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Abstract. In artistic pattern generation one can find many different
approaches to the generation process. One of such approaches is the use
of root finding methods. In this paper, we present a new method of gen-
erating artistic patterns with the use of root finding. We modify the clas-
sical Newton’s method using a Particle Swarm Optimization approach.
Moreover, we introduce various iteration processes instead of the stan-
dard Picard iteration used in the Newton’s method. Presented examples
show that using the proposed method we are able to obtain very inter-
esting and diverse patterns that could have an artistic application, e.g.,
in texture generation, tapestry or textile design etc.

Keywords: Generative art · Root finding · Dynamics · Iterations
Visualization

1 Introduction

One of the most elusive goals in computer aided design is artistic design and
pattern generation. This involves diverse aspects: analysis, creativity and devel-
opment [1]. A designer has to deal with all of these aspects in order to obtain an
interesting pattern, which later could be used in jewellery design, carpet design,
as a texture etc. Usually the most work during the design stage is carried out by
a designer manually, especially in the cases in which the designed pattern should
contain some unique, unrepeatable artistic features. Therefore, it is highly use-
ful to develop methods (e.g. automatic, semi-automatic) that will assist pattern
generation, and will make the whole process easier.

In the literature we can find many artistic pattern generation methods. They
involve different approaches to the generation process, e.g., fractals [2], neural
networks [3], shape grammars [4] etc. One of the popular methods of generating
artistic patterns is the use of root finding methods and visualization of their
behaviour. This method is called polynomiography [5] and images created by it
are called polynomiographs. In the generation process one can use a single root
finding method [6] or a combination of them [7].
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Evolutionary algorithms are algorithms for optimization – particularly for
solving the minimization problem, but they can also be adopted to root finding.
One of very popular algorithms in this group is the Particle Swarm Optimiza-
tion (PSO). The particle movement in PSO can be described by the following
equation:

z′
i = zi + v′

i, (1)

where z′
i – the current position of the ith particle in a D dimensional environ-

ment, zi – the previous position of the ith particle, v′
i – the current velocity of

the ith particle in a D dimensional environment that is given by the following
formula:

v′
i = ωvi + η1r1(zpbest i − zi) + η2r2(zgbest − zi), (2)

where vi – the previous velocity of the ith particle, ω – inertia weight (ω ∈ [0, 1]),
η1, η2 – acceleration constants (η1, η2 ∈ (0, 1]), r1, r2 – random numbers gen-
erated uniformly in the [0, 1] interval, zpbest i – the best position of the ith
particle, zgbest – the global best position of the particles. The best position and
the global best position of particles are updated in each iteration. The parti-
cle behaviour depends on inertia weight (ω) and acceleration constants (η1, η2).
The inertia weight helps particle to escape from a not promising area and accel-
eration constants direct the particle to an extreme – the values of the parameters
are selected during the tuning process.

The behaviour of particles can be very complicated in evolutionary algo-
rithms [8,9]. So the use of this algorithms group – especially the PSO algorithm
– can give rise to new artistic patterns. Thus, in this paper we propose modi-
fication of the Newton’s method using the PSO approach and various iteration
processes.

The rest of the paper is organized as follows. Section 2 introduces a root
finding algorithm that is based on the Newton method and the PSO approach.
Next, Sect. 3 introduces iteration processes known in literature. Then, in Sect. 4
an algorithm for creating artistic images is presented. Some examples of patterns
obtained with the proposed algorithm are presented in Sect. 5. Finally, Sect. 6
gives short concluding remarks.

2 PSO-Based Newton Method

The Newton method is one of methods to solve a system of D non-linear equa-
tions with D variables [10]. Let f1, f2, . . . , fD : RD → R and let

F(z1, z2, . . . , zD) =

⎡
⎢⎢⎢⎣

f1(z1, z2, . . . , zD)
f2(z1, z2, . . . , zD)

...
fD(z1, z2, . . . , zD)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦ = 0. (3)

Assume that F : R
D → R

D is a continuous function which has contin-
uous first partial derivatives. Thus, to solve the equation F(z) = 0, where
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z = [z1, z2, . . . , zD], using the Newton method we select a starting point
z0 = [z10 , z

2
0 , . . . , z

D
0 ] and then use the following iterative formula:

zn+1 = zn − J−1(zn)F(zn) n = 0, 1, 2, . . . , (4)

where

J(z) =

⎡
⎢⎢⎢⎢⎣

∂f1
∂z1

(z) ∂f1
∂z2

(z) . . . ∂f1
∂zD

(z)
∂f2
∂z1

(z) ∂f2
∂z2

(z) . . . ∂f2
∂zD

(z)
...

...
...

...
∂fD

∂z1
(z) ∂fD

∂z2
(z) . . . ∂fD

∂zD
(z)

⎤
⎥⎥⎥⎥⎦

(5)

is the Jacobian matrix of F and J−1 is its inverse.
Introducing N(z) = −J−1(z)F(z) the Newton method can be represented in

the following form:

zn+1 = zn + N(zn), n = 0, 1, 2, . . . . (6)

To solve (3) the following PSO approach can be used:

zn+1 = zn + vn+1, (7)

where z0 ∈ R
D is a starting position, v0 = [0, 0, . . . , 0] is a starting velocity,

vn+1 is the current velocity of particle, zn is the previous position of particle.
The algorithm sums the position of the particle zn with its current velocity vn+1.
The current velocity of the particle is determined by the inertia weight and the
acceleration constants:

vn+1 = ωvn + ηN(zn), (8)

where vn – the previous velocity of particle, ω ∈ [0, 1) – inertia weight, η ∈ (0, 1]
– acceleration constant.

The inertia weight (ω) and the acceleration constant (η) selection allows to
change particle dynamics, which in consequence creates different patterns.

3 Iteration Processes

The Picard iteration is widely used in computational tasks which are based on
iterative processes. This iteration has the following form

zn+1 = T(zn). (9)

Let us notice that (7) uses the Picard iteration, where T : RD → R
D is given by

the following formula
T(zn) = zn + vn+1. (10)

In the literature there exist many other types of iterations. The three most
widely used iterations are the following:
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1. The Mann iteration [11]:

zn+1 = (1 − αn)zn + αnT(zn), n = 0, 1, 2, . . . , (11)

where αn ∈ (0, 1] for all n ∈ N. The Mann iteration for αn = 1 reduces to the
Picard iteration.

2. The Ishikawa iteration [12]:

zn+1 = (1 − αn)zn + αnT(un),
un = (1 − βn)zn + βnT(zn), n = 0, 1, 2, . . . ,

(12)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N. The Ishikawa iteration reduces
to the Mann iteration when βn = 0 and to the Picard iteration when αn = 1,
βn = 0 for all n ∈ N.

3. The Agarwal iteration [13] (S-iteration):

zn+1 = (1 − αn)T(zn) + αnT(un),
un = (1 − βn)zn + βnT(zn), n = 0, 1, 2, . . . ,

(13)

where αn, βn ∈ [0, 1] for all n ∈ N. The S-iteration reduces to the Picard
iteration when αn = 0, or αn = 1 and βn = 0.

A review of various iteration processes and their dependencies can be found in
[14].

The introduced so far iterations used only one mapping T, but in the litera-
ture we can find also the use of iterations that use more than one mapping [7].
The most basic iteration of this type are the following:

1. The Das-Debata iteration [15]:

zn+1 = (1 − αn)zn + αnT2(un),
un = (1 − βn)zn + βnT1(zn), n = 0, 1, 2, . . . ,

(14)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N. The Das-Debata iteration for
T1 = T2 reduces to the Ishikawa iteration.

2. The Khan-Cho-Abbas iteration [16]:

zn+1 = (1 − αn)T1(zn) + αnT2(un),
un = (1 − βn)zn + βnT1(zn), n = 0, 1, 2, . . . ,

(15)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N. The Khan-Cho-Abbas iteration
reduces to the Agarwal iteration when T1 = T2.

3. The generalized Agarwal’s iteration [16]:

zn+1 = (1 − αn)T3(zn) + αnT2(un),
un = (1 − βn)zn + βnT1(zn), n = 0, 1, 2, . . . ,

(16)

where αn ∈ (0, 1] and βn ∈ [0, 1] for all n ∈ N. The generalized Agarwal
iteration reduces to the Khan-Cho-Abbas iteration when T1 = T3 and to the
Agarwal iteration when T1 = T2 = T3.
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4 Artistic Patterns Generation Method

To generate the artistic patterns we use Algorithm 1, which is very similar to the
polynomiography. In the algorithm one of the iteration methods Iq presented in
Sec. 3 is selected. Moreover, we select parameters ω, η for a single mapping T
or ω1, ω2, ω3 and η1, η2, η3 for T1,T2,T3 (depending on the chosen iteration).
The maximum number of iterations m which algorithm should make, accuracy
of the computations ε and a colouring function C : N → {0, 1, . . . , 255}3 are
also chosen. Then, for each z0 in the considered area A we iterate it using the
chosen iteration and mappings. The iterations of the algorithm proceed till the
convergence criterion:

‖F(zn)‖ < ε (17)

is satisfied or the maximum number of iterations is reached. A colour corre-
sponding to the performed number of iterations is assigned to z0 using colouring
function C.

Algorithm 1. Artistic Patterns Generation Method
Input: F – function, A ⊂ R

D – solution space, m – the maximum number of
iterations, Iq – iteration method, q ∈ [0, 1]N – parameters of the
iteration Iq, ω, ω1, ω2, ω3, η, η1, η1, η2, η3 – parameters defining
functions T, T1, T2, T3, C – colouring function, ε – accuracy

Output: visualization of the dynamics

1 foreach z0 ∈ A do
2 n = 0
3 v0 = [0, 0, . . . , 0]
4 while n ≤ m do
5 if ‖F(zn)‖ < ε then
6 break

7 zn+1 = Iq(zn)
8 n = n + 1

9 colour z0 with C(n)

The solution space A is defined in a D-dimensional space, thus the algorithm
returns patterns in this space. For D = 2, a single image is obtained. When D > 2
cross section of A with a two-dimensional plane for visualization can be made.

5 Examples

In this section we present some examples obtained with the proposed method.
Let C be the field of complex numbers with a complex number c = x + iy

where i =
√−1 and x, y ∈ R. In the examples we will use the following complex

polynomials:
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1. p1(c) = c3 − 1 = x3 − 3xy2 − 1 + (3x2y − y3)i
the roots: 1, −0.5 − 0.866025i, −0.5 + 0.866025i,

2. p2(c) = c4−10c2+9 = x4−6x2y2+y4−10x2+10y2+9+(4x3y−4xy3−20xy)i
the roots: −3, −1, 1, 3,

3. p3(c) = c5 − c = x5 − 10x3y2 + 5xy4 − x + (5x4y − 10x2y3 + y5 − y)i
the roots: −1, −i, 0, i, 1,

4. p4(c) = c6 + 10c3 − 8 = x6 − 15x4y2 + 15x2y4 − y6 + 10x3 − 30xy2 − 8 +
(6x5y − 20x3y3 + 6xy5 + 30x2y − 10y3)i
the roots: −2.207, −0.453 − 0.785i, −0.453 + 0.785i, 0.906, 1.103 − 1.911i,
1.103 + 1.911i.

Having a complex polynomial equation p(c) = 0 we can transform it into a
system of two equations with two real variables, i.e.,

F(x, y) =
[�(p(x + iy))
�(p(x + iy))

]
=

[
0
0

]
= 0, (18)

where �(c),�(c) denote the real and imaginary part of a complex number c,
respectively.

In the examples the same colourmap will be used, which is presented in Fig. 1.
The other common parameters used in the examples are the following: m = 128,
ε = 0.1, image resolution 800 × 800 pixels. The areas depend on the polynomial
and are the following: A1 = [−2.0, 2.0]2, A2 = [−4.0, 4.0] × [−2.0, 2.0], A3 =
[−2.0, 2.0]2, A4 = [−2.3, 1.7] × [−2.0, 2.0].

Fig. 1. Colour map used in the examples

The particles behaviour (dynamics) depends on the acceleration constant (η)
and inertia weight (ω). The increase in values of acceleration constant and inertia
weight increases the number of image details (increases the image dynamics).
Moreover, also the parameters used in the various iteration processes influence
particle’s dynamics.

Examples of patterns generated with the use of the Picard iteration for the
four considered polynomials and different values of ω and η are presented in
Fig. 2. The patterns for the Mann iteration for the considered test functions
are presented in Fig. 3. The same values of the parameters were used to create
these patterns. We can observe that the obtained patterns have similar features.
Comparing the images obtained with the Mann iteration with the ones obtained
with the Picard iteration we see that the shapes of the patterns have change in
a significant way. The most noticeable change is observed in case of the second
polynomial (Fig. 2(b) and Fig. 3(b)).

The patterns for the Ishikawa iteration for the considered test functions are
presented in Fig. 4. Images (a) and (b) were generated using ω = 0.7 and η = 0.3,
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Fig. 2. Patterns generated with the Picard iteration: (a) ω = 0.9, η = 0.1; (b) ω = 0.6,
η = 0.9; (c) ω = 0.4, η = 0.5; (d) ω = 0.9, η = 0.03

Fig. 3. Patterns generated with the Mann iteration for α = 0.3, ω = 0.5, η = 0.6

whereas the images (c) and (d) were generated using ω = 0.8 and η = 0.2. The
obtained patterns have similar dynamics – the increase in the inertia weight can
be compensated by the decrease of the acceleration constant. The introduction
in the iteration process of the second step and in consequence adding a second
parameter (β) increases the possibilities of dynamics control. From the obtained
images we see that the shapes of the patterns have changed in a significant way
comparing to the patterns obtained with the Picard and Mann iterations.

Fig. 4. Patterns generated with the Ishikawa iteration for α = 0.9, β = 0.9 and:
(a), (b) ω = 0.7, η = 0.3; (c), (d) ω = 0.8, η = 0.2

The patterns generated with the last iteration that uses only one function
– the Agarwal iteration – are presented in Fig. 5. In this iteration the function
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is evaluated three times. This gives more possibilities to control the dynamics
and in consequence the shape of the pattern. The impact of the α parameter on
dynamics seems to be smaller.

Fig. 5. Patterns generated with the Agarwal iteration for: (a) α = 0.7, β = 0.5, ω = 0.7,
η = 0.3; (b) α = 0.5, β = 0.9, ω = 0.6, η = 0.6; (c) α = 0.9, β = 0.9, ω = 0.3, η = 0.9;
(d) α = 0.9, β = 0.5, ω = 0.3, η = 0.3

In the next examples pattens generated with the iterations that use more than
one function will be presented. We start with the Das-Debata iteration. Patterns
generated with this iteration are presented in Fig. 6. Patterns were generated for
different values of the parameters. Changes in the value of the α parameter more
strongly affect the dynamics change than the changes in the value of parameter
β. Moreover, we can observe more complex change of patterns’ shape comparing
to the iterations with one function.

Fig. 6. Patterns generated with the Das-Debata iteration for: (a) α = 0.7, β = 0.9,
ω1 = 0.5, η1 = 0.6, ω2 = 0.5, η2 = 0.2; (b) α = 0.5, β = 0.9, ω1 = 0.6, η1 = 0.5,
ω2 = 0.9, η2 = 0.3; (c) α = 0.9, β = 0.6, ω1 = 0.7, η1 = 0.3, ω2 = 0.9, η2 = 0.2;
(d) α = 0.6, β = 0.8, ω1 = 0.9, η1 = 0.3, ω2 = 0.5, η2 = 0.2

The patterns generated with the Khan-Cho-Abas iteration for the consid-
ered test functions are presented in Fig. 7. Similarly to the Das-Debata iteration
the change of patterns’ shape is very complex. Moreover, its use gives more
possibilities to obtain diverse patterns.
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Fig. 7. Patterns generated with the Khan-Cho-Abas iteration for: (a) α = 0.5, β = 0.9,
ω1 = 0.6, η1 = 0.6, ω2 = 0.8, η2 = 0.8, ω3 = 0.6, η3 = 0.6; (b) α = 0.7, β = 0.5,
ω1 = 0.7, η1 = 0.3, ω2 = 0.3, η2 = 0.7, ω3 = 0.7, η3 = 0.3; (c) α = 0.9, β = 0.5,
ω1 = 0.3, η1 = 0.3, ω2 = 0.6, η2 = 0.6, ω3 = 0.3, η3 = 0.3; (d) α = 0.9, β = 0.5,
ω1 = 0.3, η1 = 0.3, ω2 = 0.6, η2 = 0.6, ω3 = 0.3, η3 = 0.3

In the last example – Fig. 8 – patterns generated using the generalized Agar-
wal iteration are presented. The possibility of independent setting of all param-
eters of the algorithm gives the greatest possibilities to control the dynamics
of the created pattern. It gives the possibility to obtain differentiated image
features.

Fig. 8. Patterns generated with the generalized Agarwal iteration for: (a) α = 0.5,
β = 0.7, ω1 = 0.9, η1 = 0.3, ω2 = 0.3, η2 = 0.9, ω3 = 0.5, η3 = 0.3; (b) α = 0.9,
β = 0.9, ω1 = 0.3, η1 = 0.9, ω2 = 0.9, η2 = 0.3, ω3 = 0.1, η3 = 0.9; (c) α = 0.7,
β = 0.7, ω1 = 0.7, η1 = 0.7, ω2 = 0.3, η2 = 0.3, ω3 = 0.5, η3 = 0.5; (d) α = 0.7,
β = 0.5, ω1 = 0.7, η1 = 0.3, ω2 = 0.3, η2 = 0.7, ω3 = 0.9, η3 = 0.3

6 Conclusions

In this paper, we presented a modification of the Newton’s method using the
PSO approach and various iteration processes. Moreover, we proposed artistic
patterns generation method that is based on the introduced PSO-based Newton’s
method. The presented examples showed that using the proposed method we are
able to obtain very interesting and diverse artistic patterns.
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