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Abstract. The possibility of basing cryptography on the minimal
assumption NP � BPP is at the very heart of complexity-theoretic
cryptography. The closest we have gotten so far is lattice-based cryptog-
raphy whose average-case security is based on the worst-case hardness of
approximate shortest vector problems on integer lattices. The state-of-
the-art is the construction of a one-way function (and collision-resistant
hash function) based on the hardness of the Õ(n)-approximate shortest
independent vector problem SIVPÕ(n).

Although SIVP is NP-hard in its exact version, Guruswami et al.
(CCC 2004) showed that gapSIVP√

n/ log n
is in NP ∩ coAM and thus

unlikely to be NP-hard. Indeed, any language that can be reduced
to gapSIVPÕ(

√
n) (under general probabilistic polynomial-time adaptive

reductions) is in AM ∩ coAM by the results of Peikert and Vaikun-
tanathan (CRYPTO 2008) and Mahmoody and Xiao (CCC 2010). How-
ever, none of these results apply to reductions to search problems, still
leaving open a ray of hope: can NP be reduced to solving search SIVP
with approximation factor Õ(n)?

We eliminate such possibility, by showing that any language that
can be reduced to solving search SIVP with any approximation factor
λ(n) = ω(n log n) lies in AM intersect coAM.

1 Introduction

It is a long-standing open question whether cryptography can be based on the
minimal assumption that NP � BPP. More precisely, one would hope to con-
struct cryptographic primitives such that given a polynomial-time algorithm
breaking the security of the primitive, one can efficiently solve SAT.

The closest we have gotten so far is lattice cryptography. This approach was
born out of the breakthrough result of Ajtai [Ajt96], which constructs a one-way
function family based on the worst-case hardness of certain lattice problems
such as the γ-approximate shortest independent vectors problem (SIVPγ), which
can be stated as follows: given an n-dimensional lattice, find a set of n linearly
independent vectors whose length1 is at most γ(n) (polynomial in n) times the
length of the shortest such vector set. Since the work of Ajtai, the state of the
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art is a construction of a family of collision resistant hash functions (CRHF)
based on the hardness of the shortest independent vectors problem with an
approximation factor Õ(n) [MR04]. One would hope that this approach is viable
for constructing cryptography based on NP-hardness since Blömer and Seifert
showed that SIVPγ is NP-hard for any constant factor [BS99]. Presumably, if
one could construct cryptographic primitives based on the hardness of SIVPO(1),
we would be golden. Alternatively, if one could extend the result of Blömer and
Seifert to show the NP-hardness of SIVPγ for larger γ(n), we would be closer to
the goal of basing cryptography on NP-hardness.

However, there are some negative results when one considers the correspond-
ing gap version of the same lattice problem. The gap problem, denoted by
gapSIVPγ , is to estimate the length of the short independent vector set within
a factor of γ(n). Peikert and Vaikuntanathan show that gapSIVPω(

√
n log n) is in

SZK [PV08]. Thus there is no Cook reduction from SAT to gapSIVPÕ(
√

n) unless
the polynomial hierarchy collapses (as BPPSZK ⊆ AM ∩ coAM [MX10]).

Fortunately, the hardness of SIVP is not contradicted by the fact that the
gap problem with the same approximation factor is easy. For instance, if one
considers any ideal lattice in the field Z[x]/〈x2k + 1〉, its successive minima
satisfy λ1 = . . . = λn, thus gapSIVP√

n can be trivially solved using Minkowski’s
inequality. However, finding a set of short independent vectors in such ideal
lattices is still believed to be hard. As none of these negative results apply to
reductions to search SIVP, there is still a ray of hope: can NP be reduced to
solving search SIVP with approximation Õ(n)?

Thus, in order to really understand the viability of the approach begun by the
work of Ajtai, it seems one must study the search versions of lattice problems. In
this work, we relate the hardness of the search version SIVPγ , to the gap version
gapSIVP. Informally, we show that if gapSIVPγ is not hard, neither is SIVP√

n·γ .

Main Theorem 1. If gapSIVPγ ∈ SZK and there exists a probabilistic
polynomial-time adaptive reduction from a language L to SIVP√

n log n·γ , then
L ∈ AM ∩ coAM.

As a quick corollary, combining our result with gapSIVPω(
√

n log n) ∈ SZK
[PV08], any language that can be reduced to SIVPω(n log n) lies in AM intersect
coAM and thus it is not NP-hard unless the polynomial hierarchy collapses.

Corollary 1.1. If there exists a probabilistic polynomial-time adaptive reduction
from a language L to SIVPγ for any γ(n) = ω(n log n), then L ∈ AM ∩ coAM.

1.1 Proof Overview

The first step is to shift from a search problem to a sampling problem. Our goal
is to obtain a black-box separation between SIVPγ and NP-hardness by showing
that any language L that can be reduced to SIVPγ is in AM intersect coAM.
Let R be the reduction from L to SIVPγ . We will construct an AM protocol for L
using reduction R. For a first attempt, the näıve verifier samples a random tape
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and sends it to the prover. The prover simulates the reduction R and resolves
any query to SIVPγ using its unbounded computational power. The simulation,
including the answers to the reduction’s query to SIVPγ , is sent to the näıve
verifier, so that the verifier can check its correctness. But SIVPγ is a search
problem and there is no unique right answer. The prover has the freedom to
decide which answer is chosen upon each query. This freedom allows a malicious
prover to fool the näıve verifier. Similar difficulty were faced by Bogdanov and
Brzuska, which is resolved by inherently shifting to sampling problems. In order
to separate size-verifiable one-way functions from NP-Hardness [BB15], they
force the prover to sample a random answer uniformly among all correct ones.
Thus the correct answer distribution for each query is unique.

Inspired by the work of Bogdanov and Brzuska, we consider a sampling prob-
lem related to SIVPγ , called the discrete Gaussian distribution. A discrete Gaus-
sian over a lattice is a distribution such that the probability of any vertex v
is proportional to e−π‖v−c‖2/s2

, where c is its “center” and parameter s is its
“width”. Lemma 4.3 shows that discrete Gaussian sampling is as hard as SIVPγ

in the sense that there is a black-box reduction from SIVPγ to discrete Gaus-
sian sampling with “width” γ(n)/

√
n. Therefore, if language L can be reduced

to SIVPγ , then it can also be reduced to discrete Gaussian sampling on lattices
with “width” s ≤ λn/

√
n.

Lemma 4.3 (Informal). SIVPγ can be efficiently reduced to discrete Gaussian
sampling on lattices with “width” σ = γ√

n
λn.

Lemma 4.3 is a generalization of [Reg09, Lemma 3.17]. Its proof is quite
intuitive. Repeatedly sample from the discrete Gaussian over the same lattice
centered at 0. With good probability, the newly sampled vertex is short and is
linearly independent from previously sampled verteces.

The next natural question is, which property separates a sampling problem
from NP-hardness? Here we introduce the notion of “probability-verifiability”.
Informally, a distribution family is probability-verifiable if for any distribution D
in this family and for any possible value v, Pr[v ← D], the probability that v is
sampled from D, can be lower bounded within an arbitrarily good precision in
AM.

Lemma 4.4 (Informal). If a language L can be reduced to a probability-
verifiable sampling problem S, then L ∈ AM ∩ coAM.

Lemma 4.4 is a generalization of [BB15]. Assume language L can be reduced
to sampling problem S. The input of S is interpreted as the description of a
distribution, let Ppd denote the distribution specified by input pd.

Let R be the reduction from L to sampling problem S. On each input x,
an execution RS(x) is determined by the random tape of reduction R, denoted
by r, and the answers to the reduction’s queries to S. The transcript is defined
as σ = (r, pd1, v1, . . . , pdT , vT ) where pdt is the t-th query to S and vt is the
corresponding response. Note that r, v1, . . . , vT determine the execution, since
pdt is determined by r, v1, . . . , vt−1. Then
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Pr[RS(x) accepts] =
∑

σ:accepting transcript

of RS(x)

Pr[σ] =
∑

σ:accepting transcript

of RS(x)

Pr[r] · Ppd1
(v1) · . . . · PpdT

(vT ).

(1)
For simplicity, assume for now that there is an efficient algorithm that computes
the probability Ppd(v) given pd and value v. This property is stronger than
probability-verifiability. Then the probability that RS(x) accepts, which equals
a sum (Eq. (1)) where each term can be efficient computed, can be lower bounded
using the set lower bound protocol of Goldwasser and Sipser [GS86], so L ∈ AM.
Symmetrically, L ∈ coAM. The proof of Lemma 4.4 shows the same result from
the weaker condition that S is probability-verifiable.

There is one last step missing between Lemmas 4.3 and 4.4: Is discrete Gaus-
sian sampling probability-verifiable? What is the smallest factor γ such that dis-
crete Gaussian sampling with “width” ≤ γλn is probability-verifiable? Lemma
4.5 answers this question, and it connects the hardness of discrete Gaussian
sampling with the hardness of gapSIVP.

Lemma 4.5 (Informal). Assume gapSIVPγ is in SZK. There exists a real
valued function s(B) ∈ [λn, Õ(γ) · λn] such that given a lattice basis B, discrete
Gaussian sampling over lattice L(B) with “width” s(B) is probability-verifiable.

Lemma 4.5 has an easier proof assuming the stronger condition that gapSIVPγ

is in P. If there were some deterministic polynomial time algorithm solving
gapSIVPγ , there would exist s(B) ∈ [λn(B), γλn(B)] that can be efficiently com-
puted by binary search. As s(B) ≥ λn(B), the verifier can ask the prover to
provide a set of n linearly independent vectors w1, . . . ,wn whose length is no
longer than s(B). Given the lattice basis B and a set of short linearly indepen-
dent vectors, there exists an efficient algorithm that samples from the discrete
Gaussian with the desired parameter [BLP+13]. When the verifier can sample
from a distribution, he can lower bound the probability of each value using the
set lower bound protocol [GS86].

This informal proof assumes gapSIVPγ ∈ P in order to compute a function
s(B) that s(B) ≈ λn(B). As the verifier only needs to compute such a function
s(B) in an AM protocol, this assumption can be weakened to gapSIVPγ ∈ SZK,
by combining with Lemma 3.1.

Lemma 3.1 (Informal). Assume gapSIVPγ is in SZK. There exists a real
valued function s(B) ∈ [λn, Õ(γ) ·λn] that can be efficiently computed in Arthur-
Merlin protocol.

The proof technique of Lemma 3.1 crucially relies on the fact that gapSIVPγ ∈
SZK. As a result, we can hardly make use of previous results such as
gapSIVP√

n/ log n
∈ NP ∩ coAM [GMR04].

1.2 Related Works

Prior work exploring the problem of basing cryptography on worst-case NP-
hardness has obtained several negative results for black-box reduction. Bras-
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sard [Bra79] first showed that one-way permutations cannot be based on NP-
hardness. Goldreich and Goldwasser [GG98] showed that public-key encryption
schemes satisfying certain very specific properties cannot be based on NP-
hardness. The required properties include the ability to certify an invalid key.

Work of Akavia, Goldreich, Goldwasser and Moshkovitz [AGGM06] and Bog-
danov and Brzuska [BB15] showed that a special class of one-way functions
called size-verifiable one-way functions cannot be based on NP-hardness. A
size-verifiable one-way function is one in which the size of the set of pre-images
can be efficiently approximated via an AM protocol.

Bogdanov and Lee [BL13] showed that homomorphic encryption schemes
satisfying a special property cannot be based on NP-hardness. The required
property is that the homomorphic evaluation produces a ciphertext whose dis-
tribution is statistically close to that of a fresh encrypted ciphertext.

Recently, Liu and Vaikuntanathan [LV16] showed that single-server private
information retrieval (PIR) schemes cannot be based on NP-hardness.

Several works have also obtained a separation results for restricted types of
reductions, most notably non-adaptive reductions which make all oracle queries
simultaneously. The work of Feigenbaum and Fortnow [FF91], subsequently
strengthened by Bogdanov and Trevisan [BT06], showed that there cannot be a
non-adaptive reduction from SAT to the average-case hardness of any problem
in NP, unless the polynomial hierarchy collapses.

On basing lattice problems on NP-hardness, the work of Goldreich and
Goldwasser [GG00], subsequently strengthened by Micciancio and Vadhan
[MV03], showed that gapSVP√

n/ log n
and gapCVP√

n/ log n
are both contained in

NP ∩ SZK. The shortest vector problem (SVP) and the closest vector problem
(CVP), roughly speaking, is the problem of finding the shortest non-zero vector
in a lattice or finding the lattice vector that is closest to a given point. The corre-
sponding gap problem gapSVPγ , gapCVPγ is to estimate within a factor of γ(n)
the length of the shortest non-zero vector or the distance to the closest lattice
vector from a given point. The problem gapSVP is connected to gapSIVP via so-
called “transference theorems” for lattices [Ban93]. Aharonov and Regev [AR04]
explored a slightly looser approximation factor and showed that gapSVP√

n and
gapCVP√

n are both contained in NP ∩ coNP.
In prior work on the gap version of the SIVP problem, Guruswami, Mic-

ciancio and Regev [GMR04] showed that gapSIVP√
n/ log n

∈ NP ∩ coAM.

Peikert and Vaikuntanathan [PV08] showed that gapSIVPγ ∈ SZK for any
γ(n) = ω(

√
n log n). In contrast to these results for promise problems, our

work explores the approximate SIVP problem. With an approximation factor
γ(n) = Õ(n), this search problem is the basis of lattice-based collision resistant
hash function (CRHF) constructions [Ajt96,MR04]. In particular, Micciancio
and Regev constructed CRHF from the worst-case hardness of SIVPγ(n) for any
γ(n) = ω(n log n) [MR04]. We separate SIVPγ from NP-hardness for the same
approximation factor.
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2 Preliminaries

Lattice A lattice in Rn is an additive subgroup of Rn

{ n∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n

}

generated by n linearly independent vectors b1, . . . ,bn ∈ Rn. The set of vectors
b1, . . . ,bn is called a basis for the lattice. A basis can be represented by matrix
B ∈ Rn×n whose columns are the basis vectors. The lattice generated by the
columns of B is denoted by L(B).

L(B) = {Bx : x ∈ Nn}.

The i-th successive minimum of a lattice L, denoted by λi(L), is defined as
the minimum length that L contains i linearly independent vectors of length at
most λi(L). Formally,

λi(L) := min{r : dim(L ∩ rB) ≥ i},

where rB is the radius r ball centered at the origin defined as rB := {x ∈ Rn :
‖x‖2 ≤ r}. We abuse notations and write λi(B) instead of λi(L(B)).

Shortest Independent Vectors Problem (SIVP). SIVP is a computational problem.
Given a basis B of an n-dimensional lattice, find a set of n linearly independent
vectors v1, . . . ,vn ∈ L(B) such that maxi ‖vi‖ is minimized, i.e., ‖vi‖ ≤ λn(B)
for all 1 ≤ i ≤ n.

SIVPγ is the approximation version of SIVP with factor λ. Given a basis B of
an n-dimensional lattice, find a set of n linearly independent vectors v1, . . . ,vn ∈
L(B) such that ‖vi‖ ≤ γ(n) · λn(B) for all 1 ≤ i ≤ n. The approximation factor
γ is typical a polynomial in n.

gapSIVPγ is the decision version of SIVPγ . An input to gapSIVPγ is a basis
B of a n-dimensional lattice and a scalar s. It is a YES instance if λn(B) ≤ s,
and is a NO instance if λn(B) ≥ γ(n) · s.

Discrete Gaussian. For any vector c and any s > 0, let

ρc,s(v) = e−π‖v−c‖2
2/s2

be a Gaussian function with mean c and width s. Functions are extends to sets
in usual way, ρc,s(L) =

∑
v∈L ρc,s(v). The discrete Gaussian distribution over

lattice L with mean c and width s, denoted by NL,c,s, is defined by

∀v ∈ L, NL,c,s(v) =
ρc,s(v)
ρc,s(L)

.

In this work, most discrete Gaussian distributions considered are centered at the
origin. Let ρs,NL,s denote ρ0,s,NL,0,s respectively.
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Lemma 2.1 (Lemma 1.4 in [Ban93]). For each a ≥ 1, for any n-dimensional
lattice L, ρas(L) ≤ anρs(L)

Lemma 2.2 (Lemma 1.5 in [Ban93]). For any c > 1/
√

2π, n-dimensional
lattice L

ρs(L \ cs
√

nB) < Cn · ρs(L) (2)

where C = c
√

2πe · e−πc2 .

Sampling Problems. Besides computational problems and decision problems, we
define sampling problems. The input of a sampling problem specifies a distribu-
tion, let Ppd denote the distribution specified by input pd. The goal is to sample
from the distribution Ppd. A probabilistic polynomial-time algorithm S perfectly
solves the sampling problem if for any input pd

∀v,Pr[S(pd) → v] = Ppd(v).

The probability is over the random input tape of S. In a more practical definition,
S solves the sampling problem if the output distribution of S(pd) is close to Ppd,
i.e.

Δsd(S(pd, 1�),Ppd) ≤ 1
	

where Δsd denotes the statistical distance.
For example, in this work, discrete Gaussian is considered as a sampling

problem. For any function s(·) mapping lattice bases to positive real numbers,
define sampling problem DGSs. The input of DGSs is a lattice basis B. The
target output distribution PB is the discrete Gaussian distribution NL(B),s(B),
where each vector v ∈ L(B) is sampled with probability

PB(v) = NL(B),s(B)(v) =
ρs(B)(v)

ρs(B)(L(B))
.

Probability-Verifiable. A sampling problem is probability-verifiable if there exists
an AM protocol to lower bound Ppd(v) for any pd and v. More precisely, there
exists a family of error function {ηpd,m} such that for any pd,m, the error func-
tion ηpd,m : {0, 1}∗ → [0,+∞) satisfies

∑
v ηpd,m(v) ≤ 1

m , and the promise
problem

– YES instance: (pd, v, p̂, 1m) such that p̂ = Ppd(v)
– NO instance: (pd, v, p̂, 1m) such that p̂ ≥ Ppd(v) + ηpd,m(v)

is in AM.

Sampling Oracles. In order to formalize the (probabilistic) Turing reduction to
a sampling problem, we also define sampling oracles, which is a generalization of
traditional oracles studied by complexity theorists. Let S be a sampling oracle
for a fixed sampling problem. S can be queried on any valid pd; upon query
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pd, sampling oracle S(pd) would always output a fresh sample from distribution
Ppd. E.g. if the sampling oracle S is queried for the same pd multiple times, it
would output i.i.d. samples from distribution Ppd.

A probabilistic Turing reduction from a language L to a sampling problem S
is a probabilistic poly-time oracle Turing machine R, such that R can solve L
given a sampling oracle of S in the sense that

x ∈ L =⇒ RS(x) → 1 w.p. ≥ 2/3,

x /∈ L =⇒ RS(x) → 1 w.p. ≤ 1/3.

If such a reduction exists, we say L can be reduced to sampling problem S,
denoted by L ∈ BPPS.

Similarly, a computational problem or a search problem can be reduced to
a sampling problem S if they can be efficiently solved given the sampling oracle
of S.

R-TFAM and Rη-TFAM The complexity class R-TFAM is introduced by
Mahmoody and Xiao [MX10]. Informally, it’s consist of real-valued functions
that can be efficiently computed in AM. A function f : {0, 1}∗ → R is in
R-TFAM if the following promise problem is in AM:

– YES instance: (x, f(x), 1m).
– NO instance: (x, y, 1m) such that |y − f(x)| > 1

m .

The definition of R-TFAM emphasize on the absolute error. The complexity
class Rη-TFAM is defined to capture those functions that can be efficiently
computed in AM with small relative error. A function g : {0, 1}∗ → R+ is in
Rη-TFAM if the following promise problem is in AM:

– YES instance: (x, g(x), 1m).
– NO instance: (x, y, 1m) such that |y − g(x)| > 1

m · g(x).

It follows directly from the definitions that g ∈ Rη − TFAM if and only if
log g ∈ R − TFAM for any function g : {0, 1}∗ → R+.

Statistical Zero Knowledge. Statistical zero knowledge (SZK) is the class of deci-
sion problems that can be verified by a statistical zero-knowledge proof protocol.
Entropy Difference (ED) is a complete problem for SZK [GV99], which is defined
as the following: Given two polynomial-size circuits, C and D, let C and D be the
distributions of their respective outputs when C,D are fed with uniform random
inputs. The problem is to distinguish between

– YES instance: (C,D) such that H(C) − H(D) ≥ 1;
– NO instance: (C,D) such that H(C) − H(D) ≤ −1.

Where H is the Shannon entropy. Moreover, the mapping H : C �→ H(C) is in
R-TFAM.
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3 Gap Problems

The lattice problem gapSIVP is essentially estimating λn(B) given a lattice basis
B. This definition can be generalized to any real valued functions. Define the gap
problem of function f : {0, 1}∗ → R+ with gap γ : {0, 1}∗ → [1,+∞), denoted
by gapfγ , as the promise problem

– YES instance: (x, y) such that y ≤ f(x);
– NO instance: (x, y) such that y > γ(x) · f(x).

In this work, estimating λn(B) is of critical importance. Its gap problem,
gapSIVPγ , alone is not sufficient for the proof. Instead, a stronger form of approx-
imation is defined. Say g : {0, 1}∗ → R+ is an approximation of function f within
factor γ if f(x) ≤ g(x) ≤ γ(x) · f(x) for all x. Clearly, computing g is a harder
problem than gapfγ , in the sense that there is a trivial reduction from gapfγ to
computing g.

The following Lemma shows a reduction in the other direction: if gapfγ is in
SZK, then there exists an approximation of f within almost the same factor,
which can be computed in AM.

Lemma 3.1. For any real valued function f : {0, 1}∗ → R+ and any gap γ :
{0, 1}∗ → [1,+∞) that log γ(x) ≤ poly(|x|), if gapfγ ∈ SZK, then for any con-
stant μ > 1, there exists g : {0, 1}∗ → R+ such that ∀x, g(x) ∈ [f(x), μγ(x)f(x)]
and g is in Rη-TFAM.

Lemma 3.1 can be combined with previous results about gapSIVP. Peikert
and Vaikuntanathan [PV08] showed that gapSIVPγ ∈ NISZK ⊆ SZK for any
γ = ω(

√
n log n). Thus there exists an approximation of λn within a factor

Õ(
√

n) that can be computed in AM.

Corollary 3.2. For any γ(n) = ω(
√

n log n), there exists a function g maps
lattice bases to real numbers such that g ∈ Rη − TFAM and λn(B) ≤ g(B) <
γ(n) · λn(B).

Proof (Lemma 3.1). Entropy Difference (ED) is a complete problem for SZK,
so gapfγ ∈ SZK implies the existence of a reduction (x, y) �→ (Cx,y,Dx,y) that
maps input x together with a real number y to random circuits Cx,y,Dx,y. Let
Cx,y and Dx,y be the output distributions of Cx,y,Dx,y. The reduction from
gapfγ to ED satisfies the following properties:

– There is an efficient deterministic algorithm computing Cx,y,Dx,y given input
(x, y).

– H(Cx,y) − H(Dx,y) > 2 for any x, y that y ≤ f(x).
– H(Cx,y) − H(Dx,y) < −1 for any x, y that y > γ(x) · f(x).

Define the clamp function

clamp(y) :=

⎧⎪⎨
⎪⎩

1, if y ≥ 1;
y, if y ∈ (0, 1);
0, if y ≤ 0.
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For any fixed constant μ > 1, define

g(x) = exp

⎛
⎝ln μ ·

+∞∑
i=0

clamp(H(C
x,µi ) − H(D

x,µi )) + ln μ ·
+∞∑
i=1

(
clamp(H(C

x,µ−i ) − H(D
x,µ−i )) − 1

)⎞
⎠ .

As clamp(H(Cx,y) − H(Dx,y)) = 1 for y ≤ f(x),

g(x) ≥ exp
(
ln μ · �logμ(f(x))�) ≥ f(x).

As clamp(H(Cx,y) − H(Dx,y)) = 0 for y > γ(x) · f(x),

g(x) ≤ exp
(
ln μ · �logμ(γ(x) · f(x))�) ≤ μγ(x) · f(x).

In order to complete the proof, we show that g is in Rη-TFAM. For any
input x, ĝ, the prover can prove ĝ ≈ g(x) if ĝ = g(x).

Consider the following protocol, ε = 1/poly(m, ln γ) will be fixed later.
On any input x, define di = H(Cx,μi) − H(Dx,μi). And the honest prover

should send d̂i = di. The prover have to prove that di − ε < d̂i < di + ε. For
μi ≤ f(x), d̂i ≥ di−ε ≥ 1, then clamp(d̂i) = 1 = clamp(di). For μi ≥ μγ(x)f(x),
d̂i ≤ di + ε ≤ 0, then clamp(d̂i) = 0 = clamp(di). For f(x) < μi < μγ(x)f(x),
| clamp(d̂i) − clamp(di)| ≤ |d̂i − di| < ε.

AM “protocol” on input (x, ĝ)

P: Send . . . , d̂−1, d̂0, d̂1, d̂2, . . . such that logμ ĝ =
∑∞

i=0 clamp(d̂i) +
∑∞

i=1(clamp(d̂−i) − 1)

P,V: For each i ∈ Z, convince the verifier that d̂i − ε < H(Cx,μi ) − H(Dx,μi) < d̂i + ε

Thus
∣∣∣ ln ĝ − ln g(x)

ln μ

∣∣∣ ≤
∑
i∈Z

∣∣clamp(d̂i) − clamp(di)
∣∣

=
∑

f(x)<μi<μγ(x)f(x)

∣∣clamp(d̂i) − clamp(di)
∣∣

< �logμ(μγ(x))�ε

<
ln γ(x) + 2

lnμ
ε.

If ε is sufficiently small, ĝ would be close to g(x). To ensure |ĝ − g(x)| ≤ 1
mg(x),

it is sufficient to set ε = O( 1
m(ln γ(x)+2) ).

The above “protocol” is not a real protocol, as it requires the prover to send
an infinite sequence to the verifier. To compress the proof, the prover need a
succinct interactive proof that dj > 1 for all j ≤ iL and dj < 0 for all j ≥ iH .

For an index i, if the prover can convince the verifier that di = H(Cx,μi) −
H(Dx,μi) < 2, the verifier also learns that μi > g(x), thus for any j ≥ i +
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�logμ γ(x)�, μj > γ(x)g(x) and dj ≤ −1. Similarly, if the prover can convince
the verifier that di = H(Cx,μi) − H(Dx,μi) > −1 , the verifier also knows that
dj ≥ 2 for any j ≤ i − �logμ γ(x)�.

Thus the real AM protocol that proves ĝ ∈ (g(x) − 1
m , g(x) + 1

m ) is the
following: ��

AM protocol on input (x, ĝ, 1m)

P: Send d̂iL , d̂iL+1, . . . , d̂iH−1, d̂iH such that
• logμ ĝ = iL +

∑iH
i=iL

clamp(d̂i)
• iH = iL + 2�logμ γ(x)�
• d̂iL+�logµ γ(x)� > 0

• d̂iL+�logµ γ(x)�+1 < 1

P,V: For each i ∈ Z, convince the verifier that d̂i − ε < H(Cx,μi) − H(Dx,μi) < d̂i + ε
for ε = O( 1

m(ln γ(x)+2)
).

4 Search SIVP and NP-Hardness

Theorem 4.1. For any factor γ : N → R, if gapSIVPγ ∈ SZK and there
exists a probabilistic polynomial-time adaptive reduction from a language L to
SIVP√

n lnn·γ , then L ∈ AM ∩ coAM.

The smallest factor γ we knows that makes problem gapSIVPγ be in SZK
comes from [PV08]: for any factor γ(n) = ω(

√
n log n), problem gapSIVPγ is in

SZK.

Corollary 4.2. For any factor γ(n) = ω(n log n), if there exists a probabilistic
polynomial-time adaptive reduction from a language L to SIVPγ , then L ∈ AM∩
coAM.

The proof of Theorem 4.1 is the combination of Lemmas 4.3, 4.4 and 4.5.
Problem gapSIVPγ is in SZK and there is a reduction from language L to search
problem SIVP√

n lnn·γ . Lemma 4.3 shows that there is another reduction from L
to sampling problem DGSs for any s satisfying

s(B) ∈ [λn(B),
√

ln n · γλn(B)]. (3)

Lemma 4.5 shows that there exists a function s satisfying (3) such that the sam-
pling problem DGSs is probability-verifiable. Therefore, there exists a reduction
from L to a probability-verifiable sampling problem. Finally, Lemma 4.4 shows
that such a language L must live in AM ∩ coAM.
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Lemma 4.3. Let s(·) be a function mapping lattice bases to real numbers, such
that ∀B, λn(B) ≤ s(B) ≤ γ√

n
λn(B). Then there exists a probabilistic Turing

reduction from SIVPγ to DGSs.

Lemma 4.4. If there exists a probabilistic Turing reduction from a promise
problem L = (LY , LN ) to probability-verifiable sampling problems, then L ∈
AM ∩ coAM.

Lemma 4.5. For any factor γ : N → R, if gapSIVPγ(n)/
√
lnn ∈ SZK, then there

exists a function s(·) mapping lattice bases to real numbers, such that ∀B, s(B) ∈
[λn(B), γ(n) · λn(B)] and DGSs is probability-verifiable.

By combining Lemmas 4.4, 4.5 and [PV08], we can also show that discrete
Gaussian sampling with width Õ(

√
n) ·λn is not NP-hard unless the polynomial

hierarchy collapses.

Theorem 4.6. If there exists a probabilistic Turing reduction from a promise
problem L to DGSs for s(B) = ω(

√
n log n) · λn(B), then L ∈ AM ∩ coAM.

4.1 From Search SIVP to Discrete Gaussian Sampling

This section proves Lemma 4.3, which is essentially Lemma 3.17 in Regev’s work
[Reg09]. Informally speaking, Regev shows a reduction from SIVPγ to DGSγ/

√
n

for γ = Ω(
√

n log n); Lemma 4.3 uses similar technique to construct a reduction
from SIVPγ to DGSγ/

√
n for γ = Ω(

√
n).

The reduction from SIVPγ to discrete Gaussian sampling is straightforward:
Sample n2 times from discrete Gaussian distribution of width s ∈ [λn, γ√

n
λn].

The sampled vectors contain n short, linearly independent vectors with proba-
bility exponentially close to 1.

In order to prove Lemma 4.3, we shows that if n2 vectors are sampled from
discrete Gaussian NL(B),s(B), the following two “bad events” occurs with prob-
ability exponentially small.

– One of the sampled vectors is too long, its Euclidean norm is larger than
γλn(B).

– The sampled vectors are not full rank.

Lemma 2.2 bounds the probability that an overlong vector is sampled from
a discrete Gaussian distribution. Let the constant c in formula (2) equals 1,

Pr
v←NL(B),s(B)

[
‖v‖ >

√
n · s(B)

]
=

ρs(L(B) \ s
√

nB)
ρs(L(B))

<
(√

2πe · e−π
)n

< 0.2n.

As γ(n) · λn(B) ≥ √
n · s(B),

Pr
v←NL(B),s(B)

[
‖v‖ > γλn(B)

]
≤ Pr

v←NL(B),s(B)

[
‖v‖ >

√
n · s(B)

]
< 0.2n,
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which is exponentially small.
To prove that the n2 sampled vectors span the whole space, we need a lower

bound on the probability a newly sampled vector is linear independent from the
previous ones. Lemma 4.7 shows such a lower bound, improves [Reg09, Lemma
3.15] by a factor of

√
ln n (the so-called smoothing parameter).

Lemma 4.7. For any n-dimensional lattice L, real number s ≥ λn(L) and for
any proper linear subspace V � Rn, the probability Prv←NL,s

[v �∈ V] is at least
1/20.

Proof. By the definition of successive minimum, there exists u ∈ L\V such that
‖u‖ ≤ λn(L). Let L′ denote L ∩ V. As L is closed under addition, L′ +u,L′ −u
are subsets of L. Moreover, as V is closed under addition and u /∈ V, the sets
L′ + u,L′,L′ − u are disjointed.

Pr
v←NL,s

[v ∈ V] =
ρs(L′)
ρs(L)

≤ ρs(L′)
ρs(L′ − u) + ρs(L′) + ρs(L′ + u)

=

∑
v∈L′ ρs(v)∑

v∈L′
(
ρs(v − u) + ρs(v) + ρs(v + u)

)

As ‖u‖ ≤ λn(L) ≤ s, for any vector v

ρs(v − u) + ρs(v + u) = e−π‖v−u‖2/s2 + e−π‖v−u‖2/s2

= (e−2π〈u,v〉/s2 + e2π〈u,v〉/s2 )e−π‖u‖2/s2e−π‖v‖2/s2 ≤ 2e−πρs(v)

Thus

Pr
v←NL,s

[v ∈ V] ≤
∑

v∈L′ ρs(v)∑
v∈L′(1 + 2e−π/22)ρs(v)

=
1

1 + 2e−π
≈ 0.92.

��
Assume k vectors has been sampled from NL(B),s(B) and their dimension is

strictly less than n. By Lemma 4.7, the next n sampled vectors contain a vector
linearly independent from the first k with probability exponentially close to 1.
By union bound, n2 samples from NL(B),s(B) contains n linearly independent
vectors with probability exponentially close to 1.

4.2 Probability-Verifiable Sampling Problem and NP-hardness

This section proves Lemma 4.4, which is a generalization of [BB15], the proof
techniques are similar.

Let M be the reduction from a promise problem L = (LY , LN ) to S. For
a given input x, we want to distinguish between Pr[MS(x) → 1] ≥ 8/9 and
Pr[MS(x) → 1] ≤ 1/9 in AM. Notice that the randomness includes the random
tape of M and the randomness S used to answer each query.
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A transcript of an execution of MS(x) is an tuple (r, pd1, v1, pd2, v2,
. . . , pdT , vT ) consists of the random tape of M, all queries to S and the cor-
related answers. The transcript fully determined the execution MS(x), and

Pr[MS(x) → 1] =
∑

transcript (r,pd1,v1,pd2,v2,...,pdT ,vT )

determines a execution where MS(x)→1

Pr[(r, pd1, v1, pd2, v2, . . . , pdT , vT )]

=
∑

transcript (r,pd1,v1,pd2,v2,...,pdT ,vT )

determines a execution where MS(x)→1

Pr[r]
T∏

t=1

Ppdt(vt).

In the proof, we construct an AM protocol that estimates this sum.

Proof of Lemma 4.4. It’s sufficient to show that L = (LY , LN ) ∈ AM. Then the
same argument would shows L̄ = (LN , LY ) ∈ AM, which implies L ∈ coAM.

L can be efficiently reduced to a probability-verifiable sampling problem. Let
S denote a correlated sampling oracle. The reduction is a probability polynomial-
time oracle algorithm M such that

x ∈ LY =⇒ Pr[MS(x) → 1] ≥ 8
9
,

x ∈ LN =⇒ Pr[MS(x) → 1] ≤ 1
9
.

(4)

The probability is over the random tape of M and the randomness used by S.
Without loss of generality, assume there exists T = poly(n) that M uses T bits
of randomness and makes T queries on any input x ∈ {0, 1}n.

Define a transcript of an execution MS(x) as a tuple (r, pd1, v1, pd2, v2, . . . ,
pdT , vT ) where r ∈ {0, 1}T is the random tape of M, pdt is the t-th query
to sampling oracle S and vt is the t-th sample returned by S. The length of
vt is bounded by some polynomial of n, let 	(n) be a polynomial that upper
bound |vt|.

Note that the input, the random tape and oracle’s answers fully determine
the reduction. Given the input and random tape, the reduction’s first query is
predictable; given the input, random tape and the oracle’s previous answers,
the reduction’s next query is predictable. Therefore, we define a transcript σ =
(r, pd1, v1, pd2, v2, . . . , pdT , vT ) to be valid, if it’s potentially a transcript of an
execution MS(x), i.e. if for all 1 ≤ t ≤ T , pdt would the t-th query in execution
MS(x) when r is the random tape and v1, . . . , vt−1 is the oracle’s previous
answers. By this definition, σ is a valid transcript doesn’t implies vt has non-
zero probability under distribution pdt. Let C(x) denote the set of all valid
transcripts of MS(x).

The transcript also determines the output of the reduction. Define a tran-
script σ to be accepting, if σ is valid and the corresponding execution MS(x)
output 1. Let C1(x) denote the set of all accepting transcripts of MS(x).

Let Px(σ) denote the probability that σ is the transcript of MS(x) when
the random tape is uniformly chosen and S is an ideal sampling oracle. Then by
chain rule,
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Px(σ) =
1
2T

T∏
t=1

Ppdt(vt)

for any valid transcript σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT ). For any input x, we
know C1(x) ⊆ C(x),

∑
σ∈C(x)

Px(σ) = 1,
∑

σ∈C1(x)

Px(σ) = Pr[MS(x) → 1]

by the definition of valid/accepting transcripts. Thus, by condition (4), to dis-
tinguish between x ∈ LY and x ∈ LN , it’s sufficient to distinguish between∑

σ∈C1(x)
Px(σ) ≥ 8/9 and

∑
σ∈C1(x)

Px(σ) ≤ 1/9.
Define D(x) as the set of all tuple (σ, k) such that σ = (r, pd1, v1, pd2, v2, . . . ,

pdT , vT ) ∈ C1(x), and k is an integer that

1 ≤ k ≤ K · Px(σ) = K · 1
2T

T∏
t=1

Ppdt(vt)

where K = 10 · 2T · 2T (�+1). Then the size of D(x) is roughly K ·Pr[MS(x) → 1]
if K is sufficiently large.

The sampling problem is probability-verifiable. By definition, there exists
a family of error function {ηpd,m} such that for any pd,m, the error function
ηpd,m : {0, 1}∗ → [0,+∞) satisfies

∑
v ηpd,m(v) ≤ 1, and the promise problem

– YES instances: (pd, v, p̂, 1m) such that p̂ = Ppd(v)
– NO instances: (pd, v, p̂, 1m) such that p̂ ≥ Ppd(v) + 1

mηpd,m(v)

is in AM. Let ProbLowerBound be the corresponding AM protocol.
Let set D′(x) consist of all tuple (σ, k) such that σ = (r, pd1, v1,

pd2, v2, . . . , pdT , vT ) ∈ C1(x), and k is an integer that

1 ≤ k ≤ K · 1
2T

T∏
t=1

(
Ppdt(vt) +

1
T

ηpdt,T (vt)
)
.

Here K = 10 · 2T · 2T (�+1) as in the definition of D(x). By definition, D(x) ⊆
D′(x).

Claim. The promise problem

– YES instances: (x, σ, k) such that (σ, k) ∈ D(x)
– NO instances: (x, σ, k) such that (σ, k) /∈ D′(x)

is in AM.
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Proof. TranscriptChecking is an AM protocol that solves this promise problem.

AM protocol TranscriptChecking on input (x, σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT ), k)

V: Check whether σ is a valid accepting transcript of MS(x); Reject if not
P: Send p̂1, . . . , p̂T , an honest prover should send p̂t = Ppdt(vt)
P,V: Run protocol ProbLowerBound(pdt, vt, 1

10T ) for all 1 ≤ t ≤ T , repeat polynomial
many times in parallel and take majority so that the total error probability is
exponentially small; Reject if either of these protocols reject.

V: Check whether 1 ≤ k ≤ K · 1
2T

∏q
i=1 p̂i; Reject if not

For (σ, k) ∈ D(x), an honest prover could convince the verifier that to accept
(x, σ, k).

Any prover, even if it’s malicious, should send p̂t such that p̂t ≤ Ppdt(vt) +
1

10T ηpdt,10T (vt). Otherwise the prover will be caught in ProbLowerBound protocol
with overwhelming probability. Thus no prover can make the verifier accept
(x, σ, k) with high probability if (σ, k) /∈ D′(x). ��

Claim. The size of D(x) is at least 2
3K if x ∈ LY .

Proof. x ∈ LY implies that Pr[MS(x) → 1] ≥ 8
9 . Thus

|D(x)| =
∑

σ∈C1(x)

�K · Px(σ)�

≥
∑

σ∈C1(x)

(K · Px(σ) − 1)

= K ·
∑

σ∈C1(x)

Px(σ) − |C1(x)|

≥ K · Pr[MS(x) → 1] − |C(x)|
≥ 8

9
K − 2T · 2T (�+1)

=
8
9
K − 1

10
K

≥ 2
3
K

��

Claim. D′(x) has size at most 1
3K if x ∈ LN .
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Proof. x ∈ LN implies that Pr[MS(x) → 1] ≤ 1
9 .

|D′(x)| =
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT )∈C1(x)

⌊
K · 1

2T

T∏

t=1

(
Ppdt

(vt) +
1

10T
ηpdt,10T (vt)

)⌋

≤ K ·
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT )∈C1(x)

1

2T

T∏

t=1

(
Ppdt

(vt) +
1

10T
ηpdt,10T (vt)

)

= K ·
∑

σ=(r,pd1,...,vT )∈C1(x)

(
1

2T

T∏

t=1

(
Ppdt

(vt) +
1

10T
ηpdt,10T (vt)

)
− 1

2T

T∏

t=1

Ppdt
(vt)

)

+ K ·
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT )∈C1(x)

1

2T

T∏

t=1

Ppdt
(vt)

≤ K ·
∑

σ=(r,pd1,...,vT )∈C(x)

(
1

2T

T∏

t=1

(
Ppdt

(vt) +
1

10T
ηpdt,10T (vt)

)
− 1

2T

T∏

t=1

Ppdt
(vt)

)

+ K · Pr[MS(x) → 1]

≤ (e1/10 − 1)K +
1

9
K

≤ 1

3
K.

The second to last inequality symbol relies on the following inequality,

∑
σ=(r,pd1,v1,...,pdT ,vT )∈C(x)

(
1
2T

T∏
t=1

(
Ppdt(vt) +

1
10T

ηpdt,10T (vt)
))

=
∑

(r,pd1,v1,...,pdT−1,vT−1,pdT )

∃vT (r,pd1,v1,...,pdT ,vT )∈C(x)

(
1
2T

T−1∏
t=1

(
Ppdt(vt) +

1
10T

ηpdt,10T (vt)
)
·

∑
v

(
PpdT (v) +

1
10T

ηpdT ,10T (v)
))

≤
∑

(r,pd1,v1,...,pdT−1,vT−1)

∃pdT ,vT (r,pd1,...,vT )∈C(x)

(
1
2T

T−1∏
t=1

(
Ppdt(vt) +

1
10T

ηpdt,10T (vt)
)(

1 +
1

10T

))

...

≤
∑

r∈{0,1}T

1
2T

(
1 +

1
10T

)T

≤
(
1 +

1
10T

)T

≤ e1/10.

��
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Combining the claims above, L can be reduced to the following promise
problem

– YES instances: x such that |D′(x)| ≥ |D(x)| ≥ 2
3K;

– NO instances: x such that |D(x)| ≤ |D′(x)| ≤ 1
3K.

This promise problem can be solved in AM using the set lower bound protocol
of Goldwasser and Sipser [GS86]. Thus L ∈ AM.

4.3 DGSs is Probability-Verifiable

By Lemma 3.1, for any approximation factor γ, if gapSIVPγ/μ ∈ SZK for any
constant μ > 1, there exists a function g maps lattice bases to real numbers such
that g is in Rη-TFAM and λn(B) ≤ g(B) < γ(n)λn(B).

For any basis B and lattice point v ∈ L(B), as g ∈ Rη −TFAM, the verifier
can force the prover to provide a sufficiently accurate estimation of g(B), denoted
by ĝ. As ĝ ≈ g(B) ≥ λn(B), the verifier can ask the prover to provide a set of
linearly independent vectors W = (w1, . . . ,wn) such that ‖W‖ ≤ ĝ. Here the
length of a vector set, e.g. ‖W‖, is defined as the length of the longest vector in
the set.

Given such a short independent vector set W, there exists an efficient
algorithm that samples from discrete Gaussian distribution NL(B),ŝ such that
ŝ = Θ(

√
log n) · ĝ [BLP+13,GPV08]. Moreover, the verifier can estimate the

probability that v is sampled from NL(B),ŝ using the set lower bound protocol.
Let s(B) = Θ(

√
log n) · g(B), then ŝ is a good estimation of s(B). If the bias

between ŝ and s(B) is sufficiently small, one could expect Pr[v ← NL(B),ŝ] ≈
Pr[v ← NL(B),s(B)].

Proof (Lemma 4.5). By Lemma 3.1, for sufficiently large n, gapSIVPγ(n)/
√
lnn ∈

SZK implies the existence of a function g maps lattice bases to real numbers
such that g is in Rη-TFAM and g(B) ∈ [λn(B), γ(n)/

√
ln(2n + 4)/π · λn(B)].

Here n ≥ 2 is sufficiently large, as it implies γ(n)/
√

ln(2n+4)/π

γ(n)/
√
lnn

≥ 1.01.

Define s(B) =
√

ln(2n + 4)/π · g(B), thus for sufficiently large n

λn(B) ≤
√

ln(2n + 4)/π · λn(B) ≤ s(B) < γ(n)λn(B).

Given any basis B, vector v ∈ L(B) and precision parameter m, the verifier
can learn a good estimation on g(B), denoted by ĝ. As g(B) ≥ λn(B), the verifier
could ask the prover to provide a set of linearly independent vectors of L(B),
denoted by W, such that ‖W‖ ≤ ĝ.

Given a set of linearly independent vectors W that ‖W‖ ≤ ĝ, there is an
efficient algorithm which samples from discrete Gaussian NL(B),

√
ln(2n+4)/π·ĝ

[BLP+13]. Let S denote this sampling algorithm. Let ŝ =
√

ln(2n + 4)/π·ĝ, then
ŝ is a good approximation of s(B). Let r be the random tape in the sampling
algorithm S, then

Pr[v ← NL(B),ŝ] =
{r : S(B′, ŝ) outputs v when r is the random input tape}

2|r| .



116 T. Liu

We could use the set lower bound protocol to lower bound this probability
Pr[v ← NL(B),ŝ]. Thus the promise problem

– YES instances: (W,v, ŝ, p̂, 1m) such that v ∈ L, ‖W̃‖ ≤ ŝ√
ln(2n+4)/π

,

p̂ = Pr[v ← NL(B),ŝ]
– NO instances: (W,v, ŝ, p̂, 1m) such that p̂ ≥ (1 + 1

m ) Pr[v ← NL(B),ŝ]

is in AM, as it can be solved by protocol ProbLowerBound.

AM protocol ProbLowerBound on input (B,v, p̂, 1m)

P: Send ĝ, an honest prover should send ĝ = g(B)
P,V: Convince the verifier that |ĝ − g(B)| ≤ cδ · g(B),

where δ = 1
nm2 , c is a sufficiently small constant

P: Send W = (x′
1, . . . ,x

′
n)

V: Check if W is a basis of L(B) and ‖W̃‖ ≤ ĝ
P,V: Run the set lower bound protocol to convince the verifier that p̂ ≤ (1 +

1
2m

) Pr[v ← NL(B),ŝ], where ŝ =
√

ln(2n + 4)/π · ĝ

To prove DGSs is probability-verifiable, it is sufficient to show that ProbLower-
Bound is an AM protocol that estimates the probability Pr[v ← NL(B),ŝ] with
high accuracy. The estimation error of ProbLowerBound has two sources: (a) the
inaccuracy of the set lower bound protocol, which introduce an O( 1

m ) multi-
plicative error; and (b) the inaccuracy when estimating s(B). Let ηB(v) be the
estimation error, the error term satisfies

NB,s(B)(v) + ηB(v) ≤
(
1 +

1
2m

)
max

|ŝ−s(B)|≤δ·s(B)
NB,ŝ(v) (5)

To complete the proof, it is sufficient to show that
∑

v∈L(B) ηB(v) = O( 1
m ). By

summing (5) over v ∈ L(B),

1 +
∑

v∈L(B)

ηB(v) ≤
(
1 +

1
2m

) ∑
v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v).

Thus it is sufficient to show
∑

v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v) ≤ 1 + O(
1
m

). (6)
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Which is proved as
∑

v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v) =
∑

v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

ρŝ(v)
ρŝ(L(B))

≤
∑

v∈L(B)

max|ŝ−s(B)|≤δ·s(B) ρŝ(v)
min|ŝ−s(B)|≤δ·s(B) ρŝ(L(B))

≤ ρ(1+δ)s(L(B))
ρ(1−δ)s(L(B))

≤ (
1 + δ

1 − δ
)n

= O(
1

mn
)

(7)

The last inequality is due to Lemma 2.1. ��
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