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Abstract. Cyber-physical systems of today are generating large vol-
umes of time-series data. As manual inspection of such data is not
tractable, the need for learning methods to help discover logical struc-
ture in the data has increased. We propose a logic-based framework that
allows domain-specific knowledge to be embedded into formulas in a
parametric logical specification over time-series data. The key idea is to
then map a time series to a surface in the parameter space of the for-
mula. Given this mapping, we identify the Hausdorff distance between
surfaces as a natural distance metric between two time-series data under
the lens of the parametric specification. This enables embedding non-
trivial domain-specific knowledge into the distance metric and then using
off-the-shelf machine learning tools to label the data. After labeling the
data, we demonstrate how to extract a logical specification for each label.
Finally, we showcase our technique on real world traffic data to learn clas-
sifiers/monitors for slow-downs and traffic jams.

Keywords: Specification mining · Time-series learning
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1 Introduction

Recently, there has been a proliferation of sensors that monitor diverse kinds of
real-time data representing time-series behaviors or signals generated by systems
and devices that are monitored through such sensors. However, this deluge can
place a heavy burden on engineers and designers who are not interested in the
details of these signals, but instead seek to discover higher-level insights.

More concisely, one can frame the key challenge as: “How does one automat-
ically identify logical structure or relations within the data?” To this end, mod-
ern machine learning (ML) techniques for signal analysis have been invaluable in
domains ranging from healthcare analytics [7] to smart transportation [5]; and
from autonomous driving [14] to social media [12]. However, despite the success
of ML based techniques, we believe that easily leveraging the domain-specific
knowledge of non-ML experts remains an open problem.
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At present, a common way to encode domain-specific knowledge into an ML
task is to first transform the data into an a priori known feature space, e.g., the
statistical properties of a time series. While powerful, translating the knowledge
of domain-specific experts into features remains a non-trivial endeavor. More
recently, it has been shown that a parametric signal temporal logic formula along
with a total ordering on the parameter space can be used to extract feature
vectors for learning temporal logical predicates characterizing driving patterns,
overshoot of diesel engine re-flow rates, and grading for simulated robot con-
trollers in a massive open online coursei (MOOC) [16]. Crucially, the technique
of learning through the lens of a logical formula means that learned artifacts
can be readily leveraged by existing formal methods infrastructure for verifica-
tion, synthesis, falsification, and monitoring. Unfortunately, the usefulness of
the results depend intimately on the total ordering used. The following example
illustrates this point.

Fig. 1. Example signals of car speeds on a freeway.

Example: Most freeways have bottlenecks that lead to traffic congestion, and if
there is a stalled or a crashed vehicle at this site, then upstream traffic congestion
can severely worsen.1 For example, Fig. 1 shows a series of potential time-series
signals to which we would like to assign pairwise distances indicating the simi-
larity (small values) or differences (large values) between any two time series. To
ease exposition, we have limited our focus to the car’s speed. In signals 0 and
1, both cars transition from high speed freeway driving to stop and go traffic.
Conversely, in signal 2, the car transitions from stop and go traffic to high speed
freeway driving. Signal 3 corresponds to a car slowing to a stop and then accel-
erating, perhaps due to difficulty merging lanes. Finally, signal 4 signifies a car
encountering no traffic and signal 5 corresponds to a car in heavy traffic, or a
possibly stalled vehicle.

Suppose a user wished to find a feature space equipped with a measure to
distinguish cars being stuck in traffic. Some properties might be:
1 We note that such data can be obtained from fixed mounted cameras on a freeway,

which is then converted into time-series data for individual vehicles, such as in [4].
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1. Signals 0 and 1 should be very close together since both show a car entering
stop and go traffic in nearly the same manner.

2. Signals 2, 3, and 4 should be close together since the car ultimately escapes
stop and go traffic.

3. Signal 5 should be far from all other examples since it does not represent
entering or leaving stop and go traffic.

Fig. 2. (a) Statistical feature space (b) Trade-off boundaries in specification.

Fig. 3. Adjacency matrix and clustering of Fig. 1. Smaller numbers mean that the time
series are more similar with respect to the logical distance metric.

For a strawman comparison, we consider two ways the user might assign a
distance measure to the above signal space. Further, we omit generic time series
distance measures such as Dynamic Time Warping [8] which do not offer the
ability to embed domain specific knowledge into the metric. At first, the user
might treat the signals as a series of independent measurements and attempt to
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characterize the signals via standard statistical measures on the speed and accel-
eration (mean, standard deviation, etc.). Figure 2a illustrates how the example
signals look in this feature space with each component normalized between 0 and
1. The user might then use the Euclidean distance of each feature to assign a
distance between signals. Unfortunately, in this measure, signal 4 is not close to
signal 2 or 3, violating the second desired property. Further, signals 0 and 1 are
not “very” close together violating the first property. Next, the user attempts
to capture traffic slow downs by the following (informal) parametric temporal
specification: “Between time τ and 20, the car speed is always less than h.” As
will be made precise in the preliminaries (for each individual time-series) Fig. 2b
illustrates the boundaries between values of τ and h that make the specification
true and values which make the specification false. The techniques in [16] then
require the user to specify a particular total ordering on the parameter space.
One then uses the maximal point on the boundary as the representative for
the entire boundary. However, in practice, selecting a good ordering a-priori is
non-obvious. For example, [16] suggests a lexicographic ordering of the param-
eters. However, since most of the boundaries start and end at essentially the
same point, applying any of the lexicographic orderings to the boundaries seen
in Fig. 2b would result in almost all of the boundaries collapsing to the same
points. Thus, such an ordering would make characterizing a slow down impossi-
ble.

In the sequel, we propose using the Hausdorff distance between boundaries as
a general ordering-free way to endow time series with a “logic respecting distance
metric”. Figure 3 illustrates the distances between each boundary. As is easily
confirmed, all 3 properties desired of the clustering algorithm hold.

Contributions. The key insight in our work is that in many interesting
examples, the distance between satisfaction boundaries in the parameter space
of parametric logical formula can characterize the domain-specific knowledge
implicit in the parametric formula. Leveraging this insight we provide the fol-
lowing contributions:

1. We propose a new distance measure between time-series through the lens
of a chosen monotonic specification. Distance measure in hand, standard ML
algorithms such as nearest neighbors (supervised) or agglomerative clustering
(unsupervised) can be used to glean insights into the data.

2. Given a labeling, we propose a method for computing representative points
on each boundary. Viewed another way, we propose a form of dimensionality
reduction based on the temporal logic formula.

3. Finally, given the representative points and their labels, we can use the
machinery developed in [16] to extract a simple logical formula as a classifier
for each label.

2 Preliminaries

The main object of analysis in this paper are time-series.2

2 Nevertheless, the material presented in the sequel easily generalizes to other objects.
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Definition 1 (Time Series, Signals, Traces). Let T be a subset of R≥0 and
D be a nonempty set. A time series (signal or trace), x is a map:

x : T → D (1)

Where T and D are called the time domain and value domain respectively. The
set of all time series is denoted by DT .

Between any two time series one can define a metric which measures their
similarity.

Definition 2 (Metric). Given a set X, a metric is a map,

d : X × X → R
≥0 (2)

such that d(x, y) = d(y, x), d(x, y) = 0 ⇐⇒ x = y, d(x, z) ≤ d(x, y) + d(y, z).

Example 1 (Infinity Norm Metric). Let X be R
n. The infinity norm induced

distance d∞(x,y) def= maxi (|xi − yi|) is a metric.

Example 2 (Hausdorff Distance). Given a set X with a distance metric d, the
Hausdorff distance is a distance metric between closed subsets of X. Namely,
given closed subsets A,B ⊆ X:

dH(A,B) def= max
(

sup
x∈A

inf
y∈B

(d(x, y)), sup
y∈B

inf
x∈A

(d(y, x))
)

(3)

We use the following property of the Hausdorff distance throughout the paper:
Given two sets A and B, there necessarily exists points a ∈ A and b ∈ B such
that:

dH(A,B) = d(a, b) (4)

Within a context, the platonic ideal of a metric between traces respects any
domain-specific properties that make two elements “similar”.3 A logical trace
property, also called a specification, assigns to each timed trace a truth value.

Definition 3 (Specification). A specification is a map, φ, from time series to
true or false.

φ : DT → {1, 0} (5)

A time series, x, is said to satisfy a specification iff φ(x) = 1.

Example 3. Consider the following specification related to the specification from
the running example:

φex(x) def= 1

[
∀t ∈ T .

(
t > 0.2 =⇒ x(t) < 1

)]
(x) (6)

where 1[·] denotes an indicator function. Informally, this specification says that
after t = 0.2, the value of the time series, x(t), is always less than 1.
3 Colloquially, if it looks like a duck and quacks like a duck, it should have a small

distance to a duck.
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Given a finite number of properties, one can then “fingerprint” a time series as
a Boolean feature vector. That is, given n properties, φ1 . . . φn and the corre-
sponding indicator functions, φ1 . . . φn, we map each time series to an n-tuple
as follows.

x 	→ (φ1(x), . . . , φn(x)) (7)

Notice however that many properties are not naturally captured by a finite
sequence of binary features. For example, imagine a single quantitative feature
f : DT → [0, 1] encoding the percentage of fuel left in a tank. This feature
implicitly encodes an uncountably infinite family of Boolean features φk(x) =
1[f(x) = k](x) indexed by the percentages k ∈ [0, 1]. We refer to such families
as parametric specifications. For simplicity, we assume that the parameters are
a subset of the unit hyper-box.

Definition 4 (Parametric Specifications). A parametric specification is a
map:

ϕ : DT →
(

[0, 1]n → {0, 1}
)

(8)

where n ∈ N is the number of parameters and
(

[0, 1]n → {0, 1}
)

denotes the set

of functions from the hyper-square, [0, 1]n to {0, 1}.
Remark 1. The signature, ϕ : [0, 1]n → (DT → {0, 1}) would have been an
alternative and arguably simpler definition of parametric specifications; however,
as we shall see, (8) highlights that a trace induces a structure, called the validity
domain, embedded in the parameter space.

Parametric specifications arise naturally from syntactically substituting con-
stants with parameters in the description of a specification.

Example 4. The parametric specification given in Example 3 can be generalized
by substituting τ for 0.2 and h for 1 in Example 3.

ϕex(x)(τ, h) def= 1

[
∀t ∈ T .

(
t > τ =⇒ x(t) < h

)]
(x) (9)

At this point, one could naively extend the notion of the “fingerprint” of a
parametric specification in a similar manner as the finite case. However, if [0, 1]n

is equipped with a distance metric, it is fruitful to instead study the geometry
induced by the time series in the parameter space. To begin, observe that the
value of a Boolean feature vector is exactly determined by which entries map to 1.
Analogously, the set of parameter values for which a parameterized specification
maps to true on a given time series acts as the “fingerprint”. We refer to this
characterizing set as the validity domain.

Definition 5 (Validity domain). Given an n parameter specification, ϕ, and
a trace, x, the validity domain is the pre-image of 1 under ϕ(x),

Vϕ(x) def= PreImgϕ(x)[1] =
{

θ ∈ [0, 1]n | ϕ(x)(θ) = 1
}

(10)
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Thus, Vϕ, can be viewed as the map that returns the structure in the parameter
space indexed by a particular trace.

Note that in general, the validity domain can be arbitrarily complex mak-
ing reasoning about its geometry intractable. We circumvent such hurdles by
specializing to monotonic specifications.

Definition 6 (Monotonic Specifications). A parametric specification is said
to be monotonic if for all traces, x:

θ � θ′ =⇒ ϕ(x)(θ) ≤ ϕ(x)(θ′) (11)

where � is the standard product ordering on [0, 1]n, e.g. (x, y) ≤ (x′, y′) iff
(x < x′ ∧ y < y′).

Remark 2. The parametric specification in Example 4 is monotonic.

Proposition 1. Given a monotonic specification, ϕ, and a time series, x, the
boundary of the validity domain, ∂Vϕ(x), of a monotonic specification is a hyper-
surface that segments [0, 1]n into two components.

Next, we develop a distance metric between validity domains which characterizes
the similarity between two time series under the lens of a monotonic specification.

3 Logic-Respecting Distance Metric

In this section, we define a class of metrics on the signal space that is derived
from corresponding parametric specifications. First, observe that the validity
domains of monotonic specifications are uniquely defined by the hyper-surface
that separates them from the rest of the parameter space. Similar to Pareto
fronts in a multi-objective optimization, these boundaries encode the trade-offs
required in each parameter to make the specification satisfied for a given time
series. This suggests a simple procedure to define a distance metric between time
series that respects their logical properties: Given a monotonic specification, a
set of time series, and a distance metric between validity domain boundaries:

1. Compute the validity domain boundaries for each time series.
2. Compute the distance between the validity domain boundaries.

Of course, the benefits of using this metric would rely entirely on whether (i) The
monotonic specification captures the relevant domain-specific details (ii) The
distance between validity domain boundaries is sensitive to outliers. While the
choice of specification is highly domain-specific, we argue that for many mono-
tonic specifications, the distance metric should be sensitive to outliers as this
represents a large deviation from the specification. This sensitivity requirement
seems particularly apt if the number of satisfying traces of the specification grows
linearly or super-linearly as the parameters increase. Observing that Hausdorff
distance (3) between two validity boundaries satisfy these properties, we define
our new distance metric between time series as:
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Definition 7. Given a monotonic specification, ϕ, and a distance metric on
the parameter space ([0, 1]n, d), the logical distance between two time series,
x(t),y(t) ∈ DT is:

dϕ(x(t),y(t)) def= dH (∂Vϕ(x), ∂Vϕ(y)) (12)

3.1 Approximating the Logical Distance

Next, we discuss how to approximate the logical distance metric within arbi-
trary precision. First, observe that the validity domain boundary of a monotonic
specification can be recursively approximated to arbitrary precision via binary
search on the diagonal of the parameter space [13]. This approximation yields a
series of overlapping axis aligned rectangles that are guaranteed to contain the
boundary (see Fig. 4).

Fig. 4. Illustration of procedure introduced in [13] to recursively approximate a validity
domain boundary to arbitrary precision.

To formalize this approximation, let I(R) denote the set of closed intervals
on the real line. We then define an axis aligned rectangle as the product of closed
intervals.

Definition 8. The set of axis aligned rectangles is defined as:

I(Rn) def=
n∏

i=1

I(R) (13)

The approximation given in [13] is then a family of maps,

approxi : DT → P (I(Rn)) (14)

where i denotes the recursive depth and P (·) denotes the powerset.4 For example,
approx0 yields the bounding box given in the leftmost subfigure in Fig. 4 and
approx1 yields the subdivision of the bounding box seen on the right.5

4 The co-domain of (14) could be tightened to
(
2n − 2

)i

, but to avoid also parame-

terizing the discretization function, we do not strengthen the type signature.
5 If the rectangle being subdivided is degenerate, i.e., lies entirely within the boundary

of the validity domain and thus all point intersect the boundary, then the halfway
point of the diagonal is taken to be the subdivision point.
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Next, we ask the question: Given a discretization of the rectangle set approx-
imating a boundary, how does the Hausdorff distance between the discretization
relate to the true Hausdorff distance between two boundaries? In particular, con-
sider the map that takes a set of rectangles to the set of the corner points of the
rectangles. Formally, we denote this map as:

discretize : P (I(Rn)) → P (Rn) (15)

As the rectangles are axis aligned, at this point, it is fruitful to specialize to
parameter spaces equipped with the infinity norm. The resulting Hausdorff dis-
tance is denoted d∞

H . This specialization leads to the following lemma:

Lemma 1. Let x, x′ be two time series and R,R′ the approximation of their
respective boundaries. Further, let p, p′ be points in R,R′ such that:

d̂
def= d∞

H ( discretize(R), discretize(R′)) = d∞(p, p′) (16)

and let r, r′ be the rectangles in R and R′ containing the points p and p′ respec-
tively. Finally, let ε

2 be the maximum edge length in R and R′, then:

max(0, d̂ − ε) ≤ dϕ(x,x′) ≤ d̂ + ε (17)

Proof. First, observe that (i) each rectangle intersects its boundary (ii) each
rectangle set over-approximates its boundary. Thus, by assumption, each point
within a rectangle is at most ε/2 distance from the boundary w.r.t. the infin-
ity norm. Thus, since there exist two points p, p′ such that d̂ = d∞(p, p′),
the maximum deviation from the logical distance is at most 2 ε

2 = ε and
d̂ − ε ≤ dϕ(x,x′) ≤ d̂ + ε. Further, since dϕ must be in R

≥0, the lower bound
can be tightened to max(0, d̂ − ε). �

We denote the map given by (17) from the points to the error interval as:

d∞
H ± ε : P (R) × P (R) → I(R+) (18)

Next, observe that this approximation can be made arbitrarily close to the
logical distance.

Theorem 1. Let d� = dϕ(x,y) denote the logical distance between two traces
x,y. For any ε ∈ R

≥0, there exists i ∈ N such that:

d∞
H ( discretize( approxi(R)), discretize( approxi(R′))) ∈ [d� − ε, d� + ε] (19)

Proof. By Lemma 1, given a fixed approximate depth, the above approximation
differs from the true logical distance by at most two times the maximum edge
length of the approximating rectangles. Note that by construction, incrementing
the approximation depth results in each rectangle having at least one edge being
halved. Thus the maximum edge length across the set of rectangles must at least
halve. Thus, for any ε there exists an approximation depth i ∈ N such that:

d∞
H ( discretize( approxi(R)), discretize( approxi(R′))) ∈ [d� − ε, d� + ε] .

�
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Finally, Algorithm 1 summarizes the above procedure.

Algorithm 1. Approximate Logical Distance
1: procedure approx dist(x,x′, δ)
2: lo, hi ← 0, ∞
3: while hi − lo > δ do
4: R, R′ ← approxi(x), approxi(x′)
5: points, points′ ← discretize(R), discretize(R′)
6: lo, hi ← (

d∞
H ± ε

)
(R, R′)

7: return lo, hi

Remark 3. An efficient implementation should of course memoize previous calls
to approxi and use approxi to compute approxi+1. Further, since certain rectan-
gles can be quickly determined to not contribute to the Hausdorff distance, they
need not be subdivided further.

3.2 Learning Labels

The distance interval (lo, hi) returned by Algorithm 1 can be used by learning
techniques, such as hierarchical or agglomerative clustering, to estimate clusters
(and hence the labels). While the technical details of these learning algorithms are
beyond the scope of this work, we formalize the result of the learning algorithms
as a labeling map:

Definition 9 (Labeling). A k-labeling is a map:

L : DT → {0, . . . , k} (20)

for some k ∈ N. If k is obvious from context or not important, then the map is
simply referred to as a labeling.

4 Artifact Extraction

In practice, many learning algorithms produce labeling maps that provide little
to no insight into why a particular trajectory is given a particular label. In the
next section, we seek a way to systematically summarize a labeling in terms of
the parametric specification used to induce the logical distance.

4.1 Post-Facto Projections

To begin, observe that due to the nature of the Hausdorff distance, when explain-
ing why two boundaries differ, one can remove large segments of the boundaries
without changing their Hausdorff distance. This motivates us to find a small
summarizing set of parameters for each label. Further, since the Hausdorff dis-
tance often reduces to the distance between two points, we aim to summarize
each boundary using a particular projection map. Concretely,
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Definition 10. Letting ∂Vϕ(DT ) denote the set of all possible validity domain
boundaries, a projection is a map:

proj : ∂Vϕ(DT ) → R
n (21)

where n is the number of parameters in ϕ.

Remark 4. In principle, one could extend this to projecting to a finite tuple of
points. For simplicity, we do not consider such cases.

Systematic techniques for picking the projection include lexicographic projections
and solutions to multi-objective optimizations; however, as seen in the introduc-
tion, a-priori choosing the projection scheme is subtle. Instead, we propose per-
forming a post-facto optimization of a collection of projections in order to be
maximally representative of the labels. That is, we seek a projection, proj∗, that
maximally disambiguates between the labels, i.e., maximizes the minimum dis-
tance between the clusters. Formally, given a set of traces associated with each
label L1, . . . Lk we seek:

proj∗ ∈ arg max
proj

min
i,j∈(k2)

d∞( proj(Li), proj(Lj)) (22)

For simplicity, we restrict our focus to projections induced by the intersection of
each boundary with a line intersecting the base of the unit box [0, 1]n. Just as in
the recursive boundary approximations, due to monotonicity, this intersection
point is guaranteed to be unique. Further, this class of projections is in one-one
correspondence with the boundary. In particular, for any point p on boundary,
there exists exactly one projection that produces p. As such, each projection can
be indexed by a point in [0, 1]n−1.

Example 5. Let n = 2, ϕ denote a parametric specification, and let θ ∈ [0, π/2]
denote an angle from one of the axes. The projection induced by a line with
angle θ is implicitly defined as:

projθ(x) · [cos(θ),− sin(θ)] ∈ ∂Vϕ(x) (23)

Remark 5. Since we expect clusters of boundaries to be near each other, we also
expect their intersection points to be near each other.

Remark 6. For our experiment, we search for the optimal projection (22) in the
space of projections defined by

{
projθ | θ = i

100
π
2 , i ∈ {0, 1, . . . , 100}}

.

4.2 Label Specifications

Next, observe that given a projection, when studying the infinity norm distance
between labels, it suffices to consider only the bounding box of each label in
parameter space. Namely, letting B : P (Rn) → I[Rn] denote the map that
computes the bounding box of a set of points in R

n, for any two labels i and j:

d∞( proj(Li), proj(Lj)) = d∞(B ◦ proj(Li), B ◦ proj(Lj)). (24)
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This motivates using the projection’s bounding box as a surrogate for the cluster.
Next, we observe that one can encode the set of trajectories whose boundaries
intersect (and thus can project to) a given bounding box as a simple Boolean com-
bination of the specifications corresponding to instantiating ϕ with the parame-
ters of at most n+1 corners of the box [16, Lemma 2]. While a detailed exposition
is outside the scope of this article, we illustrate with an example.

Example 6. Consider examples 0 and 1 from the introductory example viewed
as validity domain boundaries under (9). Suppose that the post-facto projection
mapped example 0 to (1/4, 1/2) and mapped example 1 to (0.3, 0.51). Such a
projection is plausibly near the optimal for many classes of projections since
none of the other example boundaries (who are in different clusters) are near
the boundaries for 0 and 1 at these points. The resulting specification is:

φ(x) = ϕex(x)(1/4, 1/2) ∧ ¬ϕex(x)(1/4, 0.51) ∧ ¬ϕex(x)(0.3, 1/2)

= 1

[
t ∈ [1/4, 0.3] =⇒ x(t) ∈ [1/2, 0.51] ∧ t > 0.3 =⇒ x(t) ≥ 0.51

]
(25)

4.3 Dimensionality Reduction

Fig. 5. Figure of histogram resulting from
projecting noisy variations of the traffic
slow down example time series onto the
diagonal of the unit box.

Finally, observe that the line that
induces the projection can serve as a
mechanism for dimensionality reduc-
tion. Namely, if one parameterizes
the line γ(t) from [0, 1], where γ(0)
is the origin and γ(1) intersects the
unit box, then the points where the
various boundaries intersect can be
assigned a number between 0 and
1. For high-dimensional parameter
spaces, this enables visualizing the pro-
jection histogram and could even be
used for future classification/learning.
We again illustrate using our running
example.

Example 7. For all six time series in the traffic slow down example, we gener-
ate 100 new time series by modulating the time series with noise drawn from
N (1, 0.3). Using our previously labeled time series, the projection using the line
with angle 45◦ (i.e., the diagonal of the unit box) from the x-axis yields the
distribution seen in Fig. 5. Observe that all three clusters are clearly visible.

Remark 7. If one dimension is insufficient, this procedure can be extended to an
arbitrary number of dimensions using more lines. An interesting extension may
be to consider how generic dimensionality techniques such as principle compo-
nent analysis would act in the limit where one approximates the entire boundary.
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5 Case Study

To improve driver models and traffic on highways, the Federal Highway Admin-
istration collected detailed traffic data on southbound US-101 freeway, in Los
Angeles [4]. Traffic through the segment was monitored and recorded through
eight synchronized cameras, next to the freeway. A total of 45 minutes of traffic
data was recorded including vehicle trajectory data providing lane positions of
each vehicle within the study area. The data-set is split into 5979 time series.
For simplicity, we constrain our focus to the car’s speed. In the sequel, we out-
line a technique for first using the parametric specification (in conjunction with
off-the-shelf machine learning techniques) to filter the data, and then using the
logical distance from an idealized slow down to find the slow downs in the data.
This final step offers a key benefit over the closest prior work [16]. Namely given
an over approximation of the desired cluster, one can use the logical distance to
further refine the cluster.

Rescale Data. As in our running example, we seek to use (9) to search
for traffic slow downs; however, in order to do so, we must re-scale the time
series. To begin, observe that the mean velocity is 62 mph with 80% of the
vehicles remaining under 70 mph. Thus, we linearly scale the velocity so that
70mph 	→ 1 arbitrary unit (a.u.). Similarly, we re-scale the time axis so that
each tick is 2 s. Figure 6a shows a subset of the time series.

Fig. 6. (a) 1000/5000 of the rescaled highway 101 time series. (b) Projection of Time-
Series to two lines in the parameter space of (9) and resulting GMM labels.

Filtering. Recall that if two boundaries have small Hausdorff distances, then
the points where the boundaries intersect a line (that intersects the origin of the
parameter space) must be close. Since computing the Hausdorff distance is a
fairly expensive operation, we use this one way implication to group time series
which may be near each other w.r.t. the Hausdorff distance.
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In particular, we (arbitrarily) selected two lines intersecting the parameter
space origin at 0.46 and 1.36 rad from the τ axis to project to. We filtered out
time-series that did not intersect the line within [0, 1]2. We then fit a 5 cluster
Gaussian Mixture Model (GMM) to label the data. Figure 6b shows the result.

Fig. 7. (a) Cluster 4 Logical distance histogram. (b) Time-series in Cluster 4 colored
by distance to ideal slow down.

Matching Idealized Slow Down. Next, we labeled the idealized slow down,
(trace 0 from Fig. 2b) using the fitted GMM. This identified cluster 4 (with 765
data points) as containing potential slow downs. To filter for the true slow downs,
we used the logical distance6 from the idealized slow down to further subdivide
the cluster. Figure 7b shows the resulting distribution. Figure 7a shows the time
series in cluster 4 annotated by their distance for the idealized slow down. Using
this visualization, one can clearly identify 390 slow downs (distance less than
0.3)

Artifact Extraction. Finally, we first searched for a single projection that
gave a satisfactory separation of clusters, but were unable to do so. We then
searched over pairs of projections to create a specification as the conjunction
of two box specifications. Namely, in terms of (9), our first projection yields
the specification: φ1 = ϕex(0.27, 0.55)∧¬ϕex(0.38, 0.55)∧¬ϕex(0.27, 0.76). Sim-
ilarly, our second projection yields the specification: φ2 = ϕex(0.35, 0.17) ∧
¬ϕex(0.35, 0.31) ∧ ¬ϕex(0.62, 0.17). The learned slow down specification is the
conjunction of these two specifications.

6 Related Work and Conclusion

Time-series clustering and classification is a well-studied area in the domain of
machine learning and data mining [10]. Time series clustering that work with
raw time-series data combine clustering schemes such as agglomerative cluster-
ing, hierarchical clustering, k-means clustering among others, with similarity

6 again associated with (9).
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measures between time-series data such as the dynamic time-warping (DTW)
distance, statistical measures and information-theoretic measures. Feature-
extraction based methods typically use generic sets of features, but algorithmic
selection of the right set of meaningful features is a challenge. Finally, there
are model-based approaches that seek an underlying generative model for the
time-series data, and typically require extra assumptions on the data such as
linearity or the Markovian property. Please see [10] for detailed references to
each approach. It should be noted that historically time-series learning focused
on univariate time-series, and extensions to multivariate time-series data have
been relatively recent developments.

More recent work has focused on automatically identifying features from the
data itself, such as the work on shapelets [11,15,17], where instead of comparing
entire time-series data using similarity measures, algorithms to automatically
identify distinguishing motifs in the data have been developed. These motifs or
shapelets serve not only as features for ML tasks, but also provide visual feedback
to the user explaining why a classification or clustering task, labels given data,
in a certain way. While we draw inspiration from this general idea, we seek to
expand it to consider logical shapes in the data, which would allow leveraging
user’s domain expertise.

Automatic identification of motifs or basis functions from the data while
useful in several documented case studies, comes with some limitations. For
example, in [1], the authors define a subspace clustering algorithm, where given
a set of time-series curves, the algorithm identifies a subspace among the curves
such that every curve in the given set can be expressed as a linear combination of
a deformations of the curves in the subspace. We note that the authors observe
that it may be difficult to associate the natural clustering structure with specific
predicates over the data (such as patient outcome in a hospital setting).

The use of logical formulas for learning properties of time-series has slowly
been gaining momentum in communities outside of traditional machine learning
and data mining [2,3,6,9]. Here, fragments of Signal Temporal Logic have been
used to perform tasks such as supervised and unsupervised learning. A key dis-
tinction from these approaches is our use of libraries of signal predicates that
encode domain expertise that allow human-interpretable clusters and classifiers.

Finally, preliminary exploration of this idea appeared in prior work by some
of the co-authors in [16]. The key difference is the previous work required users
to provide a ranking of parameters appearing in a signal predicate, in order to
project time-series data to unique points in the parameter space. We remove this
additional burden on the user in this paper by proposing a generalization that
projects time-series signals to trade-off curves in the parameter space, and then
using these curves as features.

Conclusion. We proposed a family of distance metrics for time-series learning
centered monotonic specifications that respect the logical characteristic of the
specification. The key insight was to first map each time-series to characteriz-
ing surfaces in the parameter space and then compute the Hausdorff Distance
between the surfaces. This enabled embedding non-trivial domain specific knowl-



404 M. Vazquez-Chanlatte et al.

edge into the distance metric usable by standard machine learning. After label-
ing the data, we demonstrate how this technique produces artifacts that can
be used for dimensionality reduction or as a logical specification for each label.
We concluded with a simple automotive case study show casing the technique on
real world data. Future work includes investigating how to the leverage massively
parallel natural in the boundary and Hausdorff computation using graphical pro-
cessing units and characterizing alternative boundary distances (see Remark 7).
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