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Abstract This chapter addresses the fundamental question: what functions can
stochastic logic compute? We show that, given stochastic inputs, any combinational
circuit computes a polynomial function. Conversely, we show that, given any
polynomial function, we can synthesize stochastic logic to compute this function.
The only restriction is that we must have a function that maps the unit interval [0, 1]
to the unit interval [0, 1], since the stochastic inputs and outputs are probabilities.
Our approach is both general and efficient in terms of area. It can be used to
synthesize arbitrary polynomial functions. Through polynomial approximations, it
can also be used to synthesize non-polynomial functions.

Keywords Polynomials · Bernstein polynomials · Non-polynomials ·
Synthesis · Computability · Combinational circuits

Introduction

First introduced by Gaines [1] and Poppelbaum [2, 3] in the 1960s, the field of
stochastic computing has seen widespread interest in recent years. Much of the
work, both early and recent, has had more of an applied than a theoretical flavor.
The work of Gaines, Poppelbaum, Brown & Card [4], as well as recent papers
pertaining to image processing [5] and neural networks [6] all demonstrate how
to compute specific functions for particular applications.

This chapter has a more theoretical flavor. It addresses the fundamental question:
can we characterize the class of functions that stochastic logic can compute? Given
a combinational circuit, that is to say a circuit with no memory elements, the answer
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is rather easy: given stochastic inputs, we show such a circuit computes a polynomial
function. Since the stochastic inputs and outputs are probabilities, this polynomial
function maps inputs from the unit interval [0, 1] to outputs in the unit interval [0, 1].

The converse question is much more challenging: given a target polynomial
function, can we synthesize stochastic logic to compute it? The answer is yes:
we prove that there exists a combinational circuit that computes any polynomial
function that maps the unit interval to the unit interval. So the characterization
of stochastic logic is complete. Our proof method is constructive: we describe a
synthesis methodology for polynomial functions that is general and efficient in terms
of area. Through polynomial approximations, it can also be used to synthesize non-
polynomial functions.

Characterizing What Stochastic Logic Can Compute

Consider basic logic gates. Table 1 describes the functions that they implement given
stochastic inputs. These are all straight-forward to derive algebraically. For instance,
given a stochastic input x representing the probability of seeing a 1 in a random
stream of 1s and 0s, a NOT gate implements the function

NOT(x) = 1 − x. (1)

Given inputs x, y, an AND gate implements the function:

AND(x, y) = xy. (2)

An OR gate implements the function:

OR(x, y) = x + y − xy. (3)

An XOR gate implements the functions

XOR(x, y) = x + y − 2xy. (4)

Table 1 Stochastic function
implemented by basic logic
gates

Gate Inputs Function

NOT x 1 − x

AND x, y xy

OR x, y x + y − xy

NAND x, y 1 − xy

NOR x, y 1 − x − y + xy

XOR x, y x + y − 2xy

XNOR x, y 1 − x − y + 2xy
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It is well known that any Boolean function can be expressed in terms of AND
and NOT operations (or entirely in terms of NAND operations). Accordingly, the
function of any combinational circuit can be expressed as a nested sequence of
multiplications and 1 − x type operations. It can easily be shown that this nested
sequence results in a polynomial function. (Note that special treatment is needed for
any reconvergent paths.)

We will make the argument based upon truth tables. Here we will consider only
univariate functions, that is to say stochastic logic that receives multiple independent
copies of a single variable t . (Technically, t is the Bernoulli coefficient of a random
variable Xi , where t = [Pr(Xi = 1)].) Please see [7] for a generalization to
multivariate polynomials.

Consider a combinational circuit computing a function f (X1, X2, X3) with
the truth table shown Table 2. Now suppose that each variable has independent
probability t of being 1:

[Pr(X1) = 1] = t (5)

[Pr(X2) = 1] = t (6)

[Pr(X3) = 1] = t (7)

The probability that the function evaluates to 1 is equal to the sum probabilities of
occurrence of each row that evaluates to 1. The probability of each row, in turn, is
obtained from the assignments to the variables, as shown in Table 3. Summing up
the rows that evaluate to 1, we obtain

Table 2 Truth table for a
combinational circuit

X1 X2 X3 f (X1, X2, X3)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 3 Probabilities of
each row in Table 2,
assuming each variable has
independent probability t

X1 X2 X3 Probability of row f (X1, X2, X3)

0 0 0 (1 − t)3 0

0 0 1 (1 − t)2t 1

0 1 0 (1 − t)t (1 − t) 0

0 1 1 (1 − t)t2 1

1 0 0 t (1 − t)2 0

1 0 1 t (1 − t)t 1

1 1 0 t2(1 − t) 1

1 1 1 t3 1
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(1 − t)2t + (1 − t)t2 + t (1 − t)t + t2(1 − t) + t3 (8)

= (1 − t)2t + 3(1 − t)t2 + t3 (9)

= t + t2 − t3 (10)

Generalizing from this example, suppose we are given any combination circuit with
n inputs that each evaluate to 1 with independent probability t . We conclude that the
probability that the output of the circuit evaluates to 1 is equal to the sum of terms of
the form t i (1 − t)j , where 0 ≤ i ≤ n, 0 ≤ j ≤ n, i + j = n, corresponding to rows
of the truth table of the circuit that evaluate to 1. Expanding out this expression, we
always obtain a polynomial in t .

We note that the analysis here was presented as early as 1975 in [8]. Algorithmic
details for such analysis were first fleshed out by the testing community [9].
They have also found mainstream application for tasks such as timing and power
analysis [10, 11].

Synthesizing any Polynomial Function

In this chapter, we will explore the more challenging task of synthesizing logical
computation on stochastic bit streams that implements the functionality that we
want. Naturally, since we are mapping probabilities to probabilities, we can only
implement functions that map the unit interval [0, 1] onto the unit interval [0, 1].
Consider the behavior of a multiplexer, shown in Fig. 1. It implements scaled
addition: with stochastic inputs a, b and a stochastic select input s, it computes a
stochastic output c:

c = sa + (1 − s)b. (11)

(We use the convention of upper case letters for random variables and lower case
letters for the corresponding probabilities.)

Fig. 1 Scaled addition on
stochastic bit streams, with a
multiplexer (MUX). Here the
inputs are 1/8, 5/8, and 2/8.
The output is
2/8×1/8+(1−2/8)×5/8 =
4/8, as expected
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Based on the constructs for multiplication (an AND gate) and scaled addition
(a multiplexer), we can readily implement polynomial functions of a specific form,
namely polynomials with non-negative coefficients that sum up to a value no more
than one:

g(t) =
n∑

i=0

ait
i

where, for all i = 0, . . . , n, ai ≥ 0 and
∑n

i=0 ai ≤ 1.
For example, suppose that we want to implement the polynomial g(t) = 0.3t2 +

0.3t + 0.2. We first decompose it in terms of multiplications of the form a · b and
scaled additions of the form sa + (1 − s)b, where s is a constant:

g(t) = 0.8(0.75(0.5t2 + 0.5t) + 0.25 · 1).

Then, we reconstruct it with the following sequence of multiplications and scaled
additions:

w1 = t · t,

w2 = 0.5w1 + (1 − 0.5)t,

w3 = 0.75w2 + (1 − 0.75) · 1,

w4 = 0.8 · w3.

The circuit implementing this sequence of operations is shown in Fig. 2. In the
figure, the inputs are labeled with the probabilities of the bits of the corresponding
stochastic streams. Some of the inputs have fixed probabilities and the others have
variable probabilities t . Note that the different lines with the input t are each fed
with independent stochastic streams with bits that have probability t .

What if the target function is a polynomial that is not decomposable this way?
Suppose that it maps the unit interval onto the unit interval but it has some
coefficients less than zero or some greater than one. For instance, consider the
polynomial g(t) = 3

4 − t + 3
4 t2. It is not apparent how to construct a network

of stochastic multipliers and adders to implement it.

Fig. 2 Computation on
stochastic bit streams
implementing the polynomial
g(t) = 0.3t2 + 0.3t + 0.2
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Fig. 3 A generalized
multiplexing circuit
implementing the polynomial
g(t) = 3

4 − t + 3
4 t2

We propose a general method for synthesizing arbitrary univariate polynomial
functions on stochastic bit streams. A necessary condition is that the target poly-
nomial maps the unit interval onto the unit interval. We show that this condition is
also sufficient: we provide a constructive method for implementing any polynomial
that satisfies this condition. Our method is based on some novel mathematics for
manipulating polynomials in a special form called a Bernstein polynomial [12–15].
In [16] we showed how to convert a general power-form polynomial into a Bernstein
polynomial with coefficients in the unit interval. In [17] we showed how to realize
such a polynomial with a form of “generalized multiplexing.”

We illustrate the basic steps of our synthesis method with the example of
g(t) = 3

4 − t + 3
4 t2. (We define Bernstein polynomials in the section “Bernstein

Polynomials”. We provide further details regarding the synthesis method in the
section “Synthesizing Polynomial Functions”.)

1. Convert the polynomial into a Bernstein polynomial with all coefficients in the
unit interval:

g(t) = 3

4
· [(1 − t)2] + 1

4
· [2t (1 − t)] + 1

2
· [t2].

Note that the coefficients of the Bernstein polynomial are 3
4 , 1

4 and 1
2 , all of which

are in the unit interval.
2. Implement the Bernstein polynomial with a multiplexing circuit, as shown in

Fig. 3. The block labeled “+” counts the number of ones among its two inputs;
this is either 0, 1, or 2. The multiplexer selects one of its three inputs as its output
according to this value. Note that the inputs with probability t are each fed with
independent stochastic streams with bits that have probability t .

Bernstein Polynomials

In this section, we introduce a specific type of polynomial that we use, namely
Bernstein polynomials [12, 13].
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Definition 1 A Bernstein polynomial of degree n, denoted as Bn(t), is a polyno-
mial expressed in the following form [15]:

n∑

k=0

βk,nbk,n(t), (12)

where each βk,n, k = 0, 1, . . . , n,1 is a real number and

bk,n(t) =
(

n

k

)
tk(1 − t)n−k. (13)

The coefficients βk,n are called Bernstein coefficients and the polynomials
b0,n(t), b1,n(t), . . . , bn,n(t) are called Bernstein basis polynomials of degree
n. �
We list some pertinent properties of Bernstein polynomials.

1. The positivity property:
For all k = 0, 1, . . . , n and all t in [0, 1], we have

bk,n(t) ≥ 0. (14)

2. The partition of unity property:
The binomial expansion of the left-hand side of the equality (t + (1 − t))n = 1
shows that the sum of all Bernstein basis polynomials of degree n is the constant
1, i.e.,

n∑

k=0

bk,n(t) = 1. (15)

3. Converting power-form coefficients to Bernstein coefficients:
The set of Bernstein basis polynomials b0,n(t), b1,n(t), . . . , bn,n(t) forms a basis
of the vector space of polynomials of real coefficients and degree no more than
n [14]. Each power basis function tj can be uniquely expressed as a linear
combination of the n + 1 Bernstein basis polynomials:

tj =
n∑

k=0

σjkbk,n(t), (16)

for j = 0, 1, . . . , n. To determine the entries of the transformation matrix σ , we
write

tj = tj (t + (1 − t))n−j

1Here
(
n
k

)
denotes the binomial coefficient “n choose k.”
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and perform a binomial expansion on the right hand side. This gives

tj =
n∑

k=j

(
k
j

)
(
n
j

)bk,n(t),

for j = 0, 1, . . . , n. Therefore, we have

σjk =
{(

k
j

)(
n
j

)−1
, for j ≤ k

0, for j > k.
(17)

Suppose that a power-form polynomial of degree no more than n is

g(t) =
n∑

k=0

ak,nt
k (18)

and the Bernstein polynomial of degree n of g is

g(t) =
n∑

k=0

βk,nbk,n(t). (19)

Substituting Eqs. (16) and (17) into Eq. (18) and comparing the Bernstein
coefficients, we have

βk,n =
n∑

j=0

aj,nσjk =
k∑

j=0

(
k

j

)(
n

j

)−1

aj,n. (20)

Equation (20) provide a means for obtaining Bernstein coefficients from power-
form coefficients.

4. Degree elevation:
Based on Eq. (13), we have that for all k = 0, 1, . . . , m,

1
(
m+1

k

)bk,m+1(t) + 1
(
m+1
k+1

)bk+1,m+1(t)

=tk(1 − t)m+1−k + tk+1(1 − t)m−k

=tk(1 − t)m−k = 1(
m
k

)bk,m(t),
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or

bk,m(t) =
(
m
k

)
(
m+1

k

)bk,m+1(t) +
(
m
k

)
(
m+1
k+1

)bk+1,m+1(t)

= m + 1 − k

m + 1
bk,m+1(t) + k + 1

m + 1
bk+1,m+1(t).

(21)

Given a power-form polynomial g of degree n, for any m ≥ n, g can be
uniquely converted into a Bernstein polynomial of degree m. Suppose that the

Bernstein polynomials of degree m and degree m + 1 of g are
m∑

k=0

βk,mbk,m(t)

and
m+1∑

k=0

βk,m+1bk,m+1(t), respectively. We have

m∑

k=0

βk,mbk,m(t) =
m+1∑

k=0

βk,m+1bk,m+1(t). (22)

Substituting Eq. (21) into the left-hand side of Eq. (22) and comparing the
Bernstein coefficients, we have

βk,m+1 =

⎧
⎪⎪⎨

⎪⎪⎩

β0,m, for k = 0
k

m+1βk−1,m +
(

1 − k
m+1

)
βk,m, for 1 ≤ k ≤ m

βm,m, for k = m + 1.

(23)

Equation (23) provides a means for obtaining the coefficients of the Bernstein
polynomial of degree m+1 of g from the coefficients of the Bernstein polynomial
of degree m of g. We will call this procedure degree elevation.

Uniform Approximation and Bernstein Polynomials with
Coefficients in the Unit Interval

In this section, we present two of our major mathematical findings on Bernstein
polynomials. The first result pertains to uniform approximation with Bernstein
polynomials. We show that, given a power-form polynomial g, we can obtain a
Bernstein polynomial of degree m with coefficients that are as close as desired to
the corresponding values of g evaluated at the points 0, 1

m
, 2

m
, . . . , 1, provided that

m is sufficiently large. This result is formally stated by the following theorem.
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Theorem 1 Let g be a polynomial of degree n ≥ 0. For any ε > 0, there exists a
positive integer M ≥ n such that for all integers m ≥ M and k = 0, 1, . . . , m, we
have

∣∣∣∣βk,m − g

(
k

m

)∣∣∣∣ < ε,

where β0,m, β1,m, . . . , βm,m satisfy g(t) =
m∑

k=0

βk,mbk,m(t). �

Please see [7] for the proof of the above theorem.

The second result pertains to a special type of Bernstein polynomials: those with
coefficients that are all in the unit interval. We are interested in this type of Bernstein
polynomial since we can show that it can implemented by logical computation on
stochastic bit streams

Definition 2 Define U to be the set of Bernstein polynomials with coefficients that
are all in the unit interval [0, 1]:

U =
{
p(t) | ∃ n ≥ 1, 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1, such that

p(t) =
n∑

k=0

βk,nbk,n(t)

}
. �

The question we are interested in is: which (power-form) polynomials can be
converted into Bernstein polynomials in U?

Definition 3 Define the set V to be the set of polynomials which are either
identically equal to 0 or equal to 1, or map the open interval (0, 1) into (0, 1) and
the points 0 and 1 into the closed interval [0, 1], i.e.,

V = {p(t) | p(t) ≡ 0, orp(t) ≡ 1,

or0 < p(t) < 1,∀t ∈ (0, 1) and 0 ≤ p(0), p(1) ≤ 1}. �

We prove that the set U and the set V are equivalent, thus giving a clear
characterization of the set U .

Theorem 2

V = U. �

The proof of the above theorem utilizes Theorem 1. Please see [7] for the proof.
We end this section with two examples illustrating Theorem 2. In what follows,

we will refer to a Bernstein polynomial of degree n converted from a polynomial g
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as “the Bernstein polynomial of degree n of g”. When we say that a polynomial is
of degree n, we mean that the power-form of the polynomial is of degree n.

Example 1 Consider the polynomial g(t) = 5
8 − 15

8 t+ 9
4 t2. It maps the open interval

(0, 1) into (0, 1) with g(0) = 5
8 and g(1) = 1. Thus, g is in the set V . Based on

Theorem 2, we have that g is in the set U . We verify this by considering Bernstein
polynomials of increasing degree.

• The Bernstein polynomial of degree 2 of g is

g(t) = 5

8
· b0,2(t) +

(
− 5

16

)
· b1,2(t) + 1 · b2,2(t).

Note that the coefficient β1,2 = − 5
16 < 0.

• The Bernstein polynomial of degree 3 of g is

g(t) = 5

8
· b0,3(t) + 0 · b1,3(t) + 1

8
· b2,3(t) + 1 · b3,3(t).

Note that all the coefficients are in [0, 1].
Since the Bernstein polynomial of degree 3 of g satisfies Definition 2, we conclude
that g is in the set U . �
Example 2 Consider the polynomial g(t) = 1

4 − t + t2. Since g(0.5) = 0,
thus g is not in the set V . Based on Theorem 2, we have that g is not in the
set U . We verify this. By contraposition, suppose that there exist n ≥ 1 and
0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1 such that

g(t) =
n∑

k=0

βk,nbk,n(t).

Since g(0.5) = 0, therefore,
n∑

k=0

βk,nbk,n(0.5) = 0. Note that for all k = 0, 1, . . . , n,

bk,n(0.5) > 0. Thus, we have that for all k = 0, 1, . . . , n, βk,n = 0. Therefore,
g(t) ≡ 0, which contradicts the original assumption about g. Thus, g is not in the
set U . �

Synthesizing Polynomial Functions

Computation on stochastic bit streams generally implements a multivariate poly-
nomial F(x1, . . . , xn) with integer coefficients. The degree of each variable is at
most one, i.e., there are no terms with variables raised to the power of two, three
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or higher. If we associate some of the xi’s of the polynomial F(x1, . . . , xn) with
real constants in the unit interval and the others with a common variable t , then the
function F becomes a real-coefficient univariate polynomial g(t). With different
choices of the original Boolean function f and different settings of the probabilities
of the xi’s, we get different polynomials g(t).

Example 3 Consider the function implemented by a multiplexer operating on
stochastic bit streams, A,B, and S. It is a multivariate polynomial, g(a, b, s) =
sa + (1 − s)b = b + sa − sb. The polynomial has integer coefficients. The degree
of each variable is at most one. If we set s = a = t and b = 0.8 in the polynomial,
then we get a univariate polynomial g(t) = 0.8 − 0.8t + t2. �

The first question that arises is: what kind of univariate polynomials can be
implemented by computation on stochastic bit streams? In [16], we proved the
following theorem stating a necessary condition on the polynomials. The theorem
essentially says that, given inputs that are probability values—that is to say, real
values in the unit interval—the polynomial must also evaluate to a probability value.
There is a caveat here: if the polynomial is not identically equal to 0 or 1, then it
must evaluate to a value in the open interval (0, 1) when the input is also in the open
interval (0, 1).

Theorem 3 If a polynomial g(t) can be implemented by logical computation on
stochastic bit streams, then

1. g(t) is identically equal to 0 or 1 (g(t) ≡ 0 or 1), or
2. g(t) maps the open interval (0, 1) to itself (g(t) ∈ (0, 1), for all t ∈ (0, 1)) and

0 ≤ g(0), g(1) ≤ 1. �
For instance, as shown in Example 3, the polynomial g(t) = 0.8 − 0.8t + t2 can
be implemented by logical computation on stochastic bit streams. It is not hard to
see that g(t) satisfies the necessary condition. In fact, g(0) = 0.8, g(1) = 1 and
0 < g(t) < 1, for all 0 < t < 1.

The next question that arises is: can any polynomial satisfying the necessary con-
dition be implemented by logical computation on stochastic bit streams? If so, how?
We propose a synthesis method that solves this problem; constructively, we show
that, provided that a polynomial satisfies the necessary condition, we can implement
it. First, in the section “Synthesizing Bernstein Polynomials with Coefficients in the
Unit Interval”, we show how to implement a Bernstein polynomial with coefficients
in the unit interval. Then, in the section “Synthesis of Power-Form Polynomials”, we
describe how to convert a general power-form representation into such a polynomial.

Synthesizing Bernstein Polynomials with Coefficients in the Unit
Interval

If all the coefficients of a Bernstein polynomial are in the unit interval, i.e., 0 ≤
bi,n ≤ 1, for all 0 ≤ i ≤ n, then we can implement it with the construct shown in
Fig. 4.
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Fig. 4 Combinational logic
that implements a Bernstein
polynomial
Bn(t) = ∑n

i=0 bi,nBi,n(t)

with all coefficients in the
unit interval

Fig. 5 The implementation
of an 8-bit Boolean weight
counter

The block labeled “ +” in Fig. 4 has n inputs X1, . . . , Xn and �log2(n + 1)	
outputs. It consists of combinational logic that computes the weight of the inputs,
that is to say, it counts the number of ones in the n Boolean inputs X1, . . . , Xn,
producing a binary radix encoding of this count. We will call this an n-bit Boolean
“weight counter.” The multiplexer (MUX) shown in the figure has “data” inputs
Z0, . . . , Zn and the �log2(n + 1)	 outputs of the weight counter as the selecting
inputs. If the binary radix encoding of the outputs of the weight counter is k (0 ≤
k ≤ n), then the output Y of the multiplexer is set to Zk .

Figure 5 gives a simple design for an 8-bit Boolean weight counter based on a
tree of adders. An n-bit Boolean weight counter can be implemented in a similar
way.

In order to implement the Bernstein polynomial

Bn(t) =
n∑

i=0

bi,nBi,n(t),

we set the inputs X1, . . . , Xn to be independent stochastic bit streams with
probability t . Equivalently, X1, . . . , Xn can be viewed as independent random
Boolean variables that have the same probability t of being one. The probability
that the count of ones among the Xi’s is k (0 ≤ k ≤ n) is given by the binomial
distribution:

P

(
n∑

i=1

Xi = k

)
=

(
n

k

)
tk(1 − t)n−k = Bk,n(t). (24)
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We set the inputs Z0, . . . , Zn to be independent stochastic bit streams with
probability equal to the Bernstein coefficients b0,n, . . . , bn,n, respectively. Notice
that we can represent bi,n with stochastic bit streams because we assume that
0 ≤ bi,n ≤ 1. Equivalently, we can view Z0, . . . , Zn as n + 1 indepen-
dent random Boolean variables that are one with probabilities b0,n, . . . , bn,n,
respectively.

The probability that the output Y is one is

y = P(Y = 1)

=
n∑

k=0

(
P

(
Y = 1|

n∑

i=1

Xi = k

)
P

(
n∑

i=1

Xi = k

))
.

(25)

Since the multiplexer sets Y equal to Zk , when
∑n

i=1 Xi = k, we have

P

(
Y = 1|

n∑

i=1

Xi = k

)
= P(Zk = 1) = bk,n. (26)

Thus, from Eqs. (13), (24), (25), and (26), we have

y =
n∑

k=0

bk,nBk,n(t) = Bn(t). (27)

We conclude that the circuit in Fig. 4 implements the given Bernstein
polynomial with all coefficients in the unit interval. We have the following
theorem.

Theorem 4 If all the coefficients of a Bernstein polynomial are in the unit interval,
i.e., 0 ≤ bi,n ≤ 1, for 0 ≤ i ≤ n, then we can synthesize logical computation on
stochastic bit streams to implement it. �

Example 4 The polynomial g1(t) = 1

4
+ 9

8
t − 15

8
t2 + 5

4
t3 can be converted into a

Bernstein polynomial of degree 3:

g1(t) = 2

8
B0,3(t) + 5

8
B1,3(t) + 3

8
B2,3(t) + 6

8
B3,3(t). �

Figure 6 shows a circuit that implements this Bernstein polynomial. The function is
evaluated at t = 0.5. The stochastic bit streams X1, X2 and X3 are independent,
each with probability t = 0.5. The stochastic bit streams Z0, . . . , Z3 have
probabilities 2

8 , 5
8 , 3

8 , and 6
8 , respectively. As expected, the computation produces

the correct output value: g1(0.5) = 0.5. �
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Fig. 6 Computation on
stochastic bit streams that
implements the Bernstein
polynomial
g1(t) = 2

8 B0,3(t)+ 5
8 B1,3(t)+

3
8 B2,3(t) + 6

8 B3,3(t) at
t = 0.5

Synthesis of Power-Form Polynomials

In the previous section, we saw that we can implement a polynomial through logical
computation on stochastic bit streams if the polynomial can be represented as a
Bernstein polynomial with coefficients in the unit interval. A question that arises
is: what kind of polynomials can be represented in this form? Generally, we seek
to implement polynomials given to us in power form. In [16], we proved that any
polynomial that satisfies Theorem 3—so essentially any polynomial that maps the
unit interval onto the unit interval—can be converted into a Bernstein polynomial
with all coefficients in the unit interval.2 Based on this result and Theorem 4, we can
see that the necessary condition shown in Theorem 3 is also a sufficient condition for
a polynomial to be implemented by logical computation on stochastic bit streams.

Example 5 Consider the polynomial g2(t) = 3t − 8t2 + 6t3 of degree 3, Since
g2(t) ∈ (0, 1), for all t ∈ (0, 1) and g2(0) = 0, g2(1) = 1, it satisfies the necessary
condition shown in Theorem 3. Note that

g2(t) = B1,3(t) − 2

3
B2,3(t) + B3,3(t)

= 3

4
B1,4(t) + 1

6
B2,4(t) − 1

4
B3,4(t) + B4,4(t)

= 3

5
B1,5(t) + 2

5
B2,5(t) + B5,5(t).

Thus, the polynomial g2(t) can be converted into a Bernstein polynomial with
coefficients in the unit interval. The degree of such a Bernstein polynomial is 5,
greater than that of the original power form polynomial. �

2The degree of the equivalent Bernstein polynomial with coefficients in the unit interval may be
greater than the degree of the original polynomial.
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Given a power-form polynomial g(t) = ∑n
i=0 ai,nt

i that satisfies the condition
of Theorem 3, we can synthesize it in the following steps:

1. Let m = n. Obtain b0,m, b1,m, . . . , bm,m from
a0,n, a1,n, . . . , an,n by Eq. (16).

2. Check to see if 0 ≤ bi,m ≤ 1, for all i = 0, 1, . . . , m. If so, go to step 4.
3. Let m = m + 1. Calculate b0,m, b1,m, . . . , bm,m from

b0,m−1, b1,m−1, . . . , bm−1,m−1 based on Eq. (13). Go to step 2.
4. Synthesize the Bernstein polynomial

Bm(t) =
m∑

i=0

bi,mBi,m(t)

with the generalized multiplexing construct in Fig. 4.

Synthesizing Non-Polynomial Functions

In real applications, we often encounter non-polynomial functions, such as trigono-
metric functions. In this section, we discuss the implementation of such functions;
further details are given in [18]. Our strategy is to approximate them by Bernstein
polynomials with coefficients in the unit interval. In the previous section, we saw
how to implement such Bernstein polynomials.

We formulate the problem of implementing an arbitrary function g(t) as follows.
Given g(t), a continuous function on the unit interval, and n, the degree of a
Bernstein polynomial, find real numbers bi,n, i = 0, . . . , n, that minimize

∫ 1

0
(g(t) −

n∑

i=0

bi,nBi,n(t))
2 dt, (28)

subject to

0 ≤ bi,n ≤ 1, for all i = 0, 1, . . . , n. (29)

Here we try to find the optimal approximation by minimizing an objective
function, Eq. (28), that measures the approximation error. This is the square of the
L2 norm on the difference between the original function g(t) and the Bernstein
polynomial Bn(t) = ∑n

i=0 bi,nBi,n(t). The integral is on the unit interval because
t , representing a probability value, is always in the unit interval. The constraints in
Eq. (29) guarantee that the Bernstein coefficients are all in the unit interval. With
such coefficients, the construct in Fig. 4 computes an optimal approximation of the
function.
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The optimization problem is a constrained quadratic programming problem [18].
Its solution can be obtained using standard techniques.

Example 6 Consider the non-polynomial function g3(t) = t0.45. We approximate
this function by a Bernstein polynomial of degree 6. By solving the constrained
quadratic optimization problem, we obtain the Bernstein coefficients:

b0,6 = 0.0955, b1,6 = 0.7207, b2,6 = 0.3476, b3,6 = 0.9988,

b4,6 = 0.7017, b5,6 = 0.9695, b6,6 = 0.9939. �

Discussion

This chapter presented a necessary and sufficient condition for synthesizing stochas-
tic functions with combinational logic: the target function must be a polynomial that
maps the unit interval [0, 1] to the unit interval [0, 1]. The “necessary” part was easy:
given stochastic inputs, any combinational circuits produces a polynomial. Since the
inputs and outputs are probabilities, this polynomial maps the unit interval to the unit
interval.

The “sufficient” part entailed some mathematics. First we showed that any
polynomial given in power form can be transformed into a Bernstein polynomial.
This was well known [13]. Next we showed that, by elevating the degree of the
Bernstein polynomial, we always obtain a Bernstein polynomial with coefficients in
the unit interval. This was a new result, published in [16]. Finally, we showed that
any Bernstein polynomial with coefficients in the unit interval can be implemented
by a form of “general multiplexing”. These results were published in [17, 18].

The synthesis method is both general and efficient. For a wide variety of appli-
cations, it produces stochatic circuits that have remarkably small area, compared to
circuits that operate on a conventional binary positional encodings [18]. We note
that our characterization applies only to combinational circuits, that is to say logic
circuits without memory elements. Dating back to very interesting work by Brown
& Card [4], researchers have explored stochastic computing with sequential circuits,
that is to say logic circuits with memory elements. With sequential circuits, one
can implement a much larger class of functions than polynomials. For instance,
Brown & Card showed that a sequential circuit can implement the tanh function. A
complete characterization of what sort of stochastic functions can be computed by
sequential circuits has not been established. However, we point the reader to recent
work on the topic: [19–22].
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