
The Skyline as a Marker for Augmented
Reality in Urban Context

Mehdi Ayadi1,2(B), Leo Valque1, Mihaela Scuturici1, Serge Miguet1,
and Chokri Ben Amar2

1 University of Lyon, CNRS, University Lyon 2, LIRIS,
UMR5205, 69676 Lyon, France

{Mehdi.Ayadi,Mihaela.Scuturici,Serge.Miguet}@univ-lyon2.fr,
leo.valque@ens-lyon.fr

2 University of Sfax, ENIS, REGIM-Lab: REsearch Groups
in Intelligent Machines, BP 1173, 3038 Sfax, Tunisia

chokri.benamar@ieee.org

Abstract. In recent years, augmented reality (AR) technologies have
emerged as powerful tools to help visualize the future impacts of new
constructions on cities. Many approaches that use costly sensors and
height-end platforms to run AR in real-time have been developed. Little
efforts have been made to embed AR on mobile phones. In this paper,
we present a novel approach that uses the Skyline as a marker in an AR
system. This lightweight feature enables real-time matching of virtual
and real skyline on smartphones.

We use device’s embedded instruments to estimate the user’s pose.
This approximation is used to insert a synthetic object in the live video
stream. This first approach gives a very unrealistic impression of the
viewed scene: the inserted objects appear to hover and float with the
user’s movements. In order to address this problem, we use the live video
camera feed as additional source of information which provides a redun-
dancy to the instruments estimation. We extract the Skyline (a set of
pixels that defines the boundary between the building and the sky) as
main visual feature. Our proposal is to use these automatically extracted
points and track them throughout the video sequence, to allow synthetic
objects to anchor these visual features, making it possible to simulate a
landscape from multiple viewpoints using a smartphone. We use images
of the Lyon city (France) to illustrate our proposal.

Keywords: Mobile augmented reality
Image to geometry registration · Image comparison metric
3D models · Skyline matching · Urban landscape

1 Introduction

Nowadays, preserving a good visual landscape, in terms of aesthetics, health,
safety and build ability is an important criteria to enhance the quality of life in
c© Springer Nature Switzerland AG 2018
G. Bebis et al. (Eds.): ISVC 2018, LNCS 11241, pp. 698–711, 2018.
https://doi.org/10.1007/978-3-030-03801-4_61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03801-4_61&domain=pdf
https://doi.org/10.1007/978-3-030-03801-4_61

The Skyline as a Marker for Augmented Reality in Urban Context 699

urban environments. With the development of Smart Cities around the world,
policy makers and architects want to involve citizens in the process of city con-
struction on an early stage. To increase this environmental awareness and assist
users, new tools and methods are required. In this context, augmented reality
(AR) is used as a landscape simulation system where 3D models are included in
a live video stream. Most of these mobile AR systems are marker-based which
limit their scope to small-scale environments and indoor objects. Outdoor sys-
tems, in the other hand, rely exclusively on noisy sensor data to calibrate the
virtual view with the real one. This kind of approaches are generally inaccurate
with a limited user experience. They fail to provide a meaningful augmentation.

In this paper, we present a system for a real-time video stream augmentation
on mobile platforms. The proposed system combines many features: large-scale
(3D city model), visual (skyline) and contextual (instruments) information to
augment the live video with 3D models in the correct location and perspective.

The proposed system allows a user to navigate in the urban environment
and visualize the impact of a construction projects on the urban landscape using
their smartphones (or tablet). The goal is to precisely insert in the image flow
the new building model with the most realistic experience for the user. We
propose an hybrid approach where the user’s pose is first estimated using the
smartphone’s embedded instruments and then corrected with the skyline, as
explained in Sect. 5. In other words, we cast the image/model matching problem
into a curve matching problem which makes it a possible solution for real-time
mobile application. Our AR system is running on a mobile platform (iPhone 6)
with A8 processor.

The remainder of this paper is structured as follows:
In Sect. 2, we summarize the related previous works on video/GIS registra-

tion followed by literature on skyline matching methods. Next, Sect. 3 gives an
overview of the proposed system. Section 4 describes the synthetic image gener-
ation process followed by Sect. 5 for our skyline matching methods and image
comparison metrics. Results are presented in Sect. 6 followed by the conclusions
and future work.

2 Related Work

One of the first mobile solutions for AR was The Touring machine. Other
approaches, in [3] or [1], were introduced to overlay information on the cam-
era image. These approaches are well suited to present illustrative informations
but are not directly suited for visualization in urban environment or augmenting
scenes with urban objects, as presented in this paper. In this context, Video/GIS
registration technique is considered as a solution for large-scale augmented real-
ity applications [2]. The problem consists in aligning pixels from the virtual world
(3d city model, LiDAR scans, point clouds, ...) with the real image ones. We are
in the case where the problem of image to point cloud registration is casted
to an iterative process of image to image registration. To solve this problem, an
implicit operation is done: the point cloud is turned into a synthetic picture. The

700 M. Ayadi et al.

real picture is then registered with the virtual one. In the following we present
related works on video/GIS registration and skyline matching methods.

Existing approaches rely especially on 2D-features. The most explored meth-
ods in the literature use feature points such as SIFT or SURF points. The
feature points are extracted from real and synthetic 2D images to be matched.
This implies that the point clouds should have a texture, a color information or
a reflectance value. In [4], a reflectance image is generated, from which SURF
points are extracted. In [5], the image to image registration step relies on the
RGB coloration of the point cloud using ASIFT descriptors. In this paper, we
propose also to use a textured 3D city model, from which the rendering is a 3D
textured object. However, the matching process is based only the on geometric
features defined by the skyline.

For the real/virtual image registration step, [6] uses the Mutual Information
between the two images. [7] proposes an improved approach, where a Gradient
Orientation Measure (GOM) is used to compute the difference of the gradi-
ent orientation angle between the synthetic image and the real image. These
methods are computationally expensive and memory consuming making them
inappropriate for mobile real-time rendering. They also stay impractical for a
large point clouds, as proposed in this paper.

[8] tries to improve camera orientations using multiple sensors, cameras and
laser scans. This first approximation is then corrected with a skyline matching
method based on an ICP algorithm. Other methods rely on specific 2D feature
points, namely the skyline. This skyline matching step was also explored in the
literature. In [9], a generic fisheye camera pointing upward and a 3D urban
model were used to generate two an omni-directional real and virtual skylines.
A matching step between the two images using a chamfer matching algorithm
and a shortest path algorithm gives a precise GPS localization. We introduce
a novel image comparison metric respecting the real-time constraint on mobile
devices.

In [10], panoramic 3D scans are acquired from which the extracted skyline
is encoded as a string. The step of skylines matching is then casted to a string
matching problem. [11] uses the overall Skyline feature to estimate yaw angle
(camera’s viewing direction) from the image while having zero pitch and roll.
The panoramic skyline is divided into four joint images from which a Cross-
Similarity function is calculated to find the azimuth. An extension of this work
in [12] overcomes this limitations with calculating the pitch and toll angle using
a vertical vanishing points detection algorithm. More recent work in [13] uses
a wide-angle synthetic image generated from 3D geometry model and the its
associated image. The skyline matching metric is based on Normalized Mutual
Information (NMI) and Histogram or Oriented Gradients (HOG).

As mentioned in [14], a city’s skyline is defined as the unique fingerprint of a
city, and therefore characterizes the uniqueness of urban environments or images.
It also represents the overall geometric feature of the image in the real and virtual
world. As explained in Sect. 5, we use it in our matching step. Our image/model
matching problem is then transformed into a curve matching problem where the

The Skyline as a Marker for Augmented Reality in Urban Context 701

two skylines are matched with our similarity metric. This significantly reduce
the computation complexity of our algorithm which makes it possible for testing
on mobile platforms while respecting the real-time constraint.

3 Proposed System

Our method (Fig. 1) takes as input a live video stream from the smartphone’s
camera and a point cloud of the neighborhood urban scene. We propose a two-
step registration method to refine the estimated camera’s pose, knowing the cam-
era’s intrinsic parameters: first, a live video-stream is acquired with the smart-
phone’s camera from which a real skyline (1) is extracted using a skyline extrac-
tion algorithm [15]. Then, a camera pose is estimated in world coordinate system
with its 6 degrees of freedom due to the combination of smartphone’s embedded
sensors, as explained in Sect. 4.2: magnetic compass, gyroscope, accelerometer
and barometer. This first camera pose allows us to place a virtual camera in
the 3D city model and so generate a synthetic image of what the user should
sees at this position. From this virtual image, a virtual skyline (2) is extracted.
Our skyline matching method, detailed in Sect. 5, matches these real and virtual
skylines and refines the camera’s pose.

Fig. 1. System

702 M. Ayadi et al.

4 Synthetic Image Generation

We first generate the synthetic image at an estimated user’s pose. The camera
pose estimation process is explained in Sect. 4.2. In the following, we detail our
synthetic image generation process. We adopt a pinhole camera model, where
the camera pose is expressed as a projection matrix P , giving the 2D pixel
coordinate in image coordinate system from the 3D vertex coordinates in the
world coordinate system. This projection matrix can be decomposed into three
main components:

P = K ∗ R ∗ [I − t]

where K is the camera intrinsic parameter matrix; R is the rotations matrix and
t the translations vector.

We do not detail the camera calibration step. We perform it with an iOS-SDK
and OpenCV framework. This calibration step gives us the camera’s intrinsic
parameters as well as the distortion parameters (3 radial and 2 tangential).

4.1 Dataset

In this subsection, we present the data used in our experiments for the synthetic
image generation step. First, we present the 3D city model used in here and
associated pre-processing steps. Then our client-server architecture. Finally our
image database associated to its meta-data.

3D City Model: Many cities around the world own nowadays their virtual
double. We mention New York (2016), Brussels (2014) or Lyon (2012)1. Produc-
ing these 3D geo-referenced data is feasible due to processes based on aerial or
terrestrial acquisition campaigns. These data become more and more accurate
and particularly open source. These models are available in several formats: 3DS,
CityGML, KMZ, DirectX. In our case, we use CityGML format from (OGC).
Storing 3D model on mobile device is too heavy, and reading them (XML) is
computationally expensive. A preprocessing stage is then bedded.

Data used here is provided by the city of Lyon2. It represents about 550
square kilometers in CityGML.

Data Preparation: Each district of the city is stored in a CityGML file.
Data is converted and stored as text files. These CityGML files will beforehand
have been automatically cut into fixed size tiles. All these operations can be
batched server-side. In the case of data modification (other cities, districts, etc.),
the tiled data may be recomputed easily and automatically. Textures are kept
as their png original format. To do this, we used an open source tool3.

We visualize in real-time the 3D city data of the user’s neighborhood position.
For this, we use a framework based on a mobile client/light server architecture,
as described in Fig. 2. The server receives a request from the mobile device with
its GPS position and sends back the corresponding tiled data in JSON format.
1 https://www.citygml.org/3dcities, 2018.
2 http://data.grandlyon.com, 2018.
3 https://github.com/MEPP-team/3DUSE.

https://www.citygml.org/3dcities
http://data.grandlyon.com
https://github.com/MEPP-team/3DUSE

The Skyline as a Marker for Augmented Reality in Urban Context 703

Fig. 2. Data exchange pipeline

4.2 Pose Estimation

We position our virtual camera in the 3D city model at the exact user’s position,
viewing direction and orientation.

The user’s position (x, y, z) is estimated with a simple rough translation
vector:

– (x, y) acquired directly by the smartphone’s GPS (longitude, latitude);
– For the altitude (z), depending on smartphone, we retrieve data from:

• Digital Elevation Model, giving an absolute measure;
• Barometer, for most recent smartphones, giving a relative altitude;

Finally, the rotation matrix R is estimated by combining data from both
smartphone’s triaxial accelerometer and magnetic compass. The output of the
accelerometer can be modeled as follows:

−→aS =

⎛
⎝

aSx

aSy

aSz

⎞
⎠ = −→aB + R ∗ −→g

where: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−→aS Accelerometer output
aSx Acc. along x-axis
−→aB Acc. experienced by the moving body
−→g Gravity
R Rotation matrix

All of these vectors are oriented according to the North-East-Down conven-
tion. The rotation matrix R allows to project the gravitational vector −→g from
the terrestrial inertial referential to the moving object referential.

To solve this equation, we must first take a look at the rotation matrices
expressions, along x, y and z axis. Since we want to perform the three rota-
tions successively, we must multiply the matrices between them. Or, matrices
multiplication is not commutative. We must choose an arbitrary order for these
multiplications. Comparing all possible results, we can notice that only Rxyz and
Ryxz are exploitable solutions, allowing us to resolve the equation (depend only
on θ and φ).

704 M. Ayadi et al.

For R = Rxyz:

−→aS = Rx(φ) ∗ Ry(θ) ∗ Rz(ψ) ∗
⎛
⎝

0
0
1

⎞
⎠ = ... =

⎛
⎝

−sin(θ)
sin(φ)cos(θ)
cos(φ)cos(θ)

⎞
⎠

We obtain the following expressions:

{
φ = tan−1(aSy

aSz
)

θ = tan−1(−aSx√
a2
Sy+a2

Sz

)

At this step, we found out the user’s orientation along two axis: pitch and
yaw. The roll is directly obtained from the magnetic compass, as detailed in
Fig. 3.

We are now able to build the projection model: we place our virtual camera
at this previous estimated pose. We illustrate in Figs. 4 and 5 both real and its
corresponding virtual image at same time and location.

5 Skyline Matching

Traditional methods use several textural features from the real and virtual
images. These methods are quite computationally expensive and heavily depends
on the quality of extracted features (SIFT, SURF, etc.), which is not suitable for
our mobile AR context. We propose here to exploit scene’s geometric features:
the skyline. In fact, most images taken in urban environments contain a skyline
which is defined as the border between sky and non-sky region. The proposed
method assumes the existence of one significant sky regions inside the image. In
[11], where images are horizontally rectified (zero tilt), we here authorize the six
degrees of freedom.

Fig. 3. Smartphone’s axis Fig. 4. Real image with
Skyline

Fig. 5. Virtual image
with skyline

Both skylines (Figs. 4 and 5) are assumed to be extracted from the same
camera position. In order to, we rely on the similarity of their shapes. This
allows us to find the correction that should be applied to the user’s pose.

The Skyline as a Marker for Augmented Reality in Urban Context 705

The objective is then to move the virtual skyline in the image plane on the
x, y and θ coordinates to match it with the real one. As an approximation,
we consider that small pitch and yaw rotations are estimated as translations in
the image plane. The problem is to minimize a distance according to the x, y
and θ parameters. The minimization algorithm used here is a Gradient descent
(simplex) from OpenCV optimization modules, Downhill Solver. The rendering
and the matching steps are real time. We also define an image comparison metric
to determine the distance between the skylines. It’s clear that, if the camera pose
corresponds to the pose that yields the real image, this comparison metric should
be minimum. In our case, this metric should be resilient to multiple factors: noise
due to errors in skyline extraction process, incomplete data, jagged skyline, too
much vegetation, missing data (..).

Our skyline matching pipeline contains three steps: skyline simplification,
polygonal approximation and downhill solver.

Skylines systematically contain many straight lines due to noise-related pix-
els derived from the skyline extraction process or due to their presence in the real
world but not in the virtual one (trees, chimney, clouds, ...). Added to that, the
original skyline contains a little more than 300 pixels (image’s width). Starting
the matching step using this vector size would compromise the real-time con-
straint. A simplification step is then needed to eliminate noise pixels. This step
is divided into two steps: outliers removal followed by a polygonal approximation
step. This reduces the skylines to a few dozens of points that clearly define the
shape of the scene.

Finally, to minimize our objective function, we launch a dynamic program-
ming based on the Nelder-Mead method, namely: Downhill Solver. This allow
us to find the global minimum while using a cost function based on one of our
comparison metrics.

5.1 Skyline Simplification

Algorithm 1. Aberrant pixel removal
for i = 1, i++, while i < sizeof(input) do

if |input[i + 1].y + input[i − 1].y − 2 ∗ input[i].y| < precision then
output ← input[i]

end if
end for

Where “input” is the original skyline vector, “output” is the resulting vector
and “precision” is a parameter reflecting the magnitude of vertical jump between
two consecutive pixels.

We illustrate our results in our open source database for skyline extraction
and simplification. The skyline is extracted from the real image. Then, outliers
are removed based on Algorithm 1, obtaining, on average, a skyline vector of

706 M. Ayadi et al.

25 pixels. The polygonal approximation step comes after skyline simplification,
which approximate the skyline curve with a new one with less vertices such that
the distance between them is less than the precision parameter4. These pre-
treatments (outliers removal + polygonal approximation) allow us to obtain, on
average, skylines vectors of around 25 pixels.

5.2 Comparison Metric

L1 : We try to minimize a distance with the parameter x, y and θ. The first idea
explored is to use distance L1.

L1(A,B) =
∫

x

| yA(x) − yB(x) | dx (1)

This distance is simply the area between the two curves. This solution is also
used as a cross-similarity function in [12] and works well for skylines that are
very similar. It already provides quite satisfactory results. But the two input
skylines often contain important differences:

– lack of precision of the 3D model (building are sometimes reduced to their
simplest shape);

– some recent buildings are not yet represented in the 3D model;
– absence of street lights, lamp posts, electrical panels, power lines and other

artifacts in the 3D model.

When the real and theoretical (extracted from the 3D model) skylines present
these differences, the matching step goes wrong. For this, we introduce a second
comparison metric.

L−1 : The objective is to find a way to manage these differences while having
the following features:

– close curves are strongly valued;
– distant curves are not too penalized: the curves must to be able to deviate in

one point if it allows to be identical in others;
– distant lines and very distant ones have the same importance.

Among the tested metrics, one respects these criteria well. We define it as:

L−1(A,B) = M −
∫

x

1
| yA(x) − yB(x) | +c

dx (2)

We denote A and B the real and virtual skylines. The constant “c” avoids
divergences and allows the behavior to be adjusted: the smaller it will be, the
more it will apply strongly the criteria at the risk of creating a lot of local
minimums affecting the convergence of the minimization algorithms. On the

4 http://en.wikipedia.org/wiki/Ramer-DouglasPeuckerAlgorithm.

http://en.wikipedia.org/wiki/Ramer-DouglasPeuckerAlgorithm

The Skyline as a Marker for Augmented Reality in Urban Context 707

contrary, the bigger it will be, the closer we will get to the behavior of the first
metric (1).

This metric follows well the criteria defined above and is much better robust
to the cases where skylines present important differences.

However, it fails when matching vertical lines and is far from good matches
for some entries, including fairly simple entries where our first metric find better
solutions. This is not quite the expected result and it is therefore necessary to
adjust this metric to be able to use it.

Lfinal: The two previous metrics are combined to get advantages of each
one: the first one works well for simple cases but not for complicated ones.
The second works better for complicated cases but not for all simple. For this,
we have to combine these two metrics. The typical way to combine two functions
in an objective one is to use a weighted linear combination of the two, while
adding a parameter alpha, e.g Lfinal = alpha ∗L1 + (1−alpha) ∗L−1. For this,
we must make one of the following hypothesis:

– It exists more simple cases than complicated ones, and then, alpha > 0.5;
– In contrary, more complicated than simple cases, and then, alpha < 0.5.

Due to the variability of the scenes (simple or complicated cases), we chose
to not add such weighted combination and abstract our final metric of any
hypothesis. Our final metric is then:

Lfinal(A,B) = L1(A,B) ∗ L−1(A,B) (3)

6 Results and Discussion

In order to test the accuracy and robustness of our method, we conducted several
experiments. Tests have been made on real 3D data provided by the city of Lyon
(France) covering more than 500 km2 of territory. Tests were made in different
weather conditions and multiple types of areas. We take into account objects
that can be found in real environment but not in 3D city model: along urban
areas, mainly trees form the skyline of the foreground objects as can be found in
our open source database images. Added to that, buildings and road furniture
such as traffic lights, lamp posts, or street signs lead to wrong real skylines, that
cannot be later matched with virtual one.

We conducted our experiments, and constructed a database of around 300
images. Global results are given in Table 1 and examples are illustrated in Fig. 6.
All image database are available in [17]. For each image, we define multiple
anchor points for residual error calculation, as the difference along the hori-
zontal and vertical directions of those points. In Figs. 6a to d, we define these
anchor points, that are essential in our evaluation protocol, and that have to be
non-coplanar. For each image, the residual error is denoted (Δx,Δy), in terms
of the number of pixels, and is calculated as the average of all anchor points
pixel error. Then, for each image with each of proposed comparison metrics, we

708 M. Ayadi et al.

Fig. 6. Residual error calculation

choose, when possible, to use the same anchor points in the evaluation proto-
col, as illustrated in Figs. 6e to h. Then, as discussed previously, we authorize
the six-degree of freedom. Figures 6i and l illustrate the same scene with two
different perspectives (tilt angle). We notice in Figs. 6e to h, how this compli-
cated case (presence of a tree on the left of the image) gives different results.
With [16], error is acceptable ((ΔX,ΔY) = (28, 3)). With our L1 metric, we
obtain very bad results ((ΔX,ΔY) = (99, 13)). Then L−1 metric gives a lit-
tle better result ((ΔX,ΔY) = (24, 14)) and finally L−1 metric the best one
((ΔX,ΔY) = (4, 13)). We compare our method to [16] with our different met-
rics. We calculate, for each image, the residual error. These results verify the
high accuracy of our system for near and far objects.

Then, as a human-machine comparison step, we manually match the virtual
skyline with the real one, and then generate a manually generated alignments.
As the automatic pose estimation procedure, this step is also based only on
translation in the image plane. We add rotations in the virtual environment

The Skyline as a Marker for Augmented Reality in Urban Context 709

and sees in real-time the virtual skyline moving in the image place. We denote
this database: manually alignment. We compare our results to this manually
alignments using the same residual error calculation method.

The developed system run on a smartphone with standard specifications
(iPhone 6), including an Apple iOS 11.4 operating system and Open GL-ES 3.0.
In Table 1, we show results of our system: we compare our result (virtual images)
to the real ones, then to the manual generated alignments. We compare our
results also to experiment 9 of [16]. We give in the table result for images shown
in Fig. 6. The system runs in real-time on iPhone 6. Depending on the complexity
of the rendered scene (number of buildings, complexity of the buildings, etc.),
on average, the rendering process takes 12 ms and the matching step 11 ms.

Table 1. Residual error results

Image Comparison to
real images

Comparison to
manual alignments

[16] L1 L−1 Lfinal L1 L−1 Lfinal

Frame 58: Figs. 6e to h Δ X 28,5 −98 15 −20 −106 −29 −30

Δ Y −3 −9 6 8 −10 9 8

Frame 62: Figs. 6i to l Δ X 73 56 32 49 45 41 46

Δ Y 11 30 −12 −7 30 −8 −6

Database Δ X Absolute
average

10 3 10 3 4 9 2

Std Dev 70 82 66 66 92 61 59

Δ Y Absolute
average

15 20 14 14 24 17 18

Std Dev 18 36 28 28 38 32 30

7 Conclusion and Future Work

We investigated the possibility of using skyline features as a marker for aug-
mented reality. We proposed a system where the estimated pose with smart-
phone’s instruments is corrected using the skyline. Our skyline matching method
allows us to transform the image to model matching problem into a curve match-
ing one. This reduced significantly the computation complexity (on an iPhone 6),
allowing us to test our system in real-time video. The accuracy and robustness
was tested on a set of 300 images, with synthetic and real images. Our differ-
ent comparison metrics gives promising results for simple and complicated cases.
However, results suffers from cases, where occlusions are present (tall trees, etc.).
On the other hand, our matching process here is in the image plane. We will try
to add a matching process with six degree of freedom on the world coordinate
referential.

710 M. Ayadi et al.

References

1. Schmalstieg, D., Langlotz, T., Billinghurst, M.: Augmented Reality 2.0. In: Brun-
nett, G., Coquillart, S., Welch, G. (eds.) Virtual Realities, pp. 13–37. Springer,
Vienna (2011). https://doi.org/10.1007/978-3-211-99178-7 2

2. Langlotz, T., Mooslechner, S., Zollmann, S., Degendorfer, C., Reitmayr, G.,
Schmalstieg, D.: Sketching up the world: in situ authoring for mobile augmented
reality. Pers. Ubiquitous Comput. 16(6), 623–630 (2012)

3. Gotow, J.B., Zienkiewicz, K., White, J., Schmidt, D.C.: Addressing challenges with
augmented reality applications on smartphones. In: Cai, Y., Magedanz, T., Li, M.,
Xia, J., Giannelli, C. (eds.) MOBILWARE 2010. LNICST, vol. 48, pp. 129–143.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17758-3 10

4. Wiggenhagen, M.: Co-registration of terrestrial laser scans and close range digital
images using scale invariant features. Plastverarbeiter.De, pp. 208–212 (2010)

5. Moussa, W., Abdel-Wahab, M., Fritsch, D.: An automatic procedure for combining
digital images and laser scanner data. ISPRS Int. Arch. Photogramm. Remote.
Sens. Spat. Inf. Sci. XXXIX-B5, 229–234 (2012)

6. Taylor, Z., Nieto, J.: Automatic calibration of lidar and camera images using nor-
malized mutual information, p. 8 (2012)

7. Taylor, Z., Nieto, J., Johnson, D.: Automatic calibration of multi-modal sensor
systems using a gradient orientation measure. In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1293–1300, November 2013

8. Hofmann, S., Eggert, D., Brenner, C.: Skyline matching based camera orientation
from images and mobile mapping point clouds. ISPRS Ann. Photogramm. Remote.
Sens. Spat. Inf. Sci. II-5, 181–188 (2014)

9. Ramalingam, S., Bouaziz, S., Sturm, P., Brand, M.: Skyline2gps: localization in
urban canyons using omni-skylines. In: 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 3816–3823, October 2010

10. Nüchter, A., Gutev, S., Borrmann, D., Elseberg, J.: Skyline-based registration of
3d laser scans. Geo Spat. Inf. Sci. 14(2), 85 (2011)

11. Zhu, S., Pressigout, M., Servières, M., Morin, L., Moreau, G.: Skyline matching: a
robust registration method between Video and GIS. In: Conference of the European
COST Action TU0801 - Semantic Enrichment of 3D City Models for Sustainable
Urban Development Location: Graduate School of Architecture, Nantes, France,
pp. 1–6, October 2012

12. Zhu, S., Morin, L., Pressigout, M., Moreau, G., Servières, M.: Video/GIS regis-
tration system based on skyline matching method. In: 2013 IEEE International
Conference on Image Processing, pp. 3632–3636, September 2013

13. Guislain, M., Digne, J., Chaine, R., Monnier, G.: Fine scale image registration
in large-scale urban lidar point sets. Comput. Vis. Image Underst. 157, 90–102
(2017). Large-Scale 3D Modeling of Urban Indoor or Outdoor Scenes from Images
and Range Scans

14. Yusoff, N.A.H., Noor, A.M., Ghazali, R.: City skyline conservation: sustaining the
premier image of Kuala Lumpur. Procedia Environ. Sci. 20, 583–592 (2014)

https://doi.org/10.1007/978-3-211-99178-7_2
https://doi.org/10.1007/978-3-642-17758-3_10

The Skyline as a Marker for Augmented Reality in Urban Context 711

15. Ayadi, M., Suta, L., Scuturici, M., Miguet, S., Ben Amar, C.: A parametric algo-
rithm for skyline extraction. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu,
D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 604–615. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-48680-2 53

16. Fukuda, T., Zhang, T., Yabuki, N.: Improvement of registration accuracy of a
handheld augmented reality system for urban landscape simulation. Front. Arch.
Res. 3, 386–397 (2014)

17. Skyline Database: dionysos.univ − lyon2.fr/ mayadi/ISV C′18/skylineDatabase

https://doi.org/10.1007/978-3-319-48680-2_53

	The Skyline as a Marker for Augmented Reality in Urban Context
	1 Introduction
	2 Related Work
	3 Proposed System
	4 Synthetic Image Generation
	4.1 Dataset
	4.2 Pose Estimation

	5 Skyline Matching
	5.1 Skyline Simplification
	5.2 Comparison Metric

	6 Results and Discussion
	7 Conclusion and Future Work
	References

