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Abstract This chapter begins by reviewing the sources of inaccuracy in stochastic
computing, focusing on correlation, that is, dependencies among stochastic bit-
streams. The measurement of correlation is considered, and the SCC metric is
defined. The properties of correlation are then explored including some that have
only been discovered recently. Correlation can be seen in two ways: either as
corrupting a function f, or as changing f to a different, but potentially useful one.
Therefore, to ensure that a stochastic circuit works as expected it is important to
manage correlation appropriately. This can be done with correlation-controlling
units, which must be used carefully to avoid unexpected functional changes
and excessive hardware area or latency overhead. There are also cases where
correlation has no effect at all (correlation insensitivity). Identifying such immunity
to correlation can aid the design of stochastic circuits. Finally, design of stochastic
number generators to provide specified levels of correlation is discussed.

Keywords Cross correlation · Autocorrelation · Random number sources ·
Correlation metrics · Correlation mitigation

Error Sources in Stochastic Circuits

Stochastic computing (SC) can be summarized concisely as computing with proba-
bilities represented by pseudo-random bit-streams [7]. As discussed in the preceding
chapters, its advantages include small size, low power, error tolerance, the use of
standard digital components, and bio-compatibility. Its primary disadvantages are
low accuracy, long computing times, and costly randomness sources. Consequently,
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Fig. 1 Structure of a generic stochastic circuit annotated with known sources of inaccuracy

the design of a stochastic circuit involves complex trade-offs among accuracy,
computing time and hardware cost. These trade-offs are vividly seen in the
phenomenon of correlation, which is the focus of this chapter.

Figure 1 illustrates the general structure of a stochastic circuit. At its core is
a combinational or sequential logic circuit C, which is supplied by a user with
n stochastic numbers (SNs) X1, X2, . . . , Xn of length N. Xi is composed of N
bits, where the t-th bit X(t) is assumed to be randomly generated in clock cycle t.
These bits are, at least approximately, independent of one another, hence the name
stochastic. Xi has a numerical value denoted Xi which lies in the unit interval [0,1].
In SC’s unipolar format, Xi is the probability pXi

of a 1 appearing anywhere within
Xi. C also has a set of k ancillary inputs R1, R2, . . . , Rk, which are typically N-
bit SNs of constant value Ri = 0.5. These constants are usually not user-supplied;
rather they are an integral part of a stochastic circuit’s design and enable the circuit
to approximate a desired function to some desired level of accuracy. If the Xi’s are
derived from binary (base-2) numbers, additional randomness sources (not shown)
are needed to perform binary-to-stochastic number conversion. In general, if C is
combinational, it computes an arithmetic function of the form Z(X1, X2, . . . , Xn, R1,
R2, . . . , Rk). For example, when used as a stochastic adder, a two-way multiplexer
computes the function

Z (X1, X2, R1) = 0.5 (X1 + X2) (1)

where R1 supplies the scaling factor 0.5.
An assumption made almost universally in determining the stochastic function

computed by a circuit C is that its input bit-streams X1, X2, . . . , Xn, R1, R2, . . . ,
Rk are independent. Roughly speaking, this means that the bit-streams should be as
uncorrelated as possible. This requirement is assumed to be satisfied when all n + k
inputs are derived from n + k separate Bernoulli randomness sources. Correlation
therefore refers to stochastic signals that are related in some way, and it can take
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many forms. Cross correlation, or simply correlation, occurs between two or more
non-independent SNs. For example, the SN X = 10111010 is highly correlated in
a negative sense with Y1 = 01000101, since their 1s and 0s never overlap. The
SN Y2 = 10011000 is also correlated with X because its 1s always overlap the
1s of X. The SN Y3 = 01011101, which is generated by rotating or shifting X
to the right by one bit, is not significantly cross correlated with X, but the one-
cycle-delayed version of Y3 is. Cross correlation may change the functionality
of both combinational and sequential stochastic circuits by favoring certain input
patterns. On the other hand, temporal correlation, or autocorrelation, refers to
correlation between a bit-stream or part of a bit-stream and a delayed version of
itself. For instance, Y4 = 011001110 contains some autocorrelation due to the fact
that 01 is always followed by 1. Autocorrelation can severely affect the functionality
of a sequential stochastic circuit by biasing it towards certain state-transition
behavior.

Defining and measuring correlation is surprisingly difficult. A survey made in
2010 by Choi et al. [11] catalogs 76 different correlation metrics developed in
different fields over many years, none of which is well suited to SC! Relatively
easy to define is the independence or no-correlation assumption, which allows a
stochastic circuit C’s SN inputs to be treated as Bernoulli processes, and the function
of C to be expressed and analyzed using basic probability theory. For example, if
two independent SNs X1 and X2 of value X1 and X2, respectively, are applied to
an AND gate, the output value Z is the arithmetic product X1X2. This reflects the
fact that the probability of the AND gate outputting a 1 is the probability of a 1 at
the first input multiplied by the probability of a 1 at the second input, provided the
inputs are not cross correlated. If X1 and X2 are correlated, Z can deviate from X1X2
in complex ways, as we will see shortly.

Random number sources (RNSs) play a central role in the design and operation
of stochastic circuits. They provide the stochasticity needed by stochastic number
generators (SNGs) to produce SNs with a sufficient level of independence, but they
are a big contributor to overall hardware cost [25]. SC designers generally rely on
linear feedback shift registers (LFSRs) as RNSs because of their relatively small
size and low cost. An LFSR is a deterministic finite-state machine (FSM) whose
behavior is pseudo-random, meaning that it only approximates a true random source
[14]. An SC designer must usually optimize the use of RNSs in a way that provides
sufficient randomness while meeting a cost budget.

SC is a type of approximate computing and trades off computational errors for
other benefits. It has several error sources, as shown in Fig. 1. These error sources
are peculiar to SC and do not include physical errors due to unreliable hardware or
soft errors caused by environmental effects like cosmic radiation [8]. The errors in
question are briefly summarized next.

Rounding Errors Errors caused by rounding or quantization reflect the fact that
with N bits, a bit-stream can only represent exactly the N + 1 numbers in the set
SN = {0, 1/N, 2/N, . . . , (N−1)/N, 1}. If a desired number X is not in this set, then
it must be rounded off to the nearest member of SN. For instance, with N = 16 and
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X = 0.1555, we can round X down to 2/16 = 0.1250 or, slightly more accurately,
round it up to 3/16 = 0.1785. Rounding errors can be mitigated by increasing N to
expand SN . Note, however, that N must be doubled just to add 1 bit of precision to
the numbers in SN .

Approximation Errors These errors result from the fact that most arithmetic
functions of interest cannot be implemented exactly by a stochastic circuit. As a
result, they must be approximated by stochastic functions that are implementable.
All stochastic function values must be scaled to lie in the unit interval [0,1].
Without constant Ri’s as inputs, the only single-variable stochastic functions that
can be combinationally realized exactly are the trivial cases X and 1−X. Hence,
common arithmetic functions like X2,

√
X and sin(X) must be approximated by

some synthesizable stochastic function of the form Z(X, R1, R2, . . . , Rk). Only a
few general methods for finding such functions are known; all are relatively complex
and have particular design styles [4, 26]. For example, the ReSC synthesis method
employs Bernstein polynomials with constant coefficients in the unit interval to
approximate Z(X) [25].

Random Fluctuations The (pseudo) random nature of the bits forming an N-bit
SN X as it emerges from an SNG is also a major error source. Fluctuations in X’s
bit-pattern cause its estimated or measured value ̂X to deviate from the target or
exact value X. Since X can have any of 2N different bit-patterns, X and ̂X can differ
significantly, especially when N is small. Figure 2 shows how three SNG-generated
SNs fluctuate around their target value 0.5 as N changes. Such random fluctuation

errors can be quantified by the mean square error (MSE)EX = E

[

(

̂X − X
)2

]

. Like

Fig. 2 Random fluctuations in three SNs with the exact value 0.5 as bit-stream length N
increases [31]
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rounding errors, random fluctuation errors tend to diminish with increasing N. Note,
however, that when N is odd, ̂X must differ from X = 0.5 by at least one bit. Hence as
N increases toward infinity, the graphs plotted in Fig. 2 continue to oscillate around
0.5 with a steadily decreasing MSE that approaches, but never reaches, zero.

Constant-Induced Errors It was recently observed that the ancillary SNs R1, R2,
. . . , Rk (see Fig. 1) found in most SC designs are an unexpected and significant
error source [31]. This is because their influence on the output value Z is subject
to time-dependent random variations. Interestingly, constant-induced errors can
be eliminated completely by removing the Ri’s and transferring their function to
sequential subcircuits inside C that track the behavior of the Ri’s. A systematic
algorithm called CEASE has been devised for efficiently removing constants and
the errors they produce [31].

Correlation To maintain accuracy, it is often desirable that the bit-streams applied
to a stochastic circuit retain their independence as they are being processed. This
independence is reduced by correlation from several sources including: interactions
among bit-streams during normal computation that introduce dependencies and
similarities, poor randomness properties of individual RNSs that cause successive
bits to be related, sharing of RNSs either directly or indirectly across the SNGs to
reduce overall hardware costs, and temporal dependencies injected by sequential
circuits. As a result, correlation errors tend to increase with circuit size and the
number of layers of processing. They cannot be eliminated merely by increasing
bit-stream length N.

At this point, we see that the accuracy of a stochastic circuit is impacted by many
loosely related factors that are addressed by many different methods and are by no
means fully understood. Correlation is amongst the most intractable of these factors.
Figure 3 illustrates an example of how cross correlation can introduce errors and
how to appropriately fix such errors. The problem here is to design a stochastic
squarer to compute X2 using the standard AND-gate-based multiplier described
previously. To use it for squaring requires two independent, and therefore different,
bit-streams with the same value X. This may be achieved by generating the bit-
streams from two independent RNSs. However, the design of Fig. 3a uses a
single input bit-stream X that fans out into two identical, and therefore highly
correlated copies that have a shared RNS and re-converge at the AND gate.
Consequently, Z = X instead of X2. This illustrates correlation due to RNS sharing
and reconvergent fanout.

Figure 3b, c shows two ways to mitigate the correlation problem. The circuit in
Fig. 3b converts one copy of X from stochastic to binary and then back to stochastic
again using a new RNS; this process is known as regeneration. As a result, the AND
gate sees two independent SNs of value X and so computes a good approximation
to X2. The design of Fig. 3c employs a D flip-flop called an isolator [13] to delay
one copy of X by a clock cycle. Instead of seeing the same bit X(t) twice in clock
cycle t, the AND gate sees X(t) and X(t−1), which are independent by the Bernoulli
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Fig. 3 Three designs for a
squarer: (a) Incorrect design
that ignores correlation.
Decorrelated designs using
(b) regeneration, and (c)
isolation [29]
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property. This method of decorrelation is termed isolation and is usually much less
expensive than regeneration [29].

Some stochastic operations, notably the scaled addition of Eq. (1) implemented
by a multiplexer, do not require their inputs to be independent. Such circuits are
said to be correlation insensitive (CI) [5]. The CI property allows the two input SNs
X1 and X2 of the adder to share a common RNS without producing correlation-
based errors of the type illustrated by Fig. 3a. This can be explained by the fact that
the adder’s output bit Z(t) at clock cycle t is either X1(t) or X2(t), so there is no
interaction between the two data inputs.

While correlation usually reduces the accuracy of stochastic circuits, in some
cases its deliberate use can change a circuit’s function to a new one that is advan-
tageous in some way [2]. For example, an XOR (exclusive-OR) gate supplied with
uncorrelated inputs X1 and X2 realizes the not-so-useful function X1 + X2 − X1X2.
If the inputs are positively correlated by enforcing maximum overlap of 1s, the XOR
realizes the absolute difference function |X1 − X2|. This has been used to design an
edge-detector for image processing that contains orders of magnitude fewer gates
than a comparable non-stochastic circuit [2]. Correlation is similarly used in the
design a stochastic division circuit CORDIV that has accuracy advantages [10].

The design and optimization of RNSs for correlation management are also
an important issue in SC [2, 23]. The problems fall into two categories: (1)
designing RNSs and SNGs to generate bit-streams with desirable cross correlation
and autocorrelation properties, and (2) strategically reducing the use of RNSs to
decrease hardware cost while maintaining moderate independence requirements for
SNs. The latter problem usually requires inexpensive re-randomization techniques
and can take advantage of any CI properties for RNS sharing. Making effective use
of correlation in SC is by no means well understood and is a subject of on-going
research.

The rest of the chapter is organized as follows. Section “Measuring Correlation”
reviews the SC correlation metric for correlation measurement and describes how
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it can be used to analyze and design stochastic circuits. Section “Correlation-
Controlling Units” introduces correlation-controlling circuits intended to eliminate
or insert correlation. Correlation insensitivity and its role in avoiding correlation
problems are discussed in section “Correlation Insensitive Stochastic Circuits”.
Finally, section “Design and Optimization of RNSs” explains how careful RNS
design can be exploited to engineer correlation and reduce hardware cost.

Measuring Correlation

Being able to measure and quantify correlation rigorously in the SC context is of
crucial importance in the analysis and the design of stochastic circuits. We begin
by examining stochastic cross correlation SCC, a correlation measure specifically
designed for SC. We then discuss how the function of a stochastic circuit changes
with different values of SCC.

Quantifying Correlation with SCC

An early effort to quantify correlation for SC was made by Jeavons et al. [16].
Instead of directly providing a correlation measure for SC, they define two SNs
X and Y as independent or uncorrelated if the value of the SN Z obtained
from ANDing X and Y is XY. This definition effectively says that two SNs
are independent if a stochastic multiplier can compute their product accurately.
Obviously, this definition of independence assumes the computation to be otherwise
error-free, i.e., it has no random fluctuation errors, rounding errors, etc. However, it
is rarely the case that Z’s value is exactly XY, even when X and Y are generated
using independent RNSs. With only this definition of independence, it remains
challenging to quantify the behavior of stochastic circuits under different levels of
correlation.

Table 1 shows how the function of an AND-based multiplier changes under the
influence of correlation. The multiplier performs as expected when the inputs X
and Y are independent. However, it computes Z = min(X, Y) when X and Y are

Table 1 SC functions implemented by a two-input AND gate with different levels of input SN
correlations

X Y X ∧ Y Function

Uncorrelated 01010101(0.5) 11110011(0.75) 01010001(0.375) X × Y

Positively
correlated

11110000(0.5) 11111100(0.75) 11110000(0.5) min(X, Y)

Negatively
correlated

11110000(0.5) 00111111(0.75) 00110000(0.25) max(0, X + Y − 1)
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maximally correlated in the positive sense, i.e., when the 1s in X and Y overlap as
much as possible. On the other hand, it computes Z = max(0, X + Y − 1) when
the 1s in X and in Y overlap as little as possible. Instead of using vague terms like
maximally correlated or negatively correlated, it is desirable to be able to rigorously
quantify correlation for SC. Unfortunately, none of the 76 correlation measures
summarized in [11] perfectly fits the needs of SC, including the Pearson correlation
measure ρ which is widely used in statistical analysis. Pearson correlation presents
a problem for SC, because its value depends on the actual value of the bit-
streams being compared. For example, the maximum Pearson correlation value
ρ = +1 implies that the bit-streams are identical. This means that bit-streams having
different values, even if their 1s maximally overlap, fail to attain the maximum value
of ρ.

A suitable correlation metric for SNs would yield a value +1 for maximum
overlapping of 1s and 0s, a value −1 for minimum overlapping of 1s and 0s, and a
value 0 for independent SNs. The metric should not be impacted by the actual value
of the SN, and should also provide intuitive functional interpolation for correlation
value other than +1, −1 or 0.

The correlation measure called the SC correlation coefficient or stochastic cross
correlation (SCC) has been proposed to fit SC’s needs [2]. For a pair of SNs X and
Y, SCC is defined as follows

SCC (X, Y) =
{

pX∧Y−pXpY
min(pX,pY)−pXpY

if pX∧Y > pXpY
pX∧Y−pXpY

pXpY−max(pX+pY−1,0)
otherwise

(2)

where pX = X, pY = Y, and pX∧Y = p(X(t) = 1, Y(t) = 1) for all t. To
measure SCC for SNs X and Y, pX∧Y is first computed which is the prob-
ability of both X and Y being 1. This value is then centralized by shifting
by the estimate for −pXpY that corresponds to the uncorrelated value. Cen-
tralization ensures uncorrelated bit-streams yield SCC = 0, which is consis-
tent with both Pearson correlation and the definition of independence in [16].
Finally, the centralized value is normalized by dividing it by the maximum
attainable value. Normalization guarantees that for two maximally similar or
different SNs X and Y, SCC(X, Y) has value +1 or −1, respectively. Unlike the
Pearson correlation measure ρ(X, Y), SCC(X, Y) does not vary with the value of
the SNs.

Equivalently, and perhaps more intuitively, SCC can also be defined in terms of
how often 1s and 0s occur in the two SNs. For two N-bit SNs X and Y, let Ni j

denote the number of occurrences of the 2-bit pattern X(t)Y(t) = ij. Obviously,
N00 + N01 + N10 + N11 = N. We can then compute SCC by replacing the
estimates of pX, pY, and pX∧Y in Eq. (2) by (N11+N10)/N, (N11+N01)/N and N11/N,
respectively, to obtain

SCC (X, Y) =
{

N11N00−N10N01
N×min(N11+N10,N11+N01)−(N11+N10)(N11+N01)

if N11N00 > N10N01
N11N00−N10N01

(N11+N10)(N11+N01)−N×max(N11−N00,0)
otherwise
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where the numerator N11N00 − N10N01 is common to many correlation measures
including Pearson correlation:

ρ (X, Y) = N11N00 − N10N01√
(N11 + N10) (N11 + N01) (N00 + N01) (N00 + N01)

The major difference between SCC and ρ lies in the denominator. SCC nor-
malizes the measure in a way that maximally positively/negatively correlated SNs
would produce a + 1/−1 correlation value. Pearson correlation, on the other hand,
is normalized by the variance of the bit-streams, which does depend on the value of
the bit-streams.

Table 2 shows some examples of SN pairs and compares their ρ and SCC values.
Note that ρ and SCC are the same for independent SNs and for SNs with equal
values. When the SNs have different values, SCC consistently gives the value
+1 and −1 when the maximal overlap and minimal overlap of 1s and 0s occur,
respectively.

The SCC metric of correlation provides a precise way to define a circuit’s
stochastic behavior under the influence of various (cross) correlation levels. It
further allows us to explore new SC designs enabled by intentionally introducing
non-zero correlations. Figure 4 shows a pair of SNs X and Y having SCC(X,
Y) = +1 applied to an XOR gate, which computes X + Y − 2XY if X and Y are
independent. The correlation between the inputs changes the circuit’s functionality
to the potentially more useful absolute difference function, which leads to a highly
efficient way of implementing edge detection in SC-based vision chips [6]. This
illustrates the usefulness of deliberately injected correlation in designing stochastic
circuits.

So far, we have only discussed cross correlation between SNs. Autocorrelation in
stochastic circuits is much less well understood. Except the standard autocorrelation
metric used in signal processing, an autocorrelation measure that is suitable for
SC appears to be lacking. Almost all existing SC designs therefore assume the

Table 2 Example SNs with
their SCC and Pearson
correlation values [2]

SN pattern SCC(X, Y) ρ(X, Y)

X = 11110000 Y = 11001100 0 0
X = 11110000 Y = 00001111 −1 −1
X = 11111100 Y = 11110000 1 0.58
X = 11111100 Y = 00001111 −1 −0.58
X = 11111100 Y = 11100001 0 0
X = 11000000 Y = 11111100 1 0.33

01101110 (5/8) X
01001110 (4/8) Y 00100000 (1/8) Z

Fig. 4 XOR gate with maximal positively correlated inputs which implements the absolute-
difference subtraction function |X − Y| [2]
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inputs to be free of autocorrelation. It is well recognized that the presence of
autocorrelation, if not carefully handled, presents accuracy problems in sequential
SC designs, including applications such as Bayesian inference [12], LDPC decoding
[24, 27], and neural networks [9]. There are, fortunately, several ways to mitigate
autocorrelation in SC, which we discuss in section “Correlation-Controlling Units”.

Stochastic Functions with Different SCC Levels

Table 1 shows the functionality of the AND gate at SCC 0, +1, and −1. To derive
the stochastic function of the AND gate at any other SCC level, we need to calculate
the linear combination of the function at SCC = 0 and the function at SCC = +1
or −1, depending on the direction of the correlation [2]. For instance, the AND gate
with SCC = 0.5 implements the function Z = 0.5(min(X, Y) + XY). In the general
case, if we have a circuit implementing a two-input Boolean function z = f (x, y)
with input SNs X and Y having arbitrary correlation level SCC, the value of SN Z
at the output of the circuit will be

Z =
{

(1 + SCC) .F0 + SCC.F−1 if SCC (X, Y) < 0
(1 − SCC) .F0 + SCC.F+1 otherwise

(3)

Here F0, F+1 and F−1 denote the stochastic function implemented by the same
circuit at SCC levels 0, −1 and + 1, respectively. Using probabilistic transfer
matrices (PTMs), Alaghi and Hayes [2] show that for any two-input combinational
circuit, we can derive F0, F−1, and F+1 via the following matrix multiplication

[i0 i1 i2 i3] .[t0 t1 t2 t3]T

in which the tk’s denote the truth table of the corresponding Boolean function and
the ik’s are obtained from Table 3. As an example, suppose we want to derive the
stochastic function implemented by an XOR gate at SCC levels 0 and +1. The
truth table PTM of the XOR gate is [0 1 1 0]T, so we will have F0 = (1 − X).
Y+(1 − Y). X and F+1 = max (Y − X, 0)+ max (X − Y, 0) = | X − Y |. To find
the stochastic function of the XOR gate with SCC = 0.25, we simply calculate the
linear combination F0.25 = 0.75F0+0.25F+1.

Table 3 PTM elements used to derive the stochastic function of a two-input combinational circuit
at SCC levels 0, −1 and +1 [2]

F0, SCC = 0 F−1, SCC = −1 F+1, SCC = +1

i0 (1 − X). (1 − Y) max(1 − X − Y, 0) min(1 − X, 1 − Y)
i1 (1 − X). Y min(1 − X, Y) max(Y − X, 0)
i2 (1 − Y). X min(1 − Y, X) max(X − Y, 0)
i3 X. Y max(X+Y − 1, 0) min(X, Y)
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Deriving the stochastic function of circuits or Boolean function with more than
two inputs is not trivial, because SCC does not extend easily to multiple inputs.
The most convenient method of quantifying correlation between more than two
inputs is done by using PTMs, which enumerate the probability distribution of
any combination of 0s and 1s among the signals. However, a systematic method of
handling multi-input functions with arbitrary SCC levels is not known, except in a
few special cases. One such case is when all a function’s inputs are independent [1].
When all the inputs are maximally positively correlated with SCC = +1, we may
also be able to derive the circuit’s stochastic function. For instance, a k-input AND
gate with maximally correlated inputs X1, X2, . . . , Xk implements the function
min(X1, X2, . . . , Xk).

Correlation-Controlling Units

As noted previously, managing correlation is among the more challenging design
tasks in SC, as correlation plays a key role in defining a stochastic circuit’s accuracy
and functionality. It involves complex trade-offs between hardware cost, latency, and
the desired level of accuracy. This section reviews some of the approaches proposed
for managing correlation in SC using correlation-controlling units, a class of sub-
circuits inserted into stochastic arithmetic units to increase or reduce correlation
levels. The major design consideration in deploying correlation controllers is to
achieve an appropriate level of correlation while meeting hardware and latency
constraints. Although correlation can be viewed as a resource to facilitate the design
of certain stochastic functions, most stochastic circuits are intended to work with
independent SNs. Therefore, much prior work in correlation control was devoted
to decorrelation, the process of eliminating undesired correlation completely (i.e.,
making SCC as close to 0 as possible). There have also been efforts in designing
circuits to increase or decrease SCC, such that the SCC is pushed towards +1 or − 1,
respectively.

Regeneration-Based Decorrelation

Perhaps the most direct way to eliminate correlation is through regeneration, where
SNs are first converted to binary form using stochastic-to-binary converters, and
then are converted back to SNs by SNGs with suitably independent RNSs. A
regenerated SN has a value which is the same as, or very close to, its original value.
However, the positions of its 1s are expected to be different.

An example of regeneration-based decorrelation is shown in Fig. 3b, where the
goal is to produce one of the two copies of X using an RNS that is independent
of the original X. In this example, it is sufficient to regenerate X such that the two
inputs of the multiplier are not cross correlated, as the multiplier is a combinational
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stochastic circuit. However, regeneration-based decorrelation can also be applied
to remove autocorrelation, which can be a major factor impacting the accuracy of
sequential stochastic circuits. This is because the process of regeneration provides
an opportunity to completely reorder the bits in the SN being regenerated. To
eliminate autocorrelation in the target SNs, it is sufficient to use RNSs that have
no autocorrelation.

In principle, regeneration-based decorrelation can solve most types of correlation
problems. However, it is also subject to several design constraints that must be
taken into consideration when deploying it. First, regeneration incurs significant
latency overhead and stalls computation. This is because it requires a stochastic-to-
binary format conversion that is implemented using a standard binary counter, which
simply counts the number of 1s in the incoming SN. This process can take as many
clock cycles as the length N of the SN. The arithmetic units after the regeneration-
based decorrelator cannot start computation until conversion completes. Given that
many SC applications have Ns in the thousands, regeneration can easily incur a
latency of many thousands of clock cycles. Furthermore, the hardware overhead
for a regeneration-based decorrelator is very high. In the squarer example shown
in Fig. 3b, the overhead of regenerating a single SN is a counter, a stochastic
number generator (SNG) which is essentially a comparator, and a new independent
RNS, which is usually a precious resource in SC systems. The actual hardware
cost depends on and grows with the length of the SN to be decorrelated. When
compared to the main arithmetic component, which is a single AND gate in this
case, the hardware overhead is extremely high. A study of a typical SC image-
processing system, reported that more than 80% of its area came from circuits
for SN generation [25]. Excessive use of regeneration-based decorrelators can
consequently degrade the performance and increase the cost of a stochastic circuit
drastically. It is therefore good practice to consider other types of decorrelation
when feasible.

Lastly, it is worth noting that some variants of the regeneration-based method
actively trade higher accuracy for less hardware area and latency by regenerating
each bit of the SN based on a small portion of the bit-stream [28]. Since each
regenerated bit is based on partial information from the original SN, the regeneration
process can incur more errors, but in return has shorter latency and less hardware.
For example, the single-ended counter hysteresis (SCH) decorrelator proposed in
[28] keeps updating the current estimate of the input’s binary form at each clock
cycle through a dynamically balanced system that reaches steady state quickly.
This is enabled by using a small counter for stochastic-to-binary conversion that
is usually much smaller than the full counter needed to count the entire input SN.

Shuffle-Based Decorrelation

Similar to regeneration, shuffling performs decorrelation by re-positioning 1s in the
target SN [19]. The difference is that the shuffling method limits the likelihood of
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Fig. 5 Shuffle-based
decorrelator of depth 3, where
R is a random number
uniformly distributed among
0, 1, 2 and 3 [19]
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moving a 1 to a faraway location. In other words, a 1 appearing in the t-th bit of
the original SN is likely to be placed somewhere near the t-th bit of the new SN.
Shuffling works by first observing and storing a subset of bits from the initial SN,
and then using a new RNS to select a stored bit per cycle for outputting. Figure
5 shows a shuffler design with depth D = 3, meaning that it can store 3 bits for
future output. The RNS here is a random number R taking a value in {0, 1, 2, 3}
uniformly at each clock cycle. Each newly received bit from the input is stored in
the shuffler. At the same time, one of the stored bits (including the newly received
one) is selected for output. The output SN therefore contains the same number of
1s as the input SN, since the shuffler only outputs what it received. However, the
position of 1s can be very different, hence achieving the effect of decorrelation.

The advantages of the shuffle-based decorrelation include relatively low latency
and low hardware cost compared to the regeneration-based method. Typical num-
bers for the depth D are relatively small, like 4, 6 or 8. This not only allows the
received bits from the input bit-stream to be stored directly in stochastic form
without inducing excessive hardware overhead, but also reduces the number of
bits in the random source serving as the selection signal. The latency for the
shuffling method, i.e., the number of clock cycles required before generating the first
output bit, is roughly equal to the depth D, which is low compared to regeneration,
especially when the input SN is very long.

Shuffling re-randomizes the position of 1s in an SN, and can thus cope with both
cross correlation and autocorrelation. However, it may not completely eliminate
correlation, but rather only reduce it. This is because the new SN generated by
shuffling is not completely independent of the original SN. Consider an SN of value
0.5, with all 1s in the first half of the bit-stream and all 0s in the second half. In this
case, the shuffler would receive and store only 1s in the beginning, and so has no
choice but to output 1s initially. After the 0s start coming into the shuffler, the 1s
remaining in the shuffler will quickly be released to the output, and the likelihood
that a 1 is released into the output at a very late clock cycle is low. One can expect
that the output SN will tend to have more 1s in the first half and more 0s in the
second half. This is, however, very unlikely for a Bernoulli bit-stream. Shuffling and
its variants have been successfully deployed in applications like Bayesian inference
[12] and LDPC decoding [27, 28] to reduce autocorrelation.
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Isolation-Based Decorrelation

Unlike the aforementioned decorrelation methods, isolation does not alter the
positions of 0s and 1s in the SN. It was proposed in the 1960s [13] mainly to cope
with cross correlation by adding appropriate delays to SNs. The added delays shift
SNs temporally so that correlated bits from different SNs are staggered. An example
of isolation-based decorrelation appears in Fig. 3c, where the isolator (a delay
element implemented by a D flip-flop) is inserted into one of the two inputs of the
squarer. By delaying one copy of X by one clock cycle, the output Z(t) = p(X(t) = 1,
X(t − 1) = 1) = p(X(t) = 1)p(X(t − 1) = 1), so Z = X2 as expected, provided that
X(t) and X(t − 1) are statistically independent for all t, as asserted by the Bernoulli
property.

The major advantages of isolation are very low hardware cost and low latency,
compared to regeneration. However, the application of isolators tends to be difficult.
Carelessly placing isolators in a stochastic circuit can lead to several problems, such
as failure to decorrelate correctly and unexpectedly changing the circuit’s function.
These problems occur when the placement fails to track and delay correlated signals
properly for some signal lines since isolators can inject undesired autocorrelation
into the circuit and some isolators can turn out to be unnecessary. Figure 6a shows
a stochastic circuit that is intended to compute X4 by naïvely cascading two squarer
circuits of the kind in Fig. 3c. While this construction appears to make sense at the
first sight, the resulting circuit does not compute X4 as expected; instead, it computes
Z = X3, a huge functional error! To see this, observe that at time t, the output of the
first AND gate is X(t) ∧ X(t − 1), and therefore the inputs to the second AND
gate are Y1(t) = X(t) ∧ X(t − 1) and Y2(t) = X(t − 1) ∧ X(t − 2). By ANDing
these two bit-streams, we get the final output as Z(t) = Y1(t) ∧ Y2(t) = X(t) ∧
X(t − 1) ∧ X(t − 2), implying that Z = XXX = X3. The cause of this error is
unanticipated autocorrelation. Note that the squarer is implemented by an AND gate
and an isolator, which effectively makes the circuit sequential. The adjacent bits of

Z(t) = X(t)X(t-1)X(t-2)X(t-3)D D

X(t)

X(t-1)

Y1(t)=X(t)X(t-1)X(t)

Y2(t)=X(t-2)X(t-3)

D

Z(t) = X(t)X(t-1)X(t-2)D D

X(t)

X(t-1)

Y1(t)=X(t)X(t-1)X(t)

Y2(t)=X(t-1)X(t-2)

(b)

(a)

Fig. 6 Stochastic implementation of X4 using isolator flip-flops; (a) an incorrect implementation
with insufficient isolators; (b) a correct implementation with three isolators
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the squarer’s output bit-stream are correlated. Therefore, delaying this bit-stream by
only one clock cycle yields a cross-correlated SN. A correct implementation of X4

is given in Fig. 6b, where the second squarer has two isolators inserted in the bottom
input line.

Generally speaking, isolators must be inserted in a way that all undesired
correlations between interacting SNs are eliminated. Finding a correct isolator
placement while minimizing the isolator usage is a challenging problem. An isolator
insertion algorithm called VAIL has been proposed for combinational stochastic
circuits [29]. It formulates isolator insertion as a linear integer program, where
the objective is to minimize the isolator count. A set of constraints are enforced
on the number of isolators that can be placed on each line of the circuit to be
decorrelated. These constraints, when satisfied, ensure that undesired correlation
between interacting SNs is removed without affecting other SN interactions.

Correlation Injection by Synchronization

While almost all stochastic circuits are designed to work with uncorrelated inputs,
there exist circuits implementing useful functions enabled by positively or nega-
tively correlated inputs. For example, if the XOR gate in Fig. 4 is used to compute
absolute difference, it requires its two inputs to be maximally correlated. To generate
inputs with predetermined correlation for such circuits, one can resort to special
types of SNGs that are capable of controlling the amount of correlation. However,
regenerating SNs with specific correlation levels in the middle of an SC system is
expensive, both in hardware cost and in system latency.

In error-tolerant SC applications such as many machine-learning and image-
processing tasks, another way to inject correlation is to use a sequential unit called
a synchronizer, which attempts to maximize the correlation level between a pair
of SNs [19]. This approach, while providing no guarantee of attaining the desired
correlation, is usually far less expensive than regeneration in terms of hardware and
latency cost. Figure 7a shows the state-transition graph of a three-state synchronizer,
whose key idea is to align the bits with the same value from inputs X and Y as much
as possible. For example, when the synchronizer receives the pattern X(t)Y(t) = 01,
it will output 00 and then go from state S0 to S2, which remembers the 1 received
from Y for later release. If X(t)Y(t) = 10 is received, then the synchronizer will
return to S0 and output 11. This effectively transforms X(t)Y(t) = (01, 10) to (00,
11), which has obviously become more correlated.

Observe that the synchronizer in Fig. 7a does not guarantee that its outputs
will have exactly the same value as X and Y. This synchronizer-induced error
occurs when the computation ends at any state other than S0, and hence there are
some remembered bits yet to be released into the outputs. Also, the synchronizer
only increases the correlation level; it does not guarantee that the output will
be maximally correlated. In fact, it does not provide any promises on the final
correlation level of the outputs. This is because this synchronizer can only remember
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Fig. 7 State-transition graphs for correlation-controlling units that inject correlation between a
pair of SN: (a) synchronizer that increases SCC; (b) desynchronizer that reduces SCC [19]

one unreleased bit from either X or Y. Thus, at state S0, if two consecutive bit
patterns XY = (01, 01) are received, the synchronizer will have no choice but to
release a 1 from Y without matching it with another 1 from X. In that case, the output
will be (00, 01), and the synchronizer will end at state S2. In general, increasing the
number of states allows the synchronizer to remember more yet-to-be-aligned bits,
and hence can produce outputs that are more correlated. But this comes at the cost of
more synchronizer-induced error, because the probability of ending at a state other
than the initial state is higher.

Based on the synchronizer concept, we can push the SCC of two SNs towards −1
using a desynchronizer. The state-transition graph of a four-state desynchronizer is
depicted in Fig. 7b. Like the synchronizer, the desynchronizer takes two input SNs X
and Y, and generates two output SNs with the same value but with stronger negative
correlation or an SCC closer to −1. The key idea in the desynchronizer design is
to intentionally misalign bits of the same value while still preserving the encoded
SN value. To do this, the desynchronizer selectively absorbs and releases bits to
maximize the occurrence of the patterns XY = (10) and (01), and minimize the
occurrence of the patterns XY = (11) and (00). If the desynchronizer receives the
pattern XY = (11), it will pass one of the bits and save the other bit to emit later.
In the desynchronizer design shown in Fig. 7b, the FSM alternates between storing
X and Y when it receives XY = (11) but alternative variants are possible. When
the desynchronizer receives the pattern XY = (00) it will emit the stored bit in the
FSM to misalign the bits. If the desynchronizer receives the pattern XY = (01) or
(10), it will simply pass the inputs to the outputs since the bits at that SN offset
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are already different. This effectively yields more negatively correlated SNs. For
instance, the input pattern XY = (11, 00) becomes XY = (01, 10) after passing
through the desynchronizer.

The desynchronizer has similar tradeoffs to the synchronizer. Bits that get saved
in the desynchronizer may not be emitted before the end of execution which can
yield a slight negative bias. Notice also that the desynchronizer FSM can only save
one bit at a time. As a result, there are cases where it may be forced to pass the
pattern XY = (11) or (00). For instance, if the desynchronizer receives the pattern
XY = (11, 11) it will output (01, 11). In this case, the desynchronizer absorbs a bit
from the first occurrence of XY = (11) but not from the second XY = (11). This
forces the desynchronizer to simply pass XY = (11) to the output on the second
occurrence. This limitation can be addressed by augmenting the desynchronizer to
allow it to absorb more bits to improve its efficacy. Again, this increases the potential
error due to bits that get saved in the FSM but are not released before the end of
execution.

To illustrate the strengths and weaknesses of each correlation manipulation
technique, consider an image processing pipeline which consists of a 3 × 3 Gaussian
blur followed by a Roberts Cross edge detector. The Gaussian blur kernel requires
input SNs for each multiply in the kernel to be uncorrelated, while the Roberts Cross
edge detector requires inputs to the subtractor to be positively correlated. Figure 8
shows the resulting image along with energy efficiency and average absolute error
for three different configurations: (1) no correlation correction between kernels,
(2) regeneration before the edge detector, and (3) synchronizers before the edge
detector. Absolute error is measured as the deviation from a floating-point baseline
implementation. The resulting image without any correlation correction at all clearly
suffers from significant accuracy losses. Using correlation controlling circuits like
regeneration or the synchronizer, on the other hand, leads to much more accurate
results. The synchronizer is more energy efficient and yields comparable accuracy
to regeneration.

Floating point
No

correction Regeneration Synchronizer

Image result

Energy - 1383 nJ / frame 1971 nJ / frame 1505 nJ / frame

Absolute
error

0 0.076 0.019 0.020

Fig. 8 Image processing case study results for Gaussian blur kernel followed by Roberts Cross
edge detector [19]
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Correlation Insensitive Stochastic Circuits

Next we address a desirable SC property called correlation insensitivity, which is
found in some stochastic circuits. Correlation insensitive (CI) circuits are immune to
the effects of cross correlation or autocorrelation. In other words, a designer does not
have to worry about the correlation among certain CI inputs, and can treat them as
if they are uncorrelated. Our discussion will focus on cross-correlation insensitivity
(cross-CI), including the detection and the characteristics of cross-CI. We will also
briefly review autocorrelation insensitivity. Finally, we discuss some special classes
of stochastic circuits that have distinctive autocorrelation features.

Cross-Correlation Insensitivity

Cross-correlation insensitivity (cross-CI) implies that a stochastic circuit C’s func-
tion is not impacted by cross correlation between some of its primary input SNs.
Roughly speaking, cross-CI occurs if two SNs cannot simultaneously impact the
circuit’s outputs. This is a very useful property for stochastic circuits, especially
for their input lines to which user-supplied and potentially correlated SNs are
applied. For instance, Fig. 9a shows a standard multiplexer-based stochastic adder
that computes Z = 0.5(X + Y) with independent input SNs X and Y, while Fig. 9b
shows the same adder but with highly correlated X and Y. Here R is an SN with a
fixed probability 0.5, and must be independent of both of the user-supplied inputs
X and Y. On the other hand, X and Y can be cross correlated in any way without
affecting the adder’s functionality. This is because at each clock cycle, either a bit
from X or a bit from Y is selected by R to send to the output Z, i.e., Z can never
depend on both X and Y at the same time.

Fig. 9 (a) Stochastic
addition showing accurate
results with (a) uncorrelated
and (b) correlated inputs X
and Y
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A formal definition of cross-CI for combinational stochastic circuits is given in
[5], which states that for a stochastic circuit C that implements the Boolean function
z = f (x1, x2, . . . xn), xi and xj form a cross-CI pair for C, if and only if the following
holds:

(dz/dxi) ∧ (

dz/dxj

) = 0 (4)

where 0 denotes the zero Boolean function and dz/dxi denotes the Boolean
difference of z with respect to xi, i.e.,

dz/dxi = f (x1, x2, . . . , xi–1, 0, xi+1, . . . , xn)⊕
f (x1, x2, . . . , xi–1, 1, xi+1, . . . , xn)

A proof of Eq. (4) can be found in [5]; here we provide a brief intuitive
explanation. The Boolean difference dz/dxi is a Boolean function of (x1, x2, . . . ,
xn) whose minterms correspond to the input assignments such that a change of xi’s
value will lead to a change of z’s value. Therefore, Eq. (4) simply says that if there
is no input assignment such that xi’s value change and xj’s value change can each
change z’s value, then xi and xj form a CI pair.

The preceding definition is useful for identifying CI pairs in a given stochastic
circuit. For example, recall that the multiplexer in Fig. 9 implements the function
Z = 0.5(X + Y) in the stochastic domain, and the function z = x ∧ r′ ∨ y ∧ r in the
Boolean domain. Here x and y form a CI pair, because

dz/dx = (y ∧ r) ⊕ (

r ′ ∨ y
) = r ′

dz/dy = (

y ∧ r ′) ⊕ (r ∨ x) = r

so (dz/dx) ∧ (dz/dy) = r ∧′ = 0, which confirms that x and y are indeed a CI pair.
On the other hand, x and r are not a CI pair because dz/dr = x ⊕ y and (dz/dx) ∧
(dz/dr) �= 0. From this, we see that in the multiplexer-based adder, X and Y can be
correlated without incurring any correlation error. However, R must be independent
of both X and Y for the adder to work accurately.

The ancillary input R in the adder case is introduced to provide the scaling
operation needed by this type of adder. However, it imposes a constraint of
independence that must be satisfied by using an RNS that is uncorrelated to both
X and Y. This not only incurs a large hardware overhead, it also injects unnecessary
random fluctuation into the circuit, causing a constant-induced error [31]. It turns out
that it is always possible to remove the need for independent RNSs and the constant-
induced error by transferring the role of all ancillary inputs to sequential elements.
This was first shown possible in [20] via an ancillary-input-free adder constructed
in ad hoc fashion; see Fig. 10. This design therefore accurately computes the scaled
sum Z = 0.5(X + Y), regardless of correlation between X and Y. More recently,
a systematic method CEASE for removing ancillary inputs by role transfer was
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Fig. 10 A sequential adder
computing Z = 0.5(X + Y)
whose inputs are CI [20] 1

0

TX
Y

Z

proposed that is applicable to all combinational stochastic circuits with ancillary
inputs [31]. CEASE thus removes the correlation associated with ancillary inputs.

The CI property enables inputs to take SNs generated from a shared RNS
without compromising the circuit’s accuracy. This is useful in statistical analysis
of stochastic circuits by greatly improving the simulation quality, and in SC designs
by allowing CI inputs to accept SNs generated from a common RNS.

Circuits with Autocorrelation Features

Combinational stochastic circuits are inherently immune to autocorrelation, as the
change of input ordering only changes the output ordering, but not the output value.
On the other hand, sequential stochastic circuits operate in response to their input
sequences, and thus are generally impacted by autocorrelation. The autocorrelation
among input patterns at different time steps can steer the state transition in a biased
way. Further, sequential components can also inject new autocorrelation into the
SNs they process. Careless use of sequential components in SC systems can thus
lead to significant autocorrelation-induced errors [9]. Managing autocorrelation in
SC is an open research area, since many sequential SC designs can only operate
in autocorrelation-free environments, including those synthesized using the “linear
finite-state machine” architecture [21]. Some classes of sequential circuits with
special autocorrelation properties are known and are discussed below.

Modulo-Counting Circuits The circuits generated by CEASE have a highly
desirable property: they are immune to autocorrelation-induced errors. CEASE, as
mentioned previously, is an algorithm to remove ancillary inputs of a combinational
circuit by introducing sequential components [31]. The resulting sequential circuit
is equivalent to a modulo counter with multiple moduli that keeps accumulating
(weighted) input bits for later release, which occurs when the counter overflows.
For instance, the ancillary-input-free adder in Fig. 10, while constructed in ad hoc
fashion, is also effectively a modulo counter as can be seen from its state-transition
graph in Fig. 11. When the adder receives the input pattern 11 or 00, it directly
outputs a 1 or a 0, respectively. However, when the adder receives 10 or 01, it will
directly output a 0, but it accumulates a value 0.5 into its memory by going from
state S0 to state S1. The next time the adder receives 10 or 01, it will overflow,
output a 1, and return to state S0. One can easily see that this modulo counting
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Fig. 11 State transition
graph for the sequential adder
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process guarantees that there will be a single 1 released into the output, whenever
the adder receives two 1s from X or Y, thereby computing 0.5(X + Y). In general,
CEASE-generated circuits not only avoid the potential correlation problems induced
by ancillary inputs, but also are insensitive to autocorrelation. This is because the
number of 1s in the output is completely determined by the number of times the
modulo counter overflows, which is obviously independent of the ordering of the
input pattern.

Shift-Register-Based Circuits In general, sequential stochastic circuits have strict
correlation specifications on their inputs, which usually requires them to be
autocorrelation-free. However, sequential stochastic circuits also inject autocorrela-
tion into the SNs they process. This makes it difficult to cascade sequential designs,
since autocorrelation introduced by an upstream circuit will degrade the accuracy
of a downstream circuit. For example, sequential circuits employing the linear FSM
architecture [21] require their inputs to be autocorrelation-free, but at the same time
they produce output SNs with a high level of autocorrelation. It is therefore difficult
to connect multiple linear circuits without sacrificing accuracy. Autocorrelation
injected by a linear FSM has a diminishing but continuing effect over time. A current
output bit can be correlated with all previous output bits, although the correlation
level is lower with bits that are further away in time. This implies that when its input
value changes, the output of a linear FSM may take a very long time to respond to
the change, so the change can have an extended accuracy-reducing impact.

Thus, it is sometimes desirable to use alternative designs that have less severe
autocorrelation problems. There is a class of sequential stochastic circuits called
shift-register-based (SRB) which have a highly desirable property: their output
autocorrelation is bounded in time [30]. SRB circuits realize a type of FSM
termed a definite machine that has finite input memory [18]. They also have a
canonical implementation consisting of a feed-forward shift register built around
a combinational component. Many SC designs, including those generated by the
STRAUSS synthesizer [4], belong to the SRB class. For example, Fig. 12 shows
the canonical SRB implementation of X4, which has a 3-tap shift register that
produces three delayed copies of the input SN X. SRB circuits have their output
autocorrelation bounded in time, because each output bit is completely determined
by the m most recent input bits, where m − 1 is the number of taps of the shift
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register. Therefore, output bits that are separated by m clock cycles are determined
by different and independent sets of input bits, and hence must be uncorrelated. In
the X4 example, Z(4) = X(4)X(3)X(2)X(1), while Z(8) = X(8)X(7)X(6)X(5), so
Z(8) and Z(4), which are four clock cycles apart, are uncorrelated. The definiteness
of the SRB circuits guarantees that m clock cycles after an input value change, the
output value will have fully responded to the change. Furthermore, it is possible to
sample the output SN every m cycles to get a completely autocorrelation-free bit-
stream, which facilitates the use of such SNs as inputs to circuits that must avoid
autocorrelation.

Design and Optimization of RNSs

Random number sources provide the randomness to drive the dynamics of the
stochastic signals. RNSs with insufficient randomness can result in significant
accuracy loss for stochastic circuits that require independent inputs. This can occur,
for example, if a shared RNS is used to drive multiple SNGs for SN generation.
The quality of RNSs also plays an important role in the accuracy of SC. It has
been shown that, instead of using an RNS that has good randomness property like
an LFSR, using carefully designed deterministic number sequences can sometimes
result in significantly improved accuracy. For specialized circuits that work with
correlated inputs, SNs with any SCC level can be generated by interpolating
independent SNs and maximally correlated SNs with multiple independent RNSs.
The CI property also is important in SNG design, as it allows a single RNS to be
shared by multiple SNGs without compromising accuracy.

Generating SNs with Predetermined Correlation

In most existing stochastic circuits, it is desirable to have SNGs that can generate
high quality uncorrelated SNs, i.e., SNs that have SCC = 0. In SNG design, arguably
the most common RNSs are obtained by tapping an LFSR of maximum period,
and are essentially pseudo-random. However, it has been shown that deterministic
number sources such as plain binary counters can also be used as in SN generation
without compromising accuracy [17]. In fact, circuits that use such deterministic
number sources are usually more accurate than the ones using LFSRs, because
random fluctuation errors are eliminated and correlation control is easier.

To achieve fast convergence rates during a stochastic computation, researchers
have also looked into using quasi-Monte Carlo methods and low-discrepancy
sequences [3, 22]. While these methods provide good convergence when generating
a few uncorrelated SNs, they are affected by the curse of dimensionality and are no
better than counter-based SNGs. In many cases, the convergence rate of the SNs is
not relevant, and only the accuracy at the end of computation matters. In such cases,
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Fig. 13 SNG that generates a pair of SNs with a user-specified SCC level [2]

low-discrepancy sequences have no significant benefit over other deterministic
number sources. It is worth noting that low-discrepancy number sources (and similar
deterministic number sources) usually create autocorrelation within SNs, which may
not be desirable.

As noted earlier, while most stochastic circuits require independent inputs,
circuits exist that need a specific SCC level at their inputs. Figure 13 shows an SNG
design [2] that generates a pair of SNs with a predetermined SCC level using three
independent RNSs. This SNG is essentially a direct reflection of Eq. (3). Depending
on the sign of SCC, the SNG selects a maximally correlated XY pair and linearly
combines it with the independent XY pair, weighted by the magnitude of SCC. For
example, to generate the bit-streams with SCC(X, Y) = 0.5, the inputs SCCneg and
SCCmag of Fig. 13 are set to 0.0 and 0.5, respectively, so that the selection signal of
the multiplexer will have 0.5 probability of choosing 01 and another 0.5 probability
of choosing 00. The SN Y1 that is maximally correlated with X, is applied to data
input 01 of the multiplexer, while Y2, which is completely independent with X is
applied to multiplexer input 01. Combining Y1 and Y2 with a 0.5 probability of
outputting each result in an SN Y that has correlation SCC = 0.5 with X.

Optimizing Random Number Sources

RNSs provide the randomness required by stochastic circuits, and are a key design
resource. While there are stochastic systems that use non-LFSR-based RNSs,
LFSRs remain the popular choice due to their compatibility with digital logic
and their relatively small hardware area, on top of the fact that they have been
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intensively studied for many years. The design considerations around deploying
RNSs include: providing adequate randomness, minimizing hardware overhead, and
reducing unnecessary use of the RNSs.

As discussed earlier, an SN X can be derived from its binary counterpart B by an
SNG containing an RNS and a comparator that compares the B with the random
number R from the RNS at each clock cycle. The SNG outputs a 1 whenever
B > R; otherwise the SNG outputs a 0. A common approach is to treat k taps
from the LFSR as the k-bit random number R. Sharing exactly the same random
number R with other SNGs can reduce overall hardware cost, but will result in a
maximally correlated SN which is usually undesirable. Previous work attempts to
squeeze out more randomness from a single LFSR by adding a re-wiring layer that
shuffles the order of the bits in R. In [15], the authors show that circularly shifting
R is a low-cost and effective way to reduce the SCC of two SNs sharing the same
LFSR. Specifically, they experimentally demonstrate that by circularly shifting a
k-bit random number by approximately k/2 bits, the SCC level can be reduced by
around 75%, compared to random shuffling which achieves only 40% reduction in
SCC on average. They further show that taking advantage of the CI property can
reduce the need for RNSs.

Conclusions

Correlation is a pervasive phenomenon in stochastic circuits and a major source of
computational inaccuracy and high hardware cost. Although it has been intensively
studied in recent years, it still remains quite poorly understood. In general,
correlation is difficult to quantify and expensive to mitigate. The SCC metric has
proven useful as a measure of the cross correlation between two bit-streams but it
is not readily extended to more than two bit-streams. No comparable measure of
autocorrelation has emerged, even though autocorrelation has a significant impact
on the accuracy of sequential stochastic circuits. The main methods of reducing
or eliminating undesired correlation are regeneration and isolation, with isolation
being by far the less expensive of the two.

Correlation affecting the inputs of a circuit with output function f can be viewed
in two contrasting ways: as corrupting f ’s output by introducing errors, or as
changing f to a different function which may be useful. While a few examples of
such “good” correlation-based designs are known, no general and practical way of
taking advantage of correlation in SC design is known at present. In some cases,
interacting bit-streams are unaffected by correlation, but again there is no easy
way to identify and exploit correlation insensitivity. Among the more promising
recent discoveries in this direction are several classes of highly accurate sequential
machines that are insensitive to correlation on their inputs, and the development of
general-purpose correlation-controlling units.
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Abbreviations

CI Correlation insensitive
FSM Finite-state machine
LDPC Low density parity check code
LFSR Linear feedback shift register
MSE Mean square error
PTM Probabilistic transfer matrix
RNS Random number source
SC Stochastic computing
SCC Stochastic correlation coefficient
SCH Single-ended counter hysteresis
SN Stochastic number
SNG Stochastic number generator
SRB Shift register based
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