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Abstract. We describe a high-accuracy, real-time, neuromorphic method and
system for activity recognition in streaming or recorded videos from static and
moving platforms that can detect even small objects and activities with high-
accuracy. Our system modifies and integrates multiple independent algorithms
into an end-to-end system consisting of five primary modules: object detection,
object tracking, convolutional neural network image feature extractor, recurrent
neural network sequence feature extractor, and an activity classifier. We also
integrate neuromorphic principles of foveated detection similar to how the retina
works in the human visual system and the use of contextual knowledge about
activities to filter the activity recognition results. We mapped the complete
activity recognition pipeline to the COTS NVIDIA Tegra TX2 development kit
and demonstrate real-time activity recognition from streaming drone videos at
less than 10 W power consumption.
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1 Introduction

Visual activity recognition has many applications for surveillance and autonomous
vehicles. For these applications it is necessary to recognize activities in unconstrained
videos. Much activity recognition research focuses on more constrained videos, where
the activity is spatially the center, dominant focus of the video, and temporally the
video is trimmed to contain mostly only the activity of interest. Such constrained
videos are easier to collect and label, so large datasets for training and evaluation more
often consist of videos of this type. Leveraging activity recognition models trained on
such datasets can be a benefit for models in the unconstrained domain, but applying
them is non-trivial. We propose a visual activity recognition system that can apply pre-
trained models and overcome the spatial and temporal challenges of unconstrained
videos. We make use of recent advances in convolutional neural network-based object
detection and classification systems combined with tracking as an initialization for
activity detection candidates. Further, we use a foveated object detection technique to
improve object localization and small object detection. We use the objects detected
in the foveation phase as context to inform constraints on the activity classification.
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We temporally integrate the activity classification model and context information to
identify short duration activities in long, untrimmed videos.

2 Related Work

There are many methods for activity recognition in videos [1–9]. The state of the art is
in using deep learning methods. One main limitation of many of these methods is that
they only address the activity classification problem: they assume the input is an
activity video clip that is centered on and contains just the activity of interest. They are
not applicable to detect and classify applications where the scene may contain multiple
objects, clutter, and the actual activity of interest occupies a small spatio-temporal
segment of the video. In this class of problems, the objects of interest first need to be
detected, classified and tracked before activity classification can be carried out. In
addition, the platform may be aerial or ground and static or moving.

3 Method

Figure 1 shows our system block diagram for real-time activity recognition in
streaming or recorded videos from static or moving platforms. We describe the indi-
vidual components in the following subsections.

3.1 Object Detection

The object detection module finds and recognizes objects of interest in the input video
and outputs their bounding box location and class label. For example, if the objective is

Fig. 1. Block diagram of our activity recognition approach. Blue box (left, dashed) shows the
baseline architecture. Yellow box (right, solid) shows improvements via foveation and context.
M1, M2 and M3 are the three main methods we compared in Sect. 4.3. (Color figure online)
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human activity recognition, then this module detects and classifies all human objects in
the incoming video. If the objective is vehicle activity recognition, then this detects and
classifies all vehicle objects in the incoming video. This module uses our prior work for
real-time object recognition from aerial platforms [10].

3.2 Track Formation

Activity tracks are now formed by tracking detected objects across frames. The
matching of bounding boxes from the current frame to the previous frame is done with
the Munkres version of the Hungarian algorithm. The cost is computed using bounding
box overlap ratio between the predicted bounding box and the previous bounding box.
The algorithm is used to compute an assignment which minimizes the total cost.
Sporadic detections of moving trees, shadows, etc. are removed by only considering
tracks with a minimum duration of T seconds (e.g., T is nominally 2 s). The output of
this module is persistent object tracks that have a minimum duration of T seconds. For
example, if a person is carrying a gun in the video and visible for 5 s, this module will
output a track of that object with a unique track number during those 5 s.

3.3 Convolutional Neural Network Feature Extraction

Persistent tracks are input to a convolutional neural network feature extractor. Track
bounding boxes may be enlarged by X% (typically 20%) before feature extraction to
help with jitter in the underlying detection bounding boxes. We used an Inception v2
model pre-trained on ImageNet 21K classification task as the CNN for spatial feature
extraction.

3.4 Recurrent Neural Network Activity Classifier

The CNN module is followed by a recurrent neural network which extracts temporal
sequence features. Since activities may have variable time gap between motion (e.g.,
person entering a building slowly vs. quickly), we chose the Long Short-Term Memory
(LSTM) network as the temporal component. The LSTM RNN takes as input the
feature vector from the CNN. The sequence of these features over N frames, typically
N = 16 frames, updates the RNN’s internal state at each frame. In this invention, we
train the 256-hidden-state RNN/LSTM stage on a combination of UCF-101 activity
recognition and VIRAT data sets. The RNN’s 256-dimensional internal state at the end
of the N frame sequence is used as the output of the RNN stage, which is input to a
final layer classifier.

3.5 Activity Classifier

Assuming we have K activities to classify, a final fully-connected layer with K outputs
gives the final class probability. Alternatively the RNN features can be sent to a Support
Vector Machine (SVM) classifier with K outputs. The final output is a probability or
confidence score (range 0–1) for each of the K classes. In the case where we only intend
to recognize certain types of activity, no softmax is used, and instead a threshold is
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placed on the output response of the K output nodes to determine when an activity of
interest is detected. Other activities, e.g. a person walking, should have no output above
the threshold and receive effectively a label of “no relevant activity”. In case of a winner
take all embodiment, the activity with the high confidence is the activity label of that
track. Modules 3–5 are run in parallel for each track from Module 2.

3.6 Foveated Detection

We leverage the relationship between entity detection and activity detection to design a
foveated detection system in which the detection network is first run on the full frame
resolution, then for each detected and robust track, the detection network is run again
on a foveated region around the track center and expanded larger than the track size
(1.5x the size corresponding to the track box). Detections from this second pass replace
those in the foveated region from the first pass.

3.7 Multi-resolution Detection Fusion

We run our object detector twice on the incoming video. During the first pass, it analyzes
the full video at the native resolution and detects potential objects. A tracker is initiated
on every detected object. During the second pass, it analyzes the bounding boxes
corresponding to all robust tracks at its resolution to further detect any objects within
them that may have been missed in the first pass. This second pass is foveated detection.
If the first pass detection is accurate, then no new information is gained in the second
pass; it only serves as a confirmation. In some cases (e.g., person in front of car), the first
pass misses detection of the smaller object (e.g., person), whereas the second pass run on
the car track bounding box detects a new object. Although it is possible, we did not see
any instance where the first pass detects more objects than the second pass in our data.
We append the detected objects from the first and second pass into a single detected-
objects list and use that for context in the next contextual filtering step.

3.8 Contextual Filter

We experimented with combining foveated detection and an entity-based contextual
filter on our activity classification probabilities to improve activity recognition. Our
activities of interest involve people interacting with vehicles or people alone. So the
presence or absence of a person or vehicle is closely tied to what activities are possibly
occurring in a given region of interest. Our convolutional and recurrent neural networks
don’t explicitly have this entity information as input. Our entity detection and local-
ization is generally robust for these two classes. We implemented a filter logic that
modifies the activity class probabilities from the neural network based on the detected
entities (i.e., context). The logic is based on common sense intuition about the activ-
ities. The possible activities are Open/Close Trunk, In/Out Vehicle, In/Out Facility,
Person Walking, Person Carrying Weapon, and Person Aiming Weapon. When there
are no vehicles or people in a region of interest, no activity is possible. When a vehicle
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is present, In/Out Facility is not possible; its class probability is set to 0. When a person
is present without a vehicle, Open/Close Trunk and In/Out Vehicle are not possible;
their probabilities are set to 0. Softmax is applied after the filter to renormalize the
activity class probability distribution.

4 Results

4.1 VIRAT Dataset

We first evaluated our approach on the Video and Image Retrieval and Analysis Tool
(VIRAT) dataset. This dataset is designed to be realistic, natural and challenging for
video surveillance domains in terms of its resolution, background clutter, diversity in
scenes, and human activity and event categories than existing action recognition
datasets. We used a subset of the dataset contains several HD videos of people per-
forming various everyday activities. The ground truth annotation specifies the type of
activity as well as bounding box and temporal range for activities in each video. There
are 12 classes of activities annotated. We combined three pairs of similar activities to
pose this as a K = 3-class activity classification problem: Open/Close Trunk, In/Out
Vehicle, and In/Out Facility (see Fig. 2).

For this evaluation, we focused on activity classification only (i.e., Integrated
modules 3, 4 and 5 of Fig. 1). We evaluated four different methods using ground-truth
based video clips (16 evenly spaced frames from each activity and rescaling the images
to 360 � 360 pixels). We used the CNN-RNN as a 256-dimensional feature extractor
and trained a new SVM last layer classifiers for K = 3 activities. The SVMs were
trained on either the CNN features-averaged across the 16 frames, RNN features-
averaged, RNN features-concatenated, or RNN features selected from the last frame.
We evaluated the performance with cross-validation using a split of 80% training and
20% testing. Table 1 shows the activity classification scores with these four methods.

Fig. 2. Example of In/out facility activity classification.
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4.2 HRL Parking Lot Dataset

We collected additional activity videos on the HRL campus in order to test the gen-
eralization performance of our classifiers. Two pan-tilt-zoom cameras looking down to
a parking lot were mounted on a campus building. We recorded 45 min of video while
people went through the parking lot, specifically performing the activities of
opening/closing a trunk and getting in/out of a vehicle (see Fig. 3). The videos are in
color with resolution 704 � 480. We annotated the videos with bounding boxes and
start/stop times as the ground truth. This resulted in 47 trunk open/close and 40 vehicle
in/out sequences. We used a classifier trained on features extracted by a CNN from the
VIRAT dataset on three classes (open/close trunk, in/out vehicle, in/out building).
Table 2 shows the activity recognition accuracy.

Table 1. Classification accuracy of 3-class VIRAT dataset.

Method Classification accuracy

1. CNN only 90.8%
2. CNN + RNN averaged 88.6%
3. CNN + RNN concatenated 90.9%
4. CNN + RNN last frame 92.8%

Fig. 3. Example video footage collected from HRL campus using EO cameras.

Table 2. Global activity recognition accuracy of 80.5% from HRL parking lot dataset.

Open/Close Trunk In/Out Vehicle In/Out Facility Accuracy %

Open/Close Trunk 32 15 0 68%
In/Out Vehicle 2 38 0 95%
In/Out Facility 0 0 0 NA
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4.3 HRL Drone Dataset

We also evaluated our approach on multiple video datasets collected from a DJI
quadcopter drone at a helipad and parking lot. The dataset involves multiple people and
cars performing various activities with the drone hovering over and collecting data
from two different viewpoints. The videos are in color with 4K resolution. We com-
pleted ground-truth annotation of the videos with bounding boxes and start/stop times.
We annotated seven classes of activities: {In/Out Vehicle, Open/Close Trunk, In/out
Facility, Person walking, Person Carrying Weapon, Person Aiming Weapon, None}
(Fig. 4).

As described in Modules 3.3 and 3.4, we trained our deep learning architecture
based on CNN and RNN for these 7 classes of activities. We used an Inception v2
model pre-trained on ImageNet 21K classification task as the CNN for spatial feature
extraction, and a 256-hidden-state RNN/LSTM stage for activity recognition trained on
a combination of UCF-101 activity recognition and VIRAT data sets.

The test protocol for the online streaming processing scheme uses an object
detector to seed an object tracker. When the tracker has accumulated 16 frames of a
tracked object, the activity classifier will be invoked. Since In/out Facility and Person
walking are under-represented in the data, we only present results of the other activities
in Tables 3 and 4 below. Figure 5 shows a typical result.

Fig. 4. Example annotations created for HRL August drone data set for In Vehicle (top) and Out
Vehicle (bottom) from two different angles.
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Table 3. Summary results across all activities on HRL drone dataset. Method M3 generally
performs better than M1 or M2 (high PC, low FPPI).

Method PD PC FPPI

M1 0.87 0.38 2.03
M2 0.91 0.40 1.82
M3 0.88 0.71 1.72

Table 4. Individual class activity results on HRL drone dataset.

M1 PD PC FPPI

In/Out Vehicle 0.90 0.90 2.42
Open/Close Trunk 0.97 0.05 2.60
Aim/Carry Weapon 0.73 0.18 0.26
M2 PD PC FPPI

In/Out Vehicle 0.89 0.89 2.09
Open/Close Trunk 0.93 0.25 2.55
Aim/Carry Weapon 0.87 0.27 0.27
M3 PD PC FPPI

In/Out Vehicle 0.80 0.73 2.06
Open/Close Trunk 0.91 0.64 2.41
Aim/Carry Weapon 0.92 0.80 0.35

Fig. 5. Typical recognized activity (see text above box) and detected entities (see text below
box) using M3.
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We evaluated the performance of three methods (M1, M2, and M3) as shown in
Fig. 1. Method 1 (M1) is the system without foveated detection. Method 2 (M2) uses
foveated detection and contextual filter path. Method 3 (M3) uses multi-resolution
detection fusion and contextual filter.

4.4 Hardware Setup

Figure 6 shows a typical setup to collect and process video data from the DJI Inspire
quadcopter. In the current invention, we can process results on either a computer with a
GPU card or the NIVIDIA Tegra TX1 board. The desktop software and demonstration
system runs under Ubuntu Linux 14.04 and requires a NVIDIA GPU to function.

We have mapped the complete activity recognition pipeline to the NVIDIA Tegra
TX2 development board and systematically evaluated algorithmic performance in
terms of frames per second and the power consumptions. As can be seen in Table 5, we
can achieve a throughput of 9.9 frames per second for the full HD video at a processing
power of 10 W.

Fig. 6. Drone aerial video processing architecture.

Table 5. Processing throughput and power consumption for full video activity recognition.

Display live
video

Object
recognition

Activity recognition
(localized)

Activity recognition
(full video)

Frames per
second

158 16.4 47.8 9.9

Processing
power (W)

5.5 8 7.5 10
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