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To Amy, Ester, Margaret, and Katherine,
who inspire us at every step



Foreword

It is a pleasure to wholeheartedly recommend to you the book before you. Professor
Gross and Professor Gaudet are long-standing authorities in and contributors to
the topic of Stochastic Computing. You will be richly rewarded in the intellectual
journey they and their invited authors present here.

Stochastic Computing, as conceived by von Neumann in 1953, has a long
distinguished body of research literature associated with it that continues today
and is expertly reviewed by the invited authors. This is a fascinating, intellectu-
ally rich topic with wide-ranging applicability to a surprisingly large number of
applications. And increasingly so, given advances in low-cost, highly accessible
technology-binding options such as FPGAs are now commonly found in a range of
environments from IoT devices to global cloud computing infrastructure.

My research group has had a long-standing research interest in the area of
approximate computing. Many detection and estimation problems, decoders for
error-correcting codes and machine learning systems, involving noisy observations,
can often afford computational approximations that deliver acceptable compromises
in overall system performance. The benefits to doing so are in the rewards
delivered to other design variables important to production-quality hardware system
realizations such as implementation area, testability, etc.

I first became aware of the topic of stochastic computing by reading the 1974
Ph.D. thesis of Gary Black (supervised by Prof. K.C. Smith) of the University of
Toronto. The simplicity of the mathematics and its ready application to approximate
analog computation was fascinating to me on first encounter. Translating analog
variables into and out of the stochastic domain and expanding the types of operators
was a challenge I presented to my former M.A.Sc. student, Ravi Ananth.1 He
explored an intriguing application of stochastic computing techniques to providing
real-time monitoring of analog power supply state variables as encountered in IBM

1Ravi Ananth, M.A.Sc. Thesis, University of Toronto, 1996 http://amicus.collectionscanada.gc.ca/
s4-bin/Main/ItemDisplay?l=0&l_ef_l=-1&id=22483.50643&v=1&lvl=1&coll=18&rt=1&itm=
16138573&rsn=S_WWWhdabTK1KF&all=1&dt=AW+|ananth|&spi=-&rp=1&v=1
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mainframe computers and patented a number of techniques. Ravi made the research
investigation a thrilling ride that has captured my continued ongoing interest in the
subject matter over the years.

This area has developed both in depth of insight and in breadth of application due
to the efforts of many researchers globally over the years, including many important
contributions by Profs. Gross and Gaudet and their respective graduate students and
research collaborators.

Now is an exciting time to start to reacquaint yourself with the latest develop-
ments in the field of stochastic computing, and this book is the best place to start.

Department of Electrical Glenn Gulak
and Computer Engineering
University of Toronto
Toronto, ON, Canada



Preface

Stochastic computing has fascinated both of us for several years. After seeing many
publications in the 1960s, the area largely fell silent until the early 2000s. Although
we both had been introduced to the area by our doctoral advisor, Glenn Gulak,
it really came into our consciousness after seeing a publication by Howard Card
and one of his colleagues in a 2001 issue of the IEEE Transactions on Computers.
Since then, stochastic computing has come back to life, especially in terms of
its application to error-control decoding (and, more broadly, in belief propagation
networks), image processing, and neural networks.

This manuscript represents an attempt to present a contemporary view of the field
of stochastic computing, as seen from the perspective of its leading researchers. We
wish to thank Kenneth C. Smith and Brian Gaines, both retired faculty members,
who worked in the area during their illustrious careers and who have shared with
us their memories of the previous boom in activity in stochastic computing in the
1960s.

There are three main parts to this book. The first part, comprising Chaps. 1 to
3, provides a history of the technical developments in stochastic computing and a
tutorial overview of the field for both novice and seasoned stochastic computing
researchers. In the second part, comprising Chaps. 4 to 9, we review both well-
established and emerging design approaches for stochastic computing systems,
with a focus on accuracy, correlation, sequence generation, and synthesis. The last
part, comprising Chaps. 10 and 11, provides insights into applications in machine
learning and error-control coding.

We hope you enjoy reading the book. May you discover new ways to make
computation more efficient and effective and, above all, exciting!

Montréal, QC, Canada Warren J. Gross
Waterloo, ON, Canada Vincent C. Gaudet
September 2018
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Introduction to Stochastic Computing

Vincent C. Gaudet, Warren J. Gross, and Kenneth C. Smith

Abstract In addition to opening the book, this chapter serves as a brief overview
of the historical advances in stochastic computing. We highlight four distinct eras,
including early work from the 1950s, fundamental work in the 1960s, an era of
slower progress in the 1970s, 1980s, and 1990s, and a return to prominence in the
2000s.

Introduction

In addition to opening the book, this Chapter serves as an overview of the historical
advances in stochastic computing. We highlight four distinct eras in its evolution:
Section “The Early Years (1950s)” describes early work mainly led by John von
Neumann in the 1950s; Section “Exciting Times (1960s)” describes the fundamental
advances from the 1960s that form the basis for what we know today as stochastic
computing; Section “Into the Darkness (1970s, 1980s and 1990s)” talks about the
decline in stochastic computing research in the 1970s through 1990s and provides
some insights into why this may have happened; then, Section “Rebirth (2000s
and Beyond)” points to advances from the past 20 years that brought stochastic
computing back to life. Finally, in Section “Overview of the Book” we provide a
high-level overview of the rest of this textbook.
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The Early Years (1950s)

We trace the origins of stochastic computing to a series of lectures delivered by John
von Neumann at the California Institute of Technology in 1952 [1]. These lectures
were carefully recorded by mathematician Richard S. Pierce, and the notes were
later published by von Neumann as a chapter in a book edited by Claude Shannon
in 1956 [2]. The lectures and paper describe several fundamental concepts such
as using redundancy to deal with component error. This redundancy is inspired by
biological/neural signaling models; it is based on bundles of wires likened to nerves,
and is also motivated by a desire to gain a better understanding of the human brain.
This bundling of wires is used as part of a mechanism to compute both addition and
a variation on multiplication (1−xy). The addition circuit (Fig. 1) appears similar
in form to the stochastic multiplexer often used for weighted summation, with the
exception that it appears that the subset of wires taken from each input bundle is
predetermined rather than randomly selected. The multiplication (Fig. 2) is based on
the Sheffer stroke (represented as a circle labeled with an S and with two “bubbles”
at the input—essentially a NAND gate), and is reminiscent of a stochastic multiplier.
Note that the bundles are represented in space—in stochastic computing, the bundles
are typically represented as sequences in time rather than in space (or a combination
of both).

The work by von Neumann has been widely cited, but mainly in the context
of performing accurate calculations using unreliable components (see, e.g., [3–5]);
citations do not appear to expand upon the stochastic computing aspects. Accurate
computing using unreliable components is still a very active field to this day,
especially in the context of post-CMOS and nanoscale technologies. The aspect
of von Neumann’s paper that is most closely associated with stochastic computing,
namely, computing using randomly generated sequences of bits, does not re-appear
in the open literature until 1967.

Fig. 1 Addition circuit proposed in [1], redrawn for clarity
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Fig. 2 Multiplication circuit proposed in [1] and based on the Sheffer stroke, redrawn for clarity

Exciting Times (1960s)

Many of the fundamental concepts of stochastic computing were developed in
the 1960s. These efforts were led by several prolific individuals with interesting
backgrounds and intertwined efforts. Their fascinating stories are described in the
paragraphs below. Many of the recollections come from Kenneth C. Smith, who
spent several years at the University of Illinois around that time. Also, a very special
thank you goes to Brian Gaines for his insights—it was wonderful to meet one of
the people whose work inspired our own!

W.J. (Ted) Poppelbaum

Wolfgang Johann (Ted) Popplebaum (1924–1993) began an illustrious career as a
faculty member at the leading-edge of computer-related circuits and systems at the
Digital Computer Laboratory (DCL), University of Illinois, Urbana in 1955. This
followed a postdoctoral year there in the solid-state research group under Professor
John Bardeen, working on electrolytic analogs of junction transistors. From his
early interest in mathematics and science, Poppelbaum had graduated with a Ph.D.
in Physics (working on electrical and thermal conductivity in crystals) from the
University of Lausanne in 1953. At DCL, he joined the thrust toward the creation
of Illinois’ third computer to be called Illiac II (preceded by ORDVAC and Illiac I),
creating the Circuits and Systems Research Group. His overall success was based
on being well read, with an unusual ability to recognize the importance and sig-
nificance of new developments, conceiving new research directions involving basic
components systems and applications, and performing early critical experiments to
verify the integrity of his ideas. Correspondingly, he was renowned for his ability to
obtain and deliver successful contract research.

This approach to discovery explains the timescale of Poppelbaum’s interest in
stochastic computing: While his first major publication in this area was in 1967
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[6] sponsored by the Office of Naval Research (ONR), he had identified as early
as 1963 the need in stochastic systems for multiple independent random-sequence
generators and had done initial experiments using avalanche diodes for this purpose
as performed by his graduate student Chushin Afuso [7] (working as a research
assistant on topics unrelated to his thesis). Subsequently, Afuso realized that a
system using a single random generator was possible, which he referred to as a
Synchronous Random Pulse Sequence (SRPS) system (described in J.W. Esch’s
doctoral thesis [8]).

Chushin Afuso

Chushin Afuso (born in 1933) was an important contributor to Poppelbaum’s
research in several areas, including stochastic computing. Interestingly, Afuso, who
was born in the Ryukyus (of which Okinawa is the largest island), embodies
an ancient history of the area. While initially an independent Kingdom coveted
by both China and Japan, it took on a unique mixture of Chinese and Japanese
cultures, as represented by Afuso’s given (Chinese) name. In 1959, Afuso came
from employment at the University of the Ryukus to take a Master’s degree at the
University of Illinois under Poppelbaum, completing his degree in 1960, and then
returning to the University of the Ryukyus, where he published a paper on difference
amplifiers in a local venue [9]. Later in 1964, he returned for a Ph.D. under
Poppelbaum, also working as a research assistant on a variety of topics including
by 1965 initial work on a “noise computer” [7], and in 1967 contributing to the
co-authored paper with Popplebaum and Esch [6]. In 1968, he finished his PhD
titled, “Analog Computing with Random Pulse Sequences” [10]. Upon graduation,
he spent some time as an Assistant Professor at the University of Washington, St.
Louis, returning to the University of the Ryukyus where he participated in a variety
of areas including multiple-valued logic PLAs. In 1993, he co-authored a paper
with Nagata on the topic of semiconductor testing at the International Symposium
on Multiple-Valued Logic [11].

John William Esch

John William Esch (born in 1942) graduated from Electrical Engineering, Uni-
versity of Wisconsin, Madison, with a variety of experiences having worked as a
programmer in the College of Letters and Science and as an electronics technician
for the Space and Astronomy Laboratory, and later participated in a NASA grant
with the Institute of Space Physics at Columbia University. In 1965, he began
working on his Master’s in Electrical Engineering at the University of Illinois
with a research assistantship from the Department of Computer Science under
Poppelbaum. In 1967, he received his Master’s degree and then contributed to the
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1967 paper with Popplebaum and Afuso [6]. In 1969, he completed his Ph.D. thesis
titled “RASCEL – A Programmable Analog Computer Based on a Regular Array of
Stochastic Computing Element Logic” [8], which described an elaborate hardware
implementation of a stochastic computer. Subsequently, he was employed by Sperry
then Unisys in the software area.

Sergio Telles Ribeiro

Sergio Telles Ribeiro (born in 1933) was born in Brazil, completed his Master’s
degree at the University of Illinois in 1961 on BJT saturation, and his Ph.D. titled
“Phase Plane Theory of Transistor Bistable Circuits” [12] under Poppelbaum in
1963. He notably published a paper on pulsed-data hybrid computers in 1964 [13].
By the time of his publication on “Random-Pulse Machines” in 1967 [14], he was
working for Carson Laboratories, Bristol, Connecticut. In his 1967 paper [14], an
intriguing footnote indicates that in 1963 he had recognized the potential importance
of stochastic computing as described by von Neumann in 1956 [2], and encouraged
the Poppelbaum group to pursue research in the area, reporting Afuso’s work on
stochastic generators documented in a 1965 progress report.

Brian Gaines

Brian R. Gaines (1938-) began his technical career as a polymath at the age
of 12, fascinated by science including math, physics, chemistry, and philosophy.
Fortunately, his father did not share the same passion and requested a departure
from chemistry. Thus, Brian converted to an intense interest in electronics, building
various measuring instruments including his own oscilloscope. This hobby led to
early employment following high school at the Standard Telephone Cables Ltd.
(STC) in the semiconductor laboratory, a connection which he maintained for
many years. Subsequently, during his time at Cambridge taking math, his talents in
electronics allowed him to work as an electronics assistant for a professor working
in applied psychology. Intrigued with his work in cognitive psychology, the issue
of pursuing an advanced degree in psychology arose, resulting in a requirement for
an appropriate first degree which he subsequently pursued. Later, with all of his
degrees from Cambridge, and as a chartered engineer and chartered psychologist,
he led a diverse career including chairmanship of Electrical Engineering Science at
Essex, Professor of Industrial Engineering at the University of Toronto, and finally
Killam Memorial Research Professor at the University of Calgary, from which he
retired in the late 1990s to Vancouver Island. Along the way, Gaines’ work in human
learning and the potential for machine intelligence led to his interest in what became
stochastic computing, publishing many of the seminal works [15–18].
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Reed Lawlor

In 1971 Reed C. Lawlor (1909–1990) was granted a patent titled “Computer
Utilizing Random Pulse Trains” [19] which was applied for in 1968 using two
primary references: one of the papers by Ribeiro [14], and one by G. White
titled “The Generation of Random-Time Pulses at an Accurately Known Mean
Rate and Having a Nearly Perfect Poisson Distribution” [20]. Interestingly, Lawlor
was a patent attorney in Los Angeles, CA with diverse interests including the
role of computing in the application of the law. He is particularly renowned for
a paper written 1963 on potential roles for computing in the law in which a
particular concern of what would become artificial intelligence (AI) and machine
learning (ML) [21]. Indeed, in 2016 a Scottish technology futures publication [22]
quoted the following statement from Lawlor’s 1963 paper: “Computer technology
is the cornerstone of the second Industrial Revolution. Will computers revolu-
tionize the practice of law and the administration of justice, as they will almost
everything else.” Lawlor had received a degree in physics from the University of
California, Los Angeles in 1932, followed by his LLB degree from Blackstone
College of Law in Chicago. As a practicing patent attorney in Los Angeles, he
was an active member of the California Bar Association with many advisory
roles, including Chairman of the Association’s Special Committee on Electronic
Data Retrieval, principal investigator of an NSF supported grant at UCLA on
technological aids for legal research, as well as contribution to many books on
law and technology. It is unclear why the patent was applied for, nor how it
was used.

1967: A Major Milestone in Stochastic Computing

1967 was an unusual year! Besides being the 100th anniversary of the founding
of Canada (marked by hosting a hugely successful world fair called Expo 67
in Montreal), it was also a milestone in the publication of papers in stochastic
computing.

Brian Gaines (1938-) born in the United Kingdom, working at Standard
Telecommunication Laboratories, published “Stochastic Computing”; Ted
Popplebaum (1924–1993) born in Germany, working at the University of
Illinois, Urbana, published (with Afuso and Esch) “Stochastic Computing
Elements and Systems”; Sergio Telles Ribeiro (1933-) born in Brazil, working
at Carson Laboratories, Connecticut, published “Random-Pulse Machines”.
While Gaines’ and Popplebaum’s work was done independently, Ribeiro
obtained his Ph.D. under Poppelbaum in 1963, on a different topic (phase
plane theory of transistor bistable circuits), but soon started publishing in related
topics.
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Into the Darkness (1970s, 1980s and 1990s)

The 1970s started off well for stochastic computing. Poppelbaum continued his
work in the area [23, 24]. Kenneth C. Smith, by then at the University of Toronto,
supervised Gary Black’s doctoral thesis on random pulse-density modulation [25].
There was also some discussion at the International Symposium on Multiple-Valued
Logic (ISMVL), including a panel that included Gaines, Poppelbaum, and Smith at
the 1976 ISMVL in Logan, Utah [26]. Finally, a dedicated conference on stochastic
computing and its applications was held in 1978 in Toulouse, France [27]; it appears
to have been well-received, with a 420-page conference record. However, it was to
be the only conference on stochastic computing to be held until 2016.

Progress on stochastic computing became more sporadic in the late 1970s
and 1980s. In many ways, the continued progress in semiconductor scaling and
high performance of these technologies gave more traditional digital approaches a
competitive edge over stochastic computing.

However, by the 1990s, there appeared to be a slight upsurge in interest,
fueled by the advent of field-programmable gate arrays (FPGAs). In his Master’s
thesis completed under Glenn Gulak at the University of Toronto, Ravi Ananth
proposes field-programmable stochastic processors [28]. There was also work
on sequence generation [29]. The 1990s also saw significant interest in efficient
hardware implementations of artificial neural networks. There were several papers
on digit-serial approaches including pulse-width modulation (PWM) [30] and pulse-
density modulation (PDM) [31–33]. The latter can be seen as a form of stochastic
computing, as pointed out by Howard Card and his colleagues [34, 35].

Indeed, Howard Card, by then a Distinguished Professor at the University of
Manitoba, was one of the instigators of the renewed interest in stochastic computing.

Rebirth (2000s and Beyond)

Howard Card (1947–2006) earned his B.Sc. and M.Sc. degrees at the University of
Manitoba and then went on to complete a Ph.D. at the University of Manchester in
1971. He subsequently became an Assistant Professor at the University of Waterloo,
and then an Associate Professor at Columbia University. He served as a consultant
for the IBM T.J. Watson Research Centre and was an instructor at AT&T Bell Labs.
He returned to the University of Manitoba in 1980 to take on a Professorship in
Electrical Engineering, and was eventually honoured as a Distinguished Professor.
He profoundly cared about his students, and in 1983 he received the Olive Beatrice
Stanton Award for Excellence in Teaching. Card believed that “if a thing is worth
doing, it’s worth doing to excess.” That mantra characterized all aspects of his life,
including his mentorship, teaching and research.
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In 2001, Card published two landmark papers on stochastic computing, both in
the IEEE Transactions on Computers [36, 37]. Much of today’s work on stochastic
computing can be traced back to this work.

In recent years, stochastic computing has been applied to many domains, and
its theoretical work continues to advance. Like-minded researchers held workshops
at the University of Waterloo in 2016, and again as part of the IEEE GlobalSIP
conference in Montreal in 2017—these represent the first workshops on stochastic
computing since the 1978 conference, announcing that stochastic computing is
back!

Overview of the Book

This book is intended as a contemporary reference on stochastic computing. Chapter
“Origins of Stochastic Computing” is a history of the early days of stochastic
computing, as told by one of its pioneers, Brian Gaines. Chapter “Tutorial on
Stochastic Computing”, written by Chris Winstead, is an introductory tutorial on
stochastic computing. While it is primarily targeted to the stochastic computing
newcomer, the chapter also attempts to find and define common language that sets
the stage for the rest of the book.

Chapter “Accuracy and Correlation in Stochastic Computing”, written by John
Hayes and his colleagues Armin Alaghi, Paishun Ting, and Vincent Lee, sheds light
on two of the most important yet closely related pitfalls in stochastic computing,
namely accuracy and correlation. Indeed, much of the stochastic computing litera-
ture focuses on minimizing sequence length, and on generating sequences where
bits are independently from each other. In the chapter, the authors present their
own approaches to tackle these problems, and present a case study based on image
processing.

Chapter “Synthesis of Polynomial Functions” by Marc Riedel and his colleague
Weikang Qian, looks at an approach for the synthesis of arbitrary polynomial
functions that is based on Bernstein polynomials. The approach is validated using
examples from image processing. Chapter “Deterministic Approaches to Bitstream
Computing”, also by Marc Riedel, looks beyond the comfort zone of Bernoulli
sequences, and investigates the use of other encoding mechanisms for stochastic-
like computing. Indeed, he demonstrates that many of the perceived advantages of
stochastic computing do not require sequences that are random in the strictest sense,
but rather, sequences that are inspired by analog computation. Again, examples are
derived from the world of image processing.

Chapters “Generating Stochastic Bitstreams,” “RRAM Solutions for Stochastic
Computing” and “Spintronic Solutions for Stochastic Computing” study several
approaches for generating stochastic sequences. Chapter “Generating Stochastic
Bitstreams”, by Jason Anderson and his colleagues Hsuan Hsiao and Yuko Hara-
Azumi, reviews several techniques, starting with pseudo-random approaches based
on linear feedback shift registers (LFSRs) and Sobol sequences; the chapter then

http://dx.doi.org/10.1007/978-3-030-03730-7_2
http://dx.doi.org/10.1007/978-3-030-03730-7_3
http://dx.doi.org/10.1007/978-3-030-03730-7_4
http://dx.doi.org/10.1007/978-3-030-03730-7_5
http://dx.doi.org/10.1007/978-3-030-03730-7_7
http://dx.doi.org/10.1007/978-3-030-03730-7_7
http://dx.doi.org/10.1007/978-3-030-03730-7_8
http://dx.doi.org/10.1007/978-3-030-03730-7_9
http://dx.doi.org/10.1007/978-3-030-03730-7_7
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shifts its focus towards other sources of randomness such as in timing variations, and
then introduces us to post-CMOS approaches. This serves as a transition to chap-
ters “RRAM Solutions for Stochastic Computing” and “Spintronic Solutions for
Stochastic Computing”, which look into the post-CMOS world. Chapter “RRAM
Solutions for Stochastic Computing”, by Zhengya Zhang and his colleagues Phil
Knag, Siddharth Gaba, and Wei Lu, looks at memristive devices and their inherent
randomness as a way to generate stochastic sequences. Then, in chapter “Spintronic
Solutions for Stochastic Computing”, Jie Han and his colleagues Xiaotao Jia, You
Wang, Zhe Huang, Yue Zhang, Jianlei Yang, Yuanzhuo Qu, Bruce Cockburn, and
Weisheng Zhao, look at similar phenomena in spintronic devices such as magnetic
tunneling junctions. These last two chapters really show us that stochastic comput-
ing may have a very significant impact in the future world of nanotechnology.

The last two chapters look into applications of stochastic computing. Chapter
“Brain-Inspired Computing”, by Naoya Onizawa and his colleagues Warren Gross
and Takahiro Hanyu, reports very compelling applications in the domain of machine
learning, postulating that we are entering the era of brainware LSI, or “BLSI.”
Finally, chapter “Stochastic Decoding of Error-Correcting Codes”, by François
Leduc-Primeau, Saied Hemati, Vincent Gaudet, and Warren Gross reviews progress
over the past 15 years in the area of stochastic decoding of error-control codes.
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Origins of Stochastic Computing

Brian R. Gaines

Abstract In the early 1960s research groups at the University of Illinois, USA,
and Standard Telecommunication Laboratories (STL), UK, each independently
conceived of a constructive use of random noise to implement analog computers in
which the probability of a pulse in a digital pulse stream represented a continuous
variable. The USA group initially termed this a noise computer but shortly adopted
the UK terminology of stochastic computer. The target application of the USA
group was visual pattern recognition, and that of the UK group was learning
machines, and both developed trial hardware implementations. However, as they
investigated applications they both came to recognize that the technology of their
era did not support stochastic computing systems that could compete with avail-
able computational technologies, and they moved on to develop other computing
architectures, some of which derived from the stochastic computing concepts.
Both groups published expositions of stochastic computing which provided a
comprehensive account of the technology, the architecture of its functional modules,
its potential applications and its then current limitations. These have become highly
cited in recent years as new technologies and issues have made stochastic computing
a competitive technology for a number of significant applications. This chapter
provides a historical a historical analysis of the motivations of the pioneers and
how they arrived at the notion of stochastic computing.

Introduction

The possibility of emulating analog computers using digital hardware by represent-
ing a continuous number as the probability of the presence of a digital pulse in a train
of pulses was conceived independently by Sergio Ribeiro and Brian Gaines in the
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early 1960s. Ribeiro was a graduate student of Ted Poppelbaum in the Information
Engineering Laboratory (IEL) at the University of Illinois, Champaign, Illinois,
USA, and Gaines was a graduate student of Richard Gregory in the Department of
Experimental Psychology, Cambridge University, UK and also a consultant to John
Andreae’s learning machines group at Standard Telecommunications Laboratory
(STL), UK.

The US and UK groups both implemented digitally-based analog computers
using probabilistic pulse trains, the IEL group initially terming this a noise computer
but shortly adopting the terminology of the STL group, stochastic computer,
which became the common designation in later research. As both groups evaluated
applications of stochastic computing, for IEL primarily image processing and for
STL navigational aids and radar tracking, it became apparent that the stochastic
computer based on the digital circuitry then available was not competitive with
alternative techniques. They began to develop other computer architectures to
address those applications such as burst and bundle processing [58], and phase
computers [37] and microprogrammed computers [21], respectively.

Both groups published extensively on stochastic computing in the late 1960s
[24, 26, 30, 61, 68] which stimulated research in other research groups world-wide
and many of those publications continue to be widely cited in the current renaissance
of stochastic computing as they provide tutorial material on the fundamentals
and the commonly adopted terminology for stochastic computer components,
representations and applications. They also contain critical commentaries on the
strengths and weaknesses of stochastic computing which are still applicable today.

Ted Poppelbaum

When I was asked to contribute a foreword to this collection of articles on the current
state of the art in stochastic computing and its applications, my first reaction was
sorrow that Ted Poppelbaum was no longer available to co-author it with me. Ted
died in 1993 at the age of 68 and did not live to see the massive resurgence of
stochastic computing research in the past decade.

Wolfgang (Ted) Johan Poppelbaum was born in Germany in 1924 and studied
Physics and Mathematics at the University of Lausanne from 1944 to 1953. In 1954
he joined the Solid State Research Group under Bardeen at the University of Illinois
and researched an electrolytic analog of a junction transistor. In 1955 he joined
the faculty of the Department of Computer Science and became a member of the
Digital Computer Laboratory developing the circuits for the ILLIAC II and later
computers. In 1960 he received a patent for his invention of the transistor flip-flop
storage module [59]. In 1972 he became Director of the Information Engineering
Laboratory and received a major Navy contract to support his research on statistical
computers and their applications. He retired in 1989.

Ted had many and varied projects in his laboratory. His 1973 report [57] on
the achievements and plans of the Information Engineering Laboratory summarizes
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some 45 distinct projects during the post-Illiac II phase from 1964 to 1973. They are
grouped under the categories: Storage/Hybrid Techniques; Stochastic and Bundle
Processing; Displays and Electro-Optics; Communication/Coding; World Models
and Pattern Recognition; Electronic Prostheses.

Fig. 1 Paramatrix: online digital/analog processing of picture information, Information Engineer-
ing Laboratory, University of Illinois, 1965

Ted and I became aware of our common interests in stochastic computing in 1967
as we both commenced publishing about the research and he invited me to present a
paper on stochastic computing [18] at the IEEE Convention in March 1968 in New
York where he was organizing a session on New Ideas in Information Processing.
I also visited his laboratory, saw the many systems he had developed including the
Paramatrix image processor (Fig. 1) which was one of his target applications for
stochastic computing, and met John Esch who had built the RASCEL stochastic
computing system.
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Ted and I found we had a common background in solid state electronics and
computer innovation, and discussed them at length as if we had been colleagues for
many years. I met with him again and introduced him to John Andreae and David
Hill at the IFIP conference in August 1968 in Edinburgh (Fig. 2). We kept in touch
intermittently and planned a joint book on stochastic computing but I had moved
on to other projects and introduced him to Phil Mars at Robert Gordon Institute
in Aberdeen who was actively pursuing stochastic computing research. They co-
published Stochastic and Deterministic Averaging Processors in 1981 [47].

Fig. 2 Three pioneers of computational intelligence: from left to right, John Andreae (learning
machines), David Hill (speech recognition), Ted Poppelbaum (stochastic computing in image
processing), IFIP Congress, August 1968, Edinburgh

Ted published several additional major articles that placed stochastic computing
in the context of other computing technologies, notably his surveys in Advances
in Computers in 1969 on what next in computer technology? [60], in 1976 on
statistical processors [58] and in 1987 on unary processing [62]. His 1972 textbook
on Computer Hardware Theory [56] that was widely used in engineering courses
includes a chapter on analog, hybrid and stochastic circuits.

Sergio Ribeiro, Cushin Afuso and John Esch

Sergio Telles Ribeiro was born in Brazil in 933, received an Engineering degree
there in 1957 and taught electronics at the Institute of Technology and Aeronautics.
In 1960 he received a fellowship from the Brazilian Government to study in the
USA and entered the University of Illinois, receiving his masters in 1961 and his
doctorate in 1963. His doctoral topic was a phase plane theory of transistor bistable
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circuits [67] reflecting Ted’s continuing interest in the circuit he had invented and
its dynamic behavior that determined the speed and reliability of its operation.

After his doctorate Ribeiro continued as a research assistant working with
Ujhelyi on the electronic deflection [65] and intensity modulation [79] of laser
beams, and in 1964 they joined Carson Laboratories to pursue the industrial
applications of that research. In July 1966 he submitted a paper to the IEEE
Transaction on Computers on random pulse machines [68] that has become one
of the classics in the stochastic computing literature.

It appears that Ribeiro’s research on study of the architecture and potential of
random pulse machines was theoretical. He notes in footnote 2 that “In the spring
of 1963 while working with Dr. W.J. Poppelbaum at the University of Illinois the
author suggested that a research program be undertaken to investigate theoretical
and practical aspects of random-pulse systems.” He thanks Dr. Carson for his
support of the writing of the paper without implying that it is a project at Carson
Laboratories.

Ribeiro had left Ted’s laboratory before I visited and I never met him and have not
been able to trace any publications by him after a Carson Laboratories 1966 patent
for a display device based on his research with Ujhelyi [80]. There is no specific
information about how Ribeiro came to be interested in random pulse computing.
However, there is some strong circumstantial evidence that indicates how the notion
may have occurred to him.

In 1964 Ribeiro [66] published a correspondence item in the IEEE Computer
Transactions critiquing Schmid’s [71] 1963 paper on a providing analog-type
computation with digital elements. He corrects some errors in Schmid’s discussion,
suggests improvements in his implementation and then, whilst discussing the utility
of pulse rate computers, suggests that studies of artificial neurons show that the
implementation could be simple. Ribeiro cites three papers on electronic neuron
models [7, 48, 50] from the Bionics session at 1961 National Electronics held in
Chicago, about an hour away from Champaign, suggesting he may have attended
that meeting, and a 1963 paper [44] from the IEEE Transactions of Biomedical
Electronics suggesting he continued to follow the related literature.

However, none of the cited papers mention the notion that neurons had stochastic
behavior which was common in the neurological literature going back to at least to
Lashley in 1942 [42, p. 311]. In 1962 Jenik [40, 41] showed that the rates of the
non-coherent pulse trains of two neurons afferent to a third were multiplied in its
efferent train. Ribeiro might have become aware of such analyses or he might have
considered the optoelectronic approximate multiplier described in one of the neuron
model papers [7] and realized that if the pulse streams were independent random
events then the output of an AND-gate would be the product of their generating
probabilities.

In his 1967 paper Ribeiro mentions neurons in his abstract and index terms,
commences the introduction with a presentation of Von Neumann’s book on The
Computer and the Brain [81], discusses the neural analogy extensively throughout,
and has a Bionics subsection in his references with 12 citations. However, he does



18 B. R. Gaines

not specifically attribute the source of his introduction of the notion of random
pulses into Schmid’s architecture to any specific material that he cites.

In 1964 Ted initiated a research program to study the computational potential
of random-pulse systems by making it the topic of Afuso’s doctoral research in
1964 and that of Esch in 1967. Cushin Afuso was born in 1933 in Japan, studied
for his masters at the University of Illinois in 1959–1960, and returned for his
doctorate in 1964–1968. He states that his 1968 dissertation, Analog computation
with random pulse sequences [1] is “is a feasibility study of a stochastic computing
system” taking the operations of an analog computer as his target and showing how
multipliers, dividers, adders and subtractors may be implemented.

Fig. 3 John Esch presenting his RASCEL stochastic computer, Information Engineering Labora-
tory, University of Illinois, 1969

John W. Esch was born in the USA in 1942, studied for his masters at the
University of Illinois in 1965–1967, and for his doctorate in 1967–1969. He states
in his 1969 dissertation, RASCEL - A programmable analog computer based on a
regular array of stochastic computing element logic [11] (Fig. 3) that “in February
of 1967 this author joined Afuso and worked with him to extend the SRPS system to
a sign-magnitude number representation and to develop a programmable arithmetic
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computing element.” He went on to a career in the IT industry becoming a major
contributor to knowledge representation technologies and literature and developing
conceptual graphs innovations, implementations and applications [12, 13].

Neither Afuso nor Esch mention the neural analogy in their theses and their
research was focused on developing a stochastic computer that emulated the
functionality of an analog computer. It seems that the Schmid’s version of the digital
differential analyzer and research on artificial neurons jointly provided the original
inspiration for Ribeiro’s ideas but the later implementation became an engineering
project with an initial focus on circuits to generate random pulse trains and a later
one on how to emulate an analog computer.

Yiu Kwan Wo undertook graduate research with Ted commencing in 1967
receiving his masters in 1970 and his doctorate in 1973 for a thesis entitled APE
machine: A novel stochastic computer based on a set of autonomous processing
elements [85]. However, his work does not extend the stochastic computing aspect
of Afuso and Esch’s research but instead focuses on radio-frequency transmission
of data between the modules supporting inter-operation and reconfiguration without
physical interconnection, an intriguing possibility in its own right.

Brian Gaines

It should be easier to describe my own research and the influences on it, and
I do have some detailed recollections, but, after five decades, much has been
forgotten and I have had to go back to files of notes, documentation, reports papers,
memoranda and correspondence from the 1960s that I have dragged around the
world for over 50 years but not previously opened—there were many surprises.

I was born in the UK in 1940, studied at Trinity College, Cambridge, from 1959
to 1967 for my bachelors in mathematics and theoretical physics and doctorate in
psychology. Electronics became my primary hobby when I was 12 after my father
banned analytical chemistry when hydrogen sulphide permeated the house. The
availability of low-cost government surplus electronics components and systems
after the war made it feasible to create a professional laboratory at home and I built
my first oscilloscope from the components of a rocket test set when I was 14.

My school library had several of Norbert Wiener’s books and I became fascinated
by his notion of cybernetics as the common science of people and machines and his
portrayal of what is was to be a mathematician. The headmaster taught a small
group of students philosophy in the library and I audited his lectures becoming very
interested in Kant and the issues of human understanding of the world and of the
nature of scientific knowledge. I found Ashby’s writings on cybernetics and admired
the way that he solved very general problems using algebraic techniques and I also
found Carnap’s logical structure of the world and Wittgenstein’s tractatus provided
formal approaches to the issues that Wiener and Kant had raised.

I was on the science side at school and obtained a state scholarship in math-
ematics to attend University in 1958 and applied to Trinity College, Cambridge
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but they made it a condition of acceptance that I also qualify in Latin and delay
entry until 1959. I went to the Latin teacher’s home for an hour on Saturdays
for 3 months to prepare for the examination, and spent the interim year working
as a laboratory assistant at ITT’s semiconductor research laboratory1 working on
phosphorus and boron diffusion, epitaxial growth of silicon and the fabrication of
gallium arsenide tunnel diodes. I also designed and built a nanoamp measuring
instrument to determine the greatly reduced leakage current in transistors as we
experimented with the planar process and was surprised to find it still in routine use
at the end of a 74n integrated circuit family production line when I visited STC at
Footscray again some 5 years later.

When I went up to Cambridge I planned to continue my activities in electronics
and took with me many samples of the transistor and tunnel diodes that I had
fabricated. At the Societies Fair in my first term I asked the chairman of the Wireless
Society, Steve Salter, whether he knew anyone who might be interested in using
them as I hope to find a home in some electronics laboratory. Steve was Richard
Gregory’s instrumentation engineer and introduced me to Richard who agreed that
I could act as Steve’s electronics assistant. Richard’s primary research was how the
brain reconstructed depth information from the disparate images of the separated
eyes. I built an oscilloscope with two cathode ray tubes and prisms that allowed the
eyes to be stimulated separately. This enabled me to display the 3D projection of
a rotatable 4D cube and I studied how the projection was perceived as the subject
manipulated it.

In 1961 saw an advertisement in Nature for staff for a new learning machines
project at STL,2 ITT Europe’s primary research laboratories, about an hour away
from Cambridge. I applied to John Andreae, the Project Leader, to be employed
there in vacations and became his part-time assistant in mathematics, electronics
and computing. In particular, I worked on the interpretation of neural net simulations
and on the theoretical foundations of the STeLLA3 learning robot [5] which John
was simulating on the KDF9 and his electronics assistant, Peter Joyce, had built in
the laboratory (Fig. 4).

Richard and John’s laboratories were my focus of attention during my Cambridge
years. Trinity only required me to attend a 1 h tutorial with a college Fellow once
a week and work on questions from past examination papers, and eventually take
the part II mathematics tripos exam to qualify for a degree. Lectures were offered
by the university and open to all students but not compulsory or assessed. I largely
went to philosophy topics that interested me and lectures by renowned visitors such
as Murray Gell-Mann and Richard Feynman in cutting-edge research areas where
it was fascinating to meet those who were creating new theories of the nature of
matter.

1Standard Telecommunications Company (STC), Footscray, Kent.
2Standard Telecommunication Laboratories (STL), Harlow, Essex.
3Standard Telecommunication Laboratories Learning Automaton (STeLLA).
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In June 1962 I took the part II tripos examination in mathematics, and asked the
state scholarship committee if I could have a further year of funding to study for the
mathematics tripos part III. However, Richard was a consultant to the Ministry of
Defence and had been offered funding for a graduate student to undertake a study
of the adaptive training of perceptual-motor skills. He offered me the opportunity
but Oliver Zangwill, the head of the department, said I needed a psychology degree
to do so. My scholarship sponsors approved this variation, and Richard asked Alan
Watson, the eminent behavioral psychologist, to be my tutor. My positivist leanings
suited him well and he set me to write essays for him on a very wide range of topics
in psychology, debating my extremely behavioristic mathematical interpretations.

Fig. 4 Andreae’s STeLLA, Standard Telecommunications Laboratories, Harlow, Essex, UK,
1963: in the foreground, robot with its sensors in its environment; in the background, racks
of electronic equipment and potentiometers for adjusting weights implementing the learning
algorithms

In June 1963 I took the part II tripos examination in psychology and became
Richard’s graduate student funded through the contract. Adaptive training is a
technique to generate a learning progression for a skill by automatically adjusting
the task difficulty based on the trainee’s performance, thus turning a simulator into
a teaching machine [29]. Common sense suggests it should be effective but nearly
all studies to date had negative outcomes. I analyzed the situation Ashby-style
assuming that a skill was constituted as a number of dependent sub-skills ordered
such that the probability of learning one was low if prior ones had not been learned
and showed that in such a situation adaptive training should be very effective even
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if one has no knowledge of the sub-skill structure or trainee’s state in terms of it. I
examined previous laboratory studies and felt that the tasks investigated had been
insufficiently challenging. The task of interest to the sponsor was classified but the
training literature suggested that a tandem-propeller submarine involving managing
position by controlling the rate of change of acceleration was extremely difficult and
I decided to simulate that.

Fig. 5 Brian Gaines working with the analog computer and stereoscopic oscilloscope that he built,
Department of Experimental Psychology, Cambridge, 1964

I built a 10-amplifier analog computer using commercially available operational
amplifiers (Fig. 5) but needed an analog multiplier to adjust the parameters that
varied the difficulty of the task which was not within the available budget. I designed
what I termed a chopping multiplier where one signal was intermittently switched
by a comparator whose inputs were the other signal and a uniformly distributed
waveform. The latter could have been random but the most convenient to generate
was a sawtooth. The output was smoothed by a resistor-capacitor feedback loop to
generate an estimated product of the two signals. This reduced the bandwidth but it
was still more than adequate, and in practice I found it useful to leave some ripple as
a disturbance to create a challenging control task. The electronic multiplier tended to
drift and for the final study I designed a motorized potentiometer multiplier where
the bandwidth for one signal was high but for the other was low but more than
adequate for the performance-adaptive adjustment. The experience of designing
multipliers sensitized me to the issues of providing them as analog computer
modules.

The notion of stochastic computing came from three distinct influences. From
Wiener and Ashby I came to see random processes as a source of variety and
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innovation that became structured through the various filtering processes discussed
by Kant, Carnap and Wittgenstein. From my experiences in constructing analog
computer multipliers the simplicity of the multiplication of probabilities of the
conjunction of uncorrelated events seemed to have engineering potential. From
Richard I developed an interest in the neurological basis of depth perception and
proposed that the representation of visual intensity by neuronal discharges could be
used to extract depth information by spatial correlation through a simple conjunctive
processes if the discharges were essentially asynchronous and hence uncorrelated.

In addition, my studies of adaptive training had three components: a theoretical
one to show that a very general framework for what is was for any system to
learn a skill showed that adaptive training accelerated learning; an empirical one
of training humans; and an empirical one of training learning machines undertaking
the same task as the humans. For the last I used a digital version of Rosenblatt’s
[69] perceptron which did not have the same convergence properties as an analog
version. I had noticed this when analyzing Novikoff’s [53] proof of perceptron
convergence as one of steepest descent. I had previously deconstructed Pontryagin’s
[55] maximum principle4 to understand why there was no discrete version even
though there were several erroneous attempts in the literature to derive one. It
seemed to me that a discrete perceptron would have similar problems because it
could only approximate steepest descent and might enter a non-convergent limit
cycle. I hypothesized that random variation in the training sequence might overcome
this as might random variation in the weight changes and showed empirically that
the limit cycles did prevent convergence and theoretically that randomness in the
training sequence or weight changes could overcome this [30]. However, even
though I envisioned a discrete perceptron with random weight changes I did not
at that time extend the notion to more general applications. I also did not implement
at that time a stochastic perceptron but I found the issues of training one that had
problems of convergence very useful to my analysis of the dynamics of training both
people and learning machines [17].

All these notions came together when I visited STL in May 1965 and found that
Peter Joyce had designed a digital module that John Andreae termed an ADDIE5

that enabled the reinforcing weight adjustments for the STeLLA learning robot to be
made automatically rather than by manually adjusting potentiometers. The weight
update equation was in the form of a running average, w′ = αw + (1 − α)x, and
Peter had approximated this with a complex of integrated circuits. I noted that the
component count could be greatly reduced and the approximation improved if the
variables were represented as the generating probability of a digital pulse train, and
sketched out circuit diagrams for ADDIE’s with various resolutions using 74n series

4I became interested in Pontryagin’s work because one of my experiments in Richard’s laboratory
was to replicate the results in a memorandum by Bartlett where he had investigated reaction times
in a tapping task with variations in target difference. His results were consistent with the hypothesis
that people made Pontryagin-type bang-bang movements using maximum acceleration following
by maximum deceleration, and I was later able to demonstrate this in my control task[20].
5Adaptive Digital Data Integrating Element (ADDIE).
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integrated circuit up-down counters, flip-flop arrays with logic gates to generate a
pseudo-random number sequence and adders acting as binary number comparators.

John approved further investigation and during the next week I developed the
statistical theory for the behaviour of an ADDIE, Peter breadboarded the circuit,
and we were able to confirm that theory and practice conformed and provided a
module providing the functionality required in the STeLLA architecture. I realized
the ADDIE emulated an operational amplifier with a negative feedback loop in my
analog computer, that a logic gate acted in the same way as my chopping multiplier
and that the [0, 1] range of probabilities could be used to emulate [−1,+1], [0,∞]
and [−∞,+∞] ranges through appropriate transformations.

Fig. 6 On right, stochastic analog computer designed by Brian Gaines and built by Peter Joyce;
on left, visual display of STeLLA learning controller’s trajectory to the specified region of state
space, Standard Telecommunication Laboratories, 1965

This led me to propose that the ADDIE be generalized to a complete stochastic
analog computer with objective of providing all the computational support required
by the STeLLA architecture. When it came to a later presentation to other ITT
researchers John suggested that the term analog could be confusing as the computer
was a digital one emulating analog functionality and we abbreviated the name to
stochastic computer. Peter rapidly constructed a six-integrator stochastic computer
with both analog and digital input-output capabilities (Fig. 6) and we were able to
test its performance in a variety of applications, not only those relevant to learning
machines such as the ADDIE, a stochastic perceptron, Bayesian prediction, and so
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on, but also the simulation of dynamic systems, digital control, solution of partial
differential equations, and so on. STL’s primary output was ITT patents and I
worked with our resident agent who had trained as a mathematician and understood
the principles of the computer to file in March 1966 a comprehensive patent that had
54 claims covering the computer, representations and applications [27].

Once the patent was filed ITT approved the publication of details of the stochastic
computer. The first public disclosure was at the IFAC Congress in June 1966
where I presented a paper with John on A Learning Machine in the Context of
the General Control Problem [35] which updated his at the 1963 Congress [5].
The stochastic computer was the focus of my discussion contribution reporting
progress since the paper was submitted which was transcribed in the published
proceedings [35].

The first full paper I wrote on stochastic computing was requested late in 1966 by
Roger Meetham at the National Physical Laboratory (NPL) who had heard a non-
disclosure presentation that John and I gave to some NPL researchers and requested
an article for the Encyclopaedia of Linguistics, Information and Control that he was
editing. The paper was written early in 1966 and approved for submission by ITT in
April but the book did not appear until 1969 [25].

The IFAC discussion [35], encyclopaedia entry [25], an internal presentation in
December 1965 [16] and the patent [27] together provide a good account of how we
perceived the stochastic computer at the time of its invention and before we were
aware of a similar invention at the University of Illinois.

The magazine, Electronics, had published a short news item in December 1966
noting that “at the University of Illinois, a group of computer researchers has
designed a series of analog computer circuits that depend on noise and therefore
needn’t be protected from it” and providing circuit examples [10]. I asked the editor
if they would like an article on the similar research at STL and he took my draft,
redrew all my diagrams as hand-drawn sketches to make them appear doodles from
a research notebook, and retitled it as Stochastic computer thrives on noise [24].

I submitted a paper to the analog computing session Spring Joint Computer
Conference in Atlantic City [26] as part of my first trip to the USA where I visited
IBM, Bell Laboratories and Xerox research laboratories, under a research-liaison
agreement between the major electronics companies. The doyens of analog and
hybrid computers, Granino Korn and Walter Karplus also presented and, in leading
the discussion on my paper, Walter remarked that he had never expected to see
further radical innovations in analog computing.

At the conference exhibition I met Gene Clapper from IBM who was exhibiting
his research on character recognition and speech recognition based on digital
perceptrons [9]. He remarked that he had been surprised to find character recognition
less accurate but ascribed it to a lower variety in the training sequences, and we
discussed the role of noise in aiding the convergence of perceptrons. I also presented
a paper [30] at the IFAC conference on system identification in Prague which
focused on the modelling applications of the stochastic computer such as gradient
techniques, the digital perceptron and Bayesian predictor.
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My December 1965 presentation at STL aroused interest is several other
research groups, notably those developing navigational aids and air traffic control
systems and the written version was also distributed to other ITT companies in
Europe. It aroused great interest, not only as a new computing technique but also
because computing research had been discouraged in ITT after early commercial
losses but several ITT manufacturing companies had become involved in both
computer manufacture and application through government funding in their own
countries. There was a need for computer expertise to be developed in the research
laboratories.

I visited ITT companies in France, Germany, Sweden and Norway and found
some potential applications of stochastic computers but was also able to contribute
knowledge of general-purpose computers from my own experience and also from
our usage of large-scale integration logic circuits in the 74n TTL family where usage
had previously been discouraged because of early experience of unreliability. We
were asked to investigate the feasibility of digital versions of navigational aids for
the Decca and Omega systems, and for radar automatic-tracking systems, and I was
also tasked with developing plans for a computer research division that I might lead
when my university research was complete in 1967.

It rapidly became apparent that stochastic computing in itself would be too
slow to be competitive in the proposed applications but I realized that the low-
cost multiplication with AND-gates only required uncorrelated pulse streams, not
necessarily random ones, and developed a digital version of my chopper multiplier
where one pulse stream was uniformly distributed and the other clumped so that
the two were uncorrelated. It was again possible to develop a complete analog
computing framework and I termed it a phase computer [37] since the processing
was now cyclic and the results were accumulated over each phase. Peter Joyce
quickly produced a general-purpose prototype structured similarly to an analog
computer (Fig. 7) and we were able to test this in a variety of applications such
as a Decca navigator, a radar tracker and a digital PID control system.

In June 1966 John Andreae relocated to New Zealand to take up a chair in
electrical engineering and I took over as part-time project leader but kept closely
in touch with him by correspondence which has provided a useful record of what
was happening at STL in late 1966 and early 1967. We were awarded a British
government contract from the Ministry of Technology Advanced Computer Project
for Pulse Rate Modular Computing and Ray Shemer joined the project to develop
the phase computer and investigate its applications, also registering as an external
doctoral student with the University of London [72, 73].

I was invited to be the keynote speaker at the IFAC conference on Pulse Rate
and Pulse Number Signals in Automatic Control in Budapest in 1968 and presented
a paper on varieties of computer — their applications and inter-relationships [34]
which analyzed the relations between general-purpose and special-purpose com-
puter architectures and applications. From the other presentations and discussions
I also came to understand how what we had developed fit into a much larger
sphere of applications of pulse rate computing. There was extensive discussion of
the paper largely focusing on the relative merits of general-purpose and special-
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Fig. 7 Phase computer designed by Brian Gaines and built by Peter Joyce, Standard Telecommu-
nication Laboratories, 1966

purpose computers and I still remember the joking, but perceptive, comment of one
discussant that buying a general-purpose machine was safer because if it turns out
to be unsuitable you can always find another use for it.

I was asked to summarize the conference by the editor of Automatica and
Ray and I wrote an overview that concluded “Whatever the state of the special-
purpose/general-purpose controversy, it is clear that the advent of low-cost inte-
grated circuits has opened up a tremendous range of possibilities for new develop-
ments in control hardware; the re-development of DDA-like incremental computing
techniques is one of the more attractive possibilities which is likely to lead to
practical applications” [38]. I was also asked by the editor of the IEEE Computer
Transactions to write a commentary on Ribeiro’s 1967 paper and concluded that
“the main obstacle to the practical application of the stochastic computer is, at
present, the generation of the random variables required in a reliable and economical
manner. It may well be that we should look to truly random physical processes, such
as photon-photon interactions, to provide the hardware foundation for stochastic
computing systems” [23].

In May 1966 ITT decided to tender for the Boeing 747 simulators required in the
UK on the basis of the simulation capabilities of LMT, their French company, but
needed to establish a British company to manage the tendering process and support
the products if they were successful. I was told I was to be appointed chief engineer
of the new company rather than head of the new advanced developments and
computing division. I had already arranged for that division to have research links
with the Electrical Engineering Science department at the newly formed University
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of Essex, and when I expressed my dismay at no longer having that opportunity to
Barrie Chaplin the incoming Head of Department he offered me a position as one of
the four initial faculty with a contract that encouraged me to develop industry links.
I accepted, remaining a consultant to STL and the phase computer development for
some years but becomingly increasingly involved with other activities.

After my 1967 presentation at the Spring Joint Computer Conference, Julius
Tou asked me for a survey of stochastic computing for Advances in Information
Technology and I extended my encyclopaedia article to what was essentially a 136
page brain dump of all that I knew about stochastic computer. It was published in
1969 [28] and came to establish much of the stochastic computing terminology in
the literature.6 I intended that to be my final paper on stochastic computing but
was asked in 1976 to provide an overview of progress for an IEE colloquium on
parallel digital computing methods [32]. In 1987 I was asked to introduce the topic
at the first IEEE International Conference on Neural Networks [33], a paper that
attracted a large audience and substantial discussion despite my noting that the
research reported was 22 years old and has become cited as a primary source in
many papers on random pulse neural networks.

Fig. 8 Minic 8-bit microprogrammed microcomputer designed by Brian Gaines and built by
Tony De’ath, Essex University, 1968; on left. the university prototype; on right, the commercial
version

At Essex University my research became focused on the design of general-
purpose and hybrid computers and associated operating systems, compilers and
applications, human factors of computing and artificial intelligence. I received
a contract from the RAF to continue my research on adaptive training in flight

6Earl Hunt was one of the first to cite this chapter (in the context of von Neumann’s book [81])
in his 1971 paper on “what kind of computer is man?” and comes to the conclusion that man is
a stochastic computer. Earl unfortunately died in 2016 just before the advent of stochastic deep
learning neural networks [45] and the assessment of how the behaviour of deep networks emulated
human visual perception [54] that begins to validate his conjecture.
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simulators, and decided to add hybrid capabilities to my analog computer to support
more flexible training strategies. I had a PDP9 in my laboratory but needed a small
dedicated computer, could not find a suitable one and decided to build my own
which would give me full control over both hardware and software. I designed an 8-
bit microprogrammable computer using the 74n series integrated circuits supporting
a main memory from 1 to 64 Kbytes and a drum backing store, and my technician,
Tony De’ath, built a prototype (Fig. 8). The experience of designing a conventional
computer was very similar to that of designing the stochastic and phase computers,
even though the architectures appear so different—all such digital computers are
finite-state automata and the design process is akin to writing programs in the same
language but satisfying somewhat differing requirements.

When I was evaluating a 64 Kbyte Sperry drum as a permanent storage device
for Minic, the sales manager, Dave Seale, and his engineer, Tony Maine, said
they would be interested in forming a company to manufacture the computer. I
agreed and we formed Microcomputer Systems with Dave as CEO, Tony as chief
engineer and myself as part-time technical director. We discussed funding with
several potential investors but eventually went with the George Kent, an industrial
instrumentation company who stated in their press release that “the Minic’s concept
is far in advance of anything in the UK or the United States” [78, 82]. That may
appear an exaggeration given DEC’s PDP7, 8, 9 and 10 architectures, but Minic
seems to be the first microcomputer for sale at below £2000 and also the first
with customer-programmable microprogramming. It was a precursor of the personal
computers yet to come based on the Intel 8080, Zilog Z80, and so on, single-chip
microcomputers.

The machine tool company, Alfred Herbert, needed an industrial computer for
numerically-controlled machines and became our biggest customer. I had provided
for 256 microcode instructions but only used 128 for the computer itself, and we
were able to encode the stepping machine geometry in the remaining microcode
using the phase computer techniques in a way that minimized the interface
needed between computer and machine tool [74]. Alfred Herbert was able to sell
its Batchmatic machine tool controller for £3500, half the price of their major
competitor.

My graduate student, Peter Facey, wrote an emulator for MINIC on our central
PDP10 computer [14], and I programmed the MINIC operating system, assembler,
loader and a general-purpose system and application language, MINSYS [15, 19,
22], entirely in the emulator so that they were available before the first machines
were manufactured. I also programmed some of the initial applications such as
an 8-bed intensive care monitoring system for University College Hospital that
operated on a 1 Kbyte MINIC with a 64K drum and output charts of blood pressure,
temperature, and so on, on a Tektronix storage oscilloscope.

We received a British government contract from the Ministry of Technology
Advanced Computer Project for the development of a more powerful version of
MINIC, codenamed MINIC-S, and intended for industrial applications requiring
high-performance computing and IO, security of operation and high reliability.
The original MINIC was used to provide the IO processor, or processors, and the
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MINIC-S had a descriptor and capability architecture targeted on the constructs
required by high-level language compilers and the hardware assurance that running
programs could not unintentionally interfere with one another [36, 39, 84]. A pro-
totype was built and an operating system, assembler, linking loader, FORTRAN
compiler and part of an ALGOL-68 compiler were written. However, in 1974
George Kent was acquired by Brown Boveri who decided to use DEC computers
rather than manufacturer their own and MINIC manufacture and MINIC-S develop-
ment were cancelled.

These computers may seem remote from the issues of stochastic computing but
for me they illustrate the continuity between special-purpose and general-purpose
computers. The MINIC modules were the same as those in the stochastic and
phase computers but the microprogram used them to emulate a von Neumann
architecture stored-program computer. If we had continued the development of
the stochastic computer then its modules would have been similarly controlled to
provide a programmable version of the analog computer patchboard. The principles
of program control apply to all computer architectures, even neural networks. There
is always a need to be able to configure general-purpose modules for special-purpose
tasks.

I became aware of an analogous phenomenon in humans through discussions
with the Russian psychologist, Alexander Luria, during his visits to the Psychology
Department at Cambridge. I had been very impressed by his investigations on the
effect of linguistic behaviour on the performance of perceptual-motor skills [46],
and investigated verbal instruction as a priming technique for both my human and
learning machine subjects [31]. One role of language is to provide program control,
or at least behaviour priming, in both human and artificial neural networks.

The Invention of Stochastic Computing

Ted and I took for granted the independent simultaneous invention of stochastic
computing at the University of Illinois and STL and never discussed it or tried to
ascertain who was ‘first.’ We became aware of earlier pulse rate computers and of
statistical linearization techniques in polarity coincidence correlators [86] and saw
noise/stochastic computing as an extension of such techniques.

Multiple discovery and invention [51] is a common and well-studied phe-
nomenon across many disciplines [83] and the usual explanation is that those
involved were stimulated by the availability of the same, or similar, information.
I have tried to ascertain that common inspiration for Ribeiro’s and my research, and
have suggested that it is the overlapping neural analogy in Ribeiro’s considering
artificial neurons as modules of pulse rate computers, and my considering the
multiplicative processes implementing correlation in the interaction of the pulse
streams of natural neurons.

In addition, the history of stochastic computing also exhibits another phe-
nomenon of multiple discovery/invention where later researchers are unaware of
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previous work. One of my colleagues at STL, David Hill, found in a patent search
in the early 1970s that an invention filed by William G. Thistle in 1962 entitled
Integrating Apparatus [77] that carried out computations using random pulse
trains.

Thistle was an electronics engineer conducting research for the Canadian
Ministry of Defence at the Canadian Armament Research and Development Estab-
lishment in Québec. David contacted him for further information and received both
the patent and an internal report entitled A novel special purpose computer [76]. He
sent me copies at the time and I recollect reading the patent and noting it was related
to stochastic computing but have only now read the report in detail whilst writing
this paper.

The abstract of Thistle’s report states: “A type of computer is described for the
real time evaluation of integrals of the form I = ∫ ydx, where x and y are functions
of time. It is believed to be novel in it use of quasi-random processes, operating
on pulse trains, to achieve the desired result. The method may be extended to cases
where y is a function of several variables dependent on time. Accuracies comparable
to analog methods are obtainable without the drift problems usually associated with
analog methods.”

Thistle describes techniques for addition, subtraction, multiplication, division
and integration using random pulse trains, provides circuit diagrams, and described
an application to a simple navigation system. His computer encompasses the basic
architecture of the stochastic computers developed at the University of Illinois and
STL and would constitute prior art from a patent perspective.

His report was not widely circulated. The distribution list shows that only 3
copies were issued (to the superintendents of systems and of electronics, and the to
chief superintendent) and 25 were lodged in the documents library. Thistle has three
other patents (for power supplies and a gas discharge matrix display), and seems to
have no other publications although there will likely be other internal reports. It is
probable that much of his work was associated with classified systems.

A google scholar search on his name returns two of his patents, one of which
is the US version of his Integrating Apparatus retitled Computer for evaluating
integrals using a statistical computing process. His patent is not cited in other
patents as prior art, and it seems unlikely that, even today, a content-based automated
search would be able to link his text to the stochastic or pulse rate computing
literature. As far as I know, Thistle’s research is completely unrecognized and has
had no influence, and there is no indication of how he came to invent a stochastic
computer, but it deserves recognition in the history of computing as the earliest
documented invention of a fully-functional stochastic computer.

Thistle’s invention is also relevant to another question frequently asked about
discoveries and inventions, what would have happened if neither the Illinois or STL
teams had developed stochastic computers, would others have done so? The answer
is clearly yes—it had already happened but no one knew. There was also research
in neurology where it became known empirically, possibly as early as the 1950s,
that the coincidence of neurons firing could result in a common afferent neuron
firing and that this might be the basis of motion detection [64]. This led to an
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empirical analysis of the jitter in neural firing that was shown to be sufficient for the
afferent neuron to be acting as a pulse frequency multiplier [75]. Thus, stochastic
bit-stream neural networks [8] were conceived from biological studies uninfluenced
by stochastic computing (even though the similarity to the stochastic computer is
often noted in that literature, e.g. [43]).

Conclusions

In the three decades after Ted and I completed our research in stochastic computing
research continued elsewhere but at a low intensity. We received papers to referee,
were asked to be thesis examiners, and were aware that there was continuing activity
by colleagues across the world, such as Phil Mars in the UK, Sadamu Ohteru in
Japan, Robert Massen in Germany (who in 1977 wrote the first book on stochastic
computer technology [49]) and others, but no major growth in interest. However,
in the recent past there has been a significant growth in research as illustrated in
Fig. 9 which shows the citations to my 1969 survey (a more robust estimator based
on a basket of several commonly cited articles shows a similar pattern). This book
provides a much-needed overview of this burgeoning literature through tutorials and
overviews by some of those who make have major contributions to its growth.
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Fig. 9 Counts of the citations of Stochastic computing systems [28]

In the conclusions of my 1969 survey I noted three aspects of stochastic
computing that seem to me to remain relevant to current research:

• “The stochastic computer has as yet had no major practical impact on data pro-
cessing systems. Equally, the analogy between nervous processes and stochastic
computing has not been carried to a stage where the stochastic computer can
be justified solely as a model of the central nervous system. Indeed, present
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justification for interest in stochastic computing is of a scientific nature—it
extends the range of known data-processing systems.”

• “If true stochastic processes are utilized, e.g., from light photons or radioactive
sources, then it would seem better to establish computing elements working
directly with the original sources; photon/photon interactions brought about
by certain electron systems would seem to offer a great potential for natural
stochastic computation.”

• “The design of learning machines and pattern recognizers which take full
advantages of the properties peculiar to stochastic computers offers the greatest
promise for the future development and exploitation of the systems surveyed.”

To these, in the light of the ensuing developments in Ted and my laboratories, I
would add:

• The essence of the stochastic computer is that, by representing a number as the
frequency of occurrence of a binary pulse stream, simple modules can be used
to perform significant computations, but, as shown by the phase computer, the
pulse streams do not necessarily have to be truly random, only uncorrelated.

• The maintenance of this lack of correlation such that the output of a computation
may be used as the input to another is a major issue in stochastic computer
applications (which makes the apparent simplicity of stochastic computing
misleading). Whilst a general solution might be feasible (e.g. using technologies
with intrinsic stochastic behaviour), the requirement may also be addressed
by application-specific techniques to manage correlation (e.g. [2]) that take
advantage of the structure of the computations required.

• Hybrid architectures that combine the modular, parallel processing of the parallel
computer and programmability of the general-purpose computer, particularly to
control module interconnection will become increasingly significant.

• There are computational problems where randomness plays a significant role in
computing the optimal or the least complex solution, and these merit special
attention as actually requiring a stochastic implementation.

I will not attempt to present the current state of the art in stochastic computing
as it relates to these issues. Very perceptive surveys by those deeply involved in
current research are available [3] and the contributions to this book provide in-depth
studies of the state of the art. Ted would be interested to see his interest in image
processing addressed in the research that in many way triggered the resurgence of
interest stochastic computing when it was shown to be as effective, error-tolerant,
and requiring less energy usage than competing image processing technologies
[4, 63]. My early interests are addressed by the applications of stochastic neural
networks to deep learning [45] and other neuromorphic applications [6], by the
wide range of alternative technologies being investigated for stochastic computing
[3, 6, 70], and by the more computationally efficient deterministic variants which
parallel our transition to the deterministic phase computer and are now accepted as
variants of stochastic computing [52]. There are also many significant theoretical
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and application innovations that we never envisioned—interesting ideas take on a
life of their own, nurtured by the community of research.
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Tutorial on Stochastic Computing

Chris Winstead

Abstract This chapter offers a pedagogical introduction to stochastic computing
for those who may be new to the subject or require a refresher on the basic
concepts. The level of presentation is suitable for graduate students or advanced
undergraduates as well as for professionals in the field.

Keywords Stochastic computing · Stochastic arithmetic · Stochastic decoding ·
Error correction · Low density parity-check codes · Image processing · Neural
networks · Spike timing dependent plasticity · Memristors

Introduction

Stochastic computing circuits have a number of features that have attracted the
attention of researchers for several decades. This chapter introduces the fundamental
concepts of stochastic computation and describes their attraction for applications in
approximate arithmetic, error correction, image processing and neural networks.
Some disadvantages and limitations are also discussed, as well as a discussion of
future circuits that utilize native non-determinism to avoid certain disadvantages.
Some background on digital design, probability theory and stochastic processes
is necessary. Prior knowledge of image processing or machine learning topics—
particularly Bayesian networks and neural networks—is also helpful for following
the application examples. For deeper study on the topic, the reader is directed to
several recent key references that explore each of the sub-topics in greater detail. A
good starting point is the recent survey article by Alaghi et al. [2]. This chapter does
not provide a comprehensive bibliography on stochastic computing; references in
the chapter bibliography are selected to provide the greatest benefit to new students
of the subject.
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Fundamental Concepts

Stochastic computing circuits are able to realize arithmetic functions with very few
logic gates. This is achieved by encoding numerical values within the statistics of
random (or pseudorandom) binary sequences. For example, the number x = 1/3
can be represented by the sequence 0, 0, 1, 0, 1, 0, . . . , wherein the frequency of
1’s is equal to 1/3. A numerical value encoded in this way is called a stochastic
number. Throughout this chapter, we will use the terms bit sequence or bit stream
interchangeably to refer to the specific random bits that encode a stochastic number.
Since many different sequences can encode the same value, stochastic numbers are
defined by the sequence statistics rather than the particular order of bits.

Definition 1 (Stochastic Number) Given a probability pX, 0 ≤ pX ≤ 1, the
corresponding stochastic number X is a sequence of random binary numbers
X0, X1, . . . for which any Xj ∈ {0, 1} may equal 1 with probability pX.

Throughout this chapter, we will use capital letters (X) to refer to stochastic
numbers, and subscripted capital letters (X�) to refer to the individual sequence
bits, where the subscript (�) indicates the clock cycle index. When analyzing
logic operations, we will often omit the subscript when stating combinational
relationships that hold for all clock cycles. We will also use capital letters to refer to
binary values, integers, and parameters, which will be clearly indicated by context.
A lower-case letter (x) represents the real value associated with the stochastic
number, and the sequence probability is indicated by the letter p with a subscript to
indicate the stochastic number (as in pX).

Given a sufficiently long bit sequence, the sequence’s mean value is expected to
converge to the probability pX. Stochastic numbers have precision that improves
with sequence length, a property called progressive precision. For instance, the
value 3/7 can be precisely represented by a sequence of at least length 7, however
the value 5/14 requires a sequence of at least 14 bits. Since the individual bits in
the sequence are random, a much longer sequence length is required before the
sequence’s actual average converges within the desired precision.

In practice, most stochastic computing circuits produce non-ideal stochastic
numbers in which the bits depend on the sequence history. The resulting auto-
correlation can sometimes distort or reduce the efficiency of stochastic computa-
tions, posing a serious challenge that takes several forms that are discussed in later
sections of this chapter. Because of the potential inaccuracies, we need to carefully
distinguish between ideal and non-ideal stochastic numbers.

Definition 2 (Ideal Stochastic Number) An ideal stochastic number has the
properties of a Bernoulli process, wherein the sequence bits are all statistically
independent from each other.

It is sometimes said that an ideal stochastic number is memoryless, because each
bit has no statistical dependence on the sequence history. A non-ideal stochastic
number does depend on the sequence history, and can be considered as a hidden
Markov model.
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Fig. 1 A stochastic number
generator that uses a
comparator to convert k-bit
binary number B to stochastic
number X with pX = B/2K

B

−

+

LFSR
RNG

X

R

Table 1 Example stochastic
number from an RNG
sequence

Clock cycle R (binary) r (real value) X

0 0100 0.25 0

1 0011 0.1875 1

2 0011 0.1875 1

3 0110 0.375 0

4 0111 0.4375 0

5 1101 0.8125 0

6 0111 0.4375 0

Stochastic numbers are usually produced using a uniform random number
generator (RNG) based on a linear feedback shift register (LFSR), as described
in our first example. In this tutorial, we examine only the most basic methods
for generating stochastic bit streams. Stochastic number generation techniques are
reviewed in more depth in chapter “Generating Stochastic Bitstreams”.

Example 1 (LFSR Stochastic Number Generator) The general schematic for an
LFSR-based stochastic number generator is shown in Fig. 1. A K-bit unsigned
binary integer B is supplied, indicating a probability pX = B/2K . At each clock
cycle, the LFSR-based RNG produces a new K-bit random number R. If R < B

then the output for that clock cycle is X = 1, otherwise X = 0. Table 1 shows a
hypothetical RNG sequence and stochastic output X for a 4-bit input probability of
0.3125. The four-bit fractional binary representation is B = 0101, interpreted as
0
2 + 1

4 + 0
8 + 1

16 . The output sequence in Table 1 has a mean value of 1/3, which is
close to the specified value of 0.3125.

Stochastic Numerical Formats

Binary sequences can directly represent positive real numbers between zero and one.
In order to represent larger numbers, they must be mapped onto the unit interval.
This can be done in a variety of different ways, resulting in distinct numerical
representations or formats. Some of the more common formats are defined in this
section. We begin with the most common unipolar format.

https://doi.org/10.1007/978-3-030-03730-7_7
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Definition 3 (Unipolar Stochastic Number) Given a non-negative real number x

and a positive real parameter M , such that 0 ≤ x ≤ M , the stochastic number X is
said to be unipolar if x = MpX.

The unipolar format gives the most direct mapping from real intervals to
stochastic numbers. Unipolar arithmetic is the easiest format to analyze, since
there is a simple proportional mapping between the real number and the sequence
probability. In some applications it is convenient to use a unit scale factor (M = 1),
so that all values are restricted to the domain between zero and one. Throughout
this chapter, unless otherwise specified we will assume unit scale factors in the
examples.

A major drawback to the unipolar format is that it is restricted to non-negative
real numbers. This motivates us to consider an alternative bipolar format, where
each sequence bit with binary value 1 or 0 is understood to encode a real value
of +M or −M , respectively. The corresponding real number is encoded in the
sequence average.

Definition 4 (Bipolar Stochastic Number) Given a real number x and positive
real parameter M , such that −M ≤ x ≤ M , the stochastic number X is said to be
bipolar if x = M (2pX − 1); equivalently pX = 0.5 (1 + x/M).

As with the unipolar representation, in this chapter we will assume a unit
scale factor unless otherwise specified. To give a simple example of a bipolar
stochastic number, the binary sequence X = 011000 has probability pX =
2/6. Assuming the unit scale factor (M = 1), the corresponding real value is
x = 2 (2/6) − 1 = −1/3. We can alternatively map the binary sequence to
its corresponding bipolar sequence −1,+1,+1,−1,−1,−1, which has average
−2/6 = −1/3.

We next consider formats suitable for representing very large numbers. We first
consider the Likelihood Ratio format, defined in Definition 5. As a shorthand, we
will refer to stochastic numbers encoded in this format as ratioed numbers.

Definition 5 (Likelihood Ratio (LR) Stochastic Number) For a real number
x, 0 ≤ x < ∞, the stochastic number X encodes a likelihood ratio if x =
pX/ (1 − pX); equivalently pX = x/(1 + x).

The LR format can be understood by analogy to a floating-point binary format.
Precision for the mantissa is very limited, but the numerical range is expansive. LR
formats are used in some algorithms for estimation, inference and error correction.
A closely related format is the Log-Likelihood Ratio format, which offers better
accuracy for numbers close to zero:

Definition 6 (Log Likelihood Ratio (LLR) Stochastic Number) For a real num-
ber x, 0 ≤ x < ∞, the stochastic number X encodes a log likelihood ratio if
x = log (pX/ (1 − pX)); equivalently pX = ex/(1 + ex).

To simplify transformations between LR and LLR representations, we will
sometimes use the notation �X to mean an LR corresponding to stochastic number
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Table 2 A comparison of
stochastic numerical formats

pX Unipolar x Bipolar x LR x LLR x

0 0 −1 0 −∞
0.25 1/4 −1/2 1/3 −1.4

0.33 1/3 −1/3 1/2 −0.7

0.5 1/2 0 1 0

0.66 2/3 1/3 2 0.7

0.75 3/4 1/2 3 1.4

1 1 1 ∞ ∞

X, and LX to mean the LLR corresponding to X. This simplifies the interpretation
of circuits in the LLR domain, since

LX = log �X. (1)

Among conventional algorithms, LLR representations are perhaps more com-
monplace than LR. The log scale provides a useful means of compressing large
numerical ranges. To help the reader get a sense of these numerical formats, Table 2
relates sequence probabilities to the corresponding real value in each representation.
Unit scale factors are assumed for the unipolar and bipolar formats. Other formats
are possible beyond what is presented here, for instance we could define a log-
probability format similar to the LLR format.

Stochastic Arithmetic Operations

We now consider a series of examples illustrating the most basic stochastic
arithmetic operations. In the simplest cases, stochastic numbers are filtered through
ordinary logic networks to perform standard operations like addition and multiplica-
tion. If the inputs are ideal stochastic numbers, and the logic network contains purely
combinational operations with no memory or feedback paths, then the network’s
outputs are also ideal stochastic numbers with the desired Bernoulli properties. The
combinational examples are mostly simple applications of probability theory, but
can become more complicated when interpreted in the context of different numerical
formats.

Example 2 (NOT Operation (Bipolar Negation, Ratioed 1/x))
Our first and simplest example is the NOT operation, where all the bits in a

stochastic bit stream are inverted. The output stream’s probability is related to that
of the input stream by

pQ = 1 − pX. (2)

A numerical example of NOT gate’s stochastic operation is shown in Fig. 2.
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X = 1101 0111 0101
(pX = 2/3)

Q = 0010 1000 1010

(pQ = 1/3)

Fig. 2 The NOT gate as a stochastic 1 − pX operation. For the bipolar format, x = 1/3 and
q = −1/3 (q = −x). For the ratioed format, x = 2 and q = 1/2 (q = 1/x). For the LLR format,
x = 0.693 and q = −0.693 (q = −x)

Unipolar Case For a unipolar stochastic input with non-unit scale constant M , the
equivalent real-valued output can be expressed as

q

M
= 1 − x

M

⇒ q = M − x.

(3)

Here we assume that x and q have the same scale constant.

Bipolar Case For a bipolar input, inverting the bits of the unipolar sequence has the
effect of flipping all the signs in the bipolar sequence. The NOT operation therefore
negates the bipolar value.

Ratioed Case Substituting the expressions pX = x/(x + 1) and pQ = q/(q + 1),
we find that

q

q + 1
= 1 − x

x + 1
= 1

x + 1

⇒ q = 1

x
.

(4)

LLR Case Taking the logarithm of the ratioed expression gives

LQ = log
1

�X

= − log �X

= −LX

(5)

If both X and Q are LLR stochastic numbers, then the corresponding real-valued
computation is

q = −x. (6)

Example 3 (AND Operation (Unipolar Multiplier))
Given two independent ideal stochastic numbers A and B as inputs, the AND

operation has output probability pQ = pApB . A numerical example for the case
1/2 × 2/3 = 1/3 is shown in Fig. 3.
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A = 0101 0110 1010
(pA = 1/2)

B = 1101 0111 0101
(pB = 2/3)

Q = 0101 0110 0000

(pQ = 1/3)

Fig. 3 The AND gate as a unipolar stochastic multiplier. For the bipolar case. a = 0, b = 1/3 and
q = −1/3. For the ratioed case, a = 1, b = 2 and q = 1/2

Unipolar Case If the inputs are unipolar stochastic numbers, then the AND gate
can be interpreted as a multiplier. If the unipolar inputs have scale constants MA

and MB , then the output scale constant is MQ = MAMB . Supposing a = 3 with
MA = 6, and b = 2 with MB = 3, then the output is expected to be q = 6 with
MQ = 18. This is consistent with the example probabilities shown in Fig. 3.

Bipolar Case The bipolar case is more complicated, and is left as an exercise for
the reader. Given bipolar inputs with unit scale constants, the reader should find that
q = (a + b + ab − 1) /2.

Ratioed Case The behavior is also interesting for ratioed stochastic numbers:

pQ = pApB

⇒
(

q

q + 1

)

=
(

a

a + 1

)(
b

b + 1

)

⇒ q = ab

1 + a + b

(7)

For large numbers (i.e. a + b � 1), this can be approximated as

q ≈ ab

a + b
, (8)

which is useful for a variety of calculations.

LLR Case The LLR behavior has an interesting interpretation for small numbers,
when a 	 1 and b 	 1:

LQ = log �Q ≈ log �A�B

= log �A + log �B

= LA + LB

(9)

If A, B, and Q are all LLR stochastic numbers, then the corresponding computation
is approximated by

q ≈ a + b. (10)
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Example 4 (OR Operation)
The OR operation does not have a straightforward arithmetic application, but

makes for an instructive exercise. Given two independent ideal stochastic inputs a

and b, the OR operations has

pQ = pA + pB − pApB. (11)

A numerical example is shown in Fig. 4, with input probabilities pA = 1/2 and
pB = 2/3, with output probability 5/6.

Note that if pApB 	 pA + pB , then the OR gate can be considered an
approximate adder for probabilities:

pQ ≈ pA + pB. (12)

A numerical example for this approximation is shown in Fig. 5. In this case, the
input probabilities are 1/6 and 1/12, and the output probability is their sum, 1/4.

Unipolar Case For unipolar inputs with scale constants MA, MB , the output is

q = MAMB

(
a

MA

+ b

MB

− ab

MAMB

)

(13)

Repeating the same scale constants and values from Example 3, the output is
expected to be q = 18(3/6 + 2/3 − 6/18) = 15 with MQ = 18, which corresponds
to pQ = 5/6 as shown in Fig. 4.

A = 0101 0110 1010
(pA = 1/2)

B = 1101 0111 0101
(pB = 2/3)

Q = 1101 0111 1111

(pQ = 5/6)

Fig. 4 Stochastic behavior of the OR gate. The unipolar input probabilities are pA = 1/2 and
pB = 2/3, and the output probability is pQ = 5/6. For the bipolar case, the corresponding values
are a = 0, b = 1/3, q = 1/3. For the ratioed case, a = 1, b = 2, q = 5. For the LLR case, a = 0,
b = 0.693, and q = 1.609

A = 0001 0000 1000
(pA = 1/6)

B = 0100 0000 0000
(pB = 1/12)

Q = 1001 0000 1000

(pQ = 1/4)

Fig. 5 The OR gate as an approximate adder for small input probabilities in the unipolar and
ratioed representations. Numerical values for the unipolar case are indicated in the figure. For the
ratioed case, a = 1/5, b = 1/11 and q = 1/3, which is close to a + b
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Bipolar Case As with the bipolar AND operation from Example 3, the reader
can verify that, given bipolar inputs with unit scale constants, the result is q =
(a + b − ab + 1) /2.

Ratioed Case If a and b are ratioed stochastic inputs, then the output is

(
q

q + 1

)

=
(

a

a + 1

)

+
(

b

b + 1

)

−
(

ab

(a + 1) (b + 1)

)

= a + b + ab

1 + a + b + ab

⇒ q = a + b + ab.

(14)

If a and b are large numbers, ab � 1, then q ≈ ab, so the OR gate acts as a
multiplier for large numbers in the bipolar format. On the other hand, if a 	 1
and b 	 1 then q ≈ a + b, so the OR gate acts as an adder for small numbers.
Figure 5 shows example values for the ratioed case with small-valued inputs. In the
example, the ratioed output is q = 0.33, which is somewhat close to the expected
a + b = 0.2909.

LLR Case In the LLR format, the OR gate does not have a simple interpretation
except in the case of large numbers. In that case, the computation is approximately

LQ ≈ log �A�B

= log �A + log �B

(15)

Then if A, B, and Q are all understood to be LLR stochastic numbers, then the OR
gate acts as an LLR adder:

q ≈ a + b. (16)

Example 5 (MUX Operation (Unipolar/Bipolar Weighted Adder))
Multiplexing provides a simple means of mixing two stochastic numbers

together. The result is a weighted adder circuit that works for both unipolar and
bipolar numerical formats. The inputs a and b, along with the output q, are assumed
to have the same numerical format. Regardless of chosen format, the MUX’s select
input, S, is a unipolar stochastic number with unit scale. The real value associated
with S serves as a weight constant between 0 and 1 (most often 1/2). An example
of MUX-based unipolar addition is shown in Fig. 6.

It is easy to see that the MUX’s output is a weighted mixture of the two inputs,
hence the output probability is

pQ = (1 − pS) pA + pSpB. (17)
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Fig. 6 The MUX as a
weighted stochastic adder in
the unipolar format

0

1

A = 0111 1010 0111
(pA = 2/3)

B = 0110 1100 0011
(pB = 1/2)

Q = 0110 1100 0111

(pQ = 7/12)

S = 1001 0110 0011
(pS = 1/2)

A = 0101 0110 1010
(pA = 1/2)

B = 1101 0111 0101
(pB = 2/3)

Q = 1000 0001 1111

(pQ = 1/2)

Fig. 7 Stochastic behavior of the XOR gate. The unipolar computation is indicated in the figure.
In the bipolar domain, the corresponding values are a = 0, b = 1/3 and q = ab = 0. In the ratioed
domain, the values are a = 1, b = 2 and q = 1

For the unipolar case, this can be viewed as either a weighted sum or an averaging
of the two inputs. The reader can verify that the same result holds for the bipolar
case. For ratioed and LLR stochastic numbers, the result is less convenient and is
omitted from this example.

Example 6 (XOR Gate)
Another fundamental logic operation is the XOR gate. An example of its unipolar

behavior is shown in Fig. 7.

Unipolar Case The output Q is 1 only if the two inputs are unequal, so the output
probability is

pQ = pA (1 − pB) + (1 − pA) pB

= pA + pB − 2pApB.
(18)

Bipolar Case Substituting the bipolar mappings for a, b and q, we get

q + 1

2
= a + 1

2
+ b + 1

2
− (a + 1) (b + 1)

2

⇒ q = −ab.

(19)

The XOR gate is consequently interpreted as a negating multiplier for bipolar
stochastic numbers. An ordinary (non-negating) multiplier is implemented by the
complementary XNOR operation.

Ratioed Case The reader can verify that, for ratioed stochastic numbers, the
behavior is expressed by

q = a + b

1 + ab
(20)
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which is very similar to the AND gate behavior. For small values of a and b, such
that ab 	 1, the XOR gate acts as an adder. For large values it implements the
operation

q ≈ a + b

ab
. (21)

The LLR behavior is not illuminating and is omitted from this example.

Operations with Memory

Memory has interesting consequences for stochastic computing circuits, some
useful and others problematic. We begin with applications of the simplest memory
element, the D flip flop or delay element. For a stochastic number X, we use the
notation D�X to indicate a delay of � clock cycles. If X is ideal, then the bit stream
value of X should be statistically independent from D�X for any � > 0. This fact
can be useful to perform normalizing operations, as demonstrated in the next few
examples.

Example 7 (Ratioed Multiplier)
This example considers the sequential logic circuit shown in Fig. 8, where the

inputs are assumed to be ideal stochastic numbers with a ratioed numerical format.
The output Q plays two roles: as an output it is assumed to have a ratioed format,
but it is also used as feedback to control the MUX’s select input.

If A and B are ideal stochastic numbers, then by definition D1A is statistically
independent of A, and D1B is statistically independent of B. Furthermore, A and B

are independent of each other. During each clock cycle, the MUX selects between
the independent bit streams, so the MUX output C inherits the ideal property that
D1C is independent of C. Since Q is a delayed replica of C, we conclude that
D1Q is statistically independent of Q. Since the AND, OR and MUX signals
are all statistically independent from each other at each clock cycle, the unipolar
probability solution is straightforward:

pQ = pQ (pA + pB − pApB) + (1 − pQ

)
pApB. (22)

Fig. 8 Ratioed stochastic
multiplier circuit

0

1
A

B

D Q
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After simplifying, we find that

pQ = pApB

1 − pA − pB + 2pApB

. (23)

Lastly, we substitute the ratioed format expressions from Definition 5 and find
that

q

1 + q
= ab

1 + ab

⇒ q = ab.

(24)

Hence this circuit operates as a multiplier for ratioed stochastic numbers. In the LLR
domain, it operates as an adder.

To give a precise example, we suppose the D element initially holds a zero value,
and evaluate the circuit for two ratioed stochastic inputs representing a = 4 and
b = 1/2. The corresponding probabilities are pA = 4/5 and pB = 1/3. Example
sequences for these probabilities are

A = 1110_1111_1011
B = 0110_0000_0101

A&B = 0110_0000_0001
A | B = 1110_1111_1111

Q = 0_1110_1010_1011

Ignoring the initial state of Q, the remaining sequence has a mean of 8/12, which
corresponds to a real value of q = 2 in the ratioed format. This is the expected result.

Example 8 (J/K Flip-Flop)
The J/K flip-flop is a classical memory element that sets Q�+1 := JK+Q�J K+

Q�JK . The typical schematic symbol and operation table are shown in Fig. 9.
Assuming that the inputs J and K are ideal stochastic numbers, the output Q is

delayed by one clock cycle and therefore independent of the two inputs. Then the
flip-flop’s logical definition maps directly to a probability expression:

J

K

QJ

K

Q

clk

J K Operation

0 0 Hold
1 0 Set
0 1 Reset
1 1 Toggle

Fig. 9 Symbol and operation table for the J/K flip-flop
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pQ = pJ (1 − pK) + pQ (1 − pJ ) (1 − pK)

+ (1 − pQ

)
pJ pK

= pQ + pJ − pQ (pJ + pK)

⇒ pQ = pJ

pJ + pK

(25)

This can be described as a unipolar normalizing operation, useful for computing the
relative proportion of two signals.

Example 9 (Bayes’ Law)
Bayesian inference is a point of intersection for many applications ranging from

error correction to neural networks. For readers who may be unfamiliar with the
concept, suppose we are uncertain about some fact, for instance I may worry that
I’ve left the oven on. Let A be a binary random variable representing the event that
the oven is on. Based on past experience, I can guess at a prior probability pA

that I left it turned on. Additionally suppose that I have a remote sensor B which
is supposed to indicate whether the oven is on. The sensor is unreliable for some
reason, and it is only accurate with probability pB . According to Bayes’ Law, I
can combine my prior probability with my sensor evidence to obtain an improved
posterior probability pQ:

pQ = Pr (A | B ) = Pr (B |A) Pr (A)

Pr (B)

= Pr (B |A) Pr (A)
∑

a∈{on, off} Pr (B | A = a) Pr (A = a)

(26)

Now we substitute the probability values pA = Pr (A = on), 1−pA = Pr (A = off),
pB = Pr (B | A = on), and 1 − pB = Pr (B | A = off) to obtain a simplified
expression for Bayes’ Law:

pQ = pApB

(1 − pA) (1 − pB) + pApB

(27)

This operation can be implemented a number of different ways. One of the common
implementations uses a J/K flip flop as shown in Fig. 10. In this circuit, the J/K flip-
flop sets Q := 1 if A and B are both 1, and resets Q := 0 if A and B are both 0.
If A 
= B in a given clock cycle, then the value of Q does not change. We assume
that A and B are ideal stationary stochastic numbers, so that their statistics do not
vary over time. In that case, it can be shown that Q converges in mean so that pQ

does not vary from one clock cycle to the next. Q is not ideal, but in any given clock
cycle Q is statistically independent of A and B. Then the output probability can be
expressed as
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Fig. 10 Stochastic Bayes’
Law circuit based on the J/K
flip flop. This circuit also
works as a ratioed multiplier

J

K

Q
A
B

Q

CA
B

Q

Fig. 11 Muller C-element device symbol. The C-element is a classical asynchronous gate
functionally equivalent to the Bayes’ Law circuit in Fig. 10

Q�+1 = AB + ABQ� + ABQ�

⇒ pQ = pApB + (1 − pA) pBpQ + (1 − pB) pApQ

= pApB

1 − pB − pA + 2pApB

.

(28)

This is the expression for Bayes’ Law. By an interesting coincidence, the output
probability is the same as for the ratioed multiplier in Example 7, so the ratioed
multiplier can just as well be used to implement Bayes’ Law. Conversely, the Bayes
circuit can serve as a ratioed multiplier, or as an adder in the LLR domain.

The J/K-based circuit shown in Fig. 10 is functionally equivalent to a classic
logic gate known as the Muller C-element, which is widely used in asynchronous
digital circuits and has several alternative implementations. In future examples, we
will use the C-element symbol shown in Fig. 11 to stand in for the J/K Bayes’ Law
circuit.

As a concrete example of the C-element’s function, we consider input streams
with probabilities pA = 5/12 and pB = 1/3. The output probability should be
pQ = 0.263, which is a little more than 1/4.

A = 0101_1100_0100 (5/12)

B = 0011_0001_0010 (1/3)

Q = 0001_1100_0000 (1/4)

In the ratioed domain, the corresponding values are a = 0.7143, b = 0.5 and
q = 1/3, which is close to the product ab = 0.3572. The accuracy tends to improve
as the stream length increases.

Example 10 (Toggle Flip-Flop)
The toggle flip-flop (TFF) is an interesting case where the output has probability

1/2, independent of the input probability (so long as the input is non-zero). A
numerical example is shown in Fig. 12. The TFF can be used to generate a known
constant stochastic number without requiring an additional RNG.
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Fig. 12 Toggle flip-flop
example T Q

T = 0010 0110 0100 Q = 0001 1101 1100

(pT = 1/3) (pQ = 1/2)

T Q
T = 0010 0110 0100
(pT = 1/3)

Q = 0000 0100 0100

(pQ = 1/6)

Fig. 13 TFF-based unipolar divide-by-two circuit

T Q

0

1

A

B

Z

Q

Fig. 14 TFF-based adder circuit for unipolar and bipolar formats

The main drawback to the TFF is that it introduces substantial correlation into
the output sequence. For example, if the input probability is close to 1, then the
TFF’s output will follow a regular 1-0-1-0 pattern, giving it a nearly deterministic
behavior. This can potentially interfere with the accuracy of some circuits. Never-
theless there are some important applications as demonstrated in the following two
examples.

Example 11 (Unipolar Divide-by-Two)
One immediate application of the TFF is a divide-by-two circuit shown in

Fig. 13. Since the TFF generates a unipolar output with probability 1/2, this can
be multiplied into the original input stream using an AND gate. If the circuit’s input
is an ideal stochastic number, then the TFF’s delay ensures statistically independent
inputs at the AND gate, which is required for proper function as a stochastic
multiplier (consequences of statistical dependence are studied in Example 14). This
circuit inherits some correlation effects from the TFF. For instance, if the input has
probability 1, then the output will follow the same deterministic 1-0-1-0 pattern as
the TFF.

Example 12 (Unipolar/Bipolar Adder)
A second TFF application is a non-weighted adder circuit, shown in Fig. 14, that

works for unipolar and bipolar formats. In this circuit, when A 
= B the TFF toggles
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and its output Q is selected, so Z := Q. When A = B the TFF is bypassed so
Z = B. The output stream has probability

pZ = pApB + (1/2) ((1 − pA) pB + pA (1 − pB))

= (1/2) (pA + pB) .
(29)

As with the other TFF circuits, the output of this adder is not ideal. For instance,
suppose that pA = 1 and pB = 0. In that circumstance, the TFF’s output is always
selected, and we again see the regular 1-0-1-0 pattern.

Correlation and Non-ideality

One of the greatest challenges for synthesizing scalable stochastic computing
systems is that various correlations tend to emerge from the incremental oper-
ations. When stochastic numbers are non-ideal, many of the operations from
section “Stochastic Arithmetic Operations” are invalidated, and the consequences
can be difficult to analyze. In this situation, it may not be possible to directly
feed the output from one operation into the input of another. In this section we
begin with two examples to illustrate the problem, and the remaining examples
present possible solutions. We will examine two major approaches, known as
isolation and regeneration. We will also look at a few examples where the operations
are insensitive to correlation or even benefit from certain kinds of correlation. A
more detailed treatment of correlation effects is given in chapter “Accuracy and
Correlation in Stochastic Computing”.

Example 13 (Autocorrelation in the Toggle Flip-Flop)
Non-ideality appears in the output of the TFF from Example 10, in the form

of long-running sequence auto-correlation. If the TFF’s input has a high probability,
then the output tends to toggle during the majority of clock cycles. Frequent toggling
causes it to follow a 1-0-1-0 pattern, occasionally disrupted by a repeated 1 or a
repeated 0. On the other hand, if the TFF’s input has a low probability, then toggling
is rare, which causes long runs of 1’s followed by long runs of 0’s. Over a very
large number of clock cycles, the sequence average eventually converges to 1/2, but
the behavior is very different from a Bernoulli process and can give badly distorted
computational results on finite time scales.

Figure 15 shows simulation results comparing the autocorrelation of an ideal
stochastic number to that of a TFF output, when the input probability is 0.9. The
TFF output exhibits a quasi-periodic autocorrelation due to the repeating 1-0-1-0
pattern.

https://doi.org/10.1007/978-3-030-03730-7_4
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Fig. 15 Non-ideal autocorrelation in TFF output

Isolation Methods

Example 14 (Squaring Circuit)
Since an AND gate serves as a unipolar multiplier, it might seem natural to try

and use it as a squaring circuit by feeding the same stochastic number into both
inputs, as shown in Fig. 16.

In this instance we will not obtain the desired output statistics. Since the AND
gate will always see the same value on both its inputs, the output simply follows the
input. But if the input is an ideal stochastic number, then the delayed stream DX

is statistically independent of X. By inserting a delay element, as shown in Fig. 17,
we ensure statistical independence between the gate’s inputs so that the gate can
operate properly as a multiplier.

Supposing that the D register initially contains a 0, the AND gate sees these
inputs:

Fig. 16 Failed attempt at
implementing the p2

x function X = 0101 1100 0011
(pX = 1/2)

Q = 0101 1100 0011

(pQ = 1/2)

Fig. 17 Corrected squaring
circuit using a delay register

D

X = 0101 1100 0011
(pX = 1/2)

Q = 0000 1100 0001

(pQ = 1/4)
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0101_1100_0011
& 0010_1110_0001
= 0000_1100_0001

The delay method only works for ideal stochastic numbers. If successive bits are
correlated, then the result cannot be trusted. Consider the case when all 1s appear at
the beginning of the sequence, like this:

1111_1100_0000
& 0111_1110_0000
= 0111_1100_0000

Here the output sequence is nearly the same as the input sequence, and has pQ =
5/12 which is approximately pX rather than p2

X.

Example 15 (Sample Memory Regeneration)
In Example 14, we saw a delay-based solution to remove statistical dependence.

This doesn’t work if there is autocorrelation in the stochastic sequence. But in many
cases the autocorrelation has a limited depth, so that it effectively vanishes after
some time. Then X is approximately independent of D�X for some � > 0. So
for non-ideal stochastic numbers we can sometimes resolve correlation by using a
larger number of D flip-flops in a shift-register configuration, like the one shown in
Fig. 18. It is also possible that the input stream has a periodic autocorrelation. For
example, the output from a TFF tends to repeat a distinct 1-0-1-0 pattern. This can
be disrupted by using a randomly addressed MUX to vary the shift-register’s depth
as shown in Fig. 19.

With the random-addressed delay chain, periodic autocorrelation can often be
mitigated, though not fully resolved, given sufficient memory depth. For sequences
with long runs of 1s and 0s (e.g. the TFF output induced by a low-probability input
sequence), the memory’s depth has to be much greater than the expected run length.
The MUX width does not necessarily need to be large, since the MUX inputs can
be tapped from widely spaced registers.

As an example, the random-addressed delay chain was simulated for regenerating
the output from a toggle flip flop, with a low input probability of pX = 0.05. The

X D D D D Z

Fig. 18 Long delay chain to isolate long-lasting autocorrelation

Fig. 19 Delay chain with
random-address output to
isolate periodic
autocorrelation

X D D D D D D D

RNG

Z
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Fig. 20 Example of isolation
to reduce autocorrelation in a
TFF output

X regen.
mem.

ZQ

pQ = 1/2 pZ = 1/2pX = 0.05
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Fig. 21 Change in TFF autocorrelation after applying the isolation method shown in Fig. 20 when
the input probability is close to zero

schematic for this simulation is shown in Fig. 20. For this input probability, the TFF
output Q has runs of 1s and 0s with an average run length of about 20. This results
in a very long-lived autocorrelation for Q, as seen in the simulation results shown in
Fig. 21. After regeneration via the sample memory, the correlation effect is reduced
but not completely eliminated.

This simulation used a memory depth of 64 delays, with 8 taps spaced 7 delays
apart, at delay indices 64, 57, 50, . . . , 8. The simulation was repeated for a high
input probability, pX = 0.95, and we see from the result in Fig. 22 that the
regeneration is more successful. Again, however, the autocorrelation is reduced but
not entirely eliminated.

Regeneration Methods

To remove autocorrelation from a stochastic number, there are several sample-and-
regenerate solutions that produce a new statistically independent bit stream with the
same statistics as the original. All regeneration methods introduce some latency into
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Fig. 22 Change in TFF autocorrelation after applying the isolation method shown in Fig. 20 when
the input probability is close to one

the system, since it is not possible to instantaneously sample the input statistics. In
some special cases, the latency effects may prove advantageous, for instance it may
help stabilize iterative calculations where feedback is present. But most of the time
the latency is a drawback.

Example 16 (Counter-Based Regeneration)
The most direct means of regenerating a stochastic number is to use a binary

counter to estimate the input stream’s probability. A generic schematic for this
approach is shown in Fig. 23, where the output stream Z is generated using a
uniform RNG and a comparator. This circuit is a modification of the stochastic
number generator from Example 1. If the counter has K bits, then the counter may
accumulate for 2K clock cycles, yielding the unsigned integer count C representing
the total number of non-zero bits that occurred in that time window. Then the
probability estimate is

p̂X = C

2K
(30)

If the RNG produces uniformly distributed random numbers in the interval [0, 2K −
1], then the output stream has pZ = p̂X.

There are several tradeoffs associated with the simple counter approach in
Fig. 23. Since the counter must accumulate 2K samples, the output probability can
only be updated with a period of 2K clock cycles. Alternatively, the probability
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Fig. 23 Counter-based
regeneration schematic
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C
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R

X

Z

Fig. 24 Free-running
regeneration based on
up/down counter

up/down
counter

C+2K
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+
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R
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X

Z

estimate can be updated every clock cycle if a shift-register is used with depth 2K ,
so that the oldest sample can be subtracted out at the same time as the newest sample
arrives.

An alternative counter solution is use an up/down counter (UDC) as shown in
Fig. 24. In this approach, the input sequence it treated as a bipolar stream. The
UDC estimates the bipolar average, so the count C is treated as a signed integer.
Whenever the input is X = 1, the counter increments; whenever X = 0 the counter
decrements. Then the bipolar average is converted to a probability by

p̂X = C + 2K

2
(31)

This mapping is trivial to implement. One major advantage for the UDC is that it
can run continuously, providing a revised probability estimate every clock cycle,
without the need for a shift register.

Feedback Methods

Example 17 (Tracking Forecast Regeneration)
A negative feedback approach, depicted in Fig. 25, can provide excellent charac-

teristics in terms of both latency and gate complexity. Such an approach can be used
to replace the counter from Example 16, instead using the estimator defined by

C(t + 1) = C(t) (1 − β) + βX(t), (32)
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Fig. 25 Simplified
signal-flow schematic for a
tracking forecast memory
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Fig. 26 Convergence behavior of tracking forecast memories

where β is a parameter, 0 < β < 1, that controls the step size. In essence, this
process acts as a low-pass filter to track the constant (or slow-changing) probability
value from the fast-switching bit stream. A small β means slower tracking but
better accuracy and stability. Feedback estimation is the basis of Tracking Forecast
Memory (TFM) regeneration methods which have proved very effective in error
correction decoders.

In practice, the β parameter can be chosen as a power of 2 in order to
minimize implementation complexity. As a practical example, the generic TFM
from Fig. 25 was simulated for three different values of β. The simulation results,
shown in Fig. 26, demonstrate the time/stability tradeoff for estimating a stochastic
number with pX = 0.75. In this example, the counter’s input is an ideal
stochastic number with pX = 0.75 from an initial value of 0.5. With smaller
values of β, the circuit has higher latency but the estimate is more stable and
accurate.

The preceding examples treat regeneration as a modular problem. It is also
common to merge stochastic regeneration into the design of functional circuits.
This opens the possibility of using feedback in interesting ways, as illustrated by
the divider circuit in Example 18.
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Fig. 27 Regenerative
unipolar stochastic divider
circuit
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Example 18 (Regenerative Stochastic Divider)
Correlation can prove beneficial in certain feedback scenarios, such as the divider

circuit shown in Fig. 27. An AND gate is used as a multiplier, and the up/down
counter acts as a negative error amplifier. This circuit has one steady-state solution
where pA = pQpB , so that the up/down counter is incremented and decremented at
equal rates.

Applications

This section gives an introduction to various stochastic computing applications
which also appear in later chapters of this book.

Error Correction

A particularly interesting application of stochastic computing is in the field of
error correction decoding [4]. In many communication and memory systems, binary
data is encoded by appending parity bits, so that the combined data word obeys
prescribed structural rules, not unlike the rules of spelling in alphabetic writing
systems. If errors occur in one or a small number of bits, the structural rules allow
for those errors to be detected and corrected. As introductory examples, we consider
the two simplest codes: the single-parity check (SPC) code and the repetition code.

Example 19 (Single Parity Check Code)
Given two bits of source data u0 and u1, we wish to detect errors by appending a

single parity bit u2 to the sequence. The value of u2 is determined by the parity rule

u2 = u0 ⊕ u1 (33)

where ⊕ is addition modulo 2. So the possible sequences are

u0 u1 u2

0 0 0
0 1 1
1 0 1
1 1 0
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Fig. 28 Graph symbol (a)
and stochastic
implementation (b) for a
single parity check code
decoder
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(a)

U0

U1

U2

Û2
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This behavior corresponds to that of an XOR gate. Now suppose that we are able
to retrieve only two bits of the sequence, say u0 and u2, but the remaining bit u1 is
unknown. In that situation we can infer the value of u1 by applying the parity rule:
u1 = u0 ⊕ u2.

Now let’s alter the situation and say that our retrieval system is able to estimate
probabilities for each of the three bits, p0, p1, and p2, where each pj indicates
the probability that uj = 1, based on a measured signal. In this situation we can
estimate the extrinsic probability of one bit (say, u1) based on evidence from the
other two:

p1 | 0,2 = p0 (1 − p2) + (1 − p0) p2. (34)

This calculation is an instance of the widely used belief propagation algorithm.
In the context of stochastic computing, it has the form of an XOR operation for
unipolar stochastic numbers. So we can obtain the extrinsic probabilities for all
three bits by using three XOR operations. In the literature on error correction, this
behavior is usually packed into the simple square symbol shown in Fig. 28a; the full
implementation is shown beneath in Fig. 28b. In this example the “hat” in Û0, Û1
and Û2 indicates estimation of those bits based on extrinsic information.

Example 20 (Repetition Code)
Given one bit of source data u0, we wish to detect and correct errors by appending

two parity bits, u1 and u2, to the sequence. Both u1 and u2 are copies of the original
data bit. In this case the possible sequences are
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Fig. 29 Graph symbol (a)
and stochastic
implementation (b) for a
repetition code decoder
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As we did in Example 19, suppose that we are able to retrieve only u0 and u2, but the
remaining bit u1 is lost. We can infer the value of u1 only if u0 = u2, then u1 must
have the same value. Now suppose the retrieval system estimates bit probabilities
p0, p1, and p2. In the belief propagation algorithm, we use Bayes’ Law to obtain
the extrinsic probabilities. For bit u1, the extrinsic probability is

p1 | 0,2 = p1p2

p0p2 + (1 − p0) (1 − p2)
. (35)

For unipolar stochastic numbers, this calculation is implemented by the C-element
circuit from Example 9. The compact symbol and its implementation are shown in
Fig. 29a, b, respectively.

Example 21 (Low-Density Parity-Check (LDPC) Code)
A practical example of high-performance error correction is the LDPC code,

which is adopted as an option in most modern high-capacity data communication
standards. In this example we will only describe some of the basic features of
stochastic LDPC decoders. For more information, the reader is referred to the
substantial literature on the topic, e.g. [11, 12]. More topics on stochastic LDPC
decoding are explored in chapter “Stochastic Decoding of Error-Correcting Codes”.

https://doi.org/10.1007/978-3-030-03730-7_11
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Fig. 30 Tanner graph, also
called a factor graph,
representing an LDPC code

u1 u2 u3 u4 u5 u6

c1 c2 c3 c4

An LDPC code can be described as an interlocking network of SPC and repetition
codes. The structure is usually modeled by the Tanner graph, like the example shown
in Fig. 30.

This graph has two major components: symbol nodes (circles) and parity-check
nodes (squares). Each symbol node is essentially a repetition sub-code, and each
parity node is an SPC sub-code. These sub-codes are woven together to create
a powerful composite code. For decoding information in a retrieval system, the
square and circle nodes are implemented as instances of the circuits described in
Examples 19 and 20, respectively. To correct errors in the received data, the belief
propagation algorithm is applied locally at every node in the graph, and is iterated
until either a valid codeword is obtained (success), or an iteration limit is reached
(failure).

If all the stochastic operations were ideal, then the belief propagation operations
for SPC and repetition codes would scale properly to obtain a larger belief
propagation decoder for the LDPC code. Unfortunately the LDPC code’s structure
contains cycles which setup feedback paths in the decoding circuit. These cycles
are closely related to the concept of trapping sets, which affect all LDPC decoding
algorithms but are especially difficult for stochastic decoders [5].

The concept of a trapping set is simple: suppose the entire circuit has converged
to a correct state except for a few nodes that are involved in a feedback cycle. Then
we can remove most of the network and focus just on the nodes and edges within
the cycle, like the one1 depicted in Fig. 31. Once we’ve stripped away most of the
graph, the remaining parity check nodes have essentially no function in the subgraph
that remains. The equivalent circuit along the subgraph can therefore be simplified
as cycle of symbol nodes, with an equivalent circuit shown in Fig. 32.

If each of the C-elements in this cycle has a zero output, then they will
remain permanently locked in the zero state. This is because the J/K flip-flops (see
Example 9) are only able to change state if both the node’s inputs agree. But in this
feedback situation, they can only agree on zero.

1The subgraph associated with a trapping set should usually contain both degree-1 and degree-2
parity check nodes. Here we have omitted the degree-1 nodes since they have no relevant effect on
the circuit’s behavior.
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Fig. 31 A short cycle in the
Tanner graph that constitutes
a trapping set

Fig. 32 A deterministic
fixed-state on a trapping set in
a stochastic decoder
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To resolve the deterministic feedback in stochastic decoders, it is necessary to
break every feedback cycle with a stochastic regeneration circuit. In practice, this
usually means inserting a regeneration circuit along every edge in the Tanner graph.
Various solutions are discussed in the literature which make use of counter-based
regeneration, sample memory regeneration, and tracking forecast regeneration. The
regeneration circuits can be merged with the Bayes’ Law circuits in interesting
ways, leading to compact realizations. With regeneration circuits in place, the
stochastic circuit approximates the behavior of a belief propagation decoder.

Image Processing

Image processing tasks require complicated arithmetic operations performed in
parallel across every pixel in an image. Stochastic computing circuits bring the
potential to implement these tasks with very low hardware cost [7]. These algo-
rithms often require relatively low precision, which makes them attractive as a
potential low-latency application for stochastic computing. In addition to the numer-
ical formats and operations already discussed (e.g. addition, multiplication, etc),
image processing algorithms may call for exponentiation, scaling, thresholding,
sorting, and trigonometric functions, among others. To implement these operations,
researchers have developed a number of sophisticated stochastic approaches. These
implementations commonly mix different numerical formats into the same circuit,
making them more advanced than previous examples in this chapter.

In this section, we will examine a few examples of advanced stochastic comput-
ing operations based on finite state machines (FSMs). The general state diagram
for a stochastic FSM operation is shown in Fig. 33. In this section we consider
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Fig. 33 A stochastic finite
state machine
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Fig. 34 Generic implementation of a stochastic finite state machine

state diagrams with a linear topology of N states labeled Sj , j = 0, 1, . . . , N .
State transitions are determined by the stochastic input X. The system’s stochastic
output Q is a function of the state variable S. A variety of different functions can be
achieved by adjusting the state depth N and the output mapping f (S).

A possible FSM implementation is shown in Fig. 34. The circuit uses an unsigned
up/down counter to realize the state-transition behavior. The counter increments
whenever X = 1, and decrements when X = 0. Then the output mapping f is
implemented as a combinational function of S.

This architecture proves to be configurable for a variety of interesting functions.
A few empirical examples are offered below. A complete design methodology for
stochastic FSMs is provided by Li et al. [8].

Example 22 (Stochastic Exponentiation)
For a bipolar stochastic input X and a unipolar stochastic output Q, a stochastic

exponentiation function is obtained by the output mapping given below, which
depends on an integer parameter G:

f (S) =
{

1, S < N − G − 1
0, otherwise

(36)

The unipolar output has

pQ =
{

exp (−2Gx) , 0 < x ≤ 1
1, −1 ≤ x ≤ 0.

(37)

For proper function, a relatively large N is required, and it is assumed that G 	 N .
For a concrete example, Fig. 35 shows simulation results for N = 64 with G = 4,
G = 6 and G = 8. The expected output statistics (dotted) are shown alongside the
measured output statistics (solid). The stochastic sequences were evaluated for ten
thousand clock cycles. The circuit’s accuracy is relatively good for low values of G
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Fig. 35 Simulation results for a stochastic FSM-based exponentiation circuit. Dotted curves
indicate ideal behavior, solid curves indicate measured results

and high values of pQ, but degrades markedly when the output probability is low.
The output from this circuit is also non-ideal, since the state-machine mapping tends
to emit long runs of 1’s and 0’s, similar to the toggle flip-flop.

Example 23 (Tanh Function)
Supposing a bipolar stochastic input X and a bipolar output Q, a stochastic tanh

function is achieved by this mapping:

f (S) =
{

1, S ≥ N/2
0, otherwise

(38)

This mapping yields the output function

pQ = tanh

(
N

2
x

)

. (39)

This behavior was simulated for several values of N , with sequence lengths of ten
thousand clock cycles. The results are shown in Fig. 36.

The simulation curves show that the tanh function becomes threshold-like for
relatively small values of N . Since the input is a bipolar number, the threshold
occurs close to a real value of x = 0, corresponding to the probability pX = 0.5.
This makes the tanh circuit useful as a component for stochastic comparators and
sorting circuits.
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Fig. 36 Simulation results for a stochastic FSM-based tanh circuit. Dotted curves indicate ideal
behavior, solid curves indicate measured results

Fig. 37 Bipolar stochastic
comparator circuit A
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Example 24 (Stochastic Comparator and Median Filter)
Given bipolar stochastic inputs A and B, the circuit shown in Fig. 37 implements

a comparison by using the thresholding behavior of the tanh function. First, input B

is negated by the inverter, and a MUX is used to produce the difference 0.5 (A − B).
The bipolar tanh output is nearly q = 1 when A > B, and nearly q = −1 when
A < B. When A and B are nearly equal, the circuit produces a “soft” threshold
output.

This circuit can be used to construct a sorting module, which has application in
median filters for image denoising [7]. A median filter replaces each pixel’s intensity
with the median intensity among the nearest neighboring pixels. The median value
is detected using a tree of pairwise comparisons about each pixel neighborhood.

Example 25 (Stochastic Absolute Value and Edge Detection)
Given a bipolar stochastic input X, with a bipolar output Q, an FSM-based

absolute value function is implemented by the state mapping
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Fig. 38 Bipolar stochastic
Roberts-cross operator A
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f (S) =
{

S mod 2, S < N/2
S + 1 mod 2, S ≥ N/2

(40)

This operation is useful in computing an absolute-difference, q = |a − b|, which is
needed for calculations like the Roberts Cross operator used in edge detection filters.
The Roberts Cross operation takes four bipolar inputs, a, b, c, d, representing a
neighborhood of four pixels. The operation calculates q = 0.5 (|a − b| + |c − d|),
hence it is comprised of two absolute-difference circuits and a bipolar adder [2].

Figure 38 shows a stochastic implementations of the Roberts Cross operation
adapted from [2]. The circuit uses the same MUX-based difference operation seen
in the stochastic comparator from Example 24. The MUX outputs are then fed into
absolute-value operations and finally summed using a MUX-based bipolar adder
(Example 5).

Neural Networks

There is an appealing analogy between stochastic computing and the stochastic
on/off firing activity of biological neurons [2, 10]. A family of artificial neural
networks called Spiking Neural Networks (SNNs) are designed to model this
biological activity. In an SNN, each neuron emits a stochastic pulse train. An
analog-like signal is encoded by the density of pulses, or by the average time
between pulses. Although biological pulse trains are asynchronous, with pulses
occurring in continuous time, we may think of synchronous stochastic numbers as
an approximation to biological reality. Bayesian networks can also be considered
as a class of neural networks, so we have already seen how stochastic computation
applies in that domain. In this section we will examine some operations that are
appropriate to SNNs and similar neural network families. Similar topics related to
Brain-Inspired Computing are studied in chapter “Brain-Inspired Computing”.

https://doi.org/10.1007/978-3-030-03730-7_10
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Fig. 39 A typical neural
network structure

Inputs Outputs

The most common neural network applications use feed-forward topologies
in which signals propagate in a single direction through one or more layers of
neuron processors, as in Fig. 39. Each circle in the figure represents a “neuron,”
and every edge represents a “synapse.” In stochastic neural networks, the synapse
is essentially a wire that connects the stochastic output from one neuron to an input
of another.

At minimum, a neuron must implement two steps: the first is a weighted summa-
tion of all synapse inputs. For a neuron with K synapse inputs, the summation y is
given by:

y =
K−1∑

j=0

wjxj , (41)

where wj is a positive weight parameter and xj is the real-valued signal arriving on
the j th synapse.

The second fundamental operation is the activation function fA(y), which is a
soft thresholding function that determines the probability of “firing” (i.e. emitting
a non-zero binary value) on their neuron’s output. A typical neuron schematic is
shown in Fig. 40.

A particular neural network design may choose from a variety of different
activation functions. In most instances the logistic function is used:

fA(y) = 1

1 + e−ky
. (42)

Other popular activation functions include tanh (which we saw in Example 23),
arctan and other functions with a sigmoid shape. Also popular are non-linear or
piecewise-linear functions, such as the “rectified linear unit” (ReLU), among others.
The ReLU and logistic activation functions are plotted in Fig. 41.
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Fig. 40 Generalized signal
flow diagram for a single
neuron
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Fig. 41 Rectified linear unit (left) and logistic (right) activation functions

Example 26 (Summation of Sparse Pulses)
A MUX-based adder (Example 5) can implement weighted addition of unipolar

or bipolar inputs, but is not suitable for a large number of inputs. This is because of
the weighting: pQ = 0.5 (pA + pB). Suppose there are four inputs. Then we could
use a MUX tree as in Fig. 42. If there are K inputs, the summation is scaled by
1/K . This is acceptable if the inputs have probabilities above 1/K , but if the input
probabilities are typically small, the summation result tends toward zero.

Since synapse pulses tend to be sparse, resulting in low probability values,
it is better to use a direct summation without scaling. For very small unipolar
inputs, an OR gate suffices, as illustrated in Fig. 43. A tree of OR gates provides
an approximate sum over K inputs, provided each input conveys a probability
much less than 1/K . This is the opposite extreme from the MUX tree, and this
condition is not generally guaranteed. Some stochastic neural networks address this
problem by introducing new numerical formats to accommodate a wider dynamic
range [2].
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Fig. 42 Attenuation in a
two-layer MUX-based
stochastic adder
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Fig. 44 Stochastic finite state machine design for the rectified linear unit function

Example 27 (Rectified Linear Unit (ReLU))
For a bipolar stochastic input and unipolar output, the ReLU function can be

written as fA(y) = max (y, 0) for −1 ≤ y ≤ 1. This function is approximated by
an FSM with non-linear topology [10], as depicted in Fig. 44.

Here the output state mapping is

f (S) =
{

1, S = 5
0, otherwise

(44)

Since the topology is not linear, this FSM needs a slightly different implementation
from the up/down counter circuit used in section “Image Processing”. The FSM
implementation was simulated for ten thousand samples per data point to obtain the
results shown in Fig. 45. The FSM behavior is close to the ReLU function, but is not
perfectly discontinuous. It could be said to behave more like a “soft” ReLU.
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Fig. 45 Simulation results for a stochastic rectified linear unit

Nano-Technology and Post-CMOS Electronics

Many researchers have recognized the fault-tolerant attributes of stochastic com-
puting circuits as one of their chief advantages. Conventional digital computers
are highly sensitive to single-event upset (SEU) events, where a logic signal is
momentarily flipped due to some internal noise or external interference. SEUs are
unpredictable events that are catastrophic for conventional computers. By contrast,
a small rate of SEU events has very little impact on stochastic computing circuits.
Fault tolerance is particularly desirable for anticipated applications of nano-scale
devices fabricated near the boundary of physical scaling limits. These devices are
sensitive to the states of a small number of electrons and atoms, making them more
susceptible to SEUs than historical bulk MOSFET devices.

Some nano-scale devices can be operated in a stochastic mode, where their
outputs act like a Poisson process rather than a traditional logic operation. The
process statistics can be predictably “tuned” by adjusting electrical parameters
such as clock pulse height and width. This opens the possibility of using nano-
devices as efficient stochastic number generators or for stochastic regeneration.
“Native” stochastic computing has been examined for magnetic tunnel junctions
[9], and for types of memristor devices [6], among others. Here we consider one
example of a resistance-switching memristor device, which has been studied for
application in spiking neural networks [1] and can also be applied for stochastic
computation. Related topics are RRAM Solutions for Stochastic Computing and
Spintronic Solutions for Stochastic Computing.

https://doi.org/10.1007/978-3-030-03730-7_8
https://doi.org/10.1007/978-3-030-03730-7_9
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Fig. 46 (a) Formation of conductive filaments due to ion migration in a resistance switching
device. (b) Experimental results showing stochastic sub-threshold switching as reported in [3]

Example 28 (Non-deterministic Memristor Devices)
A common memristor structure consists of dissimilar metal anode and cathode

terminals separated by an oxide, as shown in the cross-sectional illustration in
Fig. 46a. The structure can be fabricated on the order of a single nanometer, with
very small oxide thickness between the terminals. When a positive voltage is
applied between the anode and cathode, ion migration causes conductive filaments
to aggregate within the oxide. This process eventually completes a low-resistance
path between the terminals, referred to as the device’s “ON” state.

Filament formation is reversible by applying a negative voltage to the anode
relative to the cathode. This causes ions to migrate away from the anode, restoring
the device to a high-resistance “OFF” state. A switching memristor can be reliably
switched ON and OFF by applying voltage pulses with amplitude that exceeds the
device’s switching threshold voltage.

When pulses are applied with sub-threshold amplitudes, the device’s switching
is random. The probability of switching is affected by the pulse amplitude, duration
and by the density of pulses in time. Generally speaking, high amplitude, width
and density all increase the probability of switching. Results from an example sub-
threshold switching experiment are shown Fig. 46b (using data from Gaba et al. [3]).
The device’s switching activity can be fit to a Poisson process, and the statistical
parameters appear to be a predictable function of the pulse parameters. Statistical
data from [3] are reproduced in Fig. 47, showing experimental data against a best-fit
distribution.
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Fig. 47 Distribution of resistance switching delay due to sub-threshold pulsing, as reported in [3]

Conclusion

This chapter offered a brief introduction to the fundamentals of stochastic com-
puting, and to topics and applications that are of current interest in the field. The
remaining chapters of this book offer a more advanced look at the fundamental
methods and applications of stochastic computing. While this tutorial focused
mainly on functional analysis of stochastic circuits, there is still much to be learned
about their precision, accuracy, efficiency, latency, and other tradeoffs that affect
the competitiveness of stochastic computing against traditional methods. It is by
no means a universal replacement for conventional computing architectures, but
there are important niches where stochastic computing clearly shines, and this has
motivated a continued and growing interest in the subject.
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Accuracy and Correlation in Stochastic
Computing

Armin Alaghi, Paishun Ting, Vincent T. Lee, and John P. Hayes

Abstract This chapter begins by reviewing the sources of inaccuracy in stochastic
computing, focusing on correlation, that is, dependencies among stochastic bit-
streams. The measurement of correlation is considered, and the SCC metric is
defined. The properties of correlation are then explored including some that have
only been discovered recently. Correlation can be seen in two ways: either as
corrupting a function f, or as changing f to a different, but potentially useful one.
Therefore, to ensure that a stochastic circuit works as expected it is important to
manage correlation appropriately. This can be done with correlation-controlling
units, which must be used carefully to avoid unexpected functional changes
and excessive hardware area or latency overhead. There are also cases where
correlation has no effect at all (correlation insensitivity). Identifying such immunity
to correlation can aid the design of stochastic circuits. Finally, design of stochastic
number generators to provide specified levels of correlation is discussed.

Keywords Cross correlation · Autocorrelation · Random number sources ·
Correlation metrics · Correlation mitigation

Error Sources in Stochastic Circuits

Stochastic computing (SC) can be summarized concisely as computing with proba-
bilities represented by pseudo-random bit-streams [7]. As discussed in the preceding
chapters, its advantages include small size, low power, error tolerance, the use of
standard digital components, and bio-compatibility. Its primary disadvantages are
low accuracy, long computing times, and costly randomness sources. Consequently,
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Fig. 1 Structure of a generic stochastic circuit annotated with known sources of inaccuracy

the design of a stochastic circuit involves complex trade-offs among accuracy,
computing time and hardware cost. These trade-offs are vividly seen in the
phenomenon of correlation, which is the focus of this chapter.

Figure 1 illustrates the general structure of a stochastic circuit. At its core is
a combinational or sequential logic circuit C, which is supplied by a user with
n stochastic numbers (SNs) X1, X2, . . . , Xn of length N. Xi is composed of N
bits, where the t-th bit X(t) is assumed to be randomly generated in clock cycle t.
These bits are, at least approximately, independent of one another, hence the name
stochastic. Xi has a numerical value denoted Xi which lies in the unit interval [0,1].
In SC’s unipolar format, Xi is the probability pXi

of a 1 appearing anywhere within
Xi. C also has a set of k ancillary inputs R1, R2, . . . , Rk, which are typically N-
bit SNs of constant value Ri = 0.5. These constants are usually not user-supplied;
rather they are an integral part of a stochastic circuit’s design and enable the circuit
to approximate a desired function to some desired level of accuracy. If the Xi’s are
derived from binary (base-2) numbers, additional randomness sources (not shown)
are needed to perform binary-to-stochastic number conversion. In general, if C is
combinational, it computes an arithmetic function of the form Z(X1, X2, . . . , Xn, R1,
R2, . . . , Rk). For example, when used as a stochastic adder, a two-way multiplexer
computes the function

Z (X1, X2, R1) = 0.5 (X1 + X2) (1)

where R1 supplies the scaling factor 0.5.
An assumption made almost universally in determining the stochastic function

computed by a circuit C is that its input bit-streams X1, X2, . . . , Xn, R1, R2, . . . ,
Rk are independent. Roughly speaking, this means that the bit-streams should be as
uncorrelated as possible. This requirement is assumed to be satisfied when all n + k
inputs are derived from n + k separate Bernoulli randomness sources. Correlation
therefore refers to stochastic signals that are related in some way, and it can take



Accuracy and Correlation in Stochastic Computing 79

many forms. Cross correlation, or simply correlation, occurs between two or more
non-independent SNs. For example, the SN X = 10111010 is highly correlated in
a negative sense with Y1 = 01000101, since their 1s and 0s never overlap. The
SN Y2 = 10011000 is also correlated with X because its 1s always overlap the
1s of X. The SN Y3 = 01011101, which is generated by rotating or shifting X
to the right by one bit, is not significantly cross correlated with X, but the one-
cycle-delayed version of Y3 is. Cross correlation may change the functionality
of both combinational and sequential stochastic circuits by favoring certain input
patterns. On the other hand, temporal correlation, or autocorrelation, refers to
correlation between a bit-stream or part of a bit-stream and a delayed version of
itself. For instance, Y4 = 011001110 contains some autocorrelation due to the fact
that 01 is always followed by 1. Autocorrelation can severely affect the functionality
of a sequential stochastic circuit by biasing it towards certain state-transition
behavior.

Defining and measuring correlation is surprisingly difficult. A survey made in
2010 by Choi et al. [11] catalogs 76 different correlation metrics developed in
different fields over many years, none of which is well suited to SC! Relatively
easy to define is the independence or no-correlation assumption, which allows a
stochastic circuit C’s SN inputs to be treated as Bernoulli processes, and the function
of C to be expressed and analyzed using basic probability theory. For example, if
two independent SNs X1 and X2 of value X1 and X2, respectively, are applied to
an AND gate, the output value Z is the arithmetic product X1X2. This reflects the
fact that the probability of the AND gate outputting a 1 is the probability of a 1 at
the first input multiplied by the probability of a 1 at the second input, provided the
inputs are not cross correlated. If X1 and X2 are correlated, Z can deviate from X1X2
in complex ways, as we will see shortly.

Random number sources (RNSs) play a central role in the design and operation
of stochastic circuits. They provide the stochasticity needed by stochastic number
generators (SNGs) to produce SNs with a sufficient level of independence, but they
are a big contributor to overall hardware cost [25]. SC designers generally rely on
linear feedback shift registers (LFSRs) as RNSs because of their relatively small
size and low cost. An LFSR is a deterministic finite-state machine (FSM) whose
behavior is pseudo-random, meaning that it only approximates a true random source
[14]. An SC designer must usually optimize the use of RNSs in a way that provides
sufficient randomness while meeting a cost budget.

SC is a type of approximate computing and trades off computational errors for
other benefits. It has several error sources, as shown in Fig. 1. These error sources
are peculiar to SC and do not include physical errors due to unreliable hardware or
soft errors caused by environmental effects like cosmic radiation [8]. The errors in
question are briefly summarized next.

Rounding Errors Errors caused by rounding or quantization reflect the fact that
with N bits, a bit-stream can only represent exactly the N + 1 numbers in the set
SN = {0, 1/N, 2/N, . . . , (N−1)/N, 1}. If a desired number X is not in this set, then
it must be rounded off to the nearest member of SN. For instance, with N = 16 and
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X = 0.1555, we can round X down to 2/16 = 0.1250 or, slightly more accurately,
round it up to 3/16 = 0.1785. Rounding errors can be mitigated by increasing N to
expand SN . Note, however, that N must be doubled just to add 1 bit of precision to
the numbers in SN .

Approximation Errors These errors result from the fact that most arithmetic
functions of interest cannot be implemented exactly by a stochastic circuit. As a
result, they must be approximated by stochastic functions that are implementable.
All stochastic function values must be scaled to lie in the unit interval [0,1].
Without constant Ri’s as inputs, the only single-variable stochastic functions that
can be combinationally realized exactly are the trivial cases X and 1−X. Hence,
common arithmetic functions like X2,

√
X and sin(X) must be approximated by

some synthesizable stochastic function of the form Z(X, R1, R2, . . . , Rk). Only a
few general methods for finding such functions are known; all are relatively complex
and have particular design styles [4, 26]. For example, the ReSC synthesis method
employs Bernstein polynomials with constant coefficients in the unit interval to
approximate Z(X) [25].

Random Fluctuations The (pseudo) random nature of the bits forming an N-bit
SN X as it emerges from an SNG is also a major error source. Fluctuations in X’s
bit-pattern cause its estimated or measured value X̂ to deviate from the target or
exact value X. Since X can have any of 2N different bit-patterns, X and X̂ can differ
significantly, especially when N is small. Figure 2 shows how three SNG-generated
SNs fluctuate around their target value 0.5 as N changes. Such random fluctuation

errors can be quantified by the mean square error (MSE)EX = E

[(
X̂ − X

)2]
. Like

Fig. 2 Random fluctuations in three SNs with the exact value 0.5 as bit-stream length N
increases [31]
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rounding errors, random fluctuation errors tend to diminish with increasing N. Note,
however, that when N is odd, X̂ must differ from X = 0.5 by at least one bit. Hence as
N increases toward infinity, the graphs plotted in Fig. 2 continue to oscillate around
0.5 with a steadily decreasing MSE that approaches, but never reaches, zero.

Constant-Induced Errors It was recently observed that the ancillary SNs R1, R2,
. . . , Rk (see Fig. 1) found in most SC designs are an unexpected and significant
error source [31]. This is because their influence on the output value Z is subject
to time-dependent random variations. Interestingly, constant-induced errors can
be eliminated completely by removing the Ri’s and transferring their function to
sequential subcircuits inside C that track the behavior of the Ri’s. A systematic
algorithm called CEASE has been devised for efficiently removing constants and
the errors they produce [31].

Correlation To maintain accuracy, it is often desirable that the bit-streams applied
to a stochastic circuit retain their independence as they are being processed. This
independence is reduced by correlation from several sources including: interactions
among bit-streams during normal computation that introduce dependencies and
similarities, poor randomness properties of individual RNSs that cause successive
bits to be related, sharing of RNSs either directly or indirectly across the SNGs to
reduce overall hardware costs, and temporal dependencies injected by sequential
circuits. As a result, correlation errors tend to increase with circuit size and the
number of layers of processing. They cannot be eliminated merely by increasing
bit-stream length N.

At this point, we see that the accuracy of a stochastic circuit is impacted by many
loosely related factors that are addressed by many different methods and are by no
means fully understood. Correlation is amongst the most intractable of these factors.
Figure 3 illustrates an example of how cross correlation can introduce errors and
how to appropriately fix such errors. The problem here is to design a stochastic
squarer to compute X2 using the standard AND-gate-based multiplier described
previously. To use it for squaring requires two independent, and therefore different,
bit-streams with the same value X. This may be achieved by generating the bit-
streams from two independent RNSs. However, the design of Fig. 3a uses a
single input bit-stream X that fans out into two identical, and therefore highly
correlated copies that have a shared RNS and re-converge at the AND gate.
Consequently, Z = X instead of X2. This illustrates correlation due to RNS sharing
and reconvergent fanout.

Figure 3b, c shows two ways to mitigate the correlation problem. The circuit in
Fig. 3b converts one copy of X from stochastic to binary and then back to stochastic
again using a new RNS; this process is known as regeneration. As a result, the AND
gate sees two independent SNs of value X and so computes a good approximation
to X2. The design of Fig. 3c employs a D flip-flop called an isolator [13] to delay
one copy of X by a clock cycle. Instead of seeing the same bit X(t) twice in clock
cycle t, the AND gate sees X(t) and X(t−1), which are independent by the Bernoulli
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Fig. 3 Three designs for a
squarer: (a) Incorrect design
that ignores correlation.
Decorrelated designs using
(b) regeneration, and (c)
isolation [29]
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property. This method of decorrelation is termed isolation and is usually much less
expensive than regeneration [29].

Some stochastic operations, notably the scaled addition of Eq. (1) implemented
by a multiplexer, do not require their inputs to be independent. Such circuits are
said to be correlation insensitive (CI) [5]. The CI property allows the two input SNs
X1 and X2 of the adder to share a common RNS without producing correlation-
based errors of the type illustrated by Fig. 3a. This can be explained by the fact that
the adder’s output bit Z(t) at clock cycle t is either X1(t) or X2(t), so there is no
interaction between the two data inputs.

While correlation usually reduces the accuracy of stochastic circuits, in some
cases its deliberate use can change a circuit’s function to a new one that is advan-
tageous in some way [2]. For example, an XOR (exclusive-OR) gate supplied with
uncorrelated inputs X1 and X2 realizes the not-so-useful function X1 + X2 − X1X2.
If the inputs are positively correlated by enforcing maximum overlap of 1s, the XOR
realizes the absolute difference function |X1 − X2|. This has been used to design an
edge-detector for image processing that contains orders of magnitude fewer gates
than a comparable non-stochastic circuit [2]. Correlation is similarly used in the
design a stochastic division circuit CORDIV that has accuracy advantages [10].

The design and optimization of RNSs for correlation management are also
an important issue in SC [2, 23]. The problems fall into two categories: (1)
designing RNSs and SNGs to generate bit-streams with desirable cross correlation
and autocorrelation properties, and (2) strategically reducing the use of RNSs to
decrease hardware cost while maintaining moderate independence requirements for
SNs. The latter problem usually requires inexpensive re-randomization techniques
and can take advantage of any CI properties for RNS sharing. Making effective use
of correlation in SC is by no means well understood and is a subject of on-going
research.

The rest of the chapter is organized as follows. Section “Measuring Correlation”
reviews the SC correlation metric for correlation measurement and describes how
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it can be used to analyze and design stochastic circuits. Section “Correlation-
Controlling Units” introduces correlation-controlling circuits intended to eliminate
or insert correlation. Correlation insensitivity and its role in avoiding correlation
problems are discussed in section “Correlation Insensitive Stochastic Circuits”.
Finally, section “Design and Optimization of RNSs” explains how careful RNS
design can be exploited to engineer correlation and reduce hardware cost.

Measuring Correlation

Being able to measure and quantify correlation rigorously in the SC context is of
crucial importance in the analysis and the design of stochastic circuits. We begin
by examining stochastic cross correlation SCC, a correlation measure specifically
designed for SC. We then discuss how the function of a stochastic circuit changes
with different values of SCC.

Quantifying Correlation with SCC

An early effort to quantify correlation for SC was made by Jeavons et al. [16].
Instead of directly providing a correlation measure for SC, they define two SNs
X and Y as independent or uncorrelated if the value of the SN Z obtained
from ANDing X and Y is XY. This definition effectively says that two SNs
are independent if a stochastic multiplier can compute their product accurately.
Obviously, this definition of independence assumes the computation to be otherwise
error-free, i.e., it has no random fluctuation errors, rounding errors, etc. However, it
is rarely the case that Z’s value is exactly XY, even when X and Y are generated
using independent RNSs. With only this definition of independence, it remains
challenging to quantify the behavior of stochastic circuits under different levels of
correlation.

Table 1 shows how the function of an AND-based multiplier changes under the
influence of correlation. The multiplier performs as expected when the inputs X
and Y are independent. However, it computes Z = min(X, Y) when X and Y are

Table 1 SC functions implemented by a two-input AND gate with different levels of input SN
correlations

X Y X ∧ Y Function

Uncorrelated 01010101(0.5) 11110011(0.75) 01010001(0.375) X × Y

Positively
correlated

11110000(0.5) 11111100(0.75) 11110000(0.5) min(X, Y)

Negatively
correlated

11110000(0.5) 00111111(0.75) 00110000(0.25) max(0, X + Y − 1)
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maximally correlated in the positive sense, i.e., when the 1s in X and Y overlap as
much as possible. On the other hand, it computes Z = max(0, X + Y − 1) when
the 1s in X and in Y overlap as little as possible. Instead of using vague terms like
maximally correlated or negatively correlated, it is desirable to be able to rigorously
quantify correlation for SC. Unfortunately, none of the 76 correlation measures
summarized in [11] perfectly fits the needs of SC, including the Pearson correlation
measure ρ which is widely used in statistical analysis. Pearson correlation presents
a problem for SC, because its value depends on the actual value of the bit-
streams being compared. For example, the maximum Pearson correlation value
ρ = +1 implies that the bit-streams are identical. This means that bit-streams having
different values, even if their 1s maximally overlap, fail to attain the maximum value
of ρ.

A suitable correlation metric for SNs would yield a value +1 for maximum
overlapping of 1s and 0s, a value −1 for minimum overlapping of 1s and 0s, and a
value 0 for independent SNs. The metric should not be impacted by the actual value
of the SN, and should also provide intuitive functional interpolation for correlation
value other than +1, −1 or 0.

The correlation measure called the SC correlation coefficient or stochastic cross
correlation (SCC) has been proposed to fit SC’s needs [2]. For a pair of SNs X and
Y, SCC is defined as follows

SCC (X, Y) =
{

pX∧Y−pXpY
min(pX,pY)−pXpY

if pX∧Y > pXpY
pX∧Y−pXpY

pXpY−max(pX+pY−1,0)
otherwise

(2)

where pX = X, pY = Y, and pX∧Y = p(X(t) = 1, Y(t) = 1) for all t. To
measure SCC for SNs X and Y, pX∧Y is first computed which is the prob-
ability of both X and Y being 1. This value is then centralized by shifting
by the estimate for −pXpY that corresponds to the uncorrelated value. Cen-
tralization ensures uncorrelated bit-streams yield SCC = 0, which is consis-
tent with both Pearson correlation and the definition of independence in [16].
Finally, the centralized value is normalized by dividing it by the maximum
attainable value. Normalization guarantees that for two maximally similar or
different SNs X and Y, SCC(X, Y) has value +1 or −1, respectively. Unlike the
Pearson correlation measure ρ(X, Y), SCC(X, Y) does not vary with the value of
the SNs.

Equivalently, and perhaps more intuitively, SCC can also be defined in terms of
how often 1s and 0s occur in the two SNs. For two N-bit SNs X and Y, let Ni j

denote the number of occurrences of the 2-bit pattern X(t)Y(t) = ij. Obviously,
N00 + N01 + N10 + N11 = N. We can then compute SCC by replacing the
estimates of pX, pY, and pX∧Y in Eq. (2) by (N11+N10)/N, (N11+N01)/N and N11/N,
respectively, to obtain

SCC (X, Y) =
{

N11N00−N10N01
N×min(N11+N10,N11+N01)−(N11+N10)(N11+N01)

if N11N00 > N10N01
N11N00−N10N01

(N11+N10)(N11+N01)−N×max(N11−N00,0)
otherwise
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where the numerator N11N00 − N10N01 is common to many correlation measures
including Pearson correlation:

ρ (X, Y) = N11N00 − N10N01√
(N11 + N10) (N11 + N01) (N00 + N01) (N00 + N01)

The major difference between SCC and ρ lies in the denominator. SCC nor-
malizes the measure in a way that maximally positively/negatively correlated SNs
would produce a + 1/−1 correlation value. Pearson correlation, on the other hand,
is normalized by the variance of the bit-streams, which does depend on the value of
the bit-streams.

Table 2 shows some examples of SN pairs and compares their ρ and SCC values.
Note that ρ and SCC are the same for independent SNs and for SNs with equal
values. When the SNs have different values, SCC consistently gives the value
+1 and −1 when the maximal overlap and minimal overlap of 1s and 0s occur,
respectively.

The SCC metric of correlation provides a precise way to define a circuit’s
stochastic behavior under the influence of various (cross) correlation levels. It
further allows us to explore new SC designs enabled by intentionally introducing
non-zero correlations. Figure 4 shows a pair of SNs X and Y having SCC(X,
Y) = +1 applied to an XOR gate, which computes X + Y − 2XY if X and Y are
independent. The correlation between the inputs changes the circuit’s functionality
to the potentially more useful absolute difference function, which leads to a highly
efficient way of implementing edge detection in SC-based vision chips [6]. This
illustrates the usefulness of deliberately injected correlation in designing stochastic
circuits.

So far, we have only discussed cross correlation between SNs. Autocorrelation in
stochastic circuits is much less well understood. Except the standard autocorrelation
metric used in signal processing, an autocorrelation measure that is suitable for
SC appears to be lacking. Almost all existing SC designs therefore assume the

Table 2 Example SNs with
their SCC and Pearson
correlation values [2]

SN pattern SCC(X, Y) ρ(X, Y)

X = 11110000 Y = 11001100 0 0
X = 11110000 Y = 00001111 −1 −1
X = 11111100 Y = 11110000 1 0.58
X = 11111100 Y = 00001111 −1 −0.58
X = 11111100 Y = 11100001 0 0
X = 11000000 Y = 11111100 1 0.33

01101110 (5/8) X
01001110 (4/8) Y 00100000 (1/8) Z

Fig. 4 XOR gate with maximal positively correlated inputs which implements the absolute-
difference subtraction function |X − Y| [2]
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inputs to be free of autocorrelation. It is well recognized that the presence of
autocorrelation, if not carefully handled, presents accuracy problems in sequential
SC designs, including applications such as Bayesian inference [12], LDPC decoding
[24, 27], and neural networks [9]. There are, fortunately, several ways to mitigate
autocorrelation in SC, which we discuss in section “Correlation-Controlling Units”.

Stochastic Functions with Different SCC Levels

Table 1 shows the functionality of the AND gate at SCC 0, +1, and −1. To derive
the stochastic function of the AND gate at any other SCC level, we need to calculate
the linear combination of the function at SCC = 0 and the function at SCC = +1
or −1, depending on the direction of the correlation [2]. For instance, the AND gate
with SCC = 0.5 implements the function Z = 0.5(min(X, Y) + XY). In the general
case, if we have a circuit implementing a two-input Boolean function z = f (x, y)
with input SNs X and Y having arbitrary correlation level SCC, the value of SN Z
at the output of the circuit will be

Z =
{

(1 + SCC) .F0 + SCC.F−1 if SCC (X, Y) < 0
(1 − SCC) .F0 + SCC.F+1 otherwise

(3)

Here F0, F+1 and F−1 denote the stochastic function implemented by the same
circuit at SCC levels 0, −1 and + 1, respectively. Using probabilistic transfer
matrices (PTMs), Alaghi and Hayes [2] show that for any two-input combinational
circuit, we can derive F0, F−1, and F+1 via the following matrix multiplication

[i0 i1 i2 i3] .[t0 t1 t2 t3]T

in which the tk’s denote the truth table of the corresponding Boolean function and
the ik’s are obtained from Table 3. As an example, suppose we want to derive the
stochastic function implemented by an XOR gate at SCC levels 0 and +1. The
truth table PTM of the XOR gate is [0 1 1 0]T, so we will have F0 = (1 − X).
Y+(1 − Y). X and F+1 = max (Y − X, 0)+ max (X − Y, 0) = | X − Y |. To find
the stochastic function of the XOR gate with SCC = 0.25, we simply calculate the
linear combination F0.25 = 0.75F0+0.25F+1.

Table 3 PTM elements used to derive the stochastic function of a two-input combinational circuit
at SCC levels 0, −1 and +1 [2]

F0, SCC = 0 F−1, SCC = −1 F+1, SCC = +1

i0 (1 − X). (1 − Y) max(1 − X − Y, 0) min(1 − X, 1 − Y)
i1 (1 − X). Y min(1 − X, Y) max(Y − X, 0)
i2 (1 − Y). X min(1 − Y, X) max(X − Y, 0)
i3 X. Y max(X+Y − 1, 0) min(X, Y)
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Deriving the stochastic function of circuits or Boolean function with more than
two inputs is not trivial, because SCC does not extend easily to multiple inputs.
The most convenient method of quantifying correlation between more than two
inputs is done by using PTMs, which enumerate the probability distribution of
any combination of 0s and 1s among the signals. However, a systematic method of
handling multi-input functions with arbitrary SCC levels is not known, except in a
few special cases. One such case is when all a function’s inputs are independent [1].
When all the inputs are maximally positively correlated with SCC = +1, we may
also be able to derive the circuit’s stochastic function. For instance, a k-input AND
gate with maximally correlated inputs X1, X2, . . . , Xk implements the function
min(X1, X2, . . . , Xk).

Correlation-Controlling Units

As noted previously, managing correlation is among the more challenging design
tasks in SC, as correlation plays a key role in defining a stochastic circuit’s accuracy
and functionality. It involves complex trade-offs between hardware cost, latency, and
the desired level of accuracy. This section reviews some of the approaches proposed
for managing correlation in SC using correlation-controlling units, a class of sub-
circuits inserted into stochastic arithmetic units to increase or reduce correlation
levels. The major design consideration in deploying correlation controllers is to
achieve an appropriate level of correlation while meeting hardware and latency
constraints. Although correlation can be viewed as a resource to facilitate the design
of certain stochastic functions, most stochastic circuits are intended to work with
independent SNs. Therefore, much prior work in correlation control was devoted
to decorrelation, the process of eliminating undesired correlation completely (i.e.,
making SCC as close to 0 as possible). There have also been efforts in designing
circuits to increase or decrease SCC, such that the SCC is pushed towards +1 or − 1,
respectively.

Regeneration-Based Decorrelation

Perhaps the most direct way to eliminate correlation is through regeneration, where
SNs are first converted to binary form using stochastic-to-binary converters, and
then are converted back to SNs by SNGs with suitably independent RNSs. A
regenerated SN has a value which is the same as, or very close to, its original value.
However, the positions of its 1s are expected to be different.

An example of regeneration-based decorrelation is shown in Fig. 3b, where the
goal is to produce one of the two copies of X using an RNS that is independent
of the original X. In this example, it is sufficient to regenerate X such that the two
inputs of the multiplier are not cross correlated, as the multiplier is a combinational



88 A. Alaghi et al.

stochastic circuit. However, regeneration-based decorrelation can also be applied
to remove autocorrelation, which can be a major factor impacting the accuracy of
sequential stochastic circuits. This is because the process of regeneration provides
an opportunity to completely reorder the bits in the SN being regenerated. To
eliminate autocorrelation in the target SNs, it is sufficient to use RNSs that have
no autocorrelation.

In principle, regeneration-based decorrelation can solve most types of correlation
problems. However, it is also subject to several design constraints that must be
taken into consideration when deploying it. First, regeneration incurs significant
latency overhead and stalls computation. This is because it requires a stochastic-to-
binary format conversion that is implemented using a standard binary counter, which
simply counts the number of 1s in the incoming SN. This process can take as many
clock cycles as the length N of the SN. The arithmetic units after the regeneration-
based decorrelator cannot start computation until conversion completes. Given that
many SC applications have Ns in the thousands, regeneration can easily incur a
latency of many thousands of clock cycles. Furthermore, the hardware overhead
for a regeneration-based decorrelator is very high. In the squarer example shown
in Fig. 3b, the overhead of regenerating a single SN is a counter, a stochastic
number generator (SNG) which is essentially a comparator, and a new independent
RNS, which is usually a precious resource in SC systems. The actual hardware
cost depends on and grows with the length of the SN to be decorrelated. When
compared to the main arithmetic component, which is a single AND gate in this
case, the hardware overhead is extremely high. A study of a typical SC image-
processing system, reported that more than 80% of its area came from circuits
for SN generation [25]. Excessive use of regeneration-based decorrelators can
consequently degrade the performance and increase the cost of a stochastic circuit
drastically. It is therefore good practice to consider other types of decorrelation
when feasible.

Lastly, it is worth noting that some variants of the regeneration-based method
actively trade higher accuracy for less hardware area and latency by regenerating
each bit of the SN based on a small portion of the bit-stream [28]. Since each
regenerated bit is based on partial information from the original SN, the regeneration
process can incur more errors, but in return has shorter latency and less hardware.
For example, the single-ended counter hysteresis (SCH) decorrelator proposed in
[28] keeps updating the current estimate of the input’s binary form at each clock
cycle through a dynamically balanced system that reaches steady state quickly.
This is enabled by using a small counter for stochastic-to-binary conversion that
is usually much smaller than the full counter needed to count the entire input SN.

Shuffle-Based Decorrelation

Similar to regeneration, shuffling performs decorrelation by re-positioning 1s in the
target SN [19]. The difference is that the shuffling method limits the likelihood of
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Fig. 5 Shuffle-based
decorrelator of depth 3, where
R is a random number
uniformly distributed among
0, 1, 2 and 3 [19]
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moving a 1 to a faraway location. In other words, a 1 appearing in the t-th bit of
the original SN is likely to be placed somewhere near the t-th bit of the new SN.
Shuffling works by first observing and storing a subset of bits from the initial SN,
and then using a new RNS to select a stored bit per cycle for outputting. Figure
5 shows a shuffler design with depth D = 3, meaning that it can store 3 bits for
future output. The RNS here is a random number R taking a value in {0, 1, 2, 3}
uniformly at each clock cycle. Each newly received bit from the input is stored in
the shuffler. At the same time, one of the stored bits (including the newly received
one) is selected for output. The output SN therefore contains the same number of
1s as the input SN, since the shuffler only outputs what it received. However, the
position of 1s can be very different, hence achieving the effect of decorrelation.

The advantages of the shuffle-based decorrelation include relatively low latency
and low hardware cost compared to the regeneration-based method. Typical num-
bers for the depth D are relatively small, like 4, 6 or 8. This not only allows the
received bits from the input bit-stream to be stored directly in stochastic form
without inducing excessive hardware overhead, but also reduces the number of
bits in the random source serving as the selection signal. The latency for the
shuffling method, i.e., the number of clock cycles required before generating the first
output bit, is roughly equal to the depth D, which is low compared to regeneration,
especially when the input SN is very long.

Shuffling re-randomizes the position of 1s in an SN, and can thus cope with both
cross correlation and autocorrelation. However, it may not completely eliminate
correlation, but rather only reduce it. This is because the new SN generated by
shuffling is not completely independent of the original SN. Consider an SN of value
0.5, with all 1s in the first half of the bit-stream and all 0s in the second half. In this
case, the shuffler would receive and store only 1s in the beginning, and so has no
choice but to output 1s initially. After the 0s start coming into the shuffler, the 1s
remaining in the shuffler will quickly be released to the output, and the likelihood
that a 1 is released into the output at a very late clock cycle is low. One can expect
that the output SN will tend to have more 1s in the first half and more 0s in the
second half. This is, however, very unlikely for a Bernoulli bit-stream. Shuffling and
its variants have been successfully deployed in applications like Bayesian inference
[12] and LDPC decoding [27, 28] to reduce autocorrelation.
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Isolation-Based Decorrelation

Unlike the aforementioned decorrelation methods, isolation does not alter the
positions of 0s and 1s in the SN. It was proposed in the 1960s [13] mainly to cope
with cross correlation by adding appropriate delays to SNs. The added delays shift
SNs temporally so that correlated bits from different SNs are staggered. An example
of isolation-based decorrelation appears in Fig. 3c, where the isolator (a delay
element implemented by a D flip-flop) is inserted into one of the two inputs of the
squarer. By delaying one copy of X by one clock cycle, the output Z(t) = p(X(t) = 1,
X(t − 1) = 1) = p(X(t) = 1)p(X(t − 1) = 1), so Z = X2 as expected, provided that
X(t) and X(t − 1) are statistically independent for all t, as asserted by the Bernoulli
property.

The major advantages of isolation are very low hardware cost and low latency,
compared to regeneration. However, the application of isolators tends to be difficult.
Carelessly placing isolators in a stochastic circuit can lead to several problems, such
as failure to decorrelate correctly and unexpectedly changing the circuit’s function.
These problems occur when the placement fails to track and delay correlated signals
properly for some signal lines since isolators can inject undesired autocorrelation
into the circuit and some isolators can turn out to be unnecessary. Figure 6a shows
a stochastic circuit that is intended to compute X4 by naïvely cascading two squarer
circuits of the kind in Fig. 3c. While this construction appears to make sense at the
first sight, the resulting circuit does not compute X4 as expected; instead, it computes
Z = X3, a huge functional error! To see this, observe that at time t, the output of the
first AND gate is X(t) ∧ X(t − 1), and therefore the inputs to the second AND
gate are Y1(t) = X(t) ∧ X(t − 1) and Y2(t) = X(t − 1) ∧ X(t − 2). By ANDing
these two bit-streams, we get the final output as Z(t) = Y1(t) ∧ Y2(t) = X(t) ∧
X(t − 1) ∧ X(t − 2), implying that Z = XXX = X3. The cause of this error is
unanticipated autocorrelation. Note that the squarer is implemented by an AND gate
and an isolator, which effectively makes the circuit sequential. The adjacent bits of

Z(t) = X(t)X(t-1)X(t-2)X(t-3)D D

X(t)

X(t-1)

Y1(t)=X(t)X(t-1)X(t)

Y2(t)=X(t-2)X(t-3)

D

Z(t) = X(t)X(t-1)X(t-2)D D

X(t)

X(t-1)

Y1(t)=X(t)X(t-1)X(t)

Y2(t)=X(t-1)X(t-2)

(b)

(a)

Fig. 6 Stochastic implementation of X4 using isolator flip-flops; (a) an incorrect implementation
with insufficient isolators; (b) a correct implementation with three isolators
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the squarer’s output bit-stream are correlated. Therefore, delaying this bit-stream by
only one clock cycle yields a cross-correlated SN. A correct implementation of X4

is given in Fig. 6b, where the second squarer has two isolators inserted in the bottom
input line.

Generally speaking, isolators must be inserted in a way that all undesired
correlations between interacting SNs are eliminated. Finding a correct isolator
placement while minimizing the isolator usage is a challenging problem. An isolator
insertion algorithm called VAIL has been proposed for combinational stochastic
circuits [29]. It formulates isolator insertion as a linear integer program, where
the objective is to minimize the isolator count. A set of constraints are enforced
on the number of isolators that can be placed on each line of the circuit to be
decorrelated. These constraints, when satisfied, ensure that undesired correlation
between interacting SNs is removed without affecting other SN interactions.

Correlation Injection by Synchronization

While almost all stochastic circuits are designed to work with uncorrelated inputs,
there exist circuits implementing useful functions enabled by positively or nega-
tively correlated inputs. For example, if the XOR gate in Fig. 4 is used to compute
absolute difference, it requires its two inputs to be maximally correlated. To generate
inputs with predetermined correlation for such circuits, one can resort to special
types of SNGs that are capable of controlling the amount of correlation. However,
regenerating SNs with specific correlation levels in the middle of an SC system is
expensive, both in hardware cost and in system latency.

In error-tolerant SC applications such as many machine-learning and image-
processing tasks, another way to inject correlation is to use a sequential unit called
a synchronizer, which attempts to maximize the correlation level between a pair
of SNs [19]. This approach, while providing no guarantee of attaining the desired
correlation, is usually far less expensive than regeneration in terms of hardware and
latency cost. Figure 7a shows the state-transition graph of a three-state synchronizer,
whose key idea is to align the bits with the same value from inputs X and Y as much
as possible. For example, when the synchronizer receives the pattern X(t)Y(t) = 01,
it will output 00 and then go from state S0 to S2, which remembers the 1 received
from Y for later release. If X(t)Y(t) = 10 is received, then the synchronizer will
return to S0 and output 11. This effectively transforms X(t)Y(t) = (01, 10) to (00,
11), which has obviously become more correlated.

Observe that the synchronizer in Fig. 7a does not guarantee that its outputs
will have exactly the same value as X and Y. This synchronizer-induced error
occurs when the computation ends at any state other than S0, and hence there are
some remembered bits yet to be released into the outputs. Also, the synchronizer
only increases the correlation level; it does not guarantee that the output will
be maximally correlated. In fact, it does not provide any promises on the final
correlation level of the outputs. This is because this synchronizer can only remember
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Fig. 7 State-transition graphs for correlation-controlling units that inject correlation between a
pair of SN: (a) synchronizer that increases SCC; (b) desynchronizer that reduces SCC [19]

one unreleased bit from either X or Y. Thus, at state S0, if two consecutive bit
patterns XY = (01, 01) are received, the synchronizer will have no choice but to
release a 1 from Y without matching it with another 1 from X. In that case, the output
will be (00, 01), and the synchronizer will end at state S2. In general, increasing the
number of states allows the synchronizer to remember more yet-to-be-aligned bits,
and hence can produce outputs that are more correlated. But this comes at the cost of
more synchronizer-induced error, because the probability of ending at a state other
than the initial state is higher.

Based on the synchronizer concept, we can push the SCC of two SNs towards −1
using a desynchronizer. The state-transition graph of a four-state desynchronizer is
depicted in Fig. 7b. Like the synchronizer, the desynchronizer takes two input SNs X
and Y, and generates two output SNs with the same value but with stronger negative
correlation or an SCC closer to −1. The key idea in the desynchronizer design is
to intentionally misalign bits of the same value while still preserving the encoded
SN value. To do this, the desynchronizer selectively absorbs and releases bits to
maximize the occurrence of the patterns XY = (10) and (01), and minimize the
occurrence of the patterns XY = (11) and (00). If the desynchronizer receives the
pattern XY = (11), it will pass one of the bits and save the other bit to emit later.
In the desynchronizer design shown in Fig. 7b, the FSM alternates between storing
X and Y when it receives XY = (11) but alternative variants are possible. When
the desynchronizer receives the pattern XY = (00) it will emit the stored bit in the
FSM to misalign the bits. If the desynchronizer receives the pattern XY = (01) or
(10), it will simply pass the inputs to the outputs since the bits at that SN offset
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are already different. This effectively yields more negatively correlated SNs. For
instance, the input pattern XY = (11, 00) becomes XY = (01, 10) after passing
through the desynchronizer.

The desynchronizer has similar tradeoffs to the synchronizer. Bits that get saved
in the desynchronizer may not be emitted before the end of execution which can
yield a slight negative bias. Notice also that the desynchronizer FSM can only save
one bit at a time. As a result, there are cases where it may be forced to pass the
pattern XY = (11) or (00). For instance, if the desynchronizer receives the pattern
XY = (11, 11) it will output (01, 11). In this case, the desynchronizer absorbs a bit
from the first occurrence of XY = (11) but not from the second XY = (11). This
forces the desynchronizer to simply pass XY = (11) to the output on the second
occurrence. This limitation can be addressed by augmenting the desynchronizer to
allow it to absorb more bits to improve its efficacy. Again, this increases the potential
error due to bits that get saved in the FSM but are not released before the end of
execution.

To illustrate the strengths and weaknesses of each correlation manipulation
technique, consider an image processing pipeline which consists of a 3 × 3 Gaussian
blur followed by a Roberts Cross edge detector. The Gaussian blur kernel requires
input SNs for each multiply in the kernel to be uncorrelated, while the Roberts Cross
edge detector requires inputs to the subtractor to be positively correlated. Figure 8
shows the resulting image along with energy efficiency and average absolute error
for three different configurations: (1) no correlation correction between kernels,
(2) regeneration before the edge detector, and (3) synchronizers before the edge
detector. Absolute error is measured as the deviation from a floating-point baseline
implementation. The resulting image without any correlation correction at all clearly
suffers from significant accuracy losses. Using correlation controlling circuits like
regeneration or the synchronizer, on the other hand, leads to much more accurate
results. The synchronizer is more energy efficient and yields comparable accuracy
to regeneration.

Floating point
No

correction Regeneration Synchronizer

Image result

Energy - 1383 nJ / frame 1971 nJ / frame 1505 nJ / frame

Absolute
error

0 0.076 0.019 0.020

Fig. 8 Image processing case study results for Gaussian blur kernel followed by Roberts Cross
edge detector [19]
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Correlation Insensitive Stochastic Circuits

Next we address a desirable SC property called correlation insensitivity, which is
found in some stochastic circuits. Correlation insensitive (CI) circuits are immune to
the effects of cross correlation or autocorrelation. In other words, a designer does not
have to worry about the correlation among certain CI inputs, and can treat them as
if they are uncorrelated. Our discussion will focus on cross-correlation insensitivity
(cross-CI), including the detection and the characteristics of cross-CI. We will also
briefly review autocorrelation insensitivity. Finally, we discuss some special classes
of stochastic circuits that have distinctive autocorrelation features.

Cross-Correlation Insensitivity

Cross-correlation insensitivity (cross-CI) implies that a stochastic circuit C’s func-
tion is not impacted by cross correlation between some of its primary input SNs.
Roughly speaking, cross-CI occurs if two SNs cannot simultaneously impact the
circuit’s outputs. This is a very useful property for stochastic circuits, especially
for their input lines to which user-supplied and potentially correlated SNs are
applied. For instance, Fig. 9a shows a standard multiplexer-based stochastic adder
that computes Z = 0.5(X + Y) with independent input SNs X and Y, while Fig. 9b
shows the same adder but with highly correlated X and Y. Here R is an SN with a
fixed probability 0.5, and must be independent of both of the user-supplied inputs
X and Y. On the other hand, X and Y can be cross correlated in any way without
affecting the adder’s functionality. This is because at each clock cycle, either a bit
from X or a bit from Y is selected by R to send to the output Z, i.e., Z can never
depend on both X and Y at the same time.

Fig. 9 (a) Stochastic
addition showing accurate
results with (a) uncorrelated
and (b) correlated inputs X
and Y
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Y
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A formal definition of cross-CI for combinational stochastic circuits is given in
[5], which states that for a stochastic circuit C that implements the Boolean function
z = f (x1, x2, . . . xn), xi and xj form a cross-CI pair for C, if and only if the following
holds:

(dz/dxi) ∧ (dz/dxj

) = 0 (4)

where 0 denotes the zero Boolean function and dz/dxi denotes the Boolean
difference of z with respect to xi, i.e.,

dz/dxi = f (x1, x2, . . . , xi–1, 0, xi+1, . . . , xn)⊕
f (x1, x2, . . . , xi–1, 1, xi+1, . . . , xn)

A proof of Eq. (4) can be found in [5]; here we provide a brief intuitive
explanation. The Boolean difference dz/dxi is a Boolean function of (x1, x2, . . . ,
xn) whose minterms correspond to the input assignments such that a change of xi’s
value will lead to a change of z’s value. Therefore, Eq. (4) simply says that if there
is no input assignment such that xi’s value change and xj’s value change can each
change z’s value, then xi and xj form a CI pair.

The preceding definition is useful for identifying CI pairs in a given stochastic
circuit. For example, recall that the multiplexer in Fig. 9 implements the function
Z = 0.5(X + Y) in the stochastic domain, and the function z = x ∧ r′ ∨ y ∧ r in the
Boolean domain. Here x and y form a CI pair, because

dz/dx = (y ∧ r) ⊕ (r ′ ∨ y
) = r ′

dz/dy = (y ∧ r ′)⊕ (r ∨ x) = r

so (dz/dx) ∧ (dz/dy) = r ∧′ = 0, which confirms that x and y are indeed a CI pair.
On the other hand, x and r are not a CI pair because dz/dr = x ⊕ y and (dz/dx) ∧
(dz/dr) 
= 0. From this, we see that in the multiplexer-based adder, X and Y can be
correlated without incurring any correlation error. However, R must be independent
of both X and Y for the adder to work accurately.

The ancillary input R in the adder case is introduced to provide the scaling
operation needed by this type of adder. However, it imposes a constraint of
independence that must be satisfied by using an RNS that is uncorrelated to both
X and Y. This not only incurs a large hardware overhead, it also injects unnecessary
random fluctuation into the circuit, causing a constant-induced error [31]. It turns out
that it is always possible to remove the need for independent RNSs and the constant-
induced error by transferring the role of all ancillary inputs to sequential elements.
This was first shown possible in [20] via an ancillary-input-free adder constructed
in ad hoc fashion; see Fig. 10. This design therefore accurately computes the scaled
sum Z = 0.5(X + Y), regardless of correlation between X and Y. More recently,
a systematic method CEASE for removing ancillary inputs by role transfer was
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Fig. 10 A sequential adder
computing Z = 0.5(X + Y)
whose inputs are CI [20] 1

0

TX
Y

Z

proposed that is applicable to all combinational stochastic circuits with ancillary
inputs [31]. CEASE thus removes the correlation associated with ancillary inputs.

The CI property enables inputs to take SNs generated from a shared RNS
without compromising the circuit’s accuracy. This is useful in statistical analysis
of stochastic circuits by greatly improving the simulation quality, and in SC designs
by allowing CI inputs to accept SNs generated from a common RNS.

Circuits with Autocorrelation Features

Combinational stochastic circuits are inherently immune to autocorrelation, as the
change of input ordering only changes the output ordering, but not the output value.
On the other hand, sequential stochastic circuits operate in response to their input
sequences, and thus are generally impacted by autocorrelation. The autocorrelation
among input patterns at different time steps can steer the state transition in a biased
way. Further, sequential components can also inject new autocorrelation into the
SNs they process. Careless use of sequential components in SC systems can thus
lead to significant autocorrelation-induced errors [9]. Managing autocorrelation in
SC is an open research area, since many sequential SC designs can only operate
in autocorrelation-free environments, including those synthesized using the “linear
finite-state machine” architecture [21]. Some classes of sequential circuits with
special autocorrelation properties are known and are discussed below.

Modulo-Counting Circuits The circuits generated by CEASE have a highly
desirable property: they are immune to autocorrelation-induced errors. CEASE, as
mentioned previously, is an algorithm to remove ancillary inputs of a combinational
circuit by introducing sequential components [31]. The resulting sequential circuit
is equivalent to a modulo counter with multiple moduli that keeps accumulating
(weighted) input bits for later release, which occurs when the counter overflows.
For instance, the ancillary-input-free adder in Fig. 10, while constructed in ad hoc
fashion, is also effectively a modulo counter as can be seen from its state-transition
graph in Fig. 11. When the adder receives the input pattern 11 or 00, it directly
outputs a 1 or a 0, respectively. However, when the adder receives 10 or 01, it will
directly output a 0, but it accumulates a value 0.5 into its memory by going from
state S0 to state S1. The next time the adder receives 10 or 01, it will overflow,
output a 1, and return to state S0. One can easily see that this modulo counting
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Fig. 11 State transition
graph for the sequential adder
in Fig. 9 [31] 0 1
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process guarantees that there will be a single 1 released into the output, whenever
the adder receives two 1s from X or Y, thereby computing 0.5(X + Y). In general,
CEASE-generated circuits not only avoid the potential correlation problems induced
by ancillary inputs, but also are insensitive to autocorrelation. This is because the
number of 1s in the output is completely determined by the number of times the
modulo counter overflows, which is obviously independent of the ordering of the
input pattern.

Shift-Register-Based Circuits In general, sequential stochastic circuits have strict
correlation specifications on their inputs, which usually requires them to be
autocorrelation-free. However, sequential stochastic circuits also inject autocorrela-
tion into the SNs they process. This makes it difficult to cascade sequential designs,
since autocorrelation introduced by an upstream circuit will degrade the accuracy
of a downstream circuit. For example, sequential circuits employing the linear FSM
architecture [21] require their inputs to be autocorrelation-free, but at the same time
they produce output SNs with a high level of autocorrelation. It is therefore difficult
to connect multiple linear circuits without sacrificing accuracy. Autocorrelation
injected by a linear FSM has a diminishing but continuing effect over time. A current
output bit can be correlated with all previous output bits, although the correlation
level is lower with bits that are further away in time. This implies that when its input
value changes, the output of a linear FSM may take a very long time to respond to
the change, so the change can have an extended accuracy-reducing impact.

Thus, it is sometimes desirable to use alternative designs that have less severe
autocorrelation problems. There is a class of sequential stochastic circuits called
shift-register-based (SRB) which have a highly desirable property: their output
autocorrelation is bounded in time [30]. SRB circuits realize a type of FSM
termed a definite machine that has finite input memory [18]. They also have a
canonical implementation consisting of a feed-forward shift register built around
a combinational component. Many SC designs, including those generated by the
STRAUSS synthesizer [4], belong to the SRB class. For example, Fig. 12 shows
the canonical SRB implementation of X4, which has a 3-tap shift register that
produces three delayed copies of the input SN X. SRB circuits have their output
autocorrelation bounded in time, because each output bit is completely determined
by the m most recent input bits, where m − 1 is the number of taps of the shift
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register. Therefore, output bits that are separated by m clock cycles are determined
by different and independent sets of input bits, and hence must be uncorrelated. In
the X4 example, Z(4) = X(4)X(3)X(2)X(1), while Z(8) = X(8)X(7)X(6)X(5), so
Z(8) and Z(4), which are four clock cycles apart, are uncorrelated. The definiteness
of the SRB circuits guarantees that m clock cycles after an input value change, the
output value will have fully responded to the change. Furthermore, it is possible to
sample the output SN every m cycles to get a completely autocorrelation-free bit-
stream, which facilitates the use of such SNs as inputs to circuits that must avoid
autocorrelation.

Design and Optimization of RNSs

Random number sources provide the randomness to drive the dynamics of the
stochastic signals. RNSs with insufficient randomness can result in significant
accuracy loss for stochastic circuits that require independent inputs. This can occur,
for example, if a shared RNS is used to drive multiple SNGs for SN generation.
The quality of RNSs also plays an important role in the accuracy of SC. It has
been shown that, instead of using an RNS that has good randomness property like
an LFSR, using carefully designed deterministic number sequences can sometimes
result in significantly improved accuracy. For specialized circuits that work with
correlated inputs, SNs with any SCC level can be generated by interpolating
independent SNs and maximally correlated SNs with multiple independent RNSs.
The CI property also is important in SNG design, as it allows a single RNS to be
shared by multiple SNGs without compromising accuracy.

Generating SNs with Predetermined Correlation

In most existing stochastic circuits, it is desirable to have SNGs that can generate
high quality uncorrelated SNs, i.e., SNs that have SCC = 0. In SNG design, arguably
the most common RNSs are obtained by tapping an LFSR of maximum period,
and are essentially pseudo-random. However, it has been shown that deterministic
number sources such as plain binary counters can also be used as in SN generation
without compromising accuracy [17]. In fact, circuits that use such deterministic
number sources are usually more accurate than the ones using LFSRs, because
random fluctuation errors are eliminated and correlation control is easier.

To achieve fast convergence rates during a stochastic computation, researchers
have also looked into using quasi-Monte Carlo methods and low-discrepancy
sequences [3, 22]. While these methods provide good convergence when generating
a few uncorrelated SNs, they are affected by the curse of dimensionality and are no
better than counter-based SNGs. In many cases, the convergence rate of the SNs is
not relevant, and only the accuracy at the end of computation matters. In such cases,
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Fig. 13 SNG that generates a pair of SNs with a user-specified SCC level [2]

low-discrepancy sequences have no significant benefit over other deterministic
number sources. It is worth noting that low-discrepancy number sources (and similar
deterministic number sources) usually create autocorrelation within SNs, which may
not be desirable.

As noted earlier, while most stochastic circuits require independent inputs,
circuits exist that need a specific SCC level at their inputs. Figure 13 shows an SNG
design [2] that generates a pair of SNs with a predetermined SCC level using three
independent RNSs. This SNG is essentially a direct reflection of Eq. (3). Depending
on the sign of SCC, the SNG selects a maximally correlated XY pair and linearly
combines it with the independent XY pair, weighted by the magnitude of SCC. For
example, to generate the bit-streams with SCC(X, Y) = 0.5, the inputs SCCneg and
SCCmag of Fig. 13 are set to 0.0 and 0.5, respectively, so that the selection signal of
the multiplexer will have 0.5 probability of choosing 01 and another 0.5 probability
of choosing 00. The SN Y1 that is maximally correlated with X, is applied to data
input 01 of the multiplexer, while Y2, which is completely independent with X is
applied to multiplexer input 01. Combining Y1 and Y2 with a 0.5 probability of
outputting each result in an SN Y that has correlation SCC = 0.5 with X.

Optimizing Random Number Sources

RNSs provide the randomness required by stochastic circuits, and are a key design
resource. While there are stochastic systems that use non-LFSR-based RNSs,
LFSRs remain the popular choice due to their compatibility with digital logic
and their relatively small hardware area, on top of the fact that they have been
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intensively studied for many years. The design considerations around deploying
RNSs include: providing adequate randomness, minimizing hardware overhead, and
reducing unnecessary use of the RNSs.

As discussed earlier, an SN X can be derived from its binary counterpart B by an
SNG containing an RNS and a comparator that compares the B with the random
number R from the RNS at each clock cycle. The SNG outputs a 1 whenever
B > R; otherwise the SNG outputs a 0. A common approach is to treat k taps
from the LFSR as the k-bit random number R. Sharing exactly the same random
number R with other SNGs can reduce overall hardware cost, but will result in a
maximally correlated SN which is usually undesirable. Previous work attempts to
squeeze out more randomness from a single LFSR by adding a re-wiring layer that
shuffles the order of the bits in R. In [15], the authors show that circularly shifting
R is a low-cost and effective way to reduce the SCC of two SNs sharing the same
LFSR. Specifically, they experimentally demonstrate that by circularly shifting a
k-bit random number by approximately k/2 bits, the SCC level can be reduced by
around 75%, compared to random shuffling which achieves only 40% reduction in
SCC on average. They further show that taking advantage of the CI property can
reduce the need for RNSs.

Conclusions

Correlation is a pervasive phenomenon in stochastic circuits and a major source of
computational inaccuracy and high hardware cost. Although it has been intensively
studied in recent years, it still remains quite poorly understood. In general,
correlation is difficult to quantify and expensive to mitigate. The SCC metric has
proven useful as a measure of the cross correlation between two bit-streams but it
is not readily extended to more than two bit-streams. No comparable measure of
autocorrelation has emerged, even though autocorrelation has a significant impact
on the accuracy of sequential stochastic circuits. The main methods of reducing
or eliminating undesired correlation are regeneration and isolation, with isolation
being by far the less expensive of the two.

Correlation affecting the inputs of a circuit with output function f can be viewed
in two contrasting ways: as corrupting f ’s output by introducing errors, or as
changing f to a different function which may be useful. While a few examples of
such “good” correlation-based designs are known, no general and practical way of
taking advantage of correlation in SC design is known at present. In some cases,
interacting bit-streams are unaffected by correlation, but again there is no easy
way to identify and exploit correlation insensitivity. Among the more promising
recent discoveries in this direction are several classes of highly accurate sequential
machines that are insensitive to correlation on their inputs, and the development of
general-purpose correlation-controlling units.
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Abbreviations

CI Correlation insensitive
FSM Finite-state machine
LDPC Low density parity check code
LFSR Linear feedback shift register
MSE Mean square error
PTM Probabilistic transfer matrix
RNS Random number source
SC Stochastic computing
SCC Stochastic correlation coefficient
SCH Single-ended counter hysteresis
SN Stochastic number
SNG Stochastic number generator
SRB Shift register based
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Synthesis of Polynomial Functions

Marc Riedel and Weikang Qian

Abstract This chapter addresses the fundamental question: what functions can
stochastic logic compute? We show that, given stochastic inputs, any combinational
circuit computes a polynomial function. Conversely, we show that, given any
polynomial function, we can synthesize stochastic logic to compute this function.
The only restriction is that we must have a function that maps the unit interval [0, 1]
to the unit interval [0, 1], since the stochastic inputs and outputs are probabilities.
Our approach is both general and efficient in terms of area. It can be used to
synthesize arbitrary polynomial functions. Through polynomial approximations, it
can also be used to synthesize non-polynomial functions.

Keywords Polynomials · Bernstein polynomials · Non-polynomials ·
Synthesis · Computability · Combinational circuits

Introduction

First introduced by Gaines [1] and Poppelbaum [2, 3] in the 1960s, the field of
stochastic computing has seen widespread interest in recent years. Much of the
work, both early and recent, has had more of an applied than a theoretical flavor.
The work of Gaines, Poppelbaum, Brown & Card [4], as well as recent papers
pertaining to image processing [5] and neural networks [6] all demonstrate how
to compute specific functions for particular applications.

This chapter has a more theoretical flavor. It addresses the fundamental question:
can we characterize the class of functions that stochastic logic can compute? Given
a combinational circuit, that is to say a circuit with no memory elements, the answer
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is rather easy: given stochastic inputs, we show such a circuit computes a polynomial
function. Since the stochastic inputs and outputs are probabilities, this polynomial
function maps inputs from the unit interval [0, 1] to outputs in the unit interval [0, 1].

The converse question is much more challenging: given a target polynomial
function, can we synthesize stochastic logic to compute it? The answer is yes:
we prove that there exists a combinational circuit that computes any polynomial
function that maps the unit interval to the unit interval. So the characterization
of stochastic logic is complete. Our proof method is constructive: we describe a
synthesis methodology for polynomial functions that is general and efficient in terms
of area. Through polynomial approximations, it can also be used to synthesize non-
polynomial functions.

Characterizing What Stochastic Logic Can Compute

Consider basic logic gates. Table 1 describes the functions that they implement given
stochastic inputs. These are all straight-forward to derive algebraically. For instance,
given a stochastic input x representing the probability of seeing a 1 in a random
stream of 1s and 0s, a NOT gate implements the function

NOT(x) = 1 − x. (1)

Given inputs x, y, an AND gate implements the function:

AND(x, y) = xy. (2)

An OR gate implements the function:

OR(x, y) = x + y − xy. (3)

An XOR gate implements the functions

XOR(x, y) = x + y − 2xy. (4)

Table 1 Stochastic function
implemented by basic logic
gates

Gate Inputs Function

NOT x 1 − x

AND x, y xy

OR x, y x + y − xy

NAND x, y 1 − xy

NOR x, y 1 − x − y + xy

XOR x, y x + y − 2xy

XNOR x, y 1 − x − y + 2xy
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It is well known that any Boolean function can be expressed in terms of AND
and NOT operations (or entirely in terms of NAND operations). Accordingly, the
function of any combinational circuit can be expressed as a nested sequence of
multiplications and 1 − x type operations. It can easily be shown that this nested
sequence results in a polynomial function. (Note that special treatment is needed for
any reconvergent paths.)

We will make the argument based upon truth tables. Here we will consider only
univariate functions, that is to say stochastic logic that receives multiple independent
copies of a single variable t . (Technically, t is the Bernoulli coefficient of a random
variable Xi , where t = [Pr(Xi = 1)].) Please see [7] for a generalization to
multivariate polynomials.

Consider a combinational circuit computing a function f (X1, X2, X3) with
the truth table shown Table 2. Now suppose that each variable has independent
probability t of being 1:

[Pr(X1) = 1] = t (5)

[Pr(X2) = 1] = t (6)

[Pr(X3) = 1] = t (7)

The probability that the function evaluates to 1 is equal to the sum probabilities of
occurrence of each row that evaluates to 1. The probability of each row, in turn, is
obtained from the assignments to the variables, as shown in Table 3. Summing up
the rows that evaluate to 1, we obtain

Table 2 Truth table for a
combinational circuit

X1 X2 X3 f (X1, X2, X3)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 3 Probabilities of
each row in Table 2,
assuming each variable has
independent probability t

X1 X2 X3 Probability of row f (X1, X2, X3)

0 0 0 (1 − t)3 0

0 0 1 (1 − t)2t 1

0 1 0 (1 − t)t (1 − t) 0

0 1 1 (1 − t)t2 1

1 0 0 t (1 − t)2 0

1 0 1 t (1 − t)t 1

1 1 0 t2(1 − t) 1

1 1 1 t3 1
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(1 − t)2t + (1 − t)t2 + t (1 − t)t + t2(1 − t) + t3 (8)

= (1 − t)2t + 3(1 − t)t2 + t3 (9)

= t + t2 − t3 (10)

Generalizing from this example, suppose we are given any combination circuit with
n inputs that each evaluate to 1 with independent probability t . We conclude that the
probability that the output of the circuit evaluates to 1 is equal to the sum of terms of
the form t i (1 − t)j , where 0 ≤ i ≤ n, 0 ≤ j ≤ n, i + j = n, corresponding to rows
of the truth table of the circuit that evaluate to 1. Expanding out this expression, we
always obtain a polynomial in t .

We note that the analysis here was presented as early as 1975 in [8]. Algorithmic
details for such analysis were first fleshed out by the testing community [9].
They have also found mainstream application for tasks such as timing and power
analysis [10, 11].

Synthesizing any Polynomial Function

In this chapter, we will explore the more challenging task of synthesizing logical
computation on stochastic bit streams that implements the functionality that we
want. Naturally, since we are mapping probabilities to probabilities, we can only
implement functions that map the unit interval [0, 1] onto the unit interval [0, 1].
Consider the behavior of a multiplexer, shown in Fig. 1. It implements scaled
addition: with stochastic inputs a, b and a stochastic select input s, it computes a
stochastic output c:

c = sa + (1 − s)b. (11)

(We use the convention of upper case letters for random variables and lower case
letters for the corresponding probabilities.)

Fig. 1 Scaled addition on
stochastic bit streams, with a
multiplexer (MUX). Here the
inputs are 1/8, 5/8, and 2/8.
The output is
2/8×1/8+(1−2/8)×5/8 =
4/8, as expected
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Based on the constructs for multiplication (an AND gate) and scaled addition
(a multiplexer), we can readily implement polynomial functions of a specific form,
namely polynomials with non-negative coefficients that sum up to a value no more
than one:

g(t) =
n∑

i=0

ait
i

where, for all i = 0, . . . , n, ai ≥ 0 and
∑n

i=0 ai ≤ 1.
For example, suppose that we want to implement the polynomial g(t) = 0.3t2 +

0.3t + 0.2. We first decompose it in terms of multiplications of the form a · b and
scaled additions of the form sa + (1 − s)b, where s is a constant:

g(t) = 0.8(0.75(0.5t2 + 0.5t) + 0.25 · 1).

Then, we reconstruct it with the following sequence of multiplications and scaled
additions:

w1 = t · t,

w2 = 0.5w1 + (1 − 0.5)t,

w3 = 0.75w2 + (1 − 0.75) · 1,

w4 = 0.8 · w3.

The circuit implementing this sequence of operations is shown in Fig. 2. In the
figure, the inputs are labeled with the probabilities of the bits of the corresponding
stochastic streams. Some of the inputs have fixed probabilities and the others have
variable probabilities t . Note that the different lines with the input t are each fed
with independent stochastic streams with bits that have probability t .

What if the target function is a polynomial that is not decomposable this way?
Suppose that it maps the unit interval onto the unit interval but it has some
coefficients less than zero or some greater than one. For instance, consider the
polynomial g(t) = 3

4 − t + 3
4 t2. It is not apparent how to construct a network

of stochastic multipliers and adders to implement it.

Fig. 2 Computation on
stochastic bit streams
implementing the polynomial
g(t) = 0.3t2 + 0.3t + 0.2
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Fig. 3 A generalized
multiplexing circuit
implementing the polynomial
g(t) = 3

4 − t + 3
4 t2

We propose a general method for synthesizing arbitrary univariate polynomial
functions on stochastic bit streams. A necessary condition is that the target poly-
nomial maps the unit interval onto the unit interval. We show that this condition is
also sufficient: we provide a constructive method for implementing any polynomial
that satisfies this condition. Our method is based on some novel mathematics for
manipulating polynomials in a special form called a Bernstein polynomial [12–15].
In [16] we showed how to convert a general power-form polynomial into a Bernstein
polynomial with coefficients in the unit interval. In [17] we showed how to realize
such a polynomial with a form of “generalized multiplexing.”

We illustrate the basic steps of our synthesis method with the example of
g(t) = 3

4 − t + 3
4 t2. (We define Bernstein polynomials in the section “Bernstein

Polynomials”. We provide further details regarding the synthesis method in the
section “Synthesizing Polynomial Functions”.)

1. Convert the polynomial into a Bernstein polynomial with all coefficients in the
unit interval:

g(t) = 3

4
· [(1 − t)2] + 1

4
· [2t (1 − t)] + 1

2
· [t2].

Note that the coefficients of the Bernstein polynomial are 3
4 , 1

4 and 1
2 , all of which

are in the unit interval.
2. Implement the Bernstein polynomial with a multiplexing circuit, as shown in

Fig. 3. The block labeled “+” counts the number of ones among its two inputs;
this is either 0, 1, or 2. The multiplexer selects one of its three inputs as its output
according to this value. Note that the inputs with probability t are each fed with
independent stochastic streams with bits that have probability t .

Bernstein Polynomials

In this section, we introduce a specific type of polynomial that we use, namely
Bernstein polynomials [12, 13].
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Definition 1 A Bernstein polynomial of degree n, denoted as Bn(t), is a polyno-
mial expressed in the following form [15]:

n∑

k=0

βk,nbk,n(t), (12)

where each βk,n, k = 0, 1, . . . , n,1 is a real number and

bk,n(t) =
(

n

k

)

tk(1 − t)n−k. (13)

The coefficients βk,n are called Bernstein coefficients and the polynomials
b0,n(t), b1,n(t), . . . , bn,n(t) are called Bernstein basis polynomials of degree
n. �
We list some pertinent properties of Bernstein polynomials.

1. The positivity property:
For all k = 0, 1, . . . , n and all t in [0, 1], we have

bk,n(t) ≥ 0. (14)

2. The partition of unity property:
The binomial expansion of the left-hand side of the equality (t + (1 − t))n = 1
shows that the sum of all Bernstein basis polynomials of degree n is the constant
1, i.e.,

n∑

k=0

bk,n(t) = 1. (15)

3. Converting power-form coefficients to Bernstein coefficients:
The set of Bernstein basis polynomials b0,n(t), b1,n(t), . . . , bn,n(t) forms a basis
of the vector space of polynomials of real coefficients and degree no more than
n [14]. Each power basis function tj can be uniquely expressed as a linear
combination of the n + 1 Bernstein basis polynomials:

tj =
n∑

k=0

σjkbk,n(t), (16)

for j = 0, 1, . . . , n. To determine the entries of the transformation matrix σ , we
write

tj = tj (t + (1 − t))n−j

1Here
(
n
k

)
denotes the binomial coefficient “n choose k.”
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and perform a binomial expansion on the right hand side. This gives

tj =
n∑

k=j

(
k
j

)

(
n
j

)bk,n(t),

for j = 0, 1, . . . , n. Therefore, we have

σjk =
{(

k
j

)(
n
j

)−1
, for j ≤ k

0, for j > k.
(17)

Suppose that a power-form polynomial of degree no more than n is

g(t) =
n∑

k=0

ak,nt
k (18)

and the Bernstein polynomial of degree n of g is

g(t) =
n∑

k=0

βk,nbk,n(t). (19)

Substituting Eqs. (16) and (17) into Eq. (18) and comparing the Bernstein
coefficients, we have

βk,n =
n∑

j=0

aj,nσjk =
k∑

j=0

(
k

j

)(
n

j

)−1

aj,n. (20)

Equation (20) provide a means for obtaining Bernstein coefficients from power-
form coefficients.

4. Degree elevation:
Based on Eq. (13), we have that for all k = 0, 1, . . . , m,

1
(
m+1

k

)bk,m+1(t) + 1
(
m+1
k+1

)bk+1,m+1(t)

=tk(1 − t)m+1−k + tk+1(1 − t)m−k

=tk(1 − t)m−k = 1
(
m
k

)bk,m(t),
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or

bk,m(t) =
(
m
k

)

(
m+1

k

)bk,m+1(t) +
(
m
k

)

(
m+1
k+1

)bk+1,m+1(t)

= m + 1 − k

m + 1
bk,m+1(t) + k + 1

m + 1
bk+1,m+1(t).

(21)

Given a power-form polynomial g of degree n, for any m ≥ n, g can be
uniquely converted into a Bernstein polynomial of degree m. Suppose that the

Bernstein polynomials of degree m and degree m + 1 of g are
m∑

k=0

βk,mbk,m(t)

and
m+1∑

k=0

βk,m+1bk,m+1(t), respectively. We have

m∑

k=0

βk,mbk,m(t) =
m+1∑

k=0

βk,m+1bk,m+1(t). (22)

Substituting Eq. (21) into the left-hand side of Eq. (22) and comparing the
Bernstein coefficients, we have

βk,m+1 =

⎧
⎪⎪⎨

⎪⎪⎩

β0,m, for k = 0
k

m+1βk−1,m +
(

1 − k
m+1

)
βk,m, for 1 ≤ k ≤ m

βm,m, for k = m + 1.

(23)

Equation (23) provides a means for obtaining the coefficients of the Bernstein
polynomial of degree m+1 of g from the coefficients of the Bernstein polynomial
of degree m of g. We will call this procedure degree elevation.

Uniform Approximation and Bernstein Polynomials with
Coefficients in the Unit Interval

In this section, we present two of our major mathematical findings on Bernstein
polynomials. The first result pertains to uniform approximation with Bernstein
polynomials. We show that, given a power-form polynomial g, we can obtain a
Bernstein polynomial of degree m with coefficients that are as close as desired to
the corresponding values of g evaluated at the points 0, 1

m
, 2

m
, . . . , 1, provided that

m is sufficiently large. This result is formally stated by the following theorem.
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Theorem 1 Let g be a polynomial of degree n ≥ 0. For any ε > 0, there exists a
positive integer M ≥ n such that for all integers m ≥ M and k = 0, 1, . . . , m, we
have

∣
∣
∣
∣βk,m − g

(
k

m

)∣
∣
∣
∣ < ε,

where β0,m, β1,m, . . . , βm,m satisfy g(t) =
m∑

k=0

βk,mbk,m(t). �

Please see [7] for the proof of the above theorem.

The second result pertains to a special type of Bernstein polynomials: those with
coefficients that are all in the unit interval. We are interested in this type of Bernstein
polynomial since we can show that it can implemented by logical computation on
stochastic bit streams

Definition 2 Define U to be the set of Bernstein polynomials with coefficients that
are all in the unit interval [0, 1]:

U =
{

p(t) | ∃ n ≥ 1, 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1, such that

p(t) =
n∑

k=0

βk,nbk,n(t)

}

. �

The question we are interested in is: which (power-form) polynomials can be
converted into Bernstein polynomials in U?

Definition 3 Define the set V to be the set of polynomials which are either
identically equal to 0 or equal to 1, or map the open interval (0, 1) into (0, 1) and
the points 0 and 1 into the closed interval [0, 1], i.e.,

V = {p(t) | p(t) ≡ 0, orp(t) ≡ 1,

or0 < p(t) < 1,∀t ∈ (0, 1) and 0 ≤ p(0), p(1) ≤ 1}. �

We prove that the set U and the set V are equivalent, thus giving a clear
characterization of the set U .

Theorem 2

V = U. �

The proof of the above theorem utilizes Theorem 1. Please see [7] for the proof.
We end this section with two examples illustrating Theorem 2. In what follows,

we will refer to a Bernstein polynomial of degree n converted from a polynomial g
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as “the Bernstein polynomial of degree n of g”. When we say that a polynomial is
of degree n, we mean that the power-form of the polynomial is of degree n.

Example 1 Consider the polynomial g(t) = 5
8 − 15

8 t+ 9
4 t2. It maps the open interval

(0, 1) into (0, 1) with g(0) = 5
8 and g(1) = 1. Thus, g is in the set V . Based on

Theorem 2, we have that g is in the set U . We verify this by considering Bernstein
polynomials of increasing degree.

• The Bernstein polynomial of degree 2 of g is

g(t) = 5

8
· b0,2(t) +

(

− 5

16

)

· b1,2(t) + 1 · b2,2(t).

Note that the coefficient β1,2 = − 5
16 < 0.

• The Bernstein polynomial of degree 3 of g is

g(t) = 5

8
· b0,3(t) + 0 · b1,3(t) + 1

8
· b2,3(t) + 1 · b3,3(t).

Note that all the coefficients are in [0, 1].
Since the Bernstein polynomial of degree 3 of g satisfies Definition 2, we conclude
that g is in the set U . �
Example 2 Consider the polynomial g(t) = 1

4 − t + t2. Since g(0.5) = 0,
thus g is not in the set V . Based on Theorem 2, we have that g is not in the
set U . We verify this. By contraposition, suppose that there exist n ≥ 1 and
0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1 such that

g(t) =
n∑

k=0

βk,nbk,n(t).

Since g(0.5) = 0, therefore,
n∑

k=0

βk,nbk,n(0.5) = 0. Note that for all k = 0, 1, . . . , n,

bk,n(0.5) > 0. Thus, we have that for all k = 0, 1, . . . , n, βk,n = 0. Therefore,
g(t) ≡ 0, which contradicts the original assumption about g. Thus, g is not in the
set U . �

Synthesizing Polynomial Functions

Computation on stochastic bit streams generally implements a multivariate poly-
nomial F(x1, . . . , xn) with integer coefficients. The degree of each variable is at
most one, i.e., there are no terms with variables raised to the power of two, three
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or higher. If we associate some of the xi’s of the polynomial F(x1, . . . , xn) with
real constants in the unit interval and the others with a common variable t , then the
function F becomes a real-coefficient univariate polynomial g(t). With different
choices of the original Boolean function f and different settings of the probabilities
of the xi’s, we get different polynomials g(t).

Example 3 Consider the function implemented by a multiplexer operating on
stochastic bit streams, A,B, and S. It is a multivariate polynomial, g(a, b, s) =
sa + (1 − s)b = b + sa − sb. The polynomial has integer coefficients. The degree
of each variable is at most one. If we set s = a = t and b = 0.8 in the polynomial,
then we get a univariate polynomial g(t) = 0.8 − 0.8t + t2. �

The first question that arises is: what kind of univariate polynomials can be
implemented by computation on stochastic bit streams? In [16], we proved the
following theorem stating a necessary condition on the polynomials. The theorem
essentially says that, given inputs that are probability values—that is to say, real
values in the unit interval—the polynomial must also evaluate to a probability value.
There is a caveat here: if the polynomial is not identically equal to 0 or 1, then it
must evaluate to a value in the open interval (0, 1) when the input is also in the open
interval (0, 1).

Theorem 3 If a polynomial g(t) can be implemented by logical computation on
stochastic bit streams, then

1. g(t) is identically equal to 0 or 1 (g(t) ≡ 0 or 1), or
2. g(t) maps the open interval (0, 1) to itself (g(t) ∈ (0, 1), for all t ∈ (0, 1)) and

0 ≤ g(0), g(1) ≤ 1. �
For instance, as shown in Example 3, the polynomial g(t) = 0.8 − 0.8t + t2 can
be implemented by logical computation on stochastic bit streams. It is not hard to
see that g(t) satisfies the necessary condition. In fact, g(0) = 0.8, g(1) = 1 and
0 < g(t) < 1, for all 0 < t < 1.

The next question that arises is: can any polynomial satisfying the necessary con-
dition be implemented by logical computation on stochastic bit streams? If so, how?
We propose a synthesis method that solves this problem; constructively, we show
that, provided that a polynomial satisfies the necessary condition, we can implement
it. First, in the section “Synthesizing Bernstein Polynomials with Coefficients in the
Unit Interval”, we show how to implement a Bernstein polynomial with coefficients
in the unit interval. Then, in the section “Synthesis of Power-Form Polynomials”, we
describe how to convert a general power-form representation into such a polynomial.

Synthesizing Bernstein Polynomials with Coefficients in the Unit
Interval

If all the coefficients of a Bernstein polynomial are in the unit interval, i.e., 0 ≤
bi,n ≤ 1, for all 0 ≤ i ≤ n, then we can implement it with the construct shown in
Fig. 4.
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Fig. 4 Combinational logic
that implements a Bernstein
polynomial
Bn(t) =∑n

i=0 bi,nBi,n(t)

with all coefficients in the
unit interval

Fig. 5 The implementation
of an 8-bit Boolean weight
counter

The block labeled “ +” in Fig. 4 has n inputs X1, . . . , Xn and �log2(n + 1)�
outputs. It consists of combinational logic that computes the weight of the inputs,
that is to say, it counts the number of ones in the n Boolean inputs X1, . . . , Xn,
producing a binary radix encoding of this count. We will call this an n-bit Boolean
“weight counter.” The multiplexer (MUX) shown in the figure has “data” inputs
Z0, . . . , Zn and the �log2(n + 1)� outputs of the weight counter as the selecting
inputs. If the binary radix encoding of the outputs of the weight counter is k (0 ≤
k ≤ n), then the output Y of the multiplexer is set to Zk .

Figure 5 gives a simple design for an 8-bit Boolean weight counter based on a
tree of adders. An n-bit Boolean weight counter can be implemented in a similar
way.

In order to implement the Bernstein polynomial

Bn(t) =
n∑

i=0

bi,nBi,n(t),

we set the inputs X1, . . . , Xn to be independent stochastic bit streams with
probability t . Equivalently, X1, . . . , Xn can be viewed as independent random
Boolean variables that have the same probability t of being one. The probability
that the count of ones among the Xi’s is k (0 ≤ k ≤ n) is given by the binomial
distribution:

P

(
n∑

i=1

Xi = k

)

=
(

n

k

)

tk(1 − t)n−k = Bk,n(t). (24)
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We set the inputs Z0, . . . , Zn to be independent stochastic bit streams with
probability equal to the Bernstein coefficients b0,n, . . . , bn,n, respectively. Notice
that we can represent bi,n with stochastic bit streams because we assume that
0 ≤ bi,n ≤ 1. Equivalently, we can view Z0, . . . , Zn as n + 1 indepen-
dent random Boolean variables that are one with probabilities b0,n, . . . , bn,n,
respectively.

The probability that the output Y is one is

y = P(Y = 1)

=
n∑

k=0

(

P

(

Y = 1|
n∑

i=1

Xi = k

)

P

(
n∑

i=1

Xi = k

))

.
(25)

Since the multiplexer sets Y equal to Zk , when
∑n

i=1 Xi = k, we have

P

(

Y = 1|
n∑

i=1

Xi = k

)

= P(Zk = 1) = bk,n. (26)

Thus, from Eqs. (13), (24), (25), and (26), we have

y =
n∑

k=0

bk,nBk,n(t) = Bn(t). (27)

We conclude that the circuit in Fig. 4 implements the given Bernstein
polynomial with all coefficients in the unit interval. We have the following
theorem.

Theorem 4 If all the coefficients of a Bernstein polynomial are in the unit interval,
i.e., 0 ≤ bi,n ≤ 1, for 0 ≤ i ≤ n, then we can synthesize logical computation on
stochastic bit streams to implement it. �

Example 4 The polynomial g1(t) = 1

4
+ 9

8
t − 15

8
t2 + 5

4
t3 can be converted into a

Bernstein polynomial of degree 3:

g1(t) = 2

8
B0,3(t) + 5

8
B1,3(t) + 3

8
B2,3(t) + 6

8
B3,3(t). �

Figure 6 shows a circuit that implements this Bernstein polynomial. The function is
evaluated at t = 0.5. The stochastic bit streams X1, X2 and X3 are independent,
each with probability t = 0.5. The stochastic bit streams Z0, . . . , Z3 have
probabilities 2

8 , 5
8 , 3

8 , and 6
8 , respectively. As expected, the computation produces

the correct output value: g1(0.5) = 0.5. �
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Fig. 6 Computation on
stochastic bit streams that
implements the Bernstein
polynomial
g1(t) = 2

8 B0,3(t)+ 5
8 B1,3(t)+

3
8 B2,3(t) + 6

8 B3,3(t) at
t = 0.5

Synthesis of Power-Form Polynomials

In the previous section, we saw that we can implement a polynomial through logical
computation on stochastic bit streams if the polynomial can be represented as a
Bernstein polynomial with coefficients in the unit interval. A question that arises
is: what kind of polynomials can be represented in this form? Generally, we seek
to implement polynomials given to us in power form. In [16], we proved that any
polynomial that satisfies Theorem 3—so essentially any polynomial that maps the
unit interval onto the unit interval—can be converted into a Bernstein polynomial
with all coefficients in the unit interval.2 Based on this result and Theorem 4, we can
see that the necessary condition shown in Theorem 3 is also a sufficient condition for
a polynomial to be implemented by logical computation on stochastic bit streams.

Example 5 Consider the polynomial g2(t) = 3t − 8t2 + 6t3 of degree 3, Since
g2(t) ∈ (0, 1), for all t ∈ (0, 1) and g2(0) = 0, g2(1) = 1, it satisfies the necessary
condition shown in Theorem 3. Note that

g2(t) = B1,3(t) − 2

3
B2,3(t) + B3,3(t)

= 3

4
B1,4(t) + 1

6
B2,4(t) − 1

4
B3,4(t) + B4,4(t)

= 3

5
B1,5(t) + 2

5
B2,5(t) + B5,5(t).

Thus, the polynomial g2(t) can be converted into a Bernstein polynomial with
coefficients in the unit interval. The degree of such a Bernstein polynomial is 5,
greater than that of the original power form polynomial. �

2The degree of the equivalent Bernstein polynomial with coefficients in the unit interval may be
greater than the degree of the original polynomial.
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Given a power-form polynomial g(t) = ∑n
i=0 ai,nt

i that satisfies the condition
of Theorem 3, we can synthesize it in the following steps:

1. Let m = n. Obtain b0,m, b1,m, . . . , bm,m from
a0,n, a1,n, . . . , an,n by Eq. (16).

2. Check to see if 0 ≤ bi,m ≤ 1, for all i = 0, 1, . . . , m. If so, go to step 4.
3. Let m = m + 1. Calculate b0,m, b1,m, . . . , bm,m from

b0,m−1, b1,m−1, . . . , bm−1,m−1 based on Eq. (13). Go to step 2.
4. Synthesize the Bernstein polynomial

Bm(t) =
m∑

i=0

bi,mBi,m(t)

with the generalized multiplexing construct in Fig. 4.

Synthesizing Non-Polynomial Functions

In real applications, we often encounter non-polynomial functions, such as trigono-
metric functions. In this section, we discuss the implementation of such functions;
further details are given in [18]. Our strategy is to approximate them by Bernstein
polynomials with coefficients in the unit interval. In the previous section, we saw
how to implement such Bernstein polynomials.

We formulate the problem of implementing an arbitrary function g(t) as follows.
Given g(t), a continuous function on the unit interval, and n, the degree of a
Bernstein polynomial, find real numbers bi,n, i = 0, . . . , n, that minimize

∫ 1

0
(g(t) −

n∑

i=0

bi,nBi,n(t))
2 dt, (28)

subject to

0 ≤ bi,n ≤ 1, for all i = 0, 1, . . . , n. (29)

Here we try to find the optimal approximation by minimizing an objective
function, Eq. (28), that measures the approximation error. This is the square of the
L2 norm on the difference between the original function g(t) and the Bernstein
polynomial Bn(t) = ∑n

i=0 bi,nBi,n(t). The integral is on the unit interval because
t , representing a probability value, is always in the unit interval. The constraints in
Eq. (29) guarantee that the Bernstein coefficients are all in the unit interval. With
such coefficients, the construct in Fig. 4 computes an optimal approximation of the
function.
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The optimization problem is a constrained quadratic programming problem [18].
Its solution can be obtained using standard techniques.

Example 6 Consider the non-polynomial function g3(t) = t0.45. We approximate
this function by a Bernstein polynomial of degree 6. By solving the constrained
quadratic optimization problem, we obtain the Bernstein coefficients:

b0,6 = 0.0955, b1,6 = 0.7207, b2,6 = 0.3476, b3,6 = 0.9988,

b4,6 = 0.7017, b5,6 = 0.9695, b6,6 = 0.9939. �

Discussion

This chapter presented a necessary and sufficient condition for synthesizing stochas-
tic functions with combinational logic: the target function must be a polynomial that
maps the unit interval [0, 1] to the unit interval [0, 1]. The “necessary” part was easy:
given stochastic inputs, any combinational circuits produces a polynomial. Since the
inputs and outputs are probabilities, this polynomial maps the unit interval to the unit
interval.

The “sufficient” part entailed some mathematics. First we showed that any
polynomial given in power form can be transformed into a Bernstein polynomial.
This was well known [13]. Next we showed that, by elevating the degree of the
Bernstein polynomial, we always obtain a Bernstein polynomial with coefficients in
the unit interval. This was a new result, published in [16]. Finally, we showed that
any Bernstein polynomial with coefficients in the unit interval can be implemented
by a form of “general multiplexing”. These results were published in [17, 18].

The synthesis method is both general and efficient. For a wide variety of appli-
cations, it produces stochatic circuits that have remarkably small area, compared to
circuits that operate on a conventional binary positional encodings [18]. We note
that our characterization applies only to combinational circuits, that is to say logic
circuits without memory elements. Dating back to very interesting work by Brown
& Card [4], researchers have explored stochastic computing with sequential circuits,
that is to say logic circuits with memory elements. With sequential circuits, one
can implement a much larger class of functions than polynomials. For instance,
Brown & Card showed that a sequential circuit can implement the tanh function. A
complete characterization of what sort of stochastic functions can be computed by
sequential circuits has not been established. However, we point the reader to recent
work on the topic: [19–22].
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Deterministic Approaches to Bitstream
Computing
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Abstract Stochastic logic allows complex arithmetic to be performed with very
simple logic, but it suffers from high latency and poor precision. Furthermore, the
results are always somewhat inaccurate due to random fluctuations. The random or
pseudorandom sources required to generate the representation are costly, consuming
a majority of the circuit area (and diminishing the overall gains in area). This chapter
reexamines the foundations of stochastic computing and comes to some surprising
conclusions. It demonstrates that one can compute deterministically using the same
structures that are used to compute stochastically. In doing so, the latency is reduced
by an exponential factor; also, the area is reduced significantly (and this correlates
with a reduction in power); and finally, one obtains completely accurate results,
with no errors or uncertainty. This chapter also explores an alternate view of this
deterministic approach. Instead of viewing signals as digital bit streams, we can
view them as periodic signals, with the value encoded as the fraction of the time
that the signal is in the high (on) state compared to the low (off) state in each cycle.
Thus we have a time-based encoding. All of the constructs developed for stochastic
computing can be used to compute on these periodic signals, so the designs are very
efficient in terms of area and power. Given how precisely values can be encoded
in the time, the method could produce designs that have much lower latency that
conventional ones.
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Introduction

As detailed throughout this book, the topic of stochastic computing has been
investigated from many angles, by many different researchers. In spite of the
activity, it is fair to say that the practical impact of the research has been modest.
In our view, interest has been sustained because of the intellectual appeal of the
paradigm. It presents a completely different way of computing functions with digital
logic. Complex functions can be computed with remarkably simple structures.
For instance, multiplication can be performed with a single AND gate. Complex
functions such as exponentiation, absolute value, square roots, and hyperbolic
tangent can each be computed with a very small number of gates [1]. Although
this is a claim that can only be justified through design examples, stochastic designs
consistently achieve 50× to 100× reductions in gate count over a wide range of
applications in signal, image and video processing, compared to conventional binary
radix designs [1]. Savings in area correlate well with savings in power, a critical
metric.

Note that while stochastic computation is digital—operating on 0s and 1s—and
performed with ordinary logic gates, it has an “analog” flavor: conceptually, the
computation consists of mathematical operations on real values, the probabilities
of the streams. The approach is a compelling and natural fit for computing
mathematical functions, for applications such as image processing and neural
processing.

The intellectual appeal notwithstanding, the approach has a glaring weakness: the
latency it incurs. A stochastic representation is not compact: to represent 2M distinct
numbers, it requires roughly 22M bits, whereas a conventional binary representation
requires only M bits. When computing on serial bit streams, this results in an
exponential, near-disastrous increase in latency. The simplicity of the logic generally
translates to very short critical paths, so one could, in principle, bump up the clock
to very high rates. This could mitigate the increase in latency. But there are practical
limitations to increasing the clock rate [2, 3].

Another issue is the cost of generating randomness. Most implementations have
used pseudo-random number generators such as linear-feedback shift registers
(LFSRs). The cost of these easily overwhelms the total area cost, completely
offsetting the gains made in the structures for computation [4, 5]. Researchers have
explored sources of true randomness [6, 7]. Indeed, with emerging technologies such
as nanomagnetic logic, exploiting true randomness from physical sources could tip
the scales, making stochastic computing a winning proposition [8]. Still, the latency
and the cost of interfacing random signals with deterministic signals make it a hard
sell.

In this chapter, we reexamine the foundations of stochastic computing, and
come to some surprising conclusions. Why is computing on probabilities so
powerful, conceptually? Why can complex functions be computed with such simple
structures? Intuition might suggest that somehow we are harnessing deep aspects
of probability theory; perhaps we are computing approximate answers to hard
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problems efficiently through “sampling” as with Monte Carlo simulations. This
intuition is wrong.

The key to the efficiency of stochastic computing is much simpler: it stems from
performing streaming computation on values represented by quantity, on a uniform
representation, rather than representing values by position, as they are in binary
radix. In this chapter, we demonstrate that, if the computation is properly structured,
we can compute deterministically on bit streams using the same structures as we use
when computing stochastically.

Next, this chapter explores a generalization of this deterministic approach.
Instead of computing on bit streams, we explore computing on periodic signals,
with the value encoded as the fraction of the time that the signal is in the high
(on) state compared to the low (off) state in each cycle. Consider the examples in
Figs. 1 and 2. We will call digital bit streams of this sort uniform bit streams. We
will call analog signals of this sort pulse-width modulated (PWM) signals. By
exploiting pulse width modulation, signals with specific values can be generated
by adjusting the frequency and duty cycles of the PWM signals. Note that a PWM
signal is, in fact, digital in the sense that the voltage level is either 0 or 1. However,
it represents a real-valued (analog) signal by its duration.

But how can one compute on such periodic signals? Recall that with stochastic
logic, multiplication is performed with a single AND gate. Simply connecting two
periodic signals to the inputs of an AND gate will evidently not work. With the two
signals lining up, multiplying 1/2 by 1/2 would produce an output signal equal to 1/2,

Fig. 1 Digital signals
encoded as periodic bit
streams. The values
represented are (a) 0.5, (b)
0.875, and (c) 0.455 (a)

(b)

 (c)

Time

Duty Cycle (0.687ns) 

Period (1ns)

Time

low (off)

high (on)

Vo
lta

ge

Analog circuitry can control the length 
of a pulse with precision

Fig. 2 A Pulse-Width Modulated (PWM) signal. The value represented is the fraction of the time
that the signal is high in each cycle, in this case 0.687
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Fig. 3 Multiplication with a
single AND gate, operating
on deterministic periodic bit
streams

Fig. 4 Multiplication with a single AND gate: operating on deterministic periodic signals. Signal
A represents 0.5 with a period of 20ns; Signal B represents 0.6 with a period of 13ns. The output
signal C from t=0ns to 260ns represents 0.30, the expected value from multiplication of the inputs

not equal to 1/4, the value required. However, suppose that one adopts the following
strategy when generating the bit streams: hold each bit of one stream, while cycling
through all the bits of the other stream. Figure 3 gives an example. Here the value
1/3 is represented by the bits 100 repeating, while the value 2/3 is represented by the
110, clock-divided by three. The result is 2/9, as expected. This method works in
general for all stochastic constructs.

In an analogous way, we can perform operations on PWM signals. For instance,
one can use periodic signals with relatively prime frequencies. Figure 4 shows an
example of multiplying two values, 0.5 and 0.6, represented as PWM signals. The
period of the first is 20ns and that of the second is 13ns. The figure shows that,
after performing the operation for 260ns, the fraction of the total time the output
signal is high equals the value expected when multiplying the two input values,
namely 0.3.

The idea of computing on time-encoded signals has a long history [9–12]. We
have been exploring the idea of time-based computing with constructs developed
for stochastic computing [13, 14]. We note that other researchers have explored
very similar ideas in the context of LDPC decoding [15].

As we will argue, compared to computing on stochastic bit streams, we can
reduce the latency significantly—by an exponential factor—with deterministic
approaches. Of course, compared to binary radix, uniform bit streams still incur
high latency. However, with PWM signals, the precision is no longer depen-
dent on the length of pulses, but rather on how accurately the duty cycle can
be set.

As technology has scaled and device sizes have gotten smaller, the supply
voltages have dropped while the device speeds have improved [16]. Control of the
dynamic range in the voltage domain is limited; however, control of the length
of pulses in the time domain can be precise [16, 17]. Encoding data in the time
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ADC Digital
Computation

1 0 1 0
Analog-To-Digital

Conversion
Digital

Computation
conventional
binary radix 
(low latency)

ADC Digital
Computation

1111111110000000
Digital

Computation
uniform digital
representation
(high latency)

Analog-To-
Digital Time
Conversion

very low gate count,
very low power

ADC Digital
Computation

Digital
Computation

analog periodic
representation

(relatively low latency)

Analog-To-
Analog Time
Conversion

Conventional
Approach

(a)

Computing in Time
(digital domain)

(b)

Computing in Time
(analog domain)

(c)

input
(voltage)

input
(voltage)

input
(voltage)

very low gate count,
very low power

high gate count,
high power

Fig. 5 Comparison of (a) the conventional approach, namely digital computation on binary radix;
to (b) our methodology on uniform bit streams; and (c) our methodology on pulse-width modulated
(PWM) signals

domain can be done more accurately and more efficiently than converting signals
into binary radix. Given how precisely values can be encoded in time, our method
could produce designs that are much faster than conventional ones—operating in
the terahertz range. Figure 5 compares the conventional approach, consisting of an
analog-to-digital converter (ADC) that produces binary radix, to the new methods
that we are proposing here.

A Deterministic Approach

The benefit of stochastic computing is that complex operations can be performed
with very simple logic. We point the reader to a subset of the work that demon-
strates this: [4, 5, 18, 18–29]. This body of work includes examples of both
basic and applied operations, ranging from multiplication, scaled addition, and
exponentiation; to polynomial approximations of trigonometric functions; to LDPC
decoders; to video processing operations such as edge detection. Across the board,
the examples demonstrate a reduction in area by an order of magnitude or more
compared to conventional designs.

An obvious drawback of the stochastic paradigm is the high latency that results,
due to the length of the bit streams. Another is that the computation suffers from
errors due to random fluctuations and correlations between the streams. These
effects worsen as the circuit depth and the number of inputs increase [4]. While the
logic to perform the computation is simple, generating random or pseudorandom bit
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streams is costly. Indeed, in prior work, pseudorandom constructs such as linear
feedback shift registers (LFSRs) accounted for as much as 90% of the area of
stochastic circuit designs [19, 20]. This significantly diminishes the area benefits.

In this chapter, we argue that randomness is not a requirement for the paradigm.
We show that the same computation can be performed on deterministically gener-
ated bit streams. The results are completely accurate, with no random fluctuations.
Without the requirement of randomness, bit streams can be generated inexpensively.
Most importantly, with our approach, the latency is reduced by a factor of approx-
imately 1/2n, where n is the equivalent number of bits of precision. (For example,
for the equivalent of 10 bits of precision, the bit stream length is reduced from 220

to only 210.) As is the case with stochastic bit streams, all bits in our deterministic
streams are weighted equally. Accordingly, as is the case with stochastic circuits,
our deterministic circuits have a high degree of tolerance to soft errors.

Intuitive View

Conceptually, an operation such as multiplication in stochastic logic works by
randomly sampling the inputs. This is achieved by randomizing the input bit streams
and then intersecting them. This approach is easy to understand but incurs a lot
of overhead: one must create the random bit streams, say with constructs such
as LFSRs; this is costly. Furthermore, one must do a lot of sampling. Indeed, as
explained in the section “Comparing Stochastic and Deterministic Representations”,
in order to obtain a result that is equivalent in precision to n bits, one must
sample 22n bits. Randomness requires, in effect, “oversampling” to get a statistically
accurate result [5].

But is such randomly sampling necessary? Why not simply intersect two deter-
ministic bit streams. Consider the mathematical operation of convolution. Intu-
itively, it consists of three operations: slide, multiply, and sum. Figure 6 illustrates
this. If we implement this operation on uniform deterministic bit streams, the result
will be equivalent to a stochastic operation.

Example 1 An example of multiplication by “clock-diving” one input stream and
repeating the other was shown in Fig. 3 in the introduction. Suppose that we wish
to perform scaled addition, say on inputs pA = 1/3, pB = 2/3, and pS = 2/3. We can
divide the bit stream on the select input S to a multiplexer, while the bit streams for
the operands A and B repeat:

pA = 1/3 = 100 → 100100100

Fig. 6 Discrete convolution. (a) Mathematical operation on two bit streams, X and Y . (b)
Intuition: convolution is equivalent to sliding one bit streams past the other
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Fig. 7 Scaled addition via
convolution, by clock
dividing a signal

pB = 2/3 = 110 → 110110110

pS = 2/3 = 110 → 111111000

�
Figure 7 illustrates that the result is pC = pSpA + (1 − pS)pB = 2/9 + 2/9 = 4/9.

Comparing Stochastic and Deterministic Representations

A stochastic representation maintains the property that each bit of one stream meets
every bit of an other stream the same number of times, but this property occurs on
average, meaning the bit streams have to be much longer than the resolution they
represent due to random fluctuations. The bit stream length N required to estimate
the average proportion within an error margin ε is

N >
p(1 − p)

ε2

(This is proved in [5].) To represent a value within a binary resolution 1/2n, the
error margin ε must equal 1/2n+1. Therefore, the bit stream must be greater than
22n uniform bits long, as the p(1 − p) term is at most 2−2. This means that the
length of a stochastic bit stream increases exponentially with the desired resolution.
This results in enormously long bit streams. For example, if we want to find the
proportion of a random bit stream with 10-bit resolution (1/210), we will have to
observe at least 220 bits. This is over a thousand times longer than the bit stream
required by a deterministic uniform representation.

The computations also suffer from some level of correlation between bit streams.
This can cause the results to bias away from the correct answer. For these reasons,
stochastic logic has only been used to perform approximate computations. Another
related issue is that the LFSRs must be at least as long as the desired resolution
in order to produce bit streams that are sufficiently random. A “Randomizer Unit”,
described in [22], uses a comparator and LFSR to convert a binary encoded number
into a random bit stream. Each independent random bit stream requires its own
generator. Therefore, circuits requiring i independent inputs with n-bit resolution
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Fig. 8 Converter module

need i LFSRs with length L approximately equal to 2n. This results in the LFSRs
dominating a majority of the circuit area.

By using deterministic bit streams, we avoid all problems associated with
randomness while retaining all the computational benefits associated with a stochas-
tic representation. However, we can use much shorter bit streams to achieve
the same precision: to represent a value with resolution 1/2n in a deterministic
representation, the bit stream must be 2n bits long. The computations are also
completely accurate; they do not suffer from correlation. The next section discusses
three methods for generating independent deterministic bit streams and gives their
circuit implementations. Without the requirement of randomness, the hardware cost
of the bit stream generators is reduced, so it is a win in every respect.

Deterministic Methods

We present three alternative approaches to deterministic computation on uniform bit
streams. These differ in how the uniform bit streams are generated. We note that the
computational structures themselves are identical to those developed for stochastic
computing. Accordingly, existing designs for arithmetic, signal processing and
video processing can be used. We illustrate the approach with the simplest example:
multiplication with an AND gate.

The three methods for generating the uniform bit streams are: (1) using relatively
prime lengths; (2) rotation; and (3) clock division. For each method, the hardware
complexity of the circuit implementation is given. The computation time of each
method is the same. Each method is implemented using a bit stream generated from
“converter” modules, illustrated in Fig. 8. The modules are similar to the “Random-
izer Unit” [19]; the difference is that the LFSR is replaced by a deterministic number
source.

Relatively Prime Bit Lengths

The “relatively prime”’ method maintains independence by using bit streams that
have relatively prime lengths. Here the ranges [0, Ri) between converter modules
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Fig. 9 Two bit streams generated by the “relatively prime” method

Fig. 10 Circuit
implementation of the
“relatively prime” method

are relatively prime. Figure 9 demonstrates the method with two bit streams A and
B, one with operand length four and the other with operand length three. The bit
streams are shown in array notation to show the position of each bit in time.

Independence between bit streams is maintained because the remainder, equal to
the overlap between bit streams, always results in a new rotation (or initial phase)
of stream. Intuitively, this occurs because the bit lengths share no common factors.
This results in every bit of each operand seeing every bit of the other operand. For
example, a0 sees b0, b1, and b2; b0 sees a0, a3, a2, and a1; and so on. Using two bit
streams with relatively prime bit lengths j and k, the output of a logic gate repeats
with period jk. This means that, with multi-level circuits, the output of the logic
gates will also be relatively prime. This allows for the same arithmetic logic as a
stochastic representation.

A circuit implementation of the “relatively-prime” method is shown in Fig. 10.
Each converter module uses a counter as a number source for iterating through
each bit of the stream. The state of the counter Qi is compared with the stream
constant Ci . The relatively prime counter ranges Ri between modules maintain
independence. In terms of general circuit components, the circuit uses i counters
and i comparators, where i is the number of generated independent bit streams.
Assuming the max range is a binary resolution 2n and all modules are close to
this value (i.e., 256, 255, 253, 251. . . ), the circuit contains approximately i n-bit
counters and i n-bit comparators.

Rotation

In contrast to the previous method, the “rotation” method allows bit streams of
arbitrary length to be used. Instead of relying on relatively prime lengths, the bit
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Fig. 11 Two bit streams
generated by the “rotation”
method

Fig. 12 Circuit
implementation of the
“rotation” method

streams are explicitly rotated. This requires the sequence generated by the number
source to change after it iterates through its entire range. For example, a simple way
to generate a bit stream where the stream lengths rotates in time is to inhibit or stall
a counter every 2n clock cycles (where n is the length of the counter). Figure 11
demonstrates this method with two bit streams, both of length four.

By rotating bit stream B’s length, it is straightforward to see that each bit of one
bit stream sees every bit in the other stream. Assuming all streams have the same
length, we can extend the example with two bit streams to examples with multiple
bit streams; here we would be inhibiting counters at powers of the operand length.
This allows the operands to rotate relative to longer bit streams.

A circuit implementation, shown in Fig. 12, follows from the previous example.
We can generate any number of independent bit streams as long as the counter of
every ith converter module is inhibited every 2ni clock cycles. This can be managed
by adding additional counters between each module. These counters control the
phase of each converter module and maintain the property that each converter
module rotates relative to the other modules. Using n-bit binary counters and
comparators, the circuit requires i n-bit comparators and 2i − 1 n-bit counters. The
advantage of using rotation as a method for generating independent bit streams is
that we can use operands with the same resolution, but this requires slightly more
circuitry than the “relatively-prime” method.
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Fig. 13 Two bit streams
generated by the “clock
division” method

Fig. 14 Circuit
implementation of the “clock
division” method

Clock Division

The “clock division” method works by clock dividing operands. Similar to the
“rotation” method, it operates on streams of arbitrary lengths. (This method was first
seen in Examples 1 and 2 in the section “Intuitive View”.) Figure 13 demonstrates
this method with two bit streams, both with bit streams of length four. Bit stream B

is clock divided by the length of bit stream A’s value.
Assuming all operands have the same length, we can generate an arbitrary

number of independent bit streams as long as the counter of every ith converter
module increments every 2ni clock cycles. This can be implemented in circuit form
by simply chaining the converter module counters together, as shown in Fig. 14.
Using n-bit binary counters and comparators, the circuit requires i n-bit comparators
and i n-bit counters. This means the “clock division” method allows operands of
the same length to be used with approximately the same hardware complexity as the
“relatively-prime” method.

Comparing the Three Deterministic Methods to Stochastic
Methods

Here we compare the hardware complexity and latency of the deterministic methods
with conventional stochastic methods. Perfectly precise computations require the
output resolution to be at least equal to the product of the independent input
resolutions. For example, with input bit stream lengths of n and m, the precise output
contains nm bits.

Consider a stochastic representation implemented with LFSRs. As discussed in
the section “Comparing Stochastic and Deterministic Representations”, a stochastic
representation requires bit streams that are 22n bits long to represent a value with 1/2n

precision. In order to ensure that the generated bit streams are sufficiently random
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Table 1 Gate count for basic
deterministic components,
where n is the resolution and
i is the number of inputs

Component Gate count

Comparator 3n

Counter 6n

LFSR 12ni

Table 2 Gate count for
stochastic and deterministic
bit stream generators, where
n is resolution and i is the
number of inputs. Latency for
each method

Representation Method Gate count Latency
Stochastic Randomizer 12ni2 + 3ni 22ni

Deterministic Rel. prime 9ni 2ni

Rotation 15ni − 6n

Clock div. 9ni

and independent, each LFSR must have at least as many states as the required output
bit stream. Therefore, to compute with perfect precision each LFSR must have at
least length 2ni.

With our deterministic methods, the resolution n of each of the i inputs is deter-
mined by the length of its converter module counter. The output resolution is simply
the product of the counter ranges. For example, with the “clock division” method,
each converter module counter is connected in series. The series connection forms a
large counter with 2ni states. This shows that output resolution is not determined by
the length of each individual number source, but by their concatenation. This allows
for a large reduction in circuit area compared to stochastic designs.

To compare the area of the circuits, we assume three gates for every cell of a
comparator and six gates for each flip-flop of a counter or LFSR (this is similar
to the hardware complexity used in [29] in terms of fanin-two NAND gates). For
i inputs with n-bit binary resolution, the gate count for each basic component
is given by Table 1. Table 2 gives the total gate count and bit stream length
for precise computations in terms of independent inputs i with resolution n for
prior stochastic methods as well as the deteterminstic methods that we propose
here. The basic component totals for each deterministic method were discussed
in section “Deterministic Methods”. For stochastic methods, we assume that each
“Randomizer Unit”’ needs one comparator and one LFSR per input.

The equations of Table 2 show that our deterministic methods use less area and
compute to the same precision, in exponentially less time. It is a win on both metrics,
but the reduction in latency is especially compelling. Consider a reduction in latency
from 1/220 = 1, 048, 576, to just 1/210 = 1, 024!.

An Analog Approach

Building on the insight that stochastic computation can be implemented determin-
istically, we explore computation on “Pulse-Width Modulated” (PWM) signals.
We encode values as the fraction of the time that the signal is in the high (on)
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MUX

IN1 IN2

Sel 10

Out

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IN1

IN2

Sel

Out

Fig. 15 An example of the scaled addition of two PWM signals using a MUX. Here IN1 and IN2
represent 0.2 and 0.6 with a period of 5ns. Sel represents 0.5 with a period of 4ns. The output signal
from t=0ns to 20ns represents 0.40 (8ns/20ns=4/10), the expected value from the scaled addition
of the inputs

compared to the low (off) state in each cycle. An example was shown in Fig. 2 in
the introduction.

As we will show, the key is choosing different periods for the PWM signals, and
letting the system run over multiple cycles. If we choose relatively prime periods
and run the signals to their common multiple, we achieve the effect of “convolving”
the signals. This is analogous to the approach that we took with deterministic digital
bit streams in the section “Relatively Prime Bit Lengths”, where we used relatively
prime bit stream lengths.

Figure 4 in the introduction showed an example of multiplication on PWM
signals. Here we show an example of addition. Recall that with stochastic logic,
scaled addition can be performed with a multiplexer (MUX). The performance
of a MUX as a stochastic scaled adder/subtracter is insensitive to the correlation
between its inputs. This is because only one input is connected to the output
at a time [24]. Thus, highly overlapped inputs like PWM signals with the same
frequency can be connected to the inputs of a MUX. The important point when
performing scaled addition and subtraction with a MUX on PWM signals is that
the period of the select signal should be relatively prime to the period of the input
signals.

Figure 15 shows an example of scaled addition on two numbers, 0.2 and 0.6,
represented by two PWM signals. Both have periods of 5ns. A PWM signal with a
duty cycle of 50% and period of 4ns is connected to the select input of the MUX.
As shown, after performing the operation for 20ns, the fraction of the total time the
output signal is high equals the expected value, 0.40.
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Conclusion

While it is easy conceptually to understand how stochastic computation works,
randomness is costly. This chapter argues that randomness is not necessary.
Instead of relying upon statistical sampling to operate on bit streams, we can
explicitly “convolve” them: we slide one operand past the other, performing bitwise
operations. We argued that the logic to perform this convolution is less costly than
that to generate pseudorandom bit streams. More importantly, we can use much
shorter bit streams to achieve the same accuracy as with statistical sampling through
randomness. Indeed, the results of our computation are predictable and completely
accurate for all input values.

Of course, compared to a binary radix representation, our deterministic repre-
sentation is still not very compact. With M bits, a binary radix representation can
represent 2M distinct numbers. To represent real numbers with a resolution of 2−M ,
i.e., numbers of the form a

2M for integers a between 0 and 2M , we require a stream

of 2M bits. However, contrast this with a stochastic representation that requires 22M

bits to achieve the same precision!
We conclude that there is no clear reason to compute on stochastic bit streams.

Even when randomness is free, say harvested from thermal noise or some other
physical source, stochastic computing entails very high latency. In contrast, compu-
tation on deterministic uniform bit streams is less costly, has much lower latency,
and is completely accurate.

We do note that there is one drawback to the approach: bit stream lengths grow
with each level of logic. This is, in fact, a mathematical requirement. Consider the
multiplication of two numbers, each encoded with a precision of n binary bits.
Regardless of the encoding, the precision of the result must be greater than the
precision of the two operands: up to n2 bits are required. Stochastic encodings
have the same requirement. However, with randomness it is easy to approximate the
result, by simply truncating the length of the streams. Accordingly, most stochastic
circuits keep constant bit stream lengths regardless of the levels of logic. We
concede that there is no straight-forward way to optimally truncate the results of
our deterministic computation. See [30] for a discussion of this topic.

This chapter also presented an alternated view of deterministic computation.
Instead of streams of digital bits, we can encode data as periodic pulses, with
the value represented by the fraction of the duty cycle of each pulse. We are still
representing data digitally, though not by an encoding in space, but rather through
an encoding in time. With data represented this way, we can use the same theory and
all the same constructs developed for stochastic computing on these deterministic,
periodic signals.

This time-based approach is motivated by the observation that, as technology
has scaled and device sizes have gotten smaller, the supply voltages have dropped
while the device speeds have improved. Control of the dynamic range in the voltage
domain is limited; however, control of the length of pulses in the time domain can
be precise. Given how precisely values can be encoded in the time, the method



Deterministic Approaches to Bitstream Computing 135

could produce designs that are much faster than conventional ones—operating in the
terahertz range. This remains a work in progress. Potentially, this paradigm could
deliver circuits that are as efficient in terms of area and power as stochastic circuits,
with considerably lower latency.
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Generating Stochastic Bitstreams

Hsuan Hsiao, Jason Anderson, and Yuko Hara-Azumi

Abstract Stochastic computing (SC) hinges on the generation and use of stochastic
bitstreams—streams of randomly generated 1s and 0s, with the probabilities of p

and 1−p, respectively. We consider approaches for stochastic bitstream generation,
considering randomness, circuit area/performance/cost, and the impact of the vari-
ous approaches on SC accuracy. We first review the widely used Linear-Feedback
Shift Register (LFSR)-based approach and variants. Alternative low-discrepancy
sequences are then discussed, followed by techniques that leverage post-CMOS
technologies and metastability of devices as sources of randomness. We conclude
with a discussion on correlations between bitstreams, and how (1) correlations can
be reduced/eliminated, and (2) correlations may actually be leveraged to positive
effect in certain circumstances.

Introduction

Stochastic computing (SC) requires the generation of stochastic bitstreams: streams
of randomly generated 1s and 0s, where the probability of an individual bit being
1 is p and the probability of a bit being 0 is 1 − p. For example, a length-8
bitstream having the sequence 0, 1, 0, 0, 1, 0, 0, 1 represents the value p = 3/8 in
the unipolar representation. Inputs, intermediate values, and outputs of stochastic
circuits are represented with such bitstreams. Using this representation, certain
types of computations become “cheap” to implement, with multiplication being
emblematic of the phenomenon. With a second bitstream, 1, 1, 0, 1, 0, 1, 1, 1,
representing q = 6/8, one can approximate z = p × q by AND’ing the two

H. Hsiao · J. Anderson (�)
The Edward S. Rogers Sr. Department of Electrical & Computer Engineering,
University of Toronto, Toronto, ON, Canada
e-mail: julie.hsiao@mail.utoronto.ca; janders@eecg.toronto.edu

Y. Hara-Azumi
School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
e-mail: hara@cad.ict.e.titech.ac.jp

© Springer Nature Switzerland AG 2019
W. J. Gross and V. C. Gaudet (eds.), Stochastic Computing: Techniques
and Applications, https://doi.org/10.1007/978-3-030-03730-7_7

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03730-7_7&domain=pdf
mailto:julie.hsiao@mail.utoronto.ca
mailto:janders@eecg.toronto.edu
mailto:hara@cad.ict.e.titech.ac.jp
https://doi.org/10.1007/978-3-030-03730-7_7


138 H. Hsiao et al.

bitstreams, to produce: 0, 1, 0, 0, 0, 0, 0, 1, representing z = 2/8. 2/8 = 0.25 ≈
p × q = 18/64 = 0.281. The approximation accuracy hinges on the input streams
being sufficiently long and statistically independent.

Naturally, it is desirable if such stochastic bitstreams are generated by hardware
that has low area, power, and delay. However, apart from such circuit objectives,
many approaches to stochastic computing require that input and intermediate-
value bitstreams be free of correlations from one another, and that streams are
truly random, to the extent possible. This chapter discusses stochastic bitstream
generation, the associated hardware costs, as well as touching upon issues of
correlations and accuracy.

A stochastic bitstream of length L may contain as few as zero 1s, or as many
as L ones. As such, the probability values representable in such a bitstream lie
in a discrete set: 0, 1/L, 2/L, · · · , L/L; that is, the set contains all values in the
[0:1] range in steps of 1/L. By increasing the bitstream length, the step size is
reduced, permitting a higher accuracy approximation of probability p. Broadly
speaking, longer bitstreams imply higher accuracy, and it is precisely this concept
that underpins the inherent progressive precision of SC: the notion that accuracy
generally improves as longer bitstreams are used, permitting early termination of
computation if sufficient accuracy is achieved.

Perhaps surprisingly, a significant hurdle for the broader uptake of SC is tied
to challenges associated with the seemly straightforward task of generating input
bitstreams to feed into an SC circuit. While relatively simple logic circuits may
suffice to perform sophisticated computations on stochastic bitstreams (e.g. a single
AND gate for multiplication), larger and more power hungry circuits are needed for
the input bitstream generation. Thus, generating stochastic bitstreams is frequently
more costly than computing on them! In fact, prior work has reported that over
80% of the area of several SC designs is consumed by circuitry for generating
the stochastic bitstreams and circuitry for conversion back to standard binary [1].
Consequently, the design of bitstream generation circuitry remains an active and
important research vector for SC.

A further challenge with regard to stochastic bitstreams involves correlations
(discussed in detail in chapter “Accuracy and Correlation in Stochastic Comput-
ing”). To illustrate this, returning to the example above, if instead of computing
z = p × q, the objective was to compute z = (p × q)2, observe that one cannot
simply AND the bitstream p × q with itself, as this would simply reproduce p × q

instead of the desired (p×q)2. Rather, the correct approach is to AND the bitstream
corresponding to p×q with a second uncorrelated bitstream also representing p×q.
There is a need, therefore, to be able to decorrelate bitstreams as part of SC.

The chapter is organized as follows: Section “Overview” provides an overview
of stochastic bitstream generation and converting from/to standard binary represen-
tation. Section “Sequence Generation” describes varied approaches proposed for
stochastic sequence generation, including an overview of sources of randomness in
CMOS and post-CMOS technologies. Sections “Correlated Stochastic Bitstreams”
and “Decorrelating Stochastic Bitstreams” describe techniques around creating
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correlated bitstreams (shown to be acceptable in certain circumstances) and decor-
relating bitstreams, respectively. Section “Summary” concludes the chapter.

Overview

Figure 1 depicts a block diagram of a widely used circuit to generate a stochastic
bitstream. A random number generator (RNG) produces a sequence of N-bit
binary values: one such value per clock cycle. The random values are then fed
into a comparator and compared with an N-bit binary number, B. Based on the
comparison, a 0 or a 1 is generated in the stochastic bitstream. The RNG is typically
designed so that across 2N clock cycles, all possible N-bit binary numbers are output
(possibly excluding the case of all zeros). With B held constant across the 2N clock
cycles, the stochastic bitstream generated will contain B ones, and 2N − B zeros,
thereby representing the value B/2N . The subsequent sections highlight different
approaches to random sequence generation.

To convert a stochastic bitstream back to a normal binary representation, a
counter is typically used: on each clock cycle, when the stochastic stream contains
a 1, the counter is incremented. With a length-L bitstream, after L clock cycles, if
the counter holds value C, the value represented by the bitstream is C/L, which as
expected lies in the [0 : 1] range.

Sequence Generation

Linear-Feedback Shift Registers (LFSRs)

The most widely used implementation for the random-number generator in Fig. 1
is a linear-feedback shift register (LFSR). An N -bit LFSR comprises N flip-flops,
as well as XOR gates in a feedback configuration. Figure 2 shows an example 3-bit
LFSR. With N bits, there are 2N possible binary numbers, however, the all-zeros
possibility is generally not used, leaving 2N − 1 numbers. A maximal LFSR walks
through all such 2N − 1 numbers in a deterministic, yet pseudo-random order. For
example, the LFSR in Fig. 2 walks through the sequence (output bits are Q2Q1Q0):

Fig. 1 Stochastic bitstream
generation
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Fig. 2 3-bit linear-feedback shift register (LFSR)

1, 4, 6, 7, 3, 5, 2, 1, . . . . In general, with an n-bit maximal LFSR, an ≈ 2n−1-length
stochastic bitstream can be generated.

As mentioned above, in many cases, SC relies on stochastic bitstreams being
uncorrelated from one another. With the LFSR-based approach, this is conven-
tionally achieved by using instances of the circuit in Fig. 1, wherein each RNG
LFSR is seeded at a different starting number. Thus, the multiple LFSRs each
move through the same number sequence, in the same order, but yet are at different
positions within the sequence. The starting point of each LFSR is referred to as its
seed.

In [2], the authors considered a variety of variations on the LFSR-based approach
in a bid to raise the accuracy of SC. First, the authors considered randomly
scrambling the LFSR outputs, as fed into the comparator in Fig. 1. Scrambling
causes the LFSRs to appear to walk through numbers in a different order. Second,
Anderson et al. [2] considers the choice of seed for each LFSR, and seed selection
implications on SC accuracy. Third, the authors considered using LFSRs with
different “feedback polynomials”—i.e. different tap-point positions for the inputs
to the XOR gate.1 Similar to the scrambling approach, the use of different feedback
polynomials causes the LFSRs to traverse the number sequence in a different
order.

The results in [2] demonstrate that scrambling LFSR outputs and the use of
multiple feedback polynomials had a modest effect on SC accuracy. However,
judicious selection of LFSR seeds had a significant impact on SC accuracy. Careful
seeding of the LFSRs provided an accuracy improvement beyond that achievable
through the use of longer bitstreams in certain cases. Further study of LFSR seeding
in the SC context is a direction worthy of future research.

1There are typically multiple ways to design an N -bit LFSR.
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Low-Discrepancy Sequences

Low discrepancy (LD) sequences are also known as quasi-random sequences or
sub-random sequences. When compared to pseudo-random sequences generated
by LFSRs, LD sequences exhibit the property of being more equidistributed. This
property provides the advantage of a faster rate of convergence to the desired
probability, O( 1

L
) instead of O( 1√

L
), where L is the length of the SC bitstream. This

implies that a shorter SC bitstream can be used to achieve the same accuracy since
it is less susceptible to errors due to random fluctuations. Of many LD sequences
in literature, the van der Corput/Halton sequence [3, 4] and the Sobol’ sequence [5]
have been used in the context of stochastic bitstream generation. Sections “van der
Corput and Halton Sequences” and “Sobol’ Sequences” discuss the computations
involved in generating the LD sequence and the hardware circuits proposed
for the van der Corput/Halton sequence and the Sobol’ sequence, respectively.
Section “Comparison of LD Sequences” presents a comparison between the LD
sequences and their LFSR counterparts.

van der Corput and Halton Sequences

The van der Corput sequence [3] {X1, X2, X3 . . .}, where 0 < Xi < 1, is an infinite-
length sequence with distinct values for each term. It is “seeded” by picking a base
b, and constructed by reversing the base-b representation of natural numbers i ≥ 1.
Every natural number i can be expressed in base-b as

i =
∞∑

j=0

aj (i)b
j

where aj (i) ∈ {0, 1, . . . , b − 1} and aj (i) = 0 for all sufficiently large j . The i-th
van der Corput sequence is therefore expressed as

Xi =
∞∑

j=0

aj (i)b
−j−1

Example The natural numbers i ≥ 1 represented with b = 3 are

001 002 010 011 012 020 021 022 100 101 . . .

where the individual digits in each number are the aj (i) coefficients. The van der
Corput sequence flips the digits of i at the radix point, giving

0.100 0.200 0.010 0.110 0.210 0.020 0.120 0.220 0.001 0.101 . . .
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which corresponds to the following van der Corput sequence X:

1

3

2

3

1

9

4

9

7

9

2

9

5

9

8

9

1

27

10

27
. . .

The van der Corput sequence is a one-dimensional LD sequence, and the Halton
sequence generalizes the van der Corput sequence to higher dimensions. The Halton
sequence uses co-prime numbers as its bases for each dimension. For a circuit that
requires k uncorrelated inputs, a k-dimensional Halton sequence generator will be
needed, each using a different base b.

Hardware Implementation Figure 3 shows the structure of the Halton sequence
generator proposed by Alaghi and Hayes [6]. It consists of a binary-coded base-b
counter, where b is a prime number. The order of the output digits from the counter
is reversed and the resulting number is converted to a binary number with the base-
b-to-binary converters and the adder. When b = 2, Fig. 3 reduces to a simple binary
counter. For k inputs, k copies of the circuit with different prime bases are needed.

Sobol’ Sequences

The Sobol’ sequence is a base-2 (t, s)-sequence [3, 5] that is infinite in length, with
distinct values for each term. We describe the steps required to generate the Sobol’
sequence based on the algorithms proposed by Bratley and Fox [7].

mod-b
counter

mod-b
counter

mod-b
counter

base-b to binary 
converter

base-b to binary 
converter

base-b to binary 
converter

adder

Xi

a0a1
aj

binary-coded base-b counter

Fig. 3 Halton sequence generator proposed by Alaghi and Hayes [6]
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To construct the Sobol’ sequence {X1, X2, X3, . . .} where 0 < Xi < 1, a set
of direction vectors vj (discussed later) needs to be precomputed to “seed” the
sequence. With the precomputed direction vectors vj , the Sobol’ sequence can be
written as:

Xi = b1v1 ⊕ b2v2 ⊕ . . . (1)

where . . . b3b2b1 is the binary representation of i and ⊕ stands for the bitwise-XOR
operation. Antonov and Saleev [8] showed that using the Gray code representation
of i (. . . g3g2g1) does not affect the asymptotic discrepancy of the sequence. The
sequence in Eq. (1) can then be written as

Xi = g1v1 ⊕ g2v2 ⊕ . . . (2)

Since the Gray code of i can be obtained with gk = bk ⊕ bk+1, the expression in
Eq. (2) can be rewritten as

Xi+1 = Xi ⊕ vc (3)

where c is the position of the rightmost zero in the binary representation of i.
Each direction vector vj is a binary fraction expressed as

vj = 0.vj1vj2vj3 . . . vjk . . . or vj = mj

2j

where mj < 2j and mj is an odd number. To compute the direction vectors vj , a
primitive polynomial P with degree d in the field Z2 is first selected. The primitive
polynomial is in the form

P = xd + a1x
d−1 + a2x

d−2 + . . . + ad−1x + 1

where coefficients ai ∈ {0, 1}. The coefficients ai are then used to construct a set of
direction vectors vj , where

vj = a1vj−1 ⊕ a2vj−2 ⊕ . . . ⊕ ad−1vj−d+1 ⊕ [vj−d >> d]

In this recurrence relation, j > d and the last term is vj−d shifted right by d. The
recurrence relation for the direction vectors can alternatively be expressed as

mj = 21a1mj−1 ⊕ 22a2mj−2 ⊕ . . . ⊕ 2d−1ad−1mj−d+1 ⊕ 2dmj−d ⊕ mj−d

Example Suppose we pick a degree 3 primitive polynomial:

x3 + x + 1
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The coefficients here are a1 = 0 and a2 = 1, giving the recurrence relation:

mj = 4mj−2 ⊕ 8mj−3 ⊕ mj−3

To use the recurrence equation, an initial value for the first d mj ’s needs to be
assigned. The initial values can be chosen freely as long as they are odd and mj <

2j . Assuming we assign m1 = 1, m2 = 3, and m3 = 7, then

m4 = 4(3) ⊕ 8(1) ⊕ 1 = 5

m5 = 4(7) ⊕ 8(3) ⊕ 3 = 7

m6 = 4(5) ⊕ 8(7) ⊕ 7 = 43

The first 6 direction vectors are shown in Table 1. Using these precomputed
direction vectors and Eq. (2), the Sobol’ sequence can be computed, as shown in
Table 2. Here, we are assuming that X0 = 0.

The i-th value in the sequence can also be obtained directly using Eq. (2). For
example, for i = 23, the Gray code representation is i = 11100. X23 can therefore
be computed as:

X23 = v3 ⊕ v4 ⊕ v5

= 0.11100 ⊕ 0.01010 ⊕ 0.00111

= 0.10001

= 17

32

Table 1 Example of generating vj with P = x3 + x + 1, m1 = 1, m2 = 3, and m3 = 7

j 1 2 3 4 5 6

mj 1 3 7 5 7 43

vj
1
2

3
4

7
8

5
16

7
32

43
64

vj (binary) 0.1 0.11 0.111 0.0101 0.00111 0.101011

Table 2 Example of
generating Sobol’ sequence
using the recurrence equation
Xi+1 = Xi ⊕ vc

i (binary) Xi c

0 X0 = 0a 1

01 X1 = X0 ⊕ v1 = 0 ⊕ 0.1 = 0.1 2

10 X2 = X1 ⊕ v2 = 0.1 ⊕ 0.11 = 0.01 1

011 X3 = X2 ⊕ v1 = 0.1 ⊕ 0.10 = 0.11 3
aX0 is not part of the sequence, but an initial value to
start the recurrence equation
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Fig. 4 Hardware circuit for
the Sobol’ sequence
generator, producing 2 values
in parallel, proposed by
Dalal et al. [9]

LSZ 
circuit

+2 
counter RAM

v1

i c vc

Xi+1

Xi+2

Xi

Hardware Implementation Dalal et al. proposed a hardware design for a Sobol’
sequence generator based on the above algorithm, intended for Quasi-Monte Carlo
simulation [9]. In their implementation, the direction vectors are pre-computed
and stored in RAM. They construct the sequence using the recurrence equation
in Eq. (3), which involves a least-significant zero (LSZ) computation, a memory
lookup, and an XOR operation. Figure 4 shows the circuit, which produces two
values in the sequence in parallel. In this circuit, i is an even number and v1 is a
copy of the v1 value from the RAM. Since every even-numbered i will have its
least-significant zero in position c = 1, every odd-numbered i + 1 will end up with
the expression Xi+1 = Xi⊕v1. The circuit in Fig. 4 produces the Sobol’ sequence in
one dimension. A copy of the circuit is needed for each uncorrelated input bitstream
required by the SC circuit.

Comparison of LD Sequences

Liu and Han [10] compared the energy efficiency of stochastic number generators
(SNGs) based on LFSRs, Halton sequences, and Sobol’ sequences. They used
the root-mean-square error (RMSE) as a measure of accuracy, then compared the
performance of different circuit implementations for a given accuracy. Figure 5
shows the accuracy results achieved by the stochastic computing implementations
using LFSRs, the Halton sequence, and the Sobol’ sequence, for a 2-input multiplier
circuit and a 3rd-order Bernstein polynomial [11] circuit. On the same graph, the
functionally equivalent circuit implemented with the conventional binary number
system is plotted, providing a comparison with the stochastic computing imple-
mentations. For a simple 2-input multiplier circuit, the RMSE of the LD sequences
decreases at a similar rate as binary numbers, as the length of the LD sequence
increases at the rate of 2N and the bitwidth of the binary number increases at the rate
of N . The LFSR’s RMSE decreases at a much slower rate as the length increases.
For a 3rd-order Bernstein polynomial circuit [11], the gap between how accuracy
scales for binary and LD sequences widens slightly. However, the LD sequences
still provide better accuracy than an LFSR in terms of how RMSE scales as length
increases. Overall, Liu and Han [10] reports that the LD sequences provide a higher
accuracy than an LFSR for the same sequence length in these two applications.
Similar observations were made by Seva et al. [12] when they compared the use of
an LD sequence versus an LFSR for edge detection applications.
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Fig. 5 Accuracy comparison between different random number generators with different sequence
length for a (a) 2-input multiplier circuit and a (b) 3rd-order Bernstein polynomial circuit [10]

Liu and Han quantified the performance of the circuit using energy per operation
(EPO) and throughput per area (TPA). EPO = Power × Tclk × L, where L is the
sequence length, Tclk is the clock period, and Power is the measured power at Tclk .
T PA = (# of effective bits)/(tc × L)/area, where tc is the critical path delay and
the (# of effective bits) is the bitwidth for the corresponding binary representation
(�log2(L)�). For LD sequences requiring low dimensions (i.e. a low number of
uncorrelated inputs), the EPO is lower than the LFSR-based circuits and the TPA is
greater than the LFSR-based circuits. With increasing dimension, the area overhead
required to generate uncorrelated sequences increases faster for LD sequences than
for LFSRs. This results in comparable EPO and TPA between the LD sequences and
the LFSR-based circuit. Detailed performance results can be referred to in the work
by Liu and Han [10].

Alternative Sources of Randomness

In digital systems, metastability (sometimes referred to as glitch) is an uncertain
state between logic ‘0’ and ‘1’ due to variation or propagation delay. Under
metastability, a circuit’s behavior is unpredictable. Some existing works exploit such
uncertainty as source of entropy to generate true random numbers on FPGAs [13–
15]. In many of such works, each true random number generator (TRNG) is built
by several oscillators and a binary XOR-tree [13]. For example, as illustrated in
Fig. 6, a TRNG has r distinct ring oscillators, R1, R2, . . . , Rr , where the i-th ring
oscillator Ri is composed of ni inverters. Due to differing numbers of inverters, and
process variations, the r ring oscillators oscillate at different frequencies from one
another. Then, r oscillating outputs �1, �2, . . . , �r are XOR’ed to generate one
output �. Finally, this output � is sampled at a clock frequency f . In addition to
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Fig. 6 Ring oscillators-based
TRNG on FPGA [13]

Fig. 7 RS latches-based TRNG on FPGA [14]; (a) RS latch; (b) FPGA RS latch implementation;
(c) employing multiple RS latches for higher entropy

ring oscillators, some recent works such as [15] further utilize physically unclonable
functions (PUF), which arise due to physical manufacturing variations within the
integrated circuit, as a source of variability/randomness.

Because ring oscillator-based TRNGs are power-hungry, other implementations,
such as latch-based TRNGs, have been also studied [14, 16]. For example, for an
RS latch in Fig. 7a, activating both R and S inputs simultaneously is prohibited as
the latch enters a metastable state having (Q,Q) as either of (0, 1) or (1, 0). A
TRNG can be constructed by feeding the same Clk to R and S of the RS latch—
when Clk = 1, metastability is realized. In [14], this concept is implemented
to generate entropy using two lookup tables (LUTs) in an FPGA, as shown in
Fig. 7b. Although theoretically one RS latch may realize a TRNG, it is not possible
to generate sufficient entropy through a single RS latch only. Therefore, multiple
copies of this RS latch are needed with XOR’ing among the latch outputs (see
Fig. 7c). Furthermore, using distant LUTs to realize the RS latch-based TRNG offers
the opportunity to “capture” additional noise, such as thermal noise, (i.e., larger
entropy) through longer wires, leading to higher-quality randomness. However, this
will affect the throughput of the TRNG. The authors of [14] have studied the suitable
number of latches in terms of the quality and throughput (leaving the place-and-
route task to the vendor tool), and revealed 64-256 latches achieve a reasonable
trade-off of quality versus cost.
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Fig. 8 MTJ structure
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In addition to generating random numbers in the digital domain, prior work
has demonstrated the use of the probabilistic nature of device characteristics in
generating sequences directly in the analog domain. Knag et al. [17] demonstrated
the use of memristor memory to convert analog voltages to a stochastic bitstream.
The probability that a write to a cell is successful P(t) is dependent on the
programming voltage V and pulse width t , given by expressions P(t) = 1 −
e−t/τ . τ is the characteristic switching time of the memristor and depends on the
programming voltage V , given by the expression τ(V ) = τ0e

−V/V0 (τ0 and V0
are fitting parameters). The pulse width that gives the desired probability is used in
group write, which applies the pulse to a group of memristor cells and the number
of ones successfully written represents the stochastic number. The authors further
illustrated the feasibility of using a pulse train of shorter widths to approximate a
longer pulse.

The feasibility of using magnetic-tunnel junction (MTJ) devices as a natural
way to generate stochastic bitstreams has been investigated by various researchers,
including the use of spin-transfer-torque (STT) MTJs [18–21], voltage controlled
(VC) MTJs [22], and all-spin logic (ASL) [23]. An MTJ consists of two ferro-
magnetic layers separated by a tunneling barrier, illustrated in Fig. 8. One of the
ferromagnetic layers has a fixed direction of magnetization, whereas the other can
be switched and is referred to as the free layer. The direction of the free layer
can be parallel or anti-parallel to the fixed layer, which corresponds to the low-
and high-resistance states, respectively. The switching between parallel and anti-
parallel states of the MTJ device is achieved by applying a voltage pulse, and the
MTJ will probabilistically transition. The probability that the MTJ device switches
is dependent on the voltage and the duration of the pulse, thereby creating the
possibility for random-number generation.

Correlated Stochastic Bitstreams

As there is considerable hardware cost associated with stochastic bitstream gen-
eration, a natural question that arises is: to what extent is it possible to share
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hardware when generating multiple bitstreams? This question has been considered
in a number of recent works, e.g. [24–26], which proposed sharing portions of
the bitstream-generation circuitry. With sharing of circuitry, however, comes the
possibility of correlations among bitstreams.

Ichihara et al. [25] proposed that the same random number generator (LFSR)
be used to generate multiple stochastic bitstreams, with a unique comparator for
each stream. To reduce correlations, the LFSR output bits are rotated by a fixed and
unique number of bits for each bitstream, there making the random numbers fed to
each comparator appear different. The idea is depicted in Fig. 9 for the two-bitstream
case. Rotating the LFSR output bits by a fixed amount is “free” in hardware, as it
can be done solely with wiring.

Ichihara et al. [25] also noted that for certain functions, such as stochastic
scaled addition using a 2-to-1 multiplexer, correlations between the MUX data
inputs are acceptable in that they do not impact output accuracy. Ding et al.
[27] leverages this property in the generation of stochastic bitstreams by using a
single LFSR, along with a logic circuit, to generate multiple correlated bitstreams
to feed MUX data inputs in the MUX-based stochastic computing architecture
proposed in [1]. Specifically, the authors in [27] note that logic functions applied to
stochastic bitstreams having a probability of 0.5 can be used to generate bitstreams
with specifically chosen probabilities. The individual LFSR bits are fed into an
optimized multi-output logic circuit to produce multiple output bitstreams with
desired probabilities in limited area cost.

More recently, Neugebauer et al. [26] proposed an alternative hardware sharing
approach, comprising feeding LFSR output bits into an S-box—an n-input-to-n-
output Boolean function the authors borrowed from cryptography. As in [25],
the work in [26] uses different bit-wise rotation amounts for different stochastic
bitstreams, however, the presence of the S-box provides improved statistical inde-
pendence between generated streams. Finally, Li and Lilja [24] proposes techniques
for generating a lengthy stochastic bitstream, where overlapping portions of the
stream are used as shorter bitstreams having specific desired probabilities.

Fig. 9 Sharing the LFSR to reduce the hardware cost of stochastic bitstream generation [25]
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Decorrelating Stochastic Bitstreams

Correlations among stochastic bitstreams arise from reconvergent paths in SC
circuits. Excessive errors in accuracy may arise from the use of such correlated
streams. There appear to be two approaches for decorrelating bitstreams in the
literature. The first, and most widely used approach is generate a bitstream from an
independent random source. This involves converting the original stochastic stream
back to a binary representation, and then regenerating a new stochastic stream using
the circuit in Fig. 1. This first approach, while straightforward, imposes a high area
and delay cost.

A second approach, proposed recently, involves the introduction of isolators [28].
With this approach, a stochastic bitstream is interpreted as a Bernoulli process,
where each successive 0/1 value is independent from one another. With this inter-
pretation, it is straightforward to see two stochastic bitstreams can be decorrelated
from one another by delaying one of the bitstreams by one or more clock cycles. The
delaying effect is realized by inserting flip-flops (isolators) on carefully chosen paths
within an SC circuit. The authors of [28] study the isolator concept and propose
methodologies for selecting the connections within an SC circuit on which isolators
should be inserted. The isolator approach holds promise to decorrelate streams with
considerably less area and delay cost than from-scratch bitstream generation.

Summary

Stochastic computing (SC) relies on randomly generated streams of 1s and 0s
as its number representation. While this representation is beneficial to power,
computational area, reliability and fault tolerance, it is associated with a number
of challenges, with a key obstacle being how to generate such bitstreams in a low
area footprint and how to reduce the latency required for computations (bitstream
length); i.e. to achieve reasonable accuracy in reasonable time. In this chapter,
we reviewed published techniques for stochastic bitstream generation, including
the commonly used LFSR-based approach, as well as the use of low-discrepancy
sequences. The latter approach shows promise as a means to improve SC accu-
racy. We then outlined other sources of randomness that may be leveraged for
random-number generation, including the use of storage-element metastability and
probabilistic effects in post-CMOS technologies. Finally, we discussed correlations
in stochastic bitstreams, typically undesirable, yet useful in certain circumstances.
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RRAM Solutions for Stochastic
Computing

Phil Knag, Siddharth Gaba, Wei Lu, and Zhengya Zhang

Abstract Stochastic computing is a low-cost form of computing. To perform
stochastic computing, inputs need to be converted to stochastic bit streams using
stochastic number generators (SNGs). The random number generation presents a
significant overhead, which partially defeats the benefits of stochastic computing.
In this work, we show that stochastic computing can be implemented in memory,
through temporally varying resistive RAM (RRAM) devices. We can take advantage
of the temporal variations in the resistance switching of RRAM devices for
stochastic computing. By adopting a group write approach, an RRAM memory can
be used to generate random bit streams and reshuffle bit streams, accomplishing
two essential functions for stochastic computing without expensive SNGs. We
demonstrate in-memory stochastic computing in two test applications, a gradient
descent solver and a k-means clustering processor.

Introduction

Stochastic computing is a low-cost computing paradigm using probabilistic bit
streams [1–3]. For example, the number 0.5 can be represented by a stream of
8 bits {0, 1, 1, 0, 1, 0, 0, 1} in which the probability of having 1 in the stream
is 0.5. Similarly, the number 0.25 can be represented by {0, 1, 0, 0, 0, 1, 0, 0}.
Compared to the binary system, a bit stream representation is not unique. A higher
numerical precision requires a much longer bit stream, but as a benefit, a bit stream
is more error-tolerant than the binary system: a bit flip introduces a least significant
bit (LSB) error. Typically binary numbers are converted to bit streams for stochastic
computing, and the output bit stream of stochastic computing is converted to binary.

Stochastic computing offers the key advantage of much simplified arithmetic
operations. For example, the multiplication of a and b can be implemented using
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an AND logic gate. An important assumption of stochastic computing is that input
bit streams of an operation are independent. Any correlation between input streams
reduces the accuracy of stochastic computing. For example, if we multiply two
identical, i.e., 100% correlated, bit streams representing a using an AND gate, the
output of the gate does not represent a2. An in-depth discussion of correlation in
stochastic computing is covered in chapter “Accuracy and Correlation in Stochastic
Computing”.

To ensure the independence assumption holds, stochastic number generators
(SNG) are used everywhere in stochastic computing to randomize bit streams before
a stochastic operation [4]. The randomization presents a significant cost, which
partially defeats the simplicity of stochastic computing. A detailed discussion of
SNG is covered in chapter “Generating Stochastic Bitstreams”.

The precision limitation of stochastic computing and the relative high cost of
binary conversion are recognized as the showstoppers of stochastic computing. It is
not surprising to see that the recent applications of stochastic computing have largely
been limited to error-tolerant neural networks [8–10], image processing [5, 11], and
decoding of low-density parity-check codes [12, 13].

In this chapter, we propose using the nondeterministic switching of emerging
resistive RAM (RRAM) devices as the SNG. Data is randomized every time it
is written to RRAM, which removes the need of a standalone SNG. In addition
to serving as the SNG, RRAM devices can be used in an end-to-end stochastic
computing system that takes analog input, computes in stochastic bit streams, and
produces analog output. The end-to-end system eliminates the need of any binary
number conversion, making it much more efficient than a stochastic computing
module being used as a part of a binary computing system.

Resistive RAM and Stochastic Switching

Memristive devices, also known as RRAM, are a promising non-volatile memory
technology thanks to high scalability [14], high endurance [15] and low power
consumption [16, 17]. RRAM technology offers relatively simple fabrication, multi-
bit capability [18] and ease of 3D stacking [19, 20], allowing the per-bit cost to be
reduced significantly. However, a significant drawback of RRAM technology is its
spatiotemporal switching variations [21, 22]. The variations span space, i.e., from
device to device, and time, i.e., cycle to cycle in the same device. Spatial variations
are due to problems including line edge roughness and film thickness irregularity.
Such problems have been studied in-depth in CMOS designs, and variation-aware
techniques in CMOS designs apply equally to RRAM designs.

The more damaging problem with RRAM devices is the temporal variations. The
temporal variations are due to the probabilistic filament formation process. When
a single filament growth dominates, the randomness in the switching processes
is shown to follow a Poissonian distribution. Controlling the random switching
requires margining and costs power and performance. Instead of suppressing
randomness, a much better way is to make use of the temporal variations of RRAM
devices for stochastic computing.
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Stochastic Switching

The temporal variations in resistive switching devices have been studied recently
[23]. A binary memristive device is usually engineered to have a relatively high
threshold voltage of approximately 5 V. Bias voltages lower than the threshold
voltage can be applied to uncover a device’s temporal variations. During such an
experimentation, current through the device under test is continuously monitored
until a sharp jump in the current is observed, indicating the device is turned ON.
The wait time leading to the switch is recorded. The device is then reset to the OFF
state and the experimentation is repeated.

As Fig. 1 indicates, the wait time is not constant every time and it varies
from cycle to cycle even for the same device. The memristive filament formation
associated with the OFF to ON transition is driven by thermodynamics and involves
oxidation and ion transport. Since all these physical processes are thermally

Fig. 1 Random distribution of the wait time prior to switching. (a–c) Distributions of wait times
for applied voltages of 2.5 V (a), 3.5 V (b) and 4.5 V (c). Solid lines: fitting to the Poisson
distribution (1) using τ as the only fitting parameter. τ = 340 ms, 4.7 ms and 0.38 ms for (a)–
(c), respectively. Insets: (a) DC switching curve, (b) example of a wait time measurement and (c)
scanning electron micrograph of a typical device (scale bar: 2.5 μm). (d) Dependence of τ on the
programming voltage. Solid squares were obtained from fitting of the wait time distributions while
the solid line is an exponential fit. Reproduced from [23]
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activated and thermal activation over the dominant energy barrier is probabilistic
in nature if only a dominant filament is involved [24]. Therefore, in theory, the wait
time should follow a Poisson distribution, and the probability of a switching event
occurring within 
t at time t is given by

P(t) = 
t

τ
e− t

τ , (1)

where τ is the characteristic wait time.
The switching of a memristive device is determined by the characteristic wait

time. The characteristic wait time decreases exponentially with the applied voltage.
This is consistent with the dominant filament model since both oxidation and ion
transport are dependent on the electric field. As the applied voltage is reduced,
the effective activation barrier is reduced, resulting in an exponential speed up in
switching time [24–26].

By integrating the distribution from (1), the switching probability by a certain
time t since the external voltage is applied, C(t), can be obtained.

C(t) = 1 − e− t
τ , (2)

where τ is the characteristic wait time.
Using applied voltages of 2.5 V, 3.5 V and 4.5 V, it has been shown that the

predicted switching probability from (2) matches the experimental values as shown
in Fig. 1 [23]. The experimentation results confirm the hypothesis of stochastic
switching and the Poisson model.

The model can be further tested by single pulse experimentation [23], where a
2.5 V single pulse of different widths from 300 ms to 1000 ms is applied to a device.
After a pulse, the device state is checked, and then reset to the OFF state. For trials
with a 300 ms pulse, the device switched to the ON state 20 times out of 50 attempts;
and for trials with a 1000 ms pulse, the device switched to the ON state 38 out of 50
attempts. The experimental results closely follow (2).

If we quantize the current measured in each trial to binary, 1 for a high current
and 0 for a low current, a memristive device can be used to generate a stochastic bit
stream. For example, if the current through a device is larger (smaller) than 0.1 μA,
it will be treated as 1 (0). Thus if we perform single pulse experimentation n times,
the memristive device will generate a n-bit long stochastic bit stream. The equivalent
value of the stochastic bit stream is completely determined by the voltage and width
of the pulse applied to the device.

Generating Stochastic Numbers

Implementing SNG in digital CMOS circuits is expensive because it relies on a
psuedo-random number generator being implemented in CMOS circuits, such as a
linear-feedback shift register (LFSR). Given that a single RRAM device is capable
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Fig. 2 Generation of non-correlated bit streams. Different devices (A–D) when programmed
with identical bias conditions give non-correlated bit streams but with very similar bias (∼0.6).
Reproduced from [23]

of generating a stochastic bit stream, it can be used as an inexpensive SNG. RRAM’s
high density and low standby power make it a highly attractive SNG in terms of cost
and power.

Using RRAM devices to produce uncorrelated random bit streams has been
experimentally demonstrated in [23]. In this work, identical voltage is applied to
four devices to obtain four 20-bit long random bit streams as shown in Fig. 2. The
four bit streams are uncorrelated, but the number of 1s in the four bit streams are
nearly the same (0.6 in this case). In other words, four independent bit streams
representing the number 0.6 have been generated without using expensive SNGs.

In-Memory Stochastic Computing

An in-memory stochastic computing system can be designed by employing
RRAM for stochastic number generation. The in-memory stochastic computing
is “natively” stochastic, as a read from memory generates stochastic bit streams
without any separate SNGs. In doing so, we also eliminate the extra overhead
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Fig. 3 Native stochastic computing system using RRAM-based stochastic memory. Reproduced
from [29]

required for the deterministic use of RRAM. The approach combines stochastic
computing with temporally varying RRAM devices to enable an efficient computing
system that is not possible with either stochastic computing or RRAM alone.

The in-memory stochastic computing system is illustrated in Fig. 3. The system
consists of RRAM integrated with CMOS periphery and logic circuits. The system
directly accepts analog input. RRAM converts the analog input to a stochastic bit
stream. Computing is entirely done in the bit stream domain. The output bit stream
is written to RRAM. A write to RRAM allows the input to be converted to a new bit
stream, which serves the purpose of reshuffling needed in stochastic computing to
prevent reconvergent fanout.

The in-memory stochastic computing system accepts analog inputs directly.
Binary to bit stream conversions are eliminated, but amplifiers and sample and hold
circuitry may be needed. In comparison, a classic stochastic computing is entirely
digital and requires analog-to-digital conversion to accept analog inputs.

The in-memory stochastic computing system takes advantage of the randomness
inherent in RRAM devices that is only present when the operating voltage is
relatively low, which naturally leads to a good energy efficiency. The in-memory
stochastic computing also inherits all the benefits of a classic stochastic computing
system: if a high performance is needed, simple stochastic arithmetic circuits can be
parallelized in a flat topology; the independence between bits in a bit stream cuts the
critical path delay and simplifies routing; and stochastic computing is error-resilient,
and it tolerates noise and soft errors.

In the following subsections, we describe the aspects of the in-memory stochastic
computing system.

Stochastic Programming

In an RRAM device, the high-resistance state represents OFF or 0, and the low-
resistance state represents ON or 1. As explained previously, the switching of a
RRAM device from 0 to 1 is a stochastic process. We can use voltage and pulse
width to adjust the switching probability. To save energy, short pulses and low
voltage are preferred. A low voltage also prevents device wear-out and prolongs
device’s lifetime.
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Suppose we write 1 to a RRAM device with a pulse width of τ , the switching
probability is P(τ) = 0.632 based on (2). If we apply the same voltage pulse
to a group of 16 devices, the expected number of devices that will switch to 1 is
0.632 × 16 = 10.112. In writing to a group of RRAM devices, the number 0.632
is converted to a stream of 16 bits, the expected number of 1s in which approx-
imates the given number. We call the write to a group of RRAM devices group
write.

Write Compensation

In an in-memory stochastic computing system, the output bit streams of stochastic
computing are written back to RRAM. Instead of storing a bit in a RRAM device in
a deterministic write, we apply a stochastic group write to apply the bit stream, bit
by bit, to a group of RRAM devices. The important difference is that a deterministic
write produces an exact copy, but a stochastic group write reshuffles the bit stream
to introduce randomness.

Suppose we apply stochastic group write to apply a pulse train representing a bit
stream to a column of RRAM cells as shown in Fig. 4a. The 8-bit stream contains
two 1s, i.e., two pulses in the train, to represent 0.25. Suppose we pick an appropriate
write voltage such that after the first pulse, an RRAM cell’s switching probability
is 0.125. Following the first pulse to the column of 8 RRAM cells, we expect to
have an average of 1 out of 8 RRAM cells to switch ON. If the write voltage is kept
constant, after the second pulse, the cumulative switching probability of an RRAM

Fig. 4 (a) Stochastic group write to memristor using pulse train, (b) voltage pre-distortion, and
(c) parallel single-pulse write. Reproduced from [29]
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cell is less than 0.125×2 = 0.25 due to the nonlinear relationship between switching
probably and the number of pulses, or pulse width. The nonlinear write process
introduces inaccuracy, and a compensation scheme is needed.

Voltage Predistortion The approach is illustrated in Fig. 4b. The write voltage is
increased for each subsequent pulse to undo the nonlinearity of the write process.
The approach is expensive since it requires many voltage levels to be provided.
A piecewise approximation can be applied to reduce the number of voltage levels
needed to reduce cost. In the above example, a three-piece approximation, i.e., three
voltages, reduces the relative error to 2.5%.

Downscaled Write and Upscaled Read A downscaled write scales a value to a
lower range. Within a lower range, the nonlinearity error is reduced even without
applying any compensation. To recover the downscaled value, an upscaled read
through a scalar gain function, such as [24], can be applied in the readout. The
downscaled write and upscaled read approach avoids using multiple voltages, but
small nonlinearity errors remain.

Parallel Single-Pulse Write The approach is illustrated in Fig. 4c, where single
pulses in a pulse train are applied to multiple columns of RRAM cells in parallel.
Using this approach, only one pulse is applied to a column of cells, avoiding the
nonlinearity issue experienced in successive writes. The parallel single-pulse write
requires an extra merge step to compress a 2D array of bits to a 1D bit stream by
OR’ing the bits in every row. An error can be introduced when there are two or more
1s in a row, where an OR produces only a single 1 in the output. Such an inaccuracy
can be compensated through a simple offset correction. The parallel single-pulse
write approach is relatively simple to implement, but it uses more memory.

Test Applications

We demonstrate in-memory stochastic computing using two test applications: a
gradient descent solver and a k-means clustering processor. The test applications
are simulated using ideal writes and the write compensation techniques: voltage
predistortion and downscaled write and upscaled read. Voltage noise is intentionally
introduced in the second test application to check the robustness of the design.

Gradient Descent Solver

Gradient descent is a first-order optimization algorithm [27]. The algorithm iterates
between two steps: (1) compute the gradient of a cost function at the current
position; (2) move in the negative direction of the gradient by a step proportional to
the magnitude of the gradient. If the cost function is well conditioned, the minimum
can be obtained by this algorithm.
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Fig. 5 Stochastic implementation of a gradient descent solver. Reproduced from [29]

Fig. 6 Stochastic gradient descent algorithm using (a) 32-Kbit stochastic bit stream with ideal
write, (b) 32-Kbit stochastic bit stream with voltage predistortion, (c) 256-Kbit stochastic bit
stream with downscaled write and upscaled read. Reproduced from [29]

The hardware design of a gradient descent solver is illustrated in Fig. 5. The
design can be implemented in stochastic computing using RRAM. First, the input
position is stored in RRAM and the readout is in bit stream. Second, the gradient
calculation is implemented using stochastic multiply and add, and the step size is
obtained by scalar multiply. Finally, the position is updated and stored in RRAM for
the next iteration. Known stochastic computing circuits are available to perform the
necessary arithmetic functions including add, multiply, and subtract [1–3, 6, 7].

The stochastic design of a gradient descent solver is simulated using 32- and
256-Kbit stochastic bit streams following bipolar stochastic number representation.
In the simulation, we used the cost function f (x, y) = 1

24 ((x +0.5)2 +(x +0.5)y +
3y2). Ideal write and two write compensation techniques: voltage predistortion
and downscaled write and upscaled read are used in the simulations. The results
demonstrate satisfactory results as shown in Fig. 6.

K-Means Clustering Processor

k-means is a popular clustering algorithm [28] for placing a set of data points into
different clusters whose members are similar. The k-means algorithm involves three
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steps: (1) select k cluster centers (centroids); (2) place a data point in one of the
clusters to minimize the distance between the data point and the cluster centroid;
(3) update the centroid of each cluster based on all the data points placed in the
cluster. Steps (2) and (3) are iterated until convergence.

The hardware design of a k-means clustering processor is illustrated in Fig. 7,
assuming L1 distance metric. In a stochastic computing implementation, input data
points and centroids are stored in RRAMs and the readouts are in bit streams; and L1
distances and comparisons are calculated by stochastic arithmetic. Once an iteration
of k-means clustering is done, stochastic averaging is done to update the cluster
centroids.

The stochastic design of a k-means clustering processor is simulated using 4-
Kbit stochastic bit streams following bipolar stochastic number representation. Sets
of 256 data points are placed in three clusters based on the L1 distance metric. Ideal
write and voltage-predistortion compensation technique are used in the simulations.
The results demonstrate satisfactory results shown in Fig. 8.

Fig. 7 Stochastic implementation of a k-means clustering processor. Reproduced from [29]

Fig. 8 256-point k-means clustering with 4-Kbit stochastic bit stream using (a) ideal write, (b)
voltage pre-distortion with number of voltage levels chosen to meet 0.1% error bound, (c) voltage
pre-distortion with number of voltage levels chosen to meet 0.001% error bound. Reproduced from
[29]
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Concluding Remarks

As a probabilistic computing method, stochastic computing relies on compute
elements to generate and ensure randomness. One can argue that CMOS devices,
which are designed to be deterministic, are not the perfect substrate to implement
stochastic computing. In this chapter, we present in-memory stochastic computing
to make use of RRAM devices to provide the randomness required by stochastic
computing. Due to the significant simplification of random number generation and
reshuffling, we expect that an RRAM-enabled in-memory stochastic computing
will be fundamentally more efficient than a CMOS-based stochastic computing.
The approach also paves a way towards adopting seemingly non-ideal post-CMOS
devices in stochastic computing to achieve significant gains in performance and
efficiency.
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Spintronic Solutions for Stochastic
Computing

Xiaotao Jia, You Wang, Zhe Huang, Yue Zhang, Jianlei Yang, Yuanzhuo Qu,
Bruce F. Cockburn, Jie Han, and Weisheng Zhao

Abstract With the rising requirements of computation efficiencies for artificial
intelligence applications, the conventional deterministic computation approach
has shown many bottlenecks in developing large scale deep learning algorithms.
Especially for Bayesian inference problems with uncertainty and incompleteness,
it usually requires many sampling operations which largely degrade the inference
efficiencies. In this chapter, a spintronic devices based stochastic computing method
is presented for efficient Bayesian inference. Stochastic computing is regarded as
a promising approach to improve the area and energy efficiencies with simplified
arithmetic operations. Spintronic devices are utilized to realize efficient sampling
operations to overcome the inference efficiencies in terms of power, area and
speed. The intrinsic randomness existing in switching process of spintronic device
is exploited to realize stochastic number generator, which is the critical block
for efficient circuit design of Bayesian inference. A device-to-architecture level
framework is proposed to evaluate the promised performance of spintronic device
based Bayesian inference system.

Introduction

Stochastic computing is an emerging computation manner which is considered to be
promising for efficient probability computing [2]. Compared with the conventional

X. Jia · Y. Wang · Z. Huang · Y. Zhang (�) · W. Zhao
Fert Beijing Institute, BDBC and School of Microelectronics, Beihang University, Beijing, China
e-mail: yz@buaa.edu.cn

J. Yang (�)
Fert Beijing Institute, BDBC and School of Computer Science and Engineering,
Beihang University, Beijing, China
e-mail: jianlei@buaa.edu.cn

Y. Qu · B.F. Cockburn · J. Han
The Department of Electrical and Computer Engineering, University of Alberta Edmonton,
Alberta, Canada

© Springer Nature Switzerland AG 2019
W. J. Gross and V. C. Gaudet (eds.), Stochastic Computing: Techniques
and Applications, https://doi.org/10.1007/978-3-030-03730-7_9

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03730-7_9&domain=pdf
mailto:yz@buaa.edu.cn
mailto:jianlei@buaa.edu.cn
https://doi.org/10.1007/978-3-030-03730-7_9


166 X. Jia et al.

computation approach with deterministic manner, stochastic computing has smaller
hardware footprint and higher energy efficiency because the basic multiplication
and accumulation operations can be executed by AND gate and multiplexer (MUX),
respectively. As a result, very large scale integration on one chip is much easier to
realize using stochastic computing than conventional fixed-point hardware. Bene-
fiting from this merit, stochastic computing has been exploited in deep learning to
reduce energy consumption and save area where tremendous arithmetic operations
are normally essential.

Stochastic computing is usually implemented by bit-wise operations with
stochastic bitstreams which are generated by random number generator (RNG) and
comparator. Physical randomness is widely used as entropy source in conventional
RNG, such as thermal noise, metastability, and oscillator jitter [30]. However, these
RNGs all require extensive post-processing to guarantee a high level of random
output, which degrades the performance in terms of speed, power, and area [15].
Consequently, it is urgent to explore new methods of generating random numbers
for lower design complexity, area overhead and higher randomness.

The stochastic switching of spintronic devices, such as magnetic tunnel junction
(MTJ) provides a high-quality entropy source for RNG [28]. Based on intrinsically
unpredictable physical phenomenon, it can supply real random bitstreams by
special circuit designs. Moreover, MTJ is regarded as one of the most outstanding
candidates for next generation of computing memories. It can overcome the power
dissipation issue which is the bottleneck for further scaling down of complementary
metal oxide semiconductor (CMOS) technology node. For instance, MTJ features
non-volatility and 3D integration, which can turn off the standby power and
reduce drastically the power dissipated in data transfer between memory and logic
chips [16, 32]. Moreover, MTJ is promising to operate normally in sub 0.1 V, which
is another bottleneck of semiconductor devices. Compared with the conventional
CMOS based RNGs, the MTJ based circuit design can effectively achieve simplified
structure, more compact area, higher speed and better energy-efficiency.

In this chapter, spintronic device based stochastic computing is presented for effi-
cient Bayesian inference system. Bayesian inference provides a powerful approach
for information fusion, reasoning and decision making, rendering it as a key tool
for data-efficient learning, uncertainty quantification and robust model composition.
Meanwhile, energy efficiency can be drastically improved by integrating spintronic
device in Bayesian inference which combines processing units and memory. The
basics of MTJ device and circuit design of RNG using MTJ are firstly presented,
and a device-to-architecture level framework is proposed for MTJ based Bayesian
inference.

Stochastic Switching Behavior of Magnetic Tunnel Junction

MTJ consists of one oxide barrier sandwiched by two ferromagnetic (FM) layers in
which the Tunnel MagnetoResistance (TMR) effect was discovered by [12] in 1975.
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The resistance of MTJ depends on the relative magnetization orientation of the two
FM layers (RP at parallel (P) state and RAP at antiparallel (AP) state). As the MTJ
resistance can be configured comparable with CMOS transistors, it can be integrated
in the memories and logic circuits to represent logic ‘0’ or ‘1’. Its characteristic is
quantified by TMR ratio ((RAP − RP )/RP ). The development of MTJ has been
quickly prompted by the improvement of TMR ratio and energy consumption reduc-
tion of switching approaches (between RP and RAP ) since the first experimental
demonstration of TMR effect. The switching method has evolved from field induced
magnetic switching (FIMS∼10 mA), thermally assisted switching (TAS∼1 mA) to
the currently widely used spin transfer torque switching (STT∼100 μA). Without
the need of magnetic field, STT makes it possible to achieve high density and low
power magnetoresistive random access memory (MRAM). MTJ with interfacial
perpendicular magnetic anisotropy (PMA-MTJ) was discovered by Shoji Ikeda [10]
which features low switching current (49 μA), and high thermal stability. Recently,
the atom-thick tungsten layers have been integrated in PMA-MTJ instead of the
conventional tantalium layers to obtain larger TMR ratio and higher thermal stability
[18, 26].

Figure 1 shows the typical structure of STT-PMA-MTJ which mainly con-
sists of three layers: two FM layers separated by an insulating oxide barrier.
With STT mechanism, MTJ changes between two states when a bidirectional
current I is higher than the critical current Ic0. The switching of MTJ state is
not immediate after the injection of current, resulting an incubation delay. The
dynamics of MTJ is mainly characterized by the average switching delay τsw

(with 50% of switching probability). Depending on the magnitude of switching
current, the dynamic behavior of MTJ can be divided into two regimes [14]:
Sun model (I > Ic0) and Neel-brown model (I < 0.8Ic0). The former is
also called precessional switching which addresses fast switching (until sub 3 ns)
but consumes more energy with high current density [29]. Reversely, the latter
consumes less energy with low current density but leads to a slower switching
which is called thermally-assisted switching [8]. The two regimes are derived
from the Landau-Lifshitz-Gilbert equation. τsw can be calculated as Eqs. (1)
and (2):

Fig. 1 Typical structure of
PMA-MTJ [27]
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τsw = τ0 · exp

[
�b

kBT

(

1 − I

Ic0

)]

, when I < 0.8Ic0 (1)

1

τsw

=
[

2

C + ln(
π2ζ

4 )

]
μBPref (I − Ic0)

emm(1 + Pref Pf ree)
, when I > Ic0 (2)

where τ0 is the attempt period, T is the temperature, kB is the Boltzmann constant,
C is the Euler’s constant, ζ is the thermal stability factor, mm is the magnetization
moment, P is the tunneling spin polarizations. Usually a high current (I > Ic0) is
applied to guarantee fast writing in memory. Meanwhile, MTJ can also be switched
erroneously by relatively low current (I < 0.8Ic0) during a long period of reading
operation, which determines the data retention time.

STT switching method has been demonstrated intrinsically stochastic for the first
time by [6]. The reversal duration of STT writing mechanism may vary significantly
from one event to the next, with a standard deviation almost as large as the average
switching duration and sigmoidal distributions with exponential tails [5]. The
switching success probability is a function of current flowing through MTJ and pulse
duration. This is very different from the traditional electronic devices such as tran-
sistors and resistors. The stochastic behavior originates from the unavoidable ther-
mal fluctuations of magnetization which randomly interfere to activate or slow down
magnetization reversal. After this observation, many other researchers have theoret-
ically or experimentally verified this phenomenon [3, 22, 23, 31]. It has been well
confirmed, both theoretically and experimentally that a spin-polarized current will
deposit its spin-angular momentum into the magnetic system when passing through
a small magnetic conductor. Consequently, it causes the magnetic moment to pre-
cess or even switch when the spin-current is sufficient [21]. Figure 2 illustrates the
precession of magnetization under the influence of a spin current. Due to the thermal
fluctuation of magnetization, the initial state of free layer magnetic moment (repre-
sented by θ ) is different at each measurement. This leads to the stochastic reversal of
free layer magnetization, which is revealed by the random duration for the resistance
reversal [6]). For I > Ic0, the switching probability can be described as follows
[24, 27]:

Psw = exp

{

−4 · f · ζ · exp

[

−2 · (tpulse − delay)

τsw

]}

(3)

f =
(

2

1 − Ic0
I

)
(

−2
1+ I

Ic0

)

(4)

where tpulse is the voltage pulse width, delay is a fitting parameter. Figure 3
demonstrates the switching probability as function of stress voltage and pulse width.
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Fig. 2 The precession of magnetization under the influence of a spin current [28]: Time
dependence of (a) Mz and (b) Mx, (c) The reversal process of magnetic moment
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A tunable switching current Isw can be applied to control the switching probability
and further obtain random bitstream during circuit design phase.
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MTJ-Based True Random Number Generator

RNG is an essential part in an stochastic computing system. Two categories of RNGs
are used: pseudo-random number generators (PRNGs) and true random number
generators (TRNGs) [13]. Tausworthe generators and a specific implementation,
linear-feedback shift registers (LFSRs), are typical examples of PRNGs [7]. The
sequences generated from PRNGs are fully deterministic but their statistical prop-
erties make them look random. The generation algorithms make the sequences fully
predictable and periodic, and the same sequence will be generated from the same
random seed [2]. Thus, there are interests in replacing PRNGs in cryptographic
applications because of the predictability.

In contrast with PRNGs, TRNGs generate numbers with true randomness that
originates from nondeterministic physical phenomena [9]. Some types of random
physical events, such as the chaotic behavior in semiconductor lasers [17, 25], can
produce random bitstreams extremely fast with high quality (e.g., 480 Gbit/s is
reported in [17]). However, on-chip applications require schemes that are scalable
and compatible with CMOS technology. Moreover, energy consumption and the
generation speed are important implementation criteria for mobile devices in the
IoT era. Therefore, we seek TRNGs that can produce random sequences for
cryptographic applications with CMOS compatibility, high statistical quality, low
area cost and high energy-efficiency.

Based on the intrinsic stochastic behavior of MTJ device, a TRNG can be easily
accomplished and used for stochastic number generator (SNG). A pair of transistors
is sufficient to control the process of writing and reading.

However, due to the parameter variations of MTJs, the resistance of any MTJ is
slightly different from the nominal value. This difference indirectly results in varied
current injected into MTJ and corresponding switching probability with fixed bias
voltage. Therefore, the variation of switching probability will lead to deterioration
of the randomness of final generated stochastic bitstream.

Several methods have been proposed, including Von Neumann correction, XOR
gate and other designs with complicated feedback circuit. These methods always
suffer from deficiency such as complicated structure, high power consumption ,etc.
To compensate for the poor randomness without complicated feedback circuits, we
proposed a parallel structure of TRNGs [19].

This design chooses a structure of parallel MTJs considering stochastic com-
puting as application scenario. Because the standard deviation of the average of N

independent Gaussian-distributed random variables is

σX1+···+XN

N
=
√

σ1
2 + · · · + σN

2

N
(= σN√

N
, if X1 = · · · = XN) (5)

the stochastic bitstream generated by parallel MTJs will have smaller standard
deviations in the probability. In other words, the biased probabilities of each single
MTJ will be averaged so that the overall probability gets closer to 50%.
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Fig. 4 Proposed TRNG with multiple parallel MTJs

The schematic of this parallel MTJ TRNG design is shown in Fig. 4. According
to the different precision requirements of stochastic bitstream, the actual number
of parallel MTJs can be adjusted. To generate N bits stochastic number, the circuit
needs N +2 phases: a reset phase, a write phase and N read phases, with each phase
set to 5 ns. During each phase, the corresponding control signal is driven high while
the others are held low. All MTJs work simultaneously during the first two phases
while one MTJ is sensed each time in the read phases. Here the N + 2 phases are
explained in detail:

(1) Reset Phase
After the output of the previous cycle is completed, it is necessary to reset the state
of all MTJs back to initial state before the start of the write phase of the next cycle.
In this phase, the control signal Reset will be high while others are low. The voltage
controller provides Vreset and current flows from the free layer to the pinned layer
until all MTJs are switched to the P state. The voltage difference between Vreset and
Vb is high enough to ensure deterministic switching.

(2) Write Phase
In this phase, the control signal Write is high while others are low. The Vwrite

should be lower than Vb to generate switching current from the pinned layer to the
free layer. In testing process, the voltage is selected for 50% switching probability
in 5 ns for each MTJ. In actual application scenario for stochastic computing,
the switching probability can be set to any value required to generate stochastic
bitstream directly without external circuit. Because all MTJs are connected in
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parallel, the voltages across each MTJ and the corresponding transistors are the
same. All MTJs are written under same bias voltage simultaneously but each MTJ
switches independently. At the end of write phase, parts of MTJs will switch to the
AP state while others remain in the P state.

(3) Read Phase
In the read phases, only one of the N Readn is high, from Read1 to ReadN , while
others are low. The current flows from VDD to GND passing through only one MTJ.
Depending on the resistance variation of MTJ, the output voltages are different. The
comparator will judge the state of this MTJ by comparing the output voltage with
the reference value and generate single bit stochastic number. After N read phases,
the RNG finally outputs N bits stochastic bitstream.

Compared to other RNG designs, the significant advantage of parallel structure
is that the switching probability is controllable. In actual stochastic computing,
RNG needs to generate stochastic bitstream with different proportions of ‘0’ and
‘1’. Digital comparator and other external circuit are always necessary to achieve
this target. However, through variations of Vwrite, TRNG of parallel structure can
output stochastic bitstream directly in any proportions of ‘0’ and ‘1’.

Moreover, all MTJs work simultaneously in reset and write phase, which requires
less time compared to the structure of single MTJ. Suppose that each phase needs
5 ns, the generation speed is Eq. (6).

N

N + 2
× 200 (6)

In the parallel design, the accuracy of the switching probability is subject to
the actual voltage and duration of the pulse applied to the MTJs, and variety of
circuit parameters. In order to keep the precise probability, the pulses applied to the
MTJs should be well controlled and the variations of the transistors should be less
significant compared to that of MTJs.

The quality of the random sequences needs to be evaluated in aspects other than
frequency to demonstrate the effectiveness of our approaches. Therefore, we applied
the widely used statistical test suite National Institute of Standards and Technology
(NIST) [20].

For the given value N , the proposed generation procedure was repeated 256/N

times, and each MTJ was used 256/N times to generate random bits, where N is
the number of MTJs in the array. After one sequence of 256 bits is generated, a new
set of N MTJs is used to generate the next sequence.

The four curves at the left side of Fig. 5 show the pass rate trends for different
categories of tests, and illustrate the quality improvement of the generators with
increasing number of MTJs used. The horizontal line is the threshold of 0.981 for
passing the tests. When using at least 16 MTJs, the pass rates for all tests are no less
than 0.981. Therefore, it was shown by the statistical test suite that high-quality 256-
bit random sequences can be generated by utilizing at least 16 MTJs in the proposed
TRNG.

This TRNG of parallel structure is suitable for stochastic computing. Firstly,
TRNG has better randomness compared to PRNG. Furthermore, the parallel
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Fig. 5 Statistical quality pass rates of four MTJ-based TRNGs and two combined Tausworthe
generators

Fig. 6 The waveforms of direct output under different write voltages

structure could directly generate stochastic bitstream with different proportions of
‘0’ and ‘1’. Considering different requirements in various the application scenarios
of stochastic computing, we can flexibly choose the number of MTJs in this
structure.

In order to evaluate the performance of the circuit design, a simulation is
processed by Cadence Virtuoso with 45 nm CMOS and 40 nm MTJ technologies.
In the simulation, a behavioral model of MTJ considering the stochastic switching
feature is described by Verilog-A language [27]. The waveforms of direct output are
shown in Fig. 6. Through controlling the write voltage, the proportions of ‘0’ and
‘1’ in output stochastic bitstream can be adjusted to the targeted value. The write
voltages applied are 1.35 V, 1.25 V and 1.15 V from top to bottom, respectively.
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Fig. 7 Applied voltage vs. switching probability

With accurately tunable write voltage, consecutive proportion values between 0 and
1 can be obtained by this circuit.

For each bias voltage ranging from 1.13 V to 1.36 V, 1000 Monte-Carlo (MC)
simulations are performed [11]. The simulated P-V relationship is illustrated in
Fig. 7 by the red line. It is demonstrated in the figure that the switching probability
increases monotonously as the increasing of voltage. It means that voltages and
probability values are almost corresponding one by one. In order to evaluate the
performance of the proposed SNG circuit, bitstreams are generated with length of
64, 128 and 256. As shown in Fig. 7, results of all the three classes bitstreams are
well coincident with Monte-Carlo simulation results. Compared with Monte-Carlo
simulation results, the average errors are only 1.6%, 1.3% and 1.1% for length of
64, 128 and 256, respectively. It is obvious that the longer the bitstream, the smaller
the error.

Bayesian Inference System

Different applications are usually solved using different Bayesian inference
mechanisms. Thus, structures of Bayesian inference system are also different.
In this section, A device-to-architecture level evaluation framework is illustrated
and then two different types of applications with different inference mechanisms
are considered. Using the aforementioned MTJ based SNG and stochastic
computing theory, we build two Bayesian inference systems for two different
applications.

Evaluation Framework

Bayesian inference system is implemented by hybrid CMOS/MTJ technologies with
three design hierarchies: device, circuit and architecture levels as shown in Fig 8.
The hybrid CMOS/MTJ circuits are simulated by Cadence Spectre simulator. With
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Fig. 8 Evaluation framework of Bayesian inference system

the circuit simulation results, the SNG array and stochastic computing logics are
abstracted as behavioral blocks by performing characterizations. Meanwhile, the
RTL implementation of stochastic to digital converter (SDC) is synthesized by
Synopsys Design Compiler with 45 nm FreePDK library. After performing the
characterization of SDC, an architectural level simulation is carried out according to
the specified application trace. Finally, the evaluation results of Bayesian inference
system are obtained in terms of inference accuracy, energy efficiency and inference
speed.

Data Fusion for Target Location

Data fusion is the process of integrating multiple data sources to produce more
consistent, accurate, and useful information than that provided by any individual
data source. In this section, a simple data fusion example and corresponding
Bayesian inference system are studied.
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Problem Definition and Bayesian Inference Algorithm

Sensor fusion aims to determine a target location by multiple sensors [4]. Assuming
that there are three sensors on a 2D plane while the width and length of 2D plane is
64 and three sensors are located at (0, 0), (0, 32), and (32, 0), respectively. Each
sensor has two data channels: distance (d) and bearing (b). The measured data
(d1, b1, d2, b2, d3, b3) from three sensors with two channels are utilized to inference
the target location (x�, y�). In this application, the probability that target object
locates at one position of the plane is calculated based on the sensor data. The
position with the largest probability is considered to be the position where the object
target is located at.

Based on the observed data (d1, b1, d2, b2, d3, b3), the probability of target object
located on (x, y) is denoted as p(x, y|d1, b1, d2, b2, d3, b3) and could be calculated
based on Bayes’ theory:

p(x, y|d1, b1, d2, b2, d3, b3) ∝ p(x, y) ∗
∏

i

p(di |x, y)p(bi |x, y) (7)

where p(x, y) is denoted as prior probability, and p(di |x, y), p(bi |x, y) are known
as evidence or likelihood information. Since the target may locate at any position,
the prior probability p(x, y) has the same value for any position. Hence, p(x, y)

is ignored in the following Bayesian inference system. p(di |x, y) means the
probability that sensor i return the distance value of di if the target object is located
at position (x, y). The meaning of p(bi |x, y) is similar to that of p(di |x, y). The
value of p(di |x, y) and p(bi |x, y) is calculated by Eqs. (8) and (9).

p(di |x, y) = 1√
2πσd

i

· e

−
(
d(x,y)−μd

i

)2

2
(
σd
i

)2

(8)

p(bi |x, y) = 1√
2πσb

i

· e

−
(
b(x,y)−μb

i

)2

2
(
σb
i

)2

(9)

where d(x, y) is the Euclidian distance between position (x, y) and the i-th sensor,
μd

i is the distance data provided by the i-th sensor, σd
i = 5 + μd

i /10. b(x, y) is the
viewing angle from the i-th sensor to position (x, y), μb

i is the bear data provided
by the i-th sensor, σb

i is set as 14.0626 degree.

Bayesian Inference System

It can be seen from Bayesian inference mechanism (Eq. 7) that the distribution of
object location is calculated by the product of a series of conditional probabilities.
In stochastic computing, it could be realized by AND gates. In addition, we
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Fig. 9 Bayesian inference system for object location problem

could find that the calculation of probability value that the object locates at one
position is independent of each other. Based on the analysis, the Bayesian inference
architecture of solving data fusion problem is illustrated in Fig. 9 as a matrix
structure. For each position, six SNGs are deployed to yield stochastic bitstreams
and 5 AND gates are deployed to realize multiplication. Thus, for a 64 × 64 grid,
24576 SNGs and 20480 AND gates are needed. In Fig. 9, the output of each row is the
posterior probability value that the object locates at this position. In our simulation,
64 × 64 counters are employed to decode the outputs from stochastic bitstreams
to binary numbers by calculating the proportion of ‘1’. Utilizing the independent
of inference algorithm (i.e. Eq. 7), all rows of the system could perform stochastic
computing at the same time. The proposed architecture makes the best use of high
parallel attribute of Bayesian inference and stochastic computing.

Simulation Results

Cadence Virtuoso is used to analyze the accuracy and efficiency of the proposed
Bayesian inference system. In the simulation, 64 × 64, 32 × 32 and 16 × 16
grids are utilized to evaluate our Bayesian inference system. The finer the grid, the
more accurate the target position. For every grid scale, stochastic bitstreams (BSs)
with length of 64, 128 and 256 are generated to perform stochastic computing. In
Fig. 10, the fusion results on 64 × 64 grid are shown as heat maps. Figure 10a is
the exact inference result using exact arithmetic computing in float-point arithmetic
computer. Figure 10b, c and d are the inference results by the proposed Bayesian
inference system with stochastic bitstreams length of 64, 128 and 256, respectively.
The simulation results indicate that the proposed system could achieve the Bayesian
inference results correctly. Compared with exact inference results, the longer the
stochastic bitstream, the smaller the error. To quantify the precision of the infer-
ence system, the Kullback-Leibler divergence (KL divergence) between stochastic
inference distribution and the exact reference distribution is calculated. As shown in
Table 1, the first column shows the grid scale. The following 3 columns are the KL
divergence value for different bitstream lengths. Taking 32 × 32 grid for example,
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(a) (b)

(c) (d)

Fig. 10 Data fusion result of target location problem on 64 × 64 grid. (a) Exact inference results.
(b)–(d) Stochastic computing results with length of 64, 128, 256

Table 1 KL divergence
analysis of target location
problem

Bitstream length

Grid size 64 128 256

64×64 0.0090 0.0043 0.0018

32×32 0.0086 0.0041 0.0019

16×16 0.0080 0.0035 0.0011

10−3 KL divergence requires length of 256. But for the same precision, the work
in [4] requires length of 105. The outstanding results benefit from the high accuracy
and low correlation bitstreams generated by the MTJ based SNG. As reported in [4],
for an instance with 32 × 32 grid, the software version on a typical laptop takes
919 mJ, and the FPGA based Bayesian machine only takes 0.23 mJ with stochastic
bitstream length of 1000. Benefiting from the low power consumption of MTJs and
high quality of SNG, the proposed Bayesian inference system only spends less than
0.01 mJ to achieve the same accuracy with the 32×32 grid. Speed of the proposed
Bayesian inference system depends on the bitstream length.
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Bayesian Belief Network

Bayesian belief network (BBN) is a probabilistic graphical model that represents
a set of random variables and their conditional dependencies via a directed acyclic
graph. In this section, a Bayesian belief network for heart disaster is studied.

Problem Definition and Bayesian Inference Algorithm

Figure 11 is a BNN example for heart disaster prediction. In this network, the parent
nodes of heart disaster (H) are factors that cause heart disaster, including exercise
(E) and diet (D). The child nodes are clinical manifestations of HD, including blood
pressure (B) and chest pain (C). In addition to the graph structure, Conditional
probability tables (CPT) are also given. For example, the second value 0.45 in the
CPT of node HD means that if a person takes regular exercise but unhealthy diet,
the risk of HD is 0.45. In this problem, we pay more attention to inference based on
given evidences. For the sake of convenience, X1 is used to indicate that the value
of random variable X is TRUE and X0 is used to indicate that the value of random
variable X is FALSE. If the value of random variable X is not determined, there is
no superscript. The inference mechanism could be classed as two groups based on
the junction tree algorithm. The first case is considering E, D and H as a group and
calculating p(HD) as Eq. (10):

Fig. 11 Bayesian belief network for heart disaster



180 X. Jia et al.

(a) (b)

Fig. 12 (a) Bayesian inference circuit for BBN that realizes Eq. (10). (b) Bayesian Inference
circuit for BBN that realizes Eq. (11)

p(H 1) =[p(H 1|E1,D1)p(D1) + p(H 1|E1,D0)p(D0)]p(E1)+
[p(H 1|E0,D1)p(D1) + p(H 1|E0,D0)p(D0)]p(E0)

(10)

p(E1) ← 1, if the patient often does exercise; otherwise, p(E1) ← 0. If the
exercise information is unavailable, p(E1) is the value in CPT i.e. p(E1) ← 0.7.
p(E0) = 1 − p(E1). Based on the similar method, the value of p(D1) could be
obtained. The second case is considering H, B and C as a group and calculating
p(H 1|B,C) as Eq. (11):

p(H 1|B,C) = p(B|H 1)p(C|H 1)P (H 1)

p(B,C)
(11)

The denominator of Eq. (11) can be calculated with the formula of full probability
as Eq. (12):

p(B|H 1)p(C|H 1)P (H 1) + p(B|H 0)p(C|H 0)P (H 0) (12)

Here, p(H 1) is calculated by Eq. (10). In Eq. (11), the value of B and C is not
labeled explicitly. Their value is determined based on the diagnostic results.

Based on the inference algorithm, the inference system could be easily con-
structed. Equation (10) could be calculated by three MUXs as shown in Fig. 12a.
Equation (11) could be calculated by three AND gates and five MUXs as shown in
Fig. 12b. Based on the evidence, the Bayesian inference is performed by different
combination of MUX control signal.
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Table 2 Example of BBN inference setting

Probability (p(D1), p(E1), p(B1), p(C1)) [1] Ours

p(H 1|B1) (0.25, 0.75, 1.00, 0.00) 0.803 0.805

p(H 1|D1, E1, B1) (1.00, 1.00, 1.00, 0.00) 0.586 0.592

p(H 1|E1, B1) (0.25, 1.00, 1.00, 0.00) 0.687 0.694

p(H 1|D1, E1, B1, C1) (1.00, 1.00, 1.00, 1.00) 0.777 0.742

p(H 1|C1) (0.25, 0.75, 0.00, 1.00) 0.703 0.700

Simulation Results

The simulation of Bayesian inference system for BBN is also used Cadence
Virtuoso and the simulation results are shown in Table 2. The first column of the
table lists some of the possible posterior probability. The second column gives
the corresponding settings of control signal for each MUX. Column 3 shows the
exact results calculated by [1]. Column 4 is the results calculated by the proposed
Bayesian inference system using stochastic computing. The comparison between
column 6 and column 7 indicates that the proposed Bayesian inference system for
BBN could achieve reasonable results.
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Brain-Inspired Computing

Naoya Onizawa, Warren J. Gross, and Takahiro Hanyu

Abstract This chapter summarizes applications of stochastic computing for brain-
inspired computing, which we refer to as Brainware Large-Scale Integration (BLSI).
Stochastic computing exploits random bit streams, realizing area-efficient hardware
for complicated functions such as multiplication and tanh, as compared with more
traditional binary approaches. Using stochastic computing, we have implemented
hardware for several physiological models of the primary visual cortex of brains,
where these models require such complicated functions. In addition, a deep neural
network using stochastic computing has been designed for area/energy-efficient
hardware. In order to design BLSIs, we have introduced extended arithmetic func-
tions, such as circular functions. As a design example, our BLSIs are implemented
using Taiwan Semiconductor Manufacturing Company (TSMC) 65-nm Comple-
mentary Metal Oxide Semiconductor (CMOS) and discussed with traditional
fixed-point implementations in terms of hardware performance and computation
accuracy.

Keywords Neuromorphic computing · Deep neural networks · Integrated circuits

Introduction

Recently, brain-inspired computing (e.g., spiking neural networks [1] and deep
learning [2, 3]) has been studied for highly accurate recognition and classification
capabilities, as found in human brains. Several hardware implementations of brain-
inspired computing have been presented in [4, 5], but the energy efficiency of the
current hardware approaches is significantly lower than that of human brains.
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In this chapter, we introduce applications of stochastic computing for energy-
efficient brainware large-scale integration (BLSI), such as physiological models and
deep neural networks.1 Brainware computing requires complicated functions that
can be area-efficiently realized using stochastic computing. However, there were
two main issues. The first issue is that several important functions, such as circular
functions, were missing. The second issue is that stochastic computing based BLSIs
that just applied stochastic computing for brainware computing tended to dissipate
more energy than traditional binary implementations. We have addressed these
issues for energy-efficient BLSIs summarized in this chapter.

The rest of this chapter is organized as follows. In section “Overview of Brain-
ware Large-Scale Integration (BLSI)”, the basics of stochastic computing are briefly
explained and an overview of BLSI is provided. In section “Extended Arithmetic
Functions”, key arithmetic functions for BLSIs are presented. In section “BLSI
Design”, two BLSIs designed using TSMC 65-nm CMOS are introduced as a simple
cell model of primary visual cortex in brains [6, 7] and deep neural networks [8].
Section “Conclusion” concludes this chapter.

Overview of Brainware Large-Scale Integration (BLSI)

Basics of Stochastic Computing

Stochastic computing [9] represents information by a random sequence of bits,
called a Bernoulli sequence. It has been exploited for area-efficient hardware
implementation, such as low-density parity-check (LDPC) decoders [10–13], image
processors [14–16], digital filters [17–19] and Multi-Input Multi-Output (MIMO)
decoders [20]. Stochastic computation performs in probabilistic domain that the
probabilities are represented by random sequences of bits. The probabilities are
calculated by the frequency of ones in the sequence that can be mapped based on
unipolar or bipolar coding. For a sequence of bits, X(t), denotes the probability
of observing a 1 to be Px = Pr(X(t) = 1). In unipolar coding, the represented
value, x, is x = Px , (0 ≤ x ≤ 1). In bipolar coding, the represented value, x, is
x = (2 · Px − 1), (−1 ≤ x ≤ 1). Input and output probabilities are represented
using Nsto-bit length streams. In general, stochastic circuits take Nsto clock cycles
to complete a one-cycle binary computation and hence the computation accuracy
depends on Nsto.

Stochastic basic arithmetic circuits are multiplier, adder, exponential, and tanh
functions briefly summarized in this subsection. A stochastic multiplier in unipolar

1Since 2014 in BLSI project of Ministry of Education, Culture, Sports, Science and Technology
(MEXT) in Japan, we have implemented several BLSIs based on stochastic computing for brain-
inspired physiological models and deep neural networks.
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coding is designed using a two-input AND gate and that in bipolar coding is
designed using a two-input XNOR gate. An addition is realized as a scaled adder
designed using a two-input multiplexer, where the selector signal is a random bit
sequence.

In addition, hyperbolic tangent and exponential functions are designed using
finite state machines (FSMs). At each cycle, the state transits to the right, if the
input stochastic bit, X(t), is “1” and the state transits to the left, otherwise. After
the transition, the output stochastic bit, Y (t), is determined by the current state. By
changing the output condition, different functions can be designed. The stochastic
tanh function, Stanh, in bipolar coding is defined as follows:

tanh((NT /2)x) ≈ Stanh(NT , x), (1)

where NT is the total number of states. The stochastic exponential function, Sexp,
is defined in unipolar coding as follows:

exp(−2Gx) ≈ Sexp(NE,G, x), (2)

where NE is the total number of states and G determines the number of states
generating outputs of “1”. The detailed explanation is summarized in [9].

Application to BLSI

For energy-efficient brain-inspired computing, we have exploited stochastic com-
puting to design BLSIs. The reason to choose stochastic computing is that human
brains can perform well under severe noise and errors. Actually, a large-scale
neuromorphic chip based on stochastic computing has been reported and performs
well with noise [21].

Our stochastic BLSIs are summarized in Fig. 1. This figure shows flows of visual
information in human brains from retinas. First, electrical signals (information) from

V1

Retina
LGN

V2/
V4IT

V2
MT

Simple cell (Gabor filter)
(Section 9.4.1)

Analog-to-
stochastic 
converter 

Deep neural networks
(Section 9.4.2)

Disparity 
energy model

Fig. 1 Brainware LSI (BLSI) design based on stochastic computing
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retinas are sent to the primary visual cortex (V1) through the lateral geniculate
nucleus (LGN) and then the information are extracted in V1. The extracted
information are distributed to two pathways: dorsal pathway to the middle temporal
(MT) and ventral pathway to the inferior temporal (IT).

Using stochastic computing, we have designed several BLSIs such as analog-
to-stochastic converters [22], 2D Gabor filters [6, 7] and a disparity energy model
[23] for brainware visual information processing. The 2D Gabor filters show similar
responses of simple cells of V1 and the disparity energy model exhibits the relative
depth estimations using two images. Stochastic deep neural networks have been also
designed [8] that shows similar responses from V1 to IT. In addition to the visual
information processing, stochastic gammatone filters are designed for auditory
signal processing [24], where the gammatone filters well express the performance
of human auditory peripheral mechanism. Among them, two examples of BLSIs are
introduced in section “BLSI Design”.

For designing the BLSIs, we have proposed extended arithmetic functions,
such as circular functions. These arithmetic functions are summarized in sec-
tion “Extended Arithmetic Functions”.

Extended Arithmetic Functions

Circular Functions

Sine and cosine functions used for Gabor filters were not previously presented
in stochastic computing. To realize stochastic Gabor filters, the circular functions
have been proposed using several Stanh functions [6]. The stochastic sin function,
Ssin(ω, λ, x) (≈ sin(ωx)), in bipolar coding is defined as follows:

Ssin(ω, λ, x)

=
� ω′

π
�∑

k=�− ω′
π

�
(−1)kStanh

(
4ω′, 1

2

(
λx + πk

ω′
))

, (3)

where ω′ is a constant angular frequency and λ is ω/ω′. ω′ determines the maximum
angular frequency supported.

Figure 2 shows a graphical representation of Ssin function using five Stanh
functions, where ω′=2π and ω=π are used. In the top figure, five different Stanh
functions are geometrically connected to design the approximated sin function.
Then, λ can be tuned to set ω desired. In addition, the stochastic cos function,
Scos(ω, λ, x) (≈ cos(ωx)), is defined as the same way as Ssin as follows:
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Fig. 2 Graphical representation of Ssin function using five Stanh functions, where ω′ = 2π and
ω = π are used

Scos(ω, λ, x)

=
� ω′

π
− 1

2 �∑

k=�− ω′
π

− 1
2 �

(−1)kStanh
(

4ω′, 1

2

(
λx + π(k + 1

2 )

ω′
))

, (4)

Improved Exponential-Scale Convolution

Convolution is often used for image filtering. In stochastic computing, a simple
implementation of convolution in unipolar coding is illustrated in Fig. 3a, where
ai are the coefficients, xi are the inputs and z is the output. As a stochastic adder
implemented using a multiplier scales down the output by N (the number of inputs),
the equation corresponding to Fig. 3a is described as follows:

z �
∑

i aixi

N
. (5)

The computation accuracy of the stochastic adder is lowered when the number of
inputs is increased [25].
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Fig. 3 Convolution architecture: (a) conventional (b) proposed exponential scale

To realize a high accuracy stochastic adder, an exponential-scale stochastic adder
is presented [23] as shown in Fig. 3b. First, the input signals are converted to signals
in exponential domain. Second, multiplications perform in exponential domain
that is equivalent to additions in normal domain. Third, the output signals are
converted back to signals in normal domain. This circuit is designed based on [26]
by modifying the output block for a higher accuracy. The equation corresponding to
Fig. 3b is defined as follows:

z �
∑

i a+
i xi −∑i a−

i xi

2
, (6)

where a+
i are the positive coefficients and a−

i are the negative coefficients. The
scaling factor of the output in the proposed circuit is 2 that is independent of N ,
leading to a higher computation accuracy than that of the conventional circuit.

Integral Stochastic Computing

Integral stochastic computing [8] is the extension of original stochastic computation,
utilizing several bit streams in parallel instead of a single bit stream. It can represent
a larger range than [−1, 1] of the original stochastic computing in bipolar coding,
leading to a higher computation accuracy with area overhead. In integral stochastic
computing, a sequence of integer numbers, S(t), is used to represent a real value, s.
S(t) is generated by combining several stochastic bit streams defined as follows:

S(t) =
m∑

i

Xi(t), (7)
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where Xi(t) is a stochastic bit stream and m is the number of bit streams. In unipolar
coding, a real value, s, is defined as follows:

s =
m∑

i

xi , (8)

where xi (0 ≤ xi ≤ 1) is equal to Pxi = Pr(Xi(t) = 1). In bipolar coding, s is
defined as follows:

s = 2
m∑

i

xi − m. (9)

si can be represented by a range of [−m,m].
Figure 4a shows a two-input integral stochastic adder. The integral stochastic

adder is realized using a binary adder that sums up two stochastic bit streams.
Unlike the conventional stochastic adder, the output is not scaled down with a high
computation accuracy. Figure 4b shows a two-input integral stochastic multiplier.
The integral stochastic multiplier requires a binary adder that multiplies two integer
values, causing a larger hardware area than that of the original stochastic multiplier.
When one of the inputs to the multiplier is a stochastic bit stream, the circuit can be
simplified to a bit-wise AND as shown in Fig. 4c.

FSM-based functions in integral stochastic computing are also designed by
extending Stanh and Sexp functions described in Eqs. (1) and (2). A tanh function
is approximated using an integral stochastic tanh function, NStanh, as follows:

tanh((NT /2m)x) � NStanh(NT ,m, s). (10)

In addition, an exponential function is approximated using an integral stochastic
exponential function, NSexp, as follows:

exp(−2(G/m)x) � NSexp(NE,G,m, s). (11)

1 0 1 0 1 1 1 1 
(A=0.75)

1 1 1 0 1 0 1 1
(B=0.75)

2 1 2 0 2 1 2 2
(C=1.5)

(a) (b) (c)

s
x y

Bit-wise
AND

Fig. 4 Integral stochastic circuit components: (a) adder, (b) multiplier, and (c) simplified multi-
plier when one of two inputs is a stochastic bit stream
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BLSI Design

Simple Cell of Primary Visual Cortex (2D Gabor Filter)

2D Gabor filters exhibit similar responses of simple cells in primary visual cortex
(V1) of brains as shown in Fig. 5. Many simple cells activated with different spatial
frequencies and angles of images are placed as the hypercolumn structure. Based
on the hypercolumn structures, brains can extract many different features, such as
edges and lines of images used for object recognitions and classifications in the
latter part of brains.

Using stochastic computing, an energy-efficient configurable 2D Gabor-filter
chip is implemented. 2D Gabor function (odd phase) [27] is defined as follows:

gω,σ,γ,θ (x, y) = exp
(
−x′2 + γ 2y′2

2σ 2

)
sin(2ωx′), (12)

where x′ = xcosθ+ysinθ and y′ = −xsinθ+ycosθ . ω represents the spatial angular
frequency of the sinusoidal factor, θ represents the orientation of the normal to the
parallel stripes of a Gabor function, σ is the sigma of the Gaussian envelope and γ

is the spatial aspect ratio of the Gabor function.
Using Eqs. (2), (3), and (4), the stochastic 2D Gabor function is defined as

follows:

SGabor(ω, γ, λ,G, θ, x, y)

=
Sexp

(
NE,G, 1

2 (x′2 + γ 2y′2)
)

+ 1

2
Ssin(ω, λ, x′), (13)
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Fig. 5 Hypercolumn structure of primary visual cortex (V1) including many simple cells, where
Gabor filters exhibit a similar response to a simple cell
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Fig. 6 Stochastic Gabor filter: (a) 51 × 51 coefficients and (b) chip microphotograph

x′ = xScos(π, λπ , θ/π) + ySsin(π, λπ , θ/π),

y′ = −xSsin(π, λπ , θ/π) + yScos(π, λπ , θ/π),

where λπ is constant. The original Gabor function on Eq. (12) is approximated as
follows:

αgω,σ,γ,θ (x, y) ≈ SGabor(ω, γ, λ,G, θ, x, y), (14)

where α is a constant value for fitting SGabor with the original Gabor function.
Using Eq. (13), flexible coefficients with flexible kernel sizes are generated in
hardware.

Figure 6a shows SGabor results (coefficients) for a kernel size of 51 × 51 with
ω = 2π and θ = 0o. The number of stochastic bits (Nsto) is 218. In this simulation,
NE − 256, G = 8, ω′ = 14, λπ = 0.6614, and γ − 1 are selected. ω′ = 14 is
selected that supports the maximum angular frequency of 4π . γ = 1 is selected
based on [28] that uses the same Gaussian envelope along with x and y.

Figure 6b shows a photomicrograph of the proposed stochastic Gabor filter chip
using TSMC 65-nm CMOS technology. The proposed chip includes 64-parallel
Gabor-filtering blocks and a coefficient generator based on Eq. (13). The filtering
block is designed using a stochastic convolution circuit in unipolar coding. As the
coefficients are generated in hardware if necessary, memory blocks are not required,
leading to a power-gating capability. The supply voltage is 1.0 V and the area is
1.79 mm × 1.79 mm including I/Os. The proposed circuit is designed using Verilog
HDL (Hardware Description Language) and the test chip is realized using Synopsys
Design Compiler and Cadence SoC Encounter.

Table 1 shows performance comparisons with related works. It is hard to compare
the performance directly because they are designed with different functionalities
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Table 1 Performance comparisons of 2D Gabor filters

[29] [30] [28] This work

Computation Analog/Digital Digital Digital Stochastic

Technology 0.35 μm CMOS (FPGA) 0.13 μm CMOS 65 nm CMOS

Kernel size (Only nearest 3 × 3 3 × 3, 5 × 5, 7 × 7 N × N (flexible)

neighbor) 9 × 9, 11 × 11

Kernel parameter Fixed Fixed Flexible Flexible

Power-gating
capability

No No No Yes

# of processing
elements

61 × 72 1 1 64

Throughput (MP/s) – 124.4
(3 × 3)

10 (5 × 5) 200 (5 × 5)

2.1 (11 × 11) 40 (11 × 11)

Frequency (MHz) 1 148.5 250 200

Power dissipation
(mW)

800 – – 102.3

Area (equivalent
gate count)

– – 63.8 k 644 k

and configurations. The memory-based methods [29, 30] use fixed coefficients
with fixed kernel sizes, lacking the flexibility. In the conventional configurable
Gabor filter [28], COordinate Rotation DIgital Computer (CORDIC) is exploited
to dynamically generate the coefficients related to sinusoidal function for flexible
Gabor filtering. However, other coefficients are stored in memory, losing the power-
gating capability. In contrast, the proposed circuits achieve a higher throughput/area
and a more flexible filtering than the conventional configurable Gabor filter with the
power-gating capability, leading to zero standby power.

Deep Neural Networks

Recently, deep neural networks based on stochastic computing have been reported
for area-efficient hardware [31, 32]. However, the energy dissipation is significantly
larger than that of a fixed-point design because a large number of bit streams is
required. In order to reduce the energy dissipation, integral stochastic computing
has been proposed [8]. Integral stochastic computing can reduce the number of
bit streams and hence the energy dissipation while maintaining the computation
accuracy with the area overhead.

As a design example of deep neural networks based on stochastic computing,
the deep belief network (DBN) is selected as shown in Fig. 7a. The DBN contains
784 input nodes and 10 output nodes with two different configurations of the hidden
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Fig. 7 Stochastic deep neural networks: (a) two-layer deep belief network (DBN) and (b)
stochastic neuron

layers. The 1st hidden layer has 100 or 300 neurons and the 2nd hidden layer has
200 or 600 neurons. The function at each neuron is defined as follows:

zj =
M∑

i=1

wij vi + bj , (15)

hj = 1

1 + exp(−zj )
= σ(zj ), (16)

where M is the number of inputs, wij are the weights, vi are the inputs, bj is the
bias, zj is the intermediate value and hj is the output. j is the index of the neuron.
The sigmoid function can be replaced by tahn function as follows:

σ(zj ) = 1 + tanh(zj/2)

2
(17)

Based on Eqs. (15), (16), and (17), neurons are designed based on integral
stochastic computing as shown in Fig. 7b. First, binary signals are converted
to stochastic bit streams using binary-to-stochastic (B2S) converters or integral
stochastic bit streams using binary-to-integral stochastic (B2IS) converters. Second,
the bit streams are multiplied using the integral stochastic multipliers and then added
using the tree adder. Third, the output bit stream of the adder corresponding to zj

are the input of NStanh function based on Eq. (10) in order to determine hj .
Table 2 shows misclassification rates of floating-point simulations and stochastic

computing in he Mixed National Institute of Standards and Technology (MNIST)
data set [34]. For training, floating-point simulations are used to obtain wij in both
cases. For inference, 10,000 handwritten digits are tested. In stochastic computing,
wij are represented by 10-bit fixed points that are converted to stochastic bit streams
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Table 2 Comparisons of
misclassification rates in
MNIST

Misclassification error (%)

Floating-point [33] Stochastic

Nsto − 256

784-100-200-10 2.29 2.33

784-300-600-10 1.82 1.90

Table 3 Hardware evaluation of two-layer DBN using TSMC 65-nm CMOS process

Fixed-point

(10-bit) Stochastic

Network
configuration

784-100-200-10 784-100-200-10 784-300-600-10 784-300-600-10

Supply voltage
(V)

1.0 1.0 1.0 0.8

Nsto − 256 16 22

Misclassification
error (%)

2.3 2.33 2.27 2.30

Energy (nJ) 0.380 2.96 0.299 0.256

Gate count (M
Gates (NAND2))

23.6 4.2 15.6 15.6

Latency (ns) 30 650 50 65

using B2S. As a result, the stochastic DBN with Nsto = 256 achieves similar
misclassification rates to that of the floating-point simulations.

Table 3 shows the performance comparisons between 10-bit fixed-point and
stochastic two-layer DBNs. Both DBNs are designed using Verilog-HDL and
synthesized using Cadence RC Compiler. The power dissipation is obtained using
Synopsys Power Prime. The technology is TSMC 65-nm CMOS with the frequency
of 400 MHz and the supply voltage of 1 V.

In case of the same size of network (784-100-200-10), the hardware area of
the stochastic implementation reduces 82.3% in comparison with that of the fixed-
point design. However, the energy dissipation is 7.6 times larger because a large
Nsto = 256 is required to achieve the similar misclassification rate. By utilizing
the area efficiency, the large size of network (784-300-600-10) is designed using
stochastic computing. In this case, the stochastic implementation reduces Nsto to
16 while achieving the similar misclassification rate. As a result, the proposed
hardware reduces the energy dissipation and the area by 21% and 34%, respectively,
in comparison with the fixed-point design.

In order to further reduce the energy dissipation, the supply voltage is dropped
to 0.8 V in the stochastic implementation. Lowering the supply voltage generally
induces soft errors because of timing errors, however, stochastic computing is
robust against soft errors. In case of the supply voltage of 0.8 V, the stochastic
implementation achieves the similar misclassification rate by slightly increasing
Nsto from 16 to 22. As a result, a 33% energy reduction is achieved in total.
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Conclusion

In this chapter, we have reported many applications of stochastic computing for
BLSI. Several key arithmetic functions for BLSI are presented, such as circular
functions and integral stochastic computing. The physiological models in V1 of
the human brains and the deep neural networks are implemented in a TSMC 65-
nm CMOS. The hardware performance is compared and discussed with that of the
fixed-point design with the computation accuracy.

Future prospects include the applications of stochastic computing for models of
the higher order visual cortex, larger deep neural networks, and learning algorithms.
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Stochastic Decoding of Error-Correcting
Codes

François Leduc-Primeau, Saied Hemati, Vincent C. Gaudet,
and Warren J. Gross

Abstract Error-correction codes (ECC) or channel codes allow correcting errors
in a data sequence without the need to refer to the original source of information.
By allowing reliable data transmission and storage despite the inevitable noise that
perturbs physical signals, they dramatically reduce the cost of computer systems,
and as such play a central role in enabling the digital revolution that we witness
today. However, the decoding of channel codes often represents a significant part
of the latency and energy consumption of a receiver. In this chapter, we review
methods that can reduce the implementation complexity of ECC decoders by
relying on stochastic computing. We focus on an important type of code called
low-density parity-check (LDPC) codes, which are capacity-approaching codes
that can be decoded using message-passing algorithms. These algorithms are
inherently parallel, making LDPC codes attractive for simultaneously achieving
a large coding gain and a high data throughput. In addition, we show that the
use of stochastic computing is not limited to binary LDPC codes by describing a
stochastic-computing decoder for non-binary LDPC codes, and another for Turbo
codes.
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Introduction

Error-correction codes (ECC) or channel codes are widely used to improve the
efficiency of digital communication and storage systems. They allow to significantly
reduce the signal power required to transmit information in a communication system
or to increase the amount of stored information in a storage system. Low-density
parity-check (LDPC) codes have now been established as one of the leading channel
codes for approaching the channel capacity in data storage and communication
systems. Notably, they have recently been selected as the channel code for the
data channel in the fifth generation of cellular systems. Compared to other codes,
they stand out by their ability of being decoded with a message-passing decoding
algorithm that offers a large degree of parallelism, which make it possible to
simultaneously achieve a large channel coding gain and a high data throughput.

Exploiting all the available parallelism in message-passing decoding is difficult
because of the logic area required for replicating processing circuits, but also
because of the large number of wires required for exchanging messages. The use
of stochastic computing was thus proposed as a way of achieving highly parallel
LDPC decoders with a smaller logic and wiring complexity. Furthermore, because
the energy efficiency per operation in integrated circuits is now improving much
more slowly than in the past, many researchers are looking into approaches that
allow trading off the reliability of computations in return for tolerating an increase
in manufacturing variability and ultimately obtaining large improvements in energy
efficiency [1]. The stochastic nature of the value representation in stochastic
computing makes it an interesting paradigm in which to perform such reliability
versus energy optimizations. Interestingly, LDPC decoding algorithms are naturally
robust to hardware faults, and it was shown that the energy usage of a decoder can
be reduced with no performance degradation by operating the circuit in a regime
where timing violations can occur [2].

Current decoding algorithms based on stochastic computing do not outperform
standard algorithms on all fronts, but they generally offer a significant advantage
in average processing throughput normalized to circuit area. Potentially, they could
also offer further improvements in robustness to circuit faults. Finally, as discussed
in section “Asynchronous Decoders”, their simplicity combined with the robustness
of LDPC decoders makes it possible to envision asynchronous implementations
with no signaling overhead, which offers another avenue for tolerating propagation
delay variations occurring within the circuit.

We start this chapter by describing several LDPC decoding algorithms that
perform computations using the stochastic representation in section “Stochastic
Decoding of LDPC Codes”. One exciting aspect of stochastic computing is its
ability to enable new circuit implementation styles that can achieve improved
energy efficiency. Section “Asynchronous Decoders” reviews some work on digital
asynchronous implementations of LDPC decoders. Finally, the use of stochastic
computing is not limited to the decoding of binary LDPC codes. Section “Stochastic
Decoders for Non-Binary LDPC Codes” presents a stochastic approach for decoding
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non-binary LDPC codes, and section “The Stochastic Turbo Decoder” presents a
decoder for Turbo codes based entirely on a stochastic number representation.

Stochastic Decoding of LDPC Codes

LDPC codes are part of the family of linear block codes, which are commonly
defined using a parity-check matrix H of size m×n. The codewords corresponding
to H are the column vectors x of length n for which H · x = 0, where 0 is the zero
vector. LDPC codes can be binary or non-binary. For a binary code, the elements of
H and x are from the Galois Field of order 2, or equivalently H ∈ {0, 1}m×n and
x ∈ {0, 1}n. Non-binary LDPC codes are defined similarly, but the elements of H

and x are taken from higher order Galois Fields. The rate r of a code expresses the
number of information bits contained in the codeword divided by the code length.
Assuming H is full rank, we have r = 1 − m

n
.

A block code can also be equivalently represented as a bipartite graph. We call a
node of the first type a variable node (VN), and a node of the second type a check
node (CN). Every row i of H corresponds to a check node ci , and every column j

of H corresponds to a variable node j . An edge exists between ci and vj if H(i, j)

is non-zero.
The key property that distinguishes LDPC codes from other linear block codes

is that their parity-check matrix is sparse (or “low density”), in the sense that each
row and each column contains a small number of non-zero elements. Furthermore
this number does not depend on n. In other words, increasing the code size n also
increases the sparsity of H . The number of non-zero elements in a row of H is equal
to the number of edges incident on the corresponding check node and is called the
check node degree, denoted dc. Similarly the number of non-zero elements in a
column is called the variable node degree and denoted dv .

LDPC codes can be decoded using a variety of message-passing algorithms that
operate by passing messages on the edges of the code graph. These algorithms are
interesting because they have a low complexity per codeword bit while also offering
a high level of parallelism. If the graph contains no cycles, there exists a message-
passing algorithm that yields the maximum-likelihood estimate of each transmitted
bit, called the Sum-Product algorithm (SPA) [3]. In practice, all good LDPC codes
contain cycles, and in that case the SPA is not guaranteed to generate the optimal
estimate of each symbol. Despite this fact, the SPA usually performs very well on
graphs with cycles, and experiments have shown that an LDPC code decoded with
the SPA can still be used to approach the channel capacity [4]. The SPA can be
defined in terms of various likelihood metrics, but when decoding binary codes, the
log likelihood ratio (LLR) is preferred because it is better suited to a fixed-point
representation and removes the need to perform multiplications. Suppose that p is
the probability that the transmitted bit is a 1 (and 1 −p the probability that it is a 0).
The LLR metric �i is defined as
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�i = ln

(
1 − p

p

)

.

Algorithm 1 describes the SPA for binary codes (the SPA for non-binary codes
is described in section “Stochastic Decoders for Non-Binary LDPC Codes”). The
algorithm takes LLR priors as inputs and outputs an estimate of each codeword
bit. If the modulated bits are represented as xi ∈ {−1, 1} and transmitted over the
additive white Gaussian noise channel, the LLR priors �i corresponding to each
codeword bit i ∈ {1, 2, . . . , n} are obtained from the channel output yi using

�i = −2yi

σ 2
,

where σ 2 is the noise variance. The algorithm operates by passing messages on the
code graph. We denote a message passed from a variable node i to a check node
j as ηi,j , and from a check node j to a variable node i as θj,i . Furthermore, for
each variable node vi we define a set Vi that contains all the check node neighbors
of vi , and similarly for each check node cj , we define a set Cj that contains the
variable node neighbors of cj . The computations can be described by two functions:
a variable node function VAR(S) and a check node function CHK(S), where S is a
set containing the function’s inputs. If we let S = {�1,�2, . . . , �d}, the functions
are defined as follows:

VAR(S) =
d∑

i=1

�i (1)

input : {�1,�2, . . . , �n}
output: x̂ = [x̂1, x̂2, . . . , x̂n]
begin

θj,i ← 0, ∀i, j

for t ← 1 to L do
for i ← 1 to n do // VN to CN messages

foreach j ∈ Vi do
ηi,j ← VAR({�i} ∪ {θa,i : a ∈ Vi} \ {θj,i})

for j ← 1 to m do // CN to VN messages
foreach i ∈ Cj do

θj,i ← CHK({ηa,j : a ∈ Cj } \ {ηi,j })
for i ← 1 to n do // Compute the decision vector

�′
i ← VAR({�i} ∪ {θa,i : a ∈ Vi})

if Λ′
i ≥ 0 then x̂i ← 0

else x̂i ← 1
Terminate if x̂ is a valid codeword

Declare a decoding failure
Algorithm 1: Sum-Product decoding of an LDPC code using LLR messages
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CHK(S) = arctanh

(
d∏

i=1

tanh(�i)

)

. (2)

The algorithm performs up to L iterations, and stops as soon as the bit estimate
vector x̂ forms a valid codeword, that is H · x̂ = 0.

A Simple Stochastic Decoder

LDPC decoders have the potential to achieve a high throughput because each of
the n codeword bits can be decoded in parallel. However, the length of the codes
used in practice is on the order of 103, going up to 105 or more. This makes it
difficult to make use of all the available parallelism while still respecting circuit
area constraints. One factor influencing area utilization is of course the complexity
of the VAR and CHK functions to be implemented, but because of the nature of the
message-passing algorithm, the wires that carry messages between processing nodes
also have a large influence on the area, as was identified early on in one of the first
circuit implementations of an SPA LDPC decoder [5].

The need to reduce both logic and wiring complexity suggests that stochastic
computing could be a good approach. The use of stochastic computation for
the message-passing decoding of block codes was first proposed by Gaudet and
Rapley [6]. The idea was prompted by the realization that the two SPA functions
VAR and CHK had very simple stochastic implementations when performed in the
probability domain. Let us first consider the CHK function. In the LLR domain, the
function is given by (2), which in the probability domain becomes

CHK(p1, p2, . . . , pd) = 1 −∏d
i=1(1 − 2pi)

2
. (3)

The implementation of this function in the stochastic domain is simply an exclusive-
OR (XOR) gate. That is, if we have independent binary random variables X1, X2,

. . . , Xd , each distributed such that Pr(Xi = 1) = pi , then taking

Y = X1 + X2 + · · · + Xd mod 2 (4)

yields Pr(Y = 1) = CHK(p1, p2, . . . , pd). This result is not as surprising as it might
seem. Indeed, the modulo-2 sum is exactly the constraint that must be satisfied by
the codeword bits involved in this check node operation. Using stochastic streams
instead of codeword bits is akin to performing a Monte-Carlo simulation to find the
probability associated with an unknown bit connected to this check node.

A circuit for computing the VAR function with 2 inputs was also presented in [6].
In the probability domain, the LLR function of (1) with d = 2 is given by
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Fig. 1 Stochastic
computation circuit for the
2-input VAR function in the
probability domain

X1[t]

X2[t]

J

K

Q Y[t]

VAR(p1, p2) = p1p2

p1p2 + (1 − p1)(1 − p2)
. (5)

In the stochastic domain, this function can be computed approximately using the
circuit shown in Fig. 1. The JK flip-flop becomes 1 if its J input is 1, and 0 if its K
input is 1. Otherwise, it retains its previous value. This implementation is different
in nature from the one used for the CHK function, since it contains a memory. The
behavior of the circuit can be analyzed by modeling the output Y as a Markov chain
with states Y = 0 and Y = 1. Suppose that the stochastic streams X1[t] and X2[t]
are generated according to the expectation sequences p1[t] and p2[t], respectively,
and let the initial state be Y [0] = so. Then, at time t = 1, we have

E[Y [1]] = Pr(Y [1] = 1) =
{

p1[1]p2[1] if so = 0,

p1[1] + p2[1] − p1[1]p2[1] if so = 1.

None of the expressions above are equal to VAR(p1[1], p2[1]), and therefore the
expected value of the first output of the circuit is incorrect, irrespective of the starting
state. However, if we assume that the input streams are independent and identically
distributed (i.i.d.) with p1[t] = p1 and p2[t] = p2, it is easy to show that the
Markov chain converges to a steady-state such that

lim
t→∞E[Y [t]] = VAR(p1, p2). (6)

To build a circuit that will compute the VAR function for more than 2 inputs, we
can make use of the fact that the VAR function can be distributed arbitrarily, which
can easily be seen by considering the equivalent LLR-domain formulation in (1).
For example we have VAR(p1, p2, p3) = VAR(VAR(p1, p2), p3).

Stochastic decoders built using these circuits were demonstrated for very small
codes, but they are unable to decode realistic LDPC codes. The reason is that (6)
is not sufficient to guarantee the accuracy of the variable node computation, since
we do not know that the input streams are stationary or close to stationary. In
graphs with cycles, low precision messages can create many fixed points in the
decoder’s iterative dynamics that would not be there otherwise. This was noted in
[7], and the authors proposed to resolve the precision issue by adding an element
called a supernode, which takes one stochastic stream as input and outputs another
stochastic stream. This approach interrupts the feedback path by using a constant
expectation parameter to generate the output stochastic stream. Simultaneously, it
estimates the mean of the incoming stochastic stream. The decoding is performed
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in several iterations, and an iteration is completed once a stochastic stream of length
� has been transmitted on every edge of the graph. Once the iteration completes,
the expectation parameter in each supernode is updated with the output of the mean
estimator, Because the expectation parameter is kept constant while the stochastic
streams are being generated, the precision can be increased by increasing �.

While the supernode approach works, it requires large values of � to achieve
sufficient precision, and therefore a lot of time for transmitting the � bits in each
iteration. However, it is not necessary for the expectation parameter of a stochastic
stream to be constant. Any method that can control the rate of change of the
expectation sequences will allow avoiding fixed points in the decoding algorithm
created by insufficient precision. In particular, this can be achieved by using low-
pass filters, some of which are described in the next section.

Stochastic Decoders Using Successive Relaxation

Now that we have explained the basic concepts used to build stochastic decoders, we
are ready to present stochastic decoding algorithms that are able to decode practical
LDPC codes. Most such algorithms make use of a smoothing mechanism called
Successive Relaxation. Message-passing LDPC decoders are iterative algorithms.
We can express their iterative progress by defining a vector xo of length n containing
the information received from the channel, and a second vector x[t] of length ne

containing all the messages sent from variable nodes to check nodes at iteration
t , where ne is the number of edges in the graph. The standard SPA decoder for
an LDPC code is an iterative algorithm that is memoryless, by which we mean
that the messages sent on the graph edges at one iteration only depend on the
initial condition, and on the messages sent at the previous iteration. As a result,
the decoder’s progress can be represented as follows:

x[t] = h(x[t − 1], xo),

where h() is a function that performs the check node and variable node message
updates, as described in Algorithm 1.

In the past, analog circuit implementations of SPA decoders have been consid-
ered for essentially the same reasons that motivated the research into stochastic
decoders. Since these decoders operate in continuous time, a different approach
was needed to simulate their decoding performance. The authors of [8] proposed to
simulate continuous-time SPA by using a method called successive relaxation (SR).
Under SR, the iterative progress of the algorithm becomes

x[t] = (1 − β) · x[t − 1] + β · h(x[t − 1], xo), (7)

where 0 < β ≤ 1 is known as the relaxation factor. As β → 0, the simulated
progress of the decoder approaches a continuous-time (analog) decoder. However,
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the most interesting aspect of this method is that it can be used not only as a
simulator, but also as a decoding algorithm in its own right, usually referred to
as Relaxed SPA. Under certain conditions, Relaxed SPA can provide significantly
better decoding performance than the standard SPA.

In stochastic decoders, SR cannot be applied directly because the vector of
messages x[t] is a binary vector, while x[t] obtained using (7) is not if β < 1.
However, if we want to add low-pass filters to a stochastic decoder, we must add
memories that can represent the expectation domain of the stochastic streams.
Suppose that we associate a state memory with each edge, and group these memories
in a vector s[t] of length ne. Since the expectation domain is the probability domain,
the elements of s[t] are in the interval [0, 1]. Stochastic messages can be generated
from the edge states by comparing each edge state to a random threshold. We can
then rewrite (7) as a mean tracking filter, where s[t] is the vector of estimated means
after iteration t , and x[t], xo[t] are vectors of stochastic bits:

s[t] = (1 − β) · s[t − 1] + β · h(x[t − 1], xo[t − 1]). (8)

The value of β controls the rate at which the decoder state can change, and since
E[x[t]] = s[t], it also controls the precision of the stochastic representation.

Circuit Implementations of the VN Function

We will first consider stochastic variable node circuits with two inputs X1[t] and
X2[t]. As previously, we denote by p1[t] and p2[t] the expectation sequences
associated with each input stream. Let E denote the event X1[t] = X2[t]. We have
that

E[X1[t] | E] = E[X2[t] | E] = VAR(p1[t], p2[t]),

where VAR() is defined in (5). Therefore, one way to implement the variable node
function for stochastic streams is to track the mean of the streams at the time instants
when they are equal. As long as Pr(E) > 0, a mean tracker can be as close as desired
to VAR(p1[t], p2[t]) if the rate of change of p1[t], p2[t] is appropriately limited. If
the mean tracker takes the form of (8), this corresponds to choosing a sufficiently
small β.

The first use of relaxation in the form of (8) was proposed in [9], where the
relaxation (or mean tracking) step is performed in the variable node, by using a
variable node circuit that is an extension of the original simple circuit shown in
Fig. 1. In the original VN circuit, each graph edge had a corresponding 1-bit flip-
flop. This flip-flop can be extended to an �-bit shift-register, in which a ‘1’ is shifted
in if both inputs X1[t] and X2[t] are equal to 1, and a ‘0’ is shifted in if both inputs
are equal to 0. When a new bit is shifted in, the oldest bit is discarded.

Let us denote the number of ‘1’ bits in the shift-register by w[t], and define the
current mean estimate as s[t] = w[t]/�. If we make the simplifying assumptions
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Fig. 2 Degree-6 stochastic VN circuit corresponding to one output [10]

that the bits in the shift register are independent from X1[t] and X2[t], and that
when a bit is added to the shift register, the bit to be discarded is chosen at random,
then it is easy to show that the shift-register implements the successive relaxation
rule of (7) in distribution, with β = Pr(E)/�, in the sense that

E[s[t]] =
(

1 − Pr(E)

�

)

· s[t − 1] + Pr(E)

�
· VAR(p1[t − 1], p2[t − 1]).

When the variable node degree is large, it was suggested in [10] to implement the
variable node function using a computation tree with two levels. Let us denote the
computation performed by the first level circuit as VARST1 and by the second level
circuit as VARST2. For example, the circuit for a degree-6 VN can be implemented as

VARST(xo, x1, . . . , x5) = VARST2(VARST1(x1, x2, x3), VARST1(x0, x4, x5)),

where xo is the current stochastic bit corresponding to the channel information,
and x1, x2, . . . , x5 are the stochastic bits received from the neighboring check
nodes. The corresponding circuit is shown in Fig. 2. When using such a two-level
implementation, it is proposed in [10] to use small shift-registers for the first level,
and a large one for the second level.

Using a shift register is interesting from a pedagogical point of view because it
uses a stochastic representation for the mean estimate. However, there are several
reasons that discourage its use in decoders. First, the choice of relaxation factor β is
tied to the precision of the mean estimate, which prevents from freely optimizing
the value of β. Second, because the mean is represented stochastically, storing
a high precision estimate requires a lot of register bits, which are costly circuit
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components. Lastly, the relaxation factor β is not constant, since β = Pr(E)/�.
This can complicate the analysis and design of the decoder.

For these reasons, a better approach to performing the mean tracking, proposed
in [11], is to directly represent the mean estimate s[t] as a fixed-point number. The
VN computation with inputs X1, X2 can now be implemented as

s[t + 1] =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − β) · s[t] + β if X1 = X2 = 1,

(1 − β) · s[t] if X1 = X2 = 0,

s[t] otherwise.

If β is chosen as a negative power of 2, the update can be implemented with only
bit shifts and additions.

Asynchronous Decoders

The vast majority of modern digital circuits designs use a synchronous design
approach. In a synchronous circuit, all inputs of logic circuits are only allowed
to change at pre-determined moments dictated by a clock signal. This is used to
ensure that the inputs are always logically valid, and furthermore prevents the
occurrence of race conditions between signals in the presence of feedback paths.
The synchronous design approach provides a highly desirable design abstraction
that allows to manage the huge complexity of modern systems. However, it is not
without costs. First, a clock signal must be distributed throughout the circuit with
high accuracy. Second, the processing speed of the system is dictated by the longest
possible propagation delay between any two connected clocked memory elements
in the systems. This worst-case delay, known as the critical path, can be significantly
longer than the average processing delay, especially when possible process, voltage,
and temperature variations are taken into account.

Asynchronous circuits have the potential of decreasing the average time required
for a computation by using local signals to indicate valid outputs instead of
relying on a global clock. According to measurements reported in [12], the delays
required to propagate messages between variable and check nodes in a fully parallel
stochastic LDPC decoder represent the majority of the delay required to complete a
decoding iteration, and this delay varies significantly from one wire to another. The
authors of [12] thus propose to use asynchronous signaling to conduct the exchange
of messages, which leads to significant speedup in total decoding time.

Because the basic circuits required to build a stochastic LDPC decoder are
very simple, it is also worth considering whether their simplicity might allow
constructing a decoder circuit that operates without any signaling. In this scheme,
it is up to the designer to examine the circuit at the gate and even transistor level
to ensure that it is free of harmful glitches or race conditions. This approach was
investigated in [13], in which the authors have implemented a clockless version
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of the fully stochastic decoder presented in section “Stochastic Decoders Using
Successive Relaxation”. A modified check node circuit, shown in Fig. 3, is presented
to reduce the difference in propagation delays between the various paths. However,
it is easy to see that if multiple inputs experience transitions simultaneously, the
circuit has the potential to introduce logically invalid outputs. The same holds for
the variable node circuit, shown in Fig. 4. Such a decoder circuit might therefore
introduce random errors in the messages. There could however be a beneficial aspect
to the introduction of random errors, since it is known that a randomization of the
decoding algorithm can help alleviate error floors [14]. Indeed, an improvement of
the error floor with respect to synchronous stochastic decoders is reported in [13].
Asynchronous decoders without signaling appear like a promising way to achieve
extreme energy efficiency, but more work is required to develop robust design and
analysis methodologies that can guarantee predictable results.

Stochastic Decoders for Non-Binary LDPC Codes

Non-binary LDPC codes were shown to outperform their binary counterpart at an
equivalent bit length [15], and furthermore are particularly interesting for channels
that exhibit bursty error patterns, which are prominent in applications such as
data storage and wireless communication. Unfortunately, they are also difficult to



212 F. Leduc-Primeau et al.

decode. Stochastic computation is one approach that has been explored to reduce
the complexity of the decoding algorithm.

In a non-binary code, codeword symbols can take any value from the Galois Field
(GF) of order q. The field order is usually chosen as a power of 2, and in that case we
denote the power as p, that is 2p = q. The information received about a symbol can
be expressed as a probability mass function (PMF) that, for each of the q possible
values of this symbol, indicates the probability that it was transmitted, given the
channel output. For a PMF U , we denote by U [γ ] the probability corresponding to
symbol value γ ∈ GF(q). Decoding is achieved by passing messages representing
PMFs on the graph representation of the code, as in message-passing decoding of
binary codes. However, when describing the algorithm, it is convenient to add a third
node type called a permutation node (PN), which handles part of the computation
associated with the parity-check constraint. The permutation nodes are inserted on
every edge in the graph, such that any message sent from a VN to a CN or from a
CN to a VN passes through a permutation node, resulting in a tripartite graph.

At every decoding iteration, a variable node v receives dv PMF messages from
neighboring permutation nodes. A PMF message sent from v to a permutation node
p at iteration t , denoted by U

(t)
vp , is given by

U(t)
vp = NORM

⎛

⎝Lv ×
∏

p′ 
=p

U
(t−1)

p′v

⎞

⎠ , (9)

where Lv is the channel PMF, and NORM() is a function that normalizes the PMF
so that all its probabilities sum to 1. A PN p receives a message U

(t)
vp from a VN and

generates a message to a CN c by performing

U(t)
pc [γ hp] = U(t)

vp [γ ], ∀γ ∈ GF(q),

where hp is the element of matrix H that corresponds to VN v (which specifies the
column) and CN c (which specifies the row). A CN c receives dc messages from
permutation nodes, and generates messages by performing

U(t)
cp = ∗

p′ 
=p
U

(t)

p′c, (10)

where ∗ is the convolution operator. Finally, a message sent by a CN also passes
through a PN, but this time the PN performs the inverse operation, given by

U(t)
pv [γ h−1

p ] = U(t)
cp [γ ], ∀γ ∈ GF(q),

where h−1
p is such that hp × h−1

p = 1.
Among the computations described above, the multiplications required in (9)

are costly to implement, but (10) has the highest complexity, since the number of
operations required scales exponentially in the field order q and in the CN degree dc.



Stochastic Decoding of Error-Correcting Codes 213

Several ways of applying stochastic computing to the decoding of non-binary
LDPC codes are proposed in [16]. Among these, the only algorithm that can decode
any code, without restrictions on q or dv , is the non-binary version of the Relaxed
Half Stochastic (RHS) algorithm. Just like in the binary version presented in [17],
the non-binary RHS decoder uses the stochastic representation for the check-node
computation only.

A stochastic message sent to a check node consists of a single symbol X ∈
GF(q), which can be represented using p bits. In comparison, messages exchanged
in the SPA consist of complete PMF vectors requiring qQ = 2pQ bits, where
Q is the number of bits used to represent one probability value in the PMF.
Therefore, stochastic algorithms significantly reduce the routing complexity of a
circuit implementation.

For binary codes, the stochastic check node function is an addition over GF(2),
which requires dc(dc − 1) XOR gates for generating all dc outputs. For non-binary
codes, it is an addition over GF(q). Assuming that q is a power of two, the
addition can still be implemented using only XOR gates, requiring pdc(dc − 1)

gates to generate all outputs. The stochastic check node function is therefore
much less complex than the SPA one. Furthermore, its complexity scales only
logarithmically in q.

The Stochastic Turbo Decoder

Stochastic decoding was also extended to convolutional and Turbo codes in [18].
Compared to stochastic decoders for LDPC codes, the challenge in implementing
a Turbo code decoder using stochastic computing resides in the need to perform
additions of probability values, which occur in the a posteriori probability (APP)
operation performed by each soft-input soft-output (SISO) component decoder.
Addition cannot be implemented directly using the stochastic representation, since
the stream’s expected value must lie in [0, 1]. The sum of N streams normalized by a
factor of 1/N can be implemented by feeding the streams into a N -input multiplexer
that randomly selects one of its input with equal probability. However, many useful
bits are discarded in the process, which translates into high processing latency.

To improve the precision of the addition, the implementation of [18] uses
an addition technique introduced in [19], where the addition is replaced by an
exponential transformation, followed by a multiplication, followed by the inverse
transformation. According to the results presented, approximating the exp(−x) and
the − ln(x) functions using the first two terms of their Taylor series, is sufficient to
reduce the number of decoding cycles by almost one order of magnitude.

Figure 5 shows a section of a stochastic tail-biting APP decoder in [18] that has
multiple inputs and outputs that facilitate exchange of information among sections.
The number of sections is equal to the number of symbols to decode and each section
consists of four modules. A � module receives the channel outputs ui and vi , which
correspond to the i-th transmitted symbol di and its parity bit yi , respectively. The
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Fig. 5 A section of a
stochastic tail-biting APP
decoder [18]
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� module converts the received channel outputs into a priori probabilities, which
are represented by two stochastic sequences to stochastically compute the branch
metrics, the forward metrics in the A module, and the backward metrics in the
B module. These modules are involved in an iterative process since they use the
forward and backward metrics αi and βi+1 from their neighbors and provide them
αi+1 and βi . A decision-making module “Dec” determines the final value of each
binary symbol, d̂i for the transmitted symbol di . In the turbo decoder, the “Extr”
module computes the output extrinsic probability Pr ex

out , which is then used by a �

module of the second APP decoder as the input Pr ex
in . Simulation results showed

the performance of stochastic turbo decoder was close to the floating-point Max-
Log-MAP decoding algorithm for a few turbo codes [18].
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