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Abstract. This paper presents a video-based Human Action Recogni-
tion using kernel relevance analysis. Our approach, termed HARK, com-
prises the conventional pipeline employed in action recognition, with a
two-fold post-processing stage: (i) A descriptor relevance ranking based
on the centered kernel alignment (CKA) algorithm to match trajectory-
aligned descriptors with the output labels (action categories), and (ii) a
feature embedding based on the same algorithm to project the video sam-
ples into the CKA space, where the class separability is preserved, and
the number of dimensions is reduced. For concrete testing, the UCF50
human action dataset is employed to assess the HARK under a leave-
one-group-out cross-validation scheme. Attained results show that the
proposed approach correctly classifies the 90.97% of human actions sam-
ples using an average input data dimension of 105 in the classification
stage, which outperforms state-of-the-art results concerning the trade-
off between accuracy and dimensionality of the final video representa-
tion. Also, the relevance analysis allows to increase the video data inter-
pretability, by ranking trajectory-aligned descriptors according to their
importance to support action recognition.
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1 Introduction

Human action recognition has become an important research area in the com-
puter vision field due to its wide range of applications, including automatic video
analysis, video indexing and retrieval, video surveillance, and virtual reality [5].
As a result of the increasing amount of video data available both on internet
repositories and personal collections, there is a strong demand for understand-
ing the content of complex real-world data. However, different challenges arise for
action recognition in realistic video data [13]. First, there is large intra-class vari-
ation caused by factors such as the style and duration of the performed action,
scale changes, dynamic viewpoint, and sudden motion. Second, background clut-
ter, occlusions, and low-quality video data are known to affect robust recognition
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as well. Finally, for large-scale datasets, the data processing represents a crucial
computational challenge to be addressed [3].

The most popular framework for action recognition is the Bag of visual Words
(BOW) with its variations [11,12]. The BOW pipeline contains three main stages:
feature estimation, feature encoding, and classification. Besides, there are sev-
eral pre-processing and post-processing stages, such as relevance analysis and
feature embedding to enhance data decorrelation, separability and interpretabil-
ity [2]. Furthermore, different normalization techniques have been introduced for
improving the performance of the recognition system. For the feature estimation
step, the recent success of local space-time features like Dense Trajectories (DT)
and Improved Dense Trajectories (iDT) has lead researchers to use them on a
variety of datasets, obtaining excellent recognition performance [12,13]. Regard-
ing the feature encoding step, super-vector based encoding methods such as
Fisher Vector (FV) and Vector of Locally Aggregated Descriptors (VLAD) are
presented as the state-of-the-art approaches for feature encoding in action recog-
nition tasks [5,11]. Lastly, the classification stage has usually been performed by
Support Vector Machines (SVM) in most recognition frameworks [8,10].

The feature encoding method that provides the final video representation
is crucial for the performance of an action recognition system, as it influences
directly the classifier ability to predict the class labels. However, video represen-
tations generated by methods such as FV or VLAD are known to provide high
dimensional encoding vectors which increases the computational requirements
in the classification stage [5,13]. On the other hand, the high dimensionality of
the input data could affect the classifier accuracy adversely, by using redundant
information and even noise, which do not enhance data separability. Therefore,
the Dimensionality Reduction (DR), which consists of feature selection and fea-
ture embedding methods, is imperative to lighten the burden associated with
the encoding stage, eliminate redundant information, and project samples into
new spaces to increase separability [1]. Conventional methods, such as Princi-
pal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) have
been proposed to decorrelate the individual features of descriptors and reduce
their length, in a pre-processing stage to the encoding [6]. Nevertheless, these
methods are specially designated to work with real-valued vectors coming from
flat Euclidean spaces. Thus, in modern computer vision due to real-world data
and models, there has been growing interest to go beyond the extensively stud-
ied Euclidean spaces and analyse more realistic non-linear scenarios for better
representation of the data [7].

In this work, we introduce a new human action recognition system using
kernel relevance analysis. The system, based on a non-linear representation of
the super-vector obtained by the FV encoding technique, seeks to reduce the
input space dimensionality, as well as, enhance separability and interpretability
of video data. Specifically, our approach includes a centered kernel alignment
(CKA) technique to recognize relevant descriptors related to action recognition.
Hence, we match trajectory-aligned descriptors with the output labels (action
categories) through non-linear representations [2]. Also, the CKA-algorithm
allows to compute a linear projection matrix, where the columns quantify the
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required number of dimensions to preserve the 90% of the input data variabil-
ity. Therefore, by projecting the video samples into the CKA generated space,
the class separability is preserved, and the number of dimensions is reduced.
Attained results on the UCF50 database demonstrate that our proposal favors
the interpretability of the commonly employed descriptors in action recognition,
and presents a system able to obtain competitive recognition accuracy using a
drastically reduced input space dimensionality to the classification stage.

The rest of the paper is organized as follows: Sect. 2 presents the main theo-
retical background, Sect. 3 describes the experimental set-up, Sect. 4 introduces
the results and discussions. Finally, Sect. 5 shows the conclusions.

2 Kernel-Based Descriptor Relevance Analysis
and Feature Embedding

Let {Zn∈RT×D, yn∈N}N
n be an input-output pair set holding N video samples,

each of them represented by T trajectories generated while tracking a dense
grid of pixels, whose local space is characterized by a descriptor of dimension-
ality D, as presented in [13]. Here, the samples are related to a set of human
action videos meanwhile the descriptor in turn is one of the following trajectory-
aligned measure: trajectory positions (Trajectory), Histogram of Oriented Gra-
dients (HOG), Histogram of Optical Flow (HOF), Motion Boundary Histograms
(MBHx and MBHy), yielding a total of F = 5 descriptors. Likewise, the output
label yn denotes the human action being performed in the corresponding video
representation. From Zn, we aim to encode T described trajectories concern-
ing a Gaussian Mixture Model (GMM), trained to be a generative model of the
descriptor in turn. Therefore, the Fisher Vector (FV) feature encoding technique
is employed, as follows [9]:

Let Zn be a matrix holding T described trajectories zt∈RD, and υλ be a
GMM with parameters λ = {wi∈R,μi∈RD, σ2

i I∈RD×D}K
i=1, which are respec-

tively the mixture weight, mean vector, and diagonal covariance matrix of K
Gaussians. We assume that zt is generated independently by υλ. Therefore, the
gradient of the log-likelihood describes the contribution of the parameters to the
generation process:

xλ
n =

1
T

T∑

t=1

∇λ log υλ(zt) (1)

where ∇λ is the gradient operator w.r.t λ. Mathematical derivations lead xμ,i
n

and xσ,i
n to be the D-dimensional gradient vectors w.r.t the mean and standard

deviation of the Gaussian i, that is:

xμ,i
n =

1
T

√
wi

T∑

t=1

γt(i)
(

zt − μi

σi

)
, (2)

xσ,i
n =

1
T

√
2wi

T∑

t=1

γt(i)
[
(zt − μi)2

σ2
i

− 1
]

(3)
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where γt(i) is the soft assignment of trajectory zt to the Gaussian i, that is:

γt(i) =
wiυi(zt)∑K

j=1 wjυj(zt)
(4)

The final gradient vector xλ
n is a concatenation of the xμ,i

n and xσ,i
n vectors

for i = 1, . . . , K and is 2KD-dimensional.
Assuming that the same procedure is performed for each descriptor,

the concatenation of the resulting vectors generates the set
{xn∈R2K(D1+···+DF ), yn∈N}N

n . Afterwards, a Centered Kernel Alignment
(CKA) approach is performed to compute a linear projection matrix, and to
determine the relevance weight from each trajectory-aligned descriptor individ-
ual feature, as follows [2]:

Let κX :RS×RS → R, where S=2K(D1 + · · · + DF ), be a positive definite
kernel function, which reflects an implicit mapping φ:RS → HX , associating
an element xn∈RS with the element φ(xn)∈HX , that belongs to the Repro-
ducing Kernel Hilbert Space (RKHS), HX . In particular, the Gaussian kernel
is preferred since it seeks an RKHS with universal approximation capability, as
follows [4,14]:

κX(xn,xn′ ;σ) = exp
(−υ2(xn,xn′)/2σ2

)
; n, n′∈{1, 2, . . . , N}, (5)

where υ(·, ·):RS×RS → R is a distance function in the input space, and σ∈R+

is the kernel bandwidth that rules the observation window within the assessed
similarity metric. Likewise, for the output labels space L∈N, we also set a posi-
tive definite kernel κL:L×L → HL. In this case, the pairwise similarity distance
between samples is defined as κL(yn, yn′)=δ(yn −yn′), being δ(·) the Dirac delta
function. Each of the above defined kernels reflects a different notion of similar-
ity and represents the elements of the matrices KX ,KL∈RN×N , respectively. In
turn, to evaluate how well the kernel matrix KX matches the target KL, we use
the statistical alignment between those two kernel matrices as [2]:

ρ̂(KX ,KL) =
〈K̄X , K̄L〉F√

〈K̄XK̄X〉F〈K̄LK̄L〉F
, (6)

where the notation K̄ stands for the centered kernel matrix calculated as
K̄ = ĨKĨ, being Ĩ = I − 1�1/N the empirical centering matrix, I∈RN×N

is the identity matrix, and 1∈RN is the ones vector. The notation 〈·, ·〉F repre-
sents the matrix-based Frobenius norm. Hence, Eq. (6) is a data driven estimator
that allows to quantify the similarity between the input feature space and the
output label space [2]. In particular, for the Gaussian kernel κX , the Mahalanobis
distance is selected to perform the pairwise comparison between samples:

υ2
A (xn,xn′) = (xn − xn′)AA�(xn − xn′)�, n, n′ ∈ {1, 2, . . . , N}, (7)

where the matrix A∈RS×P holds the linear projection in the form wn=xnA,
with wn∈RP , being P the required number of dimensions to preserve the 90% of
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the input data variability, and AA� the corresponding inverse covariance matrix
in Eq. (7), assuming P ≤ S. Therefore, intending to compute the projection
matrix A, the formulation of a CKA-based optimizing function can be integrated
into the following kernel-based learning algorithm:

Â = arg max
A

log (ρ̂(KX(A;σ),KL)), (8)

where the logarithm function is employed for mathematical convenience. The
optimization problem from Eq. (8) is solved using a recursive solution based on
the well-known gradient descent approach. After the estimation of the projec-
tion matrix Â, we assess the relevance of the S input features. To this end, the
most contributing features are assumed to have the higher values of similarity
relationship with the provided output labels. Specifically, the CKA-based rel-
evance analysis calculates the relevance vector index 	∈RS , holding elements
	s∈R+ that allows to measure the contribution from each of the s-th input fea-
tures in building the projection matrix Â. Hence, to calculate those elements,
a stochastic measure of variability is utilized as follows: 	s=EP {|as,p|}; where
p∈{1, 2, . . . P}, s∈{1, . . . , S}, and as,p∈Â.

3 Experimental Set-Up

Database. To test our video-based human action recognition using kernel rele-
vance analysis (HARK), we employ the UCF50 database [10]. This database
contains realistic videos taken from Youtube, with large variations in camera
motion, object appearance and pose, illumination conditions, scale, etc. For con-
crete testing, we use N = 5967 videos concerning the 46 human action categories
in which the human bounding box file was available [13]. The video frames size is
320 × 240 pixels, and the length varies from around 70–200 frames. The dataset is
divided into 25 predefined groups. Following the standard procedure, we perform
a leave-one-group-out cross-validation scheme and report the average classifica-
tion accuracy overall 25 folds.

HARK Training. Initially, for each video sample in the dataset we employ
the Improved Dense Trajectory feature estimation technique (iDT), with the
code provided by the authors in [13], keeping the default parameter settings to
extract F = 5 different descriptors: Trajectory (x, y normalized positions along
15 frames), HOG, HOF, MBHx, MBHy. The iDT technique is an improved
version of the previously realized Dense Trajectory technique from the same
author, which removes the trajectories generated by the camera motion and the
inconsistent matches due to humans. Thus, the human detection is a challeng-
ing requirement in this technique, as people in action datasets appear in many
different poses, and could only be partially visible due to occlusion or by being
partially out-of-scene. These five descriptors are extracted along all valid trajec-
tories and the resulting dimensionality Df is 30 for the trajectory, 96 for HOG,
MBHx and MBHy, and 108 for HOF.

We then randomly select a subsample of 5000×K trajectories from the train-
ing set to estimate a GMM codebook with K = 256 Gaussians, and the FV
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encoding is performed as explained in Sect. 2. Afterwards, we apply to the
resulting vector a Power Normalization (PN) followed by the L2-Normalization
(||sign(x)|x|α||, where 0 ≤ a ≤ 1 is the normalization parameter). The above
procedure is performed per descriptor, fixing α = 0.1. Next, all five normal-
ized FV representations are concatenated together, yielding S = 218112 encod-
ing dimension. The linear projection matrix Â∈RS×P and the relevance vector
index �∈RS are computed as explained in section Sect. 2; where P=104.8, is the
average required number of dimensions, through 25 leave-one-out iterations, to
preserve the 90% of the input data variability.

For the classification step, we use a one-vs-all Linear SVM with regular-
ization parameter equal to 1 and a Gaussian kernel SVM, varying the kernel
bandwidth between the range [0.1σo, σo], being σo∈R+ the median of the input
space Euclidean distances; and searching the regularization parameter within
the set {0.1, 1, 100, 500, 1000}, by nested cross-validation with the same leave-
one-group-out scheme. Figure 1 summarizes the HARK training pipeline. It is
worth noting that all experiments were performed using the Matlab software on
a Debian server with 230 GB of RAM and 40 cores. The FV code is part of the
open-source library VLFeat, the implementation is publicly available1. On the
other hand, the CKA code was developed by Alvarez-Meza et al. in [2] and is
also publicly available2.

Fig. 1. Sketch of the proposed HARK-based action recognition system.

4 Results and Discussions

Figure 2, shows a visual example of feature estimation and encoding using
trajectory-aligned descriptors and BOW. From the color points, where differ-
ent colors represent the assignment of a given trajectory to one of the prototype
vectors generated by the k-means algorithm, we can appreciate the hard assign-
ment of trajectory descriptors in the BOW encoding. Also, different sizes of the
points represent the scale in which the trajectory is generated. In contrast, this
paper uses the soft assignment of the GMM-based FV encoding, which is not

1 http://www.vlfeat.org/overview/encodings.html.
2 https://github.com/andresmarino07utp/EKRA-ES.

http://www.vlfeat.org/overview/encodings.html
https://github.com/andresmarino07utp/EKRA-ES
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as straightforward to express in a figure. It is worth noting that due to the
human segmentation performed before the trajectory-based feature estimation,
the encoding points are mainly grouped in the player whereabouts, which con-
strains the zone of interest to only characterize the player information. This
strategy helps to reduce the uncertainty from the video representation, as the
influence of the background is decreased.

Fig. 2. Feature estimation and encoding using trajectory-aligned descriptors and
BOW.

Figure 3(a) shows the normalized relevance value of the provided Trajectory,
HOG, HOF, MBHx, and MBHy descriptors, this figure is generated by averaging
the components of �∈RS which corresponds to each descriptor. Therefore, the
mean and standard deviation is presented to represent the descriptor relevance
vector. As seen, the HOG descriptor exhibit the highest relevance value regard-
ing our HARK criteria, this descriptor quantify the local appearance and shape
within the trajectory-aligned space window through the distribution of inten-
sity gradients. Notably, all the others descriptors mainly quantifies the human
local motion (Trajectory normalized positions, HOF, MBHx, MBHy), are very
close regarding their relevance value. Hence, the trajectory-aligned descriptors
match similarly the human actions labels concerning the CKA-based analysis
presented in Sect. 2, as they are all local measures of appearance, shape, and
motion equally important to support action recognition. Remarkable, the rele-
vance value in Fig. 3(a) mainly depends upon the discrimination capability of the
Gaussian kernel in Eq. 5, and the local measure being performed by the descrip-
tor. Now, as seen in Fig. 3(b), the CKA embedding in its first two projections
provides an insight into the data overlapping. The studied classes overlapping
(human actions) can be attributed to similar intra-class variations in several
categories, as videos with realistic scenarios have inherent attributes such as
background clutter, scale changes, dynamic viewpoint and sudden motion, that
may be affecting adversely the class separability.

Furthermore, as it is evidenced by the confusion matrix of the test set in
Fig. 3(c), an RBF SVM over the CKA feature embedding can obtain 90.97 ±
2.64% of accuracy in classifying human actions on the employed dataset. From
this matrix, the classes 22 and 23 are generating classification problems because
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the human movements performed in both are similar, these classes correspond
to Nunchucks and Pizza tossing respectively. As expected, the RBF SVM can
achieve more reliable recognition than a Linear SVM, as the data problem in
Fig. 3(b) is non-linear, see the results presented for this paper in Table 1. Notable,
our approach requires only 104.8 dimensions on average through 25 leave-one-out
iterations to classify 46 actions of the UCF50 dataset, with competitive accuracy,
which is very useful, because more elaborated classifiers (once discarded due to
the data dimension) can be employed to increase the recognition rate further.

Fig. 3. Human action recognition on the UCF50 database. (a) Feature relevance values.
(b) 2D input data projection from 46 action categories using CKA.(c) Confusion matrix
for the test set under a nested leave-one-group-out validation scheme using an RBF
SVM classifier.

In turn, Table 1 presents a comparative study of the results achieved by
our HARK and other similar approaches from the state-of-the-art for human
action recognition on the UCF50 database. To build this comparative anal-
ysis, approaches with similar experimental set-up are employed. Specifically,
those approaches using iDT representation and similar descriptors. Primarily,
the compared results exhibit a trade-off between data dimension and accuracy,
more elaborate procedures such as the one presented in [5], uses Time Convolu-
tional Networks (TCN) and Spatial Convolutional Networks (SCN) descriptors
along with iDT descriptors, and Spatio-temporal VLAD (ST-VLAD) encoding
to enhance the class separability. Thus, the mentioned approach obtain very
high mean accuracy 97.7%. However, the data dimensionality is considerably
high, which limits the usage of many classifiers. On the other hand, the app-
roach presented in [13], enhances the spatial resolution of the iDT descriptors
by using a strategy called spatiotemporal pyramids (STP) along with Spatial
Fisher Vector encoding (SFV). Obtained results regarding the accuracy of [13]
are comparable to ours. Nonetheless, the data dimension is drastically higher.
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Table 1. Comparison with similar approaches in the state-of-the-art on the UCF50
dataset.

Reference RepresentationDescriptors Feature
encoding

Data
dimension

Classification
method

Accuracy
[%]

Uijlings et al [11]– HOG+HOF+MBHx+MBHy FV 36864 Linear SVM 81.8

Wang et al [13] iDT HOG+HOF+MBHx+MBHy SFV + STP611328 Linear SVM 91.7

Duta et al [5] iDT+2St HOG+HOF+MBHx+MBHy+SCN+TCNST-VLAD 258816 Linear SVM 97.7

HARK iDT Traj+ HOG+HOF+MBHx+MBHy FV + CKA 104.8 Linear SVM 87.9

HARK iDT Traj+ HOG+HOF+MBHx+MBHy FV + CKA 104.8 RBF SVM 90.9

5 Conclusions

In this paper, we introduced a video-based human action recognition system
using kernel relevance analysis (HARK). Our approach highlights the primary
descriptors to predict the output labels of human action videos using trajectory
representation. Therefore, HARK quantifies the relevance of F = 5 trajectory-
aligned descriptors towards a CKA-based algorithm, that matches the input
space with the output labels, to enhance the descriptor interpretability, as it
allows to determine the importance of local measures (appearance, shape, and
motion) to support action recognition. Also, the CKA-algorithm allows to com-
pute a linear projection matrix, through a non-linear representation, where the
columns quantify the required number of dimensions to preserve the 90% of the
input data variability. Hence, by projecting the video samples into the gener-
ated CKA space, the class separability is preserved, and the number of dimen-
sions is reduced. Attained results on the UCF50 database show that our pro-
posal correctly classified the 90.97% of human actions samples using an average
input data dimension of 104.8 in the classification stage, through 25 folds under
a leave-one-group-out cross-validation scheme. In particular, according to the
performed relevance analysis, the most relevant descriptor is the HOG which
quantifies the local appearance and shape through the distribution of inten-
sity gradients. Remarkable, HARK outperforms state-of-art results concerning
the trade-off between the accuracy achieved and the required data dimension
(Table 1). As future work, authors plan to employ other descriptors such as the
deep features presented in [5]. Also, a HARK improvement based on the enhance-
ment of spatial and temporal resolution, as the one presented in [13], could be
an exciting research line.

Acknowledgments. Under grants provided by the project 1110-744-55958 funded by
COLCIENCIAS. Also, J. Fernández is partially founded by the COLCIENCIAS project
“ATTENDO” - code: FP44842-424-2017, and by the Maestŕıa en Ingenieŕıa Eléctrica
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3. Álvarez-Meza, A.M., Molina-Giraldo, S., Castellanos-Dominguez, G.: Background
modeling using object-based selective updating and correntropy adaptation. Image
Vis. Comput. 45, 22–36 (2016)

4. Brockmeier, A.J., et al.: Information-theoretic metric learning: 2-D linear projec-
tions of neural data for visualization. In: EMBC, pp. 5586–5589. IEEE (2013)

5. Duta, I.C., Ionescu, B., Aizawa, K., Sebe, N.: Spatio-temporal VLAD encoding for
human action recognition in videos. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin,
C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10132, pp. 365–378.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51811-4 30

6. Guo, K., Ishwar, P., Konrad, J.: Action recognition from video using feature covari-
ance matrices. IEEE Trans. Image Process. 22(6), 2479–2494 (2013)

7. Harandi, M., Salzmann, M., Hartley, R.: Dimensionality reduction on spd mani-
folds: the emergence of geometry-aware methods. IEEE Trans. Pattern Anal. Mach.
Intell. (2017)

8. Li, Q., Cheng, H., Zhou, Y., Huo, G.: Human action recognition using improved
salient dense trajectories. Comput. Intell. Neurosci. (2016)

9. Perronnin, F., Snchez, J., Mensink, T.: Improving the fisher kernel for large-scale
image classification. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6314,
LNCS (PART 4), pp. 143–156 (2010)

10. Reddy, K.K., Shah, M.: Recognizing 50 human action categories of web videos.
Mach. Vis. Appl. 24(5), 971–981 (2013)

11. Uijlings, J., Duta, I.C., Sangineto, E., Sebe, N.: Video classification with densely
extracted hog/hof/mbh features: an evaluation of the accuracy/computational effi-
ciency trade-off. Int. J. Multimedia Inf. Retrieval 4(1), 33–44 (2015)
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