
Predictive Run-Time Verification
of Discrete-Time Reachability Properties
in Black-Box Systems Using Trace-Level
Abstraction and Statistical Learning

Reza Babaee(B), Arie Gurfinkel, and Sebastian Fischmeister

Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
{rbabaeec,arie.gurfinkel,sebastian.fischmeister}@uwaterloo.ca

Abstract. Run-time Verification (RV) has become a crucial aspect of
monitoring black-box systems. Recently, we introduced Prevent, a pre-
dictive RV framework, in which the monitor is able to predict the future
extensions of an execution, using a model inferred from the random sam-
ple executions of the system. The monitor maintains a table of the states
of the prediction model, with the probability of the extensions from each
state that satisfy a safety property.

The size of the prediction model directly influences the monitor’s mem-
ory usage and computational performance, due to the filtering techniques
used for run-time state estimation, that depends on the size of the model.
Hence, achieving a small prediction model is key in predictive RV.

In this paper, we use symmetry reduction to apply abstraction, that,
in the absence of a model in black-box systems, is performed on the
observation space. The symmetry relation is inferred based on k-gapped
pair model, that lumps symbols with similar empirical probability to
reach a set of target labels on a set of samples. The obtained equivalence
classes on the observation space are used to abstract traces that are used
in training the prediction model.

We demonstrate the soundness of the abstraction, in the case that
the generating abstract model is a deterministic Discrete-Time Markov
Chain (DTMC). We use Hidden Markov Models (HMMs) to handle the
abstraction-induced non-determinism by learning the distribution of a
hidden state variable. We implemented our approach in our tool, Prevent,
to empirically evaluate our approach on the Herman’s randomised self-
stabilising algorithm. Our results show that the inferred abstraction sig-
nificantly reduces the size of the model and the training time, without a
meaningful impact on the prediction accuracy, with better results from
the HMM models.

1 Introduction

Run-time Verification (RV) [28] has become a crucial element in monitoring and
analysing safety aspects of black-box stochastic systems [29,39], where there is
almost surely a non-zero probability of failure. In RV, a monitor checks the cur-
rent execution, that is a finite prefix of an infinite path, against a given property,
c© Springer Nature Switzerland AG 2018
C. Colombo and M. Leucker (Eds.): RV 2018, LNCS 11237, pp. 187–204, 2018.
https://doi.org/10.1007/978-3-030-03769-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03769-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-03769-7_11

188 R. Babaee et al.

typically expressed in Linear Temporal Logic (LTL) [36], that represents a set
of acceptable infinite paths. If any infinite extension of a prefix belongs (does
not belong) to the set of infinite paths that satisfy the property, the monitor
accepts (resp. rejects) the prefix. However, if the monitor is not able to reach a
verdict with the given prefix because it can be extended to satisfy or violate the
property, the monitor outputs unknown [5].

We introduced the predictive RV framework [3], where the monitor finitely
extends the prefix based on a prediction model that is trained on the set of inde-
pendent and identically distributed (iid) sample traces. This gives the monitor
the ability to detect a monitorable [14] property’s satisfaction/violation before its
occurrence. In this paper, we propose inferring trace-level abstraction to reduce
the size of the prediction model. Our focus is on the discrete-time reachability
properties, specified as target labels on the observation space Σ. The maximum
length of the extensions is specified as the prediction horizon (Fig. 1).

current
execution u

Pr(s |= ≤hAccept)

prediction
horizon h

target
labels

Learning
Aalergia &
Baum-Welch

Stochastic
Black-Box
System

traces

Monitor

abstract
traces

prediction
model

Reachability
Analysis
Prism

State
Estimation
Forward-
Backward

s

probability
table

Abstraction
k-gapped pair model

Fig. 1. Overview of predictive RV with abstraction.

Abstraction. The key idea in our abstraction is to decrease the size of the obser-
vation space by extracting symbols that have similar transient probability [24]
to reach the target labels. Therefore, our approach can be seen as a form of
symmetry reduction [23] on the observation space that is implemented at the
trace-level [33]. We use k-gapped pair model [13] to detect the symbols that have
similar empirical probability to reach the target symbols within k steps. The
symbols that have probability zero are considered irrelevant in the prediction.
The symmetrical symbols are then lumped into equivalence partition over the
observation space to convert the traces of the training set into abstract traces.

Learning. If there is no non-determinism in the generating model of the abstract
traces, given that the property is a bounded reachability LTL formula, any learn-
ing technique to infer the deterministic model, such as Aalergia [30], suffices to

Predictive Run-Time Verification of Discrete-Time Reachability Properties 189

provide the prediction model that in the limit is as accurate as the actual model.
However, the trace-level abstraction may induce non-determinism in the trained
model [33]. We use Hidden Markov Model [37] (HMM) to infer the induced non-
determinism by the abstraction, and compare the results with the deterministic
as well as the actual model [30]. We train an HMM using Baum-Welch algo-
rithm [37], that is an approximation to find the parameters of the HMM that
maximizes the likelihood of the training data.

Reachability Analysis and Monitor Construction. The monitor in our framework
is the result of a bounded reachability analysis on the prediction model. We use
Prism [34] to perform the probabilistic bounded reachability analysis on the
prediction model. The monitor is implemented as a lookup table, where each
entry is a combination of three elements: an integer variable t, a state of the
prediction model, and the probability that from that state the system reaches
the states with the target labels, within t steps. The value of t is constrained by
the prediction horizon that is expected from the prediction model.

State Estimation. Given that the original DTMC is deterministic, the system
state can be determined by the observed path u. However, if the prediction
model is non-deterministic, the state of the system needs to be estimated [40]
based on the prefix u. Any filtering techniques [38] can be exploited to estimate
the state at run-time. If the size of the model is large, approximate techniques
such as the Viterbi algorithm [3,43] can be applied too. Since the purpose
of the current paper is to reduce the size of the prediction model, and also
for evaluation purposes, we apply a direct approach and compute the posterior
probability distribution of the states in the prediction model after observing u,
using Forward-Backward algorithm [37].

The output of the monitor is the probability that from the estimated state
s the system reaches the target labels within at most h steps. This probabil-
ity is retrieved from the probability table after estimating the current state.
Respectively, the size of the prediction model dictates both the size and the
computational overload of the monitor.

In summary, our paper makes the following contributions:

– define trace-level abstraction as a symmetry relation in the observation space,
and infer it using k-gapped pair model

– resolve non-determinism induced by the abstraction using hidden state vari-
able

– demonstrate the validity of our approach on a distributed randomized algo-
rithm, by showing the significant reduction in the prediction models with
minimum impact on the prediction accuracy.

The rest of the paper is organized as follows: in Sect. 2 we introduce our run-
ning example, followed by preliminaries in Sect. 3, and a brief description of the
prediction procedure in Sect. 4. In Sect. 5 we explain the trace-level abstraction
using symmetry relation on the observation space and our algorithm to infer the

190 R. Babaee et al.

symmetry. Learning deterministic models, and some theoretical guarantee, as
well as learning non-deterministic models are described in Sect. 6. We conclude
the paper by discussing the results of our case study in Sect. 7.

2 Running Example

We use the die example [34] as the running example throughout the paper. This
example demonstrates the simulation of throwing a fair 6-sided die with flipping
a fair coin [22]. Let C be the output of the flipped coin (C ∈ {ii, hh, tt}), where
hh, tt display head and tail, resp., and ii is a special symbol to indicate the initial
state of the coin. Also, let D be the output of the simulated die (D ∈ {0, . . . , 6}),
where 1, . . . , 6 is the simulated output of the die, and 0 shows that the coin needs
to be flipped again, and the output of the die is not determined yet. The coin
needs to be flipped at least three times to simulate observing a number on the
die. We define Σdie : C × D as the observation space, that denotes the output
of the coin and the die in the process.

(hh,4)

(tt,5)

(hh,2)

(tt,3)

(hh,0)

(tt,0)

(hh,0)

(tt,0)

(hh,0)

(tt,0)

(ii,0)

1

1

1

1

1

1

0.49

0.51

0.48

0.49

0.52

0.48

0.48

0.52

0.52

0.51

0.48

0.52

0.51

0.49

(tt,1)

(hh,6)

Fig. 2. The learned model of the die
example from 1000 samples used as the
prediction model.

Suppose checking the reachability
property eventually the outcome of the
die is either “1” or “6”, at run-time,
which translates to the LTL property
ϕ : �D = 6 or D = 1, based on the sym-
bols in the defined observation space.
Any (infinite) execution paths with the
prefix u : (ii, 0)(tt, 0)(hh, 0)(hh, 6) sat-
isfies ϕ. However, the result on the
prefix u′ : (ii, 0)(tt, 0)(hh, 0)(tt, 0) is
unknown [6], as it can be extended to
an infinite path that satisfies ϕ (e.g.,
(ii, 0)(tt, 0)(hh, 0) (tt, 0)(hh, 0)(hh, 6)ω),
or an infinite path that violates ϕ (e.g.,
(ii, 0)(tt, 0)(hh, 0)(tt, 0)(tt, 0)(tt, 5)ω).

To deal with the inconclusive results
due to unknown extensions [5], we pro-
vide the monitor with a prediction model
to extend the prefix and generate the
results based on the probability of the
extensions that satisfy the given prop-
erty. In the die example, the model in
Fig. 2 is created from 1000 iid samples,
with which the monitor is able to com-
pute the probability of all the extensions
that satisfy ϕ (the shaded states). We
limit the length of the extensions to some boundary, which we call the predic-
tion horizon.

Predictive Run-Time Verification of Discrete-Time Reachability Properties 191

3 Preliminaries

In this section, we briefly introduce definitions and notations. A probability
distribution over a finite set S is a function P : S → [0, 1] such that

∑
s∈S P (s) =

1. We use X1:n to denote a sequence x1, x2, . . . , xn of values of a random variable
X, and use u and w to, respectively, denote a finite and an infinite path.

Discrete-Time Markov Chains (DTMC).

Definition 1 (DTMC). A Discrete-Time Markov Chain (DTMC) is a tuple
M : (S,Σ, π,P, L), where S is a non-empty finite set of states, Σ is a non-
empty finite alphabet, π : S → [0, 1] is the initial probability distribution over S,
P : S × S → [0, 1] is the transition probability, such that for any s ∈ S, P (s, ·)
is a probability distribution, and L : S → Σ is the labeling function.

Let M be a DTMC. The sequence σ0σ1 . . . is an execution path on M
iff P(si, si+1) > 0, where L(si) = σi, i ≥ 0. An execution path can be finite or
infinite. The probability measure on the execution paths is defined using cylinder
sets [24]. We deal with finite paths in the remaining of the paper. We denote by
Pathk(σ) the set of all finite execution paths of length k that start with σ. In
the following, we define the finite extension of a path.

Definition 2 (Finite Extensions of a Path). Let σ0σ1 · · · σn be a finite
execution path on a DTMC. The set of finite extensions of u is denoted by Extu
and defined as follows:

Extu = {u ∈ Pathk(σn)|k ≥ 0}

We denote by Ext≤h
u , if k ≤ h in Definition 2.

Definition 3 (Deterministic State). State s ∈ S of a DTMC is called deter-
ministic iff for all σ ∈ Σ, there exists at most one s′ ∈ S such that P(s, s′) > 0
and L(s′) = σ.

Definition 4 (Deterministic DTMC [30]). A DTMC is deterministic iff:

– There exists sinit ∈ S such that π(sinit) = 1.
– For all s ∈ S, s is deterministic.

Hypothesis Testing. Let X be some random variable with unknown mean μ
and variance σ2. Let x1, . . . , xn be iid random samples of X, with mean X̄ and
variance v2. A two-sided null hypothesis test enables us to check H0 : |μ−X̄| = 0.
According to the central theorem [15], as the number of samples grows |μ − X̄|
follows a student’s t-distribution [15]. Therefore using confidence α and the t-
distribution we are able to accept H0, if |X̄−μ|√

v
n

≤ tn−1,α.

192 R. Babaee et al.

4 Prediction as Quantitative Bounded Reachability
Analysis

Let M be a DTMC, G ⊆ Σ be the set of target labels of some goal states in M,
and L(G) be the set of finite execution paths on M that end with σ ∈ G. The
monitor’s purpose is to estimate the probability of all the extensions of length
at most h that satisfy �G. In a discrete-time setting, the variable h is a positive
integer, which we call the prediction horizon. Computing the probability of the
satisfying extensions is achieved by performing a bounded reachability analysis
on the prediction model.

Let u /∈ L(G) be the execution on M observed so far, and Extu be the set
of finite extensions of u. The output of the monitor is the probability measure
of the set of the paths of length at most h that satisfy �G, i.e.,

Pr(C), where C = {v ∈ Ext≤h
u |uv ∈ L(G)}) (1)

Suppose also that s is the state corresponding to the last label in u, which is
obtained by some state estimation technique [3,21,40]. As u expands, the new
state is consequently estimated at run-time.

The probability (1) can be obtained by recursively computing the transient
probability in M [24]: starting from s the probability of being at state s′ after
h steps, such that L(s′) ∈ G. We can effectively turn computing the transient
probability into checking the following quantitative PCTL property [17,24]:

P=?[s |= �≤h G] (2)

Due to multiplications of large and typically sparse matrices, the calculation
of (2) is not practical during run-time [24]. As a result, we use Prism [34] to
execute the quantitative reachability analysis [4] on all the states of M off-line,
and store the values in a look-up table. The size of the table is O(|M|) [3],
where |M| is the size of the prediction model. Subsequently, reducing the size
of the model results in a smaller look-up table, in addition to the performance
improvement due to a faster state estimation.

In our example, Gϕ = {(tt, 1), (hh, 1), (hh, 6), (tt, 6)}. Using the model in
Fig. 2, the monitor is able to retrieve the value of P=?(su′ |= �≤hGϕ), where su′

is the state of the model after generating u′. For instance, P=?(su′ |= �≤20Gϕ) =
0.34, which translates to the probability of all the extensions of length at most
20, that terminate with the labels where the outcome of the die is 6 or 1.

5 Trace-Level Abstraction by Inferring Symmetry in the
Observation Space

We use a finite partitioning of the observation space, Σ, to achieve the trace-
level abstraction in the form of a projection. The abstract traces are then used
to train the prediction models, which ideally have smaller sizes than the model
trained from the concrete traces, but are good enough approximates.

Predictive Run-Time Verification of Discrete-Time Reachability Properties 193

The simplest abstraction is to divide the observation space into two par-
titions, the atomic propositions that appear in the target labels and the non-
target labels [33], i.e., G, and Σ − G, which we denote by ΣḠ . The projection
RG : Σ → {gg, nn} simply maps a symbol of a path to the symbol gg, if it is a
target label, i.e., R(σ) = gg iff σ ∈ G, and to the symbol nn otherwise. Consider
Gϕ and the traces u and u′. The projection of u and u′, using the projection
relation RGϕ

, are respectively, ũ : (nn)(nn)(nn)(gg) and ũ′ : (nn)(nn)(nn)(nn).
The projection RG may collapse the non-target symbols, that have a non-zero

probability to reach a target label within some bounded steps, with symbols that
never reach the target labels, i.e., have probability zero. For instance, compare
the symbols (hh, 0) and (hh, 4). The former appears immediately before the tar-
get label (hh, 6) often in a simulated path; whereas the latter has no appearance
before any of the target labels (see Fig. 2). Both are replaced with nn in RG ,
thus the predictive information from (hh, 0) and (hh, 4) are combined.

The key insight in our abstraction method is to not only detect the symbols
with no significant correlation with the target labels, but also recognize the
ones that have similar empirical probability to reach the target labels within a
fixed number of steps, and collapse them together. As a result, we leverage the
notion of symmetry [23] on the observation space to recognize the symbols with
similar prediction power and lump them into the same partition. We define the
symmetry relation with respect to reaching the target labels. More specifically,
we say two symbols are symmetrical iff the probability measure of a fixed length
path, that starts from either symbols and ends with some target labels, is equal.

Let M be a deterministic DTMC. Let Pk : ΣḠ → ΣḠ be the permutations
on the non-target labels, such that Pr(PathG

k (Pk(σ))) = Pr(PathG
k (σ)) for all

σ ∈ ΣḠ , and some fixed integer k > 0, where PathG
k (.) = Pathk(.) ∩ L(G). A

group of permutations defined by Pk on ΣḠ provides an equivalence relation
(so-called the orbits) on ΣḠ that with G defines the equivalence classes over the
observation space. We denote by Σk the abstract alphabet set that contains a
unique representative symbol for each partition, and by Rk : Σ → Σk the corre-
sponding projection that maps each symbol to its rep. in the abstract alphabet.

Let Mk be the quotient of M, where Σ is replaced with Σk, and Lk : S → Σk

such that Lk(s) = Rk(L(s)). Given that Mk is deterministic, we can show that
Mk is bisimilar to M. Therefore bounded predictions from any state in both
models are equal (see Theorem 1). In the case that Mk is non-deterministic,
we employ a hidden state variable to infer the non-determinism imposed by
abstraction (see Sect. 6.2).

In the remainder, we use k-gapped pair model (Sect. 5.1) combined with
hypothesis testing (Sect. 5.2) to infer Rk, and consequently, Σk.

5.1 k-gapped Pair Model

The k-gapped pair model [13] has been successfully applied in mining biological
sequences [20], and in context-dependent text prediction [11]. We use the k-
gapped pair model to extract the predictive symbols with respect to the target
labels in the training set.

194 R. Babaee et al.

1 ComputePredictionSupport(S, σ, G, k)

inputs : The iid sample set S = [u1 . . . um], σ ∈ Σ, the set of target
labels G, and an integer k ≥ 0

output: [Fu1 . . . Fum
]

2 begin
3 foreach ui ∈ S do
4 n ← length(ui)

5 Fui
← 1

n−k−1

n−k−1∑

j=1

1(σj=σ and σj+k+1∈G)

6 end
7 end
Algorithm 1: Computing the k-prediction support of σ over the sample set.

A k-gapped pair model is a triplet (σ, σ′, k), where σ, σ′ ∈ Σ, and k ≥ 0 is
an integer that indicates the number of steps (gaps) between σ and σ′. If k = 0
the k-gapped pair is equivalent to a bigram [31].

The k-gapped occurrence frequency of the symbols σ and σ′, is the frequency
that σ appeared within exactly k steps before σ′ over the sample path. Assuming
that σ′ ∈ G, we use the sum of k-gapped occurrence frequency of a given symbol
over all the target labels in the sample set, and define it as the k-prediction sup-
port. Algorithm 1 shows computing k-prediction support of symbol σ. Symbols
σj and σj+k+1 are the jth and (j + k + 1)th symbols of the sample path ui in
each iteration of the loop in line 3, and 1(σi=σ and σi+k+1=σ′) in line 5 is the
indicator function that returns 1 if σi = σ and σi+k+1 = σ′; and 0 otherwise.
The output of Algorithm 1 is the vector [Fu1 . . . Fum

], the k-prediction support
values of each sample path for symbol σ.

The k-prediction support of σ is essentially the empirical estimation
of Pr(PathG

k (σ)). Under the assumption that Fu1 , . . . , Fum
is covariance-

stationary [16], i.e., the mean is time-invariant and the autocovarinace function
depends only on the distance k, both of which hold if the samples are iid, and
the underlying generating model is a deterministic DTMC, we are able to use
hypothesis testing to extract Rk.

5.2 Using Hypothesis Testing to Extract Symbols with Equivalent
Prediction Support

Algorithm 2 demonstrates the procedure of extracting the abstract alphabet set,
based on the symmetry between the k-prediction support of the symbols. The
algorithm receives the sample set, the alphabet set, the set of target labels, and
k, as inputs, and infer Rk, by generating the partitions V1, . . . , Vt.

The algorithm iterates over the symbols not considered in any equivalence
classes, that are stored in R (the loop in lines 5–17). In each iteration, the
symbol with the maximum k-prediction support score is found in R and stored
in σmax with its score in Fmax (line 6). The score 0 indicates that there is no

Predictive Run-Time Verification of Discrete-Time Reachability Properties 195

1 ExtractAbstractAlphabet(Sample set S,Σ,G, k)

output: Partition [G ∪ V1 ∪ · · · ∪ Vt ∪ R] over Σ
2 begin
3 t ← 1
4 R ← Σ − G
5 while R
= ∅ do
6 [σmax Fmax] ← maxσ∈R

∑m
i=1 Fui

7 if Fmax = 0 then break
8

9 Vt ← {σmax}
10 for σ ∈ R − {σmax} do
11 Fσ ← ComputePredictionSupport(S, σ, G, k)
12 if HypothesisTesting(Fmax − Fσ) then
13 Vt ← Vt ∪ {σ′}
14 end
15 end
16 R ← R − Vt

17 t ← t + 1
18 end
19 end

Algorithm 2: Extracting the equivalence classes on the alphabet set.

path of length k to any target labels from the symbols in R and we can end the
procedure (line 7); otherwise, the symbols with statistically similar k-prediction
support score to σmax are extracted from R, and inserted in Vt (for loop in 9–
13). The statistical testing is conducted via the function HypothesisTesting,
which performs a two-sided hypothesis t-test to check H0 : Fmax − Fσ = 0.
Depending on the number of samples, a proper confidence is chosen to test H0.

Algorithm 2 terminates, if there is no more symbol to classify, i.e., R = ∅,
or if all the remaining symbols in R have no k-prediction support. We dedicate
a representative symbol for each extracted partition, including G and R if it is
not empty, and define Rk accordingly.

At worst, a total number of O(|Σ|2) comparisons is required to extract the
abstract alphabet set. Given that the size of the actual model is at least as large
as |Σ|, storing the entire vector of k-prediction support score for all symbols is
impractical for large models. In fact, to make the usage of memory independent
of the size of the alphabet, the computation of F in Algorithm 1 is performed
on-the-fly, which only depends on the size of sample data. Compared to inferring
the abstract alphabet from a model that is trained from the concrete traces, our
approach is more memory-efficient.

Table 1 demonstrates the k-prediction support of the symbols (tt, 0) and
(hh, 0), for k = 0, 1, 2, over 1000 samples. The equivalence classes obtained by
Algorithm 2 for k = 2, where R2(σg) = gg, σg ∈ Gϕ, R2(σv) = v1, σv ∈ V1 =
{(ii, 0), (hh, 0), (tt, 0)}, R2(σn) = nn, σn ∈ R = Σdie − Gϕ − V1. Notice that

196 R. Babaee et al.

according to the original model in Fig. 2 the probability of reaching any of the
labels in Gϕ from (ii, 0), (hh, 0), (tt, 0) in 3 steps (within 2 gaps) is equal.

6 Learning

6.1 Learning Deterministic DTMC

Amongst probably almost correct (PAC) techniques to train deterministic
DTMCs [42], state-merging algorithms [9], are known to be effective. We use
Aalergia [1,30], that generates a frequency prefix tree acceptor (FPTA) from
the training data, and then applies data-dependent compatibility criterion,
parameterized by α, to merge the states of the FPTA, and finally transforms
it into a DTMC by normalizing the frequencies. The learned model converges to
the generating deterministic DTMC, M, in the limit for any α > 1 [33]. Figure 3
depicts the learned model from the abstract traces, based on the extracted sym-
bols in Table 1.

In the following, we demonstrate the correctness of the predictions made by
the deterministic DTMC trained from the abstract traces.

Theorem 1. Let Mk : (S,Σk, π,P, Lk) be the representation of M, where
the states are relabelled based on the symbols in Σk. Suppose G ⊆ Σ is the
set of target symbols, and ′gg′ is their representative symbol in Σk. Also let
M# : (S̃, Σk, π̃, P̃, L̃) be the learned model from the samples of Mk, using any
PAC learning algorithm. Then, under the assumptions of the convergence of the
learning algorithm,

Pr(s̃ |= �≤h(gg)) = Pr(s |= �≤hG),∀s̃ ∈ S̃, s ∈ S. (3)

Table 1. The k-prediction support
of all the symbols except the tar-
get labels, (hh, 6) and (tt, 1), for
k = 0, 1, 2, obtained from 1000 sam-
ple paths of the die example (scale
×10−3).

k = 0 k = 1 k = 2

(ii, 0) 0 0 22.01
(hh, 0) 9.26 20.05 23.20
(tt, 0) 10.21 21.05 23.22
(hh, 2) 0 0 0
(tt, 3) 0 0 0
(hh, 4) 0 0 0
(tt, 5) 0 0 0

(nn)

(v1)

(v1)

(v1)

1 10.26 0.47

1

0.27

1

(gg)

Fig. 3. The learned deterministic DTMC
from the abstract traces using the alphabet
{gg, v1, nn} using 2-prediction support.

Predictive Run-Time Verification of Discrete-Time Reachability Properties 197

Proof. Notice that since prediction in our setting is a bounded LTL property, (3)
is valid for the initial state, regardless of whether Mk is deterministic or not (see
Theorem 1 in [33]). If Mk is a deterministic DTMC, the states of the trained
model M#, almost surely bisimulates the states of Mk in the limit (see Theorem
1 in [30]). As a result, under the assumptions of the convergence of the learning
algorithm, (3) is followed. �

6.2 Learning Non-deterministic DTMC Using HMM

A Hidden Markov Model (HMM) specifies the distribution of a sequence as
the joint distribution of two random variables: the hidden state variable, and
the observation variable. More particularly, an HMM is the joint distribu-
tion over X1:n, the sequence of the state variable, and Y1:n, the sequence of
observations (both with identical lengths). The joint distribution is such that
Pr(yi | X1:i, Y1:i) = Pr(yi | xi) for i ∈ [1, n], i.e., the current observation is con-
ditioned only on the current state, and Pr(xi | X1:i−1, Y1:i−1) = Pr(xi | xi−1) for
i ∈ [1, n] i.e., the current state is only conditioned on the previous hidden state.
We use π to denote the initial probability distribution over the state space, i.e.,
Pr(x1) = π(x1). As a result, an HMM can be defined with three distributions:

Definition 5 (HMM). A finite discrete Hidden Markov Model (HMM) is a
tuple H : (S,Σ, π, T,O), where S is the non-empty finite set of states, Σ is
the non-empty finite set of observations, π : S → [0, 1] is the initial probability
distribution over S, T : S × S → [0, 1] is the transition probability, and O :
S ×Σ → [0, 1] is the observation probability. We use ΘH to denote π, T , and O.

In our setting, observations are the symbols of the abstract alphabet, Σk,
and hidden states are the states of the generating model, i.e., the deterministic
DTMC. The random hidden state variable creates an extra degree of freedom
which allows to distinguish states that emit the same symbol but have different
joint probability distributions.

Notice that the PAC learning of an HMM is a hard problem under crypto-
graphic assumptions [10,41] because the probability distribution over the state
sequence X is unknown, therefore, the likelihood function does not have a
closed form [41]. Subsequently, approximate algorithms, such as Expectation-
Maximization (EM) [8], are employed. Training an HMM using EM is known as
the Baum-Welch algorithm [37] (BWA), which calculates the parameters of the
HMM by finding the maximum likelihood of the sample data. BWA requires the
number of hidden states in a finite state HMM as an input, or hyper-parameter.
The hyper-parameters are typically chosen based on some criterion that prevents
overfitting (e.g., Bayesian Information Criterion (BIC) [12]).

To run the reachability analysis on the HMM, H : (S,Σ, π, T,O), we
adopt the direct method in [45] to create an equivalent DTMC, MH : (S ×
Σ,Σ, π(s, .),P , L(., σ)), where P((s, σ), (s′, σ′)) = T (s, s′) × O(s′, σ′).

Figure 4 displays the non-deterministic DTMC and the trained HMM over the
abstract traces obtained by R2 from Table 1. The DTMC in Fig. 4a is similar to

198 R. Babaee et al.

the DTMC in Fig. 2, except that the states are relabeled using R2 (see Sect. 5.2).
Relabeling the model creates non-determinism as the sequence (v1, v1, v1) corre-
sponds to several state sequences in the model. The HMM in Fig. 4b is obtained
by training HMM that has 4 hidden states. Each hidden state corresponds to
the set of states in the DTMC in Fig. 4a with the same labels. There are two
hidden states associated with (v1) to distinguish between the states of the model
in Fig. 4a that reach the target states (labelled (gg)) with different joint proba-
bilities.

(nn)

(nn)

(nn)

(nn)

(v1)

(v1)

(v1)

(v1)

(v1)

(v1)

(v1)

1

1

1

1

1

1

0.49

0.51

0.48

0.49

0.52

0.48

0.48

0.52

0.52

0.51

0.48

0.52

0.51

0.49

(gg)

(gg)

s4

v1

s3

s2

1

0.47

0.19 0.35

0.53
1

s10.46

1

gg nn

1

11

Fig. 4. Training non-deterministic DTMC using HMM.

7 Case Study: Randomised Self-Stabilising Algorithm

We use Herman’s self-stabilising algorithm [18] to experiment our approach in
Prevent.1 The algorithm provides a protocol for N identical processes (N is
odd) in a token ring network, with unidirectional synchronous communication.
Starting from an arbitrary configuration, the network will eventually converge
to a defined stable state within a finite number of steps. The token is infinitely
circulated in the ring amongst the processes in a fair manner. The stable state is
defined as such that there is exactly one process that has the token. The process
i has a local Boolean variable xi. If xi = xi−1 there is a token with process i,
in which case process i randomly chooses to set xi to the next value or leave it
unchanged (i.e., equal to xi−1).

The observation space for a ring with N processes has 2N symbols, each
representing the values of the local variable in each process. The observation
space maps one-to-one to the state space of the corresponding DTMC. We are
interested in monitoring the property ϕstable : �≤h“stable′′ which translates
into the target symbols in which only one process has the same label as its

1 Available at https://bitbucket.org/rbabaeecar/prevent/.

https://bitbucket.org/rbabaeecar/prevent/

Predictive Run-Time Verification of Discrete-Time Reachability Properties 199

left neighbour, i.e., there exists only one i such that xi = xi−1. The monitoring
procedure throughout our experiments is performed off-line; however, in principle
the on-line monitoring procedure would be the same, except that the execution
path keeps expanding as the system continues running.

We collected 1000 iid samples from the DTMC using Prism simulation
tool [34]. The length of the samples is constrained by a maximum, and is dis-
tributed uniformly. We first run Algorithm 2 to extract the predictive symbols for
the target symbols specified by ϕstable. We replaced the symbols of the sampled
traces based on the found partitioning, and performed the training algorithms
to learn a deterministic DTMC as well as an HMM. The number of states in the
HMM is chosen so that it is comparable to the size of the learned DTMC.

Prediction Evaluation: Using the values obtained from the actual models, we use
Mean-Square Prediction Error (MSPE) [15] to measure the performance of the
predictions by each model. The evaluation is conducted on a separate iid sample
from the training samples, where the following is computed for each instance i
that the prediction is made (i.e., a target label is not still observed):

ε2i = (Pr(s |= �≤hG) − Pr(ŝ |= �≤hG))2 (4)

where s is the state in the actual DTMC, and ŝ is the state in the prediction
model, estimated using Forward-Backward algorithm [37]. The Forward-
Backward algorithm computes the posterior probability of the state space given
the observation u, i.e., Pr(Xn = s | u,Θ), where n is the length of u. We define
MSPE as the average of (4), i.e., 1

t

∑t
i=1 ε2i where t indicates the number of

points on the sample where a prediction is made.

Table 2. The prediction results of different models on 100 random samples.

N Orig.

Alph.

Learned DTMC conc. Abst.

Alph.

Learned DTMC abst. Learned HMM

Size Training

time (s)

Size Training

time (s)

MSPE

e−02

Size Training

time (s)

MSPE

e−02

5 32 18 1047.12 5 5 16.12 27.57 4(7) 9.95 0.70

7 128 1319 19605.47 3 3 866.27 32.28 3(5) 61.13 1.39

9 512 7914 135004.38 2 2 275.54 79.36 3(4) 47.16 1.79

11 2048 O/M – 2 2 2696.73 87.52 2(3) 2496.20 1.35

Table 2 summarizes our results of three different prediction models compared
to the prediction results obtained from the original model for N ∈ {5, 7, 9, 11},
k = 0 (a bigram model), and prediction horizon equal to one step. The size of
the original model is identical to the size of the alphabet, as there is exactly one
state corresponding to the valuation of the local variables in each process. We
used Aalergia [1] to train DTMC from both the concrete and abstract traces,
and Matlab HMM toolbox to train the HMMs. The training was performed on
an Ubuntu 17.10 machine with 24 GB RAM. Training a DTMC from concrete

200 R. Babaee et al.

traces was aborted for N = 11 due to lack of memory, as the length of the
FPTAs grows exponentially with the size of the alphabet. The trained DTMCs
from abstract traces have significantly smaller size in direct relation to the size
of the inferred abstract alphabet, and consequently a shorter training time. This
result is consistent with the fact that the actual model is highly symmetrical with
respect to the stable states, i.e., the probability of reaching the stable states from
the states within an equivalence class in one step is equal.

The sizes of the trained HMMs are determined by the BIC score, and the size
of their equivalent DTMCs are shown in parentheses. As we can see an HMM
with comparable size is substantially more accurate in making predictions than a
DTMC. The state estimation also benefits from the small size of the HMM with
virtually no computational overhead. Since the prediction horizon is formulated
as an upper-bound, the probability of an accepting extension increases as the
prediction horizon increases, which in turn results in a lower MSPE. However,
as depicted in Fig. 5a trained HMM has lower error-rate even for shorter range
of predictions, e.g., for h = 5, the MSPE of the HMM is 0.03e−02 as opposed
to 0.85e−2 for the DTMC.

Figure 5b demonstrates the prediction results of the DTMC trained from
concrete traces, and the traces abstracted by k-prediction support, using k =
0, 5, 10. The prediction results are from the initial state, and as we can see, the
models learned from abstract traces almost follow the values of the actual model.
The best result belongs to k = 10, which echos the maximum expected time to
reach a stable state, i.e., that the path to the target symbols from the initial
state is of length at most about 9.

Fig. 5. The experiment results for abstract models in the Herman algorithm.

Predictive Run-Time Verification of Discrete-Time Reachability Properties 201

8 Related Work

To the best of our knowledge our approach is novel in terms of applying learning
and abstraction to predictive RV, and using HMM to handle non-determinism
at the trace level. Xian Zhang et al. [46] introduce a predictive LTL seman-
tics definition, that is applied on white-box systems (i.e., using the control flow
graphs), to find the extensions that evaluate an LTL formula to true or false.
Martin Leucker [27] follows the same idea and extends the semantics and the
monitor construction for when an over-approximation of the program is given.
Our approach works on black-box systems and finds the probability of the exten-
sions that satisfy a reachability property based on the sample executions of the
system that form a probabilistic model. Furthermore, we define the abstraction
by inferring a projection function over the observation space using the sample
executions.

Sistla et al. [39] propose an internal monitoring approach (i.e., the property is
specified over the hidden states) using specification automata and HMMs with
infinite states. Learning an infinite-state HMM is a harder problem than the
finite HMMs, but does not require inferring the size of the model [7].

Nouri et al. [33] use abstraction and learning to expedite statistical model
checking [25]. Their approach is the probabilistic variant of black box check-
ing [35] in which the inferred model, in the form of definite finite automata
(DFA), is checked against some properties. In our case, we use abstraction to
obtain a smaller prediction model for predictive RV. In [33] the atomic proposi-
tions in the property are used for abstracting the traces. We perform a statistical
analysis on the traces to obtain partitions that leave the prediction probability
intact. We also use HMM to handle the potential non-determinism introduced
by the abstraction.

Aichernig and Tappler [2] employ black box checking in the context of reach-
ability analysis of stochastic systems with controllable inputs. They use Markov
Decision Process (MDP), an extension of a Markov chain with non-deterministic
choices, as a model that is trained from random samples. They use the inferred
MDP to obtain an adversary with which they collect new samples and incremen-
tally train new MDPs. LAR [44] is a combination of probabilistic model learn-
ing and counterexample guided abstraction refinement (CEGAR) [19]. These
approaches are orthogonal to our technique and it is straightforward to extend
the training to other models such as MDP, and apply probabilistic CEGAR to
obtain a model that guarantees checking affirmative properties.

9 Conclusion

We propose inferring a projection relation from a random set of samples to
abstract traces that are used in building prediction models to monitor a discrete-
time reachability property. Our inference technique is based on finding a sym-
metrical relation between the symbols of the alphabet, using k-gapped pair
model, and lumping them into same equivalence classes. We use the abstract

202 R. Babaee et al.

traces to train deterministic DTMC as well as HMM to handle the possible non-
determinism induced by abstraction. We show that the prediction results remain
intact with the model trained from abstract traces, under the condition that the
generating DTMC of the abstract traces is deterministic and under the con-
straints of the learning algorithm. We evaluated our approach on a distributed
randomized algorithm, and demonstrated that in general the trained HMM from
the abstract traces is more accurate than the trained DTMCs.

Our approach is most effective on the systems with large observation space,
and where the model benefits from symmetry in the probability of reaching some
states. The statistical analysis of the traces proposed in this paper to reduce the
observation space requires enough number of executions with the target labels to
reliably detect similar symbols. If the target labels indicate some rare events (e.g.,
error with very low probability), techniques such as [26] are required to simulate
enough traces with target labels. The trained model from such simulated sample
traces need to be adjusted.

Lastly, an implementation of Prevent with the application of on-line learning
methods (such as state merging or splitting techniques [32]) is necessary to apply
the framework to the real-world scenarios.

References

1. Aalergia: http://mi.cs.aau.dk/code/aalergia/. Accessed 15 Mar 2018
2. Aichernig, B.K., Tappler, M.: Probabilistic black-box reachability checking. In:

Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 50–67. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67531-2 4

3. Babaee, R., Gurfinkel, A., Fischmeister, S.: Prevent: A Predictive Run-Time Veri-
fication Framework Using Statistical Learning. In: Johnsen, E.B., Schaefer, I. (eds.)
SEFM 2018. LNCS, vol. 10886, pp. 205–220. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-92970-5 13

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how

ugly is ugly? In: 7th International Workshop RV, pp. 126–138 (2007)
6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime

verification. J. Log. Comput. 20(3), 651–674 (2010)
7. Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model.

In: Proceedings of the 14th International Conference on Neural Information Pro-
cessing Systems: Natural and Synthetic, NIPS 2001, pp. 577–584. MIT Press, Cam-
bridge (2001)

8. Bilmes, J.A.: A gentle tutorial of the EM algorithm and its applications to param-
eter estimation for Gaussian mixture and hidden Markov models. Technical report
TR-97-021, International Computer Science Institute, Berkeley, CA (1997)

9. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

10. Castro, J., Gavaldà, R.: Learning probability distributions generated by finite-state
machines. In: Heinz, J., Sempere, J.M. (eds.) Topics in Grammatical Inference, pp.
113–142. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48395-
4 5

http://mi.cs.aau.dk/code/aalergia/
https://doi.org/10.1007/978-3-319-67531-2_4
https://doi.org/10.1007/978-3-319-92970-5_13
https://doi.org/10.1007/978-3-319-92970-5_13
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/978-3-662-48395-4_5
https://doi.org/10.1007/978-3-662-48395-4_5

Predictive Run-Time Verification of Discrete-Time Reachability Properties 203

11. Chan, S.W.K., Franklin, J.: A text-based decision support system for financial
sequence prediction. Decis. Support Syst. 52(1), 189–198 (2011)

12. Claeskens, G., Hjort, N.L.: Model Selection and Model Averaging. Series in Sta-
tistical and Probabilistic Mathematics. Cambridge University Press, Cambridge
(2008)

13. Dong, G., Pei, J.: Sequence data mining. In: Advances in Database Systems, vol.
33, Kluwer (2007)

14. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress
properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp.
40–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0 4

15. Geisser, S.: Predictive Inference, Chapman & Hall/CRC Monographs on Statistics
& Applied Probability. Taylor & Francis, UK (1993)

16. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)
17. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal

Asp. Comput. 6(5), 512–535 (1994)
18. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)
19. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,

S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70545-1 16

20. Huang, S., Liu, R., Chen, C., Chao, Y., Chen, S.: Prediction of outer membrane
proteins by support vector machines using combinations of gapped amino acid
pair compositions. In: Fifth IEEE International Symposium on Bioinformatic and
Bioengineering (BIBE 2005), 19–21 October 2005, Minneapolis, MN, USA, pp.
113–120. IEEE Computer Society (2005)

21. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime veri-
fication with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS,
vol. 8174, pp. 149–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40787-1 9

22. Knuth, D.: The complexity of nonuniform random number generation. In: Algo-
rithm and Complexity, New Directions and Results, pp. 357–428 (1976)

23. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
234–248. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 23

24. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

25. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H. (ed.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16612-9 11

26. Legay, A., Sedwards, S., Traonouez, L.-M.: Rare events for statistical model check-
ing an overview. In: Larsen, K.G., Potapov, I., Srba, J. (eds.) RP 2016. LNCS,
vol. 9899, pp. 23–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45994-3 2

27. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer,
S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 82–87. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35632-2 10

28. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

29. Maler, O.: Some thoughts on runtime verification. In: Falcone, Y., Sánchez, C.
(eds.) RV 2016. LNCS, vol. 10012, pp. 3–14. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46982-9 1

https://doi.org/10.1007/978-3-642-04694-0_4
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-642-40787-1_9
https://doi.org/10.1007/978-3-642-40787-1_9
https://doi.org/10.1007/11817963_23
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-319-45994-3_2
https://doi.org/10.1007/978-3-319-45994-3_2
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1007/978-3-319-46982-9_1
https://doi.org/10.1007/978-3-319-46982-9_1

204 R. Babaee et al.

30. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
probabilistic automata for model checking. In: Eighth International Conference on
Quantitative Evaluation of Systems, QEST 2011, Aachen, Germany, 5–8 Septem-
ber, pp. 111–120 (2011)

31. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR, abs/1301.3781 (2013)

32. Mukherjee, K., Ray, A.: State splitting and merging in probabilistic finite state
automata for signal representation and analysis. Sign. Process. 104, 105–119 (2014)

33. Nouri, A., Raman, B., Bozga, M., Legay, A., Bensalem, S.: Faster statistical model
checking by means of abstraction and learning. In: Bonakdarpour, B., Smolka, S.A.
(eds.) RV 2014. LNCS, vol. 8734, pp. 340–355. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11164-3 28

34. Parker, D., Norman, G., Kwiatkowska, M.: Prism model checker. http://www.
prismmodelchecker.org/. Accessed 14 Aug 2017

35. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Automata, Lang.
Comb. 7(2), 225–246 (2002)

36. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57 (1977)

37. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989)

38. Roweis, S.T., Ghahramani, Z.: A unifying review of linear Gaussian models. Neural
Comput. 11(2), 305–345 (1999)

39. Sistla, A.P., Žefran, M., Feng, Y.: Monitorability of stochastic dynamical systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 720–736.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 58

40. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29860-8 15

41. Terwijn, S.A.: On the learnability of hidden Markov models. In: Adriaans, P.,
Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 261–
268. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45790-9 21

42. Verwer, S., Eyraud, R., de la Higuera, C.: PAUTOMAC: a probabilistic automata
and hidden Markov models learning competition. Mach. Learn. 96(1–2), 129–154
(2014)

43. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. Inform. Theor. 13(2), 260–269 (1967)

44. Wang, J., Sun, J., Qin, S.: Verifying complex systems probabilistically through
learning, abstraction and refinement. CoRR, abs/1610.06371 (2016)

45. Zhang, L., Hermanns, H., Jansen, D.N.: Logic and model checking for hidden
Markov models. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 98–112.
Springer, Heidelberg (2005). https://doi.org/10.1007/11562436 9

46. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics.
In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3 37

https://doi.org/10.1007/978-3-319-11164-3_28
https://doi.org/10.1007/978-3-319-11164-3_28
http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/
https://doi.org/10.1007/978-3-642-22110-1_58
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/3-540-45790-9_21
https://doi.org/10.1007/11562436_9
https://doi.org/10.1007/978-3-642-28891-3_37

	Predictive Run-Time Verification of Discrete-Time Reachability Properties in Black-Box Systems Using Trace-Level Abstraction and Statistical Learning
	1 Introduction
	2 Running Example
	3 Preliminaries
	4 Prediction as Quantitative Bounded Reachability Analysis
	5 Trace-Level Abstraction by Inferring Symmetry in the Observation Space
	5.1 k-gapped Pair Model
	5.2 Using Hypothesis Testing to Extract Symbols with Equivalent Prediction Support

	6 Learning
	6.1 Learning Deterministic DTMC
	6.2 Learning Non-deterministic DTMC Using HMM

	7 Case Study: Randomised Self-Stabilising Algorithm
	8 Related Work
	9 Conclusion
	References

