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Abstract. Low spatial resolution of diffusion resonance magnetic imag-
ing (dMRI) restricts its clinical applications. Usually, the measures are
obtained in a range from 1 to 2 mm3 per voxel, and some structures can-
not be studied in detail. Due to clinical acquisition protocols (exposure
time, field strength, among others) and technological limitations, it is not
possible to acquire images with high resolution. In this work, we present
a methodology for enhancing the spatial resolution of diffusion tensor
(DT) fields obtained from dMRI. The proposed methodology assumes
that a DT field follows a generalized Wishart process (GWP), which is a
stochastic process defined over symmetric and positive definite matrices
indexed by spatial coordinates. A GWP is modulated by a set of Gaus-
sian processes (GPs). Therefore, the kernel hyperparameters of the GPs
control the spatial dynamic of a GWP. Following this notion, we employ
a non-stationary kernel for describing DT fields whose statistical prop-
erties are not constant over the space. We test our proposed method in
synthetic and real dMRI data. Results show that non-stationary GWP
can describe complex DT fields (i.e. crossing fibers where the shape,
size and orientation properties change abruptly), and it is a competi-
tive methodology for interpolation of DT fields, when we compare with
methods established in literature evaluating Frobenius and Riemann dis-
tances.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) is an advanced technique of med-
ical imaging based on magnetic resonance. dMRI describes the diffusion of water
particles in biological tissues. The basic mathematical description of the diffusion
is through a second order tensor D ∈ R

3×3 represented by a 3×3 symmetric and
positive definite (SPD) matrix, whose elements Dii (where i = x, y, z) represent
the diffusion in the main directions and Dij the correlation between them. Also,
it allows to describe internal structures of living organisms through estimation
of derived scalar measures obtained from D, such as fractional anisotropy maps
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[1]. The clinical applications of this type of images include: diagnosis of neurolog-
ical diseases, e.g., Parkinson and Epilepsy, fiber tracking [2], detection of brain
tumors [3], among others. The collection of diffusion tensors spatially related is
known as diffusion tensor (DT) field or diffusion tensor imaging (DTI). A DT
field is obtained from a dMRI study solving the Stejskal-Tanner formulation [4].
However, the use of DT fields estimated from dMRI is limited due to the images
are acquired with low spatial resolution. Technological limitations and clinical
acquisition protocols restrict the dMRI to a poor spatial resolution: from 1 to
2 mm3. In some clinical applications, it is necessary to analyze in detail the stud-
ied structures (i.e. gray mater, tumors, tissues fiber) for performing a medical
procedure. At these scenarios, the low spatial resolution becomes in a consid-
erable difficulty. For this reason, researchers have proposed methodologies for
enhancing the spatial resolution of dMRI studies as the presented by [5–8].

Interpolation of diffusion tensors is a feasible solution to obtain images with
high resolution. Nevertheless, given that the tensors of a field have different
characteristics the interpolation is challenging. Moreover, a DT has mandatory
restrictions. For example, tensors must be SPD matrices; and the determinants of
neighboring tensors must change monotonically for avoiding the swelling effect
[7]. Another relevant factor is the spatial correlation among nearing tensors.
Specifically, some DT fields have smooth spatial transitions, on the contrary,
there are fields where the shape, size, and orientation of tensors change strongly.
This type of fields are complex to interpolate. Regarding this, several methodolo-
gies for interpolation of diffusion tensors have been proposed. A straightforward
methodology is the Euclidean interpolation [5], where each component of the
tensor is interpolated linearly and independently. This Euclidean method has
a drawback consisting of a swelling effect in interpolated tensors [7]. For solv-
ing this issue, it was implemented a logarithmic transformation to the tensor
components for ensuring a monotonic variation of determinants, avoiding the
swelling effect and preserving the SPD constraint. An important limitation of
this technique is the modification of relevant clinical information extracted from
DTI, i.e. fractional anisotropy (FA) and mean diffusivity (MD). Additionally, a
framework based in Riemannian geometry was proposed by [6]. Here, the authors
propose two methods: the rotational and geodesic interpolation. However, the
methods are computationally expensive and modify the FA and MD information.
Alternative approaches based on interpolation of tensor features were proposed.
Basically, the tensors are decomposed in shape and orientation features (eigen-
values and Euler angles). The first attempt was presented in [7], here the features
are linearly and separately interpolated. Also, in [8] a probabilistic method based
on multi-output Gaussian processes is applied, unlike the method of [7], the fea-
tures are jointly interpolated. The mentioned tensor decomposition is not unique,
for this reason, there is an ambiguity with the tensor reconstruction. A recent
probabilistic technique proposed by [9] interpolates the tensors using generalized
Wishart processes (GWP). This method keeps the properties and constraints of
diffusion tensors, but it has a low performance over fields with strong transitions
(non-stationary fields). Hence, according to the previously mentioned, there are
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unsolved problems related to the low spatial resolution of DT fields, and some
drawbacks and limitations of proposed methods for interpolation.

In this work, we are interested in characterizing, describing and represent-
ing non-stationary DT fields, to do this, we introduce a non-stationary GWP
(NGWP) combining different kernels. The introduction of a non-stationary func-
tion implies that statistical properties of a DT field: mean, variance and covari-
ance, are not modeled constantly into the space coordinates. For validation, we
test the performance of the proposed model over three different datasets. We
compare against log-Euclidean (LogEu) [5], feature based linear interpolation
(FBLI) [7] and GWP [9], evaluating two metrics defined over SPD matrices: the
Frobenius (Frob) and Riemann (Riem) distance. Finally, we evaluate morpho-
logical properties computing the mean squared error (MSE) for FA and MD.

The paper is arranged as follows: Sect. 2 presents the mathematical formu-
lation of the NGWP model, and the procedure for parameters estimation. The
Sect. 3 describe the databases and experimental setup. In the Sect. 4 we show
interpolation results for three different datasets. In Sect. 5, we present the main
conclusions about the significance of obtained results. Finally, in acknowledg-
ments we thank to organizations funded this work.

2 Non-stationary Generalized Wishart Processes

A generalized Wishart process (GWP) is a collection of symmetric and positive
definite random matrices {Dn(z)}N

n=1 where D ∈ R
P×P , indexed by an arbitrary

dependent variable z ∈ R
M [10]. The idea is to assume a GWP as a prior over

a DT field. Thus, P = 3 is the dimensionality and z = [x, y]� corresponds
to the coordinates of each voxel in an image. A GWP is constructed through
a superposition of outer products of Gaussian processes (GPs), weighted by a
P × P scale matrix V = LL�,

D(z) =
ν∑

i=1

Lûi(z)û�
i (z)L� ∼ GWPP (ν,V, k(z, z′)), (1)

where ûi = (ui1(z), ui2(z), ui3(z))
�, with uip(z) ∼ GP(0, k), i = 1, ..., ν and

p = 1, 2, 3, k(z, z′) is the kernel function for the GPs and L is the lower Cholesky
decomposition from V. The joint distribution for all uid(z) functions evaluated
in a set of input data {zn}N

n=1, (uid(z1), uid(z2), ..., uid(zN ))� ∼ N (0,K) fol-
lows a Gaussian distribution, where K is a N × N Gram matrix, with entries
Ki,j = k(zi, zj). This parametrization separates the contributions between the
shape parameters (L) and spatial dynamic parameters (ûi). In particular, the
parameter L describes the expected tensor of D(z), the degrees of freedom ν
controls the model flexibility, and the kernel parameters θ in k(z, z′) determine
how the matrices change over the spatial coordinates z. Unlike of the work
proposed in [9], where the diffusion tensors are modeled using a GWP with a
stationary kernel, we introduce a non-stationary kernel function. The purpose
is spatially modeling the statistical properties (mean, variance, covariance) of a
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DT field. The kernel function applied in this approach was proposed by [11] and
it allows to describe changes of multidimensional surfaces. We call to this model:
Non-stationary generalized Wishart process (NGWP).

The non-stationary kernel is constructed by combining a set of different ker-
nels {ki(z, z′)}r

i=1, or the same kernel with different hyper-parameters [11]:

k(z, z′) =
r∑

i=1

σ(wi(z))ki(z, z′)σ(wi(z′)), (2)

where wi(z) : R
M → R

1 is the weighting function, with M = 3 the dimen-
sional input, wi(z) =

∑v
j=1 aj cos(ω�

j z + bj). σ(z) : R1 → [0, 1], is the warping
function, that is computed as a convex combination over the weighting function
σ(wi(z)) = exp(wi(z))/

∑r
i=1 exp(wi(z)),

∑r
i=1 σ(wi(z)) = 1, inducing a partial

discretization over each kernel. This function induces non-stationarity, since it
does not depend of the distance between input variables (z, z′). In the context
of DT interpolation, we employ r = 3 squared exponential (RBF) kernels with
different inverse width (γ) hyper-parameters.

2.1 Parameters Estimation

The scheme for parameters estimation is similar to the one used in previous works
[9,10], which is based on Bayesian inference employing Markov chain Monte
Carlo (MCMC) algorithms. The aim is to compute the posterior distribution for
the variables in the model: a vector u whose elements are the values of the GPs
functions, and the kernel parameters θ = {aj ,ωj , bj , γi}, where j = 1, ..., ν and
i = 1, ..., r given a set of data D = (S(z1), ...,S(zN )). As we pointed out before,
we assume that a DT field follows a NGWP prior, where the likelihood function
is given by

p(D|u,θ,L, ν) ∝
N∏

i=1

exp
{

− 1
2β2

‖S(zi) − D(zi)‖2f
}

, (3)

being the S(zi) the tensors from the training set, D(zi) are the estimated ten-
sors, ||·||f is the Frobenius norm, and β2 is a variance parameter. Previous works
[9,10] show that inference over the values L and degree of freedom ν increases
the computational cost and does not contribute significantly to the model per-
formance. Moreover, they suggest to fix L as the average tensor of the training
data, and to set ν = P + 1. According to the above, we sample from posterior
distribution of parameters (u and θ) with an iterative procedure based on Gibbs
sampling. Thus, the full conditional equations are given by,

p(u|θ,L, ν,D) ∝ p(D|u,θ,L, ν)p(u|θ), (4)
p(θ|u,L, ν,D) ∝ p(u|θ)p(θ), (5)

where p(u|θ) = N (0,KB), KB is a NPν × NPν block diagonal covariance
matrix, formed by Pν blocks of N -dimensional K matrices, and p(θ) is the prior
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for the kernel hyper-parameters. For sampling from (4) and (5) we employ ellipti-
cal slice sampling [12] and Metropolis-Hastings algorithm, respectively. Finally,
we set the variance parameter β as the median of quadratic Frobenius norm
computed from the training data.

2.2 DTI Field Interpolation

The aim is to estimate a matrix D(z∗) in a test point z∗, employing the learned
parameters during the training stage. We compute the conditional distribution
for u∗ given u from the jointly distribution of [u,u∗]

�. This distribution is given
by [10],

u∗|u ∼ N (AK−1
B u, I − AK−1

B A�), (6)

where A is the covariance matrix between the spatial coordinates z∗ and z of
training and test data, respectively. Once we obtain the values of u∗ from Eq. (6),
we compute the matrix D(z∗) using the Eq. (1).

3 Datasets and Experimental Procedure

We test the proposed model over three datasets: First, a 2D toy DT field of
41 × 41 voxels obtained from a generative NGWP. Second, a synthetic field of
29×29 tensors computed from a simulation of crossing fibers using the FanDTasia
Toolbox [13]. Third, a real dMRI study acquired from the head of a healthy
male subject with an age between 20 and 30 years, on a General Electrical Signa
HDxt 3.0T MR scanner using a body coil for excitation, employing 25 gradient
directions with a value of b equal to 1000 S/mm2. The DT field is a region
of interest with 41 × 41 voxels from a slice centered in the corpus callosum. We
downsample in a factor of two the original datasets for obtaining the training sets.
The rest of the data are used as ground truth (gold standard). For validation,
we compare against log-Euclidean (LogEu) [5], feature based linear interpolation
(FBLI) [7] and GWP [9]. We compute two error metrics: the Frobenius norm
(Frob) and Riemann norm (Riem) [5],

Fr(D1,D2) =
√

trace
[
(D1 − D2)

� (D1 − D2)
]
, (7)

Ri(D1,D2) =
√

trace
[
log(D−1/2

1 D2D
−1/2
1 )� log(D−1/2

1 D2D
−1/2
1 )

]
, (8)

where D1 and D2 are the interpolated and the ground-truth tensors, respectively.
Additionally, we evaluated morphological properties of the estimated tensors
using fractional anisotropy (FA) errors maps and computing the mean square
error (MSE) for the FA and mean diffusion (MD). The reader can find detailed
information about FA and MD in [7].
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4 Results and Discussion

4.1 Synthetic Crossing Fibers Data

We test the proposed model and the comparison methods: LogEu, FBLI, GWP,
and NGWP over a simulation of crossing fibers. Graphical results of interpolation
are illustrated in the Fig. 1. Where (a) Ground-truth, (b) training data, (c)
LogEu, (d)FBLI, (e) GWP, and (f) NGWP. Also, we report the MSE map of
MD in the Fig. 2. Finally, in the Table 1 we report numerical results of errors.

Fig. 1. Crossing fibers interpolation for the comparison methods: (a) Ground-truth,
(b) Training data, (c) LogEu, (d) FBLI, (e) GWP, and (f) NGWP.

Fig. 2. MSE maps of MD of the interpolated crossing fibers DT field, (a) LogEu, (b)
FBLI, (c) GWP and (d) NGWP. (Color figure online)

The crossing fibers is a challenging interpolation problem, because the prop-
erties of the tensors vary abruptly across the space. The MSE maps of MD
showed in the Fig. 2 show that the proposed method preserves the clinical infor-
mation of the diffusion tensors with less error (color blue) than the comparison
methods, mainly over the abrupt transition regions. We explain the above in the
sense that the non-stationary kernel used in the NGWP model is constructed by
combining different kernels, where each kernel can describe a particular region in
the whole field. Finally, in Table 1, we report the mean and standard deviation of
the Frob distance, Riem distance, and the MSE of the FA and MD. Statistically,
there are no significant differences among all compared methods. However, our
proposal is a suitable methodology for describing, representing, and interpolat-
ing complex tensor data, such as crossing fibers. Also, the NGWP preserves the
clinical information (FA and MD) high accuracy.
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Table 1. Error metrics for the interpolation methods: Frobenius distance (Frob), Rie-
mann distances (Rem) and MSE of the FA and MD.

Model Frob Riem FA MD

LogEu 0.5687± 0.2190 0.5208± 0.2014 0.1616± 0.2438 0.1826± 0.3308

FBLI 0.6340± 0.2053 0.6295± 0.2213 0.1575± 0.2412 0.1764± 0.2745

GWP 0.5325± 0.2094 0.4520± 0.1431 0.1569± 0.1540 0.1437± 0.1415

NGWP 0.5126±0.1859 0.4159±0.1072 0.1451±0.1776 0.1428±0.1469

4.2 Toy Data

Second, we evaluate the performance over a toy DT field obtained from sam-
pling the NGWP model. This field has smooth regions and abrupt changes. The
Fig. 3(a), (b) correspond to the ground-truth and training data. Figure 3(c),
(d), (e), (f) show the interpolated fields with LogEu, FBLI, GWP and NGWP,
respectively.

Fig. 3. Interpolation of a toy DT field, (a) Ground truth, (b) Training data. Interpo-
lated fields: (c) LogEu, (d) FBLI, (e) GWP, and (f) NGWP.

The Fig. 4 shows the MSE maps of the MD for each interpolation method.
Also, we evaluate the error metrics of the interpolated fields and their clinical
information. These results are showed in the Table 2.

Fig. 4. MSE map of MD of the interpolated toy DT field, (a) LogEu, (b) FBLI,
(c) GWP and (d) NGWP.
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Table 2. Error metrics of the interpolation methods, Frobenius distance (Frob), Rie-
mann distances (Rem) and MSE of the FA and MD properties.

Model Frob Riem FA MD

LogEu 0.5112± 0.1093 0.5539± 0.1698 0.1622± 0.1772 0.1444± 0.1053

FBLI 0.5306± 0.1356 0.5390± 0.1470 0.1573± 0.1532 0.1565± 0.1411

GWP 0.5311± 0.1189 0.5113± 0.1166 0.1426± 0.1274 0.1329± 0.1286

NGWP 0.5080±0.1472 0.5161±0.1303 0.1416±0.1402 0.1308±0.1368

The toy DT field has regions where the tensors properties (size, shape and
orientation) change slowly. Also, there are other areas where the changes are
abrupt. The proposed NGWP demonstrates that it is possible to adapt a model
to different type of tensors, whether soft or complex fields, as we show in Fig. 3.
Additionally, the proposed method has the ability of preserving the clinical infor-
mation when a DT field is interpolated. If we give a closer look to Fig. 4, the
MD is preserved with higher accuracy than the comparison methods. The metric
errors reported in Table 2 show that NGWP can interpolate accurately the toy
data, with a similar precision to the state of the art methods. We think the non-
stationary kernel of our model, provides adaptability to the different transitions
(smooth or strong) inherent to diffusion tensor data.

4.3 Real Data

Finally, we evaluate the performance of the interpolation methods in a real
DT field. The Fig. 5(a) corresponds to a region of interest of 41 × 41 tensors
from a slice centered in the corpus callosum. The Fig. 5(b) is the training data.
Figures 5(c), (d), (e), (f) are the interpolated fields with the LogEu, FBLI, GWP
and NGWP. Also, the Fig. 6 shows the MSE maps of MD for each method. In
the Table 3, we report numerical results of the error metrics.

Fig. 5. Interpolation of a real DT field, (a) Ground truth, (b) Training data. Interpo-
lated fields: (c) LogEu, (d) FBLI, (e) GWP, and (f) NGWP.
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Fig. 6. MSE maps of MD of the interpolated a real DT field, (a) LogEu, (b) FBLI,
(c) GWP and (d) NGWP.

Table 3. Error metrics of the interpolation methods, Frobenius distance (Frob), Rie-
mann distances (Rem) and MSE of the FA and MD properties.

Model Frob Riem FA MD

LogEu 0.4179± 0.1413 0.5266± 0.2130 0.4204± 0.1659 0.5422± 0.2161

FBLI 0.4214± 0.1386 0.5236± 0.2081 0.4579± 0.1738 0.5389± 0.2170

GWP 0.4145± 0.1089 0.5238± 0.2095 0.5095± 0.1890 0.4854± 0.2081

NGWP 0.4098±0.1250 0.5046±0.2159 0.4690±0.1730 0.4813±0.1673

A Real DT field has tensors with different sizes, forms, and orientations.
These properties make difficult an accurate interpolation. Graphical results of
Figs. 5 and 6, and error metrics of Table 3 show that NGWP can describe, rep-
resent and interpolate non-stationary tensors fields obtained from real dMRI
studies. The proposed method reaches a performance similar to LogEu, FBL,
and GWP. Again, the NGWP preserves the clinical information derived form
the dMRI, as we show in Fig. 6 where we computed the MSE maps of MD.
Moreover, error metrics are reported in the Table 3. From these results, we can
establish that NGWP is a competitive methodology for interpolation of DT
fields.

5 Conclusions and Future Work

In this work, we presented a probabilistic methodology for interpolation of diffu-
sion tensor fields. Specifically, we model a DT field as a stochastic process defined
over SPD matrices called Non-stationary generalized Wishart process (NGWP).
The idea is to describe non-stationary properties of DT fields. To do this, we
introduce a non-stationary kernel by combining different functions. Particularly,
we combine r = 3 squared exponential kernels (RBF) with different length-scale
hyper-parameters. We evaluated the performance of the proposed method using
the Frobenius and Riemman distance over synthetic and real DT fields. Also, we
evaluate the clinical information using errors maps of mean diffusivity (MD) and
reporting the mean and standard deviation of the MSE of Fractional Anisotropy
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(FA). Outcomes demonstrated that NGWP is a competitive methodology for
interpolating DT fields in comparison with methods of the state-of-the-art.

As future work, we would like to extend non-stationary kernel functions to
more complex models such as tractography procedures where the interpolation
of diffusion tensors is used.
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