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Abstract. We initiate the study of symmetric encryption in a regime
where the memory of the adversary is bounded. For a block cipher with
n-bit blocks, we present modes of operation for encryption and authenti-
cation that guarantee security beyond 2n encrypted/authenticated mes-
sages, as long as (1) the adversary’s memory is restricted to be less than
2n bits, and (2) the key of the block cipher is long enough to mitigate
memory-less key-search attacks. This is the first proposal of a setting
which allows to bypass the 2n barrier under a reasonable assumption on
the adversarial resources.

Motivated by the above, we also discuss the problem of stretching the
key of a block cipher in the setting where the memory of the adversary
is bounded. We show a tight equivalence between the security of double
encryption in the ideal-cipher model and the hardness of a special case of
the element distinctness problem, which we call the list-disjointness prob-
lem. Our result in particular implies a conditional lower bound on time-
memory trade-offs to break PRP security of double encryption, assuming
optimality of the worst-case complexity of existing algorithms for list dis-
jointness.

Keywords: Foundations · Symmetric cryptography
Randomness extraction

1 Introduction

Security proofs typically upper bound the maximal achievable advantage of an
adversary in compromising a scheme as a function of its resources. Almost always,
theoretical cryptography measures these resources in terms of time complexity
– an adversary is considered feasible if its running time is bounded, e.g., by a
polynomial, or by some conservative upper bound (e.g., 2100) when the focus is
on concrete parameters.

However, time alone does not determine feasibility. Another parameter is the
required memory. For example, while the näıve birthday attack to find a collision
in a hash function with n-bit outputs requires 2n/2 time and memory, well-known
collision-finding methods based on Pollard’s ρ-method [31] only require O(n)
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memory. In fact, cryptanalytic attacks often achieve time-memory trade-offs,
where time complexity increases as the memory usage decreases.

Everything else being equal, we would favor a cryptosystem that requires
large memory to be compromised within feasible time over one admitting low-
memory attacks. Yet, existing works on provable security that are concerned
with adversarial memory costs, such as those dealing with memory-hard func-
tions (e.g., [3,4,6]), consider a more limited scope than the security of classical
cryptographic tasks like encryption and authentication. A notable exception is
the recent work of Auerbach et al. [7] introducing the concept of a memory-
tight reduction, which allows lifting conjectured lower bounds on time-memory
trade-offs from the underlying assumption to the security of the overall scheme.
Fortunately, many reductions are memory-tight, with the exception being mostly
reductions in the random-oracle model. This approach, however, still crucially
relies on a time-memory assumption for an underlying computational problem,
and these are mostly problems studied in public-key cryptography.

This paper: An overview. This paper focuses on symmetric cryptography and
modes of operation for block ciphers. We present the first schemes for encryption
and authentication, based on a block cipher with input length n, that provably
achieve security against adversaries which encrypt/authenticate more than 2n

messages, under the assumption that their memory allows storing fewer than 2n

bits. Our results only need fairly standard assumptions (i.e., strong, yet plausible,
forms of PRP security) on the underlying block ciphers, and, unlike [7], we only
assume hardness with respect to time.

Complementary to this, we will discuss how the security of key-length exten-
sion methods for block ciphers (and in particular, double encryption) improves
under memory restrictions on adversaries, and show conditional results proving
optimality of existing attacks against double encryption.

Why this is important. In provably secure symmetric cryptography, the quan-
tity 2n acts as a barrier on the achievable security in the analysis of schemes
based on block ciphers with n-bit inputs, even if the underlying block cipher
is very secure (e.g., it is a PRP against adversaries with time complexity 22n,
which is plausible if the key is sufficiently long). The reason is that the core of
most proofs is inherently information-theoretic, and analyzes the scheme after
replacing the block cipher with a truly random permutation (or random func-
tion) on n-bit inputs. Here, after Ω(2n) queries (either for encryption or veri-
fication), the underlying permutation/function is usually queried on all inputs
– the lack of new randomness breaks down the proof, although the resulting
matching attack has often doubly-exponential time complexity in n and it is
only a problem because we are considering the (stronger) target of information-
theoretic security. For this reason, cryptanalysis often suggests better concrete
security guarantees than those given by security proofs. Of course, we have no
way to directly deal with time complexity, but here we suggest that bounding the
memory of the attacker to be smaller than 2n can suffice to break this barrier.
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Our assumptions. The assumption that attackers have less than 2n bits of
memory is reasonable. While n = 128 is common, NSA’s Utah data center is
estimated to store 267 bits of data. Moreover, accessing large memory, in practice,
adds extra time complexity. Another way to view this is that high security can
be achieved even when the block size is smaller. E.g., we can set n = 80 and
k = 128, and still get beyond 100 bits (i.e., 2100 queries) of security.

Note that if we want security against time T > 2n, then we need a security
assumption on the block cipher which is true against time-T adversaries. If the
key length is larger than log(T ) bits (to thwart the näıve key-search attack), it
is not unreasonable to assume that a block cipher is a PRP for T -time attackers,
even if the block length is n.1 This however also motivates the general question
of what to do if a cipher with longer key does not exist – heuristically, one could
use methods for key-length extension [15,21–24,26,28] that have been validated
in the ideal cipher model, and that achieve security against time up to T = 2k+n

when the underlying block cipher has key length k. Here, we initiate the study
of key-length extension in the memory-bounded setting, and show that, under
assumptions we discuss below, key-length extension can be done more efficiently.

1.1 Overview of Our Results

We give an overview of the results from this paper. We will start with the case
of encryption, before moving to authentication, and our results on key-length
extension.

Symmetric encryption. Consider the classical scheme which encrypts each m
as (iv,EK(iv)⊕m) for a random n-bit iv and a block cipher E with block length n
and key K. The canonical O(2n/2)-query attack against real-or-random (ROR)
security waits for two encryptions of mi and mj with ciphertexts ci = (ivi, zi)
and cj = (ivj , zj) such that ivi = ivj , and then checks whether zi ⊕zj = mi ⊕mj .
However, if the adversary only has memory to store O(n ·2n/4) bits, the attack is
not possible, as not all previous ciphertexts can be remembered. The seemingly
best-possible strategy is to store 2n/4 2n-bit ciphertexts, and check, for each
new query returning ci = (ivi, zi), whether the ivi value is used by any of the
2n/4 ciphertexts, and then proceed as before. This attack however requires 23n/4

queries to succeed.
A generalization of the scheme could achieve even higher security: We now

pick t random iv1, . . . , ivt, and the ciphertext is2

(iv1, . . . , ivt,EK(iv1) ⊕ · · · ⊕ EK(ivt) ⊕ m).

Of course, we need to prove our intuition is valid no matter what a memory-
bounded attacker does. We will not be able to do so for this specific scheme, but

1 For example, an ideal cipher with key length log(T ) is a PRP against T -time
attackers.

2 This scheme was proposed in [13], with the different purpose of proving security
beyond the birthday bound.
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consider a related scheme, which we call sample-then-extract, using an extractor
Ext : {0, 1}n·t × {0, 1}s → {0, 1}� to encrypt an �-bit message as

(iv1, . . . , ivt, seed,Ext(EK(iv1)‖ · · · ‖EK(ivt), seed) ⊕ m),

where seed
$← {0, 1}s is chosen randomly upon each encryption.

For example, assuming Ext is a sufficiently strong extractor, � = n, t = 32n,
we will show security up to q = 21.5n encryption queries for attackers with
running time T ≥ q and memory S ≤ 2n(1−o(1)), provided E is secure against
T -time attackers as a PRP.

The connection with sub-key prediction. Our proof relies on the prob-
lem of sub-key prediction, which was recently revisited [11,14] in the context of
big-key encryption, but which initially appeared implicitly in previous entropy
preservation lemmas [5,30,36].3 In particular, the core of the proof involves a
hybrid world where the block cipher EK is replaced by a random permutation
P . For every i, we imagine an experiment where we run the attacker for the
first i − 1 queries, all answered using the encryption scheme with P in lieu of
EK , and then look at its S-bit state σi−1 before it makes the i-th query. Then,
we know that the average-case min-entropy of the permutation P given σi−1 is
at most S bits lower than the maximum, i.e., log(2n!) ≈ n · 2n. The existing
bounds on sub-key prediction give us directly a lower bound on the min-entropy
of P (iv1)‖ · · · ‖P (ivt) conditioned on σi−1. If Ext is a suitable extractor, this
makes its output random, and thus this masks the ciphertext.

The proof is perhaps obvious in retrospect, but it highlights a few interesting
traits: First off, the idea of a reduction to sub-key prediction is novel. Second,
handling random permutations (vs functions) comes for free by simply consid-
ering a different entropy lower bound for which the extractor needs to work.

Authentication. The next logical step is to build a message authentication
code (MAC) for �-bit messages from an n-bit block cipher, with security for
q > 2n queries for adversaries with memory S < 2n. Here, � > n in order for the
question to make sense. This appears harder – as we will explain in the body
in detail, if we want to go as far as building a PRF (as it is usually the case
when proving security of MAC constructions), the resulting construction is likely
to yield (at least when following the canonical proof approach) a PRG which
is unconditionally secure for unrestricted4 space-bounded branching programs,
with much better stretch than the existing state-of-the-art [16,27], and this is
currently out of reach.

We overcome this by considering a (minimally) interactive approach to the
problem of message authentication, which we refer to as synchronous authentica-
tion. In this setting, we force the output of the MAC to also depend on a random
3 In fact, the simplest lemma by Alwen, Dodis, and Wichs [5] will suffice for our

purposes. One could likely obtain better concrete bounds using the techniques from
[11], yet their bounds are hard to express explicitly, and we do not explore this route
here.

4 I.e., they can learn the output bits of the PRG adaptively, with no restrictions.
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challenge previously sent by the other party. For example, whenever Alice sends
an authenticated message to Bob, she also sends a challenge to be used by Bob
to authenticate his next message to Alice. Our construction makes t calls per bit
of the message, for a parameter t.5 In particular, a challenge consists of t n-bit
strings iv1, . . . , ivt, as well as an extractor seed seed. Then, the tag of a message
M = M1M2 . . . M� ∈ {0, 1}� is obtained by computing the values

Yi = EK(〈i〉‖Mi‖iv1)‖ · · · ‖EK(〈i〉‖Mi‖ivt),

where 〈i〉 is a log �-bit encoding of i, and finally outputting the message tag
T =

⊕t
i=1 Ext(Yi, seed), where Ext is a randomness extractor.

We introduce a definition of synchronous message authentication and prove
our scheme secure. Again, our proof will resort to a reduction to the unpre-
dictability of the Yi values via sub-key prediction, but an extra complication
is that we need to analyze a more complex security game than in the case of
encryption, where the adversary can authenticate adaptively chosen messages.

The block cipher assumption and double encryption. If we want to
prove security beyond 2n queries, we need to use a block cipher whose PRP
security holds for an attacker which runs for time T ≥ 2n time and has memory
S � 2n. But: What should we do when the key is not long enough?

We can of course always extend the length of a key to a block cipher by
using conventional key-length extension methods which are validated in the
ideal-cipher model [15,21–24,26,28]. One observation however is that if we are
assuming a bound on the adversary’s memory, one could achieve better security
and/or better efficiency (for comparable security). To this end, we initiate the
study of key-length extension in the memory-bounded regime.

In particular, we look at double encryption (DE), i.e., given a block cipher
E, we consider a new block cipher that uses two keys K1,K2 to map x to
EK1(EK2(x)). The best known attack against DE achieves a time-memory trade-
off6 of T 2 · S = 23k with T ≥ 2k – this was first pointed out in the work of
van Oorschot and Wiener [38]. If one can show that this is indeed optimal,
then we can for example hope to achieve security against time T = 21.25k when
S � 20.5k. In other words, in contrast to common wisdom, double encryption
would increase security if memory is bounded.

Verifying this unconditionally, while possible (recall we are content with a
proof in the ideal-cipher model), appears to be out of reach. However, we estab-
lish a connection between the PRP security of DE in the ICM and a problem we
call list disjointness. In this problem, we assume we are given two equally long
lists L1 and L2 as inputs, each of distinct elements, with the promise that either
(1) L1 ∩ L2 = ∅ or (2) |L1 ∩ L2| = 1. An algorithm is given access to the lists as
an oracle (i.e., for an i and b, it can obtain the i-th element of Lb), and the goal

5 A higher-rate version of the scheme can be given, at the price of lower security.
6 For comparison, the textbook meet-in-the-middle attack achieves a tradeoff of T ·S =

22k.
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is to assess whether (1) or (2) holds. This problem is a special case of the well-
known element distinctness problem [17,40], where the algorithm is given oracle
access to a single list L and needs to decide whether its elements are distinct.
In particular, every algorithm for distinctness yields one for list disjointness, by
letting L be the concatenation of L1 and L2.

It is not hard to see that every algorithm for list disjointness yields a PRP
distinguisher for DE with similar query and memory complexities. More inter-
estingly, we also show that every PRP distinguisher for DE yields an algorithm
(with similar query and memory complexities) that solves list disjointness in the
worst case.

First off, there has been little progress in providing general lower bounds for
query-memory trade-offs for element distinctness (existing lower bounds consider
either restricted algorithms [40], and can be bypassed by more general algorithms
[8], or are far from known upper bounds [2,9]). The situation does not appear
easier for list disjointness. Progress on proving a tight lower bound for query-
memory trade-offs for the PRP security seems therefore to necessarily involve
new non-trivial insights.

Second, and perhaps more interestingly, the best algorithm for element dis-
tinctness is due to Beame, Clifford, and Machmouchi [8], and achieves a tradeoff
of T 2 · S = |L|3. The algorithm also applies to list disjointness, and assuming
it is optimal, by our reduction we get a conditional lower bound confirming the
best-known time-memory trade-off for DE to be optimal.

1.2 Further Related Works

The bulk of the interest on bounded-memory algorithms stems from complexity
theory. In particular, a number of works have been concerned with lower bounds
for time-memory trade-offs in restricted complexity classes, such as pebbling
models and branching programs. Textbooks like that of Savage [35] provide a
comprehensive introduction to the topic. Particularly relevant to us is the work
on building PRGs for space-bounded computation [29], which was the first to
show unconditional pseudorandomness for space-bounded distinguishers.

Our work is also very related to that of Raz [32,33] on time-memory trade-
offs for learning parities (and related problems). Raz shows in particular an
encryption scheme with an n-bit key which unconditionally resists an attacker
with memory smaller than n2/c for a constant c when encrypting an exponential
number of plaintexts. Our encryption scheme can be seen as replacing the n-bit
key with a much larger random permutation table. Raz’s technique is not appli-
cable because it would require evaluating the permutation at Θ(2n) positions
upon each encryption. Time-memory trade-offs for learning lower-weight pari-
ties were also given [20], but it does not appear possible to exploit these results
to obtain a cryptosystem.

Outline of this paper. Section 2 will introduce technical tools needed through-
out the paper, including our model of computation, information-theoretic pre-
liminaries, and notation for the sub-key prediction problem. Sections 3 and 4
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discuss our encryption and authentication schemes. Section 5 presents our results
on double encryption.

2 Preliminaries

Throughout this paper, let N = 2n for an understood n ∈ N. Also, let [i]
denote the set {1, 2, . . . , i}. As usual, we use the notation |r| to denote the
length of string r in bits. By r

$← {0, 1}n, we indicate that r is chosen uniformly
from {0, 1}n. We let Fm,n denote the uniform distribution over functions from
{0, 1}m to {0, 1}n and let Pn denote the uniform distribution over permutations
on {0, 1}n. We also write F and P for Fn,n and Pn whenever n is clear from the
context.

2.1 Information-Theoretic Preliminaries

The min-entropy of a random variable X (taking values from a set X ) is
H∞(X) = −minx∈X log (Pr [X = x]). Moreover, for two jointly distributed ran-
dom variables X,Y , and an element y such that Pr [Y = y] > 0, we define
H∞(X|Y = y) = minx∈X log

(
1/Pr

[
X = x

∣
∣ Y = y

])
. This is in particular the

conditional min-entropy conditioned on a particular outcome. When condition-
ing on a random variable, we use the average-case version of min-entropy [19],
i.e.,

H∞(X|Y ) = − log

⎛

⎝
∑

y∈Y
max
x∈X

Pr [X = x, Y = y]

⎞

⎠ .

We will need the following simple fact about average-case min-entropies.

Lemma 1 ([19]). Let X,Y,Z be random variables. If Y can take at most 2λ

values, then

H∞(X|Y Z) ≥ H∞(XY |Z) − λ ≥ H∞(X|Z) − λ. (1)

Extractors. Recall that a function Ext : {0, 1}t·n × {0, 1}s → {0, 1}� is said
to be a (γ, ε)-strong extractor if for every random variable X on {0, 1}t·n with
H∞(X) ≥ γ, (Us,Ext(X,Us)) is ε-close to (Us, U�). We say that H : {0, 1}k ×
{0, 1}n → {0, 1}� is 2-universal if for all n-bit x �= x′, we have Pr[K $← {0, 1}k :
H(K,x) = H(K,x′)] = 2−�. The following is well known.

Lemma 2 (Leftover Hash Lemma [25]). If H : {0, 1}k × {0, 1}n → {0, 1}�

is 2-universal, and � = γ − 2 log(1/ε), then Ext(x,K) := H(K,x) is a strong
(γ, ε)-extractor.
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Following Dodis et al. [19], we also say that Ext : {0, 1}t·n×{0, 1}s → {0, 1}� is
an average-case (γ, ε)-strong extractor if for all pairs of random variables (X, I)
such that X in {0, 1}t·n satisfies H∞(X|I) ≥ γ, (Us,Ext(X,Us), I) is ε-close to
(Us, U�, I).

In [19] the leftover hash lemma is extended to show that universal hash
functions yield an average-case strong extractor with the same parameters. In
general, with a slight loss in parameters, a (γ, ε)-(strong) extractor is also an
average-case (γ, 3ε)-(strong) extractor as stated as shown by [37].

Entropy Preservation. Assume we are given a vector X ∈ ({0, 1}m)N , which
we often will think of as the table of a function [N ] → {0, 1}m. Further, let us
sample indices i1, . . . , it uniformly at random from [N ], and consider the induced
random variable

X[i1, . . . , it] = Xi1 , . . . , Xit .

We are interested in the relationship between the entropy of X and that of
X[i1, . . . , it]. The following lemma was proven by Alwen, Dodis, and Wichs [5],
and considers the more general setting where we are given some auxiliary infor-
mation Z, and the indices i1, . . . , it are sampled independently of X and Z.7

Lemma 3. Let (X,Z) be correlated random variables, where X ∈ ({0, 1}m)N ,
and I = (i1, . . . , it)

$← [N ]t. Further, assume that H∞(X|Z) ≥ N(m − 1) − L,
where L ≤ (1 − δ)Nm for some δ ∈ [0, 1]. Then, H∞(X[I]|Z, I) ≥ γ, if

δ ≥
[
2γ

t

(
1 +

n

m

)
+

1
m

+
3γ + 5
Nm

]

.

Note that for our application scenarios,
(
1 + n

m

) ≈ 2 and 3γ+5
Nm → 0, so this

means in particular that we get γ bits of entropy for every γ ≤ t(δ − 1/m)/4.

2.2 Model of Computation and Cryptographic Primitives

We will consider a model of computation with space-bounded adversaries,
inspired by the one from [4,6]. In particular, we consider adversaries A mak-
ing queries to an oracle O. This accommodates without loss of generality for the
case where A makes queries to multiple oracles O1,O2, . . ., which we view as one
individual oracle with an appropriate addressing input. We will not specify the
model of execution of A any further at the lowest level of detail (but we assume
we fix one specific model of computation), but will introduce some convenient
relaxation of memory-bounded executions that will suffice for our purposes.

More specifically, the execution of an adversary proceeds in stages (or steps),
allowing one oracle query in each stage. In particular, the execution of A starts

7 We note that Lemma 3 has a different expression for δ than what would be implied
by the original statement [5, Lemma A.3], but this is due to a missing factor of 2γ

t

in one of the terms (which can be inferred from their proof).
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with the state σ0 = x, where x is the input, and no previous-query answer y0 =⊥.
Then, in the i-th stage, the adversary computes, as a function of the state σi−1

and the previous query answer yi−1, a query qi to O, as well as the next state
σi. Thus, formally, an adversary A is a randomized algorithm implementing a
map {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗. In most proofs, we will generally not
need to restrict the actual space complexity of A itself, as long as the states σi

are bounded in size.
We say that an adversary A is S-bounded if |σi| ≤ S holds for all states in the

execution. We further say that an adversary A has time complexity (or running
time) T if an execution takes overall at most T steps. We say it has (description)
size D if the description of A requires at most D bits. Finally, it makes q queries
if it takes q steps, resulting in q queries to O.

Block ciphers and PRPs. A block cipher is a function E : {0, 1}k ×{0, 1}n →
{0, 1}n, where EK = E(K, ·) is a permutation for all K ∈ {0, 1}k. Generally, we
assume that E is efficiently computable and invertible.

We define PRP security in terms of the PRP-CPA-advantage of an adversary
A against a block cipher E, which is

AdvPRP-CPAE (A) =
∣
∣
∣Pr[K

$← {0, 1}k : AEK = 1] − Pr[P $← Pn : AP = 1]
∣
∣
∣ .

We also define AdvPRP-CPAE (D,T, q, S) = maxA{AdvPRP-CPAE (A)}, where the
maximum is taken over all S-bounded adversaries A that run in time at most
T , making q queries at most, and with size at most D.

Note that PRP security does not need to depend on the block length n if the
key is long enough. Below, we repeatedly make the assumption that there exist
block ciphers E : {0, 1}k × {0, 1}n → {0, 1}n which are secure PRPs for time
complexities T > 2n (and suitably small size D) and space complexity S < 2n.
Note that this implicitly implies k(n) > log T . This is easily seen to be satisfied
by an ideal cipher, even if S is unbounded.

2.3 Sub-key Prediction

In the sub-key prediction problem [11,14], the adversary A is given some leak-
age σ on a key, which here we interpret as a function F : {0, 1}n → {0, 1}n.
The leakage is derived through some (adversarially chosen) function L. Then,
for randomly chosen indices i1, . . . , it, A tries to guess the “sub-key” K =
F (i1) ‖ . . . ‖F (it), i.e., the evaluations of the function at those indices. We gen-
eralize this notion further by allowing for auxiliary information Z correlated with
F . In particular, we allow both L and A to access Z. (Still, we will omit Z when
not necessary.)

More formally, we consider an adversary A with leakage function L inter-
acting in the game Gskp-aux

D,I,t (A,L) described in Fig. 1. Here, we stress that both
A and L are computationally unbounded with no limits on their memory–the
only limitation is the size of σ. The game is parameterized by the distribution
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Game Gskp-aux
D,I,t (A, L):

(F, Z) $← D; σ ← L(F, Z)
(i1, . . . , it)

$← I; K
$← A(σ, Z, i1, . . . , it)

Return (K = F (i1)‖ . . . ‖F (it))

Fig. 1. Game Gskp-aux
D,I,t (A, L). Game defining sub-key prediction with auxiliary infor-

mation. The adversary, given leakage σ and auxiliary information Z on F , wins if it
guesses the output of F at indices i1, . . . , it.

D according to which (F,Z) are chosen, the distribution I according to which
the indices are chosen, and the number of indices t.

We can then define advantage measures for an adversary in guessing the
sub-key correctly in the game Gskp-aux

D,I,t (A,L) as follows.

Definition 1. The advantage of an adversary A with leakage function L in the
game Gskp-aux

D,I,t (A,L) is defined as

Advskp-auxD,I,t (A,L) = Pr[Gskp-aux
D,I,t (A,L) = true].

Furthermore, we define

Advskp-auxD,I,t (S) = max
L:D→{0,1}S

max
A

{Advskp-auxD,I,t (A,L)}.

Often I will be the uniform distribution over t-tuples of indices in ({0, 1}n)t,
for notational convenience, we drop the subscript I and simply refer to the
advantage as Advskp-auxD,t (S) in such cases.

The following lemma is immediate by definition of conditional min-entropy.

Lemma 4. If Advskp-auxD,I,t (S) ≤ 2−γ , then for (F,Z) $← D, (iv1, . . . , ivt)
$← I and

σ ← L(F,Z), we have

H∞(F (iv1)‖ . . . ‖F (ivt)|σ, (iv1, . . . ivt), Z) ≥ γ.

We now derive the advantage of an adversary in the sub-key prediction game
with auxiliary information when the leakage function outputs exactly S bits. In
particular, the following lemma is a straightforward application of Lemmas 1
and 3.

Lemma 5 (Sub-key Prediction with Auxiliary Information). Let corre-
lated random variables (F,Z) be chosen according to a distribution D such that
F : {0, 1}n → {0, 1}n and H∞(F |Z) ≥ N(n − 1) − L.

Let S + L ≤ (1 − δ)nN for some δ ∈ [0, 1]. Then, Advskp-auxD,t (S) ≤ 2−γ if
δ ≥ [

4γ
t + 1

n + 3γ+5
nN

]
.
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In comparison to [5], the recent work by Bellare and Dai [11] provides bet-
ter concrete bounds for sub-key prediction in the case where F is uniformly
distributed over all functions, and with no auxiliary information (or, more gen-
erally, Z is independent of F ). However, we use [5] as we need to handle both
auxiliary information and the case that F is a permutation. Also, while it may
be possible to extend the proofs of [11] to this more general setting, the resulting
bounds are hard to express analytically. Either way, our results are generic and
an improvement on sub-key prediction bounds will directly yield better bounds
for our instantiations below.

3 Encryption

We give an encryption scheme for which the amount of time needed to break it
increases as the memory of the adversary decreases, in particular going beyond
2n, where n is the block length of an underlying block cipher. To this end, we
first recall the standard definition of a symmetric-key encryption scheme, its
security, and introduce some additional notational conventions.

Encryption Scheme: Syntax. An encryption scheme is a tuple of algorithms
E = (Gen,Enc,Dec) where: (1) the key generation algorithm Gen outputs a key
K, (2) the encryption algorithm Enc takes as input the secret key K and a
message M (from some understood message space M), and outputs a cipher-
text c

$← EncK(M), and (3) the decryption algorithm Dec takes as input the
secret key K and a ciphertext c and outputs a message M ← DecK(c). The cor-
rectness requirement is that for any key K output by Gen, and message M ∈ M,
we have DecK(EncK(M)) = M with large probability (usually one).

Occasionally, it will be convenient to think of the key K as a function F :
{0, 1}n → {0, 1}n (to be instantiated for example with a block cipher), to which
the scheme is given oracle access. In this case, we will simply write EncF and
DecF instead of EncK and DecK . Then one can get for example EncK = EncEK

for the final block cipher instantiation.

Security of Encryption Schemes. We briefly review the notion of real-or-
random (ROR) security [12] of an encryption scheme E = (Gen,Enc,Dec) with
message space M: we consider the games RORE,b(A) (for b ∈ {0, 1}) for an
adversary A, as described in Fig. 2, and define

AdvROR
E (A) =

∣
∣
∣Pr[RORE,0(A) = 1] − Pr[RORE,1(A) = 1]

∣
∣
∣ ,

as well as AdvROR
E (D,T, q, S) = maxA{AdvROR

E (A)}, where the maximum is taken
over all S-bounded adversaries A with running time at most T , making at most
q queries, and have size at most D.

For our intermediate information-theoretic steps below, our statements
will not depend on D and T , and we simply write AdvROR

E (q, S) =
AdvROR

E (∞,∞, q, S).
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Game RORE,b(A):

K
$← Gen

b′ $← AE′(·,b)

Return b′

Oracle E ′(M, b):

If b = 0 then return c
$← EncK(M)

If b = 1 then
choose M ′ $← M such that |M ′| = |M |
Return c

$← EncK(M ′).

Fig. 2. Game RORE,b(A). Game defining the real-or-random security of the encryption
scheme E , where b ∈ {0, 1}.

3.1 The Sample-Then-Extract Scheme

The scheme is best described using a distribution D on functions from n bits to
n bits as a parameter. In addition, let Ext : {0, 1}tn ×{0, 1}s → {0, 1}�, and let I
be the uniform distribution over {0, 1}tn. The encryption scheme StE[D, t,Ext] =
(Gen,Enc,Dec) for messages in M = {0, 1}� is then defined as follows:

Scheme StE[D, t,Ext]:

– Key generation. The key generation algorithm Gen outputs F
$← D,

where F : {0, 1}n → {0, 1}n.
– Encryption. On input M ∈ M, EncF does the following:

1. seed
$← {0, 1}s.

2. iv = (iv1, . . . , ivt)
$← I.

3. c ← Ext(F (iv1)‖ . . . ‖F (ivt), seed) ⊕ M
4. Return (c, seed, iv1, . . . , ivt).

– Decryption. On input (c, seed, iv1, . . . , ivt), Dec computes M ←
(Ext(F (iv1)‖ . . . ‖F (ivt), seed)) ⊕ c, and returns M .

We will then instantiate our scheme with a block cipher E, and in this case we
refer to the scheme as StE[E, t,Ext]. This is the special case of the above scheme
when the distribution D samples the function EK(·) for K

$← {0, 1}k where k is
the key-length of E.

3.2 Security of StE

We now prove the security of StE. Our main theorem is in the information-
theoretic setting, where we reduce security to the sub-key prediction problem
for the distribution D. Then, below, we instantiate the scheme with a block
cipher E, assumed to be a PRP, and use the theorem to give corresponding
security statements for this instantiation, showing in particular we can attain
security beyond 2n queries.

Theorem 1 (Information-theoretic security of StE). Assume that

Advskp-auxD,t (S + s + � + tn) ≤ 2−γ
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and that Ext : {0, 1}tn ×{0, 1}s → {0, 1}� is an average-case (γ, ε)-strong extrac-
tor. Then,

AdvROR
StE[D,t,Ext](q, S) ≤ qε.

Proof. The proof proceeds in two parts. In the first part, we consider a variant of
the sub-key prediction problem where the adversary, instead of trying to predict
the sub-key at the given indices predicts, whether it has received the output of
an extractor applied to the sub-key or a uniform random string. More precisely,
consider a pair of adversaries A′ = (A′

1,A′
2) where A′

1 outputs S + s + � + tn
bits, and define the game Gb(A′) as follows:

– F
$← D; σ ← A′

1(F ); iv = (iv1, . . . , ivt)
$← {0, 1}tn; seed $← {0, 1}s

– If b = 0 then c ← Ext(F (iv1)‖ . . . ‖F (ivt), seed)
– If b = 1 then c

$← {0, 1}�

– b′ ← A′
2(σ, c, seed, iv1, . . . , ivt)

– Return b′

The following lemma bounds is a simple corollary of Lemma 4 and the fact that
Ext is an average-case (γ, ε)-strong extractor.

Lemma 6. If Advskp-auxD,t (S + � + s + tn) ≤ 2−γ and Ext : {0, 1}tn × {0, 1}s →
{0, 1}� is an average-case (γ, ε)-strong extractor, then

∣
∣Pr[G0(A′) = 1] − Pr[G1(A′) = 1]

∣
∣ ≤ ε.

We now introduce hybrids Hi for i = 0, . . . , q such that in hybrid experiment
i-th hybrid, the adversary A interacts with the oracle E ′(M, 0) for the first i
queries and with E ′(M, 1) for the remaining queries. Formally, for i = 1, . . . , q,
we define the following hybrid experiment HStE

i (A) for an adversary A:

F
$← Gen; b′ ← AE′(·,i); Return b′

where E ′(M, i) responds to the j-th query as follows:

– If j ≤ i, return c
$← EncF (M).

– Else, choose M ′ $← M such that |M ′| = |M | and return c
$← EncF (M ′).

Then, by definition of the advantage AdvROR
E (A), we have

AdvROR
E (A) =

∣
∣Pr[HStE

q (A) = 1] − Pr[HStE
0 (A) = 1]

∣
∣ . (2)

We now prove the following central lemma.

Lemma 7. |Pr[HStE
i (A) = 1] − Pr[HStE

i−1(A) = 1]| ≤ ε.

Proof. We now construct an adversary A′ = (A′
1,A′

2) for the game Gb(A′) intro-
duced earlier. On input F , A′

1 proceeds as follows:
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– (σ0, y0) ← ⊥
– for j = 1 to i − 1

• (Mj , σj) ← A(σj−1, yj−1)
• yj ← EncF (Mj)

– Return (σi−1, yi−1)

Note that the output length of A′
1 is at most S plus the length of a ciphertext,

i.e., S + s + � + n · t.
Now, the adversary A′

2, is given (σi−1, yi−1) from A′
1(F ), and moreover, it

receives (u, seed, iv1, . . . , ivt) as its challenge from the game. It then proceeds
as follows: it continues the execution of A with input (σi−1, yi−1) and when A
makes its i-th query by requesting the encryption of a message M , the adversary
A′

2 answers this query to A with the ciphertext (u⊕M, seed, iv1, . . . , ivt). It then
continues the execution of A, but answers all future encryption queries with
truly random ciphertexts.

By construction, we now have

|Pr[HStE
i (A) = 1] − Pr[H

StE
i−1(A) = 1]| = |Pr[G0(A′) = 1] − Pr[G1(A′) = 1]|

Applying Lemma 6 then concludes the proof of the lemma. ��
Thus, Eq. 2 and Lemma 7 yield

AdvROR
E (A) ≤

q∑

i=1

∣
∣Pr[HStE

i (A) = 1] − Pr[HStE
i−1(A) = 1]

∣
∣ ≤ q · ε,

which gives us the theorem. ��
Instantiation. We now derive a corollary stating the security of the encryption
scheme with a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n assumed to be a
good pseudorandom permutation (PRP). We instantiate the extractor in the
encryption scheme using the leftover hash lemma (cf. Lemma 2). The following
lemma follows by replacing the block cipher with a randomly chosen permutation
F (at the cost of the PRP advantage), and then using the fact that F has min-
entropy log(N !).

Corollary 1 (Instantiation of StE). Let E : {0, 1}k × {0, 1}n → {0, 1}n

be a block cipher. Let H : {0, 1}tn × {0, 1}tn → {0, 1}� be a 2-universal
family of hash functions. Let S ≤ (1 − δ)nN for some δ ∈ [0, 1]. Then, if
δ ≥

[
4(�−2 log ε)

t + 1
n + 4�−6 log ε+2tn+5

nN

]
for some ε > 0, then for all D, T , there

exists D′ ≈ D and T ′ ≈ T such that

AdvROR
StE[E,t,H](D,T, q, S) ≤ qε + AdvPRP-CPAE (D′, T ′, tq, S + 2n(t − 1)).

Beyond 2n
-security. We plug in concrete values in Corollary 1 to demonstrate

that our encryption scheme can tolerate q � 2n queries by the adversary, as long
as memory is bounded.
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With N = 2n, let q ≤ N1.5 and we want ε to be 2−3n such that in particular
qε ≤ 2−1.5n for an S-bounded adversary where S ≤ N1−α with 0 < α � 1. If
� = n and t = an where n ≥ 20 and a ≥ 32, we have

AdvROR
StE[E,t,H](D,T, q, S) ≤ 2−1.5n + AdvPRP-CPAE (D′, T ′, tq, S + 2n(t − 1)).

As for the PRP-advantage term, it is reasonable to assume for a good block
cipher, the advantage is small even if T ′ � 2n. At the very least, this implies
that key-length k of the block cipher E satisfies k > log q. (This is not sufficient
of course!) Also we remind here that D′ is the description size.

We stress here that we are not focusing on optimizing parameters – and there
is a lot of potential for this, by using either better extractors (with shorter seeds)
and better sub-key prediction bounds.

Game sAUTHAS(A):

K
$← Gen

c0
$← Ch

f0, f1 ← false
i ← 0
Win ← false
Run AOStep(c0)
Return Win

Oracle OStep(M, c′, (M ′, T ′)):

i ← i + 1
ci

$← Ch
Mi ← M
If i = 1 then

T1 ← Tag(K, c′, M); return (c1, T1)
Else

If Vfy(K, ci−2, M
′, T ′) ∧ (¬fi mod 2) then

If M ′ �= Mi−1 ∨ fi−1 mod 2 then
Win ← true

Ti ← Tag(K, c′, M); return (ci, Ti)
Else fi mod 2 ← true; return (⊥, ⊥)

Fig. 3. Security game sAUTH. Game defining the security of two-party synchronized
authentication. The oracle OStep corresponds to each party authenticating chosen mes-
sages, in an alternating fashion. Each party will stop answering subsequent queries as
soon as a verification query fails. The adversary wins if it delivers a message to a party
with a valid tag which was not authenticated by the other party immediately before.

4 Message Authentication

4.1 Synchronous Authentication: Definitions and Settings

We consider the interactive setting of message authentication. Here, two parties
alternate communication through an insecure channel (under control of a man-in-
the-middle adversary), and want to send authenticated messages to each other.
We consider protocols that are synchronous, in the sense that at each round one
party asks for a challenge c, and the next message M it receives from the other
party is authenticated with a tag which depends on both c and M (in addition
to the secret key). We are not aware of this notion having been extensively
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studied, but as we will point out below in Sect. 4.4, considering this setting is
somewhat necessary, as building PRFs/MACs secure against memory-bounded
adversaries appears out of reach without bypassing existing technical barriers in
computational complexity.

Synchronous authentication schemes: Syntax. A synchronous authenti-
cation scheme is a 4-tuple AS = (Gen,Ch,Tag,Vfy) of algorithms, which take
the following roles:

– The key generation algorithm Gen generates a secret key K.
– The challenge generation algorithm Ch returns a challenge c.
– The tagging algorithm Tag takes as input the secret key K, a message to be

authenticated M ∈ M, and a challenge c, and returns a tag T .
– The verification algorithm Vfy takes as input a key K, a challenge c, a message

M , and a tag T , and returns a boolean value in {true, false}.

We say that the scheme is ν-correct if for all M ∈ M,

Pr
[
K

$← Gen, c
$← Ch, T

$← TagK(c,M) : VfyK(c,M, T ) �= true
]

≤ ν.

As in the case of encryption, it will be convenient to introduce a notation where
we view a function F as the key K. In this case, we write TagF and VfyF instead
of TagK and VfyK .

Alice Bob

c0
$← Ch

T1 ← TagK(M1, c′
0)

c1
$← Ch

T3 ← TagK(M3, c′
2)

c3
$← Ch

T2 ← TagK(M2, c′
1)

c2
$← Ch

c3, T3

M3, c′
2, (M ′

2, T
′
2) c2, T2

M2, c′
1, (M ′

1, T
′
1)T1, c1

M1, c′
0 c0

Fig. 4. Synchronous authentication security game. This illustrates the flow of the
execution of the synchronous authentication game. We omit verification from the figure.
At each step, if (M ′

i , T
′
i ) does not verify with respect to ci−1, a pair (ci, Ti) = (⊥, ⊥)

is returned and the corresponding party stops accepting any future messages.

Security of authentication schemes. We introduce a security game that
captures the security of a synchronous authentication scheme as described above.
The game, found in Fig. 3, considers an adversary A interacting with an ora-
cle OStep, which responds (in an alternating way) as Alice and Bob, each time
authenticating a message chosen by the adversary. For ease of explanation, a
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more detailed depiction of the execution flow in the game is given in Fig. 4.
Then, the advantage of an adversary A against the authentication scheme AS
is defined as

AdvAUTHAS (A) = Pr
[
sAUTHAS(A) = true

]
.

Further, AdvAUTHAS (D,T, q, S) = maxA{AdvAUTHAS (A)}, where the maximum is
taken over all S-bounded adversaries A with running time at most T that makes
at most q queries and have size at most D.

As in the case of encryption, in the information-theoretic setting, we drop
T and D from the notation and denote the security of the scheme by simply
AdvAUTHAS (q, S) = AdvAUTHAS (∞,∞, q, S).

4.2 The Challenge-then-Verify Scheme

We give a construction of a synchronous authentication scheme for �-bit mes-
sages. The scheme relies on a single function F : {0, 1}n → {0, 1}n, which we
think of being instantiated from a block cipher or a keyed function, but that in
the general description we assume comes from a distribution D.

We let t be a parameter, and let Ext : {0, 1}t·n × {0, 1}s → {0, 1}m be a
function, which should be thought of as an extractor later on, and we conse-
quently refer to s as the seed length. Also, let d = �log(�) + 1�. We let I be the
uniform distribution over t-tuples of indices (iv1, . . . , ivt) ∈ ({0, 1}n−d−1

)t. Let
〈i〉 be the d-bit encoding of i ∈ {1, . . . , �}. Generally, we will be interested in the
case where � > n, and s will only depend on n and a desirable security level.

We now describe the algorithms that constitute our authentication scheme
Challenge-then-Verify CtV[�,D, t,Ext]. In particular:

Scheme CtV[�,D, t,Ext]:

– Key generation. The key generation algorithm Gen samples F
according to distribution D and outputs F .

– Challenge generation. The challenge generation algorithm Ch

samples a tuple (iv1, . . . , ivt)
$← I, as well as a random seed

seed
$← {0, 1}s, and outputs c = (iv1, . . . , ivt, seed).

– Authentication. To authenticate a message M ∈ {0, 1}� for chal-
lenge c = (iv1, . . . , ivt, seed), the tagging algorithm outputs

TagF (M = M1, . . . , M�, c) =
�⊕

i=1

Ext(Yi, seed),

where

Yi = F (〈i〉 ‖Mi ‖ iv1) ‖ · · · ‖F (〈i〉 ‖Mi ‖ ivt).

– Verification. Verification is straightforward, by simply re-computing
the tag and checking equality.
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When we let D be the distribution that samples a key K for a block cipher E,
and then outputs the function EK , as above, we denote the resulting scheme
simply by CtV[�,E, t,Ext].

We will next move to the analysis of the scheme. After that, in Sect. 4.4, we
give some further background about the scheme and possible extensions.

4.3 Security Proof

We first establish the security of the CtV scheme in the information-theoretic
setting, where we let the scheme depend on an oracle sampled from a distribution
D on functions from n bits to n bits. To formulate our main theorem, we need to
define a derived distribution Dj,b over pairs (F ′, Z) consisting of a function F ′

with corresponding auxiliary information Z. To this end, we sample the function
F : {0, 1}n → {0, 1}n randomly from D, and then set

F ′ = Fj,b , Z = {Fj′,b′}(j′,b′) �=(j,b)

where Fj′,b′ = F (〈j′〉 ‖ b′ ‖ ·), which is a function {0, 1}n−d−1 → {0, 1}n.
This allows us to formulate the following technical theorem. While this is not

yet usable to derive bounds with respect to concrete distribution D, as this will
require analyzing Dj,b, we will give concrete parameter instantiations below.

Theorem 2 (Security of CtV). For every distribution D over functions
{0, 1}n → {0, 1}n, if

max
j,b

Advskp-auxDj,b,t (S + � + m) ≤ 2−γ

and Ext is an average-case (γ, ε)-strong extractor, then

AdvAUTHCtV[�,D,t,Ext](q, S) ≤ 4�q

(
1

2m
+ ε

)

.

Proof. Let A be an S-bounded, q-query adversary for the game sAUTHCtV(A),
where for simplicity we denote CtV = CtV[�,D, t,Ext]. We consider in particular
an execution of the S-bounded adversary A, interacting with the oracle OStep.
Following the notation from Fig. 4, this interaction defines a sequence of queries
consisting of message-challenge pairs

(M1, c
′
0), (M2, c

′
1), . . . , (Mq, c

′
q−1),

as well as forgery attempts

(M ′
2, T

′
2), . . . , (M

′
q, T

′
q).

These come with corresponding query answers (c1, T1), . . . , (cq, Tq), where recall
that (ci, Ti) = (⊥,⊥) if OStep fails to return an answer. Further, for any i and j,
we denote by Mi,j and M ′

i,j , respectively, the j-th bit of Mi and M ′
i . Also, we let
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σ0, σ1, . . . , σq be the sequence of states of A during this execution. We can assume
without loss of generality that A is deterministic, by hard-coding the optimal
randomness in the description of A, as our arguments will be independent of the
size of A. (Thus, the length of the fixed randomness does not count towards the
memory resources of A.)
We define the family of events Wini,j,b,d where i ∈ [q] \ {1}, j ∈ [�], d, b ∈ {0, 1}.
Here, Wini,j,b,d is the event that the following conditions are simultaneously true:

(1) The adversary A provokes Win ← true in the i-th query (and thus Win was
false up to that point);

(2) b = M ′
i,j

(3) If d = 1, the (i − 1)-th query did not return (⊥,⊥). Further, Mi−1,j = 1 − b,
and Mi−1,j′ = M ′

i,j′ for all j′ < j. That is M ′
i and Mi−1 differ in the j-th bit,

which takes value b and 1 − b respectively, and M ′
i and Mi−1 are identical

on the first j − 1 bits.
(4) If d = 0, the (i − 1)-th query returned (⊥,⊥).

Then, we clearly have8

AdvAUTHCtV (A) =
q∑

i=2

�∑

j=1

∑

b,d∈{0,1}
Pr [Wini,j,b,d] . (3)

We are going to now upper bound each individual probability Pr [Wini,j,b,d] in
terms of the sub-key prediction advantage.

Reduction to sub-key prediction. Fix i, j, b, d. We first consider a vari-
ant of the sub-key prediction game where the goal is to predict the value of
Ext applied to the sub-key, rather than predicting the sub-key itself. The game
involves an adversary B and a leakage function L, which we specify below, and
the distribution Dj,b is as defined above:

– (Fj,b, Z) $← Dj,b

– σ ← L(Fj,b, Z)
– (iv1, . . . , ivt)

$← I
– seed

$← {0, 1}s

– T ← B(σ,Z, i1, . . . , it, seed)
– Return (T = Ext(Fj,b(iv1)‖ . . . ‖Fj,b(ivt), seed))

We stress that the game returns true if and only if T equals the extractor output.
It is convenient to denote by pB,L the probability that this is indeed the case.
We now give B and L such that

Pr [Wini,j,b,d] ≤ pB,L. (4)

8 Note that the fact that we have equality is not really important here, but the events
indeed happen to be disjoint.
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Concretely, leakage function L is given access to the description of 2� functions
F1,1, F0,1, . . . , F�,0, F�,1 through (Fj,b, Z = {F ′

j′,b′}(j′,b′) �=(j,b)). It simulates cor-
rectly the execution of A in Game sAUTHCtV(A) for the first i − 2 queries to
OStep, using the 2� functions. The (i−2)-th query returns in particular a tag Ti−2

for the message Mi−2 and challenge c′
i−3 – here we ignore the associated chal-

lenge ci−2 (with some foresight, we will simulate it from B’s input) – and note
that Ti−2 = ⊥ is possible. The leakage function then outputs (σi−2,Mi−2, Ti−2),
where σi−2 is A’s state when making the (i − 2)-th query.
Then, the adversary B is now given the leakage (σi−2,Mi−2, Ti−2), the auxiliary
information Z = {F ′

j′,b′}(j′,b′) �=(j,b), as well as a fresh (iv1, . . . , ivt) and seed. The
only thing B does not know is Fj,b. Then, B proceeds through the following steps:

1. B resumes the execution of A with input σi−2, Mi−2, Ti−2, and ci−2 =
(i1, . . . , it, seed) (if Ti−2 �= ⊥) or ci−2 = ⊥ (if Ti−2 = ⊥).

2. When A asks the (i−1)-th query to OStep with the format (Mi−1, c
′
i−2, (M

′
i−1,

T ′
i−1)), we distinguish between two cases.

(a) First, if d = 0, B returns (⊥,⊥) to the simulated A.
(b) If d = 1, B stops outputting a random m-bit guess if Mi−1,j �= 1 −

b. Otherwise, it computes Ti−1 ← TagF (Mi−1, c
′
i−2). Note that because

Mi−1,j = 1 − b, this can be done with the available functions within Z,
since Fj,b is not involved in the computation. It then returns (Ti−1, ci−1)
to A.

3. Finally, A outputs its i-th query (Mi, c
′
i−1, (M

′
i , T

′
i )). Now, if M ′

i,j �= b, B
stops with a random m-bit guess. Otherwise, we compute, for all j′ �= j,

Yj′ = Fj′,M ′
i,j′ (iv1) ‖ · · · ‖Fj′,M ′

i,j′ (ivt),

and finally output the guess

T = T ′
i ⊕

⊕

j′ �=j

Ext(Yj′ , seed).

It now clear that by construction Eq. 4 is always satisfied. This is because pro-
vided Wini,j,b,d occurs, we can map an execution from sAUTHCtV(A) into one
where L and B correctly guess Ext’s output.

To conclude the proof, we note that L’s output has length S + � + m bits, and
therefore, because Advskp-auxDj,b,t (S + � + m) ≤ 2−γ , by Lemma 4,

H∞(Fj,b(iv1)‖ . . . ‖Fj,b(ivt)|σi−2, (iv1, . . . ivt)) ≥ γ.

But because Ext is a (γ, ε)-strong extractor, this also implies that

(Ext(Fj,b(iv1)‖ . . . ‖Fj,b(ivt), seed), σi−2, (iv1, . . . ivt), seed)

and

(Z, σi−2, (iv1, . . . ivt), seed)
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for uniformly distributed Z
$← {0, 1}m, have statistical distance at most ε. There-

fore,

Pr [Wini,j,b,d] ≤ pB,L ≤ ε +
1

2m
.

This also concludes the proof, by plugging this into Eq. 3. ��
Instantiations. With the goal of providing a block-cipher based instantiation
of the construction, we consider the case where D is the uniform distribution
over all n-bit permutations. Then, note that Fj,b, given Fj′,b′ for (j′, b′), is still
uniformly distributed over a set of 2n−d−1! possible functions.

Corollary 2. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Let H :
{0, 1}tn × {0, 1}tn → {0, 1}m be a 2-universal family of hash functions. Let
S + � + m ≤ N + N(n−log(16�))

8� − δnN for some δ ∈ [0, 1].

Then, if δ ≥
[
4(m−2 log ε)

t + 1
n + 3(m−2 log ε)+5

nN

]
for some ε > 0, then for all

D, T , there exists D′ ≈ D and T ′ ≈ T such that

AdvAUTHCtV[�,I,t,H,E](D,T, q, S) ≤ 4�q

(
1

2m
+ ε

)

+ AdvPRP−CPA
E (D′, T ′, t�q, S′).

where S′ = S + 2tn + 2� + m.

Beyond 2n
-security. Again, to demonstrate that our authentication scheme

can tolerate queries beyond q = 2n by the adversary and still have meaningful
security, we plug in concrete values in Corollary 2. Let q ≤ 21.5n and � = 2n.
Let the output of the extractor be of length m = 3n. Say we want ε to be 2−3n

such that 4�q
(

1
2m + ε

) ≤ 8n2−1.5n when an S-bounded adversary is such that
S ≤ N2/3. Then, by plugging in the desired parameters, we can see that for
n ≥ 10, we achieve the preferred security bound at t ≥ 300n2.

4.4 Remarks and Extensions

We give here a few remarks about our construction above. We will first discuss
why a stronger result (dispensing with challenges) appears hard. We then discuss
briefly how to extend the domain of authenticated messages, and the combination
of encryption and authentication.

Building PRFs: Why is it hard? An excellent question is whether we can
build an actual PRF (and consequently a MAC), thus dispensing with the need
for a challenge. The natural approach is to extend the domain of a random
function9 R : {0, 1}n → {0, 1}n to a function FR : {0, 1}m → {0, 1}n where
m > n, which is indistinguishable from a truly random function for q � 2n

queries, provided the distinguisher’s memory is bounded by S < 2n. This appears
9 Or a permutation, but we restrict ourselves to functions as this only makes the

problem easier, and our point stronger.
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well beyond reach of current techniques, and would require overcoming barriers
in the design of PRGs against space-bounded computation.

Specifically, consider a function G : {0, 1}k → {0, 1}� where k > �, and we
now look at a model where, for a random x

$← {0, 1}k, a distinguisher is given
oracle access to either the � individual bits y1 . . . y� = G(x) or to independent
random bits y1, . . . , y�. The function G is an ε-PRG for S-bounded distinguishers
if every space-S distinguisher can only succeed in distinguishing the two cases
with advantage ε. Clearly, S < k must hold, and the state of the art construc-
tions [16,27] achieve � = O(k), even if we only demand ε = 1/ω(log(k)).10

A domain extender F described above would in particular define an ε-PRG
G = GF for S-bounded computation with k = n ·2n and � = q ·n and ε = n−ω(1).
The PRG would just interpret its seed x as a function f : {0, 1}n → {0, 1}n,
and output a sequence of bits obtained by evaluating Ff at q distinct inputs.
If q ≥ 2n(1+δ) for a constant δ > 0, then we have � ≈ k1+δ. Also, because F
can only make a small number t = poly(n) of calls to f , the resulting PRG G is
local, in the sense that every output bit only depends on O(log(k)) bits of the
seed. Existing constructions [16,27] have only linear stretch and are inherently
non-local.

Higher Efficiency. There is nothing really special about the scheme process-
ing the message one bit at a time. The analysis can easily be generalized so that
the scheme processes a large number of bits per call. That is, we would have for
each i ∈ [�], where now � is the number of b-bit blocks, and the i-th block Mi,

Yi = F (〈i〉 ‖Mi ‖ iv1) ‖ · · · ‖F (〈i〉 ‖Mi ‖ ivt).

We would lose in security, as the iv-values are now shorter, i.e., n − b − d, but
this gives acceptable compromises. The analysis is a straightforward adaptation
of the one we have given above.

Extending the domain. Our scheme above authenticates messages of fixed
length �. It can however straightforwardly be extended to authenticate arbitrarily
long messages if we assume a collision resistant hash function family producing
�-bit hashes, for a sufficiently long �, which is more secure than the underlying
PRP E. For example, if the key length is k bits, one could assume � = 2k and
that collisions can only be found in time 2k.

Authenticated encryption. We will not discuss this in detail here, but
clearly encryption and authentication can be combined to obtain a resulting
notion of (synchronous) authenticated encryption. The messages to be authen-
ticated would be ciphertexts produced with the encryption scheme from Sect. 3,
and both schemes would use two independent keys.

10 We note that much better constructions exist if one imposes restrictions on the
distinguisher’s queries, e.g., the bits are read once from y1 to y�.
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5 Key-Length Extension in the Memory-Bounded Setting

5.1 Problem Formulation

The results from the previous sections require a block cipher with security beyond
2n queries. This in particular requires a long key, and we may not have it (e.g., in
AES-128, the key length equals the block length). The classical problem of key-
length extension addresses exactly this – several solutions have been validated
in the ideal-cipher model [15,21–24,26,28],11 and are commonly assumed to
work with a good block cipher. Such results however assume no bounds on the
adversary’s memory, and thus, if we assume the adversary can store fewer than
2n bits, they may be overly pessimistic. To this end, here, we analyze the security
of double encryption in the ideal cipher model when the memory of the adversary
is bounded. Double encryption is particularly interesting, because it is known
not to amplify security when the memory of the adversary is unbounded. We
will see that when the memory of the attacker does not exceed 2k, for a k-bit
key, things are substantially different, at least under reasonable assumptions.

Definitions. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Then, the
double encryption scheme DE = DE[E] is the block cipher such that

DEK1,K2(x) = EK2(EK1(x)) (5)

where K1,K2 ∈ {0, 1}k. Clearly, DE−1
K1,K2

(y) = E−1
K1

(E−1
K2

(y)).
The security notion considered for the double encryption scheme is that of

strong PRP-security, where the attacker can make both forward and backwards
queries. We will consider it in particular in the ideal-cipher model – to this end,
let BCk,n be the set of all block ciphers with key length k and block length n.
The adversary has access to two pairs of oracles:

1. An ideal cipher oracle E $← BCk,n and its inverse E−1 s.t. E−1(K ′, y) = E−1
K′ (y).

2. An oracle O and its inverse O−1, where O/O−1 : {0, 1}n → {0, 1}n. The
oracle O is either the double encryption scheme DEK1,K2(·) = EK2(EK1(·))
with uniform, independent, keys K1 and K2 (in the real world) or a random
permutation P

$← Pn (in the ideal world).

At the end of q steps, the adversary tries to guess if the oracle O it has been
interacting with is DEK1,K2 or P .

More explicitly, the advantage of an adversary A against the double encryp-
tion scheme DE[E] is defined as

AdvPRPDE[E](A) = |Pr[K1,K2
$← {0, 1}k,E

$← BCk,n : ADEK1,K2 ,DE−1
K1,K2

,E,E−1

= 1]

− Pr[P $← Pn : AP,P −1,E,E−1
= 1]|.

11 We note that the use of the ideal-cipher model is somehow necessary, as we are
achieving effectively true hardness amplification.
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5.2 Double Encryption and List Disjointness

We study the security of the double encryption scheme in our model by relating
it to a problem that we introduce, called the list disjointness problem – this is
a special case of the element distinctness problem studied in the literature. We
show that any algorithm solving this problem immediately implies an attacker
against double encryption (with the same complexity). More importantly, as our
main result, we show that any attacker against double encryption also implies
an algorithm solving list disjointness.

The List Disjointness Problem. The setting for the LDκ,k problem is as
follows: An algorithm is given oracle access to two lists L1 and L2, each contain-
ing κ/2 distinct k-bit elements, i.e., the algorithm can learn the j-th element of
Li by making a query Li[j] for i ∈ {1, 2} and j ∈ {1, . . . , �}. The lists are such
that they have at most one element in common, i.e., we have the promise that
|L1 ∩ L2| = 1 or |L1 ∩ L2| = 0. The aim of the algorithm is to distinguish the
two cases given oracle access to the two lists. The list disjointness problem is a
special case of the element distinctness problem where given oracle access to a
list, an algorithm tries to determine whether all elements in the list are distinct.
The following definition formalizes this as a distinguishing problem.

Definition 2 (List Disjointness Problem). An algorithm Alg with binary
output is said to solve the list disjointness problem LDκ,k with advantage ε if
it is given oracle access to two lists L1, L2 of κ/2 k-bit elements (which we can
think of as functions L1, L2 : [κ/2] → {0, 1}k) such that |L1 ∩ L2| ≤ 1, and,
moreover, for any such L1, L2, the difference between the probabilities that Alg
outputs 1 when |L1 ∩ L2| = 1 and when L1 ∩ L2 = ∅ is at least ε.

We note that advantage above can be amplified via sequential repetition –
this requires minimal memory overhead to estimate the number of repetitions
outputting one. We omit the details.

List Disjointness to DE. We first observe that an algorithm Alg that solves
the list disjointness problem immediately implies a distinguisher against the
PRP-security of the double encryption scheme with similar memory and time
complexities, and advantage. This can be seen as follows. The distinguisher runs
Alg and provides oracle access to two lists L1 and L2 where the lists are each
of size 2k, and each index j in Li is associated with a unique k-bit string
Kj ∈ {0, 1}k. The distinguisher makes a constant c number of queries to its
permutation oracle (that is either DEK1,K2 or P ) to obtain plaintext/ciphertext
pairs (x1, y1), . . . , (xc, yc). (The constant c is related to the ratio between key
length and block length of the block cipher E.) Now, when Alg queries the list Li

at index j, the distinguisher answers this query using its E/E−1 oracle as follows:

– if i = 1, return EKj (x1)‖ . . . ‖EKj (xc) as the element L1[j] and
– if i = 2, return E−1

Kj (y1)‖ . . . ‖E−1
Kj (yc) as the element L2[j].

When the permutation oracle of the distinguisher is the double encryption oracle,
L1 and L2 share exactly an element, while if it were a random permutation, an
element is shared only with probability negligible in k.
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DE to List Disjointness. The reduction for transforming an adversary against
the double encryption scheme to an algorithm for list disjointness is more
involved. In fact, our algorithm in the list disjointness problem will require access
to additional oracles that can be queried for free (i.e., such queries do not count
towards the query complexity). Specifically, it will use:

– A permutation ρ : [κ] → [κ] chosen uniformly from the set of all permutations
over [κ]. On input K, the output ρ(K) is interpreted as ρ(K) = (i, j) where
i ∈ {1, 2} and j ∈ [κ/2].

– A permutation π : {0, 1}n → {0, 1}n chosen uniformly from the set of all
permutations over {0, 1}n, and its inverse π−1.

– An ideal cipher F : {0, 1}k × {0, 1}n → {0, 1}n.

We stress that these oracles do not depend on the lists L1 and L2. (In a heuristic
implementation they could be realized e.g., from a block cipher.)

Given an adversary A against double encryption achieving advantage ε, we
show how to solve the list disjointness problem with advantage ε − 2k, given
access to F , ρ, and π as defined above.

Theorem 3. Let A be an S-bounded attacker making at most q ideal-cipher
queries (and any number of queries to its O / O−1 oracle) such that

AdvPRPDE[E](A) ≥ ε,

where the underlying ideal cipher has key length k and block length n. Then,
there exists an S-bounded algorithm Alg that makes q queries to the given lists,
uses the oracles ρ, F, π defined above, and solves the list disjointness problem
LDκ=2k,k with advantage ε − 2−k.

Proof (Sketch). Fix an adversary A against the double encryption scheme DE
such that it has the maximum advantage. We assume without loss of generality
that the probability it outputs 1 in the real world is at least ε higher than in the
ideal world. Recall that the algorithm Alg has access to oracles L1, L2, ρ, π, F as
mentioned in Definition 2. The algorithm proceeds by running A, and thus it
is required to simulate the ideal cipher and permutation oracles that A expects
access to. This is done in the following manner. If A queries the permutation
oracle O or O−1, the algorithm Alg just returns the answer by querying its
random permutation oracle π or its inverse π−1. A query (K, ·) to the ideal
cipher oracle on key K is answered as follows: We interpret ρ(K) as (i, j) where
i ∈ {1, 2} and j ∈ [κ/2]. Then, if i = 1:

– a forward query (K,x) is answered as E′
K(x) ← FL1[j](x),

– an inverse query (K, y) is answered as E′−1
K (y) ← F−1

L1[j]
(y).

If i = 2:

– a forward query (K,x) is answered as E′
K(x) ← π(F−1

L2[j]
(x)),

– an inverse query (K, y) is answered as E′−1
K (y) ← FL2[j](π

−1(y)).
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At the end, Alg outputs A’s output bit.
We now note the following, omitting a formal argument:

– If the lists L1 and L2 do not intersect, then the keys on which F is called for
the cases i = 1 and i = 2 are distinct, and thus we are perfectly simulating
the ideal world, since composing π with F in the i = 2 case does not change
the distribution of the query answers.

– If the lists L1 and L2 intersect exactly at one point, then there are two
distinct keys K1 and K2 such that ρ(K1) = (1, j1), ρ(K2) = (2, j2), and
L1[j1] = L2[j2]. This ensures that EK1(EK2(x)) = π(x). Moreover, because ρ
is a random permutation, K1 and K2 are uniformly distributed, conditioned
on K1 �= K2. Thus, we are simulating the real world conditioned on K1 �= K2.

Therefore, as claimed, Alg solves the list disjointness problem with advantage at
least ε − 2−k. ��
State-of-the-art for List Disjointness. Now that we have shown that an
attacker against double encryption leads to an algorithm solving list disjointness
with similar complexity, we state the best existing algorithm for list disjointness
and conjecture that this is the best possible.

To this end, we first state the following result by Beame, Clifford, and Mach-
mouchi [8] that gives an algorithm for computing element distinctness. In the
following statement EDn refers to the decision problem where given n elements
belonging to some domain we need to determine if the n elements are distinct
or not. Again, the advantage will measure the difference between the probability
of a positive answer when the elements are distinct and when they are not. As
a corollary of this result, we can derive a time-space upper bound for the list
disjointness problem mentioned above.

Theorem 4 ([8]). For any ε > 0, and any S with c log n ≤ S ≤ n/32 for some
constant c > 0, there is an S-bounded algorithm solving EDn with advantage ε

making q = O
(

n3/2

S1/2 log5/2 n log(1/(1 − ε))
)

queries to the given list.

This theorem immediately gives us the following corollary as list disjointness
can be seen as a special case of the element distinctness problem where the
elements under consideration are those belonging to the two lists.

Corollary 3. For any ε > 0, and any S with c log κ ≤ S ≤ κ/32 for some
constant c > 0, there is an S-bounded algorithm solving LDκ,k with advantage
ε, and making

q = O

(
κ3/2

S1/2
log5/2(κ) log(1/(1 − ε))

)

queries.

We have been somewhat informal here, as the algorithm of [8] actually requires
access to a random hash function. This can be implemented from the oracles
made available in our extended setting of LDκ,k.
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We note that finding good lower bounds for the element distinctness problem
has been a major open problem in complexity theory for the past three decades
and progress has been slow on that front. The best known lower bound is due
to Beame et al. [10] that showed T ∈ Ω

(
n
√

log(n/S)/ log log(n/S)
)
. A better

lower bound of T ∈ Ω
(
n2−o(1)/S

)
was given by Yao [39] in the restricted set-

ting of comparison branching programs (where access to the input is limited to
pairwise comparison). Until the result stated in Theorem 4, it was not known
whether the lower bound in the general setting matches the restricted setting
given by Yao [39].

A conditional lower bound. Given the current state-of-the-art, we conjec-
ture that the result by Beame et al. [8] does in fact provide the best algorithm
for computing element distinctness and hence assume that it gives a lower bound
on the time-space tradeoff for the element distinctness problem. We state that
following (slightly more conservative) conjecture (note that we have implicitly
used that log(1/(1 − ε)) = Ω(ε) here).

Conjecture 1. There are constants c1, c2, such that for any ε > 0 and any S with
c1 log κ ≤ S ≤ κ/c2, every S-bounded algorithm to solve the list disjointness
problem LDκ,k

with advantage at least ε requires querying the lists

q = Ω

(
κ3/2

S1/2
ε

)

times.

Therefore, under Conjecture 1, Theorem 3 directly yields a lower bound, and in
particular for any S-bounded attacker A that queries the ideal cipher at most
q = O

(
23k/2

S1/2 (ε − 2−k)
)

times, the advantage is at most ε, or equivalently, for
any S-bounded A making at most q queries to the ideal cipher,

AdvPRPDE[E](A) = O

(√
Sq2

23k

)

+
1
2k

.

We stress that the bound is independent of the number of queries to the O
/ O−1 oracle. Note that if S = 2k, we recover the traditional bound of q/2k,
which is tight by the meet-in-the-middle attack. (It is worth noting that Aiello et
al. [1] show the slightly superior bound of (q/2k)2 here.) However, if for example
S = 2k/2, then we get security up to q = 21.25k queries.
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