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Abstract. In this paper, we revisit the round complexity of design-
ing zero-knowledge (ZK) arguments via a black-box construction from
minimal assumptions. Our main result implements a 4-round ZK argu-
ment for any language in NP, based on injective one-way functions, that
makes black-box use of the underlying function. As a corollary, we also
obtain the first 4-round perfect zero-knowledge argument for NP based on
claw-free permutations via a black-box construction and 4-round input-
delayed commit-and-prove zero-knowledge argument based on injective
one-way functions.
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1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs that
allow one player (called the prover) to convince another player (called the ver-
ifier) of the validity of a mathematical statement x ∈ L, while providing zero
additional knowledge to the verifier. This is formalized by requiring that the
view of every “efficient” adversary verifier V∗ interacting with the honest prover
P be simulated by an “efficient” machine S (a.k.a. the simulator). The idea
behind this definition is that whatever V∗ might have learned from interacting
with P, it could have actually learned by itself (by running the simulator S). As
“efficient” adversaries are typically modelled as probabilistic polynomial-time
machines (PPT), the traditional definition of ZK models both the verifier and
the simulator as PPT machines.

Several variants of ZK systems have been studied in literature. In this work,
we are interested in computational ZK argument systems with black-box simu-
lation, where the soundness is required to hold only against non-uniform PPT

provers whereas the zero-knowledge property holds against PPT verifiers which
get an auxiliary input. Such systems are referred to as computational zero-
knowledge argument systems. We will further focus on the case of black-box
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constructions1 and black-box simulation.2 The main question we address is the
the round-complexity of computational zero-knowledge argument systems based
on minimal assumptions via a fully black-box construction. First, we survey prior
work in this area.

Goldreich et al. [GMW91] constructed the first zero-knowledge proof systems
for all of NP based on the minimal assumption of one-way functions, where they
required polynomially many rounds to achieve negligible soundness. For argu-
ments, Feige and Shamir [FS89] provided a 4-round zero-knowledge system based
on algebraic assumptions. In [BJY97], Bellare, Jackobson and Yung showed how
to achieve the same assuming only one-way functions.

On the negative side, Goldreich and Oren [GO94] demonstrated that three
rounds are necessary for designing zero-knowledge for any non-trivial language
(i.e. outside BPP) against non-uniform verifiers. When further restricting to
black-box simulation, Goldreich and Krawcyzk [GK96b] showed that four rounds
are necessary for achieving zero-knowledge of non-trivial languages. For the spe-
cific case of proofs (i.e. unconditional soundness), Katz [Kat12] showed that only
languages in MA can have 4-round zero-knowledge proof systems.

As such, the works of [BJY97] and [GK96b] identify the round-complexity
of zero-knowledge arguments as four when restricting to black-box simulation.
However, when considering constructions that are black-box in the underly-
ing primitives, Pass and Wee [PW09] provided the first black-box construc-
tion of a 6-round zero-knowledge argument for NP based on one-way permu-
tations3 and seven rounds based on one-way functions. Ishai, Mahmoody and
Sahai provided the first black-box sublinear zero-knowledge arguments based
on collision-resistant hash-functions [IMS12]. Ostrovsky, Richelson and Scafuro
[ORS15] showed how to construct black-box two-party secure computation pro-
tocols in four rounds where only one party receives the output from enhanced
trapdoor permutations. As zero-knowledge can be seen as an instance of such a
secure computation, their work provides a round-optimal black-box construction
based on enhanced trapdoor permutations.

This sequence of prior works leaves the following fundamental question
regarding black-box constructions of zero-knowledge arguments open:

What is the weakest hardness assumption for a black-box construction of
a 4-round zero-knowledge argument system for all of NP?

We remark that when considering non-black-box simulation, a recent work
due to Bitansky et al. [BKP18] demonstrates how to obtain 3-round zero-
knowledge arguments for NP based on multi-collision resistance hash functions.
On the negative side, Fleischhacker et al. [FGJ18] proved that 3-round private-
coin ZK proofs for NP do not exist, even with respect to non-black-box simulation
assuming the existence of certain program obfuscation primitives.

1 Where the construction is agnostic of the specific implementation and relies only on
its input/output behavior.

2 Where the simulator is only allowed to make black-box use of the verifier’s code.
3 Where injective one-way functions are sufficient.
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Our Results. In this work we present the first 4-round ZK argument of knowl-
edge protocols based on one-way permutations (injective one-way functions) and
claw-free permutations. Specifically,

Theorem 1.1 (Informal). Assuming injective one-way functions, there exists
a fully black-box 4-round black-box computational zero-knowledge argument for
all of NP.

As a corollary we obtain the following result regarding perfect zero-knowledge
argument systems.

Corollary 1.2 (Informal). Assuming claw-free permutations, there exists a
fully black-box 4-round black-box perfect zero-knowledge argument for all of NP.

Commit-and-Prove Input-Delayed ZK Proofs. In [LS90], Lapidot and
Shamir provided a three-round witness-indistinguishable (WI) proof for Graph
Hamiltonicity with a special “input-delayed” property: namely, the prover uses
the statement to be proved only in the last round. Recently, in [CPS+15] it was
shown how to obtain efficient input-delayed variants of the related “Sigma proto-
cols” when used in a restricted setting of an OR-composition. In [HV16], starting
from a randomized encoding scheme with an additional robustness property and
security against adaptive inputs, it was shown how to obtain general construc-
tions of input-delayed zero-knowledge proofs that yield an efficient version of the
protocol of [LS90] for arbitrary NP -relations.

The “commit-and-prove” paradigm considers a prover that first commits to
a witness w and then, in a second phase upon receiving a statement x asserts
whether a particular relation R(x,w) = 1 without revealing the committed value.
This paradigm, which is implicit in the work of [GMW87] and later formalized in
[CLOS02], is a powerful mechanism to strengthen semi-honest secure protocols
to maliciously secure ones. The MPC-in-the-head approach of [IKOS09] shows
how to obtain a commit-and-prove protocol based on one-way functions that
relies on the underlying primitives in a black-box way. In [HV16] it was further
shown how to extend the above input-delayed ZK proof to further support the
commit-and-prove paradigm which is additionally black-box in the underlying
one-way functions or permutations.

Instantiating the 3-round honest verifier zero-knowledge proof required in
Theorem 1.1 with the commit-and-proof and input-delayed protocol from [HV16]
implies the following corollary.

Corollary 1.3 (Informal). Assuming injective one-way functions, there exists
a fully black-box 4-round black-box commit-and-prove input-delayed zero-
knowledge argument for all of NP.

We prove the main theorem in Sect. 3 and the corollaries in Sect. 4.
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1.1 Our Techniques

We begin with an overview of our 4-round ZK argument that is obtained by
compiling 3-round (i.e. sigma) protocols of some special form. Consider a sigma
protocol where the prover simply relies on commitments to generate its first
round message and decommits to some subset of the commitments depending
on the challenge provided by the verifier. Following [PW09], we require a special
soundness guarantee in the protocol, where there exists at most one “easy chal-
lenge” that allows the prover to cheat for false instances. Furthermore, this easy
challenge can be efficiently reconstructed from the set of messages committed
to by the prover. An example of a sigma protocol with these properties, is the
Blum Hamiltonicity zero-knowledge protocol [Blu]. Here, the prover commits
to the adjacency matrix of a permutation of the underlying graph in the first
round, and either decommits all entries in the matrix along with the permuta-
tion or decommits just the entries that form a Hamiltonian cycle depending on
the verifier’s challenge. Given the prover’s commitments, the easy challenge can
be extracted by observing whether the prover commits to the adjacency matrix
of the permutation of original graph or just the entries of a Hamiltonian cycle.

This 3-round protocol already yields a zero-knowledge argument system, but
only with constant soundness. To amplify soundness, one can have the entire
protocol repeated in parallel, and have the verifier commit to all the parallel
challenges in a first round of the protocol while decommitting in the third round.
This 4-round protocol will indeed be zero-knowledge. However, one cannot prove
that it is negligibly sound. Specifically, there could be a malleability attack,
where, the prover upon receiving the verifier’s commitment in the first round, can
maul it to another commitment that can be open to a valid accepting response
depending on the decommitment provided by the verifier in the third round.
Another way of looking at this is that, one cannot have a black-box reduction of
a cheating prover to the hiding property of the commitment used by the verifier
in the first round to commit to the challenge. A standard way to circumvent
this issue would be to require the verifier to use a perfectly hiding commitment
and the prover a statistically binding commitment. However, this will result in
a 5-round protocol (as perfectly hiding commitments require two rounds), and
stronger assumptions, such as collision resistant hash functions.

The approach taken by Pass and Wee is to have the prover and verifier
commit using a computationally hiding commitment scheme (that can be based
on injective one-way functions) but additionally require the prover to prove
“knowledge” of the messages in its commitment before the verifier decommits
its challenge. This can be done generically using an extractable commitment
scheme (introduced in the same work) which is a commitment scheme that has
a “proof-of-knowledge” property. Before we go into the details of this construc-
tion, we point out that an extractable commitment scheme can be constructed
from injective one-way function in three rounds which results in an overall zero-
knowledge argument system with six rounds.

To collapse this protocol into four rounds we follow a cut-and-choose
paradigm. Namely, our protocol will comprise of n parallel instances of the basic
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4-round protocol. In the third round, the verifier chooses a random S ⊆ [n] of
some size t and decommits to the challenges made in those indices while provid-
ing a challenge for the extractable commitment for repetitions outside S. Then
in the fourth round, the prover will complete the zero-knowledge protocol for
the parallel repetitions with indexes in S and respond to the proof-of-knowledge
challenge for the extractable commitment for the remaining indexes. The high-
level idea here is that this allows to regain soundness in a simple way. Since the
prover does not know the subset S revealed by the verifier in the third round,
the prover has to “cheat” in most of the parallel invocations. This means we can
argue by a simple averaging argument that there is an index i ∈ [n] such that
the probability that the prover cheats in the ith repetition, i is not included in S
and the prover convinces the verifier of a false statement is non-negligible. This
means that we can now use the prover to violate the hiding of the commitment
made by the verifier for the ith repetition by running the proof-of-knowledge
extractor on the prover’s commitment in the ith repetition and extracting the
easy challenge.

However, proving zero-knowledge of this compilation is subtle and non-trivial.
Recall that the verifier only reveals the challenges for a chosen subset S in the
third round. A simple strategy for the simulator is to obtain the challenge,
i.e. “trapdoor” for the indexes in S rewind and setup the prover messages in
such a way that will allow for it to cheat in all repetitions in S. Now, the
simulator can conclude with an accepting transcript if the verifier opens the
same set S. However, the verifier can choose to reveal different subsets in different
“rewindings”. Nevertheless, in any rewinding, either the simulator has succeeded
in cheating in all the indexes of the subset revealed by the verifier or has learned
a new trapdoor. Now it suffices to show that the simulator will only require to
perform a bounded number of rewindings before it has extracted most (if not
all) trapdoors to complete the execution. A minor subtlety arises as a malicious
verifier can abort before revealing the third message and this affects the number
of rewindings that needs to be performed. However, this can be dealt with via
a standard probability analysis. There is, however, a bigger issue in proving
indistinguishability of this simulation. As described above, the simulator tries
to extract trapdoors and outputs the “first” accepting transcript when it has
managed to cheat in all indexes in the revealed subset. This simple idea however
has a subtle flaw. The issue is that one can come up with a strategy for a
malicious verifier where the distribution of the views output by the simulator is
not indistinguishable from the real view. Roughly speaking, the distribution of
the subset S in the transcript output by the simulator will be biased towards
indexes revealed earlier in the rewindings. Our main technical contribution is to
determine a “stopping” condition for the simulator that will result in the right
distribution and we describe this below.

We abstract the simulation strategy to the following game. The game pro-
ceeds in iterations where in the ith iteration the adversary outputs a subset
Si ⊂ [n] from some unknown but pre-determined distribution D. The goal is to
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determine the iteration j to stop the game and output Sj such that the following
two conditions are met:

– First, Sj ⊆ S1 ∪ · · · ∪ Sj−1, and
– Second, if D′ is the distribution of the subset Sj output, then D′ = D. In

other words, the distribution of the subset output when the game is stopped
is identical to the original distribution D.

Our main technical contribution is to show that the following simple strategy
achieves the required goal.

– In any iteration if Sj ⊆ S1 ∪ · · · ∪ Sj−1, then halt if Sj �⊆ S1 ∪ · · · ∪ Sj−2, and
proceed to the next iteration otherwise.

We prove this formally in Sect. 3.

2 Preliminaries

Basic Notations. We denote the security parameter by n. We say that a func-
tion μ : N → N is negligible if for every positive polynomial p(·) and all sufficiently
large n it holds that μ(n) < 1

p(n) . We use the abbreviation PPT to denote prob-
abilistic polynomial-time. We further denote by a ← A the random sampling of
a from a distribution A, and by [n] the set of elements {1, . . . , n}. For an NP
relation R, we denote by Rx the set of witnesses of x and by LR its associated
language. That is, Rx = {ω | (x, ω) ∈ R} and LR = {x | ∃ ω s.t. (x, ω) ∈ R}.
We specify next the definition of computationally indistinguishable.

Definition 2.1. Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N

be two distribution ensembles. We say that X and Y are computationally indis-
tinguishable, denoted X

c≈ Y , if for every PPT machine D, every a ∈ {0, 1}∗,
every positive polynomial p(·) and all sufficiently large n:

∣
∣Pr [D(X(a, n), 1n, a) = 1] − Pr [D(Y (a, n), 1n, a) = 1]

∣
∣ <

1
p(n)

.

2.1 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender Sen,
to commit itself to a value while keeping it secret from the receiver Rec (this
property is called hiding). Furthermore, in a later stage when the commitment
is opened, it is guaranteed that the “opening” can yield only a single value
determined in the committing phase (this property is called binding). In this
work, we consider commitment schemes that are statistically binding, namely
while the hiding property only holds against computationally bounded (non-
uniform) adversaries, the binding property is required to hold against unbounded
adversaries. Formally,
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Definition 2.2 (Commitment schemes). A PPT machine Com = 〈S,R〉 is
said to be a non-interactive commitment scheme if the following two properties
hold.

Computational hiding: For every (expected) PPT machine Rec∗, it holds that
the following ensembles are computationally indistinguishable.
– {ViewRec∗

Com (m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

– {ViewRec∗
Com (m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

where ViewR∗
Com(m, z) denotes the random variable describing the output of

Rec∗ after receiving a commitment to m using Com.
Statistical binding: For any (computationally unbounded) malicious sender

Sen∗ and auxiliary input z, it holds that the probability that there exist valid
decommitments to two different values for a view v, generated with an honest
receiver while interacting with Sen∗(z) using Com, is negligible.

We refer the reader to [Gol01] for more details. We recall that non-interactive
perfectly binding commitment schemes can be constructed based on one-way
permutation, whereas two-round statistically binding commitment schemes can
be constructed based on one-way functions [Nao91]. To set up some notations,
we let comm ← Com(m; rm) denote a commitment to a message m, where the
sender uses uniform random coins rm. The decommitment phase consists of
the sender sending the decommitment information decomm = (m, rm) which
contains the message m together with the randomness rm. This enables the
receiver to verify whether decomm is consistent with the transcript comm. If so,
it outputs m; otherwise it outputs ⊥. For simplicity of exposition, in the sequel,
we will assume that random coins are an implicit input to the commitment
functions, unless specified explicitly.

2.2 Extractable Commitment Schemes

A core building block of our protocol is an extractable commitment scheme
ExtCom introduced by Pass and Wee in [PW09].

Definition 2.3 (Extractable commitment schemes). Let ExtCom =
(Sen,Rec) be a statistically binding commitment scheme. We say that ExtCom
is an extractable commitment scheme if there exists an expected PPT oracle
machine (the extractor) E that given oracle access to any PPT cheating sender
Sen∗ outputs a pair (τ,m∗) such that:

Simulation: τ is identically distributed to the view of Sen∗ at the end of inter-
acting with an honest receiver Rec in commit phase.

Extraction: The probability that τ is accepting and m∗ = ⊥ is negligible. We
remark here that, we only need a weak extraction property where the extraction
succeeds if the commitment is well formed. In other words, we allow for “over
extraction” where the commitment could be invalid, yet, the extraction returns
a value.
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Binding: If m∗ �= ⊥, then it is statistically impossible to open τ to any value
other than m∗.

In Fig. 1 we describe their 3-round extractable commitment scheme ExtCom
that is based on one-way permutations. In order to commit to a bit m the sender
splits m into two shares which are committed using a statistically binding com-
mitment scheme Com. Next, the receiver sends a challenge bit e where the sender
must open one of the two commitments that lie in the eth position. Later, in
the decommit phase the sender opens the remaining commitments enabling the
receiver to verify that all opening are valid and that all pairs correspond to
the same bit m. Loosely speaking, hiding follows from hiding of the underly-
ing commitment scheme Com. Whereas extractability follows from repetitively
rewinding the sender obtaining two shares of a particular instance.

Extractable Commitment Scheme ExtCom [PW09]

The commitment scheme ExtCom uses a statistically binding commitment scheme Com
and runs between sender Sen and receiver Rec.

Input: Sen holds a message m ∈ {0, 1}.
Commit Phase:

Sen → Rec: Sen proceeds as follows:
1. Sen chooses η1, . . . , ηκ ← {0, 1}κ.
2. For all i ∈ [κ], Sen commits to the following matrix:

comηi comm⊕ηi = Com(ηi) Com(m ⊕ ηi) .

Rec → Sen: Rec sends a challenge e = e1, . . . , eκ ← {0, 1}κ to Sen.
For all i ∈ [κ], Sen sends the decommitment information decom(ei·m)⊕ηi

for
which the receiver checks the validity of openings.

Decommit Phase:
1. The sender sends m and opens the commitments to all κ pairs of strings.
2. The receiver checks that all the openings are valid, and also that all pairwise

decommitments correspond to m.

Fig. 1. Extractable commitment scheme

2.3 Zero-Knowledge Arguments

We denote by 〈A(ω), B(z)〉(x) the random variable representing the (local) out-
put of machine B when interacting with machine A on common input x, when
the random-input to each machine is uniformly and independently chosen, and
A (resp., B) has auxiliary input ω (resp., z).
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Definition 2.4 (Interactive argument system). A pair of PPT interactive
machines (P,V) is called an interactive proof system for a language L if there
exists a negligible function negl such that the following two conditions hold:

1. Completeness: For every x ∈ L there exists a string ω such that for every
z ∈ {0, 1}∗,

Pr[〈P(ω),V(z)〉(x) = 1] ≥ 1 − negl(|x|).

2. Soundness: For every x /∈ L, every interactive PPT machine P∗, and every
ω, z ∈ {0, 1}∗

Pr[〈P∗(ω),V(z)〉(x) = 1] ≤ negl(|x|).

Definition 2.5 (Zero-knowledge). Let (P,V) be an interactive proof system
for some language L. We say that (P,V) is computational zero-knowledge with
respect to an auxiliary input if for every PPT interactive machine V∗ there
exists a PPT algorithm S, running in time polynomial in the length of its first
input, such that

{〈P(ω),V∗(z)〉(x)}x∈L,ω∈Rx,z∈{0,1}∗
c≈ {〈S〉(x, z)}x∈L,z∈{0,1}∗

(when the distinguishing gap is considered as a function of |x|). Specifically, the
left term denote the output of V∗ after it interacts with P on common input x
whereas, the right term denote the output of S on x.

If further the distributions are identically distributed, we refer to the proof
system as perfect zero-knowledge.

Definition 2.6 (Σ-protocol). A protocol π is a Σ-protocol for relation R if
it is a 3-round public-coin protocol and the following requirements hold:

– Completeness: If P and V follow the protocol on input x and private input
ω to P where ω ∈ Rx, then V always accepts.

– Special soundness: There exists a polynomial-time algorithm A that given
any x and any pair of accepting transcripts (a, e, t), (a, e′, t′) on input x, where
e �= e′, outputs ω such that ω ∈ Rx.

– Special honest-verifier zero knowledge: There exists a PPT algo-
rithm S such that

{〈P(ω),V(e)〉(x)}x∈L
c≈ {S(x, e)}x∈L

where S(x, e) denotes the output of S upon input x and e, and 〈P(ω),V(e)(x)〉
denotes the output transcript of an execution between P and V, where P has
input (x, ω), V has input x, and V’s random tape (determining its query)
equals e.
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2.4 Claw-Free Permutations

Definition 2.7 (Claw-free permutations). A triple of algorithms, (I,D, F ),
is called a claw-free collection if the following conditions hold.

– Both I and D are probabilistic polynomial-time, whereas F is deterministic
polynomial-time. We denote by fσ

i (x) the output of F on input (σ, i, x), and
by Dσ

i the support of the random variable D(σ, i).
– For every i in the range of algorithm I, the random variables f0

i (D(0, i)) and
f1

i (D(1, i)) are identically distributed.
– For every probabilistic polynomial-time algorithm, A′, every polynomial p(·),

and all sufficiently large n’s

Pr[f0
In

(Xn) = f1
In

(Yn)] ≤ 1/p(n)

where In is a random variable describing the output distribution of algorithm
I on input 1n, and (Xn, Yn) is a random variable describing the output of
algorithm A′ on input (random variable) In.

A construction for perfectly hiding commitment scheme based on claw-free
permutations can be found in [GK96a].

3 The Feasibility of 4-Round BB ZK Arguments from
OWPs

In this section we will prove our main theorem, demonstrating the feasibility
of black-box 4-round zero-knowledge argument of knowledge. More formally, we
prove the following theorem.

Theorem 3.1. Assuming one-way permutations, Protocol 1 is a 4-round fully
black-box zero-knowledge argument for any NP language.

Building Blocks. Our protocol will employ the following cryptographic primi-
tives.

Non-interactive perfectly binding commitment scheme: Such commit-
ment schemes can be based on one-way permutations. We denote this scheme
by Com and employ it for the verifier in the first message of our protocol.

Extractable commitment scheme: We recall that an extractable commit-
ment scheme is a commitment scheme that has in addition an extraction algo-
rithm, such that given an adversarial sender Sen∗, can extract the committed
message or output ⊥ if the commitment is invalid. A 3-round extractable
commitment scheme can be constructed based on any non-interactive com-
mitment scheme [PW09]. We denote this scheme by ExtCom; see Sect. 2.2 for
more details. We employ that commitment scheme for the prover.
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3-round public-coin honest-verifier zero-knowledge proof: A 3-round
zero-knowledge proof with constant soundness for any language in NP,
denoted by πZK = (a, e, t), that can be constructed starting from a non-
interactive commitment scheme Com and where the witness is only used to
in computing the third message t. For instance, the Blum’s Hamiltonicity
protocol [Blu] or [IKOS07,HV16]. For concreteness, let us consider the for-
mer protocol, where given a public input graph G, proceeds as follows. In the
first message, the prover commits to the elements of the adjacency matrix
{comaij

}i,j∈[m] of a random permutation of the input graph G. The verifier
responds with a challenge bit e. If e = 0, then the prover decommits all entries
of the matrix and gives the permutation, and the verifier accepts if the permu-
tation maps the input graph to the revealed graph. If e = 1, then the prover
only decommits to elements in the adjacency matrix that form a Hamiltonian
cycle. The verifier accepts if the revealed entries form an Hamiltonian cycle.

Protocol’s Description: Our protocol executes the honest verifier zero-
knowledge proof πZK in parallel n times, where a t subset of these executions
(that is picked by the verifier) are completed till end while the rest are used for
completing the extractable commitment algorithm.

Protocol 1 (Black-box 4-round zero-knowledge argument)

– Inputs: A public statement x ∈ L for both and a witness ω ∈ Rx for the
prover P.

– The protocol:
1. V → P : The verifier picks n challenges for the parallel invocations of

protocol πZK, say e1, . . . , en, and commits to them using algorithm Com.
Denote this set of commitments by (come1 , . . . , comen

).
2. P → V : The prover generates n first-messages (a1, . . . , an) according

to πZK. Here each ai contains commitments to entries of an adjacency
matrix {extcomai[r,c]}r,c∈[m] of an independently and randomly chosen
permutation of the input graph G where the commitment is computed
using ExtCom where m is the number of nodes in the graph.

3. V → P: The verifier chooses a random t subset T ⊂ {1, . . . , n} and sends
{decomei

}i∈T where decomei
is the decommitment of comei

. It also sends
a challenge ch ∈ ([n] − T ) for all the extractable commitments.

4. P → V: Condition on valid decommitments sent by the verifier, for every
ZK iteration i ∈ T , the prover completes protocol πZK, answering chal-
lenge ei with the message ti and sends {ti, decomai

}i∈T . For the remaining
ZK iterations, the prover simply responds to the challenge ch according
to the extractable commitment protocol ExtCom.
The verifier accepts if all decommitments are valid, if (ai, ei, ti) is a valid
transcript for πZK for all i ∈ T and if the extractbale commitments protocol
has been concluded correctly for all remaining iterations i /∈ T .

Proof (Theorem 3.1). Completeness follows directly from the completeness
of the underlying honest verifier zero knowledge protocol πZK. Below we prove
soundness and zero-knowledge of our protocol.
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Soundness. On a high-level, the special soundness of the underlying zero-
knowledge protocol implies that, on a false statement, and a set of commitments
provided by the prover in its first message, there is only one “easy challenge”
for which the prover can complete the protocol and convince the verifier. Pass
and Wee in [PW09] formalized the notion of “easy challenge” by requiring that
the zero-knowledge protocol satisfies the property that there is an efficient pro-
cedure that given the input statement x and values in the commitments made
by the prover in the second message v1, . . . , vk, outputs a string e such that if
an easy challenge exists then it must equal e, and if this challenge is revealed
by the verifier the (malicious) prover can convince the verifier even on a false
statement. For example, the Blum Hamiltonicity zero-knowledge protocol satis-
fies this requirement and the easy challenge can be extracted as follows. If the
value committed to by the prover is a permutation π and the adjacency matrix
A such that A represents the graph π(G), then set the easy challenge to be 0
and otherwise 1. We argue soundness based on the following two steps.

1. We show that for a false statement an adversarial prover has to guess the
challenge from the commitments made by the verifier before it is revealed in
the third message for most of the n parallel instances. More precisely, the
“easy challenge” extracted from the messages committed by the prover in
most of the n iterations must match exactly the challenge committed to by
the verifier.

2. There is an extraction procedure to extract the messages committed by the
prover in one of these iterations without having to reveal the challenge com-
mitted to in the first message.

Combining these two ideas, we can reduce the soundness of the zero-knowledge
to the hiding property of the commitments made by the verifier. We remark that
our protocol and proof are different from those presented in [PW09] in that the
verifier only reveals a subset of the challenges, where essentially the prover is only
required to convince the verifier in the executions corresponding to this subset.
In contrast, in the protocol presented in [PW09] the verifier opens all challenges.
Specifically, as their protocol includes additional rounds between the prover’s
second message and when the verifier reveals the challenge in order to extract
the prover’s committed message, their analysis becomes easier. In our protocol,
on the other hand, we will be able to extract the values in the commitments made
by the prover only in the repetitions for which the challenge was not revealed
by the verifier. We now proceed to the formal proof.

Assume for contradiction that there exists a PPT prover P∗ and polynomial
p(·) such that for infinitely many n’s, there exists xn �∈ L∩{0, 1}n such that the
prover successfully convinces the verifier on the statement xn with probability
1

p(n) . Fix an arbitrary n for which this happens. We will construct an adversary
B that uses P∗ to break the hiding property of the non-interactive commitment
scheme Com. More formally, B will internally incorporate the code of the prover
P∗ on input (1n, xn) and feed it with messages according to the honest verifier.
That is, on input (1n, xn) and a commitment c from the external challenger, B
proceeds as follows.
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1. It will begin an internal emulation with P∗. To simulate the first message from
the verifier, it will choose a random index i to feed the challenge commitment
c and the rest of them it will generate honestly internally.

2. Next, it will continue the execution to completion where it picks a random
subset S1 ⊆ [n] conditioned on i �∈ S1. Let ch1 be the challenge it feeds for
the extractable commitment. If the prover aborts in the internal emulation
then B aborts.

3. Otherwise, it will record the response to challenge ei for the extractable com-
mitment in repetition i. Next, it will rewind the prover to the third message,
giving another set S2 ⊆ [n] subject to i �∈ S2 and an independent challenge
ch2 for the extractable commitment. If the prover aborts, B aborts as well.
Otherwise, it will use the extractor for the underlying extractable commit-
ment scheme on the commitment made for iteration i and the responses given
for two challenges. We remark here that our extractor could “over extract”.
Namely, extract in case of an invalid commitment. To deal with this, we stip-
ulate that if the extractor extracts a valid graph, the bit b is set to 1 and
otherwise 0. If the extractor successfully extracts the committed messages,
then B extracts the easy challenge b, outputs b and halts.

We next prove in the claim that B breaks the hiding property of the challenge
commitment c with non-negligible probability.

Claim 3.1. There exists polynomial q(·) such that,

Pr[b ← {0, 1}n : c ← Com(1n, b) : B(1n, x, c) = b] ≥ 1
q(n)

.

Proof: Define the random variable Γ to be the set that contains the indexes
where the prover commits to the adjacency matrix according to the easy chal-
lenge. We will further restrict Γ to be those indices where if b = 1 (meaning the
prover commits to the graph), the index will be included only if the commitment
is valid. This means that the prover can successfully convince the verifier only if
T ⊆ Γ . Note that this set (even if not efficiently computable) is well-defined as
we rely on statistically binding commitments. Our analysis relies on the following
two cases:

Case |Γ | ≤ 3n
4 : Here the probability that T ⊆ Γ can be bounded by (3n/4

t )
(n

t)
which is negligible. We remark here that if b = 1 and the commitment is
invalid, then the Prover can not convince the verifier in that index because
all the commitments are decommitted in the fourth message. Based on the
observation that T must be contained in γ, the prover successfully completes
the protocol only with negligible probability.

Case |Γ | > 3n
4 : We begin by showing that there exists an index i ∈ Γ such that

P∗ convinces V with non-negligible probability conditioned on i �∈ T . Define
pi to be the probability that P∗ successfully convinces the verifier conditioned
on i �∈ T where recall that T is the set of challenges revealed by the verifier.
By a union bound, we have that

∑

i∈Γ pi ≥ 1
p(n) . Therefore, there exists i
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such that pi ≥ 1
|Γ |p(n) ≥ 4

3np(n) .
Now, we have that if B picks this index i and the prover completes the proof
in both the executions performed by B, then with overwhelming probability
the extractor reveals the messages committed to by the prover. This in turn
reveals the easy challenge for all indexes outside S1 ∪S2. In particular, it will
obtain the easy challenge bi which B outputs as its guess for the challenge
commitment c. By definition of Γ we have that bi is correct.
B succeeds if it picks this index i to feed the external challenge, convinces V∗

in the two executions, the extractor succeeds. The right index is chosen with
probability 1

2n . for the specific extractable commitment used in the construc-
tion (namely, the construction from [PW09]), the extractor succeeds except
with negligible probability if the ch1 �= ch2 which happens with probabil-
ity at most 1 − 2−n. Furthermore, even if the extractor “over-extracts”, if
the extracted value is the valid graph, it cannot be the case that the prover
can convince with b = 0 and we know that if i ∈ Γ and b = 1 then the
commitment is valid. Therefore the probability that B succeeds is at least
1
np2i − 1

2n − ν(n) ≥ 1
2n3(p(n))2 . ��

This concludes the proof of soundness.

Zero-Knowledge. We describe our black-box simulator and prove correctness
of simulation.

Description of Simulator S: More formally, let V∗ be a malicious verifier.
We define simulator S as follows:

1. S receives the first message V∗(x, z) from the malicious verifier.
2. S continues the execution by generating the second message according to the

honest prover’s algorithm. If the verifier aborts, the simulator outputs the
transcript and halts.

3. Otherwise, S records the challenges that the verifier reveals; denote this t
subset by T1. Set T0 = ∅.

4. Next, S repeatedly rewinds the verifier to the second message to extract some
trapdoor information, namely, decommitments of the challenges committed
by the verifier. It proceeds in iterations. In iteration 
, we assume that the S
holds the sets T1, . . . , T� and at the end of the iteration either the simulator
learns a new trapdoor (and adds a new set T�+1) or halts outputting a tran-
script. More precisely, for 
 = 1 through n− t+1,4 the simulator proceeds as
follows:
(a) It generates the second prover’s message (a1, . . . , an) as follows:

– For i �∈ T1 ∪ · · · ∪ T�, run the honest prover strategy to generate
the second message ai. In the particular Blum’s Hamiltonian proof
that we use, this amounts to simply generating commitments to the
adjacency matrix of a random permutation of the original graph G.

4 Note that this is the maximum number of iterations as at least one new element is
added in each iteration and |T1| = t.
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– For i ∈ T1 ∪ · · · ∪ T�, let ei be the challenge revealed for index i.
The simulator runs SZK(x, ei) of the underlying honest-verifier zero-
knowledge proof in order to generate the second and fourth messages
(pi

2, p
i
4) using the knowledge of the challenge ei. It then sets ai = pi

2.
Let T ′ be the challenge set revealed by the verifier. The simulator repeats
until one of the following cases occur:
Case 1. T ′ �⊆ T1 ∪ · · · ∪ T�: This case implies that the verifier reveals

a challenge of a new ZK repetition that the simulator did not record
before. In this case, the simulator sets T�+1 = T ′ and proceeds to the
next iteration under 
 (i.e. go to Step 4).

Case 2. T ′ ⊆ T1 ∪ · · · ∪ T�: This case implies two subcases.
Case 2.1. T ′ ⊆ T1 ∪ · · · ∪ T�−1: The simulator ignores this case and
continues to rewind, i.e. go to step 4(a). We remark here that in this
case, the simulator could complete the execution as it has simulated all
the second messages according to the challenges corresponding to the
set T ′. Nevertheless, we deliberately make the simulator ignore this
case so as to not skew the probability distributions of the simulator’s
output.
Case 2.2. T ′ �⊆ T1 ∪ · · · ∪ T�−1and T ′ ⊆ T1 ∪ · · · ∪ T�: This case
considers the event where the revealed subset T ′ is not contained in
the first 
 − 1 collected sets, but is contained in first 
 sets. In this
case, the simulator continues the simulation and generates the fourth
message (r1, . . . , rn) for every i ∈ [n] as follows:

– If i �∈ T ′, the simulator needs to respond to the challenge given for
the extractable commitment scheme. In this case, the simulator
simply responds to the challenge honestly.

– If i ∈ T ′, then recall that the second message ai was set to
pi
2, where (pi

2, p
i
4) were generated using the honest verifier zero-

knowledge simulator based on the challenge ei (which is implied
by the fact that T ′ ⊆ T1∪· · ·∪T�). Therefore, if the revealed chal-
lenge for this repetition i is ei, then the simulator sets the fourth
message ri = pi

4. On the other hand, if the verifier reveals a dif-
ferent challenge for repetition i, then the simulator aborts. Note
that the simulator will never abort because the challenges are
committed using a perfectly binding commitment scheme Com.

The simulator then feeds this last message and outputs the view of
the verifier.

Proof of Indistinguishability. Denote by ViewV∗(P(x, ω),V∗(x, z)) the view
of the verifier V∗(z) when interacting with the honest prover on input ω and
common input x. We prove the indistinguishability of real and simulated proofs
by defining the following intermediate hybrid experiments.

Hybrid Hyb0: In this experiment, we consider the view of the verifier when it
interacts with the honest prover with witness ω.

Hybrid Hyb1: In this experiment, we define a simulator S1 that proceeds
with the rewinding strategy as simulator S does, with the exception that the



278 C. Hazay and M. Venkitasubramaniam

prover’s messages are generated according to the honest prover’s strategy. Define
S1(x, ω, z) to be the output of the simulator S1 in this hybrid. We next prove
indistinguishability and analyze the running time of S1 in the following claims.

Claim 3.2. The following distributions are identical.

– D0 = {ViewV∗(P(x, ω),V∗(x, z))}x∈L,ω∈Rx,z∈{0,1}∗

– D1 = {S1(x, ω, z)}x∈L,ω∈Rx,z∈{0,1}∗

Proof: Fix a random tape r for V∗. Let ψ = (V1, P
ψ
1 , V2, P

ψ
2 ) be the transcript

of a random execution between V∗(x, z; r) and an honest prover P(x, ω). We will
show that the probability with which this transcript is returned is identical in
both distributions. Let pψ be the probability with which this transcript appears
in D0 conditioned on V∗’s random tape being fixed to r. Clearly, the resulting
first message will always be V1, if S1 emulates the interaction with V∗ on a
random tape r. Then we prove that transcript (V1, P

ψ
1 , V2, P

ψ
2 ) is generated by

S1(x, ω, z) with the same probability pψ conditioned on the random tape of V∗

being r.
Note first, that by the definition of S1, the probability with which an abort-

ing transcript appears in both distributions is identical. We therefore focus on
non-aborting transcripts. Therefore, it suffices to compute the probability that
S1(x, ω, z) outputs the (non-aborting) transcript of messages (V1, P

ψ
1 , V2, P

ψ
2 )

conditioned on V∗’s random tape being fixed as r. We continue with some more
conventions and notations:

– We denote by S the set that occurs in the target transcript ψ, namely, the
set contained in message V2.

– We denote by pT the probability the subset T occurrs in the real execution.
We let p⊥ denote the probability that the verifer aborts before sending its
second message in the real execution. In this notation pT =

∑
pψ where the

summation is over all transcripts ψ that contains the subset T .
– We denote a tuple of sets by T = (T1, . . . , T�) to denote the sets collected by

the simulator before it enters the 
th iteration. Typically, given a tuple T, we
use T̃ to denote the tuple (T1, . . . , T�−1) and use :: for appending a set. In
this notation, T = T̃ :: T�.

– For 1 ≤ 
 ≤ n− t+1, let Valid� denote the set of all 
-tuples (T1, . . . , T�) that
satisfy the following two conditions.
1. All sets Ti are of size t.
2. For every 1 ≤ i ≤ 
, it holds that Ti �⊆ T1, . . . , Ti−1. (Recall that the

simulator moves to the next iteration only if it finds a new trapdoor).
Intuitively, valid sequences captures all sequences that can be obtained by
the simulator when entering the 
th iteration.5

5 By possibly we mean that it might be the case that the verifier never opens some
particular t subset T in any execution, in which case any tuple that involves T will
never occur in a simulation.
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– For any 
-tuple T = (T1, . . . , T�), we define qT the probability conditioned on
not aborting that in a random execution between V∗(x, z; r) and the honest
prover, the set opened by the verifier is covered by the elements T1, . . . , T�,
i.e. T ⊆ ∪�

i=1Ti. We set q{∅} = 0. We next observe that, for any tuple T =
(T1, . . . , T�), it holds that qT = (

∑
pT )/(1−p⊥) where the summation is over

all T such that |T | = t and T ⊆ ∪�
i=1Ti.

– For a tuple T = (T1, . . . , T�), let Pψ
T(
) denote the probability that, starting

with sets T and iteration 
, the simulator S1 outputs the transcript ψ.

Without loss of generality we assume p⊥ < 1, since, if the verifier aborts
w.p. 1, the simulator outputs the transcript from the first execution and will be
distributed identically to the real execution. We begin with the following claim
which will be sufficient to prove Claim 3.2.

Subclaim 3.3. For 1 ≤ 
 ≤ n−t+1 and every tuple T = (T1, . . . , T�) ∈ Valid�,

Pψ
T(
) =

{
pψ

(1−p⊥)(1−q
˜T) if T̃ does not cover S, and

0 otherwise.

where T̃ = (T1, . . . , T�−1).

Before we prove this claim, we conclude Claim 3.2 using the preceding sub-
claim. As argued above, the probability that the simulator outputs aborting
transcripts is identical to the real execution. Observing that q∅ = 0, conditioned
on not aborting, the probability that the simulator outputs non-aborting ψ is
given by Pψ

T(0) which from the preceeding claim is pψ/(1−p⊥). Since the proba-
bility that the simulator continues after the first execution is (1−p⊥), Claim 3.2
follows.

Now we proceed to prove Subclaim 3.3.

Proof: Given T = (T1, . . . , T�), suppose T̃ = (T1, . . . , T�−1) covers S, then from
the description of our simulation it follows that it is not allowed to output ψ in
iterations 
 or higher. In other words, when T̃ covers S, Pψ

T(
) = 0 as in the
claim.

Therefore, it suffices to prove the subclaim when T̃ does not cover S. We
prove this case using a reverse induction on 
 from n − t + 1 to 1.

Base Case: 
 = n − t + 1. Let T = (T1, . . . , Tn−t+1) be an arbitrary valid
tuple and let T̃ = (T1, . . . , Tn−t). Recall that, for a general iteration 
, the
simulator rewinds until it obtains T �⊆ ∪�−1

i=1Ti. Then, if T ⊆ ∪�
i=1Ti it outputs

the transcript. Otherwise, it has obtained a new trapdoor, sets T to be the
new set Ti+1 and proceeds to the next iteration. However, if 
 = n − t + 1, we
have that ∪n−t+1

i=1 Ti must be [n] as at least one new element is added in each
iteration and |T1| = t. Therefore, in this base case, we have that S �⊆ ∪n−t

i=1 Ti

and S ⊆ ∪n−t+1
i=1 Ti. This means that if the simulator encounters the transcript
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ψ in iteration n − t + 1, it will output it. The probability can be computed as
follows:

Pr[ψ occurs in the iteration | no t -subset of ∪�−1
i=1 Ti occurs]

=
Pr[ψ occurs in the iteration ]

Pr[ no t-subset of ∪�−1
i=1 Ti occurs]

=
pψ

(1 − p⊥)
× 1

(1 − q
˜T)

This completes our base case.

Induction Step: 1 ≤ 
 ≤ n − t. Let T = (T1, . . . , T�) be an arbitrary tuple in
Validi. Set T̃ = (T1, . . . , T�−1). Recall that we only need to show the subclaim
when T̃ does not cover S. There are two cases w.r.t T:

Case 1: T covers S: In this case, the simulator can output ψ only in this
iteration and not higher. Recall that the simulator in this iteration will rewind
until it obtains a set T �⊆ T̃. Therefore, the probability that the simulator
outputs ψ is same as in the base case and given by pψ/((1 − p⊥)(1 − q

˜T)).
Case 2: T does not cover S: This means that the simulator can output ψ
only in iterations 
+1 or higher. Then for any subset T not covered by T the
probability that the simulator outputs ψ in iteration 
 + 1 or higher is given
by

Pr[T occurs in the current iteration | no t-subset of ∪�−1
i=1 Ti occurs]

× Pr[ψ occurs in iteration ≥ � + 1 with T :: T occuring in the first � iterations]

= Pr[T occurs in the current iteration | no t-subset of ∪�−1
i=1 Ti occurs]

× P ψ
T::T (� + 1)

=
pψ

(1 − p⊥)(1 − q
˜T)

× P ψ
T::T (� + 1)

This means that the overall probability can be obtained by summing the pro-
ceeding expression over all sets T not covered by T, namely, T �⊆ T1, . . . , T�.

Pψ
T(
) =

∑

T �⊆T1∪···∪T�−1

pT

(1 − p⊥)(1 − q
˜T)

× Pψ
T::T (
 + 1)

=
∑

T �⊆T1∪···∪T�−1

pT

(1 − p⊥)(1 − q
˜T)

× pψ

(1 − p⊥)(1 − qT)

=
pψ

(1 − p⊥)(1 − qT)
× 1 − qT

1 − q
˜T

=
pψ

(1 − p⊥)(1 − q
˜T)

.

where in the second step we invoke our induction hypothesis that Pψ
T::T (
 +

1) = pψ/((1 − p⊥)(1 − qT)).

This completes our inductive step and concludes the proof of our subclaim. ��
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Claim 3.4. The expected running time of S1 is polynomial.

Proof: We argue by induction on the iterations that the expected running time
of the simulator S1 defined in this hybrid is polynomial. Define RunTimeT(
) to
be the expected total running time of the simulator in iterations 
 and above
conditioned on T = (T1, . . . , T�) being the sets obtained by the simulator in the
first 
 − 1 iterations.

Subclaim 3.5. There exists a constant c such that, for any valid tuple
(T1, . . . , T�), RunTimeT(
) ≤ nc(n−�)

(1−p⊥)(1−q
˜T) where 1 ≤ 
 ≤ n − t + 1 and

T̃ = (T1, . . . , T�−1).

Proof: As in the previous proof we do reverse induction on iteration 
.

Base Case 
 = n − t + 1. Let T = (T1, . . . , Tn−t+1). Recall that in iteration

 = n − t + 1 we have ∪n−t+1

i=1 Ti = [n]. Therefore, there are no more iterations
and the simulator stops whenever it finds any T such that T �⊆ ∪n−t

i=1 Ti. The
probability of observing such an execution using our notation defined above is
given by (1−p⊥)(1−q

˜T). Therefore, the expected number of rewindings that the
simulator needs to perform in the (n − t + 1)st iteration is 1/((1 − p⊥)(1 − q

˜T)).
This in turn means the expected time spent by the simulator conditioned on
entering iteration n − t + 1 with sets (T1, . . . , Tn−t+1), i.e.

RunTimeT(n − t + 1) =
nc

(1 − p⊥)(1 − q
˜T)

where nc is an upper bound on the time spent by the simulator in a single
rewinding with the verifier.

Induction Step: 1 ≤ 
 ≤ n−t. We will compute the expected time spent in this
iteration. Suppose that the simulator collected the sets (T1, . . . , T�) in the first

 − 1 iterations. Recall that the simulator rewinds until it obtains T �⊆ ∪�−1

i=1Ti

and either outputs the transcript (if T ⊆ ∪�
i=1Ti) or moves on to the next

iteration otherwise. The number of rewindings in this iteration is therefore 1
1−q

˜T

in expectation. Now, the total expected running time in iterations 
 and above
can be computed as

E[#rewindings in iteration 
 until it obtains T �⊆ ∪�−1
i=1Ti] × nc

+ E[time spent in iterations > 
 with T ]

=
nc

(1 − p⊥)(1 − q
˜T)

+
∑

T ′ �⊆∪�
i=1Ti

Pr[T = T ′|T �⊆ ∪�−1
i=1Ti] × RunTimeT::T (
 + 1)

≤ nc

(1 − p⊥)(1 − q
˜T)

+
nc(n − 
 − 1)

(1 − p⊥)(1 − qT)
×

∑

T ′ �⊆∪�
i=1Ti

Pr[T = T ′|T �⊆ ∪�−1
i=1Ti]
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=
nc

(1 − p⊥)(1 − q
˜T)

+
nc(n − 
 − 1)

(1 − p⊥)(1 − qT)
×

∑

T ′ �⊆∪�
i=1Ti

Pr[T = T ′]

1 − q
˜T

=
nc

(1 − p⊥)(1 − q
˜T)

+
nc(n − 
 − 1)

(1 − p⊥)(1 − qT)
× 1 − qT

1 − q
˜T

=
nc(n − 
)

(1 − p⊥)(1 − q
˜T)

where the third step follows from the induction hypothesis. ��
The expected total running time of the simulation is given by

p⊥ × nc + (1 − p⊥) × RunTime∅(1) = nc + nc(n − 1)

and this concludes the proof of the claim. ��
Hybrid Hyb2: In this experiment we consider the actual simulation as defined
by S(x, z). The output of the experiment will then be S(x, z).

Claim 3.6. The following distributions are identical.

– {S1(x, ω, z)}x∈L,ω∈Rx,z∈{0,1}∗

– {S(x, z)}x∈L,ω∈Rx,z∈{0,1}∗

Proof. Assume for contradiction that there exists a malicious verifier V∗, a dis-
tinguisher D and a polynomial p(n) such that for infinitely many n’s, D distin-
guishes S1(x, ω, z) = 〈S1(ω),V∗(z)〉(x) and S(x, z) = SV∗

(x, z) with probability
1

p(n) . Fix any n for which this event occurs.
First, we consider truncated experiments Hyb1(n, x, z) (resp. Hyb2(n, x, z))

which proceeds exactly as Hyb1(n, x, z) (resp. Hyb2(n, x, z)) with the exception
that the simulation is aborted if it runs more than np(n)t(n) steps where t(n)
is the polynomial bounding the expected running time of S1. If the experiment
is aborted then Hyb1 (resp. Hyb2) is set to a special symbol ⊥. By an aver-
aging argument we can conclude that the truncated experiments Hyb1(n, x, z)
and Hyb2(n, x, z) can be distinguished with probability at least 1

2p(n) by the
distinguisher D.

Next, we consider a sequence of intermediate hybrids Hyb0
1, . . . ,Hybn−t+1

1 ,
where in Hybrid Hyb�

1, we define a simulator S�
1 that will follow the real simula-

tor’s strategy S in the first 
 iterations of the for loop and the remaining accord-
ing to the honest prover using the real witness. If S�

1 runs over np(n)t(n) steps
then we stop the simulation and output ⊥. Let Hyb

�

1(n, x, z) be the output of the
S�
1 in Hyb�

1. It follows from definition that Hyb
0

1 = Hyb1 and Hyb
n−t+1

1 = Hyb2.
Therefore, if D distinguishes Hyb

0

1 from Hyb
n−t+1

1 then there exists an index
i such that D distinguishes Hyb

i

1 from Hyb
i+1

1 with probability 1
2np(n) . Since

the experiments are truncated after np(n)t(n) steps the maximum number of
rewindings that can occur in iteration i where the two experiments differ is
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np(n)t(n). We show that using V∗ and D we can contradict the honest verifier
zero-knowledge property (for many parallel repetitions).

Consider an adversary A that begins an emulation of Hyb
i

1(n, x, z) until
it reaches iteration i. If it halts before, A simply outputs the output of the
experiment. Otherwise, let T1, . . . , Ti be the set of indexes that were obtained
by the simulator in the internal emulation. Let T = T1 ∪ · · · ∪Ti and let {et}t∈T

be the challenges in the indexes in T . A forwards these challenges to an external
challenger C. The challenger then produces np(n)t(n) transcripts of the honest-
verifier zero-knowledge protocol for each challenge et for t ∈ T . A uses the
prover’s messages in these transcripts to generate the prover messages in the
internal emulation in iteration i. Then it completes the experiment, where from
iteration i + 1 the adversary plays the honest prover strategy and uses the real
witness, and outputs the output of the experiment. By our construction, if the
external challenger C produces transcripts according to the honest prover, then
the internal emulation by A is identical to Hyb

i

1. On the other hand if the
transcripts received from C is according to the honest verifier simulator, then
the internal emulation is identical to Hyb

i+1

1 . Therefore, D and A violates the
honest verifier zero-knowledge property of πZK.

Claim 3.7. The expected running time of S is polynomial.

Proof: Assume for contradiction, the expected running time of S is not poly-
nomial. Recall that the expected running time of S1 is some polynomial t(n).
Then we can construct a distinguisher that distinguishes the truncated experi-
ments Hyb1(n, x, z) and Hyb2(n, x, z) defined above and this is a contradiction
to the previous claim. We consider truncated experiments Hyb1(n, x, z) and
Hyb2(n, x, z) where the experiments are truncated after 2t(n) steps. Next, con-
sider a distinguisher D that outputs 1 if the experiment’s output is ⊥ and 0
otherwise. D on input view from Hyb1(n, x, z) outputs 1 with probability at
least 1

2 . However, D on input a view from Hyb2(n, x, z) outputs 1 is negligible.
Therefore, D distinguishes Hyb1(n, x, z) and Hyb2(n, x, z) with non-negligible
probability and this is a contradiction. ��

4 Corollaries

In this section, we provide corollaries to our main techniques. We obtain the first
round optimal fully black-box constructions of perfect zero-knowledge arguments
and input-delayed commit-and-prove zero-knowledge argument.

4-round Perfect Zero-Knowledge Argument from Claw-free Permuta-
tions. As a corollary of Theorem 3.1, we prove that there exists a 4-round perfect
zero-knowledge argument based on claw-free permutations. This is achieved by
replacing the prover’s commitments in Protocol 1 with perfectly hiding commit-
ments which can be based on claw-free permutations. More formally,

Corollary 4.1. Assuming claw-free permutations, there exists a 4-round fully
black-box perfect zero-knowledge argument for any NP language.
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The protocol for the perfect zero-knowledge case is identical to the protocol
described in Sect. 3 with the only exception that the commitments made by
the prover is replaced with perfectly hiding commitments that can be based on
claw-free permutations [GK96a]. The proof follows is analogous to the proof of
Theorem 3.1. The soundness argument essentially remains unchanged; we only
need to handle the case when the prover violates the binding property of the
underlying commitment scheme. The zero-knowledge property follows essentially
as before. We observe that the distributions in Hyb0 and Hyb1 are already proved
to be identical. To conclude we observe that the distributions in Hyb1 and Hyb2

are also identical because the underlying commitment scheme is perfectly hiding.

4-round Input-Delayed Commit-and-Prove ZK Argument. As a sec-
ond corollary, we prove that there exists a 4-round input delayed commit-and-
prove zero-knowledge argument. This is achieved by replacing the three-round
honest-verifier zero-knowledge argument based on Blum-Hamiltonicity with the
three-round commit-and-prove input-delayed protocol of Hazay and Venkitasub-
ramaniam [HV16] in Sect. 6.2. More formally,

Corollary 4.2. Assuming injective one-way functions, there exists a fully black-
box 4-round input-delayed commit-and-prove zero-knowledge argument for any
NP language.
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