced to use b = 1 and
all the challenge 1FE1 ciphertexts have encoded messages corresponding to
b = 1 with mode-real = 1.

H(T ): In this hybrid, all the other fields in the trapdoor data structure, excepting
mode-real are disabled and set to ⊥. This is the real world with b = 1.
Since all the encoded messages use b = 1, decryption values are all exactly
the same as in H(T − 1, 9), hence indistinguishability follows from security of
1FE1.

The formal reductions are provided in the full version [1].

Multiple Keys. We handle multiple keys by repeating the above set of hybrids
key by key. Each key carries within it an identifier key-id, and if this is less than
the key identifier encoded in the ciphertext, the bit b = 1 is used, if it is greater
then the bit b = 0 is used and if it is equal, then the above sequence of hybrids is
performed to switch from b = 0 to b = 1. To support this, the 1FE1 ciphertexts
provided by the encryptor must encode messages corresponding to both values
of b, the fields val0 and val1 in the trapdoor data structure of Fig. 6 are provided
for this purpose. Security follows by a standard hybrid argument as in [5], we
defer the formal description to the full version of the paper [1].

3.4 Constructing the cPRF

In the full version [1], we provide a construction for a cPRF F which supports punc-
turing and delegation as required; the T cPRFs Fi for i ∈ [T ] may each be con-
structed similarly. To begin, note that we require the root key of F to be punctured
at a point i∗ (say). The cPRF construction for punctured PRF [17,18,36] (which
is in turn inherited from the standard PRG based GGM [32]) immediately satisfies
this constraint, so we are left with the question of delegation.

Recall that we are required to delegate T times, where T is the (polynomial)
runtime of the Turing machine on the encrypted input (please see preliminaries
in [1]), and the jth delegated key must support evaluation of points {(k‖z) :
z ∈ {0, 1}λ} for k ≥ j, except when (k‖z) = i∗. This may be viewed as the jth

key being punctured on points [1, j − 1] ∪ i∗. We show that the GGM based
construction for puncturing a single point can be extended to puncturing an
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interval (plus an extra point). Intuitively, puncturing an interval corresponds to
puncturing at most λ internal nodes in the GGM tree. In more detail, we show
that regardless of the value of j, it suffices to puncture at most λ points in the
GGM tree to achieve puncturing of the entire interval [1, j − 1]. Please see the
full version [1] for details.

4 Construction:Multi-input FE for Turing Machines

In this section we construct a multi-input functional encryption scheme for Tur-
ing machines. Our construction supports a fixed number of encryptors (say k),
who may each encrypt a string wi of unbounded length. Function keys may be
provided for Turing machines, so that given k ciphertexts for wi and a function
key for TM M , decryption reveals M(w1‖ . . . ‖wk) and nothing else. We use the
following ingredients for our construction:

1. A compact, k-input functional encryption scheme for circuits, kFE and a
compact, public-key functional encryption scheme 1FE. As before, we will
assume that the scheme 1FE is decomposable as defined in the preliminaries.

2. A symmetric encryption scheme SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec).
3. A delegatable constrained pseudorandom function (cPRF), denoted by F

which supports T delegations for the function family ft : {0, 1}(k+2)·λ →
{0, 1} defined as follows. Let x, t denote integers whose binary representa-
tions are x, t of λ bits. Then,

ft(x‖z) = 1, if x ≥ t and 0 otherwise

The functionalities supported by kFE and 1FE are called Agg and Next respec-
tively, described next. Agg aggregates the inputs w1, . . . ,wk of all k parties into
one long “global” string (w1‖ . . . ‖wk), encrypted under the scheme 1FE. Since
the length of this aggregate string is unbounded, a single invocation of Agg pro-
duces an encryption of a single symbol in the string, and the function is invoked
repeatedly to produce ciphertexts for the entire string. Each ciphertext output
by the Agg scheme contains a symbol wi as well as the position of the symbol
within the global string. The encryption of the symbols (and the initial state)
also contains a global salt which Agg computes from the random salts provided in
the ciphertexts under the kFE scheme by the individual encryptors. The global
salt identifies the particular input combination that is aggregated, and serves as
input to the PRF in the Next functionality.

Our k-input CktFE scheme may be either private or public key, and will result
in the corresponding notion for k-input TMFE. Since the multi input setting for
FE is considered more interesting in the symmetric key setting (see [19] for
a discussion), we present our construction in the symmetric key setting – the
public key adaptation is straightforward.

We note that ciphertexts output by Agg, which are encryptions of the sym-
bols in the aggregate string under the 1FE scheme, are exactly the same as the
output of the ReRand function in the single input scheme of Sect. 3. Therefore,
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as before, we may have the functionality Next of the 1FE scheme mimic the
computation of the Turing machine on the global string (w1‖ . . . ‖wk). As in
the previous construction, 1FE.Dec accepts as its inputs a ciphertext decom-
posed into two components encoding the current symbol on the worktape and
the current state in the computation, both of which have been encrypted using
the same randomness, and outputs a ciphertext component corresponding to
the symbol written on the tape, as well as the next state. The global salt in the
ciphertext, along with a random nonce chosen by KeyGen are used as input to a
cPRF as before, to compute the randomness used to generate ciphertexts. This
ensures that the execution of a given machine on a given input combination is
maintained separate from any other execution, and thwarts “mix and match”
attacks, where, for instance, an attacker may try to combine a state generated
at some time step t in one execution with a symbol generated at time step t
from a different execution.

If we instantiate the underlying multi-input CktFE by the construction of
[40], we may let the arity k be poly-logarithmic in the security parameter. If we
instantiate multi-input CktFE by the construction of [33], we may support fixed
polynomial arity at the cost of worsening the assumption. Note that [33] rely on
iO while [40] rely on compact FE. Note that [10] support unbounded polynomial
arity, but from public coin DiO as discussed in Sect. 1.

4.1 Construction of Multi-input TMFE

In the following, we denote a k-input, private-key CktFE scheme by k-CktFE and
a decomposable, public key CktFE scheme by 1FE. Since our scheme supports an
a-priori fixed number of parties, say k, we assume that every user is pre-assigned
an index ind ∈ [k].

kTMFE.Setup(1λ, 1k): Upon input the security parameter 1λ and the bound 1k,
do the following:
1. Choosing the functionality for 1FE. Let 1FE be a decomposable,

public-key CktFE for the following circuit family.

Next :
(({SYM}×{0, 1}(k+4)λ×Σ×Trap

)×({ST}×Q×{0, 1}k·λ)) →
(

C1FE
)2 ∪ {ACC,REJ, ⊥}

The tokens SYM and ST are flags denoting a symbol and a state respec-
tively of a Turing machine M which has Σ and Q as the alphabet and state
space respectively. The set {0, 1}(k+4)λ encodes in order, a random value
key-id associated with a TM M , a constrained PRF key, the current time
step in the computation, the length of the input string, each of λ bits and
a string of length k ·λ bits encoding a random value gsalt. Here, Trap is a
data structure of fixed polynomial length which will be used in the proof.
Since we do not need it in the construction, we do not discuss it here, please
see the full version [1] for its definition. The set {0, 1}k·λ encodes again a
random value gsalt associated with the message component for state. C1FE

is the ciphertext space of 1FE. ACC and REJ denote tokens when M reaches
an accepting state and a rejecting state respectively.
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2. Choosing the functionality for kFE. Let kFE be a k-CktFE for the
following circuit family.

Agg : ({SYM,SP} × {0, 1}4λ × [k] × Σ × Trap)k → C1FE × (C1FE ∪ {⊥})

The special token SP denotes an encryption of the length of an input
string corresponding to any user. The set {0, 1}4λ encodes in order, a con-
strained PRF key, the time step of the current symbol, the input length
and a random salt each of λ bits. Σ,Trap and C1FE are as described above.

3. Choosing keys for kFE and 1FE.

Let kFE.MSK←kFE.Setup(1λ, 1k ), (1FE.PK, 1FE.MSK)←1FE.Setup(1λ, 1k )

4. Output MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).

kTMFE.Enc(MSK,wind, ind): Upon input the master key MSK, and message wind

of arbitrary length �ind and an index ind ∈ [k], do the following:

1. Interpret the input MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).
2. Let wind = w1w2 . . . w�ind . Sample saltind ← {0, 1}λ.
3. Construct the data structure Trap and set all its fields to ⊥ except a flag

Trap.mode-real = 1 which indicates that we are in the real world. The
data structure Trap is only relevant in the proof. Please see [1] for the
definition of Trap.

• Encoding Input String and Its Length

4. If ind = 1, do the following:
(a) Sample a root key for the constrained PRF F as K0 ← F.Setup(1λ).
(b) Construct the input message len1 = (SP,K0,⊥, �1, salt1, 1,⊥,Trap).
(c) Encrypt �1 as a special ciphertext CT1,SP = kFE.Enc(kFE.MSK, len).
(d) For i ∈ [�1] do the following:

i. Construct the input message y1,i = (SYM,K0, i, �1, salt1, 1, wi,
Trap).

ii. Compute the ciphertext CT1,SYM,i = kFE.Enc(kFE.MSK,yi).
5. If ind ∈ [2, k], do the following:

(a) Construct the input message lenind = (SP,⊥,⊥, �ind, saltind, ind,⊥,
Trap).

(b) Encrypt �ind as a special ciphertext CTind,SP = kFE.Enc(kFE.MSK,
len).

(c) For i ∈ [�ind] do the following:
i. Construct the input message yind,i = (SYM,⊥, i, �ind, saltind,

ind, wi,Trap).
ii. Compute the ciphertext CTind,SYM,i = kFE.Enc(kFE.MSK,yi).

6. Output CTwind
=

(
CTind,SP, {CTind,SYM,i}i∈[�ind]

)
.
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kTMFE.KeyGen(MSK,M ): Upon input the master secret key MSK and the
description of a Turing machine M , do the following. We will assume, w.l.o.g.
that the TM is oblivious (see [1] for a justification) and qst ∈ Q is the start
state of M .

1. Sample a random value rand ← {0, 1}λ.
2. Interpret MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).
3. Let SKAgg = kFE.KeyGen(kFE.MSK,Agg1FE.PK,rand,qst,⊥,⊥), where Fig. 7

defines the circuit Agg1FE.PK,rand,qst,⊥,⊥.
4. Let SKNext = 1FE.KeyGen(1FE.MSK,Next1FE.PK,rand,M ,⊥,⊥), where Fig. 9

defines the circuit Next1FE.PK,rand,M ,⊥,⊥.
5. Output the secret key as SKM = (SKAgg,SKNext).

kTMFE.Dec(SKM , {CTwi
}i∈[k]): Upon input secret key SKM and k ciphertexts

CTw1 , . . . ,CTwk
, do the following:

1. Interpret the secret key as SKM = (SKAgg,SKNext).
2. Parse CTwind

= (CTind,SP, (CTind,SYM,1, . . . ,CTind,SYM,�ind)) for all ind ∈ [k].

• Aggregate the ciphertexts of all users.
3. For i = 1 to k, do the following:

(a) For j = 1 to �i, do the following:
i. If ((i = 1) ∧ (j = 1)), invoke kFE.Dec (SKAgg, (CT1,SYM,1,

{CTn,SP}n∈[k]\{1}
))

to obtain (CTsym,1,CTst,1).
ii. If ((i = 1) ∧ (j > 1)), invoke kFE.Dec (SKAgg, (CT1,SYM,j ,

{CTn,SP}n∈[k]\{1}
))

to obtain (CTsym,j ,⊥).
iii. Else, invoke kFE.Dec

(
SKAgg,

(
CTi,SYM,j , {CTn,SP}n∈[k]\{i}

))
to

obtain (CT
sym,L̃i+j

,⊥), where L̃i =
∑i−1

m=1 �m.
• Execute the TM on aggregated input.
4. The aggregated sequence of ciphertexts under the Next scheme, of length

Lk =
∑k

j=1 �j computed above is expressed as:
((CTsym,1,CTst,1),CTsym,2, . . . ,CTsym,�1 ,CTsym,�1+1, . . . ,CTsym,Lk

).
5. Let t = 1. While the Turing machine does not halt, do:

(a) Invoke 1FE.Dec
(
SKNext, (CTsym,t,CTst,t)

)
to obtain:

– ACC or REJ. In this case, output “Accept” or“Reject” respec-
tively, and exit the loop.

– (CTsym,t′ ,CTst,t+1).
Note that t′ is the next time step that the work tape cell accessed at
time step t will be accessed again.

(b) Let t = t + 1 and go to start of loop.
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Fig. 7. This circuit aggregates and re-randomizes the ciphertexts provided during
encryption to use randomness derived from a cPRF. The seed for the cPRF is spec-
ified in the ciphertext for first party and the input is specified by the key. This ensures
that each ciphertext, key pair form a unique “thread” of execution.

Fig. 8. Subroutine handling the trapdoor modes in Agg. This is “active” only in the
proof.
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4.2 Correctness of Multi-input TMFE

The proof of correctness is split into two parts. In the first part we argue that,
given as input the secret key SKAgg along with k ciphertexts under the kFE
scheme, exactly one of which encodes a symbol and the other (k − 1) encode
the individual input lengths, the kFE.Dec algorithm computes a 1FE cipher-
text component of the symbol with its updated position in the global string.
By repeating this process for all symbols encoded by all users, we obtain a
sequence of 1FE ciphertext components, each containing its updated position in
the aggregated string. Additionally, each of these ciphertext components contains
a global/aggregate salt that is generated from concatenating each individual
encryptor’s randomly generated salts. This global salt identifies the particular
input combination being aggregated.

Fig. 9. Function to mimic TM computation. It reads the current symbol, state pair and
outputs an encryption of the new state and symbol to be written under the appropriate
randomness generated using a cPRF.

Correctness of the second part corresponds to the correct execution of the
Turing machine on the aggregate sequence of ciphertexts, and this is exactly
the same as in Sect. 3. As before, we maintain the invariant that at any
time step t, the input to the 1FE.Dec algorithm is a complete 1FE ciphertext
decomposed into two components corresponding to symbol and state (along
with additional auxiliary inputs), both computed with the same randomness
F.Eval(K0, (t‖rand‖gsalt)).
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Fig. 10. Subroutine handling the trapdoor modes in Next. This is “active” only in the
proof.

In more detail, we have the following. Correctness of Aggregation. For-
mally, let there be k users so that k ciphertexts {CTwind

}ind∈[k] are given
as input to kTMFE.Dec algorithm. For all ind ∈ [k], let �ind be the
length of input string of user ind. Each ciphertext CTwind

is a sequence
(CTind,SP, (CTind,SYM,1, . . . ,CTind,SYM,�ind)) of ciphertexts, where the first compo-
nent CTind,SP encodes the input string length of user ind and the second compo-
nent {CTind,SYM,i}i∈[�ind] encodes in order the i-th symbol wi of the actual input
string wind = (w1, w2, . . . , w�ind) of the same user. These ciphertexts are gener-
ated under the kFE scheme with the master secret key kFE.MSK which supports
a k-input functionality Agg := Agg1FE.PK,rand,qst,⊥,⊥. Therefore, given secret key
SKAgg, we have:

1. Invoking kFE.Dec on the ciphertext CT1,SYM,1 encoding the first sym-
bol of w1 along with the special ciphertexts CTind,SP encoding |wind| for
ind �= 1 gives (CTsym,1,CTst,1). By correctness of kFE decryption, we have:
kFE.Dec

(
SKAgg,

(
CT1,SYM,1, {CTind,SP}ind∈[k]\{1}

))
= (CTsym,1,CTst,1).

2. Invoking kFE.Dec on the ciphertext CT1,SYM,j encoding the jth sym-
bol of w1 along with the special ciphertexts CTind,SP encoding |wind| for
ind �= 1 gives (CTsym,j ,⊥). By correctness of kFE decryption, we have:
kFE.Dec

(
SKAgg,

(
CT1,SYM,j , {CTind,SP}ind∈[k]\{1}

))
= (CTsym,j ,⊥).

3. Finally, ∀ ind ∈ [k] \ {1}, invoking kFE.Dec on the ciphertext CTind,SYM,j

encoding the jth symbol of wind along with the special ciphertexts CTind′,SP
encoding |wind′ | for ind �= ind′ computes the new global position of the symbol
in the aggregated string and outputs

(
CT

sym,L̃i+j
,⊥)

. By correctness of kFE

decryption, we have: kFE.Dec
(
SKAgg,

(
CTind,SYM,j , {CTind′,SP}ind′∈[k]\{ind}

))
=

(
CT

sym,L̃i+j
,⊥)

, where L̃i =
∑ind−1

m=1 �m.
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Note that F.Eval(K0, (pos‖rand‖gsalt)) is the randomness used to compute
each of these ciphertext components, where pos refers to the global position spe-
cific to a symbol in the aggregate input string.

Correctness of TM Execution. The 1FE scheme supports the func-
tionality Next := Next1FE.PK,rand,M ,⊥,⊥. Let the newly generated and
organized sequence of ciphertexts based on time steps be as fol-
lows:

(
(CTsym,1,CTst,1) , {CTsym,i}i∈[2,Lk]

)
with Lk =

∑k
i=1 �i. Let w =

(w1, w2, . . . , w�1 , w�1+1, w�1+2, . . . , w�1+�2 , . . . , wLk
) be the aggregated input

string and define τ = runtime(M,w). For any time step t ∈ [τ − 2], we have

1. Let t ∈ [τ − 2] \ [�]. If the current work tape cell was accessed10, at some time
step t̃ < t, then CTsym,t encoding (SYM, key-id,Kt+1, t, �, gsalt, σt,Trap) was
constructed at time step t̃. Note that σt may be the blank symbol β. When
t ∈ [�], CTsym,t is constructed at time step t via the Agg circuit.

2. The ciphertext component CTst,t encoding (ST, qt, gsalt) at time step t was
constructed at time step t − 1 for t > 1 and at time step 1, when t = 1.

3. The randomness rt = F.Eval(Kt̃+1, (t‖rand‖gsalt)) = F.Eval(Kt, (t‖rand‖gsalt))
binds CTsym,t and CTst,t and both the encoded messages also share the same
global salt.

Thus, at any given time step t ∈ [τ − 2], we have a complete ciphertext of 1FE
which may be fed again with SKNext to 1FE.Dec in order to proceed with the
computation. Thus, the execution of 1FE.Dec at the (τ −2)th time step provides
the complete pair (CTsym,τ−1,CTst,τ−1). By the correctness of 1FE scheme again,
at time step t = τ − 1, invoking 1FE.Dec(SKNext, (CTsym,τ−1,CTst,τ−1)) outputs
either “Accept” or “Reject” by simulating the execution of M for the final time
step τ inside the function Next, thus correctly outputting M(w).

4.3 Proof of Security for Multi-input TMFE

Security of the above construction follows the same blueprint as the proof in
Sect. 3 except that instead of single input functionality ReRand, we now use a k-
input functionality Agg to aggregate and rerandomize the inputs. We emphasize
that the outputs produced by the Agg functionality are exactly the same as
the outputs produced by ReRand functionality in Sect. 3: namely a sequence
of 1FE ciphertexts encoding the symbol and global position, computed using
randomness derived from a cPRF. Hence, the chief new ingredient in the security
proof is the security of Agg functionality, which is derived from the security of
the kFE scheme.

10 We assume that every time a cell is accessed, it is written to, by writing the same
symbol again if no change is made.
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Formally, we argue that:

Theorem 2. Assume that the k input FE for circuits kFE satisfies standard
indistinguishability, and the single input FE for circuits 1FE satisfies distribu-
tional indistinguishability. Assume that the cPRF is secure according to defini-
tion. Then, the above construction of k input kTMFE satisfies standard indistin-
guishability.

The proof follows the outline of the single input case, except that now we
must additionally keep track of multiple execution threads corresponding to
various combinations of ciphertexts across multiple users, i.e. various “global
salt” values. In more detail, if each of k users makes Q ciphertext requests, then
we have Qk total possible combinations of ciphertexts, each yielding a different
execution thread per key. Note that each of the Qk combinations is identified
with a unique“global salt”. We will assume w.l.o.g that there is a lexicographic
ordering on all the global salt values; this can be easily ensured by associating
a counter value with each random salt. We do not explicitly include this for
notational brevity.

In the single input case, we replaced the execution chain of a machine over
an input string from b = 0 to b = 1, step by step, and enumerated over all keys.
Now, we again replace an execution chain step by step as in the single input
case, but additionally enumerate over all Qk combinations for each key, as well
as over all keys as before. The number of hybrids grows multiplicatively by Qk.
Details are again deferred to in the full version [1].

5 Indistinguishability Obfuscation for Turing Machines

In this section we construct indistinguishability obfuscation for Turing machines
with bounded length input, i.e. the input length n = n(λ) is any fixed polynomial
in the security parameter. To support inputs of length n, we need an (n+1)-ary
miFE for Turing machines denoted as (n+1)-TMFE; we instantiate this with our
construction from Sect. 4.

5.1 Construction

Let M = {Mλ}λ∈N denote an ensemble of Turing machines with alphabet Σλ =
{0, 1}. Let Encode = {Encodeλ : Mλ → Σ∗

enc}λ∈N be an ensemble of encoding
schemes for M on alphabet Σenc such that for any M ∈ Mλ,Encodeλ (M) =
〈M〉. Further, let U = {Uλ}λ∈N denote the set of Universal Turing machines
parameterized by the security parameter with alphabet ΣU = Σenc ∪ Σλ such
that for all λ ∈ N, for any M ∈ Mλ and any x = (x1, . . . , xn) ∈ Σn

λ , Uλ(x, 〈M〉)
takes x and an encoding 〈M〉 of M , simulates M on x and outputs M(x).

Let (n+1)-TMFE denote the (n + 1)-ary multi-input functional encryption
scheme for Turing machines with alphabet ΣU . We construct an ensemble of
indistinguishability obfuscators iO = {iOλ}λ∈N with iOλ = (iO.Obf, iO.Eval) for
Mλ with inputs x ∈ Σn

λ as follows.
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iO.Obf(1λ, 1n,M): On input the security parameter λ, a bound n ∈ N and a
Turing machine M ∈ Mλ, do the following:
1. Compute the encoding of M as Encodeλ (M) = 〈M〉.
2. Compute a master secret key MSK ← (n+1)-TMFE.Setup (1λ, 1n+1).
3. Compute the secret key for machine Uλ as SKU ←

(n+1)-TMFE.KeyGen(MSK,Uλ).
4. For i ∈ [n], compute the encryptions CTb

i = (n+1)-TMFE.Enc(MSK,
(b, i)), b ∈ Σλ.

5. Compute the encoding of M as CTn+1 = (n+1)-TMFE.Enc(MSK, (〈M〉,
n + 1)).

6. Output the obfuscated machine as M̃ = (SKU,(
{CTb

i}i∈{1,...,n},b∈Σλ
,CTn+1

))
.

iO.Eval(M̃,x): On input the obfuscated machine M̃ and an input x ∈ Σn
λ , do

the following:

1. Parse M̃ =
(
SKU,

(
{CTb

i}i∈{1,...,n},b∈Σλ
,CTn+1

))
and x = (x1, . . . , xn).

2. Compute and output (n+1)-TMFE.Dec (SKU, (CTx1
1 , . . . ,CTxn

n ,CTn+1)).

Correctness is directly followed by the correctness of (n+1)-TMFE scheme.
Since the (n+1)-TMFE we use is compact, the obfuscation size obtained by the
above scheme is poly(λ, |U|, |M |, n). In the full version [1], we show that our
construction is secure:

Theorem 3. Assume that (n+1)-TMFE is a 1-key, 2-ciphertext selectively
secure (n+1)-ary multi-input functional encryption scheme for Turing machines
which satisfies standard indistinguishability. Then the construction in Sect. 5.1
is a secure indistinguishability obfuscator for the Turing machines with bounded
input length n.

Acknowledgement. We thank Vinod Vaikuntanathan for suggesting the generic
transformation from FE to decomposable FE.

A Construction: Decomposable FE for Circuits

Given any single-input circuit FE scheme 1FE satisfying standard indis-
tinguishability based security, a projective garbled circuit scheme GC =
(GCirc,GInp,GEval) with indistinguishability based security [35] supporting a
circuit class C = {Cλ}λ∈N with n-bit inputs, a simple PRF F = (F.Setup,F.Eval)
and a symmetric encryption scheme SYM, we can construct a single-input decom-
posable FE scheme DFE supporting the circuit class C. We note that projective
garbled circuit schemes satisfying indistinguishability based security are implied
from one-way functions [35].

DFE.Setup(1λ, 1n): On input the security parameter λ and input message size
n, do the following:
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1. Generate (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+log n+2).
2. Output (PK,MSK) = (1FE.PK, 1FE.MSK).

DFE.Enc(PK,x): On input the public key PK and a message x = (x1, . . . , xn) of
length n = |x|, do the following:
1. Sample a PRF key K ← F.Setup(1λ) and set a flag mode = 0.
2. Compute CTxi

= 1FE.Enc(PK, (K,0, i, xi,mode)),∀i ∈ [n] and output
CTx = {CTxi

}i∈[n].
DFE.KeyGen(MSK, C): On input the master secret key MSK and a circuit C ∈

Cλ, do the following:
1. Sample a random salt ← {0, 1}λ, CTi ← {0, 1}�(λ),∀i ∈ [0, n].
2. Output SKĈ = 1FE.KeyGen(MSK, ĈC,salt,{CTi}i∈[n],CT0), where ĈC,salt,

{SYM.CTi}i∈[n],SYM.CTC̃ is a circuit described in Fig. 11.
DFE.Dec(SKĈ ,CTx): On input a function key SKĈ and a decomposed ciphertext

CTx = {CTxi
}i∈[n], do the following:

1. For i = 1, invoke 1FE.Dec(SKĈ ,CTx1) to obtain a pair (�1,x1 , C̃).
2. For all i ∈ [2, n], invoke 1FE.Dec(SKĈ ,CTxi

) to obtain (�i,xi
,⊥).

3. Note that x̃ = {�i,xi
}i∈[n] represents the labels corresponding to the gar-

bled input underlying CTx generated as outputs of Ĉ, while C̃ represents
the garbled circuit for C.

4. Run GEval(C̃, x̃) to get y.

Fig. 11. Functionality ĈC,salt,{SYM.CTi}i∈[n],SYM.CT
C̃

Correctness. We have by correctness of 1FE.Dec that it outputs the garbled
input x̃ and the garbled circuit C̃ correctly. The correctness of GEval implies
that decryption recovers C(x) as desired.

The proof of security is provided in the full version [1].
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Abstract. All known multilinear map candidates have suffered from
a class of attacks known as “zeroizing” attacks, which render them
unusable for many applications. We provide a new construction of
polynomial-degree multilinear maps and show that our scheme is prov-
ably immune to zeroizing attacks under a strengthening of the Branching
Program Un-Annihilatability Assumption (Garg et al., TCC 2016-B).

Concretely, we build our scheme on top of the CLT13 multilinear
maps (Coron et al., CRYPTO 2013). In order to justify the security of
our new scheme, we devise a weak multilinear map model for CLT13 that
captures zeroizing attacks and generalizations, reflecting all known clas-
sical polynomial-time attacks on CLT13. In our model, we show that our
new multilinear map scheme achieves ideal security, meaning no known
attacks apply to our scheme. Using our scheme, we give a new multiparty
key agreement protocol that is several orders of magnitude more efficient
that what was previously possible.

We also demonstrate the general applicability of our model by showing
that several existing obfuscation and order-revealing encryption schemes,
when instantiated with CLT13 maps, are secure against known attacks.
These are schemes that are actually being implemented for experimen-
tation, but until our work had no rigorous justification for security.

1 Introduction

Cryptographic multilinear maps have proven to be a revolutionary tool. Very
roughly, a multilinear map is an encoding scheme where one can blindly compute
polynomials over encoded elements, without any knowledge of the underlying
elements. They have been used for numerous cutting-edge cryptographic appli-
cations, such as multiparty non-interactive key agreement [2], attribute-based
encryption for circuits [3], asymptotically optimal broadcast encryption [4], wit-
ness encryption [5], functional encryption [6,7], and most notably mathematical
program obfuscation [6]. In turn, obfuscation has been used to construct many
more amazing applications [8–15] as well as establish interesting connections to
other areas of computer science [16,17].

The full version of this paper is available on the IACR ePrint Archive [1].
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Unfortunately, all known multilinear maps for degree d > 2 [18–20] have suf-
fered from devastating attacks known as “zeroizing” attacks [18,21–23]. These
attacks have rendered most of the applications above insecure. In response, many
authors introduced “fixes”; these fixes came in many forms, from tweaking how
information is extracted from the map [24] to compiling the existing weak mul-
tilinear maps into new ones that were presumably stronger [7,25,26]. However,
these fixes were largely ad hoc, and indeed it was quickly shown how to generalize
the zeroizing attacks to circumvent the fixes [25–29].

Given the many attacks and the speed at which fixes were subsequently bro-
ken, researchers have begun attempting to build applications in a sound way
using weak maps. The initial observation by Badrinarayanan, Miles, Sahai, and
Zhandry [30] is that all (classical polynomial-time1) attacks require the ability
to obtain an encoding of zero. Miles, Sahai, and Zhandry [36] observed moreover
that all zeroizing attacks on the original GGH13 multilinear map have a very
similar structure. They define an abstract attack model, called the “annihilating
attack model,” that encompasses and generalizes all existing zeroizing attacks
on these specific maps. Since their initial publication, all subsequent attacks on
GGH13 have either relied on quantum procedures [35] or on the specific setting of
parameters [34]. On the other hand, zeroizing attacks are inherently parameter-
independent, as they only depend on the functionality of the zero-testing proce-
dure. It remains the case today that all classical, parameter-independent attacks
on GGH13 fit in the “weak model” of Miles et al. [36]. Therefore, this annihilat-
ing model appears to be a fully general abstraction of the inherent vulnerabilities
of the GGH13 multilinear maps.

Within the weak model, Badrinaryanan et al. [30] constructed a secure wit-
ness encryption scheme, while Garg, Miles, Mukherjee, Sahai, Srinivasan, and
Zhandry [37] built secure obfuscation and order revealing encryption. Since these
constructions have been proven secure in the weak model, they are secure against
all known attacks on GGH13. To date, these are the only direct applications of
multilinear maps that have been proved secure in the weak multilinear map
model for GGH13.2 Moreover, GGH13 is the only multilinear map for which an
accurate weak model has been devised. This leads to the following goals:

Devise weak multilinear map models for other multilinear maps — such as
CLT13 or GGH15 — that capture all known attack strategies on the maps.

Give new applications of multilinear maps that can be constructed
and proven secure in weak multilinear map models.

1 Sub-exponential [31–33], parameter-dependent [34], and quantum attacks [35] have
been discovered on multilinear map candidates. In this work we will focus on
classical adversaries, and will not consider quantum attacks. We will also not
consider parameter-dependent or sub-exponential attacks as a break, since they can
be defeated by increasing the security parameter.

2 Most other applications are possible by using obfuscation as a building block.
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A weak multilinear map model for CLT13 is especially important, as it is
currently the most efficient multilinear map known [38], and therefore most
likely to eventually become usable in practice.

In addition, the vulnerabilities of existing multilinear map candidates lead
to a natural third goal:

Construct multilinear maps that are not vulnerable to zeroizing attacks.

There has been some initial progress toward this goal. Several authors [39,40]
have shown how to construct a version of multilinear maps from obfuscation, which
can in turn be built from weak multilinear maps using the aforementioned con-
structions. This gives a compelling proof of concept that multilinear maps immune
to zeroizing attacks should be possible. However, as obfuscation is currently incred-
ibly inefficient, such multilinear map constructions are entirely impractical today.
Moreover, obfuscation can be used to directly achieve most applications of multi-
linear maps, so adding a layer of multilinear maps between obfuscation and appli-
cation will likely compound the efficiency limitations. Therefore, it is important
to build multilinear maps without obfuscation.

1.1 Our Work: New Multilinear Maps

In this paper, we make additional progress on all three goals above. We revisit the
idea of “fixing” multilinear maps by using weak maps to build strong maps. We
do not use obfuscation, though our scheme is inspired by obfuscation techniques.
Unlike the fixes discussed above that were quickly broken, we develop our fix
in a methodical way that allows us to formally argue our fix is immune to
generalizations of zeroizing attacks. Specifically, our results are the following:

Weak CLT13 Model. First, we need a framework in which to argue security
against zeroizing attacks. Our first result is a new weak multilinear map model
for CLT13 maps. We demonstrate that this model naturally captures all known
attack strategies on CLT13. The model is somewhat different from the model
for the GGH13 maps, owing to the somewhat different technical details of the
attacks. Unlike the GGH13 case, where the common thread amongst all the
attacks was rather explicit3, the common features of CLT13 attacks are a bit
more nebulous, and require additional effort to pull out and formalize.

Model Conversion Theorem. To aid the analysis of schemes in our model, we
prove that an attack in the weak CLT13 model requires the existence of a certain
type of “annihilating polynomial,” analogous to the annihilating polynomials in
the weak GGH13 model, but simpler. This “plain annihilating model” makes it
very easy to test if a particular usage of CLT13 is safe. For example, it is immedi-
ate from known results that an existing class of obfuscation constructions [30,41]
is secure in our plain annihilating model, under the same algebraic complexity

3 Namely, all attacks compute the ideal 〈g〉 generated by some element g.
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assumption as in [37]. Hence, these schemes are also secure in our weak CLT13
model. This is the first rigorous argument for security of these schemes. We note
that these obfuscation constructions are currently being implemented [38], so
justifying their security is important.

Note that [30,41] are not secure in the weak GGH13 model, indicating that
the weak CLT13 model may be somewhat more useful.

New Multilinear Map Scheme. Armed with a weak model for CLT13, we devise
a new polynomial-degree multilinear map scheme built on top of CLT13. We
then prove that within our weak CLT13 model, there are no attacks on our new
scheme under a new “Vector-Input Branching Program Un-Annihilatability”
Assumption. That is, under our new assumption, any attack at all on our scheme
will yield an attack that does not fit in our CLT13 model, and hence gives a
brand new attack technique on CLT13 maps. Our scheme is based on obfuscation
techniques, but avoids building a full obfuscation scheme, making our scheme
significantly more efficient than obfuscation-based multilinear maps, at least for
simple settings.

Concretely, to implement a 4-Party Non-Interactive Key Exchange with
80 bits of security, our scheme requires approximately 231 CLT13 encodings
with degree 281. For comparison, the most efficient obfuscation-based approach
requires at least 244 CLT13 encodings from a much higher-degree map [42]. These
estimates are derived in the full version of this paper [1].

The lack of a zeroizing attack means we can be more liberal in the types
of encodings that are made public. This allows for greatly enhanced functional-
ity compared to existing multilinear map schemes: for example, we can encode
arbitrary ring elements and give out encodings of zero.

The notable limitation of our construction and analysis is that our secu-
rity proof relies on the Vector-Input Branching Program Un-Annihilatability
Assumption, a new algebraic complexity assumption about annihilating polyno-
mials. The assumption is similar to the Branching Program Un-Annihilatability
Assumption used in [37], though our new assumption is somewhat stronger and
less justified than theirs.

While our scheme is far from practical, we believe this result is a proof of
concept that multilinear maps without zeroizing attacks are possible without
first building obfuscation. Hopefully, future work will be able to streamline our
construction to obtain much more efficient multilinear maps.

Applications. Despite some minor functionality limitations, our multilinear maps
can still be used to solve problems that were not previously possible without first
building obfuscation. For example, we show how to use it for multiparty non-
interactive key exchange (NIKE) for a polynomial number of users. This is the
most efficient scheme for n > 3 users that is immune to known attacks. Hopefully,
our maps can be used to make other applications much more efficient as well.
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Ideal Multilinear Maps from GGH13. We note that our techniques for construct-
ing multilinear maps from CLT13 can be combined with the techniques of Garg
et al. [37] to give new multilinear maps in the weak model for GGH13.

1.2 Techniques

Weak CLT13 Model. In CLT13, there is a composite modulus N =
∏

i pi.4

An encoding s is an integer mod N . Let si = s mod pi be the vector of Chinese
Remainder Theorem components. Each component si encodes a component mi

of the plaintext element. An element in the plaintext space can therefore be
interpreted as a vector of integers. Each encoding is associated to a level, which
is a subset of {1, . . . , d}, where d is the multilinearity of the map. Encodings can
be added and multiplied, following certain level-restrictions, until a “top-level”
encoding is obtained, which is an encoding relative to the set {1, . . . , d}. For
singleton sets, we drop the set notation and let level {i} be denoted as level i.

In CLT13, if s is a top-level encoding of zero — meaning all components of
the plaintext are 0 — then one can obtain from it t =

∑
i γisi, where γi is a

rational number, and equality holds over the rationals. The γi are unknown, but
global constants determined by the parameters of the scheme. That is, for each
s, the derived t will use the same γi.

All known attacks on the CLT13 multilinear maps follow a particular form.
First, public encodings are combined to give top-level encodings, using operations
explicitly allowed by the maps. If these top-level encodings are zero, then one
obtains a t term. The next step in the attack is to solve a polynomial equation
Q where the coefficients are obtained from the t terms. In current attacks, the
polynomial equation is the characteristic polynomial of a matrix whose entries
are rational functions of the zeros.

The next step is to show that the solutions to Q isolate the various si com-
ponents of the initial encodings. Then by performing some GCD computations,
one is then able to extract the prime factors pi, which leads to a complete break
of the CLT13 scheme. We show how to capture this attack strategy, and in
fact much more general potential strategies, in a new abstract attack model for
CLT13. Our model is defined as follows:

– Denote the set of encodings provided to the adversary as 〈s〉, where each s
encodes some plaintext element.

– The adversary is allowed to combine the encodings as explicitly allowed by the
multilinear map. Operations are performed component-wise on the underlying
plaintext elements.

– If the adversary ever gets a top-level encoding of zero — meaning that the
plaintext element is zero in all coordinates — this zero is some polynomial p
in the underlying plaintext elements. The adversary obtains a handle to the
corresponding element t =

∑
i γip(〈s〉i). Here, 〈s〉i represents the collection

of ith components of the various encodings provided.

4 In [19], this modulus is referred to as x0.
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– The adversary then tries to construct a polynomial Qi that isolates the ith
component for some i. The way we model a successful isolation is that Qi

is a polynomial in two sets of variables: T variables — which correspond
to the t terms obtained above — and S variables — which correspond to
the ith components of the s encodings. The adversary’s goal is to devise a
polynomial Qi such that Q evaluates to 0 when S is substituted for 〈s〉i and
T is substituted for the set of t obtained above. We say the adversary wins if
she finds such a Q.

In a real attack, roughly, the adversary takes Q, plugs in the values of t,
and then solves over the rationals for 〈s〉i. Then by taking GCD(N, s − si)
for some encoding s, she obtains the prime factor pi. The real adversary does
this for every i until she completely factors N . In general, solving Q for 〈s〉i

is a computationally intractable task and may not yield unique solutions. The
attacks in the literature build a specific Q that can be solved efficiently. In our
model, we conservatively treat any Q the adversary can find, even ones that are
intractable to solve, as a successful attack.

We note that the attacks described in the literature actually build a Q that
is a rational function. However, such rational functions can readily be converted
into polynomial functions. We indeed demonstrate that such a polynomial Q is
implicit in all known attack strategies.

Next, we prove a “model conversion theorem” that implies any attack in our
CLT13 model actually yields an attack in a much simpler model that we call the
“plain annihilating model.” Here, the adversary still constructs polynomials p of
the underlying encodings, trying to find a top-level zero. However now, instead
of trying to find a Qi as above, the adversary simply tries to find a polynomial
R that annihilates the p polynomials. That is, R({p(〈S〉)}p) is identically zero
as a polynomial over 〈S〉, where 〈S〉 are now treated as formal variables.

With this simpler model in hand, we immediately obtain the VBB-security of
existing obfuscation constructions [30,41] based on branching programs. Those
works show that the only top-level zeros that can be obtained correspond to the
evaluations of branching programs. Therefore, relying on the Branching Program
Un-Annihilatability Assumption (BPUA) of [37], we find that it is impossible
to find an annihilating polynomial R, and hence a polynomial Qi. This gives
security in our CLT13 model.

New Multilinear Maps. We now turn to developing a new multilinear map
scheme that we can prove secure in our weak model for CLT13. Guided by our
annihilation analysis, we design the scheme to only release encodings for which
the successful zero-test polynomials cannot be annihilated by polynomial-size
circuits; our model conversion theorem shows that such encodings will be secure
in the weak CLT13 model.

In this work, we focus on building an asymmetric scheme, where levels are
subsets of {1, . . . , d}, and elements can only be multiplied if they belong to
disjoint levels. It is straightforward to extend to symmetric multilinear maps.
The scheme will be based heavily on obfuscation techniques, plus some new
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techniques that we develop; however, we will not build a full obfuscation scheme.
Therefore, we expect that our multilinear maps will be much more efficient than
those that can be built using obfuscation.

Our starting point is Garg, Gentry, Halevi, and Zhandry [7]5, which offered a
potential fix to block zeroizing attacks that we call the GGHZ16 fix. The fix was
quickly broken, but we show how to further develop the idea into a complete fix.
Garg et al. define a level-i “meta-encoding” of x to be a matrix of level-i CLT13
encodings, obtained by encoding component-wise matrices of the form:

R ·

⎛

⎜
⎜
⎜
⎝

x 0 . . . 0
0 $ · · · $
...

...
. . .

...
0 $ · · · $

⎞

⎟
⎟
⎟
⎠

· R−1

where $ represent plaintexts drawn at random6, and R is a random matrix of
plaintext elements.

Such meta-encodings can be added and multiplied just like CLT13 encodings,
since the matrices R cancel out. However, due to the R matrices, it is no longer
possible to isolate the upper-left corner to perform a zero-test on x. Instead, also
handed out are “bookend” vectors s, t which encode the plaintext vectors

(
1 0 · · · 0

) · R−1 and R · (1 0 · · · 0
)T

,

respectively. Now by multiplying a meta-encoding by the bookend vectors on
the left and right, one obtains a CLT13 encoding of the plaintext x, which can
then be zero-tested.

Next, Garg et al. include with the public parameters meta-encodings of vari-
ous powers of 2, as well as many meta-encodings of 0. Powers of 2 allow for anyone
to encode arbitrary elements, and the encodings of 0 allow for re-randomizing
encodings. Unfortunately, as shown in [27], this fix does not actually protect
against zeroizing attacks: with a bit more work, the meta-encodings of 0 can be
used just like regular encodings of zero in the attacks to break the scheme.

To help motivate our new scheme, think of the GGHZ16 fix as follows: arrange
the matrices in a grid where the columns of the grid correspond to the levels,
and the matrices for level i are listed out in column i in an arbitrary order. We
will call a “monomial” the product of one meta-encoding from each level, in level
order (e.g. the level-1 encoding comes first, then level-2, etc.). Such monomials
correspond to an iterated matrix product that selects one matrix from each
column. We re-interpret these monomials as evaluations of a certain branching
program. In this branching program, there are t inputs, and each input is not
a bit, but a digit from 0 to k − 1 where k is the number of matrices in each
5 We actually need the version of [7] dated November 12, 2014 from https://eprint.

iacr.org/eprint-bin/versions.pl?entry=2014/666. More recent versions and the pro-
ceedings version removed the CLT13 fix that we start from.

6 Actually, in [7], some of the zeros are also set to be random elements, but the above
form suffices for our discussion and more naturally leads to our construction.

https://eprint.iacr.org/eprint-bin/versions.pl?entry=2014/666
https://eprint.iacr.org/eprint-bin/versions.pl?entry=2014/666
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column. Each input digit selects the matrix from the corresponding column, and
the result of the computation is the result of the corresponding iterated matrix
product.

Note that this branching program is read-once, and this is fundamentally
why the fix does not succeed. One way to see this is through the lens of our
model conversion theorem: a read-once branching program can be annihilated,
in the sense that it is possible to construct a set of inputs and an annihilating
polynomial Q such that Q always evaluates to zero on the set of branching
program outputs. For example, one can partition the input bits into two sets,
and select subsets S and T of partial inputs from each half of the input partition.
Evaluate the branching program on all points in the combinatorial rectangle
defined by S, T , and arrange as a matrix. The rank of this matrix is at most
the width of the branching program. Therefore, as long as the number of partial
inputs is larger than the width, this branching program will be annihilated by
the determinant. This is true for arbitrary branching programs, not just the
branching programs derived above.

One possible way to block the attack above is to make the branching program
so wide that even if the adversary queries on the entire domain, the matrix
obtained above is still full rank. While it is possible to do this to build a constant
degree multilinear map over CLT13, the map will be of little use. Roughly, the
reason is that the branching program is now so wide that adding a random
subset-sum of zero encodings is insufficient to fully re-randomize.

Instead, we turn to Garg et al. [37]’s obfuscator, which blocks this anni-
hilating attack for obfuscation by explicitly requiring the branching program
being obfuscated to read each input many times. By reading each input multi-
ple times, the rank of the matrix above grows exponentially in the number of
reads, blocking determinant-style attacks. Moreover, under the assumption that
there are PRFs that can be computed by branching programs, such read-many
programs cannot be annihilated in general. Garg et al. therefore conjecture a
branching program un-annihilatability assumption, which says that read-many
branching programs cannot be annihilated. Under this assumption, Garg et al.
prove security in the weak GGH13 model.

Inspired by this interpretation and by techniques used to prove security of
obfuscation, we modify GGHZ16 to correspond to a read-many branching pro-
gram. This will allow us to block determinant-style attacks without increasing
the width, allowing for re-randomization. Toward that end, we associate each
meta-level i with � different CLT13 levels, interleaving the levels for different i.
This means that for a d-level meta-multilinear map, we will need d� + 2 CLT13
levels (the extra 2 levels for the bookends). An encoding at level i will be a
sequence of � different matrices of encodings, where the � matrices are encoded
at the � corresponding CLT13 levels. The matrices (in the 3 × 3 case) have the
form:

Ri−1

⎛

⎝
x 0 0
0 $ $
0 $ $

⎞

⎠ R−1
i , Rd+i−1

⎛

⎝
0 0 0
0 $ $
0 $ $

⎞

⎠ R−1
d+i, · · · , R(�−1)d+i−1

⎛

⎝
0 0 0
0 $ $
0 $ $

⎞

⎠ R−1
(�−1)d+i
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Essentially, each of our meta-encodings is a list of GGHZ16 meta-encodings,
where the first meta-encoding encodes x, and the rest encode 0. Our bookend
vectors have the form

(
1 $ · · · $

) · R−1
0 and Rd� · (

1 $ · · · $
)T and are encoded,

respectively, in the two remaining CLT13 levels. Unlike GGHZ16, we will not
have the $ terms be random, but instead chosen more carefully (details below).
Note that we choose different randomizing matrices R in each position; this
corresponds to the randomizing matrices used for Kilian [43] randomization of
branching programs in obfuscation. Such randomization forces matrices to be
multiplied in order as in a branching program.

Addition is component-wise. For this discussion, we will only allow a pairing
operation that goes directly to the top level; this is the kind of multilinear map
envisioned by [2]. We explain how to give intermediate levels below.

The pairing operation takes one meta-encoding for each meta-level, and
arranges all the matrices in branching-program order. Then, roughly, it mul-
tiplies the matrices together, along with the bookends. The result is a single
top-level CLT13 encoding, which can be zero-tested as in CLT13. We have to
slightly tweak the procedure scheme for this to work, as multiplying all the
matrices of a top-level encoding will always give an encoding of zero, owing to
most of the GGHZ16 meta-encodings containing 0. Instead, we add an offset
vector midway through the pairing operation to make the CLT13 encoding an
encoding of the correct value; see Sect. 4 for details. For the purposes of this
discussion, however, this tweak can be ignored.

The good news is that if one restricts to adding and pairing encodings as
described, this blocks the zeroizing attack on GGH16 meta-encodings, assuming
� is large enough. We would now like to prove our scheme is actually secure, using
the branching program un-annihilatability assumption as was done in obfusca-
tion. Unfortunately, there are several difficulties here:

– First, we need to force the adversary to follow the prescribed pairing pro-
cedure. While the pairing operation is basically just a branching program
evaluation, this ends up being quite different than in the setting of obfus-
cation. For example, in obfuscation, forcing input consistency can be done
with the level structure of the underlying multilinear map. In our case, this
appears impossible. The reason is that we want to be able to add two encod-
ings at the same meta-level before pairing, meaning the underlying encodings
must be at the same CLT13 level. In obfuscation, the different encodings for
a particular input are encoded at different levels. There are other ways to
force input consistency [6,44], but they appear to run into similar problems.

– Second, the ability to add encodings means we cannot quite interpret allowed
operations as just evaluations of a branching program. For example, if one
adds two meta-encodings, and then multiplies them by a third, the result is
a linear combination of iterated matrix products containing cross terms of
the branching program that mix inputs. This is a result of the degree of zero-
testing being non-linear. Therefore, prior means of forcing input consistency
will be too restrictive for our needs.

We overcome these issues by developing several new techniques:
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– First, we prove a generalization of a lemma by Badrinarayanan et al. [30]
which tightly characterizes the types of iterated matrix products that an
adversary is allowed to create. Our lemma works in far more general settings
so as to be applicable to our scheme.

– Second, we re-interpret the allowed operations not as branching program
evaluations, but as vector-input branching program evaluations, a new notion
we define. In a vector-input branching program, inputs are no longer digits,
but a list of vectors. The vectors specify a linear combination. To evaluate, for
each column apply the corresponding linear combination, and then multiply
all the results together. By being able to take linear combinations of the input
matrices, we now capture the ability of an adversary to add encodings.

– Finally, we introduce new “enforcing” matrices that we place in the $ entries.
The goal of our enforcing matrices is to force the adversary’s operations to
correspond to vector-input branching program evaluations.

Using our enforcing matrices and our new analysis techniques, we show that
the adversary is limited to producing linear combinations of vector-input branch-
ing program evaluations. Therefore, by our model conversion theorem, if the
adversary can attack in our weak CLT13 model, it can find an annihilating
polynomial for vector-input branching programs. We therefore formulate a con-
crete conjecture that, like regular branching programs, vector-input branching
programs cannot be annihilated. Under this assumption, no zeroizing attacks
exist on our scheme.

Discussion. We now discuss some limitations of our construction above.

– We do not know how to justify our vector-input branching program assump-
tion based on PRFs, unlike the corresponding assumption for standard
branching programs. The reasons are twofold:

• Most importantly, we do not know of any PRFs that can be evaluated by
vector-input branching programs.

• In our analysis, the adversary can produce a linear combination of expo-
nentially many vector-input branching program evaluations. Therefore,
an annihilating polynomial annihilates exponentially-many inputs, and
therefore would not correspond to a polynomial-time attack on a PRF,
even if one were computable by vector-input branching programs. We
note that, if we were to ignore the first issue, it is straightforward to
overcome the second issue using a sub-exponentially secure PRF, since
a sub-exponential time algorithm can potentially query a PRF on the
entire domain and construct exponential-sized linear combinations. Fur-
thermore, we hope that this second limitation arises from our analysis
and is not a fundamental problem, leaving room for subsequent work.

We observe that if a sub-exponentially secure PRF can be computed by
vector-input branching programs, it should be possible to prove our assump-
tion based on the security of said PRF.
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Even without a justification based on general hardness assumptions, the only
efficient annihilating polynomials we could find for vector-input branching
programs are determinant polynomials as described above. These are inter-
estingly also the only annihilating polynomials we know of for plain branching
programs. Therefore, it seems reasonable at this time to conjecture that deter-
minants are the only annihilating polynomials. If this conjecture holds, then
any annihilating polynomial will require circuits of size roughly w�, where w
is the width of matrices in the branching program. By setting w� to be 2λ

for desired security parameter λ, this will block known attacks. In the full
version of this work [1], we give some evidence for why this conjecture should
hold in restricted settings.

– Our discussion above only allows for directly pairing to the top level. If we
are willing to sacrifice polynomial degree for constant degree, we can define
pairing operations for intermediate levels. Adjacent levels (say 1,2) can easily
be paired by simply constructing � matrices that are the pairwise products
of the � matrices in the two levels. Due to the different Kilian randomization
matrices between each pair of levels, we cannot directly pair non-adjacent
levels, such as 1 and 3. For non-adjacent levels, instead of matrix multiplica-
tions, we can tensor the encodings, generating all degree 2 monomials. This
tensoring can also be extended to higher levels. Unfortunately, this greatly
expands the size of encodings and thus can only be done when the degree is
constant.

Alternatively, we note that the ability to only multiply adjacent levels corre-
sponds to the “graph induced” multilinear map notion [20] for the line graph.
Hence, we obtain a multilinear map for general line graphs. Such maps are
sufficient for most applications. Moreover, such graphs can easily be used to
build symmetric multilinear maps, by simply encoding at all possible single-
ton levels.

– Finally, it is not possible to multiply an encoding by scalar. One could try
repeated doubling, but our scheme inherits the noisiness of CLT13, and this
repeated doubling will cause the noise to increase too much. One potential
solution is that an encoding of x actually consists of encodings of x, 2x, 4x, 8x,
etc. Now instead of repeated doubling, multiplying by a scalar is just a subset
sum. Of course, this operation “eats up” the powers of 2, so it can only be
done a few times before one runs out of encodings.

Another potential option, depending on the application, is to introduce addi-
tional “dummy” levels. To multiply by a scalar, first encode it in the “dummy”
level, and then pair with the element. This of course changes the level at which
the element is encoded, but for some applications this is sufficient. Below, we
show how to use this idea to give a multiparty NIKE protocol for a polynomial
number of users.

Multiparty Non-interactive Key Exchange (NIKE). Here, we very briefly
describe how to use our new multilinear maps to construct multiparty NIKE. The
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basic scheme shown by Boneh and Silverberg [2] will not work because (1) they
need an symmetric multilinear map, and (2) they need to be able to multiply
encodings by ring elements. We show how to tweak the scheme to work with an
asymmetric map that does not allow multiplying encodings by ring elements.
For d users, instantiate our scheme with d levels, one more than is needed by [2].

User i chooses a random ring element ai, and then computes encodings [ai]u
of ai at every singleton level u. User i publishes all the encodings (after re-
randomization), except the encoding at level 1.

Upon receiving the encodings from all other users, user i arbitrarily assigns
each of the other d − 1 users to the levels 2, . . . , d. Let uj be the level assigned
to user j. Then it pairs its private elements [ai]1 together with [aj ]uj

for each
j �= i. The result is an encoding of

∏
j aj at the top level. Everyone computes

the same encoding, which can be extracted to get the shared secret key.
Meanwhile, an adversary, who never sees an encoding of ai at level 1, cannot

possibly construct an encoding of
∏

j aj without using the same level twice. Using
a variant of the multilinear Diffie-Hellman assumption, this scheme can be proven
secure. This assumption can be justified in the generic multilinear map model, and
hence our scheme can be proven secure in the weak CLT13 model.

Concurrent Work: A Weak Model for GGH15. In a concurrent work,
Bartusek, Guan, Ma, and Zhandry [45] propose a weak multilinear map model
for the GGH15 maps [20]. They demonstrate that all known zeroizing attacks on
the GGH15 construction are captured by their weak model, and they construct
an obfuscation scheme that is provably secure in their weak model. We compare
and contrast our models and results below.

– The CLT13 and GGH15 schemes are quite different, and the respective zeroiz-
ing attacks exploit different vulnerabilities. The security of CLT13 crucially
depends on the secrecy of the primes pi, for which there is no analogue in
the GGH15 scheme. Thus, our weak model captures the adversary’s ability
to perform a certain step that all known attacks on CLT13 go through in
order to recover the pi’s. The Bartusek et al. [45] weak model uses a different
condition that captures an adversary’s ability to learn non-trivial information
about an encoded plaintext.

– Bartusek et al. [46] prove security against a slightly larger class of “arithmetic
adversaries,” initially considered by Miles, Sahai, and Weiss [47]. To achieve
obfuscation secure against such adversaries, Bartusek et al. [45] rely on an
additional p-Bounded Speedup Hypothesis of Miles et al. [47] (a strengthening
of the Exponential Time Hypothesis).

– Our work proposes a candidate “fix” for the CLT13 multilinear maps that
enables a direct Non-Interactive Key Exchange (NIKE) construction secure
against zeroizing attacks under a new VBPUA assumption. Bartusek et al.
do not propose a corresponding fix for the GGH15 maps.
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– All of the constructions in this paper are trivially broken by quantum attacks
that factor the public CLT13 modulus N .7 In contrast, all currently known
quantum attacks on GGH15 [49] fall under the class of zeroizing attacks, and
as a result the obfuscation construction of Bartusek et al. resists all known
classical and quantum attacks.

2 Preliminaries

2.1 Multilinear Maps and the Generic Model

A multilinear map (also known as a graded encoding scheme) with universe
set U and a plaintext ring Rptxt supports encodings of plaintext elements in
Rptxt at levels corresponding to subsets of U. A plaintext element a encoded at
S ⊆ U is denoted as [a]S . Multilinear maps support some subset of the following
operations on these encodings:

– (Encoding) Given an element a ∈ Rptxt and level set S ∈ U, output [a]S .
– (Addition) Two encodings at the same level S ⊆ U can be added / subtracted.

Informally, [a1]S ± [a2]S = [a1 ± a2]S .
– (Multiplication) An encoding at level S1 ⊆ U can be multiplied with an

encoding at level S2 ⊆ U, provided S1 ∩ S2 = ∅. The product is an encoding
at level S1 ∪ S2. Informally: [a1]S1 · [a2]S2 = [a1 · a2]S1∪S2 .

– (Re-randomization) We will allow for schemes with non-unique encodings. In
this case, we may want a re-randomization procedure, which takes as input an
encoding of a potentially unknown element a, and outputs a “fresh” encoding
of a, distributed statistically close to a direct encoding of a.

– (Zero-Testing) An encoding [a]U at level U can be tested for whether a = 0.
– (Extraction) An encoding [a]U at level U can be extracted, obtaining a string

r. Different encodings of the same a must yield the same r.

Most multilinear map schemes, due to security vulnerabilities, only support
addition, multiplication, and zero-testing/extraction, but do not support public
re-randomization or encoding. Instead, encoding must be performed by a secret
key holder.

2.2 Overview of the CLT13 Multilinear Maps

We give a brief overview of the CLT13 multilinear maps, adapted from text in
[50]. For a full description of the scheme, see [19]. The CLT13 scheme relies on
the Chinese Remainder Theorem (CRT) representation. For large secret primes
pk, let N =

∏n
k=1 pk. Let CRT(s1, s2, . . . , sn) or CRT(sk)k denote the number

s ∈ ZN such that s ≡ sk (mod pk) for all k ∈ [n]. The plaintext space of the
CLT13 scheme is Zg1 × Zg2 × · · · × Zgn

for small secret primes gk. An encoding
of a vector m = (m1, . . . ,mn) at level set S = {i0} is an integer α ∈ ZN such
7 Our work leaves open the problem of devising composite-order multilinear maps

whose security does not rely on the hardness of factoring [48].
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that α = CRT(m1 + g1r1, . . . ,mn + gnrn)/zi0 (mod N) for small integers rk,
and where zi0 is a secret mask in ZN uniformly chosen during the parameters
generation procedure of the multilinear map. To support κ-level multilinearity,
κ distinct zi’s are used.

Additions between encodings in the same level set can be done by modular
additions in ZN . Multiplication between encodings can be done by modular
multiplication in ZN , only when those encodings are in disjoint level sets, and
the resulting encoding level set is the union of the input level sets. At the top
level set [κ], an encoding can be tested for zero by multiplying it by the zero-
test parameter pzt =

∑n
k=1 p∗

khk((
∏

i∈[κ] zi)g−1
k mod pk) (mod N) in ZN where

p∗
k = N/pk, and comparing the result to N . An encoding α can be expressed

as 1∏κ
i=1 zi

CRT(sk)k where sk denotes the numerator of its kth CRT component.
When α is an encoding of zero, it can be shown that

pztα (mod N) =
n∑

k=1

γksk,

where γk = p∗
khkg−1

k are “smallish” global secret parameters that depend on
the other CLT13 parameters. For encodings of zero, each sk is “small”, so
pztα (mod N) is small relative to N . If α does not encode 0, then one heuris-
tically expects pztα (mod N) to be large relative to N . Thus, we can zero test
by determining if this quantity is small.8 We can also extract a unique repre-
sentation of any encoded element by computing pztα (mod N), and rounding
appropriately.

2.3 Vector-input Branching Programs

We generalize matrix branching programs to vector-input branching programs,
a new notion we define (for the formal definition of matrix branching programs
we consider, see the full version [1]). Single-input branching programs consist
of a sequence of pairs of matrices, where an input bit is read for each pair to
select one of them. Our vector input generalization allows for selecting a linear
combination of matrices. In addition, we replace pairs of matrices with sets of
k matrices. Thus, a program input is a d-tuple of vectors of dimension k, each
consisting of non-negative integers. We can stack these d column vectors into a
matrix (Z)k×d, so for any input x ∈ (Z)k×d, xi,j ∈ Z denotes the jth component
of the ith vector.

These vector-input branching programs arise in the security proof of our new
multilinear map construction in Sect. 5. Thus, we will only consider a restricted

8 In the full CLT13 scheme, there is a vector of zero-testing elements created in a
way to prove that the result is large for non-zero encodings. However, in practice
this is far less efficient, so most implementations only use a single zero test vector as
described here (see e.g. [38]). We stress that giving out fewer zero-testing parameters
can only make the scheme more secure, and parameters can be set so that correctness
of zero-testing still holds with overwhelming probability.



The MMap Strikes Back 527

class of vector-input branching programs tailored to fit the requirements of our
analysis. Specifically, we use read-� programs, meaning that each vector in the
input is read exactly � times. These programs are single-input, so there are d�
sets of matrices. Furthermore, the input selection is fixed so that the ith input
vector is read for matrix sets i, d + i, . . . , (� − 1)d + i. In other words, the input
selection function is simply inp(j) = j (mod d).

Definition 1. A read-� vector-input branching program over a ring R with input
length n, vector dimension k, and matrix width w is given by a sequence

V BP =
(
s, t, {Bi,j}i∈[d�],j∈[k]

)

where each Bi,j is a w × w matrix, s is a w-dimensional row vector, and t is
a w-dimensional column vector. All entries are elements in R. Then V BP :
(Z)k×d → R is computed as

V BP (x) = s ·
⎛

⎝
d�∏

i=1

⎛

⎝
k∑

j=1

xi(mod d),jBi,j

⎞

⎠

⎞

⎠ · t.

For further intuition and examples of vector-input branching programs, refer
to the full version [1].

We remark that vector-input branching programs are reminiscent of arith-
metic branching programs [51,52], where an input string specifies a set of accept-
ing s-t paths in a weighted directed acyclic graph, and the output is a sum of
the products of all edge weights on each accepting path. With some care, we
can re-express vector-input branching programs as a certain type of arithmetic
branching program. However, we use the vector-input formulation as it intu-
itively captures the structure of our multilinear map construction in Sect. 4.

2.4 Kilian Randomization of Matrix Sequences

Consider a collection of n columns of matrices, where each column may contain
an arbitrary polynomial number of matrices. Denote the jth matrix in column i
as Ai,j . Suppose the matrices within each column have the same dimensions, and
across columns have compatible dimensions so that matrices in adjacent columns
can be multiplied together, and multiplying one matrix from each column results
in a scalar. Kilian [43] describes a method to partially randomize such branching
programs. Randomly sample invertible square matrices Ri. Then matrix Ai,j

is left-multiplied by R−1
i and right-multiplied by Ri+1. When performing an

iterated matrix product selecting one matrix from each column, the Ri and R−1
i

cancel out, so the product is unchanged by this randomization.

3 The Model

In this section, we define two models. The first is the weak CLT13 model,
intended to capture all known classical attacks on the CLT13 multilinear maps.
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The second is the CLT13 annihilation model, a modification of the weak CLT13
model with different winning conditions. We justify our first model by demon-
strating that it captures known attacks from the literature. The main theorem of
this section is that an adversary in the weak CLT13 model implies the existence
of an adversary in the CLT13 annihilation model. Combining this theorem with
the Branching Program Un-Annihilatability Assumption of [37], we immediately
obtain virtual black box (VBB) security of the obfuscator of Badrinarayanan et
al. [30]. Additionally, this shows that the order-revealing encryption scheme of
Boneh et al. [53] is secure in our model.

3.1 CLT13 Weak Multilinear Map Model

Notation. We will let uppercase letters such as M,S, Γ denote formal variables,
and lower case letters such as m, s, γ denote actual values. Bold letters will be
used to distinguish vectors from scalars. Let mji be a set of elements indexed by
j and i. We introduce 〈m〉i as shorthand for the set {mji}j of all elements with
index i, and 〈m〉 to denote the set {〈m〉i}i. For a set Mj,i of formal variables
indexed by j and i, define 〈M〉i and 〈M〉 analogously.

We now define our weak CLT13 model, with the following interfaces:

Initialize Parameters. At the beginning of the interaction with the model M,
M is initialized with the security parameter λ and the multilinearity parame-
ter κ ≤ poly(λ). We generate the necessary parameters of the CLT13 scheme
(including the vector dimension n, the primes gi, pi for i ∈ [n]) according to
the distributions suggested by Coron et al. [19]. Let Rptxt = Z

∏
i gi

= ⊗iZgi
be

the plaintext ring. Let Rctxt = Z
∏

i pi
= ⊗iZpi

. We will usually interpret ele-
ments in Rptxt and Rctxt as vectors of their Chinese Remaindering components.

Initialize Elements. Next, M is given a number of plaintext vectors mj ∈ R as
well as an encoding level Sj for each plaintext. M generates the CLT13 numer-
ators sj where sji = mji + girji as in the CLT13 encoding procedure. For each
j, M stores the tuple (mj , sj , Sj) in the a pre-zero test table.

Zero-testing. The adversary submits a polynomial pu to M, represented as a
polynomial-size level-respecting algebraic circuit. Here, level-respecting means
that all wires are associated with a level S, input wires are associated to the sets
Sj , add gates must add wires with the same level and output a wire with the
same level, multiply gates must multiply wires with sets S0 ∩S1 = ∅ and output
a wire with the level S0 ∪S1, and the final output wire must have set {1, . . . , κ}.

Next, M checks whether pu(〈m〉i) = 0 for all i. If the check fails for any i,
M returns “fail”. If the check passes for all i, M returns “success”. We assume
without loss of generality that the set {pu} of successful zero tests are linearly
independent as polynomials (since otherwise a zero-test on one pu can be derived
from the result of a zero-test on several other pu).

If we stop here, we recover the plain generic multilinear map model [44].
However, in our model, a successful zero test does more. If zero testing is suc-
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cessful, pu corresponds to a valid construction of a top-level zero encoding. M
then additionally returns a handle Tu to the value tu(〈γ〉, 〈s〉) =

∑
i γipu(〈s〉i),

the result of the zero-test computation. Each handle Tu along with the corre-
sponding the zero-test result is stored in a zero-test table.

Post-zero-test. Finally, the adversary submits a polynomial Q on the handles
{Tu}u and the formal variables 〈S〉i for some i ∈ [n] (that A picks). This Q must
be represented by a polynomial-sized algebraic circuit, and the degree must be
at most 2o(λ).9 The model looks up each handle Tu in the zero-test table and
plugs in the corresponding values tu. The model outputs “WIN” if the following
two conditions are satisfied.

1. Q({tu(〈γ〉, 〈s〉)}u, 〈S〉i) �≡ 0 as a polynomial over the formal variables 〈S〉i.
2. Q({tu(〈γ〉, 〈s〉)}u, 〈s〉i) = 0.

Intuitively, these conditions imply that Q is a polynomial with non-zero degree
over the 〈S〉i formal variables that is “solved” when the correct values 〈s〉i are
plugged in.

Plain Annihilation Model. We define a modification of the above CLT13
weak multilinear map model, which is identical except for post-zero-test queries:

Post-zero-test. A submits a polynomial Q′ on a set of formal variables {Pu}u,
where Pu represents the successful zero test polynomial pu. Again, this Q′ must
be represented by a polynomial-sized algebraic circuit, and the degree must be
at most 2o(λ). The model outputs “WIN” if the following conditions are satisfied.

1. Q′({Pu}u) is not identically zero over the {Pu}u formal variables.
2. Q′({pu(〈S〉i)}u) is identically zero over the 〈S〉i formal variables.

In other words, A wins if it submits a Q′ that annihilates the {pu}u polynomials.

3.2 Classical Attacks in the Weak CLT13 Model

We first show that the original attack on the CLT13 multilinear maps by Cheon
et al. fits into this framework [21].

Mounting this attack requires that the set of plaintext vectors {mj} given
to M can be divided into three distinct sets of vectors, A,B,C that satisfy
certain properties. We can discard/ignore any other plaintext vectors. For ease
of exposition, we relabel the vectors in these sets as:

A = {mA
1 , . . . ,mA

n } B = {mB
1 ,mB

2 } C = {mC
1 , . . . ,mC

n }
These vectors can be encoded at arbitrary levels, as long as for any j, σ, k,

mA
j · mB

σ · mC
k is a plaintext of zeros at the top level. Accordingly, A submits

polynomials pj,σ,k for all j, k ∈ [n], σ ∈ [2] for zero-testing where

pj,σ,k(mA
1 , . . . ,mA

n ,mB
1 ,mB

2 ,mC
1 , . . . ,mC

n ) = mA
j · mB

σ · mC
k

9 We note that these restrictions are analogous to restrictions made for annihilation
attacks on GGH13 [37].
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Each of these polynomials clearly gives a successful zero-test. In response to
each query, M returns a handle Tj,σ,k to the value

tj,σ,k =
n∑

i=1

γis
A
j,i · sB

σ,i · sC
k,i.

For σ ∈ {1, 2}, define Wσ to be the n × n matrix whose (j, k)th entry is
Tj,σ,k. In the real attack, the adversary computes the matrix W1W

−1
2 , which

Cheon et al. [21] show has eigenvalues sB
1,i

sB
2,i

. The adversary solves the character-

istic polynomial of W1W
−1
2 for these eigenvalues. In our model A cannot imme-

diately submit this characteristic polynomial, as it involves rational functions of
the handles T , and can only be solved for ratios of the sji values. However, we
observe that the characteristic polynomial

det
(
W1W

−1
2 − λI

)
= det

(

W1W
−1
2 −

(
SB
1,i

SB
2,i

)

I

)

= 0

can be re-written by substituting W−1
2 = W adj

2
det(W2)

. (where W adj
2 denotes the

adjoint matrix of W2). Applying properties of the determinant then gives

det(W1W
adj
2 SB

2,i − SB
1,i det(W2)I) = 0

A submits the left-hand side expression above as its polynomial Q in a post-
zero-test query. Since the Cheon et al. attack is successful, we know Q is nonzero
over the formal variables 〈S〉i after the values associated with the handles T are
plugged in. Additionally, plugging in the appropriate solutions 〈s〉i satisfies the
above expression, so both win conditions are satisfied. Thus, A wins in our model.

In the full version of this work [1], we show how the general attack framework
of Coron et al. [27] can be expressed in our model.

3.3 Model Conversion Theorem

Theorem 1. If there exists an adversary A that wins with non-negligible prob-
ability in the weak CLT13 multilinear map model, there exists an adversary A′

that wins with non-negligible probability in the CLT13 annihilation model. A′ is
the same as A up to and including the zero-test queries, and only differs on the
post-zero test queries.

We give a brief outline of the proof strategy (for the whole proof, refer to the
full version of this paper [1]). An adversary that wins in the weak CLT13 model
produces a non-trivial polynomial Q that evaluates to 0 on the actual CLT13
parameters and the numerators of the encodings. Since the CLT13 parameters
and encodings are sampled using randomness hidden from the adversary, we can
use a generalization of the Schwartz-Zippel lemma to conclude that the polyno-
mial must be identically zero over its formal variables. We can view this polyno-
mial as being over the formal variables corresponding to the CLT13 parameters,
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where the remaining formal variables constitute “coefficients”. Since the overall
polynomial is identically zero, all coefficients must also be identically zero. To
conclude, we use the fact that the polynomial is non-trivial to show that there
must exist a coefficient which acts as an annihilating polynomial for the zero-test
polynomials.

3.4 Secure Obfuscation and Order-revealing Encryption in the
Weak CLT13 Model

Security in our weak CLT13 model means security in the plain generic multilin-
ear map model, plus the inability to construct an annihilating polynomial. We
observe that Badrinarayanan et al. [30] show for their obfuscator (which is a
tweak of the obfuscator of Barak et al. [41]), the only successful zero tests an
adversary can perform are linear combinations of honest obfuscation evaluations
on some inputs. Moreover, the linear combinations can only have polynomial
support. Recall that in [30], evaluation is just a branching program evaluation
over the encoded values. Therefore, any annihilating polynomial in the plain
annihilation model is actually an annihilating polynomial for branching pro-
grams. Therefore, using the branching program un-annihilatability assumption
of Garg et al. [37], we immediately conclude that no such annihilating polynomial
is possible. Thus, there is no weak CLT13 attack on this obfuscator.10

We similarly observe that in the order-revealing encryption (ORE) scheme of
Boneh et al. [53], any successful zero is also a linear combination of polynomially-
many branching program evaluations. Therefore, by a similar argument, we
immediately obtain that Boneh et al.’s scheme is secure in our weak CLT13
model.

4 A New Multilinear Map Candidate

In this section, we give a candidate polynomial-degree multilinear map scheme.
We show, given an assumption about annihilating vector-input branching pro-
grams, that this multilinear map is secure in the weak CLT13 model. Here, we
discuss our basic scheme; in the full version of this work, we show how to leverage
the “slotted” structure of CLT13 encodings to obtain efficiency improvements [1].

4.1 Construction Overview

The levels will be non-empty subsets of [d] for some polynomial d. For simplicity,
here we describe how to build a multilinear map that only allows a pairing
10 The Garg et al. obfuscator is defined as a dual-input obfuscator, which is the ver-

sion we consider. The dual-input requirement is crucial; a single-input variant of
this obfuscator is insecure and was attacked by Coron et al. [54]. The key point is
that the branching program un-annihilatability assumption only holds for branch-
ing programs with significant interleaving of input bits, which can be ensured by a
dual-input requirement.
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operation that takes d elements, one from each singleton set, directly to a top-
level encoding. This is the style of multilinear map envisioned by Boneh and
Silverberg [2].

Our construction is logically organized into d� columns, numbered from 1 to
d�. The columns are further partitioned into d groups numbered 1 through d of
� columns, where the columns in each group are interleaved: group u consists of
columns u, u+d, u+2d, . . . , u+(�−1)d. Each column will correspond to one level
of the underlying CLT13 maps, and each group of columns will correspond to
one meta-level of our scheme. We set the plaintext space of both the underlying
CLT13 scheme and our scheme to be Rptxt = ZM where M =

∏
i gi. Recall that

in the CLT13 scheme, M is not public.
We first describe the format of a meta-encoding in our scheme. An encoding

at singleton level u will consist of � matrices of CLT13 encodings, one in each of
the columns corresponding to column group u. We will denote by A

(u)
i the ith

matrix in the encoding for level u. To construct A
(u)
i , we first define the diagonal

matrix
˜
A

(u)
i , of the form

diag(mi, vi, wi, ξ1I, . . . , ξu−1I, E
(u)
i , ξu+1I, . . . , ξdI).

These components of the diagonal matrix work as follows:

– mi is a plaintext element used for the actual plaintext encoding.
– vi and wi are freshly sampled uniformly random elements from the plain-

text space ZM . Their sole purpose is to enforce a requirement called non-
shortcutting, which will arise in the security proof. They are canceled out in
valid products by 0’s in the bookend vectors, defined later.

– The remainder of the diagonal consists of d block matrices, where d−1 blocks
are essentially unused and set to random multiples of the identity, while the
uth matrix is set to be an “enforcing matrix” E

(u)
i . Note that i corresponds

to this being the ith matrix for encoding u. The purpose of these matrices
is roughly to prevent an adversary from arbitrarily mixing and matching the
matrices from different encodings. We defer the details of these matrices to
Sect. 4.2.

Next, d� + 1 Kilian randomization matrices Ri are generated [43] to left and
right multiply each of the d� columns. All encodings will share the same Kilian

matrices. Each
˜
A

(u)
i matrix at meta-level u is left- and right- multiplied by the

appropriate Kilian matrices, giving

R−1
u+(i−1)d−1

˜
A

(u)
i Ru+(i−1)d.

Each element of this Kilian-randomized matrix is encoded in an asymmetric
CLT13 multilinear map at level {u+(i−1)d}CLT13 (we differentiate levels of the
underlying CLT13 map with this subscript, to avoid confusion with the levels of
our multilinear map) corresponding to the column it belongs to. The resulting
matrix of CLT13 encodings is taken to be A

(u)
i .
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For a matrix A
(u)
i , we refer to the underlying ring element mi as the matrix

plaintext. This is the only component of the matrix used for encoding actual
plaintext elements. Therefore, as described so far, every meta-encoding in our
scheme encodes a length-� vector of ring elements.

We also give out “bookends” s, t, which are CLT13 encodings of the vectors

ŝ = (1, 1, 0, F1, . . . , Fd) · R0 , t̂ = R−1
d� · (1, 0, 1, G1, . . . , Gd)T .

For the sake of clarity, we defer discussing the F,G vectors until Sect. 4.2.
The 1 in the first position is used to extract the matrix plaintexts. The 0 in the
second position of t̂ will zero-out the vi terms, while the 0 in the third position
of ŝ will zero-out the wi terms. s is encoded at CLT13 level 0, while t is encoded
at level d� + 1.

A meta-encoding of x ∈ Rptxt = ZM at singleton level {u} is simply a
sequence of matrices (A(u)

i )i∈[�] whose corresponding sequence of matrix plain-
texts is (x, 0, 0, . . . , 0).

At instance generation, we generate and publish a set of initial public encod-
ings.

– For each singleton level {u} ⊆ [d], we publish encodings of 1, 2, 4, . . . , 2ρ−1,
where ρ is specified later.

– For each singleton level {u} ⊆ [d], we publish τ encodings of zero, where τ is
specified later.

– For the top level [d], we publish a special pre-zero-test encoding that will
have most of the structure of a valid top level encoding, except that it will not
correctly encode an actual plaintext element. Its sequence of matrix plaintexts
will be (0, 1, 1, . . . , 1), which differs from a normal encoding where the matrix
plaintexts are all 0 after the first slot. The sole purpose of this encoding is to
be added to any top level encoding we seek to zero test. Roughly, the element
submitted for zero testing is the product of an encoding’s matrix plaintexts,
and without this step the product would always be zero.

To add/subtract two meta-encodings at the same singleton level {u},
which are two sequences of � matrices, we line up the sequences of matrices
and add/subtract the corresponding matrices component-wise. The resulting
sequence of � matrices is taken as the encoding of the sum. Intuitively, this works
because adding these matrices also adds the sequence of matrix plaintexts. As
we show in Sect. 4.2, the structure of the enforcing matrices is also preserved. If
the input encodings have matrix plaintexts (x1, 0, . . . , 0) and (x2, 0, . . . , 0), the
result of addition/subtraction has matrix plaintexts (x1 ± x2, 0, . . . , 0).

To pair d meta-encodings, one from each singleton level, we do the following.
For each i ∈ [�], we line up the ith matrix from each encoding, in the order
specified by the columns of our scheme, and multiply the matrices together.
The resulting i matrices are then added to the corresponding i matrices from
the pre-zero-test encoding. Based on the structure of our encoding scheme, the
resulting i matrices have the matrix plaintext sequence (

∏
u xu, 1, . . . , 1), where

xu was the value encoded at level {u}. Finally, we multiply all of these matrices
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together. The resulting matrix will have
∏

u xu in the upper-left corner. Finally,
we multiply by the bookends s, t to obtain a single top-level CLT13 encoding. We
set up the enforcing matrices in Sect. 4.2 to guarantee that this product becomes
a CLT13 encoding of

∏
u xu.

The remaining procedures work as follows.

Encode. To encode a plaintext x ∈ Z2ρ at a singleton level {u}, write the
plaintext in base 2, and then sum the appropriate public encodings of powers of
2. We note that we do not publish a description of the plaintext ring Rptxt = ZM ,
where M =

∏
i gi. Therefore, the input to the encoding procedure is some integer

x ∈ Z2ρ , and the output is an encoding of x mod M , where Rptxt = ZM . We
set ρ = M × 2λ for a security parameter λ so that a random x ∈ Z2ρ yields an
element x mod M that is statistically close to random in Rptxt.

Re-randomize. To re-randomize this encoding, add a random subset sum of
the public encodings of zero available for the level. We choose the parameter
τ , roughly, to be large enough so that the result is statistically close to a fresh
random encoding. For further discussion, see the full version [1].

Zero-test and Extract. Zero testing and extraction on top-level encodings
(which are just top-level CLT13 encodings) are performed exactly as in CLT13.

4.2 Enforcing Matrix Structure

We now describe the enforcing matrix structure used in the matrices of our
scheme. Consider the � matrices associated to an encoding at any singleton
level {u}, which all have a block diagonal form. For each matrix, all the diag-
onal entries except the top left three entries are responsible for providing the
enforcing structure. As described in Sect. 4.1, the rest of the diagonal entries
are divided into d equally-sized diagonal matrices. The uth block is set to E

(u)
i ,

which provides the enforcing structure for level {u}, while the other d−1 blocks
are set to random multiples of the identity to avoid interfering with the enforcing
structure of the other singleton levels.

To construct E
(u)
i for a new encoding, we sample a random vector α of

dimension �. Denote the ith component as αi. The matrix E
(u)
i is set to be the

following diagonal matrix of width 2(� − 1):

E
(u)
i = diag(αi, ασ(12)(i), αi, ασ(23)(i), . . . , αi, ασ(�−1,�)(i))

Here, σ(ab) denotes the transposition swapping a and b. We additionally have
two bookend vectors F,G, used by all enforcing matrices for a particular single-
ton level. The left bookend vector F is simply the all 1’s row vector of dimension
2(� − 1). The right bookend vector G is a column vector of dimension 2(� − 1).
To set the entries of G, we sample � − 1 random values {ηi}i∈[�−1], and set the
entry in position 2i−1 to ηi, and the entry in position 2i to −ηi for all i ∈ [�−1].
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Restrictions on Matrix Products. The sole purpose of the enforcing matri-
ces is to ensure that the adversary respects the meta-encoding structure. For
example, since each meta-encoding consists of � separate matrices, an adversary
may try to swap some of these matrices for matrices from other meta-encodings.
We show that any attempt to do so will inevitably lead to a useless top-level
encoding of a random plaintext.

Consider a setting where the adversary has access to dk meta-encodings of
various matrix plaintext vectors, k in each singleton level. These encodings form
a k×d� grid, with k matrices in each of the d� columns. Since we have k encodings
per singleton level, we modify our notation slightly; now A

(u)
i,j will denote the jth

encoding of the ith matrix for meta-level u. Furthermore, we can ignore the first
three rows and columns of each A

(u)
i,j matrix, as they play no role in the enforcing

structure. Let C
(u)
i,j be the width 2d(� − 1) diagonal matrix that remains.

To recap, d − 1 of the blocks of C
(u)
i,j are set to be width-2(� − 1) identity

matrices (randomly scaled) and the uth block is set to E
(u)
i,j . For any meta-

encoding j at level u, a fresh random set of {E
(u)
i,j }i∈[�] is generated. The book-

ends are formed by concatenating d independently generated instances of our
2(� − 1) dimensional bookends. The arrangement of the C

(u)
i,j matrices (without

the bookends) in the k × d� grid is shown below:

C
(1)
1,1 C

(2)
1,1 · · · C

(d)
1,1

C
(1)
1,2 C

(2)
1,2 · · · C

(d)
1,2

...
...

...

C
(1)
1,k C

(2)
1,k · · · C

(d)
1,k

C
(1)
2,1 C

(2)
2,1 · · · C

(d)
2,1

C
(1)
2,2 C

(2)
2,2 · · · C

(d)
2,2

...
...

...

C
(1)
2,k C

(2)
2,k · · · C

(d)
2,k

· · ·
C

(1)
�,1 C

(2)
�,1 · · · C

(d)
�,1

C
(1)
�,2 C

(2)
�,2 · · · C

(d)
�,2

...
...

...

C
(1)
�,k C

(2)
�,k · · · C

(d)
�,k

The matrices are divided into � groups, each consisting of k rows and d
columns of matrices. Picking the matrix in row j and column u for each group
gives the � matrices that comprise the enforcing component of the jth meta-
encoding at level u.

Notice that adding point-wise C
(u)
1,j0

, . . . , C
(u)
�,j0

to C
(u)
1,j1

, . . . , C
(u)
�,j1

or scaling

C
(u)
1,j , . . . , C

(u)
�,j preserves the form of the matrices (though now the α’s are dif-

ferent). Notice also that multiplying all the matrices in C
(u)
1,j , . . . , C

(u)
�,j together

along with our bookend vectors gives 0. Therefore, we can take arbitrary linear
combinations of meta-encodings, multiply them together, and still get 0. We will
show that this is essentially the only way to combine different C

(u)
i,j to get zero.

Applied to our construction, the matrices are the various meta-encodings of
0 and powers of 2 that the adversary is given in the public parameters. The
adversary also has access to a pre-zero-test encoding, which does not fit this
pattern. However, we can think of the pre-zero-test encoding as arising from d
meta-encodings with matrix plaintext sequence (0, 1, . . . , 1), one encoding per
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singleton level. The actual pre-zero-test encoding is obtained by multiplying
these encodings together.

While the CLT13 level structure allows an adversary to multiply together
any collection of matrices that picks one from each column, our enforcing matrix
structure will restrict the adversary to taking products of linear combinations of
meta-encodings (or linear combinations of such products).

To formalize this notion, we first introduce the following definition.

Definition 2. We define a valid monomial to be a polynomial representing a
product of the C

(u)
i,j matrices, so that exactly one matrix is taken from each

column, in column order, along with the bookends.

Next, we re-cast the C
(u)
i,j matrices as the matrices of a read-� vector-

input branching program (an extension of matrix branching programs defined
in Sect. 2.3) that takes inputs x ∈ (Z)k×d. The point of adopting the vector-
input branching program (VBP) view is that read-� VBP evaluations correspond
exactly to valid manipulations of meta-encodings.

If we expand out any linear combination of read-� VBP evaluations, the
resulting polynomial is a linear combination of valid monomials. However, given
an arbitrary linear combination of valid monomials, it is not immediately clear
if it can be expressed as a linear combination of read-� VBP evaluations (and
hence a valid combination of meta-encodings). The following lemma characterizes
precisely when this occurs.

Lemma 1. Let Q be a linear combination of valid monomials. If Q evaluates to
0 as a polynomial over the underlying randomness of the C

(u)
i,j matrices, Q is a

linear combination of read-� VBP evaluations, where the VBP is the one defined
by the same C

(u)
i,j matrices.

For a more precise statement of this lemma and its proof, see the full
version [1].

5 Security of Our Multilinear Map

Strategy Overview. To prove the security of our multilinear map construc-
tion within the CLT13 weak model, we define “real” and “ideal” experiments.
Recall that an encoding of a plaintext in our scheme consists of numerous CLT13
plaintexts at different CLT13 levels. The “real” experiment allows the adversary
to perform operations on any of these individual CLT13 encodings, and win
through any of the victory conditions in the weak model. The “ideal” experi-
ment provides the same interface to the adversary, but is run by a simulator
that only has access to the vanilla generic multilinear map model. Intuitively, if
there exists a simulator for which the adversary cannot distinguish between the
two experiments, then no extra information is leaked in the real world and our
multilinear map achieves ideal security.
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Real and Ideal Experiments. Suppose the multilinear map is used to encode
a sequence m1, . . . ,mv of plaintexts at levels S1, . . . , Sv.

In the “real” world experiment, denoted EXPreal, the adversary interacts
with our weak CLT13 model, whose plaintexts consist of all the elements of
all the matrices output by our multilinear map encoding procedure as well as all
the elements of the public parameter matrices. These plaintexts are encoded at
the appropriate levels derived from S1, . . . , Sv. The adversary can submit level-
respecting polynomials over these plaintexts as zero-test queries, and receives a
handle to the result of the zero-test computation for successful queries. Then the
adversary enters a post-zero test stage, and can win by submitting a polynomial
Q that satisfies the win conditions of the CLT13 weak model.

In the “ideal” world experiment, denoted EXPideal, the adversary interacts
with a simulator S that can interact with a vanilla generic multilinear map
model. In this world, the model only stores the actual plaintexts m1, . . . ,mv

and levels S1, . . . , Sv. The adversary submits level-respecting polynomials over
the plaintexts of the real world. The simulator S answers these queries using
only queries to its model over the actual plaintexts. As in the real world, the
adversary enters a post-zero test stage, which the simulator must respond to.

For any adversary A, let EXPreal(A) (respectively EXPideal(S,A)) denote the
probability that A can win in the “real” (respectively “ideal”) world.

5.1 The Vector-input Branching Program Un-annihilatability
(VBPUA) Assumption

The security of our multilinear map rests on a new assumption about anni-
hilating vector-input branching programs (VBPs), defined in Sect. 2.3. Define
a generic vector-input branching program (VBP) to be a VBP whose matrix
entries are all distinct formal variables, instead of fixed ring elements. A generic
VBP is evaluated just like a regular VBP, but the program output is a polyno-
mial over formal variables. We refer to these outputs as generic VBP evaluation
polynomials.

Note to the reader: The following is the simplest formal statement of our
assumption. As the assumption relies on a number of newly introduced terms, it
may be helpful to refer to the full version of this work [1] where we give concrete
illustrations of our assumption for small cases.

We now define the polynomial-size arithmetic circuits Ar that will be nec-
essary for the assumption statement. Ar takes the matrices of the vector-input
branching program as input. The output of Ar is restricted to be a linear com-
bination of vector-input branching program evaluations (though note that a
polynomial-size arithmetic circuit can compute exponentially large linear com-
binations).

Assumption 1 (The (�, w, k)-VBPUA Assumption). Let � = poly(d, λ),
w = poly(d, λ), k = poly(d, λ) be parameters, and let f(x) for (x1, . . . , xd) ∈
(Zk)d (where each input vector xi is a k-dimensional integer vector) be a generic
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vector-input branching program that reads each input vector xi � times and con-
sists of w × w matrices. For each r = 1, . . . , m, let Ar be any arithmetic circuits
satisfying the definition above, each with size poly(d, k, λ). The output of Ar

is a polynomial over the formal variables of the generic vector-input branch-
ing program, and denote it by Pr. Suppose further that P1, . . . , Pm are linearly
independent as polynomials over the formal variables of the generic vector-input
branching program. Then there does not exist any polynomial-sized circuit Q of
degree at most 2o(λ) such that Q({Pr}r) ≡ 0 as a polynomial over the formal
variables of the generic VBP.

Note that each pair of functions �, w, k gives a distinct assumption. In gen-
eral, increasing � or w intuitively gives a harder problem (and therefore milder
assumption), while increasing k gives a potentially easier problem (and there-
fore stronger assumption. Our construction is quite flexible, and can be tailored
to work with multiple possible settings of �, w, k. Importantly, however, we will
usually need k to be substantially larger than w2�. For more precise bounds on
�, w, k, refer to the full version [1].

We conjecture that the assumption is for any choices of �, w, k provided w�

is exponential in λ, d. We conjecture that determinant-style annihilating attacks
(discussed in the full version [1]) give the lowest-complexity annihilating polyno-
mials for VBPs, as this appears to be the case for matrix branching programs.
w� lower bounds the size of such determinant-style annihilations. Verifying this
would imply security for the choices of �, w, k that we require.

This assumption is similar to the Branching Program Un-Annihilatability
Assumption of Garg et al. [37], but we do not know how to base our assumption
on PRFs. For a detailed comparison of the statements of these assumptions,
refer to the full version [1].

Note that the assumption states that no polynomial-size circuits Q of degree
at most 2o(λ) can annihilate a non-trivial set of VBP evaluations (generated by
polynomial-size circuits). As evidence that this assumption is not trivially false,
we heuristically argue in the full version of this work [1] that there are no circuits
Q that can annihilate VBP evaluations up to a certain polynomial degree, even
if we allow Q to have exponential size.

5.2 Security Proof

Our multilinear map is secure as long as (1) the adversary can never create a
successful polynomial Q in the real world, and (2) any information the adversary
gets in the real world, the adversary can also obtain in the ideal world. Formally,
this requires proving the existence of a simulator such that no PPT adversary
can distinguish between the two worlds.

Let d be the desired asymmetric degree of the multilinear map. We instantiate
the construction with the number of meta-encodings k released per level set
large enough to support secure re-randomization of meta-encodings under the
Leftover Hash Lemma, and the number of matrices per meta-encoding � set large
enough so that brute-force determinant attacks are blocked. The width w of each
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matrix is set to 3 + 2d(� − 1) to fit the construction. For further details on the
recommended parameter choices, refer to the full version [1].

With this setting of �, w, k, security of our construction follows from the
(�, w, k)-VBPUA assumption.

Theorem 2. Under the (�, w, k)-VBPUA Assumption, our construction with
the above parameter choices is secure in the CLT13 weak model. That is, there
exists a PPT simulator S such that for all PPT adversaries A,

Pr[EXPreal(A) = EXPideal(S,A)] = 1 − negl(λ)

Moreover, S always responds to post-zero test queries with 0.

Due to space restrictions, we give a high level overview of the major proof
techniques and defer the full proof to [1].

Proof Sketch. We start with an application of Theorem 1, which states that if
an adversary A can break our scheme in the weak CLT13 model, there exists an
adversary A′ in the CLT13 annihilating model. Recall that in the annihilating
model, A′ wins if it can annihilate the formal polynomials that correspond to
successful zero-tests. Therefore, our first task is to show that the only successful
zero-tests the adversary can compute are those that correspond to valid manip-
ulations of our multilinear map meta-encodings. Then if we view the matrices in
our scheme as the matrices of a read-� vector-input branching program (VBP),
a valid top-level meta-encoding corresponds to a linear combination of honest
VBP evaluations. Given the VBPUA assumption, an adversary cannot success-
fully annihilate these evaluations.

Recall that the meta-encodings are themselves sequences of individual matri-
ces. We must first show that the adversary must respect the structure of these
individual matrices. We rely on an extension of Lemma 5.2 in [30], which we
state and prove in the full version of this paper [1]. At a high level, our lemma
shows that Kilian randomization matrices force the adversary to respect the
original matrix structure; if the adversary attempts to pluck individual scalar
entries out of these matrices and obtain zero-tests that do not correspond to
products of matrices, then it will be unable to obtain successful zero-tests with
any non-negligible probability. The next step is to show, roughly speaking, that
an adversary cannot manipulate (i.e. add/multiply) one matrix from a meta-
encoding without simultaneously performing the same operation on all of them.
This follows from Lemma 1 (proven in the full version [1]), which implies that
if the adversary does not respect the meta-encoding structure, our “enforcing
matrices” will guarantee it does not obtain a successful zero-test except with
negligible probability.

Taken together, these steps show that the adversary can never be successful in
the post-zero-test stage of the CLT13 annihilating model. Therefore it can only
distinguish the real experiment from the ideal experiment by making ordinary
zero-test queries. In the full proof [1], we conclude by showing how a simulator
S with access to an ideal implementation of our multilinear map can correctly
simulate the 0/1 response to any zero-test query.
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Abstract. The GGH15 multilinear maps have served as the foundation
for a number of cutting-edge cryptographic proposals. Unfortunately,
many schemes built on GGH15 have been explicitly broken by so-called
“zeroizing attacks,” which exploit leakage from honest zero-test queries.
The precise settings in which zeroizing attacks are possible have remained
unclear. Most notably, none of the current indistinguishability obfusca-
tion (iO) candidates from GGH15 have any formal security guarantees
against zeroizing attacks.

In this work, we demonstrate that all known zeroizing attacks on
GGH15 implicitly construct algebraic relations between the results of
zero-testing and the encoded plaintext elements. We then propose a
“GGH15 zeroizing model” as a new general framework which greatly
generalizes known attacks.

Our second contribution is to describe a new GGH15 variant, which
we formally analyze in our GGH15 zeroizing model. We then construct
a new iO candidate using our multilinear map, which we prove secure
in the GGH15 zeroizing model. This implies resistance to all known
zeroizing strategies. The proof relies on the Branching Program Un-
Annihilatability (BPUA) Assumption of Garg et al. [TCC 16-B] (which
is implied by PRFs in NC1 secure against P/poly) and the complexity-
theoretic p-Bounded Speedup Hypothesis of Miles et al. [ePrint 14] (a
strengthening of the Exponential Time Hypothesis).

1 Introduction

1.1 Motivation

Multilinear maps [2] are a powerful cryptographic tool that have enabled
many cryptographic applications, ranging from multiparty key agreement [2]
to extremely powerful indistinguishability obfuscation (iO) [3]. There are cur-
rently three families of multilinear maps: those of Garg, Gentry, and Halevi [4]
(GGH13), those of Coron, Lepoint, and Tibouchi [5] (CLT13), and those of Gen-
try, Gorbunov, and Halevi [6] (GGH15).

The full version of this paper is available on the IACR ePrint Archive [1].

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 544–574, 2018.
https://doi.org/10.1007/978-3-030-03810-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03810-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-03810-6_20


Return of GGH15: Provable Security Against Zeroizing Attacks 545

Each of these multilinear map families are based on fully homomorphic
encryption (FHE) schemes. However, the FHE schemes are intentionally weak-
ened by providing a broken secret key to allow useful information to be extracted
from encrypted values. Because of these broken secret keys, extensive cryptanal-
ysis is required before we can gain confidence that some security remains. In
this work, we study the GGH15 multilinear maps. We believe these maps are
particularly interesting for a couple reasons:

– In some cases, by specializing the GGH15 construction to certain settings,
security can actually be proved based on the well-studied Learning with
Errors (LWE) assumption [7]. Notably, the lockable obfuscation constructions
of Wichs and Zirdelis [8], of Goyal, Koppula, and Waters [9], and of Chen,
Vaikuntanathan, and Wee [10], and the private puncturable PRFs of Canetti
and Chen [11] and Chen et al. [10], are all based in part on the GGH15 mul-
tilinear maps, and can be proved secure under LWE.1 Therefore, the GGH15
multilinear maps seem to be the most promising route to achieving security
based on LWE.

– The other two candidate multilinear maps, GGH13 and CLT13, have been
shown vulnerable to quantum attacks [13–17]. In contrast, given the positive
results above and the fact that LWE appears resistant to quantum attacks,
it seems reasonable to expect that GGH15 is quantum immune, at least in
certain settings. This leaves GGH15 as the main candidate multilinear map
for the post-quantum era.

Despite the above positive results, there is still a large gap between what
is provably secure under LWE and what the community hopes to achieve with
multilinear maps, namely iO. On the positive side, “direct attacks” on the mul-
tilinear maps seem unlikely. Here “direct attacks” refer to attempts to attack
the underlying FHE schemes, ignoring the extra information provided through
the broken secret key.

Unfortunately, all multilinear map candidates have been subject to very
strong “zeroizing” attacks [4,18,19] which exploit the broken secret key. These
attacks have broken many of the applications which had not been proven secure.
Since the original attacks, the field has seen a continual cycle of breaking schemes
and fixing them. In the case of GGH15, these attacks [10,19,20] have broken
many applications, including multiparty key agreement, and several of the iO
candidates.

Given the importance of iO, it is important to study the security of multi-
linear maps even in the setting that lacks a security proof under well-studied
assumptions. In order to break free from the cycle above, our aim is to develop
a rigorous and formal justification for security, despite the lack of “provable”
security.

1 The lockable obfuscation constructions in [8] and [9] use ideas from prior work of
Goyal, Koppula, and Waters [12] which introduced techniques for using GGH15
encodings to encrypt branching programs.



546 J. Bartusek et al.

Recent works have shown how to break the attack-fix-repeat cycle for
GGH13 [21] and CLT13 [22] multilinear maps by devising abstract “zeroiz-
ing” models that capture and generalize all known zeroizing attack strategies
on the maps. These works formally prove security of applications in these mod-
els, demonstrating in a rigorous sense that the analyzed schemes are resistant to
known zeroizing attacks. Since these works, all subsequent classical polynomial-
time attacks have fit the proposed models, demonstrating that these models may
reasonably reflect the security of the maps.

Our goal is to extend these works to the GGH15 setting, devising a model
that captures and generalizes all known zeroizing attack strategies. For GGH15,
however, there are unique challenges that make this task non-trivial:

– The underlying mathematics of the scheme differs from previous schemes, and
the details of the attacks are quite different. As such, any attack model will
be different.

– There does not appear to be a single unified GGH15 multilinear map in
the literature, but instead many variants — the basic GGH15 map, a ver-
sion with safeguards, a version with commutative plaintexts, etc. Moreover,
many applications do not conform to the multilinear map interface, and are
instead described directly on the GGH15 implementation. The many variants
of GGH15 and applications are accompanied by similarly varied settings for
the attacks.

– Additionally, there are some functional limitations of GGH15: plaintexts are
required to be “short”, by default plaintexts do not commute, and the level
structure derives from graphs instead of sets. These present challenges in
applying the standard multilinear map tools (such as Kilian randomizing
branching programs, straddling sets, etc.) to the GGH15 setting. This breaks
many of the analysis techniques that have been applied to other multilinear
map candidates, and has also led to some ad hoc proposals, such as using
diagonal matrices for the plaintexts, multiplying by random scalars to create
levels, or Kilian randomizing using special types of matrices.

Therefore, our goal will be to:

Develop an abstract zeroizing attack model that captures all known zeroiz-
ing attacks on all variants of GGH15, and develop new techniques for
proving security in this model.

Our Results. In this work we devise an abstract attack model that applies to
all existing variants of GGH15 and applications built on top of GGH15. We
demonstrate that our attack model captures and generalizes all zeroizing attacks.

We then describe a new variant of GGH15, based on several prior works in
the area, which we can prove strong security statements about in our model. Our
new scheme is flexible enough to support a simple obfuscation scheme which we
can prove secure in our model. The result is a scheme that is provably resistant
to zeroizing attacks. Before giving our results, we start with a very brief overview
of the GGH15 maps and known attacks.
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1.2 The GGH15 Multilinear Map

GGH15 is a “graph-induced” multilinear map, which departs somewhat from
the usual multilinear map notions. Here, we have a connected directed acyclic
graph G = (V,E) of d nodes with a single source (labeled 1) and a single sink
(labeled d). A “level” is a pair of vertices (u, v) for which there is a path from
u to v; we will denote such levels by u � v (different paths between u, v will be
considered the same level). Plaintexts S are encoded relative to levels u � v,
and we denote such an encoding as [S]u�v.

Given a handful of encodings, the following operations can be performed:

– Addition: Two encodings [S0]u�v, [S1]u�v relative to the same pair of ver-
tices can be added, obtaining the encoding of the sum [S0 + S1]u�v(relative
to the same pair of vertices).

– Multiplication: Two encodings [S0]u�v, [S1]v�w whose nodes form a path
u � v � w can be multiplied, obtaining an encoding [S0 · S1]u�w of the
product at the level corresponding to concatenating the paths.

– Zero Testing: Given an encoding [S]1�d between the unique source and
sink, we can test whether or not S is equal to 0.

In GGH15, the “plaintexts” are also matrices, rather than scalars, mean-
ing the multiplications above are non-commutative. Moreover, in GGH15, the
plaintext matrices are required to be “short”.

GGH15 works as follows. Associated to each node u is a matrix Au. An
encoding of S at level u � v is a matrix D that satisfies AuD = SAv +E mod q
where both D and E are “short”. This encoding is generated using a lattice
trapdoor.

Addition is straightforward to verify. For multiplication, suppose AuD0 =
S0Av +E0 mod q and AvD1 = S1Aw +E1 mod q. Then AuD0D1 = S0S1Aw +
E0D1 + S0E1 mod q.

Since Sb, Db and Eb are short, we can define E2 = E0D1 + S0E1, which is
also short, and we see that D0D1 is an encoding of S0S1 relative to the path
u � w.

For zero-testing, we note that if we have an encoding D of S relative to
1 � d and we compute A1D mod q = SAd +E mod q, the resulting matrix will
be “short” relative to q if S = 0, and otherwise, we would expect the result to
be large relative to q.

1.3 Zeroizing Attacks on GGH15

As with all current multilinear map candidates, GGH15 is vulnerable to “zeroiz-
ing” attacks. These attacks leverage the fact that any time a zero-test actually
detects 0, the procedure also produces an equation that holds over the integers.

For GGH15, notice that zero-testing computes A1D mod q = SAd +E mod
q. If S = 0, the result is just E mod q, which equals E since E is guaranteed to be
short relative to q. But recall from the GGH15 description that if D is the result
of several multilinear map operations, E depends on not just the error terms of
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the original encodings, but also on the plaintext values S. Therefore, any suc-
cessful zero-test will give an equation depending on the original plaintext values,
and this equation holds over the integers. These equations can then potentially
be manipulated to learn non-trivial information about the underlying plaintexts.
This is the heart of all known zeroizing attacks on GGH15.

More abstractly, suppose that c plaintext matrices S1, . . . ,Sc are encoded
relative to various edges, producing the corresponding encoding matrices
D1, . . . ,Dc. In all known zeroizing attacks, the adversary adds and multiplies
the matrices {Di}i honestly (respecting the edge-constraints of the graph) to
produce top-level encodings of zero.2 Let pu({Di}i) denote the u-th top-level
encoding of zero the adversary constructs. Each top-level zero pu({Di}i) is then
zero-tested by multiplying on the left by A1, successfully obtaining a low-norm
matrix of zero-test results, which we denote as Tu (in some constructions, Tu is
simply a scalar). The current attacks all build a new matrix W whose entries
are plucked from the various Tu matrices (or Tu itself in the case of a scalar).
From this point, the known attacks differ in strategy from each other. But at
a high level, all of them extract some piece of information from W, such as its
kernel or its rank, and use this information to recover non-trivial information
about the hidden plaintext matrices {Si}i.

1.4 Our Zeroizing Model for GGH15

We make the following observation: all known attacks that recover information
about the plaintexts {Si}i from the {Tu}u set up an algebraic relation between
the two (we will often refer to this relation as a polynomial). More precisely,
this means that implicit in all successful zeroizing attacks on GGH15, there is a
non-trivial bounded-degree polynomial Q such that

Q({Tu}u, {Si,j,k}i,j,k) = 0

holds over the integers, where Si,j,k denotes the (j, k)-th entry of matrix Si.
In known attacks, this Q depends on the matrix W in some way; however,
anticipating potential new avenues for attack, we consider a much more general
attack format which assumes as little as possible about the structure of the
attacks. Hence, our general condition makes no reference to a matrix W.

While this condition seems simple, it is not a priori obvious that any of
the GGH15 zeroizing attacks actually produce such a Q. In theory, an adversary
might recover information about the plaintext matrix entries {Si,j,k}i,j,k through
any efficient algorithm taking {Tu}u as input. We certainly cannot hope to re-
express any poly-time algorithm as a polynomial over its inputs and outputs.
However, we are able to show that all known attacks can be recast as procedures
that uncover a Q polynomial.
2 Technically, the Coron et al. attack on key exchange does not compute top-level

encodings of zero, but encodings of the same matrix relative to different source-to-
sink paths [19]. However, by connecting a master source node to the original source
nodes, we can assume that all GGH15 graphs have a single source. In this case, the
Coron et al. attack indeed computes top-level encodings of zero.
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Example: The CLLT16 Attack. In Coron et al. [19], the first step of the attack
is to construct the matrix W as above, and then compute a vector v in the left
kernel of W. They show, using the algebraic structure of GGH15, that such a v
in fact gives a relation amongst the plaintext elements only (no error terms). In
particular, there is a vector x of fixed polynomials in the underlying plaintext
elements such that v is orthogonal to x. The attack then proceeds to use this
relation amongst the plaintexts to break the scheme.

We observe that an equivalent view of their analysis is that x is in the column
span of W. This means that if we append the column vector x to W, the rank
will be unchanged. Suppose for the moment that W itself is full rank, and that
it is one column shy of being square. Then we can capture the fact that the rank
does not increase with a simple algebraic relation: the determinant of [ W | x ]
equals 0. Therefore, in this restricted setting where W is full rank and almost
square, we see that the CLLT16 attack implicitly contains a polynomial Q as
desired.

In the actual attack, W may not be full rank, meaning the determinant may
trivially be 0 no matter what x is; this means Q does not give us a useful relation
over the plaintexts. Moreover, [ W | x ] may not be square, so the determinant
may not be defined. With a bit more effort, we can see that a polynomial Q is
nonetheless implicit in the attack for general W. Basically, if we knew the rank
r of W, we could choose a “random” matrix R with r+1 rows, and a “random”
matrix S with r + 1 columns. If we compute R · [ W | x ] · S, we will obtain an
(r + 1) × (r + 1) matrix whose rank is (with high probability) identical to the
rank of [ W | x ]. Now we can take the determinant of R · [ W | x ] ·S to be our
algebraic relation. In practice, we do not know r, but we can guess it correctly
with non-negligible probability since r is polynomially bounded.

The GGH15 Zeroizing Model. With our observations above in hand, we can
define a new zeroizing model for GGH15. Roughly, the model allows the attacker
to perform multilinear map operations as explicitly allowed by the multilinear
map interface (i.e. following edge constraints). Then, after performing a zero-
test, if the encoding actually contained a zero, the adversary obtains a handle
to the elements produced by zero-testing (the E matrix in the discussion above,
but potentially a different quantity for different GGH15 variants). Next, the
adversary tries to construct an algebraic relation Q between the zero-test results
and the original plaintexts. The only restrictions we place on Q are that it must
be computable by an efficient algebraic circuit, and that it must have degree that
is not too large (e.g. sub-exponential). These restrictions are very conservative,
as the known attacks are quite low degree and very efficiently computable.

In the full version, we also discuss how to relax the model even further in
two different ways. In one, we allow the adversary to zero-test arbitrary (degree-
bounded) polynomials over the encodings, which may not necessarily obey edge
restrictions. In the other relaxed model (which is incomparable to the first relax-
ation), we allow the adversary to zero-test polynomials over handles to elements
of encodings rather than over handles to the full matrices, as long as the poly-
nomials still follow the edge constraints.
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1.5 A New GGH15 Variant

For our next result, we describe a new GGH15 variant. Our goal with this variant
is to add safeguards — some of which have been proposed in the literature —
in a rigorous way that allows us to formally analyze the effectiveness of these
safeguards. Our modifications to GGH15 are as follows:

Tensored Plaintexts. First, we will modify plaintexts as suggested in Chen et
al. [10]. Plaintexts will still be matrices M. However, before encoding, we will
manipulate M as follows. First, we will tensor M with a random matrix S. Then
we will also append S as a block diagonal, obtaining the matrix

S′ =
[
M ⊗ S

S

]

Then we will encode S′ as in plain GGH15. By performing this encoding, we can
use the Chen et al. [10] proof to show that direct attacks (those that do not use
the broken secret key) are provably impossible, assuming LWE.

Block Diagonal Ciphertexts. Next, after obtaining a plain GGH15 encoding D′

of S′, we append a block diagonal B. Each matrix B will have “smallish” entries,
and will be chosen independently for each encoding. These matrices will multiply
independently of the encodings D′. After multiplying to the top level, we will
introduce bookend vectors which will combine the products of the D′ and B
matrices together. Since the B matrices are small, this will not affect zero-testing.

These block diagonals are used to inject sufficient entropy into the encodings,
which will be crucial for several parts of our analysis. In particular, these block
diagonals will be used to prove that any attack in our zeroizing model will also
lead to an attack in a much simpler “GGH15 Annihilation Model”, discussed
below in Sect. 1.6. Their role is similar to block diagonals introduced by Garg et
al. [21], in the context of GGH13 multilinear maps. However, we note that their
role here is somewhat different: our block diagonals are added to the ciphertexts,
whereas in [21] they are added to the plaintexts before encoding.

Kilian Randomization. As described so far, the block diagonals B can simply
be stripped off by the adversary, and therefore do not provide any real-world
security, despite offering security in our model as discussed in Sect. 1.6. The
reason for this inconsistency is that our model assumes the adversary treats the
encoding matrices monolithically, only operating on whole encoding matrices.
Such an adversary cannot decompose a block diagonal matrix into its blocks.

We therefore employ the relaxation of our model discussed above, where the
adversary can manipulate the individual components of an encoding indepen-
dently (this is done in the full version [1]). This model captures any adversary’s
attempts to decompose a block matrix, and potentially much more. In order to
maintain security even in this relaxed model, we Kilian-randomize the encodings,
which is one of the suggested safeguards from the original GGH15 paper [6].



Return of GGH15: Provable Security Against Zeroizing Attacks 551

More precisely, we associate a random matrix Ru with each node u. Then,
when encoding on an edge u � v, we left-multiply the block diagonal encoding
from above by R−1

u , and right multiply by Rv. Note that the inner R matrices
cancel out when multiplying two compatible encodings. Moreover, we include
R’s in the bookend vectors to cancel out the outer matrices when zero-testing.

This randomization, intuitively, allows us to bind the matrices B to D′. We
formally prove in our relaxed model that the adversary learns nothing extra if it
attempts to manipulate the individual matrix entries; therefore, the adversary
might as well just operate monolithically on whole encodings. This allows our
analysis from above to go through.

Asymmetric Levels. Finally, we introduce asymmetric levels. In an asymmetric
multilinear map, plaintexts are encoded relative to subsets of {1, . . . , κ}. Encod-
ings relative to the same subset can be added, and encodings relative to disjoint
subsets can be multiplied. Encodings relative to the “top” level {1, . . . , κ} can
be zero-tested.

We do not quite obtain asymmetric multilinear maps from GGH15. Instead,
we add the asymmetric level structure on top of the graph structure. That is,
there is still a graph on d nodes as well as a set of asymmetric levels. Any
plaintext is now encoded relative to a pair (u � v, L), where u � v is a path
in the graph and L is a subset of {1, . . . , κ}. Encodings can be added as long as
both the graph-induced and asymmetric levels are identical, and encodings can
be multiplied as long as both sets of levels are compatible. An element can be
zero-tested only if it is encoded relative to the source-to-sink path 1 � d, and
the “top” asymmetric level {1, . . . , κ}. Asymmetric levels are useful for creating
straddling sets [23] for proving the security of obfuscation.

To achieve this functionality, we use a technique suggested by Halevi [24].
Simply associate a random scalar to each asymmetric level, and divide an encod-
ing by the corresponding subset of level scalars. We choose the level scalars so
that they cancel out if and only if they are multiplied together, corresponding
to a “top”-level encoding.

We note that it is possible for an adversary to combine elements that do
not conform to the asymmetric level structure. For example, an adversary can
multiply two encodings with the same asymmetric level. The point is that the
adversary will not be able to successfully zero-test such an encoding.

However, the ability to combine illegal elements presents some difficulty for
our analysis. Namely, the adversary could combine some illegal elements, and
then cancel them out later at some point prior to zero-testing. Such a procedure
will generate a valid zero-test, despite being composed of illegal operations. This
breaks usual security proofs relying on asymmetric levels, which assume the
ability to immediately reject any illegal operations. Essentially what we get then
is an “arithmetic model” for the asymmetric levels, due to Miles, Sahai, and
Weiss [25]. We will therefore use the techniques from their work in order to
prove security in our model.
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1.6 An Annihilation Model for Our Scheme

Next, we define a GGH15 Annihilation Model which is much simpler than the
zeroizing model described above. This model makes it very easy to evaluate
whether a set of plaintexts could possibly lead to an attack.

Up until successful zero-tests, this model is similar to the original model
described above: the adversary can combine elements as long as they respect the
edges in the underlying graph G. One key difference is that encodings are also
associated with an asymmetric level structure. For the asymmetric level struc-
ture, we work with the arithmetic model, which allows the adversary to combine
arbitrary elements, but any zero-test must be on elements which respect the
asymmetric level structure (in addition to respecting the graph level structure).

After successful zero-tests, the model changes from above. Instead of trying
to compute a polynomial relation Q, the adversary simply tries to compute
an annihilating polynomial Q′ for the set of zero-test polynomials previously
submitted (where each is evaluated over matrices of formal variables). We show
that any attack on our scheme in the GGH15 zeroizing model corresponds to an
attack in the GGH15 annihilation model, allowing us to focus on proving the
security of schemes in the simpler to reason about annihilation model.

1.7 Zeroizing-Proof Obfuscation

We now turn to constructing obfuscation secure against zeroizing attacks. With
our new GGH15 construction and models in hand, the construction becomes
quite simple. As with the original obfuscator of Garg et al. [3], our obfuscator
works on matrix branching programs; such an obfuscator can be “bootstrapped”
to a full obfuscator using now-standard techniques (e.g. using FHE as in [3]).
Our obfuscator is essentially the obfuscation construction of [26], which in turn
is based on [23]. We do have some simplifications, owing to the fact that our
multilinear map directly works with matrices.

– We assume the branching program is given as a “dual-input” branching pro-
gram, following the same restrictions as in [23].3 Any branching program can
be converted into such a dual-input program using simple transformations as
described in [23].

– We instantiate our multilinear map with the single path graph G whose length
matches the length � of the branching program. We also use the version with
asymmetric level structure, using � asymmetric levels.

– We directly encode the branching program matrices. Each matrix is encoded
at the asymmetric level corresponding to how it would be encoded in [26]. Its
graph-induced level is chosen to be consistent with evaluation order; namely,
the branching program matrices in column i are encoded at the i-th edge in
G.

3 Dual-input is necessary to invoke the p-Bounded Speedup Hypothesis for MAX 2-
SAT. This arises in the proof of Lemma 7.
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We can then easily prove our obfuscator is secure against zeroizing attacks.
The following is a sketch of the proof: in our GGH15 annihilation model, follow-
ing previous analysis of [25], we can show that under the p-Bounded Speedup
Hypothesis, the only successful zero-tests the adversary can construct are lin-
ear combinations of polynomially many honest branching program evaluations.
But then, any annihilation attack gives an annihilating polynomial for branch-
ing programs. We then rely on a non-uniform variant of the Branching Program
Un-Annihilatability Assumption (BPUA) of [21], which conjectures that such
annihilating polynomials are computationally intractable. This assumption can
be proven true under the very mild assumption that PRFs secure against P/poly
and computable by branching programs exist (in particular, PRFs computable
by log-depth circuits suffice).4

1.8 Concurrent Work: A Weak Model for CLT13

Ma and Zhandry [28] propose a weak multilinear map model for the CLT13
multilinear maps [5], which they show captures all known zeroizing attacks on
CLT13. They prove that an obfuscation scheme of Badrinarayanan, Miles, Sahai,
and Zhandry [26] as well as an order revealing encryption construction of Boneh
et al. [27] are secure against zeroizing attacks when instantiated with CLT13.
They also give a polynomial-degree asymmetric multilinear map “fix” which they
prove secure in their model under a new assumption they call the “Vector-Input
Branching Program Un-Annihilatability Assumption,” a strengthening of the
BPUA Assumption.

Due to the substantial differences between the CLT13 and GGH15 multilinear
maps, the techniques of Ma and Zhandry do not apply to the GGH15 setting.
Most notably, their model captures an attacker’s ability to perform a step that
leads to factoring the CLT13 modulus. There is no composite modulus in the
GGH15 scheme and thus the zeroizing attacks we consider are quite different.

2 Preliminaries

2.1 Notation

Throughout this paper we use capital bold letters to denote a matrix M. Lower-
case bold letters denote vectors v. Occasionally, we will use diag(M1, . . . ,Mk)
to denote a matrix with block diagonals M1, . . . ,Mk. We will often need to dis-
tinguish between values and formal variables. For example, in a situation where
the variable x = 2, it can be difficult to tell when x represents a formal vari-
able or when it represents the number 2. Thus, whenever we want x to denote
a formal variable, we explicitly write it as x̂. When an expression over formal
variables is identically 0, we write ≡ (or �≡ if it is not). Finally, we identify the
ring Zq with elements [−q/2, q/2).
4 Using similar arguments, we can adapt the order-revealing encryption (ORE) con-

struction of [27] to our scheme, and prove security under BPUA, analogous to con-
structing ORE from GGH13 as in [21].
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2.2 Background on Lattices

Here, we give a very brief background on lattices. A lattice Λ of dimension n is
a discrete additive subgroup of Rn that is generated by n basis vectors denoted
as {b1, . . . ,bn ∈ R

n}. Specifically, we have Λ = {∑i∈[n] xi · bi} for integer xi’s.
We then have the following useful definitions and lemmas.

Definition 1 (Discrete Gaussian on Lattices). First, define the Gaussian
function on R

n with center c ∈ R
n and width σ > 0 as

∀x ∈ R
n, ρσ,c(x) = e−π‖x−c‖2/σ2

.

Then, the discrete Gaussian distribution over an n-dimensional Λ with center
c ∈ R

n and width σ is defined as

∀x ∈ Λ,DΛ,σ,c(x) =
ρσ,c(x)∑

y∈Λ ρσ,c(y)
.

Note that we omit the subscript c when it is 0.

Definition 2 (Decisional Learning with Errors (LWE) [7]). For n,m ∈ N

and modulus q ≥ 2, distributions for secret vectors, public matrices, and error
vectors θ, π, χ ⊆ Zq, an LWE sample is defined as (A, sTA + eT mod q) with
s,A, e sampled as s ← θn, A ← πm×n, and e ← χm.

An algorithm is said to solve LWEn,m,q,θ,π,χ if it is able to distinguish the
LWE sample from one that is uniformly sampled from πm×n × U(Zm×1

q ) with
probability non-negligibly greater than 1/2.

Lemma 1 (Hardness of LWE [7]). Given n ∈ N, for any m = poly(n), q ≤
2poly(n), let θ = π = U(Zq), χ = DZ,σ where σ ≥ 2

√
n. If there exists an efficient

(possible quantum) algorithm that breaks LWEn,m,q,θ,π,χ, then there exists an
efficient (possible quantum) algorithm for approximating SIVP and GAPSVP in
the �2 norm, in the worst case, to within Õ(nq/σ) factors.

Lemma 2 (LWE with Small Public Matrices [29]). Given n,m, q, σ chosen
as in Lemma 1, LWEn′,m,q,U(Zq),DZ,σ,DZ,σ

is as hard as LWEn,m,q,U(Zq),U(Zq),DZ,σ

for n′ ≥ 2n log q.

Lemma 3 (Trapdoor Sampling [30]). There exists a PPT algorithm called
TrapSam(1n, 1m, q) that, given any integers n ≥ 1, prime q ≥ 2, and sufficiently
large m = O(n log q), outputs (A, τ) where A is statistically close to uniform over
Z

n×m
q , and τ is a trapdoor for A. Furthermore, there is another PPT algorithm

SampleD(A, τ,y, σ) that outputs a sample of vector d from DZm,σ conditioned on
Ad = y. For sufficiently large σ = O(

√
n log q), with all but negligible probability,

we have

{A,d,y : y ← U(Zn
q ), d ← SampleD(A, τ,y, σ)}

≈s

{A,d,y : d ← DZm,σ,y = Ad}.
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2.3 Matrix Branching Programs

We introduce dual-input matrix branching programs of the type considered in
[31] but with one minor modification. Formally, a dual-input matrix branching
program BP of length h, width w, and input length � consists of an input
selection function inp : [h] → [�] × [�] and 4h matrices

{Mi,b1,b2 ∈ {0, 1}w×w}i∈[h];b1,b2∈{0,1}.

BP is evaluated on input x ∈ {0, 1}� by checking whether or not
∏
i∈[h]

Mi,x(i) = 0w×w

where x(i) := (xinp(i)1 , xinp(i)2). Note that the definition from [31] includes right
and left bookend vectors that are multiplied on either side of the branching
program product resulting in a scalar that is either zero or non-zero. We can
simply turn each bookend into a matrix by repetition of rows/columns in order to
recover the functionality described above. As noted in [31], branching programs
of this type can be constructed from any NC1 circuit with h = poly(n) and w = 5
by Barrington’s theorem [32].

2.4 Straddling Sets

Our obfuscator uses the notion of straddling sets in order to enforce input con-
sistency. Please refer to Barak et al. [23] for a simple construction.

Definition 3 (Straddling Set System). A straddling set system with n
entries is a universe set U and a collection of subsets S = {Si,b ⊆ U}i∈[n],b∈{0,1}
such that

–
⋃

i∈[n] Si,0 =
⋃

i∈[n] Si,1 = U

– For any distinct C,D ⊆ S such that
⋃

S∈C S =
⋃

S∈D S, there exists b ∈ {0, 1}
such that C = {Si,b}i∈[n] and C = {Si,1−b}i∈[n]

3 GGH15 Zeroizing Model

3.1 Graph-Induced Ideal Model

We discuss the syntax of graph-induced graded encoding schemes and describe
an ideal model (also known as a generic multilinear map model) for the graph-
induced setting. Note that this is completely analogous to the ideal model for
symmetric/asymmetric multilinear maps, which itself is an extension of the
generic group model to the multilinear map setting [3,4].

We consider directed acyclic graphs (DAGs) G = (V,E) where |V | = d. We
assume the graph has a single source and a single sink. We label the vertices from
1 to d according to some fixed topological ordering, so that all edges/paths in
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the graph can be written as j � k where j, k ∈ [d], j < k. (Note that the precise
distinction between paths and edges in graph-induced maps is not important,
since the intermediate nodes on a path do not matter).

Formally, the graph-induced ideal model is instantiated with a DAG G =
(V,E), a plaintext ring R, and a set of plaintexts {Mi, ui � vi}i. The plaintexts
are indexed by i, and plaintext Mi comes with an associated path ui � vi, where
ui, vi ∈ [d], ui < vi.

We describe the model as an interaction between an oracle M (the “model”)
and a user A (the “adversary”).

– Instance Generation. The model M is instantiated with the graph G, plain-
text ring R and the set {Mi, ui � vi}i. For each i, the model M generates a
handle Ĉi, stores a pointer from Ĉi to Mi, and releases (Ĉi, ui � vi) publicly.

A can only interact with the handles Ĉi, which in the ideal setting leak no
information about Mi. The model provides the following interfaces for A:

– Addition. Addition on two handles Ĉi, Ĉj is permitted only if their corre-
sponding paths ui � vi, uj � vj are the same. The model M looks up the
corresponding plaintexts Mi,Mj , and returns a newly generated handle Ĉk

to the sum Mi + Mj , along with the path ui � vi.
– Multiplication. Multiplication on two handles Ĉi, Ĉj is permitted only if the

path ui � vi ends where path uj � vj begins (vi = uj). The model M
looks up the corresponding plaintexts Mi,Mj , and returns a newly generated
handle Ĉk to the product Mi · Mj , along with the combined path ui � vj .

– Zero-Test. A can request a zero-test on a handle Ĉ. M responds with “zero”
if the corresponding plaintext is 0, and the corresponding path is the source-
to-sink path. Otherwise, the result is “not zero.”

Implicit in this model is the assumption that the adversary cannot learn anything
beyond what the interfaces explicitly allow. In particular, it can only learn the
bits returned by zero-testing honestly generated source-to-sink encodings, and
nothing more.

Zero-Test Circuits. Observe that addition, multiplication, and zero-testing
can be handled in a single interface. Here, A simply submits an arithmetic circuit
p that computes a polynomial over the handles {Ĉi}i. Any handle that results
in a successful zero-test in the above model can be represented as a polynomial-
size circuit over {Ĉi}i where each arithmetic gate respects the addition and
multiplication restrictions enforced by the graph structure.

However, we can relax the restriction on the arithmetic circuit so that the
individual gates may not necessarily respect the graph constraints, but the result-
ing polynomial still computes a valid source-to-sink encoding (for example, if
terms that violate graph constraints cancel out in the final evaluation). Looking
ahead to our GGH15 Zeroizing Model, we will require this relaxed constraint on
arithmetic circuits, which only makes the model more conservative.
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3.2 GGH15 Variants

There are a number of GGH15 variants in the literature that modify the original
GGH15 construction at a number of key points. We identify several points in
which the various schemes differ, and establish standard notation before intro-
ducing our model.

Pre-Processing. In the original GGH15 construction [6], an encoding of a plain-
text matrix M at path u � v is the matrix D satisfying Au · D = M · Av + E.

A number of works have proposed performing additional pre-processing to
M before sampling the matrix D. For example, the γ⊗diag-GGH15 encodings
of Chen et al. [10] encode a plaintext matrix M by first sampling a random
P (in the notation of [10], this is the Si,b matrix) and constructing the matrix
diag(M ⊗ P,P) where ⊗ denotes the tensor product (Kronecker product).

Then the encoding D is the matrix satisfying

Au · D =
[
M ⊗ P

P

]
· Av + E.

As other GGH15 variants perform different pre-processing steps on the initial
plaintext M, we denote the result of pre-processing as S. If there is no pre-
processing step, then S = M. In the example above S = diag(M ⊗ P,P).5 The
encoding is then computed as Au · D = S · Av + E.

Post-Encoding. The original GGH15 paper [6] as well as Halevi [24] discuss
various steps intended to safeguard the scheme against attacks (sometimes called
“GGH15 with safeguards”). These steps essentially perform operations on the
matrix D generated from the standard GGH15 encoding procedure to produce
a “final” encoding C. We will adopt this notation, and set C to be the result of
the overall encoding process. If there is no post-encoding step, then C = D.

Zero-Testing. In the original GGH15 construction, zero-testing a source-to-sink
encoding is done by computing a matrix from the public parameters and the
encodings C, and testing if this matrix is small. Ideally, only the bit of informa-
tion (whether or not the result is small) is useful to the adversary. Of course,
the zeroizing attacks on GGH15 show that this assumption is false, and that
the actual matrix resulting from the zero-test can provide useful information
to the adversary [10,19,20]. This matrix will be referred to as the “result” of
zero-testing. To avoid confusion, the 0/1 bit learned from the zero-test will be
referred to as a bit rather than the result.

In certain GGH15 variants, the result of zero-testing is not a matrix. For
example in “GGH15 with safeguards” [6,24], the result of zero-testing is a scalar.
We will use the letter T to generically denote the result of zero-testing (noting
that T may represent a matrix depending on the scheme, even though it might
not be written in bold).
5 Essentially, S is the result of the γ functions in the notation of [10]. However, the S

notation is more natural for our setting, especially when referring to entries of these
matrices.
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GGH15 Algorithms. Unlike the graph-induced ideal model, our GGH15 Zeroiz-
ing Model is defined with respect to a specific GGH15 scheme/variant in mind.
For example, in the ideal setting, a zero-test is successful if and only if the prod-
uct of the plaintexts is zero. In our GGH15 Zeroizing Model, the model explicitly
maintains encodings corresponding to each plaintext, and whether a zero-test is
successful is determined by performing computations on the encodings and pub-
lic parameters corresponding to an actual GGH15 variant.

To specify our model, we let the scheme be denoted by G. For example, G
may be the original GGH15 construction [6], the “GGH15 with safeguards” [24],
etc. To be a valid GGH15 scheme, we require G to have the following algorithms
(in the literature, PreProcess is usually implicit):

– G.KeyGen(1λ, G,R, aux): Takes the security parameter, a description of a
graph G with source 1 and sink d, a ring R, and potential auxiliary informa-
tion aux, and produces public parameters pp and secret parameters sp.

– G.PreProcess(sp,M): Converts the input plaintext M into a pre-encoding S.
For many schemes (including the original GGH15 construction), S = M.

– G.Enc(sp,S, ui � vi): Encodes S on the path ui � vi.
– G.Add(pp,C1,C2): Takes an encoding C1 of M1 at path u1 � v1 and an

encoding C2 of M2 at path u2 � v2. If u1 = u2 and v1 = v2, this produces
an encoding C3 of M1 + M2 at path u1 � v1.

– G.Mult(pp,C1,C2): Takes an encoding C1 of M1 at path u1 � v1 and an
encoding C2 of M2 at path u2 � v2. If v1 = u2, this produces an encoding
C3 of M1 · M2 at path u1 � v2.

– G.ZeroTest(pp,C): Takes an encoding C, computes a result T , and returns
(T, b). If C is an encoding of 0 relative to path 1 � d, then T is “small” and
b = 1 (indicating successful zero-test). Otherwise, b = 0 with overwhelming
probability.

3.3 GGH15 Zeroizing Model

Initialize Parameters. M is initialized with a security parameter λ, a graph
G = (V,E), a ring R, potential auxiliary information aux, and a graph-induced
encoding scheme G. It runs G.KeyGen(1λ, G,R, aux) to generate the public and
secret parameters (pp, sp), which it stores.

Initialize Elements. M is given a set of initial plaintext elements {Mi, ui � vi}i

where each plaintext is indexed by i, and i-th plaintext Mi is associated with
path ui � vi. The model applies a pre-processing procedure to the plaintext
(recall in the standard GGH15 construction, this procedure does nothing):

Si ← G.PreProcess(sp,Mi).

Then it computes the encoding Ci from the pre-encoding Si:

Ci ← G.Enc(sp,Si, ui � vi).
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Each tuple (Si,Ci, ui � vi) is stored in the pre-zero-test table. For each
encoding Ci, the model generates a corresponding handle Ĉi that contains no
information about Ci or Si. The handle is released, along with the corresponding
encoding level ui � vi, and the model internally stores a mapping between the
handle Ĉi and the tuple (Si,Ci, ui � vi). While the encoding Ci is a matrix,
the adversary is given a single handle Ĉi to the entire matrix.

Zero-Testing. The adversary generates a polynomial p (represented as a poly(λ)-
size arithmetic circuit), over the handles Ĉi and submits it to the model. Note
that since the handles correspond to non-commutative encodings, p must be
treated as a polynomial over non-commuting variables.

The model verifies that p computes an edge-respecting polynomial, meaning
that each monomial is a product of encodings corresponding to a source-to-sink
path. If p is not edge-respecting, the model returns ⊥. If p is edge-respecting,
the model M evaluates p on the encodings Ci, producing a matrix p({Ci}i)
that corresponds to a valid source-to-sink encoding (or a linear combination of
source-to-sink encodings). Finally, M zero-tests p({Ci}i), obtaining (T, b) ←
G.ZeroTest(pp, p({Ci}i)). If the zero-test is successful (b = 1), the model stores
the value T (possibly a matrix, vector, or scalar) and generates a handle T̂� to
each element of T . Otherwise, the model returns ⊥.

We index the successful zero-tests by the letter u, so Tu will denote the result
of the u-th successful zero-test, T̂u will be the corresponding handles, and pu will
be the polynomial submitted for the u-th successful zero-test.6

Post-Zero-Test. In the post-zero-test stage, the adversary submits a polynomial
Q of degree at most 2o(λ) over the handles {T̂u}u and pre-encoding elements
{Ŝi,j,k}i,j,k where Ŝi,j,k is a handle to the (j, k)-th entry of the i-th pre-encoding
matrix Si. For the sake of readability, we will frequently drop the outer subscripts
and denote these sets as {T̂u} and {Ŝi,j,k}. The model M checks the following:

1. Q({Tu}, {Si,j,k}) = 0
2. Q({Tu}, {Ŝi,j,k}) �≡ 0
3. Q({T̂u}, {Si,j,k}) �≡ 0

If all three checks pass, the model returns “Win”, and otherwise it returns ⊥. In
Sect. 3.4, we explain how we derive these conditions, and in Sect. 3.5 we justify
how these conditions capture the known attacks. We note that A is free to submit
as many polynomials Q as it wants as long as it remains polynomial time. If any
such Q causes M to return “Win” then the adversary is successful.

Note that in reality, a zeroizing attack that succeeds with non-negligible
probability is indeed considered successful. Thus, we will allow the adversary
to be possibly randomized, and we define a successful adversary to be one that
can obtain a “Win” with non-negligible probability (over the randomness of the
model and the adversary).
6 Although we denote each zero-test result as Tu, an adversary is not required to use

Tu monolithically. For example, an adversary can extract a single entry of Tu in the
case when Tu are matrices.
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3.4 Deriving the Post-Zero-Test Win Condition

All known zeroizing attacks on GGH15 exclusively rely on the results of zero-
tests to recover information about the hidden plaintexts [10,19,20]. In our model,
this can be viewed as using the values {Tu} to learn something about the values
{Si,j,k}. Furthermore, we claim that all attacks that do this recover information
that can be expressed as an algebraic relation (we justify this claim in Sect. 3.5).

More precisely, underneath all successful zeroizing attacks on GGH15, there
is a non-trivial bounded-degree polynomial Q (the algebraic relation) such that

Q({Tu}, {Si,j,k}) = 0

holds over the integers.
This corresponds to the intuition that in a zeroizing attack, the adversary

can learn something about the pre-encoding entries Si,j,k by plugging the results
of zero-testing {Tu} into the above relation. While not every algebraic relation is
solvable, we take the conservative route and model any non-trivial relation the
adversary can construct as a win.

Now we formalize what it means for Q to be non-trivial. If the adversary can
indeed plug in the results of zero-testing to learn something about the Si,j,k,
then the expression must not be identically zero over the Ŝi,j,k terms (taken
as formal variables), when the {Tu} values are plugged in. Thus, we have the
condition

Q({Tu}, {Ŝi,j,k}) �≡ 0.

We also want to ensure that the zeroizing attack uncovers information about
the pre-encodings beyond what the adversary can learn honestly. Note that if
the adversary obtains a successful zero-test, it learns that some function of the
pre-encoding entries Ŝi,j,k evaluates to 0. As a simple example, if the adversary
learns from an honest zero-test that matrix Si′ is the 0 matrix, then Si′,j′,k′ = 0
for any choice of j′, k′. The formal polynomial Q = Ŝi′,j′,k′ for any j′, k′ would
then satisfy both of the above conditions. However, we should not consider this
a successful zeroizing “attack,” as it does not use the zero-test results to derive
information about the pre-encodings.

To ensure that what the adversary learns about the pre-encodings relies on
Tu in a non-trivial way, we enforce a third condition

Q({T̂u}, {Si,j,k}) �≡ 0.

Roughly, this condition states that the relation is not always satisfied regard-
less of what the {Tu} values are, and thus the attack “uses” the zero-test leakage.

3.5 Algebraic Relations in Known Attacks

We now describe in detail how in the Coron et al. [19] attack (henceforth
CLLT16) on multiparty key exchange over GGH15, we can derive an algebraic
relation Q satisfying our three win conditions with non-negligible probability.
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For the analogous description of the other major zeroizing attacks [10,20], refer
to the full version of this work [1], and for a review of the settings of these
attacks, refer to the full version or the original papers [10,19,20].
Step 1: Compute Top-Level Encodings of Zero. The CLLT16 attack on
GGH15 key exchange does not explicitly compute encodings of zero in the orig-
inal exposition. Instead, the attack computes encodings of the same plaintext
on two different source-to-sink paths (starting from different sources), and sub-
tracts the encodings. In our setting we enforce without loss of generality that
all graphs must have a single source, which can be generically achieved by con-
necting a “super” source node to the original source nodes of the graph, and
encoding a 1 (or identity matrix) on edges leading into the original sources.

The encodings used in the key exchange are Ci,0 for 1 ≤ i ≤ 3 (which
we introduce to connect the super source node) and Ci,i′,l for 1 ≤ i, i′ ≤
3, 1 ≤ l ≤ N (for some large enough N). Then for {C} = {Ci,0}i∈{1,2,3} ∪
{Ci,i′,l}i,i′∈{1,2,3},l∈[N ], the polynomial

pj,k({C}) = C2,0 · C2,1,1 · C2,2,j · C2,3,k − C3,0 · C3,1,k · C3,2,1 · C3,3,j

is an encoding of s3,1·s1,j ·s2,k−s2,k ·s3,1·s1,j = 0 for all choices of j ∈ [J ], k ∈ [K],
where for this attack J = K = N (N is a parameter in the key exchange
construction). Recall the key exchange construction uses a GGH15 variant that
supports a commutative plaintext space, so this is always an encoding of 0.
Step 2: Zero-Test and Build W Matrix. Zero-test each of these top-level
encodings, and let the result of zero-testing pj,k({C}) be Tj,k. Construct a J ×K
matrix W where the (j, k)-th entry Wj,k is derived from Tj,k. In all current
attacks, the matrix W has the following properties:

– W factors into X×Y where the rows of Y are linearly independent over the
integers (with high probability).

– There exists a column of X that is in the column space of a J ×η dimensional
matrix M, for some η that we specify below for each attack. Each entry of
M is a polynomial over the entries of pre-encoding matrices {S}.

In the CLLT16 setting (augmented with our “super” source S), we zero-
test by multiplying AS with pj,k({C}) evaluated over the encodings. This gives
a zero-test result Tj,k as a vector. Coron et al. observe that the first element
of this vector can be written as a dot product xj · yk where the entries of xj

depend only on the encodings corresponding to user 1 (and the fixed encodings)
and the entries of yk depend only on the encodings corresponding to user 2 (and
the fixed encodings). Moreover, the first element of xj is the pre-encoding s1,j .
Coron et al. also argue that arranging many column vectors yk into a square
matrix Y results in Y being invertible with high probability. Thus we take Wj,k

to be the first element of Tj,k, X to consist of the row vectors x1, ...,xJ , and M
to simply be the column vector [s1,1 s1,2 · · · s1,J ]� (of dimension J × η where
η = 1).
Step 3: Deriving an Algebraic Relation. To show how the CLLT16 attack is
captured by our model, we demonstrate that this W matrix is already sufficient
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to come up with a Q satisfying our post-zero-test win condition (with non-
negligible probability). For this it suffices to give a polynomial-time procedure
(the adversary) that extracts a Q satisfying our win condition.

To win in our model, the adversary will pick the parameter K so that Y
turns out to be square and thus invertible and the parameter J ≥ K + η (where
η is specified in step 2 by the setting we are in). Y being invertible implies that
every column of X is in the column space of W, so in particular we have a
column of X that is in both the column space of W and the column space of
M. Intuitively, if we are able to combine the columns of W and M into a square
matrix, we are guaranteed that the determinant of this matrix will be zero. We
just have to ensure that the columns from W and the columns from M are each
linearly independent so that the determinant polynomial is not identically zero
when either set of variables is substituted in. The adversary mounts the attack
as follows, where the parameter β is taken to be exponential in the security
parameter λ that the underlying scheme was initialized with, and U←− denotes
“drawing uniformly at random.”

To start, the adversary forms the matrix W of handles to honest zero-test
results and the matrix M of pre-encoding handles where W ∈ Z

J×K and M ∈
Z

J×η. The adversary then guesses the ranks rM of M and rW of W uniformly
at random. The adversary guesses the correct ranks with probability 1/(Kη).

The adversary then draws four random matrices U,U′ U←− Z
(rM+rW)×J
β ,

V U←− Z
η×rM

β , V′ U←− Z
K×rW

β , and constructs

M′ = U · M · V, and W′ = U′ · W · V′.

Note that M′ ∈ Z
(rM+rW)×rM , and W′ ∈ Z

(rM+rW)×rW . Lastly, the adversary
constructs a square (rM + rW) × (rM + rW) matrix A = [ M′ | W′ ] by
concatenating M′ and W′. Note that the entries of A are over handles to the
zero-test results and the pre-encodings. The adversary takes the determinant
polynomial Q of this matrix and submits Q as the post-zero-test polynomial.

Assume the adversary has guessed the two ranks correctly, which happens
with non-negligible probability since K, η = poly(λ). We now show that Q will
satisfy the following three win conditions in our model with non-negligible prob-
ability.

1. Q({Tj,k}, {Si,j,k}) = 0
2. Q({Tj,k}, {Ŝi,j,k}) �≡ 0
3. Q({T̂j,k}, {Si,j,k}) �≡ 0

First, Q({Tj,k}, {Si,j,k}) = 0 since we have explicitly introduced a linear depen-
dency among the columns of A. Now we argue that with high probability, M′ has
an rM × rM dimensional submatrix of rank rM which implies that its columns
are linearly independent and thus that Q({T̂j,k}, {Si,j,k}) �≡ 0. The same argu-
ment applies to W′ implying that Q({Tj,k}, {Ŝi,j,k}) �≡ 0. This follows from an
application of the following lemma (with proof in the full version [1]), noting
that in our case, β is exponential in λ and the dimensions of M and W are
polynomial in λ.
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Lemma 4. Suppose an M ∈ Z
n×m
β has rank r. Draw uniformly random U ←

Z
r×n
β ,V ← Z

m×r
β . Then M′ := U · M · V is full rank with probability at least

1 − 2r
β .

3.6 Limitations of Our Model

Our model does not permit a number of common operations that might arise in
standard lattice cryptanalysis. For example, we naturally disallow any modular
reductions or rounding on the results of zero-testing, since the relation would
no longer be algebraic. This may at first appear problematic, since it means our
model does not capture many simple attack strategies such as LLL [33].

We stress, however, that this is a common feature of many abstract attack
models defined in the literature. For example, the random oracle model does
not allow for differential cryptanalysis, despite it being a powerful way to attack
hash functions. This is usually considered okay, since schemes are tuned (say,
by increasing the number of rounds) to make such attacks useless. Similarly,
the generic group model is often applied to elliptic curves, even though the
model does not allow for known attacks such as the MOV attack [34]. Instead,
these models capture things the adversary can do no matter how parameters are
chosen.

Our setting is similar, as most lattice attacks can be defeated by tuning
parameters. The most devastating attacks on schemes such as GGH15 are zeroiz-
ing attacks, as they are present no matter how parameters are chosen. Therefore,
we devise a model that accurately captures how zeroizing attacks are performed,
and tune parameters to block all other attacks.

4 Towards Zeroizing Resistance: New Models and
Constructions

4.1 Section Overview

In this section we construct a graph-induced encoding scheme with two desirable
properties.

Property 1: Asymmetric Levels. In asymmetric multilinear maps such as GGH13
and CLT13, plaintexts are encoded relative to subsets � ⊆ [κ], where κ is a
positive integer. Two encodings can be added if and only if they are encoded at
the same level set and can be multiplied if and only if they are encoded at disjoint
level sets. Only top level [κ] encodings can be zero-tested. In certain settings such
as obfuscation, it is desirable to enforce restrictions based on these asymmetric
levels (for example, to implement straddling sets which prevent “mixed-input”
attacks [23,25]). Unfortunately, the GGH15 edge restrictions do not immediately
give us the same capabilities of asymmetric level restrictions. Thus, we require
a notion of “Graph-Induced Multilinear Maps with Asymmetric Levels”, which
simultaneously associates every encoding with a graph path ui � vi as well
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as a level set � ⊆ [κ] (first described by Halevi [24]). Addition, multiplication,
and zero-test operations are only allowed as long as both the graph-induced
restrictions and the asymmetric level set restrictions are satisfied.

We naturally redefine our GGH15 Zeroizing Model for this new notion, calling
the resulting model the “Level-Restricted GGH15 Zeroizing Model”. This model
is identical to the GGH15 Zeroizing Model, except the adversary is now forced
to additionally respect the asymmetric level restrictions when computing a top-
level encoding of zero.

Property 2: Semantic Security of Encodings. Recent techniques of Chen et al. [10]
show how to produce GGH15 encodings that achieve provable semantic security
from LWE via a new construction they call “γ-GGH15 encodings”. We give
the formal security statement and show how to adapt their security proof to
our setting in the full version [1]. Note that this semantic security guarantee is
orthogonal to what our GGH15 Zeroizing Model captures. Semantically secure
encodings ensure that the encodings themselves do not leak information, but only
in the setting where successful zero-tests are computationally unachievable. On
the other hand, our GGH15 Zeroizing Model captures adversaries who attack
using the zero-test leakage but only under the idealized assumption that the
encodings themselves leak nothing.

A New GGH15 Variant. We integrate these two new techniques into a
new construction we call γ-GGH15-AL (γ-encodings and asymmetric levels). We
enforce asymmetric levels using a simple trick of dividing by random scalars due
to Halevi [24]. We show that security of our γ-GGH15-AL construction in the
GGH15 Zeroizing Model implies security in a (more restrictive) Level-Restricted
GGH15 Zeroizing Model. In other words, we prove that an attack on γ-GGH15-
AL that is free to disobey the asymmetric level restrictions has no more power
than an attack that obeys the asymmetric level restrictions. The proof proceeds
from applications of the Schwartz-Zippel lemma, which allow us to argue that a
top-level encoding that disobeys level restrictions will not give a successful zero-
test (with overwhelming probability). To achieve semantic security guarantees,
we incorporate the γ-GGH15 encoding strategy of [10] into our γ-GGH15-AL
construction.

We note that semantic security is only a heuristic statement in our setting.
The semantic security proofs of [10] hold when the adversary cannot successfully
zero-test, but in our construction, zero-testing can be achieved using a right
bookend vector. Thus, our construction only has semantic security when this
bookend vector is hidden from the adversary. The intuition is that when the
right bookend vector is not hidden, security is lost because of zeroizing attacks,
at which point we appeal to our GGH15 Zeroizing Model.

At the end of this section, we introduce a third model we call the “GGH15
Annihilation Model.” We show that any successful zeroizing attacks in the
GGH15 Zeroizing Model on our γ-GGH15-AL construction imply the existence of
a successful adversary in the GGH15 Annihilation Model (by first going through
the Level-Restricted GGH15 Zeroizing Model). An adversary in the GGH15



Return of GGH15: Provable Security Against Zeroizing Attacks 565

Annihilation Model will correspond to a polynomial-complexity arithmetic cir-
cuit that annihilates the zero-test polynomials submitted by the adversary.

4.2 A Graph-Induced Encoding Scheme with Asymmetric Levels

Overview. To encode a plaintext matrix M on an edge i � j with level set
L ⊆ [κ] we first generate a random matrix P in order to apply the γ⊗diag

function of [10]. The resulting pre-encoding diag(M ⊗ P,P) is encoded via the
ordinary GGH15 encoding procedure to obtain an encoding D. The next step
is to draw a random k × k matrix B and append it on along the diagonal. This
matrix B ensures each final encoding matrix C has sufficient entropy (used in
Lemma 5), and is crucial for Lemma 6. The next step is to multiply by Kilian-
randomization matrices (drawn by KeyGen for each vertex), and then divide by
level scalars

∏
�∈L z�. The resulting encoding is

C = (
∏
�∈L

z�)−1 · R−1
i ·

[
D

B

]
· Rj .

To ensure that zero-testing works, we construct our right bookend vector
w to contain the product (

∏
�∈[κ] z�), which cancels out the level scalars in the

encoding as long as it is at the top level [κ]. The left and right bookends also con-
tain Kilian-randomization matrices R1 and R−1

d multiplied in to cancel out the
Kilian-randomization on the encodings. The bookends contain additional compo-
nents bv and b�

w which multiply with the B random matrices during zero-testing.
This has the effect of adding the products of random matrices (with two random
bookends) to the result of any zero-test (this will be crucial for our obfuscation
security proof, where it will have the effect of adding a random branching pro-
gram evaluation). The remaining bookend components are essentially set to be
the bookends required by the γ-GGH15 encodings. However, we also multiply
them by randomly sampled vectors v′ and w′ to simplify dimensions.

Construction γ-GGH15-AL.KeyGen(1λ, G,R = Z, κ, β, k):7

Parameter Generation

– Label the nodes of G in topological order as 1, . . . , d where node 1 is the
unique source and node d is the unique sink.

– Choose parameters n,w, n′,m, q, σ, χ,B where n = wn′ + n′ according to
the remark below. All operations happen over Zq. Plaintexts have dimension
w × w with entries bounded by β, pre-encodings have dimension n × n with
entries bounded (with high probability) by β · σ · √

n, and encodings have
dimension (m + k) × (m + k) with entries bounded by ν = 2λ. We draw error
matrices under distribution (χ)n×m and set B to be the zero-test bound.

7 κ is the number of asymmetric levels, β is a bound on the size of plaintext entries,
and k is the dimension of the block diagonal matrices we append during the encoding
procedure.
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Instance Generation

– (GGH15 matrices and trapdoors) For each vertex i ∈ V , sample (Ai, τi) ←
TrapSam(1n, 1m, q).

– (Kilian-randomization matrices) For each vertex i ∈ V , sample a random
invertible Ri ∈ Z

(m+k)×(m+k)
q .

– (Asymmetric level scalars) For each level � ∈ [κ], sample a random invertible
z� ∈ Zq.

Bookend Generation

– (Left bookend matrix from γ-GGH15 encodings) Sample a random J′ ←
{0, 1}n′×wn′

and define
J := [J′ | In′×n′

].

– (Encoding matrix used in right bookend) Sample a uniform A∗ ← Z
n×m
q , an

error matrix E∗ ← (χ)n×m, and compute

D∗ ← SampleD(Ad, τd,

[
Iwn′×wn′

0n′×n′

]
· A∗ + E∗, σ)

This encoding serves to cancel out the lower random block diagonals on pre-
encodings and enables zero-testing on the actual plaintexts.

– (Random bookend vectors) Sample v′ ← Dn′
Z,σ,w′ ← Dm

Z,σ.
– (Final bookend vectors) Sample uniform bv ∈ Z

k
ν ,bw ∈ Z

k
ν and compute the

final bookends

v = [v′ · J · A1|bv] · R1, w = (
∏

�∈[κ]

z�) · R−1
d ·

[
D∗ · w′�

b�
w

]
.

Output

– Public parameters pp = {n,w, n′,m, k, q, σ, χ,B,v,w}
– Secret parameters sp = {Ai, τi,Ri}i∈[d], {z�}�∈[κ]

γ-GGH15-AL.Enc(sp,M ∈ Z
w×w
β , i � j, L ⊆ [κ]):

– Draw P ← Dn′×n′
Z,σ and E ← (χ)n×m

– Compute D ← SampleD(Ai, τi,

[
M ⊗ P

P

]
· Aj + E, σ)

– Draw uniform B ← Z
k×k
ν and output the encoding

C = (
∏
�∈L

z�)−1 · R−1
i ·

[
D

B

]
· Rj

γ-GGH15-AL.ZeroTest(pp,C):

– Return zero if |v · C · w�| ≤ B, and not zero otherwise.
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Parameters. First, we derive an additional security parameter λLWE = poly(λ)
which determines the hardness of LWE instances associated with the construc-
tion. We set the encoding bound ν = 2λ and choose n,w, n′,m, q, σ, χ = DZ,s

where n = wn′ + n′, m = Θ(n log q) and σ = Θ(
√

n log q) for trapdoor func-
tionality and n′ = Θ(λLWE log q) and s = Ω(

√
n′) for LWE security.8 Set the

zero-test bound B := (m ·β ·σ ·√n)d+1+(k ·ν)d+1 and choose q ≥ B ·ω(poly(λ))
such that q ≤ (σ/λLWE) · (2λLWE)1−ε for some ε ∈ (0, 1).

In the full version of this paper, we show that these constraints can be sat-
isfied with λLWE = poly(λ), and furthermore that this setting of parameters
satisfies correctness [1].

4.3 Level-Restricted GGH15 Zeroizing Model

In order to define this model, we need the following definition.

Definition 4 (Level-Respecting Encodings). Fix a universe of levels [κ].
Let Li be the set of levels associated with encoding Ci. Let m be a monomial
over encodings {Ci} which contains the j encodings C1, ...,Cj . Then m is level-
respecting if L1, ..., Lj are disjoint and

⋃j
i=1 Li = [κ]. A polynomial p over encod-

ings {Ci} is level-respecting if and only if each of its monomials is.

We only mention the differences between this model and the GGH15 Zeroiz-
ing Model. Here we expect that the GGH15 variant G that the model is initialized
with supports asymmetric levels, namely that G.Enc additionally takes as input
a level set L ⊆ [κ].

Initialize Parameters. The model M in addition takes a parameter κ denoting
the number of asymmetric levels.

Initialize Elements. M is additionally given a level set Li ⊆ [κ] along with each
plaintext Mi and path ui � vi. M computes the corresponding pre-encoding Si

(from G.PreProcess), and computes the encoding

Ci ← G.Enc(sp,Si, ui � vi, Li).

M stores (Si,Ci, ui � vi, Li) in a pre-zero-test table.

Zero-test. When the adversary submits a polynomial p, M additionally checks
that it is level-respecting, and if it is not, M returns ⊥.

Lemma 5. Let A be a successful adversary in the GGH15 Zeroizing Model
instantiated with γ-GGH15-AL. Then there exists a successful adversary A′ in
the Level-Restricted GGH15 Zeroizing Model instantiated with γ-GGH15-AL.

See the full version [1] for a proof of the above lemma, which relies on a
simple application of the Schwartz-Zippel lemma applied to polynomials over
formal variables corresponding to the level scalars.
8 Following Chen et al. [10].
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4.4 GGH15 Annihilation Model

We turn to describing a new model which has properties that are much easier to
reason about when proving security. Instead of requiring the adversary to find an
algebraic relation in the post-zero-test stage, we instead require the adversary to
find an annihilating polynomial for the set of successful zero-test polynomials it
previously obtained. More specifically, this polynomial must annihilate the zero-
test polynomials when evaluated on square matrices of formal variables of some
dimension k. This k affects the difficulty of winning in the model, since matrices
of larger dimension will be harder to annihilate. The advantage of having this
model is that we have a notion of winning that corresponds more directly to
the underlying plaintexts encoded with the scheme. Namely, if we are able to
encode plaintexts (taking advantage of asymmetric levels) in such a way that
annihilating successful zero-test polynomials is hard, we can immediately obtain
security in this model.

We describe the differences between this model and the Level-Restricted
GGH15 Zeroizing Model. First, there is no computational bound on the adver-
sary — it can submit as many zero-test queries as it wants and can take as much
computation as it wants in the post-zero-test stage. However, each post-zero-test
polynomial it submits must be implemented with a polynomial size circuit. The
other modifications are described below.

Initialize Parameters. The model M takes in an additional ‘tuning’ parameter
k, which determines in some sense how strong the win condition will be.

Post-zero-test. At this point the adversary has submitted a set {pu}u of successful
zero-test polynomials which we associate with a set of formal variables {p̂u}u.
The adversary now submits a polynomial sized circuit C̄ that implements a
polynomial Q̄({p̂u}u) over these formal variables. The model M associates a
set of k × k matrices {Ĉi}i of formal variables with the set of encodings {Ci}i

and considers two additional k-dimensional vectors v̂ and ŵ of formal variables.
Note that each individual entry of each of these matrices and vectors is a distinct
formal variable. M returns “Win” if the following hold:

1. The degree of Q̄ is 2o(λ)

2. Q̄({p̂u}u) �≡ 0
3. Q̄({v̂ · pu({Ĉi}i) · ŵ�}u) ≡ 0

Lemma 6. Fix any k ∈ N. Let A be a successful adversary in the Level-
Restricted GGH15 Zeroizing Model instantiated with γ-GGH15-AL where KeyGen
receives the parameter k. Then there exists a successful adversary A′ in the
GGH15 Annihilation Model with tuning parameter k.

A proof of the above can also be found in the full version [1]. It again relies
on the Schwartz-Zippel lemma, this time applied to polynomials over formal
variables corresponding to the elements of the block diagonals added during
γ-GGH15-AL.Enc.
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5 An iO Candidate with Zeroizing Resistance

We design our obfuscator to invoke the Branching Program Un-Annihilatability
(BPUA) Assumption of Garg et al. [21]. Roughly, this assumption states that no
polynomial-size circuit can annihilate the evaluations of every matrix branching
program, provided we consider branching programs whose input bits are read
many times and in interleaved layers.

Thus, the first step of our obfuscator is to pad the input branching program in
order to satisfy the requirement of the BPUA Assumption. To facilitate this, one
of the inputs to our obfuscator is the parameter t = t(�, λ) ≥ 4�4 which specifies
the minimum number of layers required. Note that the resulting padded program
may have length greater than t, so we use a separate variable d to denote the
actual length of the branching program after padding. We also enforce that each
pair of input bits is read together in many layers, which is required to invoke
the p-Bounded Speedup Hypothesis of [25].

To encode the matrices with γ-GGH15-AL, we pick asymmetric level sets
from a straddling set system. The sets are assigned precisely to enforce that
evaluations respect the input read structure of the padded branching program.
The encoding edges are picked so that the branching program evaluations are
naturally computed by traversing a path graph.

5.1 Construction

Input. The input to the obfuscator is the security parameter λ and a dual-
input branching program BP (defined in Sect. 2.3) of length h, width w, and
input length �. BP consists of the matrices {Mi,b1,b2}i∈[h],b1,b2∈{0,1} and input
selection function inp : [h] → [�] × [�] which satisfies the following requirements:

– For each i ∈ [h] : inp(i)1 �= inp(i)2, where inp(i)1, inp(i)2 denote the first and
second slots of inp(i), respectively.

– For each pair j �= k ∈ [�], there exists i ∈ [h] such that inp(i) ∈ {(j, k), (k, j)}.

BP is evaluated on input x ∈ {0, 1}� by checking whether
∏
i∈[h]

Mi,x(i) = 0w×w

where we abbreviate x(i) := (xinp(i)1 , xinp(i)2).

Step 1: Pad the branching program. We pad the branching program with identity
matrices until it has d ≥ t layers to ensure the following conditions:

– Each pair of input bits (j, k) is read in at least 4�2 different layers.
– There exist layers i1 < i2 < · · · < it such that inp(i1)1, . . . , inp(it)1 cycles t/�

times through [�].
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Step 2: Form straddling sets. For each input index i ∈ [�], let ri be the number of
layers in which the bit i is read, and create a straddling set system with universe
U

(i) and subsets {S
(i)
j,b}j∈[ri],b∈{0,1}. Let U :=

⋃
i∈[�] U

(i).

Step 3: Encode with γ-GGH15-AL. Let G be a path graph with d + 1 nodes
1, ..., d + 1 and initialize the γ-GGH15-AL construction9

pp, sp ← γ-GGH15-AL.KeyGen(1λ, G,Z, |U|, max
i,b1,b2

{||Mi,b1,b2 ||∞}, k = 5).

For i ∈ [d] and b ∈ {1, 2}, define jb(i) to be the number of times inp(i)b has been
read after reading i columns of the branching program, and compute

Ci,b1,b2 ← γ-GGH15.Enc(sp,Mi,b1,b2 , i � i + 1, S
inp(i)1
j1(i),b1

∪ S
inp(i)2
j2(i),b2

).

5.2 Security

In order to state the p-Bounded speedup hypothesis, we recall the following
definition of Miles et al. [25].

Definition 5 (X-Max-2-SAT Solver). Consider a set X ⊆ {0, 1}�. We say
that an algorithm A is an X-Max-2-SAT solver if it solves the Max-2-SAT prob-
lem restricted to inputs in X. Namely given a 2-CNF formula φ on � variables,
A(φ) = 1 iff ∃x ∈ X that satisfies at least a 7/10 fraction of φ’s clauses.

Assumption 1. (p-Bounded Speedup Hypothesis, introduced in [25]). Let p :
N → N. Then for any X-Max-2-SAT solver that has size t(�), |X| ≤ p(poly(t(�))).

The assumption essentially states that the NP-complete problem Max-2-SAT
is still hard even for restricted sets of variable assignments. This hardness is
parameterized by p, and in its strongest form, p is taken to be a polynomial. In
this form, the assumption states that no polynomial time algorithm can solve
X-Max-2-SAT on an X of super-polynomial size. However, we can also take p to
be 2polylog(n) and obtain meaningful results as we discuss in the full version of
this work [1].

We now state a non-uniform variant of the BPUA, but first we need the
following definition from [21].

Definition 6. A matrix branching program BP is L-bounded for L ∈ N if every
intermediate value computed when evaluating BP on any input is at most L. In
particular all of BP ’s outputs and matrix entries are at most L.

Assumption 2. (Non-uniform variant of the BPUA assumption of [21]) Let
t = poly(�, λ) and let X ⊆ {0, 1}� have poly(λ) size and Q be a poly(λ)-size
2o(λ)-degree polynomial over Z. Then for all �, sufficiently large λ, and all primes
2λ < p < 2poly(λ), there exists a 2λ-bounded dual-input matrix branching program
BP : {0, 1}� → [2λ] of length t whose first input selection function (inp1) iterates
over the � input bits t/� times, such that Q({BP (x)}x∈X ) �= 0 (mod p).
9 We set k = 5 so that the dimension of the random block diagonals added during

encoding match the dimension of matrix branching programs obtained from Bar-
rington’s theorem.
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Note that this statement is a very mild strengthening of the original BPUA
assumption stated in [21]. Their assumption is required to hold for any Q of
bounded degree generated by a polynomial-time algorithm, whereas our assump-
tion must hold for any Q of polynomial size and bounded degree. However, we
note that Garg et al. [21] justify their assumption by showing it is implied by
the existence of PRFs in NC1 secure against P/poly. With a minor tweak to
their proof, we can show our non-uniform BPUA is also implied by the exis-
tence of PRFs in NC1 secure against P/poly. We simply modify the non-uniform
adversary used in [Theorem 2, [21]] to take the polynomial-size Q as advice.

Finally, we use the following definition in our security proof.

Definition 7 (Input-Respecting Polynomial). Given a branching program
{Mi,b1,b2}i∈[h],b1,b2∈{0,1} with input selection function inp : [h] → [�] × [�], a
polynomial p over the matrices (or elements of matrices) is input-respecting if
no monomial involves two encodings {M

i,b
(i)
1 ,b

(i)
2

}, {M
j,b

(j)
1 ,b

(j)
2

} (or entries of

encodings) such that inp(i)1 = inp(j)1 and b
(i)
1 �= b

(j)
1 or inp(i)2 = inp(j)2 and

b
(i)
2 �= b

(j)
2 .

Theorem 1 (Main Theorem). Assuming the p-Bounded Speedup Hypothesis
and the non-uniform BPUA Assumption (implied by the existence of PRFs in
NC1 secure against P/poly), our obfuscator is secure in the GGH15 Zeroizing
Model.

Proof. It suffices to prove security in the GGH15 Annihilation Model with
parameter 5 (since we set k = 5 in the obfuscation construction). Suppose an
adversary A wins in this model instantiated with our obfuscator. We argue that
every successful zero-test polynomial submitted by A is a linear combination of
polynomially many branching program evaluations and thus that the existence
of a Q used to win in the GGH15 Annihilation Model would violate Assump-
tion 2. We know that every successful zero-test polynomial submitted by A in
this model is level-respecting, so by construction of straddling sets, we can con-
clude that every polynomial is input-respecting. A polynomial that is both edge-
respecting (so each monomial contains exactly one branching program matrix
from each layer) and input-respecting, is a linear combination of branching pro-
gram evaluations. However, we have no bound on the number of terms in the
linear combination. We now rely on the analysis techniques of Miles, Sahai, and
Weiss [25] to show that each polynomial is in fact a linear combination of polyno-
mially many branching program evaluations, assuming the p-Bounded Speedup
Hypothesis. A proof of the following lemma is available in the full version [1].

Lemma 7. (adapted from [25]) Consider an adversary A interacting with our
obfuscation candidate in the GGH15 Annihilating Model. Assuming the p-
Bounded Speedup Hypothesis, any edge-respecting and input-respecting polyno-
mial submitted by A is a linear combination of polynomially-many branching
program evaluations.
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With this lemma in hand, we inspect the Q submitted by A that resulted in
the model outputting “Win”. Notice that the {Ĉi}i are in the shape of a dual-
input branching program of width 5 (without the bookends), so by Lemma 7,
every v̂ · pu({Ĉi}i) · ŵ� is actually a linear combination of polynomially many
honest branching program evaluations. Since there are only polynomially many
pu’s (since Q is implemented with a polynomial size circuit), and since Q is
identically zero over these evaluations, Q contradicts Assumption 2, and we can
conclude that A could not have won in the GGH15 Annihilation model and thus
in the GGH15 Zeroizing Model except with negligible probability. �

References

1. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Return of GGH15: Provable secu-
rity against zeroizing attacks. Cryptology ePrint Archive, Report 2018/511 (2018).
https://eprint.iacr.org/2018/511

2. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temp. Math. 324, 71–90 (2003)

3. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits, pp. 40–49
(2013)

4. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

5. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

6. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

7. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy, pp. 84–93 (2005)

8. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE,
pp. 600–611 (2017)

9. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation, pp. 612–621 (2017)
10. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching

programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 20

11. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 16

12. Goyal, R., Koppula, V., Waters, B.: Separating semantic and circular security for
symmetric-key bit encryption from the learning with errors assumption. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 528–557.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 18

13. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing, pp. 124–134 (1994)

https://eprint.iacr.org/2018/511
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-56614-6_18


Return of GGH15: Provable Security Against Zeroizing Attacks 573

14. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

15. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

16. Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class groups and
solving the principal ideal problem in arbitrary degree number fields, pp. 893–902
(2016)

17. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved
secure in the weak multilinear map model. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 153–183. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 6

18. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
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Abstract. Faced with the threats posed by man-in-the-middle attacks,
messaging platforms rely on “out-of-band” authentication, assuming that
users have access to an external channel for authenticating one short
value. For example, assuming that users recognizing each other’s voice
can authenticate a short value, Telegram and WhatApp ask their users
to compare 288-bit and 200-bit values, respectively. The existing proto-
cols, however, do not take into account the plausible behavior of users
who may be “lazy” and only compare parts of these values (rather than
their entirety).

Motivated by such a security-critical user behavior, we study the secu-
rity of lazy users in out-of-band authentication. We start by showing
that both the protocol implemented by WhatsApp and the statistically-
optimal protocol of Naor, Segev and Smith (CRYPTO ’06) are com-
pletely vulnerable to man-in-the-middle attacks when the users consider
only a half of the out-of-band authenticated value. In this light, we put
forward a framework that captures the behavior and security of lazy
users. Our notions of security consider both statistical security and com-
putational security, and for each flavor we derive a lower bound on the
tradeoff between the number of positions that are considered by the lazy
users and the adversary’s forgery probability.

Within our framework we then provide two authentication protocols.
First, in the statistical setting, we present a transformation that con-
verts any out-of-band authentication protocol into one that is secure
even when executed by lazy users. Instantiating our transformation with
a new refinement of the protocol of Naor et al. results in a protocol whose
tradeoff essentially matches our lower bound in the statistical setting.
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Then, in the computational setting, we show that the computationally-
optimal protocol of Vaudenay (CRYPTO ’05) is secure even when exe-
cuted by lazy users – and its tradeoff matches our lower bound in the
computational setting.

1 Introduction

Instant messaging platforms are gaining increased popularity and hold an overall
user base of more than 1.5 billion active users (e.g., WhatsApp, Signal, Telegram
and many more [Wik]). These platforms recognize user authentication and end-
to-end encryption as key ingredients for ensuring secure communication within
them, and extensive efforts are currently put into the security of messaging, both
commercially (e.g., [PM16,Telb,Wha,Vib]) and academically (e.g., [FMB+16,
BSJ+17,CCD+17,KBB17]). A key challenge in securing messaging platforms
is that of protecting against man-in-the-middle attacks when setting up secure
end-to-end channels. This is exacerbated by the ad-hoc nature of these platforms.

Out-of-Band Authentication. Faced with the threats posed by man-in-the-
middle attacks, existing messaging platforms enable “out-of-band” authentica-
tion, assuming that users have access to an external channel for authenticating
short values. These values are typically derived from the public keys of the users,
or more generally from the transcript of any key-exchange protocol that the users
execute for setting up a secure end-to-end channel.

For example, some messaging platforms offer users the ability to compare
with each other a value that is displayed by their devices (see Telegram [Tela],
WhatsApp [Wha], Viber [Vib] and more [Mem17]). This relies on the assumption
two users can establish a low-bandwidth authenticated channel (e.g., by recogniz-
ing each other’s voice): A man-on-the-middle adversary can view, delay or even
remove any message sent over this channel, but cannot undetectably modify its
content.

Such an authentication model that assumes a low-bandwidth authenti-
cated channel was considered back in 1984 by Rivest and Shamir [RS84].1

More recently, this model was formalized by Vaudenay [Vau05] in the com-
putational setting (i.e., considering computationally-bounded adversaries) and
extended by Naor et al. [NSS06,NSS08] to the statistical setting (i.e., consid-
ering computationally-unbounded adversaries) and by Rotem and Segev [RS18]
to the group setting. The out-of-band message authentication problem consid-
ers a sender that would like to authenticate a message m to a receiver.2 The

1 Rivest and Shamir proposed the “Interlock” protocol which enables two users, who
recognize each other’s voice, to mutually authenticate their public keys in the absence
of a trusted infrastructure. Potential attacks on the Interlock protocol were identified
later on [BM94,Ell96].

2 As mentioned above, for messaging platforms the message m typically corresponds
to the public keys of the users or to the transcript of any key-exchange protocol that
they execute.
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users communicate over two channels: An insecure channel over which a man-in-
the-middle adversary has complete control, and a low-bandwidth authenticated
channel, enabling the sender to “out-of-band” authenticate one short value. The
security requirement asks for an upper bound on any man-in-the-middle adver-
sary’s probability of fooling the receiver into accepting a fraudulent message.

An Effort vs. Security Tradeoff. Given that the out-of-band channel has
only low bandwidth, research on out-of-band authentication has so far focused
on constructing protocols that offer the best-possible tradeoff between the length
of their out-of-band authenticated values (corresponding to the amount of effort
required from the users) and their security (corresponding to the adversary’s
forgery probability). Vaudenay [Vau05], Naor et al. [NSS06] and Rotem and
Segev [RS18] provided complete characterizations of this tradeoff in their above-
mentioned respective settings, providing both lower bounds and protocols that
match them. However, these protocols rely on the assumption that the human
users indeed follow the protocol in its entirety. In particular, they rely on the
assumption that the users out-of-band authenticate the entire value that the
protocols instruct them to authenticate.

This assumption, however, may not always be realistic: The lengths of the
out-of-band authenticated values offered by the existing messaging platforms
may not align with the potential effort of different users. Specifically, existing
messaging platforms ask their users to out-of-band authenticate values whose
lengths range from roughly 200 bits (e.g., WhatsApp and Signal) to 288 bits (e.g.,
Telegram) – see Fig. 1. Given that the out-of-band channel in implemented in
these platforms via a manual comparison operation, the security of such protocols
must take into account users that may compare only a subset of the positions
of these values. We refer to such users, who out-of-band authenticate only a
substring of the protocol’s out-of-band authenticated value, as “lazy users”.

As repeatedly demonstrated by research on usable security and human-
computer interaction, it is rather likely that a substantial part of the mes-
saging platforms’ user base may in fact be considered lazy (see, for exam-
ple, [LS03,PLF03,BA04,Her09,HZF+14,AFJ15,DDB+16] and the references
therein). This state of affairs, where a security-critical user behavior is not taken
into account, is extremely bothering.

1.1 Our Contributions

Motivated by the above-described plausible and security-critical behavior of
“lazy” users, we put forward a framework that captures the behavior and secu-
rity of such users in out-of-band authentication. Within our framework we char-
acterize the possible security guarantees for lazy users by presenting protocols
together with essentially matching lower bounds both in the computational set-
ting and in the statistical setting. Our main contributions are as follows.

The Insecurity of Existing Protocols. We strengthen our motivation by
showing that the protocol implemented by WhatsApp [Wha] and the protocol
of Naor et al. [NSS06] are completely vulnerable to man-in-the-middle attacks
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Fig. 1. Out-of-band authentication in WhatsApp and Telegram. WhatApp
and Telegram (as well as many other messaging platforms) implement the out-of-band
channel by asking their users to manually compare two strings. WhatApp (on the right)
asks its users to manually compare 60 decimal digits corresponding to an out-of-band
authenticated value [Wha] of about 200 bits. Telegram (on the left) asks its users to
manually compare 64 characters corresponding to a 288-bit out-of-band authenticated
value [Telc]. The images are taken from [Mem17].

when the parties consider only a half (or fewer) of the characters of the out-of-
band authenticated value. This demonstrates that it is not only the case that
the existing protocols do not take security-critical user behavior into account,
they may in fact become completely insecure when executed by lazy users. In
the following section, we discuss the main underlying reason for these protocols’
vulnerability, and how our constructions overcome it.

Modeling the Behavior and Security of Lazy Users. We put forward a
framework that captures the behavior and security of lazy users. Our notions
of security consider both computational security and statistical security, and
for each flavor we derive a lower bound on the tradeoff between the number of
positions that are considered by the lazy users out of the out-of-band authen-
ticated value and the adversary’s forgery probability. These lower bounds are
summarized in Table 1, and we refer the reader to Sect. 1.3 for a more detailed
overview.

Immunizing Statistically-Secure Protocols Against Lazy Users. Recall
that the statistically-secure protocol of Naor et al. [NSS06] becomes completely
insecure when executed by lazy users. Intuitively, this is the case because the
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Table 1. Summary of our results – protocols vs. lower bounds. We denote by I
the subset of positions of the out-of-band authenticated value that the users consider, by
Σ the alphabet over which the out-of-band authenticated value is defined, and by n the
length of the sender’s input message. Our computationally-secure protocol relies on the
existence of any one-way function (see Theorem 6.1), whereas our statistically-secure
protocol and our two lower bounds do not rely on any computational assumptions
(see Corollary 5.2, Theorem 7.1 and Corollary 7.3). Note that our upper bound and
lower bound in the computational setting match within an additive 2−n term (which
is a significantly lower-order term for not-too-short input messages). In the statistical
setting our bounds match within a constant factor (in addition to the additive 2−n

term).

Our protocols Our lower bounds

Forgery probability Alphabet size

Computational security 2−|I| 2 2−|I|·log |Σ| − 2−n

Statistical security 2−|I| 28 2−|I|·log |Σ|/2 − 2−n

influence of each bit of the sender’s input message (i.e., the message to be authen-
ticated) is not “well-spread” across the out-of-band authenticated value (see
Sect. 4 for an in-depth discussion).

Addressing this property, we provide a transformation that converts any
statistically-secure protocol (that does not necessarily provide any security for
lazy users) into a protocol that is statistically-secure for lazy users. Instanti-
ating our transformation with the protocol of Naor et al. results in a concrete
statistically-secure protocol for lazy users. Moreover, in the full version of the
paper [NRS18] we show that by refining the protocol of Naor et al. the result-
ing instantiation uses an alphabet whose size is as small as 28 – which nearly
matches our above-mentioned lower bound in the statistical setting.3 We stress
that our transformation and the protocol resulted from applying it to the proto-
col of Naor et al. are oblivious to the subset I of positions that users eventually
read or even to the number of positions they read. Meaning, we provide a sin-
gle protocol that guarantees security for every possible subset I. An interesting
open question is whether a protocol which is statistically-secure for lazy users
can be constructed over a binary alphabet.

In fact, our transformation can also be applied to any computationally-secure
protocol that satisfies a natural parallel composability guarantee. However, as
shown by our next result, this is somewhat unnecessary.

Matching the Optimal Tradeoff for Computationally-Secure Proto-
cols. Whereas the statistically-optimal protocol of Naor et al. is completely
insecure for lazy users, we show that the computationally-optimal protocol of

3 As we discuss in more detail in Sect. 1.3, when moving to the setting of lazy users,
the size of the alphabet over which the out-of-band authenticated value is defined
becomes of great importance. This is in contrast to the traditional (non-lazy) setting,
in which this has no impact on security.
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Vaudenay [Vau05] is optimally secure for lazy users as well. Intuitively, this is
due to the following observation: Even though the out-of-band authenticated
value in this protocol is determined independently of the sender’s input message
(which is reminiscent of the protocol of Naor et al. in the statistical setting), the
protocol “ties together” the message and the out-of-band authenticated value in
their entirety using a non-malleable commitment scheme (which, in practice, can
be replaced by a hash function modeled as a random oracle). Note that as in the
statistical setting, the protocol is oblivious to the particular subset of positions
that the users eventually consider.

Extensions. We also discuss possible extensions of our framework. First, in the
full version [NRS18], we consider the notion of adaptive laziness, which gives the
adversary the ability to choose the subset of positions to be considered by the
users even after the out-of-band authenticated value is determined. Although
we find this notion somewhat less motivated in the context of lazy users, we
nevertheless extend our definitions and proofs of security to this stronger notion.

Second, we note that our notions of security, lower bounds and protocols
naturally extend to the group setting considered by Rotem and Segev [RS18].
Specifically, in the computational setting the protocol of Rotem and Segev can
be shown to be optimally-secure for lazy users; and in the statistical setting,
our general transformation can be easily adapted to support group protocols
(and can then be instantiated with the statistically-secure protocol of Rotem
and Segev).

1.2 Related Work

Bounds for Out-of-Band Authentication. In the standard setting of out-of-
band authentication (i.e., with non-lazy users), Vaudenay [Vau05] and Vaudenay
and Pasini [PV06] established tight bounds for the tradeoff between the length
of the (entire) out-of-band authenticated value and the adversary’s forgery prob-
ability in the computational setting. They provided a protocol [Vau05] in which
the forgery probability is bounded by 2−�, where � is the bit-length of the out-
of-band authenticated value, and a matching lower bound [PV06]. Naor et al.
[NSS06] observed a gap between the computational and the statistical settings:
They proved that the forgery probability in the statistical setting of any pro-
tocol is always at least 2−�/2, and provided a protocol that matches this lower
bound within a constant factor. We refer the reader to Table 2 for a summary
of these bounds, and note that our results provide a similar characterization for
lazy users in both the computational and the statistical settings (recall Table 1).

The Security of Messaging Platforms. Many recent works addressed the
goals of formalizing the security guarantees of messaging platforms, as well as
analyzing the security of the protocols used by these platforms and identifying
potential weaknesses within them – see, for example, [FMB+16,HL16,BSJ+17,
CCD+17,CGCG+17,CGC17,KBB17,SKH17,RMS18,Gre18a,Gre18b] and the
references therein. Throughout this extensive line of research, the security of
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Table 2. Previous work – protocols vs. lower bounds. We denote by � the
length of the out-of-band authenticated value and by n the length of the sender’s
input message. The computationally-secure protocol of Vaudenay [Vau05] relies on the
existence of any one-way function, whereas the statistically-secure protocol of Naor
et al. [NSS06] and the two lower bounds [NSS06,PV06] do not rely on any computa-
tional assumptions.

Protocols Lower bounds

Computational security [Vau05,PV06] 2−� 2−� − 2−n

Statistical security [NSS06] O
(
2−�/2

)
2−�/2 − 2−n

messaging protocols assumes an initial authentication phase for avoiding man-
in-the-middle attacks. As mentioned in most of the afore-listed references, such
an initial authentication phase is based on out-of-band authentication.

1.3 Overview of Our Contributions

We extend the existing framework for out-of-band authentication protocols
[Vau05,PV06,NSS06,RS18] to accommodate the security-critical behavior of
“lazy users”, that may consider only a certain part of the out-of-band authen-
ticated value (e.g., its left-most half, its right-most 10 characters, or a few
randomly-chosen positions). We model this behavior by having the sender send
only a substring of the out-of-band authenticated value, and requiring that
for any such substring the man-in-the-middle attacker’s forgery probability is
bounded by some pre-defined parameter associated with it. That is, whereas a
standard (i.e., “non-lazy”) out-of-band authentication protocol is parameterized
by an upper bound ε ∈ (0, 1) on the adversary’s forgery probability, a protocol in
our framework is parameterized by a function ε(·) which maps every subset I of
positions of the out-of-band authenticated value to an associated upper bound
ε(I).4

In addition, our definitions also extend those of Vaudenay and Naor et al.
by accounting for out-of-band authentication values over non-binary alphabets
(indeed, in the existing real-world implementations of out-of-band authentication
protocols, the out-of-band authenticated value is displayed to the users as a string
over some non-binary alphabet – recall Fig. 1). When the users are assumed
to consider the entire out-of-band authenticated value, the particular choice of
alphabet (and alphabet size) is mainly a matter of providing a convenient user
interface. In the presence of lazy users, however, the size of the alphabet of the
out-of-band authenticated value plays an important role in what may be referred
to as the “granularity” of the users’ laziness.
4 Note that protocols in our framework must explicitly address (in terms of both com-

pleteness and soundness) the case where only part of the out-of-band authenticated
value is considered. This is the case, in particular, in our motivating example where
verification is done by comparing the out-of-band authenticated string to a value
that is computed by the receiver.
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Let us consider for concreteness a pair of users that read some 32 bits out
of a 64-bit out-of-band authenticated value. If the out-of-band authenticated
value is simply a 64-bit string (i.e., over a binary alphabet), then the users may
possibly read any of the

(
64
32

)
> 1.83 × 1018 many 32-bit substrings of it. On the

other hand, if the alphabet is of larger size, say 8 characters, the users’ ability
to partially access the out-of-band authenticated value is more coarse-grained.
In particular, they can still read only a substring of the authenticated value, but
are restricted to reading specific blocks of consecutive 8 bits in their entirety. In
other words, users that read 32 bits in this setting may read only one of

(
8
4

)
= 70

many 32-bit substrings of the out-of-band authenticated value.

Identifying the Weakness in Existing Protocols. It is quite simple to con-
struct a contrived example of a secure protocol that is completely insecure when
executed by lazy users. Thus, we chose to focus on the protocols of WhatsApp
[Wha] and Naor et al. [NSS06] for the following reasons: (1) the protocol imple-
mented by WhatsApp is among the most widely-used out-of-band authentication
protocols, and (2) the protocol of Naor et al. offers the optimal tradeoff between
the length of the out-of-band authenticated value and the adversary’s forgery
probability in the statistical setting (thus showing that both computationally-
secure protocols and statistically-secure ones may become completely insecure
when executed by lazy users).

Analyzing our rather simple attacks on these protocols (see Sect. 4), we iden-
tify a key property that they have in common which makes them completely
insecure when executed by lazy users: Intuitively, different sections of the sender
input message (i.e., the message m to be authenticated) influence different sec-
tions of the out-of-band authenticated value. Hence, if the users only consider a
subset of positions of the out-of-band authenticated value that is independent in
some sense from a particular part of the message to be authenticated, the adver-
sary can replace this part of the message in an undetected manner (we refer to
this property as “over locality”). In what follows, we discuss why the protocol
of Vaudenay in the computational setting does not suffer from over locality; and
how our general transformation in the statistical setting addresses it.

Naive Approaches that Fail. A potential approach to immunizing any com-
parison based out-of-band authentication protocol against lazy users, is to have
the parties run the protocol and then hash the out-of-band authenticated value
with a random oracle (in addition to transmitting it over the insecure channel).
On the face of it, this resolves any over dependency on locality the initial pro-
tocol might have exhibited. However, this approach may generally suffer from
the major shortcoming of introducing a tradeoff between the adversary’s run-
ning time and its success probability (aside, of course, from relying on a ran-
dom oracle which may be undesirable if the security of the underlying protocol
does not require it). More concretely, an adversary that runs in time T (λ) has
forgery probability that is roughly (at least) T (λ)/2−|I|, where I is the subset
of positions that the parties consider. When I is small (which is exactly the case
with lazy users), then the asymptotics “do not kick in”, and the latter forgery
probability is significant. This is precisely the reason why we are interested in
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protocols in which for every such subset I, the forgery probability is bounded
by ε(I) + ν(λ) (where ν(·) is a negligible function of the security parameter λ)
for every polynomial-time adversary.

An additional potential approach is to have the parties apply some fixed
error-correcting code to the out-of-band authenticated value. Though this may
have the effect of increasing the fraction of inconsistent positions in the out-of-
band authenticated value at the end of any forgery attempt, it does not provide
the security guarantees we seek: If before applying the error-correcting code
there was some subset of t positions for some fixed t, for which there was an
attack causing the receiver to output a fraudulent message with probability ε,
this may still be the case after applying the code. Moreover, this approach has
the consequence of worsening the tradeoff between the length of the out-of-band
authenticated value and the adversary’s forgery probability. Similarly, adding
redundancy to the input message itself (e.g., by applying an error-correcting
code to it) is not necessarily helpful in immunizing protocols against lazy users.

Another possibility is to reduce the number of characters in the out-of-band
authenticated value by mapping it to a larger alphabet. As discussed above,
this has the effect of restricting the lazy behavior of the users; in particular,
assuming that the users read at least one character of the out-of-band value, after
increasing the alphabet size, this single character constitutes a larger fraction
of the out-of-band value. Alas, even if the new alphabet is sufficiently large so
that the out-of-band value consists just of two characters, the resulting protocol
may still be insecure for lazy users who read only one of them (this is the case,
for example, with the protocols of WhatsApp [Wha] and Naor et al. [NSS06]).
On the other hand, our lower bounds on the bit-length of the out-of-band value
(see Sect. 7) imply that in order for the out-of-band value to consists only of a
single character, its alphabet size has to be at least 1/ε, where ε is the forgery
probability. For any reasonable level of security, this means an impractical-sized
alphabet has to be used.

Security for Lazy Users via “Influence Spreading”. Our transformation
in the statistical setting takes as input a parameter t ∈ N and any statistically-
secure out-of-band authentication π with out-of-band authenticated value of
length � and forgery probability at most ε. It proceeds by having the sender S and
the receiver R run t parallel executions of π with the same input message m to S.
Afterwards, S parses each of the resulting t out-of-band authentication values as
a single character from an alphabet of the appropriate size, concatenates them
into a single string of length t (over the larger alphabet) and sends it over the
out-of-band channel. When considering some subset I ⊆ [t] of the characters in
the new out-of-band authenticated value, the receiver R accepts the message m
if and only if it accepts m in each of the executions corresponding to the subset
I. We show that for every subset I ⊆ [t], the forgery probability in this new
protocol is bounded by ε′(I) ≤ ε|I|.

In light of our observations regarding protocols that are insecure for lazy
users, this transformation can be thought of in the following manner: We start
with a protocol that might be insecure for lazy users and suffer from over locality,
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and we “spread” the influence of each bit of the input message across all char-
acters of the new out-of-band authenticated value via the parallel invocations of
the basic protocol.

When instantiated with the protocol of Naor et al. [NSS06] (while setting its
security to ε = 1/2), our transformation yields a protocol with a constant-size
alphabet which is statistically-secure for lazy users: For every subset I ⊆ [t], the
forgery probability corresponding to I is bounded by 2−|I|. However, using the
protocol of Naor et al. and their analysis “off the shelf” results in an alphabet
which is, though constant-size, large and impractical (concretely, it is of size
216 = 65536). Hence, in the full version [NRS18], we show by a refined analysis
of the protocol of Naor et al. that this constant can be reduced to 28 = 256
(which fits nicely, for example, in the set of 333 emoji Telegram uses as the
alphabet in the verification of their voice calls).

Leveraging the “Local Sensitivity” of Non-malleable Commitments.
Informally speaking, the protocol of Vaudenay [Vau05] consists of the following
steps: (1) On input m, S sends m to R, chooses a random rS and commits to
the message (m, rS); (2) R sends a random rR to S; (3) S reveals rS ; and (4)
S sends rS ⊕ rR over the out-of-band authenticated channel. In the lazy user
setting, where the users only read the subset I of positions in the out-of-band
authenticated value, R accepts m if and only if the value (rS ⊕ rR)I sent over
the out-of-band channel is consistent with her view of the protocol.

In Sect. 6 we prove that when the commitment scheme used in Step (1)
is a non-malleable commitment scheme, then this protocol is optimal for lazy
users (considering the matching lower bound from Sect. 7). Our proof goes about
by considering all potential synchronizations that a man-in-the middle attacker
might impose while attacking an execution of the protocol, and showing that in
each of them, an attack on the protocol that succeeds with probability noticeably
larger than 2−|I| can be translated into an attack on a different property of the
underlying commitment scheme.

From a more conceptual point of view, our proof leverages the fact that the
non-malleability of commitment schemes is a property which is “locally sensitive”
in the following sense. Informally, in a non-malleable commitment scheme, it
should be impossible, given a commitment c to some value v, to produce a
related commitment ĉ for some value v̂ such that v and v̂ satisfy any efficiently
recognizable relation. This includes, in particular, relations that are defined with
respect to a subset of the positions in v and v̂; and namely, the relation induced
by a successful forgery in Vaudenay’s protocol when the users only consider the
subset I of positions of the out-of-band authenticated value.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we present the
notation and basic definitions that are used in this work. In Sect. 3 we introduce
our framework for modeling the behavior and security of lazy users in out-of-band
message authentication protocols. In Sect. 4 we show that existing out-of-band
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authentication protocols may become completely insecure when executed by lazy
users. In Sects. 5 and 6 we present statistically-secure and computationally-secure
out-of-band authentication protocols, respectively. Finally, in Sect. 7 we derive
lower bounds on the tradeoff between the adversary’s forgery probability and
the length of the out-of-band authenticated value in out-of-band authentication
protocols that are executed by lazy users.

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sampling
a value x from the distribution X. Similarly, for a set X we denote by x ← X
the process of sampling a value x from the uniform distribution over X . For
an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a string s and a
subset I ⊆ [|s|] of positions, we let sI (sometimes we may write (s)I) denote
the substring of s obtained by concatenating the characters of s in the positions
specified by the set I in increasing order. A function ν : N → R

+ is negligible
if for any polynomial p(·) there exists an integer N such that for all n > N it
holds that ν(n) ≤ 1/p(n).

Shannon Entropy. For a random variable X defined over a finite domain Ω,
we rely the standard notion of Shannon entropy: H(X) = −∑

x∈Ω Pr[X = x] ·
log2 Pr[X = x]. Note that for any such X it holds that H(X) ≤ log2 |Ω|.
Non-malleable Commitment Schemes [DDN00]. We rely on the notion of
statistically-binding non-malleable commitments (for basic definitions and back-
ground on commitment schemes, we refer the reader to [Gol01]). We follow the
indistinguishability-based definition of Lin and Pass [LP11], though we find it
convenient to consider non-malleability with respect to content, other than with
respect to identities. Intuitively speaking, a non-malleable commitment scheme
has the following guarantee: Any efficient adversary cannot use a commitment
to some value v in order to produce a commitment to a value v̂ which is “non-
trivially” related to v. For formal definitions regarding commitment schemes and
non-malleable commitment schemes in particular, see the full version [NRS18].

Dolev et al. [DDN00] constructed non-malleable commitment schemes from
any one-way function. Subsequently, Lin and Pass [LP11] and Goyal [Goy11] have
shown that constant-round non-malleable commitments can be constructed from
the same assumption. The round complexity was further improved by Goyal
et al. [GRR+14] to 4 rounds, and by Goyal et al. [GPR16] to 3 rounds
assuming the existence of an injective one-way function. Such schemes can
also be constructed efficiently in a simple manner in the random-oracle model
[BR93]. For further information regarding non-malleable commitment schemes
in the standard model see the references above as well as, for example,
[Bar02,PR08,LP09,PPV08,PW10,Wee10,GLO+12] and the references therein.
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3 Modeling the Security of Lazy Users

In this section we introduce our framework for modeling the behavior and secu-
rity of lazy users in out-of-band message authentication protocols. We start by
reviewing the communication model and existing notions of security for out-of-
band message authentication [Vau05,NSS06], and then present our notions of
security for the case of lazy users.

3.1 Out-of-Band Authentication

Following the framework of Vaudenay [Vau05] and Naor et al. [NSS06], we model
the interaction between the sender and the receiver as occurring over two types
of channels: A bidirectional insecure channel that is completely vulnerable to
man-in-the middle attacks, and an authenticated unidirectional low-bandwidth
channel from the sender to the receiver. The adversary is assumed to have com-
plete control over the insecure channel: She can read, delay and remove any
messages sent by the two parties, as well as insert new messages of her choice at
any point in time. In particular, this provides the adversary with considerable
control over the synchronization of the protocol’s execution. Nonetheless, the
execution is still guaranteed to be “marginally synchronized”: Each party sends
her message in the ith round of the protocol only upon receiving the due mes-
sage of round i − 1. As for the out-of-band channel, we assume that the sender
is equipped with a low-bandwidth channel, through which the sender may send
a short message to the receiver in an authenticated manner (but without any
secrecy guarantee). The adversary may read or remove this message, and may
delay it for different periods of time, but cannot modify it in an undetectable
manner.

We follow the definitions of Vaudenay [Vau05] and Naor et al. [NSS06], gen-
eralizing naturally to consider out-of-band authenticated values over general
alphabets and not only over the binary alphabet. As we discuss later on, this is
of little importance in the standard setting (where the parties are assumed to
read the entire out-of-band authenticated value), but will play a significant role
when considering lazy users. Following Naor et al. we differentiate between pro-
tocols that are computationally secure and ones that are statistically secure. We
formalize the notion of statistically-secure out-of-band authentication protocols
as:

Definition 3.1. Let n, �, r ∈ N, let ε ∈ (0, 1) and let Σ be an alphabet. A
statistically-secure out-of-band (n, �, r, ε)-authentication protocol over Σ is an r-
round protocol in which the sender S is invoked on an n-bit message and sends at
most � characters of Σ over the out-of-band authenticated channel. The following
requirements must hold:

1. Correctness: In an honest execution of the protocol, for any input message
m ∈ {0, 1}n on which S is invoked, R outputs m with probability 1.
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2. Unforgeability: For any man-in-the-middle adversary A and for any adver-
sarially chosen input message m ∈ {0, 1}n on which S is invoked, the proba-
bility that R outputs some message m̂ �∈ {m,⊥} in an execution with S that
is attacked by A is at most ε.

A computationally-secure out-of-band authentication protocol is defined sim-
ilarly, except that security need only hold against efficient adversaries, and the
probability of forgery is also allowed to additively grow (with respect to the
statistical setting) by a negligible function of the security parameter.

Definition 3.2. Let n = n(λ), � = �(λ), r = r(λ), ε = ε(λ), and Σ = Σ(λ) be
functions of the security parameter λ ∈ N. A computationally-secure out-of-band
(n, �, r, ε)-authentication protocol over alphabet Σ is an r-round protocol in which
the sender S is invoked on an n-bit message and sends at most � characters of
Σ over the out-of-band authenticated channel. The following requirements must
hold:

1. Correctness: In an honest execution of the protocol, for any input message
m ∈ {0, 1}n on which S is invoked, R outputs m with probability 1.

2. Unforgeability: For any probabilistic polynomial-time man-in-the-middle
adversary A there exists a negligible function ν(·) such that: For any input
message m ∈ {0, 1}n chosen by the adversary and on which S is invoked, the
probability that R outputs some message m̂ �∈ {m,⊥} in an execution with S
that is attacked by A is at most ε + ν(λ).

3.2 The Security of Lazy Users

In order to formally capture the lazy-users setting, given an out-of-band authen-
tication protocol we define a collection of “lazy protocols”, one per each possible
subset of positions of the out-of-band authenticated value. Informally speaking,
given a protocol π in which the out-of-band authenticated value consists of �
characters, for a subset I ⊆ [�] of indexes, we consider the “lazy protocol” πI
in which the parties execute π, with the exception that S only sends over the
out-of-band channel the substring of the out-of-band authenticated value that
corresponds to the positions in the set I.

Specifically, let π be a (statistically-secure or computationally-secure) out-of-
band (n, �, r, ε)-authentication protocol over an alphabet Σ (recall Definitions 3.1
and 3.2). For every subset I ⊆ [�] of the positions of its out-of-band authenticated
value, the “lazy protocol” πI is defined as follows:

1. On input m ∈ {0, 1}n to S, the sender S and receiver R run the first r − 1
rounds of π. Let v ∈ Σ� be the out-of-band authenticated value that S is due
to send in round r.

2. S receives I and sends only vI over the out-of-band authenticated channel.
3. R receives I and vI , and decides on her output according to π.5

5 As noted before, the protocols we consider in this paper must be defined for every
substring of the out-of-band authenticated value.
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Using this notion, Definitions 3.3 and 3.4 below formalize the extensions
discussed above in the statistical setting and computational setting, respectively.
Intuitively, we define the security of out-of-band authentication protocols for lazy
users by letting the bound on the forgery probability be a function of the subset I
considered by the users. Concretely, an out-of-band authentication protocol π is
parameterized by some function ε, which maps each possible set of positions I of
the out-of-band authenticated value to be read by the users to a matching upper
bound on the forgery probability. That is, in case the users only read the out-of-
band authentication value in positions I, an adversary should be able to make
the receiver output a fraudulent message with probability at most ε(I). This
approach has the benefit of being very general on the one hand, while coinciding
with the standard definitions (see Definitions 3.1 and 3.2) when I = [�]. We
note, however, that one may still consider a more restrictive notion where the
forgery probability should only depend on the size of I (observe that this is a
strict restriction of our notion).

Definition 3.3. Let n, �, r ∈ N and let ε : 2[�] → [0, 1]. A protocol π is a
statistically-secure out-of-band (n, �, r, ε)-authentication protocol for lazy users
over alphabet Σ if for every I ⊆ [�] the protocol πI is a statistically-secure out-
of-band (n, |I|, r, ε(I))-authentication protocol.

Definition 3.4. Let n = n(λ), � = �(λ), r = r(λ) and Σ = Σ(λ) be functions
of the security parameter λ ∈ N, and let ε = ε(λ, ·) : 2[�] → [0, 1]. A protocol
π is a computationally-secure out-of-band (n, �, r, ε)-authentication protocol for
lazy users over alphabet Σ if for every I = I(λ) ⊆ [�] the protocol πI is a
computationally-secure out-of-band (n, |I|, r, ε(·, I))-authentication protocol.

4 The Insecurity of Existing Protocols

In this section we show that existing out-of-band authentication protocols may
become completely insecure when executed by lazy users. We focus on the
computationally-secure protocol implemented by WhatsApp [Wha] and on the
statistically-secure protocol of Naor et al. [NSS06], and show that these proto-
cols are completely vulnerable to man-in-the-middle attacks when the parties
consider only a half (or less) of the out-of-band authenticated value.

Concretely, for each of these two protocols we present an efficient man-in-
the-middle attacker that fools the receiver into accepting a fraudulent message
with probability 1. Then, we discuss the basic underlying structure that these
two protocols share, which makes them completely insecure when executed by
lazy users.

WhatsApp’s Protocol [Wha]. Consider any protocol where in order to authen-
ticate a message m, the sender S partitions m into two halves m = m1‖m2,
and authenticates each half using some out-of-band authentication protocol
separately and independently. The out-of-band authenticated value is then
σ = σ1‖σ2, where σ1 and σ2 are the out-of-band authenticated values of the
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two executions. If the underlying out-of-band authentication protocol is secure
and the users read the entire string σ, then this newly-defined protocol is secure
as well (though, possibly, with a sub-optimal tradeoff between the adversary’s
forgery probability and the length of the out-of-band authenticated value). How-
ever, consider for example the case where the parties only read σ1 (or a substring
of it). In this case, no security is guaranteed and a man-in-the-middle adversary
can trivially make R output a fraudulent message of the form m̂ = m1‖m̂2 for
some m̂2 �= m2. A similar problem arises when the parties read only σ2 (or a
substring of it).

The above protocol might seem like a pathological example, specifically con-
trived for our needs, but this is in fact exactly the approach used by WhatsApp.
Concretely, a pair of WhatsApp users wishing to verify that each of them has
the correct key of the other user compare a 60-digit sequence displayed on each
of their screens. This sequence is derived by hashing each user’s key into a 30-
digit string, and concatenating the two strings.6 It is not hard to see that if
the users only compare the first half of the out-of-band authenticated value, it
might very well be the case that one of them holds a fraudulent key, completely
compromising the secrecy of their chat.

The Protocol of Naor et al. [NSS06]. Naor et al. [NSS06] presented a con-
struction of a statistically-secure out-of-band authentication protocol that relies
on the following idea. Loosely speaking, the two parties iteratively hash the mes-
sage into shorter intermediate values until reaching a short enough value that
can be transmitted out-of-band. More concretely, in each round of the proto-
col the parties cooperatively choose an algebraic hash function: They treat the
input message and the intermediate values as polynomials over finite fields of
appropriate sizes, and in each round, one party chooses a random element in
the field on which the polynomial is evaluated, and the other party chooses a
random shift to apply to the result. When choosing the last hash function, the
sender S is the one to choose the element on which the polynomial is evaluated.
The out-of-band authenticated value then consists of two parts: (1) The result
of the last hash function (according to the view of S); (2) and the last element
S chose.

Yet again, if the parties read and compare the entire out-of-band authenti-
cated value, then Naor et al. proved that this protocol is secure (and provides
the optimal tradeoff between the adversary’s forgery probability and the length
of the out-of-band authenticated value). Alas, if the users are lazy, and read only
one of the two parts of the out-of-band authenticated value, then the protocol
becomes completely insecure. Concretely, if the parties only read the part that
corresponds to the last field element chosen by S, then a trivial attack exists:

6 From WhatsApp’s security white paper [Wha, p. 10]: “WhatsApp users additionally
have the option to verify the keys of the other users with whom they are communicat-
ing so that they are able to confirm that an unauthorized third party (or WhatsApp)
has not initiated a man-in-the-middle attack. This can be done by scanning a QR
code, or by comparing a 60-digit number. [...] The 60-digit number is computed by
concatenating the two 30-digit numeric fingerprints for each user’s Identity Key”.



590 M. Naor et al.

The man-in-the-middle adversary simply runs two independent executions, one
with the sender S and one with the receiver R, on two different input messages,
with the exception of choosing the same field element as S does in the last hash
function of her interaction with R.

Summary: The Underlying Weakness. The property that both of the above
examples share and which makes them completely insecure in the face of rather
trivial attacks can be articulated in the following manner: In both cases, different
sections of the input message to be authenticated affect different sections of
the out-of-band authenticated value. In the case of WhatsApp, each user’s key
affects only half of the out-of-band authentication value (but both keys should be
verified). In the case of Naor et al. [NSS06], the input message to be authenticated
goes into the computation of only half of the out-of-band authenticated value,
while the other half is simply a random value generated during the execution of
the protocol.

It is instructive to view our positive results also in this light, as this
may provide the reader with additional intuition regarding the security of our
constructions:

1. In the statistical setting, our transformation (and its resulting protocol when
instantiated with that of Naor et al. [NSS06]) can be interpreted as follows.
We start with an out-of-band authentication protocol that guarantees no
security for lazy users to begin with (but does guarantee security for users
who fully comply with the protocol), and in particular may suffer from the
same problematic property described above. We transform this protocol into
a protocol that provides security for lazy users by “spreading” the influence
of each bit of the input message m across all characters of the out-of-band
authenticated value of the resulting protocol.

2. In the computational setting we consider Vaudenay’s protocol [Vau05] whose
out-of-band authenticated value is simply a uniformly-distributed string that
is generated during the execution of the protocol. Intuitively speaking, even
though this value is determined independently of the input message, we “tie
together” the message in its entirety and the out-of-band authenticated value
using cryptographic tools (namely, a non-malleable commitment scheme).

5 Immunizing Statistically-Secure Protocols Against
Lazy Users

In this section we present a generic transformation that uses any out-of-band
authentication protocol that is secure under a certain form of parallel repetition
for constructing an out-of-band authentication protocol for lazy users. In par-
ticular, our transformation can be applied to any statistically-secure protocol,
and can thus be instantiated with the protocol of Naor et al. [NSS06]. As our
transformation itself is statistically secure, this yields a statistically-secure proto-
col (that comes very close to matching our lower bound on the tradeoff between
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adversary’s forgery probability and the length of the partial out-of-band authen-
ticated value considered by the lazy users – see Corollary 7.3).

We first present and analyze our transformation for statistically-secure pro-
tocols, as well as discuss the properties of its instantiation with the protocol
of Naor et al. [NSS06]. Then, we discuss the specific composability property
required of computationally-secure protocols in order for them to be compatible
with our transformation (this, however, is somewhat less motivated given that
our computationally-secure protocol in Sect. 6 already matches our lower bound
in the computational setting).

The Transformation. The building block underlying our transformation is
an out-of-band authentication protocol that does not necessarily guarantee any
form of security for lazy users. Loosely speaking, our transformation proceeds
as follows: On input message m, the parties run � parallel and independent
executions of the underlying protocol with the same message m, and parse each
of the resulting � out-of-band authentication values as a single character from
an alphabet of the appropriate size. The sender S then concatenates these �
characters into a single string of length � (over the larger alphabet) and sends it
over the out-of-band authenticated channel. In a lazy execution of the protocol,
where the receiver considers only some number t ≤ � out of the � out-of-band
authenticated characters, the receiver accepts m if and only if it m is accepted
in each of the corresponding t executions.

Intuitively, if the forgery probability of the underlying protocol is bounded
by ε′, then fooling a receiver that reads only a predetermined t-character sub-
set of the out-of-band authenticated value requires the adversary to break the
unforgeability (in the standard sense, not considering lazy users) of t copies of the
underlying protocol, and hence the adversary’s forgery probability is bounded
by (ε′)t in the statistical setting.

More formally, let n′, �′, r′ ∈ N, let ε′ ∈ (0, 1), and let π′ is a statistically-
secure out-of-band (n′, �′, r′, ε′)-authentication protocol; that is, π′ is an r′-
round protocol for out-of-band authentication of messages of length n′, where
the sender out-of-band authenticates at most �′ bits, and the probability of
forgery is bounded by ε′. We use π′ to construct a statistically-secure out-of-
band (n = n′, �, r = r′, ε)-authentication protocol for lazy users, denoted πLazy,
for any � ∈ N, such that ε(I) = (ε′)|I| for every I ⊆ [�].

The protocol for lazy users, denoted πLazy, is defined as follows for every
I ⊆ [�] (i.e., this is the “lazy protocol” πLazy,I – see Sect. 3):

1. On input message m to S, S and R run � parallel executions of π′ up to
(and including) round r′ − 1 with the same input message m to S in all
executions. Denote the out-of-band authenticated values that S computes in
these executions by σ1 · · · σ� ∈ {0, 1}�′

.
2. For each i ∈ [�], S parses σi as a single character over an alphabet of size

k = 2�′
; denote the ith character by βi. S then receives I = {i1, . . . , i|I|} ⊆ [�]

and sends σ = βi1‖ . . . ‖βi|I| over the out-of-band authenticated channel.
3. R receives I, parses σ = σi1 · · · σi|I| as |I| binary strings of length �′ each.

For every i ∈ I, denote by m̂i the output of R in the ith execution given
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R’s view of that execution (including σi). If for every i, j ∈ I it holds that
m̂i = m̂j , then R outputs m̂i1 . Otherwise, R outputs ⊥.

The correctness and security of the protocol πLazy are stated in the following
theorem.

Theorem 5.1. Let π′ be a statistically-secure out-of-band (n, �′, r, ε′)
-authentication protocol, let k = 2�′

and let � ∈ N. Then, πLazy is a statistically-
secure out-of-band (n, �, r, ε)-authentication protocol for lazy users over an alpha-
bet of size k, where ε(I) = (ε′)|I| for every I ⊆ [�].

The correctness and round complexity of πLazy follow immediately from the
correctness and round complexity of π′, respectively. The unforgeability of πLazy

for lazy users (vis-à-vis Definition 3.3) is proven in the full version [NRS18],
yielding the above theorem.

A Concrete Instantiation. Naor et al. [NSS06] constructed a statistically-
secure out-of-bound (n, �′, r, ε′)-authentication protocol for any n, r ∈ N and any
ε′ ∈ (0, 1), where �′ ≤ log(1/ε′) + log(r−1) +O(1). Instantiating our protocol
πLazy with the protocol of Naor et al. as π′, while setting r = Ω(log∗ n) and
ε′ = 1/2, yields a statistically-secure out-of-band authentication protocol for
lazy users with the same round complexity and a constant-size alphabet. This
is formalized by the following corollary.

Corollary 5.2. For any n, � ∈ N, there exists a statistically-secure out-of-band
(n, �, log∗ n, ε)-authentication protocol for lazy users over a constant size alpha-
bet, where ε(I) = 2−|I| for every I ⊆ [�].

In the full version [NRS18] we also provide a refined analysis of the protocol
of Naor et al. which reduces the alphabet size of the protocol from Corollary
5.2 to 28, and discuss how our transformation applies to computationally-secure
protocols with some specific parallel-composability property.

6 Matching the Optimal Tradeoff for Computationally-
Secure Protocols

In this section we show that Vaudenay’s computationally-secure protocol [Vau05]
can be extended to allow execution by lazy users, and that the resulting pro-
tocol matches our lower bound on the tradeoff between the adversary’s forgery
probability and the length of the out-of-band authenticated value for lazy users
(see Theorem 7.1). That is, the protocol offers the optimal tradeoff between the
adversary’s forgery probability and the length of the partial out-of-band authen-
ticated value considered by the lazy users.

The basic building block used by the protocol is any non-malleable
statistically-binding commitment scheme Com. From a foundational point of
view, such a scheme with a constant number of rounds can be constructed based
on any one-way function in the standard model, and from a more practical point
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of view, such a scheme can be constructed by simply invoking a hash function
modeled as a random oracle (see Sect. 2).

The protocol, which we denote by πComp, is parametrized by the security
parameter λ ∈ N, the message length n = n(λ) ∈ N and the length of the
out-of-band authenticated value � = �(λ) ∈ N, and is defined as follows:

1. On input the security parameter λ ∈ N and a message m ∈ {0, 1}n, the sender
S chooses a random rS ← {0, 1}�, sends m to the receiver R, and commits to
the pair (m, rS) to receiver R using Com. Denote the resulting commitment
by cS and its corresponding decommitment by dS .7 Denote the message and
commitment as received by R by m̂ and ĉS , respectively.

2. The receiver R chooses a random rR ← {0, 1}� and sends it to the sender S.
Denote by r̂R the value that S receives.

3. The sender S sends the decommitment dS to R. Denote by d̂S the decommit-
ment R receives. If d̂S is not a valid decommitment to ĉS or if the revealed
value is not of the form (m̂, ∗), then R outputs ⊥. Otherwise, let (m̂, r̂S) be
the revealed value.

4. The sender S sends σ = rS ⊕ r̂R over the out-of-band channel. R checks if
r̂S ⊕ rR = σ. If so, R outputs m̂, and otherwise R outputs ⊥.

The following theorem captures the security of the above protocol, stating
that it provides the optimal tradeoff as discussed above.

Theorem 6.1. Let n = n(·), r = r(·) and � = �(·) be functions of the security
parameter λ ∈ N and let Com be an r-round statistically-binding non-malleable
commitment scheme. Then, protocol πComp is a computationally-secure out-of-
band (n, �, r + 3, ε)-authentication protocol for lazy users (over the alphabet Σ =
{0, 1}), where ε(λ, I) = 2−|I| for every λ ∈ N and for every I ⊆ [�(λ)].

Our protocol incurs an almost minimal overhead in the number of rounds
relative to the round complexity of the underlying commitment scheme: The
number of rounds of insecure communication is r + 2 (this includes the r + 1
rounds necessary for commitment and decommitment), to which we add only a
single message over the insecure channel, and a single message over the out-of-
band authenticated channel. In the plain model, a non-malleable commitment
is known to exist with r = 3, while in the random oracle model, there exist
non-interactive non-malleable commitments (i.e., with r = 1).

The security proof of our protocol considers all possible synchronizations a
man-in-the-middle adversary may impose on an execution of the protocol. For
each such synchronization and for every possible subset I ⊆ [�] of positions of
the out-of-band authenticated value, we bound the forgery probability by 2−|I|+

7 As a commitment scheme may be interactive, when referring to a commitment, we
mean the transcript of the interaction between the committer and the receiver during
an execution of the commit phase of the commitment scheme. When the scheme is
non-interactive, a commitment is simply a single string sent from the committer to
the receiver.
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ν(λ), for a negligible function ν(λ), by converting an adversary achieving better
forgery probability into an adversary that breaks a specific security property of
the underlying commitment scheme (i.e., binding, hiding or non-malleability).
The full proof is given in the full version [NRS18].

7 Lower Bounds on the Security of Lazy Users

Vaudenay [Vau05] and Naor et al. [NSS06] established tight bounds on the trade-
off between the adversary’s forgery probability and the length of the out-of-band
authenticated value in out-of-band authentication. In this section we show that
their lower bounds, in both the computational and statistical setting, directly
translate into corresponding lower bounds for protocols that are executed by
lazy users.

7.1 Computationally-Secure Protocols

In any computationally-secure out-of-band authentication protocol where the
probability of forgery is bounded by ε > 0, the sender must out-of-band authen-
ticate at least log(1/ε) bits. This can be seen, for example, by analyzing the
collision probability of the random variable corresponding to the out-of-band
authenticated value (see for example, [PV06]). Below, we show that this rea-
soning generalizes to the case of lazy users: Namely, for each number k ∈ [�] of
bits read from the out-of-band authenticated value, we provide a corresponding
lower bound.

Theorem 7.1. For any computationally-secure out-of-band (n, �, r, ε)
-authentication protocol for lazy users over alphabet Σ, it holds that

ε(I) ≥ 2−|I|·log |Σ| − 2−n

for every I ⊆ [�].

Proof. Let π be any computationally-secure out-of-band (n, �, r, ε)-authentica-
tion protocol for lazy users over alphabet Σ. Let λ ∈ N and � = �(λ) and fix any
I ⊆ [�]. Consider the following attack:

1. Choose a random m ← {0, 1}n and run an honest execution with S on input
m (with the adversary playing the role of R). Denote by v the out-of-band
authenticated value S sends at the end of the execution. Delay the relaying
of v to (the real) R until the end of the attack.

2. Choose a random m̂ ← {0, 1}n and run an honest execution with R, where the
adversary plays the role S on input m̂. Denote by v̂ the out-of-band authen-
ticated value that the simulated sender sends at the end of the execution. If
v̂I = vI , forward v to R; otherwise, terminate.
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Denote by VI the random variable corresponding to the substring of the out-
of-band authenticated value defined by the positions in I, where the distribution
of VI is induced by an honest execution of π on a randomly chosen input message
to S. Then, the following holds:

Pr
(v̂I ,vI)←VI×VI

[v̂I = vI ] =
∑

vI

(Pr [VI = vI ])2 = 2log
∑

vI (Pr[VI=vI ])2

≥ 2
∑

vI Pr[VI=vI ] log(Pr[VI=vI ]) = 2−H(VI).

The inequality above follows from Jensen’s inequality.
Let ForgeI denote the event in which the above attack goes through; i.e., R

outputs a fraudulent message. By the correctness of π, it holds that

Pr [ForgeI ] ≥ Pr [v̂I = vI ∧ m̂ �= m]
≥ Pr [v̂I = vI ] − Pr [m̂ = m]
≥ 2−H(VI) − 2n.

On the one hand, by the unforgeability of π, it must hold that ε(I) ≥ 2−H(VI) −
2n. On the other hand, it is always the case that H(VI) ≤ |I| · log |Σ|. Taken
together, these inequalities yield the theorem. �

The lower bound of Theorem 7.1 should be thought of in the following terms.
On the one hand, if the message to be authenticated is short (relative to the
bandwidth of the out-of-band authenticated channel), then the sender can just
go ahead and send it over the out-of-band channel. On the other hand, if it is
long, then the term 2−n is small and of little significance, and the attack from our
proof succeeds with probability close to 2−|I|·log |Σ|. Specifically, for any protocol
in which the length of the out-of-band authenticated value is independent of the
length of the input message to be authenticated, the success probability of our
attack can be made arbitrarily close to 2−|I|·log |Σ| (while considering arbitrarily
long input messages).

7.2 Statistically-Secure Protocols

Naor et al. [NSS06] proved a lower bound on the length of the out-of-band
authenticated value in any statistically-secure out-of-band authentication pro-
tocol. More precisely, they provided a lower bound on the Shannon entropy of
the random variable corresponding to the out-of-band authenticated value. If we
denote this random value by V , the lower bound of Naor et al. can be articulated
as follow:

Theorem 7.2 ([NSS06]). For any statistically-secure out-of-band (n, �, r, ε)-
authentication protocol it holds that

ε ≥ 2−H(V )/2 − 2−n



596 M. Naor et al.

Theorem 7.2 implies the following, more general, lower bound for out-of-band
authentication protocols for lazy users over possibly non-binary alphabets.

Corollary 7.3. For any statistically-secure out-of-band (n, �, r, ε)-authen-
tication protocol for lazy users over alphabet Σ, it holds that for every I ⊆ [�]

ε(|I|) ≥ 2−|I|·log(|Σ|)/2 − 2−n.

Proof. Let π be any (n, �, r, ε)-authentication protocol for lazy users over alpha-
bet Σ. By definition, this means that for any I ⊆ [�], the induced protocol πI is
an (n, |I|, r, ε(I))-authentication protocol. For every I ⊆ [�], denote by VI the
random variable corresponding to the substring of the out-of-band authenticated
value that is induced by the subset I. Hence, by Theorem 7.2, for every I ⊆ [�]
it holds that

ε(|I|) ≥ 2−H(VI)/2 − 2−n.

For every I ⊆ [�] it holds that H(VI) ≤ |I| · log |Σ|, and combining this fact with
the above inequality completes the proof. �
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Abstract. Oblivious RAM (ORAM), introduced by Goldreich and
Ostrovsky (JACM 1996), can be used to read and write to memory in
a way that hides which locations are being accessed. The best known
ORAM schemes have an O(log n) overhead per access, where n is the
data size. The work of Goldreich and Ostrovsky gave a lower bound show-
ing that this is optimal for ORAM schemes that operate in a “balls and
bins” model, where memory blocks can only be shuffled between different
locations but not manipulated otherwise. The lower bound even extends
to weaker settings such as offline ORAM, where all of the accesses to
be performed need to be specified ahead of time, and read-only ORAM,
which only allows reads but not writes. But can we get lower bounds for
general ORAM, beyond “balls and bins”?

The work of Boyle and Naor (ITCS ’16) shows that this is unlikely
in the offline setting. In particular, they construct an offline ORAM
with o(log n) overhead assuming the existence of small sorting circuits.
Although we do not have instantiations of the latter, ruling them out
would require proving new circuit lower bounds. On the other hand,
the recent work of Larsen and Nielsen (CRYPTO ’18) shows that there
indeed is an Ω(log n) lower bound for general online ORAM.

This still leaves the question open for online read-only ORAM or for
read/write ORAM where we want very small overhead for the read oper-
ations. In this work, we show that a lower bound in these settings is also
unlikely. In particular, our main result is a construction of online ORAM
where reads (but not writes) have an o(log n) overhead, assuming the
existence of small sorting circuits as well as very good locally decodable
codes (LDCs). Although we do not have instantiations of either of these
with the required parameters, ruling them out is beyond current lower
bounds.

1 Introduction

An Oblivious RAM (ORAM), first introduced by Goldreich and Ostro-
vsky [Gol87,Ost90,GO96], is a scheme that allows a client to read and write
to his data stored on untrusted storage, while entirely hiding the access pat-
tern, i.e., which operations were performed and at which locations. More pre-
cisely, we think of the client’s data as “logical memory” which the ORAM
scheme encodes and stores in “physical memory”. Whenever the client wants
c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 603–635, 2018.
https://doi.org/10.1007/978-3-030-03810-6_22
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to read or write to logical memory, the ORAM scheme translates this opera-
tion into several accesses to the physical memory. Security ensures that for any
two (equal length) sequences of access to logical memory, the resultant distribu-
tions over the physical accesses performed by the ORAM are computationally
(or statistically) close. Following its introduction, there has been a large body of
work on ORAM constructions and security [SCSL11,GMOT12,KLO12,WS12,
SvDS+13,RFK+15,DvDF+16], as well as its uses in various application sce-
narios (see, e.g., [GKK+12,GGH+13,LPM+13,LO13,MLS+13,SS13,YFR+13,
CKW13,WHC+14,MBC14,KS14,LHS+14,GHJR15,BCP15,HOWW18]).

One can always trivially hide the memory access pattern by performing a lin-
ear scan of the entire memory for every memory access. Consequently, an impor-
tant measure of an ORAM scheme is its overhead, namely the number of memory
blocks which need to be accessed to answer a single read or write request. Gol-
dreich and Ostrovsky [GO96] proved a lower bound of Ω (log n) on the ORAM
overhead, where n denotes the number of memory blocks in the logical memory.
There are also ORAM constructions achieving this bound [SvDS+13,WCS15],
at least if the block size is set to a sufficiently large polylogarithmic term; and
works [PPRY]achievingO (log n log log n) overhead forΩ (log n) block size, assum-
ing one-way functions.Wenote that one can circumvent the [GO96] lower boundby
relaxing the notion of ORAM to either allow server-side computation [AKST14],
or multiple non-colluding servers [LO13], and several works have obtained sub-
logarithmic overhead in these settings [AKST14,FNR+15,DvDF+16,ZMZQ16,
AFN+17,WGK18,KM18]. However, in this work we focus on the standard ORAM
setting with a single server and no server-side computation.

In some respects, the lower bound of [GO96] is very general. First, it applies
to all block sizes. Second, it holds also in restricted settings: when the ORAM is
only required to work for offline programs in which, roughly, all memory accesses
are stated explicitly in advance; and for read-only programs that do not update
the memory contents. However, in other respects, the bound is restricted since
it only applies to ORAM schemes that operate in the “balls and bins” model,
in which memory can only be manipulated by moving memory blocks (“balls”)
from one memory location (“bin”) to another. Therefore, the main question left
open by the work of [GO96] is: is there an ORAM lower bound for general ORAM
schemes, that are not restricted to operate in the “balls and bins” model?

Almost 20 years after Goldreich and Ostrovsky proved their lower bound, it
was revisited by Boyle and Naor [BN16], who show how to construct an ORAM
scheme in the offline setting with o (log n) overhead, using sorting circuits of size
o (n log n). Though sorting circuits of such size are not known, ruling out their
existence seems currently out of our reach. This result can be interpreted in two
ways. On the one hand, an optimist will view it as a possible approach towards
an ORAM construction in the offline setting, which uses “small” sorting circuits
as a building block. On the other hand, a pessimist may view this result as a
barrier towards proving a lower bound. Indeed, the [BN16] construction shows
that proving a lower bound on the overhead of offline ORAM schemes would yield
lower bounds on the size of sorting circuits, and proving circuit lower bounds is
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notoriously difficult. We note that unlike sorting networks, which only contain
“compare-and-swap” gates that operate on the two input words as a whole, and
for which a simple Ω (n log n) lower bound exists, sorting circuits can arbitrarily
operate over the input bits, and no such lower bounds are known for them.

The main drawback of the Boyle and Naor result [BN16] is that it only applies
to the offline setting, which is not very natural and is insufficient for essentially
any imaginable ORAM application. More specifically, the offline setting requires
that the entire sequence of accesses be specified in advance - including which
operation is performed, on which address, and in case of a write operation, what
value is written. However, even very simple and natural RAM programs (e.g.,
binary search) require dynamic memory accesses that depend on the results of
previous operations. Despite this drawback, the result of Boyle and Naor is still
very interesting since it shows that lower bounds which are easy to prove in the
“balls and bins” model might not extend to the general model. However, it does
not answer the question of whether general ORAM lower bounds exist in the
online setting, which is the one of interest for virtually all ORAM applications.

Very recently, and concurrently with our work, Larsen and Nielsen [LN18]
proved that the [GO96] lower bound does indeed extend to general online
ORAM. Concretely, they show an Ω (log n) lower bound on the combined over-
head of read and write operations in any general online ORAM, even with
computational security. Their elegant proof employs techniques from the field
of data-structure lower bounds in the cell-probe model, and in particular the
“information-transfer” method of Pătraşcu and Demaine [PD06].

1.1 Our Contributions

In this work, we explore the read overhead of general ORAM schemes beyond
the “balls and bins” model and in the online setting. We first consider read-only
ORAM schemes that only support reads – but not writes – to the logical memory.
We stress that the scheme is read-only in the sense that it only supports programs
that do not write to the logical memory. However, to emulate such programs in
the ORAM, the client might write to the physical memory stored on the server.
We note that read-only ORAM already captures many interesting applications
such as private search over a database, or fundamental algorithmic tasks such
as binary search. We show how to construct online read-only ORAM schemes
with o(log n) overhead assuming “small” sorting circuits and “good” Locally
Decodable Codes (LDCs). We then extend our results to a setting which also
supports sub-linear writes but does not try to hide whether an operation is a
read or a write and, in particular, allows different overheads for these operations.
In all our constructions, the server is only used as remote storage, and does not
perform any computations.

We note that, similar to [BN16], our results rely on primitives that we do not
know how to instantiate with the required parameters, but also do not have any
good lower bounds for. One can therefore interpret our results either positively,
as a blueprint for an ORAM construction, or negatively as a barrier to proving
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a lower bound in these settings. For simplicity of the exposition, we choose to
present our results through the “optimistic” lens.

We now describe our results in more detail.

Read-Only (RO) ORAM. We construct a read-only ORAM scheme, based on
sorting circuits and smooth locally decodable codes. Roughly, a Locally Decod-
able Code (LDC) [KT00] has a decoder algorithm that can recover any message
symbol by querying only few codeword symbols. In a smooth code, every indi-
vidual decoder query is uniformly distributed. Given a logical memory of size-n,
our scheme has O (log log n) overhead, assuming the existence of linear-size sort-
ing circuits, and smooth LDCs with constant query complexity and polynomial
length codewords. Concretely, we get the following theorem.

Theorem 1 (Informal statement of Corollary 1). Suppose there exist
linear-size boolean sorting circuits, and smooth LDCs with constant query com-
plexity and polynomial length codewords. Then there exists a statistically-secure
read-only ORAM scheme for memory of size n and blocks of size poly log n, with
O (1) client storage and O (log log n) overhead.

In Sect. 3, we also show a read-only ORAM scheme with o (log n) overhead
based on milder assumptions – concretely, smooth LDCs with O (log log n) query
complexity, and the existence of sorting circuits of size o

(
n log n

log2 log n

)
; see Corol-

lary 2. We note that under the (strong) assumption that the LDC has linear-size
codewords, our constructions achieve linear-size server storage. We also note that
if an a-priori polynomial bound on the number of memory accesses is known, then
the constructions can be based solely on LDCs, and the assumption regarding
small sorting circuits can be removed.

ORAM Schemes Supporting Writes. The read-only ORAM scheme described
above still leaves the following open question: is there a lower bound on read over-
head for ORAM schemes supporting write operations? To partially address this
question, we extend our ORAM construction to a scheme that supports writes
but does not hide whether an operation was a read or a write. In this setting, read
and write operations may have different overheads, and we focus on minimizing
the overhead of read operations while preserving efficiency of write operations as
much as possible. Our construction is based on the existence of sorting circuits
and smooth LDCs as in Theorem 1, as well as the existence of One-Way Func-
tions (OWFs). (We elaborate on why OWFs are needed in Sect. 1.2.) Assuming
the existence of such building blocks, our scheme has O (log log n) read overhead
and O (nε) write overhead for an arbitrarily small constant ε ∈ (0, 1), whose
exact value depends on the efficiency of the LDC encoding. Concretely, we show
the following:

Theorem 2 (Informal statement of Theorem 7). Assume the existence of
OWFs, as well as LDCs and sorting circuits as in Theorem1. Then for every
constant ε ∈ (0, 1), there exists a constant γ ∈ (0, 1) such that if LDC encoding
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requires n1+γ operations then there is a computationally-secure ORAM scheme
for memory of size n and blocks of size poly log n with O (1) client storage,
O (log log n) read overhead, and O (nε) write overhead.

Similar to the read-only setting, we also instantiate (Sect. 4, Theorem 8) the
ORAM with writes scheme based on milder assumptions regarding the param-
eters of the underlying sorting circuits and LDCs, while only slightly increas-
ing the read overhead. Additionally, we describe a variant of our scheme with
improved write complexity, again at the cost of slightly increasing the read over-
head:

Theorem 3 (Informal statement of Theorem 9). Assume the existence
of OWFs, as well as LDCs and sorting circuits as in Theorem1, where LDC
encoding requires n1+o(1) operations. Then there exists a computationally-secure
ORAM scheme for memory of size n and blocks of size poly log n with O (1)
client storage, o (log n) read overhead, and no(1) write overhead.

A Note on Block vs. Word Size. In our constructions we distinguish between
words (which are bit strings) and blocks (which consist of several words). More
specifically, words, which are the basic unit of physical memory on the server,
consist of w bits; and blocks, which are the basic unit of logical memory on the
client, consist of B words. We measure the overhead as the number of words the
client accesses on the server to read or write to a single logical block, divided
by B. We note that it is generally easier to construct schemes with smaller
word size. (Indeed, it allows the client more fine-grained access to the physical
memory; a larger word size might cause the client to access unneeded bits on the
server, simply because they are part of a word containing bits that do interest
the client.) Consequently, we would generally like to support larger word size,
ideally having words and blocks of equal size. Our constructions can handle any
word size,1 as long as blocks are poly-logarithmically larger (for a sufficiently
large poylogarithmic factor). A similar differentiation between block and word
size was used in some previous works as well (e.g., to get O (log N) overhead in
Path ORAM [SvDS+13]).

A Note Regarding Assumptions. We instantiate our constructions in two param-
eter regimes: one based on the existence of “best possible” sorting circuits and
smooth LDCs (as described above), and one based on milder assumptions regard-
ing the parameters of these building blocks (as discussed in Sects. 3 and 4). We
note that despite years of research in these fields, we currently seem very far
from ruling out the existence of even the “best possible” sorting circuits and
smooth LDCs. Concretely, to the best of our knowledge there are no specific
lower bounds for sorting circuits (as opposed to sorting networks, see discus-
sion above and in Sect. 2.2), and even for general boolean circuits only linear
lower bounds of c ·n for some constant c > 1 are known [Blu84,IM02,FGHK16].

1 Similar to previous works (e.g., [SCSL11,SvDS+13,SS13]), we assume words are of
at least logarithmic size.
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Regarding LDCs, research has focused on the relation between the query com-
plexity and codeword length in the constant query regime, but there are currently
no non-trivial lower bounds for general codes. Even for restricted cases, such as
binary codes, or linear codes over arbitrary fields, the bounds are extremely
weak. Specifically, the best known lower bound shows that codewords in q-
query LDCs must have length Ω

(
n(q+1)/(q−1)

)
/ log n [Woo07] (which, in par-

ticular, does not rule out the existence of 4-query LDCs with codeword length
n5/3), so it is plausible that for a sufficiently large constant, constant-query
LDCs with polynomial length codewords exist. We note that a recent series of
breakthrough results construct 3-query LDCs with sub-exponential codewords
of length exp

(
exp

(
O

(√
log n log log n

)))
= 2no(1)

, as well as extensions to larger
(constant) query complexity [Yek07,Rag07,Efr09,IS10,CFL+13]. Notice that
lower bounds on the size of the encoding circuit of such codes will similarly
yield circuit lower bounds.

A Note on the Connection to Private Information Retrieval (PIR) and Doubly-
Efficient PIR (DEPIR). The notions of PIR and DEPIR, which support reads
from memory stored on a remote server, are closely related to read-only ORAM,
but differ from it significantly in some respects. We now discuss these primitives
in more detail. In a (single-server) PIR scheme [KO97], there is no initial setup,
and anybody can run a protocol with the server to retrieve an arbitrary location
in the logical memory. The server is not used solely as remote storage, and in
fact the main goal, which is to minimize the communication between the client
and server, inherently requires the server to perform computations. One addi-
tional significant difference from ORAM is that the PIR privacy guarantee inher-
ently requires the server runtime to be linear in the size of the logical memory,
whereas a main ORAM goal is to have the server touch only a sublinear number
of blocks (which the client reads from it to retrieve the block he is interested
in). In a DEPIR scheme [BIM00,BIPW17,CHR17], there is a setup phase (as in
ORAM), following which the server(s) stores an encoded version of the logical
memory, and the logical memory can be accessed either with no key (in multi-
server DEPIR [BIM00]), with a public key (in public-key DEPIR [BIPW17]) or
with a secret key (in secret-key DEPIR [BIPW17,CHR17]). First proposed by
Beimel, Ishai and Malkin [BIM00], who showed how to construct information-
theoretic DEPIR schemes in the multi-server setting (i.e., with several non-
colluding servers), two recent works [BIPW17,CHR17] give the first evidence
that this notion may be achievable in the single-server setting. These works
achieve sublinear server runtime, with a server that is only used as remote stor-
age. Thus, these single-server DEPIR schemes satisfy all the required properties
of a RO-ORAM scheme, with the added “bonus” of having a stateless server
(namely, whose internal memory does not change throughout the execution of
the scheme). However, these (secret-key) constructions are based on new, pre-
viously unstudied, computational hardness assumptions relating to Reed-Muller
codes, and the public-key DEPIR scheme of [BIPW17] additionally requires a
heuristic use of obfuscation. Unfortunately, both of the above assumptions are
non-standard, poorly understood, and not commonly accepted. Additionally,
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these constructions do not achieve o (log n) overhead (at least not with polyno-
mial server storage).

A Note on Statistical vs. Computational Security. Our RO-ORAM achieves sta-
tistical security under the assumption that the server does not see the memory
contents, namely the server only sees which memory locations are accessed. Hid-
ing memory contents from the server can be generically achieved by encrypting
the logical memory, in which case security holds against computationally-bounded
servers. We note that our ORAM scheme supporting writes requires encrypting
the logical memory even if the server does not see the memory contents. Con-
sequently, our ORAM with writes scheme achieve computational security even
in the setting where the server does not see the memory contents. Alternatively,
our construction can achieve statistical security if the underlying LDC has the
additional property that the memory accesses during encoding are independent
of the data. (This property is satisfied by, e.g., linear codes.) We elaborate on
this further in Sects. 3.1 and 4.

1.2 Our Techniques

We now give a high-level overview of our ORAM constructions. We start with
the read-only setting, and then discuss how to enable writes.

We note that our technique departs quite significantly from that of Boyle
and Naor [BN16], whose construction seems heavily tied to the offline setting.
Indeed, the high-level idea underlying their scheme is to use the sorting circuit
to sort by location the list of operations that need to be performed, so that the
outcomes of the read operations can then be easily determined by making one
linear scan of the list. It does not appear that this strategy can naturally extend
to the online setting in which the memory accesses are not known a-priori.

Read-Only ORAM. We first design a Read-Only (RO) ORAM scheme that
is secure only for an a-priori bounded number of accesses, then extend it to a
scheme that remains secure for any polynomial number of accesses.

Bounded-Access RO-ORAM Using Metadata. Our RO-ORAM scheme employs
a smooth LDC, using the decoder to read from memory. Recall that a k-query
LDC is an error-correcting code in which every message symbol can be recovered
by querying k codeword symbols. The server in our scheme stores k copies of
the codeword, each permuted using a separate, random permutation. (We note
that permuted LDCs were already used – but in a very different way – in several
prior works [HO08,HOSW11,CHR17,BIPW17].) To read the memory block at
address j, the client runs the decoder on j, and sends the decoder queries to the
server, who uses the i’th permuted codeword copy to answer the i’th decoding
query. This achieves correctness, but does not yet guarantee obliviousness since
the server learns, for each 1 ≤ i ≤ k, which read operations induced the same
i’th decoding query.
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To prevent the server from obtaining this additional information, we restrict
the client to use only fresh decoding queries in each read operation, namely a
set q1, . . . , qk of queries such that no qi was issued before as the i’th query. The
metadata regarding which decoding queries are fresh, as well as the description
of the permutations, can be stored on the server using any sufficiently efficient
(specifically, polylogarithmic-overhead) ORAM scheme. Each block in the meta-
data ORAM will consist of a single word, so using the metadata ORAM will not
influence the overall complexity of the scheme, since for sufficiently large mem-
ory blocks the metadata blocks are significantly smaller. In summary, restricting
the client to make fresh queries guarantees that the server only sees uniformly
random decoding queries, which reveal no information regarding the identity of
the accessed memory blocks.

However, restricting the client to only make fresh decoding queries raises the
question of whether the ORAM is still correct, namely whether this restriction
has not harmed functionality. Specifically, can the client always “find” fresh
decoding queries? We show this is indeed the case as long as the number of
read operations is at most M/2k, where M denotes the codeword length. More
precisely, the smoothness of the code guarantees that for security parameter λ
and any index j ∈ [n], λ independent executions of the decoder algorithm on
index j will (with overwhelming probability) produce at least one set of fresh
decoding queries. Thus, the construction is secure as long as the client performs
at most M/2k read operations.

We note that given an appropriate LDC, this construction already gives a
read-only ORAM scheme which is secure for an a-priori bounded number of
accesses, without relying on sorting circuits. Indeed, given a bound B on the
number of accesses, all we need is a smooth LDC with length-M codewords, in
which the decoder’s query complexity is at most M/2B.

Handling an Unlimited Number of Reads. To obtain security for an unbounded
number of read operations, we “refresh” the permuted codeword copies every
M/2k operations. (We call each such set of read operations an “epoch”.) Specif-
ically, to refresh the codeword copies the client picks k fresh, random permu-
tations, and together with the server uses the sorting circuit to permute the
codeword copies according to the new permutations. Since the logical memory
is read-only, the refreshing operations can be spread-out across the M/2k read
operations of the epoch.

ORAM with Writes. We extend our RO-ORAM scheme to support write oper-
ations, while preserving o (log n) overhead for read operations. The construction
is loosely based on hierarchical ORAM [Ost90,GO96]. The high-level idea is to
store the logical memory on the server in a sequence of � levels of increasing size,
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each containing an RO-ORAM.2 We think of the levels as growing from the top
down, namely level-1 (the smallest) is the top-most level, and level-� (the largest)
is the bottom-most. Initially, all the data is stored in the bottom level �, and all
the remaining levels are empty. To read the memory block at some location j,
the client performs a read for location j in the RO-ORAMs of all levels, where
the output is the block from the highest level that contains the j’th block. When
the client writes to some location j, the server places that memory block in the
top level i = 1. After every li write operations – where li denotes the size of level
i – the i’th level becomes full. All the values in level i are then moved to level
i + 1, a process which we call a “reshuffle” of level i into level i + 1. Formalizing
this high-level intuition requires some care, and the final scheme is somewhat
more involved. See Sect. 4 for details.

We note that our construction differs from Hierarchical ORAM in two main
points. First, in Hierarchical ORAM level i is reshuffled into level i + 1 every
li read or write operations, whereas in our scheme only write operations are
“counted” towards reshuffle (in that respect, read operations are “free”). This is
because the data is stored in each level using an RO-ORAM which already guar-
antees privacy for read operations. Second, Hierarchical ORAM uses Ω (log n)
levels, whereas to preserve o (log n) read overhead, we must use o (log n) levels.
In particular, the ratio between consecutive levels in our scheme is no longer
constant, leading to a higher reshuffle cost (which is the reason write operations
have higher overhead in our scheme).

2 Preliminaries

Throughout the paper λ denotes a security parameter. For a length-n string x
and a subset I = {i1, . . . , il} ⊆ [n], xI denotes (xi1 , . . . , xil

).

Terminology. Recall that words, the basic unit of physical memory on the server,
consist of w bits; and blocks, the basic unit of logical memory on the client,
consist of B words. The client may locally perform bit operations on the bit
representation of blocks, but can only access full words on the server. We will
usually measure complexity in terms of logical blocks (namely, in terms of the
basic memory unit on the client). More specifically, unless explicitly stated oth-
erwise, client and server storage are measured as the number of blocks they store
(even though the basic storage unit on the server side is a word), and overhead
measures the number of blocks one needs to read or write to implement a read
or write operation on a single block. Formally:

2 This is reminiscent of a construction of [OS97], which also instantiated the levels of
a hierarchical ORAM with a primitive guaranteeing read privacy (specifically, they
use PIR). However, our goals, and the details of our construction, differs significantly
from [OS97].
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Definition 1 (Overhead). For a block size B and input length n, we say that
a protocol between client C and server S has overhead Ovh for a function Ovh :
N → N, if implementing a read or write operation on a single logical memory
block requires the client to access B · Ovh (n) words on the server.

2.1 Locally Decodable Codes (LDCs)

Locally decodable codes were first formally introduced by [KT00]. We rely on
the following definition of smooth LDCs.

Definition 2 (Smooth LDC). A smooth k-query Locally Decodable Code
(LDC) with message length n, and codeword length M over alphabet Σ, denoted
by (k, n,M)Σ-smooth LDC, is a triplet (Enc,Query,Dec) of PPT algorithms with
the following properties.

– Syntax. Enc is given a message msg ∈ Σn and outputs a codeword c ∈ ΣM ,
Query is given an index � ∈ [n] and outputs a vector r = (r1, . . . , rk) ∈ [M ]k,
and Dec is given cr = (cr1 , . . . , crk

) ∈ Σk and outputs a symbol in Σ.
– Local decodability. For every message msg ∈ Σn, and every index � ∈ [n],

Pr [r ← Query (�) : Dec (Enc (msg)r) = msg�] = 1.

– Smoothness. For every index � ∈ [n], every query in the output of Query (�)
is distributed uniformly at random over [M ].

To simplify notations, when Σ = {0, 1} we omit it from the notation.

Remark on Smooth LDCs for Block Messages. We will use smooth LDCs for
messages consisting of blocks {0, 1}B of bits (for some block size B ∈ N), whose
existence is implied by the existence of smooth LDCs over {0, 1}. Indeed, given
a (k, n,M)-smooth LDC (Enc,Query,Dec), one can obtain a (k, n,M){0,1}B-
smooth LDC

(
Enc′,Query′,Dec′) by “interpreting” the message and codeword

as B individual words, where the j’th word consists of the j’th bit in all blocks.
Concretely, Enc′ on input a message

(
msg1, . . . ,msgn

) ∈ ({0, 1}B)n, computes
y1

j . . . yM
j = Enc

(
msg1j , . . . ,msgn

j

)
for every 1 ≤ j ≤ B, sets ci = yi

1 . . . yi
B, and

outputs c =
(
c1, . . . , cM

)
. Query′ operates exactly as Query does. Dec′, on input

cr1 , . . . , crk ∈ {0, 1}B, computes zj = Dec
(
cr1
j , . . . , crk

j

)
for every 1 ≤ j ≤ B, and

outputs z1 . . . zB.

2.2 Oblivious-Access Sort Algorithms

Our construction employ an Oblivious-Access Sort algorithm [BN16] which is,
roughly, a RAM program that sorts its input, such that the access patterns
of the algorithm on any two inputs of equal size are statistically close. Thus,
oblivious-access sort is the “RAM version” of boolean sorting circuits. (Infor-
mally, a boolean sorting circuit is a boolean circuit ensemble {C (n,B)}n,B such
that each C (n,B) takes as input n size-B tagged blocks, and outputs the blocks
in sorted order according to their tags.)
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Definition 3 (Oblivious-Access Sort Algorithm, [BN16]). An Oblivious-
Access Sort algorithm for input size n and block size B, with overhead
OvhSort (n,B), is a (possibly randomized) algorithm Sort run by a client C on
an input stored remotely on a server S, with the following properties:

– Operation: The input consists of n tagged blocks which are represented as
length-B bit strings (the tag is a substring of the block) and stored on the
server.3 The client can perform local bit operations, but can only read and
write full blocks from the server.

– Overhead: The overhead of Sort is OvhSort (n,B).
– Correctness: With overwhelming probability in n, at the end of the algorithm

the server stores the blocks in sorted order according to their tags.
– Oblivious Access: For a logical memory DB consisting of n blocks of size

B, let APn,B (Sort,DB) denote the random variable consisting of the list of
addresses accessed in a random execution of the algorithm Sort on DB. Then
for every pair DB,DB′ of inputs with n size-B blocks, APn,B (Sort,DB) ≈s

APn,B

(
Sort,DB′), where ≈s denotes negl (n) statistical distance.

Boyle and Naor [BN16] show that the existence of sorting circuits implies the
existence of oblivious-access sort algorithms with related parameters:

Theorem 4 (Oblivious-access sort from sorting circuits, [BN16]). If
there exist boolean sorting circuits {C (n,B)}n,B of size s (n,B), then there exists
an oblivious-access sort algorithm for n distinct elements with O (1) client stor-
age, O

(
n · log B + s

(
2n
B ,B

))
overhead, and e−nΩ(1)

probability of error.

Remark on the Existence of Oblivious-Access Sort Algorithms with Small Over-
head. We note that for blocks of poly-logarithmic size B = poly log n, the exis-
tence of sorting circuits of size s (n,B) = O (n · B · log log n) guarantees (through
Theorem 4) the existence of oblivious-access sort algorithms with O (n · log log n)
overhead.

Remark on the Relation to Sorting Networks. The related notion of a sorting
network has been extensively used in ORAM constructions. Similar to oblivious-
access sort algorithms, sorting networks sort n size-B blocks in an oblivious man-
ner. (More specifically, a sorting network is data oblivious, namely its memory
accesses are independent of the input.) However, unlike oblivious-access sort
algorithms, and boolean sorting circuits, which can operate locally on the bits
in the bit representation of the input blocks, a sorting network consist of a sin-
gle type of compare-exchange gate which takes a pair of blocks as input, and
outputs them in sorted order. We note that a simple information-theoretic lower
bound of Ω (n log n) on the network size is known for sorting networks (as well as
matching upper bounds, e.g. [AKS83,Goo14]), whereas no such bound is known
for boolean sorting circuits or oblivious-access sorting algorithms.
3 In [BN16], the blocks consist solely of the tag, but the algorithm is usually run when

tags are concatenated with memory blocks (which are carried as a “payload”, and
the overhead increases accordingly). We choose to explicitly include the data portion
in the block.



614 M. Weiss and D. Wichs

2.3 Oblivious RAM (ORAM)

Oblivious RAMs were introduced by Goldreich and Ostrovskey [Gol87,Ost90,
GO96]. To define oblivious RAMs, we will need the following notation of an
access pattern.

Notation 1 (Access pattern). A length-q access pattern Q consists of a list
(opl, vall, addrl)1≤l≤q of instructions, where instruction (opl, vall, addrl) denotes
that the client performs operation opl ∈ {read,write} at address addrl with value
vall (which, if opl = read, is ⊥).

Definition 4 (Oblivious RAM (ORAM)). An Oblivious RAM (ORAM)
scheme with block size B consists of procedures (Setup,Read,Write), with the
following syntax:

– Setup(1λ,DB) is a function that takes as input a security parameter λ, and a
logical memory DB ∈ ({0, 1}B)n, and outputs an initial server state stS and
a client key ck. We require that the size of the client key |ck| be bounded by
some fixed polynomial in the security parameter λ, independent of |DB|.

– Read is a protocol between the server S and the client C. The client holds as
input an address addr ∈ [n] and the client key ck, and the server holds its
current state stS. The output of the protocol is a value val to the client, and
an updated server state st′S.

– Write is a protocol between the server S and the client C. The client holds as
input an address addr ∈ [n], a value v, and the client key ck, and the server
holds its current state stS. The output of the protocol is an updated server
state st′S.

Throughout the execution of the Read and Write protocols, the server is used only
as remote storage, and does not perform any computations.

We require the following correctness and security properties.

– Correctness: In any execution of the Setup algorithm followed by a sequence
of Read and Write protocols between the client and the server, where the Write
protocols were executed with a sequence V of values, the output of the client
in every execution of the Read protocol is with overwhelming probability the
value he would have read from the logical memory in the corresponding read
operation, if the prefix of V performed before the Read protocol was performed
directly on the logical memory.

– Security: For a logical memory DB, and an access pattern Q, let AP (DB, Q)
denote the random variable consisting of the list of addresses accessed in
the ORAM when the Setup algorithm is executed on DB, followed by the
execution of a sequence of Read and Write protocols according to Q. Then
for every pair DB0,DB1 ∈ ({0, 1}B)n of inputs, and any pair Q0 =(
opl, val

0
l , addr

0
l

)
1≤l≤q

, Q1 =
(
opl, val

1
l , addr

1
l

)
1≤l≤q

of access patterns of

length q = poly (λ), AP
(
DB0, Q0

) ≈s AP
(
DB1, Q1

)
, where ≈s denotes

negl (λ) statistical distance.
If AP

(
DB0, Q0

)
,AP

(
DB1, Q1

)
are only computationally indistinguishable,

then we say the scheme is computationally secure.
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Definition 4 does not explicitly specify who runs the Setup procedure. It can
be performed by the client, who then sends the server state stS to the server S,
or (to save on client computation) can be delegated to a trusted third party.

Remark on Hiding the Type of Operation. Notice that Definition 4 does not hide
whether the performed operation is a read or a write, whereas an ORAM scheme
is usually defined to hide this information. However, any such scheme can be
generically made to hide the identity of operations by always performing both a
read and a write. (Specifically, in a write operation, one first performs a dummy
read; in a read operation, one writes back the value that was read.) Revealing
the identity of operations allows us to obtain more fine-grained overheads.

Remark on Hiding Physical Memory Contents. The security property of Defini-
tion 4 implicitly assumes that the server does not see the contents of the physical
memory: if the server is allowed to see it, he might be able to learn some non-
trivial information regarding the access pattern, and thus violate the security
property. As noted in Sect. 1.1, hiding the physical memory contents from the
server can be achieved by encrypting the physical memory blocks, but security
will then only hold against computationally-bounded servers, and so we choose
to define security with the implicit assumption that the server does not see the
memory contents (which also allows for cleaner constructions).

We will also consider the more restricted notion of a Read-Only (RO) ORAM
scheme which, roughly, is an ORAM scheme that supports only read operations.

Definition 5 (Read-Only Oblivious RAM (RO-ORAM)). A Read-Only
Oblivious RAM (RO-ORAM) scheme consists of procedures (Setup,Read) with
the same syntax as in Definition 4, in which correctness holds for any sequence
of Read protocols between the client and the server, and security holds for any
pair of access patterns R0, R1 that contain only read operations.

3 Read-Only ORAM from Oblivious-Access Sort and
Smooth LDCs

In this section we construct a Read-Only Oblivious RAM (RO-ORAM) scheme
from oblivious-access sort algorithms and smooth LDCs. Concretely, we prove
the following:

Theorem 5. Suppose there exist:

– (k, n,M)-smooth LDCs with M = poly (n).
– An oblivious-access sort algorithm Sort with s (n,B) overhead for input size

n and block size B.

Then there exists an RO-ORAM scheme for logical memory of size n and blocks
of size B = Ω

(
λ · k2 · log3 (kn) log7 log (kn)

)
with k + 2k2

M ·s (M,B)+O (1) over-
head, and O (k) client storage.
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Theorem 1 now follows from Theorem 5 (using also Theorem 4) for an appro-
priate instantiation of the sorting algorithm and LDC.

Corollary 1 (RO-ORAM, “dream” parameters; formal statement of
Theorem 1). Suppose there exist:

– (k, n,M)-smooth LDCs with k = O (1) and M = poly (n).
– Boolean sorting circuits {C (n,B)}n,B of size s (n,B) = O (n · B) for input

size n and block size B.

Then there exists an RO-ORAM scheme for logical memory of size n and blocks
of size Ω

(
λ · log4 n

)
with O (log log n) overhead, and O (1) client storage.

We also instantiate our construction with sorting algorithms and LDCs with
more “conservative” parameters, to obtain the following corollary.

Corollary 2 (RO-ORAM, milder parameters). Suppose there exist:

– (k, n,M)-smooth LDCs with k = poly log log n and M = poly (n).
– Boolean sorting circuits {C (n,B)}n,B of size s (n,B) ∈ o

(
n·B·log n

k2

)
for input

size n and block size B.

Then there exists an RO-ORAM scheme for memory of size n and blocks of size
Ω

(
λ · log4 n

)
with = o (log n) overhead, and poly log log n client storage.

Construction Overview. As outlined in the introduction, our construction uses
a (k, n,M)-smooth LDC. The server stores k codeword copies, each permuted
using a unique uniformly random permutation. To read block j from the logi-
cal memory, the client runs the LDC decoder until the decoder generates a set
of fresh decoding queries (i.e., a set q1, . . . , qk of queries such that for every
1 ≤ i ≤ k, qi was not issued before as the i’th query), and sends these queries
to the server. The server uses the i’th permuted codeword copy to answer the
i’th decoding query. The metadata regarding which decoding queries are fresh,
as well as the description of the permutations, are stored on the server using a
(polylogarithmic-overhead) ORAM scheme, which the client accesses to deter-
mine whether the decoder queries are fresh, and to permute them according to
the random permutations.

The execution is divided into “epochs” consisting of O (M/k) read opera-
tions. When an epoch ends, the client “refreshes” the permuted codeword copies
by picking k fresh, random permutations, and running an oblivious-access sort
algorithm with the server to permute the codeword copies stored on the server
according to the new permutations. The description of the new permutations is
stored in the metadata ORAM (the client also resets the bits indicating which
decoding queries are fresh). The refreshing operations are spread-out across the
O (M/k) read operations of the epoch. The resultant increase in complexity
depends on k (which determines the epoch length, i.e., the frequency in which
refreshing is needed), and on the overhead of the oblivious-access sort algorithm.
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Construction 1 (RO-ORAM from Oblivious-Access Sort and Smooth LDCs).
The scheme uses the following building blocks:

– A (k, n,M){0,1}B-smooth LDC (EncLDC,QueryLDC,DecLDC).
– An oblivious-access sort algorithm Sort.
– An ORAM scheme (Setupin,Readin,Writein).

The scheme consists of the following procedures:

– Setup(1λ,DB): Recall that λ denotes the security parameter, and DB ∈({0, 1}B)n. Instantiate the LDC with message size n over alphabet Σ =
{0, 1}B, and let k be the corresponding number of queries, and M be the
corresponding codeword size. Proceed as follows.
1. Counter initialization. Initializes a step counter count = 0.
2. Data storage generation.

(a) Generate the codeword D̃B = EncLDC (DB) with D̃B ∈ ΣM .
(b) For every 1 ≤ i ≤ k:

• Generate a random permutation P i : [M ] → [M ].

• Let D̃B
i ∈ ΣM be a permuted version of the codeword which

satisfies D̃B
i

P i(j) = D̃Bj for all j ∈ [M ].
3. Metadata storage generation.

(a) For every 1 ≤ i ≤ k:
• Initialize a length-M bit-array Queriedi to 0.
• Initialize a length-M array Permi over {0, 1}log M such that

Permi (j) = P i (j).
(b) Let mDB denote the logical memory obtained by concatenating

Queried1, . . . ,Queriedk and Perm1, . . . ,Permk. Run (ckm, stm) ←
Setupin

(
1λ,mDB

)
to obtain the client key and server state for the

metadata ORAM.
4. Output. The long-term client key ck = ckm consists of the

client key for the metadata ORAM. The server state stS =({
D̃B

i
: i ∈ [k]

}
, stm, count

)
contains the k permuted codewords, the

server state for the metadata ORAM, and the step counter.

– The Read protocol. To read the logical memory block at location addr ∈ [n]
from the server S, the client C with key ck = ckm operates as follows, where
in all executions of the Readin or Writein protocols on mDB S plays the role
of the server with state stm and C plays the role of the client with key ckm.
1. Generating decoder queries. Repeat the following λ times:

• Run (q1, . . . , qk) ← QueryLDC (addr) to obtain decoding queries.
• For every 1 ≤ i ≤ k, run the Readin protocol to read Queriedi [qi]. We

say that qi is fresh if Queriedi [qi] = 0.
• Let (q̂1, . . . , q̂k) denote the decoding queries in the first iteration in

which all queries were fresh. (If no such iteration exists, set (q̂1, . . . , q̂k)
to be the decoding queries generated in the last iteration.)
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2. Permuting queries. For every 1 ≤ i ≤ k, run the Readin protocol to read
Permi [q̂i]. Let q′

i denote the value that Readin outputs to the client.

3. Decoding logical memory blocks. Read D̃B
1

q′
1
, . . . , D̃B

k

q′
k

from the server,

and set the client output to DecLDC

(
D̃B

1

q′
1
, . . . , D̃B

k

q′
k

)
.

4. Updating counter and server state. Let � = M
2k . Read count from the

server.
• If count < � − 1, then update count := count + 1, and for every

1 ≤ i ≤ k, run the Writein protocol to write “1” to Queriedi [q̂i].
• Otherwise, update count := 0, and for every 1 ≤ i ≤ k:

– Run the Writein protocol to write 0 to Queriedi.
– Replace P i with a fresh random permutation on [M ] by run-

ning the Fisher-Yates shuffle algorithm (as presented by Dursten-
feld [Dur64]) on Permi, using the Readin and Writein protocols.

– Use Sort to sort D̃B
i

according to the new permutation P i (each
block consists of a codeword symbol, and the index in the code-
word which is used as the tag of the block).

If the complexity of these three steps is cepoch, then the client performs
cepoch/� steps of this computation in each protocol execution so that
it is completed by the end of the epoch.

We prove the following claims about Construction 1.

Proposition 1 (ORAM security). Assuming the security of all of the build-
ing blocks, Construction 1 is a secure RO-ORAM scheme.

Proposition 2 (ORAM overhead). Assume that:

– The logical memory DB has block size B, and the metadata ORAM has block
size mB, satisfying B > mB ≥ log M .

– The metadata ORAM has overhead Ovh (N) for memory of size N .
– The oblivious-access sort algorithm has OvhSort (n,B) overhead when operating

on inputs consisting of n size-B blocks.

Then every execution of the Read protocol in Construction 1 requires accessing

O
(
kλ + k2

) · mB · Ovh

(
k · (M + M log M)

mB

)
+

(
k +

2k2

M
· OvhSort (M,B)

)
· B

words on the server.

Claims Imply Theorem. To prove Theorem 5, we instantiate the metadata
ORAM of Construction 1 with the following variant of path ORAM [SvDS+13]:

Theorem 6 (Statistical ORAM with polylog overhead, implicit
in [SvDS+13]). Let λ be a security parameter. Then there exists a statistical
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ORAM scheme with negl (λ) error for logical memory consisting of N blocks of
size mB = log2 N log log N with O (log N) overhead, in which the client stores
O (log N (λ + log log N)) blocks.

Moreover, initializing the scheme requires accessing O (N · mB) words, and
the server stores O (N) blocks.

Proof of Theorem 5. Security follows directly from Proposition 1 since (as noted
in Sect. 2.1) the existence of a (k, n,M)-smooth LDC implies the existence of a
(k, n,M){0,1}B-smooth LDC.

As for the overhead of the construction, let Nm = k (M + M log M) denote
the size (in bits) of the metadata ORAM. Substituting mB = log2 Nm log log Nm,
and Ovh (N) = O (log N) (according to Theorem 6), Proposition 2 guarantees
that every execution of the Read protocol requires accessing

O
(
kλ + k2

) · log2 Nm log log Nm · O (log Nm) +
(

k +
2k2

M
· s (M,B)

)
· B

words on the server. The first summand can be upped bounded by

k2λ · log2 (kM) log3 log (kM) · O (log (kM)) ≤ k2λ · log3 (kM) log3 log (kM) .

For B = Ω
(
λ · k2 · log3 (kn) log7 log (kn)

)
(as in the theorem statement) with a

sufficiently large constant in the Ω (·) notation, and since M = poly (n), this
corresponds to accessing O (B) words on the server, so the overhead is k + 2k2

M ·
s (M,B) + O (1).

Finally, regarding client storage, emulating the LDC decoder requires storing
k size-B blocks (i.e, the answers to the decoder queries). Operations on mDB
require (by Theorem 6) storing O (log Nm (λ + log log Nm)) size-mB blocks which
corresponds to a constant number of size-B blocks. ��
Security Analysis: Proof of Proposition 1. The proof of Proposition 1 will use
the next lemma, which states that with overwhelming probability, every Read
protocol execution uses fresh decoding queries. This follows from the smoothness
of the underlying LDC.

Lemma 1. Let k,M ∈ N, and let X = (X1, . . . , Xk) be a random variable
over [M ]k such that for every 1 ≤ i ≤ k, Xi is uniformly distributed over [M ].
Let S1, . . . , Sk ⊆ [M ] be subsets of size at most �. Then in l independent sam-
ples according to X, with probability at least 1 − (

k · �
M

)l
, there exists a sample

(x1, . . . , xk) such that xi /∈ Si for every 1 ≤ i ≤ k.
In particular, if � = M

2k and l = Ω (λ) then except with probability negl (λ),
there exists a sample (x1, . . . , xk) such that xi /∈ Si for every 1 ≤ i ≤ k.

Proof. Consider a sample (x1, . . . , xk) according to X. Since each Xi is uni-
formly distributed over [M ], then Pr [xi ∈ Si] ≤ �

M , so by the union bound,
Pr [∃i : xi ∈ Si] ≤ k · �

M . Since the l samples are independent, the probability

that no such sample exists is (Pr [in a single sample, ∃i : xi ∈ Si])
l ≤ (

k · �
M

)l
.

For the “in particular” part, notice that for � = M
2k and l = Ω (λ), 1−(

k · �
M

)l
=

1 − 2−Ω(λ). ��
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We are now ready to prove Proposition 1.

Proof of Proposition 1. The correctness of the scheme follows directly from the
correctness of the underling LDC. We now argue security. Let DB0,DB1 be two
logical memories consisting of n size-B blocks, and let R0, R1 be two sequences of
read operations of length q = poly (λ). We proceed via a sequence of hybrids. We
assume that in each read operation, at least one iteration in the Read protocol
succeeded in generating fresh decoder queries, and condition all hybrids on this
event. This is without loss of generality since by Lemma 1, this happens with
overwhelming probability.

Hb
0 : Hybrid Hb

0 is the access pattern AP
(
DBb, Rb

)
in an execution of read

sequence Rb on the RO-ORAM generated for logical memory DBb.
Hb

1 : In hybrid Hb
1, for every 1 ≤ i ≤ k, we replace the values of Queriedi and

Permi with dummy values of (e.g.,) the all-0 string. Moreover, we replace all
read and write accesses to the metadata mDB with dummy operations that
(e.g.,) read and write the all-0 string to the first location in the metadata.
(We note that the accesses to the permuted codewords remain unchanged,
where each access consists of fresh decoding queries, permuted according to
P 1, . . . , P k.)
Hybrids Hb

0 and Hb
1 are statistically indistinguishable by the security of the

metadata ORAM.
Hb

2 : In hybrid Hb
2, for every 1 ≤ i ≤ k, and every epoch j, we replace the per-

mutation on which the oblivious-access sort algorithm Sort is applied, with a
dummy permutation (e.g., the identity). (As in Hb

1, the accesses to the code-
word copies remain unchanged, and in particular the “right” permutations
are used in all epochs.)
Hybrids Hb

1 and Hb
2 are statistically indistinguishable by the obliviousness

property of the oblivious-access sort algorithm.
Hb

3 : In hybrid Hb
3, for every 1 ≤ i ≤ k, we replace the queries to the i’th

permuted codeword with queries that are uniformly random subject to the
constraint that they are all distinct.
Hybrids Hb

2 and Hb
3 are statistically indistinguishable since by our assumption

all the queries sent to the codeword copies are fresh, and they are permuted
using random permutations. (Notice that Hb

2,Hb
3 contain no additional infor-

mation regarding these permutations.)

We conclude the proof by noting that H0
3 ≡ H1

3 since neither depend on
DB0,DB1, R0 or R1. ��
Complexity Analysis: Proof of Proposition 2. We now analyze the complexity of
Construction 1, proving Proposition 2. Notice that since mB ≥ log M , an image
of any random permutation P i : [M ] → [M ] is contained in a single block of
mDB. Notice also that the metadata mDB consists of k · (M + M log M) bits,
and let Nm := k·(M+M log M)

mB denote its size in size-mB blocks. Recall that a
word (i.e., the basic unit of the physical memory stored on the server) consists
of w bits.
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Proof of Proposition 2. Every execution of the Read protocol consists of the fol-
lowing operations:

– Reading k · λ bits from mDB to check if the decoding queries in each of the λ
iterations are fresh. Reading each bit requires reading a different block from
mDB, which requires accessing kλ · mB · Ovh (Nm) words on the server.

– Reading k images from Perm1, . . . ,Permk to permute the chosen decoding
queries. This requires reading k blocks from mDB, which requires accessing
k · mB · Ovh (Nm) words on the server.

– Reading k blocks from the permuted codewords D̃B
1
, . . . , D̃B

k
to answer the

decoder queries, which requires accessing B
w · k words on the server.

– Writing k bits to mDB to update the values Queriedi
[
q̂i

]
, 1 ≤ i ≤ k, to 1,

in total accessing k · mB · Ovh (Nm) words on the server. (This operation is
only performed when count < � − 1, but counting it in every Read execution
will not increase the overall asymptotic complexity.)

– Updating the counter, which requires accessing λ
w words on the server.

In total, these operations require accessing O (kλ) · mB · Ovh (Nm) + k · B
w words

on the server.
In addition, every Read execution performs its “share” of the operations

needed to update the server state at the end of the epoch. More specifically, it
performs a 1

� = 2k
M -fraction of the following operations:

– Writing k · M
mB blocks to mDB to reset all entries of Queriedi, 1 ≤ i ≤ k, as

well as reading and writing k · 2M blocks to mDB to update the entries of
Permi, 1 ≤ i ≤ k with the images of the new permutations, using the Fisher-
Yates shuffle. In total, this requires accessing k ·M · ( 1

mB + 4
) ·mB ·Ovh (Nm)

words on the server.
– Running k executions of Sort on an input of M blocks of size B to re-permute

the codeword copies, which requires accessing k · OvhSort (M,B) words on the
server.

So these update operations require accessing O
(
k2

) · mB · Ovh (Nm) + 2k2

M ·
B · OvhSort (M,B) words on the server per execution of the Read protocol.

In summary, reading a single logical block from DB requires accessing
O

(
kλ + k2

) · mB · Ovh
(

k·(M+M log M)
mB

)
+

(
k
w + 2k2

M · OvhSort (M,B)
)

· B words
on the server.

3.1 Read-Only ORAM with Oblivious Setup

In this section we generalize the notion of an RO-ORAM scheme to allow the
client to run the ORAM Setup algorithm, using the server as remote storage,
when the logical memory is already stored at the server. We call this primitive
an RO-ORAM scheme with oblivious setup. This primitive will be used in the
next section to construct an ORAM scheme supporting writes with low read
overhead.
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At a high level, an RO-ORAM scheme with oblivious setup is an RO-ORAM
scheme (Setup,Read) associated with an additional protocol OblSetup which
allows the client to execute the Setup algorithm using the server as remote stor-
age when the logical memory is already stored on the server, where the execution
is oblivious in the sense that the scheme remains secure when the RO-ORAM is
generated using OblSetup instead of Setup.

In the full version [WW18] we formalize this notion, and show that the
RO-ORAM scheme of Construction 1 has oblivious setup. The oblivious setup
protocol relies on the building blocks of Construction 1, and additionally uses
a CPA-secure symmetric encryption scheme (whose existence follows from the
existence of OWFs). The high-level idea is conceptually simple. The client first
encrypts the logical memory, then generates the codeword copies by encoding
the encrypted logical memory. This can be done by running the encoding pro-
cedure of the LDC “in the clear” (using the server as remote storage), because
by the CPA-security of the encryption scheme, the access pattern of the encod-
ing procedure reveals no information on the logical memory. (Indeed, the access
pattern might depend on the values of the ciphertexts, but those are compu-
tationally indistinguishable from encryptions of 0.) Then, the client can use
an “empty” metadata (initialized to 0) to generate his keys for the metadata
ORAM, and update its contents by running the Write protocol of the metadata
ORAM together with the server. Finally, the codeword copies can be obliviously
permuted using the oblivious-access sort algorithm. This high-level intuition is
formalized in the full version [WW18], where we prove the following:

Lemma 2 (RO-ORAM with oblivious setup). Assuming OWFs, and
assuming the security of the building blocks of Construction 1, there exists a
computationally-secure RO-ORAM scheme with oblivious setup. Moreover, if:

– the logical memory DB has block size B, and the metadata ORAM has block
size mB, satisfying B > mB ≥ log M ,

– the metadata ORAM has Ovh (N) overhead for memories of size N , and its
setup algorithm can be executed using the server as remote storage by accessing
Tm (N) words on the server, where the client (server) stores sC (sS) size-mB
blocks,

– the oblivious-access sort algorithm has OvhSort (n,B) overhead when operating
on inputs consisting of n size-B blocks,

– the LDC has query complexity k, codeword length M , and on messages of
length n its encoding procedure performs TLDC (n) operations (i.e., touches
TLDC (n) message symbols),

then the OblSetup protocol accesses

λ + Tm

(
k (M + M log M)

mB

)
+ 2n · B

w
+ TLDC (n) · B

w
+ kM · B

w

+
(

kM

mB
+ kM

)
· mB · Ovh

(
k (M + M log M)

mB

)
+ k · B · OvhSort (n,B)
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words on the server, where w denotes the word size. Moreover, the client stores
sC · mB

B size-B blocks, and the server stores n + kM + sS · mB
B + λ size-B blocks.

A Note on Statistically-Secure RO-ORAM with Oblivious Setup. Our RO-
ORAM with oblivious setup scheme is computationally-secure, even assuming
the server does not see the memory contents. This is due to the fact that the
access pattern during LDC-encoding might depend on the contents of the mes-
sage being encoded, which in our case is the encrypted contents of the logical
memory. Since the encryptions of two logical memories are only computationally
indistinguishable, the resultant security is computational. We note that using an
LDC with additional properties, we can obtain a statistically-secure RO-ORAM
scheme with oblivious setup. Concretely, if the LDC encoding procedure is obliv-
ious in the sense that its access pattern is independent of the contents of the
message being encrypted (a property satisfied by, e.g., linear codes) then one can
run the LDC encoding procedure on the logical memory itself, and encryption is
not needed. Similarly, if the LDC has a sufficiently small encoding circuit, then
encoding can be performed directly on the (un-encrypted) logical memory.

4 Oblivious RAM Supporting Writes with o (logn) Read
Complexity

In this section we extend the RO-ORAM scheme of Sect. 3 to support writes,
while preserving the overhead of read operations. We instantiate our construc-
tion in several parameter regimes, obtaining the following results (see the full
version [WW18] for the proofs).

First, by instantiating our construction with “best possible” sorting circuits
and LDCs, we prove Theorem 2:

Theorem 7 (ORAM, “dream” parameters; formal statement of The-
orem 2). Assume the existence of OWFs, as well as LDCs and sorting circuits
as in Corollary 1, where the LDC has the following additional properties:

– M = n1+δ for some δ ∈ (0, 1).
– Encoding requires M1+γ operations over size-B blocks, for some γ ∈ (0, 1).

Then there exists an ORAM scheme for memories of size n and blocks of
size B = Ω

(
λ · log3 n log7 log n

)
with O (1) client storage, where read operations

have O (log log n) overhead, and write operations have O (nε) overhead for any
constant ε ∈ (0, 1) such that ε > δ + γ + δγ.

Using milder assumptions regarding the parameters of the underlying sorting
circuit and LDC, we can prove the following:

Theorem 8 (ORAM, milder parameters). Assume the existence of OWFs,
as well as LDCs and sorting circuits as in Corollary 2, where the LDC has
the additional properties specified in Theorem7. Then there exists an ORAM
scheme for memories of size n and blocks of size B = Ω

(
λ · log3 n log7 log n

)
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with poly log log n client storage, where read operations have o (log n) overhead,
and write operations have O (nε) overhead for any constant ε ∈ (0, 1) such that
ε > δ + γ + δγ.

Finally, we also obtain a scheme with improved write overhead, by somewhat
strengthening the assumptions regarding the LDC.

Theorem 9 (ORAM, low write overhead; formal statement of Theo-
rem 3). Assume the existence of OWFs, as well as LDCs and sorting circuits
as in Corollary 1, where the LDC has the following additional properties:

– M = n1+o(1).
– Encoding requires M1+o(1) operations over size-B blocks.

Then there exists an ORAM scheme for memories of size n and blocks of
size B = Ω

(
λ · log3 n log7 log n

)
with O (1) client storage, where read operations

have o (log n) overhead, and write operations have no(1) overhead.

Construction Overview. As outlined in Sect. 1.2, the ORAM consists of � levels of
increasing size (growing from top to bottom), where initially the logical memory
is stored in the lowest level, and all other levels are empty. read operations look
for the memory block in all levels, returning the top-most copy of the block,
and write operations write the memory block to the top-most level, causing a
reshuffle at predefined intervals to prevent levels from overflowing.

Transforming this high-level intuition into an actual scheme requires some
adjustments. First, our RO-ORAM scheme4 was designed for logical memories
given as array data structures (namely, in which blocks can only be accessed
by specifying the location of the block in the logical memory), but upper levels
are too small to contain the entire logical memory, namely they require RO-
ORAM schemes for map data structure.5 To overcome this issue, we associate
with each level i an array DBi that contains the memory blocks of level i, and is
stored in an RO-ORAM Oi (for array data structures). Additionally, we store the
metadata regarding which block appears in which array location in a (standard,
polylogarithmic-overhead) ORAM MOi for map structures. Thus, to look for
block j in level i, the client first searches for j in MOi. If the j’th memory block
appears in level i, then MOi returns the location t in which it appears in DBi,
and so the client can read the block by performing a read for address t on the
RO-ORAM Oi of the level.

Second, to allow for efficient “reshuffling” of level i (which, in particular,
requires a traversal of both DBi and DBi+1), we also store DBi in every level
i. Thus, every level i contains the array DBi, the metadata ORAM MOi which

4 The construction can use any RO-ORAM scheme, but the read overhead is at least
the overhead of the RO-ORAM scheme. Therefore, to obtain o (log n) overhead, we
need to instantiate the ORAM with our RO-ORAM scheme.

5 We note that several ORAM schemes (such as tree-based ORAM schemes, and in
particular the ORAM of Theorem 6), though described for logical memories given as
arrays, can actually support logical memories given as map data structures.
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maps blocks to their locations in DBi, and the RO-ORAM Oi which stores DBi.
We note that the metadata ORAM is not needed in the lowest level, because the
structure will preserve the invariant that DB� contains all the blocks “in order”
(namely, the k’th block of the logical memory is the k’th block of DB�).

Finally, every “reshuffle” of level i into level i + 1 requires re-generation of
the RO-ORAM Oi+1, since the contents of DBi+1 have changed. In general, re-
generation cannot use the setup algorithm of the RO-ORAM due to two reasons.
First, the setup is designed to be run by a trusted party, and so the server cannot
run it, and since setup depends on the entire logical memory, it is too costly for
the client to run on his own. Second, while the setup of an RO-ORAM is only
required to be polynomial-time (since it is only executed once, and so its cost
is amortized over sufficiently many accesses to the RO-ORAM), when executed
repeatedly as part of reshuffle, a more stringent efficiency requirement is needed.
The first property is captured by the ORAM with oblivious setup primitive
(Sect. 3.1). For the second property we use the fact that our RO-ORAM scheme
described in Sect. 3 has a highly-efficient oblivious setup protocol.

Given these building blocks, the ORAM operates as follows. To read the j’th
logical memory block, the client looks for the block in every level. At the lowest
level �, which contains the entire logical memory, this is done by reading the
block at address j from O�. For all other levels 1 ≤ i < �, this is done by first
reading j from MOi to check whether the j’th memory block appears in DBi,
and if so in which index t; and then using Oi to read the t’th block of DBi.
(If the j’th block does not appear in DBi, a dummy read is performed on Oi.)
The output is the copy of block j from DBi∗

for the smallest level i∗ such that
DBi∗

contains the j’th memory block. This is the “correct” answer because the
levels preserve the invariant that each level contains at most one copy of each
logical memory block, and the most recent copy appears in the top-most level
that contains the block.

To write value v to the block at address j, the client asks the server to
write a new copy of block j with value v to the top level. As noted above, this
causes a reshuffle into lower levels at predefined intervals to prevent levels from
overflowing. More specifically, every li write operations level i will be reshuffled
into level i + 1, where li denotes the size of level i. During reshuffle, all memory
blocks from DBi are copied into DBi+1, and multiple copies of the same memory
block are consolidated by storing the level-i copy. Additionally, the ORAMs
MOi+1,Oi+1 of level i + 1 are updated, and level i is emptied (that is, DBi

is replaced with an empty array, and MOi,Oi are updated accordingly). See
Figs. 2 and 4 for an example.

Instantiating this ORAM scheme with different values of the number of levels
� yields ORAM schemes with different tradeoffs between the read and write
overhead. Concretely, Theorems 7 and 8 are obtained by setting � to be constant,
and Theorem 9 is obtained by setting � = log n

log2 log n
.
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We now formally describe the construction.

Construction 2 (ORAM with writes). The scheme uses the following building
blocks:

– An RO-ORAM scheme with oblivious setup (SetupR,ReadR,OblSetupR).
– An ORAM scheme (Setupm,Readm,Writem) for map data structures.

We define the following protocols.

– Setup(1λ,DB): Recall that λ denotes the security parameter, and DB ∈({0, 1}B)n. Setup does the following.
• Initialize a writes counter. Initialize a writes counter count to 0.
• Initialize lowest level.

– Initialize DB� = DB. We assume without loss of generality that the
blocks in DB are of the form (j, bj), namely each logical memory block
contains its logical address.6

– Generate an RO-ORAM scheme O� for DB� by running
(
ck�

R, st�R

)
←

SetupR

(
1λ,DB�

)
to obtain a client key ck�

R and a server state st�R

for O�.
• Initialize upper levels. For every level 1 ≤ i < �:

– Initialize DBi to consist of i dummy memory blocks.
– Generate an RO-ORAM scheme Oi for DBi by running

(
cki

R, stiR
) ←

SetupR

(
1λ,DBi

)
to obtain a client key cki

R and a server state stiR for
Oi.

– Generate a map data structure Mi mapping each block (j, bj) in DBi

to its index in DBi. (That is, if (j, bj) is the t’th block of DBi then
the entry (t, j) is added to Mi.)

– Generate a metadata ORAM scheme MOi for Mi, by running(
cki

m, stim
) ← Setupm

(
1λ,Mi

)
to obtain the client key and server

state for MOi.
• Output. The long-term client key ck =

(
ck�

R,
{
cki

R, cki
m

}
i∈[�−1]

)

consists of the client keys for the RO-ORAMs Oi and the
metadata ORAMs MOi of all levels. The server state stS =(
count, st�R,DB�,

{
stiR, stim,DBi

}
i∈[�−1]

)
contains the counter count of

the number of write operations performed, the server states in the RO-
ORAMs Oi and the metadata ORAMs MOi of all levels, as well as the
memory contents DBi of all levels.

6 This assumption is without loss of generality since for the block sizes we consider,
concatenating the address to the block would cause at most a constant multiplicative
increase in the block size.
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Fig. 1. The ReShuffle� protocol used in Construction 2

The Read protocol. To read the logical memory block at location addr ∈ [n]
from the server S, the client C with key

(
ck�

R,
{
cki

R, cki
m

}
i∈[�−1]

)
operates as

follows, where in all executions of the ReadR protocol on Oi (respectively, all
executions of the Readm or Writem protocols on MOi) S plays the role of the
server with state stiR (respectively, stim) and C plays the role of the client with
key cki

R (respectively, cki
m).

– Determine block location in level i. For every level 1 ≤ i ≤ � − 1, run the
Readm protocol on MOi to read the index l in which the block appears in
DBi. (If block addr does not appear in level i, then l =⊥.)

– Read block from level i. For every level 1 ≤ i ≤ � − 1, if l =⊥, set l = 1. Run
the ReadR protocol on Oi to read the l’th block from DBi.

– Read block from level �. Run the ReadR protocol on O� to read the addr’th
block from DB�.
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– Output. Let i∗ be the smallest such that block addr appears in DBi∗
, and let

(addr, v) denote the block returned by the execution of the ReadR protocol
on Oi∗

. Output v to C. (All other memory blocks returned by the ReadR

protocol executions are ignored.)

The Write protocol. To write value val to block addr ∈ [n] in the logical
memory, the client C with key

(
ck�

R,
{
cki

R, cki
m

}
i∈[�−1]

)
operates as follows.

– Generate a “dummy” level 0 which contains a single memory block (addr, val),
and send it to the server.

– Update the server state and client key as follows:
• count := count + 1.
• If l�−1 divides count, then reshuffle level � − 1 into level

� using the ReShuffle� procedure of Fig. 1, namely execute
ReShuffle�

(
ck�−1

R , ck�
R, ck�−1

m , st�−1
R , st�R, st�−1

m

)
.

Fig. 2. ReShuffle� execution on a toy-example ORAM with logical memory size n = 5
and � = 4 levels. The red circle indicates the block which is currently updated. Arrows
denote the output of the metadata and RO ORAMs, where dashes arrows denote dummy
accesses. Block 1 is updated first (top left), MO3 is accessed and returns t = 2 indicating
thatblock1appears as the secondblockofDB3.Theblock (1, v′

1) is then read fromO3, and
updated in DB4. Block 2 is updated next (top right), MO3 is accessed and returns t = 3
indicating that block 2 appears as the third block of DB3. The block (2, v′′

2 ) is then read
from O3, and updated in DB4. Block 3 is updated next (center left), MO3 is accessed and
returns t = 1 indicating that block 3 appears as the first block of DB3. The block (3, v′

3) is
then read from O3, and updated in DB4. Block 4 is updated next (center right), MO3 is
accessed and returns t =⊥, indicating that block 4 does not appear in DB3. Therefore, a
dummy read is performed on O3, and a dummy write is performed on DB4. Finally, block
5 is updated (bottom left), MO3 is accessed and returns t =⊥, indicating that block 5
does not appear in DB3. Therefore, a dummy read is performed on O3, and a dummywrite
is performed on DB4. The values of DB3, DB4 at the end of the ReShuffle� execution are
depicted at the bottom right (these values are used to generate new RO-ORAMs O3, O4,
and update the metadata ORAMs MO3, MO4).
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Fig. 3. The ReShuffle protocol used in Construction 2
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Fig. 4. ReShuffle execution for i = 1 on the ORAM from Fig. 2. The red circle indicates
the block which is currently updated. Arrows denote the output of the metadata and
RO ORAMs, where dashes arrows denote dummy accesses. The blocks of DB2 are
updated first. The first block of DB2 is updated first (top left), MO1 is accessed and
returns t =⊥ indicating that this block does not appear in DB1. Therefore, a dummy
read is performed on O1, and dummy writes are performed on MO1, DB2. The second
block of DB2 is updated next (top right), MO1 is accessed and returns t = 1 indicating
that this block appears as the first block of DB1. The block (4, v′

4) is then read from O1,
and updated in DB2. Then, the block is deleted from DB1 by updating MO1 (replacing
the entry (1, 4) with (⊥, 4)). Next, the blocks of DB1 are copied into DB2. The first
block of DB1 is copied first. MO1 is accessed and returns t =⊥, indicating that this
block was already copied into DB2 (and removed from DB1). Therefore, a dummy
block is written to DB2, and dummy writes are performed on MO1, MO2. Finally,
the second block of DB1 is copied. MO1 is accessed and returns t = 2, indicating that
the block has not been removed from DB1. The block is then written into DB2, MO2

is updated to reflect that block 1 appears as the fourth block of DB2, and the block
is deleted from DB1 by updating MO1 accordingly. The values of DB1, DB2 at the
end of the ReShuffle execution are depicted at the bottom (these values are used to
generate new RO-ORAMs O1, O2).

• For every i from � − 2 down to 0 for which li divides count, reshuffle level
i into level i + 1 using the ReShuffle procedure of Fig. 3, namely execute
ReShuffle

(
i, cki

R, cki+1
R , cki

m, cki+1
m , stiR, sti+1

R , stim, sti+1
m

)
.

Remark on De-amortization. We note that using a technique of Ostrovsky and
Shoup [OS97], the server complexity in Construction 2 can be de-amortized,
by slightly modifying the Write protocol to allow the reshuffling process to be
spread-out over multiple accesses to the ORAM. The reason reshuffle operations
can be “spread out” is that reshuffling is performed in a “bottom-up” fashion,
namely when it is time to reshuffle level i into level i + 1, that reshuffling is
executed before level i − 1 is reshuffled into level i. Thus, the memory blocks
that are involved in the reshuffle of level i into level i + 1 have been known for
the last li−1 time units, ever since level i was last updated due to a reshuffle of
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level i − 1 into it. Therefore, the operations needed to perform the reshuffle of
level i into level i + 1 can be spread out over li−1 operations.

A Note on Statistically-Secure ORAM with Writes. Our ORAM with writes
constructions (Theorems 7–9) are computationally-secure due to the use of
a computationally-secure RO-ORAM with oblivious setup. However, given a
statistically-secure RO-ORAM with oblivious setup the resultant ORAM with
writes would also be statistically secure. As noted in Sect. 3.1, such a scheme can
be obtained assuming an LDC with a small encoding circuit, or with an oblivious
encoding procedure. Thus, given an LDC with one of these additional properties
we can get a statistically-secure ORAM with writes (with the parameters stated
in Theorems 7–9).
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Abstract. We show that PRAMs can be obliviously simulated with
perfect security, incurring only O(logN log logN) blowup in parallel run-
time, O(log3 N) blowup in total work, and O(1) blowup in space rela-
tive to the original PRAM. Our results advance the theoretical under-
standing of Oblivious (Parallel) RAM in several respects. First, prior to
our work, no perfectly secure Oblivious Parallel RAM (OPRAM) con-
struction was known; and we are the first in this respect. Second, even
for the sequential special case of our algorithm (i.e., perfectly secure
ORAM), we not only achieve logarithmic improvement in terms of space
consumption relative to the state-of-the-art, but also significantly sim-
plify perfectly secure ORAM constructions. Third, our perfectly secure
OPRAM scheme matches the parallel runtime of earlier statistically
secure schemes with negligible failure probability. Since we remove the
dependence (in performance) on the security parameter, our perfectly
secure OPRAM scheme in fact asymptotically outperforms known sta-
tistically secure ones if (sub-)exponentially small failure probability is
desired. Our techniques for achieving small parallel runtime are novel
and we employ special expander graphs to derandomize earlier statisti-
cally secure OPRAM techniques—this is the first time such techniques
are used in the constructions of ORAMs/OPRAMs.

1 Introduction

Oblivious RAM (ORAM), originally proposed in the ground-breaking work by
Goldreich and Ostrovsky [21,22], is an algorithmic technique that transforms
any RAM program to a secure version, such that an adversary learns noth-
ing about the secret inputs from observing the program’s access patterns to
memory. The parallel extension of ORAM was first phrased by Boyle, Chung,
and Pass [6]. Similar to ORAM, an Oblivious Parallel RAM (OPRAM) com-
piler transforms a Parallel RAM (PRAM) program into a secure form such that
the resulting PRAM’s access patterns leak no information about secret inputs.

An online full version of our paper [9] is available at https://eprint.iacr.org/2018/364.

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 636–668, 2018.
https://doi.org/10.1007/978-3-030-03810-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03810-6_23&domain=pdf
https://eprint.iacr.org/2018/364
https://doi.org/10.1007/978-3-030-03810-6_23


Perfectly Secure Oblivious Parallel RAM 637

ORAMs and OPRAMs have been recognized as powerful building blocks in both
theoretical applications such as multi-party computation [5,25,29], as well as in
practical applications such as cloud outsourcing [14,37,40], and secure processor
design [17,18,28,30,31,35].

Henceforth in this paper, we consider ORAMs to be a special case of
OPRAMs, i.e., when both the original PRAM and the OPRAM have only one
CPU. To characterize an OPRAM scheme’s overhead, we will use the standard
terminology total work blowup to mean the multiplicative increase in total com-
putation comparing the OPRAM and the original PRAM; and we use the term
depth blowup to mean the multiplicative increase in parallel runtime comparing
the OPRAM and the original PRAM—assuming that the OPRAM may employ
more CPUs than the original PRAM to help parallelize its computation [7]. Note
that for the case of sequential ORAMs, total work blowup is equivalent to the
standard notion of simulation overhead [21,22], i.e., the multiplicative increase
in runtime comparing the ORAM and the original RAM. Finally, we use the
term space blowup to mean the multiplicative blowup in space when comparing
the OPRAM (or ORAM) and that of the original PRAM (or RAM).

The original ORAM schemes, proposed by Goldreich and Ostrovsky [21,
22], achieved poly-logarithmic overheads but required the usage of pseudo-
random functions (PRFs); thus they defend only against computationally
bounded adversaries. Various subsequent works [2,10,12,13,36,38,39], starting
from Ajtai [2] and Damg̊ard et al. [13] investigated information-theoretically
secure ORAM/OPRAM schemes, i.e., schemes that do not rely on computa-
tional assumptions and defend against even unbounded adversaries. As ear-
lier works point out [2,13], the existence of efficient ORAM schemes with-
out computational assumptions is not only theoretically intriguing, but also
has various applications in cryptography. For example, information-theoretically
secure ORAM schemes can be applied to the construction of efficient RAM-
model, information-theoretically secure multi-party computation (MPC) pro-
tocols [4]. Among known information-theoretically secure ORAM/OPRAM
schemes [2,6,10–13,36,38,39], almost all of them achieve only statistical secu-
rity [2,6,10–12,36,38,39], i.e., there is still some non-zero failure probability—
either correctness or security failure—but the failure probability can be made
negligibly small in N where N is the RAM/PRAM’s memory size. Damg̊ard
et al. [13] came up with the first perfectly secure ORAM construction—they
achieve zero failure probability against computationally unbounded adversaries.
Although recent works have constructed statistically secure OPRAMs [6,10,11],
there is no known (non-trivial) perfectly secure OPRAM scheme to date.

Motivation for Perfect Security. Perfectly secure ORAMs/OPRAMs are theo-
retically intriguing for various reasons:
1. First, to achieve 2−κ failure probability (either in security or in correct-

ness), the best known statistically secure OPRAM scheme [7,10] incurs a
O(κ log N) total work blowup and O(log κ log N) depth blowup where N is
the PRAM’s memory size. Although for negligibly small in N failure prob-
ability the blowups are only poly-logarithmic in N , they can be as large as
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N c for some constant c < 1 if one desires (sub-)exponentially small failure
probability in N .

2. Second, perfectly secure ORAM schemes have been used as a building block
in recent results on oblivious algorithms [3,36] and searchable encryption
schemes [15]. Typically these algorithmic constructions rely on divide-and-
conquer to break down a problem into smaller sizes and then apply ORAM
to a small instance—since the instance size N is small (e.g., logarithmic in
the security parameter), negligible in N failure probability is not sufficient
and thus these works demand perfectly secure ORAMs/OPRAMs and existing
statistically secure schemes result in asymptotically poorer performance.

3. Third, understanding the boundary of perfect and statistical security has
been an important theoretical question in cryptography. For example, a long-
standing open problem in cryptography is to separate the classes of languages
that admit perfect ZK and statistical ZK proofs. For ORAMs/OPRAMs too,
it remains open whether there are any separations between statistical and
perfect security (and we believe that this is an exciting future direction).
Perfect security is also useful in other contexts such as multi-party computa-
tion (MPC). For example, Ishai et al. [26] and Genkin et al. [19] show that
perfectly secure MPC is required to achieve their respective goals match-
ing the “circuit complexity” of the underlying application. Perfectly secure
ORAMs/OPRAMs can enable perfectly secure RAM-model MPC, and thus
we believe that they can be an important building block in other areas of
theoretical cryptography.

1.1 Our Results and Contributions

In this paper, we prove the following result which significantly advances our
theoretical understanding of perfectly secure ORAMs and OPRAMs in multiple
respects. We present the informal theorem statement below and then discuss its
theoretical significance.

Theorem 1 (Informal statement of main theorem). Any PRAM that con-
sumes N memory blocks each of which is at least log N -bits long1 can be sim-
ulated by a perfectly oblivious PRAM, incurring O(log3 N) total work blowup,
O(log N log log N) depth blowup, and O(1) space blowup.

The above theorem improves the theoretical state of the art on perfectly
secure ORAMs/OPRAMs in multiple dimensions:

1. First, our work gives rise to the first perfectly secure (non-trivial) OPRAM
construction. No such construction was known before and it is not clear how
to directly parallelize the perfectly secure ORAM scheme by Damg̊ard et
al. [13].

2. Second, even for the sequential special case, we improve Damg̊ard et al. [13]
asymptotically by reducing a log N factor in the ORAM’s space consumption.

1 All existing ORAM and OPRAM works [21–23,27,36] make this assumption.
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3. Third, our perfectly secure OPRAM’s parallel runtime matches the best
known statistically secure construction [7,10] for negligibly small in N failure
probabilities;

4. Finally, when (sub-)exponentially small (in N) failure probabilities are
required, our perfectly secure OPRAM scheme asymptotically outperforms all
known statistically secure constructions both in terms of total work blowup
and depth blowup. For example, suppose that we require 2−κ failure probabil-
ity and N = poly(κ)—then all known statistically secure OPRAM construc-
tions [6,10,11] would incur at least N c total work blowup and Ω(log2 N)
depth blowup and thus our new perfectly secure OPRAM construction is
asymptotically better for this scenario.

Theorem 1 applies to general block sizes. We additionally show that for suf-
ficiently large block sizes, there exists a perfectly secure OPRAM construction
with O(log2 N) total work blowup and O(log m+log log N) depth blowup where
m denotes the number of CPUs of the original PRAM. Finally, we point out that
this work focuses mostly on the theoretical understanding of perfect security in
ORAMs/OPRAMs, and we leave it as a future research direction to investigate
their practical performance (see also Sect. 6).

Technical Highlights. Our most novel and non-trivial technical contribution is
the use of expander graphs techniques, allowing our OPRAM to achieve as small
as O(log N log log N) depth blowup. To the best of our knowledge, this is the
first time such techniques have been used in the construction of ORAM/OPRAM
schemes. Besides this novel technique, our scheme requires carefully weaving
together many algorithmic tricks that have been used in earlier works [7,10,21,22].

1.2 Related Work

Oblivious RAM (ORAM) was first proposed in a ground-breaking work by
Goldreich and Ostrovsky [21,22]. Goldreich and Ostrovsky first showed a com-
putationally secure ORAM scheme with poly-logarithmic simulation overhead.
Therefore, one interesting question is whether ORAMs can be constructed with-
out relying on computational assumptions. Ajtai [2] answered this question and
showed that statistically secure ORAMs with poly-logarithmic simulation over-
head exist. Although Ajtai removed computational assumptions from ORAMs,
his construction has a (negligibly small) statistical failure probability, i.e., with
some negligibly small probability, the ORAM construction can leak information.
Subsequently, Shi et al. [36] proposed the tree-based paradigm for construct-
ing statistically secure ORAMs. Tree-based constructions were later improved
further in several works [10,12,20,38,39], and this line of works improve the prac-
tical performance of ORAM by several orders of magnitude in comparison with
earlier constructions. It was also later understood that the tree-based paradigm
can be used to construct computationally secure ORAMs saving yet another
log log factor in cost in comparison with statistical security [10,16].
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Perfect security requires that the (oblivious) program’s memory access pat-
terns be identically distributed regardless of the inputs to the program; and thus
with probability 1, no information can be leaked about the secret inputs to
the program. Perfectly secure ORAM was first studied by Damg̊ard et al. [13].
Their construction achieves O(log3 N) simulation overhead and O(log N) space
blowup relative to the original RAM program. Their construction is a Las Vegas
algorithm and there is a negligibly small failure probability that the algorithm
exceeds the stated runtime. Raskin et al. [34] and Demertzis et al. [15] achieve
a worst-case bandwidth of O(

√
N log N

log log N ) and O(N1/3), respectively. As men-
tioned, even for the sequential case, our paper asymptotically improves Damg̊ard
et al.’s result [13] by avoiding the O(log N) blowup in space; and moreover, our
ORAM construction is conceptually simpler than that of Damg̊ard et al.’s.

Oblivious Parallel ORAM (OPRAM) was first proposed in an elegant work
by Boyle et al. [6], and subsequently improved in several followup works [7,8,
10,11,32]. All known results on OPRAM focus on the statistically secure or the
computationally secure setting. To the best of our knowledge, until this paper,
we know of no efficient OPRAM scheme that is perfectly secure. Chen et al. [11]
introduced a generic method to transform any ORAM into an OPRAM at the
cost of a log N blowup. Their techniques achieve statistical security since security
(or correctness) is only guaranteed with high probability (specifically, when some
queue does not become overloaded in their scheme).

Defining a good performance metric for OPRAMs turned out to be more
interesting and non-trivial than for ORAMs. Boyle et al. [6] were the first to
define a notion of simulation overhead for OPRAM: if an OPRAM’s simulation
overhead is X, it means that if the original PRAM consumes m CPUs and com-
pletes in parallel runtime T , then the oblivious counterpart must complete within
X · T time also consuming m CPUs. The recent work of Chan et al. [7] observes
that if the OPRAM could consume more CPUs than the original PRAM, then
the oblivious simulation can benefit from the additional parallelism and be addi-
tionally sped up by asymptotic factors. Under the assumption that the OPRAM
can consume more CPUs than the original PRAM, Chan et al. [7,10] show
that statistically secure OPRAM schemes can be constructed with O(log2 N)
blowup in total work and only ˜O(log N) blowup in depth (where depth char-
acterizes the parallel runtime of a program assuming ample number of CPUs).
Our paper is the first to construct an OPRAM scheme with perfect security, and
our OPRAM’s depth matches existing schemes with statistical security assum-
ing negligible in N security failure; however, if (sub-)exponentially small failure
probability is required, our new OPRAM scheme can asymptotically outperform
all known statistically secure OPRAMs!

2 Technical Roadmap

In this section, we present an informal roadmap of our technical approach to aid
understanding.
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2.1 Simplified Perfectly Secure ORAM with Asymptotically
Smaller Space

First, we propose a perfectly secure ORAM scheme that is conceptually simpler
than that of Damg̊ard et al. [13] and gains a logarithmic factor in space. Our
construction is inspired by the hierarchical ORAM paradigm originally proposed
by Goldreich and Ostrovsky [21,22]. However, most existing hierarchical ORAMs
achieve only computational security since they rely on a pseudorandom function
(PRF) for looking up hash tables in the hierarchical data structure. Thus our
focus is to get rid of this PRF and achieve perfect security.

Background: Hierarchical ORAM. The recent work by Chan et al. [8] gave a clean
and modular exposition of the hierarchical paradigm. A hierarchical ORAM con-
sists of O(log N) levels that are geometrically increasing in size. Specifically, level
i is capable of storing 2i memory blocks. One could think of this hierarchical data
structure as a hierarchy of stashes where smaller levels act as stashes for larger
levels. In existing schemes with computational security, each level is an oblivious
hash-table [8]. To access a block at logical address addr, the CPU sequentially
looks up every level of the hierarchy (from small to large) for the logical address
addr. The physical location of a logical address addr within the oblivious hash-
table is determined using a PRF whose secret key is known only to the CPU but
not to the adversary. Once the block has already been found in some level, for
all subsequent levels the CPU would just look for a dummy element, denoted by
⊥. When a requested block has been found, it is marked as deleted in the corre-
sponding level where it is found. Every 2i memory requests, we perform a rebuild
operation and merge all levels smaller than i (including the block just fetched
and possibly updated if this is a write request) into level i—at this moment, the
oblivious hash-table in level i is rebuilt, where every block’s location in the hash
table is determined using a PRF.

As Chan et al. [8] point out, the hierarchical ORAM paradigm effectively
reduces the problem of constructing ORAM to constructing an oblivious hash-
table supporting two operations: (1) rebuild takes in a set of blocks each tagged
with its logical address, and constructs a hash-table data structure that facili-
tates lookups later; and (2) lookup takes a request that is either a logical address
addr or dummy (denoted ⊥), and returns the corresponding block requested.
Obliviousness (defined w.r.t. the joint access patterns of the rebuild and lookup
phases) is guaranteed as long as during the life-time of the oblivious hash-table,
the sequence of lookup requests never ask for the same real element twice—and
this invariant is guaranteed by the specific way the hierarchical ORAM frame-
work uses the oblivious hash-table as a building block (more specifically, the fact
that once a block is found, it is moved to a smaller level and a dummy block is
requested from all subsequent levels).

Removing the PRF. As mentioned, an oblivious hash-table relies on a PRF
to determine each block’s location within a hash-table instance; and both the
rebuilding phase and the lookup phase use the same PRF for placing and fetching
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blocks respectively. Since we wish to achieve perfect security, we would like to
remove the PRF. One simple idea is to randomly permute all blocks within
a level— this way, each lookup of a real block would visit a random location
and we could hope to retain security as long as every real block is requested at
most once for every level (in between rebuilds)2. Using techniques from earlier
works [7,10], it is possible to obliviously perform such a random permutation
without disclosing the permutation; however, difficulty arises when one wishes
to perform a look up—if blocks are randomly permuted within a level during
rebuild, lookup must know where each block resides to proceed successfully. Thus
if the CPU could hold a position map for free to remember where each block is
in the hierarchical data structure, the problem would have been resolved: during
every lookup, the CPU could first look up the physical location of the logical
address requested, and then proceed accordingly.

Actually storing such a position map, however, would consume too much
CPU space. To avoid storing this position map, we are inspired by the recur-
sion technique that is commonly adopted by tree-based ORAM schemes [36]—
however, as we point out soon, making the recursion idea work for the hierarchi-
cal ORAM paradigm is more sophisticated. The high-level idea is to recursively
store the position map in a smaller ORAM rather than storing it on the CPU
side; we could then recurse and store the position map of the position map in
an even smaller ORAM, and so on—until the ORAM’s size becomes O(1) at
which point we would have the CPU store the entire ORAM. Henceforth, we use
the notation ORAMD to denote the ORAM that stores the actual data blocks
where D = O(log N); and we use ORAMd to denote the ORAM at depth d of
this recursion where d ∈ [0..D − 1]. Thus, the larger d is, the larger the ORAM.

Although this recursion idea was very simple in the tree-based paradigm, it
is not immediately clear how to make the same recursion idea work in the hier-
archical ORAM paradigm. One trickiness arises since in a hierarchical ORAM,
every 2i requests, the ORAM would reshuffle and merge all levels smaller than
i into level i — this is called a rebuild of level i. When a level-i rebuild hap-
pens, the position labels in the position-map ORAM must be updated as well
to reflect the blocks’ new locations. In a similar fashion, the position labels in
all of ORAM0,ORAM1, . . . ,ORAMD−1 must be updated. We make the following
crucial observation that will enable a coordinated rebuild technique which we will
shortly explain:

(Invariant necessary for coordinated rebuild:) If a data block resides at level
i of ORAMD, then its position labels in all recursion depths must reside in level
i or smaller3.

This invariant enables a coordinated rebuild technique: when the data ORAM
(i.e., ORAMD) merges all levels smaller than i into level i, all smaller recursion
depths would do the same (unless the recursion depth is too small and does

2 As we point out later, randomly permuting real blocks is in fact not sufficient; we
also need to allow dummy lookups by introducing an oblivious dummy linked list.

3 A similar observation was adopted by Goodrich et al. [24] in their statistically secure
ORAM construction.
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not have level i, in which case the entire ORAM would be rebuilt). During this
coordinated rebuild, ORAMD would first perform its rebuild, and propagate the
position labels of all blocks involved in the rebuild to recursion depth D − 1;
then ORAMD−1 would perform its rebuild based on the position labels learned
from ORAMD, and propagate the new position labels involved to recursion depth
D − 2, and so on. As we shall discuss in the technical sections, rebuilding a level
(in any recursion depth) can be accomplished through the help of O(1) oblivious
sorts and an oblivious random permutation.

Handling Dummy Blocks with Oblivious Linked Lists. The above idea almost
works, but not quite so. There is an additional technical subtlety regarding how
to handle and use dummy blocks. Recall that during a memory access, if a block
requested actually resides in a hierarchical level, we would read the memory
location that contains the block (and this memory location could be retrieved
through a special recursive position map technique). If a block does not reside
in a level (or has been found in a smaller level), we still need to read a dummy
location within the level to hide the fact that the block does not reside within
the current level.

Recall that the i-th level must support up to 2i lookups before the level is
rebuilt. Thus, one idea is to introduce 2i dummy blocks, and obliviously and
randomly permute all blocks, real and dummy alike, during the rebuild. All
dummy blocks may be indexed by a dummy counter, and every time one needs
to look up a dummy block in a level, we will visit a new dummy block. In this
way, we can retain obliviousness by making sure that every real block and every
dummy block is visited at most once before the level is rebuilt again.

To make this idea fully work, there must be a mechanism for finding out
where the next dummy block is every time a dummy lookup must be performed.
One näıve idea would be to use the same recursion technique to store position
maps for dummy blocks too—however, since each memory request might involve
reading O(log N) dummy blocks, one per level, doing so would incur extra blowup
in runtime and space. Instead, we use an oblivious dummy linked list to resolve
this problem—this oblivious dummy linked list is inspired by technical ideas
in the Damg̊ard et al. construction [13]. In essence, each dummy block stores
the pointer to the next dummy block, and the head pointer of the linked list
is stored at a designated memory location and updated upon each read of the
linked list. In the subsequent technical sections, we will describe how to rely
on oblivious sorting to rebuild such an oblivious dummy linked list to support
dummy lookups.

Putting It Altogether. Putting all the above ideas together, the formal presenta-
tion of our perfectly secure ORAM scheme adopts a modular approach4. First,
we define and construct an abstraction called an “oblivious one-time memory”.
An oblivious one-time memory allows one to obliviously create a data structure

4 In fact, later in our paper, we omit the sequential version and directly present the
parallel version of all algorithms.
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given a list of input blocks. Once created, one can look up real or dummy blocks
in the data structure, and to look up a real block one must provide a correct posi-
tion label indicating where the block resides (imagine for now that the position
label comes from an “oracle” but in the full ORAM scheme the position label
comes from the recursion). An oblivious one-time memory retains obliviousness
as long as every real block is looked up at most once and moreover, dummy
blocks are looked up at most n times where n is a predetermined parameter
(that the scheme is parametrized with).

Once we have this “oblivious one-time memory” abstraction, we show how to
use it to construct an intermediate abstraction referred to as a “position-based
ORAM”. A position-based ORAM contains a hierarchy of oblivious one-time
memory instances, of geometrically growing sizes. A position-based ORAM is
almost a fully functional ORAM except that we assume that upon every memory
request, an “oracle” will somehow provide a correct position label indicating
where the requested block resides in the hierarchy.

Finally, we go from such a “position-based ORAM” to a fully functional
ORAM using the special recursive position-map technique as explained. At this
point, we have constructed a perfectly secure ORAM scheme with O(log3 N)
simulation overhead. Specifically, one log N factor arises from the log N depths
of recursion, the remaining log2 N factor arises from the cost of the ORAM at
each recursion depth. Intuitively, our perfectly secure ORAM is a logarithmic
factor more expensive than existing computationally-secure counterparts in the
hierarchical framework [8,23,27] since the computationally-secure schemes [8,
23,27] avoid the recursion by adopting a PRF to compute the pseudorandom
position labels of blocks.

2.2 Making Our ORAM Scheme Parallel

Our next goal is to make our ORAM scheme parallel. Instead of compiling a
sequential RAM program to a sequential ORAM, we are now interested in com-
piling a PRAM program to an OPRAM. In this section, we describe an informal
roadmap of our technical approach to parallelism. However, due to lack of space,
we defer the details to the full version of our paper [9].

When the OPRAM Consumes the Same Number of CPUs as the
PRAM. Suppose that the original program is a PRAM that completes in T
parallel steps consuming m CPUs. We now would like to parallelize our earlier
ORAM scheme and construct an OPRAM that completes in T · O(log3 N) par-
allel steps consuming also exactly m CPUs. To accomplish this, first, we need
to parallelize within each position-based ORAM so m CPUs can perform work
concurrently. This is not too difficult to accomplish given the simplicity of our
position-based ORAM construction. Next, when m CPUs have all fetched posi-
tion labels at one recursion depth, they need to pass these position labels to the
CPUs at the next depth. The main technique needed here is oblivious routing:
when the m CPUs at recursion depth d have fetched the position labels for the
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next recursion depth, the m CPUs at depth d must now obliviously route the
position labels to the correct fetch CPU at the next recursion depth. As shown in
earlier works [6,7,10], such oblivious routing can be accomplished with m CPUs
in O(log m) parallel steps.

We stress that the simplicity of our sequential ORAM construction makes it
easy to parallelize — in comparison, we are not aware how to parallelize Damg̊ard
et al. [13]’s construction5.

When the OPRAM May Consume Unbounded Number Of CPUs. The
more interesting question is the following: if the OPRAM is allowed to consume
more CPUs than the original PRAM, can we further reduce its parallel runtime?
If so, it intuitively means that the overheads arising due to obliviousness are
parallelizable in nature. This model was first considered by Chan et al. [7] and can
be considered as a generalization of the case when the OPRAM must consume
the same number of CPUs as the original PRAM.

So far, in our OPRAM scheme, although within each recursion depth, up to
m requests can be served concurrently, the operations over all O(log N) recursion
depths must be performed sequentially. There are two reasons that necessitate
this sequentiality:

1. Fetch phase: first, to fetch from recursion depth d, one must wait for the
appropriate position labels to be fetched from recursion depth d − 1 and
routed to recursion depth d;

2. Maintain phase: recall that coordinated rebuilding (see Sect. 2.1) is performed
across all recursion depths in the reverse direction: recursion depth d must
rebuild first and then propagate the new positions labels back to recursion
depth d − 1 before d − 1 can rebuild (recall that recursion depth d − 1 must
store the position labels for blocks in depth d).

Note that for the fetch phase, oblivious routing between any two adjacent
recursion depths would consume O(log m) depth; for the maintain phase, rebuild-
ing a hierarchical level can consume up to O(log N) depth (due to oblivious sort-
ing of up to O(N) blocks). Thus, the current OPRAM algorithm incurs a depth
blowup of O(log2 N) for moderate sizes of m, e.g., when log m = Θ(log N). Our
next goal is to reduce the depth blowup to ˜O(log N), and this turns out to be
highly non-trivial.

Reducing the Depth of the Fetch Phase with Expander Graphs. Using the recur-
sion technique, it seems inherent that one must fetch from smaller recursion
5 In Damg̊ard et al. [13], the shuffle phase incurs an O(log3 N) depth which is the

same as the overhead for accessing a block. Specifically, a logN factor arises due
to oblivious sorting, a logN factor due to the existence of hierarchies, and another
logN factor due to the extra logN dummies stored for every real element. Though an
offline/online technique like ours may be conceivable for their scheme, the existence
of the extra logN dummies makes it inherently hard to improve the depth by another
logN factor.
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depths before embarking on larger ones. To reduce the depth of the fetch phase,
we ask whether the depth incurred by oblivious routing in between adjacent
recursion depths can be reduced. In the statistically and computationally secure
settings, the recent work by Chan, Chung, and Shi have tried to tackle a similar
problem for tree-based OPRAMs [7]. Their idea is to construct an offline/online
routing algorithm. Although the offline phase incurs O(log N) depth per recur-
sion depth, the offline work of all recursion depths can be performed concur-
rently rather than sequentially. On the other hand, the online phase of their
routing algorithm must be performed sequentially among the recursion depths,
but happily the online routing phase incurs only O(1) depth per recursion depth.
Unfortunately, the offline/online routing algorithm of Chan et al. [7] is a ran-
domized algorithm that leverages some form of statistical “load balancing”, and
such load balancing can fail with negligibly small probability—this makes their
algorithm unsuitable for the perfect security setting.

We propose a novel offline/online routing algorithm that achieves perfect
security using special expander graphs—our techniques can be viewed as a
method for derandomizing a new variant of the offline/online routing techniques
described by Chan et al. [7]. Like Chan et al. [7], our offline/online routing algo-
rithm achieves O(log N) depth for each recursion depth in the offline stage but
the work in all recursion depths can be performed in parallel in the offline stage.
By contrast, the online phase must traverse the recursion depths sequentially,
but the online stage of routing can be accomplished in O(1) depth per recur-
sion depth. To achieve this, we rely on a core building block called a “loose
compactor”. Leveraging special expander graphs, we show how to build a loose
compactor with small online depth—since this part of our techniques are novel,
we present a more expanded overview in Sect. 2.3 while deferring a detailed,
formal description to the full version [9].

Reducing the Depth of the Maintain Phase. We also must reduce the depth of
the maintain phase. Although a näıve implementation of coordinated rebuild is to
do it sequentially from recursion depth D down to recursion depth 0, we devise
a method for performing the coordinated rebuild in parallel among all recursion
depths. Recall that in the näıve solution, recursion depth d − 1 must wait for
recursion depth d to relocate its blocks and be informed of the new position
labels chosen before it starts reshuffling.

In our new algorithm, we introduce the notion of a rehearsal step called
“mock shuffle” which determines the new positions of each of the blocks. Note
that during this step, the newly chosen block contents (position labels) at the
recursion depths are not available. Now, instead of sequentially performing the
shuffle, in a mock shuffle, every recursion depth performs eager reshuffling with-
out having updated the block’s contents (recall that each block in recursion
depth d is supposed to store position labels for the next recusion depth d + 1).
After this mock shuffle, all blocks’ new positions are determined though their
contents are not known. Each mock reshuffle incurs O(log N) depth, but they
are independent and can be performed in parallel. At this moment, recursion
depth d informs the newly chosen position labels to recursion depth d − 1—now
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recursion depth d − 1 relies on oblivious routing to deliver each block’s contents
to the block. Note that recursion depth d − 1 has already chosen each block’s
position at this point and thus in this content update step, each block’s con-
tents will be routed to the corresponding block and all blocks will maintain their
chosen positions.

Using this idea, although each recursion depth incurs O(log N) depth for
the maintain phase, all recursion depths can now perform the maintain-phase
operations in parallel.

Additional Techniques. Besides the above, additional tricks are needed to achieve
˜O(log N) depth. For example, within each recursion depth, all the hierarchical
levels must be read in parallel during the fetch phase rather than sequentially
like in existing hierarchical ORAMs [21,22], and the result of these fetches can be
aggregated using an oblivious select operation incurring O(log log N) depth. It
is possible for us to read all the hierarchical levels in parallel since each recursion
depth must have received the position labels of all real blocks requested before
its fetch phase starts—and thus we know for each requested block which level
to look for a real element and which level to visit dummies. We defer additional
algorithmic details to the full version [9].

2.3 Offline/Online Routing with Special Expander Graphs

Informal Problem Statement. Without going into excessive details, consider the
following abstract problem: imagine that m CPUs at a parent depth have fetched
m real or dummy blocks, and each real block contains two position labels for the
next depth—thus in total up to 2m position labels have been fetched. Meanwhile,
m CPUs at the next depth are waiting to receive m position labels before they
can start their fetch. Our task is to obliviously route the (up to) 2m position
labels at the parent depth to the m CPUs at the child depth. Using oblivious
routing directly would incur Ω(log m) depth and thus is too expensive.

A Blueprint: Using an Offline/Online Algorithm. As mentioned earlier, our high-
level idea is to leverage an offline-online paradigm such that the online phase,
which must be performed sequentially for all recursion depths, should have small
parallel runtime for each recursion depth.

Here is another idea: suppose that we are somehow able to compress the 2m
position labels down to m, removing the ones that are not needed by the next
recursion depth—this is in fact non-trivial but for now, suppose that somehow
it can be accomplished.

Our plan is then the following: in the offline phase, we obliviously and ran-
domly permute the m position labels to be routed (without leaking the permu-
tation), and we obliviously compute the routing permutation π preserving the
following invariant: the CPU at position π(i) (in the child depth) is waiting for
the i-th position label in the permuted array. In other words, the i-th position
label wants to be routed to the CPU in position π(i); and in the offline phase,
we want to route down this π.
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If we can accomplish all of the above, then in the online phase we simply
apply the routing permutation that has been recorded and it takes a single
parallel step to complete the routing. Moreover, for the offline phase, as long
as we can perform the operations in parallel across all recursion depths, we are
allowed to incur log m depth.

Informally, obliviousness holds because of the following: recall that the m
labels to be routed have been obliviously and randomly permuted. Now, although
the routing permutation π is revealed in the online phase, the revealed permu-
tation is uniform at random to an observer.

Technical Challenges: Compaction (and More). The above blueprint seems
promising, but there are multiple technical challenges. One critical ingredient
that is missing is how to perform compaction from 2m elements down to m,
removing the labels not needed by the next recursion depth—in fact, even if we
can solve this compaction problem, additional challenges remain in putting these
techniques together. However, for the time being, let us focus on the compaction
problem alone. The most näıve method is again to leverage oblivious sorting
but unfortunately that takes Ω(log m) depth and thus is too expensive for our
purpose.

Pippenger’s Factory-Facility Problem. Our approach is inspired by the
techniques described by Pippenger in constructing a self-routing super-
concentrator [33]. Pippenger’s elegant construction can be used to solve a
“factory-facility” problem described as follows. Suppose that 2m factories and
m facilities form a special bipartite expander graph: each factory is connected
to d facilities and each facility is connected to 2d factories, where d is a con-
stant. Among the factories, m/64 of them are productive and actually end up
manufacturing products. Each productive factory produces d/2 products; these
products must be routed to a facility to be stored, and each facility has a storage
capacity of d/2. Now, the question is: given the set of productive factories (and
assuming that the bipartite graph is known), can we find a satisfying assignment
for routing products to facilities, such that (1) every edge in the bipartite graph
routes carries at most one unit of flow; (2) all products manufactured are routed;
and (3) no facility exceeds its storage capacity.

In his ingenious work [33], Pippenger described a distributed protocol for find-
ing such an assignment: imagine that the factories and facilities are Interactive
Turing Machines. Now the factories and facilities exchange messages over edges
in the bipartite graph. Pippenger’s protocol completes after O(log m) rounds of
interaction and a total of O(m) number of messages. Pippenger proved that as
long as the underlying bipartite graph satisfies certain expansion properties, his
protocol is guaranteed to find a satisfying assignment.

Using Pippenger’s Protocol for Oblivious Loose Compaction. Now we can reduce
the problem of (loose) compaction to Pippenger’s factory-facility problem. Imag-
ine that there are twice as many factories as there are facilities. Another way
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to think of the factory-facility problem is the following: imagine that the fac-
tories initially store real elements (i.e., the manufactured products) as well as
dummies, and in total 2m · (d/2) amount of storage is consumed since each fac-
tory can produce at most d/2 products. We ensure that only m/64 factories are
productive by appropriately adding a constant factor of dummy elements (i.e.,
dummy factories and facilities). Now, when routed to the facilities, the storage
amount is compressed down by a factor of 2 since each facility can store up to
d/2 products and the number of facilities is half that of factories. Further, for
any satisfying assignment, we guarantee that no real element is lost during the
routing, and that is why the compaction algorithm satisfies correctness. Note
that such compaction is loose, i.e., we do not completely remove dummies dur-
ing compaction although we do cut down total storage by a half while preserving
all real elements. In our OPRAM algorithm, it turns out that such loose com-
paction is sufficient, since CPUs who have received dummy position labels can
always perform dummy fetch operations.

Pippenger’s protocol can be easily simulated on a PRAM incurring O(m)
total work and O(log m) parallel runtime—however, a straightforward PRAM
simulation of their protocol is not oblivious. In particular, the communication
patterns between the factories and facilities (which translate to memory access
patterns when simulated on a PRAM) leak information about which factories
are productive. Thus it remains for us to show how to obliviously simulate his
protocol on a PRAM. We show that this can be done incurring O(m log m) total
work and O(log m) parallel runtime—note that the extra log m overhead arises
from the obliviousness requirement.

Finally, we apply the loose compaction algorithm in an offline/online fash-
ion too. In the offline phase, we execute Pippenger’s protocol obliviously on a
PRAM to compute the satisfying assignment—the offline phase can be paral-
lelized over all recursion depths, thus incurring O(log m) parallel runtime overall.
In the online phase, we carry out the satisfying assignment that has already been
recorded in the offline phase to perform the actual routing of the fetched position
labels, and this can be accomplished in O(1) online parallel runtime.

3 Definitions

3.1 Parallel Random-Access Machines

We review the concepts of a parallel random-access machine (PRAM) and an
oblivious parallel random-access machine (OPRAM). Some of the definitions in
this section are borrowed verbatim from Boyle et al. [6] or Chan and Shi [10].

Although we give definitions only for the parallel case, we point out that
this is without loss of generality, since a sequential RAM can be thought of as a
special case PRAM with one CPU.

Parallel Random-Access Machine (PRAM). A parallel random-access machine
consists of a set of CPUs and a shared memory denoted by mem indexed by the
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address space {0, 1, . . . , N − 1}, where N is a power of 2. In this paper, we refer
to each memory word also as a block, which is at least Ω(log N) bits long.

In a PRAM, each step of the execution can employ multiple CPUs, and
henceforth we use mt to denote the number of CPUs involved in executing the
t-th step for t ∈ N. In each step, each CPU executes a next instruction circuit
denoted Π, updates its CPU state; and further, CPUs interact with memory
through request instructions I(t) := (I(t)i : i ∈ [mt]). Specifically, at time step t,
CPU i’s instruction is of the form I

(t)
i := (read, addr), or I

(t)
i := (write, addr, data)

where the operation is performed on the memory block with address addr and
the block content data.

If I
(t)
i = (read, addr) then the CPU i should receive the contents of mem[addr]

at the beginning of time step t. Else if I
(t)
i = (write, addr, data), CPU i should

still receive the contents of mem[addr] at the beginning of time step t; further,
at the end of step t, the contents of mem[addr] should be updated to data.

Write Conflict Resolution. By definition, multiple read operations can be exe-
cuted concurrently with other operations even if they visit the same address.
However, if multiple concurrent write operations visit the same address, a con-
flict resolution rule will be necessary for our PRAM to be well-defined. In this
paper, we assume the following:

– The original PRAM supports concurrent reads and concurrent writes
(CRCW) with an arbitrary, parametrizable rule for write conflict resolution.

– Our compiled, oblivious PRAM (defined below) is a “concurrent read, exclu-
sive write” PRAM (CREW). In other words, our OPRAM algorithm must
ensure that there are no concurrent writes at any time.

CPU-to-CPU Communication. In the remainder of the paper, we sometimes
describe our algorithms using CPU-to-CPU communication. For our OPRAM
algorithm to be oblivious, the inter-CPU communication pattern must be obliv-
ious too. We stress that such inter-CPU communication can be emulated using
shared memory reads and writes. Therefore, when we express our performance
metrics, we assume that all inter-CPU communication is implemented with
shared memory reads and writes. In this sense, our performance metrics already
account for any inter-CPU communication, and there is no need to have separate
metrics that characterize inter-CPU communication. In contrast, some earlier
works [11] adopt separate metrics for inter-CPU communication.

Additional Assumptions and Notations. Henceforth, we assume that each CPU
can only store O(1) memory blocks. Further, we assume for simplicity that the
runtime T of the PRAM is fixed a priori and publicly known. Therefore, we can
consider a PRAM to be parametrized by the following tuple

PRAM := (Π,N, T,m1,m2, . . . , mT ),

where Π denotes the next instruction circuit, N denotes the total memory size
(in terms of number of blocks), T denotes the PRAM’s total runtime, and mt

denotes the number of CPUs in the t-th step for t ∈ [T ].
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Finally, in this paper, we consider PRAMs that are stateful and can evaluate
a sequence of inputs, carrying state in between. Without loss of generality, we
assume each input can be stored in a single memory block.

3.2 Oblivious Parallel Random-Access Machines

An OPRAM is a (randomized) PRAM with certain security properties, i.e., its
access patterns leak no information about the inputs to the PRAM.

Randomized PRAM. A randomized PRAM is a PRAM where the CPUs are
allowed to generate private random numbers. For simplicity, we assume that a
randomized PRAM has a priori known, deterministic runtime, and that the CPU
activation pattern in each time step is also fixed a priori and publicly known.

Memory Access Patterns. Given a PRAM program denoted PRAM and a
sequence inp of inputs, we define the notation Addresses[PRAM](inp) as follows:

– Let T be the total number of parallel steps that PRAM takes to evaluate
inputs inp.

– Let At := (addrt1, addrt2, . . . , addrtmt
) be the list of addresses such that the ith

CPU accesses memory address addrti in time step t.
– We define Addresses[PRAM](inp) to be the random object [At]t∈[T ].

Oblivious PRAM (OPRAM). We say that a PRAM is perfectly oblivious, iff
for any two input sequences inp0 and inp1 of equal length, it holds that the
following distributions are identically distributed (where ≡ denotes identically
distributed):

Addresses[PRAM](inp0) ≡ Addresses[PRAM](inp1)

We remark that for statistical and computational security, some earlier works [8,
10] presented an adaptive, composable security notion. The perfectly oblivious
counterpart of their adaptive, composable notion is equivalent to our notion
defined above. In particular, our notion implies security against an adaptive
adversary who might choose the input sequence inp adaptively over time after
having observed partial access patterns of PRAM.

We say that OPRAM is a perfectly oblivious simulation of PRAM iff OPRAM
is perfectly oblivious, and moreover OPRAM(inp) is identically distributed as
PRAM(inp) for any input inp. In the remainder of the paper, we always assume
that the original PRAM has a fixed number of CPUs (denoted m) in all steps
of execution. For the compiled OPRAM, we consider two models (1) when the
OPRAM always consumes exactly m CPUs in every step (i.e., the same number
of CPUs as the original PRAM); and (2) when the OPRAM can consume an
unbounded number of CPUs in every step; in this case, the actual number of
CPUs consumed in each step may vary. We leave it as an open problem how to
obliviously simulate a PRAM with a varying number of CPUs (without näıvely
padding the number of CPUs to the maximum which can incur large overhead).
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Oblivious Simulation Metrics. We adopt the following metrics to characterize
the overhead of (parallel) oblivious simulation of a PRAM. In the following,
when we say that an OPRAM scheme consumes T parallel steps (or W total
work), we mean that the OPRAM scheme consumes T parallel steps (or W total
work) except with negligible in N probability. In other words, the definition of
our metrics allows the OPRAM to sometimes, but with negligibly small (in N)
probability, exceed the desired runtime or total work bound; however, note that
the security or correctness failure probability must be 06.

– Simulation overhead (when the OPRAM consumes the same number of
CPUs as the PRAM). If a PRAM that consumes m CPUs and completes
in T parallel steps can be obliviously simulated by an OPRAM that com-
pletes in γ ·T steps also with m CPUs (i.e., the same number of CPUs as the
original PRAM), then we say that the simulation overhead is γ. Note that this
means that every PRAM step is simulated by on average γ OPRAM steps.

– Total work blowup (when the OPRAM may consume unbounded number of
CPUs). A PRAM’s total work is the number of steps necessary to simulate
the PRAM under a single CPU, and is equal to the sum

∑

t∈[T ] mt. If a PRAM
of total work W can be obliviously simulated by an OPRAM of total work
γ · W we say that the total work blowup of the oblivious simulation is γ.

– Depth blowup (when the OPRAM may consume unbounded number of
CPUs). A PRAM’s depth is defined to be its parallel runtime when there
are an unbounded number of CPUs. If a PRAM of depth D can be obliviously
simulated by an OPRAM of depth γ · D we say that the depth blowup of the
oblivious simulation is γ.

Note that the simulation overhead is a good standalone metric if we assume
that the OPRAM must consume the same number of CPUs as the PRAM. If
the OPRAM is allowed to consume more CPUs than the PRAM, we typically
use the metrics total work blowup and depth blowup in conjunction with each
other: total work blowup alone does not characterize how much the OPRAM
preserves parallelism; and depth blowup alone does not capture the extent to
which the OPRAM preserves total work.

Finally, the following simple fact is useful for understanding the complexity
of (oblivious) parallel algorithms.

Fact 2. Let C > 1. If an (oblivious) parallel algorithm can complete in T steps
consuming m CPUs, then it can complete in CT steps consuming �m

C � CPUs.

3.3 Building Blocks

In our constructions, we use several useful building blocks such as oblivious
routing, oblivious select, oblivious random permutation, etc. Due to lack of space,
we describe these building blocks in detail in the full version of the paper [9].
6 Similarly, the perfectly secure ORAM by Damg̊ard et al. [13] also allowed a negligible

small probability for the algorithm to exceed the desired complexity bound but the
security or correctness failure probability must be 0.
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4 Parallel One-Time Oblivious Memory

We define and construct an abstract datatype to process non-recurrent memory
lookup requests. Although the abstraction is similar to the oblivious hashing
scheme in Chan et al. [8], our one-time memory scheme needs to be perfectly
secure and does not use a hashing scheme. Furthermore, we assume that every
real lookup request is tagged with a correct position label that indicates where the
requested block is—in this section, we simply assume that the correct position
labels are simply provided during lookup; but later in our full OPRAM scheme,
we will use a recursive ORAM/OPRAM technique reminiscent of those used in
binary-tree-based ORAM/OPRAM schemes [10,12,36,38,39] such that we can
obtain the position label of a block first before fetching the block.

4.1 Definition: One-Time Oblivious Memory

Intuition. We describe the intuition using the sequential special case but our
formal presentation later will directly describe the parallel version. An oblivious
one-time memory supports three operations: (1) Build, (2) Lookup, and (3) Getall.
Build is called once upfront to create the data structure: it takes in a set of real
blocks (each tagged with its logical address) and creates a data structure that
facilitates lookup. After this data structure is created, a sequence of lookup
operations can be performed: each lookup can request a real block identified by
its logical address or a dummy block denoted ⊥ — if the requested block is a real
block, we assume that the correct position label is supplied to indicate where
in the data structure the requested block is. Finally, when the data structure
is no longer needed, one may call a Getall operation to obtain a list of blocks
(tagged with their logical addresses) that have not been looked up yet—in our
OPRAM scheme later, this is the set of blocks that need to be preserved during
rebuilding.

We require that our oblivious one-time memory data structure retain oblivi-
ousness as long as (1) the sequence of real blocks looked up all exist in the data
structure (i.e., it appeared as part of the input to Build), and moreover, each
logical address is looked up at most once; and (2) at most ñ number of dummy
lookups may be made where ñ is a predetermined parameter (that the scheme
is parametrized with).

Formal Definition. Our formal presentation will directly describe the parallel
case. In the parallel version, lookup requests come in batches of size m > 1.

A (parallel) one-time memory scheme denoted OTM[n,m,t] is parametrized by
three parameters: n denotes the upper bound on the number of real elements;
m is the batch size for lookups; t is the upper bound on the number of batch
lookups supported. We use three parameters because we use different versions of
OTM. For the basic version in Sect. 5, we have t = n

m number of batch lookups,
whereas for the low-depth version, the number of batch lookups is larger (which
means that some of the lookup addresses must be dummy).



654 T.-H. H. Chan et al.

The (parallel) one-time memory scheme OTM[n,m,t] is comprised of the fol-
lowing possibly randomized, stateful algorithms to be executed on a Concurrent-
Read, Exclusive-Write PRAM — note that since the algorithms are stateful,
every invocation will update an implicit data structure in memory. Henceforth we
use the terminology key and value in the formal description but in our OPRAM
scheme later, a real key will be a logical memory address and its value is the
block’s content.

– U ← Build({(ki, vi) : i ∈ [n]}): given a set of n key-value pairs (ki, vi), where
each pair is either real or of the form (⊥,⊥), the Build algorithm creates an
implicit data structure to facilitate subsequent lookup requests, and moreover
outputs a list U of exactly n key-position pairs where each pair is of the form
(k, pos). Further, every real key input to Build will appear exactly once in the
list U ; and the list U is padded with ⊥ to a length n. Note that U does not
include the values vi’s. Later in our scheme, this key-position list U will be
propagated back to the parent recursion depth during a coordinated rebuild7.

– (vi : i ∈ [m]) ← Lookup({(ki, posi) : i ∈ [m]}): there are m concurrent Lookup
operations in a single batch, where we allow each key ki requested to be either
real or ⊥. Moreover, in each batch, at most n/t of the keys are real.

– R ← Getall: the Getall algorithm returns an array R of length n where each
entry is either ⊥ or real and of the form (k, v). The array R should contain
all real entries that have been inserted during Build but have not been looked
up yet, padded with ⊥ to a length of n.

Valid Request Sequence. Our oblivious one-time memory ensures obliviousness
only if lookups are non-recurrent (i.e., never look for the same real key twice);
and moreover the number of lookups requests must be upper bounded by a
predetermined parameter. More formally, a sequence of operations is valid, iff
the following holds:

– The sequence begins with a single call to Build upfront; followed by a sequence
of at most t batch Lookup calls, each of which supplies a batch of m keys and
the corresponding position labels; and finally the sequence ends with a single
call to Getall.

– The Build call is supplied with an input array S := {(ki, vi)}i∈[n], such that
any two real entries in S must have distinct keys.

– For every Lookup({(ki, posi) : i ∈ [m]}) query in the sequence, if each ki is
a real key, then ki must be contained in S that was input to Build earlier.
In other words, Lookup requests are not supposed to ask for real keys that
do not exist in the data structure8; moreover, each (ki, posi) pair supplied to

7 Note that we do not explicitly denote the implicit data structure in the output
of Build, since the implicit data structure is needed only internally by the current
oblivious one-time memory instance. In comparison, U is explicitly output since U
will later on be (externally) needed by the parent recursion depth in our OPRAM
construction.

8 We emphasize this is a major difference between this one-time memory scheme and
the oblivious hashing abstraction of Chan et al. [8]; Chan et al.’s abstraction [8]
allows lookup queries to ask for keys that do not exist in the data structure.
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Lookup must exist in the U array returned by the earlier invocation of Build,
i.e., posi must be a correct position label for ki; and

– Finally, in all Lookup requests in the sequence, no two keys requested (either
in the same or different batches) are the same.

Correctness. Correctness requires that

1. for any valid request sequence, with probability 1, for every Lookup({(ki,
posi) : i ∈ [m]}) request, the i-th answer returned must be ⊥ if ki = ⊥; else if
ki 	= ⊥, Lookup must return the correct value vi associated with ki that was
input to the earlier invocation of Build.

2. for any valid request sequence, with probability 1, Getall must return an array
R containing every (k, v) pair that was supplied to Build but has not been
looked up; moreover the remaining entries in R must all be ⊥.

Perfect Obliviousness. We say that two valid request sequences are length-
equivalent, if the input sets to Build have equal size, and the number of Lookup
requests (where each request asks for a batch of m keys) in the two sequences
are equal.

We say that a (parallel) one-time memory scheme is perfectly oblivious, iff
for any two length-equivalent request sequences that are valid, the distribution
of access patterns resulting from the algorithms are identically distributed.

4.2 Construction

Intuition. We first explain the intuition for the sequential case, i.e., m = 1.
The intuition is simply to permute all elements received as input during Build.
However, since subsequent lookup requests may be dummy (also denoted ⊥),
we also need to pad the array with sufficiently many dummies to support these
lookup requests. The important invariant is that each real element as well as
each dummy will be accessed at most once during lookup requests. For reals, this
is guaranteed since the definition of a valid request sequence requires that each
real key be requested no more than once, and that each real key requested must
exist in the data structure. For dummies, every time a ⊥-request is received, we
always look for an unvisited dummy. To implement this idea, one tricky detail is
that unlike real lookup requests, dummy requests do not carry the position label
of the next dummy to be read—thus our data structure itself must maintain an
oblivious linked list of dummies such that we can easily find out where the next
dummy is. Since all real and dummies are randomly permuted during Build, and
due to the aforementioned invariant, every lookup visits a completely random
location of the data structure thus maintaining perfect obliviousness.

It is not too difficult to make the above algorithm parallel (i.e., for the case
m > 1). To achieve this, one necessary modification is that instead of maintaining
a single dummy linked list, we now must maintain m dummy linked lists. These
m dummy linked lists are created during Build and consumed during Lookup.
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Detailed Construction. At the end of Build, our algorithm creates an in-
memory data structure consisting of the following:

1. An array A of length n + ñ, where ñ := tm denotes the number of dummies
and n denotes the number of real elements. Each entry of the array A (real
or dummy alike) has four fields (key, val, next, pos) where

– key is a key that is either real or dummy; and val is a value that is either
real or dummy.

– the field next ∈ [0..n+ ñ) matters only for dummy entries, and at the end
of the Build algorithm, the next field stores the position of the next entry
in the dummy linked list (recall that all dummy entries form m linked
lists); and

– the field pos ∈ [0..n+ ñ) denotes where in the array an entry finally wants
to be—at the end of the Build algorithm it must be that A[i].pos = i. How-
ever, during the algorithm, entries of A will be permuted transiently; but
as soon as each element i has decided where it wants to be (i.e., A[i].pos),
it will always carry its desired position around during the remainder of
the algorithm.

2. An array that stores the head pointers of all m dummy linked lists. Specif-
ically, we denote the m head pointers as {dposi : i ∈ [m]} where each
dposi ∈ [0..n + ñ) is the head pointer of one dummy linked list.

These in-memory data structures, including A and the dummy pointers will
then be updated during Lookup.
Build. Our oblivious Build({(ki, vi)}i∈[n]) algorithm proceeds as follows.

1. Initialize. Construct an array A of length n+ ñ whose entries are of the form
described above. Specifically, the keys and values for the first n entries of A
are copied from the input. Recall that the input may contain dummies too,
and we use ⊥ to denote a dummy key from the input.
The last ñ entries of A contain special dummy keys that are numbered. Specif-
ically, for each i ∈ [1..ñ], we denote An[i] := A[n−1+ i], and the entry stored
at An[i] has key ⊥i and value ⊥.

2. Every element decides at random its desired final position. Specifically, per-
form a perfectly oblivious random permutation on the entries of A—this
random permutation decides where each element finally wants to be.
Now, for each i ∈ [0..n+ñ), let A[i].pos := i. At this moment, A[i].pos denotes
where the element A[i] finally wants to be. Henceforth in the algorithm, the
entries of A will be moved around but each element always carries around its
desired final position.

3. Construct the key-position map U . Perform oblivious sorting on A using the
field key. We assume that real keys have the highest priority followed by
⊥ < ⊥1 < · · · < ⊥ñ (where smaller keys come earlier).
At this moment, we can construct the key-position map U from the first n
entries of A—recall that each entry of U is of the form (k, pos).

4. Construct m dummy linked lists. Observe that the last ñ entries of A contain
special dummy keys, on which we perform the following to build m disjoint
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singly-linked lists (each of which has length t). For each i ∈ [1..ñ], if i mod t 	=
0 we update the entry An[i].next := An[i + 1].pos, i.e., each dummy entry
(except the last entry of each linked list) records its next pointer.
We next record the positions of the heads of the m lists. For each i ∈ [m], we
set dposi := An[t(i − 1)].pos.

5. Move entries to their desired positions. Perform an oblivious sort on A, using
the fourth field pos. (This restores the ordering according to the previous
random permutation.)

At this moment, the data structure (A, {dposi : i ∈ [m]}) is stored in memory.
The key-position map U is explicitly output and later in our OPRAM scheme
it will be passed to the parent recursion depth during coordinated rebuild.

Fact 3. Consuming O(ñ + n) CPUs and setting (ñ + n)2 ≤ λ ≤ 2ñ+n, the
Build algorithm completes in O(log(ñ+n)) parallel steps, except with probability
negligible in λ.

Lookup. We implement a batch of m concurrent lookup operations
{Lookup({(ki, posi) : i ∈ [m]}) as follows. For each i ∈ [m], we perform the
following in parallel.

1. Decide position to fetch from. If ki 	= ⊥ is real, set pos := posi, i.e., we want to
use the position label supplied from the input. Else if ki = ⊥, set pos := dposi,
i.e., the position to fetch from is the next dummy in the i-th dummy linked
lists. (To ensure obliviousness, the algorithm can always pretend to execute
both branches of the if-statement.)
At this moment, pos is the position to fetch from (for the i-th request out of
m concurrent requests).

2. Read and remove. Read the value from A[pos] and mark A[pos] := ⊥.
3. Update dummy head pointer if necessary. If pos = dposi, update the dummy

head pointer dposi := next. (To ensure obliviousness, the algorithm can pre-
tend to modify dposi in any case.)

4. Return. Return the value read in the above Step 4.2.

The following fact is straightforward from the description of the algorithm.

Fact 4. The Lookup algorithm completes in O(1) parallel steps with O(m)
CPUs.

Getall. Getall is implemented by the following simple procedure: obliviously sort
A by the key such that all real entries are packed in front. Return the first n
entries of the resulting array (and removing the metadata entries next and pos).

Fact 5. The Getall algorithm completes in log(ñ + n) parallel steps consuming
O(ñ + n) CPUs.

Lemma 1. (Perfect obliviousness of the one-time memory scheme).
The above (parallel) one-time memory scheme satisfies perfect obliviousness.
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Due to lack of space, we defer the proof to the full version of the paper [9].
Summarizing the above, we conclude with the following theorem.

Theorem 6 (One-time oblivious memory). Let λ ∈ N be a parameter
related to the probability that the algorithm’s runtime exceeds a desired bound.
Assume that each memory block can store at least log n+log λ bits. There exists
a perfectly oblivious one-time scheme such that Build takes O(log n) parallel steps
(except with negligible in λ probability) consuming n CPUs, Lookup for a batch
of m requests takes O(1) parallel steps consuming m CPUs, and Getall takes
O(log n) parallel steps consuming n CPUs.

5 Basic OPRAM with O(log3 N) Simulation Overhead

Recall that N denotes the number of logical memory blocks consumed by the
original PRAM, and each memory block can store at least Ω(log N) bits. In this
section, we describe an OPRAM construction such that each batch of m memory
requests takes O(log3 N) parallel steps to satisfy with m CPUs. In the full version
of our paper [9], we will describe how to further parallelize the OPRAM when
the OPRAM can consume more CPUs than the original PRAM.

Roadmap. We briefly explain the technical roadmap of this section:

– In Sect. 5.1, we will first describe a position-based OPRAM that supports
two operations: Lookup and Shuffle. A position-based OPRAM is an almost
fully functional OPRAM scheme except that every real lookup request must
supply a correct position label. In our OPRAM construction, these position
labels will have been fetched from small recursion depths and therefore will
be ready when looking up the position-based OPRAM.
Our position-based OPRAM relies on the hierarcial structure proposed by
Goldreich and Ostrovsky [21,22], as well as techniques by Chan et al. [8] that
showed how to parallelize such a hierarchical framework.

– In Sect. 5.2, we explain how to leverage “coordinated rebuild” and recursion
techniques to build a recursive OPRAM scheme that composes logarithmi-
cally many instances of our position-based OPRAM, of geometrically decreas-
ing sizes.

5.1 Position-Based OPRAM

Our basic OPRAM scheme (Sect. 5.2) will consist of logarithmically many
position-based OPRAMs of geometrically increasing sizes, henceforth denoted
OPRAM0, OPRAM1, OPRAM2, . . ., OPRAMD where D := log2 N − log2 m.
Specifically, OPRAMd stores Θ(2d · m) blocks where d ∈ {0, 1, . . . ,D}. The last
one OPRAMD stores the actual data blocks whereas every other OPRAMd where
d < D recursively stores the position labels for the next depth d + 1.
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Data Structure. As we shall see, the case OPRAM0 is trivial and is treated
specially at the end of this section (Sect. 5.1). Below we focus on describing
OPRAMd for some 1 ≤ d ≤ D = log N − log m. For d 	= 0, each OPRAMd

consists of d + 1 levels geometrically growing in size, where each level is a one-
time oblivious memory scheme as defined and described in Sect. 4. We specify
this data structure more formally below.

Hierarchical Levels. The position-based OPRAMd consists of d + 1 levels hence-
forth denoted as (OTMj : j = 0, . . . , d) where level j is a one-time oblivious
memory scheme,

OTMj := OTM[2j ·m,m,2j ]

with at most n = 2j · m real blocks and m concurrent lookups in each batch
(which can all be real). This means that for every OPRAMd, the smallest level is
capable of storing up to m real blocks. Every subsequent level can store twice as
many real blocks as the previous level. For the largest OPRAMD, its largest level
is capable of storing N real blocks given that D = log N − log m—this means
that the total space consumed is O(N).

Every level j is marked as either empty (when the corresponding OTMj has
not been rebuilt) or full (when OTMj is ready and in operation). Initially, all
levels are marked as empty, i.e., the OPRAM initially is empty.

Position Label. Henceforth we assume that a position label of a block specifies
(1) which level the block resides in; and (2) the position within the level the
block resides at.

Additional Assumption. We assume that each block is of the form (logical
address, payload), i.e., each block carries its own logical address.

Operations. Each position-based OPRAM supports two operations, Lookup
and Shuffle. For every OPRAMd consisting of d+1 levels, we rely on the following
algorithms for Lookup and Shuffle.

Lookup. Every batch lookup operation, denoted Lookup({(addri, posi) : i ∈ [m]})
receives as input the logical addresses of m blocks as well as a correct position
label for each requested block. To complete the batch lookup request, we perform
the following.

1. For each level j = 0, . . . , d in parallel, perform the following:
– For each i ∈ [m] in parallel, first check the supplied position label posi to

see if the requested block resides in the current level j: if so, let addr′i :=
addri and let pos′

i := posi (and specifically the part of the position label
denoting the offset within level j); else, set addr′i := ⊥ and pos′

i := ⊥ to
indicate that this should be a dummy request.

– (vij : i ∈ [m]) ← OTMj .Lookup({addr′i, pos′
i : i ∈ [m]}).
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2. At this point, each of the m CPUs has d answers from the d levels respectively,
and only one of them is the valid answer. Now each of the m CPUs chooses
the correct answer as follows.
For each i ∈ [m] in parallel: set vali to be the only non-dummy element
in (vij : j = 0, . . . , d), if it exists; otherwise set vali := ⊥. This step can
be accomplished using an oblivious select operation in log d parallel steps
consuming d CPUs.

3. Return (vali : i ∈ [m]).

We remark that in Goldreich and Ostrovsky’s original hierarchical
ORAM [21,22], the hierarchical levels must be visited sequentially—for oblivi-
ousness, if the block is found in some smaller level, all subsequent levels must
perform a dummy lookup. Here we can visit all levels in parallel since the position
label already tells us which level it is in. Now the following fact is straightforward:

Fact 7. For OPRAMd, Lookup consumes O(log d) parallel steps consuming m ·d
CPUs where m is the batch size.

Shuffle. Similar to earlier hierarchical ORAMs [21,22] and OPRAMs [8], a shuf-
fle operation merges consecutively full levels into the next empty level (or the
largest level). However, in our Shuffle abstraction, there is an input U that con-
tains some logical addresses together with new values to be updated. Moreover,
the shuffle operation is associated with an update function that determines how
the new values in U should be incorporated into the OTM during the rebuild.

In our full OPRAM scheme later, the update array U will be passed from
the immediate next depth OPRAMd+1, and contains the new position labels that
OPRAMd+1 has chosen for recently accessed logical addresses. These position
labels must then be recorded by OPRAMd appropriately.

More formally, each position-based OPRAMd supports a shuffle operation,
denoted Shuffle(U, 	; update), where the parameters are explained as follows:

1. An update array U in which each (non-dummy) entry contains a logical
address that needs to be updated, and a new value for this block. (Strictly
speaking, we allow a block to be partially updated.)
We will define additional constraints on U subsequently.

2. The level 	 to be rebuilt during this shuffle.
3. An update function that specifies how the information in U is used to compute

the new value of a block in the OTM.
The reason we make this rule explicit in the notation is that a block whose
address that appears in U may only be partially modified; hence, we later
need to specify this update function carefully. However, to avoid cumbersome
notation, we may omit the parameter update, and just write Shuffle(U, 	),
when the context is clear.

For each OPRAMd, when Shuffle(U, 	; update) is called, it must be guaranteed
that 	 ≤ d; and moreover, either level 	 must either be empty or 	 = d (i.e., this
is the largest level in OPRAMd). Moreover, there is an extra OTM′

0; jumping
ahead, we shall see that OTM′

0 contains the blocks that are freshly fetched.
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The Shuffle algorithm then combines levels 0, 1, . . . , 	 (of OPRAMd), together
with the extra OTM′

0, into level 	, updating some blocks’ contents as instructed
by the update array U and the update function update. At the end of the shuffle
operation, all levels 0, 1, . . . , 	 − 1 are now marked as empty and level 	 is now
marked as full.

We now explain the assumptions we make on the update array U and how
we want the update procedure to happen:

– We require that each logical address appears at most once in U .
– Let A be all logical addresses remaining in levels 0 to 	 in OPRAMd: it must

hold that the set of logical addresses in U is a subset of those in A. In other
words, a subset of the logical addresses in A will be updated before rebuilding
level 	.

– If some logical address addr exists only in A but not in U , after rebuilding
level 	, the block’s value from the current OPRAMd should be preserved.
If some logical address addr exists in both A and in U , we use the update
function to modify its value: update takes a pair of blocks (addr, data) and
(addr, data′) with the same address but possibly different contents (the first
of which coming from the current OPRAMd and the second coming from U),
and computes the new block content data∗ appropriately.
We remark that the new value data∗ might depend on both data and data′.
Later, we will describe how the update rule is implemented.

Upon receiving Shuffle(U, 	; update), proceed with the following steps:

1. Let A := ∪�
i=0OTMi.Getall∪OTM′

0.Getall, where the operator ∪ denotes con-
catenation. Moreover, for an entry in A that comes from OTMi, then it also
carries a label i.
At this moment, the old OTM0, . . . ,OTM� instances may be destroyed.

2. We obliviously sort A ∪ U in increasing order of logical addresses, and more-
over, placing all dummy entries at the end. If two blocks have the same logical
address, place the entry coming from A in front of the one coming from U .
At this moment, in one linear scan, we can operate on every adjacent pair
of entries using the aforementioned update operation, such that if they share
the same logical address, the first entry is preserved and updated to a new
value, and the second entry is set to dummy.
We now obliviously sort the resulting array moving all dummies to the end.
We truncate the resulting array preserving only the first 2� · m elements and
let A′ denote the outcome (note that only dummies and no real blocks will
truncated in the above step).

3. Next, we call U ′ ← Build(A′) that builds a new OTM′ and U ′ contains the
positions of blocks in OTM′.

4. OTM′ is now the new level 	 and henceforth it will be denoted OTM�. Mark
level 	 as full and levels 0, 1, . . . , 	−1 as empty. Finally, output U ′ (in our full
OPRAM construction, U ′ will be passed to the immediately smaller position-
based OPRAM as the update array for performing its shuffle).
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If we realize the oblivious sort with the AKS network [1] that sorts n items
in O(log n) parallel steps consuming n CPUs, we easily obtain the following
fact—note that there is a negligible in N probability that the algorithm runs
longer than the stated asymptotic time due to the oblivious random permutation
building block.

Fact 8. Suppose that the update function can be evaluated by a single CPU in
O(1) steps. For OPRAMd, let 	 ≤ d, then except with negligible in N probability,
Shuffle(U, 	) takes O(log(m · 2�)) parallel steps consuming m · 2� CPUs.

Observe that in the above fact, the randomness comes from the oblivious
random permutation subroutine used in building the one-time oblivious memory
data structure.

Trivial Case: OPRAM0. In this case, OPRAM0 simply stores its entries in an array
A[0..m) of size m and we assume that the entries are indexed by a (log2 m)-bit
string. Moreover, each address is also a (log2 m)-bit string, whose block is stored
at the corresponding entry in A.

– Lookup. Upon receiving a batch of m depth-m truncated addresses where all
the real addresses are distinct, use oblivious routing to route A[0..m) to the
requested addresses. This can be accomplished in O(m log m) total work and
O(log m) depth. Note that OPRAM0’s lookup does not receive any position
labels.

– Shuffle. Since there is only one array A (at level 0), Shuffle(U, 0) can be
implemented by oblivious sorting.

5.2 OPRAM Scheme from Position-Based OPRAM

Recursive OPRAMs. The OPRAM scheme consists of D + 1 position-based
OPRAMs henceforth denoted as OPRAM0,OPRAM1,OPRAM2, . . . ,OPRAMD.
OPRAMD stores the actual data blocks, whereas every other OPRAMd where
d 	= D recursively stores the position labels for the next data structure
OPRAMd+1. Our construction is in essence recursive although in presentation we
shall spell out the recursion for clarity. Henceforth we often say that OPRAMd

is at recursion depth d or simply depth d.
Although we are inspired by the recursion technique for tree-based

ORAMs [36], using this recursion technique in the context of hierarchical
ORAMs/OPRAMs raises new challenges. In particular, we cannot use the recur-
sion in a blackbox fashion like in tree-based constructions since all of our
(position-based, hierarchical) OPRAMs must reshuffle in sync with each other
in a non-blackbox fashion as will become clear later.

Format of Depth-d Block and Address. Suppose that a block’s logical address is
a log2 N -bit string denoted addr〈D〉 := addr[1..(log2 N)] (expressed in binary for-
mat), where addr[1] is the most significant bit. In general, at depth d, an address
addr〈d〉 is the length-(log2 m + d) prefix of the full address addr〈D〉. Henceforth,
we refer to addr〈d〉 as a depth-d address (or the depth-d truncation of addr).
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When we look up a data block, we would look up the full address addr〈D〉 in
recursion depth D; we look up addr〈D−1〉 at depth D − 1, addr〈D−2〉 at depth
D −2, and so on. Finally at depth 0, the log2 m-bit address uniquely determines
one of the m blocks stored at OPRAM0. Since each batch consists of m concurrent
lookups, one of them will be responsible for this block in OPRAM0.

A block with the address addr〈d〉 in OPRAMd stores the position labels for two
blocks in OPRAMd+1, at addresses addr〈d〉||0 and addr〈d〉||1 respectively. Hence-
forth, we say that the two addresses addr〈d〉||0 and addr〈d〉||1 are siblings to each
other; addr〈d〉||0 is called the left sibling and addr〈d〉||1 is called the right sibling.
We say that addr〈d〉||0 is the left child of addr〈d〉 and addr〈d〉||1 is the right child
of addr〈d〉.

Operations. Each batch contains m requests denoted as ((opi, addri, datai) :
i ∈ [m]), where for opi = read, there is no datai. We perform the following steps.

1. Conflict resolution. For every depth d ∈ {0, 1, . . . ,D} in parallel, perform
oblivious conflict resolution on the depth-d truncation of all m addresses
requested.
For d = D, we suppress duplicate addresses. If multiple requests collide on
addresses, we would prefer a write request over a read request (since write
requests also fetch the old memory value back before overwriting it with a new
value). In the case of concurrent write operations to the same address, we use
the properties of the underlying PRAM to determine which write operation
prevails.
For 0 ≤ d < D, after conflict resolution, the m requests for OPRAMd become

((addr
〈d〉
i , flagsi) : i ∈ [m]),

where each non-dummy depth-d truncated address addr
〈d〉
i is distinct and

has a two-bit flagsi that indicates whether each of two addresses (addr
〈d〉
i ||0)

and (addr
〈d〉
i ||1) is requested in OPRAMd+1. As noted by earlier works on

OPRAM [6,10,11], conflict resolution can be completed through O(1) num-
ber of oblivious sorting operations. We thus defer the details of the conflict
resolution procedure to the full version of the paper [9].

2. Fetch. For d = 0 to D sequentially, perform the following:
– For each i ∈ [m] in parallel: let addr

〈d〉
i be the depth-d truncation of

addr
〈D〉
i .

– Call OPRAMd.Lookup to look up the depth-d addresses addr
〈d〉
i for all i ∈

[m]; observe that position labels for the lookups of non-dummy addresses
will be available from the lookup of the previous OPRAMd−1 for d ≥ 1,
which is described in the next step. Recall that for OPRAM0, no position
labels are needed.

– If d < D, each lookup from a non-dummy (addr
〈d〉
i , flagsi) will return two

positions for the addresses addr
〈d〉
i ||0 and addr

〈d〉
i ||1 in OPRAMd+1. The
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two bits in flagsi will determine whether each of these two position labels
are needed in the lookup of OPRAMd+1.
We can imagine that there are m CPUs at recursion depth d + 1 waiting
for the position labels corresponding to {addr

〈d+1〉
i : i ∈ [m]}. Now, using

oblivious routing, the position labels can be delivered to the CPUs at
recursion depth d + 1.

– If d = D, the outcome of Lookup will contain the data blocks fetched.
Recall that conflict resolution was used to suppress duplicate addresses.
Hence, oblivious routing can be used to deliver each data block to the
corresponding CPUs that request it.

– In any case, the freshly fetched blocks are updated if needed in the case
of d = D, and are placed in OTM′

0 in each OPRAMd.
3. Maintain. We first consider depth D. Set depth-D’s update array U 〈D〉 := ∅.

Suppose that 	〈D〉 is the smallest empty level in OPRAMD.
We have the invariant that for all 0 ≤ d < D, if 	〈D〉 < d, then 	〈D〉 is also
the smallest empty level in OPRAMd.
For d := D downto 0, do the following:

– If d < 	〈D〉, set 	 := d; otherwise, set 	 := 	〈D〉.
– Call U ← OPRAMd.Shuffle(U 〈d〉, 	; update) where update is the following

natural function: recall that in U 〈d〉 and OPRAMd−1, each depth-(d − 1)
logical address stores the position labels for both children addresses. For
each of the child addresses, if U 〈d〉 contains a new position label, choose
the new one; otherwise, choose the old label previously in OPRAMd−1.

– If d ≥ 1, we need to send the updated positions involved in U to depth
d − 1.
We use the Convert subroutine to convert U into an update array for
depth-(d − 1) addresses, where each entry may pack the position labels
for up to two sibling depth-d addresses. Convert can be realized with O(1)
oblivious sorting operations and we defer its detailed presentation to the
full version of our paper [9].
Now, set U 〈d−1〉 ← Convert(U, d), which will be used in the next iteration
for recursion depth d − 1 to perform its shuffle.

With the above basic OPRAM construction, we can achieve the following
theorem whose proof is deferred to the full version of the paper [9].

Theorem 9. The above construction is a perfectly secure OPRAM scheme sat-
isfying the following performance overhead:

– When consuming the same number of CPUs as the original PRAM, the
scheme incurs O(log3 N) simulation overhead;

– When the OPRAM is allowed to consume an unbounded number of CPUs, the
scheme incurs O(log3 N) total work blowup and O((log m + log log N) log N)
depth blowup.

In either case, the space blowup is O(1).
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Proof. We defer the obliviousness proof and performance analysis to the full
version of the paper [9].

Note that at this moment, even for the sequential special case, we already
achieve asymptotic savings over Damg̊ard et al. [13] in terms of space consump-
tion. Furthermore, Damg̊ard et al. [13]’s construction is sequential in nature and
does not immediately give rise to an OPRAM scheme.

6 Conclusion and Future Work

In this paper, we constructed a perfectly secure OPRAM scheme with O(log3 N)
total work blowup, O(log N log log N) depth blowup, and O(1) space blowup. To
the best of our knowledge our scheme is the first perfectly secure (non-trivial)
OPRAM scheme, and even for the sequential special case we asymptotically
improve the space overhead relative to Damg̊ard et al. [13]. Prior to our work,
the only known perfectly secure ORAM scheme is that by Damg̊ard et al. [13],
where they achieve O(log3 N) simulation overhead and O(log N) space blowup.
No (non-trivial) OPRAM scheme was known prior to our work, and in particular
the scheme by Damg̊ard et al. [13] does not appear amenable to parallelization.
Finally, in comparison with known statistically secure OPRAMs [10,39], our
work removes the dependence (in performance) on the security parameter; thus
we in fact asymptotically outperform known statistically secure ORAMs [39] and
OPRAMs [10] when (sub-)exponentially small failure probabilities are required.

Exciting questions remain open for future research:

– Are there any separations between the performance of perfectly secure and
statistically secure ORAMs/OPRAMs?

– Can we construct perfectly secure ORAMs/OPRAMs whose total work
blowup matches the best known statistically secure ORAMs/OPRAMs
assuming negligible security failures?

– Can we construct perfectly secure ORAM/OPRAM schemes whose concrete
performance lends to deployment in real-world systems?
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Abstract. A software watermarking scheme can embed some informa-
tion called a mark into a program while preserving its functionality. No
adversary can remove the mark without damaging the functionality of
the program. Cohen et al. (STOC ’16) gave the first positive results for
watermarking, showing how to watermark certain pseudorandom func-
tion (PRF) families using indistinguishability obfuscation (iO). Their
scheme has a secret marking procedure to embed marks in programs
and a public extraction procedure to extract the marks from programs;
security holds even against an attacker that has access to a marking ora-
cle. Kim and Wu (CRYPTO ’17) later constructed a PRF watermarking
scheme under only the LWE assumption. In their scheme, both the mark-
ing and extraction procedures are secret, but security only holds against
an attacker with access to a marking oracle but not an extraction ora-
cle. In fact, it is possible to completely break the security of the latter
scheme using extraction queries, which is a significant limitation in any
foreseeable application.

In this work, we construct a new PRF watermarking scheme with the
following properties.

– The marking procedure is public and therefore anyone can embed
marks in PRFs from the family. Previously we had no such construc-
tion even using obfuscation.

– The extraction key is secret, but marks remain unremovable even if
the attacker has access to an extraction oracle. Previously we had
no such construction under standard assumptions.

– Our scheme is simple, uses generic components and can be instanti-
ated under many different assumptions such as DDH, Factoring or
LWE.

The above benefits come with one caveat compared to prior work: the
PRF family that we can watermark depends on the public parameters of
the watermarking scheme and the watermarking authority has a secret
key which can break the security of all of the PRFs in the family. Since
the watermarking authority is usually assumed to be trusted, this caveat
appears to be acceptable.
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1 Introduction

Watermarking allows us to embed some special information called a mark into
digital objects such as images, movies, music files, or software. There are two
basic requirements: firstly, a marked object should not be significantly different
from the original object, and secondly, it should be impossible to remove an
embedded mark without somehow “destroying” the object.

The works of Barak et al. [2,3] and Hopper, Molnar and Wagner [14] ini-
tiated the first theoretical study of program watermarking including rigorous
definitions. However, positive results for watermarking remained elusive. A few
early works [17,18,20] gave very partial results showing that certain crypto-
graphic functions can be watermarked, but security only held against restricted
adversaries with limited ability to modify the program. For example, in such
schemes it is easy to remove the watermark by obfuscating the program without
changing its functionality. The first positive result for watermarking against arbi-
trary removal strategies was given in the work of Cohen et al. [10] who showed
how to watermark certain families of pseudo-random functions (PRFs). However,
this result relies on the heavy hammer of indistinguishability obfuscation (iO)
[2,3,12]. Later, the work of Kim and Wu [16] constructed a PRF watermarking
scheme under only the learning-with-errors (LWE) assumption, but at the cost
of weakening security. We first describe the problem of watermarking PRFs in
more detail, then come back to discuss the above two works and finally present
our new contributions.

Watermarking PRFs. A watermarking scheme for a PRF family {Fk} consists
of two procedures Mark and Extract. The Mark procedure takes as input a PRF
Fk from the family and outputs a program P which is a marked version of the
PRF. We want approximate correctness, meaning that Fk(x) = P (x) for all but
a negligible fraction of inputs x and these should be hard to find. The Extract
procedure takes as input a program P ′ and determines whether it is marked
or unmarked. The main security property that we desire is unremovability : if
we choose Fk randomly from the family and give the marked version P to an
adversary, the adversary should be unable to come up with any program P ′ that
even ε-approximates P for some small ε (meaning that P (x) = P ′(x) for an ε
fraction of inputs x) yet the extraction procedure fails to recognize P ′ as marked.
Each of the procedures Mark,Extract may either be “public” meaning that it only
relies on the public parameters of the watermarking scheme, or it may be“secret”
meaning that it requires a secret key of the watermarking scheme. If one (or both)
of the procedures is secret then the unremovability security property should hold
even if the adversary gets oracle access to that procedure. We can also consider
“message embedding” schemes, where the marking procedure additionally takes
a message and the extraction procedure recovers the message from a marked
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program – the unremovability property should then ensure that the adversary
cannot remove the mark or modify the embedded message.1

There are several reason why watermarking PRFs is interesting. Firstly,
watermarking in general is a poorly understood cryptographic concept yet clearly
desirable in practice – therefore any kind of positive result is fascinating since
it helps us get a better understanding of this elusive notion. Secondly, soft-
ware watermarking only makes sense for unlearnable functions (as formalized in
[10]) so we need to focus on cryptographic programs such as PRFs rather than
(e.g.,) tax preparation software. Lastly, PRFs are a basic building block for more
advanced cryptosystems and therefore watermarking PRFs will also allow us to
watermark more advanced primitives that rely on PRFs, such as symmetric-
key encryption or authentication schemes. See [10] for further discussion and
potential applications of watermarked PRFs.

Prior Work. The work of Cohen et al. [10] showed how to watermark any
family of puncturable PRFs using indistinguishability obfuscation (iO). They
constructed a watermarking scheme with secret marking and public extraction,
where the unremovability property holds even if the adversary has access to
the marking oracle. The use of obfuscation may have appeared inherent in that
result. However, Kim and Wu [16] (building on [5]) surprisingly showed how to
remove it and managed to construct a watermarking scheme for a specific PRF
family under only the learning-with-errors (LWE) assumption. In their scheme,
both the marking and the extraction procedures are secret, but the unremovabil-
ity security property only holds if the adversary has access to the marking oracle
but not the extraction oracle. In particular, an adversary that can test whether
arbitrary programs are marked or unmarked can completely break the security
of the watermarking scheme. Since the entire point of watermarking is to use the
extraction procedure on programs that may potentially have been constructed
by an adversary, it is hard to justify that the adversary does not get access to the
extraction oracle. Therefore this should be considered as a significant limitation
of that scheme in any foreseeable application.

Our Results. In this work, we construct a watermarking scheme for a PRF
family under standard assumptions. In particular, we only rely on CCA-secure
public-key encryption with pseudorandom ciphertexts, which can be instantiated
under most standard public-key assumptions such as DDH, LWE or Factoring.
Our watermarking scheme has public marking and secret extraction, and the

1 Some previous watermarking schemes also required an unforgeability property, which
roughly says that an adversary should not be able to produce any marked functions
on his own – in fact, he should not be able to come up with a function which is marked
but is far from any of the marked functions that were output by the marking oracle.
This property appears to be orthogonal to the main watermarking requirement of
unremovability and we do not consider it here. In particular, it crucially requires a
scheme with a secret marking procedure whereas here we construct watermarking
scheme with a public marking procedure.
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unremovability security property holds even if the adversary has access to the
extraction oracle. We emphasize that:

– This is the first watermarking scheme with a public marking procedure. Pre-
viously such schemes were not known even under iO.

– This is the first watermarking scheme under standard assumptions where
unremovability holds in the presence of the extraction oracle. Previously we
only had such schemes under iO, in which case it was possible to even get
public extraction, but not under any standard assumptions.

– This is the first watermarking scheme altogether under assumptions other
than LWE or iO.

Our basic scheme is not message embedding (whereas the constructions of
[10,16] are), but we also show how to get a message embedding scheme by
additionally relying on generic constraint-hiding constrained PRFs, which we
currently have under LWE [4,8,9,19].

Additionally, we allow an adversary who tries to remove the mark of some
program P to change a large fraction of its outputs, matching the security guar-
antee of [10] based on iO. In comparison, the work of [16] based on standard
assumptions restricts an adversary to only modify a very small fraction of its
inputs. More precisely, while [16] only allows an adversary to only change a neg-
ligible fraction of the outputs of P, our construction without message embedding
allows him to modify almost all of these outputs, as long as a polynomial frac-
tion remains the same; and our construction with message embedding allows an
adversary to change almost half of the outputs which is essentially optimal (as
shown in [10])

Our scheme comes with one caveat that was not present in prior works. The
PRF family that we watermark depends on the public-parameters of the water-
marking scheme and it is possible to break the PRF security of this family given
the watermarking secret key. In particular, this means that the watermarking
authority which sets up the scheme can break the PRF security of all func-
tions in the family, even ones that were never marked. However, we ensure that
PRF security continues to hold even given the public parameters of the water-
marking scheme and oracle access to the extraction procedure. Therefore the
PRFs remain secure for everyone else except the watermarking authority. Tech-
nically, this caveat makes our results incomparable with those in prior works.
However, we argue that since the watermarking authority is anyway assumed to
be a trusted party in order for the watermarking guarantees to be meaningful,
this caveat doesn’t significantly detract from the spirit of the problem and our
solutions with this caveat are still very meaningful.
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1.1 Our Techniques

Watermarking Unpredictable Functions. To give the intuition behind our
scheme, we first describe a simplified construction which allows us to watermark
an unpredictable (but not yet pseudorandom) function family.2

The public parameters of the watermarking scheme consist of a public-key
pk for a CCA secure public-key encryption scheme and the watermarking secret
key is the corresponding decryption key sk. Let {fs} be an arbitrary puncturable
PRF (pPRF) family. We are able to watermark a function family {Fk} which is
defined as follows:

– The key k = (s, z, r) consists of a pPRF key s, a random pPRF input z and
encryption randomness r.

– The function is defined as Fk(x) = (fs(x), ct) where ct = Encpk((fs(z), z) ; r).

Note that this is not yet a PRF family since the ct part of the output is always
the same no matter what x is. However, the first part of the output ensures
that the function is unpredictable. We now describe the marking and extraction
procedures.

– To mark a function Fk with k = (s, z, r) we create a key ˜k = (s{z}, ct)
where s{z} is a PRF key which is punctured at the point z and ct =
Encpk((fs(z), z) ; r). We define the marked function as F

˜k(x) = (fs{z}(x), ct).
– The extraction procedure gets a circuit C and let C(x) = (C1(x), C2(x))

denote the first and second part of the output respectively. The extraction
procedure computes C2(xi) = cti for many random values xi and attempts to
decrypt Decsk(cti) = (yi, zi). If for at least one i the decryption succeeds and
it holds that C1(zi) �= yi then the procedure outputs marked, else it outputs
unmarked.

There are several properties to check. Firstly, note that marking procedure
does not require any secret keys and that the marked function satisfies Fk(x) =
F

˜k(x) for all x �= z. In other words, the marking procedure only introduces only a
single difference at a random point z.3 Secondly, for any function Fk in the family
which was not marked, the extraction procedure correctly outputs unmarked and
for any function F

˜k(x) that was marked it correctly outputs marked.4

To argue that marks are unremovable, assume that we choose a random
function Fk in the family, mark it, and give the adversary the marked function

2 A function family is unpredictable if, given arbitrarily many oracle calls to a random
function from the family on various inputs xi, it is hard to predict the output of the
function on any fresh input x∗ which was not queried.

3 Moreover, we show the following. Given oracle access to a random unmarked function
Fk(·) and its marked version F

˜k(·) as well as the extraction oracle, it is hard to find
the point z on which they differ.

4 Moreover, we can also ensure that any a-priori chosen circuit C is unmarked with
high probability over the keys of the watermarking scheme. To achieve this we rely
on an encryption scheme where legitimate ciphertexts are sparse.
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F
˜k with ˜k = (s{z}, ct). The adversary produces some circuit C which he gives

to the extraction procedure and he wins if C agrees with F
˜k on a sufficiently

large fraction of inputs but the extraction procedure deems C to be unmarked.
If C agrees with F

˜k on a sufficiently large fraction of inputs then with very high
probability for at least one xi queried by the extraction procedure it holds that
C2(xi) = ct and ct decrypts to (fs(z), z). In order for the extraction procedure
to output unmarked it would have to hold that C1(z) = fs(z) meaning that
the adversary can predict fs(z). But the adversary only has a punctured pPRF
key s{z} and therefore it should be hard to predict fs(z). This argument is
incomplete since the adversary also has a ciphertext ct which encrypts fs(z) and
oracle access to the extraction procedure which contains a decryption key sk. To
complete the argument, we rely on the CCA security of the encryption scheme to
argue that extraction queries do not reveal any information about fs(z) beyond
allowing the adversary to test whether fs(z) = y for various chosen values y and
this is insufficient to predict fs(z).

Watermarking Pseudorandom Functions. To get a watermarking scheme for a
pseudorandom function family rather than just an unpredictable one we add
an additional “outer” layer of encryption. We need the outer encryption to
be a“pseudorandom tagged CCA encryption” which ensures that a ciphertext
encrypting some message m under a tag x looks random even given decryption
queries with respect to any tags x′ �= x. The public parameters consist of an
outer public key pk′ for the “pseudorandom tagged CCA encryption” and an
inner public key pk for the standard CCA encryption. The watermarking secret
key consists of the decryption keys sk′, sk.

We define the PRF family {Fk} as follows:

– The key k = (s, z, r, s′) consists of a pPRF key s, a random pPRF input z
and encryption randomness r as before. We now also include an additional
PRF key s′.

– The function is defined as Fk(x) = (fs(x), ct′) where ct′ = Enc′
pk′,x(ct ; fs′(x))

is an encryption of ct with respect to the tag x using randomness fs′(x) and
ct = Encpk(fs(z), z ; r) as before. Note that the inner ciphertext ct is always
the same but the outer ciphertext ct′ is different for each x.

The watermarking scheme is almost the same as before except that:

– To mark a function Fk with k = (s, z, r, s′) we create a key ˜k = (s{z}, ct, s′)
where s{z} is a pPRF key which is punctured at the point z and ct =
Encpk(fs(z), z ; r) as before. We define the marked function as F

˜k(x) =
(fs{z}(x), ct′) where ct′ = Enc′

pk′,x(ct ; fs′(x)).
– The extraction procedure is the same as before except that it also peels off

the outer layer of encryption.

We now argue that the function family {Fk} is pseudorandom even given
the public parameter (pk, pk′) of the watermarking scheme and access to the
extraction oracle. However, note that given the watermarking secret key sk, sk′,
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it is easy to completely break PRF security by testing if the outer ciphertexts
decrypts correctly to the same value every time. To argue pseudorandomness,
we rely on the security of the outer encryption. Note that the outer ciphertexts
are tagged with various tags xi corresponding to the adversary’s PRF queries.
However, the extraction oracle only decrypts with respect to tags x′

i correspond-
ing to random inputs that it chooses on each extraction query. Therefore, with
exponentially small probability there will be an overlap between the values x′

i

and xi, and thus we can switch all of the ciphertexts returned by the PRF queries
with uniformly random values.

Watermarking with Message Embedding. Our watermarking construction that
allows to embed a message msg ∈ {0, 1}� during marking is very similar to the
non-message embedding one. The main difference is that we use a constraint-
hiding constrained PRF (CHC-PRF) to embed a hidden pattern that allows the
extraction procedure to recover the message. At a high level, to mark a key with
some message msg, we consider for each message bit msgj a sparse pseudorandom
set Vj ; and we constrain the key on Vj if msgj = 1. We use an additional set V0

on which we always constrain when marking a key. Each set Vj is defined using
a fresh PRF key tj . The public parameters and the watermarking secret key are
the same as before, but now our PRF key k grows linearly with the message
length.

Let {fs} be an arbitrary constraint-hiding constrained PRF (CHC-PRF)
family. We define the PRF family {Fk} as follows:

– The key k = (s, (t0, t1, . . . , t�), r, s′) consists of a CHC-PRF key s, �+1 PRF
keys {ti}i≤�, encryption randomness r, and a PRF key s′.

– The function is defined as Fk(x) = (fs(x), ct′) where ct′ = Enc′
pk′,x(ct; fs′(x))

is an encryption of ct with respect to the tag x using randomness fs′(x) and
ct = Encpk(s, (t0, t1, . . . , t�) ; r). Again, the inner ciphertext ct is always the
same but the outer ciphertext ct′ is different for each x.

The marking and extraction procedures work as follows:

– To mark a function Fk with k = (s, (t0, t1, . . . , t�), r, s′) and message msg ∈
{0, 1}�, we first define the following circuit Cmsg. For each key tj , let Cj be
the circuit which on input x = (a, b) accepts if ftj (a) = b. Here we implicitly
define the set Vj = {(a, ftj (a))}, and thus the circuit Cj checks membership
in Vj . We define Cmsg as:

Cmsg = C0 ∨

⎛

⎜

⎜

⎝

∨

j=1,...,�
msgj=1

Cj

⎞

⎟

⎟

⎠

,

so that Cmsg checks membership in the union of V0 and the Vj ’s for j with
msgj = 1.
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We create a key ˜k = (s{Cmsg}, ct, s′) where s{Cmsg} is a CHC-PRF key
which is constrained on the circuit Cmsg and ct = Encpk(s, (t0, t1, . . . , t�) ; r).
We define the marked function as F

˜k(x) = (fs{Cmsg}(x), ct′) where ct′ =
Enc′

pk′,x(ct ; fs′(x)).
– The extraction procedure gets a circuit C and let C(x) = (C1(x), C2(x))

denote the first and second part of the output respectively. The extraction pro-
cedure computes C2(xi) = ct′i for many random values xi, peels off the outer
layer to obtain cti, and attempts to decrypt Decsk(cti) = (s, (t0, t1, . . . , t�)).
The extraction procedure selects the decrypted message (s, (t0, t1, . . . , t�))
which forms the majority of the decrypted messages. If such a majority
doesn’t exist, the extraction stops here and outputs unmarked.
The procedure now samples many random values ai, computes xi =
(ai, ft0(ai)) ∈ V0 and tests if C1(xi) �= fs(xi). If for the majority of the
values xi it holds that C1(xi) �= fs(xi) then the procedure considers the cir-
cuit as marked and proceeds to extract a message, as described below; else it
stops here and outputs unmarked.
To extract a message msg ∈ {0, 1}� the procedure does the following:

It samples, for j = 1, . . . , �, many random values aj,i, computes the pseu-
dorandom values xj,i = (aj,i, ftj (aj,i)) ∈ Vj , and checks if C1(xj,i) �=
fs(xj,i). If for the majority of the values xj,i it holds that C1(xj,i) �=
fs(xj,i) then it sets msgj = 1, otherwise sets msgj = 0.
It then outputs msg = (msg1, . . . ,msg�).

To show pseudorandomness of the function family {Fk} even given the public
parameters (pk, pk′), the same argument as in the non-message embedding family
goes through. Moreover, for any function Fk in the family which was not marked,
the extraction procedure correctly outputs unmarked (because of the checks on
V0). Furthermore, for any message msg any function F

˜k where ˜k ← Mark(k,msg),
Extract(ek, F

˜k) correctly outputs the original message msg. This is because with
overwhelming probability, a random point in Vj is constrained if and only if
msgj = 1, by pseudorandomness and sparsity of the Vj . Then, correctness of
the CHC-PRF ensures that Extract computes msgj correctly when msgj = 0
(as the marked key is not constrained on Vj in that case), while constrained
pseudorandomness ensures correctness when msgj = 1 (as the marked key is
then constrained on Vj).

For watermarking security, we let the adversary choose a message msg.
We sample a key k = (s, (t0, t1, . . . , t�), r, s′) and give him F

˜k where ˜k ←
Mark(k,msg). However, we now only allow the adversary to modify slightly less
than half of the outputs of the marked challenge circuit F

˜k. As shown by Cohen
et al. [10], this restriction is necessary when considering watermarking schemes
that allow message embedding. So now, the adversary is given a marked func-
tion F

˜k, and produces some circuit C which agrees with F
˜k on more than half

of its input values. We use similar arguments as in the non message embedding
version, but now we additionally rely on the constraint-hiding property of the
CHC-PRF to argue that the sets Vj remain pseudorandom for the adversary,
even given the marked circuit F

˜k.
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Now, the extraction procedure Extract(ek, C) samples sufficiently many ran-
dom input values. Because C and F

˜k agree on more than half of their input
values, then with overwhelming probability the majority of the random input
values will agree on their output values in both C and F

˜k (by a standard Cher-
noff bound); in which case the extraction procedure recovers (s, (t0, . . . , t�)). But
then, by pseudorandomness of the sets Vj , we have by another Chernoff bound
that with overwhelming probability, the majority of the input values sampled
in Vj will agree on their output values in both C and F

˜k. By the sparsity and
pseudorandomness of the sets Vj , these input values are constrained in F

˜k if and
only if msgj = 1; and the correctness and pseudorandomness of the CHC-PRF
ensure that the extraction procedure outputs msg on input C with overwhelming
probability.

2 Preliminaries

2.1 Notations

For any probablistic algorithm alg(inputs), we may explicit the randomness it
uses by writing alg(inputs; coins).

For two circuits C,D, and ε ∈ [0, 1], we write C ∼=ε D if C and D agree on
an ε fraction of their inputs.

We will use the notations
s≈ and

c≈ to denote statistical and computational
indistinguishability, respectively.

We will use the following lemma:

Lemma 1 (Chernoff Bound). Let X1, . . . Xn be independent Bernoulli vari-
ables of parameter p ∈ [0, 1]. Then for all ε > 0, we have:

Pr

[

n
∑

i=1

Xi < n · (p − ε)

]

≤ e−2ε2n.

In particular for n = λ/ε2, this probability is exponentially small in λ.

2.2 Constrained PRFs

We recall the definition of two variants of contrained PRFs.

Definition 1 (Puncturable PRFs [6,7,13,15]). Let �in = �in(λ) and �out =
�out(λ) for a pair of polynomial-time computable functions �in(·) and �out(·). A
puncturable pseudo-random function (pPRF) family is defined by the following
algorithms:

– KeyGen(1λ) takes as input the security parameter λ, and outputs a PRF key
k.

– Eval(k, x) takes as input a key k and an input x ∈ {0, 1}�in and determinis-
tically outputs a value y ∈ {0, 1}�out .
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– Puncture(k, z) takes as input a key k and an input z ∈ {0, 1}�in , and outputs
a punctured key k{z}.

– PunctureEval(k{z}, x) takes as input a constrained key k{z} and an input
x ∈ {0, 1}�in , and outputs a value y ∈ {0, 1}�out .

We require a puncturable PRF to satisfy the following properties:

Functionality preserving under puncturing. Let z, x ∈ {0, 1}�in such that x �= z.
Then:

Pr
[

Eval(k, x) = PunctureEval(k{z}, x)
∣

∣

∣

∣

k ← KeyGen(1λ)
k{z} ← Puncture(k, z)

]

= 1.

Pseudorandomness on punctured points. For all z ∈ {0, 1}�in , we have that for
all PPT adversary A:

|Pr [A(k{z},Eval(k, z)) = 1] − Pr [A(k{z},U�out
) = 1]| ≤ negl(λ),

where k ← KeyGen(1λ), k{z} ← Puncture(k, z) and U�out
denotes the uniform

distribution over �out bits.

We have constructions of puncturable PRFs assuming the existence of one-
way functions [6,7,13,15].

Definition 2 ((Selective) Constraint-hiding Constrained PRFs). Let
�in = �in(λ) and �out = �out(λ) for a pair of polynomial-time computable func-
tions �in(·) and �out(·). A constraint-hiding constrained pseudo-random function
(CHC-PRF) family is defined by the following algorithms:

– KeyGen(1λ) takes as input the security parameter λ, and outputs a PRF key
k.

– Eval(k, x) takes as input a key k and an input x ∈ {0, 1}�in and determinis-
tically outputs a value y ∈ {0, 1}�out .

– Constrain(k,C) takes as input a key k and a binary circuit C : {0, 1}�in →
{0, 1}, and outputs a constrained key kC .

– ConstrainEval(kC , x) takes as input a constrained key kC and an input x ∈
{0, 1}�in , and outputs a value y ∈ {0, 1}�out .

We require the algorithms (KeyGen,Eval,Constrain,ConstrainEval) to satisfy
the following property, which captures the notions of constraint-hiding, (compu-
tational) functionality preserving and constrained pseudorandomness at the same
time [9,19]:

Selective Constraint-Hiding. Consider the following experiments between an
adversary A and a simulator Sim = (Simkey,Simch):
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expReal
CH (1λ) : expIdeal

CH (1λ) :

1. C ← A 1. C ← A
2. k ← KeyGen(1λ) 2.
3. kC ← Constrain(k,C) 3. kC ← Simkey(1|C|)
4. Output b ← AEval(·)(kC) 4. Output b ← ASimch(·)(kC)

where Simch(·) is defined as:

Simch(x) =

{

R(x) if C(x) = 1
ConstrainEval(kC , x) if C(x) = 0,

where R : {0, 1}�in → {0, 1}�out is a random function.
We say that F is a constraint-hiding contrained PRF if:

∣

∣Pr
[

expReal
CH (1λ) = 1

]

− Pr
[

expIdeal
CH (1λ) = 1

]∣

∣ ≤ negl(λ).

There are several constructions of constraint-hiding constrained PRFs under
LWE [4,8,9,19].

2.3 Tag-CCA Encryption with Pseudorandom Ciphertexts

Definition 3 (Tag-CCA2 Encryption with Pseudorandom Cipher-
texts).

Let (KeyGen,Enc,Dec) be an encryption scheme with the following syntax:

– KeyGen(1λ) takes as input the security parameter λ and outputs keys (pk, sk).
– Encpk,t(m) takes as input the public key pk, a message m and a tag t, and

outputs a ciphertext ct.
– Decsk,t(ct) takes as input the secret key sk, a ciphertext ct and a tag t, and

outputs a message m.

We will in the rest of the paper omit the keys as arguments to Enc and Dec
when they are clear from the context.

We will consider for simplicity perfectly correct schemes, so that for all mes-
sages m and tag t:

Pr[Decsk,t(Encpk,t(m)) = m] = 1.

over the randomness of KeyGen, Enc and Dec.
Denote by CT = CT pk be the ciphertext space of (KeyGen,Enc,Dec). For secu-

rity, consider for b ∈ {0, 1} the following experiments Expb
tag−CCA2(1

λ) between
a PPT adversary A and a challenger C:

exp0tag−CCA2(1
λ) : exp1tag−CCA2(1

λ) :

1. (pk, sk) ← KeyGen(1λ) 1. (pk, sk) ← KeyGen(1λ)
2. (m∗, t∗) ← ADecsk,·(·) 2. (m∗, t∗) ← ADecsk,·(·)

3. c∗ ← Encpk,t∗(m) 3. c∗ ← CT
4. Output b ← ADecsk,·(·) 4. Output b ← ADecsk,·(·)
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where Decsk,·(·) takes as input a tag t and a ciphertext c, and outputs Decsk,t(c)
We say that (KeyGen,Enc,Dec) is tag-CCA2 with pseudorandom ciphertexts if
for all PPT A who do not make any query of the form (t∗, ∗) to the decryption
oracle in phases 2 and 4:

∣

∣Pr[Exp0(1λ) = 1] − Pr[Exp1(1λ) = 1]
∣

∣ ≤ negl(λ).

Notice that the notion of tag-CCA2 encryption with pseudorandom cipher-
texts is weaker than both CCA2 encryption with pseudorandom ciphertexts,
and fully secure Identity-Based Encryption (IBE) with pseudorandom cipher-
texts. To see that CCA2 schemes with pseudorandom ciphertexts imply their
tag-CCA2 counterpart, notice that it suffices to encrypt the tag along with the
message. Then, make the decryption output ⊥ if the decrypted tag part does
not match the decryption tag. IBEs with pseudorandom ciphertexts also directly
imply a tag-CCA2 version by simply considering identities as tags.

In particular, we have construction of tag-CCA2 schemes with pseudorandom
ciphertexts under various assumptions, e.g. DDH, DCR, QR [11], or LWE [1].

We will need an additional property on the encryption scheme, namely that
its ciphertexts are sparse:

Definition 4 (Sparsity of Ciphertexts). We say that an encryption scheme
is sparse if for all ct from the ciphertext space, and all tags t:

Pr[Decsk,t(ct) �= ⊥ | (pk, sk) ← KeyGen(1λ)] ≤ negl(λ).

Note that we can build a sparse tag-CCA2 encryption scheme with pseu-
dorandom ciphertexts generically from any tag-CCA2 encryption scheme with
pseudorandom ciphertexts. To do so, it suffices to add a random identifier
α ∈ {0, 1}λ to the public key; to encrypt some message m, encrypt instead the
message (m,α) using the non-sparse encryption scheme. Then, when decrypting,
output ⊥ if the identifier α does not match. For any fixed ct, the probability that
it decrypts under the new encryption scheme is negligible over the randomness
of α (sampled during KeyGen).

3 Watermarking PRFs

In this section, we construct a watermarking scheme and its associated water-
markable PRF family. The marking procedure is public, and security holds even
when the attacker has access to an extraction oracle. We can instantiate the
primitives we require under different various assumptions, e.g. DDH, LWE, or
Factoring. We do not consider the case of embedding messages in the marked
circuit yet though; the extraction algorithm here simply detects if the key has
been marked or not. We will study the case of message embedding in Sect. 4.
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3.1 Definitions

We first define the notion of watermaking. We tailor our notation and defini-
tions to implicitly consider the setting where marking is public and extraction
is secret.5

Definition 5 (Watermarking Scheme). Let λ ∈ N be the security parameter
and ε ∈ [0, 1] be a parameter. A watermarking scheme WatMk for a watermark-
able family of pseudorandom functions F = {Fpp : Xpp → Ypp}pp is defined by
the following polynomial-time algorithms:

– Setup(1λ) → (pp, ek): On input the security parameter 1λ, outputs the public
parameters pp and the extraction key ek.

– KeyGen(1λ, pp) → k: On input the security parameter 1λ and public parame-
ters pp, outputs a PRF key k.

– Fk(x) → y: On input a key k and an input x ∈ Xpp, outputs y ∈ Ypp.
– Mark(k) → ˜k: On input and a PRF key k ∈ F , outputs a marked key ˜k.
– Extract(ek, C) → {marked, unmarked}: On input an extraction key ek and an

arbitrary circuit C, outputs marked or unmarked.

We will simply denote by Fk some circuit that computes Fk(x) on input x
(which is efficiently computable given k).

Definition 6 (Watermarking Properties). A watermarking scheme WatMk
has to satisfy the following properties:

Non-triviality. We require two properties of non-triviality.

1. We require that functions in F are unmarked:

Pr
[

Extract(ek, Fk) = unmarked

∣

∣

∣

∣

(pp, ek) ← Setup(1λ)
k ← KeyGen(1λ, pp)

]

= 1.

2. Any fixed circuit C (fixed independently of pp) should be unmarked:

Pr
[

Extract(ek, C) = unmarked | (pp, ek) ← Setup(1λ)
]

≥ 1 − negl(λ).

Strong Correctness. It should be hard to find points on which Fk and F
˜k

output different values, given oracle access to both circuits.
For all PPT A we require:

Pr

⎡

⎢

⎢

⎣

Fk(x) �= F
˜k(x)

∣

∣

∣

∣

∣

∣

∣

∣

(pp, ek) ← Setup(1λ)
k ← KeyGen(1λ, pp)
˜k ← Mark(k)
x ← AFk(·),F ˜k

(·),Extract(ek,·)(pp)

⎤

⎥

⎥

⎦

≤ negl(λ).

5 We can directly extend the following definitions to the weaker setting of secret mark-
ing, by additionally giving the adversary oracle access to the marking algorithm in
the relevant properties.
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In particular, for any fixed x, the probability that Fk(x) �= F
˜k(x) is negligible.6

Extended Pseudorandomness. We do not require PRF security to hold if
the adversary is given the extraction key. We still require that the PRFs in the
family remain secure even given oracle access to the extraction algorithm.

We require that for all PPT A:

AFk(·), Extract(ek,·)(pp)
c≈ AR(·), Extract(ek,·)(pp),

where (pp, ek) ← Setup(1λ), k ← KeyGen(1λ, pp), and R is a random function.

ε-Unremovability. Define the following experiment Expremov
A (1λ) between an

adversary A and a challenger:

1. The challenger generates (pp, ek) ← Setup(1λ). It also samples a random
k ← KeyGen(1λ, pp), and gives the public parameters pp and a circuit ˜C = F

˜k

to the adversary, where ˜k ← Mark(k).
2. The adversary AExtract(ek,·)(pp, ˜C) has access to an extraction oracle, which

on input a circuit C, outputs Extract(ek, C).
3. The adversary AExtract(ek,·)(pp, ˜C) outputs a circuit C∗. The output of the

experiment is 1 if Extract(ek, C∗) = unmarked; and the output of the experi-
ment is 0 otherwise.

We say that an adversary A is ε-admissible if its output C∗ in phase 3. satisfies
C∗ ∼=ε

˜C, i.e. C∗ and ˜C agree on an ε fraction of their inputs.
We say that a watermarking scheme achieves ε-unremovability if for all ε-

admissible PPT adversaries A we have:

Pr[Expremov
A (1λ) = 1] ≤ negl(λ).

Extraction Correctness. We require that:

Pr

⎡

⎣Extract(ek, F
˜k) = marked

∣

∣

∣

∣

∣

∣

(pp, ek) ← Setup(1λ)
k ← KeyGen(1λ, pp)
˜k ← Mark(k)

⎤

⎦ ≥ 1 − negl(λ),

but in this case this follows from ε-Unremovability, as otherwise an Adversary
could just directly output the marked challenge in the ε-Unremovability game.

3.2 Construction

Let λ ∈ N be the security parameter and let ε = 1/poly(λ) be a parameter.
We describe our construction of a watermarkable family Fpp and its associated
ε-unremovable watermarking scheme.

We will use the following primitives in our construction:
6 In particular, this notion of correctness is stronger than simply requiring that the

output of the original PRF and the marked version differ at most on a negligible
fraction of inputs.
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– E in = (E in.KeyGen,Encin,Decin), a CCA2 secure public-key encryption scheme
– Eout = (Eout.KeyGen,Encout,Decout), a sparse tag-CCA2 encryption scheme

with pseudorandom ciphertexts
– pPRF = (pPRF.KeyGen, pPRF.Eval,Puncture,PunctureEval), a puncturable

PRF family
– PRF = (PRF.KeyGen,PRF.Eval), a standard PRF family.

We will use the following notation:

– rin = rin(λ) and rout = rout(λ) are the number of random bits used by Encin

and Encout, respectively;
– (X ,Y(1)) = (Xpp,Y(1)

pp ) are the input and output spaces of pPRF, where we
assume that X and Y(1) are of size super-polynomial in λ;

– We’ll suppose that PRF has input and output spaces (X , {0, 1}rout

) =
(Xpp, {0, 1}rout

);
– CT = CT pp is the ciphertext space of Eout.
– We set the input space of our watermarkable PRF to be X , and its output

space to be Y = Y(1) × CT . For y ∈ Y, we will write y = (y1, y2), where
y1 ∈ Y(1) and y2 ∈ CT .

We now describe our construction of a watermarking scheme, with its asso-
ciated watermarkable PRF family:

– Setup(1λ): On input the security parameter 1λ, sample (pkin, skin) ←
E in.KeyGen(1λ) and (pkout, skout) ← Eout.KeyGen(1λ). Output:

pp = (pkin, pkout);

ek = (skin, skout).

– KeyGen(1λ, pp): On input the security parameter 1λ and the public parame-
ters pp, sample s ← pPRF.KeyGen(1λ), s′ ← PRF.KeyGen(1λ), r ← {0, 1}rin

,
and z ← X . The key of the watermarkable PRF is:

k = (s, z, r, s′, pp).

For ease of notation, we will simply write k = (s, z, r, s′) when the public
parameters pp are clear from the context.

– Fk(x): On input a key k and input x, output

Fk(x) =
(

fs(x), Encoutx (pkout,Enc
in(pkin, (fs(z), z); r) ; f ′

s′(x))
)

where fs(·) = pPRF.Eval(s, ·), f ′
s′(·) = PRF.Eval(s′, ·), and Encout encrypts

Encin(pkin, (fs(z), z) ; r) using tag x and randomness f ′
s′(x).

– Mark(k): On input a key k = (s, z, r, s′), do the following:
• Puncture the key s at point z: s{z} ← pPRF.Puncture(s, z).
• Compute cin = Encin(pkin, (fs(z), z) ; r).
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• Output the marked key

˜k = (s{z}, cin, s′),

where the associated evaluation circuit computes:

F
˜k(x) =

(

PunctureEval(s{z}, x) , Encoutx (pkout, c
in ; f ′

s′(x))
)

.

– Extract(ek, C): Let w = λ/ε = poly(λ). On input the extraction key ek and a
circuit C do the following:

• If the input or output length of C do not match X and Y(1) ×CT respec-
tively, output unmarked.

• For all i ∈ [w] sample uniformly at random xi ← X , and do the following:
∗ Parse C(xi) = (C1(xi), C2(xi)) where C1(xi) ∈ Y(1) and C2(xi) ∈ CT .
∗ Compute cini = Decoutskout,xi

(C2(xi)) (using secret key skout and tag xi);
∗ If cini �= ⊥, compute (yi, zi) = Decinskin(c

in
i ). If C1(zi) �= yi, output marked.

• If the procedure does not output marked after executing the loop above,
output unmarked.

Note that when it is clear from the context, we will omit writing pkout, pkin.

3.3 Correctness Properties of the Watermarking Scheme

We first show that our watermarking scheme satisfies the non-triviality proper-
ties.

Claim (Non-triviality). Assume E in and Eout are perfectly correct, and that Eout

is sparse. Then our watermarking scheme satisfies the non-triviality properties.

Proof. 1. Let (pp, ek) ← Setup(1λ) and k = (s, z, r, s′) ← KeyGen(1λ, pp); then
Extract(ek, Fk) always outputs unmarked. This is because by perfect correct-
ness of E in and Eout, we have that (yi, zi) = (fs(z), z) for all i ∈ [w], and
therefore C1(zi) = yi = fs(z).

2. Fix a circuit C = (C1, C2), and sample (pp, ek) ← Setup(1λ). By spar-
sity of Eout, we have that for all xi ∈ X , the probability that cini :=
Decoutskout,xi

(C2(xi)) �= ⊥ is negligible (over the randomness of Setup(1λ) alone).
In particular, taking a union bound over the w = poly(λ) points {xi}i∈[w]

sampled by Extract, we have that cini = ⊥ with overwhelming probability, and
therefore

Pr
[

Extract(ek, C) = unmarked | (pp, ek) ← Setup(1λ)
]

≥ 1 − negl(λ).

Claim (Strong Correctness). Suppose pPRF is a punctured PRF, PRF is secure
and Eout is tag-CCA2 with pseudorandom ciphertexts. Then the watermarking
scheme satisfies strong correctness.
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Proof. We show that the view of the adversary is essentially independent of z.
First, notice that it suffices to argue strong correctness when the adversary A

only has oracle access to Fk(·) but not the marked version F
˜k(·). This is because if

we have the seemingly weaker version of correctness where the adversary doesn’t
have oracle access to F

˜k(·), we can simulate oracle access to F
˜k(·) by simply

forwarding the output of Fk(·) on the same input. Now, an adversary can only
tell the difference if he makes a query on z, which breaks the weaker notion of
correctness (with a polynomial loss equal to his number of PRF queries).

Therefore, we focus on proving

Pr

⎡

⎢

⎢

⎣

Fk(x) �= F
˜k(x)

∣

∣

∣

∣

∣

∣

∣

∣

(pp, ek) ← Setup(1λ)
k ← KeyGen(1λ, pp)
˜k ← Mark(k)
x ← AFk(·),Extract(ek,·)(pp)

⎤

⎥

⎥

⎦

≤ negl(λ).

We prove the claim by a sequence of hybrids.

Hybrid 0. In this hybrid, the adversary A has oracle access to Fk(·) and
Extract(ek, ·) where (pp, ek) ← Setup(1λ) and k = (s, z, r, s′) ← KeyGen(1λ, pp).

Hybrid 1. We modify how PRF queries are answered. Now, instead of using
f ′

s′(x) as randomness to encrypt cin = Encin(fs(z), z ; r) using Encout with tag
x, we pick a random function R(1) : X → {0, 1}rout

and use R(1)(x) as the
encryption randomness to output:

(fs(x),Encoutx (cin ; R(1)(x)),

where the function R(1) is common across all the PRF queries.

Hybrid 2. Now we keep track of the PRF queries x from the adversary, as well
as all the xi’s that are sampled during the calls to the extraction oracle. We
abort the experiment if at any point there is some x that has been both queried
by the adversary and sampled during an extraction call.

Hybrid 3. We now pick a random function R(3) : X → CT and answer to PRF
oracle queries x from the adversary with:

(fs(x), R(3)(x)).

Now, by functionality preserving under puncturing of pPRF, z is the only
point such that Fk(z) �= F

˜k(z). However the view of the adversary is independent
of z, and therefore the probability that he outputs z is negligible, over the random
choice of z (sampled during KeyGen(1λ, pp)).

We prove the indistinguishability of the hybrids in the next section, as our
proof of extended pseudorandomness uses the same hybrids.

3.4 Security Properties of the Watermarking Scheme

Unremovability. We first prove that our construction is ε-unremovable (where
ε = 1/poly(λ) is a parameter of our scheme).
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Claim (ε-unremovability). Suppose E in is CCA2-secure, and f is a puncturable
PRF. Then the watermarking scheme is ε-unremovable.

Proof. We prove the claim by a sequence of hybrids.

Hybrid 0. This is the ε-Unremovability game Expremov
A (1λ).

Hybrid 1. We now change how extraction oracle queries are answered (including
the call used to determine the output of the experiment). Let k = (s, z, r, s′) ←
PRFpp.KeyGen(1λ, pp) be the (unmarked) PRF key sampled to produce the chal-
lenge marked circuit, and cin = Encin(s, z ; r) be the associated ciphertext (which
is used to produce the challenge marked circuit ˜C). On extraction query C from
the adversary, the extraction procedure samples xi’s for i ∈ [w] as before. Denote
by E the event that Decoutskout,xi

(C2(xi)) = cin, i.e. the second part C2(xi) decrypts
to cin when decrypting using tag xi. If E occurs, then instead of decrypting this
inner ciphertext cin in the extraction procedure, we directly check C1(z) �= fs(z);
in particular cin, z and fs(z) are now hard-coded in the modified extraction
procedure.

Hybrid 2. We change how extraction calls are answered and how the challenge
marked circuit is generated. Let 0X and 0CT be arbitrary fixed values in X and
CT respectively. We now set

cin = Encin(0X , 0CT ),

which is used as the ciphertext hard-coded in the extraction oracle (used to
handle event E), and used to produce challenge marked circuit ˜C.

Hybrid 3. We change how we answer extraction queries (including the one deter-
mining the output of the experiment). Now pick a uniformly random R ∈ Y(1).
Whenever E occurs during an extraction oracle call, we check C1(z) �= R instead.
In particular, the modified extraction oracle now has cin = Encin(0X , 0CT ), z, and
R hard-coded.

Hybrid 4. Now if there is any extraction oracle call such that E occurs and
C1(z) = R, we abort the experiment.

Now, all the outputs of the extraction oracle queries are independent of R,
as R only affects the output of extraction queries only when E occurs, and
the extraction oracle queries now outputs marked whenever there exists some
index i such that E occurs, independently of R. Recall that the adversary wins
the game if he outputs a circuit C∗ such that C∗ ∼=ε

˜C and Extract(ek, C∗) =
unmarked. By construction, we have that during the execution of Extract(ek, C∗)
that defines the output of the experiment, Extract samples at least one xi such
that C∗(xi) = ˜C(xi) with overwhelming probability. This is because C∗ and ˜C
agree on a fraction ε = 1/poly(λ) of inputs, so that the probability that none
of the w = λ/ε samples xi’s satisfies C∗(xi) = ˜C(xi) is at most (1 − ε)λ/ε ≤
e−λ = negl(λ). Now by correctness of the outer encryption scheme Eout, we have
Decoutskout,xi

(C∗(xi)) = cin, so that event E occurs, and Extract outputs unmarked
only if C∗

1 (z) = R. As the view of the adversary in the experiment is now
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independent of R, the experiment outputs marked with overwhelming probability
(over the randomness of R alone).

Indistinguishability of the Hybrids. We now show that the hybrids above are
indistinguishable.

Lemma 2. Assuming E in is perfectly correct, we have Hybrid 0 ≡ Hybrid 1.

The view of the adversary is identical in Hybrid 0 and Hybrid 1 by perfect
correctness of the inner encryption E in: in the latter we simply hardcode the
result of the decryption whenever we have to decrypt cin during an extraction
oracle call.

Lemma 3. Assuming E in is CCA2-secure, we have Hybrid 1
c≈ Hybrid 2.

We build a reduction that turns any distinguisher between Hybrid 1 and Hybrid
2 to a CCA2 adversary for E in. The reduction essentially does not pick any
secret key for Encin but can still answer extraction oracle queries by interacting
with the CCA2 challenger. More precisely, the reduction does not sample the
secret key skin associated to the CCA2 scheme E in, but samples the other parts
of (pp, ek) as in Hybrid 1. It then sends CCA2 challenge messages (fs(z), z),
and (0X , 0CT ), and gets back a challenge ciphertext cin, and sets the challenge
circuit as F

˜k where ˜k = (s{z}, cin, s′). To answer extraction oracle queries for
the distinguisher, it uses the CCA2 challenger to get the decryption of any
c �= cin (which correspond to sampling xi and event E does not occur); and
whenever E occurs (which correspond to having cini = cin), it uses the hard-coded
values (fs(z), z) to produce the output of the extraction oracle, by checking
if C1(z) �= fs(z) directly without decrypting cin. Now if cin is an encryption
of (fs(z), z), the view of the distinguisher is as in Hybrid 1; and if cin is an
encryption of (0X , 0CT ) then its view is as in Hybrid 2.

Lemma 4. Assuming pPRF satisfies constrained pseudorandomness, we have
Hybrid 2

c≈ Hybrid 3.

This is done by a simple reduction to the constrained pseudorandomness
property of pPRF: the reduction samples some random z and gets a constrained
key s{z} from the constrained pseudorandomness game. Then, it gets a value
y∗, which is used whenever event E occurs, to check C1(z) �= y∗. If y∗ = fs(z),
the view of the adversary is as in Hybrid 2; if y∗ is random, then his view is as
in Hybrid 3.

Lemma 5. We have Hybrid 3
s≈ Hybrid 4.

For any C queried by the adversary as an extraction oracle query, the proba-
bility that E occurs and C1(z) = R is negligible over the randomness of R alone
(where we use that Y(1) has super-polynomial size). Therefore, with overwhelm-
ing probability, all extraction oracle queries where E occurs output marked,
independently of R. In particular, an union bound over the polynomial number
of extraction queries made by the adversary gives that the probability that the
experiment aborts is negligible.
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Extended Pseudorandomness. Next, we show that our construction satisfies
the extended pseudorandomness property.

Claim (Extended Pseudorandomness). Suppose pPRF and PRF are secure and
Eout is tag-CCA2 with pseudorandom ciphertexts. Then the watermarking
scheme satisfies extended pseudorandomness.

Proof. We prove the claim by a sequence of hybrids.

Hybrid 0. In this hybrid, the adversary A has oracle access to Fk(·) and
Extract(ek, ·) where (pp, ek) ← Setup(1λ) and k = (s, z, r, s′) ← KeyGen(1λ, pp).

Hybrid 1. We modify how PRF queries are answered. Now, instead of using
f ′

s′(x) as randomness to encrypt cin = Encin(fs(z), z; r) with tag x, we pick a
random function R(1) : X → {0, 1}rout

and use R(1)(x) as randomness, and
output:

(fs(x),Encoutx (cin;R(1)(x)),

where the function R(1) is common throughout the experiment.

Hybrid 2. Now we keep track of the PRF queries x from the adversary, as well
as all the xi’s that are sampled during the calls to the extraction oracle. We
abort the experiment if at any point there is some x that has been both queried
by the adversary and sampled during an extraction call.

Hybrid 3. We now pick a random function R(3) : X → CT and answer to PRF
oracle queries x from the adversary with:

(fs(x), R(3)(x)).

Hybrid 4. We now additionally pick a random function R(4) : X → Y(1), and
answer to PRF oracle queries x from the adversary with:

(R(4)(x), R(3)(x)).

Hybrid 5. Now we do not abort the experiment even if some x is both queried
by the adversary and sampled during an extraction call.

Now the adversary has oracle access to R(·) = (R(4)(·), R(3)(·)) and
Extract(ek, ·).

Indistinguishability of the Hybrids. We now show that the hybrids above are
indistinguishable.

Lemma 6. Assuming the security of PRF, we have Hybrid 0
c≈ Hybrid 1.

We build a reduction from any distinguisher to an attacker for the PRF
security game for PRF. On PRF query x from the distinguisher, the reduction
queries x in the PRF game, and uses the answer as encryption randomness for
the outer scheme Eout. If the value is f ′

s′(x), the view of the distinguisher is as
in Hybrid 0; if it is random R(1)(x) then its view is as in Hybrid 1.
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Lemma 7. We have Hybrid 1
s≈ Hybrid 2.

We argue that the probability that the experiment aborts is negligible.
Suppose that some x has been both queried by the adversary as a PRF query,

and sampled during an extraction oracle call.
If it has been sampled by the extraction procedure after the adversary queried

it, this means that the extraction procedure sampled an xi that the adversary
queried previously, which happens with probability at most QPRF /|X |, where
QPRF is the number of PRF queries the adversary makes. An union bound on the
polynomial number of samples used in every extraction call and the polynomial
number of extraction calls imply that the probability that this event happens is
negligible (where we use that X has super-polynomial size).

Otherwise, it means that the adversary queries an xi that has previously been
sampled by the extraction procedure. However, each output of the extraction
oracle leaks at most 1 bit of entropy on the fresh xi’s it sampled during its
execution. Therefore the adversary can only succeed in outputting such an xi

with negligible probability.

Lemma 8. Assuming Eout is a tag-CCA2 encryption scheme with pseudoran-
dom ciphertexts, then Hybrid 2

c≈ Hybrid 3.

We replace the right part Encoutx (cin;R(1)(x)) of the outputs to every PRF
queries with R(3)(x) for some random R(3), one by one, using a hybrid argument.

To change the output to some query x∗, we reduce any distinguisher using
our assumption on Eout. The reduction answers extraction queries using the
decryption oracle provided by the tag-CCA2 game, and sends as a challenge
message cin = Encin(fs(z), z ; r) and challenge tag x∗, and uses the challenge
ciphertext from the tag-CCA2 game as a right part of the output to the PRF
query on x∗. As we make our experiment abort if an extraction call uses some
tag that is queried at any point by the distinguisher, we never have to decrypt
any ciphertext with tag x∗, so that we can faithfully answer all the extraction
queries by using the decryption oracle from the tag-CCA2 game. Note that we
have to change the output of all the PRF queries on x∗ in this hybrid.

If the challenge ciphertext from the tag-CCA2 game is a proper encryption
of cin under tag x∗, then the view of the distinguisher is as in Hybrid 2; and if
it is random, then its view is as in Hybrid 3.

Lemma 9. Assuming the security of pPRF, we have Hybrid 3
c≈ Hybrid 4.

We reduce any distinguisher to an attacker for the PRF security game. Our
reduction, on PRF query x from the distinguisher, forwards it as a query in the
PRF game. If it receives PRF values fs(x), the view of the distinguisher is as in
Hybrid 3; if it receives a random R(4)(x), the view of the distinguisher is as in
Hybrid 4.

Lemma 10. We have Hybrid 4
s≈ Hybrid 5.

The same argument as to prove Hybrid 1
s≈ Hybrid 2 applies here.
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4 Watermarking PRFs with Message-Embedding

In this section we describe our construction of a watermaking scheme that sup-
ports message embedding. Our construction is very similar to the non message
embedding version: the main difference is that we now use a constraint-hiding
constrained PRF as a base PRF.

4.1 Definitions

Let λ ∈ N be the security parameter, ε ∈ [0, 1] and � = �(λ) be parameters.
We make a few syntactical changes to the notions introduced in Sect. 3.1 when
considering message-embedding watermarking schemes:

– Mark(k,msg) → ˜k: On input a key k and a message msg ∈ {0, 1}�, outputs a
marked ˜k;

– Extract(ek, C) → msg: On input an extraction key ek and an arbitrary circuit
C, outputs a message msg ∈ {0, 1}� ∪ {unmarked}.

– Strong correctness: The adversary can now adaptively choose which message
to mark.
For all PPT A we require:

Pr

⎡

⎢

⎢

⎢

⎢

⎣

Fk(x) �= F
˜k(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(pp, ek) ← Setup(1λ)
k ← KeyGen(1λ, pp)
msg∗ ← AFk(·),Extract(ek,·)(pp)
˜k ← Mark(k,msg∗)
x ← AFk(·),F ˜k

(·),Extract(ek,·)(pp)

⎤

⎥

⎥

⎥

⎥

⎦

≤ negl(λ).

– ε-unremovability: the adversary now additionally chooses some message
msg∗ given oracle access to the extraction procedure, and wins if he pro-
duces a circuit C∗ that is ε-close to the marked challenge circuit such
that Extract(ek, C∗) �= msg∗, as described by the following experiment
Expremov−msg(1λ):
1. The challenger generates (pp, ek) ← Setup(1λ). It also samples a random

k ← KeyGen(1λ, pp), and gives the public parameters pp to the adversary.
2. The adversary computes a challenge message msg∗ ∈ {0, 1}� ←

AExtract(ek,·)(pp), given access to an extraction oracle, which on input a
circuit C, outputs Extract(ek, C).

3. The challenger computes ˜C ← Mark(k,msg∗) and sends it to the adver-
sary.

4. The adversary AExtract(ek,·)(pp, ˜C) can make further extraction oracle
queries.

5. The adversary AExtract(ek,·)(pp, ˜C) outputs a circuit C∗. The output of
the experiment is 1 if Extract(ek, C∗) �= msg∗; and the output of the
experiment is 0 otherwise.
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We now say that an adversary A is ε-admissible if its output C∗ in phase 5.
satisfies C∗ ∼=ε

˜C.
We say that a watermarking scheme achieves ε-unremovability if for all ε-
admissible PPT adversaries A we have:

Pr[Expremov−msg
A (1λ) = 1] ≤ negl(λ).

– Extraction correctness: we could now require that for all message msg ∈
{0, 1}�:

Pr
[

Extract(ek,Mark(k,msg)) = msg

∣

∣

∣

∣

(pp, ek) ← Setup(1λ)
k ← KeyGen(1λ, pp)

]

≥ 1 − negl(λ),

but again, this property follows from ε-Unremovability.

4.2 Construction

Let λ ∈ N be the security parameter, let ρ = 1/poly(λ), and � = poly(λ) be
parameters. Let ε = 1/2 + ρ. We describe our construction of a watermarkable
family Fpp and its associated ε-unremovable watermarking scheme supporting
the embedding of messages of length �.

We’ll use the following primitives in our construction:

– E in = (E in.KeyGen,Encin,Decin), a CCA2 secure public-key encryption scheme
– Eout = (Eout.KeyGen,Encout,Decout), a sparse tag-CCA2 encryption scheme

with pseudorandom ciphertexts
– chcPRF = (chcPRF.KeyGen, chcPRF.Eval,Constrain,ConstrainEval), a

constraint-hiding constrained PRF
– PRF = (PRF.KeyGen,PRF.Eval), a PRF family
– PRF′ = (PRF′.KeyGen,PRF′.Eval), another PRF family.

We will use the following notations:

– rin = rin(λ) and rout = rout(λ) are the number of random bits used by Encin

and Encout, respectively;
– (X ,Y(1)) = (Xpp,Y(1)

pp ) are the input and output spaces of chcPRF; where we
assume that X and Y(1) are of size super-polynomial in λ;

– We’ll suppose that PRF has input and output spaces (X , {0, 1}rout

) =
(Xpp, {0, 1}rout

);
– CT = CT pp is the ciphertext space of Eout.
– We set the input space of our watermarkable PRF to be X , and its output

space to be Y = Y(1) × CT . For y ∈ Y, we will write y = (y1, y2), where
y1 ∈ Y(1) and y2 ∈ CT .

– We’ll suppose that PRF′ as input space X (1) and output space X (2) such that
X = X (1) ×X (2), where we will suppose that both X (1) and X (2) have super-
polynomial size. In particular, for x ∈ X (1), and t ← PRF′.KeyGen, we have
(x,PRF′.Eval(t, x)) ∈ X .
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– For t a key for PRF′, define Vt := {(x,PRF′.Eval(t, x)) |x ∈ X (1)}. Let Ct

the circuit, which, on input x ∈ X , parses x as (x1, x2) ∈ X (1) × X (2), and
outputs 1 if x2 = PRF′.Eval(x1), and outputs 0 otherwise; in other words, Cj

tests membership in Vj . If the key tj is indexed by some j, we will write Vj

and Cj instead of the more cumbersome Vtj and Ctj .

We now describe our construction of a watermarking scheme, with its asso-
ciated watermarkable PRF family:

– Setup(1λ): On input the security parameter 1λ, sample (pkin, skin) ←
E in.KeyGen(1λ) and (pkout, skout) ← Eout.KeyGen(1λ). Output:

pp = (pkin, pkout);

ek = (skin, skout).

– KeyGen(1λ, pp): On input the security parameter 1λ, and the public param-
eters pp, sample s ← chcPRF.KeyGen(1λ), s′ ← PRF.KeyGen(1λ) and r ←
{0, 1}rin

. Sample for j ∈ {0, . . . , �}: tj ← PRF′.KeyGen(1λ). The key of the
watermarkable PRF is:

k = (s, (t0, t1 . . . , t�), r, s′, pp).

For ease of notation, we will simply write k = (s, (t0, t1 . . . , t�), r, s′) when the
public parameters pp are clear from the context.

– Fk(x): On input a key k and input x, output

Fk(x) =
(

fs(x), Encoutx (pkout,Enc
in(pkin, (s, t0, . . . , t�) ; r) ; f ′

s′(x))
)

where fs(·) = pPRF.Eval(s, ·), f ′
s′(·) = PRF.Eval(s′, ·) and Encout encrypts

Encin(pkin, (s, t1, . . . , t�) ; r) using tag x and randomness f ′
s′(x).

– Mark(k,msg): On input a key k = (s, (t0, t1 . . . , t�), r, s′), and a message msg ∈
{0, 1}�, do the following:

• Compute the circuit

Cmsg = C0 ∨
�

∨

j=1
msgj=1

Cj ,

which on input x ∈ X outputs 1 if and only if x ∈ V0 or if there exists
some j ∈ [�] such that msgj = 1 and x ∈ Vj , and 0 otherwise, where
Vj = {(x1,PRF

′.Eval(tj , x1))}x1∈X (1) .
• Constrain the key s with respect to Cmsg: smsg ←

chcPRF.Constrain(s, Cmsg).
• Compute cin = Encin(pkin, (s, t0, . . . , t�) ; r).
• Output the marked key:

˜k = (smsg, c
in, s′),

where the associated circuit computes:

F
˜k(x) =

(

ConstrainEval(smsg, x) , Encoutx (pkout, c
in ; f ′

s′(x))
)

.
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– Extract(ek, C): Let w = λ/ρ2 = poly(λ). On input the extraction key ek and
a circuit C do the following:

• If the input or output length of C do not match X and Y(1) ×CT respec-
tively, output unmarked.

• For all i ∈ [w] sample uniformly at random xi ← X , and do the following:
∗ Parse C(xi) = (C1(xi), C2(xi)) where C1(xi) ∈ Y(1) and C2(xi) ∈ CT .
∗ Compute cini = Decoutskout, xi

(C2(xi)) (using secret key skout and tag xi);
∗ If cini �= ⊥, compute (si, t0,i, . . . , t�,i) = Decinskin(c

in
i ).

• Let (s, t0, . . . , t�) the majority of the w values (si, t0,i, . . . , t�,i), where
i ∈ [w] (that is if Decinskin outputs some (s, t0, . . . , t�) more than w/2 times
in the loop above). If such a majority does not exist, stop here and output
unmarked.

• For i ∈ [w], do the following:
∗ Sample z0,i ← V0 where V0 = {(x,PRF′.Eval(t0, x)) |x ∈ X (1)}.

This is done by picking a random z1 ← X (1) and setting z =
(z1,PRF′.Eval(t0, z1)).

∗ Test C1(z0,i) �= fs(z0,i).
∗ If a majority are equal, stop here and output unmarked.

• For j ∈ [�], do the following:
∗ For i ∈ [w] sample zj,i ← Vj where Vj = {(x,PRF′.Eval(tj , x)) |x ∈

X (1)}.
∗ Test for i ∈ [w]: C1(zj,i) �= fs(zj,i).
∗ If a majority are different (for i ∈ [w]), set msgj = 1, otherwise set

msgj = 0.
• Output msg = (msg1, . . . ,msg�).

Note that when it is clear from the context, we will omit writing pkout, pkin.

4.3 Correctness Properties of the Watermarking Scheme

Claim. Assuming E in and Eout are perfectly correct and E in is sparse, the scheme
above satisfies the non-triviality properties.

Proof. 1. For (pp, ek) ← Setup(1λ) and k = (s, (t0, t1 . . . , t�), r, s′) ←
KeyGen(1λ, pp), we have that Extract, on input Fk, gets (s, t0, . . . , t�) as the
majority, by perfect correctness of E in and Eout. Therefore, the first check (corre-
sponding to j = 0) makes Extract(ek, Fk) output unmarked (as (Fk)1(z) = fs(z)
for all z ∈ X ).

2. Let C be a fixed circuit, and let (pp, ek) ← Setup(1λ). By sparsity of Eout,
the probability that any of the w values C1(xi) decrypts, for i ∈ [w], is negligible.
Therefore, Extract(ek, C) outputs unmarked.

Claim. Assuming PRF and PRF′ are secure, chcPRF preserves functionality on
unconstrained inputs, and Eout is tag-CCA2 with pseudorandom ciphertexts,
then the scheme above satisfies strong correctness.
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Proof. We use the exact same hybrids as in the non-message embedding case,
after which the view of the adversary is independent of (t0, . . . , t�). We then con-
clude in two steps. First, the probability that the adversary outputs a constrained
point is negligible. This is by PRF security of PRF′. Actually, the adversary can-
not even find a point in any Vj , j ∈ {0, . . . , �} (where the set of constrained
points the union of a subset of the Vj ’s defined by msg∗), as it would be indistin-
guishable from predicting one of � + 1 random values (in X (2), the output space
of PRF′).

Second, the probability that the adversary finds an unconstrained point on
which Fk and F

˜k differ is also negligible; this is by functionality preserving of
chcPRF on unconstrained inputs (which is implied by our definition of constraint-
hiding).

4.4 Security Properties of the Watermarking Scheme

Extended Pseudorandomness. We show here that our scheme satisfies
Extended Pseudorandomness.

Claim (Extended Pseudorandomness). Suppose chcPRF and PRF are secure, and
that Eout is tag-CCA2 with pseudorandom ciphertexts. Then the watermarking
scheme satisfies extended pseudorandomness.

Proof. The proof is similar to the one for Claim 3.4. The only difference is that
we now also keep track of the points zj,i sampled from the sets Vj during the calls
to the extraction oracle, and we abort in Hybrids 2 to 4 if any of the points zj,i

is queried to the PRF oracle. This event only occurs with negligible probability
as the sets Vj are of super-polynomial size.

Unremovability. We prove that our construction is ε-unremovable (where ε =
1/2 + ρ where ρ = 1/poly(λ) is a parameter of our scheme).

Claim. Suppose that E in is CCA2-secure, chcPRF is a constraint-hiding con-
strained PRF, and PRF′ is a PRF. Then the watermarking scheme is ε-
unremovable.

Proof. We prove the claim via a sequence of hybrids.

Hybrid 0. This is the ε-Unremovability game Expremov−msg
A (1λ).

Hybrid 1. We now change how extraction calls are answered (including the one
used to determine the output of the experiment). Let k = (s, (t0, . . . , t�), r, s′) ←
PRFpp.KeyGen(1λ, pp) be the (unmarked) PRF key sampled to produce the chal-
lenge marked circuit, and cin = Encin(s, t0, . . . , t� ; r) be the associated ciphertext
(which is used to produce the challenge marked circuit ˜C). On extraction query C
from the adversary, the extraction procedure samples xi’s for i ∈ [w] as before.
Let denote by E the event that Decoutskout, xi

(C2(xi)) = cin, i.e. the second part
C2(xi) decrypts to cin when decrypting using tag xi. If E occurs, then instead
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of decrypting this inner ciphertext cin in the extraction procedure, we directly
consider it as outputting (s, t0, . . . , t�) (used to pick the majority of decryption
outputs); in particular cin, s and (t0, . . . , t�) are now hard-coded in the modified
extraction procedure.

Hybrid 2. We change how extraction calls are answered and how the challenge
marked circuit is generated. Let 0K and 0K′ be arbitrary fixed keys for chcPRF
and PRF′ respectively. We now use:

cin = Encin(0K, 0�+1
K′ ),

which is used as the ciphertext hard-coded in the extraction oracle (used to han-
dle event E), and used to produce the challenge marked circuit ˜C. Furthermore,
we abort the experiment if the adversary makes any extraction query before
submitting his challenge message such that C2(xi) gets decrypted to cin for any
i ∈ [w] (where cin is defined before giving the adversary oracle access to the
extraction oracle).

Hybrid 3. We change how we produce the challenge marked circuit ˜C and
how we answer extraction queries (including the one determining the output
of the experiment). First, to generate the challenge marked circuit, we use the
simulator from the constraint-hiding experiment to generate a simulated key
ŝmsg∗ ← Simkey(1|Cmsg∗ |).

On extraction query C, we now abort if it considers any cini �= cin such that
Decinskin(c

in
i ) = (s, ∗, . . . , ∗). Furthermore, if we have Decoutskout, xi

(C2(xi)) = cin

for more than w/2 samples i ∈ [w] in the same execution of the extrac-
tion procedure, we use the constraint-hiding simulator and check C1(zj,i) �=
Simch(zj,i, Cmsg∗(zj,i)) where zj,i ← Vj for i ∈ [w] and j ∈ {0, . . . , �} (instead of
checking C1(zj,i) �= fs(zj,i)).

If cin appears in less than w/2 samples, we ignore it in the majority election.

Hybrid 4. We modify how we answer extraction queries (including the one
determining the output of the experiment). We now pick �+1 random functions
Rj : X (1) → X (2) for j ∈ {0, . . . , �}. Define Wj := {(x,Rj(x)) |x ∈ X (1)}. If cin

appears in more than w/2 samples i ∈ [w], we now sample zj,i ← Wj , and check
C1(zj,i) �= Simch(zj,i, dmsg∗(zj,i)) instead, where dmsg∗(z) = 1 if z2 = R0(z1) or if
there exists some j such that msg∗

j = 1 and z2 = Rj(z1), where z = (z1, z2).

Hybrid 5. Now if cin appears in more than w/2 indices i ∈ [w], for j ∈ {0, . . . , �}
we sample zj,i ← Wj , and check:

– C1(z0,i) �= Simch(z0,i, 1) for j = 0;
– C1(zj,i) �= Simch(zj,i,msg∗

j ) for j ∈ [�].

We now argue that in Hybrid 5, the experiment outputs 0 with overwhelming
probability.

Consider the execution of the extraction algorithm that determines the out-
put of the experiment. We have C∗ ∼=(1/2+ρ)

˜C by admissibility of the adversary.
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Hence, a Chernoff bound on the w = λ/ρ2 random samples xi picked by the
extraction call gives that with probability at least (1 − e−2λ), the majority of
the xi satisfy C∗(xi) = ˜C(xi). In particular, by perfect correctness of Eout, we
have cini = cin for a majority of indices i ∈ [w].

Therefore, for all j ∈ {0, . . . , �}, the extraction algorithm now samples zj,i ←
Wj for i ∈ [w], and tests C1(z0,i) �= Simch(z0,i, 1) for j = 0, and C1(zj,i) �=
Simch(zj,i,msg∗

j ) for j ∈ [�]. But then, by randomness of Rj , the probability
that a random zj,i ← Wj satisfies C∗(zj,i) = ˜C(zj,i) is at least 1/2 + ρ (up to
some negligible statistical loss upper bounded by wQ/|X(1)| due to the previous
Q = poly(λ) extraction queries). Therefore, another Chernoff bound states that
with overwhelming probability, the majority of those zj,i’s (over i ∈ [w]) satisfy
C∗(zj,i) = ˜C(zj,i).

Now, if msg∗
j = 0, we have ˜C1(zj,i) = Simch(zj,i,msg∗

j ) with overwhelming
probability by (computational) correctness of chcPRF.

If msg∗
j = 1 we have Simch(zj,i,msg∗

j ) = R(zj,i) for a random function R :
X → Y(1) (picked independently of ˜C), so the probability that some index i

satisfies ˜C(zj,i) = R(zj,i) is negligible over the randomness of R (again, even
conditioned on the polynomial number (�+1)wQ of evaluations to R during the
extraction queries, as Y(1) has super-polynomial size). Overall, an union bound
gives that the extraction procedure, on input C∗, does not output unmarked with
overwhelming probability (corresponding to j = 0), and then outputs msg∗ with
overwhelming probability.

Indistinguishability of the Hybrids. We now show that the hybrids above are
indistinguishable.

Lemma 11. Assuming E in is perfectly correct, we have Hybrid 0 ≡ Hybrid 1.

The view of the adversary is identical in Hybrid 0 and Hybrid 1 by perfect
correctness of the inner encryption E in: in the latter we simply hardcode the
result of the decryption whenever we have to decrypt cin during an extraction
oracle call.

Lemma 12. Assuming E in is CCA2-secure, we have Hybrid 1
c≈ Hybrid 2.

The same argument as for Lemma 3 holds, by additionally noting that any
adversary who queries, before receiving the marked circuit, some C such that
the extraction call on C gets cin with substantial probability can be directly used
to break CCA securiy of E in.

Lemma 13. Assuming chcPRF is a constraint-hiding constrained PRF, we have
Hybrid 2

c≈ Hybrid 3.

First, any adversary who queries some C such that the extraction call on C
gets some cini such that Decinskin(c

in
i ) = (s, ∗, . . . , ∗) can be directly used to break

constraint-hiding (as the challenger has skin, he can extract the PRF key s using
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such an adversary). Then, the reduction is very similar to the proof of Lemma 4,
by receiving both the constrained key ˜k and values y∗

i from the constraint-hiding
experiment to answer the extraction queries where cin form the majority. This
is because cin is now the only possible ciphertext that makes the extraction
procedure use evaluations to the constrained PRF fs(·).

Lemma 14. Assuming the security of PRF′, we have Hybrid 3
c≈ Hybrid 4.

As the challenge marked circuit does not depend on (t0, . . . , t�) anymore, all
the steps involving PRF′ in Hybrid 3 can be simulated given only oracle access
to PRF′.Eval (on different keys t0, . . . , t�). More precisely, we have to sample
random points in Vj and compute Cmsg∗(zj,i) (given as input to Simch if cin form
the majority). This gives a simple reduction to the PRF security of PRF′, using
a standard hybrid argument over the � + 1 PRF keys t0, . . . , t1.

Lemma 15. We have Hybrid 4
s≈ Hybrid 5.

Hybrids 4 and 5 differ exactly when there is some point zj,i ← Wj such that
dmsg∗(zj,i) �= msg∗

j , which happens exactly when msg∗
j = 0 but dmsg∗

j
(zj,i) = 1,

that is, when msg∗
j = 0 but zj,i ∈ Wj′ for some j′ �= j such that msg∗

j′ = 1. By
definition, this implies having Rj(z1) = Rj′(z1) for some j′ �= j for some indepen-
dently chosen random functions Rj and Rj′ ; and the probability that this hap-
pens, even conditioned on the � = poly(λ) functions R′

j and the Q ·w = poly(λ)
samples zj,i picked accross all the extraction queries made by the adversary
(where Q denotes the number of extraction queries he makes), is negligible, as
X (2) has super-polynomial size.
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Abstract. Pseudorandom functions (PRFs) are one of the fundamen-
tal building blocks in cryptography. Traditionally, there have been two
main approaches for PRF design: the “practitioner’s approach” of build-
ing concretely-efficient constructions based on known heuristics and prior
experience, and the “theoretician’s approach” of proposing constructions
and reducing their security to a previously-studied hardness assumption.
While both approaches have their merits, the resulting PRF candidates
vary greatly in terms of concrete efficiency and design complexity.

In this work, we depart from these traditional approaches by explor-
ing a new space of plausible PRF candidates. Our guiding principle is to
maximize simplicity while optimizing complexity measures that are rele-
vant to cryptographic applications. Our primary focus is on weak PRFs
computable by very simple circuits—specifically, depth-2 ACC0 circuits.
Concretely, our main weak PRF candidate is a “piecewise-linear” func-
tion that first applies a secret mod-2 linear mapping to the input, and
then a public mod-3 linear mapping to the result. We also put forward
a similar depth-3 strong PRF candidate.

The advantage of our approach is twofold. On the theoretical side,
the simplicity of our candidates enables us to draw many natural connec-
tions between their hardness and questions in complexity theory or learn-
ing theory (e.g., learnability of ACC0 and width-3 branching programs,
interpolation and property testing for sparse polynomials, and new nat-
ural proof barriers for showing super-linear circuit lower bounds). On
the applied side, the piecewise-linear structure of our candidates lends
itself nicely to applications in secure multiparty computation (MPC).
Using our PRF candidates, we construct protocols for distributed PRF
evaluation that achieve better round complexity and/or communication
complexity (often both) compared to protocols obtained by combining
standard MPC protocols with PRFs like AES, LowMC, or Rasta (the
latter two are specialized MPC-friendly PRFs).
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Finally, we introduce a new primitive we call an encoded-input PRF,
which can be viewed as an interpolation between weak PRFs and stan-
dard (strong) PRFs. As we demonstrate, an encoded-input PRF can
often be used as a drop-in replacement for a strong PRF, combining
the efficiency benefits of weak PRFs and the security benefits of strong
PRFs. We conclude by showing that our main weak PRF candidate can
plausibly be boosted to an encoded-input PRF by leveraging standard
error-correcting codes.

1 Introduction

Today, there are two primary paradigms for designing cryptographic primitives.
The “theory-oriented” or “provable security” approach is to develop construc-
tions whose security can be provably reduced to the hardness of well-studied
computational problems (e.g., factoring, discrete log, or learning with errors).
The second and “practice-oriented” approach aims at obtaining efficient con-
structions for specific functionalities (e.g., block ciphers or hash functions). Here,
designers typically try to maximize concrete efficiency at the expense of relying
on heuristic arguments and prior experience to argue security. But ultimately,
confidence in the underlying security assumptions or cryptographic designs only
grows if they withstand the test of time.

There are several limitations to these approaches. On the one hand, both
the efficiency and the structure of provably-secure constructions are inherently
limited by the underlying computational problems. This leads to constructions
that are far less efficient than those obtained from the practice-oriented app-
roach. On the other hand, despite the efficiency of practical constructions, their
designs are often complex, thereby complicating their analysis. Consequently, it
is difficult to argue whether the lack of cryptanalysis against practical construc-
tions is due to their actual security or due to the complexity of their design.
The structure of both types of constructions often makes them poorly suited as
building blocks for cryptographic applications that are different from the ones
envisioned by their designers (e.g., secure multiparty computation).

In this work, we depart from these traditional approaches and consider a
surprisingly unexplored space of cryptographic constructions. Our approach is
driven by simplicity, and aims at circumventing some of the limitations of the
existing approaches. Our hope is to obtain constructions that are (1) relatively
easy to describe and analyze, (2) concretely efficient, and (3) well-suited for
different applications. In particular, we aim at relying on assumptions that are
simple to state, and yet at the same time, breaking them would likely require
new techniques that may themselves have other applications. In a sense, the
assumptions we introduce have a win-win flavor and can be of independent inter-
est beyond the cryptographic community (e.g., to complexity theorists, learning
theorists, or mathematicians). A notable example for prior work in this direction
is Goldreich’s proposal of a simple one-way function candidate [29], which had
an unexpected impact in different areas of cryptography and beyond (see [4] for
a survey).
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What Do We Mean by Simplicity? The concrete direction we take is explor-
ing whether the simple operation of changing moduli can be a source of hard-
ness in the context of secret-key cryptographic primitives. Our starting obser-
vation is that computing the sum of m binary-valued variables modulo 3 is
actually a high-degree polynomial over Z2. More precisely, the mapping func-
tion map : {0, 1}n → Z3 where map(x) :=

∑
i∈[m] xi (mod 3) is a polynomial

of high-degree over the binary field Z2 (but a simple linear function over Z3).
Surprisingly, this simple idea of mixing different moduli enables new construc-
tions of “piecewise-linear” symmetric primitives that are conceptually simple to
describe, can plausibly achieve strong security guarantees, and are well-suited
for many cryptographic applications.

Our Focus: Pseudorandom Functions. In this work, we focus specifically
on pseudorandom functions (PRFs) [31]—one of the most fundamental building
blocks of modern cryptography. Our primary focus is on weak pseudorandom
functions, namely, functions whose behavior looks indistinguishable from that of
a random function to any adversary who only observes the input-output behavior
of the function on random domain elements. Since weak PRFs cannot replace
standard (or strong) PRFs in all cryptographic applications, we then show how
our construction can be adapted to yield a new primitive we call an encoded-
input PRF. An encoded-input PRF is defined similarly to a standard (strong)
PRF, except that its input domain is restricted to an efficiently recognizable set.
Encoded-input PRFs can be viewed as an intermediate primitive between strong
PRFs and weak PRFs that combines the security advantages of the former and
efficiency advantages of the latter. Indeed, we show that in many cases they can
be used as a replacement for a strong PRF. At the same time, we exhibit simple
candidates of encoded-input PRFs in complexity classes where strong PRFs are
not known to exist. Finally, a unique feature of our new PRF candidates is that
they are very “MPC-friendly.” As we show in Sect. 5, our PRFs can be computed
more efficiently in a distributed fashion compared to standard block ciphers
like AES and even custom-built MPC-friendly block ciphers like LowMC [2] or
Rasta [23].

Previous Work on Simple PRFs. Before describing our contributions, it
is useful to survey some closely relevant previous works on low-depth PRFs
(see Sects. 1.2 and 3.2 for a broader survey). We denote by AC0 the class of
polynomial-size, constant-depth circuits with unbounded fan-in AND, OR, and
NOT gates and by ACC0[m] the class of such circuits that can additionally have
unbounded fan-in MODm gates, which return 0 or 1 depending on whether the
sum of their inputs is divisible by m. We denote by ACC0 the union over all m
of ACC0[m].

With the goal of minimizing the depth complexity of weak PRFs, Akavia et al.
proposed in [1] the first candidate that can be computed by ACC0[2] circuits.
More precisely, their candidate construction can be computed by depth-3 circuits
where the first layer consists of MOD2 gates computing a matrix-vector product
Ax, where A ∈ Z

n×n
2 is the secret key and x ∈ Z

n
2 is the input. The second

and third layer define a public DNF formula. While the Akavia et al. candidate
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could plausibly provide exponential security,1 Bogdanov and Rosen [17] recently
showed that this candidate (on n-bit inputs) can be approximated by a ratio-
nal function of degree O(log n), which in turn gives rise to a quasi-polynomial-
time attack. Applebaum and Raykov [6] show that low-complexity PRFs can be
based on one-wayness assumptions. In particular, under a variant of Goldreich’s
one-wayness assumption [29], they present a weak PRF with quasi-polynomial
security that can be implemented (on any fixed key) by depth-3 AC0 circuits.

These recent results leave several open questions regarding the complexity
of low-depth (weak) PRFs. First, even if one settles for quasi-polynomial time
security, there is no proposed PRF candidate of any kind that can be realized by
depth-2 circuits over any standard basis. When restricting attention to (weak)
PRFs that offer a better level of security, the situation is even worse. While it is
known that weak PRFs with better than quasi-polynomial security do not exist
in AC0,2 and that strong PRFs with similar security do not exist in ACC0[p] for
any prime p,3 it is plausible that weak PRFs with exponential security could
still exist in ACC0[2]. But to the best of our knowledge, there are currently
no weak PRF candidates in ACC0 with exponential (or even sub-exponential)
security. Note that if we settle for quasi-polynomial security, then the result of
Kharitonov [36, Theorem 9] (resp., Viola [51, Theorem 11]) gives a weak PRF in
AC0 (resp., strong PRF in ACC0[p] for any p) based on the hardness of factoring.
This raises the question of whether it is possible to construct (weak or strong)
PRFs with exponential (or even sub-exponential) security in ACC0. In this work,
we propose a new candidate weak PRF that can be computed by depth-2 ACC0

circuits. Our candidate is conceptually simple and can plausibly satisfy expo-
nential security, thus addressing both of the above challenges simultaneously.
We also propose other variants of this candidate, including a candidate for an
exponentially secure strong PRF that can be computed by depth-3 ACC0 circuits.

1.1 Our Contributions

In this section, we give a more detailed overview of the main results of this paper.

New Weak PRF Candidates. We put forward several new (weak) PRF can-
didates that mix linear functions over different moduli. We start by describing
our most useful candidate, and will discuss other variants later. Our primary
weak PRF candidate follows a very similar design philosophy as that taken by
Akavia et al. [1]. Recall first that in the Akavia et al. construction, the secret key

1 Roughly speaking, we say that a weak PRF is exponentially secure if the distinguish-
ing advantage of any adversary (modeled as a Boolean circuit) of size 2λ is bounded
by 2−Ω(λ).

2 Specifically, the classic learning result of Linial et al. [38] showed that AC0 circuits
can be learned from random examples in quasi-polynomial time.

3 The recent learning result by Carmosino et al. [19] showed that for any prime p,
ACC0[p] circuits can be learned using membership queries in quasi-polynomial time.
Extending this result to the setting of learning from uniformly random examples
(without membership queries) or to composite moduli seems challenging.
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is a matrix A ∈ Z
m×n
2 and the input is a vector x ∈ Z

n
2 . The output of the PRF is

defined as FA(x) := g(Ax), where the function g is a non-linear mapping (in the
case of the Akavia et al. construction, the function g is a “tribes” function and
can be expressed as a DNF formula). In our setting, we adopt the same high-level
structure, but substitute a different and conceptually simpler non-linear function
g. In our candidate, we define the non-linear function to be the function that
interprets the binary outputs of Ax as 0/1 values over Z3, and the output of the
function is simply the sum of the input values over Z3. Specifically, we define
the mapping function map : {0, 1}m → Z3 that maps y ∈ {0, 1}m �→ ∑

i∈[m] yi

(mod 3). Our weak PRF candidate (with key A) is then defined as

FA(x) := map(Ax) where map(y) =
∑

i∈[m]

yi (mod 3). (1)

We formally introduce our candidate (and discuss several generalizations4) in
Sect. 3. We state our formal conjectures regarding the hardness of our candidate
in Sect. 3.1. There are several properties of our weak PRF candidate that we
want to highlight:

– Conceptual simplicity. Our candidate is conceptually very simple to
describe. It reduces to computing a matrix-vector product over Z2, reinter-
preting the output vector as a 0/1 vector mod-3 and then computing their
sum. The simplicity of our construction is fairly apparent compared to block
cipher candidates likes AES or number-theoretic constructions of PRFs. In
spite of its simplicity, to the best of our knowledge, such a candidate has not
previously been proposed, let alone studied.

– Low complexity. Our candidate can be computed by depth-2 ACC0[2, 3]
circuits. More precisely, the first layer consists entirely of MOD2 gates to
compute the matrix-vector product Ax, and the second layer consists of two
MOD3 gates that computes the binary representation of the output. We refer
to Remark 3.9 for a more precise definition.

– MPC friendliness. The simplicity of our candidate also lends itself nicely for
use in MPC protocols. In Sect. 5, we give an efficient protocol that enables dis-
tributed evaluation of our PRF in a setting where both the key and the input
are secret-shared. We discuss this further in the sequel. As we show in Table 1,
the round complexity and communication complexity of our distributed eval-
uation protocol outperform existing MPC protocols for distributed evalua-
tion of not only AES, but even those for MPC-friendly block ciphers like
LowMC [2] and Rasta [23].

Cryptanalysis. In Sect. 4, we consider several classic cryptanalytic techniques
on our weak PRF candidate. While our analysis is by no means exhaustive, we
4 An immediate generalization is replacing 2 and 3 by different numbers. However,

the particular choice of 2 and 3 turns out to be the most useful for our purposes. A
more useful generalization replaces the above choice of map by a suitable compressive
mod-3 linear mapping, which yields a weak PRF with a longer output.
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are able to rule out several classes of attacks, thereby providing some confidence
into the security of our new candidate. Following the work of Akavia et al. [1],
we focus on two primary classes of attacks:

– Lack of correlation with fixed function families. First, we rule out
the learning-type attacks of Linial et al. [38] by showing that there are no
fixed function families of exponential size that are noticeably correlated with
our PRF candidate. (Previously, Linial et al. showed that for all AC0 func-
tions, there exists a quasi-polynomial-size function family such that any AC0

function is noticeably correlated with a function in that class; this implies a
quasi-polynomial time learning algorithm for AC0.)

– Inapproximability by low-degree polynomials. Next, we show that
there does not exist a low-degree polynomial approximation to our PRF can-
didate. Our argument here follows from the well known Razborov-Smolensky
lower bounds [46,48] for ACC0 circuits, which say that for distinct primes p, q,
the MODp function is not computable by a polynomial-size circuit in ACC0[q].
We conjecture that the Razborov-Smolensky lower bounds also generalize to
rule out low-degree rational approximations: namely, for distinct primes p, q,
there does not exist a low-degree rational function that approximates MODp

gates over GF(q�) for any � (Conjecture 4.3). We believe that this question is
of independent interest from a complexity-theoretic perspective, and leave it
as an interesting challenge.

Given the above, we conjecture that our main weak PRF candidate is exponen-
tially secure. We hope that our exploratory analysis will encourage further study
and refinement of our conjectures.

Theoretical Implications. We next turn to studying the implications and
applications of our new PRF candidates. We first describe several theoretical
implications related to complexity theory and learning theory that are implied
by our conjectures:

– Hardness of learning for depth-2 ACC0 and width-3 branching pro-
grams. As mentioned earlier, one of the key structural properties of our weak
PRF candidate is that it can be computed by a depth-2 ACC0 circuit. Another
low-complexity feature, which crucially depends on the choice of the moduli
2 and 3, is that it can be computed by (polynomial-length) width-3 permuta-
tion branching programs [11]. The existence of a weak PRF in any complexity
class rules out learning algorithms for that class even with uniformly ran-
dom examples. This means that, assuming the exponential security of our
weak PRF candidate in Eq. (1), the classes of depth-2 ACC0 circuits and
width-3 permutation branching programs are not learnable (in the standard
sense of PAC-learnability [49] without membership queries), even under the
uniform distribution and even when allowing sub-exponential time learning
algorithms. We explore these connections in greater detail in the full version.
We note that efficient learning algorithms for the above classes would imply
an efficient learning algorithm for DNF formulas [25]. While there are quasi-
polynomial time learning algorithms for DNF formulas (in fact, even for AC0
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circuits) under the uniform distribution [38,50], no such learning algorithm
(even a sub-exponential one) is known for depth-2 ACC0 or width-3 branching
programs.

– Hardness of interpolating and property-testing sparse polynomi-
als. In the full version, we give an alternative characterization of Eq. (1) as
essentially implementing a sparse multilinear polynomial over Z3, where the
monomials are determined by the key A. We then show that the conjectured
hardness of our weak PRF candidate implies that sparse polynomials over
Z3 (with sufficient degree and sparsity) are hard to interpolate given random
evaluations drawn from a subset of the domain, namely from {1, 2}n. Similar
to the previous connections to hardness of learning, if it is easy to interpo-
late the polynomial corresponding to the operation of the PRF (on random
inputs), then the interpolation algorithm gives a trivial distinguisher for the
scheme. While the problem of sparse polynomial interpolation has been the
subject of extensive study [8,13,27,35,52,56,57], much less is known when
the interpolation algorithm only sees random evaluations from a subset of
the domain. Our conjectures imply hardness results for this variant of the
sparse interpolation problem. In fact, as we show in the full version, our
conjectures even rule out property-testing algorithms [3,22,34,44] for sparse
polynomials.

– Natural proofs barrier for super-linear circuit lower bounds. Our
work also has relevance to minimizing the sequential time complexity or cir-
cuit size of strong PRFs. We consider the problem of constructing “asymp-
totically optimal” strong PRFs, namely ones that have exponential security
in the input length and can be computed by linear-size circuits. This problem
is motivated by the goal of ruling out natural proofs of super-linear circuit
lower bounds, in the sense of Razborov and Rudich [47]. While previous works
constructed PRFs that can be evaluated by linear-size circuits [33] or in lin-
ear time on a RAM machine [6], these PRFs fail to achieve full exponential
security. The work of Miles and Viola [39] presented a simplified abstraction
of existing block cipher designs and proved their security under a class of
natural attacks. One of their constructions can be implemented by quasi-
linear size circuits and is shown to have exponential security against a wide
class of attacks, thus falling a bit short of the asymptotic optimality goal. In
Sect. 6.3, we present a depth-3 variant of our main weak PRF candidate that
can plausibly meet this goal (Remark 6.7). Thus, we give the first candidate
construction for an asymptotically optimal strong PRF, which in turn rules
out natural proofs of super-linear circuit lower bounds.

Applications to MPC and Distributed PRF Evaluation. A particularly
appealing property of our weak PRF candidate is that it is very MPC-friendly.
Protocols for PRF evaluation in a distributed setting (where the secret key and
input are distributed or secret-shared between two or more parties) have received
a significant amount of attention recently, and new block ciphers have been
proposed specifically to be MPC-friendly [2,23]. The structure of our weak PRF
lends itself nicely to an efficient MPC protocol (with semi-honest security) for
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evaluating the PRF with a secret-shared key and a secret-shared input. Consider
a scenario where the PRF key and input are secret-shared across multiple servers.
Our protocol proceeds roughly as follows:

– If we use a linear secret-sharing scheme to share the keys and the inputs over
Z2 (alternatively, a field or characteristic 2), then the matrix-vector product
Ax can be computed non-interactively: each party simply operates locally on
their shares (of the key and input).5

– Next, the servers engage in a simple interactive protocol to convert their
secret-shared values (over Z2) to a linear secret-sharing of the same value
over Z3 (effectively implementing the non-linear step in our PRF). Working
in the 3-server setting (in a semi-honest model tolerating at most one cor-
ruption), we can implement this protocol very efficiently using the protocol
of Araki et al. [7]. Here, the “share conversion” procedure essentially requires
13 bits of communication for each bit of Ax.

– Once the parties have a linear secret-sharing of Ax over Z3, computing the
output can again be done non-interactively. Note that to extend our weak
PRF candidate to output multiple bits, we replace the summation over Z3

with a matrix-vector product. Namely if y ← Ax ∈ {0, 1}m, then we define
the PRF output to be Gy (mod 3), where G here is a fixed public matrix in
Z

t×m
3 (Remark 3.3). Even with this extension, computing the output (given

a Z3 secret-sharing of the values Ax) still corresponds to computing a linear
function over Z3. Again, this is possible non-interactively.

The takeaway is that even though our weak PRF candidate is highly nonlinear
(due to the mixing of mod-2 and mod-3 operations), the piecewise-linear struc-
ture means that it can be securely computed by a constant-round information-
theoretic MPC protocol with O(|x|) bits of communication. In Table 1, we provide
some concrete comparisons of our protocol for distributed evaluation of our PRF
candidate to some of the existing candidates. As the baseline for our compar-
isons, we use the protocol of Araki et al. [7] as the representative for 3-party
secret-sharing-based MPC protocols, and optimized garbled circuit construc-
tions [37,55] for 2-party protocols. We compare against both the AES block
cipher as well as several settings of LowMC [2] and Rasta [23], two custom-
designed block ciphers tailored for MPC applications. We describe our precise
methodology for deriving these estimates in Sect. 5.2.

From Table 1, we see that using an optimistic setting of parameters for our
candidate, the communication and round complexity of our 3-server protocol for
distributed (weak) PRF evaluation is better than the generic MPC protocols
applied to existing (strong) PRF candidates in terms of both round complex-
ity and communication complexity in almost all cases. The only case where
another protocol has smaller communication complexity is the case of evaluat-
ing the AND-gate-optimized variant of LowMC (using the Araki et al. protocol);

5 More precisely, one needs here a linear secret-sharing scheme that supports multipli-
cation. In our 3-server implementation we use replicated additive shares (also known
as “CNF secret-sharing”) to achieve this. We refer to Sect. 5.1 for the full details.
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Table 1. Comparison of semi-honest oblivious PRF evaluation protocols. In all cases,
we assume that the keys and inputs have been secret-shared between the (2 or 3)
servers. We estimate the round complexity and the total communication complexity (in
bits) needed to evaluate the PRF on the shared key and input. All of our comparisons
assume semi-honest servers with up to one corruption and assuming a concrete security
parameter of λ = 128. When comparing to the LowMC block cipher [2] and the Rasta
block cipher [23], we compare against two variants: a depth-optimized variant (min-
depth) that minimizes the multiplicative depth of the circuit implementing the block
cipher, and a gates-optimized variant (min-gates) that minimizes the number of AND
gates. We refer to Sect. 5.2 for the parameter settings we use for our estimates. For our
protocol, we set the dimensions m, n according to our concrete parameter estimates
from Table 2 (in particular we let m = n), and set the output dimension to be t = 128
(for output space Z

128
3 ).

Construction Number of servers Round complexity Communication complexity

Araki et al. (AES) 3 40 ≈1.6 · 104

Araki et al. (LowMC, min-depth) 3 14 ≈7.9 · 103

Araki et al. (LowMC, min-gates) 3 252 ≈2.3 · 103

Araki et al. (Rasta, min-depth) 3 2 ≈2.6 · 1010

Araki et al. (Rasta, min-gates) 3 6 ≈6.3 · 103

Garbled Circuit (AES) 2 2 ≈1.4 · 106

Garbled Circuit (LowMC, min-gates) 2 2 ≈1.9 · 105

Garbled Circuit (Rasta, min-gates) 2 2 ≈5.4 · 105

Our Protocol (Optimistic) 3 2 ≈3.8 · 103

Our Protocol (Conservative) 3 2 ≈5.5 · 103

Our Protocol (General) 3 2 13n + 4t

however, evaluating this variant of LowMC requires over 250 rounds of commu-
nication compared to the 2 rounds needed for our protocol.

Compared to the communication-intensive protocols based on garbled cir-
cuits, the communication complexity of our protocol is roughly two orders of
magnitude smaller than garbled circuit evaluation of LowMC and Rasta, and
three orders of magnitude smaller than garbled circuit evaluation of AES. The
secret-sharing-based protocols are much more competitive in terms of communi-
cation, but these protocols generally have much larger round complexities, which
can be problematic in high-latency networks. To summarize, our new PRFs have
the advantage that they are very friendly to compute in a distributed MPC set-
ting when both the key and the input are secret-shared. We note that even weak
PRFs are still useful in a variety of application scenarios. In the full version we
describe a concrete application of MPC-friendly weak PRFs for implementing
distributed flavors of secure keyword search and searchable symmetric encryp-
tion. Moreover, for applications that require strong PRFs, one can apply the
encoded-input variant of our weak PRF with a modest loss of efficiency.

Alternative Weak PRF Candidate with Better Garbling Efficiency.
The structure of our main weak PRF candidate makes it well-suited for three-
party distributed evaluation. In a two-party setting, it is natural to rely on a
“garbling scheme” such as that of Yao [53] or its optimized variants. However,
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the cost of this approach will be high because of the super-linear number of
multiplications needed for computing the matrix-vector product. In Sect. 5.3, we
introduce a variant of our weak PRF candidate (Construction 5.3) that is more
suitable for two-party distributed evaluation. The core ingredient in our two-
party evaluation protocol is a lightweight information-theoretic garbling scheme
using arithmetic randomized encoding techniques (cf. [5]). The full two-party dis-
tributed evaluation protocol additionally relies on a single (parallel) invocation
of a 1-out-of-6 oblivious transfer (OT) protocol; the overall two-party distributed
evaluation protocol for this alternative candidate is thus 4 rounds (rather than
the usual 2 rounds with Yao’s protocol). The output size of this garbling scheme
(as well as the total communication complexity of the distributed evaluation
protocol) is linear in the input size times the output size of the PRF. Thus,
this candidate is particularly attractive when the PRF output is short. As we
show in the full version, the garbling size of our alternative candidate (which
constitutes the bulk of the protocol’s communication complexity) with 40 bits
of output is smaller than that of an optimized Yao-style garbling applied to
LowMC, Rasta, and AES. Thus, for applications that only require such a short
PRF output (e.g., using a PRF to compute tags for a set of keywords), the bet-
ter garbling complexity of our alternative candidate implies a secure two-party
protocol for PRF evaluation that is better than that of protocols for evaluating
AES, LowMC, or Rasta.6 While this alternative candidate seems better suited
for distributed two-party evaluation than our main weak PRF candidate given
in Eq. (1), it also has several limitations; most notably, it can at best provide
(slightly) sub-exponential security. In contrast, our main candidate can plau-
sibly provide exponential security. We give a more thorough discussion of the
alternative candidate and its security in Sect. 5.3.

Towards Strong Pseudorandomness. Turning now to strong pseudorandom-
ness, we show in the full version that our candidate is not a strong PRF, and in
fact, can be learned in polynomial time given adaptive queries. Specifically, we
can recast our PRF as an automaton with multiplicity, and then apply known
learning results for these function families [14]. However, this attack is unlikely
to extend to the setting of weak pseudorandomness. Here, we show that if the
learning attack in [14] can be generalized to the weak pseudorandomness set-
ting (where the learning algorithm is only provided function evaluations on a
random subset of the domain), then the same algorithm implies a polynomial-
time attack on the learning with rounding (LWR) [10] assumption with any
polynomial moduli p and q.

Encoded-Input PRFs and Strong PRFs. Motivated by the fact that many
applications of PRFs (e.g., message authentication codes (MACs)) do not natu-
rally follow from weak pseudorandomness, we introduce an intermediate notion

6 It is not clear whether LowMC or Rasta can be further optimized in settings where
few output bits are needed, or when only weak PRF security is required. If longer
outputs are needed for the particular application, then the garbling complexities of
LowMC and Rasta will be better than that of our construction.
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between weak PRFs and strong PRFs we refer to as encoded-input PRFs. Our
new notion suffices for instantiating most applications of strong PRFs, and at
the same time, still admits simple constructions (and circumvents known lower
bounds on the existence of strong PRFs in various complexity classes). At a
high-level, an encoded-input PRF is a function that behaves like a PRF on
some (possibly sparse) subset of its domain. Moreover, this subset is specific
to the PRF family, and in particular, independent of the key. For instance, a
suitable subset might be the set of valid codewords in a linear error-correcting
code. In Sect. 6, we formally define this notion, and then show that many stan-
dard applications of PRFs (e.g., MACs, CCA-secure encryption) can be instan-
tiated from encoded-input PRFs by incorporating an additional validity check
for the encoded input. The validity check can be made more efficient by using
an additional proof provided by the evaluator. We then propose an efficient can-
didate construction of encoded-input PRFs by combining our weak PRFs with
error-correcting codes. The resulting construction resists the adaptive attacks
we describe in the full version and can remain MPC-friendly. Using our candi-
date encoded-input PRFs, we are able to construct MACs with low-complexity
verification and CCA-secure encryption with low-complexity decryption (that is,
both operations can be computed by a depth-3 ACC0 circuit). In fact, for a suit-
able instantiation of our encoding function (e.g., using a linear error-correcting
code), we obtain a candidate strong PRF that can be computed by a depth-3
ACC0 circuit (Remark 6.6). Concretely, our depth-3 strong PRF candidate is
obtained from our main weak PRF candidate by first applying a mod-3 linear
encoding to the input. We also propose a variant of this candidate that can
be implemented by linear-size circuits. This variant is used for the new natural
proofs barrier discussed above.

1.2 Related Work

There is a large body of work on minimizing different complexity measures of
(weak or strong) PRFs. Most relevant to the present work are works proposing
PRF constructions that can be evaluated by different classes of low-depth cir-
cuits such as AC0, ACC0, TC0 [1,6,9,10,15,18,41–43,51,54]. Of these candidates,
those in AC0 [6] and in ACC0 [1,51] are either vulnerable to quasi-polynomial
time attacks [1,6] or can only be shown to have quasi-polynomial time secu-
rity [51]. In more detail, the result of Viola [51, Theorem 11] says that assuming
hardness of factoring against 2nε

-time adversaries (for some constant ε), there is
a strong PRF in ACC0 with security against quasi-polynomial time adversaries.
We discuss these candidates and their cryptanalysis in greater detail in Sect. 3.2.

2 Preliminaries

We begin by defining some basic notation that we will use throughout this work.
For a positive integer n, we write [n] to denote the set of integers {1, . . . , n}. We
use bold uppercase letters (e.g., A, B) to denote matrices.
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For a finite set S, we write x
r←− S to denote that x is drawn uniformly

at random from S. For a distribution D, we write x ← D to denote a draw
from a distribution D. Unless otherwise noted, we write λ to denote the security
parameter. We say that a function f(λ) is negligible in λ if f(λ) = o(1/λc) for
all c ∈ N. We write f(λ) = poly(λ) to denote that f is bounded by some (fixed)
polynomial in λ. We say that an algorithm is efficient if it runs in probabilistic
polynomial time in the length of its input.

For two sets X and Y, we write Funs[X ,Y] to denote the set of all func-
tions from X to Y. For two functions f and g on a common domain X , we
say that f is ε-close to g if Prx [f(x) �= g(x)] ≤ ε and that it is ε-far from g if
Prx [f(x) �= g(x)] > ε. Next, we review the definition of a pseudorandom function
(PRF) [30].

Definition 2.1 (Pseudorandom Function). Denote by K = {Kλ}λ∈N, X =
{Xλ}λ∈N, and Y = {Yλ}λ∈N three ensembles of finite sets indexed by a security
parameter λ. Let {Fλ}λ∈N be an efficiently-computable collection of functions
Fλ : Kλ × Xλ → Yλ. Then, we say that the function family {Fλ}λ∈N is a (t, ε)-
strong pseudorandom function if for all adversaries A running in time t(λ), and
taking k

r←− Kλ and fλ
r←− Funs[Xλ,Yλ], we have that

∣
∣
∣Pr[AFλ(k,·)(1λ) = 1] − Pr[Afλ(·)(1λ) = 1]

∣
∣
∣ ≤ ε(λ).

We say that the function family {Fλ}λ∈N is an (�, t, ε)-weak pseudorandom
function if for all adversaries A running in time t(λ) and taking k

r←− Kλ,
fλ

r←− Funs[Xλ,Yλ], x1, . . . , x�
r←− Xλ, we have that

∣
∣Pr

[A (
1λ, {(xi,Fλ(k, xi))}i∈[�]

)] − Pr
[A (

1λ, {(xi, fλ(xi))}i∈[�]

)]∣
∣ ≤ ε(λ).

To simplify the notation, we will often drop the index λ on F. We will also write
Fk to denote F(k, ·).
Domains and Their Representations. The key-space, domain, and range
of all of the PRF candidates we consider in this work consist of vector spaces
over finite fields (i.e., Zk

p for some p and k). For notational convenience, we write
everything using vector space notation. However, when measuring the complexity
of evaluating the PRF, we measure everything in terms of Boolean operations
(as opposed to arithmetic or finite field operations). Specifically, we view the
keys, inputs, and outputs of our PRF candidates as vectors of bit-strings, where
each bit-string encodes the binary representation of its respective field element.
For example, a vector v ∈ Z

k
p would be represented by a binary string of length

k · �log p	, where each block of �log p	 bits represents a single component of v.
This way, we can discuss the Boolean circuit complexity of evaluating a PRF
over a key-space Z

m×n
p , domain Z

n
p , and range Z

t
q.

Circuit Classes. We also recall the definition of several basic complexity classes.
First, the circuit class AC0 consists of all circuits with constant depth, polyno-
mial size, and unbounded fan-in (containing only AND,OR, and NOT gates).
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The circuit class TC0 (resp., TC1) consists of all circuits with constant (resp.,
logarithmic) depth, polynomial size, unbounded fan-in and threshold gates.

Definition 2.2 (Modular Gates). For any integer m, the MODm gate outputs
1 if m divides the sum of its inputs, and 0 otherwise.

Definition 2.3 (Circuit Class ACC0). For integers m1, . . . , mk > 1, we say
that a language L is in ACC0[m1, . . . , mk] if there exists a circuit family {Cn}n∈N

with constant depth, polynomial size, and consisting of unbounded fan-in AND,
OR, NOT, and MODm1 , . . . ,MODmk

gates that decides L. We write ACC0 to
denote the class of all languages that is in ACC0[m1, . . . , mk] for some k ≥ 0
and integers m1, . . . , mk > 0.

3 Candidate Weak Pseudorandom Functions

In this section, we introduce our candidate weak pseudorandom function families.
We begin with a basic candidate below (Construction 3.1), and then describe
several generalizations and extensions. When describing our applications in the
subsequent sections, we will focus primarily on our basic construction.

Construction 3.1 (Mod-2/Mod-3 Weak PRF Candidate). Let λ be a
security parameter, and define parameters m = m(λ) and n = n(λ). The weak
PRF candidate is a function Fλ : Zm×n

2 × Z
n
2 → Z3 with key-space Kλ = Z

m×n
2 ,

domain Xλ = Z
n
2 and output space Yλ = Z3. For a key A ∈ Z

m×n
2 , we write

FA(x) to denote the function Fλ(A, x). We define FA as follows:

– On input x ∈ Z
n
2 , compute y′ = Ax ∈ Z

m
2 .

– The output is defined by applying a non-linear mapping to y′. In this case,
we take our non-linear mapping to be the function map : {0, 1}m → Z3 that
outputs the sum of the inputs values modulo 3. Specifically, for y′ ∈ {0, 1}m,
we write map(y′) :=

∑
i∈[m] y

′
i (mod 3).

We define FA(x) := map(Ax). Note that we compute the matrix-vector product
Ax over Z2, and then re-interpret the values as their integer values 0 and 1.

Remark 3.2 (Weak PRF Candidate for Arbitrary p and q). The weak PRF can-
didate in Construction 3.1 can be generalized to work over two arbitrary fields
Zp and Zq where p �= q. In particular, we define the key-space to be Kλ = Z

m×n
p ,

the domain to be Xλ = Z
n
p , and the range to be Yλ = Zq. We define the non-

linear mapping mapp,q : {0, 1, . . . , p− 1}m → Zq that computes the sum of input
values modulo q:

mapp,q(y
′) :=

∑

i∈[m]

y′
i (mod q).

Putting all the pieces together, the PRF is defined to be FA(x) := mapp,q(Ax).
In this case, Construction 3.1 corresponds to the special case where p = 2 and
q = 3. Note that for certain choices of p, q, the output of this mapping might not
be balanced (this is not the case for p = 2 and q = 3), and pseudorandomness
is then defined with respect to the corresponding distribution. We now describe
several variations on our general candidate:
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– We can consider a binary input space Xλ = Z
n′
2 rather than a mod-p input.

In this case, we require that the key A to be compressing so that the product
Ax for a random x ∈ Z

n′
2 is statistically close to the uniform distribution

over Z
m
p . For instance, this holds by the leftover hash lemma [32] if we take

n′(λ) = Ω(m log p).
– We can consider more complex input spaces and non-linear mappings. As

a concrete example, we can define a PRF where the input domain is an
elliptic curve group E(Zq) of prime order p. That is, we take the domain to
be Xλ = E(Zq)

n; the key-space and range are unchanged: Kλ = Z
m×n
p and

Yλ = Zq. In this case, the linear mapping Ax corresponds to computing
a linear combination of elliptic curve points. We can define the non-linear
mapping mapp,q from E(Zq) into Zq to be the mapping that returns the
x-coordinate of the curve point (recall that each element in E(Zq) can be
represented by a pair of (x, y)-coordinates in Zq).

Remark 3.3 (Multiple Output Bits). The output of our weak PRF candidate from
Construction 3.1 consists of a single element in Z3. In many scenarios (such as
the ones we describe in Sect. 5), we require a PRF with longer output. One way to
extend Construction 3.1 to provide longer outputs is to take the vector Ax ∈ Z

m
2 ,

reinterpret it as a 0/1 vector y′ ∈ Z
m
3 , and output Gy′ ∈ Z

t
3, where G ∈ Z

t×m
3

is a fixed public matrix. Formally, we define the mapping mapG : {0, 1}m → Z
t
3

that maps y′ �→ Gy′, and define the PRF candidate F : Zm×n
2 × Z

n
2 → Z

t
3 to

be FA(x) := mapG(Ax). Construction 3.1 then corresponds to the special case
where G = 11×m, where 11×m denotes the all-ones matrix of dimension 1-
by-m. In our constructions, we propose taking G to be the generator matrix
of a linear error-correcting code over Z3. This choice is motivated by the fact
that the generator matrix of a linear code with sufficient distance implements
a good extractor for a bit-fixing source [20]. As a concrete candidate for our
constructions, we propose taking G to be the generator matrix of a BCH code
over Z3. Note that we require t < m. Otherwise, if t ≥ m, then we can use
linear algebra (over Z3) to recover y′ = Ax from the output Gy′ (since G is
public). Given multiple pairs (x, y′), we can recover the secret key A (over Z2).
In particular, in our concrete parameter settings, we require m − t ≥ λ.

Remark 3.4 (Using Structured Matrices as the PRF Key). We can improve the
asymptotic (and concrete) efficiency of our weak PRF candidate (Construc-
tion 3.1) by taking the key to be a structured matrix rather than a random
matrix. For example, we can take A to be a uniformly random Toeplitz matrix
rather than a uniformly random matrix. In particular, if A ∈ Z

m×n
2 is Toeplitz,

then computing the matrix-vector product Ax can be done in time that is quasi-
linear rather than quadratic in the input dimension. A similar optimization of
using a random Toeplitz matrix in place of a random matrix was previously
proposed to improve the concrete efficiency of authentication schemes based on
the learning parity with noise (LPN) problem [28,45].
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3.1 Conjectures on the Security of Weak PRF Candidates

We now state three conjectures on our new family of weak PRF candidates,
sorted in order from the weakest to the strongest:

Conjecture 3.5 (General Mod-p/Mod-q Weak PRF Candidate). Let λ be a secu-
rity parameter. Then, there exist fixed primes p and q and m,n = poly(λ) such
that for all �, t = poly(λ), there exists a function ε = negl(λ) such that the
family {Fλ}λ∈N from Remark 3.2 is an (�, t, ε)-weak PRF.

Conjecture 3.6 (Mod-2/Mod-3 Weak PRF Candidate). Let λ be a security
parameter. Then, there exist m,n = poly(λ) such that for all �, t = poly(λ),
there exists ε = negl(λ) such that the function family {Fλ}λ∈N from Construc-
tion 3.1 is an (�, t, ε)-weak PRF.

Conjecture 3.7 (Exponential Hardness of Mod-2/Mod-3 Weak PRF Candidate).
Let λ be a security parameter. Then, there exist m,n = O(λ) such that for all
� = poly(λ) and t = 2λ, there exists ε = 2−Ω(λ) such that the function family
{Fλ}λ∈N from Construction 3.1 is an (�, t, ε)-weak PRF.

Remark 3.8 (Further Generalizations). As stated, Conjectures 3.6 and 3.7 are
specific to the security of our mod-2/mod-3 weak PRF candidate from Construc-
tion 3.1. But more generally, we can consider an analogous pair of conjectures
for any fixed mod-p/mod-q candidate (where p and q are distinct primes). Going
further, we can even conjecture that the analogous claims hold for all choices
of p and q. In this work however, we focus on the security of the mod-2/mod-3
candidate, since that candidate is most well-suited for our MPC applications.

Remark 3.9 (Weak PRF in ACC0). An appealing property of the mod-2/mod-3
PRF candidate from Construction 3.1 is that the PRF can be computed by a
depth-2 ACC0 circuit (in fact, a depth-2 ACC0[2, 3] circuit suffices). Specifically, if
A ∈ Z

m×n
2 is the secret key to the PRF, then the function FA can be computed by

a depth-2 circuit where the first layer consists of m MOD2 gates, one associated
with each row of A (concretely, each MOD2 gate takes as input the subset of
input bits on which the corresponding row of A depends). All of the MOD2 gates
feed into two MOD3 gates, each computing one bit of the binary encoding of the
output value (more precisely, the MOD3 gate computing the most significant bit
of the output outputs 1 if the sum of the inputs is 2 mod 3 and the MOD3 gate
computing the least significant bit of the outputs outputs 1 if the sum of its input
bits is 1 mod 3). Note that we can also implement the PRF in depth-2 ACC0[6],
that is, ACC0 with MOD6 gates only (using essentially the same construction).
In either case, we conclude that under Conjecture 3.6, there exists a weak-PRF
candidate in depth-2 ACC0. Intuitively, this means that under Conjecture 3.6,
the complexity class ACC0 should be hard to learn. We formalize this intuition
in the full version.
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3.2 Comparison with Other Weak PRF Candidates

In the full version, we compare our weak PRF candidate (Construction 3.1) to
previous candidate low-complexity PRFs, and in particular to the Akavia et al.
construction [1], candidates based on hard learning problems or on expander
graphs by Blum et al. [15] and by Applebaum and Raykov [6], and to number-
theoretic [41–43,51] and lattice-based candidates [9,10,18]. Here, we also discuss
several advantages of our construction.

Advantages of Our Construction. We now describe two appealing properties
of our new weak PRF candidate compared to the existing ones:

– Low complexity: Our weak PRF candidate is the first that can be com-
puted by an ACC0 circuit and plausibly satisfy exponential security (Conjec-
ture 3.7). Previous PRF candidates in ACC0 (or AC0) only provided quasi-
polynomial [1,6] or sub-exponential security [51]. In fact, our candidates are
computable by a depth-2 ACC0 circuit, which is the minimal depth possible
for any PRF candidate. To our knowledge, there are no other candidates that
can be computed by a depth-2 AC0 or ACC0 circuit (even if we just require
polynomial hardness).

– MPC-friendliness: Another advantage of our construction is that our PRF
is very MPC-friendly. Specifically, we consider scenarios where multiple par-
ties hold shares of the PRF key as well as the PRF input, and the goal is for the
parties to compute the PRF output on their joint inputs. The structure of our
PRF is very amenable for use in MPC protocols. Notably, much of the com-
putation is linear (over Z2 and Z3). Using (standard) MPC protocols based
on linear secret-sharing, computing linear functions on secret-shared values
can be done non-interactively. Communication is only needed to handle the
non-linear transformation from values over Z2 to values over Z3. In Sect. 5,
we show that this step can be done very efficiently using the recent protocol
of Araki et al. [7]. In contrast, evaluating the tribes function (in the case of
Akavia et al. [1]) or the majority function (in the case of Blum et al. [15])
over secret-shared values will either incur additional overhead in either round
complexity or communication complexity (or both).

4 Rationales for Security

In this section, we provide a brief overview of several rationales to support the
conjectured security of our candidate. The detailed analysis (including proofs and
further discussions) is available in the full version. First, we follow the security
analysis of the weak-PRF candidate proposed by Akavia et al. [1] and show that
(1) standard learning algorithms cannot break the security of our construction,
and (2) our candidate cannot be approximated by low-degree polynomials over
finite fields. In addition, we conjecture that it is difficult to approximate our
construction with low-degree rational functions. Finally, we suggest concrete
parameters for our candidate weak PRF.
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4.1 Lack of Correlation with Fixed Function Families

The most natural way to rule out the existence of pseudorandom functions in a
complexity class is to provide a learning algorithm for the class. In the the full
version, we show that a randomly chosen function in our PRF family does not
have a noticeable correlation with any sufficiently small (but still exponential-
size) collection of functions H = {h : {0, 1}n → {0,±1}}. Our analysis relies on
techniques similar to those used by Akavia et al. [1, Proposition 16]. This rules
out distinguishers based on learning algorithms of the form of the one by Linial
et al. [38]. Specifically, in the the full version, we show the following lemma.

Lemma 4.1 (No Correlation with Fixed Function Families). Let H =
{h : {0, 1}n → {0,±1}} be a collection of functions of size s. Then,

PrA

[

∃h ∈ H | Prx [map(Ax) = h(x)] >
1
3

+
1

2n−1
+ ε

]

≤ 5s

2n · ε2
,

where A r←− {0, 1}n×n.

4.2 Inapproximability by Low-Degree Polynomials and Rational
Functions

Another necessary condition for a PRF family is that the family should be hard
to approximate by low-degree polynomials (resp. rational functions). Specifically,
assume there exists a degree-d multivariate polynomial f (resp. f, g) over GF(2)
such that Fk(x) = f(x) (resp. Fk(x)·g(x) = f(x)) for all x ∈ {0, 1}n. Then, given
(sufficiently many) PRF evaluations (xi,Fk(xi)) on uniformly random values xi,
an adversary can set up a linear system where the unknowns corresponds to the
coefficients of f (resp. f, g). Since f (resp. f, g) has degree d, the resulting system
has N =

∑d
k=0

(
n
k

)
(resp. 2N) variables. Thus, given O(2d ·N) random samples,

the adversary can solve the linear system and recover the coefficients of f (resp.
f, g) (and therefore, a complete description of Fk). We note that this attack still
applies even if Fk is 1/O(2d · N)-close to a degree-d polynomial (resp. rational
function). In this case, the solution to the system will be 1/O(2d · N)-close to
Fk with constant probability (which still suffices to break pseudorandomness).
Thus, for a candidate PRF family to be secure, the family should not admit a
low-degree polynomial (resp. rational function) approximation.

In our setting, we are able to rule out low-degree polynomial approximations
by appealing to the classic lower bounds for ACC0 by Razborov and Smolen-
sky [46,48], which essentially says that for distinct primes p and q, MODp gates
cannot be computed in ACC0[q�] for any � > 1. We show the following lemma in
the full version.

Lemma 4.2 (Inapproximability by Low-Degree Polynomials). For n> 0
and d < n/2, let B(n, d) = 1

2n · ∑n/2−d−1
i=0

(
n
i

)
. Then, for all primes p �= q, the

function mapp : {0, 1}n → Zq on n-bit inputs that maps x �→ ∑
i∈[n] xi (mod p)

is B(n, d)-far from all degree-d polynomials over GF(q�) for all � ≥ 1.
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The low-degree polynomial approximation attack described above directly
generalizes to the setting where the PRF Fk can be approximated by a low-degree
rational function. For instance, suppose there exist multivariate polynomials
f, g over GF(2) of degree at most d such that f(x) = Fk(x) · g(x) for all x ∈
{0, 1}n. Then, a similar attack can be mounted, as any random input-output pair
corresponds to an equation in the 2N variables (with N =

∑d
k=0

(
n
k

)
) defining

polynomials f and g. Thus, if our PRF candidate is 1/O(2d · N)-close to a
degree-d rational function, then there is an O(2d ·N)-time attack given O(2d ·N)
evaluations of the PRF.

While the Akavia et al. weak PRF candidate [1] cannot be approximated by
a low-degree polynomial, Bogdanov and Rosen [17] showed that the function can
be approximated by a degree O(log(n)) rational function, where n is the length
of the key. This gives a quasi-polynomial distinguisher against the Akavia et al.
candidate.

In our case, we conjecture that the mapp function (respectively, the mapp,q

function for our more general candidates from Remark 3.2) cannot by approxi-
mated by a low-degree rational function over GF(q�), for any q �= p and � ≥ 1.
While the Razborov-Smolensky argument used to argue hardness of approxi-
mation of mapp by low-degree polynomials over GF(q�) does not generalize to
rational functions, we still believe that this is a very plausible conjecture.

Conjecture 4.3 (Inapproximability by Rational Functions). For any primes p �= q,
any integer � ≥ 1, and any d = o(n), there exists a constant α < 1 such that the
function mapp : {0, 1}n → Zp that maps x �→ ∑

i∈[n] xi (mod p) is 1/(2d ·N)α-far
from all degree-d rational functions over GF(q�).

We believe that studying this conjecture is a natural and well-motivated
complexity problem. Proving or disproving this conjecture would lead to a better
understanding of ACC0.

4.3 Resilience to Standard Cryptanalysis Techniques

In this section, we survey several other relevant cryptanalytic techniques and
their impact on the conjectured security of our weak PRF candidate.

Pairwise Independence. First, we note that our candidate is pairwise inde-
pendent. This is immediate as for any pair of distinct inputs, the value of Ax
will be uniformly random and independent over Z

m
2 . Pairwise-independence is

sufficient to argue that basic versions of differential and linear cryptanalysis (in
the sense of the definitions proposed in [39]) do not apply to our candidate.
We note that these linear and differential cryptanalysis are particularly relevant
when evaluating the security of our encoded-input PRF (Sect. 6.3), since there,
the adversary can make adaptive queries (over a restricted subset of the domain).

Blum-Kalai-Wasserman Attacks. Due to the structural similarities between
our candidate and the learning parity with noise (LPN) assumption, the Blum-
Kalai-Wasserman (BKW) attack [16] seems particularly relevant.
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We do not see a way to adapt such attacks to our candidate as it does not seem
possible to create “fresh” samples given a collection of samples. In particular, the
mixing of the mod-2 and the mod-3 operations in our basic candidate destroys
the linear structure exploited by BKW.

Other Classical Techniques. Several other classical techniques used in crypt-
analysis, such as algebraic or correlation attacks, are closely related to the degree
of approximation by polynomials or by rational functions. Thus, we can appeal
to our previous analysis and conjectures (Sects. 4.1 to 4.2) to argue that our
weak PRF candidate plausibly resists those attacks.

Further Cryptanalysis. To conclude, we emphasize that the analysis we have
done is not intended to be exhaustive, and we invite the community to fur-
ther evaluate the security of our candidate. We believe though that the initial
exploratory study we have conducted provides evidence to support the security
of our candidate.

4.4 Concrete Parameters

We now propose some concrete parameters for our candidate. Our proposals
(summarized in Table 2) are based on our exploration of possible attacks as well
as concrete parameters for LPN with constant noise rate. Specifically, we use
the parameters suggested by [26, Table 4] based on the estimated runtime on a
machine with 260 bits of memory and assuming a constant noise rate τ = 1/4.7

We propose optimistic and conservative parameters. Our optimistic choice of
parameters (n = m = 2λ, where λ is the security parameter) suggests better
parameters than those for LPN, which is in part justified by the fact that the
most efficient attacks against LPN (e.g., BKW) do not seem to apply to our
candidate. Our conservative parameters are the same as those suggested for
LPN. We further conjecture that choosing a structured key (e.g., a Toeplitz
matrix) does not significantly affect the parameters. Based on our exploratory
analysis, we see no need to use larger parameters to instantiate our candidate.
We encourage further cryptanalysis to support or disprove the validity of our
proposals.

5 Applications to Multiparty Computation

An attractive feature of our candidate is that it supports efficient evaluation
in a fully distributed setting, where both the PRF key and the PRF input are
secret-shared between multiple parties. We highlight one such application of
this primitive to distributed searchable symmetric encryption (SSE) in the full
version.

7 Better algorithms for LPN are possible if we allow for machines with even larger
memory, but as noted in [26], a machine with 260 bits of memory is already signifi-
cantly larger than the largest existing supercomputers today.
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Table 2. Proposed parameters (for Construction 3.1, we set m = n) and comparison
with parameters for LPN.

Assumption λ = 80 λ = 128

LPN 300 384

Construction 3.1 (Optimistic) 160 256

Construction 3.1 (Conservative) 300 384

5.1 Fully-Distributed Weak PRF Evaluation

In this section, we describe a 3-party protocol with security against one passive
corruption for secure evaluation of our weak PRF candidate (Construction 3.1).8

At the beginning of the protocol, we assume that the servers hold a secret-sharing
of both the input x and the PRF key k. At the end of the protocol execution,
each server should hold a fresh secret-sharing of the output.

We assume the parties use an additive secret sharing scheme (over a ring), so
additions on secret-shared values are free. For multiplications, we use the multi-
plication protocol from [7] that allows 3 servers to take shares of ring elements
a and b and compute a share of the product ab where each server only needs to
broadcast a single ring element. In particular, if we work over the binary field
Z2, computing XOR is free while computing an AND requires 1-bit of commu-
nication. The protocol relies on pseudorandom secret sharing (PRSS) [21] and
requires a one-time setup of replicated PRF keys. We note that we can achieve
information-theoretic security without the need for the (trusted) setup at twice
the cost of the basic protocol.

We now describe our protocol πfde for distributed evaluation of our mod-
2/mod-3 candidate (Construction 3.1). We assume a structured key (e.g., a
Toeplitz matrix), so the key can be compactly represented by a single vector
k ∈ Z

n
2 . This assumption is only needed to simplify the protocol description.

Our protocol naturally generalizes to the setting with an unstructured (i.e.,
fully random) key with no overhead (in either communication or round com-
plexity). To recall, to evaluate our PRF, we first evaluate the matrix-vector
product between the key and the input: k, x �→ h ∈ Z

m
2 . We then reinterpret h

as an m-dimensional vector over Z3. The output mapG(h) ∈ Z
t
3 can then be com-

puted as a linear function mapG on h. We begin by defining the fully-distribution
evaluation functionality that we seek to instantiate.

Definition 5.1 (Fully-Distributed Evaluation Functionality). The ideal
fully-distributed PRF evaluation functionality is defined as follows:

– Inputs: The servers hold replicated additive shares of the input and the key
over Z2. Concretely, let k1, k2, k3 be vectors in Z

n
2 such that k1 ⊕ k2 ⊕ k3 = k

and similarly x1, x2, x3 vectors in Z
n
2 such that x1 ⊕ x2 ⊕ x3 = x. Server i

holds kj , xj with j �= i.

8 The protocol uses two rounds of interaction between the servers.
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– Outputs: The first two servers hold random y1, y2 ∈ Z
t
3 such that y1 + y2 =

Fk(x).

We write [h]p to denote an additive sharing of h over Zp—that is, a tuple of
values whose sum is h mod p. Depending on the context, this will sometimes
be a triple of shares held by the 3 servers and sometimes a pair of shares held
by the first 2 servers. Our protocol uses a sub-protocol π2,3 that transforms an
additive sharing [h]2 (i.e., a mod-2 secret-sharing of h) held by the 3 servers into
an additive sharing [h]3 (i.e., a mod-3 secret-sharing of h) held by the first two
servers. We define this functionality f23 below.

Definition 5.2 (Share Conversion Functionality). The share-conversion
functionality f23 converts a 3-party mod-2 secret sharing of a value h ∈ {0, 1}
into a 2-party mod-3 secret sharing of the same value h. Specifically, the func-
tionality’s input/output behavior is as follows:

– Inputs: Every server i ∈ [3] has an input bi ∈ {0, 1}. Server 1 has an addi-
tional input c ∈ Z3.

– Outputs: Servers 1 and 3 receive no output. Server 2 receives an output
d ∈ Z3 such that c + d = b1 ⊕ b2 ⊕ b3 (mod 3).

It is straightforward to design a Boolean circuit that implements the ideal share-
conversion functionality from Definition 5.2. We give the circuit in Fig. 1 below.
The circuit consists of 3 AND gates and 10 XOR gates. To obtain our final
share-conversion protocol, we use the PRSS-based protocol by Araki et al. [7] to
evaluate the circuit in Fig. 1.

Fig. 1. A simple circuit that implements the share-conversion functionality f23 (Defi-
nition 5.2).

The Protocol πfde. We now describe our protocol πfde for fully-distributed eval-
uation of our mod-2/mod-3 weak PRF candidate. Recall that at the beginning
of the protocol, we assume that the three servers have a replicated additive
secret-sharing of the input and the key. The protocol πfde then consists of three
phases:

– During the first phase, each server Si computes an additive share hi ∈ Z
m
2 of

the linear mapping (k, x) �→ h defined by the key. This can be done locally
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using the replicated additive shares of the input and the key. This follows
from the fact that for any two secret-shared values a, b split into 3 shares
(i.e., a = a1 + a2 + a3 and b = b1 + b2 + b3), we have that ab = (a1 + a2 +
a3)(b1+b2+b3) =

∑
1≤i,j≤3 aibj . In a replicated secret-sharing scheme, server

Si knows aj , bj for j �= i. This means that every term aibj in the sum can be
computed by at least 1 of the servers.

– In the second step of the protocol, the three servers evaluate the share-
conversion protocol π2,3 to their secret-shared values. For each component
of their additive share, the servers runs the interactive protocol π2,3 to trans-
form additive shares (held by the 3 servers) modulo 2 into additive shares
(held by the first 2 servers) modulo 3. At the end of this phase, servers S1

and S2 hold a share [h]3 of the linear mapping.
– In the final step of the protocol, the two parties evaluate mapG on their

share. Since the matrix G is public, this is a linear operation, and can be
done non-interactively. The output is the output of the protocol.

Observe that by construction, only the second step of the protocol is interactive.
Moreover, the protocol requires just two rounds of interaction. We give the full
protocol in the full version.

5.2 Concrete Efficiency of Distributed PRF Evaluation

In this section, we compare the concrete efficiency of secure evaluation of our
PRF to alternative constructions. Here, we assume that both the input x and
the key k to the PRF are secret-shared across multiple servers. We measure the
concrete cost in terms of the round complexity and the communication complex-
ity needed for joint evaluation of the PRF. For all of our estimates, we use a
concrete security parameter of λ = 128.

In Table 1, we provide a concrete comparison of the communication com-
plexity and round complexity for oblivious evaluation of our PRF candidate.
We compare them to the corresponding costs of using the Araki et al. protocol
or an optimized garbled-circuit protocol to evaluate standard block ciphers like
AES and MPC-optimized block ciphers like LowMC and Rasta. We describe the
methodology we used to derive these estimates in the full version.

5.3 An Alternative Candidate with Better Garbling Complexity

While our weak PRF candidate in Construction 3.1 can be computed efficiently
when the input and key are secret shared across 3 servers, the large number
of multiplications makes it less amenable for garbled circuit evaluation. In this
section, we introduce a variant of our weak PRF candidate that is well-suited
for garbling (even compared to MPC-friendly block ciphers like LowMC and
Rasta), and yet, is still plausibly secure. We give the candidate below, but defer
the description of the efficient information-theoretic garbling of the candidate
(based on [5]) to the full version.
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Construction 5.3 (Alternative Mod-2/Mod-3 Weak PRF Candidate).
Let λ be a security parameter, and let n = n(λ) be the key length (and input
length). The weak PRF candidate is a function Fλ : {0, 1}n × {0, 1}n → Z3 with
key-space Kλ = {0, 1}n, domain Xλ = {0, 1}n and output space Yλ = Z3. For
a key k ∈ Z

n
2 , we write Fk(x) to denote the function Fλ(k, x). We define Fk as

follows:

– On input x ∈ {0, 1}n,

Fk(x) =
∑

i∈[n]

kixi mod 2 +
∑

i∈[n]

kixi mod 3 (mod 2).

– In other words, the PRF evaluation consists of computing the inner product
between the key k and the input x modulo 2 and modulo 3, and then com-
bining the results modulo 2, Alternatively, it can be viewed as a variant of
LPN with noise rate 1/3 where the noise is derived deterministically from the
input and key (with the noise being 1 if and only if 〈k, x〉 = 1 (mod 3)).

Security of Construction 5.3. In the full version, we provide additional dis-
cussion on the security of our construction. In particular, while many of the
rationales we discussed in Sect. 4 for security of our main candidate (e.g., lack
of correlation with fixed function families and inapproximability by low-degree
rational functions) also apply to the alternative candidate, there are two key
limitations of this new candidate compared to Construction 3.1: (1) the BKW
attack now applies to this candidate due to its structural similarity with the LWE
or LPN problems, and (2) there exist non-adaptive attacks on this candidate.

6 Encoded-Input Pseudorandom Functions

In this section, we examine the security of our weak PRF candidate against
adaptive attacks. In fact, we show in the full version that strong PRFs do not
exist in a large class of depth-2 circuits (including our weak PRF candidate
(Construction 3.1), thus ruling out adaptive security of our candidate). Our
lower bound relies on a learning algorithm for automata with multiplicity by
Bergadano and Varricchio [14].

There are many scenarios where a weak PRF does not suffice for security.
For instance, if we consider the distributed SSE application described in the
full version and impose the additional requirements of security against mali-
cious clients, then a weak PRF no longer suffices. To address this limitation, we
introduce a new notion we call an encoded-input pseudorandom function that
can often be used as a drop-in replacement for strong PRFs. At a high-level,
an encoded-input PRF is a function that behaves like a PRF on some (possibly
sparse) subset of the domain. As a concrete example, a suitable subset might be
the set of codewords under a linear error-correcting code.

In this section, we describe several natural applications of encoded-input
PRFs, and then describe a candidate encoded-input PRF whose efficiency is
comparable to that of our weak PRF candidate. This candidate remains MPC-
friendly, and can thus be useful for MPC applications that require a strong PRF.
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6.1 Definitions of (P)EI-PRFs

We define two versions of our notion: encoded-input pseudorandom function (EI-
PRF) and protected encoded-input pseudorandom function (PEI-PRF).

Definition 6.1 (Encoded-Input PRF). Let K = {Kλ}λ∈N
, X = {Xλ}λ∈N

,
X ′ = {X ′

λ}λ∈N
, and Y = {Yλ}λ∈N

be ensembles of finite sets indexed by a
security parameter λ. Let {F′

λ}λ∈N
= {(Eλ,Fλ)}λ∈N

be an efficiently-computable
collection of functions where Eλ : X ′

λ → Xλ is an encoding function and Fλ : Kλ×
Xλ → Yλ is a keyed evaluation function. Then, we say that {F′

λ}λ∈N
is a (t, ε)-

encoded-input PRF (EI-PRF) if the function Kλ×X ′
λ → Yλ defined via (k, x′) �→

Fλ(k,Eλ(x′)) is a (t, ε)-strong pseudorandom function. Moreover, we say that F′
λ

is computable in C if Fλ is computable in C.

While the definition of an encoded-input PRF may seem equivalent to that
of a standard PRF, the important point is that the encoding function is a keyless
procedure. This means that an honest user can evaluate for itself the encoding
algorithm on an input to obtain a valid encoded input, and then ask for the
PRF value on the encoded input. The holder of the PRF secret key only needs
to evaluate F. This is the reason we define the complexity of an EI-PRF to be
the complexity of its evaluation function (rather than the composition of its
evaluation and encoding functions). Furthermore, we note that even though the
overall function F(·,E(·)) is a strong PRF, the function F itself may live in a
complexity class where strong PRFs do not exist.

One of the main reasons we are interested in EI-PRFs is that we can poten-
tially use them as a drop-in replacement for strong PRFs in concrete applications.
In many of these scenarios, however, it does not make sense to assume that the
evaluator behaves honestly and will only evaluate the F on properly-encoded
inputs. This motivates our stronger notion of a protected encoded-input PRF
(PEI-PRF), which augments an EI-PRF with an additional verification algo-
rithm. The inputs to a PEI-PRF consists of a point x as well as a proof w that
x is a proper encoding (with respect to the encoding function of the underlying
EI-PRF). The guarantee is that the output of the PEI-PRF are pseudorandom
on all properly-encoded inputs, and ⊥ on improperly-encoded inputs.

Definition 6.2 (Protected EI-PRF). Let {F′
λ}λ∈N

= {(Eλ,Vλ,Fλ)}λ∈N
be

an efficiently-computable collection of functions where Eλ : X ′
λ → Xλ × Wλ

is a protected encoding function whose range is polynomial-time checkable by
Vλ : Xλ × Wλ → {0, 1}. That is, Vλ(x,w) = 1 if and only if (x,w) is a valid
encoding. Finally, Fλ : Kλ × Xλ × Wλ → Yλ is a keyed evaluation function.
Denote by ⊥ a special element of Yλ. For a function f ∈ Funs[Xλ,Yλ], define
Evalfλ : Xλ × Wλ → Yλ as:

Evalfλ(x,w) =

{
f(x) if Vλ(x,w) = 1
⊥ otherwise.
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Then, we say that {F′
λ}λ∈N

is a (t, ε)-PEI-PRF if for all adversaries A running
in time t(λ), and taking k

r←− Kλ and f
r←− Funs[Xλ,Yλ], we have that

∣
∣
∣Pr[AFλ(k,·,·)(1λ) = 1] − Pr[AEvalfλ(·,·)(1λ) = 1]

∣
∣
∣ ≤ ε(λ).

We say that F′
λ is computable in a circuit class C if the mapping (k, x, w) �→

Fλ(k, x, w) is computable in C. Finally, we say that a PEI-PRF is systematic
if the witness w has the form x′‖w′ such that Vλ(x, (x′‖w′)) = 1 if and only if
(x,w) = Eλ(x′).

Remark 6.3 (Relation between EI-PRFs and PEI-PRFs). PEI-PRFs are more
powerful objects than EI-PRFs: If (E,V,F) is a PEI-PRF, then (E,F) is an EI-
PRF.

We first show that that PEI-PRFs can be generically constructed from EI-PRFs.

Lemma 6.4 (PEI-PRFs from EI-PRFs). Let {(E∗
λ,F∗

λ)}λ be an EI-PRF.
Then, assuming Fλ and CNF formulas can be computed by depth-d circuits in
a class C, there exists a systematic PEI-PRF {(Eλ,Vλ,Fλ)}λ computable by a
depth-(d + 1) circuit.

Proof. The lemma follows from the fact that we can check the correctness of any
Boolean circuit computation using a CNF formula. In particular, we define a vari-
able associated with each wire in the circuit, and construct a constant-size CNF
associated with each gate in the circuit (checking that the gate is implemented
correctly). The conjunction of all of these gate-by-gate CNFs gives a CNF for
the overall circuit. For notational convenience, we drop the λ subscripts in the
description below. We now define a systematic PEI-PRF (Eλ,Vλ,Fλ) as follows:

– E(x′) → (x,w): On input a point x′ ∈ X ′, output (E∗(x′), w), where w is
the set of all of the wire values for the Boolean circuit computing E∗(x′).
Specifically, we can write w = x′‖w′, where x′ is the input to E∗ and w′

contain the internal (and output) wire values of E∗(x′).
– V(x,w) → {0, 1}: On input an encoded input x ∈ X and a witness w ∈ W,

the verification algorithm interprets w = x′‖w′. Then, it invokes the CNF
verification procedure (for checking correct computation of E∗) to check that
E∗(x′) = (x,w).

– F(k, x, w) → y: On input the key k ∈ K, an encoded input x ∈ X , and a
witness w ∈ W, the evaluation algorithm outputs y ← F∗(k, x) if V (x,w) = 1,
and ⊥ otherwise. This can be implemented by computing an AND between
the output of V(x,w) and F∗(k, x).

Since the verification algorithm V can be expressed as a CNF formula, and
moreover, both F∗ and CNFs can be computed by a circuit of depth d > 2, the
evaluation algorithm F can be implemented by a circuit of depth d + 1.
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6.2 Applications of (P)EI-PRFs

Certainly, we can instantiate any application of strong PRFs using an EI-PRF,
since EI-PRFs are PRFs if we consider the combination of the encoding and the
evaluation functions. However, we note here that our notions of EI-PRFs and
PEI-PRFs allow us to obtain interesting alternative instantiations of many of
the classic applications of PRFs. We provide details on the constructions and
proofs in the full version.

Theorem 6.5 (Symmetric Low-Depth Primitives). Let C be a class of cir-
cuits. Then, if there exists an EI-PRF computable in C, there exists a symmetric
encryption scheme with decryption in C (assuming C is closed under composi-
tion with 2-bit XOR). Similarly, if there exists a systematic PEI-PRF computable
in C, there exists a MAC with verification in C (assuming C is closed under
composition with equality testing). Together, this yields a CCA-secure symmet-
ric encryption scheme (in fact, an authenticated encryption scheme [12]) with
decryption in C.

6.3 Candidate Constructions of (P)EI-PRFs

In the full version, we give a heuristic construction of PEI-PRFs from weak-PRFs
in the random oracle model. This construction is primarily of conceptual interest
and follows from some basic observations on the connection between weak PRFs
and strong PRFs [40]. We also propose a candidate PEI-PRF based on our mod-
2/mod-3 weak PRF candidate (Construction 3.1) that remains MPC-friendly.
We briefly describe our candidate below.

(P)EI-PRF from our candidate. At a high level, the adaptive attack on
our weak PRF candidate (based on [14], see the full version) relies on querying
inputs that are close (in terms of Hamming distance) and on the fact that each
component of the input of the second mapping (i.e. the components of Ax) can
be computed by a read-once computation (by some automaton to be precise).
This suggests that using a code with large minimal distance to encode the input
x should prevent this attack. For MPC-friendliness, we would like to use a linear
code, as verifying that an input is a valid codeword can be done efficiently (by
multiplying by the parity-check matrix for the code).

A natural candidate is to use a linear code (G,H) over Z2: the encoding of
an input x′ is the codeword G · x′. Unfortunately, the same attack still applies
since we can always view the PRF evaluation as A · (G · x′) = (A · G) · x′ and
interpret (A ·G) as the key. To defend against this, we instead use a linear code
over Z3 and define the encoded bitstring x to be the binary representation of the
codeword obtained by applying the code to x′ (where we interpret x′ ∈ {0, 1}n′

as a vector over Z3). By mixing mod-2 and mod-3 operations, the encoding
procedure becomes non-linear, but verification can still be expressed as a linear
function. At the same time, the use of the linear code ensures that (1) encoded
inputs are far from each other, (2) verification is MPC-friendly as the code is
linear, and (3) the input of the second mapping cannot be expressed as a read-
once computation. We give the full description in the the full version.
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Remark 6.6 (Candidate Strong PRF in Depth-3 ACC0[2, 3]). Our candidate EI-
PRF gives a strong PRF candidate if we consider the composition of the encoding
function E with the evaluation function F. In fact, since the encoding function
E computes a linear function over Z3, it can be computed by a depth-1 ACC0[3]
circuit. As noted in Remark 3.9, the PRF evaluation function F can be com-
puted by a depth-2 ACC0[2, 3] circuit. Thus, the composition of E and F can be
computed by a depth-3 ACC0 circuit (note that the binary decomposition in the
encoding function is easily handled via fan-in and does not increase the depth
of the circuit). Thus, our construction gives a candidate strong PRF in depth-3
ACC0[2, 3].

Remark 6.7 (Asymptotically-Optimal PRFs and Natural Proof Barriers). As we
note in Remark 6.6, our candidate EI-PRF gives a strong PRF candidate if we
consider the composition of the encoding function E with the evaluation function
F. If both E and F can be computed by a circuit of linear size (in the length of
the key and input), then we obtain a candidate strong PRF with exponential
security that can be computed by linear-size circuits. This gives an “asymptot-
ically optimal” PRF that rules out natural proofs of super-linear circuit lower
bounds in the sense of Razborov and Rudich [47]. We now describe a variant
of our EI-PRF that gives the first candidate instantiation of an asymptotically-
optimal PRF, and correspondingly, the first natural proof barrier for proving
super-linear circuit lower bounds.

Evaluating our EI-PRF candidate consists of three main steps: encoding the
input over Z3, computing the binary decomposition of the encoded vector, and
then multiplying the encoded input with the secret key A over Z2. If we instanti-
ate the Z3-encoding with a linear-time encodable code over Z3 and then replace
the key A with the generator matrix of a linear-time encodable code over Z2,
then the resulting construction can be computed by a linear-size circuit. For
instance, we can instantiate the code with the linear-time encodable code family
proposed by Druk and Ishai [24] (building on the hash function from [33]). This
family gives a randomized construction of a linear-time encodable code that has
many of the combinatorial properties of a random linear code. Thus, we conjec-
ture that sampling the key to be the generator matrix of a Druk-Ishai code does
not compromise the security of our candidate. Putting these pieces together, we
obtain a plausible candidate of a strong PRF with exponential security and which
can be computed by a linear-size circuit. As far as we know, this is the first candi-
date instantiation of such an asymptotically-optimal strong PRF. Assuming it is
indeed exponentially secure, natural proof techniques cannot prove super-linear
circuit lower bounds.

Conclusions. We believe that the conjectures we have made in this section are
strong and a healthy dose of skepticism is warranted. We hope that the applica-
tions and implications we point out will motivate further study and constructions
of (P)EI-PRFs, as well as additional cryptanalysis of our concrete candidates.
We also leave open the question of setting concrete parameters for our new
PEI-PRF and strong PRF candidates (Remark 6.6).
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