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Preface

The 16th Theory of Cryptography Conference (TCC 2018) was held during November
11–14, 2018, at the Cidade de Goa hotel, in Panaji, Goa, India. It was sponsored by the
International Association for Cryptologic Research (IACR). The general chairs of the
conference were Shweta Agrawal and Manoj Prabhakaran. We would like to thank
them for their hard work in organizing the conference.

The conference received 168 submissions, of which the Program Committee
(PC) selected 50 for presentation (with two pairs of papers sharing a single presentation
slot per pair). Each submission was reviewed by at least three PC members, often more.
The 30 PC members (including PC chairs), all top researchers in our field, were helped
by 211 external reviewers, who were consulted when appropriate. These proceedings
consist of the revised version of the 50 accepted papers. The revisions were not
reviewed, and the authors bear full responsibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent Web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions. Based on the experience from previous years,
we again made use of the interaction feature supported by the review software, where
PC members may anonymously interact with authors. This was used to ask specific
technical questions, such as suspected bugs. We felt this approach helped us prevent
potential misunderstandings and improved the quality of the review process.

This was the fifth year that TCC presented the Test of Time Award to an outstanding
paper that was published at TCC at least eight years ago, making a significant con-
tribution to the theory of cryptography, preferably with influence also in other areas of
cryptography, theory, and beyond. This year the Test of Time Award Committee
selected the following paper, published at TCC 2005: “Evaluating 2-DNF Formulas on
Ciphertexts” by Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. This paper was selected
for introducing compact two-operation homomorphic encryption and developing new
bilinear map techniques that led to major improvements in the design of cryptographic
schemes. The authors were also invited to deliver a talk at TCC 2018. A Best Student
Paper Award was given to Tianren Liu for his paper “On Basing Search SIVP on
NP-Hardness.”

The conference also featured two other invited talks, by Moni Naor and by Daniel
Wichs.

We are greatly indebted to many people who were involved in making TCC 2018 a
success. First of all, a big thanks to the most important contributors: all the authors who
submitted papers to the conference. Next, we would like to thank the PC members for
their hard work, dedication, and diligence in reviewing the papers, verifying the cor-
rectness, and in-depth discussion. We are also thankful to the external reviewers for
their volunteered hard work and investment in reviewing papers and answering
questions, often under time pressure. For running the conference itself, we are very
grateful to the general chairs, Shweta Agrawal and Manoj Prabhakaran. We appreciate



the sponsorship from the IACR, Microsoft Research, IBM, and Google. We also wish
to thank IIT Madras and IIT Bombay for their support. Finally, we are thankful to the
TCC Steering Committee as well as the entire thriving and vibrant TCC community.

November 2018 Amos Beimel
Stefan Dziembowski

TCC 2018 Program Chairs
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Provable Time-Memory Trade-Offs:
Symmetric Cryptography Against

Memory-Bounded Adversaries

Stefano Tessaro(B) and Aishwarya Thiruvengadam

University of California, Santa Barbara, USA
{tessaro,aish}@cs.ucsb.edu

Abstract. We initiate the study of symmetric encryption in a regime
where the memory of the adversary is bounded. For a block cipher with
n-bit blocks, we present modes of operation for encryption and authenti-
cation that guarantee security beyond 2n encrypted/authenticated mes-
sages, as long as (1) the adversary’s memory is restricted to be less than
2n bits, and (2) the key of the block cipher is long enough to mitigate
memory-less key-search attacks. This is the first proposal of a setting
which allows to bypass the 2n barrier under a reasonable assumption on
the adversarial resources.

Motivated by the above, we also discuss the problem of stretching the
key of a block cipher in the setting where the memory of the adversary
is bounded. We show a tight equivalence between the security of double
encryption in the ideal-cipher model and the hardness of a special case of
the element distinctness problem, which we call the list-disjointness prob-
lem. Our result in particular implies a conditional lower bound on time-
memory trade-offs to break PRP security of double encryption, assuming
optimality of the worst-case complexity of existing algorithms for list dis-
jointness.

Keywords: Foundations · Symmetric cryptography
Randomness extraction

1 Introduction

Security proofs typically upper bound the maximal achievable advantage of an
adversary in compromising a scheme as a function of its resources. Almost always,
theoretical cryptography measures these resources in terms of time complexity
– an adversary is considered feasible if its running time is bounded, e.g., by a
polynomial, or by some conservative upper bound (e.g., 2100) when the focus is
on concrete parameters.

However, time alone does not determine feasibility. Another parameter is the
required memory. For example, while the näıve birthday attack to find a collision
in a hash function with n-bit outputs requires 2n/2 time and memory, well-known
collision-finding methods based on Pollard’s ρ-method [31] only require O(n)
c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11239, pp. 3–32, 2018.
https://doi.org/10.1007/978-3-030-03807-6_1
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memory. In fact, cryptanalytic attacks often achieve time-memory trade-offs,
where time complexity increases as the memory usage decreases.

Everything else being equal, we would favor a cryptosystem that requires
large memory to be compromised within feasible time over one admitting low-
memory attacks. Yet, existing works on provable security that are concerned
with adversarial memory costs, such as those dealing with memory-hard func-
tions (e.g., [3,4,6]), consider a more limited scope than the security of classical
cryptographic tasks like encryption and authentication. A notable exception is
the recent work of Auerbach et al. [7] introducing the concept of a memory-
tight reduction, which allows lifting conjectured lower bounds on time-memory
trade-offs from the underlying assumption to the security of the overall scheme.
Fortunately, many reductions are memory-tight, with the exception being mostly
reductions in the random-oracle model. This approach, however, still crucially
relies on a time-memory assumption for an underlying computational problem,
and these are mostly problems studied in public-key cryptography.

This paper: An overview. This paper focuses on symmetric cryptography and
modes of operation for block ciphers. We present the first schemes for encryption
and authentication, based on a block cipher with input length n, that provably
achieve security against adversaries which encrypt/authenticate more than 2n

messages, under the assumption that their memory allows storing fewer than 2n

bits. Our results only need fairly standard assumptions (i.e., strong, yet plausible,
forms of PRP security) on the underlying block ciphers, and, unlike [7], we only
assume hardness with respect to time.

Complementary to this, we will discuss how the security of key-length exten-
sion methods for block ciphers (and in particular, double encryption) improves
under memory restrictions on adversaries, and show conditional results proving
optimality of existing attacks against double encryption.

Why this is important. In provably secure symmetric cryptography, the quan-
tity 2n acts as a barrier on the achievable security in the analysis of schemes
based on block ciphers with n-bit inputs, even if the underlying block cipher
is very secure (e.g., it is a PRP against adversaries with time complexity 22n,
which is plausible if the key is sufficiently long). The reason is that the core of
most proofs is inherently information-theoretic, and analyzes the scheme after
replacing the block cipher with a truly random permutation (or random func-
tion) on n-bit inputs. Here, after Ω(2n) queries (either for encryption or veri-
fication), the underlying permutation/function is usually queried on all inputs
– the lack of new randomness breaks down the proof, although the resulting
matching attack has often doubly-exponential time complexity in n and it is
only a problem because we are considering the (stronger) target of information-
theoretic security. For this reason, cryptanalysis often suggests better concrete
security guarantees than those given by security proofs. Of course, we have no
way to directly deal with time complexity, but here we suggest that bounding the
memory of the attacker to be smaller than 2n can suffice to break this barrier.
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Our assumptions. The assumption that attackers have less than 2n bits of
memory is reasonable. While n = 128 is common, NSA’s Utah data center is
estimated to store 267 bits of data. Moreover, accessing large memory, in practice,
adds extra time complexity. Another way to view this is that high security can
be achieved even when the block size is smaller. E.g., we can set n = 80 and
k = 128, and still get beyond 100 bits (i.e., 2100 queries) of security.

Note that if we want security against time T > 2n, then we need a security
assumption on the block cipher which is true against time-T adversaries. If the
key length is larger than log(T ) bits (to thwart the näıve key-search attack), it
is not unreasonable to assume that a block cipher is a PRP for T -time attackers,
even if the block length is n.1 This however also motivates the general question
of what to do if a cipher with longer key does not exist – heuristically, one could
use methods for key-length extension [15,21–24,26,28] that have been validated
in the ideal cipher model, and that achieve security against time up to T = 2k+n

when the underlying block cipher has key length k. Here, we initiate the study
of key-length extension in the memory-bounded setting, and show that, under
assumptions we discuss below, key-length extension can be done more efficiently.

1.1 Overview of Our Results

We give an overview of the results from this paper. We will start with the case
of encryption, before moving to authentication, and our results on key-length
extension.

Symmetric encryption. Consider the classical scheme which encrypts each m
as (iv,EK(iv)⊕m) for a random n-bit iv and a block cipher E with block length n
and key K. The canonical O(2n/2)-query attack against real-or-random (ROR)
security waits for two encryptions of mi and mj with ciphertexts ci = (ivi, zi)
and cj = (ivj , zj) such that ivi = ivj , and then checks whether zi ⊕zj = mi ⊕mj .
However, if the adversary only has memory to store O(n ·2n/4) bits, the attack is
not possible, as not all previous ciphertexts can be remembered. The seemingly
best-possible strategy is to store 2n/4 2n-bit ciphertexts, and check, for each
new query returning ci = (ivi, zi), whether the ivi value is used by any of the
2n/4 ciphertexts, and then proceed as before. This attack however requires 23n/4

queries to succeed.
A generalization of the scheme could achieve even higher security: We now

pick t random iv1, . . . , ivt, and the ciphertext is2

(iv1, . . . , ivt,EK(iv1) ⊕ · · · ⊕ EK(ivt) ⊕ m).

Of course, we need to prove our intuition is valid no matter what a memory-
bounded attacker does. We will not be able to do so for this specific scheme, but

1 For example, an ideal cipher with key length log(T ) is a PRP against T -time
attackers.

2 This scheme was proposed in [13], with the different purpose of proving security
beyond the birthday bound.
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consider a related scheme, which we call sample-then-extract, using an extractor
Ext : {0, 1}n·t × {0, 1}s → {0, 1}� to encrypt an �-bit message as

(iv1, . . . , ivt, seed,Ext(EK(iv1)‖ · · · ‖EK(ivt), seed) ⊕ m),

where seed
$← {0, 1}s is chosen randomly upon each encryption.

For example, assuming Ext is a sufficiently strong extractor, � = n, t = 32n,
we will show security up to q = 21.5n encryption queries for attackers with
running time T ≥ q and memory S ≤ 2n(1−o(1)), provided E is secure against
T -time attackers as a PRP.

The connection with sub-key prediction. Our proof relies on the prob-
lem of sub-key prediction, which was recently revisited [11,14] in the context of
big-key encryption, but which initially appeared implicitly in previous entropy
preservation lemmas [5,30,36].3 In particular, the core of the proof involves a
hybrid world where the block cipher EK is replaced by a random permutation
P . For every i, we imagine an experiment where we run the attacker for the
first i − 1 queries, all answered using the encryption scheme with P in lieu of
EK , and then look at its S-bit state σi−1 before it makes the i-th query. Then,
we know that the average-case min-entropy of the permutation P given σi−1 is
at most S bits lower than the maximum, i.e., log(2n!) ≈ n · 2n. The existing
bounds on sub-key prediction give us directly a lower bound on the min-entropy
of P (iv1)‖ · · · ‖P (ivt) conditioned on σi−1. If Ext is a suitable extractor, this
makes its output random, and thus this masks the ciphertext.

The proof is perhaps obvious in retrospect, but it highlights a few interesting
traits: First off, the idea of a reduction to sub-key prediction is novel. Second,
handling random permutations (vs functions) comes for free by simply consid-
ering a different entropy lower bound for which the extractor needs to work.

Authentication. The next logical step is to build a message authentication
code (MAC) for �-bit messages from an n-bit block cipher, with security for
q > 2n queries for adversaries with memory S < 2n. Here, � > n in order for the
question to make sense. This appears harder – as we will explain in the body
in detail, if we want to go as far as building a PRF (as it is usually the case
when proving security of MAC constructions), the resulting construction is likely
to yield (at least when following the canonical proof approach) a PRG which
is unconditionally secure for unrestricted4 space-bounded branching programs,
with much better stretch than the existing state-of-the-art [16,27], and this is
currently out of reach.

We overcome this by considering a (minimally) interactive approach to the
problem of message authentication, which we refer to as synchronous authentica-
tion. In this setting, we force the output of the MAC to also depend on a random
3 In fact, the simplest lemma by Alwen, Dodis, and Wichs [5] will suffice for our

purposes. One could likely obtain better concrete bounds using the techniques from
[11], yet their bounds are hard to express explicitly, and we do not explore this route
here.

4 I.e., they can learn the output bits of the PRG adaptively, with no restrictions.
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challenge previously sent by the other party. For example, whenever Alice sends
an authenticated message to Bob, she also sends a challenge to be used by Bob
to authenticate his next message to Alice. Our construction makes t calls per bit
of the message, for a parameter t.5 In particular, a challenge consists of t n-bit
strings iv1, . . . , ivt, as well as an extractor seed seed. Then, the tag of a message
M = M1M2 . . . M� ∈ {0, 1}� is obtained by computing the values

Yi = EK(〈i〉‖Mi‖iv1)‖ · · · ‖EK(〈i〉‖Mi‖ivt),

where 〈i〉 is a log �-bit encoding of i, and finally outputting the message tag
T =

⊕t
i=1 Ext(Yi, seed), where Ext is a randomness extractor.

We introduce a definition of synchronous message authentication and prove
our scheme secure. Again, our proof will resort to a reduction to the unpre-
dictability of the Yi values via sub-key prediction, but an extra complication
is that we need to analyze a more complex security game than in the case of
encryption, where the adversary can authenticate adaptively chosen messages.

The block cipher assumption and double encryption. If we want to
prove security beyond 2n queries, we need to use a block cipher whose PRP
security holds for an attacker which runs for time T ≥ 2n time and has memory
S � 2n. But: What should we do when the key is not long enough?

We can of course always extend the length of a key to a block cipher by
using conventional key-length extension methods which are validated in the
ideal-cipher model [15,21–24,26,28]. One observation however is that if we are
assuming a bound on the adversary’s memory, one could achieve better security
and/or better efficiency (for comparable security). To this end, we initiate the
study of key-length extension in the memory-bounded regime.

In particular, we look at double encryption (DE), i.e., given a block cipher
E, we consider a new block cipher that uses two keys K1,K2 to map x to
EK1(EK2(x)). The best known attack against DE achieves a time-memory trade-
off6 of T 2 · S = 23k with T ≥ 2k – this was first pointed out in the work of
van Oorschot and Wiener [38]. If one can show that this is indeed optimal,
then we can for example hope to achieve security against time T = 21.25k when
S � 20.5k. In other words, in contrast to common wisdom, double encryption
would increase security if memory is bounded.

Verifying this unconditionally, while possible (recall we are content with a
proof in the ideal-cipher model), appears to be out of reach. However, we estab-
lish a connection between the PRP security of DE in the ICM and a problem we
call list disjointness. In this problem, we assume we are given two equally long
lists L1 and L2 as inputs, each of distinct elements, with the promise that either
(1) L1 ∩ L2 = ∅ or (2) |L1 ∩ L2| = 1. An algorithm is given access to the lists as
an oracle (i.e., for an i and b, it can obtain the i-th element of Lb), and the goal

5 A higher-rate version of the scheme can be given, at the price of lower security.
6 For comparison, the textbook meet-in-the-middle attack achieves a tradeoff of T ·S =

22k.
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is to assess whether (1) or (2) holds. This problem is a special case of the well-
known element distinctness problem [17,40], where the algorithm is given oracle
access to a single list L and needs to decide whether its elements are distinct.
In particular, every algorithm for distinctness yields one for list disjointness, by
letting L be the concatenation of L1 and L2.

It is not hard to see that every algorithm for list disjointness yields a PRP
distinguisher for DE with similar query and memory complexities. More inter-
estingly, we also show that every PRP distinguisher for DE yields an algorithm
(with similar query and memory complexities) that solves list disjointness in the
worst case.

First off, there has been little progress in providing general lower bounds for
query-memory trade-offs for element distinctness (existing lower bounds consider
either restricted algorithms [40], and can be bypassed by more general algorithms
[8], or are far from known upper bounds [2,9]). The situation does not appear
easier for list disjointness. Progress on proving a tight lower bound for query-
memory trade-offs for the PRP security seems therefore to necessarily involve
new non-trivial insights.

Second, and perhaps more interestingly, the best algorithm for element dis-
tinctness is due to Beame, Clifford, and Machmouchi [8], and achieves a tradeoff
of T 2 · S = |L|3. The algorithm also applies to list disjointness, and assuming
it is optimal, by our reduction we get a conditional lower bound confirming the
best-known time-memory trade-off for DE to be optimal.

1.2 Further Related Works

The bulk of the interest on bounded-memory algorithms stems from complexity
theory. In particular, a number of works have been concerned with lower bounds
for time-memory trade-offs in restricted complexity classes, such as pebbling
models and branching programs. Textbooks like that of Savage [35] provide a
comprehensive introduction to the topic. Particularly relevant to us is the work
on building PRGs for space-bounded computation [29], which was the first to
show unconditional pseudorandomness for space-bounded distinguishers.

Our work is also very related to that of Raz [32,33] on time-memory trade-
offs for learning parities (and related problems). Raz shows in particular an
encryption scheme with an n-bit key which unconditionally resists an attacker
with memory smaller than n2/c for a constant c when encrypting an exponential
number of plaintexts. Our encryption scheme can be seen as replacing the n-bit
key with a much larger random permutation table. Raz’s technique is not appli-
cable because it would require evaluating the permutation at Θ(2n) positions
upon each encryption. Time-memory trade-offs for learning lower-weight pari-
ties were also given [20], but it does not appear possible to exploit these results
to obtain a cryptosystem.

Outline of this paper. Section 2 will introduce technical tools needed through-
out the paper, including our model of computation, information-theoretic pre-
liminaries, and notation for the sub-key prediction problem. Sections 3 and 4
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discuss our encryption and authentication schemes. Section 5 presents our results
on double encryption.

2 Preliminaries

Throughout this paper, let N = 2n for an understood n ∈ N. Also, let [i]
denote the set {1, 2, . . . , i}. As usual, we use the notation |r| to denote the
length of string r in bits. By r

$← {0, 1}n, we indicate that r is chosen uniformly
from {0, 1}n. We let Fm,n denote the uniform distribution over functions from
{0, 1}m to {0, 1}n and let Pn denote the uniform distribution over permutations
on {0, 1}n. We also write F and P for Fn,n and Pn whenever n is clear from the
context.

2.1 Information-Theoretic Preliminaries

The min-entropy of a random variable X (taking values from a set X ) is
H∞(X) = −minx∈X log (Pr [X = x]). Moreover, for two jointly distributed ran-
dom variables X,Y , and an element y such that Pr [Y = y] > 0, we define
H∞(X|Y = y) = minx∈X log

(
1/Pr

[
X = x

∣
∣ Y = y

])
. This is in particular the

conditional min-entropy conditioned on a particular outcome. When condition-
ing on a random variable, we use the average-case version of min-entropy [19],
i.e.,

H∞(X|Y ) = − log

⎛

⎝
∑

y∈Y
max
x∈X

Pr [X = x, Y = y]

⎞

⎠ .

We will need the following simple fact about average-case min-entropies.

Lemma 1 ([19]). Let X,Y,Z be random variables. If Y can take at most 2λ

values, then

H∞(X|Y Z) ≥ H∞(XY |Z) − λ ≥ H∞(X|Z) − λ. (1)

Extractors. Recall that a function Ext : {0, 1}t·n × {0, 1}s → {0, 1}� is said
to be a (γ, ε)-strong extractor if for every random variable X on {0, 1}t·n with
H∞(X) ≥ γ, (Us,Ext(X,Us)) is ε-close to (Us, U�). We say that H : {0, 1}k ×
{0, 1}n → {0, 1}� is 2-universal if for all n-bit x �= x′, we have Pr[K $← {0, 1}k :
H(K,x) = H(K,x′)] = 2−�. The following is well known.

Lemma 2 (Leftover Hash Lemma [25]). If H : {0, 1}k × {0, 1}n → {0, 1}�

is 2-universal, and � = γ − 2 log(1/ε), then Ext(x,K) := H(K,x) is a strong
(γ, ε)-extractor.
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Following Dodis et al. [19], we also say that Ext : {0, 1}t·n×{0, 1}s → {0, 1}� is
an average-case (γ, ε)-strong extractor if for all pairs of random variables (X, I)
such that X in {0, 1}t·n satisfies H∞(X|I) ≥ γ, (Us,Ext(X,Us), I) is ε-close to
(Us, U�, I).

In [19] the leftover hash lemma is extended to show that universal hash
functions yield an average-case strong extractor with the same parameters. In
general, with a slight loss in parameters, a (γ, ε)-(strong) extractor is also an
average-case (γ, 3ε)-(strong) extractor as stated as shown by [37].

Entropy Preservation. Assume we are given a vector X ∈ ({0, 1}m)N , which
we often will think of as the table of a function [N ] → {0, 1}m. Further, let us
sample indices i1, . . . , it uniformly at random from [N ], and consider the induced
random variable

X[i1, . . . , it] = Xi1 , . . . , Xit .

We are interested in the relationship between the entropy of X and that of
X[i1, . . . , it]. The following lemma was proven by Alwen, Dodis, and Wichs [5],
and considers the more general setting where we are given some auxiliary infor-
mation Z, and the indices i1, . . . , it are sampled independently of X and Z.7

Lemma 3. Let (X,Z) be correlated random variables, where X ∈ ({0, 1}m)N ,
and I = (i1, . . . , it)

$← [N ]t. Further, assume that H∞(X|Z) ≥ N(m − 1) − L,
where L ≤ (1 − δ)Nm for some δ ∈ [0, 1]. Then, H∞(X[I]|Z, I) ≥ γ, if

δ ≥
[
2γ

t

(
1 +

n

m

)
+

1
m

+
3γ + 5
Nm

]

.

Note that for our application scenarios,
(
1 + n

m

) ≈ 2 and 3γ+5
Nm → 0, so this

means in particular that we get γ bits of entropy for every γ ≤ t(δ − 1/m)/4.

2.2 Model of Computation and Cryptographic Primitives

We will consider a model of computation with space-bounded adversaries,
inspired by the one from [4,6]. In particular, we consider adversaries A mak-
ing queries to an oracle O. This accommodates without loss of generality for the
case where A makes queries to multiple oracles O1,O2, . . ., which we view as one
individual oracle with an appropriate addressing input. We will not specify the
model of execution of A any further at the lowest level of detail (but we assume
we fix one specific model of computation), but will introduce some convenient
relaxation of memory-bounded executions that will suffice for our purposes.

More specifically, the execution of an adversary proceeds in stages (or steps),
allowing one oracle query in each stage. In particular, the execution of A starts

7 We note that Lemma 3 has a different expression for δ than what would be implied
by the original statement [5, Lemma A.3], but this is due to a missing factor of 2γ

t

in one of the terms (which can be inferred from their proof).
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with the state σ0 = x, where x is the input, and no previous-query answer y0 =⊥.
Then, in the i-th stage, the adversary computes, as a function of the state σi−1

and the previous query answer yi−1, a query qi to O, as well as the next state
σi. Thus, formally, an adversary A is a randomized algorithm implementing a
map {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗. In most proofs, we will generally not
need to restrict the actual space complexity of A itself, as long as the states σi

are bounded in size.
We say that an adversary A is S-bounded if |σi| ≤ S holds for all states in the

execution. We further say that an adversary A has time complexity (or running
time) T if an execution takes overall at most T steps. We say it has (description)
size D if the description of A requires at most D bits. Finally, it makes q queries
if it takes q steps, resulting in q queries to O.

Block ciphers and PRPs. A block cipher is a function E : {0, 1}k ×{0, 1}n →
{0, 1}n, where EK = E(K, ·) is a permutation for all K ∈ {0, 1}k. Generally, we
assume that E is efficiently computable and invertible.

We define PRP security in terms of the PRP-CPA-advantage of an adversary
A against a block cipher E, which is

AdvPRP-CPAE (A) =
∣
∣
∣Pr[K

$← {0, 1}k : AEK = 1] − Pr[P $← Pn : AP = 1]
∣
∣
∣ .

We also define AdvPRP-CPAE (D,T, q, S) = maxA{AdvPRP-CPAE (A)}, where the
maximum is taken over all S-bounded adversaries A that run in time at most
T , making q queries at most, and with size at most D.

Note that PRP security does not need to depend on the block length n if the
key is long enough. Below, we repeatedly make the assumption that there exist
block ciphers E : {0, 1}k × {0, 1}n → {0, 1}n which are secure PRPs for time
complexities T > 2n (and suitably small size D) and space complexity S < 2n.
Note that this implicitly implies k(n) > log T . This is easily seen to be satisfied
by an ideal cipher, even if S is unbounded.

2.3 Sub-key Prediction

In the sub-key prediction problem [11,14], the adversary A is given some leak-
age σ on a key, which here we interpret as a function F : {0, 1}n → {0, 1}n.
The leakage is derived through some (adversarially chosen) function L. Then,
for randomly chosen indices i1, . . . , it, A tries to guess the “sub-key” K =
F (i1) ‖ . . . ‖F (it), i.e., the evaluations of the function at those indices. We gen-
eralize this notion further by allowing for auxiliary information Z correlated with
F . In particular, we allow both L and A to access Z. (Still, we will omit Z when
not necessary.)

More formally, we consider an adversary A with leakage function L inter-
acting in the game Gskp-aux

D,I,t (A,L) described in Fig. 1. Here, we stress that both
A and L are computationally unbounded with no limits on their memory–the
only limitation is the size of σ. The game is parameterized by the distribution



12 S. Tessaro and A. Thiruvengadam

Game Gskp-aux
D,I,t (A, L):

(F, Z) $← D; σ ← L(F, Z)
(i1, . . . , it)

$← I; K
$← A(σ, Z, i1, . . . , it)

Return (K = F (i1)‖ . . . ‖F (it))

Fig. 1. Game Gskp-aux
D,I,t (A, L). Game defining sub-key prediction with auxiliary infor-

mation. The adversary, given leakage σ and auxiliary information Z on F , wins if it
guesses the output of F at indices i1, . . . , it.

D according to which (F,Z) are chosen, the distribution I according to which
the indices are chosen, and the number of indices t.

We can then define advantage measures for an adversary in guessing the
sub-key correctly in the game Gskp-aux

D,I,t (A,L) as follows.

Definition 1. The advantage of an adversary A with leakage function L in the
game Gskp-aux

D,I,t (A,L) is defined as

Advskp-auxD,I,t (A,L) = Pr[Gskp-aux
D,I,t (A,L) = true].

Furthermore, we define

Advskp-auxD,I,t (S) = max
L:D→{0,1}S

max
A

{Advskp-auxD,I,t (A,L)}.

Often I will be the uniform distribution over t-tuples of indices in ({0, 1}n)t,
for notational convenience, we drop the subscript I and simply refer to the
advantage as Advskp-auxD,t (S) in such cases.

The following lemma is immediate by definition of conditional min-entropy.

Lemma 4. If Advskp-auxD,I,t (S) ≤ 2−γ , then for (F,Z) $← D, (iv1, . . . , ivt)
$← I and

σ ← L(F,Z), we have

H∞(F (iv1)‖ . . . ‖F (ivt)|σ, (iv1, . . . ivt), Z) ≥ γ.

We now derive the advantage of an adversary in the sub-key prediction game
with auxiliary information when the leakage function outputs exactly S bits. In
particular, the following lemma is a straightforward application of Lemmas 1
and 3.

Lemma 5 (Sub-key Prediction with Auxiliary Information). Let corre-
lated random variables (F,Z) be chosen according to a distribution D such that
F : {0, 1}n → {0, 1}n and H∞(F |Z) ≥ N(n − 1) − L.

Let S + L ≤ (1 − δ)nN for some δ ∈ [0, 1]. Then, Advskp-auxD,t (S) ≤ 2−γ if
δ ≥ [

4γ
t + 1

n + 3γ+5
nN

]
.
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In comparison to [5], the recent work by Bellare and Dai [11] provides bet-
ter concrete bounds for sub-key prediction in the case where F is uniformly
distributed over all functions, and with no auxiliary information (or, more gen-
erally, Z is independent of F ). However, we use [5] as we need to handle both
auxiliary information and the case that F is a permutation. Also, while it may
be possible to extend the proofs of [11] to this more general setting, the resulting
bounds are hard to express analytically. Either way, our results are generic and
an improvement on sub-key prediction bounds will directly yield better bounds
for our instantiations below.

3 Encryption

We give an encryption scheme for which the amount of time needed to break it
increases as the memory of the adversary decreases, in particular going beyond
2n, where n is the block length of an underlying block cipher. To this end, we
first recall the standard definition of a symmetric-key encryption scheme, its
security, and introduce some additional notational conventions.

Encryption Scheme: Syntax. An encryption scheme is a tuple of algorithms
E = (Gen,Enc,Dec) where: (1) the key generation algorithm Gen outputs a key
K, (2) the encryption algorithm Enc takes as input the secret key K and a
message M (from some understood message space M), and outputs a cipher-
text c

$← EncK(M), and (3) the decryption algorithm Dec takes as input the
secret key K and a ciphertext c and outputs a message M ← DecK(c). The cor-
rectness requirement is that for any key K output by Gen, and message M ∈ M,
we have DecK(EncK(M)) = M with large probability (usually one).

Occasionally, it will be convenient to think of the key K as a function F :
{0, 1}n → {0, 1}n (to be instantiated for example with a block cipher), to which
the scheme is given oracle access. In this case, we will simply write EncF and
DecF instead of EncK and DecK . Then one can get for example EncK = EncEK

for the final block cipher instantiation.

Security of Encryption Schemes. We briefly review the notion of real-or-
random (ROR) security [12] of an encryption scheme E = (Gen,Enc,Dec) with
message space M: we consider the games RORE,b(A) (for b ∈ {0, 1}) for an
adversary A, as described in Fig. 2, and define

AdvROR
E (A) =

∣
∣
∣Pr[RORE,0(A) = 1] − Pr[RORE,1(A) = 1]

∣
∣
∣ ,

as well as AdvROR
E (D,T, q, S) = maxA{AdvROR

E (A)}, where the maximum is taken
over all S-bounded adversaries A with running time at most T , making at most
q queries, and have size at most D.

For our intermediate information-theoretic steps below, our statements
will not depend on D and T , and we simply write AdvROR

E (q, S) =
AdvROR

E (∞,∞, q, S).
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Game RORE,b(A):

K
$← Gen

b′ $← AE′(·,b)

Return b′

Oracle E ′(M, b):

If b = 0 then return c
$← EncK(M)

If b = 1 then
choose M ′ $← M such that |M ′| = |M |
Return c

$← EncK(M ′).

Fig. 2. Game RORE,b(A). Game defining the real-or-random security of the encryption
scheme E , where b ∈ {0, 1}.

3.1 The Sample-Then-Extract Scheme

The scheme is best described using a distribution D on functions from n bits to
n bits as a parameter. In addition, let Ext : {0, 1}tn ×{0, 1}s → {0, 1}�, and let I
be the uniform distribution over {0, 1}tn. The encryption scheme StE[D, t,Ext] =
(Gen,Enc,Dec) for messages in M = {0, 1}� is then defined as follows:

Scheme StE[D, t,Ext]:

– Key generation. The key generation algorithm Gen outputs F
$← D,

where F : {0, 1}n → {0, 1}n.
– Encryption. On input M ∈ M, EncF does the following:

1. seed
$← {0, 1}s.

2. iv = (iv1, . . . , ivt)
$← I.

3. c ← Ext(F (iv1)‖ . . . ‖F (ivt), seed) ⊕ M
4. Return (c, seed, iv1, . . . , ivt).

– Decryption. On input (c, seed, iv1, . . . , ivt), Dec computes M ←
(Ext(F (iv1)‖ . . . ‖F (ivt), seed)) ⊕ c, and returns M .

We will then instantiate our scheme with a block cipher E, and in this case we
refer to the scheme as StE[E, t,Ext]. This is the special case of the above scheme
when the distribution D samples the function EK(·) for K

$← {0, 1}k where k is
the key-length of E.

3.2 Security of StE

We now prove the security of StE. Our main theorem is in the information-
theoretic setting, where we reduce security to the sub-key prediction problem
for the distribution D. Then, below, we instantiate the scheme with a block
cipher E, assumed to be a PRP, and use the theorem to give corresponding
security statements for this instantiation, showing in particular we can attain
security beyond 2n queries.

Theorem 1 (Information-theoretic security of StE). Assume that

Advskp-auxD,t (S + s + � + tn) ≤ 2−γ
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and that Ext : {0, 1}tn ×{0, 1}s → {0, 1}� is an average-case (γ, ε)-strong extrac-
tor. Then,

AdvROR
StE[D,t,Ext](q, S) ≤ qε.

Proof. The proof proceeds in two parts. In the first part, we consider a variant of
the sub-key prediction problem where the adversary, instead of trying to predict
the sub-key at the given indices predicts, whether it has received the output of
an extractor applied to the sub-key or a uniform random string. More precisely,
consider a pair of adversaries A′ = (A′

1,A′
2) where A′

1 outputs S + s + � + tn
bits, and define the game Gb(A′) as follows:

– F
$← D; σ ← A′

1(F ); iv = (iv1, . . . , ivt)
$← {0, 1}tn; seed $← {0, 1}s

– If b = 0 then c ← Ext(F (iv1)‖ . . . ‖F (ivt), seed)
– If b = 1 then c

$← {0, 1}�

– b′ ← A′
2(σ, c, seed, iv1, . . . , ivt)

– Return b′

The following lemma bounds is a simple corollary of Lemma 4 and the fact that
Ext is an average-case (γ, ε)-strong extractor.

Lemma 6. If Advskp-auxD,t (S + � + s + tn) ≤ 2−γ and Ext : {0, 1}tn × {0, 1}s →
{0, 1}� is an average-case (γ, ε)-strong extractor, then

∣
∣Pr[G0(A′) = 1] − Pr[G1(A′) = 1]

∣
∣ ≤ ε.

We now introduce hybrids Hi for i = 0, . . . , q such that in hybrid experiment
i-th hybrid, the adversary A interacts with the oracle E ′(M, 0) for the first i
queries and with E ′(M, 1) for the remaining queries. Formally, for i = 1, . . . , q,
we define the following hybrid experiment HStE

i (A) for an adversary A:

F
$← Gen; b′ ← AE′(·,i); Return b′

where E ′(M, i) responds to the j-th query as follows:

– If j ≤ i, return c
$← EncF (M).

– Else, choose M ′ $← M such that |M ′| = |M | and return c
$← EncF (M ′).

Then, by definition of the advantage AdvROR
E (A), we have

AdvROR
E (A) =

∣
∣Pr[HStE

q (A) = 1] − Pr[HStE
0 (A) = 1]

∣
∣ . (2)

We now prove the following central lemma.

Lemma 7. |Pr[HStE
i (A) = 1] − Pr[HStE

i−1(A) = 1]| ≤ ε.

Proof. We now construct an adversary A′ = (A′
1,A′

2) for the game Gb(A′) intro-
duced earlier. On input F , A′

1 proceeds as follows:
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– (σ0, y0) ← ⊥
– for j = 1 to i − 1

• (Mj , σj) ← A(σj−1, yj−1)
• yj ← EncF (Mj)

– Return (σi−1, yi−1)

Note that the output length of A′
1 is at most S plus the length of a ciphertext,

i.e., S + s + � + n · t.
Now, the adversary A′

2, is given (σi−1, yi−1) from A′
1(F ), and moreover, it

receives (u, seed, iv1, . . . , ivt) as its challenge from the game. It then proceeds
as follows: it continues the execution of A with input (σi−1, yi−1) and when A
makes its i-th query by requesting the encryption of a message M , the adversary
A′

2 answers this query to A with the ciphertext (u⊕M, seed, iv1, . . . , ivt). It then
continues the execution of A, but answers all future encryption queries with
truly random ciphertexts.

By construction, we now have

|Pr[HStE
i (A) = 1] − Pr[H

StE
i−1(A) = 1]| = |Pr[G0(A′) = 1] − Pr[G1(A′) = 1]|

Applying Lemma 6 then concludes the proof of the lemma. ��
Thus, Eq. 2 and Lemma 7 yield

AdvROR
E (A) ≤

q∑

i=1

∣
∣Pr[HStE

i (A) = 1] − Pr[HStE
i−1(A) = 1]

∣
∣ ≤ q · ε,

which gives us the theorem. ��
Instantiation. We now derive a corollary stating the security of the encryption
scheme with a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n assumed to be a
good pseudorandom permutation (PRP). We instantiate the extractor in the
encryption scheme using the leftover hash lemma (cf. Lemma 2). The following
lemma follows by replacing the block cipher with a randomly chosen permutation
F (at the cost of the PRP advantage), and then using the fact that F has min-
entropy log(N !).

Corollary 1 (Instantiation of StE). Let E : {0, 1}k × {0, 1}n → {0, 1}n

be a block cipher. Let H : {0, 1}tn × {0, 1}tn → {0, 1}� be a 2-universal
family of hash functions. Let S ≤ (1 − δ)nN for some δ ∈ [0, 1]. Then, if
δ ≥

[
4(�−2 log ε)

t + 1
n + 4�−6 log ε+2tn+5

nN

]
for some ε > 0, then for all D, T , there

exists D′ ≈ D and T ′ ≈ T such that

AdvROR
StE[E,t,H](D,T, q, S) ≤ qε + AdvPRP-CPAE (D′, T ′, tq, S + 2n(t − 1)).

Beyond 2n
-security. We plug in concrete values in Corollary 1 to demonstrate

that our encryption scheme can tolerate q � 2n queries by the adversary, as long
as memory is bounded.
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With N = 2n, let q ≤ N1.5 and we want ε to be 2−3n such that in particular
qε ≤ 2−1.5n for an S-bounded adversary where S ≤ N1−α with 0 < α � 1. If
� = n and t = an where n ≥ 20 and a ≥ 32, we have

AdvROR
StE[E,t,H](D,T, q, S) ≤ 2−1.5n + AdvPRP-CPAE (D′, T ′, tq, S + 2n(t − 1)).

As for the PRP-advantage term, it is reasonable to assume for a good block
cipher, the advantage is small even if T ′ � 2n. At the very least, this implies
that key-length k of the block cipher E satisfies k > log q. (This is not sufficient
of course!) Also we remind here that D′ is the description size.

We stress here that we are not focusing on optimizing parameters – and there
is a lot of potential for this, by using either better extractors (with shorter seeds)
and better sub-key prediction bounds.

Game sAUTHAS(A):

K
$← Gen

c0
$← Ch

f0, f1 ← false
i ← 0
Win ← false
Run AOStep(c0)
Return Win

Oracle OStep(M, c′, (M ′, T ′)):

i ← i + 1
ci

$← Ch
Mi ← M
If i = 1 then

T1 ← Tag(K, c′, M); return (c1, T1)
Else

If Vfy(K, ci−2, M
′, T ′) ∧ (¬fi mod 2) then

If M ′ �= Mi−1 ∨ fi−1 mod 2 then
Win ← true

Ti ← Tag(K, c′, M); return (ci, Ti)
Else fi mod 2 ← true; return (⊥, ⊥)

Fig. 3. Security game sAUTH. Game defining the security of two-party synchronized
authentication. The oracle OStep corresponds to each party authenticating chosen mes-
sages, in an alternating fashion. Each party will stop answering subsequent queries as
soon as a verification query fails. The adversary wins if it delivers a message to a party
with a valid tag which was not authenticated by the other party immediately before.

4 Message Authentication

4.1 Synchronous Authentication: Definitions and Settings

We consider the interactive setting of message authentication. Here, two parties
alternate communication through an insecure channel (under control of a man-in-
the-middle adversary), and want to send authenticated messages to each other.
We consider protocols that are synchronous, in the sense that at each round one
party asks for a challenge c, and the next message M it receives from the other
party is authenticated with a tag which depends on both c and M (in addition
to the secret key). We are not aware of this notion having been extensively
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studied, but as we will point out below in Sect. 4.4, considering this setting is
somewhat necessary, as building PRFs/MACs secure against memory-bounded
adversaries appears out of reach without bypassing existing technical barriers in
computational complexity.

Synchronous authentication schemes: Syntax. A synchronous authenti-
cation scheme is a 4-tuple AS = (Gen,Ch,Tag,Vfy) of algorithms, which take
the following roles:

– The key generation algorithm Gen generates a secret key K.
– The challenge generation algorithm Ch returns a challenge c.
– The tagging algorithm Tag takes as input the secret key K, a message to be

authenticated M ∈ M, and a challenge c, and returns a tag T .
– The verification algorithm Vfy takes as input a key K, a challenge c, a message

M , and a tag T , and returns a boolean value in {true, false}.

We say that the scheme is ν-correct if for all M ∈ M,

Pr
[
K

$← Gen, c
$← Ch, T

$← TagK(c,M) : VfyK(c,M, T ) �= true
]

≤ ν.

As in the case of encryption, it will be convenient to introduce a notation where
we view a function F as the key K. In this case, we write TagF and VfyF instead
of TagK and VfyK .

Alice Bob

c0
$← Ch

T1 ← TagK(M1, c′
0)

c1
$← Ch

T3 ← TagK(M3, c′
2)

c3
$← Ch

T2 ← TagK(M2, c′
1)

c2
$← Ch

c3, T3

M3, c′
2, (M ′

2, T
′
2) c2, T2

M2, c′
1, (M ′

1, T
′
1)T1, c1

M1, c′
0 c0

Fig. 4. Synchronous authentication security game. This illustrates the flow of the
execution of the synchronous authentication game. We omit verification from the figure.
At each step, if (M ′

i , T
′
i ) does not verify with respect to ci−1, a pair (ci, Ti) = (⊥, ⊥)

is returned and the corresponding party stops accepting any future messages.

Security of authentication schemes. We introduce a security game that
captures the security of a synchronous authentication scheme as described above.
The game, found in Fig. 3, considers an adversary A interacting with an ora-
cle OStep, which responds (in an alternating way) as Alice and Bob, each time
authenticating a message chosen by the adversary. For ease of explanation, a
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more detailed depiction of the execution flow in the game is given in Fig. 4.
Then, the advantage of an adversary A against the authentication scheme AS
is defined as

AdvAUTHAS (A) = Pr
[
sAUTHAS(A) = true

]
.

Further, AdvAUTHAS (D,T, q, S) = maxA{AdvAUTHAS (A)}, where the maximum is
taken over all S-bounded adversaries A with running time at most T that makes
at most q queries and have size at most D.

As in the case of encryption, in the information-theoretic setting, we drop
T and D from the notation and denote the security of the scheme by simply
AdvAUTHAS (q, S) = AdvAUTHAS (∞,∞, q, S).

4.2 The Challenge-then-Verify Scheme

We give a construction of a synchronous authentication scheme for �-bit mes-
sages. The scheme relies on a single function F : {0, 1}n → {0, 1}n, which we
think of being instantiated from a block cipher or a keyed function, but that in
the general description we assume comes from a distribution D.

We let t be a parameter, and let Ext : {0, 1}t·n × {0, 1}s → {0, 1}m be a
function, which should be thought of as an extractor later on, and we conse-
quently refer to s as the seed length. Also, let d = �log(�) + 1�. We let I be the
uniform distribution over t-tuples of indices (iv1, . . . , ivt) ∈ ({0, 1}n−d−1

)t. Let
〈i〉 be the d-bit encoding of i ∈ {1, . . . , �}. Generally, we will be interested in the
case where � > n, and s will only depend on n and a desirable security level.

We now describe the algorithms that constitute our authentication scheme
Challenge-then-Verify CtV[�,D, t,Ext]. In particular:

Scheme CtV[�,D, t,Ext]:

– Key generation. The key generation algorithm Gen samples F
according to distribution D and outputs F .

– Challenge generation. The challenge generation algorithm Ch

samples a tuple (iv1, . . . , ivt)
$← I, as well as a random seed

seed
$← {0, 1}s, and outputs c = (iv1, . . . , ivt, seed).

– Authentication. To authenticate a message M ∈ {0, 1}� for chal-
lenge c = (iv1, . . . , ivt, seed), the tagging algorithm outputs

TagF (M = M1, . . . , M�, c) =
�⊕

i=1

Ext(Yi, seed),

where

Yi = F (〈i〉 ‖Mi ‖ iv1) ‖ · · · ‖F (〈i〉 ‖Mi ‖ ivt).

– Verification. Verification is straightforward, by simply re-computing
the tag and checking equality.
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When we let D be the distribution that samples a key K for a block cipher E,
and then outputs the function EK , as above, we denote the resulting scheme
simply by CtV[�,E, t,Ext].

We will next move to the analysis of the scheme. After that, in Sect. 4.4, we
give some further background about the scheme and possible extensions.

4.3 Security Proof

We first establish the security of the CtV scheme in the information-theoretic
setting, where we let the scheme depend on an oracle sampled from a distribution
D on functions from n bits to n bits. To formulate our main theorem, we need to
define a derived distribution Dj,b over pairs (F ′, Z) consisting of a function F ′

with corresponding auxiliary information Z. To this end, we sample the function
F : {0, 1}n → {0, 1}n randomly from D, and then set

F ′ = Fj,b , Z = {Fj′,b′}(j′,b′) �=(j,b)

where Fj′,b′ = F (〈j′〉 ‖ b′ ‖ ·), which is a function {0, 1}n−d−1 → {0, 1}n.
This allows us to formulate the following technical theorem. While this is not

yet usable to derive bounds with respect to concrete distribution D, as this will
require analyzing Dj,b, we will give concrete parameter instantiations below.

Theorem 2 (Security of CtV). For every distribution D over functions
{0, 1}n → {0, 1}n, if

max
j,b

Advskp-auxDj,b,t (S + � + m) ≤ 2−γ

and Ext is an average-case (γ, ε)-strong extractor, then

AdvAUTHCtV[�,D,t,Ext](q, S) ≤ 4�q

(
1

2m
+ ε

)

.

Proof. Let A be an S-bounded, q-query adversary for the game sAUTHCtV(A),
where for simplicity we denote CtV = CtV[�,D, t,Ext]. We consider in particular
an execution of the S-bounded adversary A, interacting with the oracle OStep.
Following the notation from Fig. 4, this interaction defines a sequence of queries
consisting of message-challenge pairs

(M1, c
′
0), (M2, c

′
1), . . . , (Mq, c

′
q−1),

as well as forgery attempts

(M ′
2, T

′
2), . . . , (M

′
q, T

′
q).

These come with corresponding query answers (c1, T1), . . . , (cq, Tq), where recall
that (ci, Ti) = (⊥,⊥) if OStep fails to return an answer. Further, for any i and j,
we denote by Mi,j and M ′

i,j , respectively, the j-th bit of Mi and M ′
i . Also, we let
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σ0, σ1, . . . , σq be the sequence of states of A during this execution. We can assume
without loss of generality that A is deterministic, by hard-coding the optimal
randomness in the description of A, as our arguments will be independent of the
size of A. (Thus, the length of the fixed randomness does not count towards the
memory resources of A.)
We define the family of events Wini,j,b,d where i ∈ [q] \ {1}, j ∈ [�], d, b ∈ {0, 1}.
Here, Wini,j,b,d is the event that the following conditions are simultaneously true:

(1) The adversary A provokes Win ← true in the i-th query (and thus Win was
false up to that point);

(2) b = M ′
i,j

(3) If d = 1, the (i − 1)-th query did not return (⊥,⊥). Further, Mi−1,j = 1 − b,
and Mi−1,j′ = M ′

i,j′ for all j′ < j. That is M ′
i and Mi−1 differ in the j-th bit,

which takes value b and 1 − b respectively, and M ′
i and Mi−1 are identical

on the first j − 1 bits.
(4) If d = 0, the (i − 1)-th query returned (⊥,⊥).

Then, we clearly have8

AdvAUTHCtV (A) =
q∑

i=2

�∑

j=1

∑

b,d∈{0,1}
Pr [Wini,j,b,d] . (3)

We are going to now upper bound each individual probability Pr [Wini,j,b,d] in
terms of the sub-key prediction advantage.

Reduction to sub-key prediction. Fix i, j, b, d. We first consider a vari-
ant of the sub-key prediction game where the goal is to predict the value of
Ext applied to the sub-key, rather than predicting the sub-key itself. The game
involves an adversary B and a leakage function L, which we specify below, and
the distribution Dj,b is as defined above:

– (Fj,b, Z) $← Dj,b

– σ ← L(Fj,b, Z)
– (iv1, . . . , ivt)

$← I
– seed

$← {0, 1}s

– T ← B(σ,Z, i1, . . . , it, seed)
– Return (T = Ext(Fj,b(iv1)‖ . . . ‖Fj,b(ivt), seed))

We stress that the game returns true if and only if T equals the extractor output.
It is convenient to denote by pB,L the probability that this is indeed the case.
We now give B and L such that

Pr [Wini,j,b,d] ≤ pB,L. (4)

8 Note that the fact that we have equality is not really important here, but the events
indeed happen to be disjoint.
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Concretely, leakage function L is given access to the description of 2� functions
F1,1, F0,1, . . . , F�,0, F�,1 through (Fj,b, Z = {F ′

j′,b′}(j′,b′) �=(j,b)). It simulates cor-
rectly the execution of A in Game sAUTHCtV(A) for the first i − 2 queries to
OStep, using the 2� functions. The (i−2)-th query returns in particular a tag Ti−2

for the message Mi−2 and challenge c′
i−3 – here we ignore the associated chal-

lenge ci−2 (with some foresight, we will simulate it from B’s input) – and note
that Ti−2 = ⊥ is possible. The leakage function then outputs (σi−2,Mi−2, Ti−2),
where σi−2 is A’s state when making the (i − 2)-th query.
Then, the adversary B is now given the leakage (σi−2,Mi−2, Ti−2), the auxiliary
information Z = {F ′

j′,b′}(j′,b′) �=(j,b), as well as a fresh (iv1, . . . , ivt) and seed. The
only thing B does not know is Fj,b. Then, B proceeds through the following steps:

1. B resumes the execution of A with input σi−2, Mi−2, Ti−2, and ci−2 =
(i1, . . . , it, seed) (if Ti−2 �= ⊥) or ci−2 = ⊥ (if Ti−2 = ⊥).

2. When A asks the (i−1)-th query to OStep with the format (Mi−1, c
′
i−2, (M

′
i−1,

T ′
i−1)), we distinguish between two cases.

(a) First, if d = 0, B returns (⊥,⊥) to the simulated A.
(b) If d = 1, B stops outputting a random m-bit guess if Mi−1,j �= 1 −

b. Otherwise, it computes Ti−1 ← TagF (Mi−1, c
′
i−2). Note that because

Mi−1,j = 1 − b, this can be done with the available functions within Z,
since Fj,b is not involved in the computation. It then returns (Ti−1, ci−1)
to A.

3. Finally, A outputs its i-th query (Mi, c
′
i−1, (M

′
i , T

′
i )). Now, if M ′

i,j �= b, B
stops with a random m-bit guess. Otherwise, we compute, for all j′ �= j,

Yj′ = Fj′,M ′
i,j′ (iv1) ‖ · · · ‖Fj′,M ′

i,j′ (ivt),

and finally output the guess

T = T ′
i ⊕

⊕

j′ �=j

Ext(Yj′ , seed).

It now clear that by construction Eq. 4 is always satisfied. This is because pro-
vided Wini,j,b,d occurs, we can map an execution from sAUTHCtV(A) into one
where L and B correctly guess Ext’s output.

To conclude the proof, we note that L’s output has length S + � + m bits, and
therefore, because Advskp-auxDj,b,t (S + � + m) ≤ 2−γ , by Lemma 4,

H∞(Fj,b(iv1)‖ . . . ‖Fj,b(ivt)|σi−2, (iv1, . . . ivt)) ≥ γ.

But because Ext is a (γ, ε)-strong extractor, this also implies that

(Ext(Fj,b(iv1)‖ . . . ‖Fj,b(ivt), seed), σi−2, (iv1, . . . ivt), seed)

and

(Z, σi−2, (iv1, . . . ivt), seed)
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for uniformly distributed Z
$← {0, 1}m, have statistical distance at most ε. There-

fore,

Pr [Wini,j,b,d] ≤ pB,L ≤ ε +
1

2m
.

This also concludes the proof, by plugging this into Eq. 3. ��
Instantiations. With the goal of providing a block-cipher based instantiation
of the construction, we consider the case where D is the uniform distribution
over all n-bit permutations. Then, note that Fj,b, given Fj′,b′ for (j′, b′), is still
uniformly distributed over a set of 2n−d−1! possible functions.

Corollary 2. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Let H :
{0, 1}tn × {0, 1}tn → {0, 1}m be a 2-universal family of hash functions. Let
S + � + m ≤ N + N(n−log(16�))

8� − δnN for some δ ∈ [0, 1].

Then, if δ ≥
[
4(m−2 log ε)

t + 1
n + 3(m−2 log ε)+5

nN

]
for some ε > 0, then for all

D, T , there exists D′ ≈ D and T ′ ≈ T such that

AdvAUTHCtV[�,I,t,H,E](D,T, q, S) ≤ 4�q

(
1

2m
+ ε

)

+ AdvPRP−CPA
E (D′, T ′, t�q, S′).

where S′ = S + 2tn + 2� + m.

Beyond 2n
-security. Again, to demonstrate that our authentication scheme

can tolerate queries beyond q = 2n by the adversary and still have meaningful
security, we plug in concrete values in Corollary 2. Let q ≤ 21.5n and � = 2n.
Let the output of the extractor be of length m = 3n. Say we want ε to be 2−3n

such that 4�q
(

1
2m + ε

) ≤ 8n2−1.5n when an S-bounded adversary is such that
S ≤ N2/3. Then, by plugging in the desired parameters, we can see that for
n ≥ 10, we achieve the preferred security bound at t ≥ 300n2.

4.4 Remarks and Extensions

We give here a few remarks about our construction above. We will first discuss
why a stronger result (dispensing with challenges) appears hard. We then discuss
briefly how to extend the domain of authenticated messages, and the combination
of encryption and authentication.

Building PRFs: Why is it hard? An excellent question is whether we can
build an actual PRF (and consequently a MAC), thus dispensing with the need
for a challenge. The natural approach is to extend the domain of a random
function9 R : {0, 1}n → {0, 1}n to a function FR : {0, 1}m → {0, 1}n where
m > n, which is indistinguishable from a truly random function for q � 2n

queries, provided the distinguisher’s memory is bounded by S < 2n. This appears
9 Or a permutation, but we restrict ourselves to functions as this only makes the

problem easier, and our point stronger.
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well beyond reach of current techniques, and would require overcoming barriers
in the design of PRGs against space-bounded computation.

Specifically, consider a function G : {0, 1}k → {0, 1}� where k > �, and we
now look at a model where, for a random x

$← {0, 1}k, a distinguisher is given
oracle access to either the � individual bits y1 . . . y� = G(x) or to independent
random bits y1, . . . , y�. The function G is an ε-PRG for S-bounded distinguishers
if every space-S distinguisher can only succeed in distinguishing the two cases
with advantage ε. Clearly, S < k must hold, and the state of the art construc-
tions [16,27] achieve � = O(k), even if we only demand ε = 1/ω(log(k)).10

A domain extender F described above would in particular define an ε-PRG
G = GF for S-bounded computation with k = n ·2n and � = q ·n and ε = n−ω(1).
The PRG would just interpret its seed x as a function f : {0, 1}n → {0, 1}n,
and output a sequence of bits obtained by evaluating Ff at q distinct inputs.
If q ≥ 2n(1+δ) for a constant δ > 0, then we have � ≈ k1+δ. Also, because F
can only make a small number t = poly(n) of calls to f , the resulting PRG G is
local, in the sense that every output bit only depends on O(log(k)) bits of the
seed. Existing constructions [16,27] have only linear stretch and are inherently
non-local.

Higher Efficiency. There is nothing really special about the scheme process-
ing the message one bit at a time. The analysis can easily be generalized so that
the scheme processes a large number of bits per call. That is, we would have for
each i ∈ [�], where now � is the number of b-bit blocks, and the i-th block Mi,

Yi = F (〈i〉 ‖Mi ‖ iv1) ‖ · · · ‖F (〈i〉 ‖Mi ‖ ivt).

We would lose in security, as the iv-values are now shorter, i.e., n − b − d, but
this gives acceptable compromises. The analysis is a straightforward adaptation
of the one we have given above.

Extending the domain. Our scheme above authenticates messages of fixed
length �. It can however straightforwardly be extended to authenticate arbitrarily
long messages if we assume a collision resistant hash function family producing
�-bit hashes, for a sufficiently long �, which is more secure than the underlying
PRP E. For example, if the key length is k bits, one could assume � = 2k and
that collisions can only be found in time 2k.

Authenticated encryption. We will not discuss this in detail here, but
clearly encryption and authentication can be combined to obtain a resulting
notion of (synchronous) authenticated encryption. The messages to be authen-
ticated would be ciphertexts produced with the encryption scheme from Sect. 3,
and both schemes would use two independent keys.

10 We note that much better constructions exist if one imposes restrictions on the
distinguisher’s queries, e.g., the bits are read once from y1 to y�.
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5 Key-Length Extension in the Memory-Bounded Setting

5.1 Problem Formulation

The results from the previous sections require a block cipher with security beyond
2n queries. This in particular requires a long key, and we may not have it (e.g., in
AES-128, the key length equals the block length). The classical problem of key-
length extension addresses exactly this – several solutions have been validated
in the ideal-cipher model [15,21–24,26,28],11 and are commonly assumed to
work with a good block cipher. Such results however assume no bounds on the
adversary’s memory, and thus, if we assume the adversary can store fewer than
2n bits, they may be overly pessimistic. To this end, here, we analyze the security
of double encryption in the ideal cipher model when the memory of the adversary
is bounded. Double encryption is particularly interesting, because it is known
not to amplify security when the memory of the adversary is unbounded. We
will see that when the memory of the attacker does not exceed 2k, for a k-bit
key, things are substantially different, at least under reasonable assumptions.

Definitions. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Then, the
double encryption scheme DE = DE[E] is the block cipher such that

DEK1,K2(x) = EK2(EK1(x)) (5)

where K1,K2 ∈ {0, 1}k. Clearly, DE−1
K1,K2

(y) = E−1
K1

(E−1
K2

(y)).
The security notion considered for the double encryption scheme is that of

strong PRP-security, where the attacker can make both forward and backwards
queries. We will consider it in particular in the ideal-cipher model – to this end,
let BCk,n be the set of all block ciphers with key length k and block length n.
The adversary has access to two pairs of oracles:

1. An ideal cipher oracle E $← BCk,n and its inverse E−1 s.t. E−1(K ′, y) = E−1
K′ (y).

2. An oracle O and its inverse O−1, where O/O−1 : {0, 1}n → {0, 1}n. The
oracle O is either the double encryption scheme DEK1,K2(·) = EK2(EK1(·))
with uniform, independent, keys K1 and K2 (in the real world) or a random
permutation P

$← Pn (in the ideal world).

At the end of q steps, the adversary tries to guess if the oracle O it has been
interacting with is DEK1,K2 or P .

More explicitly, the advantage of an adversary A against the double encryp-
tion scheme DE[E] is defined as

AdvPRPDE[E](A) = |Pr[K1,K2
$← {0, 1}k,E

$← BCk,n : ADEK1,K2 ,DE−1
K1,K2

,E,E−1

= 1]

− Pr[P $← Pn : AP,P −1,E,E−1
= 1]|.

11 We note that the use of the ideal-cipher model is somehow necessary, as we are
achieving effectively true hardness amplification.
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5.2 Double Encryption and List Disjointness

We study the security of the double encryption scheme in our model by relating
it to a problem that we introduce, called the list disjointness problem – this is
a special case of the element distinctness problem studied in the literature. We
show that any algorithm solving this problem immediately implies an attacker
against double encryption (with the same complexity). More importantly, as our
main result, we show that any attacker against double encryption also implies
an algorithm solving list disjointness.

The List Disjointness Problem. The setting for the LDκ,k problem is as
follows: An algorithm is given oracle access to two lists L1 and L2, each contain-
ing κ/2 distinct k-bit elements, i.e., the algorithm can learn the j-th element of
Li by making a query Li[j] for i ∈ {1, 2} and j ∈ {1, . . . , �}. The lists are such
that they have at most one element in common, i.e., we have the promise that
|L1 ∩ L2| = 1 or |L1 ∩ L2| = 0. The aim of the algorithm is to distinguish the
two cases given oracle access to the two lists. The list disjointness problem is a
special case of the element distinctness problem where given oracle access to a
list, an algorithm tries to determine whether all elements in the list are distinct.
The following definition formalizes this as a distinguishing problem.

Definition 2 (List Disjointness Problem). An algorithm Alg with binary
output is said to solve the list disjointness problem LDκ,k with advantage ε if
it is given oracle access to two lists L1, L2 of κ/2 k-bit elements (which we can
think of as functions L1, L2 : [κ/2] → {0, 1}k) such that |L1 ∩ L2| ≤ 1, and,
moreover, for any such L1, L2, the difference between the probabilities that Alg
outputs 1 when |L1 ∩ L2| = 1 and when L1 ∩ L2 = ∅ is at least ε.

We note that advantage above can be amplified via sequential repetition –
this requires minimal memory overhead to estimate the number of repetitions
outputting one. We omit the details.

List Disjointness to DE. We first observe that an algorithm Alg that solves
the list disjointness problem immediately implies a distinguisher against the
PRP-security of the double encryption scheme with similar memory and time
complexities, and advantage. This can be seen as follows. The distinguisher runs
Alg and provides oracle access to two lists L1 and L2 where the lists are each
of size 2k, and each index j in Li is associated with a unique k-bit string
Kj ∈ {0, 1}k. The distinguisher makes a constant c number of queries to its
permutation oracle (that is either DEK1,K2 or P ) to obtain plaintext/ciphertext
pairs (x1, y1), . . . , (xc, yc). (The constant c is related to the ratio between key
length and block length of the block cipher E.) Now, when Alg queries the list Li

at index j, the distinguisher answers this query using its E/E−1 oracle as follows:

– if i = 1, return EKj (x1)‖ . . . ‖EKj (xc) as the element L1[j] and
– if i = 2, return E−1

Kj (y1)‖ . . . ‖E−1
Kj (yc) as the element L2[j].

When the permutation oracle of the distinguisher is the double encryption oracle,
L1 and L2 share exactly an element, while if it were a random permutation, an
element is shared only with probability negligible in k.
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DE to List Disjointness. The reduction for transforming an adversary against
the double encryption scheme to an algorithm for list disjointness is more
involved. In fact, our algorithm in the list disjointness problem will require access
to additional oracles that can be queried for free (i.e., such queries do not count
towards the query complexity). Specifically, it will use:

– A permutation ρ : [κ] → [κ] chosen uniformly from the set of all permutations
over [κ]. On input K, the output ρ(K) is interpreted as ρ(K) = (i, j) where
i ∈ {1, 2} and j ∈ [κ/2].

– A permutation π : {0, 1}n → {0, 1}n chosen uniformly from the set of all
permutations over {0, 1}n, and its inverse π−1.

– An ideal cipher F : {0, 1}k × {0, 1}n → {0, 1}n.

We stress that these oracles do not depend on the lists L1 and L2. (In a heuristic
implementation they could be realized e.g., from a block cipher.)

Given an adversary A against double encryption achieving advantage ε, we
show how to solve the list disjointness problem with advantage ε − 2k, given
access to F , ρ, and π as defined above.

Theorem 3. Let A be an S-bounded attacker making at most q ideal-cipher
queries (and any number of queries to its O / O−1 oracle) such that

AdvPRPDE[E](A) ≥ ε,

where the underlying ideal cipher has key length k and block length n. Then,
there exists an S-bounded algorithm Alg that makes q queries to the given lists,
uses the oracles ρ, F, π defined above, and solves the list disjointness problem
LDκ=2k,k with advantage ε − 2−k.

Proof (Sketch). Fix an adversary A against the double encryption scheme DE
such that it has the maximum advantage. We assume without loss of generality
that the probability it outputs 1 in the real world is at least ε higher than in the
ideal world. Recall that the algorithm Alg has access to oracles L1, L2, ρ, π, F as
mentioned in Definition 2. The algorithm proceeds by running A, and thus it
is required to simulate the ideal cipher and permutation oracles that A expects
access to. This is done in the following manner. If A queries the permutation
oracle O or O−1, the algorithm Alg just returns the answer by querying its
random permutation oracle π or its inverse π−1. A query (K, ·) to the ideal
cipher oracle on key K is answered as follows: We interpret ρ(K) as (i, j) where
i ∈ {1, 2} and j ∈ [κ/2]. Then, if i = 1:

– a forward query (K,x) is answered as E′
K(x) ← FL1[j](x),

– an inverse query (K, y) is answered as E′−1
K (y) ← F−1

L1[j]
(y).

If i = 2:

– a forward query (K,x) is answered as E′
K(x) ← π(F−1

L2[j]
(x)),

– an inverse query (K, y) is answered as E′−1
K (y) ← FL2[j](π

−1(y)).
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At the end, Alg outputs A’s output bit.
We now note the following, omitting a formal argument:

– If the lists L1 and L2 do not intersect, then the keys on which F is called for
the cases i = 1 and i = 2 are distinct, and thus we are perfectly simulating
the ideal world, since composing π with F in the i = 2 case does not change
the distribution of the query answers.

– If the lists L1 and L2 intersect exactly at one point, then there are two
distinct keys K1 and K2 such that ρ(K1) = (1, j1), ρ(K2) = (2, j2), and
L1[j1] = L2[j2]. This ensures that EK1(EK2(x)) = π(x). Moreover, because ρ
is a random permutation, K1 and K2 are uniformly distributed, conditioned
on K1 �= K2. Thus, we are simulating the real world conditioned on K1 �= K2.

Therefore, as claimed, Alg solves the list disjointness problem with advantage at
least ε − 2−k. ��
State-of-the-art for List Disjointness. Now that we have shown that an
attacker against double encryption leads to an algorithm solving list disjointness
with similar complexity, we state the best existing algorithm for list disjointness
and conjecture that this is the best possible.

To this end, we first state the following result by Beame, Clifford, and Mach-
mouchi [8] that gives an algorithm for computing element distinctness. In the
following statement EDn refers to the decision problem where given n elements
belonging to some domain we need to determine if the n elements are distinct
or not. Again, the advantage will measure the difference between the probability
of a positive answer when the elements are distinct and when they are not. As
a corollary of this result, we can derive a time-space upper bound for the list
disjointness problem mentioned above.

Theorem 4 ([8]). For any ε > 0, and any S with c log n ≤ S ≤ n/32 for some
constant c > 0, there is an S-bounded algorithm solving EDn with advantage ε

making q = O
(

n3/2

S1/2 log5/2 n log(1/(1 − ε))
)

queries to the given list.

This theorem immediately gives us the following corollary as list disjointness
can be seen as a special case of the element distinctness problem where the
elements under consideration are those belonging to the two lists.

Corollary 3. For any ε > 0, and any S with c log κ ≤ S ≤ κ/32 for some
constant c > 0, there is an S-bounded algorithm solving LDκ,k with advantage
ε, and making

q = O

(
κ3/2

S1/2
log5/2(κ) log(1/(1 − ε))

)

queries.

We have been somewhat informal here, as the algorithm of [8] actually requires
access to a random hash function. This can be implemented from the oracles
made available in our extended setting of LDκ,k.
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We note that finding good lower bounds for the element distinctness problem
has been a major open problem in complexity theory for the past three decades
and progress has been slow on that front. The best known lower bound is due
to Beame et al. [10] that showed T ∈ Ω

(
n
√

log(n/S)/ log log(n/S)
)
. A better

lower bound of T ∈ Ω
(
n2−o(1)/S

)
was given by Yao [39] in the restricted set-

ting of comparison branching programs (where access to the input is limited to
pairwise comparison). Until the result stated in Theorem 4, it was not known
whether the lower bound in the general setting matches the restricted setting
given by Yao [39].

A conditional lower bound. Given the current state-of-the-art, we conjec-
ture that the result by Beame et al. [8] does in fact provide the best algorithm
for computing element distinctness and hence assume that it gives a lower bound
on the time-space tradeoff for the element distinctness problem. We state that
following (slightly more conservative) conjecture (note that we have implicitly
used that log(1/(1 − ε)) = Ω(ε) here).

Conjecture 1. There are constants c1, c2, such that for any ε > 0 and any S with
c1 log κ ≤ S ≤ κ/c2, every S-bounded algorithm to solve the list disjointness
problem LDκ,k

with advantage at least ε requires querying the lists

q = Ω

(
κ3/2

S1/2
ε

)

times.

Therefore, under Conjecture 1, Theorem 3 directly yields a lower bound, and in
particular for any S-bounded attacker A that queries the ideal cipher at most
q = O

(
23k/2

S1/2 (ε − 2−k)
)

times, the advantage is at most ε, or equivalently, for
any S-bounded A making at most q queries to the ideal cipher,

AdvPRPDE[E](A) = O

(√
Sq2

23k

)

+
1
2k

.

We stress that the bound is independent of the number of queries to the O
/ O−1 oracle. Note that if S = 2k, we recover the traditional bound of q/2k,
which is tight by the meet-in-the-middle attack. (It is worth noting that Aiello et
al. [1] show the slightly superior bound of (q/2k)2 here.) However, if for example
S = 2k/2, then we get security up to q = 21.25k queries.
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Abstract. A series of recent research starting with (Alwen and Ser-
binenko, STOC 2015) has deepened our understanding of the notion
of memory-hardness in cryptography—a useful property of hash func-
tions for deterring large-scale password-cracking attacks—and has shown
memory-hardness to have intricate connections with the theory of graph
pebbling. Definitions of memory-hardness are not yet unified in the some-
what nascent field of memory-hardness, however, and the guarantees
proven to date are with respect to a range of proposed definitions. In this
paper, we observe two significant and practical considerations that are
not analyzed by existing models of memory-hardness, and propose new
models to capture them, accompanied by constructions based on new
hard-to-pebble graphs. Our contribution is two-fold, as follows. First,
existing measures of memory-hardness only account for dynamic mem-
ory usage (i.e., memory read/written at runtime), and do not consider
static memory usage (e.g., memory on disk). Among other things, this
means that memory requirements considered by prior models are inher-
ently upper-bounded by a hash function’s runtime; in contrast, count-
ing static memory would potentially allow quantification of much larger
memory requirements, decoupled from runtime. We propose a new def-
inition of static-memory-hard function (SHF) which takes static mem-
ory into account: we model static memory usage by oracle access to
a large preprocessed string, which may be considered part of the hash
function description. Static memory requirements are complementary to
dynamic memory requirements: neither can replace the other, and to
deter large-scale password-cracking attacks, a hash function will bene-
fit from being both dynamic-memory-hard and static-memory-hard. We
give two SHF constructions based on pebbling. To prove static-memory-
hardness, we define a new pebble game (“black-magic pebble game”),
and new graph constructions with optimal complexity under our pro-
posed measure. Moreover, we provide a prototype implementation of our
first SHF construction (which is based on pebbling of a simple “cylinder”
graph), providing an initial demonstration of practical feasibility for a
limited range of parameter settings. Secondly, existing memory-hardness
models implicitly assume that the cost of space and time are more or
less on par: they consider only linear ratios between the costs of time
and space. We propose a new model to capture nonlinear time-space
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trade-offs: e.g., how is the adversary impacted when space is quadrati-
cally more expensive than time? We prove that nonlinear tradeoffs can
in fact cause adversaries to employ different strategies from linear trade-
offs.

Please refer to the full version of our paper for all results, proofs,
appendices, and implementation details [DLP18].

1 Introduction

Pebble games were originally formulated to model time-space tradeoffs by a game
played on DAGs. Generally, a DAG can be thought to represent a computation
graph where each node is associated with some computation and a pebble placed
on a node represents saving the result of its computation in memory. Thus, the
number of pebbles represents the amount of memory necessary to perform some
set of computations. The natural complexity measures to optimize in this game
is the minimum number of pebbles used, as well as the minimum amount of time
it takes to finish pebbling all the nodes; these goals correspond with minimizing
the amount of memory and time of computation.

Pebble games were first introduced to study programming languages and
compiler construction [PH70] but have since then been used to study a
much broader range of tasks such as register allocation [Set75], proof com-
plexity [AdRNV17,Nor12], time-space tradeoffs in Turing machine computa-
tion [Coo73,HPV77], reversible computation [Ben89], circuit complexity [Pot17],
and time-space tradeoffs in various algorithms such as FFT [Tom81], linear
recursion [Cha73,SS79b], matrix multiplication [Tom81], and integer multipli-
cation [SS79a] in the RAM as well as the external memory model [JWK81]. To
see a more comprehensive survey of the results in pebbling up to the last couple
of years, see [Pip82] up to the 1980 s and [Nor15] up to 2015.

The relationship between pebbling and cryptography has been a subject of
research interest for decades, which has enjoyed renewed activity in the last few
years. A series of recent works [AB16,ABH17,ABP17a,ABP17b,AS15,AT17,
ACP+16,AAC+17,BZ16,BZ17] has deepened our understanding of the notion
of memory-hardness in cryptography, and has shown memory-hardness to have
intricate connections with the theory of graph pebbling.

Memory-hard functions (MHFs) have garnered substantial recent interest as
a security measure against adversaries trying to perform attacks at scale, par-
ticularly in the ubiquitous context of password hashing. Consider the following
scenario: hashes of user passwords are stored in a database, and when a user
enters a password p to log in, her computer sends H(p) to the database server,
and the server compares the received hash to its stored hash for that user’s
account. For a normal user, it would be no problem if hash evaluation were to
take, say, one second. An attacker trying to guess the password by brute-force
search, on the other hand, would try orders of magnitude more passwords, so a
one-second hash evaluation could be prohibitively expensive for the attacker.

The evolution of password hashing functions has been something of an arms
race for decades, starting with the ability to increase the number of rounds in



Static-Memory-Hard Functions, and Modeling the Cost of Space vs. Time 35

the DES-based unix crypt function to increase its computation time—a feature
that was used for exactly the above purpose of deterring large-scale password-
cracking. Attackers responded by building special-purpose circuits for more effi-
cient evaluation of crypt, resulting in a gap between the evaluation cost for an
attacker and the cost for an honest user.

A promising approach to mitigating this asymmetry in cost between hash
evaluation on general- and special-purpose hardware is to increase the use
of memory in the password hashing function. Memory is implemented in
standardized ways which have been highly optimized, and memory chips are
widely regarded to be an interchangeable commodity. Commonly used forms of
memory—whether on-die SRAM cache, DRAM, or hard disks—are already opti-
mized for the purpose of data I/O operations; and while there is active research
in improving memory access times and costs, progress is and has been relatively
incremental. This state of affairs sets up a relatively “even playing field,” as
the normal user and the attacker are likely to be using memory chips of similar
memory access speed. While an attacker may choose to buy more memory, the
cost of doing so scales linearly with the amount purchased.

The designs of several MHFs proposed to date (e.g., [Per09,AS15,AB16,
ACP+16,ABP17a]) have proven memory-hardness guarantees by basing their
hash function constructions on DAGs, and using space complexity bounds from
graph pebbling. Definitions of memory-hardness are not yet unified in this some-
what nascent field, however—the first MHF candidate was proposed only in
2009 [Per09]—and the guarantees proven are with respect to a range of defi-
nitions. The “cumulative complexity”-based definitions of [AS15] have enjoyed
notable popularity, but some of their shortcomings have been pointed out by
subsequent work proposing alternative more expressive measures, in particular,
[ABP17b,AT17].

Our Contribution. We observe two significant and practical considerations
not analyzed by existing models of memory-hardness, and propose new models
to capture them, accompanied by constructions based on new hard-to-pebble
graphs. Our main contribution is two-fold, as described in (1) and (2) below. We
also provide an additional contribution of separate interest, described in (3).

1. Static-memory-hardness. Existing measures of memory-hardness only
account for dynamic memory usage (i.e., memory read/written at runtime),
and do not consider static memory usage (e.g., memory on disk). Among
other things, this means that memory requirements considered by prior mod-
els are inherently upper-bounded by a hash function’s runtime; in contrast,
counting static memory would potentially allow quantification of much larger
memory requirements, decoupled from the honest evaluator’s runtime.
We propose a new definition of static-memory-hard function (SHF) (Defi-
nition 24), and present two SHF constructions based on pebbling. To prove
static-memory-hardness, we define a new pebble game called the black-magic
pebble game (Definition 2), and prove properties of the space complexity of
this game for new graphs (Graph Constructions 2 and 8). Graph Construc-
tion 8 gives rise to an SHF with a better asymptotic guarantee (same space
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usage but sustained over more time), whereas Graph Construction 2 yields
an SHF with the advantage of simplicity in practice. Informal theorems
stating the constructions’ static-memory-hardness guarantees are given in
Sect. 1.2 and formal theorems are in Sect. 5. In our full version [DLP18], we
discuss our prototype implementation based on Graph Construction 2. We
emphasize that static memory requirements are complementary to dynamic
memory requirements: neither can replace the other, and to deter large-
scale password-cracking attacks, a hash function will benefit from being both
dynamic-memory-hard and static-memory-hard.

2. Modeling nonlinear cost of space vs. time. Existing measures of
memory-hardness implicitly assume a linear trade-off between the costs of
space and time. This model precludes situations where the relative costs of
space and time might be more unbalanced (e.g., quadratic or cubic). We
demonstrate that this modeling limitation is significant, by giving an exam-
ple where adversaries facing asymptotically different space-time cost tradeoffs
would in fact employ different strategies. Then, to remedy this shortcoming,
we define graph-optimal variants of memory-hardness measures (in Sect. 2)
that explicitly model the relative cost of space and time. These can be seen
as extending the main memory-hardness measures in the literature (namely,
cumulative complexity and sustained memory complexity). We prove bounds
on the new measure as elaborated in Sect. 1.2.

3. We give the first graph construction that is tight, up to log log n-factors, to
the optimal cumulative complexity that can be achieved for any graph (upper
bound due to [ABP17a,ABP17b]).
Informal version of Theorem 6.23 in [DLP18]. There exists a family of
graphs where the cumulative complexity of any constant in-degree graph with
n nodes in the family is Θ

(
n2 log log n

log n

)
which is asymptotically tight to the

upper bound of Θ
(

n2 log log n
log n

)
given in [ABP17a,ABP17b] in the sequential

pebbling model.

The full version [DLP18] gives a brief background on graph pebbling, Sect. 1.1
gives discussion on memory-hardness measures and related work, and Sect. 1.2
give more detailed high-level overviews of our SHF contribution and nonlinear
space-time tradeoff model (items (1) and (2) above), respectively.

Graph Pebbling and Memory-Hardness. Graph pebbling algorithms can
be used to construct hash functions in the (parallel) random oracle model. This
paradigm has been used by prior constructions of memory-hard hashing [AS15]
as well as other prior works [DKW11].

Informally, the idea to “convert” a graph into a hash function is to associate
with each node v a string called a label, which is defined to be O(v, pred(v))
where O is a random oracle and pred(v) is the list of labels of predecessors
of v. For source nodes, the label is instead defined to be O(v, ζ) for a string
ζ which is an input to the hash function. The output of the hash function is
defined to be the list of labels of target nodes. Intuitively, since the label of a
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node cannot be computed without the “random” labels of all its predecessors,
any algorithm computing this hash function must move through the nodes of
the graph according to rules very similar to those prescribed by the pebbling
game; and therefore, the memory requirement of computing the hash function
roughly corresponds to the pebble requirement of the graph. Thus, proving lower
bounds on the pebbling complexity of graph families has useful implications for
constructing provably memory-hard functions.

In our setting, in contrast to previous work, we employ a variant of the above
technique: the string ζ is a fixed parameter of our hash function, and the input
to the hash function instead specifies the indices of the target nodes whose labels
are to be outputted.

1.1 Discussion on Memory-Hardness Measures and Related Work

The original paper proposing memory-hard functions [Per09] suggested a very
simple measure: the minimum amount of memory necessary to compute the hash
function. It was subsequently observed that a major drawback of this measure
is that it does not distinguish between functions f and g with the same peak
memory usage, even if the peak memory lasts a long time in evaluating f and
is just fleeting in evaluating g (Fig. 1a). This is significant as the latter type of
function is much better for a password-cracking adversary. In particular, pipelin-
ing the evaluation of the latter type of function would allow reuse of the same
memory for many function evaluations at once, effectively reducing the adver-
sary’s amortized memory requirement by a factor of the number of concurrent
executions (Fig. 1b).
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(a) Functions with the same peak memory
usage
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(b) Pipelined evaluations of g (reusing mem-
ory)

Fig. 1. Limitations of peak memory usage as a memory-hardness measure

Cumulative complexity [AS15] put forward the notion of cumulative com-
plexity (CC), a complexity measure on graphs. CC was adopted by several sub-
sequent works as a canonical measure of memory-hardness. CC measures the
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cumulative memory usage of a graph pebbling function evaluation: that is, the
sum of memory usage over all time-steps of computation. In other words, this
is the area under a graph of memory usage against time. CC is designed to be
very robust against amortization, and in particular, scales linearly when com-
puting many copies of a function on different inputs. This is a great advantage
compared to the simpler measure of [Per09], which does not account well for an
amortizing adversary (as shown in Fig. 1).

Depth-Robust Graphs. More recently, [AB16,ABP17a] proved bounds on
optimal CC of certain graph families. They showed that a particular graph
property called depth-robustness suffices to attain optimal CC (up to poly-
log factors–the CC of any graph with bounded in-degree is upper bounded by
O

(
n2 log log n

log n

)
[AB16,ABP17b]). An (r, s)-depth-robust graph is one where there

exists a path of length s even when any r vertices are removed. Intuitively, this
captures the notion that storing any r vertices of the graph will not shortcut the
pebbling in a significant way. It turns out that depth-robustness will again be a
useful property in our new model of memory-hardness with preprocessing.

Sustained Memory Complexity. Very recently, Alwen, Blocki, and
Pietrzak [ABP17a] proposed a new measure of memory complexity, which cap-
tures not only the cumulative memory usage over time (as does CC), but goes
further and captures the amount of time for which a particular level of memory
usage is sustained. Our SHF definition also captures sustained memory usage:
we propose a definition of capturing the duration for which a given amount
of memory is required, designed to capture static as well as dynamic memory
requirements. By the nature of static memory, it is especially appropriate in
our setting to consider (and maximize) the amount of time for which a static
memory requirement is sustained.

Core-area Memory Ratio. Previous works have considered certain hardware-
dependent non-linearities in the ratio between the cost of memory and compu-
tation [BK15,AB16,RD17]. Such phenomena may incur a multiplicative factor
increase in the memory cost that is dependent, in a possibly non-linear way, on
specific hardware features. Note that the non-linearity here is in the hardware-
dependence, rather than the space-time tradeoff itself. In contrast, our new mod-
els are more expressive, in that they make configurable the asymptotic tradeoff
between space and time (by a parameter α which is in the exponent, as detailed
in Definition 16) in an application-dependent way. This versatility of configura-
tion targets applications where the trade-off may realistically depend on arbi-
trary and possibly exogenous space/time costs, and thus contrasts with metrics
tailored for a specific hardware feature, such as core-memory ratio.

Towards a General Theory of Moderately Hard Functions. Most
recently, Alwen and Tackmann [AT17] proposed a more general (though not
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comprehensive) framework for defining desirable guarantees of “moderately hard
functions,” i.e., functions that are efficient to compute but somewhat hard to
invert. Their work points out a number of drawbacks of prior measures such
as those described above. Notably, many of the prior measures characterized
the hardness of computing the function with an implicit assumption that this
hardness would translate to the hardness of inverting the function (as it would
indeed in the case of a brute-force approach to inversion). In other words, these
measures implicitly assume that the hash function in question “behaves like a
random oracle” in the sense that brute-force inversion is the optimal approach.

1.2 Our Contributions in More Detail

To prove static-memory-hardness, we define a new pebble game called the black-
magic pebble game (Definition 2), and prove properties of the space complexity
of this game for new graphs (Graph Constructions 2 and 8).

The black-magic pebble game may additionally be of independent interest for
the pebbling literature. Indeed, a pebble game used to analyze security of proofs
of space [DFKP15] can be viewed as a non-adaptive version of the black-magic
pebble game in which the target node set is sampled from a distribution by a
challenger.

Based on our new graph constructions, we construct SHFs with provable
guarantees on sustained memory usage, as follows. Graph Construction 8 gives a
better asymptotic guarantee (same space usage but sustained over more time),
whereas Graph Construction 2 has the advantage of simplicity in practice. In our
full version [DLP18], we discuss our prototype implementation based on Graph
Construction 2.

Static-Memory-Hard Functions (SHFs). Prior memory-hardness measures
make a modeling assumption: namely, that the memory usage of interest is solely
that of memory dynamically generated at run-time. However, static memory can
be costly for the adversary too, and yet it is not taken into account by existing
measures such as CC. Intuitively, it can be beneficial to design a function whose
evaluation requires keeping a large amount of static memory on disk (which may
be thought to be produced in a one-time initial setup phase). While not all the
static memory might be accessed in any given evaluation, the “necessity” to
maintain the data on disk can arise from the idea that an adversary attempt-
ing to evaluate the function on an arbitrary input while having stored a lesser
amount of data would be forced to dynamically generate comparable amounts of
memory. Note that the resulting dynamic memory requirements could be orders
of magnitude larger (say, gigabytes) than the memory requirements of existing
memory-hard function proposals, because unlike in prior memory-hardness mod-
els, here we have decoupled the memory requirement from the memory require-
ments of the honest evaluator.

We propose a new model and definitions for static-memory-hard functions
(SHFs), in which we model static memory usage by oracle access to a large
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preprocessed string, which may be considered part of the hash function descrip-
tion. In particular, the preprocessed string can be public and known to the
adversary—the important guarantee is that without storing (almost) all of it
statically, the adversary will incur huge online memory requirements.

Definition (informal). We model a static-memory-hard function family as a
two-part algorithm H = (H1,H2) in the parallel random oracle model, where
H1(1κ) outputs a “large” string to which H2 has oracle access, and H2 receives
an input x and outputs a hash function output y. Informally, our hardness
requirement is that with high probability, any two-part adversary A = (A1,A2)
must either have A1 output a large state (comparable to the output size of H1),
or have A2 use large (dynamic) space.

We then give two constructions of SHFs based on graph pebbling. To prove
static-memory-hardness, we define a new pebble game called the black-magic peb-
ble game of which we give an overview in Sect. 1.2. Our simpler SHF construction
is based on a family of tree-like “cylinder” graphs, which achieves memory usage
proportional to the square root of the number of nodes, sustained over time
proportional to the square root of the number of nodes. Furthermore, we give
a better construction based on pebbling of a new graph family, that achieves
better parameters: the same (square root) memory usage, but sustained over
time proportional to the number of nodes.

Informal Version of Theorem 13. The “cylinder graph” (Graph Construc-
tion 2) can be used to construct an SHF with static memory requirement
Λ ∈ Θ(

√
n/(κ − ξ log(κ)) where n is the number of nodes in the graph, κ is

a security parameter, and ξ ∈ ω(1), such that any adversary using non-trivially
less static memory than Λ must incur at least Λ dynamic memory usage for at
least Θ(

√
n) steps.

Informal Version of Theorem 14. Graph Construction 8 can be used to con-
struct an SHF with static memory requirement Λ ∈ Θ(

√
n)/(κ− ξ log(κ)) where

n, κ, and ξ are as described above, such that any adversary using non-trivially
less static memory than Λ must incur at least Λ dynamic memory usage for at
least Θ(n) steps.

Static memory requirements are complementary to dynamic memory require-
ments: neither can replace the other, and to deter large-scale password-cracking
attacks, a hash function will benefit from being both dynamic-memory-hard and
static-memory-hard. In Sect. 4.1, we give a discussion of how, given a static-
memory-hard function and a (dynamic-)memory-hard function, they can be
concatenated to yield a “dynamic SHF” that inherits both the static memory
requirement of the former and the dynamic memory requirement of the latter.

Black-Magic Pebble Game. We introduce a new pebble game called the
black-magic pebble game. This game bears some similarity to the standard (black)
pebble game, with the main difference that the player has access to an additional
set of pebbles called magic pebbles. Magic pebbles are subject to different rules
from standard pebbles: they may be placed anywhere at any time, but cannot be
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removed once placed, and may be limited in supply. The pebbling space cost of
this game is defined as the maximum number of standard pebbles on the graph
at any time-step plus the total number of magic pebbles used throughout the
computation. Observe that while the most time-efficient strategy in the black-
magic pebble game is always to pebble all the target nodes with magic pebbles
in the first step, the most space-efficient strategy is much less clear.

Lower-bounds on space usage can be non-trivially different between the stan-
dard and magic pebbling games. For example, if a graph has a constant number
of targets, then magic pebbling space usage will never exceed a constant number
of pebbles, whereas the standard pebbling space usage can be super-constant.
In particular, it is unclear, in the new setting of magic pebbling, whether known
lower-bounds on pebbling space usage in the standard pebble game are trans-
ferable to the magic pebble game. We prove in Sect. 5 that for layered graphs,
the best possible lower-bound for the magic pebbling game is Θ(

√
n).

We leave determining the lower bound for magic pebbling space usage in
general graphs as an open question. An answer to this open question would
be useful towards constructing better static-memory-hard functions using the
paradigm presented herein.

Our proof techniques rely on a close relationship between black-magic peb-
bling complexity and a new graph property which we define, called local hardness.
Local hardness considers black-magic pebbling complexity in a variant model
where subsets of target nodes are required to be pebbled (rather than all tar-
get nodes, as in the traditional pebbling game), and moreover, a “preprocessing
phase” is allowed, wherein magic pebbles may be placed on the graph in advance
of knowing which target nodes are to be produced. This “preprocessing” aspect
bears some resemblance to the black-white pebbling game [CS74], a variant of the
standard pebbling game in which some limited number of white pebbles can be
placed “for free,” and the black pebbles must be placed according the standard
rules. However, our setting differs from the black-white pebbling game: while
preprocessing and storing magic pebbles in advance can be viewed as analogous
to placing white pebbles for free, the black-white pebbling game imposes restric-
tions on the removal of white pebbles from the graph, which are not present in
our setting.

Capturing Relative Cost of Memory vs. Time. Existing measures such as
CC and sustained memory complexity trade off space against time at a linear
ratio. In particular, CC measures the minimal area under a graph of memory
usage against time, over all possible algorithms that evaluate a function.

However, different applications may have different relative cost of space and
time. We propose and define a variant of CC called α-CC, parametrized by
α which determines the relative cost of space and time, and observe that α-CC
may be meaningfully different from CC and more suitable for certain application
scenarios. For example, when memory is “quadratically” more expensive than
time, the measure of interest to an adversary may be the area under a graph of
memory squared against time, as demonstrated by the following theorem.
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Informal Version of Theorem 6.8 in [DLP18]. There exist graphs for which
an adversary facing a linear space-time cost trade-off would in fact employ a
different pebbling strategy from one facing a cubic trade-off.

It follows that when the costs of space and time are not linearly related, the
CC measure may be measuring the complexity of the wrong algorithm, i.e., not
the algorithm that an adversary would in fact favor. We thus see that our α-CC
measure is more appropriate in settings where space may be substantially more
costly than time (or vice versa).

Moreover, our parametrized approach generalizes naturally to sustained
memory complexity. We show that our graph constructions are invariant across
different values of α, a potentially desirable property for hash functions so that
they are robust against different types of adversaries.

Informal Version of Theorem 6.13 in [DLP18]. Given any graph construc-
tion G = (V,E), there exists a pebbling strategy that is less expensive asymp-
totically than any strategy using a number of pebbles asymptotically equal to
the number of nodes in the graph for any time-space tradeoff.

Please refer to the full version of our paper for all results, proofs, appendices,
and implementation details [DLP18].

2 Pebbling Definitions

A pebbling game is a one-player game played on a DAG where the goal of the
player is to place pebbles on a set of one or more target nodes in the DAG.

In Sect. 2.1, we formally define two variations of the sequential and parallel
pebble games: the standard (black) pebble game and the black-magic pebble game,
the latter of which we introduce in this work. We also give the definitions of valid
strategies and moves in these games. Then in Sect. 2.2, we define measures for
evaluating the sequential and parallel pebbling complexity on families of graphs.

2.1 Standard and Magic Pebbling Definitions

Definition 1 (Standard (black) pebble game).

– Input: A DAG, G = (V,E), and a target set T ⊆ V . Define pred(v) =
{u ∈ V : (u, v) ∈ E}, and let S ⊆ V be the set of sources of G.

– Rules at move i: At the start of the game, no node of G contains a pebble.
The player has access to a supply of black pebbles. Game-play proceeds in
discrete moves, and Pi (called a “pebble configuration”) is defined as the set
of nodes containing pebbles after the ith move. P0 = ∅ represents the initial
configuration where no pebbles have been placed. Each move may consist of
multiple actions adhering to the following rules.
1. A pebble can be placed on any source, s ∈ S.
2. A pebble can be removed from any vertex.
3. A pebble can be placed on a non-source vertex, v, if and only if its direct

predecessors were pebbled at time i − 1 (i.e., pred(v) ∈ Pi−1).
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4. A pebble can be moved from vertex v to vertex w if and only if (v, w) ∈ E
and pred(w) ∈ Pi−1.

– Goal: Pebble all nodes in T at least once (i.e., T ⊆ ⋃t
i=0 Pi).

Remark 1. At first glance, it may seem that rule 4 in Definition 1 is redundant as
a similar effect can be achieved by a combination of the other rules. However, the
application of rule 4 can allow the usage of fewer pebbles. For example, a simple
two-layer binary tree (with three nodes) could be pebbled with two pebbles using
rule 4, but would require three pebbles otherwise. Nordstrom [Nor15] showed
that in sequential strategies, it is always possible to use one fewer pebble by
using rule 4.

We note for completeness that while rule 4 is standard in the pebbling liter-
ature, not all the papers in the MHF literature include rule 4.

Next, we define the black-magic pebble game which we will use to prove
security properties of our static-memory-hard functions.

Definition 2 (Black-magic pebble game).

– Input: A DAG G = (V,E), a target set T ⊆ V , and magic pebble bound
M ∈ N ∪ {∞}.

– Rules: At the start of the game, no node of G contains a pebble. The player
has access to two types of pebbles: black pebbles and up to M magic peb-
bles. Game-play proceeds in discrete moves, and Pi = (Mi, Bi) is the pebble
configuration after the ith move, where Mi, Bi are the sets of nodes contain-
ing magic and black pebbles after the ith move, respectively. P0 = (∅, ∅)
represents the initial configuration where no black pebbles or magic pebbles
have been placed. Each move may consist of multiple actions adhering to the
following rules.
1. Black pebbles can be placed and removed according to the rules of the

standard pebble game which are defined in the full version.
2. A magic pebble can be placed on and removed from any node, subject to

the constraint that at most M magic pebbles are used throughout the game.
3. Each magic pebble can be placed at most once: after a magic pebble is

removed from a node, it disappears and can never be used again.
– Goal: Pebble all nodes in T at least once (i.e., T ⊆ ⋃t

i=0 (Mi ∪ Bi)).

Remark 2. In the black-magic pebble game, unlike in the standard pebble game,
there is always the simple strategy of placing magic pebbles directly on all the
target nodes. At first glance, this may seem to trivialize the black-magic game.
When optimizing for space usage, however, this simple strategy may not be
favorable for the player: by employing a different strategy, the player might be
able to use much fewer than T pebbles overall.

Next, we define valid sequential and parallel strategies in these games.
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Definition 3 (Pebbling strategy). Let G be a graph and T be a target set.
A standard (resp., black-magic) pebbling strategy for (G,T ) is defined as a
sequence of pebble configurations, P = {P0, . . . , Pt}, satisfying conditions 1 and 2
below. P is moreover valid if it satisfies condition 3, and sequential if it satisfies
condition 4.

1. P0 = ∅.
2. For each i ∈ [t], Pi can be obtained from Pi−1 by a legal move in the standard

(resp., black-magic) pebble game.

3. P successfully pebbles all targets, i.e., T ⊆
t⋃

i=0

Pi.

4. For each i ∈ [t], Pi contains at most one vertex not contained in Pi−1 (i.e.,
|Pi \ Pi−1| ≤ 1).

A black-magic pebbling strategy must satisfy one additional condition to be con-
sidered valid:

5. At most M magic pebbles are used throughout the strategy, i.e., |⋃i∈[t] Mi| ≤
M where Mi is the ith configuration of magic pebbles.

2.2 Cost of Pebbling

In this subsection, we give definitions of several cost measures of graph peb-
bling, applicable to the standard and black-magic pebbling games. While these
definitions assume parallel strategies, we note that the sequential versions of the
definitions are entirely analogous.

Space Complexity in Standard Pebbling. We give a brief informal sum-
mary of the definitions in this subsection, before proceeding to the formal defi-
nitions.
Pebbling Complexity Measures. We informally overview the pebbling com-
plexity definitions, some of which are new to this work.

The time complexity of a pebbling strategy P is the number of steps, i.e.,
Time (P) = |P|. The time complexity of a graph G = (V,E) given that at most S
pebbles can be used is Time(G,S) = minP∈PG,T,S

(Time (P)). Next, we overview
variants of space complexity.

1. Space complexity of a pebbling strategy P on a graph G, denoted by Ps(P),
is the minimum number of pebbles required to execute P. Space complexity
of the graph G with target set T , written Ps(G,T ), is the minimum space
complexity of any valid pebbling strategy for G.

2. Λ-sustained space complexity [ABP17a] of a pebbling strategy P on a
graph G, denoted by Pss(P, Λ), is the number of time-steps during the exe-
cution of P, in which at least Λ pebbles are used. Λ-sustained space complex-
ity of the graph G with target set T , written Pss(G,Λ, T ) is the minimum
Λ-sustained space complexity of all valid pebbling strategies for G.
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3. Graph-optimal sustained complexity of a pebbling strategy P, denoted
by Popt-ss(P), is the number of time-steps during the execution of P, in
which the number of pebbles in use is equal to the space complexity of G.
Graph-optimal sustained complexity of the graph G with target set T , written
Popt-ss(G,T ) is the minimum graph-optimal sustained complexity of all valid
pebbling strategies for G.

4. Δ-suboptimal sustained complexity of a pebbling strategy P is the num-
ber of time-steps, during the execution of P, in which the number of pebbles
in use is at least the space complexity of G minus Δ. Δ-suboptimal sus-
tained complexity of the graph G is the minimum Δ-suboptimal sustained
complexity of all valid pebbling strategies for G.

A couple of remarks are in order.

Remark 3. The third and fourth definitions are new to this paper. They can
be seen as special variants of Λ-sustained space complexity, i.e., with a special
setting of Λ dependent on the specific graph family in question. They are useful
to define in their own right, as unlike plain Λ-sustained space complexity, these
measures express complexity for a given graph family relative to the best pos-
sible value of Λ at which sustained space usage could be hoped for. In the rest
of this paper, we prove guarantees on graph-optimal sustained complexity of our
constructions, which have high sustained space usage at the optimal Λ-value.
However, we also define Δ-suboptimal sustained complexity here for complete-
ness, since it is more general and preferable to graph-optimal complexity when
evaluating graph families where the maximal space usage may not be sustained
for very long.

Remark 4. We have found the term “Λ-sustained space complexity” can be
slightly confusing, in that it measures a number of time-steps rather than an
amount of space. We retain the original terminology as it was introduced, but
include this remark to clarify this point.

We now present the formal definitions of the complexity measures for the
standard pebbling game. In all of the below definitions, G = (V,E) is a graph,
T ⊆ V is a target set, P = (P1, . . . , Pt) is a standard pebbling strategy on (G,T ),
and PG,T denotes the set of all valid standard pebbling strategies on (G,T ).

Definition 4. The space complexity of pebbling strategy P is: Ps(P) =
maxPi∈P (|Pi|). The space complexity of G is the minimal space complexity
of any valid pebbling strategy that pebbles the target set T ⊂ V : Ps(G,T ) =
minP′∈PG,T

(Ps (P ′)).

Definition 5. The Λ-sustained space complexity of P is: Pss(P, Λ) =
|{Pi : |Pi| ≥ Λ}|. The Λ-sustained space complexity of G is the minimal Λ-
sustained space complexity of any valid pebbling strategy that pebbles the target
set T ⊆ V : Pss(G,Λ, T ) = minP′∈PG,T

(Pss (P ′, Λ)).



46 T. Dryja et al.

Definition 6. The graph-optimal sustained complexity of P is:
Popt-ss(P) = Pss(P,Ps(G,T )). The graph-optimal sustained complexity of

G is the minimal graph-optimal sustained complexity of any valid pebbling strat-
egy that pebbles the target set T ⊆ V : Popt-ss(G,T ) = minP′∈PG,T

(Popt-ss (P ′)).

Definition 7. The Δ-suboptimal sustained complexity of P is:

Popt-ss(P,Δ) = Pss(P,Ps(G,T ) − Δ).

The Δ-suboptimal sustained complexity of G is the minimal graph-optimal sus-
tained complexity of any valid pebbling strategy that pebbles the target set T ⊆ V :
Popt-ss(G,Δ, T ) = minP′∈PG,T

(Popt-ss (P ′,Δ)).

Time Complexity in Standard Pebbling. We present the following formal
definitions for measuring the time complexity of strategies in the standard pebble
game. In all the below definitions, G = (V,E) is a graph, T ⊆ V is a target set,
P = (P1, . . . , Pt) is a standard pebbling strategy on (G,T ) where PG,T,S denotes
the set of all valid pebbling strategies on (G,T ) that use at most S pebbles.

Definition 8. The time complexity of a pebbling strategy P is Time (P) = |P|.
The time complexity of a graph G = (V,E) given that at most S pebbles can be
used is Time(G,S) = minP∈PG,T,S

(Time (P)).

Space Complexity in Black-Magic Pebbling. Next, we define the cor-
responding complexity notions for the black-magic pebbling game. As above,
G = (V,E) is a graph, T ⊆ V is a target set, and M is a magic pebble bound.
In this subsection, P = (P1, . . . , Pt) = ((M1, B1), . . . , (Mt, Bt)) denotes a black-
magic pebbling strategy on (G,T ). Moreover, MG,T,M denotes the set of all
valid magic pebbling strategies on (G,T ), and m(P) denotes the total number
of magic pebbles used in the execution of P.

Definition 9. The (magic) space complexity of P is: Ps(P) = max (m(P),
maxPi∈P (|Pi|)). The (magic) space complexity of G w.r.t. M is the minimal
space complexity of any valid magic pebbling strategy that pebbles the target set
T ⊆ V : Ps(G,M, T ) = minP∈PG,T,M

(Ps (P)).

Remark 5. We briefly provide some intuition for the complexity measure defined
above in Definition 9. If we consider all magic pebbles to be static memory objects
that were saved from a previous evaluation of the hash function, then the total
number of magic pebbles is the amount of memory that was used to save the
results of a previous evaluation of the hash function. Because of this, it is nat-
ural to take the maximum of the memory used to store results from a previous
evaluation of the function and the current memory that is used by our current
pebbling strategy since that would represent how much memory was used to
compute the results of hash function during the current evaluation.
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Definition 10. The (magic) Λ-sustained space complexity of P is: Pss(P, Λ) =
|{Pi : |Pi| ≥ Λ}|. The Λ-sustained space complexity of G w.r.t. M and T ⊆ V
is: Pss(G,Λ,M, T ) = minP∈PG,T,M

(Popt-ss (P, Λ)).

Definition 11. The (magic) graph-optimal sustained complexity of P is:
Popt-ss(P) = Pss(P,Ps(G,T )). The graph-optimal sustained complexity of G
w.r.t. M and T ⊆ V is: Popt-ss(G,M, T ) = minP∈PG,T,M

(Popt-ss (P)).

Definition 12. The (magic) Δ-suboptimal sustained complexity of P is:
Popt-ss(P,Δ) = Pss(P,Ps(G,T ) − Δ). The Δ-suboptimal sustained complex-
ity of G w.r.t. M and T ⊆ V is:

Popt-ss(G,Δ,M, T ) = min
P∈PG,T,M

(Popt-ss (P,Δ)) .

2.3 Incrementally Hard Graphs

We introduce the following definition for our notion of graphs which require
|T | pebbles to pebble regardless of the number of targets that are asked, given
a constraint on the number of magic pebbles that can be used. This concept
has not been previously analyzed in the pebbling literature; traditional pebbling
complexity usually treats graphs with fixed target sets.

Definition 13 (Incremental Hardness). Given at most M magic pebbles, for
any subset of targets C ⊆ T where |C| > M, the number of pebbles (magic and
black pebbles) necessary in the black-magic pebble game to pebble C is at least
|T | where the number of magic pebbles used in this game is upper bounded by M:
Ps(G, |C| − 1, C) ≥ |T |.

α-tradeoff Cumulative Complexity. α-tradeoff cumulative complexity, or
CCα, is a new measure introduced in this paper, which accounts for situations
where space and time do not trade off linearly. Similar notions to this have been
explored before e.g. [FLW13], [BK15,AB16,RD17]. A discuss of the core-area
memory ratio [BK15,AB16,RD17] can be found in Sect. 1.1. They considered
the notion of λ-memory-hardness where intuitively S · T = Ω

(
Gλ+1

)
where the

space-time cost is some exponential of the size of the stored graph [FLW13]. We
note that this notion is very different from our notion of α-tradeoff complexity
since they only consider the space-time cost (not cumulative complexity) and do
not consider nonlinear tradeoffs between space and time (one can just consider
Gλ+1 to a constant in the tradeoff curve).

Here, we see the usefulness of defining sustained complexities in terms of the
minimum required space (as opposed to being parametrized by Λ) since we can
always obtain an upper bound on CCα, for any α, of a graph directly from our
proofs of the space complexity and sustained time complexity of a DAG.
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Definition 14 (Standard pebbling α-space cumulative complexity).
Given a valid parallel standard pebbling strategy, P, for pebbling a graph G =
(V,E), the standard pebbling α -space cumulative complexity is the following:

p-ccα(G,P) =
∑

Pi∈P
|Pi|α.

Definition 15 (Black-magic pebbling α-space cumulative complexity).
Given a valid parallel black-magic pebbling strategy, P, for pebbling a graph G =
(V,E), the black-magic pebbling α -space cumulative complexity is the following:

p-ccM
α (G,P) = max

(
m(P)α,

∑
Pi∈P

|Pi|α
)

= max

(
m(P)α,

∑
Pi∈P

|Bi ∪ Mi|α
)

where m(P) denotes the total number of magic pebbles used in the magic pebbling
strategy P.

The following definition, CCα, is an analogous definition to CC as defined
by [AS15] (specifically, CCα when α = 1 is equivalent to CC) to account for
varying costs of memory usage vs. time.

Definition 16 (CCα). Given a graph, G ∈ G, and a valid standard/magic
pebbling strategy, P, we define the CCα(G) to be

CCα(P) = (p-ccα (G,P)) .

Given a graph, G ∈ G, and a family of valid standard pebbling strategies, P,
we define the CCα(G) to be

CCα(G) = min
P∈P

(p-ccα (G,P)) ,

and, given a family P
M of valid black-magic pebbling strategies, we define

CCα(G) to be

CCα(G) = min
PM ∈PM

(
p-ccM

α

(
G,PM

))
.

3 Parallel Random Oracle Model (PROM)

In this paper, we consider two broad categories of computations: pebbling strate-
gies and PROM algorithms. Specifically, we discussed above the pebbling models
and pebble games we use to construct our static memory-hard functions. Now,
we define our PROM algorithms.

Prior work has observed the close connections between these two types of
computations as applied to DAGs, and our work brings out yet more connections
between the two models. In this section, we give an overview of how PROM
computations work and define the complexity measures that we apply to PROM
algorithms. Some of the complexity measures were introduced by prior work,
and others are new in this work.
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3.1 Overview of PROM Computation

The random oracle model was introduced by [BR93]. When we say random
oracle, we always mean a parallel random oracle unless otherwise specified.

An algorithm in the PROM is a probabilistic algorithm B which has parallel
access to a stateless oracle O: that is, B may submit many queries in parallel
to O. We assume O is sampled uniformly from an oracle set O and that B may
depend on O but not O.

The algorithm proceeds in discrete time-steps called iterations, and may be
thought to consist of a series of algorithms (Bi)i∈N, indexed by the iteration i,
where each Bi passes a state σi ∈ {0, 1}∗ to its successor Bi+1. σ0 is defined to
contain the input to the algorithm. We write |σi| to denote the size, in bits, of
σi. We write �σi� to denote |σi|

w , where w is the output length of the oracle O.
In other words, �σi� is the size of σi when counting in words of size w. In each
iteration, the algorithm Bi may make a batch qi = (qi,1, . . . , qi,|qi|) of queries,
consisting of |qi| individual queries to O, and instantly receive back from the
oracle the evaluations of O on the individual queries, i.e., (O(qi,1), . . . ,O(qi,|qi|)).

At the end of any iteration, B can append values to a special output register,
and it can end the computation by appending a special terminate symbol ⊥ on
that register. When this happens, the contents y of the output register, excluding
the trailing ⊥, is considered to be the output of the computation. To denote the
process of sampling an output, y, provided input x, we write y ← BO(x).

Definition 17 (Oracle functions). An oracle function is a collection f =
{fO : D → R}O∈O of functions with domain D and outputs in R indexed by
oracles O ∈ O.

A family of oracle functions is a set F = {fκ : Dκ → Rκ}κ∈N where each
fκ is indexed by oracles from an oracle set Oκ : {0, 1}κ → {0, 1}κ indexed by a
security parameter κ.

Definition 18 (Memory complexity of PROM algorithms). The mem-
ory complexity of B(x; ρ) (i.e., the memory complexity of B on input x and
randomness ρ) is defined as:

memO(B, x, ρ) = max
i∈N

{�σi�} . (1)

Definition 19 (Λ-sustained memory complexity of PROM algorithms).
The Λ-sustained memory complexity of B(x; ρ) is defined as:

s-memO(Λ,B, x, ρ) = |{i ∈ N : |σi| ≥ Λ}| . (2)

Note that (1) and (2) are distributions over the choice of O ← O.

3.2 Functions Defined by DAGs

We now describe how to translate a graph construction into a function family,
whose evaluation involves a series of oracle calls in the PROM. Any family of
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DAGs induces a family of oracle functions in the PROM, whose complexity is
related to the pebbling complexity of the DAG. We first define the syntax of
labeling of DAG nodes, then define a graph function family.

Definition 20 (Labeling). Let G = (V,E) be a DAG with maximum in-degree
δ, let L be an arbitrary “label set,” and define O(δ,L) =

(
V × ⋃δ

δ′=1 L
δ′ → L

)
.

For any function O ∈ O(δ,L) and any label ζ ∈ L, the (O, ζ)-labeling of G is a
mapping labelO,ζ : V → L defined recursively as follows.

labelO,ζ(v) =

{
O(v, ζ) if indeg(v) = 0
O(v, labelO,ζ(pred(v))) if indeg(v) > 0

.

Definition 21 (Graph function family). Let n = n(κ) and let Gδ = {Gn,δ =
(Vn, En)}κ∈N be a graph family. We write Oδ,κ to denote the set O(δ, {0, 1}κ) as
defined in Definition 20. The graph function family of G is the family of oracle
functions FG = {fG}κ∈N where fG = {fO

G : {0, 1}κ → ({0, 1}κ)z}O∈Oδ,κ
and

z = z(κ) is the number of sink nodes in G. The output of fO
G on input label

ζ ∈ {0, 1}κ is defined to be

fO
G (ζ) = labelO,ζ(sink(G)),

where sink(G) is the set of sink nodes of G.

3.3 Relating Complexity of PROM Algorithms and Pebbling
Strategies

Any PROM algorithm B and input x induce a black-magic pebbling strategy,
epf-magicζ(B,O, x, $), called an ex-post-facto black-magic pebbling strategy. The
way in which this strategy is induced is similar to ex-post-facto pebbling as orig-
inally defined by [AS15] in the context of the standard pebble game. We adapt
their technique for the black-magic game.

Definition 22 (Ex-post-facto black-magic pebbling). Let n = n(κ) and
let Gδ = {Gn,δ = (Vn, En)}κ∈N be a graph family. Let ζ = ζ(κ) ∈ {0, 1}κ be an
arbitrary input label for the graph function family FG. For any v ∈ Vn, define

pre-labO,ζ(v) = (v, labelO,ζ(pred(v))).

Let B be a non-uniform PROM algorithm. Fix an implicit security parameter
κ. Let x be an input to B. We now define a magic pebbling strategy induced by
any given execution of BO(x; $), where $ denotes the random coins of B. Such
an execution makes a sequence of batches of random oracle calls (as defined in
Sect. 3.1), which we denote by

q(B,O, x, $) = (q1, . . . ,qt).

The induced black-magic pebbling strategy,

epf-magicζ(B,O, x, $) = ((B0,M0), . . . , (Bt,Mt)), (3)
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is called an ex-post-facto black-magic pebbling, and is defined by the following
procedure.

1. B0 = M0 = ∅.
2. For i = 1, . . . , t:

(a) Bi = Bi−1.
(b) Mi = Mi−1.
(c) For each individual query q ∈ qi, if there is some v ∈ Vn such that

q = pre-labO,ζ(v) and v /∈ Pi, then “pebble v” by performing the following
steps:
i. If pred(v) ⊆ Mi ∪ Bi:

– Bi = Bi ∪ {v}.
ii. Else:

– V = {v}.
– Let V ∗ be the transitive closure of V under the following operation:

V = V ∪ (⋃
v′∈V pred(v′) ∩ (Mi ∪ Bi)

)
.

– Mi = Mi ∪ V ∗.
3. For i = 1, . . . , t:

(a) A node v ∈ Mi ∪ Bi is said to be necessary at time i if

∃j ∈ [t], q ∈ qj , v
′ ∈ Vn s.t. j > i ∧ v ∈ pred(v′

) ∧ q = pre-labO,ζ(v
′
)

∧
(

� ∃k ∈ [t], q
′ ∈ qk s.t. i < k < j ∧ q

′
= pre-labO,ζ(v)

)
.

In other words, a node is necessary if its label will be required in a future
oracle call, but its label will not be obtained by any oracle query between
now and that future oracle call.
Remove from Bi and Mi all nodes that are not necessary at time i.

3.4 Legality and Space Usage of Ex-post-facto Black-Magic
Pebbling

The following theorems establish that the space usage of PROM algorithms is
closely related to the space usage of the induced pebbling.

We will use the following supporting lemma, also used in prior work such as
[AS15,DKW11] (see, e.g., [DKW10] for a proof).

Lemma 1. Let B = b1, . . . , bu be a sequence of random bits and let H be a set.
Let P be a randomized procedure that gets a hint h ∈ H, and can adaptively query
any of the bits of B by submitting an index i and receiving bi as a response. At
the end of its execution, P outputs a subset S ⊆ {1, . . . , u} of |S| = ϕ indices
which were not previously queried, along with guesses for the values of the bits
{bi : i ∈ S}. Then the probability (over the choice of B and the randomness of
P) that there exists some h ∈ H such that P(h) outputs all correct guesses is at
most |H|/2ϕ.
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Lemma 2 (Legality and magic pebble usage of ex-post-facto black-
magic pebbling). Let n = n(κ) and let Gδ = {Gn,δ = (Vn, En)}κ∈N be a
graph family. Let ζ ∈ {0, 1}κ be an arbitrary input label for Gδ. Fix any efficient
PROM algorithm B and input x. With overwhelming probability over the choice
of random oracle O ← O and the random coins $ of B, it holds that the ex-
post-facto magic pebbling epf-magicζ(B,O, x, $) consists of valid magic-pebbling

moves, and uses fewer than χ =
⌊

|x|
κ−log(q) + 1

⌋
magic pebbles (i.e., for all i,

|Mi| ≤ χ), where q is the number of oracle queries made by B(x).

Lemma 3 (Space usage of ex-post-facto black-magic pebbling). Let
n, Gδ, ζ be as in Lemma 2. Fix any PROM algorithm B and input x. Fix any
i ∈ [t], λ ≥ 0, and define

epf-magicζ(B,O, x, $) = (PO
1 , . . . , PO

t ) = ((BO
1 ,MO

1 ), . . . , (BO
t ,MO

t ))

for oracle O. We may omit the superscript O for notational simplicity. It holds
for all large enough κ that the following probability is overwhelming:

Pr [∀i ∈ [t], |Pi| ≤ χ′] ,

where χ′ =
⌊

|σi|
κ−log(q) + 1

⌋
, q is the number of oracle queries made by B, and the

probability is taken over O ← O and the coins of B.

4 Static-Memory-Hard Functions

We now define static-memory-hard functions. As mentioned above, prior notions
of memory-hardness consider only dynamic memory usage. To model static mem-
ory usage, we consider a hash function with two parts (H1,H2) where H2(x)
computes the output of the hash function h(x) given oracle access to the out-
put of H1. This design can be seen to reduce honest party computation time
by limiting the hard work to one-off preprocessing phase, while maintaining a
large space requirement for password-cracking adversaries. Informally, our guar-
antee says that unless the adversary stores a specified amount of static mem-
ory, he must use an equivalent amount of dynamic memory to compute h cor-
rectly on many outputs. Definition 23 is syntactic and Definition 24 formalizes
the memory-hardness guarantee.

Notation. PPT stands for “probabilistic polynomial time.” For b ∈ {0, 1}∗,
define Seekb : {1, . . . , |b|} → {0, 1} to be an oracle that on input ι returns the
ιth bit of b.

Definition 23 (Static-memory hash function family (SHF)). A static-
memory hash function family HO = {hO

κ : {0, 1}w′ → {0, 1}w}κ∈N mapping
w′ = w′(κ) bits to w = w(κ) bits is described by a pair of deterministic oracle
algorithms (H1,H2) such that for all κ ∈ N and x ∈ {0, 1}n,

HSeekR̂
2 (1κ, x) = hκ(x), where R = H1(1κ).

(The superscript O is left implicit.)



Static-Memory-Hard Functions, and Modeling the Cost of Space vs. Time 53

The next definition presents a parametrized notion of (Λ,Δ, τ, q)-hardness
of an SHF. Before delving into the formal definition, we give a brief intuition
of the guarantee provided by Definition 24: any adversary who produces at least
q correct input-output pairs of the hash function must either have used Λ − Δ
static memory or incur a requirement of Λ dynamic memory sustained over τ
time-steps at runtime.

The Role of q. The parameter q in Definition 24 serves to capture the intuitive
idea that an adversary that uses a certain amount of space could always use
that space to directly store output values of hκ. Clearly, an adversary with an
arbitrary input R could very easily output up to �|R|� correct output values.
Our goal is to lower bound the amount of space needed by an adversary who
outputs nontrivially more correct values than that—and q, which is a function
of |R|, captures how many more.

Definition 24 ((Λ,Δ, τ, q)-hardness of SHF). Let H = {hκ}κ∈N be a static-
memory hash function family described by algorithms (H1,H2), mapping w′ to w
bits. H is (Λ,Δ, τ)-hard if for any large enough κ ∈ N, any string R ∈ {0, 1}Λ−Δ,
and any PPT algorithm A, for any set X = {x1, . . . , xq} ⊆ {0, 1}w′

, there is a
negligible ε such that

Pr
O,ρ

[{
(x1, hκ(x1)), . . . , (xq, hκ(xq))

}
= A(1κ, R; ρ) ∧ s-memO(Λ, A, R, ρ) < τ

]
< ε.

For simplicity, we henceforth assume w′ = w = κ (i.e., the oracle’s input and
output sizes are equal to the security parameter) unless otherwise stated.

4.1 Dynamic SHFs

As discussed in detail in the introduction, static memory requirements are
orthogonal and complementary to dynamic memory requirements of MHFs as
formalized by [AS15]. Given a pebbling-based SHF and a pebbling-based MHF,
they can be combined by simple concatenation into a “dynamic SHF,” a function
that inherits both the static memory requirement of the former and the dynamic
memory requirement of the latter, as outlined (informally) next.

Let HO
dyn be a dynamic MHF and (HO

1 ,HO
2 ) be a SHF family, and the

computation of both of these correspond to computing labels of nodes in a
DAG as a function of a pebbling algorithm and a random oracle O. We con-
struct a dynamic SHF HO that is defined as follows: on input (1κ, x), output
HO(0,·)

2 (1κ, x)||HO(1,·)
dyn (1κ, x). The resulting HO inherits both the MHF guaran-

tees of Hdyn and the SHF guarantees of (H1,H2). Note that importantly, the
labels of the nodes in the graphs corresponding to the MHF HO(0,·)

dyn and the

SHF (HO(1,·)
1 ,HO(1,·)

2 ) are independent as the MHF and the SHF use disjoint
partitions of the random oracle domain.

Using this method, our SHF constructions can be combined with existing
MHF constructions such as [AS15,ABP17a,ABP17b], yielding a “best of both
worlds” dynamic SHF that enjoys both types of memory-hardness.
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5 SHF Constructions

A First Attempt. What if we pebble a hard-to-pebble graph, and then let
Rk,i = H(P (k), i) where P (k) is the entire pebbling of the graph (on input
k and iteration i is the i-th call to the hash function H)? This would in fact
work in the random oracle model where the random oracle takes arbitrary-length
input. However, in practice, hash functions do not take arbitrary-length input.
While constructions like Merkle-Damg̊ard [Mer79] and sponge [BDPA08] can
transform a fixed-input-length hash function into one that takes arbitrary-length
inputs, the resulting function does not behave like a random oracle even if the
fixed-length hash function does. Moreover, the computation graphs of known
length-expanding transformations such as Merkle-Damg̊ard and sponge func-
tions require very little space to compute. For instance, the computation graph
of the Merkle-Damg̊ard construction is a binary tree and the computation graph
of the sponge function is a caterpillar graph both of which take logarithmic and
constant space, respectively, to compute. Thus, we have to use special construc-
tions to achieve the local-hardness properties we need.

Recall from Definition 13 that the property we want is this “locally hard
to access” notion, meaning that if an adversarial party chooses to not store
the static part of our hash function which they obtain from performing the
“preprocessing” computation associated with H1, then they must use the same
memory and sustained time to recompute the function when our static-memory-
hard function is called on any subset of inputs larger than the memory used
to store the preprocessed computation. We achieve this desired property in our
H1 functions using two novel DAG constructions, one of which is optimal for
a specific graph class and the other we conjecture to be optimal for all general
graph classes.

5.1 H1 Constructions

We first note the differences between the graph constructions we present here
and the constructions presented in previous literature [AS15,ACK+16,ABP17a,
DFKP15]. Firstly, many of the constructions presented in previous work feature
a single target node. This is reasonable in the context of memory-hard functions
since both the honest party and the adversary must compute the hash function
dynamically (obtaining a single label as the output of the function) on each
input. However, in our context of static-memory-hard functions, single-target-
node constructions do not make sense. Secondly, our constructions differ from
even the multiple target node constructions presented in the literature (specif-
ically, the constructions of [DFKP15]) since prior constructions mainly focused
on finding graphs that have large memory vs. time tradeoffs.

Our constructions are designed with the goal that any adversary that does
not store almost all the target labels must dynamically use the same amount
of space as needed to store all the labels to compute the hash function (while
still incurring a cost in runtime). Moreover, our constructions based on local
hardness ensure a stronger guarantee than the constructions in [DFKP15]; in
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our case, one must use at least S space (for some definition of S) to compute
any given subset of targets larger than one’s current memory usage, whereas in
their case, they use S space to compute some subset of targets chosen uniformly
at random. Therefore, our specifications are stronger in that we provide a space
bound as well as a time bound for adversaries; and moreover, for honest parties,
the time cost is only a one-time setup cost. We prove our pebbling costs in terms
of the black-magic pebble game (defined in Sect. 2) as opposed to the standard
pebble game used in previous works. Most notably, this means that in all of our
constructions, the pebbling number is upper bounded by the number of targets
(since one can always just pebble the targets with magic pebbles).

We begin with some simple and clean constructions of H1 based on pebbling
constructions that exist in the literature. We first prove a lemma regarding the
minimum number of pebbles used in the PROM model and the minimum number
of pebbles used in the sequential memory model. This is useful in more than one
way: (1) it tells us that parallelization does not save the adversary in space so
honest parties (who can only compute a constant number of labels at a time) and
adversaries (who can compute an arbitrary number of labels at the same time)
operate under the same space constraints and (2) it allows us to directly compare
sustained time complexities between adversaries and honest parties with respect
to space usage.

Lemma 4 (Standard Pebbling Sequential/Parallel Equivalence). Given
a DAG G = (V,E), Ps(G,T ) = P‖

s (G,T ) where Ps(G,T ) is defined to be the
minimum standard pebbling space complexity in the sequential model, and we
define P‖

s (G,T ) to be the minimum standard pebbling space complexity in the
parallel model.

We use Lemma 4 to prove an equivalent lemma for the black-magic pebble
game below.

Lemma 5 (Black-Magic Pebbling Sequential/Parallel Equivalence).
Given a DAG G = (V,E), Ps(G, |T |, T ) = Ps

‖(G, |T |, T ) where Ps(G, |T |, T )
was defined to be the minimum black-magic pebbling space complexity in the
sequential model, and we define Ps

‖(G, |T |, T ) to be the minimum black-magic
pebbling space complexity in the parallel model.

Now, we jump into our constructions. We first provide a simple construction
and show why this construction is not optimal. In addition, we define some sub-
graph components in the pebbling literature that are important subcomponents
of our constructions.

A Failed Attempt at H1. We first provide a failed attempt at constructing
H1 due to the large amount of time that is needed to compute the function (for
the sequential honest party) with respect to the amount of memory needed to
store the output of the function. In other words, this construction is problematic
in the sense that an exponential number of steps is necessary to compute the
stored results of the function from scratch for the honest party but the adversary
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with parallel processing time can compute the function from scratch in linear
time. Although the honest party could obtain the results of the preprocessing
(i.e. the static part of the hash function) from elsewhere, we must ensure that
they can still feasibly compute H1 themselves in the event that they do not trust
any of the sources from which they can obtain the static data.

Intuitively, our failed attempt at constructing H1 is a series of binary search
trees. From here onwards, we describe all constructions of H1 as a directed acyclic
graph with n nodes and later use our theorems above to prove static memory
hardness from our constructed DAGs.

Graph Construction 1 (Composite Binary Tree DAG). Let BC
h be a compos-

ite binary tree DAG with height h constructed in the following way where T is
the number of targets of our DAG. Let s = |T |. In our intended construction
h = s.

1. Let the set of nodes be V . Let the set of edges be E.
2. Create (s + 1)2h−1 + s nodes.
3. Create s + 1 binary search trees using (s + 1)2h−1 nodes in total where edges

are directed from children to parents in each binary tree. Let ri for i ∈ [1, s+1]
be the roots of these binary search trees.

4. Order the remaining nodes in some arbitrary order, let sj be the jth node in
this order for j ∈ [1, s].

5. Create directed edges (ri, si) and (ri+1 mod s, si) for all i ∈ [1, s].

Given any binary search tree with height h, the minimum number of pebbles
necessary to pebble the tree is h (assuming a ‘tree’ with one node has height
1) using the rules of the standard pebble game. Therefore, to ensure that the
apex of the tree is pebbled and that both the honest party and the adversary
both use h space to pebble the apex, the number of leaves necessary at the base
of the tree is 2h−1. If we suppose that the computationally weak honest party
(who does not build special circuits) can only evaluate a constant number of
random oracle calls at a time (place a constant number of pebbles), the number
of sequential evaluations necessary for the honest party is ≥Ω(2h) which is infea-
sible to accomplish. In constrast, the adversary only has to make O(h) parallel
random oracle calls, an exponential factor difference between the honest party
and the adversary! Such a construction fails since it is clearly infeasible for the
honest party since they would never be able to compute all target values of H1

from scratch (since this computation requires exponential time for the honest
party). Thus, we would like a construction that has the same minimum space
requirement but also small sequential evaluation time. We prove a better (but
also simply defined) construction below.

Cylinder Construction. We make use of what is defined in the pebbling
literature as a pyramid graph [GLT80] in constructing our cylinder graph. The
key characteristic of the pyramid graph we use is that the number of pebbles
that is required to pebble the apex of the pyramid is equal to the height of
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the pyramid [GLT80] using the rules of the standard pebble game. Note that a
pyramid by itself is not useful for our purposes since the black-magic pebbling
space complexity of a pyramid with one apex is 1. Therefore, we need to be able
to use the pyramid in a different construction that uses superconstant number
of pebbles in the magic pebble game in order to successfully pebble all target
nodes.

Graph Construction 2 (Illustrated in Fig. 2). Let ΠC
h be a cylinder graph

with height h. We define ΠC
h as follows:

1. Create 2h2 nodes. Let this set of 2h2 nodes be V .
2. Arrange the nodes in V into 2h levels of h nodes each, ranging from level

0 to level 2h − 1. Let the j-th node in level i be vj
i . Create directed edges

(vj mod h
i , vj mod h

i+1 ) and (vj mod h
i , v

(j+1) mod h
i+1 ) for all i ∈ [0, 2h − 2]. Let

this set of edges be E.

Fig. 2. Cylinder construction (Definition 2) for h = 5.

Lemma 6. Given a cylinder graph with height h, ΠC
h , Ps(ΠC

h , T ) ≥ h.

Lemma 7. Popt-ss(ΠC
h , T ) ≥ 2h.

Theorem 3. Using the rules of the standard pebble game, h pebbles are nec-
essary for at least h parallel steps to pebble any target of a height 2h cylinder
graph, ΠC

h .

Theorem 4. Ps(ΠC
h , |T |, T ) ≥ h where ΠC

h is defined as in Definition 2 where
|S| = |T | = h.

As a simple extension of our theorem and proof above, we get Corollary 1.
Moreover, as an extension of the proof given for Theorem4 that all magic pebbles
are placed on targets and from Theorem3, we obtain Corollary 2.

Corollary 1. Given a cylinder G = (V,E) as constructed in Graph Construc-
tion 2, G is incrementally hard: Ps(G, |C| − 1, C) ≥ |T | for any subset C ⊆ T .

Corollary 2. Given a cylinder G = (V,E) as constructed in Graph Construc-
tion 2, Popt-ss(G, |C| − 1, C) = Θ(|T |) for all subsets of C ⊆ T .
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A logical question to ask after constructing our very simple hash function
based on a cylinder graph is whether such a construction is optimal in terms of
graph-optimal sustained complexity and follows our requirements for a static-
memory-hard hash function. As it turns out, the graph-optimal sustained com-
plexity of a cylinder graph is optimal in the class of layered graphs. In other
words, if we choose to use layered graphs in our constructions, then we can-
not hope to get a better memory and time guarantee. From an implementation
and practical standpoint, layered graphs are easier to implement and hence this
result has potential practical applications (as more complicated constructions
need to consider memory allocation factors in the real-life implementation, not
considered in the theoretical model).

Theorem 5. Given a layered graph, G = (V,E), if the number of target nodes
is |T | = s and Ps(G, s, T ) ≥ s, then |V | = Ω(s2). A layered graph is one such
that the vertices can be partitioned into layers and edges only go between vertices
in consecutive layers.

Thus, our construction of the cylinder graph is optimal in terms of amount
of memory used in the asymptotic sense for the class of layered graphs. An open
question is whether this is also optimal when we consider the larger class of all
DAGs.

Open Question. Does Theorem5 also hold for general graphs with bounded
in-degree 2?

Given the impossibility of providing a better space guarantee for layered
graphs, we provide a general (non-layered) construction that transforms a graph
from a certain class into another graph with the same space guarantee as in
Theorem 5. Furthermore, we provide an example below that has the same space
guarantees but a better time guarantee.

Layering Shortcut-Free Graphs. We now show how to convert any shortcut-
free DAG, G = (V,E), with Ps(G,T ) = s and one target node (i.e. |T | = 1) into
a DAG, G′ = (V ′, E′), with |T ′| = s targets and Ps(G′, s, |T ′|) = s.

Definition 25 (Shortcut-Free Graphs). Let G = (V,E) be a DAG where
Ps(G,T ) ≥ s. Let tPs be the last time step that exactly s pebbles must be on G
during any normal and regular pebbling strategy, P, (see our full version [DLP18]
and [GLT80,DL17]) that uses s pebbles. More specifically, let Let X be the union
of the set of nodes that are pebbled at tPs for all normal and regular strategies
P: X =

⋃
P∈P

PtP
s
. Let D be the set of descendants of nodes of X. A DAG is

shortcut-free if |X| ≤ s and given s1 < s pebbles placed on any subset X1 ⊂ X,
no normal and regular strategy uses less than s−s1 pebbles to pebble D∪(X\X1).

Graph Construction 6. Given a shortcut-free DAG, G = (V,E), with
Ps(G,T ) = s and |T | = 1, we create a DAG, G′ = (V ′, E′), with the follow-
ing vertices and edges and with the set of targets T ′ where |T ′| = s. Let X be
defined as in Definition 25.
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1. V ′ is composed of the nodes in V and s−1 copies of X ∪D. Let the i-th copy
of X be Xi (the original is X0) and let the i-th copy of x ∈ Xi be xi.

2. E′ is composed of the edges in E and the following directed edges. If (v, w) ∈ E
and v, w ∈ X, then create edges (vi, wi) ∈ E′ for all i ∈ [1, s−1]. Create edges
(u, vi) ∈ E′ if (u, v) ∈ E and u ∈ V \X,D.

3. The set of targets T ′ is the union of the set of targets of the different copies:
T ′ =

⋃s−1
i=0 Ti.

Using the above construction, we have created a graph G′ = (V ′, E′) where
|V ′| = |V | + (s − 1)(|D| + |X|) and |T ′| = s.

Theorem 7. Given a shortcut-free DAG G = (V,E) with Ps(G,T ) = s and
|T | = 1, the construction produced by Graph Construction 6 produces a DAG
G′ = (V ′, E′) such that Ps(G′, s, |T |) = s.

If D = Θ(s) and s = O(
√|V |), then |V ′| = Θ(s2 + |V |) which has a better

sustained time guarantee than our cylinder construction.
We first note that the sustained memory graphs presented in [ABP17a] do

not achieve optimal local memory hardness because X ∪ D (as defined in Def-
inition 6) is Θ(n) (since the sources are the ones that remain pebbled in their
construction). Thus, we would like to provide a construction of a shortcut-free
DAG where |X ∪ D| = Θ(s). Note that the size of X ∪ D will always be Ω(s),
trivially. We now provide a definition of a shortcut-free graph class G that can
be transformed using Definition 6.

Graph Construction 8 (Illustrated in Fig. 3). Let G = (V,E) be a graph
defined by parameter s and in-degree 2 with the following set of vertices and
edges:

1. Create a height s pyramid. Let ri be the root of a subpyramid (i.e. a pyramid
that lies in the original height s pyramid) with height i ∈ [2, s]. One can pick
any set of these subpyramids.

2. Topologically sort the vertices in each level and create a path through the ver-
tices in each level (see Fig. 3). Replace any in-degree-3 nodes with a pyramid
of height 3, with a 6-factor increase in the number of vertices.

3. Create c1s additional nodes for some constant c1 ≥ 2 (in Fig. 3, c1 = 6).
Label these nodes vj for all j ∈ [1, c1s].

4. Create directed edges (rs, v1) and (ri, vk(i−1)) for all k ∈ [1, s].
5. Create s − 1 additional nodes. Let these nodes be wl for all l ∈ [1, s − 1].
6. Create directed edges (vc1s, w1) and (ri, wi−1) for all i ∈ [2, s].
7. The target node is ws−1.

Lemma 8. Given a DAG G = (V,E) and a parameter s where G is defined by
Definition 8, Ps(G,T ) = s.

Before we prove that G = (V,E) created by Definition 8 with parameter s
is shortcut-free, we first prove the following stronger lemma which will help us
prove that G is shortcut-free.
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Fig. 3. Example of a time optimal graph family construction as defined in Definition 8.
Here, s = 5.

Lemma 9. Let G = (V,E) be a graph created using Definition 8 with parameter
s. Given a normal strategy P to pebble G, when vq for q ∈ [1, c1s] is pebbled
at some time step, black pebbles are present on all nodes in [ri, rs] where i =
(q mod s − 1) + 1 from the time when v1 is pebbled to when vq is pebbled.

Lemma 10. Given a DAG G = (V,E) and a parameter s where G is defined
by Definition 8, G is shortcut-free.

Theorem 9. s pebbles are necessary for at least Θ(s2) parallel steps to pebble
any target of G′.

We create G′ = (V ′, E′) from G (as constructed using Definition 8) using
Definition 6 , resulting in a graph with Θ(s2) total nodes.

Theorem 10. Ps(G′, s, T ) = s.

By the proof that G′ is shortcut-free, we obtain the following corollary that
G′ is also incrementally hard. Moreover, Corollary 4 follows directly from the
proof of Theorem 7.

Corollary 3. Given a graph G = (V,E) as constructed in Graph Construc-
tion 8, G is incrementally hard: Ps(G, |C| − 1, C) ≥ |T | for any subset C ⊆ T .

The following corollary about the graph-optimal sustained time complexity
is proven directly from the proof of Lemma9 and Theorem 9 that if less than
s
2 magic pebbles are on the pyramid, then half the pyramid must be rebuilt
resulting in Θ(s2) time-steps in which s pebbles are on the graph; thus proving
for the cases when |C| − 1 < s

2 . We now prove the case when |C| − 1 ≥ s
2 .

Corollary 4. Given a graph G = (V,E) as constructed in Graph Construc-
tion 8, Popt-ss(G, |C| − 1, C) = Θ(|V |) for all subsets of C ⊆ T .
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5.2 H2 Construction

Our construction of H2 is presented in Algorithm 1.

Algorithm 1. H2

On input (1κ, x) and given oracle access to SeekR (where R is the string outputted by
H1):

1. Let �R� = |R|/w be the length of R in words.
1. Query the random oracle to obtain ρ0 = O(x) and ρ1 = O(x + 1).
2. Use ρ0 to sample a random ι ∈ [�R�].
3. Query the SeekR oracle to obtain y′ = SeekR(ι).
4. Output y′ ⊕ ρ1.

Lemma 11. For any R, the output distribution of H2 is uniform over the choice
of random oracle O ← O.

Remark 6. Lemma 11 is important as an indication that our SHF construction
“behaves like a random oracle.” The memory-hardness guarantee alone does not
assure that the hash function is suitable for cryptographic hashing: e.g., a modi-
fied version of H2 which directly outputted y′ instead of y′ ⊕ ρ1 would still satisfy
memory-hardness, but would be an awful hash function (with polynomial size
codomain). The inadequacy of existing memory-hardness definitions for assuring
that a function “behaves like a hash function” is discussed by [AT17].

5.3 Proofs of Hardness of SHF Constructions

We now prove the hardness of our graph constructions given earlier in Sect. 5.
We begin by stating two supporting lemmata. The first is due to Erdős and

Rényi [ER61], on the topic of the Coupon Collector’s Problem.

Lemma 12 ([ER61]). Let Zn be a random variable denoting the number of
samples required, when drawing uniformly from a set of n distinct objects with
replacement, to draw each object at least once. Then for any c, limn→∞ Pr[Zn <

n log n + cn] = e−e−c

.

Corollary 5. Let Zn,k be a random variable denoting the number of samples
required, when drawing uniformly from a set of n distinct objects with replace-
ment, to have drawn at least k ∈ [n] distinct objects. Let q ∈ ω(k log k). Then
Pr[Zn,k < q] is overwhelming (in k).

Theorems 11–14 state the static-memory-hardness of our SHF constructions
based on Graph Constructions 2 and 8.
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Theorem 11. Define a static-memory hash function family (H1,H2) as follows:
let H1 be the graph function family FΠC

h
(Graph Construction 2), and let H2 be

as defined in Algorithm1. Let H = {hκ}κ∈N be the static-memory hash function
family described by (H1,H2). Let κ̂ = κ − ξ log(κ) for any ξ ∈ ω(1), let Λ̂, τ ∈
Θ(

√
n), and let q ∈ ω(Λ log Λ). Then (H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.

Theorem 12. Define a static-memory hash function family (H1,H2) as follows:
let H1 be the graph function family FG (Graph Construction 8), and let H2 be
as defined in Algorithm 1. Let κ̂ = κ− ξ log(κ) for any ξ ∈ ω(1), let Λ̂ ∈ Θ(

√
n),

let τ ∈ Θ(n), and let q ∈ ω(Λ log Λ). Then (H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.

The parameter q is suboptimal in Theorems 11 and 12. We can achieve opti-
mality (i.e., q = �|R|�) by the following alternative construction of H2: make
q′ = ω(log(κ)) random calls instead of just one call to the Seek oracle in Step 4.
To preserve the output size of hκ, it may be useful to reduce the size of node
labels by a corresponding factor of q′. This can be achieved by truncating the
random oracle outputs used to compute labels in Definition 20. The description
of this altered Hq′

2 and the definition of graph function family Fq′
G with shorter

labels are given in our full version [DLP18].

Theorem 13. Define a static-memory hash function family (H1,H2) as follows:
let H1 be the graph function family Fκ/q′

ΠC
h

(Graph Construction 2), and let H2

be Hq′
2 as defined in our full version [DLP18] for some q′ ∈ ω(log Λ). Let κ̂ =

κ − ξ log(κ) for any ξ ∈ ω(1), let Λ̂, τ ∈ Θ(
√

n), and let q = Λ. Then (H1,H2)
is (κ̂Λ̂, κ̂, τ, q)-hard.

Theorem 14. Define a static-memory hash function family (H1,H2) as follows:
let H1 be the graph function family Fκ/q′

G (Graph Construction 8), and let H2

be Hq′
2 as defined in our full version [DLP18] for some q′ ∈ ω(log Λ). Let κ̂ =

κ − ξ log(κ) for any ξ ∈ ω(1), let Λ̂ ∈ Θ(
√

n), let τ ∈ Θ(n), and let q = Λ. Then
(H1,H2) is (κ̂Λ̂, κ̂, τ, q)-hard.
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[ER61] Erdős, P., Rényi, A.: On a classical problem of probability theory. Magyar
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Abstract. In this paper, we give a no-signaling linear probabilistically
checkable proof (PCP) system for polynomial-time deterministic compu-
tation, i.e., a PCP system for P such that (1) the PCP oracle is a linear
function and (2) the soundness holds against any (computational) no-
signaling cheating prover, who is allowed to answer each query according
to a distribution that depends on the entire query set in a certain way.
To the best of our knowledge, our construction is the first PCP system
that satisfies these two properties simultaneously.

As an application of our PCP system, we obtain a 2-message scheme
for delegating computation by using a known transformation. Compared
with existing 2-message delegation schemes based on standard crypto-
graphic assumptions, our scheme requires preprocessing but has a sim-
pler structure and makes use of different (possibly cheaper) standard
cryptographic primitives, namely additive/multiplicative homomorphic
encryption schemes.

1 Introduction

Linear PCP. Probabilistically checkable proofs, or PCPs, are proof systems with
which one can probabilistically verify the correctness of statements with bounded
soundness error by reading only a few bits of proof strings. A central result about
PCPs are the PCP theorem [4,5], which states that every NP statement has a
PCP system such that the proof string is polynomially long and the verification
requires only a constant number of bits of the proof string (the soundness error
is a small constant and can be reduced by repetition).

An important application of PCPs to Cryptography is succinct argument
systems, i.e., argument systems that have very small communication complexity
and fast verification time. A famous example of such argument systems is that
of Kilian [41], which proves an NP statement by using PCPs as follows.

1. The prover first generates a polynomially long PCP proof for the statement
(this is possible thanks to the PCP theorem) and succinctly commits to it by
using Merkle’s tree-hashing technique.

2. The verifier queries a few bits of the PCP proof just like the PCP verifier.
3. The prover reveals the queried bits by appropriately opening the commitment

using the local opening property of Merkle’s tree-hashing.
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This argument system of Kilian has communication complexity and verification
time that depend on the classical NP verification time only logarithmically;
that is, a proof for the membership of an instance x in an NP language L has
communication complexity and verification time poly(λ + |x| + log t), where λ
is the security parameter, t is the time to evaluate the NP relation of L on
x, and poly is a polynomial that is independent of L. Kilian’s technique was
later extended to obtain succinct non-interactive argument systems (SNARGs)
for NP in the random oracle model [46] as well as in the standard model with
non-falsifiable assumptions (such as the existence of extractable hash functions),
e.g., [13,28].1

Recently, the studies of succinct argument systems have been boosted by the
use of a specific type of PCPs called linear PCPs, which are PCPs such that the
honest proofs are linear functions (i.e., the honest proof strings are the truth
tables of linear functions).2 (The proof strings of linear PCPs are exponentially
long in general, but each bit of the proof strings can be computed efficiently
by evaluating the underlying linear functions). A nice property of linear PCPs
is that they often have much simpler structures than the polynomially long
PCPs; as a result, the use of linear PCPs often lead to simpler constructions of
succinct argument systems. The use of linear PCPs in the context of succinct
argument systems was initiated by Ishai, Kushilevitz, and Ostrovsky [37], who
used them for constructing an argument system for NP with a laconic prover
(i.e., a prover that sends to the verifier only short messages). Subsequently,
several works obtain practical implementations of the argument system of Ishai
et al. [49–53], whereas others extended the technique of Ishai et al. for the use for
SNARGs and obtained practical implementations of preprocessing SNARGs (i.e.,
SNARGs that require expensive (but reusable) preprocessing setups) [9,11,16].

No-signaling PCP. Very recently, Kalai, Raz, and Rothblum [39,40] found
that PCPs with a stronger soundness guarantee, called soundness against no-
signaling provers, are useful for constructing 2-message succinct argument sys-
tems under standard assumptions. Concretely, Kalai et al. [39,40] first con-
structed no-signaling PCPs (i.e., PCPs that are sound against no-signaling
provers) for deterministic computation, and next showed that their no-signaling
PCPs can be used to obtain 2-message succinct argument systems for determin-
istic computation under the assumptions of the existence of quasi-polynomially
secure fully homomorphic encryption schemes or (2-message, polylogarithmic-
communication, single-server) private information retrieval schemes. The suc-
cinct argument systems of Kalai et al. differ from prior ones in that they can
handle only deterministic computation but require just two messages and is
proven secure under standard assumptions. (In contrast, the argument system of

1 Actually, SNARGs in the standard model require the existence of common reference
strings, and some constructions of them further require that the verifier has some
private information about the common reference strings.

2 In general, soundness is required to hold against any (possibly non-linear) functions;
linear PCPs with this notion of soundness is sometimes called “strong linear PCPs”
[16].
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Kilian and prior SNARG systems can handle non-deterministic computation but
the former requires four messages and the latter are proven secure only in ideal
models such as the random oracle model or under non-falsifiable knowledge-type
assumptions).

As observed by Kalai et al. [39,40], 2-message succinct argument systems
have a direct application in delegating computation [32] (or verifiable computation
[30]). Specifically, consider a setting where there exist a computationally weak
client and a computationally powerful server, and the client wants to delegate a
heavy computation to the server. Given a 2-message succinct argument system,
the client can delegate the computation to the server in such a way that it
can verify the correctness of the server’s computation very efficiently (i.e., much
faster than doing the computation from scratch).

After the results of Kalai et al. [39,40], no-signaling PCPs and their appli-
cations to delegation schemes have been extensively studied. Kalai and Paneth
[38] extend the results of Kalai et al. [40] and obtain a delegation scheme for
deterministic RAM computation, and Brakerski, Holmgren, and Kalai [20] fur-
ther extend it so that the scheme is adaptively sound (i.e., sound even when the
statement is chosen after the verifier’s message) and in addition can be based on
polynomially hard standard cryptographic assumptions. Paneth and Rothblum
[47] give an adaptively sound delegation scheme for deterministic RAM compu-
tation with public verifiability (i.e., with a property that not only the verifier but
also anyone can verify proofs) albeit with the use of a new cryptographic assump-
tion. Badrinarayanan, Kalai, Khurana, Sahai, and Wichs [7] give an adaptively
sound delegation scheme for low-space non-deterministic computation (i.e., non-
deterministic computation whose space complexity is much smaller than time
complexity) under sub-exponentially hard cryptographic assumptions.

Kalai et al. [39,40] and the abovementioned subsequent works on delegation
schemes use no-signaling PCPs with polynomial length. As a result, compared
with the delegation schemes that can be obtained from, e.g., the preprocessing
SNARGs based on linear PCPs [9,11,16], their delegation schemes have complex
structures.

1.1 Our Results

In this paper, we study the problem of constructing no-signaling linear PCPs,
i.e., linear PCPs that are sound against no-signaling provers. Our main motiva-
tion is to obtain a PCP that inherits good properties from both of linear PCPs
and no-signaling PCPs. Thus, our goal is to obtain a no-signaling linear PCP
that can be used to obtain a 2-message delegation scheme that is secure under
standard cryptographic assumptions (like those that are based on no-signaling
PCPs) and has a simple structure (like those that are based on linear PCPs).

Main Result: No-signaling Linear PCP for P. The main result of
this paper is an unconditional construction of no-signaling linear PCPs for
polynomial-time deterministic computation. We focus our attention on PCPs
that proves correctness of arithmetic circuit computation, so our construction
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handles statements of the form (C,x,y), where C is a polynomial-size arithmetic
circuit and the statement to be proven is “C(x) = y holds.”

Theorem (informal). There exists a no-signaling linear PCP for the cor-
rectness of polynomial-size arithmetic circuit computation. The proof genera-
tion algorithm runs in time poly(|C|), the verifier query algorithm runs in time
poly(λ+ |C|), and the verifier decision algorithm runs in time poly(λ+ |x|+ |y|).
A formal statement of this theorem is given as Theorem 1 in Sect. 4. To the best
of our knowledge, our construction is the first linear PCP that is sound against
no-signaling provers. (See Sect. 1.3 for concurrent independent works).

Our no-signaling linear PCP inherits simplicity from existing linear PCPs.
Indeed, the proof string of our PCP is identical with that of the well-known
linear PCP of Arora, Lund, Motwani, Sudan, and Szegedy [4]. Regarding the
verifier, we added slight modifications to that of Arora et al. to simplify the
analysis; however, we do not think that these modifications are fundamental.

The analysis of our PCP is, at a very high level, a combination of the analysis
of the linear PCP of Arora et al. [4] and that of the no-signaling PCP of Kalai
et al. [40]. A difficulty comes from the fact that the analysis of the no-signaling
PCP of Kalai et al. partly rely on the specific construction of their PCP (which is
based on the PCP of Babai, Fortnow, Levin, and Szegedy [6]), and we overcome
this difficulty by modifying the analysis of the no-signaling PCP of Kalai et
al. appropriately by borrowing techniques from the analysis of the linear PCP
of Arora et al. Along the way, we also modify the analysis of Kalai et al. so
that, unlike the analysis of Kalai et al., our analysis does not require that the
statement is represented by an “augmented layered circuit” and only requires
that it is represented by a layered circuit,3 so our PCP can work on smaller and
simpler circuits; we think that this modification may be of independent interest.
(The downside of this modification is that the analysis of no-signaling soundness
becomes a little more complex. Specifically, we cannot use the notion of local-
assignment generators [47] to analyze no-signaling soundness in a modular way).
A more detailed overview of our analysis is given in Sect. 3.

Application: Delegation Scheme for P in the Preprocessing Model. As
an application of our no-signaling linear PCP, we construct a 2-message delega-
tion scheme for polynomial-time deterministic computation under standard cryp-
tographic assumptions. Just like previous linear-PCP–based delegation schemes
and succinct arguments (such as that of Bitansky et al. [16]), our delegation
scheme works in the preprocessing model, so our scheme uses expensive offline
setups that can be used for proving multiple statements. When the statement is
(C,x,y), the running time of the client is poly(λ + |C|) in the offline phase and
is poly(λ + |x| + |y|) in the online phase. Our delegation scheme is adaptively
secure in the sense that the input x can be chosen in the online phase, and is
“designated-verifier type” in the sense that the verification requires a secret key.

3 Our analysis does not require the space complexity of the computation to be bounded
either.
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We obtain our delegation scheme by applying the transformation of Kalai et al.
[39,40] on our no-signaling liner PCP. (The transformation of Kalai et al., which
is closely related to those of Biehl, Meyer, and Wetzel [12] and Aiello, Bhatt,
Ostrovsky, and Rajagopalan [1], transforms a no-signaling PCP to a 2-message
delegation scheme).

Compared with the existing 2-message delegation schemes based on polyno-
mially long no-signaling PCPs (such as that of Kalai et al. [40]), our scheme
requires preprocessing, but has a simple structure and uses different (possibly
cheaper) tools thanks to the use of linear PCPs. Concretely, thanks to the use
of linear PCPs, we can avoid the use of fully homomorphic encryption schemes
or 2-message private information retrieval schemes, and can instead use additive
homomorphic encryption schemes over prime-order fields (such as that of Gold-
wasser and Micali [33]) or multiplicative homomorphic encryption schemes over
prime-order bilinear groups (such as the DLIN-based linear encryption scheme
of Boneh, Boyen, and Shacham [18]).

1.2 Prior Works

Delegation Scheme. Delegation schemes (and verifiable computation schemes)
have been extensively studied in literature. Other than those that we mentioned
above, existing results that are related to ours are the following. (We focus our
attention on non-interactive or 2-message delegation schemes for all deterministic
or non-deterministic polynomial-time computation).

Delegation schemes for non-deterministic computation. The existing
constructions of (preprocessing) SNARGs, such as [13–16,19,28,29,31,34,35,44,
45], can be directly used to obtain delegation schemes for NP, and some of
them can be used even to obtain publicly verifiable ones. Additionally, it was
shown recently that an interactive variant of PCPs, called interactive oracle
proofs, can also be used to obtain delegation schemes for NP [10]. The secu-
rity of these delegation schemes holds under non-standard assumptions (e.g.,
knowledge assumptions) or in ideal models (e.g., the generic group model and
the random oracle model). Compared with these schemes, our scheme works only
for P and requires preprocessing, but can be proven secure in the standard model
under a standard assumption (namely the existence of homomorphic encryption
schemes).

Delegation schemes for deterministic computation. Other than the
abovementioned recent works that obtain delegation schemes for P without pre-
processing by using no-signaling PCPs (i.e., Kalai et al. [39,40] and the sub-
sequent works), there are plenty of works that obtain delegation schemes for P
without using PCPs. Specifically, some works obtain schemes with preprocessing
by using fully homomorphic encryption or attribute-based encryption schemes
[27,30,48], and others obtain schemes without preprocessing by using multi-
linear maps or indistinguishability obfuscators (e.g., [2,17,21–24,43]). Compared
with these schemes, our scheme requires preprocessing but only uses relatively
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simple building blocks (namely a linear PCP and a homomorphic encryption
scheme).

1.3 Concurrent Works

In independent concurrent works, Holmgren and Rothblum [36] and Chiesa,
Manohar, and Shinkar [25] also observe that one can obtain no-signaling PCPs
for P without relying on the “augmented circuit” technique of Kalai et al. [40].
The technique by Holmgren and Rothblum works when the underlying PCP is
that of Babai et al. [6] (as in the work of Kalai et al. [40]) and the one by Chiesa
et al. works when the underlying PCP is that of Arora et al. [4] (as in this paper).

The work of Chiesa et al. [25] actually has many other similarities with our
work, and in particular their work also shows that the linear PCP of Arora et
al. [4] is sound against no-signaling cheating provers. We remark however that
there are also a few differences between their work and our work, such as:

– Chiesa et al. achieve constant soundness error with constant query complexity
while we focus on achieving negligible soundness error and did not try to
optimize the query complexity (currently, our analysis requires polynomial
query complexity4).

– Chiesa et al. prove soundness against cheating provers that are no-signaling in
a strong sense (namely, “perfect no-signaling”) while we prove soundness even
against those that are no-signaling in a weak sense (namely, “computational
no-signaling”).

– The analysis of Chiesa et al. uses the equivalence between no-signaling
functions and quasi-distributions5 over functions while ours does not use
this equivalence. (The equivalence between no-signaling functions and quasi-
distributions was shown by Chiesa, Manohar, and Shinkar [26] relying on
Fourier analytic techniques).

Remark 1. Chiesa et al. [25] use the term “no-signaling linear PCPs” in a differ-
ent meaning from us. Specifically, Chiesa et al. use it to refer to PCPs such that
honest proofs are linear functions and the soundness holds against no-signaling
cheating provers that are equivalent with quasi-distributions over linear func-
tions, while we use it to refer to PCPs such that honest proofs are linear func-
tions and the soundness holds against any no-signaling cheating provers (which
are not necessarily equivalent with quasi-distributions over linear functions).

1.4 Outline

We introduce notations and definitions in Sect. 2, give an overview of our no-
signaling linear PCP in Sect. 3, describe our no-signaling linear PCP in Sect. 4,
4 It is likely that the query complexity of our PCP can be reduced to polylogarithmic,

but we have not verified it formally.
5 Quasi-distributions are a generalized notion of probability distributions and allow

negative probabilities.
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and describe the application to delegation schemes in Sect. 5. Due to space limi-
tations, we omit the formal security analyses of our schemes and refer the readers
to the full version of this paper [42].

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by λ. Let N be the set of all natural numbers.
For any k ∈ N, let [k] def= {1, . . . , k}.

We denote a vector in a bold shape (e.g., v). For a vector v = (v1, . . . , vλ)
and a set S ⊆ [λ], let v|S def= {vi}i∈S . Similarly, for a function f : D → R

and a set S ⊆ D, let f |S def= {f(i)}i∈S . For two vectors u = (u1, . . . , uλ),
v = (v1, . . . , vλ) of the same length (where each element is a field element), let
〈u,v〉 def=

∑
i∈[λ] uivi denote their inner product and u⊗v

def= (uivj)i,j∈[λ] denote
their tensor product.6

For a set S, we denote by s ← S a process of obtaining an element s ∈ S
by a uniform sampling from S. Similarly, for any probabilistic algorithm Algo,
we denote by y ← Algo a process of obtaining an output y by an execution of
Algo with uniform randomness. For an event E and a probabilistic process P ,
we denote Pr [E | P ] the probability of E occuring over the randomness of P .

2.2 Circuits

All circuits in this paper are arithmetic circuits over finite fields of prime orders,
and they have addition and multiplication gates with fan-in 2. We assume with-
out loss of generality that they are “layered,” i.e., the gates in a circuit can be
partitioned into layers such that (1) the first layer consists of the input gates
and the last layer consists of the output gates, and (2) the gates in the i-th layer
have children in the (i − 1)-th layer.

Given a circuit C, we use F to denote the underlying finite field, N to denote
the number of the wires,7 n to denote the number of the input gates, and m to
denote the number of the output gates. We assume that the first n wires of C are
those that takes the values of the input gates and the last m ones are those that
takes the value of the output gates. (Formally, F, N, n,m should be written as,
e.g., FC , NC , nC ,mC since they depend on the circuit C. However, to simplify
the notations, we avoid expressing this dependence). When we consider a circuit
family {Cλ}λ∈N, it is implicitly assumed that the size of each Cλ is bounded by
poly(λ).

6 In this paper, the tensor product of two vectors are viewed as a vector (with an
appropriate ordering of the elements) rather than a matrix.

7 We assume that for any gate with fan-out more than one, all the output wires from
that gate share the same index i ∈ [N ].
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2.3 Probabilistically Checkable Proofs (PCPs)

Roughly speaking, probabilistically checkable proofs (PCPs) are proof systems
with which one can probabilistically verify the correctness of statements by read-
ing only a few bits of the proof strings. A formal definition is given below.

Remark 2 (On the definition that we use). For convenience, we give a defini-
tion that is tailored to our purpose. Specifically, our definition differs from the
standard one in the following way.

1. We require that the soundness error is negligible in the security parameter.
2. We only consider proofs for the correctness of deterministic arithmetic circuit

computation, i.e., membership proofs for the following language.

{(C,x,y) | C is an arithmetic circuit s.t. C(x) = y}.

3. We implicitly require that PCP systems satisfy two auxiliary properties
(which almost all existing constructions satisfy), namely relatively efficient
oracle construction and non-adaptive verifier [8].

4. We assume that the verifier’s queries depend only on the circuit C and do not
depend on the input x and the output y. (This assumption will be useful later
when we define adaptive soundness against no-signaling cheating provers). ♦

Definition 1 (PCPs for correctness of arithmetic circuit computation).
A probabilistically checkable proof (PCP) system for the correctness of arith-
metic circuit computation consists of a pair of ppt Turing machines V = (V0, V1)
(called verifier) and a ppt Turing machine P (called prover) that satisfy the fol-
lowing.

– Syntax. For every arithmetic circuit C, there exist
• finite sets DC and ΣC (called proof domain and proof alphabet) and
• a polynomial κV (called query complexity of V )

such that for every input x of C, the output y := C(x), and every security
parameter λ ∈ N,

• P (C,x) outputs a function π : DC → ΣC (called proof),
• V0(1λ, C) outputs a string stV ∈ {0, 1}∗ (called state) and a set Q ⊂ DC

of size κV (λ) (called queries), and
• V1(stV ,x,y, π|Q) outputs a bit b ∈ {0, 1}.

– Completeness. For every arithmetic circuit C, every input x of C, the out-
put y := C(x), and every security parameter λ ∈ N,

Pr
[

V1(stV ,x,y, π|Q) = 1
∣
∣
∣
∣

π ← P (C,x)
(Q, stV ) ← V0(1λ, C)

]

= 1.

– Soundness. For any circuit family {Cλ}λ∈N and any probabilistic Turing
machine P ∗ (called cheating prover), there exists a negligible function negl
such that for every security parameter λ ∈ N,

Pr
[

V1(stV ,x,y, π∗|Q) = 1 ∧ Cλ(x) �= y

∣
∣
∣
∣

(Q, stV ) ← V0(1λ, Cλ)
(x,y, π∗) ← P ∗(1λ, Cλ)

]

≤ negl(λ).
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♦

A PCP system is said to be linear if it satisfies an additional property that
the proof is a linear function.

Definition 2 (Linear PCPs). Let (P, V ) be any PCP system and {DC}C be
its proof domains. Then, (P, V ) is said to be linear if for every arithmetic circuit
C and input x of C,

Pr

⎡

⎣
∧

u,v∈DC

π(u) + π(v) = π(u + v)

∣
∣
∣
∣
∣
∣
π ← P (C,x)

⎤

⎦ = 1.

2.4 No-signaling PCPs

No-signaling PCPs [39,40] are PCP systems that guarantee soundness against a
stronger class of cheating provers called no-signaling cheating provers. The main
difference between no-signaling cheating provers and normal cheating provers
in that, while a normal cheating prover is required to output a PCP proof π∗

before seeing queries Q, a no-signaling cheating prover is allowed to output π∗

after seeing Q. There is however a restriction on the distribution of π∗; roughly
speaking, it is required that for any (not too large) sets Q,Q′ such that Q′ ⊂ Q,
the distribution of π∗|Q′ when the queries are Q should be indistinguishable from
the distribution of it when the queries are Q′. The formal definition is given
below. (The following definition is the “computational” variant of the definition,
which is given by Brakerski et al. [20]).

Definition 3 (No-signaling cheating prover). Let (P, V ) be any PCP sys-
tem, {DC}C and {ΣC}C be the proof domains and proof alphabets of (P, V ),
{Cλ}λ∈N be any circuit family, and P ∗ be any probabilistic Turing machine with
the following syntax.

– Given the security parameter λ ∈ N, the circuit Cλ, and a set of queries
Q ⊂ DCλ

as input, P ∗ outputs an input x of Cλ, an output y of Cλ, and a
partial function π∗ : Q → ΣCλ

. (Note that π∗ can be viewed as a PCP proof
whose domain is restricted to Q).

Then, for any polynomial κmax, P ∗ is said to be a κmax-wise (computational)
no-signaling cheating prover if for any ppt Turing machine D, there exists a
negligible function negl such that for every λ ∈ N, every Q,Q′ ⊂ DCλ

such that
Q′ ⊂ Q and |Q| ≤ κmax(λ), and every z ∈ {0, 1}poly(λ),
∣
∣
∣
∣
Pr

[D(Cλ,x,y, π∗|Q′ , z) = 1
∣
∣ (x,y, π∗) ← P ∗(1λ, Cλ, Q)

]

−Pr
[D(Cλ,x,y, π∗, z) = 1

∣
∣ (x,y, π∗) ← P ∗(1λ, Cλ, Q′)

]
∣
∣
∣
∣ ≤ negl(λ).

♦

Now, we define no-signaling PCPs as the PCP systems that satisfy soundness
according to the following definition.
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Definition 4 (Soundness against no-signaling cheating provers). Let
(P, V ) be any PCP system and κmax be any polynomial. Then, (P, V ) is said
to be sound against κmax-wise (computational) no-signaling cheating provers if
for any circuit family {Cλ}λ∈N and κmax-wise no-signaling cheating prover P ∗,
there exists a negligible function negl such that for every λ ∈ N,

Pr
[

V1(stV ,x,y, π∗) = 1 ∧ Cλ(x) �= y

∣
∣
∣
∣

(Q, stV ) ← V0(1λ, Cλ)
(x,y, π∗) ← P ∗(1λ, Cλ, Q)

]

≤ negl(λ).

♦

3 Technical Overview

In this section, we give an overview of our no-signaling linear PCP system. Recall
that our focus is on PCP systems for the correctness of arithmetic computation,
which are PCP systems that take as input a tuple (C,x,y) and prove that
C(x) = y holds. We focus on arithmetic circuits over prime-order fields. Given a
circuit C, we use F to denote the underlying finite field, N to denote the number
of the wires,8 n to denote the number of the input gates, and m to denote the
number of the output gates. We assume that the first n wires are the wires that
takes the values of the input gates and the last m ones are those that takes
the value of the output gates. In this overview we focus on circuits with output
length 1 (i.e., m = 1).

3.1 Preliminary: Linear PCP of Arora et al. [4]

The construction and analysis of our PCP system is based on the linear PCP
system of Arora et al. [4] (ALMSS linear PCP in short), so let us start by
recalling it. We describe only the construction of ALMSS linear PCP below;
good explanations of the analysis of ALMSS linear PCP can be found in, e.g.,
the textbook by Arora and Barak [3, Chap. 11.5].

Main Tool: Walsh–Hadamard Code. The main tool of ALMSS linear PCP
system is Walsh–Hadamard code. Recall that Walsh–Hadamard code maps a
string v ∈ F

� to the linear function WHv : x → 〈v,x〉. A useful property of
Walsh–Hadamard code is that errors on codewords can be easily “self-corrected.”
In particular, if a function f is (1 − δ)-close to a linear function f̂ (i.e., if there
exists a linear function f̂ such that Pr[f(r) = f̂(r) | r ← F

�] ≥ 1 − δ), we can
evaluate f̂ on any point x ∈ F

� with error probability 2δ though the following
simple probabilistic procedure.

Algorithm Self-Correctf (x ):
Choose random r ∈ F

� and output f(x + r) − f(r).
8 We assume that for any gate with fan-out more than one, all the output wires from

that gate share the same index i ∈ [N ].



No-signaling Linear PCPs 77

Construction of ALMSS Linear PCP. On input (C,x), the prover P com-
putes the PCP proof as follows. First, P computes y := C(x) and then obtains
the following system of quadratic equations over F, which is designed so that it
is satisfiable if and only if C(x) = y. Intuitively, the system has variables that
represent the wire values of C, and the equations in the system guarantee that
(1) the correct input values x = (x1, . . . , xn) are assigned on the input gates, (2)
each gate is correctly computed, and (3) the claimed output value y is assigned
on the output gate. Formally, the system of equations is defined as follows.

– The variables are z = (z1, . . . , zN ).
– For each i ∈ {1, . . . , n}, the system has the equation zi = xi.
– For each i, j, k ∈ [N ], the system has zi + zj − zk = 0 if C has an addition

gate with input wire i, j and output wire k, and has zi · zj − zk = 0 if C has
a multiplication gate with input wire i, j and output wire k.

– The system has the equation zN = y.

Let us denote this system of quadratic equations by Ψ = {Ψi(z) = ci}i∈[M ],
where M is the number of the equations. Then, P obtains the satisfying assign-
ment w = (w1, . . . , wN ) of Ψ through the wire values of C on x, and outputs the
two linear functions πf (v) := 〈v,w〉 and πg(v′) := 〈v′,w⊗w〉 as the PCP proof.9

(In short, the PCP proof is Walsh–Hadamard encodings of w and w ⊗ w).
Next, on input (C,x, y), the verifier V verifies the PCP proof as follows. First,

V obtains the system of equations Ψ = {Ψi(z) = ci}i∈[M ]. Then, V applies the
following three tests on the PCP proof λ times in parallel.

1. (Linearity Test). Choose random points r1, r2 ∈ F
N and r′

1, r
′
2 ∈ F

N2
and

check πf (r1) + πf (r2)
?= πf (r1 + r2) and πg(r′

1) + πg(r′
2)

?= πg(r′
1 + r′

2).
2. (Tensor-Product Test). Choose two random points r1, r2 ∈ F

N , run ar1 ←
Self-Correctπf (r1), ar2 ← Self-Correctπf (r2), ar1⊗r2 ← Self-Correctπg (r1 ⊗
r2), and check ar1ar2

?= ar1⊗r2 .
3. (SAT Test). Choose a random point σ = (σ1, . . . , σM ) ∈ F

M , compute a
quadratic function Ψσ (z) :=

∑M
i=1 σiΨi(z), run aψσ

← Self-Correctπf (ψσ ),
aψ ′

σ
← Self-Correctπg (ψ′

σ ) for the coefficient vectors ψσ ,ψ′
σ such that

〈ψσ ,z〉 + 〈ψ′
σ ,z ⊗ z〉 = Ψσ (z), and check aψσ

+ aψ ′
σ

?= cσ , where cσ :=
∑M

i=1 σici.

Comment: Roughly speaking, Linearity Test guarantees that πf , πg are
close to some linear functions f̂ , ĝ, Tensor-Product Test guarantees that
f̂ , ĝ are Welsh–Hadamard encodings of w̃, w̃ ⊗ w̃ for some w̃ ∈ F

N , and
SAT Test guarantees that w̃ is the satisfying assignment of Ψ , which
implies that Ψ is satisfiable and thus the statement is true. (In Tensor-
Product Test and SAT Test, Self-Correct is used so that, if πf , πg are indeed

9 Formally, P outputs a single linear function (with which the verifier can evaluate
both πf and πg) as the PCP proof, but in this overview we simply think that the
prover outputs two linear function as the PCP proof.
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close to some linear functions f̂ , ĝ, the verifier can evaluate f̂ , ĝ through
πf , πg with high probability). We refer the readers to [3, Chap. 11.5] for
details of the analysis of ALMSS linear PCP.

V accepts the proof if it passes these three tests in all the λ parallel trials. It
can be verified by inspection that, as required in Definition 1, the verifier can
be decomposed into V0 and V1, where V0 samples queries to the tests and V1

verifies the answers from the PCP proof. (Note that V0 can sample all queries
before knowing x and y since the coefficient vectors ψσ ,ψ′

σ in SAT Test can be
computed from C).

3.2 Construction of Our No-signaling Linear PCP

The construction of our PCP system, (P, V ), is essentially identical with that of
ALMSS linear PCP. There is a slight difference in the verifier algorithm (in our
PCP system, Self-Correct samples many candidates of the self-corrected values
and takes the majority), but we ignore this difference in this overview. It can be
verified by inspection that the running time of P is poly(|C|), the running time
of V0 is poly(λ + |C|), and the running time of V1 is poly(λ + |x| + |y|).

3.3 Analysis of Our PCP

Our goal is to show that our PCP system (P, V ) is sound against κmax-wise
no-signaling cheating provers for sufficiently large polynomial κmax. That is,
our goal is to show that for every circuit family {Cλ}λ∈N and every κmax-wise
no-signaling cheating prover P ∗, we have

Pr
[

V1(stV ,x, y, π∗) = 1
∧ Cλ(x) �= y

∣
∣
∣
∣

(Q, stV ) ← V0(1λ, Cλ)
(x, y, π∗) ← P ∗(1λ, Cλ, Q)

]

≤ negl(λ) (1)

for every λ ∈ N.
Toward this goal, for any sufficiently large κmax and any κmax-wise no-

signaling cheating prover P ∗, we assume that we have

Pr
[

V1(stV ,x, y, π∗) = 1
∣
∣
∣
∣

(Q, stV ) ← V0(1λ, Cλ)
(x, y, π∗) ← P ∗(1λ, Cλ, Q)

]

≥ 1
poly(λ)

(2)

for infinitely many λ ∈ N (let Λ be the set of those λ’s) and show that we have

Pr
[

Cλ(x) �= y

∣
∣
∣
∣

(Q, stV ) ← V0(1λ, Cλ)
(x, y, π∗) ← P ∗(1λ, Cλ, Q)

]

≤ negl(λ) (3)

for every sufficiently large λ ∈ Λ. Clearly, showing Eq. (3) while assuming Eq. (2)
is sufficient for showing Eq. (1) (this is because it implies that for every polyno-
mial poly, either we have V1(stV ,x, y, π∗) = 1 with probability at most 1/poly(λ)
or we have Cλ(x) �= y with probability at most 1/poly(λ) for each sufficiently
large λ ∈ N).

To explain the overall structure of our analysis, we first show Eq. (3) while
assuming the following (very strong) simplifying assumptions instead of Eq. (2).
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Simplifying Assumption 1. P ∗ convinces the verifier V with overwhelming
probability. That is, we have

Pr
[

V1(stV ,x, y, π∗) = 1
∣
∣
∣
∣

(Q, stV ) ← V0(1λ, Cλ)
(x, y, π∗) ← P ∗(1λ, Cλ, Q)

]

≥ 1 − negl(λ) (4)

for infinitely many λ ∈ N. (In what follows, we override the definition of Λ and
let it be the set of these λ’s). ♦

Simplifying Assumption 2. P ∗ creates a proof that passes each of Linearity
Test, Tensor-Product Test, and SAT Test on any points with overwhelming
probability. That is, for every sufficiently large λ ∈ Λ, we have the following.
(We assume without loss of generality that P ∗ always outputs a PCP proof
π∗ = (π∗

f , π∗
g) that consists of two functions π∗

f and π∗
g).

– (Linearity of π∗
f). For every u,v ∈ F

N ,

Pr

[
π∗

f (u) + π∗
f (v)

= π∗
f (u + v)

∣∣∣∣ (x, y, π∗) ← P ∗(1λ, Cλ, {u, v, u + v})

]
≥ 1 − negl(λ), (5)

– (Linearity of π∗
g). For every u,v ∈ F

N2
,

Pr

[
π∗

g(u) + π∗
g(v)

= π∗
g(u + v)

∣∣∣∣ (x, y, π∗) ← P ∗(1λ, Cλ, {u, v, u + v})

]
≥ 1 − negl(λ), (6)

– (Tensor-Product Consistency of π∗
f , π∗

g). For every u,v ∈ F
N ,

Pr

[
π∗

f (u)π∗
f (v)

= π∗
g(u ⊗ v)

∣∣∣∣ (x, y, π∗) ← P ∗(1λ, Cλ, {u, v, u ⊗ v})

]
≥ 1 − negl(λ), (7)

– (SAT Consistency of π∗
f , π∗

g). For every σ ∈ F
M ,

Pr

[
π∗

f (ψσ ) + π∗
g(ψ′

σ )
= cσ

∣∣∣∣ (x, y, π∗) ← P ∗(1λ, Cλ, {ψσ , ψ′
σ })

]
≥ 1 − negl(λ). (8)

♦

At the end of this subsection, we explain how we remove these simplifying
assumptions in the actual analysis.

Under the above two simplifying assumptions, we obtain Eq. (3) as follows.
Notice that if the statement is true and the PCP proof is correctly generated,
then the first part of PCP proof, πf (v) = 〈v,w〉, is the linear function whose
coefficient vector is the satisfying assignment w of the system of equations Ψ =
{Ψi(z) = ci}i∈[M ], so we can recover the satisfying assignment on any variable
zi by appropriately evaluating πf . (Concretely, given πf , we can obtain the
satisfying assignment on zi by evaluating πf on ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ F

N ,
where only the i-th element of ei is 1). Now, we first observe that we can obtain
Eq. (3) by showing that the “cheating assignment” that we recover from the
cheating prover P ∗ is “correct” in the following two ways.
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1. The assignment on zN (which represents the value of the output gate) is equal
to the claimed output value. That is, for every sufficiently large λ ∈ Λ,

Pr
[
π∗

f (eN ) = y
∣
∣ (x, y, π∗) ← P ∗(1λ, Cλ, {eN})

] ≥ 1 − negl(λ). (9)

2. The assignment on zN is equal to the actual output value. That is, for every
sufficiently large λ ∈ Λ,

Pr
[
π∗

f (eN ) = Cλ(x)
∣
∣ (x, y, π∗) ← P ∗(1λ, Cλ, {eN})

] ≥ 1 − negl(λ). (10)

Indeed, given Eqs. (9) and (10), we can easily obtain Eq. (3) as follows: first, we
obtain

Pr
[
Cλ(x) = y

∣
∣ (x, y, π∗) ← P ∗(1λ, Cλ, {eN})

] ≥ 1 − negl(λ)

by applying the union bound on Eqs. (9) and (10); then, we obtain Eq. (3) by
using the no-signaling property of P ∗ to argue that the probability of Cλ(x) = y
holding decreases only negligibly when the queries to P ∗ are changed from {eN}
to {eN} ∪ Q and from {eN} ∪ Q to Q.10 (Notice that the distinguisher in the
no-signaling game can check Cλ(x) ?= y efficiently). Therefore, to conclude the
analysis (under the simplifying assumptions), it remains to prove Eqs. (9) and
(10).

Step 1. Showing Consistency with the Claimed Computation. First, we
explain how we obtain Eq. (9) under the simplifying assumptions on P ∗.

To obtain Eq. (9), we prove a stronger claim on the cheating assignment.
Recall that from the construction of Ψ = {Ψi(z) = ci}i∈[M ], each equation
of Ψ is defined with at most three variables, and in particular each equation
Ψi(z) = ci can be written as

∑
j∈{α,β,γ} djzj+

∑
j,k∈{α,β,γ} dj,kzjzk = ci for some

α, β, γ ∈ [N ] (α < β < γ), dj ∈ {−1, 0, 1} (j ∈ {α, β, γ}), and dj,k ∈ {−1, 0, 1}
(j, k ∈ {α, β, γ}). Then, we consider the following claim.

1′. (Consistency with Claimed Computation) For any equation Ψi(z) = ci

of Ψ , which can be written as
∑

j∈{α,β,γ}
djzj +

∑

j,k∈{α,β,γ}
dj,kzjzk = ci,

the cheating assignment on zα, zβ , zγ is a satisfying assignment of this equa-
tion. That is, for every sufficiently large λ ∈ Λ and every i ∈ [M ], we have

Pr
[
Consisti(Cλ,x, y, π∗)

∣
∣ (x, y, π∗) ← P ∗(1λ, Cλ, {eα,eβ ,eγ})

]

≥ 1 − negl(λ), (11)

where Consisti(Cλ,x, y, π∗) is the event that we have
∑

j∈{α,β,γ}
djπ

∗
f (ej) +

∑

j,k∈{α,β,γ}
dj,kπ∗

f (ej)π∗
f (ek) = ci.

10 We assume κmax(λ) ≥ κV (λ) + 1, where κV is the query complexity of V .
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Clearly, this claim implies Eq. (9) since Ψ has the equation zN = y.
Hence, we focus on showing the stronger claim that Eq. (11) holds. Fix any

sufficiently large λ ∈ Λ and any i ∈ [M ]. First, since the cheating PCP proof
passes SAT Test on any points (Eq. (8) of Simplifying Assumption 2), we have

Pr
[
π∗

f (ψei
) + π∗

g(ψ′
ei

) = cei

∣
∣ (x, y, π∗) ← P ∗(1λ, Cλ, {ψei

,ψ′
ei

})
]

≥ 1 − negl(λ), (12)

where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ F
M . Second, since we have ψei

=∑
j∈{α,β,γ} djej , ψ′

ei
=

∑
j,k∈{α,β,γ} dj,kej ⊗ ek, and cei

= ci from the defi-
nitions, Eq. (12) implies Eq. (11) if we have the following three items with over-
whelming probability.11

– π∗
f (

∑
j∈{α,β,γ} djej) =

∑
j∈{α,β,γ} djπ

∗
f (ej).

– π∗
g(

∑
j,k∈{α,β,γ} dj,kej ⊗ ek) =

∑
j,k∈{α,β,γ} dj,kπ∗

g(ej ⊗ ek).
– π∗

g(ej ⊗ ek) = π∗
f (ej)π∗

f (ek) for every j, k ∈ {α, β, γ}.

Now, we obtain Eq. (11) since these three items indeed hold with overwhelming
probability due to Simplifying Assumption 2. (We use generalized versions of
Eqs. (5) and (6) for the first two, and use Eq. (7) for the third one).

Step 2. Showing Consistency with the Actual Computation. Next, we
explain how we obtain Eq. (10) under the simplifying assumptions on P ∗.

Without loss of generality, we assume that arithmetic circuits are “layered,”
i.e., the gates in a circuit can be partitioned into layers such that (1) the first
layer consists of the input gates and the last layer consists of the output gate,
and (2) the gates in the i-th layer have children in the (i − 1)-th layer.

The overall strategy is to prove Eq. (10) by induction on the layers. For any
circuit Cλ, let us use the following notations.

– max is the number of the layers, and Ni is the number of the wires in layer i
(i.e., the number of the wires from the gates in layer i). We assume that the
numbering of the wires are consistent with the numbering of the layers, i.e.,
the first N1 wires are those that are in the first layer, the next N2 wires are
those that are in the second layer, etc.

– D1, . . . , D�max are subset of FN such that for every  ∈ [max],

D� := {v = (v1, . . . , vN ) | vi = 0 for ∀i �∈ {N≤�−1 + 1, . . . , N≤�−1 + N�}} ,

where N≤�−1 :=
∑

i∈[�−1] Ni. Notice that when the first part of the correct
PCP proof, πf (v) = 〈v,w〉, is evaluated on v� ∈ D�, it returns a linear
combination of the correct wire values of layer .

11 Formally, to use the union bound, we need to argue that every probability that we
consider in this proof does not change non-negligibly when we obtain π∗ by querying
{eα, eβ , eγ}∪{ej ⊗ek}j,k∈{α,β,γ} ∪{ψei

, ψ′
ei

} to P ∗. Fortunately, every probability
indeed does not change non-negligibly because of the no-signaling property of P ∗.
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Now, to prove Eq. (10), we show that the following three claims holds for every
sufficiently large λ ∈ Λ.

1. The cheating PCP proof is equal to the correct PCP proof on random λ points
in D1. That is,

Pr
U1,π∗

[
∧

u∈U1

π∗
f (u) = πf (u)

]

≥ 1 − negl(λ), (13)

where the probability is taken over u1,i ← D1 (i ∈ [λ]), U1 := {u1,i}i∈[λ], and
(x, y, π∗) ← P ∗(1λ, Cλ, U1), and πf is the correct PCP proof that is generated
by π := P (Cλ,x).

2. For every  ∈ [max], if the cheating PCP proof is equal to the correct PCP
proof on random λ points in D�, they are also equal on any point in D�. That
is, for any v ∈ D�,

Pr
U�,π∗

[

π∗
f (v) = πf (v)

∣
∣
∣
∣
∣

∧

u∈U�

π∗
f (u) = πf (u)

]

≥ 1 − negl(λ), (14)

where the probability is taken over u�,i ← D� (i ∈ [λ]), U� := {u�,i}i∈[λ], and
(x, y, π∗) ← P ∗(1λ, Cλ, {v} ∪ U�).

3. For every  ∈ [max − 1], if the cheating PCP proof is equal to the correct
PCP proof on random λ points in D�, they are also equal on random λ points
in D�+1. That is,

Pr
U�,U�+1,π∗

⎡
⎣ ∧

u ∈U�+1

π∗
f (u) = πf (u)

∣∣∣∣∣∣
∧

u ∈U�

π∗
f (u) = πf (u)

⎤
⎦ ≥ 1 − negl(λ), (15)

where the probability is taken over u�,i ← D� (i ∈ [λ]), u�+1,i ← D�+1 (i ∈
[λ]), U� := {u�,i}i∈[λ], U�+1 := {u�+1,i}i∈[λ], and (x, y, π∗) ← P ∗(1λ, Cλ, U� ∪
U�+1).

Observe that we can indeed obtain Eq. (10) from the above three claims since
Eq. (14) implies that we can obtain Eq. (10) by just showing

Pr
U�max ,π∗

⎡

⎣
∧

u∈U�max

π∗
f (u) = πf (u)

⎤

⎦ ≥ 1 − negl(λ)

(this is because we have πf (eN ) = wN = Cλ(x) from the construction of our
PCP), and we can obtain this inequation by repeatedly using Eq. (15) on top of
Eq. (13).12 Thus, what remain to prove are Eqs. (13), (14), (15).

12 Formally, we need to argue that the probabilities in these inequations do not change
non-negligibly when we change the queries to P ∗, which we can show by relying on
the no-signaling property of P ∗. A key point is that the number of the queries to P ∗

can be bounded by a fixed polynomial in λ.
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1. To obtain Eq. (13), we first use the linearity of the cheating PCP proof (Eq. (5)
of Simplifying Assumption 2) to argue that, since any v ∈ D1 can be written
as a linear combination of e1, . . . ,en ∈ F

N (recall that we have N1 = n), we
can obtain Eq. (13) by just showing that for every i ∈ [n] we have π∗

f (ei) =
πf (ei) with overwhelming probability. Then, we observe that, since we have
πf (ei) = wi = xi for every i ∈ [n] from the construction of our PCP, it
suffices to show that for every i ∈ [n] we have π∗

f (ei) = xi with overwhelming
probability, which we already showed as the consistency with the claimed
computation (Eq. (11) in Step 1).

2. To obtain Eq. (14), we consider a mental experiment where U� = {u�,i}i∈[λ]

is sampled as follows: for each i ∈ [λ], choose random ri ∈ D� and bi ∈ {0, 1}
and then define u�,i by u�,i := ri if bi = 0 and by u�,i := v + ri if bi = 1.
Since each u�,i is still uniformly distributed, it suffices to show Eq. (14) w.r.t.
this mental experiment; in addition, due to the no-signaling property of P ∗,
we can further change the experiment so that π∗ is obtained by (x, y, π∗) ←
P ∗(1λ, Cλ, {v}∪{ri,v +r�,i}i∈[λ]). Now, we obtain Eq. (14) by observing the
following.
(a) Equation (14) is implied by

Pr
U�,π∗

[

π∗
f (v) �= πf (v) ∧

(
∧

u∈U�

π∗
f (u) = πf (u)

)]

≤ negl(λ). (16)

(We assume that ∧u∈U�
π∗

f (u) = πf (u) holds with high probability, which
is indeed the case in our situation).

(b) We can obtain Eq. (16) by combining the following two observations.
First, we have π∗

f (v) �= πf (v) only when we have π∗
f (v + ri) �= πf (v + ri)

or π∗
f (ri) �= πf (ri) for every i ∈ [λ] (this is because we have π∗

f (v) =
π∗

f (v + ri) − π∗
f (ri) for every i ∈ [λ] from the linearity of the cheating

PCP proof13 (Eq. (5) of Simplifying Assumption 2)). Second, when we
have π∗

f (v + ri) �= πf (v + ri) or π∗
f (ri) �= πf (ri) for every i ∈ [λ], we

have ∧u∈U�
π∗

f (u) = πf (u) with probability at most 2−λ since each u�,i

is defined by taking either ri or v + ri randomly.
3. To obtain Eq. (15), we first use the linearity of the cheating PCP proof (Eq. (5)

of Simplifying Assumption 2) and the union bound to argue, just like when
we show Eq. (13), that we can obtain Eq. (15) by just showing that for every
k ∈ {N≤� + 1, . . . , N≤� + N�+1} we have π∗

f (ek) = πf (ek) with overwhelming
probability (where the probability is conditioned on

∧
u∈U�

π∗
f (u) = πf (u)).

Let us focus, for simplicity, on the case that k is the output wire of a multi-
plication gate in the ( + 1)-th layer, where the input wires are i and j in the
-th layer. Then, we observe that we have π∗

f (ek) = πf (ek) if we have

π∗
f (ek) = π∗

f (ei)π∗
f (ej) and π∗

f (ei) = πf (ei) ∧ π∗
f (ej) = πf (ej)

13 Indeed, if we have π∗
f (v + ri) = πf (v + ri) and π∗

f (ri) = πf (ri) for any i ∈ [λ], we
have π∗

f (v) = π∗
f (v + ri) − π∗

f (ri) = πf (v + ri) − πf (ri) = πf (v).
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(this is because these two items imply that π∗
f (ek) = π∗

f (ei)π∗
f (ej) =

πf (ei)πf (ej) = πf (ek), where the last equality holds since πf (ei), πf (ej),
πf (ek) are the satisfying assignment on zi, zj , zk of Ψ , which has the equa-
tion zizj − zk = 0). Finally, we observe that the first item holds with over-
whelming probability since the cheating proof is consistent with the claimed
computation (Eq. (11) in Step 1) and that the second item holds with over-
whelming probability due to Eq. (14) and the union bound (both probabilities
are conditioned on

∧
u∈U�

π∗
f (u) = πf (u)).

How to Remove the Simplifying Assumptions. In the actual analysis, we
remove Simplifying Assumption 1 in the same way as previous works (such as
[20,40]), namely by considering a “relaxed verifier” that accepts a PCP proof
even when the proof fails to pass a small number of the tests. (Concretely, we
consider a verifier that accepts a proof as long as the proof passes the three tests
in at least λ − μ trials, where μ = Θ(log2 λ)). We use the same argument as
the previous works to show that if a cheating prover fools the original verifier
with non-negligible probability, there exists another cheating prover that fools
the relaxed verifier with overwhelming probability.

As for Simplifying Assumption 2, we remove it by considering the self-
corrected version of the cheating proof, i.e., the proof that is obtained by applying
Self-Correct on the cheating proof π∗. Our key observation is that an existing
analysis of Linearity Test can be naturally extended so that it works even in
the no-signaling PCP setting as long as we change the goal to showing that the
self-corrected cheating proof passes Linearity Test on any points. (In the stan-
dard PCP setting, the goal of Linearity Test is to guarantee that the cheating
proof is close to a linear function). Once we show that the self-corrected cheating
proof passes Linearity Test on any points, it is relatively easy to show that it
also passes Tensor-Product Test and SAT Test on any points.

3.4 Comparison with Previous Analysis

The high level structure of our analysis (under the abovementioned simplifying
assumptions) is the same as the analysis of previous non-linear no-signaling
PCPs, namely those of Kalai et al. [40] and the subsequent works. Specifically,
like these works, we show Cλ(x) = y by showing that we have π∗(eN ) = y
and π∗(eN ) = Cλ(x) simultaneously, and show π∗(eN ) = Cλ(x) by induction
on layers of Cλ. (In the latter part, we in particular follow the presentation by
Paneth and Rothblum [47]).

A notable difference between our analysis and the previous one (other than
the differences due to the use of linear PCPs rather than polynomially long
PCP) is that our analysis does not require that the statement is represented
as an “augmented layered circuit,” and only requires that it is represented as a
layered circuit. More concretely, while the previous analysis requires that each
layer of the circuit is augmented with an additional circuit that computes a low-
degree extension of the wire values of the layer and then applies low-degree tests
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on the low-degree extension, our analysis does not require such augmentation
and only requires that the circuit is layered. At a high level, we do not require
this augmentation since in the induction for showing π∗(eN ) = Cλ(x) (Step 2 in
the previous subsection), we show that the cheating PCP proof is equal to the
correct proof rather than just showing that the wire values that are recovered
from the cheating PCP proof are equal to the correct ones. (That is, we do not
require the augmentation of the circuit since we consider a stronger claim in the
induction, which allows us to use a stronger assumption in the inductive step).

4 Construction of Our No-signaling Linear PCP for P
In this section, we describe our no-signaling linear PCP system (P, V ) for the
correctness of arithmetic-circuit computation. Let C : Fn → F

m be an arithmetic
circuit over a finite field F of prime order, and x = (x1, . . . , xn) ∈ F

n be an input
to C. Recall that we use N to denote the number of wires in C and assume that
the first n wires are the those that takes the values of the input gates and the
last m ones are those that takes the value of the output gates.

4.1 PCP Prover P

Given (C,x) as input, the PCP prover P first computes y := C(x) and then
obtains the following system of quadratic equations over F, which is designed
so that it is satisfiable if and only if C(x) = y. Intuitively, the system has
variables that represent the wire values of C, and the equations in the system
guarantee that (1) the correct input values x = (x1, . . . , xn) are assigned on the
input gates, (2) each gate is correctly computed, and (3) the claimed output
values y = (y1, . . . , ym) are assigned on the output gates. Formally, the system
of equations is defined as follows.

– The variables are z = (z1, . . . , zN ).
– For each i ∈ {1, . . . , n}, the system has the equation zi = xi.
– For each i, j, k ∈ [N ], the system has zi + zj − zk = 0 if the circuit C has an

addition gate with input wire i, j and output wire k, and has zizj − zk = 0 if
C has a multiplication gate with input wire i, j and output wire k.

– For each i ∈ {1, . . . , m}, the system has the equation zN−m+i = yi.

Let M denote the number of the equations in the system Ψ . Let the system be
denoted by

Ψ =

⎧
⎪⎨

⎪⎩

Ψ1(z) = c1
...

ΨM (z) = cM

,

where each ci is an element in F. For each i ∈ [M ], let ψi ∈ F
N and ψ′

i ∈ F
N2

be the coefficient vectors such that

Ψi(z) = 〈ψi,z〉 + 〈ψ′
i,z ⊗ z〉. (17)
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Let w = (w1, . . . , wN ) be the satisfying assignment of Ψ . Let f : FN → F and
g : F

N2 → F be the linear functions that are defined by f(v) := 〈v,w〉 and
g(v′) := 〈v′,w ⊗ w〉. Then, the PCP prover P outputs the following linear
function π : FN+N2 → F as the PCP proof.

π(v) := f(v1) + g(v2) for ∀v = (v1,v2) ∈ F
N+N2

, where v1 ∈ F
N ,v2 ∈ F

N2
.

Remark 3. For simplicity, in what follows we usually think that P outputs two
linear functions πf := f and πg := g as the PCP proof. This is without loss of
generality since the verifier can evaluate f and g given access to π. ♦

4.2 PCP Verifier V

Given (C,x,y) as input, the PCP verifier V first computes the system Ψ in the
same way as the PCP prover P . Next, given oracle access to the PCP proof πf

and πg, the PCP verifier does the following tests λ times in parallel, and accepts
the proof if all the tests in all the λ trials are accepted.

– Linearity Test. Choose random points r1, r2 ∈ F
N and r′

1, r
′
2 ∈ F

N2
, and

check the following.

πf (r1) + πf (r2)
?= πf (r1 + r2) and πg(r′

1) + πg(r′
2)

?= πg(r′
1 + r′

2).

– Tensor-Product Test. Let Self-Correctπ be the following algorithm.
Algorithm Self-Correctπ(v ∈ F

N ∪ F
N2

).
1. Choose λ random points rv ,1, . . . , rv ,λ from F

N if v ∈ F
N and choose

them from F
N2

if v ∈ F
N2

.
2. For each i ∈ [λ], let

a(i)
v :=

{
πf (v + rv ,i) − πf (rv ,i) if v ∈ F

N

πg(v + rv ,i) − πg(rv ,i) if v ∈ F
N2 .

3. Let

av := majority
(
a(1)

v , . . . , a(λ)
v

)
.

4. Output av .
Then, in Tensor-Product Test, choose two random points r1, r2 ∈ F

N , run

ar1 ← Self-Correctπ(r1),
ar2 ← Self-Correctπ(r2),
ar1⊗r2 ← Self-Correctπ(r1 ⊗ r2),

and check the following.

ar1ar2

?= ar1⊗r2 .
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– SAT Test. Choose a random point σ = (σ1, . . . , σM ) ∈ F
M and define a

quadratic function Ψσ : FN → F as

Ψσ (z) :=
M∑

i=1

σiΨi(z).

Let ψσ ∈ F
N and ψ′

σ ∈ F
N2

be the coefficient vectors such that

Ψσ (z) = 〈ψσ ,z〉 + 〈ψ′
σ ,z ⊗ z〉. (18)

Let cσ :=
∑M

i=1 σici.
Then, in SAT Test, run

aψσ
← Self-Correctπ(ψσ ),

aψ ′
σ

← Self-Correctπ(ψ′
σ )

and check the following.

aψσ
+ aψ ′

σ

?= cσ .

We remark that, formally, V = (V0, V1) is a pair of two algorithms as required
by Definition 1, where V0(1λ, C) outputs a set of queries Q for the above tests
along with its internal state stV , and V1(stV ,x,y, π|Q) performs the above tests
given the answers π|Q from the PCP proof. The internal state stV that V0 outputs
is (σin,σout), where

σin := (σ1, . . . , σn) ∈ F
n and σout := (σM−m+1, . . . , σM ) ∈ F

m,

where it is assumed that the first n equations in Ψ (i.e., the equations {Ψi(z) =
ci}i∈[n]) are those that are associated with the input gates (i.e., {zi = xi}i∈[n])
and the last m equations in Ψ (i.e. the equations {ΨM−m+i(z) = cM−m+i}i∈[m])
are those that are associated with the output gates (i.e., {zM−m+i = yi}i∈[n]).
Note that V0(1λ, C) can indeed choose all the queries in parallel (without know-
ing the input x and the output y) since each of the queries is chosen indepen-
dently of the results of other queries and in addition the coefficient vectors of
the equations of Ψ (i.e., {ψi,ψ

′
i}i∈M ) can be computed from the circuit C in

SAT Test. Also, note that V1(stV ,x,y, π|Q) can indeed perform the test (with-
out knowing the circuit C) since cσ = 〈σin,x〉+ 〈σout,y〉 can be computed from
stV in SAT Test.

Remark 4 (Query Complexity). By inspection, one can see that that the query
complexity of V is κV (λ) def= λ(10λ + 6). ♦

Remark 5 (Efficiency). By inspection, one can see that the running time of P
is poly(|C|), the running time of V0 is poly(λ + |C|), and the running time of V1

is poly(λ + |x| + |y|). ♦
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4.3 Security

In the full version of this paper [42], we prove the following theorem, which states
the no-signaling soundness of our PCP system.

Theorem 1 (No-signaling Soundness of (P, V )). Let (P, V ) be the PCP
system in Sects. 4.1 and 4.2, {Cλ}λ∈N be any circuit family, and κmax be any
polynomial such that κmax(λ) ≥ 2λ · max(8λ + 3,mλ) + κV (λ), where mλ is
the output length of Cλ and κV is the query complexity of (P, V ). Then, for
any κmax-wise (computational) no-signaling cheating prover P ∗, there exists a
negligible function negl such that for every λ ∈ N,

Pr
[

V1(stV ,x,y, π∗) = 1 ∧ Cλ(x) �= y

∣
∣
∣
∣

(Q, stV ) ← V (1λ, Cλ)
(x,y, π∗) ← P ∗(1λ, Cλ, Q)

]

≤ negl(λ).

5 Application: Delegating Computation in Preprocessing
Model

In this section, we give an application of our no-signaling linear PCP system to a
2-message delegation scheme for P in the preprecessing model. As mentioned in
Introduction, we obtain our delegation scheme by applying the transformation
of Kalai et al. [39,40] on our no-signaling linear PCP system.

We remark that our delegation scheme is actually non-interactive in the sense
that, after the verifier’s message is computed and published in the (expensive)
offline phase, anyone can prove a statement to the verifier in the online phase
by sending a single message, and the same offline verifier message can be used
for proving multiple statements in the online phase. Formally, this property
is guaranteed due to the adaptive soundness of our delegation scheme, which
guarantees that the soundness holds even when the statement to be proven is
chosen after the verifier’s message.

5.1 Technical Overview

In this subsection, we give an overview of our delegation scheme. Those who are
familiar with the transformation of Kalai et al. [39,40] can skip this subsection.

Recall that in the setting of delegating computation, a computationally weak
client asks a powerful server to perform a heavy computation, and the server
returns the computation result to the client with a proof that the result is cor-
rect. Our focus is delegation schemes for arithmetic-circuit computation, so the
statement to be proven by the server is of the form (C,x,y), which states that
an arithmetic circuit C outputs y on input x. For simplicity, in this overview,
we consider a static soundness setting where the statement is fixed before the
verifier’s message is generated.

In our delegation scheme, we use the following two building blocks.

– Our no-signaling linear PCP system for deterministic arithmetic-circuit com-
putation (Sect. 4).
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– An additive homomorphic encryption scheme HE, which is an encryption
scheme such that the message space is a finite group and that anyone can
efficiently compute a ciphertext of m0 + m1 from ciphertexts of any two
messages m0,m1.

We assume that the message space of HE is a finite field F of prime order, and
consider delegation scheme for arithmetic circuits over this finite field F.

The high-level structure of our delegation scheme is quite simple. When the
statement is (C,x,y), our scheme roughly proceeds as follows.

1. In the offline phase, the client firsts samples PCP queries Q of our PCP
system, where Q = {qi}i∈[κV ] and qi = (qi,1, . . . , qi,N ′) ∈ F

N ′
, where N ′ :=

N + N2. Next, the client encrypts those queries by HE, where each query
qi is encrypted under a fresh key. (That is, for each i ∈ [κV ], the client
samples a key pair (pki, ski) of HE and encrypts each qi,j ∈ F (j ∈ [N ′])
under the public-key pki). Finally, the verifier sends the resultant ciphertexts
{(cti,1, . . . , cti,N ′)}i∈[κV ] to the server.

2. Given the ciphertexts of the PCP queries {(cti,1, . . . , cti,N ′)}i∈[κV ], the server
obtain ciphertexts of the PCP answers by homomorphically evaluate the PCP
oracle π : FN ′ → F under the ciphertexts (since π is a linear function, addi-
tive homomorphism of HE suffices for evaluating π14), and then returns the
resultant ciphertexts {c̃ti}i∈[κV ] to the client.

3. Given the ciphertexts of the PCP answers {c̃ti}i∈[κV ], the client obtains the
PCP answers by decrypting {c̃ti}i∈[κV ] and then verifies the PCP answers by
using the PCP decision algorithm.

The offline phase of our delegation scheme is expensive since the verifier query
algorithm of our PCP system runs in time poly(λ + |C|), while the online phase
is efficient since the verifier decision algorithm of our PCP system runs in time
poly(λ + |x| + |y|). Very roughly speaking, the soundness of our scheme holds
since, somewhat surprisingly, the semantic security of HE directly guarantees
that the server can answer to the PCP queries under the ciphertexts of HE
only in a no-signaling way. (Formally, in order to guarantee that the server is
κmax-wise no-signaling for sufficiently large κmax, we need to change the above
delegation scheme and add “dummy” queries to the PCP queries).

Using Multiplicative Homomorphic Encryption Rather Than Addi-
tive One. We can replace the additive homomorphic encryption scheme in
the above scheme with a multiplicative one over prime-order bilinear group as
follows: we replace the scheme so that, instead of encrypting the PCP queries
{(qi,1, . . . , qi,N )}i∈[κV ] directly, the client encrypts {gqi,1 , . . . , gqi,N }, where g is
a generator of the bilinear group, and the server homomorphically evaluates the
PCP oracle in the exponent of g using the multiplicative homomorphic property
of HE. Since the PCP verification algorithm only involves quadratic tests on the
14 Since F is of prime order, it is possible to compute Enc(pk, v · m) from Enc(pk, m)

for any v, m ∈ F.
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PCP answers, the client can verify the PCP answers even when the PCP answers
are encoded in the exponent of g. (Unfortunately, the security analysis cannot
be straightforwardly modified to work for this modified scheme).

5.2 Preliminaries

In this subsection, we first give the definition of delegation scheme and next give
the definition of homomorphic encryption schemes.

Preprocessing Non-interactive Delegation Scheme. For concreteness, we
focus our attention on 2-message delegation schemes with adaptive soundness,
or in other words, non-interactive delegation schemes in the preprocessing model
where the preprocess consists of a single message from the verifier. We remark
that the following definition is essentially identical with the definition of pre-
processing SNARGs (e.g., [16]) as well as the definition of adaptively sound
2-message delegation schemes of [7,20]. The difference is that the following def-
inition is tailored for deterministic arithmetic circuit computation.

A preprocessing non-interactive delegation scheme consists of three
polynomial-time algorithms (Gen,Prove,Verify) with the following syntax.

– Gen is a probabilistic algorithm such that on input the security parameter 1λ

and an arithmetic circuit C, it outputs a public-key pk and a secret key sk.
– Prove is a deterministic algorithm such that on input the public-key pk, the

circuit C, and an input x of C, it outputs a proof pr.
– Verify is a deterministic algorithm such that on input the secret key sk, the

input x, the output y, and the proof pr, it outputs a bit b ∈ {0, 1}.

The execution of preprocessing non-interactive delegation schemes is separated
into two phases, the offline phase and the online phase.

– Offline phase: First, the verifier obtains an arithmetic circuit C that it wants
to let the prover compute. Next, the verifier obtains (pk, sk) by running Gen
on C and sends pk to the prover. After executing Gen, the prover can erase
the circuit C.

– Online phase: The prover, on input x (which is obtained either from the
verifier or from any other process), computes the output y = C(x) and the
proof pr = Prove(pk, C,x) and then sends (x,y, pr) to the verifier. Given
(x,y, pr), the verifier verifies the proof by running Verify(sk,x,y, pr). The
online phase can be repeated multiple times on the same public key and
secret key (see Remark 6 below).

Note that delegation scheme is meaningful only when the running time of Verify
is much smaller than the time that is needed for computing C(x).

The security requirements of preprocessing non-interactive delegation
schemes are the following.
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Correctness. For every security parameter λ ∈ N, arithmetic circuit C, input
x of C, and the output y := C(x),

Pr
[

Verify(sk,x,y, pr) = 1
∣
∣
∣
∣

(pk, sk) ← Gen(1λ, C)
pr := Prove(pk, C,x)

]

= 1.

Soundness. For every circuit family {Cλ}λ∈N and ppt adversary A, there
exists a negligible function negl such that for every λ ∈ N,

Pr
[

Verify(sk,x,y, pr) = 1 ∧ Cλ(x) �= y

∣
∣
∣
∣

(pk, sk) ← Gen(1λ, Cλ)
(x,y, pr) ← A(1λ, Cλ, pk)

]

≤ negl(λ).

Remark 6. It is easy to see that if a delegation scheme is sound w.r.t. the above
definition, it remains sound even when the same (pk, sk) is used for generating
multiple proofs as long as the results of the verification are kept secret against
the cheating provers (or, equivalently, as long as a new public-key–secret-key
pair is generated when the verification of a proof is rejected).15 ♦

Homomorphic Encryption. A public-key encryption scheme consists of three
polynomial-time algorithms (Gen,Enc,Dec) with the following syntax.

– Gen is a probabilistic algorithm such that on input the security parameter
1λ, it outputs a public-key pk and a secret key sk.

– Enc is a probabilistic algorithm such that on input the public-key pk and a
message m ∈ F, it outputs a ciphertext ct. (It is assumed that pk contains
the information of a finite field F, which works as the message space).

– Dec is a deterministic algorithm such that on input the secret-key sk and the
ciphertext ct, it outputs the plaintext m.

For any vector v, we denote by Enc(v) the element-wise encryption of v.
The following security notion of public-key encryption schemes is used in

this paper (it is easy to see that the following security notion is implied by the
standard CPA-security through a simple hybrid argument).

Definition 5 ((multi-key multi-message) CPA-security). For every poly-
nomial p and ppt adversary A = (A0,A1,A2), there exists a negligible function
negl such that for every security parameter λ ∈ N and every z ∈ {0, 1}poly(λ),

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b̃

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(, st0) ← A0(1λ, z), where  ≤ p(λ)
(pki, ski) ← Gen(1λ) for every i ∈ []
({m0,i}i∈[�], {m1,i}i∈[�], st1) ← A1(st0, {pki}i∈[�])
b ← {0, 1}
ct∗i ← Enc(pki,mb,i) for every i ∈ []
b̃ ← A2(st1, {ct∗i }i∈[�])

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 1
2

+ negl(λ).

♦
15 Previous designated-verifier delegation schemes (such as the schemes of [20] and

subsequent works) also have this restriction.
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A public-key encryption scheme (Gen,Enc,Dec) is additive homomorphic
if it has an additional ppt algorithm Eval+ such that, on input ct1 ←
Enc(m1), . . . , ctp(λ) ← Enc(mp(λ)) for any m1, . . . , mp(λ) ∈ F (where p is a poly-
nomial), it outputs Enc(

∑p(λ)
i=1 mi). Formally, Eval+ is required to satisfy the

following property.

Homomorphic Evaluation. For every polynomial p, every ppt adversary
A, and every λ ∈ N,

Pr

⎡

⎢
⎢
⎢
⎢
⎣

m̃ =
p(λ)∑

i=1

mi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(pk, sk) ← Gen(1λ)
{mi}i∈[p(λ)] ← A(pk, sk), where m1, . . . , mp(λ) ∈ F

ctb ← Enc(pk,mi) for every i ∈ [p(λ)]
ct ← Eval+(pk, {cti}i∈[p(λ)])
m̃ := Dec(sk, ct)

⎤

⎥
⎥
⎥
⎥
⎦

= 1.

To simplify the exposition, for any two ciphertext ct0, ct1 under a public-key pk,
we use ct0+ct1 as a shorthand of Eval+(pk, ct0, ct1). Similarly, for any ciphertext
ct and a scalar k ∈ N, we use k · ct as a shorthand of ct + · · · + ct

︸ ︷︷ ︸
k

.

A public-key encryption scheme is multiplicative homomorphic if it has a ppt

algorithm Eval∗ that satisfies the above property w.r.t. multiplication over F.

5.3 Our Result

Theorem 2. Assume the existence of an additive homomorphic encryption
scheme over fields of prime order (i.e., over the additive group of the fields) or a
multiplicative homomorphic encryption scheme over bilinear groups with prime
order. Then, there exists a preprocessing non-interactive delegation scheme for
polynomial-time arithmetic-circuit computation with the following efficiency.

– The running time of Gen is poly(λ + |C|).
– The running time of Prove is poly(λ + |C|).
– The running tine of Verify is poly(λ + |x| + |y|).
Due to space limitations, we only give the description of our delegation scheme
based on additive homomorphic encryption below, and refer the readers to the
full version of this paper [42] for the proof of Theorem2.

Let (HE.Gen,HE.Enc,HE.Dec) be the additive homomorphic encryption
scheme and (PCP.P,PCP.V) be the PCP prover and verifiers of our PCP sys-
tem (Sect. 4). Recall that our PCP system satisfies the following properties.

– It can handle arithmetic circuits over any prime-order fields. Furthermore,
there exists a polynomial κmax such that the soundness holds against any
κmax-wise no-signaling adversaries.16

16 Formally, κmax depends on m, which is an upper bound of the output length of the
circuits to be considered.
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– For an arithmetic circuit C over a finite filed F, PCP.P outputs a linear func-
tion π : FN+N2 → F as the PCP proof, where N is the number of wires in C.
(To simplify the notations, we let N ′ := N + N2 in what follows). Since π is
linear, there exists d1, . . . , dN ′ ∈ F such that π(z) =

∑
i∈[N ′] dizi.

– For an arithmetic circuit C over a finite filed F, PCP.V0 outputs a set of
queries Q = {qi}i∈[κV (λ)] ⊂ F

N ′
and a state stV ∈ F

n+m, where κV is a
polynomial (which is independent of C) and n,m are the input and output
length of C.

We assume that for every security parameter λ, the arithmetic circuit C to be
delegated is defined over a finite field F that is also the message space of HE.

Construction. The three algorithms (Gen,Prove,Verify) are defined as follows.

– Algorithm Gen(1λ, C)
1. Run (Q, stV ) ← PCP.V0(1λ, C).

Then, parse Q as {qi}i∈[κV (λ)], where qi = (qi,1, . . . , qi,N ′) ∈ F
N ′

.
2. Define ct1, . . . , ctκmax(λ) as follows.

(a) Choose a random injective function τ : [κV (λ)] → [κmax(λ)].
(b) Define cti for each i ∈ [κmax(λ)] by

cti ←
{
HE.Enc(HE.pki, qτ−1(i)) (if ∃i′ ∈ [κV (λ)] s.t. τ(i′) = i)
HE.Enc(HE.pki,0) (otherwise)

,

where (HE.pki, HE.ski) ← HE.Gen(1λ) and 0 := (0, . . . , 0) ∈ F
N ′

.
3. Output pk := (ct1, . . . , ctκmax(λ)) and sk := (stV , τ, {HE.ski}i∈[κmax(λ)]).

– Algorithm Prove(pk, C,x)
1. Run π ← PCP.P(C,x).

Let d1, . . . , dN ′ ∈ F be such that π(z) =
∑

i∈[N ′] dizi.
2. Parse pk as (ct1, . . . , ctκmax(λ)), where cti = (cti,1, . . . , cti,N ′).

Then, perform homomorphic operation to obtain

c̃ti := π(cti) =
∑

j∈[N ′]

djcti,j

for every i ∈ [κmax(λ)].
3. Output pr := (c̃t1, . . . , c̃tκmax(λ)).

– Algorithm Verify(sk,x,y, pr)
1. Parse sk as (stV , τ, {HE.ski}i∈[κmax(λ)]), and pr as (c̃t1, . . . , c̃tκmax(λ)).

Then, run ai := HE.Dec(HE.skτ(i), c̃tτ(i)) for every i ∈ [κV (λ)].
2. Output b := PCP.V1(stV ,x,y, {ai}i∈[κV (λ)]).

Efficiency. By inspection, it can be verified that our delegation scheme indeed
has the following efficiency.

– The running time of Gen is poly(λ + |C|).
– The running time of Prove is poly(λ + |C|).
– The running tine of Verify is poly(λ + |x| + |y|).
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Abstract. The possibility of basing cryptography on the minimal
assumption NP � BPP is at the very heart of complexity-theoretic
cryptography. The closest we have gotten so far is lattice-based cryptog-
raphy whose average-case security is based on the worst-case hardness of
approximate shortest vector problems on integer lattices. The state-of-
the-art is the construction of a one-way function (and collision-resistant
hash function) based on the hardness of the Õ(n)-approximate shortest
independent vector problem SIVPÕ(n).

Although SIVP is NP-hard in its exact version, Guruswami et al.
(CCC 2004) showed that gapSIVP√

n/ log n
is in NP ∩ coAM and thus

unlikely to be NP-hard. Indeed, any language that can be reduced
to gapSIVPÕ(

√
n) (under general probabilistic polynomial-time adaptive

reductions) is in AM ∩ coAM by the results of Peikert and Vaikun-
tanathan (CRYPTO 2008) and Mahmoody and Xiao (CCC 2010). How-
ever, none of these results apply to reductions to search problems, still
leaving open a ray of hope: can NP be reduced to solving search SIVP
with approximation factor Õ(n)?

We eliminate such possibility, by showing that any language that
can be reduced to solving search SIVP with any approximation factor
λ(n) = ω(n log n) lies in AM intersect coAM.

1 Introduction

It is a long-standing open question whether cryptography can be based on the
minimal assumption that NP � BPP. More precisely, one would hope to con-
struct cryptographic primitives such that given a polynomial-time algorithm
breaking the security of the primitive, one can efficiently solve SAT.

The closest we have gotten so far is lattice cryptography. This approach was
born out of the breakthrough result of Ajtai [Ajt96], which constructs a one-way
function family based on the worst-case hardness of certain lattice problems
such as the γ-approximate shortest independent vectors problem (SIVPγ), which
can be stated as follows: given an n-dimensional lattice, find a set of n linearly
independent vectors whose length1 is at most γ(n) (polynomial in n) times the
length of the shortest such vector set. Since the work of Ajtai, the state of the
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1 The length of a vector set is defined as the length of the longest vector in the set.
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art is a construction of a family of collision resistant hash functions (CRHF)
based on the hardness of the shortest independent vectors problem with an
approximation factor Õ(n) [MR04]. One would hope that this approach is viable
for constructing cryptography based on NP-hardness since Blömer and Seifert
showed that SIVPγ is NP-hard for any constant factor [BS99]. Presumably, if
one could construct cryptographic primitives based on the hardness of SIVPO(1),
we would be golden. Alternatively, if one could extend the result of Blömer and
Seifert to show the NP-hardness of SIVPγ for larger γ(n), we would be closer to
the goal of basing cryptography on NP-hardness.

However, there are some negative results when one considers the correspond-
ing gap version of the same lattice problem. The gap problem, denoted by
gapSIVPγ , is to estimate the length of the short independent vector set within
a factor of γ(n). Peikert and Vaikuntanathan show that gapSIVPω(

√
n log n) is in

SZK [PV08]. Thus there is no Cook reduction from SAT to gapSIVPÕ(
√

n) unless
the polynomial hierarchy collapses (as BPPSZK ⊆ AM ∩ coAM [MX10]).

Fortunately, the hardness of SIVP is not contradicted by the fact that the
gap problem with the same approximation factor is easy. For instance, if one
considers any ideal lattice in the field Z[x]/〈x2k + 1〉, its successive minima
satisfy λ1 = . . . = λn, thus gapSIVP√

n can be trivially solved using Minkowski’s
inequality. However, finding a set of short independent vectors in such ideal
lattices is still believed to be hard. As none of these negative results apply to
reductions to search SIVP, there is still a ray of hope: can NP be reduced to
solving search SIVP with approximation Õ(n)?

Thus, in order to really understand the viability of the approach begun by the
work of Ajtai, it seems one must study the search versions of lattice problems. In
this work, we relate the hardness of the search version SIVPγ , to the gap version
gapSIVP. Informally, we show that if gapSIVPγ is not hard, neither is SIVP√

n·γ .

Main Theorem 1. If gapSIVPγ ∈ SZK and there exists a probabilistic
polynomial-time adaptive reduction from a language L to SIVP√

n log n·γ , then
L ∈ AM ∩ coAM.

As a quick corollary, combining our result with gapSIVPω(
√

n log n) ∈ SZK
[PV08], any language that can be reduced to SIVPω(n log n) lies in AM intersect
coAM and thus it is not NP-hard unless the polynomial hierarchy collapses.

Corollary 1.1. If there exists a probabilistic polynomial-time adaptive reduction
from a language L to SIVPγ for any γ(n) = ω(n log n), then L ∈ AM ∩ coAM.

1.1 Proof Overview

The first step is to shift from a search problem to a sampling problem. Our goal
is to obtain a black-box separation between SIVPγ and NP-hardness by showing
that any language L that can be reduced to SIVPγ is in AM intersect coAM.
Let R be the reduction from L to SIVPγ . We will construct an AM protocol for L
using reduction R. For a first attempt, the näıve verifier samples a random tape
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and sends it to the prover. The prover simulates the reduction R and resolves
any query to SIVPγ using its unbounded computational power. The simulation,
including the answers to the reduction’s query to SIVPγ , is sent to the näıve
verifier, so that the verifier can check its correctness. But SIVPγ is a search
problem and there is no unique right answer. The prover has the freedom to
decide which answer is chosen upon each query. This freedom allows a malicious
prover to fool the näıve verifier. Similar difficulty were faced by Bogdanov and
Brzuska, which is resolved by inherently shifting to sampling problems. In order
to separate size-verifiable one-way functions from NP-Hardness [BB15], they
force the prover to sample a random answer uniformly among all correct ones.
Thus the correct answer distribution for each query is unique.

Inspired by the work of Bogdanov and Brzuska, we consider a sampling prob-
lem related to SIVPγ , called the discrete Gaussian distribution. A discrete Gaus-
sian over a lattice is a distribution such that the probability of any vertex v
is proportional to e−π‖v−c‖2/s2

, where c is its “center” and parameter s is its
“width”. Lemma 4.3 shows that discrete Gaussian sampling is as hard as SIVPγ

in the sense that there is a black-box reduction from SIVPγ to discrete Gaus-
sian sampling with “width” γ(n)/

√
n. Therefore, if language L can be reduced

to SIVPγ , then it can also be reduced to discrete Gaussian sampling on lattices
with “width” s ≤ λn/

√
n.

Lemma 4.3 (Informal). SIVPγ can be efficiently reduced to discrete Gaussian
sampling on lattices with “width” σ = γ√

n
λn.

Lemma 4.3 is a generalization of [Reg09, Lemma 3.17]. Its proof is quite
intuitive. Repeatedly sample from the discrete Gaussian over the same lattice
centered at 0. With good probability, the newly sampled vertex is short and is
linearly independent from previously sampled verteces.

The next natural question is, which property separates a sampling problem
from NP-hardness? Here we introduce the notion of “probability-verifiability”.
Informally, a distribution family is probability-verifiable if for any distribution D
in this family and for any possible value v, Pr[v ← D], the probability that v is
sampled from D, can be lower bounded within an arbitrarily good precision in
AM.

Lemma 4.4 (Informal). If a language L can be reduced to a probability-
verifiable sampling problem S, then L ∈ AM ∩ coAM.

Lemma 4.4 is a generalization of [BB15]. Assume language L can be reduced
to sampling problem S. The input of S is interpreted as the description of a
distribution, let Ppd denote the distribution specified by input pd.

Let R be the reduction from L to sampling problem S. On each input x,
an execution RS(x) is determined by the random tape of reduction R, denoted
by r, and the answers to the reduction’s queries to S. The transcript is defined
as σ = (r, pd1, v1, . . . , pdT , vT ) where pdt is the t-th query to S and vt is the
corresponding response. Note that r, v1, . . . , vT determine the execution, since
pdt is determined by r, v1, . . . , vt−1. Then



On Basing Search SIVP on NP-Hardness 101

Pr[RS(x) accepts] =
∑

σ:accepting transcript

of RS(x)

Pr[σ] =
∑

σ:accepting transcript

of RS(x)

Pr[r] · Ppd1
(v1) · . . . · PpdT

(vT ).

(1)
For simplicity, assume for now that there is an efficient algorithm that computes
the probability Ppd(v) given pd and value v. This property is stronger than
probability-verifiability. Then the probability that RS(x) accepts, which equals
a sum (Eq. (1)) where each term can be efficient computed, can be lower bounded
using the set lower bound protocol of Goldwasser and Sipser [GS86], so L ∈ AM.
Symmetrically, L ∈ coAM. The proof of Lemma 4.4 shows the same result from
the weaker condition that S is probability-verifiable.

There is one last step missing between Lemmas 4.3 and 4.4: Is discrete Gaus-
sian sampling probability-verifiable? What is the smallest factor γ such that dis-
crete Gaussian sampling with “width” ≤ γλn is probability-verifiable? Lemma
4.5 answers this question, and it connects the hardness of discrete Gaussian
sampling with the hardness of gapSIVP.

Lemma 4.5 (Informal). Assume gapSIVPγ is in SZK. There exists a real
valued function s(B) ∈ [λn, Õ(γ) · λn] such that given a lattice basis B, discrete
Gaussian sampling over lattice L(B) with “width” s(B) is probability-verifiable.

Lemma 4.5 has an easier proof assuming the stronger condition that gapSIVPγ

is in P. If there were some deterministic polynomial time algorithm solving
gapSIVPγ , there would exist s(B) ∈ [λn(B), γλn(B)] that can be efficiently com-
puted by binary search. As s(B) ≥ λn(B), the verifier can ask the prover to
provide a set of n linearly independent vectors w1, . . . ,wn whose length is no
longer than s(B). Given the lattice basis B and a set of short linearly indepen-
dent vectors, there exists an efficient algorithm that samples from the discrete
Gaussian with the desired parameter [BLP+13]. When the verifier can sample
from a distribution, he can lower bound the probability of each value using the
set lower bound protocol [GS86].

This informal proof assumes gapSIVPγ ∈ P in order to compute a function
s(B) that s(B) ≈ λn(B). As the verifier only needs to compute such a function
s(B) in an AM protocol, this assumption can be weakened to gapSIVPγ ∈ SZK,
by combining with Lemma 3.1.

Lemma 3.1 (Informal). Assume gapSIVPγ is in SZK. There exists a real
valued function s(B) ∈ [λn, Õ(γ) ·λn] that can be efficiently computed in Arthur-
Merlin protocol.

The proof technique of Lemma 3.1 crucially relies on the fact that gapSIVPγ ∈
SZK. As a result, we can hardly make use of previous results such as
gapSIVP√

n/ log n
∈ NP ∩ coAM [GMR04].

1.2 Related Works

Prior work exploring the problem of basing cryptography on worst-case NP-
hardness has obtained several negative results for black-box reduction. Bras-
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sard [Bra79] first showed that one-way permutations cannot be based on NP-
hardness. Goldreich and Goldwasser [GG98] showed that public-key encryption
schemes satisfying certain very specific properties cannot be based on NP-
hardness. The required properties include the ability to certify an invalid key.

Work of Akavia, Goldreich, Goldwasser and Moshkovitz [AGGM06] and Bog-
danov and Brzuska [BB15] showed that a special class of one-way functions
called size-verifiable one-way functions cannot be based on NP-hardness. A
size-verifiable one-way function is one in which the size of the set of pre-images
can be efficiently approximated via an AM protocol.

Bogdanov and Lee [BL13] showed that homomorphic encryption schemes
satisfying a special property cannot be based on NP-hardness. The required
property is that the homomorphic evaluation produces a ciphertext whose dis-
tribution is statistically close to that of a fresh encrypted ciphertext.

Recently, Liu and Vaikuntanathan [LV16] showed that single-server private
information retrieval (PIR) schemes cannot be based on NP-hardness.

Several works have also obtained a separation results for restricted types of
reductions, most notably non-adaptive reductions which make all oracle queries
simultaneously. The work of Feigenbaum and Fortnow [FF91], subsequently
strengthened by Bogdanov and Trevisan [BT06], showed that there cannot be a
non-adaptive reduction from SAT to the average-case hardness of any problem
in NP, unless the polynomial hierarchy collapses.

On basing lattice problems on NP-hardness, the work of Goldreich and
Goldwasser [GG00], subsequently strengthened by Micciancio and Vadhan
[MV03], showed that gapSVP√

n/ log n
and gapCVP√

n/ log n
are both contained in

NP ∩ SZK. The shortest vector problem (SVP) and the closest vector problem
(CVP), roughly speaking, is the problem of finding the shortest non-zero vector
in a lattice or finding the lattice vector that is closest to a given point. The corre-
sponding gap problem gapSVPγ , gapCVPγ is to estimate within a factor of γ(n)
the length of the shortest non-zero vector or the distance to the closest lattice
vector from a given point. The problem gapSVP is connected to gapSIVP via so-
called “transference theorems” for lattices [Ban93]. Aharonov and Regev [AR04]
explored a slightly looser approximation factor and showed that gapSVP√

n and
gapCVP√

n are both contained in NP ∩ coNP.
In prior work on the gap version of the SIVP problem, Guruswami, Mic-

ciancio and Regev [GMR04] showed that gapSIVP√
n/ log n

∈ NP ∩ coAM.

Peikert and Vaikuntanathan [PV08] showed that gapSIVPγ ∈ SZK for any
γ(n) = ω(

√
n log n). In contrast to these results for promise problems, our

work explores the approximate SIVP problem. With an approximation factor
γ(n) = Õ(n), this search problem is the basis of lattice-based collision resistant
hash function (CRHF) constructions [Ajt96,MR04]. In particular, Micciancio
and Regev constructed CRHF from the worst-case hardness of SIVPγ(n) for any
γ(n) = ω(n log n) [MR04]. We separate SIVPγ from NP-hardness for the same
approximation factor.
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2 Preliminaries

Lattice A lattice in Rn is an additive subgroup of Rn

{ n∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n

}

generated by n linearly independent vectors b1, . . . ,bn ∈ Rn. The set of vectors
b1, . . . ,bn is called a basis for the lattice. A basis can be represented by matrix
B ∈ Rn×n whose columns are the basis vectors. The lattice generated by the
columns of B is denoted by L(B).

L(B) = {Bx : x ∈ Nn}.

The i-th successive minimum of a lattice L, denoted by λi(L), is defined as
the minimum length that L contains i linearly independent vectors of length at
most λi(L). Formally,

λi(L) := min{r : dim(L ∩ rB) ≥ i},

where rB is the radius r ball centered at the origin defined as rB := {x ∈ Rn :
‖x‖2 ≤ r}. We abuse notations and write λi(B) instead of λi(L(B)).

Shortest Independent Vectors Problem (SIVP). SIVP is a computational problem.
Given a basis B of an n-dimensional lattice, find a set of n linearly independent
vectors v1, . . . ,vn ∈ L(B) such that maxi ‖vi‖ is minimized, i.e., ‖vi‖ ≤ λn(B)
for all 1 ≤ i ≤ n.

SIVPγ is the approximation version of SIVP with factor λ. Given a basis B of
an n-dimensional lattice, find a set of n linearly independent vectors v1, . . . ,vn ∈
L(B) such that ‖vi‖ ≤ γ(n) · λn(B) for all 1 ≤ i ≤ n. The approximation factor
γ is typical a polynomial in n.

gapSIVPγ is the decision version of SIVPγ . An input to gapSIVPγ is a basis
B of a n-dimensional lattice and a scalar s. It is a YES instance if λn(B) ≤ s,
and is a NO instance if λn(B) ≥ γ(n) · s.

Discrete Gaussian. For any vector c and any s > 0, let

ρc,s(v) = e−π‖v−c‖2
2/s2

be a Gaussian function with mean c and width s. Functions are extends to sets
in usual way, ρc,s(L) =

∑
v∈L ρc,s(v). The discrete Gaussian distribution over

lattice L with mean c and width s, denoted by NL,c,s, is defined by

∀v ∈ L, NL,c,s(v) =
ρc,s(v)
ρc,s(L)

.

In this work, most discrete Gaussian distributions considered are centered at the
origin. Let ρs,NL,s denote ρ0,s,NL,0,s respectively.
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Lemma 2.1 (Lemma 1.4 in [Ban93]). For each a ≥ 1, for any n-dimensional
lattice L, ρas(L) ≤ anρs(L)

Lemma 2.2 (Lemma 1.5 in [Ban93]). For any c > 1/
√

2π, n-dimensional
lattice L

ρs(L \ cs
√

nB) < Cn · ρs(L) (2)

where C = c
√

2πe · e−πc2 .

Sampling Problems. Besides computational problems and decision problems, we
define sampling problems. The input of a sampling problem specifies a distribu-
tion, let Ppd denote the distribution specified by input pd. The goal is to sample
from the distribution Ppd. A probabilistic polynomial-time algorithm S perfectly
solves the sampling problem if for any input pd

∀v,Pr[S(pd) → v] = Ppd(v).

The probability is over the random input tape of S. In a more practical definition,
S solves the sampling problem if the output distribution of S(pd) is close to Ppd,
i.e.

Δsd(S(pd, 1�),Ppd) ≤ 1
	

where Δsd denotes the statistical distance.
For example, in this work, discrete Gaussian is considered as a sampling

problem. For any function s(·) mapping lattice bases to positive real numbers,
define sampling problem DGSs. The input of DGSs is a lattice basis B. The
target output distribution PB is the discrete Gaussian distribution NL(B),s(B),
where each vector v ∈ L(B) is sampled with probability

PB(v) = NL(B),s(B)(v) =
ρs(B)(v)

ρs(B)(L(B))
.

Probability-Verifiable. A sampling problem is probability-verifiable if there exists
an AM protocol to lower bound Ppd(v) for any pd and v. More precisely, there
exists a family of error function {ηpd,m} such that for any pd,m, the error func-
tion ηpd,m : {0, 1}∗ → [0,+∞) satisfies

∑
v ηpd,m(v) ≤ 1

m , and the promise
problem

– YES instance: (pd, v, p̂, 1m) such that p̂ = Ppd(v)
– NO instance: (pd, v, p̂, 1m) such that p̂ ≥ Ppd(v) + ηpd,m(v)

is in AM.

Sampling Oracles. In order to formalize the (probabilistic) Turing reduction to
a sampling problem, we also define sampling oracles, which is a generalization of
traditional oracles studied by complexity theorists. Let S be a sampling oracle
for a fixed sampling problem. S can be queried on any valid pd; upon query
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pd, sampling oracle S(pd) would always output a fresh sample from distribution
Ppd. E.g. if the sampling oracle S is queried for the same pd multiple times, it
would output i.i.d. samples from distribution Ppd.

A probabilistic Turing reduction from a language L to a sampling problem S
is a probabilistic poly-time oracle Turing machine R, such that R can solve L
given a sampling oracle of S in the sense that

x ∈ L =⇒ RS(x) → 1 w.p. ≥ 2/3,

x /∈ L =⇒ RS(x) → 1 w.p. ≤ 1/3.

If such a reduction exists, we say L can be reduced to sampling problem S,
denoted by L ∈ BPPS.

Similarly, a computational problem or a search problem can be reduced to
a sampling problem S if they can be efficiently solved given the sampling oracle
of S.

R-TFAM and Rη-TFAM The complexity class R-TFAM is introduced by
Mahmoody and Xiao [MX10]. Informally, it’s consist of real-valued functions
that can be efficiently computed in AM. A function f : {0, 1}∗ → R is in
R-TFAM if the following promise problem is in AM:

– YES instance: (x, f(x), 1m).
– NO instance: (x, y, 1m) such that |y − f(x)| > 1

m .

The definition of R-TFAM emphasize on the absolute error. The complexity
class Rη-TFAM is defined to capture those functions that can be efficiently
computed in AM with small relative error. A function g : {0, 1}∗ → R+ is in
Rη-TFAM if the following promise problem is in AM:

– YES instance: (x, g(x), 1m).
– NO instance: (x, y, 1m) such that |y − g(x)| > 1

m · g(x).

It follows directly from the definitions that g ∈ Rη − TFAM if and only if
log g ∈ R − TFAM for any function g : {0, 1}∗ → R+.

Statistical Zero Knowledge. Statistical zero knowledge (SZK) is the class of deci-
sion problems that can be verified by a statistical zero-knowledge proof protocol.
Entropy Difference (ED) is a complete problem for SZK [GV99], which is defined
as the following: Given two polynomial-size circuits, C and D, let C and D be the
distributions of their respective outputs when C,D are fed with uniform random
inputs. The problem is to distinguish between

– YES instance: (C,D) such that H(C) − H(D) ≥ 1;
– NO instance: (C,D) such that H(C) − H(D) ≤ −1.

Where H is the Shannon entropy. Moreover, the mapping H : C �→ H(C) is in
R-TFAM.
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3 Gap Problems

The lattice problem gapSIVP is essentially estimating λn(B) given a lattice basis
B. This definition can be generalized to any real valued functions. Define the gap
problem of function f : {0, 1}∗ → R+ with gap γ : {0, 1}∗ → [1,+∞), denoted
by gapfγ , as the promise problem

– YES instance: (x, y) such that y ≤ f(x);
– NO instance: (x, y) such that y > γ(x) · f(x).

In this work, estimating λn(B) is of critical importance. Its gap problem,
gapSIVPγ , alone is not sufficient for the proof. Instead, a stronger form of approx-
imation is defined. Say g : {0, 1}∗ → R+ is an approximation of function f within
factor γ if f(x) ≤ g(x) ≤ γ(x) · f(x) for all x. Clearly, computing g is a harder
problem than gapfγ , in the sense that there is a trivial reduction from gapfγ to
computing g.

The following Lemma shows a reduction in the other direction: if gapfγ is in
SZK, then there exists an approximation of f within almost the same factor,
which can be computed in AM.

Lemma 3.1. For any real valued function f : {0, 1}∗ → R+ and any gap γ :
{0, 1}∗ → [1,+∞) that log γ(x) ≤ poly(|x|), if gapfγ ∈ SZK, then for any con-
stant μ > 1, there exists g : {0, 1}∗ → R+ such that ∀x, g(x) ∈ [f(x), μγ(x)f(x)]
and g is in Rη-TFAM.

Lemma 3.1 can be combined with previous results about gapSIVP. Peikert
and Vaikuntanathan [PV08] showed that gapSIVPγ ∈ NISZK ⊆ SZK for any
γ = ω(

√
n log n). Thus there exists an approximation of λn within a factor

Õ(
√

n) that can be computed in AM.

Corollary 3.2. For any γ(n) = ω(
√

n log n), there exists a function g maps
lattice bases to real numbers such that g ∈ Rη − TFAM and λn(B) ≤ g(B) <
γ(n) · λn(B).

Proof (Lemma 3.1). Entropy Difference (ED) is a complete problem for SZK,
so gapfγ ∈ SZK implies the existence of a reduction (x, y) �→ (Cx,y,Dx,y) that
maps input x together with a real number y to random circuits Cx,y,Dx,y. Let
Cx,y and Dx,y be the output distributions of Cx,y,Dx,y. The reduction from
gapfγ to ED satisfies the following properties:

– There is an efficient deterministic algorithm computing Cx,y,Dx,y given input
(x, y).

– H(Cx,y) − H(Dx,y) > 2 for any x, y that y ≤ f(x).
– H(Cx,y) − H(Dx,y) < −1 for any x, y that y > γ(x) · f(x).

Define the clamp function

clamp(y) :=

⎧⎪⎨
⎪⎩

1, if y ≥ 1;
y, if y ∈ (0, 1);
0, if y ≤ 0.
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For any fixed constant μ > 1, define

g(x) = exp

⎛
⎝ln μ ·

+∞∑
i=0

clamp(H(C
x,µi ) − H(D

x,µi )) + ln μ ·
+∞∑
i=1

(
clamp(H(C

x,µ−i ) − H(D
x,µ−i )) − 1

)⎞
⎠ .

As clamp(H(Cx,y) − H(Dx,y)) = 1 for y ≤ f(x),

g(x) ≥ exp
(
ln μ · �logμ(f(x))�) ≥ f(x).

As clamp(H(Cx,y) − H(Dx,y)) = 0 for y > γ(x) · f(x),

g(x) ≤ exp
(
ln μ · �logμ(γ(x) · f(x))�) ≤ μγ(x) · f(x).

In order to complete the proof, we show that g is in Rη-TFAM. For any
input x, ĝ, the prover can prove ĝ ≈ g(x) if ĝ = g(x).

Consider the following protocol, ε = 1/poly(m, ln γ) will be fixed later.
On any input x, define di = H(Cx,μi) − H(Dx,μi). And the honest prover

should send d̂i = di. The prover have to prove that di − ε < d̂i < di + ε. For
μi ≤ f(x), d̂i ≥ di−ε ≥ 1, then clamp(d̂i) = 1 = clamp(di). For μi ≥ μγ(x)f(x),
d̂i ≤ di + ε ≤ 0, then clamp(d̂i) = 0 = clamp(di). For f(x) < μi < μγ(x)f(x),
| clamp(d̂i) − clamp(di)| ≤ |d̂i − di| < ε.

AM “protocol” on input (x, ĝ)

P: Send . . . , d̂−1, d̂0, d̂1, d̂2, . . . such that logμ ĝ =
∑∞

i=0 clamp(d̂i) +
∑∞

i=1(clamp(d̂−i) − 1)

P,V: For each i ∈ Z, convince the verifier that d̂i − ε < H(Cx,μi ) − H(Dx,μi) < d̂i + ε

Thus
∣∣∣ ln ĝ − ln g(x)

ln μ

∣∣∣ ≤
∑
i∈Z

∣∣clamp(d̂i) − clamp(di)
∣∣

=
∑

f(x)<μi<μγ(x)f(x)

∣∣clamp(d̂i) − clamp(di)
∣∣

< �logμ(μγ(x))�ε

<
ln γ(x) + 2

lnμ
ε.

If ε is sufficiently small, ĝ would be close to g(x). To ensure |ĝ − g(x)| ≤ 1
mg(x),

it is sufficient to set ε = O( 1
m(ln γ(x)+2) ).

The above “protocol” is not a real protocol, as it requires the prover to send
an infinite sequence to the verifier. To compress the proof, the prover need a
succinct interactive proof that dj > 1 for all j ≤ iL and dj < 0 for all j ≥ iH .

For an index i, if the prover can convince the verifier that di = H(Cx,μi) −
H(Dx,μi) < 2, the verifier also learns that μi > g(x), thus for any j ≥ i +
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�logμ γ(x)�, μj > γ(x)g(x) and dj ≤ −1. Similarly, if the prover can convince
the verifier that di = H(Cx,μi) − H(Dx,μi) > −1 , the verifier also knows that
dj ≥ 2 for any j ≤ i − �logμ γ(x)�.

Thus the real AM protocol that proves ĝ ∈ (g(x) − 1
m , g(x) + 1

m ) is the
following: ��

AM protocol on input (x, ĝ, 1m)

P: Send d̂iL , d̂iL+1, . . . , d̂iH−1, d̂iH such that
• logμ ĝ = iL +

∑iH
i=iL

clamp(d̂i)
• iH = iL + 2�logμ γ(x)�
• d̂iL+�logµ γ(x)� > 0

• d̂iL+�logµ γ(x)�+1 < 1

P,V: For each i ∈ Z, convince the verifier that d̂i − ε < H(Cx,μi) − H(Dx,μi) < d̂i + ε
for ε = O( 1

m(ln γ(x)+2)
).

4 Search SIVP and NP-Hardness

Theorem 4.1. For any factor γ : N → R, if gapSIVPγ ∈ SZK and there
exists a probabilistic polynomial-time adaptive reduction from a language L to
SIVP√

n lnn·γ , then L ∈ AM ∩ coAM.

The smallest factor γ we knows that makes problem gapSIVPγ be in SZK
comes from [PV08]: for any factor γ(n) = ω(

√
n log n), problem gapSIVPγ is in

SZK.

Corollary 4.2. For any factor γ(n) = ω(n log n), if there exists a probabilistic
polynomial-time adaptive reduction from a language L to SIVPγ , then L ∈ AM∩
coAM.

The proof of Theorem 4.1 is the combination of Lemmas 4.3, 4.4 and 4.5.
Problem gapSIVPγ is in SZK and there is a reduction from language L to search
problem SIVP√

n lnn·γ . Lemma 4.3 shows that there is another reduction from L
to sampling problem DGSs for any s satisfying

s(B) ∈ [λn(B),
√

ln n · γλn(B)]. (3)

Lemma 4.5 shows that there exists a function s satisfying (3) such that the sam-
pling problem DGSs is probability-verifiable. Therefore, there exists a reduction
from L to a probability-verifiable sampling problem. Finally, Lemma 4.4 shows
that such a language L must live in AM ∩ coAM.
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Lemma 4.3. Let s(·) be a function mapping lattice bases to real numbers, such
that ∀B, λn(B) ≤ s(B) ≤ γ√

n
λn(B). Then there exists a probabilistic Turing

reduction from SIVPγ to DGSs.

Lemma 4.4. If there exists a probabilistic Turing reduction from a promise
problem L = (LY , LN ) to probability-verifiable sampling problems, then L ∈
AM ∩ coAM.

Lemma 4.5. For any factor γ : N → R, if gapSIVPγ(n)/
√
lnn ∈ SZK, then there

exists a function s(·) mapping lattice bases to real numbers, such that ∀B, s(B) ∈
[λn(B), γ(n) · λn(B)] and DGSs is probability-verifiable.

By combining Lemmas 4.4, 4.5 and [PV08], we can also show that discrete
Gaussian sampling with width Õ(

√
n) ·λn is not NP-hard unless the polynomial

hierarchy collapses.

Theorem 4.6. If there exists a probabilistic Turing reduction from a promise
problem L to DGSs for s(B) = ω(

√
n log n) · λn(B), then L ∈ AM ∩ coAM.

4.1 From Search SIVP to Discrete Gaussian Sampling

This section proves Lemma 4.3, which is essentially Lemma 3.17 in Regev’s work
[Reg09]. Informally speaking, Regev shows a reduction from SIVPγ to DGSγ/

√
n

for γ = Ω(
√

n log n); Lemma 4.3 uses similar technique to construct a reduction
from SIVPγ to DGSγ/

√
n for γ = Ω(

√
n).

The reduction from SIVPγ to discrete Gaussian sampling is straightforward:
Sample n2 times from discrete Gaussian distribution of width s ∈ [λn, γ√

n
λn].

The sampled vectors contain n short, linearly independent vectors with proba-
bility exponentially close to 1.

In order to prove Lemma 4.3, we shows that if n2 vectors are sampled from
discrete Gaussian NL(B),s(B), the following two “bad events” occurs with prob-
ability exponentially small.

– One of the sampled vectors is too long, its Euclidean norm is larger than
γλn(B).

– The sampled vectors are not full rank.

Lemma 2.2 bounds the probability that an overlong vector is sampled from
a discrete Gaussian distribution. Let the constant c in formula (2) equals 1,

Pr
v←NL(B),s(B)

[
‖v‖ >

√
n · s(B)

]
=

ρs(L(B) \ s
√

nB)
ρs(L(B))

<
(√

2πe · e−π
)n

< 0.2n.

As γ(n) · λn(B) ≥ √
n · s(B),

Pr
v←NL(B),s(B)

[
‖v‖ > γλn(B)

]
≤ Pr

v←NL(B),s(B)

[
‖v‖ >

√
n · s(B)

]
< 0.2n,
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which is exponentially small.
To prove that the n2 sampled vectors span the whole space, we need a lower

bound on the probability a newly sampled vector is linear independent from the
previous ones. Lemma 4.7 shows such a lower bound, improves [Reg09, Lemma
3.15] by a factor of

√
ln n (the so-called smoothing parameter).

Lemma 4.7. For any n-dimensional lattice L, real number s ≥ λn(L) and for
any proper linear subspace V � Rn, the probability Prv←NL,s

[v �∈ V] is at least
1/20.

Proof. By the definition of successive minimum, there exists u ∈ L\V such that
‖u‖ ≤ λn(L). Let L′ denote L ∩ V. As L is closed under addition, L′ +u,L′ −u
are subsets of L. Moreover, as V is closed under addition and u /∈ V, the sets
L′ + u,L′,L′ − u are disjointed.

Pr
v←NL,s

[v ∈ V] =
ρs(L′)
ρs(L)

≤ ρs(L′)
ρs(L′ − u) + ρs(L′) + ρs(L′ + u)

=

∑
v∈L′ ρs(v)∑

v∈L′
(
ρs(v − u) + ρs(v) + ρs(v + u)

)

As ‖u‖ ≤ λn(L) ≤ s, for any vector v

ρs(v − u) + ρs(v + u) = e−π‖v−u‖2/s2 + e−π‖v−u‖2/s2

= (e−2π〈u,v〉/s2 + e2π〈u,v〉/s2 )e−π‖u‖2/s2e−π‖v‖2/s2 ≤ 2e−πρs(v)

Thus

Pr
v←NL,s

[v ∈ V] ≤
∑

v∈L′ ρs(v)∑
v∈L′(1 + 2e−π/22)ρs(v)

=
1

1 + 2e−π
≈ 0.92.

��
Assume k vectors has been sampled from NL(B),s(B) and their dimension is

strictly less than n. By Lemma 4.7, the next n sampled vectors contain a vector
linearly independent from the first k with probability exponentially close to 1.
By union bound, n2 samples from NL(B),s(B) contains n linearly independent
vectors with probability exponentially close to 1.

4.2 Probability-Verifiable Sampling Problem and NP-hardness

This section proves Lemma 4.4, which is a generalization of [BB15], the proof
techniques are similar.

Let M be the reduction from a promise problem L = (LY , LN ) to S. For
a given input x, we want to distinguish between Pr[MS(x) → 1] ≥ 8/9 and
Pr[MS(x) → 1] ≤ 1/9 in AM. Notice that the randomness includes the random
tape of M and the randomness S used to answer each query.
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A transcript of an execution of MS(x) is an tuple (r, pd1, v1, pd2, v2,
. . . , pdT , vT ) consists of the random tape of M, all queries to S and the cor-
related answers. The transcript fully determined the execution MS(x), and

Pr[MS(x) → 1] =
∑

transcript (r,pd1,v1,pd2,v2,...,pdT ,vT )

determines a execution where MS(x)→1

Pr[(r, pd1, v1, pd2, v2, . . . , pdT , vT )]

=
∑

transcript (r,pd1,v1,pd2,v2,...,pdT ,vT )

determines a execution where MS(x)→1

Pr[r]
T∏

t=1

Ppdt(vt).

In the proof, we construct an AM protocol that estimates this sum.

Proof of Lemma 4.4. It’s sufficient to show that L = (LY , LN ) ∈ AM. Then the
same argument would shows L̄ = (LN , LY ) ∈ AM, which implies L ∈ coAM.

L can be efficiently reduced to a probability-verifiable sampling problem. Let
S denote a correlated sampling oracle. The reduction is a probability polynomial-
time oracle algorithm M such that

x ∈ LY =⇒ Pr[MS(x) → 1] ≥ 8
9
,

x ∈ LN =⇒ Pr[MS(x) → 1] ≤ 1
9
.

(4)

The probability is over the random tape of M and the randomness used by S.
Without loss of generality, assume there exists T = poly(n) that M uses T bits
of randomness and makes T queries on any input x ∈ {0, 1}n.

Define a transcript of an execution MS(x) as a tuple (r, pd1, v1, pd2, v2, . . . ,
pdT , vT ) where r ∈ {0, 1}T is the random tape of M, pdt is the t-th query
to sampling oracle S and vt is the t-th sample returned by S. The length of
vt is bounded by some polynomial of n, let 	(n) be a polynomial that upper
bound |vt|.

Note that the input, the random tape and oracle’s answers fully determine
the reduction. Given the input and random tape, the reduction’s first query is
predictable; given the input, random tape and the oracle’s previous answers,
the reduction’s next query is predictable. Therefore, we define a transcript σ =
(r, pd1, v1, pd2, v2, . . . , pdT , vT ) to be valid, if it’s potentially a transcript of an
execution MS(x), i.e. if for all 1 ≤ t ≤ T , pdt would the t-th query in execution
MS(x) when r is the random tape and v1, . . . , vt−1 is the oracle’s previous
answers. By this definition, σ is a valid transcript doesn’t implies vt has non-
zero probability under distribution pdt. Let C(x) denote the set of all valid
transcripts of MS(x).

The transcript also determines the output of the reduction. Define a tran-
script σ to be accepting, if σ is valid and the corresponding execution MS(x)
output 1. Let C1(x) denote the set of all accepting transcripts of MS(x).

Let Px(σ) denote the probability that σ is the transcript of MS(x) when
the random tape is uniformly chosen and S is an ideal sampling oracle. Then by
chain rule,
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Px(σ) =
1
2T

T∏
t=1

Ppdt(vt)

for any valid transcript σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT ). For any input x, we
know C1(x) ⊆ C(x),

∑
σ∈C(x)

Px(σ) = 1,
∑

σ∈C1(x)

Px(σ) = Pr[MS(x) → 1]

by the definition of valid/accepting transcripts. Thus, by condition (4), to dis-
tinguish between x ∈ LY and x ∈ LN , it’s sufficient to distinguish between∑

σ∈C1(x)
Px(σ) ≥ 8/9 and

∑
σ∈C1(x)

Px(σ) ≤ 1/9.
Define D(x) as the set of all tuple (σ, k) such that σ = (r, pd1, v1, pd2, v2, . . . ,

pdT , vT ) ∈ C1(x), and k is an integer that

1 ≤ k ≤ K · Px(σ) = K · 1
2T

T∏
t=1

Ppdt(vt)

where K = 10 · 2T · 2T (�+1). Then the size of D(x) is roughly K ·Pr[MS(x) → 1]
if K is sufficiently large.

The sampling problem is probability-verifiable. By definition, there exists
a family of error function {ηpd,m} such that for any pd,m, the error function
ηpd,m : {0, 1}∗ → [0,+∞) satisfies

∑
v ηpd,m(v) ≤ 1, and the promise problem

– YES instances: (pd, v, p̂, 1m) such that p̂ = Ppd(v)
– NO instances: (pd, v, p̂, 1m) such that p̂ ≥ Ppd(v) + 1

mηpd,m(v)

is in AM. Let ProbLowerBound be the corresponding AM protocol.
Let set D′(x) consist of all tuple (σ, k) such that σ = (r, pd1, v1,

pd2, v2, . . . , pdT , vT ) ∈ C1(x), and k is an integer that

1 ≤ k ≤ K · 1
2T

T∏
t=1

(
Ppdt(vt) +

1
T

ηpdt,T (vt)
)
.

Here K = 10 · 2T · 2T (�+1) as in the definition of D(x). By definition, D(x) ⊆
D′(x).

Claim. The promise problem

– YES instances: (x, σ, k) such that (σ, k) ∈ D(x)
– NO instances: (x, σ, k) such that (σ, k) /∈ D′(x)

is in AM.
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Proof. TranscriptChecking is an AM protocol that solves this promise problem.

AM protocol TranscriptChecking on input (x, σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT ), k)

V: Check whether σ is a valid accepting transcript of MS(x); Reject if not
P: Send p̂1, . . . , p̂T , an honest prover should send p̂t = Ppdt(vt)
P,V: Run protocol ProbLowerBound(pdt, vt, 1

10T ) for all 1 ≤ t ≤ T , repeat polynomial
many times in parallel and take majority so that the total error probability is
exponentially small; Reject if either of these protocols reject.

V: Check whether 1 ≤ k ≤ K · 1
2T

∏q
i=1 p̂i; Reject if not

For (σ, k) ∈ D(x), an honest prover could convince the verifier that to accept
(x, σ, k).

Any prover, even if it’s malicious, should send p̂t such that p̂t ≤ Ppdt(vt) +
1

10T ηpdt,10T (vt). Otherwise the prover will be caught in ProbLowerBound protocol
with overwhelming probability. Thus no prover can make the verifier accept
(x, σ, k) with high probability if (σ, k) /∈ D′(x). ��

Claim. The size of D(x) is at least 2
3K if x ∈ LY .

Proof. x ∈ LY implies that Pr[MS(x) → 1] ≥ 8
9 . Thus

|D(x)| =
∑

σ∈C1(x)

�K · Px(σ)�

≥
∑

σ∈C1(x)

(K · Px(σ) − 1)

= K ·
∑

σ∈C1(x)

Px(σ) − |C1(x)|

≥ K · Pr[MS(x) → 1] − |C(x)|
≥ 8

9
K − 2T · 2T (�+1)

=
8
9
K − 1

10
K

≥ 2
3
K

��

Claim. D′(x) has size at most 1
3K if x ∈ LN .
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Proof. x ∈ LN implies that Pr[MS(x) → 1] ≤ 1
9 .

|D′(x)| =
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT )∈C1(x)

⌊
K · 1

2T

T∏

t=1

(
Ppdt

(vt) +
1

10T
ηpdt,10T (vt)

)⌋

≤ K ·
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT )∈C1(x)

1

2T

T∏

t=1

(
Ppdt

(vt) +
1

10T
ηpdt,10T (vt)

)

= K ·
∑

σ=(r,pd1,...,vT )∈C1(x)

(
1

2T

T∏

t=1

(
Ppdt

(vt) +
1

10T
ηpdt,10T (vt)

)
− 1

2T

T∏

t=1

Ppdt
(vt)

)

+ K ·
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT )∈C1(x)

1

2T

T∏

t=1

Ppdt
(vt)

≤ K ·
∑

σ=(r,pd1,...,vT )∈C(x)

(
1

2T

T∏

t=1

(
Ppdt

(vt) +
1

10T
ηpdt,10T (vt)

)
− 1

2T

T∏

t=1

Ppdt
(vt)

)

+ K · Pr[MS(x) → 1]

≤ (e1/10 − 1)K +
1

9
K

≤ 1

3
K.

The second to last inequality symbol relies on the following inequality,

∑
σ=(r,pd1,v1,...,pdT ,vT )∈C(x)

(
1
2T

T∏
t=1

(
Ppdt(vt) +

1
10T

ηpdt,10T (vt)
))

=
∑

(r,pd1,v1,...,pdT−1,vT−1,pdT )

∃vT (r,pd1,v1,...,pdT ,vT )∈C(x)

(
1
2T

T−1∏
t=1

(
Ppdt(vt) +

1
10T

ηpdt,10T (vt)
)
·

∑
v

(
PpdT (v) +

1
10T

ηpdT ,10T (v)
))

≤
∑

(r,pd1,v1,...,pdT−1,vT−1)

∃pdT ,vT (r,pd1,...,vT )∈C(x)

(
1
2T

T−1∏
t=1

(
Ppdt(vt) +

1
10T

ηpdt,10T (vt)
)(

1 +
1

10T

))

...

≤
∑

r∈{0,1}T

1
2T

(
1 +

1
10T

)T

≤
(
1 +

1
10T

)T

≤ e1/10.

��
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Combining the claims above, L can be reduced to the following promise
problem

– YES instances: x such that |D′(x)| ≥ |D(x)| ≥ 2
3K;

– NO instances: x such that |D(x)| ≤ |D′(x)| ≤ 1
3K.

This promise problem can be solved in AM using the set lower bound protocol
of Goldwasser and Sipser [GS86]. Thus L ∈ AM.

4.3 DGSs is Probability-Verifiable

By Lemma 3.1, for any approximation factor γ, if gapSIVPγ/μ ∈ SZK for any
constant μ > 1, there exists a function g maps lattice bases to real numbers such
that g is in Rη-TFAM and λn(B) ≤ g(B) < γ(n)λn(B).

For any basis B and lattice point v ∈ L(B), as g ∈ Rη −TFAM, the verifier
can force the prover to provide a sufficiently accurate estimation of g(B), denoted
by ĝ. As ĝ ≈ g(B) ≥ λn(B), the verifier can ask the prover to provide a set of
linearly independent vectors W = (w1, . . . ,wn) such that ‖W‖ ≤ ĝ. Here the
length of a vector set, e.g. ‖W‖, is defined as the length of the longest vector in
the set.

Given such a short independent vector set W, there exists an efficient
algorithm that samples from discrete Gaussian distribution NL(B),ŝ such that
ŝ = Θ(

√
log n) · ĝ [BLP+13,GPV08]. Moreover, the verifier can estimate the

probability that v is sampled from NL(B),ŝ using the set lower bound protocol.
Let s(B) = Θ(

√
log n) · g(B), then ŝ is a good estimation of s(B). If the bias

between ŝ and s(B) is sufficiently small, one could expect Pr[v ← NL(B),ŝ] ≈
Pr[v ← NL(B),s(B)].

Proof (Lemma 4.5). By Lemma 3.1, for sufficiently large n, gapSIVPγ(n)/
√
lnn ∈

SZK implies the existence of a function g maps lattice bases to real numbers
such that g is in Rη-TFAM and g(B) ∈ [λn(B), γ(n)/

√
ln(2n + 4)/π · λn(B)].

Here n ≥ 2 is sufficiently large, as it implies γ(n)/
√

ln(2n+4)/π

γ(n)/
√
lnn

≥ 1.01.

Define s(B) =
√

ln(2n + 4)/π · g(B), thus for sufficiently large n

λn(B) ≤
√

ln(2n + 4)/π · λn(B) ≤ s(B) < γ(n)λn(B).

Given any basis B, vector v ∈ L(B) and precision parameter m, the verifier
can learn a good estimation on g(B), denoted by ĝ. As g(B) ≥ λn(B), the verifier
could ask the prover to provide a set of linearly independent vectors of L(B),
denoted by W, such that ‖W‖ ≤ ĝ.

Given a set of linearly independent vectors W that ‖W‖ ≤ ĝ, there is an
efficient algorithm which samples from discrete Gaussian NL(B),

√
ln(2n+4)/π·ĝ

[BLP+13]. Let S denote this sampling algorithm. Let ŝ =
√

ln(2n + 4)/π·ĝ, then
ŝ is a good approximation of s(B). Let r be the random tape in the sampling
algorithm S, then

Pr[v ← NL(B),ŝ] =
{r : S(B′, ŝ) outputs v when r is the random input tape}

2|r| .
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We could use the set lower bound protocol to lower bound this probability
Pr[v ← NL(B),ŝ]. Thus the promise problem

– YES instances: (W,v, ŝ, p̂, 1m) such that v ∈ L, ‖W̃‖ ≤ ŝ√
ln(2n+4)/π

,

p̂ = Pr[v ← NL(B),ŝ]
– NO instances: (W,v, ŝ, p̂, 1m) such that p̂ ≥ (1 + 1

m ) Pr[v ← NL(B),ŝ]

is in AM, as it can be solved by protocol ProbLowerBound.

AM protocol ProbLowerBound on input (B,v, p̂, 1m)

P: Send ĝ, an honest prover should send ĝ = g(B)
P,V: Convince the verifier that |ĝ − g(B)| ≤ cδ · g(B),

where δ = 1
nm2 , c is a sufficiently small constant

P: Send W = (x′
1, . . . ,x

′
n)

V: Check if W is a basis of L(B) and ‖W̃‖ ≤ ĝ
P,V: Run the set lower bound protocol to convince the verifier that p̂ ≤ (1 +

1
2m

) Pr[v ← NL(B),ŝ], where ŝ =
√

ln(2n + 4)/π · ĝ

To prove DGSs is probability-verifiable, it is sufficient to show that ProbLower-
Bound is an AM protocol that estimates the probability Pr[v ← NL(B),ŝ] with
high accuracy. The estimation error of ProbLowerBound has two sources: (a) the
inaccuracy of the set lower bound protocol, which introduce an O( 1

m ) multi-
plicative error; and (b) the inaccuracy when estimating s(B). Let ηB(v) be the
estimation error, the error term satisfies

NB,s(B)(v) + ηB(v) ≤
(
1 +

1
2m

)
max

|ŝ−s(B)|≤δ·s(B)
NB,ŝ(v) (5)

To complete the proof, it is sufficient to show that
∑

v∈L(B) ηB(v) = O( 1
m ). By

summing (5) over v ∈ L(B),

1 +
∑

v∈L(B)

ηB(v) ≤
(
1 +

1
2m

) ∑
v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v).

Thus it is sufficient to show
∑

v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v) ≤ 1 + O(
1
m

). (6)
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Which is proved as
∑

v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v) =
∑

v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

ρŝ(v)
ρŝ(L(B))

≤
∑

v∈L(B)

max|ŝ−s(B)|≤δ·s(B) ρŝ(v)
min|ŝ−s(B)|≤δ·s(B) ρŝ(L(B))

≤ ρ(1+δ)s(L(B))
ρ(1−δ)s(L(B))

≤ (
1 + δ

1 − δ
)n

= O(
1

mn
)

(7)

The last inequality is due to Lemma 2.1. ��
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Abstract. We continue the study of protocols for secure multiparty
computation (MPC) that require only two rounds of interaction. The
recent works of Garg and Srinivasan (Eurocrypt 2018) and Benhamouda
and Lin (Eurocrypt 2018) essentially settle the question by showing
that such protocols are implied by the minimal assumption that a two-
round oblivious transfer (OT) protocol exists. However, these proto-
cols inherently make a non-black-box use of the underlying OT pro-
tocol, which results in poor concrete efficiency. Moreover, no analogous
result was known in the information-theoretic setting, or alternatively
based on one-way functions, given an OT correlations setup or an honest
majority.

Motivated by these limitations, we study the possibility of obtain-
ing information-theoretic and “black-box” implementations of two-round
MPC protocols. We obtain the following results:

– Two-round MPC from OT correlations. Given an OT cor-
relations setup, we get protocols that make a black-box use of a
pseudorandom generator (PRG) and are secure against a malicious
adversary corrupting an arbitrary number of parties. For a semi-
honest adversary, we get similar information-theoretic protocols for
branching programs.

– New NIOT constructions. Towards realizing OT correlations, we
extend the DDH-based non-interactive OT (NIOT) protocol of Bel-
lare and Micali (Crypto’89) to the malicious security model, and
present new NIOT constructions from the Quadratic Residuosity
Assumption (QRA) and the Learning With Errors (LWE) assump-
tion.

– Two-round black-box MPC with strong PKI setup. Com-
bining the two previous results, we get two-round MPC protocols
that make a black-box use of any DDH-hard or QRA-hard group.
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The protocols can offer security against a malicious adversary, and
require a PKI setup that depends on the number of parties and the
size of computation, but not on the inputs or the identities of the
participating parties.

– Two-round honest-majority MPC from secure channels.
Given secure point-to-point channels, we get protocols that make
a black-box use of a pseudorandom generator (PRG), as well as
information-theoretic protocols for branching programs. These pro-
tocols can tolerate a semi-honest adversary corrupting a strict minor-
ity of the parties, where in the information-theoretic case the com-
plexity is exponential in the number of parties.

1 Introduction

There is an enormous body of work on the round complexity of protocols for
secure multiparty computation (MPC). While the feasibility of constant-round
MPC has been established a long time ago [Yao86,BB89,BMR90], some of
the most basic questions about the exact number of rounds required for MPC
remained wide open until recently.

A single round of interaction is clearly insufficient to realize the standard
notion of MPC. The focus of this work is on MPC protocols that require only
two rounds. Two-round MPC protocols are not only interesting because of the
quantitative aspect of minimizing the number of rounds, but also because of the
following qualitative advantage. In a two-round MPC protocol, a party can send
its first round messages and then go offline until all second-round messages are
received and the output can be computed. (In fact, for two-round protocols over
insecure channels, the first round messages can be publicly posted.) Moreover,
the first round messages can be potentially reused for several computations in
which the receiver’s input remains the same. Indeed, in the two-party setting,
such two-round protocols are sometimes referred to as “non-interactive secure
computation” [IKO+11].

The state of the art on two-round MPC can be briefly summarized as follows.
Unless otherwise specified, we restrict our attention to semi-honest adversaries,
who may non-adaptively corrupt an arbitrary subset of parties, and allow the
protocols to use a common random string.

In the information-theoretic setting, 2-round protocols over secure point-
to-point channels are known to exist with t < n/3 corrupted parties [IK00],
leaving open the existence of similar protocols with an optimal threshold of
t < n/2. These information-theoretic protocols, like all current general constant-
round protocols in the information-theoretic setting, have complexity that grows
polynomially with n and with the branching program size of the function being
computed, and thus can only efficiently apply to rich but limited function classes
such as NC1, NL, or other log-space classes.
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Settling for computational security, the above information-theoretic proto-
cols imply (via the multi-party garbling technique of [BMR90]) similar protocols
for circuits, capturing all polynomial-time computable functions, where the pro-
tocols only require a black-box use of any pseudorandom generator (PRG), or
equivalently a one-way function. In this setting too, it was open whether the
optimal1 threshold of t < n/2 can be achieved.

Under stronger cryptographic assumptions, a lot of recent progress has been
made on two-round MPC protocols that tolerate an arbitrary number of cor-
rupted parties. The first such protocols required a public-key infrastructure
(PKI) setup, where each party can post a public key before its input is known,
and were based on the Learning With Errors (LWE) assumption via threshold
fully homomorphic encryption [AJW11]. This was followed by protocols with-
out PKI setup, first under indistinguishability obfuscation [GGHR14] or wit-
ness encryption [GLS15], and later under LWE via multi-key fully homomorphic
encryption [MW16] or spooky encryption [DHRW16]. Using PKI setup, two-
round protocols could also be constructed under the Decisional Diffie-Hellman
(DDH) assumption via homomorphic secret sharing [BGI17,BGI+18].

In recent works, a new general technique for collapsing rounds via “protocol
garbling” [GS17] has been used by Garg and Srinivasan [GS18] and Benhamouda
and Lin [BL18] to settle the minimal assumptions required for two-round MPC.
These works show that general two-round MPC can be based on any two-round
protocol for oblivious transfer (OT) [Rab81,EGL85], namely a protocol allowing
a receiver to obtain only one of two bits held by a sender without revealing the
identity of the chosen bit. This assumption is clearly necessary, since two-round
OT is an instance of two-round general MPC.

Remaining Challenges. Despite apparently settling the problem of two-round
MPC, many challenges still remain. First and foremost, the recent OT-based
protocols from [GS18,BL18] inherently make a non-black-box use of the under-
lying OT protocol. This results in poor concrete efficiency, which is unfortunate
given the appealing features of two-round MPC discussed above. Second, the
recent results leave open the possibility of obtaining information-theoretic secu-
rity, or alternatively, computational security using symmetric cryptography, in
other natural settings. These include protocols for the case of an honest majority
(t < n/2) using secure point-to-point channels,2 or alternatively protocols for
dishonest majority based on an ideal OT oracle. Finally, the two-round MPC pro-
tocols from [GS18,BL18] did not seem to apply to the more general client-server

1 Protocols that offer security with no honest majority imply oblivious transfer. Thus,
they provably do not admit a black-box reduction to a PRG [IR89], and a non-black-
box reduction would be considered a major breakthrough in cryptography.

2 A recent work of Ananth, Choudhuri, Goel, and Jain [ACGJ18] obtains honest-
majority, two-round MPC protocols from one-way functions satisfying the notion
of security with abort against malicious adversaries. Our work was done in part
following a public announcement of this result.
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setting, where only clients hold inputs and receive outputs, and communication
only involves messages from clients to servers and from servers to clients.3

1.1 Our Contribution

In this work we address the above challenges, focusing mainly on the goal of con-
structing information-theoretic and “black-box” implementations of two-round
MPC protocols. We obtain the following results:

Two-Round MPC from OT Correlations. We start by studying two-round
MPC using an OT correlations setup, which can be viewed as a minimal4 setup
for MPC with no honest majority under assumptions that are weaker than OT.
An OT correlation setup allows each pair of parties to share many independent
instances of correlated randomness where party Pi gets a pair of random bits
(or strings) (s0, s1) and party Pj gets a random bit b and the bit sb. Using such
an OT correlations setup, we get protocols that make a black-box use of a PRG
and are secure against either a semi-honest5 or malicious adversary corrupting
an arbitrary number of parties. For a semi-honest adversary, we get similar
information-theoretic protocols for branching programs.

This OT correlation setup can be implemented with good concrete effi-
ciency via OT extension [IKNP03], requiring roughly 128 bits of commu-
nication per string-OT. Alternatively, the communication complexity of the
setup can be made independent of the circuit size (at a much higher com-
putational cost) by using homomorphic secret sharing based on LWE, DDH,
or DCRA [BGI16,DHRW16,FGJI17,BCG+17]. Finally, a fully non-interactive
option for implementing the OT correlation setup is discussed next.

New NIOT Constructions. An appealing method of realizing the OT cor-
relation setup is via non-interactive OT (NIOT) [BM90]. An NIOT protocol is
the OT analogue of non-interactive key exchange: it allows two parties to obtain
a joint OT correlation via a simultaneous message exchange. We present sev-
eral new constructions of NIOT. First, we extend the DDH-based construction
3 An additional disadvantage of the protocols from [GS18,BL18] compared to most

earlier protocols is that their communication complexity is always bigger than the
circuit size of the function being computed. However, breaking this circuit size bar-
rier under general assumptions such as OT would require a major breakthrough,
regardless of round complexity.

4 Two-round MPC was previously known to follow from a global correlated randomness
setup that includes garbled circuits [CEMY09,IMO18] or truth-tables [IKM+13]
whose keys are secret-shared between all parties. Our setup assumption is weaker in
that it only involves a simple pairwise correlation.

5 Our protocol for semi-honest adversaries is expensive but not prohibitively so. With
some simple optimizations, the online communication consists of roughly 1750 · n3

standard garbled circuits, which is about 135 times the cost of the BMR proto-
col [BMR90], and the total number of OTs required by the setup is less than 7% of
the communication.
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from [BM90] to the malicious security model, improving over an earlier construc-
tion based on bilinear maps from [GS17]. Second, we present new NIOT con-
structions from the Quadratic Residuosity Assumption (QRA) and from LWE.

Two-Round Black-Box MPC with Strong PKI Setup. Combining the
protocols based on OT correlations and the NIOT constructions, we get two-
round MPC protocols that make a black-box use of any DDH-hard or QRA-
hard group. The protocols can offer security against a malicious adversary, and
require a strong PKI setup that depends on the number of parties and the size of
computation, but not on the inputs or the identity of the participating parties.
This is arguably the first “black box” two-round MPC protocol that does not
rely on an honest majority or a correlated randomness setup. Our DDH-based
protocol can be compared with previous DDH-based two-round MPC protocols
from [BGI+18] that require a weaker PKI setup and have better asymptotic
communication complexity, but make a non-black-box use of the underlying
group except when there are n clients and 2 servers.

Two-Round Honest-Majority MPC from Secure Channels. Given
secure point-to-point channels, we get protocols that make a black-box use of a
PRG, as well as information-theoretic protocols for branching programs. These
protocols can tolerate a semi-honest adversary corrupting a strict minority of
the parties, where in the information-theoretic case the complexity of the pro-
tocol grows exponentially with the number of parties. Our work leaves open the
question of eliminating this slightly super-polynomial dependence as well as the
question of obtaining similar results for malicious adversaries. This question has
been resolved in the concurrent and independent work of Applebaum, Brakerski
and Tsabary [ABT18].

From Standard MPC to Client-Server MPC. Finally, we present a general
(non-black-box) transformation that allows converting previous two-round MPC
protocols (including the recent OT-based protocols from [GS18,BL18]) to the
stronger client-server model. Concretely, we use a PRG to transform any n-
party, two-round, MPC protocol with security against semi-honest adversaries
corrupting an arbitrary subset of parties to a similar protocol with n clients and
m servers, where in the first round each client sends a message to each server and
in the second round each server sends a message to each client. The resulting
protocol is secure against a semi-honest adversary that corrupts an arbitrary
subset of clients and a strict subset of the servers. This setting is particularly
appealing when clients would like to be offline except when their input changes
or they would like to receive an output.

1.2 Overview of Techniques

In this subsection, we describe the main techniques used to obtain our results.
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1. We start with a high-level overview of the OT correlations model and describe
the technical challenges in constructing a non-interactive OT protocol.

2. Later, we will show how to use OT correlations to make the compiler of Garg
and Srinivasan [GS18] information theoretic. This gives efficient, two-round
protocols in the OT correlations model with information theoretic security for
branching programs and computational security for circuits making black-box
use of a pseudorandom generator.

3. We then explain the main ideas in constructing a two-round, protocol in the
honest majority setting with secure point-to-point channels.

OT Correlations Model. The OT correlation is modeled by a two-party ideal
functionality. When this functionality is invoked by a (sender, receiver) pair, it
samples three bits (s0, s1) and b uniformly at random and provides (s0, s1) to
the sender and (b, sb) to the receiver. For simplicity, we focus only for the case
where sender’s output (s0, s1) are bits as there are perfect, round-preserving
reductions from bit OT correlations to string OT correlations (refer [BCS96,
BCW03]). Given such OT correlations, there is an information theoretic, two-
round OT protocol as follows. In the first round, the receiver sends u = b ⊕ c to
the sender where c is the choice bit and in the second round, the sender computes
(x0, x1) = (m0 ⊕ su,m1 ⊕ s1⊕u) and sends them to the receiver. The receiver
outputs xc ⊕ rb.

Bellare-Micali Non-interactive Oblivious Transfer. Bellare and
Micali [BM90] gave an efficient, single-round protocol based on Decisional Diffie-
Hellman (DDH) assumption [DH76] for computing OT correlations when the
adversary corrupting either of the two parties is semi-honest. The protocol is in
the common reference string model and is as follows. Let us assume that G is
a DDH hard group and g is a generator. The CRS is an uniform group element
X. The sender chooses a ← Z

∗
p and sends A = ga to the receiver. The receiver

chooses a random b ← Z
∗
p and sends (B0, B1) = (gb,X/gb) in a randomly per-

muted order. The sender computes (Ba
0 , Ba

1 ) and outputs it and the receiver
computes Ab and outputs it. The receiver’s choice bit b is statistically hidden
from an adversarial sender and the string s1−b is computationally hidden from
the receiver based on the DDH assumption. However, this protocol only works in
the semi-honest model as there is no efficient way to extract the receiver’s choice
bit or the sender’s correlations. In [GS17], Garg and Srinivasan additionally used
Groth-Sahai proofs [GS08] to enable efficient extraction of the correlations from
a malicious adversary but this construction relies on bilinear maps.

Our Construction of Non-interactive Oblivious Transfer. Our approach
of constructing non-interactive oblivious transfer is via a generalization of the
dual-mode framework introduced in the work of Peikert, Vaikuntanathan and
Waters [PVW08]. In the dual mode framework, the common reference string
can be in one of two indistinguishable modes: namely, the receiver extraction
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mode or the sender extraction mode. In the receiver extraction mode, the CRS
trapdoor enables the simulator to extract the receiver’s correlation b and in the
sender extraction mode, the it enables the simulator to extract the sender’s cor-
relation (s0, s1) from the malicious party. In either of the two modes, the secrets
of the honest party are statistically hidden. We give efficient instantiations of
this framework from DDH, Quadratic Residuocity assumption [GM82] and the
Learning with Errors assumption [Reg05]. Our DDH and QR based construc-
tions make black-box use of the underlying group. We stress that constructions
of dual-mode cryptosystem in [PVW08] do not yield non-interactive oblivious
transfer and we need to come up with new constructions. We refer the reader to
Sect. 3.1 for the details.

Round-Collapsing Compiler in the OT Correlations Model. Indepen-
dent works by Benhemouda and Lin [BL18] and Garg and Srinivasan [GS18]
gave a “round-collapsing” compiler that takes an arbitrary multi-round MPC
protocol and collapses it to two-rounds assuming the existence of a two-round
oblivious transfer and garbled circuits. The compiler makes use of the code of the
underlying protocol and thus, if the underlying protocol performs cryptographic
operations then the resultant two-round protocol makes non-black box use of
cryptography. In this work, we will use OT correlations to modify the compiler
of [GS18] so that the resulting protocol makes black-box use of cryptography
even if the underlying protocol performs cryptographic operations. Let us see
how this is done.

We start by observing that OT correlations allow for perfect (resp.,
statistical) information-theoretic protocols in the presence of an arbitrary
number of semi-honest (resp., malicious) corrupted parties. Hence, we will
round-collapse, perfectly/statistically secure protocols that are in the OT-
hybrid model (e.g., [GMW87,Kil88,IPS08]). We first give a reduction from
perfectly/statistically secure protocols in the OT-hybrid model to a per-
fectly/statistically secure protocols in the OT correlations model. This reduction
has a property that all the OT correlations are generated before the actual exe-
cution of the protocol and the operations performed in the protocol are informa-
tion theoretic. Another useful property is that number of OT correlations needed
depends only the number of parties and the size of the computation to be per-
formed and in particular, is independent of the actual inputs. At a high level,
this reduction relies on the fact that OT correlations can be used to perform
information theoretic OTs. Now, given such a protocol in the OT correlations
model, we modify the compiler of Garg and Srinivasan to have a pre-processing
phase where all the OT correlations needed for the underlying protocol and those
consumed by the round-collapsing compiler are generated. Later, these OT cor-
relations are used to perform information theoretic OTs both in the underlying
protocol and the round-collapsing compiler. Additionally, we also replace the
garbled circuits used in the round-collapsing compiler with a perfectly secure
analogue, namely a so-called “decomposable randomized encodings” for low-
depth circuits [IK00,AIK04]. With these changes to the [GS18] compiler, we get
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a perfectly secure two-round protocol in the OT correlations model for constant
size functions. Later, we use a result from [BGI+18] to bootstrap this to a per-
fectly secure, two-round protocol in the OT correlations model for NC0 circuits.
Two immediate corollaries of this result are a perfectly secure, two-round proto-
col in the OT correlations model for polynomial sized branching programs and
a computationally secure, two-round protocol in the OT correlations model for
arbitrary circuits making black-box use of a pseudorandom generator.

Two-Round Protocol in the Honest Majority Setting. To construct a
two-round protocol in the plain model (with secure point-to-point channels)
when the adversary corrupts a strict minority of the parties, we use the same
high level idea of the [GS18] compiler. That is, we take a larger round protocol
secure with honest majority and round-collapse it to two-rounds. Two immedi-
ate issues arise: (1) The first issue is that the round-collapsing compiler requires
the existence of two-round oblivious transfer, (2) the second issue is that round-
collapsing compiler could only compress protocols in the presence of a broad-
cast channels and fails for protocols with secure channels. To address the first
issue, we construct a perfectly secure, two-round OT protocol in the presence
of honest majority (building on the work of [IKP10]) and to address the sec-
ond issue, we give a generalization of the [GS18] compiler to compress protocols
that may require secure channels. We then use this OT protocol in parallel with
the round-collapsing compiler of [GS18] (enhanced to work for protocols with
secure channels) to obtain a two-round protocol in the honest majority setting.
However, the resulting communication complexity of the protocol grows super-
polynomially with the number of parties n. Still, for constant n, the protocol is
efficient.

1.3 Organization

In Sect. 2, we will recall some standard definitions about secure computation and
tools such as garbled circuits and decomposable randomized encoding. In Sect. 3,
we define the OT correlations functionality and give various methods to realize
it. In Sect. 4 we give the construction of 2-round semi-honest MPC in the OT
correlations hybrid model. We point the reader to the full version of our paper
for the other results.

2 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote
the security parameter. A function μ(·) : N → R

+ is said to be negligible if
for any polynomial poly(·) there exists λ0 such that for all λ > λ0 we have
μ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on
input x with the content of the random tape being r. When r is omitted, A(x)
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denotes a distribution. For a finite set S, we denote x ← S as the process of
sampling x uniformly from the set S. We will use PPT to denote Probabilistic
Polynomial Time algorithm.

2.1 Decomposable Randomized Encoding

We recall the definitions of randomized encoding [Yao86,IK00,AIK04].

Definition 1 (Randomized Encoding). Let f : {0, 1}n → {0, 1}m be some
function. We say that a function ̂f : {0, 1}n × {0, 1}ρ → {0, 1}m is a perfect
randomized encoding of f if for every input x ∈ {0, 1} , the distribution ̂f(x; r)

induced by an uniform choice of r
$← {0, 1}ρ , encodes the string f(x) in the

following sense:

– Correctness. There exists a decoding algorithm Dec such that for every x ∈
{0, 1}n, it holds that:

Pr
r

$←{0,1}ρ

[Dec( ̂f(x; r)) = f(x)] = 1

– Privacy: There exists a randomized algorithm S such that for every x ∈
{0, 1}n and uniformly chosen r

$← {0, 1}ρ it holds that

S(f(x)) is distributed identically to ̂f(x; r).

Definition 2 (Decomposable Randomized Encoding). We say that
̂f(x; r) is decomposable if ̂f can be written as ̂f(x; r) = ( ̂f0(r), ̂f1(x1; r),
. . . , ̂fn(xn; r)) where ̂fi is chooses between two vectors based on xi , i.e., it can
be written as ai,xi

and (ai,0,ai,1) arbitrarily depend on the randomness r. We
will use ̂f(; r) to denote ( ̂f0(r), (a1,0,a1,1), . . . , (an,0,an,1)).

We will recall the following two constructions of randomized encoding.

Lemma 1 ([Kil88,IK00]). Let f : {0, 1}n → {0, 1}m be a function computable in
NC0. Then f has a perfectly secure decomposable randomized encoding ̂f where
the size of the encoding is 2O(d)(n + m) where d is the depth of the circuit.

Lemma 2 ([Yao86]). Let f : {0, 1}n → {0, 1}m be a function computable by an
arbitrary circuit. Assuming the existence of one-way functions, f has a compu-
tationally secure randomized encoding ̂f .

2.2 Universal Composability Framework

We work in the Universal Composition (UC) framework [Can01] to formalize
and analyze the security of our protocols. (Our protocols can also be analyzed
in the stand-alone setting, using the composability framework of [Can00], or in
other UC-like frameworks, like that of [PW00].) We give the details in the full
version. We only focus on static (non-adaptive) adversaries but we note that our
perfectly secure protocols are also secure against adaptive adversaries.
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3 OT Correlations Functionality

In this section, we define the FOTCor functionality in Fig. 1. Intuitively, the
FOTCor functionality obtains a bit b from the receiver and samples two bits
(s0, s1) randomly from {0, 1} and outputs (s0, s1) to the sender and sb to the
receiver.6 In the definition, we focus on the case where the sender’s output are
just two bits (s0, s1) instead of two strings as there are efficient reductions from
1-out-of-2 string OTs to 1-out-of-2 bit OTs using self-intersecting codes or ran-
domness extractors [BCS96,BCW03]. By abusing notation, we will interchange-
ably use the same functionality to sample two strings instead of two bits.

Parametrized with parties P1, . . . , Pn and an adversary S controlling a subset of
the parties. Let H be the set of parties not controlled by the adversary.

On receiving (sid, receiver, pid, b) (where b ∈ {0, 1}) or (sid, sender, pid) from a
party with id pid, store this message.

On receiving (sid, pid1, pid2) from a party with id pid1, check if
(sid, receiver, pid2, b) and (sid, sender, pid1) are stored. If not stored, then
do nothing. Else, do the following:
– If both pid1, pid2 ∈ H , sample (s0, s1)

$← {0, 1}, send (s0, s1) to the party
pid1 and sb to the party pid2.

– If pid1 H but pid2 ∈ H then send the message (sender, pid1) to S and
receive (s0, s1) from S. Send sb to the party pid2.

– If pid1 ∈ H but pid2 H , send the message (receiver, pid2) to S and

receive sb from S. Sample s1−b
$← {0, 1} and send (s0, s1) to the party

pid1.
– If both pid1, pid2 H , ignore the message.

Fig. 1. OT Correlations Functionality FOTCor.

We first discuss two generic ways from literature for realizing FOTCor func-
tionality and then give two new ways for realizing it.

OT Extension. We first note that any OT protocol can be used to realize
FOTCor functionality. A more efficient way would be to use an oblivious transfer
extension protocol [Bea96,IKNP03,ALSZ13,ALSZ15,KOS15]. Any OT exten-
sion protocol with security against semi-honest/malicious adversaries can be
used to realize the FOTCor functionality against semi-honest/malicious adver-
saries. The only downside of this approach is that it involves multiple rounds of
interaction (which is inherent if we want to make black-box use of cryptogra-
phy [GMMM18]).

6 Here, we let the receiver to choose the bit b and provide as input to the function-
ality. We can also work with a weaker formulation wherein the functionality can
sample a random bit b. However, we chose this formulation as it will lead to concrete
improvements in the cost of our two-round MPC protocols.
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Homomorphic Secret Sharing/Threshold FHE. A reusable and a non-
interactive approach to realize the weaker formulation wherein the receiver’s
choice bit is sampled randomly by the functionality is to use Homomorphic
Secret Sharing (HSS) [BGI16,BGI17,BGI+18,BCG+17]. Using Homomorphic
Secret Sharing, each party can generate a HSS encoding of a randomly chosen
PRG seed and broadcasts this encoding to all other parties. When an OT correla-
tion is to be generated, the parties (using the encodings) locally compute a func-
tionality that expands the receiver’s and the sender’s PRG seed to the required
length and samples the prescribed OT correlation from the expanded seeds. At
the end of this local computation, the parties hold an additive secret sharing of
the OT correlation and the actual correlation can be obtained non-interactively
by sending these additive shares to the receiver. This approach is reusable as the
encodings just needs to be sent once and can be resused to generate fresh correla-
tions each time.7 We also note that we can replace the above homomorphic secret
sharing with any threshold FHE construction [MW16,DHRW16,BGG+18]. The
downsides of using HSS or threshold FHE is that they make non-black box use
of one-way functions in expanding the short seed to a pseudorandom string and
they are computationally expensive when compared to the OT extension. Addi-
tionally, HSS requires the use of secure channels between every pairs of parties.

In Sect. 3.1, we describe a non-interactive approach to realize FOTCor. The
advantage of this approach over HSS/threshold-FHE is that it makes black-box
use of a groups where either DDH or QR is hard (we also provide an efficient
construction from the LWE assumption). However, unlike HSS/threshold-FHE
they are not reusable.

3.1 Realizing FOTCor: Non-interactive Oblivious Transfer

In this subsection, we define a Non-interactive Oblivious Transfer (NIOT) and
show how to realize FOTCor functionality from NIOT.

Definition. A Non-interactive Oblivious Transfer (NIOT) is a tuple of algo-
rithms (KR,KS,Sen,Rec, outS, outR) having the following syntax, correctness and
security guarantees.

– KR and KS are randomized algorithms that take as input the security param-
eter (encoded in unary) and output a common random string σ along with
some trapdoor information τ .

– Sen is a randomized algorithm that takes σ as input and outputs msgS along
with secret randomness ω.

– Rec is a randomized algorithm that takes σ and a bit b as input and outputs
msgR along with secret randomness ρb.

7 The HSS constructions in [BGI16,BGI17,BGI+18,BCG+17] have a polynomial error
probability and this might leak information about the correlations to an adversary.
[BCG+17] mentions two ways to prevent such leakages: either bootstrap random
pads or use a punctured OT [BGI17]. We refer the reader to [BCG+17] for the
details.
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– outS is a deterministic algorithm that takes as input σ, msgR and the secret
randomness ω and outputs two bits k0, k1.

– outR is a deterministic algorithm that takes as σ, msgS and the secret ran-
domness ρb and outputs a bit k′

b.

Correctness. We require that for all b ∈ {0, 1},

Pr
[

k′
b = kb : (σ, τ) ← KR(1λ), (msgS, ω) ← Sen(σ), (msgR, ρb) ← Rec(σ, b),

(k0, k1) ← outS(σ, ω,msgR), k′
b ← outR(σ, ρb,msgS)

] ≥ 1 − negl(λ)

Security. We require the following security properties to hold.

– CRS Indistinguishability. We require that
{

σ : (σ, τ) ← KR(1λ)
} c≈ {

σ : (σ, τ) ← KS(1λ)
}

– Sender Security. We require that there exists a PPT a lgorithm ExtR such
that for all non-uniform PPT adversarial Rec∗ the following two distributions
are statistically close.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(σ, τ) ← KR(1λ),
(msgS, ω) ← Sen(σ),
msgR ← Rec∗(σ,msgS)
(k0, k1) ← outS(σ, ω,msgR):
Output (msgS,msgR, k0, k1)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

s≈

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(σ, τ) ← KR(1λ),
(msgS, ω) ← Sen(σ),
msgR ← Rec∗(σ,msgS)
b′ ← ExtR(σ,msgR, τ):
(k0, k1) ← outS(σ, ω,msgR),
�b′ := kb′ , �1−b′ ← {0, 1}:
Output (msgS,msgR, �0, �1).

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

– Receiver Security. We require that there exists a PPT algrithm ExtS such
that for all non-uniform PPT adversarial Sen∗ and for all b ∈ {0, 1}, the
following two distributions are statistically close.
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(σ, τ) ← KS(1λ),
(msgR, ρb) ← Rec(σ, b),
msgS ← Sen∗(σ,msgR),
k′

b ← outR(σ, ρb,msgS):
Output (msgS,msgR, k′

b)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

s≈

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(σ, τ) ← KS(1λ),
(msgR, ρ0, ρ1) ← ExtS(σ, τ),
msgS ← Sen∗(σ,msgR),
k′

b ← outR(σ, ρb,msgS):
Output (msgS,msgR, k′

b)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

NIOT ⇒ FOTCor. In this subsection, we give a realization of the FOTCor

functionality from any non-interactive oblivious transfer.

Theorem 1. Assuming the existence of non-interactive oblivious transfer, there
is a single round protocol for realizing FOTCor against malicious adversaries in
the common reference string model.

Construction. We give a construction realizing the FOTCor functionality in
Fig. 2.
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Let (KR,KS, Sen,Rec, outS, outR) be a non-interactive oblivious transfer.

Inputs: Party Pi for i ∈ [n], receives a session id sid.

Common Reference String: For every i, j ∈ [n], sample (σi,j , τi,j) ← KR(1λ).
Publish {σi,j}i,j∈[n] as the common reference string.

Let us assume that Pi is the sender and Pj is the receiver.
Message sent by Pi → Pj: Compute (msgS, ω) ← Sen(σi,j) and send msgS to

Pj .
Message sent by Pj → Pi: On input b ∈ {0, 1}, compute (msgR, ρb) ←

Rec(σi,j , b). Send msgR to Pi.
Computation: Pi sets (s0, s1) := outS(σi,j , ω,msgR). Pj sets sb :=

outR(σi,j , ρb,msgS).

Fig. 2. Realizing the FOTCor functionality

Description of the Simulator. We assume that A is static and hence the
set of honest parties H is known before the execution of the protocol. Recall
the properties of ExtR and ExtS from the definition of non-interactive oblivious
transfer.

Simulating the CRS. For every i ∈ [n],

– If Pi ∈ H, sample (σi,j , τi,j) ← KR(1λ) for every j ∈ [n] \ {i}.
– If Pi 	∈ H, sample (σi,j , τi,j) ← KS(1λ) for every j ∈ [n] \ {i}.

Publish {σi,j}i,j∈[n] as the common reference string.

Simulating the Interaction with Z. For every input value for the set of
corrupted parties that S receives from Z, S writes that value to A’s input tape.
Similarly, the output of A is written as the output on S’s output tape.

Simulating the Interaction with A. For every concurrent interaction with
the session identifier sid that A may start and for every choice of sender Pi and
the receiver Pj , the simulator does the following:

– Both Pi, Pj ∈ H:
1. Compute (msgS, ω) ← Sen(σi,j) on behalf of Pi and send msgS to Pj .
2. Sample b ← {0, 1} and compute (msgR, ρb) ← Rec(σi,j , b) on behalf of Pj .

Send msgR to Pi.
– Pi ∈ H and Pj 	∈ H:

1. Compute (msgS, ω) ← Sen(σi,j) on behalf of Pi and send msgS to A.
2. A outputs msgR.
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3. Run b′ ← ExtR(σi,j , τi,j ,msgR).
4. Compute (s0, s1) := outS(σi,j , ω,msgR).
5. Send sb′ to the FOTCor functionality and output whatever A outputs.

– Pi 	∈ H and Pj ∈ H:
1. Compute (msgR, ρ0, ρ1) ← S(σi,j , τi,j) and send msgR to A.
2. A outputs msgS.
3. Compute sb := outR(σi,j , ρb,msgS) for all b ∈ {0, 1}.
4. Send (s0, s1) to the FOTCor functionality and output whatever A outputs.

Lemma 3. Assuming the security of non-interactive oblivious transfer, for
every Z that obeys the rules of interaction for UC security we have
EXECF,S,Z

c≈ EXECπ,A,Z .

We prove this lemma in the full version.

NIOT from Quadratic Residuocity. In this section we present a construc-
tion of non-interactive oblivious transfer from the quadratic residuocity (QR)
assumption. We will begin by reviewing the assumption, then describe the con-
struction, and finally prove its correctness and security.

Notations. For a positive integer N , we use J (N) to denote the set {x ∈
Z/NZ :

(

x
N

)

= 1}, where
(

x
N

)

is the Jacobi symbol of x in Z/NZ. We use
QR(N) to denote the set of quadratic residues in J (N). The security of our
scheme is based on the following computational assumption.

Definition 3 (Quadratic Residuocity (QR) Assumption [GM82]). Let
QRgen(·) be a PPT algorithm that generates two equal size primes p, q and
N = pq. The following two distributions are computationally indistinguishable:

{

(p, q,N) ← QRgen(1λ);V ← QR(N) : (N,V )
} c≈

{

(p, q,N) ← QRgen(1λ);V ← J (N) \ QR(N) : (N,V )
}

In the construction and the proof of security, we make use of the notion IBE
compatible algorithm proved in [BGH07].

Definition 4 ([BGH07]). Let Q be a deterministic algorithm that takes as input
(N,S,R) where N ∈ Z

+ and R,S ∈ Z/NZ. The algorithm outputs two polyno-
mials f, g ∈ Z/NZ[x]. We say that Q is IBE-compatible if the following two
conditions hold:

1. (Condition 1) If S and R are quadratic residues then f(s)g(r) is a quadratic
residue for all square roots r of R and s of S.

2. (Condition 2) If S is a quadratic residue then f(s)f(−s)R is a quadratic
residue for all square roots s of S.

Boneh et al. [BGH07] showed a concrete instantiation of such an IBE-compatible
algorithm.

Theorem 2. Assuming the Quadratic Residuocity assumption, there exists a
construction of non-interactive oblivious transfer.
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The Construction. We give the construction of non-interactive oblivious trans-
fer in Fig. 3.

– KR(1λ) :
1. (p, q, N) ← QRgen(1λ)..
2. Sample a random u ← J (N) \ QR(N).
3. Output σ := (N, u), τ := (p, q).

– KS(1λ):
1. (p, q) ← QRgen(1λ).
2. Sample a random u ← QR(N).
3. Output σ := (N, u), τ := (p, q).

– Sen(σ):
1. Pick a random s ∈ Z/NZ.
2. S := s2.
3. Output msgS := S, ω := s.

– Rec(σ, b):
1. Pick a random r ∈ Z/NZ.
2. If b = 0, let msgR := r2, otherwise let msgR := r2u.
3. Output msgR and ρb := (r, b,msgR).

– outS(σ, ω,msgR):
1. Parse ω as s, and let S := s2.
2. (f, g) ← Q(N, S,msgR), (f̄ , ḡ) ← Q(N, S, u · msgR).

3. Output k0 :=
(

f(s)
N

)
, k1 :=

(
f̄(s)
N

)
.

– outR(σ, ρb,msgS):
1. Parse ρb as (r, b,msgR); parse msgS as S.

2. If b = 0, let (f, g) ← Q(N, S, r2) and k′
b :=

(
g(r)
N

)
;

otherwise let (f̄ , ḡ) ← Q(N, S, (ru)2) and k′
b :=

(
ḡ(ru)

N

)
.

3. Output k′
b.

Fig. 3. Non-interactive oblivious transfer from QR

Correctness. We start with the correctness proof. Notice that if b = 0 then
msgR is a quadratic residue and otherwise, u ·msgR is a quadratic residue. Let us
first consider the case where msgR is a quadratic residue. In that case, Condition
1 in Lemma 4 implies that

(

f(s)
N

)

=
(

g(r)
N

)

. Hence, k′
0 = k0. A similar argument

can be used to show that if u · msgR is a quadratic residue then k′
1 = k1.

CRS Indistinguishability. The CRS indistinguishability property follows
directly from quadratic residuocity assumption.
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Sender Security. We first give the description of the extractor ExtR. On input
msgR, the extractor uses the trapdoor τ = (p, q) to check if msgR is a quadratic
residue. It outputs b′ = 0 if it is the case and 1 otherwise. We now need to show
that k1−b′ is statistically indistinguishable to random and this follows directly
from the following lemma given in [BGH07].8

Lemma 4 ([BGH07]). Let N = pq be a QR modulus, X ∈ QR(N) and R 	∈
QR(N). Let x be a random variable uniformly chosen among the four square
roots of X. Let f be a polynomial such that f(x)f(−x)R is a quadratic residue
for all four values of x. Then,

(

f(x)
N

)

is uniformly distributed in {±1}.

Proof. Some parts of the proof are taken verbatim from [BGH07]. Let x, x′ be two
square-roots of X such that x = x′ mod p and x = −x′ mod q. Then, the four
square roots of X are {±x,±x′}. By definition, we have that

(

f(x)
p

)

=
(

f(x′)
p

)

and
(

f(x′)
q

)

=
(

f(−x)
q

)

. Also, from the fact that f(x)f(−x)R is a quadratic

residue, we have that
(

f(x)
p

)(

f(−x)
p

) (

R
p

)

= 1 and
(

f(x)
q

) (

f(−x)
q

)(

R
q

)

= 1.

Since R 	∈ QR(N) either
(

R
p

)

= −1 or
(

R
q

)

= −1. We consider two cases:

– Case-1:
(

R
q

)

= −1. In this case,
(

f(x)
q

)

= −
(

f(−x)
q

)

= −
(

f(x′)
q

)

. Thus,
(

f(x)
N

)

= −
(

f(x′)
N

)

. Similarly, one can show that
(

f(−x)
N

)

= −1
(

f(−x′)
N

)

.
Thus, among f(x), f(x′), f(−x), f(−x′), the first two have different Jacobi
symbols and the last two have different Jacobi symbols modulo N . Thus,
(

f(x)
N

)

is uniformly distributed over {±1}.

– Case-2:
(

R
p

)

= −1. In this case,
(

f(x)
p

)

= −
(

f(−x)
p

)

= −
(

f(−x′)
p

)

. Thus,
(

f(x)
N

)

= −
(

f(−x′)
N

)

. Similarly, one can show that
(

f(x′)
N

)

= −
(

f(−x)
N

)

.
Thus, among f(x), f(−x′), f(−x), f(x′), the first two have different Jacobi
symbols and the last two have different Jacobi symbols modulo N . Thus,
(

f(x)
N

)

is uniformly distributed over {±1}.

Receiver Security. We first give the description of the extractor ExtS. On
input σ, τ , it uses τ to find the square root u′ of u. It samples a random r and
sets msgR = r2u, ρ0 = ru′ and ρ1 = r. It is easy to see that this extractor
satisfies the receiver security definition.

4 Two-Round Semi-Honest MPC in the FOTCor Model

In this section, we give our construction of two-round MPC against semi-honest
adversaries in the FOTCor model when the adversary is allowed to corrupt an
8 The lemma in [BGH07] was shown only for R ∈ J (N). We extend it to arbitrary
R �∈ QR(N).
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arbitrary subset of the parties. The results we obtain against semi-honest adver-
saries are as follows (all our results are in the FOTCor model):

1. We first give a perfectly secure, two-round protocol for constant-size func-
tionalities.

2. Next, using s result in [BGI+18] and the protocol from Step 1, we will give a
protocol with perfectly (resp. statistical) secure, two-round protocol for func-
tionalities with perfect (resp. statistical) randomized encodings with constant
degree. Following [AIK04], we will denote the class of functions with perfectly
(resp. statistically) secure constant degree randomized encodings as PREN
(resp. SREN). Applebaum et al. [AIK04] showed that some of the natural
complexity classes such as NC1 and mod-2 branching programs ⊕L/poly are
contained in PREN. A complexity class that is in SREN but not known to be
in PREN is NL.

3. Next, using the result in [BMR90] and the protocol from Step 1, we will give
a protocol for all circuits making black-box use of a pseudorandom generator.

4.1 Protocols for Constant-Size Functionalities

For a constant n, let f : {0, 1}n → {0, 1} be a function with constant circuit
size.9 For each i ∈ [n], the party Pi has input bit xi and the parties want to
securely compute f(x1, . . . , xn).10 We give perfectly secure, two-round protocols
for computing f both in the dishonest majority setting in the FOTCor hybrid
model.

To construct a two-round protocol in the dishonest majority setting, we will
use the same high level idea of Garg and Srinivasan [GS18]. To be more precise,
we will take an arbitrary round protocol that securely computes the function f
and compress it to two-rounds. However, to construct a perfectly secure protocol
we will make the following changes to the round-collapsing compiler of [GS18],

1. All the executions of two-round oblivious transfer used by the round-
collapsing compiler in [GS18] are replaced with perfectly secure, two-round
oblivious transfer from OT correlations.

2. The garbled circuits used in [GS18] compiler are replaced with perfectly
secure, decomposable randomized encodings for NC0 circuits (cf. Definition 2).

3. The underlying multi-round protocol that we want to round-compress might
use cryptographic operations (which is necessary in the dishonest major-
ity setting) and this creates the following two problems: (i) we can no
longer argue perfect/statistical security, (ii) a subtle but a more impor-
tant problem is that the compiler in [GS18] makes use of the code of the

9 For simplicity, we restrict ourselves to functions that output a single bit. We note
that all our results can be generalized to functions with multiple bits with efficiency
growing linearly with this number. We also assume that all the parties get the output
of this functionality. We can also generalize our result for the case where some specific
parties get the output.

10 Again, for simplicity we restrict ourselves to parties with a single input bit and our
results naturally generalize to parties with multiple bits as input.
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underlying protocol and hence if the underlying protocol involves crypto-
graphic operations then the resultant two-round protocol makes non-black
box use of cryptographic primitives. To solve the first problem, we will only
round-compress perfect/statistical protocols in the OT-hybrid model (e.g.,
[GMW87,Kil88,IPS08]). Notice that any protocol in the OT-hybrid model
can be reduced information theoretically to a protocol in the FOTCor func-
tionality. To make the operations performed by all the parties information
theoretic, we will generate OT correlations and make these correlations as
part of the party’s input. For example, consider two parties P1 and P2 who
wish to do an OT in some round of the underlying protocol. Now, P1 and
P2 will use the OT correlations from their input to perform an information
theoretic OT.

The rest of the subsection is organized as follows. We will first recall the
notion of conforming protocols from [GS18]. Intuitively, conforming protocols are
MPC protocols with some additional structure. [GS18] showed that any MPC
protocol can be transformed to a conforming protocol (with some efficiency loss).
We give a generalization of the notion of conforming protocols to work in FOTCor

model. Then, we will describe our construction of two-round MPC in the FOTCor

hybrid model.

Conforming Protocol. We will now recall the notion of conforming protocols
from [GS18]. We introduce an additional parameter s such that in each round of
the conforming protocol, a single party computes s NAND gates and broadcasts
the output of these NAND gates to every party. We note that in the formulation
of [GS18], the parameter s was set to 1. We introduce this parameter for better
concrete efficiency.

Consider a n-party deterministic11 MPC protocol Φ between parties
P1, . . . , Pn with inputs x1, . . . , xn, respectively. For each i ∈ [n], we let xi ∈
{0, 1}m denote the input of party Pi (xi’s also include the randomness used in
the protocol and hence they are m bits long). A conforming protocol Φ in the
FOTCor is defined by functions pre, post, and a OT correlations generation phase
and computations steps or what we call actions φ1, · · · φT . The protocol Φ pro-
ceeds in four stages: the OT correlations generation phase, the pre-processing
stage, the computation stage and the output stage.

– OT correlations generator: For every instance of the OT to be performed
in the protocol, interact with the FOTCor functionality to generate OT cor-
relations.

– Pre-processing phase: For each i ∈ [n], party Pi computes

(zi, vi) ← pre(i, xi)

where pre is a randomized algorithm and the input xi is now augmented with
the OT correlations generated in the previous step. The algorithm pre takes

11 Randomized protocols can be handled by including the randomness used by a party
as part of its input.
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as input the index i of the party, its input xi and outputs zi ∈ {0, 1}�/n and
vi ∈ {0, 1}� (where � is a parameter of the protocol). Finally, Pi retains vi

as the secret information and broadcasts zi to every other party. We require
that vi,k = 0 for all k ∈ [�]\ {(i − 1)�/n + 1, . . . , i�/n}.

– Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn).

Next, for each t ∈ {1 · · · T} parties proceed as follows:
1. Parse action φt as (i, (a1, b1, c1), . . . , (as, bs, cs)) where i ∈ [n] and

aj , bj , cj ∈ [�] for all j ∈ [s].
2. Party Pi computes s NAND gates as

sti,cj
= NAND(sti,aj

⊕ vi,aj
, sti,bj

⊕ vi,bj
) ⊕ vi,cj

for all j ∈ [s] and broadcasts {sti,cj
}j∈[s] to every other party.

3. Every party Pk for k 	= i updates stk,cj
for all j ∈ [s] to the bits received

from Pi.
We require that for all t, t′ ∈ [T ] such that t 	= t′, if φt =
(·, (·, ·, c1), . . . , (·, ·, cs)) and φt′ = (·, (·, ·, c′

1), . . . , (·, ·, c′
s)) then {cj} ∩ {c′

j} =
∅. We use Ai ⊂ [T ] to denote the set of rounds in which the party Pi sends
a message. Namely, Ai = {t ∈ T | φt = (i, (·, ·, ·), . . . , (·, ·, ·))} .

– Output phase: For each i ∈ [n], party Pi outputs post(i, sti, vi).

We now show the following lemma which is a generalization of the lemma proved
in [GS18].

Lemma 5. For s = 1, any MPC protocol Π in the OT hybrid model can be
transformed into a conforming protocol Φ in the FOTCor model while inheriting
the correctness and the security of the original protocol. Furthermore, there exists
a choice of s such that the number of rounds of the resulting conforming protocol
is O(n·dmax·r) where dmax is the maximum depth of the boolean circuit computing
the next message function of any party and r is the number of rounds of the
original protocol Π.

We prove the lemma in the full version.

Remark 1. We note that if the i-th party’s output is public then the algorithm
post need not take vi as input.

Compiled Protocol. We describe the compiled protocol in Fig. 4 and give an
informal overview below.

Overview. Our construction involves a pre-preprocessing phase followed by
the two-rounds of interaction (described in Fig. 4) and a local evaluation phase
(described below). In the pre-processing phase, the parties interact with the
FOTCor functionality to generate two sets of OT correlations. The first set of OT



142 S. Garg et al.

correlations are generated to execute the two-round oblivious transfer used in
the compiler of Garg and Srinivasan [GS18]. The second set of OT correlations
are to be hardwired as part of the input in the conforming protocols so that
the operations done by each party in the conforming protocol are information
theoretic. To obtain perfect security, we also use a decomposable randomized
encoding in place of garbled circuits. Apart from these changes, our two-round
protocol is exactly same as in [GS18].

Evaluation. To compute the output of the protocol, each party Pi does the
following:

1. For each k ∈ [n], let x̂k,1 be the input encoding received from Pk at the end
of round 2.

2. for each t from 1 to T do:
(a) Parse φt as (i∗, (a1, b1, c1), . . . , (as, bs, cs)).
(b) Compute ({(ξj , ωj)}j∈[s], x̂

i∗,t+1) := Dec( ˜f i,t, x̂i,t).
(c) Set sti,cj

:= ξj .
(d) for each k 	= i∗ do:

i. Compute ({ots2j}j∈[s], {x̂k,t+1
h }h∈[�]\{cj}j∈[s]

) := Dec( ˜f i,t, x̂i,t).
ii. For every j ∈ [s]:

A. Parse ots2j as (Y0, Y1) and ωj as {γk
j }k∈[n]\{i∗}.

B. Recover x̂k,t+1
cj

:= Yξj
⊕ γk

j .
iii. Set x̂k,t+1 := {x̂k,t+1

h }h∈[�].
3. Compute the output as post(i, sti, vi).

Asymptotic Cost. Since the function f is constant size, the number of rounds
of the underlying protocol and the maximum depth of the next message functions
are constant (e.g., if we use [GMW87] as the underlying protocol). As a result
of Lemma 5, the number of rounds of the conforming protocol is also a constant
since k is a constant. Hence, the asymptotic cost of our protocol is a constant
(though concretely it grows as 2O(T ) where T is the number of rounds of the
conforming protocol).

Security. The only changes that we make when compared to the protocol in
[GS18] is that we use information theoretic, two-round oblivious transfer (based
on OT correlations) and perfectly secure DRE in place of garbled circuits. We
prove the security in the full version.

Theorem 3. For every constant size function f , the protocol in Fig. 4 perfectly
computes f against a semi-honest adversaries who might corrupt an arbitrary
subset of the parties.
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Let Φ be an n-party conforming semi-honest MPC protocol (with T rounds in the
computation phase) and f̂ be a DRE (See Definition 2).

Pre-processing Phase: On input the number of parties n, the number of func-
tions s, the size of each of these functions and the size of each party’s input
m, the party Pi does the following:
1. For each j ∈ [s] and α, β ∈ {0, 1}:

(a) For each t ∈ Ai (recall the definition of Ai from the descrip-
tion of conforming protocol), send ((t, j, α, β), receiver, i, rt,j,α,β)
(where rt,j,α,β is chosen randomly) and for each t ∈ [T ] \ Ai, send
((t, j, α, β), sender, i) to FOTCor functionality.

(b) Receive ωt,j,α,β = {γk
t,j,α,β}k∈[n]\{i} for each t ∈ Ai and

(γ0
t,j,α,β , γ1

t,j,α,β) if t ∈ [T ] \ Ai from FOTCor.
2. Execute the OT correlations generation phase of the conforming protocol

Φ.
Round-1: Each party Pi does the following:

1. Compute (zi, vi) ← pre(i, xi).
2. For each t ∈ Ai, for each j ∈ [s] and α, β ∈ {0, 1}, compute

ots1t,j,α,β ← vi,cj ⊕ NAND(vi,aj ⊕ α, vi,bj ⊕ β)
) ⊕ rt,j,α,β ,

where φt = (i, (a1, b1, c1), . . . , (as, bs, cs)).
3. Send zi, {ots1t,j,α,β}t∈Ai,j∈[s],α,β∈{0,1}

)
to every other party.

Round-2: In the second round, each party Pi does the following:
1. Set sti := (z1‖ . . . ‖zi‖ . . . ‖zn).
2. Set ai,T+1

k,0 = ai,T+1
k,1 = ⊥ for all k ∈ [�].

3. for each t from T down to 1,
(a) Parse φt as (i∗, (a1, b1, c1), . . . , (as, bs, cs)).
(b) If i = i∗ then

i. Let f i,t be a NC0 function that takes st as input, updates stcj as
per the action for every j ∈ [s] and outputs ωt,j,staj

,stbj
for every

j ∈ [s] along with ai,t+1
k,stk

for every k ∈ [�].
(c) If i �= i∗ then for every α, β ∈ {0, 1},

i. Compute ots2t,j,α,β := (ai,t+1
cj ,0 ⊕ X0,ai,t+1

cj ,1 ⊕ X1) where Xb =

γ
b⊕ots1t,j,α,β

t,j,α,β for every j ∈ [s].
ii. Let f i,t be a NC0 function that takes st as input and outputs

ai,t+1
k,stk

for all k ∈ [�] \ {cj} and ots2t,j,staj
,stbj

for every j ∈ [s].

(d) Compute (f̃ i,t, {(ai,t
k,0,a

i,t
k,1)}k∈[�]) ← f̂ i,t(; r).

4. Send {f̂ i,t}t∈[T ], {ai,1
k,stk

}k∈[�]

)
to every other party.

Fig. 4. Two-round MPC for constant size functions in the FOTCor hybrid model

Extensions. We will now describe two-extensions to the protocol in Fig. 4.
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– f need not be known until the second round. We will now describe
how to augment the protocol so that the function f to be computed need
not be known until the beginning of the second round and only the size of
these functions need to be known before the first round. Let us assume for
simplicity that, |f | = m′. We define a (k + m′k)-party functionality C that
takes xi from party Pi for every i ∈ [k] and takes a bit yi� from party Pi� for
each i ∈ [k] and � ∈ [m′] and does the following: it checks if for each i, i′ ∈ [n]
and � ∈ [m′], yi,�

?= yi′,�; if yes, it interprets y1,1, . . . , y1,m′ as the function f
and computes an universal circuit U(x1, . . . , xk, f) that outputs f(x1, . . . , xk).
With this functionality, let us now see how to change the two-round protocol
so that the parties need not know f until the beginning of the second-round.
We will use an underlying conforming protocol that securely computes the
constant size circuit C. In the compiled protocol, we will let each party Pi to
additionally emulate the parties {Pi�}�∈[m′]. To be more precise, in the first
round of the protocol, for each � ∈ [m′], the party Pi sends two first round
messages on behalf of party Pi�; the first message assuming the bit yi� = 0 and
the second message assuming the bit yi�′ = 1. In the beginning of the second
round, all the parties know the description of the functions f and hence can
choose the first round message corresponding to the correct value of yi� and
ignore the other message. Based on the chosen messages, the parties generate
the second round message in the compiled protocol.

– Extension to the Client-Server setting. We now describe an extension
of our two-round protocol to the client-server setting. In the client server
setting, there are n-input clients who holds the inputs, m servers who do
not have any input and one output client. The input clients send a single
message to each of the m servers and the servers send a single message to
the output client and the output client learns the output of the function
based on the server’s message. We will assume that any number of clients
can be corrupted but there is at least one server who is uncorrupted. We will
transform our 2-round protocol in the FOTCor model to one in the client-server
model. In the full version, we give a general transformation from any two-
round MPC protocol with security against semi-honest adversaries who might
corrupt an arbitrary subset of the parties to a protocol in the client-server
model. However, this general transformation might make non-black-box use
of cryptography but the transformation we give here is specific to protocol in
Fig. 4 and is information theoretic.
1. The i-th input client computes the

first round message (zi, {ots1t,j,α,β}t∈Ai,j∈[s],α,β∈{0,1}) of our two-round
protocol and sends it to each of the servers.

2. In addition to the protocols first round message, the client will generate a
randomized encoding of NC0 circuits f

i,t
for every t ∈ [T ], and sends these

randomized encodings along with an additive secret share of the input
encoding (ai,1

0 ,ai,1
1 ) to the servers. Let us now describe the functionality

computed by f
i,t

. The functionality takes in the first round messages of
all parties and reconstructs sti. If t ∈ Ai, then it computes the same
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function as that of fi,t (described in Fig. 4). If t 	∈ Ai, it will use ots1t,j,α,β

(obtained from the first round messages of the parties) and will generate
ots2t,j,α,β exactly as described in the protocol. Then, it computes the same
functionality as that of f i,t.

3. The servers on receiving the first round messages from all the input clients,
choose the secret share of the input encodings corresponding to the first
round messages from all the clients and sends the chosen secret shares to
the output client.

4. The output client reconstructs the input encodings from the shares and
decodes the randomized encodings exactly as given the evaluation proce-
dure of our two-round protocol to obtain the output.

4.2 Protocols for PREN and SREN

In this subsection, we will use the protocols described in Sect. 4.1 to construct
protocols for functions in PREN and SREN. We first define the dMULTPlus func-
tion below.

dMULTPlus((x1, z1), . . . , (xd, zd)) = x1 · . . . · xd +
d

∑

i=1

zi.

We recall the following lemma from [BGI+18].

Lemma 6 ([BGI+18]). Let g : {0, 1}n → {0, 1} be a constant degree function
i.e., there exists a constant d such that g(x1, . . . , xn) =

∑

a�
i1...id

xi1xi2 . . . xid
.

There exists a perfectly secure, two-round protocol in the presence of secure chan-
nels between every pair of parties for computing g against semi-honest adversary
(corrupting an arbitrary subset of parties) in the FdMULTPlus hybrid model. The
efficiency of the protocol is O(m + n2) where m is the number of monomials in
g.

We obtain the following corollary of our Theorem3.

Corollary 1. There exists a perfectly secure, two-round protocol for realizing
FdMULTPlus functionality against semi-honest adversary (corrupting an arbitrary
subset of parties) in the FOTCor hybrid model. The efficiency of the protocol is
2poly(d).

Combining Lemma 6 and Corollary 1 and the observation that FOTCor implies
secure channels, we get the following lemma.

Lemma 7. Let g : {0, 1}n → {0, 1} be a constant degree function i.e., there
exists a constant d such that g(x1, . . . , xn) =

∑

a�
i1...id

xi1xi2 . . . xid
. There exists

a perfectly secure, two-round protocol for computing g against semi-honest adver-
sary (corrupting an arbitrary subset of parties) in the FOTCor hybrid model. The
efficiency of the protocol is O(m + n2) where m is the number of monomials in
g.
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We now show our main theorem regarding securely computing functions in
PREN and SREN.

Theorem 4. Every f : {0, 1}n → {0, 1} in PREN (resp. SREN) has an efficient,
perfectly secure (resp., statistically secure) two-round protocol in the FOTCor

model against a semi-honest adversary corrupting an arbitrary subset of par-
ties. The computational cost incurred by each party is O(m+n2) where m is the
size of the randomized encoding for f .

Proof. Let ̂f : {0, 1}n × {0, 1}ρ → {0, 1} be the randomized encoding of the
function f . Each party Pi chooses ri uniformly at random from {0, 1}ρ and the
parties wish to securely compute the functionality ̂f(x1, . . . , xn; r1 ⊕ r2 . . . ⊕ rn)
(i.e., the input of party Pi is set as (xi, ri)).

Let ̂f(x1, . . . , xn; r1 ⊕ r2 . . . ⊕ rn) =
∑

a�
i1i2...id

vi1vi2 . . . vid
where each vid

is either some input bit xj or a bit of some random string rj . We will use the
protocol from Lemma 7 to securely compute ̂f .

It now follows from the privacy of randomized encodings and the security of
the protocol for computing ̂f the above protocol securely computes f against
semi-honest corruptions.

Remark 2. For simplicity, in Theorem4, we considered a setting where each
party holds a single bit as input and the output of the function f is also a
single bit. This can be naturally generalized to a setting wherein each party
holds a string as input and the number of outputs of the functions is greater
than 1.

We obtain the following corollary from Theorem4.

Corollary 2. There is a perfectly (resp. statistical) secure two-round proto-
col for branching programs (resp. non-deterministic branching programs) in the
FOTCor model against a semi-honest adversary corrupting an arbitrary subset of
parties.

4.3 Protocols for Circuits

In this subsection, we will use the protocols described in Sect. 4.1 and make black-
box use of a PRG to obtain secure protocols for computing circuits. Without loss
of generality, we will restrict ourselves to circuits with fan-in 2 NAND gates. The
high level idea is to use the protocol in Sect. 4.1 to compute the BMR garbling
of a gate [BMR90]. To obtain the labels for executing the BMR garbled circuit,
we run the BMR online phase in parallel.

BMR Garbling. We will now recall the semantics of a BMR garbled gate. The
BMR garbling for a NAND gate g that takes wires a and b as input and the
output wire is c is a set of values { ˜Gi

r1,r2
}r1,r2∈{0,1},i∈[n], where

˜Gj
r1,r2

=

(

n
⊕

i=1

Fki
a,r1

(g, j, r1, r2) ⊕ Fki
b,r2

(g, j, r1, r2)

)

⊕ kj
c,0 ⊕ (χr1,r2 ∧ (kj

c,1 ⊕ kj
c,0))
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where χr1,r2 = ((
⊕n

i=1 λi,a ⊕ r1) · (
⊕n

i=1 λi,b ⊕ r2) ⊕ 1)⊕(
⊕n

i=1 λi,c). Here, F is
a PRF, ki

x,r where x ∈ {a, b, c, } and r ∈ {0, 1} is a PRF key, λi,x for x ∈ {a, b, c, }
are bits.12 The PRF keys ki

x,r and the bits λi,x are chosen by each party before
the first round of the protocol.

We notice that each output bit of { ˜Gi
r1,r2

}r1,r2∈{0,1},i∈[n] is a constant degree
(precisely, a degree 3 functionality). We will use the protocol in Lemma 7 to
securely compute each output bit of { ˜Gi

r1,r2
}r1,r2∈{0,1},i∈[n].13

Online Phase of BMR. We now describe the two-round BMR online phase.

1. For every wire w, which is the input wire of a party Pi, the other parties Pj

will set λj,w = 0. The party Pi will compute αw = λi,w ⊕ xw and broadcast
it to all other parties.

2. For every αw obtained, the party Pi will broadcast ki
w,αw

to every other party.

Asymptotic Cost. The cost of computing every bit of ˜Gi
r1,r2

is O(n2) since
the number of monomials in ˜Gi

r1,r2
is O(n2). So the overall complexity of our

protocol is O(n3|C|λ). This gives a factor of n improvement over the cost in
[GS18].

Using the above protocol for computing the BMR garbled gate in parallel
with the online phase, we obtain the following theorem:

Theorem 5. There is a computationally secure two-round protocol for any cir-
cuit C in the FOTCor model against a semi-honest adversary corrupting an arbi-
trary subset of parties, where the protocol makes a black-box use of a PRG. The
computational cost incurred by each party is dominated by O(n3|C|) invocations
of a length-doubling PRG.

We the following two corollaries by realizing FOTCor under DDH/QR or LWE
in the strong-PKI model.

Corollary 3 (DDH/QR). There is a computationally secure, two-round pro-
tocol for any circuit C in the strong-PKI model against a semi-honest adversary
corrupting an arbitrary subset of parties, where the protocol makes a black-box
use of a PRG and black-box use of a DDH/QR hard group.

Corollary 4 (LWE). Under the LWE assumption, there is a computationally
secure, two-round protocol for any circuit C in the strong-PKI model against
a semi-honest adversary corrupting an arbitrary subset of parties, where the
protocol makes a black-box use of a PRG.

12 For simplicity we consider a PRF. But all our results also work with a length doubling
pseudorandom generator.

13 Here, the parties will compute the PRF outputs locally and give these as inputs to
the protocol.
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Abstract. We show that any multi-party functionality can be evalu-
ated using a two-round protocol with perfect correctness and perfect
semi-honest security, provided that the majority of parties are honest.
This settles the round complexity of information-theoretic semi-honest
MPC, resolving a longstanding open question (cf. Ishai and Kushilevitz,
FOCS 2000). The protocol is efficient for NC1 functionalities. Further-
more, given black-box access to a one-way function, the protocol can be
made efficient for any polynomial functionality, at the cost of only guar-
anteeing computational security.

Technically, we extend and relax the notion of randomized encoding to
specifically address multi-party functionalities. The property of a multi-
party randomized encoding (MPRE) is that if the functionality g is an
encoding of the functionality f , then for any (permitted) coalition of
players, their respective outputs and inputs in g allow them to simulate
their respective inputs and outputs in f , without learning anything else,
including the other outputs of f .

1 Introduction

Secure multi-party computation (MPC) is perhaps the most generic crypto-
graphic task. A collection of n parties, each with its own input xi, wish to
jointly compute function of all of their inputs (y1, . . . , yn) = f(x1, . . . , xn) so
that each party learns its yi and nothing else, and even a coalition of adversarial
players should not learn more than the collection of outputs of its members.
Throughout this work, we will be concerned with the most basic variant of this
problem, denoted as private computation, where even adversarial parties are
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assumed to follow the protocol but try to learn as much as they can from their
view (a.k.a semi-honest adversaries). Unless stated otherwise, we further assume
that the adversary is computationally unbounded, and correspondingly, require
information-theoretic (perfect) privacy.

The seminal works of Ben-Or, Goldwasser and Wigderson [7] and Chaum,
Crépeau and Damg̊ard [11] established that in this setting security for non-trivial
functions can only be achieved if the adversarial coalition includes strictly less
than half of the total number of parties (a.k.a honest majority). They showed
that in the presence of honest majority, any function f can be privately com-
puted, thus existentially resolving the problem.

However, as with all computational tasks, one wishes to minimize the
resources required to carry out an MPC protocols. A resource that received
much attention is the round complexity: the number of rounds of communica-
tion required to carry out the protocol. We consider the standard simultaneous
communication model where at each round each party can send a message to
any other party, but these messages can only depend on information received
in previous rounds. The aforementioned [7,11] solutions depend on the (multi-
plicative) depth of (the arithmetic representation of) the function f . For depth
d, they require d rounds of communication (and the communication and com-
putational complexity are polynomial in the number of parties n and the circuit
size of f). In terms of lower bound, it is not hard to show that most functions
cannot be privately computed with less than two rounds, but no better lower
bound is known.

Constant-round information-theoretic protocols were first constructed by
Bar-Ilan and Beaver [5] and were later extended in several works (cf. [13]). Ishai
and Kushilevitz [21,22] approached the 2-round lower bound: They presented
a 3-round protocol, and in fact showed that a 2-round protocol is possible if
instead of honest majority one requires that more than two-thirds of the parties
are honest. Ishai and Kushilevitz note that their methods fall short of achieving
the ultimate result and leave it as an open problem to resolve whether it is pos-
sible to achieve 2-round honest-majority protocol for all functions [21, Sect. 6]:

“An open question of a somewhat different flavor is that of finding the
exact number of rounds required for privately evaluating an arbitrary (i.e.,
a worst-case) function f with an optimal privacy threshold. Using ran-
domizing polynomials, an upper bound of 3 was obtained. If this bound
is tight (i.e., 2 rounds are not enough) then, in a very crude sense, the
randomizing polynomials approach is non-restrictive.”

In this work, we resolve the aforementioned open question. We show that
indeed any functionality can be privately computed in a 2-round protocol that
only requires honest majority. The communication and computational complex-
ity are asymptotically comparable to previous solutions.

Theorem 1 (2-round unconditional MPC). At the presence of honest
majority, privately computing any functionality with perfect correctness and per-
fect privacy reduces non-interactively to the task of privately computing a degree-
2 functionality. Consequently, in this setting, any function f can be privately
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computed in two rounds with polynomial efficiency in the number of parties and
in the size of the formula (or even branching program) that computes f .1

Furthermore, under the assumption that one-way functions exist, it is possi-
ble to improve the computational and communication complexity to polynomial
in the size of the circuit computing f (rather than its formula size or exponen-
tial in the circuit depth), at the cost of only achieving computational security.
Note that the honest majority condition cannot be lifted in this setting (unless
one-way functions imply oblivious transfer).

Theorem 2 (2-round MPC in minicrypt). Assume the existence of one-
way functions. Then, privately computing any polynomial-time functionality
with computational privacy and honest majority reduces non-interactively to the
task of privately computing a polynomial-time computable degree-2 functionality.
Consequently, in this setting, any function f can be privately computed in two
rounds with polynomial efficiency in the number of parties and the circuit size
of f . The protocol makes only a black-box use of the one-way function.

Prior to this work, Beaver, Micali and Rogaway [6,24] (henceforth BMR) con-
structed the first constant-round computationally private MPC assuming honest
majority and one-way functions. A careful analysis of their construction leads
to 3 rounds.2

See Sect. 1.3 below for comparison with recent related results such as [1,14].

The Client-Server Setting. Our results extend to the so-called client-server set-
ting [12], which considers a communication graph of the following form: A set of
clients that have inputs send messages (in a single round) to a set of servers, the
servers perform local computation and send messages (in a single round) back
to the clients, who can then recover their outputs. Our methods show how to
achieve security in the semi-honest setting so long as there is an honest majority
among clients and an honest majority among servers. We note that ideally we
would like to only require honest majority among servers, our methods provide a
path towards this goal but falls short of achieving it. (This point will be further
discussed towards the end of Sect. 1.1.)

1.1 Our Techniques

Ishai and Kushilevitz introduced the notion of randomizing polynomials, which
was since generalized to the notion of randomized encoding (RE) [3]. A function
f is encoded by a function g if the output of g allows to reconstruct the output of
f and nothing else. The [21] result essentially shows that any function f can be

1 Branching programs (BP) are believed to be more powerful than formulas since the
BP complexity of any function is at most polynomial in its formula size, whereas the
converse is believed to be false.

2 Throughout the paper, we refer to the simplified version of the BMR protocol that
appears in Rogaway’s thesis [24].



Perfect Secure Computation in Two Rounds 155

encoded by a function g of multiplicative degree 3 (over the binary field). Thus,
instead of applying the [7,11] protocol to compute the function f directly, it is
possible to apply it to compute g (the encoding of f). Since degree 3 functions
can be computed in 3 rounds with honest majority, or in 2 rounds if more
than two-thirds of the parties are honest, the encoding of [21,22] implies MPC
protocols with these properties for all functions. We note that the computational
complexity and output length of the encoding g may be significantly larger than
those of f and indeed scale (roughly) polynomially with its formula size. An
additional minor caveat is that the encoding g is a randomized function, even if f
was deterministic. This is resolved using the standard technique of secret sharing
the random tape between all users, i.e. each user holds private randomness and
the function g is computed with a random tape that is the XOR of all private
tapes. This transformation does not effect the multiplicative degree and therefore
does not change the round complexity of the resulting protocol (though it incurs
a poly(n) factor in computational and communication complexity).

It is evident from the above outline that if one could find a RE with mul-
tiplicative degree 2, the round complexity of MPC will be resolved. However,
it was shown in [21] that such randomized encodings do not exist, at least if
perfect correctness and security are sought (we recall that our solution achieves
perfect correctness and security). The quotation above therefore suggests that
the resolution of the round complexity of MPC will also resolve the question of
optimality of the RE approach to the problem.

In this work, we show that indeed RE is too restrictive to resolve the round
complexity problem. We present a natural generalization that we call multi-
party randomized encoding (MPRE). This object allows to analyze randomized
encodings in the specific context of MPC, and naturally translate it to protocols
similarly to RE. While RE encodes a computation and ignores the partition-
ing of inputs between the parties, an MPRE takes into account the way that
inputs and outputs are distributed among parties. Correspondingly, this notion
of encoding allows to encode a multiparty functionality by another multiparty
functionality (in contrast to the RE notion which allows to encode a function by
another function). In this sense MPRE is much closer in spirit to MPC protocols,
and one can easily go from protocols to MPREs and back. Being a multiparty
functionality, in MPRE inputs are split between different parties who may also
employ private local randomness (which does not make sense in the context of
standard RE). The round complexity of the protocol induced by the MPRE
depends on the effective degree, which allows preprocessing of local randomness.
Theorem 1 follows by showing that any functionality has MPRE with effective
degree 2 which is private against adversarial minority.

Multi-party Randomized Encoding (MPRE). The definition of MPRE is inspired
by that of RE, but with the emphasis that inputs and outputs can belong
to different players. If we consider a multi-party functionality f(x1, . . . , xn) =
(y1, . . . , yn), then an MPRE of f would be a randomized functionality
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g((x1, r1), . . . , (xn, rn); s) = (z1, . . . , zn),

where s is a global random string (which, we bear in mind, will be shared among
users when a protocol is to be derived) and ri is the local random string of
player i. Decoding requires that for each i, yi can be recovered from zi. The
privacy requirement is that for any “legitimate” adversarial coalition A ⊆ [n],
the r and z values of all players in A can be simulated given their x and y
values. In the context of honest majority we can consider protecting against all
A of cardinality strictly less than n/2, but the MPRE notion is more general
and allows some function classes to be encoded while allowing any adversarial
A ⊆ [n] (indeed we show such an encoding for a useful class). It is possible to
show the expected composition theorem, arguing that if g is MPRE of f which
is private against some class of adversarial coalitions A1 ⊆ 2[n], and there is a
protocol that privately computes g against some class of adversarial coalitions
A2 ⊆ 2[n], then the same protocol (augmented with local decoding) can be used
to compute f , and is private against A1∩A2. It thus follows that if g is MPRE of
f which is private against all adversarial minorities, and if g has effective degree
2 (allowing preprocessing of local randomness), then f has a 2-round protocol
which is private against any adversarial minority.3 Showing that all functions
have such encoding will be our goal towards proving Theorem1. For formal
definitions of MPRE, composition and relation to other notions see Sect. 3.

How to Encode any Function. As explained above, our goal is to show that any
functionality f(x1, . . . , xn) = (y1, . . . , yn) has an encoding that is both secure
against all adversarial minorities and has effective degree 2. We do this in a
sequence of steps. The first step is noticing that we can get a “friendly” MPRE
from any protocol for computing f , even one with many rounds. We stress that
this will not be our final MPRE. The definition of this MPRE g is straightfor-
ward: the output of party i is simply its view in the protocol, augmented with all
the intermediate values computed locally by i. Note that this new functionality
now requires local randomness of the parties. The fact that these views were
generated by a protocol will be of particular use to us since the outputs of g can
be viewed as wires of a boolean circuit, where each wire belongs to a different
party in the computation. The view of each party in the protocol (i.e. its output
in the functionality g) consists of values that it received from other parties, and
values that it computed locally. We can thus envision a circuit whose gates are
“owned” by players, and there are additional syntactic “transmission gates” that
represent a message passing from one player to the other. Transmission gates do
not have any functionality but rather represent change of ownership, still they
will be useful for our next step. We call such an MPRE “protocol compatible”
and describe their properties formally in Sect. 4. Specifically, we will consider
the MPRE induced (essentially) by the 3-round protocol that is based on [7,22].

3 In fact, we show that the computation of f privately reduces to g via a non-interactive
reduction that makes a single call to g.
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By employing a composition theorem for MPRE, it suffices to encode the
functionality g by an MPRE h of effective degree 2. Indeed, we show that any
protocol-compatible functionality g (i.e. one whose outputs can be represented as
local views of parties in a multi-party protocol, or equivalently as wires of a cir-
cuit of the structure described above), can be encoded with effective degree-2 and
privacy against any adversarial coalition. The MPRE takes great resemblance
to the well known RE scheme that is based on information-theoretic garbled
circuit [22]. (Specifically, it is based on the point-and-permute variant of Yao’s
garbled circuit [6,24,26].) This randomized encoding scheme takes a circuit, and
for each wire it samples two wire keys and a permutation bit, and its output is a
list of “garbled tables” together with the permutation bits of the output wires.
Expressing this in algebraic form leads to degree 3 randomized encoding. More
generally, the degree of each garbled gate G is deg(G) + 1.

In our MPRE, the wire keys will be sampled using the global randomness
(which down the line is shared between all parties). Crucially, the permutation
bits will be generated using the local randomness of the party that “owns”
this wire, as per the protocol compatible functionality. One can verify that this
description results in an encoding with effective degree 2. Indeed, the encoding
consists of two type of gates: local-computation gates and transmission gates. In
local-computation gates G, the input and output wires of the gate are owned by
the same party, thus this party can preprocess the permutation bits and reduce
the degree to 2. In the case of transmission gates, the fan-in is 1, and so the
degree is only 2. The same proof as in [4,6,22,24] can be used to show MPRE
privacy. The construction is described in detail in Sect. 5.

Putting the two components together results in an MPRE h for every f which
is secure against all adversarial minorities and has effective degree 2, giving rise
to our final 2-round protocol. The computational and communication complexity
are analyzed in the respective sections. Section 6 contains the proof of Theorem1,
putting together all relevant components.

The Computational Setting. To prove Theorem 2, we start with the standard
observation that for shallow circuits the computational and communication com-
plexity of the information theoretic protocol are polynomial. We again use stan-
dard properties of the [6] protocol, to obtain an MPRE that can be written as
an evaluation of a shallow circuit over values that are computed locally by the
players with a black-box access to a pseudorandom generator. This allows us to
apply Theorem 1 towards proving Theorem 2. See Sect. 6 for details.

The Client-Server Setting and an Open Problem. MPREs are applicable to the
client-server setting in an immediate manner. Let g be an MPRE of f which
is secure against some class of adversarial coalitions A. Assume that g can be
computed in the client-server setting with security against a class A of client
coalitions and a class B of server coalitions. Then f is computable in the client-
server setting with security against A client coalitions and B server coalitions.

In our setting, we show that all functions f have g with effective degree 2 and
security against dishonest minority. One can verify that the protocols of [7,11],
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when applied to degree 2 functions, imply client-server protocols with security
against arbitrary client collusion and dishonest server minority. The conclusion
is that security is achieved if there is honest majority of both clients and servers.

This application constitutes an additional motivation to investigate whether
every function f has an MPRE g with effective degree 2 and security against
arbitrary collusion. We are not aware of any impossibility result for such encoding
(in particular, honest majority will still be needed for our MPC application in
order to compute g). Its existence, however, will allow to remove the requirement
for honest majority of clients in the client-server setting and is expected to have
other interesting consequences.

1.2 Broader Perspective: Degree vs. Round Complexity

Since the pioneering constructions of perfect MPC [7,11], there appears to be a
tight relation between the round complexity of privately computing a function-
ality f at the presence of honest majority to its algebraic degree. This relation
was refined by [21], who showed that instead of considering the degree of f , one
should focus on the degree of a RE f̂ of f . Our work further replaces the notion
of RE-degree with the effective degree of an MPRE f̂ of f . As a result, we finally
prove the conjectured equivalence between round complexity and (the “right”
notion of) degree.

It is instructive to take a closer look at the notion of effective degree and see
how it relates to existing notions. Recall that effective degree essentially allows
the parties to apply arbitrary local-preprocessing of their private randomness
(and inputs) “for free”, without charging it towards the degree. This relaxation
is crucial for our results. Indeed, it can be shown that degree-d MPRE directly
imply degree-d RE (see full version). Also observe that the notion of effective
degree inherently requires to treat the encoding f̂ as a multiparty functionality,
and therefore effective degree becomes meaningless in the case of RE. In this
sense, MPRE is a convenient intermediate point between a protocol to RE;
It takes into account the views of different players (which is crucial for defining
effective degree) while being a non-interactive (and therefore easy to manipulate)
object.

Let us further note that the methodology of degree-reduction via local pre-
processing is not new. In particular, it is crucially employed in classical constant-
round MPC protocols including Yao’s two-party protocol [26] and its multiparty
variant [6,24]. Using our terminology, these protocols implicitly yield compu-
tational MPRE of constant effective degree. In particular, assuming one-way
functions, Yao’s protocol yields a computational MPRE of effective degree 2 for
any efficiently computable 2-party functionality, and the BMR protocol yields
a computational MPRE of effective degree 3 for any efficiently computable n-
party functionality. Indeed, an important part of our conceptual contribution is
to provide a formal, easy-to-handle, framework that captures this use of degree-
reduction via preprocessing.
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1.3 Other Related Works

Benhamouda and Lin [8] and Garg and Srinivasan [16] have recently constructed
2-round computationally-private protocols for arbitrary (efficiently computable)
functions. This result is incomparable to Theorem 2: It does not require hon-
est majority (i.e., privacy holds against arbitrary coalitions), but relies on
a stronger computational assumption (the existence of (two-round) Oblivious
Transfer which is minimal in this setting). We further note that our high level
approach shares some similarities with these works. Indeed, our notion of MPRE
abstracts and generalizes the notion of garbled protocols, introduced by Garg and
Srinivasan [15], which plays a key role in both [8] and [16].

Independently of our work, two recent papers study the notion of minimal
round complexity for MPC in the honest majority setting. Ananth et al. [1]
focus on secure computation in the presence of certain types of active (malicious)
adversaries, and present protocols under the assumption of honest majority in
addition to some computational and/or setup assumptions. Most relevant to
our work is a consequence of one of their result showing that based on one-way
functions there is a 2-round protocol against semi-honest adversarial minority
(in fact, they achieve a stronger notion called “security with abort”). Contrary
to our work, the [1] protocol is not applicable in the information theoretic set-
ting, and therefore does not have bearing on the question of MPC with perfect
security. Furthermore, our approach shows a reduction from the computation of
general functionalities to the computation of degree-2 functionalities, which is
not achieved by [1] (even implicitly, as far as we can tell).

Garg, Ishai and Srinivasan [14] study the construction of information the-
oretic security for semi-honest MPC in various settings. Most relevant to this
work is their construction of a 2-round protocol with perfect security for for-
mulas. However, in their protocol, unlike ours, communication complexity grows
super-polynomially with the number of players. One can again attribute this to
falling short of reducing the general MPC task to the task of computing degree-2
functionalities.

1.4 Paper Organization

We begin with some general background on multiparty functionalities and secure
multiparty computation in Sect. 2. In Sect. 3, we introduce the notion of multi-
patry randomized encoding, and discuss its properties. In Sect. 4 we show how to
use MPC protocols (in particular [7]) to obtain “protocol-compatible” MPRE,
and in Sect. 5 show how to transform such an encoding into a degree-2 MPRE
based on information-theoretic garbled circuits. Section 6 uses these tools to
prove our main theorems. Some of the proofs are omitted from this version and
can be found in the full version (available on eprint).

2 Preliminaries

This section defines multiparty functionalities and provides some basic back-
ground on secure computation. It will convenient to use a somewhat non-
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standard notation for functionalities, and so even an expert reader may want to
read this part carefully. (In contrast, the MPC subsection can be safely skipped.)

2.1 Multi-party Functionalities

An n-party functionality is a function that maps the inputs of n parties to a vec-
tor of outputs that are distributed among the parties. Without loss of generality,
we assume that the inputs of each party are taken from some fixed input domain
X (e.g., bit strings of fixed length). It will be convenient to represent a function-
ality by a pair f : Xn → {0, 1}m and P : [m] → 2[n]. The function f maps the
joint inputs of all parties x = (x1, . . . , xn) to an output vector y = (y1, . . . , ym),
and the mapping P : [m] → 2[n] determines the distribution of outputs between
the parties, i.e., the i-th output yi should be delivered to the parties in the set
P (i). By default (and without loss of generality), we assume that P (i) is always
a singleton and therefore think of P as a mapping from [m] to [n]. Sometimes
the output partition function P will be implicit, and refer to f as a functionality.
We further use the convention that, for a string y = f(x) and a subset of parties
T ⊆ [n], the restriction of y to the coordinates held by the parties is denoted by
y[T ] = (yj)j:P (j)∈T . When T = {i} is a singleton, we simply write y[i].

We will also make use of randomized functionalities. In this case, we let f take
an additional random input r0 and view r0 as an internal source of randomness
that does not belong to any party. We typically write f(x1, . . . , xn; r0) and use
semicolon to separate the inputs of the parties from the internal randomness of
the functionality.

Finally, a central notion in this work is that of effective degree of a function-
ality, which generalizes the standard notion of degree. A multi-output function-
ality f has degree D if each of its outputs can be written as an F2-polynomial
of degree D over the deterministic and random inputs. Intuitively, the effective
degree is the degree of the functionality if the parties are allowed arbitrary local
preprocessing. A formal definition follows.

Definition 1 (Effective degree). A (possibly randomized) n-party function-
ality f : Xn × R′ → {0, 1}m has effective degree d if there exists a tuple of local
preprocessing functions (h1, . . . , hn) and a degree-d function h such that

h(h1(x1), . . . , hn(xn); r′) = f(x1, . . . , xn; r′), (1)

for every x1, . . . , xn and internal randomness r′.

2.2 Standard Background on Secure Computation

Through the paper, we assume a fully-connected network with point-to-point pri-
vate channels. We focus on semi-honest (aka passive) secure computation here-
after referred to as private computation. (See, e.g., [9,10,17], for more detailed
and concrete definitions.)
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Definition 2 (Private computation). Let f(x1, . . . , xn) be a (possibly ran-
domized) n-party functionality. Let π be an n-party protocol. We say that the pro-
tocol τ -privately computes f with perfect privacy if there exists an efficient ran-
domized simulator Sim for which the following holds. For any subset of corrupted
parties T ⊆ [n] of size at most τ , and every tuple of inputs x = (x1, . . . , xn) the
joint distribution of the simulated view of the corrupted parties together with
output of the honest parties in an ideal implementation of f ,

Sim(T, x[T ], y[T ]), y[T̄ ], where y = f(x) and T̄ = [n] \ T,

is identically distributed to

Viewπ,T (x), Outputπ,T̄ (x),

where Viewπ,T (x) and Outputπ,T̄ (x) are defined by executing π on x with fresh
randomness and concatenating the joint view of the parties in T (i.e., their
inputs, their random coin tosses, and all the incoming messages), with the output
that the protocol delivers to the honest parties in T̄ . The computational variant of
the definition is obtained by settling for computational indistinguishability with
respect to non-uniform polynomial-time adversaries.

Secure Reductions. To define secure reductions, consider the following hybrid
model. An n-party protocol augmented with an oracle to the n-party function-
ality g is a standard protocol in which the parties are allowed to invoke g, i.e.,
a trusted party to which they can securely send inputs and receive the corre-
sponding outputs. The notion of τ -security generalizes to protocols augmented
with an oracle in the natural way.

Definition 3. Let f and g be n-party functionalities. A τ perfectly-private
reduction from f to g is an n-party protocol that given an oracle access to the
functionality g, τ -privately realizes the functionality f with perfect security. We
say that the reduction is non-interactive if it involves a single call to f (and pos-
sibly local computations on inputs and outputs), but no further communication.
The notions of τ computationally-private reduction is defined analogously.

Appropriate composition theorems, e.g. [17, Theorems 7.3.3, 7.4.3] and [9],
guarantee that the call to g can be replaced by any protocol that τ -privately
realize g, without violating the security of the high-level protocol for f .

3 Multi-party Randomized Encodings

In this section we formally present the notion of multi-party randomized encod-
ings (Sect. 3.2), relate it to MPC protocols (Sect. 3.3), and study its properties
(Sect. 3.4). As discussed in the introduction, this new notion can be viewed as
a relaxation of the more standard notion of randomized encoding of functions.
(See Sect. 3.1).
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3.1 Randomized Encoding of Functions

We begin with the standard notion of randomized encoding (RE) [3,21]. In the
following let X,Y,Z, and R be finite sets.

Definition 4 (Randomized Encoding [3,4]). Let f : X → Y be a function.
We say that a function f̂ : X × R → Z is a δ-correct, (t, ε)-private randomized
encoding of f if the following hold:

– δ-Correctness: There exist a deterministic decoder Dec such that for any
input x ∈ X,

Pr
r

$←R

[Dec(f̂(x; r)) �= f(x)] ≤ δ.

– (t, ε)-Privacy: There exists a randomized simulator Sim such that for any
x ∈ X and any circuit Adv of size t

∣
∣
∣
∣
∣
Pr[Adv(Sim(f(x))) = 1] − Pr

r
$←R

[Adv(f̂(x; r)) = 1]

∣
∣
∣
∣
∣
≤ ε.

We refer to the second input of f̂ as its random input, and a use semicolon (;)
to separate deterministic inputs from random inputs.

An encoding f̂ is useful if it is simpler in some sense than the original function f .
In the context of MPC the main notion of simplicity is the degree of the encoding,
where the each output of f̂ is viewed as a polynomial over (x, r). Other notions
of simplicity have been used in other contexts. (See [2,20] for surveys on REs.)

3.2 MPRE Definition

Inspired by the notion of randomized encoding of functions [3,21], we define the
notion of multiparty randomized encoding (MPRE). Syntactically, we encode a
functionality f(x1, . . . , xn) by a randomized functionality

f̂((x1, r1), . . . , (xn, rn); r0)

that employs internal randomness r0 ∈ R and augments the input of each
party by an additional random input ri ∈ R, for some fixed domain R (by
default bit-string of fixed length). Roughly speaking, the view of the encoding
f̂((x1, r1), . . . , (xn, rn); r0) that is available to a subset T of parties (i.e., the
parties inputs, randomness and outputs) should contain the same information
that is revealed to the subset T by the functionality f(x) (i.e., the inputs and
outputs).

The following heavily relies on our (somewhat non-standard) formalization
of multi-party functionalities, see Sect. 2.1.
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Definition 5 (Multi-Party Randomized Encoding (MPRE). Let f :
Xn → {0, 1}m be an n-party deterministic functionality with an output par-
tition P : [m] → [n]. We say that an n-party randomized functionality f̂ :
(X × R)n × R → {0, 1}s with output partition Q is a multi-party randomized
encoding of f with privacy threshold of τ if the following hold:

– Perfect Correctness: There exists a deterministic decoder Dec such that
for every party i ∈ [n], and every tuple of input-randomness pairs

((x1, r1), . . . , (xn, rn)) ∈ (X × R)n

and every internal randomness r0 ∈ R it holds that

Dec (i, ŷ[i], xi, ri) = y[i],

where y = f(x1, . . . , xn), ŷ = f̂((x1, r1), . . . , (xn, rn); r0), and, recall that ŷ[i]
is the restriction of ŷ to the coordinates delivered to party i by (f̂ , Q), and
y[i] is the restriction of y to the coordinates delivered to party i by (f, P ).4

– (τ, t, ε)-Privacy: There exists a randomized simulator Sim such that for every
set T ⊆ [n] of parties of size at most τ and every set of inputs x = (x1, . . . , xn)
it holds that the random variable

Sim(T, x[T ], y[T ]), where y = f(x1, . . . , xn)

and the random variable

(x[T ], r[T ], ŷ[T ]),

where

ŷ = f̂((x1, r1), . . . , (xn, rn); r0), and (r0, r1, . . . , rn) $← Rn+1,

cannot be distinguished by a t-size circuit with advantage better than ε.

We say that privacy is perfect if (τ, t, ε)-privacy holds for any t and ε = 0. We
always represent an MPRE f̂ by a Boolean circuit that computes f̂ , and define
the size and depth of f̂ to be the size and depth of the corresponding circuit.
We refer to the randomness r0 as the internal randomness of the encoding.
When such randomness is not used, we refer to f̂ as an MPRE with no internal
randomness.

Observe that any functionality trivially encodes itself. Indeed, MPRE f̂
becomes useful only if it is simpler in some sense than f . Jumping ahead, our
main notion of simplicity will be effective degree.

4 As in the case of RE, one can relax correctness and allow a small decoding error.
Since all our constructions natively achieve perfect correctness, we do not define this
variant.
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Remark 1 (Perfect and Computational encodings of infinite functionalities).
Definition 5 naturally extends to an infinite sequence of functionalities f =
{fλ}λ∈N where fλ is an n(λ)-party functionality whose domain, range, and com-
plexity may grow polynomially with λ. We say that a sequence of n(λ)-party
functionalities f̂ = {f̂λ}λ∈N is a perfectly correct (τ(λ), t(λ), ε(λ))-private MPRE
of f if there exists an efficient algorithm (compiler) which gets as an input 1λ

and outputs (in time polynomial in λ) three circuits (f̂λ,Decλ,Simλ) which form
a perfectly correct (τ(λ), t(λ), ε(λ))-private MPRE of fλ. We refer to an MPRE
as perfect if the above holds for any function t(·) and for ε = 0, and refer to it
as being computational if the above holds for t(λ) = λω(1) and ε(λ) = 1/λω(1).
Similar extensions applies to REs (as was done in previous works).

Remark 2. The parameter λ is being used to quantify both the complexity of f
(circuit size and input length) and the security level (computational privacy).
When describing some of our constructions, it will be convenient to separate
between these two different roles and treat λ solely as a security parameter
(independently from the complexity of f). Computational privacy will be guar-
anteed (in the sense of the above definition) as long as λ is set to be polynomial
in the complexity of f .

3.3 From MPRE to MPC Protocol

The main motivation for studying MPRE’s is the following simple observation.

Proposition 1. Let f be an n-party functionality. Let g be a perfect (resp., com-
putational) MPRE of f with privacy threshold of τ . Then, the task of τ -privately
computing f with perfect privacy (resp., computational privacy) reduces non-
interactively to the task of τ -privately computing g with perfect privacy (resp.,
computational privacy).

In particular, by using standard composition theorems any protocol π that τ -
privately computes g with perfect (resp., computational) privacy can be turned
into a protocol π′ with the same complexity and round complexity that τ -
privately computes f with perfect (resp., computational) privacy.

The proof of Proposition 1 appears in the full version.

3.4 Manipulating MPRE

One can always get rid of the internal randomness r0 of an MPRE

f̂((x1, r1), . . . , (xn, rn); r0)

by extending the randomness of each party with an additional random string r′
i

and applying the functionality f̂ with r0 set to
∑

i r′
i. Here, we assume that the

randomness domain R is a set of fixed length strings and so addition stands for
bit-wise XOR. (More generally, this transformation works as long as “addition”
forms a group operation over the randomness space R.) Formally, the following
holds.
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Proposition 2 (Removing internal randomness). Suppose that the func-
tionality f̂((x1, r1), . . . , (xn, rn); r0) is a perfectly correct (τ, t, ε)-private MPRE
of (f, P ). Then the functionality

g((x1, r1, r
′
1), . . . , (xn, rn, r′

n)) := f̂((x1, r1), . . . , (xn, rn);
∑

i

r′
i)

is a perfectly correct (τ, t, ε)-private MPRE of (f, P ).

Note that g has the same algebraic degree and the same effective degree as f̂
over F2. (A multi-output functionality f has degree D if each of its outputs can
be written as an F2-polynomial of degree D over the deterministic and random
inputs. For effective degree see Definition)

Composition (Re-Encoding MPRE). The composition property of REs ([3,4])
asserts that if we take an encoding g(x; r) of f(x), view it as a deterministic
function g′(x, r) over x and r, and re-encode this function by a another RE
h(x, r; r′), then the function h′(x; (r, r′)) is an encoding of f . We prove a similar
statement regarding MPRE’s.

Lemma 1 (Composition). Let (f(x1, . . . , xn), P ) be an n-party functionality
and assume that the functionality (g((x1, r1) . . . , (xn, rn)), Q) perfectly encodes f
with threshold τ1 and no internal randomness. Further assume that the function-
ality (h(((x1, r1), r′

1) . . . , ((xn, rn), r′
n); r′

0),M) perfectly encodes the functionality
(g,Q) (viewed as a deterministic functionality over the domain (X ′)n where
X ′ = (X × R) with threshold τ2). Then, the functionality (h′,M), where

h′((x1, (r1, r′
1)), . . . , (xn, (rn, r′

n)); r′
0) := h(((x1, r1), r′

1) . . . , ((xn, rn), r′
n)),

is a perfect MPRE of f with threshold min(τ1, τ2).

(Observe that h′ is defined identically to h except each party i treats xi as its
deterministic input of i and (ri, r

′
i) as its randomness.)

A similar lemma holds in the computational setting as well.

Lemma 2 (Composition (Computational version)). Let f = {fλ} be an
infinite family of n(λ)-party functionalities which is computationally encoded by
the families of functionalities g = {gλ} with privacy threshold τ(λ) and with
no internal randomness. Suppose that h = {hλ} computationally encode g with
privacy threshold of τ ′(λ). Then, (h′, P ), defined as in Lemma 1, forms a com-
putational encoding of f with privacy threshold of min(τ, τ ′).

4 Encoding via Protocol-Compatible Functionalities

In this section we show that any functionality f can be encoded by a so-called
protocol compatible functionality g that enjoys “nice” syntactic properties.
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4.1 From MPC Protocol to MPRE

We begin by noting that any protocol naturally induces an MPRE as shown
below.

Definition 6 (The view functionality). Let π be an n-party protocol in which
the i-th party holds a deterministic input xi and private randomness ri. The n-
party view functionality gπ is defined as follows:

– The input of the i-th party is (xi, ri).
– The output of the i-th party consists of all the messages that are sent to her

in an execution of π (on the inputs (x1, r1), . . . , (xn, rn)).

We also consider the extended view functionality in which, in addition to the
above, gπ delivers to each party i all intermediate values that are computed locally
by i, where the local computation of every party is viewed as a Boolean circuit.

Note that the view and extended view can deterministically be derived from
each other.

Proposition 3. Let π be a protocol that implements the n-party functionality
f(x1, . . . , xn) with perfect correctness and perfect (resp., computational) privacy
against a passive adversary that may corrupt up to τ players. Then the view
functionality and the extended view functionality of π encode the functionality f
with perfect correctness and perfect (resp., computational) privacy threshold τ .

Proof. The proposition follows immediately from the fact that π privately imple-
ments f as per Definition 2. The correctness of π translates into correctness of
gπ and the τ -privacy of the protocol immediately translates into τ -privacy of the
MPRE.

An extended view functionality gπ has several useful syntactic properties.
These are captured by the following notion of protocol compatible functionality.

Definition 7. A protocol compatible functionality (f, P ) is a functionality with
no internal randomness that can be represented by a Boolean circuit C as follows.

– The circuit C takes the same inputs as f . The outputs y = (y1, . . . , ym) of
f(x) consist of the values of all the wires in the circuit (including internal
wires and input wires) sorted under some topological order (inputs are first).

– The computation in C is performed via two types of gates.
• A transmission gate delivers a value from one party to another, i.e. it

maps a single input ya to a single output yb such that ya = yb and possibly
P (a) �= P (b).

• A local computation gate (wlog, NAND gate) maps two inputs (ya, yb) to
a single output yc, where P (a) = P (b) = P (c).

Proposition 4. Let π be an n-party protocol and let gπ be its extended view
functionality. Then, gπ is protocol compatible.
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Proof. By definition, every output bit of gπ is either an input bit, the result of
some local computation, or some incoming message.

Remark 3 (Extended view in a hybrid model). Consider a protocol π operates in
a h-hybrid model where h is some n-party functionality. (Recall that this means
that the parties can invoke a call to an ideal version of h.) In this case, the view
functionality and the extended view functionality (which are still well defined)
still form an MPRE of f just like in Proposition 3. However it will not satisfy
the syntax of Definition 7.

4.2 BGW-Based MPRE

The extended view functionality of the semi-honest protocol from [7], henceforth
denoted BGW, gives rise to the following MPRE.

Theorem 3 (BGW-based protocol-compatible encoding). Every n-party
functionality f can be perfectly encoded with threshold privacy of τ =

⌊
n−1
2

⌋

by a
protocol-compatible MPRE g of size O(S ·poly(n)) and depth O(D · log n) where
S denotes the circuit size of f and D denotes the multiplicative depth of f .

Jumping ahead, we mention that in order to derive our main theorem with
complexity which grows polynomially in the number of parties, it is crucial to
make sure that the depth of g is at most logarithmic in n.

Proof. We consider the BGW protocol π for computing f against a passive
adversary that corrupts up to τ parties. By Propositions 3 and 4, it suffices to
show that π can be implemented so that its extended-view functionality gπ is of
size O(S · poly(n)) and depth O(D · log n).

Recall that π interprets f as an arithmetic circuit over a sufficiently large
field F of size |F| > n and that each party i is associated with a fixed public field
element αi ∈ F (as a property of the protocol and independently of the input).
Thus the first n powers of each αi are to be treated as pre-computed constants.
The local computation L of every party for each multiplication gate (and for the
input gates) can be implemented by a poly(n)-size arithmetic circuit of constant
depth whose addition gates have unbounded fan-in and the multiplication gates
have fan-in 2. (Indeed, all local computation can be written as matrix-vector
multiplications.) This gives rise to an arithmetic circuit with bounded fan-in
gates, poly(n) size, O(log n) depth and constant multiplicative depth.

We continue by showing that such an arithmetic circuit L can be realized by
a Boolean NC1 circuit (of size poly(n), depth O(log n) and bounded-fan gates).
Indeed, letting F = GF[2O(log n)] be a binary extension field, we can trivially
implement field addition by a Boolean circuit of constant depth and O(log n)
size (and bounded-fan gates). Field multiplication can be implemented by an
AC0[⊕] circuit of size polylog(n) [19], and therefore by a Boolean circuit of size
polylog(n), depth log(polylog(n)) and bounded-fan gates. It follows that L is in
NC1.
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Finally, we note that in BGW addition gates require only local computa-
tion. This local computation consists of O(n) parallel fan-in-2 additions of field
elements. Since F is a binary extension field this can be implemented by a con-
stant depth (NC0) circuit of size O(n log n). We conclude that the extended view
functionality gπ has the desired complexity.

5 Degree-2 Encodings for Protocol-Compatible
Functionalities

In this section we show that any protocol-compatible functionality f can be
encoded by a functionality f̂ with effective degree 2. That is, each output of f̂
can be computed as a degree-2 function over n values that can be computed by
the parties locally (see Definition 1).
The following theorem will be proved in Sect. 5.1.

Theorem 4. Let (f, P ) be a protocol-compatible n-party functionality of depth d

and output length m. Then, f has a perfect n-private MPRE f̂ of effective-degree
2 and total complexity poly(2d,m).5

Remark 4 (Other properties of the MPRE). The encoding f̂ constructed in The-
orem 4 satisfies several additional properties that will not be used in our work,
but may be useful elsewhere.

1. The encoding f̂ is fully-decomposable and affine in x, that is for any fixing of
the private randomness the residual functionality f̂(x) is a degree-1 function
in x and each output bit of f̂ depends on at most a single bit of the input x.

2. The preprocessing functions (h1, . . . , hn) that achieve effective degree of 2
only manipulate the private randomness. That is, we construct hi(xi, ri) s.t.
hi(xi, ri) = (xi, h

′
i(ri)), where h′

i is a degree-2 function.

5.1 Proof of Theorem 4

Let f : Xn → {0, 1}m be a protocol-compatible functionality of depth d. We
now show how to encode f via a functionality

f̂ : (X × R)n × R′ → Y ′

with effective degree of 2. In addition to the private randomness ri of each party,
the functionality f̂ uses internal randomness r′. (The latter can be removed via
Proposition 2 while keeping an effective degree of 2.)

5 Note that the circuit size of f does not appear explicitly in this statement, however
for protocol-induced functionalities, the circuit size of f is equal to the output length
m.
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Notation. Let C be the Boolean circuit that represents f (as per Definition 7).
Recall that the circuit C has m wires and it contains gates of two types: local
computation gates and transmission (identity) gates. We prove the theorem with
respect to circuits C in which the fan-out of transmission gates is one and the
fan-out of local computation gates is two. This is without loss of generality, since
any circuit C can be transformed to satisfy these restrictions while preserving
the size (up to a constant factor), and at the expense of increasing the depth to
d′ = d log m; we may ignore this overhead since poly(2d′

,m) = poly(2d,m). For
every i ∈ [m], let P (i) ∈ [n] denote the party that holds the value of the ith wire
in C.

Randomness. Our MPRE employs the following random bits. For every wire
i ∈ [m], the party P (i) samples a random masking bit αi. In addition, for every
wire i, the functionality uses the internal randomness to sample a pair of random
strings (keys) s0i , s

1
i of length ωi. The length ωi of an “output wire” (i.e., a wire

that does not enter any gate) is set to zero and the length of all other keys will
be defined recursively (from top-to bottom) later. We assume that both strings,
s0i , s

1
i , are partitioned to two equal-size blocks, and index these blocks by a bit

b ∈ {0, 1}, where sa,b
i denotes the bth block of sa

i .

The outputs of the MPRE. We traverse the circuit C gate-by-gate in reverse
topological order (from the output gates to the input wires), and let the func-
tionality f̂ deliver the following outputs to all parties.

– For every local computation gate g with incoming wires i, j and outgoing
wires k, 	, we output four values (known as the gate table) defined as follows.
For every βi, βj ∈ {0, 1}, set

γ = G(αi ⊕ βi, αj ⊕ βj), (2)

where G(·, ·) is the function computed by the gate, and output the value

Qβi,βj
g := ((sγ

k‖γ ⊕ αk)‖(sγ
� ‖γ ⊕ α�)) (3)

⊕ s
αi⊕βi,βj

i ⊕ s
αj⊕βj ,βi

j .

One should view Q
βi,βj
g as a ciphertext where the message is associated with

the outgoing wires (first line of Eq. 3) is encrypted using a one-time pad under
the combination of the keys associated with the incoming wires (second line
of Eq. 3). Correspondingly, we set the length ωi (resp., ωj) of the keys s0i , s

1
i

(resp., s0j , s
1
j ) to be 2(ωk + 1 + ω� + 1).

– Transmission gates are treated analogously. That is, for every transmission
(identity) gate g with incoming wire i and outgoing wire k, we output the
following two values. For every βi ∈ {0, 1}, set γ = βi ⊕ αi and output the
value

Qβi
g := (sγ

k‖γ ⊕ αk) ⊕ sαi⊕βi

i .

Correspondingly, we set the length ωi of the keys s0i , s
1
i to be ωk + 1.
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– For every input wire i, output the masked value xi ⊕ αi and the active key
sxi

i .

Effective Degree and Complexity. Observe that a term of the form sa can be
written as a degree-2 function of a and s (i.e., a · s1 +(1− a) · s0). Hence, all the
outputs of the encoding are of degree 2 except for ciphertexts that correspond
to local computation gates as in Eq. (3) in which the selection bit γ itself is a
degree-2 function (and so the overall degree of Q

βi,βj
g increases to 3). However,

since the party p = P (i) = P (j) knows both αi and αj , the value γ can be
locally pre-computed and so the effective degree of the encoding is 2.

The complexity of the encoding is polynomial in the circuit size and the size
of the largest key. A proof by induction shows that the length ωi of the ith key
is at most O(4hi) where hi is the height of the ith wire (i.e., the length of the
longest path from i to an “output wire” that does not enter any gate). Following
this analysis, the complexity of f̂ is bounded by poly(2d,m).

Correctness. Fix some input x = (x1, . . . xn) ∈ Xn and let yi denote the value
induced by x on the ith wire. We show that the party P (i) can recover yi from
the encoding ŷ and its private randomness. Since the ith mask αi is given to
P (i) as part of its private randomness, it suffices to show that P (i) can recover
the masked value ŷi := yi ⊕ αi. Indeed, as in standard garbled circuits, every
party can recover the masked bit ŷk := yk ⊕ αk together with the active key
syk

k , for every wire k. This is done by traversing the circuit from the inputs to
the outputs as follows. For input wires the pair ŷk, syk

k is given explicitly as part
of the encoding. For an internal wire k, that leaves a local computation gate g
with incoming wires i, j this is done by using the masked bits ŷi, ŷj of the input
wires to select the ciphertext Q

ŷi,ŷj

k and then decrypting (i.e., XOR-ing) it with
s

yi,ŷj

i ⊕ s
yj ,ŷi

j that can be computed based on the active keys of the incoming
wires. One can verify that this procedure recovers the desired values correctly.
The case of transmission gates is treated similarly.

Privacy. We first claim that an external observer (that does not see the private
randomness) can perfectly simulate the encoding given the list of masked values
(ŷk)k∈[m].

Claim 1. There exists a simulator Sim′ that takes as an input an m-bit vector
ŷ = (ŷi)i∈[m], runs in time poly(m, 2d) and satisfies the following guarantee. For
every input x and every fixing of α = (αi)i∈[m], the random variable

Sim′(y1 ⊕ α1, . . . , ym ⊕ αm),

where yi is the value induced by x on the ith wire, is distributed identically to
the encoding f̂(x) conditioned on the above fixing of α.

The claim is implicit in the standard proof of information-theoretic garbled cir-
cuit (cf. [22]); it is proved in the full version.
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Based on Claim 1, we define a perfect simulator Sim for the MPRE. Fix an
arbitrary coalition T ⊆ [n] and let I be the set of wires owned by parties in T ,
i.e., I = {i : P (i) ∈ T}. Given the inputs x[T ] of T , and a vector of output values
(yi)i∈I , the simulator does the following. For i ∈ I, sample uniformly the local
randomness αi and set ŷi = yi ⊕ αi. For i /∈ I sample ŷi uniformly at random.
Next invoke the simulator Sim′ on ŷ = (ŷi)i∈[m] and output the result.

We prove that the simulation is perfect. Fix some input x, some αI = (αi)i∈I ,
and let y = f(x) and yI = (yi)i∈I . We claim that the distribution sampled
by Sim(T, x[T ], αI , yI) is identical to the joint distribution of the encoding f̂(x)
induced by the choice of α[m]\I , (s0i , s

1
i )i∈[m] (and conditioned on the above fixing

of αI). Indeed, since the marginal distribution of the vector of masked bits
(ŷ1, . . . , ŷm) is perfectly simulated, this follows from Claim1.

6 Putting It All Together

In this section we prove the following theorems using the tools we developed in
previous sections.

Theorem 5. Every n-party functionality f can be encoded by a perfect MPRE g
with privacy threshold of τ =

⌊
n−1
2

⌋

, effective degree 2 and complexity polynomial
in n and S where S is the size of the branching program that computes f .

Theorem 6. Every n-party functionality f can be encoded by a computational
MPRE g with privacy threshold of τ =

⌊
n−1
2

⌋

, effective degree 2 and complexity
polynomial in n and S where S is the size of the circuit that computes f . More-
over, the MPRE makes use of one-way functions in a balck-box way only as part
of the local preprocessing step.

Theorems 5 and 6 (whose proof is deferred to Sects. 6.1 and 6.2) can be used
to derive our main results (Theorems 1 and 2).

Proof (Proof of Theorems 1 and 2). We prove Theorem 1 (resp., Theorem 2):
Given an n-party functionality f that is computable by a branching program of
size S (resp., computable by a Boolean circuit of size S), construct the perfect
MPRE g promised by Theorem 5 (resp., the computational MPRE g promised
by Theorem 6). By Proposition 1, f non-interactively

⌊
n−1
2

⌋

-reduces to g with
perfect privacy (resp., computational privacy). Since g has an effective degree 2,
the functionality g itself n-privately reduces to a degree-2 functionality g′ (in a
trivial way). A composition of these reductions yields the desired reduction.

To prove the second (“Consequently”) part of the theorem, we employ the
BGW protocol πg′ to privately compute g′ in 2 rounds (since its degree is 2)
and complexity of poly(n, S) at the presence of honest majority. Plugging this
protocol into the above reduction and using standard composition theorems
(cf. [9]), we get a 2-round protocol for f with similar complexity and perfect
(resp., computational) privacy.
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6.1 Perfect MPRE for Branching Programs (Proof of Theorem5)

Let f be an n-party functionality that is computable by a branching program of
size S. By [21], such a function has degree-3 perfect randomized encoding g1(x; r)
of poly(S) size. Recall that such an RE yields an n-private MPRE, and let us get
rid of the private randomness by applying Proposition 2. This gives us a degree-3
MPRE g2 of f whose complexity is poly(S) with privacy threshold of n. Next,
we encode g2 by the BGW-based protocol-compatible encoding (Theorem3) and
get a protocol-compatible perfect MPRE g3 of size O(S ·poly(n)), depth O(log n)
and privacy threshold of τ =

⌊
n−1
2

⌋

. Using our information-theoretic encoding
from Theorem 4 (based on garbled circuits), we get a τ -private perfect MPRE
g4 of g3 with complexity poly(n, S) and effective degree 2. By the composition
lemma (Lemma 1), the MPRE g4 perfectly encode f with privacy threshold of
τ . ��

6.2 Computational MPRE for Circuits (Proof of Theorem 6)

To prove the theorem we make use of the following MPRE that is based on the
BMR protocol [6].

Claim 2. Let f be an n-party functionality that is computable by an S-size cir-
cuit. Then f has a computational MPRC g that does not use internal randomness
and has privacy threshold of n − 1 and polynomial complexity in n and S. Most
importantly, the function g can be written as

A(B1(x1, r1), . . . , Bn(xn, rn)),

where the combining function A can be computed by a circuit of size poly(n, S)
and depth O(log(nS)), and each of the functions Bi (that correspond to local
computations) make a black-box use of a PRG.

The proof of the Claim appears in the full version. The proof of Theorem6
proceeds as follows. It suffices to prove the theorem with respect to PRG, since
the latter reduce to OWF via a black-box reduction [18].

Let f be an n-party functionality with complexity S and let g denote the
computational MPRE

g(x, r) = A(B1(x1, r1), . . . , Bn(xn, rn)),

promised in Claim 2.
Since A can be computed by a circuit of size poly(n, S) and depth O(log(nS))

it can also be computed by a branching program of size S′ = poly(n, S). There-
fore, by Theorem 5, the function A admits a perfect MPRE

Â((y1, r′
1), . . . , (yn, r′

n))

with privacy threshold of τ =
⌊

n−1
2

⌋

, effective degree 2 and complexity
poly(n, S′) = poly(n, S). Consider the functionality ĝ obtained by substituting
yi with Bi(xi, ri), i.e.,

ĝ ((x1, (r1, r′
1)), . . . , (xn, (rn, r′

n))) := Â ((B1(x1, r1), r′
1), . . . , (Bn(xn, rn), r′

n)) .



Perfect Secure Computation in Two Rounds 173

Observe that ĝ has an effective degree 2 and complexity of poly(n, S). Moreover,
since Â perfectly encodes A with τ -privacy, ĝ also perfectly encodes g with τ -
privacy. (Indeed, one can verify that this form of local substitution preserves
privacy and correctness.) By the composition property of MPRE (Lemma2),
this means that ĝ is a computational τ -private MPRE of f as required. ��
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Abstract. We present the first two-round multiparty computation
(MPC) protocols secure against malicious adaptive corruption in the
common reference string (CRS) model, based on DDH, LWE, or QR.
Prior two-round adaptively secure protocols were known only in the
two-party setting against semi-honest adversaries, or in the general mul-
tiparty setting assuming the existence of indistinguishability obfuscation
(iO).

Our protocols are constructed in two steps. First, we construct two-
round oblivious transfer (OT) protocols secure against malicious adap-
tive corruption in the CRS model based on DDH, LWE, or QR. We
achieve this by generically transforming any two-round OT that is only
secure against static corruption but has certain oblivious sampleability
properties, into a two-round adaptively secure OT. Prior constructions
were only secure against semi-honest adversaries or based on iO.

Second, building upon recent constructions of two-round MPC from
two-round OT in the weaker static corruption setting [Garg and Srini-
vasan, Benhamouda and Lin, Eurocrypt’18] and using equivocal gar-
bled circuits from [Canetti, Poburinnaya and Venkitasubramaniam,
STOC’17], we show how to construct two-round adaptively secure MPC
from two-round adaptively secure OT and constant-round adaptively
secure MPC, with respect to both malicious and semi-honest adver-
saries. As a corollary, we also obtain the first 2-round MPC secure against
semi-honest adaptive corruption in the plain model based on augmented
non-committing encryption (NCE), which can be based on a variety
of assumptions, CDH, RSA, DDH, LWE, or factoring Blum integers.
Finally, we mention that our OT and MPC protocols in the CRS model
are, in fact, adaptively secure in the Universal Composability framework.

1 Introduction

The notion of secure multi-party computation (MPC) allows N mutually
distrustful parties P1, . . . , PN to securely compute a functionality f(x̄) =
c© International Association for Cryptologic Research 2018
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f1(x̄), . . . , fN (x̄) of their corresponding private inputs x̄ = x1, . . . , xN , such
that party Pi receives the value fi(x̄). Loosely speaking, the security require-
ments are that the parties learn nothing more from the protocol than their
prescribed output, and that the output of each party is distributed according to
the prescribed functionality. This should hold even in the case that a malicious
adversary seizes control of an arbitrary subset of the parties and make them
arbitrarily deviate from the protocol. A major achievement in the 80’s is demon-
strating that any function that can be efficiently computed, can be efficiently
computed securely [3,29,38]. Since then, the round complexity of computing
general functionalities has been a central question in the area of MPC.

Answering this question depends on what powers the adversaries have. In
the static corruption model, the adversary may seize control, or corrupt, a sub-
set of parties before the protocol begins, and dictate their behavior throughout
the protocol execution. A stronger and more realistic model is the adaptive cor-
ruption model, where the adversary can decide to corrupt more parties at any
time during the execution of the protocol. The adaptive corruption model cap-
tures “hacking attacks” where an adversary has the capability to seize control
of parties’ machines at any time, through for instance known vulnerabilities or
backdoor; in an extreme, the adversary may eventually corrupt all parties. Pro-
tecting against such attacks provides stronger security guarantees. Moreover,
security against adaptive corruption is instrumental for achieving everlasting
security and leakage resilience.

In the static corruption model, a long line of research on two-round proto-
cols [2,6–9,14,20,25–27,31,34,36] that culminated in two recent works by Ben-
hamouda and Lin [5] and Garg and Srinivasan [28] has completely resolved the
round complexity of MPC from minimal assumptions. The works of [5] and [28]
constructed two-round MPC protocols from any two-round oblivious transfer
protocols, in the Common Reference String (CRS) model.1 Moreover, in the
semi-honest setting, these works provide two-round protocols in the plain model
(i.e., without CRS).

In contrast, the round-complexity of MPC in the adaptive corruption model
is far from being resolved. Prior works [14,16,22,26] constructed 2-round MPC
protocols secure against adaptive corruption, based on the strong assump-
tion of Indistinguishability Obfuscation (iO) for polynomial-sized circuits, and
other standard assumptions. However, the security of current indistinguishabil-
ity obfuscation schemes is not well understood. When restricting to using only
standard assumptions, Damg̊ard et al. [23] construct 3-round protocols based
on LWE for all-but-one corruptions and Canetti et al. [17] construct a constant
round protocol based on simulatable public key encryption for arbitrary corrup-
tions. Only in the most restricted case of 2-Party Computation (2PC) in the
presence of semi-honest adversaries, they gave a two-round protocol based on

1 Actually, the protocol of [5] additionally relies on Non-Interactive Zero-Knowledge
(NIZK) proofs in the CRS model. But as observed in [28] and this work, the use of
NIZK can be removed.
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the minimal assumptions. The state-of-affairs leaves the following basic ques-
tions open:

Can we have the following based on standard assumptions?
– Two-round MPC secure against adaptive corruption by semi-honest

adversaries in the plain model.
– Two-round MPC secure against adaptive corruption by malicious

adversaries in the CRS model.

In fact, the second question remains open even for the special case of 2PC pro-
tocols computing the Oblivious Transfer (OT) functionality. In the literature,
there are 2-round OT protocols secure against either static corruption by mali-
cious adversaries, or adaptive corruption by semi-honest adversaries, from vari-
ous assumptions [18,19,37]. However, when considering adaptive corruption by
malicious adversaries, the best protocols based on standard assumptions have
3 rounds whether assuming erasures [19] or not [1].2 Therefore, another basic
question that remains open so far is,

Can we achieve a two-round OT protocol that is secure against adap-
tive corruption by malicious adversaries in the CRS model from standard
assumptions?

In this work, we answer all above questions affirmatively, obtaining two-round
MPC protocols secure against adaptive corruption by semi-honest adversaries in
the plain model from minimal assumptions, and 2-round protocols secure against
malicious adversaries in the CRS model from any of the following assumptions:
Decisional Diffie-Hellman (DDH), Quadratic Residuosity (QR), or Learning with
Error (LWE). Our constructions satisfy the stronger UC-security notion [10].

Our Results
We present our results in the local CRS model where every session of protocol
execution has a local independently sampled CRS. We believe that our protocol
constructions and security proofs can be easily adapted to the single CRS model
where all sessions share a single CRS as in [15]; see Sect. 2.4 for more discussion.

Towards constructing 2-round MPC protocols secure against adaptive cor-
ruption, or adaptive-MPC for short, we first show that this task can be reduced
to constructing a 2-round OT protocol secure against adaptive corruption, or
adaptive-OT for short, at the presence of either semi-honest or malicious adver-
saries. More precisely,

Theorem 1.1 (Informal). Assuming the existence of a two-round oblivious
transfer protocol and a constant-round MPC protocol secure against adaptive

2 Abdalla et al. [1] constructed a two-round OT protocol secure against the weaker
semi-adaptive corruption model where the adversary corrupts one of the two parties
at the beginning of the execution and the other party adaptively during or after the
execution. It is known that such a protocol can be generically converted to become
secure against adaptive corruption using NCE. However, the resulting protocol would
be 3-round.
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corruption by malicious adversaries in the CRS model (resp. semi-honest adver-
saries in the plain model), there exists a 2-round MPC protocol for any function-
ality f that is UC-secure against adaptive corruption of any subset of the parties
by malicious adversaries, in the CRS model (resp. or semi-honest adversaries in
the plain model).

At a high-level, our construction follows the blueprint of the recent construc-
tions of 2-round MPC from 2-round OT in the static corruption model [5,28].
Their key idea is collapsing the number of rounds of arbitrary multi-round MPC
protocols into just 2, using just garbled circuits and 2-round OT. Following
the same technique, we show that adaptive security follows naturally, when the
underlying garbled circuits and OT are also adaptively secure. The work by
Canetti et al. [17] constructs adaptively secure garbled circuits, called equivo-
cal garbling scheme, from the minimal assumption of one-way functions. How-
ever, using equivocal garbled circuits directly only allows us to collape rounds of
constant-round MPC protocols; otherwise, the resulting 2-round protocol would
become inefficient (see Sect. 2.3 for more discussion). The work of Canetti et
al. [17] also constructs constant-round adaptive-MPC protocols based on simu-
latable PKE. Thus, it boils down to construct 2-round adaptive-OT.

When the adversaries are semi-honest, two-round adaptive-OT can be based
on augmented Non-Committing Encryption (NCE) [15], which in turn can be
based on CDH, RSA, DDH, LWE or factoring Blum-integers [18]. Furthermore,
constant-round MPC secure against adaptive corruption can be be constructed
from NCE (which is implied by augmented NCE) and semi-honest two-round
adaptive-OT [17]. Thus, we obtain the following corollary.

Corollary 1.2. Assuming augmented non-committing encryption, there exists a
2-round MPC protocol for any functionality f that is UC-secure against adaptive
corruption of any subset of the parties by semi-honest adversaries.

However, there are no known constructions of 2-round adaptive OT protocols
against malicious adversaries even in the (local) CRS model. The natural app-
roach of using non-interactive zero-knowledge proofs to convert a semi-honest
adaptive-OT protocol, say the one in [15], into a malicious adaptive-OT proto-
col require additional rounds, specifically, to incorporate a coin-tossing protocol.
The work of [1] comes close by achieving a weaker notion of semi-adaptivity
in two rounds based on DDH. Our main technical contribution is constructing
two-round adaptive-OT against malicious adversaries from various assumptions.
More precisely,

Theorem 1.3 (Informal). Assuming DDH, QR, or LWE, there exists a 2-
round OT protocol that is UC-secure against adaptive corruption by malicious
adversaries in the CRS model.

Combined with previous theorem and the construction of constant-round
adaptive-MPC in [17] (which can be constructed from simulatable PKE, which
can itself be build from DDH, QR, or LWE too [18]) we obtain as a corollary 2-
round adaptive-MPC against malicious adversaries from the same assumptions:
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Corollary 1.4. Assuming DDH, QR, or LWE, there exists a 2-round MPC
protocol for any functionality f that is UC-secure against adaptive corruption of
any subset of the parties by malicious adversaries in the CRS model.

To achieve the above theorem, we provide a generic framework that com-
piles any OT protocol secure against static corruption, or static-OT for short,
with appropriate “oblivious sampleability” properties, to a full-fledged adaptive-
OT protocol, in just 2-rounds. Roughly speaking, oblivious sampleability refers
to the following properties: (i) Receiver-oblivious-sampleability:one can oblivi-
ously sample the OT receiver’s message, and claim that an honestly generated
receiver’s message was obliviously sampled, and similarly (ii) Sender oblivious
sampleability: one can obliviously sample the sender’s message, and claim that
an honestly generated sender’s message for random input strings was obliviously
sampled. Then, we show that static-OT with such oblivious sampleability can
be instantiated from various concrete assumptions, including DDH, or LWE, or
QR.

2 Technical Overview

We start with an overview of our construction of 2-round adaptive-OT and then
move to 2-round adaptive MPC in the local CRS model. In the end, we briefly
discuss future work on extending our results to the single CRS model.

2.1 2-Round Adaptive-OT

To construct a 2-round adaptive-OT Π3, we start with a basic 2-round static-
OT3 Π with the special property of sender and receiver oblivious sampleability,
and transform it in three steps to gradually achieve security against different
adaptive corruption scenarios:

– Sender semi-adaptive corruption refers to the case where the receiver is cor-
rupted at the beginning of the protocol execution and the sender is corrupted
after the execution, i.e. post-execution.

– Receiver semi-adaptive corruption refers to the symmetric case where the
sender is corrupted from the beginning and the receiver is corrupted post-
execution.

– Semi-adaptive corruption refers to either of the above two scenarios. In com-
parison, full fledged adaptive corruption considers the additional scenario
where neither sender nor receiver is corrupted during execution, and both
corrupted post-execution in an arbitrary order; we refer to the latter semi-
honest post-execution corruption.

Starting with a static-OT Π with sender and receiver oblivious sampleability,

3 In fact, it suffices if the OT protocol Π is secure against semi-honest senders, and
malicious receivers.
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– In Transformation 1, we transform Π into Π1 that achieves security against
sender-semi-adaptive corruption (and preserves security in static corruption
scenarios). This step crucially relies on the sender oblivious sampleability of
Π, and preserves receiver oblivious sampleability.

– In Transformation 2, we rely on receiver oblivious sampleability to transform
Π1 into Π2 to achieve security under receiver-semi-adaptive corruption, while
preserving security under sender-semi-adaptive corruption. Π2 is now secure
under semi-adaptive corruption.

– In Transformation 3, finally, we transform the semi-adaptive-OT Π2 into an
adaptive-OT Π3, using additionally augmented NCE.

Below, we describe ideas in these three transformation, starting with the third
transformation.

Transformation 3: Semi-Adaptive-OT to Adaptive-OT. Consider a semi-adaptive
OT Π2, whose algorithms for generating the CRS, the sender, and receiver mes-
sages are denoted as Setup, S2, R2. The only corruption scenario that Π2 does not
handle is semi-honest post-execution corruption (i.e., neither sender nor receiver
is corrupted during execution, but both corrupted post-execution in an arbitrary
order). It is known that semi-adaptive OT can be transformed into adaptive-OT
by sending messages of the former using private channels implemented by Non-
Committing Encryption (NCE) [24], which, however, produces a three-round
protocol. In two rounds, the above corruption case alone can be handled using
augmented NCE as done in the construction of semi-honest adaptive-OT by
Canetti, Lindell, Ostrovsky, and Sahai (CLOS) [15]. Below, we use their proto-
col to lift the security of Π2.

Augmented NCE. NCE is a public key encryption with the special property of
equivocality: one can simulate a pair of pubic key and ciphertext (pk, c) and
later “open” them to any plaintext m, by efficiently finding randomness ρ and
τ that “explains” the public key and ciphertext consistently w.r.t. m (meaning
c̃ = NEnc(p̃k,m; ρ), (p̃k, s̃k) = NGen(1λ; τ), m = NDec(s̃k, c̃)).

A NCE is “augmented” if it has i) oblivious key sampleability: one can oblivi-
ously sample a public key pk′ without knowing any corresponding secret key, and
ii) inverse key sampleability: one can claim that an honestly generated or sim-
ulated public key pk was sampled obliviously by efficiently finding randomness
that would make the oblivious key sampling algorithm produce pk.

“Patch” Semi-Adaptive-OT Π2 Using Augmented NCE. To handle semi-
honest post-execution corruption, we run Π2 with the CLOS semi-honest
adaptive-OT from augmented NCE in parallel as depicted below. The instance
of Π2 is generated using the receiver’s choice bit σ and the sender’s messages
padded with two random strings (m0 ⊕ r0,m1 ⊕ r1). In the instance of CLOS,
the receiver samples one public key pkσ honestly with skσ, and another pk1−σ

obliviously, followed by the sender encrypting the two random pads r0, r1 using
respectively these two keys.
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S(m0,m1) R(σ)ot1(σ)

ot2(m0 ⊕ r0,m1 ⊕ r1)

pk0, pk1

c0 ← NEnc(pk0, r0), c1 ← NEnc(pk1, r1)

To handle semi-honest post-execution, the trick is simulating the instance
(ot1, ot2) of Π2 using its simulator Sim2 for the case where the sender is stati-
cally corrupted (recall that Π2 is secure under semi-adaptive corruption). This
can be done as the simulator can generate ot2 honestly using just random mes-
sages r′

0, r
′
1: effectively, the sender of Π2 is “corrupted” and instructed to act

honestly with input r′
0, r

′
1. Thus, Sim2 can be used to simulate and equivocate

the receiver’s messages. The keys and ciphertexts in the instance of CLOS is
simulated relying on properties of augmented NCE. Later, for instance, when
the sender is corrupted first post-execution, the simulator, learning (m0,m1),
finds the right “pads” r0 = m0 ⊕ r′

0, r1 = m1 ⊕ r′
1, and uses the equivocality

of NCE to “explain” that the keys and ciphertexts are consistent with r0, r1. In
the other case, when the receiver is corrupted first post-execution, the simulator,
learning σ,mσ, can explain pkσ consistently with rσ, and claim that pk1−σ were
obliviously sampled using the inverse oblivious sampleability property.

It might seem that the above transformation can use any semi-honest adap-
tive OT. This is indeed the case only if semi-honest post-execution corruption
was concerned. But, we also want the transformation to preserve security under
semi-adaptive corruption (when Π2 has this property). For that, we rely on spe-
cial properties of the CLOS protocol; in particular, it is already secure against
malicious sender, and simulated public keys from the receiver can be easily
equivocated. See Sect. 5.5 for more details.

Transformation 2: Handling Receiver-Semi-Adaptive Corruption. We now move
to handling the first scenario in semi-adaptive corruption, i.e. receiver semi-
adaptive corruption. When the sender is maliciously corrupted from the begin-
ning and the receiver is corrupted post-execution, the simulator needs to (i)
simulate the receiver’s message ˜ot1 without knowing the choice bit, (ii) extract
both sender’s messages m0,m1, (iii) and later equivocate ˜ot1 to any choice bit
σ. A common approach in the literature for enabling equivocation is relying
on appropriate oblivious sampleability property. We follow this approach and
formalize the following receiver oblivious sampleability property.

Receiver Oblivious Sampleability: A two-round OT protocol (in the CRS
model) has receiver oblivious sampleability if (1) one can obliviously sam-
ple receiver’s message ˜ot1, and (2) can claim that an honestly generated
receiver’s message ot1 for any choice bit σ was obliviously sampled, by
efficiently finding consistent randomness ρ that would make the oblivious
sampling algorithm produce ot1. Furthermore, messages and randomness
produced in these two ways are indistinguishable

(crs, ˜ot1, ρ̃) ≈ (crs, ot1, ρ).
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A Naive Idea and its Problem. Given Π1 with receiver oblivious sampleability,
the basic idea is to let the receiver of Π2 send two messages, where ot1σ is
generated honestly using the choice bit σ while ˜ot11−σ is sampled obliviously.
The sender then replies ot20, ot21 respectively, where ot2b is generated honestly
w.r.t. ot1b using message mb at slot b and random message rb at slot 1 − b. See
the depiction below on the left.

S(m0,m1) R(σ)ot10(0), ˜ot11 if σ = 0
˜ot10, ot11(1) if σ = 1

ot20(m0, r0), ot21(r1,m1)

A Sim

ot10(0), ot11(1)

ot20, ot21

Left: Naive Protocol Right: Simulation

For the above protocol, simulation under receiver-semi-adaptive corruption can
be done as follows: (i) the simulator can “plant” honestly generated receiver’s
messages ot10, ot11 for both choice bit 0 and 1. (ii) Upon receiving sender’s
messages ot20, ot21, it uses the OT output strings as the extracted sender’s
messages. Finally, (iii) the simulator equivocates the receiver’s messages w.r.t.
a choice bit by revealing the randomness ρσ used for generating ot1σ honestly,
and reverse sampling randomness ρ̃1−σ for claiming that ot11−σ were obliviously
sampled.

Though receiver-semi-adaptive corruption is resolved, unfortunately, the
above protocol is not secure against malicious receivers (even though Π1 is),
as a cheating receiver can use the same strategy the simulator uses and violate
sender’s privacy.

Fixing the Problem. To overcome this, the simulator needs to have some unique
advantage that malicious receivers do not have. Our idea is using an equivo-
cal commitment ECom (in CRS model). More specifically, the receiver should
send a ECom commitment c to its choice bit σ, so that, only the simulator can
generate a simulated commitment c̃ and open it to both 0 and 1, but not cheat-
ing receivers. To incorporate this, the rest of the protocol needs to be modified
accordingly: The two instances of OT Π1 are replaced with two instances of 2
Party Computation (2PC): the b’th instance reveals to the receiver the message
mb conditioned on the receiver having a valid opening of c to b.

S(m0,m1) R(σ)

c = ECom(σ; τ),
{ot10,k(τk)}k, { ˜ot11,k}k if σ = 0
{ ˜ot10,k}k, {ot11,k(τk)}k if σ = 1

(

{ot20,k(�0k,0, �
0
k,1)}k,GC0

)

,
(

{ot21,k(�1k,0, �
1
k,1)}k,GC1

)

Simulation in the receiver-semi-adaptive corruption scenario uses similar ideas
as described above w.r.t. the naive protocol. Again, the simulator “plants” valid
receiver’s messages for both choice bit 0 and 1. In particular, it generates a
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simulated ECom commitment c̃ and two sets of ot1 messages corresponding to
both opening τ0, τ1 of c̃ to 0 and 1, {ot10,k(τ0

k )}k, {ot11,k(τ1
k )}k. To equivocate

to any choice bit σ, the simulator can again reveal the randomness used for
generating the set {ot1σ,k} of messages corresponding to τσ, and claim that the
other set {ot11−σ,k} was sampled obliviously. The advantage of this protocol is
that now malicious receiver cannot copy the simulator’s strategy, as it cannot
find opening of a ECom commitment to both 0 and 1.

Preserving Security under Sender-Semi-Adaptive Corruption. Furthermore, we
show that if Π1 is secure under sender-semi-adaptive corruption (i.e. where the
receiver is maliciously corrupted from the beginning and the sender is corrupted
post-execution), the above transformation preserves it. To this end, we need the
second message of 2PC to be equivocal. This can be achieved by implementing
2PC using Π1 and equivocal garbled circuits constructed by [17] from one-way
functions.

In summary, our transformation 2 produces a semi-adaptive OT, starting
from one that is only secure under sender-semi-adaptive corruption (and static
corruption of the sender by a semi-honest adversary). We remark that our trans-
formation is quite similar to the transformation presented in the recent work
of [28] for achieving some equivocal property of receiver’s message. However,
their notion of equivocality is tailored for simulation in static corruption cases,
and only need to provide partial randomness consistent with a choice bit σ. In
adaptive corruption, equivocation requires providing complete randomness for
generating the receiver’s message. Thus, the two transformation differ in details;
in particular, we crucially rely on receiver oblivious sampleability which is not
needed in [28].

Transformation 1: Handling Sender-Semi-Adaptive Corruption. When the
receiver is maliciously corrupted from the beginning and the sender is corrupted
post-execution, the simulator needs to (i) extract the choice bit σ from the
receiver’s message ot1, and then obtain the output message mσ, (ii) next sim-
ulate the sender’s message ˜ot2 knowing only mσ, (iii) and finally be able to
equivocate ˜ot2 w.r.t. arbitrary m1−σ. To enable equivocation, we again formu-
late an oblivious sampleability property now w.r.t. sender’s messages.

Sender Oblivious Sampleability (Overly Simplified): Roughly speaking, we
want the property that (1) one can obliviously sample a sender’s message
˜ot2 (w.r.t. a crs and receiver’s message ot1), and (2) can claim that an
honestly generated sender’s message ot2 for random messages r0, r1 was
obliviously sampled, by efficiently finding randomness ρ that would make
the oblivious sampling algorithm output ot2. Moreover, messages and ran-
domness generated in these two ways are indistinguishable:

(crs, ot1, ˜ot2, ρ̃) ≈ (crs, ot1, ot2, ρ).

We remark that unfortunately the above description is overly simplified; for the
proof to go through, the actual sender oblivious sampleability is more complex.



184 F. Benhamouda et al.

However, for simplicity of exposition, we use the above simple version in this
high-level overview.

Staring from a static-OT Π with sender oblivious sampleability, we construct
a bit-OT Π1 with security under sender semi-adaptive corruption. (Note that
constructing bit-OT is without loss of generality, as it implies string-OT with
the same security in different corruption scenarios.) The basic idea is again to let
sender of Π1 send multiple messages of Π. This redundancy allows simulation
to “plant” honestly generated sender’s messages for both input bit 0 and 1, at
either slot. Then, later to equivocate to m1−σ, the simulator can correctly open
the message generated with value m1−σ, and claim that the other message was
sampled obliviously.

S(m0,m1) R(σ)ot1(σ)

r00, r11, ot20,m0(r00, r01), ˜ot20,1−m0 , ot21,m1(r10, r11), ˜ot21,1−m1

ot2 messages are ordered by index in subscript

More specifically, Π1 (depicted above) works as follows. Upon receiving a single
receiver’s message ot1 of Π, the sender replies two pairs of sender’s messages
of Π: The b’th pair contains ot2b,mb

, ˜ot2b,1−mb
, where the former is honestly

generated for random messages (rb0, rb1), and the latter obliviously sampled.
The 4 ot2 messages are ordered according to their index. In addition, the sender
reveals in the clear r00 and r11. It is easy to see that an honest receiver with a
choice bit σ will recover exactly the string rσσ from message ot2σ,mσ

, and from
the order of ot2σ,mσ

in the 4 ot2 messages, it learns mσ.

Sender Semi-Adaptive Corruption. Simulation in the sender-semi-adaptive cor-
ruption scenario can now be achieved as follows. (i) The simulator can extract
the receiver’s choice bit σ using the simulator of Π for the case with a (stati-
cally corrupted) malicious receiver, and then learns the output string mσ. (ii)
To simulate sender’s message, it generates the σ’th pair (ot2σ,mσ

, ˜ot2σ,1−mσ
)

honestly as Π1 specifies, and simulates the 1 − σ’th pair by generating both
ot21−σ,0, ot21−σ,1 honestly, using the same message r1−σ,1−σ at slot 1 − σ and
different random strings at slot σ; in addition r00, r11 are revealed in the clear.

Sim Aot1(σ)

r00, r11, ot2σ,mσ
(rσ,0, rσ,1), ˜ot2σ,1−mσ

ot21−σ,0(r1−σ,1−σ, r1−σ,σ), ot21−σ,1(r1−σ,1−σ, r′
1−σ,σ)

Both input messages to ot2, and ot2 messages themselves are ordered by index.

(iii) Finally, to equivocate to sender’s true inputs (m0,m1), the simulator can
reveal the randomness used for generating the σ’th pair (ot2σ,mσ

, ˜ot2σ,1−mσ
),

which were generated correctly using mσ. For the 1−σ’th pair ot21−σ,0, ot21−σ,1,
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the simulator needs to “explain” w.r.t. m1−σ. This can simply be done by reveal-
ing the randomness used for generating ot21−σ,m1−σ

honestly, and claim that
ot21−σ,1−m1−σ

were sampled obliviously.
Making the above idea work turns out to require a more complex formulation

of the sender oblivious sampleability property. Roughly speaking, the complexity
stems from the fact that when reducing to sender oblivious sampleability, to
simulate the adversary’s view, the reduction needs to obtain the choice bit σ
of the corrupted receiver (as simulation of sender’s message depends on σ).
This means sender oblivious sampleability needs to hold against adversaries (the
reduction) who receive help in “breaking” a receiver’s message of its choice. We
omit the complexity here and refer the reader to Sect. 5.3 for more detail.

Fortunately, we can achieve such strong sender oblivious sampleability, as well
as receiver oblivious sampleability, from various concrete assumptions, including
DDH, QR, and LWE.

2.2 Instantiation of Static-OT with Oblivious Sampleability

We now briefly summarize ideas behind our instantiation from concrete assump-
tions. To construct the static-OT with oblivious sampleability, we start from
a variant of the OT construction based on Smooth Projective Hash Functions
(SPHFs) from Halevi and Kalai [32] which generalizes the construction from
Naor and Pinkas [35]. In our setting, the SPHF we consider is a primitive which
allows some party to generate a hash value H of a pair (ct, σ′) of a ciphertext ct
and a value σ′, together with what is called a projection key hp so that: if ct is
indeed a ciphertext of σ′, it is possible to compute H from hp and the random
coins used to generated ct. But if ct is not a ciphertext of σ′, H looks completely
random even knowing hp.

The construction works as follows. The CRS contains a public key of an
encryption scheme. The receiver’s message is a ciphertext ct of the selection bit
σ. The sender then uses the SPHF to mask its inputs x0 and x1, so that only the
one corresponding to the plaintext of ct can be unmasked. More precisely, the
sender’s message consists of two projection keys hp0 and hp1 for the ciphertext
ct and the values 0 and 1 respectively, as well as the values H0 ⊕ x0 and H1 ⊕ x1

where H0 and H1 are the two hash values corresponding to hp0 and hp1. Using
the random coins used to generate ct, the receiver, can recover Hσ and then xσ.
But the value x1−σ will remain completely hidden, masked by H1−σ which looks
random to the receiver.

To achieve oblivious sampleability, we just need ciphertexts of the encryp-
tion scheme and projection keys of the SPHF to be obliviously sampleable. We
can instantiate them using the ElGamal encryption scheme and the associated
SPHF from [21], which already satisfies the oblivious sampleability requirements.
This directly gives a static-OT with oblivious sampleability under the Decisional
Diffie-Hellman (DDH) assumption.

To instantiate the scheme under the Quadratic Residuosity assumption (QR),
we start from the Goldwasser-Micali [30] encryption scheme and the SPHF
from [21]. While the Goldwasser-Micali encryption scheme satisfies ciphertext
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oblivious sampleability, we do not know how to obliviously sample the projec-
tion keys of the associated SPHF. The issue is that projection keys are quadratic
residues which we do not know how to sample obliviously. To solve this issue,
we slightly change the SPHF to use the group of signed quadratic residues
instead [33].

Finally, we show how to achieve a slightly weaker variant of 2-round static-
OT, called half-OT, with oblivious sampleability under LWE. Roughly speaking,
in a half-OT, the sender has a bit b and a single message m, and the receiver
with choice bit σ only receives m if b = σ. We show that this weaker variant
of half-OT, is already sufficient for our transformation to obtain adaptive-OT.
We then instantiate half-OT essentially using the IND-CPA encryption scheme
and the SPHF from [4] based on LWE. At a very high-level, the encryption
scheme can be seen as the dual-Regev encryption scheme where decryption is
done using a full trapdoor for the lattice, to ensure that incorrect ciphertexts
are far away from the lattice in all directions (otherwise, we do not know how
to prove smoothness of the associated SPHF).

Please see Sect. 5.6 for more details of our instantiation.

2.3 From Adaptive-OT to Adaptive-MPC

Two recent works [5,28] constructed 2-round static-MPC in the CRS model from
2-round static-OT. Actually, the protocol presented in [5] additionally relies on
NIZK; but as implicitly observed in [28] and in this paper the use of NIZK can
be removed. Moving to the adaptive setting, the natural approach is replac-
ing static-OT with adaptive-OT and ask whether the resulting MPC protocols
become adaptively secure. We give affirmative answer. At a very high-level, the
proof follows similar ideas as in [5,28]. Still, the formal proof requires carefully
examination of all adaptive corruption scenarios and new analysis. In particu-
lar, the garbled circuits used in the protocols need to be equivocal for adaptive
security to hold.

A subtle issue arises when using equivocal garble circuits: If using them
modularly as black-box, we can only collapse rounds of constant-round MPC
protocols, as opposed to any polynomial-round protocols as in [5,28]. The over-
all approach of [5,28], followed by this work, is using garbled circuits and OT to
collapse rounds of a multi-round MPC protocol. The resulting protocol gener-
ates chains of garbled circuits, where each circuit in a chain corresponds to one
round in the original MPC protocol, has the lables of the next garble circuit in
the chain hardcoded inside. Equivocating a chain entails recursively equivocat-
ing the garbled circuits in it. Due to the complexity requirement of equivocal
garbling scheme, the size of the equivocal garbled circuits grows exponentially
with the length of the chain. As a result, we can only collapse rounds of constant-
round MPC protocols. (Note that this issue does not exist in the static setting,
simulating a chain of standard garbled circuits does not lead to exponential
size-growth.) We can alternatively address the issue of exponential size-growth
by applying the techniques of [17] for constructing equivocal garbling scheme
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(instead of using equivocal garbled circuits as black-boxe).4 For simplicity and
modularity, we take the first approach and collapse rounds of the constant-round
MPC protocols from [17] using the equivocal garbling scheme in the same work.
See Sect. 6 for the new protocol and analysis.

In terms of writing, we follow the protocol of [5], but for convenience, we
present directly the entire protocol without using their intermediate abstraction
(namely witness selectors and garbled interactive circuits); this avoids re-defining
every intermediate notion in the adaptive setting, which would add unnecessary
complexity.

2.4 Future Work: Moving to the Single CRS Model

Our constructions are in the local CRS model, where every session of protocol
execution has its “local” independently sampled CRS. A more stringent model
is the single CRS model as formalized in [15], where all sessions share a sin-
gle CRS.5 We believe that our construction of 2-round adaptive-OT can be
adapted to the single CRS model, and when plugging such an OT in our con-
struction of MPC, the resulting 2-round adaptive MPC protocols also work with
single CRS. Recall that we gradually transform a static-OT with sender and
receiver oblivious sampleability into an adaptive-OT in three steps. We believe
that these transformation also works in the single CRS model. Thus it boils down
to instantiate static-OT with oblivious sampleability in the single CRS model
from concrete assumptions. The main difference from our current instantiation
in the local CRS model is that in the single CRS model, the protocols must
satisfy certain non-malleability or simulation-extractability property. But, they
can be easily achieved using CCA encryption, which is implied by DDH, QR,
and LWE. We leave the formal proof as future work.

3 Preliminaries

3.1 Notation

Throughout the paper λ ∈ N will denote the security parameter. We say that a
function f : N → R is negligible if ∀c ∃ nc such that if n > nc then f(n) < n−c.
We will use negl(·) to denote an unspecified negligible function. We often use
[n] to denote the set {1, ..., n}. The concatenation of a with b is denoted by
a||b. Moreover, we use d ← D to denote the process of sampling d from the

4 For example, the complexity of all equivocal garbled circuits can simply be propor-
tional to the entropy of the secrets that need to be equivocated, which in the case
of MPC are the inputs and randomness of the uncorrupted parties.

5 We emphasize that the CLOS model of single CRS should be differentiated from
the global CRS model formalized in [11]. The key difference lies in that the latter
allows the environment to access the global CRS (and hence the CRS cannot be
programmed), whereas in the former all protocol execution can access the same
CRS but not the environment.
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distribution D or, if D is a set, a uniform choice from it. If D1 and D2 are two
distributions, then we denote that they are statistically close by D1 ≈s D2; we
denote that they are computationally indistinguishable by D1 ≈c D2; and we
denote that they are identical by D1 ≡ D2.

For the sake of simplicity, we suppose that all circuits in a circuit class have
the same input and output lengths. This can be achieved without loss of gen-
erality using appropriate padding. We recall that for any T -size circuit class
C = {Cλ}λ∈N

, there exists a universal poly(T )-size circuit family {Uλ}λ∈N
such

that for any λ ∈ N, any circuit C ∈ Cλ with input and output lengths n, l, and
any input x ∈ {0, 1}n, Uλ(C, x) = C(x).

3.2 Equivocal Garbling Scheme

Definition 3.1 (Equivocal Garbling Scheme [17]). Let C = {Cλ}λ∈N
be a

poly-size circuit class with input and output lengths n and l. A garbled cir-
cuit scheme GC for C is a tuple of four polynomial-time algorithms GC =
(GC.Gen,GC.Garble,GC.Eval,GC.Sim):

Input Labels Generation: keys ← GC.Gen(1λ) generates input labels keys =
{keysi}i∈[n] (with keysi[b] ∈ {0, 1}κ being the input label corresponding to
the value b of the i-th input wire) for the security parameter λ, input length
n, and input label length κ;

Circuit Garbling: ̂C ← GC.Garble(keys, C;σ) garbles the circuit C ∈ Cλ into ̂C;
Evaluation: y = GC.Eval( ̂C, {keysi[xi]}i∈[n]) evaluates the garbled circuit ̂C

using input labels keysi[xi] for input some input x = (x1, . . . , xn) and returns
the output y ∈ {0, 1}l;

Simulation: (˜keys, ˜C, st) ← GC.Sim(1λ, y) simulates input labels ˜keys, a garbled
circuit ˜C and state st for the security parameter λ on the output y ∈ {0, 1}l;

Equivocation: (keys′, σ) ← GC.Equiv(C, x, st) such that given C and x, the
simulator generates (inactive) labels and fake randomness σ of the garbling
that makes ˜C, keys′ look like a real garbling of C, x.

satisfying the following security properties:

Correctness: For any security parameter λ ∈ N, for any circuit C ∈ Cλ, for any
input x ∈ {0, 1}n, for any keys in the image of GC.Gen(1λ) and any ̂C in the
image of GC.Garble(keys, C):

GC.Eval( ̂C, {keysi[xi]}i∈[n]) = C(x).

Security: There exists a pair of PPT algorithm (S1, S2), such that any PPT
adversary A wins the following game with at most negligible advantage:
1. A gives a circuit C and an input x to the challenger;
2. The challenger flips a bit b.

If b = 0:
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– It chooses random garbling key keys ← GC.Gen(1λ);
– It sets ( ˜C ← GC.Garble(keys, C;σ), x̃i = keysi[xi](i ∈ [n]);
– It sends ˜C, x̃, keys, σ to the adversary.

If b = 1:
– It sets y = C(x);
– It runs the simulator ( ˜C, x̃, st) ← S1(C, y)
– It runs the simulator (keys, σ) ← S2(st, x)
– It sends ˜C, x̃, keys, σ to the adversary.

3. The adversary outputs a bit b′.
The adversary wins if b = b′.

We recall that (equivocal) garbled circuit schemes can be constructed from
one-way functions.

Terminology of Input Labels. We note that, labels in boldface keys refer to all
labels corresponding to all input wires. keysi refers to the two input labels of the
i-th wire and keysi[b] refers to exactly one of them for b ∈ {0, 1}.

3.3 Equivocal Commitments

We define (adaptive) equivocal commitments (in the local CRS model).

Definition 3.2 (Non-interactive Equivocal Commitment). A non-
interactive equivocal commitment scheme C is a tuple of five polynomial-time
algorithms C = (C.Setup,C.Setupequiv,C.Com,C.Sim,C.Equiv)

Setup: ck ← C.Setup(1λ) expects as input the unary representation of the secu-
rity parameter λ and outputs a public parameter ck.

Equivocal Setup: (ck, trapq) ← C.Setupequiv(1λ) outputs a public parameter ck
together with a trapdoor trapq (used for equivocation).

Commitment: com = C.Com(ck, x; r) generates a commitment com of x ∈
{0, 1}poly(λ) using random tape x ∈ {0, 1}poly(λ);

Simulation: (com, stc) = C.Sim(ck, trapq) outputs a simulated commitment and
a state used to equivocate the commitment;

Equivocation: r̃ = C.Equiv(ck, trapq, com, stc, x) equivocates the commitment
com to open to x;

satisfying the following properties:

Equivocality: For any polynomial-time circuit family A = {Aλ}λ∈N
, there

exists a negligible function negl, such that for any λ ∈ N :
∣

∣

∣

∣

∣

Pr

⎡

⎣Aλ(st, com, r) = 1 :
(ck, trapq) ← C.Setupequiv(1λ);
(x, st) ← A(ck);
com ← C.Com(1λ, x; r)

⎤

⎦

−Pr

⎡

⎢

⎢

⎣

Aλ(st, com, r̃) = 1 :

(ck, trapq) ← C.Setupequiv(1λ);
(x, st) ← A(ck);
(com, stc) ← C.Sim(ck, trape);
r̃ ← C.Equiv(ck, trape, com, stc, x)

⎤

⎥

⎥

⎦

∣

∣

∣

∣

∣

≤ negl(λ).
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Binding: For any polynomial-time circuit family A = {Aλ}λ∈N
, there exists a

negligible function negl, such that for any λ ∈ N:

Pr
[

C.Com(x0; r0) = C.Com(x1; r1)
and x0 �= x1

: ck ← C.Setup(1λ);
(x0, r0, x1, r1) ← Aλ(ck)

]

≤ negl(λ).

Indistinguishability of Public Parameters: We require that the two follow-
ing distributions are computationally indistinguishable:

{ck : ck ← C.Setup(1λ)}, {ck : (ck, trapq) ← C.Setupequiv(1λ)}.

Claim. Assuming the existence one-way functions, there exist equivocal com-
mitments.

Proof. We can use the construction that is implicit in Appendix B of the full
version of [28], using a pseudorandom generator G from {0, 1}λ to {0, 1}3λ:

Setup: ck ← C.Setup(1λ) outputs a uniform string ck ∈ {0, 1}3λ.
Equivocal Setup: (ck, trapq) ← C.Setupequiv(1λ) generates a pair of uniform

strings trapq = (trapq0, trapq1) ∈ {0, 1}2λ and sets ck = G(trapq0)⊕G(trapq1).
Commitment: com = C.Com(ck, x; r) with r ∈ {0, 1}λ, sets com = G(r) if

x = 0 and com = G(r)⊕ ck if x = 1 (assuming messages x are bits, extension
to strings is straightforward by parallel repetition).

Simulation: (com, stc) = C.Sim(ck, trapq) sets com = G(trapq0) and stc =⊥.
Equivocation: r̃ = C.Equiv(ck, trapq, com, stc, x) returns r̃ = trapq0 if x = 0

and r̃ = trapq1 if x = 1.

Binding comes from the fact that with overwhelming probability over ck ∈
{0, 1}3λ, there does not exist r0 and r1 such that G(r0) ⊕ G(r1) = ck. Indis-
tinguishability of public parameters and equivocality follows from the security
of the pseudorandom generator G. �

3.4 (Augmented) Non-committing Encryption

Let us now recall the definitions of non-committing encryption (NCE) and aug-
mented NCE from [12,15].

Definition 3.3 (Non-committing encryption). A non-committing (bit)
encryption scheme (NCE) consists of a tuple (NC.Gen,NC.Enc,NC.Dec,NC.Sim)
where (NC.Gen,NC.Enc,NC.Dec) is an encryption scheme and NC.Sim is the sim-
ulation satisfying the following property: for b ∈ {0, 1} the following distributions
are computationally indistinguishable:

{(pk, c, ρG, ρE) : (pk, sk) ← NC.Gen(1λ; ρG), c = NC.Encpk(b; ρE)}λ,b,

{(pk, c, ρb
G, ρb

E) : (pk, c, ρ0G, ρ0E , ρ1G, ρ1E) ← NC.Sim(1λ)}λ,b.

Definition 3.4 (Augmented non-committing encryption). An augmen-
ted non-committing encryption scheme (NCE) consists of a tuple (NC.Gen,
NC.Enc,NC.Dec,NC.Sim,NC.GenObl,NC.GenInv) where (NC.Gen,NC.Enc,NC.Dec,
NC.Sim) is an NCE and:
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Oblivious Sampling: NC.GenObl(1λ) obliviously generates a public key pk
(without knowing the associated secret key sk.

Inverse Key Sampling: NC.GenInv(pk) explains the randomness for the key pk.

satisfying the following property:

Obliviousness: The following distributions are indistinguishable:

{(pk, ρ) : pk ← NC.GenObl(1λ; ρ)}λ,

{(pk, ρ̃) : (pk, sk) ← NC.Gen(1λ); ρ̃ ← NC.GenInv(pk)}λ.

4 Definitions of UC Adaptive MPC

4.1 General Definition of Universal Composability

We refer the reader to the full version and to [10] for the general definitions for
UC security.

General Functionality. We consider the general-UC N -party functionality F ,
which securely evaluates any polynomial-time (possibly randomize) function
f : ({0, 1}�in)N → ({0, 1}�out)N . The functionality Ff is parameterized with
a function f .

From Deterministic to Randomized Functionalities. Our multi-party Proto-
col 1 UC-securely realizes the general functionality Ff when the function f is
restricted to be any deterministic poly-time function with N inputs and sin-
gle output. This functionality is defined in Fig. 1. Standard techniques allow to
obtain a protocol that UC-securely realizes the general functionality Ff for any
function f . See details in the full version.

Adversarial Model. A static adversary A chooses the set of corrupted parties
before the protocol starts, as opposed to an adaptive adversary that can corrupt
the players during the protocol. We say that the adversary is semi-honest if A
follows the protocol but tries to extract some information about the other parties’
inputs from his view of the protocol. We say that the adversary is malicious if A
is allowed to deviate arbitrarily from the protocol specifications. We will say that
a protocol is semi-honest-secure if it is secure against a semi-honest adversary
and malicious-secure if it is secure against a malicious adversary. In this work,
we consider malicious security against an adaptive adversary.

Communication Channel. In our results we consider a secure simultaneous mes-
sage exchange channel in which all parties can simultaneously send messages
over the channel at the same communication round in the presence of a rushing
adversary. In every communication round, a rushing adversary sees the mes-
sages from the honest parties and only then chooses the messages on behalf of
the malicious parties. For simplicity, we assume that the parties can broadcast
messages and have authenticated channels. This can be achieved using standard
methods.
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Fig. 1. General functionality for deterministic single output functionalities.

4.2 The Local CRS Model

In the common reference string (CRS) model [13,15], all parties in the system
obtain from a trusted party a reference string, which is sampled according to a
pre-specified distribution D. The reference string is referred to as the CRS . In
the UC framework, this is modeled by an ideal functionality FD

CRS that samples
a string ρ from a pre-specified distribution D and sets ρ as the CRS. FD

CRS is
described in Fig. 2.

Fig. 2. The common reference string functionality.

5 Two-Round UC Adaptive-OT

5.1 Definition of Oblivious Transfer

(Two-out-of-one) oblivious transfer is a two-party functionality, involving a
sender S with input x0, x1, and a receiver R with input σ ∈ {0, 1}. R learns
xσ (or ⊥ if the protocol fails) and nothing else. S learns nothing about σ. The
definition of the ideal oblivious transfer functionality, denoted by FOT, appears
in Fig. 3.
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Fig. 3. Oblivious transfer functionality.

Adversarial Model. Our construction of 2-round OT secure against adaptive cor-
ruption will start with 2-round OT that is only secure against static corruption
and has certain special properties, and gradually transform this property to han-
dle different adaptive corruption scenario. We list all the corruption scenarios
we consider below.

1. Static corruption where the adversary chooses the corrupted parties at the
beginning of the protocol execution.

2. Sender-semi-adaptive corruption where the adversary statically corrupts the
receiver from the beginning and adaptively chooses whether and when to
corrupt the sender during the execution of the protocol.

3. Receiver-semi-adaptive corruption where the adversary statically corrupts the
sender from the beginning and adaptively chooses whether and when to cor-
rupt the receiver during the execution of the protocol.

4. Semi-adaptive corruption where the adversary either performs sender-semi-
adaptive corruption or receiver-semi-adaptive corruption. In other words,
the adversary always corrupts one party from the beginning and adaptively
chooses whether and when to corrupt the other party during the execution.

5. Adaptive corruption where the adversary adaptively chooses whether and
when to corrupt any party during the execution. Note that adaptive cor-
ruption covers semi-adaptive corruption, as well as the scenarios where the
receiver and/or sender are corrupted after the entire execution is complete.

Two-Round Oblivious Transfer Protocols. In this work, we consider 2-round
oblivious transfer protocols, denoted as Π = 〈S,R〉. For convenience, we often
use S and R to refer to the sender and the receiver. We also use them to denote
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the sender and receiver algorithms, where the sender’s algorithm S(sid, x0, x1)
takes input a session id and two input strings, and receiver’s algorithm R(sid, σ)
takes input a session id and a selection bit. Below, for convenience of notation,
in context where the session id is clear, or can be arbitrary, we suppress sid
from the algorithms. For the cases where we consider 2-round oblivious transfer
in the CRS-hybrid model, we denote by K the CRS algorithm generation. We
denote by SR (SS) the ideal world simulator for FOT simulating the view of an
adversarial receiver (sender).

5.2 Oblivious Sampling

Definition 5.1 (Receiver-oblivious-sampleability). A 2-round oblivious
transfer protocol with receiver oblivious sampleability is a 2-round oblivious
OT protocol (Π = 〈S,R〉,K) with the additional algorithms (RObl, RInv), such
that for any bit σ ∈ {0, 1}, the following two distributions are computationally
indistinguishable:

{(crs, μ̃, ρ̃) : crs ← K(1λ); ρ̃ ← {0, 1}λ; μ̃ ← RObl(crs; ρ̃)},

{(crs, μ, ρ) : crs ← K(1λ); μ = R(crs, σ); ρ ← RInv(crs, μ)}.

Definition 5.2 [Sender-oblivious-sampleability]. A 2-round oblivious transfer
protocol with sender oblivious sampleability is a 2-round oblivious OT protocol
(Π = 〈S,R〉,K) with the additional algorithms (SObl,SInv) such that, for any
message x0, x1 ∈ {0, 1}λ, no PPT adversary A (acting as a malicious receiver),
can distinguish the following two experiments:

Real-world experiment:

1. A challenger C runs the simulator SR of Π, which interacts with A in a
straight-line: (i) SR simulates the CRS crs for A; (ii) when A sends a first OT
message μ, SR extracts from μ a selection bit σ.

2. C runs S to obtain an obliviously sampled OT second message ν ←
SObl(crs, μ; ρ̃), picks a random string t ← {0, 1}λ, and sends to A the selection
bit σ, the message ν, and the string t.

3. C sends ρ̃ to A.

Simulated-world experiment:

1. A challenger C runs the simulator SR of Π, which interacts with A in a
straight-line: (i) SR simulates the CRS crs for A; (ii) when A sends a first OT
message μ, SR extracts from μ a selection bit σ.

2. C runs S to obtain an honestly generated OT second message ν ←
S(crs, μ, t0, t1) for t0, t1 ← {0, 1}λ and sends to A the selection bit σ, the
message ν, and the string t1−σ.

3. C computes ρ ← SInv(crs, ν) and sends ρ to A.
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5.3 Transformation 1: Achieving Sender Equivocality

Proposition 5.3. Assume the existence of two-round oblivious transfer with the
following properties:

– UC-Security against static receiver corruption by a malicious adversary.
– UC-Security against static sender corruption by a semi-honest adversary.
– Sender oblivious sampleability.

Then, there exists a two-round oblivious transfer protocol in the CRS-hybrid
model with the following properties:

– UC-Security against static receiver corruption and post-execution sender cor-
ruption (or UC-Security against sender-semi-adaptive corruption for short)
by a malicious adversary.

Additionally, the compilation preserves (1) receiver-oblivious-sampleability and
(2) UC-Security against static sender corruption by a semi-honest adversary, if
the original protocol satisfies either of the properties.

Our Protocol. In this section we will present our UC oblivious transfer protocol
ΠOT secure against sender-semi-adaptive corruption, described in Fig. 4. For
simplicity of exposition, in the sequel, we will assume that random coins are an
implicit input to the sender and receiver algorithms, unless specified explicitly.
The security proof is provided in the full version.

Fig. 4. Sender-semi-adaptive oblivious transfer ΠOT = 〈SOT,ROT〉 protocol.
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5.4 Transformation 2: Achieving Receiver Equivocality Against
Malicious Sender

Proposition 5.4. Assume the existence of two-round oblivious transfer with the
following properties:

– UC-Security against static sender corruption by a semi-honest adversary.
– UC-Security against a static receiver corruption and post-execution sender

corruption (or UC-Security against sender-semi-adaptive corruption for
short) by a malicious adversary.

– Receiver-Oblivious-sampleability.

Then there exists a two-round oblivious transfer protocol in the CRS-hybrid model
with the following properties:

– UC-Security against semi-adaptive corruption by a malicious adversary.

Our Protocol. In this section we will present our UC oblivious transfer protocol
ΠOT secure against semi-adaptive corruption, described in Fig. 5. The security
proof is provided in the full version.

5.5 Transformation 3: From Semi-Adaptive-OT to Adaptive-OT

Proposition 5.5. Assume the existence of augmented non-committing encryp-
tion and two-round oblivious transfer with the following property:

– UC-Security against semi-adaptive corruption by a malicious adversary.

Then there exists a two-round oblivious transfer protocol with the following prop-
erty:

– UC-Security against adaptive corruption.

Our Protocol. In this section we will present our UC oblivious transfer protocol
ΠOT secure against adaptive corruptions, described in Fig. 6. For simplicity of
exposition, in the sequel, we will assume that random coins are an implicit input
to the sender and receiver algorithms, unless specified explicitly. Furthermore,
to simplify notation, we suppose that the sender’s inputs are bits. Extension to
strings is straightforward: it just requires to use string NCE instead of bit NCE
(which can be constructed by parallel repetition of bit NCE). The security proof
is provided in the full version.

5.6 Instantiation of Static-OT with Oblivious Sampleability

In the full version, we show instantiations of static-OT with oblivious sampleabil-
ity from the DDH and the QR assumptions. We also construct a slightly weaker
variant of 2-round static-OT (called half-OT ) with oblivious sampleability from
LWE using a variant of the previous generic construction. Finally, we provide a
variant of Transformation 1 (Sect. 5.3) that starts from a half-OT instead of a
static-OT.
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Fig. 5. Semi-adaptive oblivious transfer ΠOT = 〈SOT,ROT〉 protocol.

6 Two-Round UC Adaptive-MPC

In this section we upgrade the static construction of [5] to the adaptive setting.
The changes we make to the construction of [5] is to lift the security of the garble
circuit and oblivious transfer schemes to the adaptive setting. Unlike [5], we also
obtain security against adaptive malicious adversaries without NIZK.
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Fig. 6. Adaptive oblivious transfer ΠOT = 〈SOT,ROT〉 protocol.

Protocol ΠMPC. We provide an intuitive description of the protocol. A formal
description appears in Protocol 1. The main idea is to collapse a constant L-
round adaptive N -party protocol π secure against malicious adversaries into a
two-round protocol based on equivocal garbled circuits and adaptive oblivious
transfer. The first round of the protocol acts as a catalyst for a virtual execution
of π via equivocal garbled circuits sent by all the parties in the second round.
In particular, each party Pi garbles their next-step circuit Nextmsgi(xi, ri, �) in
an execution of the inner protocol π computing the desired functionality f . The
next-step circuit contains hardcoded the input and randomness (xi, ri) of party
Pi and produces Pi’s next message m�

i for round � on input the messages received
from all parties in all previous rounds M<� = {m�′

j }
j∈[N ],�′<�

. We denote these

circuits by ̂F�
i . These garbled circuits expect as input messages from other parties

as well as output messages for other garbled circuits. There are certain barrier
to put this idea into practice. First of all, parties can perform residual attacks
on the honest parties inputs. To overcome this barrier, we use the first round
to “bind” the parties to their inputs via an oblivious transfer protocol. Next,
each party in the second round needs to generate verification circuits ̂Vi,j that
take as input a proof for each other party’s input message and verify that the
message is honestly generated from the inputs and random tapes committed in
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the first round. This ensures that only the unique sequence of honestly generated
messages is accepted by honest parties’ ̂F�

i garbled circuits. Our protocol below
describes how to combine the above ideas.

6.1 The Protocol

In this section we present our adaptively secure two-round MPC protocol secure
against malicious adversaries, described in Protocol 1.

Protocol 1 (Adaptive malicious protocol ΠMPC). Let f be an arbitrary
N -party functionality. Protocol ΠMPC relies on the following components:

– An adaptive malicious constant L-round N -party protocol π = (Setupπ,
Nextmsg,Output) for f . Setupπ generates the CRS crsπ which is an implicit
input of Nextmsg and Output. Without loss of generality, we will assume that
in each round � of π, each party Pi broadcasts a single message that depends
on its input xi, randomness ri and on the messages M<� = {m�′

j }
j∈[N ],�′<�

that it received from all parties in all previous rounds such that m�
j =

Nextmsgj(xj , rj ,M
<�). Nextmsgj is the next message function that computes

the message broadcast by Pj . In the last round L of π each party Pi locally
computes the output yi = Outputi(xi, ri,M) after receiving all the messages
M = {m�

j}j∈[N ],�∈[L]
.

– A malicious adaptive OT protocol (Π = 〈S,R〉,K) where K is the OT setup
algorithm.

– An equivocal garbling scheme GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim).

Common Reference String: Generate crsOT ← K(1λ) and crsπ ← Setupπ(1λ,
1N ).6 Set the CRS to be crs = (crsOT, crsπ).
Input: Parties P1, . . . , PN are given input (x1, . . . , xN ), respectively.

– Round 1: For � from L to 1 each party Pi� proceeds as follows:
1. Generate input labels cKeys�

i� ← GC.Gen(1λ).
2. Garble a commitment circuit C�

i� = Uλ(�, (xi� , ri�)), which is the uni-
versal circuit (with input size T ) partially evaluated on (xi� , ri�): ̂C�

i� ←
GC.Garble(cKeys�

i� , C�
i�) where ri� is the random tape for running protocol

π.
3. For each k ∈ [| ̂C�

i� |], generate OT receiver messages for the k-th bit of
̂C�

i� , denoted | ̂C�
i� |k:

μ�
i�,k = R(crsOT, |C�

i� |k; ρ�
i�,k)

4. For each t ∈ [T ], for each bit b ∈ {0, 1}, generate OT receiver messages

μ�
i�,t,b = R(crsOT, cKeys�i�,t[b]; ρ

�
i�,t,b)

6 Formally, we need a CRS crsOT for each instantiation of the OT protocol. For the
sake of simplicity, we assume that there is a single CRS.
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Output c�
i� = ({μ�

i�,k}, {μ�
i�,t,b})

– Round 2: For � from L to 1 each party Pi� garbles the evaluation circuits
Fi� = {F�

i�}�∈[L], defined in Fig. 7, as follows:

1. Generate input labels

{cirKeys�
i�,j}j∈[N ]

, stateKeys�
i� , {dataKeys�

i�,j}j∈[N ]
← GC.Gen(1λ).

2. Garble the evaluation circuit F�
i� and broadcast ̂Fi� = {̂F�

i�}�∈[L]:

̂F�
i� ← GC.Garble({cirKeys�

i�,j}j
, stateKeys�

i� , {dataKeys�
i�,j}j

,F�
i�).

3. Generate OT sender messages on the received messages {μ�
j,k}

j,k
:

ν�
i�,j,k = S(crsOT, μ�

j,k, cirKeys�i�,j,k[0], cirKeys�i�,j,k[1]).

4. For each k ∈ [| ̂C�
i� |] output the randomness ρ�

i�,k used to generate μ�
i�,k.

– Output phase: Each party evaluates the evaluation garbled circuits. In par-
ticular Pi� proceeds as follows in L iterations (� ∈ [L]):

1. For all i ∈ [N ], j ∈ [N ], and k ∈ [| ̂C�
j |], given ρ�

j,k recover the labels
cirKeys�i,j,k[b] corresponding to the bit b = | ̂C�

j |k. For all i ∈ [N ], denote
all the [| ̂C�

j |] garble labels cirKeys�i,j,k[b] by γ�
i,j .

2. If � = 1, for i ∈ [N ], evaluate the evaluation garble circuit GC.Eval(̂F1
i ,

{γ1
i,j}j

) to obtain (stateKeys2i , {̂V1
i,j , ν

1
i,j,t, d

1
i,t}j,t

, m1
i ) for all j ∈ [N ] and

t ∈ [T ]. Note that for � = 1, stateKeys1i and {dataKeys1i,j}j
are the empty

set.
3. For every 1 < � ≤ L, for i ∈ [N ] and for each j ∈ [N ] proceed as follows.

For all t ∈ [T ] set g�−1
j,t = |G�−1

j |
t

as the t-th bit of the circuit G�−1
j . For

simplicity of exposition, denote by α�−1
j,t = cKeys�−1

j,t [b] the garble label of
the commitment circuit corresponding to the bit b = g�−1

j,t and proceed as
follows:
(a) Given the randomness d�−1

j,t , used to generate the ΠOT message ν�−1
i,j,t ,

recover the κ garble labels {vKeys�−1
i,j,t′ [α�−1

j,t ]}
t′ of the verification cir-

cuit where (t − 1) · κ < t′ ≤ t · κ. Denote all of the κ · T labels by
β�

i,j .
(b) Evaluate the verification circuit GC.Eval(̂V�−1

i,j , β�
i,j) to receiver the

garble labels corresponding to the message m�−1
j of the evaluation

circuit i.e. dataKeys�i,j [m
�−1
j ].

(c) Evaluate the evaluation circuit GC.Eval(̂F�
i , {γ�

i,j}j
,

stateKeys�i [M
<�−1], {dataKeys�i,j [m�−1

j ]}
j
) to obtain the val-

ues (stateKeys�+1
i [M<�], {̂V�

i,j , ν
�
i,j,k, d�

i,t}j,t
, m�

j) for the next round
� + 1.
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(d) For the case where � = L, the evaluation circuit outputs the empty
set for the values stateKeys�+1

i [M<�] and {̂V�
i,j , ν

�
i,j,t}j

.
4. After all L iterations, Pi� obtains the set of all messages M , and computes

the output yi� = Outputi� (xi� , ri� ,M).

Fig. 7. Pseudocode of circuit F�
i
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6.2 Security Proof

Theorem 6.1. Let f be an arbitrary N -party functionality. Assume the exis-
tence of two-round adaptively secure malicious oblivious transfer protocol ΠOT

in the FCRS-hybrid model and an N -party malicious constant-round adaptively
secure computation protocol π for f in FCRS. Then the two-round protocol ΠMPC,
presented in Protocol 1, UC-securely realizes the ideal functionality Ff in the
FCRS-hybrid model against adaptive corruption of any subset of the parties by a
malicious adversary.

The protocol π can be instantiated based on simulatable PKE [17] in the
CRS model. In the semi-honest setting, no CRS is required and the protocol
π can be instantiated based on augmented NCE [17]. See the full version for
details.

The security proof is provided in the full version.
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Abstract. We introduce a new notion of one-message zero-knowledge
(1ZK) arguments that satisfy a weak soundness guarantee—the number
of false statements that a polynomial-time non-uniform adversary can
convince the verifier to accept is not much larger than the size of its
non-uniform advice. The zero-knowledge guarantee is given by a simula-
tor that runs in (mildly) super-polynomial time. We construct such 1ZK
arguments based on the notion of multi-collision-resistant keyless hash
functions, recently introduced by Bitansky, Kalai, and Paneth (STOC
2018). Relying on the constructed 1ZK arguments, subexponentially-
secure time-lock puzzles, and other standard assumptions, we construct
one-message fully-concurrent non-malleable commitments. This is the
first construction that is based on assumptions that do not already incor-
porate non-malleability, as well as the first based on (subexponentially)
falsifiable assumptions.

1 Introduction

Zero-knowledge proofs [GMR89] are a cornerstone of modern cryptography.
Their birth was enabled by introducing two new concepts to classical proofs—
interaction and randomness. Indeed, both were shown [GO94] to be essential—
for non-trivial languages, zero-knowledge proofs (or their computationally-sound
counterparts known as arguments) require a randomized verifier that exchanges
at least three messages with the prover. In particular, unlike classical proofs,
zero-knowledge proofs cannot be transferred, published, nor stored.
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One setting in which this barrier can be circumvented is when a trusted
setup (such as a common random string) is available [BFM88]. In the absence
of a trusted setup, a natural approach to the problem is to relax the require-
ments of zero-knowledge protocols. Along this vein, Dwork and Naor [DN07]
showed that for witness-indistinguishable (WI) proofs, two messages suffice, and
by now, we know how to achieve them with no interaction at all [BOV07,
GOS12]. Pass [Pas03] considered a stronger notion—zero-knowledge with a
super-polynomial simulator (SPS). Indeed, WI proofs stand at the extreme
of this notion, as they admit an exponential-time simulator (that can find a
witness for the underlying statement by brute force). In contrast, based on
subexponential hardness assumptions, Pass constructed two-message arguments
where the zero-knowledge simulator runs in subexponential, or even quasi-
polynomial time (without violating the hardness of the underlying language).
Such SPS zero-knowledge has proven instrumental for central applications
such as concurrent computation [Pas03,PS04,BS05,MMY06,CLP16,GGJS12,
GKP17,BGI+17,BGJ+17] and non-malleable commitments [KS17].

While Pass’ proofs break the three-message barrier, they still consist of two
messages and do not enjoy the merits of completely non-interactive proofs.
Following the introduction of non-interactive WI (NIWI) proofs, Barak and
Pass [BP04] investigated the possibility that SPS zero-knowledge can also
be made non-interactive (with no trusted setup). They observed that non-
interactive proofs (or arguments) that satisfy the usual notion of soundness and
have a TSPS-time simulator are impossible to achieve against non-uniform adver-
saries, except for languages L decidable in time TSPS. Indeed, if the simulator
cannot decide L, there must exist proofs π for false statements x /∈ L, and a
non-uniform prover can have such proofs hardwired in its code. Accordingly,
Barak and Pass define a notion of SPS zero-knowledge protocols satisfying a
weak notion of soundness that only holds against efficient uniform provers. They
show how to construct such protocols based on keyless hash functions that are
collision-resistant against subexponential uniform adversaries (or more general
uniform sampling problems).

This Work: Weak Soundness Against Non-uniform Provers. We intro-
duce a new notion of weak soundness for one-message zero-knowledge (1ZK) that
also captures non-uniform adversaries.

The notion is inspired by the notion of multi-collision resistance for keyless
hash functions, introduced recently in [BKP18]. Roughly speaking, it requires
that an efficient non-uniform adversary cannot do more than hardwire false state-
ments with their accepting proofs in its code. That is, any non-uniform adversary,
with description of polynomial size S and arbitrary polynomial running time
T � S, should not be able to find (i.e., output in one shot) more than K(S) false
statements x /∈ L together with an accepting proof π, where K is some blowup
function (for concreteness, the reader may think of K(S) = S2 throughout this
introduction). In other words, false statements with their accepting proofs cannot
be significantly compressed.
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The zero-knowledge requirement is the same SPS requirement as before—
the simulator is allowed to be mildly super-polynomial (and in particular, cannot
decide the underlying language L). We note that even with such weak soundness,
the SPS relaxation is essential—languages L that are hard on average cannot
have an efficient simulator.1

1.1 Results and Discussion

We construct 1ZK arguments satisfying the new notion of weak soundness based
on the notion of multi-collision resistance and generalizations thereof. Then, rely-
ing on such arguments, we construct one-message (concurrently) non-malleable
commitments, which has been a long standing problem. We now elaborate on
each of these results.

Constructing 1ZK Arguments. We show how to construct 1ZK arguments
from keyless hash functions that satisfy the notion of multi-collision resistance
recently introduced in [BKP18]. Such a hash function H : {0, 1}λ → {0, 1}λ/2

guarantees that no relatively-efficient adversary with non-uniform description of
polynomial size S can find more than K(S) collisions in the underlying func-
tion.2 Here, K is again a fixed polynomial (e.g., quadratic) and relatively-efficient
means mildly superpolynomial-time (e.g. quasipolynomial or subexponential).

Theorem 1 (Informal). Assuming multi-collision-resistant keyless hash func-
tions, injective one-way functions, and non-interactive witness-indistinguishable
proofs, all subexponentially-secure, there exist 1ZK arguments for NP with weak
soundness and a subexponential-time simulator.

As noted in [BKP18], while non-standard, multi-collision resistance is a falsi-
fiable and relatively simple assumption. As candidates they suggest existing key-
less hash functions such as SHA, or AES-based hashing, and point out directions
for investigating additional candidates. We can, in fact, rely on a more general
notion of incompressible problems, for which additional candidates may be found.
At high-level, a (T,K,Δ)-incompressible problem is a collection W = {Wλ}λ of
efficiently recognizable sets (one set for each security parameter λ) satisfying the
following. On one hand, no T -time adversary with non-uniform description of
polynomial size S can find more than K(S) solutions w ∈ Wλ. On the other
hand, Wλ is relatively dense in {0, 1}λ, in the sense that a random w ← {0, 1}λ

1 If there were such a simulator, then due to weak soundness, the simulator should
fail to find accepting proofs for no-instances x̄ /∈ L sampled from any efficiently
samplable distribution. In contrast, for yes-instance x ∈ L, it should succeed by the
zero-knowledge guarantee. Thus, such a simulator would violate the average-case
hardness of L.

2 To be exact, in [BKP18], they call this notion strong multi-collision resistance. They
define (weak) multi-collision resistance as the problem of finding multiple inputs that
all map to the same image. Throughout the introduction, we ignore this difference.
In the body, we show that we can rely on either one, relying in addition on standard
derandomization assumptions.
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is in Wλ with relatively high probability Δ = 2−o(λ).3 For concreteness, the
reader may think of T = 2λ.01 � 2λ.99

= Δ−1.

Theorem 2 (Informal). Assuming (T,K,Δ)-incompressible problems, where
K � T � Δ−1 � 2λ.99

, and subexponentially-secure injective one-way functions
and non-interactive witness-indistinguishable proofs, there exist 1ZK arguments
for NP with (T,K)-weak soundness and a poly(Δ−1)-time simulator.4

We also define and construct, under the same assumptions, a more general
notion that we call ϕ-tuned 1ZK that admits a more flexible tradeoff between
the level of soundness and simulation time, and will be useful when applying
these arguments. We defer the details to the technical overview below.

One-Message Non-malleable Commitments. The question of the round
complexity of non-malleable commitments [DDN03] has been long pursued. The
past two decades have seen impressive progress [Bar02,PR05a,PR05b,LPV08a,
LP09,PPV08,PW10,Wee10,Goy11,LP11,GLOV12,GRRV14,GPR16,COSV16,
COSV17,Khu17], culminating in two recent constructions of two-message
non-malleable commitments [KS17,LPS17] based on subexponential Decision-
Diffie-Hellman or Quadratic Residuosity in the first, and subexponential time-
lock puzzles [RSW00] in the second (which achieves also full concurrency).

Yet, one-message non-malleable commitments have remained somewhat elu-
sive. So far, they have only been constructed starting from a non-falsifiable
assumption that already incorporates non-malleability called adaptive injective
one-way functions, against uniform adversaries [LPS17], or for a restricted class
of algebraic mauling functions and entropic plaintexts [KY18]. Indeed, one-
message non-malleable commitments would give rise to powerful features that
cannot be achieved with interaction, such as the ability to publish them on pub-
lic ledgers, transfer them from one hand to another, or store them for future
use.

Relying on 1ZK arguments with weak soundness, we construct one-message
fully-concurrent non-malleable commitments against non-uniform adversaries.

Theorem 3 (Informal). Under the same assumptions as in Theorem2 (or 1),
as well as subexponential time-lock puzzles, there exist fully-concurrent one-
message non-malleable commitments against all efficient non-uniform adver-
saries.

We actually prove a more general theorem that transforms commitments sat-
isfying a notion of four-tag non-malleability into full-fledge non-malleable com-
mitments as stated in the above theorem. (More specifically, the former refers to

3 To get subexponential density, we need to multi-collision-resistant hash functions
with polynomial, rather than linear, shrinkage. In [BKP18], it is shown how polyno-
mial compression can be achieved form linear compression.

4 Here (T, K)-weak soundness refers to the expected generalization of the weak sound-
ness notion discussed above where the prover may run in time at most poly(T ), and
T may be superpolynomial and the blowup function is K.
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non-malleability w.r.t. four tags, whereas full-fledged non-malleability can handle
an exponential number of tags.) Such four-tag (or constant-tag) commitments
are constructed in [LPS17] based on sub-exponentially secure time-lock puzzles
and injective one-way functions. In addition, we present new candidate four-tag
(or constant-tag) non-malleable commitments from a new assumption regarding
injective one-way functions that are amenable to hardness amplification, which
can replace time-lock puzzles in the above theorem. This yields new candidates
from natural one-way functions such as discrete logarithms, RSA, or Rabin. See
further details in the technical overview below.

On the Underlying Assumptions. The assumptions that we rely on, most
notably incompressible problems, are not standard. Nevertheless, we do find
them simple and plausible. Bitansky, Kalai, and Paneth give evidence that multi-
collision resistance may hold for existing cryptographic hash functions and in
particular does not require any special algebraic structure—they show that this
property is satisfied by random oracles, even in the auxiliary-input model [Unr07]
(where the adversary may first store arbitrary polynomial information about the
oracle).

We also note that all of our assumptions are subexponentially-falsifiable
(i.e., falsifiable w.r.t. sub-exponential time adversaries). Here we note that
Pass [Pas13] showed that non-malleable commitments in less than three messages
cannot be shown secure based on black-box reductions to polynomially-falsifiable
assumptions.

A more conservative view of our results would be that to rule out the existence
of one-message non-malleable commitments, one must show that incompressible
problems do not exist. That is, any efficiently recognizable, somewhat dense,
set must have a non-trivial sampler (where by non-trivial we mean that it can
output more samples then its non-uniform size). In particular, one would have to
show that for any keyless hash function, it is possible to compress collisions. This
would also constitute a strong (and non-contrived) separation between random
oracles and any keyless hash function.

Using Weak Soundness. Weak soundness is the best one could hope for when
considering one-message zero-knowledge without trusted setup and non-uniform
cheating provers, but when is it useful? Generally speaking, weak soundness
could be leveraged in settings where a prover does not fully determine proven
statements, namely, statements have some non-trivial entropy.

This gives some intuition on why weak soundness is useful in our application
of non-malleable commitments. Roughly speaking, to maul a commitment c to
a value v, the attacker is required to generate a new commitment c′ to a related
value v′, and prove that the new commitment is well-formed. As long as the
attacker does not always produce a fixed commitment c′, or rather a commit-
ment c′ from some fixed polynomial-size set Z, proven statements are sufficiently
entropic and weak soundness kicks in. In contrast, mauling c into c′ from such
a set Z would not constitute a meaningful attack—the distribution of the value
v′ in the commitment c′ cannot depend on the committed value v in c, or a



214 N. Bitansky and H. Lin

reduction that has the set Z hardcoded could break the hiding of c. See more
details in the technical overview below.

It is plausible that weak soundness will be found useful in other settings with
entropic statements or in different man-in-the-middle attack models.

Robustness Beyond Human Ignorance. When considering the possibility
of integrating non-interactive zero-knowledge in real-world systems, the need for
a trusted common reference string may present a serious hurdle (certainly in
decentralized applications whose essence is to avoid central trust). The system
of Barak and Pass [BP04], when instantiated, say, with SHA256, already avoids
the need for central trust and suggests a meaningful guarantee of soundness
in the face of human ignorance (a term coined by Rogaway [Rog06]). Namely,
as long as humanity fails to find collisions in SHA256, it will also fail to find
accepting proofs for false statements. However, the moment even a single col-
lision in SHA256 is found, the Barak and Pass system would completely lose
soundness—it will be possible to easily prove any false statement.

Our system has a more robust guarantee—finding a few collisions only allows
finding a few false statements with accepting proofs, and the mapping from
collisions to false statements is deterministic and efficiently computable.

1.2 Technical Overview

We now give an overview of the main ideas and techniques behind our results.
Throughout this overview, it will be convenient to consider a slight variant

of incompressible problems requiring that for any efficient adversary A with a
non-uniform description of polynomial size S, there exists a set Z of size at
most K(S), such that A cannot find solutions w ∈ W\Z. In the body, we show
that this variant is indeed equivalent to requiring that the adversary fails to find
more than K solutions w. We consider a similar variant for the definition of weak
soundness, where the adversary cannot output a false statement and accepting
proof (x, π), except for statements x from some size-K set.

One-Message Zero-Knowledge

The starting point for our construction is the Barak-Pass [BP04] construction
against uniform provers. They follow the common [FLS99] paradigm in which
the prover provides a WI proof that

“Either x ∈ L or the prover knows some trapdoor”.

The trapdoor should be such that it is too hard for an efficient prover to com-
pute, but only mildly hard, so that a super-polynomial simulator can obtain it
relatively fast in time Ttd � 2o(|x|). The hardness of obtaining the trapdoor, and
the soundness of the proof, guarantee the soundness of the argument, whereas
as the WI property, along with the simulator’s ability to find the trapdoor, give
rise to SPS simulation. To realize this idea, the prover sends a commitment c
and proves that x ∈ L or c is a commitment to the trapdoor. The commitment
is only mildly hard—the committed value could be extracted by brute force in
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time Tcom � Ttd, which does not suffice to find the trapdoor. Therefore, violating
soundness requires violating the hardness of finding a trapdoor in Ttd.

The question is what could be the trapdoor. Focusing on uniform provers,
Barak and Pass rely on problems that are hard for uniform algorithms. For
instance finding collisions of certain keyless hash functions is conjectured to be
hard for uniform algorithms (or more generally, algorithms whose description is
smaller than the function’s input), even in time poly(Tcom). This of course mis-
erably fails against non-uniform provers who could simply have such a trapdoor
(e.g., a collision) hardwired in their code and use it to cheat.

Leveraging Incompressible Problems. Recall that we are only interested in
a weak notion of soundness—we wish to guarantee that there is only a small set
of false statements for which the prover may give false proofs (where small is
some polynomial K(S) in the prover’s non-uniform description size S). A first
natural idea is to simply replace the trapdoor problem with an incompressible
problem W (for instance, replace collision-resistance against uniform adversaries
with multi-collision resistance against non-uniform ones).

This first attempt, however, fails. The problem is that any single solution in
W allows to efficiently generate accepting proofs for all statements x. Thus, a
non-uniform attacker with one such hardwired solution, can convince the verifier
of accepting any number of false statement, thereby violating the weak sound-
ness requirement. The problem stems from the fact that in such a protocol, the
concept of a useful trapdoor is completely detached from the proven statement
x. We solve this by binding trapdoors and statements, so that, finding accepting
proofs for different false statements requires finding different solutions in W.
Thus, an attacker who can only find a small set of solutions, can only generate
proofs for a small number of corresponding false statements.

More specifically, we aim to achieve two goals. First, every trapdoor w ∈ W
is associated with a specific statement x = f(w) determined by some efficiently
computable function f—this would ensure that the prover could only provide
accepting proofs for false statements from a small set X = f(Z) determined by
the small set Z of trapdoors it may be able to find. Second, we would like to
guarantee that for any x ∈ L, the simulator would be able to reverse sample a
trapdoor w ∈ W such that x = f(w), and it should do so relatively fast.

We achieve the above combinatorial properties as follows. For instances x of
size �, we choose f to be a two-source extractor 2Ext : {0, 1}n ×{0, 1}n → {0, 1}�,
where n is a parameter dictated by the quality of the extractor (in our actual
construction n = 4�). We then choose our incompressible problem to be pairs
of solutions W × W ⊆ {0, 1}n × {0, 1}n for some underlying incompressible
problem W. It is easy to see that the product of incompressible problems is
itself an incompressible problem, and so weak soundness is obtained according
to the above reasoning. Furthermore, by choosing an appropriate extractor, we
can guarantee that as long as W has density Δ ≥ 2−o(�), for any x ∈ {0, 1}�, it
is possible to sample (w,w′) ∈ W such that 2Ext(w,w′) = x in time O(Δ−2), as
required.
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The above is satisfied by any extractor with the following two properties.
First, it has an exponentially small error—for independent sources with min-
entropy n − o(�), the output is 2−�−Ω(1)-close to uniform. Second, it admits
efficient reverse sampling—for any x, it is possible to efficiently sample from
the uniform distribution on Un × U ′

n conditioned on 2Ext(U,U ′) = x. These
properties are both satisfied by the classical Hadamard extractor [CG88,Vaz85].
See further details in the full version of this paper.

To recap, the final proof (c, π) consists of a commitment c to a string of
length 2n, and a NIWI that

“Eitherx ∈ L or c is a commitment to (w,w′) ∈ W × W such
that 2Ext(w,w′) = x”.

Starting from a (TW ,K,Δ)-incompressible problem, we choose a mildly-hard
commitment so that it is extractable in time Tcom � TW . The resulting system is
then (TW ,K)-weakly-sound and has a Δ−2-time simulator. In particular, for the
discussed setting of parameters K � T � Δ−1 � 2�.99

, we get a subexponential-
time simulator.

ϕ-Tuned 1ZK. We also consider a generalization of the 1ZK definition that
admits a more flexible soundness vs. simulation-time tradeoff. Specifically, we
parameterize our system by a projection function ϕ(x) and obtain the following
augmented guarantees:

– Weaker Soundness: we are only guaranteed that the prover produces accept-
ing proofs for false statements x whose projection ϕ(x) is taken from a small
set Z (but x itself is not restricted to any small set).

– Faster Simulation: simulation time is only subexponential in |ϕ(x)| and not
in � = |x|. Furthermore, fixing any projection y, there is a corresponding
trapdoor state sty that allows simulating any x ∈ ϕ−1(y) in polynomial time.
A bit more formally, simulation for x can be split into a long preprocessing
step Spre, subexponential in |ϕ(x)|, that produces stϕ(x), and a short postpro-
cessing step Spos that takes polynomial time given the trapdoor state stϕ(x).

Note that the above is indeed a generalization of the previous notion when con-
sidering the identity as the projection ϕ. As we shall see later on, the flexibility
of choosing ϕ differently, with the above tradeoff, will be useful in our appli-
cation to non-malleable commitments. The construction of such ϕ-tuned 1ZK
is identical to the construction described above only that we require that the
trapdoor (w,w′) fixes ϕ(x) rather than x. See further details in the full version.

One-Message Non-malleable Commitments

We now give an overview of how to use our 1ZK arguments to construct one-
message non-malleable commitments. We adopt a standard formulation of non-
malleable commitments where players have identities, and the commitment pro-
tocol depends on the identity of the committer, which is referred to as the tag
of the interaction. Non-malleability [DDN03] ensures that no man-in-the-middle
attacker can “maul” a commitment it receives on the left into a commitment
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of a related value it gives on the right, as long as the tags of the left and right
commitments are different. More formally, for any two values u and w, the values
the man-in-the-middle commits to after receiving left commitments to u or w,
along with the commitments it sees on the left, are indistinguishable. The notion
of concurrent non-malleability [DDN03,PR05a] further requires that no attacker
can “maul” a set of left commitments into a set of right commitments so that
the joint distribution of right committed values depends on the left committed
values.

The number γ of tags a scheme supports can be viewed as a quantitative mea-
sure of how non-malleable it is: A γ-tag non-malleable commitment gives a family
of γ commitment schemes—each with a hardwired tag—that are “mutually non-
malleable” to each other. Therefore, the fewer tags, the easier it is to construct
a corresponding non-malleable commitment. Indeed, as shown by [LPS17], non-
interactive non-malleable commitments for a constant number of tags can be
constructed from subexponentially-secure injective one-way functions and time-
lock puzzles [RSW00]. Full-fledged non-malleable commitments, in contrast, have
an exponential number of tags γ = 2λ. Thus, the main challenge lies in increasing
the number of tags from a constant to exponential.

Techniques for amplifying the number of tags have been explored in the lit-
erature [DDN03,LP11,KS17,LPS17]. They show that a non-malleable commit-
ment scheme for γ tags can be transformed into one for 2Ω̃(γ) tags. Thus, start-
ing from constant-tag non-malleable commitments, applying the transformation
iteratively for O(log∗ λ) times yields non-malleable commitments for exponen-
tially many tags. However, all existing tag-amplification techniques crucially rely
on interaction—even if the initial constant-tag non-malleable commitments are
non-interactive, the transformation increases the message-complexity to at least
two. For instance, the tag-amplification technique of Khurana and Sahai makes
use of 2-message SPS zero-knowledge arguments. In this work, we show how
to replace the 2-message SPS ZK arguments with our 1ZK arguments, which
gives a non-interactive tag-amplification technique, and hence non-interactive
non-malleable commitments.

Two-Message Tag-Amplification. We start with reviewing the Khurana
and Sahai (KS) 2-message tag-amplification technique, which transforms a non-
interactive input scheme iNM for γ tags into a 2-message output scheme oNM
for

(
γ

γ/2

)
= 2Ω(γ) tags. Each tg′ of oNM consists of a subset of γ/2 tags

tg′ = (tg1, · · · , tgγ/2) of iNM. To commit to a value v, oNM computes γ/2
commitments to v using iNM with respect to tags tg1, · · · , tgγ/2, followed by a
2-message SPS argument that all commitments are consistent. More precisely,

KS 2-message tag-amplification—oNM:

– The receiver R sends the first message π1 of a 2-message SPS argument.
– To commit to v using tg′ = (tg1, · · · , tgγ/2), the committer C generates

{nmj ← iNM(tgj , v)}j∈[γ/2] and the second message π2 of a 2-message SPS
argument that all iNM commitments commit to the same value.
The committed value is defined to be the value committed in nm1.
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To see that oNM is non-malleable, consider a man-in-the-middle receiving a left
commitment using tg′ = (tg1, · · · , tgγ/2) and giving a right commitment using
t̃g

′ = (t̃g1, · · · , t̃gγ/2). If tg′ 	= t̃g
′, there must exist i�, such that, t̃gi� 	= tgi for

all i—the i�’th right iNM commitment uses a tag different from all left tags.
Then, they reduce the non-malleability of oNM to the non-malleability of

iNM. To do so, they rely on the soundness of the 2-message SPS argument to
argue that in left-honest man-in-the-middle executions, the attacker must send
consistent iNM commitments {ñmj} on the right, or else it would fail in the
SPS argument. (Here by left-honest, we mean the proofs on the left are honestly
generated and not simulated.) Thus, to show that the right committed values do
not change in two left-honest executions with different left committed values u or
w, it suffices to show that the value committed in any right iNM commitment—in
particular, the i�’th one ñmi�—does not change (in a distinguishable manner).
To show this, they gradually simulate components in the left commitment in
a sequence of hybrids, while maintaining that ṽi� committed in ñmi� does not
change throughout hybrids.

In the first hybrid, the left SPS argument (π1, π2) is simulated. To ensure that
ṽi� does not change, they rely on complexity leveraging to make simulated proofs
“harder to distinguish” than extracting from the commitment iNM; that is, the
indistinguishability of SPS simulation holds even when ṽi� is extracted by brute
force. Once the left SPS argument is simulated, the left iNM commitments are
switched to committing to 0 in following hybrids. By the non-malleability of iNM
and the fact that ñmi� uses a tag t̃gi� different from all left tags, its committed
value ṽi� does not change through these hybrids. Note that this requires the
non-malleability of iNM to hold against TiNM-time attackers for TiNM � TSPS.
Using SPS ZK where simulation-time only depends on the underlying security
parameter (and not the size of the instance), the above can be satisfied by
appropriately choosing the relation between the iNM security parameter n and
the SPS security parameter n̄.

Non-interactive Tag-Amplification. To obtain non-interactive tag-
amplification, a natural idea is replacing the 2-message SPS in the KS trans-
formation with our 1ZK argument. However, two challenges arise:

– Challenge 1: Our 1ZK is only weakly sound. Thus, the man-in-the-middle
attacker is able to generate an accepting 1ZK argument π̃ even when the
right iNM commitments {ñmj} are inconsistent (i.e., committing to different
values).

– Challenge 2: In our basic 1ZK, the simulation time is subexponential in the
length of the statement |x| (and the security parameter). This makes it diffi-
cult to guarantee that the simulator cannot break the underling non-malleable
commitment, i.e. TiNM � TSPS.

Specifically, the statement x concerns the consistency of γ/2 iNM commit-
ments, and thus the simulation time is at least TSPS = 2(γ×�nm/2)ε

, where
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�nm = �nm(n) is the length of iNM commitments and could scale polynomi-
ally with the security parameter n of iNM. It could well be that TiNM � TSPS.

In a nutshell, to solve the first problem, we rely on the weak soundness of 1ZK
to argue that whenever the right iNM commitments are not consistent (that is,
the statement is false), the right commitments are taken from a small “apri-
ori known” set, and their underlying values can be non-uniformly hardcoded
into the reduction. To solve the second problem, we make the security of iNM
independent of the simulation time, by introducing an extra commitment under
another scheme Com and using the ϕ-tuned version of 1ZK to reduce the sim-
ulation time to only depend on the length of commitments in Com, instead of
commitments in iNM.

The Actual Tag-Amplification and Resulting Scheme oNM:
To commit to v using tg′ = (tg1, · · · , tgγ/2), the committer C generates
c ← Com(v), {nmj ← iNM(tgj , v)}j∈[γ/2], and a 1ZK argument π showing
that c and all iNM commitments commit to the same value. The 1ZK state-
ment is given by x = (c,nm1, · · · ,nmγ/2) and we consider its projection
ϕ(x) = c that only fixes the Com commitment c.
The committed value is defined to be the value committed in c.

Let us see how the above two problems are resolved.

Resolving Challenge 1: The weak soundness of ϕ-tuned 1ZK guarantees that for
any attacker A of polynomial size S, there is a set Z consisting of a polynomial
number K(S) of Com commitments c (the so called projections) such that A
cannot prove a false statement x where the corresponding commitment c is
not in Z. This means that in left-honest man-in-the-middle executions, one of
the following two cases occurs: Either the right Com commitment c̃ and the
iNM commitments are all consistent, or the commitment c̃ belongs to Z. In
the latter case, the right committed value must belong to the polynomial-sized
set {ṽ : ṽ is the value in c̃ ∈ Z}, which can be hardwired non-uniformly into
the reduction. In the first case, showing the indistinguishability of the right
committed values again reduces to showing that of ṽi� committed in ñmi� .

Resolving Challenge 2: Recall that ϕ-tuned 1ZK enjoys a simulation speedup.
Specifically, simulation consists of (i) a 2|c|δ -time preprocessing phase that
depends only on the projection c and computes a trapdoor state st ← Spre(c),
and (ii) a polynomial poly(|x|, n̄)-time postprocessing phase that generates the
simulated proof π̂ ← Spos(x, st). With this speed-up, let us examine again the
sequence of hybrids where the left Com and iNM commitments are gradually
switched to committing to 0, while the 1ZK argument on the left is simulated.
We need to ensure that ṽi� does not change.

To change the Com commitment, we require that its hiding holds even in the
presence of 1ZK simulation and (brute-force) extraction from ṽi� :

TCom � TSPS = 2|c|δ + poly(|x|, n̄) and TCom � TiNM.E
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The latter can be satisfied by setting the security parameter n̄ of Com to be
sufficiently larger than the security parameter n of iNM. The former is more
subtle as it requires Com to be at least 2|c|δ -secure, where |c| is the length of
Com commitments. Such a commitment scheme for strings of length �, can be
instantiated by the classical Blum-Micali bit commitment scheme [BM84] (recall
that a commitment to b is f(r),hc(r) ⊕ b, where hc is a hardcore bit of an
injective one-way function f), instantiated with any 2kρ

-hard injective one-way
function, and sufficiently large security parameter k > Ω(�δ/ρ−δ).

Next, when changing the left iNM commitments, we can circumvent the
requirement that TiNM � TSPS by leveraging the efficient postprocessing of 1ZK
simulation. Recall that given a trapdoor state st ← Spre(c) that depends only
on the projection c, simulating the proof π̂ ← Spos(x, st) takes only polynomial
time. When changing the values committed in left iNM commitments, the left
Com commitment c is independent—it is by now a commitment to 0. If in two
neighboring hybrids, the value ṽi� on the right changes, there must exist a com-
mitment c (committing to 0) such that conditioned on c occurring in the hybrids
the value ṽi� still changes. With respect to this specific c, 1ZK simulation can
now be done in polynomial time, given as non-uniform advice the preprocessed
state st ← Spre(c) depending on c. This suffices for the security reduction, as
now, the non-malleability of iNM is detached from the 1ZK simulation time.

A Subtle Issue. The above description captures the main idea, but misses a sub-
tle issue. Roughly speaking, in order to apply our tag-amplification iteratively,
across different iterations, we need to increase the level of security of the Com
schemes used in each iteration. In particular, the security parameter k for the
one-way functions underlying Com needs to grow polynomially in each iteration.
If we start with k > �δ/(ρ−δ) = �Ω(1), after a super-constant number of iterations
(out of the log∗ n iterations needed), k would grow to be super-polynomial in �.

To avoid this, we modify the scheme oNM to have a separate 1ZK argument
for each bit commitment cj (committing to a bit vj of the committed value),
proving that all iNM commitments are consistent with it, in the sense that, the
j’th bit of their committed strings equals to the bit committed in cj . By doing so,
cj only needs to be 2|cj |δ -secure, independent of the length � of committed values.
Thus, we no longer need to set k to be k = �Ω(1), but instead to k = �o(1). Though
k still increases through O(log∗ n) iterations, it is always kept polynomial in �.
See section for a formal description of the final transformation.

Achieving Concurrency. Applying our non-interactive tag amplification to
the 4-tag non-malleable commitments of [LPS17] gives a full-fledged non-
interactive non-malleable commitment, which however, is only stand-alone (i.e.,
one-one) but not concurrently non-malleable. This is because the basic commit-
ments of [LPS17] are not concurrently non-malleable.

To obtain concurrent non-malleability, we give another transformation from
non-malleable commitments in a restricted concurrent setting, called same-tag
concurrency into fully concurrent ones. Roughly speaking, in the same-tag con-
current setting, we require non-malleability to hold with respect to attackers
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who always use the same tag in all commitments on the right. We observe that
the 4-tag commitments of [LPS17] actually are same-tag non-malleable, and our
tag amplification preserves this property. Therefore, by applying the same-tag
to full-concurrency transformation after tag amplification, we obtain concurrent
non-malleability.

Our transformation is inspired by the 2-round non-malleability strengthening
transformation in [LPS17], but works in one message and is simpler and more
modular; in particular, the transformation of [LPS17] relies directly on time-
lock puzzles, whereas we work with any non-malleable commitment satisfying
the intermediate notion of same-tag non-malleability.

At a high level, starting from a same-tag non-malleable input scheme iNM,
our transformation follows the Naor-Yung paradigm for constructing CCA
encryption, producing an output scheme oNM as follows. oNM fixes two arbi-
trary tags tg�

0, tg
�
1 of iNM for special use, and commitments are computed using

to other tags tg 	= tg�
0, tg

�
1.

The Same-Tag to Fully-Concurrent Transformation and Resulting
Scheme oNM (Simplified):

– On input v and tag tg, the committer C commits to v using iNM with
the two special tags:

nm0 ← iNM(tg�
0, v) nm1 ← iNM(tg�

1, v),

and proves that both iNM commitments commit to the same value v. The
proof is computed using a simulation-sound variant of our 1ZK argument
relative to the tag tg.

To argue the concurrent non-malleability of oNM, it suffices to argue one-many
non-malleability [LPV08a] (that is, the man-in-the-middle receives a single com-
mitment on the left and gives many commitments on the right.)

The two commitments of iNM using special tags tg�
0 and tg�

1 are the coun-
terparts of the as two public-key encryptions in the Naor-Yung paradigm, and
the proof of non-malleability follows similarly to the proof of CCA security. The
simulation soundness of 1ZK ensures that the man-in-the-middle attacker can
only send consistent ñm0,j and ñm1,j in every right commitment j, even when
the left 1ZK argument is simulated. Therefore, as the left commitment nm0 is
simulated (by committing to 0), one can argue that the right committed values
do not change by showing that values in {ñm1,j} do not change. Similarly, as
the left commitment nm1 is simulated, one can switch to showing that values in
{ñm0,j} do not change. Here same-tag non-malleability is essential for arguing
that the joint distribution of all right committed values does not change (in a
distinguishable manner).

To achieve simulation-soundness, we open the construction of our 1ZK argu-
ments. Recall that these arguments rely on a basic commitment scheme, a NIWI,
and an incompressible language. We show that by replacing the basic commit-
ment scheme with a non-malleable one (such as the input scheme iNM), our 1ZK
arguments become simulation-sound. For this approach to work, we additionally
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need “mutual non-malleability” between the commitment in our simulation-
sound 1ZK arguments and the iNM commitments using tg�

0, tg
�
1. That is, (i)

simulating the 1ZK argument on the left does not change the values that the
attacker commits to in iNM commitments {ñm0,j , ñm1,j} on the right, and (ii)
changing the values committed in the iNM commitments on the left does not
allow the attacker to break (weak) soundness on the right. Such “mutual non-
malleability” is achieved again relying on the same-tag non-malleability of iNM
and the fact that the iNM commitments use two special tags tg�

0, tg
�
1 different

from the tags we use for iNM commitments in 1ZK arguments.
The above discussion is overly-simplified. Indeed, this transformation also

has to deal with the challenges presented before in the tag-amplification trans-
formation. They are dealt with using similar techniques. See Sect. ?? for details.

New Candidate Constant-Tag Non-malleable Commitments. As
explained above, our transformations start from non-malleable commitments
for a constant number of tags, which were previously known based on time-lock
puzzles [LPS17]. We also provide new candidate constant-tag non-malleable com-
mitments, based on a new assumption on hardness amplification of (injective)
one-way functions.

Known results on hardness amplification have shown ways of strengthen-
ing weak one-way functions to strong ones, via direct product lemmas or XOR
lemmas. However, these results have a common weakness—hardness does not
amplify beyond negligible. Concretely, starting from a function f that is δ-hard
against T -time attackers, the k-fold combined function f ′ is (poly(T ′

T )+(1−δ)k))-
hard for (T ′ � T )-time attackers. As the number k of copies increases, the
hardness approaches the limit of poly(T ′

T ).
The work of [DJMW12] showed that this limit is inherent for certain con-

trived one-way functions, but there is no evidence that this limit should bound
natural one-way functions, such as, discrete logarithm, RSA, or Rabin. We put
forward the notion of amplifiable one-way functions and hardcore bits: Roughly
speaking, we say that a one-way function f is amplifiable, if there is a way to
combine (e.g. XOR), say �, hardcore bits, corresponding to � independent images
f(x1), . . . , f(x�), so that the combined bit is 2�ε

-unpredictable; that is, the level
of unpredictability increases at least subexponentially as more hardcore bits are
combined and beyond the limit poly(T ′

T ).
We show that amplifiable one-way functions are useful for constructing non-

malleable commitments. They essentially allow us to construct commitment
schemes (Com,Com′), such that, Com is “harder” than Com′ in the time axis—
Com remains hiding in time needed for extracting from Com′, whereas Com′

is “harder” than Com in the distinguishing axis—the maximum distinguishing
advantage of Com′ is smaller than the probability that one can guess a decom-
mitment of Com. As shown in [LPS17], commitments that are harder than each
other under different measures are essentially non-malleable. This yields new
candidate constant-tag non-malleable commitments with one-way functions that
are believed to have amenable hardness amplification behavior, such as, discrete
logarithm, RSA, or Rabin.
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1.3 Concurrent Work

In concurrent and independent work, Holmgren and Lombardi [HL18] study
one-way product functions, which are related to our notion of amplifiable one-
way functions. Their notion requires that � independent images f(x1), . . . , f(x�)
cannot be inverted simultaneously by efficient algorithms, except with expo-
nentially small probability in the input size. They show how to use such func-
tions in different parameter regimes to obtain several applications ranging form
collision-resistant hashing to correlation intractability (when combined with
indistinguishability obfuscation). (The exact inversion probability and choice
of � depends on the specific application. Most of their applications are in the
regime where � is small, e.g. constant, and the inversion probability is at most
2−n−ω(log n).)

While their one-way product functions and our amplifiable one-way func-
tions are very related, there are some notable differences. For once, we make
a stronger requirement than the hardness of inversion, namely, the hardness of
predicting a combined hardcore bit. (Note that this gap cannot be bridged by
the classic Goldreich-Levin theorem, where the adversary’s distinguishing advan-
tage ε translates to a reduction running in time at least poly(ε−1) to invert the
underlying function.) On the other hand, since we allow � to grow polynomially,
our notion could potentially hold for one-way functions where a single copy is
only mildly hard to invert, whereas for many of their applications (like collision-
resistant hashing), � is required to be small, and accordingly the one-way function
has to be hard to invert except with exponentially small probability.

Organization. The rest of this extended abstract is organized as follows. In
Sect. 2, we give some of the basic definitions used in the paper, including the
definition of non-malleable commitments that we achieve. In Sect. 3, we define
the notion of incompressible problems. In Sect. 4, we define and construct our
new notion of one-message zero knowledge. Our constructions of non-malleable
commitments, as well as all proofs, can be found in the full version of the paper.

2 Preliminaries

We rely on the following standard computational concepts:

– We model algorithms as (possibly probabilistic and possibly interactive) Tur-
ing machines. A non-uniform algorithm M is given by a family of algorithms
M = {Mλ}λ∈N

, where λ is a security parameter, and each Mλ corresponds to
an input size n(λ) and has description-size related to λ.

• M is T -time, if for every λ ∈ N, Mλ performs at most T (λ) steps.
• M is S-size if for every λ ∈ N, Mλ has description size at most S(λ).

Throughout, we assume w.l.o.g. that the description-size of a non-uniform
algorithm is bounded by its running time S(λ) ≤ T (λ) for all λ.
A uniform algorithm M is a special-case of a non-uniform algorithm where
for all λ ∈ N, Mλ = M is a single, constant-size, algorithm. A PPT is a
probabilistic polynomial-time uniform algorithm. By default, algorithms in
cryptographic schemes are PPTs.
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– We model T -time adversaries as arbitrary non-uniform T -time algorithms
A = {Aλ}λ∈N

. Efficient adversaries have polynomial time. Throughout this
work, we consider polynomial-size adversaries, and assume w.l.o.g. that their
sizes are at least λ, i.e., |Aλ| ≥ λ (via padding).

– We say that a function f : N → R is negligible if for all constants c > 0, there
exists N ∈ N such that for all n > N , f(n) < n−c. We sometimes denote
negligible functions by negl.

– We say that a function f : N → R is noticeable if there exists a constant c > 0
and N ∈ N such that for all n > N , f(n) ≥ n−c.

– For two functions T (λ), T ′(λ), we write that T ′ � T if T ′ = T o(1), when
λ → ∞.

In this paper, we will sometimes consider security of primitives against
general poly(T )-time adversaries, as illustrated in the definition of T -
indistinguishability below.

Definition 1 ((T, μ)-Indistinguishability). Let X (b) = {X
(b)
λ }λ∈N for b ∈

{0, 1} be two ensembles of random variables indexed by λ ∈ N. We say that X (0)

and X (1) are (T, μ)-indistinguishable for functions T, μ, if for all poly(T )-time
distinguishers D, and all large enough λ,

∣
∣
∣Pr[D(X(0)

λ ) = 1] − Pr[D(X(1)
λ ) = 1]

∣
∣
∣ ≤ μ(λ)Ω(1).

We say that X (0) and X (1) are T -indistinguishable if it is (T, μ)-
indistinguishable for some negligible function μ. We say that they are compu-
tational indistinguishable if they are T -indistinguishable for every polynomial T .

We denote the above notions of indistinguishability by X (0)
≈T,μ X (1), X (0)

≈T

X (1), and X (0) ≈ X (1), respectively.

2.1 Commitments

We define non-interactive commitments.

Definition 2 (Commitment Scheme). A non-interactive commitment
scheme consists of two polynomial-time algorithms (Com,Open), with the fol-
lowing syntax:

– (c, d) ← Com(v, 1λ): Given 1λ and v ∈ {0, 1}∗, Com samples a commitment
c and a decommitment string d.

– b = Open(c, v, d): Given a commitment c, value v, and decommitment string
d, Open outputs a bit b, where b = 1 indicates acceptance. We say that
a commitment c is valid, if there exists a decommitment (v, d), such that
Open(c, v, d) = 1.

We make the following requirements:
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Correctness: For any λ ∈ N, v ∈ {0, 1}∗,

Pr[Open(c, v, d) : (c, d) ← Com(v, 1λ)] = 1.

Binding: For any string c, values v, v′, and decommitment strings d, d′,

if Open(c, v, d) = Open(c, v′, d′) = 1 then v = v′.

T -hiding: For any polynomial n = n(λ),
{
Com(v, 1λ)

}
λ∈N,v,v′∈{0,1}n×2 ≈T

{
Com(v′, 1λ)

}
λ∈N,v,v′∈{0,1}n×2 .

Tag-Based Commitments. We consider “tag-based” commitment schemes.

Definition 3 (Tag-based commitment scheme). A commitment scheme
(Com,Open) is a tag-based scheme with t-bit tags if, in addition to 1λ, Com
also receive a “tag” (a.k.a. identity) tg ∈ {0, 1}t(λ) as input, c ← Com(tg, v, 1λ).
We assume w.l.o.g that commitments generated by Com contains the tag used for
generating them. For any sequence of fixed tags tg = {tgλ}λ, the corresponding

(Comtg,Opentg) =
{

(Comtgλ
,Opentgλ

)
}

λ
satisfy correctness, binding, and hiding

as defined for plain commitment schemes. By default, a tag-based commitment
scheme has t-bit tags for some polynomial t.

2.2 Non-malleable Commitments

The Man-in-the-Middle (MIM) Execution: Let NM = (Com,Open) be a
commitment scheme for t-bit tags, and A = {Aλ}λ∈N an arbitrary non-uniform
adversary. For a security parameter λ, and m = m(λ), Aλ on input 1λ, receives
m commitments from an honest committer C to values v1, . . . , vm ∈ {0, 1}λ, and
sends m commitments to R to values ṽ1, . . . , ṽm ∈ {0, 1}λ. The commitments
received by the adversary are called the left commitments and those sent are
called the right commitments. The left and right commitments use t = t(λ)-
bit tags tg1, tg2, . . . , tgm and t̃g1, t̃g2, . . . , t̃gm chosen adaptively by Aλ for each
commitment. The values ṽj in the j’th right commitment c̃j is defined as

ṽj =

{
⊥ if ∃i, tgi = t̃gj

val(c̃j) otherwise
.

That is, ṽj is either the unique committed value if the commitment c̃j is valid
and uses a tag different from all left tags, or ⊥ otherwise. (Recall that by binding,
ṽj is uniquely defined whenever c̃j is valid.)

We denote by MIMA
NM(v1, . . . , vm, 1λ) the above described man-in-the-middle

experiment.

Non-malleability with Respect to Commitment. Let mimA
NM(v1, . . . ,

vm, 1λ) denote the random variable that describes the view of Aλ (consisting
of all left commitments) and the values ṽ1, . . . , ṽm it commits to on the right in
the above man-in-the-middle experiment.
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Definition 4 (Non-Malleability). A commitment scheme NM for t-bit tags
is concurrent T -non-malleable if for any non-uniform poly(T )-time adversary
A = {Aλ}λ∈N and for every polynomial m = m(λ), it holds that:

{
mimA

NM(v1, . . . , vm, 1λ)
}

λ∈N,v1,...,vm,v′
1,...,v′

m∈{0,1}λ

≈c

{
mimA

NM(v′
1, . . . , v

′
m, 1λ)

}
λ∈N,v1,...,vm,v′

1,...,v′
m∈{0,1}λ .

2.3 Non-interactive Witness-Indistinguishable Proofs

We define non-interactive witness-indistinguishable proofs (NIWIs).

Definition 5 (NIWI). A non-interactive witness-indistinguishable proof sys-
tem (P,V) for an NP relation R(x,w) consists of two polynomial-time algo-
rithms:

– π ← P(x,w, 1λ): Given an instance x, witness w, and security parameter 1λ,
P produces a proof π.

– b = V(x, π): Given a proof π for instance x, V outputs a bit b, where b = 1
indicates acceptance.

We make the following requirements:

Completeness: For every λ ∈ N, (x,w) ∈ R,

Pr
P

[V(x, π) = 1 : π ← P(x,w, 1λ)] = 1.

Soundness: For every x /∈ L(R) and π ∈ {0, 1}∗:

V(x, π) 	= 1.

T -Witness-Indistinguishability: For any sequence

I =
{

(λ, x,w0, w1) : λ ∈ N, x, w0, w1 ∈ {0, 1}poly(λ),
(x,w0), (x,w1) ∈ R

}

It holds that
{
π0 ← P(x,w0, 1λ)

}
(λ,x,w0,w1)∈I ≈T

{
π1 ← P(x,w1, 1λ)

}
(λ,x,w0,w1)∈I .

Barak, Ong, and Vadhan [BOV07] constructed NIWIs based on NIZK and
the worst-case assumption that there exists a problem solvable in deterministic
time 2O(n) with non-deterministic circuit complexity 2Ω(n) (or more generally
the existence of hitting set generators that fool non-deterministic distinguishers).
Groth, Ostrovsky, and Sahai [GOS12] then constructed NIWIs based on standard
assumptions on bilinear maps such as the Decision Linear Assumption, the Sym-
metric External Diffie Hellman assumption, or the Subgroup Decision Assump-
tion. Bitansky and Paneth [BP15] constructed NIWIs from indistinguishability
obfuscation and one-way permutations.
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2.4 Two-Source Extractors

We rely on the standard notion of two-source extractors.

Definition 6 (Two-Source Extractor). A polynomial-time computable func-
tion 2Ext : {0, 1}n × {0, 1}n → {0, 1}m is a (k1, k2, ε)-two-source extractor, if
for any two independent sources X1,X2 with min-entropies at least k1 and k2,
respectively, it holds that

‖2Ext(X1,X2) − Um‖1 ≤ ε,

where Um is the uniform distribution over {0, 1}m.

We also require efficient reverse sampling, which says that given any y in
the image of the extractor 2Ext we can efficiently sample uniformly random and
independent sources X1 and X2 conditioned on 2Ext(X1,X2) = y.

Definition 7 (Efficient Reverse Sampling). A function 2Ext : {0, 1}n ×
{0, 1}n → {0, 1}m is efficiently reverse-samplable if there exists a PPT that given
y ∈ Image(2Ext) outputs a uniformly random pair x1, x2 such that 2Ext(x1, x2) =
y.

Two source extractors with efficient reverse sampling and an exponentially
small error are known based on the Hadamard code over an appropriate field.

3 Incompressible Problems

Following [BKP18], we consider a notion of incompressible problems. Here every
security parameter λ, defines a search problem Wλ with superpolynomially many
solutions w ∈ Wλ. Since the problem is fixed, a non-uniform adversary A = {Aλ}
may always have hardwired solutions w ∈ Wλ in its code. We require, how-
ever, that it is impossible to significantly compress solutions—an adversary with
description size at most S and bounded running time T , larger than S, should
fail to produce more than S solutions (or K(S) solutions for some polynomial
blowup function K(·)).
Definition 8 (Incompressible Problem). An incompressible problem W is
associated with a polynomial-time verifier algorithm V and a collection of sets
{Wλ}λ, such that Wλ ⊆ {0, 1}� for some polynomial � = �(λ), and for any
w ∈ {0, 1}�, V(w) = 1 if and only if w ∈ Wλ. For any function T = T (λ) ≥ λ
and polynomial K, we make the following incompressibility requirement.
(T, K)-Incompressibility: for any non-uniform poly(T )-time, polynomial-size,
probabilistic adversary A = {Aλ}, there is a negligible function μ, such that
for any λ ∈ N, letting K = K(|Aλ|),

Pr
Aλ

[
W ⊆ Wλ

|W | ≥ K

∣
∣
∣
∣ W ← Aλ

]
≤ μ(λ).

We say that W has density Δ = Δ(λ), if for every sufficiently large λ ∈ N,
letting � = �(λ), it holds that |Wλ| ≥ Δ2�. We say that W has subexponential
density if it has density Δ = 2−�ε

for some constant ε.
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Remark 1 (Parameters). The parameters T,K,Δ that we consider will always
be such that

K ≤ T � KΔ−1.

Indeed, when T < K the requirement trivializes and when T ≥ poly(KΔ−1)
the requirement becomes impossible.

Candidates. Candidates for incompressible problems were introduced
in [BKP18]. The problems addressed there come from keyless (shrinking) hash
functions where collisions are incompressible in some sense. We can rely on more
general incompressible problems, which may give rise to additional candidates.
The problems considered in [BKP18] and a discussion of additional possible
candidates can be found in the full version of the paper.

4 One-Message Zero Knowledge

In this section, we give a new definition of a one-message zero-knowledge (1ZK)
system, and construct such a system based on incompressible problems. The defi-
nition relaxes both the zero knowledge requirement and soundness. Here the zero
knowledge definition is the standard super-polynomial simulation (SPS) defini-
tion [Pas03]. The soundness definition is new and roughly says that a (relatively)
efficient adversary of description size S shouldn’t be able to sample more than
S (or K(S) for some polynomial blowup K) false statements x together with an
accepting proof π. As discussed in the introduction, both of these relaxations
are necessary.

We proceed to the formal definition.

Definition 9 (1ZK). A one-message zero-knowledge argument system (P,V)
for an NP relation R(x,w) consists of two polynomial-time algorithms:

– π ← P(x,w, 1λ): Given an instance x, witness w, and security parameter 1λ,
P produces a proof π.

– b = V(x, π, 1λ): Given a proof π for instance x, V outputs a bit b, where b = 1
indicates acceptance.

The system is parameterized by functions TD(·), TS(·), TP(·),K(·).
We make the following requirements:

Completeness: For every λ ∈ N, (x,w) ∈ R,

Pr
P

[V(x, π, 1λ) = 1 : π ← P(x,w, 1λ)] = 1.

(TD, TS)-Zero-Knowledge: There exists a uniform poly(TS)-time simulator S,
such that,

{
π ← P(x,w, 1λ)

}
(x,w)∈R

λ∈N

≈TD

{
π̂ ← S(x, 1λ)

}
(x,w)∈R

λ∈N

.
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(TP,K)-Weak-Soundness: For any non-uniform poly(TP)-time, polynomial-size,
probabilistic adversary A = {Aλ}λ there exists a negligible μ and a collection of
sets Z = {Zλ}λ, where |Zλ| ≤ K(|Aλ|), such that for any λ ∈ N,

Pr
Aλ

[
x /∈ L(R) ∪ Zλ

V(x, π, 1λ) = 1

∣
∣
∣
∣ (x, π) ← Aλ

]
≤ μ(λ).

ϕ-Tuning: Relaxed Soundness and Speeding-up Simulation. We in fact
consider a more general definition that allows to get faster simulators on the
account of relaxing soundness. Here the argument system is associated with
a non-expanding (typically, shrinking) projection function ϕ(·) defined over
instances x. Soundness is relaxed and guarantees that the adversary could only
output accepting pairs (x, π) for false statements whose projection ϕ(x) falls in
a set of size at most K(S). Simulation is performed in two steps—a first prepro-
cessing step that depends only on ϕ(x), and a postprocessing step that depends
on the instance x itself and the state produced in the preprocessing phase. The
preprocessing phase takes superpolynomial time, but only depends on � := |ϕ(x)|
and not on |x|; the postprocessing phase takes polynomial time.

Note that the previous basic definition is indeed a special case of this defi-
nition by considering the identity projection (in this case the entire simulation
is done in the preprocessing phase, and takes superpolynomial time in |x|). We
gain from this definitions in scenarios where ϕ : {0, 1}>� → {0, 1}� is a shrinking
projection—here when � � |x|, simulation can become significantly faster; fur-
thermore, in settings where ϕ(x), and its preprocessing are known ahead of time
(but x isn’t), we can get efficient simulation. On the other hand, we will only
get the above relaxed soundness guarantee. In our application to non-malleable
commitments, relaxed soundness will be enough, and we’ll indeed benefit from
the above simulation speedup.

We proceed with the definition.

Definition 10 (ϕ-tuned 1ZK). A one-message zero-knowledge argument sys-
tem (P,V) for an NP relation R(x,w) is ϕ-tuned for a polynomial-time projec-
tion function ϕ =

{
ϕλ : {0, 1}≥�(λ) → {0, 1}�(λ)

}
λ

if it satisfies:

Simulation Speedup: The system is (TD, TS)-zero-knowledge with a uniform sim-
ulator S = (Spre,Spos) such that S(x, 1λ) consists of two phases:

– st ← Spre(ϕλ(x), 1λ) is a preprocessing phase whose running time TSpre(�(λ))
depends on �(λ) = |ϕλ(x)|, but not on |x|.

– π̂ ← Spos(x, st) is a postprocessing phase that takes time poly(|x| + λ).

Overall, TS(|x|, λ) = poly(TSpre(�(λ)), |x|) depends only polynomially on |x| (and
superpolynomially on |ϕλ(x)|).
(TP,K, ϕ, t)-Weak-Soundness: For any non-uniform poly(TP)-time, polynomial-
size, probabilistic adversary A = {Aλ}λ there exists a negligible μ and a collec-
tion of sets Z = {Zλ}λ, where |Zλ| ≤ K(|Aλ|), such that for any λ ∈ N,

Pr
Aλ

[
x /∈ L(R), ϕλ(x) /∈ Zλ

V(x, π, 1λ) = 1

∣
∣
∣
∣ (x, π) ← Aλ

]
≤ μ(λ).



230 N. Bitansky and H. Lin

4.1 Construction

We now construct a ϕ-tuned 1ZK based on incompressible problems and other
standard primitives. The parameters of the construction are derived from those
of the underlying building blocks, and in particular on the density and incom-
pressability of the incompressible problem.

Building Blocks. In what follows, let ϕ =
{
ϕλ : {0, 1}≥�(λ) → {0, 1}�(λ)

}
λ

be
a polynomial-time projection. Our transformation will make use the following
building blocks:

– An incompressible problem W =
{Wλ ⊆ {0, 1}4�(λ)

}
λ

with associated verifier
V, density Δ, and (TW ,KW) incompressability, where KW � TW � Δ−1.

– A commitment scheme (Com,Open) that is TR-hiding and TCom.E-extractable
where TR � TCom.E � TW .

– A T niwi
D -indistinguishable NIWI system for an NP language, specified in the

construction below.
– A two-source extractor 2Ext =

{
2Ext : {0, 1}4�(λ) × {0, 1}4�(λ) → {0, 1}�(λ)

}
λ

with error ε(λ) = 2−�(λ)−2 for sources of min-entropies k1 = k2 > 4�(λ) −
log Δ−1, and efficient reverse sampling.

The Proof System. We now describe the system (P,V) for an NP relation R.

– The prover P(x,w, 1λ):
• Computes a commitment c ← Com(08�).
• Computes a NIWI proof π for the statement

ψx,c :=

“Either x ∈ L(R) or
c is a commitment to (td1, td2) ∈ Wλ × Wλ such that 2Ext(td1, td2) = ϕλ(x).”

The prover uses the witness w to compute π.
• Overall the proof consists of (c, π).

– The verifier V(x, (c, π), 1λ):
• Applies the NIWI verifier to verify the statement ψx,c.

Theorem 4. The above is a ϕ-tuned 1ZK for R that is (TS, TD)-zero-knowledge
and (TP,K, ϕ)-weakly sound for

TS = Δ−1, TD = min
{
TR, T niwi

D

}
, TP = TW ,K = O(KW).

A Concrete Setting of Parameters. A natural setting of parameters that
will be considered throughout this paper is subexponential Δ(�) = 2−�δ

. We can
accordingly set TR, TCom.E, TW , T niwi

D to be super-polynomial functions satisfying:

TR � TCom.E � TW � Δ−1 = 2�(λ)δ

.

Indeed, the main tradeoff is between the simulation time TS and the density
Δ of the incompressible problem W. On one hand, we aim for a short as possible
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simulation time TS � 2�(λ).5 On the other hand, shorter simulation time requires
higher density, which strengthens the corresponding incompressibility assump-
tion. (In terms of existing candidates for incompressible problems based on fixed
hash functions, subexponential density corresponds to polynomially-compressing
hash functions.)

Acknowledgments. We thank Ilan Komargodski for pointing out [KY18].
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Abstract. We introduce a novel notion of smooth (-verifier) non- inter-
active zero-knowledge proofs (NIZK) which parallels the familiar notion
of smooth projective hash functions (SPHF). We also show that the sin-
gle group element quasi-adaptive NIZK (QA-NIZK) of Jutla and Roy
(CRYPTO 2014) and Kiltz and Wee (EuroCrypt 2015) for linear sub-
spaces can be easily extended to be computationally smooth. One impor-
tant distinction of the new notion from SPHFs is that in a smooth NIZK
the public evaluation of the hash on a language member using the pro-
jection key does not require the witness of the language member, but
instead just requires its NIZK proof.

This has the remarkable consequence that if one replaces the tradition-
ally employed SPHFs with the novel smooth QA-NIZK in the Gennaro-
Lindell paradigm of designing universally-composable password- authen-
ticated key-exchange (UC-PAKE) protocols, one gets highly efficient
UC-PAKE protocols that are secure even under adaptive corruption.
This simpler and modular design methodology allows us to give the first
single-round asymmetric UC-PAKE protocol, which is also secure under
adaptive corruption in the erasure model. Previously, all asymmetric UC-
PAKE protocols required at least two rounds. In fact, our protocol just
requires each party to send a single message asynchronously. In addi-
tion, the protocol has short messages, with each party sending only four
group elements. Moreover, the server password file needs to store only
one group element per client. The protocol employs asymmetric bilin-
ear pairing groups and is proven secure in the (limited programmability)
random oracle model and under the standard bilinear pairing assumption
SXDH.

Keywords: QA-NIZK · Bilinear pairings · SXDH · MDDH
UC-PAKE · Online attack · Server compromise · Dual-system

1 Introduction

Ever since the remarkably efficient non-interactive zero knowledge (NIZK) proofs
[BFM88] for algebraic statements were developed by Groth and Sahai (GS-
NIZK) [GS12], there have been significant efficiency improvements and innova-
tions in the construction of cryptographic protocols. Jutla and Roy [JR13,JR14]
c© International Association for Cryptologic Research 2018
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and Libert, Peters, Joye and Yung [LPJY14] further improved the efficiency of
algebraic NIZK proofs, culminating in constant size NIZK proofs for linear sub-
spaces, independent of the number of equations and witnesses. This efficiency
improvement came in the weaker Quasi-Adaptive setting [JR13], which never-
theless proved sufficient for many applications.

Quasi-adaptive NIZK (QA-NIZK) proofs were further extended to provide
simulation soundness [LPJY14,KW15] and dual-system simulation soundness
[JR15], thus lending applicability to many more applications, such as structure
preserving signatures, password authenticated key exchange in the UC model,
and keyed homomorphic CCA-secure encryption.

In this paper, we further extend (QA-)NIZK proofs to provide an additional
property called smooth soundness. The idea is to force the verification step to
consist of computing hashes in two different ways and comparing the result. To
this end, the verifier is split into three algorithms: a randomized hash-key gen-
eration algorithm, a public hashing algorithm and a private hashing algorithm.
The verification step starts off by generating two hash-keys, the private key and
the projection key. Next, the setting allows computation of a private hash given
the private hash-key and the word, and computation of the public hash using
the projection key and just a QA-NIZK proof for the word - the witness for
the word is not required. Completeness states that the private hash is equal to
the public hash for a language member and correct (QA-)NIZK proof. Compu-
tational soundness states that it is hard to come up with a proof such that a
non-language word passes the same equality check. The new smoothness prop-
erty states that for any non-language word, the private hash algorithm outputs
a value (computationally) indistinguishable from uniformly random, even when
the projection key is given to the adversary.

Comparison with SPHFs. The new primitive is modeled after smooth projective
hash functions (SPHF [CS02]). An SPHF also generates private and projection
hash-keys and defines a private hash and a public hash. Further, similar prop-
erties hold where (1) for a member word, private hash equals public hash, (2)
for a non-member word, private hash is uniformly random (even given projec-
tion hash-key). The crucial difference is that1, whereas the SPHF public hash
computation requires a witness of the member word, the smooth (QA-)NIZK
public hash requires only a NIZK proof of the word. This allows for hiding of
the witness, even when computing using the projection hash-key. In contrast,
trapdoor-SPHFs as introduced by [BBC+13] allow a simulation world to have
a trapdoor to evaluate a hash over a word without a witness and using only
projection hash-key. As shown in Fig. 1, where trapdoor-SPHFs are compared
with smooth QA-NIZK, their notion does not allow “erasure” of the witness w
in the real world (if only projection hash-key is available).

While Fig. 1 is self-explanatory, it brings up an interesting alternative inter-
pretation of smooth (QA)-NIZK. In the common reference string (CRS) setting,
one can have a composite-SPHF, which is composed of two SPHFs: the first
1 On the other hand, our constructions only allow computational smooth-soundness,

while for SPHFs these properties hold information-theoretically.
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SPHF’s projection hash-key is published in the CRS, that enables one to com-
pute an intermediate-hash using the witness w of a language member x. At this
point, the witness can be erased. Next, the real projection hash-key hp is revealed
(possibly, generated by another party along with the private hash-key hk). Then,
a final hash on input x can be computed using hp and the intermediate-hash.
If x is a language member then the final hash is same as that computed from x
using hk. The question then arises as to why the intermediate-hash is depicted
as a (QA)-NIZK in Fig. 1. However, we note that this first SPHF is already
publicly verifiable, as the private hash-key of the first SPHF is generated by the
CRS generator, and if it has to be used in any form in a private hash evaluation
(and in the real world) it must be publicly available in the CRS. Indeed, in our
construction the private hash-key k is given in the CRS as a commitment to
k (this interpretation of QA-NIZK as a publicly-verifiable SPHF was given in
[KW15]).

We remark that this interpretation of smooth (QA)-NIZK is similar to
constructions of structure-preserving SPHF in [BC16a]. In that work, the
intermediate-hash is a GS-NIZK proof in the commit and prove framework
[GS12], and hence the (second) private-hash takes the commitments also as
input. Although the first hash is not a SPHF, their construction can still be
viewed as a smooth NIZK (as per our definition2). Since their construction also
works only for linear subspaces, our smooth QA-NIZK construction turns out
to be more efficient, namely that no commitments need to be given for private
hash computation.

Priv

(x,w) : x = Mw

QANIZK(x; w)

CRS = ([M�k]1; [kĀ]2, [Ā]2)

hp∗
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Fig. 1. Trapdoor-SPHF [BBC+13] vs Smooth QANIZK

Our Construction. In this work, we show that the single group element QA-
NIZK arguments of [JR14,KW15] can be easily extended to be smooth. As a
2 Since their construction uses the commit and prove paradigm of GS-NIZK proofs,

their (composite-) construction is a smooth NIZK with a small tweak: they obtain
information-theoretic smoothness, but computational zero-knowledge.
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first application, we show that in the Gennaro-Lindell paradigm of designing
universally-composable password-authenticated key exchange (UC-PAKE) pro-
tocols, if one replaces the traditional SPHFs with the novel smooth QA-NIZK,
then one gets highly efficient single-round UC-PAKE protocols which are adap-
tively secure in the erasure model. At a high level, the UC simulator must emulate
each party’s outgoing commitment to the password, without knowing the pass-
word. This is not difficult, as one can use ElGamal encryption to achieve a hiding
commitment. However, if the party is corrupted after its message has been sent,
the simulator is at a loss to produce a witness which each party must retain to
eventually compute the SPHF public hash. In our new protocol, the parties need
only save the QA-NIZK and not the witness, as that suffices to compute the pub-
lic hash. This nicely captures the main idea behind the single-round adaptively
secure UC-PAKE of [JR15]. In this work, the novel abstraction further allows
us to obtain a single-round adaptively secure asymmetric UC-PAKE, which is a
much more difficult notion to understand even from a definitional perspective,
let alone constructing one.

(Asymmetric) Password-Authenticated Key-Exchange. The problem of
setting up a secure channel between two parties that only share a human-
memorizable password (or a low-entropy secret) was first studied by Bellovin
and Merritt [BM92], and later by Jiang and Gong [JG04]. Since then, this prob-
lem has been extensively studied and is called the password-authenticated key-
exchange (PAKE) problem. One of the main challenges in designing such pro-
tocols is the intricacy in the natural security definition which requires that the
protocol transcripts cannot be used to launch offline dictionary attacks. While
an adversary can clearly try to guess the (low-entropy) password and imperson-
ate one of the parties, its advantage from the fact that the password is of low
entropy should be limited to such online impersonation attacks.

In a subsequent paper, Bellovin and Merritt [BM93] also considered a
stronger model of server compromise such that if a server’s password file is
revealed to the adversary it cannot directly impersonate a client (cf. if the pass-
word was stored in the raw at the server). The adversary should be able to
impersonate the client only if it succeeds in an offline dictionary attack on the
revealed server password file. Clearly, this requires that the server does not store
the password as it is (or in some reversibly-encrypted form), and protocols sat-
isfying this stronger security requirement are referred to as asymmetric PAKE
protocols.

Canetti et al. [CHK+05] also considered designing (symmetric) UC-PAKE
protocols in the universally-composable (UC) framework [Can01]. One of their
main contributions was the definition of a natural UC-PAKE ideal functionality
(Fpake). Gentry et al. [GMR06] extended the functionality of symmetric UC-
PAKE [CHK+05] to the asymmetric setting (FapwKE) and gave a general method
of extending any symmetric UC-PAKE protocol to an asymmetric UC-PAKE
protocol (from now on referred to as UC-APAKE). Their general method adds
an additional round to the UC-PAKE protocol.
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Our Contributions. In this paper, we give the first single-round UC-APAKE pro-
tocol (realizing FapwKE). In fact, both parties just send a single message asyn-
chronously. The protocol is realized in the (limited programmability3) random-
oracle (RO) [BR93] hybrid-model under standard static assumptions for bilin-
ear groups, namely SXDH [BBS04] and the general MDDH [EHK+13] assump-
tion. Our protocol is also secure against adaptive corruption (in the erasure
model) and is very succinct, with each message consisting of only four group
elements. Moreover, for each client the server need store only one group ele-
ments as a “password hash”. Many non-UC asymmetric PAKE protocols are
at least two rounds [HK98,BPR00,BMP00,Mac01,Boy09]. Benhamouda and
Pointcheval [BP13] proposed the first single round asymmetric PAKE protocol,
but in a game-based model built on the BPR model [BPR00].

The first single-round UC-secure symmetric PAKE protocol was given in
[KV11] (using bilinear pairings), which was then further improved (in the number
of group elements) in subsequent papers [JR12,BBC+13]. Recently in [JR15],
a single round UC-PAKE protocol (in the standard model and using bilinear
pairings) was also proven secure against adaptive corruption using ideas from
the dual-system IBE construction of Waters [Wat09]. However, the [JR15] con-
struction did not employ their dual-system simulation-sound QA-NIZK proofs
(DSS-QA-NIZK) in a black box manner. Instead, it used ideas from the DSS-
QA-NIZK construction and properties as the underlying intuition for the proof.

In this paper, we show that the UC-PAKE of [JR15] can be built in a
black-box manner using smooth QA-NIZK arguments. Next, we build on the
verifier-based PAKE (VPAKE) construction of [BP13], to construct the first
adaptively-secure UC-APAKE protocol, which in addition has a single (asyn-
chronous) round. Since, in the UC framework, the simulator has to detect offline
password guesses by an adversary that steals the server password file, for prov-
able security this seems to inevitably require the RO model, and indeed our
security proof is in the (limited programmability) RO model.

In our protocol, each party sends an ElGamal style encryption of the (hash
of) the password pw to the other party, along with an SPHF of the underly-
ing language and a projection verification hash-key of a smooth QA-NIZK of
the underlying language (ElGamal augmented with the SPHF). If such a mes-
sage is adversarially inserted, the simulator must have the capability to extract
password pw′ from it, so that it can feed the ideal functionality FapwKE to test
this guess of the password. Thus, the NIZK proof must have simulation-sound
extractability. It was shown in [JR15] that dual-system simulation soundness
suffices for this purpose (and that makes the protocol very simple). When using
smooth QA-NIZK, this dual-system simulation-soundness can be attained by
simply sending an SPHF.

Detailed explanations can be found in Sect. 5 with proof details in the full
version [JR16], where we also explain how the random oracle is used to extract
the password efficiently from the exponent. This leads to a security reduction

3 Basically, the output values of the random oracle are all randomly chosen, but dif-
ferent inputs can be assigned dynamically to these outputs [FLR+10].
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which has an additive computational overhead of n ∗ m ∗ poly(q), where n is the
number of random oracle calls, m is the number of online attacks and q is the
security parameter.

Recent Related Work. Recently, [JKX18] formulated a stronger UC-APAKE func-
tionality that disallows use of pre-computation to attack a stolen password file.
Using an ideal functionality for oblivious pseudo-random functions (OPRF), they
give a compiler that converts any standard UC-APAKE realization (such as in
this paper) into one that satisfies their stronger definition (in the OPRF-hybrid
model). Thus, if the OPRF can be realized with adaptive corruption, then we
obtain a adaptive corruption secure (strong) UC-APAKE realization. However,
to the best of our knowledge, no adaptive corruption secure (UC-) OPRF real-
ization is known, and hence the problem of realizing adaptive corruption secure
strong UC-APAKE remains open.

Organization. The rest of the paper is organized as follows. In Sect. 2, we intro-
duce the new notion of smooth QA-NIZK proofs. In Sect. 3, we recall the MDDH
assumptions and establish a useful boosting theorem relating the assumptions.
In Sect. 4, we give the single group element smooth QA-NIZK construction for
linear subspaces. In Sect. 5, we describe the ideal functionality FapwKE for asym-
metric password-authenticated key-exchange and construct the new single-round
UC-APAKE protocol. Preliminaries and proofs of many of the theorems are rel-
egated to the Appendix.

2 Smooth Quasi-Adaptive NIZK Proofs

We start by reviewing the definition of Quasi-Adaptive computationally-sound
NIZK proofs (QA-NIZK) [JR13]. A witness relation is a binary relation on pairs
of inputs, the first called a (potential) language member and the second called
a witness. Note that each witness relation R defines a corresponding language
L which is the set of all x for which there exists a witness w, such that R(x,w)
holds.

We will consider QA-NIZK proofs for a probability distribution D on a collec-
tion of (witness-) relations R = {Rρ} (with corresponding languages Lρ). Recall
that in a QA-NIZK, the CRS can be set after the language parameter has been
chosen according to D. We recall the formal definition of Quasi-Adaptive NIZK
below from [JR13].

Definition 1 (QA-NIZK [JR13]). We call a tuple of efficient algorithms
(pargen, crsgen, prover, ver) a quasi-adaptive non-interactive zero-knowledge
(QA-NIZK) proof system for witness-relations Rλ = {Rρ} with parameters sam-
pled from a distribution D over associated parameter language Lpar, if there
exist simulators crssim and sim such that for all non-uniform PPT adversaries
A1,A2,A3, we have (in all of the following probabilistic experiments, the exper-
iment starts by setting λ as λ ← pargen(1m), and choosing ρ as ρ ← Dλ):
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Quasi-Adaptive Completeness:

Pr

⎡
⎣
crs ← crsgen(λ, ρ)
(x,w) ← A1(crs, ρ)
π ← prover(crs, x, w)

:
ver(crs, x, π) = 1 if

Rρ(x,w)

⎤
⎦ = 1

Quasi-Adaptive Soundness:

Pr
[
crs ← crsgen(λ, ρ)
(x, π) ← A2(crs, ρ) :

x /∈ Lρ and
ver(crs, x, π) = 1]

]
≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr
[
crs ← crsgen(λ, ρ) : Aprover(crs,·,·)

3 (crs, ρ) = 1
]

≈
Pr

[
(crs, trap) ← crssim(λ, ρ) : Asim∗(crs,trap,·,·)

3 (crs, ρ) = 1
]
,

where sim∗(crs, trap, x, w) = sim(crs, trap, x) for (x,w) ∈ Rρ and both oracles
(i.e. prover and sim∗) output failure if (x,w) �∈ Rρ.

We call a QA-NIZK smooth (-verifier) if the verifier ver consists of three
efficient algorithms ver = (hkgen, pubH, privH), and it satisfies the following mod-
ified completeness and soundness conditions. Here, hkgen is a probabilistic algo-
rithm that takes a crs as input and outputs two keys, hp, a projection hash key,
and hk, a private hash key. The algorithm privH takes as input a word (e.g. a
potential language member), and a (private hash) key, and outputs a string. Sim-
ilarly, the algorithm pubH takes as input a word, a proof (for instance generated
by prover), and a (projection hash) key hp, and outputs a string.

The completeness property is now defined as:

Pr

⎡
⎢⎢⎣
crs ← crsgen(λ, ρ)
(x,w) ← A1(crs, ρ)
π ← prover(crs, x, w)
(hp, hk) ← hkgen(crs)

:
privH(hk, x) = pubH(hp, x, π)

if Rρ(x,w)

⎤
⎥⎥⎦ = 1

The QA-NIZK is said to satisfy smooth-soundness if for all words x �∈ Lρ,
privH(hk, x) is computationally indistinguishable to the Adversary from uni-
formly random, even when the Adversary is given hp, and even if it produces x
after receiving hp.

More precisely, Quasi-Adaptive Smooth-Soundness is the following
property (let U be the uniform distribution on the range of privH, which is
assumed to be of cardinality exponential in m): for every two-stage efficient
oracle adversary A

Pr
[
crs ← crsgen(λ, ρ), (hp, hk) ← hkgen(crs)
(x∗, σ) ← AO(crs, ρ, hp), u ← U : AO(privH(hk, x∗), σ) = 1 | Q

]

≈

Pr
[
crs ← crsgen(λ, ρ), (hp, hk) ← hkgen(crs)
(x∗, σ) ← AO(crs, ρ, hp), u ← U : AO(u, σ) = 1 | Q

]
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where the oracle O is instantiated with privH(hk, ·), and Q is the condition that
x∗ is not in the language Lρ and all oracle calls by the adversary in both stages
are with Lρ-language members. Here, σ is a local state of A.

Note that as opposed to the information-theoretic smoothness property of
projective hash functions, one cannot argue here that privH(hk, x) for x ∈ Lρ

can instead just be computed using hp, as that would also require efficiently
computing a witness for x. Hence, the need to provide oracle access to privH(hk, ·)
for language members.

Also, note that smooth-soundness implies the earlier definition of soundness
[JR13] if verification of (x, π) is defined as privH(hk, x) = pubH(hp, x, π).

To differentiate the functionalities of the verifier of a QA-NIZK from simi-
lar functionalities of an SPHF, we will prepend the SPHF functionalities with
keyword sphf and the QA-NIZK verifier functionalities with the keyword ver.

3 Matrix Decisional Assumptions

We will consider bilinear groups that consist of three cyclic groups of prime
order q, G1,G2 and GT with an efficient bilinear map e : G1 ×G2 → GT . Group
elements g1 and g2 will typically denote generators of the group G1 and G2

respectively. Following [EHK+13], in this section and the next we will use the
notations [a]1, [a]2 and [a]T to denote ag1, ag2, and a · e(g1,g2) respectively and
use additive notations for group operations. When talking about a general group
G with generator g, we will just use the notation [a] to denote ag. However, in
the UC-APAKE constructions, we will switch to multiplicative notation for easy
readability.

For two vector or matrices A and B, we will denote the product A�B as
A · B. The pairing product e([A]1, [B]2) evaluates to the matrix product [AB]T
in the target group with pairing as multiplication and target group operation as
addition.

We recall the Matrix Decisional Diffie Hellman or MDDH assumptions from
[EHK+13]. A matrix distribution Dl,k, where l > k, is defined to be an efficiently
samplable distribution on Z

l×k
q which is full-ranked with overwhelming probabil-

ity. The Dl,k−mddh assumption in group G states that with samples A ← Dl,k

and (s, s′) ← Z
k
q ×Z

l
q, the tuple ([A], [As]) is computationally indistinguishable

from ([A], [s′]). A matrix distribution Dk+1,k is simply denoted by Dk.
Intuitively, a Dl,k−mddh assumption allows us to generate l (computation-

ally) independently random group elements from an initial k independently ran-
dom exponents. A Dk−mddh assumption allows us to generate one extra ran-
dom group element. In this section, we will establish that, in fact, a Dk−mddh

assumption can be boosted to generate additional (computationally) indepen-
dently random elements. This will be useful to us in the next section to prove
the smoothness property of our construction.

We remark that boosting is different from the random self-reducibility of
Dl,k−mddh assumptions, as described by [EHK+13]. While the former aims to
generate extra randomness from the same initial sample of vector of random
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exponents, the latter talks about results from several independent samples of
vector of random exponents. Boosting can be seen as an abstraction of the
switching lemma of [JR14] and follows the same blueprint for the proof.

For an l × k matrix A, we denote Ā to be the top k × k square sub-matrix of
A and A to be the bottom (l − k) × k sub-matrix of A.

Theorem 1. Let Dk be a matrix distribution on Z
(k+1)×k
q . Define another

matrix distribution Dl,k on Z
l×k
q as follows: First sample matrices A ← Dk and

R ← Z
(l−k)×k
q and then output

(
Ā
R

)
. Then the Dk−mddh assumption implies

the Dl,k−mddh assumption.

We will call boosting to be the process of stretching Dk to Dl,k as above. This
theorem is proved as a corollary of an even more general theorem which we will
describe after defining the notion of ‘boostable’-ity as follows.

Definition 2. We say that a matrix distribution Dk on Z
(k+1)×k
q is boostable to

a matrix distribution Dl,k on Z
l×k
q , where l > k, if there are efficiently samplable

distributions E on Z
(l−k)×k
q and F on Z

(l−k)×(k+1)
q , such that the following hold:

– For A ← Dk,B ← Dl,k,E ← E ,F ← F , we have:

B̄ ≈ Ā, B ≈ EĀ ≈ FA.

– For F ← F , with overwhelming probability, all entries of the rightmost column
Fr of F are non-zero.

Theorem 2. If a matrix distribution Dk on Z
(k+1)×k
q is boostable to a matrix

distribution Dl,k on Z
l×k
q then the Dk-MDDH assumption implies the Dl,k-

MDDH assumption.

Proof. We prove this by a sequence of hybrids, where in the i-th hybrid we
transform row k + i from that of [Bs] to uniformly random. We start off with
i = 0, where we have the real output [Bs] and end with i = l − k where we have
the fake output which is uniformly random in Z

l
q.

The i-th hybrid ([B], [b]) is computed as follows. We sample [A] from Dk and
s from Z

k
q . We set [B̄] as [Ā] and, if i �= 0, the row i of [B] as the row i of F[A].

All other rows j �= i of [B] are set to the j-th row of E[Ā]. We set the top k
elements of [b] to be [Ās] and choose all the (k + j)-th elements, where j < i, of
[b] uniformly at random from Zq. If i �= 0, we set the (k + i)-th element of [b]
to be the i-th element of F[As]. For all j > i, we set the (k + j)-th element of
[b] to be the j-th element of E[Ās]. To summarize, [b] is computed as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[Ās]
$
...
$

(F[As])i

(E[Ās])j=(i+1) to (l−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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We observe that the 0-th hybrid has the distribution of ([B], [Bs]) and the (l−k)-
th hybrid has the distribution of ([B], [s′]), with s′ uniform in Z

l
q.

Now, (F[As])i = (Fl)i[Ās] + (Fr)i[As], where Fl is the first k-column sub-
matrix of F and Fr is the last column of F. Suppose we are given a Dk-MDDH
challenge ([A],χ = [As] or [s′]). If χ = [As], then (Fχ)i is distributed as
(F[As])i. Else, if χ = [s′], then (Fχ)i is distributed uniformly randomly in Zq,
since (Fr)i is overwhelmingly non-zero by design. Next we transition to an inter-
mediate hybrid i′ where [b] is computed as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[Ās]
$
...
$
$

(E[Ās])j=(i+1) to (l−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

As shown above, the hybrid i′ is indistinguishable from hybrid i by the Dk-
MDDH assumption. Next we transition to the hybrid i+1 where [b] is computed
as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Ās]
$
...
$
$

(F[As])(i+1)

(E[Ās])j=(i+2) to (l−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The hybrid i + 1 is indistinguishable from hybrid i′, as EĀ is identically dis-
tributed as FA. The theorem is thus established by chaining all the hybrids.

Corollary 1. Any Dk distribution can be boosted to a Dl,k distribution which
inherits the distribution of the top k × k matrix of the samples.

This can be seen by setting the top k × k matrix of a Dl,k sample to be the
top k×k matrix of a Dk sample and setting the bottom (l−k)×k sub-matrix of
the Dl,k sample to be uniformly random in Z

(l−k)×k
q . The required distributions

E and F are just the uniform distributions on their respective domains.
This corollary allows us to retain the representation size of the top square

matrix of a Dk distribution sample, while boosting it to an assumption required
for security proofs. In particular, in applications such as this paper, this can lead
to shorter public keys.

Finally, observe that Theorem 2 and the justification of Corollary 1 estab-
lishes Theorem 1.
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4 Smooth Quasi-Adaptive NIZK Constructions

In this section we show that the single element QA-NIZK [JR14,KW15] for
witness-samplable linear subspaces can easily be extended to be smooth QA-
NIZK. Particularly, under SXDH, the public hash key hp generated by ver.hkgen
consists of a single group element. We follow the construction of Kiltz and Wee
[KW15] and prove the result under the more general MDDH assumption in
bilinear groups.

We follow additive notation for group operations in this section. In later
sections we will use product notation.

Linear Subspace Languages. We first consider languages that are linear sub-
spaces of vectors of G1 elements. In other words, the languages we are interested
in can be characterized as languages parametrized by [M]1 as below:

L[M]1 = {[M]1x ∈ G
n
1 | x ∈ Z

t
q}, where [M]1 is an n × t matrix of G1 elements.

Here [M]1 is an element of the associated parameter language Lpar, which is
all n × t matrices of G1 elements. The parameter language Lpar also has a cor-
responding witness relation Rpar, where the witness is a matrix of Zq elements:
Rpar([M]∞,M′) iff M = M′.

Robust and Efficiently Witness-Samplable Distributions. Let the t × n dimen-
sional matrix [M]1 be chosen according to a distribution D on Lpar. The dis-
tribution D is called robust if with probability close to one the left-most t
columns of [M]1 are full-ranked. A distribution D on Lpar is called efficiently
witness-samplable if there is a probabilistic polynomial time algorithm such
that it outputs a pair of matrices ([M]1,M′) that satisfy the relation Rpar (i.e.,
Rpar([M]1,M

′) holds), and further the resulting distribution of the output [M]1
is same as D. For example, the uniform distribution on Lpar is efficiently witness-
samplable, by first picking M at random, and then computing [M]1.

Smooth QA-NIZK Construction. We now describe a smooth computationally-
sound Quasi-Adaptive NIZK (pargen, crsgen, prover, ver) for linear subspace lan-
guages {L[M]1} with parameters sampled from a robust and efficiently witness-
samplable distribution D over the associated parameter language Lpar and given
a Dk-MDDH assumption.

crsgen: The crsgen algorithm generates the CRS as follows. Let [Mn×t]1 be the
parameter supplied to crsgen. It generates an n × k matrix K with all elements
chosen randomly from Zq and a (k+1)×k matrix A from the MDDH distribution
Dk. Let Ā be the top k × k square matrix of A.

The common reference string (CRS) has two parts CRSp and CRSv which are
to be used by the prover and the verifier respectively.

CRSt×k
p := ([P]1 = [M�K]1) CRSv := ([C]n×k

2 = [KĀ]2, [Ā]k×k
2 )

prover: Given candidate [y]1 = [M]1x with witness vector xt×1, the prover gen-
erates the following proof consisting of k elements in G1:

π := x�CRSp



246 C. S. Jutla and A. Roy

ver: The algorithm hkgen is as follows: Sample s ← Z
k
q . Given CRSv as above,

compute hk and hp as follows:

hk := [C]2 s, hp := [Ā]2 s

The algorithms pubH and privH are as follows: Given candidate [y]1, and
proof π, compute:

privH(hk, [y]1) := e([y�]1, hk) pubH(hp, π) := e(π, hp)

Theorem 3. The above algorithms (pargen, crsgen, prover, ver) constitute a
smooth computationally -sound Quasi-Adaptive NIZK proof system for linear
subspace languages {L[M]1} with parameters [M]1 sampled from a robust and effi-
ciently witness-samplable distribution D over the associated parameter language
Lpar, given any group generation algorithm for which the Dk−mddh assumption
holds for group G2.

The proofs of completeness, zero knowledge and soundness are same as
[KW15]. The proof of smooth soundness follows.

Proof (Smooth Soundness). First, note that the range of privH is exponential in
the security parameter, for otherwise an adversarial circuit can compute discrete
logarithms with non-negligible probability. We prove smoothness by transform-
ing the system over a sequence of games. Game G0 just replicates the con-
struction, but samples A from a distribution Dk+n−t,k obtained by boosting the
given distribution Dk by Theorem 1. The construction only uses the top k × k
sub-matrix Ā of the sample which is distributed identically for both Dk and
Dk+n−t,k. Let A be the bottom (n − t) × k sub-matrix of A.

In Game G1, the challenger efficiently samples [M]1 according to distribution
D, along with witness M (since D is an efficiently witness samplable distribution).
Since M is an n × t dimensional rank t matrix, there is a rank n − t matrix M⊥

of dimension n × (n − t) whose columns form a complete basis for the kernel of
M�, which means M�M⊥ = 0t×(n−t). In this game, the NIZK CRS is computed
as follows: Generate matrix K′ n×k and compute the matrix T(n−t)×k, such that
TĀ = A. Implicitly set: K = K′ + M⊥T. Therefore we have,

CRSt×k
p = [M�K]1 = [M�(K′ + M⊥T)]1 = [M�K′]1

[C]n×k
2 = [(K′ + M⊥T)Ā]2 = K′[Ā]2 + M⊥[A]2,
hk = [C]2 s, hp = [Ā]2 s

In Game G2, we sample fresh random vectors s′ in Z
k
q and s′′ in Z

n−t
q and

modify the simulated computations as follows:

CRSt×k
p = [M�K′]1, [C]n×k

2 = K′[Ā]2 + M⊥[A]2,

hk = K′[s′]2 + M⊥[s′′]2, hp = [s′]2

Given a Dk+n−t,k challenge which is either “real”: ([A]2, [Ās]2, [As]2) or
“fake”: ([A]2, [s′]2, [s′′]2), we observe that the real tuple can be used to simu-
late Game G1, while the fake tuple can be used to simulate Game G2. Thus the
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games G1 and G2 are indistinguishable by the Dk+n−t,k-MDDH assumption,
which in turn is implied by the Dk-MDDH assumption by Theorem 2.

Now in Game G2 we have,

privH(hk, [y∗]1) = e
(
[y∗�]1,K′[s′]2 + M⊥[s′′]2

)

For the oracle queries where [y∗]1 ∈ L[M]1 , we have y∗�M⊥ = 01×(n−t). Hence
the simulator responds with e

(
[y∗]�1 ,K′[s′]2

)
. Note that s′′ does not appear in

this response.
For the adversary supplied [y∗]1 /∈ L[M]1 , we have y∗�M⊥ �= 01×(n−t). There-

fore privH(hk,y∗) is uniformly random, as s′′ is independently random of every-
thing else given to the adversary.

Smooth Split-CRS QA-NIZK for Tagged Affine Languages. QA-NIZKs
for linear subspaces were also extended by [JR13] to integer tag-based languages
as well as provided split-CRS4 instantiation for affine languages. In [JR16],
we combine all these extensions and describe a smooth computationally-sound
Quasi-Adaptive NIZK (pargen, crsgen, prover, ver) for tagged affine linear sub-
space languages {L}, parametrized by ([M0]1, [M1]1, [M2]1, [M3]1, [a]1) and con-
sisting of words of the form:

([M0x]1, [M1x + a]1, [(M2 + tag.M3)x]1, tag ∈ Zq) ,

with parameters sampled from a robust and efficiently witness-samplable dis-
tribution D over (M0,M1,M2,M3, a) and given a Dk−mddh assumption. We
assume that M0 is a square matrix and the robustness of D is defined by M0

being non-singular. The smooth QA-NIZK will be split-CRS [JR13], so that
CRSv is independent of the language parameters.

5 Asymmetric UC-PAKE: UC-APAKE

Based on the UC-PAKE functionality of [CHK+05], Gentry et al. [GMR06]
gave another UC functionality for asymmetric PAKE (UC-APAKE). A salient
feature of the UC-PAKE functionality [CHK+05] is that it models the security
requirement that an adversary cannot perform efficient off-line computations on
protocol transcripts to verifiably guess the low-entropy password. An adversary
can only benefit from the low-entropy of the password by actually conducting an
on-line attack (i.e. by impersonating one of the parties with a guessed password).
This is modeled in the ideal world with a TestPwd capability available to the
ideal world adversary: if TestPwd is called with the correct password, the ideal
world adversary is allowed to set the session key. Moreover, in this functionality
if any of the parties is corrupted, then the ideal world adversary is given the
registered password.
4 A split-CRS QA-NIZK allows the verifier CRS to be generated independent of the

language.
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5.1 The UC Ideal Functionality for Asymmetric PAKE

In asymmetric PAKE [GMR06], the ideal functionality also allows an adversary
to steal the password file stored at the server (while not necessarily corrupting
the server). However, this by itself does not directly provide the actual password
to the adversary. However, after this point the adversary is allowed to perform
OfflineTestPwd tests to mimic a similar capability in the real world (in fact, the
ideal world adversary is even allowed to perform OfflineTestPwd tests before it
steals the password file, but it does not get a confirmation of the guess being
correct until after it steals the password file).

Moreover, after the “steal password file” event the adversary is also allowed
to impersonate the server to a correctly guessed client, even without providing
the actual password (as it can clearly do so in the real world). However, com-
promising impersonation of the client still requires providing a correct password.
This differentiation in capabilities also becomes important when characterizing
the complexity of a simulator in terms of the real world adversary, as we will see
later.

The Fpake functionality for UC-PAKE was a single-session functionality.
However, asymmetric PAKE requires that a password file be used across multi-
ple sessions, so the FapwKE functionality for UC-APAKE is defined as a multiple-
session functionality. Note that this cannot be accomplished simply using com-
position with joint state [CR03] because the functionality itself requires shared
state that needs to be maintained between sessions. The complete UC-APAKE
functionality FapwKE is described in detail in Fig. 2.

5.2 UC-APAKE Based on VPAKE and Smooth-NIZK

We now design an asymmetric UC-PAKE based on Verifier-based PAKE or
VPAKE of Benhamouda and Pointcheval [BP13] and the novel Smooth NIZK
proofs. The essential idea of [BP13] is that while the Client holds the actual
password, the Server does not hold password in the clear. Instead the Server
stores a hard to invert function called PHash (password hash) evaluated over the
password and a random “salt” (PSalt) published in the CRS. While executing a
session, the client sends encryptions of the password or another function called
PPreHash (password pre-hash) evaluated on the password. Correspondingly, the
server sends encryptions of the stored PHash.

Of course, some kind of zero-knowledge proof must accompany these encryp-
tions, and to that end [BP13] can utilize the new smooth projective hash func-
tions (SPHF) for CCA2-encryption [BBC+13] such as Cramer-Shoup encryption
[CS02]. In each session, both parties generate fresh SPHF private and projection
keys (to be employed on incoming messages). The projection key is sent (piggy-
backed) along with the encrypted message. If the encrypted messages use the
correct password (meaning both parties have the same password or its PHash),
then SPHF computed on the message by the receiving party using the SPHF
hash key it generated equals the SPHF computed on the message by the sending
party using the SPHF projection key it received. Thus, these SPHF hashes can be
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Functionality FapwKE

The functionality FapwKE is parameterized by a security parameter k. It interacts with
an adversary S and a set of parties via the following queries:

Password Storage and Authentication Sessions
Upon receiving a query (StorePwdFile, sid, Pi, pw) from party Pj :
If this is the first StorePwdFile query, store password data record (file, Pi, Pj , pw) and
mark it uncompromised.

Upon receiving a query (CltSession, sid, ssid, Pi, Pj , pw) from party Pi:
Send (CltSession, sid, ssid, Pi, Pj) to S. In addition, if this is the first CltSession query
for ssid, then store session record (Clt, ssid, Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (SvrSession, sid, ssid, Pi) from party Pj :
If there is a password data record (file, Pi, Pj , pw), then send (SvrSession, sid, ssid,
Pj , Pi) to S, and if this is the first SvrSession query for ssid, store session record (Svr,
ssid, Pj , Pi, pw), and mark it fresh.

Stealing Password Data
Upon receiving a query (StealPwdFile, sid) from adversary S:
If there is no password data record reply to S with ’no password file’. Otherwise, do
the following: If the password data record (file, Pi, Pj , pw) is marked uncompromised,
mark it compromised. If there is a tuple (offline, pw′) stored with pw′ = pw then send
pw to S, otherwise reply to S with ’password file stolen’.

Upon receiving a query (OfflineTestPwd, sid, pw′) from Adversary S:
If there is no password data record, or if there is a password data record
(file, Pi, Pj , pw) that is marked uncompromised, then store (offline, pw′). Otherwise
do: if pw = pw′, send pw back to S. If pw �= pw′, reply with ’wrong guess’.

Active Session Attacks
Upon receiving a query (TestPwd, sid, ssid, Pi, pw′) from the adversary S:
If there is a session record of the form (role, ssid, Pi, Pj , pw) which is fresh, then do:
If pw = pw′, mark the record compromised and reply to S with “correct guess”. If
pw �= pw′, mark the record interrupted and reply with “wrong guess”.

Upon receiving a query (Impersonate, sid, ssid)
If there is a session record of the form (Clt, ssid, Pi, Pj , pw) which is fresh, then
do: then if there is a password data record file (file, Pi, Pj , pw) that is marked
compromised, mark the session record compromised and reply to S with ’correct guess’,
else mark the session record interrupted and reply with wrong guess.

Key Generation and Authentication
Upon receiving a query (NewKey, sid, ssid, Pi, sk) from S, where |sk| = k:
If there is a session record of the form (role, ssid, Pi, Pj , pw) that is not marked
completed,
– If this record is compromised, or either Pi or Pj is corrupted, then output

(sid, ssid, sk) to player Pi.
– If this record is fresh, and there is a session record (role, ssid, Pj , Pi, pw′) with

pw′ = pw, and a key sk′ was sent to Pj , and (role, ssid, Pj , Pi, pw) was fresh at the
time, then output (sid, ssid, sk′) to Pi.

– In any other case, pick a new random key sk′ of length k and send (sid, ssid, sk′)
to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Upon receiving (Corrupt, sid, P ) from S: if there is a (Clt, sid, P, P ′, pw) recorded,
return pw to S, and mark Pi corrupted. If there is a (Svr, sid, P, P ′, pw) recorded,
then mark P corrupted and (internally) call (StealPwdFile, sid).

Fig. 2. The password-based key-exchange functionality FapwKE

used to compute the session key. Smoothness property of the SPHF guarantees
security of the VPAKE scheme.

Unfortunately, each party must retain the witness used in the CCA2 encryp-
tion, as computing the SPHF projection-hash of its outgoing encrypted message
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Generate g ← G1; a1, a2, bc, bs ← Zq and let ρ = {a1 = ga1 , a2 = ga2 ,bc = gbc ,bs = gbs}.
Define languages

[
Lc = {(R, S, H) | ∃r, p : R = gr, S = ar

1b
p
c , H = bp

s }
Ls = {(R, S) | ∃r : R = gr, S = ar

2}
]

Let (hkc, hpc) ← sphf(Lc).hkgen and (hps, hks) ← sphf(Ls).hkgen.
Define languages:[

L+
c = {(R, S, H, T, l) | ∃r, p : R = gr, S = ar

1b
p
c , H = bp

s , T = sphf.pubH(hpc, 〈R, S, H〉, l; r, p)}
L+

s = {(R, S, T, l) | ∃r : R = gr, S = ar
2, T = sphf.pubH(hps, 〈R, S〉, l; r)}

]

Let (pargenP , crsgenP , proverP , verP ) be Smooth QA-NIZKs for languages L+
P , with P ∈ {C, S}.

Let crsP ← crsgenP (ρ) and H be a collision resistant hash function.
Let RO be a random oracle and let phash = RO(sid, Pi, Pj , pwd).
Note that there are several sessions, designated by unique ssid-s, within the scope of a single sid.
Thus, phash is the same across all these sessions.

CRS := (ρ, hpc, hps, crsc, crss, H).

Server Persistent State := b
phash
s .

Client Pi Network

Input (CltSession, sid, ssid, Pi, Pj , pwd).
Choose r1 ← Zq and (hk1, hp1) ← vers.hkgen(crss).

Set R1 = gr1 , S1 = a
r1
1 b

phash
c ,

R1,S1,T1,hp1−−−−−−−−−−→ Pj

T1 = sphfc.pubH(hpc, 〈R1, S1,b
phash
s 〉, i1; r1, phash),

W1 = proverc(crsc, 〈R1, S1,b
phash
s , T1, i1〉; r1, phash),

where i1 = H(sid, ssid, Pi, Pj , R1, S1, hp1).
Erase r1, send (R1, S1, T1, hp1) and retain (W1, hk1).

Receive (R′
2, S′

2, T ′
2, hp′

2).

If any of R′
2, S′

2, T ′
2, hp′

2 is not in their respective group or is 1, set sk1
$←− GT ,

else compute i′
2 = H(sid, ssid, Pj , Pi, R′

2, S′
2, hp′

2),
R′

2,S′
2,T ′

2,hp′
2←−−−−−−−−−− Pj

and sk1 = vers.privH(hk1, 〈R′
2, S′

2/b
phash
s , T ′

2, i′
2〉) · verc.pubH(hp′

2, W1).
Output (sid, ssid, sk1).

Server Pj Network

Input (SvrSession, sid, ssid, Pj , Pi, Server Persistent State) .
Choose r2 ← Zq and (hk2, hp2) ← verc.hkgen(crsc).

Set R2 = gr2 , S2 = a
r2
2 b

phash
s ,

R2,S2,T2,hp2−−−−−−−−−−→ Pi

T2 = sphfs.pubH(hps, 〈R2, S2/b
phash
s 〉, i2; r2),

W2 = provers(crss, 〈R2, S2/b
phash
s , T2, i2〉; r2),

where i2 = H(sid, ssid, Pj , Pi, R2, S2, hp2).
Erase r2, send (R2, S2, T2, hp2) and retain (W2, hk2).

Receive (R′
1, S′

1, T ′
1, hp′

1).

If any of R′
1, S′

1, T ′
1, hp′

1 is not in their respective group or is 1, set sk2
$←− GT ,

else compute i′
1 = H(sid, ssid, Pi, Pj , R′

1, S′
1, hp′

1),
R′

1,S′
1,T ′

1,hp′
1←−−−−−−−−−− Pi

and sk2 = verc.privH(hk2, 〈R′
1, S′

1,b
phash
s , T ′

1, i′
1〉) · vers.pubH(hp′

1, W2).
Output (sid, ssid, sk2).

Fig. 3. Single round RO-hybrid UC-APAKE protocol under SXDH assumption.

using the received projection key requires this witness. In the strong simulation
paradigm of universally composable security, this leads to a problem if an Adver-
sary can corrupt a session dynamically after the outgoing message has been sent
and the incoming message has not yet been received. Thus, this SPHF methodol-
ogy can only handle static corruption. While Jutla and Roy [JR15] have recently
given an efficient UC-PAKE protocol which can handle dynamic corruption, the
construction uses ideas from dual-system simulation-sound QA-NIZK that they
introduce there. These ideas are rather intricate and do not seem to allow a
modular or generic design of such UC password-authenticated protocols.
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In this paper, we show that the new notion of Smooth QA-NIZK allows
easy to understand (and equally efficient) modular or generic design. Just as
QA-NIZK proofs can be seen as generalization of projective hash proof systems
to public verifiability (and also assuring zero-knowledge), the novel notion of
Smooth QA-NIZK naturally generalizes the notion of smooth projective hash
functions where instead of the witness, the publicly verifiable proof can be used
to evaluate the projection-hash. The zero-knowledge property of this publicly
verifiable proof assures that this proof and hence the projection-hash can be
generated by a simulator with no access to the witness. In particular, each party
in the UC-PAKE protocol can generate an encryption of the password and gen-
erate this publicly verifiable QA-NIZK proof, send the encryption to the other
party, erase the witness and retain just the proof for later generation of session
key.

The natural question that arises is whether one needs a notion of smooth-
soundness under simulation. Indeed, one does need some form of unbounded
simulation-soundness as the UC simulator generates QA-NIZK proofs on non-
language members without access to the password. Unfortunately, the recent
efficient unbounded simulation sound QA-NIZK construction of [KW15] does
not extend to be smooth under unbounded simulation (or at least current tech-
niques do not seem to allow one to prove so). The dual-system simulation sound
QA-NIZK [JR15] does satisfy smoothness property, but it would need introduc-
tion of various new intricate definitions and complicated proofs. One may also
ask whether CCA2 encryption by itself provides the required simulation sound-
ness, but that is also not the case, as CCA2 encryption by itself does not give
a privately-verifiable (say, via its underlying SPHF as in Cramer-Shoup encryp-
tion) proof that it is the password that is being encrypted.

In light of this, it turns out that the simplest way to design the UC-APAKE
(or UC-PAKE) protocol is to use an ElGamal encryption of the password (or
its PPreHash or PHash) and augment it with an SPHF proof of its consistency,
and finally a Smooth QA-NIZK on this augmented ElGamal encryption. (If the
reader is interested in the simpler UC-PAKE protocol secure under dynamic
corruption in the new Smooth QA-NIZK framework, the UC-PAKE definition
and protocol are provided in [JR16]).

We will also need the random oracle hybrid model to achieve the goal of
a UC-APAKE protocol, as explained next. The focus of [BP13] was to design
protocols which can be proven secure in the standard model. They formalized
a security notion for APAKEs modifying the game-based BPR model [BPR00].
However, our focus is to construct an APAKE protocol in the UC model. In the
UC model of [GMR06], the UC simulator must be able to detect offline password
guess attempts of the adversary. This is not possible in the standard model as
offline tests can be internally performed by the adversary. In order to intercept
offline tests by the adversary, it thus becomes inevitable to use an idealized
model, such as the random oracle model.

So in particular, we adapt the random oracle-based password hashing scheme
of [BP13]. In the scheme, the public parameters are param = bc,bs randomly
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sampled from G1 and a random oracle RO. Define phash = RO(sid, Client-id,
Server-id, pwd), where Client-id, Server-id are the ids of the participating parties,
sid is the common session-id for all sessions between these parties and pwd is the
password of the client. Note that there are several sessions designated by unique
ssid-s within the scope of a single sid. Thus phash is the same across all these
sessions. We set:

PPreHash(param, pwd) = bphash
c

PSalt(param) = bs

PHash(param, pwd) = bphash
s

Corresponding to the asymmetric storages of the client and the server, we
define the following languages, one for each party, which implicitly check the
consistency of correct elements being used (a1 and a2 are essentially public keys
for ElGamal encryption):

Lc = {(R,S,H) | ∃r, p : R = gr, S = ar
1b

p
c ,H = bp

s }
Ls = {(R,S) | ∃r : R = gr, S = ar

2}
We now plug these languages into UC-PAKE methodology described above.

The client sends ElGamal encryption of bp
c , as in (R,S) of Lc, while the server

supplies the last element H for forming a word of Lc. The server sends ElGamal
encryption of bp

s , while the client divides out bp
s from the second component to

form a word of Ls.
The CRS provides public smooth2 SPHF keys for the languages Lc and Ls,

which are used by the client and server respectively to compute T1 and T2 for
their flows.

Lastly, we use Smooth QA-NIZK proofs for generating a public hash key
and a private hash key over the above languages augmented with the SPHFs as
below:

L+
c =

{
(R,S,H, T, l) | ∃r, p :

R = gr, S = ar
1b

p
c ,H = bp

s ,
T = sphf.pubH(hpc, 〈R,S,H〉, l; r, p)

}

L+
s = {(R,S, T, l) | ∃r : R = gr, S = ar

2, T = sphf.pubH(hps, 〈R,S〉, l; r)}
The client generates a Smooth QA-NIZK verification key pair for the server

language L+
s , retains the private key hk1 and sends the public key hp1 along

with the ElGamal encryption and the SPHF. The client computes a QA-NIZK
proof W1 of (R1, S1,bphash

s , T1) ∈ L+
c with label i1 = H(sid, ssid, Pi, Pj , R1, S1,

T1, hp1) and retains that for later key computation.
Similarly, the server generates a Smooth QA-NIZK verification key pair for

the client language L+
c , retains the private key hk2 and sends the public key

hp2 along with the ElGamal encryption and the SPHF. The server computes a
QA-NIZK proof W2 of (R2, S2/bphash

s , T2) ∈ L+
s with label i2 = H(sid, ssid, Pj ,

Pi, R2, S2, T2, hp2) and retains that for later key computation.
In the second part of the protocol, after receiving the peer flow, each party

computes the final secret key as the product of the private Smooth QA-NIZK
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hash of the peer flow with own private Smooth QA-NIZK key and the public
Smooth QA-NIZK hash of the (retained) QA-NIZK proof of own flow with the
peer public Smooth QA-NIZK hash key. Formally the client computes:

vers.privH(hk1, 〈R′
2, S

′
2/b

phash
s , T ′

2, i
′
2〉) · verc.pubH(hp′

2,W1).

Similarly, the server computes:

verc.privH(hk2, 〈R′
1, S

′
1,b

phash
s , T ′

1, i
′
1〉) · vers.pubH(hp′

1,W2).

Given the completeness property of the Smooth QA-NIZK, it is not difficult
to see that legitimately completed peer sessions end up with equal keys. In the
next section, we prove that this protocol securely realizes FapwKE, as stated in
the theorem below.

The complete protocol is described in detail in Fig. 3. The SPHF sphf is
required to be a smooth2 projective hash function (see [JR16] for definitions). For
simplicity, in this paper we focus on constructions based on D1−mddh assump-
tions, and in particular the sxdh assumption.

Theorem 4. Under the D1−mddh assumption sxdh, the protocol in Fig. 3
securely realizes the FapwKE functionality in the (Fcrs,FRO)-hybrid model, in
the presence of adaptive corruption adversaries. The number of unique password
arguments passed to TestPwd and OfflineTestPwd of FapwKE combined in the ideal
world is at most the number of random oracle calls in the (Fcrs,FRO)-hybrid
world.

We describe the intuition of the proof below and describe the UC simulator,
while detailed formal steps proving indistinguishability of the real and the ideal
world are relegated to the full version [JR16].

5.3 Main Idea of the UC Simulator

The UC simulator Sworks as follows: It simulates the random oracle calls and
records all the query response pairs. It will generate the CRS for F̂pake using the
real world algorithms, except for the Smooth QA-NIZK, for which it uses the
simulated CRS generator. It also retains the private hash keys of the SPHF’s.
The next main difference is in the simulation of the outgoing message of the
real world parties: S uses a dummy message μ instead of the real password
which it does not have access to. Further, it postpones computation of W till
the session-key generation time. Finally, another difference is in the processing
of the incoming message, where S decrypts the incoming message R′

2, S
′
2 and

runs through the list of random oracle queries to search for a pwd′, such that the
decryption is bRO(sid,Pi,Pj ,pwd′)

s , which it uses to call the ideal functionality’s test
function. It next generates an sk similar to how it is generated in the real-world.
It sends sk to the ideal functionality to be output to the party concerned.

Since the (R1, S1) that it sends out is no longer such that (R1, S1,bphash
s ) in

the language Lc, it has to use the private key of the SPHF in order to compute
T1 on (R1, S1,bphash

s ) and the QA-NIZK proof simulator to compute W1.
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There are other special steps designed to simulate stealing the password file
and then impersonating the server to the client. Specifically, when the password
file is stolen, the simulator still may not know pwd. It then preemptively sets
phash to a random value and pretends that this is the random oracle response
with the correct pwd query. Later on when there is a successful pwd query, which
the simulator can find out by the online or offline testpwd ideal functionality
calls, it sets the record accordingly.

In case of a stolen password file, the simulator includes a “Client Only Step”
which lets it test (modified) server flows for consistency and call the Impersonate
functionality if consistency checks out. The server simulation steps do not include
such a step to model the security notion that even if the password file is stolen,
the adversary should still not be able to impersonate the client.

5.4 Main Idea of the Proof of UC Realization

The proof that the simulator S described above simulates the Adversary in the
real-world protocol, follows essentially from the properties of the Smooth QA-
NIZK and smooth2 SPHF, and we give a broad outline here. The proof will
describe various experiments between a challenger C and the adversary, which
we will just assume to be the environment Z (as the adversary A can be assumed
to be just dummy and following Z’s commands). In the first experiment the chal-
lenger C will just be the combination of the code of the simulator S above and
F̂pake. In particular, after the environment issues a CltSession request with a pass-
word pwd, the challenger gets that password. So, while in the first experiment,
the challenger (copying S) does not use pwd directly, from the next experiment
onwards, it can use pwd. Thus, the main goal of the ensuing experiments is to
modify the fake tuples gr1 ,gr′

by real tuples (as in real-world) gr1 ,ar1
1 bphash

c ,
since the challenger has access to pwd, and hence phash. This is accomplished
by a hybrid argument, modifying one instance at a time using DDH assumption
in group G1.

The guarantee that the client cannot be impersonated by the adversary, even
when the password file is stolen is established by noting that bphash

c , which is what
the client encrypts in its flows, is hard to compute given the server persistent
state bphash

s . This is formally captured in the proof by using a DDH transition
from (bs,bc,bphash

s ,bphash
c ) to (bs,bc,bphash

s ,bz
c ), where z is independently ran-

dom from phash.
Once all the instances are corrected, i.e. R1, S1 are generated as gr1 ,ar1

1 bphash
c ,

the challenger can switch to the real-world because the tuples R1, S1,bphash
s are

now in the language Lc. This implies that the session keys are generated exactly
as in the real-world.

5.5 Adaptive Corruption

The UC protocol described above is also UC-secure against adaptive corruption
of parties by the Adversary in the erasure model. In the real-world when the
adversary corrupts a client (with a Corrupt command), it gets the internal state
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of the client. Clearly, if the party has already been invoked with a CltSession
command then the password pwd is leaked at the minimum, and hence the ideal
functionality Fpake leaks the password to the Adversary in the ideal world. In
the protocol described above, the Adversary also gets W1 and hk1, as this is
the only state maintained by each client between sending R1, S1, T1,hp1, and
the final issuance of session-key. Simulation of hk1 is easy for the simulator S
since S generates hk1 exactly as in the real world. For generating W1, which
S had postponed to computing till it received an incoming message from the
adversary, it can now use the pwd which it gets from F̂pake by issuing a Corrupt
call to F̂pake. More precisely, it issues the Corrupt call, and gets pwd, and then
calls the QA-NIZK simulator with the tuple (R1, S1,bphash

s , T1, i1) to get W1.
Note that this computation of W1 is identical to the postponed computation of
W1 in the computation of client factor of sk1 (which is really used in the output
to the environment when pwd′ = pwd).

In case of server corruption, the simulator does not get pwd, but is able to
set phash which also enables it to compute W2 using the QA-NIZK simulator on
(R2, S2/bphash

s , T2, i2).
We first define a simulator which interfaces with the ideal functionality and

the adversary and then through a series of experiments convert it to just the
real world protocol interacting with the same adversary.

5.6 Simulator for the Protocol

We will assume that the adversary A in the UC protocol is dummy, and essen-
tially passes back and forth commands and messages from the environment Z.
Thus, from now on we will use environment Z as the real adversary, which out-
puts a single bit. The simulator S will be the ideal world adversary for FapwKE.
It is a universal simulator that uses A as a black box. For each instance (session
and a party), we will use a prime, to refer to variables received in the message
from Z (i.e. A). We will call a message legitimate if it was not altered by Z, and
delivered in the correct session and to the correct party.

Responding to Random Oracle Queries. Let the input be m. If there is a
record of the form (m, r), that is, m was queried before and was responded with
r, then just return r.

Otherwise, if m is of the form (sid, Pi, Pj , x), for some x and the password file
has been stolen then call OfflineTestPwd with x. If the test succeeds then return
phash, which must already have been set (see Stealing Password File below), and
record (m, phash).

In all other cases, generate r ← Zq, record (m, r) and return r.

Setting the CRS. The simulator S picks the CRS just as in the real world,
except the QA-NIZK CRS-es are generated using the crs-simulators, which also
generate simulator trapdoors trapc, traps. It retains a1, a2, trapc, traps, hkc, hks as
trapdoors.
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New Client Session: Sending a Message to Z. On message (CltSession, sid,
ssid, Pi, Pj) from FapwKE, S starts simulating a new instance of the protocol for
client Pi, server Pj , session identifier ssid, and CRS set as above. We will denote
this instance by (Pi, ssid) and call it a client instance.

To simulate this instance, S chooses r1, r
′
1, r

′′
1 at random, and sets R1 =

gr1 , S1 = gr′
1 and T1 = gr′′

1 . Next, S generates (hk1,hp1) ← vers.hkgen(crss)
and sets i1 = H(sid, ssid, Pi, Pj , R1, S1,hp1). It retains (i1,hk1). It then hands
(R1, S1, T1,hp1) to Z on behalf of this instance.

New Server Session: Sending a Message to Z. On message (SvrSession,
sid, ssid, Pj , Pi) from FapwKE, S starts simulating a new instance of the protocol
for client Pi, server Pj , session identifier ssid, and CRS set as above. We will
denote this instance by (Pj , ssid) and call it a server instance.

To simulate this instance, S chooses r2, r
′
2, r

′′
2 at random, and sets R2 =

gr2 , S2 = gr′
2 and T2 = gr′′

2 . Next, S generates (hk2,hp2) ← verc.hkgen(crsc)
and sets i2 = H(sid, ssid, Pj , Pi, R2, S2,hp2). It retains (i2,hk2). It then hands
(R2, S2, T2,hp2) to Z on behalf of this instance.

On Receiving a Message from Z. On receiving a message R′
2, S

′
2, T

′
2,hp

′
2

from Z intended for a client instance (P, ssid), the simulator S does the fol-
lowing:

1. If any of the the real world protocol checks, namely group membership and
non-triviality fail it goes to the step “Other Cases”below.

2. If the message received from Z is same as message sent by S on behalf of
peer P ′ in session ssid, then S just issues a NewKey call for P .

3. (“Client Only Step”): If StealPwdFile has already taken place then do the fol-
lowing: If S′

2 = R′a2
2 bphash

s , then S calls FapwKE with (Impersonate, P, sid, ssid)
and skips to the “Key Setting” step below, and otherwise go to the step
“Other Cases”.

4. It searches its random oracle query response pairs {(mk, hk)}k and checks
whether for some k = x we have S′

2 = R′a2
2 bhx

s and mx is of the form
(sid, Pi, Pj , pwd′). If so, then S calls FapwKE with (TestPwd, ssid, P , pwd′) else
it goes to the step “Other Cases” below. If the test passes, it sets phash = hx

and goes to the “Key Setting” step below, else it goes to the step “Other
Cases” below.

5. (“Key Setting Step”): Compute i′2 = H(sid, ssid, Pj , Pi, R
′
2, S

′
2,hp

′
2).

If T ′
2 �= sphfs.privH(hks, 〈R′

2, S
′
2/b

phash
s 〉, i′2) then goto the step “Other Cases”.

Else, compute W1 = sim(crsc, trapc, 〈R1, S1,bphash
s , T1, i1〉). Issue a NewKey

call to F̂pake with key

vers.privH(hk1, 〈R′
2, S

′
2/b

phash
s , T ′

2, i
′
2〉) · verc.pubH(hp′

2,W1)

6. (“Other Cases”): S issues a TestPwd call to F̂pake with the dummy password
μ, followed by a NewKey call with a random session key, which leads to the
functionality issuing a random and independent session key to the party P .
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On receiving a message R′
1, S

′
1, T

′
1,hp

′
1 from Z intended for a server

instance (P, ssid), the response of the simulator S is symmetric to the response
described above for client instances, except the above step “Client Only Step”
is skipped.

Stealing Password File. If there was a successful online TestPwd call by
the simulator, before this StealPwdFile call, the corresponding random oracle
response hk was already assigned to the variable phash. Otherwise, the simula-
tor runs through the set of random oracle query response set of the adversary
{(mk, hk)}k, which were not used for an online TestPwd call. For all the mk’s
of the form (sid, Pi, Pj , pwd′), it calls (OfflineTestPwd, sid, pwd′). Next, S calls
StealPwdFile. If StealPwdFile returns pwd then it must equal pwd′ in some mk.
Assign to the variable phash the value hk from the earlier recorded random oracle
response to mk. Otherwise, phash is assigned a fresh random value. The Server
Persistent State bphash

s is computed accordingly and given to the adversary.

Client Corruption. On receiving a Corrupt call from Z for client instance Pi

in session ssid, the simulator S calls the Corrupt routine of FapwKE to obtain pwd.
If S had already output a message to Z, and not output sk1 it computes

W1 = simc(crsc, trapc, 〈R1, S1,bphash
s , T1, i1〉).

and outputs this W1 along with pwd, and hk1 as internal state of Pi. Note that
this computation of W1 is identical to the computation of W1 in the computation
of sk1 (which is really output to Z only when pwd′ = pwd).

Without loss of generality, we can assume that in the real-world if the Adver-
sary (or Environment Z) corrupts an instance before the session key is output
then the instance does not output any session key. This is so because the Adver-
sary (or Z) either sets the key for that session or can compute it from the internal
state it broke into.

Server Corruption. On receiving a Corrupt call from Z for server instance Pj

in session ssid, the simulator S first performs the steps in the section on Stealing
Password File above. In particular this sets the value of phash. It then calls the
Corrupt routine of FapwKE. If S had already output a message to Z, and not
output sk1 it computes

W2 = sims(crss, traps, 〈R2, S2/bphash
s , T2, i2〉).

and outputs this W2 along with hk2 as internal state of Pj . Note that pwd is
not given out.

Complexity of the Simulator. Observe that on stealing the password file, the
function OfflineTestPwd is only called once for each random oracle input, which
was not already tested by calling TestPwd. Hence the number of unique password
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arguments passed to TestPwd and OfflineTestPwd of FapwKE combined in the ideal
world is at most the number of random oracle calls in the hybrid model.

Time complexity-wise, most of the simulator steps are log q-time, where q is
the security parameter. Due to Step 4 of the simulator code, where for each of
the m sessions, in the worst case, it might go through all the n random oracle
calls, there is an additive component of m ∗ n ∗ log q time. So the simulator runs
in O(mn log q)-time.

5.7 Proof of Indistinguishability

We now describe a series of experiments between a probabilistic polynomial time
challenger C and the environment Z, starting with Expt0 which we describe next.
We will show that the view of Z in Expt0 is same as its view in UC-APAKE ideal-
world setting with Z interacting with FapwKE and the UC-APAKE simulator S
described above in Sect. 5.6. We end with an experiment which is identical to
the real world execution of the protocol in Fig. 3. We prove that environment
has negligible advantage in distinguishing between these series of experiments,
leading to a proof of realization of FapwKE by the protocol Π. Due to space
limitations, in this version we only describe Expt0, and rest of the experiments
and related proofs of indistinguishability can be found in the full version [JR16].

Here is the complete code in Expt0 (stated as it’s overall experiment with Z):

1. Responding to a random oracle query on input m: If there is a record of the
form (m, r), then just return r. Otherwise, generate r ← Zq, record (m, r)
and return r.

2. The challenger C picks the CRS just as in the real world, except the QA-NIZK
CRS-es are generated using the crs-simulators, which also generate simulator
trapdoors trapc, traps. It retains a1, a2, trapc, traps, hkc, hks as trapdoors.
Next, (on StorePwdFile) the challenger calls the random oracle with query
(sid, Pi, Pj , pwd). It sets phash equal to the random oracle response and sets
the server persistent state as bphash

s .
Define PhashIsSet to be true after either StealPwdFile has been called or
the random oracle has been called with (sid, Pi, Pj , pwd) by the adversary,
and false before.
Define PwdCalled to be true after the random oracle has been called with
(sid, Pi, Pj , pwd) by the adversary, and false before.

3. On receiving (CltSession, sid, ssid, Pi, Pj) from Z, C generates (hk1,hp1) ←
vers.hkgen(crss). Next, C chooses r1, r

′
1, r

′′
1 at random, and sets R1 = gr1 ,

S1 = gr′
1 and T1 = gr′′

1 . It then hands (R1, S1, T1,hp1) to Z on behalf of this
instance.

4. On receiving (R′
2, S

′
2, T

′
2,hp

′
2) from Z, intended for client session (Pi, ssid)

(and assuming no corruption of this instance):
(a) If the received elements are either not in their respective groups, or are

trivially 1, output sk1 ← GT .
(b) If the message received is identical to message sent by C in the same

session (i.e. same ssid) on behalf of the peer, then output sk1 ← GT
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(unless the simulation of peer also received a legitimate message and its
key has already been set, in which case the same key is used to output
sk1 here).

(c) If PhashIsSet is false, then output sk1 ← GT .
(d) Compute: i′2 = H(sid, ssid, Pj , Pi, R

′
2, S

′
2,hp

′
2). If S′

2 = R′a2
2 bphash

s and
T ′
2 = sphfs.privH(hks, 〈R′

2, S
′
2/b

phash
s 〉, i′2), compute:

W1 = simc(crsc, trapc, 〈R1, S1,bphash
s , T1, i1〉).

Output:

sk1 = vers.privH(hk1, 〈R′
2, S

′
2/b

phash
s , T ′

2, i
′
2〉) · verc.pubH(hp′

2,W1)

(e) If the above check failed then output sk1 ← GT .
5. On a Corrupt call for client Pi, output pwd. If Step 3 has already happened

then also output hk1 and W1 = simc(crsc, trapc, 〈R1, S1,bphash
s , T1, i1〉).

6. On receiving (SrvSession, sid, ssid, Pj , Pi) from Z, follow steps symmetric to
Step 4, swapping subscripts and languages accordingly and replacing the con-
dition PhashIsSet by PwdCalled in Step 4c. Also, in step 4d, the condition
becomes: if S′

1 = R′a1
1 bphash

c and T ′
1 = sphfc.privH(hkc, 〈R′

1, S
′
1,b

phash
s 〉, i′1),

7. On a Corrupt call for server Pj , if Step 3 has already happened then out-
put hk2, and W2 = sims(crss, traps, 〈R2, S2/bphash

s , T2, i2〉). Finally, execute
a StealPwdFile call, as described below.

8. On a StealPwdFile call, return bphash
s as the Server Persistent State to the

adversary.

All outputs of sk1 are also accompanied with sid, ssid (but are not mentioned
above for ease of exposition).

Note that each instance has two asynchronous phases: a phase in which C
outputs R1, S1, ... to Z, and a phase where it receives a message from Z. How-
ever, C cannot output sk1 until it has completed both phases. These orderings
are dictated by Z. We will consider two different kinds of temporal orderings. A
temporal ordering of different instances based on the order in which C outputs
sk1 in an instance will be called temporal ordering by key output. A tem-
poral ordering of different instances based on the order in which C outputs its
first message (i.e. R1, S1, ...) will be called temporal ordering by message
output. It is easy to see that C can dynamically compute both these orderings
by maintaining a counter (for each ordering).

We now claim that the view of Z in Expt0 is statistically indistinguishable
from its view in its combined interaction with FapwKE and S. The CRS is set
identically by both C and S. While C has access to pwd from the outset and
sets up the random oracle output phash corresponding to (sid, Pi, Pj , ssid) at the
beginning, S doesn’t have access to pwd at the beginning and hence defers this
step till the point where either (1) a correct online guess has been made, (2)
the password file was stolen and a correct offline guess was made, (3) the client
was corrupted. In all these three cases the simulator gets to know pwd and has
the chance to set phash. At the point when password file is stolen, the correct
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pwd may not have been guessed, but phash has to be set in order to output the
server persistent state. In that case S generates a random phash, remembers it
and assigns it to the correct input when the actual password is queried. At all
points, although their algorithms differ, we can see that C and S respond to
random oracle queries identically.

Both C and S generate the client and server flows identically. In particular,
observe that the condition PhashIsSet exactly captures the state of S for a
client session where it knows phash and can compute the relevant elements and
keys. C uses the condition PhashIsSet to do the same computations. Similarly
for the server sessions with the condition PwdCalled. The stronger condition
for the server reflects the absence of the “Client Only Step” in the server sessions
simulation. In the steps where a party receives a message from the adversary,
both C and S end up computing keys identically. While C directly checks by
exponentiation with phash in the case that pwd was guessed correctly, S goes
through the list of random oracle calls to see which response was used for expo-
nentiation as it may not know pwd or phash at this point.

Due to space limitations, the rest of the experiments and related proofs of
indistinguishability are relegated to the full version [JR16].
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Abstract. In this paper, we revisit the round complexity of design-
ing zero-knowledge (ZK) arguments via a black-box construction from
minimal assumptions. Our main result implements a 4-round ZK argu-
ment for any language in NP, based on injective one-way functions, that
makes black-box use of the underlying function. As a corollary, we also
obtain the first 4-round perfect zero-knowledge argument for NP based on
claw-free permutations via a black-box construction and 4-round input-
delayed commit-and-prove zero-knowledge argument based on injective
one-way functions.

Keywords: One-way permutations · Zero-knowledge arguments
Black-box constructions

1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs that
allow one player (called the prover) to convince another player (called the ver-
ifier) of the validity of a mathematical statement x ∈ L, while providing zero
additional knowledge to the verifier. This is formalized by requiring that the
view of every “efficient” adversary verifier V∗ interacting with the honest prover
P be simulated by an “efficient” machine S (a.k.a. the simulator). The idea
behind this definition is that whatever V∗ might have learned from interacting
with P, it could have actually learned by itself (by running the simulator S). As
“efficient” adversaries are typically modelled as probabilistic polynomial-time
machines (PPT), the traditional definition of ZK models both the verifier and
the simulator as PPT machines.

Several variants of ZK systems have been studied in literature. In this work,
we are interested in computational ZK argument systems with black-box simu-
lation, where the soundness is required to hold only against non-uniform PPT

provers whereas the zero-knowledge property holds against PPT verifiers which
get an auxiliary input. Such systems are referred to as computational zero-
knowledge argument systems. We will further focus on the case of black-box
c© International Association for Cryptologic Research 2018
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constructions1 and black-box simulation.2 The main question we address is the
the round-complexity of computational zero-knowledge argument systems based
on minimal assumptions via a fully black-box construction. First, we survey prior
work in this area.

Goldreich et al. [GMW91] constructed the first zero-knowledge proof systems
for all of NP based on the minimal assumption of one-way functions, where they
required polynomially many rounds to achieve negligible soundness. For argu-
ments, Feige and Shamir [FS89] provided a 4-round zero-knowledge system based
on algebraic assumptions. In [BJY97], Bellare, Jackobson and Yung showed how
to achieve the same assuming only one-way functions.

On the negative side, Goldreich and Oren [GO94] demonstrated that three
rounds are necessary for designing zero-knowledge for any non-trivial language
(i.e. outside BPP) against non-uniform verifiers. When further restricting to
black-box simulation, Goldreich and Krawcyzk [GK96b] showed that four rounds
are necessary for achieving zero-knowledge of non-trivial languages. For the spe-
cific case of proofs (i.e. unconditional soundness), Katz [Kat12] showed that only
languages in MA can have 4-round zero-knowledge proof systems.

As such, the works of [BJY97] and [GK96b] identify the round-complexity
of zero-knowledge arguments as four when restricting to black-box simulation.
However, when considering constructions that are black-box in the underly-
ing primitives, Pass and Wee [PW09] provided the first black-box construc-
tion of a 6-round zero-knowledge argument for NP based on one-way permu-
tations3 and seven rounds based on one-way functions. Ishai, Mahmoody and
Sahai provided the first black-box sublinear zero-knowledge arguments based
on collision-resistant hash-functions [IMS12]. Ostrovsky, Richelson and Scafuro
[ORS15] showed how to construct black-box two-party secure computation pro-
tocols in four rounds where only one party receives the output from enhanced
trapdoor permutations. As zero-knowledge can be seen as an instance of such a
secure computation, their work provides a round-optimal black-box construction
based on enhanced trapdoor permutations.

This sequence of prior works leaves the following fundamental question
regarding black-box constructions of zero-knowledge arguments open:

What is the weakest hardness assumption for a black-box construction of
a 4-round zero-knowledge argument system for all of NP?

We remark that when considering non-black-box simulation, a recent work
due to Bitansky et al. [BKP18] demonstrates how to obtain 3-round zero-
knowledge arguments for NP based on multi-collision resistance hash functions.
On the negative side, Fleischhacker et al. [FGJ18] proved that 3-round private-
coin ZK proofs for NP do not exist, even with respect to non-black-box simulation
assuming the existence of certain program obfuscation primitives.

1 Where the construction is agnostic of the specific implementation and relies only on
its input/output behavior.

2 Where the simulator is only allowed to make black-box use of the verifier’s code.
3 Where injective one-way functions are sufficient.
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Our Results. In this work we present the first 4-round ZK argument of knowl-
edge protocols based on one-way permutations (injective one-way functions) and
claw-free permutations. Specifically,

Theorem 1.1 (Informal). Assuming injective one-way functions, there exists
a fully black-box 4-round black-box computational zero-knowledge argument for
all of NP.

As a corollary we obtain the following result regarding perfect zero-knowledge
argument systems.

Corollary 1.2 (Informal). Assuming claw-free permutations, there exists a
fully black-box 4-round black-box perfect zero-knowledge argument for all of NP.

Commit-and-Prove Input-Delayed ZK Proofs. In [LS90], Lapidot and
Shamir provided a three-round witness-indistinguishable (WI) proof for Graph
Hamiltonicity with a special “input-delayed” property: namely, the prover uses
the statement to be proved only in the last round. Recently, in [CPS+15] it was
shown how to obtain efficient input-delayed variants of the related “Sigma proto-
cols” when used in a restricted setting of an OR-composition. In [HV16], starting
from a randomized encoding scheme with an additional robustness property and
security against adaptive inputs, it was shown how to obtain general construc-
tions of input-delayed zero-knowledge proofs that yield an efficient version of the
protocol of [LS90] for arbitrary NP -relations.

The “commit-and-prove” paradigm considers a prover that first commits to
a witness w and then, in a second phase upon receiving a statement x asserts
whether a particular relation R(x,w) = 1 without revealing the committed value.
This paradigm, which is implicit in the work of [GMW87] and later formalized in
[CLOS02], is a powerful mechanism to strengthen semi-honest secure protocols
to maliciously secure ones. The MPC-in-the-head approach of [IKOS09] shows
how to obtain a commit-and-prove protocol based on one-way functions that
relies on the underlying primitives in a black-box way. In [HV16] it was further
shown how to extend the above input-delayed ZK proof to further support the
commit-and-prove paradigm which is additionally black-box in the underlying
one-way functions or permutations.

Instantiating the 3-round honest verifier zero-knowledge proof required in
Theorem 1.1 with the commit-and-proof and input-delayed protocol from [HV16]
implies the following corollary.

Corollary 1.3 (Informal). Assuming injective one-way functions, there exists
a fully black-box 4-round black-box commit-and-prove input-delayed zero-
knowledge argument for all of NP.

We prove the main theorem in Sect. 3 and the corollaries in Sect. 4.
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1.1 Our Techniques

We begin with an overview of our 4-round ZK argument that is obtained by
compiling 3-round (i.e. sigma) protocols of some special form. Consider a sigma
protocol where the prover simply relies on commitments to generate its first
round message and decommits to some subset of the commitments depending
on the challenge provided by the verifier. Following [PW09], we require a special
soundness guarantee in the protocol, where there exists at most one “easy chal-
lenge” that allows the prover to cheat for false instances. Furthermore, this easy
challenge can be efficiently reconstructed from the set of messages committed
to by the prover. An example of a sigma protocol with these properties, is the
Blum Hamiltonicity zero-knowledge protocol [Blu]. Here, the prover commits
to the adjacency matrix of a permutation of the underlying graph in the first
round, and either decommits all entries in the matrix along with the permuta-
tion or decommits just the entries that form a Hamiltonian cycle depending on
the verifier’s challenge. Given the prover’s commitments, the easy challenge can
be extracted by observing whether the prover commits to the adjacency matrix
of the permutation of original graph or just the entries of a Hamiltonian cycle.

This 3-round protocol already yields a zero-knowledge argument system, but
only with constant soundness. To amplify soundness, one can have the entire
protocol repeated in parallel, and have the verifier commit to all the parallel
challenges in a first round of the protocol while decommitting in the third round.
This 4-round protocol will indeed be zero-knowledge. However, one cannot prove
that it is negligibly sound. Specifically, there could be a malleability attack,
where, the prover upon receiving the verifier’s commitment in the first round, can
maul it to another commitment that can be open to a valid accepting response
depending on the decommitment provided by the verifier in the third round.
Another way of looking at this is that, one cannot have a black-box reduction of
a cheating prover to the hiding property of the commitment used by the verifier
in the first round to commit to the challenge. A standard way to circumvent
this issue would be to require the verifier to use a perfectly hiding commitment
and the prover a statistically binding commitment. However, this will result in
a 5-round protocol (as perfectly hiding commitments require two rounds), and
stronger assumptions, such as collision resistant hash functions.

The approach taken by Pass and Wee is to have the prover and verifier
commit using a computationally hiding commitment scheme (that can be based
on injective one-way functions) but additionally require the prover to prove
“knowledge” of the messages in its commitment before the verifier decommits
its challenge. This can be done generically using an extractable commitment
scheme (introduced in the same work) which is a commitment scheme that has
a “proof-of-knowledge” property. Before we go into the details of this construc-
tion, we point out that an extractable commitment scheme can be constructed
from injective one-way function in three rounds which results in an overall zero-
knowledge argument system with six rounds.

To collapse this protocol into four rounds we follow a cut-and-choose
paradigm. Namely, our protocol will comprise of n parallel instances of the basic
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4-round protocol. In the third round, the verifier chooses a random S ⊆ [n] of
some size t and decommits to the challenges made in those indices while provid-
ing a challenge for the extractable commitment for repetitions outside S. Then
in the fourth round, the prover will complete the zero-knowledge protocol for
the parallel repetitions with indexes in S and respond to the proof-of-knowledge
challenge for the extractable commitment for the remaining indexes. The high-
level idea here is that this allows to regain soundness in a simple way. Since the
prover does not know the subset S revealed by the verifier in the third round,
the prover has to “cheat” in most of the parallel invocations. This means we can
argue by a simple averaging argument that there is an index i ∈ [n] such that
the probability that the prover cheats in the ith repetition, i is not included in S
and the prover convinces the verifier of a false statement is non-negligible. This
means that we can now use the prover to violate the hiding of the commitment
made by the verifier for the ith repetition by running the proof-of-knowledge
extractor on the prover’s commitment in the ith repetition and extracting the
easy challenge.

However, proving zero-knowledge of this compilation is subtle and non-trivial.
Recall that the verifier only reveals the challenges for a chosen subset S in the
third round. A simple strategy for the simulator is to obtain the challenge,
i.e. “trapdoor” for the indexes in S rewind and setup the prover messages in
such a way that will allow for it to cheat in all repetitions in S. Now, the
simulator can conclude with an accepting transcript if the verifier opens the
same set S. However, the verifier can choose to reveal different subsets in different
“rewindings”. Nevertheless, in any rewinding, either the simulator has succeeded
in cheating in all the indexes of the subset revealed by the verifier or has learned
a new trapdoor. Now it suffices to show that the simulator will only require to
perform a bounded number of rewindings before it has extracted most (if not
all) trapdoors to complete the execution. A minor subtlety arises as a malicious
verifier can abort before revealing the third message and this affects the number
of rewindings that needs to be performed. However, this can be dealt with via
a standard probability analysis. There is, however, a bigger issue in proving
indistinguishability of this simulation. As described above, the simulator tries
to extract trapdoors and outputs the “first” accepting transcript when it has
managed to cheat in all indexes in the revealed subset. This simple idea however
has a subtle flaw. The issue is that one can come up with a strategy for a
malicious verifier where the distribution of the views output by the simulator is
not indistinguishable from the real view. Roughly speaking, the distribution of
the subset S in the transcript output by the simulator will be biased towards
indexes revealed earlier in the rewindings. Our main technical contribution is to
determine a “stopping” condition for the simulator that will result in the right
distribution and we describe this below.

We abstract the simulation strategy to the following game. The game pro-
ceeds in iterations where in the ith iteration the adversary outputs a subset
Si ⊂ [n] from some unknown but pre-determined distribution D. The goal is to
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determine the iteration j to stop the game and output Sj such that the following
two conditions are met:

– First, Sj ⊆ S1 ∪ · · · ∪ Sj−1, and
– Second, if D′ is the distribution of the subset Sj output, then D′ = D. In

other words, the distribution of the subset output when the game is stopped
is identical to the original distribution D.

Our main technical contribution is to show that the following simple strategy
achieves the required goal.

– In any iteration if Sj ⊆ S1 ∪ · · · ∪ Sj−1, then halt if Sj �⊆ S1 ∪ · · · ∪ Sj−2, and
proceed to the next iteration otherwise.

We prove this formally in Sect. 3.

2 Preliminaries

Basic Notations. We denote the security parameter by n. We say that a func-
tion μ : N → N is negligible if for every positive polynomial p(·) and all sufficiently
large n it holds that μ(n) < 1

p(n) . We use the abbreviation PPT to denote prob-
abilistic polynomial-time. We further denote by a ← A the random sampling of
a from a distribution A, and by [n] the set of elements {1, . . . , n}. For an NP
relation R, we denote by Rx the set of witnesses of x and by LR its associated
language. That is, Rx = {ω | (x, ω) ∈ R} and LR = {x | ∃ ω s.t. (x, ω) ∈ R}.
We specify next the definition of computationally indistinguishable.

Definition 2.1. Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N

be two distribution ensembles. We say that X and Y are computationally indis-
tinguishable, denoted X

c≈ Y , if for every PPT machine D, every a ∈ {0, 1}∗,
every positive polynomial p(·) and all sufficiently large n:

∣
∣Pr [D(X(a, n), 1n, a) = 1] − Pr [D(Y (a, n), 1n, a) = 1]

∣
∣ <

1
p(n)

.

2.1 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender Sen,
to commit itself to a value while keeping it secret from the receiver Rec (this
property is called hiding). Furthermore, in a later stage when the commitment
is opened, it is guaranteed that the “opening” can yield only a single value
determined in the committing phase (this property is called binding). In this
work, we consider commitment schemes that are statistically binding, namely
while the hiding property only holds against computationally bounded (non-
uniform) adversaries, the binding property is required to hold against unbounded
adversaries. Formally,
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Definition 2.2 (Commitment schemes). A PPT machine Com = 〈S,R〉 is
said to be a non-interactive commitment scheme if the following two properties
hold.

Computational hiding: For every (expected) PPT machine Rec∗, it holds that
the following ensembles are computationally indistinguishable.
– {ViewRec∗

Com (m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

– {ViewRec∗
Com (m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

where ViewR∗
Com(m, z) denotes the random variable describing the output of

Rec∗ after receiving a commitment to m using Com.
Statistical binding: For any (computationally unbounded) malicious sender

Sen∗ and auxiliary input z, it holds that the probability that there exist valid
decommitments to two different values for a view v, generated with an honest
receiver while interacting with Sen∗(z) using Com, is negligible.

We refer the reader to [Gol01] for more details. We recall that non-interactive
perfectly binding commitment schemes can be constructed based on one-way
permutation, whereas two-round statistically binding commitment schemes can
be constructed based on one-way functions [Nao91]. To set up some notations,
we let comm ← Com(m; rm) denote a commitment to a message m, where the
sender uses uniform random coins rm. The decommitment phase consists of
the sender sending the decommitment information decomm = (m, rm) which
contains the message m together with the randomness rm. This enables the
receiver to verify whether decomm is consistent with the transcript comm. If so,
it outputs m; otherwise it outputs ⊥. For simplicity of exposition, in the sequel,
we will assume that random coins are an implicit input to the commitment
functions, unless specified explicitly.

2.2 Extractable Commitment Schemes

A core building block of our protocol is an extractable commitment scheme
ExtCom introduced by Pass and Wee in [PW09].

Definition 2.3 (Extractable commitment schemes). Let ExtCom =
(Sen,Rec) be a statistically binding commitment scheme. We say that ExtCom
is an extractable commitment scheme if there exists an expected PPT oracle
machine (the extractor) E that given oracle access to any PPT cheating sender
Sen∗ outputs a pair (τ,m∗) such that:

Simulation: τ is identically distributed to the view of Sen∗ at the end of inter-
acting with an honest receiver Rec in commit phase.

Extraction: The probability that τ is accepting and m∗ = ⊥ is negligible. We
remark here that, we only need a weak extraction property where the extraction
succeeds if the commitment is well formed. In other words, we allow for “over
extraction” where the commitment could be invalid, yet, the extraction returns
a value.
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Binding: If m∗ �= ⊥, then it is statistically impossible to open τ to any value
other than m∗.

In Fig. 1 we describe their 3-round extractable commitment scheme ExtCom
that is based on one-way permutations. In order to commit to a bit m the sender
splits m into two shares which are committed using a statistically binding com-
mitment scheme Com. Next, the receiver sends a challenge bit e where the sender
must open one of the two commitments that lie in the eth position. Later, in
the decommit phase the sender opens the remaining commitments enabling the
receiver to verify that all opening are valid and that all pairs correspond to
the same bit m. Loosely speaking, hiding follows from hiding of the underly-
ing commitment scheme Com. Whereas extractability follows from repetitively
rewinding the sender obtaining two shares of a particular instance.

Extractable Commitment Scheme ExtCom [PW09]

The commitment scheme ExtCom uses a statistically binding commitment scheme Com
and runs between sender Sen and receiver Rec.

Input: Sen holds a message m ∈ {0, 1}.
Commit Phase:

Sen → Rec: Sen proceeds as follows:
1. Sen chooses η1, . . . , ηκ ← {0, 1}κ.
2. For all i ∈ [κ], Sen commits to the following matrix:

comηi comm⊕ηi = Com(ηi) Com(m ⊕ ηi) .

Rec → Sen: Rec sends a challenge e = e1, . . . , eκ ← {0, 1}κ to Sen.
For all i ∈ [κ], Sen sends the decommitment information decom(ei·m)⊕ηi

for
which the receiver checks the validity of openings.

Decommit Phase:
1. The sender sends m and opens the commitments to all κ pairs of strings.
2. The receiver checks that all the openings are valid, and also that all pairwise

decommitments correspond to m.

Fig. 1. Extractable commitment scheme

2.3 Zero-Knowledge Arguments

We denote by 〈A(ω), B(z)〉(x) the random variable representing the (local) out-
put of machine B when interacting with machine A on common input x, when
the random-input to each machine is uniformly and independently chosen, and
A (resp., B) has auxiliary input ω (resp., z).
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Definition 2.4 (Interactive argument system). A pair of PPT interactive
machines (P,V) is called an interactive proof system for a language L if there
exists a negligible function negl such that the following two conditions hold:

1. Completeness: For every x ∈ L there exists a string ω such that for every
z ∈ {0, 1}∗,

Pr[〈P(ω),V(z)〉(x) = 1] ≥ 1 − negl(|x|).

2. Soundness: For every x /∈ L, every interactive PPT machine P∗, and every
ω, z ∈ {0, 1}∗

Pr[〈P∗(ω),V(z)〉(x) = 1] ≤ negl(|x|).

Definition 2.5 (Zero-knowledge). Let (P,V) be an interactive proof system
for some language L. We say that (P,V) is computational zero-knowledge with
respect to an auxiliary input if for every PPT interactive machine V∗ there
exists a PPT algorithm S, running in time polynomial in the length of its first
input, such that

{〈P(ω),V∗(z)〉(x)}x∈L,ω∈Rx,z∈{0,1}∗
c≈ {〈S〉(x, z)}x∈L,z∈{0,1}∗

(when the distinguishing gap is considered as a function of |x|). Specifically, the
left term denote the output of V∗ after it interacts with P on common input x
whereas, the right term denote the output of S on x.

If further the distributions are identically distributed, we refer to the proof
system as perfect zero-knowledge.

Definition 2.6 (Σ-protocol). A protocol π is a Σ-protocol for relation R if
it is a 3-round public-coin protocol and the following requirements hold:

– Completeness: If P and V follow the protocol on input x and private input
ω to P where ω ∈ Rx, then V always accepts.

– Special soundness: There exists a polynomial-time algorithm A that given
any x and any pair of accepting transcripts (a, e, t), (a, e′, t′) on input x, where
e �= e′, outputs ω such that ω ∈ Rx.

– Special honest-verifier zero knowledge: There exists a PPT algo-
rithm S such that

{〈P(ω),V(e)〉(x)}x∈L
c≈ {S(x, e)}x∈L

where S(x, e) denotes the output of S upon input x and e, and 〈P(ω),V(e)(x)〉
denotes the output transcript of an execution between P and V, where P has
input (x, ω), V has input x, and V’s random tape (determining its query)
equals e.
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2.4 Claw-Free Permutations

Definition 2.7 (Claw-free permutations). A triple of algorithms, (I,D, F ),
is called a claw-free collection if the following conditions hold.

– Both I and D are probabilistic polynomial-time, whereas F is deterministic
polynomial-time. We denote by fσ

i (x) the output of F on input (σ, i, x), and
by Dσ

i the support of the random variable D(σ, i).
– For every i in the range of algorithm I, the random variables f0

i (D(0, i)) and
f1

i (D(1, i)) are identically distributed.
– For every probabilistic polynomial-time algorithm, A′, every polynomial p(·),

and all sufficiently large n’s

Pr[f0
In

(Xn) = f1
In

(Yn)] ≤ 1/p(n)

where In is a random variable describing the output distribution of algorithm
I on input 1n, and (Xn, Yn) is a random variable describing the output of
algorithm A′ on input (random variable) In.

A construction for perfectly hiding commitment scheme based on claw-free
permutations can be found in [GK96a].

3 The Feasibility of 4-Round BB ZK Arguments from
OWPs

In this section we will prove our main theorem, demonstrating the feasibility
of black-box 4-round zero-knowledge argument of knowledge. More formally, we
prove the following theorem.

Theorem 3.1. Assuming one-way permutations, Protocol 1 is a 4-round fully
black-box zero-knowledge argument for any NP language.

Building Blocks. Our protocol will employ the following cryptographic primi-
tives.

Non-interactive perfectly binding commitment scheme: Such commit-
ment schemes can be based on one-way permutations. We denote this scheme
by Com and employ it for the verifier in the first message of our protocol.

Extractable commitment scheme: We recall that an extractable commit-
ment scheme is a commitment scheme that has in addition an extraction algo-
rithm, such that given an adversarial sender Sen∗, can extract the committed
message or output ⊥ if the commitment is invalid. A 3-round extractable
commitment scheme can be constructed based on any non-interactive com-
mitment scheme [PW09]. We denote this scheme by ExtCom; see Sect. 2.2 for
more details. We employ that commitment scheme for the prover.
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3-round public-coin honest-verifier zero-knowledge proof: A 3-round
zero-knowledge proof with constant soundness for any language in NP,
denoted by πZK = (a, e, t), that can be constructed starting from a non-
interactive commitment scheme Com and where the witness is only used to
in computing the third message t. For instance, the Blum’s Hamiltonicity
protocol [Blu] or [IKOS07,HV16]. For concreteness, let us consider the for-
mer protocol, where given a public input graph G, proceeds as follows. In the
first message, the prover commits to the elements of the adjacency matrix
{comaij

}i,j∈[m] of a random permutation of the input graph G. The verifier
responds with a challenge bit e. If e = 0, then the prover decommits all entries
of the matrix and gives the permutation, and the verifier accepts if the permu-
tation maps the input graph to the revealed graph. If e = 1, then the prover
only decommits to elements in the adjacency matrix that form a Hamiltonian
cycle. The verifier accepts if the revealed entries form an Hamiltonian cycle.

Protocol’s Description: Our protocol executes the honest verifier zero-
knowledge proof πZK in parallel n times, where a t subset of these executions
(that is picked by the verifier) are completed till end while the rest are used for
completing the extractable commitment algorithm.

Protocol 1 (Black-box 4-round zero-knowledge argument)

– Inputs: A public statement x ∈ L for both and a witness ω ∈ Rx for the
prover P.

– The protocol:
1. V → P : The verifier picks n challenges for the parallel invocations of

protocol πZK, say e1, . . . , en, and commits to them using algorithm Com.
Denote this set of commitments by (come1 , . . . , comen

).
2. P → V : The prover generates n first-messages (a1, . . . , an) according

to πZK. Here each ai contains commitments to entries of an adjacency
matrix {extcomai[r,c]}r,c∈[m] of an independently and randomly chosen
permutation of the input graph G where the commitment is computed
using ExtCom where m is the number of nodes in the graph.

3. V → P: The verifier chooses a random t subset T ⊂ {1, . . . , n} and sends
{decomei

}i∈T where decomei
is the decommitment of comei

. It also sends
a challenge ch ∈ ([n] − T ) for all the extractable commitments.

4. P → V: Condition on valid decommitments sent by the verifier, for every
ZK iteration i ∈ T , the prover completes protocol πZK, answering chal-
lenge ei with the message ti and sends {ti, decomai

}i∈T . For the remaining
ZK iterations, the prover simply responds to the challenge ch according
to the extractable commitment protocol ExtCom.
The verifier accepts if all decommitments are valid, if (ai, ei, ti) is a valid
transcript for πZK for all i ∈ T and if the extractbale commitments protocol
has been concluded correctly for all remaining iterations i /∈ T .

Proof (Theorem 3.1). Completeness follows directly from the completeness
of the underlying honest verifier zero knowledge protocol πZK. Below we prove
soundness and zero-knowledge of our protocol.
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Soundness. On a high-level, the special soundness of the underlying zero-
knowledge protocol implies that, on a false statement, and a set of commitments
provided by the prover in its first message, there is only one “easy challenge”
for which the prover can complete the protocol and convince the verifier. Pass
and Wee in [PW09] formalized the notion of “easy challenge” by requiring that
the zero-knowledge protocol satisfies the property that there is an efficient pro-
cedure that given the input statement x and values in the commitments made
by the prover in the second message v1, . . . , vk, outputs a string e such that if
an easy challenge exists then it must equal e, and if this challenge is revealed
by the verifier the (malicious) prover can convince the verifier even on a false
statement. For example, the Blum Hamiltonicity zero-knowledge protocol satis-
fies this requirement and the easy challenge can be extracted as follows. If the
value committed to by the prover is a permutation π and the adjacency matrix
A such that A represents the graph π(G), then set the easy challenge to be 0
and otherwise 1. We argue soundness based on the following two steps.

1. We show that for a false statement an adversarial prover has to guess the
challenge from the commitments made by the verifier before it is revealed in
the third message for most of the n parallel instances. More precisely, the
“easy challenge” extracted from the messages committed by the prover in
most of the n iterations must match exactly the challenge committed to by
the verifier.

2. There is an extraction procedure to extract the messages committed by the
prover in one of these iterations without having to reveal the challenge com-
mitted to in the first message.

Combining these two ideas, we can reduce the soundness of the zero-knowledge
to the hiding property of the commitments made by the verifier. We remark that
our protocol and proof are different from those presented in [PW09] in that the
verifier only reveals a subset of the challenges, where essentially the prover is only
required to convince the verifier in the executions corresponding to this subset.
In contrast, in the protocol presented in [PW09] the verifier opens all challenges.
Specifically, as their protocol includes additional rounds between the prover’s
second message and when the verifier reveals the challenge in order to extract
the prover’s committed message, their analysis becomes easier. In our protocol,
on the other hand, we will be able to extract the values in the commitments made
by the prover only in the repetitions for which the challenge was not revealed
by the verifier. We now proceed to the formal proof.

Assume for contradiction that there exists a PPT prover P∗ and polynomial
p(·) such that for infinitely many n’s, there exists xn �∈ L∩{0, 1}n such that the
prover successfully convinces the verifier on the statement xn with probability
1

p(n) . Fix an arbitrary n for which this happens. We will construct an adversary
B that uses P∗ to break the hiding property of the non-interactive commitment
scheme Com. More formally, B will internally incorporate the code of the prover
P∗ on input (1n, xn) and feed it with messages according to the honest verifier.
That is, on input (1n, xn) and a commitment c from the external challenger, B
proceeds as follows.
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1. It will begin an internal emulation with P∗. To simulate the first message from
the verifier, it will choose a random index i to feed the challenge commitment
c and the rest of them it will generate honestly internally.

2. Next, it will continue the execution to completion where it picks a random
subset S1 ⊆ [n] conditioned on i �∈ S1. Let ch1 be the challenge it feeds for
the extractable commitment. If the prover aborts in the internal emulation
then B aborts.

3. Otherwise, it will record the response to challenge ei for the extractable com-
mitment in repetition i. Next, it will rewind the prover to the third message,
giving another set S2 ⊆ [n] subject to i �∈ S2 and an independent challenge
ch2 for the extractable commitment. If the prover aborts, B aborts as well.
Otherwise, it will use the extractor for the underlying extractable commit-
ment scheme on the commitment made for iteration i and the responses given
for two challenges. We remark here that our extractor could “over extract”.
Namely, extract in case of an invalid commitment. To deal with this, we stip-
ulate that if the extractor extracts a valid graph, the bit b is set to 1 and
otherwise 0. If the extractor successfully extracts the committed messages,
then B extracts the easy challenge b, outputs b and halts.

We next prove in the claim that B breaks the hiding property of the challenge
commitment c with non-negligible probability.

Claim 3.1. There exists polynomial q(·) such that,

Pr[b ← {0, 1}n : c ← Com(1n, b) : B(1n, x, c) = b] ≥ 1
q(n)

.

Proof: Define the random variable Γ to be the set that contains the indexes
where the prover commits to the adjacency matrix according to the easy chal-
lenge. We will further restrict Γ to be those indices where if b = 1 (meaning the
prover commits to the graph), the index will be included only if the commitment
is valid. This means that the prover can successfully convince the verifier only if
T ⊆ Γ . Note that this set (even if not efficiently computable) is well-defined as
we rely on statistically binding commitments. Our analysis relies on the following
two cases:

Case |Γ | ≤ 3n
4 : Here the probability that T ⊆ Γ can be bounded by (3n/4

t )
(n

t)
which is negligible. We remark here that if b = 1 and the commitment is
invalid, then the Prover can not convince the verifier in that index because
all the commitments are decommitted in the fourth message. Based on the
observation that T must be contained in γ, the prover successfully completes
the protocol only with negligible probability.

Case |Γ | > 3n
4 : We begin by showing that there exists an index i ∈ Γ such that

P∗ convinces V with non-negligible probability conditioned on i �∈ T . Define
pi to be the probability that P∗ successfully convinces the verifier conditioned
on i �∈ T where recall that T is the set of challenges revealed by the verifier.
By a union bound, we have that

∑

i∈Γ pi ≥ 1
p(n) . Therefore, there exists i
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such that pi ≥ 1
|Γ |p(n) ≥ 4

3np(n) .
Now, we have that if B picks this index i and the prover completes the proof
in both the executions performed by B, then with overwhelming probability
the extractor reveals the messages committed to by the prover. This in turn
reveals the easy challenge for all indexes outside S1 ∪S2. In particular, it will
obtain the easy challenge bi which B outputs as its guess for the challenge
commitment c. By definition of Γ we have that bi is correct.
B succeeds if it picks this index i to feed the external challenge, convinces V∗

in the two executions, the extractor succeeds. The right index is chosen with
probability 1

2n . for the specific extractable commitment used in the construc-
tion (namely, the construction from [PW09]), the extractor succeeds except
with negligible probability if the ch1 �= ch2 which happens with probabil-
ity at most 1 − 2−n. Furthermore, even if the extractor “over-extracts”, if
the extracted value is the valid graph, it cannot be the case that the prover
can convince with b = 0 and we know that if i ∈ Γ and b = 1 then the
commitment is valid. Therefore the probability that B succeeds is at least
1
np2i − 1

2n − ν(n) ≥ 1
2n3(p(n))2 . ��

This concludes the proof of soundness.

Zero-Knowledge. We describe our black-box simulator and prove correctness
of simulation.

Description of Simulator S: More formally, let V∗ be a malicious verifier.
We define simulator S as follows:

1. S receives the first message V∗(x, z) from the malicious verifier.
2. S continues the execution by generating the second message according to the

honest prover’s algorithm. If the verifier aborts, the simulator outputs the
transcript and halts.

3. Otherwise, S records the challenges that the verifier reveals; denote this t
subset by T1. Set T0 = ∅.

4. Next, S repeatedly rewinds the verifier to the second message to extract some
trapdoor information, namely, decommitments of the challenges committed
by the verifier. It proceeds in iterations. In iteration 
, we assume that the S
holds the sets T1, . . . , T� and at the end of the iteration either the simulator
learns a new trapdoor (and adds a new set T�+1) or halts outputting a tran-
script. More precisely, for 
 = 1 through n− t+1,4 the simulator proceeds as
follows:
(a) It generates the second prover’s message (a1, . . . , an) as follows:

– For i �∈ T1 ∪ · · · ∪ T�, run the honest prover strategy to generate
the second message ai. In the particular Blum’s Hamiltonian proof
that we use, this amounts to simply generating commitments to the
adjacency matrix of a random permutation of the original graph G.

4 Note that this is the maximum number of iterations as at least one new element is
added in each iteration and |T1| = t.
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– For i ∈ T1 ∪ · · · ∪ T�, let ei be the challenge revealed for index i.
The simulator runs SZK(x, ei) of the underlying honest-verifier zero-
knowledge proof in order to generate the second and fourth messages
(pi

2, p
i
4) using the knowledge of the challenge ei. It then sets ai = pi

2.
Let T ′ be the challenge set revealed by the verifier. The simulator repeats
until one of the following cases occur:
Case 1. T ′ �⊆ T1 ∪ · · · ∪ T�: This case implies that the verifier reveals

a challenge of a new ZK repetition that the simulator did not record
before. In this case, the simulator sets T�+1 = T ′ and proceeds to the
next iteration under 
 (i.e. go to Step 4).

Case 2. T ′ ⊆ T1 ∪ · · · ∪ T�: This case implies two subcases.
Case 2.1. T ′ ⊆ T1 ∪ · · · ∪ T�−1: The simulator ignores this case and
continues to rewind, i.e. go to step 4(a). We remark here that in this
case, the simulator could complete the execution as it has simulated all
the second messages according to the challenges corresponding to the
set T ′. Nevertheless, we deliberately make the simulator ignore this
case so as to not skew the probability distributions of the simulator’s
output.
Case 2.2. T ′ �⊆ T1 ∪ · · · ∪ T�−1and T ′ ⊆ T1 ∪ · · · ∪ T�: This case
considers the event where the revealed subset T ′ is not contained in
the first 
 − 1 collected sets, but is contained in first 
 sets. In this
case, the simulator continues the simulation and generates the fourth
message (r1, . . . , rn) for every i ∈ [n] as follows:

– If i �∈ T ′, the simulator needs to respond to the challenge given for
the extractable commitment scheme. In this case, the simulator
simply responds to the challenge honestly.

– If i ∈ T ′, then recall that the second message ai was set to
pi
2, where (pi

2, p
i
4) were generated using the honest verifier zero-

knowledge simulator based on the challenge ei (which is implied
by the fact that T ′ ⊆ T1∪· · ·∪T�). Therefore, if the revealed chal-
lenge for this repetition i is ei, then the simulator sets the fourth
message ri = pi

4. On the other hand, if the verifier reveals a dif-
ferent challenge for repetition i, then the simulator aborts. Note
that the simulator will never abort because the challenges are
committed using a perfectly binding commitment scheme Com.

The simulator then feeds this last message and outputs the view of
the verifier.

Proof of Indistinguishability. Denote by ViewV∗(P(x, ω),V∗(x, z)) the view
of the verifier V∗(z) when interacting with the honest prover on input ω and
common input x. We prove the indistinguishability of real and simulated proofs
by defining the following intermediate hybrid experiments.

Hybrid Hyb0: In this experiment, we consider the view of the verifier when it
interacts with the honest prover with witness ω.

Hybrid Hyb1: In this experiment, we define a simulator S1 that proceeds
with the rewinding strategy as simulator S does, with the exception that the



278 C. Hazay and M. Venkitasubramaniam

prover’s messages are generated according to the honest prover’s strategy. Define
S1(x, ω, z) to be the output of the simulator S1 in this hybrid. We next prove
indistinguishability and analyze the running time of S1 in the following claims.

Claim 3.2. The following distributions are identical.

– D0 = {ViewV∗(P(x, ω),V∗(x, z))}x∈L,ω∈Rx,z∈{0,1}∗

– D1 = {S1(x, ω, z)}x∈L,ω∈Rx,z∈{0,1}∗

Proof: Fix a random tape r for V∗. Let ψ = (V1, P
ψ
1 , V2, P

ψ
2 ) be the transcript

of a random execution between V∗(x, z; r) and an honest prover P(x, ω). We will
show that the probability with which this transcript is returned is identical in
both distributions. Let pψ be the probability with which this transcript appears
in D0 conditioned on V∗’s random tape being fixed to r. Clearly, the resulting
first message will always be V1, if S1 emulates the interaction with V∗ on a
random tape r. Then we prove that transcript (V1, P

ψ
1 , V2, P

ψ
2 ) is generated by

S1(x, ω, z) with the same probability pψ conditioned on the random tape of V∗

being r.
Note first, that by the definition of S1, the probability with which an abort-

ing transcript appears in both distributions is identical. We therefore focus on
non-aborting transcripts. Therefore, it suffices to compute the probability that
S1(x, ω, z) outputs the (non-aborting) transcript of messages (V1, P

ψ
1 , V2, P

ψ
2 )

conditioned on V∗’s random tape being fixed as r. We continue with some more
conventions and notations:

– We denote by S the set that occurs in the target transcript ψ, namely, the
set contained in message V2.

– We denote by pT the probability the subset T occurrs in the real execution.
We let p⊥ denote the probability that the verifer aborts before sending its
second message in the real execution. In this notation pT =

∑
pψ where the

summation is over all transcripts ψ that contains the subset T .
– We denote a tuple of sets by T = (T1, . . . , T�) to denote the sets collected by

the simulator before it enters the 
th iteration. Typically, given a tuple T, we
use T̃ to denote the tuple (T1, . . . , T�−1) and use :: for appending a set. In
this notation, T = T̃ :: T�.

– For 1 ≤ 
 ≤ n− t+1, let Valid� denote the set of all 
-tuples (T1, . . . , T�) that
satisfy the following two conditions.
1. All sets Ti are of size t.
2. For every 1 ≤ i ≤ 
, it holds that Ti �⊆ T1, . . . , Ti−1. (Recall that the

simulator moves to the next iteration only if it finds a new trapdoor).
Intuitively, valid sequences captures all sequences that can be obtained by
the simulator when entering the 
th iteration.5

5 By possibly we mean that it might be the case that the verifier never opens some
particular t subset T in any execution, in which case any tuple that involves T will
never occur in a simulation.
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– For any 
-tuple T = (T1, . . . , T�), we define qT the probability conditioned on
not aborting that in a random execution between V∗(x, z; r) and the honest
prover, the set opened by the verifier is covered by the elements T1, . . . , T�,
i.e. T ⊆ ∪�

i=1Ti. We set q{∅} = 0. We next observe that, for any tuple T =
(T1, . . . , T�), it holds that qT = (

∑
pT )/(1−p⊥) where the summation is over

all T such that |T | = t and T ⊆ ∪�
i=1Ti.

– For a tuple T = (T1, . . . , T�), let Pψ
T(
) denote the probability that, starting

with sets T and iteration 
, the simulator S1 outputs the transcript ψ.

Without loss of generality we assume p⊥ < 1, since, if the verifier aborts
w.p. 1, the simulator outputs the transcript from the first execution and will be
distributed identically to the real execution. We begin with the following claim
which will be sufficient to prove Claim 3.2.

Subclaim 3.3. For 1 ≤ 
 ≤ n−t+1 and every tuple T = (T1, . . . , T�) ∈ Valid�,

Pψ
T(
) =

{
pψ

(1−p⊥)(1−q
˜T) if T̃ does not cover S, and

0 otherwise.

where T̃ = (T1, . . . , T�−1).

Before we prove this claim, we conclude Claim 3.2 using the preceding sub-
claim. As argued above, the probability that the simulator outputs aborting
transcripts is identical to the real execution. Observing that q∅ = 0, conditioned
on not aborting, the probability that the simulator outputs non-aborting ψ is
given by Pψ

T(0) which from the preceeding claim is pψ/(1−p⊥). Since the proba-
bility that the simulator continues after the first execution is (1−p⊥), Claim 3.2
follows.

Now we proceed to prove Subclaim 3.3.

Proof: Given T = (T1, . . . , T�), suppose T̃ = (T1, . . . , T�−1) covers S, then from
the description of our simulation it follows that it is not allowed to output ψ in
iterations 
 or higher. In other words, when T̃ covers S, Pψ

T(
) = 0 as in the
claim.

Therefore, it suffices to prove the subclaim when T̃ does not cover S. We
prove this case using a reverse induction on 
 from n − t + 1 to 1.

Base Case: 
 = n − t + 1. Let T = (T1, . . . , Tn−t+1) be an arbitrary valid
tuple and let T̃ = (T1, . . . , Tn−t). Recall that, for a general iteration 
, the
simulator rewinds until it obtains T �⊆ ∪�−1

i=1Ti. Then, if T ⊆ ∪�
i=1Ti it outputs

the transcript. Otherwise, it has obtained a new trapdoor, sets T to be the
new set Ti+1 and proceeds to the next iteration. However, if 
 = n − t + 1, we
have that ∪n−t+1

i=1 Ti must be [n] as at least one new element is added in each
iteration and |T1| = t. Therefore, in this base case, we have that S �⊆ ∪n−t

i=1 Ti

and S ⊆ ∪n−t+1
i=1 Ti. This means that if the simulator encounters the transcript
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ψ in iteration n − t + 1, it will output it. The probability can be computed as
follows:

Pr[ψ occurs in the iteration | no t -subset of ∪�−1
i=1 Ti occurs]

=
Pr[ψ occurs in the iteration ]

Pr[ no t-subset of ∪�−1
i=1 Ti occurs]

=
pψ

(1 − p⊥)
× 1

(1 − q
˜T)

This completes our base case.

Induction Step: 1 ≤ 
 ≤ n − t. Let T = (T1, . . . , T�) be an arbitrary tuple in
Validi. Set T̃ = (T1, . . . , T�−1). Recall that we only need to show the subclaim
when T̃ does not cover S. There are two cases w.r.t T:

Case 1: T covers S: In this case, the simulator can output ψ only in this
iteration and not higher. Recall that the simulator in this iteration will rewind
until it obtains a set T �⊆ T̃. Therefore, the probability that the simulator
outputs ψ is same as in the base case and given by pψ/((1 − p⊥)(1 − q

˜T)).
Case 2: T does not cover S: This means that the simulator can output ψ
only in iterations 
+1 or higher. Then for any subset T not covered by T the
probability that the simulator outputs ψ in iteration 
 + 1 or higher is given
by

Pr[T occurs in the current iteration | no t-subset of ∪�−1
i=1 Ti occurs]

× Pr[ψ occurs in iteration ≥ � + 1 with T :: T occuring in the first � iterations]

= Pr[T occurs in the current iteration | no t-subset of ∪�−1
i=1 Ti occurs]

× P ψ
T::T (� + 1)

=
pψ

(1 − p⊥)(1 − q
˜T)

× P ψ
T::T (� + 1)

This means that the overall probability can be obtained by summing the pro-
ceeding expression over all sets T not covered by T, namely, T �⊆ T1, . . . , T�.

Pψ
T(
) =

∑

T �⊆T1∪···∪T�−1

pT

(1 − p⊥)(1 − q
˜T)

× Pψ
T::T (
 + 1)

=
∑

T �⊆T1∪···∪T�−1

pT

(1 − p⊥)(1 − q
˜T)

× pψ

(1 − p⊥)(1 − qT)

=
pψ

(1 − p⊥)(1 − qT)
× 1 − qT

1 − q
˜T

=
pψ

(1 − p⊥)(1 − q
˜T)

.

where in the second step we invoke our induction hypothesis that Pψ
T::T (
 +

1) = pψ/((1 − p⊥)(1 − qT)).

This completes our inductive step and concludes the proof of our subclaim. ��
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Claim 3.4. The expected running time of S1 is polynomial.

Proof: We argue by induction on the iterations that the expected running time
of the simulator S1 defined in this hybrid is polynomial. Define RunTimeT(
) to
be the expected total running time of the simulator in iterations 
 and above
conditioned on T = (T1, . . . , T�) being the sets obtained by the simulator in the
first 
 − 1 iterations.

Subclaim 3.5. There exists a constant c such that, for any valid tuple
(T1, . . . , T�), RunTimeT(
) ≤ nc(n−�)

(1−p⊥)(1−q
˜T) where 1 ≤ 
 ≤ n − t + 1 and

T̃ = (T1, . . . , T�−1).

Proof: As in the previous proof we do reverse induction on iteration 
.

Base Case 
 = n − t + 1. Let T = (T1, . . . , Tn−t+1). Recall that in iteration

 = n − t + 1 we have ∪n−t+1

i=1 Ti = [n]. Therefore, there are no more iterations
and the simulator stops whenever it finds any T such that T �⊆ ∪n−t

i=1 Ti. The
probability of observing such an execution using our notation defined above is
given by (1−p⊥)(1−q

˜T). Therefore, the expected number of rewindings that the
simulator needs to perform in the (n − t + 1)st iteration is 1/((1 − p⊥)(1 − q

˜T)).
This in turn means the expected time spent by the simulator conditioned on
entering iteration n − t + 1 with sets (T1, . . . , Tn−t+1), i.e.

RunTimeT(n − t + 1) =
nc

(1 − p⊥)(1 − q
˜T)

where nc is an upper bound on the time spent by the simulator in a single
rewinding with the verifier.

Induction Step: 1 ≤ 
 ≤ n−t. We will compute the expected time spent in this
iteration. Suppose that the simulator collected the sets (T1, . . . , T�) in the first

 − 1 iterations. Recall that the simulator rewinds until it obtains T �⊆ ∪�−1

i=1Ti

and either outputs the transcript (if T ⊆ ∪�
i=1Ti) or moves on to the next

iteration otherwise. The number of rewindings in this iteration is therefore 1
1−q

˜T

in expectation. Now, the total expected running time in iterations 
 and above
can be computed as

E[#rewindings in iteration 
 until it obtains T �⊆ ∪�−1
i=1Ti] × nc

+ E[time spent in iterations > 
 with T ]

=
nc

(1 − p⊥)(1 − q
˜T)

+
∑

T ′ �⊆∪�
i=1Ti

Pr[T = T ′|T �⊆ ∪�−1
i=1Ti] × RunTimeT::T (
 + 1)

≤ nc

(1 − p⊥)(1 − q
˜T)

+
nc(n − 
 − 1)

(1 − p⊥)(1 − qT)
×

∑

T ′ �⊆∪�
i=1Ti

Pr[T = T ′|T �⊆ ∪�−1
i=1Ti]
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=
nc

(1 − p⊥)(1 − q
˜T)

+
nc(n − 
 − 1)

(1 − p⊥)(1 − qT)
×

∑

T ′ �⊆∪�
i=1Ti

Pr[T = T ′]

1 − q
˜T

=
nc

(1 − p⊥)(1 − q
˜T)

+
nc(n − 
 − 1)

(1 − p⊥)(1 − qT)
× 1 − qT

1 − q
˜T

=
nc(n − 
)

(1 − p⊥)(1 − q
˜T)

where the third step follows from the induction hypothesis. ��
The expected total running time of the simulation is given by

p⊥ × nc + (1 − p⊥) × RunTime∅(1) = nc + nc(n − 1)

and this concludes the proof of the claim. ��
Hybrid Hyb2: In this experiment we consider the actual simulation as defined
by S(x, z). The output of the experiment will then be S(x, z).

Claim 3.6. The following distributions are identical.

– {S1(x, ω, z)}x∈L,ω∈Rx,z∈{0,1}∗

– {S(x, z)}x∈L,ω∈Rx,z∈{0,1}∗

Proof. Assume for contradiction that there exists a malicious verifier V∗, a dis-
tinguisher D and a polynomial p(n) such that for infinitely many n’s, D distin-
guishes S1(x, ω, z) = 〈S1(ω),V∗(z)〉(x) and S(x, z) = SV∗

(x, z) with probability
1

p(n) . Fix any n for which this event occurs.
First, we consider truncated experiments Hyb1(n, x, z) (resp. Hyb2(n, x, z))

which proceeds exactly as Hyb1(n, x, z) (resp. Hyb2(n, x, z)) with the exception
that the simulation is aborted if it runs more than np(n)t(n) steps where t(n)
is the polynomial bounding the expected running time of S1. If the experiment
is aborted then Hyb1 (resp. Hyb2) is set to a special symbol ⊥. By an aver-
aging argument we can conclude that the truncated experiments Hyb1(n, x, z)
and Hyb2(n, x, z) can be distinguished with probability at least 1

2p(n) by the
distinguisher D.

Next, we consider a sequence of intermediate hybrids Hyb0
1, . . . ,Hybn−t+1

1 ,
where in Hybrid Hyb�

1, we define a simulator S�
1 that will follow the real simula-

tor’s strategy S in the first 
 iterations of the for loop and the remaining accord-
ing to the honest prover using the real witness. If S�

1 runs over np(n)t(n) steps
then we stop the simulation and output ⊥. Let Hyb

�

1(n, x, z) be the output of the
S�
1 in Hyb�

1. It follows from definition that Hyb
0

1 = Hyb1 and Hyb
n−t+1

1 = Hyb2.
Therefore, if D distinguishes Hyb

0

1 from Hyb
n−t+1

1 then there exists an index
i such that D distinguishes Hyb

i

1 from Hyb
i+1

1 with probability 1
2np(n) . Since

the experiments are truncated after np(n)t(n) steps the maximum number of
rewindings that can occur in iteration i where the two experiments differ is
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np(n)t(n). We show that using V∗ and D we can contradict the honest verifier
zero-knowledge property (for many parallel repetitions).

Consider an adversary A that begins an emulation of Hyb
i

1(n, x, z) until
it reaches iteration i. If it halts before, A simply outputs the output of the
experiment. Otherwise, let T1, . . . , Ti be the set of indexes that were obtained
by the simulator in the internal emulation. Let T = T1 ∪ · · · ∪Ti and let {et}t∈T

be the challenges in the indexes in T . A forwards these challenges to an external
challenger C. The challenger then produces np(n)t(n) transcripts of the honest-
verifier zero-knowledge protocol for each challenge et for t ∈ T . A uses the
prover’s messages in these transcripts to generate the prover messages in the
internal emulation in iteration i. Then it completes the experiment, where from
iteration i + 1 the adversary plays the honest prover strategy and uses the real
witness, and outputs the output of the experiment. By our construction, if the
external challenger C produces transcripts according to the honest prover, then
the internal emulation by A is identical to Hyb

i

1. On the other hand if the
transcripts received from C is according to the honest verifier simulator, then
the internal emulation is identical to Hyb

i+1

1 . Therefore, D and A violates the
honest verifier zero-knowledge property of πZK.

Claim 3.7. The expected running time of S is polynomial.

Proof: Assume for contradiction, the expected running time of S is not poly-
nomial. Recall that the expected running time of S1 is some polynomial t(n).
Then we can construct a distinguisher that distinguishes the truncated experi-
ments Hyb1(n, x, z) and Hyb2(n, x, z) defined above and this is a contradiction
to the previous claim. We consider truncated experiments Hyb1(n, x, z) and
Hyb2(n, x, z) where the experiments are truncated after 2t(n) steps. Next, con-
sider a distinguisher D that outputs 1 if the experiment’s output is ⊥ and 0
otherwise. D on input view from Hyb1(n, x, z) outputs 1 with probability at
least 1

2 . However, D on input a view from Hyb2(n, x, z) outputs 1 is negligible.
Therefore, D distinguishes Hyb1(n, x, z) and Hyb2(n, x, z) with non-negligible
probability and this is a contradiction. ��

4 Corollaries

In this section, we provide corollaries to our main techniques. We obtain the first
round optimal fully black-box constructions of perfect zero-knowledge arguments
and input-delayed commit-and-prove zero-knowledge argument.

4-round Perfect Zero-Knowledge Argument from Claw-free Permuta-
tions. As a corollary of Theorem 3.1, we prove that there exists a 4-round perfect
zero-knowledge argument based on claw-free permutations. This is achieved by
replacing the prover’s commitments in Protocol 1 with perfectly hiding commit-
ments which can be based on claw-free permutations. More formally,

Corollary 4.1. Assuming claw-free permutations, there exists a 4-round fully
black-box perfect zero-knowledge argument for any NP language.
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The protocol for the perfect zero-knowledge case is identical to the protocol
described in Sect. 3 with the only exception that the commitments made by
the prover is replaced with perfectly hiding commitments that can be based on
claw-free permutations [GK96a]. The proof follows is analogous to the proof of
Theorem 3.1. The soundness argument essentially remains unchanged; we only
need to handle the case when the prover violates the binding property of the
underlying commitment scheme. The zero-knowledge property follows essentially
as before. We observe that the distributions in Hyb0 and Hyb1 are already proved
to be identical. To conclude we observe that the distributions in Hyb1 and Hyb2

are also identical because the underlying commitment scheme is perfectly hiding.

4-round Input-Delayed Commit-and-Prove ZK Argument. As a sec-
ond corollary, we prove that there exists a 4-round input delayed commit-and-
prove zero-knowledge argument. This is achieved by replacing the three-round
honest-verifier zero-knowledge argument based on Blum-Hamiltonicity with the
three-round commit-and-prove input-delayed protocol of Hazay and Venkitasub-
ramaniam [HV16] in Sect. 6.2. More formally,

Corollary 4.2. Assuming injective one-way functions, there exists a fully black-
box 4-round input-delayed commit-and-prove zero-knowledge argument for any
NP language.
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Abstract. Motivated by theoretical and practical considerations, an
important line of research is to design secure computation protocols that
only make black-box use of cryptography. An important component in
nearly all the black-box secure computation constructions is a black-
box commit-and-prove protocol. A commit-and-prove protocol allows a
prover to commit to a value and prove a statement about this value
while guaranteeing that the committed value remains hidden. A black-
box commit-and-prove protocol implements this functionality while only
making black-box use of cryptography.

In this paper, we build several tools that enable constructions of
round-optimal, black-box commit and prove protocols. In particular,
assuming injective one-way functions, we design the first round-optimal,
black-box commit-and-prove arguments of knowledge satisfying strong
privacy against malicious verifiers, namely:

– Zero-knowledge in four rounds and,
– Witness indistinguishability in three rounds.

Prior to our work, the best known black-box protocols achieving commit-
and-prove required more rounds.

We additionally ensure that our protocols can be used, if needed, in the
delayed-input setting, where the statement to be proven is decided only
towards the end of the interaction. We also observe simple applications
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of our protocols towards achieving black-box four-round constructions of
extractable and equivocal commitments.

We believe that our protocols will provide a useful tool enabling sev-
eral new constructions and easy round-efficient conversions from non-
black-box to black-box protocols in the future.

1 Introduction

Secure computation [13,42] allows a set of mutually distrusting parties to com-
pute a joint function of their private inputs such that nothing else apart from the
function’s output is leaked. The constructions of secure computation protocols
(where the majority of the parties can be corrupted) may make use of crypto-
graphic primitives in one out of the following two ways. The construction can
either make black-box use of the primitive by referring only to the input/output
behavior of that primitive or it can make non-black-box use of the primitive by
using the code computing this primitive.

Typically, non black-box use of a cryptographic primitive is made to pro-
tect against malicious adversaries who may deviate arbitrarily from the protocol
specification. In such scenarios, a zero-knowledge proof [14] showing correct com-
putation of this primitive (which in turn requires access to the code computing
this primitive) is used. This part is computationally expensive and further, the
complexity of this step depends on the actual implementation of this crypto-
graphic functionality.

The advantage of black-box constructions is that their complexity is inde-
pendent of the complexity of implementation of the underlying primitive. In
fact, such protocols are sometimes considered as the first step towards practical
implementations. There has been an impressive body of research [7,15,16,19,25–
28,36] on constructing secure computation protocols that make black-box use
of underlying primitives. However, most of these works incur several additional
rounds of interaction when compared to non-black-box protocols.

A very natural question, which is still far from being resolved, is whether
there exist black-box protocols that match the exact round complexity of their
non-black-box counterparts.1 In this paper, we ask this question for a key crypto-
graphic functionality that lies at the center of nearly all black-box constructions:
the commit-and-prove functionality.

1.1 Commit-and-Prove Functionalities

A “commit-and-prove” functionality [6,13] is generally used to prevent malicious
behaviour by forcing participants to prove correctness of their protocol messages
w.r.t. the committed inputs. Informally, a commit-and-prove functionality allows
1 Two notable exceptions are the works of [34] and [18] who construct round-optimal

secure computation, and non-malleable commitments respectively via black-box use
of cryptography. However, these works developed techniques very specific to their
respective settings.
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a party to commit to some secret value x and prove that value satisfies some
predicate P . In order to maintain secrecy, such a proof must additionally hide
the secret input x, in other words it must be zero-knowledge.

Very roughly, any commit-and-prove protocol is said to be zero-knowledge if
there exists an associated simulator that given the commitment externally, is able
to generate a proof without access to the witness (or the value being committed
via the commitment). We note that such protocols have been a core primitive
in nearly all previous works on obtaining black-box constructions, including [16,
25,27,36]. In addition to zero-knowledge, we also consider the weaker privacy
property of witness indistinguishability [9].2

Despite the above mentioned fascinating advances in constructing such pro-
tocols, we still do not know round-optimal black-box constructions of zero-
knowledge commit-and-prove functionalities. Indeed, in the black-box regime,
the best known result is due to Hazay and Venkitasubramaniam [21] which
requires 6 rounds of interaction. In fact, when not restricted to black-box use of
primitives, we have known for more than 25 years that four rounds are neces-
sary [12]3 and sufficient [5,8] for constructing zero-knowledge commit-and-prove
arguments.

However, so many years later, in the regime of black-box commit-and-prove,
the following question is still open:

“Do there exist round-optimal, black-box commit-and-prove zero-knowledge
protocols?”

1.2 Our Results

We provide a positive answer to this question. In particular, assuming injective
one-way functions, we construct the first:

– Four round black-box commit-and-prove zero-knowledge arguments of knowl-
edge against malicious verifiers, and

– Three round black-box commit-and-prove witness-indistinguishable argu-
ments of knowledge against malicious verifiers. These commitments satisfy
only a weaker notion of binding (that we call 1-of-2 binding), which never-
theless suffices for all our applications, and which we detail in Definition 4.

Our protocols satisfy correctness and soundness even in the delayed-input setting,
where the predicate to be proved can be decided even in the last round of the
protocol, however, the witness or message to be committed must be known before
the prover sends his first message. Additionally, as simple applications of these
protocols, we give the first constructions of four round extractable and equivocal
commitments that only make black-box use of injective one-way functions.

2 Please refer to Sect. 3 for a formal definition of witness indistinguishable commit-
and-prove protocols.

3 Due to limitations on the round-complexity required to implement existing non
black-box techniques, we restrict ourselves to black-box reductions in this paper.
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Discussion. Our construction makes non-black-box use of the predicate, similar
to all previous constructions in this line of work. With respect to constructions
making black-box use of the predicate, we would like to point to the negative
result of Rosulek [39] which shows that any (honest-verifier) zero-knowledge
argument for the NP language L = {x : ∃ws.t.f(w) = x} and f is a one-way
function must make use of the code of the function f .

We note that similar to previous work using MPC-in-the-head [IKOS07] and
follow-ups, our techniques can be used directly to build black-box protocols in
cases where the predicate is information theoretic. There are several settings
in literature where the predicate is indeed information theoretic. A few simple
examples include:

– A commit-and-prove protocol for checking equality of two committed values
(This is in fact used in our construction of equivocal commitments).

– A commit-and-prove protocol for checking that one committed value corre-
sponds to a fixed polynomial evaluated on a different committed value (Eg,
in the ZK arguments that achieve four round non-malleable commitments in
GRRV14.)

– Comparison queries or range proofs, showing that a committed value lies in a
certain fixed range (Such proofs have become increasingly popular in recent
years).

– These techniques may also be relevant to distributed secure protocols with
information-theoretic guarantees.

Furthermore, as we note in the paper, in many other situations, where
the predicate itself involves cryptography, cut-and-choose techniques have been
extensively explored (Please see [1,22,23,30–33,40,41] and references therein).
Specifically, the works of [16,17,35] used cut-and-choose to separate such predi-
cates into cryptographic components, for which malicious security was obtained
using cut-and-choose, and information-theoretic components, for which tailored
commit-and-prove protocols were built. In this paper, we concentrate on the lat-
ter and build round-optimal, black-box commit-and-prove ZK protocols to gener-
ically solve the problem of commit-and-prove for information-theoretic predi-
cates. As simple applications of these results, in the paper, we construct the
first four round extractable and equivocal commitments from injective one-way
functions.

1.3 Related Works

Goldreich and Krawcyzk [12] showed that four rounds are necessary to construct
zero-knowledge argument system that make black-box use of a verifier for lan-
guages outside of BPP. Bellare et al. [5] and Feige et al. [8] gave protocols that
matches this round complexity from the minimum assumption that one-way
functions exist.

The commit and prove functionality was first used implicitly in [13] and
was later formalized in [6]. The constructions given in these works made non-
black-box use of one-way functions. A constant round black-box commit and
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prove zero-knowledge proof was implicit in the work of Ishai et al. [27] assuming
collision resistant hash functions. Later works of [16,17,35] improved the con-
crete round complexity of this construction and also constructed zero-knowledge
argument systems from one-way functions. More recently, Hazay and Venkita-
subramaniam [21] constructed a six-round black-box commit and prove zero-
knowledge argument from injective one-way functions. This work represents the
state of the art in terms of round complexity of black-box commit and prove.

2 Our Techniques

Our starting point is the work of Hazay and Venkitasubramaniam [21], who con-
structed three-message black-box commit-and-prove ZK protocols with constant
soundness, by making use of robust offline/online randomized encodings.

Starting Point: Robust Offline/Online Encoding. A randomized encoding [2–
4,24,42] of a boolean circuit f is a function ̂f along with a decoding algorithm
Dec such that for any input x in the domain of the function f , with overwhelming
probability it holds that Dec( ̂f(x;Um)) = f(x), where Um denotes the uniform
distribution over m bits. Moreover, the encoding ̂f required to satisfy computa-
tional privacy, meaning that the encoding ̂f(x,Um) reveals no information about
x and f , except f(x). A randomized encoding is called offline/online if it has two
components: an offline component that does not depend on the input, and an
online component which is a function of the input. We will denote these by two
functions ̂foff and ̂fon such that ̂f(x; r) = ( ̂foff(r), ̂fon(x, r)). Such an encoding is
called robust, if additionally the following is true: when there exists no x such that
f(x) = a, then for any r, there does not exist any z such that Dec( ̂foff(r), z) = a.
The work of [21] showed that robust randomized encodings can be instantiated
in multiple ways, including the use of adaptive garbled circuits.

Black-Box Commit and Prove with Constant Soundness. Let us now explain how
the work of [21] used offline/online randomized encodings to construct black-box
commit and prove ZK proofs with constant soundness error. Additionally, if the
encodings are robust then this zero-knowledge proof satisfies correctness and
soundness in the delayed-input setting.

The prover P has a message m and wants to convince the verifier that φ(m) =
1 where φ is some predicate. The protocol is as follows:

1. In the first round, P secret shares m into two shares m0 and m1. It then
constructs a function f which has hardwired a secret share m0 of m, and
obtains as input the other share m1 and the predicate φ. This function outputs
(1, φ,m1) if and only if φ(m0 ⊕m1) = 1; otherwise it outputs ⊥. It constructs
an offline encoding of this function ̂foff(r) and sends ̂foff(r) and also sends a
(standard) non-interactive commitment to m1.

2. The verifer V sends a random single bit challenge b.
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3. If b := 0 then the prover sends f, r and the verifier checks if ̂foff(r)
is computed correctly. Otherwise, P opens the commitment to m1 and
also sends ̂fon((m1, φ), r). V checks if the opening is valid and also runs
Dec( ̂foff(r), ̂fon((m1, φ), r)) and checks if this output is (1,m1, φ).

In the case where b = 0, the commitment computationally hides m1, whereas
when b = 1, the privacy of the randomized encoding ensures that m0 remains
hidden. As shown in [21], this can indeed be formalized to prove that the protocol
satisfies zero-knowledge. However, the protocol is only 1/2 sound: in particular,
a cheating prover can guess the verifier’s challenge in advance, and use this to
generate an accepting proof of a false statement.

Boosting Soundness. In order to boost soundness to close to 1, a natural idea is
to parallel repeat this basic protocol to achieve negligible soundness error. But
this idea does not work because we want a commit-and-prove: meaning that a
malicious prover should be forced to commit to a single value and prove that
it satisfies the predicate. In a näıve parallel repetition, a cheating prover could
use different m’s to compute the first message in different parallel repetitions.
Therefore, we must find a way to ensure consistency of messages used across
different parallel executions.

To achieve this, we augment the constant soundness protocol in the following
way:

1. Instead of secret sharing m, the prover now secret shares w := (m‖r) where r
is a random element from a finite field F.4 Let w0 and w1 be the secret shares.
The prover constructs a function f that has w0 hardwired in its description
and takes as input the other share w1 along with an augmented predicate φ′

(which we will define later). f outputs (1, w1, φ
′) if and only if φ′(w0 ⊕ w1) =

1. It constructs an offline encoding of this function ̂foff(r) and sends ̂foff(r)
and also sends a (standard) non-interactive commitment to w1.

2. The verifier chooses a random bit b as before and additionally chooses a
random element α ← F \ {0} and sends b, α to P.

3. The prover computes γ := rα + m and sets the predicate φ′((m‖r)) to check
if φ(m) = 1 and if γ is correctly computed. The prover sends γ and responds
to the verifier’s challenge bit as before.

In the parallel repetition of the above protocol, P chooses a “global” r that
remains the same for each of the repetitions and also sends a single γ := rα+m in
the third round; in each repetition, the predicate φ′ shows that this “global” γ is
consistent with the value w used in that repetition. We now show that the above
augmented constant soundness protocol can force a prover to use consistent
witness across multiple parallel executions. Say, the prover tries to use different
witnesses (r′,m′) �= (r,m) across parallel repetitions. Then, with overwhelming
probability rα+m �= r′α+m′ by the Schwartz-Zippel lemma. Thus, the predicate
that the prover is trying to prove in those repetitions is false and hence he will

4 We assume that the message m also belongs to the same finite field.
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be caught if he tries to use inconsistent witness in many repetitions. We show
that this parallel repetition satisfies witness indistinguishability.

Achieving Zero-Knowledge. As mentioned earlier, our three round parallel rep-
etition of the augmented constant soundness protocol satisfies witness indistin-
guishability. Indeed, in order for it to achieve zero-knowledge property, it is
necessary to have an additional round of interaction [11].

Our four round commit and prove ZK protocol follows the FLS paradigm
[8] i.e., we run two special purpose witness indistinguishable protocols in oppo-
site directions between the prover P and the verifier V. Recall that in the FLS
paradigm the first protocol is a WI-PoK run by the verifier proving the knowl-
edge of some trapdoor information. The second WI-PoK protocol run by the
prover shows the knowledge of a witness for the statement x or the knowledge
of verifier’s trapdoor information. Intuitively, the soundness of the protocol fol-
lows from the security of the first WI-PoK and the zero-knowledgeness property
follows from the observation that the simulator can rewind and extract the trap-
door information from the first WI-PoK and then use it in the second protocol.

In our construction, the first WI protocol run by V is a 3-round two-com pro-
tocol. Intuitively, the two-com protocol is a commitment to two random strings
s0 and s1 such that commitment to sb for a random b ∈ {0, 1} is binding whereas
the commitment to the other string s1−b is equivocal. The trapdoor information
is the string sb. We demonstrate how to construct this primitive with black-
box use of statistically binding commitment scheme using ideas from [34]. We
additionally show that this trapdoor information can be extracted in expected
polynomial time by rewinding the verifier. We wish to emphasize that the trap-
door that we use is in some sense “information theoretic” in nature and in
contrast, the trapdoors usually used in the FLS paradigm are “crytographic” in
nature such as the inverse of a given one-way function, or a signature under a
public verification key, etc. Indeed, using such cryptographic trapdoors in the
FLS paradigm leads to non-black-box use of one-way functions.

The second WI protocol run by P is essentially the 3-round WI protocol
that we constructed earlier which proves that either the committed message m
satisfies the predicate or m is the trapdoor. We show that a combination of
these two special purpose WI protocols is a zero-knowledge commit and prove
by carefully relying on the timing of the messages exchanged and the delayed
input property of the second WI. We refer the reader to the main body for the
details.

3 Preliminaries

In this section, we recall some preliminaries and tools that will be useful in our
constructions. We will denote the security parameter by λ, and we will say that
a function f : N → N is negligible if for every polynomial p(·) and all sufficiently
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large n it holds that f(n) < 1
p(n) . We use the abbreviation PPT to denote

probabilistic polynomial-time.

3.1 Commitment Schemes

A commitment scheme enables a party, known as the sender S, to commit to
a value while keeping it secret from the receiver R – this property is called
hiding. Furthermore, it is guaranteed that at a later stage, the opening of the
commitment can only yield a single value – this property is called binding. We
consider commitment schemes that are statistically binding and computationally
hiding.

Definition 1 (Commitment schemes). A commitment scheme 〈C(m), R〉 is
a two-phase protocol between a committer C and receiver R. At the beginning of
the protocol, C obtains as input a message m ∈ {0, 1}p. Next, C and R execute
the commit phase, and obtain commitment transcript τ ← Commit〈C(m),R〉.
They also store (private) randomness used respectively by C and R as stateC,τ

and stateR,τ . At the end of this phase, R outputs 0 or 1, where 1 denotes that
R accepted the commitment phase. The view of the receiver (including its coins,
any auxiliary information z and transcript) at the end of this phase is denoted
by ViewR〈C(M),R(z)〉.

Later, C and R possibly engage in another (interactive) decommit phase,
which we denote by Decommit〈τ, C(m, stateC,τ ),R(stateR,τ )〉 at the end of which
R outputs ⊥ or a message m̃ ∈ {0, 1}p.

We require these algorithms to satisfy the following properties:

– Correctness. If C,R honestly follow the protocol, Pr[R accepts the
decommitment] = 1 − negl(λ).

– Computational hiding. For every PPT machine R∗ with auxiliary infor-
mation z, the distributions {ViewR〈C(m),R(z)〉} and {ViewR〈C(0),R(z)〉}
are computationally indistinguishable.

– Statistical binding. For any (unbounded) malicious C∗,

Pr
[R accepts decommitment to m̃1 and m̃2 where m̃1 �= m̃2] ≤ negl(λ)

where the probability is over the randomness of sampling (τ ← Commit
〈C∗,R〉), (m̃1 ← Decommit〈τ, C∗,R(stateR,τ )〉) and (m̃2 ← Decommit〈τ, C∗,
R(stateR,τ )〉) . We will say that the scheme satisfies computational binding if
the above holds for any PPT committer C∗ with auxiliary input z.

We now define an extractable commitment scheme [37,38]. Intuitively, a
commitment scheme is extractable if there exists an expected polynomial time
machine that can extract the value committed by a cheating committer.

Definition 2 (Extractable Commitments). A commitment scheme is said
to be extractable, if there exists a PPT oracle algorithm E that given τ ←
Commit〈C∗,R〉 and oracle access to C∗, outputs m̃, r such that ∃r where τ =
Commit〈C(m̃),R〉 using randomness r for C.
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An equivocal commitment scheme allows an expected polynomial time
machine called as the equivocator to equivocate a commitment transcript to any
chosen committed value. Equivocal commitments have been extensively used to
obtain round optimal constructions of secure two-party and multiparty compu-
tations [10,29].

Definition 3 (Equivocal Commitments). A commit-and-prove scheme is
equivocal if there exists a PPT oracle algorithm Eq that interacts with oracle
access to any malicious receiver R∗ to output a commitment transcript τ̃ . Next,
it obtains externally generated string m′, and then runs Decommit〈τ̃ ,EqR∗

,R∗〉.
Then, we require that the distributions

ViewR∗(τ ← Commit〈C(M ′),R∗〉,Decommit〈τ, C,R∗〉) and

ViewR∗(τ̃ ← Commit〈EqR∗
,R∗〉,Decommit〈τ̃ ,EqR∗

,R∗〉)

are computationally indistinguishable.

3.2 Commit-and-Prove Protocols

We start with the definition of commit and prove witness indistinguishable proof
of knowledge. Our construction of commit and prove witness indistinguishable
proof of knowledge satisfies a weaker notion of 1-of-2 binding. Intuitively, 1-of-2
binding states that there exists at most two different messages that a committed
transcript can be opened to.

Definition 4 (Commit-and-Prove Witness Indistinguishable Proof of
Knowledge). A commit-and-prove witness indistinguishable proof of knowledge
is a protocol between a prover P and verifier V. It consists of two phases, a
commit phase and reveal phase.

In the commit phase, P interacts with V to commit to a message m. It also
proves that the m satisfies some predicate φ, in other words it proves that φ(m) =
1. Let τ denote the transcript τ ← Commit-and-Prove〈P(m,φ),V(φ)〉. They also
store (private) randomness used respectively by P and V as stateP,τ and stateV,τ .
At the end of this phase, V outputs 0 or 1, where 1 denotes that V accepted the
commit-and-prove phase.

Later, the parties P and V possibly engage in another decommit phase, which
we denote by Decommit〈τ,P(m, stateP,τ ),V(stateV,τ )〉, at the end of which V
outputs ⊥ or m̃ ∈ {0, 1}p.

We require the protocol to satisfy the following conditions:

– Completeness. If P,V honestly follow the protocol, Pr[V accepts the
proof] = 1 − negl(λ).

– Witness Indistinguishability. Let the view of a malicious verifier V∗ at
the end of the commit phase when the honest prover has input message m
be denoted by ViewV∗(Commit-and-Prove〈P(m),V∗(z)〉). For any malicious
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verifier V ∗, and any two messages m1,m2 such that φ(m1) = 1 and φ(m2) =
1, the distributions {P (m1), V ∗(z)} and {P (m2), V ∗(z)} are computationally
indistinguishable.

– Proof of Knowledge. There exists a PPT oracle algorithm E that given
oracle access to P∗ and τ ← Commit-and-Prove〈P∗,R(φ)〉 outputs m̃ such
that the following properties are satisfied for every PPT P∗:

• φ(m̃) = 1.
• 1-of-2-Binding. This requires that the committer cannot decommit to

two values m1,m2, both of which are different from m̃. In other words, we
require the commit-and-prove to bind any malicious committer to at least
one out of two values. Formally, Pr[m̃ �∈ {m1,m2}] ≤ negl(λ), whenever
m1 ← Decommit〈τ,P∗,V(stateV,τ )〉, and also when
m2 ← Decommit〈τ,P∗,V(stateV,τ )〉.

We now give the definition of commit and prove zero-knowledge argument of
knowledge. We include the equivocality property into our zero-knowledge con-
dition. This will be helpful when proving the security of our construction of
equivocal commitment scheme.

Definition 5 (Commit-and-Prove Zero-Knowledge Arguments of
Knowledge). A commit-and-prove zero-knowledge argument of knowledge is
a protocol between a prover P and verifier V. It consists of two phases, a commit
phase and reveal phase.

In the commit phase, P interacts with V to commit to a message m. It also
proves that the m satisfies some predicate φ, in other words it proves that φ(m) =
1. Let τ denote the transcript τ ← Commit-and-Prove〈P(m,φ),V(φ)〉. They also
store (private) randomness used respectively by P and V as stateP,τ and stateV,τ .
At the end of this phase, V outputs 0 or 1, where 1 denotes that V accepted the
commit-and-prove phase.

Later, the parties P and V possibly engage in another decommit phase, which
we denote by Decommit〈τ,P(m, stateP,τ ),V(stateV,τ )〉, at the end of which V
outputs ⊥ or m̃ ∈ {0, 1}p.

We require the protocol to satisfy the following conditions:

– Completeness. If P,V honestly follow the protocol, Pr[V accepts the
proof] = 1 − negl(λ).

– Argument of Knowledge. There exists a PPT oracle algorithm E that
given oracle access to P∗ and τ ← Commit-and-Prove〈P∗,R(φ)〉 outputs m̃
such that the following properties are satisfied for every PPT P∗:

• φ(m̃) = 1.
• Computational Binding. Pr

[

m ← Decommit〈τ,P∗,R(stateR,τ )〉 ∧
m �= m̃] ≤ negl(λ).

– Zero-Knowledge. Let ViewV∗(Commit-and-Prove〈P(m),V∗(z)〉) denote the
view of a malicious verifier V∗ at the end of the commit phase when the honest
prover has input message m such that φ(m) = 1. There exists a simulator
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Sim that outputs ViewCommit(SimV∗
). Next, it obtains input m and outputs

ViewDecommit(SimV∗
(m)). Then, we require that for all values m,

(

ViewCommit(SimV∗
),ViewDecommit(SimV∗

(m))
)

c≈
(

ViewV∗(Commit-and-Prove〈P(m),V∗(z)〉),Decommit〈τ,P(stateP,τ ),V∗)

In particular, this also implies that any malicious verifier V ∗, and any two
messages m1,m2 such that R(φ,m1) = 1 and R(φ,m2) = 1, the distribution
ViewV∗(Commit-and-Prove〈P(m1),V∗(z)〉) and the distribution
ViewV∗(Commit-and-Prove〈P(m2),V∗(z)〉) are computationally indistinguish-
able.

Remark 1. A commit-and-prove protocol is said to satisfy delayed-input com-
pleteness, if P,V obtain the predicate φ in the last round of a protocol.

3.3 Robust Offline/Online Randomized Encoding

We start with the definition of a randomized encoding [2,3,24].

Definition 6 (Randomized Encoding). Let f : {0, 1}n → {0, 1}� be a func-
tion. Then a function f̂ : {0, 1}n × {0, 1}m → {0, 1}s is said to be a randomized
encoding of f , if:

– Correctness: There exists a decoder algorithm Dec such that for any input
x ∈ {0, 1}n, except with negligible probability over the randomness of the
encoding and the random coins of Dec, it holds that Dec(f̂(x,Um)) = f(x).

– Computational (statistical) privacy: There exists a PPT simulator S,
such that for any input x ∈ {0, 1}n the following distributions are computa-
tionally (statistically) indistinguishable:

• {f̂(x,Um)}n∈N,x∈{0,1}n , and,
• {S(f(x))}n∈N,x∈{0,1}n

We recall the definition of robust randomized encoding from [21].

Definition 7 (Robust Offline/Online Randomized Encoding). [21] A
randomized encoding is called an online/offline encoding, if there exists func-
tions ̂foff and ̂fon such that ̂f(x; r) = ( ̂foff(r), ̂fon(x, r)). That is, there exists an
offline component that does not depend on the input, and an online component
which is a function of the input. It is called robust if additionally, it holds that:
if there exists no x such that f(x) = a, then for any r, there does not exist any
z such that Dec( ̂foff(r), z) = a.

In AppendixA, we describe a simplified variant of the construction of
robust offline/online randomized encodings from [21], that only assumes one-way
functions.
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4 Three-Round Black-Box Commit-and-Prove WIPoK

In this section, we describe a three-round black-box commit-and-prove witness
indistinguishable proof of knowledge protocol.

4.1 Construction

The construction is described in Fig. 1, and uses a robust randomized encoding
( ̂foff , ̂fon), secure in the presence of adaptive choice of inputs.

We have the following theorem.

Input: The prover P and verifier V have common input a predicate φ. P
additionally obtains input m ∈ F (where F is a finite field) such that φ(m) = 1.

Definition of f : The function f has w0 ∈ F
3 hardwired. It takes as in-

put the predicate φ, two elements α, β ∈ F, an element w1 ∈ F
3, two values

(a, b) ∈ F, and does the following:

1. Set (m‖r‖s) = w0 + w1.
2. If a �= (r + αm) and b �= (s + βm) output ⊥.

Else, output (φ(m), φ, α, β, w1, (a, b)).

Protocol:

1. P chooses r
$← F. For i ∈ [λ], P does the following:

(a) Choose wi
0

$← F
3 and compute wi

1 := wi
0 ⊕ (m‖r‖⊥).

(b) Choose ωi
$← {0, 1}∗ and compute ̂foff(ωi) and τi ← Com(wi

1).
(c) Send ( ̂foff(ωi), τi).

2. V sends ch $← {0, 1}λ, α
$← F and β ← F.

3. P chooses b
$←F, and sets a = (r+αm). It sends a, b. Additionally, for every

i ∈ [λ], P does the following:
(a) If chi = 0, send wi

0, ωi.
(b) If chi = 1, send ̂fon(φ||α||β||wi

1‖(a, b), ωi), and decommit to τi.

Verification Phase:

– Output 1 if the following checks pass for every i ∈ [λ]:
1. If chi = 0, check if the received wi

0 is embedded in the circuit ̂foff

computed using randomness ri.
2. If chi = 1, run Dec( ̂foff , ̂fon) and accept if the evaluation outputs

(1, φ, α, β, wi
1, (a, b)) where wi

1 is obtained from the decommitment to
τi.

Fig. 1. Black-box witness indistinguishable proof of knowledge

Theorem 1. The protocol described in Fig. 1 is a black-box commit-and-prove
witness indistinguishable argument of knowledge according to Definition 4.
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The completeness of the protocol can be easily verified from inspection. Fur-
thermore, the protocol only makes black-box access to a non-interactive commit-
ment scheme and a robust randomized encoding. Recall that a robust randomized
encoding can be constructed from black-use of a one-way function. We now show
witness indistinguishability.

Lemma 1. The protocol described in Fig. 1 satisfies witness indistinguishability
according to Definition 4.

Proof. To prove witness indistinguishability of this protocol, we consider the
following sequence of hybrid experiments.

The first hybrid Hyb0 corresponds to the view of a (malicious) verifier inter-
acting with an honest prover that follows the protocol in Fig. 1 using the message
m0 for the predicate φ.

We define a hybrid Hyb0,k for each k ∈ [0, λ] that corresponds to the view
of a (malicious) verifier interacting with a prover that uses the message m1 in
the first k instances and the message m0 in the remaining instances. To be more
precise, the prover in Hyb0,k does the following:

– In round-1,
1. P chooses r, s

$← F.
2. For i ∈ [k], P does the following:

(a) Choose wi
0

$← F
3 and compute wi

1 := wi
0 ⊕ (m1‖⊥‖s).

(b) Choose ωi
$← {0, 1}∗ and compute ̂foff(ωi) and τi ← Com(wi

1).
(c) Send ( ̂foff(ωi), τi).

3. For i ∈ [k + 1, λ], P does the following:

(a) Choose wi
0

$← F
3 and compute wi

1 := wi
0 ⊕ (m0‖r‖⊥).

(b) Choose ωi
$← {0, 1}∗ and compute ̂foff(ωi) and τi ← Com(wi

1).
(c) Send ( ̂foff(ωi), τi).

– In round-3,
1. P sends b := s + βm1 and a = r + αm0. Additionally, for every i ∈ [λ], P

does the following:
(a) If chi = 0, send wi

0, ωi.
(b) If chi = 1, send ̂fon(φ||α||β||wi

1‖(a, b), ωi), and decommit to τi.

Claim. Assuming the hiding property of Com and the adaptive security of robust
randomized encoding, Hyb0,k−1

c≈ Hyb0,k for each k ∈ [λ].

Proof. Assume for the sake of contradiction that there exists a malicious verifier
that can distinguish Hyb0,k−1 and Hyb0,k with non-negligible probability. We will
construct an adversary B that breaks the security of either the robust randomized
encoding or the hiding property of Com with non-negligible probability. B chooses
a bit bk

$← {0, 1}.

Case-1: bk = 0. In this case, B does the following:
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1. For all i �= k, B generates the commitments and the randomized encoding
as in Hyb0,k−1. For i = k, it does the following:

(a) Choose wi
0

$← F
3 and compute wi

1 := wi
0 ⊕ (m0‖r‖⊥) and ŵi

1 := wi
0 ⊕

(m1‖⊥‖s). Give the two messages wi
0, ŵ

i
1 as the challenge messages

to the hiding property of Com. Obtain the challenge commitment τi.
(b) Choose ωi

$← {0, 1}∗ and compute ̂foff(ωi) and τi ← Com(wi
1).

(c) Send ( ̂foff(ωi), τi).
2. If chk obtained from the receiver is not equal to bk, we abort and output a

random bit. Else, continue the protocol as per the description of Hyb0,k−1.
Output whatever the verifier outputs

3. Note that if τk is a commitment to wi
1 then the distribution is identical to

Hyb0,k−1; else, it is identical to distribution Hyb0,k. Thus, if the malicious
verifier can distinguish between Hyb0,k−1 and Hyb0,k with probability p
then B breaks the hiding of the commitment scheme with probability at
least p/2.

Case-2: bk = 1. In this case, B does the following:
1. For all i �= k, B generates the commitments and the randomized encoding

as in Hyb0,k−1. For i = k, it does the following:

(a) Choose wi
1

$← F
3 and computes wi

0 := wi
1 ⊕ (m0‖r‖s) and ŵi

0 := wi
1 ⊕

(m1‖r‖s). Give to the randomized encoding challenger two circuits
f [wi

0] and f [ŵi
0] as the challenge circuits. Obtain ̂foff as the challenge

circuit.
(b) Send ̂foff and τi ← Com(wi

1).
2. If chk obtained from the receiver is not equal to bk, we abort and output

a random bit. Else,
(a) Obtain α from the verifier.
(b) Send φ||α||β||wi

1‖(a, b), ωi as the challenge input to the randomized
encoding challenger and obtain ̂fon.

(c) Send ̂fon as response to chk and decommit to τk.
3. Finally, output whatever the verifier outputs.

Notice that the output of the two circuits f [wi
0] and f [ŵi

0] on the challenge
input is exactly the same. Thus, B constitutes a valid challenger to the adap-
tive security of randomized encoding. Thus, if ̂foff corresponds to a offline
randomized encoding of fwi

0
, the view of the malicious verifier is identical to

Hyb0,k−1. Else, the view is identical to Hyb0,k. Thus, a malicious verifier dis-
tinguishing Hyb0,k−1 and Hyb0,k can be used to break the security of robust
randomized encodings.

We now prove that Hyb0,0 is identically distributed to Hyb0. Notice that Hyb0,0

is the same as Hyb0, except that the prover sends b = s + βm1 instead of
sampling b uniformly at random. Since s is information theoretically hidden in
both Hyb0,0 and Hyb0 it follows that both these distributions are identical. A
similar argument shows that Hyb0,λ is identical to Hyb1. This completes the
proof of the claim.
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The proof of WI follows by noting that Hyb0,λ is distributed identically to
the case where the prover uses the witness W1 to generate the proof.

We will now prove that it is an argument of knowledge:

Lemma 2. The protocol in Fig. 1 is a proof of knowledge against PPT provers,
even for statements chosen adaptively by such a prover in the last round, accord-
ing to Definition 4.

Proof. We begin by describing the extractor (having oracle access to a PPT
prover P∗) that takes as input an accepted transcript T and outputs a value m̃
such that φ(m̃) = 1 and there exists at most two messages m̃1, m̃2 such that
m̃ ∈ {m̃1, m̃2} and either P∗ will decommit to m̃1 or m̃2.

The extractor rewinds the cheating prover P∗ to the beginning of the third
round multiple times, and gives different uniformly chosen challenge messages
ch

$← {0, 1}λ. It stops when it obtains for some i ∈ [λ], two decommitments
wi

0, w
i
1 such that wi

0 ⊕ wi
1 = (m‖r‖s), and outputs m if φ(m), and r + αm = a

or s + βm = b from the main thread.
Let T be the accepted protocol transcript. Because of robustness of the ran-

domized encoding and a simple averaging argument, we note that with over-
whelming probability over the choice of random challenge ch ∈ T, at least
λ − O(log2 λ) indices i are such that fwi

0
(φ, α, β, wi

1, a, b) �= ⊥. Let S be the
set of indices i such that the above is true. Then, we have for each i ∈ S, let
wi

1 ⊕ wi
0 = (mi‖ri‖si) where φ(mi) = 1. Further, for every i ∈ S, we now have

from the definition of f that, ri + αmi = a and si + βmi = b. With overwhelm-
ing probability over α, β, this is possible only if there exists at most two values
m̃1, m̃2 such that mi ∈ {m̃1, m̃2} for all i ∈ S (by Schwartz-Zippel lemma).

We finally argue that the extractor runs in expected polynomial time. Let p
be the probability that conditioned on the first two messages of the protocol, the
prover P∗ generates an accepting proof. Since the running time of the extractor in
each rewind is bounded by some polynomial poly(λ), we have that the expected
running time of the extractor is p . poly(λ)

p = poly(λ).

4.2 Black-Box One-Binding Commitment to Two Strings

In this section, we describe how to use the black-box commit-and-prove WIPoK
to generate a commitment to two strings such that one of the two commitments is
binding, and the other can be freely equivocated by a simulator. Such a protocol
can also be built using ideas from [34], however, we give a direct instantiation via
a slight modification of our black-box commit-and-prove WIAoK. This scheme
is referred to as two-com, and is described in Fig. 2.

We also note that unlike [34], when we use scheme two-com, honest parties
will never need to rely on equivocation, and equivocation will only be used in
the proof of security.

Witness indistinguishability of the argument of binding of one of the two
commitments follows directly via witness indistinguishability of the underlying
protocol, using an identical proof to the one in Lemma1.
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Input: Committer C has input two messages m0, m1.

Definition of f : The function f has w0 ∈ F
2 hardwired. The relation

R(x, w) = 1 if and only if (x1 = w OR x2 = w), where x = x1||x2.
The function f takes as input an instances x ∈ F

2, an element α ∈ F, an element
w1 ∈ F

2, two values (a, ã) ∈ F
2, and does the following:

1. Compute (w‖r‖r̃) = w0 + w1.
2. If a �= (r + αw) and ã �= (r̃ + α1w), output ⊥. Else, output

(R(x, w), x, α, w1, (a, ã)).

Protocol:

1. C chooses r
$← F. For i ∈ [λ], P does the following with w = m0:

(a) Chooses wi
0

$← F and computes wi
1 := wi

0 ⊕ (w‖r).
(b) Chooses ri

$← {0, 1}∗ and computes ̂foff
wi

0
(ri), σi ← Com(ri) and τi ←

Com(wi
1).

(c) Sends ( ̂foff
wi

0
(ri), σi, τi).

2. R sends ch $← {0, 1}λ and α
$← F.

3. P sends the opening x = (m0||m1). Additionally, P chooses ã
$← F sends ã

and a = r + αw. Additionally, for every i ∈ [λ], P does the following:
(a) If chi = 0, sends wi

0, s
i
0 and decommits to σi.

(b) If chi = 1, sends ̂fon
wi

0
(x||α||wi

1‖(a, ã); ri), and decommits to τi.

Verification Phase:

– Output 1 if the following checks pass for every i ∈ [λ]:
1. If chi = 0, check if the received wi

0 is embedded in the circuit ̂foff
wi

0
com-

puted using randomness ri. Check that the decommitment information
to σi is correct.

2. If chi = 1, run the evaluation algorithm for randomized encoding ̂foff
wi

0

with ̂fon
wi

0
as input and accept if the evaluation outputs (1, x, α, wi

1, (a, ã))

where wi
1 is obtained from the decommitment to τi.

Fig. 2. Commitment to two strings where one is binding

We will now argue why the protocol in Fig. 2 is such that any (malicious)
committer is bound to one of the two openings m ∈ {m0,m1}, by the end of the
first round. This relies on soundness of the witness indistinguishable argument.
Specifically, by the Schwartz-Zippel lemma, there exist at most two witnesses
W,W ′ such that at least (λ − log2 n) parallel executions generated by a mali-
cious committer, have a commitment to either W or W ′, or both. Now, because
of the soundness of individual WI arguments, once the first message has been
committed, in the third message, any (malicious) committer can only open to
m0,m1 such that:
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– If in the first message, all but log2 n commitments were to the same witness
W , then either W = m0 or W = m1.

– If in the first message, all but log2 n commitments were to two witnesses
W,W ′ then W = m0,W

′ = m1 or vice-versa.

5 Four-Round Black-Box Commit-and-Prove
Zero-Knowledge

In this section, we describe a black-box commit-and-prove zero-knowledge argu-
ment in four rounds based on injective one-way functions. We start with a
description of the main tools used in the construction.

5.1 Construction

Our construction is described formally in Fig. 3, and makes use of the following
primitives:

– A non-interactive, statistically binding commitment Com.
– A three-round commitment to two strings, together with a black-box witness-

indistinguishable proof that one of the two commitments is binding by the
end of the first round. We also require the other commitment to be equivocal.
Such a scheme is described in [34], Sect. 3. Let two-com(s1, s2) denote such a
scheme for committing to strings s1 and s2.

– A robust randomized encoding ̂foff , ̂fon according to Definition 6.

5.2 Proof of Security

We start with the lemma which shows that the protocol described in Fig. 1 is a
commitment to the witness w.

Lemma 3. The protocol described in Fig. 3 is a statistically binding commitment
to the element w ∈ F.

Proof. We start with the description of the decommit phase and then argue
statistical binding and computational hiding of the protocol.

The decommit phase involves opening the commitments σi, σ′
i and σ∗

i and
sending wi

0 for every i ∈ [λ]. For each i ∈ [λ], compute wi‖ri := wi
0 + wi

1 (where
a value is substituted with a default symbol if the decommitment information is
not valid) and output the value w that occurs in more than λ/2 positions. If there
is no w that occurs in more that λ/2 positions then we reject the decommitment
information.

Since the commitment sent in the second round of the protocol is statistically
binding and we have defined the decommitment phase to output the majority
of the committed values, we note that there can exist at most one valid decom-
mitment to a protocol transcript except with negligible probability. Thus, the
protocol is statistically binding. We note that computational hiding property
follows the zero-knowledge property we later show.
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Input: The prover P and verifier V have common input x and relation R. P
additionally obtains input w such that R(x, w) = 1. We assume that w ∈ F

where F is a finite field.

Definition of f : The function f has hardwired a share of the witness
w0, and a share of trapdoor information s0. It takes as input the instance x, a
challenge α, a share of the witness w1, a share of trapdoor information s1, a
value a, ŝ0, ŝ1 (recovered from the third message of the two-com) and does the
following:

1. Compute s = s0 ⊕ s1. If ŝ0 = s or ŝ1 = s, output (1, x, w1, s1, a). Else,
continue.

2. Compute w‖r = w0 ⊕ w1. If a �= (rα + w), output ⊥. Else, output
(R(x, w), x, w1, s1, a).

Protocol:

1. V picks strings ŝ0, ŝ1
$← {0, 1}2λ and sends the first message π1 of

two-com(ŝ0, ŝ1).
2. P chooses r

$← F, and s ← {0, 1}λ. For i ∈ [λ] it does the following:
(a) Choose wi

0 uniformly at random and compute wi
1 := wi

0 ⊕ (w‖r).
(b) Choose si

0 uniformly at random and compute si
1 := si

0 ⊕ s.
(c) Choose ri

$← {0, 1}∗, compute ̂foff
wi

0,si0
(ri), σi := Com(ri), σ′

i := Com(wi
1)

and σ∗
i := Com(si

1).
Send ( ̂foff

wi
0,si0

(ri), σi, σ
′
i, σ

∗
i ) for each i ∈ [λ] along with the second message π2

of two-com.
3. V sends the strings ŝ0 and ŝ1, the third message π3 of two-com to P, together

with ch $← {0, 1}λ and α
$← F \ {0}.

4. P sends a = r +αw (in the field F), and does the following for every i ∈ [λ]:
(a) If chi = 0, send wi

0, s
i
0 and decommit σi.

(b) If chi = 1, send ̂fon
wi

0,si0
(x||α||a||ŝ0||ŝ1, w

i
1, s

i
1; ri) and the decommitment

to σ′
i and σ∗

i .

Check Phase:

– For every i ∈ [λ]:
1. If chi = 0, check if the received wi

0, s
i
0 are embedded in the circuit ̂foff

wi
0,si0

computed using randomness ri. Also check that the decommitment in-
formation to σi is correct.

2. If chi = 1, run the evaluator for the garbled circuit by providing
with ̂fon

wi
0,si0

and ̂foff
wi

0,si0
as inputs and accept if the evaluation outputs

(1, x, wi
1, s

i
1) where wi

1 and si
1 are obtained from the decommitment to

σ′
i and σ∗

i .

Fig. 3. Four round black-box commit-and-prove ZKAoK
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Lemma 4. The protocol in Fig. 3 is an argument of knowledge against PPT
provers, even for statements chosen adaptively by such a prover in the last round,
according to Definition 5.

Proof. We begin by describing the extractor (having oracle access to a PPT
prover P∗) that takes as input an accepted transcript T and outputs a value
w ∈ F that occurs in majority of the positions and is such that R(x,w) = 1.

The extractor rewinds the cheating prover P∗ to the beginning of the third
round and gives different uniformly chosen challenge messages ch

$←{0, 1}λ. The
extractor stops when it obtains for some i ∈ [λ], two decommitments wi

0, w
1
i such

that wi
0 ⊕ wi

1 = (w‖r) and outputs w if r + αw = a from the main thread.
We will now prove that for any PPT prover, the extracted w is such

that R(x,w) = 1 – in particular, we will show that for any PPT prover,
Pr[s = ŝ0 or s = ŝ1] ≤ negl(λ). Suppose for contradiction there exists a polyno-
mial poly(·) and β ∈ {0, 1} such that Pr[s = ŝβ ] ≥ 1

poly(λ) . We will use this to
contradict witness indistinguishability of two-com, or the hiding of the commit-
ments in two-com. We consider the following sequence of hybrid experiments.

Hyb0 corresponds to the real experiment, where the challenger generates the
verifier messages according to the honest verifier strategy, such that the com-
mitment ŝ0 is equivocable and the commitment ŝ1 is binding for γ ∈ {0, 1}.
It then uses the extraction strategy described above to extract s such that
Pr[s = ŝβ ] ≥ 1

poly(λ) for some β ∈ {0, 1}.
In Hyb1a, the challenger sends messages exactly the same way as Hyb0, except

that it samples ŝ
$← {0, 1}λ, and in the third message, equivocates ŝ0 to ŝ. The

value extracted by the challenger must remain indistinguishable between Hyb0

and Hyb1, because of the equivocation property of the commitment to ŝ0. How-
ever, since ŝ was chosen uniformly at random and independent of ŝ0, the proba-
bility that ŝ equals si

1 ⊕ si
0 (which are both fixed before ŝ is chosen), is at most

2−λ. Otherwise, β = 1 and we consider the following sequence of hybrids.
In Hyb1b, the challenger sends messages the same way as Hyb0, except that the

commitment ŝ0 is binding and the commitment ŝ1 is equivocable for γ ∈ {0, 1}.
It then uses the extraction strategy described above to extract s. By witness
indistinguishability of the argument, this is such that Pr[s = ŝ1] ≥ 1

poly(λ) .
In Hyb2, the challenger sends messages exactly the same way as Hyb1b, except

that it samples ŝ
$← {0, 1}λ, and in the third message, equivocates ŝ1 to ŝ. The

value extracted by the challenger must remain indistinguishable between Hyb1b

and Hyb2, because of the equivocation property of the commitment to ŝ1. How-
ever, since ŝ was chosen uniformly at random and independent of ŝ0, the proba-
bility that ŝ equals si

1 ⊕si
0 (which are both committed by the prover even before

ŝ is chosen), is at most 2−λ.
We now argue that the extracted w occurs in the majority of positions. Let T

be the accepted protocol transcript. We note that with overwhelming probability
over the choice of random challenge ch ∈ T, at least λ − O(log2 λ) positions are
such that fwi

0,si
0
(x, α,wi

1, s
i
1, a, ŝ0, ŝ1) = (1, x, α, wi

1, s
i
1, (a, ã)). This follows from

the robustness property of the randomized encoding scheme. Let S be the set
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of positions such that the above is true. Additionally, we showed above that
for any i (in particular, for any i ∈ S) si

0 ⊕ si
1 is not equal to ŝ0 or ŝ1 with

overwhelming probability. Thus, we have for each i ∈ S, let wi
1 ⊕ wi

0 = (wi‖ri)
where R(x,wi) = 1. Since fwi

0,si
0
(x, α,wi

1, s
i
1, a, ŝ0, ŝ1) = (1, x, α, wi

1, s
i
1, (a, ã))

for every i ∈ S, we now have from the definition of f that, wiα + ri = a. With
overwhelming probability over α, this is possible only if there exists (w, r) ∈ F

such that wi = w and ri = r for all i ∈ S (by Schwartz-Zippel lemma).
We finally argue that the extractor runs in expected polynomial time. Let p

be the probability that conditioned on fixing the first two messages of the main
thread the prover P∗ gives an accepted proof. Since the running time of the
extractor in each rewind is bounded by some polynomial poly(λ), we have that
the expected running time of the extractor is p . poly(λ)

p = poly(λ).
This completes the proof of soundness, and of the argument of knowledge

property.

Lemma 5. The protocol in Fig. 3 is zero-knowledge against all PPT verifiers V.

Proof. We begin with a brief overview of the simulation strategy (for simplicity
in this overview we only consider non-aborting verifiers). The simulator runs the
verifier on randomly chosen prover message for the second round, and observes
the openings ŝ

(1)
0 and ŝ

(1)
1 . On learning ŝ

(1)
0 , ŝ

(1)
1 , the simulator rewinds and sends

a prover message by setting s = ŝ
(1)
0 . If the verifier responds with ŝ

(2)
0 �= ŝ

(1)
0 , the

simulator rewinds again and sets s = ŝ
(1)
1 . Denote the response of the verifier in

the second rewinding by ŝ
(3)
0 , ŝ

(3)
1 .

Since the first message of two-com is binding to at least one string, if
ŝ
(2)
0 �= ŝ

(1)
0 , then with overwhelming probability, it must be the case that the

commitment to ŝ1 is binding. In other words, s = ŝ
(1)
1 = ŝ

(3)
1 with overwhelming

probability. In this case, the simulator uses s as witness to complete the proof.
The general simulation strategy is detailed in Fig. 4.

Proof of Simulation Security. The proof that the simulated distribution is indis-
tinguishable from the real distribution will rely on the witness indistinguishabil-
ity of a three round sub-protocol that is being executed within the main protocol.
Let us give the details.

It was shown in [21] that the single execution (i.e., for each i ∈ [λ]) of
the sub-protocol is zero-knowledge with soundness error 1/2. Hence, this sub-
protocol is also witness indistinguishable. The parallel repetition of any witness
indistinguishable protocol preserves the WI property. This also directly proves
that conditioned on not aborting, a real transcript is indistinguishable from an
ideal transcript.

Next, we prove that the probability of abort is at most negl(λ)-far between the
real and ideal worlds. Note that by binding property of two-com, the simulator
obtains one opening out of ŝ0 and ŝ1 correctly. Therefore, the simulation proceeds
to Step 4(b) after at most two non-aborting rewinds. Now, the simulator rewinds
the verifier in Step 4(b): by computational hiding of the second message of the
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Input: The simulator Simu and verifier V have common input x and relation R.

Definition of f : The function f has hardwired a share of the witness
w0, and a share of trapdoor information s0. It takes as input the instance x, a
challenge α, a share of the witness w1, a share of trapdoor information s1, a
value a, ŝ0, ŝ1 (recovered from the third message of the two-com) and does the
following:

1. Compute s = s0 ⊕s1. If ŝ0 = s or ŝ1 = s, output (1, x, w1, s1). Else, continue.
2. Compute w‖r = w0 ⊕ w1. If a �= (r + αw), output ⊥. Else, output

(R(x, w), x, w1, s1).

Protocol:

1. Obtain the first message π1 of two-com from V.
2. Simu chooses r

$← F, and s ← {0, 1}λ. For i ∈ [λ] it does the following:
(a) Choose wi

0 uniformly at random and compute wi
1 := wi

0 ⊕ 0|w|+|r|.
(b) Choose si

0 uniformly at random and compute si
1 := si

0 ⊕ s.
(c) Choose ri

$← {0, 1}∗, compute ̂foff
wi

0,si0
(ri), σi := Com(ri), σ′

i := Com(wi
1)

and σ∗
i := Com(si

1).
Send ( ̂foff

wi
0,si0

(ri), σi, σ
′
i, σ

∗
i ) for each i ∈ [λ] and the message π2 of two-com.

3. If the verifier V aborts or does not send a valid message, then abort and end
the simulation. Otherwise, obtain strings ŝ0 and ŝ1, the third message π3

of two-com from V, together with ch $← {0, 1}λ and α
$← F. Set s = ŝ0, and

rewind the verifier to the end of Step 1.
4. (a) Repeat the following until the verifier sends a valid message for Step 3.

– With s set to ŝ0 as described above, compute and send
( ̂foff

wi
0,si0

(ri), σi, σ
′
i, σ

∗
i ) for each i ∈ [λ] along with the second mes-

sage π2 of two-com.
On obtaining a valid message from the verifier, parse it as ŝ

(2)
0 , ŝ

(2)
1 . If

s = ŝ
(2)
0 , continue to Step 5, using s as witness. Else, if ŝ1 �= ŝ

(2)
1 , abort

and end the simulation. Else, set s = ŝ1 and go to Step 4b.
(b) Repeat the following until the verifier sends a valid message for Step 3.

– With s set to ŝ1 as described above, compute and send
( ̂foff

wi
0,si0

(ri), σi, σ
′
i, σ

∗
i ) for each i ∈ [λ] along with the second mes-

sage π2 of two-com.
On obtaining a valid message from the verifier, parse it as ŝ

(3)
0 , ŝ

(3)
1 . If

s = ŝ
(3)
1 , continue to Step 5, using s as witness. Else, abort.

5. Simu sends a = r + αw (in the field F), and for every i ∈ [λ]:
(a) If chi = 0, send wi

0, s
i
0 and decommit σi.

(b) If chi = 1, send ̂fon
wi

0,si0
(x||α||a||ŝ0||ŝ1, w

i
1, s

i
1; ri) and the decommitment

to σ′
i and σ∗

i .

Fig. 4. Simulation strategy for black-box commit-and-prove ZKAoK
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protocol, the probability that the simulated view aborts in these rewindings
at the end of Step 3 is at most p ± negl(λ), where p is the probability that the
verifier aborts after the second message, when interacting with an honest prover.
Conditioned on the verifier not aborting in step 3, the simulator persists after
rewinding until the verifier sends a non-aborting message. Thus, the probability
of abort in the ideal world remains p ± negl(λ).

However, this strategy still suffers from the problem that the simulator may
not be expected polynomial time. This issue, akin to [11] is resolved by ensuring
that the simulator does not run for too long. Specifically, if the adversary did
not abort in Step 3, and the simulator proceeds to the rewinding phase, then
it first estimates the value of p, which is the probability that the verifier V ∗

did not abort given commitments to 0 values. This is done by repeating Steps
2 and 3 of the simulation (with fresh random commitments to all zeroes) until
m = 12λ successful decommits occur (to the same string q that it decommitted
to in the main thread). Then, an estimate ε̃ of p is taken to be m/T , where T
is the overall number of attempts until m successful decommits occured. This
suffices to ensure that the probability that ε̃ is not within a constant factor of p
is at most 2−λ. An exact analyses of the probabilities can be found in Sect. 6.5.3
in [20].

Finally, we can switch the simulator to using the trapdoor witness in the
three-round WI sub-protocol. More formally, we consider an intermediate hybrid
Hyb1, where the simulator follows the strategy above but continues to use the
real witness in the WI argument.

Claim. Hyb1 is computationally indistinguishable from the ideal world.

Proof. To prove that Hyb1 and the ideal world are computationally indistin-
guishable, we build the following reduction R to the witness indistinguishability
of the underlying protocol. The reduction R first completes the experiment by
rewinding the adversary using the [11] strategy described above to extract the
value s = ŝ0 or ŝ1. Next, the reduction rewinds back to the beginning of Step 2,
and commits to s. It obtains the first message of the (delayed-input) WI argu-
ment externally, giving it both witnesses w, s. In the third round, it computes
a = rα+w externally and obtains the WI argument externally proving at either
a = rα + w or s = ŝ0 or s = ŝ1.

Note that if w is used as witness, this corresponds to Hyb1. If s is used as
witness, the only difference between this and the simulation strategy is that
the simulator computes a completely at random, instead of computing it as
a = rα + w. These are perfectly indistinguishable because r completely hides
w. Thus, any adversary that distinguishes Hyb1 from the ideal world breaks the
witness indistinguishability of two-com.

6 Extractable and Equivocal Commitments

We describe direct applications of our black-box commit-and-prove protocols to
four round black-box extractable and equivocal commitments.
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Extractable Commitments. The construction of black-box commit-and-prove ZK,
given in Fig. 3, is already an extractable commitment to the witness w (proved
in Lemma 4). The hiding of the extractable commitment scheme follows from

Input: The committer C has an input m ∈ {0, 1}.
Definition of f : The function f has hardwired a share of the witness w0, and a
share of trapdoor information s0. It takes as input a challenge α, a share of the
witness w1, a share of trapdoor information s1, a value a, ŝ0, ŝ1 (recovered from
the third message of the two-com) and does the following:

1. Compute s = s0 ⊕ s1. If ŝ0 = s or ŝ1 = s, output (1, w1, s1, a). Else, continue.
2. Compute m0‖m1‖r = w0 ⊕w1. If a �= (r+α(m0‖m1)), output ⊥. Else, output

((m0
?= m1), w1, s1, a).

Commit Phase:

1. R picks strings ŝ0, ŝ1
$← {0, 1}2λ and sends the first message π1 of

two-com(ŝ0, ŝ1).
2. C chooses r

$← F, and s ← {0, 1}λ. For i ∈ [λ] it does the following:
(a) Choose wi

0 uniformly at random and compute wi
1 := wi

0 ⊕ (m‖m‖r).
(b) Choose si

0 uniformly at random and compute si
1 := si

0 ⊕ s.
(c) Choose ri

$← {0, 1}∗, set ̂foff
wi

0,si0
(ri), σi := Com(ri), σ′

i := Com(wi
1), σ∗

i :=

Com(si
1).

Send ( ̂foff
wi

0,si0
(ri), σi, σ

′
i, σ

∗
i ) for each i ∈ [λ] along with the second message π2

of two-com.

Decommit Phase:

1. R sends the strings ŝ0 and ŝ1, the third message π3 of two-com to P, together
with ch $← {0, 1}λ and α

$← F \ {0}8.
2. C sends a = r + α(m‖m) (in the field F), and does the following for every

i ∈ [λ]:
(a) If chi = 0, send wi

0, s
i
0 and decommit σi.

(b) If chi = 1, send ̂fon
wi

0,si0
(α||a||ŝ0||ŝ1, w

i
1, s

i
1; ri) and the decommitment to σ′

i

and σ∗
i .

Check Phase: The receiver accepts the commitment if the following checks pass:

– For every i ∈ [λ]:
1. If chi = 0, check if the received wi

0, s
i
0 are embedded in the circuit ̂foff

wi
0,si0

computed using randomness ri. Also check that the decommitment infor-
mation to σi is correct.

2. If chi = 1, run the evaluator for the garbled circuit by providing
with ̂fon

wi
0,si0

and ̂foff
wi

0,si0
as inputs and accept if the evaluation outputs

(1, wi
1, s

i
1, a) where wi

1 and si
1 are obtained from the decommitment to σ′

i

and σ∗
i .

Fig. 5. Black box equivocal commitment
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the computational hiding of the commitment and the zero-knowledge property
of the protocol proven in Lemma5.

Equivocal Commitments. We give a construction of equivocal bit commitments
in Fig. 5. This can be extended to an equivocal string commitments by commit-
ting to every bit using the protocol in Fig. 5. Our construction of equivocal bit
commitment is standard: commit to two bits m0 and m1, and prove in zero-
knowledge (via our round-optimal black-box commit-and-prove strategy) that
m0 = m1.

Lemma 6. The protocol in Fig. 5 is an equivocal commitment scheme.

Proof. The (computational) binding property of the scheme follows by the bind-
ing property of commit-and-prove ZK. The hiding of the equivocal commitment
scheme follows directly based on the computational hiding of Com (since the ZK
proofs are not even completed in the commit phase).

The equivocal property is the most interesting, we now describe how this
follows by simulating the zero-knowledge proof and generating a commitment to
m0 �= m1. That is, we consider an intermediate hybrid Hyb1 where the challenger
commits to m0 = m1 (just as in the real experiment), but starts simulating the
underlying proof. This is indistinguishable from the real experiment by simula-
tion security of the commit-and-prove protocol.

In the next hybrid, the challenger continues to simulate the ZK proof but
sets m0 �= m1. This remains indistinguishable by the computational hiding of
com. Note that the challenger can freely equivocate in this experiment. This
completes our proof of security.

A Robust Randomized Encodings

We reiterate (a simplified variant of) the construction of online-offline robust
randomized encodings from [21]. While they describe a complex protocol that
uses adaptive garbled circuits in order to provide improved efficiency, in this
paper we present a simplication of the scheme that does not rely on adaptive
garbling.

The randomized encoding of function f consists of two functions ̂foff , ̂fon

and makes use of two components.

– Let Eqcom denote a non-interactive equivocal commitment scheme for string
commitments, for which a commitment transcript can be opened in two
modes. In binding mode, the opening must remain statistically binding
against any malicious committer. In equivocal mode, a commitment tran-
script can be equivocated freely by a simulator.
Such a scheme can be constructed using any non-interactive statistically bind-
ing commitment scheme, where the (honest) commitment algorithm requires
committing to each bit of the string twice. In an equivocal mode, the commit-
ter is only required to reveal, for every bit in the string, one randomly chosen
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commitment to the bit. While generating an opening in the equivocal mode,
a simulator can commit to two different values for every bit of the string and
use these to freely equivocate.

– A garbling scheme for circuits, with its algorithms denoted by Yao.Garble and
Yao.labels.

Using this scheme, the construction of online-offline randomized encodings
(which follows the ideas in [21]) is as follows:

– ̂foff(r) generates a commitment to a Yao’s garbled circuit for the func-
tion f , using scheme Eqcom. The output of this phase is Eqcom.Commit
(Yao.Garble(f ; r)).

– ̂fon(r) consists of the decommitment information (in equivocal mode) for
the garbled circuit, that is, this phase outputs y = Eqcom.EquivOpen( ̂foff(r))
that was generated in the offline phase. Additionally, given an input x, ̂fon(r)
consists of the wire-labels for this input corresponding to Yao’s garbled circuit,
that is, it also outputs Yao.labels(x; r).

Recall that robustness requires that, for a correctly computed ̂foff(r) (that
is, when the commitment to Yao’s garbled circuit are generated honestly and the
Eqcom.Commit value is correctly generated), there should not exist any (mali-
ciously computed) string ̂fon such that ( ̂foff , ̂fon) generates an output outside the
range of f . This is guaranteed by the perfect correctness of Yao’s garbling scheme.
We refer the reader to [21] for more details and for schemes with improved
efficiency.
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Abstract. Consider the following secret-sharing problem. Your goal is
to distribute a long file s between n servers such that (d − 1)-subsets
cannot recover the file, (d+1)-subsets can recover the file, and d-subsets
should be able to recover s if and only if they appear in some prede-
fined list L. How small can the information ratio (i.e., the number of bits
stored on a server per each bit of the secret) be?

We advocate the study of such d-uniform access structures as a useful
scaled-down version of general access structures. Our main result shows
that, for constant d, any d-uniform access structure admits a secret shar-
ing scheme with a constant asymptotic information ratio of cd that does
not grow with the number of servers n. This result is based on a new
construction of d-party Conditional Disclosure of Secrets (CDS) for arbi-
trary predicates over n-size domain in which each party communicates
at most four bits per secret bit.

In both settings, previous results achieved a non-constant information
ratio that grows asymptotically with n, even for the simpler (and widely
studied) special case of d = 2. Moreover, our multiparty CDS construc-
tion yields the first example of an access structure whose amortized infor-
mation ratio is constant, whereas its best-known non-amortized informa-
tion ratio is sub-exponential, thus providing a unique evidence for the
potential power of amortization in the context of secret sharing.

Our main result applies to exponentially long secrets, and so it should
be mainly viewed as a barrier against amortizable lower-bound tech-
niques. We also show that in some natural simple cases (e.g., low-
degree predicates), amortization kicks in even for quasi-polynomially
long secrets. Finally, we prove some limited lower-bounds, point out some
limitations of existing lower-bound techniques, and describe some appli-
cations to the setting of private simultaneous messages.

1 Introduction

Secret sharing schemes (SS), introduced by [Sha79,Bla79], are a central crypto-
graphic tool with a wide range of applications (see [Bei11] and references therein).

The full version of this paper appears in [AA18]. Research supported by the European
Union’s Horizon 2020 Programme (ERC-StG-2014-2020) under grant agreement no.
639813 ERC-CLC, and the Check Point Institute for Information Security.
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In its general form, an n-party secret sharing scheme for a family of authorized
sets A ⊆ 2[n] (referred to as access structure) allows to distribute a secret s ∈ S
into n shares, s1, . . . , sn, one for each party, such that: (1) every authorized set
of parties, A ∈ A, can reconstruct s from its shares; and (2) every unauthorized
set of parties A not in A cannot reveal any partial information on the secret even
if the parties are computationally unbounded. A canonical example is the case
of threshold secret-sharing in which A contains all the sets whose cardinality is
at least a certain threshold. For this case, Shamir’s scheme [Sha79] provides an
optimal solution since each party gets a share whose length equals to the length
of the secret s which is the best that one can hope for.

It is known that any monotone access structure A admits a secret shar-
ing scheme [ISN87].1 However, the communication complexity of general access
structures has remained wide open. It is known that the information ratio,
maxi |si|/|s|, of an access structure is at most polynomial in the representation
size of A as a monotone formula [BL88] or as a monotone span program [KW93].
This leads to an exponential upper-bound of 2n(1−o(1)) for any A. This upper-
bound was recently improved by [LV18] to 2(1−α)n for some small constant α > 0.
On the other hand, despite much efforts, the best known lower-bound on the
information ratio of an n-party access structure is Ω(n/ log n) due to [Csi97].
Consequently, we do not know which of the following hypotheses holds:

Hypothesis 1 (SS is short). Every access structure over n parties is realizable
with small information ratio (say 2o(n)).

Hypothesis 2 (SS is long). Some access structures over n parties require large
information ratio (e.g., 2Ω(n)).

It is widely believed that the second “SS is long” hypothesis holds [Bei11].
However, proving any super-linear lower-bound (even for a non-explicit access
structure) has remained an intriguing open problem.

Does amortization help? We take a closer fine-grained look at the complexity of
secret-sharing by taking into account the length of the secret. While Hypotheses 1
and 2 are typically understood as addressing the case of a single-bit secret,
we consider the case of long secrets. Specifically, we explore the following new
hypothesis:

Hypothesis 3 (SS is amortizable). For every access structure over n parties,
and every sufficiently long secret s, there exists a secret sharing scheme with
small information ratio (e.g., sub-exponential in n).

Hypothesis 3 can be viewed as a weak (yet bold) version of Hypothesis 1 that
does not exclude Hypothesis 2. Indeed, it may be the case that both Hypothesis 3
and 2 hold. That is, sharing a single-bit requires (say exponentially) long shares,

1 Monotonicity here means that for any A ⊂ B it holds that A ∈ A ⇒ B ∈ A. It is
not hard to see that a non-monotone access structure does not admit an SS, and
therefore this requirement is necessary.
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but once the secret is sufficiently long, the information ratio becomes much
smaller. This may explain why proving lower-bounds is such a hard task: typical
lower-bounds techniques “fail to distinguish” between short secrets and very
long secrets, and thus, under Hypothesis 3, cannot yield strong lower-bounds.
Moreover, since huge gaps between amortized communication and non-amortized
communication are common in other related settings (e.g., coding theory), one
may expect to see such gaps in the context of secret sharing as well.

Perhaps surprisingly, the rich literature of secret sharing hardly contains
examples in which amortization significantly helps. In fact, to the best of our
knowledge, it is unknown whether there is a super-logarithmic (let alone super-
polynomial) gap between the amortized information ratio and the non-amortized
information ratio, and this question is open even for restricted special cases of
secret-sharing schemes.2

In this paper we study the power of amortization in secret sharing. Since
the case of general access structures seems highly complicated, we focus on two
concrete families of (related) access structures: the family of d-uniform access
structures and access structures that correspond to Conditional Disclosure of
Secrets.

1.1 Uniform Access Structures

A d-uniform access structure A is represented by a d-uniform hypergraph G over
[n] and has the following semantics:

– All sets of d + 1 parties (or more) are authorized.
– All sets of d − 1 parties (or less) are unauthorized.
– A set of size d is authorized if it appears as an hyperedge in G.

The family of d-uniform access structures is rich enough to capture an arbitrary
relation on d-size sets. By focusing on a constant d (that does not grow with the
number of parties n), we get a scaled-down “toy” version of the more general
problem of arbitrary access structures.

Previous Works. The case of d = 2 was presented by Sun and Shieh [SS97] under
the terminology of graph forbidden access structure and was further studied in
several works. For single-bit secrets and linear schemes (in which the secret is
viewed as a field element and each share can be written as a linear combina-
tion of the secret and several independent random field elements), we know that
an information ratio of Θ(

√
n) is both sufficient [BIKK14,GKW15] and neces-

sary [BFMP17,Min12] for 2-uniform access structures. Recently, it was shown
in [LVW17a] that a non-linear scheme can achieve a sub-polynomial informa-
tion ratio of 2O(

√
log n log log n). Based on extensions of this result [LVW17b], an

2 A logarithmic gap appears, for example, for threshold access structures. Indeed,
sharing a single bit requires a share-size of Ω(log n) as shown by Kilian and Naor
(in an unpublished work) whereas Shamir’s scheme provides an information ratio of
1 in the amortized setting (whenever the secret length exceeds log n).
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information ratio of 2Õ(
√

n) for d-uniform access structures with arbitrary d was
obtained in [BKN18].3

Most relevant to us is the work of [AARV17]. There it was shown that if the
secret is sufficiently long (exponential in n), then any 2-uniform access structure
can the realized with information ratio of O(log n). At the same paper, it was
shown that some non-explicit 2-uniform access structures require an information
ratio of Ω(log n) for a single-bit secret. (An explicit version of this bound appears
in [AHMS18].)

Our Contribution. We show that the asymptotic information ratio (for suffi-
ciently long secrets) of any d-uniform access structure can be reduced to a con-
stant.

Theorem 4. Any n-party d-uniform access structure A can be realized by a
secret sharing scheme that achieves a constant information ratio of cd ≤ 6dd+1

d! ≤
O(ed) for sufficiently long secrets of length exponential in nd.4

Theorem 4 (whose proof appears in Sect. 4) validates Hypothesis 3 for the
special case of d-uniform access structures as long as d is not too large. Moreover,
it provides a rare example for a natural class of access structures F that can be
realized with information rate much smaller than its bit-representation length
log |F| (i.e., log(

(
n
d

)
) = Ω(nd) for d-uniform access structures). Another such

example (in the non-amortized setting) was recently obtained in the concurrent
work of [LVW17b].5

Interestingly, the scheme constructed in Theorem 4 is multilinear, namely, the
secret is viewed as a vector of field elements and each share can be written as a
linear combination of the secret and several independent random field elements.6

By observing that the lower-bound of [BFMP17,Min12] for 2-uniform linear
schemes extends to multilinear SS for d-uniform access structures, we prove:

Theorem 5. For every d ≥ 2, there exists a d-uniform access structure for
which every multilinear secret sharing scheme has a share size of at least n(d−1)/2

2dd+1/2 .

Together with Theorem 4, this yields the first provable separation between the
amortized complexity and the non-amortized complexity for the natural family
of multilinear secret sharing schemes. Specifically, for constant d we get a poly-
nomial gap, and for d = log n, a super-polynomial gap! This result also implies
that the amortization point of any multilinear scheme (like in Theorem 4) must
be at least polynomial in n. (See Sect. 5 for details.)

3 In [BKN18] such access structures are referred to as strongly d-homogenous.
4 Although we did not try to optimize the constant cd, we mention that, for the special

case of d = 2, we get an information ratio cd of at most 12.5.
5 Both works were submitted to Eurocrypt 2018.
6 While this notion of multilinearity is standard in the secret sharing literature

(cf. [Bei11]), the reader should note that this is different from the common mathe-
matical notion of multilinearity.
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We believe that d-uniform access structures form a good candidate for gen-
eral separation between amortized and non-amortized information ratio. Unfor-
tunately, proving a general lower-bound against non-linear secret sharing seems
quite hard. Indeed, the mere existence of good amortized upper-bounds (Theo-
rem 4) forms a barrier against lower-bound techniques that apply to the amor-
tized setting. This is the case, for example, with typical information theoretic
based arguments. In Sect. 5, we further show that a standard information-
theoretic method [CSGV93,KGH83] based on Shannon’s information inequal-
ities cannot prove a lower-bound better than d for d-uniform access structures.

1.2 Conditional Disclosure of Secrets

The proof of Theorem 4 is based on a new construction of Conditional Disclosure
of Secrets (CDS) [GIKM00]. In this model, Alice and Bob hold a shared secret
s and private inputs x and y, respectively, and they wish to let Carol learn
the secret s if and only if the inputs (x, y) satisfy some predefined predicate
f : X × Y → {0, 1}. The inputs x, y are known to Carol, and, in addition, she
gets a single message, a, from Alice and a single message, b, from Bob. These
messages depend on the party’s input, on the secret s, and on a random string r
that is shared between Alice and Bob but is hidden from Carol. Given (a, b, x, y),
Carol should be able to recover s if f(x, y) = 1 but should learn nothing on the
secret otherwise. The parties are assumed to be computationally unbounded,
and the goal is to minimize the communication complexity of Alice and Bob.
(See Sect. 2 for a formal definition.)

CDS schemes have found useful applications in various contexts such as
information-theoretically private information retrieval [CKGS98], priced oblivi-
ous transfer [AIR01], and attribute based encryption [GPSW06,SW05]. Focus-
ing on the last application, it turns out that the communication complexity
of CDS for natural predicates is tightly connected to the parameters (private-
key/ciphertext length) achievable by natural constructions of attribute based
encryption. (See the discussion in [GKW15].) As a result, the communication
complexity of CDS has recently attracted a noticeable amount of research.

CDSas a Secret Sharing. CDS can be viewed as a (simpler) variant of 2-
uniform access structure. Specifically, consider an access structure over the set
of players X × Y in which every pair of parties (x, y) ∈ X × Y should be able to
recover the secret s if and only if f(x, y) = 1. We further assume that singletons
are not authorized, but other than that we do not require any privacy/correctness
condition for other subsets of parties. Then, we can represent the secret-sharing
problem as the problem of realizing a CDS for the predicate f and vice-versa
by setting the share of the x-th player (resp., y-th player) to be the message
a(x, s; r) (resp., b(y, s; r)). The communication complexity of the CDS protocol
therefore corresponds to the maximal size of the shares.

The worst-case complexity of CDS (over all predicates f : [n] × [n] → {0, 1})
matches, up to a constant multiplicative factor, the complexity of the worst-case
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2-uniform SS over 2n players (as shown implicitly in [BIKK14]).7 In particu-
lar, for single bit secrets, the best known communication complexity is sub-
polynomial in the domain size [LVW17a], and for exponentially long secrets the
best upper-bound on the information ratio (i.e., communication divided by the
length of the secret) is logarithmic in n [AARV17]. (In fact, these results were
first established for the CDS setting and then were exported to the more general
2-uniform setting via [BIKK14].)

Our Contribution. We prove that any predicate admits a CDS with asymptotic
information ratio of 4. Moreover, this result applies to multiparty CDS where
Alice and Bob are replaced with k parties. (See Sect. 2 for formal definitions.)

Theorem 6. Any k-party predicate f : X1 × . . .×Xk → {0, 1} admits a k-party
CDS in which, for sufficiently large secrets (whose length is exponential in the
function’s domain), each party communicates at most 4 bits per each bit of the
secret. For the special case of k = 2, the information ratio can be improved to 3.

The theorem is quite general: It achieves an information ratio of 4 for any
function f , regardless of the number of parties or their domain. This validates
Hypothesis 3 for the class of access structures induced by general CDS, includ-
ing the special case of k-party CDS in which each party holds a single bit. For
this setting (sometimes known as non-monotone secret sharing [BI01,VV15])
the best non-amortized communication complexity is 2Õ(

√
k) [LVW17b]. This

leaves a huge (almost maximal) gap between the amortized communication and
non-amortized communication.

From CDS to Partial PSM. Finally, we ask whether highly efficient CDS
protocols can be used to improve the complexity of more challenging tasks such
as Private Simultaneous Message Protocols [FKN94]. This setting is similar to
the CDS setting except that here, the inputs x, y are treated as private data (not
known to Carol), and the goal is to let Carol learn the function f(x, y) without
learning any additional information. (The communication pattern is one-way just
as the case of CDS.) This setting is much more challenging (just like functional
encryption is more challenging than attribute based encryption). For an arbitrary
function f : [n]× [n] → {0, 1}, the best upper-bound is O(

√
n) [BIKK14] and no

amortization results are known.
Following [IW14], we consider a hybrid model (partial PSM) in which Alice’s

input x is partitioned into a public part x1 that is known to Carol (but not
to Bob) and to a private part x2, and similarly Bob’s input, y, is partitioned
into a public part y1 (known to Carol but not to Alice) and a private part
y2. Trivially, partial PSM complexity is upper bounded by PSM complexity in
the sense that one can apply a PSM protocol to hide all of Alice’s and Bob’s
input (both the private and public parts). Adapting known PSM protocols to
the partial PSM model in a way that communication complexity is reduced, does
7 The reader should note that CDS complexity is sometimes measured in terms of the

bit-length of the x and y (i.e., log |X| + log |Y |). In our context it is more natural to
use the cardinality of the alphabet as the main parameter.
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not seem like an easy task. As explained in Sect. 6, CDS turns out to be a natural
tool for accomplishing this task. In Sect. 6 we reduce partial PSM to CDS with
an overhead that is roughly linear in the domain of the private input. (We obtain
better results for families of predicates that can be computed by small/shallow
Boolean circuits.) Our results improve upon the reduction of [AARV17] whose
overhead is exponential in the domain of the private parts.

1.3 Overview of Our Constructions

We briefly sketch the outline of our main theorems starting with Theorem 6.

Amortized CDS. Theorem 6 is proved by strengthening the amortization tech-
niques of [AARV17]. In particular, Applebaum et al. reduce the problem of
amortizing the complexity of two-party CDS to the problem of constructing a
two-party batch-CDS scheme. In the latter setting Alice holds a single input
x, Bob holds a single input y, and both parties hold 22n secrets, one for each
predicate in F = {f : [n] × [n] → {0, 1}}. The scheme releases the secret sf if
and only if f evaluates to 1 on (x, y). In [AARV17] such a scheme is realized by
recursing over the inputs (x, y) in a bit-by-bit manner. Loosely speaking, once
Alice knows that the last bit of x is, say, zero, she can complete the task by
invoking a batch-CDS for the residual functions G = {g : [n/2] × [n] → {0, 1}}
with random secrets rg and release sf ⊕ rg. In fact, many functions f will be
simplified to the same g ∈ G, and therefore, in order to deliver the secret sf for
each such f , Alice will have to use many copies of g with a different secret rg,i

for each copy. The crucial point is that each g ∈ G accounts for the same number
D = |F|/|G| of functions f ∈ F , and so we can use D copies of batch-CDS over
G. This bit-by-bit recursion leads to a batch-CDS with communication complex-
ity of O(|F| log n), and the logarithmic overhead is carried over to the setting of
amortized CDS for long secrets.

In order to get rid of this overhead, we modify the construction of batch-
CDS, and instead of treating Alice’s inputs in a bit-by-bit manner, we treat it as
a single element from [n]. Abstracting the above argument, the transformation
works as long as each residual function g over Bob’s inputs accounts for the same
number of original functions in F . We further abstract this property of F and
extend the argument to k parties (recursing over the parties instead of the bits
of the inputs). This allows us to shave the logarithmic factor and to obtain a
constant overhead for any function family F that satisfies some regularity and
closure conditions. (See Sect. 3.1 for details.)

These results are used to obtain multilinear CDS for any predicate f in F
with information ratio of at most 4 as long as the secret is larger than |F|.
Taking F to be the class of all predicates (a class that is shown to satisfy the
required conditions) we derive Theorem 6. In this case, amortization kicks in only
when the secret is exponential in the domain size of f . This can be significantly
improved when f is taken from a small family F of predicates that satisfies
our conditions. For example, we show that when f is a low-degree multivariate
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polynomial amortization kicks in even for secrets of length quasi-polynomial in
the size of the domain. (See Sect. 3 for details.)

Amortized d-uniform SS. Amortized secret sharing schemes for d-uniform access
structures (Theorem 4) are obtained via a reduction to d-party CDS. Recall that
a d-uniform access structure corresponds to a d-uniform hypergraph (in which
d-size authorized sets appear as hyperedges). Similarly, d-party CDS essentially
corresponds to the special case of d-partite hypergraph, that is, hypergraphs
whose vertices can be partitioned into d parts V1, . . . , Vd such that every hyper-
edge is an element of V1 × . . . × Vd. Therefore, ignoring some technicalities, the
reduction boils down to a graph covering problem. That is, it suffices to show
that any d-uniform hypergraph G can be covered by a collection of d-partite
hypergraphs (G1, . . . , Gt). If we can further show that each hyperedge of G is
covered by a constant fraction of the graphs in the collection, then the commu-
nication blow-up of the reduction will be constant.

This approach was implemented by [BIKK14] in the case of d = 2. In this
case, a good covering can be obtained via an error-correcting code. In the multi-
party setting, standard codes do not solve the problem. Instead, we established
the existence of a good covering via the probabilistic method. As a result, we
get a general reduction from d-uniform access structure to d-party CDS with an
overhead of O(ed). (See Sect. 4 for details.)

We mention that, concurrently to our work, [BKN18] describe an incompa-
rable reduction from d-uniform access structures over n parties to n-party CDS
(aka non-monotone secret sharing) with a non-constant multiplicative overhead
of Õ(n) which is independent of d.

2 Definitions

In this section we define Secret-Sharing, multiparty CDS, and partial-PSM. In
all of our definitions, we consider only perfect correctness and perfect privacy.
(Relaxations to the case of imperfect privacy and imperfect correctness can be
obtained in a natural manner.)

2.1 Secret-Sharing

The following definitions are based on [Bei11].

Access Structures and Distribution Schemes. Let p1, ..., pn be a set of parties.
A collection A ⊂ 2{p1,...,pn} is monotone if B ∈ A and B ⊂ C imply that
C ∈ A. An access structure is a monotone collection A ⊂ 2{p1,...,pn} of non-
empty subsets of {p1, ..., pn}. Sets in A are called authorized, and sets not in
A are called unauthorized. A distribution scheme Σ = (Π,μ) with domain of
secrets S is a pair, where μ is a probability distribution on some finite set R
called the set of random strings and Π is a mapping from S × R to a set of
n-tuples Z1 × Z2 × . . . × Zn, where Zj is called the domain of shares of pj . A
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dealer distributes a secret s ∈ S according to Σ by first sampling a random string
r ∈ R according to μ, computing a vector of shares Π(s, r) = (z1, ..., zn), and
privately communicating each share zj to party pj . For a set A ⊂ {p1, . . . , pn},
we denote Π(s, r)A as the restriction of Π(s, r) to its A-entries. The information
ratio of a distribution scheme is max1≤j≤n

log |Zj|
log |S| .

Definition 1 (Secret Sharing). Let S be a finite set of secrets, where |S| ≥ 2.
A distribution scheme (Π,μ) with domain of secrets S is a secret-sharing scheme
realizing an access structure A if the following two requirements hold:

– Correctness. For every authorized set B ∈ A (where B = {pi1 , . . . , pi|B|}),
there exists a reconstruction function RecB : Zi1 × . . . × Zi|B| → S such that
for every s ∈ S,

Pr[ReconB(Π(s, r)B) = s] = 1.

– Privacy. For any unauthorized set T 
∈ A, every two secrets a, b ∈ S, the
random variables

Π(a, r)T and Π(b, r)T ,

induced by sampling r according to μ, are identically distributed.

A secret sharing scheme is linear (resp., multilinear) over a finite field F, if
the secret domain S is F (resp., Fi for some i ≥ 1), the randomness domain R
is Fj for some j ≥ 1, and the mapping Π is linear over F. By default, we always
assume that the domain S can be associated with some finite field.

Uniform access structures. Our main focus will be on Uniform Access Structures.
Formally, an access structure A is d-uniform if every authorized set of A is of
size at least d, and every set of size at least d + 1 is authorized. A secret-sharing
scheme for a d-uniform access structure is referred to as a d-uniform secret
sharing scheme.

2.2 Conditional Disclosure of Secrets

Definition 2 (multiparty CDS). Let f : X1 × . . .×Xk → {0, 1} be a predicate.
For 1 ≤ i ≤ k let Fi : Xi × S × R → Zi be deterministic encoding algorithms (S
is the secret domain and R is the shared randomness domain). We say that the
tuple (F1, . . . , Fk) is a k-party CDS for f , if the function F (x1, . . . , xk, s, r) =
(F1(x1, s, r), . . . , Fk(xk, s, r)) satisfies the following conditions:

– Correctness. There exists a deterministic algorithm Dec, called the decoder,
such that for every input (x1, . . . , xk) such that f(x1, . . . , xk) = 1, every secret
s ∈ S, and every random string r ∈ R we have that

Dec(x1, . . . , xk, F (x1, . . . , xk, s, r)) = s.
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– Privacy. There exists a randomized simulator Sim such that for every input
(x1, . . . , xk) such that f(x1, . . . , xk) = 0 and any secret s ∈ S the random
variables

F (x1, . . . , xk, s, r) and Sim(x1, . . . , xk),

induced by a random choice of r ∈ R and a uniform choice of the internal
randomness of the simulator, are identically distributed.

The communication complexity of party i is log(|Zi|) and its amortized com-
munication complexity (or information ratio) is log(|Zi|)

log(|S|) . The information ratio
of the protocol is the maximum information ratio of all parties.

A important property of CDS is whether or not it is linear. We distinguish
between linear CDS and multilinear CDS. A multiparty CDS is multilinear over
a finite field F if:

1. The secret and the randomness domains are both vectors over F.
2. The encoding functions Fi are linear in the secret and randomness. That is,

fixing the input xi, Fi’s output is a vector over F in which every coordinate
is a linear combination of the secret and the random field elements.

A multilinear CDS is linear if the secret is a single field element (i.e., S = F).
By default, we always assume that the domain S can be associated with some
finite field. To simplify notation, we will use the term CDS instead of multiparty
CDS when the number of parties is clear from the context.

Remark 1. It is sometimes useful to consider a variant of CDS in which only a
single party (say the last one) holds the secret. Formally, this means that Fk

depends on the secret (and randomness) and F1, . . . , Fk−1 depend only in the
randomness. Being a special case of the original definition, any construction of
this variant of CDS, also satisfies the general notion of CDS. We mention that
all the constructions in this paper natively admit a CDS in which only the last
party holds the secret. More generally, it is not hard to turn any standard CDS
into a single-party-holds-the-secret type with a minor loss of |s| in the total
communication complexity. Indeed, one can just run the standard CDS with a
random secret s′, and let the last party send, in addition, the value s + s′.

2.3 Partial Simultaneous Message Protocols

Lastly, we define a variant of PSM called partial-PSM that adopts the notion of
partial garbling [IW14] to the three-party setting of [FKN94].

Definition 3 (partial-PSM). Let f : (X ×W)×(Y×T ) → {0, 1} be a function.
We say that a pair of deterministic encoding algorithms F1 : (X ×W)×R → Z1

and F2 : (Y×T )×R → Z2 are partial-PSM for f if the function F (x,w, y, t, r) =
(F1(x,w, r), F2(y, t, r)) that corresponds to the joint computation of F1 and F2

on a common r, satisfies the following properties:
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– Correctness. There exists a deterministic algorithm Dec, called the decoder,
such that for every input (x,w, y, t) and every r ∈ R we have that

Dec(w, t, F (x,w, y, t, r)) = f(x,w, y, t).

– Privacy. There exists a randomized algorithm (simulator) Sim such that for
any input (x,w, y, t) the random variables

F (x,w, y, t, r) and Sim(w, t, f(x,w, y, t)),

induced by a random choice of r ∈ R and a uniform choice of the internal
randomness of the simulator, are identically distributed.

We refer to X and Y as the private domain of f , and to W and T as the
public domain of f . When the public domain is empty, we get the standard
definition for PSM (as all input is required to be hidden). The communication
complexity of the protocol is defined as the total encoding length (log |Z1| +
log |Z2|), and the randomness complexity is defined as the length log |R| of the
common randomness.

Remark 2 (PSMas randomized encoding of functions). A PSM protocol for f can
be alternatively viewed as a special type of randomized encoding [IK00,AIK06]
of f , where the output of f is encoded by the output of a randomized function
F ((x, y), r) such that F can be written as F ((x, y), r) = (F1(x, r), F2(y, r)). This
is referred to as a “2-decomposable” encoding in [Ish13]. Similarly, the notion of
partial PSM can be derived by considering 2-decomposable partial encoding (or
garbling).

3 Constant Information Ratio for CDS

In this section we show that, for sufficiently long secrets, any d-ary predicate
f admits a d-party CDS with constant information ratio. Following [AARV17],
we begin (in Sect. 3.1) by constructing a highly efficient batch version of CDS
(that simultaneously handles a class of different predicates) and then show (in
Sect. 3.2) how to transform it into a standard CDS with low amortized complex-
ity.

3.1 Batch-CDS and Regular Function Families

A k-party batch-CDS for a class of predicates F takes as an input a vector of
secrets (sf )f∈F and a single input tuple x = (x1, . . . , xk) where xi belongs to
the i-th party, and delivers to Carol all the secrets sf for which f(x) = 1.

Definition 4 (batch-CDS [AARV17]). Let F = (f1, . . . , fm) be an m-tuple of
predicates over the domain X1 × . . . × Xk. For i ∈ [k] let Fi : Xi × Sm × R →
Zi be deterministic encoding algorithms, where S is the secret domain. Then,
(F1, . . . , Fk) is a k-party batch-CDS scheme for F if the function F (x, y, s, r) =
(F1(x1, s, r), . . . , Fk(xk, s, r)), where s ∈ Sm , satisfies the following properties:



328 B. Applebaum and B. Arkis

1. Correctness. There exists a deterministic algorithm Dec, called a decoder,
such that for every i ∈ [m], every input x = (x1, . . . , xk) that satisfies fi and
every vector of secrets s ∈ Sm, we have that:

Pr
r

R←R
[Dec(i, x, y, F (x, y, s, r)) = si] = 1.

2. Privacy. There exists a randomized simulator Sim such that for every input
x = (x1, . . . , xk) and every vector of secrets s ∈ Sm, the following distribu-
tions are identical

Sim(x, ŝ) and F (x, s, r),

where r
R← R and ŝ is an m-long vector whose i-th component equals to si if

fi(x, y) = 1, and ⊥ otherwise.

The communication complexity of the party i is log |Zi|.

We generalize the ideas of [AARV17] and show that every family of functions
that satisfy some closure properties (detailed in Definition 5) admits a highly
efficient batch-CDS.

Definition 5 (regular function family). Let X1, . . . ,Xk be a tuple of input
domains and let F = (F1, . . . ,Fk) be a sequence of function families where, for
every i, the family Fi contains functions of the form f : X1 × . . . × Xi → {0, 1}.
We say that F is regular if it satisfies the following conditions:

1. F is closed under addition. That is, for every i ∈ [k] and f1, f2 ∈ Fi, we have
that f1 + f2 ∈ Fi (addition is over the binary field).

2. For every i ∈ [k], Fi contains the constant function 1.
3. For every i ∈ [k−1] and every function g ∈ Fi and a ∈ Xi+1, let R(g, a) be the

set of functions f ∈ Fi+1 that simplify to g when their last input is substituted
by a. (That is, f(x1, . . . , xi, a) = g(x1, . . . , xi) for every (x1, . . . , xi) ∈ X1 ×
. . . × Xi). Then the size of R(g, a) is independent of g and a, and depends
only on the arity i. We let Ri denote this size.

We refer to the first two properties as closure properties, and to the third property
as downward regularity.

Remark 3. It is useful to think of the last property of Definition 5 in graph-
theoretic terms. Consider a k-layered graph in which the i-th layer contains a
node for every function f ∈ Fi, and add an edge, labeled by a ∈ Xi+1, from
f ∈ Fi+1 to g ∈ Fi if f(· · · , a) simplifies to g. Then, each layer i should be
regular in the sense that, for every edge label a ∈ Xi+1, every node f ∈ Fi has
exactly Ri incoming edges that are labeled by a. (This, in particular, implies
that |Fi+1| = Ri|Fi|.)

An important example of a regular function family is the family of all func-
tions.
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Proposition 1. Let X1, . . . ,Xk be a sequence of finite sets, and let Fi denote
the family of all predicates over X1 × . . . × Xi. Then the family F = (Fi)i∈[k] is
regular.

The proof is deferred to the full version [AA18].
Another regular function family is polynomials of degree at most D over the

binary field.

Proposition 2. Let (�1, . . . , �k) be a k-tuple of positive integers and let Xi =
{0, 1}�i . For an integer D let Pi be the family of all functions over X1 × . . . ×
Xi that can be expressed as multivariate polynomials over the binary field with∑i

j=1 �j variables and total degree of at most D. Then the family P�,D = (Pi)i∈[k]

is regular.

The proof is deferred to the full version [AA18].
We continue by showing that every regular function family has an efficient

batch-CDS. From now on, we work with secrets (and randomness) that are taken
from some arbitrary finite field F (e.g., the binary field).

Lemma 1. Let F = {Fi}k
i=1 be a regular function family over the input domains

X1, . . . ,Xk. There is a batch-CDS for Fk such that the communication of each
party consists of at most |Fk| field elements. Moreover, one of the parties (e.g.,
the first) communicates only |Fk|/2 field elements.

Proof. Denote by sf the secret field element associated with some function
f ∈ Fk. We show (inductively) how to construct a batch-CDS for Fk. For k = 1
a single party holds the entire input and can send sf for every f that satisfies
f(x1) = 1, using communication at most |F1| field elements. In fact, the regular-
ity conditions (1 and 2) guarantee that exactly half of the functions are satisfied
by x1, and therefore only |F1|/2 field elements will be sent by the first party.

Let us assume that the claim holds for k − 1. To extend the protocol to k
parties we make use of the following family of mappings. For every a ∈ Xk let Ta

be an injective mapping that maps a function f ∈ Fk to (g, i) ∈ Fk−1 × [Rk−1],
such that f is the i-th function in R(g, a) according to some fixed predefined
order. (Recall that f ∈ R(g, a) if f(·, a) = g(·).) By the third regularity condition,
|R(g, a)| = Rk−1 for every g, a, and therefore Ta is well defined. The existence
of such mappings Ta gives us the ability to use the batch-CDS inductively:

1. Players 1, . . . , k − 1 run the batch-CDS for Fk−1, Rk−1 times with random
field elements rg,i for (g, i) ∈ Fk−1 × [Rk−1] to release rg,i if and only if
g(x1, . . . , xk−1) = 1.

2. For every function f ∈ Fk player k computes (g, i) = Txk
(f) and releases

sf + rg,i.

The decoding procedure is simple. If the input (x1, . . . , xk) satisfies f ∈ Fk,
the decoder does the following: (1) Computes (g, i) = Txk

(f) and retrieves
the value of rg,i that is released by the batch-CDS since g(x1, . . . , xk−1) =
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f(x1, . . . , xk) = 1; (2) Collects the values sf + rg,i sent during the second step,
and recovers the value of sf .

It is not hard to verify that perfect privacy holds. Indeed, suppose that
(x1, . . . , xk) does not satisfy f . Then, the only sf -dependent value that is released
is sf + rg,i where g is the restriction of f to xk. However, since (x1, . . . , xk) fails
to satisfy f , its prefix does not satisfy g and therefore rg,i remains hidden from
the receiver.

We complete the proof by analyzing the communication complexity. The last
party sends exactly |Fk| field elements. By the induction hypothesis, each of the
other parties sends at most Rk−1 · |Fk−1| = |Fk| field elements, and the first
party sends Rk−1 · |Fk−1|/2 = |Fk|/2 field elements, as required. �

Remark 4 (On the use of regularity). We mention that (without the “Moreover”
part) Lemma 1 holds even if F satisfies only the property of downward regularity.

3.2 Amortization for CDS

We use the above lemma to amortize the complexity of CDS over long secrets.

Theorem 7. Let F = {Fi}k
i=1 be a regular family of functions, and let f ∈ Fk.

Then for m = |Fk|/2 there exists a multilinear (k-party) CDS that supports m
field element secrets with information ratio of 4. Moreover, one of the parties
has information ratio of 2.

Proof. Given a secret vector s ∈ F
m, we duplicate each secret twice and index

the secrets by predicates p ∈ Fm such that sp = sp̄ (i.e., a predicate and its
complement index the same secret). Note that properties (1) and (2) guarantee
that Fk is closed under complement. On inputs x1, . . . , xk, the parties make two
calls to Fk-batch CDS. In the first call the secret associated with a predicate p ∈
Fk is a random value rp ∈ F. In the second call, for every predicate f+p+1 ∈ Fk,
we release sp + rp. Since the mapping p �→ p + f + 1 is a bijection, the second
call associates exactly one secret to each function.

Correctness. Suppose that f(x1, . . . , xk) = 1. Recall that each of the original
secrets si appears in two copies (sp, sp̄) for some predicate p. Since one of these
copies is satisfied by x = (x1, . . . , xk), it suffices to show that, whenever p(x) = 1,
the secret sp can be recovered. Indeed, for such a predicate p, the value rp is
released by the first batch-CDS, and the value sp + rp is released by the second
batch-CDS. The latter follows by noting that x satisfies the predicate p + f + 1
(since it satisfies both f and p). It follows that sp can be recovered for every p
that is satisfied by x, as required.

Privacy. Suppose that f(x) = 0. We show that all the “virtual secrets” sp

remain perfectly hidden in this case. Indeed, for every p ∈ Fk, it holds that
whenever f(x) = 0, either (f + p + 1)(x) = 0 or p(x) = 0, and therefore, for any
p, either rp or sp + rp are released, but never both.

Finally, using Lemma 1.5, the total communication complexity of each
party is 2|Fk| = 4m and the first party has communication complexity of
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2|Fk|/2 = 2m, as claimed. Also note that our protocol is multilinear. Indeed, our
construction uses batch-CDS on “virtual” secrets that are linear in the original
secrets and the randomness. In addition, batch-CDS itself is multilinear in the
sense that the output of every player is a vector with coordinates of the form
s + r or r for some secret s and random element r. �

Remark 5 (On the use of regularity). We mention that Theorem 7 relies on the
closure properties of F . Indeed, the proof actually shows that these properties
alone suffice for reducing the problem of amortizing CDS to the problem of
batch-CDS.

Plugging in the regular family of all functions, we get the following corollary.

Corollary 1 (Theorem 6 restated). Every function f : [N ]k → {0, 1} has
a multilinear k-party CDS protocol that supports secrets of length 2Nk−1 with
information ratio of 4. Moreover, for secrets of length k2Nk−1, one can get an
information ratio of 4 − 2

k (i.e., 3 for the case of k = 2).

Proof. The first part follows directly from Theorem 7. To prove the “Moreover”
part, we exploit the fact that in Theorem 7 one of the parties (say the first) has
information ratio of 2. In particular, partition the k2Nk−1-long secret to k blocks
of length B = 2Nk−1 and run the protocol k times (one for each block) where in
each invocation a different party plays the role of the first party. This way each
party communicates 4(k − 1)B + 2B elements for a secret of length kB, and the
information ratio is 4 − 2

k . �

Applying Theorem 7 to the class of all degree-D multivariate polynomials
(that was shown to be regular in Proposition 2), we conclude:

Corollary 2. Every multivariate polynomial p : {0, 1}�1 ×· · ·×{0, 1}�k → {0, 1}
over � =

∑
i �i variables with total degree of at most D admits a k-party CDS

protocol with information ratio of 4 for secrets of length P (�,D)/2 where P (�,D)
denotes the number of multivariate polynomials with � variables and total degree
of at most D over the binary field.

Note that P (�,D) ≤ 2D·�D which, for constant D, is quasipolynomial in the
size of the total domain L = 2� (as opposed to exponential in the size of the
domain as in Corollary 1). Overall, in order to construct an amortized CDS for a
target function f , it is beneficial to employ Theorem 7 with the smallest regular
family of functions that constrains f . Smaller families can significantly improve
the amortization starting point.

4 From Multiparty CDS to d-uniform Secret-Sharing

As shown by [BIKK14] CDS is closely related to secret-sharing. We further
extend this relation by using our multiparty CDS to construct efficient secret-
sharing for d-uniform access structures (here, efficiency is measured by the infor-
mation ratio of the scheme).
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Hypergraph Representation. Every access structure A can be represented as a
hypergraph H = (V,E) whose vertices correspond to parties of A and hyperedges
correspond to minimal authorized sets of A (a minimal authorized set is a set
for which no subset is authorized). In the case of d-uniform access structure A, it
is convenient to restrict the attention to minimal authorized sets of size exactly
d while keeping in mind that all larger sets are always authorized. Under this
convention, we represent d-uniform access structures by d-uniform hypergraphs.

Hypergraph Decomposition. A sub-hypergraph G = (V ′, E′) of a hypergraph
H = (V,E) is a hypergraph such that V ′ ⊂ V and E′ ⊂ E. Decomposing a
“complicated” hypergraph into a set of “simple” sub-hypergraphs is a common
way to achieve secret-sharing schemes for the former. For that matter, Stinson’s
theorem [Sti94] is commonly used. In this paper, a “complicated” hypergraph is
a d-uniform hypergraph, and a “simple” hypergraph is a d-partite hypergraph -
a hypergraph whose vertices can be partitioned into d parts V1, . . . , Vd such that
every hyperedge is an element of V1 × . . . × Vd. The following fact follows from
Stinson’s theorem.

Fact 8. Let H be a hypergraph, and let H1, . . . ,Ht be sub-hypergraphs of H
such that for some 0 < c ≤ 1 every edge e ∈ E appears in at least c · t different
sub-hypergraphs. Assume in addition that every sub-hypergraph Hi has a secret-
sharing scheme with information ratio of at most r for secrets whose domain S
is of size at least t.8 Then H has secret-sharing scheme with information ratio
at most r

c for secrets taken from Sct. In addition, if the schemes for Hi are
multilinear, the new scheme is multilinear as well.

The proof is deferred to the full version [AA18].

4.1 Secret-Sharing for d-partite Hypergraphs

For a d-partite hypergraph H = (V = (V1, . . . , Vd), E) we define fH : V1 × . . . ×
Vd → {0, 1} to be the function that outputs 1 on an input e = (v1, . . . , vd) if and
only if e ∈ E.

Lemma 2. Suppose that fH has a d-party CDS scheme (F1, . . . , Fd) with infor-
mation ratio w for secrets whose domain S is of size at least n where n is the
number of nodes in H. Then, there is a secret sharing scheme for H with infor-
mation ratio w+2 for secrets in S. Moreover, if the CDS scheme is linear (resp.,
multilinear) then the secret sharing scheme is also linear (resp., multilinear).

Proof. Let S be the secret domain of the CDS for fH and let |V | = n. Given a
secret s ∈ S we share it as follows. First, we use (d + 1)-out-of-(d + 1) secret
sharing to share s into (s0, . . . , sd). Next, we sample randomness r for the CDS
and distribute the secret s0; That is, for each vertex v ∈ Vi, we generate the

8 This condition can be completely waived at the expense of losing a constant factor
in the final rate.
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share av = Fi(v, s0, r). Finally, we use (d + 1)-out-of-n Shamir’s secret sharing
to share the secret s into n shares (bv)v∈V . (For this we view S as a field and
use the fact that |S| ≥ n.) Overall, the share of the vertex v ∈ Vi is the triplet
(si, av, bv). Observe that the information ratio is w + 2 (since threshold access
structures can be realized with information ratio of 1).

Correctness: Consider an authorized coalition parties e ⊂ V . If e contains more
than d parties then the secret can be recovered based on the b parts. Otherwise,
e ∈ E. In this case, the CDS allows the coalition to recover s0. Moreover, since e
must contain exactly one vertex from each part Vi of the graph the parties also
have the shares s1, . . . , sd and they can recover s.

Privacy: Consider an unauthorized coalition of parties e ⊂ V . In any case e is
smaller than d + 1 and so the b parts reveal no information. If the size of e is
smaller than d then e does not contain a vertex from Vi for some i ∈ [d], and
so si remains hidden and no information is revealed about s. If e is of size d
then e /∈ E and so the CDS keeps s0 hidden, and no information is revealed
about s. �

Corollary 3. Every d-partite hypergraph has a d-uniform, multilinear secret-
sharing scheme with information ratio of 6 for secrets of domain size 2nd−1,
where n is the number of nodes in H.

Proof. Let H be a d-partite hypergraph with n vertices V = (V1, . . . , Vd). Since
each Vi contains at most n vertices, the function fH can be viewed as a binary
function over [n]d. We construct a d-party CDS for fH using Corollary 1, and
then use Lemma 2 to get the required secret-sharing scheme. �

4.2 Secret-Sharing for d-uniform Hypergraphs

Recall that Fact 8 shows that the case of general d-uniform hypergraphs reduces
to the case of d-partite hypergraphs provided that we have a “good” covering of
hypergraphs by d-partite hypergraphs. The following lemma uses a probabilistic
argument to establish the existence of such a good covering.

Lemma 3. Let H = (V,E) be a d-uniform hypergraph with n vertices. Let
t = 3dd(dd+1)2

d! · ln(nd). There exists a set of sub-hypergraphs of H denoted by
{H1, . . . ,Ht} such that every Hi is d-partite and every edge of H appears in at
least d!

dd+1
· t sub-hypergraphs.

The constant d!
dd+1

can be replaced with any constant strictly smaller than
d!
dd . The proof is deferred to the full version [AA18].

We can now prove Theorem 4 (restated here for convenience).

Theorem 9. Every d-uniform hypergraph H has a multilinear d-uniform secret-
sharing scheme with information ratio 6 · dd+1

d! for secrets of length exp(O(nd ·
log n · d2d+1)) where n is the number of nodes in H.
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Proof. First, we use Lemma 3 to decompose H into t = 3dd(dd+1)2

d! · ln(nd) sub-
hypergraphs that are d-partite, such that every edge of H appears in at least
c · t different sub-hypergraphs where c = d!

dd+1
. Following Corollary 3, every

sub-hypergraph in the decomposition has a multilinear d-uniform secret-sharing
scheme with information ratio of 6 for secrets of domain size 2nd−1. Finally,
we use Fact 8 to establish a multilinear d-uniform secret-sharing scheme for
H with information ratio 6

c = 6 · dd+1
d! for secrets domain of size (2nd−1)

ct
=

2(n
d−1)3dd(dd+1) ln(nd) = exp(O(nd · log n · d2d+1)). �

For the special case of d = 2 (i.e., forbidden graph access structure) we get
the following corollary.

Corollary 4. Every forbidden graph access structure has a multilinear secret-
sharing scheme with information ratio of 12.5.

Proof. As explained in Corollary 1 there exists a multilinear 2-party CDS with
information ratio of 3. �

Remark 6. There are some tweaks that can be applied to our secret-sharing
construction to get (minor) improvements in the information ratio. Since these
modifications complicate the statements and their proofs, we briefly describe
them here instead:

1. In our construction of secret-sharing for d-partite hypergraphs, as described
in Lemma 2, each party is given a (d + 1)-out-of-n share of Shamir’s secret
sharing. This is done to promise that any d + 1 parties can reconstruct the
secret. As we use the construction from Lemma 2 multiple times in our final
construction for d-uniform hypergraphs, this creates a redundancy. Instead,
we can drop this step at Lemma 2, apply Lemma 3, and add a Shamir secret
sharing for d + 1 sets at the end. This gives us an overall information ratio of
5 · dd+1

d! + 1.
2. In Lemma 3 we used Chernoff bound to show the existence of our desired

decomposition. We chose a value for δ that is 1 − dd

dd+1
. In general, every

value of δ smaller than 1 would suffice. Hence, the information ratio can be
arbitrarily close to 5· dd

d! +1. (Naturally, when the information ratio gets closer
to 5 · dd

d! + 1, longer secrets are required in order to achieve amortization).
3. An additional improvement can be obtained by plugging-in the optimized

4− 2
k bound on the information ratio of k-party CDS (Corollary 1). This yields

a secret-sharing scheme for d-uniform hypergraphs with an information ratio
(5 − 2

d ) · dd

d! + 1 + ε for every ε > 0.

5 Lower Bounds for d-uniform Secret Sharing

In this section we discuss the possibility of proving lower-bounds against
d-uniform secret sharing.
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5.1 Lower Bound for the Share Size of d-uniform Linear SS

We start by showing a lower bound on the share size (in bits) of linear d-uniform
secret sharing. This immediately implies a similar lower-bound on the share size
of multilinear schemes. (Since one can turn a multilinear scheme into a linear
scheme by fixing all but a single secret). The following definitions are needed:

Definition 6. Let A be an access structure and q be a prime power. Define
ρq(A) to be the minimal information ratio of all linear secret sharing schemes
realizing A over the field Fq (the finite field over q elements).

Definition 7. For an access structure A, we say that A has rank r, if every
minimal authorized set of A is of size at most r.

The following theorem is proved in [BFM16]:

Theorem 10. Let q be a prime power, and s, r, n be integers such that s >
log(n). Denote by T (q, s, r, n) the number of access structures with n parties,
rank r and ρq(A) ≤ s. Then T (q, s, r, n) ≤ 22rns2 log(q).

From this theorem, it is easy to get a lower bound for the maximum share
size of linear d-uniform secret sharing schemes. The following corollary is pre-
sented by [BFM16] for the case of forbidden graphs. We generalize this result to
d-uniform access structures:

Corollary 5 (Theorem 5 restated). For every n and d ≥ 2, there exists a
d-uniform access structure A such that the maximal share size of every linear
secret sharing scheme realizing it (and therefore of every multilinear scheme as
well), is at least

√
nd−1

2dd(d + 1)
≥ n(d−1)/2

2d(d+1)/2
.

Proof. Fix some prime power q. Suppose that every d-uniform access structure
admits a linear scheme over Fq with maximal share size of z = s log(q). Every
d-uniform access structure, is a rank d + 1 access structure. Therefore we get
that on one hand the number of d uniform access structures such that ρq(A) < s

is at most T (q, s, d + 1, n) ≤ 22(d+1)nz2
. On the other hand, the number of d-

uniform access structures is 2(nd). Therefore, 22(d+1)nz2 ≥ 2(nd) which in turn
means that z ≥

√
nd−1

2dd(d+1)
. For the case of multilinear schemes, observe that

any such scheme simplifies to a linear scheme after we fix all but a single entry
of the vector of secrets. �

For a constant d, we conclude that the share size of d-uniform linear (or
multilinear) SS must be at least Ωd(n

d−1
2 ). We conclude that multilinear SS (like

the one from Theorem 4) cannot achieve constant information rate for secrets
shorter than Ωd(n

d−1
2 ). Note that in our scheme amortization begins only for

exponentially long secrets. Narrowing this gap, even for multilinear schemes,
remains an interesting open problem.
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5.2 Limitations of Shannon’s Inequalities Based Lower-Bounds

A commonly used technique for proving secret sharing lower bounds is by ana-
lyzing the entropy of the shares (induced by a uniform choice of the secret). In
particular, one typically relies on the following claim. (Below H denotes Shan-
non’s entropy).

Claim 11. Let A be an access structure and let Σ be a (perfect) secret sharing
scheme for A with secret domain of S. For a set of parties A, denote by SA

the joint distribution of the shares of parties in A induced by a uniformly chosen
secret S

R← S, and by the internal randomness of Σ. Define f(A) = H(SA)
H(S) . Then

the following holds:

1. Monotonicity. If A ⊂ B, then f(B) ≥ f(A) ≥ f(∅) = 0.
2. Submodularity. f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B).
3. Strong Monotonicity. If A 
∈ A, B ∈ A, and A ⊂ B, then f(B) ≥ f(A) + 1.
4. Strong Submodularity. If A,B ∈ A and A ∩ B 
∈ A, then f(A) + f(B) ≥

f(A ∪ B) + f(A ∩ B) + 1.

These inequalities are called Shannon inequalities, and a proof of the claim
is given by Csirmaz [Csi97]. The claim is typically used to lower-bound, for
some party a, the value of f(a) and conclude a lower-bound on the (normalized)
entropy value of a’s share, which implies a lower-bound on the share size. Indeed,
this technique was used by Csirmaz to prove the best known lower-bound ( n

log n )
on the information ratio of some n-party access structure. Csirmaz also showed
that this method cannot prove superlinear lower-bounds since there is a “semi-
entropy” function g that satisfies the conditions of Claim 11 but assign to each
singleton a value of O(n). We use the same idea to show a barrier of d for the
case of d-uniform access structures.

Theorem 12. Let d ≥ 2. Then Shannon inequalities cannot give a better lower
bound than d for the information ratio of d-uniform secret sharing.

Proof. Let A be a d-uniform access structure, and let A be a non-empty set of
parties. For t = min{|A|, d + 1} we define

g(A) =

(
t−1∑

i=0

(d + 1 − i)

)

− 1

For the empty set, we define g(∅) = 0. Note that g({p}) = d for every party p.
Thus, showing that g satisfies the Shannon inequalities will prove the theorem.
Clearly g is monotone and non-negative, so (1) is satisfied. For (3), we assume
A 
∈ A, B ∈ A, and A ⊂ B. The set A contains at most d parties (since it is
unauthorized), and the set B contains more parties than A, therefore (3) follows.

For (2) and (4), we first ignore the −1 at the definition of g and consider the
following cases:

1. |A| ≥ d + 1. In this case, g(A) = g(A ∪ B) and we reduce (2) and (4) to (1)
and (3) respectively. The case where |B| ≥ d + 1 is symmetric.
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2. A ⊂ B. In this case A = A ∩ B and B = A ∪ B. (2) follows. In addition, if
A ∈ A then A ∩ B ∈ A and so (4) vacuously follows. The case where B ⊂ A
is symmetric.

3. Assume |A|, |B| ≤ d + 1 and that A ∪ B 
= A,B. We show that g(A) −
g(A ∩ B) ≥ g(A ∪ B) − g(B) + 1, thus showing both (4) and (2). We denote
C = A−(A∩B) and D = (A∪B)−B. Note that C = D and let � := |C| = |D|.
This implies that g(A)−g(A∩B) is the sum of the last � consecutive integers
of g(A), denote this sum by x1 + · · ·+x�. Also, g(A∪B)− g(B) is the sum of
the last � consecutive integers of g(A ∪ B), denote this sum by y1+, . . . ,+y�.
Since A is a strict subset of A ∪ B, it holds that for every i, xi > yi, and so
(2) and (4) follow.

Returning to the original definition of g (with the −1), we note that this
substraction matters only if one of the sets is empty. The cases where A = ∅ or
B = ∅ are easily validated. In case A ∩ B = ∅ we argue that

g(A) + g(B) ≥ g(A ∪ B) + 1.

Denote a = min{|A|, d + 1}, b = min{|B|, d + 1} and c = min{a + b, d + 1}. On
the LHS we have (

∑a−1
i=0 (d + 1 − i) +

∑b−1
i=0 (d + 1 − i)) − 2, and on the RHS

we have (
∑c−1

i=0 (d + 1 − i)) − 1. One can easily verify that the LHS is indeed at
least as big as the RHS, with equality in case a = b = 1, c = 2. �

6 Reducing Partial-PSM to CDS

In this section we show how to reduce partial-PSM to CDS with better overhead
than the one achieved in [AARV17]. Let f : (X × W) × (Y × Z) → {0, 1} be the
target function where X and Y are the private domains and W and Z are the
public domains. We associate with f the function family

F = {f(·, w, ·, z) : w ∈ W, z ∈ Z} (1)

that consists of all two-party functions that can be derived from f after fixing
some values for the public domains. For the sake of simplicity, we assume the
private input domains X and Y are both {0, 1}t, and the public domains W and
Z are both {0, 1}�−t. That is, Alice and Bob each hold � bits, out of which t bits
are considered private. By abuse of notation, we sometimes view the domain of
f as {0, 1}� × {0, 1}�. We will use the following notations:

– We denote by CDS(f, b) the minimal total communication complexity of a
perfect CDS for f supporting b-bit secrets.

– We denote by CDS(�, b) the maximal value of CDS(f, b) over all functions
f : {0, 1}� × {0, 1}� → {0, 1}.
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Overview. The general idea behind the reductions is as follows: Let (x,w0) and
(y, z0) be the input for Alice and Bob respectively. Let fw0,z0 be the function
f restricted to w = w0, z = z0. The function fw0,z0 is known to Carol, but not
to Alice and Bob. Suppose that we have a family of PSM protocols {F(w,z) =
(F(w,z),1, F(w,z),2)}w,z for all possible functions fw,z. The idea is to release only
the transcript of F(w0,z0)(x, y, r) via the aid of CDS. Naively, this can be done
by letting Alice generate, for every (w, z), the PSM messages F(w,z),1 and use
the result as a secret for a CDS over the 2-party predicate “Is (w0, z0) equal to
(w, z)?”, and do the same with Bob’s messages. Clearly, the overhead in this
case is huge (exponential in the length of the public input (w, z)). To see how
this overhead can be reduced, imagine that the underlying PSM has the property
that Alice’s (resp., Bob’s) computation can be decomposed to blocks where in
the i-th block we compute one of L functions g1(x, r), . . . , gL(x; r) depending on
the value of (w, z). Then, we can release each block of F(w,z),1 by making only
L calls to a CDS. We start with a formalization of this idea with the notion of
PSM compilers, and then give concrete examples of this approach.

6.1 PSM Compilers

Definition 8 (PSM Compiler). Let F be a function family. We say that C is
a PSM compiler for F , if C maps every function f ∈ F to a (fully secure) PSM
F = (F1, F2). As usual, let x and y be Alice’s and Bob’s inputs respectively, and
let r be the randomness of the PSM. We say that C is (c, v, b, L)-uniform if there
exist v families of functions G1, ...,Gv and a pair of functions hA, hB with the
following properties:

1. Every PSM F = (F1, F2) in the image of C can be written as a concatenation
of functions (hA, hB , g1, ..., gv), where gi ∈ Gi is chosen based on f (and hA

and hB are identical for all f ∈ F). Every function gi ∈ Gi depends either on
(x, r) or on (y, r), and the functions hA and hB depend on (x, r) and (y, r)
respectively.

2. Every function family Gi contains at most L functions.
3. The output length of every function g ∈ ∪Gi is at most b bits, and the total

output length of hA and hB is at most c bits.

Lemma 4. Let f be a two-party predicate whose private and public domains
are {0, 1}t and {0, 1}�−t, for each party. Let F be the function family associated
with f as in Eq. (1). Then, a (c, v, b, L)-uniform PSM compiler for F implies a
partial-PSM for f with communication complexity O(c + L · v · CDS(� − t, b)).

Proof. Let x and y be the private inputs of Alice and Bob, and let w and z denote
their public inputs. Let (hA, hB , g1, ..., gv) be the compiled representation of the
PSM for fw,z = f(·, w, ·, z) and let r be the randomness used by that PSM. Recall
that for every i, gi is chosen from Gi according to the public inputs w, z. Hence,
for every g, i, we can define a predicate Pg,i that given w, z as an input outputs
1 if gi = g. To execute a partial PSM, Alice and Bob sample joint randomness r
and send the following messages:
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– Alice sends hA(x, r) and Bob sends hB(y, r).
– For every i ∈ [v] and g ∈ Gi the parties invoke a CDS (with fresh randomness)

on the public inputs w and z, predicate Pg,i (i.e.,”Is g equal to gi?”), and
secret g(x, r) (if g depends on Alice’s input) or g(y, r) (if g depends on Bob’s
input).

Note that the secret is known either to Alice or Bob, but not to both. Hence we
should use a proper CDS that operates even if the secret is known only to one of
the parties. Recall that this feature can be obtained from any (standard) CDS
at the expense of increasing the total communication by |s|, the length of the
secret (see Remark 1). It follows that the overall communication complexity is
at most c + L · v · (CDS(� − t, b) + b) ≤ c + 2L · v ·CDS(� − t, b), as required. (The
inequality follows by noting that CDS(� − t, b) ≥ b.).

The correctness of CDS guarantees that Carol, who knows w and z, can
recover the value

f̂w,z(x, y; r) = (hA(x, r), hB(y, r), g1(x, y, r), ..., gv(x, y, r)),

which, by the correctness of the PSM for fw,z, can decoded to f(x,w, y, z).
On the other hand, we can perfectly simulate the view of Carol based on w, z

and f(x,w, y, z) as follows. First sample f̂w,z(x, y; r) using the PSM simulator;
Then, use the corresponding values to perfectly sample the transcript of the
CDS calls in which the predicate was satisfied. Finally, use the CDS simulator to
sample the transcripts for the CDS calls that did not satisfy the predicate. The
lemma follows. �

6.2 Partial-PSM for General Functions

Our first reduction employs a simple PSM compiler that reduces the evaluation
of an arbitrary function to the case of inner product. (This can be viewed as a
special case of the multilinear PSM from [BIKK14].)

Theorem 13. Every two-party functionality f : {0, 1}� × {0, 1}� → {0, 1} with
private domain of {0, 1}t admits a prefect partial-PSM with communication com-
plexity O(2t + 22t · CDS(� − t, 1)).

Proof. By Lemma 4 it suffices to show that the family Ft of all all two-party
functionality over {0, 1}t×{0, 1}t admit a (c, v, b, L)-uniform PSM compiler PSM
with c = O(2t), v = O(22t) and b = L = O(1).

We describe the compiler in two steps beginning with following PSM compiler
(that does not achieve the required efficiency properties).

– Public input: A function f : {0, 1}t × {0, 1}t → {0, 1}, represented as its
truth table P ∈ {0, 1}22t .

– Alice’s inputs: x ∈ {0, 1}t represented as the indicator vector ex ∈ {0, 1}2t .
– Bob’s inputs: y ∈ {0, 1}t represented as the indicator vector ey ∈ {0, 1}2t .
– Carol’s output: f(x, y) represented by the inner product 〈P, ex⊗ey〉, where

⊗ denotes tensor product.
– Shared randomness: random bit r and random strings a′, b′ ∈ {0, 1}2t .
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The Protocol:

– Alice and Bob send to Carol

α = ex + a′ and β = ey + b′, (2)

respectively. In addition, Alice sends

γ = −
〈
P, (ex + a′) ⊗ b′〉 + r, (3)

and Bob sends

δ = −
〈
P, a′ ⊗ ey

〉
− r. (4)

– Carol outputs the value αβ + γ + δ.

Correctness follows directly from the construction, by noting that the product
αβ simplifies to

〈
P, (ex + a′) ⊗ (ey + b′)

〉
=

〈
P, ex ⊗ ey

〉
+

〈
P, (ex + a′) ⊗ b′〉 +

〈
P, a′ ⊗ ey

〉
.

Privacy is due to the fact that the messages α, β, γ are uniform, and the last
message δ is uniquely determined by all other messages and f(x, y). Hence,
there exists a simulator Sf that, given f(x, y) perfectly samples the transcript
(α, β, γ, δ).

The protocol above forms a (2 · 2t, 2, 1, 22
2t

)-uniform PSM compiler for Ft.
Indeed, hA = ex+a′, hB = ey+b′ and the function families G1 and G2 correspond
to computations of −

〈
P, (ex+a′)⊗b′〉+r and −

〈
P, ey ⊗a′〉−r respectively, with

all possible values for P . To avoid this double-exponential blow-up, we replace
the inner-product computations in (3) and (4) by their randomized encoding.
Concretely, letting u = (ex + a′) ⊗ b′ we replace (3) by

(
Pi · ui + si

)22t

i=1
, (5)

where s = (s1, . . . , s22t−1) is a string of random bits (added to the shared ran-
domness) and s22t = r −

∑22t−1
i=1 si. Similarly, letting u′ = a′ ⊗ ey we replace (4)

by
(

− Pi · u′
i + s′

i

)22t−1

i=1
, (6)

where s′ ∈ {0, 1}22t−1 is a string of random bits (added to the shared random-
ness) and s′

22t = −r −
∑22t−1

i=1 s′
i.

The resulting PSM protocol is still correct since Carol can recover the original
messages of (3) and (4) by summing-up the entries in (5) and (6) sent by Alice
and Bob in the modified protocol. To see that privacy is preserved, observe
that, given f(x, y), we can first sample a transcript (α, β, γ, δ) for the original
protocol, and then sample (5) and (6) by sampling 22t random bits that sum
up to γ together with 22t random bits that sum up to δ. It is not hard to verify
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that this simulation is perfect. (Indeed, this is just a special case of the general
composition property of randomized encoding, cf. [AIK06].)

The modified compiler now uses 2 ·22t function families Gi where each family
consists of exactly 2 functions (selected according to the i-th bit of P ) whose
output is a single bit. Hence, we get (2 · 2t, 2 · 22t, 1, 2)-uniform PSM compiler
for Fm, as required. �

Plugging in the CDS construction of [LVW17a] to Theorem 13, we derive the
following corollary.

Corollary 6. For every two-party predicate f with input domains X = Y =
{0, 1}2t there exists a partial-PSM protocol with overall complexity of (22t)1+o(1).

The resulting partial-PSM is is quasilinear in the alphabet size, |X × Y|, of the
private inputs. Note that a direct application of the fully secure PSM of [BIKK14]
yields a complexity of O(2�/2), hence our construction becomes useful only when
the length of the secret part t is smaller than �/4.

6.3 Partial-PSM for Formulas

Our second reduction is based on an information theoretic version of Yao’s gar-
bled circuit [IK02]. Recall that a formula is a Boolean circuit in which every
non-input gate has a fan-out of 1. The size of a formula is the number of gates,
and its depth is the length of longest path from a leaf to the root.

Theorem 14. Let f be a two-party predicate whose private and public domains
are {0, 1}t and {0, 1}�−t, for each party. Let F be the function family associated
with f as in Eq. (1), and assume that every function in F can be computed
by a formula of size B and depth D. Then there is a partial-PSM for f with
communication complexity of O(B3 · CDS(� − t, 2D)).

Proof. By Lemma 4, the theorem follows from the existence of a PSM com-
piler for formulas of size B and depth D that achieves (O(1), B, 2D, O(B2))-
uniformity. Such a compiler follows immediately from the information-theoretic
variant of garbled circuits that is presented in [IK02]. See the full version for
details. �
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Abstract. Information-theoretic secret-key agreement between two par-
ties Alice and Bob is a well-studied problem that is provably impossible in
a plain model with public (authenticated) communication, but is known
to be possible in a model where the parties also have access to some cor-
related randomness. One particular type of such correlated randomness
is the so-called satellite setting, where uniform random bits (e.g., sent by
a satellite) are received by the parties and the adversary Eve over inher-
ently noisy channels. The antenna size determines the error probability,
and the antenna is the adversary’s limiting resource much as computing
power is the limiting resource in traditional complexity-based security.
The natural assumption about the adversary is that her antenna is at
most Q times larger than both Alice’s and Bob’s antenna, where, to be
realistic, Q can be very large.

The goal of this paper is to characterize the secret-key rate per trans-
mitted bit in terms of Q. Traditional results in this so-called satellite
setting are phrased in terms of the error probabilities εA, εB , and εE , of
the binary symmetric channels through which the parties receive the bits
and, quite surprisingly, the secret-key rate has been shown to be strictly
positive unless Eve’s channel is perfect (εE = 0) or either Alice’s or Bob’s
channel output is independent of the transmitted bit (i.e., εA = 0.5 or
εB = 0.5). However, the best proven lower bound, if interpreted in terms
of the channel quality ratio Q, is only exponentially small in Q. The
main result of this paper is that the secret-key rate decreases asymp-
totically only like 1/Q2 if the per-bit signal energy, affecting the quality
of all channels, is treated as a system parameter that can be optimized.
Moreover, this bound is tight if Alice and Bob have the same antenna
sizes.

Motivated by considering a fixed sending signal power, in which case
the per-bit energy is inversely proportional to the bit-rate, we also pro-
pose a definition of the secret-key rate per second (rather than per trans-
mitted bit) and prove that it decreases asymptotically only like 1/Q.
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1 Introduction

1.1 Motivation for Information-Theoretic Security

In cryptography, one generally considers two types of security of cryptographic
schemes. Unconditional or information-theoretic security means that not even an
adversary with unbounded computing power can cause a violation of the secu-
rity property, whereas computational security means that the violation of the
security property is impossible for an adversary with (suitably) bounded com-
puting power, but is usually possible for a computationally unbounded adver-
sary. Information-theoretic security was first defined and considered in Shannon’s
ground-breaking paper [22].

While for the most part cryptographic research is focused on computational
security, actually the state of the art in complexity theory is that no crypto-
graphic scheme has been proven to be computationally secure for a general and
realistic model of computation. Instead, the term “provable security” is often
used for schemes for which a reduction from a commonly agreed conjectured hard
problem (such as factoring large integers) is known: Any adversary breaking the
cryptographic scheme could be transformed (by the reduction), with reasonable
efficiency loss, into an algorithm solving the hard problem with noticeable prob-
ability. Therefore, under the assumption that the problem is indeed hard, the
scheme is secure.

In summary, there are two main advantages of information-theoretic security:

– Information-theoretic security is stronger because, compared to computa-
tional security, the security holds against a larger class of adversaries.

– The security proof does not require an unproven computational assumption.

1.2 Circumventing Impossibility Results

Unfortunately, information-theoretic security is in many settings unachievable,
often provably so, at least for practical settings. For instance, Shannon’s famous
impossibility result [22] states that perfectly secure encryption is impossible
unless the secret key has at least as much entropy as the message. This result is
often quoted as showing that information-theoretic security is not practical since
exchanging a fresh truly random key for every message is generally completely
impractical.

The significance of such an impossibility result depends on the generality of
the conditions underlying the impossibility proof. For example, Shannon’s impos-
sibility result was stated (and proven) only under the restriction that the com-
munication between sender and receiver is one-way. That this result also holds
in the more realistic setting with interactive communication between sender and
receiver has been proven by Maurer only in 1993 [11]. It is therefore possible
that a careful re-examination of impossibility results allows to circumvent them
by a slight change of the model, where such a change should be as realistic as
possible and should not destroy the practicality of schemes proven secure in the
model.
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A prominent such modification is quantum key distribution (QKD), where
one assumes that the honest parties can exchange quantum information and
thereby achieves perfect security. Given that being able to exchange quantum
information is a very strong assumption for many practical scenarios, however,
classical settings are still of great interest. One such model, proposed by Mau-
rer [15] and investigated by many researchers in different contexts, is the so-
called bounded-storage model. Here one assumes that the adversary’s memory
resources are bounded, but no assumption about the adversary’s computing
power is needed. Unfortunately, it seems very hard to argue that schemes proven
secure in this model are practical for a reasonable bound on the adversary’s
memory capacity.

Other notable earlier attempts include the works of Wyner [25] and Csiszár
and Körner [4], where all parties are connected by noisy channels (and only one-
way communication between the two honest parties is allowed), and the work of
Ozarow and Wyner [19], where the adversary is allowed to observe a bounded
subset of the message’s encoding. In these models, perfectly secure encryption
is possible only when the adversary is at a disadvantage compared to the honest
parties, which is rarely the case in practice.

A more promising approach in the context of secret-key agreement is the so-
called secret-key agreement by public discussion model proposed by Maurer [11,
16]. In this model, two parties Alice and Bob wish to agree on a secret key by
communicating over a public authenticated channel perfectly accessible to the
adversary Eve. In this setting, without further assumptions, key agreement is
provably impossible. However, by a slight modification of the model, namely
by considering a setting where Alice, Bob, and Eve have access to correlated
random variables X, Y , and Z, respectively, with joint probability distribution
PXY Z , secret-key agreement becomes possible, even if X and Y are almost not
correlated and even if Z is strongly correlated with both X and Y .

Often one considers a setting where the experiment generating X, Y , and
Z is repeated many times (independently), and one then considers the secret-
key rate, the maximal rate (per realization of the random experiment) at which
Alice and Bob can generate secret-key bits. Surprisingly, in this model, secret-
key agreement (and thus perfectly secure encryption) is also possible in many
cases where Eve starts with an advantage over Alice and Bob.

1.3 The Satellite Setting

A setting of particular interest is the so-called satellite setting: A satellite (or for
instance a deep-space radio source) broadcasts a sequence of uniformly random
bits that Alice, Bob, and Eve receive via antennas of different sizes.

In order to achieve a meaningfully large secret-key rate in this setting, one
has to assume that the adversary’s resources are bounded. While in computa-
tionally secure cryptography the bounded resource is the computing power, in
the satellite model the natural bounded resource of the adversary is her antenna
quality, that closely corresponds to the antenna size. Given that for most prac-
tical settings the honest parties’ antenna sizes are more or less fixed, we specify
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in the following, for simplicity, this bound on Eve’s antenna size as the maximal
ratio Q between Eve’s antenna size and the size of the smaller one of either
Alice’s or Bob’s antennas. Analogously to the computational setting where the
ratio between the adversary’s and the honest parties’ computing power must be
assumed to be quite large, this antenna size ratio Q can be very large as well, in
realistic settings. If the honest parties use for instance mobile phones, then it is
very well imaginable that Q is in the order of magnitude of a million.

The satellite setting is modeled as a sequence of uniform random bits being
generated and Alice, Bob, and Eve receiving them over independent binary sym-
metric channels with error probabilities εA, εB , and εE , respectively. Tradition-
ally, the secret-key rate in the satellite model has then been specified in terms of
the error probabilities εA, εB , and εE , respectively, capturing the fact that the
antenna sizes clearly affect those error probabilities. However, it is natural to
consider the signal strength of the satellite, i.e., the amount of energy it uses to
broadcast each bit, as a design parameter we can control, implying that the error
probabilities are no longer a priori fixed. Moreover, this highlights an interest-
ing trade-off, as increasing the energy per bit means that the error probabilities
of Alice, Bob, and Eve all decrease simultaneously, which is at the same time
advantageous (Alice and Bob getting more information) and disadvantageous
(Eve getting more information). As a consequence, the essential question in the
satellite setting is: What is the best secret-key rate for given antenna sizes of
the honest parties if we are willing to assume an upper bound on Eve’s antenna
size, but consider the signal strength as a design parameter to maximize over?

1.4 Contributions

Quite surprisingly, it has been shown by Maurer and Wolf [11,14] that in the
satellite model secret-key agreement is possible even if Eve’s channel is almost
perfect, i.e., if εE is arbitrarily close to 0 but not exactly 0, and if Alice’s and
Bob’s channels have arbitrarily high error probability but still some information
(i.e., εA and εB are close to 0.5 but not exactly 0.5). However, the lower bound for
the secret-key rate obtained via the original repeater-code protocol in [11], when
interpreted in terms of the ratio Q, is only exponentially small in Q. In contrast,
the secret-key ratio as a function of Q has already been briefly considered by
Maurer and Gander [6], who conjectured based on numerical results that the
rate of the parity-check protocol (introduced in [16]) asymptotically decreases
like 1/Q2, for a setting where Alice’s and Bob’s antennas are assumed to be of
equal size.

As our main technical contribution, we prove that both the rate of the parity-
check protocol and the optimal secret-key rate are indeed inversely proportional
to Q2 in Sect. 4. This matches the numerical results and the conjecture by Gan-
der and Maurer. We point out that the lower bound on the secret-key rate is
proved by showing that the parity-check protocol, which is an explicit and sim-
ple protocol, achieves this rate in the given setting, rather than providing a pure
existence proof of a protocol achieving this rate.
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In the full version [9], we also generalize the secret-key rate as a function
of the antenna ratio Q to the case where Alice and Bob can have antennas
of different sizes, by specifying well motivated and relevant quantities for both
lower and upper bounds.

In addition, we consider the setting where the power consumption of the
satellite is bounded; for instance, by the size of its solar panels. Nevertheless, we
can adjust the energy used to broadcast each bit by adjusting the bit-rate, i.e.,
the number of bits broadcast per second, while maintaining a fixed power con-
sumption. Hence, the energy used to broadcast each bit is inversely proportional
to the bit-rate. This motivates the study of the secret-key rate per second rather
than the secret-key rate per bit. In order to investigate the secret-key rate per
second, we introduce a novel quantity that approximates it in Sect. 5. We then
show that this quantity decreases inversely proportional to Q, rather than Q2,
which makes a significant difference, since Q must be assumed to be very large.

1.5 A Note on the Practicality of the Satellite Setting

While the satellite setting attempts to mimic a real-world scenario, it also
abstracts away many practical issues which affect its immediate applicability.
For instance, the satellite setting encodes some basic assumptions on the adver-
sary that might not necessarily hold in practice, such as the assumption that
Eve will quantize the signal she receives. Moreover, the setting basically assumes
a passive adversary, by assuming that the adversary can neither influence the
bits the honest parties receive from the satellite, nor tamper with their com-
munication. While the former restriction could be translated into some sort of
physical assumption, the authenticated communication is something that can
easily be obtained in a separate step. We can allow Alice and Bob to start with
a small shared secret-key, which they can then use to authenticate the channel
with information-theoretic security [23]. In this case, the goal of a protocol is to
amplify a short initial secret-key into a very long secret-key, like in quantum key
distribution.

As a consequence, even if one could imagine proving stronger results that
hold if the channels can be to a certain degree dependent, or consider a setting
where the adversary tries to get an advantage by considering the actual analog
signal she receives, we nevertheless believe that proving theoretical results in
our setting is meaningful. Showing that the secret-key rate under a channel
quality constraint is reasonably large, and that the rate of a simple protocol
asymptotically behaves like the secret-key rate in this setting can be seen as
a step towards showing that the satellite setting is practical. In short, we feel
that the problem studied in this paper is one of the most relevant and natural
scientific problems extractable from the general setting.
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1.6 Related Work

There have been considerable efforts to find good approximations for the secret-
key rate, both in the satellite setting and for more general probability distribu-
tions, and also for settings with more than three parties.

The first bounds on the secret-key rate were proved by Maurer [11,13], and
by Ahlswede and Csiszár [1], who studied the secret-key rate when only one-way
communication from Alice to Bob is allowed. Later, Maurer and Wolf [12] and
Renner, Skripsky, and Wolf [20] introduced improved upper bounds for general
distributions, called the intrinsic mutual information and the reduced intrinsic
mutual information, respectively. Csiszár and Narayan [5] extended the study of
the secret-key rate to settings with more than three parties, and exhibited con-
nections between information-theoretic secret-key agreement and the problem of
communication for omniscience. Then, Gohari and Anantharam [7] showcased
new lower and upper bounds on the secret-key rate for an arbitrary number of
parties, which in particular are strict improvements over the previously known
bounds for our setting.

There has been some recent interest in the secret-key rate in the finite block-
length setting, where the number of available realizations (X,Y,Z) is bounded.
Tyagi and Watanabe [24] showcase a connection between the secret-key rate in
this setting and binary hypothesis testing, and use it to obtain an upper bound
on the secret-key rate for a bounded number of realizations. Later, Hayashi,
Tyagi, and Watanabe [8] used this connection to better understand how the gap
between the secret-key rate in the finite blocklength and asymptotic settings
decreases as the number of available realizations increases, for certain probabil-
ity distributions.

For the satellite setting, there exist better lower bounds on the secret-key
rate due to the study of several advantage distillation protocols. The first such
protocol, called the repeater-code protocol, was introduced and studied by Mau-
rer [11,16]. An improved version of this protocol, called the parity-check protocol,
was studied by Gander and Maurer [6,16]. Later, Liu, Van Tilborg, and Van Dijk
[10] proposed another protocol that seems to outperform the parity-check proto-
col. However, the rate achieved by the proposed protocol was only numerically
computed in a simulation where Eve follows a certain fixed strategy, which is
not known to be optimal. Furthermore, finding a clean expression for the rate
of this protocol that can be analyzed (as is done for the rate of the parity-check
protocol) appears infeasible, and so it is very difficult to extract tangible rate
lower bounds, even when assuming that the proposed strategy for Eve is optimal.

The scenario where Alice, Bob, and Eve receive the random bits in the satel-
lite setting through Gaussian channels, instead of binary symmetric channels,
was first considered by Maurer and Wolf [12]. Later, Naito et al. [18] showed that
Alice and Bob can extract more secret-key rate in the Gaussian scenario than
in the BSC scenario, as they are able to make use of soft-decoding.
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2 Preliminaries

2.1 Notation

We denote random variables by uppercase letters such as X, Y , and Z. We
may denote sequences of random variables X1,X2, . . . , XN as XN . We say that
X1,X2, . . . , XN are i.i.d. if all the Xi are independent random variables and they
all have the same distribution. Most sets are denoted by uppercase calligraphic
letters such as S. The set of real numbers is denoted by R and for a natural
number n ∈ N, [n] denotes the set {1, . . . , n}. Given a set S, the size of S
is denoted by |S|. For a string x ∈ {0, 1}∗, |x| denotes the length of x. The
(Hamming) weight of a string x ∈ {0, 1}∗ is defined as w(x) := |{i : xi = 1}|,
where xi is the i-th entry of x. We denote the logarithm to the base 2 by log and
the natural logarithm by ln. The closed interval in R between two real numbers
a and b is denoted by [a, b].

Given an event A, we denote the probability that A happens by Pr[A], which
is the sum of the probabilities of all outcomes in event A. Given two events
A and B, the probability that A and B happen simultaneously is denoted by
Pr[A,B]. The conditional probability of A given B, provided Pr[B] > 0, is
Pr[A|B] := Pr[A, B]

Pr[B] .
The probability distribution of a finite random variable X is denoted by PX ,

and so PX(x) denotes the probability that X takes the value x. Given an event
A, PX|A denotes the conditional probability distribution of X conditioned on
A. For two finite random variables X and Y , PX|Y (·, y) denotes the probability
distribution of X conditioned on the event Y = y.

2.2 Information Theory

Throughout this paper we will make use of some fundamental concepts from
information theory. We briefly define the required notions in this section; a more
detailed exposition of this field can be found in [3].

Fix a finite random variable X with range X . The entropy of X, denoted by
H(X), is defined as

H(X) := −
∑

x∈X
PX(x) log PX(x).

Intuitively, the entropy measures the uncertainty about a given random variable.
In fact, a finite random variable X with range X satisfies 0 ≤ H(X) ≤ log|X |
with equality in the lower bound if and only if PX(x) = 1 for some x ∈ X , and
with equality in the upper bound if and only if X is uniform over X . We call

h(p) := −p log(p) − (1 − p) log(1 − p)

the binary entropy function and note that for a binary random variable X with
PX(1) = p we have that H(X) = h(p).



352 D. Jost et al.

Given two finite random variables X and Y with ranges X and Y, respec-
tively, we define the conditional entropy of X given Y , denoted by H(X|Y ),
as

H(X|Y ) :=
∑

y∈Y
PY (y)H(X|Y = y).

Given an event A, H(X|Y,A) is defined as

H(X|Y,A) :=
∑

y∈Y
PY |A(y)H(X|Y = y,A).

We define the mutual information between X and Y , denoted by I(X;Y ), as

I(X;Y ) := H(X) − H(X|Y ).

Intuitively, the mutual information measures how independent two random vari-
ables are, and we have I(X;Y ) = 0 if and only if X and Y are independent.
Given an event A, I(X;Y |A) is defined as

I(X;Y |A) := H(X|A) − H(X|Y,A).

Finally, if additionally Z is a finite random variable with range Z, the conditional
mutual information between X and Y given Z, denoted by I(X;Y |Z), is defined
as

I(X;Y |Z) :=
∑

z∈Z
PZ(z)I(X;Y |Z = z).

We will be dealing with a simple instance of a discrete memoryless channel.
A discrete memoryless channel with input X and output W is characterized
by a conditional probability distribution PW |X . The term memoryless stems
from the fact that the channel’s output depends only on the current input,
and so is independent of previous channel utilizations. The binary symmetric
channel with error probability ε is the discrete memoryless channel with input
X ∈ {0, 1} and conditional probability distribution such that PW |X(b, b) = 1− ε
and PW |X(1 − b, b) = ε for b ∈ {0, 1}. Intuitively, the binary symmetric channel
receives a bit as input and flips it with a certain error probability.

The capacity is a fundamental quantity associated to every channel. Infor-
mally, the capacity of a channel is the optimal rate at which one can communi-
cate through the channel while ensuring that the decoding error probability goes
to zero as the number of channel uses increases. Shannon [21] proved that the
capacity of a channel PW |X is given by maxPX

I(X;W ). In particular, it is easily
shown that the capacity of the binary symmetric channel with error probability
ε is 1 − h(ε), where h is the binary entropy function.

3 Secret-Key Agreement by Public Discussion

In the following section, we revisit the basic models of information-theoretically
secure secret-key agreement on which we will build in Sects. 4 and 5.
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3.1 The Source Model and the Secret-Key Rate

We study information-theoretic secret-key agreement, in which Alice and Bob
want to agree on a shared secret-key, about which Eve has (almost) no infor-
mation. To circumvent the trivial impossibility results, we consider the model
introduced by Maurer [11,16], called secret-key agreement by public discussion
from common information. In this model, we assume that in addition to a bidirec-
tional authenticated noiseless channel, which Eve can listen in to but not tamper
with, the parties also share some form of correlated randomness. More specifi-
cally, we will look at the setting where the correlated randomness of Alice, Bob,
and Eve consists of several independent and identically distributed realizations
of discrete random variables X, Y , and Z, respectively, distributed according to
some joint probability distribution PXY Z .

Remark 1. As already mentioned, the assumption that an authenticated channel
exists between Alice and Bob is not a significant drawback in the model. We can
allow Alice and Bob to start with a small shared secret-key, which they can then
use to authenticate the channel with information-theoretic security [23]. In this
case, the goal of a protocol is to amplify a short initial secret-key into a very
long secret-key, analogous to quantum key distribution.

In this setting, the main quantity of interest is the maximal rate (per number
of realizations of X, Y , and Z received) at which Alice and Bob can generate
secret-key bits, about which Eve has almost no information, as a function of the
probability distribution PXY Z . We first define what we mean by a secret-key
agreement protocol. The following definition is taken from [17], and we show
in the full version [9] that it is actually a composable definition, and hence the
obtained key can be securely used in any context.

Definition 1. Given a finite probability distribution PXY Z , an (N,R, ε)-secret-
key agreement protocol for PXY Z is an interactive protocol for Alice and Bob,
who receive XN = (X1, . . . , XN ) and Y N = (Y1, . . . , YN ), respectively, as input.
Then they generate a communication transcript CM = (C1, . . . , CM ) (where M
is also a random variable) by sending messages over authenticated channels in
an alternating manner. After the interaction is finished, Alice and Bob produce
outputs SA and SB over the finite range S, respectively.

We require that if for i ∈ [N ],1 the random variables (Xi, Yi, Zi) are i.i.d.
according to PXY Z , then the following properties must hold:

1. H(SA) ≥ N(R − ε);
2. H(SA) ≥ log|S| − ε;
3. Pr[SA = SB ] ≥ 1 − ε;
4. I(SA;ZNCM ) ≤ ε.

1 We denote by [n] the set {1, 2, . . . , n}, see Sect. 2 for an exhaustive introduction on
the notation we use.



354 D. Jost et al.

Intuitively, property 1 in Definition 1 states that, on average, Alice and Bob
extract at least R − ε secret bits per realization of (X,Y,Z), i.e., the rate is
at least R − ε. Property 2 enforces that SA is almost uniform over S, property
3 implies that SA and SB should coincide with high probability, and property
4 means that Eve’s information, which consists of ZN and the transcript CM ,
gives almost no information about the secret keys SA and SB. We are now ready
to define the secret-key rate.

Definition 2. Given a finite probability distribution PXY Z , the secret-key rate
for PXY Z (abbreviated as the secret-key rate when the context is clear), denoted
by S(X;Y ‖Z), is the supremum of all real numbers R such that for all ε > 0
and large enough N there exists an (N,R, ε)-secret-key agreement protocol for
PXY Z .

The secret-key rate was first studied by Maurer [11,16], while Csiszár and
Körner [1] studied the one-way secret-key rate, where only one-way communi-
cation from Alice to Bob is allowed.

The following theorem states basic bounds for the secret-key rate. The lower
bound was proved by Maurer [11,13] and Csiszár and Körner [1], while the upper
bound was proved by Maurer [11].

Lemma 1 ([11, Theorem 2] and [13, Theorem 4]). For all finite probability
distributions PXY Z , we have

I(X;Y ) − min(I(X;Z), I(Y ;Z)) ≤ S(X;Y ‖Z) ≤ min(I(X;Y ), I(X;Y |Z)).

Note that our definition of the secret-key rate corresponds to the so-called
strong secret-key rate, which Maurer and Wolf [17] have proven to be equivalent
to the weak one initially considered in the lower bounds.

3.2 A Special Case: The Satellite Setting

Our focus will lie on the secret-key rate of a conceptually simple, but realistic
and interesting, class of distributions PXY Z , named the satellite setting.

Fix real numbers εA, εB , εE ∈ [0, 1/2] and consider the following experiment:

1. Sample a bit R ∈ {0, 1} uniformly at random;
2. Send R to Alice, Bob, and Eve through independent binary symmetric chan-

nels with error probabilities εA, εB , and εE , respectively. The random vari-
ables X, Y , and Z are the output of these three channels.

This class of distributions was introduced by Maurer [11,16]. The satellite setting
earned its name because a realistic implementation of such a scenario would
consist of having a satellite orbiting the Earth which broadcasts random bits.
On the ground, Alice, Bob, and Eve would be in possession of their own antennas,
which they can use to listen to the satellite broadcasts. The quality of a party’s
antenna would then dictate how reliably they receive the random bits from the
satellite. For instance, a better antenna leads to a smaller error probability.
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An additional surprising benefit of this model is that secret-key agreement is
possible whenever it is not trivially impossible, as stated in the following theorem
of Maurer and Wolf [11,14].

Theorem 1 ([14, Theorem 2, adapted]). We have S(X;Y ‖Z) > 0 if and
only if εE > 0 and εA, εB < 1/2.

This stands in stark contrast to the well-known fact that secret-key agreement
with one-way communication from Alice to Bob (in the sense of [1]) is impossible
whenever Eve’s antenna is better than both Alice’s and Bob’s antennas, i.e.,
whenever εE < εA and εE < εB .

While Theorem 1 assures that the secret-key rate is positive in all non-trivial
settings, computing (or even approximating) it has proven to be a surprisingly
difficult problem for most parameters εA, εB , and εE .

3.3 Advantage Distillation Protocols

In the following section, we present some required background to understand the
proofs in Sects. 4 and 5, and in particular we introduce the parity-check protocol
that we use to lower bound the secret-key rate.

The parity-check protocol is an example of a so-called advantage-distillation
protocol, which is a type of protocol introduced in [11,14] to prove Theorem 1 in
the satellite setting.

Definition 3. Let PXY Z denote a finite probability distribution. An advantage-
distillation protocol for PXY Z is then an interactive protocol for Alice and Bob,
who receive XN = (X1, . . . , XN ) and Y N = (Y1, . . . , YN ), respectively, as input
for some N . Then they generate a communication transcript CM = (C1, . . . , CM )
by sending messages over authenticated channels in an alternating manner.
Afterwards, Alice and Bob produce outputs X̂ and Ŷ , respectively.

For all large enough N , if the random variables (Xi, Yi, Zi) are i.i.d. according
to PXY Z , we require that

I(X̂; Ŷ ) − I(X̂; Ẑ) > 0,

where Ẑ = (ZN , CM ) denotes Eve’s total information at the end of the protocol.

Intuitively, Bob ends up with more information about Alice than Eve does,
and so the protocol “distills” an advantage for Alice and Bob over Eve.

Note that such an advantage-distillation protocol itself is not a secret-key
agreement protocol according to Definition 1, as it neither guarantees that Alice
and Bob output the same key, nor guarantees that Eve has arbitrary small infor-
mation about Alice’s output. However, for any probability distribution PXY Z

and advantage-distillation protocol, we can consider the induced probability dis-
tribution PX̂Ŷ Ẑ from running the protocol on N i.i.d. realizations of PXY Z ,
and then simply apply a secret-key agreement protocol for this distribution.
Along this line, we can then also introduce the secret-key rate of an advantage-
distillation protocol.
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Definition 4. Given a finite probability distribution PXY Z and an advantage-
distillation protocol, the secret-key rate of the advantage-distillation protocol for
PXY Z is the supremum of all real numbers R such that for all ε > 0 and large
enough N there exists a secret-key agreement protocol for PX̂Ŷ Ẑ , such that the
composed protocol is an (N,R, ε)-secret-key agreement protocol for PXY Z .

The existence of an advantage-distillation protocol implies S(X;Y ‖Z) > 0,
since we have

S(X;Y ‖Z) ≥ S(X̂; Ŷ ‖Ẑ)
N

≥ I(X̂; Ŷ ) − I(X̂; Ẑ)
N

> 0,

where the second inequality follows from Lemma 1.

The Repeater-Code Protocol. The first advantage distillation protocol was
the repeater-code protocol [11,16]. It works as follows:

1. Alice samples R ∈ {0, 1} uniformly at random and sends R ⊕ XN = (R ⊕
X1, . . . , R ⊕ XN ) to Bob over the authenticated channel;

2. Bob computes R ⊕ XN ⊕ Y N = (R ⊕ X1 ⊕ Y1, . . . , R ⊕ XN ⊕ YN ) and sets
A = 1 if R ⊕ XN ⊕ Y N = 0N or R ⊕ XN ⊕ Y N = 1N . Otherwise, Bob sets
A = 0. Then, Bob sends A to Alice through the authenticated channel;

3. If A = 1, then Alice sets X̂ = R and Bob sets Ŷ = R ⊕ X1 ⊕ Y1. Otherwise,
if A = 0, then Alice and Bob set X̂ = Ŷ = ⊥.

Maurer and Wolf [14] proved that, in the satellite setting, for all triples
(εA, εB , εE) with εA < 1/2, εB < 1/2, and εE > 0 and for N large enough we
have

I(X̂; Ŷ ) − I(X̂; Ẑ) > 0,

where Ẑ := (ZN , R ⊕ XN , A) denotes Eve’s total information.
While the repeater-code protocol is good enough to prove that secret-key

agreement is possible in the satellite setting, it guarantees only a very small lower
bound on the secret-key rate, especially when εA and εB are much larger than
εE . This issue motivated the search for better advantage distillation protocols
in the satellite setting.

The Parity-Check Protocol. Gander and Maurer [6,16] studied an improved
protocol, called the parity-check protocol. The parity-check protocol with �
rounds works as follows:

1. Alice and Bob start with initially empty strings UA and UB, respectively;
2. Alice and Bob divide XN and Y N into pairs (X2i−1,X2i) and (Y2i−1, Y2i),

respectively, for i = 1, . . . , �N/2	;
3. For each i, Alice sends X2i−1 ⊕ X2i to Bob via the authenticated channel;
4. Bob sets Ai = 1 if X2i−1 ⊕ X2i = Y2i−1 ⊕ Y2i. Otherwise, Bob sets Ai = 0.

Then, he sends Ai to Alice;
5. If Ai = 1, Alice adds X2i−1 to her string UA and Bob adds Y2i−1 to his

string UB, and they discard X2i and Y2i, respectively (i.e., these bits are not
added to UA and UB , respectively). If Ai = 0, Alice and Bob discard the bits
(X2i−1,X2i) and (Y2i−1, Y2i), respectively;
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6. If � = 1, then Alice and Bob stop the protocol. Alice sets X̂ = UA and Bob
sets Ŷ = UB ;

7. If � > 1 and |UA| ≥ 2�−1, Alice and Bob run the parity-check protocol with
� − 1 rounds on the strings UA and UB . Otherwise, if |UA| < 2�−1, then Alice
and Bob set X̂ = ⊥ and Ŷ = ⊥, respectively.

If X̂ and Ŷ are the outputs of the parity-check protocol with � rounds, then
each pair of bits (X̂i, Ŷi) behaves like the output of a successful run of the
repeater-code protocol with N := 2�. Furthermore, all pairs (X̂i, Ŷi) are identi-
cally distributed and independent of each other.

Again, consider the satellite setting and assume, without loss of generality,
that εA ≥ εB . Analogous to [6], let us now introduce a couple of useful quantities
in the setting of running the parity-check protocol.

Definition 5. Consider the satellite setting with error probabilities εA, εB, and
εE respectively. Let (X,Y,Z) be distributed according to the thereby induced dis-
tribution PXY Z .Then we define

β := Pr[X 
= Y ] = εA(1 − εB) + (1 − εA)εB

and for r, s ∈ {0, 1}
αrs := Pr[X ⊕ Y = r,X ⊕ Z = s],

which satisfy

α00 = εAεBεE + (1 − εA)(1 − εB)(1 − εE)
α01 = εAεB(1 − εE) + (1 − εA)(1 − εB)εE

α10 = εA(1 − εB)εE + (1 − εA)εB(1 − εE)
α11 = εA(1 − εB)(1 − εE) + (1 − εA)εBεE .

Moreover, considering L independent draws from PXY Z , and let

βL := Pr[XL ⊕ Y L = 1L|XL ⊕ Y L ∈ {0L, 1L}] =
βL

βL + (1 − β)L
,

and pL,w denote the probability that XL ⊕ Y L ∈ {0L, 1L} and XL ⊕ ZL is a
specific codeword of Hamming weight w, i.e.,

pL,w := αL−w
00 αw

01 + αL−w
10 αw

11.

Using those quantities, we can now express the secret-key rate of the parity-
check protocol.

Theorem 2 (rephrased form [6]). Let R(�, εA, εB , εE) denote the secret-key
rate of the parity-check protocol when using � rounds, and Alice, Bob, and Eve
having error probabilities εA, εB, and εE, respectively. We then have

R(�, εA, εB , εE) ≥ 2−� Φ(2�, εA, εB , εE)
�−1∏

i=0

(
β2
2i + (1 − β2i)2

)
,
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where

Φ(L, εA, εB , εE) :=
L∑

w=0

(
L

w

)
pL,w

βL + (1 − β)L
h

(
pL,w

pL,w + pL,L−w

)
− h(βL),

and β, βL, and pL,w are according to Definition 5.

The intuition behind Theorem2 is the following: Suppose there are Ni bits
left after i rounds of the parity-check protocol. These Ni bits are partitioned into
�Ni/2	 pairs (if Ni is even, Alice and Bob discard a bit), and, in round i + 1,
Alice and Bob keep a bit from a given pair with probability β2

2i + (1 − β2i)2.
Therefore, we have

E[Ni+1 | Ni bits after i rounds] ≈ β2
2i + (1 − β2i)2

2
· Ni,

where Ni+1 is the random variable denoting the number of bits after i+1 rounds
of the parity-check protocol.

The lower bound on the secret-key rate obtained through the parity-check
protocol is, for most choices of error probabilities in the satellite setting, much
better than the lower bound given by the repeater-code protocol. Note that the
parity-check protocol consists of the iterative application of the repeater-code
protocol with length 2 to pairs of bits of XN and Y N . This protocol can be fur-
ther improved in a natural way for some interesting choices of error probabilities
in the satellite setting by modifying the length of the repeater-code protocol
that is applied iteratively, and reutilizing discarded bits from failed runs of the
repeater-code protocol which are “almost” successful. We do not expand on this,
since the original parity-check protocol suffices for our needs.

4 The Secret-Key Rate Under a Fixed Channel Quality
Ratio

4.1 Modeling a Fixed Channel Quality Ratio

In this section, we formally define the main quantity used in this work. Recall
that we want to consider a setting where we assume that the antenna sizes of the
honest parties are fixed, but where the energy the satellite uses to send a bit is
a design parameter that we can adjust in order to achieve an optimal secret-key
rate. To obtain a meaningful lower bound on the secret-key rate in this setup,
however, we need to make an assumption about Eve’s capabilities, which in the
satellite setting correspond to her antenna size. In order to simplify the model,
we moreover do not consider the actual antenna sizes, but the ratio between
Eve’s antenna size and Alice’s and Bob’s. Therefore, in the following we want
to assume that Eve’s antenna is exactly Q times larger than both Alice’s and
Bob’s antennas. For ease of exposition, we will also assume that Alice and Bob
have antennas of the same size. This was the setting considered by Gander and
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Maurer [6]. In the full version [9], we analyze the general setting where Alice’s
and Bob’s antennas may differ in size, and also where Eve’s antenna is only
known to be at most, or at least, Q times larger than Alice’s and Bob’s, instead
of exactly Q times larger.

To model the antenna size ratio, we choose the ratio of the channel capacities,
which reflect the qualities of the respective channels. Recall that the satellite
model with BSC’s is a simplification of the more realistic analog model with
Additive White Gaussian Noise (AWGN) channels (if the channel input is X,
then the output is X + Z, where Z is distributed according to a normal distri-
bution with mean zero and variance N , where N is also called the noise power).
It is well-known that the capacity (in bits per second) of an AWGN channel is
given by CAWGN = B log(1+S/N), where B is the bandwidth (in the spectrum),
S is the signal power, and N is the noise power (see [3, Chap. 9]). The signal
power is proportional to the total antenna surface, independently of whether the
antenna consists of several independent small antennas or one large one. In the
low-signal regime, i.e., if S/N � 1, we have that C is essentially proportional
to S (for fixed noise power N), and hence to the antenna size too. In short, in
such a regime the channel capacity is essentially proportional to the product of
the surface of the receiver’s antenna and the energy used to transmit the bits.
Hence, when considering two of the antennas, the ratio of their capacity stays
approximately constant when adjusting the energy that is used to transmit each
bit and, therefore, this ratio is a good approximation of the ratio of the antenna
sizes.

While this justification is based on the AWGN model, we assume that it
essentially carries over to the BSC model of the satellite setting. Observe that
the satellite setting using BSC’s can be interpreted in a natural way as a version
of the satellite setting with AWGN channels where Alice, Bob, and Eve quantize
the signals they receive.

This leads us to the following definition of the channel quality ratio between
two binary symmetric channels.

Definition 6. The channel quality ratio between the BSC with error probability
α and the BSC with error probability γ, denoted ρ(α, γ), is defined as

ρ(α, γ) :=
1 − h(γ)
1 − h(α)

.

Assume a fixed antenna size ratio Q between Eve’s and Alice’s antennas, and
hence between Eve’s and Bob’s antennas, since Alice and Bob are assumed to
have antennas of the same size. Considering the energy spent per bit as a design
parameter then corresponds to freely choosing α = εA = εB and γ = εE under
the constraint that ρ(α, γ) = Q. This leads to the following definition, where the
supremum corresponds to choosing the energy per bit in an optimal manner.

Definition 7. The secret-key rate for an adversary with an exactly Q times
better channel, denoted by S(Q), is defined as

S(Q) := sup
α,γ

ρ(α,γ)=Q

S(α, α, γ).
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In the following sections, we will give an exact characterization (up to a
multiplicative constant) of the asymptotic behavior of S(Q) when Q increases. In
particular, we settle the conjecture of Gander and Maurer [6] in the affirmative.

4.2 A Lower Bound on S(Q)

Our first main result is that S(Q) decreases at most inversely proportional to Q2.
We omit or shorten most proofs of intermediate results in this section. Detailed
proofs can be found in the full version [9].

Theorem 3. There exist a constant c > 0 such that
c

Q2
≤ S(Q)

for all Q ≥ 1.

To prove this result, we actually show that the parity-check protocol [16] (c.f.
Sect. 3.3) achieves this rate, which was first conjectured to be true by Gander
and Maurer [6], based on numerical evidence.

Definition 8. The secret-key rate of the parity-check protocol for an adversary
with an exactly Q times better channel, denoted by R(Q), is defined as

R(Q) := sup
�,α,γ

ρ(α,γ)=Q

R(�, α, α, γ),

where R(�, εA, εB , εE) denotes the rate per random bit achieved by the parity-
check protocol using � rounds when Alice, Bob, and Eve have error probabilities
εA, εB, and εE, respectively.

Since the secret-key rate S(εA, εB , εE) is defined as the secret-key rate of the
best possible protocol, we trivially get the following lower bound.

Lemma 2. Let Q ≥ 1. Then, we have R(Q) ≤ S(Q).

We now proceed by proving that there exists a constant c > 0 such that
c

Q2 ≤ R(Q) for all Q ≥ 1, which will eventually conclude the proof. In order
to prove such a lower bound, we need to lower bound the supremum in the
definition of R(Q). We achieve this by carefully choosing a sequence of triples
(�k, αk, γk) such that R

(
1− h(γk)
1− h(αk)

)
does not decrease too quickly when compared

to 1− h(γk)
1− h(αk)

. Namely, in the first step we will show that

R

(
1 − h(γk)
1 − h(αk)

)
≥ c1

k4

for some constant c > 0, and then in a second step use that 1− h(γk)
1− h(αk)

increases
like k2, in order to derive the desired result.
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Lower Bounding the Secret-Key Rate of the Parity-Check Protocol
with Concrete Parameters. In this section we show that for �k = 2 log(k)
rounds, in the satellite setting with εA = εB = αk = 1/2 − 1/k, and εE = γk =
2/5, the secret-key rate of the parity-check protocol R(�k, αk, αk, γk) decreases
inversely proportional to k4. For simplicity, we drop the subscript k in most
terms from now on.

Before deriving the actual lower bound on R(�, α, α, γ), we introduce an
auxiliary quantity and prove some properties about it. Recall the definition of
αrs for r, s ∈ {0, 1} and pL,w from Definition 5 in Sect. 3.3. In the following, let

p′
L,w := αL−w

00 αw
01. (1)

We now present a few lemmas about pL,w, p′
L,w, and their relation.

Lemma 3. Let α = εA = εB = 1/2 − 1/k. Then we have

pL,w = αL−w
00 αw

01 + (α(1 − α))L = p′
L,w + (α(1 − α))L > p′

L,w.

Lemma 4. Let p′
L,w as defined in (1). Then p′

L,w is equal to the probability
that XL ⊕ ZL is a particular codeword of weight w and XL = Y L, i.e. for any
c ∈ {0, 1}L with w(c) = w, where w(c) denotes the Hamming weight of c, we
have

Pr[XL ⊕ ZL = c,XL = Y L] = p′
L,w.

Lemma 5. We have

h

(
pL,w

pL,w + pL,L−w

)
≥ h

(
p′

L,w

p′
L,w + p′

L,L−w

)

for all L and w.

Lemma 6. Let 0 ≤ δ ≤ L/2. Then

p′
L,L/2+ δ

p′
L,L/2− δ

=
(

α01

α00

)2δ

.

Lemma 7. For all L/2 ≥ x ≥ y ≥ 0 the following two properties hold

1. h

(
p′

L,L/2−x

p′
L,L/2−x + p′

L,L/2+x

)
≤ h

(
p′

L,L/2−y

p′
L,L/2−y + p′

L,L/2+y

)

2. h

(
p′

L,L/2−x

p′
L,L/2−x + p′

L,L/2+x

)
= h

(
p′

L,L/2+x

p′
L,L/2+x + p′

L,L/2−x

)
.

Next, we lower bound R(�, α, α, γ), i.e., the rate of the parity-check protocol
when using � rounds, Alice and Bob have the same error probability α, and Eve
has error probability γ, in a sequence of lemmas.
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Lemma 8. For all k ∈ {2j : j ∈ N}, let �k = 2 log(k), αk = 1/2 − 1/k, and
γk = 2/5. We then have

R(�k, αk, αk, γk) ≥ 1
k4

Φ(k2, αk, αk, γk),

where Φ is defined as in Theorem2.

Lemma 9. For k ∈ {2j : j ∈ N}, let �k = 2 log(k), αk = 1/2 − 1/k, and
γk = 2/5. Then there exists a positive constant c > 0 such that

Φ(k2, αk, αk, γk) ≥ c

for large enough k ∈ {2j : j ∈ N}, where Φ is defined as in Theorem 2.

Proof. We present a sketch of the proof. The complete proof can be found in the
full version [9]. First, it holds that

lim
k→∞

h (βk2) = h

(
lim

k→∞
1

1 + (1 + 8/k2)k2

)
= h

(
1

1 + e8

)
< 5 · 10−3. (2)

Furthermore, using Lemmas 3 and 5 to 7 it can be seen that

k2∑

w=0

(
k2

w

)
pk2,w

βk2 + (1 − β)k2 · h

(
pk2,w

pk2,w + pk2,k2−w

)

≥ 1
2

k2(1/2+2/k)∑

w=k2(1/2−2/k)

(
k2

w

)
p′

k2,w

(1 − β)k2 · h

⎛

⎜⎝
1

1 +
(

α01
α00

)4k

⎞

⎟⎠ (3)

for large enough k.
In order to lower bound the binary entropy term in (3), we can use the

definition of αrs (recall Definition 5) to show that

lim
k→∞

h

⎛

⎜⎝
1

1 +
(

α01
α00

)4k

⎞

⎟⎠ = h

(
1

1 + e−32/5

)
> 1.7 · 10−2. (4)

We now define W := (w(Xk2 ⊕ Zk2
) | Xk2

= Y k2
) as the random variable

denoting the Hamming weight of Xk2 ⊕ Zk2
conditioned on Xk2

= Y k2
, i.e.,

W is defined in the modified random experiment obtained by conditioning on
Xk2

= Y k2
. Through Lemma 4, we have

k2(1/2+2/k)∑

w=k2(1/2−2/k)

(
k2

w

)
p′

k2,w

(1 − β)k2 = Pr[|W − k2/2| ≤ 2k]. (5)
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It suffices now to find a suitable lower bound for Pr[|W − k2/2| ≤ 2k]. In order
to do that, we will apply Chebyshev’s inequality. It can be shown that

k2

2
− 2k ≤ E[W ] − k ≤ E[W ] + k ≤ k2

2
+ 2k,

and hence

Pr[|W − k2/2| ≤ 2k] ≥ Pr[|W − E[W ]| ≤ k] ≥ 1 − Var[W ]
k2

≥ 3
4
, (6)

where the second inequality follows from Chebyshev’s inequality, and the third
inequality follows from the fact that Var[W ] ≤ k2/4.

Combining (3), (4), (5), and (6) yields

k2∑

w=0

(
k2

w

)
pk2,w

βk2 + (1 − β)k2 · h

(
pk2,w

pk2,w + pk2,k2−w

)

>
1
2

· 3
4

· 1.7 · 10−2 > 5 · 10−3 > h(βk2)

for large enough k ∈ {2j : j ∈ N}, which concludes the proof. �
Combining Lemmas 8 and 9 yields the main result of this subsection.

Lemma 10. For all k ∈ {2j : j ∈ N}, let �k = 2 log(k), αk = 1/2 − 1/k, and
γk = 2/5. Then there exists a constant c > 0 such that we have

R(�k, αk, αk, γk) ≥ c

k4

for large enough k ∈ {2j : j ∈ N}.

Deriving a Lower Bound in Q. It now remains to show that Lemma 10
actually implies the desired lower bound in Q. We can prove this by using the
fact that 1− h(γk)

1− h(αk)
increases like k2, and then substituting this term by Q.

Lemma 11. For all k ∈ {2j : j ∈ N}, let �k = 2 log(k), αk = 1/2 − 1/k, and
γk = 2/5. We then have

R

(
k2

200

)
≥ R(�k, αk, αk, γk).

We are now ready to prove Theorem 3 by substituting k2/200 in place of Q.

Proof (Theorem 3). Follows by combining Lemmas 10 and 11, and extending
the result to all Q ≥ 1. �
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4.3 An Upper Bound on S(Q)

As a second main result, we show that S(Q) decreases at least inversely propor-
tional to Q2.

Theorem 4. We have

S(Q) ≤ 4 ln(2)2

Q2
<

2
Q2

for all Q ≥ 1.

Before we can prove Theorem 4, we need the following auxiliary result.

Lemma 12. ([2, Theorem 2.2]). If p = 1/2 − ε, we have

2ε2

ln(2)
≤ 1 − h(p) ≤ 4ε2.

We now proceed by showing two lemmas that we will reuse later.

Lemma 13. Let Q ≥ 1, α, γ ∈ [0, 1/2] such that 1− h(γ)
1− h(α) = Q, and δ := 1/2−α.

We then have
S(α, α, γ) ≤ 16δ4.

Proof. Note that
S(α, α, γ) ≤ I(X;Y ) = 1 − h(β),

where X and Y are Alice’s and Bob’s random variables in the satellite setting
with εA = εB = α, and, as before, β := Pr[X 
= Y ] = 2α(1 − α). Since β =
2α(1 − α) = 1/2 − 2δ2, using ε := 2δ2, it follows by Lemma 12 that

1 − h(β) ≤ 16δ4,

concluding the proof. �
It remains to bound δ4 by a function of Q.

Lemma 14. Let Q ≥ 1, α, γ ∈ [0, 1/2] such that 1− h(γ)
1− h(α) = Q, and δ := 1/2−α.

We then have

2δ2 ≤ ln(2)
Q

.

Proof. Using Lemma 12 we obtain

2δ2

ln(2)
≤ 1 − h(α) =

1 − h(γ)
Q

≤ 1
Q

.

�
We are now ready to conclude the overall proof of Theorem 4.

Proof (Theorem 4). Combining Lemmas 13 and 14 yields

S(Q) = sup
α,γ

ρ(α,γ)=Q

S(α, α, γ) ≤ 16δ4 ≤ 4 ln(2)2

Q2
<

2
Q2

for all Q ≥ 1. �
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4.4 Combining All Bounds

Recall that, by Definition 7, S(Q) denotes the secret-key rate in the setting
where Alice’s and Bob’s channels are identical (i.e., εA = εB always), and Eve’s
channel is exactly Q times better than both of Alice’s and Bob’s. Moreover, by
Definition 8, R(Q) denotes the secret-key rate of the parity-check protocol in the
same setting. In Sects. 4.2 and 4.3, we have overall proven the following bounds
on S(Q) and R(Q):

c

Q2
≤ R(Q) ≤ S(Q) ≤ 2

Q2

for some c > 0. Thus, in this setting we have determined the secret-key rate
S(Q) up to a multiplicative constant, and on the way proved the conjecture by
Gander and Maurer.

Corollary 1. We have S(Q) = Θ(1/Q2). Moreover, the parity-check protocol
from [6] achieves rate Ω(1/Q2) in this setting.

5 The Secret-Key Rate per Second Under a Fixed
Channel Quality Ratio

In this section, we consider the scenario where the power consumption of the
satellite is bounded; for instance, due to the size of its solar panels. Nevertheless,
we can adjust the energy used to broadcast each bit by adjusting the bit-rate,
i.e., the number of bits broadcast per second, while maintaining a fixed power
consumption. In this setting, the natural quantity to optimize for is clearly the
secret-key rate per second, rather than the secret-key rate per random bit.

5.1 Defining the Secret-Key Rate per Second

When defining the secret-key rate per second in the satellite model, there is one
inherent issue: the abstraction using BSC’s instead of AWGN channels actually
abstracted away any notion of time. Hence, to nevertheless devise a quantity
that can serve as a heuristic of the secret-key rate per second, expressed as a
function of the error probabilities, we once again consider the AWGN setting.
In contrast to the capacity of the BSC, which is measured as the number of bits
that can be reliably transmitted per bit sent, the capacity of an AWGN channel
is measured in bits that can be reliably transmitted per second.

As mentioned in Sect. 4.1, the capacity of an AWGN channel is CAWGN =
B log(1 + S/N), where B is the bandwidth (in the spectrum), S is the signal
power, and N is the noise power. Importantly, the capacity of the AWGN chan-
nel is a physical property of the channel that is not influenced by the way we
encode and decode. A BSC can be seen as an AWGN channel where all parties
perform hard decoding, i.e., measure the signal over a given interval in time and
output a 1 if the average value in this time is above a certain threshold and 0
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otherwise. Hence, we can also look at the capacity per bit in the AWGN model
by normalizing by the “bit-rate”, meaning the number of bits the parties output
per second when applying their hard decoding. If we now double this bit-rate,
the capacity per second has to remain constant, hence the capacity per bit must
decrease by a factor of two. Therefore, the capacity per bit is inversely propor-
tional to the bit-rate. Moreover, this capacity per bit of the AWGN channel
roughly corresponds to the capacity of the BSC, as long as hard decoding is not
too far from an optimal encoding scheme, which is the case in a regime with
small signal to noise ratio. Thus, for a BSC with significant error probabilities,
the capacity is inversely proportional to the bit-rate. This implies that, asymp-
totically, the secret-key rate per second, which is equal to the secret-key rate
per bit times the bit-rate, behaves like the secret-key rate per bit divided by the
capacity of the binary symmetric channel.

As a consequence, we can define the secret-key rate per second by dividing the
secret-key rate per bit by the capacity of the honest parties’ channel, which we
assume to have larger error probabilities than Eve’s channel, and hence deliver
the better approximation.

Definition 9. The secret-key rate per second for an adversary with an exactly
Q times better channel, denoted by S∗(Q), is defined as

S∗(Q) := sup
α,γ

ρ(α,γ)=Q

S(α, α, γ)
1 − h(α)

.

where S(εA, εB , εE) is the secret-key rate of the satellite setting with error prob-
abilities εA, εB, and εE for Alice, Bob, and Eve, respectively.

5.2 Bounds on the Secret-Key Rate per Second

In this section, we establish the exact asymptotic behavior of S∗(Q) as a func-
tion of Q, up to a multiplicative constant. For the lower bound, we will, analo-
gously to Sect. 4.2, make use of the fact that the secret-key rate achieved by the
parity-check protocol is a lower bound of the secret-key rate. Therefore, we also
introduce the secret-key rate per second of the parity-check protocol.

Definition 10. The secret-key rate per second of the parity-check protocol for
an adversary with an exactly Q times better channel, denoted by R∗(Q), is
defined as

R∗(Q) := sup
�,α,γ

ρ(α,γ)=Q

R(�, α, α, γ)
1 − h(α)

.

where R(�, εA, εB , εE) denotes the rate per random bit achieved by the parity-
check protocol using � rounds.

We then obtain the following asymptotically exact characterization of the
secret-key rate per second.
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Theorem 5. There exist constants c1, c2 > 0 such that

c1
Q

≤ R∗(Q) ≤ S∗(Q) ≤ c2
Q

for all Q ≥ 1.

6 Conclusions and Open Problems

In this paper we investigated the secret-key rate in the satellite setting with
the additional property that the satellite can freely choose the energy spent
when transmitting a bit. In order to study this setting, we assumed there is a
“quality ratio” Q between Eve’s and the honest parties’ antennas, which is an
intrinsic property of the system that must stay fixed over all possible choices
for the satellite. We model this quality ratio as the ratio of the capacities of
the BSC’s associated to Eve and the honest parties. Therefore, in our model,
the extra degree of freedom for the satellite means that he can choose the error
probabilities for Eve and the honest parties as long as the BSC’s induced by
them have capacity ratio Q. This setting was briefly considered for the first time
by Gander and Maurer [6].

We motivated and introduced the quantity S(Q) as a secret-key rate measure
for the modified satellite setting just described. While even approximating the
secret-key rate of the original satellite setting appears to be very complex, we
are actually able to show that S(Q) = Θ(1/Q2) when Q grows. This proves a
conjecture of Gander and Maurer [6]. The mild decrease of the secret-key rate
as a function of Q, coupled with the fact that our lower bound is obtained by
considering a simple, explicit advantage distillation protocol, can be interpreted
as a first step towards showing that information-theoretic secret-key agreement
may be more practical than what is usually believed. We also propose a heuristic
definition of the secret-key rate per second, instead of “per random bit”, and
show that this quantity behaves like Θ(1/Q). In the full version of this paper [9],
we generalize our results to the more general setting where Alice’s and Bob’s
antennas may have different sizes, and furthermore one does not know the exact
ratio between Eve’s and the honest parties’ antennas – only whether it is at
most, or at least, some value.

In terms of future work, we envision several main problems. First, one should
extend our analysis to settings where Alice and Bob have antennas of vastly
different sizes, addressing the typical client-server scenarios. Second, there is a
need for a better model of the secret-key rate per second, which should be built
on an abstraction level that does not abstract away time, thereby allowing one
to verify our conjecture that the secret-key rate per second behaves like 1/Q in
practice. Finally, and most importantly, one should address the issues that still
prevent the satellite model from being used in practice, for instance by studying
the secret-key rate in a similar setting to ours when the adversary does not
quantize her analog signal, or by investigating the potential effect of an active
adversary jamming the signal.
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Abstract. Byzantine broadcast is a fundamental primitive for secure
computation. In a setting with n parties in the presence of an adver-
sary controlling at most t parties, while a lot of progress in optimizing
communication complexity has been made for t < n/2, little progress has
been made for the general case t < n, especially for information-theoretic
security. In particular, all information-theoretic secure broadcast proto-
cols for �-bit messages and t < n and optimal round complexity O(n)
have, so far, required a communication complexity of O(�n2). A broadcast
extension protocol allows a long message to be broadcast more efficiently
using a small number of single-bit broadcasts. Through broadcast exten-
sion, so far, the best achievable round complexity for t < n setting with
the optimal communication complexity of O(�n) is O(n4) rounds.

In this work, we construct a new broadcast extension protocol for
t < n with information-theoretic security. Our protocol improves the
round complexity to O(n3) while maintaining the optimal communica-
tion complexity for long messages. Our result shortens the gap between
the information-theoretic setting and the computational setting, and
between the optimal communication protocol and the optimal round pro-
tocol in the information-theoretic setting for t < n.
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1 Introduction

A (Byzantine) broadcast protocol allows a party, called “sender,” to distribute
a message among n parties such that (1) all honest parties receive the same
message, and (2) if the sender is honest, the received message is indeed sent from
the sender. This guarantee holds even in the presence of a malicious adversary
corrupting up to t parties, possibly including the sender. The adversary controls
the behavior of the corrupted parties and may divert from the protocol.

Broadcast is one of the most fundamental primitives used in cryptographic
protocols—especially secure multi-party computation (MPC). Most MPC proto-
cols assume broadcast is given by default. However, without a specific hardware
setup, broadcast must be built from point-to-point communications. While effi-
cient broadcast can be done with an honest majority, the opposite case is much
more common in applications.

Although a lot of progress has been made to improve broadcast protocol in
the honest majority case, the best-known result for any number of corruptions
has not seen any improvement since [4] for computational security and [15] for
information-theoretic security.

Traditionally, broadcast protocols are designed for single bits [13]. However,
most applications that use broadcast as a subprotocol often broadcast long mes-
sages. While any broadcast protocol can be used multiple times in parallel to
broadcast messages of any length, it leads to inefficiency, especially in commu-
nication complexity.

Broadcast extension protocol, introduced in [16], uses bit broadcast (or
broadcast for fixed-length messages) as a subprotocol, similar to oblivious trans-
fer (OT) extension [1,8,10,11]. The goal is to reduce the communication com-
plexity of broadcasting long messages, compared to trivially executing multiple
broadcast protocols.

Broadcast with Dishonest Majority. Unlike when the number of corrupted par-
ties t < n/3, it has been shown that broadcast for t < n cannot be achieved in the
plain model [13]. To circumvent the impossibility result, Dolev and Strong con-
sidered the broadcast protocol in the setup model [4]. They implemented broad-
cast from any public-key signature assuming public-key infrastructure (PKI) for
distributing signing and verification keys for the signature scheme. Their proto-
col achieves the lower bound Ω(n) on the round complexity, and Ω(n2) on the
number of messages exchanged.

For the information-theoretic case, Pfitzmann and Waidner introduce the
notion of pseudosignature [14], formalizing unconditionally secure signature in
[2], to replace the public-key signature in [4]. The resulting protocol [14,15] is in
the correlated randomness model where each party holds a random string gener-
ated from some joint distribution instead of PKI. Similar to the computational
case, this protocol achieves the lower bound on the round complexity and the
number of messages exchanged.

In terms of communication complexity, the broadcast protocol of [15] uses
O(�n2 + n6λ) bits of communication, while that of [4] uses O(�n2 + n3λ) bits to
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broadcast a message of length �. In both protocols, a sender sends a message and
a corresponding signature to every party, who then sign and pass the message
to all other parties in the first two rounds.

In fact, [3] shows that any broadcast protocol must communicate at least
Ω(n2) bits. Thus, to broadcast a message of length � directly using such protocol
requires at least Ω(�n2) bits of communication. To circumvent this limitation, an
extension protocol is designed to reduce the multiplicative factor to the length
� of the message to lower than n2 while increasing the part that is independent
of �, thus reducing the overall communication complexity when � � λ. Since
every party must receive the message, the lower bound on the communication
complexity is Ω(�n).

Broadcast Extension. While Turpin and Coan [16] introduced the construction
of a broadcast protocol for long messages from bit broadcast, their protocol
tolerating t < n/3 has the communication complexity of O(�n2 + n(B(1))),
where B(s) is the communication complexity of s-bit broadcast. Fitzi and
Hirt [5] first showed how to achieve broadcast with communication complex-
ity O(�n + poly(n, λ)) in an information-theoretic setting tolerating t < n/2
with poly(n, λ) = n3λ + nB(n + λ). Liang and Vaidya [9] later constructed
perfectly secure broadcast tolerating t < n/3 with communication complexity
O(�n +

√
�n2B(1) + n4B(1)), and Patra [12] improved it to O(�n + n2B(1)).

As mentioned earlier, the best result for communication complexity in an
information-theoretic setting tolerating t < n is by Hirt and Raykov [7]
with communication complexity O(�n + (n4 + n3λ)B(1)) and round complex-
ity O(n4). They also constructed another protocol based on collision-resistant
hash functions (CRHF) in the same setting with communication complexity
O(�n+(n2+nλ)B(1)) and round complexity O(n3). The CRHF-based construc-
tion is later improved in round complexity by Ganesh and Patra [6] to O(n2),
while communication complexity slightly increases to O(�n+(nλ+n3 log n)B(1)).

Round Complexity of Broadcast Protocols. While broadcast can be accomplished
in constant round with honest majority, [4] shows that a broadcast protocol
secure against an adversary corrupting any number of parties requires at least
O(n) rounds. In the t < n/3 and t < n/2 settings, the broadcast extension proto-
cols achieve optimal constant round complexity similar to that of bit broadcast
[6]. [7] first achieved broadcast protocols for �-bit messages using O(�n) commu-
nication complexity for t < n with round complexity O(n3) for computational
security and O(n4) for information-theoretic security, respectively. They left an
open question:

Are there broadcast protocols with O(�n) communication complexity for t < n
with round complexity lower than O(n3) for computational security and lower

than O(n4) for information-theoretic security?

[6] answered the first part of the question: they constructed a computationally
secure protocol with communication complexity of O(n2). This result still leaves
the second part of the open question unsolved.
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1.1 Our Results

We construct a broadcast extension protocol in the information-theoretic setting
against adversaries corrupting up to t < n parties. Our result improves the
current best-known result in the same setting of [7] in round complexity by a
multiplicative factor of n while maintaining the same communication complexity.
More formally, we obtain the following theorem.

Theorem 1. Assuming an oracle for broadcasting short messages, there exists a
broadcast protocol achieving information-theoretic security in t < n setting for an
�-bit message in O(n2) rounds by communicating O(�n+n3(B(λ)+nB(log n)))
bits, where B(l) is the communication complexity of broadcasting l bits.

Thus, combining the above result with the broadcast protocol of [15] gives
the following corollary.

Corollary 1. There exists a broadcast protocol achieving information-theoretic
security in t < n setting for an �-bit message in O(n3) rounds by communicating
O(�n + n10λ) bits.

This result shortens the gap in round complexity between the information-
theoretic case and the computational case where O(n2) rounds is achieved in [6].
Closing this gap entirely is left as an open question.

1.2 Our Techniques

Block Broadcast. The traditional broadcast protocol of [4] for t < n prevents
a corrupted sender from sending different values to different receivers using
signature (or pseudosignature for information-theoretic security [14,15]). The
receivers then send their signed values to each other. This means in order to
broadcast a message m, both m and the corresponding signature need to be sent
and received O(n2) times. Thus, the communication complexity of broadcasting
a message of length � is at least O(�n2). Similar to the existing broadcast exten-
sion protocols in literature [6,7], a sender in our broadcast protocol cuts a long
message into multiple blocks. Each block is sent via point-to-point channels—
first from the sender, and later from any parties publicly known to hold the
block. Then a broadcast protocol for short messages (multiple times, but inde-
pendent of �) is used to verify the correctness of the blocks using a universal
hash function as in [7]. This keeps the multiplicative factor in the communica-
tion complexity linear in n instead of n2. Similar to [7], our protocol processes
one block at a time sequentially.

Multi-party Block Sending. In [7], each block is sent between one pair of parties
at a time. In order to improve the round complexity, we use the technique in
[6] for the computational security setting where a block is sent between multiple
pairs of parties at the same time. In each round, a block is sent to every party
not holding the block and satisfying a certain condition from a designated party
that holds the block and is still trusted by the receiving party. In particular, if
all parties are honest, they will all receive a block in one round.
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Checking Block Validity. In order to ensure that all honest parties receive each
message block with the same value, we use a universal hash function similar to
the protocol in [7]. Once a party receives a block from the designated party,
it will randomly generate and broadcast a universal hash function key. The
original sender Ps will respond by broadcasting the hash value of the block. All
parties holding a block will also compute the hash values of their own blocks and
compare to the value broadcast by Ps. They then broadcast whether or not the
values are the same. Unlike in [7], multiple sessions of this correspondence can
happen in parallel—one for each pair of parties transmitting a block. In order
to guarantee that blocks received by multiple honest parties in the same round
have the same value, we also require parties that just receive blocks to broadcast
their hash checking result as well.

Trust Graph. We combine and expand the techniques for keeping track of a
party’s interactions in [7] and [6]. As in [7], each party collectively keeps track
of conflict between each pair of parties. A conflict occurs between two parties
Pa and Pb—both holding a block with Pb receiving a block from Pa earlier in
the protocol—if one approves a hash value from Ps while another rejects it.
In [6], each party instead keeps track of a set of corrupted parties from their
own perspective. In both constructions, a party only tries to obtain a block from
another party if it is not in conflict with that party or the party is not corrupted.
We expand this idea to the concept of the public trust graph. A trust graph starts
as a complete graph where vertices are all parties. When a pair of parties are
in conflict in the same sense as in [7], an edge between them is removed. If a
party publicly does not follow the protocol, it will be isolated in the trust graph.
While the conflict set in [7] can be directly translated to our trust graph, we
make additional use of the graph property to strengthen our protocol.

Condition to Forfeit a Block. Unlike the collision-resistant hash function used
in [6], a universal hash function cannot be computed once and for all. If an
adversary knows a hash key before it chooses whether to send a block, it can
find a different block that hashes to the same value. In order to get around this
limitation, the protocol in [7] lets the receiver choose a new hash key after it
receives a block via point-to-point channel.

However, the verification in [7] is done separately for each receiver. In the
situation where the sender Ps and block holders Pa and Pb collude, they can
approve two different block values for honest Pi and Pj , who receive blocks
from Pa and Pb, respectively. When Pj learns of the conflict between Pa and
Pi, it cannot tell which of Pa and Pi is corrupted. In this case, Pj removes an
edge {Pa, Pi} from its trust graph. Since the conflict is known to every honest
party via broadcast, the honest parties can maintain a consistent trust graph
locally. In [7], whenever such conflict occurs, Pj must forfeit the block it has.
Any pairs of parties in conflict do not send or receive a block from one another
ever again across all message blocks. This guarantees that any two honest parties
hold message blocks with the same value. As in [7], this means that each honest
party may need to receive a block more than once. Since the trust graph has
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O(n2) edges, such a conflict can occur at most O(n2) times. By dividing the
message into blocks appropriately, [7] can keep the communication complexity
to the optimal O(�n + poly(n, λ)). However, our parallel block sending further
increases the number of such forfeits as more than one party may try to get
a block and fail at the same time. We solve this problem by implementing a
stronger condition for a party to forfeit a block. Namely, Pj only forfeits a block
when there is no trust path of block holders from Pj to Ps. Together with
the next technique to increase the number of such paths, we can also keep the
communication complexity the same as in [7].

Condition to Receive a Block. In order to reduce the number of forfeits which
leads to an increase in communication complexity, we add additional conditions
for when a party is to be sent a block. The idea is to make it harder for an
adversary to force a party, who has already received a block, to forfeit it in
a later round. The protocol in [7] uses a tree with Ps as a root to represent
how a block is sent between parties. However, their protocol entirely resets this
tree whenever a conflict occurs. Doing so, along with the parallel block sending
technique, leads to an increase in both round complexity and communication
complexity by a factor of n. Our first solution is, instead of resetting the tree,
to disconnect the pair in conflict and remove those no longer connected to Ps.
Unfortunately, this does not solve the problem. An adversary can still force a
long path between Ps and honest parties, and repeatedly disconnect them from
Ps. Instead, our protocol uses a graph Hj to represent the connection for jth
block. Hj is an induced subgraph of the trust graph G on a subset of parties
that have received a block. Due to the verification via universal hash function,
all honest parties in Hj hold a block with the same value. When a party Pi is
added to Hj , we add all edges between Pi and all parties in Hj that connect
to Pi in G as well. Thus, in order for a party to be removed from Hj—which is
equivalent to forfeiting a block—all of its neighbors in Hj need to be removed
as well.

Varying Block Size. Our protocol takes O(dj + Δj) rounds to broadcast the
jth block, where dj is the maximum distance between the sender and receiving
parties in the trusted graph and Δj is the number of edges removed from the
graph while broadcasting the block. If the blocks are of the same size either �/n2,
as in [7], or �/n, as in [6], the resulting protocol will provide no improvement in
round complexity. We solve this problem by using a non-constant block size of
�dj−1/n2. Since 1 ≤ dj−1 ≤ n, our block size is between that of [7] and [6]. In
the case of an honest sender, dj = 1 for all j, we get the same block size as in [7].
Intuitively, as the corrupted parties are known and the distance from receiving
parties in G grows, we want to send a larger block because the number of edges
that can be disconnected is smaller. It is more difficult for the corrupted parties
to make the honest parties resend a block.
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2 Definitions

Let λ denote the security parameter. A negligible function ν(λ) is a non-negative
function such that for any constant c < 0 and for all sufficiently large λ, ν(λ) <
λc. We will denote by Prr[X] the probability of an event X over coins r, and
Pr[X] when r is not specified. For a randomized algorithm A, let A(x; r) denote
running A on an input x with random coins r. If r is chosen uniformly at random
with an output y, we denote y ← A(x). Let P be a set of n parties {P1, . . . , Pn}.
For a finite subset A ⊂ U , let A denote U \ A when U is clear from context. For
a vertex v of a graph G, we may use v ∈ G to denote v ∈ V (G).

Definition 1 (Byzantine Broadcast). A protocol Π for a set of n parties P,
with secure private channel between every pair of parties, and a distinguished
party Ps for some s ∈ [n], called a sender, who holds an input m ∈ M, is a
secure (Byzantine) broadcast protocol if, at the end of the protocol, the following
holds except with negligible probability:

– All honest parties output the same value m′ ∈ M ∪ {⊥}; and
– If the sender Ps is honest, m′ = m.

Definition 2 (Universal Hash Function). A family of functions {Hk}k∈SH

where Hk : M → Y is ε-universal if for any two distinct m,m′ ∈ M,

Pr[k ← SH : Hk(m) = Hk(m′)] ≤ ε.

A universal hash function can be constructed as follows. Let SH = Y = F =
F2λ . Let m ∈ M = {0, 1}� be represented by a polynomial m(x) over F by
cutting m in blocks of size λ. We compute Hk(m) = m(k) ∈ Y .

3 Broadcast Extension

In this section we give an overview of the broadcast constructions of [7] and [6].

3.1 Information-Theoretic Secure Broadcast in O(n4) Rounds

We first describe the broadcast extension protocol of [7]. Informally, the sender
Ps cuts a long message into blocks. The protocol broadcasts each block sequen-
tially using ITBlockBC. The subprotocol ITBlockBC works as follows. In each
loop, a party Pa who has the block sends it to another party Pb that has
not received it. Pb then generates and broadcasts a key k for information-
theoretically secure universal hash function. Next, Ps computes and broadcasts
the hash value of the block using the received key. Every party that has the block
responds as to whether the block they have gives the same hash value. If there
is a pair of parties Pc and Pd where Pd has received a block from Pc and the two
disagree on the hash value, the subprotocol is restarted and {Pc, Pd} is added to
a “dispute set” where they will not interact again. This set is kept across multiple
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executions of ITBlockBC—one for each block. Thus, the conflict can only occur
at most O(n2) times across the executions. When no such conflict occurs, each
execution of ITBlockBC takes O(n) rounds with oracle access to (short) broad-
cast. By cutting the message into n2 blocks, the protocol gives O(n3) rounds
with the oracle access, and O(n4) rounds when the oracle is substituted by an
O(n)-round broadcast protocol of [15].

Let {Hk}k∈SH
be a family of universal hash functions with seeds in SH . Let

P = {P1, . . . , Pn} be a set of all parties. We describe the protocol ITBlockBC in
Fig. 1.

ITBlockBC(Ps, m)
For each party Pi on input dispute set Δ.

1. Initialize a set H = {Ps} and T = ∅.
2. While ∃Px, Py ∈ P such that Px ∈ H, Py ∈ H and {Px, Py} /∈ Δ do the

following:
Round 1: Px sends mx to Py via point-to-point channel. Py sets my := mx. Add

(Px, Py) to T .
Round 2: Py generates and broadcasts k ← SH .
Round 3: Ps broadcasts h := Hk(m).
Round 4: ∀Pi ∈ H ∪ {Py} \ {Ps} if h = Hk(mi) broadcasts 1; otherwise, 0.
Round 5: If all parties broadcast 1, add Py to H. Else,

• for all (Pi, Pj) ∈ T such that Pi broadcast 1 or Pi = Ps and Pj

broadcast 0, add {Pi, Pj} to Δ; and
• set H = {Ps} and T = ∅.

3. ∀Pi ∈ P, if Pi ∈ H, output mi; otherwise, output ⊥.

Fig. 1. Information-theoretic block broadcast of [7]

The broadcast protocol can be obtained by running ITBlockBC n2 times as
shown in Fig. 2.

LongBC(Ps, m)
1. Parties initialize dispute set Δ = ∅.
2. Sender Ps cuts m into n2 equal pieces m1, . . . , mn2

(padding if required).
3. For c = 1, . . . , n2, invoke ITBlockBC(Ps, m

c) and let mc
i be the output of Pi.

4. For each Pi ∈ P, if mj
i = ⊥ for some j, output ⊥. Otherwise, output

m1
i || . . . ||mn2

i .

Fig. 2. Broadcast extension using ITBlockBC
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Theorem 2 ([7]). Assuming an oracle for broadcasting short messages, there
exists a broadcast protocol LongBC achieving information-theoretic security in
t < n setting for an �-bit message in O(n3) rounds by communicating O(�n +
n3(B(λ) + nB(1))) bits.

Corollary 2 ([7]). There exists a broadcast protocol achieving information-
theoretic security in t < n setting for an �-bit message in O(n4) rounds by
communicating O(�n + n10λ) bits.

3.2 Computationally Secure Broadcast in O(n2) Rounds

The construction of [6] improves on the computational case of [7]. In [7] a
long message is broadcast in blocks similar to the information-theoretic case
above. Instead of generating a new key for universal hash function every time a
party receives a block, the sender Ps broadcasts a hash value of the block using
collision-resistant hash function (CRHF) at the beginning of the subprotocol.
When a party Pb receives a block from Pa, he can verify it locally with no addi-
tional interaction. If the verification fails, Pb knows that Pa is corrupted. Thus,
the failure can occur at most O(n) times. By cutting the message into n blocks,
the protocol gives O(n2) rounds with the oracle access, and O(n3) rounds when
the oracle is substituted by O(n)-round broadcast protocol of [15].

In [6] this protocol is improved by allowing multiple parties to send and
receive a block in the same round. Several checks are added to ensure that
this parallel process does not break the correctness and security. This technique
speeds up the protocol by a factor of n.

Let Hash be a collision-resistant hash function. We describe the protocol
CryptoBC in Fig. 3.

Theorem 3 ([6]). Assuming an oracle for broadcasting short messages and
CRHFs, there exists a broadcast protocol CryptoBC against a PPT adversary
corrupting t < n parties for an �-bit message in O(n) rounds by communicating
O(�n + (nλ + n3 log n)B(1)) bits.

Corollary 3 ([6]). Assuming CRHFs, there exists a broadcast protocol against
a PPT adversary corrupting t < n parties for an �-bit message in O(n2) rounds
by communicating O(�n + n6λ log n) bits.

4 Our Construction

In this section we show how to improve information-theoretic secure broadcast
for long messages in [7]. In [6], Ganesh et al. show that it is possible to broadcast
a message of arbitrary length � using O(n) rounds having O(n) black-box access
to a broadcast protocol for single bit, assuming CRHF. Thus, combining the
result with [4] gives a broadcast protocol for a message of arbitrary length in
O(n2) rounds under the same assumption. On the other hand, the best result for
information-theoretic broadcast for arbitrary long messages by [7] uses O(n3)
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CryptoBC(Ps, m)
Hash Agreement phase:

1. Ps cuts m into n equal pieces m1, . . . , mn (padding if required).
2. For c = 1, . . . , n, Ps computes and broadcasts hc = Hash(mc) to all parties.

Block Agreement phase: For each party Pi

1. Initialize
– Ci = ∅, ci = 1, r = 1;
– T k

i [j, l] = 1 for j, l, k ∈ [n];
– Hk

i = {Ps} for k ∈ [n];
2. While r ≤ n + t do

(a) If Pi ∈ H
ci
i , ∃Pj ∈ Hci

i \ Ci and |Hci
i ∪ Ci| ≥ r − ci + 1, broadcast

(send, j, ci).
(b) Let (send, x, y) be the output of the broadcast from Pj /∈ Ci.

i. if T y
i [x, j] = 1 and there is only one broadcast from Pj , then set

T y
i [x, j] = 0, and if x = i and Pi ∈ Hy

i , send my
i to Pj via point-to-

point channel;
ii. else, add Pj to Ci.

(c) If Pi broadcast (send, j, ci) in Step 2(a), let mci
j be the message block

received from Pj

i. if hci = Hash(mci
j ), then increment ci by 1, set mci

i = mci
j and broad-

cast (happy, Hci
i , Ci, ci);

ii. else, broadcast (unhappy, ci) and add Pj to Ci.
(d) Let v be the output of the broadcast from Pj /∈ Ci in Step 2(c) who

broadcast (send, �, �) in Step 2(a) this round
i. if v = (happy, Hx

j , Cj , x), Hx
j ∪Cj ⊆ Hx

i ∪Ci and |Hx
j ∪Cj | ≥ r−x+1,

then add Hx
j ∪ {Pj} to Hx

i ;
ii. if v = (unhappy, x) do nothing;
iii. else, add Pj to Ci.

(e) If r = ci + t and Pi ∈ H
ci
i , then exit while loop.

3. If mk
i = ⊥ for some k ∈ [n], output ⊥. Otherwise, output m1

i || . . . ||mn
i .

Fig. 3. Computationally secure broadcast of [6] against t < n corruption

rounds having O(n3) black-box access to a broadcast protocol for single bit.
Thus, combining the result with [14,15] gives a broadcast protocol in O(n4)
rounds. We show that several techniques, including parallel block broadcast in
[6], can be used to improve this result to O(n3) rounds.

We first describe a protocol ImprovedBlockBC that broadcasts a block of a
long message using an oracle broadcasting short messages. Besides the message
block as an input of the sender, each party Pi maintains a trust graph Gi across
executions of ImprovedBlockBC for all message blocks. While our trust graph
and the dispute set in [7] provide similar information, our protocol takes into
account some properties of graph such as the length of a shortest path between
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a pair of nodes. Finally, we describe our broadcast protocol ImprovedLongBC
running ImprovedBlockBC as a subprotocol. This protocol is similar to LongBC
(in Sect. 3) but with a varying number of blocks depending on the state of the
trust graph at the end of each execution of ImprovedBlockBC.

4.1 Improved Block Broadcast

The protocol ImprovedBlockBC modifies ITBlockBC (in Sect. 3) using several
techniques. Similar to ITBlockBC, each party uses a universal hash function
to verify whether a block it receives is “correct”—meaning that all honest par-
ties agree on the value of the message block. To speed up the protocol, it also
employs some of the parallel processing technique in [6]. Similar to CryptoBC of
[6], ImprovedBlockBC allows multiple pair of parties to send and receive blocks
at the same time. Additional conditions are checked to ensure that all honest
parties agree on which parties sending and receiving blocks at all time. When all
parties follow the protocol honestly, every party receives the block concurrently
and ImprovedBlockBC terminates in O(1) round (with oracle access to short
broadcast). On the other hand, ImprovedBlockBC operates on one block at time,
unlike CryptoBC where different pairs of parties may send and receive different
blocks at the same time. This is unavoidable due to the weaker guarantee of
universal hash functions compared to that of collision-resistant hash functions.

We replace the dispute set Δ, the set H of parties that have already received
a block, and the history set T with a trust graph Gi and a graph Hi. While
they contain the same information, we utilize the graph properties including
connectivity and path length in our protocol. Similar to ITBlockBC, a party
may forfeit a block due to conflict in universal hash value. Instead of resetting
the block broadcast entirely as in ITBlockBC—which can lead to larger round
complexity—we minimize the number of such forfeits using two techniques. First,
a party Pj is only sent a block when all of its neighbors in the trust graph that
are closer to the sender already have the block. (In that case, we say Pj is “ready
to receive a block.”) Second, Pj only forfeits a block if it is disconnected to Ps

in Hi, which only occurs when all of the neighbors above are also disconnected.
Let {Hk}k∈SH

be a family of universal hash functions with seeds in SH . Let
P = {P1, . . . , Pn} be a set of all parties with fixed ordering, e.g., P1 > P2 > . . . >
Pn. Each party Pi keeps its trusted graph Gi, where each node represents a party
in P, throughout ImprovedBlockBC for all message blocks. In the beginning of
the first block, Gi is initialized to a complete graph Cn. If a broadcast protocol
from Pa fails, Pi isolates Pa in Gi by removing all edges connecting to Pa. Let
G(Ps) denote the connected component of G containing Ps. We describe the
protocol ImprovedBlockBC in Fig. 4. Note that all broadcasts in the same step
can be done in parallel. Pi ignores all messages it does not expect as specified
by the protocol.

Definition 3. Let G be a graph on P and H ⊆ G(Ps). We say Pj is ready to
receive a block from Pi with respect to (H,G,Ps) if all of the following holds:

– Pj is a neighbor of Pi in Gi;
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– Pj /∈ H;
– For every shortest path from Pj to Ps, (Pj , Pjk

, . . . , Ps), Pjk
∈ H;

– Pi is the maximal such Pjk
(with respect to the ordering given above).

Now we prove the following properties of ImprovedBlockBC. The following
lemma shows that Gi and Hi of honest parties are the same as they are only
updated using information that is broadcast.

Lemma 1. Suppose all honest parties hold the same Gi at the beginning of
ImprovedBlockBC. Then, at the end of each while loop, all honest parties hold
the same Gi and Hi.

Proof. Assuming all honest parties hold the same Gi and Hi at the beginning of
a while loop. Then in Round 1, 2 and 3, all honest parties agree whether Py is
ready to receive a block from Px. Then, by the agreement property of broadcast,
all honest parties agree on edge removal of Gi in Round 3 and hold the same
recording (ky, Px, Py)’s. Also by the agreement property, all honest parties agree
on edge removal of Gi in Round 4 and 5. Finally, by the agreement property and
the consistency of GI , they also agree on modification of Hi in Round 5. Since
the honest parties hold the same Gi and initialize the same Hi at the beginning
of the protocol, the consistency of Gi and Hi holds at the end of each while
loop. �

From this point onward, we assume all honest parties hold the same Gi at
the beginning of ImprovedBlockBC, and denote the same Gi and Hi for all honest
Pi by G and H, respectively. The following lemma shows the consistency of the
values hold by honest parties. We use the property of universal hash functions
when the keys are chosen uniformly at random by honest parties.

Lemma 2. Except with negligible probability, at the end of each while loop, all
honest parties in H hold the same value m.

Proof. Assume that at the beginning of a loop, all honest parties in H hold
the same value m. Suppose Pi is an honest party added to H in this loop.
The statement holds trivially if there is no other honest party in H at the
end of the loop. Suppose there is another honest party Pj in H at the end
of the loop. Then Pi broadcasts (kj , Pa) for some Pa ∈ H in Round 2 and
Ps broadcasts (hi, Pi) in Round 3. Also, Pj broadcasts (true, Pi) in Round
4; otherwise, Pj would be removed from or not added to Hi. Since Pi and
Pj are honest Hki

(ma) = Hki
(mj) = hi. By the property of universal hash

function, since ki is chosen honestly independent of the messages, except with
negligible probability, ma = mj = m. The result follows as the first loop has
V (H) = {Ps}. �

Let Good be the event that, at the end of each while loop, all honest parties
in H hold the same value m.
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ImprovedBlockBC(Ps, m)
For each party Pi on input a trust graph Gi.

1. Initialize a graph Hi ⊆ Gi(Ps) with only one vertex Ps and no edge.
2. While Pi ∈ Gi(Ps) and |V (Hi)| < |V (Gi(Ps))|, clear all records and do
Round 1: If Pi ∈ Hi, for each Pj ready to receive a block from Pi with respect

to (Hi, Gi, Ps) Pi sends mi to Pj via point-to-point channel.
Round 2: If Pi /∈ Hi and is ready to receive a block from Pj with respect to

(Hi, Gi, Ps),
(a) if Pi does not receive mj or receive more than one block from Pj

in Round 1, broadcast (fail, Pj) and remove {Pi, Pj} from E(Gi);
(b) else, sample k ← SH and broadcast (k, Pj) and record (k, Pj , Pi).

Round 3: When Pi outputs (Ay, Px) broadcast by Py, if {Px, Py} /∈ E(Gi) or Py

is not ready to receive a block from Px with respect to (Hi, Gi, Ps),
isolate Py in Gi. Else
(a) if Ay = fail, remove {Px, Py} from E(Gi);
(b) if Ay = ky, record (ky, Px, Py);
(c) if Pi = Ps, broadcast (Hky (m), Py);
(d) if Pi receives multiple broadcast messages from Py this round or

Ay is not one of the above, isolate Py in Gi.
Round 4: When Pi outputs (hy, Py) broadcast by Ps, if (ky, Px, Py) is not

recorded, output ⊥ and abort; else if Pi ∈ Hi or received mj in Round
1, check if Hky (mi) = hy or Hky (mj) = hy, respectively. Broadcast
(true, Py) or (false, Py) accordingly. If there exists a record (ky, Px, Py)
without (hy, Py) broadcast, output ⊥ and abort.

Round 5: When Pi outputs (true, Py) or (false, Py) with (ky, Px, Py) recorded
broadcast by Pb either in Hi or with (kb, Pa, Pb) recorded, Pi appends
(Pb, true/false) to the recording (ky, Px, Py). Isolate any Pb broadcast-
ing both (true, Py) and (false, Py), or Pb either in Hi or with (kb, Pa, Pb)
recorded broadcasting neither. At the end of this round, Pi processes
each recorded (ky, Px, Py, . . .) one by one in the order of Py as follows.
(a) For each Pb ∈ Hi whose (Pb, false) is appended,

i. for each Pa, Pb’s neighbor in Gi, if (Pa, true) is appended (or
Pa = Ps), remove {Pa, Pb} from E(Gi) and E(Hi);

ii. remove Pb from Hi.
(b) For each Pb with (kb, Pa, Pb, . . .) recorded, if (Pa, true) is appended

(or Pa = Ps), remove {Pa, Pb} from E(Gi) and append fail to
(kb, Pa, Pb, . . .).

(c) Ignore Pb that is removed from Hi earlier this round.
After processing all records, remove any Pa no longer connected to Ps

in Hi from Hi. For each recorded (ky, Px, Py, . . .), if Px is still in Hi,
{Px, Py} is still in E(Gi) and no fail appended, add Py to V (Hi) and
{Px, Py} to E(Hi) and if Pi = Py, set mi = my.

3. If Pi ∈ Hi, output mi. Otherwise, output ⊥.

Fig. 4. Improved block broadcast
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Lemma 3. Assuming the event Good occurs, for any two different honest parties
Pi and Pj, {Pi, Pj} ∈ E(G) at any point in the protocol. Furthermore, at the
end of the protocol, either all honest parties are in H and output the same m,
or output ⊥.

Proof. An honest Pa removes {Pi, Pj} from E(G) when one of the following
holds:

1. Pj is ready to receive a block from Pi but does not get one or get more than
one in Round 1 and broadcasts (fail, Pi) in Round 2;

2. Pj broadcasts malformed or multiple messages in Round 2;
3. Pi and Pj broadcast different (true/false, Py) with (ky, Px, Py) recorded in

Round 4.

By Lemma 1, the first two conditions do not occur for honest Pi and Pj . By
Lemma 2, the last condition does not occur for honest Pi and Pj . Thus, {Pi, Pj}
is never removed from E(G).

By the agreement property of broadcast, honest parties agree on the abort
condition in Round 4. If the abort condition does not occur, the protocol ends
when Pi /∈ G(Ps) or |V (H)| = |V (G(Ps))|. Since honest parties are connected
in G, they agree on the first condition. The honest parties also agree on the
second condition by Lemma 1, and if the first condition does not hold, it implies
Pi ∈ H = G(Ps) for all honest Pi. By Lemma 2, they all output m. �

Let G∗ be the trust graph G at the end of the protocol. Let H∗ = G∗(Ps).
We let d(Pi) denote the length of the shortest path from Pi to Ps in H∗ and
d = maxi d(Pi). For j = 1, . . . , d, let Δj be the number of edges removed from G
when all parties Pi with d(Pi) ≤ j are last added to H (i.e., not removed later
in the protocol). We have 0 ≤ Δ1 ≤ Δ2 ≤ . . . ≤ Δd ≤ Δ.

Lemma 4. Suppose a party Pi is in H at the end of the protocol, then Pi is
last added to H in ti = t(Pi) ≤ d(Pi)+Δd(Pi) loops. In particular, assuming the
event Good occurs, the protocol ends in 5(d + Δ) rounds.

Proof. We prove the statement by induction on d(Pi). Clearly, when d(Pi) = 1,
(Pi, Ps) ∈ E(G∗) and Ps sends a block to Pi every loop until Pi is added to H. If
Pi fails to be added, a neighbor of Pi broadcasts (false, Pi), and thus there must
be an edge (Pa, Pb) that gets removed from E(G). Thus, ti = t(Pi) ≤ d(Pi)+Δ1.
Suppose any Pj with d(Pj) = d(Pi)−1 is last added to H in tj ≤ d(Pj)+Δd(Pj) =
d(Pi)+Δd(Pj)−1 loops. In the (tj +1)th loop, either Pi ∈ H or Pi /∈ H. Suppose
Pi ∈ H. Then Pi is not removed in or after this loop as Pj is not. Otherwise,
a neighbor Pj of Pi on the shortest path will have to be added after tjth loop,
which is a contradiction. Thus, ti ≤ tj ≤ d(Pi) + Δd(Pi). Now suppose Pi /∈ H.
Then Pi is ready to receive a block from one of its neighbors every loop after tj as
all of its neighbors on the shortest path are in H and have never been removed.
Thus, in every loop after tj , either Pi gets a block or an edge gets removed from
E(G). Therefore, ti = tj + 1 + (Δd(Pi) − Δd(Pi)−1) ≤ d(Pi) + Δd(Pi).
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Now assume that the event Good occurs. If an honest party is in H at the
end of the protocol, then by Lemma3, all honest parties are in H at the end
of the protocol. The last honest party is last added to H in d + Δ loops, i.e.,
5(d + Δ) rounds. Otherwise, suppose all honest parties are not in H at the
end of the protocol. By Lemma 3 and the agreement property of broadcast,
honest parties terminate at the same time. Let t∗ be the last loop before the
termination. Suppose that every party follows the protocol correctly from the
next loop onward. Then an honest party Pi will stay in Gi(Ps) and be added to
H within t′ ≤ d + Δ loops. We have t∗ ≤ t′ ≤ d + Δ as well. �
Lemma 5. Let d0 be the maximum length of the shortest path from any honest
party to Ps at the beginning of the protocol. Let d1 be the maximum length of the
shortest path from any honest party to Ps at the end of the protocol. The number
of times a block is sent to and from honest parties is at most O(n+Δ+n(d1−d0)).

Proof. Every party in G∗(Ps) must receive a block at least once. Thus, we need
n times. A party receives a block more than once under two conditions:

1. Pj /∈ H is ready to receive a block from Pi but fails due to
(a) Pi does not send a block; or
(b) (Pi, Pj) is removed from E(G); or
(c) Pi is removed from H.

2. Pj ∈ H is removed from H.

For 1(a) and 1(b), |E(G)| decreases by 1. For 1(c) and 2, the shortest path of
some party increases by at least 1. Thus, the number of additional times a party
needs to get a block is bounded by Δ + n(d1 − d0). �

4.2 Improved Broadcast Extension

Now we are ready to describe our main construction of broadcast extension
using block broadcast ImprovedBlockBC as a subprotocol. As in [7], in order to
broadcast a message m of arbitrary length �, we cut m into q blocks. Unlike in
[7], the block size will vary depending on the trust graph G at the end of the
previous block. In particular, each block mj has length �j = �dj−1/n2 where dj

is the maximum length of the shortest path from Ps to any Pi connected to Ps

at the end of jth execution of ImprovedBlockBC. We let d0 = 1 and allow the
last block to be shorter so that the length of all q blocks add up to �. We then
run ImprovedBlockBC in Fig. 4 q times sequentially as shown in Fig. 5.

Now we prove the round complexity and communication complexity of Im-
provedLongBC. Let dj be the maximum length of the shortest path from Ps to
any Pi connected to Ps at the end of jth execution of ImprovedBlockBC, and Δi

be the decrease in number of edges of G.

Lemma 6. Assuming an oracle for broadcasting short messages,
ImprovedLongBC takes at most O(n2) rounds.
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ImprovedLongBC(Ps, m)
1. Each party Pi initializes a trust graph Gi = Cn, a complete graph on V = P.
2. Sender Ps initializes m1, the first �1 bits of m where �1 = �/n2 (padding if �

is not divisible by n2), and sets c = 1.
3. While

∑c
j=1 �j < �, do the following:

(a) Invoke ImprovedBlockBC(Ps, mc) and let mi
c be the output of Pi.

(b) If |mi
c| �= �c, Pi aborts.

(c) Compute dc the maximum length of the shortest path from Ps to any Pi

connected to Ps.
(d) Let �c+1 = �dc/n2 and mc+1 be the next �c+1 bits of m.
(e) increase c by 1.

4. For each Pi, if mi
j = ⊥ for some j, output ⊥. Otherwise, output mi

1|| . . . ||mi
q

where q is the number of ImprovedBlockBC invoked.

Fig. 5. Broadcast extension using ImprovedBlockBC

Proof. The round complexity of LongBC is the sum of the round complexity of
ImprovedBlockBC. By Lemma 4, the round complexity is

q∑

j=1

5(dj + Δj) = 5

⎛

⎝
q∑

j=1

dj +
q∑

j=1

Δj

⎞

⎠

Since � =
∑q

j=1 �j = �(1 +
∑q−1

j=1 dj)/n2,

q∑

j=1

dj = n2 − 1 + dq ≤ n2 + n − 1

and
∑q

j=1 Δj ≤ |E(Cn)| ≤ n2/2. We have the round complexity O(n2). �
Let d′

j be the maximum length of the shortest path from Ps to any honest
Pi connected to Ps at the end of jth execution of ImprovedBlockBC. Let B(l) be
the communication complexity of broadcasting l bits.

Lemma 7. The number of bits sent and received by honest parties in Improved
LongBC is at most O(�n + n3(B(λ) + nB(log n))).

Proof. The communication complexity of ImprovedLongBC is the sum of the
communication complexity of ImprovedBlockBC.

By Lemma 5, the number of blocks communicated is bj ≤ n+Δj+n(dj−dj−1)
where each block incurs the communication of �j +B(|k|+log n)+B(|h|+log n)+
nB(1 + log n). Thus, the communication complexity is

q∑

j=1

bj�j +
q∑

j=1

bj (B(|k| + log n) + B(|h| + log n) + nB(1 + log n))
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The first sum is
q∑

j=1

dj�j ≤
q∑

j=1

(n + Δj + n(dj − dj−1))
�dj−1

n2

= �

(∑q
j=1 dj−1

n
+

∑q
j=1 Δjdj−1

n2
+

∑q
j=1 dj−1(d′

j − d′
j−1)

n

)

≤ �

⎛

⎝n2

n
+

n
∑q

j=1 Δj

n2
+

(∑q
j=1 dj−1

) (∑q
j=1(d

′
j − d′

j−1)
)

nq

⎞

⎠

≤ �

(
n + n +

n3

nq

)
≤ 3�n.

as d′
j ≤ dj ≤ n and q ≥ n. Since

∑q
j=1 bj ≤ nq +

∑q
j=1 Δj +nd′

q ≤ n3 +2n2, the
communication complexity is

3�n + (n3 + 2n2) (B(|k| + log n) + B(|h| + log n) + nB(1 + log n))
= O(�n + n3(B(λ) + nB(log n))).

�
Since the correctness of ImprovedLongBC follows directly from the correctness

of ImprovedBlockBC from Lemma 2 and 3, we get the following theorem.

Theorem 4. Assuming an oracle for broadcasting short messages, there exists a
broadcast protocol achieving information-theoretic security in t < n setting for an
�-bit message in O(n2) rounds by communicating O(�n+n3(B(λ)+nB(log n)))
bits.

Combining the above result with the broadcast protocol of [15] gives the
following corollary.

Corollary 4. There exists a broadcast protocol achieving information-theoretic
security in t < n setting for an �-bit message in O(n3) rounds by communicating
O(�n + n10λ) bits.

This result improves round complexity from instantiating the broadcast
extension protocol in [7] with the broadcast protocol in [15] while maintaining
the communication complexity.

5 Conclusion

We studied the broadcast protocols for long messages in the t < n setting with
the information-theoretic security. We modify and improve the broadcast exten-
sion protocol in [7], with the previously best-known round complexity of O(n3)
assuming an oracle for short messages. Our broadcast extension protocol has
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round complexity of O(n2) while maintaining the same communication com-
plexity. Combining our result with the broadcast protocol of [15] gives a broad-
cast extension protocol in the t < n setting that achieves the communication
complexity O(�n + n10λ) and the round complexity of O(n3). We leave an open
question on how to further improve the round complexity to O(n2) matching
the computational case in [6] or to the optimal round complexity of O(n).
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Abstract. Secure message transmission and Byzantine agreement have
been studied extensively in incomplete networks. However, information
theoretically secure multiparty computation (MPC) in incomplete net-
works is less well understood. In this paper, we characterize the condi-
tions under which a pair of parties can compute oblivious transfer (OT)
information theoretically securely against a general adversary structure
in an incomplete network of reliable, private channels. We provide char-
acterizations for both semi-honest and malicious models. A consequence
of our results is a complete characterization of networks in which a given
subset of parties can compute any functionality securely with respect to
an adversary structure in the semi-honest case and a partial characteri-
zation in the malicious case.

1 Introduction

Secure message transmission (SMT) [12,13,28,34–37] and Byzantine agree-
ment [12,14,15,31,38] in incomplete networks have been studied extensively.
However, information theoretically secure multiparty computation (MPC) in
incomplete networks is less well studied with a few notable exceptions [3,6,17,26].
In this paper we consider the problem of realizing oblivious transfer (OT)
between a given pair of parties in an incomplete network of reliable, private
links with unconditional security with respect to a general adversary structure.
We characterize networks in which a given pair of parties may securely compute
OT in both the semi-honest and malicious models. For the malicious case, our
characterization is limited to statistical security.

For a pair of parties A and B to compute OT securely in an incomplete
network, an approach which might suggest itself is the following. Try to complete
the network (or a part of the network which includes A and B) by using SMT
to realize the missing private links. Then, use a protocol for complete networks
[4,9,24] on the ‘completed’ (part of the) network to realize OT between A and B.
It turns out that such a direct approach is, in general, not adequate. In particular,
Fig. 1 shows a network where this approach fails, but it is still possible to realize
OT securely.

In the graph G (Fig. 1), vertices represent parties and edges represent private
authenticated communication links. Our characterization (Theorem1) shows

c© International Association for Cryptologic Research 2018
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Fig. 1. Semi-honest 2-secure OT between A and B is possible in G by Theorem 1.
However, a ‘direct’ approach of completing (a part of) the network using semi-honest
SMT with 2-security and applying a standard MPC protocol for complete networks
does not work.

that A and B can realize 2-secure OT in G in the semi-honest case. However,
we cannot achieve this using the aforementioned direct approach. Observe that
the pairs of vertices that are not already connected by an edge are only 2-
connected, hence no new semi-honest 2-secure links can be established in this
network using SMT. Thus, the biggest complete network containing A and B
that can be obtained by such a ‘completion’ is the subgraph induced by vertices
A,B,C,D. Theorem 1 also shows that 2-secure OT between A and B is impos-
sible in this induced subgraph. Alternatively, this impossibility can be seen as
follows. If 2-secure OT can be realized between a pair of parties in a complete
network with 4 parties, then, by symmetry, it is possible to set up 2-secure
OT between every pair of parties in the network. This would imply semi-honest
2-secure MPC in a network with 4 parties [18,19], which is impossible [4,9].

Standard results [11,18–20,25] allow reduction of MPC to establishing pair-
wise OT between the parties wishing to compute securely. In the semi-honest
case, a consequence of our result is a complete characterization of networks
in which a given subset of parties can compute any functionality with perfect
privacy with respect to a given adversary structure. When the adversary is mali-
cious, our results imply a condition that is necessary for statistically secure com-
putation of any functionality among a given subset of parties in an incomplete
network. This condition is also sufficient for statistically secure computation of
any functionality, but with abort and no fairness.

1.1 Our Model and Results

Consider a simple graph G(V, E) on a set V of n parties (or vertices), where each
undirected edge {u, v} ∈ E represents a private, authenticated, synchronous,
bidirectional communication link between the distinct parties u and v. Let
A,B ∈ V be two distinct parties. Given an adversary structure Z ⊆ 2V , we
seek necessary and sufficient conditions on G so that A and B may compute
OT with unconditional security with respect to (w.r.t.) the adversary structure
Z. By security w.r.t. Z, we mean security against the corruption of every set of
parties in Z. We restrict our attention to static adversaries, but consider both
the semi-honest and malicious cases.
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Given a vertex u ∈ V and a subset of vertices Z ⊆ V, we define u-blocked
vertices of Z, denoted by Γu(Z), as the set of vertices whose every path to
u contains some vertex in Z. Our main result for the semi-honest case is the
following:

Theorem 1. Given a graph G(V, E) and an adversary structure Z, two distinct
parties A,B ∈ V can compute OT with perfect unconditional security in the
semi-honest, static adversary setting if and only if the following conditions are
satisfied:

1. For every Z ∈ Z such that A,B /∈ Z, there exists a path from A to B that
does not have any vertex from Z.

2. There do not exist sets of parties ZA,ZB ∈ Z such that A ∈ ZA, B /∈ ZA,
B ∈ ZB, A /∈ ZB, and

ΓB(ZA) ∪ ΓA(ZB) = V.

Moreover, when these conditions are satisfied and |Z| = poly(n), there is an
efficient (poly(n) complexity) protocol to compute OT securely.

Standard results [18,19] imply that if every pair in a set of vertices can realize
oblivious transfer with security w.r.t. Z, then these vertices can compute any
functionality with security w.r.t. Z.

Corollary 1. Given a graph G(V, E) and a subset of vertices K ⊆ V, any func-
tionality can be computed among the vertices in K with perfect security with
respect to a semi-honest adversary structure Z if and only if the conditions in
Theorem1 are satisfied by every pair of vertices in K.

Please refer to the full version [33] for a proof. When G is complete, Γu(Z) = Z
whenever u /∈ Z ⊂ V. Hence, when K = V, the condition in Corollary 1 is
equivalent to non-existence of sets Z1,Z2 ∈ Z such that Z1 ∪ Z2 = V. Thus, for
this case, we retrieve the Q2 condition of Hirt and Maurer [24].

While the focus of this paper is on deriving tight necessary and sufficient
conditions on the network which permit information theoretically secure com-
putation, we consider efficiency in two regimes for t-privacy (i.e., semi-honest
adversary structures of the form Z

t := {Z ⊂ V : |Z| ≤ t}). Theorem 1 already
gives an efficient protocol for t = O(1). We separately consider the case of
n = 2t + O(1) and give an efficient protocol in this setting as well (when the
conditions of Theorem 1 are satisfied). The case of other regimes of t remains
open.

The following is our result for the malicious case:

Theorem 2. Two vertices A,B in G(V, E) can realize OT with statistical secu-
rity (with guaranteed output delivery) against an adversary structure Z in the
malicious static adversary setting if and only if the following conditions are sat-
isfied:

1. For every Z1,Z2 ∈ Z such that A,B /∈ Z1 ∪ Z2, there exists a path from A to
B that does not have any vertex from Z1 ∪ Z2.
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2. There do not exist ZA,ZB ,Z ∈ Z such that A ∈ ZA, B /∈ ZA, B ∈ ZB,
A /∈ ZB, A,B /∈ Z, and

ΓB(ZA ∪ Z) ∪ ΓA(ZB ∪ Z) = V.

Moreover, when these conditions are satisfied and |Z| = poly(n), there is an
efficient (poly(n) complexity) protocol to compute OT securely.

This characterization can be easily extended to 2-party functionalities with out-
put only at one party since standard results [27] allow reduction of such function-
alities to establishing OT between the parties. Unlike in the semi-honest case,
the availability of secure OT between every pair of parties does not directly
imply that any functionality may be computed securely in the malicious case.
Hence, we have a more modest implication in this case using standard results
in [11,20] and [25].

Corollary 2. Consider a graph G(V, E), a subset of vertices K ⊆ V and a mali-
cious adversary structure Z.

1. The vertices in K can statistically securely compute any functionality w.r.t.
Z only if every pair of vertices in K satisfies the conditions in Theorem2.

2. The vertices in K can statistically securely compute any functionality with
abort and no fairness w.r.t. Z if every pair of vertices in K satisfies the
conditions in Theorem2.

Please refer to the full version [33] for a proof. When G is complete and K = V,
we indeed recover the Q3 condition of Hirt and Maurer [24]. Note that, for this
case, [24] shows that Q3 condition is sufficient to achieve perfect security.

1.2 Technical Overview

We now give a quick overview of the technical details of our results.

Necessity of Conditions: Semi-honest Case. The first condition in Theo-
rem 1 is simply the necessary (and sufficient) condition for SMT between A and
B in the semi-honest setting. To show the necessity of the second condition, we
observe that security w.r.t. the adversary structure {ZA,ZB} implies security
w.r.t. {ΓB(ZA), ΓA(ZB)}, i.e., we may throw into ZA those vertices which it
blocks from reaching B, and, similarly, for ZB and A. Our condition simply says
that this should not be a Q2 adversary structure [24].

Sufficiency of Conditions: Semi-honest Case. To show the sufficiency of
these conditions, we first observe (Lemma 1) that if one could find a vertex C
which cannot be blocked from an honest A or B, then C can provide A and B
with precomputed OT through SMT channels. But, in general, the conditions in
Theorem 1 do not guarantee that such a C exists. Our approach is to find a set
of such C’s such that a majority of them will work against each member of the
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adversary structure. This will allow us to employ the idea of OT combiner [22,
23,32,39] to obtain one protocol which is secure w.r.t. the adversary structure.
The bulk of our proof is in showing that there is a set of such C’s. In fact, we
do this for a special class of adversary structures (Lemma 3) – those with only
one member which contains A (B, respectively). We show that, in this case,
the vertices C of interest are precisely those that are not blocked from B (A,
respectively) the unique member of the adversary structure which contains A (B,
respectively). We then obtain a protocol for OT in the general case by employing
the idea of OT combiner again, this time on the protocols constructed for the
special class of adversary structures above.

Efficiency of t-privacy. Our protocol has complexity which is polynomial in
the size of the graph and the size of the adversary structure. So, it is efficient
for t-privacy when t = O(1). We also give a t-private protocol which is efficient
when n = 2t+O(1). For this, we first consider adversary structures where all the
members which contain A (B, respectively) block the same set of vertices. We
show that for such an adversary structure, using OT combiner, we may construct
an efficient protocol for OT. We show that, similar to the construction in the
general case, we may combine these protocols to get a t-private OT protocol.
If n = 2t + O(1), the number of such adversary structures is polynomial in n,
thereby making the combiner efficient.

Necessity of Conditions: Malicious Case. The first condition of Theorem2
is just the necessary (and sufficient) condition for SMT between A and B in the
malicious setting. We show the necessity of the second condition by reducing
the problem to the case of an OT in a specific graph and showing that such an
OT cannot be computed securely in that graph using arguments similar to the
proof of impossibility of Byzantine agreement by Fischer et al. in [15]. For ease
of exposition, in Sect. 3, we consider a special case (the general case is proved
in the full version [33] along similar lines), which we reduce to the case of the
graph HOT in Fig. 2 (Lemma 6). To show that A and B cannot compute OT in
HOT securely w.r.t. the malicious adversary structure {{C}, {A,D}, {B,D}}, we

C

A B

D

E F

Fig. 2. HOT: OT between A and B is not pos-
sible with security against the malicious adver-
sary structure {{C}, {A, D} and {B, D}}.

C0

B0 A1

D0

F0 E1

C1

A0 B1

D1

E0 F1

Fig. 3. SOT: constructed by inter-
connecting two copies of HOT.
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interconnect two copies of HOT (see Fig. 3) and consider (a pair of) executions
of a purported OT protocol to argue that this would give a secure two-party OT
protocol in the semi-honest setting (Lemma 5).

Sufficiency of Conditions: Malicious Case. To show the sufficiency of these
conditions, we proceed along the lines of the semi-honest case. But here, we
construct a separate OT protocol corresponding to each set in the adversary
structure which does not contain either A or B. The parties in this set do not
participate in the protocol thereby ensuring that it is perfectly secure against
their corruption. However, the corruption of any other set in the adversary struc-
ture may force this protocol to abort. But, if the protocol does not abort, it is
guaranteed to compute OT with statistical security w.r.t Z. Our final protocol
iterates over every protocol of this kind. If the OT is computed in any iteration,
it is guaranteed to be statistically secure. If every iteration is aborted, either A
or B is corrupt, in which case, a honest B may output a random bit.

1.3 Related Work

Secure multiparty computation in complete networks is addressed in a large body
of literature. Ben-Or, Goldwasser, and Wigderson [4] and Chaum, Crépeau, and
Damg̊ard [9] showed that every function can be computed with perfect infor-
mation theoretic security against a semi-honest adversary whenever there is an
honest majority; and against a malicious adversary if more than two-third of
the parties are honest. Hirt and Maurer [24] extended these results and char-
acterized adversary structures, in both semi-honest and malicious settings, that
allow perfectly secure computation. Keeping these results in view, our problem
formulation is a natural one. However, to the best of our knowledge, there is no
prior work on the characterization problem we address even in restricted settings
of graph topologies other than the complete graph. We list below the works in
the literature that come closest to our problem.

Franklin and Yung [16] studied private message exchange in incomplete net-
works of hypergraph communication channels with the goal of performing secure
computation over such networks. Jakoby, Lískiewicz, and Reischuk [26] studied
the trade-off between connectivity and randomness required for private compu-
tation. Bläser et al. [6] characterized Boolean functions which can be computed
with 1-privacy in non-2-connected networks. Beimel [3] studied the case of gen-
eral functions in the same setting. Garay and Ostrovsky [17] introduced the
notion of almost-everywhere secure computation where, in an incomplete net-
work of potentially small degree, secure computation is accomplished by all but a
small number of honest parties. Improvements on the results in [17] were reported
by Chandran, Garay, and Ostrovsky in [8]. They also studied the case of edge cor-
ruptions in [7]. For non-2-connected networks, Bläser et al. [5] studied protocols
that provide a relaxed notion of privacy for functions that cannot be privately
computed in an incomplete network. Harnik, Ishai, and Kushilevitz [22] and
Kumaresan, Raghuraman, and Sealfon [29] characterized incomplete networks
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of OT channels which, when used along with a complete pairwise communica-
tion network, allow t-secure computation. Halevi et al. [21] studied notions of
security in multiparty computation with restricted interaction patterns.

Privacy and reliability of communication over incomplete networks has been
extensively studied. The problems of reliable and private message transmission
have been studied for threshold adversary structures [1,12,13,30,34–37] and for
arbitrary adversary structures [28]. The problem of Byzantine agreement was
studied in [12,14,15,31,38].

2 Semi-honest Case

In this section we prove Theorem 1. We start with some notation and definitions
which will be used throughout the sequel. We define the following subclasses of
an adversary structure Z.

ZA := {Z ∈ Z | A ∈ Z},
ZB := {Z ∈ Z | B ∈ Z},

Z¬A¬B := {Z ∈ Z | A,B �∈ Z}.

Clearly if Z ∈ ZA∪ZB , then it cannot be in Z¬A¬B by definition. If Z ∈ ZA∩ZB ,
then A,B ∈ Z, but any protocol is trivially secure against the corruption of
such a set since only A and B have inputs and outputs. Hence, without loss
of generality, we consider only adversary structures Z that do not contain such
sets. Thus, ZA,ZB , and Z¬A¬B form a partition of Z.

Definition 1. Given a pair of vertices u, v ∈ V in an undirected graph G(V, E),
a path from u to v is a sequence of distinct vertices such that u is the first vertex
and v is the last vertex and there is an edge between every pair of consecutive
vertices. The length-one sequence u is a path from u to u.

Definition 2. Given a vertex u ∈ V and a subset of vertices Z ⊆ V, we define
u-blocked vertices of Z as the set of vertices whose every path to u includes
some vertex in Z. We denote this set by Γu(Z).

Γu(Z) := {v ∈ V | every path from v to u has a vertex from Z}.

2.1 Necessity of Conditions

Necessity of the First Condition. Secure OT can be used for secure commu-
nication, i.e., secure message transmission (SMT). So a necessary condition for
SMT is also a necessary condition for OT. SMT between A and B is possible (if
and) only if for every Z ∈ Z¬A¬B there is a path from A to B that has no vertex
from Z [13]. Hence, OT between A and B with security w.r.t. Z is possible only
if the first condition in Theorem1 is satisfied.
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Necessity of the Second Condition. We show that if the second condition
in Theorem 1 is not satisfied, a protocol that can realize OT between A and
B would imply a 2-party OT protocol. The necessity then follows from the
impossibility of 2-party OT. Suppose the second condition is not satisfied, then
there are ZA ∈ ZA and ZB ∈ ZB such that ΓB(ZA) ∪ ΓA(ZB) = V. Let Π be
an OT protocol that is secure against the corruption of ZA and ZB .

Claim 1. Π is secure against the corruption of ΓB(ZA) and of ΓA(ZB).

Proof. We prove that Π is secure against the corruption of ΓB(ZA), the other
case can be proved in a similar manner. Let u be a vertex in ΓB(ZA) \ ZA and
v be any vertex outside ΓB(ZA). By the definition of B-blocked vertices of ZA

(i.e., ΓB(ZA)), every path from u to B has a vertex from ZA and v has a path
to B that has no vertex from ZA. Hence, every path from u to v must have a
vertex from ZA. Also, no vertex in ΓB(ZA) \ ZA has inputs since A ∈ ZA and
B /∈ ΓB(ZA). Hence we may conclude that the vertices in ΓB(ZA) \ ZA do not
have inputs or outputs and are separated from V \ΓB(ZA) by ZA. Consequently,
the view of ΓB(ZA)\ZA may be simulated by ZA. Since Π is secure against the
corruption of ZA, it must also be secure against the corruption of ΓB(ZA). 	

Now consider three parties P1,P2, and P3. Let P3 simulate vertices in the set
Z := ΓB(ZA) ∩ ΓA(ZB) and P1 and P2 simulate ΓB(ZA) \ Z and ΓA(ZB) \
Z respectively. By Claim 1, there is a 3-party protocol Π3 that computes OT
between P1 and P2 that is secure against the corruption of {P1,P3} and that
of {P2,P3}. Since P3 does not have any input, Π3 is also secure against the
corruption of {P1} (and {P2}); see [22, Lemma 2]. From Π3 we can get a 2-
party OT protocol Π2 by letting one party simulate P1 and the other party
simulate {P2,P3} (see [22, Sect. 3.2]), yielding a contradiction.

2.2 Sufficiency of Conditions

Next, we construct a protocol Πsh for OT between A and B that is secure w.r.t.
an adversary structure Z if the conditions in Theorem1 are met. If the size of
Z is polynomial in n, the Πsh constructed is efficient. We first consider a few
special cases that will lead us up to the general case.

For the complete graph on 3 vertices A,B,C, 1-secure OT between A and
B can be realized as follows: Vertex C samples a precomputed OT uniformly
at random and sends it privately to A and B, who use this to securely realize
OT [2]. i.e., C samples independent, uniform bits r0, r1, c and then sends (r0, r1)
to A and (c, rc) to B privately. B sends to A the sum u := b ⊕ c of its input b
with c, where ⊕ denotes addition in the binary field. Let (x0, x1) be the input
to A, then A replies with (y0, y1) := (x0 ⊕ ru, x1 ⊕ r1⊕u). B reconstructs xb as
yb ⊕ rc.

We first generalize the above protocol to networks and adversary structures
where we can find a node C which can not be corrupted together with A or B,
and such that it can communicate to A with privacy against ZB and to B with
privacy against ZA.
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Lemma 1. Consider G(V, E) with vertices A,B ∈ V and a semi-honest adver-
sary structure Z that satisfy the conditions in Theorem1. Suppose there exists a
vertex C such that

(i) ∀ZA ∈ ZA, C /∈ ΓB(ZA), and
(ii) ∀ZB ∈ ZB , C /∈ ΓA(ZB).

Then, there is an efficient protocol ΠC for securely computing OT between A
and B.

The protocol ΠC involves C sending precomputed OT to A and B using SMT. A
and B use it to carry out OT by using the standard protocol from [2] mentioned
above. In carrying out the OT, A and B communicate with each other using
SMT; something which the first condition of Theorem 1 guarantees is possible.
The conditions in the lemma ensure that if C is corrupt, A and B must be honest
and, since they carry out OT over SMT, they have privacy. If A is corrupt, the
conditions in the lemma guarantee that both C and B are honest, and have a
path of honest vertices between them ensuring the privacy of SMT from C to B
used to deliver the precomputed OT. The privacy of B’s input then follows. A
similar argument can be made for the case when B is corrupt. The full proof,
which includes a formal description of ΠC , is deferred to the full version [33].
Note that A is a valid candidate for the choice of C in Lemma 1 if (and only if)
ZA is empty, i.e., A is honest. Similarly, B is a valid choice if and only if ZB is
empty, i.e., B is honest. The protocols, ΠA and ΠB , for these cases will play a
role in the sequel.

In general, the conditions in Theorem1 do not imply the existence of a vertex
C that satisfies the conditions in Lemma 1. Our approach is to next consider
several protocols of the kind used in the proof of this lemma, each corresponding
to a potentially different choice of C. In general, no such protocol on its own
may be secure against the corruption of each set in Z. We invoke the idea of OT
combiner [22,23,32,39] to obtain one protocol which is secure w.r.t. Z. An OT
combiner is a compiler of OT protocols which produces one OT protocol which
is secure w.r.t. Z by ‘combining’ many OT protocols, none of which is secure
against the corruption of every set in Z.

Lemma 2 [22,23,32,39]
Let Π1, . . . , Πm be m protocols for OT between A and B, such that against

the passive corruption of every Z ∈ Z, a majority of Π1, . . . , Πm is secure. Then,
there exists a protocol Combiner(Π1, . . . , Πm) for OT between A and B which is
secure w.r.t. the semi-honest adversary structure Z. Moreover, this protocol is
efficient if m is polynomial in n, and Πi is efficient for each i ∈ [m].

We proceed in two steps. We first consider adversary structures Z such that ZA

(or ZB) is a singleton set. Specifically, we first prove our result for adversary
structure Z = {ZA} ∪ZB ∪Z¬A¬B where ZA is such that A ∈ ZA; similarly, we
consider Z = {ZB}∪ZA ∪Z¬A¬B, where ZB is such that B ∈ ZB . We will later
use this to prove our general result.
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Lemma 3. Consider G(V, E) with vertices A,B ∈ V and a semi-honest adver-
sary structure Z = {ZA}∪ZB∪Z¬A¬B, where A ∈ ZA, (Z = {ZB}∪ZA∪Z¬A¬B,
B ∈ ZB, respectively) that satisfy the conditions in Theorem1. There is an
efficient protocol ΠZA (ΠZB , respectively) that securely realizes OT between A
and B.

Before we present the construction of the protocols, we make the following claims.

Claim 2. For every C /∈ ΓB(ZA), the protocol ΠC is secure w.r.t. {ZA}∪Z¬A¬B .

Proof. If C /∈ ΓB(ZA), then C satisfies both the conditions in Lemma 1 for the
adversary structure {ZA} ∪ Z¬A¬B. This proves the claim. 	

Claim 3. Let Z ′

B ∈ ZB , then there exists C /∈ ΓB(ZA) ∪ ΓA(Z ′
B). The protocol

ΠC is secure w.r.t. {ZA} ∪ Z¬A¬B ∪ {Z ′
B}.

Proof. If there exists a C /∈ ΓB(ZA) ∪ ΓA(Z ′
B), then C satisfies both the condi-

tions in Lemma 1 for the adversary structure {ZA} ∪Z¬A¬B ∪ {Z ′
B} and second

part of the claim follows. Such a C must exist, since ΓB(ZA) ∪ ΓA(Z ′
B) �= V by

the second condition in Theorem 1. 	

Similar claims can be made regarding the adversary structure {ZB} ∪ ZA ∪

Z¬A¬B, and the proof for these claims are similar.
Claims 2 and 3 directly imply the following observations. For ZA ∈ ZA, let

V \ ΓB(ZA) = {C1, . . . , CkA}. Note that V \ ΓB(ZA) is non-empty since B /∈
ΓB(ZA). Then, by Claim 2, ΠCi

is secure w.r.t. {ZA} ∪ Z¬A¬B for all i ∈ [kA].
By Claim 3, for each Z ′

B ∈ ZB, there exists i ∈ [kA] such that ΠCi

is secure w.r.t.
{ZA}∪Z¬A¬B ∪{Z ′

B}. Similarly, for ZB ∈ ZB , let V \ΓA(ZB) = {C1, . . . , CkB}.
Then ΠCi

is secure w.r.t. {ZB} ∪ Z¬A¬B for all i ∈ [kB ]. For each, Z ′
A ∈ ZA

there exists i ∈ [kB ] such that ΠCi

is secure w.r.t. {Z ′
A} ∪ Z¬A¬B ∪ {ZB}.

Proof (Proof of Lemma 3)
Consider a collection of protocols Π1, . . . Π2kA−1, where Πi := ΠCi

for i ∈
[kA] and Πi := ΠA for i = kA + 1, . . . , 2kA − 1. We construct the protocol
ΠZA as Combiner(Π1, . . . , Π2kA−1). Since Π1, . . . Π2kA−1 are protocols for OT
between A and B, this is a valid combiner. As we argued above, Π1, . . . , ΠkA

(= ΠC1
, . . . , ΠCkA ) are secure w.r.t. {ZA} ∪ Z¬A¬B. Hence a majority of the

protocols (kA out of 2kA − 1 protocols) used in the combiner is secure w.r.t.
{ZA} ∪ Z¬A¬B. The security of ΠZA w.r.t. {ZA} ∪ Z¬A¬B now follows from
Lemma 2. Consider the corruption of any Z ′

B ∈ ZB . Since A is honest (i.e.,
A /∈ Z ′

B), the kA − 1 copies of ΠA used in the combiner are secure against the
corruption of Z ′

B . As we previously observed, for each Z ′
B ∈ ZB , at least one

of the protocols Π1, . . . , ΠkA
is secure against the corruption of Z ′

B . Hence, at
least kA protocols used in the combiner are secure against the corruption of each
Z ′

B ∈ ZB . From Lemma 2, it follows that ΠZA is secure w.r.t. ZB and hence
against {ZA} ∪ Z¬A¬B ∪ ZB . Observe that ΠZA is a combiner of 2kA − 1 < 2n
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protocols of the kind ΠC . Since, by Lemma 1, each of these protocols is efficient,
ΠZA is efficient according to Lemma 2.

Similarly, the protocol ΠZB := Combiner(Π1, . . . Π2kB−1), where Πi := ΠCi

for i ∈ [kB ] and Πi := ΠB for i = kB + 1, . . . , 2kB − 1 will efficiently realize OT
between A and B with security w.r.t. {ZB} ∪ Z¬A¬B ∪ ZA. 	


We are finally ready to prove Theorem 1. The idea is to combine protocols
of the kind ΠZA ,ZA ∈ ZA and ΠZB ,ZB ∈ ZB in a way such that a majority of
these protocols is secure against the corruption of every set of vertices in Z.

Proof (Proof of Theorem 1). If the adversary structure Z is such that ZA (ZB),
respectively) is empty then, we have already seen that ΠA (ΠB , respectively)
is secure w.r.t. Z. So, let ZA = {Z1

A, . . . ,Z�A
A } and ZB = {Z1

B , . . . ,Z�B
B }. We

consider the following pairs of protocols.

(Π1,1,Π1,2), . . . , (Π�A,1,Π�A,2), (Π�A+1,1,Π�A+1,2), . . . , (Π�A+�B ,1,Π�A+�B ,2),

where

(Πi,1,Πi,2) := (ΠZi
A ,ΠB), for 1 ≤ i ≤ �A, (1)

(Π�A+i,1,Π�A+i,2) := (ΠZi
B ,ΠA), for 1 ≤ i ≤ �B . (2)

Let Πsh := Combiner((Π1,1,Π1,2) . . . , (Π�A+�B ,1,Π�A+�B ,2)). All the protocols
used in the combiner realize OT between A and B, hence the combiner is valid.
For all ZA ∈ ZA and ZB ∈ ZB , ΠZA and ΠZB are secure w.r.t. Z¬A¬B by
Lemma 3. ΠA and ΠB are also secure w.r.t. Z¬A¬B. Therefore, by Lemma 2,
Πsh is secure w.r.t. Z¬A¬B. The essential idea for the proof of security of Πsh

w.r.t. ZA ∪ ZB is the fact that for each Z ∈ ZA ∪ ZB , both protocols in the
pair corresponding to Z are secure against the corruption of Z and at least one
protocol from every other pair is also secure against the corruption of Z. Hence,
a majority of protocols used in the combiner is secure against the corruption of
Z.

Formally, let Zj
A be any set in ZA. Note that (Πj,1,Πj,2) = (ΠZj

A ,ΠB). By
Lemma 3, ΠZj

A is secure against the corruption of Zj
A. Also, ΠB is secure against

the corruption of Zj
A since B /∈ Zj

A. Hence, the pair of protocols (Πj,1,Πj,2) is
secure against the corruption of Zj

A. Among the other pairs, for 1 ≤ i ≤ �A,
the protocols Πi,2 are copies of ΠB and hence, secure against the corruption
of Zj

A. For the remaining pairs, note that Π�A+i,1 = ΠZi
B , 1 ≤ i ≤ �B are also

secure against the corruption of Zj
A by Lemma 3. Thus, at least �A + �B + 1

protocols (among 2(�A + �B)) protocols used in the combiner are secure against
the corruption of Zj

A. Hence, by Lemma 2, Πsh is secure against the corruption
of this set. This proves that the protocol Πsh is secure w.r.t. ZA. The proof of
security against ZB is similar.

If the size of ZA ∪ ZB is polynomial in n, Πsh is a combiner of poly(n)
protocols, each of which is efficient by Lemma 3. Hence, in this case Πsh is
efficient by Lemma 2. 	




400 V. Narayanan and V. M. Prabahakaran

2.3 Efficiency of t-privacy

A protocol is said to be t-private if it is secure w.r.t. the semi-honest adversary
structure Z

t := {Z ⊆ V : |Z| ≤ t}. Without loss of generality, we restrict our
attention to t < n/2 since OT cannot be computed with n/2�-privacy even in
a complete graph [4,9]. We have the following result:

Theorem 3. Given a communication graph G(V, E), vertices A,B ∈ V can
compute OT with perfect t-privacy if and only if the following conditions are
satisfied:

1. There exists an edge or at least t + 1 vertex disjoint paths between A and B.
2. There do not exist ZA,ZB ⊂ V of size at most t such that A ∈ ZA, B /∈

ZA, A /∈ ZB , B ∈ ZB , and ΓB(ZA) ∪ ΓA(ZB) = V.

Moreover, this can be performed using an efficient protocol if t = O(1) or n =
2t + O(1).

The conditions 1 and 2 above are just restatements of the conditions in The-
orem 1 for Z

t. The efficiency when t = O(1) follows from Theorem 1 as the size
of the adversary structure in this case is poly(n). It only remains to construct an
efficient t-private OT protocol for the case of n = 2t + O(1). As in Sect. 2.2, we
first consider certain specific adversary structures and construct efficient proto-
cols for these. We will then use these protocols to construct protocols for the
general case. For a set S ⊆ V, let

Z
t
A(S) := {ZA ∈ Z

t
A | ΓB(ZA) \ ZA = S}, where Z

t
A := {ZA ∈ Z

t | A ∈ ZA},

Z
t
B(S) := {ZB ∈ Z

t
B | ΓA(ZB) \ ZB = S}, where Z

t
B := {ZB ∈ Z

t | B ∈ ZB}.

To interpret this, Zt
A(S) are sets containing A and of size at most t (i.e., they

can be corrupted) such that the set of additional vertices they block off from
reaching B is precisely S. Loosely, S is the “shadow” of sets in Z

t
A(S). Now we

define the collections of such “shadow” sets.

S
t
A := {S ⊆ V | Zt

A(S) �= ∅}, and S
t
B := {S ⊆ V | Zt

B(S) �= ∅}.
It is clear that Z

t
A = ∪SA∈S

t
A
Z

t
A(SA) and Z

t
B = ∪SB∈S

t
B
Z

t
B(SB).

Claim 4. Let k = n−2t. |SA| < k for all SA ∈ S
t
A, and |SB | < k for all SB ∈ S

t
B .

Sizes of St
A and S

t
B are O(nk).

Proof. Let SA ∈ S
t
A. Then, there exists ZA ∈ Z

t
A such that ΓB(ZA) \ ZA = SA,

so clearly B /∈ SA. Suppose |SA| ≥ k.
If |V \ (SA ∪ {B})| < t, the size of V \ SA is at most t. Since SA ⊆ ΓB(ZA),

V \ ΓB(ZA) is of size at most t with B as an element. Hence, V \ ΓB(ZA) ∈ Z
t
B ;

call this set ZB . Then ΓB(ZA)∪ΓA(ZB) = V which violates the second condition
in Theorem 1.

Therefore, |V \ (SA ∪{B})| ≥ t. This implies that there is Z ′
A ⊆ V \SA ∪ {B}

of size t such that ZA ⊆ Z ′
A. Since, ΓB(Z ′

A) ⊇ SA ∪ Z ′
A, size of ΓB(Z ′

A) is at
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least t + k. But then, |V \ ΓB(Z ′
A)| ≤ n − (t + k) = t and B is a member of this

set. Hence V \ ΓB(Z ′
A) ∈ Z

t
B ; call this set ZB . Then ΓA(ZB) ∪ ΓB(Z ′

A) = V, a
contradiction. Thus, |SA| < k for all SA ∈ S

t
A. Further, this implies that |St

A| is
O(nk). The proof for sizes of SB ∈ S

t
B and S

t
B is similar. 	


We next construct efficient protocols for OT between A and B that are secure
w.r.t. adversary structures of the kind Z

t
A(SA) ∪ Z

t
B ∪ Z

t
¬A¬B, where SA ∈ S

t
A,

and adversary structures of the kind Z
t
A ∪ Z

t
B(SB) ∪ Z

t
¬A¬B, where SB ∈ S

t
B.

Then, we use a combiner of these protocols to construct an efficient protocol
Π ′

sh that is secure w.r.t. Zt. The efficiency of Π ′
sh will follow from Claim 4 which

shows that the sizes of the adversary structures SA and SB are of the order nk.

Lemma 4. For every SA ∈ S
t
A (SB ∈ S

t
B, respectively) there is an efficient

protocol ΠSA (ΠSB , respectively) that realizes OT between A and B with security
w.r.t. a semi-honest adversary structure Z = Z

t
A(SA) ∪ ZB ∪ Z¬A¬B, (Z =

Z
t
B(SB)∪ZA ∪Z¬A¬B, respectively) if the conditions in Theorem3 are satisfied.

Proof. Refer to the full version [33] for the proof. 	

Proof. (Proof of Theorem 3). The construction of Π ′

sh is similar to that of Πsh in
the proof of Theorem 1. Let S

t
A = {S1

A, . . . ,S�A
A } and S

t
B = {S1

B , . . . ,S�B
B }. We

construct Π ′
sh as

Π ′
sh := Combiner((Π1,1,Π1,2), . . . , (Π�A+�B ,1,Π�A+�B ,2)),

where (Πi,1,Πi,2) := (ΠSi
A ,ΠB), for 1 ≤ i ≤ �A, and

(Πi,1,Πi,2) := (ΠSi
B ,ΠB), for �A + 1 ≤ i ≤ �A + �B .

From Lemma 4 and the properties of ΠA,ΠB , it is easy to see that against
the corruption of every Z ∈ Z

t, a majority of the protocols in the combiner are
secure. A pair of efficient protocols are contributed by every S ∈ S

t
A ∪ S

t
B to the

combiner, but as we previously observed, the size of St
A ∪ S

t
B is of the order nk.

Hence the combiner is efficient, this proves that Π ′
sh is efficient. 	


3 Malicious Case

In this section, we characterize graphs in which a given pair of vertices may
realize OT with statistical security w.r.t. an adversary structure Z in the static
malicious setting.

3.1 Necessity of Conditions

Necessity of the First Condition. If A and B can compute OT with sta-
tistical security, then they can communicate with non-trivial (greater than 1/2)
probability of success. Necessity of the condition follows from the fact that in
a graph, if A and B are disconnected by removing two vertices C and D from
the graph, then A and B cannot communicate with non-trivial probability of
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success w.r.t the adversary structure {{C}, {D}} in the malicious setting [15].
Note that although the proof in [15] is for communication with zero-error, it also
works for communication with non-trivial probability of success. A proof of the
necessity of this condition is included in the full version [33].

Necessity of the Second Condition. We show that in a graph G, it is
impossible to realize OT between two of its vertices A and B with statistical
security w.r.t. the adversary structure Z if the second condition is not satisfied,
i.e., there exists ZA ∈ ZA,ZB ∈ ZB , and Z ∈ Z¬A¬B such that

ΓB(ZA ∪ Z) ∪ ΓA(ZB ∪ Z) = V. (3)

For the ease of exposition, we provide a proof for a special case where the fol-
lowing additional conditions hold for the sets ZA,ZB and Z satisfying (3).1

(ΓB(ZA ∪ Z) \ (ZA ∪ Z)) ∩ ΓA(ZB ∪ Z) = ∅, (4)
(ΓA(ZB ∪ Z) \ (ZB ∪ Z)) ∩ ΓB(ZA ∪ Z) = ∅. (5)

Please refer to the full version [33] for a proof of the general case. The proof
technique is identical, but uses a more elaborate construction (Fig. 10).

The proof proceeds in two steps: First we show the impossibility of OT
between A and B in the graph HOT of Fig. 4 with security w.r.t. a certain adver-
sary structure (Lemma 5), then we use this observation to prove the necessity
of the second condition in Theorem2 for the special case through a reduction
argument (Lemma 6).

Lemma 5. In HOT(VHOT
, EHOT

) (Fig. 4), it is impossible to realize OT between
A and B with statistical security w.r.t. the malicious adversary structure
{{C}, {A,D}, {B,D}}.
Proof. The proof uses ideas from the proof for impossibility of Byzantine agree-
ment by Fischer et al. in [15]. We first consider the case of perfect security for
clarity and later argue the case of statistical security. We will show that a proto-
col for OT between A and B with perfect security w.r.t. the malicious adversary
structure {{C}, {A,D}, {B,D}} would imply a secure 2-party OT protocol for
the semi-honest case. The impossibility will then follow from the impossibility of
secure 2-party semi-honest OT. To prove a contradiction, let Π be a protocol that
realizes OT between A and B with perfect security w.r.t. {{C}, {A,D}, {B,D}}.
Similar to the construction used in [15], we construct a graph SOT(VSOT

, ESOT
)

by interconnecting two copies of HOT as shown in Fig. 5. Consider the map
φ : VSOT

→ VHOT
such that φ(vi) = v, i = 0, 1, i.e., φ(A0) = φ(A1) = A,

φ(B0) = φ(B1) = B and so on. Then SOT looks locally like HOT. For example,
A0 has edges to B0,D0, E0 and C1 in SOT, whereas in HOT, φ(A0) has edges to
φ(B0), φ(D0), φ(E0), and φ(C1). Let each vertex v in SOT run the instruction

1 ΓB(ZA ∪ Z) \ (ZA ∪ Z) is the set of vertices outside ZA ∪ Z that have no paths to
B except through vertices in ZA ∪ Z, similarly for ΓB(ZA ∪ Z) \ (ZA ∪ Z).
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C
(Z)

A
(Z ′

A)
B

(Z ′
B)

D
(ZAB)

E
(SA)

F
(SB)

Fig. 4. HOT(VHOT , EHOT): OT between A and
B with security w.r.t. malicious adversary
structure {{C}, {A, D}, {B, D}} is impossible
(Lemma 5). The sets shown inside brackets cor-
respond to the vertex identification used in the
proof of Lemma 6.

C0

B0 A1

D0

F0 E1

C1

A0 B1

D1

E0 F1

Fig. 5. SOT(VSOT
,ESOT

): Con-
structed by interconnecting two
copies of HOT. We analyze the
scenario where vi, i = 0, 1 in SOT

execute the instructions for v in
HOT for protocol Π faithfully.

for φ(v) in the protocol Π. We fix the input to A1 as (0, 0) and input to B1 as 0
and let the input to A0 be (X0,X1) and that to B0 be Q, where X0,X1, Q are
independent uniformly random bits. We call this the execution of a protocol Π ′

in SOT. Clearly Π ′ is not the same as Π (Π is defined for 6 parties), but it is
easy to see that this execution is well-defined.

Claim 5. The output at B0 is XQ.

Proof. In Fig. 6, it can be verified none of the vertices in the yellow region has
any inputs or outputs in the protocol (inputs of A1, B1 have been fixed) and that
all the edges that enter the yellow region (edges in red) are incident on either
C0 or C1. Hence, all the vertices in the yellow region may be thought of as being
simulated by a malicious C. The execution of Π ′ in SOT can be interpreted as
an execution of Π among honest vertices A0, B0,D0, E0, F0, and a corrupted set
{C} as shown in Fig. 6. Π is assumed to be secure against the corruption of C,
therefore A0, B0,D0, E0, F0 halt and realize OT between A0 and B0; hence B0

outputs XQ. This proves the claim. 	


Claim 6. Let A{A,D} := {A0, A1,D0,D1, B1, C1, F1, E0}, the vertices in the blue
region of Fig. 7. Then Q is independent of the view of A{A,D}.

Proof. In Fig. 7, the only vertex in the blue region with input or output to the
protocol Π ′ is A0. Also, A0,D0, A1,D1 are the only vertices to which there are
edges (red edges in the figure) from the vertices outside the blue region. Hence,
the execution of Π ′ in SOT can also be interpreted as an execution of Π by honest
B0, C0, E1, F0, and a corrupted set {A,D} that simulates A{A,D} (the vertices
in the blue region) and communicates with the honest vertices accordingly. Since
Π is secure against the corruption of {A,D}, the input Q of B0 is independent
of the view of {A,D}. Hence Q is independent of the view of A{A,D}. 	
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Fig. 6. We may visualize the execution
of Π ′ as vertices A0, B0, D0, E0, F0 fol-
lowing Π honestly and the corrupted
set {C} simulating all the vertices in
the yellow region. Since Π is secure
against the corruption of {C}, A0 and
B0 must have computed OT correctly.

Fig. 7. We may also visualize the execu-
tion of Π ′ as vertices B0, C0, F0, E1 fol-
lowing Π honestly and the corrupted set
{A, D} simulating all the vertices in the
blue region. Since Π is secure against
the corruption of {A, D}, view of all ver-
tices in the blue region is independent of
B0’s input. (Color figure online)

Claim 7. Let A{B,D} := {B0, B1,D0,D1, A1, C0, E1, F0}, the vertices in the yel-
low region of Fig. 8. X0,X1 is independent of the view of A{B,D} conditioned on
Q,XQ.

Proof. Similar to the previous claims, as shown in Fig. 8, the execution of Π ′ in
SOT can also be interpreted as an execution of Π by honest parties A0, E0, C1, F1

and a corrupted set {B,D} simulates the vertices in the yellow region (A{B,D})
and communicates with the honest vertices accordingly. Notice that the view of
this set contains the input Q and output XQ of B0. Since Π is secure against
the corruption of {B,D}, the input (X0,X1) of A0 is independent of the view
of {B,D} conditioned on its input and output. Hence (X0,X1) is independent
of the view of A{B,D} conditioned on Q,XQ. 	


We show that Claims 5, 6, and 7 lead to a contradiction. To see this, let parties
P1 and P2 simulate the vertices in the blue region (AP1) and yellow region (AP2)
respectively in Fig. 9. Let them execute Π ′ faithfully with P1 setting the input
to the simulated A0 as X0,X1 and that to the simulated B1 as 0, and P2 setting
the input to the simulated B0 as Q and that to the simulated A1 as (0, 0). Then,

(i) The output at B0 is XQ.
(ii) Q is independent of the view of AP1 .
(iii) X0,X1 is independent of the view of AP2 conditioned on Q,XQ.

Here (i) follows from Claim 5. Claim 6 implies (ii) since the vertices AP1 (the
blue region in Fig. 9) is contained in A{A,D} (the blue region in Fig. 7) and the
only vertex in A{A,D} with input or output is A0. Similarly, Claim 7 implies (iii)
because AP2 (the blue region in Fig. 9) is contained in A{B,D} (the blue region in
Fig. 8) and the only vertex in A{B,D} with input or output in A{B,D} is B0. But,



Oblivious Transfer in Incomplete Networks 405

Fig. 8. We may visualize the execution of
Π ′ as vertices A0, C1, E0, F1 following Π
honestly and the corrupted set {B, D} sim-
ulating all the vertices in the yellow region.
Since Π is secure against the corruption of
{B, D}, the view of vertices in the yellow
region must be conditionally independent
of A0’s input conditioned on B0’s input
and output. (Color figure online)

Fig. 9. P1 and P2 simulate the vertices in
the blue and yellow regions respectively
and run Π ′ faithfully by setting their
inputs as inputs to A0 and B0 respectively
to securely realize a 2-party OT, a contra-
diction. (Color figure online)

(i), (ii), and (iii) together imply that parties P1 and P2 can securely realize a
2-party OT in the semi-honest setting. Hence a protocol for OT between A and
B with perfect security w.r.t. the adversary structure {{C}, {A,D}, {B,D}}
in the graph HOT in the malicious setting implies a perfectly secure 2-party
OT protocol in the semi-honest setting. By the same line of reasoning, a pro-
tocol for statistically secure OT between A and B in the same setting would
imply a statistically secure 2-party OT protocol in the semi-honest setting.
The lemma now follows from the impossibility of statistically secure semi-honest
2-party OT. 	


Lemma 6 below shows that if ZA ∈ ZA,ZB ∈ ZB, and Z ∈ Z¬A¬B satisfy
conditions (3), (4), and (5), then any protocol for OT between A and B in G with
security w.r.t. Z may be simulated in HOT to realize OT between A and B with
security w.r.t. {{C}, {A,D}, {B,D}}. The necessity of the second condition in
Theorem 2 for the special case when (4) and (5) is satisfied will then follow from
Lemma 6.

Lemma 6. Let ZA ∈ ZA,ZB ∈ ZB, and Z ∈ Z¬A¬B be such that condi-
tions (3), (4), and (5) are satisfied. If OT between A and B in G(V, E) can
be computed with statistical security w.r.t. the malicious adversary structure
{ZA,ZB ,Z} then A and B in HOT(VHOT

, EHOT
) (Fig. 4) can realize OT with sta-

tistical security w.r.t. the malicious adversary structure {{C}, {A,D}, {B,D}}.
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Table 1. Partition of V. Here ΓA :=
ΓB(ZA ∪ Z) and ΓB := ΓA(ZB ∪ Z).

Set Definition

Z Z = ψ−1(C)

ZAB (ZA ∩ ZB) \ Z =ψ−1(D)

Z ′
A ZA \ (Z ∪ (ZA ∩ ZB)) =ψ−1(A)

Z ′
B ZB \ (Z ∪ (ZA ∩ ZB)) =ψ−1(B)

SA ΓA \ (ZA ∪ ZB ∪ Z) =ψ−1(E)

SB ΓB \ (ZA ∪ ZB ∪ Z) =ψ−1(F )

C

A BD E

B′ A′

F

I

Fig. 10. In the full version [33], we
show the necessity of the second con-
dition for the general case by showing
the impossibility of OT between A and
B in this graph with statistical security
w.r.t. the malicious adversary structure
{{C}, {A, A′, I}, {B, B′, I}}.

Proof. Consider the subsets of V defined in Table 1. We show the following:

(i) Z ′
A,Z ′

B ,Z,ZAB ,SA, and SB form a partition of V and A ∈ Z ′
A, B ∈ Z ′

B .
(ii) Let the map ψ : V → VHOT

be as given in Fig. 4, i.e., for v ∈ Z ′
A, ψ(v) = A

and so on. (i) implies that ψ is well-defined. For u, v ∈ V, edge {u, v} is in G
only if ψ(u) = ψ(v) or edge {ψ(u), ψ(v)} is present in HOT. In short, HOT

(or a subgraph of HOT) is obtained from G on applying vertex contraction
to every subset of V given in Table 1.

(iii) If Π realizes OT between A and B in G securely w.r.t. malicious adver-
sary structure {Z,ZA,ZB}, then it is also secure w.r.t. malicious adver-
sary structure {Z,Z ′

A ∪ ZAB ,Z ′
B ∪ ZAB} = {ψ−1({C}), ψ−1({A,D}),

ψ−1({B,D})}.

Assuming (i), (ii), and (iii), it is easy to see that the vertices in HOT can
simulate Π and realize OT between A and B with statistical security w.r.t. the
malicious adversary {{C}, {A,D}, {B,D}}. It remains to show (i), (ii), and (iii).

Proof of (i) – From their definitions, it can be easily verified that Z,ZAB ,Z ′
A,Z ′

B

are disjoint and that their union is Z ∪ ZA ∪ ZB . By definition of SA,SB , their
union is ΓB(ZA ∪Z)∪ΓA(ZB ∪Z)\(ZA ∪ ZB ∪ Z). By condition (3), this union
is equal to V\(Z∪ZA∪ZB). Finally, the fact that SA and SB are disjoint follows
from (4) since SA ⊆ ΓB(ZA ∪ Z) \ (ZA ∪ Z) and SB ⊆ ΓA(ZB ∪ Z).

Proof of (ii) – Note that the only edges missing in HOT are {F,A}, {F,E}
and {E,B}. We will now show that there is no edge between any vertex in
ψ−1(F ) = SB and any vertex in ψ−1(A) = Z ′

A or ψ−1(E) = SA. The fact
that there is no edge between any vertex in ψ−1(E) = SA and any vertex in
ψ−1(B) = Z ′

B follows similarly. Suppose there exists u ∈ SB and v ∈ Z ′
A ∪ SA

such that {u, v} is an edge in G. Since ZB ∪ Z ⊆ ΓA(ZB ∪ Z), we have
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ZA ∩ ΓA(ZB ∪ Z) = (ZA ∩ (ZB ∪ Z)) ∪ (ZA ∩ (ΓA(ZB ∪ Z) \ (ZB ∪ Z)))
= (ZA ∩ (ZB ∪ Z)) ∪ ∅ (by (5) since ZA ⊂ ΓB(ZA ∪ Z))
⊆ Z ∪ (ZA ∩ ZB)

=⇒ Z ′
A = ZA \ (Z ∪ (ZA ∩ ZB)) ⊆ V \ ΓA(ZB ∪ Z).

SA = ΓB(ZA ∪ Z) \ (Z ∪ ZA ∪ ZB) ⊆ ΓB(ZA ∪ Z) \ (ZA ∪ Z)
=⇒ SA ⊆ V \ ΓA(ZB ∪ Z), by (4).

Hence we have v ∈ Z ′
A ∪ SA ⊆ V \ ΓA(ZB ∪ Z) and u ∈ SB ⊆ ΓA(ZB ∪ Z) \

(ZB ∪ Z). Since v ∈ V \ ΓA(ZB ∪ Z), there is a path from v to A that does not
have any vertex from ZB ∪Z. Since edge {u, v} is present in G, u has a path via
v to A that does not contain any vertex from ZB ∪ Z (note that u /∈ ZB ∪ Z).
But u ∈ SB and hence u ∈ ΓA(ZB ∪ Z), a contradiction.

Proof of (iii) – A ∈ Z ′
A and B ∈ Z ′

B are the only vertices with input or output
in Π. Also, Z ′

A ∪ ZAB ⊆ ZA and Z ′
B ∪ ZAB ⊆ ZB . Hence, if Π is secure w.r.t.

{Z,ZA,ZB}, then it is also secure w.r.t. {Z,Z ′
A ∪ ZAB ,Z ′

B ∪ ZAB}. 	


General Case: The necessity of the second condition for the general case is
proved in a similar manner. We first show that it is impossible to realize OT
between A and B in the graph shown in Fig. 10 with statistical security w.r.t. the
malicious adversary structure {{C}, {A,A′, I}, {B,B′, I}}. This is shown using
an argument similar to the one used in Lemma5 on a graph constructed by
interconnecting three copies of this graph. Then we use this observation to prove
the necessity of the second condition in Theorem 2 for the general case through
a reduction argument. This proof is included in the full version [33].

3.2 Sufficiency of Conditions

In this section, we consider a graph G(V, E) with A,B ∈ V and a malicious
adversary structure Z that satisfies the conditions in Theorem 2 and construct a
protocol Πmal that realizes OT between A and B with statistical security w.r.t.
Z. First we comment on two protocols we use extensively in this section: for
realizing secure communication and for computing OT from sampled OT.

Realizing Perfectly Secure Communication: In the previous section, we saw that
the first condition in Theorem 2 is necessary for statistically correct communi-
cation. In [28], Kumar et al. showed that this condition is sufficient for perfectly
secure communication. We will use their protocol for realizing secure commu-
nication between A and B in all the protocols that follow. This protocol is
guaranteed to be efficient if the size of Z is polynomial in n. We note here that
their protocol can be shown to be composable.

OT Computation Using Sampled OT: A sampled OT or a precomputed OT
between A and B is a functionality that generates r0, r1, c independently and
uniformly at random and sends the ordered pair (r0, r1) to A and the ordered pair
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(c, rc) to B. The following protocol describes a well known technique for realizing
OT between A with input (x0, x1) and B with input b using this sampled OT.
The OT computed by this protocol is statistically secure as long as the sampled
OT was computed with statistical security [2].

Protocol 4 (SampledOT → OT (A : (x0, x1; r0, r1), B : (b; c, rc))).2

1. B: Sends p := b ⊕ c to A securely.
2. A: Sends (y0, y1) := (x0 ⊕ rp, x1 ⊕ r1⊕p) securely.
3. B: Stores the messages it received as (y0, y1) and outputs yb ⊕ rc.

Overview of the Section: The protocol Πmal constructed in this section executes
many sub-protocols which in turn execute other sub-protocols. Figure 11 shows
the sub-protocols that are used in the construction of each of the protocols
described in the section. All the protocols that follow, except Π,ΠA, and ΠB

have the property that they either compute OT with statistical security or abort
depending on the malicious behavior of the adversary. A protocol is said to have
aborted if both A and B output ⊥ while guaranteeing perfect privacy of the
inputs of A and B.

Πpath(C,A),path(C,B)

ΠA, ΠB

ΠZA,Z , ΠZB ,Z

ΠA, ΠB

ΠZ Πmal

IterationCombinerCombiner

Fig. 11. Protocols in each column (except the ones in blue) make calls to the protocols
in the previous column.

First we demonstrate the construction Πmal assuming the following lemma
which claims the existence of protocols ΠZ ,Z ∈ Z¬A¬B with certain properties.
We prove this lemma later in the section by giving an explicit construction for
ΠZ ,Z ∈ Z¬A¬B. The construction and analysis of ΠZ ,Z ∈ Z¬A¬B is very
similar to that of protocol Πsh described in the semi-honest section.

Lemma 7. Consider a pair of vertices A,B in G(V, E), and a malicious adver-
sary structure Z such that the conditions in Theorem2 hold. For each Z ∈
Z¬A¬B, there is a protocol ΠZ such that

(i) ΠZ computes OT between A and B with perfect security against the corrup-
tion of Z.

(ii) ΠZ is either aborted or it computes OT between A and B with statistical
security w.r.t. Z \ {Z}.

This protocol is efficient if the size of Z is polynomial in n.

2 A and B treat missing and incorrect messages as 0.
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Protocol Πmal. This protocol computes OT between A and B with statisti-
cal security with guaranteed output delivery. For each Z ∈ Z¬A¬B, A and B
attempts to compute a sampled OT by executing ΠZ with independent uniform
bits as input. If, for some Z ∈ Z¬A¬B,ΠZ succeeds in computing a sampled
OT, A and B use this sampled OT to realize the OT. Since the sampled OT
is statistically secure by Lemma 7 (ii), the OT computed using it is also sta-
tistically secure. By Lemma 7 (i), ΠZ aborts for all Z ∈ Z¬A¬B only if the
corrupted set is not in Z¬A¬B, i.e., either A or B is corrupt. In that case, B
(if honest) may output a random bit and the computation is still secure. Let
Z¬A¬B = {Z1, . . . ,Z�}, we formally describe Πmal as follows:

Protocol 5 (Πmal(A : (x0, x1), B : (b)))

1. For i = 1, . . . , �:
(a) A generates bits ri

0, r
i
1 uniformly and independently and B generates a

bit ci uniformly and executes ΠZi

(A : (ri
0, r

i
1), B : ci).

(b) If for some i ≤ �,B receives r̄i
c as output (i.e., ΠZi

does not abort) then A
and B execute SampledOT → OT

(
A : (x0, x1; ri

0, r
i
1), B : (b; ci, r̄i

c)
)
, out-

put whatever the protocol outputs and terminate.
2. If for all i ≤ �, ΠZi

aborts, then B outputs a bit uniformly at random.

Proof (Proof of the sufficiency part of Theorem 2). We show that Πmal computes
OT between A and B with statistical security w.r.t. Z. For every i = 1, . . . �, the
inputs of A and B to ΠZi

are random bits independent of their real inputs. Hence
their input remains perfectly private after the execution of ΠZi

irrespective of
whether it is aborted or not. We consider two cases.

Case 1 – For some iteration i ∈ {1, . . . , �}, ΠZi

does not abort: By Lemma 7
(ii), the sampled OT computed by ΠZi

is statistically secure, hence the OT
computed using this sampled OT is also statistically secure.

Case 2 – For i = 1, . . . �, ΠZi

aborts: By Lemma 7 (i), for any Z ∈ Z¬A¬B,
ΠZ realizes OT with perfect security against the corruption of Z. Hence, ΠZi

aborts for all i only if the corrupted set is in Z \ Z¬A¬B i.e., either A or B is
corrupted. In this case, an honest B may output a random bit and the protocol
remains perfectly secure.

Hence Πmal computes OT between A and B with statistical security w.r.t.
Z. The efficiency claim follows from the fact that Πmal runs at most |Z¬A¬B|
protocols of the kind ΠZ , each of which is efficient when Z is of size poly(n)
according to Lemma 7. 	

In the rest of this section, we prove Lemma 7 by explicitly constructing ΠZ ,Z ∈
Z¬A¬B. As a first step, we construct a protocol Πpath(C,A),path(C,B) that is defined
for C ∈ V \ {A,B}, and paths path(C,A) and path(C,B) from C to A and B,
respectively.

Protocol Πpath(C,A),path(C,B) (analogous to ΠC in Lemma 1). In this protocol ver-
tex C facilitates an OT computation between A and B by providing them with a
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sampled OT similar to protocol ΠC described in the semi-honest case. The pro-
tocol either computes OT with statistical security or aborts in a precomputation
phase unless A and a vertex in path(C,B) are corrupted simultaneously or B
and a vertex in path(C,A) are corrupted simultaneously.

The protocol has two phases; a precomputation phase and an OT compu-
tation phase. In the precomputation phase, vertex C generates a sampled OT
and distributes it to A and B by communicating with A and B along path(C,A)
and path(C,B) respectively. Unlike in the semi-honest case, the correctness of
the sampled OT has to be verified, lest A and B compute OT using an incorrect
sampled OT. If the verification succeeds, A and B enter the OT computation
phase in which they use the sampled OT to compute OT with their real inputs,
else the protocol aborts. The verification step accepts an incorrect sampled OT
with positive probability, but this probability can be made as small as needed.

Protocol 6 (Πpath(C,A),path(C,B) (A : (x0, x1), B : b))

– Precomputation Phase3
1. C: Generates uniformly random bits r0, r1, c, and chooses a0, a1 inde-

pendently and uniformly at random from F of size at least 3. Define
p0(x) := a0x + r0, and p1(x) := a1x + r1. C sends (p0, p1) to A along
path(C,A) and (c, pc) to B along path(C,B).

2. A: Stores the received polynomials as p̄A
0 , p̄A

1 . B: Stores the received bit
as c̄ and polynomial as p̄B

c̄ .
3. B: Generates α uniformly at random from F \ {0}. B sends α to C along

path(C,B) and sends α to A securely.
4. C: Sends α received from B to A along path(C,A). If α is non-zero, it

sends (p0(α), p1(α)) to B along path(C,B) else it sends ⊥ to B.
5. A: If α received from B and C are identical and non-zero, A sends

(pA
0 (α), pA

1 (α)) to B securely, otherwise it sends ⊥ to B securely and
aborts by outputting ⊥.

6. B: Stores evaluations received from A as yA
0 , yA

1 and evaluations from C
as yC

0 , yC
1 . If yA

i = yC
i , i = 0, 1 and yA

c̄ = p̄B
c̄ (α):

– Then: Sends ACCEPT to A securely and stores the sampled OT
(c̄, p̄B

c̄ (0)).
– Else: Sends REJECT to A securely and aborts by outputting ⊥.

7. A: If REJECT is received from B, then it aborts by outputting ⊥ else it
stores the sampled OT (p̄A

0 (0), p̄A
1 (0)).

– OT computation Phase:
Execute SampledOT → OT

(
A : (x0, x1; p̄A

0 (0), p̄A
1 (0), B : (b; c̄, p̄B

c̄ (0))
)

and
return the output.

Lemma 8. Consider a network G(V, E), vertices A,B ∈ V and a malicious
adversary structure Z such that the conditions in Theorem2 hold. Suppose there
exists a vertex C ∈ V \ {A,B}, and paths path(C,A) and path(C,B) from C to
A and B respectively such that, for every set Z ∈ Z, at least one of the following
conditions is satisfied.
3 If A or B receives an invalid message at any stage, it sends an abort message to the

other party and aborts by outputting ⊥.
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(i) A,B /∈ Z,
(ii) A ∈ Z but path(C,B) ∩ Z = ∅,
(iii) B ∈ Z but path(C,A) ∩ Z = ∅.
Then, the protocol Πpath(C,A),path(C,B) is either aborted in the precomputation
phase while guaranteeing perfect privacy of inputs or computes OT between A
and B with statistical security w.r.t. Z with error probability 1

|F|−1 . Moreover,
this protocol is efficient as long as the size of Z is polynomial in n.

Proof. Refer to the full version [33] for the proof. 	


The probability of error in this protocol can be brought down to
(

1
|F|−1

)k

if C distributes k pairs of independent and uniformly random polynomials with
r0, r1 as constant terms and the verification steps are carried out independently
for each pair of polynomials with a fresh sample of α.

We define OT protocols ΠA,ΠB as follows. In both these protocols, A and
B interpret missing or invalid messages as 0.

Protocol 7 (ΠA(A : (x0, x1), B : b))

1. B: Sends b to A securely.
2. A: Sends xb to B securely.
3. B: Outputs xb.

Protocol 8 (ΠB(A : (x0, x1), B : b))

1. A: Sends (x0, x1) to B securely.
2. B: Outputs xb.

It is easy to see that ΠA is perfectly secure as long as A is honest and
communication between A and B is secure, similarly ΠB is perfectly secure as
long as B is honest and communication between A and B is secure. Specifically, if
A,B satisfy the conditions in Theorem 2 for an adversary structure Z, then ΠA is
secure w.r.t. ZB∪Z¬A¬B and ΠB is secure w.r.t. ZA∪Z¬A¬B. These protocols are
also efficient as long as | Z |= poly(n) since the secure communication between
A and B can be carried out efficiently.

We construct the protocol ΠZ corresponding to each Z ∈ Z¬A¬B in two
steps along the lines of the construction of OT protocol Πsh in the semi-honest
case. In the first step, the protocol will be secure w.r.t. some specific adversary
structures. Then we use these protocols to construct a protocol for the general
case. In both these protocols, similar to the semi-honest case, we invoke the idea
of compiling many protocols that are not individually secure w.r.t. the adversary
structure to create a protocol that is secure. For this, we use an OT combiner
for malicious setting as described in [23].

Lemma 9 [23, Corollary 7]
Given a malicious adversary structure Z and protocols Π1, . . . , Πm realizing

OT between A and B such that against the corruption of every set Z ∈ Z, a
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majority of protocols Π1, . . . , Πm are statistically secure, there is a hybrid proto-
col Combinermal(Π1, . . . , Πm) that makes calls to Π1, . . . , Πm and computes OT
between A and B with statistical security w.r.t. Z. Moreover, if m is polynomial
in n and each Πi is efficient for i ∈ [m], then the combiner is efficient.

In the first step, for Z ∈ Z¬A¬B and ZA ∈ ZA (ZB ∈ ZB , respectively), we
construct a protocol ΠZ,ZA (ΠZ,ZB , respectively) that runs in two stages. It
is either aborted in the first stage or computes OT between A and B with
security w.r.t. the adversary structure {ZA}∪Z¬A¬B ∪ZB ({ZB}∪Z¬A¬B ∪ZA,
respectively). The protocol has the additional property that it computes OT
with perfect security against the corruption of Z.

Protocol ΠZ,ZA (analogous to ΠZA in Lemma 3). The protocol involves only the
vertices in V \ Z, hence it is perfectly secure against the corruption of Z. It is a
combiner of a set of protocols of the kind defined in Protocol 6 and copies of ΠA.
It runs in two phases. In the first phase, A and B compute and store sufficient
number of sampled OTs for each protocol of the kind Πpath(C,A),path(C,B) used in
the combiner by running their precomputation phases. ΠZ,ZB is aborted if any
of the precomputation phases abort. Otherwise, A and B proceed to compute
the combiner with each call to Πpath(C,A),path(C,B) being realized by executing the
OT computation phase of Protocol 6. Analysis of this protocol is very similar to
ΠZA described in Lemma 3. Since the protocol ΠZ,ZB is similar, with the roles
of A and B reversed, we omit its description.

Consider the adversary structure {ZA} ∪ Z¬A¬B ∪ ZB , such that A ∈ ZA

and a set Z ∈ Z¬A¬B. For every ZB ∈ ZB , there exists a vertex CZB
and

paths pathZB
(CZB

, B) and pathZB
(CZB

, A) such that pathZB
(CZB

, A) does not
have any vertex from set ZB ∪ Z and pathZB

(CZB
, B) does not have any vertex

from set ZA ∪ Z. Otherwise, for each vertex v ∈ V, we have v ∈ ΓA(ZB ∪ Z)
or v ∈ ΓB(ZA ∪ Z). This would lead to the contradiction that ΓA(ZB ∪ Z) ∪
ΓB(ZA ∪ Z) = V. Note that, since CZB

/∈ ΓA(ZB ∪ Z) ∪ ΓB(ZA ∪ Z), it can not
be A or B, hence Π

pathZi
B
(CZi

B
,A),pathZi

B
(CZi

B
,B)

are well-defined.
Let ZB = {Z1

B , . . . ,Z�B
B }. Consider the protocols Π1, . . . , Π2�B−1, where

Πi := Π
pathZi

B
(CZi

B
,A),pathZi

B
(CZi

B
,B)

, for 1 ≤ i ≤ �B ,

Πi := ΠA, for �B + 1 ≤ j ≤ 2�B − 1.

Consider the combiner of these 2�B − 1 protocols for OT between A and B.
Let Calls(Πi) represent the number of calls made to the protocol Πi during an
execution of the combiner. Then we construct the protocol ΠZ,ZA as follows.

Protocol 9 (ΠZ,ZA(A : (x0, x1), B : b))

1. For 1 ≤ i ≤ �B , perform Calls(Πi) number of independent executions of the
precomputation phase of Π

pathZi
B
(CZi

B
,A),pathZi

B
(CZi

B
,B)

.
2. If any of the executions is aborted: abort the protocol otherwise execute the

protocol Combinermal(Π1, . . . ,Π2�B−1) with (x0, x1) and b as input from A
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and B respectively and output what the combiner outputs.
Note: Every call to Πi, 1 ≤ i ≤ �B is realized by executing the OT computa-
tion phase of Π

pathZi
B
(CZi

B
,A),pathZi

B
(CZi

B
,B)

with the sampled OT from step 1.
All other protocols in the combiner are copies of ΠA, which are executed
online.

Lemma 10. Consider a pair of vertices A,B in a graph G(V, E), and a mali-
cious adversary structure Z = {ZA} ∪ Z¬A¬B ∪ ZB where A ∈ ZA (Z =
ZA ∪ Z¬A¬B ∪ {ZB} where B ∈ ZB, respectively) such that the conditions in
Theorem2 hold. Let Z ∈ Z¬A¬B, then the following hold:

(i) ΠZ,ZA (ΠZ,ZB , respectively) computes OT between A and B with perfect
security against the corruption of Z.

(ii) ΠZ,ZA (ΠZ,ZB , respectively) is either aborted in step 1 or computes OT
between A and B with statistical security w.r.t. Z \ {Z}.

The protocol ΠZ,ZA (ΠZ,ZB , respectively) is efficient if the size of Z is polyno-
mial in n.

Proof. Refer to the full version [33] for the proof. 	


Protocol ΠZ (analogous to Πsh in the proof of Theorem 1). Now we are ready
to prove Lemma 7 which will complete the proof of the sufficiency of Theo-
rem 2. We do this by constructing ΠZ for each Z ∈ Z¬A¬B using protocols
ΠZ,ZA ,ZA ∈ ZA, ΠZ,ZB ,ZB ∈ ZB and copies of ΠA and ΠB . This protocol
realizes OT between A and B with perfect security against corruption of Z and
guarantees statistical security w.r.t. Z\{Z} whenever it is not aborted. The con-
struction of this protocol and its analysis is similar to the construction of Πsh

from ΠZA ,ZA ∈ ZA,ΠZB ,ZA ∈ ZB and copies of ΠA,ΠB in the semi-honest
case (Proof of Theorem 1). Let ZA = {Z1

A, . . . ,Z�A
A } and ZB = {Z1

B , . . . ,Z�B
B }.

Consider the following set of protocols

(Π1,1,Π1,2), . . . , (Π�A,1,Π�A,2),(Π�A+1,1,Π�A+1,2), . . . , (Π�A+�B ,1,Π�A+�B ,2),

where (Πi,1,Πi,2) := (ΠZ,ZA ,ΠB), for 1 ≤ i ≤ �A,

(Π�A+i,1,Π�A+i,2) := (ΠZ,ZB ,ΠA), for 1 ≤ i ≤ �B .

Let Calls(Πi,j) represent the maximum number of calls made to the protocol
Πi,j during any execution of Combinermal(Π1,1,Π1,2, . . . , Π�A+�B ,1,Π�A+�B ,2).

Protocol 10 (ΠZ(A : (x0, x1), B : b))

– Precomputation Phase
1. For 1 ≤ i ≤ �A: Execute Calls(Πi,1) instances of ΠZ,ZA with uniformly

random independent bits as inputs by A and B.
(a) If any of the executions abort: abort the protocol.
(b) Else: Store the sampled OT from each execution.
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2. For 1 ≤ i ≤ �B : Execute Calls(Π�A+i,1) instances of ΠZ,ZB with uniformly
random independent bits as inputs by A and B.
(a) If any of the executions abort: abort the protocol.
(b) Else: Store the sampled OT from each execution.

– OT Computation Phase
1. Run Combinermal(Π1,1,Π1,2, . . . , Π�A+�B ,1,Π�A+�B ,2) and output what

the combiner outputs. Calls to Πi,1, 1 ≤ i ≤ �A + �B are realized by
computing OT using the sampled OT from the corresponding protocol.

Proof (Proof of Lemma 7). The protocol involves only vertices in V\Z, hence it is
perfectly secure against the corruption of Z. Consider any set Z ′ ∈ Z\{Z}. If the
protocol aborts during the precomputation phase, the inputs of honest vertices
are private since the real inputs are not used in this phase. Suppose the protocol
is not aborted in the precomputation phase. Using the same argument we used
in the proof of security of Πsh in the semi-honest case, one could verify that
against the corruption of any Z ′ ∈ Z \ {Z}, a majority of the protocols used
in the combiner is secure. Hence, the combiner computes OT with statistical
security by Lemma 9. Moreover, if the size of Z is polynomial in n, then the
protocols that are combined are all efficient by Lemma 10 and properties of
ΠA,ΠB . Since, ΠZ is a combiner of 2(|ZA| + |ZB |) protocols, Lemma 9 implies
that it is efficient in this case. This proves the lemma. 	


4 Discussion

In this section we address some of the limitations of our results and scope for
further improvements.

• In the semi-honest case, Theorem 1 provides a complete characterization of
incomplete networks that allow a given pair of parties to compute OT. Fur-
thermore, this result implies the more general result (Corollary 1) regarding
the characterization of networks in which a given subset may realize MPC. As
we previously observed, this generalizes the result by Hirt and Maurer [24] on
feasibility of MPC with respect to a general adversary structure in complete
networks.
However, in the malicious case, our characterization is limited to the notion
of statistical security. Our results leave open the possibility that the neces-
sary and sufficient condition for OT with perfect security between a given
pair of parties in an incomplete network might be different from the one in
Theorem 2. As previously observed, our characterization directly extends to
statistically secure computation of 2-party functionalities with output only at
one party. However, the problem of 2-party secure computation with output
at both parties remains open. Although our current technique using OT com-
biners is unable to realize secure computation (with fairness), we conjecture
that the conditions in Theorem2 might be sufficient for statistically secure
MPC of such functionalities too.
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Fig. 12. Consider the problem of MPC among the parties {A, B, C} with statistical
security w.r.t. the malicious adversary structure Z = {{A}, {B}, {C}}. Every pair of
parties in {A, B, C} satisfies the conditions in Theorem 2, hence the condition given
in Corollary 2 is satisfied. However, an argument almost identical to the one presented
by Fischer et al. in [15] can be used to show the impossibility of Byzantine agreement
among {A, B, C} in this network. This shows that the conditions given in Corollary 2
are not sufficient for a given subset of parties in an incomplete network to do MPC with
statistical security w.r.t. a given adversary structure, with guaranteed output delivery.

Corollary 2 only partially solves the problem of the characterization of net-
works in which a given subset of parties may realize statistically secure MPC.
The characterization of networks in which a given subset of parties may realize
statistically secure MPC without abort and with fairness (guaranteed output
delivery) still remains open. The example given in Fig. 12 shows that the
necessary and sufficient condition for this must be strictly stronger than the
condition given in Corollary 2. We also leave open the problem of whether the
conditions in Corollary 2 are sufficient for a given subset of parties to realize
statistically secure MPC with fairness, but with abort.

• Section 2.3 addresses efficiency for threshold adversarial structures when the
threshold is a constant or when n = 2t+O(1). Except for these cases, the com-
munication complexity of our protocols are polynomial in the size of adversary
structure. Efficiency of the protocol in the case of large adversary structures
is an important aspect which needs further study. Being the first work on this
problem, our focus has been mostly on the characterization. We hope that
future work will address the efficiency question more thoroughly; we believe
this might require a different set of tools.

• Protocols for general adversary structures often have the following property:
if they are secure against the corruption of a set of parties, then they would
be secure against the corruption of a subset of these parties. This is not
true, in general, for the protocols we construct, neither in the semi-honest
nor in the malicious setting. Consider a graph G(V, E), where V = {A,B, 1}
and E = {{A, 1}, {1, B}}. It can be verified that semi-honest OT is feasible
between A and B with security against corruption of vertices {A, 1}. However,
OT between A and B is impossible with security against the corruption of
vertex 1, as SMT between A and B with security against such a corruption
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itself is impossible. As a consequence, unlike most protocols constructed for
general adversary structures, our protocols are not efficient in the number
of maximal sets in the adversary structure. However, a more limited form of
monotonicity does hold for our protocols. It is easy to see from the conditions
in both Theorems 2 and 1 that if a set ZA ⊂ V such that A ∈ ZA is present
in the adversary structure, then we may as well throw in sets of the kind
Z ′

A ⊂ ZA such that A ∈ Z ′
A and this larger adversary structure will satisfy the

conditions stated in both these Theorems if and only if the adversary structure
we started out with satisfied these conditions. Similarly, if B ∈ CB ⊂ V is
present in the adversary structure, we may as well throw in sets of the kind
Z ′

B ⊂ CB such that B ∈ Z ′
B . Also, if Z such that A,B /∈ Z is present in

the adversary structure, then throwing in every subset of Z will not make
any difference. Indeed, with some modifications, our protocols can be made
efficient w.r.t. the size of ‘maximal’ adversary structure in the above sense.
Another consequence of this lack of monotonicity is that our protocols do not,
in general, continue to be secure when the adversary is adaptive rather than
static (see [10, Chap. 4.5]). To see this, we again consider the graph G(V, E),
where V = {A,B, 1} and E = {{A, 1}, {1, B}} along with the adversary
structure {{A, 1}}. Semi-honest OT between A and B is feasible w.r.t this
adversary structure when the adversary is static. However, there exists no
protocol that is secure against an adaptive adversary who corrupts 1 at the
beginning of the protocol and waits for B to output before corrupting A.

Acknowledgments. We acknowledge useful discussions with Manoj Prabhakaran,
IIT Bombay.
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11. Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and pri-
vate multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 110–123. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 9

12. Dolev, D.: The Byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)
13. Dolev, D., et al.: Perfectly secure message transmission. J. ACM 40(1), 17–47

(1993)
14. Dwork, C., et al.: Fault tolerance in networks of bounded degree. SIAM J. Comput.

17(5), 975–988 (1988)
15. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed

consensus problems. J. Distrib. Comput. 1(1), 26–39 (1986)
16. Franklin, M.K., Yung, M.: Secure hypergraphs: privacy from partial broadcast.

SIAM J. Discret. Math. 18(3), 437–450 (2004)
17. Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In: Smart, N.

(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 307–323. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 18

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

19. Goldrcich, O., Vainish, R.: How to solve any protocol problem - an efficiency
improvement (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,
vol. 293, pp. 73–86. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-
48184-2 6

20. Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Malkhi, D.
(ed.) DISC 2002. LNCS, vol. 2508, pp. 17–32. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36108-1 2

21. Halevi, S., et al.: Secure multiparty computation with general interaction patterns.
In: ITCS, pp. 157–168 (2016)

22. Harnik, D., Ishai, Y., Kushilevitz, E.: How many oblivious transfers are needed
for secure multiparty computation? In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 284–302. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74143-5 16

23. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure com-
putation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 22

24. Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in
secure multi-party computation (extended abstract). In: PODC, pp. 25–34 (1997)

25. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

https://doi.org/10.1007/978-3-642-14162-1_21
https://doi.org/10.1007/3-540-44750-4_9
https://doi.org/10.1007/3-540-44750-4_9
https://doi.org/10.1007/978-3-540-78967-3_18
https://doi.org/10.1007/3-540-48184-2_6
https://doi.org/10.1007/3-540-48184-2_6
https://doi.org/10.1007/3-540-36108-1_2
https://doi.org/10.1007/3-540-36108-1_2
https://doi.org/10.1007/978-3-540-74143-5_16
https://doi.org/10.1007/978-3-540-74143-5_16
https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/978-3-540-85174-5_32


418 V. Narayanan and V. M. Prabahakaran
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Abstract. We present a cryptographic primitive P satisfying the fol-
lowing properties:

– Rudich’s seminal impossibility result (PhD thesis ’88) shows that
P cannot be used in a black-box manner to construct an injective
one-way function.

– P can be used in a non-black-box manner to construct an injective
one-way function assuming the existence of a hitting-set generator
that fools deterministic circuits (such a generator is known to exist
based on the worst-case assumption that E = DTIME(2O(n)) has a
function of deterministic circuit complexity 2Ω(n)).

– Augmenting P with a trapdoor algorithm enables a non-black-box
construction of an injective trapdoor function (once again, assum-
ing the existence of a hitting-set generator that fools deterministic
circuits), while Rudich’s impossibility result still holds.

The primitive P and its augmented variant can be constructed based on
any injective one-way function and on any injective trapdoor function,
respectively, and they are thus unconditionally essential for the existence
of such functions. Moreover, P can also be constructed based on vari-
ous known primitives that are secure against related-key attacks, thus
enabling to base the strong structural guarantees of injective one-way
functions on the strong security guarantees of such primitives.

Our application of derandomization techniques is inspired mainly by
the work of Barak, Ong and Vadhan (CRYPTO ’03), which on one hand
relies on any one-way function, but on the other hand only results in
a non-interactive perfectly-binding commitment scheme (offering signifi-
cantly weaker structural guarantees compared to injective one-way func-
tions), and does not seem to enable an extension to public-key primitives.
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The key observation underlying our approach is that Rudich’s impos-
sibility result applies not only to one-way functions as the underlying
primitive, but in fact to a variety of “unstructured” primitives. We put
forward a condition for identifying such primitives, and then subtly tai-
lor the properties of our primitives such that they are both sufficiently
unstructured in order to satisfy this condition, and sufficiently struc-
tured in order to yield injective one-way and trapdoor functions. This
circumvents the basic approach underlying Rudich’s long-standing evi-
dence for the difficulty of constructing injective one-way functions (and,
in particular, injective trapdoor functions) based on seemingly weaker or
unstructured assumptions.

1 Introduction

Over the last few decades the cryptography community has been success-
ful in constructing a wide variety of cryptographic primitives based on the
minimal assumption that one-way functions exist. For example, the exis-
tence of one-way functions has been shown equivalent to the existence of
private-key encryption schemes [GGM84], pseudorandom functions and permu-
tations [GGM86,LR88,NR99], message authentication codes [GGM86], pseudo-
random generators [BM84,HIL+99], universal one-way hash functions and signa-
ture schemes [NY89,Rom90], commitment schemes [Nao91,HIL+99,HNO+09],
and many other symmetric primitives (also known as “MiniCrypt” primitives
[Imp95]).

Despite the great progress in basing symmetric cryptography on one-way
functions, the existence of one-way functions is still not known to imply the
existence of all symmetric cryptographic primitives. A prime example is that of
injective one-way functions (and, in particular, one-way permutations), whose
existence seems to require somewhat more structured assumptions (e.g., spe-
cific number-theoretic assumptions [GLN11]).1 Moreover, the seminal work by
Rudich [Rud88], within the framework of Impagliazzo and Rudich modeling
black-box constructions [IR89,RTV04], provided substantial evidence that the
existence of injective one-way functions may not be “naturally implied” by the
existence of arbitrary one-way functions. Specifically, Rudich proved that one-
way functions cannot be used in a black-box manner to construct injective one-
way functions.2

Black-box impossibility results are clearly inherently limited, and do not
capture non-black-box techniques (e.g., [GMW86,Yao86,NY90,Bar01,AIK06,
BP12,CPS16]). Thus, it may still be the case that one-way functions can be
used in a non-black-box manner to construct injective one-way functions (and
even one-way permutations). Given that Rudich’s black-box barrier is currently
1 An additional example is that of collision-resistant hash functions, whose existence

also seems to require somewhat stronger assumptions [Sim98].
2 Although Rudich formalized his statements for one-way permutations, his proof relies

only on the injectivity of the resulting functions, and thus applies to injective one-
way functions.
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the main evidence for explaining our lack of success in constructing injective
one-way functions based on seemingly weaker assumptions, this naturally raises
the fundamental question of whether or not Rudich’s black-box barrier can be
circumvented using non-black-box techniques.

Significant progress towards obtaining a better understanding of the above
question was made in the work of Barak, Ong and Vadhan [BOV07]. Their work
demonstrated that derandomization techniques can be fundamentally useful in
cryptographic constructions by enabling to eliminate interaction from certain
two-message cryptographic protocols. Relying on the existence of a hitting-set
generator that fools co-non-deterministic algorithms,3 they derandomized Naor’s
statistically-binding commitment scheme [Nao91] for obtaining a non-interactive
perfectly-binding commitment scheme (in addition, relying on the existence of
a hitting-set generator that fools co-non-deterministic circuits, they derandom-
ized Dwork and Naor’s ZAPs [DN07] for obtaining a non-interactive witness-
indistinguishable proof system for NP).

In particular, as observed by Barak, Ong and Vadhan, a non-interactive
perfectly-binding commitment scheme naturally implies a somewhat weak form
of an injective one-way function, to which they refer to as a “partially-injective”
one-way function. Such a function f is a two-input function f(x, y), which is
injective with respect to its first input x but not necessarily with respect to
its second input y (thus offers significantly weaker structural guarantees com-
pared to an injective one-way function), and for which it is hard to recover x
given f(x, y) where both x and y are distributed uniformly. This shows that
non-black-box techniques are useful for constructing a somewhat weak form of
injective one-way functions, but the problem of whether or not such techniques
can be useful for constructing (fully) injective one-way functions (and even trap-
door functions) based on seemingly weaker assumptions has been left completely
open.

1.1 Our Contributions

We show that non-black-box techniques can be used to circumvent the basic app-
roach underlying Rudich’s long-standing evidence for the difficulty of construct-
ing injective one-way functions (and, in particular, injective trapdoor functions)
based on seemingly weaker or unstructured assumptions. In addition, whereas
separations between the black-box and non-black-box power of cryptographic
constructions were known to exist for private-key primitives [MP12], our work
provides in particular such a separation for public-key primitives.

Specifically, we present a cryptographic primitive P and prove that it satisfies
the following properties:

3 Such a generator is known to exist based on the worst-case assumption that
E = DTIME(2O(n)) has a function that is not computable for infinitely many input
lengths by a probabilistic non-deterministic algorithm that runs in sub-exponential
time [NW94,IW97,MV99,GSTS03].
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– Rudich’s seminal impossibility result shows that P cannot be used in a black-
box manner to construct an injective one-way function.

– P can be used in a non-black-box manner to construct an injective one-way
function assuming the existence of a hitting-set generator that fools determin-
istic circuits. The non-black-box aspect of our construction is quite modest,
asking for an upper bound on the size of P’s implementation.

– Augmenting P with a trapdoor algorithm enables a non-black-box construc-
tion of an injective trapdoor function (once again, assuming the existence
of a hitting-set generator that fools deterministic circuits), while Rudich’s
impossibility result still holds.

Generally speaking, a hitting-set generator that fools deterministic circuits
is known to exist based on the worst-case assumption that E = DTIME(2O(n))
has a function of deterministic circuit complexity 2Ω(n) (see Sect. 2.1 for more
details). For our construction, however, it suffices to assume the existence of
a hitting-set generator that fools a rather simple computation involving the
primitive P (two parallel invocations of P followed by a comparison of their
outputs). Thus, if a hitting-set generator that fools this specific computation
is known to exist unconditionally then we do not need to rely on the above
worst-case assumption.

Our application of derandomization techniques is inspired mainly by the
work of Barak, Ong and Vadhan [BOV07], which on one hand relies on any one-
way function, but on the other hand only results in a non-interactive perfectly-
binding commitment scheme (offering a significantly weaker structural guarantee
when compared to injective one-way functions), and does not seem to enable an
extension to public-key primitives (see Sect. 1.3 for an in-depth discussion and
comparison to previous applications of derandomization techniques in cryptog-
raphy).

The Primitive P. Our primitive P is a predicate P : {0, 1}∗ → {0, 1} that sat-
isfies two rather natural properties, and we refer to this primitive as a correlated-
input balanced one-way predicate. We show that such a predicate P can be con-
structed based on any injective one-way function without relying on any addi-
tional assumptions, and thus the existence of such a predicate is unconditionally
essential for the existence of an injective one-way function. Therefore, under a
standard worst-case hardness assumption, the existence of our primitive is equiv-
alent to that of an injective one-way function, although it is strictly weaker when
restricted to black-box constructions.

Moreover, we also show that P can be constructed in a black-box manner
from various known primitives that are secure against related-secret attacks
(e.g., related-key pseudorandom functions and related-seed pseudorandom gen-
erators). Although these primitives seem rather unstructured, it turns out that
we can rely on their strong security guarantees to achieve the relatively modest
structural guarantee of P, and then apply derandomization techniques to obtain
the more robust structure of injective one-way functions.

In addition to the primitive P, we also introduce a natural “public-key” vari-
ant of P which is obtained by augmenting P with a trapdoor algorithm. We
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show that this augmented primitive can be constructed based on any injective
trapdoor function without relying on any additional assumptions, and thus the
existence of this primitive is unconditionally essential for the existence of an
injective trapdoor one-way function. Therefore, similarly to the above, under a
standard worst-case hardness assumption, the existence of our augmented prim-
itive is equivalent to that of an injective trapdoor function, although it is strictly
weaker when restricted to black-box constructions.

Our Approach. The key observation underlying our approach is that Rudich’s
black-box impossibility result applies not only to rule out black-box construc-
tions of injective one-way functions from general one-way functions as the under-
lying primitive class, but in fact from a wide variety of “unstructured” primi-
tive classes. As basic examples, these include one-way functions and “almost-
injective” one-way functions,4 and obviously do not include injective one-way
functions. At a very high level, as we discuss in Sect. 1.2 in more detail, Rudich’s
impossibility applies to any primitive class S satisfying the following condition:
For any O,O′ ∈ S and for any two disjoint sets of inputs X and X ′ of polyno-
mial size, there exists an O′′ ∈ S that agrees with O on the set X and agrees
with O′ on the set X ′.

Equipped with this observation, a significant part of our effort in this work
focuses on carefully identifying a primitive P that on one hand is sufficiently
unstructured in order to satisfy the above condition, whereas on the other hand
it is sufficiently structured in order to yield an injective one-way function (via a
non-black-box construction). As we pointed out, one-way functions and almost-
injective one-way functions are examples for primitive classes that satisfy the
above condition, but it is still a long-standing open problem to use them in
order to construct an injective one-way function. Instead, we specifically tailor
the properties of our primitive P in order to simultaneously satisfy the above con-
dition and yield an injective one-way function via derandomization techniques.

1.2 Overview of Our Approach

In this section we provide an overview of our main contributions. First, we
describe our new notion of a correlated-input balanced one-way predicate, as
well as our non-black-box construction of an injective one-way function. We
emphasize that we view the introduction and the specific formalization of our
new primitive as a central contribution given that: (1) it is sufficiently unstruc-
tured in order to satisfy the above-mentioned condition for Rudich’s impossibility
result, (2) it is sufficiently structured in order to yield an injective one-way func-
tion, and (3) its existence is essential for the existence of an injective one-way
function.

Then, we describe the application of Rudich’s impossibility proof to
correlated-input balanced one-way predicates, and discuss the observation that
Rudich’s impossibility result applies to a wide variety of primitives. In fact,
4 We denote by an “almost-injective” function a function that is injective for each

input length on all but a negligible fraction of its domain.
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we prove a stronger result, showing that there is no black-box construction of
a partially-injective one-way function (as defined by Barak, Ong and Vadhan
[BOV07]) from these primitives.

Correlated-Input Balanced One-Way Predicates. The new primitive at
the heart of our approach is an efficiently-computable predicate P : {0, 1}∗ →
{0, 1} that can be viewed as a two-input predicate P(x, r), where r ∈ {0, 1}�(|x|),
which satisfies the following two natural requirements with respect to correlated
inputs:

– The first requirement is that the predicate P has to be rather balanced in
the sense that |Pr[P(x, r) = P(x′, r)] − 1/2| is bounded for every distinct
x, x′ ∈ {0, 1}n, where the probability is taken over the choice of a uniform
r ∈ {0, 1}�(n).
This requirement (on its own) is easy to satisfy by making sure that P is
pair-wise independent over the choice of r ∈ {0, 1}�(n). For example, this
requirement can be satisfied by defining P(x, r) = 〈f(x), r〉, where f may be
any injective function mapping n-bit inputs to �(n)-bit outputs.

– The second requirement is that for adversarially-chosen values r1, . . . , rT ∈
{0, 1}�(n), the function mapping x to the sequence of values P(x, r1), . . . ,
P(x, rT ) is a one-way function of x.
This requirement (on its own) is easy to satisfy by making sure that P first
applies any given one-way function to its first input x, and only then involves
its second input r in the computation. For example, this requirement can
be satisfied by defining P(x, r) = 〈f(x), r〉, where f may be any one-way
function mapping n-bit inputs to �(n)-bit outputs (note that this predicate
fails to satisfy the first requirement whenever f is not an injective function).

The following definition formalizes these two requirements:

Definition 1.1. Let P : {0, 1}∗ → {0, 1} be an efficiently-computable predicate,
and let � = �(n) and δ = δ(n) be functions of the security parameter n ∈ N.
Then, P is a correlated-input (�, δ)-balanced one-way predicate if it satisfies the
following two requirements:

– For any n ∈ N and for any x, x′ ∈ {0, 1}n such that x �= x′ it holds that
∣
∣
∣
∣

Pr
r←{0,1}�(n)

[P(x, r) = P(x′, r)] − 1
2

∣
∣
∣
∣
≤ δ(n).

– For any probabilistic polynomial-time algorithm A there exists a negligible
function ν(·) such that

Pr [InvertP,A(n) = 1] ≤ ν(n)

for all sufficiently large n ∈ N, where the experiment InvertP,A(n) is defined
as follows:
1. (state, r1, . . . , rT ) ← A(1n) for r1, . . . , rT ∈ {0, 1}�(n), where T = T (n)

may be any polynomial determined by A.
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2. x′ ← A (state,P (x, r1) , . . . ,P (x, rT )) where x ← {0, 1}n.
3. If x′ = x then output 1, and otherwise output 0.

As demonstrated above, each of the two requirements on its own can be easily
satisfied, but it seems significantly more difficult to simultaneously satisfy both
requirements. However, putting together our examples for predicates that satisfy
each requirement on its own, we observe that for any injective one-way function
f mapping n-bit inputs to �(n)-bit outputs, it holds that P(x, r) = 〈f(x), r〉 is a
correlated-input (�(n), δ(n))-balanced one-way predicate, where δ(n) = 0.5 This
shows that the existence of such a predicate is unconditionally essential for the
existence of an injective one-way function.

In addition, in the full version of the paper [RS18] we show that the
existence of a correlated-input balanced one-way predicate is also implied by
that of various primitives that are secure against related-key attacks. These
include, for example, related-key pseudorandom functions (e.g., [BK03,Luc04,
BC10,LMR14,AW14]) and related-seed pseudorandom generators (e.g., [GL10]).
Unlike injective one-way functions, these primitives seem rather unstructured,
yet still suffice for constructing correlated-input balanced one-way predicates.

Our Injective One-Way Function. Given any correlated-input (�, 1/4)-
balanced one-way predicate P, we present a construction of an injective one-way
function by relying on a hitting-set generator H that fools deterministic cir-
cuits whose size is roughly that of P’s given implementation. Our construction
applies to any function � = �(n) of the security parameter n ∈ N (recall that
�(n) denotes the length of P’s second input r), as long as it is upper bounded
by some polynomial (e.g., �(n) = log2(n), �(n) = n2). In what follows we first
describe the construction assuming that �(n) = O(log n), as this case already
sheds initial light on some of the main ideas underlying the construction. In
fact, assuming that �(n) = O(log n) the construction is fully black box, and the
hitting-set generator is not needed. Then, we show that the construction extends
to any polynomial �(n) by relying on a hitting-set generator.

Let P be a correlated-input (�, 1/4)-balanced one-way predicate where �(n) =
O(log n), and denote by rn,1, . . . , rn,L(n) all L(n) = 2�(n) possible �(n)-bit strings
for any n ∈ N (note that L = L(n) is polynomial given that �(n) = O(log n)).
Then, we claim that the function

g(x) =
(

P(x, r|x|,1), . . . ,P(x, r|x|,L(|x|))
)

is both injective and one way:

– The injectivity of g follows from the fact that P is balanced: For any distinct
x, x′ ∈ {0, 1}n, as long as Pr[P(x, r) = P(x′, r)] < 1, where the probability is
taken over the choice of a uniform r ∈ {0, 1}�(n), this means that there exists
at least one value r ∈ {0, 1}�(n) for which P(x, r) �= P(x′, r), and therefore
g(x) �= g(x′).

5 This follows from our above observation that P(x, r) = 〈f(x), r〉 satisfies the first
requirement for any injective f , and satisfies the second requirement for any one-way
f .



428 L. Rotem and G. Segev

– The one-wayness of g follows from the fact that P is one-way for correlated
inputs: For any sequence of values r1, . . . , rT the function mapping x to the
sequence of values P(x, r1), . . . ,P(x, rT ) is a one-way function of x. This
holds, in particular, for the sequence of values rn,1, . . . , rn,L(n), and thus g is
a one-way function.

Now suppose that P is a correlated-input (�, 1/4)-balanced one-way predicate
where �(n) may be any polynomial. Here, we can no longer define g as above by
enumerating over all possible �(n)-bit strings to be used as P’s second input r.
All we need, however, is to enumerate over a carefully-chosen set r1, . . . , rT such
that for any distinct x, x′ ∈ {0, 1}n there exists a value r ∈ {r1, . . . rT } such that
P(x, r) �= P(x′, r). This is exactly the type of guarantee that is provided by a
hitting-set generator, and enables us to argue that the following function g is both
injective and one way: On input x ∈ {0, 1}n our function g : {0, 1}∗ → {0, 1}∗

first uses a hitting-set generator H that fools circuits whose size is roughly the
size of P’s implementation for obtaining a sequence of values r1, . . . , rT (n) ∈
{0, 1}�(n), and then outputs the value

g(x) =
(

P(x, r1), . . . ,P(x, rT (n))
)

.

In Sect. 3 we prove that the injectivity of g follows from the fact that P is
balanced and H is a hitting-set generator, whereas the one-wayness of g follows
from the fact that P is one way for correlated inputs as above. Moreover, we show
that by augmenting P with a trapdoor argument, our construction generalizes
to an injective trapdoor function. We refer the reader to Sect. 3 for the formal
details.

Applying Rudich’s Impossibility to Correlated-Input Predicates. We
now briefly overview Rudich’s approach while pointing out the adjustments
required in order to apply it to correlated-input balanced one-way predicates.
Let O = {On}n∈N

be an oracle, where each On is uniformly chosen from some
function family Sn, and let C be an oracle-aided circuit guaranteeing that CO

implements an injective function for any O ∈ {Sn}n∈N
. In the case of Rudich’s

proof, Sn is the family of all functions mapping n bits to n bits, and hence
O is simply a random length-preserving function. In our case, Sn is the set of
all (�(n) = n, δ(n) = 2−n/3)-balanced predicates; i.e., predicates taking inputs
in {0, 1}n × {0, 1}n, such that for every distinct x, x′ ∈ {0, 1}n it holds that
∣
∣Prr←{0,1}n [On(x, r) = On(x′, r)] − 1/2

∣
∣ ≤ 2−n/3. We set �(n) = n for the sake

of simplicity, but the proof holds for any super-logarithmic � with minor adjust-
ments.

Rudich’s proof then considers an adversary that makes a polynomial num-
ber of queries to O and always succeeds in inverting CO(x∗) for any input x∗.
On input y∗ = CO(x∗), the adversary A proceeds in iterations, where in each
iteration it arbitrarily picks a value x and a possible oracle O′ that is consistent
with what it has learned so far on O, such that y∗ = CO′

(x). A then checks if
CO(x) = y∗ (if so x = x∗), and if not, queries O with all queries in the execu-
tion of CO′

(x) that were not already known. The main observation is that in
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each iteration, the adversary either learns a new query made in the evaluation
of CO(x∗), or finds the correct pre-image x = x∗ of y∗. Hence, if C makes at
most q oracle queries, then A is guaranteed to find x∗ within q + 1 iterations.

In order to prove this main observation, suppose that in some iteration A
does not learn a new query made in the evaluation of CO(x∗) nor does it hold
that x = x∗. This means that from A’s point of view, the oracles have so far been
defined on disjoint sets of inputs. Now, the idea is that O and O′ can be “glued”
together to form a third oracle O′′ ∈ S such that CO′′

(x) = CO′′
(x∗) = y∗,

contradicting the injectivity guarantee of C. In the case of Rudich’s proof, this
is straightforward: since S is the family of all length-preserving functions, O′′

can simply be any oracle that is consistent with the answers of O and O′ to the
queries made during the evaluations of CO(x∗) and CO′

(x), respectively, and
can be arbitrarily defined everywhere else. In our case, we need to show that we
can complete O′′ to be balanced for every input length.

More generally, this shows that Rudich’s proof does not only apply to length-
preserving functions or to correlated-input balanced predicates, but in fact to
any function family S that is “sufficiently unstructured” in order to guarantee
the following property: For any two functions O,O′ ∈ S and for any two disjoint
sets of “not too short” inputs X and X ′ of polynomial size, there exists a function
O′′ ∈ S that agrees with O on the set X and agrees with O′ on the set X ′. We
have provided two examples for such families: All length-preserving functions
(i.e., where O a random oracle) and all balanced predicates. Of course, not all
families exhibit this property as some primitives—and in particular injective one-
way functions—do imply injective one-way functions in a black-box manner. For
example, if we consider S = {Sn}n∈N where Sn is the set of all permutations
on n-bit strings, then this is obviously not the case even for X and X ′ of size
one. For any n ∈ N and any distinct x, x′ ∈ {0, 1}n, if O(x) = O′(x′), then no
function O′′ ∈ S can agree both with O on input x and with O′ on input x′, as
this will contradict the injectivity of O′′.

Two final remarks are in order. First, one still needs to show that our balanced
predicate oracle is hard to invert for correlated inputs. Roughly speaking, this
follows from the fact that a truly uniform predicate is correlated-input one way,
and is also balanced with an overwhelming probability. Second, our proof readily
extends to rule out black-box constructions of the seemingly weaker partially-
injective one-way functions from our strengthened variant of P that is augmented
with a trapdoor algorithm. We refer the reader to Sect. 4 for the formal details.

1.3 Related Work

The Power of Black-Box vs. Non-black-Box Constructions. Our work
shows a gap between the power of black-box constructions and the power of
non-black-box constructions both in the private-key setting and in the public-
key setting.

Such a gap in the private-key setting was previously identified by Mahmoody
and Pass [MP12] who proved that one-way functions cannot be used in a black-
box manner for constructing a non-interactive commitment scheme. Combining
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their negative result with the above-mentioned positive result of Barak et al.
implies that, under a standard worst-case hardness assumption, the existence of
a one-way function is equivalent to that of a non-interactive commitment scheme,
although it is strictly weaker when restricted to black-box constructions.6

Our work identifies such a gap in the public-key setting as well, by showing
that augmenting our primitive P with a trapdoor algorithm enables a non-black-
box construction of a trapdoor function (while Rudich’s impossibility result still
holds), whereas the construction of Barak et al. does not seem to enable an exten-
sion to the public-key setting. An additional such gap in the public-key setting
was identified by Döttling and Garg [DG17] who presented a breakthrough con-
struction of an identity-based encryption scheme based on the computational
Diffie-Hellman assumption, circumventing the impossibility result of Papakon-
stantinou et al. [PRV12] in the generic-group model.

Derandomization in Cryptography. When compared to the work of Barak,
Ong and Vadhan [BOV07] and other applications of derandomization in simi-
lar scenarios (e.g., [Lau83,Nao91,DN07,DNR04,BV17]), our work exhibits the
following main differences.

– The underlying cryptographic building block and the resulting primitive in
our work are incomparable to those in their work: We rely on a seemingly
stronger cryptographic building block (specifically, a correlated-input bal-
anced one-way predicate in our work vs. a one-way function in their work),
and obtain a seemingly stronger primitive (an injective one-way function in
our work vs. a partially-injective one-way function in their work). A natural
question that arises in this context is whether or not our two approaches can
be combined and yield a non-black-box construction of an injective one-way
function based on any one-way function.

– We rely on the existence of a hitting-set generator that fools deterministic
circuits, whereas Barak et al. rely on the seemingly incomparable assump-
tion that there exists a hitting-set generator that fools co-non-deterministic
algorithms. In turn, our transformation relies on the assumption that E =
DTIME(2O(n)) has a function of deterministic circuit complexity 2Ω(n),
whereas Barak et al. rely on the assumption that E = DTIME(2O(n)) has
a function that is not computable for infinitely many input lengths by a
probabilistic non-deterministic algorithm that runs in sub-exponential time.

– Following the work of Barak et al. derandomization using pseudorandom gen-
erators was also applied in the recent work of Bitansky and Vaikuntanathan
[BV17] (both motivated by the classic applications of derandomization tech-
niques in similar settings [Lau83,Nao91,DN07,DNR04]). The common theme
underlying these applications is to derandomize an “almost perfectly correct”
primitive into a “perfectly correct” one. This seems somewhat incomparable
to our work, where our starting point is not an “almost perfectly correct”

6 As pointed out by Mahmoody and Pass [MP12], this is different from the results
of Barak [Bar01] and Goldreich and Krawczyk [GK96] which provide separations
between the power of black-box and non-black-box proofs of security.
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injective one-way function, but rather our new notion of a correlated-input
balanced one-way predicate.
Indeed, it would seem that using an “almost perfectly correct” injective one-
way function as our starting point is not enough. Consider for example a
collection of functions, where all of them are one way, and most of them are
injective. A standard attempt to apply derandomization techniques to con-
struct an injective one-way function from such a collection may naturally rely
on the following idea: Given an input x, use a hitting-set generator to choose
a small subset of the functions in the collection, evaluate all of these functions
on the same input x, and concatenate their outputs. The properties of the
hitting-set generator indeed guarantee that the resulting function is injective
(since at least one of the functions chosen by the generator is injective), but
unfortunately there is no guarantee that this function is actually one way.
A similar problem will arise when trying to start with a single function that
is almost injective in the sense that it has only a few collisions. Our new
primitive P is just strong enough to enable the construction of an injective
one-way function by applying such techniques, yet still weak enough so that
Rudich’s black-box separation directly applies to it.

Strengthening the Framework of Black-Box Constructions. In recent
years there have been several approaches for extending the framework of
black-box impossibility results to capture various non-black-box techniques. For
example, Brakerski et al. [BKS+11] and Asharov and Segev [AS15] showed
that various non-black-box constructions that are based on non-interactive
zero-knowledge proofs and indistinguishability obfuscation [BGI+12,GGH+13],
respectively, can in fact be modeled in a black-box manner. This enabled them
to prove various limitations on the power of these two primitives even when
used in a particular non-black-box manner. Subsequently, Garg et al. [GMM17]
refined the framework of Asharov and Segev to also account for “self-calls” of
some primitives that might receive circuits as input (e.g., indistinguishability
obfuscation).

Baecher, Brzuska and Fischlin [BBF13] considered more fine-grained variants
of black-box constructions. Among their definitions, they considered construc-
tions where the correctness or security guarantees need hold only for the case
when the underlying primitive or the adversary in the security reduction are
assumed to be efficient. They also went a step further, to consider a more subtle
definition in which the security reduction may depend on some parameters of the
assumed adversary (such as running time, success probability, etc.), even though
its access to the adversary may still be black box. These notions seem related
to, but do not precisely capture our non-black-box construction of an injective
one-way function, which makes use of knowledge of the implementation size of
the underlying primitive (with a security proof that makes black-box use of the
adversary).

Most relevant to our work is the work of Pass, Tseng and Venkitasubrama-
niam [PTV11] that rules out constructions of various cryptographic primitives
(e.g., one-way permutations, collision-resistant hash functions, constant-round
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statistically-hiding commitments, and constant-round black-box zero-knowledge
proofs for NP) based on one-way functions, where the implementation of the
underlying one-way function can be used in an arbitrary manner both within
the construction and within the security proof, but the adversary may only be
used in a black-box manner within the proof of security.7 Their results are based
on average-case strengthenings of the traditional assumption that coNP is not
contained in AM. As Pass et al. pointed out, their approach does not seem to
extend to ruling out constructions of injective one-way functions (as such func-
tions may not be size-verifiable in general).

More recently, the work of Dachman-Soled [Dac16] strengthened the black-
box barrier of constructing a public-key encryption scheme based on one-way
functions [IR89] by relying on somewhat similar assumptions. Roughly speak-
ing, her work considers non-adaptive constructions, where both the underlying
one-way function and the adversary are used in a black-box manner by the con-
struction and the security proof, respectively, but the security proof is allowed to
rely on the implementation of the underlying one-way function in an arbitrary
manner (this class of constructions seems orthogonal to our construction).

1.4 Open Problems

Circumventing Other Black-Box Barriers. A natural question that arises
is whether we can rely on worst-case assumptions and similar techniques to
those we use in order to circumvent other known and long-standing black-box
impossibility results. In particular, can such techniques be useful in obtaining a
key-agreement protocol from any one-way function or from slightly stronger yet
symmetric-key primitives, or in constructing collision-resistant hash functions
from any one-way function; circumventing the black-box separation results of
Impagliazzo and Rudich [IR89] and of Simon [Sim98], respectively? Conversely,
can one enhance the aforementioned impossibility results in a way that will
provide evidence that such constructions are unlikely to exist? We refer the
reader to Sect. 1.3 for a discussion on recent approaches to broaden the black-
box separations framework.

Correlated-Input Balanced One-Way Predicates vs. One-Way Func-
tions. Our new primitive P seems to be somewhat stronger than “plain” one-
way functions, yet at least from a structural point of view, the added requirement
is fairly modest and it seems much weaker than the injectivity requirement of
injective one-way functions. A central open question is then the following: Can
one construct a correlated-input balanced one-way predicate from any one-way
function, resulting – when combined with our result (and a worst-case com-
plexity assumption) – in a construction of an injective one-way function from
any one-way function? Alternatively, can it be shown that such a construction

7 This is exactly our case: We need a bound on the size of the underlying primitive’s
implementation both for the construction and for security proof, but the adversary
is used in a black-box manner.
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is impossible in a black-box manner, thus establishing that a black-box barrier
between general one-way functions and their injective counterparts still exists?

Per the latter possibility, it seems that the structural properties of P are weak
enough, so that at least the techniques underlying Rudich’s approach cannot
be applied to ruling out black-box constructions of P from one-way functions.
More broadly, any separation that aims to derive a contradiction to P’s balance
requirement (the first property in Definition 1.1) will have to fundamentally
deviate from Rudich’s technique due to the following observation. Suppose C is
a candidate implementation of an (�, δ)-balanced predicate with respect to some
oracle O, and say we partially fix O so that the output of CO is determined for
a subset X of its possible inputs of length n + �(n). Even if X is of exponential
size (in n), then CO might still be (�, δ)-balanced for a non-negligible δ, which
is enough for our needs of constructing an injective one-way function.

Constructing Correlated-Input Balanced Trapdoor Predicates. In the
current state of affairs, candidates for injective trapdoor functions are scarce.
Most candidates rely on specific number-theoretic or lattice based assumptions,
and general constructions from other cryptographic primitives either rely on
very strong assumptions such as sub-exponential indistinguishability obfusca-
tion [BPW16] or are proven in the random oracle model [BHS+98]. We thus
view the construction of our trapdoor version of P from new assumptions as a
very interesting open problem, as this will imply new constructions for injective
trapdoor functions. More specifically, can the trapdoor version of P be obtained
from public-key encryption (perhaps with additional symmetric primitives)? Can
enhancing the latter’s security properties help in such a transformation (similarly
to the symmetric case, in which we were able to trade strong security guarantees
of related-key secure pseudorandom functions for the structural ones of P)?

Weakening the Derandomization-Related Assumption. Our construction
of an injective one-way function is based on the existence of a hitting-set genera-
tor, which in turn is known to exist under the assumption of a non-uniform circuit
lower bound (namely, that E = DTIME(2O(n)) has a function of deterministic
circuit complexity 2Ω(n)). Can this assumption be weakened? More specifically,
can similar results be obtained using weaker types of hitting-set generators or
pseudorandom generators, known to exist under seemingly weaker complexity
assumptions? For example, can results of similar nature be based on the seem-
ingly weaker assumption that P = BPP, which Goldreich [Gol11] showed to yield
certain uniform versions of pseudorandom generators?

Implications to Extensions of Rudich’s Work. A variety of extensions have
been developed to Rudich’s impossibility result, including for example [BKS+11,
MM11,AS15,AS16,BDV17,RSS17]. Our result does not directly imply that all
of these extensions may be circumvented as well, since they deal with primitives
that seem either significantly stronger than injective one-way functions (e.g.,
public-key primitives [BKS+11,AS15] and specific forms of injective one-way
functions [MM11,AS16]), or incomparable to injective one-way functions (e.g.,
bounded-TFNP instances [RSS17]), and are currently not known to be implied
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by our notion of a correlated-input balanced one-way predicate. An interesting
problem that arises given these extensions is to extend our approach to such
stronger or incomparable primitives.

1.5 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we introduce our
notation as well as the basic cryptographic primitives that we consider in this
paper. In Sect. 3 we present our constructions of an injective one-way function
and of an injective trapdoor function. Finally, in Sect. 4 we show that Rudich’s
impossibility result applies not only to constructions based on one-way functions,
but also to constructions based on correlated-input balanced one-way predicates
(and even when augmented with a trapdoor algorithm).

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sampling
a value x from the distribution X. Similarly, for a set X we denote by x ← X
the process of sampling a value x from the uniform distribution over X . The
statistical distance between two distributions X and Y over a finite domain Ω
is SD(X,Y ) = 1

2

∑

ω∈Ω |X(ω) − Y (ω)|. For an integer n ∈ N we denote by [n]
the set {1, . . . , n}. A function ν : N → R

+ is negligible if for any polynomial p(·)
there exists an integer N such that for all n > N it holds that ν(n) ≤ 1/p(n).

2.1 Hitting-Set Generators

We rely on the following standard notion of a hitting-set generator, as formal-
ized by Goldreich et al. [GVW11], for the class of deterministic circuits (see
also [Sip88,CG89,And94,ACR+97,LLS+97,ACR98,GVW11] and the references
therein).

Definition 2.1. A deterministic polynomial-time algorithm H is a hitting-set
generator that fools deterministic circuits if for every n, t ∈ N the generator H
on input (1n, 1t) outputs a set S such that the following hold:

– S ⊆ {0, 1}n.
– For every circuit C : {0, 1}n → {0, 1} of size at most t for which

Pr
x←{0,1}n

[C(x) = 1] ≥ 1/4,

there exists some x∗ ∈ S such that C(x∗) = 1.

Any pseudorandom generator [NW94] that fools deterministic circuits and
has a logarithmic seed length immediately gives rise to such a hitting-set gener-
ator (by having H enumerate over all possible seeds). This implies the following
corollary on which we rely for our constructions in Sect. 3:
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Corollary 2.2 ([NW94,IW97]). If there exists a function f ∈ DTIME(2O(n))
with deterministic circuit complexity 2Ω(n), then there exists a hitting-set gener-
ator that fools deterministic circuits.

2.2 Injective and Partially-Injective One-Way Functions

In this paper we rely on the following standard notions of one-way functions and
injective one-way functions (see, for example, [Gol01]), as well as on the notion
of partially-injective one-way functions due to Barak, Ong and Vadhan [BOV07].

Definition 2.3. An efficiently-computable function f : {0, 1}∗ → {0, 1}∗ is one
way if for every probabilistic polynomial-time algorithm A there exists a negligible
function ν(·) such that

Pr
x←{0,1}n

[

A(1n, f(x)) ∈ f−1 (f(x))
]

≤ ν(n)

for all sufficiently large n ∈ N.

An injective one-way function is a function that is both injective and one
way. Barak, Ong, and Vadhan [BOV07] introduced the following notion of a
partially-injective one-way function.

Definition 2.4 ([BOV07]). Let m = m(n) be a function of the security param-
eter n ∈ N. An efficiently-computable function f : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ is a
partially-injective one-way function if it satisfies the following two requiremets:

1. For every n ∈ N, every x, x′ ∈ {0, 1}n such that x �= x′, and every y, y′ ∈
{0, 1}m(n), it holds that f(x, y) �= f(x′, y′) (i.e., f is injective with respect to
its first input).

2. For every probabilistic polynomial-time algorithm A there exits a negligible
function ν(·) such that

Pr
(x,y)←{0,1}n+m(n)

[A (f(x, y)) = x] ≤ ν(n)

for all sufficiently large n ∈ N.

Note that a partially-injective one-way function with m(n) = 0 is in fact an
injective one-way function, but for general m(n) this notion seems potentially
weaker than that of an injective one-way function. Barak et al. observed that any
perfectly-binding non-interactive commitment scheme yields a partially-injective
one-way function. Since Barak et al. derandomized Naor’s commitment scheme
[Nao91] into a perfectly-binding non-interactive one assuming the existence of a
hitting-set generator that fools co-non-deterministic algorithms (recall Sect. 2.1),
the following corollary follows.

Corollary 2.5 ([BOV07]). Assuming the existence of a hitting-set genera-
tor that fools co-non-deterministic algorithms, then one-way functions imply
partially-injective one-way functions.
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2.3 Injective Trapdoor Functions

We also rely in this paper on the following standard notion of a collection of
trapdoor functions (see, for example, [Gol01]).

Definition 2.6. Let m = m(n) be a function of the security parameter n ∈
N. A collection of trapdoor functions is a triplet of efficient algorithms F =
(G,F, F−1) satisfying the following requirements:

1. G is a probabilistic algorithm that on input 1n, samples and outputs a public
key pk ∈ {0, 1}n and a corresponding trapdoor td ∈ {0, 1}n.8

2. F is a deterministic algorithm that receives as input a public key pk ∈ {0, 1}n

and an additional input value x ∈ {0, 1}n and outputs a value y ∈ {0, 1}m(n).
We require that for every probabilistic polynomial-time algorithm A there
exists a negligible function ν such that

Pr
(td,pk)←G(1n)

x←{0,1}n

[F (pk,A(1n, pk, F (pk, x))) = F (pk, x)] ≤ ν(n)

for all sufficiently large n ∈ N.
3. F−1 is a deterministic algorithm that on input (td, F (pk, x)) has the following

guarantee: For any n ∈ N, (td, pk) in the range of G(1n) and x ∈ {0, 1}n,
it holds that F−1(td, F (pk, x)) outputs x′ ∈ {0, 1}n such that F (pk, x′) =
F (pk, x).

We say that F is a collection of injective trapdoor functions if for every n ∈ N

and any (td, pk) in the range of G(1n) the function F (pk, ·) is injective.

3 Our Constructions

In this section we present our non-black-box constructions of an injective one-
way function (see Sect. 3.1) and an injective trapdoor function (see Sect. 3.2).

3.1 An Injective One-Way Function

In this section we present our non-black-box construction of an injective one-way
function from any correlated-input balanced one-way predicate and any hitting-
set generator that fools deterministic circuits. More formally, our construction
relies on the following two building blocks:

– A correlated-input (�, 1/4)-balanced one-way predicate P (recall Definition
1.1), where �(n) may be upper bounded by any fixed polynomial (e.g., �(n) =
log2(n), �(n) = n2). Let t = t(n) be an upper bound on the size of the circuit
computing P(x, r) for inputs x ∈ {0, 1}n (recall that r ∈ {0, 1}�(n)).

8 Definition 2.6 assumes that the lengths of the public key and of the trapdoor are
equal to the security parameter n. This is for simplicity only, and in both cases one
may replace n with any length that is polynomial in n.
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– A hitting-set generator H that fools deterministic circuits. Denote by T =
T (n) the size of the set S that is produced by the generator H on input
(1�(n), 12t(n)+c) for a constant c to be determined later. As discussed in
Sect. 2.1, such a generator exists based on the worst-case assumption that
E = DTIME(2O(n)) has a function with deterministic circuit complexity
2Ω(n).

We note that the choice of the constant 1/4 that parameterizes both of our
building blocks is rather arbitrary. More generally, the construction may rely
on any (�, δ)-balanced predicate and on any ε-hitting-set generator as long as
δ + ε ≥ 1/2 (in Definition 2.1 we fixed ε to be 1/4, but the definition readily
extends to any ε ∈ [0, 1]).

The Construction. On input x ∈ {0, 1}n our function g : {0, 1}∗ → {0, 1}∗

first computes

H
(

1�(n), 12t(n)+c
)

=
(

r1, . . . , rT (n)

)

∈ {0, 1}�(n)×T (n),

where c > 0 is a fixed constant that we determine later on, and then outputs
the value

g(x) =
(

P(x, r1), . . . ,P(x, rT (n))
)

∈ {0, 1}T (n).

The following theorem, which is proved in the full version of this work [RS18],
states that g is an injective one-way function based on our assumptions on the
underlying building blocks P and H:

Theorem 3.1. Assuming that P is a correlated-input (�, 1/4)-balanced one-way
predicate and that H is a hitting-set generator that fools deterministic circuits,
the function g is an injective one-way function.

3.2 An Injective Trapdoor Function

We now turn to extend our approach to injective trapdoor functions. Loosely
speaking, we augment our primitive P with a trapdoor algorithm P−1, and show
that an extension of the construction presented in Sect. 3.1 yields an injective
trapdoor function. Informally, knowledge of a trapdoor enables P−1 to find an
x ∈ {0, 1}n such that P(x, r) = b for each pair (r, b) ∈ {0, 1}�(n) × {0, 1} in a set
S of such pairs that is given as input to the algorithm, with the proviso that S
provides “sufficient information” about x. This last condition may be formalized
as a boolean set function φ :

(

{0, 1}�
)∗ → {0, 1} with the interpretation that a

set is mapped to 1 if and only if it is “sufficiently rich”. Informally, a reasonable
choice of a function φ should meet two criteria:

1. For every n ∈ N, it should be possible to efficiently come up with a set that
satisfy φ. Otherwise, P−1 seems of little use.

2. φ should be monotone; i.e., if S ⊆ T and φ(S) = 1, then φ(T ) = 1. Intuitively,
if φ(S) = 1 has the interpretation that S generates “enough information” on
x, then surely this is also the case for T .
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A natural choice for φ, which we will adopt in our definition below, is a
function that checks whether or not the input set contains a basis for F�(n)

2 (when
each element r ∈ {0, 1}�(n) is viewed a vector in F

�(n)
2 ); that is, φ(S) = 1 if and

only if S contains a subset of �(n) linearly independent r’s. This choice, other
than satisfying the aforementioned criteria, enables us to construct a correlated-
input balanced trapdoor predicate (as will be defined shortly in Definition 3.2)
from any injective trapdoor function, making our trapdoor predicate with respect
to that choice of φ essential for the existence of injective trapdoor functions.

It should be noted, however, that any choice of φ that satisfies the above
two criteria yields a predicate that can be used in a non-black-box manner to
construct an injective trapdoor function via our transformation, yet (a strength-
ened version of) Rudich’s proof shows that this is not the case when restricting
ourselves to black-box constructions. Indeed, in Sect. 4 we show that this aug-
mented variant of P cannot be used in a black-box manner to construct even a
partially-injective one-way function.

The following definition naturally extends Definition 1.1 by considering a
family of predicates equipped with a trapdoor algorithm, as discussed above:

Definition 3.2. Let � = �(n) and let δ = δ(n) be functions of the security
parameter. A correlated-input (�, δ)-balanced trapdoor predicate is a triplet T =
(G,P, P−1) of efficiently-computable algorithms such that:

– The algorithm G on input 1n outputs a pair (pk, td) ∈ {0, 1}∗.
– For every n ∈ N and for every pk ∈ {0, 1}∗ produced by G(1n), the function

P (pk, ·, ·) : {0, 1}n × {0, 1}�(n) → {0, 1} is an (�, δ)-balanced predicate. That
is, for any x, x′ ∈ {0, 1}n such that x �= x′ it holds that

∣
∣
∣
∣

Pr
r←{0,1}�(n)

[P(pk, x, r) = P(pk, x′, r)] − 1
2

∣
∣
∣
∣
≤ δ(n).

– For every n, T ∈ N, and for every (pk, td) that is produced by G(1n), the
algorithm P−1 satisfies the following guarantee:
On input td and {(ri, bi)}T

i=1 ∈
(

{0, 1}�(n) × {0, 1}
)T

, if the set {ri}T
i=1 con-

tains a subset of �(n) linearly independent elements and there exists an
x ∈ {0, 1}n such that P (pk, ri) = bi for every i ∈ [T ], then P−1 outputs
such an x. Otherwise, P−1 outputs ⊥.

– For any probabilistic polynomial-time algorithm A there exists a negligible
function ν(·) such that

Pr [InvertT ,A(n) = 1] ≤ ν(n)

for all sufficiently large n ∈ N, where the experiment InvertT ,A(n) is defined
as follows:
1. (state, r1, . . . , rT ) ← A(1n, pk) for r1, . . . , rT ∈ {0, 1}�(n), where T = T (n)

may be any polynomial determined by A and (pk, td) ← G(1n).
2. x′ ← A (state, Ppk (x, r1) , . . . , Ppk (x, rT )) where x ← {0, 1}n.
3. If x′ = x then output 1, and otherwise output 0.
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Observe that the existence of T is indeed essential for the existence of an
injective trapdoor function. Let F = (GF , F, F−1) be any collection of injective
trapdoor functions, and consider the construction Ppk(x, r) = 〈Fpk(x), r〉. This
is essentially (a keyed version of) the same construction that we had in the
symmetric case, and P is thus both balanced for every pk and correlated-input
one way for the same reasons as before. As for the inversion algorithm P−1,
note that given the construction P , every pair (r, b) in the input to P−1 may
be interpreted as a linear equation with �(n) variables over F2: 〈Fpk(x), r〉 = b.
Hence, when the input to P−1 contains �(n) linearly independent r’s (which is
only then that it is required to return a pre-image x), it can uniquely recover
z = Fpk(x) and invoke F−1

td (z) to find x.
Similarly to Sect. 3.1, our construction of an injective trapdoor function is

based a hitting-set-generator against deterministic circuits H, but we replace
the correlated-product (�, 1/4)-balanced one-way predicate P, with a correlated-
product (�, 1/4)-balanced trapdoor predicate T = (G,P, P−1). As before, we let
t = t(n) be an upper bound on the size of the circuit computing Ppk(x, r) for
x ∈ {0, 1}n and let T = T (n) denote the size of S = {r1, . . . , rT } - the output
set of H on input (1�(n), 12t(n)+c).

The Construction. The construction extends that of an injective one-way
function presented in Sect. 3.1. The main difference is that we need to make
sure that the output of Fpk(x) encodes “enough information” on x so that
we may use P−1

td to implement the inversion algorithm F−1
td . To ensure that,

when computing Fpk(x), we will also invoke Ppk on (x, e1), . . . , (x, e�(n)), where
e1, . . . , e�(n) are the standard basis vectors, interpreted as binary strings of
length �(n). The output of Fpk(x) will then consist of two parts: The first part
Ppk(x, r1), . . . , Ppk(x, rT ) ensures injectivity (as in Sect. 3.1), while the second
part Ppk(x, e1), . . . , Ppk(x, e�(n)) ensures efficient invertibility.

Concretely, given the aforementioned ingredients, we construct an injective
trapdoor function F = (GF , F, F−1) as follows:

– The algorithm GF on input 1n invokes G(1n), and outputs its output (pk, td).
– The algorithm F on input (pk, x) ∈ {0, 1}n × {0, 1}n computes H(1�(n),

12t(n)+c) = (r1, . . . , rT ), and outputs

Fpk(x) =
(

Ppk(x, r1), . . . Ppk(x, rT ), Ppk(x, e1), . . . , Ppk(x, e�(n))
)

.

– The algorithm F−1 on input (td, y) ∈ {0, 1}n×{0, 1}T+�(n) computes H(1�(n),
12t(n)+c) = (r1, . . . , rT ), and outputs

F−1
td (y) = P−1

td

(

(r1, y1), . . . , (rT , yT ), (e1, yT+1), . . . , (e�(n), yT+�(n))
)

where yi denotes the ith bit of y for every i ∈ {1, . . . , T + �(n)}.

Theorem 3.3. Assuming that T = (G,P, P−1) is a correlated-input (�, 1/4)-
balanced trapdoor predicate and that H is a hitting-set generator that fools deter-
ministic circuits, the triplet F = (GF , F, F−1) is an injective trapdoor function.

The proof of Theorem 3.3 can be found in the full version [RS18].
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4 Applying Rudich’s Impossibility to Correlated-Input
Predicates

In this section we show that Rudich’s impossibility result [Rud88] can be applied
to correlated-input balanced trapdoor predicates. That is, we show that there
is no black-box construction of an injective one-way function from such a pred-
icate. In fact, we prove a stronger result, showing that there is no black-box
construction of a partially-injective one-way function (as defined by Barak, Ong
and Vadhan [BOV07]) from such a predicate (recall Definition 2.4). Since any
injective trapdoor function is also an injective (and a partially-injective) one-
way function, it trivially follows that the former also cannot be constructed in
a black-box manner from our predicate. We prove the following theorem:

Theorem 4.1. There is no black-box construction of a partially-injective one-
way function based on a correlated-input (�(n), δ(n))-balanced trapdoor predicate,
where �(n) = n and δ(n) = 2−n/3.

We note that, as with Rudich’s original statement, the above theorem applies
even to semi-black-box constructions (i.e., cases where the construction itself is
black box, but adversaries may be used in a non-black-box manner within the
proof of security – see [RTV04] for more details). In addition, we note that our
choice of �(n) = n is done purely for simplicity, and our proof applies to any
super-logarithmic �(n) (recall that a logarithmic �(n) does imply an injective
one-way function in a black-box manner – see Sect. 1.2).

In what follows we first describe the oracle that enables us to prove our result
(essentially replacing Rudich’s random function with a random predicate and
complementing it with a trapdoor oracle). We describe and analyze (a slightly
modified version of) Rudich’s attacker with respect to this oracle, showing that it
can invert any partially-injective one-way function. Then, we show that this ora-
cle is an exponentially-secure correlated-input balanced trapdoor predicate for
poly-query adversaries. Theorem 4.1 then immediately follows (see, for example,
[Rud88,IR89,RTV04]). Throughout our proof we rely on the following standard
notion of a q-query algorithm:

Definition 4.2. Let A be an oracle-aided algorithm and let q = q(n) be a func-
tion of the security parameter n ∈ N. Then, A is a q-query algorithm if for any
n ∈ N it holds that A issues at most q(n) oracle queries when invoked on inputs
of length n.

The Oracle. Our oracle is a triplet T = (G,P,P−1) = {(Gn,Pn,P−1
n )}n∈N of

three sub-routines. For every n ∈ N, the functions Gn,Pn and P−1
n are defined

as follows:

– The function Gn : {0, 1}n → {0, 1}n is a uniformly chosen function from
{0, 1}n to {0, 1}n. Looking ahead, Gn will be used for mapping trapdoors to
corresponding public keys.



Injective Trapdoor Functions via Derandomization 441

– For any pk ∈ {0, 1}n the function Pn(pk, ·, ·) : {0, 1}n × {0, 1}n → {0, 1} is a
predicate sampled uniformly at random from all predicates of suitable input-
length that are correlated-input δ(n)-balanced, independently of Pn(pk′, ·, ·)
for any pk′ �= pk. That is, for any pk ∈ {0, 1}n, the predicate Pn(pk, ·, ·)
is sampled uniformly subject to the condition that for any distinct x, x′ ∈
{0, 1}n it holds that

∣
∣
∣
∣

Pr
r←{0,1}n

[Pn(pk, x, r) = Pn(pk, x′, r)] − 1
2

∣
∣
∣
∣
≤ 2−n/3.

– For any td ∈ {0, 1}n, the function P−1(td, ·) : ({0, 1}n × {0, 1})∗ → {0, 1}n ∪
{⊥} is defined as follows. For R = {(ri, bi)}i ∈ ({0, 1}n × {0, 1})∗ define the
set:

Xtd,R = { x ∈ {0, 1}n : ∃pk ∈ {0, 1}n s.t. G(td) = pk ∧ ∀i,P(pk, x, ri) = bi} .

Then, for every R ∈ ({0, 1}n × {0, 1})∗, if Xtd,R �= ∅, P−1
n (td,R) returns a

uniformly chosen element in the set. Otherwise, it returns ⊥.

We denote the set of all such oracles by S.

4.1 Inverting Partially-Injective One-Way Functions

Suppose F is an s-size, q-query black-box implementation of a partially-injective
one-way function from the oracle T for some polynomially bounded s = s(n)
and q = q(n). We assume without loss of generality that before each query of
the form (td, {(ri, bi)}i) that F makes to P−1, it also obtains pk = G(td) via a
single query to G, and after learning x = P−1(td, {(ri, bi)}i) it also queries P
with (pk, x, ri) for each ri (if x = ⊥, we forgo these queries to P). Note that
as F makes at most q(n) queries to P−1 and each of which involves at most
s(n) values of r, this adds at most q(n) · (s(n) + 1) queries to the computation.
For ease of notation we simply assume F makes the afore-described queries and
continue to bound on the total number of queries made by F by q(n).

The following lemma shows that for every black-box implementation F of a
partially-injective one-way function from the oracle T , there exists a poly-query
adversary that on input F T (x, y) always finds x.

Lemma 4.3. Let q = q(n), s = s(n) and let F be an s-size, q-query algorithm
such that for every T ∈ S it holds that F T : {0, 1}∗ → {0, 1}∗ is partially
injective. Then, there exists an O(q6 · s6)-query algorithm A such that

Pr
(x,y)←{0,1}n+m(n)

[

AT (

F T (x, y)
)

= x
]

= 1

for all sufficiently large n ∈ N.

Consider the following attacker A, that on input v∗ finds x∗ such that there
exists some y∗ for which F T (x∗, y∗) = v∗:
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– Input: A string v∗ ∈ {0, 1}∗, which is the output of F T on input (x∗, y∗) ∈
{0, 1}n+m(n).

– Initialize: A initializes a set Q(A) = ∅, to hold all query/answer pairs to T
that A learns throughout the attack.

– Learning: Let n′ = 2 log (2q(n) · s(n)). A queries P with all queries of length
at most 3n′ = n′ + n′ + �(n′), and updates Q(A) accordingly.

– Iteration: A runs q(n) + 1 iterations of the following three steps:
1. Simulation: A finds a possible execution of F that is consistent with Q(A)

and v∗. That is, A finds inputs x, y, and an oracle T̂ = (Ĝ, P̂, P̂−1) ∈ S

that is consistent with Q(A), such that F
̂T (x, y) = v∗.

2. Evaluation: A evaluates F T (x, y) (note that the evaluation is done with
the true oracle T ). In case F T (x, y) = v∗, A terminates and outputs x.

3. Update: A queries the true oracle T with all queries made in the execution
of F

̂T (x, y) and are not in Q(A), and updates Q(A) accordingly. Addi-
tionally, for any query of the form u = (td, {(ri, bi)}i) that A makes to
(the true oracle) P−1 in the update phase, it also queries P with (pk, x, ri)
for each ri, where x is the answer to u according to P̂−1 (if x = ⊥, A
forgoes these queries to P), and pk is the public-key associated with td

according to Ĝ; i.e., pk = Ĝ(td).9

The success and query efficiency of A follow immediately by the following
claim, a proof for which is given in the full version [RS18].

Claim 4.4. In each iteration, at least one of the following events occur:

1. A queries T with a query that is made by the execution of F T (x∗, y∗), but
was not in Q(A) at the beginning of the iteration.

2. A finds x∗ and some y for which F T (x∗, y) = v∗, and terminates.

Proof of Lemma 4.3 from Claim 4.4. Since F T (x∗, y∗) makes at most q(n)
queries to T , by Claim 4.4 and the pigeon-hole principle, there exists an iteration
in which A finds x∗ and terminates. Moreover, during the learning phase, A
queries the oracle with O

(

q(n)6 · s(n)6
)

queries, and in each iteration it queries
the oracle with at most q(n) · (s(n) + 2) new queries. Since there are at most
q(n) + 1 iterations, A is an O(q6 · s6)-query algorithm. ��

4.2 T is One Way for Correlated Inputs

The proof that the oracle T is one way for correlated inputs (according to Defi-
nition 3.2) consists of the following two steps. First, we show that a uniformly-
chosen predicate (not necessarily balanced) is one way with an extremely high
probability. Then, we show that the uniform distribution over predicates is statis-
tically close to the uniform distribution over balanced predicates (for our choice
of �(n) = n and δ(n) = 2−n/3).
9 Recall that we assumed that before each query to P−1 that contains some trapdoor
td, F queries G with td. Hence, this is also the case in the execution chosen by A in
the simulation step.



Injective Trapdoor Functions via Derandomization 443

In more detail, recall that the trapdoor and public key in the experiment
InvertT ,AT (n) are chosen as follows: First, the trapdoor td is chosen uniformly
at random from the set {0, 1}n and then the public key is set to be pk = G(td).
Now, let Rn denote the uniform distribution over predicates mapping a triplet
of strings of length n each, to an output bit (i.e., if Pn is a predicate drawn
from Rn, then for every pk ∈ {0, 1}n and x, r ∈ {0, 1}n it holds that P(pk, x, r)
is a uniformly-chosen bit which is independent of the value of Pn on all other
inputs). The following lemma shows that when Pn is sampled from Rn, then
any poly-query adversary inverts P = {Pn′}n′∈N

on inputs of length n (vis-à-vis
Definition 3.2) with probability that is negligible in n, regardless of how P−n is
chosen (where we use P−n to denote P \ {Pn}).

Lemma 4.5. Let q = q(n) be a function of the security parameter n ∈ N. For
any q-query algorithm A, any n ∈ N and any fixing of P−n, it holds that

Pr
[

InvertT ,AT (n) = 1
]

≤ 2q(n)
2n − q(n)

where Pn ← Rn.

The proof of Lemma 4.5 is provided in the full version [RS18].
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Abstract. Trapdoor permutations (TDP) are a fundamental primitive
in cryptography. Several variants of this notion have emerged as a result
of different applications. However, it is not clear whether these variants
can be based on the standard notion of TDPs.

We study the question of whether enhanced trapdoor permutations
can be based on classical trapdoor permutations. The main motivation
of our work is in the context of existing TDP-based constructions of
oblivious transfer and non-interactive zero knowledge protocols, which
require enhancements to the classical TDP notion. We prove that these
enhancements are non-trivial, in the sense that there does not exist fully
blackbox constructions of enhanced TDPs from classical TDPs.

On the technical side, we show that the enhanced TDP security of
any construction in the random TDP oracle world can be broken via a
polynomial number of queries to the TDP oracle as well as a weakening
oracle, which provides inversion with respect to randomness. We also
show that the standard one-wayness of the random TDP oracle stays
intact in the presence of this weakening oracle.

1 Introduction

Trapdoor permutations (TDPs) [RSA78,Rab79] are a family of permutations,
where each permutation in the family is easy to compute given the underlying
index key, and also easy to invert given a corresponding trapdoor key. The clas-
sical notion of one-wayness for TDPs states that it is hard to invert a randomly
chosen permutation from the family on a random image. While classical TDPs
suffice for many applications, such as public-key encryption (PKE) [Yao82], par-
allel constructions of pseudorandom synthesizers [NR99], etc., for certain appli-
cations we need to strengthen this basic one-wayness notion. The main reason
is that in protocols in which TDPs are used, the adversary may sometimes have
some side information about the underlying image element, which may give her
some advantage.
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Technically, TDPs come with a sampling algorithm S, which, on input an
index key IK and random coins R, outputs an element from the domain Domik

of the permutation E(IK, ·). We call a TDP enhanced if it is hard to find the
pre-image of a random image element Y := S(IK;R) even if the inverter is given
the randomness R (along with IK). Intuitively, enhanced TDPs allow a sampler,
given only the underlying index key, to sample an image point obliviously to its
pre-image: if we sample Y = S(IK;R) for a random R, then even given R, we
are still oblivious to the corresponding pre-image of Y.

To see when this need of enhancement arises, consider the classical construc-
tion of hones-but-curious oblivious transfer (OT) protocols [EGL82,GMW87].
In this setting, a receiver Alice(b, ·) with input bit b wishes to secretly learn the
message mb of Bob’s two messages (m0,m1). She does so by sending two image
elements Y1 and Y2 of a TDP E(IK, ·), where IK’s trapdoor key is only known
to Bob, in such a way that Alice knows the pre-image of Yb but not of Y1−b. She
does so by sampling Y1−b obliviously and by sampling Yb by applying E(IK, ·)
on a random domain element X. Bob sends to Alice encryptions c1 and c2 of the
two bits m0 and m1 under the standard TDP-based PKE construction, using
Y0 and Y1 as the ‘encoded randomness.’ Alice can open cb to recover Yb. In
order to ensure privacy for Bob, we need to assume that the underlying TDP is
enhanced one-way.

The need for strengthening the notion of TDPs was first discovered by Bel-
lare and Yung [BY93], noting that the previous TDP-based non-interactive zero
knowledge (NIZK) construction in [FLS90] requires the set of valid permuta-
tions to be certifiable. Goldreich [Gol04] was the first to realize the need for
enhanced TDPs in the context of OT constructions. It was also later discovered
that for the TDP-based non-interactive zero knowledge (NIZK) protocol [FLS90]
the zero-knowledge property relies on the TDP being doubly enhanced [Gol11],
in addition to the certifiability property. Informally, doubly-enhanced TDPs are
enhanced TDPs that provide the feature that given an index key IK it is possible
to sample random coins Ry together with the pre-image of S(IK,Ry). As noted
in [Gol11,GR13] the main reason these requirements were not noticed earlier is
because TDPs had implicitly been assumed to be permutations over {0, 1}κ (or
over domains which enable trivial sampling algorithms). While these idealized
TDPs are doubly enhanced, we do not have any candidate constructions for
them.

Faced with this difficulty, Haitner [Hai04] gives a more complicated OT pro-
tocol which works with respect to any classical TDP with dense domains. It is
not however clear whether such TDPs can be built from classical one-way TDPs.

In summary, the possibility of basing OT or NIZK on classical TDPs remains
unknown. One way to address these is to investigate whether enhanced TDPs
can be constructed from standard TDPs.

1.1 Our Result and Discussion

We take a first step toward understanding the relationships between vari-
ous notions of TDPs. Our main result shows that enhanced TDPs cannot be
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constructed from classical TDPs in a fully blackbox way (in the taxonomy
of [RTV04]). We give an overview of our result and techniques in Sect. 1.2. In
what follows, we discuss the significance of our work.

TDPs are rather coarse as a primitive, since the set of assumptions from
which TDPs can be built is relatively small, being limited to factoring-related
assumptions [RSA78,Rab79] and obfuscation-based assumptions [BPW16]. Also,
variants of the popular RSA and Rabin TDPs (see e.g., [KKM12]) as well as
variants of iO-based TDPs are already doubly enhanced [GR13,BPW16].1 Given
this state of affairs, one may ask about the motivations of this work. We provide
the following motivations.

– In a similar vein, Hsiao and Reyzin [HR04] draw attention to the distinction
between secret-coin collision resistant hash functions (CRHF) and public-coin
CRHF by showing that the latter cannot be constructed from the former in a
blackbox way. Prior to their work, these two notions had been deemed to be
equivalent. In some sense, our result shows that a similar situation relating
to public-versus-secret coins holds in the TDP setting as well, emphasizing
the need of rigorously showing which version is required in each application
and achieved by a future construction.

– Goldreich and Rothblum [Gol11] show that the TDP-based PKE construc-
tion, when instantiated with enhanced TDPs, offer properties, such as obliv-
ious ciphertext samplability, that have useful applications. This gives appli-
cations beyond the OT and NIZK settings, and serves as another motivation
for studying the possibility of basing enhanced TDPs on standard TDPs.

– TDPs turn out to be tricky objects to define, because after several decades
of research, still new aspects of this primitive are revealed, which turn out
to be required by some applications, but which were overlooked before. (See
for example the recent work of [CL17]). Faced with this landscape of TDP
with various properties, from a theoretical point of view, one would like to
understand to what extent these notions relate to each other, elucidating and
simplifying the landscape.

Open Problems. Our work leads to the following open problem: is it possible to
prove that OT cannot be based on standard TDPs in a blackbox way? Since
our work removes one path toward this goal, our techniques may be useful in an
eventual separation (if at all possible).

Other Related Work. There is a rich body of research on understanding the limi-
tations of TDPs. In particular, we know that TDPs cannot be used in a blackbox
way to construct two-message statistically-hiding commitments [Fis02], identity-
based encryption [BPR+08], correlated-secure trapdoor functions [Vah10] and
verifiable random functions [FS12]. To the best of our knowledge, all these
separations still hold even if the base TDP is doubly enhanced. Haitner et
al. [HHRS07] give lower-bounds on the round complexity of statistically-hiding
1 The TDP construction in [BPW16] does not satisfy doubly-enhanced one-wayness,

but a relaxed version of it, which nevertheless suffices for their respective application.
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commitments making blackbox use of TDPs. There is a positive construc-
tion of TDPs from indistinguishability obfuscations (IO) and one-way func-
tions [BPW16], which is not so-called domain invariant. The result of Asharov
and Segev [AS16] justifies this, showing that current non-blackbox iO-based
techniques are not sufficient to give us domain-invariant TDPs.

Gertner et al. [GKM+00] show that TDPs cannot be built from trapdoor
functions (TDFs) in a blackbox way. Their result is incomparable to ours (and
their techniques are also different), because their base primitive is TDFs, and
in their proof they make essential of the fact that the domain of a TDF can be
different from the range. Our result in contrast is about a separation between
two notions of TDPs.

1.2 Technical Overview

As common in blackbox impossibility results, we will prove our impossibility by
giving an oracle relative to which the base primitive exists, but not the target
primitive. Consider a random TDP oracle O = (g, s, e,d) with the following sub-
oracles. The key-generation oracle g : {0, 1}κ �→ {0, 1}κ is a random injective
function mapping a trapdoor key tk to an index key ik. The evaluation oracle
e(ik, ·) : {0, 1}5κ �→ {0, 1}5κ on an index key ik is defined over all elements in
{0, 1}5κ; however, e(ik, ·) is a permutation only over a sparse subset Domik of
{0, 1}5κ, where |Domik| = 2κ (hence the name sparseness). That is, we have
e(ik,Domik) = Domik.

The sampling oracle s(ik, ·) is a random injective function which allows us
to sample from Domik: given a string r ∈ {0, 1}κ, s(ik, r) returns an element in
Domik. Finally, the inversion oracle d is defined in a manner consistent with the
other oracles.

The Oracle O by Itself is Too Strong. Such a randomly chosen oracle O is overly
strong, satisfying already all enhanced forms of one-wayness. Thus, it cannot be
taken as is for deriving an impossibility. To address this problem, we will add a
weakening oracle u, which does not harm the standard one-wayness of O, but
which helps us break the enhanced one-wayness of any blackbox construction
(GO,SO,EO,DO). Our blackbox separation will then follow from this.

Intuition Behind the Weakening Oracle u. As a starter, suppose we are content
with u only breaking the enhanced one-wayness of O (as opposed to any TDP
construction from O). Thus, u should provide help for an inverter who has
the randomness of the challenge image. A natural choice for u would be the
following: on input u(ik, r), let y := s(ik, r) and return x ∈ Domik for which we
have e(ik, x) = y.

Indeed, the above oracle u breaks the enhanced one-wayness of O. We can
also see that the oracle u does not harm the standard one-wayness of O. This is
because of the sparse and random nature of the outputs of the oracles, making the
oracle u effectively useless for standard one-wayness. However, this oracle u is not
much useful beyond this simple scenario. In particular, imaging a self-composing
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TDP construction, whose evaluation algorithm Ee is the self-composition of
e(ik, ·); i.e., Ee(ik, x) = e(ik, e(ik, x)). An adversary A against enhanced one-
wayness is given (ik, r, y), and should find x such that y = e(ik, e(ik, x)). Given
the randomness r, the adversary A can find x0 such that e(ik, x0) = y by call-
ing u(ik, r), but A cannot continue to get to x, because A does not have the
randomness of x0.

Description of the Oracle u. The above discussion directs us toward a natural
choice of u: on input (ik, r), letting y := s(ik, r), the oracle u(ik, r) returns the
randomness of the pre-image of y, not the pre-image itself. That is, letting x ∈
Domik be such that e(ik, x) = y, the oracle u(ik, r) returns r0, where s(ik, r0) = x.

Returning to the construction example above, it is not hard to see that this
new oracle u not only breaks the enhanced one-wayness of the self-composition
construction, but that of more general k-composition constructions, in which we
compose e(ik, ·) k times. One would just need to sequentially call u k times to
get down to the base pre-image.

The Construction does not Call u Itself. We will assume that the construction
(GO,SO,EO,DO), which we want to show that can be broken by a polynomial
number of queries to (O,u), does not call u itself. This is sufficient for deriving
a fully blackbox separation because the base oracle O by itself is a one-way
TDP against all poly-query adversaries with access to (O,u). Our separation
model is close to those of [GMR01,HR04], which only rule out fully-blackbox
constructions, as opposed to the earlier models of [IR89,Sim98,GKM+00], which
also rule out relativizing reductions.

Main Techniques. We now give a high-level sketch of how to attack a general
construction (GO,SO,EO,DO). Let (IK,R) be the challenge input to the adver-
sary: if Y := SO(IK;R), the adversary should invert Y w.r.t. IK. The main
difficult part in inverting Y is to reply to queries for which we need to invert
some image y w.r.t. the oracle e(ik, ·). We denote such queries as e−1(ik, y):
namely, if e(ik, x) = y, then e−1(ik, y) = x.

As in the above k-composition construction example, suppose (informally)
one can start the decryption execution of Y without having the underlying inver-
sion key; namely, it is just a matter of answering a few oracle queries of the form
e−1(ik, y) for various (ik, y). Roughly, for any meaningful query qu := e−1(ik, y)
during this execution we will have two cases: (I) y was generated during the

process which produced (IK, ∗) $←− GO(1κ): namely, during this process there
was a query/response ((ik, x) −→

e
y) or ((ik, r) −→

s
y) for some x and r, and (II) y

was generated during the execution of Y := SO(IK;R).
We will show that cases (I) and (II) are the only likely cases; this is roughly

because otherwise one can forge such a valid (ik, y) without making a corre-
sponding query: This is very unlikely because of the sparseness of the oracle
outputs.

Let Qs be the set of all queries/responses during SO(IK;R). If during the
inversion of Y Case (II) holds, then either ((ik, x) −→

e
y) in Qs, in which case the
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answer to the query qu is clear, or ((ik, r) −→
s

y) is in Qs, which can be used along
with the oracle u to reply to the query qu.

The main difficult part of our analysis involves handling Case (I): in this
case the adversary does not have enough information to reply to qu correctly. At
a high-level, our solution is as follows. We will distinguish between two types
of such qu queries: important and immaterial. We say qu is important if a
query/response ((ik, ∗) −→

s
y) or ((ik, ∗) −→

e
y) happens with ‘good’ probabil-

ity during a random execution of X′ $←− SO(IK) followed by EO(IK,X′). If qu is
important, then e−1(ik, y) is likely to be determined by performing these two
preceding executions many times. If qu is immaterial (namely, it will not be
picked up during these many sample executions), then we will show that during
the inversion of Y one may reply to qu with a random answer without making
the result of the overall inversion of Y significantly skewed. The intuition is: in
this case neither of ((ik, ∗) −→

s
y) and ((ik, ∗) −→

e
y) are likely to happen during

the sampling algorithm that produced the challenge pre-image X and during
EO(IK,X) which results in Y. We will use this intuition to build hybrid oracles,
denoted O♦˜O, which provide random answers to such immaterial queries but
relative to which all of IK, X and Y are valid.

In Sect. 4 we will give a more concrete overview of our techniques and app-
roach by showing how to break the enhanced one-wayness of any construction
whose oracle access is of the form (Gg,Ss,Ee,Dd). We will then give the general
attack against all constructions in Sect. 5.

2 Preliminaries

If D is a distribution, we use x $←− D to indicate x is sampled according to D
and we use x′ ∈ D to indicate x′ ∈ support(D). If R(x1, . . . , xn) is a randomized
algorithm, then R(a1, . . . , an) denotes the random variable R(a1, . . . , an; r), where

r $←− {0, 1}∗.
If f is a function and Dom is a set, then f(Dom) �= {f(x) | x ∈ Dom}.
We start with the definition of a family of trapdoor permutations. Each func-

tion E(IK, ·) in the family acts as a permutation over a domain DomIK ⊆ {0, 1}w

(for some fixed polynomial w specified by the permutation family), where the
domain DomIK may possibly depend on IK. Moreover, this induced permuta-
tion can be inverted using any matching trapdoor key for IK. Finally, there is a
sampling algorithm S, where S(IK) allows one to sample from DomIK.

Definition 1 (Trapdoor Permutations). Let w = w(κ) be an arbitrary poly-
nomial. A family of trapdoor permutations TDP consists of four PPT algorithms
G, S, E and D defined as follows.

– G(1κ): The key generation algorithm G takes as input a security parameter
1κ and outputs a pair (IK,TK) of index/trapdoor keys.
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– S(IK;R): The sampling algorithm S takes as input an index key IK and ran-
domness R ∈ {0, 1}κ and outputs an element X ∈ {0, 1}w. We use DomIK to
denote the set of values X which are outputted by S(IK; ·).

– E(IK,X): The evaluation algorithm E takes as input an index key IK and an
element X ∈ {0, 1}w and outputs Y ∈ {0, 1}w ∪ {⊥}.

– D(TK,Y): The inversion algorithm D takes as input a trapdoor key TK, and
an element Y ∈ {0, 1}w and outputs X ∈ {0, 1}w ∪ {⊥}.

We will now define the notion of correctness, as well as two one-wayness
notions. As terminology, we say that an index key IK is valid if (IK, ∗) = G(1κ; R)
for some randomness R.

– Correctness. For any valid index key IK, the function E(IK, ·) induces a
permutation over DomIK. Moreover, for any security parameter κ we have
Pr[D(TK,E(IK,X)) = X] = 1, where (IK,TK) $←− G(1κ), R $←− {0, 1}κ and
X := S(IK;R).

– Standard one-wayness. For any PPT adversary we have A Pr[A(IK,Y) =

D(TK,Y)] = negl(κ), where (IK,TK) $←− G(1κ), R $←− {0, 1}κ and Y :=
S(IK;R).

– Enhanced one-wayness. For any PPT adversary A.

Pr[A(IK,Y,R) = D(TK,Y)] = negl(κ),

where (IK,TK) $←− G(1κ), R $←− {0, 1}κ, Y := S(IK;R). Note that Y can
be computed from IK and R, but we include it separately just for notational
convenience.

We now define the notion of fully-blackbox constructions, tailored to our
setting. See [RTV04,BBF13] for more general notions.

Definition 2 (Fully blackbox constructions). A fully-blackbox (shortly,
a blackbox) construction of an enhanced TDP from a standard TDP con-
sists of a PPT oracle-aided construction (G,S,E,D) and a PPT oracle-aided
reduction algorithm Red satisfying the following. For any correct TDP oracle
O = (g, s, e,d) (where correctness is defined in Definition 1) we have

1. Correctness: (GO,SO,EO,DO) is a correct TDP;
2. Security: for any adversary A breaking the enhanced one-wayness of the

oracle-aided scheme (GO,SO,EO,DO), the oracle algorithm RedO,A breaks
the standard one-wayness of O.

3 Main Theorem and Proofs Roadmap

In this section we describe our main theorem and the roadmap of the proofs.
As common in impossibility results, we prove our main theorem by showing

the existence of an oracle relative to which the base primitive exists (namely,
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standard TDPs), but not the target primitive (namely, enhanced TDPs). Tech-
nically, our separation model is closest to that of [HR04], which only results in
fully-blackbox separations, as opposed to the more general relativizing separa-
tions, considered in most previous work, e.g., [IR89,Sim98,GKM+00].

Theorem 1 (Impossibility of Enhanced TDPs from Standard TDPs).
There exists oracles (O,u,v), where O := (g, s, e,d), such that both the following
conditions hold.

1. O is a standard TDP against every polynomial-query adversary AO,u,v: That
is, the probability that AO,u,v(ik, y) = x is at most negligible, where (ik, tk) $←−
g(1κ), x $←− s(ik) and y := e(ik, x).

2. The enhanced one-wayness of any construction (GO,SO,EO,DO) can be
broken by a poly-query adversary BreakO,u,v. That is, the probability that
BreakO,u,v(IK,R,Y) = DO(TK,Y) is non-negligible, where (IK,TK) $←−
GO(1κ), R $←− {0, 1}∗ and Y := SO(IK;R).

As a result, there exists no fully-blackbox construction of enhanced TDPs from
standard TDPs.

Roadmap: Proof of Theorem 1. The “as a result” part follows immediately from
Parts 1 and 2 of the theorem, and thus we focus on proving these two parts.
(For completeness, we show how to derive the “as a result” part below.) As
common in impossibility results, we show the existence of the oracles (O,u,v),
required by Theorem 1, by first describing a distribution of oracles, and then
proving results for oracles randomly chosen from this distribution. We will first
start by describing a distribution Ψ of oracles (g, s, e,d,u,v). A randomly chosen
O = (g, s, e,d) from this distribution will allow one to implement an ideal version
of a TDP, which not only satisfies standard one-wayness, but also enhanced-one-
wayness. We then introduce two weakening oracles u and v, so that the oracle O
still provides standard one-wayness in the presence of u and v, but the enhanced
one-wayness of any TDP construction instantiated with O can be broken by
making a polynomial number of queries to (O,u,v).

In the following definition, whenever we say a function f : Dom → Ran with
property P (e.g., injectivity) is a randomly chosen function we mean f is chosen
uniformly at random from the space of all functions from Dom to Ran having
property P .

Definition 3. We define an oracle distribution Ψ that produces an ensemble of
oracles (Oκ,uκ,vκ)κ. For all κ and all ik ∈ {0, 1}κ, choose a set Dik uniformly
at random under the conditions that Dik ⊆ {0, 1}5κ and that |Dik| = 2κ.

– gκ : {0, 1}κ → {0, 1}κ is a random injective function, mapping a trapdoor key
to an index key.

– sκ : {0, 1}κ × {0, 1}κ → {0, 1}5κ is a random function, where for all ik ∈
{0, 1}κ: sκ(ik, ·) is 1-1 and for all r ∈ {0, 1}κ: sκ(ik, r) ∈ Dik.
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– eκ : {0, 1}κ × {0, 1}5κ → {0, 1}5κ ∪ {⊥} is a random function, satisfying the
following two conditions: for all ik ∈ {0, 1}κ: eκ(ik,Dik) = Dik and for all
x /∈ Dik: eκ(ik, x) = ⊥.

– dκ : {0, 1}κ×{0, 1}5κ → {0, 1}5κ∪{⊥} is a function, where dκ(tk, y) is defined
as follows. Letting ik := gκ(tk), if y ∈ Dik, then letting x be the unique string
satisfying eκ(ik, x) = y, set dκ(tk, y) := x. Otherwise (i.e., if y /∈ Dik), set
dκ(tk, y) := ⊥.

– uκ : {0, 1}κ × {0, 1}κ → {0, 1}κ is defined as follows. For ik ∈ {0, 1}κ and
r ∈ {0, 1}κ, letting y := sκ(ik, r) and r0 be such that y = eκ(ik, sκ(ik, r0)), set
uκ(ik, r) := r0.

– vκ : {0, 1}κ×{0, 1}5κ → {⊥,
} is defined as follows: vκ(ik, x) checks whether
the given input x is in Dik or not: set vκ(ik, x) := 
 if x ∈ Dik, and
vκ(ik, x) := ⊥, otherwise.

Redundancy of the Oracle vκ. Note that the oracle vκ can be simulated by eκ.
We only include this oracle as it will simplicity notation.

Convention and Notation. We will often drop the security parameter κ as a sub-
index to the oracles whenever the underlying security parameter is clear from
the context. For an oracle algorithm Ag,s,e,d we use notation such as (qu −→

g
an)

to indicate that A queries g on qu and receives an as the answer. We also use
(qu −→

g
?) to indicate that the query qu is asked.

We will now give a simple-information theoretic lemma showing that a ran-
domly chosen TDP O is standard one-way even in the presence of the oracle
u. The proof of the following theorem is based on simple information theoretic
arguments and so is omitted.

Lemma 1 (O is one-way relative to (O,u,v)). For any polynomial query
adversary A we have

Pr[AO,u,v(ik, y) = x and e(ik, x) = y] ≤ 1
2κ/3 ,

where (g, s, e,d,u,v) ← Ψ , O := (g, s, e,d), tk $←− {0, 1}κ and ik = g(tk). This
bound holds so long as A is poly-query bounded (and unbounded otherwise).

The following lemma shows how to break the enhanced one-wayness of any
candidate construction.

Lemma 2 (Breaking enhanced one-wayness of any construction). Let
(G,S,E,D) be a candidate blackbox construction of a TDP. There exists a poly-
nomial query adversary Break such that

Pr[BreakO,u,v(1κ, IK,R,Y) = X] ≥ 1 − 1
κ2

,

where (g, s, e,d,u,v) $←− Ψ , O := (g, s, e,d), (IK,TK) $←− GO(1κ), R $←− {0, 1}∗,
Y := SO(IK;R) and X := DO(TK,Y).
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Completing the Proof of Theorem 1. The proof of Theorem 1 follows easily by
combining Lemmas 1 and 2, as given below.

Proof (of Theorem 1). We will first prove the “as a result” part of the theo-
rem. Suppose to the contrary that there exists an enhanced TDP construction
(G,S,E,D), and let Red be the PPT security reduction algorithm guaranteed
to exist by Definition 2. Let (O,u,v) be the oracle shown to exist by Parts 1
and 2 of the theorem. By Part 2 of the theorem we know that there exists a
polynomial query adversary BreakO,u,v which breaks the enhanced one-wayness
of (GO,SO,EO,DO). Thus, by definition of blackbox constructions, RedBreak,O

should break the standard one-wayness of O. This however is a contradiction to
Part 1, because RedBreak,O can be simulated by a polynomial query adversary
AO,u,v.

We now prove Parts 1 and 2. To show the existence of the oracles
(g, s, e,d,u,v) required by the theorem, we show

1. For a measure-one of oracles (g, s, e,d,u,v), the oracle (g, s, e,d) is stan-
dard oneway against all polynomial-query adversaries with oracle access to
(g, s, e,d,u,v).

2. For a measure-one of oracles (g, s, e,d,u,v), the adversary BreakO,u,v breaks
the enhanced one-wayness of (GO,SO,EO,DO).

The above two statements implies the existence of a specific oracle
(g, s, e,d,u,v), meeting the requirement of the theorem.

We show how to derive Condition 2 from Lemma 2. The proof of Condition 1
follows similarly from Lemma 1.

By Lemma 2 we have

Pr
(O,u,v),IK,R

[BreakO,u,v(1κ, IK,R) = X] ≥ 1 − 1
κ2

. (1)

Using a simple averaging argument we may obtain

Pr
(O,u,v)

[

Pr
IK,R

[BreakO,u,v(1κ, IK,R) = X] ≥ 1
κ3

]

≥ 1 − 1
κ1.5

. (2)

Thus, for at most a 1
κ1.5 fraction of all oracles (O,u,v), the adversary

BreakO,u,v, on security parameter 1κ, recovers the pre-image correctly with prob-
ability less than 1

κ3 . Since
∑

1
κ1.5 converges, by the Borel-Cantelli Lemma we

have that for a measure-one of oracles (O,u,v), the adversary BreakO,u,v breaks
the enhanced-onewayness of (GO,SO,EO,DO): for all sufficiently large κ, the
adversary recovers X from BreakO,u,v(1κ, IK,R,Y) with probability at least 1

κ3 .
�

Roadmap for the Proof of Lemma 2. We are left with proving Lemma 2, which
constitutes the main technical bulk of our work. As a warp up, first in Sect. 4 we
will prove and give an overview of our techniques for a special case of Lemma 2:
that in which the oracle access of the construction is of the form (Gg,Ss,Ee,Dd).
Then, we will give the proof for the general case in Sect. 5.
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4 Proof of Lemma 2: Special Case (Gg, Ss,Ee,Dd)

In this section we show how to break the enhanced one-wayness of a simple
class of TDP constructions, those in which the oracle access is of the form
(Gg,Ss,Ee,Dd). We call such constructions type-1. We first start with a gen-
eral overview.

Setup. The input to the adversary BreakO,u,v is (IK,R,Y), where (IK,TK) $←−
Gg(1κ), R $←− {0, 1}∗ and Y := Ss(IK;R). The goal of Break is to find X such
that X := Dd(TK,Y).

High-Level Idea of Break’s Strategy . Consider a partial fake oracle g′ and
randomness R′ under which we have Gg′

(R′) = (IK, ˜TK) for some ˜TK. By a
partial oracle we mean an oracle that is defined only on a small set of all queries,
those that occur exactly during the execution of Gg′

(R′). Such a fake oracle
g′ and corresponding matching randomness R′ can be found by doing expensive
offline computation and without interacting at all with the real oracles (O,u,v).

Now consider the effect of super-imposing g′ on the real oracle g to get an
oracle g̃. This oracle g̃ is defined according to g′ on all queries defined in g′, and
otherwise is defined as in g.

For this perturbed oracle g̃, we will define a correspondingly perturbed ora-
cle ˜d so that (g̃, s, e, ˜d) is a valid TDP. Now since we know Gg̃(R′) = (IK, ˜TK),
we must have X = D

˜d(˜TK,Y), and thus recovering the challenge pre-image X
amounts to one’s ability to perform the execution of D˜d(˜TK,Y) by only mak-
ing a polynomial number queries to (O,u,v). As we will see, the naive way
of performing this execution will result in an exponential number of queries to
(O,u,v). Our main technique will allow us to get around this problem by mak-
ing use of the oracle u and knowledge of R (which is the randomness underlying
the image point Y).

Organization of Section 4. In Sect. 4.1 we will give a more detailed (but still
informal) overview of the above approach for the case in which each of the
algorithms (G,S,E,D) makes only one query. We will then formally describe an
attack against any candidate many-query construction (Gg,Ss,Ee,Dd) in the
next two subsections.

4.1 General Overview: One Query Case

We will now give a concrete overview of the above abstract approach for the
following type of construction: We assume each of the algorithms (Gg,Ss,Ee,Dd)
makes only one query. The input to the adversary BreakO,u,v is (IK,R,Y), where

(IK,TK) $←− Gg(1κ), R $←− {0, 1}∗ and Y := Ss(IK;R). Let X denote Break’s
challenge image point; namely, we have Ee(IK,X) = Y.

We sketch the main steps taken by Break, and will explain about each of
them.
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Sampling a Fake Oracle and a Trapdoor Key. Sample an oracle g′ and a ran-
domness value R′ uniformly at random in such a way that

Gg′
(1κ; R′) = (IK, ˜TK), (3)

for some ˜TK. Since G makes only one query, we may think of g′ as only one
query/response pair qa := (tk −→

g
ik). Thus, we may write Eq. 3 as Gqa(1κ; R′) =

(IK, ˜TK).

Defining the Oracle g̃. Consider an oracle g̃ := qa♦∗g, where the composed
oracle qa♦∗g is defined as follows: (qa♦∗g)(tk′) = ik if tk′ = tk; otherwise,
(qa♦∗g)(tk′) = g(tk′). Briefly, the oracle qa♦∗g first forwards a given query to
qa, and if the query is not defined there, the query will be forwarded to g.

Defining the Oracle ˜d. We now define ˜d in such a way that (g̃, s, e, ˜d) forms a
valid TDP oracle. For any tk′ and y′, the value of ˜d(tk′, y′) is formed as follows.
Letting ik′ = g̃(tk′):

– If v(ik′, y′) = ⊥, then set ˜d(tk′, y′) = ⊥;
– Otherwise, letting x′ be the unique string for which we have e(ik′, x′) = y′,

set ˜d(tk′, y′) = x′. Note that since we know v(ik′, y′) = 
 (because otherwise
the previous check would hold), by definition of e (Definition 3) such x′ does
exist and it is unique.

Performing the Execution D
˜d(˜TK,Y) is Enough. It is straightforward to

verify that (g̃, s, e, ˜d) forms a valid TDP oracle. Moreover, by definition of g̃
and R′, we have Gg̃(R′) = (IK, ˜TK). Now since Ee(IK,X) = Y, by completeness
of the construction, we will have D

˜d(˜TK,Y) = X, where X is Break’s challenge
image point.

Executing D
˜d(˜TK,Y) efficiently? Can we execute D

˜d(˜TK,Y) by making only a
polynomial number of queries to (g, s, e,d,u)? Let us look at all the possibilities
for a possible encountered query ((tk′, y′) −→̃

d
?) below. Let ik′ := g̃(tk′), which

can be computed by making at most one query to g.

1. Simple case: ik′ �= ik (recall that ik is defined in the query/response set qa,
which in turn forms g̃): in this case by inspection we can see that we indeed
have d(tk′, y′) = ˜d(tk′, y′), and so the answer can be determined by calling
d directly.

2. Simple case: ik′ = ik and v(ik, y′) = ⊥: in this case we can again easily see
that d(tk′, y′) = ⊥.

3. Problematic case: ik′ = ik and v(ik, y′) �= ⊥: in this case Break cannot
right away compute the value of ˜d(tk′, y′) because in order to do so, Break
must find an x′ such that e(ik, x′) = y′.
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The Oracle u and Randomness R to the Rescue. From the above dis-
cussion, the attacker Break only needs to handle Case 3. That is, from the pair
(ik, y′), upon which Line 3 is hit, and without knowledge of ik’s trapdoor key
g−1(ik), the attacker Break should find an x′ such that e(ik, x′) = y′. Recall that
D makes only one query, and so if Break gets past this “one-time” problematic
case, it will be done.

Recall that the input to Break is (IK,R,Y), where R is the randomness
underlying the image point Y. We claim that with all but negligible probability
the following must hold: letting (ik, y′) be the pair upon which Line 3 was hit,
during the execution of Ss(IK;R) we must have a query/response pair ((ik, r) −→

s

y′) for some r. Assuming that this claim holds, Break may then simply call
((ik, r) −→

u
?) to get r′, and then call ((ik, r′) −→

s
?) to get x′, completing its attack.

It remains to prove the above claim. We show that if the claim does not
hold, then one may efficiently produce a pair (ik′, y′), where y′ is a valid image
of s(ik′, ∗), without ever calling s(ik′, ·) on the corresponding pre-image of y′,
and without ever calling e and d at all. Due to the sparse and random nature
of the oracle s, the probability of this event is at most negligible. To produce
(ik′, y′), do the following.

– Sample (IK,TK) $←− Gg(1κ), R $←− {0, 1}∗ and set Y := Ss(IK;R).
– Form ˜TK and ˜d as above. (This step is done offline, without interacting with

the real oracles).
– Run D

˜d(˜TK,Y) and as soon as as query ((tk′, y′) −→̃
d

?) is made, return

(ik′, y′), where ik′ := g(tk′).

Our claim about the pair (ik′, y) now follows.

4.2 Definitions and Simple Lemmas

In this section we will give some definitions and simple lemmas, which will then
be used in Sect. 4.3. Some of these were informally reviewed in Sect. 4.1.

TDP-Valid and Ψ -Valid Oracles. Recall the distribution Ψ on oracles (O,u,v)
given in Definition 3. We say that an oracle O1 := (g1, s1, e1,d1) is Ψ -valid
if O1 is a possible output of Ψ . This means in particular that the input and
output sizes of the sub-routines of O1 match those specified in Definition 3.
We say that an oracle O2 := (g2, s2, e2,d2) is TDP valid if O2 satisfies the
completeness condition of Definition 1. Note that if an oracle is Ψ -valid then it
is also TDP-valid, but the converse is not true.

Similarly, we say that a partial oracle O′ (which is not defined on all points)
is Ψ -valid (resp., TDP-valid) if there exists a full Ψ -valid (resp., a full TDP-valid)
oracle O such that O′ ⊆ O. Here, O′ ⊆ O means that O agree with O′.
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Definition 4 (Composed Oracles ♦∗). Let O := (g, s, e,d) be a Ψ -valid
oracle and let

g′ := {(tk1 −→
g

ik1), . . . , (tkw −→
g

ikw)}

be a partial Ψ -valid oracle consisting of only g-type queries. We define the com-
posed oracle g′♦∗O := (g̃, s, e, ˜d), which has perturbed key-generation and inver-
sion oracles, as follows.

– g̃(·): for a given tk, let g̃(tk) �= iki if tk = tki for i ∈ [w]; otherwise, g̃(tk) �=
g(tk).

– ˜d(·, ·): for a given pair (tk, y), define ˜d(tk, y) as follows. Assuming ik = g̃(tk),
let ˜d(tk, y) �= e−1(ik, y). Here, e−1(ik, ·) is the inverse function of e(ik, ·)—
i.e., e−1(ik, y) = x if for some x, e(ik, x) = y; otherwise, e−1(ik, y) = ⊥.
Note that by definition of Ψ , the function e−1(ik, ·) is indeed well-defined.

It is straightforward to verify that the operation ♦∗ preserves completeness.

Lemma 3. Let O and g′ be as in Definition 4. Then, the composed oracle g′♦∗O
is TDP-valid.

Proof. The proof is straightforward and so is omitted. �
Consider a random Ψ -valid oracle (g, s, e,d,u,v). Imagine an adversary that

wants to come up with a pair (ik, y) ∈ {0, 1}κ × {0, 1}5κ of an index-key/image
such that y lies in the support of s(ik). The following lemma shows that the
probability that an adversary can do this in non-trivial way is exponentially
small.

Lemma 4. For any polynomial query oracle adversary B with access only to the
oracles (g, s,u,v) we have

Pr

[
(ik, y)

$←− Bg,s,u,v(1κ) s.t.
(
((ik, ∗) −→

s
y) /∈ Que

)
∧ (v(ik, y) = �) ∧ (|ik| = κ))

]
≤ 1

23κ
,

(4)

where (g, s, e,d,u,v) $←− Ψ and Que is the set of all query/response pairs that
Bg,s,u,v makes. We stress that B is not allowed to make e or d queries.2

Proof. The proof is based on a simple information-theoretic argument and so we
sketch the main idea. Assume w.l.o.g. that B before returning its guess (ik, y),
it calls the oracle v on (ik, y). This only increases the number of queries by one.

At any point of execution, say the next query of B is a hit if the next query
is a v query, say ((ik′, y′) −→

v
?), which is a valid forgery; namely, (a) ((ik′, ∗) −→

s

y′) /∈ Que, (b) |ik′| = κ and (c) v(ik′, y′) = 
.
At any point, the probability that the next query is a hit given we had no

hits before is at most
2κ

25κ − 2κ
. The proof now follows by a union bound. �

2 We may define and prove a version of this lemma which allows the adversary B to
also make e and d queries. This current version however suffices for what we need
for the simple separation we show in this section.
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4.3 Many-Query Case

Fix the candidate type-1 construction (Gg,Ss,Ee,Dd). We will build an adver-
sary Breakg,s,u,v which breaks the enhanced one-wayness of (Gg,Ss,Ee,Dd) by
making a polynomial number of queries to its oracles. The attacker Break does
not need to call the oracles e and d during its attack, so we did not put them
as superscripts to Break.

For simplicity we assume the following for all constructions (G,S,E,D) dis-
cussed in this paper. This assumption is made only for simplicity and all our
results can be proved without it.

Assumption 2. Each of the algorithms GO, SO, EO and DO on a security
parameter 1κ call their oracle O always on the same security parameter 1κ.

We will now describe the attacker Break. We will use notation and concepts
from Definition 4.
Attacker Breakg,s,u,v(IK,R,Y):

Oracles: (g, s,u,v),where (g, s, e,d,u,v) $←− Ψ . Set O := (g, s, e,d).

Input: (IK,R,Y), where (IK, ∗) $←− Gg(1κ), R $←− {0, 1}κ and Y := Ss(IK;R).
Operations:

1. Sample (in an offline manner) a pair (g′,R′) uniformly at random, where
g′ is a partial Ψ -valid oracle and R′ ∈ {0, 1}κ, under the condition that
(IK, ˜TK) = Gg′

(1κ; R′), for some ˜TK. Let g′♦∗O := (g̃, s, e, ˜d) be formed as
in Definition 4.

2. Let L := ∅. Run Ss(IK;R) and for any query/response pair ((ik, r) −→
s

y) made,

add ((ik, r) −→
s

y) to L.

3. Simulate the execution of D
˜d(˜TK,Y) using the oracles g, s,u,v as follows.

For any encountered query qu := ((tk, y) −→̃
d

?), first compute g̃(tk) to get ik;

this can be done by making at most one query to g. Then,
(a) if v(ik, y) = ⊥, then reply to qu with ⊥ and continue the execution;
(b) else if ((ik, r) −→

s
y) ∈ L for some r, then call ((ik, r) −→

u
?) to receive r0

and call ((ik, r0) −→
s

?) to get x. Return x as the response to the query qu,

add ((ik, r0) −→
s

x) to L and continue the execution.
(c) else (i.e., if v(ik, y) = 
 and ((ik, ∗) −→

s
y) /∈ L), then halt the execution

and return Fail.
4. If the simulation has not halted yet, return ˜X, the output of D˜d(˜TK,Y).

Theorem 3. The attacker Break is successful with probability at least 1 − 1
23κ .

Namely,

Pr[Breakg,s,u,v(IK,R,Y) = X] ≥ 1 − 1
23κ

,

where the probability is taken over (g, s, e,d,u,v) ← Ψ , (IK,TK) ← Gg(1κ),
R ← {0, 1}κ, Y := Ss(IK,R) and X := Dd(TK,Y).
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Proof Roadmap. We show that if the execution of Break never halts due to
Line 3c, then the retrieved string ˜X is indeed the correct pre-image of Y. We will
then show that the probability that Line 3c is ever hit (which we call the event

Bad) is at most
1

23κ
, by “reducing” it to Lemma 4. These two will complete the

proof.

Lemma 5. Let Bad be the event that line (3c) is hit during the execution of
Breakg,s,u,v(IK,R,Y). Then

Pr[Bad] ≤ 1
23κ

,

where the probability is taken over (g, s, e,d,u,v) ← Ψ , (IK, ∗) ← Gg(1κ), R ←
{0, 1}κ, Y := Ss(IK, R) and over Break’s random coins.

We first show how to derive Theorem 3 from Lemma 5 and we will then prove
Lemma 5.
Proof of Theorem 3. All probabilities that appear below are taken over the
variables sampled in the theorem. We claim

α
�= Pr[Breakg,s,u,v(IK,R,Y) = X | Bad] = 1.

Assuming the claim is true, we may combine it with Lemma 5 to get

Pr[Breakg,s,u,v(IK,R,Y) = X] ≥ (1 − 1
23κ

)α = 1 − 1
23κ

,

as desired. To prove the above claim first note that by Lemma 3 we have
g′♦∗O := (g̃, s, e, ˜d) is a valid TDP-oracle, where g′ is formed in Step 1 of Break’s
execution. Moreover, recall that Y = Ee(IK,X) and that (IK, ˜TK) ∈ Gg̃(1κ).
Thus, by the correctness condition of the blackbox construction (G,S,E,D) (Def-
inition 2) we have X = D

˜d(˜TK,Y). The claim now follows by noting that if the
event Bad does not hold, then the simulated execution of D˜d(˜TK,Y) performed
by Break proceeds identically to the real decryption. The proof is now complete.

�
Proof of Lemma 5. Let β := Pr[Bad]. We show how to construct an adversary
Bg,s,u,v with oracle access to (g, s,u,v) which makes a poly number of queries
and with probability at least β forges some (ik, y) ∈ {0, 1}κ × {0, 1}5κ in the
sense of Lemma 4. Applying the lemma we will then obtain β ≤ 1

23κ , as desired.
The adversary Bg,s,u,v(1κ) first samples a random input (IK,R,Y) for Break:

namely, (IK,TK) $←− Gg(1κ), R $←− {0, 1}∗ and Y := Ss(IK;R). Then, Bg,s,u,v

simulates the execution of Breakg,s,u,v(IK,R,Y) with the only deviation that
whenever Break’s execution hits Line (3c) with the underlying strings ik and y,
then B halts and returns (ik, y). If Break’s execution is successfully completed
without ever hitting Line (3c), then Bg,s,u,v gives up and returns ⊥. Let Que
be the set of all query/response pairs that Breakg,s,u,v makes to its oracles, and
note |Que| is polynomial.
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Validity of B’s Forgery Output. As per Lemma 4, we need to show three
things: that, (a) ((ik, ∗) −→

s
y) /∈ Que, (b) v(ik, y) = 
 and (c) |ik| = κ.

Condition (a) holds because for any s query ((ik′, r′) −→
s

y′) ever made by

B, this query/response is added to the set L. By the underlying if-condition of
Line (3c), we have ((ik, ∗) −→

s
y) /∈ L and hence ((ik, ∗) −→

s
y) /∈ Que. Condition

(b) also holds immediately by the underlying if-condition of Line (3c). Finally,
by Assumption 2 |ik| = κ. To see this, recall from the description of Break that
ik = g̃(tk) and that |tk| = κ. Thus, by definition of g̃ we have |ik| = κ, as
desired. The proof is now complete. �

5 Proof of Lemma 2: General Case

Sketch of the Attack. Let (IK,R,Y) be the inputs to BreakO,u,v, where

(IK,TK) $←− GO(1κ) and Y := SO(IK;R). Let Q be the set of all query/response
pairs during SO(IK;R) = Y. Let X := DO(TK,Y). Let us first try to proceed as

before: sample (O′, ˜TK) such that (IK, ˜TK) $←− GO′
(1κ) and attempt to perform

DO′♦∗O. However, things are not as simple as before. Previously, we were able
to show that for any meaningful query which asks for the value of e−1(ik, y), we
must have ((ik, ∗) −→

s
y), and so Break can simulate the answer using u. However,

this does not hold here, because y may be coming from the queries made by GO,
to which Break does not have access.

Our solution at a high level is as follows. We work with a partial oracle ˜O
for which initially we have (IK, ˜TK) $←− G

˜O(1κ). This oracle will then be used
to invert Y (using ˜TK) as the secret key, but since ˜O is not necessarily defined
on all encountered queries (since it is a partial oracle) we need to “make up”
answers as we go on in a consistent manner. Ideally, we would like to produce
answers by directly resorting to O, so to make the whole execution as close to the
real execution as possible. However, this is not always possible, and so at times
we need to fake some answers. Whenever, a new answer is generated (either by
directly calling O or by faking it) we add the new query/answer pair to ˜O and
will continue. Let us elaborate more.

Consider the execution of D˜O(˜TK,Y): Suppose we encounter a query qu that
is not defined in ˜O yet. We have two cases. If qu is of type g, s or e—namely,
a query which does not require any “trapdoor” information to reply to—we
will use the oracle O directly to answer to this query but with some case to
make sure we do not introduce inconsistencies. (Remember that ˜O fakes some
answers, so “blind” use of O may potentially creat inconsistencies.) If, however,
qu is of d-type, we will make use of our trapdoor-based accumulated knowledge
of the oracle O along with the oracle u if we happened to have the required
information. Let us give a more detailed explanation.

1. Suppose qu := ((ik′, r′) −→
s

?), but ˜O(qu) is not defined yet. Suppose

x′ = s(ik′, r′). We may think we can simply reply to qu with x′ and add
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the query/response pair qua := ((ik′, r′) −→
s

x′) to ˜O. However, we may

get the following problem: There may already be a (fake) query/response
qua1 := ((ik′, x′) −→

e
⊥) ∈ ˜O, which would be inconsistent with qua. Thus,

˜O ∪ {qua} will not be TDP-consistent, and so we cannot guarantee correct
inversion w.r.t. this oracle. We handle this as follows: In case of such inconsis-
tencies, we will reply to qu with a random answer (which is unlikely to create
inconsistencies) and will add the result to ˜O.
A same situation may hold for an e query and we will handle such incon-
sistencies in a similar manner. For g queries, however, we will preempt the
possibility of inconsistencies by putting Break in “normal form”; see Assump-
tion 5.

2. Suppose qu := ((tk′, y′) −→
d

?), and qua := (tk′ −→
g

ik) ∈ ˜O. (We will force

qua to already be in ˜O by putting Break in normal form.) We have two cases:
(a) trapdoor-available: g(tk′) = ik (i.e., tk′ is the real trapdoor key); or (b)
trapdoor-absent: g(tk′) �= ik: That is, the trapdoor key tk′ has been “faked”
before.
If case (a) holds, we call the real oracle O on qu and will use the result as
is if it leads to no inconsistencies—we, however, now have many more cases
of inconsistencies, as compared to Part 1; if an inconsistency occurs, we will
fake the answer.
For case (b) we need to resort to our side trapdoor-information about O (e.g.,
set Q above: the set of all query/response pairs during SO(IK;R) = Y). Also,
to handle case (b), we will also need to collect all frequent trapdoor informa-
tion that happen during random executions of SO and EO. This collection of
information is done in Step 1 of the algorithm Break.

For our analysis, we will show w.h.p. the union of ˜Ouni
�= ˜O∪W1 ∪W2 is TDP-

valid, where W1 is the (hidden) set of all queries/responses made to sample the
challenge pre-image X and W2 is the (hidden) set of all query/response pairs in
EO(IK,X). Note that W1 and W2 are not available to Break (which is the reason
we called them hidden). Proving this will show that w.h.p. the decrypted result,
˜X, by Break will be equal to X. This is because relative to ˜Ouni, (IK, ˜TK) is valid,
X is valid (i.e., outputted by S

˜Ouni(IK)), Y = EO(IK,X) and ˜X = DO(˜TK,Y).
We now proceed to describe the attack formally. We start with the following

assumption.

Assumption 4. We assume that Gg,s,e,d never calls the oracle d. (It can predict
the answer with high probability.) For notational convenience we keep d as a
superscript to G.

We first start by describing two procedures that will be used by Break. The
first procedure samples many executions of S and E in order to collect frequent
trapdoors. The second procedure allows one to sample a fake secret key w.r.t. a
priori information about the real oracle O.
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Definition 5 (Sampling frequent queries). We define a probabilistic oracle
procedure SFreqO:

– Input: (1κ, p, IK), where p is an integer.
– Output: A set of query/response pairs Freq ← SFreqO(1κ, p, IK) sampled as

follows. Let Freq = ∅. Do the following p times:
• Sample X ← SO(IK) and execute EO(IK,X) and record all query/response

pairs to Freq.

Definition 6. We define the procedure SOrc.

– Input: (Freq, IK): A set of query/answer pairs Freq and an index key IK.
– Output: (TK′,Qg,Qs,Qe), produced as follows. Qe sampled as follows. Sam-

ple a Ψ -generated O′ = (g′, s′, e′,d′) and TK′ uniformly at random subject
to the conditions that (a) O′ is consistent with Freq (i.e., O′ ∪Freq is a valid
TDP) and (b) GO′

= (IK,TK′). Let Qg, Qs and Qe contain, respectively, the
g, s and e query/response pairs made during the execution of GO′

. (Recall
that by Assumption 4 no d queries are made).

We need the following normal-form condition for our attack algorithm.

Assumption 5. We assume the following for any oracle algorithm A with oracle
access to (g, s, e,d): Any query ((tk, y) −→

d
?) is preceded by a query (tk −→

g
?).

Moreover, if d(tk, y) = x �= ⊥, then A will make the query ((ik, x) −→
e

?) after

making the query ((tk, y) −→
d

?).

Partial Oracles. In the algorithm Break below we will work with partial oracles,
defined only on a subset of their input queries. Specifically, for a partial oracle
˜O we define the following notation: We write ˜O(qu) = null to indicate ˜O is not
defined on the query qu. This should not be confused with ˜O(qu) = ⊥ as we
use ˜O(qu) = ⊥ to indicate that the output of ˜O(qu) is a fixed invalid symbol.
We say ˜O is TDP consistent, if there exists a full TDP oracle ˜Ofull such that
˜O ⊆ ˜Ofull.

Parameter γ. For any Ψ -valid oracle O we assume that each of the algorithms
GO, SO, EO and DO on inputs corresponding to the security parameter 1κ make
exactly κγ oracle queries.

The Attack Algorithm Breakg,s,e,d,u,v: We describe all components of the attack
algorithm.
Oracles. (O,u,v). Parse O := (g, s, e,d).
Input. (1κ, IK,R)
Output. (˜X,Freq, ˜O).3

3
˜X is the final result of inversion. The other two outputs, namely Freq, ˜O, are partial
oracles, which are included in the output so to help us later state our security
statements easier.
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1. Sample Freq ← SFreqO(1κ, κ2γ+8, IK). Let ˜O and Real be two partial oracles,
both initially empty.

2. Sample (˜TK,Qg,Qs,Qe) ← SOrc(Freq, IK). Add Qg ∪ Qs ∪ Qe ∪ Freq to ˜O.
3. Run SO(R)—which gives us the challenge image Y—and add all the underly-

ing query/response pairs to Real. Also, add all elements of Freq to Real. From
this point on, all the queries made to the real oracles (g, s, e,d,u,v) will be
recorded in Real.

4. Simulate the execution of D·(˜TK,Y) and answer an encountered query qu as
follows:
4.1 Already answered in ˜O: if for some ans, (qu, ans) ∈ ˜O, then reply to

qu with ans;
4.2 g-type query: if qu is of g-type, then reply to qu by calling the real

oracle g and add the query/response pair to ˜O;
4.3 s-type query: if qu := ((ik, r) −→

s
?), then call ((ik, r) −→

s
x). If ((ik, x) −→

e

⊥) /∈ ˜O, then reply to qu with x and add ((ik, r) −→
s

x) to ˜O. Otherwise,

reply to qu with x′ ← {0, 1}5κ and add ((ik, r) −→
s

x′) to ˜O.

4.4 e-type query: if qu := ((ik, x) −→
e

?) for some ik and x: Call the real

oracle ((ik, x) −→
e

?) to get y;

4.4.1 if y = ⊥ or ((∗, ∗) −→
e

y) /∈ ˜O, then reply to qu with y add ((ik, x) −→
e

y)

to ˜O;
4.4.2 Otherwise, reply to qu with a random y′ ← {0, 1}5κ and add

((ik, x) −→
e

y′) to ˜O.

4.5 d-type query: if qu := ((tk, y) −→
d

?) for some tk and y: letting ik be

such that (tk −→
g

ik) ∈ ˜O.

4.5.1 if ((ik, x) −→
e

y) ∈ ˜O, then reply to qu with x and add ((tk, y) −→
d

x)

to ˜O.
4.5.2 else if ((ik, y) −→

e
⊥) ∈ ˜O then reply to qu with ⊥ and add ((tk, y) −→

d

⊥) to ˜O.
4.5.3 otherwise,

4.5.3.1 if for some tk′: (tk′ −→
g

ik) ∈ Real then call ((tk′, y) −→
d

?) to get x:

(A) if ((ik, x) −→
e

∗) /∈ ˜O, then reply to qu with x and add

((ik, x) −→
e

y) to ˜O.

(B) if ((ik, x) −→
e

∗) ∈ ˜O then reply to qu with a random x′ ←
{0, 1}5κ and add ((ik, x′) −→

e
y) to ˜O.

4.5.3.2 else if ((ik, x) −→
e

y) ∈ Real, then

(A) if ((ik, x) −→
e

∗) /∈ ˜O then reply to qu with x and add ((ik, x) −→
e

y) to ˜O.
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(B) if ((ik, x) −→
e

∗) ∈ ˜O then reply to qu with a random x′ ←
{0, 1}5κ and add ((ik, x′) −→

e
y) to ˜O.

4.5.3.3 else if for some r: ((ik, r) −→
s

y) ∈ Real, then call ((ik, r) −→
u

?) to

get r0 and call ((ik, r0) −→
s

?) to get x0:

(A) if ((ik, x0) −→
e

∗) /∈ ˜O, then reply to qu with x0 and add

((ik, x0) −→
e

y) to ˜O.

(B) if ((ik, x0) −→
e

∗) ∈ ˜O, then reply to qu with a random x′ ←
{0, 1}5κ and add ((ik, x′) −→

e
y) to ˜O.

4.5.3.4 else if v(ik, y) = ⊥ then reply to qu with ⊥;
4.5.3.5 otherwise, reply to qu with a random x′ ← {0, 1}5κ and add both

of ((tk, y) −→
d

x′) and ((ik, x′) −→
e

y) to ˜O.

5. Letting ˜X be the result of the simulated execution of D·(˜TK, Y ), return
(˜X,Freq, ˜O).

5.1 Proof of Attack Effectiveness

We now focus on proving Lemma 2. We first start with a simple information the-
oretic lemma, which generalizes Lemma 4 to the case in which the “forger” may
call all the underlying oracles. For that lemma, we need the following definition.

Definition 7. Let Q be a set of query/response pairs obtained from oracles
(g, s, e,d,u,v). We say that (ik, x) is embedded in Q if

– ((ik, ∗) −→
s

x) ∈ Q, or
– ((ik, ∗) −→

e
x) ∈ Q or

– for some tk: (tk −→
g

ik) ∈ Q and ((tk, ∗) −→
d

x) ∈ Q.

The following lemma generalizes Lemma 4. The proof again follows using
standard information-theoretic arguments and so is omitted.

Lemma 6. Let B be a a polynomial-query oracle adversary. We have

Pr
(O,u,v)←Ψ

[(ik, y) $←− Bg,s,e,d,u,v(1κ) s.t. |ik| = κ

and v(ik, y) = 
 and (ik, y) is not embedded in Que] ≤ 1
23κ

, (5)

where Que is the set of all query/answer pairs of B.
We define the following environment that specifies a random choice of the

oracles (g, s, e,d,u,v) as well as random variables used to form a random input
to an adversary against enhanced one-wayness of the construction.

Environment. The environment Env(κ) specifies the following random vari-
ables: (IK,Query,Ry,Y,Rx,X,O):
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– (g, s, e,d,u,v) ← Ψ . Let O := (g, s, e,d);
– (IK,TK) ← GO(1κ) and let Query be the set of all query/response pairs asked

during the execution;
– Ry ← {0, 1}∗;
– Y := SO(IK,Ry);
– X := DO(TK,Y)
– Rx ← S, where

S := {R | SO(IK,R) = X}.

Notation HitQ. For an oracle algorithm AO we let HitQ(AO(X)) denote the
set of all query response pairs made during the execution of AO(X). If A is a
randomized algorithm, then HitQ(AO(X)) will be a random variable.

Notation ♦. For a partial oracle ˜O and full oracle O we let ˜O♦O denote the
oracle that responds to a query qu as follows: if ˜O(qu) �= null then ˜O♦O(qu) =
˜O(qu); otherwise, ˜O♦O(qu) = O(qu). Note that even if both ˜O and O are TDP
consistent, ˜O♦O is not necessarily so.

Lemma 7. Let (IK,Query,Ry,Y,Rx,X,O,u,v) ← Env(κ) and (˜X,Freq, ˜O) ←
BreakO,u,v(1κ, IK,R).

1.
Pr[X = S

˜O♦O(IK,Rx) and E
˜O♦O(IK,X) = Y] ≥ 1 − 1

4κ2
(6)

2. Letting

ALLQ := ˜O ∪ HitQ(S˜O♦O(IK,Rx)) ∪ HitQ(E˜O♦O(IK,X))

we have Pr[ALLQ is TDP consistent ] ≥ 1 − 1
2κ2 .

Let us first show how to use Lemma 7 to prove Lemma 2. We will then prove
Lemma 7.

Proof (Proof of Lemma 2). Let all the variables be sampled as in Lemma 2.
Let Rx ← S, where

S := {R | SO(IK,R) = X}.

Let Evnt1 and Evnt2 denote the events of Parts 1 and 2 of Lemma 7. That is,

– Evnt1 : X = S
˜O♦O(IK,Rx) and E

˜O♦O(IK,X) = Y
– Evnt2 : ALLQ is TDP consistent .

We claim if Evnt1 ∧ Evnt2 holds, then ˜X = X. This implies our result since

Pr[˜X = X] ≥ Pr[Evnt1 ∧ Evnt2] ≥ 1 − Pr[Evnt1] − Pr[Evnt2] ≥ 1 − 1
κ2

.
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It remains to prove the above claim. We show if Evnt1 ∧ Evnt2 then (I)
ALLQ is TDP consistent, (II) (IK, ˜TK) ∈ GALLQ(1κ), (III) ˜X = DALLQ(˜TK, Y ),
(IV) X = SALLQ(IK,Rx), (V) EALLQ(IK,X) = Y. Then, by the correctness of the
construction (G,S,E,D) we obtain ˜X = X, and the proof will be complete.

First, note that (I) follows by definition of Evnt2.
To prove (II) and (III), first note that we have (IK, ˜TK) ∈ G

˜O(1κ) and
˜X = D

˜O(˜TK,Y). Now since ˜O ⊆ AllQ and since ALLQ is TDP consistent, we
have (IK, ˜TK) ∈ GALLQ and ˜X = DALLQ(˜TK,Y). Note that the mere fact that
˜O ⊆ ALLQ will not be sufficient to conclude these two last statements (II) and
(III); the reason is that there may be collisions between ˜O and ALLQ \ ˜O (e.g.,
a query qu may receive different responses from the two oracles), rendering the
corresponding executions ambiguous.

Similarly, from the facts that ALLQ is TDP consistent and that Evnt1 holds,
we conclude (IV) and (V). �

We now show how to prove Lemma 7, starting with Part 1. We give the proof
of Part 2 of the lemma in the full version. To this end, we define some variables
and events to help us describe things more concisely.

Sub-oracles ˜O1, ˜O2, ˜O3, ˜O4 and set Rand. We define four sub-oracles of ˜O,
which capture some of the query/response pairs that were added to ˜O as a
result of faking answers for those queries that created conflict with the real oracle
O. Recall that for removing such conflicts, we sampled elements uniformly at
random from {0, 1}5κ and used those for faking answers. Informally, the set Rand
contain those points sampled for these purposes. We now formally define these
pieces of notation.

– ˜O1: We let ˜O1 contain any query/response pair ((ik, x) −→
e

y′) added to ˜O as
a result of Line 4.4.2..

– ˜O2: We let ˜O2 contain any query/response pair added to ˜O as a result of
Condition (B) of Line 4.5.3.1..

– ˜O3: We let ˜O3 contain any query/response pair added to ˜O as a result of
Condition (B) of Line 4.5.3.3..

– ˜O4: We let ˜O4 contain any query/response pair ((ik, x) −→
e

y) added to ˜O as
a result of Line 4.5.3.5..

– Rand: We let Rand contain all x such that ((∗, x) −→
e

∗) ∈ ˜O2∪ ˜O3 or ((∗, ∗) −→
e

x) ∈ ˜O1. Intuitively, the set Rand contains all points that were sampled
uniformly at random for making up fake answers.

Events Surp1, Surp2, Surp3, Surp4. We define some events which we will prove
can only happen with negligible probability.

– Surp1: the event that for some ((ik, ∗) −→
e

y′) ∈ ˜O1 we have v(ik, y′) = 
 or

for some ((ik, x′) −→
e

∗) ∈ ˜O2 ∪ ˜O3 ∪ ˜O4 we have v(ik, x′) = 
.
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– Surp2: the event that during the execution SO(IK;Rx) a query qu = ((ik, x) −→
e

?) or a query ((∗, x) −→
d

?) is made where x ∈ Rand;

– Surp3: the event that there exists ((ik, x) −→
e

y) ∈ ˜O4 such that (ik, y) is not
embedded in Query.

– Surp4: For x �= x′ and y �= ⊥: ((ik, x) −→
e

y) ∈ ˜O and ((ik, x′) −→
e

y) ∈ ˜O.

Let Surp = Surp1 ∨ Surp2 ∨ Surp3 ∨ Surp4.

Set Dif. Let Q := Qg ∪ Qs ∪ Qe, where recall that the sets Qg, Qs and Qe are
formed during Line 2 of the algorithm Break. Let Dif be the set of queries formed
as follows: For any query/response pair (qu −→∗ ∗) ∈ Q, add the query qu to Dif.

Moreover, for any (ik, x) that occurs in Query ∪ Q:

(A) if for some r: s(ik, r) = x add ((ik, r) −→
s

?) to Dif;

(B) add ((ik, x) −→
e

?) to Dif;

(C) add ((tk, x) −→
d

?) to Dif, where tk = g−1(ik);

(D) if for some x′: e(ik, x′) = x, add ((ik, x′) −→
e

?) to Dif.4

Events Match and MissQ. Equipped with the set Dif we now define the following
two events.

– Match: ˜O♦O agrees with HitQ(SO(IK;Rx)) ∪ HitQ(EO(IK,X)).
– MissQ:

∃〈qu〉 ∈ Dif s.t. 〈qu〉 /∈ Freq and 〈qu〉 ∈ HitQ(SO(IK;Rx)) ∪ HitQ(EO(IK,X)).

Lemma 8. If Match holds, then MissQ ∨ Surp holds.

Lemma 9. We have Pr[MissQ] ≤ 1
8κ2 .

Lemma 10. We have Pr[Surp] ≤ 1
2κ .

Proof (of Part 1 of Lemma 7). Let α(n) denote the probability of this part of
the lemma. We have α(n) ≥ Pr[Match]. From Lemmas 8, 9 and 10 Pr[Match]
≤ 1

4κ2 . The proof is complete. �
We give the proof of Lemma 8 in the full version. We now prove Lemma 9,

for which we will use the following standard lemma.

Lemma 11. Let x1, . . . , xt+1 be independent, Bernoulli random variables, where
Pr[xi = 1] = p, for all i ≤ t + 1. Then

Pr[x1 = 0 ∧ · · · ∧ xt = 0 ∧ xt+1 = 1] ≤ 1
t
.

4 Note that we do not claim that Dif can be built efficiently. We merely introduce Dif
to define a related event.



472 M. Hajiabadi

Proof (of Lemma 9). Let ExecO(IK) be the following random execution: Sam-
ple X′ ← SO(IK) and run EO(IK,X′). Recall that Freq is formed by running
ExecO(IK) independently t := κ2γ+8 times. Also, note that Rx is a uniformly
random string, and thus (SO(IK;Rx);EO(IK,X)) corresponds to a random exe-
cution of ExecO(IK).

Using simple inspection, we may verify |Dif| ≤ 6κγ . Now applying Lemma 11
for each element of Dif and taking a union bound, we will have Pr[MissQ] ≤
6κγ 1

κ2γ+8 ≤ 1
8κ2 , as desired. �

Proof (of Lemma 10). We can easily show that each of the events Surp1, Surp2

and Surp4 happens with probability at most 1
23n : Arguing about the probability

of each of these events amounts to arguing that a randomly chosen element in
{0, 1}5κ happens to lie in a sparse subset of {0, 1}5κ. Thus, we omit the details
for these parts.

We focus on bounding the probability of Surp3. Recall that

– Surp3: a query ((tk, y) −→
d

?) is made for which Line 4.5.3.5. is hit and

for which (ik, y) is not embedded in Query, where (ik, y) is defined as in
Line 4.5.3.5.. Also, recall that the notion of embeddedness from Definition 7.

We will show that whenever the event Surp3 holds, we can forge a pair (ik, y)
in the sense of Lemma 4, obtaining Pr[Surp3] ≤ 1

23n .
In order for Line 4.5.3.5.—during the simulated execution of D·(˜TK,Y)—to

be hit with the underlying values (ik, y), all of the following must hold at that
point:

(I) ((ik, ∗) −→
e

y) /∈ Real—this is because otherwise Line 4.5.3.2. would have
been hit.

(II) ((ik, ∗) −→
s

y) /∈ Real—this is because otherwise Line 4.5.3.3. would have
been hit.

(III) ((tkreal, ∗) −→
d

∗) /∈ Real, where tkreal = g−1(ik)—this is because otherwise

Line 4.5.3.1. would have been hit (by Assumption 5).
(IV) v(ik, y) = 
—this is because otherwise Line 4.5.3.4. would have been hit.

We now show show how the above conditions enable us to forge in the
sense of Lemma 4. In particular, the above conditions immediately imply that
(ik, y) is not embedded in Real. Also, notice that the set Real contains all those
query/response pairs made by BreakO,u,v(1κ, IK,R) (to its real oracles) up to
the point the event Surp3 holds. Moreover, since Surp3 holds, then, by defini-
tion, the pair (ik, y) is not embedded in Query either, which contains all the
query/response pairs used to produce IK. We may now design a forgery attack
as follows. The forger BO,u,v(1κ) first samples (IK, ∗) ← GO(1κ) and then sim-
ulates BreakO,u,v(1κ, IK,R) for R ← {0, 1}∗. Whenever the event Surp3 holds
with the underlying pair (ik, y), then B will halt and return (ik, y). Note that
BreakO,u,v(1κ, IK,R) can efficiently recognize the occurrence of the event Surp3.
The success probability of BO,u,v(1κ) is the probability that Bad holds. �
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[FS12] Fiore, D., Schröder, D.: Uniqueness is a different story: impossibility of veri-
fiable random functions from trapdoor permutations. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 636–653. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28914-9 36

[GKM+00] Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The
relationship between public key encryption and oblivious transfer. In: 41st
FOCS, 12–14 November 2000, Redondo Beach, CA, USA, pp. 325–335.
IEEE Computer Society Press (2000)

https://doi.org/10.1007/978-3-662-49099-0_19
https://doi.org/10.1007/978-3-662-49099-0_19
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/3-540-48071-4_31
https://doi.org/10.1007/3-540-48071-4_31
http://eprint.iacr.org/2017/631
http://eprint.iacr.org/2017/631
https://doi.org/10.1007/3-540-45760-7_7
https://doi.org/10.1007/978-3-642-28914-9_36


474 M. Hajiabadi

[GMR01] Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trap-
door functions on trapdoor predicates. In: 42nd FOCS, 14–17 October
2001, pp. 126–135, Las Vegas, NV, USA. IEEE Computer Society Press
(2001)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho,
A. (ed.) 19th ACM STOC, pp. 218–229, 25–27 May 1987, New York City,
NY, USA. ACM Press, New York (1987)

[Gol04] Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge University Press, Cambridge (2004)

[Gol11] Goldreich, O.: Basing non-interactive zero-knowledge on (enhanced) trap-
door permutations: the state of the art. In: Goldreich, O. (ed.) Studies
in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation. LNCS, vol. 6650, pp. 406–421. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0 28

[GR13] Goldreich, O., Rothblum, R.D.: Enhancements of trapdoor permutations.
J. Cryptol. 26(3), 484–512 (2013)

[Hai04] Haitner, I.: Implementing oblivious transfer using collection of dense trap-
door permutations. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
394–409. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24638-1 22

[HHRS07] Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in
interactive protocols - a tight lower bound on the round complexity
of statistically-hiding commitments. In: 48th FOCS, pp. 669–679, 20–23
October 2007, Providence, RI, USA. IEEE Computer Society Press (2007)

[HR04] Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure
hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28628-8 6

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: 21st ACM STOC, 15–17 May, Seattle, WA, USA,
pp. 44–61. ACM Press (1989)

[KKM12] Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K.
(eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 404–414. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-34961-4 25

[NR99] Naor, M., Reingold, O.: Synthesizers and their application to the parallel
construction of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–
375 (1999)

[Rab79] Rabin, M.O.: Digital signatures and public key functions as intractable as
factorization. Technical report MIT/LCS/TR-212, Massachusetts Institute
of Technology, January 1979

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signature and public-key cryptosystems. Commun. Assoc. Comput. Mach.
21(2), 120–126 (1978)

[RTV04] Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between
cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951,
pp. 1–20. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24638-1 1

https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/978-3-540-24638-1_22
https://doi.org/10.1007/978-3-540-24638-1_22
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-642-34961-4_25
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1


Enhancements Are Blackbox Non-trivial 475

[Sim98] Simon, D.R.: Finding collisions on a one-way street: can secure hash func-
tions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054137

[Vah10] Vahlis, Y.: Two Is a crowd? a black-box separation of one-wayness and
security under correlated inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 165–182. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11799-2 11

[Yao82] Yao, A.C.-C.: Theory and applications of trapdoor functions (extended
abstract). In: 23rd FOCS, pp. 80–91, 3–5 November, Chicago, Illinois.
IEEE Computer Society Press (1982)

https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/978-3-642-11799-2_11
https://doi.org/10.1007/978-3-642-11799-2_11


Certifying Trapdoor Permutations,
Revisited

Ran Canetti1,2(B) and Amit Lichtenberg2(B)

1 Boston University, Boston, USA
canetti@bu.edu

2 Tel Aviv University, Tel Aviv, Israel
amitlich@post.tau.ac.il

Abstract. The modeling of trapdoor permutations has evolved over the
years. Indeed, finding an appropriate abstraction that bridges between
the existing candidate constructions and the needs of applications has
proved to be challenging. In particular, the notions of certifying permu-
tations (Bellare and Yung, 96), enhanced and doubly enhanced trapdoor
permutations (Goldreich, 04, 08, 11, Goldreich and Rothblum, 13) were
added to bridge the gap between the modeling of trapdoor permuta-
tions and needs of applications. We identify an additional gap in the
current abstraction of trapdoor permutations: Previous works implicitly
assumed that it is easy to recognize elements in the domain, as well
as uniformly sample from it, even for illegitimate function indices. We
demonstrate this gap by using the (Bitansky-Paneth-Wichs, 16) doubly-
enhanced trapdoor permutation family to instantiate the Feige-Lapidot-
Shamir (FLS) paradigm for constructing non-interactive zero-knowledge
(NIZK) protocols, and show that the resulting proof system is unsound.
To close the gap, we propose a general notion of certifiably injective dou-
bly enhanced trapdoor functions (DECITDFs), which provides a way of
certifying that a given key defines an injective function over the domain
defined by it, even when that domain is not efficiently recognizable and
sampleable. We show that DECITDFs suffice for instantiating the FLS
paradigm; more generally, we argue that certifiable injectivity is needed
whenever the generation process of the function is not trusted. We then
show two very different ways to construct DECITDFs: One is via the tra-
ditional method of RSA/Rabin with the Bellare-Yung certification mech-
anism, and the other using indistinguishability obfuscation and injective
pseudorandom generators. In particular the latter is the first candidate
injective trapdoor function, from assumptions other than factoring, that
suffices for the FLS paradigm. Finally we observe that a similar gap
appears also in other paths proposed in the literature for instantiating
the FLS paradigm, specifically via verifiable pseudorandom generators
and verifiable pseudorandom functions. Closing the gap there can be
done in similar ways to the ones proposed here.
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1 Introduction

In the late-1970s, Rivest, Shamir and Adelman [RSA78] and Rabin [Rab79] sug-
gested functions which are easy to evaluate, easy to invert when given a suitable
secret trapdoor key, but are presumably hard to invert when only given the
function description without the trapdoor. Both of these constructions use the
same source of computational hardness: the hardness of factoring. These con-
structions were later abstracted to a formal notion of trapdoor functions [Yao82],
which became one of the pillars of modern cryptography. In particular, trapdoor
permutations (TDPs) were used as building blocks for public key encryption
[Yao82,GM84,BG84], oblivious transfer [EGL85] and zero-knowledge protocols
[FLS90].

One of the quintesential uses of the TDP astraction is in constructing Non-
interactive zero knowledge (NIZK) protocols, introduced by Blum Feldman and
Micali [BFM88,BSMP91]: While the first constructions were based on the hard-
ness of factoring, Feige et al. [FLS90] demonstrated a more general construction
based on any trapdoor permutation. Specifically, this proof system (henceforth
the FLS protocol) treats the common reference string as a sequence of blocks,
where each block represents an image of a trapdoor permutation selected by the
prover. The prover then inverts a subset of these using the secret trapdoor. The
verifier can validate that the pre-images it was given are correct by forward-
evaluating the trapdoor function, but is unable to invert any other image due to
the hardness of inverting the function without the secret trapdoor. By treating
the common string as a series of sealed off boxes (aka the hidden-bit-model), the
prover is able to provide a NIZK proof for an NP-Hard language. Soundness is
based on the fact that, for any given permutation, each block in the reference
string defines a unique pre-image. This construction assumes that the trapdoor
permutation in use is ideal, namely its domain is {0, 1}n for some n, hardness
holds with respect to uniformly chosen n-bit strings, and any key (index) in an
efficiently recognizable set describes a permutation.

Bellare and Yung [BY96] consider the case where it is not known how to
recognize whether a given index defines a permutation, but the domain is still
{0, 1}n. This relaxation is indeed essential, as even the first TDP candidates
suggested by [RSA78,Rab79] do not have efficiently recognizable keys. They
observe that in this case a malicious prover may be able to choose a key which
evaluates to a many-to-one function, breaking the soundness of the protocol, and
suggest a mechanism for certifying that a given index describes a permutation.
Their mechanism, which is specific to the case of NIZK, is based on the prover
providing the verifier with pre-images of a set of random images, which are taken
from the common reference string. We refer to this mechanism as the Bellare-
Yung protocol. We note however that this mechanism crucially needs the verifier
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to be able to detect whether an element is in the domain of the permutation
(which is not an issue in their case of full domain).

Goldreich and Rothblum [Gol04,Gol08,Gol11,GR13] point out that when
the domain of the permutation is not just {0, 1}n, additional mechanisms are
required in order to base the Zero-Knowledge property of the FLS protocol on
the one-wayness of the underlying TDP. Specifically, they define the notions
of enhanced and doubly-enhanced trapdoor permutations, which require the
existence of a domain sampling algorithm such that finding the pre-image of
a sampled element is hard, even given the random coins used by the sampler.
Furthermore, it should be possible to sample pairs of pre-image and random coins
for the domain sampler, which both map to the same image (one under the for-
ward evaluation and one via the domain sampler). They then show that the FLS
protocol is zero-knowledge when using doubly-enhanced trapdoor permutations.
For soundness, they rely on the Bellare-Yung protocol, and thus inherit the lim-
itation that the domain of the permutation must be publicly recognizable; yet,
they do not explicitly require that the domain be efficiently recognizable.

A number of other methods for implementing the hidden-bit model by way
of cryptographic primitives have been proposed over the years, e.g. invariant
signatures [BG90], verifiable random generators [DN00], (weak) verifiable random
functions [BGRV09], or publicly-verifiable trapdoor predicates [CHK03]. However,
in all of these methods (with the exception of invariant signatures, discussed
below), soundness of the NIZK protocol crucially relies on the verifier’s ability
to recognize when an element is in the domain of a function chosen by the prover.

A natural question is then whether this gap in modeling TDPs is significant,
and furthermore whether public verifiability is an essential property for realizing
the hidden bit model. In particular, do doubly-enhanced TDPs where the domain
is not publicly recognizable suffice for the FLS protocol?

This question is underlined by the recent doubly enhanced TDP of Bitan-
sky et. al. [BPW16], where the domain is not efficiently recognizable given the
public index. Interestingly, this is also the first TDP based on general assump-
tions which are not known to imply the hardness of factoring (specifically, sub-
exponentially secure indistinguishability obfuscation and one-way functions).

1.1 Our Contributions

We start by demonstrating that the above gap is significant: We show that,
when instantiated with the [BPW16] doubly enhanced trapdoor permutation
family, the FLS protocol is unsound, even when combined with the [BY96] cer-
tification protocol. Indeed, this loss of soundness stems from the fact that the
existing notion of doubly enhanced trapdoor permutations does not make suffi-
cient requirements on indices that were not legitimately generated.

We then formulate a general property for trapdoor permutations, called cer-
tifiable injectivity. We show that this requirement suffices for the FLS paradigm
even when the TDF is not necessarily a permutation, and does not have publicly
recognizable domain. We then construct a doubly enhanced certifiably injective
trapdoor function assuming indistinguishability obfuscation (iO) and injective
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pseudorandom generators. Interestingly, this is the first candidate trapdoor func-
tion that suffices for the FLS paradigm, and is based on assumptions other
than factoring. Also, crucially, the co-domain of the function is not publicly
recognizable.

In the rest of this subsection we present our contributions in more detail.

Unsoundness of FLS+BY with the [BPW16] Trapdoor Permutations: We instan-
tiate the FLS+BY protocols using the [BPW16] iO-based doubly enhanced trap-
door function family, whose domain is not efficiently recognizable. We demon-
strate how a malicious prover could choose an index α which describes a many-to-
one function, wrongly certify it as a permutation by having the sampler sample
elements only out of a restricted domain Dα which is completely invertible, but
then invert any image in Dα into two pre-images - one in Dα and another outside
of it. The verifier cannot detect the lie since Dα is not efficiently recognizable.

Certifiable Injective Trapdoor Functions: We formulate a new notion of Certifi-
able Injectivity, which captures a general abstraction of certifiability for doubly-
enhanced injective trapdoor functions. This notion requires the function family
to be accompanied by algorithms for generation and verification of certificates
for indices, along with an algorithm for certification of individual points from
the domain. It is guaranteed that if the index certificate is verified then, except
for negligible probability, randomly sampled range points have only a single pre-
image that passes the pointwise certification. We show that certifiable injectivity
suffices for the FLS paradigm.

We show that the FLS+BY combination regains its soundness when instanti-
ated with a specific class of trapdoor permutations, whose domain is recognizable
using a poly-time algorithm, and is additionally almost-uniformly sampleable
using a poly-time algorithm. We call such TDPs public-domain. We show that
any public-domain TDP is certifiably injective. We note that the RSA and Rabin
candidates are indeed public-domain, while the [BPW16] permutation is not.

We additionally suggest a strengthened notion of Perfectly Certifiable Injec-
tivity, which guarantees that no point generated by the range sampler has two
pre-images that pass the pointwise certification. We show that by implement-
ing FLS using this notion, the resulting error in soundness is optimal, in that
it is equal to the error incurred by implementing the FLS protocol with ideal
trapdoor permutations.

Doubly Enhanced Perfectly Certifiable Trapdoor Functions from iO+: We con-
struct a doubly-enhanced family of trapdoor functions which is perfectly certi-
fiable injective. Our construction, inspired by the work of [SW14], is based on
indistinguishability obfuscation and pseudorandom generators, and is perfectly
certifiable injective under the additional assumption that the underlying pseu-
dorandom generator is (a) injective and (b) its domain is either full, or efficiently
sampleable and recognizable.

To provide an enhanced range sampler and a correlated pre-image sampler,
we use a re-randomization technique by having the range-sampler be given as
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an obfuscated circle, which applies a length-preserving pseudorandom function
on the random coins given to it, before inputting it to the forward evaluator.
Using another round of re-randomization we augment our construction into a
doubly-enhanced TDF. Our re-randomization technique can be applied to any
trapdoor function with an efficiently sampleable domain to obtain a doubly-
enhanced domain sampler, at the cost of using iO.

Finally, we show how using the assumption that the pseudorandom generator
g is injective and that its domain is efficiently recognizable, we are able to provide
a perfect pointwise certification algorithm for our trapdoor functions, proving it
is perfectly certifiable injective. We then show how to construct such generators
from standard assumptions (such as, e.g., hardness of discrete log). This makes
our construction sufficient for NIZK.

1.2 On Alternative Methods for NIZK

We briefly present a number of alternative avenues proposed in the literature for
obtaining NIZK, and specifically for instantiation the FLS protocol. We observe
that the need for functions whose domain is publicly recognizable, even for mali-
ciously generated indices, is common to all with the exception of one recent
construction.

[DN00] suggest a different path for realizing the hidden-bit model, by using
the notion of verifiable random generators. This notion provide the guarantee
that every pre-image has only one (verified) image, in the sense that one can-
not invert two different images into the same pre-image. They then suggest a
construction of verifiable random generators from a particular type of trapdoor
permutations, specifically from families of certified trapdoor permutations where
all the functions in a given family share a common, efficiently recognizable and
efficiently (publicly) sampleable domain. The latter assumption is crucial for this
construction to work, or else the same attack we describe in our work would work
in that case too. As we show in our work, assuming an efficiently recognizable
and sampleable domain is indeed sufficient to soundly certify the permutation,
however this assumption adds some limitation to the generalized abstraction of
trapdoor permutations.

[BGRV09] use the notion of (weak) verifiable random functions to obtain
NIZK using a very similar technique to that of [DN00]. Here too, they construct
verifiable random functions from trapdoor permutations, but in this case the
only assumption is that the trapdoor permutations are doubly enhanced.1 Their
construction assumes that the trapdoor permutation is efficiently certifiable,
and that this construction can be made to work with any (doubly enhanced)
trapdoor permutation, using the certification procedure of Bellare and Yung.
However, as we show in out current work, the latter is not true, in that certifying

1 In their original work, [BGRV09] only required that the trapdoor permutations be
enhanced. Regardless of the findings in our work, in light of [GR13], this requirement
should have been strengthened into doubly-enhanced to support the Bellare-Yung
certification.
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that an enhanced trapdoor permutation is indeed injective requires additional
assumptions.

[CHK03] provides yet another alternative path for realizing the hidden-bit
model. They suggest the notion of publicly-verifiable trapdoor predicates, which
they construct based on the decisional bilinear Diffie-Hellman assumption. Not
to confuse with our notion of certifiability, here the “verifiability” concerns the
ability to check, given a pair (x, y), that x is indeed a pre-image of y (not neces-
sarily the sole pre-image). This notion is suggested as a relaxation of the notion
of trapdoor permutations, which suffices for NIZK. Still, it has the same weak-
ness as the one pointed out here re DETDPs, namely it implicitly assumes that
the trapdoor index is generated honestly (or that the domain of the predicate is
efficiently recognizable and sampleable), thus it does not suffice in of itself for
realizing the hidden-bit model.

Recently, [BP15] showed how to construct invariant signatures [BG90] from
indistinguishability obfuscation and one-way functions. This, together with the
technique of [GO92], gives yet another path for realizing the hidden-bit model
from assumptions other than factoring. (Previously, the only known construction
of invariant signatures was from NIZK.) Their construction not only gives an
arguably more natural realization of the hidden-bit model then that obtained
by trapdoor permutation, but also avoids the certification problems altogether
(as invariant signatures handle the certification problem by definition). Still, the
trapdoor-permutations-based paradigm of [FLS90] remains the textbook method
for realizing non-interactive zero-knowledge proofs.

Over the years, additional approaches were suggested to obtaining non-
interactive zero-knowledge proofs which are not based on the hidden-bit model.
[GOS06] constructed non-interactive zero-knowledge proofs for circuit satisfiabil-
ity with a short reference string, and non-interactive zero-knowledge arguments
for any NP language. [GS08] constructed non-interactive zero-knowledge proofs
from assumptions on bilinear groups. [GOS12] and [SW14] constructed non-
interactive zero-knowledge arguments with a short reference string for any NP
language. All of these protocols either use a structured CRS whose generation
requires additional randomness that’s trusted to never be revealed, or achieve
zero-knowledge arguments, where the soundness holds only with respect to com-
putationally bounded adversaries. This leaves the hidden-bit paradigm (along
with the original protocols of [BFM88,BSMP91]) as the only known general way
to achieve zero-knowledge proofs for NP in the uniform reference string model.

1.3 Alternative Notions of Certifiability for TDPs

[Abu13] define and discuss two notions of verifiability for doubly-enhanced trap-
door permutations, which indeed allow verifying, or certifying, that a given trap-
door index indeed describes an injective function: a strong (errorless) one, in
which the verification is not allowed to accept any function which is not injec-
tive, and a weaker variant, with negligible error. The strong notion indeed suffices
for realizing the hidden-bit model, but is overly strong - in particular the existing
constructions from RSA and BY do not satisfy it. On the other hand, the weak
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notion suffers from the same weakness as the prior notions, in that it implicitly
assumes that the range of the function is efficiently recognizable. In contrast, we
provide a single notion that suffices for realizing the HBM model and is realiz-
able by the factoring-based constructions, by the IO-based construction, and by
the gap-DH based construction.

1.4 Other Applications of Trapdoor Permutations

The gap between ideal and general trapdoor permutations imposes a prob-
lem in other applications as well. [Rot10,GR13] discuss the security of the
[EGL85] trapdoor-permutations-based 1-out-of-k oblivious transfer protocol,
which breaks in the presence of partial-domain trapdoor functions when k ≥ 3,
and show how doubly enhanced trapdoor functions can be used to overcome this.
The concern of certifying keys is irrelevant in the oblivious transfer applications,
as the parties are assumed to be trusted. Still, certifiability concerns apply when-
ever dishonesty of one or more of the parties is considered an issue, such as the
case of interactive proofs and multi-party computation. We note however that
requiring that the trapdoor be certifiable does not suffice for making the [EGL85]
protocol secure against Byzantine attacks.

1.5 Paper Organization

In Sect. 2 we review the basic notations used in our work, as well as previous
results related to this work. In Sect. 3 we demonstrate how the soundness of the
FLS protocol may be compromised when using general TDPs, and discuss the
additional assumptions required to avoid this problem. In Sect. 4 we suggest the
alternative notion of certifiably injective trapdoor functions, and use it to over-
come the limitations of the FLS+BY combination and regain the soundness of
the FLS protocol. In Sect. 5 we construct a doubly-enhanced, certifiable injective
trapdoor function family based on indistinguishability obfuscation and injective
pseudorandom generators.

2 Review of Basic Definitions and Constructs

The cryptographic definitions in this paper follow the convention of modeling
security against non-uniform adversaries. A protocol P is said to be secure
against (non-uniformly) polynomial-time adversaries, if it is secure against any
adversary A = {Aλ}λ∈N, such that each circuit Aλ is of size polynomial in λ.

2.1 Notations

For a probabilistic polynomial time (PPT) algorithm A which operates on input
x, we sometimes denote A(x; r) as the (deterministic) evaluation A using random
coins r.
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We use the notation Pr[E1;E2; ...;En;R] to denote the probability of the
resulting boolean event R, following a sequence of probabilistic actions E1, ..., En.
In other words, we describe a probability experiment as a sequence of actions
from left to right, with a final boolean success predicate. We sometime combine
this notion with the stacked version PrS [E1;E2; ...;En;R] in which case the
sampling steps taken in S precede E1, ..., En, and the random coins used for S
are explicitly specified. (The choice of which actions are described in a subscript
and which are described within the brackets is arbitrary and is done only for
visual clarity).

2.2 Puncturable Pseudorandom Functions

We consider a simple case of puncturable pseudorandom functions (PPRFs)
where any PRF may be punctured at a single point. The definition is formu-
lated as in [SW14], and is satisfied by the GGM PRF [GGM86,BW13,KPTZ13,
BGI14].

Definition 1 (Puncturable PRFs). Let n, k be polynomially bounded length
functions. An efficiently computable family of functions:

PRF = {PRFS : {0, 1}n(λ) → {0, 1}λ : S ∈ {0, 1}k(λ), λ ∈ N}
associated with a PPT key sampler KPRF , is a puncturable PRF if there exists
a poly-time puncturing algorithm Punc that takes as input a key S and a point
x∗ and outputs a punctured key S∗ = S{x∗}, so that the following conditions are
satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈
{0, 1}n(λ),

Pr[S ← KPRF (1λ);S∗ = Punc(S, x∗);∀x �= x∗ : PRFS(x) = PRFS∗(x)] = 1

2. Indistinguishability at punctured points: for any PPT distinguisher D
there exists a negligible function μ such that for all λ ∈ N, and any x∗ ∈
{0, 1}n(λ),

Pr[D(x∗, S∗, PRFS(x∗)) = 1] − Pr[D(x∗, S∗, u) = 1] ≤ μ(λ)

where the probability is taken over the choice of S ← KPRF (1λ), S∗ =
Punc(S, x∗), u ← {0, 1}λ, and the random coins of D.

2.3 Indistinguishability Obfuscation

We define indistinguishability obfuscation (iO) with respect to a given class of
circuits. The definition is formulated as in [BGI+01].

Definition 2 (Indistinguishability Obfuscation [BGI+01]). A PPT algorithms
iO is said to be an indistinguishability obfuscator for a class of circuits C, if it
satisfies:
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1. Functionality: for any C ∈ C,

Pr
iO

[∀x : iO(C)(x) = C(x)] = 1

2. Indistinguishability: for any PPT distinguisher D there exists a negligible
function μ, such that for any two circuits C0, C1 ∈ C that compute the same
function and are of the same size λ:

Pr[D(iO(C0)) = 1] − Pr[D(iO(C1)) = 1] ≤ μ(λ)

where the probability is taken over the coins of D and iO.

2.4 Injective TDFs and TDPs

Definition 3 (Trapdoor Functions). A family of one-way trapdoor functions, or
TDFs, is a collection of finite functions, denoted fα : {Dα → Rα}, accompanied
by PPT algorithm I (index), SD (domain sampler), SR (range sampler) and
two (deterministic) polynomial-time algorithms F (forward evaluator) and B
(backward evaluator or inverter) such that the following condition holds:

1. On input 1n, algorithm I(1n) selects at random an index α of a function fα,
along with a corresponding trapdoor τ . Denote α = I0(1n) and τ = I1(1n).

2. On input α = I0(1n), algorithm SD(α) samples an element from domain Dα.
3. On input α = I0(1n), algorithm SR(α) samples an image from the range Rα.
4. On input α = I0(1n) and any x ∈ Dα, F (α, x) = fα(x).
5. On input τ = I1(1n) and any y ∈ Rα, B(τ, y) outputs x such that F (α, x) = y.

The standard hardness condition refers to the difficulty of inverting fα on a
random image, sampled by SR or by evaluating F (α) on a random pre-image
sampled by SD, when given only the image and the index α but not the trapdoor
τ . That is, it is required that, for every polynomial-time algorithm A, it holds
that:

Pr[α ← I0(1n);x ← SD(α); y = F (α, x);A(α, y) = x′ s.t. F (α, x′) = y] ≤ μ(n)
(1)

Or, when sampling an image directly using the range sampler:

Pr[α ← I0(1n); y ← SR(α);A(α, y) = x′ s.t. F (α, x′) = y] ≤ μ(n) (2)

for some negligible function μ.
Additionally, it is required that, for any α ← I0(1n), the distribution sampled

by SR(α) should be close to from that sampled by F (SD(α)). In this context
we require that the two distributions be computationally indistinguishable. We
note that this requirement implies that the two hardness requirements given in
Eqs. 1 and 2 are equivalent. The issue of closeness of the sampling distributions
is discussed further at the end of this section.

If fα is injective for all α ← I0(1n), we say that our collection describes
an injective trapdoor function family, or iTDFs (in which case B(τ, ·) inverts any
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image to its sole pre-image). If additionally Dα and Rα coincide for any α ←
I0(1n), the resulting primitive is a trapdoor permutation.

If for any α ← I0(1n), Dα = {0, 1}p(n) for some polynomial p(n), that is,
every p(n)-bit string describes a valid domain element, we say the function is
full domain. Otherwise we say the domain is partial. Full and partial range and
keyset are defined similarly. We say that a TDF (or TDP) is ideal if it has a full
range and a full keyset.

Definition 4 (Hard-Core Predicate). p is a hard-core predicate for fα if its value
is hard to predict for a random domain element x, given only α and fα(x). That
is, if for any PPT adversary A there exists a negligible function μ such that:

Pr[α ← I0(1n);x ← SD(α); y = F (α, x);A(α, y) = p(x)] ≤ 1/2 + μ(n).

Enhancements. A trivial range-sampler implementation may just sample a
domain element x by applying SD(α), and then evaluate the TDF on it by
applying F (α, x). This sampler, while fulfilling the standard one-way hardness
condition, is not good enough for some applications. Specifically, for the case of
NIZK, we require the ability to obliviously sample a range element in a way that
does not expose its pre-image (without using the trapdoor). This trivial range
sampler obviously does not qualify for this case.

Goldreich [Gol04] suggested the notion of enhanced TDPs, which can be used
for cases where sampling is required to be available in a way that does not expose
the pre-image. They then demonstrate how enhanced trapdoor permutations can
be used to obtain NIZK proofs (as we describe later in Sect. 2.5). We revisit this
notion, while extending it to the case of injective TDF (where the domain and
range are not necessarily equal).

Definition 5 (Enhanced injective TDF, [Gol04]). Let {fα : Dα → Rα} be a
collection of injective TDFs, and let SD be the domain sampler associated with
it. We say that the collection is enhanced if there exists a range sampler SR that
returns random samples out of Rα, and such that, for every polynomial-time
algorithm A, it holds that:

Pr[α ← I0(1n); r ← {0, 1}n; y = SR(α; r);A(α, r) = x′ s.t. F (α, x′) = y] ≤ μ(n)
(3)

where μ is some negligible function.

The range sampler of an enhanced injective TDF has the property that its
random coins do not reveal a corresponding pre-image, i.e. an adversary which
is given an image along with the random coins which created it, still cannot
inverse it with all but negligible probability.

[Gol11] additionally suggested enhancing the notion of hard-core predicates
in order to adapt the FLS proof (that uses traditional hard-core predicates) to
the case of enhanced trapdoor functions. Loosely speaking, such a predicate p
is easy to compute, but given α ← I0(1n) and r ← {0, 1}n, it is hard to guess
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the value of the predicate on the pre-image of the image sampled by the range
sampler using the coins r:

Definition 6 (Enhanced Hard-Core Predicate, [Gol11]). Let {fα : Dα → Rα}
be an enhanced collection of injective TDFs, with domain sampler SD and range
sampler SR. We say that the predicate p is an enhanced hard-core predicate of
fα if it is efficiently computable and for any PPT adversary A there exists a
negligible function μ such that

Pr[(α, τ) ← I(1n); r ← {0, 1}n; y = SR(α; r);x = B(τ, y);A(α, r) = p(α, x)] ≤ 1/2 + μ(n)

Or, equivalently, if the following two distribution ensembles are computation-
ally indistinguishable:

1. {(α, r, p(α,B(τ, SR(α; r)))) : (α, τ) ← I(1n), r ← {0, 1}n}n∈N

2. {(α, r, u) : α ← I0(1n), r ← {0, 1}n, u ← {0, 1}}n∈N

The hard-core predicates presented in [GL89] satisfy this definition without
changes (as they do not use the trapdoor index).

Definition 7 (Doubly Enhanced injective TDF, [Gol08]). Let {fα : Dα → Rα}
be an enhanced collection of injective TDFs, with domain sampler SD and range
sampler SR. We say that this collection is doubly-enhanced if it provides another
polynomial-time algorithm SDR with the following properties:

– Correlated pre-image sampling: for any (α, τ) ← I(1n), SDR(α; 1n) out-
puts pairs of (x, r) such that F (α, x) = SR(α; r)

– Pseudorandomness: for any PPT distinguisher D there exists a negligible
μ such that:

Pr[(α, τ) ← I(1n); (x, r) ← SDR(α); D(x, r, α) = 1]−
Pr[(α, τ) ← I(1n); r ← {0, 1}∗; y = SR(α; r); x = B(τ, y); D(x, r, α) = 1] ≤ μ(n)

SDR provides a way to sample pairs of an element x in the function’s domain,
along with random coins r which explain the sampling of the image y = fα(x)
in the function’s range. Note that since the collection is enhanced, r must not
reveal any information of x.

[GR13] review these enhanced notions of trapdoor permutations in light of
applications for which they are useful, specifically oblivious transfer and NIZK,
providing a comprehensive picture of trapdoor permutations and the require-
ments they should satisfy for each application. They additionally suggested a
number of intermediate notions between idealized TDPs, enhanced TDPs and
doubly-enhanced TDPs, and discussed notions of enhancements for general trap-
door and one-way functions.
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On the Uniformity of Distributions Sampled by the Domain, Range and Cor-
related Pre-image Samplers: In Definitions 3 and 7 we required that the distri-
bution sampled by (a) running the domain sampler SD, (b) inverting images
sampled by the range sampler SR, and (c) taking pre-images sampled by the
correlated pre-image sampler SDR, are all computationally indistinguishable.
This is a relaxation of the definition given in [Gol11,GR13], which require
that all three of these distributions be statistically close. The relaxed notion is
adapted from [BPW16], which indeed define and implement the computational-
indistinguishable variant. While samplers that are statistically close to uniform
are often needed in situations where the permutation is applied repeatedly, com-
putational closeness suffices in our setting.

2.5 Non-interactive Zero-Knowledge

Definition

Definition 8 (Non-
Interactive Zero Knowledge, Blum-Feldman-Micali [BFM88]). A pair of PPT
algorithms (P, V ) provides an (efficient-prover) Non-Interactive Zero Knowledge
(NIZK) proof system for language L ∈ NP with relation RL in the Common
Reference String (CRS) Model if it provides:

– Completeness: for every (x,w) ∈ RL we have that:

Pr
P,crs

[π ← P (x,w, crs);V (x, crs, π) = 0] ≤ μ(|x|)

where the probability is taken over the coins of P and the choice of the CRS
as a uniformly random string, and μ(n) is some negligible function.

– Soundness: for every x /∈ L:

Pr
crs

[∃π : V (x, crs, π) = 1] ≤ μ(|x|)

where the probability is taken over the choice of the CRS as a uniformly
random string, and μ(n) is some negligible function.

– Zero-Knowledge: there exists a PPT algorithm S (simulator) such that the
following two distribution ensembles are computationally indistinguishable:

• {(x, crs, π) : crs ← U, π ← P (x,w, crs)}(x,w)∈RL

• {S(x)}(x,w)∈RL
.

Here U denotes the set of uniformly random strings of length polynomial
in |x|.
While it sometimes makes sense to have a computationally unbounded prover,

it should be stressed that the verifier and simulator should both be polynomial-
time.

The common reference string is considered the practical one for NIZK proof
systems, and is the one widely accepted as the appropriate abstraction. When
discussing NIZK proof systems, we sometime omit the specific model being
assumed, in which case we mean the CRS model.
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NIZK in the Hidden-Bit Model. A fictitious abstraction, which is neverthe-
less very helpful for the design of NIZK proof systems, is the hidden-bits model.
In this model the common reference-string is uniformly selected as before, but
only the prover can see all of it. The prover generates, along with a proof π, a
subset I of indices in the CRS, and passes them both to the verifier. The verifier
may only inspect the bits of the CRS that reside in the locations that have been
specified by the prover in I, while all other bits of the CRS are hidden to the
verifier.

Definition 9 (NIZK in the Hidden-Bit Model [FLS90,Gol98]). For a bit-string
s and an index set I denote by sI the set of values of s in the indexes given
by I: sI := {(i, s[i]) : i ∈ I}. A pair of PPT algorithms (P, V ) constitute an
(efficient-prover) NIZK proof system for language L ∈ NP with relation RL in
the Hidden-Bit (HB) Model if it provides:

– Completeness: for every (x,w) ∈ RL we have that:

Pr
P,crs

[(π, I) ← P (x,w, crs);V (x, I, crsI , π) = 0] ≤ μ(|x|)

where the probability is taken over the coins of P and the choice of the CRS
as a uniformly random string, and μ(n) is some negligible function.

– Soundness: for every x /∈ L:

Pr
crs

[∃π, I : V (x, I, crsI , π) = 1] ≤ μ(|x|)

where the probability is taken over the choice of the CRS as a uniformly
random string, and μ(n) is some negligible function.

– Zero-Knowledge: there exists a PPT algorithm S (simulator) such that the
following two distribution ensembles are computationally indistinguishable:

• {(x, crsI , π) : crs ← U, (π, I) ← P (x,w, crs)}(x,w)∈RL• {S(x)}(x,w)∈RL
.

Here U denotes the set of uniformly random strings of length polynomial
in |x|.
While the hidden-bit model is an unrealistic one, its importance lies in two

facts. Firstly, it provides a clean abstraction for NIZK systems, which facilities
the design of “clean” proof systems. Efficient-prover NIZK proof systems for NP-
hard languages exist unconditionally in the hidden-bit model [FLS90,Gol98]:

Theorem 1 ([FLS90]). There exists a NIZK proof system in the hidden-bit
model for any NP language (unconditionally). Furthermore, the protocol is sta-
tistical zero-knowledge and statistically sound.

Secondly, proof systems in the hidden-bit model can be easily transformed
into proof systems in the more realistic CRS model, using general hardness
assumptions. Feige, Lapidot and Shamir [FLS90] suggests such a transformation.
In the rest of this section, we describe their construction and the details of the
underlying hardness assumptions. We remark that in the hidden-bit model, we
can obtain both perfect soundness (with a negligible completeness error) and
perfect completeness (with a negligible soundness error).
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From Hidden-Bit to CRS. The following is a review of the full details of the
FLS protocol and the enhancement that followed to adapt it to general trapdoor
permutations. This follows the historic line of research by [FLS90,BY96,Gol98,
Gol11,GR13]. We refer the reader to [CL17] for a more comprehensive overview.

The FLS Protocol: Assuming the existence of one-way permutations, Feige, Lapi-
dot and Shamir [FLS90] constructed a NIZK proof-system in the CRS model
for any NP language. The key to this protocol is having the prover provide
the verifier with pre-images of random images taken from the one-way permuta-
tion’s range. They also offer an efficient implementation of the prescribed prover,
using trapdoor permutations, which allow the prover to efficiently invert random
images using the secret trapdoor key. We refer to this construction as the FLS
protocol. The full details of this protocol are given in [FLS90].

Theorem 2 ([FLS90]). Assuming the existence of one-way permutations,
there exists a NIZK proof system in the CRS model with an inefficient prover
for any NP language.

Theorem 3 ([FLS90]). Assuming the existence of an ideal trapdoor permu-
tation family, there exists a NIZK proof system in the CRS model (with an
efficient prover) for any NP language.

As shown by [FLS90], the FLS protocol provides a NIZK proof system assum-
ing that the underlying TDP is ideal. However, existing instantiations of TDPs
are not ideal, and in fact are far from it. Most reasonable constructions of TDPs
have both partial keysets and partial domains. This leads to two gaps which
arise when using general TDPs, in place of ideal ones.

Ideal Domains + General Keys: The Bellare-Yung Protocol: The first hurdle,
discovered by Bellare and Yung [BY96], involves the use of general trapdoor
keys (rather than ideal ones). The problem is that the soundness of the FLS
protocol relies on the feasibility of recognizing permutations in the collection.
If the permutation is ideal then every key describes a permutation, and there-
fore detecting a permutation is trivial. However, existing instantiations of TDPs
require sampling keys of a certain form using a specific protocol. This brings us
to the problem of certifying permutations, which aims to answer the question
of how to certify that a given key indeed describes a valid permutation. Bellare
and Yung [BY96] suggested a certification procedure for permutations, assuming
nothing of the keyset, but requiring that the range remains full. We refer to this
procedure as the Bellare-Yung protocol. In a nutshell, the prover in the Bellare-
Yung protocol simply inverts random images taken from the CRS into their pre-
images and presents the verifier with those pre-images. The verifier validates
the pre-images. By having the prover inverts enough random pre-images, the
verifier is convinced that only a negligible part of the range is non-invertitable,
meaning the function is “almost” injective. [BY96] show that this property of
almost-injectivity is strong enough for FLS.
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Theorem 4 ([BY96]). Assuming the existence of a full-domain trapdoor
permutation family (whose keys may be hard to recognize), there exists a NIZK
proof system in the CRS model for any NP language (with an efficient prover).

General Domains: Doubly Enhanced TDPs: The second gap concerns the case
of partial domains, where the function’s domain is comprised of elements of
specific structure (and not just {0, 1}n). The FLS protocol treats the CRS as
a sequence of range elements. In the case of the general abstraction of trap-
door permutations, an additional domain sampling algorithm is required. This
problem is solved by requiring the use of doubly enhanced trapdoor permuta-
tions. Given the permutation index α, both the prover and the verifier use the
enhanced sampling algorithm SR(α) to sample elements from the permutation’s
range. They treat the CRS as a sequence r1, ..., rl, where each rl ∈ {0, 1}n is
handled as random coins for the range sampler. They create a list of range items
yi = SR(α; ri) and use them for the rest of the FLS protocol. Using the range
sampler solves the completeness issue of NIZK in the CRS model for permuta-
tions with general domains. However, the resulting protocol may no longer be
zero-knowledge, as the verifier now obtains a list of random pairs (xi, ri) such
that fα(xi) = Sα(ri), but it is not clear that it could have generated such pairs
itself. The two enhancements solve just that, and allow the verifier to obtain
such pairs on its own.

Theorem 5 ([GR13]). Assuming the existence of a general doubly-enhanced
trapdoor permutation family with efficiently recognizable keys, there exists
a NIZK proof system in the CRS model for any NP language (with an efficient
prover).

Moreover, in order to certify general keys, [Gol11,GR13] suggested combining
between doubly enhanced permutations and the Bellare-Yung protocol, by using
the doubly-enhanced domain sampler to sample images by the Bellare-Yung
prover and verifier. We reexamine this suggestion in Sect. 3.

Basing FLS on Injective Trapdoor Functions: Before moving on, we mention that
while the FLS protocol is originally described using (trapdoor) permutations, it
may just as well be described and implemented using general injective trapdoor
functions. In this case, since the CRS is used to generate range elements, there is
no useful notion of “ideal” injective trapdoor functions; if f maps n-bit strings
into m-bit strings, where m > n, then there must exists some m-bit strings
which do not have a pre-image under f . However, using a doubly-enhanced
general injective trapdoor function, the FLS protocol and the generalization
into general TDPs will work without any changes, under assuming the keys are
efficiently recognizable. In Sect. 5 we show an example for such a injective TDF
and it’s application to NIZK proof systems.

3 FLS with General Doubly Enhanced TDPs Is Unsound

We begin with a careful reexamination of the FLS protocol, in light of the work of
[Gol11,GR13]. We discuss a crucial problem yet to be detected when applying the
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Bellare-Yung protocol on general TDPs, which have both partial domains and
partial keysets. Specifically, we identify that the soundness of the FLS protocol
may be compromised when using such trapdoor functions.

3.1 The Counter Example

In preparation to describing the counter example, we first sketch the full details
of the Bellare-Yung protocol, while allowing both partial range and partial keyset
for the TDPs, as suggested by [GR13]. Recall that we are provided with a doubly-
enhanced TDP family, described using the algorithms I(1n) → (α, τ), F (α, x) →
y,B(τ, y) → x, S(α; r) → y. We treat the CRS as a sequence of random coins
for the sampler S, and apply S both on the prover and on the verifier side to
obtain range elements.

– Input: (α, τ) ← I(1n)
– CRS: a sequence of l random strings r1, ..., rl, each acts as random coins for

S.
– Prover: is given (α, τ) and does the following:

1. Calculate yi := S(α; ri) for each 1 ≤ i ≤ l.
2. Calculate xi := B(τ, yi) for each 1 ≤ i ≤ l.
3. Output {(i, xi) : 1 ≤ i ≤ l}

– Verifier: is given α and {(i, xi) : 1 ≤ i ≤ l}, and does the following
1. Calculate yi := S(α; ri) for each 1 ≤ i ≤ l.
2. Validate that yi = F (α, xi) for each 1 ≤ i ≤ l. If any of the validations

fail, reject the proof. Otherwise, accept it.

Looking into the details of the protocol, we detect a potential problem. We
demonstrate it by instantiating the FLS+BY protocols using a specific family
of doubly-enhanced trapdoor permutations, which was proposed by [BPW16]:

Let PRFk be a pseudorandom function family, and iO an indistinguishability
obfuscator. Let Ck be the circuit that, on input (i, t), if t = PRFk(i) outputs (i+
1, PRFk(i+1)) (where i+1 is computed modulo some T ) and otherwise outputs
⊥. Denote by C̃ := iO(Ck) the obfuscation of Ck. The BPW construction gives
a DETDP F where C̃ is the public permutation index, and k is the trapdoor.
To evaluate the permutation on a domain element (i, PRFk(i)), just apply C̃.
To invert (i + 1, PRFk(i + 1)) given k, return (i, PRFk(i)). The range sampler
is given as an obfuscation of a circuit which samples out of a (sparse) subset of
the function’s range. One-wayness holds due to a hybrid puncturing argument:
the obfuscation of the cycle (i, PRFk(i)) → (i + 1, PRFk(i + 1)) (where i + 1
is computed module T ) is indistinguishable from that of the same cycle when
punctured on a single spot i∗, by replacing the edge (i∗, PRFk(i∗)) → (i∗ +
1, PRFk(i∗ + 1)) with a self loop from (i∗, PRFk(i∗)) to itself. By repeating the
self-loops technique we obtain a punctured obfuscated cycle where arriving from
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(i, PRFk(i)) to its predecessor (i − 1, PRFk(i − 1)) cannot be done efficiently
without knowing k itself.2

Suppose that the [BPW16] construction is used to instantiate the FLS+BY
protocols, and consider the following malicious prover: Let C ′

k be a circuit which,
given input (i, t), does the following: if t = PRFk(i) or t = PRFk(i − 1), output
(i + 1, PRFk(i + 1)). Otherwise, output ⊥. Denote C̃ ′ := iO(C ′

k). We give out
C̃ ′ as the public key and keep k as the trapdoor. We keep the domain sampler
as it is, that is, it returns only items of the form (i, PRFk(i)).

Denote Dk = {(i, PRFk(i) : i ∈ [1...T ])} and D̃k = {(i, PRFk(i)) : i ∈
[1...T ]}∪ (i, PRFk(i−1)) : i ∈ [1...T ]}. It is easy to see that C ′

k is a permutation
when restricted to the domain Dk, but it is many-to-one when evaluated on the
domain D̃k: each item (i + 1, PRFk(i + 1)) ∈ Dk has 2 pre-images: (i, PRFk(i))
and (i, PRFk(i−1)). Note that the one-wayness of the trapdoor function is main-
tained even when extended to the domain D̃k: For each image (i+1, PRFk(i+1))
we now have two pre-images, one is (i, PRFk(i)) which is hard to invert to due
to the same puncturing argument as in the original BPW paper, and the second
is (i, PRFk(i − 1)) which has no pre-image of its own, and therefore no path on
the cycle can lead to it (keeping the same one-wayness argument intact).

Finally, our cheating prover can wrongly “certify” the function as a per-
mutation. The domain sampler will always give an image in Dk as it was not
altered. During the Bellare-Yung certification protocol, the prover can invert
y = (i + 1, PRFk(i + 1)) ∈ Dk to, say, (i, PRFk(i)), which will pass the vali-
dation. However, during the FLS protocol, the prover can choose to invert any
y ∈ Dk to one of its two distinct pre-images, one from Dk and another from
D̃k \ Dk, which breaks the soundness of the protocol. (Indeed, for natural hard-
core predicates of F the predicate values for the two preimages associated with
a random i are close to being statistically independent).

3.2 Discussion

We attribute the loss in soundness when applying the FLS+BY combination on
the [BPW16] construction to a few major issues.

First, we observe that both the sampling and forward evaluation algorithms
are required to operate even on illegitimate keys. However, the basic definition of
trapdoor permutations (c.f. [Gol98]) does not address this case at all. Ignoring
this case may make sense in settings where the party generating the index is
trusted, but this is not so in the case of NIZK proof systems. We therefore
generalize the basic definition of trapdoor permutations so that the forward

2 In order to add an enhanced domain sampler, the BPW construction returns ele-
ments of the form (PRG(r), PRFk(PRG(r))), where PRG is a pseudorandom gen-
erator which lengthens the input by a significant factor. The domain sampler is just
an obfuscation of a circuit which outputs the above pair on some random r. By
augmenting the sampler even more, they were able to doubly-enhance their TDP, at
the cost of creating a very sparse part of the domain which is sampleable. We leave
the rest of the details to the reader.
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evaluation and domain sampling definitions generalize to any α, rather than just
those which were generated by running the index-generation algorithm. That is,
for every α, Dα is some domain over which F (α, ·) is well defined, and S(α; r)
returns elements from that domain.

We next claim that in order for the soundness of the complete FLS+BY
protocol to be preserved, two additional requirements are needed: First, mem-
bership in Dα should be efficiently recognizable given α. That is, there should
exist a polynomial-time algorithm which, given α and some string x, decides if
x represents an element in Dα or not. Second, the domain sampler S should be
guaranteed to sample (almost) uniformly out of Dα. We stress that both these
requirements should hold with respect to any index α, in particular indices that
were not generated truthfully. Furthermore, they are made on top of the existing
requirements from doubly-enhanced trapdoor permutations.

We call doubly enhanced trapdoor permutations that have these properties
public domain. We formalize this notion in Definition 13 and prove that it indeed
suffices for regaining the soundness of the FLS+BY combination in Theorem 7
(see Sect. 4.3).

In the rest of this section, we show that these two requirements are indeed
necessary, by demonstrating that if either of the two do not hold then the result-
ing proof system is not sound.

First, consider the case where S’s sampling distribution is non-negligibly far
from uniform over Dα. The soundness of Bellare-Yung depends on the observa-
tion that if the function is not an almost-permutation, then by sampling enough
random images from the function’s domain, there must be a sample with cannot
be inverted (with all but negligible probability). However, if the sampler does
not guarantee uniformity this claim no longer holds, as the prover may give out a
sampler which samples only out of that portion of the range which is invertible.

Secondly, assume S indeed samples uniformly from the domain, and con-
sider the case where Dα is not efficiently recognizable. As it turns out, both the
Bellare-Yung protocol and the original FLS protocol require the verifier to deter-
mine whether pre-images provided by the prover are indeed in Dα. Otherwise,
a malicious prover could certify the permutation under a specific domain, but
later provide pre-images taken out of an entirely different domain, thus enabling
it to invert some images to two or more pre-images of its choice.

Indeed, the attack described in Sect. 3.1 takes advantage of the loophole
resulting from the fact that the domain of the [BPW16] is neither efficiently
recognizable nor efficiently sampleable. The exact reason for the failure depends
on how the domain of [BPW16] is defined with respect to illegitimate indices. Say
for α = C̃, we give out Dα which includes only pairs (i, x) such that x = PRFk(i)
(for the specific k used to construct C̃). In that case, S indeed samples uniformly
from Dα. However since Dα is not efficiently recognizable, the prover cannot
check that the pre-image it was given is from Dα. In particular it cannot tell if
it is from Dk = Dα or from D̃k. On the other hand, if Dα = {0, 1}∗, then Dα

may be trivially recognizable for any index, but S does not guarantee a uniform
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sample from Dα. Indeed, S may sample only from that subset of Dα which is
invertible, thus breaking the soundness.

4 Certifying Injectivity of Trapdoor Functions

We go back to the original problem of certifying permutations in a way that is
sufficient for the FLS protocol, while addressing the more general problem of
certifying injectivity of trapdoor functions (which may or may not be permuta-
tions). We note that although this problem is motivated by the need to fill in
the gaps in the FLS protocol, a solution for it might be interesting on its own.

In Sect. 4.1 we define the notion of Certifiable Injectivity as a general abstrac-
tion of certifiability for doubly-enhanced injective trapdoor functions. In Sect. 4.2
we prove that this notion indeed suffices for regaining the soundness of the FLS
protocol. In Sect. 4.3 we show how certifiable injectivity can be realized by any
trapdoor permutations whose domain provides certain additional properties, by
using the Bellare-Yung certification protocol. In Sect. 4.4 we suggest the notion
of Perfectly Certifiable Injectivity as a specific variant of certifiable injectivity,
where there is no longer need for a certification protocol and the resulting sound-
ness is optimal.

4.1 Certifiable Injectivity - Definition

We define a general notion of certifiability for injective trapdoor functions, which
requires the existence of a general prover and verifier protocol for the function
family. The verifier in our notion provides two levels of verification: a general
verification procedure V for an index α, and then a pointwise certification pro-
cedure ICert which, on index α and an image y, “certifies” that with all but
negligible probability y has only one pre-image under α. The purpose of this pro-
tocol is to guarantee that if the verifier accepts the proof given by the prover on
a certain index α, then with all but negligible probability (over the coins of the
range sampler), the range sampler cannot sample images which are certified by
ICert and can be inverted to any two pre-images. We note that this certification
must not assume recognizability of the domain.

Definition 10 (Certifiable Injective Trapdoor Functions (CITDFs)). Let F =
{fα : Dα → Rα} be a collection of doubly enhanced injective trapdoor functions,
given by way of algorithms I, F,B, SD, SR. We say that F is certifiably injective
(in the common reference string model) if there exists a polynomial-time algo-
rithm ICert and a pair of PPT algorithms (P, V ), which provides the following
properties:

– Completeness: for any (α, τ) ← I(1n) we have:
1. PrP,V,crs[π ← P (α, τ, crs);V (α, crs, π) = 1] = 1, where the probability is

taken over the coins of P and V and the choice of the CRS, and
2. For any x ∈ Dα, ICert(α, x) = 1.
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– Soundness: there exists a negligible function μ such that the following holds
for any α ∈ {0, 1}∗ :

Pr
crs,V,r

[∃π, x1 �= x2 ∈ {0, 1}∗ :V (α, crs, π) = 1, F (α, x1) = F (α, x2) = SR(α; r),

ICert(α, x1) = ICert(α, x2) = 1] ≤ μ(n)

where the probability is taken over the coins of V the choice of the CRS, and
the random coins given to the range sampler. Note that this must hold for any
α, including those that I cannot output, and that π can be chosen adaptively
given the common reference string.

– Enhanced Hardness (even) given the Proof: for any polynomial-time
algorithm A there exists a negligible function μ, such that the following holds

Pr
P,crs,r

[(α, τ) ← I(1n);π ← P (α, τ, crs);x ← A(α, r, crs, π);

F (α, x) = SR(α; r)] ≤ μ(n)

where the probability is taken over the coins of P , the choice of the CRS and
the randomness r for the range sampler.

Certifiable injectivity gives a general way to certify that a given key describes
an injective function, even when using general, partial-domain/range functions.
The proof generated by P and verified by F is used to certify that the given key
α is indeed injective, in the sense that if V accepts it then no two acceptable
pre-images can map to the same image (with all but negligible probability). Note
that our hardness condition only requires that inversion remains hard. Partial
information on the preimage x can be leaked, and there is no “zero-knowledge-
like” property.

4.2 Certifiable Injectivity Suffices for the Soundness of FLS

Our key theorem, stated next, shows how combining certifiable injectivity with
the FLS protocol and doubly-enhanced permutations, we overcome the existing
problems and obtain NIZK for NP from general permutations.

Theorem 6 (DECITDFs → NIZK). Assuming the existence of doubly-
enhanced, certifiably injective trapdoor functions, there exists a NIZK proof sys-
tem in the CRS model for any NP language.

Proof Sketch: We adapt the FLS protocol in an intuitive way: given a
DECITDF, we treat the CRS as two separate strings. The first string is used to
certify the injectivity of the trapdoor function, using the CI-prover and verifier,
while the second is used for the FLS protocol. Moreover, we adapt the veri-
fier part of the FLS protocol to pointwise-certify any pre-image presented to it
by running ICert on it. The soundness guarantee of CI notion ensures that a
malicious prover must choose a trapdoor index which describes an injective (or
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at least an almost-injective) function over the domain of elements accepted by
ICert, or otherwise the CI verifier would reject the first part of the proof. The
hardness guarantee ensures that the FLS proof remains zero-knowledge, even in
the presence of the CI proof.

Proof Let F = {fα : Dα → Rα} be a collection of doubly-enhanced, certifiably
injective trapdoor functions, and let L be an NP language.

We extend the definition of enhanced hard-core predicates to hold with
respect to the CI proof (as well as the index):

Definition 11 (CI-Enhanced Hard-Core Predicate). Let F = {fα} be a collec-
tion of doubly-enhanced certifiably injective trapdoor functions, with P being a
CI-prover for it and SR the enhanced range sampler. We say that the predicate
p is a CI-enhanced hard-core predicate of fα if it is efficiently computable, and
for any PPT adversary A there exists a negligible function μ such that

Pr
crs

[(α, τ) ← I(1n);π ← P (α, τ, crs); r ← {0, 1}n;

A(α, crs, π, r) = p(α, f−1
α (SR(α; r)))] ≤ 1/2 + μ(n)

Similarly to (plain) enhanced hard-core predicates, this definition is uncondi-
tionally realizable for any doubly-enhanced certifiably injective TDF (e.g. using
the [GL89] hard-core predicate, which does not use the function index).

Recall that by Theorem 1, there exists a hidden-bit-model proof system for
L, denote it (PHB , VHB). Let p be a CI-enhanced hard-core predicate for fα.

We treat the common reference string as two separate substrings cCI , cFLS .
cCI will be used by the CI-prover and CI-verifier (PCI , VCI) for F . cFLS will be
used by the prover-verifier pair from the FLS protocol, which is adapted to the
use of doubly-enhanced trapdoor functions (based on the adaptation suggested
by [Gol11]).

Let (P, V ) be the following protocol:

– The prover P : given an instance-witness pair (x,w) ∈ RL:
1. Selects (α, τ) ← I(1n).
2. Invoke PCI(α, τ, cCI) to obtain a proof πCI for the injectivity of fα.
3. Treat cFLS as a sequence of random strings r1, ..., rl, where each ri is of

length needed for the random coins for SR (which is polynomial in n).
For i = 1, ..., l, let yi = SR(α; ri), xi = B(τ, yi), and σi = p(xi).

4. Invoke PHB on σ = (σ1, ..., σl), to obtain (I, πHB) - I is a list of indices
to reveal, and πHB is the hidden-bit-model proof. Let πFLS be the pair
(πHB , {(i, xi) : i ∈ I}).

5. Output (α, πCI , πFLS).
– The verifier V : given an instance x and a proof (α, πCI , πFLS):

1. Invoke VCI(α, cCI , πCI) to check the proof πCI for the injectivity of fα.
If the validation failed, reject the proof.

2. πFLS := (πHB , {(i, xi) : i ∈ I}). Treat cFLS as a sequence of random
strings r1, ..., rm.



Certifying Trapdoor Permutations, Revisited 497

3. Check that, for every i ∈ I, yi := SR(α; ri) = F (α, xi) and ICert(α, xi)
accepts. If any of the validations failed, reject the proof.

4. Let σi = p(xi) for all i ∈ I. Let σI = (i, σi)i∈I . Invoke VHB on x, σI , πHB ,
and accepts if and only if it accepts.

We next prove that (P, V ) provide a NIZK proof system for L in the CRS
model.

Completeness follows immediately from the completeness of the CI notion
and of the FLS protocol.

For Soundness, we follow the line of [BY96], of bounding the extra error in
soundness induced when the trapdoor function is not a permutation, adapting
it to the notion of DECITDFs:

Definition 12. Let F = {fα : {0, 1}m → {0, 1}n} be a DECITDF family. The
Certified Collision Set of an index α is the set of all n-bit strings which have
more than one certified pre-image under fα:

CIC(α) := {y ∈ {0, 1}n :∃x1 �= x2 ∈ {0, 1}m s.t. fα(x1) = fα(x2) = y

andICert(α, x1) = ICert(α, x2) = 1} (4)

We say that fα is (certified) almost-injective if |CIC(α)| is negligible.

Lemma 1. Let F be a DECITDF family with a CI verifier VCI , and let α be
some index such that fα is not (certified) almost-injective. Then Prcrs,V [∃π :
VCI(α, crs, π) = 1] ≤ μ(n) for some negligible function μ, where the probability
is taken over the choice of the crs and the random coins of V .

Proof. Follows directly from the soundness condition of Definition 10.

Next, suppose x /∈ L, and let (α, πCI , πFLS) be some proof given to V . We
split our proof to cases:

– fα is not (certified) almost-injective: then by Lemma 1, VCI(α, crs, π) rejects
with all but negligible probability.

– fα is (certified) almost-injective. As shown by [FLS90], if yi /∈ CIC(α) for
all i = 1, ..., l, then VHB rejects the proof on x with all but negligible prob-
ability. This is so because on every presumed pre-image xi presented to it
by the prover, the verifier checks that fα(xi) = yi and ICert(α, xi) = 1.
As yi /∈ CIC(α), there can only exists one pre-image xi that passes both
certifications, thus each hidden-bit can be opened into only one certified pre-
image, preserving the soundness of the underlying hidden-bit proof. Finally,
we bound the additional error induced by the case where yi ∈ CIC(α) for
some i, by Pr[∃1 ≤ i ≤ l : yi ∈ CIC(α)]. By our assumption, |CIC(α)| is
negligible in n, thus the additional error is negligible as well.

This completes the proof of the soundness condition.



498 R. Canetti and A. Lichtenberg

For Zero Knowledge, we follow the zero-knowledge proof given in [Gol11].
The proof is given using a hybrid argument, based on the security of the doubly-
enhanced injective trapdoor function, and while handling the issue of addition-
ally simulating the certifiable injectivity proof. We refer the reader to [CL17] for
the full details of the zero-knowledge condition.

This completes the proof of Theorem 6.

4.3 Certifiable Injectivity for Public-Domain TDPs Using
Bellare-Yung

Building on the discussion in Sect. 3.2, we formalize the notion of public-domain
trapdoor permutations. We then show that, when applied to public-domain per-
mutation, the BY certification mechanism suffices for guaranteeing Certifiably
Injectivity (and, thus, also soundness of the FLS paradigm).

Definition 13 (Public-Domain Trapdoor Permutations). Let fα : {Dα → Dα}
be a trapdoor permutation family, given by (I, S, F,B). We say that it is public-
domain if the following two additional properties hold:

– The domain is efficiently recognizable: that is, there exists an
polynomial-time algorithm Rec which, for any index α and any string x ∈
{0, 1}∗, accepts on (α, x) if and only if x ∈ Dα. In other words, Dα is defined
as the set of all strings x such that Rec(α, x) accepts.

– The domain is efficiently sampleable: that is, for any index α, S(α)
samples almost uniformly from Dα.

We stress that both properties should hold with respect to any α, including
ones that were not generated by running I.

We show that indeed, for the case of public-domain doubly-enhanced trap-
door permutations, Bellare-Yung can be used to obtain certifiable injectiveness.

Theorem 7. Any doubly-enhanced public-domain trapdoor permutation family
is certifiably injective.

Proof. Let F be a doubly enhanced public-domain trapdoor permutation. Let
(P, V ) the prover and verifier from the enhanced Bellare-Yung protocol for F ,
that is, the version of Bellare-Yung that uses the enhanced range sampler to
generate images from the random coins given in the common reference string, as
described in Sect. 3.1. Let Rec be a polynomial-time domain recognizer for Dα,
for any index α (which exists since the permutation family is public-domain).
We claim that F is certifiably injective, with ICert(α, x) = Rec(α, x) and (P, V )
giving the CI prover and verifier.

Completeness follows immediately from that of Bellare-Yung. The hardness-
given-the-proof requirement follows from the Bellare-Yung protocol providing
zero-knowledge secrecy, which implies an even stronger guarantee. For sound-
ness, we note that if Prr[∃x1 �= x2 ∈ {0, 1}∗ : F (α, x1) = F (α, x2) =
SR(α; r), ICert(α, x1) = ICert(α, x2) = 1] is non-negligible, then by definition
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F (α, ·) is not almost-injective over Dα. As shown by [BY96], this implies that
the verifier will reject any proof with all but negligible probability, which implies
our soundness requirement.

We note that some existing candidate constructions, such as ones on the
line of [BPW16], are not public-domain, as they inherently need the sampling
algorithm to hold secrets. Indeed, as demonstrated in Sect. 3, Bellare-Yung does
not suffice to guarantee soundness when instantiating FLS with such a candidate.
On the other hand, the RSA TDPs are public-domain: the domain Z∗

N is indeed
efficiently recognizable for any public index N , and a PPT certifiably uniform
domain sampler can be described for any public key N of RSA, by mapping
strings in {0, 1}n to Z∗

N in a way that obtains (almost) uniform samples in Z∗
N .3

For those constructions the FLS+BY combination is indeed sound.

4.4 Perfectly Certifiable Injectivity

While certifiable injectivity seems to capture the minimal requirement for a trap-
door permutation that suffices for FLS, the requirement of a prover and verifier
algorithms are somewhat cumbersome when viewed purely in the context of trap-
door permutations. We thus suggest a strengthened notion of Perfectly Certifiable
Injectivity, which is a variant of certifiable injectivity in which the pointwise cer-
tification algorithm ICert provides a stronger guarantee, eliminating the need
for an additional prover-verifier protocol.

Definition 14 (Perfectly Certifiable Injective TDFs). A doubly-enhanced injec-
tive TDF family is perfectly certifiable injective if, in addition to the standard
set of algorithms I, SD, SR, F,B, it defines a certification algorithm ICert.

ICert is given a permutation index α and a pre-image x, and accepts or
rejects, providing the following two guarantees:

– Completeness: If α ← I0(1n) and x ← SD(α) then ICert(α, x) = 1.
– Perfect Soundness: For any index α, there do not exist any x1 �= x2 ∈

{0, 1}∗ such that F (α, x1) = F (α, x2) and ICert(α, x1) = ICert(α, x2) = 1.
Note that α needs not be generated honestly by I.

The standard hardness condition is required as usual (and must apply even
in the presence of ICert).

Perfect CI is a special case of general CI, where the soundness of ICert is
absolute; for any α, x1, if ICert(α, x1) = 1 then it is guaranteed that there exists
no second pre-image x2 which maps to F (α, x1) and accepted by ICert(α, ·).
It turns out that in the specific case where the trapdoor function family in
use is perfectly certifiable injective with, the index certification protocol can

3 Full details can be found in [BY96] and [GR13], appendix B.
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be completely avoided. Indeed, the soundness requirement of Definition 10 is
trivially fulfilled, as:

Pr
r

[∃x1, x2 : F (α, x1) = F (α, x2) = SR(α; r), ICert(α, x1) = ICert(α, x2) = 1] = 0

An important property of this technique is that the soundness it provides is
perfect, in that it is identical to the soundness obtained by using ideal trapdoor
permutations. No additional error is incurred, since for every image there exists
a single acceptable pre-image (unconditionally).

5 Doubly Enhanced Perfectly Certifiable Injective
Trapdoor Functions from iO+

We construct doubly-enhanced injective trapdoor functions using iO + pseudo-
random generators (which can be constructed from one way functions). Addi-
tionally, assuming the pseudorandom generator is injective, we show that the
injectivity of our construction is perfectly certifiable. Using the additional cer-
tification procedure, our construction suffices for general NIZK proofs for NP-
languages. This construction is motivated by the [SW14] CPA-secure public key
encryption system.

For simplicity, in Sects. 5.1, 5.2 and 5.3, we assume that the PRGs and PPRFs
being used by our construction are full domain; that is, every string in {0, 1}p(n)

(for some p(n) polynomial in the security parameter n), can be mapped to a
pre-image of the function. This assumption makes sense in the context of gen-
eral pseudorandom generators and puncturable pseudorandom functions, where
natural full-domain candidates exist (c.f. [GGM86]). However this is not the
case for injective PRGs, which are required for our certifiable injectivity proof.
In Sect. 5.4 we show how this assumption can be relaxed, by allowing injec-
tive PRGs with a domain which is efficiently sampleable and recognizable. We
additionally demonstrate how these requirements can be realized by existing
candidates.

5.1 Construction

Let g be an n-to-2n bits PRG, d be a n/2-to-n PRG, {fk : {0, 1}2n →
{0, 1}n}k∈K and {hw : {0, 1}n → {0, 1}n}w∈W puncturable PRF families, and
iO an indistinguishability obfuscation scheme.

Let Tk, Sk,w and Qw be the following circuits:

Tk(x): (Forward evaluator)

constants:

puncturable PRF key k
t = g(x)

s = fk(t)
return (x ⊕ s, t)

Sk,w(r): (Range Sampler)

constants:

puncturable PRF key k for f
puncturable PRF key w for h

x = hw(r)
return Tk(x)
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Qw(ρ): (Correlated Pre-Image Sampler)
constants:

puncturable PRF keys w for h
r = d(ρ)
x = hw(r)
return (x, r)

We define our injective TDF in the following way:

– I(1n): Choose k ← K as a PRF key for f , and w ← W as a PRF key for h.
Denote T̃ := iO(Tk), S̃ := iO(Sk,w), Q̃ := iO(Qw). Output α := (T̃ , S̃, Q̃) as
the public TDP index, and τ := k as the trapdoor.

– F (α = (T̃ , S̃, Q̃), x ∈ {0, 1}n): output T̃ (x).
– B(τ = k, y = (c ∈ {0, 1}n, t ∈ {0, 1}2n)): output c ⊕ fk(t).
– SD(α = (T̃ , S̃, Q̃), r ∈ {0, 1}n): output r.
– SR(α = (T̃ , S̃, Q̃), r ∈ {0, 1}n): output S̃(r).

Motivation: T̃ = iO(Tk) is used as the forward evaluation algorithm, with the
secret key k used to invert it. S̃ = iO(Sk,w) is used as a range sampler providing
the first enhancement, with hw being used to re-randomize the random coins
provided to in to create a secret pre-image. Q̃ = iO(Qw) will be used to provide
the second enhancement, using yet another round of re-randomization on the
coins provided to it.

An interesting point about our construction is that both enhancements do
not depend at all on the structure of the TDF itself. In fact, all the enhancements
need in order to work is any full-domain, or even efficiently sampleable domain,
TDF, and the proof remains the same. Hence, our technique of re-randomizing
the input via a length-preserving PRF can be considered as a generic method for
doubly-enhancing any efficiently-sampleable-domain TDF, using iO and one-way
functions.

5.2 Completeness, Hardness and Enhancements

Theorem 8. The function family described using (I, F,B, SD, SR) gives a
doubly-enhanced injective trapdoor function family.

Proof Sketch: using a hybrid argument, we reduce the hardness of inverting
F to the (1) security of the iO scheme, (2) the selective security of a punctured
PRF key at the punctured point, and (3) the pseudorandomness of the PRG g.
The enhancements are shown using a similar argument. We refer the reader to
[CL17] for the full details of this proof.
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5.3 Certifiable Injectivity

We show that our construction is perfectly certifiable injective, under the
assumption that the PRG g is injective. Moreover, the soundness of the cer-
tification protocol is perfect. This shows that our construction is sufficient for
realizing the FLS paradigm.

Recall that, on input x, our TDF evaluation returns (x⊕s, t), where t = g(x)
(and s is determined by the secret trapdoor). The certifier ICert is given x,
obtains y = F (α, x), and compares the last 2n bits of y to g(x). If they are
equal, ICert accepts. Otherwise it rejects.

Theorem 9. Assuming g is a full-domain injective PRG, our TDF family,
along with ICert, is perfectly certifiable injective.

Proof. For y ∈ {0, 1}3n, denote by y[n + 1 : 3n] the last 2n bits of y.

1. Completeness: if y = F (α, x) for an honestly created α, then by the definition
of our TDF we have y = (c, t) for t = g(x) and c = x ⊕ fk(t). So y[n + 1 :
3n] = t = g(x) and ICert accepts.

2. Soundness: Suppose x1, x2, y such that F (α, x1) = F (α, x2) = y and
ICert(α, x1) = ICert(α, x2) = 1. By definition, since ICert(α, xi) = 1 for
both x1 and x2, we have that g(x1) = y[n + 1 : 3n] = g(x2). Since g is
injective, this means x1 = x2.

The soundness, hardness and enhancements proofs for the TDF are not
harmed, as ICert does not depend on the private key k.

5.4 On the Assumption of Full-Domain iPRGs

As mentioned in the opening of Sect. 5, our construction and security proof rely
on the assumption that the underlying PRGs and PPRFs are full-domain; That
is, every string in {0, 1}p(n) (for some p(n) polynomial in the security parameter
n) can be mapped to a pre-image of the function. This assumption makes sense
in the case of general PRGs and PPRFs, where natural full-domain candidates
exists. However this is not the case for injective PRGs, which are required for
our certifiable injectivity proof.

We first note that for the completeness, security and enhancements, the full-
domain assumption can be relaxed by allowing functions with an efficiently sam-
pleable domain. The domain sampler is then used to map random coins, as well
as the output of some of the primitives we use, into domain items.

Secondly, we show that the certifiable injectivity of our construction is main-
tained under the relaxed assumption of an injective PRG with a domain which
is efficiently recognizable (as well as sampleable). That is, we require that there
exists a polynomial-time global domain recognizer algorithm Rec which, given
some string x ∈ {0, 1}n, decides if that string is in the domain or not, and g is
injective over the set of all strings which Rec accepts. Assuming the existence of
such a recognizer algorithm Rec, we modify ICert such that given a supposed
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pre-image x, ICert first runs Rec(x). Only after, ICert continues to compare
the last 2n bits of y = F (α, x) to g(x). It accepts only if both conditions passed.
The CI soundness requirement follows directly.

We point out that the recognizable domain requirement is indeed necessary
for certifiable injectivity. Without it, a malicious prover might be able to cheat
using a similar attack to the one described in Sect. 3: the prover can give pre-
images taken outside of the PRG’s supposed domain, on which ICert might
arbitrarily accept, and the verifier won’t be able to tell the difference.

Finally, we demonstrate how injective pseudorandom generators with effi-
ciently recognizable and sampleable domains can be constructed based on stan-
dard assumptions. We suggest two alternatives; one using a black-box construc-
tion from another primitive (one-way permutations), and another based on spe-
cific algebraic structure (the DDH assumption).

iPRGs from OWPs: Assuming one-way permutations with an efficiently sam-
pleable domain, an injective length-doubling pseudorandom generator can be
obtained using the textbook construction (c.f. [Gol98]). That is, let owp be a
one-way permutation over domain Dn ⊆ {0, 1}n, and let p be a hard-core pred-
icate for it. Then prg1(x) = (owp(x), p(x)) is a pseudorandom generator which
is single-bit expending. For i > 1, let prgi(x) := prgi−1(owp(x)), p(x) be the
result of recursively applying prgq on the first n bits of the output. Using a
hybrid argument, prgn(x) is a injective length-doubling PRG. Constructing an
injective pseudorandom generator from primitives weaker then one-way permu-
tations remains an open question.4

For the certifiable injectivity of our TDP construction, we require that the
PRG’s domain, Dn, be efficiently recognizable. However when this is the case
additional attention is required, since the first n bits of prgn(x) describe an
element in that domain, and hence they are clearly distinguishable from just any
n-bit string. We circumvent this issue by defining our PRG as pseudorandom
with respect to Dn ◦ Un := {(x, s) : x ← Dn, s ← {0, 1}n}. That is, we adapt
the security requirement of the PRG to the following: for any PPT adversary A,
Pr[x ← Dn : A(prgn(x)) = 1] − Pr[x ← Dn, s ← {0, 1}n : A((x, s)) = 1] ≤ μ(n),
where μ(n) is negligible. Under the revised definition, our security proof remains
sound, with the change that when replacing t∗ = prgn(x∗) with a random t∗,
the replaced value is taken out of Dn ◦ Un (instead of a random 2n-bit string).

A one-way permutation with an efficiently recognizable domain can be
obtained, e.g., based on the discrete log assumption.

iPRGs from DDH: Based on the DDH assumption [DH76], [Bon98] suggested
the the following candidate for injective PRGs. Let Gp = {x2 : x ∈ Zp}, where
p is a safe prime (that is p = 2q + 1 for some prime q). We define the following

4 [Rud84,KSS00,MM11] give a black-box separation between one-way permutations
and weaker primitives, such as one-way functions.
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enumeration from Gq to Zq (see e.g. [CS03,CFGP05]):

i(x) =

⎧
⎪⎨

⎪⎩

x if 1 ≤ x ≤ q

p − x if q + 2 ≤ x ≤ p

0 otherwise

Let g be a generator for Gp. For a, b ∈ Zq, let:

prg(a, b) = i(ga), i(gb), i(gab)

Then by the DDH assumption, prg is an injective pseudorandom generator
from Z2

q → Z3
q . Using the same technique, an injective length-doubling PRG

from Z3
q → Z6

q can be constructed by using

prg(a, b, c) = i(ga), i(gb), i(gc), i(gab), i(gac), i(gbc)
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Abstract. We consider the question of whether the security of unique
digital signature schemes can be based on game-based cryptographic
assumptions using linear-preserving black-box security reductions—that
is, black-box reductions for which the security loss (i.e., the ratio between
“work” of the adversary and the “work” of the reduction) is some a
priori bounded polynomial. A seminal result by Coron (Eurocrypt’02)
shows limitations of such reductions; however, his impossibility result
and its subsequent extensions all suffer from two notable restrictions:
(1) they only rule out so-called “simple” reductions, where the reduction
is restricted to only sequentially invoke “straight-line” instances of the
adversary; and (2) they only rule out reductions to non-interactive (two-
round) assumptions. In this work, we present the first full impossibility
result: our main result shows that the existence of any linear-preserving
black-box reduction for basing the security of unique signatures on some
bounded-round assumption implies that the assumption can be broken
in polynomial time.

1 Introduction

Digital signature schemes, whereby a party can “sign” a message in a publicly
verifiable yet still adversarially unforgeable way, are one of the most basic and
important classes of cryptographic primitives; their security has been studied
since the 1970s. While the earliest constructions of digital signatures [16,38,40,
41] were heuristic in nature, modern constructions have tight proofs of security
against all computationally bounded adversaries based on certain underlying
assumptions.

Specifically, in a provably secure construction, we have a reduction R, which,
given any adversary A which breaks the security of a digital signature scheme
Π, can break a certain underlying assumption C; hence, if the assumption holds,
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then the scheme must be secure. In this paper, we restrict our attention to black-
box security reductions, where R only interacts with A as a “black box”.1 As far
as we know, all security proofs for digital signatures rely on black-box security
reductions.

We are interested in the security loss of such a reduction (a concept originally
proposed as “security preservation” in [29]), or intuitively how “inefficient” it is
in terms of running time and success probability compared to the adversary it
runs. Informally, if, given a security parameter n, R (including the instances of
A it runs) and A run in time TimeRA(n) and TimeA(n) respectively, and have
success probabilities of SuccessRA(n) and SuccessA(n), then the security loss is
given by the maximum over all adversaries A of:

λR(n) =
SuccessA(n)
SuccessRA(n)

TimeRA(n)
TimeA(n)

Intuitively, if we define the “work factor” of the adversary A to be the ratio
of its running time to its success probability, or WorkA(n) = TimeA(n)

SuccessA(n) (and
respectively for RA), then we can think of the security loss as

λR =
WorkRA(n)
WorkA(n)

or how much “work” the reduction R needs to do to break the underlying
assumption compared to the amount of work that its adversary A does to break
the primitive Π. So the higher the security loss, the easier the primitive is to
break compared to the underlying assumption. As such, having security reduc-
tions with low security loss is essential for proving practical security of crypto-
graphic primitives, since the security loss has a significant effect on the security
parameter (i.e., the bit length of a key, size of a large prime for RSA, etc.)
which must be used for the underlying assumption to achieve a particular level
of security for the primitive.

The most efficient possible reductions are those which have constant security
loss λR(n) ≤ c; these are commonly called tight reductions [5]. These reduc-
tions prove that WorkA(n) is always directly proportional to WorkRA(n), and so
increasing the security parameter will always have the same effect on the security
of the primitive as on the security of the underlying assumption.

A weaker notion of efficiency—introduced by Luby [29]—is that of a linear-
preserving reduction, where the security loss is required to be bounded by some a
priori fixed polynomial p(·) in just the security parameter; that is, λR(n) ≤ p(n).

For instance, a security reduction that only runs the adversary A a fixed
polynomial number of times (independent of A’s running time and success prob-
ability) may not be tight, but is still linear-preserving.2 While, with a linear-
1 We note that Π need not be black-box itself in some underlying primitive; we only

require the reduction R to be black-box.
2 The name “linear-preserving” comes from the fact that WorkRA is still linear in the

quantity WorkA(n), although it may depend polynomially on the security parame-
ter n.
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preserving reduction, the concrete security of the primitive Π is only comparable
to that of the assumption if we use an increased security parameter for Π, Π
still retains the same “asymptotic” security as the underlying assumption: for
instance, if Π can be broken in time poly(n) · (2n/3), then so can the underlying
assumption.

Unique Signatures. While the original provably secure construction of digital sig-
natures in [21] was neither tight nor linear-preserving, more recent constructions
[1,5,7,12,13,23] with tight reductions have been exhibited. However, while these
modern constructions are quite efficient, they sacrifice some arguably important
features of the original constructions in achieving this. Most notably, the earliest
construction in [40] had the property that signatures were unique—that is, for
every public key and every message, there exists at most one valid signature for
that message. Whereas provably secure constructions of unique signatures exist
[30,31], as well as constructions of verifiable random functions [9,26,31] (which
[31] shows imply unique signatures), none of these have linear-preserving, let
alone tight, security reductions. And unfortunately, for many recent applica-
tions of digital signatures (e.g., the recent applications to blockchains [19,34]),
this uniqueness property is in fact necessary.

Can Unique Signatures Have Linear-Preserving Reductions? A natural ques-
tion, given the fact that no linear-preserving reductions have been discovered, is
whether a certain degree of security loss is required when proving the security of
unique signatures. This question was first addressed in 2002 by Jean-Sébastien
Coron in his seminal paper [14]. At a high level, Coron’s goal was to demonstrate
that any unique signature scheme with a black-box security reduction must have
a security loss of O(�(n)), where �(n) is the number of signing queries made by
the adversary. This, in particular, would rule out all linear-preserving reductions
for unique signature schemes because �(n) depends on the specific adversary A
and can be an arbitrarily large polynomial.

However, while Coron’s proof rules out many “natural” reductions, it does not
fully answer the question. In particular, it applies only to a quite restricted class
of “simple” reductions which run the adversary in a “sequential straight-line”
fashion—that is, they can run many instances of the adversary, but must run
them sequentially (such that each must finish before the next starts) and cannot
rewind the adversary. Furthermore, Coron’s result applies only to reductions to
the class of non-interactive (i.e., two-round) security assumptions (e.g., invert-
ing a one-way function or breaking RSA). This latter restriction is necessary
to some extent; if the security assumption may have arbitrarily many rounds,
then it becomes trivial to base security on such an assumption (e.g., reducing
the security of digital signatures to itself). However, there is still a large gap
between non-interactive and “unbounded-round” security assumptions, leaving
open the question of whether bounded-round assumptions [33] (that is, security
assumptions modeled as security games with an a priori bounded number of
communication rounds) can be used to prove the security of unique signatures.
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Since Coron’s seminal work, his result has been generalized to a number of
related primitives [3,24], improved and simplified [3,27], and extended to rule
out other notions of security tightness [42]. However, despite these extensions,
improvements, and generalizations, the above restrictions—to simple reductions,
and to non-interactive assumptions—have not yet been surmounted, leaving
open the question:

Does there exist a linear-preserving security reduction for basing the secu-
rity of unique digital signatures on some natural hardness assumption?

Main Theorem. In this work, we settle this question, ruling out all linear-
preserving reductions from unique signatures to any bounded-round assumption.

Theorem 1 (Informal). There does not exist a linear-preserving black-box
reduction from the security of some unique signature scheme Π to a bounded-
round intractability assumption C, unless C can be broken in polynomial time.

More precisely, we show that, unless C can be broken in polynomial time, the
security loss of any black-box reduction from the security of some unique sig-
nature scheme Π to any bounded-round intractability assumption C must be at
least O(

√
�(n)), where �(n) is the number of signature queries the adversary uses

(and thus not a fixed polynomial independent of the adversary). Moreover, we
observe (deferred to the full version) that our main theorem, with minor alter-
ations, can also be applied to the related notion of rerandomizable signatures,
or non-unique signatures with the property that signatures can be efficiently
“rerandomized”.

1.1 Proof Outline

In proving our main theorem, we follow the “meta-reduction” paradigm, origi-
nally pioneered in [8] (see also [2,4,6,10,18,22] for related work concerning meta-
reductions), though we note that work on black-box separations using other
frameworks dates back much farther, to [25]. The core idea behind this app-
roach is, given an arbitrary black-box reduction R that breaks the assumption C
by using black-box access to some “ideal adversary” A (which itself breaks the
security of the primitive Π), to create an efficient adversary B which breaks C
without using A: B will internally run R and, roughly speaking, internally (and
efficiently) “emulate” A for R. The implication then is that if such a reduction
R exists and breaks C using the inefficient adversary A, then B would likewise
break C, but in polynomial time, proving that C is not a secure assumption. See
Fig. 1 for an illustration of the mechanics of this paradigm.

Of course, we cannot prove complete non-existence (since, indeed, provably
secure unique signature schemes exist); instead, we show that, unless R makes
many queries to A—which already implies that the security loss is high—then we
can efficiently emulate A’s responses with “high” (but not overwhelming) prob-
ability, which in turn will imply that B breaks C unless R’s success probability
is relatively small (again implying that its security loss is high).
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Fig. 1. The meta-reduction paradigm. Left: R breaks the assumption C by using the
“ideal” but inefficient adversary A (against the signature scheme Π) as an oracle. Right:
the meta-reduction B runs R (forwarding its communication with C) and efficiently
emulates A to break C with slightly less probability than in the left experiment.

Coron’s Meta-reduction. As already mentioned, Coron, in [14], demonstrates how
to employ this technique for a restricted class of reductions from the security
of unique signatures. In particular, imagine an “ideal” inefficient adversary A
which requests signatures for �(n) randomly chosen messages, next uses a brute-
force search to find a signature (i.e., a forgery) on a new random message, and
finally returns the forgery. (Note that this adversary A is inefficient as it requires
a brute-force search to recover the forgery.) In order to simulate R’s interaction
with A while running in polynomial time, B will run R normally and simulate
A by first requesting signatures for �(n) random messages. However, in order to
extract a forgery without using brute force, B will pick a random message m∗,
rewind the execution of R to before a randomly selected query, and try querying
R for m∗ instead of what it sent to R during the “main” (i.e., non-rewound)
thread. If R returns a correct signature for m∗ during this “rewinding”, then
B has succeeded in efficiently extracting a forgery and can return it to R. In
this case, B has succeeded in perfectly emulating A; note that this relies on the
fact that the signature scheme is unique and thus there exists at most one valid
signature on m∗.

Of course, R may not always return a correct response to A’s (or B’s) queries;
however, if A receives any incorrect responses in the “main” thread, it may
simply return ⊥ to R (as the security game for unique signatures only dictates
that A must return a valid forgery when its queries are correctly answered), and
so, in that case, B may also do so when emulating A. The only time that B will fail
to emulate A is, in fact, when R responds correctly to the original �(n) queries by
B during the “main” execution, but fails to respond to the rewound query of m∗

in any rewinding (and so B can neither return ⊥ or a forgery). Coron, through
an elegant (yet complex) probabilistic argument, shows that the probability of
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this “bad event” is bounded above by O(1)/�(n). Intuitively, the reason this
holds is that, unless R provides signatures to a fraction O(1)/�(n) of random
messages m∗ (and thus the rewinding succeeds with probability O(1)/�(n)), it
is unlikely that R provides correct signatures to all the �(n) signature requests
on the “main” thread, and in this case B does not need to provide a forgery to
succeed in emulating A. Of course, formalizing this argument is quite non-trivial,
and Coron presents a sophisticated analysis which does so.

This argument rules out all reductions R from the security of unique sig-
natures to a non-interactive security assumption which break the assumption
with probability greater than the failure probability of B—that is, O(1)/�(n)—
assuming R runs a single instance of its adversary. If R runs multiple, M(n),
instances of its adversary in a sequential (i.e., non-interleaved) manner, then
by the union bound over all instances, the failure probability bound becomes
O(M(n))/�(n). Furthermore, in this case TimeRA(n) ≥ M(n)TimeA(n), and so
(given SuccessA(n) = 1) Coron’s argument achieves a bound of

λR(n) ≥ O(�(n))

which thus rules out all linear-preserving reductions as there is no a priori poly-
nomial bound on �(n).

We note that while Coron’s proof relies on a subtle and non-trivial analysis,
a very recent and elegant work by Bader et al. [3] presents a much simpler
proof of Coron’s theorem. In their approach, however, they consider a quite
different ideal adversary A′, which is even more tailored to simple reductions
and non-interactive assumptions.3 Consequently, we focus on Coron’s original
approach, which we shall see can be generalized to deal with all reductions and
all bounded-round assumptions.

The Problem with Interactive Assumptions and “Nesting”. Note that, in the
above argument, it is crucial that the security assumption is non-interactive.
Otherwise, when we rewind R, R may send a new message to C and may require
a response before proceeding; if this happens, we can no longer perform the
emulation (as we cannot rewind the communication with C).

Additionally, the argument crucially relies on the fact that R talks to A in a
“straight-line” fashion, and only considers sequential interactions with (multiple
instances) of A. If we did not have that restriction, R might simultaneously
run multiple instances of A and “nest” these different executions. For instance,
it might be the case that R receives a query from a particular instance of A,
begins an entirely different instance of A (or perhaps even multiple instances),
makes queries, and potentially requests a forgery, all before returning a response
to the first query. Rewinding this will be troublesome because, depending on
the query, R could respond differently to the nested queries or even follow an
entirely different execution pattern. Even more worrying is the fact that, if there
3 In fact, whereas it is not clear whether Coron’s meta-reduction B fails under these

more general conditions, the meta-reduction from [3] trivially breaks down under
them.
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are enough levels of nesting, rewinding every query for every instance may take
super-polynomial time, which would invalidate the construction of B (since an
inefficient adversary would not contradict the assumption C). See Fig. 2 for an
example illustrating this.

AR

...

m1,�(n)

pk2

m2,1

σ2,�(n)

(m∗
2, σ

∗
2)

σ1,�(n)

(m∗
1, σ

∗
1)

Fig. 2. A simple example of nested rewinding by B that might occur during interaction
between R and two concurrent simulated instances of A. Note that the inner rewinding
must occur twice, once before the outer rewinding and once after, as the public key
pk2 might change based on the message m1,�(n). In fact, with m concurrent instances,
up to 2m rewindings may occur in this fashion.

Interestingly, this problem is also prevalent in research concerning concurrent
zero-knowledge [17]. This connection was already noted in the earlier impossibil-
ity result for black-box reductions of [33], where a “recursive rewinding strategy”
(similar to [11,15,36,39]) is used to overcome this problem. The core idea behind
this technique is to rewind every relevant query, but to “abort” the rewinding
when “too many” nested queries take place during the rewinding. The limit on
nested queries furthermore decreases by a factor of n with each recursive level
of nesting, so, since the total number of messages is polynomial, the number of
levels will always be bounded by a constant, providing the polynomial bound on
running time.

One might be tempted to simply apply this technique directly to the problem
at hand; unfortunately, due to a fundamental difference between the two results,
this is not possible. Specifically, in [33], the result proven is a complete impos-
sibility (and not just a bound on the security loss): more precisely, emulation
of A can be shown to succeed with overwhelming probability. In our context,
however, the probability that the emulation succeeds is some inverse polynomial
(and inherently must be so, or else we would have shown a complete impossibility
of black-box security reductions). The problem then with a recursive rewinding
strategy is that the failure probabilities may “cascade”. Additionally, we cannot
rely on the technique from [33] of repeatedly rewinding until we obtain a correct



514 A. Morgan and R. Pass

response, since that would bias the distribution of the message m∗ on which we
output a forgery!

A Simple Rewinding Technique. We deal with the problem by using a differ-
ent (and actually much simpler) rewinding strategy, inspired by a technique
for “bounded-concurrent” zero-knowledge arguments originally introduced by
Lindell [28]. The key observation is that rewinding is only necessary when B
encounters an “end message” (i.e., R requesting a forgery from an instance of
A). If, during the rewinding to extract a forgery for some instance of A, B
avoids queries that contain an end message for a separate instance of A (i.e.,
those that would cause recursive rewinding), then it becomes straightforward to
bound the number of rewindings and show that B will run in polynomial time;
as an added advantage, this allows us to treat end messages very similarly to
external communication in the analysis of our meta-reduction.

However, while this simulation strategy at first glance may seem straight-
forward (and, indeed, in the context of bounded-concurrent zero-knowledge, the
analysis is simple), our scenario presents multiple major differences that make
it quite non-trivial. In particular (as already mentioned above), unlike for zero-
knowledge, we can no longer rewind queries with arbitrary messages; instead, in
order to generate a forgery of a uniformly random message, we must choose a
single forgery target m∗ and rewind every query only once using this same mes-
sage m∗ (otherwise, as mentioned above, we would bias the distribution of the
message m∗ on which we output a forgery). Thus, to not bias the distribution of
m∗, we must rewind each query with the same message m∗ and consequently, we
no longer have any independence between the rewindings, which severely com-
plicates the analysis. (Indeed, recall that even in the simplified setting of Coron,
his argument is already quite non-trivial).

Towards dealing with this, we present a new way of analyzing an ideal adver-
sary which is quite similar to Coron’s ideal adversary. Our analysis relies on a
“randomness-switching” argument similar in spirit to that of [35,37], where we
demonstrate that any “bad” sequence of randomness which causes the meta-
reduction to fail can be permuted into many “good” sequences for which the
meta-reduction succeeds. In particular, recall from our above discussion of
Coron’s meta-reduction that, if a sequence of messages is such that B fails to
emulate A, then all of its rewindings with the forgery target m∗ must fail to
extract a signature for the query to m∗. Hence, every rewound sequence begin-
ning with a prefix (m1, . . . ,mi−1,m

∗) will either contain nesting or external
communication during the query for m∗, or is such that R provides an incorrect
signature for m∗. In the latter case, we can conclude as above that A and B,
having received an invalid signature, will both accordingly return ⊥ (meaning
that in fact B will succeed) if any sequence with that prefix is given in the (non-
rewound) execution; thus, any such sequence cannot itself be a “bad” sequence.
This, combined with the fact that the amount of nesting and external communi-
cation (and hence the possible number of rewound sequences which do not fall
into the latter category) is bounded, will allow us to derive an upper bound for
the possible number of “bad” sequences of randomness and hence for the prob-
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ability of one of these sequences occurring (and causing the meta-reduction B
to fail). This failure probability bound for B will ultimately allow us to upper-
bound the success probability, and hence lower-bound the security loss, of the
reduction R. (In the full version, as an independent contribution and a warm-
up, we sketch how an even simpler randomness-switching approach can be used
to provide a simplified proof of a generalization of Coron’s theorem to arbitrary
reductions with static scheduling—where the order in which the reductions sends
its sends messages is a-priori fixed).

Overview. In Sect. 2 we present key notation and definitions to be employed
in our proof. We present and discuss our main result in Sect. 3, construct our
“ideal” adversary A in Sect. 3.1, construct the meta-reduction B in Sect. 3.2,
and complete our analysis and proof of the main theorem in Sect. 3.3. Lastly,
we defer a synopsis of related work, as well as the details of an extension of our
theorem to rerandomizable signatures, to the full version of this paper.

2 Preliminaries and Definitions

2.1 Notation

Let N denote the set of natural numbers (positive integers), and let [n] denote
the set of natural numbers at most n, or {1, 2, . . . , n}. For n ∈ N, we denote by 1n

the string of n ones, which will be used to provide a security parameter as input
to an algorithm (this is by convention, so that the input length is bounded below
by the security parameter). Given a set S = {s1, . . . , sn} of distinct elements,
we shall let |S| denote the number of elements n in S, and we refer to the set
Πn(S) as the set of permutations of S, which contains any sequence which itself
contains, in any order, each element of S exactly once.

When we say that a statement holds “for all sufficiently large n ∈ N”, by
this we indicate that there exists an N ∈ N such that, for any integer n ≥ N ,
the statement holds for n.

We recall that a function ε(·) is negligible if, for any polynomial p(·), ε(n) <
1/p(n) for all sufficiently large n ∈ N—that is, if ε(·) is asymptotically smaller
than any inverse polynomial. (For instance, an inverse exponential such as e−cn

is negligible in n for any constant c > 0).
Lastly, we assume a basic level of familiarity with the concepts of probabilistic

algorithms and interactive Turing machines [20]. We will let RA(x) denote the
probability distribution over the output of an oracle algorithm R given oracle
access to a probabilistic A. If A is a (deterministic) interactive algorithm, we
instead assume R has oracle access to the function that, given the current partial
transcript of (i.e., all messages sent up to a certain point in) interaction between
R and A, returns A’s next message to R.

Furthermore, we shall refer by 〈A, C〉(x) to the probability distribution
over the output of C after interaction between probabilistic interactive Turing
machines A and C, both given common input x (where the common input is also
provided to any oracles, e.g., to O if A is an oracle machine given by AO); the
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view of the respective experiment, or the transcript of all messages sent and all
randomness consumed, shall be denoted as [A ↔ C](x).

2.2 Unique Signatures

First, we define unique signature schemes. Recall that a signature scheme is a
means by which a message can be signed with the signer’s secret key and the
signature can be verified using a public key. A unique signature scheme, then,
is simply a signature scheme for which each message can only have one possible
signature:

Definition 1. A unique signature scheme is a triple (Gen,Sign,Ver) of prob-
abilistic polynomial-time algorithms such that, for every n ∈ N:

– Gen, on input 1n, produces a pair (pk, sk).
– Sign, on input (sk,m) for any m ∈ {0, 1}n, produces a signature σ. (We write

σ ← Signsk(m)).
– Ver, on input (pk,m, σ), produces either Accept or Reject. (We write out ←

Verpk(m,σ)).

and, in addition, the following properties hold:

– Correctness: For every n ∈ N and m ∈ {0, 1}n:

Pr [(pk, sk) ← Gen(1n) : Verpk(m,Signsk(m)) = Accept] = 1

– Uniqueness: For every m ∈ {0, 1}∗, and pk ∈ {0, 1}∗, there exists at most one
σ ∈ {0, 1}∗ for which Verpk(m,σ) = Accept.

We next turn to discussing what it means for such a scheme to be secure.
A natural definition of security is the notion of existential unforgeability against
adaptive chosen-message attacks [21], which requires that an adversary knowing
the public key, even if allowed to adaptively choose a bounded number of mes-
sages and observe their signatures, is unable to forge any signature for a message
they have not yet queried. We formalize this by allowing the adversary access to
an oracle for Sign, as follows:

Definition 2. We say that a signature scheme is unforgeable if, for every non-
uniform probabilistic polynomial-time oracle-aided algorithm A, there is some
negligible function ε(·) such that for all n ∈ N:

Pr
[
(pk, sk) ← Gen(1n); (m, σ) ← ASignsk(·)(1n, pk) : Verpk(m, σ) = Accept ∧ Valid

]
≤ ε(n)

where Valid is the event that none of A’s queries were for the signature of the output
message m.

We will define a weaker notion of a signature scheme being �(·)-unforgeable iden-
tically to the above, with the exception that Valid is the event that the following two
conditions on A are true:
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– A has queried its oracle at most �(n) times.
– None of A’s queries were for the signature of the output message m.

The bounded notion of �(·)-unforgeability is primarily useful to prove our con-
crete security loss bound, whereas our main result applies to the general notion
of unforgeability. Furthermore, for the purposes of the impossibility result, we
weaken the definition of unforgeability to a worst-case definition, as this will
strengthen our main theorem (by showing that basing even this weak notion of
security on standard assumptions will incur a security loss):

Definition 3. We say that a signature scheme is weakly unforgeable (respec-
tively, weakly �(·)-unforgeable) if, for every non-uniform probabilistic polynomial-
time oracle-aided algorithm A and every n ∈ N:

Pr
[
(pk, sk) ← Gen(1n); (m, σ) ← ASignsk(·)(1n, pk) : Verpk(m, σ) = Accept ∧ Valid

]
< 1

where Valid is defined as above (and respectively for �(·)-unforgeability). In par-
ticular, we say that a non-uniform probabilistic polynomial-time algorithm A
breaks weak unforgeability of a signature scheme (Gen,Sign,Ver) if the probabil-
ity above is equal to 1.

2.3 Intractability Assumptions

Next, we define intractability assumptions in a manner originally proposed in
[32]. Formally, we can model an assumption as a “security game” involving an
interaction between a probabilistic challenger C and adversary A, after which
C will output either Accept or Reject. We say that an adversary A breaks the
assumption if C accepts with probability non-negligibly greater than a certain
threshold.

For instance, an assumption that a function f is one-way could be modeled
by a two-round interaction where C sends A the image y = f(x) on a uniformly
random input x, A sends a message x′ to C, and C accepts if and only if f(x′) =
y. In this case, A breaks the assumption if it inverts f (i.e., C accepts) with
probability non-negligibly greater than zero.

As an example of an assumption that would have a non-zero threshold, an
assumption that two distributions D0 and D1 are indistinguishable could be
modeled by the two-round interaction where C picks a random b ∈ {0, 1}, sends
A a sample from Db, receives b′ from A, and accepts if b = b′. Then A would
only break the assumption if C accepts with probability non-negligibly greater
than a threshold of 1/2. Formally, we model these assumptions following [33]:

Definition 4. For polynomial r(·), we denote
an r(·)-round intractability assumption by a pair (C, t(·)), where t(·) is a
function and C is a probabilistic interactive algorithm with input 1n and an a
priori bound of r(n) rounds of communication. We say that (C, t(·)) is secure if
the following is true:
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For any non-uniform probabilistic polynomial-time interactive algorithm A,
there exists a negligible function ε(·) such that, for all n ∈ N:

Pr [〈A, C〉(1n) = Accept] ≤ t(n) + ε(n)

Furthermore, we say that a specific A breaks the assumption if the above inequal-
ity is not true with respect to that A; in particular, for some polynomial p(·), we
say that A breaks (C, t(·)) with probability 1/p(·) if, for infinitely many n ∈ N,

Pr [〈A, C〉(1n) = Accept] ≥ t(n) +
1

p(n)

We also call a pair (C, t(·)) a bounded-round intractability assumption if
there exists some polynomial r(·) such that (C, t(·)) is an r(·)-round intractability
assumption.

We note that any standard cryptographic security assumption can be mod-
eled as a pair (C, t(·)) of this form, including our definitions above of the security
of signature schemes. (In this case, the threshold t(n) would be zero, and C would
have r(n) = 2�(n) + 2 rounds of communication, first generating (pk, sk) and
sending pk to A, then signing �(n) messages for A, and finally receiving (m,σ)
and outputting the result of Ver, or Reject if it had already signed m.) In par-
ticular, this is why we require an a priori bound on the number of rounds r(·)
of the assumption; it will allow us to avoid such trivial reductions as reducing
unforgeability to itself (for which we could obviously not prove the impossibility
result).

2.4 Black-Box Reductions

Finally, we briefly discuss what it means for one assumption to be based
on another assumption. In particular, given two assumptions (C1, t1(·)) and
(C2, t2(·)), basing the hardness of C1 on that of C2 in a black-box way would
classically entail, given an arbitrary adversary A2 which can break (C2, t2(·))
constructing a polynomial-time procedure A1 that breaks (C1, t1(·)) through
standard interactions with A2 (i.e., using A2 in a black-box manner).

Notably, there is no guarantee that A1 invoke A2 only once; it could be the
case that there are polynomially many invocations, or even “nested” invocations
(e.g., multiple concurrent invocations such that the rounds of communication
may be interleaved or dependent on one another), of A2 during the execution of
A1. We can formalize this by imagining A1 as a polynomial-time reduction R
that has oracle access to the interactive algorithm A (formerly A2):

Definition 5. We refer to a probabilistic polynomial-time oracle-aided algo-
rithm R as a black-box reduction for basing the hardness of assump-
tion (C1, t1(·)) on that of (C2, t2(·)) if, given any deterministic A that breaks
(C1, t1(·)), RA breaks (C2, t2(·)). We refer to such a black-box reduction as fixed-
parameter if, given common input 1n, RA queries A only on input 1n.
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We notably restrict our attention to oracles that are deterministic (or have
some fixed randomness), as this allows us to consider cases where the reduction
R can rewind or restart its oracle. We shall also restrict our attention, similarly
to [33], to the case of fixed-parameter reductions where R invokes its adversary
A only using a single security parameter (i.e., A must be the same algorithm
in each instance); in particular, for security parameter n, we allow R to run
up to M(n) instances of some parameterized adversary A(1n). Lastly, we can
also apply the above concept to our definition of weak �(·)-unforgeability (and
define a fixed-parameter reduction identically for this case):

Definition 6. We say that a probabilistic polynomial-time oracle-aided algo-
rithm R is a black-box reduction for basing weak unforgeability of a signa-
ture scheme (Gen,Sign,Ver) on the hardness of an assumption (C, t(·)) (resp.
for weak �(·)-unforgeability) if, for every deterministic algorithm A that breaks
weak unforgeability of (Gen,Sign,Ver) (i.e., forges a signature with probability
1), there is a polynomial p(·) such that, for infinitely many n ∈ N, RA breaks
(C, t(·)) with probability 1/p(n).

Finally, we wish to formalize the security loss of such a reduction R, or the
loss in the reduction’s success probability proportionate to its time efficiency.
We state this as follows:

Definition 7. Let R be a black-box reduction for basing the hardness of assump-
tion (C1, t1(·)) on that of (C2, t2(·)). Given any deterministic A and for each
n ∈ N:

– Let SuccessA(n) = Pr[〈A, C1〉(1n) = Accept] − t1(n) (that is, the probability
with which A breaks (C1, t1(·)), taken over all randomness of A and C1).

– Let QueryA(n) denote the maximum, over all randomness of A and C1, of
the possible number of messages sent from C1 to A during the experiment
[A ↔ C1](1n).

– Let SuccessRA(n) = Pr[〈RA, C2〉(1n) = Accept]−t2(n) (that is, the probability
with which RA breaks (C2, t2(·)) taken over all randomness of A, C2, and R).

– Let QueryRA(n) denote the maximum, over all randomness of A, C2, and R,
of the possible number of messages sent from R to A during the experiment
[RA ↔ C2](1n).

Then we say that the security loss of R is given by:

λR(n) = maxA

(
SuccessA(n)
SuccessRA(n)

QueryRA(n)
QueryA(n)

)

Furthermore, we say that R is linear-preserving if its security loss is
bounded above by a fixed polynomial independent of A—that is, there is a polyno-
mial p(·) for which, for all sufficiently large n ∈ N and every A, λR(n) ≤ p(n).

We note that, as we consider black-box reductions, we consider the ratio
between the communication complexities of R and A as opposed to the running
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times when determining the security loss. While many other recent works (e.g.,
[3,24]) use a definition which, though similar to the above, measures actual
running time rather than rounds of communication, we note that our definition
is at least as strong as time-based alternatives, and formally prove this fact in
the full version.

3 Main Theorem

As our main theorem, we prove the following result:

Theorem 2. Let Π = (Gen,Sign,Ver) be a unique signature scheme, and let
(C, t(·)) be some r(·)-round intractability assumption for polynomial r(·). If there
exists some fixed-parameter black-box reduction R for basing weak unforgeability
of Π on the hardness of (C, t(·)), then either:

(1) R is not a linear-preserving reduction, or
(2) there exists a polynomial-time adversary B that breaks (C, t(·)).

We note that this result also applies to the slightly more general notion of
rerandomizable signatures through an almost identical argument; we discuss this
in more detail in the full version. Theorem 2 follows in a straightforward manner
from the following lemma, which is a concrete security loss bound analogous to
Coron’s in [14], but generalized so that it handles arbitrary (i.e., not just simple)
reductions:

Lemma 1. Let Π = (Gen,Sign,Ver) be a unique signature scheme, and let
(C, t(·)) be some r(·)-round intractability assumption for polynomial r(·). If for
some polynomial �(·) there exists some fixed-parameter black-box reduction R for
basing weak �(·)-unforgeability of Π on the hardness of (C, t(·)), then either R’s
security loss is at least

λR(n) ≥
√

�(n) − (r(n) + 1)

for all sufficiently large n ∈ N, or there exists a polynomial-time adversary B
that breaks the assumption (C, t(·)).

Lemma 1 implies Theorem 2 by the definition of a linear-preserving reduction
(we defer the formal proof to the full version, however). Hence, the remainder
of the section is dedicated to proving Lemma 1. Our proof of Lemma1 follows
four major steps, which we shall describe here at a high level before beginning
the full argument.

Constructing an Ideal Adversary. First, we describe an “ideal” adversary A
which is guaranteed to break the security of Π while sending �(n) queries, but
does so by brute force and hence does not run in polynomial time. Our objective
then is to create a meta-reduction B that almost always emulates the interaction
RA between R and A. If it does so with, say, probability 1 − 1/p(n), then
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B will break the assumption (C, t(·)) with probability at least SuccessRA(n) −
1/p(n). However, this means that RA itself cannot have success probability non-
negligibly greater than 1/p(n); otherwise, C would be broken with non-negligible
probability by B.

The “ideal” A will pick �(n) messages (�m) at random and query R for the
signatures of each of these messages in turn, and will finally brute-force a secret
key from the results and use that key to forge a signature for another random
message m∗, which it will return. Crucially, A will also verify R’s responses to
its queries and return ⊥ instead if not all are correct signatures. By construction
A breaks �(·)-weak unforgeability; however, due to the brute-force step, it (and
consequently RA) will not run in polynomial time.

Constructing a Meta-reduction. Hence, to efficiently emulate RA, we create the
meta-reduction B. B will run R and forward communicate with C as normal;
when R would start a new instance of its adversary A, B will generate messages
�m and m∗ randomly (i.e., identically to A) and forward queries to R in the
same manner as A. However, when R requires an instance to provide a forged
signature, B will also “rewind” the simulated execution to the start of each
query for that instance and try to query R with m∗ instead of the message it
would normally query. If R gives a response to the rewound query, then B has
(efficiently) found a forgery for m∗, which it can return to R when it requests a
forgery from the corresponding instance of A.

B, while rewinding, will abort (and try rewinding the next slot instead) if
either R would communicate externally with C (which B of course cannot rewind)
or R would request a forgery for some other simulated instance of A during the
simulated execution of RA (i.e., before responding to the rewound query). In
particular, this strategy ensures that recursive rewinding as in [33] will not be
required, since B will never attempt to start rewinding some instance while
rewinding a different one.

Furthermore, B will “verify” all of R’s responses to its signature queries
(in the non-rewound part of the execution) in the same manner as A, likewise
returning ⊥ from the simulated instance of A if not all responses are valid. So,
whenever either R gives a simulated instance one or more incorrect responses or
B successfully extracts a forgery (noting that, by the uniqueness property, the
forgeries they return must be identical, which is crucial), A and B’s simulations
of A will be identically distributed to one another.

Bounding the Failure Probability. So, to bound the probability with which B
does not successfully emulate some instance of A, we must bound the probabil-
ity that all of B’s queries to R (�m) are correctly answered, yet the rewinding of
every one of the queries fails due to either R responding badly to m∗, R commu-
nicating externally with C, or a forgery request for another simulated instance
of A occurring before R responds.

We bound this probability by using a counting argument similar to that
exhibited in the introduction. In particular, we consider the messages �m and m∗
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for a particular instance, fixing the randomness outside of that instance arbitrar-
ily. Then we show that, for any “bad” sequencing of these messages such that
the non-rewound execution succeeds but every rewinding fails, many (though
not all, because of the possibility for rewindings to fail due to an end message
or external communication) of the rewindings of this sequence will correspond
to “good” sequences where B returns ⊥ due to receiving an incorrect response
from R.

What we intuitively show is that, in every set of �(n) + 1 sequences corre-
sponding to a sequence and its various rewindings, at most M(n) + r(n) + 1 can
be bad (since, informally, given a bad sequence, in expectation only M(n) + r(n)
of its rewindings can fail for reasons besides R responding incorrectly, i.e., due to
nested end messages or external communication), where M(n) is the maximum
number of instances of A which R executes (which we show by our construc-
tion of A must be no less than the number of successful end messages). Hence
we obtain a bound of M(n)+r(n)+1

�(n)+1 on the failure probability for each instance,
which by the union bound over all M(n) instances sums to an overall failure
probability of less than M(n)

(
M(n)+r(n)+1

�(n)

)
.

Bounding the Security Loss. This does not immediately imply a bound on the
security loss λR(n), since M(n) can be arbitrarily large. However, as in the
technical overview, we bound the security loss by showing that, if M(n) is large,
this requires a large enough running time of R that we still obtain a non-trivial
lower bound on the security loss. Specifically, recalling that

λR(n) ≥ SuccessA(n)
SuccessRA(n)

QueryRA(n)
QueryA(n)

we notice first that QueryRA(n)/QueryA(n) ≥ M(n), which follows (with some
subtleties which we defer to the main proof) from the fact that R will in the
worst case run M(n) instances of A. So, since SuccessA(n) = 1 by construction,
and since, as we discussed previously, SuccessRA(n) cannot be non-negligibly
larger than the failure probability of B, we have

λR(n) ≥ �(n)
M(n) + r(n) + 1

which immediately implies the bound when M(n) <
√

�(n) − (r(n) + 1) (and
so λR(n) >

√
�(n)). On the other hand, we also know that SuccessRA(n) ≤ 1

trivially, and so it is also the case that λR(n) ≥ M(n), which implies the bound
when M(n) ≥ √

�(n) − (r(n) + 1), completing the proof of Lemma1 and hence
Theorem 2.

3.1 The “Ideal” Adversary

We now proceed to the formal proof of Lemma1. First, we exhibit an ineffi-
cient adversary A that will break weak �(·)-unforgeability, so that we can later
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construct an efficient B to simulate it while running R in order to break the
assumption (C, t(·)).

Let Π = (Gen,Sign,Ver) be a unique signature scheme, and let (C, t(·)) be
some r(·)-round intractability assumption for polynomial r(·). Assume that there
exists some black-box reduction R for basing weak �(·)-unforgeability of Π on
the hardness of (C, t(·)) which, given an oracle breaking weak unforgeability, will
break (C, t(·)) with probability 1/p(·) for some polynomial p(·).

First, for any polynomial �(n), we construct an inefficient but easily emulat-
able adversary A which sends at most �(n) queries and is guaranteed to break
weak unforgeability of Π. Since we will require A to be deterministic during exe-
cution yet generate random messages, we will assume that A is formally given
by a deterministic interactive AO which has access to a random oracle O (of
course, O is not needed for our actual constructions, as we shall emulate A),
which, as in [33], is given by a random variable which is uniformly distributed
over functions {0, 1}∗ → {0, 1}∞. In particular, this ensures that the queries
output by AO are uniformly distributed (i.e., over the randomness of O), but
are still preserved under rewinding.

We shall henceforth denote by A the specific adversary AO which, on input
1n, behaves as described in Fig. 3. Informally, A makes �(n) signature queries,
generating the message for each query by applying O to the current partial
transcript. Finally, after receiving responses for each query, A returns a brute-
forced forgery, but only if it successfully “verifies” the transcript by ensuring that
each query’s response is valid and that each query in the transcript was generated
in the correct manner (i.e., by O applied to the prior partial transcript).

It is straightforward to see that A, given any fixed oracle O, will break
weak �(·)-unforgeability; given an honest signing oracle (which will always send
the correct partial transcript), it will always return some (m,σ) such that
Verpk(m,σ) = Accept, m was not queried (as m∗ is not equal to any of the
queries mi), and only �(n) queries were made.

However, when interacting with R, which is not bound by the rules of an hon-
est oracle, the transcript verification is necessary to prevent R from “cheating”
in certain ways during its interaction. First, we wish to ensure that R will return
valid signatures to queries as often as possible. Also, we wish to ensure that R
is actually required to answer �(n) signature queries generated randomly by A
and cannot, for instance, immediately send A an end message with an artificially
generated transcript; this is done by using the oracle O to generate A’s messages
and ensuring that the transcript is consistent with the oracle. Formally, we make
the following claim, which will be useful later:

Claim 1. There exists a negligible function ν(·) such that, for all n ∈ N, the
probability, over all randomness in the experiment [RAO ↔ C](1n), that some
instance of A returns a forgery (i.e., something besides ⊥) to R without having
received �(n) different responses to its signature queries from R, is less than
ν(n).

The proof, which is straightforward, is deferred to the full version.
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– Initially, receive a message pk, the public key; respond (i.e., generate m1)
according to the next step for i = 1.

– On receiving a message consisting of a partial transcript τ =
(pk, m1, σ1, · · · , mi−1, σi−1) for some i ∈ [�(n)], do the following:

• Generate mi by taking the first n bits resulting from applying the oracle
O to τ .

• Return the new partial transcript τ ||mi.
– On receiving a message consisting of a complete transcript τ =

(pk, m1, σ1, · · · , m�(n), σ�(n)) (we shall refer to such a message as a “forgery
request” or “end message”), do the following:

• Verify that, for each signature σi, Verpk(mi, σi) = Accept. If not true
for all i, return ⊥.

• Verify that, for each message mi, mi is equal to the first n bits re-
sulting from applying the oracle O to the prefix transcript τ<i =
(pk, m1, σ1, · · · , mi−1, σi−1). If not true for all i, then return ⊥.

• Finally, generate a random message m∗ (distinct from each mi in τ) by
applying O to the transcript τ , use brute force to find a signature σ∗

for which Verpk(m∗, σ∗) = Accept, and return the forgery (m∗, σ∗).

Fig. 3. Formal description of the “ideal” adversary AO.

Furthermore, this construction of A (using the oracle O) allows us to assume,
without loss of generality, that the reduction R will never rewind an instance
of A—this is without loss of generality because there is a single accepting tran-
script for each choice of the oracle O. Namely, given an oracle O, if R always
provides correct signatures, then A’s messages (including the forgery it returns)
and R’s responses are fully determined by O and the uniqueness property of Π.
Meanwhile, if R does not provide correct signatures, A will not return a forgery.

Because A breaks unforgeability, and by the assumed properties of R and
the determinism of AO for any fixed oracle O, it must be true that there exists
polynomial p(·) such that

Pr
[
〈RAO

, C〉(1n) = Accept
]

≥ t(n) +
1

p(n)

for any oracle O. As such, by the fact that R is fixed-parameter, we can observe
that, for any n, averaging this probability over all possible oracles O, we likewise
have

Pr
[〈RA, C〉(1n) = Accept

] ≥ t(n) +
1

p(n)

even though A over a randomly-chosen O is not deterministic.
Of course, A is inefficient, so, in order to break the assumption (C, t(·)), we

must construct an efficient B that is able to run R while emulating its interactions
with A most of the time. Hence, the remainder of the proof will be dedicated
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to constructing this meta-reduction and analyzing the probability with which it
succeeds in emulating the “ideal” A. Intuitively, if B successfully emulates A at
least 1 − 1/p′(n) of the time for some function p′(·), then:

∣∣Pr
[〈RA, C〉(1n) = Accept

] − Pr [〈B, C〉(1n) = Accept]
∣∣ ≤ 1

p′(n)

Pr [〈B, C〉(1n) = Accept] ≥ t(n) +
1

p(n)
− 1

p′(n)

meaning that B must break C with probability at least 1/p(n) − 1/p′(n), as
desired. Hence, what we shall effectively show in the subsequent steps is that,
unless the security loss of R is large, 1/p′(n) will be non-negligibly smaller than
1/p(n), and thus B will break the security of (C, t(·)).
Slots. As a notational aside, we shall for simplicity henceforth refer to the pair
of a query made by A (or something, such as B, which emulates A) and its
corresponding response by R as a slot (vopen, vclose). Such a slot is determined
by two views: the “opening” of the slot, or the view vopen of the execution of R
immediately before A’s query to R, and the “closing” of the slot, or the view
vclose of the execution immediately after R responds to the respective query.
(We will also often refer to the view of R immediately after the opening query
of a message m, which we shall denote by the concatenation vopen||m).

3.2 The Meta-reduction

We next construct the meta-reduction B which will efficiently emulate A. Let B
be as described formally in Fig. 4; informally, B will run R internally, forwarding
communication to C as R would while also internally simulating instances of A
interacting with R. The primary difference between B and the “ideal” execution
of A interacting with R is that B, being restricted to polynomial time, cannot
brute-force forgeries as A does; instead, while simulating each instance of A, B
will select at random a message m∗ for which to forge a signature and attempt
to rewind each slot for that instance, substituting m∗ for the original message.4

If R ever returns a valid signature σ∗ for m∗, then B may store that signature
and finally return (m∗, σ∗) when R requests a forgery for that instance. However,
if one of the following “bad events” occurs:

– R fails to return a valid signature of m∗.
– R asks for a forgery for another instance before returning a signature.
– R requires external communication with C (which cannot be rewound) before

returning a signature.

then B will abort and try the next slot. In this way we circumvent the issue of
having to recursively rewind nested end messages as in [33].

First, we can show that B, unlike A, is efficient:
4 That is, when “rewinding” a slot (vopen, vclose), B will simulate interaction with R

starting from the view vopen||m∗.
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– Set initial view v ← ⊥ and set k ← 1. Execute R, updating the current
view v according to the following rules.

– When R begins a new instance of A and sends a public key pk, la-
bel this instance as instance k. Generate and store �(n) random queries
� mk = (mk,1, . . . , mk,�(n)) and a target forgery m∗

k. (Abort and return Fail
if m∗

k is equal to a message in � mk.) Also let pkk ← pk and initialize the
forgery fk ← {}. Lastly, respond with τ∗

k = pkk||mk,1 and increment k.
– When R attempts to communicate externally with C, forward the message,

return C’s response to R, and update v accordingly.
– When R sends a transcript τ = (pk, mI,1, σI,1, · · · , mI,j , σI,j) to some sim-

ulated instance I of A, store the signature σI,j and do the following:
• If j = �(n) (i.e., this is an end message), then do the following:

∗ If τ is an inconsistent transcript (i.e., mI,i or σI,i in τ is different
from the stored mI,i or σI,i (respectively) for some i ∈ [�(n)], or not
all σI,i have been stored) or R’s response to some signature query
j was invalid (i.e., VerpkI (mI,i, σI,i) = Reject for some i ∈ [�(n)]),
then return ⊥.

∗ Otherwise, if fI is still empty (i.e., not ⊥), run the procedure Rewind
detailed below for the instance I.

∗ If, at this point, there is a stored forgery fI = (m∗
I , σ∗

I ), then return
it and continue executing R as above. Otherwise, abort the entire
execution of B and return Fail.

• If VerpkI (mI,j , σI,j) = Reject, then store fI ← ⊥.
• Lastly, respond with τ ||mI,j+1 and continue the execution of R.

Rewind procedure:

– Given instance I, for j ∈ [�(n)] let (vj
open, vj

close) denote the slot correspond-
ing to the jth signature query for instance I.

– For each j ∈ [�(n)], “rewind” the slot (vj
open, vj

close) as follows: Let k′ ← k,
and begin executing R from the view v′ = vj

open||m∗
I as in the main routine,

with the following exceptions:
• When R begins a new instance of A, label this instance as instance

k′ and increment k′. (That is, continue creating new instances, but
preserve the counter k in the outer execution for after the rewinding.)

• When R attempts to communicate externally with C, abort the rewind-
ing and continue to the next j.

• When R sends an end message for an instance I ′ �= I of A, abort the
rewinding and continue to the next j, unless R has not sent responses
to �(n) signature queries for I ′ (in which case reply with ⊥).

• If v′ ever contains a message whose transcript contains a response σ∗
I to

the query for m∗
I , then, if it is the case that VerpkI (m∗

I , σ∗
I ) = Accept,

store fi ← (m∗
I , σ∗

I ) and end the Rewind procedure (i.e., return to the
outer execution); otherwise, if VerpkI (m∗

I , σ∗
I ) = Reject, store nothing

to fI and continue to the next j.

Fig. 4. Formal description of the meta-reduction B.
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Claim 2. There exists a polynomial t(n) such that, for all n ∈ N, Real(1n) is
guaranteed to run in time at most t(n).

The proof, which is straightforward, is deferred to the full version.
Next, to reason about the failure probability of B (and through it the success

probability of RA), let us define the following experiments:

– Let Ideal(1n) denote [RA ↔ C](1n)—that is, the experiment where R(1n),
using the “ideal” adversary A(1n) as a black box, communicates with C(1n).

• When we refer to probabilities in the context of this experiment, they are
taken over a uniform distribution over random oracles O (which results
in uniformly distributed messages �mI and m∗

I) for each instance I of A
started by R.

• When we wish to fix the randomness of a particular execution of Ideal,
we will denote this with the notation Ideal{OI}I∈[M(n)],Oext

(1n), or, for
more clarity, Ideal{�mI ,m∗

I}I∈[M(n)],Oext
(1n). �mI and m∗

I are the messages
and forgery generated for instance I by each oracle OI given the (deter-
ministic) prefix; Oext is a random variable representing the random coins
used by R and C, containing a number of bits equal to the maximum
number of coins needed (which must be polynomially many since R and
C are polynomial-time). When all �mI and m∗

I are fixed, and Oext is fixed,
note that the execution of Ideal is deterministic for each instance.

– Let Real(1n) denote [B ↔ C](1n)—that is, the “real” experiment where B(1n)
communicates directly with C(1n) by attempting to simulate the interaction
between A(1n) and R(1n) while forwarding any external communications.

• When we refer to probabilities in the context of this experiment, they are
taken over uniformly distributed messages �mI and m∗

I for each simulated
instance I of A started by R in the context of B.

• When we wish to fix the randomness of a particular execution of Real,
we will again denote this with the notation Real{�mI ,m∗

I}I∈[M(n)],Oext
(1n),

where �mI and m∗
I are the messages and forgery for each simulated instance

I of A and Oext is again a random variable representing the random coins
used by R and C. When all �mI and m∗

I are fixed, and Oext is fixed, note
that the execution of Real is deterministic for each instance, just as with
Ideal.

• Furthermore, we may opt to isolate a particular simulated instance k
by fixing all randomness except for that instance’s; we denote this by
Real∗{�mI ,m∗

I}−k,Oext
(1n) and note that the probability space in this altered

experiment is over uniformly distributed �mk and m∗
k. Further note that

in experiment Real∗ the execution up to the start of the isolated instance
k is deterministic, as is the execution for any choice of �mk and m∗

k.
– In all experiments, we will denote the view, or execution, as the transcript of

all messages sent between, and all randomness consumed by, real or simulated
machines (i.e., between R, A or B’s simulation of A, and C). We will notate
this using just the notation for the experiment, e.g., Real(1n).
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– In all experiments, we will denote the result, or output, as either the final
output of C (either Accept or Reject) if C finishes, or as Fail if C does not
finish (i.e., when B aborts returning Fail). This will be notated by Output,
e.g., Output[Real(1n)] = Accept.

3.3 Analyzing the Meta-reduction

Using this terminology, we wish to show that Real(1n) is identically distributed
to Ideal(1n) with high probability. To that end, we make the following claim:

Claim 3. For all n ∈ N:

|Pr[Output[Real(1n)] = Accept] − Pr[Output[Ideal(1n)] = Accept]|
≤ Pr[Output[Real(1n)] = Fail]

Proof Sketch. Intuitively, this follows from the uniqueness property of Π; for any
message m∗, there is only a single possible signature σ∗. Thus, given some setting
of the randomness in the experiments, Real must proceed identically to Ideal (that
is, each instance of A in Real will have an identical view to the corresponding
simulated instance in Ideal) unless B’s attempt to extract a forgery fails for some
m∗, in which case by construction Real must return Fail. The complete proof is
deferred to the full version.

We can use this claim to bound RA’s success probability by bounding the
probability that B will return Fail for some simulated instance I of A. Let M(n)
be the maximum, over all randomness of A, C, and R, of the number of instances
of A that R runs to completion (i.e., for which it responds to all �(n) queries)
during the experiment Real(1n). Then we show the following:

Proposition 1. There exists a negligible function ε(·) such that, for all n ∈ N:

Pr[Output[Real(1n)] = Fail] ≤ M(n)
(

M(n) + r(n) + 1
�(n) + 1

)
+ ε(n)

Proof. We first prove the following claim for any Real∗{�mI ,m∗
I}−k,Oext

(1n) (i.e., for
any fixed setting of all randomness aside from �mk and m∗

k), and notice that, since
it applies to arbitrarily fixed randomness, it must thus apply over all possible
randomness of the experiment Real(1n):

Claim 4. There exists a negligible ν(·) such that, given any setting of the ran-
domness in the experiment Real∗{�mI ,m∗

I}−k,Oext
(1n), the probability, over the uni-

formly chosen messages mk,1, . . . ,mk,�(n),m
∗
k, that the simulated instance k will

return Fail is, for all n ∈ N, at most

M(n) + r(n) + 1
�(n) + 1

+ ν(n)
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Proof. Let us begin by assuming that other simulated instances (besides k) of A
in the experiment Real∗{�mI ,m∗

I}−k,Oext
(1n) will never return Fail (i.e., that they

will “magically” produce a correct forgery in the case where they otherwise would
return Fail). Clearly, this can only increase the probability that instance k will
return Fail by ensuring that the experiment never aborts early.

Now let us consider the messages �m∗
k � (mk,1, . . . ,mk,�(n),m

∗
k) in instance

k; note that by the definition of Real∗{�mI ,m∗
I}−k,Oext

(1n) the execution is fully
determined by �m∗

k. Let us also define for i ∈ [�(n)−1] the “rewound” sequence

ρ( �m∗
k, i) � (mk,1, . . . ,mk,i−1,m

∗
k)

that is, the rewinding of �mk where the message in slot i is replaced by m∗
k to

attempt to extract a forgery.
In order for B to return Fail, one of the following “bad events” must occur

for each i ∈ [�(n)]:

– E1(ρ( �m∗
k, i)): R fails to return a valid signature of m∗

I in the rewinding of
the last slot in the sequence (slot i).

– E2(ρ( �m∗
k, i)): During the rewinding of the last slot in the sequence (slot i), R

asks for a forgery for another instance k′ �= k before returning a signature for
m∗

I , or R requires external communication with C (which cannot be rewound)
before returning a signature for m∗

I .

In addition, for k to fail, the non-rewound execution of the instance must
succeed, in that the event E1(�mk,≤i) (where R fails to return a valid signature)
cannot occur for any prefix �mk,≤i = (mk,1, . . . ,mk,i), where i ∈ [�(n)].

Since, as we have noted, the behavior of k in Real∗{�mI ,m∗
I}−k,Oext

(1n) is fully
determined by �m∗

k, every sequence �m∗
k will deterministically either result in

instance k returning something (either a forgery or ⊥) or aborting and returning
Fail; we shall refer to the former type of sequence (where k succeeds) as a “good”
sequence, and the latter type as a “bad” sequence. To describe the relationship
between these “good” and “bad” sequences, we first introduce the following
terminology:

For any k > 0 and any arbitrary set �m of k distinct messages in [2n], let
Πk(�m) denote the set of ordered permutations of the elements of �m. Given a
sequence π = (m1, . . . ,mk−1,m

∗) ∈ Πk(�m), we let the “rewinding” operator ρ
for i ∈ [k − 1] be defined as before—that is:

ρ(π, i) � (m1, . . . ,mi−1,m
∗)

(Note that this is a sequence of length i.) We shall say that a sequence
a = (a1, . . . , ak−1, a

∗) ∈ Πk(�m) blocks a sequence b = (b1, . . . , bk−1, b
∗) ∈ Πk(�m)

with respect to some i ∈ [k − 1] if

ρ(a, i) = (b1, . . . , bi)

that is, if a has a rewinding equivalent to a prefix of b. If we wish to denote
that a blocks b with respect to a particular i, we shall say that a blocks b in
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slot i. Furthermore, we will say that sequences a1, a2, . . . ac ∈ Πk(�m) c-block a
sequence b ∈ Πk(�m) if there exist distinct i1, . . . , ic ∈ [k − 1] such that, for any
j ∈ [c], aj blocks b in slot ij .

We next formalize the relationship between the “blocking” property and
good/bad sequences that will allow us to use this property to bound the number
of bad sequences that may occur. Specifically, we prove the following lemma:

Lemma 2. Any sequence that is (M(n) + r(n) + 1)-blocked by bad sequences
must be a good sequence.

Proof. Consider a sequence �m′
k which is (M(n) + r(n) + 1)-blocked by bad

sequences. This means that �m′
k must have M(n) + r(n) + 1 distinct slots ij

for which E1 or E2 occurs in its (non-rewound) execution, as the execution is
at each of those points identical to a rewinding of one of the bad sequences by
the fact that the sequence blocks �m′

k in slot ij . However, because at most M(n)
end messages (to completed instances of A, note that others are answered with
⊥) and at most r(n) rounds of external communication can occur in any given
execution, we observe that E2 can happen for at most M(n) + r(n) of these
slots, and thus that E1 must happen for at least one slot. In this case, we can
deduce that �m′

k must be a good sequence, because it must contain some slot
for which R fails to return a correct response (meaning that B can successfully
emulate A by returning ⊥)—that is, the event E1(�mk,≤i) must occur for that
slot, which we have previously stated cannot be the case for bad �m∗

k. �
Consider, then, a set S of “bad” sequences �m∗

k which are permutations of
any set of �(n) + 1 distinct messages (i.e., an unordered set containing �mk,i and
m∗

k). The following lemma, combined with Lemma 2, allows us to bound the size
of such a set S:

Lemma 3. Let �m be an arbitrary set of � + 1 distinct messages in [2n], and
let S ⊂ Π�+1(�m) be a set of permutations of �m. If it is the case that, for some
B ∈ N, any member of Π�+1(�m) which is (B + 1)-blocked by a subset of S cannot
itself lie in S, then |S| ≤ (B + 1)�!

Proof. We begin with the following crucial claim: �
Subclaim 1. No member of Π�+1(�m) is (B + 2)-blocked by a subset of S.

Proof. Assume for the sake of contradiction that there exists some π ∈ Π�+1(�m),
B + 2 sequences π1, . . . , πB+2 ∈ S, and B + 2 distinct integers i1, . . . , iB+2 ∈ [�]
such that each partial sequence ρ(πj , ij) is equivalent to the first ij elements
of π.

Assume without loss of generality that the integers ij are in strictly ascending
order. Consider the last sequence πB+2 = (πB+2

1 , . . . , πB+2
∗ ); we shall show that

πB+2 is (M + 1)-blocked by sequences in S, leading to a contradiction because
by definition no element of S can be (M + 1)-blocked by other members of S.

We know that, since by assumption the first iB+2 elements of π are equivalent
to ρ(πB+2, iB+2) = (πB+2

1 , . . . , πB+2
iB+2−1, π

B+2
∗ ), then the first iB+2 − 1 elements
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of πB+2 and π must be identical. However, notice that, for any j < B + 2,
we have that ρ(πj , ij) is identical to π in the first ij elements, which, since by
assumption ij ≤ iB+2 − 1, also indicates that ρ(πj , ij) is identical to πB+2 in
the first ij elements.

This in turn implies that πB+2 is (B + 1)-blocked by π1, . . . , πB+1 ∈ S,
contradicting that πB+2 ∈ S by the requisite property of S. �

So, we know that any member of S can be at most B-blocked by a subset
of S, while any non-member can be at most (B + 1)-blocked by a subset of S.
We will combine this fact (an effective upper bound on the number of blocked
sequences) with the subsequent claim (a respective lower bound) to derive our
final bound on |S|.
Subclaim 2. For each i ∈ [�], there exist |S| distinct sequences blocked in slot i
by sequences in S.

Proof. Beginning with i = 1, we observe that sequences with at least |S|/�!
different last elements m∗ must occur in S (as there are only �! sequences with
any given last element). Furthermore, any sequence in S with a certain last
element m∗ must block in slot 1 a total of �! different sequences (i.e., anything
beginning with m∗), and different m∗ will produce disjoint sets of sequences
blocked. Thus, we conclude that the sequences in S will block in slot 1 at least
(|S|/�!)�! = |S| distinct sequences.

For the remaining slots i > 1, we can apply the same logic to the distinct
arrangements of the elements (m1, . . . ,mi−1) and m∗. Among the sequences in S
there must be a minimum of |S|/(�+1−i)! such arrangements (since, given a fixed
(m1, . . . ,mi−1,m

∗), there are (�+1−i)! sequences possible), and sequences with
each arrangement will block in slot i a total of (� + 1 − i)! distinct sequences
(i.e., any sequence beginning with (m1, . . . ,mi−1,m

∗)). Hence, the sequences
in S will block in slot i at least (|S|/(� + 1 − i)!)(� + 1 − i)! = |S| distinct
sequences. �

In total, we notice that at least |S| distinct sequences are blocked in slot i
for any i ∈ [�], and so there are at least |S|� distinct pairs (π, i) such that the
sequence π is blocked in slot i by sequences in S. Furthermore, we recall that
the sequences in S are each blocked in slot i by sequences in S for at most B
different i, while the remaining (� + 1)! − |S| elements are each blocked in slot i
by sequences in S for at most B + 1 different i. This provides an upper bound
of B|S| + ((� + 1)! − |S|)(B + 1) on the number of “blocking” pairs (π, i). We
lastly combine these lower and upper bounds (noting that, if the lower bound
exceeded the upper bound, there would be a contradiction) to bound |S|:

|S|� ≤ B|S| + ((� + 1)! − |S|)(B + 1) = B(� + 1)! + (� + 1)! − |S|
|S|(� + 1) ≤ (B + 1)(� + 1)!

|S| ≤ (B + 1)�!

�
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Recall that, if S is the set of all bad sequences which are permutations of some
set �m∗ of �(n)+1 distinct messages, we have by Lemma 2 that any sequence which
is (M(n) + r(n) + 1)-blocked by bad sequences in S must be good and thus lie
outside of S. Hence, by Lemma 3, S has size at most (M(n) + r(n) + 1) (�(n))!.
Given any set of �(n)+1 distinct messages, then, the above applies to show that
at most an

(M(n) + r(n) + 1) (�(n))!
(�(n) + 1)!

=
M(n) + r(n) + 1

�(n) + 1

fraction of the sequences defined by the permutations of this set can be bad,
and the remainder must be good. Applying this to every possible set of �(n) + 1
distinct messages, we get that at most the same fraction of all sequences of
distinct messages can be bad. While the property that messages are distinct
is not necessarily guaranteed, we note that the probability that they are not
over uniformly randomly chosen messages is negligible—specifically, we notice
that the probability of any pair of elements colliding is 2−n, and so, by the
union bound, the probability that any of the �(n)(�(n)+1)

2 pairs of elements can
collide is smaller than ν(n) � �(n)22−n (which is negligible in n because �(·) is
polynomial).

Hence, the chance that a sequence chosen at random is bad, which by defi-
nition is equal to the probability that a randomly chosen sequence of messages
�m∗

k = (mk,1, . . . ,mk,�(n),m
∗
k) will result in instance k returning Fail, can be at

most the fraction of sequences without repeated elements which are bad plus
the fraction of sequences with repeated elements, or M(n)+r(n)+1

�(n)+1 + ν(n), as
desired. �

Recall that, because this result holds for any execution of the experiment
Real∗{�mI ,m∗

I}−k,Oext
(1n), it must also hold over a random such execution—i.e.,

the actual execution Real(1n) of B, where the messages for all instances are
chosen uniformly at random. Furthermore, it holds for any instance k of A.

To conclude the proof of the proposition, by Claim1 we know that R must
send a total of at least �(n) messages to each instance of A in order for the
failure probability of B to emulate that instance to be more than negligible; if
not, then B will always respond with ⊥ (having not received �(n) signature query
responses), while A will return ⊥ with all but negligible probability. Recall that
M(n) is an upper bound to the number of instances of A to which R sends �(n)
messages. By Claim 4 and a union bound over all M(n) completed instances of
A, the failure probability of B for those instances is at most

M(n)
(

M(n) + r(n) + 1
�(n) + 1

+ ν(n)
)

for negligible ν(·), and the failure probability for all other instances (of which
there can only be a polynomial number by the time constraint on R) is negligible
by the union bound applied to Claim1. Hence the overall failure probability of
Real (i.e., the execution of B) must be bounded above by
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Pr[Output[Real(1n)] = Fail] ≤ M(n)
(

M(n) + r(n) + 1
�(n) + 1

+ ν(n)
)

+ ν′(n)

< M(n)
(

M(n) + r(n) + 1
�(n) + 1

)
+ ε(n)

for some negligible functions ν′(·) and ε(·). �
Completing the Proof of Lemma 1. Finally, in order to bound the security loss,
we note that, if the probability SuccessRA(n) (which specifically is by definition a
lower bound to the probability Pr[Output[Ideal(1n)] = Accept] − t(n); recall that
t(·) is the threshold for the underlying assumption C) is non-negligibly greater
than the failure probability of Real, there exists a polynomial p(·) such that:

Pr[Output[Ideal(1n)] = Accept] − t(n) ≥ Pr[Output[Real(1n)] = Fail] +
1

p(n)

But, by Claim 3, this would imply that

Pr[Output[Real(1n)] = Accept] − t(n) ≥ 1
p(n)

that is, that B breaks the security of (C, t(·)). So, by Proposition 1, unless B
breaks the security of (C, t(·)), the above cannot be the case—that is, there must
exist negligible ε(·), ε′(·) such that, for sufficiently large n:

SuccessRA(n) ≤ Pr[Output[Real(1n)] = Fail] + ε′(n)

< M(n)
(

M(n) + r(n) + 1
�(n) + 1

)
+ (ε(n) + ε′(n)) < M(n)

(
M(n) + r(n) + 1

�(n)

)

Of course, SuccessRA(n), being a probability, is also trivially bounded above
by 1. Furthermore, by the definition of M(n), we know that QueryRA(n) ≥
M(n)�(n). Lastly, we consider two cases to derive our bound on the security
loss.

Case 1. If M(n) ≥ √
�(n) − (r(n) + 1), then:

λR(n) ≥ SuccessA(n)
SuccessRA(n)

QueryRA(n)
QueryA(n)

≥ 1
1

M(n)�(n)
�(n)

= M(n) ≥
√

�(n) − (r(n) + 1)

Case 2. Otherwise, if M(n) <
√

�(n) − (r(n) + 1) we have M(n) + r(n) + 1 <√
�(n), and so:

λR(n) ≥ SuccessA(n)
SuccessRA(n)

QueryRA(n)
QueryA(n)

≥ 1

M(n)
(

M(n)+r(n)+1
�(n)

)
M(n)�(n)

�(n)

=
�(n)

M(n) + r(n) + 1
>

�(n)
√

�(n)
=

√
�(n)

Either way, we observe that λR(n) ≥ √
�(n) − (r(n) + 1), thus completing the

proof of both Lemma1 and Theorem 2.
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Abstract. A two-party coin-flipping protocol is ε-fair if no efficient
adversary can bias the output of the honest party (who always out-
puts a bit, even if the other party aborts) by more than ε. Cleve
[STOC ’86] showed that r-round o(1/r)-fair coin-flipping protocols do not
exist. Awerbuch et al. [Manuscript ’85] constructed a Θ(1/

√
r)-fair coin-

flipping protocol, assuming the existence of one-way functions. Moran et
al. [Journal of Cryptology ’16] constructed an r-round coin-flipping pro-
tocol that is Θ(1/r)-fair (thus matching the aforementioned lower bound
of Cleve [STOC ’86]), assuming the existence of oblivious transfer.

The above gives rise to the intriguing question of whether oblivi-
ous transfer, or more generally “public-key primitives”, is required for
an o(1/

√
r)-fair coin flipping. This question was partially answered by

Dachman-Soled et al. [TCC ’11] and Dachman-Soled et al. [TCC ’14],
who showed that restricted types of fully black-box reductions cannot
establish o(1/

√
r)-fair coin-flipping protocols from one-way functions.

In particular, for constant-round coin-flipping protocols, [10] yields that
black-box techniques from one-way functions can only guarantee fairness
of order 1/

√
r.

We make progress towards answering the above question by show-
ing that, for any constant r ∈ N, the existence of an 1/(c · √

r)-fair,
r-round coin-flipping protocol implies the existence of an infinitely-often
key-agreement protocol, where c denotes some universal constant (inde-
pendent of r). Our reduction is non black-box and makes a novel use
of the recent dichotomy for two-party protocols of Haitner et al. [FOCS
’18] to facilitate a two-party variant of the attack of Beimel et al. [FOCS
’18] on multi-party coin-flipping protocols.

Keywords: Coin-flipping · Fairness · Key-agreement

1 Introduction

In a two-party coin flipping protocol, introduced by Blum [6], the parties wish
to output a common (close to) uniform bit, even though one of the parties
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may be corrupted and try to bias the output. Slightly more formally, an ε-fair
coin flipping protocol should satisfy the following two properties: first, when
both parties behave honestly (i.e., follow the prescribed protocol), they both
output the same uniform bit. Second, in the presence of a corrupted party that
may deviate from the protocol arbitrarily, the distribution of the honest party’s
output may deviate from the uniform distribution (unbiased bit) by at most ε.
We emphasize that the above notion requires an honest party to always output
a bit, regardless of what the corrupted party does, and, in particular, it is not
allowed to abort if a cheat is detected.1 Coin flipping is a fundamental primitive
with numerous applications, and thus lower bounds on coin flipping protocols
yield analogous bounds for many basic cryptographic primitives, including other
inputless primitives and secure computation of functions that take input (e.g.,
XOR).

In his seminal work, Cleve [8] showed that, for any efficient two-party r-
round coin flipping protocol, there exists an efficient adversarial strategy that
biases the output of the honest party by Θ(1/r). The above lower bound on coin
flipping protocols was met for the two-party case by Moran, Naor, and Segev [20]
improving over the Θ(n/

√
r)-fairness achieved by the majority protocol of Awer-

buch, Blum, Chor, Goldwasser, and Micali [2]. The protocol of [20], however, uses
oblivious transfer; to be compared with the protocol of [2] that can be based on
any one-way function. An intriguing open question is whether oblivious transfer,
or more generally “public-key primitives”, is required for an o(1/

√
r)-fair coin

flip. The question was partially answered in the black-box setting by Dachman-
Soled, Lindell, Mahmoody, and Malkin [10] and Dachman-Soled, Mahmoody,
and Malkin [11], who showed that restricted types of fully black-box reductions
cannot establish o(1/

√
r)-bias coin flipping protocols from one-way functions. In

particular, for constant-round coin flipping protocols, [10] yields that black-box
techniques from one-way functions can only guarantee fairness of order 1/

√
r.

1.1 Our Results

Our main result is that constant-round coin flipping protocols with better bias
compared to the majority protocol of [2] imply the existence of infinitely-often
key-agreement. We recall that infinitely-often key-agreement protocols satisfy
correctness (parties agree on a common bit with overwhelming probability),
and, for an infinite number of security parameters, no efficient eavesdropper can
deduce the output with probability noticeably far from a random guess.2

Theorem 1.1 (Main result, informal). For any (constant) r ∈ N, the exis-
tence of an 1/(c · √

r)-fair, r-round coin flipping protocol implies the existence

1 Such protocols are typically addressed as having guaranteed output delivery, or, abus-
ing terminology, as fair.

2 While infinitely-often key-agreement protocols are useless from a cryptographic point
of view, constructing such protocols appears to be as hard as obtaining full-blown
key agreement.
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an infinitely-often key-agreement protocol, for c > 0 being a universal constant
(independent of r).

As in [8,10,11], our result extends via a simple reduction to general multi-
party coin flipping protocols (with more than two-parties) without an honest
majority. Our non black-box reduction makes a novel use of the recent dichotomy
for two-party protocols of Haitner et al. [12]. Specifically, assuming that io-key-
agreement does not exist and applying Haitner et al.’s dichotomy, we show that
a two-party variant of the recent multi-party attack of Beimel et al. [3] yields a
1/(c · √

r)-bias attack.

1.2 Our Technique

Let Π = (A,B) be a r-round two-party coin flipping protocol. We show that
the nonexistence of key-agreement protocols yields an efficient Θ(1/

√
r)-bias

attack on Π. We start by describing the 1/
√

r-bias inefficient attack of Cleve
and Impagliazzo [9], and the approach of Beimel et al. [3] towards making this
attack efficient. We then explain how to use the recent results by Haitner et al.
[12] to obtain an efficient attack (assuming the nonexistence of io-key-agreement
protocols).

Cleve and Impagliazzo’s Inefficient Attack. We describe the inefficient
1/

√
r-bias attack due to Cleve and Impagliazzo [9]. Let M1, . . . , Mr denote the

messages in a random execution of Π, and let C denote the (without loss of
generality) always common output of the parties in a random honest execution
of Π. Let Xi = E [C | M≤i]. Namely, M≤i = M1, . . . , Mi denotes the partial
transcript of Π up to and including round i, and Xi is the expected outcome
of the parties in Π given M≤i. It is easy to see that X0, . . . , Xr is a martingale
sequence: E [Xi | X0, . . . , Xi−1] = Xi−1 for every i. Since the parties in an honest
execution of Π output a uniform bit, it holds that X0 = Pr [C = 1] = 1/2 and
Xr ∈ {0, 1}. Cleve and Impagliazzo [9] (see Beimel et al. [3] for an alternative
simpler proof) prove that, for such a sequence (omitting absolute values and
constant factors),

Gap: Pr
[∃i ∈ [r] : Xi − Xi−1 ≥ 1/

√
r
] ≥ 1/2. (1)

Let the ith backup value of party P, denoted ZP
i , be the output of party

P if the other party aborts prematurely after the ith message was sent (recall
that the honest party must always output a bit, by definition). In particular, ZP

r

denotes the final output of P (if no abort occurred). We claim that without loss
of generality for both P ∈ {A,B} it holds that

Backup values approximate outcome:

Pr
[∃i ∈ [r] :

∣
∣Xi − E

[
ZP

i | M≤i

]∣∣ ≥ 1/2
√

r
] ≤ 1/4. (2)

To see why, assume Eq. (2) does not hold. Then, the (possibly inefficient)
adversary controlling P ∈ {A,B} \ P that aborts at the end of round i if
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(−1)1−z · (Xi −E
[
ZP

i | M≤i

]
) ≥ 1/

√
r, for suitable z ∈ {0, 1}, biases the output

of P towards 1 − z by Θ(1/
√

r).
Finally, since the coins of the parties are independent conditioned on the

transcript (a fundamental fact about protocols), if party A sends the (i + 1)
message then

Independence: E
[
ZB

i | M≤i

]
= E

[
ZB

i | M≤i+1

]
. (3)

Combining the above observations yields that without loss of generality:

Pr
[∃i ∈ [r] : A sends the ith message ∧ Xi − E

[
ZB

i−1 | M≤i

] ≥ 1/2
√

r
] ≥ 1/8.

(4)

Equation (4) yields the following (possibly inefficient) attack for a corrupted
party A biasing B’s output towards zero: before sending the ith message Mi,
party A aborts if Xi − E

[
ZB

i−1 | M≤i

] ≥ 1/2
√

r. By Eq. (4), this attack biases
B’s output towards zero by Ω(1/2

√
r).

The clear limitation of the above attack is that, assuming one-way func-
tions exist, the value of Xi = E [C | M≤i = (m1, . . . , mi)] and the value of
E

[
ZP

i | M≤i = (m1, . . . , mi)
]

might not be efficiently computable as a function
of t.3 Facing this difficulty, Beimel et al. [3] considered the martingale sequence
Xi = E

[
C | ZP

≤i

]
(recall that ZP

i is the ith backup value of P). It follows that,
for constant-round protocols, the value of Xi is only a function of a constant size
string, and thus it is efficiently computable ([3] have facilitated this approach for
protocols of super-constant round complexity, see Footnote 4). The price of using
the alternative sequence X1, . . . , Xr is that the independence property (Eq. (3))
might no longer hold. Yet, [3] manage to facilitate the above approach into an
efficient Ω̃(1/

√
r)-attack on multi-party protocols. In the following, we show how

to use the dichotomy of Haitner et al. [12] to facilitate a two-party variant of the
attack from [3].

Nonexistence of Key-Agreement Implies an Efficient Attack. Let Up

denote the Bernoulli random variable taking the value 1 with probability p, and
let P

c≈ρ Q stand for Q and P are ρ-computationally indistinguishability (i.e.,
an efficient distinguisher cannot tell P from Q with advantage better than ρ).
We are using two results by Haitner et al. [12]. The first one given below holds
for any two-party protocol.

Theorem 1.2 (Haitner et al. [12]’s forecaster, informal). Let Δ = (A,B)
be a single-bit output (each party outputs a bit) two-party protocol. Then, for
any constant ρ > 0, there exists a constant output-length poly-time algorithm
(forecaster) F mapping transcripts of Δ into (the binary description of) pairs in
[0, 1]× [0, 1] such that the following holds: let (X,Y, T ) be the parties outputs and
transcript in a random execution of Δ , then
3 For instance, the first two messages might contain commitments to the parties’

randomness.
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– (X,T )
c≈ρ (UpA , T )(pA,·)←F(T ), and

– (Y, T )
c≈ρ (UpB , T )(·,pB)←F(T ).

Namely, given the transcript, F forecasts the output-distribution for each party
in a way that is computationally indistinguishable from (the distribution of) the
real output.

Consider the (r + 1)-round protocol Π̃ = (Ã, B̃), defined by Ã sending a
random i ∈ [r] to B̃ as the first message and then the parties interact in a
random execution of Π for the first i rounds. At the end of the execution, the
parties output their ith backup values zAi and zBi and halt. Let F be the forecaster
for Π̃ guaranteed by Theorem 1.2 for ρ = 1/r2 (note that ρ is indeed constant).
A simple averaging argument yields that

(ZP
i ,M≤i)

c≈1/r (UpP ,M≤i)(pA,pB)←F(M≤i) (5)

for both P ∈ {A,B} and every i ∈ [r], letting F(m≤i) = F(i,m≤i). Namely, F is
a good forecaster for the partial transcripts of Π.

Let M1, . . . , Mr denote the messages in a random execution of Π and let
C denote the output of the parties in Π. Let Fi =

(
FA

i , FB
i

)
= F(M≤i) and

let Xi = E [C | F≤i]. It is easy to see that X1, . . . , Xr is a martingale sequence
and that X0 = 1/2. We assume without loss of generality that the last mes-
sage of Π contains the common output. Thus, it follows from Eq. (5) that
Fr ≈ (C,C) ∈ {(0, 0), (1, 1)} (otherwise, it will be very easy to distinguish the
forecasted outputs from the real ones, given Mr). Hence, similarly to Sect. 1.2,
it holds that

Gap: Pr
[∃i ∈ [r] : Xi − Xi−1 ≥ 1/

√
r
] ≥ 1/2. (6)

Since Fi has constant-size support and since Π is constant round, it follows that
Xi is efficiently computable from M≤i.4

Let ZP
i denote the backup value computed by party P in round i of a random

execution of Π. The indistinguishability of F yields that E
[
ZP

i | F≤i

] ≈ FP
i .

Similarly to Sect. 1.2, unless there is a simple 1/
√

r-attack, it holds that
Backup values approximate outcome:

Pr
[∃i ∈ [r] :

∣
∣Xi − E

[
ZP

i | F≤i

]∣∣ ≥ 1/2
√

r
] ≤ 1/4. (7)

Thus, for an efficient variant of [9]’s attack, it suffices to show that

Independence: E
[
ZP

i | F≤i

] ≈ E
[
ZP

i | F≤i+1

]
. (8)

4 In the spirit of Beimel et al. [3], we could have modified the definition of the Xi’s
to make them efficiently computable even for non constant-round protocols. The
idea is to define Xi = E [C | Fi, Xi−1]. While the resulting sequence might not be
a martingale, [3] proves that a 1/

√
r-gap also occurs with constant probability for

such a sequence. Unfortunately, we cannot benefit from this improvement, since the
results of Haitner et al. [12] only guarantees indistinguishability for constant ρ, which
makes it useful only for attacking constant-round protocols.
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for every P ∈ {A,B} and round i in which party P ∈ {A,B}\{P} sends the (i+1)
message. However, unlike Eq. (3) in Sect. 1.2, Eq. (8) does not hold uncondition-
ally (in fact, assuming oblivious transfer exists, the implied attack must fail for
some protocols, yielding that Eq. (8) is false for these protocols). Rather, we
relate Eq. (8) to the existence of a key-agreement protocol. Specifically, we show
that if Eq. (8) is not true, then there exists a key-agreement protocol.

Proving that Fi+1 and ZP
i are Approximately Independent Given F≤i .

The next (and last) argument is the most technically challenging part of our
proof. At this time, we provide a brief yet meaningful overview of the technique.
The full details are provided in the main body (Claim3.8 in Sect. 3).

We show that assuming nonexistence of io-key-agreement, Fi+1 and ZP
i are

approximately independent given F≤i. In more detail, the triple (ZP
i , Fi+1, F≤i)

is ρ-indistinguishable from (Y1, Y2, F≤i) where (Y1, Y2) is a pair of random vari-
ables that are mutually independent given F≤i. It would then follow that
E

[
ZP

i | Fi+1, F≤i

] ≈ E [Y1 | Y2, F≤i] = E [Y1 | F≤i] ≈ E
[
ZP

i | F≤i

]
as required.

To this end, we use a second result by Haitner et al. [12].5

Theorem 1.3 (Haitner et al. [12]’s dichotomy, informal). Let Δ = (A,B)
be an efficient single-bit output two-party protocol and assume infinitely-often
key-agreement protocol does not exist. Then, for any constant ρ > 0, there
exists a poly-time algorithm (decorrelator) Dcr mapping transcripts of Δ into
[0, 1] × [0, 1] such that the following holds: let (X,Y, T ) be the parties’ outputs
and transcript in a random execution of Δ, then

(X,Y, T )
c≈ρ (UpA , UpB , T )(pA,pB)←Dcr(T ).

Namely, assuming io-key-agreement does not exist, the distribution of the par-
ties’ output given the transcript is ρ-close to the product distribution given by
Dcr. We assume for simplicity that the theorem holds for many-bit output pro-
tocols and not merely single bit (we get rid of this assumption in the actual
proof).

We define another variant Π̂ of Π that internally uses the forecaster F, and
show that the existence of a decorrelator for Π̂ implies that Fi+1 and ZP

i are
approximately independent given F≤i, and Eq. (8) follows. For concreteness, we
focus on party P = B.

Fix i such that A sends the (i + 1) message in Π and define protocol Π̂ =
(Â, B̂) according to the following specifications: the parties interact just as in Π

for the first i rounds; then B̂ outputs the ith backup value of B and Â internally
computes mi+1 and outputs fi+1 = F(m≤i+1). By Theorem 1.3 there exists an
efficient decorrelator Dcr for Π̂ with respect to ρ = 1/r. That is:

(Fi+1, Z
B
i ,M≤i)

c≈1/r (Up̂A , Up̂B ,M≤i)(p̂A,p̂B)←Dcr(M≤i)
, (9)

5 Assuming the nonexistence of key-agreement protocols, Theorem 1.3 implies Theo-
rem 1.2. Yet, we chose to use both results to make the text more modular.
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where now p
̂A describes a non-Boolean distribution, and Up̂A denotes an inde-

pendent sample from this distribution.
Since F and Dcr both output an estimate of (the expectation of) ZB

i |M≤i

in a way that is indistinguishable from the real distribution of ZB
i (given M≤i),

both algorithms output essentially the same value. Otherwise, the “accurate”
algorithm can be used to distinguish the output of the “inaccurate” algorithm
from the real output. It follows that

(Up̂A , Up̂B ,M≤i)(p̂A,p̂B)←Dcr(M≤i)

c≈1/r (Up̂A , UF B
i
,M≤i)(p̂A,·)←Dcr(M≤i)

(10)

Using a data-processing argument in combination with Eqs. (9) and (10), we
deduce that

(
Fi+1, Z

B
i , F≤i

) c≈1/r

(
Up̂A , Up̂B , F≤i

)

(p̂A,p̂B)←Dcr(M≤i)
(11)

c≈1/r

(
Up̂A , UF B

i
, F≤i

)

(p̂A,·)←Dcr(M≤i)
. (12)

Finally, conditioned on F≤i, we observe that the pair of random variables
(Up̂A , UF B

i
)(p̂A,·)←Dcr(M≤i)

are mutually independent since UF B
i

is sampled inde-

pendently according to FB
i , and FB

i is fully determined by F≤i.

1.3 Related Work

We review some of the relevant work on fair coin flipping protocols.

Necessary Hardness Assumptions. This line of work examines the min-
imal assumptions required to achieve an o(1/

√
r)-bias two-party coin flipping

protocols, as done in this paper. The necessity of one-way functions for weaker
variants of coin flipping protocol where the honest party is allowed to abort if
the other party aborts or deviates from the prescribed protocol, were considered
in [5,13,17,18]. More related to our bound is the work of Dachman-Soled et
al. [10] who showed that any fully black-box construction of O(1/r)-bias two-
party protocols based on one-way functions (with r-bit input and output) needs
Ω(r/ log r) rounds, and the work of Dachman-Soled et al. [11] showed that there
is no fully black-box and function oblivious construction of O(1/r)-bias two-
party protocols from one-way functions (a protocol is function oblivious if the
outcome of protocol is independent of the choice of the one-way function used in
the protocol). For the case we are interested in, i.e. constant-round coin flipping
protocols, [10] yields that black-box techniques from one-way functions can only
guarantee fairness of order 1/

√
r.

Lower Bounds. Cleve [8] proved that, for every r-round two-party coin flipping
protocol, there exists an efficient adversary that can bias the output by Ω(1/r).
Cleve and Impagliazzo [9] proved that, for every r-round two-party coin flipping
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protocol, there exists an inefficient fail-stop adversary that biases the output by
Ω(1/

√
r). They also showed that a similar attack exists if the parties have access

to an ideal commitment scheme. All above bounds extend to the multi-party case
(with no honest majority) via a simple reduction. Very recently, Beimel et al. [3]
showed that any r-round n-parties coin flipping with nk > r, for some k ∈ N,
can be biased by 1/(

√
r · (log r)k). Ignoring logarithmic factors, this means that

if the number of parties is rΩ(1), the majority protocol of [2] is optimal.

Upper Bounds. Blum [6] presented a two-party two-round coin flipping pro-
tocol with bias 1/4. Awerbuch et al. [2] presented an n-party r-round protocol
with bias O(n/

√
r) (the two-party case appears also in Cleve [8]). Moran et al.

[19] solved the two-party case by giving a two-party r-round coin flipping proto-
col with bias O(1/r). Haitner and Tsfadia [14] solved the three-party case up to
poly-logarithmic factor by giving a three-party coin flipping protocol with bias
O(polylog(r)/r). Buchbinder et al. [7] showed an n-party r-round coin flipping
protocol with bias Õ(n32n/r

1
2+

1
2n−1−2 ). In particular, their protocol for four par-

ties has bias Õ(1/r2/3), and for n = log log r their protocol has bias smaller than
Awerbuch et al. [2].

For the case where less than 2/3 of the parties are corrupt, Beimel et al.
[4] showed an n-party r-round coin flipping protocol with bias 22

k

/r, tolerating
up to t = (n + k)/2 corrupt parties. Alon and Omri [1] showed an n-party r-
round coin flipping protocol with bias Õ(22

n

/r), tolerating up to t corrupted
parties, for constant n and t < 3n/4.

1.4 Open Questions

We show that constant-round coin flipping protocol with “small” bias (i.e.,
o(1/

√
r)-fair, for r round protocol) implies io-key-agreement. Whether such a

reduction can be extended to protocols with super-constant round complexity
remains open. The barrier to extending our results is that the dichotomy result
of Haitner et al. [12] only guarantees indistinguishablility with constant advan-
tage (as opposed to vanishing or negligible advantage). It is worth mentioning
that for protocols of super-constant round complexity, even a black-box separa-
tion between optimal (and thus between small bias) coin flipping protocol and
one-way functions is not known.

The question of reducing oblivious transfer to optimally-fair coin flip is also
open. We recall that all known small bias coin flipping protocols rely on it
[7,15,20]. It is open whether the techniques of Haitner et al. [12] can provide a
similar dichotomy with respect to (io-) oblivious transfer (as opposed to io-key-
agreement) allowing for the realization of oblivious transfer from o(1/

√
r)-fair

(constant round) coin flip via the techniques of the present paper.

Paper Organization

Basic definitions and notation used through the paper are given in Sect. 2. The
formal statement and proof of the main theorem are given in Sect. 3.
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2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables and
functions, lowercase for values. For a, b ∈ R, let a ± b stand for the interval
[a − b, a + b]. For n ∈ N, let [n] = {1, . . . , n} and (n) = {0, . . . , n}. Let poly
denote the set of all polynomials, let ppt stand for probabilistic polynomial time
and pptm denote a ppt algorithm (Turing machine). A function ν : N → [0, 1]
is negligible, denoted ν(n) = neg(n), if ν(n) < 1/p(n) for every p ∈ poly and
large enough n. For a sequence x1, . . . , xr and i ∈ [r], let x≤i = x1, . . . , xi and
x<i = x1, . . . , xi−1.

Given a distribution, or random variable, D, we write x ← D to indicate
that x is selected according to D. Given a finite set S, let s ← S denote that s is
selected according to the uniform distribution over S. The support of D, denoted
Supp(D), be defined as {u ∈ U : D(u) > 0}. The statistical distance between two
distributions P and Q over a finite set U , denoted as SD(P,Q), is defined as
maxS⊆U |P (S) − Q(S)| = 1

2

∑
u∈U |P (u) − Q(u)|. Distribution ensembles X =

{Xκ}κ∈N and Y = {Yκ}κ∈N are δ-computationally indistinguishable in the set

K, denoted by X
c≈K,δ Y , if for every pptm D and sufficiently large κ ∈ K:

|Pr [D(1κ,Xκ) = 1] − Pr [D(1κ, Yκ) = 1]| ≤ δ.

2.2 Protocols

Let Π = (A,B) be a two-party protocol. The protocol Π is ppt if the running
time of both A and B is polynomial in their input length (regardless of the party
they interact with). We denote by (A(x),B(y))(z) a random execution of Π with
private inputs x and y, and common input z, and sometimes abuse notation and
write (A(x),B(y))(z) for the parties’ output in this execution.

We will focus on no-input two-party single-bit output ppt protocol: the only
input of the two ppt parties is the common security parameter given in unary
representation. At the end of the execution, each party outputs a single bit.
Throughout, we assume without loss of generality that the transcript contains
1κ as the first message. Let Π = (A,B) be such a two-party single-bit output
protocol. For κ ∈ N, let CA,κ

Π , CB,κ
Π and Tκ

Π denote the outputs of A, B and the
transcript of Π, respectively, in a random execution of Π(1κ).

Fair Coin Flipping Protocols. Since we are concerned with a lower bound,
we only give the game-based definition of coin flipping protocols (see [15] for the
stronger simulation-based definition).

Definition 2.1 (Fair coin flipping protocols). A ppt single-bit output two-
party protocol Π = (A,B) is an ε-fair coin flipping protocol if the following
holds.

Output delivery: The honest party always outputs a bit (even if the other
party acts dishonestly, or aborts).
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Agreement: The parties always output the same bit in an honest execution.
Uniformity: Pr

[
CA,κ

Π = b
]

= 1/2 (and thus Pr
[
CB,κ

Π = b
]

= 1/2), for both
b ∈ {0, 1} and all κ ∈ N.
Fairness: For any ppt A∗ and b ∈ {0, 1}, for sufficiently large κ ∈ N it holds
that Pr

[
CB,κ

Π = b
]

≤ 1/2 + ε, and the same holds for the output bit of A.

Key-Agreement. We focus on single-bit output key-agreement protocols.

Definition 2.2 (Key-agreement protocols). A ppt single-bit output two-
party protocol Π = (A,B) is io-key-agreement, if there exist an infinite K ⊆ N
such that the following hold for κ’s in K:

Agreement. Pr
[
CA,κ

Π = CB,κ
Π

]
≥ 1 − neg(κ).

Secrecy. Pr
[
Eve(Tκ

Π) = CA,κ
Π

]
≤ 1/2 + neg(κ), for every ppt Eve.

2.3 Martingales

Definition 2.3 (Martingales). Let X0, . . . , Xr be a sequence of random vari-
ables. We say that X0, . . . , Xr is a martingale sequence if E [Xi+1 | X≤i = x≤i] =
xi for every i ∈ [r − 1].

In plain terms, a sequence is a martingale if the expectation of the next point
conditioned on the entire history is exactly the last observed point. One way
to obtain a martingale sequence is by constructing a Doob martingale. Such
a sequence is defined by Xi = E [f(Z) | Z≤i], for arbitrary random variables
Z = (Z1, . . . , Zr) and a function f of interest. We will use the following fact
proven by [9] (we use the variant as proven in [3]).

Theorem 2.1. Let X0, . . . , Xr be a martingale sequence such that Xi ∈ [0, 1],
for every i ∈ [r]. If X0 = 1/2 and Pr [Xr ∈ {0, 1}] = 1, then

Pr
[
∃i ∈ [r] s.t. |Xi − Xi−1| ≥ 1

4
√

r

]
≥ 1

20
.

3 Fair Coin Flipping to Key-Agreement

In this section, we prove our main result: if there exist constant-round coin
flipping protocols which improve over the 1/

√
r-bias majority protocol of [2], then

infinitely-often key-agreement exists as well. Formally, we prove the following
theorem.

Theorem 3.1. The following holds for any (constant) r ∈ N: if there exists an
r-round, 1

25600
√

r
-fair two-party coin flipping protocol, see Definition 2.1, then

there exists an infinitely-often key-agreement protocol.6,7

6 Definition 2.1 requires perfect uniformity: the common output in an honest execution
is an unbiased bit. The proof given below, however, easily extends to any non-trivial
uniformity condition, e.g., the common output equals 1 with probability 3/4.

7 We remark that we did not optimize the value of the constant.
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Before formally proving Theorem3.1, we briefly recall the outline of the proof
as presented in the introduction (we ignore certain constants in this outline). We
begin with a good forecaster for the coin flipping protocol Π (which must exist,
according to [12]), and we define an efficiently computable conditional expected
outcome sequence X = (X0, . . . , Xr) for Π, conditioned on the forecaster’s out-
puts. Then, we show that (1) the ith backup value (default output in case the
opponent aborts) should be close to Xi; otherwise, an efficient attacker can use
the forecaster to bias the output of the other party (this attack is applicable
regardless of the existence of infinitely-often key-agreement). And (2), since X
is a martingale sequence, “large” 1/

√
r-gaps are bound to occur in some round,

with constant probability. Hence, combining (1) and (2), with constant proba-
bility, for some i, there is a 1/

√
r-gap between Xi and the forecasters’ prediction

for one party at the preceding round i − 1. Therefore, unless protocol Π implies
io-key-agreement, the aforementioned gap can be exploited to bias that party’s
output by 1/

√
r, by instructing the opponent to abort as soon as the gap is

detected. In more detail, the success of the attack requires that (3) the event
that a gap occurs is (almost) independent of the backup value of the honest party.
It turns out that if Π does not imply io-key-agreement, this third property is
guaranteed by the dichotomy theorem of [12]. In summary, if io-key-agreement
does not exist, then protocol Π is at best 1/

√
r-fair.

Moving to the formal proof, fix an r-round, two-party coin flipping protocol
Π = (A,B) (we assume nothing about its fairness parameter for now). We asso-
ciate the following random variables with a random honest execution of Π(1κ).
Let Mκ = (Mκ

1 , . . . , Mκ
r ) denote the messages of the protocol and let Cκ denote

the (always) common output of the parties. For i ∈ {0, . . . , r} and P ∈ {A,B}, let
ZP,κ

i be the “backup” value party P outputs, if the other party aborts after the
ith message was sent. In particular, ZA,κ

r = ZB,κ
r = Cκ and Pr [Cκ = 1] = 1/2.

Forecaster for Π. We are using a forecaster for Π, guaranteed by the following
theorem (proof readily follows from Haitner et al. [12, Theorem 3.8]).

Theorem 3.2 (Haitner et al. [12], existence of forecasters). Let Δ be a
no-input, single-bit output two-party protocol. Then for any constant ρ > 0, there
exists a ppt constant output-length algorithm F (forecaster) mapping transcripts
of Δ into (the binary description of) pairs in [0, 1] × [0, 1] and an infinite set
K ∈ N such that the following holds: let CA,κ, CB,κ and Tκ denote the parties’
outputs and protocol transcript, respectively, in a random execution of Δ(1κ).
Let m(κ) ∈ poly be a bound on the number of coins used by F on transcripts in
supp(Tκ), and let Sκ be a uniform string of length m(κ). Then,

– (CA,κ, Tκ, Sκ)
c≈ρ,K (UpA , Tκ, Sκ)(pA,·)=F(T κ;Sκ), and

– (CB,κ, Tκ, Sκ)
c≈ρ,K (UpB , Tκ, Sκ)(·,pB)=F(T κ;Sκ).
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letting Up be a Boolean random variable taking the value 1 with probability p.8

Since we require a forecaster for all (intermediate) backup values of Π, we
apply Theorem3.2 with respect to the following variant of protocol Π, which
simply stops the execution at a random round.

Protocol 3.3 (Π̃ =
(
Ã, B̃

)
)

Common input: security parameter 1κ.
Description:

1. Ã samples i ← [r] and sends it to B̃.
2. The parties interact in the first i rounds of a random execution of Π(1κ),

with Ã and B̃ taking the role of A and B receptively.
Let zAi and zBi be the ith backup values of A and B as computed by the parties
in the above execution.

3. Ã outputs zAi , and B̃ outputs zBi .

Let ρ = 10−6 · r−5/2. Let K ⊆ N and a ppt F be the infinite set and ppt
forecaster resulting by applying Theorem3.2 with respect to protocol Π̃ and ρ,
and let Sκ denote a long enough uniform string to be used by F on transcripts
of Π̃(1κ). The following holds with respect to Π.

Claim 3.4. For I ← [r], it holds that

– (ZA,κ
I ,Mκ

≤I , S
κ)

c≈ρ,K (UpA ,Mκ
≤I , S

κ)(pA,·)=F(M≤I ;Sκ), and

– (ZB,κ
I ,Mκ

≤I , S
κ)

c≈ρ,K (UpB ,Mκ
≤I , S

κ)(·,pB)=F(M≤I ;Sκ),

letting F(m≤i; r) = F(i,m≤i; r).

Proof. Immediate, by Theorem 3.2 and the definition of Π̃. �
We assume without loss of generality that the common output appears on the
last message of Π (otherwise, we can add a final message that contains this
value, which does not hurt the security of Π). Hence, without loss of generality
it holds that F(m≤r; ·) = (b, b), where b is the output bit as implied by m≤r

(otherwise, we can change F to do so without hurting its forecasting quality).
For κ ∈ N, we define the random variables Fκ

0 , . . . , Fκ
r , by

Fκ
i = (FA,κ

i , FB,κ
i ) = F(M≤i;Sκ) (13)

8 Haitner et al. [12] do not limit the output-length of F. Nevertheless, by applying
[12] with parameter ρ/2 and chopping each of the forecaster’s outputs to the first
�log 1/ρ� + 1 (most significant) bits, yields the desired constant output-length fore-
caster.
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The Expected Outcome Sequence. To attack the protocol, it is useful to
evaluate at each round the expected outcome of the protocol conditioned on the
forecasters’ outputs so far. To alleviate notation, we assume that the value of κ
is determined by |Sκ|.
Definition 3.1 (Expected outcome function). For κ ∈ N, i ∈ [r], f≤i ∈
supp(Fκ

≤i) and s ∈ Supp(Sκ), let

g(f≤i, s) = E
[
Cκ | Fκ

≤i = f≤i, S
κ = s

]
.

Namely, g(f≤i, s) is the probability that the output of the protocol in a random
execution is 1, given that F(M≤j ; s) = fj for every j ∈ (i) and M1, . . . , Mr being
the transcript of this execution.

Expected Outcome Sequence is Approximable. The following claim,
proven in Sect. 3.1, yields that the expected outcome sequence can be approxi-
mated efficiently.

Claim 3.5. There exists pptm G such that

Pr
[
G(Fκ

≤i, S
κ) /∈ g(Fκ

≤i, S
κ) ± ρ

] ≤ ρ,

for every κ ∈ N and i ∈ [r].

Algorithm G approximates the value of g on input (f≤i, s) ∈ supp(Fκ
≤i, S

κ)
by running multiple independent instances of protocol Π(1κ) and keeping track
of the number of times it encounters f≤i and the protocol outputs one. Standard
approximation techniques yield that, unless f≤i is very unlikely, the output of
G is close to g(f≤i, s). Claim 3.5 follows by carefully choosing the number of
iterations for G and bounding the probability of encountering an unlikely f≤i.

Forecasted Backup Values are Close to Expected Outcome Sequence.
The following claim bounds the probability that the expected outcome sequence
and the forecaster’s outputs deviate by more than 1/8

√
r. The proof is given in

Sect. 3.2.

Claim 3.6. Assuming Π is 1
6400

√
r
-fair, then

Pr
[
∃i ∈ [r] s.t.

∣
∣
∣g(Fκ

≤i, S
κ) − FP,κ

i

∣
∣
∣ ≥ 1/8

√
r
]

< 1/100

for both P ∈ {A,B} and large enough κ ∈ K.

Loosely speaking, Claim 3.6 states that the expected output sequence and
the forecaster’s outputs are close for a fair protocol. If not, then either of the
following attackers P∗

0, P
∗
1 can bias the output of party P: for fixed randomness

s ∈ supp(Sκ), attacker P∗
z computes fi = F(m≤i, s) for partial transcript m≤i

at round i ∈ [r], and aborts as soon as (−1)1−z(G(fκ
≤i, s) − fi) ≥ 1/8

√
r − ρ.

The desired bias is guaranteed by the accuracy of the forecaster (Claim 3.4), the
accuracy of algorithm G (Claim 3.5) and the presumed frequency of occurrence
of a suitable gap. The details of the proof are given in Sect. 3.2.
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Expected Outcome Sequence has Large Gap. Similarly to [9], the success
of our attack depends on the occurrence of large gaps in the expected outcome
sequence. The latter is guaranteed by [9] and [3], since the expected outcome
sequence is a suitable martingale.

Claim 3.7. For every κ ∈ N, it holds that

Pr
[∃i ∈ [r] :

∣
∣g(Fκ

≤i, S
κ) − g(Fκ

≤i−1, S
κ)

∣
∣ ≥ 1/4

√
r
]

> 1/20.

Proof. Consider the sequence of random variables Gκ
0 , . . . , Gκ

r defined by Gκ
i =

g(Fκ
≤i, S

κ). Observe that this is a Doob (and hence, strong) martingale sequence,
with respect to the random variables Z0 = Sκ and Zi = Fκ

i for i ∈ [r], and
the function f(Sκ, Fκ

≤r) = g(Fκ
≤r, S

κ) = Fκ
r [0] (i.e., the function that outputs

the actual output of the protocol, as implied by Fκ
r ). Clearly, Gκ

0 = 1/2 and
Gκ

r ∈ {0, 1} (recall that we assume that F(M≤r; ·) = (b, b), where b is the output
bit as implied by M≤r). Thus, the proof follows by Theorem2.1. �

Independence of Attack Decision. Claim 3.4 immediately yields that the
expected values of Fi and ZP

i are close, for both P ∈ {A,B} and every i ∈ [r].
Assuming io-key-agreement does not exist, the following claim essentially states
that Fi and ZP

i remain close in expectation, even if we condition on some event
that depends on the other party’s next message. This observation will allow us
to show that, when a large gap in the expected outcome is observed by one of
the parties, the (expected value of the) backup value of the other party still lags
behind. The following claim captures the core of the novel idea in our attack,
and its proof is the most technical aspect towards proving our main result.

Claim 3.8 (Independence of attack decision). Let D be a single-bit output
pptm. For κ ∈ N and P ∈ {A,B}, let EP,κ

1 , . . . , EP,κ
r be the sequence of random

variables defined by EP,κ
i = D(Fκ

≤i, S
κ) if P sends the ith message in Π(1κ), and

EP,κ
i = 0 otherwise.

Assume io-key-agreement protocols do not exist. Then, for any P ∈ {A,B}
and infinite subset K′ ⊆ K, there exists an infinite set K′′ ⊆ K′ such that

E
[
EP,κ

i+1 · (ZP,κ
i − FP,κ

i )
]

∈ ±4rρ

for every κ ∈ K′′ and i ∈ (r − 1), where P ∈ {A,B} \ {P}.

Since E
[
EP,κ

i+1 · (ZP,κ
i − FP,κ

i )
]

= E
[
EP,κ

i+1 · E
[
ZP,κ

i − FP,κ
i | EP,κ

i+1 = 1
]]

,

Claim 3.8 yields that the expected values of Fi and ZP
i remain close, even when

conditioning on a likely-enough-event over the next message of P.
The proof of Claim 3.8 is given in Sect. 3.3. In essence, we use the recent

dichotomy of Haitner et al. [12] to show that if io-key-agreement does not exist,
then the values of EP,κ

i+1 and ZP,κ
i conditioned on M≤i (which determines the

value of FP,κ
i ), are (computationally) close to be in a product distribution.
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Putting Everything Together. Equipped with the above observations, we
prove Theorem 3.1.

Proof of Theorem 3.1. Let Π be an ε = 1
25600

√
r
-fair coin flipping protocol. By

Claims 3.6 and 3.7, we can assume without loss of generality that there exists an
infinite subset K′ ⊆ K such that

Pr
[
∃i ∈ [r] : A sends ith message in Π(1κ) ∧ g(Fκ

≤i, S
κ) − FB,κ

i−1 ≥ 1
8
√

r

]

≥ 1
80

− 1
100

=
1

400
(14)

We define the following ppt fail-stop attacker A∗ taking the role of A in Π.
We will show below that assuming io-key-agreement do not exist, algorithm A∗

succeeds in biasing the output of B towards zero by ε for all κ ∈ K′′, contradicting
the presumed fairness of Π. In the following, let G be the pptm guaranteed to
exist by Claim 3.5.

Algorithm 3.9 (A∗)

Input: security parameter 1κ.
Description:

1. Sample s ← Sκ and start a random execution of A(1κ).
2. Upon receiving the (i − 1) message mi−1, do

(a) Forward mi−1 to A, and let mi be the next message sent by A.
(b) Compute fi = (fA

i , fB
i ) = F(m≤i, s).

(c) Compute g̃i = G(f≤i, s).
(d) If g̃i ≥ fB

i−1 + 1/16
√

r, abort (without sending further messages).
Otherwise, send mi to B and proceed to the next round.

It is clear that A∗ is a pptm. We conclude the proof showing that assuming
io-key-agreement do not exist, B’s output when interacting with A∗ is biased
towards zero by at least ε.

The following random variables are defined with respect to a a random exe-
cution of (A∗,B)(1κ). Let Sκ and Fκ = (Fκ

1 , . . . , Fκ
r ) denote the values of s and

f1, . . . , fr sampled by A∗. Let ZB,κ = (ZB,κ
1 , . . . , ZB,κ

r ) denote the backup values
computed by B. For i ∈ [r], let Eκ

i be the event that A∗ decides to abort in round
i. Finally, let Jκ be the index i with Eκ

i = 1, setting it to r + 1 if no such index
exist. Below, if we do not quantify over κ, it means that the statement holds for
any κ ∈ N.

By Claim 3.5 and Eq. (14),

Pr [Jκ �= r + 1] >
1

400
− ρ ≥ 1

800
(15)
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for every κ ∈ K′. Where since the events Eκ
i and Eκ

j for i �= j are disjoint,

E
[
ZB,κ

Jκ−1 − FB,κ
Jκ−1

]
= E

[
r+1∑

i=1

Eκ
i · (ZB,κ

i−1 − FB,κ
i−1)

]

=
r+1∑

i=1

E
[
Eκ

i · (ZB,κ
i−1 − FB,κ

i−1)
]

=
r∑

i=1

E
[
Eκ

i · (ZB,κ
i−1 − FB,κ

i−1)
]
. (16)

The last inequality holds since the protocol’s output appears in the last mes-
sage, by assumption, and thus without loss of generality ZB,κ

r = FB,κ
r . Consider

the single-bit output pptm D defined as follows: on input (f≤i, s) where f≤i is
a sequence of pairs of values, i.e., f≤i = (fA

1 , fB
1 ), . . . , (fA

i , fB
i )), it outputs 1 if

G(f≤i, s) − fB
i−1 ≥ 1/16

√
r, and G(f≤j , s) − fB

j−1 < 1/16
√

r for all j < i. Oth-
erwise, it outputs zero. Observe that Eκ

i is the indicator of the event A sends
the ith message in Π(1κ) and D(Fκ

≤i, S
κ) = 1, for any fixing of (Fκ, Sκ, ZB,κ).

Thus, assuming io-key-agreement protocols do not exist, Claim 3.8 yields that
that there exists an infinite set K′′ ⊂ K′ such that

E
[
Eκ

i+1 · (ZB,κ
i − FB,κ

i )
]

∈ ±4rρ (17)

for every κ ∈ K′′ and i ∈ [r−1]. Putting together Eqs. (16) and (17), we conclude
that, for every κ ∈ K′′,

E
[
ZB,κ

Jκ−1 − FB,κ
Jκ−1

]
∈ ±4r2ρ. (18)

Recall that our goal is to show that E
[
ZB,κ

Jκ−1

]
is significantly smaller than 1/2.

We do so by showing that it is significantly smaller than E
[
g(Fκ

≤Jκ , Sκ)
]

which
equals 1/2, since, by tower law (total expectation),

E
[
g(Fκ

≤Jκ , Sκ)
]

= E [Cκ] = 1/2. (19)

Finally, let Gi be the value of G(F≤i, S
κ) computed by A∗ in the execution of

(A∗,B)(1κ) considered above, letting Gr+1 = g(Fκ
≤r+1, S

κ). Claim 3.5 yields that

E
[
g(Fκ

≤Jκ , Sκ) − GJκ

] ≤ 2rρ. (20)
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Putting all the above observations together, we conclude that, for every κ ∈ K′′,

E
[
ZB,κ

Jκ−1

]

= E
[
g(Fκ

≤Jκ , Sκ)
] − E

[
GJκ − FB,κ

Jκ−1

]

+ E
[
ZB,κ

Jκ−1 − FB,κ
Jκ−1

]
− E

[
g(Fκ

≤Jκ , Sκ) − GJκ

]

≤ 1
2

− E
[
GJκ − FB,κ

Jκ−1 | Jκ �= r + 1
]

· Pr [Jκ �= r + 1] + 4r2ρ + 2rρ

≤ 1
2

− (1/16
√

r) · (1/800) + 4r2ρ + 2rρ

<
1
2

− 1
25600

√
r
.

The first inequality holds by Eqs. (18) to (20). The second inequality holds by
the definition of Jκ and Eq. (15). The last inequality holds by our choice of ρ.�

3.1 Approximating the Expected Outcome Sequence

In this section we prove Claim 3.5, restated below.

Claim 3.10 (Claim 3.5, restated). There exists pptm G such that

Pr
[
G(Fκ

≤i, S
κ) /∈ g(Fκ

≤i, S
κ) ± ρ

] ≤ ρ,

for every κ ∈ N and i ∈ [r].

The proof of Claim 3.10 is straightforward. Since there are only constant
number of rounds and F has constant output-length, when fixing the random-
ness of F, the domain of G has constant size. Hence, the value of of g can be
approximated well via sampling. Details below.

Let c be a bound on the number of possible outputs of F (recall that F has
constant output-length). We are using the following implementation for G. In the
following, let F((m1, . . . , mi); s) = (F(m1; s), . . . , (F(mi; s)) (i.e., F(M≤i;Sκ) =
F≤i).

Algorithm 3.11 (G)

Parameters: v =
⌈

1
2 ·

(
2cr

ρ

)4

· ln
(

8
ρ

)⌉
.

Input: f≤i ∈ supp(Fκ
≤i) and s ∈ Supp(Sκ).

Description:

1. Sample v transcripts
{
mj , cj

}
j∈[v]

by taking the (full) transcripts and outputs
of v independent executions of Π(1κ).

2. For every j ∈ [v] let f j
i = F(mj

≤i; s).

3. Let q =
∣
∣
∣
{

j ∈ [v] : f j
≤i = f≤i

}∣
∣
∣ and p =

∣
∣
∣
{

j ∈ [v] : f j
≤i = f≤i ∧ cj = 1

}∣
∣
∣.

4. Set g̃ = p/q. (Set g̃ = 0 if q = p = 0.)
5. Output g̃.
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Remark 3.1 (A more efficient approximator.). The running time of algorithm G
above is exponential in r. While this does not pose a problem for our purposes
here, since r is constant, it might leave the impression that out approach cannot
be extended to protocols with super-constant round complexity. So it is worth
mentioning that the running time of G can be reduced to be polynomial in r,
by using the augmented weak martingale paradigm of Beimel et al. [3]. Unfor-
tunately, we currently cannot benefit from this improvement, since the result of
[12] only guarantees indistinguishability for constant ρ, which makes it useful
only for attacking constant-round protocols.

We prove Claim 3.10 by showing that the above algorithm approximates g well.

Proof of Claim 3.10. To prove the quality of G in approximating g, it suffices to
prove the claim for every every κ ∈ N, i ∈ [r] and fixed s ∈ supp(Sκ). That is

Pr
[∣∣g(F(M≤i, s), s) − G(F(M≤i, s), s)

∣
∣ ≥ ρ

] ≤ ρ, (21)

where the probability is also taken over the random coins of G.
Fix κ ∈ N and omit it from the notation, and fix i ∈ [r] and s ∈ Sκ. Let

Di =
{
f≤i : Pr

[
F(M≤i, s) = f≤i

] ≥ ρ/2cr
}
. By Hoeffding’s inequality [16], for

every f≤i ∈ D, it holds that

Pr [|g(f≤i, s) − G(f≤i, s)| ≥ ρ] ≤ 4 · exp
(
−2 · v · (ρ/2cr)4

)

≤ 4 · exp
(

− vρ4

8c4r

)

≤ ρ/2. (22)

It follows that

Pr
[∣∣g(F(M≤i, s), s) − G(F(M≤i, s), s)

∣
∣ ≥ ρ

]

≤ Pr
[
(F(M≤j , s) /∈ D]

+ ρ/2

≤ ∣
∣Supp(F(M≤j , s))

∣
∣ · ρ/2cr + ρ/2

≤ cr · ρ/2cr + ρ/2 = ρ.

�

3.2 Forecasted Backup Values Are Close to Expected Outcome
Sequence

In this section, we prove Claim 3.6 (restated below).

Claim 3.12 (Claim 3.6, restated). Assuming Π is 1
6400

√
r
-fair, then

Pr
[
∃i ∈ [r] s.t.

∣
∣
∣g(Fκ

≤i, S
κ) − FP,κ

i

∣
∣
∣ ≥ 1/8

√
r
]

< 1/100

for both P ∈ {A,B} and large enough κ ∈ K.
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Proof. Assume the claim does not holds for P = B and infinitely many security
parameters K (the case P = A is proven analogously). That is, for all κ ∈ K and
without loss of generality, it holds that

Pr
[
∃i ∈ [r] s.t. g(Fκ

≤i, S
κ) − FB,κ

i ≥ 1
8
√

r

]
≥ 1

200
. (23)

Consider the following ppt fail-stop attacker A∗ taking the role of A in Π to
bias the output of B towards zeros.

Algorithm 3.13 (A∗)

Input: security parameter 1κ.
Description:

1. Samples s ← Sκ and start a random execution of A(1κ).
2. For i = 1 . . . r:

After sending (or receiving) the prescribed message mi:
(a) Let fi = F(m≤i; s) and μi = G(f≤i, s) − fi.
(b) Abort if μi ≥ 1

8
√

r
− ρ (without sending further messages).

Otherwise, proceed to the next round.

In the following, we fix a large enough κ ∈ K such that Eq. (23) holds, and
we omit it from the notation when the context is clear. We show that algorithm
A∗ biases the output of B towards zero by at least 1/(6400

√
r).

We associate the following random variables with a random execution of
(A∗,B). Let J denote the index where the adversary aborted, i.e., the smallest
j such that G(F≤j , S) − FB

j ≥ 1
8
√

r
− ρ, or J = r if no abort occurred. The

following expectations are taken over (F≤i, S) and the random coins of G. We
bound E

[
ZB

J

]
, i.e. the expected output of the honest party.

E
[
ZB
J

]

= E
[
ZB
J

]
+E

[
g(F≤J , S)

] −E
[
g(F≤J , S)

]
+E

[
G(F≤J , S)− FB

J

]
−E

[
G(F≤J , S)− FB

J

]

= E
[
g(F≤J , S)

] −E
[
G(F≤J , S)− FB

J

]
+E

[
G(F≤J , S)− g(F≤J , S)

]
+E

[
ZB
J − FB

J

]

=
1

2
−E

[
G(F≤J , S)− FB

J

]
+E

[
G(F≤J , S)− g(F≤J , S)

]
+E

[
ZB
J − FB

J

]
. (24)

The last equation follows from E [g(F≤J , S)] = E [C] and thus E [g(F≤J , S)] = 1
2

(for a more detailed argument see Eq. (19) and preceding text). We bound each
of the terms above separately. First, observe that
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Pr [J �= r]
≥ Pr [(∀i ∈ [r] : |G(F≤i, S) − g(F≤i, S)| ≤ ρ)

∧
(

∃j ∈ [r] : g(F≤j , S) − FB
j ≥ 1

8
√

r

)]

≥ Pr
[
∃j ∈ [r] : g(F≤j , S) − Fj ≥ 1

8
√

r

]

− Pr [∃i ∈ [r] : |G(F≤i, S) − g(F≤i, S)| > ρ]

≥ 1
200

− ρ

≥ 1
400

. (25)

The penultimate inequality is by Eq. (24) and Claim 3.5. It follows that

E
[
g(F≤J , S) − FB

J

]
= Pr [J �= r] · E [

g(F≤J , S) − FB
J | J �= r

]

≥ 1
400

·
(

1
8
√

r
− ρ

)
− E [G(F≤J , S) − g(F≤J , S)]

≥ 1
400

· 1
8
√

r
− 3ρ. (26)

The penultimate inequality is by Claim 3.5. Finally, since we were taking κ large
enough, Claim 3.4 and a data-processing argument yields that

E
[
ZB

J − FB
J

] ≤ rρ (27)

We conclude that E
[
g(F≤J , S) − FB

J

] ≥ 1
400 · 1

8
√

r
− (r + 3)ρ > 1/(6400

√
r), in

contradiction to the assumed fairness of Π. �

3.3 Independence of Attack Decision

In this section, we prove Claim 3.8 (restated below).

Claim 3.14 (Claim 3.8, restated). Let D be a single-bit output pptm. For
κ ∈ N and P ∈ {A,B}, let EP,κ

1 , . . . , EP,κ
r be the sequence of random variables

defined by EP,κ
i = D(Fκ

≤i, S
κ) if P sends the ith message in Π(1κ), and EP,κ

i = 0
otherwise.

Assume io-key-agreement protocols do not exist. Then, for any P ∈ {A,B}
and infinite subset K′ ⊆ K, there exists an infinite set K′′ ⊆ K′ such that

E
[
EP,κ

i+1 · (ZP,κ
i − FP,κ

i )
]

∈ ±4rρ

for every κ ∈ K′′ and i ∈ (r − 1), where P ∈ {A,B} \ {P}.

We prove for P = A. Consider the following variant of Π in which the party
playing A is outputting EA

i and the party playing B is outputting its backup
value.
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Protocol 3.15 (Π̂ =
(
Â, B̂

)
)

Common input: security parameter 1κ.
Description:

1. Party Â samples i ← [r] and s ← Sκ, and sends them to B̂.
2. The parties interact in the first i− 1 rounds of a random execution of Π(1κ),

with Â and B̂ taking the role of A and B respectively.
Let m1, . . . , mi−1 be the messages, and let zBi−1 be the (i − 1) backup output
of B in the above execution.

3. Â sets the value of eAi as follows:
If A sends the i − 1 message above, then it sets eAi = 0.
Otherwise, it
(a) Continues the above execution of Π to compute its next message mi.
(b) Computes fi = F(m≤i, s).
(c) Let eAi = D(f≤i, s).

(4) Â outputs eAi and B outputs zBi−1.

We apply the the following dichotomy result of Haitner et al. [12] on the
above protocol.

Theorem 3.16 (Haitner et al.[12], Theorem 3.18, dichotomy of two-
party protocols). Let Δ be an efficient single-bit output two-party protocol.
Assume io-key-agreement protocol do not exist, then for any constant ρ > 0 and
infinite subset K ⊆ N, there exists a ppt algorithm Dcr (decorelator) mapping
transcripts of Δ into (the binary description of) pairs in [0, 1] × [0, 1] and an
infinite set K′ ∈ N, such that the following holds: let CA,κ, CB,κ and Tκ denote
the parties’ output and protocol transcript in a random execution of Δ(1κ). Let
m(κ) ∈ poly be a bound on the number of coins used by Dcr on transcripts in
supp(Tκ), and let Sκ be a uniform string of length m(κ). Then

(CA,κ, CB,κ, Tκ, Sκ)
c≈ρ,K′ (UpA , UpA , Tκ, Sκ)(pA,pB)=Dcr(T κ;Sκ)

letting Up be a Boolean random variable taking the value 1 with probability p.

Proof of Claim 3.14. Assume io-key-agreement does not exits, and let K′′ ⊆ K′

and a ppt Dcr be the infinite set and ppt decorrelator resulting by applying
Theorem 3.16 with respect to protocol Π̂ and ρ. Let Ŝκ denote a long enough
uniform string to be used by Dcr on transcripts of Π̂(1κ). Then for I ← (r − 1),
letting Dcr(m≤i, s; ŝ) = Dcr(i, s,m≤i; ŝ), it holds that

(EA,κ
I+1, Z

B,κ
I ,Mκ

≤i, S
κ, Ŝκ)

c≈ρ,K′′ (UpA , UpB ,Mκ
≤I , S

κ, Ŝκ)(pA,pB)=Dcr(M≤I ,Sκ;̂Sκ).

(28)

For i ∈ [r], let Wκ
i = (WA,κ

i ,WB,κ
i ) = Dcr(M≤i, S

κ; Ŝκ). The proof of Claim 3.17
follows by the following three observations, proven below, that hold for large
enough κ ∈ K′′.
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Claim 3.17. E
[
EA,κ

I+1 · ZB,κ
I − WA,κ

I · WB,κ
I

]
∈ ±ρ.

Claim 3.18. E
[
WA,κ

I · FB,κ
I − EA,κ

I+1 · FB,κ
I

]
∈ ±ρ.

Claim 3.19. E
[
WA,κ

I · WB,κ
I − WA,κ

I · FB,κ
I

]
∈ ±2ρ.

We conclude that E
[
EP,κ

I+1 · ZP,κ
I − EP,κ

I+1 · FP,κ
I

]
∈ ±4ρ, and thus

E
[
EP,κ

i+1 · ZP,κ
i − EP,κ

i+1 · FP,κ
i

]
∈ ±4rρ for every i ∈ (r − 1). �

Proving Claim 3.17.

Proof of Claim 3.17. Consider algorithm D that on input (zA, zB, ·), outputs (the
product) zAzB. By definition,

1. Pr
[
D(UW A,κ

I
, UW B,κ

I
,Mκ

≤I , S
κ) = 1

]
= E

[
UW A,κ

I
· UW B,κ

I

]
=

E
[
WA,κ

I · WB,κ
I

]
,

2. Pr
[
D(EA,κ

I+1, Z
B,κ
I ,Mκ

≤I , S
κ) = 1

]
= E

[
EA,κ

I+1 · ZB,κ
I

]
.

Hence, the proof follows by Eq. (28). �
Proving Claim 3.18.

Proof of Claim 3.18. Consider the algorithm D that on input (zA, zB, (m≤I , s)):
(1) computes (·, fB) = F(m≤I ; s), (2) samples u ← UfB , and (3) outputs zA · u.
By definition,

1. Pr
[
D(UW A,κ

I
, UW B,κ

I
,Mκ

≤I , S
κ) = 1

]
= E

[
UW A,κ

I
· UF B,κ

I

]
= E

[
WA,κ

I · FB,κ
I

]
,

2. Pr
[
D(EA,κ

I+1, Z
B,κ
I ,Mκ

≤I , S
κ) = 1

]
= E

[
EA,κ

I+1 · UF B,κ
I

]
= E

[
EA,κ

I+1 · FB,κ
I

]
.

Hence, also in this case the proof follows by Eq. (28). �
Proving Claim 3.19.

Proof of Claim 3.19. Since
∣
∣
∣WA,κ

I

∣
∣
∣ ≤ 1, it suffices to prove E

[∣∣
∣WB,κ

I − FB,κ
I

∣
∣
∣
]

≤
2ρ. We show that if E

[∣∣
∣WB,κ

I − FB,κ
I

∣
∣
∣
]

> 2ρ, then there exists a distinguisher

with advantage greater than ρ for either the real outputs of Π̂ and the emulated
outputs of Dcr, or, the real outputs of Π̃ and the emulated outputs of F, in
contradiction with the assumed properties of Dcr and F.

Consider algorithm D that on input (zA, zB,m≤i, s) acts as follows: (1) sam-
ples ŝ ← Ŝκ, (2) computes (·, fB) = F(m≤i; s) and (·, wB) = Dcr(m≤i, s; ŝ), (3)
outputs zB if wB ≥ fB, and 1 − zB otherwise. We compute the difference in
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probability that D outputs 1 given a sample from Dcr(Mκ
≤I) or a sample from

F(Mκ
≤I) (we omit the superscript κ and subscript I below to reduce clutter)

Pr
[
D(UW A,κ

I
, UW B,κ

I
,Mκ

≤I , S
κ) = 1

]
− Pr

[
D(UF A,κ

I
, UF B,κ

I
,Mκ

≤I , S
κ) = 1

]

= E
[
UW B | WB ≥ FB

] · Pr
[
WB ≥ FB

]

+ E
[
1 − UW B | WB < FB

] · Pr
[
WB < FB

]

− E
[
UF B | WB ≥ FB

] · Pr
[
WB ≥ FB

]

− E
[
1 − UF B | WB < FB

] · Pr
[
WB < FB

]

= E
[
WB | WB ≥ FB

] · Pr
[
WB ≥ FB

]

− E
[
WB | WB < FB

]
Pr

[
WB < FB

]

− E
[
FB | WB ≥ FB

] · Pr
[
WB ≥ FB

]

+ E
[
FB | WB < FB

] · Pr
[
WB < FB

]

= E
[
WB − FB | WB ≥ FB

] · Pr
[
WB ≥ FB

]

+ E
[−WB + FB | WB < FB

]
Pr

[
WB < FB

]

= E
[∣∣WB − FB

∣
∣]

> 2ρ.

An averaging argument yields that either D is a distinguisher for the tuples
(UF A,κ

I
, UF B,κ

I
,Mκ

≤I , S
κ) and (ZA,κ

I , ZB,κ
I ,Mκ

≤I , S
κ) with advantage greater than

ρ, in contradiction with Claim3.4, or, algorithm D is a distinguisher for the tuples
(UW A,κ

I
, UW B,κ

I
,Mκ

≤I , S
κ) and (EA,κ

I , ZB,κ
I ,Mκ

≤I , S
κ) with advantage greater than

ρ, in contradiction with Eq. (28). �
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Abstract. Coin toss has been extensively studied in the cryptography
literature, and the well-accepted notion of fairness (henceforth called
strong fairness) requires that a corrupt coalition cannot cause non-
negligible bias. It is well-understood that two-party coin toss is impossi-
ble if one of the parties can prematurely abort; further, this impossibility
generalizes to multiple parties with a corrupt majority (even if the adver-
sary is computationally bounded and fail-stop only).

Interestingly, the original proposal of (two-party) coin toss protocols
by Blum in fact considered a weaker notion of fairness: imagine that the
(randomized) transcript of the coin toss protocol defines a winner among
the two parties. Now Blum’s notion requires that a corrupt party cannot
bias the outcome in its favor (but self-sacrificing bias is allowed). Blum
showed that this weak notion is indeed attainable for two parties assum-
ing the existence of one-way functions.

In this paper, we ask a very natural question which, surprisingly, has
been overlooked by the cryptography literature: can we achieve Blum’s
weak fairness notion in multi-party coin toss? What is particularly inter-
esting is whether this relaxation allows us to circumvent the corrupt
majority impossibility that pertains to strong fairness. Even more sur-
prisingly, in answering this question, we realize that it is not even under-
stood how to define weak fairness for multi-party coin toss. We propose
several natural notions drawing inspirations from game theory, all of
which equate to Blum’s notion for the special case of two parties. We
show, however, that for multiple parties, these notions vary in strength
and lead to different feasibility and infeasibility results.
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1 Introduction

The study of coin toss protocols was initiated in Blum’s ground-breaking
work [16]. Consider the following scenario: Alice and Bob had concurrent and
independent results that solved a difficult open question in cryptography. Both
submitted their papers to the prestigious Theory of Cryptography Conference
(TCC) 2018 conference with the most amazing program committee (PC). The
wise PC urged Alice and Bob to merge their results into one paper and provided
them with a single presentation slot at the conference. Now Alice and Bob would
like to toss a random coin to decide who goes to the most fabulous conference
venue ever, Goa, and present the paper. Since Alice and Bob are not in the same
room, they would like to complete the coin toss by sending messages to each
other (slowly) over the Ethereum blockchain, such that anyone who observes the
transcript can determine the outcome of the coin flip. Now either party would
like to make sure that he/she has a fair chance of winning even when the other
cheats and deviates from the protocol. The academic literature has since referred
to Blum’s notion of fairness as weak fairness; and Blum showed that assuming
the existence of one-way functions a weakly-fair, 2-party coin toss protocol can
be constructed [16]. Interestingly, however, the vast majority of subsequent cryp-
tography literature has focused on a stronger notion of fairness than Blum’s, that
is, a corrupt party cannot bias the outcome of the coin toss—henceforth we refer
to this notion as strong fairness [19]. It is not difficult to see that a strongly
fair coin toss protocol must also be weakly fair; but not the other way round.
In particular, a weakly fair protocol allows a corrupt party to bias the outcome
of the remaining honest party—but the bias must not be in the corrupt party’s
favor. Unfortunately for the strongly fair notion, Cleve’s celebrated result [19]
proved its impossibility in a 2-party setting even for computationally bounded,
fail-stop adversaries.

In this paper, we consider multi-party extensions of Blum’s notion of weak
fairness. We ask a very natural question that seems to have been overlooked by
the literature so far:

Can we achieve Blum’s weak fairness notion in multi-party coin toss proto-
cols?

By contrast, the strong fairness notion has been extensively studied in the
multi-party context [12,27]. Well-known results tell us that the strong notion
is attainable assuming honest majority and existence of one-way functions. On
the other hand, Cleve’s 2-party impossibility extends to multiple parties with a
corrupt majority [19]. Therefore, a more refined question is

Can we overcome Cleve’s impossibility for corrupt majority multi-party
coin toss with weak fairness?

Of course, to answer the above questions, we must first answer

How do we even define weak fairness in multi-party coin toss protocols?
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Intriguingly, even the definition itself is non-trivial! In this paper, we propose
several natural notions of fairness that are inspired by the line of work on game
theory [15,35,36,48]. Interestingly, all of these notions equate to Blum’s notion
for the special case of 2 parties; however, in general, they differ in strengths for
multiple parties and thus lead to differing feasibility and infeasibility results.

1.1 Our Results and Contributions

Consider the following scenario: n parties would like to play a 1-bit roulette
game over the Internet: First, each party puts down 1 Ether as stake and places
a publicly visible1 bet (also referred to as the party’s preference) on one of the bits
b ∈ {0, 1}. Without loss of generality we assume that not everyone bets on the
same bit. Next, they run an n-party coin toss protocol by exchanging messages
over the Ethereum blockchain, and transcript of the protocol determines an
outcome bit. Now, those who betted correctly are called winners; and those
who betted wrongly are called losers. Finally, every loser loses its stake to the
house (e.g., owner of the smart contract); and each winner gets paid 1 Ether
by the house. We require that in an honest execution, each bit is chosen with
probability 1/2. Henceforth in the paper for simplicity we shall think of the
Ethereum blockchain as a broadcast medium with identifiable abort, i.e., a public
bulletin board that allows parties to post messages.

How should we define fairness for this 1-bit roulette game? Cryptography and
game theory provide different answers. The standard notion from cryptography
is again strong fairness [19], that is, any corrupt coalition should not be able to
bias the outcome by more than a negligible amount. As mentioned strong fair-
ness is unattainable under a corrupt majority even for fail-stop adversaries [19].
Most of game theory, on the other hand, considers (computational) Nash Equi-
librium [48], that is, no corrupt individual can noticeably improve its expected
reward by deviating, assuming that everyone else is playing honestly. Although
Nash Equilibrium is indeed attainable by adopting a standard, strongly fair
multi-party coin toss protocol that tolerates deviation by any single party [27],
such a notion might be too weak. In particular, no guarantee is provided when
two or more parties collude (e.g., in cryptocurrency applications, an individual
user can always make up any number of pseudonyms and control the majority in
a game). Therefore we would like to explore notions in between that allow us to
resist majority coalitions and provide meaningful fairness guarantees in practi-
cal applications. In this paper, we define several notions of fairness—all of them
equate to Blum’s notion [16] for the special case of 2 parties. Thus for all of our
notions, in the 2-party case Blum’s result applies: assuming one-way functions,
all notions are attainable against malicious, computationally bounded adver-
saries that control one of the two parties; moreover, for fail-stop adversaries, all
our notions are attainable against even unbounded adversaries that control one
of the two parties.

1 Unless otherwise noted, we consider public preference profiles. For completeness,
however, we present results for private preference profiles in the appendices, Sect. 7.
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Henceforth for our fairness notions, we are concerned about feasibility and
infeasibility results for 3 or more parties, and particularly for the case of corrupt
majority (since for honest majority, feasibility is known even for strong fairness,
against malicious, computationally bounded adversaries, due to the celebrated
result by Goldreich et al. [27]). As a final remark before we introduce our notions,
all our notions (as well as Blum’s notion) can be easily ruled out for computa-
tionally unbounded, malicious adversaries [33,44].

1.2 Maximin Fairness

Definition. A natural notion, which seems to be a good fit for cryptocurrency
applications, is to require the following: an honest Alice should not be harmed
even when everyone else is colluding against her. In other words, any individual’s
expected reward should not noticeably decrease (relative to an all-honest exe-
cution) even when all others are colluding against her. This notion has a game
theoretic interpretation: the honest strategy maximizes a player’s worst-case
expected payoff (even when everyone else is colluding against her); and more-
over, by playing honest, the player’s worst-case expected payoff is not noticeably
worse than an all-honest execution. For maximin fairness, we present a complete
characterization of feasibilities/infeasibilties.

Feasibility and Infeasibility for Almost Unanimous Preference Pro-
files. For 3 or more parties, if everyone agrees in preference except one party, we
say that the preference profile is almost unanimous. When the preference profile
is almost unanimous, maximin fairness is possible for fail-stop adversaries and
without relying on cryptographic assumptions. Recall that a fail-stop adversary
may prematurely abort from the protocol but would otherwise follow the honest
protocol [19]. The corresponding protocol is very simple: without loss of gen-
erality assume that one party prefers 0 (called the 0-supporter) and all others
prefer 1 (called the 1-supporters). Now, the 0-supporter chooses a random bit
and broadcasts it. If the broadcast indeed happens, the bit broadcast is declared
as the outcome. Otherwise, the outcome is defined to be 1.

We then prove that for an almost unanimous preference profile, maximin
fairness is impossible for malicious adversaries even when allowing cryptographic
assumptions. This result is somewhat counter-intuitive in light of the earlier
feasibility for fail-stop (and the proof rather non-trivial too). In particular, in
most of the cryptography literature, we are familiar with techniques that compile
fail-stop (or semi-honest) protocols to attain full, malicious security [12,27]—
but these compilation techniques do not preserve maximin fairness and thus are
inapplicable here.

Note that for the special case of 3 parties, unless everyone has the same
preference any preference profile is almost unanimous—thus for the case of 3
parties we already have a complete characterization. For 4 or more parties, we
need to consider the case when the preference profile is more mixed.

Infeasibility for Amply Divided Preference Profiles. If there are at least
two 0-supporters and at least two 1-supporters, we say that the parties have an
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amply divided preference profile. Note that for 3 or more parties, unless everyone
has the same preference, then every preference profile is either almost unanimous
or amply divided. For an amply divided preference profile, we show infeasibil-
ity even against computationally bounded, fail-stop adversaries by reduction to
Cleve’s impossibility result for strong fairness [19].

We summarize our results for maximin fairness in the following theorems—
although not explicitly noted, all theorems are concerned about an adversary
that may control up to n − 1 players.

Theorem 1 (Maximin fairness: upper bound (informal)). For any n ≥
3 and any almost unanimous preference profile, there is an n-party coin toss
protocol that achieves maximin fairness against fail-stop and computationally
unbounded adversaries.

Theorem 2 (Maximin fairness: lower bound (informal)). For any n ≥
3 and any almost unanimous preference profile, no n-party coin toss protocol
can achieve maximin fairness against malicious and even polynomially bounded
adversaries. Further, for any n ≥ 4 and any amply divided preference profile,
no n-party coin toss protocol can achieve maximin fairness against fail-stop and
even polynomially bounded adversaries.

Summary. While maximin fairness appears to provide strong guarantees in
cryptocurrency and smart contract applications, we showed rather broad infea-
sibility results. Nonetheless it gives us a glimpse of hope: for the case of almost
unanimous preference profiles and fail-stop adversaries, we are able to achieve
positive results for corrupt majority while strong fairness cannot! We thus con-
tinue to explore alternative notions in hope of finding one that leads to broader
feasibility results. Our high-level idea is the following: earlier, maximin fairness
aims to rule out coalitions that harm honest parties; instead we now consider
notions that rule out coalitions capable of improving its own wealth—this gives
rise to two new notions, cooperative-strategy-proof fairness and Strong Nash
Equilibrium, as we discuss subsequently in Sects. 1.3 and 1.4.

1.3 Cooperative-Strategy-Proof Fairness

Definition. Cooperative-strategy-proof (CSP) fairness requires that no devi-
ation by a corrupt coalition of size up to n − 1 can noticeably improve the
coalition’s total expected reward relative to an honest execution. It is not dif-
ficult to see that CSP fairness is equivalent to maximin fairness for zero-sum
cases: when exactly half prefer 0 and half prefer 1. However, the two notions are
incomparable in general.

Feasibility for Almost Unanimous Preference Profiles. When almost
everyone prefers the same bit except for one party, we show that the follow-
ing simple protocol achieves CSP fairness against malicious adversaries. For
simplicity, our description below assumes an ideal commitment functionality
Fidealcomm—but this idealized oracle can be replaced with suitable non-malleable
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concurrent commitment schemes [42,43] with some additional work. Without loss
of generality we assume that a single party prefers 0 and everyone else prefers 1:
First, everyone picks a random bit upfront and commits the bit to Fidealcomm.
In round 0, the single 0-supporter opens its committed bit and broadcasts it.
In round 1, everyone else opens its committed bit and broadcasts the opening.
The outcome is defined to be 0 if one or more 1-supporter(s) aborted; else it is
defined to be the XOR of all bits that have been correctly opened.

Finally, for fail-stop adversaries, a variant of the above protocol without
commitment can achieve CSP fairness against even unbounded adversaries.

Infeasibility for Amply Divided Preference Profiles. For any amply
divided preference profile, we prove that it is impossible to achieve CSP fair-
ness against even fail-stop, polynomially bounded adversaries.

We summarize results for CSP fairness in the following theorem.

Theorem 3 (CSP fairness (informal)). For any almost unanimous prefer-
ence profile, it is possible to attain CSP fairness against fail-stop, unbounded
adversaries, and against malicious, polynomially bounded adversaries assuming
one-way permutations. By contrast, for any amply divided preference profile, it
is impossible to attain CSP fairness against even fail-stop, polynomially bounded
adversaries.

1.4 Strong Nash Equilibrium

Due to earlier impossibility results for maximin fairness and CSP fairness, we
ask if there is a notion for which we can enjoy broad feasibility. To this end
we consider a fairness notion inspired by Strong Nash Equilibrium (SNE) [35],
henceforth referred to as SNE fairness. SNE fairness requires that no deviation
by a coalition can improve every coalition member’s expected reward. It is not
difficult to see that for SNE fairness, we only need to resist unanimous coalitions,
i.e., coalitions in which every member prefers the same bit. Further, SNE fairness
is also strictly weaker than CSP fairness in general.

We show that a simple dueling protocol achieves SNE fairness against mali-
cious (but polynomially bounded) adversaries: pick two parties with opposing
preferences (i.e., pick the two with smallest possible party identifiers), and then
have the two run Blum’s weak coin toss protocol. Further, the computational
assumptions can be removed for fail-stop adversaries and thus SNE fairness can
be guaranteed unconditionally for the fail-stop case. We summarize our results
on SNE fairness in the following theorem.

Theorem 4 (SNE fairness (informal)). For any n ≥ 3 and any preference
profile: (1) there is an n-party coin toss protocol that achieves SNE fairness
against malicious, polynomially-bounded adversaries assuming the existence of
one-way permutations; and (2) there is an n-party coin toss protocol that achieves
SNE fairness against fail-stop, unbounded adversaries.

Alternative Formulation: Cooperative-Coalition-Proof Fairness. While
SNE fairness aims to rule out coalitions that improve every coalition member’s
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wealth, an alternative notion would be to resist self-enforcing coalitions that aim
to improve the coalition’s overall wealth. In particular, a coalition is said to be
self-enforcing iff no self-enforcing sub-coalition can gain by deviating from the
coalition’s original strategy. Such coalitions are stable and will not implode due
to internally misaligned incentives. We formalize this notion in our online full ver-
sion [18] which we call cooperative-coalition-proof fairness (CCP fairness). Since
CCP fairness considers complex coalition and sub-coalition behavior, we can no
longer use the familiar protocol execution model used in the standard cryptog-
raphy literature—we instead propose a new, suitable protocol execution model
that allows us to characterize complex coalition structures. Our CCP fairness
notion is inspired by the notion of coalition-proof Nash equilibrium (CPNE) [15]
in game theory—but unlike CPNE which considers self-enforcing coalitions that
seek to improve every member’s gain, our CCP notion considers self-enforcing
coalitions that seek to improve its overall gain, and thus our notion is stronger
(i.e., demands stronger solution concepts).

Although for general games, SNE fairness and CCP fairness are incompara-
ble, we prove that for the special case of multi-party coin toss, the two notions
are in fact equivalent! In this context both notions effectively rule out unanimous
coalitions where everyone prefers the same outcome.

1.5 Technical Highlight

Conceptual, Definitional Contributions. First, we make a conceptual con-
tribution by introducing several natural, game-theoretical notions of fairness
for multi-party coin toss—our work thus opens a new avenue for connecting
game theory and cryptography. Earlier efforts at connecting game theory and
multi-party computation typically model the correctness and/or confidentiality
of multi-party protocols as a game (see Sect. 8 for more discussions), whereas
we consider a model in which each party independently declares the utility for
various outcomes.

A New Framework for Proving Lower Bounds. Our upper bounds are
simple and intuitive in hindsight (but note that several upper bounds were not
immediately obvious to us in the beginning). Our main lower bound results,
however, are rather non-trivial to prove. The most non-trivial proofs are (1)
the impossibility of maximin fairness for almost unanimous preference profiles,
against malicious, computationally bounded adversaries; and (2) the impossi-
bility of CSP fairness for amply divided preference profiles, this time against
fail-stop and computationally bounded adversaries.

We develop a new proof framework and apply this framework to rule out
both maximin fairness (for almost unanimous, malicious) and CSP fairness (for
amply divided, fail-stop)2. In this proof framework, we would carefully group
nodes into three partitions such that we can view the execution as a 3-party
protocol (between the partitions). In both impossibility proofs, we show that
2 Interestingly, later in our online full version [18] we again reuse the same proof

framework to prove lower bounds for private-preference protocols too.
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the requirements of maximin or CSP fairness imposes a set of conditions that
are by nature self-contradictory and thus cannot co-exist.

Since the lower bound proofs are highly non-trivial, to help the reader we
give an informal narrative of the maximin proof in Sect. 4.4. Then, in Sect. 5.3,
we intuitively explain the additional challenges that arise for ruling out CSP
fairness (for amply divided, fail-stop)—this proof is even more challenging than
maximin fairness (for almost unanimous, malicious) partly because we need to
rule out even fail-stop adversaries in this case. The full formal proofs are deferred
to the appendices due to lack of space.

2 Preliminaries

2.1 Protocol Execution Model

A protocol is a system of Interactive Turing Machines (ITMs) where each ITM
is also referred to as a party or a player. Each party is either honest or corrupt.
Honest parties correctly follow the protocol to the end without aborting. Corrupt
parties, on the other hand, are controlled by an adversary A. Corrupt parties
forward all received messages to A and send messages or abort based on A’s
instructions. In this way, we can view the set of all corrupt parties as a single
coalition that collude with one another.

A protocol’s execution is parametrized by a security parameter κ ∈ N that
is public known to all parties including the adversary A. A protocol’s execution
may be randomized where all parties and the adversary A receive and consume
a string of random bits.

We assume a round-based execution model. In each round, every honest party
can perform any polynomial in κ amount of computation. At the end of the
round, every party may broadcast a message whose length must be polynomial
in κ as well. We assume a synchronous broadcast medium (with identifiable
abort) for parties to communicate with each other. Messages sent by honest
parties in round r will be delivered to all honest parties at the beginning of
round r + 1. If a party i aborts the protocol in round r without sending any
message, then all honest parties can detect such abort by detecting the absence
of i’s message at the beginning of round r + 1. As an example, one can imagine
that parties communicate by posting messages to a public blockchain such as
Bitcoin [26,47,50,51]3.

2.2 Corruption Models

The adversary can corrupt any number of parties. Without loss of generality, we
assume that for any fixed adversary algorithm A, the set of parties it wants to
corrupt is deterministically encoded in the description of A (i.e., for any fixed
adversary A, there is no randomness in the choice of the corrupt coalition). We

3 Although a blockchain typically requires honest majority assumptions to retain secu-
rity, the parties involved in the coin-toss protocol can be majority corrupt.
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assume that the adversary is capable of a rushing attack4, i.e., in any round r,
the adversary is allowed to view messages sent by honest parties in round r,
before deciding what messages corrupt parties will send in round r.

Depending on the adversary’s capability, we say that the adversary is failstop
or malicious. More formally, let Π denote the honest protocol under considera-
tion. An adversarial algorithm A is said to be fail-stop or malicious w.r.t. Π iff
the following holds:

– Fail-stop: Corrupt nodes always follow the honest protocol but may abort in
the middle of the protocol. The decision to abort (or not) can depend on the
corrupt parties’ view in the protocol so far.

– Malicious: The adversary can make corrupt parties deviate arbitrarily from
the prescribed protocol, including sending arbitrary messages, choosing ran-
domness arbitrarily, and aborting prematurely.

2.3 Additional Notations and Assumptions

Throughout the paper, we assume that the number of parties is polynomially
bounded, i.e., n = poly(κ) for some polynomial function poly(·). We consider
protocols that terminate in polynomially many rounds. Specifically, there exists
some polynomial R(·) that denotes the round complexity of the protocol, such
that with probability 1, honest parties complete execution in R(κ) even in the
presence of any (possibly computationally unbounded) adversary controlling any
corrupt coalition.

We say that a function ν(·) is a negligible function iff for every polynomial
function p(·), there exists some κ0 ∈ N such that ν(κ) ≤ 1/p(κ0) for all κ ≥ κ0.

3 Definitions: Multi-party Coin Toss

As in the standard cryptography literature, we model protocol execution as a
system of Interactive Turing Machines. We consider a synchronous model with
a broadcast medium. Messages broadcast by honest parties in the current round
are guaranteed to be delivered at the beginning of the next round. We assume
identifiable abort, that is, failure to send a message is publicly detectable.

We assume that the adversary, denoted A, can control any number of parties.
Without loss of generality, we assume that the set of parties A wants to corrupt is
hard-wired in the description of A. We assume a simultaneous messaging model
with the possibility of rushing attacks, that is, the adversary can observe honest
nodes’ messages before deciding corrupt nodes’ actions (including what messages
to send and whether to abort) in any round.

Recall that a fail-stop party is one that could abort prematurely but would
otherwise follow the honest protocol. By contrast, a malicious party is one that
can deviate arbitrarily from the honest protocol.
4 We note that in a simultaneous message model where the adversary is not capable of

rushing attacks, even the standard notion of (strong) fairness [19] (which is stronger
than all notions considered in this paper) is trivial to achieve for 2-party or multi-
party coin toss, even against any majority corrupt coalition.
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3.1 Multi-party Coin Toss

Preference Profile. Suppose that each party starts with a preference among
the two outcomes 0 and 1. The vector of all parties’ preferences, denoted P :=
{0, 1}n, is referred to as a preference profile. We sometimes refer to a party that
prefers 1 as a 1-supporter and we refer to one that prefers 0 as a 0-supporter. In
a preference profile P := {0, 1}n, if the number of 0-supporters and the number
of 1-supporters are the same, we say that P is balanced; else we say that it is
unbalanced.

Unless otherwise noted, we assume that all parties’ preferences are prede-
termined and public. We discuss the private-preference case in the appendices,
Sect. 7.

Coin-Toss Protocol. Consider a protocol Π where n parties jointly decide an
outcome between 0 and 1. Such a protocol Π is said to be a coin toss protocol,
there is a polynomial-time computable deterministic function, which, given the
transcript of the protocol execution, outputs a bit b ∈ {0, 1}, often said to be the
outcome of the protocol. For correctness, we require that an honest execution
outputs each bit with probability exactly 1

2 unless all parties have the same
preference. More formally, correctness requires that

1. If some parties have differing preferences, in an all-honest execution (when
all parties are honest), the probability that the outcome is 0 (or 1) is exactly5

1/2.
2. If all parties happen to prefer the same bit b ∈ {0, 1}, the honest execution

should output the preferred bit b with probability 1.

Payoff Function. If the protocol’s outcome is b, a party who prefers b receive
a reward (or payoff) of 1; else it receives a reward (or payoff) of 0. Note that
earlier in Sect. 1, our 1-bit roulette example had a −1 utility (rather than 0)
for losing, but the two definitions are in fact equivalent; and for simplicity the
remainder of the paper will assume 0 utility for losing.

3.2 Discussions

Trivial Case: Unanimous Preference Profile. When everyone has the same
preference, we say that the preference profile is unanimous; otherwise we say that
it is mixed. In this case, we do not require that an honest execution produce an
unbiased coin, since it makes sense for the outcome to be the bit that is globally
preferred. In the remainder of the paper, for the case of public preference: if
everyone prefers the same bit b ∈ {0, 1}, we assume that the protocol simply fixes
the outcome to be the universally preferred bit b regardless of how parties act. In
this way, everyone obtains a payoff of 1, and no deviation from the protocol can
influence the outcome—therefore all game-theoretic fairness notions we consider
are trivially satisfied when the preference profile is unanimous.
5 Our upper bounds achieve perfect correctness, but our lower bounds in fact extend

easily even when allowing negligible correctness failure.
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On Public Verifiability. Our definition implies public verifiability of the
coin toss’s outcome. Anyone who can observe messages sent over the broadcast
medium (e.g., a public blockchain) can independently compute the outcome of
the protocol. Note that under this definition, the outcome of the protocol is well-
defined even when all parties are corrupt. Alternatively, we can define a weaker
notion where we do not require such public verifiability—instead we require that
honest parties output a bit at the end of the execution, and that they output
the same bit (said to be the outcome of the execution) with probability 1 even
in the presence of an arbitrary (possibly unbounded) adversary that corrupts
up to n − 1 parties. Under this weaker notion, the outcome of an execution is
not well-defined when all parties are corrupt. We note that all lower bounds in
this paper in fact apply to this weaker notion too (which makes the lower bounds
stronger).

3.3 Strong Fairness

We quickly review the classical notion of strong fairness [19]. Roughly speaking,
strong fairness requires that the outcome of the coin toss protocol be unbiased
even in the presence of an adversary (assuming that parties have mixed pref-
erences). In the definition of strong fairness, we consider a single adversarial
coalition that corrupts up to n − 1 parties.

Definition 1 (Strong fairness [19]). Let A a family of adversaries that corrupt
at most n − 1 parties. An n-party coin toss protocol is said to be strongly fair
against the family A, iff for every adversary A ∈ A, there exists a negligible
function negl(·) such that (as long as not all parties have the same preference)
the probability that the outcome is 1 is within [ 12 − negl(κ), 1

2 + negl(κ)] when
playing with A.

4 Maximin Fairness: Feasibilities and Infeasibilities

4.1 Definition of Maximin Fairness

Maximin fairness requires that no honest party should be harmed by any cor-
rupt coalition. In other words, a corrupt coalition should not be able to (non-
negligibly) decrease the expected payoff for any honest party relative to an all-
honest execution. In maximin fairness, we consider a single adversarial coalition
that controls up to n − 1 parties.

Definition 2 (Maximin fairness). Let A be a family of adversaries that cor-
rupt up to n−1 parties; and let P ∈ {0, 1}n denote any mixed preference profile.
We say that an n-party coin toss protocol is maximin fair for P against the fam-
ily A, iff for every adversary A ∈ A, there exists some negligible function negl(·)
such that in an execution with the preference profile P and the adversary A, the
expected reward for any honest party is at least 1

2 −negl(κ). More specifically, we
have the following special cases:
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– Computational maximin fairness. If A is the family of all non-uniform, prob-
abilistic polynomial-time (henceforth denoted p.p.t.) fail-stop (or malicious
resp.) adversaries that can corrupt as many as n − 1 parties, we say that
the protocol is computationally maximin fair for P against any fail-stop (or
malicious resp.) adversaries.

– Statistical maximin fairness. If A is the family of all fail-stop (or malicious
resp.) adversaries (including even computationally unbounded ones) that can
corrupt as many as n − 1 parties, we say that the protocol is statistically
maximin fair for P against any fail-stop (or malicious resp.) adversaries.

– Perfect maximin fairness. If a protocol is statistically maximin fair against
fail-stop (or malicious resp.) adversaries, and moreover the above definition
is satisfied with a choice of 0 for the negligible function, we say that the
protocol is perfectly maximin fair for P against fail-stop (or malicious resp.)
adversaries. A perfectly maximin fair protocol does not allow any single honest
party to have even negligibly small loss in its expected payoff in comparison
with an all-honest execution.

A straightforward observation is that classical strong fairness (Definition 1)
implies maximin fairness:

Fact 1. If an n-party coin toss protocol Π is strongly fair against a family of
adversaries F , then Π is maximin fair against F for any mixed preference profile
P ∈ {0, 1}n.

Sometimes we also say that a protocol is computationally (or statistically,
perfectly resp.) maximin fair for P against any fail-stop (or malicious resp.) coali-
tion of size K—and this means the most obvious where in the above definitions,
the family of adversaries A we consider is additionally restricted to corrupting
exactly K parties.

Claim. Let P ∈ {0, 1}n be any mixed preference profile. An n-party coin toss
protocol Π satisfies computational (or statistical, perfect resp.) maximin fairness
for P against any fail-stop (or malicious resp.) coalition, iff Π satisfies computa-
tional (or statistical, perfect resp.) maximin fairness for P against any fail-stop
(or malicious resp.) coalition of size exactly n − 1.

Game Theoretic Interpretation. If a coin-toss protocol is maximin fair, then
the following hold:

1. First, the honest strategy maximizes a player’s worst-case expected payoff
(even when everyone else is colluding against the player); this explains the
name “maximin fairness”.

2. Moreover, when playing the honest strategy, a player’s worst-case payoff is
what it would have gained in an all-honest execution—note that a player’s
worst-case (expected) payoff obviously cannot be more than its payoff in an
all-honest execution.
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Equivalence to Group Maximin Fairness. An alternative way to define “no-
harm to honest parties” is to require that any corrupt coalition cannot decrease
(by more than a negligible amount) the expected overall wealth (i.e., total payoff)
of the honest parties. We prove that this notion, called group maximin fairness,
is in fact equivalent to maximin fairness in the context of coin toss. We defer the
formal definition and proofs to our online full version [18].

4.2 The Case of Amply Divided Preference Profiles

As mentioned, feasibility for 2 parties or multiple parties but honest majority
are already implied by existing literature [16,27]. Henceforth we focus on the
case of three or more parties and corrupt majority.

First, we consider amply divided preference profiles, where at least two people
prefer 0 and at least two prefer 1 respectively (and hence there must be at least
4 people). It is not too difficult to rule out maximin fairness for amply divided
preference profiles, even against fail-stop, computationally bounded adversaries,
leading to the following theorem.

Theorem 5 (Maximin fairness: amply divided preference profiles). For
any n ≥ 4 and for any amply divided preference profile P ∈ {0, 1}n, no n-party
coin toss protocol can achieve even computational maximin fairness for P against
even fail-stop adversaries.

Proof (sketch). We show that if there is a maximin fair protocol for any amply
mixed preference profile, we can construct a 2-party strongly fair coin toss pro-
tocol (and thus violating Cleve’s lower bound [19]). The proof follows from a
standard partitioning argument: consider two partitions, each containing at least
one 0-supporter and at least one 1-supporter. Now, we can view the protocol as
a two-party protocol between the two partitions, and by maximin fairness, if
either partition aborts, it must not create any non-negligible bias towards either
direction. We defer the full proof to our online full version [18].

4.3 The Case for Almost Unanimous Preference Profiles

Possibility of Perfect Maximin Fairness for Fail-Stop Adversaries.
First, we show that for fail-stop adversaries, we can achieve perfect maximin-
fairness for almost unanimous preference profiles. Without loss of generality,
assume that a single party prefers 0 and everyone else prefers 1. The following
simple protocol can guarantee perfect maximin fairness:

1. In the first round, the single 0-supporter flips a random coin b and broadcasts
b;

2. If the single 0-supporter successfully broadcast a message b, then the outcome
is b; else the outcome is 1.

It is not difficult to see that this simple protocol satisfies perfect maximin
fairness against fail-stop adversaries: all the 1-supporters do not take any actions
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and they do not influence the outcome of the protocol. For the single 0-supporter,
if it deviates (by aborting), then the outcome will be 1 with probability 1, and
all honest parties utility are guaranteed to be 1. Thus we derive the following
theorem:

Theorem 6 (Possibility of perfect maximin fairness for almost unan-
imous preferences and fail-stop adversaries). For any n ≥ 3, any almost
unanimous preference profile P ∈ {0, 1}n, there exists an n-party coin toss pro-
tocol that achieves perfect maxmin fairness for P against fail-stop adversaries.

Impossibility of Computational Maximin Fairness for Malicious
Adversaries. Next, we show that maximin fairness is impossible to achieve for
almost unanimous preference profiles against malicious adversaries, even when
allowing computational assumptions.

Theorem 7 (Impossibility of maximin fairness for almost unanimous
preferences and malicious adversaries). For n ≥ 3 and any almost unani-
mous preference profile P ∈ {0, 1}n, no n-party coin-toss protocol Π can ensure
computational maximin fairness for P against malicious adversaries.

4.4 Informal Proof Roadmap for Theorem 7

We in fact prove a stronger lower bound than stated in Theorem 7: we show that
maximin fairness is impossible for any almost unanimous preference profile (for
3 or more parties), even against semi-malicious, polynomially bounded adver-
saries. In particular, a semi-malicious adversary can (1) choose corrupt parties’
random coins arbitrarily upfront, and (2) prematurely abort; but otherwise it
follows the honest protocol.

For simplicity, we focus on the case of 3 parties but the proof generalizes
directly to more parties. Suppose that the 3 parties are called P1, P2 and P3,
and they come with the preferences 1, 0, and 1 respectively.

We now present an informal proof roadmap, deferring the formal proof to our
online full version [18]. We begin by assuming that a maximin fair protocol exists
for 3 parties, resisting semi-malicious, computationally bounded adversaries. Our
proof will seek to reach a contradiction, effectively showing that the various
conditions imposed by maximin fairness cannot co-exist.

Almost All Random Coins of a Lone Semi-malicious 0-Supporter are
Created Equal. By a direct application of maximin fairness, if the single 0-
supporter is semi-malicious and allowed to program his random coins, then he
should not bias the remaining two parties towards 0. However, perhaps somewhat
surprisingly at first sight, we can prove a result that is much stronger, that the
single 0-supporter in fact (almost) cannot cause bias towards either direction by
programming its random coins!



Game Theoretic Notions of Fairness in Multi-party Coin Toss 577

Henceforth, we shall use the notations T1, T2, T3 to denote the three parties’
random coins, where T2 belongs to the single 0-supporter P2. Consider an honest
execution of the protocol conditioned on the fact that the single 0-supporter has
its randomness fixed to T2, and let f(T2) denote the expected outcome (where
the probability is taken over P1 and P3’s randomness). We prove the following
lemma stating that (except for a negligible fraction of choices), all choices of T2

are equal if P2 is the lone semi-malicious party.

Lemma 1 (Almost all random coins of a lone semi-malicious P2 are
created equal). Suppose that the protocol under consideration satisfies compu-
tational maximin fairness against semi-malicious adversaries. Then, there exists
a negligible function negl(·) such that except for negl(κ) fraction of T2’s, it must
be that |f(T2) − 0.5| is a negligible function in κ.

Proof (sketch). We present a proof sketch: by maximin fairness, we know that
for all T2’s, f(T2) ≥ 0.5 − negl(κ). Now, notice that ET2f(T2) = 1

2 by honest
execution, i.e., the expected value of f(T2) is 1

2 when averaging over T2. This
means that if there is a non-negligible fraction of T2’s that cause non-negligible
bias towards 1, then there must be a non-negligible fraction of T2’s that cause
non-negligible bias towards 0 and the latter violates maximin fairness for a semi-
malicious P2.

The Lone-Wolf Condition and Wolf-Minion Conditions. Henceforth, our
general plan is to show that if the above T2-equality lemma holds, then the
following two conditions, implied by the definition of maximin fairness, cannot
co-exist.

– Lone-wolf condition. When P1 (or P3) is the only fail-stop party, it cannot
cause non-negligible bias towards either direction. Such an attack is also called
a lone-wolf attack.

– Wolf-minion condition. When P1 and P2 (or P2 and P3) form a fail-stop
coalition, they cannot cause non-negligible bias towards 0. In fact we only
care about attacks where P2 is a silent accomplice (called a minion [25]) that
never aborts but shares information with P1 (or P3); and P1 (or P3) may abort
depending on its view in the execution (called a wolf [25]). Such attacks are
called wolf-minion attacks.

Note that both conditions above consider only fail-stop adversaries, and in
fact in the entire proof the only place we rely on a semi-malicious adversary is
in the proof of the aforementioned T2-equality lemma.

Non-blackbox Application of Cleve’s Lower Bound Conditioned on
T2. Recall that we assume that a maximin fair, 3-party protocol Π exists for
the sake of reaching a contradiction. Now consider an execution of this protocol
when P2’s randomness is fixed to T2, and further, assume that P2 never aborts
and always follows the honest protocol to completion. We now view this 3-party
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protocol as a 2-party protocol between P1 and P3, where P2’s randomness T2 is
public and hard-wired in P1 and P3’s program—more specifically both P1 and
P3 would run the 3-party protocol Π, and they each independently simulate the
actions of P2 and compute all messages that P2 wants to send.

Due to the T2-equality lemma, if P1 and P3 are honest, we know that the
expected outcome would be 1

2 for almost all T2’s. Now, in this 2-party protocol
defined by a fixed T2 (that does not belong to the negligible fraction of bad T2’s),
Cleve [19] showed that there must exist a polynomial-time attack by one of the
parties, that causes non-negligible bias—but the bias can be either towards 0 or
1. Unfortunately, the direct implication of Cleve’s lower bound is not quite so
useful for us: it shows that a semi-malicious P2 can collude with a fail-stop P1

(or P3) and cause bias for the remaining honest party, that is P3 (or P1)—but
unless this bias is towards 0, it does not lend to a contradiction.

Our plan is the following: we will nonetheless apply Cleve’s impossibility, but
in a non-blackbox manner. First, we will show that for any fixed T2 (except for
a negligible fraction of bad ones), either P1 or P3 can bias towards 1 with an
aborting attack. Specifically, we define a sequence of adversaries like in Cleve’s
proof, denoted {Ab

i (1
κ, T2),Bb

i (1
κ, T2)}i∈[R],∪{A0(1κ, T2)} where R is the pro-

tocol’s round complexity. Adversaries Ab
i (1

κ, T2), Bb
i (1

κ, T2), and A0(1κ, T2) are
defined when P2’s randomness is fixed to T2:

– Adversary Ab
i (1

κ, T2):
• Ab

i executes the honest protocol on behalf of P1 and P2 (whose random-
ness is fixed to T2) until the moment right before P1 is going to broadcast
its i-th message.

• At this moment, Ab
i computes αi, that is, imagine that P3 aborted right

after sending its (i−1)-th message, what would be the outcome of parties
P1 and P2.

• If αi = b, then P1 aborts after sending the i-th message; else P1 aborts
right now without sending the i-th message.

– Adversary Bb
i (1

κ, T2): The definition is symmetric to that of Ab
i (1

κ, T2) but
now P3 is the fail-stop party.

– Adversary A0(1κ, T2): P1 aborts upfront prior to speaking at all.

Cleve [19] showed that one of these above adversaries must be able to cause
non-negligible bias towards either 0 or 1. However, due to the requirement of
maximin fairness, we may conclude that the bias must be towards 1 except
for a negligible fraction of the T2’s. Suppose this is not the case, i.e., the bias is
towards 0 for a non-negligible fraction of the T2’s—then we could easily construct
an attack (for the 3-party protocol) where a semi-malicious P2 colluding with
a fail-stop P1 (or P3) can bias the remaining party towards 0—in fact, in our
formal proof later, we show that such an attack is even possible with a fail-stop
P1 and a silent accomplice P2 who just shares information with P1 but would
otherwise follow the protocol honestly (i.e., a wolf-minion attack). Proving this
stronger statement would require a little more effort—but looking forward, later
we would like to rule out CSP fairness for even fail-stop adversaries. There
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we have a similar agenda: (1) reprove the T2-equality lemma but for fail-stop
adversaries and CSP fairness, and (2) show that under the T2-equality lemma,
the lone-wolf condition and the wolf-minion condition cannot co-exist. Thus in
our formal proof later we will actually rely on a wolf-minion (fail-stop) attack
to rule out the 0-bias attack.

Averaging over T2: A Wolf-Minion Attack with Benign Bias. Next, we
consider the above adversaries but now averaging over T2. In other words, let
Ab

i (1
κ) be the following attacker: choose a random T2; now consider the protocol

execution with P2’s randomness fixed to T2 and with the adversary Ab
i (1

κ, T2).
Bb

i (1
κ) and A0(1κ) are similarly defined by averaging over T2.

Now, we prove that among these adversaries {Ab

i (1
κ),Bb

i (1
κ)}i∈[R] and

A0(1κ), one of them must be able to bias the remaining party, either P1 or
P3, towards 1. This proof follows in a somewhat standard manner from an aver-
aging argument and we defer the details to the appendices. Note that reflecting
in the 3-party protocol, this corresponds to a wolf-minion attack that creates
benign bias: P1 (or P3) acts as a fail-stop wolf, and P2 acts as a silent accom-
plice (i.e., the minion) that follows the honest protocol to completion but shares
information with P1 (or P3). Although this wolf-minion is able to create bias,
the bias is benign and does not violate the definition of maximin fairness. Thus
to reach a contradiction, it still remains to show an attack that creates harmful
bias.

Applying the Lone-Wolf Condition: A Wolf-Minion Attack with
Harmful Bias. We now argue that if there is a wolf-minion attack that cre-
ates benign bias, there must be one that creates harmful bias, assuming that
the lone-wolf condition holds. To show this, we consider the adversary that flips
the decisions (to abort in the present or next round) of the benign wolf-minion
attack. Without loss of generality, assume that A1

i is the successful wolf-minion
attack that creates non-negligible bias towards 1. We now consider A0

i which
flips A1

i ’s decision whether to abort in round i or i + 1, and we argue that A0

i

must create non-negligible bias towards 0. At a very high level, the proof will
show that the lone-wolf condition acts like a balancing condition.

Let Q be the set of sample paths (defined by choices of T1, T2, and T3) over
which A1

i decides to abort in round i, and let Q be the remaining sample paths.
Now, consider a hybrid adversary that takes A1

i ’s decisions on Q and takes A0

i ’s
decisions on Q: in other words, P1 basically always aborts in round i! Due to
the lone-wolf condition, whatever average bias towards 1 A1

i has on Q, A0

i must
create almost the same bias towards 0 on Q. By a symmetric argument and
considering a lone wolf P1 that always aborts in round i + 1, whatever average
bias towards 1 A1

i has on Q, A0

i must create almost the same bias towards 0 on
Q. With this, it is not difficult to see that A0

i can bias towards 0 (almost) as
well as A1

i can bias towards 1.
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5 Cooperative-Strategy-Proof Fairness

5.1 Definition of Cooperative-Strategy-Proof Fairness

In a cooperative strategy, a corrupt coalition deviates from the honest protocol
in an attempt to improve the coalition’s overall wealth (i.e., the total reward).
Cooperative strategies naturally arise in contexts where a corrupt coalition is
allowed to have binding side contracts that allow the coalition to redistribute
(e.g., equally) the overall wealth among its members. If a protocol is cooperative-
strategy-proof fair (or CSP-fair), it intuitively means that any corrupt coalition
should not be able to improve its overall wealth by more than negligible amounts
(if the remaining parties are faithfully following the honest protocol).

Definition 3 (Cooperative-strategy-proof fairness or CSP-fairness).
Let A be a family of adversaries that corrupt up to n − 1 parties and let
P ∈ {0, 1}n denote any mixed preference profile. We say that an n-party coin toss
protocol is cooperative-strategy-proof fair (or CSP-fair) for P and against the
family A, iff for any adversary A ∈ A, there exists some negligible function
negl(·), such that in an execution with the preference profile P and the adversary
A, the expected total reward for the set of corrupt parties (denoted C) is at most
σ(C) + negl(κ) where σ(C) denotes the expected total reward for all nodes in C
in an all-honest execution.

Similar as before, now depending on the family A of adversaries that we
are concerned about, we can define computational, statistical, or perfect notions
for cooperative-strategy-proof fairness, and for fail-stop, semi-malicious, or mali-
cious adversaries respectively. We omit the detailed definitions for conciseness.

Remark 1 (The case of a global coalition for CSP-fairness). Unless otherwise
noted, the definition of CSP-fairness considers coalitions of size up to n−1. One
could alternatively define a variant of CSP-fairness where the corrupt coalition
can contain up to n parties, i.e., CSP-fairness is desired even against a global
coalition where everyone is corrupt. For any balanced preference profile, this
variant is equivalent to the definition where not all can be corrupt since the
global coalition is indifferent to either outcome. For any unbalanced preference
profile, this variant where all can be corrupt is a stronger notion—in fact, one
could easily rule out feasibility against (even computationally bounded) semi-
malicious adversaries due to the following argument. By correctness, there must
exist some joint randomness ρ of all parties, such that an honest execution
fixing the randomness to ρ would lead to the outcome that is preferred by the
global coalition. Now a semi-malicious adversary can receive this ρ as advice and
program the parties’ joint randomness to ρ. Interestingly, however, for fail-stop
adversaries, we will show the feasibility of perfect CSP-fairness even when all
parties can be corrupt (see Corollary 1).

For any balanced preference profile, if the corrupt coalition gains in terms
of overall wealth (i.e., total payoff) then honest overall wealth must be harmed
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(relative to an honest execution in both cases). Therefore, CSP-fairness is equiv-
alent to maximin fairness for balanced preference profiles. The following fact is
therefore straightforward:

Fact 2 (Equivalence of maximin fairness and CSP fairness for bal-
anced preference profiles). Let A denote a family of adversaries that corrupt
up to n − 1 parties and let P ∈ {0, 1}n denote any balanced profile. Then, an
n-party coin toss protocol Π is maximin fair for P against the family A iff Π is
CSP-fair for P against the family A.

For unbalanced preference profiles, however, the two notions are not equiva-
lent (and this will become obvious later in the paper).

As mentioned, for two parties, all our fairness notions equate to Blum’s weak
fairness notion [16], and therefore the results stated in our online full version [18]
directly apply to CSP fairness too. In the remainder of this section, we focus on
three or more parties.

5.2 Almost Unanimous Preference Profile

Recall that we consider 3 or more parties, i.e., n ≥ 3.

Possibility of Perfect CSP-Fairness Against Semi-malicious Adver-
saries. First, we show that for almost unanimous preference profiles and any
n ≥ 3, perfect CSP-fairness is possible against any coalition of size up to n − 1.

Let P0, . . . , Pn−1 denote the n ≥ 3 players. Without loss of generality, suppose
that P0 is the single 0-supporter (i.e., prefers 0), and everyone else prefers 1 (all
other cases are equivalent by flipping the bit and renumbering players). Consider
the following simple protocol denoted Πcsp.

1. In the first round, every party i where i ∈ [0, 1, . . . , n − 1] locally tosses a
random coin bi. Further, the single 0-supporter P0 reveals its coin b0.

2. In the second round, every 1-supporter (i.e., Pi where i �= 0) reveals coin bi.
3. The outcome of the protocol is defined as follows: if any 1-supporter aborted

without revealing its bit, output 0. Else, output the XOR of all bits that have
been revealed by the parties — note that if P0 aborted without revealing its
bit b0, then we simply do not include b0 in the XOR.

It is straightforward that under an honest execution, the expected outcome is 1
2 .

Theorem 8 (Possibility of perfect CSP-fairness against semi-malicious
corruptions for almost unanimous preference profiles). For any n ≥ 3,
there is an n-party coin toss protocol that achieves perfect CSP-fairness for any
almost unanimous preference profile P ∈ {0, 1}n against the family of all semi-
malicious adversaries that control at most n − 1 parties.

Proof. We analyze the aforementioned protocol Πcsp by considering the following
cases:
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1. P0 is the lone corrupt party. In this case, all parties who prefer 1 are
honest, and since P0 makes its decision to abort prior to seeing the remain-
ing parties’ random bits, equivalently, we can think of the remaining parties
flip their random coins after P0 makes its decision whether to abort. Thus,
regardless of P0’s strategy, the expected outcome must be 1

2 .
2. P0 and a single 1-supporter are corrupt. In this case, the definition of

CSP-fairness is trivially satisfied since the corrupt coalition would obtain a
payoff of exactly 1 no matter what the outcome of the protocol is.

3. P0 is honest and one or more 1-supporters are corrupt. Let b :=
(b0, . . . , bn−1) denote the random coin tosses of all the parties. For semi-
malicious corruption, we can imagine that each party Pi chooses bi and other
randomness related to aborting decisions upfront prior to protocol start—
honest parties sample them at random and corrupt parties choose the random
strings arbitrarily. Let C denote the corrupt coalition and let −C denote its
complement. We consider an alternative adversary B that just receives bC :=
{bi}i∈C as advice but all corrupt parties follow the protocol to the end—note
that such a B needs to consume only bC and no additional randomness. For
any fixed bC , and for any fixed b−C , if playing with the adversary B who
never aborts, the outcome is 0, then playing with any adversary A (who might
abort), the outcome cannot be 1. Thus for every (bC ,b−C), no adversary A
can obtain a higher outcome than B. The proof follows by seeing that for B
and for any fixed bC , the expected outcome (averaging over honest parties’
random coin flips) is 1

2 .
4. P0 and at least two 1-supporters are corrupt. In this case it must be that

n ≥ 4 since if n = 3 all parties would be corrupt. Similar to the above case,
here we can argue that for every fixed (bC ,b−C) and P0’s decision whether
to abort, the adversary B such that all other corrupt (besides P0) execute
to the end makes the outcome at least as high as any other adversary A.
Additionally, for B and for any fixed bC and P0’s decision whether to abort,
the expected outcome (averaging over honest parties’ random coin flips) is 1

2 .

Corollary 1. There is an 3-party coin toss protocol that achieves perfect CSP-
fairness for any mixed preference profile against the family of all semi-malicious
adversaries that control at most n − 1 parties.

Proof. Note that for 3 parties, any mixed preference profile must be almost
unanimous. The corollary now follows from Theorem 8.

We observe that for fail-stop adversaries, a variant of the aforementioned
protocol Πcsp actually achieves perfect CSP-fairness even when all parties can
be corrupt: Suppose that only parties in {P1, . . . , Pn−1} flip a random coin and
publish the coin; and P0 does nothing. If any of these parties abort, the outcome
is defined to be 0; else the outcome is defined to be the XOR of all published
coins. We thus have the following corollary:

Corollary 2. For any n ≥ 3, there is an n-party coin toss protocol that achieves
perfect CSP-fairness for any almost unanimous preference profile P ∈ {0, 1}n

against the family of all fail-stop adversaries that control up to n parties.
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Proof. If no 1-supporter is corrupt, then obviously the expected outcome is 1
2 . If

at least one 1-supporter is corrupt, then for every choice of the joint randomness
of all 1-supporters, having any 1-supporter abort does no better for the adversary
than having no 1-supporter abort.

Possibility of Computational CSP-Fairness Against Malicious Adver-
saries. It is also easy to see that for three or more parties, statistical CSP fair-
ness is impossible against malicious adversaries much as the 2-party case [33,44].
Therefore for malicious adversaries we have to make computational assumptions.

For conceptual simplicity, we first describe our protocol assuming an idealized
commitment scheme—in our online full version [18], we describe how to dispense
with this idealized primitive and realize it from concurrent non-malleable com-
mitments that can be constructed one-way permutations. For the time being,
imagine that there is a special trusted party called Fidealcomm that has the fol-
lowing interface:

– In the first round (i.e., the commitment round), if Fidealcomm receives (commit
b) from some party i, it tells everyone (committed, i).

– In any of the subsequent rounds (i.e., the opening rounds), if Fidealcomm

receives open from any party i who has committed bi in the first round,
it tells everyone (open, i, bi).

We can now upgrade our semi-malicious protocol earlier to resist even mali-
cious adversaries (w.l.o.g. assume that there is a single 0-supporter and everyone
else is a 1-supporter):

1. In round 0, everyone commits a bit to Fidealcomm;
2. In round 1, the single 0-supporter opens its commitment;
3. In round 2, everyone else opens;
4. If any 1-supporter aborted, the outcome is 0; else the outcome is the XOR of

all bits that have been opened.

Since the commitment round basically forces corrupt parties to commit to
their randomness upfront; it is easy to see that this new protocol is CSP-fair
against malicious adversaries (for the same reason why the earlier protocol is
CSP-fair against semi-honest adversaries). Note that CSP fairness holds even for
unbounded adversaries assuming the Fidealcomm ideal functionality; but in our
online full version [18], we show how to remove the Fidealcomm and replace it with
concurrent non-malleable commitments [42], the resulting protocol would secure
only against computationally bounded adversaries as stated in the following
theorem.

Theorem 9 (Computational CSP fairness against malicious adver-
saries). Assume that one-way permutations exist, then for any n ≥ 3, there
exists an n-party protocol that achieves computational CSP fairness for any
almost unanimous preference profile P ∈ {0, 1}n against malicious coalitions
of size up to n − 1.

The proof is deferred to our online full version [18].
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5.3 Amply Divided Preference Profile

For n = 3, any mixed preference profile must be almost unanimous. For n ≥ 4,
we need to consider amply divided preference profiles: i.e., at least two parties
prefer 0 and at least two parties prefer 1. We now show a strong impossibility
for mixed preference profiles, that is, for any mixed preference profile P, no n-
party coin toss can achieve even computational CSP-fairness for P against even
fail-stop adversaries.

We note that for the special case of amply divided and balanced preference
profiles, the impossibility for CSP fairness is already implied by the impossibility
of maximin fairness for the same preference profiles (Theorem 5)—recall that
the two notions are equivalent for balanced preference profiles. However, this
observation does not rule out the feasibility of CSP fairness for unbalanced and
amply divided preference profiles. Thus the following theorem is non-trivial even
in light of Theorem 5.

Theorem 10 (Impossibility of CSP-fairness for n ≥ 4). Let n ≥ 4, and
let P ∈ {0, 1}n be any amply divided preference profile. Then, no n-party coin-
toss protocol can achieve even computational CSP-fairness for P, against even
fail-stop adversaries.

Proof Roadmap. Although for balanced and amply mixed preference profiles,
the infeasibility of CSP fairness is already implied by the infeasibility of maximin
fairness for the same profiles (since the two notions are equivalent for balanced
preference profiles), here we would like to prove impossibility for any amply
mixed preference profile, even unbalanced ones. At a very high level, our approach
is to group the parties into three partitions called P1, P2, and P3, such that we
can view the execution as a 3-party protocol. This partitioning is carefully crafted
such that the definition of CSP fairness would imply the T2-equality lemma, the
lone-wolf condition, and the wolf-minion conditions like in the impossibility proof
for maximin fairness—and if this is the case, the same proof would apply and
rule out CSP fairness.

Among these conditions, the T2-equality lemma is the most challenging to
prove. Specifically, earlier we relied on maximin fairness against a semi-malicious
P2 to prove the T2-equality lemma; and here would like to prove the same lemma
for CSP fairness but now against a fail-stop adversary6. This seems almost
counter-intuitive at first sight since at the surface, the T2-equality lemma is
stating that if a semi-malicious adversary were to program T2 to specific strings,
almost for all such strings it would not help. But now how can we prove it by
relying on CSP fairness against only fail-stop adversaries? In our formal proof
later, we will show that for any two neighboring T2 and T ′

2 (except for a negli-
gibly small bad fraction), it must be that |f(T2) − f(T ′

2)| ≤ negl(κ), where T2

and T ′
2 are said to be neighboring iff they differ only in one party’s contribution

6 Note that the T2-equality lemma does not even hold for maximin fairness against
fail-stop adversaries since we have an explicit construction for almost pure preference
profiles and fail-stop.
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of random coins, and f(T2) is defined similarly as before, i.e., the expected out-
come of an honest execution conditioned on P2’s randomness being fixed to T2.
Now if we can show this, we can then show, through a hybrid argument, that
|f(T2) − f(T ′

2)| ≤ negl(κ) for any T2 and T ′
2 (except for a negligibly small bad

fraction), and this would complete the proof.
Thus the challenge is to show |f(T2) − f(T ′

2)| ≤ negl(κ) for almost all neigh-
boring T2 and T ′

2 pairs. To do this, suppose that T2 and T ′
2 differ in the i-th

player’s contribution where i ∈ P2—our intuition is to compare an honest exe-
cution involving T2 with the execution where the i-th player aborts upfront (and
P2’s randomness still fixed to T2). Let gi(T2) denote the expected outcome in
the latter execution. Through a somewhat non-trivial argument, we will prove
that for almost all T2s, it must be that |f(T2) − gi(T2)| ≤ negl(κ)—otherwise
we can construct a fail-stop adversary in control of P2, and this adversary, upon
generating an honest random T2, emulates polynomially many honest executions
conditioned on T2 to estimate f(T2) and gi(T2) respectively, and informed by
the estimates, decide to either have i abort upfront or not. We prove that such
an adversary can cause non-negligible bias that improves P2’s overall wealth.

Similarly, for T ′
2 that is almost identical as T2 but differing in the i-th coor-

dinate, we also have that |f(T ′
2) − gi(T ′

2)| ≤ negl(κ). Finally, the proof follows
by observing that, if the i-th party aborts upfront, then its random coins do not
affect the expected outcome of the execution, i.e., gi(T2) = gi(T ′

2).
We defer the full proof of this theorem to our online full version.

6 Fairness by Strong Nash Equilibrium

6.1 Definition of Strong Nash Equilibrium (SNE)

Strong Nash Equilibrium (SNE) requires that no coalition, corrupting up to n
parties, can noticeably (i.e., non-negligibly) increase the payoff of all members of
the coalition. SNE is weaker than the earlier CSP notion since the former only
needs to resist a subset of the coalition strategies that latter must resist—CSP
must not only defend against coalition strategies that benefit all of its members,
but also defend against strategies that benefit coalition members on average7.
More formally, we define SNE-fairness below.

Definition 4 (Strong Nash Equilibrium or SNE-fairness). Let A be a
family of adversaries that corrupt up to n parties and let P ∈ {0, 1}n be any
mixed preference profile. We say that an n-party coin toss protocol is SNE-fair
for P and against the family of adversaries A iff for any A ∈ A, there exists a
negligible function negl(·), such that in an execution with the preference profile
P and the adversary A, there is at least one corrupt party whose expected payoff
is less than 1

2 + negl(κ).

7 Since SNE only needs to defend against unanimous coalitions by Fact 3, for any
mixed preference profile we in fact only need to consider coalitions of size n − 1
rather than n.
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Note that the definition of SNE-fairness requires that the notion be satisfied
even when all parties are corrupt. Similar as before, depending on the family A
of adversaries that we are concerned about, we can define computational, sta-
tistical, or perfect notions for SNE-fairness, and for fail-stop, semi-malicious,
or malicious adversaries respectively. We omit the detailed definitions for
conciseness.

A coalition of parties is said to be unanimous iff every party in the coalition
prefers the same bit.

Fact 3. Let A be a family of adversaries corrupting up to n parties and let
A′ ⊂ A be the (maximal) subset of A that corrupts only unanimous coalitions8.
Let P ∈ {0, 1}n be any mixed preference profile. Then, an n-party coin toss
protocol Π is CSP-fair for P against the family A′ iff Π is SNE-fair for P
against the family A.

Proof. For any adversary A ∈ A that corrupts a coalition that has mixed pref-
erences, if the coalition members that prefer 0 have expected payoff more than
1
2 , then those who prefer 1 must have payoff at most 1

2—thus SNE-fairness is
trivially satisfied for mixed coalitions. We therefore conclude that a protocol
Π to be SNE-fair for P against A, if and only if Π is SNE-fair for P against
those adversaries in A that control unanimous coalitions—and this latter notion
is equivalent to CSP-fair for unanimous coalitions, by observing the following:
since P is mixed, any adversary in A that controls unanimous coalitions cor-
rupts only up to n − 1 parties (recall that the definition of CSP-fair considers
adversaries that corrupts upto n − 1 parties).

6.2 Feasibility Results for SNE Fairness

We show that for any n ≥ 2, there is an n-party coin toss protocol that is
computationally SNE-fair for any mixed preference profile P ∈ {0, 1}n against
even malicious adversaries; further, there is an n-party coin toss protocol that
is perfectly SNE-fair for any mixed preference profile P ∈ {0, 1}n against semi-
malicious adversaries. On the other hand, the impossibility of statistical SNE
fairness against malicious adversaries is implied in a straightforward fashion by
known lower bounds [33,44].

Achieving Perfect SNE-Fairness Against Semi-malicious Adversaries.
Let n ≥ 3 and let P ∈ {0, 1}n be a mixed preference profile. We can consider
a simple dueling protocol: pick two people with opposing preferences (i.e., the
ones with the smallest party identifiers) and have them play the simple 2-party
protocol: each party picks a random bit upfront and both broadcast their bit
in the first round. Normally the outcome is the XOR of the two bits but if one
party aborts, the outcome is the other party’s preference.

8 Recall that we assume that the choice of corrupt parties is hard-wired in an adver-
sary’s algorithm.
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Theorem 11 (Perfect SNE-fairness against semi-malicious adver-
saries). For any n ≥ 2, there is an n-party coin toss protocol that is perfectly
SNE-fair for any mixed preference profile P ∈ {0, 1}n against semi-malicious
adversaries.

Proof. By Fact 3, we only need to resist unanimous coalitions. Thus for the
two parties selected to duel with opposing preferences, one of them must be
honest. Further, recall that a semi-malicious adversary must select its random
coins upfront without seeing any protocol message, and henceforth the only
attack it can perform is aborting. Now in the 2-party protocol, for any choice
of randomness of the 2 dueling parties, if the corrupt party aborts, it does no
better than playing honestly till completion.

Achieving Computational SNE-Fairness Against Malicious Adver-
saries. The above protocol can be made secure against malicious adversaries
using a cryptographic commitment scheme. The only change needed is that
when the selected two parties duel, one of them (denoted P ) commits to a bit in
Phase 0, then the other party (denoted P ′) sends its bit in Phase 1, and finally
P opens its commitment.

Theorem 12 (Computational SNE-fairness against malicious adver-
saries). For any n ≥ 2, there is an n-party coin toss protocol that achieves
computational SNE-fairness for any mixed preference profile P ∈ {0, 1}n against
malicious adversaries.

Proof. Consider the dueling protocol Πduel. By Fact 3, it suffices to prove that
any unanimous coalition cannot non-negligibly improve the coalition’s total
reward. Notice that any unanimous coalition controls at most one party in the
two parties selected to duel. By maximin fairness of the 2-party protocol (which
we argue in our online full version [18]), if one of the dueling parties deviates,
the deviating party cannot improve its expected payoff by more than a negligible
amount.

7 The Case of Private Preference Profiles

Here we consider the case of private preference profiles, where each party’s prefer-
ence is private information only known to the party. In other words, we consider
private preference coin toss protocols, where each party’s preference is a private
input, instead of public information. Clearly, this is a more challenging setting
for achieving fairness. For example, a malicious party may lie about his prefer-
ence or abort without revealing his preference. Indeed, as we shall see, we lose
some feasibility results in the private preference setting.

Recall that in the public preference setting, coin toss protocols and fairness
can be naturally defined with respect to a preference profile P. However, this
is not the case for private preference. Thus, we only consider (universal) n-
party private preference coin toss protocols that are defined for every preference
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profiles P ∈ {0, 1}n. All three fairness notions can be naturally defined for such
protocols. Below we only state the definition of maximin fairness in the private
preference setting formally for succinctness. The other two notions can be defined
analogously.

Definition 5 (Maximin fairness). Let A be a family of adversaries that cor-
rupt up to n − 1 parties. We say that an n-party private preference coin toss
protocol is private maximin fair against the family A, iff for every adversary
A ∈ A, there exists some negligible function negl(·) such that for every mixed
preference profile P ∈ {0, 1}n, in an execution with the preference profile P and
the adversary A, the expected reward for any honest party is at least 1

2 −negl(κ).
For unanimous preference profiles, the execution should output the common pref-
erence with probability 1.

We proceed to discuss the feasibility and impossibility of fair coin toss for
private preference protocols. As this is harder to achieve, all impossibility results
in the public preference setting trivially hold here, and it suffices to investigate
cases that are feasible in the public preference setting.

SNE-Fairness. Recall that even in the public preference setting, we can only
achieve general feasibility result for the notion of SNE-fairness, where compu-
tational SNE-fairness against malicious adversary and statistical SNE-fairness
against semi-malicious adversary are feasible for any n ≥ 2 parties (whereas
maximum and CSP-fairness are impossible for n ≥ 4 even against fail stop
adversary). In the private preference setting, we show that SNE-fairness against
malicious adversary becomes impossible for n ≥ 3 parties, whereas SNE-fairness
against semi-malicious adversary remain feasible. Intuitively, the reason for the
impossibility is that a malicious adversary may lie about his preference.

Theorem 13 (Impossibility of SNE-fairness against malicious adver-
sary). For any n ≥ 3, no n-party private preference coin-toss protocol can
achieve even computational SNE-fairness against malicious adversaries.

Proof (sketch). We focus on the three-party case and discuss how to handle
general n ≥ 4 parties at the end of the proof. At a high level, the proof for the
three-party case relies on the same argument as that of Theorem 7 for maximin-
fairness. Recall that in the proof of Theorem 7, we consider preference profile P =
(1, 0, 1). We show that maximin-fairness implies T2-equality lemma (Lemma 1)
and the lone-wolf and wolf-minion conditions. Then we use these properties
to derive a contradiction by constructing an adversary that breaks the wolf-
minion condition. Here, we follow the same strategy to consider preference profile
P = (1, 0, 1). It suffices to show that private SNE-fairness implies the same set
of properties, and a contradiction can be derived in the same way.

Let Π be a three-party private preference coin toss protocol. Recall that we
use the notation T1, T2, T3 ∈ {0, 1}�(κ) to denote the randomness of P1, P2 and
P3, respectively, and f(T2) to denote the expected outcome when P2 uses the
randomness T2 whereas P1 and P3 executed the protocol honestly (when the
preference profile is P = (1, 0, 1)).
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It is not hard to see that Lemma 1 follows. Please see our online full ver-
sion [18]. Thus, T2-equality lemma is implied by private SNE-fairness as well. It
remains to check the lone-wolf and wolf-minion conditions.

For the lone-wolf conditions, it may seem that SNE-fairness only implies
that P1 (or P3) cannot cause non-negligible (in κ) bias towards 1 by a fail-stop
attack. This is the place that an adversary can take the advantage of private
preference. Suppose there P1 can cause non-negligible bias towards 0 by a fail-
stop attack when the preference profile is (1, 0, 1). Consider the case that the
preference profile is (0, 0, 1). An malicious P1 (with preference 0) can participate
the protocol with a pretended preference 1 and perform the fail-stop attack to
cause bias toward 0 to violate fairness. Thus, a fail stop P1 (or P3) cannot cause
non-negligible bias towards either direction.

Recall that the wolf-minion condition says that when P1 and P2 (or P2 and
P3) form a fail-stop coalition, they cannot cause a non-negligible (in κ) bias
towards 0. Suppose this is not the case, e.g., a fail-stop coalition P1 and P2

can cause a non-negligible bias towards 0. We show that SNE-fairness can be
violated when the preference profile is (0, 0, 1). Indeed, in this case, an malicious
adversary corrupting P1 and P2 can pretend the preference of P1 is 1 and use the
assumed fail-stop attack to cause a non-negligible bias towards 0, which violates
SNE-fairness.

The above shows that for three-party protocols, the properties needed in
the proof of Theorem 7 are implied by private SNE-fairness. A contradiction
can then be derived by the same arguments as in Theorem 7, which proves the
impossibility.

Finally, for general n ≥ 4 parties, we can use the standard trick to group
P4, . . . , Pn together with P2 to form a supernode of 0-supporters. This effectively
reduce the number of parties to 3 and the same argument can be applied to show
impossibility.

Theorem 14 (Perfect private SNE-fairness against semi-malicious
adversaries). For any n ≥ 2, there is an n-party private preference coin toss
protocol that is perfectly private SNE-fair against semi-malicious adversaries.

Proof. We simply modify the public preference duelling protocol by first asking
all parties to reveal their private preference. If any parties abort, we ignore them.
For the remaining non-aborting parties, we proceed with the dueling protocol as
in the public preference setting. Note that since we only consider semi-malicious
adversaries, the revealed preferences must be the true preferences.

By Fact 3 (which can be verified to hold in the private preference setting
with the same argument), we only need to resist unanimous coalitions. Hence, all
aborting parties must share the same preference as their non-aborting coalition
(if any), who do not gain any advantage by the fairness of the public preference
protocol. If all non-aborting parties are honest, then correctness of the honest
execution also implies that the aborting parties do not gain any advantage.

Note that Theorem 14 is proved by a protocol that first asks all parties
to reveal their private preference and then executes a public preference proto-
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col among the non-aborting parties, and intuitively, this works since the semi-
malicious can only reveal their true preferences. However, while this intuition
turns out to be true for SNE-fairness and maximin fairness (which we discuss
later), it can be subtle for CSP-fairness since the adversary still has the advan-
tage of aborting before revealing his preference. We discuss this next.

CSP-Fairness. Recall that in the public preference setting, Corollary 2 says
that for n ≥ 3, there exists an n-party coin toss protocol that achieves perfect
CSP-fairness for any almost unanimous preference profile against all fail-stop
adversaries that can control up to n parties. In particular, there exists a three-
party perfect CSP-fair protocol against fail-stop adversaries who may corrupt
all three parties9. Interesting, this becomes impossible in the private preference
setting.

Theorem 15 (Impossibility of CSP-fairness against fail-stop all-
corruption adversary). No three-party private preference coin-toss protocol
can achieve computational CSP-fairness against fail-stop adversaries that can
corrupt up to three parties.

Proof (sketch). For the sake of contradiction, suppose Π is a three-party private
preference coin-toss protocol that achieve the claimed fairness. Let us consider a
scenario where P3 always abort at the beginning, and P1 and P2 has preference 0
and 1, respectively. Note that suppose P1 and P2 execute the protocol honestly,
the outcome need to be unbiased: Suppose the outcome is biased towards b and
the private preference of P3 is also b, then the CSP-fairness is violated.

Thus, in this scenario where P3 is aborting, honest P1 and P2 execute a
two-party protocol and produce an unbiased outcome. We can apply Cleve’s
lower bound argument to show the existence of a fail-stop adversary Pa that can
bias the outcome non-negligibly towards b, for some a ∈ {1, 2} and b ∈ {0, 1}.
Now, suppose the private preference of P3 is b, and consider an adversary A
that corrupts all three parties and does the following: (i) A lets P3 aborts at
the beginning, and (ii) A let Pa to perform the fail-stop attack to cause non-
negligible bias of the outcome towards b. This violates CSP-fairness since the
total utility of the corrupted parties is increased by a non-negligible amount.

On the positive side, we observe that Corollary 1 extends to the private
preference setting.

Theorem 16. There is an 3-party private preference coin toss protocol that
achieves perfect CSP-fairness against the family of all semi-malicious adver-
saries that control at most 2 parties.

Proof (sketch). We follow the same strategy to first ask each party reveal his pref-
erence, and then let the non-aborting parties to execute a fair public preference
protocol. Specifically, if no party aborts, then we run the three-party CSP-fair
9 We focus on the three-party case here since the case of four or more parties are

impossible in the private preference setting due to the existence of amply divided
preference profiles for four or more parties.
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protocol in Corollary 1. If one party aborts and the remaining two parties have
the same preference, then they output their preference. If one party aborts and
the remaining two parties have different preferences, then they execute the duel-
ing protocol. If two parties abort, then the remaining party simply output his
preference. It is not hard to see by inspection that private CSP-fairness holds in
all cases.

Maximin Fairness. We end this section with a brief discussion on the maximin
fairness for the private preference protocols. Note that the only interesting ques-
tion is whether Theorem 6, which states the existence of perfect maximin fair
coin toss protocol against fail-stop adversaries, extends to the private preference
setting. Now, observe that the definition of maximin fairness only concerns the
honest party’s utility, so an adversary who aborts without revealing his prefer-
ence cannot hurt maximin fairness. Therefore, the strategy of first asking each
party to reveal his preference, and then letting the non-aborting parties to exe-
cute a fair public preference protocol works directly for maximin fairness.

Theorem 17 (Possibility of perfect maximin fairness for 3 parties and
fail-stop adversaries). There exists a 3-party private preference coin toss pro-
tocol that achieves perfect maximin fairness against any fail-stop adversaries.

8 Related Work

Related works on strongly fair coin toss [19,27] as well as Blum’s notion of weak
fair coin toss [16] have been discussed earlier in Sect. 1. In this section, we discuss
additional related work.

Game Theory and Cryptography. Historically, game theory [36,48] and
multi-party computation [27,52,53] were investigated by separate communities.
Some recent efforts have investigated the marriage of game theory and cryptog-
raphy (see the excellent surveys by Katz [37] and by Dodis and Rabin [24]). This
line of work has focused on two broad types of questions:

– First, a line of works [1,4–6,32,38,49] investigated how to define game-
theoretic notions of security (as opposed to cryptography-style security
notions) for multi-party computation tasks such as secret sharing and secure
function evaluation. Existing works consider a different notion of utility than
us: specifically, these works make (a subset to all of) the following assump-
tions about players’ utility: players prefer to compute the function correctly;
further, they prefer to learn secrets, and prefer that other players do not
learn secrets. These works then investigate how to design protocols such that
rational players will be incentivized to follow the honest protocol.

– Second, a line of work has asked how cryptography can help traditional game
theory. Particularly, many classical works in game theory [36,48] assumes the
existence of a trusted mediator—and recent works have shown that under
certain conditions, this trusted mediator can be implemented using cryptog-
raphy [9,23,29,34].
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In this paper, we investigate game-theoretic notions of fairness for coin toss
protocols. Our notions are novel in comparison with the aforementioned related
work. First, to the best of our knowledge, we are the first to apply game theory
to coin toss protocols, and asking whether we can circumvent known impossibil-
ities [19] by considering rational players. Second, the fairness notions proposed
in this paper are novel and to the best of our knowledge have not been inves-
tigated before for multiple parties. Specifically, we consider a natural notion of
utility for coin toss protocols, where players have a preference over the outcome
of the coin toss. We require that an honest execution produces an unbiased
coin (unless all parties prefer the same bit); however if one or more coalition(s)
deviate from the honest protocol, the coin toss outcome need not be unbiased
(but we want that certain fairness properties must be preserved). All notions of
fairness defined in the paper consider corrupt majority—since in the case of hon-
est majority, strongly fair coin toss is known to be possible assuming standard
cryptography assumptions [27], and the standard strong fairness notion implies
all game-theoretic notions considered in this paper. In comparison, most earlier
works [1,4–6,9,23,29,32,34,38,49] at the intersection of cryptography and game
theory consider only the popular Nash equilibrium notion that is concerned
about coalitions of size 1. Our fairness definitions are inspired by equilibrium
notions in game theory that resist coalitions in various capacities [15,35].

Other Notions of Fairness. Our work is inspired by the study of new,
financially motivated fairness notions in blockchains and cryptocurrency appli-
cations [3,8,13,22,39–41,45]. Several recent works [13,22,39,40] show that to
achieve a suitable notion of financial fairness, the protocol may require that par-
ties place collateral on the blockchain to participate, and misbehaving parties can
be penalized by taking away their collateral. Among these works, the most closely
related to ours are those that investigate lottery-style protocols [8,13,22,39,45].
While earlier works [3,13] require quadratic amount of collateral, more recent
works [8,45] showed that it is possible to realize fair lottery in the presence
of a blockchain (i.e., a broadcast medium with identifiable abort) requiring
no collateral at all, by relying on a folklore tournament-tree approach. Inter-
estingly, although not explicitly noted, all these works on fair lottery over a
blockchain [8,13,22,39,45] adopt a game theoretic notion of fairness, that is,
although a deviating coalition can bias the outcome of toss of the n-sided dice,
such bias must be towards a direction that harms the perpetrators. In fact, the
implicit fairness notion in these papers is equivalent to our notion of maximin
fairness and cooperative-strategy-proof (CSP) fairness—for 0-sum games like a
lottery, these two notions are equivalent.

Other relaxations of strong fairness have also been considered for coin toss
and multi-party computation. For example, several works [2,7,10,11,14,17,19–
21,28,30,31,46] consider a notion of ε-fairness, i.e., the adversary can bias the
coin by at most a non-negligible ε amount. Moran et al. [46] showed that for
general R, there is an R-round, 2-party coin toss protocol that satisfies O(1/R)-
fairness—and this is optimal since Cleve [19] showed that for every R-round
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2-party coin toss protocol, there exists an efficient adversary that can bias the
honest party’s outcome by at least Ω(1/R).

9 Conclusion

In this paper we proposed several natural, game theoretic notions of fairness for
multi-party coin toss protocols. In the case of two parties, all of these notions
equate to Blum’s notion of weakly fair coin toss [16]; however, for more than 2
parties, these notions differ in strength and lead to different feasibility and infea-
sibility results. We summarize the strengths of various notions from strongest to
weakest (for general n and mixed preference profiles).

Maximin �= Cooperative-Strategy-Proof (CSP) > Cooperative-
Coalition-Proof (CCP) = Strong Nash Equilibrium (SNE) >
Coalition-Proof > Nash

Among the above notions, we show broad feasibility results for SNE-fairness
(which directly implies feasibility for coalition-proof equilibrium and Nash Equi-
librium too). For other notions, we give a complete characterization of their
feasibilities and infeasibilities—and for all of them we prove infeasibilities for
amply divided preference profiles.

Note that among these notions, cooperative-strategy-proof and cooperative-
coalition-proof are new notions first proposed in this paper—although we study
them in the context of coin toss protocols, they would make sense for gen-
eral games with transferrable utilities too. Finally, although maximin fairness
is incomparable to CSP-fairness in general, the two are equivalent for balanced
preference profiles (analogous to zero-sum games).
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Abstract. Fairness in classification has become an increasingly relevant
and controversial issue as computers replace humans in many of today’s
classification tasks. In particular, a subject of much recent debate is that
of finding, and subsequently achieving, suitable definitions of fairness in
an algorithmic context. In this work, following the work of Hardt et al.
(NIPS’16), we consider and formalize the task of sanitizing an unfair clas-
sifier C into a classifier C′ satisfying an approximate notion of “equalized
odds” or fair treatment. Our main result shows how to take any (possi-
bly unfair) classifier C over a finite outcome space, and transform it—by
just perturbing the output of C—according to some distribution learned
by just having black-box access to samples of labeled, and previously
classified, data, to produce a classifier C′ that satisfies fair treatment;
we additionally show that our derived classifier is near-optimal in terms
of accuracy. We also experimentally evaluate the performance of our
method.

1 Introduction

As algorithmic decision-making becomes ever more popular and widely-used
in today’s society, concerns are being raised about whether, and to what extent,
algorithms have the potential to discriminate, either as a result of malicious
designers or perhaps from learning biases inherent in previous decisions on which
an algorithm could be trained. In a well-known recent example, the COMPAS
recidivism analysis tool, one of an increasingly popular set of algorithmic criminal
“risk assessments” which are being used nationwide in sentencing and other
decisions pertaining to defendants in the criminal justice system, was shown to
exhibit highly disparate treatment between different races; a study by ProPublica
[1,2] showed that African-American defendants who ultimately did not recidivate
were almost twice as likely as white defendants to receive a high risk score from
the algorithm.
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As a result of these concerns, there has been extensive research in computer
science and other fields pertaining to how fairness, or non-discrimination, should
be defined in the context of a classification scenario. In this work, we will for-
malize and study one such definition, fair treatment, which is an approximate
and distribution-based version of the notion of equalized odds [6] or balance [7].

Fair Treatment (a.k.a. approximate equalized odds). The originally proposed
notion of fairness in classification is that of statistical parity [5] (which is
essentially identical to the notion of causal effect [8]), which captures non-
discrimination between groups. Given a classifier C which assigns to individuals σ
from some distribution D—each of which has some subset of observable features
O(σ)—an outcome C(O(σ)) (e.g., a risk score), and given a function f(σ) repre-
senting an individual’s actual class (e.g., whether they will recidivate), statistical
parity simply requires that the output of the classifier be independent (or almost
independent) of the group of the individual; that is, for any two groups X and Y ,
the distributions {C(O(σX))} and {C(O(σY ))} are ε-close in statistical distance.
This is a very strong notion of fairness, and in many contexts it may not make
sense. In particular, if the base rates (e.g., the base percentages of people from
each race who actually recidivate) are different, we should perhaps not expect
the output distribution of the classifier to be the same across groups. Indeed, as
the ProPublica article points out, in the COMPAS example, the overall recidi-
vism probability among African-American defendants was 56%, whereas it was
42% among white defendants. Thus, in such situations, one would reasonably
expect a classifier to on average output a higher risk score for African-American
defendants, which would violate statistical parity. Indeed, the issue raised by
ProPublica authors was that, even after taking this base difference into account
(more precisely, even after conditioning on individuals that did not recidivate),
there was a significant difference in how the classifier treated the two races.

The notion of equalized odds due to Hardt et al. [6] formalizes the desiderata
articulated by the authors of the ProPublica study (for the case of recidivism)
in a general setting by requiring the output of the classifier to be independent of
the group of the individuals, after conditioning on the class of the individuals.
Very similar notions of fairness appear also in works such as [3,7] using different
names; for instance, Kleinberg et al. [7] consider a notion of “balance” which is an
approximate version of equalized odds, albeit one which is tailored to scoring-
based classifiers over a binary class space and only requires the conditioned
expectation of the outcome (i.e., the score) to be close between groups. We here
consider a more general approximate version of this notion which applies to all
classifiers with a finite outcome space, which we refer to as ε-fair treatment. This
requires that, for any two groups X and Y and any class c, the distributions

– {C(O(σX)) | f(σX) = c}
– {C(O(σY )) | f(σY ) = c}
are ε-close with respect to some appropriate distance metric to be defined shortly.
That is, in the COMPAS example, if we restrict to individuals that actually do
not recidivate (respectively, those that do), the output of the classifier ought
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to be essentially independent of the group of the individual (just as intuitively
desired by the authors of the ProPublica study, and as explictly put forward in
[6]).

We will effectively use the notion of max-divergence to determine the “dis-
tance” between distributions; this notion, often found in areas such as differen-
tial privacy (see [4]), represents this distance as (the logarithm of) the maximum
multiplicative gap between the probabilities of some element in the respective
distributions. We argue that using such a multiplicative distance is important
to ensure fairness between groups that may be under-represented in the data
(see Sect. 3.1). Furthermore, as we note in the same appendix, such a notion
is closed under “post-processing”: if a classifier C satisfies ε-fair treatment with
respect to a context P = (D, f, g, O), then for any (possibly probabilistic) func-
tion M, C′(·) = M(C(·)) will also satisfy ε-fair treatment with respect to P.
Closure under post-processing is important as we ultimately want the output of
any subsequent classifier that uses only the output of a prior fair classifier to be
fair as well1.

Can we Sanitize an “unfair” Classifier? As shown in the ProPublica study, the
COMPAS classifier has a considerably large error in balance between races and
hence also has a large error in the stronger notion of fair treatment. A natural
question, then, would be whether we can “post-process” the output of this unfair
classifier (or others) to satisfy some notion of balance or fair treatment. Indeed,
there is a considerable amount of research devoted to achieving various defini-
tions of fairness in practice. This is a highly non-trivial problem, in fact; early
näıve approaches, such as just removing protected attributes from the feature
set, fail due to redundant encodings for such features in the data (as discussed
in [5]).

This question was more recently addressed in the work of Hardt et al. [6],
who examine various methods by which a potentially unfair classifier can be
post-processed into a fair binary classifier. They formalized the notion of a C-
derived classifier : namely a classifier C′ obtained from C by first running C, and
then “perturbing” the output of C. More precisely, such a C derived classifier
may be specified by a “perturbation matrix” P where entry Pi,j indicates with
what probability output i gets perturbed into output j. Hardt et al. showed that
for classifiers C over a binary outcome spaces, we can construct non-trivial C-
derived classifiers that satisfy their notion of equalized odds (in our terminology
“perfect” fair treatment). Subsequent work [9] using this method showed that,
for a binary version of the COMPAS classifier (which only attempts to predict
recidivism and not output a risk score), it can produce a perfectly fair classifier
with only an overall loss in accuracy of roughly 1.5%. Their method, however,
requires “perfect” knowledge of the distribution D as well as of the classifier C

1 Remarking once again on the earlier definition of Kleinberg et al., we note that
while it is equivalent to our definition for the case of binary outcomes, it is weaker
for non-binary outcomes (as in the case of the COMPAS classifier). Furthermore, as
with most expectation-based definitions, it is not closed under post-processing.
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in order to demonstrate optimality; additionally, as mentioned, it only applies
to binary outcomes (and as such, does not directly apply to a risk assessment
setting such as COMPAS)2.

Thus, the literature leaves open the questions of (1) whether we can efficiently
find a C-derived classifier (without having perfect knowledge of D and C), and
(2) whether sanitization can be done for non-binary outputs.

Towards addressing this problem, we first formalize the notion of black-box
sanitization: how to efficiently find a C-derived classifier given just black-box
access to a “sampling oracle” which samples random individuals σ ← D and
outputs (O(σ), f(σ), C(O(σ)), g(σ)) (that is, the individual’s observable features,
prior classification C, actual class, and group, which is essentially the data used
by the ProPublica authors to investigate the fairness of COMPAS).

Definition 1 (Informally stated). We call an algorithm B a black-box san-
itizer if, given a distribution D and a sequence of prior classifiers {Cn} such
that Cn takes as input n-bit descriptions On(σ) of individuals’ features3, then,
for each n, it:

– runs in time polynomial in n, and
– outputs some Cn-derived classifier C′

n which, with overwhelming probability
1 − ν(n) for some ν(·) negligible4 in n, satisfies approximate fair treatment
(with some small error ε(n)) for individuals σ ← D,

while only making “black-box” queries to the prior classifier. (That is, B can-
not use any information about D or Cn aside from querying random samples
(On(σ′), f(σ′), Cn(On(σ′)), g(σ′)) for σ′ ← D.)

Our key result is the construction of an efficient (i.e., polynomial-time in
n) black-box sanitizer B that works for any distribution D and prior classifier
sequence {Cn} over a fixed outcome space, and produces a classifier which not
only satisfies approximate fair treatment but also can be shown to be near-
optimal in terms of prediction accuracy (though the same also holds for a more
general class of linear loss functions, which are formalized in the main statement
of the result):

Theorem 1 (Informally stated). For any fixed outcome space Ω, group space
G, and inverse polynomial ε(n), there exists a black-box sanitizer B with fair
treatment error ε(n) such that, with probability at least 1−ν(n) over B’s queries
for some inverse-exponential ν(·), the accuracy loss of the classifier C′ output by
B (compared to the optimal C-derived classifier over the same D, f , and C) is
bounded by |Ω|(ε(n) + ε(n)4|G|/32).
2 Hardt et al. [6] also presented a method for sanitizing a classifier outputting a risk-

score (just as COMPAS), but the final, derived, classifier again would only output
a single bit.

3 Here we consider a sequence of classifiers for the sake of defining “computational
efficiency” of a sanitizer; in particular, we would like the running time of our sanitizer
to be polynomial in the feature length n.

4 That is, asymptotically smaller than any inverse polynomial 1/p(n).
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We note that while Hardt et al. demonstrate a classifier satisfying errorless
fair treatment, our derived classifier only satisfies ε-approximate fair treatment
for some small ε, but this is unavoidable as we do not assume knowledge of the
distribution D. In contrast, we show how this classifier can be efficiently found
without this knowledge of D; additionally, our method applies to classifiers over
any finite outcome space, as opposed to just binary outcomes.

In the full version of this paper, we also experimentally evaluate the accuracy
of our post-processing technique using a data set from the COMPAS recidivism
analysis tool [1]. We investigate the fair treatment rates of the original data
set and subsequently use the above technique to create classifiers satisfying fair
treatment with varying errors while optimizing three different loss functions,
amounting to overall accuracy (when considering a binary version of the classifier
where scores 0–5 get mapped to a 0, and 6–10 get mapped to 1) and two notions
of the similarity of the derived classification to the original classification. We find
that our method is able to produce derived classifiers satisfying fair treatment
with a relatively small amount of loss (with respect to this experimental data).

1.1 Proof Outline for Theorem1

We show our sanitization theorem in three steps. First, we consider an arbitrary
C-derived classifier, and we demonstrate constraints for a linear program that
can be used to efficiently find the optimal such classifier C′ satisfying fair treat-
ment. We note that these constraints are precisely a generalized version of those
which Hardt et al. [6] demonstrate for binary classifiers C (though they also con-
sider C with larger outcome spaces); we, however, also leverage our approximate
definition to create constraints for approximate fair treatment. We further note
that solving this linear program will require time polynomial in the number of
possible outcomes |O|.

Of course, our linear constraints, as well as the loss function we wish to opti-
mize, may in general depend on features of D and C that we may in this model
only approximate with black-box queries. So, towards approximating this opti-
mal classifier in a black-box setting, we show that it suffices to use experimental
probabilities derived from these queries rather than actual probabilities to build
the linear program, since over sufficiently many queries, and as long as real prob-
abilities are sufficiently large, it is overwhelmingly likely by a simple Chernoff
bound that the experimental probabilities will be very close to accurate. To deal
with the case when real probabilities may be quite small (and prone to large
multiplicative error in estimation due to variance in samples), we additionally
add a very small amount of random noise to the classifier in order to smooth out
the multiplicative distance between real and experimental probabilities, effec-
tively by increasing the minimum possible probability of events (noting that the
noise is optional when the probabilities we wish to calculate experimentally are
reasonably large). By solving this approximate version of the linear program, we
may obtain a near-optimal derived classifier satisfying approximate fair treat-
ment with respect to a given loss function.
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However, the loss function we wish to minimize in the linear program is also
potentially dependent on certain probabilities of events over C and D which
require non-black-box knowledge to derive exactly; to overcome this, we show
that the constructed sanitizer can in fact estimate these accurately using black-
box queries by the same argument as that for the linear program’s coefficients,
and so, given enough samples, an approximate loss function derived from experi-
mental probabilities is overwhelmingly likely to be close to the real loss function.
Of course, while the approximation of the loss function is close, it is unclear as
to whether the optimum of the approximate loss function is necessarily close to
optimal over the real loss function; we show, through leveraging properties of the
loss function and the space over which it is defined, that in fact this is the case
for accuracy (and other loss functions, including natural classes of loss functions
that are linear in the probabilities Pr [σ ← D : f(σ) = i ∧ C(O(σ)) = j]), which
completes our argument of near-optimality.

2 Preliminaries and Definitions

2.1 Notation

Conditional Probabilities. Given some random variable X and some event E,
we let Pr[p(X) | E] denote the probability of a predicate p(X) holding when
conditioning the probability space on the event E. If the probability of E is 0,
we slightly abuse notation and simply define Pr[p(X) | E] = 0.

Multiplicative Distance. The following definition of multiplicative distance will
be useful to us. We let the multiplicative distance μ(x, y) between two real
numbers x, y ≥ 0 be defined as

μ(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

ln
(
max

(
x
y , y

x

))
if x > 0, y > 0

0 if x = y = 0
∞ otherwise

2.2 Classification Contexts

We start by defining classification contexts and classifiers.

Definition 2. A classification context P is denoted by a tuple (D, f, g, O)
such that:

– D is a probability distribution with some finite support ΣP (the set of all
possible individuals to classify).

– f : ΣP → ΨP is a surjective function that maps each individual to their class
in a set ΨP .

– g : ΣP → GP is a surjective function that maps each individual to their
group in a set GP .
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– O : ΣP → {0, 1}∗ × GP is a function that maps each individual σ to their
observable features (O′(σ), g(σ)); note that we by default assume that an
individual’s group can be observed.

We note that f and g are deterministic; this is without loss of generality as
we can encode any probabilistic features that f and g may depend on into σ as
“unobservable features” of the individual.

Given such a classification context P, we let ΨP denote the range of f , and
GP denote the range of g. Whenever the classification context P is clear from
context, we drop the subscript; additionally, whenever the distribution D and
group function g are clear from context, we use σ to denote a random vari-
able that is distributed according to D, and σX to denote the random variable
distributed according to D conditioned on g(σ) = X.

2.3 Classifiers

A classifier C for a classification context P = (D, f, g, O) is simply a (possibly
randomized) algorithm that acts on the support of O (the observable description
of an individual). We let ΩC

P denote the support of the distribution {C(O(σ))}.
We also must formalize what it means for a classifier to be “derived” from

another classifier; hence, we define the following notion of a classifier C′ that
“perturbs” the output of some original classifier C. Given an individual σ, C′

will run C and then “post-process” the output according only to the output
C(O(σ)) and σ’s group.

Definition 3. [6] Given a classifier C, we say that a classifier C′ is a C-derived
classifier if, in any context P = (D, f, g, O), the outcome C′ is only dependent
on C(O(σ)) and σ’s group g(σ). (Equivalently, C′ is a classifier over the context
P ′ = (D, f, g, (C(O(·)), g(·))).)

Formally, we can represent this as a |ΩC
P | × |ΩC

P | × |GP | vector �PC′ of the
probabilities

P g
i,j = Pr [C′(C(O(σg)), g) = j|C(O(σg)) = i]

and let C′ be a classifier that, given an individual σ, runs C on that individual,
observes its outcome i = C(O(σ)) and group g(σ), and assigns that individual
the distribution of outcomes {j with pr. P g

i,j}.

3 Defining Fair Treatment

Next, we define the notion of fair treatment for a classifier C, which is an approx-
imate version of the notion of “equalized odds” from Hardt et al. [6] (which in
turn was derived from notions implicit in the ProPublica study [2]).

Definition 4. (Fair treatment, a.k.a. approximate equalized odds [6].) We say
that a classifier C satisfies ε-fair treatment with respect to a context P =
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(D, f, g, O) if, for any groups X,Y ∈ GP , any class c ∈ ΨP , and any outcome
o ∈ ΩC

P , we have that

μ(Pr[C(O(σX)) = o | f(σX) = c],Pr[C(O(σY )) = o | f(σY ) = c]) ≤ ε

For the case of binary classification tasks and binary classifiers (i.e., when
ΨP = ΩC

P = {0, 1}), fair treatment is equivalent to requiring “similar” false
positive and false negative rates [7].

3.1 On the Use of Multiplicative Distance

As defined here, fair treatment essentially requires that the max-divergence
between the conditional distributions of outcomes is small between groups. Max-
divergence is a distance measure often found in areas such as differential privacy
(see [4]); we stress here, through two arguments following very similar logic to
differential privacy, that using such a multiplicative distance is important to
ensure fairness between groups that may be under-represented in the data, and
also that fair treatment defined using multiplicative distance exhibits desirable
properties that other distance metrics may not.

First, to motivate our statement that multiplicative distances are important
for parity between under-represented groups, consider as an example a classifier
used to determine whether to search people for weapons. Assume such a classifier
determined to search 1% of minorities at random, but only the minorities (and
no others). Such a classifier would still have a fair treatment error of 0.01 if we
used standard statistical distance, while the max-divergence would in fact be
infinite (and indeed, such a classification would be blatantly discriminatory).

Our use of max-divergence between distributions for our definitions is reflec-
tive of the fact that, in cases where we have such small probabilities, discrimi-
nation should be measured multiplicatively, rather than additively. In addition,
when we may have a large number of possible classes, the use of max-divergence
(in particular, the maximum of the log-probability ratios) means that we always
look at the class with the most disparity to determine how discriminatory a
classification is, rather than potentially amortizing this disparity over a large
number of classes.

3.2 Closure Under Post-processing

We also remark that our definition of fair treatment is closed under “post-
processing”. If a classifier C satisfies ε-fair treatment with respect to a context
P = (D, f, g, O), then any C-derived classifier which acts independently of an
individual’s group (i.e., whose decision is based only on the outcome of C) will
also satisfy ε-fair treatment with respect to P.

Theorem 2. Let C1 be a classifier satisfying ε-fair treatment with respect to
context P = (D, f, g, O). Let C2 be any classifier whose output for an individual
σ is strictly a (possibly probabilistic) function of C1(O(σ)). Then C2 satisfies
ε-fair treatment with respect to P.
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Proof. Let C1 be a classifier satisfying ε-fair treatment w.r.t. some context P.
Consider some groups X,Y ∈ GP , some class c ∈ ΨP , and some outcome o ∈ ΩC′

P ;
we need to show that

μ(Pr[C2(C1(O(σX))) = o | f(σX) = c],Pr[C2(C1(O(σY ))) = o | f(σY ) = c]) ≤ ε

Towards doing this, note that

Pr[C2(C1(O(σX))) = o|f(σX) = c]

=
∑

o1∈Ω
C1
P

Pr[C2(o1) = o|f(σX) = c, C1(O(σX)) = o1]Pr[C1(O(σX)) = o1|f(σX) = c]

=
∑

o1∈Ω
C1
P

Pr[C2(o1) = o]Pr[C1(O(σX)) = o1|f(σX) = c]

where the last step follows from the fact that C2 depends only on C1. By the same
argument applied to Y , we also have that:

Pr[C2(C1(O(σY ))) = o | f(σY ) = c]

=
∑

o1∈Ω
C1
P

Pr[C2(o1) = o]Pr[C1(O(σY )) = o1 | f(σY ) = c]

These two probabilities are ε-close since, by fair treatment, Pr[C1(O(σX)) = o1 |
f(σX) = c] and Pr[C1(O(σY )) = o1 | f(σY ) = c] are ε-close, and furthermore mul-
tiplicative distance is preserved under linear operations5. This proves the theorem.

��
We also remark that, in general, earlier “expectation-based” definitions of

fair treatment are not preserved under post-processing.

4 Black-Box Sanitization

Next, we provide a novel definition of the type of sanitizer we shall construct in
our main theorem.

For the purposes of defining a “computationally efficient” sanitizer, let us
define a notion of an “ensemble” of classification contexts, wherein we assume a
parameter n (similar to the idea of a security parameter in cryptography) so that
each individual’s observable features can be represented in n bits. In particular,
this means that, for some setting of n there may be up to 2n distinct descriptions
of individuals in a distribution D, and so a computationally efficient black-box
classifier which runs in polynomial time with respect to n could not, for instance,
query every possible feature description.

Definition 5. Let a classification context ensemble Π be given by a
sequence of classification contexts {Pn}n∈N = {(D, f, g, On)}n∈N (note that
D, f, g remain the same as n varies), such that, whenever 2n ≥ |GPn

| (i.e.,
n is sufficiently large to describe g(σ)), On maps the space ΣPn

of individuals
to {0, 1}n, the space of n-bit descriptions.
5 That is, if μ(a, b) ≤ ε and μ(a′, b′) ≤ ε then μ(αa + βa′, αb + βb′) ≤ ε.
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Notably, the contexts are effectively describing the same distribution of indi-
viduals, but using different feature lengths for each context in the ensemble.
Also, because D, f , and g are the same throughout, this implies that the space
of individuals ΣPn

and the class and group spaces ΨPn
and GPn

are likewise the
same for every n.

In our proofs, we will also consider deriving our classifier from a sequence of
prior classifiers χ = {Cn}n∈N, where the classifier Ci is used to classify individuals
in the context Pi (that is, individuals having feature length i).

Lastly, we wish to represent the fact that a sanitizer may, given a prior clas-
sifier sequence χ over a distribution ensemble Π, wish to make black-box queries
to a distribution of labeled “training data” representing individuals’ observable
features, classes, groups, and prior classifications. We shall denote this distribu-
tion for a specific parameter n by

τχ,Π(1n) � {σ ← D : (On(σ), f(σ), Cn(On(σ)), g(σ))}
Notationally, let Bτχ,Π (1n)6 denote that a sanitizer B may make black-box

queries to the distribution τχ,Π(1n) for some parameter n. Finally, we are able
to formalize the notion of a “black-box sanitizer” given the above:

Definition 6. We say that an algorithm B(·) is an ε(·)-black-box sanitizer if
it is:

– Efficient: there exists a polynomial p(·, ·) such that, for any m ∈ N, and for
any context ensemble Π = {Pn}n∈N and sequence χ = {Cn}n∈N of classifiers
for which |ΨPn

| ≤ m, |GPn
| ≤ m, and |ΩCn

Pn
| ≤ m (i.e., the class, group,

and output spaces have size bounded by m), Bτχ,Π (1n) runs in time at most
p(m,n) for all n ∈ N.

– Fair: for any context ensemble Π = {Pn}n∈N and any sequence χ = {Cn}n∈N

of classifiers, there exists negligible ν(·)7 such that, for all n ∈ N, with proba-
bility at least (1 − ν(n)) over the samples it queries from τχ,Π(1n), Bτχ,Π (1n)
outputs a Cn-derived classifier C′8 which satisfies ε(n)-fair treatment with
respect to Pn.

4.1 Loss Functions

Lastly, we need to define “optimality” for derived classifiers in this context.
In particular, we assume some loss function �(·) bounded in [0, 1] which may
either be fixed or based on D, f , and C (in which case we write �D,f,C(·) for
clarity). Intuitively, �(C′) represents the “loss” in utility incurred by classifying
an individual σ with outcome C′(O(σ)) when their actual class is f(σ). As a
6 The input of 1n, or a string of n ones, is provided simply as a cryptographic con-

vention, so that we can assert that the running time of B is polynomial in its input
length. When implicit or clear from context, we shall for notational simplicity omit
this input.

7 That is, ν(n) < 1/p(n) for every polynomial p(·) and sufficiently large n.
8 That is, B outputs the probabilities �PC′ corresponding to the derived classifier C′.
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concrete example, if we consider classifiers which attempt to classify each indi-
vidual according to their correct class f(σ) ∈ Ψ , one might consider the overall
inaccuracy as a loss function, which is given by:

�D,f,C(C′) = 1 − Pr [C′(O(σ)) = f(σ)]

We can define the error of a derived classifier to be its loss compared to the
optimal perfectly fair derived classifier, as follows:

Definition 7. For some context P = (D, f, g, O) and prior classifier C, given
some loss function �D,f,C that maps any classifier to its loss in [0, 1], letting S
be the set of all C-derived classifiers satisfying (errorless) 0-fair treatment, then
we define the error of some C-derived classifier C′ with respect to �D,f,C to be

Δ�,D,f,C(C′) = maxC∗∈S(�D,f,C(C′) − �D,f,C(C∗))

We note that, because we compare a classifier (which may be only approx-
imately fair) to the optimal perfectly fair classifier, certain particularly good
classifiers may in fact have a negative loss. We could, when considering ε-
approximately fair classifiers, generalize this notion to consider the loss over
all f(ε)-fair classifiers for some f(ε) < ε and derive a similar optimality result to
what we prove here, but for simplicity and consistency over different parameters
ε we consider the case when f(ε) = 0.

Linear Loss Functions. Furthermore, with respect to derived classifiers, we con-
sider the class of loss functions �D,f,C which are linear in the probabilities P g

i,j

constituting the derived classifier—that is:

Definition 8. We say that a loss function �D,f,C(·) is a linear loss function for
a context P = (D, f, g, O) and prior classifier C if it can be represented as some
|ΩC

P |× |ΩC
P |× |GP | vector ��D,f,C so that the loss of a derived classifier C′ is given

as the inner product

〈��D,f,C , �PC′〉 =
∑

i,j∈ΩC
P ,g∈GP

(��D,f,C)g
i,jP

g
i,j

of this vector with the probabilities constituting the derived classifier C′.

We can define error slightly more specifically for linear loss functions using the
vector form:

Δ��,D,f,C(C′) = maxC∗∈S(〈��D,f,C , �PC′〉 − 〈��D,f,C , �PC∗〉)

We will focus on the specific subclass of linear loss functions whose coefficients
(the coefficients of P g

i,j) can either be constant or up to dth-degree polynomials
in probabilities Pr [g(σ) = γ] and Pr [f(σg) = i ∧ C(O(σg)) = j], which can be
formalized as follows:
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Definition 9. We shall define a linear loss function with t-term coeffi-
cients of degree d as one that can be represented as

�D,f,C(C′) =
∑

i,j,g

qg
i,j(ρ)P g

i,j

or equivalently

(��D,f,C)g
i,j = qg

i,j(ρ)

where ρ denotes the set of all variables given by the probabilities Pr [g(σ) = γ]
and Pr [f(σg) = x ∧ C(O(σg)) = y] (for any γ, x, y), P g

i,j is the vector represen-
tation of C′, and each qg

i,j(·) is a dth-degree polynomial in the variables of ρ which
contains at most t monomials which themselves are bounded in [0, 1] whenever
the variables in ρ are likewise bounded.

We note that overall inaccuracy as described above is in fact a linear loss
function with (|ΩC

P |−1)-term coefficients of degree 2, as we shall shortly demon-
strate; furthermore, a wide variety of other useful loss functions are also linear
with degree-2 coefficients. Returning to the example of COMPAS from the intro-
duction, for instance, we see that the space of outcomes is a “risk score” from 1
to 10, while the space of classes is binary (either recidivating or not), so rather
than overall accuracy (which as noted above requires the spaces to be identical)
we will need another notion of loss. We exhibit three useful loss functions for this
scenario in the experimental evaluation section in the full version, all of which
will have degree-2 coefficients, which we will use to evaluate the quality of the
fair classifiers we derive from COMPAS. Returning to investigating the notion
of overall inaccuracy:

Claim 1. For a context P and for any classifier with ΩC
P = ΨP = O, the overall

inaccuracy loss function

�D,f,C(C′) = 1 − Pr [C′(O(σ)) = f(σ)]

is a linear loss function with (|ΩC
P | − 1)-term coefficients of degree 2.

Proof. The inaccuracy of a classifier, conditioning on a group g, can be expressed
as a linear function in P g

i,j if D, f, C are fixed:

Pr [f(σg) �= C′(O(σg))] = 1 − Pr [f(σg) = C′(O(σg))]

= 1 −
∑

j∈O
Pr [f(σg) = j ∧ C′(O(σg)) = j]

= 1 −
∑

i,j∈O
Pr [f(σg) = j ∧ C(O(σg)) = i ∧ C′(O(σg)) = j]

= 1 −
∑

i,j∈O
Pr [f(σg) = j ∧ C(O(σg)) = i] Pr [C′(O(σg))

= j|f(σg) = j ∧ C(O(σg)) = i]



Achieving Fair Treatment in Algorithmic Classification 609

Recalling that the output of C′ is based only on an individual’s group and the
output of C:

= 1 −
∑

i,j∈O
Pr [f(σg) = j ∧ C(O(σg)) = i] Pr [C′(O(σg)) = j|C(O(σg)) = i]

= 1 −
∑

i,j∈O
Pr [f(σg) = j ∧ C(O(σg)) = i] P g

i,j

This can be expanded into the overall inaccuracy of C′ if we sum over groups,
i.e.,

1 −
∑

i,j∈O;γ∈GP

Pr [g(σ) = γ] Pr [f(σγ) = j ∧ C(O(σγ)) = i] P γ
i,j

or, equivalently,
∑

i,j∈O;γ∈GP

Pr [g(σ) = γ]
∑

k �=j

Pr [f(σγ) = k ∧ C(O(σγ)) = i] P γ
i,j

This suggests that we can, as previously described, write this loss function as a
vector ��D,f,C over the space of probabilities P γ

i,j , in particular such that

(��D,f,C)γ
i,j = Pr [g(σ) = γ]

∑

k �=j

Pr [f(σγ) = k ∧ C(O(σγ)) = i]

Notably, each of these coefficients has O − 1 = |ΩC
P | − 1 monomials bounded

in [0, 1] which are degree 2 in the probabilities of the form Pr [g(σ) = γ] and
Pr [f(σg) = x ∧ C(O(σg)) = y], as desired. �

5 Theorem: Achieving Fair Treatment by Post-processing

We now show that it is possible to achieve fair treatment, even in non-binary
classification scenarios, by post-processing starting from a prior classification
that may be unfair. We note that, though our theorems only state existence, we
provide our concrete construction of the black-box sanitizer in the body of the
proof. Focusing first on the specific example above where we use inaccuracy as
a loss function, we show the following positive result:

Theorem 3. For any fixed outcome space Ω, any polynomial q(n), and any
ε(n) ∈ [ 1

q(n) , 1), there exists an ε(·)-black-box sanitizer B which, given any context
ensemble Π = {Pn}n∈N (such that |GPn

| = m) and any classifier sequence χ
such that ΨPn

= ΩCn

Pn
= Ω, there exists negligible ν(·) such that, with probability

1 − ν(n) over the samples it queries from τχ,Π(1n), B outputs a classifier C′′

which both satisfies ε(n)-fair treatment and has error

Δ�,D,f,C(C′′) ≤ |Ω|(ε(n) + m(|Ω| − 1)ε(n)4/32)
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with respect to the overall inaccuracy loss function

�D,f,C(C′′) = 1 − Pr [C′′(O(σ)) = f(σ)]

This is in fact implied directly by the following more general result, which
we shall prove in its stead:

Theorem 4. For any fixed outcome space Ω, any polynomial q(n), and any
ε(n) ∈ [ 1

q(n) , 1), there exists an ε(·)-black-box sanitizer B which, given any context
ensemble Π = {Pn}n∈N and any classifier sequence χ, there exists negligible ν(·)
such that, with probability 1 − ν(n) over the samples it queries from τχ,Π(1n), B
outputs a classifier C′′ which both satisfies ε(n)-fair treatment and has error

Δ�,D,f,C(C′′) ≤ |ΩCn

Pn
|(ε(n) + |GPn

|ε(n)4dt/64)

with respect to any linear loss function with t-term coefficients of degree d.

In the example above where we consider overall inaccuracy, we have (by
Claim 1) d = 2 and t = |Ω| − 1, directly implying Theorem 3. Next, we outline
the proof of Theorem 4:

Achieving Fair Treatment with Distributional Knowledge. We begin with the
simplifying assumption that the sanitizer we construct does have perfect knowl-
edge of the context Π and classifier χ = {Cn}n∈N, and we show (Claim 2)
that for each n we can use the probabilities of events in those distributions
to construct a set of linear constraints for fair treatment over the probabilities
P g

i,j = Pr [C′(O(σg)) = j|Cn(O(σg)) = i]. Then, given a loss function which is
also linear in P g

i,j , we can construct a linear program (Corollary 1) to efficiently
minimize loss subject to the constraints for fair treatment. Since, by construc-
tion, any Cn-derived C′(σ) which satisfies fair treatment will lie within the region
determined by our constraints, we have shown that it is possible to efficiently
determine the optimal fair Cn-derived classifier (with respect to any linear loss
function) in a non-black-box setting.

Black-Box Approximation. Next, we work towards discarding the assumption
of non-black-box knowledge of Π and χ. In particular, we use a Chernoff-type
bound to show (Lemma 3) that, given a sufficiently large (yet still polynomial
in n) number of labeled and classified samples from τχ,Π(1n), with very high
probability (i.e., probability 1 − ν(n)) all of the experimental probabilities rel-
evant to our linear program will be close enough to their actual counterparts
so that any solution to the linear program formulated from the experimental
probabilities will also satisfy approximate fair treatment with respect to the
actual probabilities. However, we note that the Chernoff bound will only apply
when the real probabilities of the events in question are sufficiently large; if
we are not guaranteed that this is the case, we additionally add a very small
amount of noise to the classifier C′ to deal with the possibility that events with
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very small real probability are measured to have a wildly different experimental
probability due to sampling variance. This random noise will ensure that these
events are accounted for when approximating the linear program while adding
only a minimal error to the approximation. So, combined with the previous step,
this suggests the approach that we will use to construct the final sanitizer B;
specifically, we can do as follows:

– Use a sufficiently large (yet polynomial in n) number of samples from the
training distribution τχ,Π(1n) to estimate the parameters of the linear con-
straints from the previous step, in particular using a fairness error significantly
smaller than ε(n) in order to account for variance in samples and random
noise that will be added, yet one large enough to not rule out optimal clas-
sifiers that may not be perfectly fair. Also use the samples to estimate any
distributionally dependent parameters of the loss function.

– Use standard linear programming techniques to optimize the derived loss
function over the derived constraint region in polynomial time, and take the
optimal solution as the “transformation parameters” of a derived classifier C′

(i.e., the probabilities P g
i,j).

– Output the (slightly noisy) classifier C′′ which, except with a small probability,
applies the transformation given by the above solution to the output of the
prior classifier; the rest of the time, it returns a random outcome.

If parameterized correctly, this classifier will still satisfy ε-approximate fair-
ness whenever all of the above Chernoff bounds hold; furthermore, as we subse-
quently show, the output will also not incur much loss due to estimating param-
eters and adding noise when these bounds hold.

Showing Near-Optimality. In particular, we must account both for the noise
added to the solution C′ to the linear program and for the fact that the loss
function over which B optimizes may be imprecise, as we have remarked that loss
functions such as accuracy are in general dependent on features of the context or
the classifier (which our sanitizer must estimate using samples). However, once
again, we show (Claim 5) that this can be overcome by using another Chernoff-
type bound (Lemma 4) to show that, with high probability, the experimentally
derived coefficients of the loss function are very close to the corresponding coef-
ficients of the actual loss function. Then we demonstrate that a slightly noisy
variant of the optimal Cn-derived classifier is always derivable by B when the
bounds hold, and furthermore use linearity to show that, in that case, the actual
loss of the output C′′ must not differ by much from that of the optimal Cn-
derived classifier (in particular, the possible degree of difference depends on the
degree and number of terms of the loss function’s coefficients and the number
of variables, i.e., the number of groups and outcomes possible), even when the
intermediate classifier C′ itself might differ from this classifier due to the opti-
mum over the approximate loss function being different from the optimum over
the actual loss function.
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Notation. For brevity and notational simplicity, in the body of the proof we will
abbreviate the probability Pr [E(σg)] (i.e., the probability of some event E hold-
ing for σ drawn from group g) as Prg [E(σ)], and the probability Pr [g(σ) = γ]
as Pr [γ].

Furthermore, we abbreviate the event f(σ) = i as fi, and similarly for any
classifier C abbreviate C(O(σ)) = i as Ci.

5.1 Step 1: Achieving Fair Treatment

For our first step, we prove the following result, showing that an optimal derived
classifier can always be found efficiently given “perfect” knowledge of a context
and a prior classifier:

Claim 2. Let C be an arbitrary classifier over context P = (D, f, g, O). Then
there exists a set of polynomially many (in |ΨP |, |GP |, and |ΩC

P |) satisfiable
linear constraints in the variables P g

i,j = Prg [C′(σ) = j|C(σ) = i] that define the
set of C-derived classifiers C′ which satisfy ε-fair treatment with respect to P.

Corollary 1. Let C be an arbitrary classifier over context P = (D, f, g, O), and
let �D,f,C be a loss function which is linear over the probabilities P g

i,j as defined
above. Then the C-derived C′ which minimizes �D,f,C(·) while satisfying ε-fair
treatment with respect to P can be found efficiently (i.e., in time polynomial in
|ΨP |, |GP |, and |ΩC

P |)9.
The corollary will follow immediately from Claim 2 by the efficiency of solv-

ing linear programs (that is, the well-known fact that a linear program with a
polynomial number of variables and constraints may be solved in polynomial
time). We now prove Claim 2:

Proof. Assume we have a discrete classifier C that classifies individuals from a
context P = (D, f, g, O), and we wish to produce C′ that satisfies ε-fair treat-
ment with respect to P. Consider the C-derived classifier defined by the set of
|GP ||ΩC

P |2 variables

P g
i,j = Prg

[C′
j |Ci

]

for i, j ∈ ΩC
P and g ∈ GP .

Next, we directly translate the definition of fair treatment into a set of con-
straints, which represents the space of all possible derived classifiers satisfying
ε-fair treatment:

∀i, j ∈ ΩC
P ,∀g ∈ GP : P g

i,j ∈ [0, 1]

∀i ∈ ΩC
P ,∀g ∈ GP :

∑

j∈ΩC
P

P g
i,j = 1

∀j ∈ ΩC
P ,∀k ∈ ΨP ,∀X,Y ∈ GP : PrX

[C′
j |fk

] ≤ eεPrY

[C′
j |fk

]

9 If �D,f,C(·) is not linear, it is of course findable, but not necessarily efficiently, as we
no longer have a linear program.
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Notice, however, that:

Prg

[C′
j |fk

]
=

1
Prg [fk]

(
Prg

[
fk ∧ C′

j

])
=

1
Prg [fk]

⎛

⎝
∑

i∈ΩC
P

Prg

[
fk ∧ C′

j ∧ Ci

]

⎞

⎠

As observed earlier (see the proof of Claim 1), because we assign outcomes in C′

based only on C and g(σ), it must be the case that Prg

[C′
j |Ci

]
= Prg

[C′
j |Ci ∧ fk

]
,

or, expanding using conditional probability,

Prg

[C′
j ∧ Ci

]

Prg [Ci]
=

Prg

[
fk ∧ C′

j ∧ Ci

]

Prg [fk ∧ Ci]

which implies

Prg

[
fk ∧ C′

j ∧ Ci

]
=

Prg [fk ∧ Ci] Prg

[C′
j ∧ Ci

]

Prg [Ci]

= Prg [fk ∧ Ci] Prg

[C′
j |Ci

]
= Prg [fk ∧ Ci] P

g
i,j

So our conditions of the form PrX

[C′
j |fk

] ≤ eεPrY

[C′
j |fk

]
can be rewritten (after

substituting and multiplying through) as

PrY [fk]

⎛

⎝
∑

i∈ΩC
P

PrX [fk ∧ Ci] PX
i,j

⎞

⎠ ≤ eεPrX [fk]

⎛

⎝
∑

i∈ΩC
P

PrY [fk ∧ Ci] PY
i,j

⎞

⎠

We can also reformat the second set of conditions into inequality constraints
by selecting j∗ ∈ ΩC

P , replacing each P g
i,j∗ with 1−∑

j∈ΩC
P\j∗ P g

i,j , and requiring
∑

j∈ΩC
P\j∗ P g

i,j ≤ 1. Then our final set of constraints becomes:

∀i ∈ ΩC
P , ∀j ∈ ΩC

P \ j∗, ∀g ∈ GP : P g
i,j ≥ 0, P g

i,j ≤ 1

∀i ∈ ΩC
P , ∀g ∈ GP :

∑

j∈ΩC
P \j∗

P g
i,j ≤ 1

∀j ∈ ΩC
P \ j∗, ∀k ∈ ΨP , ∀X, Y ∈ GP :

PrY [fk]

⎛

⎝
∑

i∈ΩC
P

PrX [fk ∧ Ci] P
X
i,j

⎞

⎠ ≤ eεPrX [fk]

⎛

⎝
∑

i∈ΩC
P

PrY [fk ∧ Ci] P
Y
i,j

⎞

⎠

∀k ∈ ΨP , ∀X, Y ∈ GP :

PrY [fk]

⎛

⎝
∑

i∈ΩC
P

PrX [fk ∧ Ci]

⎛

⎝1 −
∑

j∈ΩC
P \j∗

P X
i,j

⎞

⎠

⎞

⎠

≤ eεPrX [fk]

⎛

⎝
∑

i∈ΩC
P

PrY [fk ∧ Ci]

⎛

⎝1 −
∑

j∈ΩC
P \j∗

P Y
i,j

⎞

⎠

⎞

⎠

which is a system of 2|GP ||ΩC
P |2+|GP |2|ΩC

P ||ΨP | equations in |GP ||ΩC
P |(|ΩC

P |−1)
variables.
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Furthermore, we know that this system necessarily has a solution on its
domain, since taking P g

i,j = 1/|ΩC
P | for each i, j, and g corresponds to a classifier

C′ where all individuals are offered a uniform distribution over outcomes; this
classifier trivially satisfies fair treatment (and indeed, one can easily verify that
it satisfies the above conditions for any C and P). �

Thus, finding assignments for Pi,j in order to construct a classifier C′ satis-
fying fair treatment with respect to C becomes a linear optimization problem—
that is, to find an assignment that satisfies the sets of conditions above while
minimizing some linear loss function.

5.2 Step 2: Approximate Fairness from Experimental Probabilities

Of course, we have only established so far that C′ constructed in such a manner
satisfies fair treatment if we already know the exact probabilities Prg [fk] and
Prg [fk ∧ Ci] for each group g. This of course requires non-black-box knowledge
of P and C; however, we will now show by a Chernoff bound that, assuming B is
given experimental probabilities Prg [fk] and Prg [fk ∧ Ci] from a sufficiently large
“training set” of individuals randomly drawn from the distribution τχ,Π(1n), C′

constructed according to the above linear program, and with a small amount
of random noise added to prevent interference due to experimental variance in
observing extremely rare events, will still satisfy ε-approximate fair treatment
with overwhelming probability. Specifically, it can be proven that the probability
of C′ not satisfying approximate fair treatment is extremely small given a suffi-
ciently large number of random samples (i.e., a number inversely polynomial in
the desired fair treatment error ε).

To formalize what we mean by adding “a small amount of random noise”,
given some derived classifier C′ (which we recall can be expressed as an |ΩC

P | ×
|ΩC

P | perturbation matrix), and letting (1)m×n be an m × n matrix of all ones,
we shall let

Qr(C′) � r

|ΩC
P | (1)|ΩC

P |×|ΩC
P | + (1 − r)C′

be the derived classifier that with probability r outputs a random outcome and
otherwise outputs an outcome according to the classifier C′. (Hence, Qr(C′)(σ)
is identical to C′(σ) with probability 1 − r.)

We will herein make use of the following well-known bound (for ease of nota-
tion, we denote exp(x) = ex):

Lemma 1. (Hoeffding Bound.) Let X1, . . . , XN be independent binary random
variables (i.e., Xi ∈ {0, 1}). Let m be the expected value of their average and X∗

their actual average. Then, for any δ ∈ (0, 1):

Pr [|X∗ − m| ≥ δ] ≤ 2 exp
(−2δ2N

)
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In particular, when δ and m are fixed, this probability is inversely exponential
(i.e., negligible) in the number of random variables N . To take advantage of this,
consider our scenario where we have some classifier C trained using some number
of individuals drawn (independently) from the distribution from the distribution
τχ,Π(1n), and we wish to measure the probability of some event E1 occurring
conditioned on a subgroup g. Notationally, we will henceforth denote by Ex[E]
the experimental probability of an event E over a set of random samples—i.e.,
letting S be the set of samples and 1E(s) the indicator variable which is 1 if E
is true for a sample s and 0 if not:

1
|S|

∑

s∈S
1E(s)

We will denote by Exg[E] the experimental probability of E conditioned on a
group g, or Ex[E ∧ g]/Ex[g]. Then we prove the following lemma:

Lemma 2. Given a distribution D, event E, and group g, then, letting Ex denote
the experimental probability as derived from N independent samples from the
distribution τχ,Π(1n), for any δ ∈ (0, 1), with probability at least

1 − 4 exp

(

−2
(

δPr [g]
3

)2

N

)

over the samples, the following two conditions hold:

1. |Exg[E] − Prg [E] | < δ
2. |Ex[g] − Pr [g] | < δ.

Specifically, this states that the probability of the experimental and real
probabilities diverging for some fixed event E is inverse-exponential in the size
of C’s training set.

Proof. First we prove the following claim:

Claim 3. Given positive real numbers a, b, c, d, ε such that |a−b| < ε and |c−d| <
ε, then

∣
∣
∣
∣
a

c
− b

d

∣
∣
∣
∣ <

(a + c)ε
c(c − ε)

Proof. The following three facts suffice:
∣
∣
∣
∣
a

c
− b

d

∣
∣
∣
∣ =

1
cd

|ad − bc|
1
cd

<
1

c(c − ε)
|ad − bc| < |a(c + ε) − (a − ε)c| = ε(a + c)

�
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So, as long as |Ex[g] − Pr [g] | < δ and |Ex[E ∧ g] − Pr [E ∧ g] | < δ, then

|Exg[E] − Prg [E] | =
∣
∣
∣
∣
Pr [E ∧ g]

Pr [g]
− Ex[E ∧ g]

Ex[g]

∣
∣
∣
∣ <

(Pr [E ∧ g] + Pr [g])δ
Pr [g] (Pr [g] − δ)

which means that, by Lemma 1,

Pr
[

|Exg[E] − Prg [E] | ≥ (Pr [E ∧ g] + Pr [g])δ
Pr [g] (Pr [g] − δ)

]

≤ Pr [|Ex[g] − Pr [g] | ≥ δ] + Pr [|Ex[E ∧ g] − Pr [E ∧ g] | ≥ δ]
≤ 4 exp

(−2δ2N
)

This follows because, for each of the (unconditioned) probabilities in question,
we can use a Chernoff bound with N variables X1, . . . , Xn equal to 1 if the
respective event occurs for a sampled individual and 0 otherwise; then X∗ is
equal to the experimental probability of the event and m (its expectation) is by
definition equal to the actual probability.

Finally, let

δ′ =
(Pr [E ∧ g] + Pr [g])δ

Pr [g] (Pr [g] − δ)
=

(Prg [E] + 1)δ
Pr [g] − δ

Then

δ′(Pr [g] − δ) = (Prg [E] + 1)δ
δ′Pr [g] = (Prg [E] + 1 + δ′)δ

δ′Pr [g]
Prg [E] + 1 + δ′ = δ

And so

Pr [|Exg[E] − Prg [E] | ≥ δ′] ≤ 4 exp
(−2δ2N

)

= 4 exp

(

−2
(

δ′Pr [g]
Prg [E] + 1 + δ′

)2

N

)

≤ 4 exp

(

−2
(

δ′Pr [g]
3

)2

N

)

since δ′ < 1 by assumption and Prg [E] ≤ 1 trivially. Furthermore, when we
show that |Exg[E] − Prg [E] | < δ′, we do so by showing that

|Pr [g] − Ex[g]| ≤ [δ =]
δ′Pr [g]

Prg [E] + 1 + δ′ ≤ δ′

which completes the other part of the argument. �
Now we can prove our key lemmas using this consequence.

Lemma 3. Given context P = (D, f, g, O) and ε ∈ (0, 1), let C′ be a C-derived
classifier satisfying a modification of the linear constraints in Corollary 1 for
(ε2/4)-fair treatment where the coefficients are determined by the experimen-
tal (rather than actual) probabilities of the respective events given N random
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samples (O(σ), f(σ), C(σ), g(σ)) from the distribution τχ,Π(1n). Then the classi-
fier Q2ε|ΩC

P |/3(C′) satisfies ε-approximate fair treatment with respect to P except
with probability negligible in N over the selection of samples—in particular, with
probability 1 − O(e(−cε4N)) for some constant c dependent only on D.

Proof. Let c = 2
1442 ming Pr [g]2. Notice that c is not dependent on n or, for that

matter, on anything besides the (fixed) distribution D.
First let us consider the classifier C′ before noise is added. Because C′ is

derived from C according to Corollary 1, we have, by the respective constraints
for fair treatment for each j ∈ ΩC

P , X,Y ∈ GP , and k ∈ ΨP :

μ

⎛

⎝ExY [fk]

⎛

⎝
∑

i∈ΩC
P

ExX [fk ∧ Ci]PX
i,j

⎞

⎠ ,ExX [fk]

⎛

⎝
∑

i∈ΩC
P

ExY [fk ∧ Ci]PY
i,j

⎞

⎠

⎞

⎠ ≤ ε2

4

which, since both sides are at most 1 and thus can differ additively by at most
1 − e−ε2/4 ≤ ε2/4, implies:
∣
∣
∣
∣
∣
∣
ExY [fk]

⎛

⎝
∑

i∈ΩC
P

ExX [fk ∧ Ci]PX
i,j

⎞

⎠ − ExX [fk]

⎛

⎝
∑

i∈ΩC
P

ExY [fk ∧ Ci]PY
i,j

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ ε2

4

where PX
i,j and PY

i,j are derived from solving the constraints. Applying Lemma
2 (1) once for each k ∈ ΨP to the event fk and group Y (with δ = ε2/48) then
gives us that
∣∣∣∣∣∣
PrY [fk]

⎛

⎝
∑

i∈ΩC
P

ExX [fk ∧ Ci]P
X
i,j

⎞

⎠ − ExX [fk]

⎛

⎝
∑

i∈ΩC
P

ExY [fk ∧ Ci]P
Y
i,j

⎞

⎠

∣∣∣∣∣∣
≤ ε2

4
+

ε2

48

except with probability no greater than

4 exp

(

−2
(

(ε2/48)Pr [Y ]
3

)2

N

)

≤ 4 exp

(

−2
(

ε2(ming Pr [g])
144

)2

N

)

= 4 exp
(

−
(

2ε4(ming Pr [g])2

1442

)

N

)

= 4(exp(−cε4N))

for each choice of k, or, over all of the |ΨP | choices of k, no greater than
4|ΨP |(exp(−cε4N)) by the union bound. Symmetrically for each event fk and
group X:
∣∣∣∣∣∣
PrY [fk]

⎛

⎝
∑

i∈ΩC
P

ExX [fk ∧ Ci]P
X
i,j

⎞

⎠ − PrX [fk]

⎛

⎝
∑

i∈ΩC
P

ExY [fk ∧ Ci]P
Y
i,j

⎞

⎠

∣∣∣∣∣∣
≤ ε2

4
+

ε2

24

except with the same failure probability. We then do the same for the events
fk ∧Ci (for each of the |ΨP | choices of k) conditioned on X and Y to obtain that

∣∣∣∣∣∣
PrY [fk]

⎛

⎝
∑

i∈ΩC
P

PrX [fk ∧ Ci] P
X
i,j

⎞

⎠ − PrX [fk]

⎛

⎝
∑

i∈ΩC
P

PrY [fk ∧ Ci] P
Y
i,j

⎞

⎠

∣∣∣∣∣∣

≤ ε2

4
+

ε2

12
=

ε2

3
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except with probability 16(exp(−cε4N)) for each choice of k (or, over all choices,
16|ΨP |(exp(−cε4N))). By the union bound over all classes k ∈ ΨP and over all
(fewer than |GP |2) pairs of groups X and Y , the total failure probability from
applying these bounds to all constraints is at most 16|GP |2|ΨP |(exp(−cε4N)) =
O(exp(−cε4N)), which is of course negligible in the number of samples N . So,
with probability at least 1 − O(exp(−cε4N)) over the drawn samples, all of the
above constraints will hold.

This is not quite identical to the statement

μ
(
PrX

[C′
j |fk

]
,PrY

[C′
j |fk

]) ≤ ε

(i.e., fair treatment for C′); particularly, if the probability of some outcome is
very small, then a bound on the additive distance between real and experimental
probabilities has no impact on whether the multiplicative distance is bounded. To
overcome this issue, we will consider the classifier Q2|ΩC

P |ε/3(C′) that, as defined
above, runs C′ and outputs the result except with probability 2|ΩC

P |ε/3, in which
case it will pick an output uniformly at random. This guarantees that the prob-
ability of any outcome occurring (even conditioned on any group) must be at
least 2ε/3; hence, except with the aforementioned failure probability, the multi-
plicative distance between the real and experimental probabilities for any such
conditional outcome can be at most either

ln
(

2ε/3 + ε2/3
2ε/3

)

= ln (1 + ε/2) ≤ ε

or

ln
(

2ε/3
2ε/3 − ε2/3

)

= ln
(

1
1 − ε/2

)

≤ ε

for all ε < 1. �

Remark. While it may seem counterintuitive for the classifier output by our
sanitizer to output a uniformly random class with small probability, in fact
this “random noise” is only necessary due to the possibility of arbitrarily small
probabilities Prg [fk ∧ Ci] occurring in the distribution D; specifically, if some
such event occurs with small enough probability, it would likely be measured
to have probability 0, potentially causing an unbounded multiplicative fairness
error in the derived classifier. If there instead exists a constant lower bound for
these probabilities (or even, once parameterized, an asymptotic lower bound of
ε(n)), then we can directly obtain the result above without having to add noise
to the outcome of the derived classifier.

Importantly, we can also apply Lemma 3 in reverse, transforming from the
exact conditions to the modified conditions with experimental probabilities,
under precisely the same conditions. This will be useful to demonstrate optimal-
ity (i.e., that the optimal fair classifier is derivable by B as it is overwhelmingly
likely to satisfy approximate versions of the constraints) in the following section.
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Lemma 4. Given context P = (D, f, g, O), let C′ be a C-derived classifier sat-
isfying the conditions in Corollary 1 for 0-fair treatment with respect to P.
Then, for any ε ∈ (0, 1), the classifier Qε2|ΩC

P |/4(C′), with at least probability

1−O(e(−cε8N)) (for some constant c dependent only on D) over N random sam-
ples (O(σ), f(σ), C(σ), g(σ)) from the distribution τχ,Π(1n), satisfies the modifi-
cation of the linear constraints in Corollary 1 for (ε2/4)-fair treatment where the
coefficients are determined by the experimental (rather than actual) probabilities
of the respective events given the random samples.

Proof. We proceed very similarly to Lemma 3, except changing the error param-
eter ε and reversing Ex[. . .] with Pr [. . .]. Since we know that C′ satisfies perfect
fair treatment, we have, this time with respect to the real probabilities:
∣
∣
∣
∣
∣
∣
PrY [fk]

⎛

⎝
∑

i∈ΩC
P

PrX [fk ∧ Ci] PX
i,j

⎞

⎠ − PrX [fk]

⎛

⎝
∑

i∈ΩC
P

PrY [fk ∧ Ci] PY
i,j

⎞

⎠

∣
∣
∣
∣
∣
∣
= 0

Next we apply Lemma 2 (1) with δ = ε4/128 to all events fk and fk ∧ Ci for
groups X and Y just as in Lemma 3, obtaining that

∣
∣
∣
∣
∣
∣
ExY [fk]

⎛

⎝
∑

i∈ΩC
P

ExX [fk ∧ Ci]PX
i,j

⎞

⎠ − ExX [fk]

⎛

⎝
∑

i∈ΩC
P

ExY [fk ∧ Ci]PY
i,j

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ 4
(

ε4

128

)

=
ε4

32

except with probability O(e(−cε8N)) over the N samples taken (for some small
constant C dependent only on D). To convert this into multiplicative distance, we
use the classifier Qε2|ΩC

P |/4(C′) so that the probability of any outcome is at least
ε2/4. Then, as long as the conditions of Lemma 2 are true, the multiplicative
distance between the real and experimental probabilities for any such conditional
outcome can be at most either

ln
(

ε2/4 + ε4/32
ε2/4

)

= ln
(
1 + ε2/8

) ≤ ε2/4

or

ln
(

ε2/4
ε2/4 − ε4/32

)

= ln
(

1
1 − ε2/8

)

≤ ε2/4

for all ε < 1. �

5.3 Step 3: Optimality over Derived Classifiers

Now we can construct an ε(·)-black box sanitizer for any inverse polynomial
ε(n) using Corollary 1 and Lemma 3. In particular, given some context ensem-
ble Π = {(D, f, g, On)}n∈N and a sequence of classifiers χ = {Cn}n∈N, if, for
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any n, we use Corollary 1 on experimental probabilities (given enough samples
from τχ,Π(1n)) to produce a Cn-derived classifier which is fair with respect to
those probabilities, Lemma 3 allows us to assert that a slightly noisy version
of the resulting classifier is still approximately fair, even though we only have
black-box access to the training data set τχ,Π(1n) (whereas notably our orig-
inal formulation in Corollary 1 requires non-black-box access to determine the
exact probabilities Prg [fk] and Prg [fk ∧ Ci] for the optimization constraints).
We propose the following construction and subsequently prove its correctness
as a black-box sanitizer, amounting to the first part (existence) of the proof of
Theorem 4:

Constructing the Black-Box Sanitizer. Consider the following algorithm for
Bτχ,Π

on input 1n, where we assume some fairness parameter ε(n) ≥ 1
q(n) for

polynomial q(·) and some loss function �D,f,C(·) which is linear in the probabili-
ties P g

i,j but may depend on probabilities observed in D, f , and C:

– (Estimating constraints by sampling.) Use queries to τχ,Π(1n) to produce
(for some ε′ > 0 and polynomial p(n) = Ω(q(n)8+ε′

)) N = p(n) samples
(On(σ′), f(σ′), Cn(On(σ′)), g(σ′)) for σ′ ← D, so that the failure probabilities
described in both Lemmas 3 and 4 are negligible in n. (In particular, this
failure probability will be at most O(e−cp(n)/q(n)8) = O(e−cnε′

), which is
negligible since c depends only on the fixed distribution D)10.

– (Estimating the loss function.) Furthermore, use the experimental probabili-
ties of the samples to estimate any distributionally-dependent parameters of
the loss function �. Call the approximate loss function �′(·).

– (Solving the derived constraints.) Use Corollary 1 to produce probabilities P g
i,j

for a Cn-derived classifier which minimizes �′(·) with respect to the constraints
for (ε(n)2/4)-fair treatment generated from the experimental probabilities
Exg[fk] and Exg[fk ∧ Ci] over the N samples.

– (Adding noise and producing the derived classifier.) Output the Cn-derived
classifier C′′ = Q2ε(n)|ΩCn

Pn
|/3(C′) (which with probability 2ε(n)|ΩCn

Pn
|/3 out-

puts a uniformly random element of ΩCn

Pn
, and which otherwise uses the prob-

abilities P g
i,j found from the optimization to classify σ according to Cn(On(σ))

and σ’s group g(σ)—i.e., draws from the distribution {j with pr. P g
Cn(σ),j}).

Claim 4. For any ε(n) ≥ 1
q(n) for polynomial q(·), the above construction of

B(·) is an ε(·)-black-box sanitizer.

Proof. By Lemma 3, the classifier C′′ = Q2ε(n)|ΩCn
Pn

|/3(C′) output by B satisfies

ε(n)-fair treatment with probability at least 1 − ν(n) (where ν(·) is negligible)
for any given n.

10 We use ω(q(n)8) samples so that we can later assert that Lemma 4 holds with all-
but-negligible probability in the optimality step. For the current step, only ω(q(n)4)
samples are necessary.
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Furthermore, we note that the algorithm for B is efficient; for any context
ensemble Π and classifier sequence χ such that |GPn

| ≤ m, |ΨPn
| ≤ m, and

|ΩCn

Pn
| ≤ m, it runs in time polynomial in m and polynomial in n. The former

bound comes from the running time of the linear program in Corollary 1, and
the latter bound comes from Lemma 3 and the fact that we make N = p(n)
oracle queries to gather “training data”. Hence B(·) must be an ε(·)-black-box
sanitizer. �

Notably, the running time of this algorithm is proportional to 1
ε(n)8 , which

is natural in that, to derive a more accurate approximation of the real probabil-
ities with training data, more samples are required. (In fact, as we shall show,
decreasing ε and/or respectively increasing the number of samples will reduce
both the fairness and optimality errors.)

Finally, we remark on the loss function �D,f,C(·) and the optimality of our
construction. Of course, the entries of ��D,f,C—that is, the probabilities Pr [g] and
Prg [f(σ) = k ∧ C(σ) = i]—are in general unknown to the black-box sanitizer B,
and this is why our construction uses its training samples to also calculate the
experimental probabilities needed to approximate the loss function. Now we will
show that using the experimentally derived loss function (naturally) increases
the error bound of C′′, but only slightly (albeit dependent on the degree and
number of terms of the coefficients of P g

i,j in �). The following claim essentially
states that, as the optimum of a linear loss function changes at most minimally
if the coefficients change minimally, the loss of the classifier output by B over
the predicted loss function will not be much worse than the loss over the correct
loss function. This fact, combined with the fact that (a slightly noisy version of)
the optimal perfectly fair classifier can always be derived by B if it knows the
correct loss function, suffices to show that the classifier actually derived by B
will not be much worse than the optimal fair classifier, hence proving the final
part of Theorem 4.

Claim 5. With probability at least 1−ν(n) (for negligible ν(·)) over B’s queries,
the C′′ output by Bτχ,Π

(1n) constructed above has error

Δ�,D,f,C(C′′) ≤ |ΩCn

Pn
|(ε(n) + |GPn

|ε(n)4dt/64)

with respect to any linear loss function with t-term coefficients of degree d given
by �D,f,C(C′′).

Proof. Herein we shall for consistency refer to the loss function optimized by
B by deriving from the experimental probabilities as �′(·), and the “true” loss
function as �(·).

Let C∗ be the optimal Cn-derived classifier satisfying perfect fair treatment,
let C∗∗ � Qε(n)2|ΩCn

Pn
|/4(C∗) be a noisy version of C∗, and, as in the construction

of B, let C′ be the classifier that optimizes �′ over the experimentally derived
constraints and C′′ = Q2ε(n)|ΩCn

Pn
|/3(C′) the noisy version of C′. Towards bounding

the quantity �(C′′) − �(C∗) and thus the error, we bound the difference in loss
between successive pairs of classifiers:
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– Beginning with C′′, the actual output, we notice that the difference in loss
between C′ and C′′ must be small because C′′ is by definition identical to C′

except with small probability.
– Next, we can bound the difference in loss between C∗∗ and C′ by noticing

that Lemma 4 provides that C∗∗ with high probability satisfies (ε2/4)-fair
treatment with respect to the experimentally derived constraints and can
thus be derived by B. So this means that B must find a classifier which is as
good as C∗∗ or better with respect to �′; by analyzing the similarity between
� and �′ we can also conclude that C∗∗ is not much better than C′ in terms of
the true loss function �.

– Finally, the difference in loss between C∗ and C∗∗ is once again bounded by
the fact that C∗∗ is nearly identical to C∗.

Formally, we present the following subclaims:

Subclaim 1. �(C′′) − �(C′) ≤ 2ε(n)|ΩCn

Pn
|/3 with probability 1.

Proof. C′′ is identical to C′ except with probability 2ε(n)|ΩCn

Pn
|/3 (i.e., no prob-

ability Pi,j can differ between the two by more than that amount). As such,
since the loss function � is bounded in [0, 1] by assumption and linear in the
probabilities P g

i,j , the subclaim follows by linearity. Formally:

�(Qr(C′)) = �

(
r

|ΩC
P | (1)|ΩC

P |×|ΩC
P | + (1 − r)C′

)

= r�

(
1

|ΩC
P | (1)|ΩC

P |×|ΩC
P |

)

+ (1 − r)�(C′)

and so:

�(Qr(C′)) − �(C′) = r�

(
1

|ΩC
P | (1)|ΩC

P |×|ΩC
P |

)

− r�(C′) ≤ r(1 − 0) = r

�
Subclaim 2. �(C′) − �(C∗∗) ≤ |ΩCn

Pn
||GPn

|dtε(n)4/64 with probability at least
1 − ν(n) (for negligible ν(·)) over B’s queries.

Proof. We show this through three lemmas.
First, it is important to observe how far the experimental loss function �′

might be from the real function �. Denote by �g
i,j the entry of �� corresponding

to the coefficient of P g
i,j (resp. for ��′). Then:

Lemma 5. With probability 1 − ν′(n) (for negligible ν′(·)), if � is a linear loss
function with t-term coefficients of degree d, then for any i, j, g it is true that∣
∣�′g

i,j − �g
i,j

∣
∣ ≤ dtε(n)4/128.
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Proof. By Lemma 2 for each event fk ∧ Ci and each group g with δ = ε(n)4/128,
we have |Exg[fk ∧Ci]−Prg [fk ∧ Ci] | < ε(n)4/128 and |Pr [g]−Ex[g]| < ε(n)4/128
for any i, k, g except with probability ν′(n) = O(e(−cε(n)8p(n))) (which is negligi-
ble in n as B takes p(n) = Ω(ε(n)−(8+ε′)) samples for ε′ > 0).

As we consider loss functions whose coefficients are polynomial in the above
probabilities, we can note the following identity to bound the error between the
coefficients in � and �′: if we have x1, . . . , xn, x′

1, . . . , x
′
n ∈ [0, 1] and |xi −x′

i| ≤ εi

for each i, then11:
∣
∣
∣
∣
∣

∏

i

xi −
∏

i

x′
i

∣
∣
∣
∣
∣
≤

∑

i

εi

So, given some coefficient �g
i,j in the loss function which is a polynomial

in the respective probabilities, the respective additive error between the real
and experimental value of any degree-d monomial in that coefficient (which is
bounded in [0, 1], i.e., does not contain a constant term greater than 1) will be at
most dε(n)4/128; this can be seen by taking n = d in the above identity, letting
xi represent a real probability, x′

i the corresponding experimental probability,
and noting that as shown above εi ≤ ε(n)4/128 for each i. In turn, the coeffi-
cient itself, or the sum of t of these monomials, cannot have error greater than
dtε(n)4/128 (adding the error bounds from each individual monomial). So, for
any variable P g

i,j , except with the aforementioned negligible probability:

∣
∣�′g

i,j − �g
i,j

∣
∣ ≤ dtε(n)4/128

as desired. �
Next, we compare the value of the experimental loss function �′ between C∗∗

and C′, which is easily done since B optimizes C′ with respect to �′ over a region
that we can show includes C∗∗:

Lemma 6. �′(C′) ≤ �′(C∗∗) with probability at least 1 − ν′′(n) (for negligible
ν′′(·)) over B’s queries.

Proof. By Lemma 4, except with some negligible probability ν′′(n) (again negli-
gible since B takes p(n) = ω(ε(n)−8) samples), C∗∗ = Qε(n)2|ΩCn

Pn
|/4(C∗) satisfies

ε(n)2/4-fair treatment with respect to the experimental probabilities derived by

11 Proof: If x1x2 > x′
1x

′
2, then:

|x1x2 − x′
1x

′
2| = x1x2 − x′

1x
′
2 < x1(x

′
2 + ε2) − (x1 − ε1)x

′
2 = ε2x1 + ε1x

′
2 ≤ ε1 + ε2

and otherwise:

|x1x2 − x′
1x

′
2| = x′

1x
′
2 − x1x2 < (x1 + ε1)x

′
2 − x1(x

′
2 − ε2) = ε1x

′
2 + ε2x1 ≤ ε1 + ε2

Applying the same to x1x2 and x3 gives |(x1x2)x3 − (x′
1x

′
2)x

′
3| ≤ (ε1 + ε2) + ε3, and

iteratively repeating to include all i ultimately gives the conclusion.
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B, since C∗ satisfies perfect (errorless) fair treatment with respect to the actual
probabilities. However, recall that the C′ recovered by B can by construction
(Corollary 1) lie anywhere within the set of derived classifiers satisfying ε(n)2/4-
fair treatment with respect to the same derived experimental probabilities. Since
B optimizes �′ over that region, we know that, with all but the above negligible
probability:

�′(C′) ≤ �′(C∗∗)

as desired, because, since C∗∗ is always findable by B, B can always find either
C∗∗ itself or something with a smaller value of �′. �
Finally, let k � |ΩCn

Pn
| and recall the L1-norm ||�a −�b||1 =

∑
i(ai − bi) between

two vectors. Henceforth let (PC′)g
i,j denote the entry of the vector form �PC′

corresponding to P g
i,j for C′, and respectively for C∗∗. Towards relating �′(C′) −

�′(C∗∗) to �(C′)− �(C∗∗) (the quantity we wish to bound), we show the following:

Lemma 7. ||C′ − C∗∗||1 ≤ 2k|GPn
|.

Proof. Consider the |GPn
|k(k − 1)-dimensional space defined by the variables

P g
i,j , in which we have assumed the loss functions � and �′ to be linear.12 Consider

moving between the points in this space which represent C∗∗ and C′. Each of the
k sets of coordinates (P g

i,1, . . . , P
g
i,k−1) must sum to at most 1, because each set

represents a probability distribution; hence, considering that moving from C∗∗

and C′ may decrease some number of coordinates in each such set by up to a
total of 1 and correspondingly add up to a total of 1, the L1-norm between these
two points is bounded by:

||C′ − C∗∗||1 =
∑

i,j,g

|(PC′)g
i,j − (PC∗∗)g

i,j | ≤
∑

i,g

|1 + 1| = 2k|GPn
|

This completes the argument. �
Since � and �′ are linear, we know that

�′(C′) − �′(C∗∗) = 〈��′, �PC′〉 − 〈��′, �PC∗∗〉 = 〈��′, �PC′ − �PC∗∗〉
=

∑

i,j,g

�′g
i,j((PC′)g

i,j − (PC∗∗)g
i,j)

Also, using Lemma 5’s bound on the difference between entries of � and �′:

�(C′) − �(C∗∗) =
∑

i,j,g

�g
i,j((PC′)g

i,j − (PC∗∗)g
i,j)

≤
∑

i,j,g

(
�′g
i,j +

dtε(n)4

128

)
((PC′)g

i,j − (PC∗∗)g
i,j)

= �′(C′) − �′(C∗∗) +
dtε(n)4

128

∑

i,j,g

((PC′)g
i,j − (PC∗∗)g

i,j) ≤ 0 +
dtε(n)4

128
||C′ − C∗∗||1

12 While there are 2k2 variables in total, notice that P g
i,k is fully determined by P g

i,1

through P g
i,k−1.
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where the final step follows because, by Lemma 6, (except with negligible prob-
ability) �′(C′) ≤ �′(C∗∗), or �′(C′) − �′(C∗∗) ≤ 0. So, using Lemma 7’s bound of
2k|GPn

| on the L1-norm, we obtain that

�(C′) − �(C∗∗) ≤ 2k|GPn
|(dtε(n)4/128)

= k|GPn
|dtε(n)4/64 = |ΩCn

Pn
||GPn

|dtε(n)4/64

as desired, with all but negligible probability ν(n) � ν′(n) + ν′′(n). �
Subclaim 3. �(C∗∗) − �(C∗) ≤ ε(n)2|ΩCn

Pn
|/4 with probability 1.

Proof. C∗∗ = Qε(n)2|ΩCn
Pn

|/4(C∗), so this follows by linearity, similarly to Sub-
claim 1. �

So, adding the differences from the above subclaims (and recalling ε(n) ≤ 1),
the error of C′′ is at most:

�(C′′) − �(C∗) = (�(C′′) − �(C′)) + (�(C′) − �(C∗∗)) + (�(C∗∗) − �(C∗))
≤ 2ε(n)|ΩCn

Pn
|/3 + |ΩCn

Pn
||GPn

|dtε(n)4/64 + ε(n)2|ΩCn

Pn
|/4

≤ |ΩCn

Pn
|(ε(n) + |GPn

|ε(n)4dt/64)

with probability at least 1 − ν(n) (as given in Subclaim 2) over B’s queries, as
desired. �

Claims 4 and 5 taken together suffice to prove Theorem 4.
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Abstract. The notion of Functional Encryption (FE) has recently
emerged as a strong primitive with several exciting applications. In this
work, we initiate the study of the following question: Can existing public
key encryption schemes be “upgraded” to Functional Encryption schemes
without changing their public keys or the encryption algorithm? We call
a public-key encryption scheme with this property to be FE-compatible.
Indeed, assuming ideal obfuscation, it is easy to see that every CCA-
secure public-key encryption scheme is FE-compatible. Despite the recent
success in using indistinguishability obfuscation to replace ideal obfus-
cation for many applications, we show that this phenomenon most likely
will not apply here. We show that assuming fully homomorphic encryp-
tion and the learning with errors (LWE) assumption, there exists a CCA-
secure encryption scheme that is provably not FE-compatible. We also
show that a large class of natural CCA-secure encryption schemes proven
secure in the random oracle model are not FE-compatible in the random
oracle model.
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Nevertheless, we identify a key structure that, if present, is suffi-
cient to provide FE-compatibility. Specifically, we show that assum-
ing sub-exponentially secure iO and sub-exponentially secure one way
functions, there exists a class of public key encryption schemes which
we call Special-CCA secure encryption schemes that are in fact, FE-
compatible. In particular, each of the following popular CCA secure
encryption schemes (some of which existed even before the notion of
FE was introduced) fall into the class of Special-CCA secure encryption
schemes and are thus FE-compatible:
1. [CHK04] when instantiated with the IBE scheme of [BB04].
2. [CHK04] when instantiated with any Hierarchical IBE scheme.
3. [PW08] when instantiated with any Lossy Trapdoor Function.

1 Introduction

Functional Encryption (FE) [SW05,SW08] is a powerful framework that signif-
icantly expands the scope of public-key encryption. In an ordinary public-key
encryption scheme, a user Alice first chooses a public key PK and a correspond-
ing secret key SK using a (master) setup algorithm Setup. Then, any other user
Bob can use Alice’s public key to encrypt a message m to obtain a ciphertext
c = Enc(PK,m). Alice can decrypt this ciphertext using her secret key, yielding
m = Dec(SK, c).

In a functional encryption scheme, we give Alice key delegation capabilities:
Alice can use a new key generation algorithm KeyGen to generate a functional
key SKf = FE.KeyGen(SK, f) for a function f that is, say, described by a circuit.
Then Alice can hand this functional key SKf to an associate Charlie, and Charlie
can use this functional key together with a new decryption algorithm to only
learn f(m) = FE.Dec(SKf , c) when given the ciphertext c. Intuitively speaking,
nothing1 beyond f(m) should be learned by Charlie when given SKf and c. This
notion was fully formalized by [BSW11] in the setting where many functional
keys and ciphertexts may be given to an adversary. The first work achieving
functional encryption for general functions was [GGH+13], using the power of
indistinguishability obfuscation.

The work of [BSW11] gave several compelling applications of functional
encryption. For instance, Alice may want to store her e-mail in encrypted form,
but she wants her cloud provider to be able to execute a phishing-detection cir-
cuit C on her email prior to sending it to her for decryption. She could accomplish
this goal by providing her cloud provider with a functional key for SKC , and the
only thing the cloud provider would learn is whether any email received by Alice
satisfies the phishing-detection circuit.

Applications of functional encryption become even more compelling when
we think of Alice as representing a large organization or company. In such a

1 Slightly more formally, functional encryption requires that encryptions of two mes-
sages m0 and m1 should be indistinguishable when given functional keys correspond-
ing to any functions f that satisfy f(m0) = f(m1). See Sect. 3 for more details.
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scenario, the threat that functional encryption helps to address cryptographically
is the insider threat. For example, consider an organization like a government
tax authority, that regularly handles extremely sensitive information, but where
individuals within the organization should only have access to limited digests
or snippets of this sensitive information. For example, an analyst Dave at the
tax authority may need only to compute statistical summaries of tax returns
filed by a large set of people. Functional encryption would allow Dave to obtain
a functional key SKT , where T is the description of a function that produces
statistical summaries of tax returns. The security of functional encryption would
guarantee that even if Dave goes rogue, Dave’s functional key would only allow
him to learn and exfiltrate statistical summaries, and not any more personal
information about individual tax returns beyond what could be deduced from
the statistical summary.

Contrast this to the case where only ordinary public-key encryption is used
to encrypt tax information. In this case, Dave would need the (master) secret key
SK in order to decrypt tax information before processing it to obtain statistical
summaries. And therefore a rogue Dave could exfiltrate the personal details
of any person’s tax return that was an input to the statistical summary he
was supposed to compute. This is just one example, illustrative of many such
scenarios where functional encryption could be beneficial for security.

Upgrading to Functional Encryption. Suppose that some time in the future, an
organization, upon hearing about the advantages of functional encryption, wishes
to “upgrade” to use functional encryption. Such an organization may face many
challenges. First, the organization may already have infrastructure in place where
partners and clients use an existing public-key encryption scheme to communi-
cate with the organization. As such, the organization may have already amassed
large amounts of encrypted data using a legacy public-key encryption system.
Second, the organization may face regulatory burdens like HIPAA or other future
regulations, that require the organization to use a particular encryption algo-
rithm. Third, it could be that, even in this future time, existing key generation
algorithms for general-purpose functional encryption (which typically currently
use indistinguishability obfuscation) are too slow, but the organization wants to
be ready for the day when such algorithms become practical.

In light of these concerns, what public-key encryption algorithm should the
organization use now? While these are mostly societal challenges, security must
exist in the context of human societies with traditions, rules, and regulations.
And in this case, these concerns give rise to an intriguing theoretical question:

What (existing) public-key encryption algorithms can be “upgraded” to become
functional encryption schemes, without changing the encryption algorithm or

the public keys?

Our paper initiates the systematic study of this question. To formalize this,
we say that a public-key encryption scheme E is FE-compatible if there exist new
key generation and decryption algorithms that, when combined with the original
setup and encryption algorithms of E, yield a (selectively) secure functional
encryption scheme. (See Sect. 3 for details.)
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Necessary Conditions. The technical starting point for our work is the folklore
observation that any functional encryption scheme must satisfy a certain level
of non-malleability. To see why, consider a functional encryption scheme for
encrypting (n + 1)-bit messages m, and consider the function f1 that on input
m simply outputs the first n bits of m. Suppose that we obtain a functional key
SKf1 for this function. Then functional encryption guarantees that encryptions
of any two messages with identical n-bit prefixes should still be indistinguishable
from each other.

But suppose there was a way for an adversary to modify any encryption
FE.Enc(m) to obtain FE.Enc(m′) where m′ swapped the first and last bits of m.
This would, for example, easily be possible if one tried to encrypt the message bit-
by-bit. Then, by applying the functional key SKf1 to FE.Enc(m′), the adversary
would learn the last bit of m, and break the security that is supposed to be
guaranteed by functional encryption.

Indeed, it is not hard to see that the above argument generalizes to guar-
antee a type of security against chosen-ciphertext attacks. Thus, (a form of)
CCA-security is a necessary requirement for an encryption scheme to be FE-
compatible.

Universal Functional Encryption? At this point, it might be tempting to con-
sider the possibility that CCA-security is also a sufficient condition for being
FE-compatible. Indeed, this would be true if we had ideal obfuscation2 [Had00]
– that is, obfuscation that creates the equivalent of a virtual black box. It is
not difficult to see why: To create a functional key SKf , simply obfuscate the
function that uses SK as a hardwired constant to decrypt the input ciphertext
c to obtain the message m, and then simply output f(m). If the obfuscation
is ideal, then this functional key can easily be simulated as a black box just
by using the CCA-decryption oracle for decryption. Thus, given ideal obfusca-
tion, every CCA-secure public-key encryption scheme is FE-compatible. In this
sense, we could hope to have a kind of universal functional encryption (in the
sense of universal deniable encryption [SW14] or universal signature aggregators
[HKW15]), where the key generation construction above could be applied to any
CCA-secure encryption scheme.

Recently our field has had remarkable success in achieving results using
indistinguishability obfuscation that were previously known to be possible only
using ideal obfuscation, especially using the punctured programming paradigm
of [SW14]. Is this just a matter of applying enough “iO gymnastics” to make
this work?

Our Results. In our first result, somewhat surprisingly, we show that in this
case, the intuition based on ideal obfuscation is wrong. Specifically, we show the
following:

2 Note that ideal obfuscation is impossible to build.
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Informal Theorem 1. Assuming CCA-secure public-key encryption, fully
homomorphic encryption (FHE) and LWE, there exists a CCA-secure public-
key encryption scheme that is provably not FE-compatible.

The construction we give in the impossibility result above is quite contrived,
like most impossibility results of this type. Could it be that all “natural” CCA-
secure public-key encryption schemes are FE-compatible? Sadly, we do not know
how to answer, or even formally define, this question. Nevertheless, one natu-
ral setting in which to consider this question is the well-studied random oracle
model; this model allows for very simple and intuitive proofs of CCA-security,
via the popular Fujisaki-Okamoto [FO99] transformation. In the random ora-
cle model, however, we show an even stronger negative result: Every public-key
encryption scheme, when converted into a CCA-secure encryption scheme in
the random oracle model via the Fujisaki-Okamoto transformation, is provably
not FE-compatible in the random oracle model. Thus, in the random oracle
model, we obtain a large family of natural CCA-secure schemes3 that are not
FE-compatible.4

In light of the impossibility results above, we believe that a systematic study
of FE-compatibility will need to proceed in a “bottom-up” manner, by looking at
existing classes of CCA-secure encryption schemes and seeing if they can indeed
be FE-compatible. We initiate this line of study by identifying a key structure
that, if present, is sufficient to provide FE-compatibility. Specifically, we show
the following:

Informal Theorem 2. Assuming sub-exponentially secure one way functions
and sub-exponentially secure iO, there exists a class of public key encryption
schemes which we call Special-CCA secure encryption schemes that are FE-
compatible.

We then note that several existing CCA-secure encryption schemes fall into
the class of Special-CCA secure encryption schemes. As a result, we get the
following theorem:

Informal Theorem 3. Assuming sub-exponentially secure indistinguishability
obfuscation and sub-exponentially secure one way functions, each of the following
existing CCA-secure encryption schemes are FE-compatible:

– [CHK04] when instantiated with the IBE scheme of [BB04].
– [CHK04] when instantiated with any Hierarchical IBE scheme.
– [PW08] when instantiated with any Lossy Trapdoor Function.
3 We believe similarly structured transformation such as RSA-OAEP [BR94] will have

the same issues.
4 Interestingly, if the scheme is instantiated with a particular hash function family it

might actually be FE-compatible. This is somewhat the opposite of a typical RO
infeasibility results where one usually finds a scheme is provably secure in the RO
model, but is insecure under any concrete instantiation. Unfortunately, it is unclear
how to argue positive security of any such concrete FO instantiations as the usual
RO heuristic is now off limits.
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It is interesting to note that the above CCA-secure encryption schemes are
each at least 9 years old, and yet they can be used to build functional encryption
schemes without changing the encryption mechanism. Contrast this to existing
functional encryption schemes before our work, most of which have specifically
designed encryption methods using “iO-friendly” tools.

Finally, we also consider a weaker notion called key-only FE-compatibility
where we retain only the public key and secret key of the public key encryption
scheme and design new encryption, function secret key generation and decryp-
tion algorithms to “upgrade” it to a FE scheme. In the common random string
model, we show that assuming polynomially hard iO, every public key encryption
scheme is key-only FE compatible - that is, it can be upgraded to a selectively
secure FE scheme for any function family. We refer the reader to the full version
for details regarding this notion and the corresponding results we achieve.

Open Problems and Future Work. It would be interesting to understand if there
exists other classes of encryption schemes that are FE-compatible. More gener-
ally, an interesting open problem would be to study what is the exact type of
CCA-security needed for an encryption scheme to be FE-compatible.

While it is known that general purpose functional encryption implies indis-
tinguishability obfuscation, another interesting direction would be to weaken the
security requirement of functional encryption (for example, bounded-key secure
FE) and understand what class of encryption schemes can be upgraded without
the use of indistinguishability obfuscation. A solution in this setting might also
be practical in today’s world. Going in the other direction, an interesting feasi-
bility question is whether we can upgrade existing encryption schemes to achieve
general purpose multi-input functional encryption [GGG+14,BGJS15].

Finally, we observe that in our positive result, on upgrading the CCA secure
encryption schemes into an FE scheme, it may potentially lose the CCA property.
It is an interesting open problem to define and achieve FE-CCA compatibility5.

2 Technical Overview

The question at the core of this paper is: what kinds of public-key encryption
schemes can be “upgraded” to yield functional encryption schemes? Informally
speaking, we say that a public-key encryption scheme PKE is FE-compatible if
a functional encryption scheme can be generated where the setup and encryp-
tion algorithms of the functional encryption scheme are the same as the public-
key encryption scheme. Namely, we have FE.Setup = PKE.Setup and FE.Enc =
PKE.Enc. Thus, only the functional encryption key generation and decryption
algorithms are allowed to be newly specified.

As already noted, the technical starting point for our work is the folklore
observation that any functional encryption scheme must satisfy a certain level

5 Note that our negative result would still hold in this stronger model of FE-CCA
compatibility.
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of non-malleability. To remind ourselves why, consider a functional encryption
scheme for encrypting (n + 1)-bit messages m, and consider the function f1
that on input m simply outputs the first n bits of m. Suppose that we obtain
a functional key SKf1 for this function. Then functional encryption guarantees
that encryptions of any two messages with identical n-bit prefixes should still be
indistinguishable from each other.

But suppose there was a way for an adversary to modify any encryption
FE.Enc(m) to obtain FE.Enc(m′) where m′ swapped the first and last bits of m.
This would, for example, easily be possible if one tried to encrypt the message bit-
by-bit. Then, by applying the functional key SKf1 to FE.Enc(m′), the adversary
would learn the last bit of m, and break the security that is supposed to be
guaranteed by functional encryption.

An Impossibility Result. The most natural question to ask, then, is whether
CCA-security is also a sufficient condition for FE-compatibility. In our first
result, we prove that this is indeed not the case: we construct a counterexample
public-key encryption scheme that satisfies CCA-security, but provably is not
FE-compatible.

Let us build some intuition for how our impossibility result will proceed.
The main difference between the CCA security game and the FE security game
is that in the CCA security game, there is a decryption oracle, whereas in the
FE security game, the adversary can actually obtain a circuit that will (at least
partially) decrypt ciphertexts. This is reminiscent of the situation underlying the
impossibility result of Barak et al. [BGI+01] for virtual black-box obfuscation:
There, the ideal model gave oracle access to the function to be obfuscated,
whereas the real model gave the adversary an actual circuit implementing that
function. Indeed, we draw inspiration from [BGI+01] in devising our negative
result, although we differ from it in almost every technical respect.

The idea behind our negative result will be to take an arbitrary CCA-
secure encryption scheme (SetupCCA,EncCCA,DecCCA) and somehow “damage”
it to make it FE-incompatible, without disturbing its CCA security. This “dam-
aged scheme” must somehow make use of the fact that an FE-adversary will be
able to ask for and obtain a functional key SKf1 , let us say for the same prefix-
revealing function f1 that we defined above. This functional key SKf1 enables
the FE-adversary to compute a prefix-decryption circuit D that outputs the first
n bits of the message corresponding to any ciphertext.

Our first idea (which conceptually dates back to [BGI+01]) is to use fully
homomorphic encryption (FHE) to help us take advantage of this situation. We
first choose a random n-bit string α, and encrypt it c = EncCCA(α||0) using the
CCA-secure encryption scheme. But then we re-encrypt this c′ = FHE(c) using
the fully homomorphic encryption scheme. We reveal c′ as part of the public key
of the “damaged scheme,” but crucially both α and c are kept hidden.

Why does this help? Because now an FE-adversary that obtains the prefix-
decryption circuit D can compute FHE.Eval(D, c′) = FHE(α). While it is not yet
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clear that this is useful for any attack, we observe that, at least intuitively, a
CCA-attacker has no obvious way to obtaining FHE(α) from the public key and
the decryption oracle (though formally proving this will be the main technical
challenge of our impossibility result, as we will discuss shortly). This is because
the only information that the CCA-attacker has about α is contained in c′, but c′

is an encryption under FHE and the decryption oracle only decrypts ciphertexts
validly encrypted using EncCCA.

To enable a real attack, then, we also add to the public key an obfuscation
of a program P that takes as input an FHE ciphertext e, decrypts it, and checks
whether this decryption is equal to α. If so, it outputs the secret key needed for
executing DecCCA, otherwise it outputs ⊥. Because the FE-attacker can obtain
FHE(α) as noted above, it can then use the obfuscated program to obtain the
full secret key for executing DecCCA, breaking the security of the FE scheme.

Why These Changes Preserve CCA Security. The changes above – adding the
FHE ciphertext c′ and the obfuscated program P to the public key – only provide
an impossibility result if CCA security is preserved even after these two objects
are added to the public key. While it is not obvious how a CCA-attacker could use
these objects to break security, in order to prove CCA security, intuitively we will
need to remove the dependence of c′ on α. But c′ = FHE(EncCCA(α||0)), and the
obfuscated program P contains the secret key for FHE. But in order to remove
these secret keys from P , intuitively we need to remove the “trigger” point
FHE(α) from the code of P , for which we first need to remove the dependence
of c′ on α. This chicken-and-egg situation is the primary technical obstacle that
we need to overcome to finish the proof.

To deal with this problem, we draw inspiration from the work of Myers and
Shelat [MS09] and Hohenberger, Lewko and Waters [HLW12] that considered
the seemingly very different problem of converting any CCA-secure encryption
scheme for single-bit messages into a CCA-secure encryption scheme for multi-
bit messages. However, to implement our inspiration, we will need to make a
technical change to the encryption system. Instead of using EncCCA to encrypt
the entire n + 1-bit message, we will use the CCA-secure encryption schemes to
encrypt the first n bits of the message, and use a separate encryption scheme
EncCPA to encrypt the last bit of the message. (In fact, we will use EncCCA
to jointly encrypt the first n bits of the message and the ciphertext produced
by EncCPA. But we will ignore this detail for the purpose of this overview.)
Finally, we will change our obfuscated program P to output just the secret
key for executing DecCPA to decrypt the last bit. This way, the secret key for
executing DecCCA is independent of the program P . Now, we will define a Bad
Event to be when a CCA-attacker queries its decryption oracle on the ciphertext
c = EncCCA(α). Looking ahead, we will first consider the situation when this Bad
Event does not happen. Then, we will show that indeed the Bad Event can only
occur with negligible probability.

Suppose that we know that the Bad Event cannot happen. Then, the decryp-
tion oracle given to the CCA-attacker is equivalent to a decryption oracle
that would be given to a CCA-attacker if c = EncCCA(α) was the “challenge”
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ciphertext on which the attacker is not allowed to query. Note that in this case,
the CCA security of EncCCA already guarantees that c = EncCCA(α) is indistin-
guishable from c = EncCCA(0n), even to an adversary that is given the obfuscated
program P as auxiliary information about α. Thus, we can already remove the
dependence of c′ on α.

Now, the only part of the public key that depends on α is the obfuscated
program P , and we just need to get rid of it. This could be accomplished via
iO using the fact that α is a uniformly random string, but in fact our job is
made even easier due to the recent works on “lockable obfuscation” of Goyal
et al. [GKW17] and Wichs and Zirdelis [WZ17]. These works consider obfuscat-
ing programs C(x) whose structure is exactly such that, for some circuit Test
if Test(x) = α, then some secret β is revealed, and otherwise the output is ⊥.
Lockable obfuscation states that if α is chosen uniformly (and, for our setting,
no auxiliary information about α is revealed), then such obfuscated programs
are indistinguishable from obfuscated programs that always output ⊥ and have
no secrets within them whatsoever. Furthermore, such lockable obfuscation is
possible to construct just assuming LWE for suitable parameters. Thus, apply-
ing the security of lockable obfuscation, we are able to replace the obfuscated
program P with a program that always outputs ⊥, thereby completely removing
any information about the secret keys of any encryption scheme and about α.
This shows that the new scheme is CCA-secure, under the assumption that the
Bad Event does not occur.

All that remains to be done is to prove that the Bad Event does not occur.
Counterintuitively, we first observe that the lockable obfuscation argument above
already shows that the Bad Event cannot occur if the ciphertext c had been
c = EncCCA(0n) instead of c = EncCCA(α). In other words, if c = EncCCA(0n),
then the adversary never queries the decryption oracle with c. Now, suppose for
sake of contradiction, that the adversary does query c with noticeable probability
if c = EncCCA(α). Then, we can use this to break CCA-security of EncCCA; take
as a challenge ciphertext c that is either c = EncCCA(α) or c = EncCCA(0n).
Then run the adversary until it attempts to query the oracle on c. If it ever does
this, we can conclude that c = EncCCA(α). If it doesn’t, then we can output a
random guess. This will give us an nontrivial advantage in determining whether
c = EncCCA(α) or c = EncCCA(0n).

This completes the impossibility proof. Full details can be found in Sect. 4.
For the impossibility result that applies to CCA secure encryption schemes

built using the Fujisaki-Okamoto transformation in the random oracle model,
we refer the reader to the full version of the paper.

Positive Results for FE-Compatibility. Our impossibility result shows that
CCA security is not a sufficient condition for an encryption scheme to be FE-
compatible. On the other hand, unfortunately positive results on FE in the
literature (e.g. [GGH+13,Wat14]) typically construct special-purpose encryp-
tion methods that are atypical for achieving CCA security. For instance, even
though the original general-purpose FE scheme of [GGH+13] follows the Naor-
Yung paradigm [NY90,Sah99], instead of using a simulation-sound NIZK in the
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encryption, it uses a special object introduced in [GGH+13] called a statisti-
cally simulation-sound NIZK. Recall that our goal is to find existing CCA-secure
encryption schemes that are already FE-compatible, rather than design special-
purpose (sometimes called “iO friendly”) primitives that would enable FE.

How can we go about this? Let us try to see if there are encryption mecha-
nisms that were useful in achieving CCA-security that can also be sufficient for
achieving FE.

Our key observation is that the notion of a punctured decryption key, which
has implicitly been used for building CCA-security for over a decade, since (at
least) the work of [CHK04], can also be useful for building FE functional keys.
Roughly speaking, we consider the notion of a tag-based encryption, where every
ciphertext is associated with a tag. Then, a punctured decryption key SKtag∗

should allow a user to decrypt every ciphertext with tag �= tag∗, but messages
encrypted under tag tag∗ should still be semantically secure. Intuitively, such
punctured keys have been useful for building CCA-secure encryption because
a punctured decryption key would allow the implementation of a decryption
oracle that would still not be able to decrypt a challenge message that was
encrypted under tag tag∗. In the literature, such schemes are combined with
one-time signature schemes, where the tag is set to be the verification key of
such a one-time signature scheme, and then the ciphertext is signed in a way
that verifies with this key.

How can we use this idea for building FE functional keys? At a high level,
we start with the most basic idea for building a functional key for a function
f . We can simply obfuscate a program that has the decryption key built in,
uses this decryption key to decrypt the message m, and then outputs f(m).
Now, we need to argue that the encryption of m0 and the encryption of m1

should be indistinguishable as long as f(m0) = f(m1) = y. The first idea is
to fix the verification key VK∗ in advance that will be used as the tag for the
challenge ciphertext c∗. Now, we can reformulate the obfuscated program to first
check whether the input ciphertext is equal to c∗, in which case the program
should output y, but otherwise it should just use the decryption key to decrypt
the message m, and then output f(m) as before. This program is functionally
equivalent to the previous one, and therefore indistinguishability of obfuscated
programs follows from iO.

Now, our goal will be to replace the decryption key within the program
with the punctured decryption key SKVK∗ . However, note that we cannot do
that immediately, because there are many valid ciphertexts for various messages
m that could be signed under verification key VK∗, on which the program is
supposed to output f(m). However, we know that it should be hard for the
adversary to actually find such valid ciphertexts, because of the security of the
one-time signature scheme. Here, we can use sub-exponentially secure iO to
complete the argument: Roughly speaking, the work of [BCP14] shows that if an
iO scheme is secure against time T ·poly(n) adversaries, then iO(P1) and iO(P2)
are indistinguishable as long as: (1) they only differ on at most T inputs, and
(2) these inputs are hard to find even if given the code of both P1 and P2, even
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for machines whose running time far exceed T . By using this, assuming also sub-
exponentially secure one-time signatures (which follow from sub-exponentially
strong one-way functions), we can replace the program with one that first checks
whether the input ciphertext is equal to c∗, in which case the program outputs y,
but otherwise it uses the punctured decryption key SKVK∗ to decrypt the message
m, and then output f(m) as before.

Now, since only this punctured decryption key SKVK∗ is used, we can argue
that an encryption of m0 under tag VK∗ is indistinguishable from an encryption
of m1 under tag VK∗. Thus, we show how to bootstrap punctured decryption keys
as an existing method for building CCA-secure encryption, into a method for con-
structing functional keys without needing to change the underlying encryption
scheme. Interestingly, the security of the encryption given a punctured decryp-
tion key needs to hold only against polynomial-time adversaries, as in standard
proofs of CCA-security.

We observe that at least three different existing CCA-secure schemes from
the literature, some dating back over a decade, already follow the punctured key
approach to building CCA-secure encryption, and therefore are FE-compatible.
Full details can be found in Sect. 5.

2.1 Preliminaries and Organization

We refer the reader to the full version for definitions of the following primitives:
public key encryption, indistinguishability obfuscation, differing inputs obfusca-
tion, lockable obfuscation and fully homomorphic encryption.

In Sect. 3, we define the notion of FE-compatibility. In Sect. 4 we show
the impossibility result. Finally, in Sect. 5, we show the constructions of FE-
compatible CCA secure encryption schemes.

3 Defining Functional Encryption Compatibility

Throughout, let the security parameter be denoted by n. Let X = {Xn}n∈N

and Y = {Yn}n∈N denote ensembles where each Xn and Yn is a finite set.
Let F = {Fn}n∈N denote an ensemble where each Fn is a finite collection of
functions, and each function f ∈ Fn takes as input a string x ∈ Xn and outputs
f(x) ∈ Yn.

We first define the notion of functional encryption (FE) in the next subsection
and then, we define what it means for a public key encryption scheme to be
FE-Compatible.

3.1 Functional Encryption

A functional encryption scheme FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) for
a family of message spaces {Xn}, a family of output spaces {Yn} and a family
of functions F consists of the following polynomial time algorithms:
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– FE.Setup(1n). The setup algorithm takes as input the security parameter n
and outputs a master public key-secret key pair (MPK,MSK).

– FE.Enc(MPK, x) → CT. The encryption algorithm takes as input a message
x ∈ Xn and the master public key MPK. It outputs a ciphertext CT.

– FE.Keygen(MSK, f) → SKf . The key generation algorithm takes as input a
function f ∈ Fn and the master secret key MSK. It outputs a function secret
key SKf .

– FE.Dec(SKf ,CT) → y. The decryption algorithm takes as input a secret key
SKf and a ciphertext CT. It outputs a string y ∈ Yn or ⊥.

Definition 1. (Correctness) A functional encryption scheme FE for F is correct
if for all f ∈ Fn and all x ∈ Xn

Pr

⎡
⎣

(MPK,MSK) ← FE.Setup(1n)
SKf ← FE.Keygen(MSK, f)

FE.Dec(SKf ,FE.Enc(MPK, x)) = f(x)

⎤
⎦ = 1

where the probability is over the random coins of FE.Setup,FE.Enc,FE.Keygen
and FE.Dec.

Security. We define the security notion for a functional encryption scheme using
the following game (Adaptive − IND) between a challenger and an adversary.

Setup Phase: The challenger generates (MPK,MSK) ← FE.Setup(1n) and then
hands over the master public key MPK to the adversary.

Key Query Phase 1: The adversary makes function secret key queries by
submitting functions f ∈ Fn. The challenger responds by giving the adversary
the corresponding function secret key SKf ← FE.KeyGen(MSK, f).

Challenge Phase: The adversary chooses two messages (m0,m1) of the same
size (each in Xn) such that for all queried functions f in the key query phase,
it holds that f(m0) = f(m1). The challenger selects a random bit b ∈ {0, 1} and
sends a ciphertext CT ← FE.Enc(MPK,mb) to the adversary.

Key Query Phase 2: The adversary may submit additional key queries f∈Fn

as long as they do not violate the constraint described above. That is, for all
queries f , it must hold that f(m0) = f(m1).

Guess: The adversary submits a guess b
′

and wins if b
′

= b. The adversary’s
advantage in this game is defined to be 2 ∗ |Pr[b = b

′
] − 1/2|.

We also define the selective security game, which we call (Selective − IND)
where the adversary outputs the challenge message pair even before seeing the
master public key.

Definition 2. A functional encryption scheme FE is selective/adaptive
secure if all PPT adversaries have at most a negligible advantage in the
Selective − IND/Adaptive − IND security game.
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We can also parameterize by the number of function secret key queries the
adversary can make in the security game.

Compactness [AJ15]: A functional encryption scheme is said to be compact if
the size of the ciphertext does not depend on the size of the functions that
the scheme can handle. That is, let p(·) be a polynomial. Now, any func-
tional encryption scheme FE for a class of functions F is said to be compact
if |FE.Enc(MPK, x)| = p(n, |x|) where n is the security parameter.

3.2 FE-Compatibility

In this section, we define a property called FE-Compatibility for any public key
encryption scheme.

Definition 3. A public key encryption scheme PKE = (PKE.Setup,PKE.Enc,
PKE.Dec) is said to be selective/adaptive FE-Compatible relative to a family
of functions F if there exists two algorithms (FE.Keygen,FE.Dec) such that
(FE.Setup, FE.Enc,FE.Keygen,FE.Dec) is a selectively/adaptively secure func-
tional encryption scheme for the family F where:

– FE.Setup(n) = PKE.Setup(n). In particular, if PKE.Setup(n) outputs
(PK,SK), the output of FE.Setup(n) is (MPK = PK,MSK = SK).

– FE.Enc(MPK,m) = PKE.Enc(PK,m).

Remark: Moreover, any such FE scheme is also compact because the size of
the ciphertext is determined by the scheme PKE and doesn’t depend on the size
of the functions being queried.

4 An Impossibility Result

In this section, we will construct an IND-CCA secure encryption scheme that
is not FE-Compatible according to Definition 3. Consider a function f1 that on
any input x of length (n + 1) bits, outputs the first n bits of x. Formally, we
prove the following theorem:

Theorem 1. Assuming the existence of lockable obfuscation, fully homomor-
phic encryption and IND-CCA secure public key encryption, the scheme PKE =
(PKE.Setup,PKE.Enc,PKE.Dec) described below is an IND-CCA secure public
key encryption scheme that is not selective FE-Compatible even for a single
function secret key query for any function family F such that f1 ∈ F .

We know how to construct lockable obfuscation with perfect correctness from
the learning with errors (LWE) assumption [GKW17,WZ17]. As a result, we get
the following corollary:

Corollary 2. Assuming LWE, fully homomorphic encryption and the existence
of IND-CCA secure public key encryption, the scheme PKE = (PKE.Setup,PKE
.Enc,PKE.Dec) described below is an IND-CCA secure public key encryption
scheme that is not selective FE-Compatible even for a single function secret
key query for any function family F such that f1 ∈ F .
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Notation: Let the security parameter be n. Let (SetupCPA,EncCPA,DecCPA) be
an IND-CPA secure encryption scheme that encrypts 1 bit messages and pro-
duces ciphertexts of length l1(n), (SetupCCA,EncCCA,DecCCA) be a CCA secure
encryption scheme that encrypts messages of length (n+1+ l1(n)) and produces
ciphertexts of size l2(n). Let FHE = (FHE.Setup,FHE.Enc,FHE.DecFHE.Eval)
be a fully homomorphic encryption scheme that encrypts messages of length
(l1(n)+l2(n)) and can evaluate any Poly(n)-sized circuit. Let (O,Eval) be a secure
lockable obfuscator for all Poly(n)-sized circuits that take inputs of size l2(n) and
produce outputs of size n. Our scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec)
that encrypts messages of length (n + 1) is as follows:

– PKE.Setup(1n):
1. Compute (PKCPA,SKCPA) ← SetupCPA(1n), (PKCCA,SKCCA) ← SetupCCA(

1n) and (PKFHE,SKFHE) ← FHE.Setup(1n).
2. Choose a random string α ∈ {0, 1}n.
3. Compute CT′

CPA = EncCPA(PKCPA, 0) and CT′
CCA = EncCCA(PKCCA, α||0||

CT′
CPA). Let CT′ = (CT′

CCA,CT′
CPA). (In fact, CT′ is an encryption of (α||0)

using the encryption algorithm PKE.Enc described next).
4. Compute CT′

FHE = FHE.Enc(PKFHE,CT
′).

5. Generate P̃ = O(n, P,SKCPA, α) using the tester program P described in
Fig. 1 where n is the security parameter, P is the program, SKCPA is the
message and α is the lock value. In particular, the functionality of the
obfuscated program P̃ is described in Fig. 2. Note that Fig. 2 is just for
intuition and does not correspond to a formal specification.

6. Output the public key as PK = (PKCPA,PKCCA,PKFHE,CT
′
FHE, P̃ ). The

secret key of the scheme is SK = SKCCA.
– PKE.Enc(PK,m):

1. Given an (n + 1) bit message m, let p be the last bit of m.
2. Compute CTCPA = EncCPA(PKCPA, p).
3. Compute CTCCA = EncCCA(PKCCA,m||CTCPA).
4. Output the ciphertext CT = (CTCCA,CTCPA).

– PKE.Dec(SK,CT):
1. Parse CT = (CTCCA,CTCPA). Recall that SK = SKCCA.
2. Let (m||y) = DecCCA(SKCCA,CTCCA).
3. If the above decryption outputs ⊥ or if y �= CTCPA, output ⊥.
4. Else, output the message m.

We now prove Theorem 1.

Correctness: It can be observed that if the schemes (SetupCPA,EncCPA,DecCPA)
and (SetupCCA,EncCCA,DecCCA) are correct except with negligible probability,
then PKE is correct except with negligible probability. That is, PKE.Dec(PKE.Enc
(PK,m),SK) = m for any message m ∈ {0, 1}(n+1).

To prove our theorem we need to show two things. First, we will show that
any candidate functional encryption scheme that includes a “all but last bit
reveal” functionality which shares the setup and encrypt algorithms with the
above public key encryption scheme must be insecure. Second, we show that the
scheme PKE actually does have IND-CCA security under certain assumptions.
Putting these together will yield our theorem.
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Program P

Input : FHE ciphertext CTFHE

Constants : SKFHE

1. Output FHE.Dec(SKFHE,CTFHE).

Fig. 1. Tester program (as in lockable obfuscation notation)

Program P̃

Input : FHE ciphertext CTFHE

Constants : SKFHE, α, SKCPA

1. Compute y ← FHE.Dec(SKFHE,CTFHE).
2. If y = α, output SKCPA. Else, output ⊥.

Fig. 2. Functionality of lockable obfuscated tester program

4.1 An Attack

In this section, assuming the correctness of the encryption schemes used and
correctness of the obfuscator, we show that the above scheme PKE is not FE-
Compatible. Suppose it is indeed FE-Compatible. We will arrive at a contradic-
tion. Formally, we prove the following lemma.

Lemma 1. Any scheme FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec) where
FE.Setup(.) = PKE.Setup(.) and FE.Enc(.) = PKE.Enc(.) is not selectively secure
even for just 1 function secret key query for any function family F such that
f1 ∈ F .

Proof. Consider a FE adversary A who interacts with a FE challenger in the
selective IND-security game as follows:

1. In the first round, A submits two messages m0 = (0n||0) and m1 = (0n||1).
2. A asks for a function secret key corresponding to the following function f1:

on input x of length (n+1) bits, f1(x) outputs the first n bits of x. Note that
since the first n bits of m0 and m1 are equal, this is a valid function secret
key query.

3. The challenger runs the setup algorithm and generates PK,SK. He gives PK
to the adversary along with the function secret key SKf1 . Also, the challenger
picks a bit b at random and sends CT∗ = PKE.Enc(PK,mb).

4. Let the challenge ciphertext be CT∗ = (CT∗
CCA,CT∗

CPA). The adversary com-
putes a FHE ciphertext CTFHE = FHE.Eval(FE.Dec(SKf , ·),CT′

FHE) using the
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ciphertext CT′
FHE in the public key and the function secret key SKf . A then

runs the obfuscated program P̃ on input CTFHE. That is, run Eval(P̃ ,CTFHE)
to receive output SK′

CPA. It then computes b′ = DecCPA(SK′
CPA,CT∗

CPA) and
outputs b′ to the challenger.

Analysis: We now show why the adversary’s guess b′ is equal to the challenger’s
random bit b except with negligible probability. From the correctness of the FE
scheme, SKf1 must be a correct function secret key for the function f1. First, from
the correctness of the FHE scheme, observe that CTFHE = FHE.Eval(SKf ,CT′

FHE)
is an encryption of the random string α using the algorithm FHE.Enc. Now,
notice that when this ciphertext CTFHE is a correct encryption of α. So, when it
is fed as input to the program P̃ , from the correctness of lockable obfuscation,
the program outputs the secret key of the IND-CPA secure encryption scheme
- SKCPA (which we denoted as SK′

CPA). Therefore, now the adversary’s strategy
easily follows. A uses SKCPA to decrypt CT∗

CPA and from the correctness of the
IND-CPA secure encryption scheme, this decrypts to give the value b correctly,
which is the adversary’s output.

Hence, the adversary can break the selective IND-security of the FE scheme
which is a contradiction. Note that the negligible error comes from the fact that
the IND-CPA secure encryption scheme, the FE scheme, the lockable obfuscation
scheme and the FHE scheme are all correct except with negligible probability. �	

4.2 IND-CCA Security

We now prove that the scheme is IND-CCA secure. Our proof strategy is orga-
nized along the lines around detecting a bad query event which follows the work
of Myers and Shelat [MS09] and Hohenberger, Lewko and Waters [HLW12] who
proved multibit CCA security from the existence of 1-bit CCA security. Formally,
we prove the following lemma:

Lemma 2. Assuming the hardness of learning with errors (LWE), (SetupCPA,
EncCPA,DecCPA) is an IND-CPA secure public key encryption scheme and
(SetupCCA, EncCCA,DecCCA) is an IND-CCA secure public key encryption scheme,
PKE = (PKE.Setup,PKE.Enc,PKE.Dec) is an IND-CCA secure public key
encryption scheme.

Proof. We begin our proof by defining a “Bad-Query” event that is defined
within the context of the attacker playing the IND-CCA security game on the
encryption scheme PKE. �	

Definition 4. (Bad Query Event): Let PK be the public key of the scheme
PKE that is given to the adversary. We say that a bad query event has occurred
during an execution of the IND-CCA security game between the adversary A and
the challenger if A makes a decryption query of the form CT = (CT1,CT2) such
that CT1 = CT′

CCA, where CT′
CCA was created by the setup algorithm PKE.Setup.

In order to prove IND-CCA security of our scheme, we will rely on the following
claim:
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Claim. A Bad Query Event does not take place except with negligible probability
in n, where the probability is taken over the coins of the adversary and the
challenger playing the IND-CCA security game.

We defer the proof of this claim to the next section. Here, we show that our
scheme is IND-CCA secure assuming the claim holds true. We will prove this
via a series of hybrid experiments where we show that every successive pair of
hybrids is computationally indistinguishable and the final hybrid is independent
of the challenge bit b and hence the attacker’s advantage will be 0 in the final
hybrid.

– Hyb1: This is the real world experiment with challenge bit b chosen randomly.
The challenge ciphertext is CT∗ = (CT∗

CCA,CT∗
CPA).

– Hyb2: This hybrid is identical to the previous hybrid except that now, the
decryption oracle rejects6 for any ciphertext query CT = (CT1,CT2) if CT1 =
CT′

CCA. Note that the oracle also continues to reject the challenge ciphertext
as before.

– Hyb3: This hybrid is identical to the previous hybrid except that during setup,
CT′

CCA is now computed as CT′
CCA = EncCCA(PKCCA, 0n+1||CT′

CPA).
– Hyb4: This hybrid is identical to the previous hybrid except that in the public

key, P̃ is replaced with the simulated obfuscated program - i.e. Sim(n, 1|P |,
1|SKCPA|) where Sim is the simulator of the lockable obfuscation scheme.

– Hyb5: This hybrid is identical to the previous hybrid except that in the chal-
lenge ciphertext CT∗ = (CT∗

CCA,CT∗
CPA), CT∗

CPA is now computed independent
of the bit b as follows: CT∗

CPA = EncCPA(PKCPA, 0).
– Hyb6: This hybrid is identical to the previous hybrid except that now, the

decryption oracle also rejects any ciphertext query CT = (CT1,CT2) if CT1 =
CT∗

CCA.
– Hyb7: This hybrid is identical to the previous hybrid except that in the chal-

lenge ciphertext, CT∗
CCA is now computed independent of the bit b as follows:

CT∗
CCA = EncCPA(PKCCA, 0n+1||CT∗

CPA).

Observe that in this last hybrid, the challenge ciphertext is created independent
of the bit b. Hence, the attacker’s advantage in this hybrid is negligible.

We will now show the indistinguishability of every successive pair of hybrids.

Claim. Assuming Claim 4.2 holds, Hyb1 is computationally indistinguishable
from Hyb2.

Proof. The only difference between the two hybrids is that in Hyb2, the decryp-
tion oracle rejects queries of the form CT = (CT1,CT2) where CT1 = CT′

CCA

while such queries are not rejected by the oracle in Hyb1. However, Claim 4.2
essentially proves that such queries (which we have defined as the occurrence of
a bad query event) are never made by the adversary except with negligible prob-
ability. Therefore, if Claim 4.2 holds, Hyb1 is computationally indistinguishable
from Hyb2. �	
6 Throughout the paper, we use rejecting an input and producing output ⊥ for the

input interchangeably.
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Claim. Assuming that (SetupCCA,EncCCA,DecCCA) is an IND-CCA secure
encryption scheme, Hyb2 is computationally indistinguishable from Hyb3.

Proof. The only difference is that in Hyb2, CT
′
CCA = EncCCA(PKCCA, α||0||CT′

CPA)
while in Hyb3, CT

′
CCA = EncCCA(PKCCA, 0n+1||CT′

CPA). We can show that if there
exists an adversary A that can distinguish between these two hybrids, there
exists an adversary B that can break the CCA security of the encryption scheme
(SetupCCA,EncCCA,DecCCA). We defer the details of the proof to the full version.

�	

Claim. Assuming that (O,Eval) is a secure lockable obfuscator, Hyb3 is compu-
tationally indistinguishable from Hyb4.

Proof. The only difference between the two hybrids is that in Hyb3, the public
key contains O(n, P,SKCPA, α) while in Hyb4, it contains the simulated program
- Sim(n, 1|P |, 1|SKCPA|). Since α is picked uniformly at random and is used only as
the lock value in the obfuscated program and nowhere else, from the security of
lockable obfuscation, the two hybrids will be computationally indistinguishable.
We now describe the reduction.

Consider an adversary A that can distinguish between these two hybrids. We
will now design a reduction Alock that uses A to break the security of the lockable
obfuscation scheme. Alock interacts with A and runs the experiment exactly as in
Hyb3 except generating the obfuscated program. Alock interacts with a challenger
C for the lockable obfuscation scheme. Alock sends the program P and the message
SKCPA to the challenger C. C sends back either O(n, P,SKCPA, α) where α is picked
uniformly at random or a simulated obfuscated circuit Sim(n, 1|P |, 1|SKCPA|).
Alock sets this as the obfuscated circuit P̃ and continues with the experiment as
in Hyb3. Now, it easily follows that if A can distinguish between the two hybrids,
Alock can use the same distinguishing guess to break the security of the lockable
obfuscation scheme which is a contradiction. �	

Claim. Assuming that (SetupCPA,EncCPA,DecCPA) is an IND-CPA secure encryp-
tion scheme, Hyb4 is computationally indistinguishable from Hyb5.

Proof. The only difference between the two hybrids is in the challenge
ciphertexts. In Hyb4, CT∗

CPA = EncCPA(PKCPA, pb) while in Hyb5, CT∗
CPA =

EncCCA(PKCPA, 0). Here, p is the last bit of the message mb. We can show that
if there exists an adversary A that can distinguish between these two hybrids,
there exists an adversary B that can break the CPA security of the encryption
scheme (SetupCPA,EncCPA,DecCPA). We defer the details of the proof to the full
version. �	

Claim. Hyb5 is identical to Hyb6.

Proof. The only difference between the two hybrids is that in Hyb6, the decryp-
tion oracle rejects any ciphertext query CT = (CT1,CT2) if CT1 = CT∗

CCA.
First, observe that if CT2 = CT∗

CPA, then CT is in fact the challenge ciphertext
CT∗ itself and hence even Hyb6 would reject the query. On the other hand, if
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CT2 �= CT∗
CPA but CT1 = CT∗

CCA, then, DecCCA(SKCCA,CT1) produces (m∗, y∗)
such that y∗ �= CT2. This is because y∗ would in fact be equal to CT∗

CPA. Hence,
even Hyb5 would reject these queries and so the two hybrids are identical. �	

Claim. Assuming that (SetupCCA,EncCCA,DecCCA) is an IND-CCA secure
encryption scheme, Hyb6 is computationally indistinguishable from Hyb7.

Proof. The only difference between the two hybrids is in the challenge ciphertext
CT∗ = (CT∗

CCA,CT∗
CPA). In Hyb6, CT

∗
CCA = EncCCA(PKCCA,mb||CT∗

CPA) while in
Hyb7, CT

∗
CCA = EncCCA(PKCCA, 0n+1||CT∗

CPA). We can show that if there exists
an adversary A that can distinguish between these two hybrids, there exists
an adversary B that can break the CCA security of the encryption scheme
(SetupCCA,EncCCA,DecCCA). We defer the details of the proof to the full version.

�	

4.3 Proof of Claim 4.2

Instead of proving the claim directly, we first prove it for an alternate IND-CCA
security game and then show how it holds even in the actual IND-CCA security
game.

Alternate IND-CCA Game. This is same as the original game except that
the Challenger now computes CT′

CCA during setup as follows: CT′
CCA =

EncCCA(PKCCA, 0n+1||CT′
CPA). That is, α is no longer part of the message being

encrypted. For this alternate IND-CCA game, the Bad Query Event remains the
same: i.e., the event occurs if the adversary makes a query CT = (CT1,CT2) to
the decryption oracle where CT1 = CT′

CCA. Now, via a sequence of hybrids, we
show that Claim 4.2 holds for this alternate IND-CCA game. That is, we show
that the Bad Query Event happens with negligible probability.

– Hyb1: This hybrid corresponds to the alternate IND-CCA game as described
above.

– Hyb2: This hybrid is identical to the previous hybrid except that in the public
key, P̃ is replaced with the simulated obfuscated program - i.e. Sim(n, 1|P |,
1|SKCPA|) where Sim is the simulator of the lockable obfuscation scheme.

– Hyb3: This hybrid is identical to the previous hybrid except that the cipher-
text CT′

FHE is now computed as CT′
FHE = FHE.Enc(PKFHE, 0l1(n)+l2(n)).

We now show that every successive pair of hybrids is computationally indis-
tinguishable. This proves that the probability that the Bad Query Event occurs
is the same for every pair of successive hybrids. Finally, we show that in the last
hybrid Hyb4, the probability that the Bad Query Event occurs is negligible.

Claim. Assuming that (O,Eval) is a secure lockable obfuscator, Hyb1 is compu-
tationally indistinguishable from Hyb2.

Proof. The proof is same as the proof of Claim 4.2. �	
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Claim. Assuming that (FHE.setup,FHE.enc,FHE.dec) is an IND-CPA secure
fully homomorphic encryption scheme, Hyb2 is computationally indistinguish-
able from Hyb3.

Proof. The proof is same as the proof of Claim 4.2. �	

Claim. Pr[Bad Query Event occurs in Hyb3] = negligible(n).

Proof. This is because the ciphertext CT′
CCA does not appear at all in the pub-

lic key anymore! Even if the adversary knew the value of (CT′
CPA), the only

information that the adversary has about CT′
CCA is that it is an encryption of

(0n+1||CT′
CPA) using public key PKCCA.

First, observe that the number of possible ciphertexts for the message (0n+1||
CT′

CPA) must be at least super-polynomial in n. This follows from the CPA secu-
rity of the encryption scheme (SetupCCA,EncCCA,DecCCA) because if this wasn’t
true, a polynomial time adversary can break the CPA security by generating all
possible ciphertexts for (0n+1||CT′

CPA) and testing it with the challenge cipher-
text.

Now, notice that to make the Bad Query Event occur, the adversary will
just have to guess the value of CT′

CCA (or the randomness that was used in
the encryption to generate CT′

CCA) and this can be done only with negligible
probability. �	

Original IND-CCA Game. We show that the Bad Query Event happens only
with negligible probability even in the original IND-CCA game. Formally, we
prove the following lemma:

Lemma 3. Assuming (SetupCCA,EncCCA,DecCCA) is a CCA secure encryption
scheme and that the Bad Query Event does not occur in the Alternate CCA
game described above except with negligible probability, the Bad Query Event
does not occur in the original CCA security game for the encryption scheme
PKE except with negligible probability.

Proof. Suppose there exists an adversary A that makes the Bad Query Event
occur with non-negligible probability. We now construct an algorithm B that
breaks the IND-CCA security of (SetupCCA,EncCCA,DecCCA). B acts as the chal-
lenger of the IND-CCA security game for the scheme PKE in its interaction with
A. First, B interacts with its challenger and receives the public key PKCCA. B then
runs the setup algorithm PKE.Setup,(except the SetupCCA part) to compute the
public keys PKCPA,PKFHE. It computes CT′

CPA as done by the setup algorithm.
B then sends the pair (α||0||CT′

CPA, 0n+1||CT′
CPA) as the two challenge messages

to the challenger and sets the response as CT′
CCA. B continues with the rest of

the game acting as the challenger to A. Whenever A makes a decryption query
(CT1,CT2), if CT1 �= CT′

CCA, it queries the decryption oracle of its challenger
with CT1 and uses this to respond to A as done in the original game. Similarly,
B also creates the challenge ciphertext. If B ever receives a query (CT1,CT2)
from A to the decryption oracle such that CT1 = CT′

CCA, it immediately halts
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the game with A and outputs the guess 0 to its challenger. If such a query never
happens, it outputs 1 to the challenger after completing the game with A.

We now analyze why this works. The algorithm B knows that if its challenger
gave an encryption of 0n+1, then its interaction with A corresponds to the alter-
nate IND-CCA game described earlier. Here, we know that the adversary A can
not make the Bad Query Event occur. Therefore, if the adversary A makes the
Bad Query Event occur, then it must occur in the case that CT′

CCA is an encryp-
tion of (α||0||CT′

CPA). Hence, B guesses 0 in that case. On the other hand, if the
adversary A does not make the Bad Query Event occur, then it must be the
case that 0n+1 was encrypted. This is because we assumed that A can make the
Bad Query Event occur with non-negligible probability in the original IND-CCA
security game. This completes the proof.

Note that the reduction is actually not interested in completing the game
with A in the event that B halts. That is, B does not care whether A wins the
IND-CCA game but is rather more interested in whether A makes a Bad Query
Event occur. �	

Remark: At first glance, there seems to be a circularity issue in trying to prove
IND-CCA security of our scheme. That is, in order to prove indistinguishability
of the main hybrids, we require to first erase α which depends on no queries
being made to the decryption oracle that contain CT′

CCA. On the other hand, it
seems difficult to directly argue that no such queries are made because of the
presence of α in CT′

CCA. This causes a circularity. We get around this issue using
the alternate IND-CCA game where α is erased. In this game, we show that
the bad query event can’t occur and then using a reduction to the underlying
encryption scheme’s security, we can eventually show that the bad query event
does not occur even in the original CCA security game.

This technique is very similar to [MS09,HLW12]. In these works, they con-
struct CCA secure encryption and in the process, they run into a similar circu-
larity issue. The analog of α was the randomness used for encryption and this
randomness is in fact encrypted by an inner encryption scheme.

This completes the proof of Theorem 1. �	

5 Building FE-Compatible Encryption Schemes

We first define a new notion called puncturable tag based encryption7. In the
next subsection, we show how to construct a selective IND-CCA secure public
key encryption scheme from any puncturable tag based encryption scheme. We
call such a selective IND-CCA secure public key encryption scheme as “Special-
CCA”. In the following subsection, we show how to instantiate a “Special-CCA”
secure encryption scheme with several existing popular encryption schemes in
literature. Finally, we show that this “Special-CCA” secure public key encryption
scheme is FE-Compatible.
7 Previously, [MH14] also introduced a primitive called puncturable tag based encryp-

tion which is completely different from the one we define here.
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5.1 Puncturable Tag Based Encryption

In this section, we define a new primitive called puncturable tag based encryption
(PTBE) that is a modification of tag based encryption schemes [Kil06] but with
two more algorithms. We then show how several well known encryption schemes
in literature (based on various assumptions) do in fact fit into the framework of
puncturable tag based encryption.

Let n denote the security parameter and X = {Xn}n∈N, T = {Tn}n∈N

denote ensembles where each Xn and Tn is a finite set. Formally, a puncturable
tag based encryption scheme PTBE = (PTBE.Setup,PTBE.Enc,PTBE.Dec,
PTBE.Setup-Alt, PTBE.Setup-Alt-1,PTBE.Dec-Alt) consists of the following algo-
rithms:

– PTBE.Setup(1n):
Given the security parameter n, it generates a public key PK and a secret key
SK.

– PTBE.Enc(PK, t,m):
Given a message m ∈ Xn, a tag t ∈ Tn and the public key PK as input, the
encryption algorithm outputs a ciphertext CT.

– PTBE.Dec(SK, t,CT):
Given a ciphertext CT, a tag t ∈ Tn and the secret key SK as input, the
decryption algorithm outputs a string y ∈ Xn or ⊥.

– PTBE.Setup-Alt(1n, t∗,m∗):
Given the security parameter n, a tag t∗ ∈ Tn and a message m∗ ∈ Xn, it
generates a public key PK, a secret key SK, an alternate secret key SK-Alt
and a ciphertext CT∗.

– PTBE.Setup-Alt-1(1n, t∗,m∗):
Given the security parameter n, a tag t∗ ∈ Tn and a message m∗ ∈ Xn, it
generates a public key PK, a secret key SK, an alternate secret key SK-Alt
and a ciphertext CT∗.

– PTBE.Dec-Alt(SK-Alt, t,CT):
Given a ciphertext CT, a tag t ∈ Tn and an alternate secret key SK-Alt as
input, the alternate decryption algorithm outputs a string y ∈ Xn or ⊥.

Remark: For technical reasons, to make our proofs simpler while instantiating
our “Special-CCA” secure encryption schemes, we use two setup-alt algorithms
(that albeit perform a very similar role). We provide more details about this in
a remark at the end of Section ??. Alternatively, we could just use one setup-alt
algorithm in the abstraction and make the proof a bit more complicated. We
choose the former option in this writeup.

Correctness: A puncturable tag based encryption scheme PTBE is correct if for
all messages m ∈ Xn and all tags t ∈ Tn

Pr
[

(PK,SK) ← PTBE.Setup(1n)
PTBE.Dec(SK, t,PTBE.Enc(PK, t,m)) = m

]
= 1
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The probability is over the randomness used in the setup, encryption and decryp-
tion algorithms.

For security, we require the following four properties:

1. Equivalent on all but challenge tag: For any message m∗ ∈ Xn, any tag
t∗ ∈ Tn, for all ciphertexts CT and all tags t ∈ Tn such that t �= t∗, we require
that:

Pr
[

(PK,SK,SK-Alt,CT∗)← PTBE.Setup-Alt(1n, t∗,m∗)
PTBE.Dec(SK, t,CT) = PTBE.Dec-Alt(SK-Alt, t,CT)

]
= 1

The probability is over the randomness used in all the above algorithms.
2. Indistinguishability of parameters: The output of the following two

experiments must be computationally indistinguishable for all messages m∗

and tags t∗:
(a) Experiment 1:

Run PTBE.Setup(1n) to generate (PK,SK). Compute CT∗ =
PTBE.Enc(PK, t∗,m∗) and output (PK,SK,CT∗).

(b) Experiment 2:
Run PTBE.Setup-Alt(1n, t∗,m∗) to generate (PK,SK,SK-Alt,CT∗) and
output (PK,SK,CT∗).

3. Indistinguishability of alternate setups: The output of the following two
experiments must be indistinguishable for all messages m∗ and tags t∗:
(a) Experiment 1:

Run PTBE.Setup-Alt(1n, t∗,m∗) to generate (PK,SK,SK-Alt,CT∗) and
output (PK,SK-Alt,CT∗).

(b) Experiment 2:
Run PTBE.Setup-Alt-1(1n, t∗,m∗) to generate (PK,SK,SK-Alt,CT∗) and
output (PK,SK-Alt,CT∗).

4. Indistinguishability of messages: For this property to hold, we require
the adversary’s advantage to be negligible in the following game between an
adversary A and a challenger Ch:
(a) A sends (t∗,m∗

0,m
∗
1) to the challenger.

(b) Ch chooses a random bit b and runs PTBE.Setup-Alt-1(1n, t∗,m∗
b) to gen-

erate (PK,SK-Alt,CT∗) and gives the adversary (PK,SK-Alt,CT∗).
(c) A submits a guess b

′
and wins if b

′
= b. The adversary’s advantage in

this game is defined to be 2 ∗ |Pr[b = b
′
] − 1/2|.

5.2 Special-CCA Secure Encryption Scheme

In this section, we show how to build a selective CCA secure encryption scheme
from any PTBE with the addition of one time signatures. Recall that we define
selective CCA secure encryption schemes in the full version. We call such a CCA
secure encryption scheme as “Special-CCA”. Formally, we prove the following
theorem:
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Theorem 3. Given a puncturable tag based encryption scheme PTBE = (PTBE
.Setup,PTBE.Enc,PTBE.Dec,PTBE.Setup-Alt,PTBE.Setup-Alt-1,PTBE.Dec-Alt)
and a strongly secure one time signature scheme OTS = (OTS.Setup,OTS.Sign,
OTS.Verify), the scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec) described below
is a selective CCA secure encryption scheme.

According to our notation, scheme PKE is a Special-CCA secure encryption
scheme.

Notation: Let PTBE = (PTBE.Setup,PTBE.Enc,PTBE.Dec,PTBE.Setup-Alt,
PTBE.Setup-Alt-1,PTBE.Dec-Alt) be a puncturable tag based encryption sch-
eme with message space Xn, tag space Tn that outputs ciphertexts of size l(n).
Let OTS = (OTS.Setup,OTS.Sign,OTS.Verify) be a one time signature scheme
that signs messages of length l(n) and the space of verification keys is Tn. Our
new scheme PKE has message space Xn.

We now describe the template for building Special-CCA secure encryp-
tion schemes from any puncturable tag based encryption. This template can be
instantiated by several existing CCA secure encryption schemes in the literature
[CHK04,Kil06,PW08].

Construction:

– PKE.Setup(1n):
1. Generate the public key and secret key as (PK,SK) ← PTBE.Setup(1n).

– PKE.Enc(PK,m):
1. Generate (VK,SigK) ← OTS.Setup(1n).
2. Compute CT1 = PTBE.Enc(PK,VK,m) and σ = OTS.Sign(CT1,SigK).
3. Output CT = (VK,CT1, σ) as the ciphertext.

– PKE.Dec(SK,CT):
1. Parse CT = (VK,CT1, σ).
2. Output ⊥ if OTS.Verify(VK,CT1, σ) = 0.
3. Output m = PTBE.Dec(SK,VK,CT1).

We prove that the above scheme is CCA-secure in the full version of the
paper.

5.3 Instantiating Special-CCA Encryption

We show that several popular and well-studied CCA-secure encryption schemes
are in fact Special-CCA. That is, they satisfy this property that they can be con-
structed using PTBE and one-time signatures as shown in the above construction.
We now list the encryption schemes below and prove in the full version of the
paper that they satisfy the necessary conditions. Formally,

Theorem 4. The selective CCA-secure encryption schemes in the following
popular works are in fact Special-CCA secure encryption schemes:

– [CHK04] when instantiated with the IBE scheme of [BB04].
– [CHK04] when instantiated with any Hierarchical IBE scheme.
– [PW08] when instantiated with any Lossy Trapdoor Function.
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5.4 Building Selectively Secure FE

In this section, we show that the “Special-CCA” secure encryption
scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec) from the previous section is
FE-Compatible. We prove the security of our construction in two different ways
- the first is based on the assumption of sub-exponentially secure indistinguisha-
bility obfuscation. Additionally, it requires the one time signature scheme used
in the construction of PKE to be a sub-exponentially secure unique signature
scheme. On the other hand, the second proof is based on the existence of poly-
nomially secure differing inputs obfuscation and just polynomially secure one
time signatures.

Formally, we prove the following two theorems:

Theorem 5. Any “Special-CCA” secure encryption scheme is selective FE-
Compatible for any function family Fn and poly(n) function key queries assum-
ing:

– Sub-exponentially secure indistinguishability obfuscation. (AND)
– Sub-exponentially secure unique one time signatures.

Moreover, the resulting FE scheme is also compact.

Theorem 6. Any “Special-CCA” secure encryption scheme is selective FE-
Compatible for any function family Fn and poly(n) function key queries assum-
ing:

– Polynomially secure differing inputs obfuscation. (AND)
– Polynomially secure strong one time signatures.

Moreover, the resulting FE scheme is also compact.

One example of a one time signature scheme is the Lamport signature scheme
[Lam79]. Observe that it is in fact a unique one time signature scheme if we rely
on injective one way functions. Instantiating the Special-CCA scheme with the
various schemes in Sect. 5.3, we get the following two corollaries:

Corollary 7. Let X denote the CCA secure encryption scheme in any of the
following popular works:

– [CHK04] when instantiated with the IBE scheme of [BB04].
– [CHK04] when instantiated with any Hierarchical IBE scheme.
– [PW08] when instantiated with any Lossy Trapdoor Function.

Assuming the existence of sub-exponentially secure indistinguishability obfusca-
tion and sub-exponentially secure injective one way functions, scheme X is selec-
tive FE-Compatible for any function family Fn and poly(n) function key queries.
Moreover, the resulting FE scheme is also compact.

Corollary 8. Let X denote the CCA secure encryption scheme in any of the
following popular works:
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– [CHK04] when instantiated with the IBE scheme of [BB04].
– [CHK04] when instantiated with any Hierarchical IBE scheme.
– [PW08] when instantiated with any Lossy Trapdoor Function.

Assuming polynomially secure differing inputs obfuscation and polynomially
secure one way functions, scheme X is selective FE-Compatible for any func-
tion family Fn and poly(n) function key queries. Moreover, the resulting FE
scheme is also compact.

Construction: Let (O,Eval) be a secure obfuscator (note that we will use indis-
tinguishability obfuscation in one proof and differing inputs obfuscation in the
other). The functional encryption FE = (FE.Setup,FE.Enc,FE.Keygen,FE.Dec)
built from the Special-CCA scheme PKE is as follows. Recall that from the
definition of FE-Compatibility, FE.Setup(·) = PKE.Setup(·) and FE.Enc(·) =
PKE.Enc(·).

– FE.Setup(1n): Run PKE.Setup(1n) to generate (PK,SK).
– FE.Enc(PK,m): Run PKE.Enc(PK,m) to generate the ciphertext CT = (VK,
CT1, σ).

– FE.Keygen(SK, f): Output SKf = O(Gf ) where the program Gf is described
below.

– FE.Dec(SKf ,CT) Run the program SKf on input CT to output a string y
(Fig. 3).

Program Gf

Input : ciphertext CT
Constants : SK

1. Compute m = PKE.Dec(SK,CT).
2. Output ⊥ if the decryption aborts.
3. Else, output f(m).

Fig. 3. Program for generating function secret key

Security Proof. We will prove this via a series of hybrid experiments where we
show that every successive pair of hybrids is computationally indistinguishable
and the final hybrid is independent of the challenge bit b and hence the attacker’s
advantage will be 0 in the final hybrid. We will show the indistinguishability of
the hybrids using two different proofs in some cases to prove both Theorems 5
and 6.

– Hyb1: This is the real world experiment with challenge bit b chosen randomly.
The challenge ciphertext as CT∗ = (VK∗,CT∗

1, σ
∗).
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– Hyb2: This hybrid is identical to the previous hybrid except that
now, FE.Setup(1n) and the challenge ciphertext are computed differently.
Instead of running the setup algorithm PTBE.Setup(1n), we now run
PTBE.Setup-Alt(1n,VK∗,m∗

b) to generate (PK,SK,SK-Alt,CT∗
1). The FE

scheme’s public key is PK, secret key is SK. Now, the challenge ciphertext
is computed as follows: generate (SigK∗,VK∗) ← OTS.Setup(1n) and com-
pute σ∗ = OTS.Sign(SigK∗,CT∗

1). The challenge ciphertext is (VK∗,CT∗
1, σ

∗).
Note that the alternate secret key SK-Alt is not used at all.

– For each i in {0, 1, . . . , q}, Hyb3,i: This hybrid is identical to the previous
hybrid except that now, the function secret key SKf for the ith function key
query f is computed as O(G1

f ) for the following program G1
f (Fig. 4).

Program G1
f

Input : ciphertext CT
Constants : SK,CT∗ = (VK∗,CT∗

1, σ
∗)

1. If CT = CT∗, output y where y = f(m∗
0) = f(m∗

1).
2. Compute m = PKE.Dec(SK,CT).
3. Output ⊥ if the decryption aborts.
4. Else, output f(m).

Fig. 4. Program for generating function secret key

Note that Hyb3,0 corresponds to Hyb2.
– For each i in {0, 1, . . . , q}, Hyb4,i: This hybrid is identical to the previous

hybrid except that now, the function secret key SKf for the ith function key
query f is computed as O(G2

f ) for the following program G2
f (Fig. 5).

Program G2
f

Input : ciphertext CT = (VK,CT1, σ)
Constants : SK,CT∗ = (VK∗,CT∗

1, σ
∗)

1. If CT = CT∗, output y where y = f(m∗
0) = f(m∗

1).
2. If VK = VK∗, output ⊥.
3. Compute m = PKE.Dec(SK,CT).
4. Output ⊥ if the decryption aborts.
5. Else, output f(m).

Fig. 5. Program for generating function secret key
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Note that Hyb4,0 corresponds to Hyb3,q.
– For each i in {0, 1, . . . , q}, Hyb5,i: This hybrid is identical to the previous

hybrid except that now, the function secret key SKf for the ith function key
query f is computed as O(G3

f ) for the following program G3
f (Fig. 6).

Program G3
f

Input : ciphertext CT = (VK,CT1, σ)
Constants : SK,CT∗ = (VK∗,CT∗

1, σ
∗)

1. If CT = CT∗, output y where y = f(m∗
0) = f(m∗

1).
2. If VK = VK∗, output ⊥.
3. Check if OTS.Verify(VK,CT1, σ) = 1.
4. Compute m = PTBE.Dec-Alt(SK-Alt,VK,CT1).
5. Output ⊥ if the decryption aborts or if the signature doesn’t verify.
6. Else, output f(m).

Fig. 6. Program for generating function secret key

Note that Hyb5,0 corresponds to Hyb4,q.
– Hyb6: This hybrid is identical to the previous hybrid except that we now run
PTBE.Setup-Alt-1 (1n,VK∗,m∗

b) to generate (PK,SK,SK-Alt,CT∗).
– Hyb7: This hybrid is identical to the previous hybrid except that we now run
PTBE.Setup-Alt-1(1n,VK∗, m∗

0) to generate (PK,SK,SK-Alt,CT∗).

Observe that in this last hybrid, the challenge ciphertext is created indepen-
dent of the bit b. Hence, the attacker’s advantage in this hybrid is 0.

We refer the reader to the full version for the indistinguishability of every
successive pair of hybrids.
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Abstract. In this work we study the feasibility of achieving simulation
security in functional encryption (FE) in the random oracle model. Our
main result is negative in that we give a functionality for which it is
impossible to achieve simulation security even with the aid of random
oracles.

We begin by giving a formal definition of simulation security that
explicitly incorporates the random oracles. Next, we show a particular
functionality for which it is impossible to achieve simulation security.
Here messages are interpreted as seeds to a (weak) pseudorandom func-
tion family F and private keys are ascribed to points in the domain of
the function. On a message s and private key x one can learn F (s, x). We
show that there exists an attacker that makes a polynomial number of
private key queries followed by a single ciphertext query for which there
exists no simulator.

Our functionality and attacker access pattern closely matches the
standard model impossibility result of Agrawal, Gorbunov, Vaikun-
tanathan and Wee (CRYPTO 2013). The crux of their argument is that
no simulator can succinctly program in the outputs of an unbounded
number of evaluations of a pseudorandom function family into a fixed
size ciphertext. However, their argument does not apply in the random
oracle setting since the oracle acts as an additional conduit of infor-
mation which the simulator can program. We overcome this barrier by
proposing an attacker who decrypts the challenge ciphertext with the
secret keys issued earlier without using the random oracle, even though
the decryption algorithm may require it. This involves collecting most of
the useful random oracle queries in advance, without giving the simula-
tor too many opportunities to program.

On the flip side, we demonstrate the utility of the random oracle
in simulation security. Given only public key encryption and low-depth
PRGs we show how to build an FE system that is simulation secure for
any poly-time attacker that makes an unbounded number of message
queries, but an a-priori bounded number of key queries. This bests what
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is possible in the standard model where it is only feasible to achieve
security for an attacker that is bounded both in the number of key and
message queries it makes. We achieve this by creating a system that
leverages the random oracle to get one-key security and then adapt pre-
viously known techniques to boost the system to resist up to q queries.

Finally, we ask whether it is possible to achieve simulation security for
an unbounded number of messages and keys, but where all key queries
are made after the message queries. We show this too is impossible to
achieve using a different twist on our first impossibility result.

1 Introduction

The traditional notion of public key encryption systems provide “all or nothing”
semantics regarding encrypted data. In such a system a message m is encrypted
under a public key, pk, to produce a ciphertext ct. A user that holds the corre-
sponding secret key can decrypt ct and learn the entire message m, while any
other user will not learn anything about the contents of the message. The work
of Sahai and Waters [32] conceived cryptosystems that moved beyond these lim-
ited semantics to ones where a private key would give a select view of encrypted
data. These efforts [13,25,32] cumulated in the concept of functional encryption.
In a functional encryption system an authority will generate a pair of a public
key and master key pair (pk,msk). Any user can encrypt a ciphertext ct using
the public key, while the authority can use the master secret key msk to generate
a secret key skf that is tied to the functionality f . A holder of skf can use it to
decrypt a ciphertext ct, but instead of learning the message m, the decryptor’s
decryption will instead output f(m).

One challenge in defining and designing functional encryption (FE) systems is
in finding a definition to capture security. The earliest formal definitions of func-
tional encryption [13,25] (back when the terminology of “predicate encryption”
was used) defined security in terms of an indistinguishability game. Briefly, a
system is indistinguishability secure if no poly-time attacker that receives secret
keys for functions f1, . . . , fQ can distinguish between encryptions of m0,m1 so
long as fi(m0) = fi(m1) for i = 1, . . . , Q.

Subsequent works [2,5,12,29] aimed to capture various notions of simulation-
based security. To achieve simulation one must be able to show that for each
attacker there exists a poly-time simulator S that can produce a transcript that
emulates the attacker’s real world view, but when only given access to what
the evaluation of the secret key functions f(·) were on the attacker’s messages.
(We will return to describing simulation-based security in more detail shortly.)
While these simulation definitions had the appeal of perhaps capturing a stronger
notion of security than the indistinguishability-based ones, they were limited
in that multiple works [2,5,12,22,29] showed that this notion is impossible to
achieve in the standard model for even very basic functionalities such as identity-
based encryption [11,33]. The only exception being in the restricted case where
the attacker is only allowed to access an a-priori bounded number of secret
keys [20].
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While these results essentially put a hard stop on realizing (collusion-
resistant) simulation security in the standard model, the door to leveraging
the random oracle model [6] still remained wide open. Notably, Boneh, Sahai
and Waters [12] building on techniques from non-committing encryption [28]
showed that the random oracle could be leveraged to turn any indistinguishabil-
ity secure public index FE scheme into one that was simulation secure. Recall
that a public index scheme is one where an encrypted message is split into a
hidden payload and a non-hidden index and the secret key operates only on the
index. The set of such schemes includes identity-based encryption [11,33] and
attribute-based encryption [32]. Thus, they showed that introducing a random
oracle was enough to circumvent their own standard model IBE result. In this
work we wish to understand what are the possibilities and limitations (if any)
for using random oracles to achieve simulation security in FE systems. Our work
begins with the question:

Is it possible to achieve simulation secure functional encryption
for any functionality in the random oracle model?

Our main result is to show that there exist functionalities for which there
cannot exist a simulation secure functional encryption system even in the random
oracle model.

On the flip side, we demonstrate the utility of the random oracle in simula-
tion security. Given only public key encryption and low-depth PRGs we show
how to build an FE system that is simulation secure for any poly-time attacker
that makes an unbounded number of message queries, but an a-priori bounded
number of key queries. This beats what is possible in the standard model where
it is only feasible to achieve security for an attacker that is bounded both in
the number of key and message queries it makes. We achieve this by creating a
system that leverages the random oracle to get one-key security and then adapt
previously known techniques to boost the system to resist up to q queries.

Finally, we ask whether it is possible to achieve simulation security for an
unbounded number of messages and keys, but where all key queries are made
after the message queries. We show this too is impossible to achieve by repur-
posing our main impossibility result to the new setting.

1.1 Our Main Impossibility Result

We show the impossibility result for the case where messages are interpreted as
keys or seeds to a (weak) Pseudo Random Function (PRF) [18] family and secret
keys are points in the domain of the PRF. Agrawal, Gorbunov, Vaikuntanathan
and Wee [2] showed that such a functionality could not be simulation secure
in the standard model. Here we show that this limitation holds even with the
introduction of random oracles.

We begin our exposition by describing the definition of simulation security
in a little more depth and briefly overviewing the AGVW impossibility analysis.

Simulation Security. Simulation security for FE is defined by means of real and
ideal experiments. In the real experiment, an adversary A gets secret keys for
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functions f and ciphertexts for challenge messages m of its choice. The secret
key queries can either be sent before the challenge messages (also referred to as
pre-challenge queries) or after the challenge messages (post challenge queries).
In the ideal world, on the other hand, a simulator S needs to generate challenge
ciphertexts and keys given only the minimal information. In particular, when A
requests that a challenge message m be encrypted, S only gets f(m) on all the
pre-challenge functions f queried by A (instead of m itself), and must generate
a ciphertext that A cannot distinguish from the one in the real world. Similarly,
when A makes a post-challenge key query for f ′, S must generate a secret key
given just f ′, f ′(m) for all challenge messages m.

An FE scheme is (qpre, qchal, qpost)-simulation secure if it can withstand adver-
saries that make at most qpre pre-challenge key queries, qchal challenge encryption
requests, and qpost post-challenge key queries. Ideally, one would like to capture
all polynomial-time adversaries, who can make any number of queries they want.
However, even simple functionalities like identity-based encryption do not have a
scheme secure against an arbitrary number of encryption requests followed by one
key query, i.e., IBE does not have a (0, poly, 1)-simulation secure scheme [5,12] in
the standard model. Here poly denotes that any number of encryption requests
can be made, as long as there is a polynomial bound on them.

AGVW Impossibility. A different kind of impossibility was shown by Agrawal et
al. [2]. They interpret messages as seeds to a weak pseudorandom family wPRF1

and secret keys as points in the domain of the family. When a ciphertext for
s is decrypted with a secret key for x, the output is wPRF(s, x). They show
that there does not exist a simulation-secure FE scheme for this family that can
tolerate adversaries which can make an arbitrary number of pre-challenge key
queries and then request for the encryption of just one message (i.e., (poly, 1, 0)-
simulation security). Intuitively, when the adversary outputs a message s in the
ideal world, the simulator gets wPRF(s, x1), . . . ,wPRF(s, xq) (if q is the number
of post-challenge key queries), which is computationally indistinguishable from
q uniformly random strings. The simulator must output a ciphertext ct now that
decrypts correctly with all the keys issued before. Note that when the keys were
issued, simulator had no information about s, so it must somehow compress q
random strings into ct. However, as Agrawal et al. show, the output of a pseudo-
random function family is incompressible. Thus, by choosing a large enough q,
they arrive at the impossibility result.

Random Oracle Model. In the random oracle model though, Agrawal et al.’s
impossibility argument breaks down. Informally speaking, the random oracle acts
as an additional conduit of information which the simulator can program even
after ct appears. For instance, if the decryption algorithm makes RO queries,
then the simulator could program such queries when adversary tries to decrypt ct
with the secret keys issued earlier. Indeed, Boneh et al. show that their (0, poly, 1)

1 A weak pseudorandom function family provides security only against attackers that
do not get to choose the points at the which the PRF is evaluated. These points are
chosen randomly by the challenger.
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impossibility for IBE can be circumvented by employing RO in the encryption
and decryption algorithms.

Thus we need a very different approach. We would like to build an adversary
A� that “cuts off” RO in the decryption process, and is able to work without
it. This involves a delicate balancing act between cutting off too early and too
late. In one extreme case, if A� does not invoke RO at all and makes up its
own responses, then these would not match with the actual RO responses in
encryption and key generation. Thus decryption would always fail in both the
real and ideal worlds, and there will be no distinction between them. On the
other extreme, if A� just used the RO all the way through, it would provide
the simulator enough opportunity to program in the desired information. (As a
result, we will not be able to use the incompressibility of wPRF.)

At a high level, our approach is similar to the Impagliazzo-Rudich “heavy-
query” algorithm [23]. First, there is an initial learning phase where A� will build
a list of “high frequency” random oracle queries and responses associated with
each secret key and the challenge ciphertext. Later the attacker will be able to
use this list to replace the use of the actual random oracle during decryption. If
some query is not found in the list, then A� will choose a random value for it on
its own. Informally, we get the following result:

Theorem 1 (Main Theorem, informal). There does not exist a (poly, 1, 0)-
simulation secure FE scheme for the class of (weak) pseudo-random functions
in the random oracle model.

Related Work. This bears a resemblance to the work of Canetti, Kalai and
Paneth [15] who show impossibility of VBB obfuscation even with ROs. In their
case they show that any obfuscated program that uses the RO can be translated
into one that does not need it. They do this by collecting the frequently used
RO queries and bundling this with the core obfuscated code. On one hand, these
queries do not give any information about the program, but on the other, result
in an obfuscation that is only approximately correct. Such imperfect correctness,
however, is enough to invoke the impossibility of Bitansky and Paneth [9].

One might ask if we can show whether RO can be dispensed with in any
simulation secure FE in a similar way. If we could establish this, then prior
impossibility results [2,5,12] would imply RO impossibility as well. The answer
to this is negative as we recall that Boneh, Sahai and Waters [12] showed specific
functionalities that were impossible to simulate in the standard model, but pos-
sible to be simulation secure using random oracle. Therefore we cannot always
remove the random oracle and must develop a more nuanced approach: we need
to build a specific adversary for which simulation does not work.

In a recent work [27], Mahmoody et al. show that there is no fully black-box
construction of indistinguishability obfuscation (iO) from any primitive implied
by a random oracle in a black-box way. In light of recent FE to iO transformations
[3,10], one might wonder if this rules out FE schemes in the RO model. However,
these transformations are non-black box.
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High Level Description of Impossibility. Recall that we want to design an
adversary A� that will build a list of “high frequency” random oracle queries
and responses associated with each secret key and the challenge ciphertext. It
will use this list later in the decryption phase to “cut-off” the random oracle at
an appropriate time.

A� starts off by querying the key-generation oracle at random points
x1, . . . , xq in the domain of wPRF, and gets sk1, . . . , skq in return. The RO queries
made by the key-generation oracle are hidden from the adversary, so A� tries to
find them by encrypting several randomly chosen seeds using the master public
key, and then decrypting them with sk1, . . . , skq.2 The RO queries made during
the decryption process are recorded in a list Γ . The hope is that Γ will capture
the RO queries that were made in generating a key ski.

Note that one cannot hope to capture all RO queries required for decryption:
Suppose a polynomial number Y of high frequency queries associated with ski

is collected, but there is an RO call that is made during key-generation which
is used during 1/2Y fraction of the decryptions. Then it will be the case that
with some non-negligible probability, Γ will fail to aid in the decryption of the
challenge ciphertext with ski. Instead of trying to solve this issue, we make
our analysis work with a decryption that might fail some of the time. For this
purpose, we extend the incompressibility argument of Agrawal et al. to work
even for approximate compression.

We are not quite done yet. Even though we have captured most of the hidden
RO queries involved in key-generation that are also needed for decryption, we
still need to capture those that are involved in the encryption of the challenge
message, as they are also hidden and may be required during decryption.3 Sup-
pose A� outputs a randomly chosen seed s� as the challenge message, and gets
ct� in return. In order to find out RO queries associated with ct�, A� cannot
generate secret keys on its own (like in the pre-challenge phase when it gener-
ated ciphertexts); it must make-do with the secret keys sk1, . . . , skq that were
issued earlier. Thus, the idea is to decrypt ct� with some fraction δ of the keys
using RO, recording the queries in the list Γ . It then cuts off the random oracle,
and decrypts ct� with the remaining keys using the list Γ . If a query is not
found in Γ , then a random value is used for it (as well as recorded in Γ for
consistent responses in future). The adversary outputs 1 if a large fraction of
these decryptions are correct; that is, if the decryption of ct� using ski outputs
wPRF(s�, xi).

In the real world, as we will see, the adversary outputs 1 with noticeable
probability. On the other hand, we show that in the ideal world, the adversary
outputs 1 only with negligible probability. For the adversary to output 1 in
the ideal world, the simulator needs to somehow program the ciphertext and

2 It is important that this is done before the challenge message is put out, otherwise
simulator will get an opportunity to program in additional information through the
random oracle.

3 The RO queries made while setting up the FE system are also hidden from the
adversary, but we ignore them here for simplicity.
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the post-challenge random oracle queries so that a large number of decryptions
succeed. The only opportunity a simulator has of programming post-challenge
RO responses is when δ fraction of the keys are used for decrypting ct�. By
choosing δ appropriately, we can ensure that the simulator is not able to program
the RO queries to the extent that most of the remaining decryptions succeed.

Looking Back. A simulator’s success in the RO model depends on when it
comes to know what to program and how much can it program. When deal-
ing with the attacker A� described above, it gets a large amount of information,
wPRF(s�, x1), . . . ,wPRF(s�, xq), only in the challenge phase. Since all the key
queries come before that, programming the secret keys is ruled out. If there
was no random oracle, then the only possible avenue to program is the chal-
lenge ciphertext, but AGVW shows that it is not possible to compress so much
information into a small ciphertext. Now with the random oracle, it might have
been possible to program this information if there were many RO queries after
the challenge phase. However, our adversary makes only a bounded number of
post-challenge RO queries, and as a result, it is not possible to program all of
{wPRF(s�, xi)} in these RO responses.

An Alternative Approach to Proving Impossibility. Concurrent to our
work, Bitansky, Lin and Paneth [7] showed an alternate approach for remov-
ing random oracles. Unlike our current impossibility, their approach requires
multiple ciphertexts. We sketch the main ideas here.

This approach uses a notion of obfuscation called ‘exponentially-efficient
obfuscation’, introduced by Lin et al. [26]. An exponentially-efficient obfusca-
tor is allowed to run in subexponential time, and the obfuscated program is also
allowed to be subexponential in the input length. For security, Lin et al. con-
sidered the iO equivalent, where the obfuscation of two functionally identical
programs should be computationally indistinguishable. However, one can even
consider simulation based notions where the output of the obfuscator can be
simulated by a simulator having only black box access to the program.

In a recent work, Bitansky et al. [8] showed that IND-secure functional
encryption can be used to construct exponentially-efficient indistinguishability
obfuscation [26] in a black-box manner. While there exist other transformations
from FE to obfuscation [3,10], the BNPW transformation is the only known
black-box transformation, and this is important when studying FE or obfus-
cation in the random oracle model. Using the BNPW transformation, one can
argue that simulation secure FE in the random oracle model implies simulation-
secure exponentially-efficient obfuscation in the random oracle model. Therefore,
to rule out FE in the random oracle model, it suffices to show that there exist cer-
tain functionalities for which we cannot obtain simulation-secure exponentially-
efficient obfuscation in the random oracle model.

This can be achieved using the techniques of Canetti et al. [15], who showed
an impossibility result for VBB obfuscation in the random oracle model. Canetti
et al. showed that if there exists a VBB obfuscator in the random oracle model,
then there exists an ‘approximate’ VBB obfuscator in the standard model. A
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similar argument can be used to show that if there exists simulation-secure
exponentially efficient obfuscation in the random oracle model, then there exists
approximately correct simulation-secure exponentially-efficient obfuscator in the
standard model.

Finally, one needs to show that it is impossible to construct approximately
correct simulation-secure exponentially-efficient obfuscators for certain function
classes. This argument is similar to the incompressibility argument that we use.
Let C be a circuit that performs PRF evaluation, and consider the obfuscation
of C. A simulator must output an obfuscation given only black box access to
the PRF function, which in turn is indistinguishable from a truly random func-
tion. Therefore, the simulator must output a subexponential sized string that
approximately explains a truly random function, which is impossible.

1.2 A New Possibility Result in the Random Oracle Model

Now that we know that simulation security is impossible for unbounded queries
even in the random oracle model, we turn to asking whether this model can be
leveraged to support simulation security in any situations where it is impossible
in the standard model. We already have one such example from the work of
Boneh et al. [12] which gives both a standard model impossibility and a random
oracle feasibility result for public index schemes. Thus, we are interested in new
examples that go beyond the public index class. In this paper, we show the
following possibility result:

Theorem 2 (Possibility, informal). There exists a simulation secure FE
scheme for the class of all polynomial-depth circuits in the random oracle
model secure against any poly-time attacker who makes an unbounded number
of messages queries, but an a-priori bounded number of key queries, based on
semantically-secure public-key encryption and pseudo-random generators com-
putable by low-depth circuits.

Recall that such a security notion cannot be achieved even for the simple
functionality of IBE in the standard model [12].

One-Bounded FE. Our starting point is a one-bounded simulation-secure FE
scheme for all circuits, i.e., a scheme where the attacker can only make one key
query, based just on the semantic security of public-key encryption. Our scheme
is a variant of the Sahai-Seyalioglu [31]. Let C be a family of circuits wherein
each circuit can be represented using t bits. Suppose Ux is a universal circuit
that takes a C ∈ C as input, and outputs C(x). The set-up algorithm of our
FE scheme generates 2t key pairs of a semantically-secure public-key encryption
scheme. The 2t public keys (pk1,0, pk1,1), . . . , (pkt,0, pkt,1) form the master public
key, and the 2t private keys (sk1,0, sk1,1) . . . , (skt,0, skt,1) are kept secret. In order
to encrypt a message x, a garbled circuit for Ux is generated. Suppose wi,b for
i = 1, . . . , t and b = 0, 1 are the wire-labels of Ux for its t input bits. Then
the (i, b)th component of the ciphertext consists of two parts: an encryption of
a random value ri,b under pki,b, and wi,b blinded with the hash of ri,b. The
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key for a circuit C represented using bits β1, . . . , βt is simply the private keys
corresponding to those bits, i.e., skβ1 , . . . , skβt

.
It is easy to see that the one-bounded FE scheme is correct. Specifically,

the secret key for C will allow one to recover ri,βi
for i = 1, . . . , t. Then by

running the hash function on these values, the wi,βi
can be unblinded and used

to evaluate the garbled circuit.
Let us now see how a simulator S can generate ciphertexts and a key from the

right distribution in the ideal world. If the only allowed key query is made before
the challenge phase for a circuit C, then S just runs the normal key generation
algorithm, and later when adversary outputs a challenge message x�, it can
generate a garbled circuit using just C(x�).4 When the adversary’s key query
is after the challenge message, however, S does not get any information in the
challenge phase. In particular, it does not know which universal circuit to garble.
Here the random oracle allows the simulator to defer making a decision until
after the key query is made. It can set the second part of the (i, b)th ciphertext
component to be a random number zi,b because, intuitively, adversary does not
know ri,b (it is encrypted) so a hash of it is completely random. When adversary
queries with a circuit C afterwards, simulator can program the random oracle’s
response on ri,b to be zi,b ⊕ wi,b, so that decryption works out properly.

Bounded Collusion FE. Using the one-bounded scheme in a black-box way, we
can design an FE scheme secure against any a-priori bounded collusions for the
class NC1, using Gorbunov et al.’s [20] transformation. While their transforma-
tion was proved secure for only one challenge message, we show that the same
ideas also work for unbounded number of challenge messages. If the underlying
one-bounded scheme is secure against any number of challenge messages, then
so is the scheme obtained after applying their transformation.

Related Work. Sahai and Seyalioglu [31] were the first to use randomized encod-
ings to design an FE system. Their scheme can issue one key non-adaptively for
any function. Our one-bounded scheme can be seen as an extension of theirs to
additionally support post-challenge key query. The random oracle allows a sim-
ulator to not commit to any value in the ciphertext until the function evaluation
is made available.

Goldwasser et al. [19] also designed an FE system that can issue one pre-
challenge key. Their scheme has succinct ciphertexts (independent of circuit size)
but security is proved under stronger assumptions.

Iovino and Zebroski [24] present two results on simulation-secure FE in the
public-key setting. First, they have a construction for a bounded number of chal-
lenge ciphertexts and pre-challenge key queries (and unbounded post-challenge
queries), where key size grows with number of challenge ciphertexts but the
ciphertext size is constant. The encryption/decryption time grows with the num-
ber of pre-challenge key queries. The second construction is for bounded key
queries and challenge ciphertexts, but with constant size keys and ciphertexts.

4 In fact, if we just want pre-challenge key query security, then there is no need for
random oracle.
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Here the encryption/decryption times depend on the bound on number of key
queries and challenge ciphertexts. Both these results use extractability obfusca-
tion. Our positive result presents a construction where the number of challenge
ciphertexts is unbounded, but key queries are bounded. Therefore, our positive
result and the results of Iovino and Zebroski are incomparable. Moreover, our
construction only requires PKE and low-depth PRGs, whereas their construc-
tions require stronger assumptions.

1.3 Another Impossibility Result

A natural question to ask is whether we can construct a simulation secure
FE scheme in the random oracle model that can handle unbounded ciphertext
queries, followed by an unbounded number of post-challenge key queries. We
show that this is also impossible, assuming the existence of weak pseudorandom
functions.

Theorem 3. There does not exist a (0, poly, poly)-simulation secure FE scheme
for the class of (weak) pseudo-random functions in the random oracle model.

Once again we interpret messages as seeds to a weak PRF family wPRF and
secret keys as points in the domain of the PRF. A very different way to attack
an FE scheme is needed though because no key query can be made before the
challenge phase.

The new attacker A� starts off by outputting randomly chosen seeds
s1, . . . , sk for wPRF, and gets ciphertexts ct1, . . . , ctk in return. The RO queries
made in the encryption process are hidden from A�, and it might need some of
them later during decryption. So, it requests secret keys for randomly chosen
points x1, . . . , xq, and gets sk1, . . . , skq in return. Then it decrypts every cti with
skj and records the RO queries made in a list Γ . An important point to note
here is that the simulator gets some information about the seeds chosen earlier
when key-queries are made. Specifically, it gets wPRF(s1, xj), . . . ,wPRF(sk, xj)
when xj is the query.

A� now picks a random point x∗ and requests a secret key for it. The goal is
to use the key obtained, say sk∗, to decrypt the challenge ciphertexts ct1, . . . , ctk
later. But, in order to do so, A� also needs to find out the RO queries made
during key-generation that may also be required for decryption. To solve this
problem, we use the same idea as in the previous impossibility result: encrypt
some random seeds on your own and decrypt them with sk∗, while adding the
RO queries made to Γ .

Finally, A� decrypts ct1, . . . , ctk with sk∗ without invoking the random ora-
cle, using the list Γ instead. In the real world, at least a constant fraction of the
decryptions succeed. The analysis is similar to that of the previous impossibility
result, but with the role of ciphertext and key reversed. The ideal world analy-
sis, on the other hand, need more care because of two reasons. First, as pointed
out earlier, some information about the seeds s1, . . . , sk is leaked when post-
challenge key queries are made. Second, the simulator needs to compress the
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evaluation of wPRF on seeds s1, . . . , sk and a common point x∗, instead of one
seed and multiple points as in the (poly, 1, 0) impossibility. At the same time,
however, the only opportunity a simulator has of programming RO responses
after learning wPRF(s1, x∗), . . . ,wPRF(sk, x∗) is when ciphertexts for random
seeds are decrypted with sk∗ with the help of RO. So, it is conceivable that
one can exploit the security of wPRF to argue that it is impossible to com-
press wPRF(s1, x∗), . . . ,wPRF(sk, x∗) into a small key and a small number of
RO responses. We show that this is indeed the case in the full version [1].

1.4 Relation to De Caro et al. and Functional Encryption for
Circuits with Random Oracle Gates

At the time of the initial posting of our work, De Caro et al. [16] stated (The-
orem 3) that indistinguishability security for FE schemes in the random oracle
model implied simulation security, resulting in an apparent discrepancy with
our results. After our work was posted we contacted the authors to point out
this dissonance. The authors informed us that they had earlier become aware
of an issue with the theorem statement, but had not yet prepared an update to
their posting. They stated that they intended to update it to a statement that
indistinguishability-based definition of “functional encryption for circuits with
random oracle gates” implied simulation security.

At the time, the notion of functional encryption for circuits with random
oracle gates had not previously appeared in the literature and we were unable
to deduce the intended definition from the phrase. Subsequently, the authors
provided a revision which defined the concept and provided a transformation in
the random oracle model which showed this new notion implies (regular) simu-
lation security [17]. However, since our work shows such a notion is impossible
to achieve, this must imply that this indistinguishability notion of “functional
encryption for circuits with random oracle gates” was impossible to realize to
begin with.

Despite sharing the term random oracle the new concept proposed in their
revision is quite different than how the random oracle model was proposed [6].
Recall, that a cryptographic system built in the random oracle model will have
the same algorithms and definitions as the standard model counterpart with the
exception that each algorithm is allowed oracle access to a random function. We
emphasize that the random oracle model in of itself is not impossible, it is just
simply a different model.5 Prior works would typically first establish provable
security in the random oracle model and then apply the heuristic of replacing
the random oracle calls with those to a hash function. It is this last step where
security can actually be lost; in some cases no matter what the hash function
is [14]. The concept of IND-FE in the random oracle model is not impossible

5 We note that in practice one could actually instantiate this model with a trusted
third party that dynamically builds a random table. However, this is not done since
presumably one does not want to require online communication and introduce such
a trusted third party.
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to achieve (as far as we know), but we show that it is still insufficient to get
simulation security. This impossibility holds for the random oracle model itself
and is completely independent of the hash function replacement heuristic.

In the concept of functional encryption with random oracle gates as defined
in the revision of [17] the random oracle is not just used as a tool to help
augment functional encryption, but actually incorporated into a definition of
functional encryption as the descriptions of a functionality f will depend on
the random oracle. (Due to space limitations we refer the reader to [17] for a
detailed description of the new definition.) As a simple argument will show, this
new indistinguishability notion, unlike standard FE in the random oracle model,
is impossible to begin with. So the addition of random oracle gates to FE circuits
moves one to a primitive that is unachievable.

The combination of our simulation impossibility results with the implications
from [17] imply this new notion of indistinguishability FE with random oracle
gates is impossible to achieve. However, there is a much simpler and direct
argument, which we provide in the full version of our paper [1].

1.5 Interpreting Our Impossibility Results

Impossibility results for simulation secure functional encryption in the standard
model were already known before our work. If we take any FE system secure in
the Random Oracle Model and then take the heuristic of replacing the oracle
calls with some hash function family, then we have a standard model FE scheme.
We know this new system to be impossible to be simulation secure from prior
work. So a natural question to ask is what new interpretations does our result
provide. We believe there are two main points here.

First, an interpretation of our result is understanding FE in idealized mod-
els. While the random oracle model is closely associated with the random oracle
heuristic (i.e. replacing oracle calls with hash functions), there are different pos-
sible ways to try to “instantiate” a cryptosystem described in the random oracle
model. One possibility is to replace calls to the random oracle with secure hard-
ware tokens. Another could be a use of a blockchain.

In addition, in the interest of getting a better and deeper scientific under-
standing it is useful to map out cryptography in both the standard and random
oracle models. There has been precedent for this in our community. For example,
the Boneh et al. [12] paper which gave some examples of schemes (simulation
secure FE schemes where the adversary sends unbounded challenge messages,
followed by one key query) that were possible in the random oracle model, but
impossible otherwise. Going further out, to best understand non-committing
encryption it is useful to know both that it is impossible in the standard model
and that it is possible in the RO model.

Secondly, we also posit that there may be some forms of security that lie in
between simulation security and indistinguishability security, but that are hard
for us to understand or formally define. Suppose there did exist an FE scheme
that was simulation secure in the RO model, and one did apply the random
oracle heuristic to it. It is possible that even if this new scheme is not simulation



Impossibility of Simulation Secure FE Even with Random Oracles 671

secure, the transformation could result in some gain of security. Perhaps this gain
in security might even be what is right or needed for a particular application.
One example is that while the Fiat-Shamir heuristic applied to zero knowledge
protocol does not give a simulation secure NIZK, but might give the right form of
security needed for a particular application (e.g. its use in some cryptocurrency).

2 Preliminaries

We use λ to denote the security parameter. Let [n] denote the set {1, 2, . . . , n}.
If A is an algorithm, then a ← A(·) or A(·) → a denote that a is the output of
running A on the specified inputs. If D is a distribution, then s ← D denotes
that s is a sample drawn according to it. Also, x

R← X denotes drawing a value
x uniformly at random from the set X.

For two distribution ensembles X = {Xλ}λ∈N
and Y = {Yλ}λ∈N

, we use
X c≈ Y to denote that X is computationally indistinguishable from Y. Lastly,
for two vectors u = (u1, . . . , un) and v = (v1, . . . , vn), their Hamming distance
HD(u, v) is defined to be the number of points where they don’t match, i.e., the
size of set {i ∈ [n] |ui �= vi}.

2.1 Weak Pseudo-Random Functions

Our impossibility results rely on the existence of circuit families whose output
cannot be compressed by a significant amount. In Sect. 4, we will show that a
specific circuit family built from pseudo-random functions (PRFs) is not com-
pressible. In fact, like Gorbunov et al. [20], a weaker type of PRF where adversary
only gets evaluation at random points suffices for our purpose.

Definition 1 (Weak PRFs). Let n,m, p be polynomials in λ. Let wPRF =
{wPRFλ}λ∈N be a family of efficiently computable functions such that wPRFλ :
{0, 1}n(λ) × {0, 1}m(λ) → {0, 1}p(λ), where the first input is called the seed. Pick
a seed s

R← {0, 1}n(λ) and � + 1 points x1, . . . , x�, x
� R← {0, 1}m(λ). Let D� be

the �-tuple of values (x1,wPRFλ(s, x1)), . . . , (x�,wPRFλ(s, x�)). Then the wPRF
family is a weak pseudo-random function family if for every � polynomial in λ,

{D�, x
�,wPRFλ(s, x�)}λ∈N

c≈ {D�, x
�, r}λ∈N,

where r is a random string of length p(λ).

Below we present two alternate definitions of security for a weak pseudoran-
dom family. The first one is a standard definition for PRFs/weak PRFs, while
the second one is introduced for our final impossibility result. They both follow
from Definition 1 above through simple hybrid arguments.

Definition 2 (Weak PRFs, many points). Let wPRF = {wPRFλ}λ∈N be
a family as in Definition 1. Pick s

R← {0, 1}n(λ), x1, . . . , x�
R← {0, 1}m(λ), and



672 S. Agrawal et al.

r1, . . . , r�
R← {0, 1}p(λ). Then the wPRF family is a weak PRF family for many

points if for every � polynomial in λ,

{(x1,wPRFλ(s, x1)), . . . , (x�,wPRFλ(s, x�))}λ∈N

c≈ {(x1, r1), . . . , (x�, r�)λ∈N.

Definition 3 (Weak PRFs, many seeds with aux). Let wPRF =
{wPRFλ}λ∈N be a family as in Definition 1. Pick k seeds s1, . . . , sk

R←
{0, 1}n(λ) and � + 1 points x1, . . . , x�, x

� R← {0, 1}m(λ). Let Dk,� be
the k · �-tuple of values (x1,wPRFλ(s1, x1)), . . . , (x�,wPRFλ(s1, x�)), . . . ,
(x1,wPRFλ(sk, x1)), . . . , (x�,wPRFλ(sk, x�)). Then the wPRF family is a weak
PRF family for many seeds with auxiliary information if for every k, � polyno-
mial in λ,

{Dk,�, x
�,wPRFλ(s1, x�), . . . ,wPRFλ(sk, x�)}λ∈N

c≈ {Dk,�, x
�, r1, . . . , rk}λ∈N,

where r1, . . . , rk are random strings of length p(λ).

2.2 Randomized Encodings

We use decomposable randomized encodings [20] to simplify the description of
our FE schemes. They are known to exist for all circuits due to the works of
[4,34].

Definition 4 (Randomized Encodings). Let C = {Cλ}λ be a family of cir-
cuits, where each circuit C ∈ Cλ takes an n(λ) bit input and produces an m(λ)
bit output. A decomposable randomized encoding RE of C consists of two PPT
algorithms:

– RE.Encode(1λ, C) : It takes a circuit C ∈ Cλ as input, and outputs a random-
ized encoding ((w1,0, w1,1), . . . , (wn(λ),0, wn(λ),1)).

– RE.Decode(1λ, (w̃1, . . . , w̃n(λ))) : It takes an encoding (w̃1, . . . , w̃n(λ)) and out-
puts y ∈ {0, 1}m(λ) ∪ {⊥}.

Correctness. Let C ∈ Cλ be any circuit, and let ((w1,0, w1,1), . . . , (wn,0, wn,1)) ←
RE.Encode(1λ, C). For any input x ∈ {0, 1}n(λ), RE.Decode(1λ, (w1,x1 , . . . ,
wn(λ),xn(λ)

)) = C(x).

Security. To define the security of such a scheme, consider the following two
distributions:

– RealREA (λ). Run A(1λ) to get a C ∈ Cλ and an x ∈ {0, 1}n(λ). Then run
RE.Encode on input C to get an encoding ((w1,0, w1,1), . . . , (wn(λ),0, wn(λ),1)).
Output {wi,xi

}i∈[n(λ)].
– IdealRES (λ). Run A(1λ) to get a C ∈ Cλ and an x ∈ {0, 1}n(λ). Output

S(1λ, C, C(x)).

A randomized encoding scheme RE is secure if for every PPT adversary A, there
exists a PPT simulator S such that

RealREA (λ)
c≈ IdealRES (λ).
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3 Functional Encryption in the Random Oracle Model

A functional encryption scheme for a function space F = {Fλ}λ∈N and a message
space X = {Xλ}λ∈N in the random oracle model consists of four PPT algorithms
that have access to a random oracle O : {0, 1}�(λ) → {0, 1}m(λ), where � and m
are polynomials. The algorithms are described as follows:

– SetupO(1λ): It takes the security parameter (in unary representation) as input
and outputs a public key pk and a master secret key msk.

– KeyGenO(msk, f): It takes the master secret key msk and a circuit f ∈ Fλ as
inputs, and outputs a secret key skf for the circuit.

– EncryptO(pk, x): It takes the public key pk and a value x ∈ Xλ as inputs, and
outputs a ciphertext ctx.

– DecryptO(pk, sk, ct): It takes the public key pk, a secret key sk, and a cipher-
text ct as inputs, and outputs a value y or ⊥.

Correctness. The four algorithms defined above must satisfy the following cor-
rectness property. For all values of the security parameter λ, for every f ∈ Fλ

and x ∈ Xλ, all random oracles O, and all (pk,msk) output by SetupO(1λ),

DecryptO(pk,KeyGenO(msk, f),EncryptO(pk, x)) = f(x).

Without loss of generality, we can assume Decrypt to be deterministic.
One could consider weaker notions of correctness where a negligible proba-

bility of error is allowed.

Statistical Correctness. For all values of the security parameter λ, for every
f ∈ Fλ and x ∈ Xλ, all random oracles O,

Pr

⎡
⎣DecryptO (pk, sk, ct) = f(x) :

(pk,msk) ← SetupO(1λ)
sk ← KeyGenO (msk, f)
ct ← EncryptO (pk, x)

⎤
⎦ ≥ 1 − negl(λ)

3.1 Simulation-Based Security

Definition 5 (Experiments). Let FE = (Setup,KeyGen,Encrypt,Decrypt) be
a functional encryption scheme. For any PPT algorithms A = (A1,A2) and
S = (S1,S2,S3,S4), Fig. 1 defines two experiments RealFEA (λ) and IdealFEA,S(λ).
In the figure, qc denotes the length of challenge message vector x output by A1

and q1 denotes the number of key generation queries made before that.

Definition 6 (Admissibility). An adversary A = (A1,A2) is (qpre(λ),
qchal(λ), qpost(λ))-admissible if in any run of the experiments RealA(1λ) and
IdealA,S(1λ), A1 and A2 make at most qpre(λ) and qpost(λ) key generation
queries, respectively, and A1 outputs at most qchal(λ) challenge messages.

An adversary A is (poly, qchal(λ), qpost(λ))-admissible if in any run of the
experiments RealA(1λ) and IdealA,S(1λ), A1 is allowed to make an unbounded
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Experiment RealFEA (λ):
1. (pk,msk) ← SetupO(1λ)
2. (x, stA) ← AKeyGen-RO1(msk,·,·)

1 (pk)
3. cti ← EncryptO(mpk, xi) for i ∈ [qc]
4. α ← AKeyGen-RO2(msk,·,·)

2 ({cti}i∈[qc], stA)
5. Output α

Experiment IdealFEA,S(λ):
1. (pk, st1) ← S1(1λ)
2. (x, stA) ← AKeyGen-RO1(st1,·,·)

1 (pk)
3. ({cti}i, st3) ← S3(st2, {fj(xi)}i,j)

where f1, . . . , fq1 are key queries
made by A1

4. α ← AKeyGen-RO2(st3,·,·)
2 ({cti}i∈[qc], stA)

5. Output α

In the Real-world experiment, the setup algorithm, using the random oracle O,
outputs public key pk and master secret key msk. The adversary A1 gets pk and
has oracle access to KeyGen-RO1. This oracle responds to random oracle queries
and key generation queries. It has msk hardwired and takes two inputs inp1 and
inp2, where inp1 specifies whether the query is a key generation query or a random
oracle query. In the former case, KeyGen-RO1 outputs KeyGenO(msk, inp2), while
in the latter case, it outputs O(inp2). After polynomially many oracle queries to
KeyGen-RO1, A1 outputs a vector x of ciphertext queries and a state stA. The ad-
versary A2 gets encryptions of all elements in x (note that xi denotes the ith entry
in x) and the state stA. It also has oracle access to KeyGen-RO2, which is identi-
cal to KeyGen-RO1. After making polynomially many oracle queries, A2 outputs α.

In the Ideal-world experiment, the simulator S1 first computes the public key pk,
and simulator state st1. The adversary A1 gets pk and oracle access to KeyGen-RO1,
which is simulator S2 in the ideal-world. The simulator S2 is stateful. It maintains
an internal state st2, gets S1’s state st1 and takes tuple inputs (inp1, inp2), which
indicate whether it is a key generation query or a random oracle query. After
polynomially many queries, adversary A1 outputs x and state stA. The simulator
S3 must give out encryptions of x, using S2s final state st2 and {fj(xi)}i∈[qc],j∈[q1].
The simulator outputs the ciphertexts as well as state st3. Adversary A2 gets these
ciphertexts, state stA and oracle access to KeyGen-RO2. In the ideal world, this
oracle is SKeyIdeal(·)

4 (st3, ·, ·). Here, KeyIdeal takes as input a function f and outputs
(f(x1), . . . , f(xqc)). Also, simulator S4 is stateful and has an internal state st4.
Finally, after polynomially many queries, A outputs α.

Fig. 1. Real and ideal experiments.

(but polynomial) number of pre-challenge key queries, A2 makes at most qpost(λ)
key generation queries, and A1 outputs at most qchal(λ) challenge messages. We
can similarly define admissible adversaries where the number of challenge mes-
sages/post challenge key queries are unbounded.

On the other hand, a simulator S = (S1,S2,S3,S4) is admissible if whenever
A2 makes a key query f , S4 queries KeyIdeal on f only.

Definition 7 (Simulation security). A functional encryption scheme FE =
(Setup,KeyGen,Encrypt,Decrypt) is (qpre(λ), qchal(λ), qpost(λ))-Sim-secure for
some polynomials qpre, qchal, and qpost, if there exists an admissible PPT sim-
ulator S = (S1,S2,S3,S4) such that for all (qpre(λ), qchal(λ), qpost(λ))-admissible
PPT adversaries A = (A1,A2),
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{RealFEA (λ)}λ∈N

c≈ {IdealFEA,S(λ)}λ∈N.

We also consider adversaries that make an unbounded (but polynomial) num-
ber of pre-challenge key queries/challenge messages/post-challenge key queries.

Definition 8 (Simulation security, unbounded queries). A functional
encryption scheme FE = (Setup,KeyGen,Encrypt,Decrypt) is (poly, qchal(λ),
qpost(λ))-Sim-secure for some polynomials qchal, and qpost, if there exists
an admissible PPT simulator S = (S1,S2,S3,S4) such that for all
(poly, qchal(λ), qpost(λ))-admissible PPT adversaries A = (A1,A2),

{RealFEA (λ)}λ∈N

c≈ {IdealFEA,S(λ)}λ∈N.

We can similarly define simulation security when qchal and qpost are unbounded.

Note that in the real world an adversary has explicit access to the random
oracle. In the ideal world, both the key generation and random oracles are sim-
ulated by S throughout the experiment.

Discussion on Previous Definitions of Sim-Secure FE. There are a number of def-
initions of simulation secure functional encryption [2,5,12,30]. While these defi-
nitions are similar in spirit, there are minor differences. For instance, in the secu-
rity game of [2,12], the adversary makes pre-challenge key queries, followed by a
challenge phase (where it queries for ciphertexts), followed by a post-challenge
key query phase. The definition of [5] is more general as it allows arbitrary inter-
leaving of encryption and key-generation queries. We use the AGVW definition
[2] in this work, although we believe our impossibility result can also be extended
to work for the definitions in [5].

4 Hardness of Approximate Compression

In this section, we will first define the notion of approximate compression, and
then show that there are certain circuit families which are hard to approximately
compress. This section closely follows the work of Agrawal et al. [2], who defined
the notion of (exact) compressibility of circuit evaluations, and showed that there
exist certain circuit families that are (exact) incompressible.

Definition 9. Let �, t be polynomials and ε a non-negligible function. A class of
circuits C = {Cλ}λ with domain D = {Dλ}λ and range R = {Rλ}λ is said to be
(�, t, ε)-approximately compressible if there exists a family of compression circuits
Cmp = {Cmpλ}λ, a family of decompression circuits DeCmp = {DeCmpλ}λ, a
polynomial poly, and a non-negligible function η, such that for all large enough
λ the following properties hold:

– The circuits Cmpλ and DeCmpλ have size bounded by poly(λ).
– (compression) For all input s ∈ Dλ and circuits C1, C2, . . . , C�(λ) ∈ Cλ,

∣∣∣Cmpλ

(
{Ci, Ci(s)}i∈[�(λ)]

)∣∣∣ ≤ t(λ).
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– (approximate decompression) If s is chosen at random from Dλ,
C1, C2, . . . , C�(λ) are chosen uniformly and independently from Cλ, then

Pr

[
HD

(
DeCmpλ

(
{Ci}i∈[�(λ)] ,Cmpλ

(
{Ci, Ci(s)}i∈[�(λ)]

))
,
(
C1(s), . . . , C�(λ)(s)

))

≤ ε(λ) · t(λ)

]
≥ η(λ)

We will now show that weak PRFs can be used to construct a class of circuits
that are not approximate compressible. We will then use the more general notion
of approximate incompressibility, rather than the specific case of weak PRFs, in
proving our impossibility results. For simplicity of presentation, in the lemma
statement below, we use specific constants which will be sufficient for our main
result. However, the lemma can be easily extended to work for general �, t and
ε. We assume that the weak PRF outputs a single bit.

Lemma 1. Let wPRF = {wPRFλ}λ be a family of weak pseudorandom functions
(for many points), where wPRFλ : {0, 1}n(λ) × {0, 1}m(λ) → {0, 1}. Consider the
family of circuits C = {Cλ}λ, where Cλ = {wPRFλ(·, x)}x∈{0,1}m(λ) . Let t = t(λ)
be any polynomial such that t(λ) ≥ λ for all λ ∈ N. Then C is not (16t, t, 1/8)
approximate compressible.

The proof of this lemma is given in the full version of our paper [1].

5 Impossibility of Simulation Secure FE

In this section we show that there does not exist a functional encryption scheme
for the family of all polynomial-sized circuits that is (poly, 1, 0)-Sim secure in the
random oracle model. Specifically, we show that a simulation secure FE scheme
cannot be constructed for any family of circuits that is not approximately com-
pressible (Definition 9). We exhibit an adversary A = (A1,A2) such that for any
efficient simulator S, the output of the real experiment, RealFEA (1λ), is distin-
guishable from the output of the ideal experiment, IdealFEA,S(1λ) (Definition 8).

High Level Description of Adversary. Let C be an approximate incompressible
circuit family. The adversary A1 first asks for secret keys for a large number of
randomly chosen circuits from C, and receives {sk1, . . . , skq} in return. Next, it
generates encryptions of many random messages. It then decrypts each of these
ciphertexts using the q secret keys. The purpose of these encryptions followed by
the decryptions is to capture the random oracle queries that would have occurred
while computing the q secret keys, which may also be required when these keys
are used again for decryption later. Let Skeys denote the set of random oracle
queries that occur during these decryptions.

A1 chooses a random message x∗, and outputs it as the challenge (along
with a state that consists of its view so far). A2 then receives a ciphertext
ct∗. It decrypts ct∗ using sk1, . . . , skt, for some small t. Let Sct∗ denote the set
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of random oracle queries during these t decryptions. The purpose of these t
decryptions is to capture the random oracle queries that would have occurred
during the encryption of x∗, which may also be required when ct∗ is decrypted
again in the next step.

Finally, A2 decrypts ct∗ using the remaining q − t secret keys. An important
thing to note here is that A2 turns off the random oracle, and instead uses the
queries that it has already recorded. If a new random oracle query is required,
then it uses a randomly chosen string. It compares the decrypted values to the
correct function evaluations, and outputs 1 if most decryptions are correct.

First, we show that in the real world, A2 outputs 1 with probability at least
3/4. Let us focus on one of the q − t decryptions, using a secret key skj . At a
high level, this decryption can go wrong if a random oracle query is made on z,
and z /∈ Skeys ∪ Sct, but z was used during the computation of either skj or ct.
We show that this event happens with low probability.

To complete the argument, we show that in the ideal world, A2 outputs
1 with probability around 1/2. In this world, the simulator receives q circuit
evaluations on x∗, and must compress most of this information in the short
challenge ciphertext and the random oracle queries made during the t post-
challenge decryption operations. By choosing parameters carefully and appealing
to the (approximate) incompressibility of the circuit family, we show that this is
not possible.

5.1 Formal Description of Adversary

Let C = {Cλ}λ be a family of circuits such that each circuit in Cλ takes an n(λ)-
bit input and is not (16t, t, 1/8) approximately compressible for all polynomials
t such that t(λ) ≥ λ. Let FE be a functional encryption scheme for this family in
the random oracle model. We now formally define the adversary A = (A1,A2).

Adversary A1. Let nkey and nenc be polynomials in λ whose values will be fixed
later. Let Γ be a list of (query, response) pairs that is empty at the beginning.
A1 has four phases: setup, key query, random oracle query collection, and an
output phase.

1. Setup. A1 receives the public key pk.
2. Key query. For i ∈ [nkey], it picks a circuit Ci at random from Cλ, requests

a secret key for Ci, and obtains ski in return.
3. RO query collection 1. A1 picks nenc inputs x1, x2, . . . , xnenc

R← {0, 1}n(λ).
For j ∈ [nenc], it runs EncryptO(pk, xj) to obtain a ciphertext ctj . The RO
queries made during the encryption process are forwarded to the random
oracle.
Now each of the ciphertexts ct1, . . . , ctnenc are decrypted with key ski for
every i ∈ [nkey]. If an oracle query β is made by the Decrypt algorithm, A1

queries the random oracle with the same. The response, say γ, is given to the
algorithm, and (β, γ) is added to Γ (if it is not already present).

4. Output. A1 picks an input x∗ R← {0, 1}n(λ). It sets the state st to consist of
pk, C1, . . . , Cnkey

, sk1, . . . , sknkey
, x∗, and Γ . Then it outputs (x∗, st).
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Adversary A2. Let neval and ntest be polynomials in λ s.t. neval(λ) + ntest(λ) =
nkey(λ) for all λ. (Their values will be fixed later.) A2 gets ct∗ and st as input,
and parses the latter to get pk, C1, . . . , Cnkey

, sk1, . . . , sknkey
, x∗, and Γ . A2 has

three phases: random oracle query collection, test, and an output phase.

1. RO query collection 2. For every i ∈ [neval], ct∗ is decrypted with ski. If an
RO query β is made by the Decrypt algorithm, A2 queries the random oracle
with the same. The response, say γ, is given to the algorithm, and (β, γ) is
added to Γ (if it is not already present).

2. Test. In this phase, ct∗ is decrypted with rest of the keys but without invoking
the random oracle. In order to do so, a new list Δ is initialized first, then
the following steps are executed for every neval + 1 ≤ i ≤ neval + ntest. The
decryption algorithm is run with inputs pk, ski, and ct∗. When it makes an
RO query β, A2 checks whether there is an entry of the form (β, γ) in Γ or Δ
(in that order) or not. If yes, then γ is given to Decrypt and it continues to run.
Otherwise, a random bit-string γ′ of length m(λ) (the output length of the
random oracle) is generated, (β, γ′) is added to Δ, and γ′ is given to Decrypt.
This process of providing responses to the RO queries of Decrypt continues
till it terminates. Let outi denote the output of Decrypt, which could be ⊥.

3. Output. For every neval +1 ≤ i ≤ neval +ntest, check if outi is equal to Ci(x∗)
(where x∗ and Ci are part of the state transferred to A2). Let num be the
number of keys for which this check succeeds. Output 1 if num/ntest ≥ 7/8,
else output 0.

To complete the description of A, we need to define the polynomials nenc,
neval and ntest (recall that nkey = neval + ntest). Let qSetup, qEnc, qKeyGen and qDec

be upper-bounds on the number of RO queries made by Setup, Encrypt, KeyGen
and Decrypt, respectively, as a function of λ. Also, let �ct be an upper-bound on
the length of ciphertexts generated by Encrypt. Then set

– nenc = 4λ · nkey · qKeyGen,
– neval = 32λ (qSetup + qEnc),
– ntest = 16(�ct + neval · qDec · m).

5.2 Real World Analysis

First, we will show that the adversary A = (A1,A2) described above outputs 1
with probability at least 3/4 in the real world experiment, as long as the scheme
FE is correct. To begin with, we classify the random oracle queries made during
a run of A into different sets as follows:

– S-ROCi
for i ∈ [nkey]: random oracle queries made by KeyGen while generating

secret key for Ci.
– S-ROkeys =

⋃
i∈[nkey]

S-ROCi
: all random oracle queries during the key query

phase of A1.
– S-ROx∗ : random oracle queries made while encrypting x∗ using pk.
– S-RODec-i for i ∈ [ntest]: random oracle queries made during the decryption

of ct∗ using skneval+i.
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– S-ROΓ -b: random oracle queries recorded during ‘RO Collection Phase b’ for
b ∈ {1, 2}. Let S-ROΓ = S-ROΓ -1

⋃
S-ROΓ -2.

– S-ROSetup: random oracle queries made during setup phase.

Lemma 2. For any functional encryption scheme FE for the circuit family C =
{Cλ}λ, the adversary A = (A1,A2) described in Sect. 5.1 outputs 1 in RealFEA (1λ)
with probability at least 3/4 − negl(λ).

Proof. We will use the correctness property of FE to prove this claim. Recall
that, for simplicity, we assume correctness to be perfect, i.e., for all random
oracles O : {0, 1}�(λ) → {0, 1}m(λ), x ∈ {0, 1}n(λ), C ∈ Cλ

Pr

⎡
⎣DecryptO (pk, sk, ct) = C(x) :

(pk,msk) ← SetupO(1λ)
sk ← KeyGenO (msk, C)
ct ← EncryptO (pk, x)

⎤
⎦ ≥ 1 − negl(λ)

In particular, we do not assume the decryption to be deterministic.
Let Bad denote the event that the adversary outputs 0 at the end of the

real world experiment. This event happens if at least 1/8th fraction of the ntest

decryptions fail in the test phase. If I-Deci is an indicator variable that takes the
value 1 in case the ith decryption fails, then Bad happens iff

∑
i∈[ntest]

I-Deci >

1/8 · ntest. To analyze the probability of this event, we need to consider the
random oracle queries required for decryption in the test phase. In this phase,
A2 does not query the random oracle, but instead uses the list Γ . If some query
β is not present in Γ , then A2 tries to find it in Δ. If β is not found in Δ either,
then a random value is chosen and recorded in Δ against β.

Now there are two ways in which the ith decryption can fail. The first is if
there is some entry (β, γ) in Δ such that β is also among the RO queries hidden
from the adversary (and its response is not γ), i.e., the queries made during the
setup phase, key query phase or challenge ciphertext generation. The second case
is when the RO query responses are consistent, but the decryption is incorrect
due to ‘bad’ decryption coins. The second failure happens with negligible proba-
bility (due to correctness of the FE scheme). In other words, the ith decryption
succeeds with overwhelming probability if all the needed hidden RO responses
are captured in either of the two RO collection phases. This is formalized in the
following observation.

Observation 1. Let Bad-Dec be the following event:

∃i ∈ [ntest] s.t.
(S-RODec-i

⋂
(S-ROSetup

⋃
S-ROkeys

⋃
S-ROx∗) ⊆ S-ROΓ )

∧
A′

2s decryption of ct∗ using skneval+i does not output Cneval+i(x∗)

There exists a negligible function negl(·) s.t. Pr [Bad-Dec] ≤ negl(λ) where the
probability is over the random coins used by setup, key generation, encryption,
decryption and the adversary’s choice of inputs.
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Proof. This observation follows from the statistical correctness of the scheme.
Fix any index i ∈ [neval]. Since (S-RODec-i

⋂
(S-ROSetup

⋃
S-ROkeys

⋃
S-ROx∗) ⊆

S-ROΓ ), the oracle queries are consistent. Hence, we can use the correctness
guarantee of the scheme to bound the probability of Bad-Dec.

Let I-Dec-1i and I-Dec-2i be indicator variables that are 1 iff
S-RODec-i

⋂
(S-ROx∗

⋃
S-ROSetup) �⊆ S-ROΓ and S-RODec-i

⋂
S-ROkeys �⊆

S-ROΓ , respectively. Then, I-Deci = 1 iff either I-Dec-1i = 1 or I-Dec-2i = 1
(or both). Let Bad-1 and Bad-2 be events that happen iff

∑
i∈[ntest]

I-Dec-1i >

1/16 ·ntest and
∑

i∈[ntest]
I-Dec-2i > 1/16 ·ntest, respectively. It is easy to see that

Pr [Bad] ≤ Pr [Bad-1] + Pr [Bad-2] + Pr [Bad-Dec]

Below we show that Pr [Bad-1] ≤ negl(λ) and Pr [Bad-2] ≤ 1/4. Thus the lemma
follows.

Claim 1. Pr [Bad-1] ≤ negl(λ).

Proof. Fix any random oracle O, the randomness used in SetupO(1λ), challenge
message x∗, and the randomness used in EncryptO(pk, x∗). This also fixes the
sets S-ROSetup and S-ROx∗ . Suppose a circuit C is picked at random from Cλ, and
a key, sk, is generated for it by running KeyGenO (msk, C). For z ∈ S-ROSetup ∪
S-ROx∗ , let ρz be the probability that z is an RO query in the decryption of ct∗

(the challenge ciphertext) with sk, where the probability is over the choice of C,
the randomness used in KeyGen and the random coins used in decryption.

Let Xi,z be an indicator variable that is 1 if an RO query on z is made
during the ith decryption in post-challenge phase (either in the RO collection
2 or test phase). Note that the keys sk1, . . . , sknkey

are generated independently
by choosing circuits C1, . . . , Cnkey

uniformly at random, and the random coins
used in each key generation and decryption are independently chosen. Thus
for any z, the variables X1,z, . . . , Xnkey,z are independent of each other, and
Pr [Xi,z = 1] = ρz for every i.

We are interested in the probability that
∑

i∈[ntest]
I-Dec-1i > ntest/16, i.e., in

at least 1/16th fraction of the decryptions in the test phase, an RO query q is
made s.t. q was also an RO query in either set-up or encryption of x∗, but it
was not captured in either of the collection phases. Thus, there must exist a z
s.t. z /∈ S-ROΓ (in particular, z /∈ S-ROΓ -2) but an RO query on z is made in at
least ntest/16|Q| of the decryptions, where Q = S-ROSetup ∪ S-ROx∗ . (If Q = φ
then Bad-1 cannot happen, and we are done.) Therefore,

Pr

⎡
⎣ ∑

i∈[ntest]

I-Dec-1i >
ntest

16

⎤
⎦ ≤

∑
z∈Q

Pr

⎡
⎣z /∈ S-ROΓ -2 ∧

∑
i∈[ntest]

Xi,z >
ntest

16|Q|

⎤
⎦

Based on the value of ρz, we can divide the rest of the analysis into two
parts. Intuitively, if ρz is large, then the probability that z is not captured
during RO collection phase is negligible. And when it is small, the probability
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that z causes too many decryptions to fail in the test phase is negligible. Since
Q is polynomial in the security parameter, this will prove that the probability
of Bad-1 is negligible as well. So now,

– If ρz ≥ 1/32|Q| then

Pr [z /∈ S-ROΓ -2] = Pr [X1,z = 0 ∧ . . . ∧ Xneval,z = 0]

=
∏

i∈[neval]

Pr [Xi,z = 0]

= (1 − ρz)neval ≤ e−neval/32|Q|,

where the second equality follows from the independence of Xi,z. Recall that
we set neval to be 32λ(qSetup + qEnc), where qSetup and qEnc are upper-bounds
on the number of RO queries made during Setup and Encrypt, respectively.
Thus, e−neval/32|Q| is at most e−λ.

– If ρz < 1/32|Q| then expected value of
∑

i∈[ntest]
Xi,z is at most ntest/32|Q|.

Using Chernoff bounds we can argue that,

Pr

⎡
⎣ ∑

i∈[ntest]

Xi,z >
ntest

16|Q|

⎤
⎦ < e− 1

3 · ntest
32|Q| .

We know that ntest ≥ neval. Thus, e− 1
3 · ntest

32|Q| is at most e−λ as well.

Claim 2. Pr [Bad-2] ≤ 1/4.

Proof. Fix any random oracle O, the randomness used in SetupO(1λ), the
circuits C1, . . . , Cnkey

chosen in the key query phase, and the randomness
used in KeyGenO(msk, Ci) for i ∈ [nkey]. This, in particular, fixes secret keys
sk1, . . . , sknkey

and the set S-ROkeys. Consider the following experiment: x
R←

{0, 1}n(λ), ct ← EncryptO(pk, x), and decrypt ct using ski for i ∈ [neval + 1, nkey].
Let ρ̂z be the probability that at least ntest/16|Q̂| of the decryptions make an
RO query on z, where Q̂ = S-ROkeys.

Let Yj,z be an indicator variable that is 1 iff an RO query on z is made
in at least ntest/16|Q̂| of the decryptions of ctj with keys skneval+1, . . . , sknkey

in
the first phase of RO query collection. Note that the ciphertexts ct1, . . . , ctnenc

are generated independently by choosing x1, . . . , xnkey
uniformly at random, and

the decryption coins are also chosen independently for each decryption. Thus
for any z, the variables Y1,z, . . . , Ynenc,z are independent of each other, and
Pr [Yj,z = 1] = ρ̂z for every j. In a similar way, we can also define a random vari-
able Y ∗

z that indicates whether an RO query on z is made in at least ntest/16|Q̂|
of the decryptions of ct∗ with keys skneval+1, . . . , sknkey

in the test phase. Y ∗
z is

independent of Y1,z, . . . , Ynenc,z and Pr [Y ∗
z = 1] = ρ̂z.

In a manner similar to the previous claim, we can argue that

Pr

⎡
⎣ ∑

i∈[ntest]

I-Dec-2i >
ntest

16

⎤
⎦ ≤

∑

z∈Q̂

Pr [z /∈ S-ROΓ -1 ∧ Y ∗
z = 1]
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If z /∈ S-ROΓ -1, then none of the decryptions in the first phase of RO collection
make a query on z. In particular, the variables Y1,z, . . . , Ynenc,z are all zero in
such a case. Therefore,

Pr [z /∈ S-ROΓ -1 ∧ Y ∗
z = 1] ≤ Pr [Y1,z = 0 ∧ . . . ∧ Ynenc,z = 0 ∧ Y ∗

z = 1]

= Pr [Y ∗
z = 1] ·

∏
j∈[nenc]

Pr [Yj,z = 0]

= ρ̂z(1 − ρ̂z)nenc

Once again we have two cases. If ρ̂z ≤ 1/4|Q̂|, then ρ̂z(1 − ρ̂z)nenc is at most
1/4|Q̂| as well. Otherwise, (1 − ρ̂z)nenc ≤ e−nenc/4|Q̂| ≤ e−λ because, recall that,
nenc is set to be 4λ ·nkey ·qKeyGen, where qKeyGen is an upper-bound on the number
of RO queries made during KeyGen. As a result,

∑
z∈Q̂ ρ̂z(1 − ρ̂z)nenc is at most

1/4.

5.3 Ideal World Analysis

Next, we will show that any for PPT simulator, our adversary A = (A1,A2)
outputs 1 in the ideal world with negligible probability. Let t be a polynomial in
λ such that t = �ct + neval · qDec · m (so that ntest = 16t) where, recall that, �ct is
the maximum length of any ciphertext generated by Encrypt. Note that qDec · m
is the maximum number of bits obtained through the random oracle during any
decryption, neval · qDec · m is the maximum number of bits sent to the adversary
during the second RO query collection phase, and �ct +neval · qDec ·m is the total
number of bits the adversary receives after sending the challenge message.

Lemma 3. If C = {Cλ}λ is an (16t, t, 1/8) approximately incompressible circuit
family, then for any PPT simulator S, the adversary A = (A1,A2) outputs 1
with probability at most negl(λ).

Proof. Suppose there exists a simulator S such that our adversary A outputs 1
with a non-negligible probability η. We will use S to show that C is (16t, t, 1/8)
approximately compressible. In particular, we will use S and A = (A1,A2) to
construct Cmp and DeCmp circuits satisfying the three properties of an approx-
imately compressible circuit family.

Note that A1 picks Cneval+1, . . . , Cneval+ntest and x∗ uniformly at random and
independent of its other choices. Let rS and rA denote the randomness used by
the simulator S and adversary A (in choosing circuits C1, . . . , Cneval

, and in RO
query collection 1 and test phases), respectively. The compression circuit takes
as input (C1, . . ., C16t, y1, . . ., y16t), has a randomly chosen string for rS and
rA hardwired, and works as follows:

– Use S to generate a public key pk. Give pk to A1.
– Use S to generate secrets keys sk1, . . ., sknkey

for C ′
1, . . ., C ′

neval
, C1, . . ., C16t,

where C ′
1, . . ., C ′

neval
are sampled using rA. Give the secret keys to A1.



Impossibility of Simulation Secure FE Even with Random Oracles 683

– Run the first phase of RO query collection. When A1 makes an RO query in
this phase, forward it to S. Give S’s response back to A1.

– Provide y1, . . . , y16t to S. It generates a ciphertext ct∗.
– Run the second phase of RO query collection. Respond to A2’s RO queries

in the same way as before. Let z1, . . . , zv be the responses in order, where
zi ∈ {0, 1}m.

– Output ct∗ and z1, . . . , zv.

The decompression circuit takes C1, . . . , C16t and the compressed string
str-cmp as inputs, which can be parsed as str-cmp = (ct∗, {zi}). It also has
the random value chosen before for rS and rA hardwired, and works as follows:

– Use S to generate pk and secret keys sk1, . . . , sknkey
as before. Give both to

A1.
– Run the first phase of RO query collection. Respond to A1’s RO queries in the

same way as before. Let Γ be the list of RO queries and responses recorded
in this phase.

– Run the second phase of RO query collection, where sk1, . . . , skneval
are used

to decrypt ct∗. The RO responses required in this step are available as part
of the input (z1, . . . , zv). They are also added to Γ .

– Run the test phase with the help of Γ . Let y′
i denote the outcome of decrypting

ct∗ with skneval+i for i ∈ [ntest].
– Output y′

1, . . . , y
′
16t.

First, note that the size of both compression and decompression circuit is
bounded by a polynomial in λ. Next, the output length of the compression
circuit is at most �ct + v · m, but v is no more than neval · qDec. Thus the output
length is bounded by t.

Finally, we need to show that the decompression property works with prob-
ability η. When C1, . . . , C16t are chosen uniformly at random and y1, . . . , y16t is
the evaluation of these circuits on a randomly chosen point, then it is easy to see
that the decompression circuit emulates the ideal world experiment perfectly.
We know that A2 outputs 1 if and only if for at least 7/8th of the decryptions,
y′

i = yi. Hence, if 1 is output with probability η, then the hamming distance
of DeCmp({Ci} ,Cmp({Ci} , {yi})) and {yi} is at most 1/8 with probability at
least η.

6 Simulation Secure FE for Bounded Collusions

In this section, we will show an FE scheme that is (q1, poly, q2) simulation secure
in the random oracle model, where q1, q2 are a-priori fixed polynomials. Since
both the pre-challenge and post-challenge queries are bounded, we will simply
refer to the total number of key queries. An FE scheme is q-key poly-ciphertext
secure if it is (q1, poly, q2) simulation secure as in Definition 8 for all non-negative
integers q1, q2 s.t. q1 + q2 = q. We first show a scheme that can handle 1 key
query in Sect. 6.1. Then, in Sect. 6.2 (and the full version of our paper [1]), we



684 S. Agrawal et al.

show how to transform a 1-key poly-ciphertext scheme to one that is q-key poly-
ciphertext simulation secure for an a-priori fixed q, by first building a scheme
for log-depth circuits and then for all poly-size circuits. This transformation is
very similar to the one showed by Gorbunov et al. [21], except that they dealt
with only one ciphertext.

6.1 Simulation Secure FE for One Key Query

We will now describe our 1-key poly-ciphertext scheme. Recall that in the stan-
dard model, it is impossible to have simulation security even for IBE if the
adversary is allowed to query for an unbounded number of ciphertexts, followed
by one adaptive key query [5,12]. Here, we show how the random oracle can
be used to bypass this impossibility result. At a high-level, the construction is
similar to the Sahai-Seyalioglu [31] construction of single-key secure FE from
PKE.

Let C = {Cλ}λ be a class of circuits, where each circuit C ∈ Cλ takes
an n(λ) bit input and produces an m(λ) bit output, and can be represented
using t(λ) bits. For x ∈ {0, 1}n(λ), let U

(λ)
x be a universal circuit that takes

any C ∈ Cλ as input and outputs C(x). Let U = {Uλ}λ be a circuit fam-
ily such that Uλ = {U

(λ)
x |x ∈ {0, 1}n(λ)}. Our one-bounded FE scheme

One-FE = (Setup,Encrypt,KeyGen,Decrypt) uses a decomposable randomized
encoding scheme (RE.Encode,RE.Decode) for U and a public key encryption
scheme PKE = (SetupPKE,EncPKE,DecPKE) that can operate on messages of
length λ. For simplicity of presentation, we will skip the dependence on λ.

– Setup(1λ) → (mpk,msk): The setup algorithm chooses 2t PKE public
key/secret key pairs (pki,b, ski,b) ← SetupPKE(1λ) for i ∈ [t], b ∈ {0, 1}. It
sets mpk =

{
pki,b

}
i∈[t],b∈{0,1} and msk = {ski,b}i∈[t],b∈{0,1}.

– Enc(mpk, x) → ct: The encryption algorithm first chooses 2t random strings
ri,b ← {0, 1}λ for all i ∈ [t], b ∈ {0, 1}. Next, it computes a randomized encod-
ing for the universal circuit Ux, i.e., {wi,b}i∈[t],b∈{0,1} ← RE.Encode(1λ, Ux).
Now, let cti,b = EncPKE(pki,b, ri,b) and c̃ti,b = wi,b ⊕ O(ri,b) for all i ∈ [t],
b ∈ {0, 1}. The algorithm outputs ct =

{
cti,b, c̃ti,b

}
i∈[t],b∈{0,1}.

– KeyGen(msk, C) → skC : Let (β1, . . . , βt) be the bit representation of circuit
C. The key generation algorithm outputs {ski,βi

}i∈[t] as the secret key for C.
– Dec(mpk, skC , ct): Let skC = {ski,βi

}i∈[t] and ct =
{
cti,b, c̃ti,b

}
i∈[t],b∈{0,1}.

The decryption algorithm first decrypts the relevant randomized encoding
components, i.e., for each i ∈ [t], it computes ri,βi

= DecPKE(ski,βi
, cti,βi

)
and wi,βi

= c̃ti,βi
⊕ O(ri,βi

). Finally, it outputs RE.Decode({wi,βi
}i∈[t]).

The correctness of our scheme follows directly from the correctness of the
randomized encoding scheme and the public key encryption scheme.

The simulator description and proof of security is given in the full version of
our paper [1].
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6.2 Simulation Secure FE with Bounded Key Queries for NC1

In this section, we will show how to transform a scheme that handles one key
query to one that handles a bounded number of key queries for the class of
log-depth circuits. This transformation is identical to the one in [21]. However,
the proof is slightly different because we handle unbounded challenge ciphertext
queries.

Formal Description. Let C = {Cλ}λ be a class of circuits, where each circuit
C ∈ Cλ takes n(λ) bit inputs, outputs a single bit and can be represented
using an n(λ) variate polynomial of degree D(λ) over a (large enough) field
F. Let q denote a bound on the number of secret key queries. Our FE scheme
FE = (Setup,Enc,KeyGen,Dec) uses a 1-key poly-ciphertext simulation secure
FE scheme (Setupone, Encryptone, KeyGenone, Decryptone) as a building block.
Our scheme is parameterized by four polynomials: N , S, v and t, whose values
depend on D and q. As in GVW, we set t(λ) = Θ(q2λ), N(λ) = Θ(N2q2t) and
v(λ) = Θ(λ) and S(λ) = Θ(vq2). We will skip the dependence on λ when it is
clear from the context.

For any circuit C ∈ Cλ and set Δ ⊂ [S], we define a circuit GC,Δ which takes
n + S bit inputs and works as follows:

GC,Δ(x1, . . . , xn, y1, . . . , yS) = C(x1, . . . , xn) +
∑
h∈Δ

yh

Let O = O1 × . . . ON be a hash function, where each Oi : {0, 1}� → {0, 1}m.
Each of these hash functions Oi will be modeled as a random oracle in our
security proof.

– SetupO(1λ) → (MPK,MSK): The setup algorithm runs the one-key FE
scheme’s setup N times. Let (mpki,mski) ← SetupOi

one(1
λ). The master pub-

lic key MPK is set to be {mpki}i∈[N ], and the master secret key MSK is
{mski}i∈[N ].

– EncO(MPK, x) → ct: Let MPK = {mpki}i∈[N ] and x = (x1, . . . , xn). The
encryption algorithm works as follows:

• It chooses n uniformly random polynomials μ1, . . . , μn of degree t over
field F subject to the constraint that the constant term of μi is xi.

• It chooses S uniformly random polynomials ζ1, . . ., ζS of degree Dt over
field F and constant term 0.

• It computes N ciphertexts using the Encryptone algorithm. For i ∈ [N ], it
computes cti ← EncryptOi

one(mpki, (μ1(i), . . . , μn(i), ζ1(i), . . . , ζS(i))).
The encryption algorithm outputs (ct1, . . . , ctN ) as the final ciphertext.

– KeyGenO(MSK, C): Let MSK = {mski}i∈[N ]. The key generation algorithm
works as follows:

• It chooses a uniformly random set Γ ⊂ [N ] of size Dt + 1.
• It chooses a uniformly random set Δ ⊂ [S] of size v.
• It uses the KeyGenone algorithm to generate Dt + 1 secret keys for the

function GC,Δ. For i ∈ Γ , it computes ski ← KeyGenOi
one(mski, GC,Δ).
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The key generation algorithm outputs (Γ,Δ, {ski}i∈Γ ) as the secret key for
C.

– DecO(sk, ct): Let sk = (Γ,Δ, {ski}i∈Γ ) and ct = (ct1, . . . , ctN ). The decryp-
tion algorithm works as follows:

• For each i ∈ Γ , let αi = DecryptOi
one(ski, cti).

• It computes a polynomial η of degree Dt over field F such that for all
i ∈ Γ , η(i) = αi.

The decryption algorithm outputs η(0n+S) as the final decryption.

Correctness. The correctness proof is identical to the one in [21]. Let μ1,
. . ., μn, ζ1, . . ., ζS be the polynomials chosen during encryption, and let
Γ,Δ be the sets chosen during key generation. From the correctness of the
one-key FE scheme, it follows that the decryption algorithm computes αi =
C(μ1(i), . . . , μn(i)) +

∑
j∈Δ ζj(i) for all i ∈ Γ . Now, since the polynomial

η = C(μ1, . . . , μn) +
∑

j∈Γ ζj has degree Dt and |Γ | = Dt + 1, the decryp-
tion algorithm can compute the polynomial η using the set {αi}i∈[N ]. Finally,
note that η(0n+S) = C(μ1(0), . . . , μn(0)) +

∑
j ζj(0) = C(x1, . . . , xn).

In the full version of our paper [1], we prove security of our scheme for NC1
and describe how this scheme can be bootstrapped to all poly-size circuits.
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Abstract. In this work, we introduce the notion of registration-based
encryption (RBE for short) with the goal of removing the trust parties
need to place in the private-key generator in an IBE scheme. In an RBE
scheme, users sample their own public and secret keys. There will also
be a “key curator” whose job is only to aggregate the public keys of all
the registered users and update the “short” public parameter whenever
a new user joins the system. Encryption can still be performed to a par-
ticular recipient using the recipient’s identity and any public parameters
released subsequent to the recipient’s registration. Decryption requires
some auxiliary information connecting users’ public (and secret) keys
to the public parameters. Because of this, as the public parameters get
updated, a decryptor may need to obtain “a few” additional auxiliary
information for decryption. More formally, if n is the total number of
identities and κ is the security parameter, we require the following.

Efficiency requirements: (1) A decryptor only needs to obtain
updated auxiliary information for decryption at most O(log n) times in
its lifetime, (2) each of these updates are computed by the key curator in
time poly(κ, log n), and (3) the key curator updates the public parameter
upon the registration of a new party in time poly(κ, log n). Properties
(2) and (3) require the key curator to have random access to its data.

Compactness requirements: (1) Public parameters are always at
most poly(κ, log n) bit, and (2) the total size of updates a user ever needs
for decryption is also at most poly(κ, log n) bits.
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We present feasibility results for constructions of RBE based on indis-
tinguishably obfuscation. We further provide constructions of weakly effi-
cient RBE, in which the registration step is done in poly(κ, n), based on
CDH, Factoring or LWE assumptions. Note that registration is done
only once per identity, and the more frequent operation of generating
updates for a user, which can happen more times, still runs in time
poly(κ, log n). We leave open the problem of obtaining standard RBE
(with poly(κ, log n) registration time) from standard assumptions.

1 Introduction

Public-key encryption [10,15,21] allows Alice to send Bob private messages with-
out any a-priori shared secrets. However, before Alice can send any messages to
Bob, she must obtain Bob’s public key. Enabling Alice to obtain Bob’s public
key often requires additional public-key infrastructure and in some cases com-
plex certification authorities; consequently, making implementation of public-key
encryption rather cumbersome.

With the goal of simplifying key-management in public-key encryption,
Shamir [23] introduced the notion of identity based encryption (IBE). An IBE
scheme allows Alice to encrypt her messages to Bob knowing just the identity of
Bob and some additional system public parameters. In this setup, Bob can then
decrypt Alice’s ciphertexts using an identity-specific secret key that he obtains
from the private key generator (PKG). In their celebrated work, Boneh and
Franklin [3] provided the first construction of IBE using bilinear maps. A long
line of subsequent research has provided many other constructions of IBE based
on a variety of assumptions [9,11]. IBE serves as the basis of several real-world
systems (e.g., in systems by Voltage security) to simplify key-management.

Despite its significant advantages, one important limitation of IBE schemes
is the so-called key-escrow problem. Namely, in an IBE scheme a PKG can
generate the identity-specific secret key for any identity. This allows the PKG
to arbitrarily decrypt messages that are intended for specific recipients. While
in certain applications it is reasonable to place trust in a PKG, doing so is not
always acceptable. This limitation of IBE often attracts significant criticism and
restricts applicability in certain scenarios. In words of Rogaway [22],

“But this convenience is enabled by a radical change in the trust model:
Bob’s secret key is no longer self-selected. It is issued by a trusted authority.
That authority knows everyone’s secret key in the system. IBE embeds key-
escrow indeed a form of key-escrow where a single entity implicitly holds
all secret keyseven ones that haven’t yet been issued. [...] Descriptions of
IBE don’t usually emphasize the change in trust model. And the key-issuing
authority seems never to be named anything like that: it’s just the PKG,
for Private Key Generator. This sounds more innocuous than it is, and
more like an algorithm than an entity.”

With the goal of enhancing the applicability of IBE, prior works suggested
ways for reducing the level of trust that parties need to place in the PKG. Boneh
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and Franklin [3] suggested the use of multiple PKGs, instead of just one, with
the goal of making the trust de-centralized. This idea was further explored in
subsequent work (e.g., see [5,19,20]). In a different approach, Goyal [16], later
followed by Goyal et al. [17], studied the notion of accountable IBE, which allows
users to get their decryption keys from the PKG using a secure key generation
protocol. Such schemes provide safeguard against a malicious PKG who might
distribute the identity-specific secret key for a particular user to unauthorized
parties, as by doing so it risks the possibility of being caught in the future.
Another approach to the key escrow problem, studied in [6,8,24], involves set-
tings in which the number of identities is huge, limiting the server’s ability of
finding out the receiver identity when it is chosen at random; hence, guarantee-
ing a form of anonymity. Finally, Al-Riyami and Paterson [1] put forward the
notion of “Certificateless” Public Key Cryptography which is a hybrid of IBE
and public-key directories, but which, on the down side, does not let the sender
use the system as a true IBE, because more information about the user needs
to be read from the public-key infrastructure before a message can be encrypted
to them.

None of the above approaches, however, resolve the key-escrow problem
entirely, as the PKG (or a collection of several of them) can still decrypt all
ciphertexts in the system. Indeed even a trusted PKG may not be able to pro-
tect ciphertexts against a subpoena requesting decryption keys. This state of
affairs leads us to the main question of this work:

Can we entirely remove PKG from IBE schemes?

A New Primitive: Registration-Based Encryption (RBE). In this work,
we pursue a new approach to constructing IBE schemes by introducing a new
notion which we call registration-based encryption, and which does not suffer
from the key-escrow problem. Recall that in traditional IBE schemes, the PKG
plays an active role in maintaining the cryptographic secrets corresponding to the
public parameters of the system, leading to the key-escrow problem. Deviating
from this approach, in our RBE we replace the PKG with a much weaker entity
that we call a key curator. A key curator does not possess any cryptographic
secrets and just plays the role of aggregating the public keys of the users.

In more detail, in an RBE scheme each user samples its own public key and
secret key and provides its identity and the chosen public key to the key curator.1

The key curator is now tasked with the goal of curating this new user’s public
key in the public parameters. Towards this, the key curator updates the public
parameters and publicizes the new public parameters. Thus, unlike traditional
IBE schemes, the public parameters in an RBE scheme evolve as new users reg-
ister in the system. For example, let pp0, pp1, . . . , ppn be the different instances
of the public parameters in the system, where ppi is the public parameter after
i users have registered in the system. Just like an IBE scheme, we require that

1 The key curator will need to verify the identity of the user requesting the registration
as it is done by certification authorities in public-key infrastructure.
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the size of the public parameter is always small: |ppi| ≤ poly(κ, log n) for i ≤ n,
where κ is the security parameter and n is the number of users in the system.

In an RBE scheme, decryption by a user is performed using its secret key
and some auxiliary information that connects its public key with system’s public
parameters. Note that as new users join the system and public parameters are
updated, an update to the auxiliary information connecting a user’s public key
to the new public parameters is necessary.2 However, it would be prohibitive to
update each user’s auxiliary information (needed for decryption) after each single
registration. Thus, we require that the effect of registration by new users on the
previously registered users is minimal. In particular, we require that a registered
user needs to query the key curator for auxiliary information connecting its
public key to the public parameters at most O(log n) times in its lifetime where
n is the total number of registered users. Additionally, we require that the total
size of the auxiliary information provided by the key curator needed for any
decryption is at most poly(κ, log n) for security parameter κ.

Our Results. We consider two variants of RBE schemes based on the efficiency
of the registration and give constructions for both of them. In particular, we con-
struct (standard) RBE using indistinguishability obfuscation, and we construct a
“weakly efficient” variant of this primitive based on more standard assumptions.

– RBE based on IO : First, we construct (standard) RBE schemes in which the
running time of key curator for every new user registration is poly(κ, log n)
for security parameter κ assuming the key curator has random access to its
auxiliary information. Other than the desired efficiency itself, one motivation
for such minimization in curator’s complexity is that since the work done
in each user registration is small, it is then more reasonable to distribute
the key curator’s job between the users themselves, removing the need of a
dedicated key curator entirely. In such a system, a new user will only need to
do a “small” amount of public computation to update the public parameters
at the time of joining the system. Moreover, any previously registered user
could obtain its updated auxiliary information needed for decryption from
the public ledger as well. We obtain a feasibility result for this notion based
on somewhere statistically binding hash functions [18] and indistinguishably
obfuscation [2,13].

– RBE with weakly-efficient registration: Second, we consider a setting where the
key curator is allowed to be “weakly efficient”; i.e., the running time of key
curator for updating the public parameters as a single new user registers can
poly(κ, n). We call such RBE schemes weakly efficient and obtain a construc-
tion of weakly-efficient RBE based on any hash garbling scheme. The notion of
hash garbling and its construction has been implicit in prior works [4,7,11,12],
and it was shown there that hash garbling can be realized based on CDH, Fac-
toring or LWE assumptions. In this work, we give a formal definition of this
primitive (Definition 19) and use it to construct RBE.

2 Note that since the public parameters are small, they cannot contain the public keys
of all the registered parties.
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Our two constructions above leave open the problem of constructing (stan-
dard) RBE with poly(κ, log n) registration time based on standard assump-
tions.

Communication Cost of RBE Compared with PKE and IBE. We view
RBE as a hybrid between PKE and traditional IBE. PKE schemes are commu-
nication heavy for encryptors. In other words, each encryptor must obtain the
public keys of each recipient that it sends encrypted messages to. In contrast, IBE
schemes remove the need for the communication by the encryptors—specifically,
encryptors no longer need to recover the public key of each user separately.
However, the decryptor must still obtain its identity-specific secret key via com-
munication with the PKG. Note that since this communication with PKG is
only done once, the communication cost of an IBE is much smaller than the
communication cost of a PKE. However, this efficiency comes at the cost of the
key-escrow problem. Our RBE achieves, in large parts, the communication ben-
efits of IBE without the key-escrow problem. More specifically, in an RBE, the
encryptors do not need to recover the public key of each recipient individually.
Additionally, a decryptor only needs to interact with the key curator to obtain
the relevant updates at most log n times in total.

IBE was originally proposed with the goal of simplifying key management in
IBE, yet the problem of key-escrow has prevented it from serving as a substitute
for PKE—specifically, its applicability remains limited to specialized settings
where trust is not a problem. We believe that efficient variants of our RBE
constructions could indeed provide an alternative for PKE while also simplifying
key management as IBE does.

1.1 Technical Overview

Here we describe the high level ideas behind our two constructions. The main
challenge in realizing our RBE is to have the key curator gather together public
keys of registering users in such a way that no individual’s relation to the public
parameter is affected too many times. Doing that is the key for having few
necessary updates for decryption. We start by describing how we resolve this
challenge using indistinguishability obfuscation (IO). Next, we give our ideas
for realizing a (registration) weakly efficient version of this primitive based on
standard assumptions such as CDH and Factoring. The IO-based construction,
however, remains conceptually simpler and achieves all the desirable efficiency
properties asymptotically.

Our IO based solution is inspired by prior works on using witness encryp-
tion [14], if we interpret the decryption key (i.e., the secret key together with the
required auxiliary updates) as a witness that enables decryption. Additionally,
both our IO-based and the hash obfuscation based solutions (and in particular
their tree-based hashing of the public keys) use ideas developed recently in the
context of laconic OT [7] and IBE from the CDH assumption [11]. In both of
these settings, our contribution is in formalizing the subtle aspects of RBE and
then realizing RBE schemes (as mentioned above) using these ideas.
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High Level Description of Our IO-Based Construction of RBE. A natu-
ral first try for the solution would be for the curator to just Merkle hash together
the public keys of all the users in the system (along with their corresponding
identities). Here encryption could be performed by an obfuscation of the follow-
ing program P[h,m], with the Merkle hash root h and the encrypted message
m hardwired. Given input (pk, id, pth), the program P[h,m] outputs an encryp-
tion of m under the public key pk only if pth is a “Merkle opening” (i.e., the
right leaf to root path with siblings) for (pk, id) as a pair of sibling leaves in the
Merkle hash tree with root h, and it outputs ⊥ otherwise. Decryption can pro-
ceed naturally with the right Merkle opening as auxiliary information that the
key curator needs to provide for decryption. The main issue with this solution
is that the Merkle hash root h changes with every new user registering in the
system. Our idea for solving this problem is to maintain multiple Merkle hash
trees such that any individual user is affected only a bounded number of times.
Below, we explain this idea in more detail.

– Public parameters and auxiliary information. At a high level, in our construc-
tion, after n parties have registered, the key curator holds an auxiliary infor-
mation auxn of the following form: it consists of η full binary Merkle trees,
Tree1, . . . ,Treeη with corresponding depths d1 > · · · > dη and number of
leaves 2d1 , . . . , 2dη . The public parameter would be the set of the labels of the
roots of these trees. Every leaf in either of these trees is either an identity id
or its public key pk as the sibling of the leaf id, and every registered identity id
appears exactly once as a leaf. Thus, half of the leaves of these trees contain
the strings encoding the registered identities, and for each leaf id, the sibling
leaf contains the public key pk of id. So, if there are n people registered so far
in the system, then the total number of leaves in the trees is equal to 2n. Since
we stated that d1 > · · · > dη, it means that the number of these trees η is at
most log(n), simply because (d1, . . . , dη) would be the binary representation
of number 2n. This point implies that the public parameter is indeed short.

– What is needed for decryption. Even though in general it is more natural to
describe encryption first, in our case it is easier to describe the information
that is needed for decryption. Each identity id will hold is own secret key sk
which will be necessary for decryption, but it would need more information for
doing so. Indeed, if Tree is the tree hold by the curator that contains (sibling
leaves) (id, pk) in its leaves, then the identity id needs to know the “Merkle
opening” of (id, pk) to the root of Tree in order to do any decryption. Since
the length of this path is at most the depth of Tree, which is at most log(n),
the total size of the decryption key dk (which includes sk and the knowledge
of such opening to the root of Tree) is at most κ · log(n). This makes dk also
short enough.

– How to encrypt. For simplicity, suppose there is only one tree Tree held by the
key curator and that all the identities are leaves of this tree. The encryptor,
knows the public parameter, which is the root rt of Tree. For any message
m, the encryptor then sends the obfuscation of the following program P. The
program P takes as input any Merkle opening that contains the path from
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leaves (id, pk) to the root rt of Tree, and if such opening is given, then P
outputs an encryption of m under the corresponding registered public key pk.
Since id is the only identity who knows the corresponding sk to the registered
pk, nobody other than id can decrypt the message m encrypted that way.
When there are multiple trees Tree1, . . . ,Treeη held by the key curator, the
ciphertext includes η obfuscations, one for every Treei.

– How to register. When a new party id joins to register, we first create a single
tree Tree for that party, with id, pk as its only leaves. But creating too many
trees naively increases the length of the public parameter. So, to handle this
issue we “merge” the trees every now and then. In particular, upon any reg-
istration, so long as there are any two trees Tree1,Tree2 of the same size held
by the key curator, it “merges” them by simply hashing their roots rt1, rt2
into a new root rt. This way, the key curator keeps the invariance property
(stated above) that the trees are always full binary trees of different sizes.
After doing any such merge, the key curator sends the generated update of
the form (rt1, rt, rt2) to all of the identities that are in either of the trees
Tree1,Tree2. That is because, the identities in Tree1 would now need to know
rt2 and the identities in Tree2 now need the label rt1 in order to decrypt what
is encrypted for them. Alternatively, if the key curator is passive and does
not send updates, the users who are in the merged tree Tree would need to
pull their updates whenever they have a ciphertext that they cannot decrypt,
realizing that their auxiliary information is outdated.

To prove security of the above construction, collision-resistance of the used
hash function is not enough, and we rely on somewhere statistically binding hash
functions [18] (see Definition 3).

Weakly-Efficient Construction Based on Standard Assumptions. In
order to replace the use of obfuscation in the above construction, we build on
the techniques by Cho, Döttling, Garg, Gupta, Miao, and Polychroniadou [7]
and Döttling and Garg [11]. We abstract their idea of using hash encryption
and garbled circuits as a new primitive that we call hash garbling. Use of this
abstraction simplifies exposition. A hash garbling scheme consists of algorithms
(Hash,HG,HInp).3 Hash function is a function from {0, 1}� to {0, 1}κ. HG takes
as input a secret state stt and an arbitrary program P and outputs ˜P. HInp takes
as input a secret state stt and a value y ∈ {0, 1}κ and outputs ỹ. Correctness
and security require that ˜C, ỹ, x can be used to compute C(x), but also that they
reveal nothing else about C.

Our construction of RBE from standard assumption is very similar to the IO-
based construction except that we replace the use of IO with the less powerful
primitive hash garbling. The key challenge in making this switch comes from
the fact that hash garbling, unlike IO, cannot process the entire root to leaf
Merkle opening in one shot. Thus, our construction needs to provide a sequence
of hash garblings that traverse the root to leaf path step by step. Therefore, as

3 The hash function also has a key setup function which we ignore here for the sake
of simplicity.
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the tree is being traversed, the hash garblings need to identify whether to go left
or to go right. Note that this decision must be taken without any knowledge of
what identities are included in the leaves of the left sub-tree and what identities
are included in the leaves of the right sub-tree. We resolve this challenge by
modifying the Merkle tree in two ways:

1. We ensure that the identities in the leave of any tree are always sorted.
2. In addition to the hashes of its two children, in the computation of the Merkle

hash, we also hash the information about the largest identity that is present
any leaf of the left subtree at any node. (The latter information allows us to
traverse down a Merkle tree using it as a binary search tree.)

Using these enhancements over the simple Merkle trees, we can indeed substi-
tute IO with the less powerful primitive of hash garbling, which in turn can
be obtained from more standard assumptions. On the down side, this new con-
struction needs to sort the identities for every registration, and in particular
the registration cannot run in sublinear time poly(κ, log n). We refer the reader
Sect. 5 for more details on this construction.

2 Preliminaries

Notation. For a probabilistic algorithm A, by A(x) → y, we denote the ran-
domized process of running A on input x and obtaining the output y. We use
PPT to denote a probabilistic polynomial-time algorithms, where running time
is polynomial over the length of their main input (not the random seed). For
randomized algorithms A1, A2, . . . , by PrA1,A2,...[E] we denote the probability
of event E when the randomness is over the algorithms A1, A2, . . . as well. For
deterministic algorithms A1, A2, by A1 ≡ A2, we denote that they have the
same input-output functionality; namely, for all x (of the right length, if A1, A2

are circuits), A1(x) = A2(x). For distribution ensembles Xn, Yn, by Xn
c≈ Yn

we mean that they are indistinguishable against poly(n)-time algorithms. By
x||y we denote the concatenation of the strings x, y. By negl(κ) we denote some
function that is negligible in input κ; namely for all k, negl(κ) ≤ O(1/κk). Un

denotes the uniform distribution over {0, 1}n. For algorithm A, by AB we denote
an oracle access by A to oracle B. By A[B] we denote A accessing oracle B with
read and and write operations. So, if A writes y at location x, reading a query
x next time will return y.

Definition 1 (Public key encryption). A public key encryption scheme con-
sists of three PPT algorithms (G,E,D) as follows.

– G(1κ) → (pk, sk): This algorithm takes a security parameter 1κ as input and
outputs a pair of public key pk secret key sk. Without loss of generality we
assume that |pk| = |sk| = κ.

– E(pk,m) → ct: takes a message m and a public key pk as input and outputs
a ciphertext ct.
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– D(sk, ct) → m: takes a ciphertext ct and a secret key sk as inputs and outputs
a message m.

The completeness and security properties are defined as follows.

– Completeness. The PKE scheme is complete if for every message m:

Pr
G,E,D

[D(sk,E(pk,m)) = m : (sk, pk) ← G] = 1.

– Semantic Security. Any PPT adversary Adv wins the following game with
probability 1

2 + negl(κ):
• The challenger generates (pk, sk) ← G(1κ) and sends pk to Adv.
• The challenger chooses a random bit b and sends c ← E(pk, b) to Adv.
• Adv outputs b′ and wins if b = b′.

Definition 2 (Indistinguishability obfuscation). A uniform PPT algo-
rithm Obf is called an indistinguishability obfuscator for a circuit class {Cκ}κ∈N

(where each Cκ is a set indexed by a security parameter κ) if the following holds:

– Completeness. For all security parameters κ ∈ N and all circuits C ∈ Cκ,
we obtain an obfuscation with the same function:

Pr
Obf

[C′ ≡ C : C′ = Obf(1κ,C)] = 1.

– Security. For any PPT distinguisher D, there exists a negligible function
negl(·) such that for all κ ∈ N, for all pairs of functionally equivalent circuits
C1 ≡ C2 from the same family C1,C2 ∈ Cκ,

∣

∣

∣

∣

Pr
Obf

[D(1κ,Obf(1κ,C1)) = 1)] − Pr
Obf

[D(1κ,Obf(1κ,C2)) = 1)]
∣

∣

∣

∣

≤ negl(κ).

The next definition is a special case of the definition of somewhere statistically
binding (SSB) hash functions introduced by Hubacek and Wichs [18] for the
blockwise setting. Here we only use two-input blocks.

Definition 3 (SSB hash functions [18]). A somewhere statistically binding
hash system consists of two polynomial time algorithms HGen,Hash.

– HGen(1κ, b) → hk. This algorithm takes the security parameter κ and an
index bit b ∈ {0, 1}, and outputs a hash key hk.

– Hash(hk, x) → y. This is a deterministic algorithm that takes as input x =
(x0, x1) ∈ {0, 1}κ × {0, 1}κ and outputs y ∈ {0, 1}κ.

We require the following properties for an SSB hashing scheme:

– Index hiding. No poly(κ)-time adversary can distinguish between hk0 and
hk1 by more than negl(κ), where hkb ← HGen(1κ, b) for b ∈ {0, 1}.

– Somewhere statistically binding. We say that hk is statistically bind-
ing for index i ∈ {0, 1}, if there do not exist two values (x0, x1), (x′

0, x
′
1) ∈

{0, 1}� ×{0, 1}� such that xi 	= x′
i and Hash(hk, x) = Hash(hk, x′). We require

that for both i ∈ {0, 1},

Pr
HGen

[hk is statistically binding for i : hk ← HGen(1κ, i)] ≥ 1 − negl(κ).
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3 Formal Definition of Registration-Based Encryption

In this section, we formalize the new notion of RBE. After defining the “default”
version of RBE, we define weakened forms of this primitive with a specific relax-
ation in the efficiency requirements. The goal of this relaxation is to base the
(relaxed) RBE on more standard assumptions.

We start by defining the syntax of the default notion of RBE. We will then
discuss the required compactness, completeness, and security properties.

Definition 4 (Syntax of RBE). A registration-based encryption (RBE for
short) scheme consists of PPT algorithms (Gen,Reg,Enc,Upd,Dec) working as
follows. The Reg and Upd algorithms are performed by the key curator, which
we call KC for short.

– Generating common random string. Some of the subroutines below will
need a common random string crs, which could be sampled publicly using some
public randomness beacon. crs of length poly(κ) is sampled at the beginning,
for the security parameter κ.

– Key generation. Gen(1κ) → (pk, sk): The randomized algorithm Gen takes
as input the security parameter 1κ and outputs a pair of public/secret keys
(pk, sk). Note that these are only public and secret keys, not the encryption
or decryption keys. The key generation algorithm is run by any honest party
locally who wants to register itself into the system.

– Registration. Reg[aux](crs, pp, id, pk) → pp′: The deterministic4 algorithm
Reg takes as input the common random sting crs, current public parameter
pp, a registering identity id and a public key pk (supposedly for the identity
id), and it outputs pp′ as the updated public parameters. The Reg algorithm
uses read and write oracle access to aux which will be updated into aux′ during
the process of registration.5 (The system is initialized with public parameters
pp and auxiliary information aux set to ⊥.)

– Encryption. Enc(crs, pp, id,m) → ct: The randomized algorithm Enc takes
as input the common random sting crs, a public parameter pp, a recipient
identity id and a plaintext message m and outputs a ciphertext ct.

– Update. Updaux(pp, id) → u: The deterministic algorithm Upd takes as input
the current information pp stored at the KC and an identity id, has read only
oracle access to aux and generates an update information u that can help id
to decrypt its messages.6

4 In our constructions, the algorithms Reg, Upd and Reg are deterministic, and this
feature makes our KC transparent (see Remark 5), so we keep the default definition
based on deterministic version of these subroutines.

5 This is the step that needs the identity of the registering id to be verified. This
verification step is similar to IBE and its details are outside scope of this work.

6 Looking ahead, we will aim for schemes that require the identity id to launch this
request as rarely as possible. However, we note that this information u does not need
to be kept secret for the security of the scheme, and any user can request this update
without its identity being checked.



Registration-Based Encryption 699

– Decryption. Dec(sk, u, ct): The deterministic decryption algorithm Dec takes
as input a secret key sk, an update information u, and a ciphertext ct, and
it outputs a message m ∈ {0, 1}∗ or in {⊥, GetUpd}. The special symbol ⊥
indicates a syntax error, while GetUpd indicates that more recent update infor-
mation (than u) might be needed for decryption.

Remark 5 (Key curator is transparent). We emphasize that in the definition
above the KC has no secret state. In fact, the registration and update operations
are both deterministic. This makes KC’s job fully auditable. Even the generation
of the crs (that is done before KC takes control of the server’s information) only
needs common random strings (as opposed to a common reference string), so
that can be generated using public randomness beacon as well.

We will now first describe the completeness, compactness, efficiency proper-
ties (under the completeness definition) and then we will describe the security
properties. Both definitions are based on a security game that involves an “adver-
sary” that tries to break the security, completeness, compactness, or efficiency
properties by controlling how the identities (including the target/challenge iden-
tity) are registered and when the encryptions and decryptions happen.

Definition 6 (Completeness, compactness, and efficiency of RBE). For
any interactive computationally unbounded adversary Adv that still has a limited
poly(κ) round complexity, consider the following game CompAdv(κ) between Adv
and a challenger Chal.

1. Initialization. Chal sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, id∗ = ⊥, t = 0,
crs ← Upoly(κ) and sends the sampled crs to Adv.

2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At
every iteration, Adv chooses exactly one of the actions below to be performed.
(a) Registering new (non-target) identity. Adv sends some id 	∈ D and

pk to Chal. Chal registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk)
and D := D ∪ {id}.

(b) Registering the target identity. If id∗ was chosen by Adv already
(i.e., id∗ 	= ⊥), skip this step. Otherwise, Adv sends some id∗ 	∈ D
to Chal. Chal then samples (pk∗, sk∗) ← Gen(1κ), makes the updates
pp := Reg[aux](crs, pp, id∗, pk∗),D := D ∪ {id∗}, and sends pk∗ to Adv.

(c) Encrypting for the target identity. If id∗ = ⊥ then skip this step.
Otherwise, Chal sets t = t + 1, then Adv sends some mt ∈ {0, 1}∗ to
Chal who then sets m′

t := mt and sends back a corresponding ciphertext
ctt ← Enc(crs, pp, id∗,mt) to Adv.

(d) Decryption by target identity. Adv sends a j ∈ [t] to Chal. Chal then
lets m′

j = Dec(sk∗, u, ctj). If m′
j = GetUpd, then Chal obtains the update

u = Updaux(pp, id∗) and then lets m′
j = Dec(sk∗, u, ctj).

3. The adversary Adv wins the game if there is some j ∈ [t] for which m′
j 	= mj.

Let n = |D| be the number of identities registered till a specific moment. We
require the following properties to hold for any Adv (as specified above) and for
all the moments (and so for all the values of D and n = |D| as well) during the
game CompAdv(κ).
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– Completeness. Pr[Adv wins in CompAdv(κ)] = negl(κ).
– Compactness of public parameters and updates. |pp|, |u| are both ≤

poly(κ, log n).
– Efficiency of runtime of registration and update. The running time of

each invocation of Reg and Upd algorithms is at most poly(κ, log n). (This
implies the compactness property.)

– Efficiency of the number of updates. The total number of invocations
of Upd for identity id∗ in Step 2d of the game CompAdv(κ) is at most O(log n)
for every n during CompAdv(κ).

Remark 7 (Other definitions based on quantifying compactness and efficiency
parameters). Even though Definition 6 requires compactness and efficiency
requirements using function c(κ, n) ≤ poly(κ, log n), one can consider a more
general definition that uses different (e.g., sublinear) functions to obtain various
versions of RBE. In general, one can consider (c1, . . . , c5)-RBE schemes where
ci’s are functions of (κ, n), and that functions c1, c2 describe the compactness
requirements (of public-key and updates), and functions c3, c4, c5 describe the
efficiency requirements.

The following definition instantiates the general quantified definition of
Remark 7 by relaxing the efficiency of the registration and keeping the other
efficiency and compactness requirements to be as needed for Definition 6.

Definition 8 (WE-RBE). A registration weakly efficient RBE (or WE-RBE
for short) is defined similarly to Definition 6, where the specified poly(κ, log n)
runtime efficiency of the registration algorithm is not required anymore, but
instead we require the registration time to be poly(κ, n).

Remark 9 (Denial of service attacks using fake ciphertexts). A class of malicious
adversaries that are not captured by Definition 6 can potentially launch a “denial
of service” attack against the efficiency of the decryption procedure as follows.
Specifically, such malicious completeness adversary (that can also be seen as a
form of “environment”) can cause an honest user to request too many updates
by continually providing it with fake ciphertexts that seem to require an update
for decryption. Here, we propose a generic approach for dealing with this issue.
We can generalize the RBE primitive and allow the KC to have a secret state.
This will take away the appealing transparency feature of the KC, but it will
instead allow the KC to sign the public parameters, and those signed public
parameters can then be included in the ciphertexts. Doing this will allow the
decryption algorithm to detect fake ciphertexts that (maliciously) indicate that
the population has grown beyond the last update, and that new update is needed
for recent decryptions.

Security. For security, we require that no PPT adversary should be able to
distinguish between encryptions of two messages (of equal lengths) made to a
user who has registered honestly into the system, even if the adversary colludes
and obtains the secret keys of all the other users. This is formalized by the
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adversary specifying a challenge identity and distinguishing between encryptions
made to that identity. In order to prevent the adversary from winning trivially,
we require that the adversary does not know any secret key for a public key
registered for the challenge identity.

We present the formal definition only for the case of bit encryption, but any
scheme achieving this level of security can be extended to arbitrary length mes-
sages using independent bit-by-bit encryption and a standard hybrid argument.

Definition 10 (Security of RBE). For any interactive PPT adversary Adv,
consider the following game SecAdv(κ) between Adv and a challenger Chal. (Steps
that are different from the completeness definition are denoted with purple stars
(��). Specifically, Steps 2c and 2d from Definition 6 are replaced by Step 3 below.
Additionally, Step 3 from Definition 6 is replaced by Step 4 below.)

1. Initialization. Chal sets pp = ⊥, aux = ⊥, D = ∅, id∗ = ⊥, crs ← Upoly(κ)

and sends the sampled crs to Adv.
2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At

every iteration, Adv chooses exactly one of the actions below to be performed.
(a) Registering new (non-target) identity. Adv sends some id 	∈ D and

pk to Chal. Chal registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk)
and D := D ∪ {id}.

(b) Registering the target identity. If id∗ was chosen by Adv already
(i.e., id∗ 	= ⊥), skip this step. Otherwise, Adv sends some id∗ 	∈ D
to Chal. Chal then samples (pk∗, sk∗) ← Gen(1κ), makes the updates
pp := Reg[aux](crs, pp, id∗, pk∗),D := D ∪ {id∗}, and sends pk∗ to Adv.

3. (��) Encrypting for the target identity. If no id∗ was chosen by Adv
before (i.e., id∗ = ⊥) then Adv first sends some id∗ 	∈ D to Chal. Next, Chal
generates ct ← Enc(crs, pp, id∗, b), where b ← {0, 1} is a random bit, lets
D = D ∪ {id∗}, and sends ct to Adv.

4. (��) The adversary Adv outputs a bit b′ and wins the game if b = b′.

We call an RBE scheme secure if Pr[Adv wins in SecAdv(κ)] < 1
2 + negl(κ) for

any PPT Adv.

Equivalence to Other Definitions. One might consider a seemingly stronger
security definition in which the adversary chooses its challenge identity from a
set of previously chosen identities for which it does not know the keys. However,
since the adversary can guess its own selection with probability 1/poly(κ), that
definition becomes equivalent to Definition 10 above. Another seemingly stronger
definition would allow the adversary to register even more identities after receiv-
ing the challenge ciphertext (and before answering the challenge), however this
is again an equivalent definition as the information distributed in this extra step
is simulatable by the adversary and thus not helpful to her.

Choosing a Registered or an Unregistered Identity. Here we note a sub-
tle aspect of Definition 10. If the adversary chooses Step 2b, it means that it is
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attacking a target identity that is registered in the system. Otherwise, the adver-
sary shall choose the target identify in Step 3, which means that the attacked
target identity is not even registered in the system. In both cases, we require
that the adversary has negligible advantage in guessing the encrypted bit.

Why Not Giving Update Oracle to Adversary? In Definition 10, we did not
provide explicit oracle access to Upd subroutine for the adversary. The reason is
that the adversary receives the crs, chooses the identities and receives the public
keys. Moreover, KC is deterministic, has no secret state, and all the inputs it
receives in maintaining the auxiliary information is crs, identities, and the public-
keys. Therefore, throughout the attack, the adversary knows the exact state of
(pp, aux) hold by the key curator, and thus it can run the update operation itself.
However, if one considers a KC with a secret state (perhaps for the goal of signing
the public parameters as discussed in Remark 9) then the corresponding security
definition shall give the adversary oracle access to the update subroutine.

Remark 11 (Unauthorized registration of an identity). A malicious KC K∗, not
following the protocol as modeled in the security game of Definition 10 can gen-
erate a pair of keys (pk, sk) on its own and register pk on behalf of an identity id.
By that, K∗ can read messages that are subsequently encrypted to the identity
id. Here we describe two approaches to tackle this problem.

1. Bootstrapping public-key directories. RBE schemes could be launched
with respect to an external public-key directory D. Namely, only public-keys
in D could be registered for matching identities. This way, a malicious key
curator K∗ can only register the actual public keys of the identities, and thus
it is not able to decrypt the messages encrypted to them. Moreover, by also
including (public) verification keys of the signatures by the identities in the
public-key directory D, we can even prevent K∗ from successfully registering
any identities in the RBE scheme without having their permission (even by
using their real public keys) as follows. Whenever the public parameter pp is
updated, a signature of pp by the registering identity is added to the public
auxiliary aux. This way, a public auditor can detect a fake registration.

2. Proof of Knowledge. An alternative method to prevent fake identity regis-
trations is to use a similar approach to the one mentioned above, but replace
the signature with a zero-knowledge proof of knowledge of an actual certifi-
cate from some trusted party (e.g., their driving licence information) that
validates the ownership of an identity.

4 IO-Based Construction of RBE

In this section we present a formal construction of (efficient) RBE based on
indistinguishability obfuscation and SSB hash functions (see Sect. 2 for formal
definitions of the standard primitives used). We first describe the construction
along the line of Definition 4 and then will prove its completeness, compactness,
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and security based on Definitions 6 and 10. We will then describe minor modifi-
cations that make the construction efficient according to Definition 8 (basically
by not producing the updates in the registration).

Notation on Binary Trees. In our construction below, Tree is always a full
binary tree (with 2i leaves for some i), where the label of each node in Tree is
calculated as the “hash” of its left and right children. We define the size of a tree
Tree as the number of its leaves, denoted by size(Tree) (so if size(Tree) = s, the
total number of nodes will be 2s−1), and we denote the root of Tree as rt(Tree),
and we use d(Tree) to refer to the depth of Tree. Since we assume that Tree is
always a full tree, we always have 2d(Tree) = size(d(Tree)). When it is clear from
the context, we use rt and d to denote the root and the depth of Tree.

Simplifying Assumption on Lengths. We note that without loss of gener-
ality, we can assume that public keys, secret keys and identities are all of the
length security parameter κ.

Construction 12 (RBE from IO and SSB Hashing). We will use an IO
scheme (Obf,Eval) and a SSB hash function system (Hash,HGen) and a PKE
scheme (G,E,D). Using them, we show how to implement the subroutines of
RBE according to Definition 4.

– Stp(1κ) → (pp0, aux0). This algorithm outputs pp0 = (hk1, . . . , hkκ) where
each hki is sampled from HGen(1κ, 0) and aux = ∅ is empty.

– Reg[aux](ppn, id, pk) → ppn+1. This algorithm works as follows:
1. Parse aux := ((Tree1, . . . ,Treeη), (id1, . . . , idn)) where the trees have cor-

responding depths d1 > d2 · · · > dη, and (id1, . . . , idn) is the order by
which the current identities have registered.7

2. Parse ppn as a sequence ((hk1, . . . , hkκ), (rt1, d1), . . . , (rtη, dη)) where rti ∈
{0, 1}κ represents the root of Treei, and di represents the depth of Treei.

3. Create new tree Treeη+1 with leaves id, pk and set its root as rtη+1 :=
Hash(hk1, id||pk) and thus its depth would be dη+1 = 1.

4. Let T = {Tree1, . . . ,Treeη+1}. (We will keep changing T in steps below.)
5. While there are two different trees TreeL,TreeR ∈ T of the same depth d

and same size s = 2d (recall that our trees are always full binary trees),
and roots rtL, rtR, do the following.
(a) Let Tree be a new tree of depth d + 1 that contains TreeL as its left

subtree, TreeR as its right subtree, and rt = Hash(hkd+1, rtL||rtR) as
its root.

(b) Remove both of TreeL,TreeR from T and add Tree to T instead.
6. Let T := (Tree1, . . . ,Treeζ) be the final set of trees where d′

1 > · · · > d′
ζ are

their corresponding depths and rt′1, . . . , rt
′
ζ are their corresponding roots.

Set ppn+1 and aux as follows:

ppn+1 := ((hk1, . . . , hkκ), (rt′1, d
′
1), . . . , (rt

′
ζ , d

′
ζ)) and

aux := (T , (id1, . . . , idn, idn+1 = id)).
7 Keeping this list is not necessary, but simplifies the presentation of the updates.
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– Enc(pp, id,m) → ct: First parse pp := ((hk1, . . . , hkκ), (rt1, d1), . . . , (rtη, dη)).
Generate programs P1, . . . ,Pη where each program Pi works as follows:
Hardwired values: rti, di, (hk1, . . . , hkdi

),m, id, r (the randomness)
Input: pth
1. Parse pth := [(h00, h

1
0), (h

0
1, h

1
1, b1) . . . , (h0di−1, h

1
di−1, bdi−1), rt].

2. If rti 	= rt, then output ⊥.
3. If id 	= h00, then output ⊥.
4. If rt = Hash(hkdi

, h0di−1||h1di−1) and h
bj

j = Hash(hkj , h
0
j−1||h1j−1) for all

j ∈ [di − 1], then output E(h10,m; r) by using h10 as the public key and r as
the randomness, otherwise output ⊥.

Then, output ct := (pp,Obf(P1), . . . ,Obf(Pη)) where Obf is IO obfuscation.
– Updaux(pp, id) → u: Letting aux := (Tree1, . . . ,Treeζ) and letting i be the index

of the tree that holds id, return the whole Merkle opening of the path that leads
to id in Treei.

– Dec(sk, u, ct) → m: Parse ct = (pp,P1, . . . ,Pη). Form mi = Decsk(Pi(u)) for
each program Pi. Output the first mi 	= ⊥.

Theorem 13. The RBE of Construction 12 satisfies the compactness, complete-
ness properties according to Definition 6 and security according to Definition 10.

In the rest of this section, we prove Theorem 13. Along the way, we describe
the modifications that are needed to Construction 12 to make it efficient accord-
ing to Definition 8.

4.1 Proofs of Completeness, Compactness and Efficiency

Completeness is straightforward. Below we sketch why compactness holds.

Compactness of Public Parameters and Updates. The public param-
eter’s format is of the form pp = ((hk1, . . . hkκ), (rt1, d1), . . . (rtη, dη)) where
rti ∈ {0, 1}κ. Also, the identities are of length κ, so the depth of each tree
is at most κ bits. It only remains to show that the number of trees at any
moment is at most log(n). This is because the trees are full binary trees (of size
2di) and the size of the trees are always different (otherwise, the registration
step keeps merging them). Therefore, η ≤ log(n), and so the length of the ppn

will be at most O(κ2 + κ · log(n)). In fact, we can optimize this length to be at
most O(κ · log(n)) by only generating the hash keys when needed (i.e., when the
registered population reaches 2k, we will generate hkk and put it in the public
parameter). Compactness of updates is trivial.

Efficiency of Runtime of Registration and Update. The efficiency of reg-
istration follows from the fact that the total number of merges is at most log n.
The efficiency of update runtime can also be easily guaranteed by using an appro-
priate data structure that maps a given identity to the leafs containing it in each
tree (e.g., we can use a Trie data structure for this purpose to get such list in
minimal time over the input length).

All other measures of efficiency either follows trivially, or by the log(n) upper-
bound on the number of merges.
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4.2 Proof of Security

We now prove the security of Construction 12. We start by giving intuition about
the security proof for a simple case. We will then give a detailed proof for the
general case.

Simple Case of One User. Consider the case in which only one user has
registered, and that the adversary wants to distinguish between encryptions of
m ∈ {0, 1} made to that user. Let id∗ be the identity of the user who has
registered, and let (pk∗, sk∗) ← G(1κ) be the pair of public/secret keys that the
challenger Chal produced at the time of registration as per Definition 10. Since
we have only one user, the public parameter is pp := Hash(hk, id∗||pk∗), where
hk ← HGen(1κ, 0). Recall that w.l.o.g., we have |id∗| = |pk∗| = |pp| = κ.

An encryption of a bit m ∈ {0, 1} to identity id∗ is an IO obfuscation of the
circuit P in Fig. 1.

Hardwired: m ∈ {0, 1}, id∗, pp, hk and randomness r
Input: (id, pk)

1. If Hash(hk, id||pk) �= pp, then output ⊥ and end.
2. If id �= id∗, then output ⊥ and end.
3. Output E(pk,m; r) and end.

Fig. 1. Circuit P used for encryption of m to identity id∗

Theorem 14 (Security). For any id∗ we have

Obf(P[0, id∗, pp, hk, r])
c≈ Obf(P[1, id∗, pp, hk, r]), (1)

for (pk∗, sk∗) ← G(1κ), hk ← HGen(1κ, 0), pp := Hash(hk, id∗||pk∗), r ← {0, 1}∗.

Roadmap for the Proof of Theorem 14. We first alter the circuit P to obtain
a circuit P1, which works similarly except that P1 checks whether or not its given
input path is exactly (id∗, pk∗) (i.e., the already registered identity along with
its public key); if not, P1 will return ⊥, even if the two leaves (id, pk) correctly
hashe to pp. If yes, P1 will encrypt the hardwired bit m under the public key
pk∗ and the hardwired randomness r. The circuit P1 is defined in Fig. 2.

Equipped with this new circuit P1, first in Lemma 15 we show that under P1

we may switch the underlying hardwired plaintext bit m from 0 to 1 while keeping
the obfuscations of the resulting circuits indistinguishable. Then, in Lemma16
we will show that for any fixed plaintext bit m, the obfuscations of P and P1 are
computationally indistinguishable. These two lemmas imply Theorem14.
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Hardwired: m ∈ {0, 1}, id∗, pk∗, pp, hk and randomness r
Input: (id, pk)

1. If (id, pk) �= (id∗, pk∗), then output ⊥ and end.
2. Output E(pk,m; r) and end.

Fig. 2. Circuit P1

We start by defining the circuit P1, which is a modified version of P.
We now formally show that under P1 we may switch the underlying plaintext

bit while keeping their obfuscations indistinguishable.

Lemma 15. For any id∗ and hk we have

Obf(P1[0, id∗, pk∗, pp, hk, r])
c≈ Obf(P1[1, id∗, pk∗, pp, hk, r]), (2)

where (pk∗, sk∗) ← G(1κ), r ← {0, 1}∗ and pp := Hash(hk, id∗||pk∗).

Proof. Fix id∗ and hk. We slightly change the circuit P1 into a circuit P2, so that
the circuit P2, instead of getting m, pk∗ and r hardwired into itself, it gets the
resulting ciphertext c∗ hardwired, and it will return this ciphertext if the check
inside the program holds. This new circuit P2 is defined in Fig. 3.

Notice that for all fixed m ∈ {0, 1}, id∗, pk∗, r and pp := Hash(hk, id∗||pk∗),

Obf(P1[m, id∗, pk∗, pp, hk, r])
c≈ Obf(P2[id∗, pp, hk, c∗]), (3)

where c∗ := E(pk∗,m; r). The reason behind Eq. 3 is that the underlying two
circuits are functionally equivalent, and so their obfuscations must be computa-
tionally indistinguishable by the property of IO.

We now show that under P2 we may switch the hardwired ciphertext from an
encryption of zero to one, by relying on semantic security of the PKE. Formally,

Obf(P2[id∗, pp, hk, c∗
0])

c≈ Obf(P2[id∗, pp, hk, c∗
1]), (4)

for (pk∗, sk∗) ← G(1κ), c∗
0 ← E(pk∗, 0), c∗

1 ← E(pk∗, 1), pp := Hash(hk, id∗||pk∗).
Equation 4 directly follows from the semantic security of the underlying public-
key encryption scheme. Finally, note that Eqs. 4 and 3 imply Eq. 2 of the lemma,
and so we are done. �

We now show that for any fixed plaintext m ∈ {0, 1}, the obfuscations of the
two circuits P and P1 are computationally indistinguishable.

Lemma 16. For fixed m ∈ {0, 1}, id∗ ∈ {0, 1}κ, pk∗ ∈ {0, 1}κ and randomness
r, it holds that

Obf(P[m, id∗, pp, hk, r])
c≈ Obf(P1[m, id∗, pk∗, pp, hk, r]), (5)

where hk ← HGen(1κ, 0) and pp := Hash(hk, id∗||pk∗).
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Hardwired: id∗, pp, hk and c∗

Input: (id, pk)

1. If (id, pk) �= (id∗, pk∗), then output ⊥ and end.
2. Output c∗ and end.

Fig. 3. Circuit P2

Proof. Let a hash key hk1 be sampled as follows: hk1 ← HGen(1κ, 1). We show
that Eq. 5 will hold if hk is replaced with hk1. This will complete our proof
because by the index hiding property of (HGen,Hash) we know hk

c≈ hk1. Thus,
it only remains to prove

Obf(P[m, id∗, pk∗, pp, hk1, r])
c≈ Obf(P1[m, id∗, pk∗, pp, hk1, r]), (6)

where hk1 ← HGen(1κ, 1) and pp := Hash(hk1, id∗||pk∗). To prove Eq. 6 we claim
that the underlying two circuits are functionally equivalent; namely,

P[m, id∗, pk∗, pp, hk1, r] ≡ P1[m, id∗, pk∗, pp, hk1, r]. (7)

Note that by security definition of IO, Eq. 7 implies Eq. 6, and thus we just need
to prove Eq. 7. To prove equivalence of the circuits, assume to the contrary that
there exists an input (id, pk) for which we have P(id, pk) 	= P1(id, pk). (Here for
better readability we dropped the hardwired values.) By simple inspection, we
can see that we have P(id, pk) 	= P1(id, pk) iff all the following conditions hold:

1. Hash(hk1, (id, pk)) = pp; and
2. id = id∗; and
3. pk 	= pk∗.

This, however, is a contradiction because by the somewhere statistical binding
property of (HGen,Hash) and by the fact that hk1 ← HGen(1κ, 1), Conditions 1
and 2 imply pk = pk∗, a contradiction to Condition 3. �

General Case of Multiple Users. We will prove our security for the case
in which at the time of encryption, we only have one tree (of any arbitrary
depth). This is without loss of generality for the following reason. Recall that
for encryption, if we have m roots, we obfuscate a circuit individually for each
root. Suppose at the time of encryption, we have m trees with respective roots
rt1, . . . , rtm. Then, between the two main hybrids which correspond to an encryp-
tion of zero and an encryption of one, we may consider m intermediate hybrids,
where under the ith hybrid we encrypt 0 under the roots {rt1, . . . , rti} and we
encrypt 1 under the roots {rti+1, . . . , rtm}. Thus, using a hybrid argument, the
result will follow.
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Roadmap of the Security Proof. We will define four hybrids, where the first
hybrid corresponds to an encryption of bit 0 and the last hybrid corresponds to
an encryption of bit 1. We will prove that the views of the adversary in each of
the two adjacent hybrids are computationally indistinguishable.

High-Level Proof Sketch. Let Tree be the underlying tree at the time of
encryption. An encryption of a bit m to an identity id corresponds to an IO
obfuscation of a circuit P, which takes as input a path, and which will release
an encryption of m under a public key given as a leaf of the path, if the given
path is “valid.” As a hybrid, we will consider a circuit P1, which does all the
checks that are already performed by P, but which also does the following: if
the given path is not present in the tree, then P1 will return ⊥, even if the path
is valid. We will show that for any fixed bit m, if we encrypt m by obfuscating
either the circuit P or P1, the result will be indistinguishable. We will make use
of the somewhere statistical binding and index hiding of the underlying hash
function in order to prove this. Now under an obfuscation of P1, one may easily
switch the hardwired plaintext bit. The reason is that since under P1, a given
input path to the circuit must be present in the tree, and since the challenge
identity id∗ is registered only once (say under a public key pk), one may consider
a related circuit which, instead of hardwiring a plaintext bit m, it hardwires into
itself an encryption c ← E(pk,m). The rest follows by semantic security of the
PKE scheme.

We now go over the formal proof. We start by defining some notation.

Notation. Consider a path pth := [(id, pk), (h01, h
1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt−1), rt]

where rt is the root and id and pk are the two leaves and b1, . . . , bt−1 ∈
{left, right}. For a tree Tree of depth t, we write pth ⊆ Tree if pth is a valid
path in Tree in the usual sense. The procedure Valid(hk1, . . . , hkt, pth) checks
if the given path is a ‘valid path’ according to the given hash keys hk1, . . . , hkt

then it output �, otherwise outputs ⊥. For a path pth and integer i we write
Last(pth, i) to refer to the last i node “elements” in pth. Note that we do not
consider the left-or-right bits as part of this counting. For example, letting pth
be as above,

Last(pth, 5) = ((h0t−2, h
1
t−1, bt−2), (h0t−1, h

1
t−1, bt−1), rt).

We also extend the notation ⊆ given above to define Last(pth, i) ⊆ Tree in the
straightforward way (Figs. 4 and 5).

Notation Used in Hybrids. We will write id∗ ← Adv(hk1, . . . , hkκ) to mean
that the adversary Adv receives pp := (hk1, . . . , hkκ) as input, interacts with the
challenger Chal as per Definition 10 and outputs id∗ as the challenge identity.

– Hybrid H1: Encrypt m = 0 using P. The ciphertext ct given to the adver-
sary is formed as follows.
1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).
2. id∗ ← Adv(hk1, . . . , hkκ).
3. ct ← Obf(P[0, id∗, rt, hk1, . . . , hkt, r]), where rt is the root of the tree, t is

the depth of the tree, and r ← {0, 1}∗.
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Hardwired: m ∈ {0, 1}, id∗, rt, hk1, . . . , hkt and randomness r
Input: pth := [(id, pk), (h01, h

1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt), rt′]

1. If id �= id∗, rt �= rt′ or Valid(hk1, . . . , hkt, pth) �= �, then output ⊥ and
end.

2. Output E(pk,m; r).

Fig. 4. Circuit P

Circuit P1

Hardwired: m ∈ {0, 1}, id∗, pth∗, rt, hk1, . . . , hkt and randomness r
Input: pth := [(id, pk), (h01, h

1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt), rt′]

1. If pth = pth∗, then output E(pk,m; r) and end.
2. Else, output ⊥ and end.

Fig. 5. Circuit P1

– Hybrid H2: Encrypt m = 0 using P1. The ciphertext ct given to the
adversary is formed as follows.
1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).
2. id∗ ← AdvRegsel,Regsmp(hk1, . . . , hkκ).
3. ct ← Obf(P1[0, id∗, pth∗, rt, hk1, . . . , hkt, r]), where pth∗ is the path in the

tree leading to the challenge node, rt is the root of pth∗, t is the depth of
the tree, and r ← {0, 1}∗.

– Hybrid H3: Encrypt m = 1 using P1. The ciphertext ct given to the
adversary is formed as follows.
1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).
2. id∗ ← Adv(hk1, . . . , hkκ).
3. ct ← Obf(P1[1, id∗, pth∗, rt, hk1, . . . , hkt, r]), where pth∗ is the path in the

tree leading to the challenge node, rt is the root of pth∗, t is the depth of
the tree, and r ← {0, 1}∗.

– Hybrid H4: Encrypt m = 1 using P. The ciphertext ct given to the adver-
sary is formed as follows.
1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).
2. id∗ ← Adv(hk1, . . . , hkκ).
3. ct ← Obf(P[1, id∗, rt, hk1, . . . , hkt, r]), where rt is the root of the underly-

ing tree, t is the depth of the tree, and r ← {0, 1}∗.

Notation. We use ct〈Hi〉 to denote the value of the ciphertext ct in Hybrid Hi.
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Lemma 17. We have,

1. ct〈H1〉
c≈ ct〈H2〉,

2. ct〈H3〉
c≈ ct〈H4〉.

Proof. We will prove Part 1, and the proof for Part 2 will be exactly the same.
Recall that in hybrid H1 we encrypt m = 0 by obfuscating P and that in

hybrid H2 we encrypt m = 0 by obfuscating P1. Let t be the depth of the tree
at the time of encryption.

We will define intermediate hybrids P2,i for i ∈ [2t + 1], and we will show
P ≡ P2,1, P1 ≡ P2,2t+1 and for all i ∈ [2t], Obf[P2,i]

c≈ Obf[P2,i+1]. These circuit
programs are given in Fig. 6.

Informally, the program P2,i works as follows: it checks whether its given
path is “correct” and whether, in addition, the last i elements of the path are in
accordance with the challenge path pth∗ that was hardwired into the program.
For example, if i = 5, then the root of the path and the two levels below it (five
nodes in total) should match the corresponding nodes in the challenge path pth∗.
If both these conditions hold, then P2,i will encrypt the hardwired plaintext bit
(m = 0) using the public key provided in the corresponding leave of the path.

We will now define a Hybrid H2,i below, which uses program P2,i.

– Hybrid H2,i: Encrypt m = 0 using P2,i. The given ciphertext ct is as:
1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).
2. id∗ ← Adv(hk1, . . . , hkκ).
3. ct ← Obf(P2,i[0, id∗, pth∗, rt, hk1, . . . , hkt, r]), where pth∗ is the challenge

path in the system, rt is the root of pth∗, t is the depth of the tree, and
r ← {0, 1}∗.

First, by inspection we can see that ct〈H1〉
c≈ ct〈H2,1〉 and ct〈H2〉

c≈
ct〈H2,2t+1〉. This is because the underlying two circuits P and P2,1 are func-
tionally equivalent. Same holds for P1 and P2,2t+1.

Thus, for any fixed w ∈ [2t] we just need to prove

ct〈H2,w〉 = ct〈H2,w+1〉. (8)

Below, we fix w ∈ [2t]. To prove Eq. 8, we introduce two hybrids H′
2,w,H′

2,w+1

and show
ct〈H2,w〉 c≈ ct〈H′

2,w〉 c≈ ct〈H′
2,w+1〉

c≈ ct〈H2,w+1〉. (9)

This will establish Eq. 8.
Informally, the hybrids H′

2,w and H′
2,w+1 are defined similarly to H2,w and

H2,w+1, except that one of the many hash keys is now sampled in a different
way, in order to make some binding property happen.

For z ∈ {w,w + 1}, the hybrid H′
2,z is defined as follows.

– Hybrid H′
2,z for z ∈ {w,w+1}. The given ciphertext ct is formed as follows.
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1. Let q := t − �w
2 � − 1 Intuitively, q denotes the level index in the tree for

which we want to use a different hash key. For all i ∈ [κ] \ {q}: sample
hk′

i ← HGen(1κ, 0). Sample

hk′
q ← HGen(1κ, v), where v := (w + 1) mod 2.

2. id∗
1 ← Adv(hk′

1, . . . , hk
′
κ).

3. ct ← Obf(P2,i[0, id∗
1, pth

∗
1, rt1, hk

′
1, . . . , hk

′
t, r]), where pth∗

1 is the challenge
path in the system, rt1 is the root of pth∗ and r ← {0, 1}∗.

Toward proving Eq. 9, first note that by the index hiding property of
(HGen,Hash) we have ct〈H2,w〉 c≈ ct〈H′

2,w〉 and ct〈H2,w+1〉
c≈ ct〈H′

2,w+1〉. Thus,
it remains to prove

ct〈H′
2,w〉 c≈ ct〈H′

2,w+1〉. (10)

To prove Eq. 10, we claim that the underlying two programs are equivalent;
namely,

P2,w[0, id∗
1, pth

∗
1, rt1, hk

′
1, .., hk

′
t, r] = P2,w+1[0, id∗

1, pth
∗
1, rt1, hk

′
1, .., hk

′
t, r]. (11)

By IO security, Eq. 11 implies Eq. 10, and thus we just need to prove Eq. 11.
To prove equivalence of the two circuits in Eq. 11, assume to the contrary that
there exists an input pth for which we have P2,w(pth) 	= P2,w+1(pth). (Here for
better readability we dropped the hardwired values.) By simple inspection we
can see that we have P2,w(pth) 	= P2,w+1(pth) iff all the following conditions
hold:

1. Valid(hk′
1, . . . , hk

′
t, pth) = �; and

2. Last(pth, w) ⊆ pth∗
1; and

3. Last(pth, w + 1) 	⊆ pth∗
1.

This, however, is a contradiction because by the somewhere statistical bind-
ing property of (KGen,Hash) and by the way in which we have sampled hk′

q,
Conditions 1 and 2 contradict Condition 3. �

Description of Circuit P2,i.

Hardwired: m ∈ {0, 1}, id∗, pth∗, rt, hk1, . . . , hkt and randomness r

Input: pth := [(id, pk), (h01, h
1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt), rt′]

1. If id �= id∗ or rt �= rt′ or Valid(hk1, . . . , hkt, pth) �= �, then output ⊥ and
end.

2. If Last(pth, i) ⊆ pth∗, then output E(pk,m; r) and end.
3. Otherwise, output ⊥ and end.

Fig. 6. Circuit P2,i for i ∈ [�]
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Lemma 18. ct〈H2〉
c≈ ct〈H3〉.

Proof. The proof is similar to the proof of Lemma15. �

5 Basing Weakly-Efficient RBE on Standard Assumptions

In this section, we describe our construction of RBE based on hash garbling
and is inspired by our IO based construction from previous section. This notion
and its construction has been implicit in prior works [7,11], and it was shown
[4,11,12] that hash garbling can be realized based on CDH, Factoring or LWE
assumptions. Specifically, implicit in these prior works are constructions of hash
garbling based on hash encryption and garbled circuits. Below, we abstract out
this notion and use it in our work directly. This abstract primitive significantly
simplifies exposition.

Definition 19 (Hash garbling). A hash garbling scheme consists of four PPT
algorithms HGen, Hash, HG, and HInp, defined as follows.

– HGen(1κ, 1�) → hk. This algorithm takes the security parameter κ and an
output length parameter 1� for � ≤ poly(κ), and outputs a hash key hk. (HGen
runs in poly(κ) time.)

– Hash(hk, x) = y. This takes hk and x ∈ {0, 1}� and outputs y ∈ {0, 1}κ.
– HG(hk,C, stt) → ˜C. This algorithm takes a hash key hk, a circuit C, and a

secret state stt ∈ {0, 1}κ as input and outputs a circuit ˜C.
– HInp(hk, y, stt) → ỹ. This algorithm takes a hash key hk, a value y ∈ {0, 1}κ,

and a secret state stt as input and outputs ỹ.

We require the following properties for a hash garbling scheme:

– Correctness. For all κ, �, hk ← HGen(1κ, 1�), circuit C, input x ∈ {0, 1}�,
stt ∈ {0, 1}κ, ˜C ← HG(hk,C, stt) and ỹ ← HInp(hk,Hash(hk, x), stt), then
˜C(ỹ, x) = C(x).

– Security. There exists a PPT simulator Sim such that for all κ, � (recall that
� is polynomial in κ) and PPT (in κ) A we have that

(hk, x, ˜C, ỹ)
c≈ (hk, x,Sim(hk, x, 1|C|,C(x))), where

hk ← HGen(1κ, 1�), (C, x) ← A(hk), stt ← {0, 1}κ, ˜C ← HG(hk,C, stt) and
ỹ ← HInp(hk,Hash(hk, x), stt).

Notation on Binary Trees. Just like the IO construction, in our construction
below, Tree is a full binary tree where the label of each node in Tree is calculated
as the hash of its left and right children and, now additionally, with an an extra
identity. Looking ahead, this identity will be the largest identity among the users
registered in the left child. (Such information is useful if one wants to a binary
search of an identity over this tree.) Just as in the IO-based construction, we
define the size of a tree Tree as the number of its leaves, denoted by size(Tree),
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and we denote the root of Tree as rt(Tree), and use d(Tree) to refer to the depth
of Tree. Again, when Tree is clear from the context, we use rt and d to denote
the root and the depth of Tree.

Before describing the construction, recall that without loss of generality, we
can assume that public keys, secret keys, and identities, are all of length security
parameter κ.
Comparison with Construction 12 Using Signs (=) and ( ��). To help
the reader familiar with Construction 12, we have denoted the steps that are
identical to Construction 12 by (=) and the steps that are significantly different
by ( ��). Other steps are close but not identical.

Construction 20 (Construction of RBE from hash garbling). We will
use a hash garbling scheme (HGen,Hash,HG,HInp) and a public key encryption
scheme (G,E,D). Using them we show how to implement the subroutines of RBE
according to Definition 4.

– Stp(1κ) → (pp0), where pp0 = hk is sampled from HGen(1κ, 13κ).
– Reg

[aux]
(ppn, id, pk) → ppn+1. This algorithm works as follows:

1. (=) Parse auxn := ({Tree1, . . . ,Treeη}), (id1, . . . , idn)) where the trees
have corresponding depths d1 > d2 · · · > dη, and (id1, . . . , idn) is the order
the identities registered.8

2. Parse ppn as a sequence (hk, (rt1, d1), . . . , (rtη, dη)) where rti ∈ {0, 1}κ

represents the root of tree Treei and di represents the depth of Treei.
3. Create a new tree Treeη+1 with leaves id, pk and set its root as rtη+1 ←

Hash(hk, id||pk||0κ) and thus its depth would be dη+1 = 1.
4. (=) Let T = {Tree1, . . . ,Treeη+1}. (We will keep changing T in step

below.)
5. While there are two different trees TreeL,TreeR ∈ T of the same depth d

and size s = 2d (recall that our trees are always full binary trees).
(a) Obtain new Tree of depth d + 1 by merging the two trees TreeL and

TreeR as follows.
(b) (��) Let id1 . . . idn′ and pk1 . . . pkn′ be the identities and public keys

of n′ users in both trees TreeL and TreeR combined in sorted order
according to identities.

(c) For each i ∈ [n′], let h0,i := Hash(hk, idi||pki||0κ).
(d) (��) Next for each j ∈ {1, . . . log n′} and k ∈ {0, . . . , (n′/2j) − 1}, let

hj,k = Hash(hk, hj−1,2k||hj−1,2k+1||id[j, k])

where id[j, k] is the largest identity in the left child (which is the node
with label hj−1,2k); namely id[j, k] = id(2k+1)·2j−1 . This completes the
description of Tree.

(e) (=) Remove both of TreeL,TreeR from T and add Tree to T instead.

8 Keeping this list is not necessary, but simplifies the presentation of the updates.
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6. Let T = {Tree1, . . . ,Treeζ} where d′
1 > · · · > d′

ζ is their corresponding
depth and rt′1, . . . , rt

′
ζ is their corresponding roots. Set ppn+1, auxn+1 as

auxn+1 = (T , (id1, . . . , idn, idn+1 = id)), ppn+1 = (hk, (rt′1, d
′
1), . . . , (rt

′
ζ , d

′
ζ)).

– Enc(pp, id,m) → ct:
1. Parse pp := (hk, (rt1, d1), . . . , (rtη, dη)).
2. For each i ∈ {1, . . . η} and j ∈ {1, . . . , di}, sample stti,j ← {0, 1}κ and

generate ˜Pi,j ← HG(hk,Pi,j , stti,j), where Pi,j is explained below.
3. For each i ∈ [η] obtain ỹi,1 ← HInp(hk, rti, stti,1).
4. Output the ciphertext ct = (pp, {˜Pi,j}i,j , {ỹi,1}i).

The program Pi,j works as follows:
Hardwired values: rti, di, hk,m, id, r, stti,j+1 (where stti,di+1 = ⊥)
Input: a||b||id∗

1. If id∗ = 0κ9 and a = id then output E(b,m; r).
2. If id∗ = 0κ and a 	= id then output ⊥.
3. If id > id∗ then output HInp(hk, b, stti,j+1), else output HInp(hk, a,

stti,j+1).
– Updaux(pp, id) → u: If id is a leaf in a tree of aux, say Tree, return the whole

Merkle opening pth of leaf id and its sibling pk to the root rt(Tree). Otherwise,
return ⊥.

– Dec(sk, u, ct) → m: Parse ct = (pp, {˜Pi,j}i,j , {ỹi,1}i) and u := (z1 . . . zdi∗ ).
Let i∗ be the index of the tree that holds the corresponding identity.10 Decryp-
tion proceeds as follows:
1. For j = {1 . . . di∗ − 1} do

• ỹi∗,j+1 = ˜Pi∗,j(ỹi∗,j , zj).
2. Let ct := ˜Pi∗,di∗ (ỹi∗,di∗ , zdi∗ ).
3. Output D(sk, ct).

Theorem 21. The RBE of Construction 20 satisfies the compactness, complete-
ness (Definition 6), and security (Definition 10) properties.

In the rest of this section, we prove Theorem 21. The completeness and com-
pactness properties are proved similar to those of Construction 12. We can again
verify that over the course of the system’s execution, the tree that holds a user id,
will not be merged with other trees more than log n times. (Each merge increases
the depth of the tree by one, and the depth cannot bypass log n.) We may use
this fact to conclude all the efficiency features for the constructed RBE scheme.

In the rest of this section, we focus on proving security.

5.1 Proof of Security

Similar to our presentation of the proof of Construction 12, here also we first
start by giving the proof for the case in which only one user has registered. We
will then present the general proof (Fig. 7).
9 Without loss of generality we assume that no user is assigned the identity 0κ.

10 Alternatively, we may perform this with respect to all values of i∗, which is up to
the number of trees in the system.
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Hardwired: rt, hk, m ∈ {0, 1}, id′, r and stt

Input: (id, pk, id∗)

1. If id∗ �= 0κ or id �= id′, then output ⊥ and end.
2. Output E(pk,m; r) and end.

Fig. 7. Circuit P used for encryption of m to identity id′

Theorem 22 (Security). For any identity id′ we have

(HG(hk,P0, stt),HInp(hk, rt, stt))
c≈ (HG(hk,P1, stt),HInp(hk, rt, stt)) (12)

where hk ← HGen(1κ, 13κ), stt ← {0, 1}κ, (pk, sk) ← G(1κ), rt :=
Hash(hk, (id′, pk, 0κ)) and for m ∈ {0, 1} the circuit program Pm is defined as

Pm := P[rt, hk,m, id′, r, stt]. (13)

Proof. For m ∈ {0, 1} let ctm denote the challenge ciphertext, namely

ctm := (HG(hk,P0, stt),HInp(hk, rt, stt)) , (14)

where all the variables are sampled as in the theorem. We need to show ct0
c≈ ct1.

By simulation security of the hash garbling scheme, for both m ∈ {0, 1} we have

ctm
c≈ Sim(hk, (id′, pk, 0κ), 1|Pm |,E(pk,m; r)). (15)

By semantic security of the underlying public-key encryption scheme we have

Sim(hk, (id′, pk, 0κ), 1|P0 |,E(pk, 0; r))
c≈ Sim(hk, (id′, pk, 0κ), 1|P1 |,E(pk, 1; r)),

(16)
and so we obtain ct0

c≈ ct1. �

Proof for the General Case. As in the proof in Sect. 4.2 we may assume
that at the time of encryption we have only one tree. The proof for the case of
multiple trees is the same.

Proof. Suppose at the time of encryption the underlying tree with root rt has
depth d. In the sequel we shall write Pj for j ∈ [d] to refer to the circuit program
P1,j described in our RBE construction. That is,

P1 ≡ P1,1[rt, d, hk,m, id, r, stt1,2], (17)

and for j > 1
Pj ≡ P1,j [rt, d, hk,m, id, r, stt1,j+1], (18)
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where all the variables above are as in the encryption of the construction.
For j ∈ [d] we define rtj to be the node in the jth level of the tree (where we

consider the root as level one), whose sub-tree contains the leaf with label id.11

For example, if the path leading to id is

[(id, pk, 0κ), (a1, b1, id1, left), . . . , (ad−1, bd−1, idd−1, right), rt],

then rt3 = bd−1. For j > 1 we define

ỹj := HInp(hk, rtj , stt1,j). (19)

We also define Xj for j ∈ [t + 1] to be the concatenate result of the node
values in level j of the path leading to id. For instance, in the example above we
have X1 = (ad−1, bd−1, idd−1).

Let stti := stt1,i. Recall that Pi has stti+1 hardwired, which is the state used
to hash-garble Pi+1. Via a sequence of hybrids, we show how to replace garbled
versions of Pi’s, starting with i = 1, so that in the ith hybrid the values of
stt1, . . . , stti are never used.

– Hybrid 0 (true encryption): The ciphertext is ct0 := (˜P1, ˜P2, . . . , ˜Pd, ỹ1),
where all of the values are sampled as in the construction.

– Hybrid 1: The ciphertext is ct1 := (˜P1,sim, ˜P2, . . . , ˜Pd, ỹ1,sim), where ˜P2,
. . . , ˜Pd are sampled as in the construction, and where ˜P1,sim and ỹ1,sim are
sampled as follows:

(˜P1,sim, ỹ1,sim) ← Sim(hk,X1, 1|P1 |, ỹ2). (20)

– Hybird i ∈ [d − 1]:

cti := (˜P1,sim, . . . , ˜Pi,sim, ˜Pi+1, . . . , ˜Pd, ỹ1,sim),

where for j ∈ [i]:

(˜Pj,sim, ỹj,sim) ← Sim(hk,Xj+1, 1|Pj |, ỹj+1) (21)

– Hybrid d:

ctd := (˜P1,sim, . . . , ˜Pd,sim, ỹ1,sim)),

where for j ∈ [d − 1]:

(˜Pj,sim, ỹj,sim) ← Sim(hk,Xj+1, 1|Pj |, ỹj+1), (22)

and
(˜Pd,sim, ỹd,sim) ← Sim(hk, (id, pk, 0κ), 1|Pd |,E(pk,m; r)). (23)

Now exactly as in the proof of Theorem 22, using the simulation security of
the underlying HO scheme, we can show the indistinguishability of each two
adjacent hybrids. Moreover, in the last hybrid, again using simulation security
and as in the proof of Theorem22, we may switch the underlying bit value of m.
The proof is now complete. �
11 Recall that by Definition 10 the challenge identity id must have been registered

before, and exactly once.
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