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Preface

This volume contains the proceedings of the 18th International Conference on Runtime
Verification (RV 2018), which was held during November 10–13, 2018, at the Royal
Apollonia Beach Hotel, Limassol, Cyprus. The RV series consists of annual meetings
that gather together scientists from both academia and industry interested in investi-
gating novel lightweight formal methods to monitor, analyze, and guide the runtime
behavior of software and hardware systems. Runtime verification techniques are crucial
for system correctness, reliability, and robustness; they provide an additional level of
rigor and effectiveness compared with conventional testing, and are generally more
practical than exhaustive formal verification. Runtime verification can be used prior to
deployment, for testing, verification, and debugging purposes, and after deployment for
ensuring reliability, safety, and security and for providing fault containment and
recovery as well as online system repair.

RV started in 2001 as an annual workshop and turned into a conference in 2010.
The workshops were organized as satellite events to an established forum, including
CAV and ETAPS. The proceedings of RV from 2001 to 2005 were published in the
Electronic Notes in Theoretical Computer Science. Since 2006, the RV proceedings
have been published in Springer’s Lecture Notes in Computer Science. The previous
five RV conferences took place in Istanbul, Turkey (2012); Rennes, France (2013);
Toronto, Canada (2014); Vienna, Austria (2015); Madrid, Spain (2016); and Seattle,
USA (2017).

There were 49 submissions, 38 as regular contributions, six as short contributions
and five as tool papers. Each submission was reviewed by at least three Program
Committee members. The committee decided to accept 21 papers, 15 regular papers,
three short papers, and three tool papers.

The evaluation and selection process involved thorough discussions among the
members of the Program Committee and external reviewers through the EasyChair
conference manager, before reaching a consensus on the final decisions. To comple-
ment the contributed papers, we included in the program three invited speakers cov-
ering both industry and academia:

– Rajeev Alur, University of Pennsylvania, USA
– Jim Kapinski, Toyota Motor North America (TMNA)
– Fritz Vaandrager, Radboud University, The Netherlands

Additionally, the proceedings also contain three invited contributions.
The conference included six tutorials that took place on the first day. The following

tutorials were selected to cover a breadth of topics relevant to RV:

– Cesar Sanchez presented a tutorial on “Online and Offline Stream Runtime Veri-
fication of Synchronous Systems”

– Shaun Azzopardi, Joshua Ellul, and Gordon Pace presented a tutorial on “Moni-
toring Smart Contracts: ContractLarva and Open Challenges Beyond”



– Ylies Falcone presented a tutorial on “Can We Monitor Multi-threaded Java
Programs?”

– Lukas Convent, Sebastian Hungerecker, Torben Scheffel, Malte Schmitz, Daniel
Thoma, and Alexander Weiss presented a tutorial on “Hardware-Based Runtime
Verification with Embedded Tracing Units and Stream Processing”

– Doron Peled and Klaus Havelund, presented a tutorial on “Runtime Verification –

From Propositional to First-Order Temporal Logic”
– Ezio Bartocci presented a tutorial on “Monitoring, Learning and Control of

Cyber-Physical Systems with STL”

We would like to thank the authors of all submitted papers, the members of the
Steering Committee, the Program Committee, and the external reviewers for their
exhaustive task of reviewing and evaluating all submitted papers. We highly appreciate
the EasyChair system for the management of submissions.

We acknowledge the great support from our sponsors. Toyota InfoTech and Run-
time Verification Inc. acted as gold sponsors and Denso as bronze sponsor.

September 2018 Martin Leucker
Christian Colombo
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Runtime Verification - 17 Years Later

Klaus Havelund1(B) and Grigore Roşu2

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov

2 University of Illinois at Urbana-Champaign, Urbana, USA

Abstract. Runtime verification is the discipline of analyzing program
executions using rigorous methods. The discipline covers such topics
as specification-based monitoring, where single executions are checked
against formal specifications; predictive runtime analysis, where prop-
erties about a system are predicted/inferred from single (good) execu-
tions; specification mining from execution traces; visualization of exe-
cution traces; and to be fully general: computation of any interest-
ing information from execution traces. Finally, runtime verification also
includes fault protection, where monitors actively protect a running sys-
tem against errors. The paper is written as a response to the ‘Test of
Time Award’ attributed to the authors for their 2001 paper [45]. The
present paper provides a brief overview of what lead to that paper, what
has happened since, and some perspectives on the future of the field.

1 Introduction

Runtime verification (RV) [10,26,39,55] has emerged as a field of computer sci-
ence within the last couple of decades. RV is concerned with the rigorous mon-
itoring and analysis of software and hardware system executions. The field, or
parts of it, can be encountered under several other names, including, e.g., run-
time checking, monitoring, dynamic analysis, and runtime analysis. Since only
single executions are analyzed, RV scales well compared to more comprehensive
formal methods, but of course at the cost of coverage. Nonetheless, RV can be
useful due to the rigorous methods involved. Conferences and workshops are now
focusing specifically on this subject, including the Runtime Verification confer-
ence, which was initiated by the authors in 2001 as a workshop and became a
conference in 2010, and runtime verification is now also often listed as a subject
of interest in other conference calls for papers.

The paper is written as a response to the ‘Test of Time Award’ attributed
to the authors for the 2001 paper [45] (Monitoring Java Programs with Java
PathExplorer), presented 17 years ago (at the time of writing) at the first Run-
time Verification workshop (RV’01) in Paris, July 23, 2001.

K. Havelund—The research performed by this author was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

c© Springer Nature Switzerland AG 2018
C. Colombo and M. Leucker (Eds.): RV 2018, LNCS 11237, pp. 3–17, 2018.
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4 K. Havelund and G. Roşu

This paper reports on our own RV work, with some references to related
work that specifically inspired us, and discusses the lessons learned and our
perspective on the future of this field. Note that we do not try to identify all
literature that inspired us. That task would be impossible. Previous publications
of ours [26,42,44] have provided more technical tutorial-like presentations of the
field. This paper rather offers information about the motivations for our work
and philosophical considerations. As such this paper is closer in spirit to the
longer paper [43]. It should be mentioned that most of the works over time have
been done in collaboration with other people and inspired/initiated/driven by
other people. We have just been lucky to be in the midst of all this work.

The paper is organized according to the time line of events, first leading up to
[45], then the work described in that paper, the work that followed, and finally
some thoughts on the future of this field.

2 In the Beginning

The initial interest of the first author in formal methods stems from his involve-
ment in the design of the Raise specification language Rsl [30], during the
period 1984–1991, and even with earlier work in the early 1980’s on developing
a parser and type checker for its predecessor VDM [14,15,28]. These are so-
called wide-spectrum specification languages permitting formal specification at
a high level, and “programming” at a low level, all within the same language,
supported by a formal refinement relation between the different levels. These
languages were impressively ahead of their time if one looks at these from a
programming language perspective. For example, Vdm

++ has many similarities
with today’s Scala programming language.

However, these languages were fundamentally still specification languages,
and not programming languages, in spite of the fact that these languages have
a lot in common with modern high-level programming languages, such as e.g.
Ml. The thought therefore was: why not benefit from the evolution of modern
high-level programming languages and focus on verification of such? This was
the first step: the focus on programs rather than models. This lead to the work
[34] of the first author on attempting to develop a specification language for an
actual programming language, namely Concurrent ML (Cml), an extension
of Milner’s Ml with concurrency.

Later work with the very impressive Pvs theorem prover [35] helped realize
that theorem proving is hard after all, and that some form of more automated
reasoning on programs would be useful as a less perfect alternative. Hence, thus
far the realization was that automated verification of programs was a desirable
objective. Note that at the time the main focus in the formal methods community
was on models, not programs.

The next big move was the development of the Java PathFinder (Jpf), a
Java model checker, first as a translator from Java to the Promela modeling
language of the Spin model checker [41] (often referred to as Jpf1), and later as
a byte code model checker [50] (occasionally referred to as Jpf2). The goal of
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this work was to explore how far model checking could be taken wrt. real code
verification, either using Java as just a better modeling language, or, in the
extreme case, for model checking real programs. A sub-objective was to explore
the space between testing and full model checking.

Jpf1 suffered from the problem of translating a complex language such as
Java to the much simpler language Promela, resulting in a sensation that this
approach worked for some programs but not for all programs. It was hard to
go the last 20%. Jpf2 solved part of this problem, but still suffered from the
obvious problem of state space explosion. In addition, the model checker itself
was a homemade JVM on top of the real JVM, and hence slow.

At this time we came across two inspiring invited talks at the SPIN 2000
workshop, which we organized. The first was a presentation by Harrow from
Compaq on the VisualThreads tool [33]. The purpose of this tool was to
support Compaq’s customers in avoiding multithreading errors. Specifically two
algorithms appeared interesting: predictive data race and deadlock detection.
These algorithms can detect the potential for a data race or deadlock by analyzing
a run that does not necessarily encounter the error. The second invited talk was
presented by Drusinsky, on the Temporal Rover [25] for monitoring temporal
logic properties. We implemented the data race algorithm, also known as the
Eraser algorithm [61], and a modification of the deadlock detection algorithm
in Jpf2. The idea was to first execute the program to check for data races
and deadlocks using the two very scalable algorithms, and then only if error
potentials were found between identified threads, to launch the model checker
focusing specifically on those threads.

The two authors of [45] met at NASA Ames in 2000, when the second author
started his first job right out of school, and this way, without knowing it, a
fruitful, life-time collaboration and friendship with the first author. Inspired
by recent joint work with his PhD adviser, Joseph Goguen, the second author
was readily convinced that otherwise heavy-weight specification-based analysis
techniques can very well apply to execution traces instead of whole systems,
and thus achieve scalability by analyzing only what happens at runtime, as
it happens. This, paired with provably correct recovery, gives the same level
of assurance as formal verification of the whole system, but in a manner that
allows us to divide-and-conquer the task. So the second author was “all in”,
ready to use his fresh algebraic specification and formal verification knowledge
to rigorously analyze execution traces.

At this point, the previously mentioned observations about scalability of the
traditional verification approaches, the experiments with data race and dead-
lock detection mentioned above, and some other less technical issues, led to our
research focusing just on observing program executions. A constraint was that it
should not be based on test case generation, since so many people were studying
this already. We wanted to follow the path less explored. This is where the Java

PathExplorer project began, inspired by other work, but not too much other
work.
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Fig. 1. The JPaX architecture.

3 Java PathExplorer

Our first pure runtime verification system was Java PathExplorer (JPaX),
described in the award winning paper [45], as well as in other papers [46–49,60].
The system is briefly described below.

3.1 Architecture

JPaX was a general framework for analyzing execution traces. It supported
three kinds of algorithms: propositional temporal logic conformance checking,
data race detection, and deadlock detection, as discussed earlier. Figure 1 shows
JPaX’s architecture. A Java program is instrumented (at byte code level) to
issue events to the monitoring side, which is customizable, allowing the addition
of new monitors. The temporal logic monitoring module was originally based on
a propositional future time linear temporal logic, but was later extended to also
cover past time.

An interesting aspect of the system was the use of the Maude [21] rewriting
system for implementing monitoring logics as deep DSLs. One could in very few
lines implement, e.g., linear temporal logic (LTL), with syntax and its monitoring
algorithm, and have Maude function as the monitoring engine as well. There
was a grander vision present at the time: to use a powerful Turing complete
language, such as Maude, for monitoring, and not be restricted to just, e.g.,
LTL. However, that vision did not evolve beyond the thought stage, and had
to wait some additional years, as discussed in Sect. 4. Below we briefly discuss
some of the algorithms developed during the JPaX project.

Future Time LTL. The future time LTL monitoring used Maude to rewrite
formulas. Consider, e.g., the LTL formula p U q, meaning q eventually becomes
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true and until then p is true. The implementation of JPaX was based on classical
equational laws for temporal operators, such as:

p U q = q ∧ ©(p U q) and �p = p ∧ ©(�p) (1)

Consider the sample formula �(green → ©(¬red U yellow)). Upon encoun-
tering a green in a trace, the formula will be rewritten into the following for-
mula, which must be true in the next state: (¬red U yellow) ∧ �(green →
(¬red U yellow)). In Maude this was realized by a few simple rewrite rules,
including the following two for the until operator (E is an event and T is a trace,
the first rule handles the case of a trace consisting of only one event):

eq E |= X U Y = E |= Y.
eq E,T |= X U Y = E,T |= Y or E,T |= X and T |= X U Y.

3.2 Past Time LTL

Later, an efficient dynamic programming algorithm for monitoring past time lin-
ear temporal logic was developed [48], inspired by an initial encoding in Maude

described in [45]. Consider the following past time formula: red → �green (when-
ever red is observed, in the past there has been a green). The algorithm for
checking past time formulas like this uses two arrays, now and pre, recording
the status of each sub-formula now and previously. Index 0 refers to the formula
itself with positions ordered by the sub-formula relation. Then for this property,
for each observed event the arrays are updated as follows.

bool pre [0..3], now [0..3];

fun processEvent(e) { // Sub−formula:
now[3] := (event = red) // red
now[2] := (event = green) // green
now[1] := now[2] || pre [1] // PREV green
now[0] := !now[3] || now[1] // red −> PREV green
if !now[0] then output (‘‘ property violated ’’);
pre := now;

}
This dynamic programming algorithm was generalized and optimized in [49,59]
and later found way into three other systems for monitoring parametric temporal
formulas, namely MOP [57], MonPoly [11], and DejaVu [40].

3.3 Data Races and Deadlocks

When used for bug finding, the effectiveness of runtime verification depends
on the choice of test suite. For concurrent systems this is critical, due to the
many possible non-deterministic execution paths. Predictive runtime verifica-
tion approaches this problem by replacing a target property P with a stronger
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property Q such that there is a high probability that the program satisfies P iff a
random trace of the program will satisfy Q. As already mentioned, one such algo-
rithm was the Eraser algorithm [61], for detecting potentials for data races (where
two threads can access a shared variable simultaneously). It is often referred to
as the lock set algorithm as each variable is associated with a set of locks pro-
tecting it. The lock graph algorithm [33], would detect “dining philosopher”-like
deadlock potentials by building a simple lock graph where a cycle indicates a
deadlock potential. In [13] we augmented the original lock graph algorithm to
reduce false positives in the presence of so-called guard locks (locks that pre-
vent cyclic deadlocks). That paper was later followed by [12], which suggested a
code instrumentation method (inserting wait statements) for confirming found
deadlock potentials. Other forms of data races than those detected by Eraser
are possible. In [3] a dynamic algorithm for detecting so-called high-level data
races (races involving collections of variables) is described.

3.4 Code Instrumentation

JPaX code instrumentation was performed with Compaq’s JTrek [22], a Java
byte code instrumentation tool. Operating at the byte code level offers expressive
power, but makes writing code instrumentation instructions inconvenient. An
attempt was later made to develop an easier to use code instrumentation tool
named JSpy [31] on top of JTrek. In this tool code instrumentation could be
expressed as a set of high-level rules, formulated in Java (an internal Java DSL),
each consisting of a predicate and an action.

3.5 Trace Visualization

Execution trace visualization is a subject that in our opinion has promising
potential, although our own involvement in this direction is limited to [4]. The
advantage of visualization is that it can provide a free-of-charge abstract view
of the trace, from which a user potentially may be able to conclude proper-
ties about the program, or at least the execution, without having to explicitly
formulate these properties. We can distinguish between two forms of trace visual-
ization as outlined in [4]: still visualization, where all events are visualized in one
view, and animated visualization. In [4], an extension of Uml sequence diagrams
with symbols is described for representing still visualizations of the execution of
concurrent programs.

4 The Aftermath

The period after JPaX followed two tracks, which can be summarized as: exper-
iments with aspect-oriented programming for program instrumentation, and so-
called parametric monitoring of events carrying data.
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4.1 Aspect-Oriented Programming

Whilst initial runtime verification frameworks targeted Java, the RMOR
(Requirement Monitoring and Recovery) framework [36] targeted the monitor-
ing of C programs against state machines using a homegrown aspect-oriented
framework to perform program instrumentation. Rmor was implemented in
Ocaml using Cil (C Intermediate Language), a C program analysis and trans-
formation system, itself written in Ocaml. Later it was attempted to “go all
aspect-oriented”, meaning that aspects no longer were thought of as just the
plumbing for performing code instrumentation, but instead that monitors are
aspects. Some of our experiments went in the direction of what today is called
state-full aspects [1,65]. Here one takes a starting point in an aspect-oriented lan-
guage framework (such as e.g. AspectJ) and extends it with so-called tracecuts,
denoting predicates on the execution trace. An advice can be associated with a
tracecut, and executes when the tracecut is matched by the execution. We pro-
posed this line of work already in [27]. Other later work included [16,51,62,63].
The main observation in these works was that aspect-oriented programming
can be extended vertically (allowing more pointcuts) and horizontally (allowing
temporal advice, essentially monitoring temporal constraints).

4.2 Runtime Verification with Data

JPaX had a number of limitations. The perhaps most important was the propo-
sitional nature of the temporal logics. One could not, for example, monitor para-
metric events carrying data, such as openFile(“data.txt”), where openFile is an
event name and “data.txt” is data. It is perhaps of interest to note, that at the
time we were not (and are still not) aware of any system that at the time was
able to monitor such parametric events in a temporal logic.

4.3 The Beginning of Data

These considerations lead to two different systems: Eagle [6] and Mop [19].
Eagle was a small and general logic having similarities with a linear time
µ-calculus, supporting monitoring events with data, and allowing user-defined
temporal operators. The later Hawk system [23] was an attempt to tie Eagle

to the monitoring of Java programs with automated code instrumentation using
aspect-oriented programming, specifically AspectJ [53].

The same JPaX limitations that motivated the development of Eagle also
stimulated the apparition of monitoring-oriented programming (Mop) [18–20].
Mop proposed that runtime monitoring be supported and encouraged as a fun-
damental principle of software development, where monitors are automatically
synthesized from formal specifications and integrated at appropriate places in the
program. Violations and/or validations of specifications can trigger user-defined
code at any points in the program, in particular recovery code, outputting/send-
ing messages, or raising exceptions. Mop has made three important early contri-
butions. First, it proposed specification formalism independence, allowing users
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to insert their favorite or domain-specific requirements specification formalisms
via logic plugin modules. Second, it proposed automated code instrumentation as
a means to weave the monitoring checking code within the application; the first
version in 2003 used Perl for instrumentation [19], while the subsequent versions
starting with 2004 [18] used AspectJ [53]. Finally, it proposed a formalism-
independent semantics and implementation for parametric specifications. Con-
ceptually, execution traces are sliced according to each observed instance of the
parameters, and each slice is checked by its own monitor instance in a man-
ner that is independent of the employed specification formalism. The practical
challenge is how to deal with the potentially huge number of monitor instances.
JavaMop proposed several optimizations, presented in [58] together with the
mathematical foundations of parametric monitoring.

The Eagle system mentioned earlier was considered quite an elegant sys-
tem, but its implementation was complicated. The subsequent rule-based lower
level Ruler system [9] was meant as an “assembler” into which other temporal
specification languages could be compiled for efficient trace checking. However,
it assumed a life of its own as a specification language. Ruler was given a finite-
trace semantics with four verdicts. The verdicts still true and still false are
given if the rule system would accept/reject the trace if it were to end at the cur-
rent event, whilst the verdicts true and false were reserved for traces where
every extension would be accepted/rejected. Ruler allowed for very complex
rule systems that could be chained together such that one rule system produced
outputs for another rule system to consume as input events. Rule systems could
be combined sequentially, in parallel, and conditionally.

A project solidly rooted in an actual space mission was the development of
the LogScope temporal logic for log analysis [7]. The purpose of the project
was to assist the team testing the flight software for JPL’s Mars rover Curiosity,
which successfully landed on Mars on August 6, 2012. The software produces rich
log information. Traditionally, these logs are analyzed with complex Python

scripts. The LogScope logic was developed to support notations comprehensible
to test engineers, including a very simple and convenient data parameterized
temporal logic, which was translated to a form of data parameterized automata,
which themselves could be used for specification of more complex properties that
the temporal logic could not express. LogScope was furthermore implemented
in Python, allowing Python code fragments to be included in specifications,
all in order to integrate with the existing Python scripting culture at JPL.

4.4 Internal DSLs

Earlier we mentioned a grander vision to use a powerful Turing complete lan-
guage for monitoring. The fundamental problem with a logic is that it likely may
be insufficient for practical purposes if not designed extremely optimally. Engi-
neers are, e.g., often observed using Python for monitoring tasks. Of course in
lack of a better notation, but also because it provides expressive power to perform
arbitrary computations, e.g. on observed data. This observation led to several
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experiments with so-called internal DSLs, where one extends a programming lan-
guage with monitoring features. This allows the user to use the features of the
programming language when the features of the monitoring logic do not suffice.
TraceContract [8,37] is such an internal Scala DSL (effectively an API)
for monitoring, based on a mixture of temporal logic and state machines. It is
developed using Scala’s features for defining internal DSLs. TraceContract,
although a research tool, was later used for analysis of command sequences sent
to NASA’s LADEE (Lunar Atmosphere and Dust Environment Explorer) space-
craft throughout its mission.

Another example of an internal Scala DSL is LogFire [38]. LogFire is a
rule-based system similar to Ruler, but based on a modification of the Rete
algorithm [24,29], used in several rule-based systems. LogFire was part of an
investigation of the Rete algorithm’s applicability for runtime verification. Log-
Fire has become part of the software that daily processes telemetry data from
JPL’s Mars Curiosity rover. LogFire’s ability to generate facts can be used for
Complex Event Processing (CEP) [56], where higher-level events (abstractions)
are generated from lower-level events. CEP can be used for further analysis
and/or human comprehension, e.g. through visualization. Another CEP system
is Nfer [52], which in part was influenced by our work on rule-based systems,
and LogFire in particular. The result of applying an Nfer specification to an
event stream is a set of time bounded intervals. The specification consists of rules
of the form: name :− body (a rule name followed by a rule body). The semantics
is similar to that of Prolog (hence the :− symbol): when the body is true an
interval is generated with that name. A difference from Prolog is that rule
bodies contain temporal constraints based on operators from Allen Temporal
Logic [2]. Nfer was created due to a need for comprehending large telemetry
streams from Mars rovers. Abstracting these to higher level intervals, compared
to the low level raw event stream, should ease human comprehension.

4.5 First-Order Beyond Slicing

Ruler, as a layer of syntactic sugar on top of the rule formalism, offered a
sub-formalism resembling a data parameterized automaton language. Likewise,
LogScope, inspired by Ruler, offered a data parameterized automaton nota-
tion (in addition to the temporal logic). Quantified event automata (Qea) [5]
was an attempt to design a pure data parameterized automaton monitoring sys-
tem logic, using the efficient trace slicing approach previously introduced in the
JavaMop tool [57], but dealing with some of the limitations with respect to
expressiveness. A Qea specification consists of a list of first-order quantifica-
tions (universal and existential) and an automaton. They can be compared to
extended state machines (allowing arbitrary guards and actions on transitions
operating on local state, but are more succinct due to the fact that automata are
“spawned” according to parameters (there is a local state for each combination
of parameters).

A different approach to optimizing monitoring of parametric data is imple-
mented in the DejaVu tool [40], which uses BDDs [17] to efficiently represent
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data observed in the trace. Logic-wise, the system supports a standard past
time temporal logic with quantification. The logic in itself is not the innovation,
rather it is the use of BDDs to represent the sets of values observed in the trace
for the quantified variables. The representation of sets of assignments as BDDs
allows a very simple algorithm that naturally extends the dynamic programming
monitoring algorithm for propositional past time temporal logic shown on page
5 and presented in [47], using two vectors now and pre. However, while in [47]
the vectors contain Boolean values, here the values are BDDs.

5 Discussion

Numerous runtime verification logics have been developed over time. They
include various forms of temporal logics, state machines, regular expressions, con-
text free grammars, rule systems, variations of the µ-calculus, process algebras,
stream processing, timed versions of these, and even statistical versions, where
data can be computed as part of monitoring. It is clear that parametric/first-
order versions of these logics are needed. Some efforts have been made to combine
two or more of these logics, such as, e.g., combining temporal logic and regu-
lar expressions. An interesting trend is logics which not just produce a Boolean
value, but rather a data value of any type. This leads to systems computing
arbitrary data values from traces. It is, however, nearly impossible at this point
to estimate which of these approaches would potentially get infused in industrial
settings.

Whether to develop a DSL as external or internal is a non-trivial decision.
An external DSL is usually cleaner and more directly tuned towards the imme-
diate needs of the user. In addition, they are easier to process and therefore
optimize for efficiency. However, the richer the DSL becomes (moving towards
Turing-completeness) the harder the implementation effort becomes. An internal
DSL can be very fast to implement and augment with new (even user-defined)
operators, and can provide an expressiveness that would require a major effort
to support in an external DSL. One also gains the advantage of IDEs for the
host language. A hypothesis is that monitoring logics used in practice will need
to support very expressive expression languages to process data, such as strings
and numbers that are part of the observed events. Temporal logic could become
part of a programming language assertion language. This could be seen as part
of a design-by contract approach also supporting pre/post conditions and class
invariants.

An important topic may be inferring specifications from execution traces.
Our own limited work in this area includes [54,64]. Related to specification
mining is execution trace visualization (the visualization can be considered a
learned model). The advantage of visualization is that it can provide a free-of-
charge abstract view of the trace, from which a user potentially may be able to
conclude properties about the program, or at least the execution, without having
to explicitly formulate these properties.

Full verification is of course preferred over partial verification performed by a
monitor. The combination of static and dynamic verification can provide the best
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of both worlds: prove as much as is feasible statically and verify the remaining
proof obligations during runtime. To properly achieve this goal, we need formal
specifications not only for the properties to verify, but also for the program-
ming language itself. Moreover, we need provably correct monitor generation
techniques, so we can put all the specification and proof artifacts together and
assemble a proof of correctness for the entire system. Interestingly, once a spec-
ification of the programming language itself is available, then one can go even
one step further and monitor the execution of the program even against the lan-
guage specification. This may seem redundant at first, but it actually makes full
sense for some languages with complex semantics, like C. For example, tools like
Valgrind or UBSan detect undefined behaviors in C/C++ programs, which
are essentially deviations from the intended language semantics. The RV-Match

tool [32] is an attempt to push runtime verification in this direction.
In fault-protection strategies, the goal is to recover the system once it has

failed. The general problem of how to recover from a bad program state is inter-
esting and quite challenging. The ultimate solution to this problem can be found
in planning and scheduling systems, where a planner creates a plan (straight-line
program) to execute for a limited time period, an executive executes the plan,
and a monitor monitors the execution. Upon failure detected by the monitor, a
new plan (program) is generated online.
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54. Lee, C., Chen, F., Roşu, G.: Mining parametric specifications. In: Proceedings of
the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu, HI, USA, May 21–28 2011, pp. 591–600 (2011)

55. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2008)

56. Luckham, D. (ed.): The Power of Events: An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Addison-Wesley, Boston (2002)

57. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
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Abstract. In this paper we report on COST Action IC1402 which stud-
ies Runtime Verification approaches beyond Monitoring. COST Actions
are funded by the European Union and are an efficient networking instru-
ment for researchers, engineers and scholars to cooperate and coordi-
nate research activities. This COST action IC1402 lasted over the past
four years, involved researchers from 27 different European countries and
Australia and allowed to have many different working group meetings,
workshops and individual visits.

1 Introduction

Runtime verification (RV) is a computing analysis paradigm based on observing
a system at runtime to check its expected behavior. RV has emerged in recent
years as a practical application of formal verification, and a less ad-hoc approach
to conventional testing by building monitors from formal specifications. For tuto-
rials and overviews of the field of Runtime Verification, we refer to [11,15,22,28].

There is a great potential applicability of RV beyond software reliability, if
one allows monitors to interact back with the observed system, and general-
izes to new domains beyond computers programs (like hardware, devices, cloud
computing and even human-centric systems). Given the European leadership in
computer-based industries, novel applications of RV to these areas can have an
enormous impact in terms of the new class of designs enabled and their reliability
and cost effectiveness.

COST Actions are a flexible, fast, effective and efficient networking instru-
ment for researchers, engineers and scholars to cooperate and coordinate nation-
ally funded research activities. COST Actions allow European researchers to
jointly develop their own ideas in any science and technology field.

c© Springer Nature Switzerland AG 2018
C. Colombo and M. Leucker (Eds.): RV 2018, LNCS 11237, pp. 18–26, 2018.
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This COST Action lasted from beginning of 2015 till the end of 2018. This
paper describes its structure as well as the main results achieved in this action.
Latest updates on this COST action can be found at https://www.cost-arvi.eu.

2 Working Groups

In this section, we briefly report on the activities carried by each of the working
groups. Working groups served to structure and coordinate the work within the
action.

2.1 Working Group 1: Core Runtime Verification

Working Group 1 (WG1) aimed at clarifying the dimensions of RV, its theory,
algorithms and methods. These are the activities in which most of the work on
RV has focused in the early stages of the discipline, with scattered results based
on methods from other areas, notably formal methods and programming lan-
guages, and guided by application goals. Many outcomes from the other working
groups posed new sets of problems and challenges for the core RV community.
Specific activities of WG1 included research actions centered around establishing
a common framework for RV, and challenges for new research and technology
based on the other working groups. These activities led to several achievements,
which are exposed in several publications and the report of WG1. We briefly
summarize the achievements below:

– A tutorial book providing a collection of 7 lectures on introductory and
advanced topics on RV [5].

– A taxonomy of RV aspects that “paves the road” to allow a classification and
comparison of theoretical results, problems and techniques. The taxonomy has
been published in [16].

– The identification of the challenges and opportunities of instrumentation,
where the system under scrutiny is modified or harnessed to allow the moni-
toring process. The challenges are exposed in the report of this working group
and in the introductory book chapter [7].

– A study of the interplay between RV and static analysis, between RV and
model checking, and between RV and testing. All these activities usually serve
to increase or assess system’s reliability, but their interplay can potentially
increase their applicability. The interplay study is exposed in the report of
WG1.

– A study of potential applications of RV beyond system observation. This
includes reflection to act upon the system, typically to control and prevent
errors, or to replay allowing an error to be reproduced or even fixed. Poten-
tial applications beyond system observation are exposed in the report of this
working group and in a chapter of the tutorial book dedicated to financial
applications [14], and a chapter dedicated to runtime failure prevention and
reaction [17]. We have also published a paper on the combination of reinforce-
ment learning and RV monitors [29].

https://www.cost-arvi.eu
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– To pose the challenges in monitoring quantitative and statistical data, beyond
property violation. The challenges are exposed in the report of WG1 and in
some chapters of the tutorial book, notably those on monitoring with data [25]
and monitoring cyber-physical systems [2].

Additionally, WG1 has organized several events and coordinated publications to
promote Runtime Verification as a field of research and favor the dissemination
of the core aspects of the field. These events include two tracks on RV at IsoLA
2016 [30] and 2018 focused on industrial aspects [3,4], two special issues in
Formal Methods in System Design [9,20], two successful international schools
on RV attracting around 40 students each [12,13] with one organized alongside
the 16th International Conference on Runtime Verification [19] and one as an
independent event, competitions on Software for Runtime Verification [1,18,32]
as well as an extensive report on the first edition [6].

2.2 Working Group 2: Standardization, Benchmarks, Tool
Interoperability

This group aimed to clarify the landscape of formalisms and tools proposed and
built for RV, to design common input formats and to establish a large class of
benchmarks and challenges. We briefly summarise the main achievements of the
working group:

– Classification of Tools. The taxonomy mentioned above (in working group
1) was developed alongside a classification of Runtime Verification tools and
further refined with respect to this classification [16].

– Exploration of Language Landscape. The working group has encouraged a
number of activities exploring the links between specification languages for
Runtime Verification [24,35,36]. This has been both theoretically (defining
translations between languages) and pragmatically (discussing topics such as
usability).

– Competitions. Between 2014 and 2016 three competitions were carried out
comparing Runtime Verification tools for monitoring C programs, Java pro-
grams, and log files. These competitions compared 14 tools using over 100
different benchmarks. Full accounts of the competitions have been published
[1,6,18,32] and an ongoing account of these and future competitions can be
found at https://www.rv-competition.org/.

– Trace Formats. A number of trace formats were introduced and refined in the
above competitions including CSV, JSON, and XML formats. These have
been the subject of further exploration and discussion [26,33].

– Encouraging a Conversation. One of the most important jobs of this working
group was to get the different tool developers to talk to each other. We organ-
ised two events outside the Action to encourage this. Firstly, the RV-CuBES
workshop [31,34] was held alongside the 17th International Conference on
Runtime Verification [27]. This contained 11 short tool papers and 5 position
papers discussing how RV tools should be evaluated [10,37,39], describing

https://www.rv-competition.org/
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challenges of using RV tools in industry [21], and encouraging the community
to use open standards [26]. Secondly, a Dagstuhl seminar [23] considered var-
ious issues around behavioural specification languages, inviting researchers
from outside the RV community to join the discussion.

The activities of the working group are ongoing. The above taxonomy and
classification continues to be refined and extended. The landscape of Runtime
Verification languages is still not fully understood and more work is being car-
ried out in this area. The competition continues, with a challenge focusing on
benchmarks coinciding with the 18th International Conference on Runtime Ver-
ification and the end of this Action.

2.3 Working Group 3: Challenging Computational Domains

The main goal of this group has been to studied novel and important (but
challenging) computational domains for RV and monitoring, that result from
the study of other application areas other than programming languages. The
concrete objectives of this Working Group was to identify concrete challenges
for RV and monitoring in the following application domains:

Distributed Systems: where the timing of observations may vary widely in a
non-synchronized manner.

Hybrid and Embedded Systems: where continuous and discrete behaviour
coexist and the resources of the monitor are constrained.

Hardware: where the timing must be precise and the monitor must operate non
disruptively.

Security & Privacy: where a suitable combination between static and dynamic
analysis is needed.

Reliable Transactional Systems: where data consistency and strong guaran-
tees of concurrent execution must be provided at network scale.

Contracts & Policies: where the connection between the legal world and the
technical is paramount.

Unreliable Domains and Approximated Domains: where either the sys-
tems is not reliable, or aggregation or sampling is necessary due to large
amounts of data.

The study of these areas has involved expertise from more than one domain,
and has been possible by attacking them cooperatively. The first concrete out-
puts of this Working Group is a series of documents that give a roadmap for
the application of RV techniques to the areas listed above, identifying connec-
tions with established work in the respective sub-areas of computer science, and
challenges and opportunities. A summary of the content of these works where
consolidated into a paper (60 pages, 336 references) and will appear in jour-
nal survey publication, currently under submission [38]. Second, a concrete case
study has been defined, aiming at a RV solution for multicore systems using ded-
icated monitoring hardware based on FPGAs to show the feasibility and general
applicability of RV techniques (ongoing work).
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2.4 Working Group 4: Application Areas (Outside “Pure” Software
Reliability)

This group have studied the potential applications of RV to important applica-
tion areas beyond software and hardware reliability, including medical devices
and legal contracts. This task required the direct interaction with experts from
the respective communities. For example, for the safe interoperability of medical
devices, it was important to enrich the interface COST specifications with tem-
poral properties about the intended interaction of two devices and to synthesize
monitoring code for runtime. If monitoring identifies unwanted behavior, the
systems might go into some fail-safe mode. Another interesting application area
that has been explored was how to monitor legal e-contracts (e.g., computer-
mediated transactions). Some efforts have recently been done to formalize legal
contracts using formal languages, where skeletons of runtime monitors could be
extracted from the formal semantics. Other applications included robotics and
hybrid systems, monitoring for business models and systems security. Concrete
output of this Working Group consisted on documents describing challenges and
potential applications of RV to these application areas. Moreover, a concrete
case study in the medical domain has been performed identifying the safety
enhancements of medical devices by using RV techniques.

Main application areas studied by the working group:

– Medical devices
– Legal contracts
– Financial transactions
– Security and privacy
– Electrical energy storage

This Working Group have organized few workshops with invited experts from
application domains:

– ARVI Workshop on Financial Transaction Systems (organized by Christian
Colombo).1

– Workshop on Medical Cyber Physical Systems (co-organised by Ezio Bartocci
and Martin Leucker).2

– ARVI Workshop on the Analysis of Legal Contracts (co-organized by Chris-
tian Colombo, Gordon Pace and Gerardo Schneider).3

– ARVI Workshop on Privacy & Security (co-organized by Leonardo Mariani
and Gerardo Schneider).4

1 https://www.cost-arvi.eu/?page id=166.
2 http://mlab-upenn.github.io/medcps workshop/.
3 https://www.cost-arvi.eu/?page id=862.
4 https://www.cost-arvi.eu/?page id=1431.

https://www.cost-arvi.eu/?page_id=166
http://mlab-upenn.github.io/medcps_workshop/
https://www.cost-arvi.eu/?page_id=862
https://www.cost-arvi.eu/?page_id=1431


COST Action IC1402 Runtime Verification Beyond Monitoring 23

3 Short-Term Scientific Missions (STSMs)

The COST actions also provided financial support for so-called short-term scien-
tific missions. The idea is to support individual mobility, strengthening existing
networks and fostering collaboration. The visits should contribute to the scien-
tific objectives of the COST Action that means concentrate on topics investi-
gated in one of the four working groups while at the same time, allow to learn
new techniques, gain access to specific data, instruments, methods not available
in their own organizations.

The applications for an STSM were carefully reviewed by the STSM com-
mittee, which consisted of Tarmo Uustalu (Reykjavik University, Iceland), César
Sénchez (IMDEA Software, Spain) and Martin Steffen (University of Olso, Nor-
way).

Within this COST action, a total of 23 STSMs were carried out while another
2 are currently planned. Overall, the STSMs strengthened our joint interaction
and resulted in many high-quality scientific contributions.

4 IC1402 in Numbers

Grant period: 17.12.2014 – 16.12.2018

Participating COST countries: 27

COST international Non-European
partner countries:

1 (Australia)

Participating scientists: Over 90

STSMs completed: 23 (+2 expected)

Including for young scientists: 9

Including female scientists: 7

Meetings: 13 completed

Workshops: 5

Training schools: 2

ITC conference grants 1 (Serbia)

Publications: Over 40

Book published: Lectures on RV: Introductory and
Advanced Topics, Springer 2017
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Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 310–338. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 16

25. Havelund, K., Reger, G., Thoma, D., Zalinescu, E.: Monitoring events that carry
data. In: Bartocci and Falcone [5], pp. 61–102
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Abstract. This paper briefly reports on the second international school
on Runtime Verification, co-organized and sponsored by Inria and COST
Action IC1402 ArVi. The school was held March 19–21 2018, in Praz sur
Arly (near Grenoble) in the French Alps. Most of the lectures dealt with
introductory and advanced topics on Runtime Verification from the first
tutorial book on Runtime Verification [2]. Additional lectures were given
on cutting-edge research topics. We report the context and objectives
of the school, overview its program, and propose outlooks for the future
editions of the school.

1 Context and Objectives

Runtime Verification (RV) is the umbrella term to refer to the study of lan-
guages, (lightweight) techniques, and tools related to the verification of the
executions of software and hardware systems against behavioral properties
(see [4,5,7,10,11,14] for tutorials and overviews). Runtime Verification is a very
effective technique to ensure that a system is correct, reliable, and robust. Com-
pared to other verification techniques, RV is more practical than exhaustive
verification techniques (e.g., model-checking, static analysis), at the price of los-
ing completeness. Compared to conventional testing, RV is more powerful and
versatile.

As a field of research, RV is endowed with a yearly conference1, which exists
since 2000. The field is getting more mature and diverse and the community is
building documentation and lecture material to help students and practitioners
entering the field. The international school on Runtime Verification constitutes
one key element to facilitate the adoption of RV. This edition of the school shared
the same objectives as the first edition [6] (which was held in Madrid as part of
RV 2016 [9]):

– to present the foundations of the techniques;
– to expose participants to cutting-edge advances in the field;
– to provide a balance on theoretical and practical aspects of Runtime Verifi-

cation;
– to adopt a hands-on approach and expose participants with the basics of

building an RV tool.
1 runtime-verification.org.

c© Springer Nature Switzerland AG 2018
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2 Presentation

The second edition of the school on Runtime Verification was sponsored by
COST Action IC1402 ArVi2, Inria3, and Persyval-Lab4.

Table 1. Program overview - Day 1 - Monday 19th March

Time slot Topic Lecturer

08:00 10:00 An Introduction to Runtime Verification and
Monitorability

A. Francalanza

slides (https://www.cost-arvi.eu/wp-content/
uploads/2018/04/2nd-School-on-RV-Francalenza.
pdf) video (https://youtu.be/NDwiHfMXPMs)

10:30 12:00 Monitoring Cyber-Physical Systems A. Donze

slides (https://www.cost-arvi.eu/wp-content/
uploads/2018/04/2nd-School-on-RV-Donze.pdf)
video (https://youtu.be/GFVUpabVLQA)

13:00 14:30 The Java Modeling Language a Basis for Static and
Dynamic Verification

W. Ahrendt

slides (https://www.cost-arvi.eu/wp-content/
uploads/2018/04/2nd-School-on-RV-Ahrendt.pdf)
video (https://youtu.be/9ItK0jxJ0oQ)

14:30 15:30 Foundations on Runtime Verification M. Leucker

video (https://youtu.be/wafR7Oe4Uk0)

16:00 16:45 Monitoring Data Minimization G. Schneider

slides (https://www.cost-arvi.eu/wp-content/
uploads/2018/04/2nd-School-on-RV-Schneider.pdf)
video (https://youtu.be/6JOGJLESTmw)

16:45 17:30 Runtime Assertion-Based Verification for Hardware
and Embedded Systems

L. Pierre

slides (https://www.cost-arvi.eu/wp-content/
uploads/2018/04/2nd-School-on-RV-Pierre.pdf)
video (https://youtu.be/I -H4qUkMDM)

The school was organised over three days with a series of lectures from inter-
national experts (see Tables 1, 2 and 3). Lectures at the school ranged from the
fundamentals of runtime verification to more practical aspects, but also covered
cutting-edge research. All lectures were fully recorded. In Tables 1, 2 and 3, below
each lecture title, one can find 3 clickable links to the slides and videos.

In the remainder, we report on some of the lessons learned from the organi-
zation of the school and make suggestions to future organizers of the school.
2 www.cost-arvi.eu.
3 www.inria.fr.
4 persyval-lab.org.
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Table 2. Program overview - Day 2 - Tuesday 20th March

Time slot Topic Lecturer

08:00 10:00 Combined static and dynamic analyses in Frama-C: An
Overview

N. Kosmatov

slides (https://www.cost-arvi.eu/wp-content/uploads/
2018/04/2nd-School-on-RV-Kosmatov.pdf) video
(https://youtu.be/iC4i25jBaYg)

10:30 12:00 A Hands-On Introduction to Building a Runtime
Verification Tool

C. Colombo

slides (https://www.cost-arvi.eu/wp-content/uploads/
2018/04/2nd-School-on-RV-Colombo1.zip) video
(https://youtu.be/Vyz6kte4PVk)

14:00 17:00 Social event: Outing to Mont Blanc

Table 3. Program overview - Day 3 - Wednesday 21st March

Time slot Topic Lecturer

08:00 10:00 Discovering Concurrency Errors J. Loureno

slides (https://www.cost-arvi.eu/wp-content/uploads/
2018/04/2nd-School-on-RV-Lourenco.pdf) video
(https://youtu.be/XqKpoOaomGQ)

10:30 12:00 Stream Runtime Verification C. Sanchez

slides (www.cost-arvi.eu/wp-content/uploads/2018/04/
2nd-School-on-RV-Sanchez.gz) video (https://youtu.
be/pmLag5rcQIs)

13:00 14:30 Industrial Experiences with Runtime Verification of
Financial Transaction Systems: Lessons Learnt and
Standing Challenges

C. Colombo

slides (https://www.cost-arvi.eu/wp-content/uploads/
2018/04/2nd-School-on-RV-Colombo2.pdf) video
(https://youtu.be/Un5pJVqjUK0)

3 Reflections

We summarize the most frequent comments obtained from the participants. The
balance between practice and theory was really appreciated by the participants
(with application-oriented lectures very welcome). However, we note that some
participants (legitimately) found the practice sessions too short and that mon-
itoring for concurrency errors was under-represented (only 2 h). Participants
appreciated the format of the sessions: lectures last between one and two hours
and focused on a topic. However, some participants with experience in RV would
have preferred to opt for slightly more technical lectures with a greater focus on
state of the art approaches, especially during the last sessions (as was actually
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the case with the first edition of the school). The participants appreciated the
opportunities to discuss with experts and lecturers (thanks to the long breaks
and social events); these opportunities allowed new connections to participants.
Some participants suggested organizing additional group discussions in the form
of panels dedicated to cutting-edge topics lead by the lecturers.

4 Outlooks

Given the great success of the last two editions, we hope that the school will
proceed in the future. We make recommendations for future editions of the
school. These recommendations are based on the experience gained from the
organization of the two editions and the feedback received from the participants.

– First, we recommend that future editions of the school last longer: 3 to 4 full
days would be the appropriate duration to dedicate one day to basics, one
day to advanced topics, one day to cutting-edge research and recent results,
and one day dedicated to tool construction (which is of importance for such
a pragmatic technique as RV).

– Regarding practice sessions, we believe that sessions such as the ones orga-
nized during the first edition of the school would be more effective by allowing
students to really address implementation issues. To save time, setup and con-
figurations of the tools involved should be provided to the participants ahead
of time. Using technologies such as virtual machines and containers is to be
considered.

– Moreover, we would like to see a lecture dedicated to tool evaluation, detailing
the methodology to compare a tool and assess its relevance.

– Furthermore, we would suggest future organizers to prepare overview slides
providing participants with a big picture of the presented techniques. This
shall help connect methods, techniques, and tools, and better see the comple-
mentarities. Similar to this is the concern of participants in seeing when to
use RV compared to other techniques. Providing concrete example situations
(upfront during the first lecture) where non-RV techniques fail and where RV
techniques are complementary would clarify the position of RV in the big
picture of verification techniques.

– To put the approaches in a better perspective, it would be nice to compare
different approaches addressing the same problem. After an exposition of the
approaches, a common interactive session could serve see the limits of each
approach and study possible cross-fertilization between them.

– Finally, we would like to organize a small competition between the tools con-
structed by the students, in the same spirit as the competitions on Runtime
Verification, usually held during the conference [1,3,8,12,13].

Acknowledgment. The organizer would like to warmly thank all the researchers for
their lectures and all the participants to the winter school for their feedback.

The school lectures were based upon work from COST Action ARVI IC1402, sup-
ported by COST (European Cooperation in Science and Technology) and from the
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material in the tutorial book on introductory and advanced topics on Runtime Verifi-
cation [2].

The organizer is grateful to several institutes who sponsored the school: the COST
association, Inria, PERSYVAL-lab, and the Laboratoire d’Informatique de Grenoble.

The organizer is also much in debt with several fellows who largely contributed to
making the school a successful event: Sophie Azzaro, Imma Presseguer, and Carmen
Contamin for helping with logistic organization, and Djamel Hadji and Gilles Gardès
for recording the lectures and handling all the audiovisual matters during the school.
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Abstract. Signal Temporal Logic (STL) is a popular specification lan-
guage to reason about continuous-time trajectories of dynamical systems.
STL was originally employed to specify and to monitor requirements over
the temporal evolution of physical quantities and discrete states charac-
terizing the behavior of cyber-physical systems (CPS). More recently,
this formalism plays a key role in several approaches for the automatic
design of safe systems and controllers satisfying an STL specification.
However, requirements for CPS may include behavioral properties about
the physical plant that are not always fully known a-priori and indeed
cannot be completely manually specified. This has opened a new research
direction on efficient methods for automatically mining and learning STL
properties from measured data. In this tutorial we provide an overview
of the state-of-the-art approaches available for monitoring, learning and
control of CPS behaviors with STL focusing on some recent applications.

1 Introduction

Cyber-Physical Systems (CPS) [40,46,47] are defined as a networked computa-
tional embedded systems monitoring and controlling engineering, physical and
biological systems. Their behavior is characterized by the evolution of physical
quantities interleaved with the occurrence of discrete state transitions of the
computational components.

Hybrid systems [29] are a suitable mathematical framework to model, at
design time, the dynamics of CPS exhibiting both discrete and continuous behav-
iors. A hybrid automaton (HA) extends the logical, discrete-state representation
of finite automata with continuous dynamics expressed as a set of differential
equations in each state (or mode). Proving that a HA is safe (set of bad states
is not reachable from an initial set of states) requires to solve the reachability
analysis problem [2,13,22,24–26,37,38,50] that is in general undecidable [30].

A complementary approach, close to testing, is to monitor systematically
the CPS behavior [8] under different initial conditions either at simulation-
time [3,17] or at runtime [32,33,52]. This approach consists in observing the evo-
lution of the discrete and continuous variables characterizing the CPS dynamics
and deciding whether the observed behavior is good or bad. These traces of values
c© Springer Nature Switzerland AG 2018
C. Colombo and M. Leucker (Eds.): RV 2018, LNCS 11237, pp. 35–42, 2018.
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can be observed during the CPS simulation or execution through the instrumen-
tation of the system under test (SUT) (more details concerning instrumentation
techniques can be found in [9]). In this tutorial we provide an overview of the
state-of-the-art approaches for specification-based monitoring of CPS behaviors
using Signal Temporal Logic (STL) [41] and its recent applications to control
synthesis and mining of requirements from data.

2 Tutorial Description

The tutorial is organized into three parts described in the following sections.

2.1 Part 1 - Monitoring Cyber-Physical Systems Using STL

STL [41] is a powerful formalism suitable to specify in a concise way complex
temporal properties for CPS. STL enables to reason about real-time properties
of components exhibiting both discrete and continuous dynamics. The classical
Boolean semantics of STL decides whether a signal is correct or not with respect
to a given specification. However, this answer may be not informative enough to
reason about the CPS behavior. For example, let us consider an STL formula
φ asserting that the value of a real-valued signal must be always less than a
certain threshold. A signal with an initial value less than the threshold and
approaching it, but never crossing it, satisfies φ in the same way as a real-valued
signal with the same initial value that remains always constant. However, the
application of a very small perturbation (the same) to both signals can make the
first signal violating the specification while the second signal still satisfying the
requirement. In general, the continuous dynamics of CPS are expected to satisfy
the specification with a certain tolerance with respect to the value of certain
parameters, thresholds, initial conditions and external inputs.

Different authors [20,23] have proposed to address this issue by defining a
quantitative semantics for STL. This semantics replaces the binary satisfaction
relation with a quantitative robustness degree function, while not changing the
original syntax of STL. The robustness degree function returns a real value that
indicates how far is a signal from satisfying or violating a specification. The
positive and negative sign of the robustness value indicates whether the formula
is respectively satisfied or violated.

The notion of robustness was exploited in several tools [3,17] for falsification-
based analysis [16] and parameter synthesis [7,19] of CPS models. One one hand,
trying to minimize the robustness [3] can be suitable to search counterexam-
ples in the input space violating the specification. On the other hand, maxi-
mizing the robustness [17] can be used to tune the parameters of the system
to be more resilient. These optimisation problems can be solved using several
heuristics (i.e., genetic algorithms [42], particle swarm optimization [5,27], gra-
dient ascent/descent [56], statistical emulations [7]) that systematically guide
the search either in the parameter space or in the input space.
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There has been a great effort to develop offline [3,17,18,44] and online mon-
itoring algorithms [14,15,32,33] for both the Boolean and robust semantics of
STL. These approaches are discussed thoughtfully in a recent survey [8].

2.2 Part 2 - Controller Specification and Synthesis

STL has also become a powerful formalism for control engineers to specify and
automatically synthesize correct-by-construction controllers that can satisfy very
complex time-dependent constraints [10]. This approach has been successfully
employed in several application domains, ranging from biological networks to
multi-agent robotics [3,49,54].

A typical approach to address this problem, presented first by Karaman et al.
in [35], is to formulate a temporal logic control problems as Mixed Integer Linear
or Quadratic Programs problems (MILP/MIQP) controlling the system directly
in continuous space without the need of a discrete state-space abstraction as
in automata-based solutions [36,48]. This approach has been followed later by
many other researchers [21,28,48,51]. However, solving a MILP problem has an
exponential complexity with respect to the number of its integer variables. Hence,
this approach becomes unfeasible for very large and complex STL specifications
with nested terms.

An alternative approach is to compute a smooth abstraction for the tradi-
tional STL quantitative semantics defined in [20]. The idea is to replace min/max
operations with continuous differentiable functions such as exponential func-
tions approximating min/max operators. In particular, Pant et al. in [45] have
recently demonstrated that control problems can be solved using smooth opti-
mization algorithms such as gradient descent in a much more computationally
efficient way than MILP. Furthermore, this approach can be used to control any
plant with smooth nonlinear dynamics while MILP/MIQP require the system
dynamics to be linear or quadratic.

2.3 Part 3 - Learning STL Requirements from Data

CPS requirements may include behavioral properties about the physical plant
that are not always fully known a-priori and indeed cannot be completely manu-
ally specified. Furthermore, classical machine learning methods typically produce
very powerful black-box (statistical) models. However, these models are hard
to interpret by humans, because they do not provide a comprehensible expla-
nation of the phenomenon they capture. In contrast, temporal logics such as
STL provide a precise and non-ambiguous formal specification of the behavioral
requirements of interest and that can be easily interpreted by humans.

For this reason, learning STL requirements from observed traces is an emerg-
ing field of research supporting both the analysis and the control of CPS [1,4,6,
11,12,31,34,39,42,43,55,57]. Most of the literature focuses on learning the opti-
mal parameters for given a specific template formula [4,6,31,34,42,43,55,57] in
order to satisfy a particular training data set.
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Learning both the structure and the parameters of a formula from data is a
even more challenging [6,11,12,39]. This task is usually addressed in two steps:
(i) learning the structure of the formula and (ii) synthesizing its parameters. For
example, the approach described in [39] learns, by exploring a directed acyclic
graph, a parametric template of the STL formula. The parameters of the formula
(i.e., temporal intervals or the thresholds of the basic propositions) are then
derived by applying standard Support Vector Machine (SVM) techniques over
the training data.

The approach in [11] proposes instead a decision tree-based approach for
learning the STL formula, while the optimality of the parameters is evaluated
using heuristic impurity measures.

In our recent works [6,12,42] we have also tackled the problem of learning
both the structure and the parameters of a temporal logic specification from
data. In [6] the structure of the formula is learned using a heuristic algorithm,
while [12,42] use a genetic algorithm. In both cases, the parameter synthesis is
performed using the Gaussian Process Upper Confidence Bound (GP-UCB) [53]
algorithm that statistically emulate the satisfaction probability of a formula for
a given set of parameters.

Acknowledgements. The author acknowledges the partial support of the ICT COST
Action IC1402 Runtime Verification beyond Monitoring (ARVI).
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14. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Garvit, J., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Form. Methods Syst. Des. 51, 5–30
(2017)

15. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

16. Dokhanchi, A., Zutshi, A., Sriniva, R.T., Sankaranarayanan, S., Fainekos, G.:
Requirements driven falsification with coverage metrics. In: Proceedings of
EMSOFT: The 12th International Conference on Embedded Software, pp. 31–40.
IEEE (2015)
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Abstract. In this tutorial, we present a comprehensive approach to non-
intrusive monitoring of multi-core processors. Modern multi-core proces-
sors come with trace-ports that provide a highly compressed trace of
the instructions executed by the processor. We describe how these com-
pressed traces can be used to reconstruct the actual control flow trace
executed by the program running on the processor and to carry out
analyses on the control flow trace in real time using FPGAs. We further
give an introduction to the temporal stream-based specification language
TeSSLa and show how it can be used to specify typical constraints of a
cyber-physical system from the railway domain. Finally, we describe how
light-weight, hardware-supported instrumentation can be used to enrich
the control-flow trace with data values from the application.

1 Introduction

Software for embedded, hybrid and cyber-physical systems often operates under
tight time and resource constraints. Therefore, testing, debugging and monitor-
ing is particularly challenging in this setting. Strong limitations on timing and
resource consumption prohibit usual approaches for the acquisition and analysis
of execution information. First, comprehensive logging output during develop-
ment built into the software (e.g. via instrumentation) decreases the performance
significantly. Second, breakpoint-based debugging features of the processor are
slow due to the potentially high number of interruptions. Both methods are
highly intrusive as they modify the software temporarily for the analysis or
interrupt the execution. This is especially problematic for concurrent programs
running on multi-core processors or real-time applications. Errors due to race
conditions or inappropriate timing may be introduced or hidden.
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To allow for a non-intrusive observation of the program trace, many modern
microprocessors feature an embedded trace unit (ETU) [3,11,13]. An ETU deliv-
ers runtime information to a debug port of the processor in a highly compressed
format. State-of-the-art debugging solutions, such as ARM DSTREAM [4], allow
the user to record this information for offline reconstruction and analysis.

The essential disadvantage of this technology is, however, that traces can be
recorded for at most a few seconds because high-performance memory with very
fast write access is required to store the delivered information. For example, the
ARM DSTREAM solution offers a trace buffer of 4 GB for a recording speed of
10 Gbit/s or more which means that the buffer can only hold data of less than
four seconds. While the majority of errors can be found immediately within
a short program trace, some of them may only be observable on long-running
executions or under specific, rarely occurring (logical or physical) conditions. It
is therefore desirable for the developer and maintainer to be able to monitor
the program execution for an arbitrary amount of time during development and
testing and even in the field after deployment.

This paper is based on [9] which presented an earlier version of the monitoring
techniques discussed in this paper. This tutorial gives a more extensive intro-
duction into our monitoring approach and comprises the recent improvements
made to the monitoring hardware, tools and specification language.

Related Work. For a general introduction into the field of runtime verifica-
tion especially in comparison with static verification techniques such as model
checking see [16,17].

Non-intrusive observation of program executions is a long-standing issue [21]
and several approaches have been suggested. We rely on dedicated tracing inter-
faces as they are provided by many modern processors. Such interfaces have
already been suggested in [26]. Another line of research focuses on the modifi-
cation of processors [18] or complete systems on chips [25]. These approaches
allow access to a wider range of information but require access to the processor
or system hardware design and modifications have to be possible. In [6] a proces-
sor is monitored by synchronizing a second, emulated processor via a dedicated
synchronisation interface. In [20] it is described that even side-channels can be
used to monitor certain events on a processor.

There are also several approaches to execute monitors on FPGAs for various
applications: synthesis for STL for observation of embedded systems is described
in [14,15,24] and synthesis for past time LTL for observation of hardware buses
is described in [22]. While these approaches directly synthesize FPGA designs
from monitor specifications, we use processing units that are synthesized once
and can be reconfigured quickly. Approaches also allowing for reconfiguration
are described in [19] for past-time LTL and in [23] for past-time MTL.

The basic idea of stream-based runtime verification and stream transfor-
mations specified via recursive equations has been introduced with the language
LOLA [8,10]. LOLA however is synchronous in the following sense: Events arrive
in discrete steps and for every step, all input streams provide an event and all
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output streams produce an event, which means that it is not suitable for handling
events with arbitrary real-time timestamps arriving at variable frequencies.

Outline. The rest of this paper is organized as follows: Sect. 2 gives an overview
of the general workflow and mechanism of hardware-based runtime monitoring
as discussed in this paper. Section 3 describes how the program flow can be
reconstructed online and how events are generated and fed into the monitoring
engine. Section 4 describes how to specify monitors in the stream processing
language TeSSLa. Section 5 introduces a simple cyber-physical system that is
used as an example throughout the rest of the paper. Section 6 demonstrates
how to check timing constraints and Sect. 7 shows how to check event ordering
constraints using hardware-based runtime monitoring. Section 8 describes how
the tracing of data values works and demonstrates how to check data-values.
Finally, Sect. 9 describes the practical hardware setup in order to do hardware-
based runtime monitoring.

2 Interactive Hardware Monitoring Workflow

To overcome the limitations of current technology we developed a novel runtime
verification methodology for evaluating long-term program executions which is
suitable for development, debugging, testing, and in-field monitoring. Based
on the runtime information provided by the ETU, we perform a real-time
reconstruction of the program trace. The latter is evaluated with respect to
a specification formulated by the user in the stream-based specification lan-
guage TeSSLa [7]. To deliver sufficient performance for online analysis, both the
reconstruction and monitoring system are implemented using FPGA hardware.

FPGAs have become a very popular technology to implement digital systems.
They contain thousands of programmable logic elements which can be configured
to realize different boolean functions. These functions can be connected to each
other in an arbitrary way by means of configurable routing elements. Additional
features like flip-flops, digital signal processing blocks and blocks of RAM add
more flexibility and performance to the implemented circuit. Designing digital
circuits with FPGAs typically starts from hardware description languages like
VHDL or System Verilog. Synthesis software is responsible for mapping such
designs to the elements available in an FPGA and then these elements must be
positioned and routed on the FPGA fabric. Even for moderately large designs,
this process can take hours. In case the design should run at high clock speed,
this time is dramatically increased. Additionally, a designer must be familiar
with the FPGA elements and must have thorough experience in FPGA design
to be able to create fast designs.

Our monitoring system therefore does not rely on synthesizing a specific
FPGA-design for each property specification that has to be evaluated. Instead,
it builds on a set of event processing units implemented on the FPGA. These
units can be configured quickly via memory to evaluate arbitrary specifications.
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We provide a tool chain for mapping TeSSLa specifications to these units auto-
matically within seconds. This allows the user to focus on writing the correctness
properties instead of working with the complex FPGA synthesis tool chain. For-
mulating hypotheses, adapting property specification and checking them on the
target system can be iterated quickly without time-intensive synthesis.

Fig. 1. General overview of the workflow cycle.

Figure 1 provides an overview of the proposed workflow based on our app-
roach to rapidly adjustable embedded trace online monitoring. The user, e.g. the
developer, tester, or maintainer, specifies the correct behaviour of the program
under test based on program events such as function calls or variable accesses.
The program is compiled and the binary is uploaded to the processor as usual.
The property compiler automatically generates a corresponding configuration
for the monitoring and trace reconstruction units that is then uploaded to the
platform. When running the program on the processor, the monitoring platform
reports the computed output stream to the user who can then use the informa-
tion to adjust the program or the property.

Technically, all such events are represented in the reconstructed trace as so-
called watchpoints, so the trace reconstruction provides a watchpoints stream to
the monitoring platform. The reconstruction can already filter the full trace for
those watchpoints (i.e., events) that are relevant for the property.

In this tutorial, we demonstrate how our approach can be applied to an
example system from the railway domain. We first give an introduction to the
specification language TeSSLa and show how it can be used to specify typical
properties in such a setting. We then explain how our hardware implementation
can be used to monitor these properties non-intrusively.

3 Monitoring Program Flow Trace

Figure 2 shows an overview of the program flow trace monitoring setup: The
cores of the multi-core processor are communicating with periphery, such as the
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memory, through the system bus. Every core is observed by its own tracer. The
core is not affected at all by this kind of tracing. The trace data is sent through
the trace buffer and concentrator to the trace port without affecting the core.
This tracing is separated from the system bus and does not interfere with it.
The trace port of the processor is connected to the monitoring hardware, i.e.
the FPGA on which the program flow reconstruction, the interpretation and the
actual monitoring are located.

The user of this system provides the C code of the system under observation
and the specification for the monitoring. The specification contains information
about the events of interest and the actual monitor expressed in terms of these
events. The C compiler compiles the C source code, so that the resulting binary
can be executed on the processor. The C compiler provides debug information
which can be used to determine the instruction pointer addresses of the events
of interest in the program, the so called tracepoints. The trace reconstruction
is configured with the observation configuration which contains the tracepoints.
The TeSSLa compiler compiles the monitor specification to the monitor config-
uration which is used to configure the actual trace monitoring.

The final monitoring output coming from the dedicated monitoring hardware
undergoes some post-processing on a regular PC using metadata provided by the
frontend such as the names and types of the output events. The final monitoring
report is a sequence of events that can be either stored or processed further.

We explain the concept of the trace reconstruction with the ARM CoreSight [3]
trace technologyas awidely available example of anETU,which is included in every
current ARM processor (Cortex M, R and A). In particular, we use the Program
Flow Trace (PFT) [2] to acquire trace data of the operations executed by the ARM
processors.

As stated in the PFT manual [2] the “PFT identifies certain instructions
in the program, and certain events as waypoints. A waypoint is a point where
instruction execution by the processor might involve a change in the program
flow.” With PFT we only observe as waypoints conditional and unconditional
direct branches as well as all indirect branches and all other events, e.g. interrupts
and other exceptions, that affect the program counter other than incrementing
it. In order to save bandwidth on the trace bus, the Program Flow Trace Proto-
col (PFTP) does not report the current program counter address for every cycle.
Especially for direct branches, the target address is not provided but only the
information on whether a (conditional) jump was executed or not. The full pro-
gram counter address is sent irregularly for synchronization (I-Sync message).
In case of an indirect branch those address bits that have changed since the last
indirect branch or the last I-Sync message are output.

In typical state-of-the-art applications the trace is recorded and the actual
program flow is reconstructed from the trace offline. This approach does not
work well for the purpose of runtime verification because we want to

1. react to detected failures as early as possible and
2. watch the system under test for a long time.
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Fig. 2. Overview of the program flow trace monitoring setup. Operations of the cores
are traced by the ETU, the trace is then reconstructed, filtered and monitored on the
FPGA.

Currently, even with high technical effort, you can only record rather short
sequences of trace data. For many real-world applications this might be not
enough to spot errors, especially as you cannot start the recording based on
complex events as you do not have the trace without reconstructing it from the
waypoints.

Hence, we use an online (real time) program-flow-reconstruction method
implemented on FPGA hardware [27,28]: From a static analysis of the binary
running on the CPU we know all the jump targets of conditional direct jumps
and can store those in a lookup table in the memory of the FPGA. Due to the
high parallelism of the FPGA, we can split the trace data stream and recon-
struct the program flow using the lookup table. The trace data stream can be
split at the synchronization points that contain the full program counter address.
A FIFO buffer stores the trace data stream until we reach the next synchroniza-
tion point. For further processing we then immediately filter the reconstructed
trace by comparing the reconstructed addresses to the tracepoints that corre-
spond to the input events used in the TeSSLa specification. This comparison
is realized by adding an additional tracepoint flag to the lookup table. After
putting the slices back together in the right order we end up with a stream of
tracepoints. Every tracepoint contains an ID and a timestamp. The timestamp
is either assigned by the ARM processor if cycle accurate tracing is enabled or
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during the reconstruction on the FPGA otherwise. Cycle accurate tracing is only
available for certain processor architectures, because it requires high bandwidth
on the trace port in order to attach timing information to every message.

Note that PFT traces logical addresses used in the CPU before the memory
management unit (MMU) translates them to physical addresses, which are used
to address concrete cells in the memory. The MMU is part of the cores and
translates logical addresses to physical addresses. Because logical addresses are
used in the program binary and by the CPU, we do not need to handle physical
addresses.

In a typical multithreaded application, we have multiple threads running on
different cores and multiple threads running on the same core using any kind
of scheduling. While we can distinguish instructions traced from the different
CPUs, we have to consider the actual thread ID in order to distinguish different
threads running on the same core. This information is provided by a so-called
context ID message [3], sent every time when the operating system changes the
context ID register of the CPU. The logical addresses for different threads might
be exactly the same, because the MMU is reconfigured in the context switch to
point to another physical memory region. If we see a context switch to another
thread, we have to change the lookup table for the program flow reconstruction
information.

4 Monitoring Properties with Stream Processing

The specification language TeSSLa has been designed as a general purpose
stream-based specification language, but with the prerequisites in mind that
come with the setting of hardware-based monitoring of embedded systems. That
is, technical prerequisites stemming from the processor architectures and the
evaluation on FPGAs and prerequisites from the targeted use cases and targeted
user groups relevant for the field of embedded systems. The TeSSLa compiler
and interpreter are available online1.

4.1 Technical Prerequisites

The most important technical prerequisite arises from the fact that due to the
large amounts of trace data generated by multi-core CPUs, monitoring has to
be performed in hardware. More specifically the monitoring specification has to
be executed by a specialized engine implemented on an FPGA. This imposes
several limitations that have to be addressed by the language design.

On an FPGA only a very limited amount of memory is available. There-
fore the specification language should make it easy to specify monitors that are
guaranteed to require only a small amount of memory. If memory is required
to monitor a certain property, the user should have precise control of when and
how memory is used.

1 https://www.tessla.io.

https://www.tessla.io
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The complexity of logic on an FPGA is limited. While a CPU can process
programs of practically unlimited size, on an FPGA all logic has to be repre-
sented in hardware. Hence the basic operations of the specification language have
to be simple. Also, the number of operations required to express the properties
of interest should be relatively low.

Some properties and analyses are too complex to be evaluated on an FPGA
but the amount of observation data is too high to evaluate them completely in
software. They have to be split up in simpler parts suitable for evaluation on an
FPGA and more complex parts that can be evaluated on an reduced amount
of data. TeSSLa has been designed to be suitable for the restricted hardware
setting but at the same time be flexible enough to not limit the user in the
software setting.

It has to be easy to specify properties involving time in TeSSLa, because
timing is a crucial aspect of embedded and cyber-physical systems.

Another important aspect is that of data. For many properties it is not
enough to only specify the order and timing relation between certain events. It
is also important to analyse and aggregate the associated data values.

4.2 Design Goals

TeSSLa’s design goals described in this section are based on the prerequisites dis-
cussed in the previous section. On one hand, TeSSLa is a specification language
rather than a programming language, to allow for simple system descriptions.
TeSSLa should provide a different and perhaps more abstract perspective on the
system under observation than its actual implementation. Specifying correctness
properties in the same programming language that was also used to implement
the system might lead to a repetition of the same mistakes in the implemen-
tation and the specification. On the other hand, TeSSLa should feel natural
to programmers and should not be too abstract or require previous knowledge
in mathematical logic. TeSSLa is a stream processing language, which can be
used to describe monitoring algorithms, and not a mathematical logic describ-
ing valid runs of the systems. Aside from making TeSSLa easier to use for the
practical software engineer this also allows to use TeSSLa for event filtering and
quantitative and statistical analysis as well as live debugging sessions.

Time is a first-class citizen in TeSSLa, making the specification of timed prop-
erties as simple as possible. This does not change the expressiveness of TeSSLa
specifications but makes it more natural to reason about time constraints. In
cyber-physical systems events are often caused by external inputs of the physi-
cal system and hence not following regular clock ticks, but are appearing with
variable frequency. In order to simplify specifications over such event streams,
every event in TeSSLa always carries a time stamp and a data value.

TeSSLa has a very small set of basic operators which have a simple semantics.
Such a small operator set simplifies the implementation of software and hard-
ware interpreters and the corresponding compilers. TeSSLa transforms streams
by deriving new streams from existing streams in a declarative functional way:
One can define new streams by applying operators to the existing streams but
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all streams are immutable. To gain the full expressiveness with such a small set
of basic operators together with immutable streams we use recursive equation
systems, which allow to express arbitrary computations over streams as combi-
nations of the basic operators.

To allow adjustments of TeSSLa for different application domains and make
it easier to use for practical software engineers without extending the set of basic
operators we use a macro system. With TeSSLa’s macro system we can build
different libraries which support abstractions, code reuse and extension to allow
the specification of more complex analyses. These libraries can use the domain
knowledge and terms of the application knowledge without the need of adjusting
the TeSSLa compiler and interpreter infrastructure.

TeSSLa’s basic operators are designed to be implementable with limited
memory, independent of the number of observed events. This allows for building
TeSSLa evaluation engines in hardware without addressable memory. For every
TeSSLa operator one only needs to store a fixed amount of data values, usually
only one data value. TeSSLa allows to add additional data types to the language
to adapt the language easily to different settings. Such data types can also be
complex data types such as maps or sets, which then explicitly introduce infinite
memory. To make the use of memory explicit via data types makes it very easy
to identify the TeSSLa fragment that can be executed on hardware.

4.3 Basic Concepts

This section provides an overview on the monitoring specification language
TeSSLa (Temporal Stream-based Specification Language).

Its basic modelling primitives are timed event streams, i.e. sequences of events
carrying a time stamp and some arbitrary data value. These streams are well
suited to model the (timed) behaviour of all kinds of systems with one or multiple
time sources.

Properties and analyses are then described by stream transformations. These
transformations are expressed via recursive equations over a set of basic opera-
tors. We cover here the operators directly available on the hardware. See [7] for
a complete, formal definition of TeSSLa’s semantics.

The most central operator is signal lift which allows to lift operations on arbi-
trary data types to streams. For example, the addition on integer numbers can
be lifted to streams of integers. This operator follows the intuition of piecewise
constant signals, i.e. a stream of events is interpreted as a piecewise constant
signal where events indicate changes in the signal value. Addition of two integer
streams therefore results in a stream of events indicating the changes of the sum
of two corresponding signals. Further examples are the negation of booleans that
can be lifted to a stream of booleans and the ternary if-then-else function that
can be lifted to a stream of booleans and two streams of identical type.

a 2 4

b 1 3

a + b 3 5 7

a true false true

¬a false true false
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a 1 3

b 2 4

a > b false true false

if a > b then a else b 2 3 4

Note that the signal lift is implicitly applied when you use the built-in oper-
ators on integer numbers or booleans on streams of the corresponding types.

In order to define properties over sequences of events the operator last has
been defined. It allows to refer to the values of events on one stream that occurred
strictly before the events on another stream.

1 2 3 4x

y

1 3 3last(x, y)

The time operator can be used to access the timestamp of events. It produces
streams of events where the events carry their timestamps as data value. Hence
all the computations available to data values can be applied to timestamps, too.

1 3 4
x

1 3 4time(x)

1 3last(time(x), x)

2 1time(x) − last(time(x), x)

Furthermore, the language contains two operators to process streams in an
event-oriented fashion, filter and merge. Filter allows to filter the events of one
stream based on a second boolean stream interpreted as piecewise constant sig-
nal. Merge combines two streams into one, giving preference to the first stream
when both streams contain identical timestamps.

2 4x

1 3y

2 1 4merge(x, y)

1 2 3 4 5x

a true false true

1 4 5filter(x, a)

Using the last operator in recursive equations, aggregation operations like the
sum over all values of a stream can be expressed. The merge operation allows
to initialize recursive equations with an initial event from an other stream, e.g.
s := merge(last(s, x) + x, 0).

2 1 3x

0 2 3last(s, x)

s 0 2 3 6

Finally, there is the constant nil for the empty stream and the operator const
converting a value to a stream starting with that value at timestamp 0.
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These operators are enough to express arbitrary stream transformations. The
recursion is limited to recursive expressions involving last. This guarantees that
the specifications are directly executable and thereby efficiently monitorable. It
also allows the user to think of such specifications as programs which can be more
convenient for programmers than the mathematical view of recursive equations.

All of these operators can be implemented using finite memory, i.e. a small
amount of memory independent of the amount of data that has to be monitored.

The specification language facilitates abstract specifications and extensibility
through a macro system. Here, macros are functions that can be evaluated at
compile time. Therefore specifications can be structured in a functional fashion
without requiring memory for a call stack at runtime. These macros can also be
used to provide a library of common specification patterns.

Another extension point is that of data types. The language is defined agnos-
tically with respect to any time or data domain. Depending on the application
domain and the restrictions of the execution domain, different data structures
can be used to represent time and data. For hardware monitoring this will typ-
ically be restricted to different atomic data types such as integer and floating
point numbers. For software monitoring this might also comprise more complex
data structures like lists, trees and maps.

5 Example Scenario

In this paper we use a highly simplified engine controller of a train as an exam-
ple system that we want to analyse and monitor using the hardware monitor-
ing technique presented in this paper. One of the most important aspects of
(autonomous) train driving is adhering to the speed limits and the railway sig-
nals. Hence we only consider the process of braking a train in front of a stop
signal. Since the braking distance for trains is rather long, there are additional
distant signals positioned in front of the actual stop signal which indicate cau-
tion if the train has to stop at an stop signal further down the track. To make
sure that the train really stops in front of the stop signal an automatic speed
supervision system checks if the train never exceeds the allowed maximal speed.

To keep our example scenario simple, we consider the speed limits of the
intermittent automatic train running control system (in German Punktförmige
Zugbeeinflussung, PZB): We consider passenger trains with a maximal allowed
speed of 165 km/h. If the train passes a distant signal indicating caution, it has
to reduce its speed to 85 km/h in 23 s. The actual stop signal is located 1000 m
after the distant signal. 250 m in front of the stop signal the train must have a
speed below 65 km/h which must be reduced to 45 km/h over the next 153 m.

The intermittent automatic train running control system detects special
inductors mounted on the tracks which indicate distant and stop signals as well
as the point 250 m in front of the stop system. The maximal allowed speed is
shown in red in Fig. 4. The speed of an allowed execution of the system is shown
in blue in the same diagram.
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Fig. 3. Example scenario consisting of the train with its engine, the discrete speed
supervisor and the engine controller.

Fig. 4. Diagram showing the speed of the train (in blue) in relation to the train’s
position. The red curve shows the allowed speed of the train. (Color figure online)

The simulated system as depicted in Fig. 3 consists of three major compo-
nents:

– The engine controller gets information about the current speed of the train
and the signals and the 500 Hz inductor the train passed by. It controls the
engine by setting the brake acceleration.

– The speed supervisor gets the same information about the train and com-
putes the currently allowed speed. It compares this with the actual speed
and performs an emergency brake if the current speed exceeds the currently
allowed speed.

– The train is simulated using a highly simplified model with the initial speed
and the acceleration set by the controller.
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6 Measuring Timing Constraints

Timing is important for cyber-physical systems. Timing constraints encompass
the runtime of tasks, functions or chains of dependant tasks, as well as response
times and idle times. Checking such timing constraints or measuring the worst-
case or average time consumed is an important task of hardware monitoring.

In this first example we want to measure the runtime of one execution of the
speed supervisor. The supervisor is implemented in a function supervisor,
hence we want to measure the runtime of this function. Therefore we have to
specify that we are interested in the events of entering and leaving this function:

def call := function_call("supervisor")
def return := function_return("supervisor")

Using the runtime macro of the standard library we can now produce an
event stream which has an event every time the functions returns. The data
value of this event is the runtime of the function that did just return.

def supervisorRuntime := runtime(call, return)

The function runtime is defined in the standard library as follows:

def runtime(call: Events[Unit], return: Events[Unit]) :=
at(return, time(return) - time(call))

def at[A,B](trigger: Events[A], values: Events[B]) :=
filter(values, time(trigger) == time(values))

Events[T] is the type representing streams of elements of type T. The
function at filters the values stream down to the events happening exactly
when an event on the trigger stream happens. The runtime can then be
defined as the difference of the timestamps of the last return and the last
call event evaluated only at the return events.

Apart from measuring and checking timing constraints one can also use
TeSSLa to aggregate statistical data. In this case lets compute the maximal
runtime of the speed supervisor using the function max of the standard library:

def maxSupervisorRuntime := max(supervisorRuntime)

This maximum aggregation function is defined in the standard library by
first defining the maximum of two integer values:

def maximum(a: Int, b: Int) := if a > b then a else b

This can now be aggregated in a similar recursive definition as the sum
explained above:

def max(x: Events[Int]) := {
def result := merge(maximum(last(result, x), x), 0)
result

}



56 L. Convent et al.

This pattern of aggregating functions can be generalized using TeSSLa’s
higher order functions. A fold function which takes a function and recursively
folds it over an input stream is defined in TeSSLa as follows:

def fold[T,R](f: (Events[R], Events[T]) => Events[R],
stream: Events[T], init: R) := {

def result: Events[R] :=
merge(f(last(result, stream), stream), init)

result
}

Now we can define the aggregating max function simply by folding the
maximum over the input stream x:

def max(x: Events[Int]) := fold(maximum, x, 0)

Especially these last examples show one of the strengths of the integrated
hardware monitoring, where the online monitors are part of the system: We do
not need to store the trace to analyse it. Hence we compute statistical data like
the maximal runtime over very long executions of even multiple days or weeks
since only the important events are stored and not the complete trace.

7 Checking Event Ordering Constraints

Another important class of properties of cyber-physical systems are event order-
ing constraints: Here we are not interested in the exact timing of the events, but
in their order or presence. So for example one can check if certain events are
always preceded or followed by other events.

As an example we again consider the speed supervisor which calls several local
helper functions in order to compute the currently maximal allowed speed. The
function getAllowedSpeed returns the currently allowed speed. Depending on
the last seen signal or magnet it either calls computeAllowedSpeedDistant
or computeAllowedSpeedMagnet. So first we want to assure that every call
to getAllowedSpeed leads to a call of at least one of these two helper func-
tions. To do so we have to declare these function calls as in the previous examples:

def call := function_call("getAllowedSpeed")
def return := function_return("getAllowedSpeed")
def computeDistant :=

function_call("computeAllowedSpeedDistant")
def computeMagnet :=

function_call("computeAllowedSpeedMagnet")

Using these three event streams we can now check every time the function
getAllowedSpeed returns if one of the two other functions was called after
the function getAllowedSpeed was entered. Such ordering constraints are
expressed in TeSSLa as a comparison of the timestamps of the events:
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def computation := on(return,
time(computeDistant) > time(call) ||
time(computeMagnet) > time(call))

As another example we can analyse a complete execution of the braking
sequence: Once the function computeAllowedSpeedMagnet was called for
the first time we must be past the 500 Hz inductor and hence the function
computeAllowedSpeedDistant must not be called any more. The following
TeSSLa specification checks whether all events on the stream computeMagnet
are happening after all events on the computeDistant stream:

def magnetAfterDistant :=
time(computeMagnet) > time(computeDistant)

By combining timing and event ordering constraints one can express arbitrary
complex constellations. As an example we consider the burst pattern known from
automotive modelling languages such as the AUTOSAR Timing Extension [5] and
the EAST-ADL2 timing extension TADL2 [12]. Such a pattern checks if events
happen in bursts. The pattern is parametrized in the maximum number of events
allowed in the burst, the maximal length of the burst and the minimum time with-
out any event after the burst. In TeSSLa such a pattern can be implemented as
macro and used as follows:

def p := bursts(x, burstLength = 2s,
waitingPeriod = 1s,
burstAmount = 3)

The following event pattern satisfies this burst pattern:

x

2 s 1 s 2 s 1 s 2 s 1 s

p true

To violate the burst pattern you can either have too many events during one
burst, or an event during the waiting period after the burst:

x

2 s 1 s 2 s 1 s 2 s 1 s

p true false true false true

Such complex event patterns can be used to spot variations in event patterns
of complex systems without a detailed knowledge of the dependencies of the
individual events. For example in our scenario we can take the combination of
all the function calls described above. If the supervisor is called roughly every
second, this should adhere the following specification:

def e := merge3(call, computeDistant, computeMagnet)
def b := bursts(e, burstLength = 100ms,

waitingPeriod = 500ms,
burstAmount = 3)
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With this specification you can spot abnormal behaviour, e.g. too many func-
tion calls during the computation. Such an abnormal behaviour is not necessarily
a bug, but automatic detection of interesting parts of traces can be very helpful
to speed up the debugging process, especially for partially unknown systems.

8 Monitoring Data Values

The previous examples were limited to the program flow trace, but in some
situations one needs the actual values of variables or arguments to check the
correct behaviour of the system under test. For example if we want to check
that the allowed speed computed by the supervisor is equal to 85 km/h 23 s after
the distant signal we need this computed value.

The Instrumentation Trace Macrocell (ITM) is part of the ARM CoreSight,
see Chapter 12 of the CoreSight Technical Reference Manual [1], and allows pro-
grams to explicitly write small portions of data to the trace port. While the
program flow trace can be monitored completely non-intrusively as described in
the previous sections, one has to instrument the C code in order to use the ITM
data trace. Figure 5 shows how the tooling and the workflow is adjusted in order
to integrate such ITM trace messages into the system:

To make the usage of the ITM data trace comfortable, the instrumentation
of the C code happens automatically. Therefore the C code and the given spec-
ification are analysed with regard to what data is used in the specification. The
instrumenter than adds corresponding statements writing this information to
the trace port.

Coming back to the example of verifying the computed allowed speed we
need to know the last seen signal and the computed allowed speed. We can
define TeSSLa signals of both values as follows:

def signal := function_argument("getAllowedSpeed", 1)
def allowed_speed := function_result("getAllowedSpeed")

signal now contains the value of the first argument of getAllowedSpeed
and is updated with every function call. allowed speed contains the return
value of the same function and is updated every time the function returns. The
instrumenter adds the following debug output statements to the function:

double getAllowedSpeed(int signal, ...) {
debug_output(1, (int64_t) signal);
double result = ...
tessla_debug(2, (int64_t) (result * 1000));
return result;

}

The ITM tracing provides several data value slots, so in order to distinguish
the two data values we are interested in we map them to the ITM slots 1 and 2.
The TeSSLa specification is rewritten in terms of the current value and slot as
follows:
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Fig. 5. Overview of the ITM trace setup.

in debug_slot: Events[Int]
in debug_value: Events[Int]
def signal := filter(debug_value, debug_slot == 1)
def allowed_speed := filter(debug_value, debug_slot == 2)

Now we can express the actual property: First we filter all changes of the signal
stream for those where the value becomes DISTANT SIGNAL CAUTION. Then
we check if the allowed speed is below 85 km/h if it was computed more than 23 s
after we have seen the distant signal. We have to apply some unit conversions
as the speed is internally represented in m/s.

def caution := filter(changes(signal),
signal == DISTANT_SIGNAL_CAUTION)

def valid :=
if time(allowed_speed) - time(caution) > 23s
then allowed_speed * 36 <= 85 * 1000
else true

In the above specification we used the macro changes which returns only
those events which have a different value than the previous one. Such a macro
is defined in TeSSLa’s standard library as follows:

def changes[A](signal: Events[A]) :=
filter(signal, signal != last(signal, signal))
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The above example of checking computation results is just one example where
data traces are useful. The data trace can also be useful to check array indices and
other indirect memory accesses. Further applications are additional instrumen-
tations to enrich the program flow trace with extra information, e.g. additional
timing data or clock values for synchronization purposes.

9 Practical Hardware Setup

The typical hardware setup comprises three components: a development board
running the application under observation, the monitoring hardware and a per-
sonal computer running both the monitoring tools and the development tools
for the application. Figure 6 depicts this setup. The development board is con-
nected to the desktop computer via a USB cable. This connection is used to
upload and start the application. The development board is connected to the
monitoring hardware via an Aurora cable transmitting the compressed processor
trace. The monitoring hardware is connected to the desktop computer via the
second USB cable. This connection is used to configure the monitoring hardware
and to receive the output events. The monitoring hardware has several LEDs
that indicate its status and can also be used to display some status information
of the monitor. Furthermore it has additional USB ports that are not used in
normal operation and are only required to install updates.

Fig. 6. The hardware setup comprising from left to right a personal computer, a devel-
opment board and the monitoring hardware.
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10 Conclusion

In this paper we demonstrated hardware-based runtime verification using the
embedded tracing units of processors. While we discussed the technique in this
paper using the example of the ARM CoreSight technology, other processor ven-
dors recently developed similar tracing units: Intel’s Processor Tracing IntelPT
[13] supports program flow and data traces and for PowerPC the NEXUS tracing
technology is already established. Combining the trace reconstruction discussed
in this paper with stream-based online monitoring allows for long term monitor-
ing of systems under observation without the need to store the processor traces.
This technology can be seen as a milestone in the non-intrusive online-tracing of
processors since all established solutions either need to modify the program and
hence the timing of the system quite drastically or they can only analyse rather
short executions, because they have to store the highly compressed processor
trace in order to reconstruct it offline.

Online monitoring of processor traces can reduce costs for certification and
development efforts as well as debugging costs. The ability to do long term anal-
yses of systems in the field without the need to modify the source code, allows
companies on the one hand to demonstrate the correct behaviour of their sys-
tems. On the other hand they can use this technology to identify root causes of
bugs that occurred in productive systems faster. Currently bugs detected in pro-
ductive systems often have to be reproduced in the lab to extract proper traces
from the system which are needed to perform the root cause analysis. Using
runtime verification of processor trace data can provide additional information
already during the normal execution of the productive system and hence provide
valuable information on errors faster and more accurate.
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Abstract. Runtime Verification (RV) is a lightweight formal method
which consists in verifying that an execution of a program is correct wrt
a specification. The specification formalizes with properties the expected
correct behavior of the system. Programs are instrumented to extract
necessary information from the execution and feed it to monitors tasked
with checking the properties. From the perspective of a monitor, the sys-
tem is a black box; the trace is the only system information provided.
Parallel programs generally introduce an added level of complexity on
the program execution due to concurrency. A concurrent execution of
a parallel program is best represented as a partial order. A large num-
ber of RV approaches generate monitors using formalisms that rely on
total order, while more recent approaches utilize formalisms that con-
sider multiple traces.

In this tutorial, we review some of the main RV approaches and tools
that handle multithreaded Java programs. We discuss their assumptions,
limitations, expressiveness, and suitability when tackling parallel pro-
grams such as producer-consumer and readers-writers. By analyzing the
interplay between specification formalisms and concurrent executions of
programs, we identify four questions RV practitioners may ask them-
selves to classify and determine the situations in which it is sound to use
the existing tools and approaches.

1 Introduction

Analyzing and verifying programs typically relies on an abstraction of the pro-
gram execution. One such abstraction, a trace, focuses on parts of the executed
program. Traces typically contain operations and events that a program executes.
They are versatile: they serve to analyze, verify and characterize the behavior of
a program. A single trace records information of a program execution. Informa-
tion serves to profile the run of a program [1] so as to optimize its performance.
Alternatively, a trace abstracts a single program execution, to verify behavioral
properties expressed using formal specifications. A collection of traces model
the program behavior as it allows to reason about possible executions or states.
As such, multiple traces serve to check for concurrency properties [48] such as
absence of data races [42,57] and deadlock freedom [39].
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Fig. 1. Operations for a single producer and a single consumer thread operating on a
shared queue (sq). Shaded circles specify a given number associated with the statement.

Runtime Verification (RV) [9,31,46] is a lightweight formal method which
consists in verifying that an execution of a program is correct wrt a specification.
The specification formalizes with properties the expected correct behavior of the
system. Programs are instrumented to extract necessary information from the
execution and feed it to monitors. This information is typically referred to as the
trace [56]. Monitors are synthesized from behavioral properties, they check if the
trace complies with the properties. From the monitor perspective, the system is
a black box; the trace is the sole system information provided. Therefore, for
any RV technique, providing traces with correct and sufficient information is
necessary for sound and expressive monitoring1.

Parallel programs introduce an added level of complexity because of con-
currency. The introduction of concurrency can result in the collected trace not
being representative of the actual concurrent execution of a parallel program. A
concurrent execution is best modeled as a partial order over actions executed
by the program. The actions can represent function calls, or even instructions
executed at runtime. The order typically relates actions based on time, it states
that some actions happened before other actions. Actions that are incompara-
ble are typically said to be concurrent. This model is compatible with various
formalisms that define the behavior of concurrent programs such as weak mem-
ory consistency models [2,3,49], Mazurkiewicz traces [36,50], parallel series [47],
Message Sequence Charts graphs [51], and Petri Nets [53]. We introduce a text-
book example of a multithreaded program, producer-consumer in Example 1.

Example 1 (Producer-consumer). We consider the classical producer-consumer
example where a thread pushes items to a shared queue (generating a produce
event), and another thread consumes items (one at a time) from the queue for
processing (generating a consume event). We specify that consumers must not
remove an item unless the queue contains one, and all items placed on the queue
must be eventually consumed. Figure 1 illustrates the statements executed by two
1 By soundness, we refer to the general principle of monitors detecting specification

violation or compliance only when the actual system produces behavior that respec-
tively violates or complies with the specification.
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Fig. 2. RV flow and the impact of linearizing traces. Before runtime, RV is applied to
a program with a concurrent execution (dashed): a monitor Mϕ is synthesized from a
property ϕ, and the program is instrumented to retrieve its relevant events. At runtime,
we observe two possible linear traces that could lead to verdicts (true or false) when
processed by the same monitor.

different threads: thread 0, and thread 1, representing respectively a producer
and a consumer. Each statement is given a number for clarity. Both the producer
and consumer use a shared queue shown in Listing 1.1. Statements in different
threads can execute concurrently. We illustrate some correct and incorrect exe-
cutions. Two correct executions have the following orders: 1 2 3 4 and 1 3 2 4 ;
they comply with the specification. The execution with the order: 2 1 3 4 is
incorrect, as a consume attempts to retrieve an element from an empty queue.
The execution with only the statements: 1 3 2 is incorrect, as there remains an
element to be consumed. The execution with the order: 2 4 1 3 violates both
conditions in the specification, since two consume events happen when the queue
is empty, and after the executions there are two elements left to be consumed.

Monitoring Multithreaded Programs. RV has initially focused on utilizing
totally ordered traces, as it uses formalisms inspired from Linear Temporal Logic
(LTL) or finite-state machines as specifications [13,46,52,54], until recently with
the introduction of stream-based RV [25,38,45], decentralized monitoring [11],
and RV of hyperproperties [18]. Most of the top2 existing tools for the online
monitoring of Java programs rely on totally ordered traces and provide mul-
tithreaded monitoring support using one or more of the three modes. The first
mode allows per-thread monitoring. The per-thread mode specifies that monitors
are only associated with a given thread, and receive all events of the given thread.
Monitors are unable to check properties that involve events across threads. This
boils down to doing classical RV of single-threaded programs, assuming each
thread is an independent program. When examining each thread or process while
excluding others, one ignores the inter-thread dependencies, and it is therefore
insufficient. For example, it is impossible to monitor producer-consumer illus-
trated in Example 1, as events happen on separate threads. In that setting, a
specification cannot express behavior involving events across threads. The second

2 Based on the first three editions of the Competition on Runtime Verification [6,8,
32,55].
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mode allows for global monitoring. It spawns global monitors, and ensures that
events are fed to the monitor atomically, by utilizing locks. As such, a program
execution is linearized so that it can be processed by the monitors. Locks force
events to be totally ordered across the entire execution, which oversimplifies and
ignores concurrency, as illustrated in Example 2.

Example 2 (Linearization). Figure 2 illustrates the typical RV flow for some
property ϕ with a monitor Mϕ, where during the execution, an instrumented
parallel program feeds a trace to a monitor. Filled circles represent the events
relevant to the RV specification, and are numbered simply to distinguish them.
We notice that, in the case of a concurrent execution, the trace could differ based
on the linearization strategy which influences the observation order. In the first
trace, event 3 precedes event 2, while in the second trace, we have the oppo-
site. This could potentially impact the verdict of the monitor if the specification
relies on the order between events 2 and 3. We recall producer-consumer from
Example 1: if the program is not properly synchronized, linearizing the concur-
rent events could lead two different traces: 1 2 3 4 , and 2 1 3 4 . The first trace
complies with the specification while the second violates it.

The third mode allows monitors to receive events concurrently. This is typi-
cally done by providing a flag unsynchronized. In this mode, practitioners should
handle the concurrency on their own, and in some cases specify their own mon-
itoring logic. Writing additional concurrency logic, and managing concurrency
has three disadvantages. First, by writing the monitors manually, we defeat the
purpose of automatically generating monitors from a given formalism. Second,
the manual monitors created may miss key information needed for managing
concurrency. This extra information may require to implement additional instru-
mentation outside the tool. Third, the process is complicated due to concurrency,
and is error-prone. We elaborate on the complications in Sect. 4. As such, we
first ask if monitors are to be generated from a formalism.

Q0. Is the developer using the tool to automatically generate monitor logic?

For the scope of this tutorial, we focus on the formalisms from which monitors
could be synthesized. As such, we consider the answer to Q0 is yes.

Overview. In this tutorial, we explore RV tools that explicitly handle mul-
tithreaded programs. We illustrate the problem of monitoring a parallel pro-
gram using existing techniques. In doing so, we overview the related approaches,
some of the existing tools, and their shortcomings. We discuss their assump-
tions, advantages, limitations, and suitability when tackling two textbook par-
allel programs: producer-consumer and readers-writers. In particular, we use
manually written monitors using AspectJ [43,58], Java-MOP [16,17,52], and
RVPredict [42] to explore the challenges to monitoring multithreaded programs.
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Overall, the challenges of monitoring multithreaded programs stem from the
following facts:

– events in a concurrent program follow a partial order;
– most formalisms used by RV do not account for partial orders, but specify

behavior over sequences of events (i.e., events are totally ordered); and
– an instrumented program must capture the order of events as it happens

during the execution to pass it to monitors.

Moreover, we explore the situations where:

– a linear trace does not represent the underlying program execution;
– a linear trace hides some implicit assumptions which affect RV; and
– it is insufficient to use a linear trace for monitoring multithreaded programs.

By analyzing the interplay between specification formalisms and concurrent exe-
cutions of programs, we propose four questions RV practitioners may ask them-
selves to classify and determine the situations in which it is reliable to use the
existing tools and approaches as well as the situations where we believe more
work is needed.

An online version of the tutorial [30] is provided with the programs, tools, and
an interactive guide to reproduce and experiment with the examples provided
in the tutorial. The examples included in the online tutorial are marked in the
rest of the paper with the dagger sign (†).

2 Exploring Tools and Their Supported Formal
Specifications

Runtime Verification approaches typically automatically synthesize monitors by
relying on a formal specification of the expected behavior. A specification for-
malism allows to express properties that partition the system behaviors into
correct and incorrect ones. As such, for a multithreaded program, we must first
check the available properties that we can verify. We first classify the various
approaches by considering the specification formalism alone.

2.1 Approaches Relying on Total-Order Formalisms

The first pool consists of tools and approaches where the specification language
itself relies on a total order of events, as the input to monitors consists of words.
We consider the tools commonly used for RV using those found in the RV com-
petitions [8,32,55].

Java-MOP. Java-MOP [16,17,52] follows the design principle that specifica-
tions and programs should be developed together. Java-MOP provides logic plu-
gins to express the specifications in several formalisms. Logic plugins include:
finite-state machines, extended regular expressions, context-free grammars, past-
time linear temporal logic, and string rewriting systems.
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Tracematches. Tracematches [4,13] is another approach that uses regular
expressions over user-specified events as specifications. Tracematches defines
points in the execution where events occur, and specifies the actions to exe-
cute upon matching. Tracematches considers the semantics of such matching
on large programs or multiple program runs, while binding the context associ-
ated with each event to the sequence. For example, it considers when a pattern
matches multiple times, or matches multiple points in the program.

MarQ. MarQ [54] is designed for monitoring properties expressed as Quanti-
fied Event Automata (QEA) [5]. MarQ focuses on performing highly optimized
monitoring, by providing full control of monitors lifecycles and garbage collec-
tion. Furthermore, it introduces quantification and distinguishes quantified from
free variables in a specification, this allows finer control over the monitoring
procedure by managing the replication of monitoring (slicing). MarQ relies on
the developer to instrument the program with AspectJ to send the events to
the QEA.

LARVA. LARVA [22] uses dynamic automata with timers and events [21].
LARVA focuses on monitoring real-time systems where timing is of importance.
LARVA specifications feature timeouts and stopwatches. LARVA is also capable
of verifying large programs by storing events in a database and allowing the
monitors to “catch up” with the system as it executes [20].

Remark 1 (Unsynchronized monitors). While we focus on formalisms capable
of automatically generating monitors, we note that it is still possible to write
unsynchronized monitors manually. We explain in Sect. 4 the difficulties that
make the process error-prone. Java-MOP provides the unsynchronized flag to
specify that no additional locks should be added, thus allowing monitors to
receive events concurrently. Logic plugins would no longer be used to automati-
cally synthesize monitors. MarQ by default is not thread safe [54]. The developer
must pre-process the events before passing them to the QEA monitor.

2.2 Approaches Focusing on Detecting Concurrency Errors

The second pool of tools is concerned with specific behavior for concurrent pro-
grams. We consider absence of data races and deadlock freedom. Tools used
that can verify specific properties related to concurrency errors include RVPre-
dict [42] and Java PathExplorer (JPaX) [39]. Further discussion on concurrency
errors and additional tools are discussed in [48].

RVPredict. RVPredict relies on Predictive Trace Analysis (PTA) [42,57]. PTA
approaches model the program execution as a set of traces corresponding to
the different orderings of a trace. As such, they encode the trace minimally,
then restrict the set of valid permutations based on the model that is allowed.
The approach in [42] describes a general sound and complete model to detect
data races in multithreaded programs and implement it in RVPredict. Traces
are ordered permutations containing both control flow operations and memory
accesses, and are constrained by axioms tailored to data race and sequential
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consistency. While [42] can, in theory, model behavioral properties, RVPredict
monitors only data races, but does so very efficiently.

JPaX. Similar to RVPredict, Java PathExplorer (JPaX) [39] is a Java tool
designed for multithreaded programs. JPaX uses bytecode-level instrumentation
to detect both race conditions and deadlocks in a multithreaded program exe-
cution. To do so, JPaX tracks information on locks and variables accessed by
various threads during an execution. JPaX supports standard formalisms such
as LTL and finite-state machines. However, it separates those from the two men-
tioned concurrency properties, and defaults to providing an event stream to the
monitors similar to automata-based approaches.

2.3 Approaches Utilizing Multiple Traces

The third pool consists of approaches specifying behavior that spans multiple
traces.

Stream-based Techniques. Stream-based techniques include LOLA [25],
BeepBeep [38], and more recently, the Temporal Stream-Based Specification Lan-
guage [23,26,45]. Stream-based specifications rely on named streams to provide
events. These streams are then aggregated using various functions that modify
the timing, filter events, and output new events.

Decentralized Monitoring. Decentralized monitoring considers the system as
a set of components sharing a logical timestamp. It uses monitoring algorithms
and communication strategies to monitor one specification over components by
avoiding synchronization and with the aim of minimizing the communication
costs. Algorithms manage a decentralized trace associating each event with a
component and a timestamp; essentially managing for each component a totally
ordered trace. DecentMon [10,19] is a tool capable of simulating the behavior of
decentralized monitoring algorithms.

Decentralized Specifications. Decentralized specifications [28] generalize
decentralized monitoring by defining a set of monitors, additional atomic propo-
sitions that represent references to monitors, and attaches each monitor to a
component. A monitor reference is evaluated as if it was an oracle. THEMIS [29]
is a tool capable of monitoring decentralized specifications.

Hyperproperties. Hyperproperties [18] are specified over sets of traces. Typ-
ically, hyperproperties make use of variables that are quantified over multiple
traces. RV approaches have been implemented to verify hyperproperties using
rewriting [14], and using model checking and automata [34]. RVHyper [33] is a
tool capable of verifying hyperproperties on sets of traces.

2.4 Outcome: A First Classification

Since concurrent executions exhibit a partial order between events, formalisms
that rely on total order require that the partial order be coerced into a total
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order. Our first consideration for monitoring concurrent programs relies solely
on the specification formalism.

Q1. Are the models of the specification formalism based on a total order?

If the answer to Q1 is yes, then we are concerned with the first pool of tools.
We elaborate on further considerations for total order approaches in Sect. 3.

Otherwise, we verify whether or not we are checking very specific properties on
partial orders, such as data race or deadlock freedom.

Q2. Are we only concerned with the absence of data races or deadlock freedom?

If the answer to Q2 is yes, then we are concerned with the second pool of
tools, keeping in mind that they are unable to handle arbitrary specifications.
Otherwise, we are concerned with the third pool, we elaborate on the potential
of using these approaches in Sect. 5.2.

3 Linear Specifications for Concurrent Programs

In this section, we are concerned with RV approaches that rely on total-order
formalisms (e.g., automata, LTL, regular expressions). We refer to specifications
that use total-order formalisms to describe the behavior of the system as linear
specifications. We explore the assumptions and outcomes of checking properties
specifying total-order behavior.

3.1 Per-Thread Monitoring

Overview. A simple approach to monitor multithreaded programs is to con-
sider each thread in the program execution independent. That is, the monitoring
technique assumes that each thread is a separate serial program to monitor. A
monitor is assigned to each thread and receives only events pertaining to that
thread. This is called per-thread monitoring. Java-MOP and Tracematches sup-
port flag perthread [4,35] to monitor a property on each thread independently.
It is also possible to use MarQ by quantifying over the threads, to monitor each
thread independently for a given property.

Example 3 (Per-thread iterator†). We use for example the classical property
described in [16] “An iterator’s method hasNext() must always be called at
least once before a call to method next()”. Monitoring per-thread proves useful,
when we are concerned about the usage of iterators in a given thread, and not
across threads. Using Java-MOP, we can monitor a simple program that has two
threads processing a shared list of integers concurrently. Each thread creates an
iterator on the shared list, the first finds the minimum, while the second finds
the maximum. In this case, it is sufficient to check that the iterator usage is
correct for each thread independently.
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Limitations. Since per-thread monitoring performs RV on a single thread, and
all events in a given thread are totally ordered, it follows that monitoring is
sound in such situations. However, in most cases, we may be interested in mon-
itoring events across threads. This is the case with producer-consumer detailed
in Example 1. To monitor the program we need to keep track of produces and
consumes. By considering threads separately, one is not able at all to monitor
the correct behavior, as producer and consumer are separate threads. Monitor-
ing per-thread is not useful in this setting. Therefore, it becomes important to
distinguish between properties for which events are shared across threads.

Q3. Does there exist a model of the specification where events are generated by
more than a single thread?

We addressed in this section the tools and limitations when the answer to Q3 is
no. When the answer to Q3 is yes, a developer has to consider global monitoring,
explained in Sect. 3.2.

3.2 Global Monitoring

Overview. Whenever the specification formalism relies on events across
threads, the existing approaches that use a total-order formalism typically define
global monitors. This is the default mode for Java-MOP, MarQ, and for Trace-
matches this is called “global tracematch”. This is the only mode for LARVA.
Furthermore, these tools typically include synchronization guards on such mon-
itors. For example, LARVA synchronizes events passed to the monitors, such
that a monitor cannot receive two events concurrently, while MarQ requires
the developer to specify synchronization when needed, and Java-MOP offers an
unsynchronized flag, to disable locking on monitors.

We discussed the implications of using unsynchronized in Sect. 1.

Example 4 (Monitoring producer-consumer†). We monitor producer-consumer
(Example 1) using Java-MOP, LARVA, and MarQ3. The property can be
expressed as a context-free grammar (CFG) using the rule: S -> S produce S
consume | epsilon. We specify the property for each tool4 and associate events
produce and consume with adding and removing elements from a shared queue,
respectively. We first verify this example using per-thread monitoring using Java-
MOP, and notice quickly that the property is violated, as the first monitor is
only capable of seeing produces, and the second only consumes. Using global
monitoring, we monitor a large number of executions (10,000) of two variants of
the program, and show the result in Table 1. For each execution, the producer
generates a total of 8 produce events, which are then processed using up to
2 consumers. The first variant is a correctly synchronized producer-consumer,
where locks ensure the atomic execution of each event. The second variant is a
non-synchronized producer-consumer, and allows the two events to be fed to the
3 On Java openjdk 1.8.0 172, using Java-MOP version 4.2, MarQ version 1.1

commit 9c2ecb4 (April 7, 2016), and LARVA commit 07539a7 (Apr 16, 2018).
4 Equivalent monitors and specifications for each tools can be found in Appendix A.

https://github.com/selig/qea/blob/9c2ecb4ee253632ee1e782f261c64a2a5aecaa92/jars/marq-1.1.jar
https://github.com/ccol002/larva-rv-tool/blob/07539a72d1e4ce5db55c09102e88b9ebf194160e/Standard%20Download%20Package/Larva%20system/larva.jar
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Table 1. Monitoring 10,000 executions of 2 variants of producer-consumer using global
monitors. Reference (REF) indicates the original program. Column V indicates the
variant of the program. Column Advice indicates intercepting after (A) and before
(B) the function call, respectively. Columns True and False indicate the number of
executions (#) and the percentage over the total number of executions (%) for which
the tool reported these verdicts.

V Consumers Tool Advice True False Timeout

# % # % # %

1 1–2 REF - 0 (0%)

JMOP A 10,000 (100%) 0 (0%) 0 (0%)

B 10,000 (100%) 0 (0%) 0 (0%)

MarQ A 10,000 (100%) 0 (0%) 0 (0%)

B 10,000 (100%) 0 (0%) 0 (0%)

LARVA A 10,000 (100%) 0 (0%) 0 (0%)

B 10,000 (100%) 0 (0%) 0 (0%)

2 1 REF - 631 (6.3%)

JMOP A 4,043 (40.43%) 5,957 (59.57%) 0 (0%)

B 7,175 (71.75%) 6 (0.06%) 2,819 (28.19%)

MarQ A 4,404 (44.04%) 5,583 (55.83%) 13 (0.13%)

B 9,973 (99.73%) 16 (0.16%) 11 (0.11%)

LARVA A 4,755 (47.55%) 5,245 (52.45%) 0 (0%)

B 9,988 (99.88%) 2 (0.02%) 10 (0.10%)

2 2 REF - 4,785 (47.85%)

JMOP A 128 (1.28%) 9,220 (92.20%) 652 (6.52%)

B 1,260 (12.60%) 7,617 (76.17%) 1,123 (11.23%)

MarQ A 33 (0.33%) 9,957 (99.57%) 10 (0.10%)

B 432 (4.32%) 9,530 (95.30%) 38 (0.38%)

LARVA A 250 (2.50%) 9,488 (94.88%) 262 (2.62%)

B 5,823 (58.23%) 4,131 (41.31%) 46 (0.46%)

monitors concurrently. In both cases, the monitor is synchronized to ensure that
the monitor processes each event atomically. Additional locks are included by
Java-MOP and LARVA, we introduce a lock for MarQ, as it is not thread-safe.
This is consistent as to check the CFG (or the automaton for LARVA and MarQ),
we require a totally ordered word, as such traces are eventually linearized.

In the first variant, the monitor outputs verdict true for all executions. This
is consistent with the expected behavior as the program is correctly synchro-
nized, as such it behaves as if it were totally ordered. However, with no proper
synchronization, produce and consume happen concurrently, we obtain one of
two possible traces:

tr1 = produce · consume and tr2 = consume · produce.
While tr1 seems correct and tr2 incorrect, produce and consume happen con-
currently. After doing 10,000 executions of the second variant, monitoring is
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unreliable: we observe verdict true for some executions, while for others, we
observe verdict false. Even for the same tool, and the same number of con-
sumers, we notice that the reported verdicts vary depending on whether or not
we choose to intercept before or after the function call to create the event. For
example, even when using a single consumer with Java-MOP, we see that the
verdict rate for verdict false goes down from 60% when intercepting before the
function call, to almost 0% when intercepting after the function call. We note
that selecting to intercept before or after a method call can depend on the spec-
ification. For consistency reasons, we chose to intercept both events in the same
way. Either choice produces inconsistent verdicts when concurrency is present,
due to context switches.

In the second variant, the consumer must check that the queue has an ele-
ment, and then poll it to recover it. Since it is badly synchronized, it is possible
to deadlock as the check and the poll are not atomic. In this case, the program
cannot terminate. To distinguish deadlocked executions, we terminate the execu-
tion after 1 second, and consider it a timeout, since a non-deadlocked execution
takes less than 10 milliseconds to execute. It is important to note that when the
specification detects a violation the execution is stopped, this could potentially
lower the rate of timeouts. The rate of timeout of the original program (REF)
is given as reference. We notice that the tools interfere with the concurrency
behavior of the program in two ways. First, the locking introduced by the global
monitoring can actually force a schedule on the program. We observe that when
a single consumer is used and locks are used before the function call. In this
case, the rate of getting verdict true is higher than when introduced after the
call (72% for Java-MOP, 99.7% for MarQ, and 99.8% for LARVA). When the
locks are applied naively, they can indeed correct the behavior of the program,
as they force a schedule on the actions produce and consume. This, of course, is
coincidental, when 2 consumers are used, we stop observing this behavior. Sec-
ond, we observe that changing the interception from before to after the function
call modifies the rate of timeout. For example, when using 1 consumer, the ref-
erence rate is 6% (REF). When using Java-MOP (B), the rate goes up to 28%,
while for LARVA (B) it goes down to 0.1%. It is possible to compare the rate
of timeout of Java-MOP (B) and LARVA (B) since the monitor is not forcing
the process to exit early, as the rate of reaching verdict false is low for both (<
0.1%). We elaborate more on the effect of instrumentation on concurrency in
Sect. 4.

To understand the inconsistency in the verdicts, we look at the execution frag-
ments of each variant in Fig. 3. In the first variant, the program utilizes locks to
ensure the queue is accessed atomically. This allows the execution to be a total
order. For the second variant, we see that while we can establish order between
either produce, or consume, we cannot establish an order between events. Dur-
ing the execution, multiple total orders are possible, and thus different verdicts
are possible.
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Fig. 3. Concurrent execution fragments of producer-consumer variants. Double circle:
produce, normal: consume. Events are numbered to distinguish them.

Limitations. It is now possible to distinguish further situations where it is reli-
able to use global monitors. We notice that to evaluate a total order formalism,
we require a trace which events are totally ordered. When dealing with a partial
order, tools typically use locks and ensure that the partial order will be coerced
into a total order. We see that the monitoring of the second variant failed since
the program was not properly synchronized. One could assume that it is nec-
essary to first check that the program is properly synchronized, and perhaps
deadlock-free as well. To do so, one could use RVPredict or JPaX to verify the
absence of data race (as shown in Example 5). Upon verifying that the program
is synchronized, one could then run global monitors.

Example 5 (Detecting data race†). Let us consider the second variant of
producer-consumer as described in Example 4. Listing 1.2 displays the (partial)
output of executing RVPredict on the program. Particularly, we focus on one
data race report (out of 4). We notice that in this case, lines 7 and 13 indicate
that the data race occurs during those function calls. Yet, these are the calls we
used to specify the produce and consume events. In this case, we can see that the
data race occurs at the level of the events we specified. Upon running RVPredict
on the first variant, it reports no data races, as it is properly synchronized.

While checking the absence of data race is useful for the case of producer-
consumer, it is not enough to consider a properly synchronized program to be
safe when using global monitors. This is due to the possible existence of concur-
rent regions independently from data race. We illustrate the case of concurrent
regions in Example 6.
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Fig. 4. Concurrent execution fragment of 1-Writer 2-Readers. Double circle: write,
normal: read. Events are numbered to distinguish them. Events 2 and 6 are an example
of concurrent events as there is no order between them.

Example 6 (1-Writer 2-Readers†). Figure 4 illustrates a concurrent execution
fragment of 1-Writer 2-Readers, where a thread can write to a shared variable,
and two other threads can read from the variable. The threads can read con-
currently, but no thread can write or read while a write is occurring. In this
execution, the first reader performs 3 reads (events 2, 4, and 5), while the sec-
ond reader performs 2 reads (events 3 and 6). We notice that indeed, no reads
happen concurrently. In this case, we see that the program is correctly synchro-
nized (it is data-race free and deadlock-free). However, we can still end up with
different total orders, as there still exists concurrent regions. By looking at the
concurrent execution, we notice that we can still have events on which we can
establish a total order5.

On the one hand, a specification relying on the order of events found in concur-
rent regions (i.e., “the first reader must always read before the second”) can still
result in inconsistent monitoring, similarly to producer-consumer. On the other
hand, a specification relying on events that can always be totally ordered (i.e.,
“there must be at least one read between writes”) will not result in inconsistent
monitoring. We notice that to distinguish these two cases, we rely (i) on the
order of the execution (concurrent regions), and (ii) the events in the specifica-
tion. Two events that cannot be ordered are therefore called concurrent events.
For example, the events 2 and 6 are concurrent, as there is no order relation
between them. Instrumenting the program to capture concurrent events may
also be problematic as we will explain in Sect. 4.

3.3 Outcome: Refining the Classification

We are now able to formulate the last consideration for totally ordered for-
malisms.

Q4. Is the satisfaction of the specification sensitive to the order of concurrent
events?

If the answer to Q4 is no, then it is possible to linearize the trace to match
the total order expressed in the specification. Otherwise, monitoring becomes
unreliable as the concurrency can cause non-determinism, or even make it so the
captured trace is not a representation of the execution as we explain in Sect. 4.

5 This is similar to the notion of linearizability [40].
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Remark 2 (Expressiveness). We noticed that utilizing linear specifications for
monitoring multithreaded programs works well when the execution of the pro-
gram can be reduced to a total order. On the one hand, we see per-thread moni-
toring (Sect. 3.1) restricting events to the same thread. On the other hand, we see
global monitoring restricting the behavior to only those that can be linearized.
As such, in these cases, the interplay between trace and specification constrains
the expressiveness of the monitoring to either the thread itself, or the segments
in the execution that can be linearized.

4 Instrumentation: Advice Atomicity

Generally, trace collection is done after instrumentation of the program using
AspectJ, or other techniques (such as bytecode instrumentation). As mentioned
in Sect. 1, it is still possible to specify unsynchronized monitors and handle
concurrency without the tool support. We note that using AspectJ for instru-
mentation is found in Java-MOP, Tracematches, MarQ, and LARVA [8]. In this
section, we show that instrumentation may lead to unreliable traces in concur-
rent regions.

4.1 Extracting Traces

Extracting a trace from a program execution often requires executing additional
code at runtime. For example, to capture a method call, one could insert a print
statement before or after the method call. This extra running code is referred
to as advice by AspectJ. When an action is executed, the code responsible for
gathering the trace will not, in general, execute atomically with the action. For
multithreaded programs, the execution order may be incorrectly captured due
to context switches between threads. To illustrate the issues caused by context
switches, we have two threads with a race condition on a call to function f and
g respectively, we match the call and execute the advice right after the call. We
show this by adding a call to the advice code mon(), right after the function call.
We see in Fig. 5 that in the execution the call to function f precedes the call
to function g, however, due to context switches, the advice associated with g
(mon(g)) executes before that associated with function f (mon(f)). In this case
the order perceived by the monitors is g · f while the order of the execution is
f · g. In this scenario, the generated trace is not representative of the execution,
and thus the check performed by the monitor is unreliable.

Fig. 5. Advice execution (mon) with context-switches leading to incorrect trace capture.
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Fig. 6. Comparison of collected traces using instrumentation and the system trace.

Example 7 (Advice Atomicity†). For this example, we create two threads such
that each calls a unique function (f and g, respectively) an equal number of
times. Each function consists of a single print statement (to stdout) indicating
the function name. We create a simple monitor that prints (to stderr) the same
function name while appending “ trace”. Then, we verify that the traces are
identical, that is the prints from within the functions follow the same order as
those in the monitor. Figure 6a shows a fragment of a trace that is different.
We see at lines (1–2) that the trace of the monitor starts with f · g while the in
the program execution the order is f · g. Figure 6b shows the difference between
the captured trace by the monitor and the trace of the system, using monitors
created manually with AspectJ, and automatically with Java-MOP and LARVA.
The monitor created manually with AspectJ is also representative of MarQ as
MarQ relies on the user writing the event matching in AspectJ, then calling the
QEA monitor. Column Sync distinguishes the case when using unsynchronized
in Java-MOP. We notice that the traces differ from the actual program execu-
tion for AspectJ, Java-MOP and LARVA. Traces appear to differ more when
intercepting after the function call. In AspectJ, the rate of identical traces drops
from 91% (B) to 49% (A). This drop is also visible for LARVA and Java-MOP.
This is not surprising as Java-MOP and LARVA use AspectJ for instrumentation
while introducing some variation as each tool has some additional computation
performed on matching. The rate change could be associated with either the
specific program or the virtual machine in this case, as the added computation
from the monitors and AspectJ could affect the schedule. More importantly, we
notice that even when the monitors are synchronized, the captured trace is not
guaranteed to be identical to that of the execution.
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This problem can only be solved if atomicity for the granularity level can be guar-
anteed. In general, source-level instrumentation of method calls with AspectJ,
or even bytecode instrumentation at the INVOKE level will still not be atomic.
Adding a lock not only increases overhead, but can also introduce deadlocks if
the method invocation is external to the code being instrumented (e.g., calls to
libraries). However, by adding locks one can modify the behavior of the program
as illustrated in Example 7, as such one needs to minimize the area to which the
lock is applied.

4.2 Discussion

In certain conditions, capturing traces can still be done in the case of concur-
rent events. First, a developer must have full knowledge of the program (i.e., it
must be seen as a white box ), this allows the developer to manually instrument
the locks to ensure atomic capture, avoiding deadlocks and managing external
function calls carefully. Second, we require that the instrumented areas tolerate
the interference, and therefore must prove that the interference does not impact
significantly the behavior of the program, by modifying the schedule. In this
case, one could see that global monitoring (Sect. 3.2) reports correct verdicts for
the single execution.

Remark 3 (Monitor placement). An additional important aspect for tools per-
tains to whether the monitors are inlined in the program or execute separately.
For multithreaded programs, instrumentation can place monitors so that they
execute in the thread that triggers the event, or in a separate thread, or even
process. These constitute important implementation details that could limit or
interfere with the program differently. However, for the scope of this paper, we
focus on issues that are relevant for event orders and concurrency.

5 Reasoning About Concurrency

Section 3 shows that approaches relying on total order formalisms are only capa-
ble of reliably monitoring a multithreaded program when the execution boils
down to a total order. Therefore, it is important to reason about concurrency
when designing monitoring tools, while still allowing behavioral properties. We
present GPredict [41] in Sect. 5.1, a concurrency analysis tool that can be used for
specifying behavior over concurrent regions. We discuss in Sect. 5.2 the potential
of multitrace approaches, first introduced in Sect. 2.3. In Sect. 5.3, we present
certain approaches from outside RV that may prove interesting and provide
additional insight.

5.1 Generic Predictive Concurrency Analysis

Concurrent Behavior as Logical Constraints Solving. The more general
theory behind RVPredict (Sect. 2.2) develops a sound and maximal causal model
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to analyze concurrency in a multithreaded program [42]. In this model, the cor-
rect behavior of a program is modeled as a set of logical constraints, thus restrict-
ing the possible traces to consider. The theory supports any logical constraints to
determine correctness, it is possible to encode a specification on multithreaded
programs as a set of logical constraints. However, allowing for arbitrary spec-
ifications to be encoded while supports in the model, is not supported in the
provided tool (RVPredict).

GPredict. Using the same sound and maximal model for predictive trace anal-
ysis [42] discussed in Sect. 2.2, GPredict [41] extends the specification formalism
past data-races to behavior. Specifications are able to include behavioral, user-
specified events, and are extended with thread identifiers, atomic regions, and
concurrency. Events are defined similarly to Java-MOP using AspectJ for instru-
mentation. Atomic regions are special events that denote either the start or end
of an atomic region. Each atomic region is given an ID. The specification formal-
ism uses regular expressions extended with the concurrency operator “||” which
allows events to happen in parallel.

Example 8 (Specifying concurrency). Listing 1.3 shows a specification for GPre-
dict written for a multithreaded program, we re-use the example from [41]. The
program consists of a method (m) of an object which reads and writes to a
variable (s). Lines 2 and 5 specify the events that denote respectively reaching
the start and end of method (m). Line 3 and 4 specify respectively the read
and write events. Lines 7 and 8 illustrate respectively specifications for atomic
regions and concurrency. The events in the specification can be parametrized by
the thread identifier, and a region delimiter. To specify an atomic regions, an
event can indicate whether it is the start or end of a region using the charac-
ters > and < respectively. The delimiter is followed by a region identifier, which
is used to distinguish regions in the specification. In this case, we see that the
begin and end events emitted by thread t1 delimit an atomic regions in which a
read by thread t1 must be followed by a write by thread t2, which is followed by
a write by thread t1. The specification is violated if any of the events happen in
a different order or concurrently. To specify concurrent events, one must utilize
“||” as shown on Line 8. In this case, the specification says that a read in thread
t1 can happen in parallel with a write in thread t2.
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Fig. 7. RV approaches and considerations for monitoring multithreaded programs.

Limitations. While GPredict presents a general approach to reason about
behavioral properties in concurrent executions, and hence constitutes a solution
to monitoring when concurrency is present, it still requires additional improve-
ments for higher expressiveness and usability. Notably, GPredict requires spec-
ifying thread identifiers explicitly in the specification. This requires specifica-
tions with multiple threads to become extremely verbose, and cannot handle a
dynamic number of threads. For example, in the case of readers-writers, adding
extra readers or writers requires rewriting the specification and combining events
to specify each new thread. The approach behinds GPredict can also be extended
to become more expressive, e.g. to support counting events to account for fairness
in a concurrent setting.

5.2 Multi-trace Specifications: Possible Candidates?

RV approaches and tools that utilize multiple traces include approaches that
rely on streams, decentralized specifications, and hyperproperties (as described
in Sect. 2.3).
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Thread Events as Streams. Stream-based RV techniques deal with synchro-
nized streams in general, the order of the events is generally total. It is possible
to imagine that ordering could be performed by certain functions that aggregate
streams. For example, it is possible to create a stream per event per thread, and
then aggregate them appropriately to handle the partial order specifications.
However, as is, either specifying or adding streams to multithreaded programs
remains unclear, but presents an interesting possible future direction.

Thread-level Specifications as References. Decentralized specifications
present various manners to implicitly deal with threads, but do not in particular
deal with multithreaded programs. Since monitors are merely references, and ref-
erences can be evaluated as oracles at any point during the execution. Monitors
are triggered to start monitoring, and are required to eventually return an eval-
uation of a property. Even when specifications are totally ordered, in the sense
that they are automata-based, the semantics that allow for eventual evaluation
of monitors make it so monitors on threads can evaluate local specifications and
explicitly communicate with other threads for the additional information.

Concurrent Executions as Multiple Serial Executions. Hyperproperties
are properties defined on a set of traces. Generally used for security, they allow
for instance to check different executions of the same program from multiple
access levels. By executing a concurrent program multiple times, we can obtain
various totally ordered traces depending on the concurrent regions. As such, a
possible future direction could explore how to express concurrency specifications
as hyperproperties, and the feasibility of verifying a large set of totally ordered
traces.

5.3 Inspiration from Outside RV

Detecting Concurrency Errors. Other approaches similar to RVPredict
(Sect. 2.2) perform automatic verification and fence inference under relaxed
memory models [12,44]. This ensures the correct execution of concurrent pro-
grams, but relies on static analysis and does not collect a runtime trace. Fence
inference can be seen as determining concurrency segments in a program of
interest with respect to the memory operations.

Relying on Heuristics. Determining exact concurrency regions is costly dur-
ing execution or may interfere with the execution. An interesting direction is
to utilize heuristics to determine concurrent regions. BARRACUDA [27] detects
synchronization errors on GPUs by instrumenting CUDA applications and per-
forming binary-level analysis. BARRACUDA avoids large overhead as it uses
heuristics to approximate the synchronization in linear traces.
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Testing Schedules. PARROT [24] is a testing framework that explores the
interleavings of possible threads to test concurrent programs. PARROT analyzes
the possible schedules of threads, and forces the application to explore them, thus
exposing concurrency issues. The motivation behind PARROT is the realization
that certain schedules occur in low probability under very specific circumstances.

6 Conclusions

We overviewed RV approaches that support multithreaded programs. By con-
sidering the various specifications formalisms, we are able to classify the tools by
looking at whether or not they rely on total-order formalisms. We investigated
the limitations of linear traces in the case of RV tools relying on formalisms that
use total order, and noted the situations where linear traces lead to inconsis-
tent verdicts. After presenting tools capable of checking specific properties, we
mentioned various recent RV techniques using properties over multiple traces,
and discussed their potential for monitoring multithreaded programs. Figure 7
summarizes the decisions a developer must consider when choosing RV tools for
multithreaded monitoring, and the limitations of the existing approaches. We
caution users of tools that using a formalism in which events are specified as a
total order is not reliable when monitoring concurrent events (as we cannot reli-
ably answer Q4). It is possible to monitor multithreaded programs that exhibit
concurrency using GPredict (Sect. 5.1). However, issues with writing specifica-
tions easily and expressively need to be handled. Furthermore, RV techniques
capable of specifying properties over multiple traces prove to be interesting can-
didates to extend to monitor multithreaded programs.

Acknowledgment. This article is based upon work from COST Action ARVI IC1402,
supported by COST (European Cooperation in Science and Technology).

A Monitors

We present the specifications used for monitoring producer-consumer using Java-
MOP (Listing 1.4), LARVA (Listing 1.5), and MarQ (Listing 1.6). The detailed
findings and description is found in Sect. 3.2. The monitors were designed for
global monitoring, to ensure the trace is fed to the corresponding formalism as
a total order. As such, for MarQ locking was needed.
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Abstract. Runtime Verification is a branch of formal methods con-
cerned with analysis of execution traces for the purpose of determining
the state or general quality of the executing system. The field covers
numerous approaches, one of which is specification-based runtime ver-
ification, where execution traces are checked against formal specifica-
tions. The paper presents syntax, semantics, and monitoring algorithms
for respectively propositional and first-order temporal logics. In propo-
sitional logics the observed events in the execution trace are represented
using atomic propositions, while first-order logic allows universal and
existential quantification over data occurring as arguments in events.
Monitoring of the first-order case is drastically more challenging than
the propositional case, and we present a solution for this problem based
on BDDs. We furthermore discuss monitorability of temporal properties
by dividing them into different classes representing different degrees of
monitorability.

1 Introduction

Runtime verification (RV) [2,13] allows monitoring (analysis) of executions of a
system, directly, without the need for modeling the system. It has some com-
monality with other formal methods such as testing, model checking and formal
verification, including the use of a specification formalisms1. However, it dif-
fers a lot in goals, the algorithms used, and the complexity and the coverage it
suggests. Model checking performs a comprehensive search on a model of the
system under test. Testing generates inputs to drive system executions, trying
to provide a good coverage, yet keeping the complexity low, at the price of losing
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1 RV can be understood more broadly to mean: any processing of execution traces for
the purpose of evaluating a system state or quality. Some approaches do not involve
specifications but rather use pre-programmed algorithms as monitors.
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exhaustiveness. Formal verification attempts full proof of correctness based on
deductive techniques. Runtime verification does not directly concern itself with
coverage and the selection of execution paths, but rather focuses on analyzing
a single execution trace (or a collection thereof). An execution trace is gener-
ated by the observed executing system, typically by instrumenting the system
to generate events as important transitions take place. Instrumentation can be
manual by inserting logging statements in the code, or it can be automated using
instrumentation software, such as aspect-oriented programming frameworks.

Runtime verification can take place on-line, as the system executes, or off-
line, by processing log files produced by the system. In the case of on-line pro-
cessing, runtime verification obtains the information about the execution as it
unfolds, oftentimes without seeing the complete sequence; yet it is required to
provide a verdict as soon as possible. The critical complexity measure here is
the incremental complexity, which is performed for each new event reported to
the monitor. The calculation needs to be fast enough to keep in pace with the
executing system.

Following in part [14,23], we present algorithms for the runtime verification
of linear temporal logic properties, which is the most common specification for-
malism used for both runtime verification and model checking. We start with
the propositional case, where an execution trace is checked against a future or
past time propositional LTL formula. For an online algorithm, which observes
the execution trace event by event, a verdict is not guaranteed in any finite time.
Runtime monitorability identifies what kind of verdicts can be expected when
monitoring an execution against a temporal property. Monitoring temporal prop-
erties is often restricted to safety properties. There are two main reasons for this
restriction: the first is that the algorithm for checking safety is rather efficient,
polynomial in the size of the property; the other reason is that for safety prop-
erties we are guaranteed to have a finite evidence for a negative verdict (albeit
there is not always a bound on when such an evidence can be given).

After presenting the theory of monitoring propositional temporal logic we
move on to the more demanding challenge of monitoring properties that depend
on data reported to the monitor. This can be handled by a parametrized version
of temporal logic (or using parametrized automata), but more generally it calls
for using a first-order version of the temporal logic. We will concentrate on
first-order safety properties. One of the challenges here is that the data may,
in principle, be unbounded and we only learn about the actual values that are
monitored as they appear in reported events. Another problem is that, unlike
the propositional case, the amount of data that needs to be kept may keep
growing during the execution. This calls for a clever representation that allows
fast processing of many data elements. We present an algorithm based on BDDs,
which is implemented in the tool Deja Vu [12].

The paper is organized as follows. Section 2 introduces propositional linear
temporal logic, including future as well as past time operators, its syntax, seman-
tics, and some pragmatics. Section 3 presents a general theory of monitorability
of temporal properties, such as those formulated in LTL. Section 4 outlines algo-
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rithms for monitoring propositional LTL properties, first future time, and then
past time. Section 5 introduces first-order past time LTL, its syntax, semantics,
and some pragmatics. Section 6 outlines an algorithm for monitoring first-order
past LTL properties. Finally, Sect. 7 concludes the paper.

2 Propositional LTL

The definition of linear temporal logic including future and past time operators
is as follows [20]:

ϕ:: = true | p | (ϕ ∧ ϕ) | ¬ϕ | (ϕ U ϕ) | © ϕ|(ϕSϕ) | � ϕ

where p is a proposition from a finite set of propositions P , with U standing
for until, © standing for next-time, S standing for since, and � standing for
previous-time. One can also write (ϕ ∨ ψ) instead of ¬(¬ϕ ∧ ¬ψ), (ϕ → ψ)
instead of (¬ϕ ∨ ψ), ♦ϕ (eventually ϕ) instead of (true U ϕ), �ϕ (always ϕ)
instead of ¬♦¬ϕ, P ϕ (past ϕ) instead of (true S ϕ) and H ϕ (history ϕ) instead
of ¬P ¬ϕ.

LTL formulas are interpreted over an infinite sequence of events ξ =
e1.e2.e3 . . ., where ei ⊆ P for each i > 0. These are the propositions that hold in
that event. LTL’s semantics is defined as follows:

– ξ, i |= true.
– ξ, i |= p iff p ∈ ei.
– ξ, i |= ¬ϕ iff not ξ, i |= ϕ.
– ξ, i |= (ϕ ∧ ψ) iff ξ, i |= ϕ and ξ, i |= ψ.
– ξ, i |= ©ϕ iff ξ, i + 1 |= ϕ.
– ξ, i |= (ϕ U ψ) iff for some j ≥ i, ξ, j |= ψ, and for all i ≤ k < j it holds that

ξ, k |= ϕ.
– ξ, i |= �ϕ iff i > 1 and ξ, i − 1 |= ϕ.
– ξ, i |= (ϕS ψ) iff ξ, i |= ψ or the following hold2: i > 1, ξ, i |= ϕ and ξ, i− 1 |=

(ϕS ψ).

Then ξ |= ϕ when ξ, 1 |= ϕ.
This definition of propositional temporal logic contains both future modali-

ties (U , �, ♦ and ©) and past modalities (S, H, P and �). However, we do not
always need to use all off them:

– Removing the past temporal operators does not affect the expressiveness of
the logic [10]. On the other hand, there are examples of properties that are
much more compact when expressed using both the past and the present
operators.

2 This definition is equivalent to the traditional definition ξ, i |= (ϕ S ψ) iff for some
0 < j ≤ i, ξ, j |= ψ, and for all j < k ≤ i it holds that ξ, k |= ϕ, but is more intuitive
for the forthcoming presentation of the RV algorithm.
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– Properties of the form �ϕ, where ϕ does not contain the future operators
form an important class. There are several reasons for restricting runtime
verification to such properties. These properties correspond to temporal safety
properties [1,19]: failure can always be detected on a finite prefix [5]. Moreover,
expressing safety properties in this form allows an efficient runtime verification
algorithm that is only polynomial in the size of the specification [14]3.

3 Monitorability of Propositional Temporal Logic

Online runtime verification of LTL properties inspects finite prefixes of the exe-
cution. Assume an observed system S, and assume further that a finite execution
of S up to a certain point is captured as an execution trace ξ = e1.e2. . . . .en,
which is a sequence of observed events, each of type E. Each event ei captures
a snapshot of S’s execution state. Then the RV problem can be formulated as
constructing a program M with the type M : E∗ → D, which when applied to
the trace ξ, as in M(ξ), returns some data value d ∈ D in a domain D of inter-
est. Typically M is generated from a formal specification, given as a temporal
logic formula or a state machine. Because online RV observes at each time only
a finite part of the execution, it can sometimes provide only a partial verdict on
the satisfaction and violation of the inspected property [4,22]. This motivates
providing three kinds of verdicts as possible values for the domain D:

failed when the current prefix cannot be extended in any way into an execution
that satisfies the specification,

satisfied when any possible extension of the current prefix satisfies the specifica-
tion, and

undecided when the current prefix can be extended to satisfy the specification
but also extended to satisfy its negation.

For example, the property �p (for some atomic proposition p), which asserts
that p always happens, can be refuted by a runtime monitor if p does not hold
in some observed event. At this point, no matter which way the execution is
extended, the property will not hold, resulting in a failed verdict. However, no
finite prefix of an execution can establish that �p holds. In a similar way, the
property ♦p cannot be refuted, since p may appear at any time in the future;
but once p happens, we know that the property is satisfied, independent on any
continuation, and we can issue a satisfied verdict. For the property (�p∨♦q) we
may not have a verdict at any finite time, in the case where all the observed events
satisfy both p and ¬q. On the other hand, we may never “lose hope” to have such
a verdict, as a later event satisfying q will result in a positive verdict; at this point
we can abandon the monitoring, since the property cannot be further violated.
On the other hand, for the property �♦p we can never provide a verdict in finite

3 There are examples of safety properties that are much more compact when expressed
with the past temporal operators [21], and for symmetrical considerations also vice
versa.
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time: for whatever happens, p can still appear an infinite number of times, and
we cannot guarantee or refute that this property holds when observing any finite
prefix of an execution. The problem of monitorability of a temporal property was
studied in [5,9,24], basically requiring that at any point of monitoring we still
have a possibility to obtain a finite positive or negative verdict.

Safety and liveness temporal properties were defined informally on infinite
execution sequences by Lamport [19] as something bad cannot happen and some-
thing good will happen. These informal definitions were later formalized by Alpern
and Schneider [1]. Guarantee properties where used in an orthogonal character-
ization by Manna and Pnueli [20]. Guarantee properties are the dual of safety
properties, that is, the negation of a safety property is a guarantee property and
vice versa.

These classes of properties can be seen as characterizing finite monitorability
of temporal properties: if a safety property is violated, there will be a finite prefix
witnessing it; on the other hand, for a liveness property, one can never provide
such a finite negative evidence. We suggest the following alternative definitions
of classes of temporal properties.

AFR/safety Always Finitely Refutable: when the property does not hold on
an infinite execution, a failed verdict can be identified after a finite prefix.

AFS/guarantee Always Finitely Satisfiable: when the property is satisfied on
an infinite execution, a satisfied verdict can be identified after a finite prefix.

NFR/liveness Never Finitely Refutable: when the property does not hold on
an infinite execution, refutation can never be identified after a finite prefix.

NFS/morbidity Never Finitely Satisfiable: When the property is satisfied on
an infinite execution, satisfaction can never be identified after a finite prefix.

It is easy to see that the definitions of the classes AFR and safety in [1]
are the same and so are those for AFS and guarantee. A liveness property ϕ is
defined to satisfy that any finite prefix can be extended to an execution that
satisfies ϕ. The definition of the class NFR only mentions prefixes of executions
that do not satisfy ϕ; but for prefixes of executions that satisfy ϕ this trivially
holds. The correspondence between NFS and morbidity is shown in a symmetric
way.

The above four classes of properties, however, do not cover the entire set of
possible temporal properties, independent of the actual formalism that is used
to express them. The following two classes complete the classification.

SFR Sometimes Finitely Refutable: for some infinite executions that violate the
property, refutation can be identified after a finite prefix; for other infinite
executions violating the property, this is not the case.

SFS Sometimes Finitely Satisfiable: for some infinite executions that satisfy the
property, satisfaction can be identified after a finite prefix; for other infinite
executions satisfying the property, this is not the case.

Bauer, Leucker and Schallhart [5] define three categories of prefixes of ele-
ments from 2P .
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Fig. 1. Classification of properties: safety, guarantee, liveness, morbidity and quaestio.

– A good prefix is one where all its extensions (infinite sequences of elements
from 2P ) satisfy the monitored property ϕ.

– A bad prefix is one where none of its infinite extensions satisfy ϕ.
– An ugly prefix cannot be extended into a good or a bad prefix.

When identifying a good or a bad finite prefix, we are done tracing the
execution and can announce that the monitored property is satisfied or failed,
respectively. After an ugly prefix, satisfaction or refutation of ϕ depends on the
entire infinite execution, and cannot be determined in finite time. Note that a
property has a good prefix if it is not a morbidity property, and a bad prefix if it
is not a liveness property. Monitorability of a property ϕ is defined in [5] as the
lack of ugly prefixes for the property ϕ. This definition is consistent with [24].

Any property that is in AFR (safety) or in AFS (guarantee) is monitorable [5,
9]. A property that is NFR ∩ NFS is non-monitorable. In fact no verdict is
ever expected on any sequence that is monitored against such a property. This
leaves the three classes SFR ∩ SFS, SFR ∩ NFS and NFR ∩ SFS, for which
some properties are monitorable and others are not. This is demonstrated in the
following table.

Class Monitorable example Non-monitorable example

SFR ∩ SFS ((♦r ∨ �♦p) ∧ ©q) ((p ∨ �♦p) ∧ ©q)

SFR ∩ NFS (♦p ∧ �q) (�♦p ∧ ©q)

NFR ∩ SFS (�p ∨ ♦q) (�♦p ∨ ©q)
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The set of all properties Prop is not covered by safety, guarantee, liveness
and morbidity. The missing properties are in SFR ∩ SFS. We call the class of
such properties Quaestio (Latin for question). Figure 1 presents the relationship
between the different classes of properties and their intersections, with LTL
specification examples.

4 Runtime Verification for Propositional LTL

4.1 Runtime Verification for Propositional Future LTL

We present three algorithms. The first one is a classical algorithm for runtime
verification of LTL (or Büchi automata) properties. The second algorithm can
be used to check during run time what kind of verdicts can still be produced
given the current prefix. The third algorithm can be used to check whether the
property is monitorable.

Algorithm 1: Monitoring Sequences Using Automata

Kupferman and Vardi [17] provide an algorithm for detecting good and bad
prefixes. For good prefixes, start by constructing a Büchi automaton A¬ϕ for ¬ϕ,
e.g., using the translation in [11]. Note that this automaton is not necessarily
deterministic [27]. States of A¬ϕ, from which one cannot reach a cycle that
contains an accepting state, are deleted. Checking for a positive verdict for ϕ,
one keeps for each monitored prefix the set of states that A¬ϕ would be in after
observing that input. One starts with the set of initial states of the automaton
A¬ϕ. Given the current set of successors S and an event e ∈ 2P , the next set of
successors S′ is set to the successors of the states in S according to the transition
relation Δ of A¬ϕ. That is, S′ = {s′|s ∈ S ∧ (s, e, s′) ∈ Δ}. Reaching the empty
set of states, the monitored sequence is good, and the property must hold since
the current prefix cannot be completed into an infinite execution satisfying ¬ϕ.

This is basically a subset construction for a deterministic automaton Bϕ,
whose initial state is the set of initial states of A¬ϕ, accepting state is the empty
set, and transition relation as described above. The size of this automaton is
O(22

|P |
), resulting in double exponential explosion from the size of the checked

LTL property. But in fact, we do not need to construct the entire automaton Bϕ

in advance, and can avoid the double exponential explosion by calculating its
current state on-the-fly, while performing runtime verification. Thus, the incre-
mental processing per each event is exponential in the size of the checked LTL
property. Unfortunately, a single exponential explosion is unavoidable [17].

Checking for a failed verdict for ϕ is done with a symmetric construction,
translating ϕ into a Büchi automaton Aϕ and then the deterministic automaton
B¬ϕ (or calculating its states on-the-fly) using a subset construction as above.
Note that A¬ϕ is used to construct Bϕ and Aϕ is used to construct B¬ϕ. Runtime
verification of ϕ uses both automata for the monitored input, reporting a failed
verdict if B¬ϕ reaches an accepting state, a satisfied verdict if Bϕ reaches an
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accepting state, and an undecided verdict otherwise. The algorithm guarantees
to report a positive or negative verdict on the minimal good or bad prefix that
is observed.

Algorithm 2: Checking Availability of Future Verdicts

We alter the above runtime verification algorithm to check whether positive
or negative verdicts can still be obtained after the current monitored prefix at
runtime. Applying DFS on Bϕ, we search for states from which one cannot reach
the accepting state. We replace these states with a single state ⊥ with a self
loop, obtaining the automaton Cϕ. Reaching ⊥, after monitoring a finite prefix
σ with Cϕ happens exactly when we will not have a good prefix anymore. This
means that after σ, a satisfied verdict cannot be issued anymore for ϕ.

Similarly, we perform BFS on B¬ϕ to find all the states in which the accepting
state is not reachable, then replace them by a single state  with a self loop,
obtaining C¬ϕ. Reaching  after monitoring a prefix means that we will not be
able again to have a bad prefix, hence a failed verdict cannot be issued anymore
for ϕ.

We can perform runtime verification while updating the state of both
automata, Cϕ and C¬ϕ on-the-fly, upon each input event. However, we need
to be able to predict if, from the current state, an accepting state is not reach-
able. While this can be done in space exponential in ϕ, it makes an incremental
calculation whose time complexity is doubly exponential in the size of ϕ, as is
the algorithm for that by Pnueli and Zaks [24]. This is hardly a reasonable com-
plexity for the incremental calculation performed between successive monitored
events for an on-line algorithm. Hence, a pre-calculation of these two automata
before the monitoring starts is preferable, leaving the incremental time complex-
ity exponential in ϕ, as in Algorithm 1.

Algorithm 3: Checking Monitorability

A small variant on the construction of Cϕ and C¬ϕ allows checking if a property is
monitorable. The algorithm is simple: construct the product Cϕ ×C¬ϕ and check
whether the state (⊥, ) is reachable. If so, the property is non-monitorable,
since there is a prefix that will transfer the product automaton to this state and
thus it is ugly. It is not sufficient to check separately that Cϕ can reach  and that
C¬ϕ can reach ⊥. In the property (¬(p∧r)∧ ((¬p U (r∧♦q))∨ (¬r U (p∧�q)))):
both ⊥ and  can be reached, separately, depending on which of the predicates
r or p happens first. But in either case, there is still a possibility for a good or
a bad extension, hence it is a monitorable property.

If the automaton Cϕ × C¬ϕ consists of only a single state (⊥, ), then there
is no information whatsoever that we can obtain from monitoring the property.

The above algorithm is simple enough to construct, however its complexity
is doubly exponential in the size of the given LTL property. This may not be a
problem, as the algorithm is performed off-line and the LTL specifications are
often quite short.
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We show that checking monitorability is in EXPSPACE-complete. The upper
bound is achieved by a binary search version of this algorithm4. For the lower
bound we show a reduction from checking if a property is (not) a liveness prop-
erty, a problem known to be in EXPSPACE-complete [18,25].

– We first neutralize bad prefixes. Now, when ψ is satisfiable, then ♦ψ is moni-
torable (specifically, any prefix can be completed into a good prefix) iff ψ has
a good prefix.

– Checking satisfiability of a property ψ is in PSPACE-complete [26]5.
– ψ has a good prefix iff ψ is not a morbidity property, i.e., if ϕ = ¬ψ is not a

liveness property.
– Now, ϕ is not a liveness property iff either ϕ is not satisfiable or ♦¬ϕ is

monitorable.

4.2 Runtime Verification for Propositional Past LTL

Algorithm

The algorithm for past LTL, first presented in [14], is based on the observation
that the semantics of the past time formulas �ϕ and (ϕS ψ) in the current step
i is defined in terms of the semantics in the previous step i − 1 of a subformula,
here recalled from Sect. 2:

– ξ, i |= �ϕ iff i > 1 and ξ, i − 1 |= ϕ.
– ξ, i |= (ϕS ψ) iff ξ, i |= ψ or the following hold: i > 1, ξ, i |= ϕ and ξ, i − 1 |=

(ϕS ψ).

One only needs to look one step, or event, backwards in order to compute
the new truth value of a formula and of its subformulas. The algorithm, shown
below, operates on two vectors (arrays) of values indexed by subformulas: pre
for the state before that event, and now for the current state (after the last seen
event).

1. Initially, for each subformula ϕ, now(ϕ) := false.
2. Observe a new event (as a set of ground predicates) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ

then now(ϕ) is updated before now(ψ).
– now(true) := true.
– now((ϕ ∧ ψ)) := now(ϕ) and now(ψ).
– now(¬ϕ) := not now(ϕ).
– now((ϕ S ψ)) := now(ψ) or (now(ϕ) and pre((ϕSψ))).
– now(� ϕ) := pre(ϕ).

5. Goto step 2.
4 To show that a property is not monitorable, one needs to guess a state of Bϕ×B¬ϕ and

check that (1) it is reachable, and (2) one cannot reach from it an empty component,
both for Bϕ and for B¬ϕ. (There is no need to construct Cϕ or C¬ϕ.).

5 Proving that liveness was PSPACE-hard was shown in [3].
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An Example

As an example6, consider the formula close ∧ �open, and suppose we evaluate
it against the trace open.close at step i = 2 (after seeing the close event). The
algorithm performs the following assignments, resulting in the formula becoming
true (assuming that pre(open) is true):

now(open) := false
now(close) := true

now(�open) := pre(open)
now(close ∧ �open) := now(close) ∧ now(�open)

The above suggested algorithm interprets a formula on a trace. As an alterna-
tive we can synthesize a program that is specialized for monitoring the property
as in [14]. Figure 2 (left) shows a generated monitor program for the property.
Two Boolean valued arrays pre for the previous state and now are declared and
operated on. The indices 0 . . . 3 correspond to the enumeration of the subformu-
las shown in the Abstract Syntax Tree (AST) in Fig. 2 (right). For each observed
event, the function evaluate () computes the now array from highest to lowest
index, and returns true (property is satisfied in this position of the trace) iff
now(0) is true.

Fig. 2. Monitor (left) and AST (right) for propositional property.

6 All examples of safety properties henceforth will omit the implied � operator.
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5 First-Order Past LTL

First-order past LTL allows universal and existential quantification over data
occurring as parameters in events. Such events are referred to as predicates (or
parametric events). Consider a predicate open(f), indicating that a file f is
being opened, and a predicate close(f) indicating that f is being closed. We
can formulate that a file cannot be closed unless it was opened before with the
following first-order past LTL formula:

∀f (close(f) −→ P open(f)) (1)

Here P is the “sometimes in the past” temporal operator. This property must
be checked for every monitored event. Already in this very simple example we
see that we need to store all the names of files that were previously opened so
we can compare to the files that are being closed. A more refined specification
would be the following, requiring that a file can be closed only if it was opened
before, and has not been closed since. Here, we use the temporal operators �
(“at previous step”) and S (“since”):

∀f (close(f) −→ �(¬close(f)S open(f))) (2)

One problem we need to solve is the unboundedness caused by negation. For
example, assume that we have only observed so far one close event close(“ab”).
The subformula close(f) is therefore satisfied for the value f = “ab”. The sub-
formula ¬close(f) is satisfied by all values from the domain of f except for “ab”.
This set contains those values that we have not seen yet in the input within a
close event. We need a representation of finite and infinite sets of values, upon
which applying complementation is efficient. We present a first-order past time
temporal logic, named Qtl (Quantified Temporal Logic), and an implementa-
tion, named Deja Vu based on a BDD (Binary Decision Diagram) representa-
tion of sets of assignments of values to the free variables of subformulas.

5.1 Syntax

Assume a finite set of domains D1,D2, . . .. Assume further that the domains are
infinite, e.g., they can be the integers or strings7. Let V be a finite set of variables,
with typical instances x, y, z. An assignment over a set of variables W maps each
variable x ∈ W to a value from its associated domain domain(x). For example
[x → 5, y → “abc”] maps x to 5 and y to “abc”. Let T be a set of predicate
names with typical instances p, q, r. Each predicate name p is associated with
some domain domain(p). A predicate is constructed from a predicate name, and
a variable or a constant of the same type. Thus, if the predicate name p and
the variable x are associated with the domain of strings, we have predicates
like p(“gaga”), p(“baba”) and p(x). Predicates over constants are called ground
predicates. An event is a finite set of ground predicates. For example, if T =

7 For dealing with finite domains see [12].
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{p, q, r}, then {p(“xyzzy”), q(3)} is a possible event. An execution σ = s1s2 . . .
is a finite sequence of events.

For runtime verification, a property ϕ is interpreted on prefixes of a monitored
sequence. We check whether ϕ holds for every such prefix, hence, conceptually,
check whether �ϕ holds, where � is the “always in the future” linear temporal
logic operator. The formulas of the core logic Qtl are defined by the following
grammar. For simplicity of the presentation, we define here the logic with unary
predicates, but this is not due to any principle limitation, and, in fact, our
implementation supports predicates with multiple arguments.

ϕ:: = true | p(a) | p(x) | (ϕ ∧ ϕ) |¬ϕ | (ϕ S ϕ) | � ϕ | ∃x ϕ

The formula p(a), where a is a constant in domain(p), means that the ground
predicate p(a) occurs in the most recent event. The formula p(x), for a variable
x ∈ V , holds with a binding of x to the value a if a ground predicate p(a)
appears in the most recent event. The formula (ϕ1 S ϕ2) means that ϕ2 held
in the past (possibly now) and since then ϕ1 has been true. The property � ϕ
means that ϕ was true in the previous event. We can also define the following
additional operators: false = ¬true, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ), (ϕ −→ ψ) = (¬ϕ∨ψ),
P ϕ = (true S ϕ) (previously ϕ), H ϕ = ¬P ¬ϕ (historically ϕ, or ϕ always in
the past), and ∀x ϕ = ¬∃x¬ϕ. The operator [ϕ,ψ), borrowed from [16], has the
same meaning as (¬ψ S ϕ), but reads more naturally as an interval.

5.2 Semantics

Predicate Semantics

Let free(ϕ) be the set of free (i.e., unquantified) variables of a subformula ϕ.
Then (γ, σ, i) |= ϕ, where γ is an assignment over free(ϕ), and i ≥ 1, if ϕ holds
for the prefix s1s2 . . . si of the execution σ with the assignment γ. We denote
by γ|free(ϕ) the restriction (projection) of an assignment γ to the free variables
appearing in ϕ and by ε the empty assignment. The semantics of Qtl can be
defined as follows.

– (ε, σ, i) |= true.
– (ε, σ, i) |= p(a) if p(a) ∈ σ[i].
– ([x �→ a], σ, i) |= p(x) if p(a) ∈ σ[i].
– (γ, σ, i) |= (ϕ ∧ ψ) if (γ|free(ϕ), σ, i) |= ϕ and (γ|free(ψ), σ, i) |= ψ.
– (γ, σ, i) |= ¬ϕ if not (γ, σ, i) |= ϕ.
– (γ, σ, i) |= (ϕS ψ) if (γ|free(ψ), σ, i) |= ψ or the following hold: i > 1,

(γ|free(ϕ), σ, i) |= ϕ, and (γ, σ, i − 1) |= (ϕS ψ).
– (γ, σ, i) |= �ϕ if i > 1 and (γ, σ, i − 1) |= ϕ.
– (γ, σ, i) |= ∃x ϕ if there exists a ∈ domain(x) such that8 (γ [x �→ a], σ, i) |= ϕ.

8 γ [x �→ a] is the overriding of γ with the binding [x �→ a].
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Set Semantics

It helps to present the BDD-based algorithm by first redefining the semantics
of the logic in terms of sets of assignments satisfying a formula. Let I[ϕ, σ, i]
be the semantic function, defined below, that returns a set of assignments such
that γ ∈ I[ϕ, σ, i] iff (γ, σ, i) |= ϕ. The empty set of assignments ∅ behaves as
the Boolean constant 0 and the singleton set that contains an assignment over
an empty set of variables {ε} behaves as the Boolean constant 1. We define
the union and intersection operators on sets of assignments, even if they are
defined over non identical sets of variables. In this case, the assignments are
extended over the union of the variables. Thus intersection between two sets of
assignments A1 and A2 is defined like a database “join” operator; i.e., it consists
of the assignments whose projection on the common variables agrees with an
assignment in A1 and with an assignment in A2. Union is defined as the dual
operator of intersection. Let A be a set of assignments over the set of variables
W ; we denote by hide(A, x) (for “hiding” the variable x) the set of assignments
obtained from A after removing from each assignment the mapping from x to a
value. In particular, if A is a set of assignments over only the variable x, then
hide(A, x) is {ε} when A is nonempty, and ∅ otherwise. Afree(ϕ) is the set of all
possible assignments of values to the variables that appear free in ϕ. We add
a 0 position for each sequence σ (which starts with s1), where I returns the
empty set for each formula. The assignment-set semantics of Qtl is shown in
the following. For all occurrences of i, it is assumed that i > 0.

– I[ϕ, σ, 0] = ∅.
– I[true, σ, i] = {ε}.
– I[p(a), σ, i] = if p(a) ∈ σ[i] then {ε} else ∅.
– I[p(x), σ, i] = {[x �→ a]|p(a) ∈ σ[i]}.
– I[(ϕ ∧ ψ), σ, i] = I[ϕ, σ, i]

⋂
I[ψ, σ, i].

– I[¬ϕ, σ, i] = Afree(ϕ) \ I[ϕ, σ, i].
– I[(ϕ S ψ), σ, i] = I[ψ, σ, i]

⋃
(I[ϕ, σ, i]

⋂
I[(ϕSψ), σ, i − 1]).

– I[�ϕ, σ, i] = I[ϕ, σ, i − 1].
– I[∃x ϕ, σ, i] = hide(I[ϕ, σ, i], x).

As before, the interpretation for the rest of the operators can be obtained
from the above using the connections between the operators.

6 Runtime Verification for First-Order Past LTL

We describe an algorithm for monitoring Qtl properties, first presented in [12]
and implemented in the tool Deja Vu. To give a brief overview of the contents of
this section, instead of storing the data values occurring in events, we enumerate
these data values as soon as we see them and use Boolean encodings of this
enumeration. We use BDDs to represent sets of such enumerations. For example,
if the runtime verifier sees the input events open(“a”), open(“b”), open(“c”), it
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will encode them as 000, 001 and 010 (say, we use 3 bits b0, b1 and b2 to represent
each enumeration, with b2 being the most significant bit). A BDD that represents
the set of values {“a”, “c”} would be equivalent to a Boolean function (¬b0∧¬b2)
that returns 1 for 000 and 010 (the value of b1 can be arbitrary). This approach
has the following benefits:

– It is highly compact. With k bits used for representing enumerations, the BDD
can grow to 2O(k) nodes [6]; but BDDs usually compact the representation
very well [8]. In fact, we often do not pay much in overhead for keeping surplus
bits. Thus, we can start with an overestimated number of bits k such that it
is unlikely to see more than 2k different values for the domain they represent.
We can also incrementally extend the BDD with additional bits when needed
at runtime.

– Complementation (negation) is efficient, by just switching between the 0 and 1
leaves of the BDD. Moreover, even though at any point we may have not seen
the entire set of values that will show up during the execution, we can safely
(and efficiently) perform complementation: values that have not appeared yet
in the execution are being accounted for and their enumerations are reserved
already in the BDD before these values appear.

– Our representation of sets of assignments as BDDs allows a very simple algo-
rithm that naturally extends the dynamic programming monitoring algorithm
for propositional past time temporal logic shown in [14] and summarized in
Sect. 4.2.

6.1 BDDs

We represent a set of assignments as an Ordered Binary Decision Diagram
(OBDD, although we write simply BDD) [7]. A BDD is a compact represen-
tation for a Boolean valued function of type B

k → B for some k > 0 (where
B is the Boolean domain {0, 1}), as a directed acyclic graph (DAG). A BDD is
essentially a compact representation of a Boolean tree, where compaction glues
together isomorphic subtrees. Each non-leaf node is labeled with one of the
Boolean variables b0, . . . , bk−1. A non-leaf node bi is the source of two arrows
leading to other nodes. A dotted-line arrow represents that bi has the Boolean
value 0, while a thick-line arrow represents that it has the value 1. The nodes
in the DAG have the same order along all paths from the root. However, some
of the nodes may be absent along some paths, when the result of the Boolean
function does not depend on the value of the corresponding Boolean variable.
Each path leads to a leaf node that is marked by either a 0 or a 1, representing
the Boolean value returned by the function for the Boolean values on the path.
Figure 3 contains five BDDs (a)-(e), over three Boolean variables b0, b1, and b2
(referred to by their subscripts 0, 1, and 2), as explained below.

6.2 Mapping Data to BDDs

Assume that we see p(“ab”), p(“de”), p(“af”) and q(“fg”) in subsequent states
in a trace, where p and q are predicates over the domain of strings. When a value
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associated with a variable appears for the first time in the current event (in a
ground predicate), we add it to the set of values of that domain that were seen.
We assign to each new value an enumeration, represented as a binary number,
and use a hash table to point from the value to its enumeration.

Consistent with the Deja Vu implementation, the least significant bit in an
enumeration is denoted in Fig. 3 (and in the rest of this paper) by BDD variable
0, and the most significant bit by BDD variable n − 1, where n is the number of
bits. Using e.g. a three-bit enumeration b2b1b0, the first encountered value “ab”
can be represented as the bit string 000, “de” as 001,“af” as 010 and “fg” as 011.
A BDD for a subset of these values returns a 1 for each bit string representing
an enumeration of a value in the set, and 0 otherwise. E.g. a BDD representing
the set {“de”,“af”} (2nd and 3rd values) returns 1 for 001 and 010. This is the
Boolean function ¬b2 ∧ (b1 ↔ ¬b0). Figure 3 shows the BDDs for each of these
values as well as the BDD for the set containing the values “de” and“af”.

When representing a set of assignments for e.g. two variables x and y with k
bits each, we will have Boolean variables x0, . . . , xk−1, y0, . . . , yk−1. A BDD will
return a 1 for each bit string representing the concatenation of enumerations
that correspond to the represented assignments, and 0 otherwise. For example,
to represent the assignments [x �→ “de”, y �→ “af”], where “de” is enumerated as
001 and“af” with 010, the BDD will return a 1 for 001010.

6.3 The BDD-based Algorithm

Given some ground predicate p(a) observed in the execution matching with p(x)
in the monitored property, let lookup(x, a) be the enumeration of a. If this is a’s
first occurrence, then it will be assigned a new enumeration. Otherwise, lookup
returns the enumeration that a received before. We can use a counter, for each
variable x, counting the number of different values appearing so far for x. When
a new value appears, this counter is incremented, and the value is converted
to a Boolean representation. Enumerations that were not yet used represent
the values not seen yet. In the next section we introduce data reclaiming, which
allows reusing enumerations for values that no longer affect the checked property.
This involves a more complicated enumeration mechanism.

The function build(x,A) returns a BDD that represents the set of assign-
ments where x is mapped to (the enumeration of) v for v ∈ A. This BDD
is independent of the values assigned to any variable other than x, i.e., they
can have any value. For example, assume that we use three Boolean variables
(bits) x0, x1 and x2 for representing enumerations over x (with x0 being the
least significant bit), and assume that A = {a, b}, lookup(x, a) = 011, and
lookup(x, b) = 001. Then build(x,A) is a BDD representation of the Boolean
function x0 ∧ ¬x2.

Intersection and union of sets of assignments are translated simply to con-
junction and disjunction of their BDD representation, respectively, and comple-
mentation becomes BDD negation. We will denote the Boolean BDD operators
as and, or and not. To implement the existential (universal, respectively) oper-
ators, we use the BDD existential (universal, respectively) operators over the
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Fig. 3. BDDs for the trace: p(“ab”).p(“de”).p(“af”).q(“fg”).
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Boolean variables that represent (the enumerations of) the values of x. Thus, if
Bϕ is the BDD representing the assignments satisfying ϕ in the current state
of the monitor, then exists(〈x0, . . . , xk−1〉, Bϕ) is the BDD that represents the
assignments satisfying ∃x ϕ in the current state. Finally, BDD(⊥) and BDD()
are the BDDs that return always 0 or 1, respectively.

The dynamic programming algorithm, shown below, works similarly to the
algorithm for the propositional case shown in Sect. 4.2. That is, it operates on
two vectors (arrays) of values indexed by subformulas: pre for the state before
that event, and now for the current state (after the last seen event). However,
while in the propositional case the vectors contain Boolean values, here they
contain BDDs. The algorithm follows.

1. Initially, for each subformula ϕ, now(ϕ) := BDD(⊥).
2. Observe a new event (as a set of ground predicates) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ

then now(ϕ) is updated before now(ψ).
– now(true) := BDD().
– now(p(a)) := if p(a) ∈ s then BDD() else BDD(⊥).
– now(p(x)) := build(x,A) where A = {a|p(a) ∈ s}.
– now((ϕ ∧ ψ)) := and(now(ϕ), now(ψ)).
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ S ψ)) := or(now(ψ),and(now(ϕ), pre((ϕSψ)))).
– now(� ϕ) := pre(ϕ).
– now(∃x ϕ) := exists(〈x0, . . . , xk−1〉, now(ϕ)).

5. Goto step 2.

An important property of the algorithm is that, at any point during moni-
toring, enumerations that are not used in the pre and now BDDs represent all
values that have not been seen so far in the input. This can be proved by induc-
tion on the size of temporal formulas and the length of the input sequence. We
specifically identify one enumeration to represent all values not seen yet, namely
the largest possible enumeration, given the number of bits we use, 11 . . . 11. We
let (11 . . . 11) denote the BDD that returns 1 exactly for this value. This trick
allows us to use a finite representation and quantify existentially and universally
over all values in infinite domains.

6.4 An Example

Deja Vu is implemented in Scala. Deja Vu takes as input a specification file
containing one or more properties, and synthesizes a self-contained Scala pro-
gram (a text file) - the monitor, as already illustrated for the propositional case
in Sect. 4.2. This program (which first must be compiled) takes as input the trace
file and analyzes it. The tool uses the JavaBDD library for BDD manipulations
[15]. We shall illustrate the monitor generation using an example. Consider the
following property stating that if a file f is closed, it must have been opened in
the past with some access mode m (e.g. ‘read’ or ‘write’ mode):
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∀f (close(f) −→ ∃m P open(f,m))

The property-specific part9 of the synthesized monitor, shown in Fig. 4 (left),
relies on the enumeration of the subformulas shown in Fig. 4 (right). As in the
propositional case, two arrays are declared, indexed by subformula indexes: pre
for the previous state and now for the current state, although here storing BDDs
instead of Boolean values. For each observed event, the function evaluate () com-
putes the now array from highest to lowest index, and returns true (property is
satisfied in this position of the trace) iff now(0) is not BDD(⊥). At composite
subformula nodes, BDD operators are applied. For example for subformula 4,
the new value is now(5).or(pre(4)), which is the interpretation of the formula
P open(f, m) corresponding to the law: Pϕ = (ϕ ∨ � Pϕ). As can be seen, for
each new event, the evaluation of a formula results in the computation of a BDD
for each subformula.

Fig. 4. Monitor (left) and AST (right) for the property.

We shall briefly evaluate the example formula on a trace. Assume that each
variable f and m is represented by three BDD bits. Consider the input trace,
consisting of three events10:

open(input,read).open(output,write).close(out)

9 An additional 600+ lines of property independent boilerplate code is generated.
10 Traces accepted by the tool are concretely in CSV format. For example the first

event is a single line of the form: open,input,read.
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Fig. 5. Selected BDDs, named B1, . . . , B6, computed after each event at various sub-
formula nodes, indicated by BDD Bi @ node (see Fig. 4), during processing of the trace:
open(input,read).open(output,write).close(out).
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When the monitor evaluates subformula 5 on the first event
open(input, read), it will create a bit string composed of a bit string for each
parameter f and m. As previously explained, bit strings for each variable are
allocated in increasing order: 000, 001, 010,..., hence the first bit string repre-
senting the assignment [ f �→ input, m �→ read ] becomes 000000 where the three
rightmost bits represent the assignment of input to f, and the three leftmost bits
represent the assignment of read to m. Figure 5a shows the corresponding BDD
B1. Recall that most significant bits are implemented lower in the BDD, and
that for each bit (node) in the BDD, the dotted arrow corresponds to this bit
being 0 and the full drawn arrow corresponds to this bit being 1. In this BDD all
bits have to be zero in order to be accepted by the function represented by the
BDD. We will not show how all the tree nodes evaluate, except observe that node
5 assumes the same BDD value as node 4 (all the seen values in the past), and
conclude that since no close(. . . ) event has been observed, the top-level formula
(node 0) is true at this position in the trace.

Upon the second open(output,write) event, new values (output,write) are
observed as argument to the open event. Hence a new bit string for each variable
f and m is allocated, in both cases 001 (the next unused bit string for each vari-
able). The new combined bit string for the assignments satisfying subformula 5
then becomes 001001, forming a BDD representing the assignment [ f �→ output,
m �→ write ], and appearing in Fig. 5b as B2. The computation of the BDD for
node 4 is computed by now(4) = now(5).or(pre(4)), which results in the BDD B3,
representing the set of the two so far observed assignments (B3 = or(B1, B2)).

Upon the third close(out) event, a new value out for f is observed, and
allocated the bit pattern 010, represented by the BDD B4 for subformula 2. At
this point node 4 still evaluates to the BDD B3 (unchanged from the previous
step), and the existential quantification over m in node 3 results in the BDD B5,
where the bits 3, 4 and 5 for m have been removed, and the BDD compacted.
Node 1 is computed as or(not(B4), B5), which results in the BDD B6. This
BDD represents all bit patterns for f that are not 010, corresponding to the
value: out. So for all such values the formula is true. This means, however, that
the top-level formula in node 0 is not true (violated by bit pattern 010), and
hence the formula is violated on the third event.

6.5 Dynamic Data Reclamation

Consider Property 1 on page 10 that asserts that each file that is closed was
opened before. If we do not remember for this property all the files that were
opened, then we will not be able to check when a file is closed whether it was
opened before. Consider now the more refined Property 2 on page 10, requiring
that a file can be closed only if it was opened before, and has not been closed.
Observe here that if a file was opened and subsequently closed, then if it is
closed again before opening, the property would be invalidated just as in the
case where it was not opened at all. This means that we can “forget” that a
file was opened when it is closed without affecting our ability to monitor the
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formula. This allows reusing enumerations of data values, when this does not
affect the decision whether the property holds or not.

Let A be a set of assignments over some variables that include x. Denote
by A[x = a] the set of assignments from A in which the value of x is a. We
say that the values a and b are analogous for variable x in A, if hide(A[x =
a], x) = hide(A[x = b], x). This means that a and b, as values of the variable x,
are related to all other values in A in the same way. A value can be reclaimed if
it is analogous to the values not seen yet in all the assignments represented in
pre(ψ), for each subformula ψ.

We shall now identify enumerations that can be reclaimed, and remove the
values in the hash table that map to them, such that the enumerations can later
be reused to represent new values. The search for reclaimable enumerations in a
particular step during monitoring is performed on the pre BDDs. Recall that the
enumeration 11 . . . 11 represents all the values that were not seen so far. Thus, we
can check whether a value a for x is analogous to the values not seen so far for x
by performing the checks on the pre BDDs between the enumeration of a and the
enumeration 11 . . . 11. In fact, we do not have to perform the checks enumeration
by enumeration, but use a BDD expression that constructs a BDD representing
(returning 1 for) all enumerations that can be reclaimed for a variable x.

Assume that a subformula ψ has three free variables, x, y and z, each with
k bits, i.e., x0, . . . , xk−1, y0, . . . , yk−1 and z0, . . . , zk−1. The following expression
returns a BDD representing the enumerations for values of x in assignments
represented by pre(ψ) that are related to enumerations of y and z in the same
way as 11 . . . 11.

Iψ,x = ∀y0 . . . ∀yk−1∀z0 . . . ∀zk−1(pre(ψ)[x0 \ 1, . . . xk−1 \ 1] ↔ pre(ψ))

We now conjoin the above formula over each subformula that has a temporal
operator at the outermost level, and subtract from this conjunction the 11 . . . 11
enumeration. This becomes the BDD avail of available enumerations. Any enu-
meration that is in avail can be reclaimed, and later reused as the enumeration
of a new value. The selection of a “free” enumeration from avail can be per-
formed by a SAT solver that picks any enumeration that satisfies it, followed by
removing that enumeration from avail to indicate that it is no longer available.
Note that if a value later reappears after its enumeration was reclaimed, it is
likely to be assigned a different enumeration.

7 Conclusion

We presented a collection of runtime verification algorithms for linear temporal
logics. First we introduced propositional temporal logic, including future as well
as past time operators. We presented a theory of monitorability of temporal
properties, introducing classes that reflect different degrees of monitorability.
The notion of monitorability identifies the kinds of verdicts that one can obtain
from observing finite prefixes of an execution. We then presented monitoring
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algorithms for the future time case as automata, and for the past time case as
an instance of dynamic programming. We also provided algorithms for checking
what kind of verdict (positive or negative) we can expect after monitoring a
certain prefix against a given property, and whether a property is monitorable
or not. We then introduced first-order past time linear temporal logic, and a
monitoring algorithm for it. While the propositional version is independent of
the length of the prefix seen so far, the first-order version may need to represent
an amount of values that can grow linearly with the number of data values
observed so far. The challenge is to provide a compact representation that will
grow slowly and can be updated quickly with each incremental calculation that
is performed per each new monitored event. We used a BDD representation of
sets of assignments for the variables that appear in the monitored property.
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ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5 11

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Method. 20(4), 14:1–14:64 (2011)

6. Bryant, R.E.: On the complexity of VLSI implementations and graph representa-
tions of Boolean functions with application to integer multiplication. IEEE Trans.
Comput. 40(2), 205–213 (1991)

7. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

8. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS 1990, pp. 428–439 (1990)

9. Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at
runtime? STTT 14(3), 349–382 (2012)

10. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: POPL 1980, pp. 163–173. ACM (1980)

11. Gerth, R., Peled, D.A., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: PSTV 1995, pp. 3–18 (1995)

12. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with
BDDs. In: FMCAD 2017, pp. 116–123. IEEE (2017)

13. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry
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Abstract. Smart contracts present new challenges for runtime verifica-
tion techniques, due to features such as immutability of the code and the
notion of gas that must be paid for the execution of code. In this paper
we present the runtime verification tool ContractLarva and outline
its use in instrumenting monitors in smart contracts written in Solidity,
for the Ethereum blockchain-based distributed computing platform. We
discuss the challenges faced in doing so, and how some of these can be
addressed, using the ERC-20 token standard to illustrate the techniques.
We conclude by proposing a list of open challenges in smart contract and
blockchain monitoring.

1 Introduction

Although the general principles of runtime monitoring and verification are well
established [5,15,24], applying these techniques and building tool support for
new architectures frequently brings to the fore challenges in dealing with certain
aspects of the architecture. Over the past few years, the domain of blockchain and
distributed ledger technologies has increased in importance and pervasion, and
with it came an arguably new software paradigm or architecture, that of smart
contracts. Borrowing much from a multitude of existing technologies, including
distributed computing and transaction-based systems, brings forth a new set of
challenges for runtime monitoring and verification. In this paper, we expose our
runtime verification tool ContractLarva for monitoring smart contracts, and
discuss the open challenges in adapting dynamic verification for this domain.

The key novel idea behind distributed ledger technologies (DLTs), is how
to achieve an implementation of a distributed and decentralised ledger, typi-
cally guaranteeing properties such as transaction immutability1 i.e. achieving
a form of ledger synchronisation without the need for central points of trust.
Blockchain was one of the first algorithmic solutions proposed to achieve these
1 In this context, one typically finds the use of the term immutability for immutability

of transactions or data written in the past, whilst still allowing for appending new
entries (in a controlled manner) to the ledger.
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goals, with the underlying ledger being used to enable keeping track of transac-
tions in Bitcoin [26], the first instance of a cryptocurrency. Since then, various
extensions and variants were proposed, with one major idea being that of smart
contracts, allowing not only the immutable storage of transactions, but also that
of logic which may perform such transactions. Smart contracts thus enable the
enforcement of complex exchanges (possibly consisting of multiple transactions)
between parties in an indisputable and immutable manner.

Smart contracts in themselves are not a new concept. They were originally
proposed by Nick Szabo in 1996 [30] as “contracts [. . . ] robust against näıve
vandalism and against sophisticated, incentive compatible breach.” Szabo’s view
was that while legal contracts typically specify ideal behaviour — the way things
should be — e.g. “The seller is obliged to deliver the ordered items on time,”
nothing stops the parties involved from behaving outside these bounds2, a smart
contract would enforce the behaviour, effectively ensuring that it is not violated
in the first place. As most eminently highlighted by Lessig, “code is law” [23]
— what code allows the parties to do or stops them from doing, effectively acts
as theoretically inviolable legislation. The smart contract thus would typically
chooses a path of action which ensures compliance with the agreement the parties
have in mind. However, nothing stops the party entrusted with executing the
code from modifying it or its behaviour, hence there remains the requirement of
4a regulatory structure to safeguard that such modifications do not occur — in
practice, simply moving the need for a legal contract one step away.

Blockchain, however, provided a means of doing away with the need for such
centralised trust in or legal agreement with the party executing the code, and the
first realisation of this notion was the Ethereum blockchain [32], which supported
smart contracts in the form of executable code running on a decentralised virtual
machine, the Ethereum Virtual Machine (EVM), on the blockchain.

For instance, consider the natural language (legal) contract regulating a pro-
curement process between a buyer and a seller, as shown in Fig. 1. Clause 8
states that: “Upon placing an order, the buyer is obliged to ensure that there
is enough money in escrow to cover payment of all pending orders.” This may
be achieved in different ways. For example, this may be achieved by receiving
payment upon the creation of every new order. However, since (according to
clause 3) the buyer will already have put in escrow payment for the minimum
number of items to be ordered, one may choose to use these funds as long as
there are enough to cover the newly placed order, still satisfying clause 3. The
legal contract does not enforce either of these behaviours, but rather insists that
the overall effect is that of ensuring funds are available in escrow. In contrast,
a (deterministic) executable enforcement of the contract would have to choose
one of the behaviours to be executed.

The question as to whether specifications should be executable or not has
a long history in computer science (see [17] vs. [20]). Executable specifications
require a description of how to achieve a desired state as opposed to simply

2 In practice, what stops these parties from doing so is the threat to be sued for breach
of contract, which happens outside the realm of the contract itself.
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Fig. 1. A legal contract regulating a procurement process.

describing what that state should look like in a declarative specification — and
the ‘how’ is often more complex than the ‘what’3, and leaves more room for
error.

The possibility of error is a major issue. Smart contracts, being executable
artifacts, do exactly what they say they do, but that might not be what the
contract should have done. As smart contracts grow in size and complexity, this
issue becomes more worrying, and there have been well-known instances of such
smart contracts that allow for misbehaviour, for instance, on Ethereum [4]. Ide-
ally, the correctness of smart contracts is verified statically at compile time, but
using automated static analysis techniques to prove business-logic level proper-
ties of smart contracts has had limited success, with most work focussing on
classes of non-functional bugs. This leaves great scope for runtime verification
to provide guarantees over smart contracts.

In this paper, we present ContractLarva4, a tool for the runtime ver-
ification of smart contracts written in Solidity, a smart contract programming
language originally proposed for the use on Ethereum, but now also used on other
blockchain systems. We summarise the salient features of Solidity in Sect. 2, and
discuss the design of ContractLarva in Sect. 3. Given the immutable nature
of smart contracts, bugs can be a major issue since simply updating the code

3 NP-complete problems are a classical case of this — although there is no known
deterministic polynomial algorithm which can find a solution to instances of any one
of these problems, a known solution to an NP-complete problem instance can be
verified in polynomial time on a deterministic machine.

4 Available from https://github.com/gordonpace/contractLarva.

https://github.com/gordonpace/contractLarva
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may not be an option. We discuss how this can be addressed using dynamic
verification in Sect. 4. There are many other open challenges in smart contract
monitoring, some of which are discussed in Sect. 5, while in Sect. 6 we discuss
existing work in verification of smart contracts. Finally, we conclude in Sect. 7.

2 Smart Contracts and Solidity

Blockchains provide a decentralised means of a shared ledger which is tamper-
proof and verifiable. Smart contracts built on a blockchain (like Ethereum) allow
for decentralised execution of code, which could implement agreements between
different parties, similarly in a tamperproof and verifiable manner. Solidity is the
most popular language used to write Ethereum smart contracts. Solidity gets
compiled down to EVM bytecode — a 256-bit stack-based instruction set which
the Ethereum virtual machine will execute. At the bytecode execution level, the
EVM can be seen as a ‘one world computer’ — a single shared abstract com-
puter that can execute smart contract code. Once a smart contract is compiled
to EVM bytecode, the contract may be uploaded and enacted on the blockchain
having it reside at a particular address, thus allowing external entities to trigger
its behaviour through function calls — therefore a smart contract’s publicly exe-
cutable functions represents the contract’s Application Programming Interface
(API). Functions are atomic i.e. they execute from beginning to end without
interruption, and the EVM is single threaded which implies that only one func-
tion, or rather one instruction from all smart contracts is executed at a time,
even though the EVM is distributed amongst all nodes. This implies that a long
running function, or more so a function that never terminates, would slow down
or stop all other smart contracts on the platform from executing. To prevent
this, Ethereum requires an amount of gas to be sent by the initiator to be used
to pay for the execution of code. If the gas runs out, then execution stops and
all state changed since execution initiation is reverted. This mechanism ensures
that infinite loops will eventually stop since the finite amount of gas associated
with the execution will eventually run out. Although EVM bytecode is Tur-
ing complete, this limitation creates disincentives for creating sophisticated and
resource-intensive smart contracts.

Using Solidity, the procurement legal contract from Fig. 1 can be transformed
into a smart contract — the associated interface is shown in Listing 1. The
contract allows the seller and buyer to invoke behaviour (such as placing an
order, terminating the contract and specifying that a delivery was made).

We will now highlight Solidity’s salient features required to appreciate this
work. Solidity allows standard enumerated types (e.g. line 2 in Listing 1), and
key-value associative arrays or mappings (e.g. line 4 defines a mapping from a 16-
bit unsigned integer to an Order structure used to map from the order number
to information, and line 7 of Listing 2 shows how the values can be accessed).

Functions can be defined as (i) private: can only be accessed by the smart
contract itself; (ii) internal: the contract itself and any contract extending it
can access the function; (iii) external: can be accessed from an external call;
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Listing 1. The interface of a smart contract regulating procurement in Solidity.

1 contract ProcurementContract {

2 enum ContractStatus {Open , Closed}

3 ContractStatus public status;

4 mapping (uint16 => Order) public orders;

5 . . .
6

7 function ProcurementContract (

8 uint _endDate , uint _price ,

9 uint _minimumItems , uint _maximumItems

10 ) public { . . . }

11

12 function acceptProcurementContract () public { . . . }

13

14 function placeOrder(

15 uint16 _orderNumber , uint _itemsOrdered ,

16 uint _timeOfDelivery

17 ) public { . . . }

18

19 function deliveryMade(

20 uint16 _orderNumber

21 ) public byBuyer { . . . }

22

23 function terminateContract () public { . . . }

24 }

and (iv) public: can be called from anywhere. These access modifiers only define
from where a function can be called but not who can call such functions — a
public function could be called from anyone. As part of a contract it is important
to define which parties can initiate different contract functions.

Function modifiers provide a convenient reusable method to define ways of
modifying the behaviour of functions in a uniform manner, such as this validation
logic. Line 1 in Listing 2 defines a byBuyer modifier which checks whether the
function invoker, retrieved using msg.sender, is indeed the buyer (the buyer’s
address would have had to be specified somewhere else in the contract), with
the underscore indicating the execution of the original code of the function being
affected by this modifier. Solidity provides such language construct validation
guards including require which allows for testing of conditions in which case
if the condition does not hold, execution will halt and all state changes will be
reverted (this can also be done with the revert() instruction). It is worth noting
that revert bubbles up normal function calls i.e. when a function call results in
a revert, the calling function also fails and reverts. The only way to stop such
revert cascades is to explicitly invoke the called function of another contract
using the low-level addr.call(...) EVM opcode which calls the function given
as parameter of the contract residing at the given address, but which returns a
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Listing 2. Part of the implementation of the procurement smart contract.

1 modifier byBuyer {

2 require(msg.sender ==buyer);

3 _;

4 }

5

6 function deliveryMade(uint16 _orderNumber) public

byBuyer {

7 Order memory order = orders[_orderNumber ];

8 // Ensure that the order exists and has

9 // not yet been delivered

10 require(

11 order.exists && order.status != OrderStatus.

Delivered

12 );

13 // Order state update

14 order.status = OrderStatus.Delivered;

15 // Contract state update

16 if (order.deliveryTimeDue < now) {

17 lateOrdersCount ++;

18 } else {

19 inTimeOrdersCount ++;

20 }

21 // Sign delivery with the courier service

22 courierContract.call(

23 bytes4(keccak256("sign(uint256)")), buyer

24 );

25 // Pay the seller

26 seller.transfer(order.cost);

27

28 emit DeliveryMade(_orderNumber);

29 }

30

31 event DeliveryMade(uint16 _orderNumber);

boolean value stating whether the call failed or not. Line 19 triggers a signature
on a separate contract with the courier, but avoiding the delivery to fail if the
signature does not go through for whatever reason. If the call is to be made to
a function from another contract, but within the state space of the current one
(i.e. having access to the data and functions of the calling contract), a similar
opcode addr.delegatecall(...) can be used.

The byBuyer modifier is used in line 6 to ensure that function deliveryMade
can only be called by the buyer. Note how the underscore at line 3 specifies that
the associated function logic (in this case deliveryMade()) should be performed
after executing line 2.
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Each smart contract inherently is also an Ethereum account, allowing it to
hold Ether (Ethereum’s cryptocurrency) as well as transfer it to other accounts.
Incoming transfers are done with function calls which are tagged as payable,
which enable the caller to send funds when triggering the function. Outgoing
transfers can be done using the addr.transfer(amount) function, which sends
the specified amount of cryptocurrency to the given address. For example, line
21 in Listing 2 performs a transfer of the amount of order.cost from the smart
contract’s internal account to the seller account. Finally, Solidity smart con-
tracts can emit events that may be listened to (asynchronously) by applications
off the chain. For example, a mobile application can listen to the event defined
on line 26, and triggered on line 23 — thus notifying the seller that the buyer
has acknowledged receipt and has affected payment.

3 Runtime Verification of Solidity Smart Contracts

ContractLarva is a runtime verification tool for contracts written in Solid-
ity. It works at the Solidity source level of the smart contract and since once
deployed, the code of a smart contract is immutable, it is meant to be applied
before deployment. As shown in Fig. 2, extra code is instrumented into the smart
contract based on a given specification, to add runtime checks ensuring that any
violation of the specification is detected and may thus be reacted upon.

Fig. 2. Workflow using ContractLarva

The tool takes (i) a smart contract written in Solidity; and (ii) a specification
written using an automaton-based formalism based on that used in the Larva
runtime verification tool for Java [13], and produces a new smart contract which
is functionally identical to the original as long as the specification is not vio-
lated, but has additional code to (i) track the behaviour of the smart contract
with respect to the specification; and (ii) deal with violations as given in the
specification.

3.1 Runtime Points-of-Interest in Smart Contracts

In any dynamic analysis technique with temporal specifications that express
what should happen and in which order, one key element is the identification
of which points during the execution of a smart contract can be captured by
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the analysis and thus analysed at runtime. These points-of-interest, or events5

typically require balancing between what is required to specify the correctness of
the system, with what can be efficiently extracted. Given that ContractLarva
works at the source level, it makes sense to annotate points in the control flow
of the smart contract in order to generate events when reached. Also of interest
are updates to the global state (variable) which may happen at different control
points e.g. the status of the procurement contract (whether it is proposed, active
or terminated) is set in different functions, even though one may want to ensure
that a terminated contract is never reactivated, thus requiring reasoning about
runtime points when the status variable is updated. For this reason, Contract-
Larva also allows the capture of data-flow points-of-interest. These are the two
types of events which can be used in ContractLarva:

1. Control-flow triggers which trigger when a function is called or control exits
that function: (a) before:function, triggers whenever function is called
and before any of the function’s code is executed; and (b) after:function,
triggers the moment function terminates successfully (i.e. not reverted). In
both cases, the value of the parameters can be accessed by being specified in
the event e.g. before:deliveryMade( orderId), but may be left out if they
are not used.

2. Data-flow triggers, trigger when an assignment on a global variable occurs
(even if the value of the variable does not change) — var@(condition)
triggers whenever variable var is assigned to (just after the assignment is
performed), with the condition holding. The condition in variable assign-
ment triggers can refer to the value of variable var before assignment using
LARVA previous var e.g. to trigger when the procurement contract status
goes from Closed to Open, one would use the event:

status@(

LARVA previous status==ContractStatus.Closed &&

status==ContractStatus.Open

)

It is worth remarking that all events trigger if they happen during an execu-
tion which succeeds (that is, not reverted). For instance, the control flow event
before:deliveryMade would not be triggered when deliveryMade is called with
an order number which does not exist and thus result in a revert due to a require
statement. Similarly, if deliveryMade is called with insufficient gas to execute
successfully, the event would not trigger.

3.2 Specifying Properties

In order to characterise correct and incorrect behaviour, ContractLarva uses
automaton-based specifications in the form of dynamic event automata (DEAs)
5 The choice of the term event, frequently used in runtime verification, is unfortunately

overloaded with the notion of events in Solidity. In the rest of the paper, we use the
term to refer to runtime points-of-interest.
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— finite state automata with symbolic state, based on dynamic automata with
timers and events (DATEs) used for specifications in Larva [13] but lacking
timers and quantification, and quantified event automata (QEAs) as used in
MarQ [29], but lacking quantification.

A DEA consists of a deterministic automaton, listening to contract event
triggers. A number of the states are annotated as bad states which, when reached,
denote that a violation has occurred, and other annotated as accepting states
denoting that when reached, the trace has been accepted and monitoring is no
longer required. DEAs thus categorise traces into three sets: rejected traces,
accepted ones and others which cannot yet be given a verdict. The automata
used are, however, symbolic automata — in that they may use and manipulate
monitoring variables. Transitions are annotated by a triple: e | c �→ a, where (i) e
is the event which will trigger the transition, (ii) c is a condition over the state of
the smart contract and the symbolic monitoring state determining whether the
transition is to be taken, and finally (iii) a is an executable action (code) which
may have a side-effect on the monitoring state, and which will be executed if the
transition is taken. Both condition and action can be left out if the condition is
true or no action is to be taken respectively.

For instance, consider clause 6 of the legal contract which states that “Upon
termination of the contract, the seller is guaranteed to have received payment cov-
ering the cost of the minimum number of items to be ordered unless less than this
amount is delivered, in which case the cost of the undelivered items is not guar-
anteed.” Figure 3(a) shows how this clause may be implemented. The DEA keeps
track of (i) the number of items delivered (in a monitoring variable delivered);
and (ii) the amount of money transferred to the seller (in the variable payment).
If the contract is closed and the seller has not yet been sufficiently paid (for the
minimum number of items to be ordered less any undelivered items), the DEA
goes to a bad state marked with a cross. On the other hand, if during the life-
time of the contract, the seller has already received payment for the minimum
number of items to be ordered, the DEA goes to an accepting state (marked
with a checkmark) indicating that the property can no longer be violated. Note
that any events happening not matching any outgoing transition of the current
state leave the DEA in the same state.

However, runtime verification can be used to go beyond ensuring that the
smart contract really enforces the legal contract. For instance, although not part
of the legal contract, one may expect that the implementation ensures that once
the procurement contract is terminated, it cannot be reactivated, a specification
of which written using a DEA is shown in Fig. 3(b).

Formally, DEAs are defined as follows:

Definition 1. A dynamic event automaton (DEA) defined over a set of mon-
itorable events or points-of-interest Σ and system states Ω, is a tuple M =
〈Q,Θ, q0, θ0, B,A, t〉, where (i) Q is a finite set of explicit monitoring states
of the DEA; (ii) Θ is a (possibly infinite) set of symbolic monitoring states of
M; (iii) q0 ∈ Q and θ0 ∈ Θ are the initial explicit and symbolic state of M;
(iv) B ⊆ Q and A ⊆ Q are respectively the bad and accepting states of the
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Fig. 3. (a) DEA encoding clause 6 of the procurement contract; and (b) Once termi-
nated, the contract cannot be reactivated.

automaton; and (v) t ⊆ Q × Σ × (Θ × Ω → Bool) × (Θ → Θ) × Q is the
transition relation of M.

We will write (q, θ) �e,ω−−→ to mean that ∀(q, e, c, a, q′) ∈ t · ¬c(θ, ω).

Informally, (q, e, c, a, q′) ∈ t denotes that if (i) the DEA is in state q; (ii) event
e occurs; and (iii) condition c holds, then action a will be executed, updating
the monitoring state from θ to a(θ), and the DEA moves to state q′. Formally
the operational semantics are defined as follows:

Definition 2. The configuration of a smart contract is a pair in Q × Θ. The
operational semantics of a DEA M is given by the labelled transition relation
over configurations such that (q, θ)

e,ω−−→ (q′, θ′) holds if and only if, upon receiving
event e ∈ Σ when the smart contract is in state ω ∈ Ω, the monitor evolves from
explicit state q and symbolic state θ to q′ and θ′:

(q, e, c, a, q′) ∈ t c(θ, ω)

(q, θ)
e,ω−−→ (q′, a(θ))

q /∈ A ∪ B

(q, θ) �e,ω−−→
(q, θ)

e,ω−−→ (q, θ)

q ∈ A ∪ B

(q, θ)
e,ω−−→ (q, θ)

The relation is extended over lists of observations, and we write (q, θ) w=⇒
(q′, θ′) (where w ∈ (Σ × Ω)∗) to denote the smallest relation such that: (i)
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∀q ∈ Q, θ ∈ Θ · (q, θ) ε=⇒ (q, θ); and (ii) for all q, q′ ∈ Q, θ, θ′ ∈ Θ, e ∈ Σ,

ω ∈ Ω, (q, θ)
(e,ω):w
====⇒ (q′, θ′) if and only if for some qm ∈ Q and θm ∈ Θ,

(q, θ)
e,ω−−→ (qm, θm) and (qm, θm) w=⇒ (q′, θ′).

The set of bad (respectively accepting) traces of a DEA M, written B(M)
(respectively A(M)) is the set of traces which lead to a bad (respectively accept-

ing) state: B(M)
df
= {w | (q0, θ0)

w=⇒ (qb, θ)∧qb ∈ B} and A(M)
df
= {w | (q0, θ0)

w=⇒
(qa, θ) ∧ qa ∈ A}.

3.3 Reparation Strategies

One of the major challenges with smart contracts is what to do when a violation
is detected. Runtime verification on traditional systems typically results in a
bug report being filed, and code fixes to be released if the bug is deemed serious
enough. In case of the state of the system being compromised due to the issue, the
offending actions may be rolled back or manual intervention takes place to ensure
correct future performance. In smart contracts reparation to deal with failure
which already took place is typically not possible. The (by default) immutable
nature of smart contracts means that bug fixes are not necessarily possible and
transactions written to the blockchain cannot be easily undone. Immutability
comes with caveats (we address this in Sect. 4) but modification of smart con-
tracts and past transactions goes against the very selling point of using public
blockchains: decentralised immutability of smart contracts and transactions.

We typically use dynamic analysis out of necessity when static analysis can-
not handle the verification process completely. However in this case dynamic
analysis comes with an advantage: logic to perform actions which override smart
contract logic or past transactions can be guaranteed to trigger only when a
violation occurs, thus ensuring immutability as long as the code is working as
expected. However, the reparation logic itself is typically smart contract- and
property-specific. For instance, while a transaction which wrongly disables an
order may be fixed by reenabling it, a bug which locks the seller’s performance
guarantee in the contract (with no means to retrieve the funds) is more complex
to address — with one possible reparatory strategy being that of requiring the
buyer (or the developer of the contract) to place an amount of funds in the smart
contract as a form of insurance, returning them when the contract terminates
successfully but passed on to the seller if the performance guarantee becomes
locked.

Flexibility of reparation techniques is thus crucial, possibly even more crucial
than other domains. ContractLarva allows for custom actions (which may
access the system state) which are triggered the moment the DEA moves to a
bad or accepting state.

For instance, consider the property ensuring that the procurement contract
is not reactivated after being closed. One possible reparation is that of closing it
down immediately, which would be handled by the following ContractLarva
script:
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1 violation {

2 contractStatus = ContractStatus.Closed;

3 }

This would effectively close the contract immediately to make up for its reacti-
vation. However, the reactivation may happen as part of a more complex trans-
action (e.g. a function call which, apart from opening the procurement contract,
will also make other changes) which one may wish to abort altogether. Using
Solidity’s notion of reverted computations whose effects are effectively never
written on the blockchain, one can build a form of runtime enforcement by effec-
tively suppressing the call which led to the violation in the first place:

1 violation {

2 revert ();

3 }

On the other hand, more complex reparation strategies may require additional
code implementing them, as in the case of the minimum order constraint of
clause 6 of the legal contract. For instance, the implementation of an insurance-
based reparation strategy may work as follows: (i) the party providing insur-
ance must start off by paying a stake before the contract is enabled; (ii) if the
specification is violated, the insured party is given that stake; while (iii) if the
specification reaches an accepting state, the insurer party gets to take their stake
back.

In order to implement this behaviour, the specification would add the follow-
ing auxiliary code to the original smart contract:

1 function payInsurance () payable {

2 require (insuranceStatus == UNPAID);

3 require (msg.value == getInsuranceValue ());

4 require (msg.sender == getInsurer ());

5

6 insuranceStatus = PAID;

7 LARVA_EnableContract ();

8 }

9 function getInsuranceValue () { . . . }

10 function getInsurer () { . . . }

By default, ContractLarva starts off with the original smart contract dis-
abled (i.e. functions automatically revert), and it is up to the monitoring logic
to enable it. In this case, the function payInsurance() has to be called and
the insurance paid by the insurer before the original contract is enabled —
LARVA EnableContract() and LARVA DisableContract() are functions pro-
vided by ContractLarva to enable and disable the original smart contract.
Specification satisfaction (in which case we simply return the stake to the insurer)
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and violation (in which case the stake is paid to the insured party and the original
smart contract is disabled) would then be specified as follows:

1 satisfaction {

2 getInsurer ().transfer(getInsuranceValue ());

3 }

4 violation {

5 LARVA_DisableContract ();

6 getInsured ().transfer(getInsuranceValue ());

7 }

For more sophisticated ways of dealing with reparation, including compensations,
the reader is referred to [9].

3.4 Instrumentation

Monitor instrumentation into smart contracts can be done in different ways. For
instance, instrumentation may be performed at the virtual machine level or at
the source code level. It may be achieved by inlining verification code in the
smart contract, or by adding only event generation to the original contract, and
separate the monitoring and verification code — in the latter case, one may then
choose to perform the verification on a separate smart contract or even off-chain.
We discuss some of these options in Sect. 5, and focus on the approach taken by
ContractLarva here.

ContractLarva instruments specifications directly into the smart contract
at the Solidity source code level, promoting the idea that the new smart con-
tract with instrumented verification code still being accessible at a high level of
abstraction. The tool takes a smart contract written in Solidity and a specifica-
tion, and creates a new smart contract with additional code to handle monitoring
and verification.

In order to handle data-flow events, the tool adds setter functions, and
replaces all assignments to the monitored variables to use the setter instead6.
Using these setter functions, instrumenting for data-flow events effectively
becomes equivalent to intercepting control-flow events on the setter function.

To instrument control-flow events, we add a modifier for each transition.
For a particular event e, we define the set of transitions triggered by it to be
t � e = {(q, e′, c, a, q′) ∈ t | e′ = e}, with which the DEA operational semantics
can be encoded. For instance, if t � before:f(x) consists of two transitions
(q1, before:f(x), c1, a1, q

′
1) and (q2, before:f(x), c2, a2, q

′
2) we define and use

a Solidity modifier to carry out these transitions before f is called:

6 The only case which is not covered by this approach is if the contract performs
external delegate calls (which may result in the callee changing the state of the
caller). However, this can be syntactically checked at instrumentation time.
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1 modifier LARVA_before_f(uint x) {

2 if (( LARVA_STATE == q1) && c1) {

3 LARVA_STATE = q′
1;

4 a1;

5 } else {

6 if (( LARVA_STATE == q2) && c2) {

7 LARVA_STATE = q′
2;

8 a2;

9 }

10 }

11 _;

12 }

13

14 function f(uint _value) public LARVA_before_f(_value)

{ ... }

It is worth noting that the overheads induced when a function is called are linear
in the number of transitions in the DEA which trigger on events related to that
function. In practice, however, one finds that these overheads can be reasonable
especially in the context of the critical nature of many smart contracts.

3.5 Runtime Overheads

Although, compared to other verification techniques, runtime verification is typ-
ically not that computationally expensive, it performs this computation at run-
time, which can affect a program’s performance. These runtime overheads can
be avoided by performing verification asynchronously, however here we consider
synchronous runtime verification since we require monitors to ensure that the
smart contract conforms to the legal contract.

Unlike traditional systems, where one looks at different dimensions of moni-
toring overheads: time, memory, communication, etc., in the case of smart con-
tracts on Ethereum, the metric for measuring overheads can be clearly quantified
in terms of gas units. The main challenge is that gas is directly paid for in cryp-
tocurrency, meaning that overheads have a direct economic impact7.

When evaluating instrumented smart contracts we then can first measure the
gas cost instrumentation adds to deployment of the smart contract (this addi-
tional gas cost reflects the instrumentation logic added), and secondly evaluate
function calls to the smart contract to measure increased execution costs. We
use this approach to evaluate an application of ContractLarva in the next
section.

7 Although in traditional systems, overheads in space, time and communication are
still paid for financially (more memory, more CPU power or more bandwidth), the
cost is indirect and the perception is that is a matter of efficiency, and not cost
management..
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4 Safe Mutability of Smart Contracts

An important aspect of smart contracts in Ethereum is that they are immutable
(once deployed the smart contract’s code cannot be changed). This ensures that
no one can change the behaviour of the smart contract, protecting users from
malicious changes. On the other hand immutability does not ensure this com-
pletely, given that smart contracts can call other smart contracts — any change
in the target address of such calls changes the control-flow behaviour of the call-
ing smart contract. Previous work shows that at least two out of five smart con-
tracts are not control-flow immutable [16], and thus users cannot be completely
sure that the behaviour will not be changed to their detriment and without
notice.

4.1 Mutable Smart Contracts

Not allowing such external calls in contracts is not an option, since it is essential
to support code reuse and to combine services. Moreover, since smart contracts
are programs, they will have bugs, which must be repaired, thus some level of
mutability allowing at least bug correction to occur is essential. Here we discuss
an approach we proposed in [9] that allows safe mutability of a smart contract
through the monitoring of a behavioural contract.

Listing 3. ERC-20 token interface standard [31].

1 interface ERC20 {

2 function totalSupply () public constant returns (uint);

3

4 function balanceOf(address tokenOwner) public constant

5 returns (uint balance);

6

7 function allowance(address tokenOwner , address spender

)

8 public constant

9 returns (uint remaining);

10

11 function transfer(address to, uint tokens) public

12 returns (bool success);

13

14 function approve(address spender , uint tokens) public

15 returns (bool success);

16

17 function transferFrom(address from , address to , uint

tokens)

18 public

19 returns (bool success);

20 }



128 S. Azzopardi et al.

As a case study we consider the ERC-208 token standard [31]. This standard,
which is adhered to by over 100,000 smart contracts9, is used by smart contracts
which implement tokens — virtual assets which may be owned and transferred.
Such tokens implement the Ethereum interface shown in Listing 3. Other, less
widely used token standards exist, but they all carry out similar functionality
and are thus amenable to roughly the same specification we use here.

An implementation of this standard may allow for possible updates to occur
by introducing a proxy or hub-spoke pattern — a design pattern consisting of
a hub (or proxy) contract that serves as the entry-point, which delegates the
business logic to another contract. This common pattern allows one to deal
with versioning in Ethereum (by allowing the implementation to be dynamically
changed simply by updating the address to where the current version of the
implementation resides), but does not provide any security to the user, since
it allows the owner to change the behaviour unilaterally (e.g. the owner can
change the implementation to one that steals commissions from token transfers).
To provide the user with more guarantees, we propose the use of behavioural
contracts that specify the behaviour the user can expect out when using this
smart contract (i.e. the hub), which moreover we monitor for at runtime to
revert any illicit behaviour.

As our hub or proxy, we create a smart contract that respects the interface in
Listing 3, but which contains no logic except that it passes function calls to the
implementation residing in another smart contract which contains the current
version of the business logic:

1 ERC20 implementation;

2

3 function totalSupply () constant returns (uint){

4 return implementation.totalSupply ();

5 }

In order to update versions, one can add simple logic to the hub or proxy
that allows the owner to update the implementation to one residing at a new
address:

1 address owner;

2

3 function updateImplementation(address

newImplementation) public {

4 require(msg.sender == owner);

5 implementation = ERC20(newImplementation);

6 }

8 ERC stands for Ethereum Request for Comment, with 20 being the number that was
assigned to the request.

9 As reported by Etherscan (see www.etherscan.io/tokens) in July 2018. The number
of active, and trustworthy token implementations is, however, much lower than this
figure.

www.etherscan.io/tokens
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The ERC-20 standard also comes with behavioural constraints, described
informally in [31]. We can specify these using DEAs (see Figs. 4, 5 and 6). For
specification legibility, we will use the condition denoted by an asterisk (*) to
denote an else branch for the relevant event i.e. e | ∗ �→ a will trigger if and only
if event e is detected, but no other outgoing transition from the current state is
triggered.

Fig. 4. Calling transfer (i) moves the amount requested if there are enough funds;
but (ii) has no effect otherwise.

Fig. 5. Calling approve changes the allowance to the specified amount.

In order to ensure that updates to the implementation do not result in spu-
rious, buggy or, even worse, malicious code, we instrument runtime checks to
ensure that the effect of the ERC-20 functions on the state of the smart contract
are as expected e.g. upon a call to the transfer function the balance of the
sender and the recipient of the token value is stored, and this is used to check
that the exact amount of tokens is transferred appropriately from the sender to
the recipient (if the sender has enough tokens).

Thus, by instrumenting the entry-point (or hub) smart contract with this
behavioural contract we ensure detection when smart contract mutability results
in unexpected or wrong behaviour. If any non-conformant behaviour is detected,
a bad state is reached and the transaction is reverted, thus protecting the user
from malicious behaviour.

We give some examples of allowed and disallowed traces, using natural
numbers as addresses, i.e. 0.transfer(1, 10) denotes the address 0 call-
ing the transfer function that sends ten tokens to address 1. Consider that
balanceOf(1) == 0 holds then the trace 0.transfer(1, 100);1.transfer(2,
101); fails, due to Fig. 4, while 0.transfer(1, 100);1.transfer(2, 100);
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succeeds. For Fig. 6, 0.approve(1, 100);1.transferFrom(0, 1, 50); is suc-
cessful, but extending it with 1.transferFrom(0, 1, 51); fails, given that
after spending fifty tokens user 1 is only allowed to spend a further fifty tokens.

Note this still has some limitations, namely in terms of securing state, e.g.
the owner can still update the implementation that behaviourally respects our
contracts but that changes the token values assigned to certain users. To handle
this, we can separate the business logic from storage, keeping them in different
smart contracts. In this manner, we can allow version updates to the business
logic but not to the storage smart contract. In other cases, it may be useful to
allow the owner to change the state in special circumstances (e.g. to remedy a
mistaken transfer). We do not consider this further here.

4.2 Evaluation

We evaluated the overheads induced by this approach10 to safe mutability by
measuring the associated increase in gas. We measure this in two stages. First
we compare the overheads associated with adding versioning (and logic in the
spoke to only allow the hub to use the spoke) against the simple case of just using
the implementation directly. Secondly we compare the overheads associated with
adding monitoring of the behavioural contracts on top of the versioning hub. We
also consider some example traces that are

The magnitude of these overheads are shown in Table 1, along with the total
overheads added when doing both. Note how both introducing a hub-spoke
pattern and monitoring introduces substantial overheads. Setting up versioning
increases gas costs by up to 65.11%, given the creation of a new smart contract
and adding logic to the implementation to only be used by the hub. Moreover,

Fig. 6. Calling the transferFrom (i) moves the amount requested and reduces the
allowance if there are enough funds and the caller has enough of an allowance; but (ii)
has no effect otherwise.
10 The case study can be found at: https://github.com/shaunazzopardi/safely-

mutable-ERC-20-interface.

https://github.com/shaunazzopardi/safely-mutable-ERC-20-interface
https://github.com/shaunazzopardi/safely-mutable-ERC-20-interface
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Table 1. Overheads associated with adding a behavioural interface to an ERC20 token.

Overheads when adding Overheads when adding Total

Only versioning Behavioural contracts

Transactions Gas units Percentage Gas units Percentage Gas units Percentage

Setting up 1711984 65.11% 973794 37.03% 2685778 102.14%

totalSupply 4186 18.24% 734 3.2% 4920 21.44%

balanceOf 4494 18.71% 734 3.06% 5228 21.77%

allowance 4678 18.00% 756 2.91% 5434 20.91%

transferFrom 5324 5.78% 93320 101.34% 98644 107.12%

transfer 35362 71.47% 76152 153.92% 111514 225.39%

approve 5668 8.39% 43462 64.31% 49130 72.70%

there is a substantial increased cost to using the transfer function given it
implicitly depends on the msg.sender which with versioning must be passed on
directly from the hub (otherwise upon a call from the hub the implementation
will see the hub’s address for msg.sender, not the actual transaction initia-
tor’s address). When adding monitoring, calling transfer, transferFrom, and
approve experience a significant increase in gas costs, which is to be expected
given each call to these functions checks at least two monitor transitions. How-
ever, it is worth noting that the overhead induced is constant no matter how
complex the token logic is. For the sake of this analysis, we used a trivial token
implementation, but typically, tokens include more complex (i.e. more expensive)
logic, thus reducing the percentage overhead for each call.

Furthermore, the major selling point of smart contracts has been that of
guaranteed performance without the need for centralised trust (e.g. in a server),
and yet there have been all too many cases of bugs in smart contracts which
result in behaviour which resulted in losses of the equivalent of millions of dol-
lars. Immutability (i.e. non-updatable code) results in bugs and exploits also
being immutably present — the guaranteed performance is on the implemented
behaviour, though possibly not the originally intended one. Unbridled version
updates by the contract owner or developer, result in reintroducing the party
who can update the code as a central point of trust, thus questioning the need
for a smart contract in the first place. The need for controlled code updates
is thus a real one, and the cost can be justified due to the immense potential
losses. However, it is still a major question as to how these overheads can be
significantly reduced.

5 Open Challenges

In this section we outline a number of research challenges and directions which
are still to be addressed for smart contract monitoring.
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5.1 Dealing with Failure

In many domains, failure to perform a subtask is handled within the normal
execution of the systems, either through return values denoting failure or through
exceptions. In either case, the side effects of the computation, both those leading
to the failure and its handling can be monitored. In contrast, on Ethereum and
Solidity, one can trigger failure through the use of revert which rolls back
the prefix computation before the failure as though it never happened (apart
from the fact that there was a reverted call). Although there has been some
related work with runtime monitoring of rollback and compensation computation
[10,11], in the context of smart contracts the notion of reverted execution goes
beyond simply that of a computation which did not go through. With the view
that smart contracts are effectively self-enforced contracts, a legal right such as
‘The seller has the right to request an extension of the delivery deadline of an
order’ goes beyond having a function requestDeadlineExtension(), since if
every call to the function by the seller is reverted, the right is not really being
respected.

The only way to handle reverted computation on the chain (on Ethereum)
is by making the function calls from another contract, which allow capturing
a revert within the logic of the (calling) smart contract, and we have already
started experimenting with a variant of ContractLarva which handles an
additional event modality failure such that the event failure:f triggers when
function f is called but fails due to an explicit revert (or instances of the
command hidden in syntactic sugar such as in require) [9]. If the cause for the
failure is lack of gas, however, monitor execution cannot be carried out, which
thus leaves the option of violating rights through excessive gas use.

Factoring in gas usage in monitoring for failures is a major challenge. Whether
it is through the use of worst-case gas consumption analysis to statically reject
monitored functions which may have a gas leak, or whether to leave sufficient gas
to deal with monitoring upon a failure, static analysis could support these forms
of violations. Some static analysis techniques to deal with potential gas attacks
have already started being investigated [18]. Other options may use dynamic
analysis to monitor gas usage for this form of denial-of-right attack.

5.2 Dealing with Monitoring Overheads

Over the past few years, much work has been done applying static analysis to
make runtime verification cheaper, including [1,7,8,14]. In the domain of smart
contracts, we believe that many of these approaches will perform better, and can
be specialised to yield more optimisations. Although smart contract platforms
such as Ethereum provide Turing-complete programming capabilities, in prac-
tice, few smart contracts use general recursion or loops other than using fixed
patterns e.g. iteration through an array. This means that many static analy-
sis techniques, such as abstraction or symbolic execution can yield much more
precise results and hence are more effective in reducing runtime verification over-
heads.
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In ContractLarva, we perform all monitoring and verification online and
on-chain. Other alternative approaches could include pushing parts of the verifi-
cation computation off-chain. For instance, for cases where the verification algo-
rithms can be particularly expensive, one may simply log the relevant events (or
even use the information written on the blockchain to extract it), and let the
parties involved in the smart contract to perform verification, allowing progress
only if they agree on the outcome of the verification e.g. using an external oracle,
or via a voting mechanism or by all parties having to submit a hashed state of
the verifying algorithm. The challenge in designing such an approach is to ensure
that a smart contract is not stalled when things are detrimental to some party.
Similarly, one may allow for asynchronous monitoring to avoid bottlenecks and
enforce synchronisation only when critical situations are reached [12].

Another aspect is that on-chain stateful monitoring is simply impossible on
DLTs which have stateless smart contracts, such as Ardor11. However, in the case
of Ardor, only the relevant parties to a transaction execute the smart contract,
and one may consider adding verification modules to clients in order to verify
transactions before they are written to the blockchain.

5.3 Beyond Monitoring of Simple Smart Contracts

There are various other open challenges in the field. Our approach focusses on
the behaviour of a single smart contract, even though they execute in a context.
One may have properties across multiple interacting smart contracts e.g. the pro-
curement smart contract may directly invoke and use a contract with a courier
service to deliver the goods. If all the contracts are instrumented with monitor-
ing code, the challenges are similar to those encountered in the monitoring of
distributed systems e.g. where there should be a central monitoring orchestra-
tor, or whether monitoring should be split and choreographed across contracts.
If a contract cannot be instrumented with monitoring code, techniques such as
assume-guarantee reasoning may need to be adopted to allow for compositional
monitoring without being able to monitor within each component.

Although we have focussed on the monitoring of smart contracts, one may
look at incorporating monitoring at the level of the DLT itself, beyond the
effects of transactions, to include behaviour of miners and the data on the ledger
itself. For instance, on Ethereum the order in which transactions are applied and
recorded on a new block depends on the miners, which gives rise to a number
of vulnerabilities due to a set of miners acting as malicious schedulers. Dynamic
analysis of miner activity could be investigated to identify such behaviour.

6 Related Work

In this paper we have considered a runtime monitoring approach to the verifica-
tion of smart contracts, however proving smart contracts safe before deployment

11 See https://www.ardorplatform.org/.

https://www.ardorplatform.org/
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is preferable, when possible. Although in their infancy, such approaches to formal
verification in Ethereum exist. For instance, the approach proposed in [2] uses
deductive analysis to verify business-logic properties of smart contracts at the
Solidity level. In contrast, ZEUS [22] uses an abstraction of Solidity code that
is translated to LLVM bitcode, allowing for conservative verification of safety
properties expressed in a quantifier-free first order logic. This approach however
does not soundly abstract all Solidity instructions, given lack of clear counter-
parts in LLVM, in fact reverting a program state is handled just as a program
exit. Moreover external function calls are handled non-deterministically given
that the target smart contract of such calls may change at runtime. The same
behaviour for external calls is taken by other tools, e.g. [19]. In [19] the sound
static analysis tool EtherTrust is used to show that an external call cannot call
again the smart contract and reach another external call (then possibly caus-
ing an infinite loop that exhausts all gas). Given the external smart contract is
not available, this depends on having appropriate logic preventing this in the
smart contract. This is a good use case for runtime monitoring tools such as
ContractLarva, that can be used to add this safety logic around external
calls.

Other work, e.g. [3,21,28], translates EVM bytecode into established lan-
guages that amenable to theorem provers, however working at this low-level
of bytecode abstracts away some valuable information (e.g. loops). Theorem
provers also largely require interaction for full proofs, whereas we are interested
in automated verification. Symbolic execution engines also exist for EVM byte-
code, that allow for analysis of a smart contract in the context of the rest of the
blockchain, e.g. [25,27]. [6] is an example of an approach capable of working at
the level of Solidity code, where it translates this to F∗ code, making it amenable
to the languages typechecking.

All this work has been recent and is not yet mature. Runtime verification,
on the other hand, is simpler to implement, and gives precise results, unlike
the tools we described whose precision varies. On these tools maturing runtime
verification still has value, where it can be used as the tool of last resort —
where other techniques only succeed in proving part of a property safe, runtime
verification can be employed to prove the rest of the property, as in [1].

7 Conclusions

We have considered smart contracts and motivated the need for their verification,
while illustrating the ContractLarva approach to monitoring Ethereum smart
contracts by instrumenting smart contracts with event triggering and monitoring
logic. Interestingly, this context allows the blocking of violating behaviour at the
level of the smart contracting language, while ContractLarva further allows
the specification of further flexible reparation strategies in case of violation. We
have applied this approach to limit the mutability of a smart contract’s behaviour
once it is deployed to the blockchain, allowing updates to its logic while ensuring
the behaviour is bounded by an immutable behavioural contract monitor. This
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allows more dependable services to be provided from the blockchain, and limiting
the negative effect of bugs before they are corrected.

There are many open challenges left in smart contract verification. Partic-
ularly outstanding is the question of how to handle failure of a transaction.
Considering an implementation of a legal contract, a failure of a transaction can
have legal implications and verification methods can be used to detect such fail-
ures, assign blame, and enforce reparations. The role of off-chain analysis is also
discussed, as are avenues for marrying this with on-chain enforcement. Monitor-
ing also presents some challenges given it adds the need for more gas, possibly
causing the failure of a transaction due to insufficient gas.
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Abstract. We revisit Stream Runtime Verification for synchronous sys-
tems. Stream Runtime Verification (SRV) is a declarative formalism to
express monitors using streams, which aims to be a simple and expressive
specification language. The goal of SRV is to allow engineers to describe
both correctness/failure assertions and interesting statistical measures
for system profiling and coverage analysis. The monitors generated are
useful for testing, under actual deployment, and to analyze logs.

The main observation that enables SRV is that the steps in the algo-
rithms to monitor temporal logics (which generate Boolean verdicts) can
be generalized to compute statistics of the trace if a different data domain
is used. Hence, the fundamental idea of SRV is to separate the temporal
dependencies in the monitoring algorithm from the concrete operations
to be performed at each step.

In this paper we revisit the pioneer SRV specification language Lola

and present in detail the online and offline monitoring algorithms. The
algorithm for online monitoring Lola specifications uses a partial evalu-
ation strategy, by incrementally constructing output streams from input
streams, maintaining a storage of partially evaluated expressions. We
identify syntactically a class of specifications for which the online algo-
rithm is trace length independent, that is, the memory requirement does
not depend on the length of the input streams. Then, we extend the
principles of the online algorithm to create an efficient offline monitor-
ing algorithm for large traces, which consist on scheduling trace length
independent passes on a dumped log.

Keywords: Runtime verification · Formal verification
Formal methods · Stream runtime verification synchronous systems
Dynamic analysis · Monitoring

1 Introduction

Runtime Verification (RV) is an applied formal method for software reliability
that analyzes the system by processing one trace at a time. In RV a specifica-
tion is transformed automatically into a monitor, and algorithms are presented
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to evaluate monitors against traces of observations from the system. There are
two kinds of monitoring algorithms in RV depending on when the trace is gen-
erated and processed. In online monitoring the monitor checks the trace while
the system runs, while in offline monitoring a finite collection of previously gen-
erated traces are analyzed. Online monitoring is used to detect violations of the
specification when the system is in operation, while offline monitoring is used in
post-mortem analysis and for testing large systems before deployment.

Static verification techniques like model checking intend to show that every
(infinite) run of a system satisfies a given specification, while runtime verification
is concerned only with a single (finite) trace. Thus, RV sacrifices completeness to
provide an applicable formal extension of testing. See [21,24] for modern surveys
on runtime verification and the recent book [4].

The first specification languages studied for runtime verification were based
on temporal logics, typically LTL [6,13,22], regular expressions [28], timed regu-
lar expressions [1], rules [3], or rewriting [27]. In this paper we revisit the Stream
Runtime Verification specification formalism, in particular the Lola specifica-
tion language for synchronous systems [12]. The Lola language can express
properties involving both the past and the future and their arbitrary combina-
tion. In SRV, specifications declare explicitly the dependencies between input
streams of values—that represent the observations from the system—and out-
put streams of values—that represent monitoring outputs, like error reports and
diagnosis information. The fundamental idea of SRV is to cleanly separate the
temporal reasoning from the individual operations to be performed at each step.
The temporal aspects are handled in a small number of constructs to express the
offsets between observations and their uses. For the data, SRV uses off-the-self
domains with interpreted functions so function symbols can be used as con-
structors to create expressions, and their interpretation is used for evaluation
during the monitoring process. The domains used for SRV are not restricted to
Booleans and allow richer domains like Integers, Reals (for computing quanti-
tative verdicts) and even queues, stacks, etc. These domains do not involve any
reasoning about time. The resulting expressiveness of SRV surpasses that of tem-
poral logics and many other existing formalisms including finite-state automata.
The restriction of SRV to the domain of Booleans is studied in [10], including
the expressivity, the comparison with logics and automata and the complexity
of the decision problems.

The online monitoring problem of past specifications can be solved efficiently
using constant space and linear time in the trace size. For future properties, on
the other hand, the space requirement depends on the length of the trace for
rich types (even though for LTL, that is for the verdict domain of the Booleans,
one can use automata techniques to reduce the necessary space to exponential in
the size of the specification). Consequently, online monitoring of future temporal
formulas quickly becomes intractable in practical applications with long traces.
On the other hand, the offline monitoring problem for LTL-like logics is known
to be easy for purely past or purely future properties. We detail in the paper
a syntactic characterization of efficiently monitorable specifications (introduced
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in [12]), for which the space requirement of the online monitoring algorithm is
independent of the size of the trace, and linear in the specification size. This
property was later popularized as trace length independence [5] and is a very
desirable property as it allows online monitors to scale to arbitrarily large traces.
In practice, most properties of interest in online monitoring can be expressed as
efficiently monitorable properties. For the offline monitoring problem, we show
an efficient monitoring strategy in the presence of arbitrary past and future
combinations by scheduling trace length independent passes. We describe here
the algorithm and results using the Lola specification language. An execution
of the monitor extracted from a Lola specification computes data values at
each position by evaluating the expressions over streams of input, incrementally
computing the output streams.

Two typical specifications are properties that specify correct behavior, and
statistical measures that allow profiling the system that produces the input
streams. One important limitation of runtime verification is that liveness prop-
erties can never be violated on a finite trace. Hence, most of these properties
have been typically considered as non-monitorable (for violation) as every finite
prefix can be extended to a satisfying trace, at least if the system is considered as
a black box and can potentially generate any suffix. An appealing solution that
SRV supports is to compute quantitative measures from the observed trace. For
example, apart from “there are only finitely many retransmissions of each pack-
age,” which is vacuously true over finite traces, SRV allows to specify “what is
the average number of retransmissions.” Following this trend, runtime monitors
can be used not only for bug-finding, but also for profiling, coverage, vacuity and
numerous other analyses. An early approach for combining proving properties
with data collection, which inspired SRV, appeared in [16].

In the present paper we present a simplified semantics of Lola [12] together
with a detailed presentation of the monitoring algorithms as well as the nec-
essary definitions and proofs. In the rest of the paper we use SRV and Lola

interchangeably.

Related Work. The expressions that declare the dependencies between input
streams and output streams in SRV are functional, which resemble synchronous
languages—which are also functional reactive stream computation languages—
like Lustre [20], Esterel [9] and Signal [17], with additional features that are
relevant to monitoring. The main difference is that synchronous languages are
designed to express behaviors and therefore assume the causality assumption and
forbid future references, while in SRV future references are allowed to describe
dependencies on future observations. This requires additional expressiveness in
the language and the evaluation strategies to represent that the monitor cannot
decide a verdict without observing future values. These additional verdicts were
also introduced for this purpose in LTL-based logics, like LTL3 and LTL4 [6–8],
to encode that the monitor is indecisive.

An efficient method for the online evaluation of past LTL properties is pre-
sented in [22], which exploits that past LTL can be recursively defined using
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only values in the previous state of the computation. The efficiently monitorable
fragment of SRV specifications generalize this idea, and apply it uniformly to
both verification and data collection. One of the early systems that most closely
resembles Lola is Eagle [3], which allows the description of monitors using great-
est and least fixed points of recursive definitions. Lola differs from Eagle in the
descriptive nature of the language, and in that Lola is not restricted to checking
logical formulas, but can also express numerical queries.

The initial application domain of Lola was the testing of synchronous hard-
ware by generating traces of circuits and evaluating monitors against these
traces. Temporal testers [26] were later proposed as a monitoring technique for
LTL based on Boolean streams. Copilot [25] is a domain-specific language that,
similar to Lola, declares dependencies between streams in a Haskell-based style,
to generate C monitors that operate in constant time and space (the fragment of
specifications that Copilot can describe is efficiently monitorable). See also [18].

The simple version of Lola presented here does not allow to quantify over
objects and instantiate monitors to follow the actual objects observed, like in
Quantified Event Automata [2]. Lola2.0 [14] is an extension of Lola that allows to
express parametrized streams and dynamically generates monitors that instan-
tiate these streams for the observed data items. The intended application of
Lola2.0 is network monitoring.

Stream runtime verification has a also been extended recently to asyn-
chronous and real-time systems. RTLola [15] extends SRV from the synchronous
domain to timed streams. In RTLola streams are computed at predefined peri-
odic instants of time, collecting aggregations between these predefined instants
using a library of building blocks. TeSSLa [11] also offers a small collection of
primitives for expressing stream dependencies (see also [23]) but allows to com-
pute timed-streams at arbitrary real-time instants. The intended application of
TeSSLa is hardware based monitoring. Striver [19] offers a Lola-like language
with time offsets, that allows to express explicit instants of time in the expres-
sions between streams. Striver is aimed at testing and monitoring of cloud based
systems.

The rest of the paper is structured as follows. Section 2 revisits the syntax and
semantics of SRV. Section 3 presents the online monitoring of SRV specifications,
including the notion of efficient monitorability. Section 4 presents the algorithm
for offline monitoring, and finally Sect. 5 concludes.

2 Overview of Stream Runtime Verification

In this section we describe SRV using the Lola specification language. The
monitoring algorithms will be presented in Sects. 3 and 4.

2.1 Specification Language: Syntax

We use many-sorted first order interpreted theories to describe data domains.
A theory is given by a finite collection T of types and a finite collection F of
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function symbols. Since our theories are interpreted every type T is associated
with a domain D of values and every symbol f is associated with a computable
function that, given elements of the domains of the arguments compute a value
of the domain of the resulting type. We use sort and type interchangeably in
this paper.

For example, the theory Boolean uses the type Bool associated with the
Boolean domain with two values {�,⊥}, and has constant symbols true and
false, and binary function symbols ∧, and ∨, unary function symbol ¬, etc. all
with their usual interpretations. A more sophisticated theory is Naturals, the
theory of the Natural numbers, that uses two types Nat and Bool. The type Nat
is associated with the domain {0, 1, . . .} of the Natural numbers, and has constant
symbols 0, 1, 2, . . . and binary symbols +, ∗, etc. of type Nat×Nat → Nat. Other
function symbols in this theory are predicates <, ≤, . . . of type Nat×Nat → Bool.
All our theories include equality and also, for every type T , a ternary predicate
if · then · else · of type Bool × T → T . For simplicity we restrict the rest of
the paper to types Nat and Bool.

Definition 1 (Stream Expression). Given a finite set Z of stream variable
(each with a given type) the set of stream expressions is defined as follows:

– Variable: If s is a stream variable of type T , then s is a stream expression of
type T ;

– Function Application: Let f : T1 × T2 × · · · × Tk 	→ T be a k-ary function
symbol. If for 1 ≤ i ≤ k, ei is an expression of type Ti, then f(e1, . . . , ek) is
a stream expression of type T .

– Offset: If v is a stream variable of type T , c is a constant of type T , and k is
an integer value, then v[k, c] is a stream expression of type T .

We use Expr(Z) for the set of stream expressions using stream variables Z.

Constants c (that is, 0-ary function symbols) and stream variables v are
called atomic stream expressions. Stream variables are used to represent streams.
Informally, the offset term v[k, c] refers to the value of v offset k positions from
the current position, where a negative offset refers to a past position in the stream
and a positive offset refers to a future position in the stream. The constant c is
the default value of type T assigned to positions from which the offset is past
the end or before the beginning of the stream. For example v[−1, true] refers to
the previous position of stream v, with the value true when v does not have a
previous position (that is when v[−1, true] is evaluated at the beginning of the
trace).

A Lola specification describes a relation between input streams and output
streams. A stream σ of type T and length N is a finite sequence of values from
the domain of T ; σ(i), i ≥ 0 denotes the value of the stream at time step i.

Definition 2 (Lola specification). A Lola specification ϕ : 〈I,O,E〉 consists
of:
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– a finite set I of typed independent stream variables;
– a collection O of typed dependent stream variables; and
– a collections E of defining expressions, with one expression Ey ∈ Expr(I∪O)

for each output variable y ∈ O, where y and Ey must have the same type.

We write y := Ey to denote that the stream y is defined by its defining expression
Ey, which can use every stream variable in I ∪ O (including y itself) as atomic
terms. Sometimes, Lola specifications include a collection of triggers defined by
expressions of type Bool over the stream variables, with the intended meaning
of informing the user when the corresponding expressions become true, but we
do not use triggers in the presentation in this paper.

Independent variables refer to input streams and dependent variables refer
to output streams. It is often convenient to partition the dependent variables
into output variables and intermediate variables to distinguish streams that are
of interest to the user from those that are used only to facilitate the description
of other streams. However, for the semantics and the algorithm this distinction
is not important, and hence we will ignore this classification in the rest of the
paper.

Example 1. Let x1 and x2 be stream variables of type Boolean and x3 be a
stream variable of type integer. The following is an example of a Lola spec-
ification with I = {x1, x2, x3} as independent variables, O = {y1, . . . , y10} as
dependent variables and the following defining equations:

y1 := true y6 := if x1 then x3 ≤ y4 else ¬y3
y2 := x3 y7 := x1[+1, false]
y3 := x1 ∨ (x3 ≤ 1) y8 := x1[−1, true]
y4 := ((x3)2 + 7) mod 15 y9 := y9[−1, 0] + (x3 mod 2)
y5 := if y3 then y4 else y4 + 1 y10 := x2 ∨ (x1 ∧ y10[1, true])

Stream variable y1 denotes a stream whose value is true at all positions, while y2
denotes a stream whose values are the same at all positions as those in x3. The
values of the streams corresponding to y3, . . . , y6 are obtained by evaluating their
defining expressions place-wise at each position. The stream corresponding to y7
is obtained by taking at each position i the value of the stream corresponding to
x1 at position i + 1, except at the last position, which assumes the default value
false. Similarly for the stream for y8, whose values are equal to the values of the
stream for x1 shifted by one position, except that the value at the first position
is the default value true. The stream specified by y9 counts the number of odd
entries in the stream assigned to x3 by accumulating (x3 mod 2). Finally, y10
denotes the stream that gives at each position the value of the temporal formula
x1U x2 with the stipulation that unresolved eventualities be regarded as satisfied
at the end of the trace. ��

To present formal results, it is sometimes convenient to work with a simpler
class of specifications.

Definition 3 (Flat). A specification is flat if each defining expression Ey is
one of the following
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– A constant c
– A stream variable v
– A constructor over stream variables f(v1, . . . , vn)
– An offset expression v[k, c].

Definition 4 (Normalized). A specification is normalized if it only contains
offsets 1 or −1.

Any Lola specification can be converted into a flat specification by introducing
extra stream variables as place-holders for complex sub-expressions. Similarly,
any Lola specification can be converted into a normalized specification by intro-
ducing additional stream variables defined to carry value n−1 for offsets of n > 1
(and n + 1 for offsets of n < −1). This transformation also preserves flatness so
every Lola specification can be converted into a normalized flat specification.

Example 2. Consider the Lola specification with I = {x1, . . . , x5}, O = {y}
and

y := x1[1, 0] + if x2[−1, true] then x3 else x4 + x5.

The normalized specification uses O = {y, y1, . . . , y4} with equations:

y := y1 + y2
y1 := x1[1, 0]
y2 := if y3 then x3 else y4

y3 := x2[−1, true]
y4 := x4 + x5

��

2.2 Specification Language: Semantics

In order to define the semantics of SRV specifications we first define how to
evaluate expressions. Consider a map σI that assigns one stream σx of type T and
length N for each input stream variable x of type T , and a map σO : {. . . , σy, . . .}
that contains one stream σy of length N for each defined stream variable y (again
of the same type as y). We call (σI , σO) an interpretation of ϕ, and use σ as the
map that assigns the corresponding stream as σI or σO (depending on whether
the stream variable is an input variable or an output variable).

Definition 5 (Valuation). Given an interpretation (σI , σO) a valuation is a
map �·� that assigns to each expression a stream of length N of the type of the
expression as follows:

�c�(j) = c
�v�(j) = σv(j)
�f(e1, . . . , ek)�(j) = f(�e1�(j), . . . , �ek�(j))
�if e1 then e2 else e3�(j) = if �e1�(j) then �e2�(j) else �e3�(j)

�v[k, c]�(j) =

{
�v�(j + k) if 0 ≤ j + k < N

c otherwise

We now can define when an interpretation (σI , σO) of ϕ is an evaluation
model, which gives denotational semantics to Lola specifications.
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Definition 6 (Evaluation Model). An interpretation (σI , σO) of ϕ is an eval-
uation model of ϕ whenever

�y� = �Ey� for every y ∈ O

In this case we write (σI , σO) |= ϕ.

For a given set of input streams, a Lola specification may have zero, one,
or multiple evaluation models.

Example 3. Consider the Lola specifications (all with I = {x} and O = {y})
where x has type Nat and y has type Bool .

ϕ1 : y := (x ≤ 10)
ϕ2 : y := y ∧ (x ≤ 10)
ϕ3 : y := ¬y

For any given input stream σx, ϕ1 has exactly one evaluation model (σx, σy),
where σy(i) = true if and only if σx(i) ≤ 10, for 1 ≤ i ≤ N . The specification ϕ2,
however, may give rise to multiple evaluation models for a given input stream. For
example, for input stream σx : 〈0, 15, 7, 18〉, both σy : 〈false, false, false, false〉
and σy : 〈false, true, false, true〉 make (σx, σy) an evaluation model of ϕ2. The
specification ϕ3, on the other hand, has no evaluation models, because there is
no solution to the equations σy(i) = ¬σy(i). ��

2.3 Well-Definedness and Well-Formedness

SRV specifications are meant to define monitors, which intuitively correspond to
queries of observations of the system under analysis (input streams) for which we
want to compute a unique answer (the output streams). Therefore, the intention
of a specification is to define a function from input streams to output streams,
and this requires that there is a unique evaluation model for each instance of
the input streams. The following definition captures this intuition.

Definition 7 (Well-defined). A Lola specification ϕ is well-defined if for
any set of appropriately typed input streams σI of the same length N > 0, there
exists a unique valuation σO of the defined streams such that (σI , σO) |= ϕ.

A well-defined Lola specification maps a set of input streams to a unique set of
output streams. Unfortunately well-definedness is a semantic condition that is
hard to check in general (even undecidable for rich types). Therefore, we define a
more restrictive (syntactic) condition called well-formedness, that can be easily
checked on every specification ϕ and implies well-definedness. We first add an
auxiliary definition.

Definition 8 (Dependency Graph). Let ϕ be a Lola specification. The
dependency graph for ϕ is the weighted directed multi-graph D = 〈V,E〉, with
vertex set V = I ∪O. The set E contains an edge y

0→ v if v is occurs in Ey and

an edge y
k→ v if v[k, d] occurs in Ey.
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An edge y
k→ v encode that y at a particular position potentially depends on the

value of v, offset by k positions. Note that there can be multiple edges between x
and y with different weights on each edge. Also note that vertices that correspond
to input variables do not have outgoing edges.

A walk of a graph is a sequence v1
k1→ v2

k2→ v3 · · · vn kn→ vn+1 of vertices and
edges. A walk is closed if v1 = vn+1. The weight of a walk is the sum of the
weights of its edges. A simple walk is a walk in which no vertex is repeated. A
cycle is a simple closed walk.

Definition 9 (Well-Formed Specifications). A Lola specification ϕ is
well-formed if its dependency graph has no closed walk with weight zero.

Example 4. Consider the Lola specification with I : {x1, x2} and O : {y1, y2}
and the following defining equations:

y1 := y2[1, 0] + if (y2[−1, 7] ≤ x1[1, 0]) then (y2[−1, 0]) else y2
y2 := (y1 + x2[−2, 1]).

Its normalized specification is

y1 := y5 + y9 y2 := y1 + y4 y3 := x1[1, 0]
y4 := x2[−2, 1] y5 := y2[1, 0] y6 := y2[−1, 0]
y7 := y2[−1, 7] y8 := y7 ≤ y3 y9 := if y8 then y6 else y2

The dependency graph of the normalized specifications is:

This specification has a zero-weight closed walk, namely y1
0−→ y9

0−→ y2
0−→ y1,

and hence the specification is not well-formed. ��
To prove that well-formedness implies well-definedness, we first define the

notion of an evaluation graph which captures the dependencies for a given input
length N .

Definition 10 (Evaluation Graph). Given a specification ϕ and a length
N , the evaluation graph is the directed graph GN : 〈V,E〉 where V contains one
vertex vj for each position j of each stream variable v and
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– there is an edge yj → vj if Ey contains v as an atom, and
– there is an edge yj → vj+k if Ey contains v[k, c] and 0 ≤ j + k < N .

The vertices vj are called position variables as they encode the value of stream
variable v at position j. We will prove later that a specification is guaranteed to
be well-defined if no evaluation graph for any length contains a cycle, because
in this case the value of each position variable can be uniquely determined. The
following lemma relates this acyclicity notion with the absence of zero-weight
cycles in the dependency graph.

Lemma 1. Let ϕ be a specification with dependency graph D, let N be a trace
length and GN the explicit dependency graph. If GN has a cycle then D has a
zero-weight closed walk.

Proof. Assume GN has a cycle

yj1
1 → yj2

2 → · · · → yjk
k → yj1

1

The corresponding closed walk in D is

y1
j2−j1−→ y2 → · · · → yk

j1−jk−→ y1

with weight
∑k

i=1(ji⊕1 − ji) = 0. ��
Note that the closed walk induced in D needs not be a cycle since some of
the intermediate nodes may be repeated, if they correspond to the same yk for
different position j.

Lemma 2. Let ϕ be a specification and N a length. If GN has no cycles, then
for every tuple σI of input streams of length N , there is a unique evaluation
model.

Proof. Assume GN has no cycles, so GN is a DAG. Then we can define a topo-
logical order > on GN by taking the transitive closure of →. We prove by induc-
tion on this order that the value of each vertex is uniquely determined, either
because this value is obtained directly from an input stream or constant value in
the specification, or because the value can be computed from values computed
before according to >.

For the base case, the value of a vertex vj without outgoing edges does not
depend on other streams. The only possible value is either the value of an input
stream (if v is an input stream variable) at position j, or a value obtained from
an equation with no variables or offsets as atoms. In all these cases the value is
uniquely determined.

For the inductive case, the value of vj can be computed uniquely from the
values of its adjacent vertices in GN . Indeed, by Definition 10, if the value of vj

depends on the value of vk then there exists an edge vj → vk in GN and thus
vj > vk and, by the inductive hypothesis, the value of vk is uniquely determined.
Then, since every atom in �Ev�(j) is uniquely determined, the value of �Ev�(j)
is uniquely determined. Since this value has been computed only from inputs,
this is the only possible value for σv(j) to form an evaluation model. ��
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Consider now a well-formed specification ϕ. Then, by Lemma 1, no evaluation
graph has cycles, and thus by Lemma 2 for every set of input streams, there
exists a unique solution for the output streams, and hence there is exactly one
evaluation model.

Theorem 1. Every well-formed Lola specification is well-defined.

Note that the converse of Theorem 1 does not hold. First, the absence of
cycles in GN does not imply the absence of a zero-weight closed walk in D. For
example, the evaluation graph for the specification

y1 := y2[−k, c]
y2 := y1[k, c]

for N < k has no cycles (since it has no edges), but it is easy to see that D has a
zero-weight closed walk. Second, a cycle in GN does not necessarily imply that
ϕ is not well-defined. For example, the evaluation graph of the specification

y := (z ∨ ¬z) ∧ x
z := y

has a cycle for all N , but for every input stream, ϕ has exactly one evaluation
model, namely σy = σz = σx, and thus, by definition, the specification is well-
defined.

2.4 Checking Well-Formedness

A Lola specification ϕ is well-formed if its dependency graph D has no closed
walks, so checking well-formedness is reduced to construct D and check for closed
walks. In turn, this can be reduced to checking for cycles as follows.

Let a gez-cycle be a cycle in which the sum of the weight of the edges is
greater than or equal to zero, and let a gz-cycle be a cycle in which the sum of
the weight of the edges is strictly greater than zero. Similarly, a lez-cycle is a
cycle where the sum is less than or equal zero and a lz-cycle is one where the
sum is less than zero. The reduction is based on the observation that a graph has
a zero-weight closed walk if and only if it has a maximally strongly component
(MSCC) with both a gez-cycle and a lez-cycle.

Lemma 3. A weighted and directed multigraph D has a zero-weight closed walk
if and only if it has a vertex v that lies on both a gez-cycle and a lez-cycle.

Proof. (⇒) Assume v is part of gez-cycle C1 and lez-cycle C2, with weights
w1 ≥ 0 and w2 ≤ 0, respectively. The closed walk consisting of traversing w1

times C2 and then traversing |w2| times C1 has weight w1w2 + |w2|w1 = 0, as
desired.

(⇐) Assume D has a zero-weight closed walk. If D has a zero-weight cycle
C we are done, as C is both a gez-cycle and a lez-cycle and any vertex in C has
the desired property.
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For the other case, assume D has no zero-weight cycles. It is easy to show
by induction in the length of W that every closed walk can be decomposed into
cycles that share one vertex. If one of these cycles is a lez-cycle or a gez-cycle
the result follows. Now, not all the cycles can be strictly positive, because then
the total weight of W would not be zero. Consequently there must a positive
cycle and a negative cycle, and therefore there must be two consecutive cycles
C1 and C2 that share one node and C1 is positive and C2 is negative. ��
Theorem 2. A directed weighted multigraph D has no zero-weight closed walk
if and only if every MSCC has only gz-cycles or only lz-cycles.

Proof. (⇒) Consider an arbitrary MSCC with only gz-cycles (the case for only
lz-cycles is analogous). By the proof of Lemma 3, a closed walk is the multiset
union of one or more cycles with weight the sum of the weights of the cycles.
Hence the weight of any closed walk within the MSCC must be strictly greater
than zero. Since any closed walk must stay within an MSCC, the weight of any
closed walk must be strictly greater than zero.

(⇐) Assume D has no zero-weight closed walk. Then, by Lemma 3, D has
no vertex that lies on both a gez-cycle and a lez-cycle. Suppose D has an MSCC
with a gz-cycle C1 and a lz-cycle C2. Consider an arbitrary vertex v1 on C1

and v2 on C2. If v1 = v2 = v, v lies on both a gez-cycle and a lez-cycle, a
contradiction. If v1 �= v2, since v1 and v2 are in the same MSCC, there exists a
cycle C3 that contains both v1 and v2. C3 is either a zero-weight cycle, a gz-cycle
or a lz-cycle. In all three cases either v1 or v2 or both lie on both a gez-cycle and
a lez-cycle, a contradiction. ��

Thus to check well-formedness of a SRV specification ϕ it is sufficient to check
that each MSCC in G has only gz-cycles or only lz-cycles. This can be checked
efficiently, even for large dependency graphs.

3 Online Monitoring

We distinguish two situations for monitoring—online and offline monitoring. In
online monitoring, the traces from the system under observation are received as
the system run, and the monitor works in tandem with the system. This leads
to the following restriction for online monitoring: the traces are available a few
points at a time starting at the initial instant on-wards, and need to be processed
to make way for more incoming data. In particular, random access to the traces
is not available. The length of the trace is assumed to be unknown upfront and
very large.

In offline monitoring, on the other hand, we assume that the system has run
to completion and the trace of data has been dumped to a storage device. Offline
monitoring is covered in Sect. 4.
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3.1 Monitoring Algorithm

We start by exhibiting a general monitoring algorithm for arbitrary Lola spec-
ifications, and then study its efficiency. Let ϕ be a Lola specification with inde-
pendent stream variables I, dependent stream variables O and defining expres-
sions E. Let j be the current position, at which the latest data is available from
all input streams. The monitoring algorithm maintains two sets of equations as
storage:

– Resolved equations R of the form (vk, c) for a given position variable vk (with
k ∈ {1, . . . , j}) and concrete value c.

– Unresolved equations U of the form (yk, e) for position variable yk expression
e (for e different from a constant).

An equation (vk, c) stored in R denotes that stream variable v at position k in
the trace has been determined to have value c. This happens in two cases: input
streams whose reading has been performed, and dependent stream variables
whose value has been computed. Equations in U relate position variables yk—
where y is a dependent stream variable—with a (possibly partially simplified)
expression over position variables whose values have not yet been determined.
Note that if (yk, e) is in U then e must necessarily contain at least one position
variable, because otherwise e is a ground expression and the interpreted functions
from the domain can transform e into a value.

The monitoring algorithm is shown in Algorithm 1. After initializing the U
and R stores to empty and j to 0, the monitoring algorithm executes repeatedly
the main loop (lines 5 to 11). This main loop first reads values for all inputs at
the current position and adds these values to R (line 6). Then, it instantiates
the defining equations for all outputs and adds these to U (line 7). Finally, it
propagates new known values (vk, c) in R by substituting all occurrences of vk

in unresolved equations by c and then simplifies resulting equations (procedure
Propagate). This procedure simply uses all the information in R to substitute
occurrences of known values in unresolved equations. In some cases, these equa-
tions become resolved (the term becomes a value) and the corresponding pair is
moved to R (lines 23 and 24). Then, the procedure Prune is used to eliminate
unnecessary information from R as described below. Finally, procedure Finalize
is invoked at the end of the trace. This procedure is used to determine whether
a given offset expression that remains in an unresolved equation falls beyond the
end of the trace, which is converted into its default value. This procedure also
performs a final call to Propagate, which is guaranteed (see below) to resolve
all position variables, and therefore U becomes empty.

Procedure Inst, shown in Algorithm 2, instantiates the defining equation
for v into the corresponding equation for vj at given position j by propagating
the value into the atomic stream variable references and offsets atoms, which
become instance variables. Note that the default value c is recorded in line 57
in case the computed position k + j falls beyond the end of the trace N , which
is not known at the point of the instantiation. Whether k + j is inside the trace
will be determined after k steps or resolved by Finalize.
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Algorithm 1. Monitoring algorithm
1: procedure Monitor

2: U ← ∅
3: R ← ∅
4: j ← 0
5: while not finished do
6: R ← R ∪ {(yj , σy(j)) | for every y ∈ I} � Add new inputs to R
7: U ← U ∪ {(xj , Inst(ex, j)) | for every x ∈ O} � Add output instances to U
8: Propagate()
9: Prune(j)

10: j ← j + 1
11: end while
12: N ← j + 1
13: Finalize(N)
14: end procedure

15: procedure Propagate

16: repeat
17: change ← false
18: for all (vk, e) ∈ U do � Try to resolve every vk in U
19: e′ ← simplify(subst(e, R))
20: U.replace(vk, e′) � update vk

21: if e′ is value then
22: change ← true � vk is resolved
23: R ← R + {(vk, e′)} � add vk to R
24: U ← U − {(vk, e)} � remove vk from U
25: end if
26: end for
27: until ¬change
28: end procedure

29: procedure Prune(j)
30: for all (vk, c) ∈ R do
31: if ∇v + k ≤ j then � Prune R
32: R ← R − {(vk, c)}
33: end if
34: end for
35: end procedure

36: procedure Finalize(N)
37: for all (vk, e) ∈ U do
38: for all ul

c subterm of e with l ≥ N do
39: e ← e[ul

c ← c]
40: end for
41: U.replace(vk, e)
42: end for
43: Propagate()
44: end procedure
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Algorithm 2. Instantiate a defining expression for position j

45: procedure Inst(expr, j)
46: switch expr do
47: case c
48: return c
49: case f(e1, . . . , en)
50: return f(Inst(e1, j), . . . , Inst(en, j))

51: case v
52: return vj

53: case v[k, c]
54: if k + j < 0 then
55: return c
56: else
57: return vk+j

c

58: end if
59: end procedure

We show now how the resolved storage R can be pruned by removing informa-
tion that is no longer necessary. The back reference distance of a stream variable
represents the maximum time steps that its value needs to be remembered.

Definition 11 (Back Reference Distance). Given a specification ϕ with
dependency graph D the back reference distance ∇v of a vertex v is

∇v = max(0,
{

k | s
−k→ v ∈ E

}
)

Example 5. We illustrate the use of back reference distances for pruning R (lines
31 and 32) revisiting Example 4. The back reference distances are ∇y1 = ∇y10 =
∇y11 = ∇y12 = ∇y13 = ∇y14 = ∇y15 = ∇y16 = ∇x1 = 0 and ∇y2 = ∇x2 = 2.
Consequently, all equations (vj , c) are removed from R in the same time step
that they are entered in R, except for yj

2 and xj
2, which must remain in R for

two time steps until instant j + 2. ��
Example 6. Consider the following specification

y := q ∨ (p ∧ z)
z := y[1, false]

which computes p U q. For input streams σp : 〈false, false, true, false〉 and σq :
〈true, false, false, false〉 the equations in stores R and U at the completion of
step (3) of the algorithm at each position are:
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j 0 1 2 3

R
p0 = false
q0 = true
y0 = true

p1 = false
q1 = false
y1 = false
z0 = false

p2 = true
q2 = false

p3 = false
q3 = false
z3 = false
y3 = false
z2 = false
y2 = false
z1 = false

U z0 = y1 z1 = y2
y2 = z2

z2 = y3

z1 = y2
∅

Since the back reference distance of all stream variables is 0, all equations can
be removed from R at each position. ��
Theorem 3 (Correctness). Let ϕ be a specification and σI be input streams of
length N . If ϕ is well-formed, then Algorithm 1 computes the unique evaluation
model of ϕ for σI . That is, at the end of the trace the unique value has been
computed for each yk, and U is empty.

Proof. Assume ϕ is well-formed. By Definition 9 the dependency graph D has
no zero-weight closed walks and hence by Lemma 1, the evaluation graph GN

has no cycles, and we can define a topological order < in GN .
As in the proof of Lemma 1, every vertex of GN can be mapped to the

corresponding value of the unique evaluation model. We prove by induction on
GN that at the end of the trace each of these values has been computed and that
each value has been available in R at some point j < N during the computation.

For the base case, leaf vertices vj correspond to either input stream variables
or values from equations of the form x = c or x = y[k, c] such that j + k < 0.
In both cases the value is uniquely obtained and the corresponding equation is
added to R.

For the inductive case, the value for vertex vj is uniquely computed from
the values for vertices wk such that vj → wk, and hence wk < vj and by the
inductive hypothesis, the value for wk is uniquely computed or obtained and
is at some point available in R. It remains to be shown that these values are
available in R for substitution. We distinguish three cases:

1. j = k. In this case (vj , e) and (wk, e′) are added to U (or R) at position j
(either in line 6 or in line 7). If (wk, e′) is added to R, the value of wk in
e is substituted in e′ in line 19. If (wk, e′) is added to U , by the inductive
hypothesis, it is available at some later point in the computation. Then it
must be moved to R in line 23, and hence in the same step it is substituted
in e.

2. j < k. In this case (wk, e′) is added to U (or R) after (vj , e) is added to
U . Again, by the inductive hypothesis, (wk, c) will be resolved and become
available in R at some position l < N and thus at that same position is
substituted in e if (vj , e) is still in U .
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3. j > k. In this case Ev contains w[i, c] and thus k = j + i (i.e. i < 0). Now,
(wk, c) is added to R or U before (vj , e) is added to U . Again, by the inductive
hypothesis, wk will be resolved at some position l ≤ N , which must be after
k. By the definition of k, (wk, c) will be in R at least until k + ∇w which is
guaranteed to be at j or after and hence be available when vj is added to U .

This finishes the proof. ��

3.2 Efficiently Monitorable Specifications

In the general case the algorithm Monitor described above is linear in both
time and space in the length of the trace and the size of the specification. In these
bounds, we assume that the value of a type can be stored in a single register of
the type, and that a single function is computed in a single step.

In online monitoring, since the traces are assumed to be large, it is generally
assumed that a specification can be monitored efficiently only if the memory
requirements are independent of the trace length.

Example 7. Consider the following specification with I = {x} and O =
{y, last, w, z}:

y := false
last := y[1, true]
w := z[1, 0]
z := if last then x else w

For the input stream σx 〈37, 31, 79, 17, 14〉 the unique evaluation model is

σx 37 31 79 17 14
σy false false false false false
σlast false false false false true
σw 14 14 14 14 0
σz 14 14 14 14 14

In general, for any input stream σx, output stream σz has all its values equal to
the last value of σx. However, for all j, equations

(wj , zj+1
0 ) and (zj , if lastj then xj else wj)

remain unresolved until the end of the trace, and thus the memory requirements
of Algorithm 1 for this specification are linear in the length of the trace. ��

The worst-case memory usage of a Lola specification for a given trace length
can be derived from the evaluation graph with the aid of the following definitions.

Definition 12 (Fan and Latency). The fan of a vertex vj of an evaluation
graph GN is the set of vertices reachable vj:

fan(vj)
def
=

{
wk | vj →∗ wk

}
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The latency of a position variable vj is the difference between j and the position
of the furthest vertex in fan(vj):

lat(vj)
def
= max

(
0,

{
k | wj+k ∈ fan(vj)

})
.

The fan of vj is an over-approximation of the set of vertices on which the value
of vj depends. The latency is an upper-bound on the number of trace steps it
takes before a value at a given position is guaranteed to be resolved.

Theorem 4. If a vertex vj has latency k, then the corresponding equation (vj , e)
will be fully resolved by Monitor at or before step j + k.

Proof. Since the specification is well-formed the evaluation graph is acyclic. We
show the results by induction on a topological order < of the evaluation graph.
Note that if vj → wi then lat(vj) ≥ lat(wi) directly by the definition of latency.
Then, at position j+k it is guaranteed that wi is resolved. Since all atoms in the
expression e of equation (vj , e) are resolved at j +k or before, the corresponding
values are substituted in e (line 19) at step j +k or before, so e is simplified into
a value at j + k or before. ��
Example 8. Consider again the specification of Example 7. The latency of z2 is
N − 2, so equations for z2 may reside in U for N − 2 steps, so this specification
cannot be monitored online in a trace-length independent manner. ��
Definition 13 (Efficiently Monitorable). A Lola specification is efficiently
monitorable if the worst case memory usage of Monitor is independent of the
length of the trace.

Some specifications that are not efficiently monitorable may be rewritten into
equivalent efficiently monitorable form, as illustrated by the following example.

Example 9. Consider the specification “Every request must be eventually followed
by a grant before the trace ends”, expressed as ϕ1 as follows:

reqgrant := if request then evgrant else true
evgrant := grant ∨ nextgrant
nextgrant := evgrant [1, false]

This specification encodes the temporal assertion .
Essentially, evgrant captures and reqgrant corresponds to

(see [12] and [10] for a description of translation from
LTL to Boolean SRV). An alternative specification ϕ2 of the same property is

waitgrant := ¬grant ∧ (request ∨ nextgrant)
nextgrant := waitgrant [−1, false]
ended := false[1, true]

It is easy to see that, for the same input, ended ∧ waitgrant is true at the
end of the trace (for ϕ2) if and only if ¬nextgrant is true at the beginning of
the trace for ϕ1. Hence, both specifications can report a violation at the end
of the trace if a request was not granted. The second specification, however, is
efficiently monitorable, while the first one is not. ��
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Similar to the notion of well-definedness, checking whether a specification is
efficiently monitorable is a semantic condition and cannot be checked easily in
general. Therefore we define a syntactic condition based on the dependency graph
of a specification that guarantees that a specification is efficiently monitorable.

Definition 14 (Future Bounded). A well-formed specification ϕ is future
bounded if its dependency graph D has no positive-weight cycles.

We show that every future bounded specification is efficiently monitorable
by showing that in the absence of positive-weight cycles every vertex in the
dependency graph can be mapped to a non-negative integer that provides an
upper-bound on the number of trace steps required to resolve the equation for
the corresponding instance variable.

Definition 15 (Look-ahead Distance). Given a future bounded specification
with dependency graph D, the look-ahead distance Δv of a vertex v is the maxi-
mum weight of a walk starting from v (or zero if the maximum weight is nega-
tive).

Note that the look-ahead distance is well defined only in the absence of
positive-weight cycles. The look-ahead distance of a vertex can be computed
easily using shortest path traversals on the dependency graph D.

Example 10. Consider the specification

y1 := y4 ∧ y5
y2 := if y6 then y7 else y8
y3 := y9 ≤ 5

y4 := p[1, false]
y5 := y3[−7, false]
y6 := y1[2, true]

y7 := q[2, 0]
y8 := q[−1, 2]
y9 := y2[4, true]

The dependency graph D of this specification is:

Consequently, the values of the look-ahead distance are:

Δy1 = 1
Δy2 = 3
Δy3 = 7

Δy4 = 1
Δy5 = 0
Δy6 = 3

Δy7 = 2
Δy8 = 0
Δy9 = 7

which are easily computer from D. ��
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The look-ahead distance provides an upper-bound on the number of equa-
tions that may simultaneously be in U .

Lemma 4. For every vertex vj in an evaluation graph GN of a future bounded
specification lat(vj) ≤ Δc.

Proof. Consider a vertex vj in an evaluation graph, with latency lat(v, j) = d.
Then, there exists a sequence of vertices

vj → yj1
1 → . . . → yjn

n

with jn−j = d. The walk in the dependency graph of the corresponding vertices

v
j1−j−→ y1

j2−j1−→ . . .
jn−jn−1−→ yn

has total weight
n∑

i=1

ji+1 − ji = jn − ji = d

and hence lat(vj) ≤ Δv. ��
Theorem 5 (Memory Requirements). Let ϕ be a future bounded specifica-
tion. Algorithm 1 requires to store in U and R, at any point in time, a number
of equations linear in the size of ϕ.

Proof. From the description of the algorithm and Lemma 4 it follows that the
maximum number of equations in U is less than or equal to∑

y∈O

Δy + |O|

where the second term reflects that all equations for the dependent variables are
first stored in U in line 7 and after simplification moved to R in line 23.

Moreover, the maximum number of equations stored in R is bounded by ∇v
and the number of stream variables v. ��
Example 11. Consider again the specification of Example 10. The back reference
distance is 0 for all variables except for x2 and y3, which are ∇x2 = 1,∇y3 = 7.
Hence, at the end of every main loop, R only contains one instance of x2 and
seven instances of y3. Additionally, the look-ahead distance of a stream variable
v bounds linearly the number of instances of v in U . ��
Corollary 1. Every future-bounded specification is efficiently monitorable.

Note that the converse does not hold. In practice, it is usually possible to
rewrite an online monitoring specification with a positive cycle into one without
positive cycles, as illustrated in Example 9.
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4 Offline Monitoring

In offline monitoring we assume that all trace data is available on tape, and there-
fore we can afford more flexibility in accessing the data. In this section we show
that every well-formed SRV specification can be monitored efficiently offline, in
contrast to online monitoring where we required that the dependency graph not
have any positive-weight cycles. The reason why we can efficiently monitor in
an offline manner all specifications is that we can perform both forward and
backward passes over the trace. We will show that every well-formed specifica-
tion can be decomposed into sub-specifications such that each sub-specification
needs to be checked only once and can be done so efficiently by either traversing
the trace in a forward or in a backward direction. In this manner, all values of
the output streams of a sub-specification can written to tape and are accessible
for subsequent traversals.

We first define the notions of reverse efficiently monitorable and its corre-
sponding syntactic condition, past bounded, as the duals of efficiently monitorable
and future bounded. A reverse monitoring algorithm RevMonitor can be eas-
ily obtained by initializing j to N (line 4) decreasing j (line 10), pruning j on
the dual of the back-reference distance in line 31 and performing substitutions
when the offset becomes negative (so Finalize is not necessary for reverse mon-
itoring). This is essentially the same algorithm as Monitor but performing the
index transformation j′ = N − (j + 1).

Definition 16 (Reverse Efficiently Monitorable). A Lola specification is
reverse efficiently monitorable if its worst-case memory requirement when apply-
ing RevMonitor is independent of the length of the trace.

Definition 17 (Past Bounded). A well-formed Lola specification is past
bounded if its dependency graph has no negative-weight cycles.

Lemma 5. Every past-bounded specification is reverse efficiently monitorable.

Proof. The dual of the argument for Corollary 1. ��
We construct now an offline algorithm that can check a well-formed Lola

specification in a sequence of forward and reverse passes over the tapes, such
that the number of passes is linear in the size of the specification and each pass
is trace-length independent.

Let ϕ be a well-formed specification with dependency graph D. From the
definition of well-formedness it follows that D has no zero-weight cycles, so
each MSCC consists of only negative-weight or only positive-weight cycles. Let
GM : 〈{Vp, Vn} , EM 〉 be the graph induced by the MSCCs of D defined as
follows. For each positive-weight MSCC in D there is a vertex in Vp and for each
negative-weight MSCC in D there is a vertex in Vn. For each edge between two
MSCCs there is an edge in EM connecting the corresponding vertices. Clearly,
GM is a DAG.

Now we assign each MSCC a stage that will determine the order of comput-
ing the output for each MSCC following the topological order of GM . Positive



Online and Offline Stream Runtime Verification of Synchronous Systems 159

MSCCs will be assigned even numbers and negative MSCCs will be assigned odd
numbers. Every MSCC will be assigned the lowest stage possible that is higher
than that of all its descendants with opposite polarity. In other words, the stage
of an MSCC v is at least the number of alternations in a path in GM from v.

Formally, let the opposite descendants be defined as follows:

op(v) = {v′ | (v, v′) ∈ E∗
M and (v ∈ Vp and v′ ∈ Vn, or v ∈ Vn and v′ ∈ Vp)}

Then,

stage(v) =

⎧⎪⎨
⎪⎩

0 if op(v) is empty and v ∈ Vn

1 if op(v) is empty and v ∈ Vp

1 + max{stage(v′) | v′ ∈ op(v)} otherwise

which can be computed following a topological order on GM . Each vertex v in
GM can be viewed as representing a sub-specification ϕv whose defining equa-
tions refer only to stream variables in sub-specifications with equal or lower
stage processing order. Based on this processing order we construct the following
algorithm.

Algorithm 3. Offline Trace Processing
1: procedure OfflineMon

2: for i = 0 to max(stage(v)) with increment 2 do
3: for all v with stage(v) = i do
4: Monitor(ϕv) � Forward pass
5: end for
6: for all v with stage(v) = i + 1 do
7: RevMonitor(ϕv) � Backward pass
8: end for
9: end for

10: end procedure

Theorem 6. Given a well-formed specification, a trace can be monitored in time
linear in the size of the specification and the length of the trace, with memory
requirements linear in the size of the specification and independent of the length
of the trace.

Proof. Follows directly from Lemmas 1 and 5 and Algorithm 3. ��
Example 12. Figure 1 shows the dependency graph of a Lola specification and
its decomposition into MSCCs, along with its induced graph GM annotated with
the processing order of the vertices. MSCCs G1 and G4 are positive, while G2 and
G5 are negative. G3 is a single node MSCC with no edges, which can be chosen
to be either positive or negative. The passes are: G5 is first monitored forward
because it is efficiently monitorable. Then, G4 is monitored backwards. After
that, G3 and G2 are monitored forward. Finally, G1 is monitored backwards.
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Fig. 1. A dependency graph G and its MSCC induced graph GM .

5 Conclusions

We have revisited Stream Runtime Verification, a formalism for runtime veri-
fication based on expressing the functional relation between input streams and
output streams, and we have presented in detail evaluation strategies for online
and offline monitoring.

SRV allows both runtime verification of temporal specifications and collection
of statistical measures that estimate coverage and specify complex temporal
patterns. The Lola specification language is sufficiently expressive to specify
properties of interest to applications like large scale testing, and engineers find
the language easy to use. Even specifications with more than 200 variables could
be constructed and understood relatively easily by engineers. Even though the
language allows ill-defined specifications, SRV provides a syntactic condition
that is easy to check and that guarantees well-definedness, using the notion
of a dependency graph. Dependency graphs are also used to check whether a
specification is efficiently monitorable online, that is, in space independent of
the trace length. In practical applications most specifications of interest are in
fact efficiently monitorable or can be rewritten into an efficiently monitorable
fashion. We revisited the online algorithm for Lola specifications, and presented
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an algorithm for offline monitoring whose memory requirements are independent
of the trace length for any well-formed specification.

The design of the Lola specification language was governed by ease of use
by engineers. In runtime verification, unlike in static verification, one is free
to choose Turing-complete specification languages. As a result researchers have
explored the entire spectrum from temporal logics to programming languages.
The advantage of a programming language in comparison with a temporal logic
is that a declarative programming language is more familiar to engineers and
large specifications are easier to write and understand. The disadvantage is that
the semantics is usually tied to the evaluation strategy (typically in an informal
implicit manner) and the complexity is hard to determine, while the semantics
of a logic is independent of the evaluation strategy and upper bounds for its
complexity are known. In practice, the choice is motivated by the intended use.
Stream Runtime Verification is usually employed to facilitate the task of writ-
ing large specifications for engineers, so the natural choice was a programming-
language. SRV retains, however, most of the advantages of a logic: the semantics
is independent of the evaluation strategy and the efficiently monitorable speci-
fications provide a clear bound on complexity. See [10] where we study decision
procedures and complexities of decision problems for Boolean Stream Runtime
Verification. For example, comparing Lola with specification languages at the
other end of the spectrum, such as Eagle [3], Lola usually allows simpler spec-
ifications, as illustrated in Fig. 2.

Fig. 2. Comparison between the Lola and Eagle specification language
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27. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)
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Abstract. Runtime monitoring of finite state properties may incur large
and unpredictable overheads in terms of memory and execution time,
which makes its deployment in a production environment challenging.
In this work, we present a monitoring approach that investigates the
trade-offs between memory overheads of monitoring, execution times of
monitoring operations, and error reporting. Our approach is motivated
by two key observations. First, there is a prominent behavioral redun-
dancy among monitors. Second, the events on the same or related objects
are often temporally segregated. We have implemented our approach in
a prototype tool, Metis. Its evaluation indicates that it can reduce the
memory footprint effectively and provide compact worst-case execution
time bounds to monitoring operations with little to no compromise in
error reporting.

1 Introduction

Modern software applications are complex and functionally diverse. They come
in forms ranging from large web-based systems to applications that run on small
hand-held mobile devices. Irrespective of their forms, they pose challenges for
tools that analyze them for correctness. Even though useful, static analysis
often produces numerous false positives that are hard to analyze [21]. Hence,
researchers have invested time and effort to develop runtime monitoring tools
[1,3,9,25].

In spite of their effectiveness, monitoring tools have been found to incur
considerable memory and execution overheads making their deployment chal-
lenging in a production environment [24]. This may happen particularly when
the properties of interest are associated with objects that are generated in large
numbers [20]. Monitoring overheads can be an even bigger concern considering
that in practice, programmers would like to track several properties simultane-
ously [18,24].

Monitoring overheads are difficult to estimate since they depend on program
and property interactions, which in turn, depend on executed program paths.
When properties are associated with multiple objects [8,20,24], monitoring oper-
ations may take arbitrarily long even for similar events owing to the fact that
c© Springer Nature Switzerland AG 2018
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variable number of monitors may get associated with them at different times
and each one of the monitors needs to be tracked after the occurrence of these
events. This number can grow rapidly. Up to 1548 monitors associated with a
single event have been reported [24].

Large and unpredictable overheads pose severe challenges to monitoring since
they adversely impact the system performance. Even web-based and cloud-based
systems have practical constraints on their resources since the applications they
run are often CPU- and memory-intensive, and their performance is expected
to be high and predictable. Hence, to employ monitoring in a production envi-
ronment, we need novel techniques that consume fewer resources and provide
performance guarantees.

Researchers have proposed several approaches in the past to control over-
heads, such as turning off monitoring if it exceeds the time budget [3,5,27].
However, these approaches do not deal with properties that are related to mul-
tiple objects. Other approaches either do not deal with finite state properties or
do not perform inline monitoring. Finite state property monitoring allows us to
check programs for properties with multiple objects, whereas inline monitoring
allows us to keep detection latency within limits and provides opportunities to
avoid failure by performing evasive actions [15].

In this work, we propose a novel inline monitoring technique that investigates
the trade-offs between program resources, namely, memory and execution time,
and error reporting. Our approach is motivated by a key observation that there
is a large behavioral redundancy among monitors that results in the majority
of them undergoing similar life cycle. Even when some monitors report errors
they may report the same error. This is wasteful from the monitoring perspec-
tive because it consumes resources and programmers are interested in catching
only distinct errors. Our technique limits the number of monitors based on the
program’s execution context1 and puts a hard limit on the number of monitors
associated with an event. As a result, it consumes much less memory and provides
tight worst-case bounds on event monitoring times. Another key observation is
that events on the same or related objects often occur together. Therefore, recent
events are likely to be associated with newly created objects. We develop moni-
tor allocation heuristics based on these observations to maintain the soundness
of the system.

This paper makes two contributions. First, we present a novel approach
in Sect. 4 that is memory-efficient and time-deterministic. Second, we present
a study using a prototype implementation tool, Metis in Sect. 6 and evaluate it
first on challenging DaCapo benchmarks in Sect. 7, and then on two resource-
constrained web applications in Sect. 7.7. The results indicate that the technique
has a potential to detect all distinct violations that an unoptimized approach
could detect using much fewer resources.

1 The execution context of an error report is the path of the call graph from the root
function to the current function where that error report was triggered.
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2 Background and Motivation

2.1 Finite State Properties

This work considers properties that are either typestate or typestate-like that
may involve multiple objects and can be modeled using a finite state automaton
(FSA) [28]. Figure 1a depicts an FSA which models the UnsafeIterator prop-
erty. This property codifies that a Collection must not be updated while being
iterated over. The symbols create, update, and next correspond to creating an
Iterator from a Collection, modifying the Collection, and iterating over the
Collection, respectively. The symbol next observed following update pushes the
FSA to the error state. Similarly, Fig. 1b encodes the HasNext property, which
states that hasNext must always be invoked prior to invoking next to ensure that
an element exists before it is operated upon. Figure 1c illustrates the property
HashSet, which checks that an object added to a hashset can be safely accessed
from the set only before it is removed from the set and only if its hashcode is
not changed in the meantime.

2.2 Monitoring System

Figure 2a depicts a general monitoring scheme that takes as input an instru-
mented program and a property to be monitored. The instrumentation corre-
sponds to the extra code added to program statements, which are relevant to the
property. This extra code generates events that are tracked by the monitoring
system. An event is parameterized by objects and has a symbol associated with
it. This information is analyzed first by the monitor creation module to see if

Fig. 1. FSA for finite state properties.

Fig. 2. Schematics of monitoring systems.
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Table 1. Original benchmark memory consumption in MB, number of monitors and
events generated, and memory consumption in MB while monitoring the programs for
various properties.

Orig.
Mem.

HasNext UnsafeIterator HashSet

#mon #event memory #mon #event memory #mon #event memory

Avrora 51 0.9M 2.5M 160 0.9M 1.4M 419 106 11K 61

Bloat 94 1.9M 144M 1433 1.9M 82M 1158 66K 171K 1505

Pmd 157 1.9M 49M 1288 1.9M 26M 1120 6.8M 6.8M 1356

a monitor needs to be created. A monitor contains a property FSA, references
to the related objects, and its current state. A newly created monitor is added
to the pools associated with the related objects and then tracked for all related
future events. The tracking involves performing a state transition according to
the symbol and the current state. In case a monitor moves to the error state,
the error is reported. For example, for property UnsafeIterator, a monitoring
system instantiates a monitor corresponding to every pair of Collection and
Iterator after observing a creation event, which corresponds to an invocation to
the Iterator() method on the Collection interface. It then pushes the monitor
from state 0 to state 1. As long as the Iterator is used, the monitor remains in
state 1. If the Collection is updated, the monitor moves to state 2. Any subse-
quent use of the Iterator pushes the monitor to the error state which is then
reported as the error.
Challenges. Monitoring of finite state properties can be challenging due to:

C1. High Monitor Count: In practice, a Collection object may get iter-
ated over several times before getting garbage collected. Coupled with the
fact that both Collection and Iterator objects are frequently used objects in
most programs, the number of monitors grows rapidly. Table 1 lists the num-
ber of monitors observed when monitoring three commonly used DaCapo
benchmarks [6] for HasNext, UnsafeIterator, and HashSet properties using
JavaMop v2.3.
C2. High Memory Usage: Table 1 also lists the memory consumption of the
benchmarks with and without monitoring using JavaMop v2.3. We observe
that a large number of monitors results in large memory consumption. Fur-
thermore, in practice, programmers would like to monitor programs for all
interesting properties collectively.
C3. High Event Tracking Overhead: The cost of handling events for
properties associated with multiple objects, such as UnsafeIterator, could
be prohibitive. This high cost is due to potentially unbounded number of
monitors that might get associated with an event. Since each of these monitors
needs to be tracked, handling an event becomes non-deterministic in terms
of execution time.
C4. Redundant Monitors: We observed that all errors reported by bloat,
pmd, and avrora for property HasNext can be grouped into exactly one unique



METIS: Resource and Context-Aware Monitoring of Finite State Properties 171

class of errors each for the benchmarks based on their execution context, i.e.,
sequence of method calls. This observation indicates that several monitors
catch the same redundant errors, which clearly is not intelligent reporting to
the developer. Ideally, the monitors should report only distinct errors, i.e.,
one for each benchmark in this case.

3 Terminology and Definitions

Finite state properties can be modeled using a Deterministic Finite Automaton
represented by a tuple (Q,Σ, q0, δ, F, err), where Q is the set of states, Σ is the
set of symbols, q0 ∈ Q is the start state, δ : Q × Σ → Q is the state transition
function, F ⊂ Q is the set of accept states, and err is the designated error state.
Typically, F

⋃
err = Q and F

⋂
err = ∅.

Let φ be a program property to be monitored, and let O be the set of objects
associated with φ. An event η in the program under execution is represented by
a pair (β, σ), where β ∈ 2O is a set of objects associated with the event and
σ ∈ Σ.

We define a monitor m ∈ M parameterized by a set of objects α, where
α ∈ 2O, and cur ∈ Q is the current state of the monitor. We assume the presence
of Σc ⊆ Σ which are symbols associated with monitor creation events.We define
a mapping ψ : 2O

� 2M that after receiving an event η = (β, σ) returns a set of
monitors θ corresponding to β, where β ⊆ α. Note that α uniquely identifies a
monitor, and β has exactly one monitor associated when β = α. However, there
may be more than one monitors associated with β when β ⊂ α. The current
state of every monitor that belongs to θ is updated according to the symbol
associated with the event. Formally, ∀m ∈ θ : m.cur ← δ(m.cur, σ). We report
the error when m.cur = err.

A traditional approach uses ψ for locating monitors, whereas our approach
generates ψ′ such that the approach ignores an event η = (β, σ) if ψ′(β) is
undefined. Moreover, it returns θb ⊆ θ to limit the number of monitors to be
updated for an event to b.

Classes of Errors. Even with the reduced number of monitors, our approach
still tries to detect all distinct errors. Let P be the set of error reports generated
by an unoptimized monitoring system for a given program run. Let Π be the
set of program execution contexts under which P was generated. Let π ∈ Π
be the context under which the report ρ ∈ P was generated. We partition the
set P into classes c1, . . . , cn as follows – ρi ∈ ck and ρj ∈ ck if and only if ρi

and ρj were created under the context πk. In other words, all error reports that
fall under one class are created under the same program execution context and
hence we treat them equivalent. The aim of our approach is to generate distinct
error reports, that is ideally one report for every class of errors.
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4 Monitoring Approach

Figure 2b shows the main elements of our approach. The key difference with
the general scheme depicted in Fig. 2a is the monitor allocation module which
keeps information about the current execution context, the observed execution
contexts, and the global monitor pool in addition to the symbol types. The
module maintains the observed contexts as a forest in which a newly observed
context adds a node with one or more branches corresponding to method calls in
exactly one of the trees. A leaf node represents a context and the module keeps
its observed frequency.

Context-Based Sampling: We use context-based sampling of objects to con-
trol the number of monitors. The motivation comes from our observation that
monitors created under similar program execution contexts tend to go through
a similar life cycle and show a redundant behavior. Our approach works by (i)
identifying the monitor creation sites which are specified as creation events in
the monitoring specification, and then by (ii) obtaining the current execution
context, and finally by (iii) making a decision about the allocation of the moni-
tor based on the number of times this context was seen in the past. More often
the system has seen the context, less likely it is to allocate a monitor. An exe-
cution context that we consider in this work is the limited length suffix of the
method calling sequence. We describe its implementation in Sect. 6.

Fixed-Size Global Pool of Monitors: The global monitor pool is imple-
mented as a circular array of fixed size that preserves the chronological ordering.
In case the allocation module chooses to allocate a monitor, it picks the next
available monitor from this pool. The monitor being allocated could be already
in use in which case it is first deallocated, reset, and then reallocated to the
current set of objects. The heuristic that we use to reclaim a monitor is based
on our observations that events related to the same objects are often temporally
segregated, and recent events are more likely to be generated by newly created
objects. We exploit this observation by making the oldest active monitor avail-
able for reallocation.

Fixed-Size Local Pool of Monitors for Indexed Objects: In the case of a
property related to multiple objects, an object can get associated with numerous
monitors in its life-time depending on its interaction with other objects. As a
result, an event related to the object results in updating the states of arbitrar-
ily large number of monitors making handling such events nondeterministic in
terms of their execution times. For this work, we consider a monitoring behavior
as time-deterministic if we can compute and limit the worst-case execution time
for monitoring every event. Binding the number of monitors associated with an
object allows us to limit the execution time for any monitoring operation asso-
ciated with that object. Our approach implements this constraint by restricting
the size of local pools. In case this pool is full, we return the oldest monitor from
it to the global pool to make space for the new monitor.
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Algorithm 1 . Resource- and Context-Aware Monitoring. Input: φ =
(Q,Σ,δ,q0,F ,err), η = (β, σ) where η is an event and β ∈ 2O be the set of
associated objects and σ ∈ Σ.
1: let Σc ⊆ Σ be the set of creation symbols.
2: let A be the global array of monitors.
3: let ψ′: 2O � 2M be the map that returns the monitors associated with a set of

objects.
4: let τ : M � 2O be the map that returns the objects associated with a monitor.
5: let π ∈ Π be a finite sequence of methods.
6: let ζ hold observed execution contexts.
7: if σ ∈ Σc then
8: π ← getExecutionContextInfo()
9: if isPresent(π, ζ) = TRUE then

10: k ← threshold(π, ζ)
11: else
12: k ← 1
13: updateExecutionContext(π, ζ)
14: if Random() ≤ k then
15: m ← A.nextMonitor()
16: for all α ⊆ τ(m) do
17: ψ′(α) ← ψ′(α)/{m}
18: reset(m)
19: for all α ⊆ β do
20: if ψ′(α).size() = max_mon then
21: m′ ← ψ′(α).first();
22: for all α′ ⊆ τ(m′) do
23: ψ′(α′) ← ψ′(α′) / {m′}
24: ψ′(α) ← ψ′(α) ∪ {m}
25: for all m ∈ ψ′(β) do
26: m.cur ← δ(m.cur,σ)
27: if m.cur = err then
28: report error

All the parameters mentioned above including the monitor pool sizes and
the method call sequence length are configurable depending on the available
resources.

5 Monitoring Algorithm

Algorithm 1 depicts the steps that implement our monitoring scheme. It takes a
property φ and an event η as input. Lines 7–24 describe the operations that are
performed when a creation event is encountered and a new monitor may need to
be allocated. Line 8 reads the program execution context. If the execution context
is already seen which is checked at line 9, then a threshold value between 0 and
1 is generated based on the frequency of the observed context. If the context is
unseen, the threshold is assigned the highest value which is 1 to ensure that a
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monitor will be allocated to observe this unseen context. In either case line 13
updates the execution context history.

Lines 14–24 describe the steps when the threshold value is found to be large
enough to justify allocation of a monitor which is checked at line 14. As a result,
a new monitor from the global circular array is allocated at line 15. Lines 16–17
reclaim the monitor in case it was previously assigned. This step ensures that
all previous bindings are removed. The monitor is then reset at line 18 and is
made ready for the assignment.

Lines 19–24 describe the steps to insert new monitor in all relevant pools.
The condition at line 20 checks that all local monitor pools are still within the
size limit. In case the limit is getting exceeded for any pool, the oldest monitor
in the pool is identified at line 21 and then reclaimed by removing it from related
lists of all maps as shown in lines 22–23. The new monitor is then inserted in
the list at line 24.

Finally, as shown in lines 25–28, the relevant monitors are retrieved and their
states are updated. In case any of the states is the error state, then the error is
reported.

Correctness: We argue about the correctness of our algorithm by arguing
about its soundness and completeness with respect to the unoptimized version.
Runtime monitoring is inherently unsound since errors may not be reported if
the paths that encounter them are not exercised [30]. However, monitoring is
expected to be sound with respect to the observed traces and complete so that
it produces no false positives.

The unoptimized approach creates a monitor for every creation event,
whereas the optimized approach either allocates one from the pool or skips the
allocation completely. If a monitor is reused, it is reset first before its realloca-
tion. For non-creation events, the optimized approach either skips monitoring if
no monitor was earlier allocated or tracks them in a way similar to the unopti-
mized approach. In other words, if a monitor picked by the optimized approach
for tracking reaches the error state, then the system guarantees that the monitor
was tracked from the beginning similar to the unoptimized approach. Therefore,
optimized approach cannot produce any false positives, since the unoptimized
approach cannot. As a result, the optimized approach retains the completeness.
The degree of soundness, however, depends on whether the optimized approach
skipped events that would have otherwise led to an error.

Memory and Time Efficiency: The algorithm preallocates monitors from a
pool of constant size, and then if required, monitors are reused. This reduces the
number of required monitors drastically. In fact, as mentioned in the study in
Sect. 7, for some configurations the system ended up consuming even less moni-
tors than the size of the global monitor pool due to limited program execution
contexts that were observed during runtime. The number of dynamic instances
of execution contexts can often be much less than the static instances which
are computed more conservatively. The reduced number of monitors allow us to
skip monitoring actions. The fact that other events are generally much higher in
number than creation events also helps. Even though maintaining and checking
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execution contexts and reallocating monitors add to the overhead, the efficient
memory management scheme helps maintain the system’s efficiency. In addition,
it reduces the system’s dependence on the garbage collector saving the execution
time and reducing the unpredictability introduced by the garbage collector.

Execution Time-Determinism: The fact that the algorithm has fairly tight
worst-case execution time bounds can be explained by analysing the bounds on
the steps involved in handling monitoring events which can be divided into two
categories.

Handling Creation Events: This event may result in a monitor allocation.
Accessing the execution context on line 8 is a constant time operation. Method
isPresent on line 9 may traverse the height of the context tree in the worst case,
which still makes it constant time since the tree has a limited height equal to
the length of the execution context. Similar argument applies to updating the
context on line 13. The loop on lines 16–17 iterates 2n times where n is | τ(m) |
and τ(m) is the number of associated objects typically ranging from 1 to 3.
Hence, this operation takes O(1) time. By the same arguments loops on lines
22–23 and 19–24 iterate 2|τ(m)| and 2β times and take O(1) time. Hence, the
running time of the outer loop on lines 19–24 is constant. Therefore the overall
time taken by a creation event is constant.

Handling Other Events: Since the size of the local monitor pools is limited
to a small constant, say k, the loop on lines 25–28 executes at most k times.
Hence, the handling of other events takes a constant time.

Therefore, the running time of the algorithm is a constant and for a program
execution that generates n events, the time taken to handle these events is Θ(n).
In comparison, in the worst case, the unoptimized algorithm may create O(n)
monitors, assign all of them to a set of objects, and then receive O(n) events of
similar kind on the same set of objects requiring all of the created monitors to be
tracked for every event. Therefore, the worst-case complexity of the unoptimized
algorithm is O(n2).

5.1 Soundness, Memory, Efficiency, and Time-Determinism:
Tradeoffs

There is a direct relation between soundness and the number of monitors allo-
cated, which in turn, corresponds to the memory allocated for monitoring. We
stretch the inherent unsoundness of any monitoring system a little further to
achieve substantial benefits in terms of memory savings using heuristics that
help limit the unsoundness. Similar tradeoffs exist between soundness and effi-
ciency, and soundness and time-determinism where we pick one at a potential
loss of the other. However, as indicated by the study in Sects. 7 and 7.7, our
approach can save considerable amount of memory, maintain its efficiency, and
can also make monitoring time-deterministic without compromising much with
its error reporting. As a result, our technique should enable developers to employ
monitoring in environments where traditional techniques might not be feasible.
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6 Metis Implementation

Metis, the prototype of our approach (as described in Sect. 4) is implemented
in Java. We use Soot [26] for program instrumentation, and leverage the ajc
v1.8.0 compiler to weave aspects. Some salient features of Metis are described
below.

Lightweight Execution Context and Static Analysis Optimization:
While the Java method getStackTrace() fetches the current stack trace, it intro-
duces significant performance penalties. To mitigate this overhead, we instru-
ment program methods with a static Integer field and populate it with a unique
16-bit identifier. We maintain method calling sequence by using a circular array
containing these identifiers. In our implementation, the sequence is of length 3.
The circular array is implemented as a 64 bit Long integer. The array is of the
format id1|id2|id3, where idi is the id corresponding to method fi and is a 16
bit integer. Note that the method call sequence is populated by bit-wise << and
| operations, which makes any query operation over the stack-trace lightweight.
To further reduce the execution time, we employ static analysis to identify and
instrument the methods which are within the distance equal to the length of the
context from the method calls that may lead to the error state.

Aspects and Monitors Allocation: Metis takes as input the regular expres-
sion based mop files from JavaMOP v2.3. It then generates the aspect file for
the specified property. We modify these aspects by adding logic corresponding
to the monitor allocation.

Context Matching: A HashMap is added to the aspect that maps a context
(long) to a ArrayList of monitors associated with it. Each monitor is associ-
ated with a unique context value. Whenever a new monitor creation pointcut
is encountered, the context matching module checks the number of the monitor
associated with that context and probabilistically decides whether to allocate
more monitors or not.

7 Evaluation

7.1 Artefacts

The evaluation of our approach is divided into two parts: In the first part we
perform our experiments on DaCapo benchmarks which have also been used
in the related work [7,9,24]. We considered three benchmarks from DaCapo
benchmark suite [6,11], namely bloat, pmd and avrora. We ignored other bench-
marks in the suite as they do not contain sufficient monitor events. We consider
HasNext, UnsafeIterator and HashSet as the finite state properties of interest
since they have been reported to generate considerable monitors and overheads
in the prior work [20,24]. In the second part, we present two case studies on
two popular real world applications. The first is a marketplace and e-commerce
platform called Mayocat Shop [19] and the second is a Java graph library called
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JGraphT [16]. Both are open source applications written in Java. We define new
customized typestate properties for these platforms and perform our experiments
on them. The case study is covered in detail in Sect. 7.7.

7.2 Experimental Setup

We performed the experiments on a laptop provisioned with 2.3GHz processor,
16 GB RAM and running 64-bit Windows 10. We use JVM v8 with 8GB heap.
For evaluation, we use DaCapo benchmarks versions 2006 − 10 − MR2 and
9.12 [6,11]. We host the application in Sect. 7.7 on the Apache Tomcat Server
v8.0.46. For calculating the execution times, we ran the experiments 5 times and
reported the mean values.

7.3 Evaluation Criteria

We list the key research questions about the effectiveness of our approach that
we address in this section below.

RQ1: Does it consume less memory?
RQ2: Does it incur higher execution time overhead than the unoptimized

approach?
RQ3: Does it bound the worst case execution time for all monitoring opera-

tions?
RQ4: Does it effectively catch errors?

7.4 Resource Consumption

In this section, we answer questions RQ1 and RQ2 to understand the resource
consumption of our approach. We execute the three DaCapo benchmarks and
measure the total execution time and memory consumption. Tables 2 and 3 list
the results. We compare the performance against the aspects generated by Java-
Mop, which is denoted as Unoptimized in the table. Optimized(L(a) = 1K)
denotes the optimized monitors with 1K limit on the size of monitor pool. We
observe that for all cases the benchmarks with the optimized monitors execute
faster than the unoptimized ones. This indicates that our optimizations decrease
the time overhead. There is upto 55% reduction in execution times compared to
the unoptimized approach.

Table 2. Runtime (ms.) of DaCapo benchmarks, L(A) denotes size of monitor pool.

HasNext UnsafeIterator HashSet
Avrora Bloat Pmd Avrora Bloat Pmd Avrora Bloat Pmd

Without monitoring 7221 3221 3746 7221 3221 3746 7221 3221 3746

Unoptimized 44766 27126 15085 48456 25355 13506 44754 13695 15785

Optimized (L(A) = 1K) 39864 16053 8240 39302 17772 7941 40177 12350 8178

Optimized (L(A) = 10K) 42107 16424 10250 43008 18396 8581 44098 12700 9390
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Table 3. Peak Memory consumption (in GB).

HasNext UnsafeIterator HashSet
Avrora Bloat Pmd Avrora Bloat Pmd Avrora Bloat Pmd

Without monitoring 0.05 0.09 0.15 0.05 0.09 0.15 0.05 0.09 0.15

Unoptimized 0.157 1.4 1.2 0.41 1.15 1.11 0.06 1.5 1.35

Optimized (L(A) = 1K) 0.067 0.12 0.268 0.067 0.26 0.247 0.06 0.10 0.422

Optimized (L(A) = 10K) 0.079 0.12 0.36 0.079 0.27 0.526 0.06 0.12 0.423

Table 4. Comparison of event execution times (nano second) of UnsafeIterator
property.

Create
Bloat Pmd Avrora
Max Mean Std Dev Max Mean Std Dev Max Mean Std Dev

Unoptimized 26M 1.2K 38.21K 84M 996.95 101.87K 74M 2.12K 106.68K

Optimized
(L(A) = 10K)

625K 5.14K 9.64K 395K 4.25K 7.94K 998K 13.75K 17.80K

Update
Unoptimized 418K 265.22 1.66K 807K 76.06 294.09 33M 26.38K 687.12K

Optimized
(L(A) = 10K)

40K 127.28 294.09 67K 38.21 218.02 90K 319.74 427.85K

Table 3 represents the memory consumption for the benchmarks. Unsurpris-
ingly, the memory consumption of the optimized approach is always substantially
less (by up to 77% compared to the unoptimized approach) than the unoptimized
approach, and is only marginally higher than the consumption of the uninstru-
mented benchmarks. The very low memory overhead is because our approach
spawns considerably less number of monitors (see Table 5) which should allow
developers to employ monitoring even in severely resource-constrained environ-
ments.

7.5 Bounded Execution Time

We now address RQ3, i.e., bound on worst case execution time. We consider the
UnsafeIterator property for this analysis, since it is a multi-object property
which can take highly variable execution time for update events due to vari-
able number of monitors associated with these events. We also consider create
events since they involve monitor allocations, object bindings, map entries and
lookups. The unoptimized approach performs extra memory allocations whereas
the optimized approach performs extra context tree lookups and context match-
ing. This makes the comparison with respect to their abilities to provide tighter
bounds interesting. Table 4 compares the maximum and mean execution times
along with the standard deviations. We observe that even though mean execution
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Table 5. Errors reported and monitors generated for different properties. Errors denote
the #errors reported along with the #unique contexts where errors are encountered and
#unique contexts created in parantheses. N (A) and T (A) denote #monitor allocated
and #monitor targeted respectively. - denotes no error event observed.

HasNext
Bloat Pmd Avrora
Errors N (A) Errors N (A) Errors N (A)

Unoptimized 44 (1/3) 1.9M 400 (1/3) 1.94M 79K (1/9) 898K

Optimized (L(A) = 1K) 3 (1/3) 1K 254 (1/3) 1K 446 (1/9) 1K

Optimized (L(A) = 10K) 3 (1/3) 10K 398 (1/3) 10K 735 (1/9) 8.2K

Randomized (T (A) = 1K) 0 (0/1) 1.2K 0 (0/1) 1.1K 85 (1/2) 1K

Randomized (T (A) = 10K) 0 (0/1) 10K 68 (1/1) 10K 962 (1/2) 9.9K

UnsafeIterator
Unoptimized - 1.96M - 1.94M - 898K

Optimized (L(A) = 10K) - 10K - 10K - 8.4K

HashSet
Unoptimized - 66.8K - 6.8M - 106

Optimized(L(A) = 10K) - 10K - 10K - 103

times for create events are higher for optimized monitors, the maximum exe-
cution times as well as standard deviation values are much lower. These values
including the standard deviation are much lower for update events in the case of
optimized monitors. This indicates that the optimized approach can effectively
bound the execution time even for the events that are the hardest to monitor.

7.6 Effectiveness of the Approach

We test the effectiveness of our approach by determining if it missed out on
errors due to the fewer monitors generated (RQ4). We measure the number of
reported errors and the number of monitors allocated under following scenar-
ios : (a) Unoptimized : aspects generated by JavaMop, (b)Optimized(L(a) =
1K) optimized aspect with 1K bound on global monitor pool, and (c) Opti-
mized(L(a) = 10K) optimized aspect with 10K monitor bound on global moni-
tor pool. We then present two additional scenarios (d) Randomized(T (a) = 1K)
and (e) Randomized(T (a) = 10K) in which we perform monitoring by prob-
abilistically generating monitors2 which in terms of numbers are close to (b)
and (c), respectively. We compare the effectiveness of our approach with the
randomized approach when the monitors generated in two scenarios are similar.

Table 5 lists the results of our study. We observe that across all the bench-
marks and properties, our approach enables significant reduction of allocated
monitors, which results in lesser memory consumption (refer Sect. 7.4). Note
2 The probability of generating the monitor decreases multiplicatively with the number

of monitors that are already in the pool.
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that even though our approach reports lesser number of errors, a closer inspec-
tion of the context trace reveals that all the errors reported by the unoptimized
approach are generated from just one unique context which is captured by our
approach with only 1K monitors. Moreover, our approach investigates all dis-
tinct contexts which are 3 each for bloat and pmd, and 9 for avrora. Thus,
the optimized monitors do not miss any distinct error report; they
rather exclude duplicate errors. In comparison with our approach, the ran-
domized approach misses errors for bloat and pmd when the generated monitors
are 1K and misses errors for bloat even when the number of generated moni-
tors is increased to 10K. Moreover, it fails to investigate several contexts which
could have potentially led to errors. These results indicate that our approach
can effectively catch errors.

7.7 Case Studies

Mayocat Shop. In the first case study, we analyze the performance of our tech-
nique when deployed in an eCommerce environment that can support large num-
ber of concurrent users. Typically, these applications are resource-constrained
and their performance is determined by various factors such as bandwidth,
CPU, memory, and I/O capacity. These applications have tight bounds on these
resources and cannot tolerate high and unpredictable overheads. Most businesses
use eCommerce solutions to market their services and products to a larger audi-
ence base. Consequently there are numerous providers which provide these online
businesses a platform for managing their website, sales and operations. Mayocat
Shop [19] is one such open source marketplace and eCommerce platform. It is
developed in Java and uses other technologies such as ElasticSearch, PostgreSQL,
Jersey, and Jetty. The basic features include management of product, inventory,
shipping, order, and internationalization.

To determine customized properties for our monitoring system we studied
the Cart, Billing and Shipping modules in the application. We define two prop-
erties: ShipOps and CartOps based on the functionality of these modules. The
ShipOps property states that the shipping/delivery address associated with that
order should not be changed once the order has been shipped. While the CartOps
property states that for a particular item in the cart, it can only be updated or
removed after it has been added to the cart. We then implemented the unopti-
mized and optimized aspects for these properties. These properties are based on
different operations performed on the following entities: Customer, Order, Cart
and Address. For our experiments we vary the number of users in the applica-
tion from 100 to 10K and report the number of monitors created, errors caught,
program execution times, and the memory consumption for both approaches in
Table 7. We also report the event monitoring execution times in Table 6.

JGraphT. For the second case study we used an open source graph library
called JGraphT [16] which provides mathematical graph-theory objects and algo-
rithms. This library contains Java implementation for a variety of graphs like
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Table 6. Comparison of event execution times (nano second) of ShipOps property.

Create Shipped
Max Mean Std Dev Max Mean Std Dev

Unopt (100) 280K 15.14K 15.66K 19K 4.06K 1.68K
Opt 116K 12.32K 11.62K 10K 1.97K 1.37K
Unopt (1 K) 726K 9.94K 18.79K 55K 1.88K 1.77K
Opt 406K 7.96K 12.33K 46K 793.38 1.64K
Unopt (10 K) 2M 2.44K 18.83K 701K 479.84 4.57K
Opt 838K 2.28K 8.10K 397K 205.47 2.34K

Table 7. #monitors generated, #errors reported, peak memory consumption (MB)
and runtimes (ms) along with percentage overheads in parantheses. Errors denote
#errors reported along with #unique contexts where errors are encountered and
#unique contexts created in parantheses.

Unopt Opt Unopt Opt Unopt Opt

ShipOps Monitors 100 54 1K 112 10K 224

Errors 61 (3/5) 30 (3/5) 711 (3/4) 82 (3/4) 7K (2/5) 154 (2/5)
Memory 3.8 (52) 3.8 (52) 5.1 (104) 3.8 (52) 17.7 (133) 12.7 (67)
Runtime 48 (500) 40 (400) 90 (275) 72 (200) 212 (179) 180 (137)

CartOps Monitors 100 60 1K 108 10K 201

Errors 445(4/5) 241 (4/5) 4741 (4/4) 563 (4/4) 47K (4/5) 1K (4/5)
Memory 3.8 (52) 3.8 (52) 3.8 (52) 3.8 (52) 10.2 (34) 8.8 (16)
Runtime 44 (450) 36 (350) 78 (225) 72 (200) 172 (126) 164 (116)

directed and undirected graphs, weighted and unweighted graphs, simple-graphs,
multigraphs, pseudographs, cycles etc. It also has an extensive test suite which
we use for our analysis.

We studied the jgrapht-core module to determine customized properties for
our monitoring system. We define two properties: JSCO and HSCO based on
the functionality of the JohnsonSimpleCycles, HawickJamesSimpleCycles and
DirectedGraph classes. The JSCO property states that for a DefaultDirected-
Graph in a JohnsonSimpleCycles, an edge can only be removed after it has been
added to the graph. While the HSCO property states that for a SimpleDirect-
edGraph in a HawickJamesSimpleCycle should not be updated (add or remove
edge) once the countSimpleCycles function has been called. We then imple-
mented the unoptimized and optimized aspects for these properties. For our
experiments we modified the existing test suite in the application to vary the
number of instances of each of these cycles and graphs. The instances range from
100 to 10K. We report the number of monitors created, errors caught, program
execution times, and the memory consumption for both approaches in Table 9.
We also report the event monitoring execution times in Table 8.



182 G. Allabadi et al.

Table 8. Comparison of event execution times (nano second) of HSCO property.

Create CountCycles
Max Mean Std Dev Max Mean Std Dev

Unopt (100) 124K 37.3K 19.83K 112K 1.49K 2.30K
Opt 96K 36.22K 16.21K 89K 1.15K 1.81K
Unopt (1 K) 666K 24.34K 41.81K 2M 531.92 14.34K
Opt 165K 13.89K 15.89K 282K 222.17 2.08K
Unopt (10 K) 2M 7.56K 38.04K 3M 179.51 5.03K
Opt 838K 2.28K 8.10K 195K 67.73 609.67

Table 9. #monitors generated, #errors reported, peak memory consumption (MB)
and runtimes (ms) along with percentage overheads in parantheses. Errors denote
#errors reported along with #unique contexts where errors are encountered and
#unique contexts created.

Unopt Opt Unopt Opt Unopt Opt

JSCO Monitors 100 52 1K 109 10K 208

Errors 20K (2/2) 10K (2/2) 197K (3/3) 19K (3/3) 1M (2/2) 23K (2/2)
Memory 3.8 (52) 3.8 (52) 3.8 (52) 3.8 (52) 8.8 (25) 7.6 (10)
Runtime 78 (420) 70 (360) 125 (400) 110 (340) 324 (210) 240 (130)

HSCO Monitors 100 53 1K 110 10K 212

Errors 99(1/1) 52 (1/1) 991 (2/2) 108 (2/2) 9K (1/1) 207 (1/1)
Memory 3.8 (52) 3.8 (52) 7.6 (200) 3.8 (52) 18.6 (160) 11.4 (63)
Runtime 90 (500) 66 (340) 129 (410) 96 (284) 387 (270) 252 (140)

Discussion. Our observations for both the case studies are fourfold. First, we
observe that there is a significant reduction in the number of monitors in the
case of the optimized approach as the number of creation events increase. Conse-
quently, the peak memory consumed also decreases in the same proportion (upto
50% reduction in memory compared to the unoptimized approach). Second, we
see that although the number of errors caught in the optimized approach is lesser,
the unique errors caught by both the approaches are same. Third, the
execution times of programs with optimized monitoring are less than the ones
with unoptimized monitoring (upto 40% reduction compared to the unoptimized
approach). Finally, the mean and standard deviation values of execution times
of monitoring operations of optimized monitors are lower than the correspond-
ing values of unoptimized monitors. Hence, overall the optimized approach does
significantly better than the unoptimized approach in terms of memory and
execution times without compromising with the error detection. This indicates
that our approach is a promising step toward deploying runtime monitoring of
realistic applications with resource constraints in a production environment.
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8 Threats to Validity

We used JavaMop 2.3 as a baseline tool for our prototype implementation.
However, the results of the study may change if we use a different tool or a
more recent version of JavaMop. Using an older version of JavaMop had an
advantage of being easier to understand, which allowed us to ensure that our
optimizations do not interfere with JavaMop’s optimizations. Our goal is not
to compare the performance with JavaMop, but to show that our technique is
complementary to JavaMop optimizations and can be used to extend JavaMop
or similar tools to further improve their effectiveness.

The choices of hardware and software platforms, in particular the server
settings, may influence the results. In the future, we plan to repeat the study on
a variety of platforms to understand their impact on the results.

9 Related Work

In this section, we briefly discuss some of the notable monitor optimization
works.

Approaches for Real-Time Systems. Real-time systems demand time-
deterministic monitoring. The challenge is in scheduling monitoring activities
such that they do not interfere with the software operation and do not violate
the nonfunctional properties. Some approaches depend on event sampling and
optimized time-triggering [2,22,29]. Other approaches include predictable moni-
toring that provide bounds on detection latency [17,31,32]. These approaches are
effective, However, they do not target finite state properties. and are unsuitable
for inline monitoring. Another approach by Colombo et al. [10] tries to decrease
the runtime overheads by performing the monitoring operations by carrying
out the monitoring operations on a remote site. This has shortcomings such as
increased communication between the server and remote site. Our approach, in
contrast, performs inline monitoring without the need for any communication
channel.

Sampling-Based Approaches. Researchers have presented approaches that
are based on sampling object space [3], time [5,27], and properties [13]. The
approach presented by Arnold et al. [3] is the closest to our approach in its spirit.
They develop Quality Virtual Machine (QVM) that tracks safety properties, Java
assertions and heap properties for violations. It also has an overhead manager
to enforce a user specified overhead budget. Even though effective for general-
purpose applications, QVM is not designed for timing requirements. It is not
easily portable and it tracks only single-object properties. None of these reuses
monitors to control overheads.

Aspect-Based and Similar Monitoring Approaches. A number of finite
state runtime monitoring tools including MarQ [25], JavaMop[20], and Trace-
matches [1] have been developed to detect violations of typestate properties.
In spite of this efficiency, for certain program and property combinations, all
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of these tools incur heavy overheads. These scenarios act as the motivation to
our research. Various approaches [4,18,20,24] have been proposed to control the
memory and to avoid unnecessary monitoring. However, monitoring still remains
challenging for some properties.

Hybrid Approaches. Several hybrid approaches have been proposed that com-
bine static program analysis with monitoring to reduce overheads [7,8,14,23].
The static component of the analysis filters program points that need no moni-
toring. These approaches are effective, and have been found to control overheads
in many cases but not all. Moreover, they have not been effective in controlling
the space requirements. None of these approaches provide bounds on the execu-
tion times of monitoring operations.

Data Structure Based Optimization Approaches. Different data structures
have been used to keep track of the different states of the monitors associated
with runtime monitoring. The time taken to search, read and write to these data
structures determines the performance of a monitoring system. JavaMop[20],
and MarQ [25] use data structures based on lookup tables, implemented as
hash maps, to store this mapping of objects to their individual state. Decker
et al. [12] use union-find data structures to store the state of program objects.
Although these techniques optimize the inherent runtime overhead, they can
quickly become infeasible in production environments as the number of tracked
objects increase.

10 Conclusion and Future Work

We presented a novel inline finite state monitoring technique that explores the
trade-offs between efficiency and determinism, and reported violations. It sam-
ples objects for monitoring in order to reduce the memory overhead based on
program execution contexts. At the same time, it strives to catch all distinct
errors that an unoptimized approach would catch. The approach provides worst-
case execution time bounds for all monitoring operations. General monitoring
approaches do not take into consideration the limited availability of resources.
These approaches can degrade software performance. We hope that our app-
roach would help employ inline monitoring in production environments even for
resource-constrained systems.
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Abstract. Run-time Verification (RV) has become a crucial aspect of
monitoring black-box systems. Recently, we introduced Prevent, a pre-
dictive RV framework, in which the monitor is able to predict the future
extensions of an execution, using a model inferred from the random sam-
ple executions of the system. The monitor maintains a table of the states
of the prediction model, with the probability of the extensions from each
state that satisfy a safety property.

The size of the prediction model directly influences the monitor’s mem-
ory usage and computational performance, due to the filtering techniques
used for run-time state estimation, that depends on the size of the model.
Hence, achieving a small prediction model is key in predictive RV.

In this paper, we use symmetry reduction to apply abstraction, that,
in the absence of a model in black-box systems, is performed on the
observation space. The symmetry relation is inferred based on k-gapped
pair model, that lumps symbols with similar empirical probability to
reach a set of target labels on a set of samples. The obtained equivalence
classes on the observation space are used to abstract traces that are used
in training the prediction model.

We demonstrate the soundness of the abstraction, in the case that
the generating abstract model is a deterministic Discrete-Time Markov
Chain (DTMC). We use Hidden Markov Models (HMMs) to handle the
abstraction-induced non-determinism by learning the distribution of a
hidden state variable. We implemented our approach in our tool, Prevent,
to empirically evaluate our approach on the Herman’s randomised self-
stabilising algorithm. Our results show that the inferred abstraction sig-
nificantly reduces the size of the model and the training time, without a
meaningful impact on the prediction accuracy, with better results from
the HMM models.

1 Introduction

Run-time Verification (RV) [28] has become a crucial element in monitoring and
analysing safety aspects of black-box stochastic systems [29,39], where there is
almost surely a non-zero probability of failure. In RV, a monitor checks the cur-
rent execution, that is a finite prefix of an infinite path, against a given property,
c© Springer Nature Switzerland AG 2018
C. Colombo and M. Leucker (Eds.): RV 2018, LNCS 11237, pp. 187–204, 2018.
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typically expressed in Linear Temporal Logic (LTL) [36], that represents a set
of acceptable infinite paths. If any infinite extension of a prefix belongs (does
not belong) to the set of infinite paths that satisfy the property, the monitor
accepts (resp. rejects) the prefix. However, if the monitor is not able to reach a
verdict with the given prefix because it can be extended to satisfy or violate the
property, the monitor outputs unknown [5].

We introduced the predictive RV framework [3], where the monitor finitely
extends the prefix based on a prediction model that is trained on the set of inde-
pendent and identically distributed (iid) sample traces. This gives the monitor
the ability to detect a monitorable [14] property’s satisfaction/violation before its
occurrence. In this paper, we propose inferring trace-level abstraction to reduce
the size of the prediction model. Our focus is on the discrete-time reachability
properties, specified as target labels on the observation space Σ. The maximum
length of the extensions is specified as the prediction horizon (Fig. 1).

current
execution u

Pr(s |= ≤hAccept)

prediction
horizon h

target
labels

Learning
Aalergia &
Baum-Welch

Stochastic
Black-Box
System

traces

Monitor

abstract
traces

prediction
model

Reachability
Analysis
Prism

State
Estimation
Forward-

Backward

s

probability
table

Abstraction
k-gapped pair model

Fig. 1. Overview of predictive RV with abstraction.

Abstraction. The key idea in our abstraction is to decrease the size of the obser-
vation space by extracting symbols that have similar transient probability [24]
to reach the target labels. Therefore, our approach can be seen as a form of
symmetry reduction [23] on the observation space that is implemented at the
trace-level [33]. We use k-gapped pair model [13] to detect the symbols that have
similar empirical probability to reach the target symbols within k steps. The
symbols that have probability zero are considered irrelevant in the prediction.
The symmetrical symbols are then lumped into equivalence partition over the
observation space to convert the traces of the training set into abstract traces.

Learning. If there is no non-determinism in the generating model of the abstract
traces, given that the property is a bounded reachability LTL formula, any learn-
ing technique to infer the deterministic model, such as Aalergia [30], suffices to
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provide the prediction model that in the limit is as accurate as the actual model.
However, the trace-level abstraction may induce non-determinism in the trained
model [33]. We use Hidden Markov Model [37] (HMM) to infer the induced non-
determinism by the abstraction, and compare the results with the deterministic
as well as the actual model [30]. We train an HMM using Baum-Welch algo-
rithm [37], that is an approximation to find the parameters of the HMM that
maximizes the likelihood of the training data.

Reachability Analysis and Monitor Construction. The monitor in our framework
is the result of a bounded reachability analysis on the prediction model. We use
Prism [34] to perform the probabilistic bounded reachability analysis on the
prediction model. The monitor is implemented as a lookup table, where each
entry is a combination of three elements: an integer variable t, a state of the
prediction model, and the probability that from that state the system reaches
the states with the target labels, within t steps. The value of t is constrained by
the prediction horizon that is expected from the prediction model.

State Estimation. Given that the original DTMC is deterministic, the system
state can be determined by the observed path u. However, if the prediction
model is non-deterministic, the state of the system needs to be estimated [40]
based on the prefix u. Any filtering techniques [38] can be exploited to estimate
the state at run-time. If the size of the model is large, approximate techniques
such as the Viterbi algorithm [3,43] can be applied too. Since the purpose
of the current paper is to reduce the size of the prediction model, and also
for evaluation purposes, we apply a direct approach and compute the posterior
probability distribution of the states in the prediction model after observing u,
using Forward-Backward algorithm [37].

The output of the monitor is the probability that from the estimated state
s the system reaches the target labels within at most h steps. This probabil-
ity is retrieved from the probability table after estimating the current state.
Respectively, the size of the prediction model dictates both the size and the
computational overload of the monitor.

In summary, our paper makes the following contributions:

– define trace-level abstraction as a symmetry relation in the observation space,
and infer it using k-gapped pair model

– resolve non-determinism induced by the abstraction using hidden state vari-
able

– demonstrate the validity of our approach on a distributed randomized algo-
rithm, by showing the significant reduction in the prediction models with
minimum impact on the prediction accuracy.

The rest of the paper is organized as follows: in Sect. 2 we introduce our run-
ning example, followed by preliminaries in Sect. 3, and a brief description of the
prediction procedure in Sect. 4. In Sect. 5 we explain the trace-level abstraction
using symmetry relation on the observation space and our algorithm to infer the
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symmetry. Learning deterministic models, and some theoretical guarantee, as
well as learning non-deterministic models are described in Sect. 6. We conclude
the paper by discussing the results of our case study in Sect. 7.

2 Running Example

We use the die example [34] as the running example throughout the paper. This
example demonstrates the simulation of throwing a fair 6-sided die with flipping
a fair coin [22]. Let C be the output of the flipped coin (C ∈ {ii, hh, tt}), where
hh, tt display head and tail, resp., and ii is a special symbol to indicate the initial
state of the coin. Also, let D be the output of the simulated die (D ∈ {0, . . . , 6}),
where 1, . . . , 6 is the simulated output of the die, and 0 shows that the coin needs
to be flipped again, and the output of the die is not determined yet. The coin
needs to be flipped at least three times to simulate observing a number on the
die. We define Σdie : C × D as the observation space, that denotes the output
of the coin and the die in the process.
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(tt,5)

(hh,2)

(tt,3)

(hh,0)

(tt,0)
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(tt,0)
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(tt,1)

(hh,6)

Fig. 2. The learned model of the die
example from 1000 samples used as the
prediction model.

Suppose checking the reachability
property eventually the outcome of the
die is either “1” or “6”, at run-time,
which translates to the LTL property
ϕ : �D = 6 or D = 1, based on the sym-
bols in the defined observation space.
Any (infinite) execution paths with the
prefix u : (ii, 0)(tt, 0)(hh, 0)(hh, 6) sat-
isfies ϕ. However, the result on the
prefix u′ : (ii, 0)(tt, 0)(hh, 0)(tt, 0) is
unknown [6], as it can be extended to
an infinite path that satisfies ϕ (e.g.,
(ii, 0)(tt, 0)(hh, 0) (tt, 0)(hh, 0)(hh, 6)ω),
or an infinite path that violates ϕ (e.g.,
(ii, 0)(tt, 0)(hh, 0)(tt, 0)(tt, 0)(tt, 5)ω).

To deal with the inconclusive results
due to unknown extensions [5], we pro-
vide the monitor with a prediction model
to extend the prefix and generate the
results based on the probability of the
extensions that satisfy the given prop-
erty. In the die example, the model in
Fig. 2 is created from 1000 iid samples,
with which the monitor is able to com-
pute the probability of all the extensions
that satisfy ϕ (the shaded states). We
limit the length of the extensions to some boundary, which we call the predic-
tion horizon.
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3 Preliminaries

In this section, we briefly introduce definitions and notations. A probability
distribution over a finite set S is a function P : S → [0, 1] such that

∑
s∈S P (s) =

1. We use X1:n to denote a sequence x1, x2, . . . , xn of values of a random variable
X, and use u and w to, respectively, denote a finite and an infinite path.

Discrete-Time Markov Chains (DTMC).

Definition 1 (DTMC). A Discrete-Time Markov Chain (DTMC) is a tuple
M : (S,Σ, π,P, L), where S is a non-empty finite set of states, Σ is a non-
empty finite alphabet, π : S → [0, 1] is the initial probability distribution over S,
P : S × S → [0, 1] is the transition probability, such that for any s ∈ S, P (s, ·)
is a probability distribution, and L : S → Σ is the labeling function.

Let M be a DTMC. The sequence σ0σ1 . . . is an execution path on M
iff P(si, si+1) > 0, where L(si) = σi, i ≥ 0. An execution path can be finite or
infinite. The probability measure on the execution paths is defined using cylinder
sets [24]. We deal with finite paths in the remaining of the paper. We denote by
Pathk(σ) the set of all finite execution paths of length k that start with σ. In
the following, we define the finite extension of a path.

Definition 2 (Finite Extensions of a Path). Let σ0σ1 · · · σn be a finite
execution path on a DTMC. The set of finite extensions of u is denoted by Extu
and defined as follows:

Extu = {u ∈ Pathk(σn)|k ≥ 0}

We denote by Ext≤h
u , if k ≤ h in Definition 2.

Definition 3 (Deterministic State). State s ∈ S of a DTMC is called deter-
ministic iff for all σ ∈ Σ, there exists at most one s′ ∈ S such that P(s, s′) > 0
and L(s′) = σ.

Definition 4 (Deterministic DTMC [30]). A DTMC is deterministic iff:

– There exists sinit ∈ S such that π(sinit) = 1.
– For all s ∈ S, s is deterministic.

Hypothesis Testing. Let X be some random variable with unknown mean μ
and variance σ2. Let x1, . . . , xn be iid random samples of X, with mean X̄ and
variance v2. A two-sided null hypothesis test enables us to check H0 : |μ−X̄| = 0.
According to the central theorem [15], as the number of samples grows |μ − X̄|
follows a student’s t-distribution [15]. Therefore using confidence α and the t-
distribution we are able to accept H0, if |X̄−μ|√

v
n

≤ tn−1,α.
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4 Prediction as Quantitative Bounded Reachability
Analysis

Let M be a DTMC, G ⊆ Σ be the set of target labels of some goal states in M,
and L(G) be the set of finite execution paths on M that end with σ ∈ G. The
monitor’s purpose is to estimate the probability of all the extensions of length
at most h that satisfy �G. In a discrete-time setting, the variable h is a positive
integer, which we call the prediction horizon. Computing the probability of the
satisfying extensions is achieved by performing a bounded reachability analysis
on the prediction model.

Let u /∈ L(G) be the execution on M observed so far, and Extu be the set
of finite extensions of u. The output of the monitor is the probability measure
of the set of the paths of length at most h that satisfy �G, i.e.,

Pr(C), where C = {v ∈ Ext≤h
u |uv ∈ L(G)}) (1)

Suppose also that s is the state corresponding to the last label in u, which is
obtained by some state estimation technique [3,21,40]. As u expands, the new
state is consequently estimated at run-time.

The probability (1) can be obtained by recursively computing the transient
probability in M [24]: starting from s the probability of being at state s′ after
h steps, such that L(s′) ∈ G. We can effectively turn computing the transient
probability into checking the following quantitative PCTL property [17,24]:

P=?[s |= �≤h G] (2)

Due to multiplications of large and typically sparse matrices, the calculation
of (2) is not practical during run-time [24]. As a result, we use Prism [34] to
execute the quantitative reachability analysis [4] on all the states of M off-line,
and store the values in a look-up table. The size of the table is O(|M|) [3],
where |M| is the size of the prediction model. Subsequently, reducing the size
of the model results in a smaller look-up table, in addition to the performance
improvement due to a faster state estimation.

In our example, Gϕ = {(tt, 1), (hh, 1), (hh, 6), (tt, 6)}. Using the model in
Fig. 2, the monitor is able to retrieve the value of P=?(su′ |= �≤hGϕ), where su′

is the state of the model after generating u′. For instance, P=?(su′ |= �≤20Gϕ) =
0.34, which translates to the probability of all the extensions of length at most
20, that terminate with the labels where the outcome of the die is 6 or 1.

5 Trace-Level Abstraction by Inferring Symmetry in the
Observation Space

We use a finite partitioning of the observation space, Σ, to achieve the trace-
level abstraction in the form of a projection. The abstract traces are then used
to train the prediction models, which ideally have smaller sizes than the model
trained from the concrete traces, but are good enough approximates.
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The simplest abstraction is to divide the observation space into two par-
titions, the atomic propositions that appear in the target labels and the non-
target labels [33], i.e., G, and Σ − G, which we denote by ΣḠ . The projection
RG : Σ → {gg, nn} simply maps a symbol of a path to the symbol gg, if it is a
target label, i.e., R(σ) = gg iff σ ∈ G, and to the symbol nn otherwise. Consider
Gϕ and the traces u and u′. The projection of u and u′, using the projection
relation RGϕ

, are respectively, ũ : (nn)(nn)(nn)(gg) and ũ′ : (nn)(nn)(nn)(nn).
The projection RG may collapse the non-target symbols, that have a non-zero

probability to reach a target label within some bounded steps, with symbols that
never reach the target labels, i.e., have probability zero. For instance, compare
the symbols (hh, 0) and (hh, 4). The former appears immediately before the tar-
get label (hh, 6) often in a simulated path; whereas the latter has no appearance
before any of the target labels (see Fig. 2). Both are replaced with nn in RG ,
thus the predictive information from (hh, 0) and (hh, 4) are combined.

The key insight in our abstraction method is to not only detect the symbols
with no significant correlation with the target labels, but also recognize the
ones that have similar empirical probability to reach the target labels within a
fixed number of steps, and collapse them together. As a result, we leverage the
notion of symmetry [23] on the observation space to recognize the symbols with
similar prediction power and lump them into the same partition. We define the
symmetry relation with respect to reaching the target labels. More specifically,
we say two symbols are symmetrical iff the probability measure of a fixed length
path, that starts from either symbols and ends with some target labels, is equal.

Let M be a deterministic DTMC. Let Pk : ΣḠ → ΣḠ be the permutations
on the non-target labels, such that Pr(PathG

k (Pk(σ))) = Pr(PathG
k (σ)) for all

σ ∈ ΣḠ , and some fixed integer k > 0, where PathG
k (.) = Pathk(.) ∩ L(G). A

group of permutations defined by Pk on ΣḠ provides an equivalence relation
(so-called the orbits) on ΣḠ that with G defines the equivalence classes over the
observation space. We denote by Σk the abstract alphabet set that contains a
unique representative symbol for each partition, and by Rk : Σ → Σk the corre-
sponding projection that maps each symbol to its rep. in the abstract alphabet.

Let Mk be the quotient of M, where Σ is replaced with Σk, and Lk : S → Σk

such that Lk(s) = Rk(L(s)). Given that Mk is deterministic, we can show that
Mk is bisimilar to M. Therefore bounded predictions from any state in both
models are equal (see Theorem 1). In the case that Mk is non-deterministic,
we employ a hidden state variable to infer the non-determinism imposed by
abstraction (see Sect. 6.2).

In the remainder, we use k-gapped pair model (Sect. 5.1) combined with
hypothesis testing (Sect. 5.2) to infer Rk, and consequently, Σk.

5.1 k-gapped Pair Model

The k-gapped pair model [13] has been successfully applied in mining biological
sequences [20], and in context-dependent text prediction [11]. We use the k-
gapped pair model to extract the predictive symbols with respect to the target
labels in the training set.
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1 ComputePredictionSupport(S, σ, G, k)

inputs : The iid sample set S = [u1 . . . um], σ ∈ Σ, the set of target
labels G, and an integer k ≥ 0

output: [Fu1 . . . Fum
]

2 begin
3 foreach ui ∈ S do
4 n ← length(ui)

5 Fui
← 1

n−k−1

n−k−1∑

j=1

1(σj=σ and σj+k+1∈G)

6 end
7 end
Algorithm 1: Computing the k-prediction support of σ over the sample set.

A k-gapped pair model is a triplet (σ, σ′, k), where σ, σ′ ∈ Σ, and k ≥ 0 is
an integer that indicates the number of steps (gaps) between σ and σ′. If k = 0
the k-gapped pair is equivalent to a bigram [31].

The k-gapped occurrence frequency of the symbols σ and σ′, is the frequency
that σ appeared within exactly k steps before σ′ over the sample path. Assuming
that σ′ ∈ G, we use the sum of k-gapped occurrence frequency of a given symbol
over all the target labels in the sample set, and define it as the k-prediction sup-
port. Algorithm 1 shows computing k-prediction support of symbol σ. Symbols
σj and σj+k+1 are the jth and (j + k + 1)th symbols of the sample path ui in
each iteration of the loop in line 3, and 1(σi=σ and σi+k+1=σ′) in line 5 is the
indicator function that returns 1 if σi = σ and σi+k+1 = σ′; and 0 otherwise.
The output of Algorithm 1 is the vector [Fu1 . . . Fum

], the k-prediction support
values of each sample path for symbol σ.

The k-prediction support of σ is essentially the empirical estimation
of Pr(PathG

k (σ)). Under the assumption that Fu1 , . . . , Fum
is covariance-

stationary [16], i.e., the mean is time-invariant and the autocovarinace function
depends only on the distance k, both of which hold if the samples are iid, and
the underlying generating model is a deterministic DTMC, we are able to use
hypothesis testing to extract Rk.

5.2 Using Hypothesis Testing to Extract Symbols with Equivalent
Prediction Support

Algorithm 2 demonstrates the procedure of extracting the abstract alphabet set,
based on the symmetry between the k-prediction support of the symbols. The
algorithm receives the sample set, the alphabet set, the set of target labels, and
k, as inputs, and infer Rk, by generating the partitions V1, . . . , Vt.

The algorithm iterates over the symbols not considered in any equivalence
classes, that are stored in R (the loop in lines 5–17). In each iteration, the
symbol with the maximum k-prediction support score is found in R and stored
in σmax with its score in Fmax (line 6). The score 0 indicates that there is no
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1 ExtractAbstractAlphabet(Sample set S,Σ,G, k)

output: Partition [G ∪ V1 ∪ · · · ∪ Vt ∪ R] over Σ
2 begin
3 t ← 1
4 R ← Σ − G
5 while R 
= ∅ do
6 [σmax Fmax] ← maxσ∈R

∑m
i=1 Fui

7 if Fmax = 0 then break
8

9 Vt ← {σmax}
10 for σ ∈ R − {σmax} do
11 Fσ ← ComputePredictionSupport(S, σ, G, k)
12 if HypothesisTesting(Fmax − Fσ) then
13 Vt ← Vt ∪ {σ′}
14 end
15 end
16 R ← R − Vt

17 t ← t + 1
18 end
19 end

Algorithm 2: Extracting the equivalence classes on the alphabet set.

path of length k to any target labels from the symbols in R and we can end the
procedure (line 7); otherwise, the symbols with statistically similar k-prediction
support score to σmax are extracted from R, and inserted in Vt (for loop in 9–
13). The statistical testing is conducted via the function HypothesisTesting,
which performs a two-sided hypothesis t-test to check H0 : Fmax − Fσ = 0.
Depending on the number of samples, a proper confidence is chosen to test H0.

Algorithm 2 terminates, if there is no more symbol to classify, i.e., R = ∅,
or if all the remaining symbols in R have no k-prediction support. We dedicate
a representative symbol for each extracted partition, including G and R if it is
not empty, and define Rk accordingly.

At worst, a total number of O(|Σ|2) comparisons is required to extract the
abstract alphabet set. Given that the size of the actual model is at least as large
as |Σ|, storing the entire vector of k-prediction support score for all symbols is
impractical for large models. In fact, to make the usage of memory independent
of the size of the alphabet, the computation of F in Algorithm 1 is performed
on-the-fly, which only depends on the size of sample data. Compared to inferring
the abstract alphabet from a model that is trained from the concrete traces, our
approach is more memory-efficient.

Table 1 demonstrates the k-prediction support of the symbols (tt, 0) and
(hh, 0), for k = 0, 1, 2, over 1000 samples. The equivalence classes obtained by
Algorithm 2 for k = 2, where R2(σg) = gg, σg ∈ Gϕ, R2(σv) = v1, σv ∈ V1 =
{(ii, 0), (hh, 0), (tt, 0)}, R2(σn) = nn, σn ∈ R = Σdie − Gϕ − V1. Notice that
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according to the original model in Fig. 2 the probability of reaching any of the
labels in Gϕ from (ii, 0), (hh, 0), (tt, 0) in 3 steps (within 2 gaps) is equal.

6 Learning

6.1 Learning Deterministic DTMC

Amongst probably almost correct (PAC) techniques to train deterministic
DTMCs [42], state-merging algorithms [9], are known to be effective. We use
Aalergia [1,30], that generates a frequency prefix tree acceptor (FPTA) from
the training data, and then applies data-dependent compatibility criterion,
parameterized by α, to merge the states of the FPTA, and finally transforms
it into a DTMC by normalizing the frequencies. The learned model converges to
the generating deterministic DTMC, M, in the limit for any α > 1 [33]. Figure 3
depicts the learned model from the abstract traces, based on the extracted sym-
bols in Table 1.

In the following, we demonstrate the correctness of the predictions made by
the deterministic DTMC trained from the abstract traces.

Theorem 1. Let Mk : (S,Σk, π,P, Lk) be the representation of M, where
the states are relabelled based on the symbols in Σk. Suppose G ⊆ Σ is the
set of target symbols, and ′gg′ is their representative symbol in Σk. Also let
M# : (S̃, Σk, π̃, P̃, L̃) be the learned model from the samples of Mk, using any
PAC learning algorithm. Then, under the assumptions of the convergence of the
learning algorithm,

Pr(s̃ |= �≤h(gg)) = Pr(s |= �≤hG),∀s̃ ∈ S̃, s ∈ S. (3)

Table 1. The k-prediction support
of all the symbols except the tar-
get labels, (hh, 6) and (tt, 1), for
k = 0, 1, 2, obtained from 1000 sam-
ple paths of the die example (scale
×10−3).

k = 0 k = 1 k = 2

(ii, 0) 0 0 22.01
(hh, 0) 9.26 20.05 23.20
(tt, 0) 10.21 21.05 23.22
(hh, 2) 0 0 0
(tt, 3) 0 0 0
(hh, 4) 0 0 0
(tt, 5) 0 0 0

(nn)

(v1)

(v1)

(v1)

1 10.26 0.47

1

0.27

1

(gg)

Fig. 3. The learned deterministic DTMC
from the abstract traces using the alphabet
{gg, v1, nn} using 2-prediction support.
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Proof. Notice that since prediction in our setting is a bounded LTL property, (3)
is valid for the initial state, regardless of whether Mk is deterministic or not (see
Theorem 1 in [33]). If Mk is a deterministic DTMC, the states of the trained
model M#, almost surely bisimulates the states of Mk in the limit (see Theorem
1 in [30]). As a result, under the assumptions of the convergence of the learning
algorithm, (3) is followed. �

6.2 Learning Non-deterministic DTMC Using HMM

A Hidden Markov Model (HMM) specifies the distribution of a sequence as
the joint distribution of two random variables: the hidden state variable, and
the observation variable. More particularly, an HMM is the joint distribu-
tion over X1:n, the sequence of the state variable, and Y1:n, the sequence of
observations (both with identical lengths). The joint distribution is such that
Pr(yi | X1:i, Y1:i) = Pr(yi | xi) for i ∈ [1, n], i.e., the current observation is con-
ditioned only on the current state, and Pr(xi | X1:i−1, Y1:i−1) = Pr(xi | xi−1) for
i ∈ [1, n] i.e., the current state is only conditioned on the previous hidden state.
We use π to denote the initial probability distribution over the state space, i.e.,
Pr(x1) = π(x1). As a result, an HMM can be defined with three distributions:

Definition 5 (HMM). A finite discrete Hidden Markov Model (HMM) is a
tuple H : (S,Σ, π, T,O), where S is the non-empty finite set of states, Σ is
the non-empty finite set of observations, π : S → [0, 1] is the initial probability
distribution over S, T : S × S → [0, 1] is the transition probability, and O :
S ×Σ → [0, 1] is the observation probability. We use ΘH to denote π, T , and O.

In our setting, observations are the symbols of the abstract alphabet, Σk,
and hidden states are the states of the generating model, i.e., the deterministic
DTMC. The random hidden state variable creates an extra degree of freedom
which allows to distinguish states that emit the same symbol but have different
joint probability distributions.

Notice that the PAC learning of an HMM is a hard problem under crypto-
graphic assumptions [10,41] because the probability distribution over the state
sequence X is unknown, therefore, the likelihood function does not have a
closed form [41]. Subsequently, approximate algorithms, such as Expectation-
Maximization (EM) [8], are employed. Training an HMM using EM is known as
the Baum-Welch algorithm [37] (BWA), which calculates the parameters of the
HMM by finding the maximum likelihood of the sample data. BWA requires the
number of hidden states in a finite state HMM as an input, or hyper-parameter.
The hyper-parameters are typically chosen based on some criterion that prevents
overfitting (e.g., Bayesian Information Criterion (BIC) [12]).

To run the reachability analysis on the HMM, H : (S,Σ, π, T,O), we
adopt the direct method in [45] to create an equivalent DTMC, MH : (S ×
Σ,Σ, π(s, .),P , L(., σ)), where P((s, σ), (s′, σ′)) = T (s, s′) × O(s′, σ′).

Figure 4 displays the non-deterministic DTMC and the trained HMM over the
abstract traces obtained by R2 from Table 1. The DTMC in Fig. 4a is similar to
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the DTMC in Fig. 2, except that the states are relabeled using R2 (see Sect. 5.2).
Relabeling the model creates non-determinism as the sequence (v1, v1, v1) corre-
sponds to several state sequences in the model. The HMM in Fig. 4b is obtained
by training HMM that has 4 hidden states. Each hidden state corresponds to
the set of states in the DTMC in Fig. 4a with the same labels. There are two
hidden states associated with (v1) to distinguish between the states of the model
in Fig. 4a that reach the target states (labelled (gg)) with different joint proba-
bilities.

(nn)

(nn)

(nn)

(nn)

(v1)

(v1)

(v1)

(v1)

(v1)

(v1)

(v1)

1

1

1

1

1

1

0.49

0.51

0.48

0.49

0.52

0.48

0.48

0.52

0.52

0.51

0.48

0.52

0.51

0.49

(gg)

(gg)

s4

v1

s3

s2

1

0.47

0.19 0.35

0.53
1

s10.46

1

gg nn

1

11

Fig. 4. Training non-deterministic DTMC using HMM.

7 Case Study: Randomised Self-Stabilising Algorithm

We use Herman’s self-stabilising algorithm [18] to experiment our approach in
Prevent.1 The algorithm provides a protocol for N identical processes (N is
odd) in a token ring network, with unidirectional synchronous communication.
Starting from an arbitrary configuration, the network will eventually converge
to a defined stable state within a finite number of steps. The token is infinitely
circulated in the ring amongst the processes in a fair manner. The stable state is
defined as such that there is exactly one process that has the token. The process
i has a local Boolean variable xi. If xi = xi−1 there is a token with process i,
in which case process i randomly chooses to set xi to the next value or leave it
unchanged (i.e., equal to xi−1).

The observation space for a ring with N processes has 2N symbols, each
representing the values of the local variable in each process. The observation
space maps one-to-one to the state space of the corresponding DTMC. We are
interested in monitoring the property ϕstable : �≤h“stable′′ which translates
into the target symbols in which only one process has the same label as its

1 Available at https://bitbucket.org/rbabaeecar/prevent/.

https://bitbucket.org/rbabaeecar/prevent/
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left neighbour, i.e., there exists only one i such that xi = xi−1. The monitoring
procedure throughout our experiments is performed off-line; however, in principle
the on-line monitoring procedure would be the same, except that the execution
path keeps expanding as the system continues running.

We collected 1000 iid samples from the DTMC using Prism simulation
tool [34]. The length of the samples is constrained by a maximum, and is dis-
tributed uniformly. We first run Algorithm 2 to extract the predictive symbols for
the target symbols specified by ϕstable. We replaced the symbols of the sampled
traces based on the found partitioning, and performed the training algorithms
to learn a deterministic DTMC as well as an HMM. The number of states in the
HMM is chosen so that it is comparable to the size of the learned DTMC.

Prediction Evaluation: Using the values obtained from the actual models, we use
Mean-Square Prediction Error (MSPE) [15] to measure the performance of the
predictions by each model. The evaluation is conducted on a separate iid sample
from the training samples, where the following is computed for each instance i
that the prediction is made (i.e., a target label is not still observed):

ε2i = (Pr(s |= �≤hG) − Pr(ŝ |= �≤hG))2 (4)

where s is the state in the actual DTMC, and ŝ is the state in the prediction
model, estimated using Forward-Backward algorithm [37]. The Forward-
Backward algorithm computes the posterior probability of the state space given
the observation u, i.e., Pr(Xn = s | u,Θ), where n is the length of u. We define
MSPE as the average of (4), i.e., 1

t

∑t
i=1 ε2i where t indicates the number of

points on the sample where a prediction is made.

Table 2. The prediction results of different models on 100 random samples.

N Orig.

Alph.

Learned DTMC conc. Abst.

Alph.

Learned DTMC abst. Learned HMM

Size Training

time (s)

Size Training

time (s)

MSPE

e−02

Size Training

time (s)

MSPE

e−02

5 32 18 1047.12 5 5 16.12 27.57 4(7) 9.95 0.70

7 128 1319 19605.47 3 3 866.27 32.28 3(5) 61.13 1.39

9 512 7914 135004.38 2 2 275.54 79.36 3(4) 47.16 1.79

11 2048 O/M – 2 2 2696.73 87.52 2(3) 2496.20 1.35

Table 2 summarizes our results of three different prediction models compared
to the prediction results obtained from the original model for N ∈ {5, 7, 9, 11},
k = 0 (a bigram model), and prediction horizon equal to one step. The size of
the original model is identical to the size of the alphabet, as there is exactly one
state corresponding to the valuation of the local variables in each process. We
used Aalergia [1] to train DTMC from both the concrete and abstract traces,
and Matlab HMM toolbox to train the HMMs. The training was performed on
an Ubuntu 17.10 machine with 24 GB RAM. Training a DTMC from concrete
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traces was aborted for N = 11 due to lack of memory, as the length of the
FPTAs grows exponentially with the size of the alphabet. The trained DTMCs
from abstract traces have significantly smaller size in direct relation to the size
of the inferred abstract alphabet, and consequently a shorter training time. This
result is consistent with the fact that the actual model is highly symmetrical with
respect to the stable states, i.e., the probability of reaching the stable states from
the states within an equivalence class in one step is equal.

The sizes of the trained HMMs are determined by the BIC score, and the size
of their equivalent DTMCs are shown in parentheses. As we can see an HMM
with comparable size is substantially more accurate in making predictions than a
DTMC. The state estimation also benefits from the small size of the HMM with
virtually no computational overhead. Since the prediction horizon is formulated
as an upper-bound, the probability of an accepting extension increases as the
prediction horizon increases, which in turn results in a lower MSPE. However,
as depicted in Fig. 5a trained HMM has lower error-rate even for shorter range
of predictions, e.g., for h = 5, the MSPE of the HMM is 0.03e−02 as opposed
to 0.85e−2 for the DTMC.

Figure 5b demonstrates the prediction results of the DTMC trained from
concrete traces, and the traces abstracted by k-prediction support, using k =
0, 5, 10. The prediction results are from the initial state, and as we can see, the
models learned from abstract traces almost follow the values of the actual model.
The best result belongs to k = 10, which echos the maximum expected time to
reach a stable state, i.e., that the path to the target symbols from the initial
state is of length at most about 9.

Fig. 5. The experiment results for abstract models in the Herman algorithm.
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8 Related Work

To the best of our knowledge our approach is novel in terms of applying learning
and abstraction to predictive RV, and using HMM to handle non-determinism
at the trace level. Xian Zhang et al. [46] introduce a predictive LTL seman-
tics definition, that is applied on white-box systems (i.e., using the control flow
graphs), to find the extensions that evaluate an LTL formula to true or false.
Martin Leucker [27] follows the same idea and extends the semantics and the
monitor construction for when an over-approximation of the program is given.
Our approach works on black-box systems and finds the probability of the exten-
sions that satisfy a reachability property based on the sample executions of the
system that form a probabilistic model. Furthermore, we define the abstraction
by inferring a projection function over the observation space using the sample
executions.

Sistla et al. [39] propose an internal monitoring approach (i.e., the property is
specified over the hidden states) using specification automata and HMMs with
infinite states. Learning an infinite-state HMM is a harder problem than the
finite HMMs, but does not require inferring the size of the model [7].

Nouri et al. [33] use abstraction and learning to expedite statistical model
checking [25]. Their approach is the probabilistic variant of black box check-
ing [35] in which the inferred model, in the form of definite finite automata
(DFA), is checked against some properties. In our case, we use abstraction to
obtain a smaller prediction model for predictive RV. In [33] the atomic proposi-
tions in the property are used for abstracting the traces. We perform a statistical
analysis on the traces to obtain partitions that leave the prediction probability
intact. We also use HMM to handle the potential non-determinism introduced
by the abstraction.

Aichernig and Tappler [2] employ black box checking in the context of reach-
ability analysis of stochastic systems with controllable inputs. They use Markov
Decision Process (MDP), an extension of a Markov chain with non-deterministic
choices, as a model that is trained from random samples. They use the inferred
MDP to obtain an adversary with which they collect new samples and incremen-
tally train new MDPs. LAR [44] is a combination of probabilistic model learn-
ing and counterexample guided abstraction refinement (CEGAR) [19]. These
approaches are orthogonal to our technique and it is straightforward to extend
the training to other models such as MDP, and apply probabilistic CEGAR to
obtain a model that guarantees checking affirmative properties.

9 Conclusion

We propose inferring a projection relation from a random set of samples to
abstract traces that are used in building prediction models to monitor a discrete-
time reachability property. Our inference technique is based on finding a sym-
metrical relation between the symbols of the alphabet, using k-gapped pair
model, and lumping them into same equivalence classes. We use the abstract
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traces to train deterministic DTMC as well as HMM to handle the possible non-
determinism induced by abstraction. We show that the prediction results remain
intact with the model trained from abstract traces, under the condition that the
generating DTMC of the abstract traces is deterministic and under the con-
straints of the learning algorithm. We evaluated our approach on a distributed
randomized algorithm, and demonstrated that in general the trained HMM from
the abstract traces is more accurate than the trained DTMCs.

Our approach is most effective on the systems with large observation space,
and where the model benefits from symmetry in the probability of reaching some
states. The statistical analysis of the traces proposed in this paper to reduce the
observation space requires enough number of executions with the target labels to
reliably detect similar symbols. If the target labels indicate some rare events (e.g.,
error with very low probability), techniques such as [26] are required to simulate
enough traces with target labels. The trained model from such simulated sample
traces need to be adjusted.

Lastly, an implementation of Prevent with the application of on-line learning
methods (such as state merging or splitting techniques [32]) is necessary to apply
the framework to the real-world scenarios.
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Abstract. We consider the problems of efficiently diagnosing and pre-
dicting what did (or will) happen in a partially-observable one-clock
timed automaton. We introduce timed sets as a formalism to keep track
of the evolution of the reachable configurations over time, and use our
previous work on automata over timed domains to build a candidate
diagnoser for our timed automaton. We report on our implementation of
this approach compared to the approach of [Tripakis, Fault diagnosis for
timed automata, 2002].

1 Introduction

Formal Methods in Verification. Because of the wide range of applications of
computer systems, and of their increasing complexity, the use of formal methods
for checking their correct behaviours has become essential [10,16]. Numerous
approaches have been introduced and extensively studied over the last 40 years,
and mature tools now exist and are used in practice. Most of these approaches
rely on building mathematical models, such as automata and extensions thereof,
in order to represent and reason about the behaviours of those systems; var-
ious algorithmic techniques are then applied in order to ensure correctness of
those behaviours, such as model checking [11,12], deductive verification [13,17]
or testing [25].

Fault Diagnosis. The techniques listed above mainly focus on assessing correct-
ness of the set of all behaviours of the system, in an offline manner. This is usually
very costly in terms of computation, and sometimes too strong a requirement.
Runtime verification instead aims at checking properties of a running system [19].
Fault diagnosis is a prominent problem in runtime verification: it consists in
(deciding the existence and) building a diagnoser, whose role is to monitor real
executions of a (partially-observable) system, and decide online whether some
property holds (e.g., whether some unobservable fault has occurred) [24,26].
A diagnoser can usually be built (for finite-state models) by determinizing a
model of the system, using the powerset construction; it will keep track of all
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possible states that can be reached after each (observable) step of the system,
thereby computing whether a fault may or must have occurred. The related
problem of prediction, a.k.a. prognosis, (that e.g. no fault may occur in the next
five steps) [15], is also of particular interest in runtime verification, and can be
solved using similar techniques.

Verifying Real-Time Systems. Real-time constraints often play an important role
for modelling and specifying correctness of computer systems. Discrete models,
such as finite-state automata, are not adequate to model such real-time con-
straints; timed automata [1], developed at the end of the 1980’s, provide a conve-
nient framework for both representing and efficiently reasoning about computer
systems subject to real-time constraints. Efficient offline verification techniques
for timed automata have been developed and implemented [2,3]. Diagnosis of
timed automata however has received less attention; this problem is made diffi-
cult by the fact that timed automata can in general not be determinized [14,27].
This has been circumvented by either restricting to classes of determinizable
timed automata [6], or by keeping track of all possible configurations of the
automaton after a (finite) execution [26]. The latter approach is computationally
very expensive, as one step consists in maintaining the set of all configurations
that can be reached by following (arbitrarily long) sequences of unobservable
transitions; this limits the applicability of the approach.

Our Contribution. In this paper, we (try to) make the approach of [26] more
efficiently applicable (over the class of one-clock timed automata). Our improve-
ments are based on two ingredients: first, we use automata over timed domains [7]
as a model for representing the diagnoser. Automata over timed domains can
be seen as an extension of timed automata with a (much) richer notion of time
and clocks; these automata enjoy determinizability. The second ingredient is the
notion of timed sets: timed sets are pairs (E, I) where E is any subset of R, and
I is an interval with upper bound +∞; such a timed set represents a set of clock
valuations evolving over time: the timed set (E; I) after a delay d represents the
set (E + d) ∩ I. As we prove, timed sets can be used to finitely represent the
evolution of the set of all reachable configurations after a finite execution.

In the end, our algorithm can compute a finite representation of the reachable
configurations after a given execution, as well as all the configurations that can
be reached from there after any delay. This can be used to very quickly update
the set of current possible configurations (which would be expensive with the
approach of [26]). Besides diagnosis, this can also be used to efficiently predict
the occurrence of faults occurring after some delay (which is not possible in [26]).
We implemented our technique in a prototype tool: as we report at the end of
the paper, our approach requires heavy precomputation, but can then efficiently
handle delay transitions.

Related Works. Model-based diagnosis has been extensively studied in the com-
munity of discrete-event systems [23,24,28]. This framework gave birth to a num-
ber of ramifications (e.g. active diagnosis [22], fault prediction [15], opacity [18]),
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and was applied in many different settings besides discrete-event systems (e.g.
Petri nets, distributed systems [4], stochastic systems [5,20], discrete-time sys-
tems [9], hybrid systems [21]).

Much fewer papers have focused on continuous-time diagnosis: Tripakis pro-
posed an algorithm for deciding diagnosability [26]. Cassez developed a uni-
form approach for diagnosability of discrete and continuous time systems, as a
reduction to Büchi-automata emptiness [8]. A construction of a diagnoser for
timed systems is proposed in [26]: the classical approach of determinizing using
the powerset construction does not extend to timed automata, because timed
automata cannot in general be determinized [14,27]. Tripakis proposed the con-
struction of a diagnoser as an online algorithm that keeps track of the possible
states and zones the system can be in after each event (or after a sufficiently-long
delay), which requires heavy computation at each step and is hardly usable in
practice. Bouyer, Chevalier and D’Souza studied a restricted setting, only look-
ing for diagnosers under the form of deterministic timed automata with limited
resources [6].

2 Definitions

2.1 Intervals

In this paper, we heavily use intervals, and especially unbounded ones. For r ∈ R,
we define

�→r = [r; +∞) →r = (r; +∞)

→

r = (−∞; r)

�→

r = (−∞; r].

We let ̂R≥0 = { �→r, →r | r ∈ R≥0} for the set of upward-closed intervals of R≥0;
in the sequel, elements of ̂R≥0 are denoted with r̂. Similarly, we let ̂

R≥0 =
{ �→

r,

→

r | r ∈ R≥0}, and use notation ̂r for intervals in ̂

R≥0. The elements
of ̂R≥0 can be (totally) ordered using inclusion: we write r̂ ≺ r̂′ whenever r̂′ ⊂ r̂
(so that r < r′ entails →r ≺ →r′).

2.2 Timed Automata

Let Σ be a finite alphabet.

Definition 1. A one-clock timed automaton over Σ is a tuple A = (S, {s0},

T, F ), where S is a finite set of states, s0 ∈ S is the initial state, T ⊆ S × ̂R≥0 ×
̂

R≥0 × (Σ 
 {ε}) × {0, id} × S is the set of transitions, and F ⊆ S is a set of
final states. A configuration of A is a pair (s, v) ∈ S ×R≥0. There is a transition
from (s, v) to (s′, v′) if

– either s′ = s and v′ ≥ v. In that case, we write (s, v) d−→ (s, v′), with d = v′−v,
for such delay transitions (notice that we have no invariants);
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– or there is a transition e = (s,̂l, ̂u, a, r, s′) s.t. v ∈ ̂l ∩ ̂u and v′ = v if r = id,
and v′ = 0 otherwise. For those action transitions, we write (s, v) →e (s′, v′).
We assume that for each transition e = (s,̂l, ̂u, a, r, s′), it holds ̂l ∩ ̂u �= ∅.

Fix a one-clock timed automaton A; we write Tid for the set of non-resetting
transitions, i.e., having id as their fifth component, and T0 for the complement
set of resetting transitions.

For a transition e = (s,̂l, ̂u, a, r, s′), we write ê and ̂e for ̂l and ̂u, respec-
tively. We write src(e) = s and tgt(e) = s′, and lab(e) = a ∈ Σ. We extend
these definitions to sequences of transitions w = (ei)0≤i<n as src(w) = src(e0),
tgt(w) = tgt(en−1), and lab(w) = (lab(ei))0≤i<n.

Let w be a sequence (e2i+1)0≤2i+1<n of transitions of T , and d ∈ R≥0.

We write (s, v) d−→w (s′, v′) if there exist finite sequences (si, vi)0≤i≤n ∈ (S ×
R≥0)n+1 and (d2i)0≤2i<n ∈ R

�n/2�
≥0 such that

∑

0≤2i<n d2i = d, and (s0, v0) =

(s, v) and (sn, vn) = (s′, v′), and for all 0 ≤ j < n, (sj , vj)
dj−→ (sj+1, vj+1) if j

is even and (sj , vj) →ej
(sj+1, vj+1) if j is odd. We write (s, v) → (s′, v′) when

(s, v) d−→w (s′, v′) for some w ∈ T ∗ and some d ∈ R≥0.

For any λ ∈ Σ∗ and any d ∈ R≥0, we write (s, v) d−→λ (s′, v′) whenever there

exists a sequence of transitions w such that λ = lab(w) and (s, v) d−→w (s′, v′).
Notice that1 (s, v) d−→⊥ (s′, v′) (sometimes simply written (s, v) d−→ (s′, v′)) indi-
cates a delay-transition (hence it must be s = s′). The untimed language L(A)
of A is the set of words λ ∈ Σ∗ such that (s0, 0) d−→λ (s′, v′) for some s′ ∈ F and
d ∈ R≥0.

We borrow some of the formalism of [7], in order to define a kind of powerset
construction for timed automata. For a one-clock timed automaton A = (S, {s0},
T, F ) on Σ, we write M = (P(R≥0))S for the set of markings, mapping states
of A to sets of valuations for the unique clock of A. For a marking m ∈ M,
we write supp(m) = {s ∈ S | m(s) �= ∅}. For any l ∈ Σ, we define the function
Ol : M → M by letting, for any m ∈ M and any s′ ∈ S,

Ol(m) : s′ �→ {v′ ∈ R≥0 | ∃s ∈ S. ∃v ∈ m(s). (s, v) →l (s′, v′)}.

Similarly, for any d ∈ R≥0, we let

Od(m) : s′ �→ {v′ ∈ R≥0 | ∃s ∈ S. ∃v ∈ m(s). (s, v) d−→ (s′, v′)}.

Notice that Od simply shifts all valuations by d.

Definition 2 ([7]). The powerset automaton of a timed automaton A =
(S, {s0}, T, F ) is a tuple DA = (P(S), {{s0}},PT,PF ), where P(S) is the set
of states, {s0} is the initial state, PT = {(q,m, a, q′) ∈ P(S) × M × Σ × P(S) |
q = supp(m), q′ = supp(Oa(m))} is the set of transitions, and PF = {E ∈
P(S) | E ∩ F �= ∅} is a set of final states.
1 In this paper, we write ⊥ for the empty word (or empty sequences) over any alphabet.
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Configurations of DA are all pairs (q,m) ∈ P(S)×M for which q = supp(m).
There is a transition from a configuration (q,m) to a configuration (q′,m′)
labelled with l ∈ Σ ∪ R≥0 whenever m′ = Ol(m). We extend this definition to

sequences alternating delay- and action transitions, and write (q,m) d−→w (q′,m′)
when there is a path from (q,m) to (q′,m′) following the transitions of w in d

time units. Similarly, we write (q,m) d−→σ (q′,m′) if (q,m) d−→w (q′,m′) and
lab(w) = σ.

Following [7], the automaton DA is deterministic, and it simulates A in
the sense that given two marking m and m′ and a word σ of Σ∗, we have
(supp(m),m) d−→σ (supp(m′),m′) if, and only if, m′(s′) = {v′ ∈ R≥0 | ∃s ∈
S. ∃v ∈ m(s). (s, v) d−→σ (s′, v′)} for all s′ ∈ S.

2.3 Timed Automata with Silent Transitions

The work reported in [7] only focuses on the case when there are no silent
transitions. In that case, for any d ∈ R≥0, the operation Od can be computed
easily, since it amounts to adding d to each item of the marking (in other terms,
for any marking m, any state s ∈ S, and any v ∈ R≥0 such that v + d ∈ R≥0,
we have v ∈ m(s) if, and only if, v + d ∈ Od(m)(s)). This leads to an efficient
expression of a (deterministic) powerset automaton simulating A.

However fault diagnosis should deal with timed automata with unobservable
transitions (unobservable transitions then correspond to internal transitions).
So we now assume that Σ contains a special silent letter ε, whose occurrence is
not visible. This requires changing the definition of lab: we now let

lab(⊥) = ⊥
lab(w · e) = lab(w) if lab(e) = ε

lab(w · e) = lab(w) · lab(e) if lab(e) �= ε

Notice that lab(w) ∈ (Σ \ {ε})∗. We may write →ε in place of →⊥, to stick to
classical notations and make it clear that it allows silent transitions.

In that case, DA still is a (deterministic) powerset automaton that simu-
lates A, and hence is still a diagnoser, but the function Od cannot be computed
by just shifting valuations by d. In its raw form, the function Od can be obtained
by the computation of the set of reachable configurations in a delay d by follow-
ing silent transitions. This is analogous to the method proposed by Tripakis [26],
and turns out to be very costly. However, a diagnoser must be able to simulate
all possible actions of the diagnosed automaton quickly enough, so that it can be
used at runtime. In this paper, we introduce a new data structure called timed
sets, which we use to represent markings in the timed powerset automaton; as
we explain, using timed sets we can compute Od more efficiently (at the expense
of more precomputations).
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3 (Regular) Timed Sets

3.1 Timed Sets

For a set E and a real d, we define the set E + d = {x + d | x ∈ E}. We intro-
duce timed sets as a way to represent sets of clock valuations (and eventually
markings), and their evolution over time.

Definition 3. An atomic timed set is a pair (E; r̂) where E ⊆ R and r̂ ∈ ̂R≥0.
With an atomic timed set F = (E; r̂), we associate a mapping F : R≥0 → 2R

defined as F (d) = (E + d) ∩ r̂.

We define the union of two timed sets F and F ′, denoted as F � F ′, as their
pointwise union: (F � F ′)(d) = F (d) ∪ F ′(d).

Definition 4. A timed set is a countable set F = {Fi | i ∈ I} (intended to
be a union, hence sometimes also denoted with

⊔

i∈I Fi) of atomic timed sets.
With such a timed set, we again associate a mapping F : R≥0 → 2R≥0 defined as
F (d) =

⋃

i∈I Fi(d). A timed set is finite when it is made of finitely many atomic
timed sets. We write T (R) for the set of timed sets of R.

Given two timed sets F and F ′, we write F � F ′ whenever F (d) ⊆ F ′(d) for
all d ∈ R≥0. This is a pre-order relation; it is not anti-symmetric as for instance
({1}; �→0) � ({1}; �→1) and ({1}; �→1) � ({1}; �→0). We write F ≡ F ′ whenever
F � F ′ and F ′ � F .

Example 1. Figure 1 displays an example of an atomic timed set F = (E; �→1),
with E = [−3;−1]∪ [0; 2]. The picture displays the sets F (0) = [1; 2] and F (3) =
[1; 2] ∪ [3; 5]. �

Fig. 1. Example of an atomic timed set F = ([−3; −1] ∪ [0; 2]; �→1).



Efficient Timed Diagnosis Using Automata with Timed Domains 211

3.2 Regular Timed Sets

In order to effectively store and manipulate timed sets, we need to identify a
class of timed sets that is expressive enough but whose timed sets have a finite
representation.

Definition 5. A regular union of intervals is a 4-tuple E = (I, J, p, q) where
I and J are finite unions of intervals of R with rational (or infinite) bounds,
p ∈ Q≥0 is the period, and q ∈ N is the offset. It is required that J ⊆ (−p; 0] and
I ⊆ �→(−q · p).

The regular union of intervals E = (I, J, p, q) represents the set (which we
still write E) I ∪

⋃+∞
k=q J − k · p.

Regular unions of intervals enjoy the following properties:

Proposition 6. Let E and E′ be regular unions of intervals, K be an interval,
and d ∈ Q. Then E ∪ E′, E, E + d and E − K are regular unions of intervals.

Definition 7. A regular timed set is a finite timed set F = {(Ei; r̂i) | i ∈ I}
such that for all i ∈ I, the set Ei is a regular union of intervals.

4 Computing the Powerset Automaton

In this section, we fix a one-clock timed automaton A = (S, {s0}, T, F ) over
alphabet Σ, assumed to contain a silent letter ε. We assume that some silent
transitions are faulty, and we want to detect the occurrence of such faulty transi-
tions based on the sequence of actions we can observe. Following [26], this can be
reduced to a state-estimation problem, even if it means duplicating some states of
the model in order to keep track of the occurrence of a faulty transition. In the
end, we aim at computing (a finite representation of) the powerset automa-
ton DA, which amounts to computing the transition functions Ol for any l ∈ Σ
and Od for any d ∈ R≥0. Computing Ol(m) for l ∈ Σ is not very involved:
for each state s ∈ S and each transition e labelled with l with source s and
target s′, it suffices to intersect m(s) with the guard ê∩̂e, and add the resulting
interval (or the singleton {0} if e is a resetting transition) in Ol(m)(s′).

From now on, we only focus on computing Od, for d ∈ R≥0. For this, it is
sufficient to only consider silent transitions of A: we let U = U0 
 Uid be the
subset of T containing all transitions labelled ε, partitioned into those transitions
that reset clock x (in U0), and those that do not (in Uid). We write Aε for the
restriction of A to silent transitions, and only consider that automaton in the
sequel. All transitions are silent in Aε, but for convenience, we assume that
transitions are labelled with their name in A, so that the untimed language
of Aε is the set of sequences of consecutive (silent) transitions firable from the
initial configuration.
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4.1 Linear Timed Markings and Their ε-Closure

We use markings to represent sets of configurations; in order to compute Od,
we need to represent the evolution of markings over time. For this, we intro-
duce timed markings. A timed marking is a mapping M : S → (R≥0 → 2R≥0).
For any s ∈ S and any d ∈ R≥0, M(s)(d) is intended to represent all clock valua-
tions that can be obtained in s after a delay of d time units. For any delay d ∈ R,
we may (abusively) write M(d) for the marking represented by M after delay d
(so that for any s ∈ S and any d ∈ R≥0, both notations M(d)(s) and M(s)(d)
represent the same subset of R).

A special case of timed marking are those timed markings that can be defined
using timed sets; timed markings of this kind will be called linear timed markings
in the sequel. As we prove below, linear timed markings are expressive enough to
represent how markings evolve over time in one-clock timed automata. Atomic
(resp. finite, regular) timed markings are linear timed markings whose values
are atomic (resp. finite, regular) timed sets (we may omit to mention linearity in
these cases to alleviate notations). Union, inclusion and equivalence of (timed)
markings are defined statewise.

With any marking m, we associate a linear timed marking, which we write −→m
(or sometimes m if no ambiguity arises), defined as −→m(s)(d) = {v+d | v ∈ m(s)}.
This timed marking is linear since it can be defined e.g. as −→m(s) = (m(s); �→0).
This timed marking can be used to represent all clock valuations that can be
reached from marking m after any delay d ∈ R≥0.

Given a marking m, a delay d and a sequence w ∈ U∗ of silent transitions
of Aε, we define the marking m ⊕w d as follows:

m ⊕w d : s′ �→ {v ∈ R≥0 | ∃s ∈ S. ∃v ∈ m(s). (s, v) d−→w (s′, v′)}

(remember that w here represents a sequence of silent transitions). This corre-
sponds to all configurations reachable along w from a configuration in m with
a delay of exactly d time units. By definition of the transition relation →w,
for m ⊕w d to be non-empty, w must be a sequence of consecutive transitions.
With this definition, for any sequence w of silent transitions and any marking m,
we can define a timed marking mw : d �→ m ⊕w d. In particular, for the empty
sequence ⊥, the timed marking m⊥ is equivalent to the timed marking −→m (hence
it is linear).

For any d ∈ R≥0, we define m ⊕ε d as (m ⊕ε d)(s) =
⋃

w∈U∗(m ⊕w d)(s).
The marking m ⊕ε d represents the set of configurations that can be reached
after a delay d through sequences of silent transitions. This gives rise to a timed
marking, which we write mε. By definition of Od, we have Od(m) = mε(d) for
any marking m and any delay d.

The definition is extended to timed markings as follows: for a timed mark-
ing M and a delay d, we let

M ⊕w d : s′ �→ {v′ ∈ R≥0 | ∃s ∈ S. ∃d0 ≤ d. ∃v ∈ M(d0)(s). (s, v)
d−d0−−−→w (s′, v′)},
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Again, this gives rise to a timed marking Mw : d �→ M ⊕wd. Observe that for any
linear timed marking, we have M⊥ ≡ M . Notice also that for any marking m,
it holds (−→m)w ≡ mw. We let M ⊕ε d be the union of all M ⊕w d when w ranges
over U∗, and M ε be the associated timed marking.

Definition 8. Let M be a timed marking. A timed marking N is an ε-closure
of M if N ≡ M ε. The timed marking M is said ε-closed if it is an ε-closure of
itself.

Our aim in this section is to compute (a finite representation of) an ε-closure of
any given initial marking (defined using regular unions of intervals).

Example 2. Consider the (silent) timed automaton of Fig. 2. The initial config-
uration can be represented by the timed marking M with M(s0) = ([0; 0]; �→0)
and M(s1) = (∅; �→0), corresponding to the single configuration {(s0, x = 0)}.
This timed marking is not closed under delay- and silent-transitions, as for
instance configuration (s1, x = 0) is reachable; however, this configuration can-
not be reached after any delay: it is only reachable after delay 0, or after a delay
larger than or equal to 2 time units. In the end, an ε-closed timed marking for
this automaton is M ε(s0) = M(s0), and M ε(s1) = ((−∞;−2] ∪ [0; 0]; �→0). �

Fig. 2. A silent timed automaton

4.2 Computing ε-Closures

Let E and F be two subsets of R. We define their gauge as the set E �� F =
(E − F ) ∩ R≤0. Equivalently, E �� F = {d ∈ R≤0 | F + d ∩ E �= ∅}.

Lemma 9. – If E ≤ F (in particular, if E ⊆ R≤0 and F ⊆ R≥0), then E ��
F = E − F .

– if E > F , then E �� F = ∅.
– If E and F are two intervals, then E �� F is an interval.
– IF E is a regular union of intervals and J is an interval, then E �� F is a

regular union of intervals.
– If F ′ ⊆ R≥0, then (E �� F ) �� F ′ = (E �� F ) − F ′.
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We now define a mapping ε : T (R) × U∗ → T (R), intended to represent the
timed set that is reached by performing sequences of silent transitions from some
given timed set. We first consider atomic timed sets, and the application of a
single silent transition. The definition is based on the type of the transition:

ε((E, r̂), (s, ê,̂e, ε, op, s′)) =

⎧

⎪

⎨

⎪

⎩

(∅; �→0) if r̂ ∩ ̂e = ∅
(E ∩ ̂e; p̂) if r̂ ∩ ̂e �= ∅ and op = id
(E �� (p̂ ∩ ̂e); �→0) if r̂ ∩ ̂e �= ∅ and op = 0

where p̂ = r̂ ∩ ê. We extend ε to sequences of transitions inductively by letting
ε((E; r̂),⊥) = (E; r̂) and, for w ∈ U+,

ε((E; r̂), w · e) =

{

ε(ε((E; r̂), w), e) if tgt(w) = src(e)
(∅; �→0) otherwise.

Finally, we extend this definition to unions of atomic timed sets by letting ε(F1�
F2, w) = ε(F1, w) � ε(F2, w). We now prove that this indeed corresponds to
applying silent- and delay-transitions from a given timed set.

Lemma 10. Let F be a timed set and w ∈ U∗. Then for any d ∈ R≥0 and
any v ∈ R≥0,

v ∈ (ε(F,w))(d) ⇔ ∃d0 ∈ [0; d]. ∃v′ ∈ F (d0). (src(w), v′) d−d0−−−→w (tgt(w), v).

Proof. We carry the proof for the case where F is an atomic timed set. The exten-
sion to unions of atomic timed sets is straightforward. The proof for atomic
timed sets is in two parts: we begin with proving the result for a single transi-
tion (the case where w = ⊥ is easy), and then proceed by induction to prove the
full result.

We begin with the case where w is a single transition e = (s, ê,̂e, ε, op, s′).
In case F is empty, then also ε(F, e) is empty, and the result holds. We now
assume that F is not empty, and consider three cases:

– if r̂ ∩ ̂e = ∅, then ε(F, e) = (∅; �→0). On the other hand, for any d0 and
any v′ ∈ F (d0), it holds v′ ∈ r̂, so that v′ /∈ ̂e, and the transition cannot be
taken from that valuation. Hence both sides of the equivalence evaluate to
false, and the equivalence holds.

– now assume that r̂ ∩ ̂e �= ∅, and consider the case where e does not reset the
clock. Then v ∈ (ε(F,w))(d) means that v ∈ (E + d) ∩ (̂e + d) ∩ p̂. If such a v
exists, then p̂∩̂e∩ [v−d; v] is non-empty: indeed, this is trivial if either v ∈ ̂e,
or v − d ∈ p̂, or d = 0; otherwise, we have ̂e ⊆ →

v and p̂ ⊆ →v − d, so that
p̂ ∩̂e ⊆ (v − d; v). Moreover, p̂ ∩̂e �= ∅ since r̂ ∩̂e �= ∅ and ê ∩̂e �= ∅. Then for
any v′ in that set p̂∩̂e∩ [v−d; v], letting d0 = v′−(v−d), we have v′ ∈ E+d0.
In the end, v′ ∈ F (d0), and v′ ∈ ê ∩ ̂e, so that (src(e), v′) d−d0−−−→e (tgt(e), v).
Conversely, if d0 ∈ [0; d] and v′ ∈ F (d0) exist such that (src(w), v′) d−d0−−−→w

(tgt(w), v), then v′ ∈ E + d0 ∩ r̂, and for some d1 ≤ d − d0, v′ + d1 ∈ ê ∩ ̂e.
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Then letting v = v′ + d − d0, we have v ∈ E + d and v ∈ r̂ + (d − d0) ⊆ r̂ and
v ∈ ê + (d − d0 − d1) ⊆ ê and v ∈ ̂e + (d − d0 − d1) ⊆ ̂e + d. This proves our
result for this case.

– we finally consider the case where r̂∩̂e �= ∅ and e resets the clock. In this case,
v ∈ (ε(F,w))(d) means that v ∈ �→0 and v−d ∈ E �� (p̂∩̂e), which rewrites as
0 ≤ v ≤ d and (E + d − v) ∩ (p̂ ∩̂e) �= ∅. Let d0 = d − v. The property above
entails that 0 ≤ d0 ≤ d, and that there exists some v′ ∈ (E + d0) ∩ (p̂ ∩̂e), so
that 0 ≤ d0 ≤ d, v′ ∈ F (d0) and (src(e), v′) d−d0−−−→e (tgt(e), v). Conversely, if
those conditions hold, then for some 0 ≤ d1 ≤ d − d0, we have v′ + d1 ∈ ê ∩̂e,
and v = d − (d0 + d1) (remember that e resets the clock). Then v′ + d1 ∈
E + (d0 + d1) ∩ r̂ ∩ ê ∩ ̂e, so that −(d0 + d1) ∈ E �� (p̂ ∩ ̂e), and finally
v ∈ ε(F,w)(d).

We now extend this result to sequences of transitions. The case where w = ⊥
is straightforward. Now assume that the result holds for some word w, and
consider a word w · e. In case tgt(w) �= src(e), the result is trivial.

The case of single transitions has been handled just above. We thus consider
the case of w · e with w ∈ U+. First assume that v′ ∈ (ε(F,w · e))(d), and
let F ′ = ε(F,w). Then v′ ∈ (ε(F ′, e))(d), thus there exist 0 ≤ d0 ≤ d and
v ∈ F ′(d0) s.t. (src(e), v) d−d0−−−→e (tgt(e), v′). Since v ∈ F ′(d0), there must exist
0 ≤ d1 ≤ d0 and v′′ ∈ F (d1) such that (src(w), v′′) d0−d1−−−−→w (tgt(w), v). We thus
have found 0 ≤ d1 ≤ d such that (src(w), v′′) d−d1−−−→w·e (tgt(e), v′).

Conversely, if (src(w), v′′) d−d1−−−→w·e (tgt(e), v′) for some 0 ≤ d1 ≤ d and
v′′ ∈ F (d1), then we have (src(w), v′′) d0−d1−−−−→w (tgt(w), v) d−d0−−−→e (tgt(e), v′) for
some d0 ∈ [d1; d] and some v. We prove that v ∈ (ε(F,w))(d0): indeed, we have
d1 ∈ [0; d0], and v′′ ∈ F (d1) such that (src(w), v′′) d0−d1−−−−→w (tgt(w), v), which
by induction hypothesis entails v ∈ (ε(F,w))(d0). Thus we have d0 ∈ [0; d] and
v ∈ F ′(d0), where F ′ = ε(F,w), such that (tgt(w), v) d−d0−−−→e (tgt(e), v′), which
means v′ ∈ ε(F ′, e)(d), and concludes the proof. �

Thanks to this semantic characterization of ε(F,w), we get:

Corollary 11. For any sequence w of transitions, and any two equivalent timed
sets F and F ′, the timed sets ε(F,w) and ε(F ′, w) are equivalent.

Finally, we extend ε to linear timed markings in the expected way: given a
linear timed marking M , and a sequence w of transitions, we let

ε(M,w) : s �→ ε(M(src(w)), w) if s = tgt(w),
s �→ (∅; �→0) otherwise.

Again, we have ε(M1 � M2, w) ≡ ε(M1, w) � ε(M2, w) for any w ∈ U∗. Then:

Lemma 12. ε(M,w) ≡ Mw for all w ∈ U∗ and all linear timed marking M .

Letting ε(M,L) =
⊔

w∈L ε(M,w) for any subset L of U∗, and ε(M) =
ε(M,U∗), we immediately get:
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Theorem 13. For any linear timed marking M , it holds ε(M) ≡ M ε.

It follows that the closure of any marking can be represented as a linear timed
marking. However, this linear timed marking is currently defined as an infinite
union over all sequences of consecutive silent transitions. We make the compu-
tation more effective in the next section.

4.3 Finite Representation of the Closure

In this section, we prove that we can effectively compute a finite representation
of the closure of any regular timed marking. More precisely, we show how to
compute such a closure as a regular timed marking.

Finiteness. Indeed, let M be (a finite representation of) a regular timed
marking: then M can be written as the finite union of atomic regular timed
markings M(s,E,r̂), defined as M(s,E,r̂)(s) = (E; r̂) and M(s,E,r̂)(s′) = (∅; �→0)
for all s′ �= s. In the end, any regular timed marking M can be written
as the finite union

⊔

i∈I Mi of atomic regular timed markings. Thus we have
ε(M) ≡

⊔

i∈I ε(Mi), and it suffices to compute ε for atomic regular timed mark-
ings M(s,E,r̂). We prove that those closures can be represented as regular timed
markings.

We write ε1((E; r̂), w) and ε2((E; r̂), w) for the first and second components
of ε((E; r̂), w). Notice that ε2((E; r̂), w) does not depend on E (so that we may
denote it with ε2(r̂, w) in the sequel). In particular,

– ε2((E; r̂), w) = �→0 if w ∈ U∗ × U0 is a sequence of consecutive transitions
ending with a resetting transition;

– ε2((E; r̂), w) = r̂ ∩
⋂

i<k êi if w = e1 . . . ek ∈ Uid
∗ is a sequence of consecutive

non-resetting transitions.

Letting Jr̂ = { �→0, r̂} ∪ {ê | e ∈ Uid}, it follows that ε2((E; r̂), w) ∈ Jr̂. for
any (E; r̂) and any w. Thus ε(M) can be written as a finite union of atomic
timed markings.

Regularity. To prove regularity, we first introduce some more formalism:

– we let ̂Gid = {ê | e ∈ Uid} and ̂Gid = {̂e | e ∈ Uid}. We thus have Jr̂ =
{ �→0, r̂} ∪ ̂Gid;

– for r̂ ∈ ̂R≥0 and e ∈ U , we write Φ(r̂, e) for the interval r̂ ∩ ê ∩ ̂e;
– we define a mapping Jr̂ : U∗ → N

Jr̂×U0 that counts the number of occurrences
of certain timing constraints at resetting transitions along a path: precisely,
it is defined inductively as follows (where � represents addition of an element
to a multiset):

Jr̂(⊥) = {0}Jr̂×U0

Jr̂(w · e) = Jr̂(w) � {(ε2(r̂, w), e)} if e ∈ U0

Jr̂(w · e) = Jr̂(w) if e ∈ Uid.
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By induction on w, we prove:

Lemma 14. Let (E; r̂) be a timed set with E ⊆ R≤0, and w ∈ U∗. Then

ε1((E; r̂), w) = E −
∑

J=(ĝ,e)∈Jr̂

Jr̂(w)(J) × Φ(ĝ, e) ⊆ R≤0.

Now, we fix an atomic regular timed marking M(s,E,r̂). For any state s′ of Aε,
we let L(s, s′) be the set of all sequences of consecutive transitions from s to s′

in Aε. Then

(M(s,E,r̂))ε =
⊔

s′∈S

ε(M(s,E,r̂),L(s, s′)).

Hence we need to prove that ε1(M(s,E,r̂),L(s, s′)) is regular.
For any set L of sequences of consecutive transitions, and for any r̂ and r̂′

in ̂R≥0, we let Lr̂′
r̂ = {w ∈ L | r̂′ = ε2(r̂, w)}. One easily observes that for

any r̂ ∈ ̂R≥0 and any L, it holds L =
⋃

r̂′∈Jr̂
Lr̂′

r̂ , so that

ε1(M(s,E,r̂),L(s, s′)) =
⋃

r̂′∈Jr̂

ε1(M(s,E,r̂), [L(s, s′)]r̂
′

r̂ ).

The following property entails that this set is a regular union of intervals:

Lemma 15. Let E be a regular union of intervals, r̂ and r̂′ be two elements
of ̂R≥0, and L ⊆ L(Aε) be a regular language. Then ε1(M(s,E,r̂),Lr̂′

r̂ ) is a regular
union of intervals.

5 Experimentations

In order to evaluate the possible improvement of our approach compared to the
diagnoser proposed in [26], we implemented and compared the performances
of both approaches. Sources can be downloaded at http://www.lsv.fr/∼jaziri/
DOTA.zip.

5.1 Comparison of the Approaches

In the approach of [26], the set of possible current configurations is stored as a
marking. If an action l occurs after some delay d, the diagnoser computes the
set of all possible configurations reached after delay d (possibly following silent
transitions), and applies from the resulting markings the set of all available
transitions labelled l. This amounts to computing the functions Od and Ol at
each observation. There is also a timeout, which makes the diagnoser update the
marking (with Od) regularly if no action is observed. The computation of Od is
heavily used, and has to be performed very efficiently so that the diagnoser can
be used at runtime.

http://www.lsv.fr/~jaziri/DOTA.zip
http://www.lsv.fr/~jaziri/DOTA.zip
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In our approach, we use timed markings to store sets of possible configura-
tions. Given a timed marking, when an action l is observed after some delay d,
we can easily compute the set of configurations reachable after delay d, and have
to apply Ol and recompute the ε-closure. Following [7], Ol can be performed as a
series of set operations on intervals. The ε-closure can be performed as a series of
subtractions between an interval and regular unions of intervals (see Lemma14).
Those regular unions can be precomputed; while this may require exponential
time and space to compute and store, this makes the simulation of a delay tran-
sition very efficient.

5.2 Implementation

In our experimentations, in order to only evaluate the benefits of the precom-
putation and of the use of ε-closures in our approach compared to that of [26],
we use the same data structure for both diagnosers. In particular, both diagnosers
are implemented as automata over timed domains [7], where the timed domain
is the set of timed markings. The only difference lies in the functions computing
the action- and the delay transitions. As a consequence, both implementations
benefit from the data structure we chose for representing timed intervals, which
allows us to compute basic operations in linear time. Also, both structures use
the same reachability graphs for either computing the sets of reachable configu-
rations or the Parikh images.

Our implementation is written in Python3. One-clock timed automata and
both diagnosers are instances of an abstract class of automata over timed mark-
ings; timed markings are implemented in a library TILib. Simulations of those
automata are performed using an object called ATDRunner, which takes an
automaton over timed markings and simulates its transitions according to the
actions it observes on a given input channel. It may also write what it does on an
output channel. A channel is basically a way of communicating with ATDRunners.

In order to diagnose a given one-clock timed automaton, stored in an
object OTAutomata, we first generate a diagnoser object, either a DiagOTA or
a TripakisDOTA, depending of which version we want to use. Then we launch
two threads: one is an ATDRunner simulating the timed automaton, listening to
some channel object Input, and writing every non-silent action it performs on
some other channel object Comm. The other one is another ATDRunner simulating
the diagnoser and listening to the Comm channel.

In a DiagOTA object, which corresponds to our approach, we have already
precomputed the relevant timed intervals; action transitions are then made by
operations over timed markings, and delay transitions are encoded by increasing
a padding information on the timed markings, which is applied when performing
the next action transition. In such a simulation, we can thus keep track of which
states may have been reached, but also predict which states may be reached in
the future and the exact time before we can reach them.

In a TripakisDOTA object, which corresponds to the approach of [26], action
and delay transitions are simulated by computing all configurations reachable
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through that action or delay, also allowing arbitrarily many silent transitions.
This does not allow for prediction.

5.3 Results

Figure 3 reports on the performances of both implementations on a small set
of (randomly generated) examples. Those examples are distributed with our
prototype. In Fig. 3, we give the important characteristics of each automaton
(number of states and of silent transitions), the amount of precomputation time
used by our approach, and the average time (over 400 random runs) used in the
two approaches to simulate action- and delay transitions.

Fig. 3. Bench for 5 examples over 400 runs with 10 to 20 actions

As could be expected, our approach outperforms the approach of [26] on
delay transitions by several orders of magnitude in all cases. The performances
of both approaches are comparable when simulating action transitions.

The precomputation phase of our approach is intrinsically very expensive.
In our examples, it takes from less than a second to more than 13 min, and
it remains to be understood which factors make this precomputation phase more
or less difficult. We may also refine our implementation of the computation of
Parikh images, which is heavily used in the precomputation phase.

6 Conclusion and Future Works

In this paper, we presented a novel approach to fault diagnosis for one-clock
timed automata; it builds on a kind of powerset construction for automata over
timed domains, using our new formalism of timed sets to represent the evo-
lution of the set of reachable configurations of the automaton. Our prototype
implementation shows the feasibility of our approach on small examples.

There remains space for improvements in many directions: first, our imple-
mentation can probably be made more efficient on the precomputation phase,
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and at least we need to better understand why some very small examples are so
hard to handle.

A natural continuation of this work is an extension to n-clock timed
automata. This is not immediate, as it requires a kind of timed zone, and an
adaptation of our operator ��. Another possible direction of research could tar-
get priced timed automata, with the aim of monitoring the cost of the execution
in the worst case.
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20. Lunze, J., Schröder, J.: State observation and diagnosis of discrete-event systems
described by stochastic automata. Discret. Event Dyn. Syst. 11(4), 319–369 (2001)

21. Narasimhan, S., Biswas, G.: Model-based diagnosis of hybrid systems. IEEE Trans.
Syst., Man, Cybern. Part A Syst. Hum. 37(3), 348–361 (2007)

22. Sampath, M., Lafortune, S., Teneketzis, D.: Active diagnosis of discrete-event sys-
tems. IEEE Trans. Autom. Control. 43(7), 908–929 (1998)

23. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete-event systems. IEEE Trans. Autom. Control. 40(9),
1555–1575 (1995)

24. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Failure diagnosis using discrete-event models. IEEE Trans. Comput. 35(1), 105–
124 (1996)

25. Tretmans, J.: Conformance testing with labelled transition systems: Implementa-
tion relations and test generation. Comput. Netw. ISDN Syst. 29(1), 49–79 (1996)

26. Tripakis, S.: Description and schedulability analysis of the software architecture
of an automated vehicle control system. In: Sangiovanni-Vincentelli, A., Sifakis, J.
(eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 123–137. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45828-X 10

27. Tripakis, S.: Folk theorems on the determinization and minimization of timed
automata. Inf. Process. Lett. 99(6), 222–226 (2006)

28. Zaytoon, J., Lafortune, S.: Overview of fault diagnosis methods for discrete event
systems. Annu. Rev. Control. 37(2), 308–320 (2013)

https://doi.org/10.1007/11813040_1
https://doi.org/10.1007/3-540-45828-X_10


Bringing Runtime Verification Home

Antoine El-Hokayem and Yliès Falcone(B)

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
{antoine.el-hokayem,ylies.falcone}@univ-grenoble-alpes.fr

Abstract. We use runtime verification (RV) to check various specifica-
tions in a smart apartment. The specifications can be broken down into
three types: behavioral correctness of the apartment sensors, detection
of specific user activities (known as activities of daily living), and com-
position of specifications of the previous types. The context of the smart
apartment provides us with a complex system with a large number of
components with two different hierarchies to group specifications and
sensors: geographically within the same room, floor or globally in the
apartment, and logically following the different types of specifications.
We leverage a recent approach to decentralized RV of decentralized speci-
fications, where monitors have their own specifications and communicate
together to verify more general specifications. This allows us to re-use
specifications, and combine them to: (1) scale beyond existing central-
ized RV techniques, and (2) greatly reduce computation and communi-
cation costs.

Sensors and actuators are used to create “smart” environments which track
the data across sensors and human-machine interaction. One particular area of
interest consists of homes (or apartments) equipped with a myriad of sensors
and actuators, called smart homes [11]. Smart homes are capable of provid-
ing added services to users. These services rely on detecting the user behavior
and the context of such activities [7], typically detecting activities of daily liv-
ing (ADL) [9,29] from sensor information. Detecting ADL allows to optimize
resource consumption (such as electricity [1]), improve the quality of life for the
elderly [27] and users suffering from mild impairment [30].

Relying on information from multiple sources and observing behavior is not
just constrained to activities. It is also used with techniques that verify the cor-
rect behavior of systems. Runtime Verification (RV) [3–5,20] is a lightweight
formal method which consists in verifying that a run of a system is correct wrt a
specification. The specification formalizes the behavior of the system typically in
logics (such as variants of Linear Temporal Logic, LTL) or finite-state machines.
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Based on the provided specification, monitors are automatically synthesized to
run alongside the system and verify whether or not the system execution com-
plies with the specification. RV techniques have been used for instance in the
context of automotive [10] and medical [26] systems. In both cases, RV is used
to verify communication patterns between components and their adherence to
the architecture and their formal specifications.

While RV can be used to check that the devices in a smart home are perform-
ing as expected, we believe it can be extended to monitor ADL, and complex
behavior on the activities themselves. We identify three classes of specifications
for applying RV to a smart home. The first class pertains to the system behavior.
These specifications are used to check the correct behavior of the sensors, and
detect faulty sensors. Ensuring that the system is behaving correctly is what is
generally checked when performing RV. However, it is also possible to use RV to
verify other specifications. The second class consists of specifications for detect-
ing ADL, such as detecting when the user is cooking, showering or sleeping.
The third class contains combinations of the other two. These specifications can
be seen as meta-specifications for both system correctness and ADL, they can
include specifications such as ensuring that the user does not sleep while cooking,
or ensuring that certain activities are only done under certain conditions.

However, standard RV techniques are not directly suitable to monitor the
three classes of specifications. This is mainly due to scalability issues arising from
the large number of sensors, as typically RV techniques rely on a single large
formula to describe all behavior. Synthesizing centralized monitors from certain
large formulas considered in this paper is not possible using the current tools.
Instead, we make use of RV with decentralized specifications [16], as it allows
monitors to reference other monitors in a hierarchical fashion. The advantage
of this is twofold. First, it provides an abstraction layer to relate specifications
to each others. This allows specifications to be organized and changed without
affecting other specifications, and even to be expressed with different specifi-
cation languages. Second, it leverages the structure and layout of the devices
to organize the hierarchies. On the one hand, we have a geographical hierar-
chy resulting from the spacial structure of the apartment from a given device,
to a room, a floor, or the full apartment. On the other hand, we have a log-
ical hierarchy defined by the interdependence between specifications, i.e. ADL
specifications that use other ADL specifications, and specifications that com-
bine sensor safety with ADL. For example, informally, consider checking two
activities: sleeping and cooking, which can be expressed using formulae ϕs and
ϕc respectively. A monitor that checks whether the user is sleeping and cooking
requires to check ϕs∧ϕc and as such will replicate the monitoring logic of another
monitor that checks ϕs alone, instead of re-using the output of that monitor. The
formula will be written twice, and changing the formula for detecting sleeping
requires changing the formula for the monitor that checks both specifications.
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Overall, we see our contributions as follows1:

– Applying decentralized RV to analyze traces of over 36,000 timestamps span-
ning 27 sensors in a real smart apartment (Sect. 1.1).

– Going beyond system properties, to specify ADL using RV, and more com-
plex inter-dependent specifications defined on up to 27 atomic propositions
(Sect. 1.2).

– Taking advantage of hierarchies, modularity and re-use of decentralized spec-
ifications (Sect. 2) to both be able to synthesize monitors and to reduce over-
head when monitoring complex inter-dependent specifications (Sect. 3.1).

– Using RV to effectively monitor ADL and identifying some insights and limi-
tations inherent to using formal LTL specifications to determine user behavior
(Sect. 3.2).

1 Writing Specifications for the Apartment

1.1 Devices and Organization

We consider a single actual apartment, with multiple rooms, where activities are
logged using sensors. Amiqual4Home is an experimental platform consisting of a
smart apartment, a rapid prototyping platform, and tools for observing human
activity.

Overview of Amiqual4Home. The Amiqual4Home apartment is equipped
with 219 sensors and actuators spread across 2 floors [25]. Amiqual4Home uses
the OpenHab 6 integration platform for all the sensors and actuators installed.
Sensors communicate using KNX, MQQT or UPnP protocols sending measure-
ments to OpenHab over the local network, so as to preserve privacy. The general
layout of the apartment consists of 2 floors: the ground and first floor. On the
ground floor (resp. first floor), we have the following rooms: entrance, toilet,
kitchen, and livingroom (resp. office, bedroom, and bathroom). Between the
two floors, there is a connecting staircase. This layout reveals a geographical
hierarchy of components, where we can see the rooms at the leaves, grouped by
floors then the whole apartment. While in effect all device data is fed to a central
observation point, it is reasonable to consider the hierarchy in the apartment as
a simpler model to consider hierarchies in general, as one is bound to encounter
a hierarchy at a higher level (from houses, to neighborhoods, to smart cities,
etc.). Furthermore, hierarchies appear when integrating different providers for
devices in the same house.

1 An artifact [15] that contains data, documentation, and software, is provided to
replicate and extend on the work. An extended version of this paper is available
in [18].



Bringing Runtime Verification Home 225

Fig. 1. Schedule for Jan 31 2017

Reusing the Orange4Home
Dataset. Amiqual4Home has been
used to generate multiple datasets
that record all sensor data, this
includes an ADL recognition dataset
[25] (ContextAct@A4H), and an
energy consumption dataset [12]
(Orange4Home). In this paper, we
reuse the dataset from [12]. The case
study involved a person living in the
home and following (loosely) a sched-
ule of activities spread out across the
various rooms of the house, set out
by the authors. This allows us to
nicely reconstruct the schedule from
the result of monitoring the sensors.
Furthermore, the person living in the
home provided manual annotations of
the activities done, which helps us
assess our specifications. We chose to
use [12] over [25] as it involves only one person living in the house at a time
which simplifies writing and validating specifications (Fig. 1).

Monitoring Environment. In total, we formalize 22 specifications that make
use of up to 27 sensors, and evaluate them over the course of a full day of activity
in the apartment2. That is, we monitor the house (by replaying the trace) from
07:30 to 17:30 on a given day, by polling the sensors every 1 second, creating a
trace of a total of 36,000 timestamps. Specifications are elaborated in Sect. 1.2
and expressed as decentralized specifications [16] (introduced in Sect. 2.2). Traces
are replayed using the THEMIS tool [17] which supports decentralized specifica-
tions and provides a wide range of metrics. We elaborate on the trace replay in
Sect. 2.4.

1.2 Specification Groups

We now specify specifications that describe different behaviors of components
in the smart apartment. Specifications can be subdivided into 3 groups: system-
behavior properties, user-behavior specifications, and meta-specifications on
both system and user behavior. The specifications we considered are listed in
Table 1.

System Behavior. The first group of specifications consists in ensuring that
the system behaves as expected. That is, verifying that the sensors are working
properly. These specifications are the subject of classical RV techniques [6,20]
applied to systems. For the scope of this case study, we verify light switches as

2 [19] is a more detailed version of this paper including all the specifications.
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Table 1. Specifications considered in this paper. (*) indicates added ADL specifica-
tions. G indicates specification group: system (S), ADL (A), and meta-specifications
(M). |AP|d (resp. (|AP|c): atomic propositions needed in formula for decentralized
(resp. centralized) specifications. d is the maximum depth of monitor dependencies.

G Scope Name Description |AP|d |AP|c d

S Room sc light(i) light switch turns on light (i ∈ [0..3]) 2 2 1

M House sc ok All light switches are ok 4 8 2

A Toilet toilet∗ Toilet is being used 1 1 0

A Bathroom sink usage Sink is being used 1 2 1

A Bathroom shower usage Shower is being used 1 2 1

A Bedroom napping Tenant is sleeping on the bed 1 1 1

A Bedroom dressing Tenant is dressing, using the closet 2 3 1

A Bedroom reading Tenant is reading 3 5 2

A Office office tv Tenant is watching TV 1 1 1

A Office computing Tenant is using the computer 1 1 1

A Kitchen cooking Tenant is cooking food 2 2 1

A Kitchen washing dishes Tenant is cleaning dishes 2 3 1

A Kitchen kactivity∗ Using cupboards and fridge 4 9 1

A Kitchen preparing Tenant is preparing to cook food 2 11 2

A Living livingroom tv Tenant is watching TV 2 2 1

A Floor 0 eating Tenant is eating on the table 2 2 1

M Floor 0 actfloor(0) Activity triggered on floor 0 6 16 3

M Floor 1 actfloor(1) Activity triggered on floor 1 7 11 3

M House acthouse Activity triggered in house 2 27 4

M House notwopeople No 2 simultaneous activities on dif. floors 2 27 4

M House restricttv No watching TV for more than 10s 2 3 3

M House firehazard No cooking while sleeping 2 3 2

system properties. We verify that for a given room i, whenever the switch is
toggled, then the light must turn on until the switch is turned off. We verify
the property at two scopes, for a given room, and the entire apartment. While
this property appears simple to check, it does highlight issues with existing
centralized techniques applied in a hierarchical way. We develop the property in
Sect. 2.1, and show the issues in Sect. 2.2.

ADL. The second group of specifications is concerned with defining the behav-
ior of the user inferred from sensors. The sensors available in the apartment
provide us with a wealth of information to determine the user activities. The list
of activities of interest is detailed in [24] and includes activities such as cooking
and sleeping. By correctly identifying activities, it is possible to decide when to
interact with the user in a smart setting [1], provide custom care such as nursing
for the elderly [27], or help users who suffer from mild impairment [30]. Inferring
activities done by the user is an interesting problem typically addressed through
either data-based or knowledge-based methods [9]. The first method consists in
learning activity models from preexisting large-scale datasets of users’ behav-
iors by utilizing data mining and machine learning techniques. The built models
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Fig. 2. Detected ADL for Tuesday, Jan 31 2017. Time is in hours starting from 7:30.

are probabilistic or statistical activity models such as Hidden Markov Model
(HMM) or Bayesian networks, followed by training and learning processes. Data-
driven approaches are capable of handling uncertainty, while often requiring large
annotated datasets for training and learning. The second method consists in
exploiting prior knowledge in the domain of interest to construct activity mod-
els directly using formal logical reasoning, formal models, and representation.
Knowledge-driven approaches are semantically clear, but are typically poor at
handling uncertainty and temporal information [9]. We elaborate on such lim-
itations in Sect. 3.2. Writing specifications can be seen as a knowledge-based
approach to describe the behavior of sensors. As such, we believe that runtime
verification is useful to describe the activity as a specification on sensor output.
We formalize a specification for the following ADL activities described in [12] (see
Table 1). We re-use the traces to verify that our detected activities are indeed
in line with the schedule proposed. Figure 2 displays the reconstructed sched-
ule after detecting ADL with runtime verification. Each specification is repre-
sented by a monitor that outputs (with some delay) for every timestamp (second)
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verdicts � or ⊥. To do this, the monitor finds the verdict for a timestamp t then
respawns to monitor t + 1. Verdict � indicates that the formula holds, that is,
the activity is being performed. The reconstructed schedule shows the eventual
outcome of a specification for a given timestamp ignoring delay. In reality, some
delay happens based on the specification itself, and the dependencies on other
monitors.

Meta-specifications. Specifications of the last group are defined on top of the
other specifications. That is, we refer to a meta-specification as a specification
that defines the interactions between various other specifications. While one
can easily define specifications by defining predicates over existing ones, such
as checking that the light switch property holds in all rooms or whether or not
detecting an activity was performed on a specific floor or globally in the house,
we are interested more in specifications that relate to each other. We consider a
meta-specification that reduces fire hazards in the house. In this case, we specify
that the tenant should not cook and sleep at the same time, as this increases the
risk of fire. In addition to mutually excluding specifications, we can also constrain
the behavior of existing specifications. For example, we can write a specification
regulating the duration of watching TV to be at most 10 timestamps.

2 Monitoring the Appartment

2.1 Monitor Implementation

To monitor the apartment, we use LTL3 monitors [6]. An LTL3 monitor is a
complete and deterministic Moore automaton where states are labeled with the
verdicts B3 = {�,⊥, ?}. Verdicts � and ⊥ respectively indicate that the current
execution complies and does not comply with the specification, while verdict ?
indicates that the verdict has not been determined yet. Verdicts � and ⊥ are
called final, as once the monitor outputs � or ⊥ for a given trace, it cannot
output a different verdict for any suffix of that trace. Using LTL3 monitors for
representing our specificaitons allows us to take advantage of the multiple RV
tools that convert different specification languages to LTL3 monitors. For our
monitoring, we use the THEMIS tool which is able to use both ltl2mon [6] and
LamaConv [22] to generate monitors.

Example 1 (Check light switch). Let us consider property sc light(i) (sensor
check light): “Whenever a light switch is triggered in a room i at some timestamp
t, then the light must turn on at t + 1 until the switch is turned off again”.
Figure 3a shows the Moore automaton that represents the property. Starting
from q0 with verdict ?, the automaton verifies that the property is falsified (as
it is a safety property). That is, upon reaching q2 the verdict will be ⊥ for all
possible suffixes of a trace.

For the scope of this paper and for clarity, we use LTL extended with two (syn-
tactic) operators, mostly to strengthen and relax time constraints. We consider
the operator eventually within t (♦≤t) which considers a disjunction of next
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Fig. 3. Monitor(s) for sc light(i), for a given room i in the house. The verdicts asso-
ciated with the states are ⊥: dotted red, �: double green, and ?: single yellow.

operators. It is defined as: ♦≤tap
def= ap ∨ Xap ∨ XXap ∨...Xtap. Where ap is

an atomic proposition. Intuitively, the eventually within states that ap holds
within a given number of timestamps. Operator ♦≤t allows us to relax the time
constraints for a given atomic proposition. Similarly, we consider the operator
globally within t (�≤t) which the dual of the previous operator. The operator
�≤t is a conjunction of next operators. �≤tap

def= ap ∧ Xap ∧ XXap ∧ Xtap.

Example 2 (Check light switch modalities). The property expressed in
Example 1 can be expressed in LTL as: sc light(i) def= �(si =⇒ X(�i U¬si)).
The property can be modified with the extra operators relax or constrain the time
on the light. The relaxed property sc light′(i) def= �(si =⇒ ♦≤3(�i U¬si))
allows the right-hand side of the implication to hold within any of the next 3
timestamps instead of immediately after. The bounded property sc light′′(i) def=
�(si =⇒ �≤3(�i)) states that the light is on starting from the timestamp the
switch is turned on and the subsequent two (for a total of 3). An example of
such a property is the restriction on watching TV for a specific duration (Table 1)
where restricttv

def= �(tv =⇒ ♦≤10¬tv).

2.2 Decentralized Specifications

While simple specifications can be expressed with both LTL and automata, it
quickly becomes a problem to scale the formulae or account for hierarchies (see
Sect. 2.3). As such, we use decentralized specifications [16].

Informally, a decentralized specification considers the system as a set of com-
ponents, defines a set of monitors, additional atomic propositions that represent
references to monitors, and attaches each monitor to a component. A decentral-
ized trace is a partial function that assigns to each component and timestamp
an event. Each monitor is a Moore automaton as described in Sect. 2.1 where
the transition label is restricted to only atomic propositions related to the com-
ponent on which the monitor is attached, and references to other monitors. A
monitor reference is evaluated as if it were an oracle. That is, to evaluate a
monitor reference mi at a timestamp t, the monitor referenced (Ai) is executed
starting from the initial state on the trace starting at t. The atomic proposition
mi at t takes the value of the final verdict reached by the monitor.
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Example 3 (Decentralized light switch). Figure 3b shows the decentralized spec-
ification for the check light property from Example 1. We have two monitors
Asc lighti

and A�i . They are respectively attached to the light switch, and light
bulb components. In the former, the atomic propositions are either related to
observations on the component (si, switch on), or references to other monitors
(m�i). The light switch monitor first waits for the switch to be on to reach q1.
In q1, at some timestamp t, it needs to evaluate reference m�i by running the
trace starting from t on monitor A�i .

The assumptions of decentralized specifications on the system are as follows:
no monitors send messages that contain wrong information; no messages are
lost, they are eventually delivered in their entirety but possibly out-of-order; all
components share one logical discrete clock marked by round numbers indicating
relevant transitions in the system specification. While security is a concern in
the smart apartment setting, the first two assumptions are met in this case study
as the apartment sensor network operates on the local network, and we expect
monitors to be deployed by the sensor providers, and users of the apartment.
The last assumption is also met in the smart setting, as all sensors share a global
clock.

2.3 Advantages of Decentralized Specifications

Modularity and Re-use. Monitor references in decentralized specifications
allow specifications writers to modularize behavior. Given that a monitor rep-
resents a specific behavior, this same monitor can be re-used to define more
complex specifications at a higher level, without consideration for the details
needed for this specification. This allows specification writers to reason at vari-
ous levels about the system specification.

Let us consider the ADL specification cooking (resp. sleeping) which speci-
fies whether the tenant is cooking (resp. sleeping) in the apartment. One can rea-
son about the meta-specification firehazard using both cooking and sleeping
specifications without considering the lower level sensors that determine these
specifications, that is firehazard

def= �(sleeping =⇒ ¬cooking). While we
can define cooking as cooking def= kitchen presence∧♦≤5(kitchen cooktop∨
kitchen oven). Additionally, any specification that requires either sleeping
or cooking can re-use the verdict outputted by their respective monitors. For
example the specifications actfloor(0) and actfloor(1) require the verdicts
from monitors associated with cooking and sleeping, respectively, since cook-
ing happens on the ground floor while sleeping on the first floor. Furthermore,
we can disjoin actfloor(0) and actfloor(1) to easily specify that an activity
has happened in the house, acthouse

def= actfloor(0) ∨ actfloor(1). While
specification acthouse can be seen as a quantified version of actfloor(i), we
can use modular specifications for behavior, for example we can verify the trig-
gering of an alarm in the house within 5 timestamps of detecting a fire hazard,
i.e. checkalert def= firehazard =⇒ ♦≤5(firealert).
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In addition to providing a higher level of abstraction and reasoning about
specifications, the modular structure of the specifications present three addi-
tional advantages. The first allows the sub-specifications to change without
affecting the meta-specifications, that is if the sub-specification cooking is
changed (possibly to account for different sensors), no changes need to be prop-
agated to specifications firehazard, actfloor(0), acthouse, and checkalert.
The second advantage is controlling duplication of computation and commu-
nication, as such sensors do not have to send their observations constantly to
all monitors that verify the various specifications. The specification cooking
requires knowledge from the kitchen presence sensor, the kitchen cooktop (being
enabled) and the kitchen oven. Without any re-use these three sensors (pres-
ence, cooktop, and oven) need to send their information to monitors checking:
firehazard, actfloor(0), acthouse, and checkalert. The third advantage is
a consequence of modeling explicitly the dependencies between specifications.
This allows the monitoring to take advantage of such dependencies and place
the monitors that depend on each other closer depending on the hierarchy, either
geographically (i.e., in the same room or floor) or logically (i.e., close to the mon-
itors of the dependent sub-specifications). Furthermore, knowing the explicit
dependencies between specifications allows the user to choose a placement for
their monitors, adjusting the placement to the system architecture. In the case a
placement is not possible, it is possible to create intermediate specifications that
simply relay verdicts of other monitors, to transitively connect all components
that are not connected.

Abstraction From Implementation. Decentralized specifications define
modular specifications that can be composed together to form bigger and more
complex specifications. One setback for learning-based techniques to detect ADL
is their specificity to the environment. That is, the training set is specific to a
house layout, user profile (i.e., elderly versus adults) [23].

By using references to monitors, we leave the implementation of the speci-
fication to be specific for the house or user profile. Using our existing example,
cooking is implemented based on the available sensors in the house, which would
change for different houses. However, meta-specifications such as firehazard
can be defined independently from the implementation of both cooking and
sleeping.

Furthermore, using monitor references, which are treated as oracles, opens
the door to utilizing existing techniques in the literature for non-automata based
monitors. That is, as a reference is expected to eventually evaluate to � or ⊥, any
implementation of a monitor that can return a final verdict for a given times-
tamp can be incorporated to form more complex specifications. For example,
one can use the various machine learning techniques [7,23,29] to define monitors
that detect specific ADLs, then reference them in order to define more complex
specifications.

Scalability. Decentralized specifications allow for a higher level of scalability
when writing specifications, and also when monitoring. By using decentral-
ized specifications, we restrict a given monitor to atomic propositions local to
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the component on which it is attached, and references to other monitors (see
Sect. 2.2). This greatly reduces the number of atomic propositions to consider
when synthesizing the monitor and reduces its size, as the sub-specifications are
offloaded to another monitor.

For example, let us consider writing specifications using LTL formulae. The
classical algorithm that converts LTL to Moore automata is doubly exponential
in the size of the formula including all permutations of atomic propositions (to
form events) [6]. As such reducing both the size of the formula and the number
of atomic propositions used in the formula helps significantly when synthesizing
the monitors, allowing us to scale beyond the limits of existing tools. For a large
formula, it becomes impossible to generate a central monitor using the existing
synthesis techniques. Decentralized specifications provide a way to manage the
large formula by subdividing it into subformulae. The decomposition ensures
that the formula evaluates to the same verdict given the same observations, at
the cost of added delay.

Example 4 (Synthesizing check light). Recall the system property sc light(i)
in Example 2 responsible for verifying that in a room i a light switch does
indeed turn a light bulb on until it is turned off. We recall the LTL specifica-
tion sc light(i) def= �(si =⇒ X(�i U¬si)). To verify the property across n

rooms of the house, we formulate a property sc ok
def=

∧
i∈[0..n] sc light(i). In

the case of a decentralized specification the formula will reference each monitor
in each room, leading to a conjunction of at n atomic propositions. However,
in the case of a centralized specification, the specification needs to be written
as: sc okcent def=

∧
i∈[0...n] �(si =⇒ X(�i U¬si)), which is significantly more

complex as a formula consisting of 4n operators (to cover the sub-specification),
along n conjunctions, and defined over each sensor and light bulb atomic proposi-
tions (2n). Given that monitor synthesis is doubly exponential, both ltl2mon [6]
and lamaconv [22] require significant resources and time to generate the minimal
Moore automaton (in our case we were unable to generate the monitor for n = 3
after an hour to timeout with both tools).

2.4 Trace Replay with THEMIS

To perform monitoring we use THEMIS [17]. THEMIS is designed to define and
handle decentralized specifications. The trace from [12] is given as a database
with a table for each sensor. We extract each table as a csv file for each sensor
and treat them as observations, we then assign a logical component for multiple
related sensors.

Each sensor is implemented as an input (Periphery in THEMIS) to a logi-
cal component. For example, for the shower water, we use both cold and hot
water sensors but define only a single component (“shower water”), from an RV
perspective, “hot” and “cold” are multiple observations passed to the “shower
water” component. We implemented two peripheries to process sensor trace data:
SensorBool and SensorThresh. The first periphery reads Boolean values from
the csv file associated with timestamps, and associates them with an atomic
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proposition. The second periphery reads real (double) values, converts them
Boolean values based on whether the number is below or above a certain thresh-
old, and associates them with an atomic proposition.

Since the system has a global clock, to synchronize observations, our periph-
ery implementations synchronize on a date at the start and an increment (in our
case 1 second) and a default Boolean value for the observation. When polled, the
periphery returns the default value if nothing is observed yet, or the last value
observed otherwise.

Managing the trace length (36,000) is an issue for the monitoring techniques
presented in [16] as they rely on eventual consistency and will wait on input
for the length of the trace, which requires a lot of memory. We optimized the
datastructure used to store observations (Memory) to add garbage collection
and thus reduce memory usage.

3 Assessing the Monitoring of the Appartment

Monitoring the smart apartment requires leveraging the interdependencies
between specifications to be able to scale, beyond monitoring system properties,
to more complex meta-specifications (as detailed in Sect. 1.2). We assess using
decentralized specifications to monitor the apartment by conducting two sepa-
rate scenarios. The first scenario (Sect. 3.1) evaluates the advantages of using
decentralized specifications presented in Sect. 2.3 (modularity, scalability, and
re-use) by looking at the complexity of monitor synthesis, and communication
and computation costs when adding more complex specifications that re-use
sub-specifications. The second scenario (Sect. 3.2) evaluates the effectiveness of
detecting ADL by looking at various detection measures such as precision and
recall.

3.1 Monitoring Efficiency and Hierarchies

Monitor Synthesis. Table 1 displays the number of atomic propositions ref-
erenced by each specification for the decentralized (|APd|) and the centralized
(|APc|) settings. Column d indicates the maximum depth of the dependencies
directed acyclic graph, so as to assess how many levels of sub-specifications
need to be computed. When d = 0, it indicates that the specification can be
determined directly by the monitor placed on the component, while d = 1 indi-
cates that the monitor has to pull at most 1 monitor (which typically relays
the component observations). More generally, when d = n, it indicates that
the specification depends on a monitor that has at most depth n − 1. The
atomic propositions indicate either direct references to sensor observations (in
the centralized setting) or references to either sensor observations and depen-
dent monitors (in the decentralized setting). It is possible to notice that for
certain specifications such as toilet which relies only on the water sensor in
the toilet to be detected, there is no difference between using a centralized or
decentralized specification, as it resolves to the observations. Reduction becomes
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more pronounced when specifications re-use other specifications. For example,
specification acthouse

def= actfloor(0)∨actfloor(1), when decentralized, uses
only 2 references (for each of the sub-specification). However, when expanded,
it references all 27 sensors used to detect activities. Additionally, specifica-
tion notwopeople

def= ¬(actfloor(0) ∧ actfloor(1)) does not re-use the sub-
specifications and requires all sensors again. This greatly reduces the formula
size and allows us to synthesize the monitors needed to check the formulae, as
the synthesis algorithm is doubly exponential as mentioned in Sect. 2.3.

Fig. 4. Scalability of communication and computations in decentralized specifications.

Assessing Re-use and Scalability. Reducing the size of the atomic proposi-
tions needed for a specification not only affects monitor synthesis, but also per-
formance, as atomic propositions represent the information needed (Sect. 2.3).
To assess re-use and scalability, we perform two tasks and gather two measures
pertaining to computation and communication, and present results in Fig. 4.
The first task compares a centralized (SW-C) and a decentralized (SW-D) ver-
sion of property sc ok presented in Example 4 using only 2 rooms. The sec-
ond task introduces large meta-specifications on top of the ADL specifications
to check scalability. Firstly, we measure the communication and computation
for monitoring ADL specifications (ADL). Secondly, we introduce specifications
actfloor(0), actfloor(1) and acthouse (ADL+H) as they require informa-
tion about all sensors for ADL. Thirdly, we add specification notwopeople
(ADL+H+2), as it re-uses the same sub-specifications as specification acthouse.
Lastly, we show all measures for all meta-specifications in Table 1 (ADL+M).
We re-use two measures from [16]: the total number of simplifications the mon-
itors are doing, and the total number of messages transferred. These measures
are provided directly with THEMIS [17]. The total number of simplifications
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(#Simplifications) abstracts the computation done by the monitors, as they
attempt to simplify Boolean expressions that represent automaton states, which
are the basic operations for maintaining the monitoring data structures in [16].
The total number of messages abstracts the communication (#Msgs), as our
messages are of fixed length, they also represent the total data transferred. Both
measures are normalized by the number of timestamps in the execution (36,000).

Results. Figure 4a shows the normalized number of messages sent by all mon-
itors. For the first task, we notice that the number of messages is indeed lower
in the decentralized setting, SW-D sends on average 2 messages per timestamp
less than SW-C, which corresponds to the difference in the number of atomic
propositions referenced (6 for SW-D and 8 for SW-C). For the second task, we
notice that on the baseline for ADL, we observe 24 messages per timestamp,
a smaller number than the sensors count (27). This is because some ADL like
toilet are directly evaluated on the sensor without communicating, and other
ADL like preparing, re-use other ADL specifications like kactivity. By intro-
ducing the 3 meta-specifications stating that an activity occurred on a floor or
globally in a house, the number of messages per round only increases by 15.
This also coincides with the number of atomic propositions for the specifications
(6 for actfloor(0), 7 for actfloor(1), and 2 for acthouse) as those monitors
depend in total on 15 other monitors to relay their verdicts. This costs much
less than polling 16 sensors to determine actfloor(0), 11 sensors to determine
actfloor(1), and 27 (a total of 54) to determine acthouse. To verify this, we
notice that the addition of notwopeople (ADL+H+2) that needs information
from all 27 sensors, only increases the total number of messages per timestamp
by 2. The specification notwopeople reuses the verdicts of the two monitors asso-
ciated with each actfloor specification. After adding all the meta-specifications
(ADL+M), the total number of messages per timestamp is 46, which is less than
the number needed to verify adding actfloor, and acthouse in a centralized
setting (54). We notice a similar effect for computation (Fig. 4b).

3.2 ADL Detection Using RV

Measurements. Table 2a displays the effectiveness of using RV to monitor all
ADL specifications on the trace of Tuesday, Jan 31 2017. To assess the effec-
tiveness, we considered the provided self-annotated data from [12], where the
user annotated the start and end of each activity. We measure precision, recall
and F1 (the geometric mean of precision and recall). To measure precision, we
consider a true positive when the verdict � of a monitor for a given timestamp
fell indeed in the self-annotated interval for the activity. To measure recall, we
measure the proportion of the intervals that have been determined � using RV.
This approach is more fine-grained than the approach used in [25] where the
precision and recall are computed for the start and end of intervals.

Results. The effectiveness of detection depends highly on the specification. Our
approach performs well for the specifications computing, cooking, office tv,
as it exhibits high precision and high recall. The second group of specifications
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Table 2. Precision, Recall, and F1 of monitoring Tuesday, Jan 31 2017.

contains specifications such as shower usage, and livingroom tv. It exhibits
high precision but medium recall, that is, we were able to determine around
40 to 50% of all the timestamps where the specifications held according to the
person annotating, without any false positives. The third group is similar to the
second group but has very low recall (13–18%) and contains the specifications
toilet and sink usage. The fourth group, which includes the specifications
napping and preparing, shows high recall but a high rate of false positives.
And finally, specification reading is not properly detected, as it has a high rate
of false positives and covers almost no annotated intervals.

Limitations of RV for Detecting ADL. The limitations of using RV to detect
ADL are due to the modeling. As mentioned in Sect. 1.2, RV can be seen as a
knowledge-based approach to activity detection, as such it suffers from similar
weaknesses and limitations [9]. The activity is described as a rigid formal spec-
ification over the sensor data, and this has two consequences. Firstly, since RV
relies purely on sensor data, activities which cannot be inferred from existing sen-
sors will be poorly detected or not detected at all. This is the case for reading,
as there are no sensors to indicate that the tenant is reading. We infer reading
by checking that the light is on in the room and no other specified activity holds.
Secondly, given that specifications are rigid, we expect the user to behave exactly
as specified for the activity to be detected, any minor deviation results in the
activity not being detected. To illustrate this point, the specification computing
relies on the power consumption of the plug in the office. Had the tenant been
charging his phone instead of computing, the recall would have suffered greatly.
Another great example of this is the shower usage specification, that is captured
by inspecting the water usage of the shower. The time the tenant spends get-
ting into the shower and out of the shower will not be considered, which greatly
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impacts recall. Table 2b shows how we can modify the specification napping to
attempt to better capture the activity. In this case, using the additional light
sensor to detect lights are off, helps us increase precision. The above issues are
further compounded by the annotation being carried out by a person. The anno-
tator can for example take a few seconds to annotate some events which could
impact recall, especially for short intervals of activity. However, even with the
inherent limitations of using knowledge-based approaches, our observed groups
and results fall within the expected range, of knowledge-based approaches such
as [25], and also have similar effectiveness as model-based SVM approaches such
as [8].

4 Related Work

We present similar or useful techniques for detecting ADL activities in a smart
apartment that use log analysis and complex event processing. Then, we present
techniques from stream-based RV that can be extended for monitoring smart
apartments.

ADL Detection Using Log Analysis. Detecting ADL can be performed using
trace analysis tools. The approach in [25] defines parametric events using Model
Checking Language (MCL) [28] based on the modal mu-calculus (inspired by
temporal logic and regular expressions). Traces are read and transformed into
actions, then actions are matched against the specifications to determine loca-
tions in the trace that match ADL. Five ADL (sleep, using toilets, cooking,
showering, and washing dishes) are specified and checked in the same smart
apartment as our work. While this technique is able to detect ADL activities, it
amounts to checking traces offline, and a high level of post-processing is required
to analyze the data.

ADL Detection Using Complex Event Processing. Reasoning at a much
higher level of abstraction than sensor data, the approach in [21] attempts to
detect ADL by analyzing the electrical consumption in the household. To do so,
it employs techniques from Complex Event Processing (CEP), in which data is
fed as streams and processed using various functions to finally output a stream of
data. In this work, the ADL detection is split into two phases, one which detects
peaks and plateaus of the various electrical devices, and the second phase uses
those to indicate whether or not an appliance is being used. This illustrates a
transformation from low-level data (sensor signal) to a high-level abstraction
(an appliance is being used). The use of CEP for detecting ADL is promising,
as it allows for similar scalability and abstraction. However, CEP’s model of
named streams makes it hard to analyze the specification formally, making little
distinction between specification and implementation of the monitoring logic.

ADL Detection Using Runtime Verification. Similarly to CEP but focus-
ing on Boolean verdicts, various stream-based RV techniques have been elab-
orated such as LOLA [13] which are used to verify correctness properties for
synchronous systems such as the PCI bus protocol and a memory controller.
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A more recent approach uses the Temporal Stream-Based Specification Lan-
guage (TeSSLa) to verify embedded systems using FPGAs [14]. Stream-based
RV is particularly fast and effective for verifying lengthy parametric traces. How-
ever, it is unclear how these approaches handle monitor synthesis for a large
number of components and account for the hierarchy in the system.

Discussion. Stream-based systems such as stream-based RV and CEP are
bottom-up. Data in streams is eventually aggregated into more complex infor-
mation and relayed to a higher level. Decentralized specifications also support
top-down approaches, which would increase the efficiency of monitoring large and
hierarchical systems. To illustrate the point, consider the decentralized specifi-
cation in Fig. 3b. In the automaton Asc lighti

, the evaluation of the dependent
monitor A�i only occurs when reaching q1, so long as the automaton is in q0,
no interaction with the dependent monitor is necessary. This top-down feedback
can be used to naturally optimize dependencies and increase efficiency. Because
of the the oracle-based implementation of decentralized specifications, it is pos-
sible to integrate any monitoring reference that eventually returns a verdict.
One could imagine integrating other stream-based monitors or even data-driven
ADL detection approaches. The integration works both ways, as monitors can
be considered a (blocking) stream of verdicts for the other techniques.

5 Conclusion

Monitoring a smart apartment presents RV with interesting new problems as it
requires a scalable approach that is compositional, dynamic, and able to handle
a multitude of devices. This is due to the hierarchical structure imposed by
either limited communication capabilities of devices across geographical areas
or the dependencies between various specifications. Attempting to solve such
problems with centralized specifications is met with several obstacles at the
level of monitor synthesis techniques (as we are presented with large formulae),
and also at the level of monitoring as one needs to model interdependencies
between formulae and re-use the sub-specifications used to build more complex
specifications. We illustrate how decentralized specifications tackle such systems
by explicitly modeling of interdependencies between specifications. Furthermore,
we illustrate monitoring specifications that detect ADL in addition to system
properties and even more specifications defined over both types of specifications.
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Abstract. Over the last 15 years Runtime Verification (RV) has grown
into a diverse and active field, which has stimulated the development
of numerous theoretical frameworks and tools. Many of the tools are at
first sight very different and challenging to compare. Yet, there are sim-
ilarities. In this work, we classify RV tools within a high-level taxonomy
of concepts. We first present this taxonomy and discuss the different
dimensions. Then, we survey RV tools and classify them according to
the taxonomy. This paper constitutes a snapshot of the current state of
the art and enables a comparison of existing tools.

1 Introduction

Runtime Verification (RV) [7,28,29,38] (or runtime monitoring) is (broadly) the
study of methods to analyze the dynamic behavior of computational systems.
The most typical analysis is to check whether a given run of a system satisfies a
given specification and it is this general setting (and its variants) that we consider
in this paper. Whilst topics such as specification mining or trace visualization
are generally considered to be within this broad field, we do not include them in
our discussion.

This paper presents a taxonomy of RV frameworks and tools and uses this
to classify 20 selected tools. This work is timely for a number of reasons. Firstly,
after more than 15 years of maturing, the field has reached a point where such
a general view is needed. The last significant attempt at a taxonomy was in
2004 [24] and had a distinctly different focus to our own. Secondly, a number

The authors warmly thank Martin Leucker for the early discussions on the taxonomy
and mind map representation. This article is based upon work from COST Action ARVI
IC1402, supported by COST (European Cooperation in Science and Technology). In
particular, the taxonomy and classification benefited from discussions within working
groups one and two of this action. We would also like to acknowledge input from
participants of Dagstuhl seminar 17462 [34].

c© Springer Nature Switzerland AG 2018
C. Colombo and M. Leucker (Eds.): RV 2018, LNCS 11237, pp. 241–262, 2018.
https://doi.org/10.1007/978-3-030-03769-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03769-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-03769-7_14


242 Y. Falcone et al.

of activities, such as the runtime verification competitions [4,6,30,48], the RV-
CuBES workshop [46,49], two schools dedicated to RV [16], and a COST action
[1] (including the development of a tutorial book on the topic [5]), have put the
development of runtime verification tools into focus.

Terminology. The field of RV is broad and the used terminology is not yet
unified. For the sake of clarity, let us fix the following terms:

– Monitored system. The system consisting of software, hardware, or a combi-
nation of the two, that is being monitored. Its behavior is usually abstracted
as a trace object.

– Trace. A finite sequence of observations that represents (or in some cases
approximates) the behavior of interest in the monitor system. The process of
extracting/recording the trace is usually referred to as instrumentation.

– Property. A partition of traces. This may simply be a separation of traces
into two sets or a more refined classification of traces.

– Specification. A concrete description of a property using a well-defined
formalism.

– Monitor. A runtime object that is used to check properties. The monitor will
receive observations from the trace (usually incrementally) and may option-
ally send information back to the monitored system, or to some other source.

– RV framework. A collection of a specification formalism, monitoring algo-
rithm(s) (for generating and executing monitors), and (optional) instrumen-
tation techniques that allows for runtime verification.

– RV tool. A concrete instantiation of an RV framework.

Contributions and Structure. This paper has two main contributions:

– The Taxonomy. We present a detailed taxonomy that defines seven major
concepts used to classify runtime verification approaches (Sect. 2). Each of
these seven concepts are refined and explained, with areas of possible further
refinement identified.

– The Classification. We take 20 runtime verification tools and classify them in
our taxonomy (Sect. 3). Tools were taken from the recent runtime verification
competitions and RV-CuBES workshop and therefore represent a recent and
relevant snapshot.

We then discuss what we have learned from these two activities (Sect. 4) before
concluding with some comments on how we see this work developing in the future
(Sect. 5).

2 A Taxonomy of Runtime Verification

This section describes a taxonomy of runtime verification approaches. Figure 1
provides a general overview of the taxonomy which identifies the seven major
concepts (and is limited to the first two levels for readability reasons). This
taxonomy provides a hierarchical organization of the major concepts used in the
field.
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Fig. 1. Mindmap overviewing the taxonomy of Runtime Verification

Development Process. This taxonomy was developed in an iterative pro-
cess alongside the classification presented in Sect. 3. The seven main conceptual
areas were identified as an initial starting point and extended with established
dichotomies (e.g., offline vs online). Sub-concepts were then added and refined
based on the focused classification process and a wider survey of tools (involving
over 50 tools, not described in this paper). We have attempted to ensure that
the taxonomy remains as general and flexible as possible.

Relations Between Nodes. We do not capture concepts such as mutual exclu-
sion or interdependence between nodes diagrammatically but aim to describe
these in the text. In most cases the final level of the taxonomy captures some
concrete instances of a particular (sub)concept and it is at this level where such
relations are most important.

The remainder of this section focusses on each of the seven major concepts
and expands the description along the corresponding branches.
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2.1 Specification

The specification part of the taxonomy is depicted in Fig. 2. A specification indi-
cates the intended system behavior (property), that is what one wants to check
on the system behavior. It is one of the main inputs of a runtime verification
framework designed before running the system. A specification exists within the
context of a general system model i.e., the abstraction of the system being
specified. The main part of this model is the form of observations (traces) made
about the system (see Sect. 2.5) but may include other contextual information.
A specification itself can be either implicit or explicit.

Fig. 2. Mindmap for the specification part of the taxonomy

Implicit Specifications. An implicit specification is used in a runtime verifi-
cation framework when there is a general understanding of the particular desired
behavior. Runtime verification tools do not require their users to explicitly for-
mulate and enter implicit specifications. Implicit specifications generally aim at
avoiding runtime errors (that would typically be not caught by a compiler). Such
runtime errors can be critical. An example is memory safety, whose purpose is
to ensure proper accesses to the system memory. Implicit specifications often
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also describe correct concurrent behavior such as the absence of deadlocks, the
atomicity of operations, and the absence of data races. The final layer here is a
non-exhaustive list of prominent examples.

Explicit Specifications. An explicit specification is one provided by the user
of the runtime verification framework and formally expresses functional or non-
functional requirements. It can complement the properties checked by the com-
piler of a language (e.g., errors that would not be caught by type checking).
An explicit specification denotes a function from traces to some output domain
and is written in a specification formalism belonging to some paradigm e.g.,
specifications may describe this function operationally (e.g., by a finite-state
automaton) or declarative (e.g., by a temporal logic formula). The specifica-
tion formalism can offer different features used to model the expected behavior
according to the dimensions discussed below.

The specification formalism may support different modalities. Some for-
malisms may restrict assertions to the current observation whereas others may
support constraints over past or future observations. In some cases, different
modalities represent distinct expressiveness classes; in other cases it is merely a
matter of usability.

A key dimension is how specifications or a specification formalism handle data
in observations. The simple case is the propositional case where observations
are assumed to be atomic and unstructured (e.g., simple names). Otherwise, we
say that the approach is parametric: observations (events or states) are asso-
ciated with a list of (possibly named) runtime values. The structure of these
runtime values may have different complexity e.g. they may be simple prim-
itive values or complex XML documents or runtime objects. The operators
over these values supported by the specification language may also vary. For
example, whether it is possible to compare values in different ways (e.g. more
than equality) or whether quantification (e.g. first-order, freeze quantification,
or pseudo-quantification via templates) over parameters is supported [34–36].

A specification can also express constraints over time. Constraints can refer
either to logical time or physical time. In the case of logical time, constraints
are placed on the relative ordering between events. Such an order can be total
(e.g., when monitoring a monolithic single-threaded program) or partial (e.g.,
when monitoring a multi-threaded program or a distributed system). In the case
of physical time, timing constraints are related to the actual physical time that
elapses when running the system. The domain of this timing information can
be discrete or dense. There is a special case where time is treated as data.
Such approaches typically do not offer native support for expressing quantita-
tive temporal relationships, but use the parametrization operators to refer to
timestamps.

The last dimension of an explicit specification formalism is that of the out-
puts assigned to the input executions e.g., the range of the denoted function.
In the standard case, the specification associates verdicts with an execution.
Those verdicts indicate specification fulfillment or violation and may range over
a domain extending the Boolean domain. A more refined output might include
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a witness for the verdict, e.g., a set of bindings of values to free variables in the
specification that lead to violations. Robustness information extends classical
verdicts by providing a quantitative assessment of the specification fulfillment
or violation. Finally, in the most general case, specifications can describe out-
put streams, which is any form of continuously produced information. This
may be a stream of verdicts or witnesses, e.g., by evaluating the specification at
each observation point, or more generally may be any data computed from the
observations.

2.2 Monitor

The monitor part of the taxonomy is depicted in Fig. 3. A monitor is a main com-
ponent of a runtime verification framework. By monitor, we refer to a component
executed along the system for the purposes of the runtime verification process.
A monitor implements a decision procedure which produces the expected output
(either the related information for an implicit specification or the specification
language output for an explicit specification).

The decision procedure of the monitor can be either analytical or oper-
ational. Analytical decision procedures query and scan records (e.g., from a

Fig. 3. Mindmap for the monitor part of the taxonomy
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database) to determine whether some relations hold between the records and the
current execution. Operational decision procedures are those based on automata
or formula rewriting. In an automata-based monitor, the code relies on some
form of automata-like formalism (either classical finite-state automata or richer
forms). In a rewrite-based monitor, the decision procedure is based on a set
of (possibly pre-defined) rewriting rules trigged by a new event. When designing
monitors, it is desirable that its decision procedure guarantee several properties.
Intuitively, a sound monitor never provides incorrect output, while a complete
monitor always provide an output. The properties reflect how much confidence
one can have in the output of monitor and how much confidence one can have
that a monitor will produce an output, respectively. Soundness and completeness
cannot be guaranteed in situations where, for instance, some form of sampling
is used, not all necessary events can be observed by the monitor, or when the
observation order does not correspond to the execution order. In such cases,
the monitor can perform two kinds of prediction. Firstly, when the monitor
produces its output as soon as possible, meaning that it uses a model of the
monitored system to predict the possible futures of the trace and evaluate these
possible futures before they actually happen. Secondly, when the monitor pre-
dicts potential errors in alternative concurrent executions (which are not actually
observed by the monitor). A monitor is impartial when the produced outputs
are not contradictory over time. Finally, a monitor can anticipate the output.
This resembles prediction but the knowledge used by the monitor in this case
comes from the monitored specification. Impartiality and anticipation are prop-
erties of the semantics of the specification language itself.

The decision procedure will act on an object (e.g. an automaton) which is
itself often referred to as the monitor. This may be generated explicitly from
the specification (e.g. an automaton synthesized from an LTL formula) or may
exist implicitly (e.g. a rewrite system defined in an internal domain-specific
language). Finally, a monitor must be executed. This might be directly if the
monitor is given as code e.g., it is either already implemented as some extension
of a programming language (i.e., an internal domain-specific language, or the
synthesis step from generation directly produced executable code. Otherwise,
the monitor is said to be interpreted. The key difference between the two
approaches is whether each monitor is implemented by a different piece of code
(direct) or there is a generic monitoring code that is parametrized by some
monitor information (interpreted).

2.3 Deployment

The deployment part of the taxonomy is depicted in Fig. 4. By deployment, we
refer to how the monitor is effectively implemented, organized, how it retrieves
the information from the system, and when it does so.

The notion of stage describes when the monitor operates, with respect to
the execution of the system. Runtime verification is said to apply offline when
the monitor runs after the system finished executing and thus has access to the
complete system execution (e.g., a log file). It is said to apply online when the
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Fig. 4. Mindmap for the deployment part of the taxonomy

monitor runs while the system executes and thus observes the current execution
and a part of its history. In the online case, the communication and connection
between the monitor and the system can be synchronous or asynchronous,
respectively depending on whether the initial program code stops executing when
the monitor analyzes the retrieved information. It is possible for a monitor to
be partially synchronous if it synchronises on some but not all observations.

The notion of placement describes where the monitor operates, with respect
to the running system. Therefore, this concept only applies when the stage is
online. Traditionally, the monitor is said to be inline (resp. outline) when it
executes in the same (resp. in a different) address space as/than the running
system. Pragmatically, the difference between inline and outline is a matter of
instrumentation. An inline tool implicitly includes some form of instrumen-
tation, used to inline the monitor in the monitored system. Conversely, outline
tools typically provide an interface for receiving observations. This interface may
exist within the same language and be called directly, or it may be completely
separate with communication happening via other means (e.g., pipes). There is
a (not uncommon) grey area between the two in the instance of tools that pro-
vide an outline interface but may also automatically generate instrumentation
code. Instrumentation itself may be at the hardware or software level and
there are further subdivisions within this that we do not cover here. Finally, the
architecture of the monitor may be centralized (e.g., in one monolithic proce-
dure) or decentralized (e.g., by utilising communicating monitors, which may
be synchronous or asynchronous).
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2.4 Reaction

The reaction part of the taxonomy is depicted in Fig. 5. By reaction, we refer
to how the monitor affects the execution of the system; this can be passive or
active.

Fig. 5. Mindmap for the reaction part of the taxonomy

Reaction is said to be passive when the monitor does not influence or min-
imally influences the initial execution of the program. A passive monitor is
typically an observer, only collecting information. This means that there are
some sorts of guarantees that the analysis performed by monitor did not alter
the execution and that the reported information is accurate. Such guarantees
could be some form of behavioral equivalence (e.g., simulation, bisimulation, or
weak bisimulation) between the initial system and the monitored system. In
that case, the purpose of monitoring typically pertains to producing the speci-
fication outputs (e.g., verdicts or robustness information) or providing a form
of explanation of a specification output (e.g., a witness trace containing the
important events leading to a specific verdict) or statistics (for instance vio-
lated/satisfied specifications, number of times intermediate verdicts were output
before a final verdict is reached).

Reaction is said to be active when the monitor affects the execution of the
monitored system. An active monitor would typically affect the execution of the
system when a violation is reported or detected to be irremediably happening.
Various interventions are possible. A so-called enforcement monitor can try
to prevent property violations from occurring by forcing the system to adhere
to the specification. When a violation occurs, a monitor can execute recovery
code to mitigate the effect of the fault and let the program either terminate or
pursue the execution from a safer state. A monitor can also raise exceptions
that were already present in the initial system. Finally, recovery mechanisms can
be launched to roll the system back in a previous correct state.
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2.5 Trace

The trace part of the taxonomy is depicted in Fig. 6. The notion of trace appears
in two places in a runtime verification framework and this distinction is captured
by the role concept. By observed trace we refer to the object extracted from the
monitored system and examined by the monitor. Conversely the trace model
is the mathematical object forming part of the semantics of the specification
formalism. Clearly, a monitoring approach must connect the two but it can be
important to be clear about what properties they have separately. For example,
trace models may be infinite (as in standard LTL) whilst observed traces are
necessarily finite – in such case the monitoring approach must evaluate a finite
trace with respect to a property over infinite traces. A trace model must reflect
the notions of time and data present in the specification (see Sect. 2.1).

Fig. 6. Mindmap for the trace part of the taxonomy

The construction of the observed trace is also parameterized by a sampling
decision and a precision decision. Sampling is said to be event triggered when
the monitor gets information from the target system when an event of interest
happens in the program. This can be the case when an event occurs in the system
(in case the trace consists of a collection of events), when a relevant part of the
program state changes, or when a new input is received or an output produced
by the system. Sampling is said to be time triggered when there exists a more
or less regular period at which information is collected on the program. The
term sampling here reflects the fact that any trace will only collect a relevant
subset of actual behaviours. If the trace contains all relevant traces then it is
precise, otherwise it is imprecise. Reasons for imprecision might be imperfect
trace collection methods, or purposefully for reasons of overhead.
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Either form of trace object is an abstraction of the system execution and only
contains some of the runtime information. The information retrieved from the
program can take the form of isolated information. For instance, the trace can
contain information on the internal state of the program or notifications that
some events occurred in the program (or both). Not exclusive of the previous
option, the monitor can also process the input and output information from
a transformational program. Finally, the analyzed object can consist in time-
continuous information in the form of a signal, which may be captured as a
closed-expression or by discrete sampling.

The runtime information retrieved by the monitor represents an evaluation
of the system state. This information can be related to an identified point (in
time or at a program location) or an interval.

2.6 Interference

The interference part of the taxonomy (see Fig. 1) characterizes monitoring
frameworks as invasive or non-invasive. In absolute, a non-invasive monitor-
ing framework being impossible (observer effect), this duality corresponds more
in reality to a spectrum. There are two sources of interference for a monitoring
framework with a system. The interference with the system execution can be
for instance related to the induced overhead (time and memory wise) or by a
modification of scheduling. First, how much a runtime verification framework
interferes with the initial system depends on the effect of the instrumentation
applied to the system, which itself depends on the specification as instrumenta-
tion is purposed mainly to collect a trace. Thus, the quantity of information in
the trace and the frequency at which this information is collected (depending on
the sampling) affects the instrumentation. Moreover, interference also depends
on the monitor deployment. Offline monitoring is considered to be less intrusive
because the observation made on the system consists only in dumping events to
a trace. Online monitoring is considered to be more intrusive to a degree depend-
ing on the coupling between the system and the monitor. Second, interference
with the monitored system also occurs when actively steering the system.

2.7 Application Areas

We have included application areas as a top-level concept of the taxonomy
(see Fig. 1) as it can have a large impact on other aspects of the runtime veri-
fication tools. There are numerous application areas of runtime verification. We
have identified the following (certainly non-exhaustive) categories. First, run-
time verification can be used for the purpose of collecting information on
a system. This includes visualizing the execution (e.g., with traces, graphs, or
diagrams) and evaluating the runtime performance (in a broad sense) over some
metrics (execution time, memory consumption, communication, etc.) to collect
statistics. Second, runtime verification can be used to perform an analysis of
the system, usually to complement or in conjunction with static analysis tech-
niques. This could focus on assessing concerns for a system in a large sense



252 Y. Falcone et al.

(e.g., requirements, properties, or goals) of security and privacy, safety and
progress/liveness natures. Third, runtime verification can be used to augment
software engineering techniques with a rigorous analysis of runtime information.
Fourth, runtime verification can be used to complement techniques for finding
defects and locating faults in systems such as testing and debugging. Finally,
leveraging the previous techniques, runtime verification can be used to address
the general problem of runtime failure prevention and reaction, by offering
ways to detect faults, contain them, recover from them, and repair the system.

3 Classification

This section considers a snapshot of runtime verification tools with respect to
the previously introduced taxonomy. As discussed later, this is the first major
step in our effort to achieve a full classification of all existing runtime verification
tools.

Tool Selection. For our initial classification we wanted a reasonably sized set
that represented reasonably active, well documented, and recent tools. In par-
ticular, a recent source of information about the tool was of utmost importance.
We therefore focussed on the entrants to the runtime verification competitions
taking place between 2014 and 2016 [6,30,48] and the submissions to the RV-
CuBES workshop [49], which took place in 2017. This led to a selection of 20
tools (14 from the competition and 6 from the workshop). Our selection method
is biased as the competition focussed only on tools for Java, C, or offline mon-
itoring. Therefore, we expect our initial classification to be biased towards this
area of the taxonomy. The selection is also favoring tools that had the resources
to participate in either the competition or workshop.

Participating Tools. The 20 participating tools are listed in Table 1 along
with hyperlinks (where applicable), references, the name of their specification
formalism and some additional remarks. The given references are those that were
used to fill in the classification, along with any additional information provided
in competition reports [6,30,48].

Classification. The classification is given in Table 3 with a legend found in
Table 2. We leave a general discussion of the classification to the next section. The
classification also exists as a living document found at https://goo.gl/Mmuhdd.
This document welcomes comments from the community and will be updated
as our work continues.

The classification non-uniformly instantiates levels for different parts of the
taxonomy. We omit parts of the taxonomy that are too abstract to be properly
instantiated for the participating tools (e.g., system model) or if the source
material of all the tools does not contain enough information for classification.
Moreover, the major concepts application area and interference are omitted since
there is a large space of non-exclusive possibilities that each tool can instantiate
in this part of the taxonomy.

https://goo.gl/Mmuhdd
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Table 1. Details of the participating tools.

Tool References Specification formalism name + some
remarks

Aerial [8,12,13] MDL

ARTiMon [44] ARTiMon (no quantification; only
aggregation)

BeepBeep [31,32] Stateful stream function API + DSLs for
LTL-FO+, FSM

DANA [27] UML state machines

detectEr [15] µHML (only universal quantification)

E-ACSL [23,53] ACSL/implicit

JavaMOP [37,40] MOP with plugins (LTL, FMS, ERE, CFG,
SRS, CaReT)

jUnitRV [21,22] Temporal Data Logic

Larva [17–19] DATEs

LogFire [33] LogFire DSL

MarQ/QEA [3,45,47] QEA

MonPoly [9–11] MFOTL

Mufin [20] Projection Automata

R2U2 [42,50,51] MTL + mission time LTL

RiTHM [14,43] LTL3

RTC [41] - (implicit)

RV-Monitor [39] MOP (see above)

STePr - Scala-internal DSL

TemPsy/OCLR-Check [25,26] TemPsy

VALOUR [2] Valour Script/Rules

The classification also refines the taxonomy. For instance, software instrumen-
tation is refined based on how it is implemented (using AspectJ or reflection).
We also provide more detailed description of the decision procedure, whenever
the tools’ material provides such information. Besides the values specified in
Table 2, the cells in Table 3 may contain values “all”, or “none” indicating that
the tool supports all, or none of the features defined by that part of the tax-
onomy. Value “na” states that this part of the taxonomy is not applicable to
the tool, while “?” means that there is insufficient information about the tool
to establish a definitive classification. We have devised the classification mostly
without involvement of the tools’ developers, based on the available materials.
As future work, we will validate our understanding of the tools through targeted
interviews whenever this will be possible. (Any corrections will appear in the
online version of the classification.)

https://bitbucket.org/traytel/aerial
http://artimon-online.com
http://beepbeep.sourceforge.net
http://www.cs.um.edu.mt/svrg/Tools/detectEr/
http://frama-c.com/eacsl.html
http://fsl.cs.illinois.edu/index.php/JavaMOP
http://www.isp.uni-luebeck.de/junitrv
http://www.cs.um.edu.mt/~svrg/Tools/LARVA/
http://www.havelund.com/Publications/sttt-2013-logfire.pdf
https://github.com/selig/qea
https://sourceforge.net/projects/monpoly/
https://www.isp.uni-luebeck.de/mufin
http://temporallogic.org/research/R2U2/
https://uwaterloo.ca/embedded-software-group/projects/rithm
http://runtimeverification.com/monitor
https://www.isp.uni-luebeck.de/stepr
http://weidou.github.io/TemPsy-Check/
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Threats to Validity. Whilst we argue that this classification represents a rea-
sonable snapshot of current runtime verification tools, there are two possible
threats to its validity. Firstly, the sample of tools is heavily focussed towards
software-monitoring with explicit specifications. Although, within this focus the
coverage of tools is broad. It is important to be clear about the scope of this
work. Few tools supporting implicit specifications (e.g. MemorySanitizer [54] or
ThreadSanitizer [52]) identify themselves as runtime verification tools and most
existing work does not share much of the terminology with runtime verification
e.g. it is not usual to abstract a system by a trace. Whilst such tools can be
categorised in the taxonomy, their classification will remain coarse as such tools
are not the focus of the taxonomy. In general, this suggests that some areas of
the taxonomy may require a refinement in the future, but also that these refine-
ments will be orthogonal to the work presented here. We discuss this further
later.

Secondly, the classification does not cover all known tools (over 50). However,
many tools not included in this classification are mostly of historic interest. Oth-
ers have influenced the taxonomy without taking part in the classification (e.g.
stream-based approaches). Nonetheless, it will be important to achieve maximal
coverage in the future.

4 Discussion

This section makes some observations about the taxonomy and classification.

4.1 General Observations

The majority of tools handled explicit specifications based on totally ordered
logical time. There was a mixture of propositional and parametric tools and
different approaches to physical time. Almost all tools were event-based with
event-triggered sampling.

Unsurprisingly, the monitor decision procedures were varied, with many not
quite fitting the mould. The majority of tools were online – it is perhaps worth
observing that RV-Monitor added an offline interface for the competition. Only
one tool is purely offline. The distinction between operational and declarative
specification languages results in two sets of tools of roughly the same size. Both
approaches are useful and favored by different sub-communities of RV. A few
tools support both kinds of specification languages.

Some parts of the taxonomy were relatively straightforward to complete,
whereas others were more controversial. The most discussed part of the taxonomy
was the monitor concept as the term “monitor” is highly overloaded in our field
and many frameworks do not have an explicit notion of a monitor. In the end,
we decided to split how a monitor is generated and how it is executed as there is
not necessarily a close link between the two. Another area that was difficult to
fix was the relation between trace model and observed trace. It would be wrong
to conflate the two, however often these concepts overlap.
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Table 2. Key for Table 3.

Column Values

Specification

implicit ms = memory safety

data p = propositional, s = simple parametric, c = complex
parametric

output s = stream, v = verdict, w = witness, r = robustness

logical time tot = total order, par = partial order

physical time N = discrete, R = dense, none = no time

modality f = future, p = past, c = current

Monitor

generation e = explicit, i = implicit

execution i = interpreted, d = direct

Deployment

stage on = online, off = offline

synchronisation sync = synchronous, async = asynchronous

architecture c = centralised, d = decentralised

placement out = outline, in = inline

instrumentation sw = software, swAJ = software with AspectJ, swR =
software with reflection

Reaction

active e = exception, r = recovery

passive so = specification output, e = explanations

Trace

information e = events, s = states

sampling et = event-triggered, tt = time-triggered

evaluation p = points, i = intervals

precision p = precise, i = imprecise

model f = finite trace model, i = infinite trace model

General

all = all features supported, none = no features supported

na = not applicable, ? = insufficient information

4.2 Underpopulated Areas of the Taxonomy

The classification unveils areas that are not populated by any tools. We discuss
the main ones here and what this might mean.

Decentralized Architecture. This appears to be an area that has not received
much attention. This may be due to the inherent complexity of decentralization,
or it may reflect a lack of need. They may also be interdependencies with the
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monitoring setting (e.g. the language of interest) that make such an approach
less desirable. Also the selection of the tools based on the competitions might
have contributed to this topic being underrepresented: the competitions did not
focus on the distributed setting.

Monitoring States. None of the tools in our classification monitor states of
a program directly. This may be a result of the popularity of event-oriented
specification languages. This is an interesting observation as it is commonly
stated as a common dichotomy (observing events or states) but we do not see this
in our classification. Although, arguably E-ACSL monitors states even though
it has no formal notion of a trace. Furthermore, the distinction between state
and event is not always clear; it is always possible to encode state in events and
some inline tools allow specifications to directly query runtime state.

Richer Reactions. Most tools only provide passive reactions and the active
reactions provided were relatively weak. It would be interesting to see more
work in the areas of enforcement, recovery, and explanations for declarative
specifications.

Applications. Many of the tools were not developed with a single application
area in mind, making this part of the taxonomy irrelevant. However, in cases
where an application exists it is significant. For example, R2U2 is designed to
monitor unmanned aerial vehicles and this is heavily reflected in the tool’s design.
This is less an underpopulated area and more an area that only applies in certain
cases.

4.3 Relation to Other Classifications

We briefly compare our taxonomy to the previous most complete taxonomy
for runtime monitoring [24]. The context of this taxonomy is slightly different
as their focus was software-fault monitoring. We have chosen to focus more
on issues related to the monitoring of explicit specifications and include fewer
operational issues. Delgado et al. identify four top-level concepts: Specification,
Monitor, Event-Handler, and Operational Issues. Below we summarise the most
significant differences in each area.

Specification. In the previous taxonomy the focus is more on the kind of prop-
erty being captured (e.g. safety) and the abstraction at which the property is
captured (e.g. whether it directly refers to implementation details). There is lit-
tle discussion of issues such as the handling of data or modalities (although one
concept is language type which may be algebra, automata, logic, or HL/VHL).
They also consider which parts of a program are/can be instrumented as part
of the specification.

Monitor. Again there is a focus on instrumentation, which is something that we
do not consider in depth as we tend to draw a line between instrumentation and
monitoring. They differentiate whether instrumentation is manual or automatic.
They key observation here is that they view placement slightly differently, as they
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classify monitoring occurring using different resources (e.g. running in a different
process) as offline. We refer to [7] for a discussion on the recent alternatives when
considering instrumentation.

Event-Handler. This concept has the same meaning as our concept of reaction
and their sub-concepts are subsumed by ours.

Operational Issues. This is a concept that we have not considered in our
taxonomy. They focus on source program type i.e. the types of programs that
it can work with (e.g. just Java), dependencies (e.g. on specific hardware), and
maturity of the tool. This is something we could extend our taxonomy with but
we found that many tools are actively developed and such data may quickly
become outdated.

5 Conclusion

We have introduced a taxonomy for classifying runtime verification tools and
used it to classify an initial set of 20 tools taken from recent competitions and
workshops. We believe that this classification activity is important for a number
of reasons. Firstly, the taxonomy fixes shared terminology and dimensions for
discussing tools – it is important that the community has a shared language for
what it does. Secondly, the classification exercise gives an overview of compa-
rable tools, making it more straightforward to identify the tools against which
new contributions should be compared. Additionally, the taxonomy can help
shape evaluation and benchmark activities in general, in particular the design
of competitions. Finally, we believe this kind of activity can identify interest-
ing directions for future research, in particular in underpopulated areas of the
taxonomy.

Our work is ongoing and our next step is to extend the classification. We
have collected information about over 50 runtime verification tools and plan to
extend the classification to these tools. This may constitute a challenge because
many of the tools from this extended list do not provide sufficient information
for classification.
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nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 9

https://www.cost-arvi.eu/
https://www.cost-arvi.eu/
https://doi.org/10.1007/978-3-642-32759-9_9


A Taxonomy for Classifying Runtime Verification Tools 259

4. Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international competition on
software for runtime verification. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 1–9. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11164-3 1

5. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.
10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

6. Bartocci, E., et al.: First international competition on runtime verification: rules,
benchmarks, tools, and final results of CRV 2014. STTT, 1–40 (2017)

7. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

8. Basin, D.A., Bhatt, B.N., Traytel, D.: Almost event-rate independent monitoring
of metric temporal logic. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 94–112. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5 6

9. Basin, D.A., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring
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pp. 1427–1430. IEEE Computer Society (2012)

38. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

39. Luo, Q., et al.: RV-Monitor: efficient parametric runtime verification with simul-
taneous properties. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 285–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 24

40. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. STTT 14(3), 249–289 (2012)

41. Milewicz, R., Vanka, R., Tuck, J., Quinlan, D., Pirkelbauer, P.: Lightweight runtime
checking of C programs with RTC. Comput. Lang. Syst. Str. 45, 191–203 (2016)

42. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. Form. Methods Syst. Des. 51(1),
31–61 (2017)

43. Navabpour, S., et al.: RiTHM: a tool for enabling time-triggered runtime verifica-
tion for C programs. In: Meyer, B., Baresi, L., Mezini, M. (eds.) ESEC/FSE 2013,
pp. 603–606. ACM (2013)

44. Rapin, N.: ARTiMon monitoring tool, the time domains. In: Reger, G., Havelund,
K. (eds.) RV-CuBES 2017. Kalpa Publications in Computing, vol. 3, pp. 106–122.
EasyChair (2017)

45. Reger, G.: An overview of MarQ. In: Falcone, Y., Sánchez, C. (eds.) RV 2016.
LNCS, vol. 10012, pp. 498–503. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46982-9 34

46. Reger, G.: A report of RV-CuBES 2017. In: Reger, G., Havelund, K. (eds.) RV-
CuBES 2017. Kalpa Publications in Computing, vol. 3, pp. 1–9. EasyChair (2017)

47. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 55
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Abstract. When applying formal verification to a system that interacts
with the real world we must use a model of the environment. This model
represents an abstraction of the actual environment, but is necessarily
incomplete and hence presents an issue for system verification. If the
actual environment matches the model, then the verification is correct;
however, if the environment falls outside the abstraction captured by the
model, then we cannot guarantee that the system is well-behaved. A solu-
tion to this problem consists in exploiting the model of the environment
for statically verifying the system’s behaviour and, if the verification
succeeds, using it also for validating the model against the real environ-
ment via runtime verification. The paper discusses this approach and
demonstrates its feasibility by presenting its implementation on top of a
framework integrating the Agent Java PathFinder model checker. Trace
expressions are used to model the environment for both static formal
verification and runtime verification.
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Autonomous systems · Trace expressions · MCAPL

1 Introduction

Static formal verification of autonomous systems that interact with the real
world requires a model of the world to successfully accomplish the verification
process. In [23] we recommended using the simplest environment model, in which
any combination of the environmental predicates that correspond to possible
perceptions of the autonomous system is possible. Consider an intelligent cruise
control in an autonomous vehicle that can perceive the environmental predicates
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safe, meaning it is safe to accelerate, at speed limit , meaning that the vehicle
reached its speed limit, driver brakes and driver accelerates, meaning that the
driver is braking/accelerating. In order to formally verify the behaviour of the
cruise control agent, we might randomly supply subsets of {safe, at speed limit ,
driver brakes, driver accelerates}: the generation of each subset causes branching
in the state space exploration during verification so that, ultimately, all possible
combinations are explored.

This model is an unstructured abstraction of the world, as it makes no spe-
cific assumptions about the world behaviour and deals only with the possible
incoming perceptions that the system may react to. Unstructured abstractions
obviously lead to significant state space explosion. The state space explosion
problem can be addressed by making assumptions about the environment. For
instance, we might assume that a car can not both brake and accelerate at the
same time: subsets of environmental predicates containing both driver brakes and
driver accelerates should not be supplied to the agent during the static verifica-
tion stage, as they do not correspond to situations that we believe likely in
the actual environment. This structured abstraction of the world is grounded
on assumptions that help prune the possible perceptions and hence control
state space explosion. Structured abstractions have advantages over unstructured
ones, provided that the assumptions they rely on are correct. Let us suppose
that the cruise control system crashes if the driver is accelerating and braking
at the same time. If the subsets of environmental predicates generated to verify
it never contain both driver brakes and driver accelerates, then the static formal
verification succeeds but if one real driver, for whatever reason, operates both
the acceleration and brake pedals at the same time, the real system crashes!

In this paper, which extends our AAMAS’18 extended abstract [31], we pro-
pose an approach for exploiting the advantages of structured abstractions, while
mitigating their risks. Our proposal consists in modelling the structured abstrac-
tion in a formalism that can be used both for statically verifying the autonomous
system’s behaviour via model checking and for validating the model against the
real environment by means of runtime verification (RV). If performed during a
testing stage, RV of the actual environment against its structured abstraction
allows the developer to identify situations not foreseen in the initial assump-
tions. He/she can revise them, generate a new structured abstraction, re-verify
it via model checking, re-validate it via RV once again, reaching in the end
a “safe” abstraction. If RV takes place after system deployment and assump-
tion violations are detected, mechanisms for handing control to a human, a
failsafe system, or for performing ad hoc reasoning about the current system
safety should be invoked. To demonstrate the feasibility of the proposed app-
roach, we implemented it on top of the MCAPL framework developed by Dennis,
Fisher, et al. [21,24] (which provides a model-checker for rational agents) using
trace expressions developed by Ancona, Ferrando, Mascardi, et al. [3,10,11] as
the single formalism to generate both the environment model and the runtime
monitor. We choose trace expressions instead of more widely used formalisms
for model checking like Linear Temporal Logic (LTL [39]) because of their
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expressive power. In our previous work [10], we demonstrated that trace expres-
sions are able to express and verify sets of traces that are context-free. When
working in a RV scenario, trace expressions are more expressive than LTL. In
this paper we keep the presentation as simple as possible and do not stress the
potential of such expressive power. However, this power opens up interesting
scenarios discussed in the conclusions.

2 Related Work

The growing popularity of model checking in industry is due to the possibility of
transforming domain-specific input models familiar to the developers into “under
the hood models” invisible to them and amenable to model checking using exist-
ing techniques [36]. The idea behind this work is similar: we use trace expressions
as the front-end formalism suitable for modeling behaviour patterns in systems
made up of autonomous entities [4,5,30] and we transform them into under the
hood models suitable for both model checking and runtime verification (RV). The
main difference is that trace expressions are not domain-specific, and although
initially devised for modeling protocols in multiagent system (MASs), they have
been successfully adopted for specifying different kinds of behavioural patterns,
including interactions among objects in Java-like programs [7] and Internet of
Things applications developed with Node.js [12]. This is both a strength and
a weakness: a customised formalism for different domains would make it more
usable by domain experts, at the cost of some loss in generality.

“Enabling sufficiently precise yet tractable verification” with models –
be they explicit or under the hood – of the real environment is a main
issue [46]. Developing “safe” structured abstractions of the environment (also
named“environment models”) for model checking that are sufficiently precise to
enable effective reasoning yet not so over-restrictive that they mask faulty sys-
tem behaviours has been understood as a significant challenge since the early
2000s [38]. The Bandera Environment Generator [46] is a toolset that automates
the generation of environments to provide a restricted form of modular model
checking of Java programs. Although the addressed problem is the same as ours,
the approach is different. We do not automatically generate “safe by construc-
tion” trace expressions starting from observations of the environment. Rather,
we manually design and implement a trace expression encoding our assumptions
and validate it against the real environment to empirically show that it is“safe”.
Although our approach requires a more accurate design stage and more manual
work, it can be applied to any system and environment; the automatic genera-
tion of the environment model is instead inherently domain-dependent, and the
Bandera Environment Generator is in fact customized for model checking Java
programs. The approach of Dhaussy et al. [27] is closer to ours; the state space
explosion is mitigated with requirements relative to scenarios which are veri-
fied instead of the full environment. In that work the context – corresponding
to our structured abstraction – is modelled with the domain-specific Context
Description Language, CDL. The main difference is that CDL is less expressive
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than trace expressions (recursion and concatenation are not supported), and no
methodology for checking the CDL specification against the real environment is
discussed. In a similar way, in [25] Desai et al. present a framework to combine
model checking and runtime verification for robotic applications. They represent
the discrete model of their system using the P language [26], check the model
and extract the assumptions deriving from such abstraction. Despite sharing
the same purpose, our work is not committed to any specific case study and
trace expressions are more expressive than STL specifications [35] used in [25].
Besides CDL, hybrid automata [2,32] are another widely adopted formalism for
precise modelling of the real world. They do not solve the question of whether the
model accurately captures the environment, and although RV of cyber-physical
systems modelled with hybrid automata is a lively and promising research field
[37,45], we are not aware of proposals where the same hybrid automaton model
undergoes both a model checking and a RV process.

Investigation of model checking for MASs dates back to 1998 [13] and has
continued to generate much follow up work, for instance the Model Check-
ing Agent Programming Languages project which involves two authors of this
paper (http://cgi.csc.liv.ac.uk/MCAPL/, [15,24]), and works by Lomuscio and
Raimondi [34,41]. Approaches to MAS RV complement these and include the
proposals spun off from the SOCS project where the SCIFF computational logic
framework [1] is used to provide the semantics of social integrity constraints. To
model MAS interaction, expectation-based semantics specifies the links between
observed and expected events, providing a means to test run-time conformance
of an actual conversation with respect to a given interaction protocol [47]. Sim-
ilar work has been performed using commitments [18]. A more recent strand
is related to the exploitation of trace expressions for MAS RV and monitoring,
along with their ancestor formalism [6]. None of the contributions above tackles
the problem of recognising assumption violations in structured abstractions via
RV, for model checking autonomous systems immersed in a real environment.
This makes our proposal original in the panorama of model checking both “in
general” and, more specifically, for autonomous systems and MASs.

3 Background and Running Example

MCAPL: Model Checking BDI Agents. The belief-desire-intention (BDI)
model, originally proposed by Bratman [16] as a philosophical theory of the
practical reasoning, inspired both architectures [43] and programming languages
[14,40,44] for agents. BDI languages are based on rational agency [42]. Beliefs
represent the agent’s (possibly incorrect) information about its environment,
desires represent the agent’s long-term goals, and intentions represent the goals
that the agent is actively pursuing. The MCAPL framework [21,24] supports
model checking of programs in BDI-style languages via the implementation of
interpreters for those languages in Java. The framework implements program
model-checking in which the actual program to be verified, not a model of
it, is checked, and contains the Agent Java PathFinder (AJPF) model checker

http://cgi.csc.liv.ac.uk/MCAPL/
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which customises the Java PathFinder (JPF) model checker for Java bytecodes
(https://babelfish.arc.nasa.gov/trac/jpf). We use the “Engineering Autonomous
Space Software” (EASS) variant of Gwendolen [20], a language developed for
programming agent-based autonomous systems and verifying them in AJPF.
EASS assumes an architecture in which the rational agents are partnered with
an abstraction engine that discretises continuous information from sensors in
an explicit fashion [19,22]. We adopt the methodology from [23] setting out the
formal verification of rational agent components in autonomous systems. This
uses model checking to demonstrate that the rational agent always tries to act in
line with requirements and never deliberately chooses options that lead to states
the agent believes to be unsafe.

Running Example: Autonomous Cruise Control. The (slightly simplified)
EASS code in Example 1 is for an agent implementing intelligent cruise control
in an autonomous vehicle. It uses standard syntactic conventions from BDI agent
languages: +!g indicates the addition of a goal, g; +b indicates the addition of
a belief, b; and −b indicates the removal of a belief. Plans follow the pattern
trigger : guard ← body;. The trigger is the addition of a goal or a belief
(beliefs may be acquired thanks to the operation of perception or as a result of
internal deliberation); the guard states conditions about the agent’s beliefs which
must be true before the plan can become active; and the body is a stack of deeds
the agent performs in order to execute the plan. These deeds typically involve the
addition or deletion of goals and beliefs, as well as actions (e.g. perf(accelerate),
meaning “perform the action of accelerating”) which indicate code delegated to
non-rational parts of the system.

According to the operational semantics of Gwendolen [20], the agent moves
through a reasoning cycle polling an external environment for perceptions; con-
verting these into beliefs and creating intentions from new beliefs; selecting an
intention for consideration; if the intention has no associated plan body, then
the agent seeks a plan that matches the trigger event and places the body of this
plan on the deed stack; the agent then processes the first deed, and places the
intention at the end of the intention queue before again performing perception.
As an intention may be suspended while it waits for some belief to become true,
we use ∗b to indicate a deed that suspends processing of an intention until b is
believed. Plan guards are evaluated using Prolog-style reasoning with reasoning
rules of the form h :− body and literals drawn from agent’s belief base. Negation
is indicated with ˜ and its semantics is negation by failure as in Prolog. All of
this is part of the standard Gwendolen semantics.

Example 1 (Cruise Control Agent). When the car has an initial goal to be
at the speed limit, +! at speed limit , it can accelerate if it believes it to be safe,
that there are no incoming instructions from the human driver, and it does not
already believe it is accelerating or is at the speed limit — it does this by removing
any belief that it is braking, adding a belief that it is accelerating, performing
acceleration, then waiting until it no longer believes it is accelerating. If it does
not believe it is safe, believes the driver is accelerating or braking, or believes it

https://babelfish.arc.nasa.gov/trac/jpf
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is already accelerating, then it waits for the situation to change. If it believes it
is at the speed limit, it maintains its speed having achieved its goal (which will
be dropped automatically, having been achieved).

If new beliefs arrive from the environment that the car is at the speed limit, no
longer at the speed limit, no longer safe, or the driver has accelerated or braked,
then it reacts appropriately. Note that even if the driver is trying to accelerate,
the agent only does so if it is safe.

1:Reasoning Rules :
2can acce le ra te :− safe , ˜ d r i ve r acce l e ra t es , ˜ d r i ve r b rakes ;
3

4: I n i t i a l Goals :
5a t s peed l im i t
6

7: Plans :
8+! a t s peed l im i t : {can accelerate , ˜ acce le ra t i ng , ˜ a t speed l im}
9← −braking , +acce le ra t ing , pe r f ( acce le ra te ) , ∗˜ acce l e ra t i ng ;
10+! a t s peed l im i t : {˜ safe} ← ∗safe ;
11+! a t s peed l im i t : {d r i v e r a cce l e r a t e s} ← ∗˜ d r i v e r a cce l e r a t e s ;
12+! a t s peed l im i t : {d r i ve r b rakes} ← ∗˜ d r i ve r b rakes ;
13+! a t s peed l im i t : {acce le ra t i ng} ← ∗˜ acce l e ra t i ng ;
14+at speed l im : {can accelerate , a t speed l im}
15← −acce le ra t i ng , −braking , pe r f ( maintain speed ) ;
16−a t speed l im : {˜ a t speed l im} ← +! a t s peed l im i t ;
17−safe : {˜ d r i ve r b rakes , ˜ safe , ˜ brak ing} ← −acce le ra t i ng , +braking ,
18pe r f ( brake ) ;
19+d r i v e r a cce l e r a t e s : {safe , ˜ d r i ve r b rakes , d r i ve r acce l e ra t es , ˜ acce l e ra t i ng}
20← +acce le ra t i ng , −braking , pe r f ( acce le ra te ) ;
21+d r i ve r b rakes : {dr i ve r b rakes , ˜ brak ing} ← +braking , −acce le ra t i ng ,
22pe r f ( brake ) ;

The cruise control agent has to be connected to either a physical vehicle or
a simulation. Similar EASS agents have been connected to both detailed sim-
ulations of ground vehicles and physical vehicles [22,33]. Here we will consider
embedding the agent within a multi-lane, multi-vehicle motorway (highway) sim-
ulation. The agent is connected to the simulator via a thin Java environment
that communicates using sockets. The environment reads simulated speeds of
the vehicles from the socket and publishes values for acceleration to the socket.
The information from sensors is then passed on to an abstraction engine that
converts it to discrete representations, shared with the rational agent as logical
predicates. The rational agent accesses these shared beliefs as perceptions. Previ-
ously, the model of the combined behaviour of simulator, thin Java environment,
and abstraction engine used for verification was unstructured: all the possible
combinations of the shared beliefs were explored. This is where our proposal for
modeling structured abstractions as trace expressions and validating them via
RV, as well as using them for model checking, comes into play.

Trace Expressions. Trace expressions are a specification formalism specifically
designed for RV and constrain the ways in which a stream of events may occur.
An event trace over a fixed universe of events E is a (possibly infinite) sequence
of events from E. The juxtaposition, e u, denotes the trace where e is the first
event, and u is the rest of the trace. A trace expression (over E) denotes a set of
event traces over E. More generally, trace expressions are built on top of event
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types (chosen from a set ET), rather than single events; an event type denotes
a subset of E. A trace expression, τ , represents a set of possibly infinite event
traces, and is defined on top of the following operators:

– ε, the set containing only the empty event trace.
– ϑ:τ (prefix ), denoting the set of all traces whose first event e matches the

event type ϑ (e ∈ ϑ), and the remaining part is a trace of τ .
– τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating

the traces of τ1 with those of τ2.
– τ1∧τ2 (intersection), the intersection of traces τ1 and τ2.
– τ1∨τ2 (union), denoting the union of traces of τ1 and τ2.
– τ1|τ2 (shuffle), denoting the union of the sets obtained by shuffling each trace

of τ1 with each trace of τ2 (see [17] for a more precise definition).
– ϑ�τ (filter), denoting the set of all traces contained in τ , when “deprived”

of all events that do not match ϑ.

Trace expressions can be easily represented as Prolog terms. To support recursion
without introducing an explicit construct, trace expressions are regular (a.k.a.
rational or cyclic) terms which can be represented by a finite set of syntactic
equations, as happens in most modern Prolog implementations where unification
supports cyclic terms. The semantics of trace expressions is specified by the
transition relation δ ⊆ T × E× T, where T denotes the sets of trace expressions.
As customary, we write τ1

e→ τ2 to mean (τ1, e, τ2) ∈ δ. If the trace expression τ1
specifies the current valid state of the system, then an event e is valid iff there
exists a transition τ1

e→ τ2; in such a case, τ2 specifies the next valid state of the
system after event e. Otherwise, the event e is not valid in τ1. The rules for the
transition functions are presented in [10]. A Prolog implementation exists which
allows a system’s developer to use trace expressions for RV by automatically
building a trace expression-driven monitor able to both observe events taking
place in the environment, and execute the δ transition rules. If the observed event
is allowed in the current state – which is represented by a trace expression itself
– it is consumed and the δ transition function generates a new trace expression
representing the updated current state. If, on observing an event, no δ transition
can be performed, the event is not allowed in the current state. In this situation
an error is “thrown” by the monitor. When a system terminates, if the trace
expression representing the current state can halt (formally meaning that it
contains the empty trace), the RV process ends successfully; otherwise an error
is again “thrown” since the system should not stop here.

AJPF Static Formal Verification. The EASS implementation provides a
Java class supporting the creation of abstract models. Unstructured abstractions
can be created by overriding in a subclass its method add random beliefs which is
called when the agent requests an action execution or sleeps. This method should
generate a set of beliefs and add them to the environment’s percept base which
the agent then polls. It is assumed this implementation will randomly generate
all possible sub-sets of the shared beliefs relevant to the agent. For static veri-
fication, therefore, we want to generate this subclass from our trace expression.
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In normal operation, EASS abstraction engines communicate with the agent-
based reasoning engine (the ‘agent’) by performing assert belief and remove belief
actions. These actions are implemented by Java environments which also connect
to sensors and simulators. There are four such actions: assert belief (b) asserts
a shared belief for all agents and remove belief(b) removes shared belief b from
all agents. assert belief (a, b) and remove belief(a, b) alter the available beliefs for
a specific agent a. For reasons of space we do not describe these further. Our
runtime monitor needs to observe these events. We are also interested in any
action performed by an agent, so our runtime monitor must also observe calls
to the executeAction method that all EASS environments implement.

4 Recognising Assumption Violations

In this section we discuss how trace expressions can be suitably adopted for
specifying structured abstractions of the real world for use in AJPF. The idea is
to generate both a suitable Java model for AJPF model checking and a runtime
monitor from the same trace expression. The monitor can detect if the real (or
simulated) environment violates the assumptions used during the static verifica-
tion. Figure 1 gives an overview of this system. A trace expression τ is used to
generate an abstract model in Java used to verify an agent in AJPF (the dotted
box on the right of the Figure). Once this verification is successfully completed,
the verified agent is used with an abstraction engine, a thin Java environment,
and the real world or external simulator. This is shown in the dotted box on the
left of the Figure. If, at any point, the monitor observes an inconsistent event,
then the abstraction used during verification was incorrect. Depending on the
development stage reached so far different measures will be possible, ranging
from refining the trace expression and re-executing the verification-validation
steps, to involving a human or a failsafe system in the loop.

Event Types for AJPF Environments. We have identified the assertion
and removal of shared beliefs and the performance of actions as the “events of
interest” in our Java environments. Our runtime monitor receives notification of
all actions in the environment as events. It is possible to flexibly create a number
of different event types (we remind that an event type is a set of events) on top of
this structure: bel(b) and not bel(b) are singleton sets and model events involving
shared beliefs. They are defined as bel(b) = {assert belief (b)} and not bel(b) =
{remove belief (b)}. We coalesce these as event set Eb and define event types
action(any action) where e ∈ action(any action) iff e 	∈ Eb; not action where
e ∈ not action iff e ∈ Eb; action(A) where e ∈ action(A) iff e 	∈ Eb and e = A.
Clearly, e ∈ Eb and e = A are mutually exclusive.

Representing Abstract Models in AJPF. Abstract models in AJPF can be
represented as automata. The automaton states can be divided into two parts:
initial beliefs and actions. Initial Beliefs represent all the shared beliefs that may
be asserted before the system starts executing. After an action is performed,
more shared beliefs may be asserted. In the unstructured abstractions used by
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Fig. 1. General view.

the “standard” AJPF system the initial beliefs, and the beliefs after each action,
were generated at random. Any structured abstraction will be one that places
constraints upon the possible transitions in the automaton.

Representing Abstract Models as Trace Expressions. We represent an
abstract model of the real world as a set of possibly cyclic trace expressions
modelled in Prolog. The basic structure of the Prolog code is given in Fig. 2. We
abuse regular expression syntax: as parentheses are used for grouping in trace
expressions, we adopt [ and ] to represent groupings within a regular expression;
similarly, since | is a trace expression operator, we use ‖ to indicate alterna-
tives within the regular expression. Here, e? indicates zero or one occurrences
of the element e. As we use Prolog, variables are represented by terms start-
ing with an upper case letter (e.g., Actioni) and constants are represented by

terms starting with a lower case letter (e.g., bi, actioni).
∣
∣
∣

n

i=1
indicates one or

more trace expressions composed via the trace expression shuffle operator, |.
Similarly,

∨n
i=1 composes expressions using ∨ and

∧n
i=1 composes expressions

using ∧. Variables with the same name will be unified. Occurrences of Pre in (1)
and (2) are intended to unify, and the variable names used in these positions in
any instantiation of this template should be the same. Pre is needed to model
(optional) constraints on the beliefs that can be observed before the first action
takes place, and the trace expression cycle (Cyclic) starts.
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Fig. 2. Trace expression template for generating abstract environments. Indexes k, n,
m are not bound: they will be replaced by actual numbers when the template will be
instantiated.

The template in Fig. 2 represents an unstructured abstraction in which any
subset of the beliefs, bi in (7) can occur after an action. Protocol (1) is the main
body of our trace expression. Pre (2) represents all events that can be generated
before the first action of an agent. Cyclic (3) is the trace expression that describes
the behaviour once the agent starts performing actions. SingleStep (4) repre-
sents a single action step. It is the union of the trace expressions that describe
the possible results of each action the agent may take followed by AddBelEv
which describes additional belief events after the immediate results of the action
– for instance if the agent sleeps and other agents are acting. Action (6) con-
sists of an action event followed by ProtocolBel (7) which describes the possible
belief events. Any given belief, bi may appear in the shared belief base (bel(bi)),
disappear (not bel(bi)) or its status may be unchanged (ε).

Figure 2 contains an optional variable Constrs. If present this provides con-
straints that structure the abstraction. The template for constraints is shown
in Fig. 3. Constrs consists of an intersection of trace expressions of the form
FilterEventTypej�Cx

j . It appears at the top level of the trace expression in an
intersection (∧) with the repeating Cyclic step. This allows us to put constraints
on belief events without considering at which action step they occur. In this way,

Fig. 3. Trace expressions for Constrs: Bj,i must be the “opposite operation” of NBj ,i .



Verifying and Validating Autonomous Systems 273

each time a constrained belief event is observed in a SingleStep, we can keep
track of the fact. Bj,i and NBj ,i are event types, and they must meet the con-
dition (not modeled in Fig. 3) that if Bj,i = bel(bj ,i) then NBj ,i = not bel(bj ,i)
and vice versa. FilterEventTypej is an event type which denotes only the events
involved in Cx

j . Its purpose is to filter out any events that are not constrained
by Cx

j , and matches bel(bj ,1 ), not bel(bj ,1 ), bel(bj ,2 ) and not bel(bj ,2 ). It ensures
that the trace expression can move to the next state without getting stuck.

Each constraint represents a pairwise relationship between two belief events.
These are captured by the three trace expressions in (9), (10) and (11) which
describe the evolving behaviour of the four belief events of interest where Bj,i

is either the assertion or removal of bj ,i and NBj ,i is its converse. The three
equations capture the constraint that if Bj,1 has occurred then Bj,2 can not
occur until after NBj ,1 has been observed and vice versa. The constraint either
starts in the state described by C1

j or C2
j depending upon whether only one of

the constrained belief events is possible in the initial state (C1
j ) or both are (C2

j ).

Abstract Model Generation. Once we have created a trace expression, we
translate it into Java by implementing add random beliefs. We omit the involved
low level details (e.g., constructing appropriate class and package names) but
just focus on the core aspects1. Our trace expression is defined according to the
template in Figs. 2 and 3. Many parts of these trace expressions are not directly
translated into Java; the sub-expressions relevant to the generation of abstract
models are Pre (2), SingleStep (4) and Constrs (8). Note that the MCAPL
framework provides support for constructing logical predicates and adding them
to the belief base.

If Pre specifies particular initial beliefs then the subclass adds these to the
agent’s belief base at the start. SingleStep contains a union of trace expres-
sions of the form Action = action(action name):ProtocolBel . ProtocolBel = |ki=1

(bel(bi) ∨ not bel(bi)∨ε) defines the set of belief events that may occur. We define
the set B(ProtocolBel) as bi ∈ B(ProtocolBel) iff (bel(bi)∨not bel(bi)∨ε) is one
of the interleaved trace expressions in ProtocolBel . For each bi ∈ B(ProtocolBel)
we define a predicate in the environment class and bind it to a Java field called
bi. Constrs constrains events by specifying mutual exclusion between some cou-
ples of them. For each Action trace expression we generate a corresponding if
statement inside the add random beliefs method.

1i f ( ac t . getFunctor ( ) . equals ( "action name " ) ) { translation(ProtocolBel, Constrs) }

We construct a set of mutually exclusive belief events, Mx(Constrs), from
Constrs where (Bj,1, Bj,2) ∈ Mx(Constrs) iff FilterEventTypej�Constraintj
is one of the conjuncts of Constrs and C1

j = (((Bj,1:ε)∨(NB j,2:ε))·C1
j )∨(NB j,1 :

C2
j ) and C3

j = (((Bj,2:ε) ∨ (NB j,1:ε))·C3
j ) ∨ (NB j,2 : C2

j ).

1 Full source code can be found in the MCAPL distribution: mcapl.sourceforge.net.
Code for the examples is also available from the University of Liverpool together with
experimental data – DOI: https://doi.org/10.17638/datacat.liverpool.ac.uk/438.

http://mcapl.sourceforge.net/
https://doi.org/10.17638/datacat.liverpool.ac.uk/438
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The set of possible sets of belief events for our structured environment is:

PB(ProtocolBel, Constrs) = {S | (∀bi ∈ B(ProtocolBel). bel(bi) ∈ S ∨ not bel(bi) ∈ S)

∧(∀(B1, B2) ∈ Mx(Constrs). B1 ∈ S ↔ B2 
∈ S)} (12)

Say that PB(ProtocolBel , Constrs) contains k sets of belief events, Sj , 0 ≤
j < k. We generate translation(ProtocolBel , Constrs), as follows:

1i n t asser t random in t = random in t genera to r (k ) ;

where random int generator is a special method that generates random integers in
a way that optimises the model checking in AJPF. For each Sj we generate

1i f ( asser t random in t == j ) { add percepts(Sj) }

Here add percepts(Sj) adds bi to the percept base for each bel(bi) ∈ Sj . We do
not need to handle the belief removal events, not bel(bi) ∈ Sj , because AJPF
automatically removes all percepts before calling add random beliefs.

5 Case Study and Experiments

Figures 4 and 5 show the trace expression modeling the cruise control agent
from Example 1. Pre is reused for AddBelEnv since, in this case, they are the
same trace expression. SingleStep contains only one branch which matches any
action. ProtocolBel specifies that the possible belief events are the assertion and
removal of safe, at speed lim, driver accelerates and driver brakes.

We have two constraints. Firstly we assume that the driver never brakes
and accelerates at the same time. This establishes a mutual exclusion

Fig. 4. Trace expression for a Cruise Control Agent.
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Fig. 5. Trace expression for the Constraints on a Car where the driver only accelerates
when it is safe to do so, and never uses both brake and acceleration pedal together.

between bel(driver accelerates) and bel(driver brakes). Initially either belief
may appear. Secondly, we assume the driver only accelerates if it is safe to
do so. This establishes a mutual exclusion between bel(driver accelerates)
and not bel(safe). Initially we are in the state were we cannot observe
bel(driver accelerates). brake or accelerate and accelerates or safe are event
types that match the relevant events for each constraint.

MCAPL Runtime Verification. Since the MCAPL framework is imple-
mented in Java, its integration with the trace expressions runtime verification
engine or “monitor” (namely, the Prolog engine that“executes” the δ transitions)
was easy using the JPL interface, http://jpl7.org, between Java and Prolog. In
order to verify a trace expression τ modelled in Prolog, we supply the run-
time verification engine with Prolog representations of the events taking place
in the environment. These are easily obtained from the abstraction engine and
the Java environment that links to sensors and actuators. The Java environment
reports instances of assert shared belief, remove shared belief and executeAction to
the runtime verification engine which checks if the event is compliant with the
current state of the modelled environment and reports any violations that occur
during execution. AJPF’s property specification language uses LTL extended
with modalities for BDI concepts such as beliefs (B(a, b) is interpreted as

http://jpl7.org
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meaning agent a believes b). In this language � means “it is always the case”
and ♦ means“it is eventually the case”.

We carried out experiments using the agent discussed in Example 1. When
model checked using a typical hand-constructed unstructured abstraction, veri-
fication takes 4,906 states and 32:17 min to verify that it is always the case that
eventually the car believes it is safe or that it is in the process of braking:

�(B(car, safe) → �(♦(B(car, safe) ∨ B(car, braking)))) (P1)

The condition B(car, safe) → at the start of the formula considers the pos-
sibility that the car never believes it is safe since braking is only triggered when
the safe belief is removed. Obviously we would prefer a system in which the car
is forced to start in a safe state but this would have complicated our example
and discussion. To test our approach, we first used the trace expression in Fig. 4
with the omission of Constrs: this trace expression is equivalent to an unstruc-
tured abstraction, i.e., one where the percepts safe, at speed lim, driver brakes,
and driver accelerates could all either be true or false at any moment. Verify-
ing (P1) in an abstract model generated from this trace expression took 4,906
states and 30:37 min: the behaviour was exactly the same as that for the unstruc-
tured model that had been created manually, and this helped validate that trace
expressions following the template in Fig. 2 without constraints create unstruc-
tured abstractions that behave the same way as hand crafted ones.

We then investigated the effect of structuring the model using the trace
expression in Fig. 5, which adds constraints to that in Fig. 4. With this abstrac-
tion (P1) takes 8:22 min to prove using 1,677 states – this has more than halved
the time and the state space.

To illustrate how we cope with the risk that a structured abstraction may
not reflect reality, we consider a version of the cruise control agent with slight
variations. It is widely considered important that an autonomous vehicle should
not be able to override the actions of a driver. In our previous example the vehicle
violates this rule – it would only let the driver accelerate if it was safe to do so,
and it would brake whenever it detected unsafe conditions even if the driver
was currently trying to accelerate. We adapted the program, removing these
restrictions. This modified program could not be verified in the unstructured
model because our property is not actually true in that model – if the driver
continually accelerates in an unsafe situation then the car can never brake.
However, it is true in the structured model which assumes that the driver never
accelerates if the situation is unsafe. When we run this program in our simulator
it is indeed possible to cause a crash by accelerating in unsafe conditions. This
is where the runtime verification engine fits in. The engine logs an exception
at the moment when the unsafe acceleration takes place. It generates the error
message shown below and also shows the current state of the trace expression,
which is the equivalent of (23) in Fig. 5.
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∗∗∗ DYNAMIC TYPE−CHECKING ERROR ∗∗∗
Message event ( abs t rac t i on ca r0 , asser t shared ( d r i v e r a cce l e r a t e s ) )
cannot be accepted i n the cu r ren t s ta te

S 8=( be l ( safe ) : S 6 ) \ / ( ( no t be l ( safe ) : eps i l on )\ /
( no t be l ( d r i v e r a cce l e r a t e s ) : eps i l on ) )∗S 8 ] )

This identifies the system as now being in an unverified state, as this acceleration
has violated the trace expression. The example shows how we have addressed
the development of a principled mechanism for creating structured abstractions
in a way that allows us to provide at least some guarantee of the validity of our
results.

6 Conclusions and Future Work

In this paper, we have shown how trace expressions can be used as a unifying
formalism to generate both a structured abstraction for model checking and a
runtime monitor, providing a route for guarantees of the behaviour of a sys-
tem that has been verified against an abstract model of the real world. Their
expressive power would pave the way to addressing challenging scenarios where:

1. the behaviour of the system is modeled with a trace expression τ without
expressive power limitations (for example, an expression representing the set
of all anbn traces, for any n ∈ N; this set of traces cannot be modeled in LTL)
to allow specifications of complex environments;

2. τ is over-approximated by a Java model as shown in [28];
3. the model checking stage is performed using the generated over-

approximating Java model;
4. the runtime verification stage uses τ , with all its expressive power; empirical

results show that in most cases verifying whether a trace belongs to the
language defined by a trace expression is linear in the length of the trace: this
means that – even when the highest modeling expressiveness of the formalism
is exploited – performances of RV remain acceptable.

In the future, we aim to provide arguments (ideally proofs) that the behaviour
of the abstract environments generated by the system genuinely expresses the
behaviour specified by the trace expressions, also in case of noise and uncertain-
ties in the formation of beliefs. We recently started working on partial observabil-
ity of events [8], which is related to noise and uncertainty, and we plan to adapt
and integrate the achieved results in the Verification and Validation framework
presented in this paper. We also point out that discovering a violation does
not necessarily mean that the system is in danger: for example, braking and
accelerating at the same time – although tagged as a violation during the RV
stage – might not cause the system to crash. Although discriminating between
safety-critical violations and acceptable ones was out of the scope of this paper,
it is a significant issues and deserves further exploration. We will also explore
how to express a greater range of constraints in these models – for instance, the
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constraint that some belief can only occur after some action is taken (e.g., that
a car can only reach the speed limit after an acceleration has been performed).

From the practical side, we are currently designing a user friendly language
for specifying trace expressions, as the current formalism is not easy to read
and write for a human, and we will extend RIVERtools [9,29] to support the
simplified notation. We also plan to apply our approach to a real case study. The
scenario we have in mind is a cyberphysical system which must demonstrate its
dependability in order to be acceptable to society and be trusted by its users. As
an example, in a remote patient monitoring system where the program integrates
sensory input, formal guarantees should be provided that the system respects
given medical guidelines (model checking stage), and a RV stage looking at
sensors perceptions should monitor that those guidelines are continuously met.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF abductive
proof-procedure. In: Proceedings of the 9th Congress of the Italian Association for
Artificial Intelligence, AI*IA 2005, pp. 135–147 (2005)

2. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proc. IEEE 88(7), 971–984 (2000)

3. Ancona, D., Barbieri, M., Mascardi, V.: Constrained global types for dynamic
checking of protocol conformance in multi-agent systems. In: Proceedings of the
28th Annual ACM Symposium on Applied Computing, SAC 2013, pp. 1377–1379
(2013)

4. Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Global protocols as first class
entities for self-adaptive agents. In: Proceedings of the 2015 International Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS 2015, pp. 1019–
1029 (2015)

5. Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Runtime verification of fail-
uncontrolled and ambient intelligence systems: a uniform approach. Intelligenza
Artificiale 9(2), 131–148 (2015)

6. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol.
7784, pp. 76–95. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
37890-4 5

7. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Parametric trace expres-
sions for runtime verification of Java-like programs. In: Proceedings of the 19th
Workshop on Formal Techniques for Java-like Programs, FTFJP 2017 (2017)

8. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Coping with bad agent
interaction protocols when monitoring partially observable multiagent systems. In:
Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018.
LNCS (LNAI), vol. 10978, pp. 59–71. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94580-4 5

9. Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Managing Bad AIPs with
RIVERtools. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.)
PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 296–300. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94580-4 24

https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-319-94580-4_5
https://doi.org/10.1007/978-3-319-94580-4_5
https://doi.org/10.1007/978-3-319-94580-4_24


Verifying and Validating Autonomous Systems 279

10. Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions and linear
temporal logic for runtime verification. In: Theory and Practice of Formal Methods:
Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday (2016)

11. Ancona, D., Ferrando, A., Mascardi, V.: Parametric runtime verification of multia-
gent systems. In: Proceedings of the 2017 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2017, pp. 1457–1459. ACM (2017)

12. Ancona, D., Franceschini, L., Delzanno, G., Leotta, M., Ribaudo, M., Ricca, F.:
Towards runtime monitoring of Node.js and its application to the Internet of
Things. In: Proceedings of the 1st workshop on Architectures, Languages and
Paradigms for IoT, ALP4IoT@iFM. EPTCS, vol. 264, pp. 27–42 (2017)

13. Benerecetti, M., Giunchiglia, F., Serafini, L.: Model checking multiagent systems.
J. Log. Comput. 8(3), 401–423 (1998)
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Abstract. We study the problem of monitoring rich properties of real-
time event streams, and propose a solution based on Stream Runtime
Verification (SRV), where observations are described as output streams
of data computed from input streams of data. SRV allows a clean sepa-
ration between the temporal dependencies among incoming events, and
the concrete operations that are performed during the monitoring.

SRV specification languages typically assume that all streams share a
global synchronous clock and input events arrive in a synchronous man-
ner. In this paper we generalize the time assumption to cover real-time
event streams, but keep the essential explicit time dependencies present
in synchronous SRV languages. We introduce Striver, which shares with
SRV the simplicity, and the separation between the timing reasoning
and the data domain. Striver is a general language that allows to express
other real-time monitoring languages. We show in this paper translations
from other formalisms for (piece-wise constant) signals and timed event
streams. Finally, we report an empirical evaluation of an implementation
of Striver.

1 Introduction

Runtime verification (RV) is a lightweight formal method that studies the prob-
lem of whether a single trace from the system under analysis satisfies a formal
specification. From the point of view of coverage, static verification must consider
all possible executions of the system while RV only considers the traces observed.
In this manner, RV sacrifices completeness but offers a readily applicable formal
method that can be combined with testing or debugging. See [16,20] for surveys
on RV, and the recent book [2]. Early specification languages proposed in RV
were based on temporal logics [7,12,17], regular expressions [25], timed regular
expressions [3], rules [5], or rewriting [24].

Stream runtime verification (SRV), pioneered by Lola [11] defines monitors by
declaring the dependencies between output streams (results) and input streams
(observations). The main idea of SRV is that the same sequence of operations
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performed during the monitoring of a temporal logic formula can be followed to
compute statistics of the input trace, if the data type and the operations are
changed. The generalization of the outcome of the monitoring process to richer
verdict values brings runtime verification closer to monitoring and data stream-
processing. See [8,15,22] for further works on SRV. Temporal testers [23] were
later proposed as a monitoring technique for LTL based on Boolean streams. SRV
was initially conceived for monitoring synchronous systems, where all observa-
tions proceed in cycles. In this paper we present a specification formalism for
timed asynchronous observations, where streams are sequences of timed events,
not necessarily happening at the same time in all input streams, but where
all time-stamps are totally ordered according to a global clock (following the
timed asynchronous model of distributed systems [10]). The formalism that we
propose in this paper targets the outline, non-intrusive monitoring (see [18] for
definitions), where the model of time is that of timed asynchronous distributed
systems. Our target application is the monitoring and testing of cloud systems
and multi-core hardware monitoring, where this assumption is reasonable.

Related Work. The work [19] presents an asynchronous evaluation engine for a
simple event stream language for timed events, based on a collection of language
constructs that compute aggregations. This language does not allow explicit
time references and offsets. Moreover, recursion is not permitted and all recursive
computations are encapsulated implicitly in the language constructs. A successor
work of [19] is TeSSLa [9] which allows recursion and offers a smaller collection
of language constructs. Still, TeSSLa precludes explicit offset dependencies, and
the target application domain is hardware based monitoring. We sketched that
Striver subsumes TeSSLa. Another similar work is RTLola [14], which also aims to
extend SRV from the synchronous domain to timed streams. However, in RTLola
defined streams are computed at predefined periodic instants of time, collecting
aggregations between these predefined instants using language constructs. In this
manner, the output streams in RTLola are isochronous1, while in Striver defined
streams are computed at the specific real-time instants where they are required,
resulting in a completely asynchronous SRV system (in the sense that streams
can tick at arbitrary time points). Striver can be used as a low level language to
compile TeSSLa, RTLola and similar specifications.

The rest of the paper is organized as follows. Section 2 describes the Striver
specification language. Section 3 presents a trace-lenght independent online algo-
rithm. Section 4 shows some extensions of Striver. Section 5 reports on an empir-
ical evaluation and Sect. 6 concludes the paper.

2 The Striver Specification Language

In this section we introduce Striver, a specification language that allows defining
efficiently monitorable specifications [11], those for which all streams can be

1 We borrow this term from telecomunications and signal processing where an
isochronous signal is one in which events happen at regular intervals.
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resolved immediately. We show in Sect. 3 an online monitoring algorithm and
prove that this algorithm is also trace length independent.

2.1 Preliminaries

The main idea behind SRV is to separate two concerns: the temporal dependen-
cies and the data manipulated, for which we use data domains.

Data Domains. We use many-sorted first order logic to describe data domains.
A simple theory, Booleans, has only one sort2, Bool, two constants true and
false, binary functions ∧ and ∨, unary function ¬, etc. A more sophisticated
signature is Naturals that consists of two sorts (Nat and Bool), with constant
symbols 0, 1, 2. . . of sort Nat , binary symbols +, ∗, etc (of sort Nat×Nat → Nat)
as well as predicates <, ≤, etc of sort Nat × Nat → Bool, with their usual inter-
pretation. All theories have equality and are typically (e.g. Naturals, Booleans,
Queues, Stacks, etc) equipped with a ternary symbol if · then · else·. In the
case of Naturals, the if · then · else· symbol has sort Bool × Nat × Nat → Nat.

Our theories are interpreted, so each sort S is associated with a domain DS

(a concrete set of values), and each function symbol f is interpreted as a total
computable function f , with the given arity and that produces values of the
domain of the result given elements of the arguments’ domains. For simplicity,
we omit the sort S from DS .

We will use stream variables with an associated sort, but from the point of
view of the theories, these stream variables are atoms. As usual, given a set of
sorted atoms A and a theory, the set of terms is the smallest set containing A
and closed under the use of function symbols in the theory as a constructors
(respecting sorts).

We consider a special time domain T, whose interpretation is a (possibly
infinite, possibly dense) set with a total order and a minimal element 0, and a
binary addition symbol +. Examples of time domains are R

+
0 , Q+

0 and N0 with
their usual order. Given ta, tb ∈ T we use [ta, tb] = {t ∈ T | ta ≤ t ≤ tb}, and
also (ta, tb), [ta, tb) and (ta, tb] with the usual meaning. We say that a set of
time points S ⊆ T does not contain bounded infinite subsets, whenever for every
ta, tb ∈ T, the set S ∩ [ta, tb] is finite, in which case we say that S is a non-Zeno
set.

We extend every domain D into D⊥ that includes two special fresh symbols
⊥D

notick and ⊥D
outside. These new symbols allow capturing when a stream does not

generate an event, and when the time offset falls off the beginning and the end
of the trace.

Streams. Monitors observe sequences of events as inputs, where each event is
time-stamped and contains a data value from its domain.

2 We use sort and type interchangeably in the rest of the paper.
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Definition 1 (Event stream). An event stream of sort D is a partial function
η : T ⇁ D such that dom(η) does not contain bounded infinite subsets, where
dom(η) is the subset of T where η is defined.

The set dom(η) is called the set of event points of η. An event stream η can be
naturally represented as a timed word : sη = (t0, η(t0))(t1, η(t1)) · · · ∈ (dom(η)×
D)∗, or as an ω-timed word sη = (t0, η(t0))(t1, η(t1)) · · · ∈ (dom(η) × D)ω for
infinite streams, such that:

(1) sη is ordered by time (ti < ti+1); and
(2) for every ta, tb ∈ T the set {(t, d) ∈ sη | t ∈ [ta, tb]} is finite.

The set of all event streams over D is denoted by ED.
We introduce some notation for event streams. The functions prev< and

prev≤ with type ED × T → T
⊥ are defined as follows. Note that the functions

can return a value in T
⊥ because sup can return ⊥T

outside when the stream has
no event in the interval provided.

prev<(σ, t) def= sup(dom(σ) ∩ [0, t))
prev≤(σ, t) def= sup(dom(σ) ∩ [0, t])

sup(S) def=

{
max (S) if S �= ∅
⊥T

outside otherwise

Essentially, given a stream σ and a time instant t ∈ T, the expression
prev<(σ, t) provides the nearest time instant in the past of t at which σ is
defined. Similarly, prev≤(σ, t) returns t if t ∈ dom(σ), otherwise it behaves as
prev<.

Synchronous SRV. In synchronous SRV, specifications are given by associat-
ing every output stream variable y with a defining equation that, once the input
streams are known, associates y to an output stream. For example:

define bool always_p := p /\ always_p[-1,true]
define int count_p := (count_p[-1,0]) + if p then 1 else 0

defines two output streams: always_p, which calculates whether Boolean input
stream p was true at every point in the past (that is, ) and count_p,
which counts the number of times p was true in the past. Offset expressions
like count_p[-1,0] allow referring to streams in a different position (in this
case in the previous position) with a default value when there is no previous
position (the beginning of the trace). In this paper we introduce a similar for-
malism for timed event streams. Our goal is to provide a simple language with
few constructs including explicit references to the previous position at which
some stream contains an event, contrary to other stream languages like TeSSLa
[9] and RTLola [14] which preclude to reason about real-time instants. We say
that Striver is an explicit time SRV formalism.
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2.2 Syntax of Striver

A Striver specification describes the relation between input event-streams and
output event-streams, where an input stream is a sequence of observations from
the system under analysis.

The key idea in Striver is to associate each defined stream variable with:

– a ticking expression that captures when the stream may contain an event;
– a value expression that defines the value contained in the event.

Note that in synchronous SRV, only a value expression is necessary because
every stream has a value at every clock tick.

Formally, a Striver specification ϕ : 〈I,O,V ,T 〉 consists of input stream vari-
ables I = {x1, . . . , xn}, output stream variables O = {y1, . . . , ym}, a collection
of ticking expressions T = {T1, . . . , Tm} and a collection of value expressions
V = {V1, . . . , Vm}. For output variable y, Ty captures when stream y ticks and
Vy what the value is when y ticks. All input and output streams are associ-
ated with a sort. It is sometimes convenient to partition output streams into
proper outputs and intermediate streams, that are introduced only to simplify
specifications.

In practice, it is very useful that Ty defines an over-approximation of the
set of instants at which y ticks, and then allow the value expression to evaluate
to ⊥D

notick. The stream associated with y does not contain an event at t if Vy

evaluates to ⊥D
notick at t, even if t is in Ty. For example, if one wishes y to filter

out events from a given stream x it is simple to define in Ty that y ticks whenever
x does, and delegate to Vy to decide whether an event is relevant of should be
filtered out.

Expressions. We fix a set of stream variables Z = I ∪ O. Apart from ticking
expressions and value expressions, offset expressions (used inside value expres-
sions) allow defining temporal dependencies between ticking instants.

– Ticking Expressions:
α := {c} ∣∣ v.ticks

∣∣ α U α
∣∣ delay w

where c ∈ T is a time constant, v is an arbitrary stream variable, and w is a
stream variable of type Tε, and U is used for the union of sets of ticks. The
type Tε is defined as Tε = {t | t ≥ ε} for a given ε > 0. This restriction on
the argument of delay guarantees that the ticking instants are non-zeno if
all their inputs are non-zeno (see Sect. 3).

– Offset Expressions, which allow fetching previous events from streams:
τx:: = x <~ τ ′ ∣∣ x << τ ′ τ ′:: = t

∣∣ τz for z ∈ Z

Offset expressions have sort T. Here, t represents the current value of the
clock. The intended meaning of x << τ ′ is to refer to the previous instant
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strictly in the past of τ ′ where x ticks (or ⊥D
outside if there is not such an

instant). The expression x <~ τ ′ also considers the present as a candidate.
– Value Expressions, which give the value of a defined stream at a given ticking

point candidate:
E:: = d

∣∣ x(τx)
∣∣ f(E1, . . . , Ek)

∣∣ t ∣∣ τx

∣∣ outsideD

∣∣ notickD

where d is a constant of type D, x ∈ Z is a stream variable of type D and
f is a function symbol of return type D. Note that in x(τx) the value of
stream x is fetched at an offset expression indexed by x, which captures the
ticking points of x and guarantees the existence of an event. Expressions t
and τx build expressions of sort T. The two additional constants outsideD

and notickD allow to reason about accessing the end of the streams, or not
generating an event at ticking candidate instant.

We also use the following syntactic sugar:

x(~e)
def= x(x<~ e) x(~e, d)

def= if (x <~ e)==outside then d else x(~e)

x(<e)
def= x(x << e) x(<e, d)

def= if (x << e)==outside then d else x(<e)

Essentially, x(~t) provides the value of x at the previous ticking instant of x
(including the present) and x(<t) is similar but not including the present. Also,
x(<t, d) is the analogous to x[−1, d] in synchronous SRV allowing to fetch the
value in the previous event in stream x, or d if there is not such previous event.

Example 1. Consider two input event streams: sale that represents sales of a
certain product, and arrival which represents the arrivals to the store:

input int sale , int arrival

ticks stock := sale.ticks U arrival.ticks

define int stock := stock(<t,0) +

(if isticking(arrival) then arrival (~t) else 0) -

(if isticking(sale ) then sale(~t ) else 0)

where isticking(sale) is defined as (sale<~t)==t. Note that stock is defined
to tick when either sale or arrival (or both) tick. ��
Example 2. To illustrate the use of delay consider the following specification:

ticks clock := {0} U delay clock

define Time _eps clock := 1sec

The stream clock emits an event every second since time 0. ��

2.3 Semantics

As common in SRV, the semantics is defined denotationally first. This semantics
establishes whether a given input and a given output satisfy the specification,
which is defined in terms of valuations. Given a set of variables Z, a valuation
σ is a map that associates every x in Z of sort D with an event stream from
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ED. Given a valuation σ we define the result of evaluating an expression for σ.
We define three evaluation maps �.�σ, �.�σ, �.�σ depending on the type of the
expression3:

– Ticking Expressions. The semantic map �.�σ assigns a set of time instants to
each ticking expression as follows:

�{c}�σ
def= {c}

�v.ticks�σ
def= dom(σv)

�a U b�σ
def= �a�σ ∪ �b�σ

�delay(w)�σ
def= {t′ | there is a t ∈ dom(σw) such that t + σw(t) = t′

and dom(σw) ∩ (t, t′) = ∅ }
– Offset Expressions. For offset expressions �.�σ provides, given a time instant

t, another time instant:

�t�σ(t) def= t

�x << e�σ(t) def=

{
⊥T

outside if �e�σ(t) = ⊥T

outside

prev<(σx, �e�σ(t)) otherwise

�x <~ e�σ(t) def=

{
⊥T

outside if �e�σ(t) = ⊥T

outside

prev≤(σx, �e�σ(t)) otherwise

– Value Expressions. Finally, value expressions are evaluated into event streams
of the appropriate type. For a given instant t:

�d�σ(t) def= d

�x(e)�σ(t) def=

{
⊥D

outside if �e�σ(t) = ⊥T

outside

v if �e�σ(t) = t′ and σx(t′) = v

�f(E1, . . . , Ek)�σ(t) def= f(�E1�σ(t), . . . , �Ek�σ(t))
�t�σ(t) def= t

�τx�σ(t) def= �τx�σ(t)
�outsideD�σ(t) def= ⊥D

outside

�notickD�σ(t) def= ⊥D
notick

Note that �x(e)�σ includes the possibility that (1) the expression cannot be
evaluated because the time instant given by �e�σ(t) is outside the boundaries
of domain of the stream and (2) the expression is not defined because the
stream does not tick at t. It is easy to see that the cases for �x(e)�σ are
exhaustive because �e�σ(t) guarantees that σx(t′) is defined.

For example, consider the following stream (1.0, 17), (2.5, 21), (3.5, 12) for
variable sale from Example 1. Then

�sale(~t)�σ(3.1) = �sale(sale<~ t)�σ(3.1) = �sale�σ(2.5) = 21
3 we use colors to better distinguish between semantic maps.
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Definition 2 (Evaluation Model). Given a valuation σ of variables I ∪O the
evaluation of the equations for stream y ∈ O is:

�Ty,Vy�σ
def= {(t, d) | t ∈ �Ty�σ and d = �Vy�σ(t) and d �= ⊥D

notick}

An evaluation model is a valuation σ such that for every y ∈ O: σy =
�Ty,Vy�σ.

The goal of a Striver specification is to define a monitor, that intuitively
should be a computable function from input streams into output streams. The
following definition captures whether a specification indeed corresponds to such
a function.

Definition 3 (Well-defined). A specification ϕ is well-defined if for all σI ,
there is a unique σO, such that σI ∪ σO is an evaluation model of ϕ.

As with synchronous SRV, specifications can be ill-defined. For example, the
following specification (define bool a:= not a) admits no evaluation model,
and (define bool a:= a) admits many evaluation models. Additionally, a spec-
ification is efficiently monitorable if the output at time t only depends on the
input at time t, which enable the incremental computation of the output stream.

Definition 4 (Efficiently monitorable). A well-defined specification ϕ is effi-
ciently monitorable whenever for every two input σI and σ′

I with evaluation
models σO and σ′

O, and for every time t, if σI |t = σ′
I |t then σO|t = σ′

O|t.

2.4 Well-Formedness

The condition of well-definedness is a semantic condition, which is not easy to
check for a given specification (undecidable for expressive enough domains). We
present here a syntactic condition, called well-formedness, that is easy to check
on input specifications and guarantees that specifications are well-defined. Most
specifications encountered in practice are well-formed.

We first define a subset of the offset expressions, called the Present subset, as
the smallest subset that contains t and such that if e ∈ Present then (x <~ e) ∈
Present. We say that an output stream variable y directly depends on a stream
variable x (and we write x → y) if x appears in Ty or Vy. We say that y has a
present direct dependency on x (and write x

0−→ y) if x → y and either

– x.ticks appears in Ty, or
– (x<~ e) appears in Vy and e ∈ Present.

A direct dependency captures whether in order to compute a value of a stream
variable y at position t, it is necessary to know the value of stream variable x

up to t. If x → y but x � 0−→ y we say that y directly depends on x in the past
(and we write x

−−→ y).
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Definition 5 (Dependency Graph). The dependency graph of a specification
ϕ is a graph (V,E) where V = I ∪ O and E = V × V × { 0−→,

−−→}.
The dependency graph of Example 1 is:

The following definition captures whether an output stream variable cannot
depend on itself at the present moment.

Definition 6 (Well-Formed Specifications). A specification ϕ is well-
formed if every closed path in its dependency graph contains a past dependency
edge −−→.

Closed paths in the dependency graph correspond to dependencies between a
stream and itself in the specification ϕ. These closed paths do not create problems
if the path corresponds to accessing the strict past of the stream. Note that if
one removes −−→ edges from the dependency graph of a well-formed specification,
the resulting graph is necessarily a DAG. In other words 0−→∗ is irreflexive. The
following lemma formally captures the information that is sufficient to determine
the value of a given stream at a given time instant.

Lemma 1. Let y be an output stream variable of a specification ϕ, σ, σ′ be two
evaluation models of ϕ, such that, for time instant t:

(i) For every variable x, σx(t′) = σ′
x(t′) for every t′ < t, and

(ii) For every x, such that x
0−→∗ y, σx(t′) = σ′

x(t′) for every t′ ≤ t
Then σy(t) = σ′

y(t).

The proof proceeds by structural induction on expressions, with the observa-
tion that only values in the past are necessary, as in conditions (i) and (ii). We
are now ready to show that well-formed specifications cannot have two different
evaluation models.

Theorem 1. Every well-formed Striver specification is well-defined.

The proof proceeds by showing that for well-formed specifications two evaluation
models must be equal. This is shown by induction on the events in the traces to
prove that the i-th event must be identical. Lemma 1 guarantees that induction
can be applied.

3 Operational Semantics

The semantics of Striver specifications introduced in the previous section are
denotational in the sense that these semantics associate for a given input stream
valuation exactly one output stream valuation, but does not provide a procedure
to compute the output streams, let alone do it incrementally. We provide in this



Striver: Stream Runtime Verification for Real-Time Event-Streams 291

section an operational semantics that computes the output incrementally. We
fix a specification ϕ with dependency graph G and we let G= be its pruned
dependency graph (obtained from G by removing 0−→ edges). We also fix < to be
an arbitrary total order between stream variables that is a reverse topological
order of G=.

We first present an online monitoring algorithm that stores the full history
computed so far for every output stream variable. Later we will provide bounds
on the portion of the history that needs to be remembered by the monitor,
showing that only a bounded number of events needs to be recorded, and that
this bound depends only on the size of the specification (number of streams)
and not on the length of trace. This modified algorithm is a trace-length inde-
pendent monitor for efficiently monitorable Striver specifications. The algorithm
maintains the following state (H, tq):

– History: H is a finite event stream one for each output stream variable. We
use Hy for the event stream prefix for stream variable y.

– Quiescence time: tq is the time up to which all output streams have been
computed.

The monitor runs a main loop, calculating first the next relevant time tq
for the monitoring evaluation and then computing all outputs (if any) for time
tq. We show that no event exists in any stream in the interval between two
consecutive quiescence time instants. We assume that at time t, the next event
for every input stream is available to the monitor, even though knowing that
there is no event up-to some tq is sufficient.

The core observation follows from Lemma 1, which limits the information
that is necessary to compute whether stream y at instant t contains an event
(t, d). All this information is contained in H, so we write �Ty�H and �Vy�H to
remark that only H is needed to compute �Ty�σ and �Vy�σ.

The main algorithm, Monitor, is shown in Algorithm 1. Lines 2 and 3 set
the history and initial quiescence time. The main loop continues until no more
events can be generated.

Line 5 computes the next quiescence time, by taking the minimum instant
after the last quiescence time at which some output stream may tick. A stream
y “votes” (see Algorithm 2) for the next possible instant at which its ticking
equation Ty can possibly contain a value. Consequently, if no input stream votes
for an earlier time it is guaranteed that no ticking equation will contain a value t
lower than the lowest vote. Note that recursive calls at line 28 terminate because
the graph G= is acyclic (recall that the specification is well-formed).

The algorithm follows a topological order over the G=, so the information
about the past required in Lemma 1 is contained in H. The following result
shows that, assuming that σI is non-zeno, the output is also non-zeno. Hence,
for every instant t, the algorithm eventually reaches tq > t in a finite number of
executions of the main loop.

Lemma 2. Monitor generates non-zeno output for a given non-zeno input.
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Algorithm 1. monitor: Online Monitor
1: procedure Monitor
2: Hs ← 〈〉 for every s
3: tq ← −∞
4: loop � Step
5: tq ← min

s∈O
{t | t = vote(H, Ts, tq)}

6: if tq = ∞ then break

7: for s in G= following < do
8: if tq ∈ �Ts�H then
9: v ← �Vs�H(tq)

10: if v �= ⊥D
notick then

11: Hs ← Hs ++ (tq, v) � Updates history H
12: emit(tq, v, s)

13: end for
14: end loop

Algorithm 2. vote: Compute the next ticking instant
15: function vote(H, expr, t)
16: switch expr do
17: case delay(s)
18: if (t′ + v) > t (where (t′, v) = last(Hs)) then return t′ + v
19: else return ∞
20: case {c}
21: if c > t then return c
22: else return ∞
23: case a ∪ b
24: return min(vote(H, a, t),vote(H, b, t))

25: case y.ticks with y ∈ O
26: return vote(H, Ty, t)

27: case s.ticks with s ∈ I
28: return succ>(σs, tq)

The proof proceeds by contradiction assuming a t with non-zeno output, and
the minimum output stream in G= that has a non-zeno output, and then showing
that there must be a non-zeno output for t − ε. This can be applied t

ε times to
conclude that there is non-zeno output before 0 which is a contradiction.

We finally show that the output of Monitor is an evaluation model. We use
Hi

s(σI) for the history of events Hs after the i-th execution of the loop body,
and H∗

s (σI) for the sequence of events generated after a continuous execution of
the monitor. Note that H∗

s (σI) can be a finite sequence of events (if the input
is bounded and no repetition is introduced in the specification using delay) or
an infinite sequence of events. In the first case, the vote is eventually ∞ and the
monitoring algorithm halts.

Theorem 2. Let σI be an input event stream, and let σO consist of σx = H∗
x(σI)

for every output stream x. Then (σI , σO) is an evaluation model of ϕ.
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The proof proceeds by induction on the number of rounds in the loop, show-
ing that the output is an evaluation model up-to the quiescence time. Putting
together Theorem 2, Lemmas 1 and 2 we obtain the following result.

Corollary 1. Let ϕ be a well-formed specification, σI a non-zeno input stream
and H∗ the result of Monitor. Then, H∗ is the only evaluation model for input
σI , and H∗ is non-zeno.

Trace Length Independent Monitoring. The algorithm Monitor shown
above computes incrementally the only possible evaluation model for a given
input stream, but this algorithm stores the whole prefix Hy for every out-
put stream variable y. We show now a modification of the algorithm that is
trace length independent, based on flattening the specification. A specification
is flat if every occurrence of an offset expression in every Ty is either x(<~ t) or
x(<< t). In other words, there can be no nested term of the form x(<~ (y<~ t))
or x(<~ (y<< t)) or x(<< (y<~ t)) or x(<< (y<< t)). We first show that every
specification can be transformed into a flat specification. The flattening applies
incrementally the following steps to every nested term x(E(y<< t)), where E is
an arbitrary offset term:

1. introduce a fresh stream s with equations Ts = y.ticks and Vs = x(E(t))
2. replace every occurrence of x(E(y << t)) by s(<t).

Example 3. Consider the following specification of a continuous integration pro-
cess in software engineering. The intended meaning is to report in faulty those
commits to a repository that fail the unit tests.

input commit_id commits , unit push , bool tests

ticks faulty := tests.ticks

define commit_id faulty := if tests (~t) then notick

else commits(<push <<t)

After applying the flattening process the specification becomes:

define commit_id faulty := if tests (~t) then notick else s(<t)

ticks s := push.ticks

define commit_id s := commits(<t)

Here, s stores the commit_id of the last commit at the point of a push, which
is precisely the information to report at the time of a faulty commit. ��
Lemma 3. Let ϕ be a specification. There is an equivalent flat specification ϕ′

that is linear in the size of ϕ.

Now, let ϕ′ be the flat specification obtained from ϕ and let y be an output
stream variable. Consider the cases for offset sub-expressions in the computation
of �Vy�H(t) in line 9 of Monitor:

– s<~ t: the evaluation fetches the value Hs at time t (if s ticks at t) of at the
previous ticking time (if s does not tick at t).
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– s<< t: the evaluation fetches the value Hs at the previous ticking time of s.

In either case, only the last two elements of Hs are needed. The similar argu-
ment can be made to compute Ty because only the last event of s is needed for
delay(s). Hence, to evaluate Monitor on flat specifications, the algorithm only
needs to maintain the last two elements in the history for every output stream
variable to compute the next value of every value and ticking equation.

Theorem 3. Every flat specification ϕ can be monitored online with linear
memory in the size of the specification and independently of the length of the
trace. Moreover, every step can be computed in linear time on the size ϕ.

4 Extensions and Comparison

We first sketch how to define the most complex operator4 of TeSSLa: x =
delay〈s0, s1〉, which creates an event stream x which will tick at an instant t
if there is an event (t′, v) in s0 such that t′ + v = t and also dom(s1) ∩ (t′, t) = ∅
TeSSLa does not handle explicit time and offsets but builds specifications from
building blocks like delay. Given inputs s0 and s1 the Striver specification is:

ticks aux := s0.ticks U s1.ticks

define Time _eps aux := if isticking(s1) then infty

else if aux(<t,infty) = infty || aux(<t) + aux <<t <= t

then s0(~t) else notick

ticks x := delay x_aux

define unit x := ()

We now present three extensions to the basic Striver introduced previously.

Accessing Successors. The first extension allows accessing future events, via
the dual of the offset operators x >~ e and x >> e, and the syntactic sugar to
access the successor value x(e>), x(e~), x(e, d>) and x(e, d~). As for Lola,
well-formedness can be guaranteed as long as all strongly connected components
in the dependency graph contain only −−→ and 0−→ edges, or only +−→ and 0−→
edges, and additionally, there is no cycle with only 0−→ edges. For example, this
guarantees that there is no cyclic dependency, as every stream either depends
on itself in the future or in the past (or none at all).

All Delays. This allows defining tick sets that consider all delays. The tick-
ing expressions are extended with an operator delayall with the following
semantics:

�delayall(w)�σ
def= {t′ | there is a t ∈ dom(σw) such that t + σw(t) = t′}

4 Due to limitations a full comparison against TeSSLa and STL is not presented here.
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This extension requires only to change vote to accommodate for a set of possi-
ble pending delays and not just a single delay. In general, this cannot be imple-
mented in finite memory for arbitrary event rates and delays, but Monitor
works directly for the online monitoring this construct.

Windows. The last extension allows implementing computations over precise
windows, like “count the number of events in every window of one second”. This
cannot be described in TeSSLa [9], which is limited to finite memory monitors,
or in RTLola [14] because this specification is not isochronous. Note that this
property cannot be monitored by splitting the time in intervals of one second
and counting the events in each of the intervals obtained (as in RTLola) as this
approach misses the case of counting the events in part of one window and the
remaining time in the adjacent window. The main idea of this extension is to
enrich time expressions with a tag, in such a way that every tick carries an
additional value (we called this extension dependent time). Then, delay and
delayall are enriched with the ability to use tagged time streams, with the
caveat that the U combinator must now indicate how to combine tags. Consider
the following example with input int s:

ticks wcount := (const 1 s) U delay all (const (-1,5) s)

define int wcount t aux := wcount(<t,0) + aux

The stream wcount must only be computed when a new event arrives in s
(adding 1) or when an event leaves the window (subtracting 1), which is mon-
itored with a constant number of operations per event, but requires storing a
number of events that depends on the event rate.

The Signal Temporal Logic STL [1,21]—when interpreted over piecewise-
constant signals—is subsumed by Striver. First note that event streams have a
dual interpretation as piece-wise constant signals, where the signal only changes
at the point where events are produced. The translation to Striver opens the door
to a quantitative computation of STL by enriching the data types of expressions
and verdicts. We show the operator x U[0,b] y:

ticks v := x U y U delay all -b x U delay all -b y

define bool v t := if y(~t,false) then true else

if !x(~t,false) then false else

let t’ := yT(t~) in

if t’== outside || t’ > t+b then false else t’ <= xF(t~)

5 Empirical Evaluation

We report an empirical evaluation of a prototype sequential Striver implementa-
tion, written in the Go programming language5. We measure the memory usage
and time per event for two collections of specifications. The first collection, from
Example 1, computes the stocks of p independent products. These specifications
contain a number of streams proportional to p, where each defining equation is
5 Striver is available at http://github.com/imdea-software/striver.

http://github.com/imdea-software/striver
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Fig. 1. Empirical evaluation

of constant size. The second collection computes the average of the last k sales
of a fixed product, via streams that tick at the selling instants and compute the
sum of the last k sales (see the appendix for the concrete specs). The resulting
specifications has depth proportional to k. We instantiate k and p from 10 to
500 and run each resulting specification with a set of generated input traces. We
run the experiments on a virtual machine on top of an Intel Xeon at 3 GHz with
32GB of RAM, and measure the average memory usage (using the OS) and the
number of events processed per second.

In the first experiment, we run the synthesized monitors with traces of vary-
ing length (top two plots in Fig. 1). The results illustrate that the memory needed
to monitor each specification is independent of the length of the trace (the curves
are roughly constant). Also, the ratio of events processed is independent of the
length of the trace. In the second experiment, we fix a trace of 1 million events
and run the specifications with k and p ranging from 250 to 550. The results
(lower diagrams) indicate that the memory needed to monitor stock p is inde-
pendent of the number of products while the memory needed to monitor each
avg k specification grows linearly with k. Recall that theoretically all specifica-
tions can be monitored with memory linearly on the size of the specification.
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6 Conclusion and Future Work

We have introduced Striver, a specification language with explicit time and off-
set reference for the stream runtime verification of timed event streams. We
have presented a trace-length independent online monitoring algorithm for the
efficiently monitorable fragment. Future work includes the extension of the lan-
guage with parametrization, (like in QEA [4], MFOTL [6] and Lola2.0 [13]), to
dynamically instantiate monitors for observed data items. We are also study-
ing offline evaluation algorithms, and algorithms that tolerate deviations in the
time-stamps and asynchronous arrival of events from the different input streams.
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Abstract. The diesel emissions scandal has demonstrated that real-
world behavior of systems can deviate excessively from the behavior
shown under certification conditions. In response to the massive revela-
tion of fraudulent behavior programmed inside diesel cars across Europe,
the European Union has defined a procedure to test for Real Driv-
ing Emissions (RDE) [22]. This is gradually being put into force since
September 2017 [23]. To avoid misinterpretation, the RDE regulation
comes with an informal but relatively precise specification that spells
out in how far a real trip, i.e., a trajectory driven with a car, constitutes
an RDE test, or not. This paper presents a formalization of the RDE
test procedure which is used to monitor for RDE violations at runtime
and thereby fosters perspicuity. To this end, we extend the stream-based
specification language Lola [5,10] with sliding aggregation windows. We
evaluate the approach experimentally using data from real trips and fur-
ther present a low-cost variant of the RDE test which can be conducted
without expensive test equipment solely with on-board sensors.

Keywords: Automotive testing · Runtime monitoring
Specification languages · Software doping · Perspicious systems

1 Introduction

The recent diesel emissions scandal has put the problem of doped software [6]
in the spotlight: proprietary embedded control software may decide to exploit
functionality offered by a device against the best interest of the device owner or
of society, in favor of interests of the manufacturer. Concretely, the controllers
embedded in many diesel-powered cars are programmed in ways that induce
substantial environmental pollution, in violation of many emission regulations
around the world. This escapes detection through official test procedures because
the behavior is programmed to surreptitiously change whenever the car is deemed
to be in a test setting. This is easily possible, since, at least so far, emission
test procedures were carried out in a precisely defined environment, and were
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following a precisely defined driving profile, with the car under test fixed on a
chassis dynamometer. This precision is needed so as to ensure reproducibility of
the tests and to enable comparisons of exhaust footprint and fuel consumption
across different car models.

For about a decade, the binding standard to be used during type approval of
a new car model has been the New European Driving Cycle (NEDC), which has
recently been replaced by the Worldwide harmonized Light vehicles Test Proce-
dure (WLTP) [23]. The latter is considered to be more realistic, but it still shares
the problematic characteristics of the NEDC in that the WLTP driving profile is
very much a singularity, and therefore easy to identify by control software doped
by the manufacturer. To overcome this conceptual problem, the European Union
has lately defined a new procedure to test for Real Driving Emissions (RDE).
This comes with broad certification conditions for tests which are to be con-
ducted under real-world conditions, on public roads and during working days.
The RDE is gradually being put into force since September 2017. The RDE com-
plements the WLTP—while the RDE is intended to measure emissions under
real-world conditions the WLTP is intended to measure fuel consumption in a
reproducible manner enabling comparability.

To avoid misinterpretation, the RDE regulation comes with an informal but
relatively precise specification document [23] that spells out in how far a road
trip, i.e., a trajectory driven with a car in-the-wild, constitutes an RDE test,
or not. This specification contains constraints on the route, allowed altitude
and speed, and on the dynamics of the driving profile, that make use of per-
centiles. The specification also accounts for dynamic conditions like the weather.
Conducting an RDE test requires a PEMS, a Portable Emissions Measurement
System. This is a device that measures the emissions at the tailpipe of a vehicle
and is small and light enough to be carried inside or moved with the vehicle
during the test drive. The unit price of a PEMS is in the order of $250,000.
Commercial software such as “AVL Concerto for PEMS” is used to effectuate
the measurement, collect the relevant data, and to decide if the test performed is
indeed an RDE or not [1]. As usual for proprietary software, the source code of
AVL Concerto and similar programs is not available, so there is no direct check
available to reassure the verdict of the program after a test drive.

This paper phrases the question of RDE compliance as a runtime monitoring
problem. Its central contribution is a formalization of the RDE regulation. For
this, we extend the stream-based specification language Lola [5,10] with slid-
ing aggregation windows enabling the efficient computation of percentiles and
moving averaging windows as needed by the RDE regulation.

We exploit this formalization in a low-cost variant of the RDE test procedure
for NOx emissions which only uses on-board sensors instead of an expensive
PEMS. The hardware cost of our system is in the order of $100. With our openly
available formalization1 at its core, the system implements the blueprint of an
independent emission control and compliance system which we use to empirically

1 All details of the monitor, including the source code of the Lola specification and
RDE trip data, can be found at https://www.powver.org/real-driving-emissions/.

https://www.powver.org/real-driving-emissions/
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monitor real vehicles under real driving conditions. The empirical results we can
report are very encouraging. We discuss the pros and cons of our solution. In
addition, we show that our extension of Lola can be compiled into plain Lola,
albeit at the price of losing succinctness.

The contributions of this paper are an extended version of the stream-based
specification language Lola with sliding aggregation windows, an elaborate
study on the formalization of the RDE test procedure using this extended ver-
sion of Lola, and the presentation of experimental results which make use of a
low-cost version of the RDE without expensive equipment.

Organization of the Paper. In Sect. 3 we briefly introduce Lola [10] and the RDE
regulation [23]. In Sect. 4 we extend Lola with sliding aggregation windows. In
Sect. 5 we present the RDE test procedure and its formalization displaying the
capabilities of the freshly introduced sliding aggregation windows. In Sect. 6 we
evaluate the RDE formalization and the thereof constructed monitor experimen-
tally using data from real trips. Furthermore, we show how a runtime monitor
can be used to continuously supervise cars in use.

2 Related Work

We implement our RDE monitor using an extended version of the stream-based
specification language Lola 2.0 [5,10]. Lola can express complex temporal
properties referring to the past and the future. It can be used for checking if single
traces satisfy given properties and generating statistical measures. Lola allows
the computation of output streams, which are instances of templates specifying
when and how streams are computed. Triggers are used to define boolean proper-
ties based on input and output streams. Lola 2.0 supports instance aggregation
functions (e.g. exists, forall, count, ...) for output streams enabling reasoning
about all active instances of a certain stream template.

Recently, Lola 2.0 has been extended to RTLola, which supports real-
time properties [11] and is especially useful when data does not arrive with
a fixed frequency. The RDE, however, is based on test parameters provided
with a fixed sampling frequency. Statistical measurements for real-time data
have been realized by using sliding aggregation windows over discrete real-time
intervals, and due to the real-time semantics, arbitrary many sample points.
Currently, no implementation of RTLola is available. In our work, we follow
a similar approach by extending Lola with sliding aggregation windows over
a fixed number of data points. In Lola 2.0, aggregation functions can only be
used to aggregate data of several instances at the current time, whereas sliding
aggregation windows aggregate data from an interval.

Temporal logic [15,16] has been extended for real-time systems in MITL [2].
Signal Temporal Logic (STL) [13,14] introduces real-valued signals to MITL.
The logic can specify past or future behavior. However, unlike Lola, it cannot
relate values of the stream at different points in time. Further, it is not possible
to generate the statistical measures required to validate an RDE test. Hence, it



302 M. A. Köhl et al.

is not suitable for encoding the RDE regulation. An approach to extend STL for
properties, that need a global view on the data, has already been proposed [8].

The semantics of temporal logics has been extended from boolean satisfaction
of a formula to robustness values [7,9,17]. Positive numbers indicate that the
property is satisfied, a negative value shows the opposite. Falsification techniques
for reactive systems try to make such a value smaller to eventually make it
negative and disprove the property [3].

Efficient algorithms for the incremental computation of sliding window aggre-
gations have been extensively studied [12]. This work allows us to make use of
these algorithms within Lola using a standardized interface.

Currently, RDE tests are conducted using Portable Emissions Measurement
Systems, e.g., [1]. The commercial software that is delivered with these systems
includes ready-to-use RDE monitors.

3 Preliminaries

3.1 Real Driving Emissions

Although the RDE regulation specifies broad testing conditions, there are still
some constraints which should guarantee that a trip is close to real-driving con-
ditions making it neither too easy nor too hard for the vehicle to pass the test.
For this, valid RDE drives take 90 to 120 min and traverse three phases: urban,
rural, and motorway. The regulation defines minimum and maximum permissi-
ble ratios of each phase w.r.t. the whole test distance. Moreover, the regulation
defines speed constraints, minimum distances, ambient conditions, and more.
Table 1 shows some of those constraints which we will formalize in Sect. 5.

Table 1. Some constraints for the urban, rural and motorway phase of RDE tests

Urban Rural Motorway

Ratio range [%] [29, 44] [23, 43] [23, 43]

Speed range [km/h] [0, 60] ]60, 90] ]90, 160]

Distance [km] ≥16 ≥16 ≥16

Additional
constraints

Stop percentage between
6% and 30% of urban
time; average velocity in
range [15, 40] km/h

>100 km/h for at least
5 mins

Temperature [K] Moderate: [273, 303]; extended: [266, 273[ or ]303, 308]

Altitude [m] Moderate: <700; extended: ]700, 1300]

Speed limit [km/h] 145 (]145,160] for at most 3% of motorway time)
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3.2 Lola 2.0: An Introduction

Lola 2.0 [10] is a stream-based specification language based on its predecessor
Lola [5]. This paper uses Lola 2.0, however, for readability reasons we draw
this distinction explicitly only where it is relevant and otherwise refer to Lola

2.0 simply as Lola. This section aims to give a brief introduction to Lola, for
further details we refer to the original publications [5,10].

Lola provides an evaluation model based on synchronous streams where
output streams are computed based on input streams. To this end, a Lola 2.0
specification comprises a declaration of N typed input stream variables ti and
M typed parameterized output stream variables sj that get assigned stream
expressions which specify how the respective output streams are computed from
values of the input streams, output streams, and parameters.

Input stream variables are declared by

input Ti ti

where Ti is the type of input stream variable ti.
Parameterized output stream variables are declared by templates of the form

output Tj sj〈p1 : T j
1 , . . . , pk : T j

k 〉 : inv: sinv ; ext: sext ; ter: ster
:= e(t1, . . . , tN , s1, . . . , sM , p1, . . . , pk)

where Tj is the type of output stream variable sj . Concrete streams sj(α), i.e.,
instances of sj , are identified by parameter valuations α ∈ T j

1 × . . . × T j
k . Each

instance has a local clock. Instances sj(α) are invoked with local time 0 whenever
a tuple α appears on the invocation stream sinv for which there does not already
exist an instance. The local time of an instance advances with an increment of 1
whenever true appears on the boolean extension stream sext which is required
to have the same parameter signature �P = 〈p1 : T j

1 , . . . , pk : T j
k 〉 as the template

for sj . Whenever the extension stream is true, a new value is computed by the
stream expression e over stream variables and parameters which is then appended
to the stream. Otherwise, the previous value remains valid and the local time
does not advance. If true appears on the boolean termination stream ster , again
with signature �P , the instance is terminated. Intuitively, the invocation of a new
instance creates a new output stream that produces values with each tick of its
local clock and which ends on termination of the instance. An instance is alive
starting with its invocation until its termination. Input streams are alive from
the beginning until termination of the monitor.

In addition to the input and output streams, there is a stream producing the
constant empty tuple in every global step. If streams without parameters are
defined, then this stream is used as the invocation stream which thus is omitted
in the template. Additionally, if sext is omitted instances are extended with every
global step and if ster is omitted instances are never terminated.

Stream expressions are defined inductively. Constants c and parameter vari-
ables pi are atomic stream expressions. Let e1, . . . , ek be stream expressions of
types T1, . . . , Tk. If f is a k-ary function of type T1 × T2 × . . . × Tk → T , then
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f(e1, . . . , ek) is a stream expression of type T . If b is a boolean stream expres-
sion and T1 = T2, then ite(b, e1, e2)2 is a stream expression of type T1. Let
k ∈ Z, d be a constant of type T1, and s be an output stream variable. Then
s(�p)[k, d] is a stream expression of type T1 where �p are parameters comprised of
atomic stream expressions matching the signature of s. Further, for an instance
aggregation operator O, O(s) is an expression.

Semantically, constants, parameter variables, functions, and if-then-else con-
structs are defined as usual. The semantics of offset expressions s(�p)[k, d] are
defined as follows: if the parameter tuple �p evaluates to α, then s(�p)[k, d] is the
value of the instance s(α) at local time t+k where t is the local time of instance
s(α) at the global time step that the expression is evaluated. If the instance s(α)
is not alive at the global time the expression is evaluated or if the local time t+k
refers to a point before the invocation or after the termination, the value of the
offset expression is the default value d. Instance aggregation operators compute
properties about all instances of a template. For example, count(s) returns the
number of active instances of output stream template s.

Notice that input stream variables can be used wherever output stream vari-
ables are expected by copying the input to an output stream.

Lola allows the declaration of triggers,

trigger ϕ

where ϕ is a boolean stream expression. The trigger is activated if ϕ becomes
true. Triggers usually indicate the violation of a property.

4 Sliding Aggregation Windows

In the previous section, we briefly introduced the RDE regulation and the Lola

specification language in which we aim to formalize the regulation. The RDE
regulation assesses the overall driving dynamics of a trip in terms of the 95%
percentile of speed times positive acceleration. In this section, we extend Lola

2.0 with sliding aggregation windows which enable the efficient computation and
perspicuous specification of percentiles.

In [11] Lola 2.0 has been extended with real-time sliding aggregation
windows which allow for efficient aggregation over windows comprising an
unbounded amount of values specified in terms of real-time intervals. Our exten-
sion of Lola 2.0 complements this extension by allowing the computation of
aggregated values over windows of fixed width in terms of values taken into
account.

For an introductory example, see the definition of stream ṽa95

output float ṽa95 := percentile95(va[-n:0 | a_is_positive ])

2 ite is short for if-then-else.
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which computes the 95% percentile of speed times positive acceleration over
the last n samples. In general, an aggregation window comprises an aggrega-
tion function (percentile95) and a window expression which is composed of a
parameterized stream variable (va), a window specifier (-n:0), and an optional
condition (a_is_positive).

Fig. 1. Example of an unrolled aggregation window: sum(s(α)[−3 : 0 | ϕ(β)])

Intuitively a sliding aggregation window aggregates over those values within
the bounds of the window specifier for which the condition is satisfied by applying
the aggregation function to the sequence of these values.

Formally, we extend the syntax of Lola 2.0’s stream expressions with sliding
aggregation window expressions of the form

f (s(�ps) [i : j | ϕ( �pϕ)]) (1)

where f : T ∗ → T ′ is an aggregation function mapping possibly empty sequences
of values of type T to a value of type T ′, s(�ps) is a stream variable of type T
with parameters �ps, i, j ∈ Z with j ≥ i define the window boundaries, and ϕ( �pϕ)
is a boolean stream variable with parameters �pϕ. We further require that the
parameters �pϕ only contain parameter variables also occurring in �ps or constants,
which relates exactly one ϕ instance to each s instance. The type of the whole
expression (1) is the target set T ′ of the aggregation function.

As we will show in the following, technically the introduction of sliding aggre-
gation windows does not allow us to express any new properties, because aggre-
gation windows can be rewritten to ordinary Lola 2.0 syntax. Nevertheless,
they have the advantage that they are much more succinct making them more
intuitive and easier to write than their rewritten equivalents. Thereby they foster
perspicuity of the specification—for which we strive.

4.1 Explicit Unrolling Semantics

We start with a naive rewriting rule for an explicit unrolling of the sliding aggre-
gation window into the syntax of Lola 2.0.

To unroll an aggregation window expression we define a new n-ary function
f ′ where n is the window width, i.e., n = j − i, and manually hand over every
value of the respective s instance to f ′ for each position in the window where
the condition holds using an offset. To this end, we introduce a new unique value
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# to the type of s and define an auxiliary stream template sel whose instances
run in tandem with the respective instances of s. Whenever a new value for an
s instance becomes available, we extend the respective sel instance with this
value if the condition holds, otherwise with #. See Fig. 1 for an example.

output T#
s sel〈�P 〉 : inv: sinv ; ext: sext ; ter: ster :=

ite(ϕ( �pϕ
′)[0,false], s(�p)[0,#], #)

The invocation, extension, and termination streams are the same as for
the stream template s we aggregate over, i.e., the instances s(α) and sel(α)
for parameter valuation α are invoked, terminated, and extended together. �P
denotes the parameter signature of s and �p passes those parameters on to s to
select the corresponding instance of s. By requiring that �pϕ contains only param-
eters also appearing in �ps or constants, we can reconstruct the parameters for ϕ
using only the parameters passed to sel. This reconstruction is denoted by �pϕ

′.
The result are streams that only contain those values of the respective s

instances for which the condition holds. Notice that, although we specify a
default value for s(�p) in the consequence of the conditional, s(�p) will never be
undefined. It remains to pass those values with explicit offsets to the function f ′.

output T ′ aggregate〈�P 〉 : inv: sinv ; ext: sext ; ter: ster :=

f ′(sel(�p)[i+1,#], sel(�p)[i+2,#], . . ., sel(�p)[j,#])

The function f ′ computes the value of the aggregation using f by constructing
a sequence from its parameters in parameter order ignoring those that are #.
Now, the aggregation window can be rewritten as follows

f(s(�ps)[i : j | ϕ( �pϕ)]) � aggregate(�ps)[0, f ′(#n)]

where f ′(#n) = f(ε) is the aggregation function’s default value in case there is
no s instance for the respective parameters—which implies, that there also is no
instance of aggregate for the respective parameters.

4.2 Efficient Aggregation Windows

With explicit unrolling, we can rewrite sliding aggregation windows to the usual
syntax of Lola and hence use the Lola monitoring algorithm as is. However,
the standard monitoring algorithm of Lola will recompute the aggregation func-
tions from scratch for every window change, although many aggregation func-
tions like summation or average allow for a much more efficient incremental
updating strategy [11,12]. To this end, we present a more sophisticated rewrite
rule which utilizes incremental updates and thereby allows us to compute aggre-
gation functions much more efficiently. Table 2 provides an overview of selected
aggregation functions as well as their space and update costs.

We follow [12] and define an abstract interface to aggregation algorithms
that reuse intermediate results. For an aggregation function f : T ∗ → T ′ let D
be an intermediate aggregation domain and ε ∈ D a unique initial value. We
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Table 2. Aggregation function costs as a function of window size [12]

Functions Space Update cost

sum, avg , width O(n) worst-case O(1)

count , any , all O(n) worst-case O(1)

max, min O(n) amortized O(1)

median, percentile O(n) worst-case O(log n)

define three operations on intermediate aggregation values, insert : D × T → D
adds a new value of type T to an intermediate aggregate, evict : D × T → D
evicts an old value from an intermediate aggregate, and lower : D → T ′ lowers
an intermediate aggregate into an aggregated value of type T ′. Insertions and
evictions happen in FIFO order, which will be guaranteed by our translation.
For each aggregation function, we choose an aggregation algorithm.

Computing aggregation windows over streams with the defined interface is
then straightforward. For each window one constructs the sel stream template as
given in Sect. 4.1. Instead of computing the value with aggregate from scratch for
every change, one stores an intermediate aggregation, inserts new values v �= #
whenever they become available on the corresponding sel instance and evicts
old values v �= # when they shift out of the window. This algorithm can be
directly implemented within Lola 2.0 itself:

output D ins〈�P 〉 : inv: sinv ; ext: sext ; ter: ster :=

ite(sel[j,#] �= #, insert(agg[-1,ε], sel[j,#]), agg[-1,ε])

output D agg〈�P 〉 : inv: sinv ; ext: sext ; ter: ster :=

ite(sel[i,#] �= #, evict(ins[0,ε], sel[i,#]), ins[0,ε])

The stream template agg produces instances running in tandem with s
instances and stores the intermediate results. First, the stream ins inserts new
values appearing on the respective sel instance. Then, if a value is sliding out
of the window, it is evicted by the agg stream. With this, rewriting aggregation
windows is possible as follows:

f(s(�ps)[i : j | ϕ( �pϕ)]) � lower(agg(�ps)[0, ε])

Rewriting the specification instead of extending the monitoring algorithm
has the advantage that the core of Lola 2.0 stays small and is, therefore, easier
to implement and reduces the chance for bugs. Additionally, our extension can
be used directly with existing implementations of and optimizations for Lola

2.0. Using the standardized interface suggested in [12] we utilize existing research
on sliding aggregation windows.

5 Formalizing Real Driving Emissions

We now have everything needed to formalize the RDE test procedure. The reg-
ulation is a contract imposing emission limits whenever a trip is a valid RDE
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test. We split our formalization into two main parts where the first part decides
whether a trip qualifies as a valid test and the other assesses whether the emission
limits are violated.

We use a trigger that indicates an RDE violation

trigger is_valid_test & emission_limits_exceeded

when the trip is a valid test but the emissions are exceeded. It remains to define
boolean streams indicating a valid test and exceeded emissions.

As we will see our extension of Lola provides a very intuitive and natural
way of formalizing the RDE test procedure. The specification is structured as
follows: We first declare input streams for all test parameters, we then formalize
the various preconditions of the regulation to determine the validity of a trip.
Finally, we formalize the computation of the distance specific emissions and
whether the respective emission limits are exceeded, or not. We describe selected
and interesting parts of the formalization (see footnote 1) in this section.

5.1 Test Parameters

As the test parameters are provided as synchronous streams with a fixed sam-
pling frequency f prescribed by the regulation, we can directly declare them as
inputs to our monitor. To asses whether a trip meets basic requirements regard-
ing its route and ambient conditions, we need the speed v of the vehicle, the
altitude, and the ambient temperature. To calculate the emissions, we further
need the concentration of the various regulated emission gasses and the Exhaust
Mass Flow (EMF), i.e., the weight of the exhaust emitted per second. For this,
we declare an input stream gas_ppm for each regulated emission gas and another
input stream exhaust_mass_flow for the EMF. Given the gas concentration and
the EMF we can compute the mass flow of the respective gas. Usually, all inputs
come from the On-Board Diagnostics II (OBD-II) [19] interface and the PEMS
which includes a GPS tracker. Given an appropriately equipped vehicle, the NOx

concentration can be obtained via OBD-II. Since the early 2000s all new U.S.
and European cars are equipped with an OBD-II port [18]. However, an NOx

sensor is not mandatory yet.

5.2 Preconditions

The preconditions a trip shall satisfy to qualify as a valid test are divided into trip
requirements, stipulating basic requirements regarding, for instance, the route
and the velocity, ambient conditions, stating acceptable temperature and altitude
ranges, overall trip dynamics, encompassing the driving behavior, and dynamic
conditions, accounting for road grade, weather, and other dynamic factors. While
the trip requirements and ambient conditions are relatively straightforward to
specify, the overall trip dynamics and dynamic conditions are more of a challenge.
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Trip Requirements. After declaring the input streams we formalize the trip
requirements as specified in Section 6 of ANNEX IIIA of the RDE regulation.
Compare Table 1 in Sect. 3 for an overview of the constraints and our full formal-
ization for further details. To formalize the trip requirements, we first compute
useful auxiliary streams e.g.

output bool is_urban := v <= 60 // 6.3

output float u_avg_v := avg(v[-N:0 | is_urban ])

which we use to comprehensively assert the trip requirements. According to the
regulation, values need to be binned according to the current speed in one of
three bins, urban, rural, or motorway. The stream u_avg_v computes the average
velocity in the urban speed bin using a sliding aggregation window. N is a constant
denoting the maximal number of samples an RDE trip could have. An RDE trip
must not last longer than 2 h which is N = 7200f samples. Computing the average
only over that sampling interval instead of the whole data allows us to specify
a monitor considering only the temporally maximal suffix of a trip. A trip with
more than N samples is not a valid RDE trip in any case.

We use the auxiliary streams to compute a boolean stream which is the
conjunction of all trip requirements, for instance, for the average velocity of the
urban segment: 15 <= u_avg_v <= 40.

Ambient Conditions. The RDE regulation specifies the ambient conditions in
terms of temperature (in Kelvin), e.g., 273 <= temperature <= 303, and altitude
ranges which can be directly translated to boolean formulae.

Overall Trip Dynamics. The overall trip dynamics asses the drivers driving
behavior. They require that the driver neither drives too aggressive nor too
restrained. To this end, they require to compute the 95% percentile of speed
times acceleration for acceleration values at least 0.1 for each speed bin. We
show this exemplary for the urban speed bin:

output float a := (v[+1,0] - v[-1,0]) / (2 * 3.6)

output float va := (v * a / 3.6)

output bool u_a_ge_01 := a >= 0.1 & is_urban

output float u_va_pct :=

percentile95(va[-N:0 | u_a_ge_01 ])

These values can be efficiently computed with an update cost of O(log n) and
storage cost of O(n). Although, in general specifications with future references
are not efficiently monitorable [10] this does not hold here, as v is extended in
every step and cannot delay the computation indefinitely. We again use these
values as part of boolean equations as specified in the RDE regulation, e.g.

u_va_pct > (0.136* u_avg_v + 14.44)

which invalidates the trip if less than 95% of the va values are below the given
threshold, i.e., if the driving was too aggressive.
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Dynamic Conditions. The dynamic conditions encompass road grade,
weather, and other factors that may influence the performance of the vehicle
under test, but are out of control of the driver. They serve as built-in plausibil-
ity checks based on the reproducible CO2 measurements of WLTP. To validate
the dynamic conditions one considers variable width windows where a new win-
dow is instantiated with each sample point. Owed to the parameterized stream
templates of Lola 2.0 this can be expressed nicely by:

output bool win_completed(start: int) :

inv: sample; ter: win_completed

:= total_co2_mass - win_start_co2(start) >= MCO2REF

output float win_v(start: int) :

inv: sample; ter: win_completed := v

output float win_avg_v(start: int) :

inv: sample; ter: win_completed

:= avg(win_v(start)[-N:0])

With each sample a new window is invoked. The values of these windows are
extended in each step, and a window is completed in the step where the CO2

emissions so far generated are at least a reference value determined by the WLTP
test results. The RDE requires to compute the distance specific emissions for each
window as well as the average speed. The earlier introduced sliding aggregation
windows can be used to compute these values. Each window is then checked for
normality by comparing the distance specific CO2 emissions given the average
speed to a reference curve. If at least 50% of windows are normal, the test is
considered valid.

In the above, we are formalizing the computation of the values to demonstrate
that we are indeed able to cover dynamic conditions faithfully with our formal-
ization. However, our actual experiments do not include the checks regarding
these conditions, which merely serve as plausibility check. The practical reason
is that the needed WLTP values for our test vehicles were unavailable to us.

Calculating Emissions. As already stated above the emissions are calculated
using the exhaust mass flow and the gas concentrations. The emissions are then
accumulated and based on the distance of the trip the distance specific emissions
are calculated which are compared to the respective threshold [21], e.g.:

output bool nox_exceeded :=

ite(d > 0, sum(D_nox_mass[-N:0]) / d, 0) > 0.08

5.3 RDE Violation

Given the boolean formulae of the preconditions, we compute whether the trip
is indeed valid. Given the boolean formulae indicating whether the various reg-
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ulated emission gases exceed the thresholds, we compute whether the emissions
are exceeded. This gives us the boolean streams needed for our trigger.

Monitoring for RDE violations allows us to asses whether a car is compliant
or not. In addition, one can ask the question of how difficult is it to detect
a running test as early as possible. Some of the preconditions, e.g., the total
duration and the maximal velocity are monotonic and cannot be satisfied once
violated. To build an RDE defeat device one needs to be able to tell whether the
current trip prefix could still become a valid RDE trip or not.

6 Experimental Evaluation

We show that the formalization and the thereof constructed monitor are not only
useful for certification purposes but can further be used by a layperson without
expensive equipment to get an insight into exhaust emissions and whether her
car does indeed adhere to the RDE regulation, or not.

Usually, the test parameters are obtained with a Portable Emissions Mea-
surement System. We present two use cases for our monitor—one that requires
a quite expensive PEMS and another that does not.

Case 1: Genuine RDE The first use case of the constructed RDE monitor
is a genuine RDE test performed with a PEMS, for instance as part of an
official certification process. The input streams for our monitor are directly
generated by the PEMS and the control unit of the car.

Case 2: Low-Cost RDE The more interesting use case, however, is a low-
cost RDE test without a PEMS. At best such a test can be conducted by a
layperson without expensive equipment and expertise how to use it. The key
challenge of a low-cost RDE is obtaining the test parameters.

A PEMS is a whole emission measurement laboratory in a box and therefore
costs a significant amount of money. In addition, its setup procedure is rather
complicated and usually requires an expert. Therefore, genuine RDE tests cannot
be conducted by a layperson. As we will show, a low-cost variant of the RDE
can be performed solely based on on-board sensors for a fraction of the cost with
an easy to use monitor plugged into a standardized debug port.

The key challenge here is to obtain the test parameters—especially the con-
centrations of the regulated emission gasses. While the vehicle speed and altitude
can be determined via GPS with an ordinary smartphone, measuring emissions
requires specific sensors. Fortunately, many modern cars with a Selective Cat-
alytic Reduction (SCR) system are already equipped with NOx sensors mea-
suring the NOx concentration in the after-treatment exhaust stream, i.e., the
stream of exhaust after it ran through the cleaning process as it leaves the
tailpipe. Further, the CO2 emissions can be approximated using data obtained
from the engine control unit. Thanks to the standardized OBD-II interface [19]
the required values can be obtained using a standard debug port.

We conducted a low-cost RDE with an Audi A7 3.0 TDI 200 kW which is
known to contain a defeat device which chokes the injected amount of urea
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shortly before it runs out of urea [24]. Urea is used as part of the SCR system
to lower the NOx emissions. We assume that the car indeed conforms with the
EURO 6 emission limits in case the urea tank contains enough urea. If this
were not the case, this would have been likely unrevealed by now based on the
extensive testing that was necessary to detect the defeat device in the first place.
In order to convince ourselves that the RDE specification and monitor we provide
is correct, we first checked the input validation by correctly validating recorded
data of genuine RDE tests. For trips that obviously are not RDE, the monitor
complained as expected. In a second step, we drove a valid RDE with the Audi
A7 mentioned above with full urea tank. We briefly discuss the test setup, main
obstacles, and the result of this test in the rest of this section.

While our test vehicle provides the NOx concentration in the exhaust stream,
it does not directly provide the exhaust mass flow, which is needed to calcu-
late the emissions. We thus approximate the exhaust mass flow as follows: [23]
describes a procedure to compute the exhaust mass flow based on the mass air
flow and the mass fuel flow, i.e., the rate of mass of air and fuel used in the
combustion process. We approximate the fuel mass flow based on the rate of fuel
consumption in liters and the fuel density, which is approximately 0.835 kg/l [20]
for Diesel. In Lola this is then calculated by:

output float exhaust_mass_flow := // in [kg/h]

mass_air_flow + fuel_rate * 0.835

CO2 emissions can be calculated based on the fuel rate and an oxidation
factor specifying how much of the carbon is fully oxidized to CO2. Cars do emit
CO which is a regulated emission gas. Thus the oxidation factor has to be less
than 1. For our tests, we assumed an oxidation factor of 0.99 [25].

Besides acquiring the test parameters, there is yet another challenge for a
successful low-cost RDE conducted by a layperson—she needs to drive a valid
RDE test trip. To assist with that, we augmented our specification with addi-
tional streams and triggers computing the urban, rural, and motorway distances
which still need to be driven and other indicators, e.g., emitting a warning when
the stop percentage comes close to the allowed boundaries.

With that assistance system in place, it was relatively easy to drive a valid
test trip. See Fig. 2 for the speed profile of the trip. Our monitor computed a
value of 68 mg/km NOx which is within the EURO 6 emission limits of 80 mg/km
[21] and almost matches the value of the data-sheet [4], which is 67 mg/km. For
CO2 the monitor computed 151 g/km which is a deviation of +9% from the
value of the datasheet, but CO2 is only used to check plausibility in any case.
This shows that a low-cost RDE test conducted by a layperson using inexpensive
equipment can provide very good results.

Knowing that the vehicle chokes the urea injected into the exhaust stream
whenever it runs low on urea, we tried to repeat our experiment with a close to
empty urea tank. Unfortunately, we were unable to drain the urea from the tank
of the car which is prevented by the construction of the vehicle.
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Fig. 2. Profile of a low-cost RDE with an Audi A7 3.0 TDI 200 kW

To conclude the experimental evaluation and given those results, we envisage
that in the future cars are equipped with more sophisticated emission measure-
ment systems such that a low-cost RDE eventually becomes possible not only
for NOx but also for other emission gasses.

7 Conclusion

We presented an extension of the stream-based specification language Lola

2.0 with sliding aggregation windows and showcased its application with a for-
malization of the Real Driving Emissions (RDE) regulation. The constructed
monitor has been successfully used as a basis for a low-cost, easy-to-use, and
fully transparent tool, which can be plugged into the standardized OBD-II port
with which every modern car is equipped. This enables laypersons to perform
RDE tests for a fraction of the cost of a genuine RDE test. These measurements
then rely on the on-board NOx sensors. Research about their precision is still in
progress. However, the tests we conducted suggest high precision measurements.
Nevertheless, it should be mentioned that the sensors and their driver software
are shipped with the car, so it is imaginable that the sensors are doped by the
manufacturer, thereby invalidating the test results. We are indeed looking into
the option to instead hook a separate sensor to the exhaust pipe.

The formalization of regulations is an essential step towards precise and suc-
cinct perspicuity enablers. The existing formalization already captures the heart
of the RDE regulation. There are some corner cases and details for regions with
peculiar geographic conditions that we did not implement yet, but we are plan-
ning to add. Our monitor is working online, i.e., the car’s driving information is
passed to the monitor in real-time. However, the decision whether the trip sat-
isfies the RDE requirements, or not, does not consider possible continuations of
the trip. Thus far, it does not detect that a current trip cannot be prolonged to
a valid RDE drive anymore. We are working on this. Additionally, our goal is to
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enable RDE checks during normal usage of the car. To this end, we plan to inte-
grate a detection algorithm identifying all intervals of a trip (longer than 90 min)
satisfying the RDE conditions together with compliance checks concerning the
emission thresholds. Such a monitor could, for instance, be integrated into an
easy-to-use smartphone app, possibly paired with a wireless OBD-II dongle, or
as a simple means to crowdsource an empirical answer to the question of how
much of actual road traffic is covered by the RDE.
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8. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On tem-
poral logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, pp. 92–106. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33386-6 9

9. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

10. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 10

11. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring. CoRR abs/1711.03829 (2017). http://arxiv.org/abs/1711.03829

12. Hirzel, M., Schneider, S., Tangwongsan, K.: Sliding-window aggregation algo-
rithms: tutorial. In: Proceedings of the 11th ACM International Conference on
Distributed and Event-Based Systems, DEBS 2017, pp. 11–14. ACM, New York
(2017)

13. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

https://www.avl.com/emission-measurement/-/asset_publisher/gYjUpY19vEA8/content/avl-m-o-v-e-real-driving-emission-testing
https://www.avl.com/emission-measurement/-/asset_publisher/gYjUpY19vEA8/content/avl-m-o-v-e-real-driving-emission-testing
https://www.avl.com/emission-measurement/-/asset_publisher/gYjUpY19vEA8/content/avl-m-o-v-e-real-driving-emission-testing
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-33386-6_9
https://doi.org/10.1007/978-3-642-33386-6_9
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
http://arxiv.org/abs/1711.03829
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12


Efficient Monitoring of Real Driving Emissions 315

14. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed
and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.)
Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78127-1 26

15. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57. IEEE Computer Society (1977), http://ieeexplore.ieee.
org/xpl/mostRecentIssue.jsp?punumber=4567914

16. Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci.
13, 45–60 (1981)

17. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfac-
tion of temporal logic formulae with applications to systems biology. In: Heiner,
M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNAI), vol. 5307, pp. 251–268.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88562-7 19

18. The European Parliament and the Council of the European Union: 98/69/EC,
October 1998. http://data.europa.eu/eli/dir/1998/69/oj

19. The European Parliament and the Council of the European Union: Directive
98/69/EC of the European parliament and of the council. Official Journal of the
European Communities (1998), http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=CELEX:31998L0069:EN:HTML

20. The European Parliament and the Council of the European Union: Directive
2005/55/EC, September 2005. http://data.europa.eu/eli/dir/2005/55/oj

21. The European Parliament and the Council of the European Union: Commission
Regulation (EU) 2007/715, June 2007. http://data.europa.eu/eli/reg/2007/715/oj

22. The European Parliament and the Council of the European Union: Commission Reg-
ulation (EU) 2016/427, March 2016. http://data.europa.eu/eli/reg/2016/427/oj

23. The European Parliament and the Council of the European Union: Commission Reg-
ulation (EU) 2017/1151, June 2017. http://data.europa.eu/eli/reg/2017/1151/oj

24. Traufetter, G.: Audi manipulierte beliebtes Dienstwagenmodell - Produk-
tion gestoppt, May 2018. http://www.spiegel.de/auto/aktuell/audi-manipulierte-
beliebtes-dienstwagenmodell-a-1206722.html

25. U.S. Environmental Protection Agency: Emission Facts: Average Carbon Dioxide
Emissions Resulting from Gasoline and Diesel Fuel, February 2005. https://nepis.
epa.gov/Exe/ZyPURL.cgi?Dockey=P1001YTF.TXT

https://doi.org/10.1007/978-3-540-78127-1_26
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4567914
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4567914
https://doi.org/10.1007/978-3-540-88562-7_19
http://data.europa.eu/eli/dir/1998/69/oj
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://data.europa.eu/eli/dir/2005/55/oj
http://data.europa.eu/eli/reg/2007/715/oj
http://data.europa.eu/eli/reg/2016/427/oj
http://data.europa.eu/eli/reg/2017/1151/oj
http://www.spiegel.de/auto/aktuell/audi-manipulierte-beliebtes-dienstwagenmodell-a-1206722.html
http://www.spiegel.de/auto/aktuell/audi-manipulierte-beliebtes-dienstwagenmodell-a-1206722.html
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1001YTF.TXT
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1001YTF.TXT


Property-Driven Runtime Resolution
of Feature Interactions

Santhana Gopalan Raghavan1, Kosuke Watanabe2, Eunsuk Kang3(B),
Chung-Wei Lin4, Zhihao Jiang5, and Shinichi Shiraishi2

1 University of Southern California, Los Angeles, USA
santhanr@usc.edu

2 Toyota InfoTechnology Center, Mountain View, USA
{kwatanabe,sshiraishi}@us.toyota-itc.com
3 Carnegie Mellon University, Pittsburgh, USA

eskang@cmu.edu
4 National Taiwan University, Taipei, Taiwan

cwlin@csie.ntu.edu.tw
5 ShanghaiTech University, Shanghai, China

jiangzhh@shanghaitech.edu.cn

Abstract. The feature interaction problem occurs when two or more
features interact and possibly conflict with each other in unexpected
ways, resulting in undesirable system behaviors. Common approaches to
resolving feature interactions are based on priorities, which are ineffective
in scenarios where the set of features may evolve past the design phase,
and where desirability of features may change dynamically depending on
the state of the environment. This paper introduces a property-driven
approach to feature-interaction resolution, where a desired system prop-
erty is leveraged to determine which feature action should be enabled at
a given context. Compared to existing approaches, our approach is capa-
ble of (1) providing resolutions even if the system evolves with new or
modified features, and (2) handling complex resolution scenarios where
the preference of one feature over the others may change dynamically.
We demonstrate the effectiveness of our approach through a case study
involving resolution of safety-critical features in an intelligent vehicle.

1 Introduction

The feature interaction problem occurs when two or more features interact and
possibly conflict with each other in unexpected ways, resulting in undesirable
system behaviors [3]. Feature interactions are becoming an important issue in
emerging domains such as the Internet of Things and intelligent automotive
systems, where the outcome of an unexpected interaction may pose significant
safety or security risks [8,16,26]. For instance, a pair of independent safety fea-
tures in a vehicle may attempt to send conflicting acceleration commands to the
engine controller, possibly violating a safety requirement that would have been
satisfied if each feature had existed in isolation.
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Fig. 1. Overview of the proposed resolution framework.

Most common approaches to resolving conflicts between features leverage
some notion of priorities [4,5,13,24,28]. Typically, a total or partially-ordered
ranking of features is determined at design time, and an arbitration procedure
is applied at runtime to enable the actions of the highest ranking feature when
a conflict occurs. However, a priority-based resolution strategy suffers from two
major shortcomings. First, in certain domains, it may be difficult or impossible
to predict the set of potential features that may be integrated into a system.
Many modern vehicles, for example, are designed with a capability to download
new applications or modify existing ones through over-the-air (OTA) updates,
and the architecture of an in-vehicle software system is likely to evolve well
beyond its deployment into the market.

Second, certain types of resolution decisions are context-dependent, in that
the most desirable feature may depend on the state of the surrounding environ-
ment at a particular time. For instance, to reduce the risk of collision, a feature
that results in increased acceleration may sometimes be preferable to one that
attempts to reduce speed (e.g., in scenarios where a vehicle is being tailgated by
another speeding vehicle within an unsafe distance). A static resolution strategy
that always favors certain features over the others is insufficient to support this
type of dynamic resolution, where contextual information plays a crucial role.

This paper introduces a novel property-driven approach to feature-interaction
resolution that is designed to address these two shortcomings. The high-level
overview of the proposed approach is shown in Fig. 1. Along with a set of feature
actions, our resolver takes three different types of inputs: (1) a desired prop-
erty to be fulfilled (e.g., “The distance to the preceding vehicle must be at least
some minimum value”), (2) a predictive model that describes how the system
and its environment evolve given a particular action (e.g., a model of changes
in velocity over time given an acceleration), and (3) a set of observations that
represent the current context, i.e., the state of the environment (e.g., velocities of
the surrounding vehicles). The resolver then uses the model to evaluate poten-
tial consequences of each action and determine which of the conflicting features
should be enabled to satisfy the property in the current context.

Instead of relying on a pre-determined priority list, our approach decouples
resolution decisions from the presence of particular features and thus, is capable
of providing resolutions even if the system evolves with new or modified features.
In addition, since our approach does not rely on fixed resolution strategies, it
is capable of handling complex resolution scenarios where the preference of one
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feature over the others may change dynamically depending on their satisfactions
of the property in a given context.

In particular, we are interested in investigating the problem of feature inter-
action in cyber-physical systems (CPS), where the behavior of the system and
the environment can be represented as an evolution of continuous variables (e.g.,
velocity or distance) over time. To express properties about these types of sys-
tems, we adopt Signal Temporal Logic (STL) as the underlying property specifi-
cation language [15]. Sometimes, multiple actions may satisfy the desired prop-
erty in a given context and thus, cannot be distinguished from each other. To
resolve this issue, we leverage the notion of robustness of satisfaction [11] as
a quantitative metric to measure how well the property is satisfied by a given
action and distinguish competing features that both (dis-)satisfy the property.

We have built a prototype implementation of the proposed resolution frame-
work as a part of an in-house simulation environment for designing and testing
vehicle systems. To demonstrate the effectiveness of our approach, we applied
this framework to a case study involving a set of safety features from the automo-
tive domain. The outcome of this study shows that our approach can effectively
resolve conflicts among features and ensure that the system performs the actions
that are most satisfactory with respect to a given safety property.

This paper makes the following contributions:

– A novel, property-driven approach to feature-interaction resolution, which
applies the notion of the robustness of property satisfaction to resolve conflicts
among competing features (Sect. 4),

– A prototype implementation of the proposed approach (Sect. 5.1), and
– A case study demonstrating the effectiveness of the approach on a set of

automotive safety features (Sect. 5.2).

The paper concludes with a discussion of the related work (Sect. 6), current
limitations with the proposed framework and potential directions for further
extending the property-driven approach (Sect. 7).

2 Motivating Example

Modern vehicles are equipped with a set of safety features called advanced driver-
assistance systems (ADAS). One common ADAS feature is called cruise control
(CC), which is intended to automatically maintain the speed of the ego vehicle
(i.e., the vehicle being controlled) to the driver-set speed. To achieve its objec-
tive, CC sends an acceleration request to the engine controller, which, in turn,
generates a corresponding actuator command to increase the engine torque until
the vehicle reaches the desired acceleration.

Another ADAS feature, called speed limit control (SLC), is designed to auto-
matically reduce the speed of the vehicle to a legal limit that is obtained from
the surrounding environment (e.g., by detecting a speed limit sign or a GPS loca-
tion). SLC operates by sending a sequence of requests to the brake controller
until the vehicle reaches the desired speed limit.

One desirable safety property of the ego vehicle can be stated as:
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P1: The time to collision (TTC) between this vehicle and a nearby vehicle
must always be above TTCmin.

where TTCmin is some constant threshold determined by automotive engineers
(enough time for a driver to react; e.g., 5 s). The actual time-to-collision at a
given moment depends on the acceleration, velocity, and distance between a pair
of vehicles, and computed using information from on-board sensors.

Conflict Scenario. Consider a scenario with three vehicles sharing a single
lane, as shown in Fig. 2. For the purpose of this example, vehicle B is designated
to be the system that we wish to control, and the leading and following vehicles
(A and C) are considered to be part of the environment. Initially, vehicle A is
moving at a constant speed of 60 km per hour (km/h), and B decides to catch
up to A from its initial speed of 40 km/h by enabling CC.

Fig. 2. Sample driving scenario.

Suppose that vehicle B approaches an area
with a speed limit of 40 km/h, and the SLC
feature begins sending brake requests in order
to limit the vehicle acceleration. This results
in one type of feature conflict : Two indepen-
dent features (i.e., CC and SLC), each trying
to achieve its own goal, attempt to manipulate the same system variable (i.e.,
acceleration) in an inconsistent manner.

Existing Methods. One way to resolve this conflict is to assign to each feature
a priority rank that indicates the level of criticality, and have the feature with
the highest priority (e.g., SLC) be selected over those with lower ranks when
a conflict arises (e.g., CC). An alternative approach is to design and assign a
specific resolution strategy to each system variable that may be manipulated
by multiple features. For instance, one possible strategy, given multiple features
that attempt to manipulate the acceleration, may select the one that results
in the lowest acceleration (e.g., SLC)—the reasoning being that the slower the
vehicle speed is, the safer it is likely to be.

While the latter approach has the advantage that it is feature-agnostic, it may
still lead to unsafe outcomes in scenarios that the specific resolution strategy is
not designed to handle. For instance, suppose that the following vehicle C begins
to rapidly accelerate and exceed the speed of vehicle B. As vehicle C approaches
B within an unsafe distance (thus, reducing the TTC between the two vehicles),
the safer action to take in this scenarios is arguably to increase, not decrease,
the acceleration of vehicle B to avoid a possible collision.

Proposed Method. Our approach to resolution, in comparison, evaluates the
feature actions with respect to the property and selects the one that is most
likely to satisfy it. For instance, as vehicle C speeds towards B from the rear
and the TTC approaches the safe threshold (TTCmin), our resolver determines
that accelerating the vehicle is more likely to satisfy the above property (P1)
and selects CC over SLC.

Suppose, however, that as vehicle B speeds up towards 60 km/h, the leading
vehicle A begins to slow down, and the TTC between A and B begins approach-
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ing the safety threshold (thus increasing the chance of collision ahead). Under
this circumstance, the resolver determines that the safer action (as determined
by property P1) is to decelerate vehicle B, and chooses SLC over CC.

Challenges. Note that the desirability of a feature may change depending on
the context; i.e., a feature action may satisfy a desired property in one scenario
while failing to satisfy it in a different scenario. To make this type of context-
dependent decision, the system must explicitly take into account the information
about the current and future states of the environment. Furthermore, if none of
the competing features satisfies the property (or if all of them do), the system
must still be able to make a meaningful choice between them. In the following
sections of the paper, we introduce how our resolution framework leverages (1) a
model of the environment to evaluate the desirability of a feature within a given
context, and (2) the notion of robustness of satisfaction to select the action that
is most satisfactory with respect to the given property.

3 Background

We are interested in designing a resolution framework to ensure the safety of
CPSs, which share two common characteristics: (1) timing is often an important
part of system requirements (e.g., “the vehicle must come to a full stop within
the next 3 s”), and (2) certain aspects of system states are best captured using
continuous domains (e.g., velocity). To express properties about such a system,
we adopt a formal specification logic called signal temporal logic (STL) [15].

Behavior as Signals. In this approach, the state of a system and its evolution
over time is captured using the notion of a signal. A signal over domain D is
a function s : T → D, where time domain T is a finite or infinite set of real
numbers that represent a particular point in time (T ⊆ R≥0). A typical system
consists of multiple state variables, and so the value of a signal is represented as
a tuple of k real numbers (D ⊆ R

k); i.e., s(t) = (v1, . . . , vk). For convenience,
we use the subscript notation si(t) to denote the i-th component of the signal
at time t (for 1 ≤ i ≤ k).

Example. Suppose that the state of a vehicle at time t is modeled as tuple
s(t) = (v, a), where v and a correspond to the velocity and acceleration
of the vehicle, respectively. The signal s = {(t0, (30.0, 2.5)), (t1, (32.5, 2.5)),
(t2, (35.0, 2.5))} depicts a behavior of the vehicle as it speeds up from 30 to
35 km/h at a constant acceleration over a finite time sequence〈t0, t1, t2〉.

Signal Temporal Logic (STL). STL is a logic designed for specifying and
reasoning about the continuous behavior of a system over time [15]. STL is an
extension of linear temporal logic (LTL) [20] with an ability to specify properties
over real values and real time. An STL formula takes the following form:

ϕ := u | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b]ϕ2
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where a < b for a, b ∈ Q≥0, and u is a predicate of the form fu(s1(t), . . . , sk(t)) >
0 for a k-tuple signal s = (s1, . . . , sk) at time t. Informally, the meaning of
the until operator at time t is that ϕ1 must hold until ϕ2 becomes true some-
time within the interval [t + a, t + b]. The until operator U alone is sufficient
to express two other types of temporal operators that are often useful in sys-
tem specification—eventually (F) and always (G): F[a,b]ϕ = TrueU[a,b]ϕ and
G[a,b]ϕ = ¬F[a,b]¬ϕ.

Robustness of Satisfaction. In a system whose behavior is captured using
continuous variables, it is often useful to be able to talk about how close the
system is from (dis-)satisfying a property. For instance, if a property says “the
distance between the ego and preceding vehicles must be at least 3.0 m”, it may
be useful to know not only whether the vehicles satisfy this property, but also
how far above 3 m they are apart (e.g., 3.1 m vs 5 m).

In prior works, STL has been extended to define this notion of closeness as
the robustness of satisfaction [10,11]. Formally, the robustness of s with respect
to STL formula ϕ at time t, denoted ρ(ϕ, s, t), is defined as follows:

ρ(u, s, t) = fu(s1(t), . . . , sk(t))
ρ(¬ϕ, s, t) = −ρ(ϕ, s, t)

ρ(ϕ1 ∧ ϕ2, s, t) = min(ρ(ϕ1, s, t), ρ(ϕ2, s, t))
ρ(ϕ1U[a,b]ϕ2, s, t) = supt′∈[t+a,t+b] min(ρ(ϕ2, s, t′), inf t′′∈[t,t′] ρ(ϕ1, s, t′′))

where infx∈Xf(x) returns the greatest lower bound of some function f over
domain X (and similarly for sup, the least upper bound). Given that each pred-
icate in STL is of the form u ≡ fu(s1(t), . . . , sk(t)) > 0, robustness intuitively
captures how far the signal deviates above (or below) 0.

Robustness for G and F properties can also be defined as:

ρ(G[a,b]ϕ, s, t) = inf t′∈[t+a,t+b] ρ(ϕ, s, t′)
ρ(F[a,b]ϕ, s, t) = supt′∈[t+a,t+b] ρ(ϕ, s, t′)

Informally, how well s satisfies Gϕ is defined to be the point at which the system
is the furthest from satisfying ϕ (similarly, for Fϕ, the point at which ϕ is
satisfied “most well” by the system).

Example. Consider the property P1 from Sect. 2, which says that the TTC
between the ego vehicle and a nearby vehicle must always be above some pre-
defined threshold (TTCmin). This property can be formulated as the following
STL formula: G[0,3](ttc − TTCmin > 0) (for simplicity, let us assume that s is
a single-tuple signal that only keeps track of TTCs over time; i.e., ttc = s1(t)).
Suppose that we are given the following pair of signals, representing two
different behaviors of the system:

sX = {(0, (4.0)), (1, (3.5)), (2, (4.0)), (3, (4.5))}
sY = {(0, (4.0)), (1, (3.5)), (2, (3.0)), (3, (2.5))}
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Suppose TTCmin = 4.0 s. Then, ρ(P1, sX , 0) = −0.5 and ρ(P1, sY , 0) = −1.5.
Intuitively, under the scenario depicted by sY , the ego vehicle comes closer
to colliding with the neighboring vehicle than it does under sX . Thus, while
the property is violated in both scenarios, sX is arguably the more desirable
outcome of the system.

4 Property-Driven Resolution

Given a set of conflicting feature actions, the goal of our resolution method is to
determine which action is most satisfactory with respect to a desired property
and allow that action to take place over the other competing actions. At high-
level, for each action, our resolver generates a predictive signal that estimates
how the system is likely to evolve over time given that particular action, and
then computes its robustness with respect to the property. The resolver then
selects the action with the highest robustness.

Scope. We are specifically interested in studying continuously running systems
that must always stay within a safe state. Our goal is to ensure that interactions
between features do not lead to a violation of safety invariants; i.e., properties
that must be maintained by the system throughout its execution. Thus, our
resolver takes an input property of form G[0,∞]ϕ, where ϕ is any bounded STL
formula. This restriction on the boundedness of ϕ is to ensure that prediction
terminates after a finite number of steps; i.e., when the resolver performs pre-
diction at each execution step, it only needs to look ahead a finite number of
times in order to fully evaluate the robustness of the conflicting actions.

4.1 Prediction

Predictive Model. For each competing action, the resolver generates a signal
that predicts how the system evolves given this action, and then evaluates this
signal for robustness. Let V be the set of variables that hold different kinds of
system quantities (e.g., speed, distance). In our approach, the model used for
prediction is encoded as a transition system M = (Q,A, δ, qo), where:

– Q ⊆ R
k is the set of states, represented as the configurations of a k-tuple

signal (i.e., q = (v1, . . . , vk)). In particular, the state consists of n controlled
variables (vi for 1 ≤ i ≤ n ≤ k); the remaining are called monitored variables
(i.e., V = Vcontrolled ∪ Vmonitored).

– A is the set of actions on controlled variables.
– δ : Q×A → Q is the transition function that takes the system from one state

to another on an action.
– q0 ∈ Q is the initial state of the system.

The notion of controlled and monitored variables is based on the four variable
model by Parnas et al. [18]. A controlled variable represents the part of the
environment that the system can manipulate (e.g., acceleration). A monitored
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variable, on the other hand, represents an observation about the environment
that cannot be directly manipulated but may depend on one or more controlled
variables (e.g., velocity of a vehicle, which depends on its acceleration).

Each action in A involves the assignment of a new value to a controlled
variable. In every transition, the system performs one of the available actions
to modify a particular controlled variable (for example, increasing the acceler-
ation); the change to the controlled variable, in turn, determines the values of
the monitor variables in the new state. We assume that a special action called
nop ∈ A is defined for all controlled variables to represent the absence of change.

Intuitively, M is a machine that can be used to generate different signals
of the system (each corresponding to one possible execution), depending on the
choice of the action at every transition step: Given a particular sequence of states
q0, q1, . . . , qi−1, s(t) = qt for 0 ≤ t ≤ i − 1.

Example. Let us show how system dynamics (δ) can be specified using a set
of actions and relationships among variables at consecutive time steps, t and
t′. Consider a simplified version of the example from Sect. 2, with two vehicles,
A and B (with B being the ego vehicle that we wish to control). The state of a
predictive model for this system can be defined as (aB , vB , dAB), where aB is
the sole controlled variable representing the acceleration of B, and the rest are
monitored variables for the velocity of B and its distance to A, respectively.

The type of action for setting the acceleration of B is defined as follows:

setAccel(acc) ≡ aB(t′) := acc

where input parameter acc represents the new acceleration of the vehicle, and
:= denotes the assignment of a value to a controlled variable.

The dynamics of monitored variables are defined in terms of controlled
variables (for simplicity, we assume that vehicle A maintains a constant speed):

vB(t′) = vB(t) + aB(t′) ∗ Tstep

dAB(t′) = dAB(t) + vA ∗ Tstep − (vB(t) ∗ Tstep + 0.5 ∗ aB(t′) ∗ (T 2
step))

where t and t′ are used to index into the value of a variable in the current and
next state, respectively; Tstep is a constant that represents the time elapsed
between each system transition (e.g., 0.1 s). The concept of TTC, which appears
in property P1, can be derived in terms of vB and dAB , and needs not be defined
as its own monitored variable: ttc(t′) = dAB(t′)/(vB(t′) − vA)

Assumption. We assume that the model of the system used for prediction
is deterministic; i.e., executing the model from a particular state with a given
action and some number of steps always returns a unique signal. This simplifi-
cation results in a desirable property that feature conflicts can be resolved in a
deterministic manner.



324 S. G. Raghavan et al.

1 fun resolveAll(ϕ, M, s)
2 resolved := {}
3 for v ∈ Vcontrolled do
4 Ac := detectConflicts(v, M)
5 resolved[v] := resolve(Ac, ϕ, M, s)

6 end
7 return resolved

8 end
9 fun resolve(Ac, ϕ, M, s)

10 rob := {}, amax := none
11 for a ∈ Ac do
12 sa := execute(M, a, s(t), window(ϕ))
13 rob[a] := ρ(ϕ, sa, t + 1)
14 if amax = none ∨ rob[a] > rob[amax] then
15 amax := a
16 end

17 end
18 return amax

19 end
Algorithm 1. Resolution Algorithm.

4.2 Resolution Algorithm

As shown earlier in Fig. 1, our resolver is placed between the set of available
features and actuators that act on the system environment as requested by the
feature actions. During each system execution cycle, the resolver performs the
algorithm in Algorithm 1 to resolve potential conflicts and select system actions
that are most likely to maintain a given invariant ϕ.

The resolver attempts to resolve conflicts associated with each controlled
variable one-by-one (lines 3–6). For each of the conflicting actions a ∈ Ac, the
resolver predicts the effect of action a by executing the system model M for a
time period that is sufficiently lengthy for evaluating how well a satisfies ϕ (lines
12–13). After all conflicting actions have been evaluated, the resolver selects the
one with the highest robustness value to be performed by the system (line 18).

Conflict Detection. The first task in resolution is to determine the conflict
set (Ac, line 4)—the set of feature actions that may be in a potential conflict
with each other. Since the focus of this work is on resolution, not detection, we
omit the details of this step. At high-level, we adopt a variable-specific approach
proposed by [27], where two features that attempt to modify the same controlled
variable are deemed to be in a possible conflict. For instance, CC attempts to
speed the vehicle up by increasing its acceleration while SLC attempts to do the
opposite, and so the actions from these features are placed in the conflict set. In
addition, based on the system dynamics (M.δ), controlled variables that affect
a common monitored variable are considered to be coupled ; any pair of actions
that modify two coupled controlled variables are also included in the conflict set.
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Prediction Window. The resolver must simulate the effect of actions long
enough to determine their robustness with respect to the given property. This
duration depends on the structure and length of intervals in the property itself.
For instance, consider the following formula:

ϕrecover ≡ (ttc ≤ TTCmin ⇒ F[0,3](ttc > TTCmin))

which says that if TTC falls below TTCmin, it must be brought back above this
safe minimum threshold within the next 3 time steps1. In order to determine the
robustness of an action with respect to this property, the resolver must generate
a predictive signal of at least length 4 by executing M . More generally, the
prediction window for a bounded STL formula, ϕ, is defined as follows:

ω(u) = 1 ω(¬ϕ) = ω(ϕ)
ω(ϕ1 ∧ ϕ2) = max(ω(ϕ1), ω(ϕ2))

ω(ϕ1U[a,b]ϕ2) = max(ω(ϕ1) + b − 1, ω(ϕ2) + b)

The intuition behind the prediction window for the until operator is as follows:
Since ϕ2 must become true in at most b future steps, and ϕ1 needs to hold only
until ϕ2 turns true, the prediction task needs to estimate future states for only
b − 1 steps (plus the number of steps needed to predict ϕ1 itself) to determine
the robustness of an action for ϕ1 part of the U formula.

Model Execution. The execution function (line 12) simulates M to generate a
sequence of future states by iteratively applying its transition function δ to the
current state and action a. We assume that throughout the prediction window,
the applied action remains fixed as a. An alternative approach would involve
using models of the features to predict their future actions. Although this could
result in more accurate predictions, it would also introduce an additional require-
ment that every feature comes with its own predictive model—which, based on
our interactions with automotive engineers, is rather unrealistic (particularly
since many features are developed and updated by third-party suppliers beyond
the control of a car manufacturer). Thus, we believe that our design decision is
crucial for making the proposed resolution method applicable in practice.

In our experience, we found that our approach is still effective at predict-
ing the system evolution. Most automotive features perform actions that change
the system state in a gradual manner (e.g., slowly adjust the acceleration); we
observed that such actions do not deviate significantly during the prediction
windows that we experimented with. In addition, the accumulative effect of inac-
curacies is mitigated by repeatedly performing resolution with updated feature
actions at each iteration. The frequency of resolution is a parameter that can be
adjusted in our framework (further discussed in Sect. 5.3. Performance).

Example. Consider actions, a1 = setAccel(0.1 m/s2) and a2= setAccel(−0.45
m/s2), generated by CC and SLC, respectively. Since both manipulate
the acceleration of vehicle B, they are considered to be in conflict (i.e.,
1 To match the syntax of STL, the inequalities can be rewritten to the form f(s(t)) > 0.
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Ac={a1, a2}). The current system state is given as (aB(t), vB(t), dAB(t)) =
(1.0 m/s2, 60 km/h, 12 m), with vA = 50 km/h and TTCmin = 5s. Thus, ttc
= 12/((60 − 50) ∗ 0.2778) ≈ 4.32 ≤ TTCmin, meaning vehicle B faces the risk
of an impending collision with A. Recall the STL formula ϕrecover introduced
earlier:

ϕrecover ≡ (ttc ≤ TTCmin ⇒ F[0,3](ttc > TTCmin))

To evaluate the robustness of the two actions against this formula, the resolver
generates the following predictive signals (for simplicity, we show ttc as the sole
component of the signal instead of aB , vB, dAB):

sa1 = {(t0, (3.19)), (t1, (2.10)), (t2, (1.05)), (t3, (0.028))}
sa2 = {(t0, (4.06)), (t1, (3.91)), (t2, (3.99)), (t3, (4.59))}

where t0 is the first step in the future (t0 = t+1, t1 = t0+1. . . ). According to the
robustness semantics of STL, ρ(ϕ, sa1 , t0) = 3.19 − 5 = −1.81 and ρ(ϕ, sa2 , t0)
= 4.59 − 5 = −0.41. Even though both actions do not satisfy the invariant, a2

is arguably a safer choice, since it pulls the vehicle closer back to the TTCmin

threshold. Thus, the resolver selects a2 as the next action to be performed.

5 Case Study

We present a case study applying our resolution method to a set of conflicting
safety features in an automotive system. In particular, our goal was to demon-
strate that given a set of conflicting feature actions, our method is effective in
selecting the action that is most satisfactory with respect to a desired property.

5.1 Implementation

We built a prototype implementation of the feature resolution framework as a
part of an in-house simulation environment that we had been developing for
vehicle design and testing. The environment consists of two main parts: (1) The
driving simulator, built on top of the Unity engine, and (2) the vehicle control
system, built as a suite of models in Simulink/MATLAB, each describing the
behavior of a controller (e.g., brake controller) or an ADAS feature (e.g., SLC).

The simulator is responsible for animating a model of the traffic environ-
ment, while the control system describes the internal behavior of a vehicle. Each
simulation run takes place on a traffic map (e.g., a highway road) with a set
of vehicles configured with an initial location (2D coordinates), orientation, and
velocity. At each simulation step, the simulator sends a message to the control
system with the information about the current state of the environment (i.e.,
surrounding vehicle locations and speeds). Given this information, the control
system determines the next control action to perform (e.g., reduce acceleration)
and relays this decision back to the simulator, which then accordingly updates
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the state of the environment by using a built-in physics engine. For our study,
we implemented the following features as Simulink models:

– Cruise control (CC): Gradually increases and maintains the vehicle speed to
a set value by generating a sequence of acceleration requests.

– Speed limit control (SLC): Gradually reduces the vehicle speed to a context-
dependent threshold by sending a sequence of partial braking requests and
decreasing its acceleration.

– Automatic emergency braking (AEB): Brings the vehicle to a stop by sending
a sequence of full braking requests, drastically reducing its acceleration.

– Partial braking assistance (PB): Gradually slows down the vehicle to maintain
a minimum distance to the leading vehicle by generating a sequence of partial
braking requests.

5.2 Experimental Setup

We tested our resolution framework on a number of scenarios involving three
vehicles (A, B, C) traveling on a single lane, as shown in Fig. 2.

Predictive Model. The model used in our simulation is more complex than
the one introduced throughout Sect. 4. The state of the system is represented as
the following tuple: (aB , vB , dAB , dBC , aA, vA, aC , vC). In addition to observing
the distance between vehicles A and B, we also keep track of information about
vehicle C (which trails B). Furthermore, we assume that the speeds of both A
and C may also change over time, and this information is made available to B
via vehicle-to-vehicle communication.

Properties. We tested our resolution approach on the following two properties:

P1 ≡ G[0,∞](ttc > TTCmin)
P2 ≡ G[0,∞](ttc ≤ TTCmin ⇒ F[0,3](ttc > TTCmin))

Conceptually, P2 can be considered a weaker form of P1 that the system
attempts to satisfy if P1 is violated: When the TTC falls below a minimum
threshold, the vehicle must recover back to a safer state within the next three
seconds.

The definition of TTC is also more complex than the one introduced in
Sect. 4, as we now take into account the distances between B and C as well as
A and B. In particular, ttc between A, B, C is now defined to be the minimum
of the TTCs between pairs of vehicles:

ttc = min(ttcAB , ttcBC) ttcAB = dAB/(vB − vA) ttcBC = dBC/(vC − vB)

Intuitively, ttc represents the time to the first potential collision. Thus, by max-
imizing the TTC, our resolver can be regarded as attempting to delay the first
impending collision as much as possible (giving the driver more time to react).

Simulation Scenarios. For each pairwise feature combination (e.g., CC vs
SLC), we simulated the four distinct scenarios and observed the changes in vehi-
cle speeds as well as the robustness of the features. Each scenario was executed
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twice, with and without our property-driven resolver activated. In the run with-
out the resolver, the action that would result in a lower acceleration was selected
over the other conflicting action—the rationale being that the slower the vehicle
speed, the safer it is likely to be (the resolution strategy used by [27]).

5.3 Simulation Results

Figure 3 shows the results from two scenarios involving the following feature
combinations: SLC vs CC and PB vs CC, with P1 as the property. In addition
to the plotted scenarios, we tested every other pairwise combinations of features;
due to limited space, we discuss only these two in detail.

SLC vs CC. Figure 3(a) and (b) shows the speed changes in the vehicles when
SLC and CC are enabled, without and with the resolver active, respectively. In

Fig. 3. Simulation results. The x-axis in every plot represents simulation time elapsed
(seconds). In plots (a), (b), (d), (e), the unit of the y-axis is in km/h; in (c) and (f),
the y-axis represents the robustness value (which is, in general, unitless). In both (c)
and (f), CC is enabled from the initial state, while the other feature does not become
activated until certain environmental conditions are met (e.g., vehicle exceeds a SLC
limit)—at which its robustness value (in blue) begins to register. (Color figure online)
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Fig. 3(a), without our resolver, the system always selects the feature that results
in a lower acceleration (SLC). When the trailing vehicle C (in red) speeds up,
the ego vehicle B (blue) is unable to maintain ttcBC above the safe threshold and
eventually ends up in a collision, around 45 s. Note that when a pair of vehicles
collide, their velocities simultaneously become equal (as shown by the sudden
drop and increase in the plot).

In Fig. 3(b), when the resolver is active, it selects the feature that is likely to
result in a higher TTC. As vehicle C approaches B from behind, ttcBC begins to
decrease, and the resolver selects CC to allow B to speed away from C to a state
with a higher TTC. Subsequently, as vehicle B accelerates towards the leading
vehicle A (in green), ttcAB begins to approach the threshold, and the resolver
selects SLC as the more desirable action. The resolver keeps alternating between
the two features in order to maintain both ttcAB and ttcBC above the threshold
until all three vehicles stabilize to a similar speed.

The robustness values for the two features are shown in Fig. 3(c). It starts
out as CC being the only enabled feature until vehicle B reaches a certain SLC-
specific speed limit, at which the SLC feature is enabled (and its robustness,
in blue, begins to appear on the plot). The oscillation between the robustness
of SLC and CC shows the resolver attempting to maximize ttc by alternating
between the two features, until a stable speed is established by the vehicles.

PB vs CC. Figure 3(d) and (e) shows the speed changes in the vehicles when
PB and CC are enabled, without and with the resolver active, respectively. In
Fig. 3(d), as vehicle B catches up to vehicle A within a set distance, PB is
activated and begins generating requests for decelerating vehicle B, introducing
a conflict with CC. Given the two competing features, the system without our
resolver selects the one that would result in a lower acceleration—in this case,
PB. Around 17.5 s, the trailing vehicle C approaches and ends up colliding with
B. As the leading vehicle A is traveling at a sufficiently low speed, all of the
vehicles eventually end up in a three-way collision.

In Fig. 3(e), as vehicle C approaches B, the resolver continuously alternates
between CC and PB in order to maximize the current ttc. However, as vehicle A
is traveling at a significantly lower speed than C is, the resolver is still unable to
keep the minimum TTC between the vehicles. Subsequently, vehicle B collides
with C (shortly after 20 s) and eventually with vehicle A (around 21 s).

This scenario shows an example where none of the actions is sufficient to pre-
vent the system from violating the property. In Fig. 3(f), the robustness values
for both PBS and CC drop below zero and continue to fall, despite the resolver’s
attempt to maximize TTC, eventually resulting in a three-way collision. How-
ever, the behavior resulting from our resolver (Fig. 3(e)) is still arguably more
desirable than the outcome without the resolver (3(d)). In always selecting the
action that maximizes TTC, the resolver effectively delays the time of the first
collision as much as possible (17.5 s vs 21 s), giving the driver more time to react.

Effect on Properties. When we initially designed our experiments, we
expected to see different simulation outcomes depending on the input prop-
erty (P1 vs P2). Surprisingly, however, we found that the results for both
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sets of simulation runs were very similar, regardless of the enabled features.
Note that for the invariant in P1, the robustness of an action is defined as
ρ(ttc > TTCmin, s, t) = ttc(t) − TTCmin. Now, consider the robustness for the
invariant in P2:

ρ(ttc ≤ TTCmin ⇒ F[0,3](ttc > TTCmin), s, t)
= ρ(ttc > TTCmin ∨ F[0,3](ttc > TTCmin), s, t)
= max(ρ(ttc > TTCmin, s, t), ρ(F[0,3](ttc > TTCmin), s, t))
= max(ρ(ttc > TTCmin, s, t), supt′∈[t,t+3]ρ(ttc > TTCmin, s, t′))

= max(ttc(t) − TTCmin, supt′∈[t,t+3](ttc(t
′) − TTCmin))

In other words, for P2, the resolver selects the action that tries to maximize
TTC as much as possible during the period of the prediction window. Due to the
robustness semantics, the resolver attempts to preemptively prevent TTC from
falling below TTCmin, effectively establishing the same overall system behavior
as it does under P1 as the property. In comparison, under the conventional
Boolean semantics of satisfaction, the resolver would treat competing actions
equally until TTC falls below TTCmin. In effect, the robustness semantics of
STL enables a more robust resolution of conflicts.

Performance. To assess the overhead incurred by resolution, we computed the
ratio of the average simulation time with the resolver over that without the
resolver. The overhead depends on the frequency of resolution, the number of
features being evaluated, and the input property (which affects the prediction
window). We selected the frequency of resolution to be 0.1 s, based on our esti-
mates of how frequently messages are generated by typical electronic control
units (ECUs). On average, with all of the four features enabled, the overhead
was around 15.1% for P1 and 17.8% for P2. The additional overhead from P2
was due to the latter property having a larger prediction window, as expected.

It is difficult to accurately estimate how well our proposed resolver would
perform in an actual vehicle. For our simulations, we are executing models of
the features, controllers, and the environment in Simulink, which does not reflect
realistic operating conditions. In a typical vehicle, these models would be realized
as low-level embedded code running on ECUs or a dedicated hardware device
(e.g., FPGA). In addition, in safety-critical systems like vehicles, lookup tables [1,
23,29] are widely used to pre-compute and reuse the results of time-consuming
operations (e.g., simulation of physics dynamics), which could be used to reduce
the overhead introduced by the prediction step.

6 Related Work

Our work is most closely related to the variable-specific resolution approach
introduced in [2,27], which associates each system variable (e.g., speed) with a
specific strategy for resolving conflicts between multiple actions (e.g., select the
action that results in the smallest acceleration). Like ours, their approach decou-
ples resolution decisions from the presence of particular features and is capable
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of handling feature addition or modification without having to modify the res-
olution strategies. However, since their approach still relies on fixed strategies,
it may fail to produce a desirable outcome when the system runs into scenarios
that are unanticipated by those strategies (as discussed in Sect. 2).

Griffeth and Velthuijsen proposed a runtime resolution method based on the
notion of negotiation, where a central mediator is used to resolve conflicting
actions among system agents [12]. Rather than attempting to satisfy a global
system property, the goal of their resolution is different from ours, in that it
attempts to come up with actions that all agents consider to be acceptable. Other
resolution methods [4,5,13,17,24,28] rely on a priority or precedence ordering,
and may not be suitable for systems where the set of features evolve over time.

STL has been leveraged for online monitoring of system properties [6,7,9].
The key difference is that monitoring attempts to detect a violation of a property
after it has already occurred, whereas our resolution attempts to select an action
that is least likely to lead to a violation before it occurs.

Runtime techniques for enforcing a desirable property by observing and
possibly modifying system actions have been studied [19,25]. However, these
approaches typically evaluate a single trace for property satisfaction, and do not
involve a comparison of conflicting actions for their satisfaction or robustness.

Our approach of using a predictive model to dynamically determine the safest
of the conflicting actions is similar to online planning [21,22], which tackles
the problem of periodically computing a desirable policy (i.e. which actions the
system should take at a given state) during the execution.

7 Conclusions and Future Directions

This paper proposes an approach that leverages a desired property of the sys-
tem to resolve conflicts between competing features at runtime. Based on our
experience using this framework in-house, we believe that the property-oriented
method is a promising approach, especially in emerging domains such as con-
nected vehicles where the set of installed features may change frequently.

As discussed in Sect. 4.1, our predictive model assumes that the environment
evolves in a deterministic manner given a system action. Probabilistic models
(e.g., Markov decision processes) may be more suitable for accurately captur-
ing the behavior of environmental agents (e.g., how other vehicles adjust their
speeds). To this end, we plan to extend our resolution framework by adopting
a stochastic notion of STL satisfaction [14]. We are also exploring the possibil-
ity of incorporating enforcement techniques into our framework to synthesize a
new action to maintain a safety invariant if none of the given feature actions is
satisfactory.
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Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS,
vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/
11940197 12

12. Griffeth, N.D., Velthuijsen, H.: The negotiating agents approach to runtime feature
interaction resolution. In: Feature Interactions in Telecommunications Systems,
Amsterdam, The Netherlands, 8–10 May 1994, pp. 217–235 (1994)

13. Hay, J.D., Atlee, J.M.: Composing features and resolving interactions. In: ACM
SIGSOFT Symposium on Foundations of Software Engineering, Proceedings,
San Diego, California, USA, 6–10 November 2000, pp. 110–119 (2000)

https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/11940197_12
https://doi.org/10.1007/11940197_12


Property-Driven Runtime Resolution of Feature Interactions 333

14. Li, J., Nuzzo, P., Sangiovanni-Vincentelli, A.L., Xi, Y., Li, D.: Stochastic contracts
for cyber-physical system design under probabilistic requirements. In: Proceedings
of the 15th ACM-IEEE International Conference on Formal Methods and Models
for System Design, MEMOCODE 2017, Vienna, Austria, 29 September–02 October
2017, pp. 5–14 (2017)

15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. For-
mal Techniques. Modelling and Analysis of Timed and Fault-Tolerant Systems, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

16. Metzger, A.: Feature interactions in embedded control systems. Comput. Netw.
45(5), 625–644 (2004)

17. Nakamura, M., Igaki, H., Yoshimura, Y., Ikegami, K.: Considering online feature
interaction detection and resolution for integrated services in home network system.
In: ICFI, pp. 191–206. IOS Press (2009)

18. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput.
Program. 25(1), 41–61 (1995)

19. Pinisetty, S., Roop, P.S., Smyth, S., Tripakis, S., von Hanxleden, R.: Runtime
enforcement of reactive systems using synchronous enforcers. In: Proceedings of
the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of
Software, Santa Barbara, CA, USA, 10–14 July 2017, pp. 80–89 (2017)

20. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of
Computer Science, SFCS 1977, pp. 46–57 (1977)

21. Ross, S., Pineau, J., Paquet, S., Chaib-draa, B.: Online planning algorithms for
POMDPs. J. Artif. Intell. Res. 32, 663–704 (2008)

22. Seuken, S., Zilberstein, S.: Formal models and algorithms for decentralized decision
making under uncertainty. Auton. Agent. Multi-Agent Syst. 17(2), 190–250 (2008)

23. Sundström, C., Frisk, E., Nielsen, L.: Diagnostic method combining the lookup
tables and fault models applied on a hybrid electric vehicle. IEEE Trans. Control
Syst. Technol. 24(3), 1109–1117 (2016)

24. Tsang, S., Magill, E.H.: The network operator’s perspective: detecting and resolv-
ing feature interaction problems. Comput. Netw. 30(15), 1421–1441 (1998)

25. Wu, M., Zeng, H., Wang, C., Yu, H.: Safety guard: runtime enforcement for safety-
critical cyber-physical systems: invited. In: Proceedings of the 54th Annual Design
Automation Conference, DAC 2017, Austin, TX, USA, June 18–22 2017, pp. 84:1–
84:6 (2017)

26. Yarosh, L., Zave, P.: Locked or not?: Mental models of IoT feature interaction. In:
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
Denver, CO, USA, 06–11 May 2017, pp. 2993–2997 (2017)

27. Zibaeenejad, M.H., Zhang, C., Atlee, J.M.: Continuous variable-specific resolu-
tions of feature interactions. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, 4–8
September 2017, pp. 408–418 (2017)

28. Zimmer, P.A., Atlee, J.M.: Ordering features by category. J. Syst. Softw. 85(8),
1782–1800 (2012). https://doi.org/10.1016/j.jss.2012.03.025

29. Zurbriggen, F., Ott, T., Onder, C.H.: Fast and robust adaptation of lookup tables in
internal combustion engines: feedback and feedforward controllers designed inde-
pendently. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 230(6), 723–735
(2016)

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1016/j.jss.2012.03.025


From Parametric Trace Slicing
to Rule Systems

Giles Reger(B) and David Rydeheard

University of Manchester, Manchester, UK
giles.reger@manchester.ac.uk

Abstract. Parametric runtime verification is the process of verifying
properties of execution traces of (data carrying) events produced by a
running system. This paper continues our work exploring the relation-
ship between specification techniques for parametric runtime verification.
Here we consider the correspondence between trace-slicing automata-
based approaches and rule-systems. The main contribution is a trans-
lation from quantified automata to rule-systems, which has been imple-
mented in Scala. This then allows us to highlight the key differences
in how the two formalisms handle data, an important step in our wider
effort to understand the correspondence between different specification
languages for parametric runtime verification.

1 Introduction

Runtime verification [7,14,15,21] is the process of checking properties of execu-
tion traces produced by running a computational system. An execution trace is
a finite sequence of events generated by the computation. In many applications,
events carry data values – the so-called parametric, or first-order, case of runtime
verification. To apply runtime verification, we need to provide (a) a specification
language for describing properties of execution traces, and (b) a mechanism for
checking these formally-defined properties during execution, i.e. a procedure for
generating monitors from specifications. Many different specification languages
for runtime verification have been proposed and almost every new development
introduces its own specification language.

This work furthers our broader goal of organising and understanding the
space of specification languages for runtime verification. As explained later, we
see little reuse of specification languages in runtime verification and little is
understood about the relationship between the different languages that have
been introduced. We believe that the field can be considerably improved by a
better understanding of this space.

This paper specifically explores the relationship between two particular
approaches to specification for parametric runtime verification: parametric trace
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slicing and rule systems. We begin by describing the general setting we are
working in (Sect. 2) before introducing these two languages (Sect. 3). The main
contribution of the paper is a translation from specifications using parametric
trace slicing to those using rules (Sect. 4). We define the translation, provide some
examples, and prove its correctness. The translation has been implemented and
validated in Scala, available online at https://github.com/selig/qea to rules. A
further contribution is then a discussion of the things we have learnt about the
relationship between these two languages via the development of the translation
(Sect. 5). We conclude in Sect. 6.

2 Setting

In this paper we focus on the runtime verification problem at a level of abstrac-
tion where we assume that a run of a system has been abstracted in terms of a
finite sequence of events via some instrumentation method. Such techniques are
described elsewhere [7].

Defining the Runtime Verification Problem. We begin by defining events,
traces, and properties. We assume disjoint sets of event names Σ, variables Var ,
and values Val . We do not directly consider sorts (e.g. variable x being an integer)
as this is not essential to this work, but assume events are well-sorted where it
matters.

Definition 1 (Events, Traces, and Properties). An event is a pair of an
event name e and a list of parameters (variables or values) v1, . . . , vn, usually
written e(v1, . . . , vn). An event is ground if it does not contain variables. A trace
is a finite sequence of ground events. A property is a (possibly infinite) set of
traces.

We use x, y, z for variables and a, b, c or numbers for values (unless
context requires otherwise), τ for traces and P for properties. For
example, login(x, 42) is an event where x is a variable and 42 a
value; the finite sequence login(a, 42).logout(a) is a trace; and the set
{login(a, 42).logout(a), login(b, 42).logout(b)} is a property. We write a,b
for events where their structure is unimportant.

We say that a property is propositional if all events in all traces have empty
lists of parameters, otherwise it is parametric (or first-order). A specification lan-
guage provides a language for writing specifications ϕ and provides a semantics
that defines the property P(ϕ) that ϕ denotes. A specification language is propo-
sitional if it can only describe specifications denoting propositional properties,
and parametric otherwise.

Definition 2 (The Runtime Verification Problem). Given a trace τ and
a specification ϕ decide whether τ ∈ P(ϕ).

https://github.com/selig/qea_to_rules
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Again, we can talk of the propositional and parametric versions of this prob-
lem. The propositional version should be highly familiar - typical specification
languages include automata, regular expressions, and linear temporal logic, for
which procedures for efficiently deciding the above problem are well known.

There are four main runtime verification approaches that handle the para-
metric case (see [20] for an overview). Parametric trace slicing [3,11,23] sepa-
rates the issue of quantification from trace-checking using a notion of projection.
First-order extensions to temporal logic [8,9,13,22,29] rely on the standard log-
ical treatment of quantification, introducing (somewhat complex) monitor con-
struction techniques to handle this. Rule systems [2,5,17] and stream processing
[10,12,16] do not have inherent notions of quantification. In rule systems val-
ues are stored as rule instances (facts) and rules dictate which instances should
be added or removed. Stream processing defines sets of stream operators that
operate over streams to produce new streams.

We note that there are variations of the above problem e.g. deciding whether
τ.τ ′ ∈ P(ϕ) for all possible extensions τ ′ (which acknowledges that finite traces
may be prefixes of some infinite trace), or considering a property as a function
from traces to some non-boolean verdict domain. In general, the specification
languages for such formulations remain the same and much of our work can
translate to these variations.

Our Research Question. Given this large space of specification languages our
fundamental research question is as follows:

What are the fundamental differences between specification languages for
describing parametric properties for runtime verification and how do these differ-
ences impact the expressiveness and efficiency of the runtime verification process.

Below we discuss (i) why we care about this question, and (ii) what our
general approach to answering it is.

Why Do We Care? We outline the main motivations behind this research ques-
tion:

– Reusable research. The four main approaches to parametric runtime verifica-
tion described above have been explored in relative isolation. Developments
in one area cannot be easily transferred to another. For example, notions
of monitorability and complexity results remain tied to their particular lan-
guage.

– Reusable tools, benchmarks, and case studies. Similarly, tools for one language
cannot be directly used for another and related experimental data is tied
to that tool. This leads to separate ecosystems where runtime verification
solutions are developed in isolation.

– Balancing Expressiveness and Efficiency. Some approaches focus on the
expressiveness of the language before the efficiency of the monitoring algo-
rithm, and other approaches have the inverse focus. A key motivation of this
work is to see where we can combine the best parts of different approaches.
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For example, by identifying fragments of an expressive language that can be
translated into a language with a more efficient monitoring algorithm.

– Evaluation. In general, it is hard to compare approaches without a good
understanding of how they are related. The Runtime Verification competition
[6,26] has relied on a manual translation of specifications between languages,
which has been problematic in various ways. Ideally, a common language
would be used. However, the close links between language and the efficiency
of the monitoring algorithm mean that translations would be required from
this common language.

Our Approach. We are exploring this broad research question in two comple-
mentary directions. Firstly, we are taking an example-led approach where we
explore concrete examples of specifications in different languages and attempt
to infer commonalities, differences, and general relationships. This is ongoing
and has begun to highlight conceptual differences between approaches [18–20].
Secondly, we are working towards a general framework for formally exploring the
relationship between specification languages. We have chosen to build this via
a series of translations between approaches. Our previous work [27] introduced
a translation from a first-order temporal logic to a language using parametric
trace slicing; this current work introduces a translation from parametric trace
slicing to rule systems; and we are currently exploring a translation from rule
systems to a first-order temporal logic. We believe that these translations can
provide a pragmatic way to move between specification languages and highlight
the main differences between languages.

3 Two Languages

In this section we introduce two specification languages for parametric runtime
verification – one based on parametric trace slicing and the other on rule systems.
Examples in both languages are given at the end of the section.

Preliminaries. Let an event alphabet A(Z) be a set of events using variables
in Z e.g. A({x}) might be {e(x)} or {e(x), f(x, x)} but not {e(x), f(x, y)}. A
map is a partial function with finite domain. We write ⊥ for the empty map
and dom(θ) for the domain of map θ. Given two maps θ1 and θ2 we define the
following operations:

consistent(θ1, θ2) iff (∀x) x ∈ (dom(θ1) ∩ dom(θ2)) → θ1(x) = θ2(x)
θ1 � θ2 iff dom(θ1) ⊆ dom(θ2) and consistent(θ1, θ2)
(θ1 † θ2)(x) = v iff θ2(x) = v if x ∈ dom(θ2) otherwise θ1(x) = v

A valuation is a map from variables to values. We use θ and σ for valuations.
Valuations can be applied to structures containing variables to replace those
variables.

The sets Guard(Z) and Assign(Z) contain (implicitly well-sorted) guards
(boolean expressions) and assignments over the set of variables Z. Such guards
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denote predicates on valuations with domains in Z, for example Guard({x, y})
contains expressions such as x = y and x ≤ 2. Assignments are finite sequences
of the form x := t where x ∈ Z is a variable and t is an expression over values
and variables in Z that can be evaluated with respect to a valuation. We assume
a true guard true and an identity assignment id.

Finally, we introduce matching. Given finite parameter sequences v and w, let
the predicate matches(v, w) hold if there is a valuation θ such that θ(v) = θ(w).
Let match(v, w) be the minimal such valuation with respect to the sub-map
relation � (if such a valuation exists, undefined otherwise). Let match(v, w, Z)
be the largest valuation θ such that θ � match(v, w) and dom(θ) ⊆ Z i.e. the
matching valuation is restricted to Z. We lift all definitions to events by checking
equality of event names.

3.1 Parametric Trace Slicing with Quantified Event Automata

Parametric trace slicing [11] was introduced as a technique that transforms a
monitoring problem involving quantification over finite domains into a propo-
sitional one. The idea is to take each valuation of the quantified variables and
consider the specification grounded with that valuation for the trace projected
with respect to the valuation. The benefit of this approach is that projection can
lead to efficient indexing techniques.

Quantified event automata (QEA) [3] is a slicing-based formalism that gen-
eralises previous work on parametric trace slicing. In this work, we consider a
restricted form of QEA that does not allow existential quantification (see the
discussion in Sect. 5).

Definition 3 (Quantified Event Automata). A quantified event automaton
is a tuple 〈X,Q,A(X ∪ Y ), δ,F , q0, σ0〉 where X is a finite set of universally
quantified variables, Q is a finite set of states, A(X ∪ Y ) is an event alphabet,
δ ⊆ (Q×A(X ∪Y )×Guard(Y )×Assign(Y )×Q) is a transition relation, F ⊆ Q
is a set of final states, q0 ∈ Q is an initial state, and σ0 is an initial valuation
with dom(σ0) = Y .

The variables Y are implicitly unquantified and are to be used in guards and
assignments. An advantage of the parametric trace slicing approach is that the
quantified and unquantified parts of the specification can be treated separately.
The quantified part is dealt with by trace slicing and the unquantified part is
dealt with by the automaton.

Semantics. We now introduce a small-step semantics for QEA. We would nor-
mally introduce a big-step semantics in terms of the trace slicing operator and
use this to motivate the (more operational) small-step presentation. But space
does not allow this here and we refer the reader to other texts for this [3,24].
In the following we assume a fixed QEA of interest and refer to its components
e.g. the set of quantified variables X.

Let a monitoring state be a map from valuations θ with dom(θ) ⊆ X to sets
of configurations, which are pairs consisting of states ∈ Q and valuations σ with
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dom(σ) = Y . The small-step semantics defines a construction that extends a
monitoring state given a ground event. This construction is then lifted to traces.

Next Configurations. Given a set of configurations P , an event a, and a valuation
θ (with dom(θ) = X), the set next(P,a, θ) of next configurations is defined as
the smallest set of configurations such that{

(q′, α(σ † match(a,b, Y ))) | ∃(q,b, γ, α, q′) ∈ δ : 〈q, σ〉 ∈ P ∧ matches(a,b)∧
γ(σ † match(a,b, Y )) ∧ match(a,b,X) � θ

}

or P if this set is empty i.e. if no transitions can be taken then P is not updated.
This says that we take a transition if we match the event, satisfy the guard, and
don’t capture any new variables in X not already present in θ.

Relevance. We will update the configurations related to a valuation in the moni-
toring state if the given event is relevant to that valuation. An event a is relevant
to some valuation θ if there is an event in the alphabet that matches it consis-
tently with θ i.e.

relevant(θ,a) ⇔ ∃b ∈ A(X ∪ Y ) : matches(a,b) ∧ match(a,b,X) � θ

Extensions. We will create a new valuation if matching the given event with
an event in the alphabet binds new quantified variables. The set of valuations
extensions(θ,a) that could extend an existing valuation θ given a new ground
event a can be defined by:

from(a) = {θ | ∃b ∈ A(X ∪ Y ) : matches(a,b) ∧ θ � match(a,b,X)}
extensions(θ,a) = {θ † θ′ | θ′ ∈ from(a) ∧ consistent(θ, θ′) ∧ θ′ �= ⊥}

This constructs all valuations that can be built directly and then uses the con-
sistent ones.

Construction. We put these together into the monitoring construction.

Definition 4 (Monitoring Construction). Given ground event a and mon-
itoring state M , let θ1, . . . , θm be a linearisation of the domain of M from largest
to smallest wrt � i.e. if θj � θk then j > k and every element in the domain of
M is present once in the sequence, hence m = |M |. We define the monitoring
state (a ∗ M) = Nm where Nm is iteratively defined as follows for i ∈ [1,m].

N0 = ⊥ Ni = Ni−1 † Addi †
{

[θi �→ next(M(θi),a, θi)] if relevant(θi,a)
[θi �→ M(θi)] otherwise

where the additions are defined in terms of extensions not already present:

Addi = [(θ′ �→ next(M(θi),a, θ′)) | θ′ ∈ extensions(θi,a) ∧ θ′ /∈ dom(Ni−1)]

and next is a function computing the next configurations given a valuation.

This construction iterates over valuations (of quantified variables) from
largest to smallest (wrt �). For each valuation it will add any extensions that do
not already exist and then update the configuration(s) mapped to by the existing
valuation. Let us now consider the aspects that have not yet been defined.
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Maximality. The order of traversal in Definition 4 is important as it preserves
the principle of maximality. This is the requirement that when we add a new
valuation we want to extend the most informative or maximal valuation as this
will be associated with all configurations relevant to the new valuation. Given
a set of valuations Θ and a valuation θ let maximal(Θ, θ) = θM be the maximal
valuation defined as:

θM ∈ Θ ∧ θM � θ ∧ ∀θ′ ∈ Θ : θ′ � θ ⇒ θM �� θ′

This relies on the fact that dom(M) is closed under least-upper bounds. In
Definition 4, when a valuation θ is introduced its initial set of configurations
is taken as those belonging to maximal(dom(M), θ) as otherwise it will already
have been added. This principle is important as it makes the later translation
complicated.

Quantification Domain. It may not be obvious from the small-step semantics
but this semantics ensures that the domain of the monitoring state captures the
full cross-product of the quantification domains of X. The domain of variable
x ∈ X is given as

{match(a,b)(x) | a ∈ τ ∧ b ∈ A(X ∪ Y ) ∧ matches(a,b) ∧ b = e(. . . , x, . . .)}
i.e. the set of values in events in the trace that match with events in the alphabet.

The Property Defined by a QEA. Let Mτ = τ ∗ [ ⊥ �→ {(q0, σ0(Y ))}] be
the above construction transitively applied to the initial monitoring state. The
property defined by the QEA is the set of traces τ such that ∀θ ∈ dom(Mτ ) :
dom(θ) = X ⇒ ∀(q, σ) ∈ Mτ (θ) : q ∈ F i.e. all total valuations are only mapped
to final states.

3.2 A Rule-Based Approach

We now introduce an approach first introduced in RuleR [2] that uses a sys-
tem of rules to compute a verdict. Our notion of a rule system here could be
considered the core of the system introduced in [2] i.e. the extensions in [2] are
either trivial or can be defined in terms of this core. Hence, this formulation is
representative of RuleR.

Let R be a set of rule names. A term is a variable, value, or a function over
terms (e.g. x + 1). A rule expression is a rule name r applied to a list of terms
and is pure if these terms are function-free. A premise is an event, pure rule
expression or guard, or a negation of any of these (we use ! for negation). A rule
term is of the form lhs → rhs where lhs is a list of premises and rhs is a list
of rule expressions. A rule definition is of the form r(x){body} where r is a rule
name, x is a list of variables and body is a set of rule terms. We call r(x){body}
a rule definition for r(x). Finally, A fact is a finite set of rule instances. A rule
instance is a pair 〈r, θ〉 where r is a rule name and θ is a valuation. We now
define a rule system.
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Definition 5 (Rule System). A rule system is a tuple 〈D,B, I〉 where D is a
finite set of rule definitions, B is a finite set of bad rule expressions and I is an
initial fact.

A rule term lhs → rhs is well-formed if when the first occurrence of a variable
in lhs is under a negation then this is its only occurrence in the rule term. A rule
definition r(x){body} is well-formed if every rhs in body only contains variables
in x or the corresponding lhs. A rule system is well-formed if (i) all rule terms
are well formed, (ii) there is at most one rule definition for each r(x), and (iii)
every rule expression used in rule terms has a corresponding definition. A rule
instance 〈r, θ〉 is well-formed for a rule system if there is a rule definition for r(x)
such that dom(θ) = x. Below we assume a well-formed rule system of interest
and will refer to its components directly.

The semantics of rule systems can be given in terms of a rewrite relationship
on facts. Given a fact and an event we (i) find the set of rule instances in the
fact that fire, and then (ii) update the fact with respect to these rule instances.

An extended fact is a finite set of rule instances and (ground) events. We
define a firing function for extended fact Γ , valuation θ and premise as follows:

fire(Γ, θ,b) = θ † match(a, θ(b)) if a ∈ Γ ∧ matches(a, θ(b))
fire(Γ, θ, r(x)) = θ † match(v, θ(x)) if r(v) ∈ Γ ∧ matches(v, θ(x))
fire(Γ, θ, γ) = θ if γ(θ)
fire(Γ, θ, !t) = θ if fire(Γ, θ, t) = ⊥
fire(Γ, θ, t) = ⊥ otherwise

This computes the extension of θ that satisfies the premise using the given
extended fact. The first two lines match against events and rule expressions,
the third line checks guards, the fourth line deals with negation, and the last
line handles the case where the constraints of previous lines do not hold. This is
lifted to lists of premises as follows:

fire(Γ, θ, ε) = θ fire(Γ, θ, prems) = fire(Γ, fire(Γ, θ, head(prems)), tail(prems))

We say that a rule instance 〈r, θ〉 fires in an extended fact Γ if fire(Γ, θ, lhs) �= ⊥
where lhs → rhs is in the body of the rule definition for r(dom(θ)).

Given a rule system and extended fact Γ , we define the set of ground rule
expressions that result from a rule instance 〈r, θ〉 firing as follows:

fired(〈r, θ〉, Γ ) = {θ′(rhs) | lhs → rhs ∈ r(dom(θ)) ∧ θ′ = fire(Γ, θ, lhs)}
where we write lhs → rhs ∈ r(dom(θ)) to mean that lhs → rhs is in the body
of the rule definition of r(dom(θ)). As θ′(rhs) is now ground we evaluate all
functions to ensure that it is also pure e.g. [x �→ 1](s(x + 1)) = s(1 + 1) = s(2).

We define a rewrite relation Δ
a→ Δ′ for facts Δ and Δ′ and ground event a.

Let Δ′ = (ΔNF \ΔR) ∪ ΔF where ΔNF is the set of rule instances in Δ that do
not fire in Δ ∪ {a} and ΔF and ΔR are the smallest facts such that:

〈r′, [x �→ v]〉 ∈ ΔF if 〈r, θ〉 fires in Δ ∪ {a} and r′(v) ∈ fired(〈r, θ〉,Δ ∪ {a})
〈r′, [x �→ v]〉 ∈ ΔR if 〈r, θ〉 fires in Δ ∪ {a} and !r′(v) ∈ fired(〈r, θ〉,Δ ∪ {a})
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∀c∀i
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4

∀i σ0(c) = 0
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bid(i, a) if a > c do c := a

sell(i) if c ≥ min

list(i, ),
bid(i, a) if a ≤ c
sell(i) if c < min list(i, ),

bid(i, a)

Fig. 1. QEA for (i) the UnsafeIterator property (top left), (ii) the AuctionBidding
property (right), and (iii) the Broadcast property (bottom left).

where r(x) is defined in D. This defines ΔF as the new rule instances after rules
are fired and ΔR as the rule instances that need to be removed after rules are
fired.

This rewrite relation is transitively extended to traces to produce a final
fact I τ→ Δ, where I is the initial fact. This final fact is accepting if it does
not contain a rule instance 〈r, θ〉 such that r(dom(θ)) ∈ B, the set of bad rule
expressions.

3.3 Examples

We now introduce three example properties and specify them in the two lan-
guages. We will later use these to motivate, demonstrate, and discuss the trans-
lation. The three properties are:

– The UnsafeIterator property that an iterator i created from a collection c
cannot be used after c is updated.

– The AuctionBidding property that after an item i is listed on an auction
site with a reserve price min it cannot be relisted, all bids must be strictly
increasing, and it can only be sold once this min price has been reached.

– The Broadcast property that for every sender s and receiver r, after s sends a
message it should wait for an acknowledgement from r before sending again.
Receivers are identified exactly as objects that acknowledge messages.

These are formalised as QEA in Fig. 1 and as rule systems in Fig. 2. One case
that may require some explanation is the rule system for the Broadcast property.
This needs to build up knowledge about the set of sender and receiver objects
explicitly (whilst in trace slicing this is done implicitly), relying on the knowledge
that the set of receivers must be fixed once a sender sends for the second time.

4 Translating Quantified Event Automata to Rule
Systems

We now show how to produce a rule system from a QEA. This will consist
of three translations on the QEA until it is in a form where we can apply a
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local translation of each state to a rule definition. The translation has been
implemented in Scala (see https://github.com/selig/qea to rules).

4.1 An Equivalent Representation with Labelled States

We introduce an annotation of QEA that replaces states with labelled states.
The idea is that a state will be labelled with the set of variables that are seen
on all paths to that state. Let 〈q, S〉 be a labelled state where q is a state and S
a (possibly empty) set of variables. Given a set of states Q and a set of variables
X let LS = Q × 2X be the (finite) set of labelled states.

Fig. 2. Rule systems for (i) the UnsafeIterator property (top), (ii) the AuctionBidding
property (middle), and (iii) the Broadcast property (bottom). Assuming general rule
definition Fail{} and init ≡ 〈Start, []〉.

A QEA over labelled states is well-labelled if when 〈q2, S2〉 is reachable from
〈q1, S1〉 we have S1 ⊆ S2. The previous Broadcast QEA is not well-labelled as the
initial state would have an empty set of labels but there is an incoming transition
using r and s. The equivalent well-labelled version of this (corresponding to the
result of the construction introduced next) is given in Fig. 3 (top). We show how
to construct a well-labelled QEA defined over labelled states from a standard

https://github.com/selig/qea_to_rules
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Fig. 3. Well-labelled and domain-explicit versions of the Broadcast QEA.

QEA. Given QEA 〈X,Q,A(X ∪ Y ), δ,F , q0, σ0〉 we construct 〈X,LS,A(X ∪
Y ), δ′,F ′, 〈q0, {}〉, σ0〉 where δ′ and F ′ are defined as the smallest sets satisfying
the following:

(〈q, S〉, e(x), γ, α, 〈q′, S ∪ (x\Y )〉) ∈ δ′ if (q, e(x), γ, α, q′) ∈ δ
(〈q, S〉, e(x),¬(γ1 ∨ . . . ∨ γn), id, 〈q, S ∪ x\Y 〉) ∈ δ′ for e(x) ∈ A(X ∪ Y )

and all (q, e(x), γi, α, q′)∈ δ
〈q, S〉 ∈ F ′ if q ∈ F and S = X

where S ⊆ X. The second item requires explanation; this captures the case
where no transition can be taken and thus an implicit self-loop is performed as
these transitions may be between states with different captured variables. Note
that if no transitions for e(x) exist then ¬(γ1 ∨ . . . γn) will be true. This may
lead to unreachable states which can be safely removed. A special case of this
would be where a guard becomes false by negating a true guard. Note that final
states must have the set of quantified variables X as their label. This fits with
the observation that slicing only considers total valuations.

This resultant automaton over labelled states is equivalent to the original
one as no new paths to final states are introduced and none are removed. From
now on we will refer to QEA over labelled states as QEA if the labelling is
clear from the context or unimportant. Additionally, we will assume all QEA

are well-labelled.

4.2 A Domain-Explicit Form

We make the following observation about the Broadcast property. Consider
the trace send(1).ack(2, 3). After the first event the only (partial) valuation
we can be aware of is [s �→ 1]. The second event extends the domain of r
and requires us to consider [s �→ 1, r �→ 2]. However, ack(2, 3) is not rele-
vant to [s �→ 1]. This will be problematic for our translation as in the rule
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system the decision about whether to extend a valuation must be made locally
i.e. by making a transition. Here this can be resolved by adding a transition
(〈2, {s}〉, ack(r, x), x �= s, 〈2, {r, s}〉), which is one of two transitions added by
the following construction as illustrated in Fig. 3 (bottom). However, in general,
we may need to add many similar transitions to capture all possible valuation
extensions. We will now introduce an intermediate form that achieves this.

We introduce a conversion to domain-explicit QEA that will (i) ensure that
ground events that extend an evaluation will always correspond to a transition in
the automaton, but (ii) will also preserve the language of the QEA. To convert
to domain-explicit form, for each labelled state 〈q, S〉 and event e(x) ∈ A(X ∪Y )
where x ∩ (X/S) �= ∅ (it contains at least one new quantified variable) we add a
set of transitions

(〈q, S〉, e(x[xi �→ fresh(xi)]),
∧

x∈R

x �= fresh(x), id, 〈q, S ∪ R〉)

where R is a non-empty subset of S ∩ (x/Y ) and fresh(x) produces a consistent
fresh variable if x ∈ R and x otherwise. These events are exactly those that will
bind new quantified variables without needing to match the values of existing
quantified variables. If x and S are disjoint then e(z) = e(x). Otherwise, a new
event is created replacing one or more known quantified variables (in S) by a
fresh unquantified variable along with a guard saying that the two are not equal.

The QEA resulting from this translation is well-labelled and equivalent (in
terms of language accepted) to the original QEA. Equivalence is due to the fact
that transitions are only created between copies of the same state, therefore no
paths to final states are added or removed. Additionally, due to the skipping
completion of QEA, adding events to the alphabet has no other side-effects.

4.3 A Fresh-Variable Form

Our final translation on the QEA is to ensure that we can transform tran-
sitions in a QEA directly into a rule definition. Consider the transition
〈〈2, {i}〉, bid(i, a), if a > c, c := a, 〈2, {i}〉〉 from the labelled QEA for the Auc-
tionBidding property (see preprint [28]). We might try and write the following
rule definition for this transition where we must include the set of unquantified
variables Y in the parameters of the rule definition:

r2(i,min, c, a){bid(i, a), a > c → r2(i,min, a, a)}
This is problematic as bid(i, a) will try and match this a with the a in the
parameter list. To avoid this, we must replace instances of unquantified variables
in transitions with fresh local versions. For example, this transition would become
〈〈2, {i}〉, bid(i, b), if b > c, a := b; c := a, 〈2, {i}〉〉 i.e. we replace a by b and then
set a := b in the assignment.

To perform this translation we replace each transition 〈〈q, S〉, e(x), γ,
α, 〈q′, S′〉〉 ∈ δ with the new transition for yi ∈ x ∩ Y and fresh zi:

〈〈q, S〉, [yi �→ zi](e(x)), [yi �→ zi](γ), (zi = yi);α, 〈q′, S′〉〉
The resultant QEA is clearly equivalent as all paths remain the same.
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4.4 The Translation

Given a domain-explicit labelled QEA 〈X,LS,A(X ∪ Y ), δ,F, 〈q0, {}〉, σ0〉 we
construct a set of rule definitions RD = {rq(S, Y ) | 〈q, S〉 ∈ LS}. The body for
each rule definition is constructed by translating each transition starting at that
state. The important step is knowing how to translate each transition based on
whether the transition extends the label of quantified variables or not.

(i) Transitions with the Same Label. We first consider simple transitions that do
not bind any new quantified variables. Let (〈q, S〉, e(x), γ, α, 〈q′, S〉) ∈ δ be such
a transition. We introduce the following rule term for this transition

e(x), γ → rq′(S, α(Y ))

where we write α(Y ) for the expansion of assignment α to Y e.g. (x = y +
1){x, y} = y + 1, y. We shall call rule terms of this form kind (i).

(ii) Transitions Extending the Label. Recall that the small-step semantics for
QEA depended on the principle of maximality. We need to reproduce this in
the constructed rule system. The notion of maximality applies when a valua-
tion is extended with information about new quantified variables and the exten-
sion is required only if there is no larger consistent valuation. For transition
(〈q, S〉, e(x), γ, α, 〈q′, S′〉) ∈ δ where S ⊂ S′ we introduce the following rule term

e(x), γ, !r1(S1, Y1), . . . , !rn(Sn, Yn) → rq′(S′, α(Y )), rq(S, Y )

for ri(Si, Y ) ∈ RD, S ⊂ Si, and fresh copies Yi of Y . We treat assignment α as
the valuation given by applying it to the identity valuation. We shall call rule
terms of this form kind (ii). Two features of this rule term should be explained.
Firstly, !r1(S1), . . . , !rn(Sn) captures maximality as it states that there is no
rule instance with a valuation larger than and consistent with the current one.
Secondly, the two rule expressions on the right serve two separate purposes:
rq′(S′) is the new valuation in its new state and rq(S) is re-added as the initial
valuation should stay in the current state.

As an example, the domain-explicit labelled QEA for the Broadcast property
is translated to the following set of rule definitions (generated by our tool).

r1

{
ack(r, s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s) → r1, r1(r, s)
send(s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s) → r1, r2(s)

}

r1(r, s)
{
send(s) → r2(r, s)

}

r2(s)

⎧⎨
⎩

send(s) → r3(s)
ack(r, sp), s �= sp, !r1(r, s), !r2(r, s), !r3(r, s) → r2(s), r2(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s) → r2(s), r1(r, s)

⎫⎬
⎭

r2(r, s)
{
send(s) → r3(r, s)
ack(r, s) → r1(r, s)

}

r3(s)
{
ack(r, sp), s �= sp, !r1(r, s), !r2(r, s), !r3(r, s) → r3(s), r3(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s) → r3(s), r3(r, s)

}

r3(r, s) {}
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We have now described how to produce a rule body for each rule definition by
translating the transitions as described above. A rule system is the set D of rule
definitions for each state in LS, the bad rule expressions B = {r(S) | 〈q, S〉 /∈ F}
and the initial state = {〈rq0 , σ0〉}.

We can now state our theorem that the translation is correct i.e. it preserves
the property defined by the QEA.

Theorem 1. Given a domain-explicit Q, let RS be the rule system given by the
above translation. For monitoring state Mτ and rule state Δτ if

Mτ = τ ∗ [[] �→ {〈q0, σ0(Y )〉}] and {〈rq0 , σ0〉} τ→ Δτ

then for any valuation θ

Mτ (θ) = {〈q, σ〉 | 〈rq, θ ∪ σ ∪ σ′〉 ∈ Δτ ∧ dom(σ′) ∩ Y = ∅}

The proof can be found in the preprint [28]. The translation is decidable; any
QEA of the form given in Sect. 3.1 can be translated to a rule system (which
is neither unique nor minimal; no good notion of minimality exists). The size
of the resulting rule system is potentially O(|Q| × 2|X|) due to the well-labelled
translation introducing new states.

Fig. 4. A QEA for the CandidateSelection property taken from [3].

5 Discussion and Related Work

In this section we explore what we have learned about the relationship between
the two languages introduced in Sect. 3 by the development of the previous
translation. We consider the expressiveness of the languages, the efficiency of
monitoring, how data is treated differently in each language, and the generality
of our results.

Expressiveness. Our translation shows that rule systems are at least as expressive
as the form of QEA presented here (i.e. without existential quantification, see
below). The remaining questions are whether they are strictly more expressive
and what effect the choice of presentation for QEA has had on this translation.
The first question can be answered positively. Our previous work [18] has given
an example of a property that cannot be captured via trace slicing. This was
a lock-ordering inspired property but the general form relied on second-order
quantification to define a notion of reachability. For the second question we
consider the differences in the presentation of QEA with [3].
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– Existential Quantification. Existential quantification can be useful in certain
cases but we do not yet know how to extend the translation to include it
generally. For example, it is very difficult to write a rule system for the QEA

given in Fig. 4. It seems that it will be necessary to extend rule systems with
additional support either via explicit quantification or a specialised notion
of non-determinism that splits the state into multiple states where only one
needs to be accepting. This property is formalised as a rule system in [18] but
this relies on explicitly recording all facts and performing a computation on
a special end of trace event.

– Non-Determinism. In [3], QEA were given some-path non-determinism but
in [18] we observed that the most common use of non-determinism was to
capture negative properties (the bad behaviour) and in this case all-path
non-determinism is preferable. Hence, MarQ [25] supports both. To also
support some-path non-determinism here (which is not commonly used) we
would need to add branching and a notion of good facts to our rule systems
(as is done in RuleR).

Both existential quantification and non-determinism are rarely used features of
QEA.

Fig. 5. Fully transformed QEA and corresponding rule system for the UnsafeIterator
property.
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Efficiency. In this translation we are able to go from QEA, which have a
highly efficient monitoring algorithm [6], to rule systems, which do not [17].
This appears to be the wrong direction to make gains in efficiency. However, we
can make two observations that may lead to improvements in efficiency in both
systems.

Firstly, let us consider the translation of the UnsafeIter property given in
Fig. 5 where we also give the explicit-domain labelled QEA. On inspection we
can see that the rule definitions r1(i), r1(c), and r1(c, i) are redundant as every
trace that leads to a rule instance 〈r2, θ〉 via these rules will also be produced
if they are absent. This should not be surprising as if we remove these rule
definitions the rule system becomes very similar to the one given in Sect. 3.3, only
with the addition of maximality guards. By making some operations carried out
by the slicing structure explicit, we can identify an inherent redundancy in this
computation, which should lead to an optimisation of the monitoring algorithm
for QEA. Formalising this redundancy both for rule systems and QEA remains
further work.

Secondly, one hope for this translation was to identify a fragment of rule
systems that are amenable to the efficient indexing-based monitoring algorithms
used for QEA. After removing the redundancy identified above the first rule
definition becomes

r1
{
create(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r2(c, i), r1

}

which, when compared to the rule system in Fig. 2, includes additional negated
rule expressions in the premises (which add to monitoring complexity). So taken
‘as is’ the resulting rule system is likely to be less efficient. However, these negated
rule expressions give an explicit order in which to check rule definitions when
matching incoming events (in a similar way to how indexing works for QEA) and
it is plausible that this can be used to improve RuleR’s monitoring algorithm by
either detecting rule systems of this form or automatically checking if the given
rule system is equivalent to a rule system of this form (as it is in this case).
Therefore, the translation suggests a future direction for developing efficient
indexing for rule-based runtime verification tools.

Treatment of Data. There are two main differences in the treatment of data that
this work has highlighted. Firstly, QEA makes quantification domains implicit
whereas rule systems make them explicit e.g. in QEA new bindings are produced
by the monitoring algorithm whereas a rule needs to fire for a new binding in
a rule system. This can have implications for readability – in rule systems it is
somewhat easier to see what the domains are but in some circumstances having
to encode these domains can make the actual behaviour difficult to understand.
For example, the resulting rule system for the Broadcast property is much big-
ger than the original QEA. An advantage of making the domain explicit in
rule systems is that domain knowledge can be used to ignore some part of the
domain (as seen in the UnsafeIterator example above). This translation pro-
vides a mechanism for understanding exactly what the domain of quantification
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defined by a QEA is. Secondly, the use of maximality in trace-slicing hides a
lot of operational details in the semantics – making this explicit in rule systems
demonstrates the implicit work required to ensure that maximality is preserved.
In some cases maximality is not necessary and this work can be removed in a
rule system.

Generality. We now consider how general this translation is i.e. does it apply
to all trace-slicing and rule-based approaches. The first system to use the trace-
slicing idea was tracematches [1]. The use of suffix-based matching meant that
the authors avoided the main technical difficulty in slicing i.e. dealing with par-
tial valuations, which required maximality. Our translation does not work with
suffix-matching but this could be encoded as another transformation on the
QEA. The JavaMOP system [23] has made the slicing approach popular with
its efficient implementation. The QEA formalism [3,24] was inspired by Java-

MOP. The notion of slicing presented here is compatible with that used in
JavaMOP as this also relies on maximality. Rule systems for runtime monitor-
ing were introduced by the RuleR tool [2,4] and are used in TraceContract [5]
and Logfire [17] where a similar approach is taken i.e. a global set of instances
or facts are rewritten by an associated set of rules. The rule systems described
here can be considered a core subset of RuleR and could be embedded into
these other systems.

6 Conclusion

We have described the formal construction of a translation from the paramet-
ric trace slicing based QEA formalism to a rule system in the style of RuleR.
The translation has been shown to be equivalent to the small-step semantics for
QEA. This translation gives insights into how parametric trace slicing and rule
systems handle data differently. We observed that, to ensure the same property
is described, it is necessary to (i) enforce complex maximality constraints on rule
definitions, making them heavily interdependent, and (ii) add additional events
and intermediate states to record the possible valuations as they are created.
We have implemented the translation as a Scala program. This will allow us
to explore further optimisations of the translation, for example, by identifying
redundant intermediate states and performing a backwards-analysis to introduce
unquantified variables when they are first needed (the AuctionBidding transla-
tion would benefit from this). We are also looking at formalising this work in a
proof assistant to give more rigorous guarantees of its correctness. In our general
work on exploring the relationships between specification languages for runtime
verification our next step will be to translate rule systems into a first-order
temporal logic.
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Abstract. Online monitoring is the task of identifying complex temporal pat-
terns while incrementally processing streams of events. Existing state-of-the-art
monitors can process streams of modest velocity in real-time: a few thousands
events per second. We scale up monitoring to higher velocities by slicing the
stream, based on the events’ data values, into substreams that can be indepen-
dently monitored. Because monitoring is not data parallel in general, slicing can
lead to data duplication. To reduce this overhead, we adapt hash-based partition-
ing techniques from databases to the monitoring setting. We implement the result-
ing automatic data slicer in Apache Flink and use the MonPoly tool to monitor
the substreams. We empirically evaluate this setup, demonstrating a substantial
scalability improvement.

1 Introduction

Large-scale software systems produce millions of log events per second. Identifying
interesting patterns in these high-volume, high-velocity data streams is a central chal-
lenge in the area of runtime verification and monitoring.

An online monitor takes a pattern, consumes a stream of data event-wise, and
detects and outputs matches with the pattern. The specification language for patterns
significantly influences the monitor’s time and space complexity. For propositional lan-
guages, such as metric temporal logic or metric dynamic logic, current monitors are
capable of handling hundreds of thousands of events per second in real time on com-
modity hardware [8,13]. Propositional languages, however, are severely limited in their
expressiveness. Since they regard events as atomic, they cannot formulate dependen-
cies between data values stored in the events. First-order specification languages, such
as metric first-order temporal logic (MFOTL) [11], do not have this limitation. Various
online monitors [5,7,11,14,26,32,34] can handle first-order specification languages for
event streams with modest velocities.

We improve the scalability of online first-order monitors using parallelization. There
are two basic approaches regarding what to parallelize. Task parallelism adapts the
monitoring algorithm to evaluate different subpatterns in parallel. The amount of par-
allelization offered is limited by the number of subpatterns for a given pattern. The
alternative is data parallelism: multiple copies of the monitoring algorithm are run
unchanged as a black box, in parallel, on different portions of the input data stream.
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In this paper we focus on data parallelism, which is attractive for several rea-
sons. By being a black-box approach, data parallelism allows us to reuse existing
monitors, which implement heavily optimized sequential algorithms. It also offers a
virtually unbounded amount of parallelization, especially on high-volume and high-
velocity data streams. Finally, it caters for the use of general-purpose libraries for
data parallel stream-processing. These libraries deal with common challenges in high-
performance computing, such as deployment on computing clusters, fault-tolerance,
and back-pressure (i.e., velocity spikes).

Data parallelism has previously been utilized to scale up offline monitor-
ing [9] (Sect. 2). Yet neither offline nor online monitoring is a data-parallel task in gen-
eral. This means that, in some cases, parallel monitors must synchronize during their
execution. Alternatively, careful data duplication across the parallel monitors allows
for a non-blocking parallel architecture. An important contribution of this prior work
on scalable offline monitoring is the development of a (data) slicing framework [9].
The framework takes as inputs an MFOTL formula (Sect. 3) and a splitting strategy
that determines which parallel monitors the data should be sent to. It outputs an event
dispatcher that forwards events to appropriate monitors and ensures that the overall par-
allel architecture collectively produces exactly the same results that a single-threaded
monitor would do.

The previous slicing framework has three severe limitations. First, data can be sliced
on only one free variable at a time. Although the single-variable slices can be composed
into multi-variable slices, the composition does not offer the flexibility of simultane-
ously slicing on multiple variables. As a result, composition is ineffective for some
formulas and adds unnecessary data duplication for others. Second, the user of the slic-
ing framework must supply a slicing strategy, even when it is obvious what the best
strategy is for the given formula. Third, the framework’s implementation uses Google’s
MapReduce library for parallel processing, which restricts it to the offline setting.

This paper addresses all of the above limitations with the following contributions:

– We generalize the offline slicing framework [9] to support simultaneous slicing on
multiple variables and adapt the framework to the online setting (Sect. 4).

– We instantiate the slicing framework with an automatic splitting strategy (Sect. 5)
inspired by the hypercube algorithm [2,27] used previously to parallelize via hashing
implementations of relational join operators in databases.

– We implement our new slicing framework using the Apache Flink [3] stream pro-
cessing engine (Sect. 6). We use MonPoly [11,12] as a black-box monitor for the
slices. A particular challenge in our publicly available implementation [35] was to
efficiently checkpoint MonPoly’s state within Flink to achieve fault-tolerance.

– We evaluate the slicing framework and automatic strategy selection on both synthetic
data and real-world data based on Nokia’s data collection campaign [10] (Sect. 7).
We show that the overall parallel architecture has substantially improved through-
put. While the optimality of the hypercube approach in terms of a balanced data
distribution is out of reach for general MFOTL formulas, we demonstrate that our
automatic splitting results in balanced slices on the formulas used in the Nokia case
study.
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2 Related Work

Our work builds on the slicing framework introduced by Basin et al. [9]. This frame-
work ensures the sound and complete slicing of the event stream with respect to MFOTL
formulas. It prescribes the use of composable operators, called slicers, that slice data
associated with a single free variable, or slice based on time. We have generalized their
data slicers to operate simultaneously on all free variables in a formula. Moreover, the
usage of MapReduce in the implementation of the original framework limited it to the
offline setting. In contrast, our implementation in Apache Flink supports online moni-
toring. Finally, our implementation extends the framework with an automatic strategy
selection that exhibits a balanced load distribution on the slices in our empirical evalu-
ation.

Barre et al. [4], Bianculli et al. [18], and Bersani et al. [17] use task parallelism
on different subformulas to parallelize propositional offline monitors. The degree of
parallelization in these approaches is limited by the specification’s syntactic complexity.

Parametric trace slicing [34] lifts propositional monitoring to parametric specifi-
cations. This algorithm takes a trace with parametric events and creates propositional
slices with events grouped by their parameter instances, which can be independently
monitored. Parametric trace slicing considers only non-metric policies with top-level
universal quantification. Barringer et al. [5] generalize this approach to more com-
plex properties expressed using quantified event automata (QEA). Reger and Ryde-
heard [32], delimit the sliceable fragment of first-order linear temporal logic (FO-LTL)
that admits a sound application of parametric trace slicing. The fragment prohibits
deeply nested quantification and using the “next” operator. These restrictions originate
from the time model used, in which time-points consist of exactly one event. Hence,
when an event is removed from a slice, information about that time-point is lost. Our
time model, based on sequences of time-stamped sets of events, avoids such pitfalls.
Parametric trace slicing produces an exponential number of slices (in the domain’s size)
with grounded predicates, whereas we use as many slices as there are parallel monitors
available.

Kuhtz and Finkbeiner [28] show that the LTL monitoring problem belongs to
AC1(logDCFL) and as such can be efficiently parallelized. However, the Boolean cir-
cuits used to establish the lower bound must be built for each trace in advance, which
limits these results to the offline monitoring setting. A similar limitation applies to the
work by Bundala and Ouaknine [19] and Feng et al. [22] who study variants of MTL
and TPTL.

Complex event processing (CEP) systems analyze streams by recognizing compos-
ite events as (temporal) patterns of simple events. Their publish-subscribe architecture
allows for ample parallelism. The languages used by CEP systems are often based on
SQL extensions without a clear semantics. An exception is BeepBeep [24]: a multi-
threaded [25] stream processor that supports LTL-FO+, another first-order variant of
LTL. The parallel computation in BeepBeep must, however, be scheduled manually by
the user.

Event stream processing systems have been extensively studied in the database com-
munity. We focus on the most closely related works. The hypercube partitioning scheme
(also known as the shares algorithm) was first proposed by Afrati and Ullman [2] in the
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context of MapReduce. The idea underlying the algorithm can be traced back to the par-
allel evaluation of datalog queries [23]. The hypercube algorithm was shown to be opti-
mal for conjunctive queries with one communication round on skew-free databases [16].

The hypercube and other hash-based partitioning schemes are sensitive to skew.
Rivetti et al. [33] suggest a greedy balancing strategy after separating the heavy hit-
ters, i.e., frequently occurring input values. This approach is restricted to multi-way
joins in which all relations share a common join key. Nasir et al. [29,30] balance skew
for associative stream operators without identifying heavy hitters explicitly. Vitorovic
et al. [37] combines the hash-based hypercube, prone to heavy hitters, with random
partitioning [31], resilient to heavy hitters. The combination only applies to multi-way
joins and limits the impact of skew without improving the worst-case performance. All
these approaches are unsuitable for handling general MFOTL formulas. Instead we fol-
low a hypercube variant, which is optimal for the considered setting with skew [27].
The heavy hitters must be known in advance in this approach.

3 Preliminaries

We briefly recall the syntax and semantics of our specification language of choice, met-
ric first-order temporal logic (MFOTL) [11], and describe the monitoring setting con-
sidered.

We fix a set of names E and for simplicity assume a single infinite domain D of
values. The names r ∈ E have associated arities ι(r) ∈ N. An event r(d1, . . . ,dι(r)) is an
element of E×D

∗. We call 1, . . . , ι(r) the attributes of the name r. We further fix an
infinite set V of variables, such that V, D, and E are pairwise disjoint. Let I be the set of
nonempty intervals [a,b) := {x ∈ N | a ≤ x< b}, where a ∈ N, b ∈ N∪{∞} and a< b.
Formulas ϕ are constructed inductively, where ti, r, x, and I range over V∪D, E, V,
and I, respectively:

ϕ ::= r(t1, . . . , tι(r)) | t1 ≈ t2 | ¬ϕ | ϕ ∨ϕ | ∃x.ϕ | �I ϕ | �I ϕ | ϕ SI ϕ | ϕ UI ϕ.

Along with the Boolean operators, MFOTL includes the metric past and future tem-
poral operators � (previous), S (since), � (next), and U (until), which may be nested
freely. We define other standard Boolean and temporal operators in terms of this mini-
mal syntax: truth 	 := ∃x. x ≈ x, falsehood ⊥ := ¬	, inequality t1 �≈ t2 := ¬(t1 ≈ t2),
conjunction ϕ ∧ψ := ¬(¬ϕ ∨¬ψ), universal quantification ∀x. ϕ := ¬(∃x. ¬ϕ), even-
tually ♦I ϕ := 	UI ϕ , always �I ϕ := ¬♦I ¬ϕ , once �I ϕ := 	SI ϕ , and historically
(always in the past) �I ϕ := ¬�I ¬ϕ . Abusing notation, Vϕ denotes the set of free vari-
ables of the formula ϕ .

MFOTL formulas are interpreted over streams of time-stamped events. We group
finite sets of events that happen concurrently (from the event source’s point of view)
into databases. An (event) stream ρ is thus an infinite sequence 〈τi,Di〉i∈N of databases
Di with associated time-stamps τi. We assume discrete time-stamps, modeled as natural
numbers τ ∈ N. We allow the event source to use a finer notion of time than the one
used as time-stamps. In particular, databases at different indices i �= j may have the
same time-stamp τi = τ j. The sequence of time-stamps must be non-strictly increasing
(∀i. τi ≤ τi+1) and always eventually strictly increasing (∀τ. ∃i. τ < τi).
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Fig. 1. Semantics of MFOTL

The relation v, i |=ρ ϕ (Fig. 1) defines the satisfaction of the formula ϕ for a val-
uation v at an index i with respect to the stream ρ = 〈τi,Di〉i∈N. Whenever ρ is fixed
and clear from the context, we omit the subscript on |=. The valuation v is a mapping
V → D, assigning domain elements to the free variables of ϕ . Overloading notation, v
is also the extension of v to the domain V∪D, setting v(t) = t whenever t ∈D. We write
v[x �→ y] for the function equal to v, except that the argument x is mapped to y.

Let S be the set of streams. Although satisfaction is defined over infinite streams, a
monitor will always receive only a finite stream prefix. We write P for the set of finite
stream prefixes and � for the usual prefix order on streams and stream prefixes. For the
prefix π and i ∈ {1, . . . , |π|}, π[i] denotes π’s i-th element.

Abstractly, a monitor function maps stream prefixes to verdict outputs from a set O.
A monitor is an algorithm that implements a monitor function. An online monitor
receives incremental updates of a stream prefix and computes the corresponding ver-
dicts. We consider time-stamped databases to be the atomic units of the input. The
monitor may produce the verdicts incrementally, too. To represent this behavior on the
level of monitor functions, we assume that verdicts are equipped with a partial order �
indicating refinement and that a monitor function is a monotone map 〈P,�〉 → 〈O,�〉.
This captures the intuition that as the monitor function receives more input, it produces
more output, and (depending on the refinement ordering), does not retract previous ver-
dicts.

Concretely, the MonPoly monitor [12] implements a monitor function Mϕ for ϕ
from a practically relevant fragment of MFOTL [11]. Whenever ϕ is violated for a
particular index, MonPoly outputs the valuations of the free variables that cause ϕ to
become false. Because some violations may be found only after a time delay, we ignore
the order of MonPoly’s output and model it as a set, with � being the subset relation:

Mϕ(π) = {(v, i) | i ≤ |π|and for all ρ ∈ Swithπ � ρ ,(v, i) �|=ρ ϕ}.

4 Slicing Framework

We introduce a general framework for parallel online monitoring based on slicing. Basin
et al. [9] provide operators that split finite logs offline into independently monitorable
slices, based on the events’ data values and time-stamps. Each slice contains only a
subset of the events from the original trace, which reduces the computational effort to
monitor the slice. We adapt this idea to online monitoring. Since slicing with respect to
time is not particularly useful in the online setting, we focus on the data in the events.
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4.1 Abstract Slicing

Parallelizing a monitor should not affect its input-output behavior. We formulate this
correctness requirement abstractly using the notion of a slicer for a monitor function.
The slicer indicates how to split the stream prefix into independently monitorable sub-
streams and how to combine the verdict outputs of the parallel submonitors into a single
verdict.

Definition 1. A slicer for a monitor functionM is a tuple (K,M,S,J), where K is a set
of slice identifiers, the submonitor family M ∈ K → (P → O) is a K-indexed family of
monitor functions, the splitter S ∈ P → (K → P) splits prefixes into K-indexed slices,
and the joiner J ∈ (K →O)→O indicates how to combine K-indexed verdicts into one,
satisfying the following properties:

Monotonicity For all π1, π2 ∈ P, π1 � π2 implies S(π1)k � S(π2)k, for all k ∈ K.
Soundness For all π ∈ P, J

(
λk.Mk(S(π)k)

) � M (π).
Completeness For all π ∈ P, M (π) � J

(
λk.Mk(S(π)k)

)
.

For an input prefix π , S(π) denotes the collection of its slices. Each slice is identified by
an element of K, which we write as a subscript. We require the splitter S to be monotone
so that the submonitors Mk, which may differ from the monitor function M , can process
the sliced prefixes incrementally. Composing the splitter, the corresponding submonitor
for each slice, and the joiner yields the parallelized monitor function J

(
λk.Mk(S(π)k)

)
.

It is sound and complete if and only if it computes the same verdicts as M .
For example, parametric trace slicing [32,34] can be seen as a particular slicer for

monitor functions that arise from sliceable FO-LTL formulas [32, Sect. 4]. Thereby,
K is the cross-product of finite domains for the formulas’ variables. Thus elements of
K are valuations and the splitter is defined as the restriction of the trace to the values
occurring in the valuation. The submonitor Mk is a propositional LTL monitor and the
joiner simply takes the union of the results (which may be marked with the valuation).

The splitter S as defined above is overly general. In practice, we would like a highly
efficient implementation of S since it is a centralized operation in front of the parallel
inner monitors M, which must inspect every input event. Parametric trace slicing deter-
mines the target slice for an event by inspecting events individually (and not as part of
the whole prefix). We call splitter with this property event-separable. Event-separable
splitters are desirable because they cater to a parallel implementation of the splitter S.

Definition 2. A splitter S is called event-separable if there is a function Ŝ∈ (E×D
∗)→

P(K) such that S(π)k[i] = 〈τi, {e ∈ Di | k ∈ Ŝ(e)}〉 for all π ∈ P, k ∈ K, i ≤ |π|.
Lemma 1. If S is event-separable, then π1 � π2 implies S(π1)k � S(π2)k for all k ∈ K.

We also call slicers with event-separable splitters event-separable. We identify event-
separable slicers (K,M,S,J) with (K,M, Ŝ,J).
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4.2 Joint Data Slicer

We describe an event-separable slicer for the monitor function Mϕ that arises from the
MFOTL formula ϕ . Our joint data slicer distributes events according to the valuations
they induce in the formula. Recall that the output of Mϕ consists of all valuations
that do not satisfy the formula at some timepoint. We would like to evaluate ϕ for each
valuation to determine whether the valuation is a violation. However, there are infinitely
many valuations in the presence of infinite domains. The joint data slicer uses finitely
many (possibly overlapping) slices, which taken together cover all possible valuations.
For a given valuation, only a subset of the events is relevant to evaluate the formula.

We assume that the bound variables in ϕ are disjoint from the free variables. Given
an event e= r(d1, . . . ,dn), the set matches(ϕ,e) contains all valuations v ∈ Vϕ → D for
which there is a subformula r(t1, . . . , tn) in ϕ where v(ti) = di for all i ∈ {1, . . . ,n}. We
implicitly extend v to V∪D, such that it is the identity on (V\Vϕ)∪D.

Definition 3. Let ϕ be an MFOTL formula and f ∈ (Vϕ → D) → P(K) be a mapping
from valuations to nonempty sets of slice identifiers. The joint data slicer for ϕ with
splitting strategy f is the tuple (K, λk.Mϕ , Ŝ f , Jf ), where

Ŝ f (e) =
⋃

v∈matches(ϕ,e) f (v), Jf (s) =
⋃

k∈K(sk ∩ ({v | k ∈ f (v)}×N)).

The intersection with {v | k ∈ f (v)}×N in the definition of Jf is needed only for some
formulas, notably those that involve equality. Consider, e.g., the formula x≈ a→Q(x),
where a is a constant. Even if a prefix contains Q(a), so that no violation occurs,the
event will be omitted from all slices that do not have an associated valuation with x= a.
If we do not filter the erroneous verdict from those slices, the result will be unsound.

Proposition 1. The joint data slicer (K, λk.Mϕ , Ŝ f , Jf ) is a slicer for Mϕ .

Proof. Monotonicity follows from Lemma 1. For soundness and completeness, we
must show that (v, i) ∈ Jf (Mϕ ◦ S f (π)) if and only if (v, i) ∈ Mϕ(π) for an arbitrary
v and i. By the definitions of Jf and Mϕ , this is equivalent to

(∀k ∈ f (v).∀ρ. ρ � S f (π)k =⇒ v, i |=ρ ¬ϕ) ⇐⇒ (∀σ . σ � π =⇒ v, i |=σ ¬ϕ).

For an arbitrary k ∈ f (v), it suffices to consider streams ρ and σ such that ρ[i] =
S f (π)k[i] and σ [i] = π[i] for all i ≤ |S f (π)k| = |π|, and ρ[i] = σ [i] otherwise. Then
v, i |=ρ ϕ ⇐⇒ v, i |=σ ϕ follows by induction on the structure of ϕ generalizing over v
and i. ��
Example 1. Consider the formula P(x,y) → ♦[0,5](P(y,x)∧Q(x)). We apply the joint
data slicer for two slices (K = {1,2}). Its splitting strategy f maps all valuations to the
first slice, except for 〈x= 5,y= 7〉. (Note that the intersection with {v | k ∈ f (v)}×N is
redundant in the definition of Jf for this formula. For any violating valuation, there must
be a matching P event in the slice, which determines the values of all free variables.)

Let π be the prefix 〈11,{P(5,1),Q(2)}〉,〈12,{P(5,7),Q(3),Q(5)}〉,〈21,
{P(7,5)}〉. We obtain the slices

S f (π)1 = 〈11,{P(5,1),Q(2)}〉, 〈12,{P(5,7),Q(3)}〉, 〈21,{P(7,5)}〉
S f (π)2 = 〈11,{}〉, 〈12,{P(5,7),Q(5)}〉, 〈21,{P(7,5)}〉.
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The events P(5,7) and P(7,5) are duplicated across the slices because both 〈x= 5,y=
7〉 and 〈x= 7,y= 5〉 are matching valuations for either event.

The data slicer used in the offline slicing framework [9] is defined for a single free
variable x and a collection (Sk)k∈K of slicing sets. Each slicing set is a subset of the
domain, and

⋃
k∈K Sk = D. This single variable slicer is a special case of our joint data

slicer. To see this, define f (v) to be the set of all k satisfying v(x)∈ Sk. At least one such
k must exist because the Sk cover the domain. In contrast, some instances of the joint
data slicer cannot be simulated by a composition of single variable slicers. Consider a
formula with the atoms P(x,y), P(y,z), and P(z,x). Any single variable slicer will send
all P events to all slices because each atom misses one free variable. We show in Sect. 5
that our joint data slicer is more precise for such formulas.

5 Automatic Slicing

The joint data slicer (Sect. 4.2) is parameterized by a splitting strategy. Ideally, the cho-
sen strategy optimally utilizes the available computing resources. In particular, compu-
tation and communication costs should be evenly distributed, while keeping the over-
head low. As an approximation of the overall computational cost, we consider the event
rate, i.e., the number of events in a period of time, of each slice. We chose this as
minimizing the event rate should reduce the submonitors’ execution time and memory
consumption. We do not optimize the amount of communication in this paper. How-
ever, the number of slices is a parameter that affects the communication cost due to
data duplication.

We base our splitting strategy on the hypercube algorithm [2,16,23,27,36]. Below,
we describe this algorithm within our framework and address challenges that arise in
the online setting. We decided on the hypercube algorithm as our starting point because
its skew-aware variant by Koutris et al. [27] has been shown to yield strategies that are
optimal with respect to the worst-case load for conjunctive queries. Query evaluation
and monitoring are closely related: reporting violations of some formula ϕ with free
variables is equivalent to evaluating the query ¬ϕ . Therefore, conjunctive queries con-
stitute a specific subset of all monitoring tasks. While this does not imply optimality for
arbitrary formulas, we are still able to effectively slice formulas containing operators
other than conjunctions.

Let [n] = {1, . . . ,n} for n ∈ N. We assume a linear ordering x1, . . . ,xk on the free
variables of the formula ϕ . The basic idea of the hypercube algorithm is to organize
N submonitors into a hypercube (or more precisely, an orthotope) K = [n1]× . . .× [nk]
such that ∏i∈[k] ni = N. The parameters n1, . . . ,nk are called shares. At the beginning
of the monitoring, hash functions hi ∈ D → [ni] are chosen randomly and indepen-
dently. To decide which submonitors should receive an event, the hypercube algorithm
applies the hash function hi to the values of the free variable xi, for all xi ∈ Vϕ . This
is done for each valuation that is inferred from the event by the data slicer. Each tuple
of hash values represents a coordinate in K, which is the target slice for that valua-
tion. Therefore, the splitting strategy f maps valuations v to (sets of) slice identifiers
{〈h1(v(x1)), . . . ,hk(v(xk))〉}.
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The shares are chosen to optimize the maximum event rate over all submonitors.
For now, we assume that all values have low degree. The degree of a data value denotes
the number of events that contain this value in a specific attribute. Then, the maximum
event rate of the monitors given the shares n is estimated by the following cost function
[2,15]:

cost(n,ϕ,Z) = ∑r(d1,...,dn)∈ϕ
Z(r)

∏xi∈{d1,...,dn}∩Vϕ ni
.

The term r(d1, . . . ,dn) ranges over all atoms in the formula ϕ . The function Z is a
parameter of the optimization, where Z(r) is the rate of events with name r. We use
a simplified version of the algorithm by Chu et al. [21] to optimize the cost function.
The algorithm enumerates all possible integer shares with product N. This is feasible
because the number of share combinations is small for realistic N, even when N has
many small prime divisors. In fact, we assume that N is a power of two in our imple-
mentation.

It is not obvious how the statistics Z can be meaningfully obtained in the context of
online monitoring. We cannot collect them from the entire stream for two reasons. First,
it is impossible to observe future events at the time when the splitting strategy must be
fixed. Second, if the rates increase due to a temporary change in the stream characteris-
tics, some monitor instance might become overwhelmed, events must be buffered, and
latency increases. The optimization cannot account for such local changes if we use
statistics collected over a long period of time, as one would do in offline processing.
However, some buffering to handle transient rate spikes is acceptable. Therefore, we
estimate the statistics using a recorded prefix of the stream and aggregate them over
short time windows.

Example 2. Consider the formula ϕ = P(x,y)∧Q(y,z) → ¬R(z,x) and a stream con-
sisting of 3m events in a given period of time. We assume that the events with names P,
Q, and R occur equally often, such that Z(P) = Z(Q) = Z(R) = m. The optimal shares
for the hypercube composed of N monitors are nx = ny = nz =N1/3. Each slice contains
approximately cost(n,ϕ,Z) = 3m/N2/3 events. We obtain the same results for the for-
mula ϕ ′ = P(x,y)∧P(y,z) → ¬P(z,x) and Z(P) = m because each event is replicated
three times. Yet, the event rate per slice is lower than the rate of the input stream if
N ≥ 8. This is an improvement over the single variable slicer (Sect. 4.2).

Next, we show how the joint data slicer with the optimal hypercube strategy for ϕ
distributes some events. We assume N = 64 and simplify the hash functions to h(x) =
x mod 4. The slices are thus identified by strings of three numbers between 0 and 3,
with one number for each variable x, y, and z.

event containing slices
P(0,1) 010, 011, 012, 013
P(1,1) 110, 111, 112, 113

event containing slices
Q(1,7) 013, 113, 213, 313
R(7,0) 003, 013, 023, 033

The events P(0,1), Q(1,7), and R(7,0) are sent to slice 013, which ensures
completeness.
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Data distributions without skew, in which all values have low degree, are too limited
in practice. Hash-based partitioning schemes such as the hypercube fail to distribute
events evenly if the input is skewed. A standard solution it to use a different splitting
strategy for the highly skewed portions of the data [27]. Following the terminology
of [27], a heavy hitter is a value with degree at least Z(r)/N in events with name r.
We collect heavy hitter information along with the Z statistics. A value is considered
a heavy hitter if it is a heavy hitter in at least one of the time windows over which we
collect the Z statistics.

To compute the slice for a valuation, our skew-aware strategy first determines the
set H of variables that are heavy hitters. A value d is a heavy hitter for a variable x if
there is an atom r(. . . , t j−1,x, t j+1, . . .) in the formula such that d is a heavy hitter in the
j-th attribute of r. For each set H, a separate collection of shares nHx and independent
hash functions hHx is used, where x ∈ Vϕ . Note that there are 2k different sets H, where
k = |Vϕ |. For x ∈ H, we fix nHx = 1 in the share optimization. The remaining shares are
computed as before, as is f (v), but using the hash functions hHx .

Example 3. Consider the same formula ϕ and stream as before, but suppose now that
the stream has some heavy hitters. We analyze the optimal shares for the heavy-hitter
sets A= {x}, B= {x,y}, andC= {x,y,z}. The remaining cases have symmetrical solu-
tions. In the case A, the shares are nAx = 1 and nAy = nAz = N1/2. Each slice then contains

at most 1/N1/2 of the events for which only x is assigned a heavy hitter. In the case B,
the optimal shares are nBx = nBy = 1 and nBz = N, so there are at most 1/N of the cor-
responding events in each slice. Finally in the case C, one must broadcast the events.
Note that there can be at most N different heavy hitters per attribute. Therefore, there
are at most 3wN2 events to which the setC applies, where w is the number of databases
in the time period that we consider. If w is bounded by a constant, the overall fraction of
events in each slice is asymptotically equal to the maximum of the three cases, which
is O(1/N1/2).

Now assume that 0 is a heavy hitter in the first attribute of P, and N = 64. There-
fore, we need to consider the heavy-hitter sets {} and {x}. Let the hash functions be the

modulus as in the previous example (e.g., h{x}
y (y) = y mod 8). We overlay the slices for

the different heavy-hitter sets and assign identifiers from [N] according to their lexico-
graphic ordering: both valuations 〈x= 1, y= 1, z= 3〉 and 〈y= 2, z= 7〉 map to 23.

event containing slices
P(0,1) 8,9,10,11,12,13,14,15
P(1,1) 20,21,22,23

event containing slices
Q(1,7) 7,23,39,55;15
R(7,0) 7,15,23,31,39,47,55,63

Both {} and {x} are possible for Q(1,7) because Q(y,z) does not induce a valuation
for x.

In general, the possible rate reduction depends on the pattern of free variables in the
formula’s atoms. A detailed discussion is provided by Koutris et al. [27]. The ideal case
is a formula in which all atoms with a significant event count share a variable, together
with a stream that never assigns a heavy hitter to that variable. Then the load per slice
is proportional to 1/N. Atoms with missing variables, and equivalently variables with
heavy hitters, increase the fraction to 1/Nq for some q > 1. Our approach affects only
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Fig. 2. Stream operators in the online monitor

the event rate, but not the index rate, which is the number of databases per unit of time.
The index rate impacts the performance of monitors such as MonPoly because each
database triggers an update step in the monitoring algorithm. For a syntactic fragment
of MFOTL, MonPoly reduces the number of update steps skipping empty databases [9].

6 Implementation

We implemented a parallel online monitor based on the joint data slicer in Scala on top
of the Apache Flink stream processing framework. Given a formula, the slicer reads
events from a TCP socket or a text file, monitors them in parallel, and writes the col-
lected verdicts to a second socket or file. The monitoring of the slices is delegated to
MonPoly [12].

The Flink API provides the means to construct a logical dataflow graph. The graph
consists of operators that retrieve data streams from external sources, apply process-
ing functions to stream elements, and output the elements to sinks. Operators and the
flows between them can execute in parallel; elements are partitioned according to user-
specified keys. At runtime, Flink maps the graph to a distributed cluster of comput-
ing nodes. We chose Flink for its low latency stream processing and its support for
fault tolerant computation. Fault tolerance is ensured using a distributed checkpointing
mechanism [20]: The system recovers from failures by restarting from regularly cre-
ated checkpoints. Operators must expose their state to the framework to participate in
the checkpoints.

Figure 2 shows the dataflow graph of our slicer. Its main parameters are the number
N of parallel monitors and the inputs for the shares optimization, which is performed
during initialization. Events are read line by line as strings. We support both MonPoly’s
input format and the CSV format used in the first RV competition [6]. The parser con-
verts the input lines into an internal datatype that stores the event name and the list of
data values. We flatten the parser’s results into a stream of single events because a single
line in MonPoly’s format may describe several events, i.e., an entire database, at once.

After parsing, the splitter computes the set of target slices for each event. To do so,
it first determines the matching valuations as described in Sect. 4.2. As this set may be
infinite, the splitter encodes it as a partial mappings from variables to data values. For
each target slice, a copy of the event is sent to the next operator along with the slice
identifier.

At this point, we would like to distribute the events to N parallel submonitors. How-
ever, the keyBy operation in the Flink API applies its own hash function to shuffle the
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events. This hash function might needlessly collapse slice identifiers. We work around
this limitation by mapping the identifiers to preimages under the hash function, which
we precompute by enumeration. In each parallel flow, a custom operator prints the inter-
nal datatype in MonPoly format, sends it to an external monitor process, and applies the
intersection from the definition of Jf (Definition 3) to its output. Finally, all remaining
verdicts are combined into a single stream, which is written to an output socket or file.

The custom operator is responsible for starting and interacting with the MonPoly
process. The operator writes one database at a time to standard input and simulta-
neously reads violations from standard output of the process. Reading and writing is
asynchronous to the Flink pipeline in order to prevent blocking other operators. Flink’s
AsyncWaitOperator supports asynchronous requests to external processes without
managing their state. We must, however, include the submonitors’ states in the check-
pointing because they summarize the events seen so far. Thus, our custom operator
tracks MonPoly’s state. To this end, we extend MonPoly with control commands for
saving and loading its state. Whenever Flink instructs the custom operator to create a
checkpoint, it first waits until all prior events have been processed. Then, the command
for saving state is issued and MonPoly writes its state to a temporary file. Violations
reported after the checkpoint instruction’s arrival at the custom operator are included
in the checkpoint. This ensures that no violation is lost because other operators might
create their own checkpoint concurrently. We evaluate the overhead of checkpointing in
Sect. 7.

The part of the dataflow before the submonitors is not parallel. This is a bottleneck
that limits scalability: all events in the input must be processed sequentially by the
splitter. Despite this limitation of our implementation, the splitter and the surrounding
operators could be parallelized too: As its splitter operates on individual events, the
joint data slicer is event-separable (Sect. 4.1). A parallel splitter would be particularly
effective if the event source itself is distributed. However, we would have to ensure that
events arrive at the submonitors in chronological order after reshuffling. This order is no
longer guaranteed if the splitter is partitioned into concurrent tasks. A possible solution
is to buffer and reorder events. We leave the analysis of such an extension to future
work.

7 Evaluation

With our evaluation, we aim to answer the following research questions:

RQ1: How does our monitor scale with respect to the index and event rate?
RQ2: How does our monitor scale with respect to different variable occurrence

patterns?
RQ3: How much overhead is incurred by supporting fault tolerance (FT)?
RQ4: Can knowledge about the frequency of event names improve performance?
RQ5: Can knowledge about heavy hitter values improve performance?
RQ6: Can our monitor handle data in a real-world online setting?
RQ7: How does it compare to MonPoly running on a single core?
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Fig. 3. MFOTL formulas used in the evaluation

To answer the research questions, we organize our evaluation into two families of
experiments, each monitoring a different type of input stream (synthetic or real-world).
The synthetic streams are used to analyze the effects of individual parameters, e.g.,
event rate, while real-world streams attest to our tool’s ability to scalably solve realistic
problems.

We implemented a generator that takes a random seed and synthesizes streams with
specific characteristics. It produces streams containing binary events labeled with P,Q,
or R with configurable event rate, index rate, and rate of violations for the three fixed
formulas star, linear, and triangle (Fig. 3). This setup allows us to test RQ1. Further-
more, to test RQ4 and RQ5, the generator synthesizes event labels with configurable
rates (Z(P), Z(Q), and Z(R)) and forces some event attribute values to be heavy hitters.

We use logs collected during the Nokia’s Data Collection Campaign [10] as real-
world streams. The campaign collected data from mobile phones of 180 participants
and propagated it through three databases db1, db2, and db3. The phones uploaded
their data directly to db1, while a synchronization script script1 periodically copied the
data from db1 to db2. Then, database triggers on db2 anonymized and copied the data
to db3. The participants could query and delete their own data in db1 and such deletions
were propagated to all databases. To obtain streams suitable for online monitoring, we
have developed a tool that replays log events and simulates the event rate at the log
creation time, which is captured by the events’ time-stamps. The tool can also replay
the log proportionally faster than its event rate which is useful to evaluate the monitor’s
performance while retaining log’s other characteristics. Since the log from the campaign
spans a year, to evaluate our tool in a reasonable amount of time, we pick a one day
fragment from the log with the highest average event rate and we use our replayer tool
to speed it up between up to 5,000 times. The fragment contains roughly 9.5 million
events and has an average event rate of 110 events per second. Combined with the
speedup, we have subjected our tool to streams of over half a million events per second.
The used logs [1] and the scripts that synthesize and replay streams [35] are publicly
available.
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Figure 3 shows the formulas we monitored in our evaluation. The formulas star,
linear, and triangle are tailored for the synthetic streams. Different occurrence patterns
of free variables in the formulas allows us to test RQ2. We aimed to cover common data
patterns in database queries [16] and extend them with temporal aspects. The formulas
script, insert, and delete stem from the Nokia’s Data Collection Campaign and have
been shown there to be challenging to monitor [10]. Since we monitor only a one day
fragment of the log from Nokia, we must initialize our monitor with the appropriate
state in order for it to produce the correct output. Therefore, we monitor each formula
once on the part of the log preceding the chosen fragment, store the monitor’s state, and
start the monitor with the stored state as its initial state in the experiments.

We ran all our experiments on a server with two sockets, each containing twelve
Intel Xeon 2.20GHz CPU cores with hyperthreading that effectively gives us 48 inde-
pendent computation threads. We use the UNIX time command to measure total exe-
cution time, i.e., the time between the moment when the replayer tool starts emitting
events to the monitor until the moment the monitor processes the last emitted event.
We also measure the maximal memory usage of each submonitor. To measure latency
during execution, the replayer tool injects a special event (called a latency marker) into
the stream tagged with the current time. The marker is propagated by the monitor and
the latency is measured at the output by comparing the current time with the time in
the marker’s tag. Besides the current latency measurement, we also calculate the rolling
average and maximum latency up to the current point in the experiment. Flink supports
latency markers and provides us with separate latency measurements for each operator
in our monitor’s implementation. Our replayer tool generates latency markers every sec-
ond. When the latency is higher than one second, the latency marker gets delayed, too,
and a timely value cannot be produced. Flink reports zeros for the current latency in this
case, while we consider the latest non-zero value. This significantly reduces the noise in
our measurements. Flink also measures the number of events each submonitor receives.
Since we focus on performance measurements, we discard the tool’s output during the
experiments. Each run of a monitor with a specific configuration is repeated three times
and the collected metrics are averaged to minimize the noise in the measurements.

Figure 4 shows the results for synthetic streams. Figure 4a (top) shows the max-
imum latency when monitoring the formula star with different numbers of cores.
With the event rate of 2,200 events per second, the single core variant of our tool
already exhibits 5 s latency. Similar latency is exhibited with 4 cores when monitor-
ing events rates above 8,000. In contrast, using 16 cores achieves sub-second latency
for all event rates in our experiments. We also show the maximal memory consumption
across all submonitors in Fig. 4a (bottom). With an increasing number of submonitors,
each submonitor receives fewer events and hence uses less memory. This experiment
answers RQ1: our tool handles significantly higher event rates by using more parallel
submonitors.

Figure 4b shows maximum latency (top) and memory consumption (bottom) of
our tool when monitoring star, triangle, and linear formulas using 4 cores. The plots
show six graphs, where a graph shows results of monitoring one of the three formu-
las over a stream with an index rate of 1 or 1,000. Since the index rate affects the
performance of MonPoly [11], our tool is also affected. The event rate gain enabled by
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Fig. 4. Monitoring synthetic streams with fault tolerance

more submonitors depends on the variable occurrence patterns in the monitored formula
(RQ2). Figure 4b also demonstrates that the star pattern is the one that exhibits the best
scalability.

In the above experiments, we did not supply our monitor with the information on the
rates of event labels in the stream. Figure 4c positively answers RQ4 by showing that
both our tool’s latency (top) and memory consumption (bottom) decrease independently
of the number of cores when such statistics about the stream are known in advance.

Figure 5 summarizes the results of monitoring the real-world log from the Nokia
case study. The event and index rates are defined by the log, while we only control
the replay speed. The experiments answer RQ7 and show that we achieve better per-
formance then MonPoly on its own, on all three formulas. We improve latency even
when using a single core, due the optimized implementation of the slicer that filters the
unnecessary events more efficiently than MonPoly. In this experiment, our tool’s per-
formance does not improve beyond 4 cores, since for event rates higher than 500,000
the centralized parsing and slicing becomes a bottleneck. The top left and middle plots
contrast the performance overhead of fault tolerance (RQ3). The maximal latency is
not affected; however the bottom three plots show that the current and average latency
are. These plots correspond to three individual runs and depict how the current latency
changes over time. The leftmost plot shows the monitoring of the delete formula with
respect to the stream sped up 1,000 times, not accounting for fault tolerance. The mid-
dle and rightmost plots show runs with enabled fault tolerance support for the speedups
of 1,000 and 1,500. The regular spikes in the current latency stem from Flink’s state
snapshot algorithm.

Figure 6a shows the number of events sent per submonitor when no skew is present
in the stream. In the presence of skew, the event distribution is much less uniform
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Fig. 5. Monitoring the real-world stream

Fig. 6. Impact of the skew and skew information on parallel monitoring

(Fig. 6b). However, when our monitor is aware of the variables in the formula whose
instantiations in the stream are skewed, it can balance the events evenly (Fig. 6c), effec-
tively reducing the maximum load of the submonitors.

8 Conclusion and Future Work

We generalized the offline slicing framework [9] to support online monitoring and the
simultaneous slicing with respect to all free variables in the formula. We adapted hash-
based partitioning techniques from databases to obtain an automatic slicing strategy.
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We implemented the automatic slicing combining MonPoly with Flink and experimen-
tally demonstrated a significant performance improvement: while retaining sub-second
latency, 16-way parallelization allows us to increase the event rate by one order of mag-
nitude.

We plan to extend our framework to include slicing on bound variables and to opti-
mize slicing of rigid predicates. Checkpointing MonPoly’s state coupled with the online
collection of the stream’s varying statistics can be used to dynamically reconfigure the
automatic slicing strategy. We intend to implement this natural extension and analyze
the tradeoff between the reconfiguration costs and the cost of using imperfect statis-
tics. We also plan to refine our automatic splitting strategy to take communication costs
explicitly into account and evaluate our approach on a distributed computing cluster.
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Abstract. Current browser-level security solutions do not provide a
mechanism for information flow control (IFC) policies. As such, they
need to be combined with language-based security approaches. Practi-
cal implementations for ICF enforcement remains a challenge when the
full spectrum of web applications features is taken into account (i.e.
JavaScript features, web APIs, DOM, portability, performance, etc.). In
this work we develop Gifc, a permissive-upgrade-based inlined monitor-
ing mechanism to detect unwanted information flow in web applications.
Gifc covers a wide range of JavaScript features that give rise to implicit
flows. In contrast to related work, Gifc also handles dynamic code eval-
uation online, and it features an API function model mechanism that
enables information tracking through APIs calls. As a result, Gifc can
handle information flows that use DOM nodes as channels of information.
We validate Gifc by means of a benchmark suite from literature specif-
ically designed for information flow verification, which we also extend.
We compare Gifc qualitatively with respect to closest related work and
show that Gifc performs better at detecting unwanted implicit flows.

Keywords: Information flow control · JavaScript
Runtime monitoring · Browser security · Programming language

1 Introduction

Large parts of many contemporary client-side web applications are implemented
in or compiled to HTML and JavaScript. In these web applications, developers
reuse content, code, and services provided by third parties to avoid reimple-
menting everything from scratch. The default code inclusion mechanism in web
applications are script elements that point to a resource providing JavaScript
source code. The code a browser downloads in this manner is, however, exe-
cuted in the same environment and with the same privileges as the code pro-
vided by the hosted page itself. This implies that, without additional measures,
third-party JavaScript code may have access to sensitive data provided by users.
For example, consider a web application including a password strength checker
component to provide users with visual feedback about the quality of their pass-
word. In order for the component to perform this task, it must be provided with
c© Springer Nature Switzerland AG 2018
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the password value. However, nothing prevents the component from leaking the
password to other third party code.

To help mitigate exploits of such security vulnerabilities, modern browsers
provide mechanisms such as Same-Origin Policy (SOP) and Content Security
Policy (CSP). SOP allows to isolate content from different web origins coex-
isting within the same web page [1], but it does not apply to the src content
of script tags. On the other hand, CSP enables developers to specify from
which domains the browser can load resources [33,34], but it does not prevent
white-listed third-party components that access users data from leaking this
data [25,34]. As a result, SOP and CSP must be complemented with application-
level security mechanisms to ensure data privacy and confidentiality.

The goal of Information Flow Control (IFC) is precisely to enforce data
confidentiality and integrity guarantees in software systems. In this paper we
focus on dynamic IFC analysis through runtime monitoring for web applica-
tions. Dynamic analysis is said to be more suitable for JavaScript than static
verification since statically approximating the behaviour of programs is partic-
ularly difficult given the dynamic nature of JavaScript [3,8]. However, several
JavaScript language features still make dynamic IFC analysis a particularly chal-
lenging task [3], being the most relevant ones, how to reason about DOM and
other web APIs, eval, prototype inheritance and finally, how to handle implicit
flows, i.e. flows caused by non-executed branches. In this paper we explore a
practical dynamic IFC mechanism that tackles all these relevant features with-
out requiring VM modifications.

1.1 Problem Statement

We surveyed recent and relevant dynamic IFC approaches for JavaScript that
have a publicly accessible implementation and are described in related work:
IF-transpiler [32], JSFlow [19], ZaphodFacets [6], FlowFox [14,16], and
Jest [13]. In general, existing work aims at tackling some of the aforementioned
language feature challenges while keeping the performance penalties at a reason-
able level.

Table 1. Overview of recent and relevant dynamic IFC approaches for JavaScript.

eval/DOM Libraries Permissive Portable Performant

IF-transpiler ✓ ✓ ✓

JSFlow ✓ ✓

ZaphodFacets ✓

FlowFox ✓ ✓ ✓

Jest ✓ ✓ ✓ ✓

Gifc ✓ ✓ ✓ ✓ ✓
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Table 1 summarizes our survey of dynamic IFC approaches. Only JSFlow,
FlowFox, and Jest offer support for the DOM and eval, with Jest requiring
a server-side component to handle eval. Yet, support for the DOM and eval is
crucial when analyzing web applications, because the DOM models an important
part of the application state and eval is widely used in web applications [22,
30]. Moreover, only those three approaches support modeling the behavior of
(external) libraries in terms of information flow.

Permissiveness is considered to be an important factor in making IFC prac-
tical [18,32]. In this regard, JSFlow and Jest are not as permissive as IF-

transpiler, meaning that these approaches will prematurely end a secure pro-
gram execution. On the other hand, FlowFox is permissive.

In terms of performance, applying JSFlow, ZaphodFacets, or FlowFox

incurs a high performance penalty because JSFlow and ZaphodFacets add
a complete layer of interpretation between the application code and the under-
lying JavaScript runtime, while FlowFox relies on multiple executions of an
application. Overall, approaches that modify the VM (FlowFox) or develop a
new interpreter (ZaphodFacets and JSFlow) are expensive.

Finally, JSFlow, ZaphodFacets, and FlowFox are not portable, as they
are tied to a particular implementation of a JavaScript or browser environment,
greatly diminishing their applicability in a landscape of JavaScript and web
standards which is constantly evolving.

In this paper we present Gifc, a permissive and portable dynamic IFC mech-
anism with support for dynamic code evaluation, external libraries and DOM.
Gifc exhibits the following properties:

Support for eval. Gifc handles dynamic code evaluation online. This is pos-
sible because we employ an instrumentation platform running alongside the
instrumented program.

Support for libraries. Gifc features an API function model mechanism that
enables information tracking through APIs calls. To handle external function
calls we took inspiration from the specification of function models described
in [21].

Permissive. The monitor of Gifc is based on the permissive upgrade (PU)
technique of Austin and Flanagan [5].

Portable. Gifc does not require modifications to the underlying JavaScript
interpreter or rely on a specific JavaScript runtime environment, but instead
works with any ECMAScript 5 compliant JavaScript interpreter.

Performant. The monitor of Gifc is inlined in the source code, so that the
instrumented program (including the monitor) can still benefit from the opti-
mizations offered by the underlying JavaScript runtime.

To the best of our knowledge, the combination of these properties are novel and
ensures that Gifc is well-suited to perform practical information flow control
for contemporary web applications.

The remainder of this paper is structured as follows. Section 2, informally
introduces the key IFC concepts. Next, Sect. 3 introduces the principal aspects
of our approach that drove the implementation of Gifc described in Sect. 4.
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In Sect. 5, we evaluate qualitatively Gifc based on a benchmark suite from lit-
erature. We also did a quantitative study to evaluate the performance of Gifc

with respect to the state of the art. Finally, Sect. 6 compares the features intro-
duced in Sect. 3 with the state of the art on dynamic IFC.

2 Background Information on IFC

IFC can be used to enforce data privacy and integrity guarantees in software
systems [20]. The semantic foundation for IFC is based on the concept of nonin-
terference [17,20]. This property holds for an application when, given the same
public inputs, the variation of its secret inputs does not affect its public outputs.
Dynamic IFC mechanisms track the dissemination of program values as they
are produced and combined during program execution to prevent the flow of a
sensitive value to a public sink [20].

An IFC policy defines labels that express the security level of program val-
ues, and identifies the sources that produce values with a particular label. For
example, a low label L can be associated with non-sensitive program values that
are allowed to be publicly observable. In contrast, high labels H can be associated
with sensitive values that should remain private to the application. Additionally,
an IFC policy identifies information sinks in a program and associates them with
a label as well. IFC then only allows values flowing into a sink that are less sensi-
tive than that sink’s label. An IFC policy therefore establishes how the different
security levels are related, for example through the use of a total or partial order
(lattice) between labels. In our example, we would have L ⊂ H, expressing that
H is more sensitive than L, so that H values are not allowed to flow to L sinks.

Explicit and Implicit Flows. Information flows can be categorized into two
types [15,20]. Explicit flows arise from the direct copy of information. For exam-
ple, the assignment expression y = x causes an explicit flow from variable x to
y, and after the assignment y will have the same value with the same label as
x. Implicit flows arise from control flow structures such as if, return in a non-
final position, break, continue, and throw. For example, after executing the
statement if (z) y=0 else y=1 the value of variable y depends on the value
of z. This results in an implicit flow from z to y, and after the if statement the
value of y will have the same label as z.

Permissiveness. Permissiveness can be understood as the ability of a monitor-
ing mechanism to allow the execution of semantically secure programs [13,18].
Implicit flows from private variables holding secret values to public variables
holding non-secret values enables attackers to infer information about these
secret values. Austin and Flanagan [4] proposed the No-Sensitive Upgrade (NSU)
technique, in which any side effect that depends on secret information will termi-
nate the execution. NSU monitors, however, make a coarse approximation of the
all paths of executions of the program in order to ensure soundness. For exam-
ple, consider the program in Listing 1.1. NSU terminates the execution when
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it reaches the assignment to y because the occurrence this side-effect depends
on the secret value of variable x. Although this behavior is sound, the termina-
tion of the program execution is premature since the value of y is never used
afterwards.

Listing 1.1.

let x = true; //H

let y = false;//L

let z = true; //L

if (x) {y=false };//P

print(z)

Listing 1.2.

let x = true; //H

let y = false;//L

let z = true; //L

if (x) {y=false };//P

print(y)

Listing 1.3.

let x = false;//H

let y = false;//L

let z = true; //L

if (x) {y=false };

print(y)

Permissive Upgrade (PU) [5] is an alternative to NSU that provides a more
permissive approach to handle implicit flows. A PU monitor keeps track of secret-
dependent values by means of a special label P that indicates that the information
is partially leaked, i.e., it is currently secret but in other executions may remain
public. The execution is terminated only when a partially leaked value is used in
a conditional statement or flows to a public sink. Therefore, at the assignment
to y in Listing 1.1, instead of stopping the execution as a NSU monitor would, a
PU monitor tags the value of variable y with P and execution continues until the
end. However, a PU monitor would halt the execution of the program in Listing
1.2 when reaching the print statement. For completeness, we mention that
both NSU and PU deem the execution of the program in Listing 1.3 to be safe,
although there is an implicit flow from variable x to y. Therefore, these moni-
tors are able to enforce termination-insensitive noninterference (TINI) which is
weaker than noninterference [4,5,10].

3 GIFC

This work introduces Gifc, a permissive and portable inlined monitoring mech-
anism that supports the DOM and dynamic code evaluation and offers support
for modeling external libraries. To the best of our knowledge, this combination of
properties for a dynamic IFC approach is unique. Before delving into how Gifc

offers all the properties from Table 1, we first lay out the attacker assumptions.

3.1 Attacker Model

We adhere to the gadget attacker model [7]. We assume the user visits a trusted
web application in a legitimate browser. The attacker is somehow able to run his
malicious JavaScript code on the trusted site, for example because the applica-
tion includes a script from the attacker’s server or by using an improper sanitized
input. The attacker does not have any network privileges that allows them to
mount a man-in-the-middle attack [2]. The only outputs the attacker can observe
are those sent to his own server. For that, he can use APIs in the browser envi-
ronment (e.g XMLHTTPRequest). Those APIs are considered sinks of information.
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Therefore, the duty of the IFC monitor is to prevent the flow of any high or sen-
sitive value to those sinks.

3.2 Permissiveness

Listing 1.4.

1 if (!h) {throw new Error ()};

2 y = z;

3 f();

4 g();

Gifc’s monitor is a flow-sensitive
variation on the PU strategy intro-
duced in Austin et al. [5]. Gifc pro-
poses to use AST information of the
program to extend the pc label con-
text of language constructs such as
return, break, throw, etc., when their execution depends on secret values. This
information is crucial and must be handled carefully by approaches like NSU
or PU to ensure soundness and permissiveness guarantees. If the aforementioned
language features are not handled, the monitor will potentially leak information
and hence, will become unsound. On the other hand, if they are used with an
approach like NSU, the monitor could become excessively restrictive. For exam-
ple, consider the code snippet in Listing 1.4 in which h is secret. The execution
of lines from 2 to 4 depends on the value of h, given the throw statement will
execute based on the value h. Therefore, a NSU-based monitor will stop the exe-
cution at the assignment statement (line 2). In this example this problem is
extended until the program encounters the first error handler.

3.3 Portability

Gifc does not rely on a modified VM like [9,16], nor provides an IFC-aware
interpreter like [6,19] since those solutions are inherently not portable. Instead,
Gifc relies on code instrumentation. Similarly to [12,13,27,31,32], Gifc inlines
the monitor within the program.

Inlining the monitor in the program source code has, however, security impli-
cations given that the program runs alongside the monitor and an attacker may
attempt to tamper with the monitor state to compromise security. To increase
the monitor’s security, Gifc and Jest obfuscates all variables names introduced
by the monitor. This is a naive approach because an attacker can use the reflec-
tive capabilities of JavaScript to inspect and modify the monitor state. A pos-
sible way to ensure the security of the monitor could be by means of freeze/seal
of ECMAScript 5. These functions can be used to protect the monitor which
will prevent an attacker from altering the monitor functionality. This will imply
freezing Object, Array, String and other objects from the standard library.
Also, all the object in the prototype chain of the monitor should be secured to
prevent an attacker from tampering with its prototype chain. Nevertheless, the
security of our monitor is ongoing work.

3.4 Eval

Function eval allows the execution of arbitrary code represented by a string
value. Existing dynamic and hybrid approaches that rely on source code
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instrumentation do not support eval(). For a source code instrumentation app-
roach to support eval() with minimum performance implications, the instru-
mentation mechanism must run alongside the instrumented program. In Gifc,
we specialized eval() to track information flow on the string value that this
function receive as argument. Since our code instrumenter is part of the execu-
tion environment, when eval() is called, its argument is instrumented before
its evaluation.

3.5 External Library Calls

JavaScript web applications do not live in isolation in the browser, but they
instead interact with the rest of the system in order to do something useful like
processing user input/output, sending data over the network, displaying a web
form, etc. All these interactions performed by the application are done by means
of calls to web APIs, implemented by the browser in other languages (e.g., C++).

Listing 1.5 shows an example of an external function call, Math.pow. When
executing that code with Gifc to track the flow of information, the applica-
tion is actually running with augmented semantics, e.g. values are labeled and
monitored. Since external libraries do not understand the values used in the aug-
mented semantics, the monitoring mechanism should not pass label information
to Math.pow. However, after the external library call, the monitor cannot know
which label assign to x’s value.

Listing 1.5.

let y = 13; //H

let x = Math.pow(y,2);

A conservative approach to solve this problem is to label the result value
with the most sensitive label of the values involved in the call. However, this is
considered to be restrictive [19]. To solve this problem in Gifc, we defined an API
function model with two functions ϕ and γ, inspired by the ones presented by
Hedin et al. in [21]. The ϕ knows how to marshal the values from the monitored
program to the external function. Also, it has to store the label all values involved
in the call. Those stored labels are then used by γ to decide which label should
be attached to the return value of the API function call.

3.6 Document Object Model

The Document Object Model (DOM) is the main web API offering page render-
ing and input/output facilities [24]. DOM elements are exposed to JavaScript as
objects. However, their semantics is different from regular ordinary JavaScript
objects. Properties of DOM elements are actually pairs of getter/setter functions
provided by the browser that cannot handle labeled values.

Monitoring flows from the DOM is crucial as attackers could store secret
information as DOM element or as part of their properties or attributes to then
later retrieve them and leak that information.
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To be able to reason about the DOM without VM modifications, JavaScript
proxies [28] seem a good approach to enhance DOM elements operations with
information flow control semantics. However, the DOM is unable to handle prox-
ified nodes because type checks that inspect actual DOM elements will fail for
proxies. Also, our function model from Sect. 3.5 is stateless, while many DOM
elements model state.

In order to monitor the DOM API, Gifc associates a meta-object with each
DOM element. This meta-object keeps track the element properties’ labels and
is stored in its target DOM object as an “anonymous” property, using a symbol
property key. Note, however, that this approach is transparent but not tamper-
proof. This is because the attacker can gain access to the meta-object by mean
the language reflective features (i.e. Object.getOwnPropertySymbols()).

3.7 Performance

As explained in the introduction dynamic IFC incurs on non-neglegible perfor-
mance penalties. In particular, the performance of FlowFox depends on the
number of security level and the number of cores of the CPU given that the
program needs to execute once per each security level. On the other hand, pro-
viding an IFC aware interpreter like JSFlow and ZaphodFacets incurs in a
big performance penalty (as we also later show in Sect. 5.2).

Similar to IF-transpiler, Gifc employs code instrumentation to inline its
monitor within the target program. Inlining the source code is potentially better
performant than the aforementioned solutions since the resulting code can bene-
fit from JIT compilation as pointed out in [13]. Section 5 evaluates this research
statement and measures the impact of GIFC on the original application.

4 Implementation

We implemented Gifc
1 as a JavaScript framework that takes a JavaScript or

an HTML page as input program. Gifc then inlines the IFC monitor by instru-
menting the source code of the application. More precisely, the JavaScript code
is instrumented to trap relevant operations and call the monitor through a well-
defined interface, decoupling the monitor from the instrumentation platform
used. Our current prototype assumes that developers tag the sources and sinks
in the input program and provide the specification of function models to handle
external libraries. In what follows, we will first briefly introduce the used code
instrumentation platform, and then provide details on the monitor, how it deals
with implicit flows and non-JavaScript APIs.

4.1 Code Instrumentation Platform

Gifc uses Linvail [11] as code instrumentation platform for implementing its
monitor. More precisely, it employs Linvail’s source-to-source transpiler for
1 https://gitlab.soft.vub.ac.be/ascullpu/guardia-ifc.

https://gitlab.soft.vub.ac.be/ascullpu/guardia-ifc
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JavaScript called Aran2. Aran takes as input a target program and an analysis
and produces an instrumented JavaScript program that can be executed on any
ES5-compliant interpreter. The analysis is a JavaScript file that describes how
JavaScript operations should be embellished. In the case of Gifc, the analysis file
provides the traps for language operations (function calls, variable assignment,
object property access, etc.) that require calling the IFC monitor.

4.2 Monitor

The instrumented code interacts with the monitor using a well-defined interface
shown in Fig. 1, distilled from the semantics of the PU monitor presented by
Austin et al. [5].

noitpircseDnoitcnufrotinoM
pushContext(x, t) Push a context label given a type

ca
llb

ac
ks

popContext(t) Pop a context label given its type
join(x,y) Returns the least upper bound of the labels
permissiveCheck() Determine if there is no PU violation in a branching point
enforce(y,...xs) Enforce IFC if y is a sink and some of xs is a source

leave(fn)
Remember all values’ labels of an external function call
before its execution

enter(fn, val)
Attach a computed label to the return value of an exter-
nal function

im
pl

tagAsSource(x) Tags x as source (i.e. sensitive data)
tagAsSink(x) Tags x as sink (i.e. produce a public observable data)
addFnModel(ϕ, γ)) Registers a model γ for an external function ϕ

Fig. 1. Monitor interface

The monitor interface decouples its implementation from the instrumentation
platform, which enables changing parts of the monitoring mechanism indepen-
dently. We would also like to exploit this decoupling in future work to experiment
with other code instrumentation platforms.

Figure 1 distinguishes two categories of monitor functions. Calls to the func-
tions marked as “callbacks” are automatically inserted into the target program
during code instrumentation (see Sect. 4.4). Calls to the functions marked as
“impl” have to be manually called by the IFC implementor, i.e. developer per-
forming IFC analysis. Those calls refer to the tagging functions for tagging
sources and sinks, and to add a function model (see Sect. 4.3).

4.3 Implementer Monitor Functions

Gifc provides functions tagAsSource and tagAsSink that developers have to
insert into a program to identify sensitive sources and sinks. For example, the
2 https://github.com/lachrist/aran.

https://github.com/lachrist/aran
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program in Listing 1.6 shows the required tagging for enabling the IFC monitor
to prevent the flow of the user password to the browser console output. Function
console.log is tagged as a sink, and the value property of the HTML element
with id #pass as a source.

Listing 1.6. Prevent password leakage

tagAsSink(console.log);

const onClickHandler = () => {

const $ = document.querySelector;

let pass = tagAsSource($(’#pass’).value);

...

console.log(pass);

}

Although developers currently have to manually tag sources and sinks in
the code, it would be possible to devise a more declarative (external) manner
for specifying sources and sinks, which the code instrumenter can then use to
introduce the tag functions in the target program where appropriate. We are
currently building plugin support enhanced with AI machinery to automate the
marking sources and sinks in the future.

Besides identifying sources and sinks, Gifc also expects that external func-
tions are registered using addFnModel(fun, γ). Function γ has to approximate
the flow of information of function fun in terms of the labels of the argu-
ments. For example, for Math.pow(x,y) shown in Listing 1.5, we would register
γ(x,y) = x�y, correctly capturing the notion that if Math.pow is called with
one or two sensitive argument values, then the resulting value is also sensitive.
We implemented models for some objects of the standard libraries including
Math, Array, and String. However, the monitor fallback to default conservative
model for functions calls that do not have precise model implementation.

4.4 Callback Monitor Functions

Gifc uses a shadow stack to maintain the pc label. The pushContext() function
pushes a security label into the stack every time the program encounters a control
flow statement. The label value is the join of all values that influences control
flow in a control flow statement.

popContext() removes the top element of the stack when the execution
reaches the end of a control flow structure body.

Our monitor actually maintains an exception stack that keeps track of
implicit flows that arise from throwing exceptions in sensitive contexts. We push
into the exception stack when the execution of a throw statement depends on
sensitive information. This is because there is no syntactic way to know when
an exception will be handled. Then, when a catch handler is reached, we pop
all values from the exception stack.

The join(a,b) operation is used whenever the label of a value depends
on multiple values (i.e. the least upper bound of the elements). As a concrete
example, consider let z = x + y;. The label of z depends on the more sensitive
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label involved in the values of the binary operation (also, in the label of the pc
context, etc.).

The permissiveCheck() enforces the PU invariant at the branching point
of control flow structures to avoid total leak of information. enforce() is then
used at code locations (e.g. function application, setters) where information can
leak the system to prevent information flow violations. It checks if there is any
sensitive value flowing to a setter or function annotated as sink.

Functions addFnModel(fun, γ), leave, and enter enable the IFC moni-
tor to interact with non-instrumented functions, i.e. external function calls. As
mentioned, external functions need to be registered using addFnModel(fun, γ).
During program execution, upon the call to an external function, function leave
looks up the corresponding γ function, splits the labels from the argument values
and applies γ, and stores the resulting label �. Next, the actual external function
is called with the unlabeled argument values. Finally, function enter attaches
the stored label � to the value returned from the non-instrumented function call.

Recall that to reason about the DOM, Gifc associates a meta-object with
each DOM element. When a getter or setter is executed on a DOM element,
the instrumentation ensures that each element property write operation updates
its corresponding label in the meta-object, while every value resulting from a
property read operation will be labeled with its corresponding label. For handling
DOM elements methods, the function model associated to the method is used.

5 Evaluation

In order to evaluate our approach, we performed a qualitative and quantitative
evaluation of our Gifc implementation. The qualitative evaluation provides an
indication of how effective our approach is in detecting illicit information flows.
The quantitative evaluation shows the performance implications of our approach
to an uninstrumented baseline and compares it to related approaches.

5.1 Qualitative Evaluation

To evaluate the effectiveness of Gifc in a practical way, we compare it with
IF-transpiler, JSFlow, and ZaphodFacets by determining whether or not
illicit flows are detected in a suite of benchmark programs3. The benchmark suite
was designed by Sayed et al. [32] and consists of 33 programs specifically designed
for testing information flow control. It contains a wide variety of (combinations
of) language features that challenge any IFC approach. We extended the bench-
mark with 5 new programs to test features such as eval, API function calls, and
property getters/setters not present in the original one. In the Gifc repository
we describe the 28 programs included in the original benchmark suite4. The
3 Unfortunately we were unable to set up a functional test environment for FlowFox

and Jest. In the case of Jest certain models are required that are undocumented
and not trivial to develop.

4 https://gitlab.soft.vub.ac.be/ascullpu/guardia-ifc.

https://gitlab.soft.vub.ac.be/ascullpu/guardia-ifc
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last entries in the table describe the new 5 additions. Each benchmark program
takes as input a secret string value, which the program attempts to leak explic-
itly or implicitly in various ways. We ran all tools on all benchmark programs in
NodeJS, except for ZaphodFacets, of which the experiments were performed
in Mozilla Firefox 8.0 as required by the tool.

Table 2 shows how Gifc compares to the other three IFC approaches. The ✓
means that a tool was able to detect the illicit information flow, while ✗ indicates
that a tool was unable to detect the illicit flow. R.Err indicates that a tool threw
a runtime exception and was unable to execute the program properly. In.Err
indicates that the tool was unable to inline the monitor into the original program
source code. Exp indicates that the tool threw an exception at a point where
an illicit information flow could be. However, in these cases it was premature
because at that point there was no invalid information flow. This observation
was also made in [32].

The results in Table 2 show that Gifc is able to detect and prevent illicit
information flows in all test programs. For the 28 programs from the original
suite we were able to reproduce the findings reported by Sayed et al. [32] for
IF-transpiler, JSFlow, and ZaphodFacets. For the 5 test programs that
we extended the suite, Gifc and JSFlow successfully detected all illicit flows.
Both IF-transpiler and ZaphodFacets were able to successfully detect an
illicit flow in only one out of 5 new test programs.

Adding online support for eval() in IF-transpiler needs the static analysis
component and the transpiler in the same process of the application. Supporting
APIs will require the refactoring of the transformation rules to include function
models. Also, it will require implementing the mechanism that allows assigning
models to APIs functions which need to be configured at runtime.

From this we conclude that Gifc is on par with the existing tools in terms of
detecting illicit information flows in the presence of different JavaScript features.

5.2 Quantitative Evaluation

We conducted performance benchmarks to measure the impact of Gifc on the
performance of the original application (the baseline), and to gauge how our
approach compares with IF-transpiler, JSFlow, and ZaphodFacets in this
regard. The set of benchmark programs consists of 9 different algorithms used
in Sayed et al. [32]. Table 3 shows the time in milliseconds to run the algorithms.
More concretely, it reports the average time of 10 executions of each algorithm.
Both JSFlow and ZaphodFacets failed to execute the AES algorithm. This
was also reported in [32].

The results in Table 3 show that the approaches that rely on code instrumen-
tation (Gifc and IF-transpiler) have a performance impact which is one or
more orders of magnitude smaller than the performance impact of approaches
that rely on an additional interpreter (JSFlow and ZaphodFacets). IF-

transpiler performs better than Gifc, although performance is still compara-
ble. Important sources of performance overhead in Gifc’s dynamic monitor are
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Table 2. Effectiveness comparison

Program JSFlow ZaphodFacets IF-transpiler Gifc

Test 1 ✓ ✓ ✓ ✓

Test 2 ✓ ✓ ✓ ✓

Test 3 ✓ ✓ ✓ ✓

Test 4 ✓ ✓ ✓ ✓

Test 5 ✓ R.Err ✓ ✓

Test 6 Exp R.Err ✓ ✓

Test 7 Exp R.Err ✓ ✓

Test 8 Exp R.Err ✓ ✓

Test 9 Exp R.Err ✓ ✓

Test 11 Exp R.Err ✓ ✓

Test 11 Exp R.Err ✓ ✓

Test 12 Exp R.Err ✓ ✓

Test 13 ✗ R.Err ✓ ✓

Test 14 ✓ R.Err ✓ ✓

Test 15 ✓ R.Err ✓ ✓

Test 16 ✓ R.Err ✓ ✓

Test 17 ✓ R.Err ✓ ✓

Test 18 ✓ R.Err ✓ ✓

Test 19 ✓ R.Err ✓ ✓

Test 20 ✗ R.Err ✓ ✓

Test 21 Exp R.Err ✓ ✓

Test 22 ✓ R.Err ✓ ✓

Test 23 ✓ R.Err ✓ ✓

Test 24 ✓ R.Err ✓ ✓

Test 25 ✗ R.Err ✓ ✓

Test 26 ✗ R.Err ✓ ✓

Test 27 ✗ R.Err ✓ ✓

Test 28 ✗ R.Err ✓ ✓

Test 29 ✓ ✗ ✗ ✓

Test 30 ✓ R.Err In.Err ✓

Test 31 ✓ R.Err ✗ ✓

Test 32 ✓ ✗ ✓ ✓

Test 33 ✓ ✓ ✗ ✓
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Table 3. Performance benchmarks

Approach FFT LZW KS FT HN 24 MD5 SHA AES

Baseline 4ms 4ms 22ms 3ms 16ms 13ms 2ms 2ms 9ms

IF-transpiler 14ms 11ms 363ms 10ms 327ms 126ms 33ms 29ms 284ms

Gifc 23ms 34ms 747ms 35ms 1238ms 1233ms 31ms 35ms 780ms

JSFlow 404ms 421ms 5206ms 661ms 5165ms 4371ms 491ms 566ms fails

ZaphodFacets 100ms 188ms 15563ms 145ms 12657ms 6403ms 124ms 197ms fails

the wrapping and unwrapping of values before and after API calls, and the emu-
lation of implicit calls to functions toString() and valueOf() due to implicit
value coercion in the target program.

6 Related Work

In this section, we discuss the most recent and relevant dynamic IFC approaches
for JavaScript previously mentioned (IF-transpiler, JSFlow, Zaphod-

Facets, FlowFox) and some additional related work. All but IF-transpiler
and Jest are also part of the most recent survey on IFC by Bielova et al. [10].

Sayed et al. [32] introduce IF-transpiler, an hybrid flow-sensitive monitor
inlining framework for JavaScript applications. The static component is used to
improve the permissiveness of the monitor by collecting at branching points, the
side effects and function calls of branches not taken. At a branching point, the
static analysis collects all variables that could have been assigned or functions
that could have been called in the untaken branch. In contrast to Gifc, IF-

transpiler does not offer support for external libraries neither eval() nor
DOM, which prevent it from being used in a practical scenario. Also, its static
analysis do not handle side effects inside the body of function calls in the un-
taken branches. Therefore, the soundness of the static analysis is compromised.

JSFlow [19] is an IFC-aware interpreter for JavaScript that uses NSU to
handle implicit flows. To relax NSU, JSFlow uses upgrade instructions for pub-
lic labels before entering to a more sensitive context. However, this requires pro-
grammer intervention to specify where and what the interpreter should upgrade,
which can lead to misconfigurations. JSFlow is not portable, because it needs
to be adapted for each JavaScript engine. Also, it has a considerable performance
impact due to the addition of a complete layer of interpretation.

ZaphodFacets [6] is an IFC-aware interpreter featuring faceted values which
capture the multidimensional view of a value with respect to confidentiality
levels. They provide formal proofs with respect to TINI and also evaluated their
as a plugin implementation for the Firefox browser. However, they lack support
for DOM and external libraries. They do not support eval and the application
performance is heavily affected due to the added interpretation layer. Also, the
ZaphodFacets portability is limited to the Firefox browser.

Secure Multi-Execution (SME) [16,29] takes a different approach that tra-
ditional monitoring approaches for IFC. Programs under SME are executed
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multiple times, once for each security level, using special rules for input and
output operations. The FlowFox implementation require large browser mod-
ifications in order to synchronize all the executions. Executions that are not
allowed to access sensitive information are provided with dummy values repre-
senting more sensitive values. Therefore, any leak of information will not release
the secrets of the application. However, it is unclear how dummy values can
ensure the transparency of the system.

Jest [13] is an IFC monitor inliner for JavaScript implementing NSU like
JSFlow. It uses the concept of boxes to associate label information with pro-
gram values. To allow the program work on boxes, they rewrite the program using
special functions for all JavaScript operations (e.g. function calls, assignments,
etc.). Like Gifc, Jest has a shadow stack to handle unstructured implicit flows.
However, Jest implements the NSU technique which requires the intervention
of the programmer to indicate the upgrading points. They also rely on an exter-
nal process to handle dynamic code evaluation, which degrades the application
performance on calls to eval().

Santos and Rezk [31] were the first that developed an IFC inlining compiler
for a core of JavaScript. They proved that the compiler is able to enforce TINI
and developed a practical implementation of it. However, their implementation
does not cover external libraries neither DOM.

Bichhawat et al. [9] implemented a dynamic IFC mechanism for the
JavaScript bytecode produced by Safari’s WebKit Engine. They formalize the
Webkit’s bytecode syntax and semantics, their instrumentation mechanism and
prove non-interference. To improve permissiveness, they implement a variant of
PU but their work does not support the DOM or other Web APIs.

Le Guernic et al. [23] developed a sound hybrid monitor that enforces non-
interference for a sequential language with loops and outputs. The monitoring
mechanism is composed by a variation of the edit automata [26] and the seman-
tics of monitored executions. It enforces non-interference by authorizing, editing
or forbidding the an specific action during the execution.

Magazinius et al. [27] formalized a framework to inline a monitor on the fly
for an small language with dynamic code evaluation.

7 Conclusion

We introduced Gifc, a practical portable dynamic IFC monitoring mechanism.
Gifc implements the PU strategy to improve the permissiveness of the mon-
itoring. It offers support for DOM and external libraries enabling a practical
use of IFC. Having static information at runtime makes it possible to develop a
more precise model of implicit flows. Gifc is the first inlining mechanism that
supports dynamic code evaluation online.

Benchmarks results show that the performance impact is better than
approaches which rely on a IFC-aware interpreter but it is non-neglegible. Nev-
ertheless, we believe that the approach can be used in settings where security
plays a key role. Also, Gifc can aid developers if it is used as IFC testing tool
at development time.
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In spite of the achievements presented here, there are still some challenges
that this kind of approaches need to overcome. First, the performance impact
needs to be addressed. Second, the monitor state must be secured given the fact
that its state is visible to the application.
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Abstract. Cyber-physical systems of today are generating large vol-
umes of time-series data. As manual inspection of such data is not
tractable, the need for learning methods to help discover logical struc-
ture in the data has increased. We propose a logic-based framework that
allows domain-specific knowledge to be embedded into formulas in a
parametric logical specification over time-series data. The key idea is to
then map a time series to a surface in the parameter space of the for-
mula. Given this mapping, we identify the Hausdorff distance between
surfaces as a natural distance metric between two time-series data under
the lens of the parametric specification. This enables embedding non-
trivial domain-specific knowledge into the distance metric and then using
off-the-shelf machine learning tools to label the data. After labeling the
data, we demonstrate how to extract a logical specification for each label.
Finally, we showcase our technique on real world traffic data to learn clas-
sifiers/monitors for slow-downs and traffic jams.

Keywords: Specification mining · Time-series learning
Dimensionality reduction

1 Introduction

Recently, there has been a proliferation of sensors that monitor diverse kinds of
real-time data representing time-series behaviors or signals generated by systems
and devices that are monitored through such sensors. However, this deluge can
place a heavy burden on engineers and designers who are not interested in the
details of these signals, but instead seek to discover higher-level insights.

More concisely, one can frame the key challenge as: “How does one automat-
ically identify logical structure or relations within the data?” To this end, mod-
ern machine learning (ML) techniques for signal analysis have been invaluable in
domains ranging from healthcare analytics [7] to smart transportation [5]; and
from autonomous driving [14] to social media [12]. However, despite the success
of ML based techniques, we believe that easily leveraging the domain-specific
knowledge of non-ML experts remains an open problem.
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At present, a common way to encode domain-specific knowledge into an ML
task is to first transform the data into an a priori known feature space, e.g., the
statistical properties of a time series. While powerful, translating the knowledge
of domain-specific experts into features remains a non-trivial endeavor. More
recently, it has been shown that a parametric signal temporal logic formula along
with a total ordering on the parameter space can be used to extract feature
vectors for learning temporal logical predicates characterizing driving patterns,
overshoot of diesel engine re-flow rates, and grading for simulated robot con-
trollers in a massive open online coursei (MOOC) [16]. Crucially, the technique
of learning through the lens of a logical formula means that learned artifacts
can be readily leveraged by existing formal methods infrastructure for verifica-
tion, synthesis, falsification, and monitoring. Unfortunately, the usefulness of
the results depend intimately on the total ordering used. The following example
illustrates this point.

Fig. 1. Example signals of car speeds on a freeway.

Example: Most freeways have bottlenecks that lead to traffic congestion, and if
there is a stalled or a crashed vehicle at this site, then upstream traffic congestion
can severely worsen.1 For example, Fig. 1 shows a series of potential time-series
signals to which we would like to assign pairwise distances indicating the simi-
larity (small values) or differences (large values) between any two time series. To
ease exposition, we have limited our focus to the car’s speed. In signals 0 and
1, both cars transition from high speed freeway driving to stop and go traffic.
Conversely, in signal 2, the car transitions from stop and go traffic to high speed
freeway driving. Signal 3 corresponds to a car slowing to a stop and then accel-
erating, perhaps due to difficulty merging lanes. Finally, signal 4 signifies a car
encountering no traffic and signal 5 corresponds to a car in heavy traffic, or a
possibly stalled vehicle.

Suppose a user wished to find a feature space equipped with a measure to
distinguish cars being stuck in traffic. Some properties might be:
1 We note that such data can be obtained from fixed mounted cameras on a freeway,

which is then converted into time-series data for individual vehicles, such as in [4].
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1. Signals 0 and 1 should be very close together since both show a car entering
stop and go traffic in nearly the same manner.

2. Signals 2, 3, and 4 should be close together since the car ultimately escapes
stop and go traffic.

3. Signal 5 should be far from all other examples since it does not represent
entering or leaving stop and go traffic.

Fig. 2. (a) Statistical feature space (b) Trade-off boundaries in specification.

Fig. 3. Adjacency matrix and clustering of Fig. 1. Smaller numbers mean that the time
series are more similar with respect to the logical distance metric.

For a strawman comparison, we consider two ways the user might assign a
distance measure to the above signal space. Further, we omit generic time series
distance measures such as Dynamic Time Warping [8] which do not offer the
ability to embed domain specific knowledge into the metric. At first, the user
might treat the signals as a series of independent measurements and attempt to
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characterize the signals via standard statistical measures on the speed and accel-
eration (mean, standard deviation, etc.). Figure 2a illustrates how the example
signals look in this feature space with each component normalized between 0 and
1. The user might then use the Euclidean distance of each feature to assign a
distance between signals. Unfortunately, in this measure, signal 4 is not close to
signal 2 or 3, violating the second desired property. Further, signals 0 and 1 are
not “very” close together violating the first property. Next, the user attempts
to capture traffic slow downs by the following (informal) parametric temporal
specification: “Between time τ and 20, the car speed is always less than h.” As
will be made precise in the preliminaries (for each individual time-series) Fig. 2b
illustrates the boundaries between values of τ and h that make the specification
true and values which make the specification false. The techniques in [16] then
require the user to specify a particular total ordering on the parameter space.
One then uses the maximal point on the boundary as the representative for
the entire boundary. However, in practice, selecting a good ordering a-priori is
non-obvious. For example, [16] suggests a lexicographic ordering of the param-
eters. However, since most of the boundaries start and end at essentially the
same point, applying any of the lexicographic orderings to the boundaries seen
in Fig. 2b would result in almost all of the boundaries collapsing to the same
points. Thus, such an ordering would make characterizing a slow down impossi-
ble.

In the sequel, we propose using the Hausdorff distance between boundaries as
a general ordering-free way to endow time series with a “logic respecting distance
metric”. Figure 3 illustrates the distances between each boundary. As is easily
confirmed, all 3 properties desired of the clustering algorithm hold.

Contributions. The key insight in our work is that in many interesting
examples, the distance between satisfaction boundaries in the parameter space
of parametric logical formula can characterize the domain-specific knowledge
implicit in the parametric formula. Leveraging this insight we provide the fol-
lowing contributions:

1. We propose a new distance measure between time-series through the lens
of a chosen monotonic specification. Distance measure in hand, standard ML
algorithms such as nearest neighbors (supervised) or agglomerative clustering
(unsupervised) can be used to glean insights into the data.

2. Given a labeling, we propose a method for computing representative points
on each boundary. Viewed another way, we propose a form of dimensionality
reduction based on the temporal logic formula.

3. Finally, given the representative points and their labels, we can use the
machinery developed in [16] to extract a simple logical formula as a classifier
for each label.

2 Preliminaries

The main object of analysis in this paper are time-series.2

2 Nevertheless, the material presented in the sequel easily generalizes to other objects.
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Definition 1 (Time Series, Signals, Traces). Let T be a subset of R≥0 and
D be a nonempty set. A time series (signal or trace), x is a map:

x : T → D (1)

Where T and D are called the time domain and value domain respectively. The
set of all time series is denoted by DT .

Between any two time series one can define a metric which measures their
similarity.

Definition 2 (Metric). Given a set X, a metric is a map,

d : X × X → R
≥0 (2)

such that d(x, y) = d(y, x), d(x, y) = 0 ⇐⇒ x = y, d(x, z) ≤ d(x, y) + d(y, z).

Example 1 (Infinity Norm Metric). Let X be R
n. The infinity norm induced

distance d∞(x,y) def= maxi (|xi − yi|) is a metric.

Example 2 (Hausdorff Distance). Given a set X with a distance metric d, the
Hausdorff distance is a distance metric between closed subsets of X. Namely,
given closed subsets A,B ⊆ X:

dH(A,B) def= max
(

sup
x∈A

inf
y∈B

(d(x, y)), sup
y∈B

inf
x∈A

(d(y, x))
)

(3)

We use the following property of the Hausdorff distance throughout the paper:
Given two sets A and B, there necessarily exists points a ∈ A and b ∈ B such
that:

dH(A,B) = d(a, b) (4)

Within a context, the platonic ideal of a metric between traces respects any
domain-specific properties that make two elements “similar”.3 A logical trace
property, also called a specification, assigns to each timed trace a truth value.

Definition 3 (Specification). A specification is a map, φ, from time series to
true or false.

φ : DT → {1, 0} (5)

A time series, x, is said to satisfy a specification iff φ(x) = 1.

Example 3. Consider the following specification related to the specification from
the running example:

φex(x) def= 1

[
∀t ∈ T .

(
t > 0.2 =⇒ x(t) < 1

)]
(x) (6)

where 1[·] denotes an indicator function. Informally, this specification says that
after t = 0.2, the value of the time series, x(t), is always less than 1.
3 Colloquially, if it looks like a duck and quacks like a duck, it should have a small

distance to a duck.
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Given a finite number of properties, one can then “fingerprint” a time series as
a Boolean feature vector. That is, given n properties, φ1 . . . φn and the corre-
sponding indicator functions, φ1 . . . φn, we map each time series to an n-tuple
as follows.

x 	→ (φ1(x), . . . , φn(x)) (7)

Notice however that many properties are not naturally captured by a finite
sequence of binary features. For example, imagine a single quantitative feature
f : DT → [0, 1] encoding the percentage of fuel left in a tank. This feature
implicitly encodes an uncountably infinite family of Boolean features φk(x) =
1[f(x) = k](x) indexed by the percentages k ∈ [0, 1]. We refer to such families
as parametric specifications. For simplicity, we assume that the parameters are
a subset of the unit hyper-box.

Definition 4 (Parametric Specifications). A parametric specification is a
map:

ϕ : DT →
(

[0, 1]n → {0, 1}
)

(8)

where n ∈ N is the number of parameters and
(

[0, 1]n → {0, 1}
)

denotes the set

of functions from the hyper-square, [0, 1]n to {0, 1}.
Remark 1. The signature, ϕ : [0, 1]n → (DT → {0, 1}) would have been an
alternative and arguably simpler definition of parametric specifications; however,
as we shall see, (8) highlights that a trace induces a structure, called the validity
domain, embedded in the parameter space.

Parametric specifications arise naturally from syntactically substituting con-
stants with parameters in the description of a specification.

Example 4. The parametric specification given in Example 3 can be generalized
by substituting τ for 0.2 and h for 1 in Example 3.

ϕex(x)(τ, h) def= 1

[
∀t ∈ T .

(
t > τ =⇒ x(t) < h

)]
(x) (9)

At this point, one could naively extend the notion of the “fingerprint” of a
parametric specification in a similar manner as the finite case. However, if [0, 1]n

is equipped with a distance metric, it is fruitful to instead study the geometry
induced by the time series in the parameter space. To begin, observe that the
value of a Boolean feature vector is exactly determined by which entries map to 1.
Analogously, the set of parameter values for which a parameterized specification
maps to true on a given time series acts as the “fingerprint”. We refer to this
characterizing set as the validity domain.

Definition 5 (Validity domain). Given an n parameter specification, ϕ, and
a trace, x, the validity domain is the pre-image of 1 under ϕ(x),

Vϕ(x) def= PreImgϕ(x)[1] =
{

θ ∈ [0, 1]n | ϕ(x)(θ) = 1
}

(10)
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Thus, Vϕ, can be viewed as the map that returns the structure in the parameter
space indexed by a particular trace.

Note that in general, the validity domain can be arbitrarily complex mak-
ing reasoning about its geometry intractable. We circumvent such hurdles by
specializing to monotonic specifications.

Definition 6 (Monotonic Specifications). A parametric specification is said
to be monotonic if for all traces, x:

θ � θ′ =⇒ ϕ(x)(θ) ≤ ϕ(x)(θ′) (11)

where � is the standard product ordering on [0, 1]n, e.g. (x, y) ≤ (x′, y′) iff
(x < x′ ∧ y < y′).

Remark 2. The parametric specification in Example 4 is monotonic.

Proposition 1. Given a monotonic specification, ϕ, and a time series, x, the
boundary of the validity domain, ∂Vϕ(x), of a monotonic specification is a hyper-
surface that segments [0, 1]n into two components.

Next, we develop a distance metric between validity domains which characterizes
the similarity between two time series under the lens of a monotonic specification.

3 Logic-Respecting Distance Metric

In this section, we define a class of metrics on the signal space that is derived
from corresponding parametric specifications. First, observe that the validity
domains of monotonic specifications are uniquely defined by the hyper-surface
that separates them from the rest of the parameter space. Similar to Pareto
fronts in a multi-objective optimization, these boundaries encode the trade-offs
required in each parameter to make the specification satisfied for a given time
series. This suggests a simple procedure to define a distance metric between time
series that respects their logical properties: Given a monotonic specification, a
set of time series, and a distance metric between validity domain boundaries:

1. Compute the validity domain boundaries for each time series.
2. Compute the distance between the validity domain boundaries.

Of course, the benefits of using this metric would rely entirely on whether (i) The
monotonic specification captures the relevant domain-specific details (ii) The
distance between validity domain boundaries is sensitive to outliers. While the
choice of specification is highly domain-specific, we argue that for many mono-
tonic specifications, the distance metric should be sensitive to outliers as this
represents a large deviation from the specification. This sensitivity requirement
seems particularly apt if the number of satisfying traces of the specification grows
linearly or super-linearly as the parameters increase. Observing that Hausdorff
distance (3) between two validity boundaries satisfy these properties, we define
our new distance metric between time series as:
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Definition 7. Given a monotonic specification, ϕ, and a distance metric on
the parameter space ([0, 1]n, d), the logical distance between two time series,
x(t),y(t) ∈ DT is:

dϕ(x(t),y(t)) def= dH (∂Vϕ(x), ∂Vϕ(y)) (12)

3.1 Approximating the Logical Distance

Next, we discuss how to approximate the logical distance metric within arbi-
trary precision. First, observe that the validity domain boundary of a monotonic
specification can be recursively approximated to arbitrary precision via binary
search on the diagonal of the parameter space [13]. This approximation yields a
series of overlapping axis aligned rectangles that are guaranteed to contain the
boundary (see Fig. 4).

Fig. 4. Illustration of procedure introduced in [13] to recursively approximate a validity
domain boundary to arbitrary precision.

To formalize this approximation, let I(R) denote the set of closed intervals
on the real line. We then define an axis aligned rectangle as the product of closed
intervals.

Definition 8. The set of axis aligned rectangles is defined as:

I(Rn) def=
n∏

i=1

I(R) (13)

The approximation given in [13] is then a family of maps,

approxi : DT → P (I(Rn)) (14)

where i denotes the recursive depth and P (·) denotes the powerset.4 For example,
approx0 yields the bounding box given in the leftmost subfigure in Fig. 4 and
approx1 yields the subdivision of the bounding box seen on the right.5

4 The co-domain of (14) could be tightened to
(
2n − 2

)i

, but to avoid also parame-

terizing the discretization function, we do not strengthen the type signature.
5 If the rectangle being subdivided is degenerate, i.e., lies entirely within the boundary

of the validity domain and thus all point intersect the boundary, then the halfway
point of the diagonal is taken to be the subdivision point.
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Next, we ask the question: Given a discretization of the rectangle set approx-
imating a boundary, how does the Hausdorff distance between the discretization
relate to the true Hausdorff distance between two boundaries? In particular, con-
sider the map that takes a set of rectangles to the set of the corner points of the
rectangles. Formally, we denote this map as:

discretize : P (I(Rn)) → P (Rn) (15)

As the rectangles are axis aligned, at this point, it is fruitful to specialize to
parameter spaces equipped with the infinity norm. The resulting Hausdorff dis-
tance is denoted d∞

H . This specialization leads to the following lemma:

Lemma 1. Let x, x′ be two time series and R,R′ the approximation of their
respective boundaries. Further, let p, p′ be points in R,R′ such that:

d̂
def= d∞

H ( discretize(R), discretize(R′)) = d∞(p, p′) (16)

and let r, r′ be the rectangles in R and R′ containing the points p and p′ respec-
tively. Finally, let ε

2 be the maximum edge length in R and R′, then:

max(0, d̂ − ε) ≤ dϕ(x,x′) ≤ d̂ + ε (17)

Proof. First, observe that (i) each rectangle intersects its boundary (ii) each
rectangle set over-approximates its boundary. Thus, by assumption, each point
within a rectangle is at most ε/2 distance from the boundary w.r.t. the infin-
ity norm. Thus, since there exist two points p, p′ such that d̂ = d∞(p, p′),
the maximum deviation from the logical distance is at most 2 ε

2 = ε and
d̂ − ε ≤ dϕ(x,x′) ≤ d̂ + ε. Further, since dϕ must be in R

≥0, the lower bound
can be tightened to max(0, d̂ − ε). �

We denote the map given by (17) from the points to the error interval as:

d∞
H ± ε : P (R) × P (R) → I(R+) (18)

Next, observe that this approximation can be made arbitrarily close to the
logical distance.

Theorem 1. Let d� = dϕ(x,y) denote the logical distance between two traces
x,y. For any ε ∈ R

≥0, there exists i ∈ N such that:

d∞
H ( discretize( approxi(R)), discretize( approxi(R′))) ∈ [d� − ε, d� + ε] (19)

Proof. By Lemma 1, given a fixed approximate depth, the above approximation
differs from the true logical distance by at most two times the maximum edge
length of the approximating rectangles. Note that by construction, incrementing
the approximation depth results in each rectangle having at least one edge being
halved. Thus the maximum edge length across the set of rectangles must at least
halve. Thus, for any ε there exists an approximation depth i ∈ N such that:

d∞
H ( discretize( approxi(R)), discretize( approxi(R′))) ∈ [d� − ε, d� + ε] .

�
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Finally, Algorithm 1 summarizes the above procedure.

Algorithm 1. Approximate Logical Distance
1: procedure approx dist(x,x′, δ)
2: lo, hi ← 0, ∞
3: while hi − lo > δ do
4: R, R′ ← approxi(x), approxi(x′)
5: points, points′ ← discretize(R), discretize(R′)
6: lo, hi ← (

d∞
H ± ε

)
(R, R′)

7: return lo, hi

Remark 3. An efficient implementation should of course memoize previous calls
to approxi and use approxi to compute approxi+1. Further, since certain rectan-
gles can be quickly determined to not contribute to the Hausdorff distance, they
need not be subdivided further.

3.2 Learning Labels

The distance interval (lo, hi) returned by Algorithm 1 can be used by learning
techniques, such as hierarchical or agglomerative clustering, to estimate clusters
(and hence the labels). While the technical details of these learning algorithms are
beyond the scope of this work, we formalize the result of the learning algorithms
as a labeling map:

Definition 9 (Labeling). A k-labeling is a map:

L : DT → {0, . . . , k} (20)

for some k ∈ N. If k is obvious from context or not important, then the map is
simply referred to as a labeling.

4 Artifact Extraction

In practice, many learning algorithms produce labeling maps that provide little
to no insight into why a particular trajectory is given a particular label. In the
next section, we seek a way to systematically summarize a labeling in terms of
the parametric specification used to induce the logical distance.

4.1 Post-Facto Projections

To begin, observe that due to the nature of the Hausdorff distance, when explain-
ing why two boundaries differ, one can remove large segments of the boundaries
without changing their Hausdorff distance. This motivates us to find a small
summarizing set of parameters for each label. Further, since the Hausdorff dis-
tance often reduces to the distance between two points, we aim to summarize
each boundary using a particular projection map. Concretely,
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Definition 10. Letting ∂Vϕ(DT ) denote the set of all possible validity domain
boundaries, a projection is a map:

proj : ∂Vϕ(DT ) → R
n (21)

where n is the number of parameters in ϕ.

Remark 4. In principle, one could extend this to projecting to a finite tuple of
points. For simplicity, we do not consider such cases.

Systematic techniques for picking the projection include lexicographic projections
and solutions to multi-objective optimizations; however, as seen in the introduc-
tion, a-priori choosing the projection scheme is subtle. Instead, we propose per-
forming a post-facto optimization of a collection of projections in order to be
maximally representative of the labels. That is, we seek a projection, proj∗, that
maximally disambiguates between the labels, i.e., maximizes the minimum dis-
tance between the clusters. Formally, given a set of traces associated with each
label L1, . . . Lk we seek:

proj∗ ∈ arg max
proj

min
i,j∈(k2)

d∞( proj(Li), proj(Lj)) (22)

For simplicity, we restrict our focus to projections induced by the intersection of
each boundary with a line intersecting the base of the unit box [0, 1]n. Just as in
the recursive boundary approximations, due to monotonicity, this intersection
point is guaranteed to be unique. Further, this class of projections is in one-one
correspondence with the boundary. In particular, for any point p on boundary,
there exists exactly one projection that produces p. As such, each projection can
be indexed by a point in [0, 1]n−1.

Example 5. Let n = 2, ϕ denote a parametric specification, and let θ ∈ [0, π/2]
denote an angle from one of the axes. The projection induced by a line with
angle θ is implicitly defined as:

projθ(x) · [cos(θ),− sin(θ)] ∈ ∂Vϕ(x) (23)

Remark 5. Since we expect clusters of boundaries to be near each other, we also
expect their intersection points to be near each other.

Remark 6. For our experiment, we search for the optimal projection (22) in the
space of projections defined by

{
projθ | θ = i

100
π
2 , i ∈ {0, 1, . . . , 100}}

.

4.2 Label Specifications

Next, observe that given a projection, when studying the infinity norm distance
between labels, it suffices to consider only the bounding box of each label in
parameter space. Namely, letting B : P (Rn) → I[Rn] denote the map that
computes the bounding box of a set of points in R

n, for any two labels i and j:

d∞( proj(Li), proj(Lj)) = d∞(B ◦ proj(Li), B ◦ proj(Lj)). (24)
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This motivates using the projection’s bounding box as a surrogate for the cluster.
Next, we observe that one can encode the set of trajectories whose boundaries
intersect (and thus can project to) a given bounding box as a simple Boolean com-
bination of the specifications corresponding to instantiating ϕ with the parame-
ters of at most n+1 corners of the box [16, Lemma 2]. While a detailed exposition
is outside the scope of this article, we illustrate with an example.

Example 6. Consider examples 0 and 1 from the introductory example viewed
as validity domain boundaries under (9). Suppose that the post-facto projection
mapped example 0 to (1/4, 1/2) and mapped example 1 to (0.3, 0.51). Such a
projection is plausibly near the optimal for many classes of projections since
none of the other example boundaries (who are in different clusters) are near
the boundaries for 0 and 1 at these points. The resulting specification is:

φ(x) = ϕex(x)(1/4, 1/2) ∧ ¬ϕex(x)(1/4, 0.51) ∧ ¬ϕex(x)(0.3, 1/2)

= 1

[
t ∈ [1/4, 0.3] =⇒ x(t) ∈ [1/2, 0.51] ∧ t > 0.3 =⇒ x(t) ≥ 0.51

]
(25)

4.3 Dimensionality Reduction

Fig. 5. Figure of histogram resulting from
projecting noisy variations of the traffic
slow down example time series onto the
diagonal of the unit box.

Finally, observe that the line that
induces the projection can serve as a
mechanism for dimensionality reduc-
tion. Namely, if one parameterizes
the line γ(t) from [0, 1], where γ(0)
is the origin and γ(1) intersects the
unit box, then the points where the
various boundaries intersect can be
assigned a number between 0 and
1. For high-dimensional parameter
spaces, this enables visualizing the pro-
jection histogram and could even be
used for future classification/learning.
We again illustrate using our running
example.

Example 7. For all six time series in the traffic slow down example, we gener-
ate 100 new time series by modulating the time series with noise drawn from
N (1, 0.3). Using our previously labeled time series, the projection using the line
with angle 45◦ (i.e., the diagonal of the unit box) from the x-axis yields the
distribution seen in Fig. 5. Observe that all three clusters are clearly visible.

Remark 7. If one dimension is insufficient, this procedure can be extended to an
arbitrary number of dimensions using more lines. An interesting extension may
be to consider how generic dimensionality techniques such as principle compo-
nent analysis would act in the limit where one approximates the entire boundary.
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5 Case Study

To improve driver models and traffic on highways, the Federal Highway Admin-
istration collected detailed traffic data on southbound US-101 freeway, in Los
Angeles [4]. Traffic through the segment was monitored and recorded through
eight synchronized cameras, next to the freeway. A total of 45 minutes of traffic
data was recorded including vehicle trajectory data providing lane positions of
each vehicle within the study area. The data-set is split into 5979 time series.
For simplicity, we constrain our focus to the car’s speed. In the sequel, we out-
line a technique for first using the parametric specification (in conjunction with
off-the-shelf machine learning techniques) to filter the data, and then using the
logical distance from an idealized slow down to find the slow downs in the data.
This final step offers a key benefit over the closest prior work [16]. Namely given
an over approximation of the desired cluster, one can use the logical distance to
further refine the cluster.

Rescale Data. As in our running example, we seek to use (9) to search
for traffic slow downs; however, in order to do so, we must re-scale the time
series. To begin, observe that the mean velocity is 62 mph with 80% of the
vehicles remaining under 70 mph. Thus, we linearly scale the velocity so that
70mph 	→ 1 arbitrary unit (a.u.). Similarly, we re-scale the time axis so that
each tick is 2 s. Figure 6a shows a subset of the time series.

Fig. 6. (a) 1000/5000 of the rescaled highway 101 time series. (b) Projection of Time-
Series to two lines in the parameter space of (9) and resulting GMM labels.

Filtering. Recall that if two boundaries have small Hausdorff distances, then
the points where the boundaries intersect a line (that intersects the origin of the
parameter space) must be close. Since computing the Hausdorff distance is a
fairly expensive operation, we use this one way implication to group time series
which may be near each other w.r.t. the Hausdorff distance.
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In particular, we (arbitrarily) selected two lines intersecting the parameter
space origin at 0.46 and 1.36 rad from the τ axis to project to. We filtered out
time-series that did not intersect the line within [0, 1]2. We then fit a 5 cluster
Gaussian Mixture Model (GMM) to label the data. Figure 6b shows the result.

Fig. 7. (a) Cluster 4 Logical distance histogram. (b) Time-series in Cluster 4 colored
by distance to ideal slow down.

Matching Idealized Slow Down. Next, we labeled the idealized slow down,
(trace 0 from Fig. 2b) using the fitted GMM. This identified cluster 4 (with 765
data points) as containing potential slow downs. To filter for the true slow downs,
we used the logical distance6 from the idealized slow down to further subdivide
the cluster. Figure 7b shows the resulting distribution. Figure 7a shows the time
series in cluster 4 annotated by their distance for the idealized slow down. Using
this visualization, one can clearly identify 390 slow downs (distance less than
0.3)

Artifact Extraction. Finally, we first searched for a single projection that
gave a satisfactory separation of clusters, but were unable to do so. We then
searched over pairs of projections to create a specification as the conjunction
of two box specifications. Namely, in terms of (9), our first projection yields
the specification: φ1 = ϕex(0.27, 0.55)∧¬ϕex(0.38, 0.55)∧¬ϕex(0.27, 0.76). Sim-
ilarly, our second projection yields the specification: φ2 = ϕex(0.35, 0.17) ∧
¬ϕex(0.35, 0.31) ∧ ¬ϕex(0.62, 0.17). The learned slow down specification is the
conjunction of these two specifications.

6 Related Work and Conclusion

Time-series clustering and classification is a well-studied area in the domain of
machine learning and data mining [10]. Time series clustering that work with
raw time-series data combine clustering schemes such as agglomerative cluster-
ing, hierarchical clustering, k-means clustering among others, with similarity

6 again associated with (9).
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measures between time-series data such as the dynamic time-warping (DTW)
distance, statistical measures and information-theoretic measures. Feature-
extraction based methods typically use generic sets of features, but algorithmic
selection of the right set of meaningful features is a challenge. Finally, there
are model-based approaches that seek an underlying generative model for the
time-series data, and typically require extra assumptions on the data such as
linearity or the Markovian property. Please see [10] for detailed references to
each approach. It should be noted that historically time-series learning focused
on univariate time-series, and extensions to multivariate time-series data have
been relatively recent developments.

More recent work has focused on automatically identifying features from the
data itself, such as the work on shapelets [11,15,17], where instead of comparing
entire time-series data using similarity measures, algorithms to automatically
identify distinguishing motifs in the data have been developed. These motifs or
shapelets serve not only as features for ML tasks, but also provide visual feedback
to the user explaining why a classification or clustering task, labels given data,
in a certain way. While we draw inspiration from this general idea, we seek to
expand it to consider logical shapes in the data, which would allow leveraging
user’s domain expertise.

Automatic identification of motifs or basis functions from the data while
useful in several documented case studies, comes with some limitations. For
example, in [1], the authors define a subspace clustering algorithm, where given
a set of time-series curves, the algorithm identifies a subspace among the curves
such that every curve in the given set can be expressed as a linear combination of
a deformations of the curves in the subspace. We note that the authors observe
that it may be difficult to associate the natural clustering structure with specific
predicates over the data (such as patient outcome in a hospital setting).

The use of logical formulas for learning properties of time-series has slowly
been gaining momentum in communities outside of traditional machine learning
and data mining [2,3,6,9]. Here, fragments of Signal Temporal Logic have been
used to perform tasks such as supervised and unsupervised learning. A key dis-
tinction from these approaches is our use of libraries of signal predicates that
encode domain expertise that allow human-interpretable clusters and classifiers.

Finally, preliminary exploration of this idea appeared in prior work by some
of the co-authors in [16]. The key difference is the previous work required users
to provide a ranking of parameters appearing in a signal predicate, in order to
project time-series data to unique points in the parameter space. We remove this
additional burden on the user in this paper by proposing a generalization that
projects time-series signals to trade-off curves in the parameter space, and then
using these curves as features.

Conclusion. We proposed a family of distance metrics for time-series learning
centered monotonic specifications that respect the logical characteristic of the
specification. The key insight was to first map each time-series to characteriz-
ing surfaces in the parameter space and then compute the Hausdorff Distance
between the surfaces. This enabled embedding non-trivial domain specific knowl-
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edge into the distance metric usable by standard machine learning. After label-
ing the data, we demonstrate how this technique produces artifacts that can
be used for dimensionality reduction or as a logical specification for each label.
We concluded with a simple automotive case study show casing the technique on
real world data. Future work includes investigating how to the leverage massively
parallel natural in the boundary and Hausdorff computation using graphical pro-
cessing units and characterizing alternative boundary distances (see Remark 7).
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Abstract. For reliable situation awareness in autonomous vehicle appli-
cations, we need to develop robust and reliable image processing and
machine learning algorithms. Currently, there is no general framework
for reasoning about the performance of perception systems. This paper
introduces Timed Quality Temporal Logic (TQTL) as a formal language
for monitoring and testing the performance of object detection and sit-
uation awareness algorithms for autonomous vehicle applications. We
demonstrate that it is possible to describe interesting properties as TQTL
formulas and detect cases where the properties are violated.

Keywords: Temporal logic · Monitoring · Autonomous vehicles
Perception · Image processing · Machine Learning

1 Introduction

The wide availability of high-performance GPU-based hardware has led to an
explosion in the applications of Machine Learning (ML) techniques to real-time
image recognition problems, especially using deep learning [12]. Such techniques
are being used in safety-critical applications such as self-driving vehicles [17].
Testing of these systems is largely based on either (a) measuring the recognition
error on a pre-recorded data-set, or (b) running actual driving tests on the road
with a backup human driver and focusing on the disengagements. A disengage-
ment is an event when the autonomous car returns control back to the human
driver [1,2]. There is, thus, an urgent need for techniques to formally reason
about the correctness and performance of such driving applications that use
perception systems based on Deep Neural Networks (DNN) and ML algorithms.

The key challenge in formal verification is that it is infeasible to specify
functional correctness of components using learning-based models in an abstract
fashion. However, we can vastly improve the confidence in the vision-based sys-
tem by extensive, safety-driven virtual testing of the vision algorithms [9,15].
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In this work in progress, we focus on deep learning algorithms that analyze
images or sequences of images in order to detect and classify objects for inten-
tion recognition and scenario classification. In order to evaluate the performance
of the perception algorithms over time, we need to provide quality requirements
that capture temporal dependencies between detected objects. Most importantly,
going beyond ad-hoc validation and testing, we need a formal framework that
facilitates temporal reasoning over the quality of the perception systems. Such a
formal framework would enable the community to create a precise and real-life
set of requirements that need to be met by any learning-based model.

In this paper, we consider temporal logic based quality requirements for scor-
ing or grading the results of perception algorithms. Then, a quality monitor con-
siders the quality requirements to score the learning-based perception results.
We consider evaluating timed object data with respect to quality requirements
presented in Timed Quality Temporal Logic (TQTL), which is based on Timed
Propositional Temporal Logic (TPTL) [4,8].

2 Problem Formulation

We assume a data stream D is provided by a perception algorithm, LIDAR,
RADAR, or other devices. An atomic block in a data stream is a frame which is
a set {data1, ..., datam}, where each dataj is an element of a data domain or data
object. A stream D is a sequence of frames D(i) where i is the timestamp over
a linearly ordered set. Each frame i contains data object dataj ∈ D(i) in a data-
structure (a tuple) format, for example dataj = (ID, Class, Probability, BBOX
(Bounding Box),...). This data structure depends on the ML algorithm. Our
method assumes that for each ML algorithm there exists a customized retrieve
function R which can extract and access the information of the corresponding
data object (dataj). In addition, there exists a customized attribute with quality
metric which can be evaluated by a quality function to provide us the quality of
the data objects in the stream.

In the case study, we assume that each data object of the ML algorithm
has the following format dataj =(ID, Class, Probability, BBOX), where ID ∈
N is a number uniquely identifying an object, Probability ∈ R ∩ [0, 1], Class
∈ {Car,Cyclist, Pedestrian}, and BBOX is a tuple of four integers [top, left,
bottom, right] ∈ N

4 representing the coordinates of the bounding box in pixels.
For example, a data stream for 3 different detected objects would look like:

Data Frame 0: D(0) = {(1, “Car”, 0.9, [283, 181, 413, 231])}
Data Frame 1: D(1) = {(2, “Car”, 0.8, [...]), (1,“Car”, 0.9, [...])}
Data Frame 2: D(2) = {(3, “Car”, 0.95, [...]), (2, “Pedestrian”, 0.9, [...])}

...

We also assume that there exists a function SO (short for Set of Objects) which
can retrieve the object IDs from a data frame D(i). For the above streaming
data D, the function SO returns the following values of object IDs: SO(D(0)) =
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{1}, SO(D(1)) = {1, 2}, SO(D(2)) = {2, 3}. In order to retrieve the other
fields (non-ID) from the data objects, we assume that these fields are available
through the function R. We use object-oriented notation “.” to retrieve the
“XYZ” fields (attributes) from D(i) for object ID. So, R(D(i), id). XYZ retrieves
the “XYZ” attribute of object id from frame i. For the above vision stream
example, R(D(1), 2). Class = Car, and R(D(1), 2). Probability = 0.8.

Without loss of generality, we assume that each data object in the stream
D is provided by the ML algorithm with a unique object ID, where the specific
object ID is unique over different frames of the video. In other words, we assume
that the ML algorithm can match the objects of different frames and provide
a unique ID of the object within the whole data stream. This is a necessary
assumption to help us track these objects through frames and to apply temporal
reasoning over the specific objects.

Given a finite stream D and Quality Temporal Logic formula ϕ, our goal is
to compute the quality value of formula ϕ with respect to stream D. Throughout
this paper, we use the notation [[φ]] to represent the quality value of formula φ.
Finally, we assume that the quality can be quantified by a real-valued number
similar to the robust semantics of temporal logics [6,10].

3 Timed Quality Temporal Logic

In this section, we consider the important aspects of stream reasoning for object
detection algorithms. Also, the corresponding syntax and semantics will be pro-
vided to address the problem of quality reasoning. One important differentiating
factor of quality monitoring to Signal Temporal Logic (STL) [6,13] monitoring
is that the number of objects in the video is dynamically changing. Therefore,
we need to introduce Existential and Universal quantifiers to reason about the
dynamically changing number of data objects (e.g. as in [14]). In addition, we
need to be able to record the time in order to extract the data objects using
function R at different timestamps [7,8].

Timed Quality Temporal Logic (TQTL) is defined to reason about a stream
D. Assume that P = {π1, π2, ..., πn} is a set of predicates which define assertions
about data objects. Each πj corresponds to πj ≡ f(j1, ..., jn, id1, ..., idn) ∼ c,
where f(j1, ..., jn, id1, ..., idn) is a scoring function which extracts/processes
information about data objects id1, ..., idn from frames j1, ..., jn, and compares
it with a constant c to resolve the quality of the data objects. It should be noted
that c can be a string, integer, real, enumerator, or any constant data type that
the ML algorithm uses to represent data. The symbols ∼∈ {=,≥, >,<,≤} are
relational operators.

Definition 1 (TQTL Syntax). The set of TQTL formulas φ over a finite set
of predicates P, a finite set of time variables (Vt), and a finite set of object
indexes (Vo) is inductively defined according to the following grammar:

φ ::= � | π | x.φ | ∃id@x, φ | x ≤ y + n | ¬φ | φ1 ∨ φ2 | φ1Uφ2
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where π ∈ P, � is true, x, y ∈ Vt, n ∈ N, id ∈ Vo, U is the Until operator.
The time constraints of TQTL are represented in the form of x ≤ y + n. The
freeze time quantifier x.φ assigns the current time i to time variable x before
processing the subformula φ. The Existential quantifier is denoted as ∃. The
Universal quantifier is defined as ∀id@x, φ ≡ ¬(∃id@x,¬φ). For TQTL formulas
ψ, φ, we define ψ ∧ φ ≡ ¬(¬ψ ∨ ¬φ), ⊥ ≡ ¬� (False), ψ → φ ≡ ¬ψ ∨ φ (ψ
Implies φ), ♦ψ ≡ �Uψ (Eventually ψ), �ψ ≡ ¬♦¬ψ (Always ψ) using syntactic
manipulation. The semantics of TQTL is defined over an evaluation function
ε : Vt ∪ Vo → N which is an environment for the time variables and object IDs.

Definition 2 (TQTL Semantics). Consider the data stream D, i ∈ N is the
index of current frame, π ∈ P, φ, φ1, φ2 ∈ TQTL and evaluation function ε :
Vt ∪ Vo → N. The quality value of formula φ with respect to D at frame i with
evaluation ε is recursively assigned as follows:

[[�]](D, i, ε) := + ∞
[[π]](D, i, ε) :=[[fπ(j1, ..., jn, id1, ..., idn) ∼ c]](D, i, ε)

[[x.φ]](D, i, ε) :=[[φ]](D, i, ε[x ⇐ i])
[[∃id@x, φ]](D, i, ε) := max

k∈SO(D(ε(x)))
([[φ]](D, i, ε[id ⇐ k]))

[[x ≤ y + n]](D, i, ε) :=
{

+∞ ifε(x) ≤ ε(y) + n
−∞ otherwise

[[¬φ]](D, i, ε) := − [[φ]](D, i, ε)

[[φ1 ∨ φ2]](D, i, ε) := max
(
[[φ1]](D, i, ε), [[φ2]](D, i, ε)

)

[[φ1Uφ2]](D, i, ε) := max
i≤j

(
min

(
[[φ2]](D, j, ε), min

i≤k<j
[[φ1]](D, k, ε)

))

Here, ε[x ⇐ a] assigns the value a into the variable x ∈ V in the environ-
ment ε. Given a variable x ∈ V and a value q ∈ N, we define the environ-
ment ε′ = ε[x ⇐ q] to be equivalent to the environment ε on all variables in V
except variable x which now has value q. We say that D satisfies ϕ (D |= ϕ)
iff [[φ]](D, 0, ε0) > 0, where ε0 is the initial environment. On the other hand,
a data stream D′ does not satisfy a TQTL formula φ (denoted by D′ �|= φ), iff
[[φ]](D, 0, ε0) ≤ 0. The quantifier ∃id@x is the maximum operation on the quality
values of formula [[φ]] corresponding to the objects IDs = ε(id) that are detected
at frame ε(x).

We assume that for each the ML algorithm there exists a corresponding
retrieve function R to extract the values corresponding to data objects. The
set of predicates P = {π1, π2, ..., πn} evaluate object data values and return a
quality value in R ∪ {±∞}. Each quality predicate π has an associated scor-
ing function fπ. The scoring function fπ(j1, ..., jn, id1, ..., idn) extracts specific
information about object idk at frame jk for each k ∈ {1, ..., n} and com-
pares it with c to compute the quality value of the predicate π represented as
[[fπ(j1, ..., jn, id1, ..., idn) ∼ c]] ∈ R ∪ {±∞} similar to robustness semantics [10].
The scoring functions of the quality predicates depend on the ML algorithm,
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Fig. 1. SqueezeDet [16] object classification of KITTI [11] images from a cyclist. Bound-
ing boxes are classified as Cyclist (yellow), Pedestrian (purple), and Car (blue). (Color
figure online)

R, data fields of D, operator ∼, and type of c. Each scoring function fπ uses
the application dependent customized function hπ to compute the quality of the
corresponding objects. The function hπ then returns a value about the quality
of the data objects which will be used by fπ to compute the quality value of the
predicate π which is denoted as [[π]].

In general, [[fπ(j1, ..., jn, id1, ..., idn) ∼ c]] may be of two types. The first
returns a Boolean result of comparing values from sets without scalar metrics,
i.e., comparing the object class of pedestrian with respect to {car, cyclist}. For
example, in this case, for equality =, we can define:

[[fe(j1, ..., jn, id1, ..., idn) = c]](D, i, ε) :={
+∞ if he([R(D(ε(jk)), ε(idk))]

n
k=1) = c ∧ ∀k ∈ {1, ..., n}, ε(idk) ∈ SO(D(ε(jk)))

−∞ otherwise

The second type is for predicates comparing values from sets with well-defined
metrics similar to the various temporal logic robust semantics [6]. For example,
for “greater than”, we could define:

[[fn(j1, ..., jn, id1, ..., idn) > c]](D, i, ε) :={
hn([R(D(ε(jk)), ε(idk))]nk=1) − c if ∀k ∈ {1, ..., n}, ε(idk) ∈ SO(D(ε(jk)))
−∞ otherwise

where k is index of the kth object variable (idk) and jk is the kth time variable
of the formula. Here, he and hn are application dependent functions on the data
fields of D which process the retrieved values of data objects ε(idk) at ε(jk) if
ε(idk) ∈ SO(D(ε(jk)). The second predicate type can return finite real values.

TQTL Example: Now consider Fig. 1. When a car is following a cyclist, it is
important that the cyclist is correctly classified in order to utilize the appropriate
predictive motion model. We consider the following vision quality requirement:
“At every time step, for all the objects (id1) in the frame, if the object class
is cyclist with probability more than 0.7, then in the next 5 frames the object
id1 should still be classified as a cyclist with probability more than 0.6 ”. The
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requirement can be formalized in TQTL as follows:

φ1 =�
(
x.∀id1@x, (C(x, id1) = Cyclist ∧ P (x, id1) > 0.7)

→ �
(
y.((x ≤ y ∧ y ≤ x + 5) → C(y, id1) = Cyclist ∧ P (y, id1) > 0.6)

))

where [[C(x, id1) = Cyclist]](D, i, ε) :=⎧⎪⎨
⎪⎩

+∞ ε(id1) ∈ SO(D(ε(x))) and R(D(ε(x)), ε(id1)).Class = Cyclist

−∞ ε(id1) �∈ SO(D(ε(x))) or
ε(id1) ∈ SO(D(ε(x))) and R(D(ε(x)), ε(id1)).Class �= Cyclist

and [[P (y, id1) > 0.6]](D, i, ε) :={
−∞ ε(id1) �∈ SO(D(ε(y)))
R(D(ε(y)), ε(id1)).Probability − 0.6 ε(id1) ∈ SO(D(ε(y)))

4 Experimental Results

The implementation of our TQTL monitor is based on the publicly available S-
TaLiRo toolbox [3,5,8]. We evaluated our TQTL monitor using the KITTI
benchmark dataset [11]. The KITTI dataset is a well-known benchmark for
autonomous driving which contains real traffic situations from Karlsruhe, Ger-
many. We ran the SqueezeDet object detection algorithm [16] on some KITTI
data streams. It should be noted that the object matching is manually anno-
tated in these data streams since we assume that the objects are matched cor-
rectly. However, automated reliability reasoning about object matching through-
out video streams is a challenging problem and it is the focus of our on-going
research.

In Fig. 1, we provide the results of SqueezeDet on a KITTI data stream
(following a cyclist). We evaluate the TQTL formula φ1 from the previous section
with respect to D. The monitor tool obtained a negative result when evaluating
[[φ1]], i.e., D �|= φ1. This is because the data stream D does not contain an
object classified as cyclist in Frames 84 and 85 in Fig. 1. A closer investigation
of Frames 84 and 85 shows that although a cyclist is not detected (yellow box),
a pedestrian is detected at the position of the cyclist with purple color. If our
motion prediction algorithm had the capability to tolerate an object classification
change, e.g., from cyclist to pedestrian and back, then the formal specification
should be able to reflect that. To specify such a behavior, the second � of φ1

should be changed to:

�(y.((x ≤ y ∧ y ≤ x + 5) → C(y, id1) = Cyclist ∧ P (y, id1) > 0.6
∨ ∃id2@y, (C(y, id2) = Pedestrian ∧ dist(x, y, id1, id2) < 40 ∧ P (y, id2) > 0.6)))

where the scoring function of dist extracts the coordinates of the bounding boxes
of object id1 at frame x and object id2 at frame y for computing the center to
center distance between these boxes. The requirement is now satisfied by D.
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5 Conclusion and Future Works

In this paper, we provided a temporal logic monitoring framework for evaluat-
ing the quality of perception algorithms for autonomous vehicle applications.
We highlighted that we can represent complex quality requirements over object
detection data streams using Timed Quality Temporal Logic (TQTL). Our pro-
totype monitoring tool is built upon our off-line monitor for TPTL requirements
[8]. Our on-going work extends the presented framework to automated reasoning
over object classification data streams without object tracking.
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Abstract. We overview a framework for tracing asynchronous dis-
tributed component-based systems with multiparty interactions man-
aged by distributed schedulers. Neither the global state nor the total
ordering of the system events is available at runtime. We instrument
the system to retrieve local events from the local traces of the sched-
ulers. Local events are sent to a global observer which reconstructs on-
the-fly the global traces that are compatible with the local traces, in
a concurrency-preserving and communication-delay insensitive fashion.
The global traces are represented as an original lattice over partial states,
such that any path of the lattice projected on a scheduler represents the
corresponding local partial trace according to that scheduler (soundness),
and all possible global traces of the system are recorded (completeness).

1 Introduction

Component-based design consists in constructing complex systems using pre-
defined components which are atomic entities with some actions and inter-
faces. The behavior of a component-based system with multiparty interactions
(CBS) depends on the behavior of each component as well as the interactions
between the components. A multiparty interaction is a set of simultaneously exe-
cuted actions of components [9]. To allow for the concurrent execution of non-
conflicting interactions (with no shared component), interactions are distributed
on several schedulers. Schedulers and components interact (by exchanging mes-
sages) to ensure the correct execution of multiparty interactions [10].

Problem Statement. Our goal is to conduct runtime verification [4,5,17] of a
distributed CBS against properties referring to the global states of the system.
This implies, in particular, that properties cannot be projected and checked on
individual components. We use neither a global clock nor a shared memory. On
c© Springer Nature Switzerland AG 2018
C. Colombo and M. Leucker (Eds.): RV 2018, LNCS 11237, pp. 417–425, 2018.
https://doi.org/10.1007/978-3-030-03769-7_24
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the one hand, this makes the execution of the system more dynamic and parallel
by avoiding synchronization to take global snapshots [11], which would go against
the distribution of the system. On the other hand, it complicates the monitoring
problem because no component can be aware of the global trace. Since the
execution of interactions is based on sending/receiving messages, communication
is asynchronous, and delays in the reception of messages are inevitable. Moreover,
the absence of ordering between the execution of the interactions in different
schedulers makes the actual execution trace unobservable. To allow for the RV
of distributed CBSs, we instrument them so as to trace and reconstruct their
global behavior in a concurrency-preserving and communication-delay insensitive
fashion. We shall leverage the component-based nature of the system under
scrutiny and account for the existing causalities in the execution of distributed
CBSs.

Unobservable Global Trace t

Local partial traces

Distributed CBS

Sequence of
Partially-Ordered

Events

Algorithm MAKE

(Online)

Lattice L

•

•

•
•

•

•

•

•

•

•

•

•

Observable Local partial traces

Local partial trace S1(t)
Local partial trace S|S|(t)

Local Events

Transformation Instrumented
Distributed CBS

Set of paths of L
Π

Set of Compatible Global Traces
P(t)

SoundnessCompleteness≡ Construct set of paths

Fig. 1. Overview of the computation lattice construction

Approach Overview (Fig. 1). We define a monitoring hypothesis by defining an
abstract semantic model that encompasses a variety of distributed CBSs. Our
model relies only on partial-state semantics of CBSs, in terms of (1) Labeled
Transition Systems with unobservable internal actions and observable actions
and (2) a set of schedulers defining multiparty interactions (i.e, barriers) on sets
of observable actions from different components. Our model is, however, not
bound to any CBS framework. Due to the parallel executions in schedulers (i)
events (i.e., actions changing the state of the system) are not totally ordered, and
(ii) the actual global trace is unobservable. Although each scheduler is aware of
its local behavior (local partial trace) and its local events, to evaluate the global
behavior, we need the set of possible orderings of the events of all schedulers,
that is, the set of compatible global traces. In our setting, schedulers do not
communicate together and only communicate with their associated components.
Indeed, only the shared components involved in several multiparty interactions
managed by different schedulers make the actions of different schedulers causally
related. In other words, the executions of two actions managed by two schedulers
and involving a shared component are causally related, because each execution
requires the termination of the other execution to release the shared compo-
nent. To account for existing causality, we (i) employ vector clocks to define the
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ordering of events (ii) instrument the system to compose each scheduler with
a controller to compute the correct vector clock of each generated event (iii)
compose each shared component with a controller to resolve the causality, and
(iv) introduce a procedure to reconstruct a set of compatible global traces that
could possibly have happened with the received events. We represent the set of
compatible global traces using a computation lattice tailored for CBSs. Such a
computation lattice consists of a set of partially connected nodes. Created nodes
are partial states and become global states during monitoring. Any path of the
lattice projected on a scheduler represents the corresponding local partial trace
according to that scheduler (soundness). All possible global traces are exactly
recorded (completeness).

An extended version of this paper with more details and proofs is available
in [28].

2 Semantics of Distributed CBSs with Multiparty
Interactions

We describe a general semantics of CBSs, where neither the exact model nor the
behavior of the system are known. How the behaviors of the components and the
schedulers are obtained is irrelevant for monitoring. Inspiring from conformance-
testing theory [30], we refer to this as the monitoring hypothesis. Components
are in the set B =

{
B1, . . . , B|B|

}
and schedulers in S =

{
S1, . . . , S|S|

}
. Each

component Bi is endowed with a set of actions Act i. Joint actions of compo-
nents, aka multiparty interactions, involve several components. An interaction is
a non-empty subset of ∪|B|

i=1Act i; Int denotes the set of interactions. At most one
action of each component is involved in an interaction: ∀a ∈ Int .|a ∩ Act i| ≤ 1.
Moreover, each component Bi has internal actions modeled as a unique action
βi. Schedulers coordinate the execution of interactions and ensure that each mul-
tiparty interaction is jointly executed. We describe the behavior of components,
schedulers, and their composition. Component B (i) has actions in set ActB
which are possibly shared with some of the other components, (ii) has an internal
action βB �∈ ActB which models internal computations of component B, (iii) the
state of B is busy (unknown) while it is performing its internal action, and (iv)
alternates moving from a ready state to a busy state (after executing an action),
and vice-versa (after executing an internal action). Intuitively, when a scheduler
executes an interaction, it triggers the execution of the associated actions on
the involved components, and updates its internal vector clock. Moreover, when
a component executes an internal action, it triggers the execution of the corre-
sponding action on the associated schedulers and also sends the updated state
of the component to the associated schedulers, the component sends a message
including its current state to the schedulers. Note, by construction, schedulers
are always ready to receive such a state update.

Global Behavior. The global execution of the system can be described as the
parallel execution of interactions managed by the schedulers. Components exe-
cute independently according to the decisions of schedulers. Any executed global
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action contains at most one interaction involving each component. Whenever an
interaction managed by a scheduler is executed, this scheduler and all compo-
nents involved in this interaction must be ready to execute it. Internal actions
are executed whenever the corresponding components are ready to execute them.
Moreover, schedulers are aware of internal actions of components in their scope.
The awareness of internal actions of a component results in transferring the
updated state of the component to the schedulers. The components and sched-
ulers not involved in an interaction remain in the same state.

Traces of Distributed CBSs with Multiparty Interactions. A trace is a sequence of
states traversed by the system at runtime, from some initial state and following
the transition relation of the LTS. For clarity and our monitoring purposes, the
states of schedulers are irrelevant in the trace, and thus we restrict the system
states to those of the components. A partial trace has partial states where at
least one component is busy (with internal computation). Although the partial
trace of the system exists, it is not observable because it would require a perfect
observer having simultaneous access to the states of components. Introducing
such an observer requires to synchronize all components and defeat the purpose
of building a distributed system. Instead, we shall instrument the system to
observe the sequence of states through schedulers.

3 Computation Lattice of Distributed Component-Based
Systems

We briefly overview the on-the-fly construction of a computation lattice repre-
senting the possible global traces compatible with the local partial traces (Algo-
rithm Make). Since schedulers do not interact directly, the execution of an
interaction by one scheduler is concurrent with the execution of all interactions
by other schedulers.

System Instrumentation. To retrieve the actual ordering and obtain the local
partial traces, one needs to instrument the system by adding controllers to the
schedulers and to the shared components. Each time a scheduler executes an
interaction, the involved components are notified by the scheduler to execute
their corresponding actions. Moreover, the controller of the scheduler updates
its local clock and notifies the controller of the shared components involved in the
interaction by sending its vector clock (be stored in the controller). Whenever a
shared component executes its internal action β, schedulers that have the shared
component in their scope are notified by receiving the updated state. Moreover,
the vector clock stored in the controller of the shared component is sent to
the controller of the associated schedulers. Consequently, schedulers having a
shared component in their scope exchange their vector clocks through the shared
component. Intuitively, for scheduler Sj , the execution of an interaction (labeled
by a vector clock), or notification by the internal action of a component which
the execution of its latest action has been managed by scheduler Sj , is defined
as an event of scheduler Sj .
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Extended Computation Lattice (Overview). Intuitively, an extended computa-
tion lattice (lattice for short) consists of a set of partially connected nodes,
where each node is a pair, made of a state of the system and a vector clock. A
system state consists in the states of all components. The computation lattice
is represented implicitly using vector clocks. The construction mainly performs
the two following operations: (i) creations of new nodes and (ii) updates of exist-
ing nodes in the lattice. The observer, which is charge of building the lattice,
receives two sorts of events: (1) events related to the execution of an interaction
in Int , referred to as action events, and (2) events related to internal actions
referred to as update events. (Recall that internal actions carry the state of the
component which has performed the action – the state is sent to the observer
by the controller that is notified of this action). Action events lead to the cre-
ation of new nodes, while update events complete the information in the nodes
of the lattice related to the state of the component related to the event. Since
the received events are not totally ordered (because of communication delay),
we construct the computation lattice based on the vector clocks attached to the
received events. Note, we assume that the events received from a scheduler are
totally ordered.

Intermediate Operations. We consider a lattice L. A newly received event either
modifies L or is kept in a queue for later. Action events extend L and update
events update the existing nodes of L by adding the missing state information
into them. By extending the lattice with new nodes, one needs to further com-
plete the lattice by computing joints of created nodes with existing ones so as
to complete the set of possible global traces.

Receiving an action or update event might not always lead to extending or
updating the current computation lattice. Due to communication delay, an event
that happened before another event might be received later by the observer. It
is necessary for the construction of the lattice to use events in a specific order.
Such events must be kept in a waiting queue to be used later.

Properties Guaranteed by Lattice Construction. The first property states that
the ordering of the events does not affect the lattice. The second property is
correctness (soundness), meaning that the resulting computation lattice encodes
a set of the sequences of global states, s.t. each sequence represents a global trace
of the system. The third property is completeness, meaning that for any sequence
of events, we construct a lattice whose set of paths consists of all the compatible
global traces.

Remark 1 (Garbage Collection). For performance reasons, a garbage collector
regularly removes non-frontier nodes from the lattice and checks for the existence
of events that can be treated. This ensures that the lattice size remains almost
constant at runtime, while maintaining soundness and completeness.
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4 Evaluation

We implemented the RVDist tool [1] to evaluate our approach on a robot nav-
igation system and the two-phase commit protocol. We consider metrics related
to lattice construction. Our experiment show that the size of the constructed
lattice remain constant at runtime when executed on two systems generating a
few thousands of events. Moreover, the size of the constructed lattice and the
number of paths of the lattices is inversely proportional to the number of shared
components.

5 Related Work

This paper extends our runtime verification frameworks for component-based
systems, in the sequential [19] and multi-threaded [27] settings. Regarding dis-
tributed systems, a lot of tracing and debugging frameworks have been defined
for instance in the system community, however, generally with an offline, less gen-
eral and less formal approach (e.g., no correctness guarantees). Henceforth, we
rather focus in this section on the formal approaches to monitoring distributed
systems (see [21] for an overview). The approach in [8] presents an algorithm
for decentralized monitoring LTL formulas for synchronous distributed systems.
We rather target asynchronous distributed CBSs with a partial-state semantics,
where the global state of the system is unavailable at runtime. Hence, instead
of having a global trace at runtime, we deal with the compatible partial traces
which could have happened at runtime. The approach in [7] presents a framework
for detecting and analyzing synchronous distributed systems faults in a central-
ized manner using local LTL properties that require only the local traces. In
our setting, the global trace allows monitoring global properties that cannot be
projected and checked on individual components/schedulers. Thus, local traces
cannot be directly used for verifying properties. In [29], the authors design a
method for monitoring safety properties in distributed systems relying on exist-
ing process communication. Compared to [29], our algorithm is sound as we
reconstruct the behavior of the distributed system based on all possible partial
traces. In our work, each trace could have happened as the actual trace of the
system, and could have generated the same events. The approach in [23] shows
that the trace monitoring problem with automata is NP-complete in the number
of concurrent processes. The approaches in [2,12,22], generalized in [26], mon-
itor temporal requirements over distributed processes where local monitors are
attached to processes and circulate tokens. Interestingly, the approach [26] is
decentralized (as is [8]). Compared to [23,26] which use simpler computational
models, our approach is tailored to and leverages CBS where traces are defined
over partial states. Also close to our work is [24] for the monitoring of violations
of invariants using knowledge. Model-checking the system allows to pre-calculate
the states where a violation can be reported by a process alone. When communi-
cation (i.e., more knowledge) is needed between processes, synchronizations are
added. The focus of [24] is to minimize communication induced by synchroniza-
tion while our approach does not impose synchronization to the system. The
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approach in [3] introduces a component-based model of Apache ZooKeeper for
testing using a model-checker. It describes code that maintains an event graph
similar to our lattice construction. However, [3] is specific to Zookeeper, whereas
our method can be applied to any distributed system.

6 Conclusions and Perspectives

We efficiently trace distributed CBSs where interactions are partitioned over dis-
tributed schedulers. Our technique (i) transforms the system to generate events
associated with the partial traces of schedulers, (ii) synthesizes a centralized
observer which collects the local events of all schedulers (iii) reconstructs on-
the-fly the possible orderings of the received events which form a computation
lattice. We showed that the constructed lattice encodes exactly the set of com-
patible global traces: each could have occurred as the actual execution trace of
the system. The experimental results show that, even for long execution traces,
the size of the constructed lattice is constant.

Tracing distributed CBSs in a sound and complete allows us to tackle the
problem of the runtime verification of distributed CBSs. We plan to address this
problem in the future as well as the following ones:

– (i) define specification formalisms tailored to our model of CBSs and study
their monitorability [16];

– (ii) decentralize observers/monitors according to the system architecture by
using decentralized runtime verification frameworks [6,13,15];

– (iii) adapt techniques for runtime enforcement [20] of sequential CBSs [18] to
the distributed setting;

– (iv) use heteregoneous communication primitives (synchronous and asynchro-
nous) [25] for facilitating the implementation of optimized monitors;

– (v) leverage aspect-oriented programming on CBSs [14] to define source-to-
source transformations to inject runtime verification monitors.
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Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32759-9 10

9. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
508–522. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 39

10. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework
for automated distributed implementation of component-based models. Distrib.
Comput. 25(5), 383–409 (2012)

11. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. (TOCS) 3(1), 63–75 (1985)

12. Cooper, R., Marzullo, K.: Consistent detection of global predicates. In: Workshop
on Parallel and Distributed Debugging, Santa Cruz, California, pp. 167–174 (1991)

13. El-Hokayem, A., Falcone, Y.: Monitoring decentralized specifications. In: Bultan,
T., Sen, K. (eds.) Proceedings of the 26th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, Santa Barbara, CA, USA, 10–14 July 2017,
pp. 125–135. ACM (2017)

14. El-Hokayem, A., Falcone, Y., Jaber, M.: Modularizing behavioral and architec-
tural crosscutting concerns in formal component-based systems - application to
the behavior interaction priority framework. J. Log. Algebr. Meth. Program. 99,
143–177 (2018)

15. Falcone, Y., Cornebize, T., Fernandez, J.-C.: Efficient and generalized decentralized
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Abstract. Safe cyber-physical system operation requires runtime veri-
fication (RV), yet the burgeoning collection of RV technologies remain
comparatively untested due to a dearth of benchmarks with oracles
enabling objectively evaluating their performance. Mission-time LTL
(MLTL) adds integer temporal bounds to LTL to intuitively describe mis-
sions of such systems. An MLTL benchmark for runtime verification is a
3-tuple consisting of (1) an MLTL specification ϕ; (2) a set of finite input
streams representing propositional system variables (call this computa-
tion π) over the alphabet of ϕ; (3) an oracle stream of 〈v, t〉 pairs where
verdict v is the result (true or false) for time t of evaluating whether
πt |= ϕ (computation π at time t satisfies formula ϕ). We introduce
an algorithm for reliably generating MLTL benchmarks via formula pro-
gression. We prove its correctness, demonstrate it executes efficiently,
and show how to use it to generate a variety of useful patterns for the
evaluation and comparative analysis of RV tools.

1 Introduction

Runtime Verification (RV) provides the essential check that a system upholds its
requirements during execution. Tools performing online or stream-based verifica-
tion run on-board safety-critical systems, checking the current execution against
the system’s requirements in real time. RV is often expected, or even required,
on-board modern human-interactive systems as it provides the essential capa-
bility to detect, and possibly mitigate, failures that could cause harm to people,
property, or the environment. RV on-board an aircraft can provide the crucial
trigger to abandon a mission or switch to safe mode in the face of the failure of a
critical sensor. However it is essential that the RV tool be correct ; a false-positive
could trigger an abort unnecessarily and a false-negative would be equivalent to
not running RV at all.

RV requirements are frequently expressed in Mission-time LTL (MLTL) [11],
one of the many variations on Metric Temporal Logic [9], which has the syntax
of Linear Temporal Logic with the option of integer bounds on the temporal
operators. It provides the readability of LTL while assuming, when a different
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duration is not specified, that all requirements must be upheld during the (a
priori known) length of a given mission, such as during the half-hour battery
life of an Unmanned Aerial System (UAS). Using integer bounds instead of real-
number or real-time bounds leads to more generic specifications that are adapt-
able to monitoring on different platforms (e.g., in software vs in hardware) with
different granularities of time (e.g., because monitoring on-board an embedded
system with more limited resources for storing the monitors may necessitate a
wider granularity of time to fit the monitor encodings). We choose MLTL because
it has been used for the Runtime Verification Benchmark Challenge [10] and in
many industrial case studies [5,8,11,13–16]. Many specifications from other case
studies, in logics such as MTL [1] and STL [7], can be represented in MLTL.

Arguably the biggest challenge facing the RV community today is the dearth
of benchmarks for checking the correctness of RV tools and comparatively ana-
lyzing them [12]. An RV benchmark has three parts: (a) an input stream or
computation π representing the values of the system variables over time; (b) an
MLTL requirement ϕ; (c) an oracle O, or output stream of tuples 〈v, t〉 where
v is the valuation of ϕ (true or false) at time t for all 0 ≤ t ≤ M where M is
the mission bound, or the number of time steps in the benchmark instance. The
oracle is crucially required to evaluate correctness of RV algorithms but checking
whether computation π satisfies requirement ϕ at each timestep in M is hard.
Therefore, we create RV benchmarks by generating an MLTL requirement ϕ and
deciding what pattern we’d like to see in our oracle (e.g., to achieve goals of
code coverage for the RV tool under test). We utilize a new algorithm based on
formula progression [3] over MLTL formulas to generate a π that satisfies ϕ at
each timestep accordingly.

The contributions of this paper include a definition of formula progression
for MLTL along with proofs of decomposibility and correctness. We design an RV
benchmark generation algorithm based on MLTL formula progression, argue for
its correctness, and show how to use it to generate different interesting bench-
mark patterns. Section 2 provides base definitions of MLTL semantics and bench-
marks. We define MLTL formula progression in Sect. 3 and use it for benchmark
generation algorithms in Sect. 4. Section 5 concludes.

2 Mission-Time Linear Temporal Logic (MLTL)

MLTL was first introduced in [11] as a variation on LTL with closed, finite integer
intervals on the temporal operators that translate to practical concepts, such as
mission bounds. A closed interval over naturals I = [a, b] (0 ≤ a ≤ b are natural
numbers) is a set of naturals {i | a ≤ i ≤ b}. We focus on bounded intervals such
that b < +∞. All MLTL intervals I are closed because every open or half-open
interval, e.g., in Metric Temporal Logic (MTL) [2], is reducible to an equivalent
closed bounded interval. For example, (1,2) = ∅, (1,3) = [2,2], (1,3] = [2,3], etc.
Let P be a set of atomic propositions, then the syntax of a formula in Mission-
Time LTL (abbreviated as MLTL) is:

ϕ ::= true | false | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUIϕ | ϕRIϕ,
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where I is a bounded interval, and p ∈ P is an atom. We use the abbreviations
FIϕ for trueUIϕ, GIϕ for falseRIϕ, and F[1,1]ϕ for the equivalent of the LTL
formula Xϕ.

The semantics of MLTL formulas are interpreted over finite traces. Let π be
a finite trace in which every timestamp π[i : i ≥ 0] is over 2P , and |π| denotes
the length of π; |π| < +∞ because π is a finite trace. We use πi (where i ≥ 1)
to represent the prefix of π ending at timestamp i (excluding i), and πi (where
i ≥ 0) to represent the suffix of π starting from timestamp i (including i). Note
that πi = ε (empty trace) if i ≥ |π|. Let a, b : a ≤ b be two natural numbers;
we define that π models (satisfies) an MLTL formula ϕ, denoted as π |= ϕ, as
follows:

– π |= p iff p ∈ π[0];
– π |= ϕ1∨ϕ2 iff π |= ϕ1 or π |= ϕ2;

– π |= ¬ϕ iff π � |= ϕ;
– π |= ϕ1 ∧ϕ2 iff π |=ϕ1 and π |= ϕ2;

– π |= ϕ1U[a,b]ϕ2 iff |π| > a and, there exists i ∈ [a, b] such that πi |= ϕ2 and
for every j ∈ [a, b] : j < i, it holds that πj |= ϕ1;

– π |= ϕ1R[a,b]ϕ2 iff |π| ≤ a or for every i ∈ [a, b], either πi |= ϕ2 holds or
there exists j ∈ [a, b] s.t. πj |= ϕ1 and ∀i, a ≤ i ≤ j, πj |= ϕ2.

The Until and Release operators are interpreted slightly differently in MLTL
than in the traditional MTL-over-naturals1 [4]. In MTL-over-naturals, the sat-
isfaction of ϕ1UIϕ2 requires ϕ1 to hold from position 0 to the position where
ϕ2 holds (in I), while in MLTL ϕ1 is only required to hold within the inter-
val I, before the time ϕ2 holds. The same applies to the Release operator. From
our experience in writing specifications, cf. [5,11,13–15], this adjustment is more
user-friendly. Meanwhile, it is not hard to see that MLTL is as expressive as MTL-
over-naturals: the formula ϕ1U[a,b]ϕ2 in MTL-over-naturals can be represented
as (G[0,a−1]ϕ1) ∧ (ϕ1U[a,b]ϕ2) in MLTL; ϕ1U[a,b]ϕ2 in MLTL can be represented
as F[a,a](ϕ1U[0,b−a]ϕ2) in MTL-over-naturals.

MLTLBenchmarks. One benchmark instance is a triple 〈π, ϕ,O〉, where π is a
finite trace of length |π| over (2Σ)|π| representing the propositional variable
input streams, ϕ is the MLTL requirement being monitored, and O is an oracle,
itself a stream of pairs 〈v, t〉 such that verdict v = true if πt |= ϕ and v = false
if not. An RV tool takes as input the formula ϕ and the finite trace set π and
uses ϕ to generate a monitor; O is required to verify that the monitor operates
correctly.

3 Formula Progression on MLTL

We introduce the concept of formula progression [3] over MLTL formulas.

Definition 1. Given an MLTL formula ϕ and a finite trace π, let ϕ′ be one
formula progression of ϕ. We define the progression function prog(ϕ, π) = ϕ′

recursively:
1 In this paper, MTL-over-naturals is interpreted over finite traces.
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– if |π| = 1, then
• prog(true, π) = true and prog(false, π) = false;
• if ϕ = p is an atom, prog(ϕ, π) = true iff p ∈ π[0];
• if ϕ = ¬ψ, prog(ϕ, π) = ¬prog(ψ, π);
• if ϕ = ψ1 ∨ ψ2, prog(ϕ, π) = prog(ψ1, π) ∨ prog(ψ2, π);
• if ϕ = ψ1 ∧ ψ2, prog(ϕ, π) = prog(ψ1, π) ∧ prog(ψ2, π);
• if ϕ = ψ1U[a,b]ψ2,

prog(ϕ, π) =

⎧
⎪⎨

⎪⎩

ψ1U[a−1,b−1]ψ2 if 0 < a ≤ b;
prog(ψ2, π) ∨ (prog(ψ1, π) ∧ ψ1U[0,b−1]ψ2) if 0 = a < b;
prog(ψ2, π) if 0 = a = b;

• if ϕ = F[a,b]ψ2,

prog(ϕ, π) =

⎧
⎪⎨

⎪⎩

F[a−1,b−1]ψ2 if 0 < a ≤ b;
prog(ψ2, π) ∨ F[0,b−1]ψ2 if 0 = a < b;
prog(ψ2, π) if 0 = a = b;

• if ϕ = ψ1R[a,b]ψ2, prog(ϕ, π) = ¬prog((¬ψ1)U[a,b](¬ψ2), π);
• if ϕ = G[a,b]ψ2, prog(ϕ, π) = ¬prog(F[a,b](¬ψ2), π);

– else prog(ϕ, π) = prog(prog(ϕ, π[0]), π1).

The procedure prog takes an MLTL formula ϕ and finite trace π as the
input, and returns another MLTL formula by progressing π over ϕ. Figure 1
exemplifies formula progression over ϕ = F[2,3]a with respect to the trace
π = {¬a}{¬a}{a}. From the figure, we have prog(ϕ, π1(= {¬a})) = F[1,2]a,
prog(ϕ, π2(= {¬a}{¬a})) = F[0,1]a, and prog(ϕ, π3(= {¬a}{¬a}{a})) = true.
Based on Definition 1, we have the following theorems.

0

F[2,3]a

1

F[1,2]a

2

F[0,1]a

3

true

¬a ¬a a

Fig. 1. The schema of prog(F[2,3]a, π = {¬a}{¬a}{¬a}{a}).

Theorem 1. Formula Progression Decomposition. Let ϕ be an MLTL
formula and π be a finite trace. Then formula progression on π can be decomposed
into two progressions on the sub-traces (i.e. πk, πk) of π for an arbitrary k in
the range 1 ≤ k ≤ |π|. Formally, prog(ϕ, π) = prog(prog(ϕ, πk), πk) for every
1 ≤ k ≤ |π|.
Proof. When k = 1, prog(ϕ, π) = prog(prog(ϕ, π1), π1) is true based on
Definition 1. Assume prog(ϕ, π) = prog(prog(ϕ, πk), πk) is true for 1 ≤
k < |π|. Since prog(prog(ϕ, πk), πk) = prog(prog(prog(ϕ, πk), π[k]), πk+1)
and prog(prog(ϕ, πk), π[k]) = prog(ϕ, πk+1) are true by Definition 1, we
have the following is also true: prog(ϕ, π) = prog(prog(ϕ, πk+1), πk+1) =
prog(prog(ϕ, πk+1), πk+1).
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Theorem 1 generalizes the recursive part of Definition 1. To perform formula
progression over ϕ with respect to the finite trace π, it is equivalent first perform
formula progression over ϕ with respect to the prefix of π up to k, i.e. πk, and
then perform formula progression over prog(ϕ, πk) with respect to the subfix of
π from k, i.e., πk.

Theorem 2. Satisfiability Preservation. Let ϕ be an MLTL formula and π
be a finite trace. Then π satisfies ϕ iff the suffix of π, i.e., πk for some k, satisfies
the formula obtained from formula progression over ϕ with respect to the prefix
of π, i.e., πk. Formally, π |= ϕ iff πk |= prog(ϕ, πk) for every 1 ≤ k ≤ |π|.
Proof. (Sketch.) When k = 1, the proof can be done by an induction over the
construction of prog(ϕ, π1) (the base case in Definition 1). Inductively, assume
π |= ϕ iff πk |= prog(ϕ, πk) is true for 1 ≤ k < |π|. From the hypothesis assump-
tion, πk |= prog(ϕ, πk) iff πk+1 |= prog(prog(ϕ, πk), π[k]) = prog(ϕ, πk+1)
holds. As a result, we have that π |= ϕ iff πk+1 |= prog(ϕ, πk+1) holds.

Theorem 2 states that the formula progression is able to preserve the satis-
faction of π in terms of the MLTL formula ϕ.

Theorem 3. Correctness. Let ϕ be an MLTL formula and π be a finite trace.
Then π |= ϕ holds iff prog(ϕ, π) = true holds.

Proof. (Sketch.) For the base case when |π| = 1, the inductive proof can be
done over the construction of prog(ϕ, π) (the base case in Definition 1). When
|π| > 1, we have π |= ϕ iff π|π|−1 |= prog(ϕ, π|π|−1) according to Theorem 2.
Moreover, since |π|π|−1| = 1 and we have proved that π|π|−1 |= prog(ϕ, π|π|−1)
iff prog(prog(ϕ, π|π|−1), π[|π| − 1]) = prog(ϕ, π) = true holds (from Theorem 1),
it is true that π |= ϕ holds iff prog(ϕ, π) = true holds when |π| > 1.

Theorem 3 is a direct conclusion from Theorem 2, considering the particular
situation when formula progression has been performed on all timestamps of π.

Corollary 1. For the MLTL formula ϕ and finite trace π, π |= ϕ implies π ·
π′ |= ϕ for any arbitrary finite trace π′.

Proof. From Theorem 3, π |= ϕ implies that prog(ϕ, π) = true holds. Since
π′ |= true and prog(ϕ, π) = true hold, it is true that π · π′ |= ϕ based on
Theorem 2.

We use the theorems and corollary introduced above as the theoretic cor-
rectness guarantee of our benchmark construction algorithms in the following
section.

4 Benchmark Generation

4.1 Random Pattern

We use the MLTL generation tool released in [6] to construct random MLTL
formulas. Once the formula ϕ is generated, we create a finite trace over the
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alphabet of the formula, i.e., Σ, with a random length (≥ 1) and assign a random
assignment P ∈ 2|Σ| to each timestamp of the trace. We use the algorithm prog
and Theorem 3 to generate π such that πk |= ϕ holds iff prog(ϕ, πk) = true
for 0 ≤ k < |π|. In this way, we can efficiently generate large sets of always-
satisfiable benchmark instances, representing the case where the system always
upholds its requirements.

4.2 Almost-Satisfiable Pattern

For an instance 〈ϕ, π,O〉 under the Almost-Satisfiable Pattern, πk |= ϕ must
be true for as many k as possible (1 ≤ k < |π|). To generate such instances,
we leverage both the MLTL-SAT [6] and formula progression techniques in the
following procedure:

– Use the MLTL-SAT solver to generate a model (satisfying finite trace) π for
the given formula ϕ. If no such model exists, ϕ is unsatisfiable and we discard
it. Otherwise, π(= π0) |= ϕ and we push the pair 〈0, true〉 into O;

– To pursue πk |= ϕ (1 ≤ k < |π|) also being true, we extend π as follows:
• First apply the formula progression technique to obtain the formula

prog(ϕ, πk);
• Use the MLTL-SAT solver to generate a model π′ for prog(ϕ, πk). It may

be possible that such model π′ does not exist, in which case we push
〈k, false〉 into O and terminate our attempt to make πk |= ϕ;

• If π′ exists, update π with π · π′. Theorem 2 guarantees that πk |= ϕ
holds for the updated π. Push 〈k, true〉 into O;

• The updated π also preserves the fact that πk−1 |= ϕ, i.e., the extension of
π does not affect the previous truth evaluations, according to Corollary 1.

– To ensure termination, we set a mission length bound for the finite trace π.

The procedure SAT(ϕ) calls the MLTL-SAT solver to check the satisfiability
of ϕ. Taking the MLTL formula ϕ and fixed length bound K for the generated
trace in the instance, the procedure returns an instance of an Almost-Satisfiable
Pattern.

Theorem 4 (Correctness). Let 〈ϕ, π,O〉 be the instance generated from
Algorithm 1. Then we have πk |= ϕ iff 〈k, true〉 ∈ O for 1 ≤ k ≤ |ϕ|.

4.3 Almost-Unsatisfiable and Median-Satisfiable Patterns

We also consider the dual of Almost-Satisfiable Pattern, namely Almost-
Unsatisfiable Pattern, each instance under which requires that πk � |= ϕ be true for
as many k as possible (1 ≤ k < |π|). First we create an Almost-Satisfiable Pattern
instance 〈ϕ, π,O〉 as shown in the previous section. Then we negate the formula
in the instance and set O′ = {〈k, true〉|〈k, false〉 ∈ O} ∪ {〈k, false〉|〈k, true〉 ∈ O}.
As a result, the instance 〈¬ϕ, π,O′〉 is under the Almost-Unsatisfiable Pattern.
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Algorithm 1. The Pseudo-code to generate the Almost-Satisfiable Pattern
instances
Require: An MLTL formula ϕ, and the length bound K for the generated finite trace.
Ensure: An instance 〈ϕ, π, O〉 that is under Almost-Satisfiable Pattern.
1: if SAT(ϕ) return UNSAT then
2: return 〈ϕ, ε, O〉 (ε is the empty trace);
3: end if
4: Let π be the model returned from SAT(ϕ);
5: while 1 ≤ k < |π| do
6: if |π| > K then
7: return 〈ϕ, π, O〉;
8: end if
9: Let ϕ′ = prog(ϕ, πk);

10: if SAT(ϕ′) return UNSAT then
11: Push the pair 〈k, false〉 into O;
12: else
13: Let π′ be the model returned from SAT(ϕ′);
14: Update π = π · π′;
15: Push the pair 〈k, true〉 into O;
16: end if
17: end while
18: return π;

The Median-Satisfiable Pattern is a combination of the Almost-Satisfiable
and Almost-Unsatisfiable Patterns; in each instance the number of timestamps
on which the formula are satisfied is almost the same as that of timestamps on
which the formula are falsified. To generate such an instance, we simply create
an Almost-Satisfiable and Almost-Unsatisfiable Pattern instance respectively,
i.e. 〈ϕ, π1,O1〉 and 〈ϕ, π2,O2〉, which have the same MLTL formula. Then the
instance 〈ϕ1, π1 · π2,O〉, where O = O1 ∪ O2, is under the Median-Satisfiable
Pattern.

5 Conclusions and Future Work

By introducing algorithms for generating several crafted patterns of RV bench-
marks, we have paved the way for the creation of a benchmark generation tool
and the ability to create a large set of publicly-available benchmarks. Next, we
plan to implement and experimentally evaluate the performance of our bench-
mark generation algorithms. After we optimize the performance to enable effi-
cient generation of large sets of each type of benchmark, we plan to release our
code and a database of generated instances.
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Abstract. We present ParTraP and its associated toolset, supporting
a lightweight approach to formal methods. In critical systems, such as
medical systems, it is often easy to enhance the code with tracing infor-
mation. ParTraP is an expressive language that allows to express prop-
erties over traces of parametric events. It is designed to ease the under-
standing and writing of properties by software engineers without back-
ground in formal methods. In this tool demonstration, we will present
the language and its toolset: compiler, syntax directed editor, and a pro-
totype generator of examples and counter-examples.

1 Introduction

Many applications, such as software intensive medical devices, require high qual-
ity software but their criticality does not mandate the use of formal proofs.
Therefore, the formal methods community has promoted a lightweight approach
to formal methods [17]. The ParTraP language [8] goes into that direction.
Most computer systems can easily be augmented to produce traces of their activ-
ity. ParTraP allows to express properties of these traces which are evaluated by
monitoring. ParTraP and its associated toolset are designed to support soft-
ware engineers not trained in formal methods. The language supports a unique
combination of features: it is parametric and provides temporal operators to
increase expressiveness; it is declarative and uses descriptive keywords to favour
user-friendliness. It reuses Dwyer’s specification patterns [14] to express intu-
itive properties. Properties of parameters can be expressed in Python, a lan-
guage familiar to our target users. Its toolset includes a syntax-directed editor.
It generates detailed explanations to help understand why a property evaluates
to true or false on a given trace. We also prototyped a generator of examples
and counter-examples, to help users understand the meaning of their properties.

Section 2 gives an overview of the ParTraP language. Section 3 presents
its associated toolset, and Sect. 4 draws the conclusions and perspectives of this
study. On the ParTraP web site1, you will find a companion video demonstrat-
ing the tool, links to reference documents describing the syntax and semantics of
ParTraP, and instructions on how to download the ParTraP eclipse plugin.

This work is funded by the ANR MODMED project (ANR-15-CE25-0010).
1 http://vasco.imag.fr/tools/partrap/.
c© Springer Nature Switzerland AG 2018
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2 The ParTraP Language

Context. The design of ParTraP was performed in cooperation with Blue
Ortho, a medical devices manufacturer, and MinMaxMedical, a software com-
pany. Together, we considered a medical system (TKA) that guides Total Knee
Arthroplasty surgeries, i.e. the replacement of both tibial and femoral cartilages
with implants. TKA produces traces of the sensors acquisitions and interactions
with the surgeon. Over time, more than 10 000 traces of actual surgeries have
been collected by Blue Ortho. Each trace counts about 500 significant events.
Figure 1 gives a simplified excerpt of such a trace, in JSON format.

Fig. 1. A trace excerpt in JSON Format

We identified 15 properties, listed in [19], representative of such medical
devices for assisted surgery. These properties specify the TKA traces. A careful
analysis of the properties revealed that they express temporal relations between
events, involve event parameters, and may apply to a restricted scope of the trace.
A few properties also refer to physical time or involve 3D calculations. Based on
these properties, we designed ParTraP (Parametric Trace Property language)
[8,9]. The language is aimed at being used for offline trace checking. In [19],
we discussed how the language can be used during development to express and
check properties of traces produced by system tests, but also during exploitation
in order to identify how the system is used or mis-used.

2.1 Structure of ParTraP Properties

A ParTraP temporal property is described by its scope in the trace, and a tem-
poral pattern over events satisfying some predicate. For example, the following
property expresses that “once the camera is connected, the device temperature
does not go below 45 ◦C”.

VAlidTemp1 : after first CameraConnected,
absence_of Temp t where t.v1 < 45.0
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The first line defines the scope of the property, here it is the suffix of the
trace starting after the first event of type CameraConnected. The second line
expresses a temporal pattern. Here, it is an absence pattern, stating that no
event should be a Temp whose v1 parameter is less than 45.0. t is a local variable
designating an event of type Temp. The where clause refers to this event and its
parameter. The evaluation of this property on the trace of Fig. 1 yields false and
returns the following message2:

[WARNING] False on trace unit-tests_Trace.json:
-In the scope from 5 to 20 with the environment:{}
found 1 event that should not occur:
{trace_occ_index=15, time=4816.6, id=Temp, v1=41.44}

Actually, event CameraConnected appears on line 4 of Fig. 1. So the scope of
the property ranges from lines 5 to 20 which corresponds to the last event of the
trace. The error message tells that line 15 features a Temp event which violates
the property because its v1 has value 41.44 which is actually below 45 ◦C.

ParTraP allows to express more complex properties. For example, property
ValidTrackers in Fig. 3 features nested scopes and universal quantification to
express that all types of trackers have been detected before entering a state
whose name includes ‘TrackersVisibCheck’.

ParTraP offers a variety of operators to express scopes and patterns. Scopes
refer to events located before or after an event or between two events. The
scope may consider the first or the last occurrence of the event, but also be
repeated for each occurrence of the event. Patterns may refer to the absence or
occurrence of an event, but may also refer to pairs of events where one event
enables or disables the occurrence of the other. Moreover, it is possible to express
physical time constraints stating that a property holds within a time interval.
Finally, expressions occurring in the where clause may be written either in a
basic language with support for numeric and string expressions, or in Python as
in [3]. Python allows to take advantage of software libraries to express complex
or domain dependent properties, e.g. properties based on 3D calculations.

Basic ParTraP temporal properties can be combined using propositional
logic connectors (and, or, implies, equiv) or quantifiers (exists and forall).
ParTraP properties are defined on finite traces and evaluated after completion
of the trace. A detailed description of the language is given in [8] or [9].

2.2 Related Work

Several languages based on temporal logic have been proposed to express trace
properties. In [8], we compared ParTraP to several temporal specification lan-
guages using multiple criteria. Table 1 summarizes this study and groups lan-
guages with similar features combination. Please refer to [8] for detailed expla-
nations about this table. The “Parametric” column indicates whether a language
2 The message has been slightly simplified to fit in the size of the paper. See the

console in Fig. 3 for the actual message.
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supports parametric events, i.e. events carrying data. If so, “Comp. values” spec-
ify if compound values in parameters (e.g. records or lists) may be exploited. If
quantification is supported, it may be global, i.e. the domain value of a quanti-
fied variable is defined as the values taken by this variable in a whole trace, or
local, where the quantification domain may only depend on the current state.
The “Ref. past data” column indicates whether it is possible to use parameters
values of past events. We also consider if physical time (“wall-clock time”) is
supported at the language level, in which case specifications involving timing
constraints are easier to express. Finally, the specification style of a language
can be declarative, operational, or mixed between the two and offers the choice
to the user. As shown in Table 1, ParTraP supports a unique combination of
these features, appropriate for our industrial context and motivated by the need
for expressiveness. Other approaches, like [12], have similar goals as ours, and
use a controlled natural language. However, the resulting language is domain
specific and can not be applied to our industrial application.

Table 1. Comparison of ParTraP with several temporal specification languages

Language Parametric Comp.
values

Quantification Ref. past
data

Wall-clock
time

Style

Dwyer’s patterns [14],
Propel [23], LTLf [6],
CFLTL [21]

✗ n/a n/a n/a ✗ decl.

RSL [22], Salt [7], TLTLf

[6]
✗ n/a n/a n/a ✓ decl.

Eagle [2] ✓ ✗ global ✓ ✗ decl.

Stolz’s Param. Prop. [24] ✓ ✗ local ✗ ✗ decl.

FO-LTL+ [15] ✓ ✓ local ✗ ✗ decl.

MFOTL/MONPOLY [5,11] ✓ ✗ global ✓ ✓ decl.

JavaMOP [18] ✓ ✗ global ✓ ✗ mixed

QEA/MarQ [1,20], Mufin
[13]

✓ ✗ global ✓ ✗ oper.

Ruler [4], Logfire [16] ✓ ✗ n/a ✓ ✗ oper.

LogScope [3] ✓ ✗ global ✗ ✗ mixed

ParTraP ✓ ✓ local ✓ ✓ decl.

3 Associated Toolset

ParTraP-IDE is a toolset designed to edit and execute the ParTraP language
directly on a set of trace files. Given a set of properties, the tool provides the
set of traces violating them and an explanation of the error causes.

ParTraP-IDE relies on the Eclipse IDE and the XText framework3. Xtext
provides a complete infrastructure including: parser, lexer, typechecker and
a compiler generator. Figure 2 shows the ParTraP-IDE architecture. Part A
presents how XText generates the toolset. Part B presents the usage of the
tool.
3 https://www.eclipse.org/Xtext.

https://www.eclipse.org/Xtext
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Fig. 2. Architecture of the ParTraP toolset

3.1 Tool Generation (Part A of Fig. 2)

This section deals with the tool generation architecture (Part A). The Par-
TraP Language grammar is defined in EBNF (XText’s default grammar lan-
guage). After being parsed, a set of language models is generated (AST meta-
model, Java code and class diagram). These Xtext artifacts are used to config-
ure the language editor and to generate a compiler that transforms each Par-
TraP property to a Java monitor. When a large set of properties is considered,
ParTraP-IDE allows to compute the whole set of properties at the same time. It
is less time consuming than executing separate Java classes for each property.

3.2 ParTraP-IDE by Example (Part B of Fig. 2)

The ParTraP Editor. (1) helps the user to write syntactically correct prop-
erties. The configured editor provides syntax coloring according to concepts
(name, keyword, python script,..) as shown in Fig. 3 under the editor window.
Python expressions are delimited by dollars signs (‘$’) as featured by property
VAlidTemp2 in Fig. 3. Moreover, some validation constraints are enforced by
the editor in order to forbid undesired language expressions like double use of
property names or recursivity when referencing properties. Saving the file auto-
matically calls the ParTraP compiler (2) and produces the set of Java classes
under package ‘src-gen’ (see project explorer in Fig. 3).
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Execution and Results. Execution takes two forms: running individual java
classes or evaluating all properties simultaneously. The user provides a set of
traces to be evaluated. Executing the property (3) produces a set of results files.
Short logs only display the result (true or false) and an explanation for false
cases. Detailed logs give information on calculated scopes, patterns and expres-
sions results. A summary of false and true traces is provided for each property.

Fig. 3. Screen capture of the environment

The example property presented in Sect. 2.1 is typed in the editor of Fig. 3
and named VAlidTemp1. When applied on the trace of Fig. 1, the console reports
that one event having the temperature value ‘41.44’ violates this property.

Python Expressions. Property VAlidTemp2 is an alternate expression of the same
property whose where clause is expressed in Python and uses the Python math
module. As it is important for our envisioned users to define complex calcu-
lations in properties expressions, ParTraP properties support the integration
of Python expressions using declared Python libraries. As a consequence, the
designed IDE allows the import of Python modules and the execution of Python
scripts. This is made possible by the use of JEP (Java Embedded Python)4 which
is a Python package generating a jar file ‘jep.jar’ added in the Java build path
to exchange data and scripts between the JVM and the Python Interpreter.

Performance. Although we traded performance off against expressiveness of the
language, we carried out several experiments to check that the generated mon-
itors featured sufficient performance in the context of our industrial partner,

4 https://github.com/ninia/jep.

https://github.com/ninia/jep
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Table 2. Performance evaluation (times in seconds)

Property 100 traces 1 trace with 521 events
with Python with Python

1 0.307 2.988 0.064 0.105
2 0.326 2.378 0.064 0.088
3 n/a 1.736 n/a 0.070
4 17.605 51.639 0.255 0.728
5 0.674 2.170 0.065 0.116
6 1.517 4.969 0.074 0.118

who typically collects and analyzes several dozens of traces every day. Therefore,
we collected 100 traces from our partner5. The traces range from 304 to 1163
events, with an average of 530 events. We evaluated the 6 ParTraP properties
presented in Chapter 5 of [10]. These properties typically combine a scope with
a temporal pattern. For each property, we constructed a variant whose where
clause is expressed in Python (except property 3 which already has its assertion
in Python). We led the experiments on a Windows 10 machine with an Intel(R)
Core(TM) i7-6600U CPU @ 2.60GHz, and 16 Go of RAM. Each experiment was
performed 50 times and the average execution times are reported in Table 2.

Column 2 reports the time in milliseconds to evaluate the property on 100
traces. The 100 traces are covered in a few seconds for each property. Property
4 takes longer because it features a complex scope involving pairs of events.
Column 3 reports on the same properties but with their where clause expressed
in Python. Their evaluations are slower because of the extra cost of interactions
between the java monitor and the Python interpreter.

Columns 4 and 5 report on the time needed to evaluate a property on a
single trace. Actually, the initialisation of the monitor involves some overhead
independently of the number of traces. Hence, we arbitrarily selected one of the
traces whose length, 521 events, was close to the average length of our set. As
expected, the average time to evaluate each property is significantly longer than
one hundredth of the time of columns 2 or 3.

In summary, these experiments show that ParTraP monitors perform well
on traces provided by our partner. Most results are computed in less than one
second, even if they involve Python assertions. These performances match the
needs of our industrial partner. But further experiments should be led to evaluate
how these performances scale up for much longer traces.

3.3 Example and Counter-Example Generator

To help software engineers understand or write ParTraP formulae, we are
working on a prototype that generates examples and counter-examples and lets

5 These traces are not publicly available for confidentiality reasons.
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engineers check that they match their intuition of the meaning of the formula. We
use the Z3 SMT solver6. Its input is a script composed of declarations (constants
or functions) and assertions. Z3 computes whether the current assertions are
satisfiable or not, and gives a valuation of the variables, for satisfiable formulae.

We have defined the semantics of ParTraP operators as Z3 functions. Par-
TraP properties are translated as Z3 assertions which use these functions. Z3
then checks these assertions for satisfiability and, if possible, produces a trace sat-
isfying the property. For example, the following Z3 assertion expresses property
VAlidTemp1 (absence of temperature below 45 ◦C after the camera is connected).

(assert (afterFirst "CameraConnected"
(absence_of_where "Temp" t (< (v1 t) 45.0))))

This property is satisfiable and the solver generates the following example, which
trivially satisfies the property by avoiding Temp events.

[{"id": "CameraConnected", "time": 5263, "v1": 2.0},
{"id": "C", "time": 5264, "v1": 0.0},
{"id": "CameraConnected", "time": 5853, "v1": 4.0},]

Counter-examples are generated by evaluating satisfiability of the negation of
the property. In our example, it produces the following trace where a Temp event
with low temperature (0.0) is generated after the CameraConnected event.

[{"id": "C", "time": 8, "v1": 5.0},
{"id": "a", "time": 9, "v1": 7.0},
{"id": "CameraConnected", "time": 2436, "v1": 2.0},
{"id": "Temp", "time": 2437, "v1": 0.0},]

This part of the tool is currently at a prototyping stage. It will be included in
the ParTraP distribution in the coming months. A major limitation of this
tool is that it does not support Python expressions.

4 Conclusion

This paper has briefly presented ParTraP and its associated toolset. Par-
TraP is aimed at software engineers with poor knowledge of formal meth-
ods. Hence, we designed a keyword oriented language based on intuitive con-
structs such as Dwyer’s patterns. We also integrated Python expressions in Par-
TraP properties to give access to domain specific libraries. Moreover, the evalu-
ation of ParTraP expressions produces detailed logs to explain why a property
was verified or failed. An examples and counter-examples generator is currently
prototyped to help engineers understand the meaning of their formulae.

The companion video of this paper illustrates the main constructs of the
language and shows how the toolset helps to edit them, generates Java monitors,
6 https://github.com/Z3Prover/z3.

https://github.com/Z3Prover/z3
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evaluates properties and explains the result of their evaluation. The tool was
successfully experimented on 6 properties evaluated on 100 traces of surgical
operations, provided by our partner. Work in progress applies the tool to home
automation traces. Future work will apply the tool to other medical devices.
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Abstract. This paper describes a plug-in extension of the BeepBeep
3 event stream processing engine. The extension allows one to write a
custom grammar defining a particular specification language on event
traces. A built-in interpreter can then convert expressions of the language
into chains of BeepBeep processors through just a few lines of code,
making it easy for users to create their own domain-specific languages.

1 Introduction

The field of Runtime Verification (RV) has seen a proliferation of specification
languages over the years. Among the various formal notations that have been
put forward, we can mention logic-based specifications such as LTL-FO+ [16]
and MFOTL [3]; automata-based specifications like DATE [6] and QEA [2];
stream-based languages like ArtiMon [20], Lola [7], Lustre [11] and TeSSLa
[8]. Each specification language seems to have a “niche” of problem domains
whose properties can be expressed more easily and more clearly than others.
The recent trend towards the development of domain-specific languages (DSL)
can be seen as a natural consequence of this observation. As its name implies,
a DSL is a custom language, often with limited scope, whose syntax is designed
to express properties of a particular nature in a succinct way.

Unfortunately, current RV tools are often implemented to evaluate expres-
sions of a single language following a single grammar. They offer very few in
the way of easily customizing their syntax to design arbitrary DSLs. In this
respect, the BeepBeep event stream processor is designed differently, as it does
not provide any imposed, built-in query language. However, a special extension
to the system’s core makes it possible for a user to define the grammar for a
language of their choice, and to set up an interpreter that can build chains of
processor objects for expressions of that language. In this paper, we describe
the BeepBeep DSL plug-in, and illustrate its purpose by showing how to build
interpreters allowing BeepBeep to read and evaluate specifications of multiple
existing specification languages.
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2 An Overview of BeepBeep 3

BeepBeep 3 is an event stream processing engine implemented as an open source
Java library.1 It is organized around the concept of processors. In a nutshell, a
processor is a basic unit of computation that receives one or more event traces as
its input, and produces one or more event traces as its output. BeepBeep’s core
library provides a handful of generic processor objects performing basic tasks
over traces; they can be represented graphically as boxes with input/output
“pipes”, as is summarized in Fig. 1.

Fig. 1. BeepBeep’s basic processors.

In order to create custom computations over event traces, BeepBeep allows
processors to be composed ; this means that the output of a processor can be
redirected to the input of another, creating complex processor chains. Events
can either be pushed through the inputs of a chain, or pulled from the outputs,
and BeepBeep takes care of managing implicit input and output event queues
for each processor. In addition, users also have the freedom of creating their own
custom processors and functions, by extending the Processor and Function
objects, respectively. Extensions of BeepBeep with predefined custom objects are
called palettes; there exist palettes for various purposes, such as signal processing,
XML manipulation, plotting, and finite-state machines.

Over the past few years, BeepBeep has been involved in a variety of case
studies [4,13–15,19,21], and provides built-in support for multi-threading [17].
For a complete description of BeepBeep, the reader is referred to a recent tutorial
[12] or to BeepBeep’s detailed user manual [1].

3 The DSL Palette

Like many other extensions, BeepBeep’s DSL capabilities come in the form of an
auxiliary JAR library (a palette) for creating languages and parsing expressions.
1 https://liflab.github.io/beepbeep-3.

https://liflab.github.io/beepbeep-3
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It can be freely downloaded from the palette repository2. This palette provides
a special object for creating domain-specific languages called the Grammar-
ObjectBuilder. The operation of the GrammarObjectBuilder can be sum-
marized as follows: (1) The object builder is given the syntactical rules of the
language in the form of a Backus-Naur grammar; this grammar must be LL(k),
a limitation imposed by the underlying parsing library. (2) Given an expression
of the language as a character string, the object builder parses the expression
according to the grammar and produces a parsing tree. (3) The builder then
performs a postfix traversal of the tree and progressively builds the object rep-
resented by the expression.

We shall illustrate the operation of the GrammarObjectBuilder using a
very simple example, and then show how it has been used to implement inter-
preters for various existing languages. The first step consists of defining the gram-
mar for the targeted language and expressing it in Backus-Naur Form (BNF).
In our simple example, suppose the language only supports a few constructs: fil-
tering, comparing numbers with the greater-than operator, summing numbers,
and referring to an input stream by a number. A possible way to organize these
functionalities into a language would be the small grammar shown in Fig. 2a.
Given such a grammar, an expression like “FILTER (INPUT 0) ON ((INPUT
1) GT (INPUT 0))” is syntactically correct; parsing it results in the tree shown
in Fig. 2b.

Fig. 2. (a) A simple grammar; (b) the parsing tree for the expression “FILTER (INPUT
0) ON ((INPUT 1) GT (INPUT 0))”; (c) the chain of processors created by the
GrammarObjectBuilder from this expression.

2 https://github.com/liflab/beepbeep-3-palettes/.

https://github.com/liflab/beepbeep-3-palettes/
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The next step is to create a new interpreter, which extends Grammar-
ObjectBuilder and implements handler methods for the various symbols of
the grammar. The parsing tree is traversed in postfix fashion using the Visitor
design pattern; Java objects are pushed and pulled from a persistent stack. By
default, the GrammarObjectBuilder treats any terminal symbol of the tree
as a character string. Therefore, when visiting a leaf of the parsing tree, the
builder puts on its stack a String object whose value is the contents of that
specific literal. When visiting a parse node that corresponds to a non-terminal
token, such as <gt>, the builder looks for a method that handles this symbol.
“Handling” a symbol generally means popping objects from the stack, creating
one or more new objects, and pushing some of them back onto the stack.

Let us start with a simple case, that of the <gt> symbol. When a <gt> node
is visited in the parsing tree, as per the postfix traversal we described earlier,
we know that the top of the stack contains two strings with the constants that
were parsed earlier. The task of the handler method is to create a new processor
evaluating the “greater than” function, pipe into the inputs of this processor the
two objects popped from the stack, and push this new processor back onto the
stack. Therefore, we can create a method called handleGt that reads as follows:

The ApplyFunction and Connector objects are part of BeepBeep’s core
library. The Builds annotation at the beginning of the method is used to sig-
nal the object builder what non-terminal symbol of the grammar this method
handles.

Special attention must be given to the manipulations corresponding to the
<stream> grammar rule. This rule refers to an input stream from which the
events are expected to be produced. Internally, the GrammarObjectBuilder
maintains a set of Fork processors for each of the inputs referred to in the
query. A call to a special method forkInput fetches the fork corresponding to
the input pipe at position n, adds one new branch to that fork, and connects a
Passthrough processor at the end of it. This Passthrough is then returned.

As an example, Fig. 2c shows the chain of processor objects created through
manipulations of the stack for the expression we mentioned earlier. As we can see,
the GrammarObjectBuilder takes care of a good amount of the tedious task
of parsing a string and performing specific actions for each non-terminal symbol
of a grammar. In the example shown here, a complete running interpreter for
expressions of the language can be obtained for 6 lines of BNF grammar and 30
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lines of Java code3. With some experience, such an interpreter can be written in
a few minutes.

4 Extending Existing Specification Languages

The example shown in the previous section is only meant to illustrate the oper-
ation of the GrammarObjectBuilder through a very simple case. Several
features available in the DSL palette have been left out due to lack of space.
For instance, the GrammarObjectBuilder can also be used to build Beep-
Beep’s Function objects instead of processors, and additional annotations can
be appended to handler methods in order to further simplify the manipulations
of the object stack.4

Obviously, the syntax of the language does not need to look like the example
we have shown earlier, and it is not necessary to impose a one-to-one correspon-
dence between grammar rules and BeepBeep’s Processor objects. A single
rule can spawn and push on the stack as many objects as one wishes, making
it possible for a short grammatical construct to represent a potentially complex
chain of processors. In the following, we briefly describe interpreters for three
existing languages that have been implemented using BeepBeep’s DSL palette.
In all three cases, additional functionalities have been included into the orig-
inal language “for free”, by taking advantage of BeepBeep’s available palettes
and generic event model. All the interpreters described in this section are freely
available online.5

4.1 Linear Temporal Logic

The four basic operators of Linear Temporal Logic (F, G, X and U) can easily
be accommodated by a simple LTL palette that was already discussed in Beep-
Beep’s original tutorial [12, Sect. 5.1]. The grammar and stack manipulations for
handling these operators, as well as Boolean connectives, are straightforward and
result in an interpreter with around 50 lines of Java code. We shall rather focus
on the extensions to that have been added to the original LTL by leveraging
BeepBeep’s architecture.

Arbitrary Ground Terms. Special syntactical rules for ground terms can be added
to LTL’s syntax, depending on the underlying trace’s type. For example, if events
in a trace are made of numeric values, the ground terms of the language can
be defined as arithmetic operations over numbers (many of which are already
included in BeepBeep’s core); if events are XML or JSON documents, ground
terms can be XPath or JPath expressions fetching fragments of these events,
using BeepBeep’s XML and JSON palettes, respectively.
3 The code for the interpreter can be found in the BeepBeep example repository:

https://liflab.github.io/beepbeep-3-examples/classdsl_1_1_simple_processor
_builder.html.

4 More details can be found in Chap. 8 of BeepBeep’s user manual [1].
5 https://github.com/liflab/beepbeep-3-polyglot.

https://liflab.github.io/beepbeep-3-examples/classdsl_1_1_simple_processor_builder.html
https://liflab.github.io/beepbeep-3-examples/classdsl_1_1_simple_processor_builder.html
https://github.com/liflab/beepbeep-3-polyglot
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First-order Quantification. BeepBeep’s Slice processor performs exactly the
equivalent of LTL-FO+’s first-order quantifiers. This places the expressiveness
of BeepBeep 3’s LTL interpreter to the level of its ancestor, BeepBeep 1 [16].

New Operators. Additional temporal operators can easily be defined as new
Processor objects and added to LTL’s syntax. As an example, our LTL inter-
preter adds an operator C, which counts the number of times a formula is true on
a given stream. For example, the expression G (¬cU (C (a∧X b) = 3) expresses
the fact that c cannot hold until a has been immediately followed by b three
times.

4.2 Quantified Event Automata

Quantified Event Automata (QEAs) is the formalism used by the MarQ run-
time monitor [2]. BeepBeep has a palette called FSM that allows users to define
generalized Moore Machines, whose expressiveness is similar to QEAs. In its
current version, MarQ does not provide an input language, and QEAs need to
be built programmatically using Java objects. Our interpreter proposes a ten-
tative syntax, shown in Fig. 3, reminiscent of the Graphviz library for drawing
graphs [10].

Fig. 3. A simple QEA with two states (a); a textual notation that defines the same
automaton (b).

The quantifier part of the QEA is taken care of by BeepBeep’s Slice proces-
sor. The interpreter for this language is interesting in that the postfix traversal
of the parsing tree does not create a chain of processors, but rather updates
a single MooreMachine object (itself a descendant of Processor) with new
transitions; the Moore machine is repeatedly popped and pushed on the stack
at each new transition. The interpreter also generalizes the original QEAs in a
few ways.

Event Types. As with the LTL interpreter, the syntax for fetching event content
is type-dependent. The code example above shows that quantifiers and guards
on transitions are written as XPath conditions, suitable for events in the XML
format.
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State Symbols. Since the automaton is a Moore machine, each state can be set
to output a symbol when visited. Moreover, this symbol does not need to be a
Boolean value. The quantifier part of the automaton is actually an aggregation
function over the set of the last symbols output by each instance of the automa-
ton; the forall statement is the special case of conjunction over Boolean values.
For instance, one can associate a number to each state, and compute the sum of
these numbers as the output of the quantified automaton.

4.3 Lola

Our last example is an interpreter for version 1.0 of Lola, which is the specifi-
cation language for the tool of the same name [7]. A Lola specification is a set
of equations over typed stream variables. Figure 4 shows an example of such a
specification, taken from the original paper, and summarizing most of the lan-
guage’s features. It defines ten streams, based on three independent variables
t1, t2 and t3. A stream expression may involve the value of a previously defined
stream. The values of the streams corresponding to s1 to s6 are obtained by
evaluating their defining expressions place-wise at each position.

Fig. 4. An example of a Lola specification showing various features of the language.

Using the DSL palette, the complete BeepBeep interpreter for Lola 1.0 has
less than 100 lines of Java code. Since the original Lola language corresponds
to a subset of BeepBeep’s existing processors and features, we proceeded as in
the previous examples and added a few new features to it.

Generalized Offset. The original Lola construct s[n, c] denotes the value of
stream s, offset by n events from the current position, with n a fixed integer.
In contrast, the construction of s[x, c] in BeepBeep accepts constructs of the
form s[ax+ n, c], where x is the index of the current position in the stream and
a, n ∈ N.

Filtering and Non-Uniform Processors. In Lola, every stream is expected to be
uniform: exactly one output is produced for each input. In BeepBeep however,
processors do not need to be uniform. One example is the Filter processor,
which may discard events from its input trace based on a condition. We can
hence create the Lola construct “filter ϕ on ψ”, where ϕ and ψ are two
arbitrary stream expressions (with ψ of Boolean type). For example, to let out
only events that are positive, one can write filter t on t > 0.
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Scoping and Sub-streams. Lola lacks a scoping mechanism for defining streams.
If the same kind of processing (requiring intermediate streams) must be done on
multiple input streams, this processing must be repeated for each input stream.
Moreover, since stream specifications all live in the same global scope, inter-
mediate streams must be given different names to avoid clashes. Our extended
version of Lola provides a new construct, called define, that allows a user to
create a processing chain and encapsulate it as a named object with parameters.
Consider the following specification:

define $p(x1, x2)
y1 = ite(x1 < x2, x2[1, 0], x2)
y2 = ite(x2 < x1, x2[−1, 0], x1)
out = x1 + x2

end define
s1 = $p(t1, t2)
s2 = $p(t2, t3)

It starts with a define block, which creates a new template stream called
p, which takes two input streams called x1 and x2. The next two lines define two
intermediate streams, and the last specifies the output of p, using the reserved
stream name out. From then on, p can be used in an expression wherever a
stream name is accepted. The next two lines show how streams s1 and s2 are
defined by applying p to the input stream pairs (t1, t2) and (t2, t3), respectively.
Streams y1 and y2 exist only in the local scope of p.

Generalized Windows. User-defined blocks open the way to generic sliding win-
dow processors. Version 2.0 of Lola already supports classical aggregation func-
tions over a sliding window, such as sum or average. In contrast, BeepBeep pro-
vides a generic Window processor, which can make a window out of any event
trace and apply any processor to the contents of the window. Moreover, this
window can be set as the input of an arbitrary chain of other processors, and
receive input from an arbitrary chain of other processors. We can therefore create
the generalized construct “window($p(s),n)”. Here, p can be any sub-stream
name, defined according to the syntax described above.

4.4 Additional Features

In addition to BeepBeep’s core processors and functions, functionalities of exter-
nal palettes can also be added to an interpreter. For example, new grammatical
constructs can be defined to use the Signal palette, which provides a peak-finding
processor on an incoming stream of numerical values. Should these extensions
prove insufficient, we remind the reader that any other extension can also be
designed by creating new processors and functions, and adding them to an inter-
preter through the means described in this paper. Therefore, BeepBeep is a
convenient testbed for trying out new monitoring features, while leveraging the
existing syntax of another language.
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One last feature of BeepBeep’s DSL palette is the possibility to mix mul-
tiple languages in the same specification. Case in point, we compiled a “multi-
interpreter”, called Polyglot, which is able to read specifications from input files,
and to dispatch them to the proper interpreter instance based on the file exten-
sion. If multiple files are specified, the output of processor chain built from file
n is piped into the input of processor chain built from file n + 1. It is therefore
possible to call the multi-interpreter from the command line as follows:

$ java -jar polyglot.jar spec1.qea spec2.lola spec3.ltl

This would in effect evaluate a specification that is a mix of a QEA, piped
into a set of Lola equations, whose output is sent to an LTL formula. To the
best of our knowledge, BeepBeep’s Polyglot extension is one of few tools that
provides such a flexible way of accepting specifications.6

5 Conclusion

In this paper, we have seen how an extension of the BeepBeep event stream
processing engine allows a user to easily define the syntax and construction rules
for arbitrary domain-specific languages. The DSL palette provides facilities for
parsing expressions according to a grammar, and takes care of many tedious tasks
related to the processing of the parsing tree. Combined with BeepBeep’s generic
streaming model and large inventory of available processors and functions, we
have seen how the DSL palette also makes it possible to write interpreters for a
variety of existing specification languages, and even add new features to them.
In the future, the performance of these interpreters should be compared with
the original tools.
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Abstract. Traditional software testing methods are inefficient for mul-
tithreaded software. In order to verify such software, testing is often
complemented by analysis of the execution trace. To monitor the execu-
tion trace, most approaches today use binary instrumentation or rigid
frameworks based on system simulators. Most existing approaches are
intrusive, as they tend to change the monitored software. Furthermore,
their monitoring configuration is static, resulting in huge, often non-
relevant, traces. In this paper, we present a light, non-intrusive execution
monitoring and control approach, implemented using the gem5 system
simulator. We complement existing approaches with dynamic configu-
ration of the monitoring, making it possible to dynamically change the
monitoring focus to the parts of the software that are of interest. This
configuration results in reduced execution trace size. Our approach does
not change the software under test, but rather the virtual platform that
executes the software.

Keywords: Runtime verification · Execution monitoring · Data race
gem5 · Lockset

1 Introduction

Runtime verification is the process of checking whether an execution trace sat-
isfies a specification. For multithreaded software, runtime verification (RV ) exe-
cutes software and performs analysis on the execution trace (e.g., Happens-before
[17] and Lockset [27] algorithms) to find concurrency bugs.

Existing execution monitoring approaches can be roughly classified into three
groups: (1) approaches that use specialized hardware [1] and those that are
implemented near hardware [32], (2) approaches that use virtual platforms, and
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(3) simple intrusive techniques that instrument the target program (i.e., at the
source, intermediate representation, or binary level) and produce an execution
trace as the program executes (e.g., PIN [20], Valgrind [24]). Hardware-based
techniques are often non-intrusive, but require specialized hardware and a com-
plex setup. Virtual-platform-based approaches enable fast prototyping and exe-
cution of a program on a virtual target platform, but often instrument software
at the source code level [8,14,25]. Software instrumentation introduces probe
effects, as explained by Song and Lee [29]. These instrumentation operations
can perturb program execution in two ways. First, the execution of the addi-
tional instrumentation instructions can delay the occurrence of an execution
event. As a consequence, the interacting time with other threads and with the
external environment can change. Second, due to the changes in the timing of
invoking guarded resources and critical sections, scheduling decisions can be dif-
ferent. The second effect is critical for embedded systems because they often
try to predict the execution time of threads to ensure a strict scheduling order
between them, and use scheduling as an implicit synchronization mechanism
[13]. In order to resolve these challenges, in this paper we present our framework
for non-intrusive monitoring of multithreaded and other complex software, to
avoid probe effects. Instead of changing the monitored software, we change the
virtual platform on which the software executes. Our framework provides addi-
tional features that enable dynamic monitoring configuration, and it relates the
monitored instructions to the source code information in cases where debug infor-
mation exists. Dynamic, online configuration of monitoring enables us to choose
which instructions to trace during the execution and reduces the execution trace
size. The price to pay for non-intrusiveness is obviously the overhead due to the
simulation of virtual hardware. The framework is based on the gem5 system
simulator [5], using the syscall execution (SE ) mode. However, the presented
approach is not limited on the gem5 simulator and can be employed on similar
processor simulators. We evaluated our approach using the SPLASH-2 [31] and
TACLeBench [9] benchmarks. The results show that the dynamic monitoring
configuration can significantly reduce the size of the execution trace as well as
the tracing overhead.

The paper is organized as follows. Section 2 describes related work in the
areas of execution monitoring and provides more details about the gem5 system
simulator. Section 3 describes the abstract concept of our approach. Section 4
describes the design and the implementation of our approach with the gem5
system simulator. In Sect. 5, we present our evaluation results. We explain the
advantages of our approach and conclude in Sect. 6.

2 Related Work

2.1 Monitoring an Execution Trace

In time-triggered runtime verification (TTRV ), the monitor runs in parallel with
the system under inspection and reads the system state at a fixed frequency for
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property evaluation [7]. Such a monitor ensures bounded overhead and time-
predictable intervention in the system execution, but risks missing some events
in cases of low polling frequency [22]. The conventional monitoring approach
in RV is event-triggered, which can lead to unpredictable monitoring overhead
and potentially to bursts of monitoring invocations at run time, but has the
advantage of capturing all configured events.

Some approaches instrument a program at the source code level [2,23] and at
the intermediate level [3,4,10,18,30]. On binary level, PIN [20] tool, for example,
re-compiles the target binary using a just-in-time (JIT ) compiler, adds new
instructions, and runs the modified binary. Valgrind [24], another well-known
tool, also uses a JIT compiler, but re-compiles the binary’s machine code, one
small code block at a time. The instrumentation is a straightforward, but error-
prone approach for monitoring execution traces, with probe effects [29] being
the main challenge, as mentioned in the introduction.

RACEZ [28] is a classical example of a non-intrusive monitoring that requires
hardware performance monitoring unit to sample memory accesses. HARD [32]
is an implementation of a monitoring approach in hardware. It uses a bloom
filter [6] and augments cache lines with additional bits to record the memory
states. R2U2 [21] implements monitoring on dedicated FPGA hardware and
traces the values of the variables passed over the system bus. In vehicles, traces
are often obtained through passive observation of the data within the CAN
messages being broadcast between system components [15]. There already exist
approaches for monitoring execution traces based on the gem5 system simulator
([8,12,14,25]). However, their focus is either on fast performance exploration
of hardware, or requires software instrumentation. Besides, these approaches do
not relate machine instructions to source code symbols. Our approach is not
intrusive, it does not disturb the relative execution order between threads, and
therefore avoids probe effects. We relate raw machine instructions with the source
code to provide enough information for finding the origin of a bug.

2.2 The gem5 System Simulator

The most mature cycle-accurate open source system simulator is the gem5 frame-
work, which is a modular platform for computer-system architecture research [5].
Each CPU model supports multiple instruction set architectures, including
Alpha, x86, ARM, and RISCV. The provided CPU models can simulate the
execution of software in either one of two modes:

– The Systemcall Emulation (SE) mode executes simple Linux applications
without the need for modeling peripheral devices and an operating system.
Whenever an application performs a system call, gem5 emulates an operating
system by handling this system call internally. In most cases, gem5 will for-
ward the system call to the host operating system. In comparison to abstract
simulators like QEMU the core model still represents the real hardware archi-
tecture.
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– The Full-System (FS) mode executes both kernel-level and user-level code.
In this mode, gem5 models all the peripheral devices. This is similar to a
bare-metal execution on real hardware.

The semantics of the gem5 simulator is a discrete event model, similar to the
ones provided in SystemC [11] or FERAL [16]. A discrete event model uses
the concept of an event queue in combination with a two-dimensional time in
order to deterministically simulate concurrent processes in a sequential executing
simulation engine. The event queue sorts the events in time denoted in ticks (1
tick = 1 ps). After the initialization of the simulator has been performed, the
discrete event model picks the first event in the queue and updates the current
simulation time to match the time of this event. During the execution of an
event, new events are created (either in the future or maybe for the current
simulation time). New events are insertion-sorted into the event queue based
on their tick. Events generated with the same tick as the current simulation
time will thus happen after any existing events at this simulation time, which is
therefore called two-dimensional time or delta-cycling. If there are no pending
events in the event queue for the current simulation time, the current simulation
time is advanced to the next event in the queue.

3 Non-intrusive Trace-driven Simulation of Manycore
Architectures

In order to monitor the execution, instead of modifying the target software,
we modify the system simulator. We introduce two components, an interceptor
and a controller, along the system simulator’s work-flow to monitor the execu-
tion and to perform online changes of the interceptor monitoring configuration.
Our approach enables online configuration of the interceptor so that it inter-
cepts only specified instructions, without inspecting all instructions. In order
to achieve this, we incorporate the execution control of the system simulator
and the controller into the FERAL framework [16]. FERAL stands for Frame-
work for Efficient simulator coupling on Requirements and Architecture Level. It
enables the integration of specialized and focused simulators with heterogeneous
models of computation and communication into one holistic simulation scenario.
FERAL manages the system simulator and the controller as simulation compo-
nents (Fig. 1).

The interceptor module consists of changes introduced to the system simu-
lator and is fully located within the system simulator. Its configuration contains
identifiers of instructions that should be intercepted and is responsible for inter-
rupting the system simulator’s regular execution flow. The interceptor exists in
the form of probes located within virtual hardware components. After an instruc-
tion is fully executed, the interceptor probes contain enough information to relate
the respective instruction to the source code. The controller is responsible for
handling the instruction reported from the interceptor (i.e., control procedures).
Controller procedures are responsible for recording execution traces, performing
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analysis (e.g., Lockset algorithm), and making online changes to the monitoring
configuration of the interceptor.

Fig. 1. Simulation framework concept overview. The Interceptor intercepts raw instruc-
tion data from gem5 : thread id(T ID), operation code (OpCode), instruction address
(InstAddr), and memory address (MemAddr).

3.1 Non-intrusive Monitoring of Raw Data

A system simulator consists of software components that match the logical func-
tionality of the simulated hardware (Fig. 1). These components execute distinct
software procedures, for different instruction operation types. During software
procedures for reading from memory (i.e., LOAD instructions) and writing to
memory (STORE instructions), the probes directly extract the target memory
addresses. Depending on a probe’s location, it also has information about a
memory operation type. Besides this information, probes also record an instruc-
tion’s memory address located in the program counter (instAddr). The raw data
record collected by the probes consists of thread ID, instAddr, instruction oper-
ation type, and accessed memory location.

The configuration of the interceptor consists of activating probes at software
procedures of simulated hardware components and setting instruction identi-
fiers defining the instructions to be intercepted. An instruction identifier can be
generic, such as an instruction type (e.g., LOAD), in which case the intercep-
tor would intercept all instructions of the same type. In the default case, the
interceptor reacts to memory manipulation instructions (e.g., LOAD, STORE ),
function calls, and branching instructions. When the interceptor detects that
an instruction matches an identifier, it calls a controller procedure, which, for
example, records the instruction in the execution trace and continues with the
execution.

3.2 Relating Raw Trace Data to the Source Code

A compiler can generate debug information together with the machine code,
which represents the relation between the machine code and the source code.
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For binaries in Executable and Linkable Format (ELF ), the common debugging
data format is DWARF. The debugging format defines the debugging sections
and their attributes. For example, a section contains DW AT low pc, a program-
counter value for the beginning of the function. Relating raw instruction data
records to debug data is enabled via instruction memory addresses. However, it is
a computationally demanding task. The configuration of the interceptor supports
focused monitoring by dynamically activating probes at software procedures of
simulated hardware components.

4 Design and Implementation

Applications in gem5 SE mode are running directly on the virtual hardware, so
gem5 has to take over the thread management. Every thread is directly mapped
to one virtual core [26]. The tracing of raw data is an existing feature in gem5,
but forces us to react to every processed instruction and only when all raw
data is recorded. Therefore, we have changed gem5 to improve control of the
monitoring. During execution, gem5 handles instructions based on their type
(i.e., operation code). gem5 handles each type in a separate function. Inside
each handling function, we implemented monitoring probes (Figure 2). Before
reaching postExecute, we can, based on the information from our probes, decide
what to do with the executing instruction.

Fig. 2. Implementation of the concept in the gem5 system simulator.

In order to retrieve the function name of the current function call, we relate
the current instruction address from the program counter to the debug infor-
mation. Once main is reached, for memory LOAD and STORE operations, we
retrieve the debug symbol name by relating the memory address of the executing
instruction and the current executing instruction to the debug information. In
the same manner, we retrieve the source code line number (as explained in the
previous section). In gem5 SE mode, there exist only threads of the executing
application. A function for creating a new thread (e.g., pthread create) will exe-
cute like any other function. As an argument, it takes a function name that a
new thread will execute. By tracing a function name that creates threads and
its arguments, the interceptor is able to conclude which function a new thread
will execute. In the preExecute() phase of the CPU, the interceptor retrieves
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Table 1. Execution times and execution trace size when applications were executed
with gem5 without tracing, with tracing (gem5 TD), with tracing of raw data and
our probes (gem5 TD* ), with tracing and online calculation of debug symbols (gem5
DBG), with tracing and online calculation of debug symbols while ignoring external
functions (gem5 DBG* ).

Application barnes fmm ocean-con radiosity PowerWindow PowerWindow*

gem5 [s] 156 53 1053 23 1.04 20

gem5 TD [s] 171 57 1161 26 1.1 21.7

gem5 TD* [s] 262 83 1690 40 1.51 36

gem5 DBG [s] 1495 646 14 475 440 6.77 124

gem5 DBG* [s] 1623 678 14 873 446 7.81 63

gem5 DBG [MB] 1 404 172 19 796 221 5.88 207

gem5 DBG* [MB] 1 305 163 19 732 218 5.84 6.6

the identifier of the currently executing thread (i.e., thread ID). Therefore, well
before reaching the postExecute phase of the CPU, the interceptor has the thread
ID executing the current instruction.

Table 2. Test case 6: Decrease (−) of execution overhead and execution trace size
when tracing only two tasks from the parallelized PowerWindow, compared with the
case when gem5 traced all instructions of the parallelized PowerWindow and related
them online to their source code. Test case 7: Tracing of the execution of only two tasks
from the moment it can be influenced by the access to the shared variable OverrunFlag.

Application/Test case PowerWindow[s]; overhead PowerWindow trace size

Test case 6 41[s]; −49% 1.05[MB]; −84.09%

Test case 7 41[s]; −49% 0.89[MB]; −86.52%

5 Evaluation

In order to evaluate the overhead of our approach, we used four applications (i.e.,
barnes, fmm, ocean-con, and radiosity) from the famous SPLASH-2 benchmark
[31], and a parallelized PowerWindow application [19] from the TACLeBench
[9] benchmark. As the default setup, we executed the applications with gem5
but without the tracing option. We designed seven test cases: (1) execution of
the applications with gem5 tracing (but without printing the trace) (gem5 TD).
(2) gem5 execution when tracing raw data with our probes (gem5 TD* ). (3)
tracing all instructions with online computation of their debug symbols (gem5
DBG). (4) computation of the debug symbols online, while ignoring the exter-
nal functions (e.g., printf ). (6) testing the parallelized PowerWindow to demon-
strate how the interceptor’s monitoring configuration changes dynamically, and
influences the overhead and the execution trace size. We traced the execu-
tion of only two tasks (powerwindow DRV and powerwindow PSG BackR) while
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relating their instructions to the source code online and compare the overhead
and the size of the execution trace with the case when we traced the instructions
of all tasks of the parallelized PowerWindow. (7) kept the setup from the sixth
test case, but only started to record memory operations once one of the two
traced tasks accessed the global variable OverrunFlag. When these tasks com-
pleted, the controller restarted the monitoring configuration of the interceptor
to trace only function calls (in order to detect when the same tasks start again).
(7) trace the execution of two tasks from the moment it can be influenced by
the access to the shared variable OverrunFlag.

The results (Table 1) show that our probes introduced an average overhead
of 50.23% compared to the unmodified execution of gem5 with tracing (gem5
TD*/gem5 TD [%]). Calculating debug symbols is a demanding task, and on
average introduced 6.83x overhead compared to the execution of gem5 with
tracing and our probes (gem5 DBG/gem5 TD* [%]). When external functions
were ignored, the execution time was slightly higher in all but the parallelized
PowerWindow application. The reason for this is that the filter for reasoning
“if an instruction belongs to an external function” is executed for every instruc-
tion. The parallelized PowerWindow however, creates four new threads in every
execution cycle, calling functions of the pthread library. Therefore, the number
of executed external function instructions is significantly higher than in other
cases. Test cases 6 and 7 (Table 2) show that the tracing of particular tasks or
events of interest using dynamic monitoring configuration led to a significant
decrease in the overhead and size of the execution trace.

6 Conclusion and Future Work

In this paper, we presented a framework for non-intrusive monitoring of software
execution, which takes the binary as input and provides as output an execution
trace with a source code symbols. Our approach mitigates the probe effects, as
it does not change the binary, nor does it change the relative execution path by
introducing new instructions. However, due to the combination of hardware emu-
lation, handling some system calls internally, and forwarding some system calls to
the host operating system, there still is a certain change of the original software
behavior, which we aim at addressing in the future. The online monitoring con-
figuration enables the creation of adaptive rules for tracing particular software
instructions and software parts, producing execution traces with desired granu-
larity. The result is a reasonable overhead of 58.53% on average when executing
applications from the SPLASH-2 and TACLe benchmarks, while enabling some
unique features. In the future, we are planning to implement the same approach
using commercial simulators.
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