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Preface of Applications of
Differential-Algebraic Equations:
Examples and Benchmarks

This volume in the series “DAE Forum” encompasses prototypical, innovative
and emerging examples and benchmarks of differential-algebraic equations (DAEs)
from application areas such as:

• Underactuated mechanical systems
• Computational electrodynamics
• Gas networks
• Coupled flow networks
• Vehicle dynamics
• Robotics
• Semi-discretized Navier-Stokes equations
• Tracking problems
• Nonsmooth, nonlinear DAEs

All articles have a modelling section, explaining whether the model is prototypi-
cal and for which applications it is used, followed by a mathematical analysis, and, if
appropriate, a discussion of the numerical aspects including simulation. The volume
may serve to achieve a deeper understanding of a broad spectrum of applications, to
illustrate the many diverse areas of mathematics that are used in understanding and
treatment of DAEs and to provide a reference for benchmarks in DAEs.

Raleigh, NC, USA Stephen Campbell
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General Nonlinear Differential Algebraic
Equations and Tracking Problems: A
Robotics Example

Stephen Campbell and Peter Kunkel

Abstract One of the ways that differential algebraic equations (DAEs) naturally
arise is with tracking problems. This paper will discuss some of the tracking
problems that occur, how they are interrelated, and how they relate to the theory of
DAEs. This paper will focus on the theory and algorithms for unstructured tracking
problems. These ideas will then be applied to a test problem involving a robot arm
with a flexible joint. A variety of challenging test problems can be formulated from
this model.

Keywords DAE · Differential Algebraic equation · Tracking control · Robotic
arm

Mathematics Subject Classification (2010) 34A09, 34H05, 49J15, 65L80,
93C15, 93B40

1 Introduction

One of the ways that DAEs occur in applications from several areas are with tracking
problems.We shall assume that the reader has some familiarity with DAEs and such
concepts as the index of a DAE [8, 32]. There are generally three different types of
tracking problems any of which can result in a DAE even if the original process is
an ODE.
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2 S. Campbell and P. Kunkel

In its simplest formulation, a tracking problem consists of a system (1.1) and a
reference trajectory r(t),

F(ẋ, x, t, u) = 0 (1.1a)

y = G(t, x). (1.1b)

The goal is to have the control u cause the output y to track r in some sense.
A number of examples come to mind where r can be the path of a vehicle, a
desired temperature in a reactor, or the endpoint of a robotic arm to name just a
few. However, the use of tracking is even more important than this suggests. The
reason is that tracking is used in what we shall call index reduction in practice. In
many applications the control u must be produced by another process and our real
input is the input to that process. For example if u is a force, then there are inputs to
a motor to produce the force. Thus we actually have a second system (1.2), called
the actuator dynamics,

F̂ (ż, z, t, v) = 0 (1.2a)

u = G̃(t, z). (1.2b)

The combined system (1.1) and (1.2) viewed as a system in x, z, u, v along with
a control objective on y will usually give a DAE of higher index than just (1.1).
This is often approached by breaking the problem into two separate problems. One
designs u to track r . Then one designs v to track u. This approach is often used in
part because the actuator and the process may well be built by different groups and
the same actuators used in a number of different applications. Not surprisingly there
has been considerable research on tracking problems in the engineering literature.
We shall reference just a few of these papers. In particular, we will not discuss such
approaches as using observers [39].

The purpose of this paper is to present a challenging physical system that can
be used to test different approaches to tracking problems involving DAEs. The
particular problem is well known as a challenging problem from robotics that has
been studied in the nonlinear control literature. Our intent here is different in that
we are interested in using it as the basis of some different DAE tracking problems.

The organization of this paper is as follows. In the remainder of this section
we discuss some preliminary material. Then in Sect. 2 we will discuss some of the
different types of tracking and some of the issues that arise. Simple examples will
be given as illustrations. Then in Sect. 3 we will discuss the needed mathematics
behind tracking with general nonlinear DAEs. Section 4 will present the physical
system that is our test problem. We shall point out several problem variations and
then examine the techniques of the earlier sections applied to this test problem. We
will see that sometimes one approach will be easier to apply than another and that
the problem difficulty can be highly dependent on parameter values.

There are two sets of terminology that are used when working with DAE control
systems such as (1.1a). In one of these, which we will refer to as the classical
approach, the variable u is considered to be the control. Then the parts of x that
are differentiated are called differential state variables and the rest of x are called
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algebraic state variables. Properties such as index refer to the dynamical response in
x to a given u. In the other set of terminology, u is just considered to be additional
algebraic state variables and one talks of the strangeness index. Having strangeness
index one is closely related to having virtual index one. That is, there is a part of the
algebraic state variables that can be chosen as the controls and the remaining DAE
is index one [17, 24].

Here tracking can take three forms. One is exact tracking where we are given
r(t) and want u so that

y(t) − r(t) = 0. (1.3)

This is also sometimes referred to as prescribed path control or systems inversion.
That is, you want to go from a prescribed output r to an input u that generates that
output.

The second type of tracking is where we want y(t) − r(t) to be small in
some appropriate function space norm. How small is interpreted can have a great
impact on both numerical and analytic issues. Sometimes the goal is just to have
y(t) − r(t) ∈ Σ(t) for some time varying family of sets Σ . A parent watching their
child just wants to keep the child in their field of view. This can also frequently arise
in navigation problems. For example, say a robot has to move from one place to
another around some obstacles. A path is designed off line that does this and which
stays at least d away from the obstacles. Then one may have ‖y(t) − r(t)‖ ≤ d as
a path inequality. The use of optimal control for approximate tracking of DAEs is
considered in [1]. However, they restrict themselves to the case where the system is
a differentiably flat system [25, 26], that is the planned trajectory and its derivatives
completely determine the control.We do not make this assumption in our discussion
although the test problem considered later is sometimes flat. The third is asymptotic
tracking where ‖y(t) − r(t)‖ goes to zero as t → ∞. Often it is desirable to
have some control over the rate the tracking error goes to zero. Note that with
approximate tracking the tracking error does not need to go to zero which can be
useful as shown later.

In addition, there may be restrictions on the available control, such as only so
much control effort is available, and there may be endpoint or target conditions. All
of these considerations can have an impact on the types of DAEs that arise and also
how the DAE theory is interpreted.

There is a considerable amount of existing theory and experience with DAEs and
tracking problems that comes into play with each of these scenarios. We will note
only a tiny bit of this literature [29, 31, 37, 38]. Our goal is not to repeat this classical
material here. Rather we will discuss some of what can be done with more general
approaches. This is especially important with some classes of computer generated
software models. It is important to note that even if one is using modeling software
that is designed for index one and zero models, that higher index models readily
occur.

The path r(t) may or may not be known ahead of time. For path planning and in
some other control applications one may consider that r is known. However, there
are other scenarios where it is desired to estimate the value of G(t, x(t)). This is
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also sometimes referred to as tracking [27]. In this paper we consider r as known
on the time interval of interest. The term path tracking is also used when following
parameters using numerical homotopymethods [3]. Homotopymethods are also not
considered here.

2 Introductory Discussion of Tracking

We begin first with elementary examples to illustrate some of the types of problems
we are considering and issues that will be faced. The following examples in the
introductory sections are all solved using either the direct transcription code GPOPS
II [43] or boundary value solver bvp4c from Matlab.

2.1 Exact Tracking

Suppose that we have the ordinary differential equation (2.1) modeling a process

ẋ1 = −x1 + 0.2x2 + u1 (2.1a)

ẋ2 = −0.1x1 − 2x2 + u2 (2.1b)

ẋ3 = x2 (2.1c)

ẋ4 = x3, (2.1d)

and the goal is for x4 to track a given r . Thus we have y = G(t, x(t)) = x4(t). If
we add

x4(t) − r(t) = 0 (2.1e)

to (2.1a)–(2.1d) we get a DAE that is overdetermined in terms of x. It is not
overdetermined in terms of x, u. In terms of x, u, it is differentiation index four.
If r is sufficiently smooth, then clearly the DAE (2.1) is equivalent to

ẋ1 = −x1 + 0.2r̈ + u1 (2.2a)
...
r = −0.1x1 − 2r̈ + u2 (2.2b)

x2 = r̈ (2.2c)

x3 = ṙ (2.2d)

x4 = r, (2.2e)

which is an index one DAE in x1, u2 with u1 left as an input that can be chosen
depending on the control objectives. System (2.2) will be referred to as an index
reduced version of (2.1). In this paper index reduction will always mean to an index
one DAE with the same solutions as the original DAE.



General Nonlinear Differential Algebraic Equations and Tracking Problems: A. . . 5

Exact tracking was one of the first forms of tracking that were studied. The
appearance of a DAE is immediate. It is important to note that since r in some
of these applications is a known function, in fact it may be a designed path, and
some of the derivatives of r may be available to high accuracy, even analytically.
This is to be distinguished from cases where r is a measured output and hence is
noisy which makes its differentiation much more problematic.

Note that the form of G is partially a design decision and partly restricted by
physical considerations. However, it can have a major impact on the DAE structure.
For example, a constrained mechanical system may have the form

ẋ = f (x, z, u) + Gz(z)
T λ (2.3a)

ż = x (2.3b)

r(t) = G(z) (2.3c)

where z is position and x is velocity. This problem is index three in x, z, λ if Gz has
full rank, otherwise it could be higher. However, this depends on the fact that (2.3c)
is a physical constraint which generates a force so that its Jacobian appears in (2.3a).
There is no reason a priori that the index be constant nor that it even be well defined
if G is a desired output or trajectory that does not generate a force, that is, it is what
is sometimes called a program constraint rather than a physical constraint. Then
instead of (2.3) one has

ẋ = f (x, z, u) (2.4a)

ż = x (2.4b)

r(t) = G(z). (2.4c)

Exact tracking for (2.3) for DAEs which are analytically transferable to semi-
explicit index one DAEs is considered in several places. In [30, 31, 37] the approach
is similar but the details differ. The goal is to get an index one system for numerical
and application purposes. This involves both reduction, say by differentiating
constraints, and by using feedback that reduces the index. A simple example of
index reduction with feedback is

ẋ1 = x1 + 2x2 + u (2.5a)

0 = 4x1 + u, (2.5b)

which is index 2 in x for a given u. Letting u = −2x1 + x2 + v gives

ẋ = −x1 + 3x2 + v (2.6a)

0 = 2x1 + x2 + v (2.6b)

which is now an index one DAE in x for a given v. In the case of an ODE plant the
feedback can sometimes alter the index of the output tracking problem.
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The other approach for exact tracking uses differential algebra and goes to
a canonical form using nonlinear coordinate changes provided certain physical
assumptions hold. The resulting form has a chain of integrators and a nonlinear
equation much like (1.1) and one works with derivatives of r, u. From this form
one may answer a number of control questions. The concept of the relative degree
is closely related to the index when exact tracking is used. The application of
this approach has been extensively studied in a number of papers. We note only
[23, 37, 38]. The example (2.1) is similar to the canonical form used in [37, 38].

Exact tracking may not always be possible. Consider the following variant
of (2.1) with new (2.1a)– (2.1b):

ẋ1 = −x1 + 0.2x2 (2.7a)

ẋ2 = −0.1x1 − 2x2 + sin(u1) (2.7b)

ẋ3 = x2 (2.7c)

ẋ4 = x3. (2.7d)

Controls of the form sin(u) appear in many vehicular problems where u is a steering
angle. Clearly x4(t) = r(t) is not possible for all smooth r(t). For example, if
r(t) = sin(αt) for a large α, then (2.7b) can be inconsistent and cannot be solved
for u1.

The role of initial conditions is important. With exact tracking they should be
consistent for the tracking problem [9]. Since the tracking condition adds additional
constraints the original initial conditions might not be consistent any longer. For
this reason tracking problems are often broken up into two phases. A first alignment
phase where, in essence the system gets to a consistent initial condition for the
tracking problem solution and then a second phase which is the tracking.

2.2 Approximate Tracking as Optimal Control

Another approach to tracking is to attach a cost to the tracking error and try to reduce
that cost. As we will see this has the effect of regularizing the problem numerically
as long as the error tolerances are not too tight.

The first thing to think of is adding a quadratic cost of the form,

J = (G(T , x(T )) − r(T ))T H(G(T , x(T )) − r(T ))

+
∫ T

0
(G(t, x(t)) − r(t))T Q(G(t, x(t)) − r(t)) + uT Du dt, (2.8)

where H ≥ 0, Q ≥ 0, and D ≥ 0. If there are no bounds on the control u, we will
always take D > 0.

Suppose that we take (2.1) and desired path r and cost (2.8). If r is smooth, then
the only issue is the need to interpolate for the higher derivatives of r . We take the
time interval as [0 10]. For example if r(t) = sin(1.4t) and we take a consistent
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Fig. 1 State trajectory and target (circled line) for (2.2) and (2.8) on [0 10] with D = 1 and
Q = 10

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10
−8

−6

−4

−2

0

2

Fig. 2 Controls for (2.1) and (2.8) on [0 10] with D = 1 and Q = 10

initial condition of the constrained problem of [3, 0, 1.4, 0]T we get with D = 1,
Q = 10 the results in Figs. 1 and 2.

If we setQ = 10, 000we get as expectedmuch better trackingwith larger control
effort. In Fig. 3 we see that with high cost on the tracking error term and with smooth
solutions, we quickly get a good answer even if the problem is theoretically index
three for exact tracking.

But suppose that instead of a smooth reference trajectory we have one which is
not smooth. For example, we could have a piecewise linear path generated by some
route planning process. Figure 4 shows what happens with Q = 10.

Figure 4 was done with two iterations and it took several seconds for the iteration.
Additional iterations were not helpful. This illustrates how a lack of smoothness can
sometimes create problems. Suppose, however, we replace r with a smoother r that
is very close to the original r . This was done by replacing the Matlab command
interp1 with spline and adding a few more points. The result is in Fig. 5. Not
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Fig. 3 State trajectory and target (circled line) for (2.1) and (2.8) on [0 10] with D = 1 and
Q = 10, 000
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Fig. 4 State solution (solid) r (dotted) on the left and control u2 (right) on [0 10] with D = 1 and
Q = 10

only is the control much better with smoother r , but the iterations were much faster.
Taking both more iterations and a higher Q, we get Fig. 6. Note that there is still a
reasonable control even though tighter tracking is called for.

It is important to note that in these computations we are not explicitly differ-
entiating r . Rather the optimizer is numerically working its way back through the
equations to the control.

In the literature the type of target trajectories r is often restricted by assuming
that r is the output of another dynamical process say ṙ = h(t, r). This not only
makes sure r is smooth but also gives some information on the derivatives of r if
h(t, r) is a known function.

2.3 Asymptotic Tracking

Asymptotic tracking is often treated on an infinite interval although, of course
practically we are interested in doing so over a finite interval. Asymptotic tracking
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Fig. 5 State solution (solid) and r (dotted) on the left and control u2 (right) on [0 10] with D = 1
and Q = 10 and smoothed piecewise linear r
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Fig. 6 State solution (left) and control u2 (right) on [0 10] with D = 1 and Q = 1000, more
iterations allowed, and smoothed piecewise linear r

has also been considered by a number of people. One way to get asymptotic tracking
is to use optimal control formulations where the cost drives the tracking error very
small. Another way is to utilize some of the theory of observers which is not
discussed here. Suppose that we have the following system

ẋ1 = −x1 + 0.2x2 + u1 (2.9a)

ẋ2 = −0.1x1 − 2x2 + u2 (2.9b)

ẋ3 = x2 (2.9c)

and we want x3 to track r and we want this tracking to be independent of the initial
conditions. Algebra shows that we get exact tracking if

x3 = r (2.10a)

x2 = ṙ (2.10b)
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Fig. 7 State x3 (solid) and r (dashed) on the left and tracking error (right) on [0 30] in original
system using the open loop control (2.10d) and (2.10e) and initial condition [1, 1, 1]T

x1 = −10(2ṙ + r̈) (2.10c)

u2 = 0 (2.10d)

u1 = −(10r(3) + 30r̈ + 22.2ṙ) (2.10e)

Suppose that we use the control in (2.10d) and (2.10e) but we do not have the correct
initial conditions. To illustrate what happens, we take r(t) = sin(t) and our interval
as [0 30]. The initial starting value is x(0) = [1, 1, 1]T . The results are shown in
Fig. 7.

This is not satisfactory. Let

ε3 = x3 − r (2.11)

ε2 = x2 − ṙ. (2.12)

Then we have the tracking error dynamics are

ẋ1 = −x1 + 0.2ε2 + u1 + 0.2ṙ (2.13a)

ε̇2 = −0.1x1 − 2ε2 − 2ṙ + u2 − r̈ (2.13b)

ε̇3 = ε2, (2.13c)

which is an ODE in x1, ε2, ε3. Since

⎧⎨
⎩

⎡
⎣−1.0 0.2 0

−0.1 −2.0 0
0 1.0 0

⎤
⎦ ,

⎡
⎣ 1 0
0 1
0 0

⎤
⎦

⎫⎬
⎭
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is a controllable pair, given any three desired eigenvalues, there is a feedback matrix
F so that using the control

u = F

⎡
⎣x1

ε2

ε3

⎤
⎦ +

[−0.2ṙ
2ṙ + r̈

]
(2.14)

stabilizes the tracking error. For example, to place the eigenvalues at {−1,−2,−3}
we could use

F = −
[

1.0 0.1 −0.1
−0.1 2.0 3.0

]
,

which was found using the pole placement algorithm in Scilab [19], but any of a
number of software packages could be used. This results in

ẋ1 = −2x1 + 0.1ε2 + 0.1ε3 (2.15a)

ε̇2 = −0.4ε2 − 3ε3 (2.15b)

ε̇3 = ε2, (2.15c)

which is asymptotically stable with the desired eigenvalues. In terms of the original
variables, we have our new control with feedback is

u = F

⎡
⎣ x1

x2 − ṙ

x3 − r

⎤
⎦ +

[−0.2ṙ
2ṙ + r̈

]
. (2.16)

This choice of control presupposed that x1, x2, x3 are available for feedback. If they
are not, then an observer would have to be constructed for them.

Applying the tracking feedback (2.16) to the original system, and again using
x(0) = [1, 1, 1]T , we get the results in Fig. 8. Now the tracking error goes to zero.

3 Tracking with General Nonlinear DAEs

Given there has been such a large literature on tracking and DAEs it is natural to ask
if there is anything that might be called new or worth discussing. However, most of
this prior work considered the exploitation of some type of recognizable structure in
the original equations. In large complex computer generated models there may not
be an easily recognizable structure. The system models may be assembled from a
number of other models. For the remainder of this section then we will assume that
the starting DAE has a well defined solution manifold, a well defined index in the
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Fig. 8 State x3 (solid) and r (dashed) on the left and tracking error (right) on [0 30] with feedback
solution on original system

sense that follows, but we do not assume any other structure to the system. We do
assume that the equations defining the system are smooth and can be differentiated
the needed number of times. We do not assume this differentiation is symbolic. It
may also be carried out with automatic differentiation software so that all of the
derivatives are found numerically. The goal is to get algorithms that do not require
differentiating any computed quantities and also avoid needing to perform complex
algebraic manipulations other than numerical ones.

The algorithms given will compute an index one problem and carry out any
needed simulation or optimization. But this transformation will be carried out
numerically and locally at every time step and is thus invisible to the user.

3.1 Some Needed Mathematics

Some of the mathematics we shall need was developed in [14, 15, 20, 32], especially
[13]. Since many readers will not be familiar with these results, we summarize some
of them here. In a general DAE any control variables are viewed as additional alge-
braic state variables. Thus in this section we can absorb the u into the x and just write

F(t, x, ẋ) = 0. (3.1)

Since by means of exact tracking and/or optimal control a unique solution is
fixed, the final DAE to be treated consists of the same number n of equations and
unknowns.

In the general case of unstructured nonlinear DAEs (3.1), the derivative array
equations gotten by differentiating (3.1) � times are given by

F�(t, x, ẋ, . . . , x(�+1)) = 0, (3.2)
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that is,

F�(t, x, ẋ, . . . , x(�+1)) =

⎡
⎢⎢⎢⎢⎣

F(t, x, ẋ)
d
dt

F (t, x, ẋ)
...

d�

dt�
F (t, x, ẋ)

⎤
⎥⎥⎥⎥⎦ . (3.3)

The derivative of F� with respect to a variable v will be denoted F�;v . The following
hypothesis from [32] will be fundamental in what follows and generalizes what
happens for linear time varying DAEs.

Hypothesis 1 There exist integers μ, a, and d such that Lμ = {zμ ∈ I×Rn ×Rn ×
. . . × Rn | Fμ(zμ) = 0} is not empty and for every point (t0, x0, ẋ0, . . . , x

(μ+1)
0 ) ∈

Lμ there exists a (sufficiently small) neighborhood in which the following properties
hold:

1. We have rank(Fμ;ẋ,...,x(μ+1)) = (μ+1)n−a on Lμ. This implies that there exists
a smooth full rank matrix function Z2 of size ((μ + 1)n, a) satisfying

ZT
2 Fμ;ẋ,...,x(μ+1) = 0

on Lμ.
2. We have rank(ZT

2 Fμ;x) = a on Lμ. This implies that there exists a smooth full
rank matrix function T2 of size (n, n − a) satisfying

ZT
2 Fμ;xT2 = 0.

3. We have rank(FẋT2) = d = n − a. This implies that there exists a smooth full
rank matrix function Z1 of size (n, d) satisfying

rankZT
1 FẋT2 = d.

Again, alternative characterizations exist [12], but the preceding formulas fit our
numerical procedures better. We may assume that μ is chosen minimally and set
ν = μ + 1. For convenience, we use the shorthand notation v = (ẋ, . . . , x(μ+1)).
Given (t0, x0, v0) ∈ Lμ we set

Ẑ1 = Z1(t0, x0, v0), Ẑ2 = Z2(t0, x0, v0).

Moreover, due to Hypothesis 1 we can choose a T̂1 such that

[
Fμ;y(t0, x0, v0) Ẑ2

T̂ T
1 0

]
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is nonsingular. Defining

H(t, x, v,w) =
[

Fμ(t, x, v) + Ẑ2w

T̂ T
1 (v − v0)

]
,

we immediately see that H(t0, x0, v0, 0) = 0 and that Hv,w(t0, x0, v0, 0) is nonsin-
gular. Hence, the implicit function theorem shows that the equationH(t, x, v,w) =
0 can locally be solved for v,w, say according to

v = K(t, x), w = L(t, x).

Obviously, every (t, x)with L(t, x) = 0 satisfies Fμ(t, x,K(t, x)) = 0 and hence x

is consistent at point t . But also the converse holds, that is, if x is consistent at
point t , then (t, x) satisfies L(t, x) = 0. See [32, Ch. 4] for more details. It follows
that the relation L(t, x) = 0 constitutes all constraints imposed by the given DAE.
Moreover, the problem

ẐT
1 F(t, x, ẋ) = 0, (3.4a)

L(t, x) = 0 (3.4b)

is an index reduced DAE belonging to the original DAE. In particular, locally it
possesses the same solutions as the original DAE (3.1) but is index one. Note that we
are able to evaluate L (and K) numerically by means of Newton’s method applied
to H(t, x, v,w) = 0.

A completion of a DAE in x is an ODE in x that includes all the solutions of
the original DAE. That is, the vector field defined by the DAE is completed to form
a vector field of an ODE. There are a number of ways to compute a completion.
The simplest is to just differentiate the constraints [2, 4, 16]. However, this can
introduce undesirable effects such as drift off the solution manifold. Thus there
has been considerable work on designing completions whose extra dynamics has
desirable properties [10, 13, 40–42].

Let δ > 0. A possible completion of (3.1) is then implicitly defined by
performing the stabilized differentiation of the constraints

ẐT
1 F(t, x, ẋ) = 0, (3.5a)

Lt (t, x) + Lx(t, x)ẋ + δL(t, x) = 0, (3.5b)

which implies that now we have L(t, x) = Ce−δt . Note that δ must be chosen
sufficiently large to avoid drift off.

The derivatives Lt , Lx in (3.5b) can be obtained numerically due to the implicit
function theorem by solving the system

H(t, x, v,w) = 0, (3.6a)
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ẐT
1 F(t, x, ẋ) = 0, (3.6b)

L1 + βL2ẋ = 0, (3.6c)[
Fμ;v(t, x, v) Ẑ2

T̂ T
1 0

] [ ∗ ∗
L1 L2

]
= −

[
Fμ;t (t, x, v) Fμ;x(t, x, v)

0 0

]
, (3.6d)

where the last relation (3.6d) can be used to eliminate the unknowns L1 and L2.
Note that utilizing in this way the structure of the nonlinear system (3.6), the com-
putational costs compared with the standard integration of the DAE by the general
purpose code GENDA [34, 35] are only slightly increased due to the additional
bordering given by (3.6c).

3.2 Exact Tracking of General DAEs

Suppose that we have the DAE

F(t, x, ẋ, u) = 0, (3.7a)

and the tracking condition

G(t, x(t)) − r(t) = 0. (3.7b)

If we just want to know if tracking is possible in the given coordinates, then the
condition is just whether or not (3.7) forms a well defined DAE. This can be
verified by checking the Hypothesis and seeing if there are initial conditions that
are consistent.

A related issue arises with tracking with a control versus behavioral tracking [28,
45]. Loosely speaking with behavioral tracking all algebraic variables are treated
the same. In tracking with control some of the algebraic variables are labeled as
controls and they are what are free to give tracking. As an example consider

ẋ1 = x1 + 2x2 − x3 (3.8a)

0 = sin t x2 + cos t x3 (3.8b)

and it is desired to have

cos t x2 − sin t x3 = r(t). (3.8c)

If we wish to have x3 be the control to give tracking we have difficulties when
t = nπ and r(t) 	= 0. However, this is a well defined tracking problem in the
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behavioral sense since (3.8) implies that

[
x2

x3

]
=

[
sin t cos(t)
cos t − sin t

] [
0

r(t)

]

and (3.8) is an index one DAE.

3.3 Approximate Tracking of General DAEs

Note that for (3.7a) if we add an output y, this does not change the DAE structure
since y is an index one variable if it is not constrained in some manner. Suppose
then that we have a general DAE and output

F(t, x, ẋ, u) = 0 (3.9a)

y = G(t, x(t)) (3.9b)

with cost

J = (G(T , x(T )) − r(T ))T H(G(T , x(T )) − r(T ))

+
∫ T

0
(G(t, x(t)) − r(t))T Q(G(t, x(t)) − r(t)) + uT Du dt. (3.9c)

In (3.9) y is an additional algebraic variable, and the index of (3.9) is the same as
the index of (3.9a). There are a number of ways to try and solve this kind of optimal
control problem. Some of these are discussed in [15].

Using the same techniques along the lines of the previous section, in particular
using a suitable hypothesis for control problems, under further mild assumptions we
can compute an index one formulation of (3.9a) of the form

F1(t, x, ẋ, u) = 0 (3.10a)

F2(t, x, u) = 0, (3.10b)

where ∂F1/∂ẋ is full row rank and (3.10b) characterizes the solution manifold. For
details we refer to [32]. Note that while (3.10) is index one it is not semi-explicit.
It is possible to get a semi-explicit formulation, but in general that will only hold
locally. The local formulation suffices for a simulation but it is not as desirable for
a more global optimization problem.

If (3.10) is semi-explicit, then there are several options for finding the optimal
control u and determining the tracking error. But for general DAEs where the ẋ

occurs implicitly more care is needed.
One option is to parameterize the controls, and then simulate (3.10) with a fully

implicit index one DAE solver. However, for this to work easily it is important that
the control not have hidden constraints. Note that (3.10b) allows for the possibility
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of control constraints if u appears in (3.10b). Control parametrization requires a
decision about what are algebraic state variables and what are free control variables.
While this is often possible it is not always the case that it can be used.

Another option, which can be useful if u may appear in (3.10b), but there are no
separate control bounds, is to derive the necessary conditions. There are theoretical
formulations of the necessary conditions and there are formulations designed for
computation. The theoretical formulations use coordinate transformations based on
the implicit function theorem and related concepts as we did earlier. We shall give a
computational formulation from Section 4.2 of [33] for the special case that (3.10)
is computationally available. Note that is the case throughout the present paper.

The necessary conditions are then the following boundary value problem on
[t0, tf ].

F1(t, x, ẋ, u) = 0, (3.11a)

F2(t, x, u) = 0 (3.11b)

d

dt
(E1(t)

T λ1) = Kx(t, x, u)T + (F1)x(t, x, ẋ, u)T λ1

+(F2)x(t, x, u)T λ2 (3.11c)

0 = Ku(t, x, u)T + (F1)u(t, x, ẋ, u))T λ1

+(F2)u(t, x, u)T λ2 (3.11d)

0 = E1(t0)(x(t0) − x0) (3.11e)

0 = E1(tf )+(Mx(x(tf )) + E1(tf )T λ1(tf )), (3.11f)

where E1(t) = (F1)ẋ(t, x(t), ẋ(t), u(t)) and the subscripts x, ẋ, u indicate differ-
entiation with respect to the indicated variable. In addition,

M(x) = (G(T , x) − r(T ))T H(G(T , x) − r(T )),

K(t, x, u) = (G(t, x) − r(t))T Q(G(t, x) − r(t)) + uT Du

The boundary value problem may be solved with the techniques in [36].
The next problem is that the optimal control found can be noisy. This can

occur on high index problems for example because the numerical approximations
are working backwards through some differentiations. While good solutions can
sometimes be found themore nonlinear the problem is and the higher the index is the
more difficult this becomes. Examples are found in [11, 15]. One way to approach
this issue is to make sure that r is smooth. This was illustrated earlier. However,
even with smoother r the software still has to work back through the integrations.

An alternative is to try and make things nicer back where the control enters the
problem. This was done in a different context in [7]. In this case the attempt is made
to trade off some error in the tracking against restricting the optimization over a
nicer class of u.
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Fig. 9 Control u2 (left) and auxiliary control v2 (right) on [0 10] with u′ = v

One option is to bound the derivative of the control. This is done by adding
another differential equation to the DAE of the form u′ = v, u(0) = 0. Then one
can put a bound on v, or add a weight on v in the cost, or both.

To illustrate the effect that this can have, we return to the conditions that generate
Fig. 4. We added two more dynamical equations u′ = v and a bound on v for |vi | ≤
20. The result is now in Fig. 9.

Note that there is a spike in v2 at the far left and a jump in u2 at the left. That
was due to our choice of u(0) = 0. This computation was just for illustration of how
adding dynamics to the control can have a smoothing effect. In an actual application
more attention could be paid to u(0) or leaving u(0) free.

3.4 Asymptotic Tracking of General DAEs

There are several different ways to incorporate DAEs and asymptotic tracking. One
approach, and it is the most classical, is to design a feedback control that makes the
error dynamics asmyptoticaly stable as illustrated earlier in Sect. 2.3. Alternatively
using optimal control approaches can often generate controls that lead to asymptotic
tracking. Here we shall first exploit an alternative approach using, in part, some
ideas from [13]. We begin with (3.7). There are two types of constraints. One are
the actual constraints implied by (3.7a). These we want to hold exactly so that we
have a physically correct solution of the DAE. The other are (3.7b) which we would
like to have hold but asymptotically is our best hope. We take the control u as an
input and base the derivative array on just the x variables. We have then our problem
can be computed to be

ẐT
1 F(t, x, ẋ, u) = 0 (3.12a)

L(t, x, u) = 0 (3.12b)

G(t, x) − r(t) = 0 (3.12c)
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where (3.12c) is a desired constraint. Note that u is free in (3.13b) since the
reduction used only x. Performing a stabilized differentiation we get

ẐT
1 F(t, x, ẋ, u) = 0 (3.13a)

L(t, x, u) = 0 (3.13b)

d

dt
(G(t, x) − r(t)) = δ(G(t, x) − r(t)) (3.13c)

where δ < 0. If we treat a problem by inversion we find the control that gives exact
tracking. But usually the system does not start on the track so the initial state value
does not match the trajectory to be tracked. If we take a stabilized completion of
the tracking problem then we can take any initial conditions and the solution will
provide a control that will give us asymptotic tracking. We illustrate this later.

4 An Example from Robotics

A number of mechanical system models have natural connections to DAEs [44]. We
will now apply the proceeding idea to the two link robotic arm shown in Fig. 10.
Robot systems often use harmonic drives, belts, or long shafts as transmission
elements between the motors and the links (arms) and typically display oscillations
both in fast motion and after a sudden stop. Experimental tests and simulations have
shown that the elasticity introduced at the joints by these transmission elements is
the major reason for their vibrational behavior, so we must include elasticity in the
dynamic model. As a result, the internal position of the motors does not determine
the position of the driven arms. The dynamics of this displacement can be modeled
by inserting a linear torsional spring at each elastic joint between the actuator and
the link. The modeling process is described in full in [21, 22].

Note that in this problem the torques are the controls. One can make the problem
even higher index as noted earlier by adding the motor dynamics that produce the
torque. The more flexible the joint is the harder it is to control it since changes in
the torque have to act through the spring. Here higherK in the model means greater
flexibility. We will see that this parameter greatly affects the numerical solution of
some tracking problems.

The mathematical model for the robot arm shown in Fig. 10 is given by (4.1).
Here m0, m1, and mp are masses, with mp denoting the load or object being held
and m0 and m1 the masses of the arms viewed as concentrated at the joints. l1
and l2 are the lengths of the arms, K is the coefficient of elasticity of joint 2, NT

is the transmission ratio at the second joint, JRi are rotor inertias, qi are angular
coordinates describing the robot’s configuration, and τi are the rotational torques
caused by the drive motors. In this model x = [q1, q2, q3, q ′

1, q ′
2, q ′

3]T , u1 =
τ1, and u2 = τ2. If K = 0 the joint is inelastic and the elasticity increases as K
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Fig. 10 Robotic arm with two flexible joints

increases. The dynamics equations are

x ′
1 = x4 (4.1a)

x ′
2 = x5 (4.1b)

x ′
3 = x6 (4.1c)

x ′
4 = f4(x2, x3, x4, x6) + g41(x3)u1 − g41(x3)u2 (4.1d)

x ′
5 = f5(x2, x3, x4, x6) − g41(x3)u1 + g52(x3)u2 (4.1e)

x ′
6 = f6(x2, x3, x4, x6) + g61(x3)u1 − g61(x3)u2. (4.1f)

The desired path is

0 = C(t, x1, x3). (4.2)

The nonlinear functions in (4.1) are

g41(x3) = A2

A3(A4 − A3 cos2 x3)
(4.3a)
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g52(x3) = g41(x3) + 1

JR1
(4.3b)

g61(x3) = −g41(x3) − cos x3

A4 − A3 cos2 x3
, (4.3c)

f4(x2, x3, x4, x6) = A2 sin x3(x4 + x6)
2 + A3x

2
4 sin x3 cos x3

A4 − A3 cos2 x3

+
K

(
x3 − x2

NT

) (
A2
A3

(
NT −1
NT

)
+ cos x3

)

A4 − A3 cos2 x3
, (4.3d)

f5(x2, x3, x4, x6) = −f4(x2, x3, x4, x6)

+ K

NT

(
x3 − x2

NT

)(
1

JR1
− 2g41(x3)

)
, (4.3e)

f6(x2, x3, x4, x6) = −f4(x2, x3, x4, x6)

−
K

(
x3 − x2

NT

) (
A5
A3

−
(
3NT +1

NT

)
cos x3

)

A4 − A3 cos2 x3

−A5x
2
4 sin x3 + A3 sin x3 cos x3(x4 + x6)

2

A4 − A3 cos2 x3
, (4.3f)

and the constants are

A2 = JRp + mpl22 (4.4a)

A3 = mpl1l2 (4.4b)

A4 = (m1 + mp)l1l2 (4.4c)

A5 = (m1 + mp)l21 . (4.4d)

Given a path in the work space, the path could be described in cartesian or polar
coordinates. So the desired path is {p1(t), p2(t)} or {r(t), θ(t)}. It is also possible to
be interested in controlling the arm while the endpoint lies on a particular surface.
Note that a variant of this last problem was used in [18] where the motion was
assumed vertical and a fault detection signal was being designed. Our interest here
is quite different and is just in tracking problems which we will see changes the
problem structure depending on the tracking desired.

Note that there are places where there are kinematic singularities. Suppose that
this system is modeled in Cartesian coordinates and a path is prescribed for the
endpoint mass. Note that l1 + l2 cos(x2) gives the distance of the mass from the
base joint in the direction of the first link. As long as during the motion we have
l2 cos(x2) < l2 we have a well defined DAE and there are controls x1, x2 that can
give exact tracking for consistent initial conditions and we can hope to find the
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needed control numerically. Suppose, however, that at some time the path requires
cos(x2) = 1. That is, the arm is fully extended. Then there is a rank drop in a
Jacobian and a corresponding drop in the dimension of the solution manifold. There
may be no problem with the path. It is that there are singularities in the equations
that must be solved. We will return to discussing this example later in the example
section.

If {p1(t), p2(t)} is the endpoint of the arm in Cartesian coordinates, then we have

p1(t) = l1 cos(x1) + l2 cos(x1 + x3) (4.5a)

p2(t) = l1 sin(x1) + l2 sin(x1 + x3). (4.5b)

In a global sense p does not uniquely determine x1, x3. If we reflect the arrangement
across the line from the first joint to the endpoint we see that there is a second
value of x1, x3 that give the same endpoint. Also x1, x3 can each be changed by any
multiple of 2π . However, it is easy to show that the Jacobian of the map in (4.5) is
nonsingular unless x3 = nπ where n is an integer. When x3 = 2nπ , the arm is fully
extended and the arm can move left or right or pull in but it cannot go out further. So
there is a drop in the degrees of freedom. For now we assume x3 	= 0 (x3 	= 2nπ)

The path completely determines the control, but we will see that the problem is
index five in one of the control variables and that it does not simply decompose into
a nicer problem without some nonlinear coordinate changes.

It is also important to note that this example is not trivially stable. That is,
small perturbations can produce larger tracking errors. To illustrate this we took
u1 = 0.1 sin(t), u2 = 0.1 sin(t), and looked at the difference in the simulation
with x0 = [0, 0, π/4, 0, 0, 0]T and x0 perturbed by x0p = [0.01, 0.01, (π/4 −
0.01), 0.02, 0.03,−0.01]T . Simulation was done on [0 15] with RelTol set to 10−8

and AbsTol set to 10−9 using Matlab’s ODE45. We took K = 0.1. The result
is shown in Fig. 11. We see that the motion can be quite complex and parameter
dependent.

4.1 Stabilizing Feedback

In what follows we will be finding open loop tracking controls but as noted above
the system is not stable so that the open loop controls may not perform as well as
hoped for. One option as noted earlier is to add a stabilzing feedback. For large scale
motions this can be difficult and require some care. But for smaller motions one can
often use linearizations. To illustrate we will take the robot arm and find its lineariza-
tion around x1 = x2 = x4 = x5 = x6 = u1 = u2 = 0, x3 = π/2. This is at rest with
the arm bent at 90◦ and the first link horizontal. The linearization takes the form

x ′ = Ax + Bu, (4.6)
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Fig. 11 Simulation of robot arm with u = 0 starting at x0 (left) and x0 + x0p (right)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 a42 a43 0 0 0
0 a52 a53 0 0 0
0 a62 a63 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

b41 b42

b51 b52

b61 b62

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.7)

Here

a42 = −A2K(NT − 1)

NT 2A3A4
, a43 = KA2(NT − 1)

A3NT A4
, (4.8)

a52 = −a42 − K

NT

(
1

JR1
− 2

A2

A3A4

)
, a53 = −a43 + K

NT JR1
, (4.9)

a62 = −a42 + KA5

NT A3A4

a63 = −a43 + KA5(3NT + 1)

A3A4NT
, (4.10)

b41 = A2

A3A4
, b42 = −b41,

b51 = −b41, b52 = b41 + 1

JR1
, (4.11)

b61 = −b41, b62 = b41. (4.12)
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There are a number of tracking problems that can be built off of this example. We
shall list four but several others are possible. We will solve some of these problems
in the remaining sections of this paper.

Tracking Problem I: The dynamics are the robotic arm. The desired path is an
arc of a small circle.

[
r1

r2

]
=

[
0.9 + 0.3 cos(βt)

0.9 + 0.3 sin(βt)

]
, (4.13)

where β is a parameter used to specify the speed of the target going around the
circle.

Tracking Problem II: This is the same as Tracking Problem I (TPI) except that
we add the hard physical constraint,

(p1 − 0.9)2 + (p2 − 0.9)2 − 0.09 = 0, (4.14)

where p1, p2 are given by (4.5). Now the dynamics are a DAE but there is still
one degree of freedom left for a control.

Tracking Problem III: This is similar to TPI except that we allow the target to
go through a kinematic singularity by changing the target being tracked to the
following. Let γ = 2 − 1.2

√
2 and the path be

[
r1

r2

]
=

[
1.2 + γ cos(βt)

1.2 + γ sin(βt)

]
. (4.15)

The target moves on the circle

(r1 − 1.2)2 + (r2 − 1.2)2 − γ 2 = 0, (4.16)

which is tangent to the circle of radius 2 at (
√
2,

√
2).

Tracking Problem IV: This the same as TPIII except that we add (4.16) as a
hard constraint so that we have DAE dynamics.

We now use our test problem to illustrate some of the ideas from the start of this
paper.

4.2 Tracking Problem I as Inversion

If we approach this as an inversion problem, then it is an index five DAE and
requires extensive index reduction which can be complicated to carry out. We shall
solve this problemwith an improved version of GENDA [34, 35]. GENDA takes the
derivative array and locally computes an index one system with the same solutions
at each time step. This is all done numerically and one does not actually compute
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Fig. 12 Controls for exact tracking for different values of K = 0.01, 0.05, 4.0. u1 on the left and
u2 on the right

the full reformulation. The original GENDA was a FORTRAN code. We use a C++
implementation that uses automatic differentiation at each time step both to compute
the derivative array and also to compute any needed Jacobians.

An additional benefit of GENDA is that it also identifies a minimal set of
equations in the derivative array that need to be differentiated in order to determine
the dynamics. The number of differentiations of a given equation will be referred to
as the differentiation index of a given equation. The choice of which equations are
chosen is not unique but the indices and number of equations is.

For the example here see that there are: 2 equations of differentiation index
1, 2 equations of differentiation index 2, 2 equations of differentiation index 3, 1
equation of differentiation index 4, and 1 equation of differentiation index 5.

GENDA has several integrators implemented for integrating the underlying
dynamics. For this simulation we used Gauss collocation of order six. Throughout
this paper we take parameter values of t0 = 0, tf = 15; β = 0.2, NT = 2,
JR1 = 1, JRp = 1, l1 = 1, l2 = 1, m1 = 1, m2 = 10, and mp = 10. Since the
initial condition must be consistent it is found by GENDA using a Guass-Newton
method and the derivative array. For this example, the path uniquely determines the
control and dynamics. We consider the three values ofK = 0.01, 0.05, and 4.0. The
software was able to solve the inverse problem for all values of K to high accuracy.
The results are in Figs. 12 and 13. The controls u1 and u2 appear identical in Fig. 12,
however, looking at the data graphed, one sees that the peaks differ by 1–2% and
there are small differences in the curves.

4.3 Tracking Problem I as Stabilized Reduction

In this subsection we take the tracking problem and view it as high index DAE
which we reduce to an index one problem using a stabilized reduction. This has
the advantage that we can start with an initial value that is not on the track. Here
we carried it out as described in [13]. Since adding the path gives a DAE which
is completely algebraic, this corresponds to looking at the Gauss-Newton flow of
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Fig. 13 x3 angle of torsional spring for all three values of K = 0.01, 0.05, 4.0 with exact tracking

Fig. 14 Tracking for K = 0.01 using initial conditions (b) and (d) using stabilized reduction

F̂2(t, x) = 0 which is given by F̂2,t (t, x) + F̂2,x(t, x)ẋ = 0 where in our case
F̂2,x(t, x) is invertible. Hence, the ODE

ẋ = −αF̂2,x(t, x)−1F̂2,t (t, x)

is integrated with some appropriate stabilizing term α to control the attraction of the
DAE solutions. In the computations reported here we used α = I . We considered
several different initial conditions.

(a) [0, 0, π/4, 0, 0, 0, 0, 0]T
(b) [−0.08, 20.0, 1.5, 0.06, 7.0,−0.06, 4.0, 4.0]T
(c) [−0.07, 25.0, 1.4, 0, 0, 0, 0, 0, 0]T
(d) [−0.07, 0, 1.4, 0, 0, 0, 0, 0, 0, 0, 0]T

(4.17)

and K = 0.01, 0.05, 4 on [0 15]. It should be noted that we did not get a satisfactory
answer with (a). It should also be noted that 25−8π is −0.1327 so that although (c)
and (d) correspond to similar initial endpoints of the arm, they have different initial
torque on the joint. Selected results are shown in Figs. 14 and 15. We see that for
initial condition (b) we start inside the trajectory and with (d) we start outside.
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Fig. 15 For K = 0.01, computed control u1 for (b) (left) and tracking error for (d) (right) using
stabilized reduction

Fig. 16 Computed ẋ1 for (b) (left) and (d) (right) for K = 0.01 using stabilized reduction

Fig. 17 Computed ẋ1 for (b) (left) and (d) (right) for K = 0.01 using stabilized reduction

The controls were similar for all initial conditions and for both controls except
that they were a bit smaller for initial condition (b). The computed values of
x1, x2, x3 were similar for all the initial conditions, but there were noticeable
differences in the velocities.

When K = 4 the spring is much more elastic. This introduces a delay in the
action of u2 and makes it more difficult to control the arm. Several changes became
apparent. Tracking was still like that shown in Fig. 14 and the tracking error was
still like the right side of Fig. 15. But there were some major changes. First, as to be
expected x2 and x3 were different. This is not surprising since the initial conditions
on x2 were not the same. But the difference is more dramatic then might be expected
(Figs. 16 and 17). Note that in Fig. 18 there appears to be some difficulty in resolving
x4 numerically (Fig. 19).
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Fig. 18 Computed x2 for (c) (left) and (d) (right) for K = 4 using stabilized reduction

Fig. 19 Computed x4 for c (left) and d (right) for K = 4 using stabilized reduction

Fig. 20 Computed u2 for (c) (left) and (d) (right) for K = 4 using stabilized reduction

The situation with the controls was even more difficult. Even though the tracking
appeared excellent there was difficulty in determining u2 for some initial conditions
as shown on the left side of Fig. 20.

4.4 Tracking Using Optimal Control

We now turn to solving the problem with optimal control.
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4.4.1 Tracking Problem I as Optimal Control

With an optimal control approach to TPI, in theory the situation is simpler since
we discard (4.5) as a constraint and get an ODE process. We take the optimization
problem as

J =
∑
i=1,2

hi(ri (T ) − pi(T ))2 +
∫ T

0
qi(ri − pi)

2 + diu
2
i dt (4.18)

We shall see that there are still computational challenges. We shall consider two
different approaches. One is using direct transcription software and the other
is working with the necessary conditions. Both have their challenges some of
which will be mentioned. We used two different direct transcription codes. One is
described in [15] and will be denoteDT2. The other is GPOPS II which is denoted as
DT1. Since it is more easily available we focused on using GPOPS II. DT2 was used
to validate the answers computed using necessary conditions. It should be noted that
for some problems with DT1 we would get good solutions if we limited the number
of iterations but got long computer runs and bad solutions if we did not restrict
the iteration count to a small number. The inability to get requested tolerances in
higher index variables would drive the mesh too small. It should also be noted that
even when the formulation is an optimal control problem with an ODE that the
high index behavior of the tracking DAE comes into play because it means that the
endpoint of the robotic arm is not directly linked to the control and thus the control
problem can be sensitive.

We programmed this problem in GPOPS II and ran a number of cases using
simplistic initial guesses using the formulation above without any index reduction.
Depending on parameter values we either got good tracking or had a lot of difficulty.
One factor is K the elasticity. If K = 0 or close to it, then we could often get
a reasonable answer. Another factor is β. If β is small, then the target is moving
slowly. The larger β is, the more challenging the tracking problem is. Recall that
for exact tracking we know that several of the variables can involve up to fifth
derivatives of sin βt . Thus the larger β is, the greater amplitude we expect to see
in solutions and the more rapidly they will oscillate. We assume qi = q , hi = h and
di = d . In this section we will consider the two initial conditions (a) and (d) from
(4.17) and values of K = 0.01, 4. Many other computations were done that are not
reported here. In some cases there were failures in getting feasible solutions.

For example, with β = 0.2, K = 0.01, q = h = 100, d = 1, starting at (a)
which is at rest with T = 15, we observed the results in Fig. 21. In an optimal
control solution the choice of necessary conditions plays a key role as we will see
(Fig. 22).

Note that if we increase the elasticity by taking K = 4 we observe very different
tracking results as shown in Fig. 23.

Increasing β with K small made the tracking difficult and at β = 0.6 we could
not get reasonable tracking.
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Fig. 21 State trajectory and target trajectories with K = 0.01, β = 0.2, from (a) (left) and (d)
(right) using DT1
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Fig. 22 Tracking controls with K = 0.01 and β = 0.2 from (a) u1 (left) and u2 (right) using DT1

4.4.2 Using Necessary Conditions

Direct transcription approaches have the advantage that they can attempt to solve
very complex problems including those for which it is hard to form the necessary
conditions. They have the disadvantage that sometimes it can be very challenging to
get an initial guess that will lead to convergence to the correct solution.

As an alternative to using a direct transcription code for this version of the
tracking problem we can write down the necessary conditions which are a boundary
value problem (BVP). The problems then are twofold. For one, this is a nonlinear
BVP and hence getting a good initial guess can still be hard. Secondly the necessary
conditions are essentially saying the first derivative of the cost is zero in a function
space sense. Thus when solving the BVP one could be finding a local maximum, a
local minimum, or even a saddle point. For simple problems this is usually not an
issue but for complex nonlinear problems it is an important issue.
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Fig. 23 Tracking with K = 4, β = 0.2, from initial conditions (a) on the left and (d) on the right
using DT1

For a problem of the form

ẋ = F(t, x, u) (4.19a)

J =
∫ T

0
K(t, x, u)dt + M(x(T )) (4.19b)

x(0) = x0, (4.19c)

the necessary conditions (3.11) simplify to

ẋ = F(t, x, u) (4.20a)

−λ̇ = FT
x λ + KT

x (4.20b)

0 = FT
u λ + KT

u (4.20c)

x(0) = x0 (4.20d)

0 = λ(T ) − Mx(x(T ))T . (4.20e)

To find the solution of the BVP, it was first solved on a short interval and then
iteratively solved on longer intervals. That is, we did homotopy in T . Note that
starting with T = 15, K = 4, and doing homotopy on K we could get to K = 0.01
but starting at K = 0.01 and T = 0.25 we could not get to T = 15 with homotopy
on T .

It should be pointed out that solving nonlinear control problems can be delicate.
For example, we saw cases where GPOPS II produced a good answer when we
limited the number of iterations but if we allowed for more iterations that results
became overwhelmed and very noisy.

Comparing Fig. 23 with Fig. 24 and Fig. 21 with Fig. 27, we see that sometimes
the solutions appeared somewhat different. It is informative to look at the optimal
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Fig. 24 Tracking on [0 15] with K = 4 and initial condition (a) (left) and (d) (right) using
necessary conditions

Table 1 Optimal cost for several of the examples

K Initial cond DT1 DT2 Nec. conditions

4 (a) 5.3658434e+01

4 (d) 2.0759187e+01 2.6993240e+01 2.6993192e+01

0.01 (a) 1.0874264e+02

0.01 (d) 9.5560137e+00 2.6976860e+01 2.6976846e+01

Fig. 25 Optimal control for tracking on [0 15]withK = 4 and initial condition (a) using necessary
conditions

costs for some of these scenarios in Table 1. Looking at the table we see that DT2
and the necessary conditions obtained similar costs on the examples given which is
to be expected since they worked off of similar reduced index formulations. DT1
got a smaller cost than DT2 when both solved the problem. This may be due to the
very different type of initialization of the two methods and the existence of local
minimums (Figs. 25, 26, 27, 28, 29).

5 Concluding Comments

While we were often able to find the tracking control in the previous section, there
is a practical issue. The control is open loop and as noted the physical system is
not long term stable so that actually applying the control might not give the desired
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Fig. 26 Optimal control for tracking on [0 15] with K = 4 and initial condition (d) using
necessary conditions

Fig. 27 Tracking on [0 15] with K = 0.01 and initial condition (a) (left) and (d) (right) using
necessary conditions

Fig. 28 Optimal control for tracking on [0 15] with K = 0.01 and initial condition (a) using
necessary conditions

behavior. One way to overcome this problem is by using moving horizon control.
Moving horizon control is used explicitly or implicitly in many systems including
some biological ones.

Suppose that we have a physical system. We have the horizon length L and
the control update frequency δ < L. To begin we compute the optimal control
over the horizon [0 L] and apply it open loop on [0 δ]. At time t = δ we see
where our physical system actually is, x(δ) and compute a new optimal control
on [δ L + δ] starting at the actual x(δ) and apply it open loop on [δ 2δ]. This
process is repeated over and over.While the control on each subinterval is open loop,
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Fig. 29 Optimal control for tracking on [0 15] with K = 0.01 and initial condition (d) using
necessary conditions

each of the optimization problems is computed from the actual initial state at the
beginning of that interval so there is a feedback effect. This is particularly popular
in chemical engineering and some areas of robotics including motion planning for
robots operating on other planets.

Tracking is achieved by a feedback controller which might be static or dynamic.
A noted earlier a central issue of the feedback is whether it depends on the output y
only, or on the output and higher derivatives of the output, or on the full state x. This
is an important issue but outside the focus of this paper. Another topic we have not
addressed are the structural system properties which make tracking possible. This
includes, for example, asymptotically stable zero dynamics, relative degree, and sign
of the high-frequency gain. One approach is tracking with prescribed behavior, or
“funnel control”. There the behavior of the output evolves within a specified funnel.
The approach is very robust but a number of structural system properties have to be
satisfied. The interested reader is referred to [5, 6].

This paper has first reviewed some of the approaches for tracking problems when
either the dynamics are a DAE or the tracking problem is formulated as a DAE.
We then introduced a problem from robotics and applied some of these approaches
to this tracking problem. The test problem presented, which is typical of many
problems in robotics, has a number of formulations and can provide a challenging
problem for both software and analysis. It is seen that which approaches are best
depends on the specifics of the problem formulation chosen and often specialized
DAE software may be needed.
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DAE Aspects in Vehicle Dynamics
and Mobile Robotics

Michael Burger and Matthias Gerdts

Abstract The paper presents and discusses prototype applications occurring in path
planning tasks for mobile robots and vehicle dynamics which involve differential-
algebraic equations (DAEs). The focus is on modeling aspects and issues arising
from the DAE formulation such as hidden constraints, determination of algebraic
states, and consistency. The first part of the paper provides a general summary
on modeling issues with DAEs while the second part discusses specific prototype
applications in depth and presents numerical examples for selected examples arising
in control tasks in robotics and vehicle dynamics.

Keywords Differential-algebraic equations · DAE models

Subject Classifications: 34A09, 34H05, 49N90, 93A30

1 Introduction

Differential-algebraic equations (DAEs) are frequently used to model the dynamic
behavior of mechanical multibody systems, electric circuits, and systems in pro-
cess engineering, see [17]. A common feature of these models is that they can
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be automatically generated by software packages like SIMPACK, ADAMS, or
MODELICA. This kind of automatism is convenient from a user’s point of view,
but it imposes high demands on numerical simulation or optimization methods. In
this paper we will focus on modeling aspects rather than on theoretical properties
or numerical algorithms. The latter topics are discussed in detail in recent survey
papers, see, e.g., [14] for the treatment of initial value problems with DAEs,
[2] for a discussion of mechanical multibody systems, [29] for optimal control
techniques, and [50] for control theoretic results. In addition, theoretical and
numerical properties are investigated in the monographs [11, 27, 30, 31, 33, 35].

All DAE models in this paper fit into the problem class semi-explicit DAEs of
type

x ′(t) = f (t, x(t), y(t), u(t)), (1.1)

0 = g(t, x(t), y(t), u(t)), (1.2)

where x(·) is referred to as differential state, y(·) is called algebraic state, and u(·)
is an external control input. Correspondingly, (1.1) is called differential equation
and (1.2) algebraic equation. An important subclass are mechanical multibody
systems in descriptor form defined by

q ′(t) = v(t),

M(t, q(t))v′(t) = f (t, q(t), v(t), u(t)) − g′
q(t, q(t))�λ(t), (1.3)

0 = g(t, q(t)),

where q(·) denotes the vector of generalized positions, v(·) the vector of generalized
velocities, λ(·) are Lagrange multipliers, and u(·) is a control input. The mass matrix
M is supposed to be symmetric and positive definite with a bounded inverse M−1

and thus, the second equation in (1.3) can be multiplied by M(t, q(t))−1, in which
case a semi-explicit DAE of type (1.1) and (1.2) with differential state x = (q, v)�,
algebraic state y = λ, and control u occurs. The well-known Grübler condition,
given by

rank g′
q (t, q(t)) = m, (1.4)

for all t guarantees unique solvability and excludes redundant constraints, where m

is the dimension of g.
These classes of DAEs are well investigated with regard to theory and numerical

treatment and common index definitions such as the differentiation index [26], the
structural index [19], the strangeness index [33], the tractability index [35], and
the perturbation index [31] coincide under some regularity assumptions. Despite
its structural simplicity, semi-explicit DAEs arise in a high number of practically
important applications, especially in robotics and vehicle dynamics, and we aim to
discuss some of those applications in the following sections.
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An outline of the paper is as follows. Section 2 is devoted to models in vehicle
dynamics that naturally lead to a DAE formulation, such as connected (sub-)systems
or rail systems. The purpose of this section is to provide a broad overview on
known issues in DAE models. The presentation is kept brief in order to outline
typical phenomena. Section 3 addresses control problems that lead to a DAE only
by imposing additional path constraints. In Sect. 4 we discuss piecewise defined
DAEs and their occurrence in docking maneuvers. These sections discuss in depth
models in vehicle dynamics and mobile robotics and the occurrence of DAEs. In
addition, numerical experiments are presented. Finally, Sect. 5 concludes the paper.

1.1 Notation

We use the following notation. The derivative w.r.t. time of a function z(t) is denoted
by z′(t). The partial derivative of a function f with respect to a variable x will be
denoted by f ′

x = ∂f/∂x. As an abbreviation of a function of type f (t, x(t)) we use
the notation f [t]. For notional convenience we will often suppress the argument t

in x(t) and just write x instead (likewise for other functions depending on t).

2 Overview on Classical DAE Models

In the modeling process of mechanical systems and, in particular, in the building of
full vehicle models or vehicular subsystems, like axles or suspensions, constraints
and, thus, differential-algebraic equations, naturally arise. This section aims at
providing a brief overview as well as an illustration of modeling steps leading to
DAEs in the context of vehicle engineering. For a detailed discussion, we refer to
the textbooks [44, 46, 49, 51] concerning general modeling aspects of multibody
dynamics and we refer to [3, 20, 41, 42] for discussions and studies with a strong
focus on vehicle system dynamics.

2.1 Modeling Kinematic Joints

First of all, the modeling or, to be more precise, the mathematical description of
kinematic joints in terms of absolute coordinates is a natural source of algebraic con-
straint equations. To illustrate this, assume that there are two rigid bodies, body i and
body j , which have absolute coordinates qi, qj ∈ Rnq , respectively (with nq = 6 for
3D rigid bodies in 3D space) and which are coupled by a kinematic joint; the situa-
tion is sketched in Fig. 1. This coupling can be mathematically described by a non-
linear function g : Rnq ×Rnq −→ RnJ and a set of equations of the following form

0 = gij (qi, qj ). (2.1)
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Fig. 1 Two rigid bodies coupled with a kinematic joint Gij

The function g characterizes the joint type and the number 0 < nJ ≤ nq denotes the
number of restricted (or locked) degrees of freedom of the relative motion of the two
involved bodies. This formulation is also called implicit joint description, see [51].

A typical example of such a joint is a so called spherical joint, which
restricts relative translation of the two bodies and, accordingly, only allows
relative rotation. Consider two rigid bodies with their absolute coordinates
qi/j = (xi/j , yi/j , zi/j , αi/j , βi/j , γi/j ) ∈ R6, where ri/j := (xi/j , yi/j , zi/j ) denote
the Cartesian coordinates of a reference point on each body (typically the center-
of-mass) and (αi/j , βi/j , γi/j ) denote, e.g., Cardan angles, which in turn specify
the rotation-matrix of a body-fixed reference frame w.r.t. to a global frame at rest,
see Fig. 1. Then, the positions of the two coupling points on each body can be
represented as follows:

Pi = ri + R(αi , βi, γi)ρ
i, Pj = rj + R(αj , βj , γj )ρ

j , (2.2)

with a rotation matrix R and ρi and ρj being the positions of the coupling points
expressed in the body-fixed reference-frame with origin ri and rj , respectively. In
this setup, a spherical joint is simply described by the following set of equations

0 = gij,spherical (qi, qj ) := Pi − Pj

= ri + R(αi, βi, γi)ρ
i −

(
rj + R(αj , βj , γj )ρ

j
)

.
(2.3)

Consequently, defining a kinematic joint between two bodies in terms of absolute
coordinates means adding an algebraic constraint equation (2.1). On the dynamic
level, a kinematic constraint described in that way causes constraint forces on the
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involved bodies i and j , respectively, which have the form

fi/j := −
(

∂gij

∂qi/j

)�
λij , (2.4)

with unknown Lagrange multipliers λij for each joint. These multipliers correspond
to unknown algebraic variables in the DAE context, compare Eq. (1.3). Hence,
for a multibody system consisting of N rigid bodies described in their absolute
coordinates, collecting the dynamic equations for each body as well as all the joint
constraint equations leads to the overall equations of motions, which are of the form
as displayed in Eq. (1.3). In [20, 48], such an implicit joint modeling is studied for
a small-size planar truck model.

An alternative way consists in choosing so called joint coordinates instead of
absolute coordinates that describe explicitly the degrees of freedom in each joint,
see [51]. Formally, if there is a kinematic joint between bodies i and j as before,
one can choose a set of joint coordinates ηij as well as an explicit joint function φij

such that

qj = φij (qi, ηij ), (2.5)

describing in that sense the joint and the allowed motion explicitly and, thus,
replacing the implicit description (2.1). For tree-structured multibody systems, cf.
Fig. 2, this strategy completely avoids algebraic constraint equations resulting in
an ODE as the system’s overall equations of motion. If, however, the considered
system has kinematically closed loops, cf. Fig. 2, this is no longer possible. For

Fig. 2 Multibody system in tree structure (left) and a system with closed loop (right)
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Fig. 3 Multibody system model of an axle with double wishbone suspensions, screenshot from
the software tool ADAMS

such systems, the typical modeling procedure is divided into two steps: First, loop-
closing joints (which are generally not unique, but must be chosen) are ignored
leading to a tree-structured intermediate system, for which joint coordinates can be
used avoiding constraints. Then, in a second step, the loop-closing joints are added
and described implicitly as before in the form of Eq. (2.1).

A typical example in vehicle engineering, in which kinematically closed loops
arise, is the modeling of suspension systems. Examplarily, in Fig. 3, a double
wishbone suspension system with such a loop is shown as screenshot from MBS
software tool ADAMS.

To summarize, if only absolute coordinates are used to describe rigid body
positions, each kinematic joint leads to algebraic constraint equations and algebraic
variables. In case of properly chosen joint coordinates, one can describe kinematic
joints explicitly. For systems in tree-structure, compare the robotic arm in Sect. 3.1,
constraint equations can be avoided and the system’s equations of motion are in
ODE form. If the system, however, has kinematically closed loops, cf. Fig. 2, also
the joint coordinates are no longer independent and the loop closing joints are
modeled implicitly using constraint equations again leading to a DAE system as
equations of motion. Comparing both approaches, the description of kinematic
joints (implicitly) by an constraint equation is rather straightforward. As in the
case of the above mentioned spherical joint, the implicit joint functions gij can
be stated more or less simply for a large class of different joint types, whereas
the choice of joint coordinates and the derivation of the corresponding explicit
joint function φij , see Eq. (2.5), is often much more involved. In terms of the
resulting equations of motion, for a tree-structured system, the implicit approach
using absolute coordinates leads to a large DAE system of maximum dimension,
which is, however, highly structured and sparse. In contrast, using joint coordinates
gives rise to a complicated and nonlinear ODE system of minimum dimension with
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Fig. 4 Car-/tractor-trailer combinations

dense system matrices. An example for the use of a kinematic joint is the vehicle-
trailer coupling in Example 2.1.

Example 2.1 (Vehicle-Trailer Coupling) In the field of modeling vehicular systems,
there is a further strongly related scenario, in which the modeling of a kinematic
joint coupling by an algebraic constraint equation is favorable: namely, the coupling
of a vehicle and a trailer. Again, a main benefit of the coupling via constraints is
that it can be established in a simple and straightforward manner. Both systems,
the car, truck or tractor on the one hand-side and the trailer on the other hand-side
can be modeled independently from each other and, if needed, combined afterwards
by imposing a constraint equation describing the coupling joint, e.g., a revolute
joint, i.e., a single-degree of freedom joint only allowing relative rotation around
one common rotation axis, compare [23, 43].

In the context of vehicle-trailer systems, one can consider both planar models of
medium complexity, cf. Fig. 4, for instance, in order to derive optimized controls
for parking or other steering maneuvers with vehicle-trailer combinations using
optimal control approaches. Coupling using joints and constraint equations can be
used as well in connection with more complex 3D MBS vehicle models. The latter is
offered, e.g., within the commercial software tool TESIS DYNAware, see [21–23].
An extension of the vehicle-trailer coupling towards docking maneuvers is discussed
in Sect. 4.

2.2 Contact Modeling

In the context of vehicle dynamics, the DAE framework provides a simple and
efficient approach to model contacts and, in particular, the most prominent scenario
here is the wheel-ground contact. Specific applications in this direction are discussed
in Sects. 3.3 and 3.4.

Concerning road vehicles, this wheel-ground contact is typically realized within
the tire model, in which dynamic contact forces (using point-contacts or distributed
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Fig. 5 Wheel set model for
rail vehicle dynamics, see
[47]

contact patch approaches) are calculated via force elements. In the field of rail
vehicle, however, the contact between wheel and rail is typically not considered
dynamically, but as contact of two rigid bodies with smooth contact surfaces, see
Fig. 5. Here, the DAE modeling approach has been used very successfully.

To illustrate the approach, consider two bodies i and j with smooth surfaces
being in permanent contact. As this notion already indicates, the contact can be
regarded as a joint and, thus, permanent contact can be modeled as constraint
equation in terms of the following contact condition, see [3],

0 = gij (q) = (n(i))�
(
P (i)(q, s(i)(q)) − P (j)(q, s(j)(q))

)
. (2.6)

Herein, P (i/j) denote the position of the contact points, which depend on the body
coordinates q as well as on (also unknown) coordinates s(i/j) that parameterize the
surfaces of bodies i and j . Last not least, n(i) denotes the normal vector on the
surface of body i at the point P (i). The surface coordinates have to satisfy a set of
geometrical conditions, which can be denoted as

0 = hij (q, s(i), s(j)). (2.7)

These equations are auxiliary equations that are needed to find the contact point.
Classically, first, Eq. (2.7) has to be solved internally to obtain s(i/j), which then
allows to evaluate and to solve Eq. (2.6). In contrast, making use of a DAE modeling
approach, Eqs. (2.6) and (2.7) can just be added to the remaining system equations
and combined with other algebraic equations, e.g., due to other kinematic joints. The
overall system equations can be solved as a monolithic system by one solver. For a
more detailed discussion, we refer to [3, 44], in [47], the wheelset model from Fig. 5
is studied and all equations including the contact conditions are explicitly stated.

A last important issue concerning contact modeling worth mentioning here is
the fact that in case of modeled contact dynamics, often also friction has to be
taken into account, compare [3]. Typically, friction forces, or, to be more precise,
the friction force law, depend on contact forces, and, thus on constraint forces. In
the context of the formulation in Eq. (1.3) and provided that the contact is modeled
within the algebraic constraint equations, there are friction forces that depend on
−g′

q(t, q)�λ, and, thus, the dependencies of the right-hand side force vector f is
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f = f (t, q, v, u, λ). With the modified force vector Eq. (1.3) becomes

q ′ = v,

M(t, q)v′ = f (t, q, v, u, λ) − g′
q(t, q)�λ,

0 = g(t, q),

where we suppressed the argument t in q , v, λ for notational convenience.
Differentiating the algebraic constraint twice w.r.t. time yields the constraint on
acceleration level

0 = g′′
t t (t, q) + g′′

tq (t, q)v + g′′
qt (t, q)v + g′′

qq(t, q)(v, v)

+g′
q(t, q)M(t, q)−1(f (t, q, v, u, λ) − g′

q (t, q)�λ). (2.8)

Now, if the modified Grübler condition

rank

(
g′

q (t, q)M(t, q)−1
(

∂f

∂λ
− (g′

q)�
))

= m

holds in a solution, then the Eq. (2.8) can be solved for λ by the implicit function
theorem and the differentiation index is three.

Remark 2.1 We like to point out that the Grübler condition will be violated, if
redundant algebraic constraints are introduced. This happens, for instance, in the
presence of redundant joint restrictions. As an example consider a door with two
hinges, which are modeled as revolute joints. Herein, joint forces can be distributed
in different ways on the two joints. We refer the reader to [52–54] for a more detailed
analysis on the treatment of redundant constraints.

3 Path Constraints and Dynamic Inversion Control

Often, the dynamics of a system do not directly lead to a DAE. Instead the DAE
arises from the task to follow a prescribed trajectory, compare, e.g., [10], [11,
Chapter 6.3, pp. 157] for an application from flight trajectory control. To this end,
consider the control system

x ′(t) = f (t, x(t), u(t)) (3.1)

with x(t) ∈ Rnx , u(t) ∈ Rnu and prescribed path constraints

0 = g(t, x(t), u(t)), g : R × Rnx × Rnu −→ Rny , (3.2)

where the control vector u may or may not appear explicitly in the constraints.
The combined system leads to a semi-explicit DAE where some components of the



46 M. Burger and M. Gerdts

control vector u serve as algebraic variables. Typically the number of constraints
has to be less than or equal to the number of controls, i.e. ny ≤ nu, since otherwise
– except in degenerate cases – not enough degrees of freedom remain to satisfy the
constraints by an appropriate choice of the controls. Suppose the DAE possesses a
solution. Let u be partitioned into two components u = (y,w)� with y ∈ Rny and
w ∈ Rnu−ny . We intend to interpret the component y as an algebraic state, whereas
w can be seen as the “true” degrees of freedom in the control vector u. Using this
partition, the algebraic constraint reads

0 = g(t, x(t), y(t), w(t)).

Now, if the Jacobian g′
y is non-singular and essentially bounded along the solution,

then the DAE has index one in the sense of the differentiation index. By the implicit
function theorem, the component y is implicitly determined by (t, x(t), w(t)).
Likewise if g does not depend on u = (y,w)� explicitly and if g′

x(t, x)f ′
y(t, x, u)

is non-singular and essentially bounded along the solution, then the DAE has index
two (in the sense of the differentiation index) and the derivative of the constraint,
i.e. 0 = gt (t, x(t)) + gx(t, x(t))f (t, x(t), u(t)), determines the component y of u

implicitly. This type of reasoning can be applied more generally if the DAE exhibits
a Hessenberg structure with respect to the component y of u, compare [14]. Note
that most of the DAEs in this paper have Hessenberg structure and the determination
of a suitable y is straightforward by choosing y such that the Jacobian of the 
-th
derivative of the algebraic constraints has full rank, where 
 is minimal. For general
unstructured DAEs it is much more involved to identify suitable components y of u

in a systematic way, compare the concept of the strangeness index in [33]. A way
to achieve this is excellently described in the upcoming paper [16]. It uses the so-
called derivative array, which contains the DAE itself and its time derivatives up to
a certain order. Then a completion of the DAE is determined, compare [15], and
solved numerically using GENDA, see [34] and [32].

Please note, that high index DAEs may actually occur, compare the index five
problem in [8, Example 2].

The outlined procedure is sometimes called dynamic inversion control, see [4],
or servo constraints, see [1, 9, 40]. A detailed analysis for mechanical multibody
systems can be found in [5–9]. Optimal control techniques were used in [1, 4] and
in [12, Chapter 4, pp. 67–82], [13] to find road input data for measured quantities
like chassis accelerations. A similar dynamic inversion approach was used in flight
trajectory optimization scenarios, see [18]. In this paper dynamic inversion (also
for kinematic models) means the process of identifying components of u in the
combined system (3.1) and (3.2) and identifying these components with algebraic
states y in (1.1) and (1.2) such that the DAE is well-defined in the sense of
the differentiation index. We illustrate the approach for specific applications from
mobile robotics and vehicle control. We like to demonstrate with these specific
examples that, depending on the respective task, a DAE with index three, index
two, or a DAE of mixed index arises.
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Fig. 6 Configuration of a KUKA youBot with an omnidirectional platform and a five link robotic
arm

3.1 A Mobile Robot

We apply the dynamic inversion control approach in order to control a robot on a
prescribed path. To this end we consider a simplified model of the KUKA youBot
in Fig. 6.

The youBot consists of a platform with omnidirectional wheels, i.e. the platform
is able to move in any direction and to rotate simultaneously. A 5-link robotic arm
with 5 degrees of freedom is mounted on the platform (one base and four links). We
use the following simplified model which decouples the motion of the platform and
the motion of the robotic arm. This is justified since the platform is much heavier
than the arm and the joints of the links are such that electric motors inside keep the
requested angle and compensate gravity effects. The motion of the platform in the
(x, y)-plane is described by the ODEs

x ′(t) = vx(t), (3.3)

y ′(t) = vy(t), (3.4)

ψ ′(t) = ω(t), (3.5)

v′
x(t) = ux(t) cos ψ(t) − uy(t) sin ψ(t), (3.6)

v′
y(t) = ux(t) sin ψ(t) + uy(t) cos ψ(t), (3.7)

where (x, y) denotes the center of gravity of the platform, ψ it’s yaw angle, and
(vx, vy) the velocity vector. The platform can be controlled by the yaw rate ω and
the acceleration vector (ux, uy), which is given in the platform’s local coordinate
system.

The joint angles of the N = 5 links of the robotic arm are denoted by qi and its
velocities by vi , i = 1, . . . , N . Technically it is possible to control the velocities
directly within the bounds vmin = −90 degrees/s and vmax = +90 degrees/s. This
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leads to the simple kinematic equations

q ′(t) = v(t) (3.8)

with q = (q1, . . . , qN)� and v = (v1, . . . , vN )�. Owing to physical constraints, the
joint angle vector q is bounded by

qmin ≤ q ≤ qmax (3.9)

with qmin = (−169,−65,−151,−102,−167)� and qmax = (169, 90, 146, 102,

167)� (the values are in degree). The lengths of the arms 1–4, see Fig. 6 are

1 = 0.155 [m], 
2 = 0.135 [m], 
3 = 0.081 [m], 
4 = 0.09 [m]. The offset
vector from the center of gravity of the platform to the mount point of the base
in the platform’s coordinate system is denoted by a = (0.153, 0, 0)� [m] and the
vector from the mounting point to the first joint in base’s coordinate system is
b = (0.035, 0, 0.147)� [m].

Let the rotation matrices be defined as

Rz(α) =
⎛
⎝

cos α − sin α 0
sin α cos α 0

0 0 1

⎞
⎠ , Ry(β) =

⎛
⎝

cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠ ,

Rx(γ ) =
⎛
⎝

1 0 0
0 cos γ − sin γ

0 sin γ cos γ

⎞
⎠ , Rzy(α, β) = Rz(α)Ry(β),

Rzyy(α, β, γ ) = Rz(α)Ry(β + γ ),

Rzyyy(α, β, γ, δ) = Rz(α)Ry(β + γ + δ),

Rzyyyx(α, β, γ, δ, η) = Rz(α)Ry(β + γ + δ)Rx(η),

where the subscripts indicate the rotation axes for consecutive rotations. Let z =
(x, y,ψ, vx, vy, q1, . . . , q5)

�. The center of gravity of the platform is given by
r0(z) = (x, y, h)�, where h = 0.084 [m] is the height of the platform. Moreover,
the mount points ri , i = 1, . . . , 5, of the links and the gripper position are given by

r1(z) = r0(z) + Rz(ψ)(a + Rz(q1)b),

r2(z) = r1(z) + Rzy(ψ + q1, q2 − π

2
)

⎛
⎝


1

0
0

⎞
⎠ ,

r3(z) = r2(z) + Rzyy(ψ + q1, q2 − π

2
, q3)

⎛
⎝


2

0
0

⎞
⎠ ,
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Table 1 Parameters of the
youBot model

Parameter Value Unit

vmin −90 [degree/s]

vmax 90 [degree/s]

qmin (−169,−65,−151,−102,−167)� [degree]

qmax (169, 90, 146, 102, 167)� [degree]


1 0.155 [m]


2 0.135 [m]


3 0.081 [m]


4 0.09 [m]

a (0.153, 0, 0)� [m]

b (0.035, 0, 0.147)� [m]

h 0.084 [m]

r4(z) = r3(z) + Rzyyy(ψ + q1, q2 − π

2
, q3, q4)

⎛
⎝


3

0
0

⎞
⎠ ,

r5(z) = r4(z) + Rzyyyx(ψ + q1, q2 − π

2
, q3, q4, q5)

⎛
⎝


4

0
0

⎞
⎠ .

Summarizing, the motion of the robot is described by the ODE (3.3)–(3.7)
and (3.8), where z = (x, y,ψ, vx, vy , q)� denotes the 10-dimensional state vector
and u = (ux, uy, ω, v)� is the 8-dimensional control vector.

A DAE arises, if parts of the motion of the robot are fixed to prescribed paths. We
investigate three cases. For notational convenience we use the generic names z, y, w,
g, and γ for the differential state vector, the algebraic state vector, the (free) control
vector, the algebraic constraints, and a curve, respectively. Table 1 summarizes all
parameters of the model for the reader’s convenience.

Remark 3.1

(a) Note, that q = 0 corresponds to the upright configuration of the robotic arm.
(b) The angle q5 does not influence the above positions. The angle q5 becomes

relevant if the orientations of the bodies (and the gripper) have to be considered,
e.g., in collision avoidance scenarios or in situations where the gripper has to
be positioned in a particular way.

(c) A full mechanical multibody system describing the dynamics of the robot
more accurately can be derived using the Lagrangian equations of motion. This
leads to a highly nonlinear system with 8 degrees of freedom (9 if the gripper
is modeled as well). However, for many path planning tasks the presented
kinematic model (called simplified model) is sufficient.

(d) Please note that the choice of controls in u in the previous model is mainly a
modeling decision. Likewise we could have chosen to control the accelerations
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of the joint angles and the yaw angle. However, as we shall see later in
Sect. 3.1.2, our choice of controls will lead to a DAE with a mixed index. This
is what we intend to illustrate.

3.1.1 Prescribed Path for the Platform

The center of gravity (x, y) of the platform is restricted to follow a given curve

γ (t) =
(

xd(t)

yd(t)

)
, t ∈ [0, T ],

which is parameterized with respect to time t . This leads to the path constraint

0 = g(t, z(t)) :=
(

x(t) − xd(t)

y(t) − yd(t)

)
. (3.10)

If γ is twice continuously differentiable, then twofold differentiation with respect to
time and exploitation of (3.3) and (3.4) leads to the relations

0 = d2

dt2 g(t, z(t)) =: g(2)(t, z(t), u(t))

=
(

ux(t) cos ψ(t) − uy(t) sin ψ(t) − x ′′
d (t)

ux(t) sin ψ(t) + uy(t) cos ψ(t) − y ′′
d (t)

)
. (3.11)

The Jacobian ∂g(2)

∂u
reads

∂g(2)

∂u
=

(
cos ψ − sin ψ 0 0 0 0 0 0
sin ψ cos ψ 0 0 0 0 0 0

)
.

This matrix is of rank two since

det

(
cos ψ − sin ψ

sin ψ cos ψ

)
= cos2 ψ + sin2 ψ = 1.

Hence, it is natural to consider the controls ux and uy as algebraic state y =
(ux, uy)�. The combined system of (3.3)–(3.4), (3.8), and (3.10) is a Hessenberg-
DAE of index three with differential state z, algebraic state y, and control w =
(ω, v)�. The initial value z(0) = z0 = (x0, y0, ψ0, vx,0, vy,0, q0)

� has to be
consistent, that is, it has to satisfy the equations

0 = g(0, z0) =
(

x0 − xd(0)

y0 − yd(0)

)
, (3.12)
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and

0 = d

dt
g(t, z(t))

∣∣∣∣
t=0

=
(

vx,0 − x ′
d(0)

vy,0 − y ′
d(0)

)
. (3.13)

The algebraic state y is determined by (3.11), that is,

y(t) =
(

ux(t)

uy(t)

)
=

(
cos ψ(t) − sin ψ(t)

sin ψ(t) cos ψ(t)

)� (
x ′′
d (t)

y ′′
d (t)

)
. (3.14)

The remaining controls in w can be used to optimize the motion of the mobile robot
on the curve γ in view of a given performance criterion. Please note that in this
context it is not meaningful in general to impose constraints on y since y is already
determined by x ′′

d , y ′′
d , and ψ .

Example 3.1 Let the curve γ (t) = (xd(t), yd(t))� for t ∈ [0, T ] be given by

xd(t) = r sin t, yd(t) = r sin t cos t

with r = 2 and T = 2π . Then

x ′
d(t) = r cos t, y ′

d(t) = r(cos2 t − sin2 t)

and

x ′′
d (t) = −r sin t, y ′′

d (t) = −4r cos t sin t .

Let the initial state be given by z0 = (0, 0, 0, r, r, q0)
� with q0 = (0, 0, 0, 0, 0)�.

The controls ω ∈ [−π/2, π/2] and vi ∈ [−π/2, π/2], i = 1, . . . , 5, are chosen
such that the robotic arm stays in the upright position q1 = (−ψ(t1), 0, 0, 0, 0)�
until time t1 = π/2, picks up some object at time t2 = π from the left, moves
back into the upright position q3 = (−ψ(t3), 0, 0, 0, 0)� until time t3 = 3π/2, and
puts down the object at time T = 2π to the right. The angular positions at time
t2 and T are given by q2 = (1.5708 − ψ(t2), 1.5254, 0.661786, 0.95445, 0)� and
qT = (−1.5708 − ψ(T ), 1.5254, 0.661786, 0.95445, 0)�.

This can be achieved by solving the following optimal control problem:
Minimize

α0

3∑
i=1

‖q(ti) − qi‖2 + α1

∫ T

0
ω2(t)dt + α2

∫ T

0
‖v(t)‖2dt

subject to (3.3)–(3.7), (3.8), (3.9), ω ∈ [−π/2, π/2], vi ∈ [−π/2, π/2], i =
1, . . . , 5, initial state z0 = (0, 0, 0, r, r, q0)

� with q0 = (0, 0, 0, 0, 0)�, and

q(T ) = qT .
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Fig. 7 Snapshots of the motion of the mobile robot (Example 3.1): Tracking of a prescribed path
for the platform from t = 0 (top left) to t = 2π (bottom right) and simultaneous relocation of an
object by the robotic arm. Please note that the wheels are omnidirectional (although they appear as
standard wheels in the graphics)

Figure 7 shows the motion of the robot for α0 = 50, α1 = α2 = 10−2.
Note, that the weights are chosen such that a good compromise between reaching
the intermediate configurations qi , i = 1, 2, 3, and minimizing control effort
is obtained. The positive weights α1 and α2 have a regularizing effect in the
Hamiltonian of the system. A detailed discussion of optimal control problems is
beyond the scope of this paper and we refer the reader to [27, 29] for details.

Figure 8 shows selected states and controls. Please note that the controls are
discontinuous, i.e., the velocities for the joints jump. It is not possible to realize
this in a practical implementation, but we assume that an internal controller is able
to approximate this discontinuous behavior nearly instantaneously. The numerical
results have been obtained with the software OCPID-DAE1 [28]. OCPID-DAE1
is a software package for solving optimal control problems subject to DAEs. It
uses a direct shooting discretization and a sequential-quadratic programming (SQP)
method with Armijo linesearch to solve the discretized optimal control problem.
Derivatives required by the SQP method are computed by solving a sensitivity
DAE. The package offers various options regarding control approximations and
integrators. In addition, it has a simulation mode, which can be used to simulate
a DAE for a given control input. For the optimal control problem we used an
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Fig. 8 States q1, q2 (first row), states q3, q4 (second row), controls v1, v2 (third row), and controls
v3, v4 (fourth row) in Example 3.1
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equidistant discretization with 101 grid points, a feasibility tolerance of 10−10 and
an optimality tolerance of 10−7 for the KKT conditions.

3.1.2 Prescribed Path and Orientation for the Platform

We modify the problem in Sect. 3.1.1 by adding the algebraic constraint

0 = ψ(t) − arctan

(
y ′
d(t)

x ′
d(t)

)
(3.15)

to g in (3.10). This constraint forces the robot to keep its orientation tangential to
the curve γ . Differentiating (3.15) with respect to time yields

ω(t)

= vx(t)(ux(t) sin ψ(t)+uy(t) cos ψ(t))−vy(t)(ux(t) cos ψ(t)−uy(t) sin ψ(t))

vx(t)2 + vy(t)2 .

Introducing y from (3.14) yields

ω(t) = vx(t)y ′′
d (t) − vy(t)x ′′

d (t)

vx(t)2 + vy(t)2 = x ′
d(t)y ′′

d (t) − y ′
d(t)x ′′

d (t)

vx(t)2 + vy(t)2 , (3.16)

which is well-defined unless the total velocity v̄(t) =
√

vx(t)2 + vy(t)2 becomes
zero. Note that the relation ω(t) = v̄(t)κ(t) holds, where κ(t) denotes the curvature
of the curve γ .

We have thus shown that the combined system of (3.3), (3.4), (3.8), (3.10),
and (3.15) is a DAE with differential state z, algebraic state y = (ux, uy, ω)�,
and control v. It is not a Hessenberg-DAE, but a DAE with a mixed index where ux

and uy are index-3 algebraic states while ω is an index-2 algebraic state. The initial
value z(0) = z0 = (x0, y0, ψ0, vx,0, vy,0, q0)

� in addition to (3.12), (3.13) has to
satisfy the condition

0 = ψ0 − arctan

(
y ′
d(0)

x ′
d(0)

)
.

As before, the remaining controls in v can be used to optimize a performance
criterion. Likewise it is not meaningful in general to impose constraints on the
algebraic states in y since those a fully determined by (3.14) and (3.16).

Example 3.2 We consider again Example 3.1 with the additional algebraic con-
straint (3.15).

Figure 9 shows the motion of the robot for α0 = 50, α1 = α2 = 10−2. Figure 10
shows selected states and controls. Again, the velocities for the joints are discon-
tinuous and we tacitly assume that the internal controller is able to approximate
this discontinuity almost instantaneously. The numerical results have been obtained
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Fig. 9 Snapshots of the motion of the mobile robot (Example 3.2): Tracking of a prescribed
path with tangential orientation of the platform from t = 0 (top left) to t = 2π (bottom right)
and simultaneous relocation of an object by the robotic arm. Please note that the wheels are
omnidirectional (although they appear as standard wheels in the graphics)

with the software OCPID-DAE1 [28] with an equidistant discretization with 101
grid points, a feasibility tolerance of 10−10 and an optimality tolerance of 10−7

for the KKT conditions. Comparing the results in Figs. 10 and 8 we notice that
only the velocity v1 (and consequently the joint angle q1) of the first robot joint
was affected by introducing the additional algebraic constraint (3.15) for the yaw
angle. Of course, the yaw angles in Examples 3.1 and 3.2 differ as well owing to the
prescribed yaw angle in (3.15).

3.1.3 Prescribed Path for the End Affector

A situation more complicated arises if the end affector position r5 has to follow a
prescribed path. In order to simplify the analysis, we additionally restrict the motion
of the platform to a straight line at a constant velocity and postulate that the end
affector is oriented horizontally at all times, e.g. to perform a welding task on a
vertical wall. This leads to the algebraic constraints

0 = g(t, z(t)) :=
(

g1(t, z(t))

g2(t, z(t))

)
(3.17)
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Fig. 10 States q1, q2 (first row), states q3, q4 (second row), controls v1, v2 (third row), and controls
v3, v4 (fourth row) in Example 3.2
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with

g1(t, z(t)) :=
⎛
⎝

vx(t) − vd

vy(t)

ψ(t)

⎞
⎠ , g2(t, z(t)) :=

(
q2(t) + q3(t) + q4(t) − π/2

r5(z(t)) − γ (t)

)
,

where vd is the desired velocity in x-direction and the curve γ : [0, T ] → R3,
γ (t) := (xd(t), yd(t), zd(t))� is the desired path of the end affector position r5.
Differentiation of the algebraic constraints in g leads to the conditions

0 = d

dt
g1(t, z(t)) =

⎛
⎝

v′
x(t)

v′
y(t)

ψ ′(t)

⎞
⎠ =

⎛
⎝

ux(t) cos ψ(t) − uy(t) sin ψ(t)

ux(t) sin ψ(t) + uy(t) cos ψ(t)

ω(t)

⎞
⎠

and

0 = g
(1)
2 (t, z(t)) := d

dt
g2(t, z(t)) =

(
v2(t) + v3(t) + v4(t)

r ′
5(z(t))z

′(t) − γ ′(t)

)
.

Thus, the first set of constraints immediately yields

ux(t) = uy(t) = ω(t) = 0.

The explicit evaluation of the remaining equations and exploitation of the constraints
yields

r ′
5(z)z

′ − γ ′ =

⎛
⎜⎜⎜⎜⎜⎝

(
2(v2 + v3) cos(q2 + q3) + 
1v2 cos q2) cos q1

−v1((ζ1 + b1) sin q1 + b2 cos q1) + vx

(
2(v2 + v3) cos(q2 + q3) + 
1v2 cos q2) sin q1

+v1((ζ1 + b1) cos(q1) − b2 sin q1)

−
2(v2 + v3) sin(q2 + q3) − 
1v2 sin q2

⎞
⎟⎟⎟⎟⎟⎠

− γ ′,

where ζ1 := 
1 sin q2 + 
2 sin(q2 + q3), ζ2 := 
1 cos q2 + 
2 cos(q2 + q3). It turns
out that the Jacobian of g

(1)
2 with respect to ṽ = (v1, v2, v3, v4)

�, i.e. the matrix

∂g
(1)
2

∂ṽ
=

⎛
⎜⎜⎝

0 1 1 1
−(ζ1 + b1) sin q1 − b2 cos q1 ζ2 cos q1 
2 cos(q2 + q3) cos q1 0
(ζ1 + b1) cos q1 − b2 sin q1 ζ2 sin q1 
2 cos(q2 + q3) sin q1 0

0 −ζ1 −
2 sin(q2 + q3) 0

⎞
⎟⎟⎠ ,

is non-singular if and only if

0 �= −
2 cos q2 cos2(q2 + q3)

+(
1 cos2 q2 − 
2 sin q2 sin(q2 + q3) − b1 sin q2 − 
1) cos(q2 + q3)

+((
1 sin q2 + b1) sin(q2 + q3) + 
2) cos q2. (3.18)
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Fig. 11 Snapshots of the motion of the mobile robot (Example 3.3): Tracking of a prescribed path
for the end affector from t = 0 (top left) to t = 2π (bottom right). Please note that the wheels are
omnidirectional (although they appear as standard wheels in the graphics)

Hence, subject to the regularity condition in (3.18) we have shown that the DAE,
which consists of (3.3), (3.4), (3.8), and (3.17) is an index-2 DAE with differential
state z, algebraic state y = (ux, uy, ω, v1, v2, v3, v4)

�, and control v5. The latter
does not have any influence in the present model and hence it can be set to zero.

The initial value z(0) = z0 = (x0, y0, ψ0, vx,0, vy,0, q0)
� has to be consistent,

that is, it has to satisfy the equation 0 = g(0, z0) with g in (3.17).

Example 3.3 Figure 11 shows the motion of the robot for a desired velocity vd = 1,
v5 ≡ 0, and

γ (t) =
⎛
⎝

t + 0.143 − 0.02 sin(2t)

0.341
0.397 + 0.05(1 − cos(2t))

⎞
⎠ , t ∈ [0, 2π].

The initial state is given by z0 = (0, 0, 0, 1, 0, π/2, 0, π/2, 0, 0)�.
Figure 12 shows selected states and algebraic states. Again, the numerical results

have been obtained with the software OCPID-DAE1 [28] with an equidistant
discretization with 201 grid points. In this example, no degrees of freedom are
left for optimization (v5 is set to zero) and hence we used the simulation mode of
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Fig. 12 States q1, q2 (first row), states q3, q4 (second row), algebraic states v1, v2 (third row), and
algebraic states v3, v4 (fourth row) in Example 3.3
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OCPID-DAE1 with an adaption of DASSL with automatic step-size selection as the
integrator with an absolute and relative integration tolerance of 10−6. In contrast to
the previous examples, the algebraic states, i.e., the joint velocities, are differentiable
in this example. This is a direct consequence of the prescribed path in (3.17) being
a smooth function (note that γ is chosen to be smooth).

3.2 Vehicle Moving on Prescribed Path

Consider a vehicle moving in the plane. The position of the vehicle and its
orientation in a Cartesian coordinate system (xI , yI ) are given by (x, y,ψ), where
(x, y) denotes the center of gravity (or some other reference point) of the vehicle
and ψ is the yaw angle, i.e. the rotation angle of the car’s local coordinate system
(xC, yC) relative to the inertial coordinate system (xI , yI ), see Fig. 13.

Instead of the Cartesian coordinate system it is often more convenient to use an
alternative coordinate system – the curvilinear coordinate system, see, e.g., [36]. To
this end let the midline of the track (or some other reference line) be given by the
curve γm : [0, L] −→ R2 with

γm(s) :=
(

xm(s)

ym(s)

)
.

The curve γm of length L is supposed to be parameterized with respect to its
arclength s and thus, ‖γ ′

m(s)‖ = 1 and 〈γ ′′
m(s), γ ′

m(s)〉 = 0 for all s ∈ [0, L].

xI

yI

x

y

xCyC

Fig. 13 Cartesian coordinates and orientation of vehicle
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Fig. 14 Curvilinear coordinates

Moreover, we have

γ ′
m(s) =

(
x ′
m(s)

y ′
m(s)

)
=

(
cos ψm(s)

sin ψm(s)

)
with ψm(s) = arctan

(
y ′
m(s)

x ′
m(s)

)

and the curvature of γm is given by

κm(s) = ψ ′
m(s) = x ′

m(s)y ′′
m(s) − y ′

m(s)x ′′
m(s).

We now represent any point (x, y), which is given in the Cartesian coordinate
system, by

(
x

y

)
=

(
xm(s)

ym(s)

)
+ nm(s)r

using coordinates s ∈ [0, L] and r ∈ R, compare Fig. 14.
The vector nm(s) denotes the normal (to the left) vector

nm(s) = γ ′′
m(s) =

(−y ′
m(s)

x ′
m(s)

)
=

(− sin ψm(s)

cos ψm(s)

)
,

which is perpendicular to the curve’s velocity vector γ ′
m at s.
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Suppose the car is driving in the (s, r) coordinate system with velocity v. The
car’s position is given by the curve γc : [0, T ] −→ R2 with

γc(t) :=
(

x(t)

y(t)

)
.

The curve γc is supposed to be parameterized with respect to time t . At time t we
then have the relation

(
x(t)

y(t)

)
=

(
xm(s(t))

ym(s(t))

)
+ nm(s(t))r(t) =

(
xm(s(t)) − r(t)y ′

m(s(t))

ym(s(t)) + r(t)x ′
m(s(t))

)
(3.19)

with s(t) ∈ [0, L] and r(t) ∈ R. Let ψ denote the yaw angle of the vehicle in the
Cartesian (x, y)-coordinate system. Then

x ′(t) = v(t) cos ψ(t) and y ′(
) = v(t) sin ψ(t). (3.20)

Differentiation of (3.19) and exploiting (3.20) yields

v(t) cos ψ(t) = (
x ′
m(s(t)) − r(t)y ′′

m(s(t))
)
s′(t) − r ′(t)y ′

m(s(t)), (3.21)

v(t) sin ψ(t) = (
y ′
m(s(t)) + r(t)x ′′

m(s(t))
)
s′(t) + r ′(t)x ′

m(s(t)). (3.22)

Multiplication of the first equation by x ′
m(s(t)) and the second by y ′

m(s(t)), adding
them, and solving for s′(t) yields the differential equation

s′(t) = v(t)
(
x ′
m(s(t)) cos ψ(t) + y ′

m(s(t)) sin ψ(t)
)

1 − r(t)κm(s(t))
.

Likewise, we find

r ′(t) = v(t)
(−y ′

m(s(t)) cos ψ(t) + x ′
m(s(t)) sin ψ(t)

)
.

Setting χ(t) := ψ(t) − ψm(s(t)), exploiting x ′
m(s(t)) = cos ψm(s(t)) and

y ′
m(s(t)) = sin ψm(s(t)) yields the system of differential equations

s′(t) = v(t) cos χ(t)

1 − r(t)κm(s(t))
,

r ′(t) = v(t) sin χ(t),

χ ′(t) = ψ ′(t) − κm(s(t))s′(t)

= v(t)

(
u(t) − κm(s(t)) cos χ(t)

1 − r(t)κm(s(t))

)
,

where the control u(t) is the curvature of the curve γc at time t .
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Remark 3.2 Please note that there is a one-to-one relation between the curvature u

of the driving path and the steering angle δ of the car. In a kinematic car model the
yaw angle ψ satisfies the differential equation ψ ′(t) = v(t)



tan δ(t), where 
 is the

distance between front and rear axle. Since we also have ψ ′(t) = v(t)u(t), we find
δ(t) = arctan(
 · u(t)).

Now, we prescribe a sufficiently smooth path that the car is supposed to follow.
For simplicity we choose the midline as the reference path. This leads to the
algebraic constraint

r(t) = 0.

Differentiating twice yields

0 = r ′(t) = v(t) sin χ(t),

0 = r ′′(t) = v′(t) sin χ(t) + v(t)χ ′(t) cos χ(t)

= v′(t) sin χ(t) + v(t)2
(

u(t) − κm(s(t)) cos χ(t)

1 − r(t)κm(s(t))

)
cos χ(t).

If v �= 0 then the former yields sin χ(t) = 0 and the latter can be solved for u with

u(t) = κm(s(t)) cos χ(t)

1 − r(t)κm(s(t))
= κm(s(t)) cos χ(t). (3.23)

Hence, u can be considered an algebraic state and the (differentiation) index of
the DAE is three. A consistent initial value for the DAE has to satisfy r(t0) = 0,
χ(t0) = kπ , k ∈ Z, if v(t0) �= 0.

Remark 3.3 Note that this dynamic inversion control might not work in the presence
of additional control constraints of type u(t) ∈ U , since the control is fixed by the
dynamic inversion and it depends on the prescribed trajectory whether or not it can
be controlled subject to control constraints.

In essence the above DAE approach (or dynamic inversion approach) can be
exploited to design a controller for systems that are called differentially flat in the
control community, compare [24, 37, 45]. Herein, the task is to create a feedback
control law that moves the system back to the desired reference trajectory if
perturbations occur. Let the desired trajectory be given by rd ≡ 0, χd ≡ 0, s′

d = vd .
Let y := r be the observed quantity. Then, y ′ = r ′ = v sin χ and y ′′ = r ′′ =

v′ sin χ + v2
(
u − κm(s) cosχ

1−rκm(s)

)
cos χ . Thus

u = 1

v2 cos χ

(
r ′′ − v′ sin χ

) + κm(s) cos χ

1 − rκm(s)
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The feedback-law is then given by

u = 1

v2
d cos χd

(
r ′′
d − k1(r

′ − r ′
d) − k2(r − rd ) − v′

d sin χd

) + κm(sd) cos χd

1 − rdκm(sd)
,

= 1

v2
d

(−k1r
′ − k2r

) + κm(sd),

compare [45]. Note that u coincides with the algebraic state u in (3.23) if no
perturbations in r and s occur. The constants k1 and k2 have to be chosen such
that the closed-loop system is asymptotically stable.

Example 3.4 We apply the controller for the racing track of Hockenheim and
modify the above controller by adding control bounds, i.e. we use the feedback
controller

u = max

{
−umax, min

{
umax,

1

v2
d

(−k1r
′ − k2r

) + κm(sd)

}}

with k1 = 2, k2 = 0.5, umax = tan(δmax)/
, where δmax = 0.3 [rad] denotes the
maximum steering angle and 
 = 4 [m] the length of the car. In order to simulate
measurement errors, the values of r and r ′ are perturbed by equally distributed errors
εr ∈ [−0.05, 0.05] and εr ′ ∈ [−0.1, 0.1], respectively.

Let the desired velocity vd at arclength s be

vd(s) = min

{
vmax,

√
amax

|κ(s + h)|
}

,

where amax = 9.81 [m/s2] denotes the maximal lateral acceleration, vmax =
40 [m/s] the maximal velocity, and κ(s +h) is the curvature of the track at arclength
s + h. Herein, h = 20 [m] is a look-ahead distance and s denotes the current
arclength position on the track. Moreover we introduce the differential equation

v′(t) = vd(s(t)) − v(t)

T
, v(0) = v0,

in order to model a delay in the tracking of the desired velocity with a constant
T = 1.5.

Figure 15 shows the controlled drive along the racing track of Hockenheim with
initial value s(0) = 0, r(0) = 1, χ(0) = 0.05, v(0) = 10 and time interval [0, 300]
with a control frequency of 10 [Hz]. One can see nicely that the velocity controller
slows down the car before the bends owing to the lookahead parameter h.
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Fig. 15 Controlled motion: offset r from reference line (top left), deviation χ from the track’s yaw
angle (top right), velocity (bottom left), velocity on the track (bottom right). The colors indicate
the velocity in [m/s]

3.3 Identification of Road Profiles

In the sequel, we discuss an additional application field: the usage of path constraints
for (dynamic) inversion, compare [1, 12]. We consider the case ny = nu and system
dynamics modeled as an ODE,

x ′(t) = f (t, x(t), u(t)), (3.24)

and system outputs,

z(t) := h(t, x(t), u(t)) ∈ Rny . (3.25)

Assume additionally that there are measured reference quantities, zREF : R → Rny

and the task is to find control inputs u that lead as an excitation to an exact tracking,
i.e.,

0 = g(t, x(t), u(t)) := h(t, x(t), u(t)) − zREF (t), (3.26)
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Fig. 16 Left: vertical tire-surrogate model, right: simulation results

with x being the solution of (3.24) given u. The solution strategy followed here is
simply adding Eq. (3.26) and solving the resulting DAE in the differential variables
x and in the algebraic variables u.

We consider the special case of identifying road profiles using that approach.
To that end, assume that there are vehicle measurements available, among others,
vertical wheel forces and rim displacements. It is of certain relevance to derive road
profiles based on these quantities and information of the measurement vehicle and
the tire, since road profiles characterize the road roughness of the traveled route and
can serve as (invariant) input quantity, which can be used to excite other vehicle
models, possibly different from the model of the measurement vehicle, see [12] for
further details and discussions. To solve the task, we consider a tire-surrogate model
as depicted in Fig. 16 on the left.

We assume given (measured) rim motion qR, vR and consider the vertical
dynamic equations

q̇B = vB,

MBv̇B = −F(qR, vR, qB, vB) − KU · (qB − u),
(3.27)

together with the control constraint equation (tracking a given vertical force),

0 = F(qR, vR, qB, vB) − FREF (t). (3.28)

With a linear force law F(qR, vR, qB, vB) = −KB(qR − qB) − DB(vR − vB), it is
straightforward to verify that the resulting DAE has index 2. In Fig. 16, some results
are presented, the DAE has been solved numerically by the implicit Euler method.
In the upper plot on the right, the simulation quantity and reference quantity are
displayed, they coincide perfectly up to integration tolerance. In the lower plot on
the right, the corresponding road profile is shown. For further and more detailed
discussions, we refer to our work in [12, 13].
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3.4 Identification of Tyre Loads

A problem related to the identification of road profiles is the identification of tyre
loads. To this end we consider a simplified full vehicle model, see Fig. 17, where
vertical and horizontal motion are decoupled, drag forces and rolling resistance
forces are neglected.

The equations of motion read as follows, compare [25, 39] for related models:

x ′ = vx cos ψ − vy sin ψ, y ′ = vx sin ψ + vy sin ψ, z′ = vz,

φ′ = wφ, κ ′ = wκ, ψ ′ = wψ, δ′ = wδ,

mv′
x = mvywψ + Lrl + Lrr + Fx

f l + Fx
f r ,

mv′
y = −mvxwψ + Srl + Srr + F

y

f l + F
y

f r ,

mv′
z = −mg + Fsd

f l + Fsd
f r + Fsd

rl + Fsd
rr ,

z′∗ = vz∗, m∗(vz∗)′ = −m∗g − Fsd∗ + Fr∗ , ∗ ∈ {f l, f r, rl, rr},
Jφw′

φ = M
φ
sd + hrlSrl + hrrSrr + hf lF

y

f l + hf rF
y

f r ,

Jκw′
κ = Mκ

sd − hrlLrl − hrrLrr − hf lF
x
f l − hf rF

x
f r,

Jψw′
ψ = 
f

(
F

y
f l + F

y
f r

)
− 
r (Srl + Srr ) + wr

(
Lrr + Fx

f r

)
− w


(
Lrl + Fx

f l

)
,

where

Fx
f l = Lf l cos δ − Sf l sin δ, F x

f r = Lf r cos δ − Sf r sin δ,

F
y

f l = Lf l sin δ + Sf l cos δ, F
y

f r = Lf r sin δ + Sf r cos δ,

M
φ
sd = −wr

(
Fsd

f r + Fsd
rr

)
+ w


(
Fsd

f l + Fsd
rl

)
,

Mκ
sd = −
f

(
Fsd

f l + Fsd
f r

)
+ 
r

(
Fsd

rl + Fsd
rr

)
,

hf l = z − 
f sin κ + w
 cos κ sin φ, hf r = z − 
f sin κ − wr cos κ sin φ,

hrl = z + 
r sin κ + w
 cos κ sin φ, hrr = z + 
r sin κ − wr cos κ sin φ,

F sd∗ = cw∗ (z∗ − h∗) + kw∗ (z′∗ − h′∗), ∗ ∈ {f l, f r, rl, rr}.

The meaning of the occurring quantities is summarized in Table 2 and parameters
can be found in Table 3. The subscripts f r, f l, rr, rl indicate the location on the car.
To this end, f and r in the first position mean front and rear, respectively, and l and
r in the second position refer to left and right, respectively.

We are now interested in identifying the tyre loads Fr∗ , ∗ ∈ {f l, f r, rl, rr}, from
measured data ξ∗ of the z-positions z∗, ∗ ∈ {f r, f l, rr, rl}, of the wheels, i.e. we



68 M. Burger and M. Gerdts

Fig. 17 Simplified full car model: horizontal and vertical geometry

have the algebraic constraints

0 = z∗ − ξ∗(t), ∗ ∈ {f l, f r, rl, rr}.
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Table 2 Variables of the simplified fullcar model

Name Description

(x, y, z) Center of gravity of chassis

(φ, κ, ψ) Roll angle, pitch angle, yaw angle of chassis

zw∗ , ∗ ∈ {f r, f l, rr, rl} z-Position of center of gravity of wheels

v, v∗, ∗ ∈ {f r, f l, rr, rl} Velocities at center of gravity and at tyre-road contact

vz∗, ∗ ∈ {f r, f l, rr, rl} Velocities in z-direction of wheels

α, α∗, ∗ ∈ {f r, f l, rr, rl} Side-slip angles at center of gravity and at tyre-road contact

δ, wδ Steering angle and steering angle velocity

F sd∗ , ∗ ∈ {f r, f l, rr, rl} Spring/damper forces between wheels and chassis

F r∗ , ∗ ∈ {f r, f l, rr, rl} Tyre forces between road and wheel

S∗, ∗ ∈ {f r, f l, rr, rl} Lateral tyre forces

L∗, ∗ ∈ {f r, f l, rr, rl} Longitudinal tyre forces

Table 3 Parameters of the simplified fullcar model (parameter values are rounded to five
decimals)

Name Value Description


f , 
r 1.0212, 1.4788 [m] Length from center of gravity to
front axle and rear axle

w
, wr 0.7182, 0.7818 [m] Distance from center of gravity to
left and right side of vehicle

m 1510 [kg] Mass of chassis (and passengers)

m∗, ∗ ∈ {f l, f r, rl, rr} 50 [kg] Masses of wheel and brake
assemblies

Jφ , Jκ , Jψ 371.95, 887.38, 1047.6 [kg m2] Moments of inertia roll, pitch,
yaw

cw∗ , ∗ ∈ {f l, f r, rl, rr} 25,000 [N/m] Spring coefficients of spring sus-
pension at wheels

kw∗ , ∗ ∈ {f l, f r, rl, rr} 3500 [Ns/m] Damper coefficients of spring
suspension at wheels

For simplicity we assume that the car is driving on a straight line at constant velocity,
that is y ≡ 0 [m], δ ≡ 0, vx ≡ 20 [m/s], vy ≡ 0 [m/s]. Moreover, in this situation the
longitudinal and lateral tyre forces vanish, i.e. L∗ ≡ 0, S∗ ≡ 0, ∗ ∈ {f l, f r, rl, rr}.
With these simplifications we obtain the following mechanical multibody system
with generalized forces λ∗, ∗ ∈ {f l, f r, rl, rr}, which relate to the tyre loads
according to Fr∗ = −λ∗, ∗ ∈ {f l, f r, rl, rr}:

z′ = vz, φ′ = wφ, κ ′ = wκ,

mv′
z = −mg + Fsd

f l + Fsd
f r + Fsd

rl + Fsd
rr , Jφw′

φ = M
φ
sd, Jκw′

κ = Mκ
sd,

z′∗ = vz∗, m∗(vz∗)′ = −m∗g − Fsd∗ − λ∗, ∗ ∈ {f l, f r, rl, rr},
0 = z∗ − ξ∗, ∗ ∈ {f l, f r, rl, rr}. (3.29)
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This DAE is of index three and twofold differentiation of the algebraic con-
straints (3.29) yields

λ∗ = −m∗g − Fsd∗ − m∗ξ ′′∗ , ∗ ∈ {f l, f r, rl, rr}.

Herein, we assumed that the measurements ξ∗ (or a smooth interpolation or
approximation thereof) are twice continuously differentiable. Figure 18 shows the
results for the drive with a duration of 10 [s] on a bumpy road segment (bumps
on the left and right with offset) with initial values z(0) = 0.46571, vz(0) = 0,
φ(0) = −0.00934, wφ(0) = 0, κ(0) = 0.0242, wκ(0) = 0, z∗(0) = 0.27,
vz∗(0) = 0, ∗ ∈ {f l, f r, rl, rr}. The wheel measurements with a maximum absolute
excitation of 0.02 [m] are modeled by

ξf l(t) = z(0) + ξ(t), ξf r(t) = z(0) − ξ(t − 1),

ξrl(t) = z(0) + ξ(t − (
f + 
r)/vx), ξrr(t) = z(0) − ξ(t − 1 − (
f + 
r )/vx),

with

ξ(t) =
{

0.01
(

cos
(

2π
0.1 (t − 2.5 · k)

)
− 1

)
, if t∈[2.5 · k, 2.5 · k + 0.1], k=1, 2, 3,

0, otherwise.

The generalized forces λ∗ are related to the tyre loads Fr∗ by Fr∗ = −λ∗ for
∗ ∈ {f l, f r, rl, rr} and Fig. 18 shows that the generalized forces are negative and
consequently the tyre loads are positive. Thus, there is road contact at all times. If
the excitation ξ∗ is increased then it may happen that the tyre loads become negative,
which is not meaningful physically. Thus, the presented model is restricted to non-
negative tyre loads.

4 Piecewise Defined DAEs and Dockings

Consider two independent multibody systems with generalized coordinates q1 and
q2, respectively. The equations of motion are given by

Mj(qj )q
′′
j = fj (qj , q

′
j , uj ), j = 1, 2. (4.1)

For simplicity, we neglect algebraic constraints, but emphasize that adding them
is straightforward. Let us assume that the two systems move independently in the
time interval [t0, tc]. The time point tc is supposed to be a docking or coupling time
point, where both systems turn into a (physically or virtually) coupled system with
permanent contact described by the coupling constraints

0 = g(q1(t), q2(t)) t ≥ tc.

Throughout we assume that at least one of the Jacobians g′
qj

, j = 1, 2, has full rank.
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Fig. 18 Selection of differential and algebraic states: z, roll angle φ, pitch angle κ , λ∗, ∗ ∈
{f l, f r, rl, rr}, ξ(t) (from top left to bottom right). The plot at bottom right shows the road profile
ξ(t) with a maximum absolute excitation of 0.02 [m]
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Often, the coupling constraints exhibit a separated structure

g(q1, q2) := g1(q1) − g2(q2),

where, for instance, g1 and g2 describe the coordinates of contact points on system
1 and 2, respectively.

Then, for t ≥ tc the coupled system obeys the combined equations of motion

M1(q1)q
′′
1 = f1(q1, q

′
1, u1) − g′

q1
(q1, q2)

�λ,

M2(q2)q
′′
2 = f2(q2, q

′
2, u2) − g′

q2
(q2, q2)

�λ,

0 = g(q1, q2).

Herein, the generalized forces g′
qj

(q1, q2)
�λ, j = 1, 2, can be viewed as contact

forces that apply at the contact point.
At t = tc we assume the consistency conditions

0 = g(q1(tc), q2(tc))

and

0 = g′
q1

[tc]q ′
1(tc) + g′

q2
[tc]q ′

2(tc).

Differentiating the algebraic constraint twice and suppressing arguments in g

yields

0 ≡
2∑

j=1

g′
qj

· q ′
j (4.2)

and

0 ≡
2∑

j=1

(
g′

qj
· q ′′

j +
2∑


=1

(
g′

qj
· q ′

j

)′
q


· q ′



)
. (4.3)

In the separated case the mixed second derivatives vanish in (4.3). Introducing the
differential equations in (4.3) yields

0 ≡
2∑

j=1

(
g′

qj
M−1

j

(
fj − (g′

qj
)�λ

)
+

2∑

=1

(
g′

qj
· q ′

j

)′
q


· q ′

)

)

=
2∑

j=1

(
g′

qj
M−1

j fj +
2∑


=1

(
g′

qj
· q ′

j

)′
q


· q ′



)
−

⎛
⎝

2∑
j=1

g′
qj

M−1
j (g′

qj
)�

⎞
⎠ λ.

(4.4)
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Since Mj , j = 1, 2, are supposed to be symmetric and positive definite and since at
least one of the Jacobians g′

qj
, j = 1, 2, is supposed to be of full rank, the equation

can be solved for λ. Hence, the index of the coupled system is three.
A natural application of this type occurs in satellite docking maneuvers, see,

e.g., [38], for instance if a service satellite approaches a target object and connects
physically to it at a defined docking point.

A physical docking will cause internal coupling forces, which essentially have
to be compensated by the mechanical parts, i.e., the material. One may also be
interested in non-physical couplings. In this case, internal forces vanish as there
is no real connection of the mechanical parts, that is, λ = 0. Then, the algebraic
constraints have to be obeyed by the controls and we are in a similar situation as
in Examples 3.1 and 3.2. The following example considers a physical connection
between bodies but aims to minimize the internal forces by choosing the controls
appropriately.

Example 4.1 We now consider two mobile robotic platforms of type (4.1) with
generalized coordinates qj = (xj , yj , ψj )

�, controls uj = (fx,j , fy,j , uω,j )
�,

mass matrices Mj = diag(mj,mj , Jz,j ), and generalized force vectors

fj (qj , q
′
j , uj ) =

⎛
⎝

fx,j cos ψj − fy,j sin ψj

fx,j sin ψj + fy,j cos ψj

uω,j

⎞
⎠

for j = 1, 2. Herein, (xj , yj ) is the position of robot j , ψj its yaw angle, mj its
mass, and Jz,j its moment of inertia. The control uj consists of the forces fx,j and
fy,j and the yaw rate uω,j .

Let the robots be coupled by the algebraic constraint

g(q1, q2) =
⎛
⎝

x1 − 
 sin ψ1

y1 + 
 cos ψ1

ψ1

⎞
⎠ −

⎛
⎝

x2

y2

ψ2

⎞
⎠ .

where 
 > 0 defines a docking point on the y-axis of the robot’s local coordinate
system. The Jacobian of g reads

g′
(q1,q2)

(q1, q2) =
⎛
⎝

1 0 −
 cos ψ1 −1 0 0
0 1 −
 sin ψ1 0 −1 0
0 0 1 0 0 −1

⎞
⎠ .

The coupled motion of the two robots is described by the DAE

m1x
′′
1 = fx,1 cos ψ1 − fy,1 sin ψ1 − λ1, (4.5)

m1y
′′
1 = fx,1 sin ψ1 + fy,1 cos ψ1 − λ2, (4.6)

Jz,1ψ
′′
1 = uω,1 − (λ3 − 
λ1 cos ψ1 − 
λ2 sin ψ1), (4.7)
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m2x
′′
2 = fx,2 cos ψ2 − fy,2 sin ψ2 + λ1, (4.8)

m2y
′′
2 = fx,2 sin ψ2 + fy,2 cos ψ2 + λ2, (4.9)

Jz,2ψ
′′
2 = uω,2 + λ3, (4.10)

0 = x1 − 
 sin ψ1 − x2, (4.11)

0 = y1 + 
 cos ψ1 − y2, (4.12)

0 = ψ1 − ψ2. (4.13)

The constraints on velocity level in (4.2) read

0 = x ′
1 − 
ψ ′

1 cos ψ1 − x ′
2,

0 = y ′
1 − 
ψ ′

1 sin ψ1 − y ′
2,

0 = ψ ′
1 − ψ ′

2,

and those on acceleration level in (4.3) are given by

0 = x ′′
1 − 
ψ ′′

1 cos ψ1 + 
(ψ ′
1)

2 sin ψ1 − x ′′
2 ,

0 = y ′′
1 − 
ψ ′′

1 sin ψ1 − 
(ψ ′
1)

2 cos ψ1 − y ′′
2 ,

0 = ψ ′′
1 − ψ ′′

2 .

The non-singular matrix
(∑2

j=1 g′
qj

M−1
j (g′

qj
)�

)
in (4.4) reads

⎛
⎜⎜⎝

1
m1

+ 
2

Jz,1
cos2 ψ1 + 1

m2


2

Jz,1
sin ψ1 cos ψ1 − 


Jz,1
cos ψ1


2

Jz,1
sin ψ1 cos ψ1

1
m1

+ 
2

Jz,1
sin2 ψ1 + 1
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⎞
⎟⎟⎠ .

Please note that the choice of the controls will influence the magnitude of the
internal coupling forces in the above model (the coupling will persist owing to the
algebraic constraints). Hence one may search for controls that perform a desired
task while minimizing the internal forces. Figure 19 shows the result of a two-phase
optimal control problem with the data m = m1 = m2 = 10 [kg], Jz,1 = Jz,2 =
m(a2 + b2)/12, a = 0.58 [m], b = 0.376 [m], 
 = 0.476 [m]. In the first phase,
robot 2 moves from a given initial position to a target position next to robot 1,
which is fixed at a given position during the first phase. The path of the second
robot is colored in blue. The second phase starts at tc ≈ 7.19495 [s] (which is the
end of phase one) and aims to move the coupled robots to a terminal position within
10 [s]. The path of the first robot is colored in red, the one of the second robot in
blue. The following two optimal control problems are used to realize both phases:
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Fig. 19 Snapshots of the motion of the two mobile robot for phase one (rows 1 and 2) and phase
two (rows 3 and 4). The lines indicate the history of the paths of the two robots

Phase 1: Minimize

tc +
∫ tc

0
‖u1(t)‖2 + ‖u2(t)‖2 dt

subject to (4.5)–(4.10) with λ1 = λ2 = λ3 = 0, u1 = 0, u2 ∈ [−10, 10] ×
[−10, 10] × [−π/2, π/2], initial and terminal conditions q1(0) = v1(0) =
(0, 0, 0)�, q2(0) = (5,−5, 0)�, v2(0) = v2(tc) = (0, 0, 0)�, q2(tc) =
(0, 0.476, 0)�, and the state constraint

(
x2(t)

3

)2

+ y2(t) ≥ r2 withr = 0.45.



76 M. Burger and M. Gerdts

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0  2  4  6  8  10  12  14  16  18

la
m

bd
a1

t

Algebraic State lambda1 vs time

-0.02
-0.018
-0.016
-0.014
-0.012

-0.01
-0.008
-0.006
-0.004
-0.002

 0
 0.002

 0  2  4  6  8  10  12  14  16  18

la
m

bd
a2

t

Algebraic State lambda2 vs time

-0.0004

-0.0003

-0.0002

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0  2  4  6  8  10  12  14  16  18

la
m

bd
a3

t

Algebraic State lambda3 vs time

Fig. 20 Algebraic states λ1, λ2, and λ3 for both phases with contact point tc ≈ 7.19495 [s]. These
states are the physical contact forces acting on the robots

The state constraint serves as an anti-collision constraint as it restricts the positions
of the second robot to the outside of an ellipsoid around the origin which contains
the first robot.

Phase 2: Minimize

100
∫ tc+10

tc

λ1(t)
2 + λ2(t)

2 + λ3(t)
2 dt + 0.1

∫ tc+10

tc

‖u1(t)‖2 + ‖u2(t)‖2 dt

subject to (4.5)–(4.13), u1, u2 ∈ [−10, 10] × [−10, 10] × [−π/2, π/2], initial and
terminal conditions q1(tc) = v1(tc) = v2(tc) = (0, 0, 0)�, q2(tc) = (0, 0.476, 0)�,
q1(tc + 10) = (10, 5,−π)�, v1(tc + 10) = (0, 0, 0)�.

Figures 20 and 21 show the algebraic states λ1, λ2, λ3, i.e. the physical contact
forces acting on the robots, and the controls u1, u2 for both phases. The numerical
results have been obtained with the software OCPID-DAE1 [28].

Remark 4.1 Piecewise defined DAEs with varying index occur as well in the
indirect solution approach for optimal control problems in the presence of control
and state constraints. Herein, a multipoint boundary value problem has to be solved.
Depending on the sequence of active and inactive constraints and their order the
index of the DAE may change.
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Fig. 21 Controls u1 of robot 1 (top row and second row left) and u2 of robot 2 (second row right
and bottom row) for phases one and two with contact point tc ≈ 7.19495 [s]

5 Conclusions

The paper discusses selected applications in mobile robotics and vehicle dynamics.
To this end DAEs arise by imposing path constraints for the robots. Herein, suitable
control components need to be identified which serve as algebraic states. Moreover,
higher index DAEs arise very naturally for such type of problems, sometimes with
a mixed index. The remaining controls (if any) can be chosen such that an optimal
performance is achieved which leads to a DAE optimal control problem. Although
the paper is restricted to typical applications in mobile robotics, similar problems
arise in flight path optimization, docking maneuvers for satellites etc.
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6 Source Codes for Examples

Source codes for the numerical examples are attached to this paper. The addi-
tional libraries OCPID-DAE1 and sqpfiltertoolbox are required to run the
examples. These libraries are freely available for download on http://www.optimal-
control.de after registration on the website.
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Abstract A classical trajectory tracking control approach combines feedforward
control with a feedback loop. Since both parts can be designed independently, this
is called a two degree of freedom control structure. Feedforward control is ideally
an inverse model of the system. In case of underactuated mechanical systems the
inverse model often cannot be derived analytically, or the derivation cannot follow
a systematic approach. Then, the numerical approach based on servo-constraints
has shown to be effective. In this approach, the equations of motion are appended
by algebraic equations constraining the output to follow a specified output trajec-
tory, representing the servo-constraints. The arising differential-algebraic equations
(DAEs) are solved for the desired open-loop control input. An additional feedback
loop stabilizes the system around the specified trajectories. This contribution
reviews the use of servo-constraints in mechanical open-loop control problems.
Since the arising set of DAEs is usually of higher index, index reduction and analysis
methods are reviewed for flat as well as non-flat systems. Some typical examples are
given and numerical results are presented.
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1 Introduction

A popular controller design for mechanical systems is a two degree of freedom
control structure. In this approach, a feedforward and a feedback controller are
designed independently for tracking control and disturbance rejection [30]. The
feedforward part is responsible for tracking, while the feedback part stabilizes
the system around the specified output trajectory. A feedforward controller can be
designed in terms of an inverse model of the system. This is straightforward in case
of fully actuated systems. However, for underactuated systems, this task becomes
more difficult. Underactuated systems have less control inputs than degrees of free-
dom. For some special cases, called differentially flat systems, an algebraic solution
of the inverse model exists. However, there is no systematic approach to find such
an algebraic solution. In addition, for general underactuated multibody systems, the
inverse model might be a dynamical system itself. The analytical derivation of such
an inverse model might be possible using the Byrnes/Isidori input-output normal
form [22] for multibody systems formulated in generalized coordinates. Recently,
the Byrnes/Isidori form has been generalized for multibody systems formulated in
redundant coordinates in [5]. However, this is often burdensome as the equations
tend to become complex even for simple systems.

The method of servo-constraints was proposed to avoid such problems and gives
a straightforward numerical representation of the inverse model. It is a relatively new
approach introduced in [8]. It is also called control, path or program constraints, see
e.g. [13]. A general framework for the use of servo-constraints has been introduced
in [9] and is extended in [11]. The equations of motion of a multibody system are
extended by constraints enforcing the system output to stay on a specified output
trajectory. The inverse model is then the numerical solution to the set of arising
differential-algebraic equations (DAEs). As part of the numerical solution, the open-
loop control input is obtained. Moreover, the desired state trajectories are part of the
solution. A state feedback controller can then extend the feedforward control loop
to stabilize the system around the trajectory. Thereby, the desired state trajectories
are helpful in calculating the current tracking error for state feedback control.

So far, the servo-constraints approach is mainly applied to differentially flat
systems. A system is differentially flat if its system input can be expressed as a
function of the system output and a finite number of its derivatives [17]. Typical
examples of flat systems controlled by servo-constraints are rotary cranes [6],
overhead gantry cranes [9, 24] and 2-mass-spring systems or their generalization
to infinitely many masses [1, 18]. In case of differentially flat systems, the inverse
model is purely algebraic and can be used as a reference solution for the numerical
solution obtained by servo-constraints.

In case of non-flat systems, the inverse model itself is a dynamical system. This
is closely related to the internal dynamics in nonlinear control theory [22, 26].
Thus, stability of the arising internal dynamics has to be considered. Its stability
can be analyzed in terms of zero dynamics [22, 26, 31]. Zero dynamics is the
nonlinear extension of transmission zeros in linear systems, as for example shown in
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[32]. Zero dynamics allows a simplified stability analysis of the internal dynamics.
Systems with asymptotically stable zero dynamics are called minimum phase
systems, systems with unstable zero dynamics are non-minimum phase systems.
First results of applying servo-constraints to non-flat systems are presented in [23]
and [27]. In [27], results for minimum phase systems are presented, whereby the
arising DAEs are solved by forward time integration. In case of unstable internal
dynamics with a hyperbolic equilibrium point, stable inversion proposed in [15]
can be applied [27]. This requires the solution of a boundary value problem,
which is solved by a multiple shooting algorithm for a planar serial manipulator
in [12]. Instead of solving for the internal dynamics and solving the boundary value
problem, a reformulation to an optimization problem was proposed for a planar
serial manipulator in [4]. Alternatively to solving the non-minimum phase system,
the output can be redefined to obtain a minimum phase system [31].

Besides fully actuated or underactuated systems, servo-constraints have been
applied to overactuated multibody systems with more independent controls than
degrees of freedom. In this case, there is no unique solution to the inverse model
problem and other requirements can be enforced. For example, minimizing the
acceleration energy of a multibody system compared to its free motion is proposed
in [3] to obtain a new set of servo-constraints.

Adding servo-constraints to the system dynamics usually results in a set of higher
index DAEs [13]. Since higher index DAEs are more difficult to solve numerically,
index reduction methods are used to reduce the differentiation index and therefore
numerical complexity [19]. Index reduction by means of a projection onto the
constrained and unconstrained directions is proposed in [9]. Index reduction by
minimal extension is proposed in [2, 7].

Common DAE solving algorithms applicable for higher index DAEs are pre-
sented in [19]. Due to its simplicity, a fixed step implicit Euler scheme is proposed
for servo-constraints problems in [9]. To ensure real-time applicability, a linear
implicit Euler scheme is compared to an implicit Euler scheme in [24]. First
experimental results and real-time capability of the servo-constraints approach are
also shown in [24] for an overhead crane. In order to avoid the numerical issues
arising with high-index DAEs, a reformulation of the problem as an optimization
problem is proposed in [1]. The constraints are considered in the cost function.
Thus, small errors in tracking are allowed in favor for smaller control inputs and
relaxed smoothness conditions on the desired trajectory.

This contribution reviews the concept of servo-constraints for use in open-
loop control of multibody systems. In Sect. 2, trajectory control and the modeling
of mechanical systems are briefly reviewed. The servo-constraints approach, its
solution approaches and index reduction methods are shown in Sect. 3. Various
examples and simulation results are presented and analyzed in detail in Sect. 4.
These include the mass-on-car system originally introduced in [28], an extended
mass-on-car system and a mass-spring-damper chain with a finite number of masses.
Moreover, the influence of different actuator models on the resulting DAE system is
demonstrated. The results are summarized in Sect. 5.
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Fig. 1 Two degree of freedom control approach for multibody systems (MBS)

2 Trajectory Control and Modeling of Multibody Systems

For trajectory tracking control of multibody systems, a two degree of freedom
control structure is an efficient control method [30]. In this case, a feedforward
control input uffw and a feedback control input ufb are designed to track a desired
trajectory zd, as visualized in Fig. 1. The feedforward control part is responsible for
large motion tracking and is here based on an inverse model of the system. If there
were no modeling errors or disturbances, the inverse model would cancel the model
dynamics exactly, and there would be perfect tracking. However, there are usually
some modeling errors and disturbances and a feedback control loop is necessary on
top of the feedforward part. In order to reduce noise effects and to reduce corrections
of the feedback path, an accurate inverse model is fundamental. For state feedback
it is helpful that the inverse model not only provides the feedforward control
input uffw, but also the reference state trajectory xd. With the reference trajectory xd,
the state tracking error is computed and used for state feedback control. Many
different state feedback controllers are applicable. Simple feedback control strate-
gies such as linear quadratic regulators might be sufficient due to small open-loop
tracking errors with an accurate inverse model [24]. In case a prescribed tracking
error performance is desired, a funnel controller might be applied, see e.g. [21].

In order to design the inverse model, a model of the multibody system is
introduced first. Systems with n degrees of freedom, m inputs and m outputs are
considered. Underactuated systems are included for which hold n > m. Two
formulations, based on minimal coordinates as well as redundant coordinates are
introduced. The following presentations are restricted to holonomic multibody
systems, which represent the most important ones in engineering applications.

2.1 Generalized Coordinates

For multibody systems without kinematic loops, it is possible to select a set of
generalized coordinates y ∈ R

n and generalized velocities v ∈ R
n and to project

the Newton and Euler equations of each body onto the direction of free motion. Due
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to Jourdain’s principle, this projection eliminates the reaction forces and yields a set
of 2 n ordinary differential equations (ODEs)

ẏ = Z(y) v (2.1)

M(y, t) v̇ = q(y, v, t) + Bu (2.2)

with the kinematics matrix Z : Rn → R
n×n, the invertible generalized mass matrix

M : Rn × R → R
n×n, the vector of generalized forces q : Rn × R

n × R → R
n

and the input distribution matrix B ∈ R
n×m. Note that the functions Z, M and q are

assumed to be continuously differentiable. In most cases the generalized velocities
are simply chosen as v = ẏ, thus Z is the identity matrix. However, the general
case is used here such that generalized coordinates and redundant coordinates can
be treated in a unified manner. For underactuated systems, the equations of motion
are sometimes separated to

[
ẏa

ẏu

]
=

[
Zaa Zau

Zua Zuu

][
va

vu

]
(2.3)

[
Maa Mau

Mua Muu

][
v̇a

v̇u

]
=

[
qa

qu

]
+

[
Ba

0

]
u , (2.4)

where the indices a and u refer to actuated and unactuated parts respectively.
These equations have 2 n unknowns, namely the generalized coordinates y and
velocities v. Introducing the state vector

x =
[
x1

x2

]
=

[
y

v

]
∈ R

2n , (2.5)

the ODE formulation in state space form is

ẋ =
[

Z x2

M−1 q

]
+

[
0

M−1B

]
u . (2.6)

The system output z : R
n → R

m of the multibody system is mostly chosen on
position level, providing

z = z(y) . (2.7)

In case the multibody system includes kinematic loops, it is usually not possible
to select a set of minimal coordinates y. Then, the kinematic loop can be cut. It is
then possible to select minimal coordinates for the resulting open chain, providing
the dynamic equations (2.1)–(2.2). In order to close the loop again, loop closing
constraints have to be added, yielding a DAE similar to the use of redundant
coordinates.
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2.2 Redundant Coordinates

Sometimes, it might be advantageous to select redundant coordinates to simplify
the modeling process. For a system with n degrees of freedom and nc geometric
constraints cg(y) : Rn+nc → R

nc let now y ∈ R
n+nc be the vector of redundant

coordinates and v ∈ R
n+nc the vector of redundant velocities. Then, the equations

of motion in DAE form are

ẏ = Z(y) v (2.8)

M(y, t) v̇ = q(y, v, t) + CT
g (y) λ + Bu (2.9)

cg(y) = 0 , (2.10)

where the geometric constraints cg(y) are enforced by the Lagrange multipli-
ers λ ∈ R

nc which represent the generalized reaction forces of the multibody
system. Equations (2.8)–(2.10) are a set of DAEs and have 2n + 3nc unknowns,
namely y, v and λ and the same number of equations. Due to the invertibility of the
mass matrix M , one can show that the set of DAEs (2.8)–(2.10) is of differentiation
index 3 for general multibody systems. The differentiation index of a DAE system
is defined as the maximum number of differentiations of the algebraic constraint
necessary to transform the set of equations to a set of ordinary differential equations
[14, 19]. Besides the most often used differentiation index, there are other index
concepts. See [14] for a discussion and comparison of the index concepts for
general nonlinear DAEs. Both the ODE formulation of Eqs. (2.1)–(2.2) and the DAE
formulation of Eqs. (2.8)–(2.10) can be used in the modeling process of multibody
systems. For the following model inversion using servo-constraints, the underlying
modeling approach for multibody systems is secondary. For the inverse model, a
DAE will always be obtained, irrespectively of the modeling approach. Therefore,
for a unified treatment of servo-constraints, there is no distinction made in notation
for redundant coordinates or generalized coordinates.

3 Servo-Constraints Approach

For trajectory tracking of the output z, the inverse model of the multibody system is
sought. The input to the inverse model is the desired output trajectory zd(t) of the
actual multibody system, while the inverse model provides the necessary input ud =
uffw for the multibody system to follow the desired trajectory, see Fig. 1.

For fully actuated systems where each degree of freedom can be controlled
with an independent control input, the inverse model can be split into inverse
kinematics and inverse dynamics [29]. In the inverse kinematics, the desired state
trajectory xd is determined from the desired output trajectory zd, while the inverse
dynamics provides the system input ud which is necessary to generate the desired
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state motion xd. For underactuated systems with more degrees of freedom than
independent control inputs, this separation is not possible and both problems must
be solved simultaneously. The servo-constraints approach is a method to solve for
the inverse model numerically.

Motivated from the DAE representation of the multibody dynamics in Eqs. (2.8)–
(2.10), the equations of motion are appended to include constraints which enforce
the output z to be equal to the desired output trajectory zd. This extension is possible
for either the ODE representation of Eqs. (2.1)–(2.2) in minimal coordinates or the
DAE representation of Eqs. (2.8)–(2.10) in redundant coordinates. This yields a new
set of equations

ẏ = Z(y) v (3.1)

M(y, t) v̇ = q(y, v, t) + CT
g (y) λ + Bu (3.2)

cg(y) = 0 (3.3)

c(y, t) = z(y) − zd(t) = 0 (3.4)

with servo-constraints c(y, t) : R
n × R → R

m. The set of equations has
2n + 3nc + m unknowns, namely the coordinates y and v, the Lagrange multipli-
ers λ and the inputs u. In the following, it is assumed that the servo-constraints are
compatible with the geometric constraints. Thus, motion that is already constrained
by the geometric constraints cannot be forced on a desired trajectory that is not
compatible with the geometric constraints. In case of minimal coordinates, the
constraints cg and the Lagrange multipliers λ vanish. Thus, the servo-constraints
are automatically compatible with the geometric constraints. The set of DAEs must
be solved to yield the feedforward control input ud. Preferably, this should be done
in real-time to allow trajectories to be altered in real-time.

The set of equations including the additional constraints c(y) remains struc-
turally similar to the forward dynamics of Eqs. (2.8)–(2.10). While for the forward
dynamics, the geometric constraints cg(y) are enforced by the Lagrange multi-
pliers λ, in the inverse model case the servo-constraints c(y) are enforced by the
system inputs u. Thus, there are some similarities between the terms Bu and CT

gλ.
The generalized reaction forces act orthogonal to the tangent of the constraint
manifold and the system is in a so-called ideal orthogonal realization. However,
in contrast to the generalized reaction forces CT

gλ, the system inputs Bu are
not necessarily perpendicular to the tangent space of the constraint manifold and
different configurations can be distinguished [9]. An inverse model can be in ideal
and non-ideal orthogonal and tangential configuration, which is visualized in Fig. 2.
In case of multi-input-multi-output (MIMO) systems, there can be orthogonal as
well as tangential configurations for individual inputs, yielding a mixed tangential-
orthogonal configuration.
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Fig. 2 Possible realizations of the system input Bu with respect to the tangent of the constraint
manifold defined by servo-constraints c(y). (a) Orthogonal configuration. (b) Non-ideal orthogo-
nal configuration. (c) Tangential configuration

Following nonlinear control theory methods [22] and differentiating the output z

from Eq. (2.7) twice, yields

ż = H̃ (y)ẏ = H̃ (y) Z(y)︸ ︷︷ ︸
H

v (3.5)

z̈ = H (y)v̇ + z̄(y, v) , (3.6)

where the matrix H̃ = ∂z(y)
∂y

: R
n → R

m×(n+nc) describes the Jacobian of the

output and all other derivatives are collected in z̄ = Ḣv. Due to invertibility of the
mass matrix M , the accelerations v̇ are substituted by the dynamic equation (2.9)
yielding

z̈ = HM−1 (
q + B u

) + z̄ . (3.7)

From this follows the relation between input u and output z as

HM−1B u = −HM−1q + z̈ − z̄ . (3.8)

The system input u is therefore connected to the output acceleration z̈ through the
matrix

P = HM−1B . (3.9)

The rank p of the matrix P ∈ R
m×m is used as a measure of system configuration

[9, 28]. Note that the matrix P corresponds to the matrix CgZM−1CT
g for geometric

constraints which is of full rank for nonredundant geometric constraints.
In case of full rank p = m, the system input u can directly reach all components

of the output and the inverse model is of ideal or non-ideal orthogonal realization.
For orthogonal realizations, the arising DAEs are of index 3, similar to classical
geometrically constrained systems. This can be seen by differentiating the output
equation one more time and solving for u̇. In case of rank deficiency 0 < p < m,
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only p components of the output are directly actuated by the input and there is a
mixed tangential-orthogonal realization. In case of p = 0, no system output can
be directly actuated and the inverse model is in tangential realization. Note that
this case is characteristic for differentially flat systems but not restricted to them
[28]. For the configurations with singular matrix P , the differentiation index of the
inverse model DAE is of index larger than 3.

3.1 Relationship Between Relative Degree and Differentiation
Index of Inverse Model DAEs

The differentiation index as defined in Sect. 2.2 of the servo-constraints DAEs (3.1)–
(3.4) is closely related to the relative degree from nonlinear control theory. For
nonlinear systems, the relative degree is presented e.g. in [22, 31]. For single-input-
single-output (SISO) systems, the relative degree is the number of differentiations
of the output until the system input appears for the first time. For MIMO systems,
this concept can be extended to a vector relative degree, see [31] for details. If the
relative degree r of a system equals the number of states in state space (2n for
common multibody systems), the system is input-state linearizable. This is typical
for the case of fully actuated systems, e.g. industrial robots. In case that the relative
degree r is smaller than the number of states, the system is input-output linearizable.
Thus, a linear relationship between input and output is possible by coordinate
transformation and state feedback. However, there remains dynamics which is not
observable from the new input-output relationship and is therefore called internal
dynamics [31].

The internal dynamics is usually nonlinear and difficult to analyze. Therefore,
the concept of zero dynamics is applied, see e.g. [31]. Holding the system output
identically to zero at all time, z(t) = 0 ∀t , provides the zero dynamics. Local
stability of the zero dynamics can be analyzed by using for example Lyapunov’s
indirect method. For tracking problems, the local exponential stability of the
zero dynamics guarantees stability of the internal dynamics if the desired output
trajectory and its first r −1 derivatives are small in magnitude [31]. For stabilization
problems with zd(t) = 0 ∀ t , the result can be relaxed, so that local asymptotic
stability of the zero dynamics guarantees local asymptotic stability of the internal
dynamics [31].

The relative degree r and zero dynamics are nonlinear extensions of the pole
excess and transmission zeros of linear systems, see e.g. [32]. For linear controllable
and observable SISO systems in state space form

ẋ = A x + b u (3.10)

z = C x + d u , (3.11)
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the relative degree equals the difference between the number of poles np and number
of zeros nz [32]. Thus, it holds

r = np − nz . (3.12)

The poles of a linear system in form of Eqs. (3.10)–(3.11) are the eigenvalues of
the state space matrix A. Thus, for mechanical systems without integral type force
laws the number of poles is np = 2n. The transmission zeros are extracted from the
transfer function

G(s) = C (sI − A)−1 b + d = pd(s)

pn(s)
(3.13)

of system (3.10)–(3.11), where s is the variable in frequency domain and I is
the identity matrix of respective size. The transmission zeros are the zeros of the
denominator polynomial pd(s). For linear systems, the eigenvalues of the zero
dynamics correspond exactly to the position of the transmission zeros. Linear
analysis can be applied for linear systems to verify the zero dynamics and to
determine stability of the internal dynamics. Note that the inverse model is also
represented by the inverse transfer function G(s)−1. Thus, with no transmission
zeros in the transfer function G(s), the inverse will not have any dynamics and is just
an algebraic inverse model. If there are zeros, the inverse model features dynamics
itself.

The relationship between the relative degree and the differentiation index for
servo-constraints problems in form of Eqs. (3.1)–(3.4) has been analyzed in [13]
for various mechanical examples. It was shown that the differentiation index is the
relative degree plus one for the case that the system dynamics or at least the internal
dynamics is modeled as an ODE. Otherwise, the differentiation index can be larger
than r + 1, since the relative degree only concerns the input-output behavior, but
the differentiation index concerns the complete DAE system (3.1)–(3.4). In the
complete DAE system, it is possible for the internal dynamics to be modeled by
a higher index DAE.

3.2 Index Reduction and Analysis Methods

The inverse model represented by the differential algebraic equations (3.1)–(3.4)
is generally nonlinear and its differentiation index might be larger than 3. This
complicates numerical treatment and analysis. Index reduction approaches have
been proposed to reduce the DAE index, see e.g. [19]. Methods that are used so far in
context of servo-constraints are the projection approach [9] and minimal extension
[2]. Besides the index reduction methods, further analysis methods are available
which are helpful for non-flat systems. In that case, the internal dynamics needs to be
extracted from the DAEs and analyzed with respect to its stability. For that reason,
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a coordinate projection approach was proposed in [28]. Moreover, a reformulation
of the model dynamics using redundant coordinates might be helpful for numerical
treatment and analysis [11, 24]. In the following, the projection approach, coordinate
transformation approach and a reformulation of the problem are briefly reviewed
and applied to the examples in Sect. 4.

3.2.1 Projection Approach

For multibody systems in ODE form, the projection approach is presented in [9] and
is expanded for systems in DAE form in [11]. Here, the projection for ODE systems
given by Eqs. (2.1)–(2.2) is summarized. By defining suitable projection matrices,
the equations are projected onto a constrained and an unconstrained subspace
which are complementary subspaces. The constrained subspace is orthogonal to the
tangent space of the constraint manifold and its projection matrix follows from the
Jacobian of the servo-constraints H : R

n → R
m×n. The unconstrained subspace

is tangential to the constraint manifold and spanned by the matrix G : R
n →

R
n×(n−m) obtained from

HG = 0 , GTHT = 0 . (3.14)

Projecting the dynamic equations onto the respective subspaces yields

[
GT

HM−1

] (
M(y, t) v̇ = q(y, v, t) + B u

)
. (3.15)

The term Hv̇ is replaced by the output equation (3.6), where also the servo-
constraint is substituted to yield Hv̇ = z̈d − z̄. By this substitution, the number of
differential equations is reduced. Reordering the projected dynamic equations and
adding the servo-constraint Eq. (3.4) yields a new set of DAEs

ẏ = Zv (3.16)

GTMv̇ = GTq + GTB u (3.17)

0 = HM−1 q + HM−1Bu − z̈d + Ḣ v (3.18)

0 = z − zd . (3.19)

Note that the dimension of differential equations is reduced. The differential
equations (3.16) and (3.17) are of dimension n and n − m respectively, while each
of the algebraic equations (3.18) and (3.19) is of dimension m. For the overhead
crane example which is often used for demonstration purposes, this projection was
sufficient to reduce the DAE index from 5 to 3 and simplify the numerical solution
[9, 24].
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3.2.2 Coordinate Transformation

For analysis purposes of the system behavior, it might be convenient to apply a
coordinate transformation to the equations of motion. With the transformation,
ODEs describing the internal dynamics can be extracted and stability in terms of
zero dynamics can be analyzed. While the coordinate transformation is here shown
for dynamic systems in ODE form, a generalization is possible for systems in DAE
form [5]. Motivated by nonlinear control theory, it is useful to rewrite the equations
of motion given by Eqs. (2.1)–(2.2) in a new set of coordinates

y ′ =
[

z

yu

]
=

[
z(y)

yu

]
, (3.20)

which include the system output z. For the new velocities, it follows

v′ =
[

ż

vu

]
=

[
H a H u

0 I

] [
va

vu

]
. (3.21)

Note that the output Jacobian H is split into two parts such that H = [
H a H u

]
,

according to actuated and unactuated generalized coordinates. Also note that the
submatrix H a must be invertible for an admissible coordinate transformation [28].
This holds if the output equation z(y) depends on all actuated coordinates ya. For
the acceleration level holds accordingly

v̇′ =
[

z̈

v̇u

]
=

[
H a H u

0 I

] [
v̇a

v̇u

]
+

[
z̄

0

]
, (3.22)

where the acceleration v̇ = [
v̇a v̇u

]T
is substituted from Eq. (2.2) to yield

v̇′ =
[

P u + HM−1q + z̄[
0
... I

]
M−1 (Bu + q)

]
. (3.23)

In these equations, the original coordinates ya, va must be substituted by the new
coordinates z, ż. This involves solving the generally nonlinear equation (3.20)
for ya. In Sect. 4.2 it will be shown how this coordinate transformation helps
extracting and evaluating the internal dynamics.

3.2.3 Using Redundant Coordinates for Servo-Constraints Approach

A method slightly similar to the coordinate transformation is presented in the
following. As was proposed in [11], it might be convenient to derive the system
dynamics in DAE form since a DAE system has to be solved anyways for the inverse
model. This simplifies the modeling process. In the special case, where the system
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output z is directly part of the redundant coordinate vector y, this also simplifies the
solution process. Then, the redundant coordinate vector can be reordered so that the
output is represented as

z = [
I 0

]
y , (3.24)

where I is an m × m identity matrix and here 0 ∈ R
m×n−m. The servo-

constraints c(y) then reduce to

c(y) = [
I 0

]
y − zd(t) = 0 . (3.25)

Then, the servo-constraints and its derivatives

0 = [
I 0

]
ẏ − żd , 0 = [

I 0
]
(Zv̇ + Żv) − z̈d . (3.26)

can be substituted in the set of DAEs (3.1)–(3.4). Thus, the first m equations of
the differential equation (3.2) reduce to algebraic instead of differential equations,
since z̈d is specified by the trajectory. It has been shown in [24], that this substitution
reduces the DAE index from 5 to 3 for the overhead crane system.

This analysis method is related to the coordinate transformation because the
output is also represented as part of the coordinate vector and is useful for analysis
and index reduction purposes.

3.3 DAE Solver

The set of original differential algebraic equations (3.1)–(3.4) or projected equations
(3.16)–(3.19) is solved for the desired control input ud and the desired trajectories of
all coordinates. Note that the existence of a solution and especially a unique solution
is not guaranteed for general nonlinear DAEs. Also, in order to calculate a solution,
the set of initial conditions y0, v0, u0 must be consistent with the constraints (3.3),
(3.4) or (3.18), (3.19) respectively. Consistent initial conditions may be determined
by solving the static multibody system in the starting equilibrium position. Note
that in case the solution is not unique or not existent, the solver might not even
notify the user [16]. Therefore, the calculated solution must always be carefully
monitored, see e.g. the proposed method in [16]. A solution might not exist in
case the desired trajectory cannot be generated by the system states because of
e.g. conflicting geometric constraints and servo-constraints. Multiple solutions arise
when the desired output trajectory can be reached by different state trajectories.
This is for example already the case for a 2-arm manipulator. Redundant multibody
systems with more system inputs than degrees of freedom also show this property.
In that case, any solution is fine for open-loop control as long as the constraints
on the output trajectory are fulfilled. The remaining free parameters might then
be utilized to optimize the motion e.g. by constraining or optimizing the energy
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input to the system [3]. The calculated solution can always be verified by applying
the determined control input ud in a forward-time integration. In the following, we
assume the solution to be existent and unique.

Applicable DAE solvers for higher index DAEs must be chosen carefully.
For detailed presentation of applicable integration schemes refer to [19]. DAE
integrators either use a fixed or variable step size. The choice of a suitable method
depends on the desired application.

The servo-constraints method is applicable for evaluating desired trajectories and
estimating maximum control inputs. In this offline usage, a variable-step size solver
with potentially high convergence order is an appropriate choice to yield accurate
solutions. For this usage, a reformulation of the DAE problem into an optimization
problem can be helpful as well, as proposed in [1].

For online usage as a feedforward control with possibly time-varying trajectories,
a fixed-step size solver with real-time applicability is necessary. In order to ensure
real-time capability, one or few iterations in an underlying nonlinear equations
solver are necessary. An implicit Euler scheme has the necessary stability properties
and is applied in [10, 24, 28]. In the Euler scheme, nonlinear equations have to
be solved using an iterative scheme, for example Newton’s method. In order to
ensure real-time capability, the scheme can be restricted to one iteration, resulting
in the linear implicit Euler scheme. For the overhead crane example, it was shown
in [24] that both the linear implicit Euler scheme and the implicit Euler scheme
with a maximum number of 10 iterations show comparable results and are both
suitable for real-time implementation. A drawback of such a simple scheme is for
example its numerical damping [20]. Moreover, ill-conditioning issues might arise
when applying Newton’s method. Such problems might be prevented by pre-scaling
the algebraic equations [25]. Also, higher order schemes with fixed-step size such
as implicit Runge-Kutta methods or backwards differencing formulas also seem
applicable and yield higher convergence orders. The use of more advanced inte-
gration schemes for real-time application of servo-constraints is ongoing research.
This paper concentrates on the application of the implicit Euler.

For the implicit Euler scheme, a discretization with time step size Δt is
performed by finite differences

ẏk ≈ yk+1 − yk

Δt
, (3.27)

where the indices k + 1 and k describe the value of y at the time instants k + 1
and k respectively and the division is element-wise. Applying the implicit Euler
approximation then results in the nonlinear set of equations

yk+1 − yk

Δt
= Z(yk+1) vk+1 (3.28)

M
(
yk+1, tk+1

) vk+1 − vk

Δt
= q

(
yk+1, vk+1, tk+1

) + CT
g (yk+1) λk+1 + B uk+1

(3.29)
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0 = cg(yk+1) (3.30)

0 = c(yk+1) (3.31)

which is collected in a single vector F for readability

0 = F (yk+1, vk+1,uk+1,λk+1) . (3.32)

The set of nonlinear equations F is solved for the coordinates y and v, generalized
forces λ and inputs u at time instant tk+1 using Newton’s method. Note that the
implicit Euler scheme is also applicable to the projected DAE system of Eqs. (3.16)–
(3.19) and results in an analogous nonlinear set of equations.

4 Illustrative Examples

Examples of some multibody systems are presented in the following. They include a
mass-on-car system derived in minimal and redundant coordinates. With this system
it is shown how small changes in the model properties can change the inverse model
configuration from orthogonal to tangential realization. Also, the substitution from
Sect. 3.2.3 is applied to enhance the DAE solution. Then, an extended mass-on-car
system demonstrates the existence of first order as well as second order internal
dynamics. The internal dynamics is extracted in ODE form based on the coordinate
transformation from Sect. 3.2.2. Moreover, a mass-spring-damper chain is presented
to show the influence of an increasing DAE index and how the projection method
from Sect. 3.2.1 improves the DAE solution. Finally, it is illustrated how the choice
of actuator models influences the resulting differentiation index.

4.1 Mass-on-Car System

The mass-on-car system is analyzed in detail in [28] to illustrate the different phe-
nomena arising in inverse model problems. The results using minimal coordinates
from [28] are briefly reviewed and compared to the use of redundant coordinates.
The SISO system consists of two masses connected by a linear spring-damper
combination. The first mass moves horizontally and is driven by the force F .
The second mass is inclined by an angle α and is connected by a spring-damper
combination. The two degree of freedom system is underactuated and shown in
Fig. 3.

The minimal coordinates are chosen as

y =
[

ya

yu

]
=

[
x1

s1

]
, (4.1)



96 S. Otto and R. Seifried

Fig. 3 SISO mass-on-car
system
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where x1 describes the position of mass 1 and s1 denotes the relative motion of
mass 2 with respect to mass 1. For equilibrium holds s1 = 0. The system input is
the force F applied to mass 1 in horizontal direction. The equations of motion in
ODE form arise as

ẏ = v (4.2)⎡
⎣m1 + m2 m2 cos α

m2 cos α m2

⎤
⎦ v̇ = −

⎡
⎣ 0

k s1 + d ṡ1

⎤
⎦ +

⎡
⎣1

0

⎤
⎦ F , (4.3)

where the masses of bodies 1 and 2 are m1 and m2 and the spring and damper
coefficients are k and d respectively. The system output is the horizontal position of
mass 2 such that

z = x1 + s1 cos α . (4.4)

Accordingly, the servo-constraint is

c(y, t) = x1 + s1 cos α − zd(t) = 0 . (4.5)

Thus, Eqs. (4.2), (4.3) and (4.5) form the inverse model. The various configurations
of the inverse model are derived in [28] for different angles α. For analysis, the
matrix P from Eq. (3.9) is evaluated as

P = sin2 α

m1 + m2 sin2 α
. (4.6)

A configuration with angle α = 90◦ decouples the motion between mass 1 and
mass 2. It can be shown that the relative degree is r = 2 and the inverse model has
an ideal orthogonal realization, due to regularity of P . The motion of mass 2 remains
as internal dynamics of second order and does not contribute to the output z. In case
the angle is 0◦ < α < 90◦, the motion between mass 1 and 2 is coupled. However,
the system has still a relative degree r = 2 and is in non-ideal orthogonal realization.
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Table 1 Overview of different mass-on-car cases depending on angle α

Damping Relative DAE Dimension

Case Angle (Nsm−1) degree r index internal dynamics

1 α = 90◦ d > 0 2 3 2

d = 0 2 3 2

2 0◦ < α < 90◦ d > 0 2 3 2

d = 0 2 3 2

3 α = 0◦ d > 0 3 4 1

d = 0 4 5 Diff. flat

For an angle α = 0◦, the system has relative degree r = 3 and represents tangential
realization due to P = 0. The internal dynamics is first order dynamics in this case.
In case of α = 0◦ and no damping d = 0 Nsm−1, the system becomes differentially
flat and has a relative degree r = 4. There is no internal dynamics and the analytical
solution is derived in [28] as

Fexact = (m1 + m2) z̈d + m1 m2

k
z
(4)
d . (4.7)

These various cases are summarized in Table 1. So far, the system was analyzed
using the minimal coordinates of Eq. (4.1). As described in Sect. 3.2.3, it might be
advantageous to rewrite the system dynamics using redundant coordinates. Here,
the redundant coordinates are chosen as

y =
⎡
⎣x1

x2

y2

⎤
⎦ , (4.8)

where xi and yi denote the horizontal and vertical position of mass 1 and 2
respectively. Then, the model dynamics arises in DAE form as

ẏ = v (4.9)

⎡
⎣m1 0 0

0 m2 0
0 0 m2

⎤
⎦ v̇ =

⎡
⎢⎢⎣

FSD cos α

−FSD cos α

−FSD sin α − m2 g

⎤
⎥⎥⎦ + CT

gλ +

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦ F (4.10)

cg(y) = (x2 − x1) tan α − (y2 − h) = 0 . (4.11)

Here, the generalized reaction force between the inclined plane and mass 2 is
denoted by λ, the vertical position of mass 2 in equilibrium is h and the applied
force FSD from the spring-damper combination is

FSD = k s1 + d ṡ1 − m2 g sin α . (4.12)
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Using redundant coordinates, the relative position s1 is

s1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
(x2 − x1)

2 + (y2 − h)2 x2 > x1

0 x1 = x2

−
√

(x2 − x1)
2 + (y2 − h)2 x2 < x1

(4.13)

where the constraint cg(y) from Eq. (4.11) is substituted in Eq. (4.13) yielding

s1 = (x2 − x1)
√

1 + tan2 α . (4.14)

Thus, singularities in ṡ are avoided. Note that the geometric constraint cg(y) of
Eq. (4.11) forces mass 2 to stay on the inclined plane and its Jacobian is

Cg = [− tan α tan α − 1
]

. (4.15)

The system output is still the horizontal position of mass 2, z = x2. The servo-
constraint is then given by

c(y, t) = x2 − zd(t) = 0 . (4.16)

Together with Eqs. (4.9)–(4.11), this forms the inverse model DAE. Note that with
the redundant coordinates of Eq. (4.8), the system output is part of the coordinate
vector with

z = [
0 1 0

]
y = x2 . (4.17)

As proposed in Sect. 3.2.3, the servo-constraint Eq. (4.16) is directly substituted into
the model dynamics in order to reduce numeric complexity. This yields the inverse
model

⎡
⎢⎢⎣

m1 0 0

0 m2 0

0 0 m2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ẍ1

z̈d

ÿ2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

FSD cos α

−FSD cos α

−FSD sin α − m2 g

⎤
⎥⎥⎦ + CT

g λ +

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦F (4.18)

cg(y) = (zd − x1) tan α − (y2 − h) = 0 , (4.19)

where the explicit servo-constraint c(y, t) is dropped due to its substitution into
Eqs. (4.18)–(4.19).

For comparison, the inverse model is solved by an implicit Euler scheme
in form of minimal coordinates given by Eqs. (4.2), (4.3) and (4.5), redundant
coordinates given by Eqs. (4.9)–(4.11) and (4.16) and the substituted redundant
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Table 2 Overview of parameters for mass-on-car system

Parameter m1 m2 k d

Value 1 kg 1 kg 5 Nm−1 0 Nsm−1
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Computed coordinates y
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F
[N

]

Computed system input F

Fig. 4 Desired trajectory zd and numerical results for the mass-on-car system with time step
size Δt = 0.01 s

coordinates given by Eqs. (4.18) and (4.19). Moreover, index reduction by projec-
tion as described in Sect. 3.2.1 is applied to the minimal coordinates formulation of
Eqs. (4.2)–(4.3) and the solution is compared to the other formulations. The model
parameters are summarized in Table 2 and the differentially flat case with α = 0 ◦
and d = 0 Nsm−1 is chosen. The desired trajectory zd(t) from zd(0) = 0.5 m
to zd(tf) = 2.5 m as well as the computed minimal coordinates x1 and s1 and
input F are shown in Fig. 4 for step size Δt = 0.01 s and transition time tf = 10 s.
Irrespectively of the formulation, no obvious difference is seen from these plots.
Therefore, only one representative solution is shown here.

Convergence of the implicit Euler scheme is shown in Fig. 5, where the maximum
error of the computed system input is plotted over different time steps Δt . The
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Fig. 5 Maximum error emax between numerical and analytical solution of the mass-on-car system
for different time step sizes Δt and various inverse model formulations

maximum error emax between the analytic system input Fexact given by Eq. (4.7)
and the computed input F is

emax = max
t

{|Fexact(t) − F(t)|} . (4.20)

All results show first order convergence behavior. Both the formulation in redundant
coordinates given by Eqs. (4.9)–(4.11) and (4.16) and the minimal coordinates
formulation of Eqs. (4.2)–(4.3) and (4.5), referenced by DAE and ODE respectively,
run into numerical rounding errors for step sizes smaller than Δt = 0.01 s. In
contrast, the substituted Eqs. (4.18)–(4.19) and the projected equations, referenced
by DAE subs and ODE proj respectively, show stable numerical results up to a
step size Δt = 0.001 s due to index reduction. Thus, a substitution or projection
should be favored over the other two formulations for solving the inverse model
problem. Plotting the computed system input F over time also shows the numerical
instability for small step sizes. In Fig. 6, the computed system input is shown for
a step size Δt = 0.005 s for the redundant coordinate formulation as well as the
substituted formulation. Numerical rounding errors result in numerical noise that
amplifies over time for the DAE, while the substituted formulation is smooth.
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Fig. 6 Computed system input F for the mass-on-car system for time step size Δt = 0.005 s
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Fig. 7 Extended mass-on-car system

4.2 Extension of Mass-on-Car System

The previously described mass-on-car system is extended by an additional mass
and is visualized in Fig. 7. The additional body 1 with mass m1 is driven by the
force F and is connected to body 2 by a linear spring-damper combination with
coefficients k1 and d1 respectively. Body 3 moves on a plane inclined by an angle α

and is connected to body 2 by a linear spring-damper combination with coefficients
k2 and d2. The SISO system has n = 3 of freedom and is underactuated.

The dynamics of the extended mass-on-car system is described by minimal
coordinates

y =
[

ya

yu

]
=

⎡
⎢⎣

x1

s1

s2

⎤
⎥⎦ , (4.21)
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where the position of body 1 is described by x1 and the relative positions of
bodies 2 and 3 are described by s1 and s2 respectively. Applying the Newton-Euler
formalism, the equations of motion in ODE form arise as

ẏ = v (4.22)⎡
⎢⎢⎣

m1 + m2 + m3 m2 + m3 m3 cos α

m2 + m3 m2 + m3 m3 cos α

m3 cos α m3 cos α m3

⎤
⎥⎥⎦ v̇ = −

⎡
⎢⎢⎣

0

d1ṡ1 + k1s1

d2ṡ2 + k2s2

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦ F .

(4.23)

The system output is defined as the horizontal position of mass 3, such that

z = x1 + s1 + s2 cos α . (4.24)

Thus, the servo-constraints follow as

c(y, t) = x1 + s1 + s2 cos α − zd = 0 . (4.25)

In order to determine the constraint realization, the matrix P from Eq. (3.9) is
evaluated for this SISO system as P = 0 for all configuration angles α. This is
because the system input F never directly influences the output z. There is always
a coupling between the two masses by the spring k1. Thus, the inverse model
is in tangential realization for all angles α. Further analysis is performed using
the coordinate transformation described in Sect. 3.2.2. Accordingly, the actuated
coordinate x1 is replaced by the output z, such that the new set of coordinates is

y′ =
⎡
⎣ z

s1

s2

⎤
⎦ =

⎡
⎣ x1 + s1 + s2 cos α

s1

s2

⎤
⎦ =

⎡
⎣1 1 cos α

0 1 0
0 0 1

⎤
⎦ y =

[
H a H u

0 I

]
y .

(4.26)

The transformation matrix is invertible for all angles α, since H a is invertible for all
angles α. Following the procedure described in Sect. 3.2.2, the dynamics of the new
set of generalized coordinates y′ arises as

ẏ ′ =

⎡
⎢⎢⎣

ż

ṡ1

ṡ2

⎤
⎥⎥⎦ = v′ (4.27)
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v̇′ =

⎡
⎢⎢⎢⎢⎣

0

− 1

m1

0

⎤
⎥⎥⎥⎥⎦F +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−m3 FSD,1 sin2 α + m2 FSD,2 cos α

m3
(
m2 + m3 sin2 α

)
FSD,2 cos α

m2 + m3 sin2 α
− FSD,1 (m1 + m2 + m3 sin2 α)

m1
(
m2 + m3 sin2 α

)
FSD,1 cos α

m2 + m3 sin2 α
− (m2 + m3) FSD,2

m3
(
m2 + m3 sin2 α

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.28)

with the abbreviations

FSD,1 = d1 ṡ1 + k1 s1 (4.29)

FSD,2 = d2 ṡ2 + k2 s2 . (4.30)

From these equations, the system properties such as internal dynamics and the
relative degree are analyzed in the following for three cases of angles α. Case 1
describes the configuration in which α = 90◦, while case 2 covers 0◦ < α < 90◦
and case 3 stands for α = 0◦.

Case 1 The angle of the inclined plane is set to α = 90◦. In this case, the dynamics
of body 3 is entirely decoupled from the motion of bodies 1 and 2 and the output
reduces to z = x1+s1. The dynamics of body 3 cannot be seen from the output and is
thus internal dynamics. The motion of bodies 1 and 2 is equivalent to the motion of
a 2-mass-spring-damper chain. From analysis of Eq. (4.28), a relationship between
input F and output z is sought. Analyzing the second part of Eq. (4.28) shows that
the input F is a function of s̈1

F = −m1s̈1 − m1 + m2 + m3

m2 + m3
FSD,1 , (4.31)

where α = 90 ◦ is substituted. From the first part of Eq. (4.28) follows that ṡ1 is
a function of z̈, which can be differentiated once. Thus, the third derivative of the
output

...
z influences the input F and the system is of relative degree r = 3.

According to Eq. (3.12), the dimension of the internal dynamics is therefore 3.
The states of the internal dynamics are the state s1 of the first order dynamics of
body 2 and the states [s2 ṡ2]T of the second order dynamics for body 3, collected
in η = [s1 s2 ṡ2]T. Reordering the first and third equation of Eq. (4.28), yields the
internal dynamics

η̇ =

⎡
⎢⎢⎢⎢⎣

−k1

d1
s1 − m2 + m3

d1
z̈

ṡ2

−d2ṡ2 + k2s2

m3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−k1

d1
0 0

0 0 1

0 − k2

m3
− d2

m3

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A1

η + f (z̈) . (4.32)
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Note that the dependence on the second derivative of the output z is collected in the
function f (z̈). Stability of the free internal dynamics is analyzed as zero dynamics
with z̈ = ż = z = 0 ∀ t , such that f (z̈) = 0. Thus, the zero dynamics is linear and
stability is read off the eigenvalues λA1 of the matrix A1. The eigenvalues

λA1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1

d1

−
d2 +

√
d2

2 − 4k2m3

2 m3

−
d2 −

√
d2

2 − 4k2m3

2 m3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.33)

have negative real parts for all di > 0 Nsm−1 and thus the zero dynamics is
asymptotically stable. The first eigenvalue is also reflected in the transfer function
of the model dynamics

G(s) = k1 + d1s

a4 s4 + a3 s3 + a2 s2 , (4.34)

with the polynomial coefficients

a4 = m1m2 + m1m3

a3 = d1m1 + d1m2 + d1m3

a2 = k1m1 + k1m2 + k1m3 .

Note that due to complete decoupling the dynamics of mass 3 cannot be seen from
the transfer function G(s). The relative degree r = 3 is represented as the pole
excess of 4 poles versus 1 transmission zero of the transfer function.

For neglectable damping, di = 0 Nsm−1, the undamped dynamics of body 3 is
still decoupled and of second order. However, the first part of Eq. (4.28) reduces to
the algebraic relationship

s1 = −m2 + m3

k1
z̈ (4.35)

between the variable s1 and the second derivative of the output z̈, while Eq. (4.31)
still holds. Therefore, the dynamics of bodies 1 and 2 have now relative degree r =
4. The internal dynamics is only the second order dynamics of body 3.

Case 2 For the general case of 0◦ < α < 90◦, the motion of body 3 and bodies
1 and 2 is coupled. Again, the relationship between input and output is analyzed
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with Eq. (4.28). The second part shows again the relationship F = F(s̈1) and from
the first part follows that the coordinate ṡ1 is a function of the second derivative z̈.
However, this time the dynamics of s1 and s2 are coupled, so that ṡ1 = ṡ1(z̈, ṡ2, s2).
Once more, the input F is a function of

...
z and the relative degree is r = 3. The

internal dynamics must therefore have 3 states. Similar to case 1, the states of the
internal dynamics are η = [s1 s2 ṡ2]T. Once more reordering the first and third part
of Eq. (4.28) highlights the internal dynamics

η̇ =

⎡
⎢⎢⎢⎢⎢⎣

−m2FSD,2 cos α

d1 m3 sin2 α
− k1

d1
s1 +

(
−m3

d1
− m2

d1 sin2 α

)
z̈

ṡ2

− FSD,2

m3 sin2 α
− cos α

sin2 α
z̈

⎤
⎥⎥⎥⎥⎥⎦ (4.36)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−k1

d1
− k2 m2 cos α

d1 m3 sin2 α
− d2 m2 cos α

d1 m3 sin2 α

0 0 1

0 − k2

m3 sin2 α
− d2

m3 sin2 α

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A2

η + f (z̈) , (4.37)

which are again driven by the second order derivative z̈. For the zero dynamics, it is
z̈ = ż = z = 0 and thus f (z̈) = 0. The eigenvalues λA2 of the state space matrix A2
are again analyzed for stability and arise as

λA2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k1

d1

−
d2 +

√
d2

2 − 4k2m3 sin2 α

2 m3 sin2 α

−
d2 −

√
d2

2 − 4k2m3 sin2 α

2 m3 sin2 α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.38)

They have negative real parts for all di > 0 Nsm−1 and all angles α > 0◦ and are
visualized in the root locus plot in Fig. 8. The system is analyzed with the parameters
shown in Table 3. While the first eigenvalue is constant at λA2,1 = − k1

d1
, the other

two eigenvalues λA2,2 and λA2,3 can be interpreted of describing the dynamics of
a 2-mass oscillator. Its dynamics changes depending on the damping parameter d2.
The system is lightly damped for d2 < 2

√
k2 m3 sin α = d̂2 and the eigenvalues are

complex conjugates. The value d2 = d̂2 describes the limit case for light damping
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Fig. 8 Eigenvalues λA2 of the extended mass-on-car system in configuration case 2 where 0◦ <

α < 90◦

Table 3 Overview of
parameters for extended
mass-on-car system

Parameter Value

m1 1 kg

m2 1 kg

m3 2 kg

k1 5 Nm−1

k2 5 Nm−1

d1 0 Nsm−1 and 1 Nsm−1

d2 0 Nsm−1 and 1 Nsm−1

and for larger damping parameters d2, the 2-mass oscillator is strongly damped as
the eigenvalues λA2,2 and λA2,3 become real. This change of behavior is reflected in

Fig. 8 at the value α̂ = arcsin
(

d2
2
√

k2 m3

)
. For the limits α → 0◦ and α → 90◦, the

eigenvalues tend to

lim
α→0

λA2,2 = −∞ (4.39)

lim
α→0

λA2,3 = −k2

d2
(4.40)

lim
α→90◦ λA2,2 = −

d2 +
√

d2
2 − 4k2m3

2m3
(4.41)

lim
α→90◦ λA2,3 = −

d2 −
√

d2
2 − 4k2m3

2m3
(4.42)
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respectively. Note that the limit lim
α→0

λA2,3 is obtained from Eq. (4.38) and applying

the rule of L’Hospital twice. Case 1 is obtained in the limit α → 90◦. This shows
that, depending on the angle α, the characteristic behavior of the internal dynamics
might be fundamentally different.

For the system in the same configuration without damping, di = 0 Nsm−1, the
differential equation for ṡ1 from the first part of Eq. (4.28) reduces to the algebraic
relation

s1 = −m2 + m3 sin2 α

k1 sin2 α
z̈ − k2m2 cos α

k1m3 sin2 α
s2 . (4.43)

Thus, s1 is a function of z̈ and the system input then depends on z(4). Therefore, the
system with 0◦ < α < 90◦ and no damping di = 0 Nsm−1 has relative degree r = 4.
This is also reflected in the eigenvalues. Due to the algebraic relation for s1, the
dimension of the internal dynamics is only 2 and thus the eigenvalues associated
with the coordinate s1 vanish. The two remaining eigenvalues stay on the imaginary
axis, see Fig. 8.

The numerical solution of the extended mass-on-car system for case 2 with
damping di > 0 Nsm−1 and an angle α = 45◦ is presented in the following. The
desired output trajectory zd(t) is shown in Fig. 9 from zd(0) = 1 m to zd(tf) = 4 m
with tf = 15 s. Solving the servo-constraints problem given by Eqs. (4.22), (4.23)
and (4.25) yields the desired control inputs ud(t) which are shown in Fig. 9. The
solution was calculated using an implicit Euler scheme with time step size Δt =
0.01 s and a maximum number of 10 iterations in the Newton scheme to ensure
real-time capability. Note that during the calculations, the convergence criterion was
fulfilled before the maximum amount of iterations was reached.

In order to verify the accuracy of the solution, the system is afterwards simulated
with the desired control inputs ud and the simulated system output is also shown
in Fig. 9. As there are no disturbances and no initial errors in the simulation,
the simulated system output is identical to the desired one. The system features
internal dynamics, which are integrated over time by the DAE solver. Due to the
coordinate transformation, it was possible to obtain an ODE formulation of the
internal dynamics, given by Eq. (4.37). In order to evaluate the solution, the internal
dynamics computed by the inverse model given by Eqs. (4.22), (4.23) and (4.25) is
compared to the respective ODE solution which is integrated with a Runge-Kutta 45
scheme in Matlab as a reference. Both lead to similar results as shown in Fig. 10 for
a step size of Δt = 0.01 s. In order to demonstrate significant integration errors of
the simple Euler scheme with a larger step size, Fig. 11 shows the same comparison
of the internal dynamics. In this case the inverse model solution was obtained with
a step size Δt = 0.1 s. This leads to notable integration errors.
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Fig. 9 Numerical results for the extended mass-on-car system in case 2 with angle α = 45◦ and
time step size Δt = 0.01 s

Case 3 For angle α = 0◦, the system reduces to a free 3-mass-spring-damper chain.
In this case, Eq. (4.28) reduces to

v̇′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

− 1

m1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

F +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−FSD,2

m3

FSD,2

m2
− m1 + m2

m1 m2
FSD,1

FSD,1

m2
− m2 + m3

m2 m3
FSD,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.44)

These equations are again analyzed to find the relation between input F and
output z. From the second part follows that input F depends on s̈1 with

F = −m1 s̈1 + m1

m2
FSD,2 − m1 + m2

m2
FSD,1 . (4.45)
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Fig. 10 Internal states s1 and s2 for case 2 with angle α = 45◦ and step size Δt = 0.01 s for the
inverse model solution as well as reference ODE solution
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Fig. 11 Internal states s1 and s2 for case 2 with angle α = 45◦ and step size Δt = 0.1 s for the
inverse model solution as well as reference ODE solution

From the third part follows the coordinate ṡ1 as a function of s̈2. With the
relationship ṡ2 = ṡ2(z̈) from the first equation follows that the input F is a function
of the fourth derivative of the output and hence the system has relative degree r = 4.
Thus, there remain two internal dynamics states. Reordering and transforming the
first and third part of Eq. (4.44) yields

ṡ2 = − 1

d2
(m3 z̈ + k2 s2) (4.46)

s̈2 = −FSD,2

(
1

m2
+ 1

m3

)
+ 1

m2
FSD,1 . (4.47)

From Eq. (4.47) follows a differential equation for ṡ1, where s̈2 and ṡ2 are substituted
from Eq. (4.46) and its derivative. Then, the internal dynamics in the states
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η= [s1 s2]T is

η̇ =

⎡
⎢⎢⎢⎣

−k1

d1

k2
2 m2

d1 d2
2

0 −k2

d2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A3

η + f (
...
z ) , (4.48)

which is driven by the third derivative
...
z . The zero dynamics is obtained by

setting
...
z = z̈ = ż = z = 0 and therefore f (

...
z ) = 0. The eigenvalues λA3 of the

zero dynamics are read off the main diagonal to have negative real parts for all
di > 0 Nsm−1. The equivalent transfer function of the system dynamics reads

G(s) = (k1 + d1 s) (k2 + d2 s)

a6 s6 + a5 s5 + a4 s4 + a3 s3 + a2 s2 (4.49)

with the coefficients

a6 = m1 m2 m3

a5 = d1 m1 m3 + d2 m1 m2 + d1 m2 m3 + d2 m1 m3

a4 = d1 d2 m1 + d1 d2 m2 + d1 d2 m3 + k1 m1 m3 + k2 m1 m2

+ k1 m2 m3 + k2 m1 m3

a3 = d1 k2 m1 + d2 k1 m1 + d1 k2 m2 + d2 k1 m2 + d1 k2 m3 + d2 k1 m3

a2 = k1 k2 m1 + k1 k2 m2 + k1 k2 m3 .

Stability of the zero dynamics is reflected by the transmission zeros of the transfer
function G(s) which are in the left half plane. Moreover, the transfer function has a
pole excess of 4, which corresponds to relative degree r = 4.

Without damping, the internal dynamics vanishes completely and thus the
relative degree is r = 6. The system is then differentially flat and the system
input depends on z(6). The analytic inverse model can be extracted by reordering
Eq. (4.44). The system coordinates y are functions of the output z and a finite
number of derivatives, such that

x1 = z − s1 − s2 (4.50)

s1 = m2

k1

(
−m3

k2
z(4) + m2 + m3

m2 m3
k2 s2

)
(4.51)

s2 = −m3

k2
z̈ (4.52)
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Table 4 Overview of different extended mass-on-car configurations

Damping Relative DAE Dimension

Case Angle (Nsm−1) degree r index internal dynamics

1 α = 90◦ di > 0 3 4 3

di = 0 4 5 2

2 0◦ < α < 90◦ di > 0 3 4 3

di = 0 4 5 2

3 α = 0◦ di > 0 4 5 2

di = 0 6 7 Diff. flat

and the input F is a function of the coordinates and the inputs

F = m1 k2

m2
s2 − m1 + m2

m2
k1 s1 − m1 s̈1 . (4.53)

Substituting all information in Eq. (4.53) shows the relation F = F
(
z(6)

)
.

The different phenomena of the extended mass-on-car system are summarized in
Table 4. It is again noted that the differentiation index of the corresponding servo-
constraint problem is larger by one than the relative degree of the system.

4.3 Mass-Spring-Damper Chain

A mass-spring-damper chain is a generalization of the mass-on-car system with α =
0◦ and an additional spring-damper pair that connects the first body to a wall. It is a
popular example and also analyzed in the context of servo-constraints in e.g. [1, 18]
and [28]. The mass-spring-damper chain has several properties, which turn it into a
suitable example to analyze the servo-constraints approach. First of all, the system
is linear in case of linear spring-damper combinations so that a linear reference
analysis is possible. For the case of neglectable damping, the model is differentially
flat. Thus, there is an analytic reference solution suitable for comparison and con-
vergence studies. Moreover, its relative degree changes with the number of masses.

Let the chain have f masses and the position coordinates x1, . . . xf , as shown
in Fig. 12. The masses are connected by linear spring-damper combinations with
coefficients ki and di respectively. It is a SISO system, where the output is the
position x1 of the first mass and the input is the force F applied on the last mass.
It has f degrees of freedom and is underactuated for f > 1. The chain with
translational degrees of freedom is equivalent to systems with torsional degrees of
freedom such as a drive train.

The dynamics of a general damped system with f masses and linear spring-
damper combinations is of the linear ODE form

ẏ = v (4.54)

Mv̇ + Dv + Ky = BF , (4.55)



112 S. Otto and R. Seifried

x

y

F

x1

1 ...

x2 xf

Fig. 12 Mass-spring-damper chain with f masses

with the mass matrix M , the damping matrix D, the stiffness matrix K , the input
distribution matrix B and the generalized coordinate vector

y =
[

yu

ya

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xf−1

xf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.56)

The dynamics matrices arise as

M =

⎡
⎢⎢⎢⎢⎢⎣

m1 0
0 m2 0

. . .
. . .

. . .

mf−1 0
0 mf

⎤
⎥⎥⎥⎥⎥⎦ (4.57)

D =

⎡
⎢⎢⎢⎢⎢⎣

d1 + d2 −d2 0
−d2 d2 + d3 −d3

. . .
. . .

. . .

−df−1 df−1 + df −df

−df df

⎤
⎥⎥⎥⎥⎥⎦ (4.58)

K =

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0
−k2 k2 + k3 −k3

. . .
. . .

. . .

−kf−1 kf −1 + kf −kf

−kf kf

⎤
⎥⎥⎥⎥⎥⎦ (4.59)

B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦ , (4.60)
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with the respective linear spring and damper coefficients ki and di and masses mi .
The scalar system output z is the position of mass 1, such that

z = [
1 0 . . . 0 0

]
y = x1 . (4.61)

Together with the servo-constraint

c(y, t) = x1 − zd = 0 , (4.62)

Eqs. (4.54) and (4.55) form the inverse model. Note that in contrast to the formu-
lation of the mass-on-car system, the positions of all masses are here defined by
absolute coordinates. Thus, the system output z does not depend on the actuated
coordinate xf and the coordinate transformation as proposed in Sect. 3.2.2 is
not applicable directly. Beforehand, a coordinate transformation to the relative
coordinates si used in the previous example would be necessary. Then, the internal
dynamics can again be derived in ODE form. On the other hand, absolute positions
are useful in deriving the analytical solution to the inverse model and are hence
pursued here. Defining the state vector

x =
[
y

v

]
, (4.63)

the linear state space equations are

ẋ =
[

0 I

−M−1K −M−1D

]
︸ ︷︷ ︸

A

x +
[

0

M−1B

]
︸ ︷︷ ︸

b

u (4.64)

z = [
1 0 . . . 0 0

]
︸ ︷︷ ︸

C

x + 0︸︷︷︸
d

u . (4.65)

The linear state space equations are transformed to a transfer function G(s) by
Eq. (3.13) and linear analysis is performed as a reference. In general, from the
transfer function analysis is inferred that for an undamped chain with f masses, the
relative degree is r = 2f and there is no internal dynamics. Thus, the differentiation
index of the undamped inverse model DAE also changes with the number of masses
and is 2f + 1. For every additional damper with di 
= 0 for i = 2, . . . f , the
numerator polynomial includes the multiplier term (ki + di s). Therefore, for a
system with a number of nd dampers di 
= 0 for i = 2, . . . f , the relative degree
is r = 2f − nd. The existence of the damper d1 does not influence the relative
degree of the system, because this damper is not located between input F and
output z = x1. Accordingly, a fully damped system features internal dynamics and
its relative degree is r = 2f − (f − 1) = f + 1. The internal dynamics is of first
order and the total number of internal dynamics states is f − 1.
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This is demonstrated for the case of f = 2 masses with the dynamic equations

[
m1 0
0 m2

] [
ẍ1

ẍ2

]
+

[
d1 + d2 −d2

−d2 d2

] [
ẋ1

ẋ2

]
+

[
k1 + k2 −k2

−k2 k2

] [
x1

x2

]
=

[
0
1

]
F

(4.66)

z = [
1 0

] [
x1

x2

]
.

(4.67)

Applying Eq. (3.13), the transfer function reads for f = 2

G(s) = k2 + d2s

a4 s4 + a2 s3 + a2 s2 + a1 s + a0
, (4.68)

with

a4 = m1 m2

a3 = m1 d2 + m2 d1 + m2 d2

a2 = m1 k2 + m2 k1 + m2 k2 + d1 d2

a1 = d1 k2 + d2 k1

a0 = k1 k2 .

The transfer function G(s) has one transmission zero and 4 poles, which is a
pole excess of 3. This corresponds to a relative degree r = 3. For neglectable
damping di = 0 Nsm−1, the transfer function reduces to

G(s) = k2

m1 m2 s4 + (m1 k2 + m2 k1 + m2 k2) s2 + k1 k2
, (4.69)

which shows a pole excess of 4, corresponding to a relative degree r = 4. There
remains no internal dynamics. In fact, an analytical solution for the inverse model
is derived in the following. This is shown for f = 2 masses and can be automated
for any f masses. Differentiating the output equation (4.67) twice yields

z̈ = ẍ1 = 1

m1

(
− (k1 + k2) x1 + k2 x2

)
, (4.70)

which is reordered for an expression for the position of the last mass

x2(x1, z̈) = 1

k2

(
m1z̈ + (k1 + k2) x1

)
. (4.71)
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Table 5 Overview of parameters of mass-spring-damper chain

Parameter m k d

Value 1 kg 5 Nm−1 0 Nsm−1

Differentiating equation (4.70) two more times shows the relation between input F

and the fourth derivative of the output z

z(4) = x
(4)
1 = 1

m1

(
− (k1 + k2) ẍ1 + k2 ẍ2

)
(4.72)

= 1

m1

(
−(k1 + k2) ẍ1 + k2

m2
(F + k2 x1 − k2 x2)

)
, (4.73)

where x2 can be substituted by Eq. (4.71). Solving for F gives the analytic solution

Fexact = m1 m2

k2
z(4) + (k1 + k2) m2

k2
ẍ1 − k2 (x1 − x2) (4.74)

for the inverse model and shows that the input F is a function of the output z =
x1 and four derivatives of z. Thus, the system is differentially flat and has relative
degree r = 4. This procedure of differentiating the output z can be repeated for f

masses until the input F appears.
The analytical solution for the inverse model, given by Eq. (4.74) for 2 masses

and respective equations for additional masses, is used for convergence studies
of the undamped servo-constraints inverse model. The simulation parameters are
shown in Table 5. It is assumed that all masses, spring and damper coefficients are
equal, mi = m, ki = k, di = d .

The desired path zd from zd(0) = 0 m to zd(tf) = 2 m is shown in Fig. 13, where
the transition time is tf = 15 s. The inverse model DAE is solved by the implicit
Euler method with Δt = 0.01 s. The computed coordinates and input are shown in
Fig. 13. Due to equal masses and springs, the mass m2 travels twice the distance of
mass m1.

The first order convergence of the implicit Euler scheme is verified by the
analytical solution of Eq. (4.74) and solving the inverse model with different times
steps Δt . The maximum error is calculated according to Eq. (4.20). The inverse
model is solved in the original formulation given by Eqs. (4.54), (4.55) and (4.62)
and the projected formulation obtained by applying Eqs. (3.16)–(3.19). The original
and projected formulations are referenced by indices orig and proj respectively.
Note that similar to the substitution process presented in Sect. 3.2.3, the system
output z is simply one of the coordinates y. Thus, the servo-constraint Eq. (4.62)
and its derivatives are substituted in the dynamic equations (4.54) and (4.55) as
proposed in Sect. 3.2.3 for redundant coordinates. This reduces the differentiation
index by 2. The substituted and reduced equations for f = 2 read

[
m1 0
0 m2

] [
z̈d

ẍ2

]
+

[
d1 + d2 −d2

−d2 d2

] [
żd

ẋ2

]
+

[
k1 + k2 −k2

−k2 k2

] [
zd

x2

]
=

[
0
1

]
F, (4.75)
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Fig. 13 Numerical results for a 2-mass-spring-damper combination without damping with Δt =
0.01 s

and respectively for more than 2 masses. Note that the servo-constraint Eq. (4.62)
is dropped due to substitution. This approach is referenced by the index subs and
compared to the projected and original solutions. The model is solved for a number
of f = 2, 3 and 4 masses. Therefore, the original inverse model DAE has a
differentiation index of 5, 7 and 9 respectively.

The convergence diagram in Fig. 14 shows the first order convergence behavior.
Note that the substitution and projection approach yield similar results for f = 2, 3
and 4 masses. Both the projection and substitution approach yield numerically
more stable results than the original models, respectively for each tested number
of masses. This is due to index reduction. Considering more masses makes the
numerical solution less stable, respectively for each inverse model formulation. This
is due to a higher differentiation index of a mass-spring chain with more masses.
The presented implementation with an implicit Euler scheme is able to solve a
model with f = 4 masses with a step size of Δt = 0.1 s resulting in a maximum
error of emax ≈ 0.06 N. Better results with smaller step sizes are obtained by the
projected and substituted versions respectively, when the original formulation is
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Fig. 14 Maximum error emax between numerical and analytical solution for an f -mass-spring-
damper chain for different time step sizes Δt and various inverse model formulations

already unstable. For more than f = 4 masses, the numerical solution becomes
unstable too quickly using the implicit Euler scheme.

The numerical stability is also evaluated in terms of the resulting Jacobian matrix
of the set of equations F from Eq. (3.32) that is solved with Newton’s method
in each time step. The Jacobian matrix is derived symbolically offline and then
evaluated in each time step to improve calculation speed. The Jacobian matrix for
the f = 2 undamped system is for the original unprojected equations

J orig =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Δt
0 −1 0 0

0
1

Δt
0 −1 0

2k

m
− k

m

1

Δt
0 0

− k

m

k

m
0

1

Δt
− 1

m

−1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.76)
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for the projected equations

J proj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

Δt
0 1 0 0

0 − 1

Δt
0 1 0

k −k 0 − m

Δt
1

−2k

m

k

m
0 0 0

−1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.77)

and for the substituted equations

J subs =

⎡
⎢⎢⎢⎢⎣

− 1

Δt
1 0

−k 0 0

k
m

Δt
−1

⎤
⎥⎥⎥⎥⎦ . (4.78)

Note that due to substitution, the size of equations and unknowns reduces to 3.
The condition number κ , defined as the ratio between largest and smallest singular
value of the Jacobian J is evaluated for each solution and shown in Fig. 15. Large
condition numbers indicate bad conditioning for solving the set of equations by
Newton’s method. It can be read of Fig. 15 that the condition number increases for
more masses and higher differentiation index and thus also supports the numerical
instability due to rounding errors presented in Fig. 14. For a given step size, the
condition numbers of the projected and substituted equations are smaller than the
respective condition number of the original equations. Figure 15 also emphasizes
that the condition number of the substituted system of equations behaves similar to
the one of the projected equations with a small constant difference. The condition
number can be used as an indicator for numerical solvability of the inverse model
by means of servo-constraints.

4.4 Influence of Actuator Model on the DAE Index

Standard industrial actuators are usually velocity-controlled and not force-
controlled as assumed in the previous examples. In a practical implementation, the
system input is therefore usually a certain setpoint velocity instead of a force. This
setpoint velocity is enforced by internal control loops of the actuators. The actuator
dynamics is assumed to be much faster than the system dynamics. Thus, they are
approximated by low order linear system dynamics, e.g. zero order, first order or
second order system dynamics and the coefficients are fitted in system identification
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Fig. 15 Condition number κ of the respective Jacobians of f -mass-spring-damper chains for
different time step sizes Δt and various inverse model formulations

x
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Fig. 16 Single mass with either force input F or setpoint velocity input us

tests. Depending on what type of system order is assumed, the differentiation index
of the arising inverse model DAE changes. This is demonstrated with a simple
single mass system shown in Fig. 16. The scalar system input F is applied to a
single mass m and the system output is its position x1.

For this system, the dynamic equations with a force-controlled actuator are

m ẍ1 = F (4.79)

z = x1 , (4.80)

where the system input is modeled as the force F . In this case, the relative degree
of the system is r = 2 and there are no internal dynamics. The differentiation index
of the servo-constraints DAE system is 3 respectively.

Assuming a velocity-controlled actuator, let the setpoint input velocity us be
the system input instead of the input F . The velocity ẋ1 is then a rheonomic
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constraint on the model. Modeling the actuator dynamics as zero order, which is
direct feedthrough, yields

ẋ1 = us (4.81)

z = x1 . (4.82)

In this system, the first derivative of the output z is necessary for calculating the
input velocity us. Therefore, the system has relative degree r = 1. For first order
actuator dynamics holds

τ ẍ1 = −ẋ1 + us (4.83)

z = x1 , (4.84)

with the time constant τ of the first order actuator model. Solving for the input yields

us = τ ẍ1 + ẋ1 (4.85)

= τ z̈ + ż , (4.86)

where the second derivative of the output z is necessary to calculate the control
input. Therefore, the system has relative degree r = 2. The second order actuator
dynamic equations are

Kω2
n us = ...

x 1 + 2ζωn ẍ1 + ω2
n ẋ1 , (4.87)

with the static gain K , the natural frequency ωn and the damping ratio ζ . Again
substituting the system output shows that the system in this configuration has
relative degree r = 3. This example shows how modeling actuator dynamics
influences the relative degree of a multibody system.

5 Conclusion

Servo-constraints are an efficient method in the context of open-loop control of
underactuated multibody systems. They append the system dynamics and form a
set of higher index DAEs, which can be solved numerically. The solution poses
an inverse model for the underactuated multibody system, which is applicable
for trajectory tracking controllers. A state feedback controller can be added for
disturbance rejection which makes use of the desired state trajectory that is part
of the inverse model solution.

Servo-constraints are closely related to classical geometric constraints. However,
since the system input is not necessarily orthogonal to the tangent of the constraint
manifold and might influence the output only indirectly, the differentiation index
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of the inverse model can be higher than three. The configuration is classified into
orthogonal, mixed tangential-orthogonal and tangential realization, depending on
how the input influences the system output.

In case the underactuated system is not differentially flat, there remains internal
dynamics, which have to be accounted for. In that case, stability of the internal
dynamics has to be investigated in terms of the stability of the zero dynamics.

The differentiation index of the arising set of DAEs can be reduced by index
reduction methods such as the projection method. Moreover, a coordinate transfor-
mation and a reformulation of the original dynamics using redundant coordinates is
useful for analysis of the servo-constraints problem. The inverse model DAEs are
here solved using an implicit Euler scheme to ensure real-time capability.

Servo-constraints are applied on several examples. The example of a mass-on-
car system is used to demonstrate the solution convergence of the inverse model
solution, when using either minimal or redundant coordinates for modeling the sys-
tem. Moreover, better convergence is possible when index reduction by projection
is applied or the servo-constraints are directly substituted into the equations. This is
possible when part of the coordinates directly forms the output. An extended version
of the mass-on-car system illustrates how the coordinate transformation helps in
extracting the internal dynamics in ODE form. Stability of the internal dynamics is
analyzed based on the ODE formulation and the transfer function of the system. An
f -mass-spring-damper chain shows that high index DAE problems arise even for
simple multibody systems. Convergence of the original inverse model solution and
index reduced formulations are compared. Finally, it is demonstrated how the choice
of the actuator model can influence the differentiation index and relative degree of
the inverse model.
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1 Introduction

Electromagnetic theory has been established by Maxwell in 1864 and was reformu-
lated into the language of vector calculus by Heavyside in 1891 [50, 64]. A historical
overview can be found in the review article [77]. The theory is well understood and
rigorously presented in many text books, e.g. [45, 49, 54]. More recently researchers
have begun to formulate the equations in terms of exterior calculus and differential
forms which expresses the relations more elegantly and metric-free, e.g. [51].
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The simulation of three-dimensional spatially distributed electromagnetic phe-
nomena based on Maxwell’s equations is roughly 50 years old. An early key con-
tribution was the proposition of the finite difference time domain method (FDTD)
by Yee to solve the high-frequency hyperbolic problem on equidistant grids in 1966
[100], and its subsequent generalisations and improvements, e.g. [90]. Among the
most interesting generalisations are the Finite Integration Technique [97] and the
Cell Method [4] because they can be considered as discrete differential forms [24].
Most finite-difference codes formulate the problem in terms of the electric and
magnetic field strength and yield ordinary differential equations after space dis-
cretisation which are solved explicitly in time. FDTD is very robust and remarkable
efficient [68] and is considered to be among the ‘top rank of computational tools for
engineers and scientists studying electrodynamic phenomena and systems’ [91].

Around the same time at which FIT was proposed, circuit simulation programs
became popular, e.g. [70, 96] and Albert Ruehli proposed the Partial Element
Equivalent Circuit method (PEEC) [79, 80]. PEEC is based on an integral for-
mulation of the equations and utilises Green’s functions similarly to the Boundary
Element Method (BEM) or the Method of Moments (MOM) as BEM is called in
the electromagnetics community [48].

Historically, the Finite Element Method (FEM) was firstly employed to
Maxwell’s equations using nodal basis functions. For vectorial fields, this produces
wrong results known as ‘spurious modes’ in the literature. Their violation of the
underlying structure, or more specifically of the function spaces, is nowadays
well understood. Nédélec proposed his edge elements in 1980 [71] which are also
known as Whitney elements [20]. A rigorous mathematical discussion can be found
in many text books, e.g. [3, 5, 67]. Albeit less wide spread, the application of nodal
elements is still popular, for example in the context of discontinuous Galerkin FEM
[44, 53]. Also equivalences among the methods have been shown, most prominently
FIT can be interpreted on hexahedral meshes as lowest order Nédélec FEM with
mass lumping [17, 24].

From an application point of view, electromagnetic devices may behave very
differently, e.g. a transformer in a power plant and an antenna of a mobile phone
are both described by the same set of Maxwell’s equations but still feature different
phenomena. Therefore, engineers often solve subsets (simplifications) of Maxwell’s
equation that are relevant for their problem, for example the well-known eddy-
current problem [39, 49, 76] or the well-known wave equation [91]. For each,
one or more formulations have been proposed. They are either distinguished by the
use of different variables or gauging conditions [14, 15].

It follows from the variety of simplifications and formulations that discretisation
methods have individual strengths and weaknesses for the different classes of
applications. For example, the formulation used in FDTD relies on an explicit time
integration method which is particularly efficient if the mass matrices are easily
invertible, i.e., if they are diagonal or at least block diagonal [23]. This allows
FDTD to solve problems with several billions of degrees of freedom. Classical
FEM is less commonly applied in that case but one may also analyse high-frequency
electromagnetic phenomena in the frequency domain, either to investigate resonance
behaviour [98] or source problems with right-hand-sides that can be assumed to
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vary sinusoidally at a given frequency. In these cases, one solves smaller complex-
valued linear systems but the reduced sparsity due to FEM is counteracted by the
flexibility in the mesh generation [16]. Also coupling Maxwell’s equations to other
physics may require tailored formulations, see for example for applications in the
field of semiconductors [81, 83].

In the low-frequency regime the situation is often more involved since one deals
with degenerated versions of Maxwell’s equations as certain contributions to the
equation vanish in the static limit and the original system becomes unstable [42, 55,
73]. One often turns to approximations of Maxwell’s equations as the well-known
eddy-current problem. These approximate formulations are often more complicated
as they may yield parabolic-semi-elliptic equations that become eventually systems
of differential-algebraic equations (DAEs) after space discretisation. The resulting
systems are commonly integrated in time domain by fully or linear-implicit meth-
ods, e.g. [31, 72]. Only recently, explicit method gained again interest [6, 40, 85].

Most circuit and electromagnetic field formulations yield DAE systems; the
first mathematical treatment of such problems can be traced back to the 60s [60]
but gained increased interest in the 80s, e.g. [75]. An important concept in the
analysis of DAEs and their well-posedness are the various index concepts, which
try to quantify the difficulty of the numerical time-domain solution, see e.g. [75].
This paper discusses the most important low and high-frequency formulations in
computational electromagnetics with respect to their differential index. An detailed
introduction of the index and its variants is not discussed here and the reader is
referred to text books and survey articles [25, 47, 60, 65].

This paper summarises relevant discrete formulations stemming from Maxwell’s
equations. It collects the corresponding known DAE results from the literature,
i.e., [7, 10, 72, 94], homogenises their notation and discusses a few missing cases.
Each problem is concretised by a mathematical description and specification of an
example. The corresponding source code is freely available such that these example
can be used as benchmarks, e.g. for the development of time integrators or numerical
tools to analyse differential equations.

The paper is organised as follows: Sect. 2 discusses Maxwell’s equations, the
relevant material relations and boundary conditions. The classical low-frequency
approximations and electromagnetic potentials are introduced. Section 3 outlines the
spatial discretisation in terms of the finite element method and the finite integration
technique. After establishing the DAE index concept in Sect. 4, the various discrete
formulations are derived. They are discussed separately for the high-frequency
full-wave case in Sect. 5 and the quasistatic approximations in Sect. 6. Finally,
conclusion are drawn in Sect. 7.

2 Maxwell’s Equations

Electromagnetic phenomena are described on the macroscopic level by Maxwell’s
equations [45, 49, 50, 54, 64]. Those can be studied in a standstill frame of reference
in integral form
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∫

∂A

E · ds = −
∫

A

∂B
∂t

· dA , (2.1a)

∫

∂V

D · dA =
∫

V

ρdV , (2.1b)

∫

∂A

H · ds =
∫

A

(
∂D
∂t

+ J
)

· dA , (2.1c)

∫

∂V

B · dA = 0, (2.1d)

for all areas A and volumes V ⊂ R
3. Using Stokes and Gauß’ theorems one derives

a set of partial differential equations, see e.g. [5, Chapter 1.1.2] for a mathematical
discussion on their equivalence,

∇ × E = −∂B
∂t

, (2.2a)

∇ × H = ∂D
∂t

+ J , (2.2b)

∇ · D = ρ , (2.2c)

∇ · B = 0, (2.2d)

with E the electric field strength, B the magnetic flux density, H the magnetic field
strength, D the electric flux density and J the electric current density composed of
conductive and source currents, being vector fields I × Ω → R3 depending on
space r ∈ Ω and time t ∈ I . The electric charge density ρ : I × Ω → R is the
only scalar field. Finally A and V are all areas (respectively volumes) in Ω .

Assumption 2.1 (Domain) The domain Ω ⊂ R
3 is open, bounded, Lipschitz and

contractible (simply connected with connected boundary, see e.g., [20]).

Maxwell’s equations give raise to the so-called de Rham complex, see e.g. [20].
It describes abstractly the relation of the electromagnetic fields in terms of the
images and kernels of the differential operators. A simple visualisation is given in
Fig. 1. This diagram is sometimes called Tonti diagram [93], Deschamps diagram
[38], or, in the special case of Maxwell’s equations, Maxwell’s house [19, 21].

Exploiting the fact that the divergence of a curl vanishes, one can derive from
Ampère-Maxwell’s law (2.2b)–(2.2c) the continuity equation

0 = ∂ρ

∂t
+ ∇ · J , (2.3)

which can be interpreted in the static case as Kirchhoff’s current law.
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Fig. 1 Maxwell’s house,
based on similar diagrams in
[19, 38, 93]. The concept of
duality is for example
discussed in the framework of
differential forms in [51] and
using traditional vector
calculus in [54, Section 6.11]

−

×

·

s [S/m]

E [V/m]

A [Wb/m]
  [V]

J [A/m2]

D [C/m2]

r [C/m3]

m [H/m]

B [T]
H [A/m]

0 [Wb/m3]

Primal Dual

e [F/m] ×

2.1 Boundary Conditions and Material Relations

To mimic the behaviour of the electromagnetic field of an infinite domain on a trun-
cated computational domain and to model field symmetries, boundary conditions
are imposed on Γ = ∂Ω . We restrict ourselves to homogeneous electric (‘ebc’) and
magnetic boundary conditions (‘mbc’)

{
n × E = 0 in Γebc ,

n × H = 0 in Γmbc ,
(2.4)

where n is the outward normal to the boundary, Γebc ∪Γmbc = Γ and Γebc ∩Γmbc =
∅.

Remark 1 Electrical engineers typically use the physical notation of electric (‘ebc’)
or magnetic (‘mbc’) boundary conditions rather than the mathematical terminology
of ‘Dirichlet’ or ‘Neumann’ conditions. The reason is that the mathematical
distinction depends on the particular formulation, i.e. the variables chosen to
describe the problem, while the physical point of view remains the same. For
example in an E-based formulation, ebc and mbc correspond to Dirichlet and
Neumann conditions, respectively, whereas in an H -based formulation, ebc and mbc
correspond to Neumann and Dirichlet conditions, respectively.
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Fig. 2 Sketch of domain Wwith G= ∂W

Wc with Gc = ∂Wc Ws

The fields in Maxwell’s equations are further related to each other by the material
relations

D = εE , Jc = σE , H = νB , (2.5)

where the permittivity ε, conductivity σ and reluctivity (inverse permeability μ)
ν are rank-2 tensor fields, ξ : Ω → R3×3, ξ ∈ {ε, σ ,μ, ν}, whose possible
polarisation or magnetisation and nonlinear or hysteretic dependencies on the fields
are disregarded in the following for simplicity of notation and Jc : I × Ω → R3

is the conduction current density. With these material relations one defines the total
current density as

J = Jc + Js (2.6)

where Js is a given source current density that represents for example the current
density impressed by a stranded conductor [86].

We assume the following material and excitation properties as shown in Fig. 2,
see also [2, 86] for a more rigorous discussion.

Assumption 2.2 (Material) The permittivity and permeability tensors, i.e., ε and
μ, are positive definite on the whole domain Ω and only depend on space r. The
conductivity tensor is positive definite on a subdomain Ωc ⊂ Ω and vanishes
elsewhere, i.e., supp(σ ) = Ωc. The source current density is defined on the
subdomain Ωs ⊂ Ω with Ωc ∩ Ωs = ∅, such that supp(Js) = Ωs.

This assumption describes the situation of an excitation given by one or several
stranded conductors. The key assumption behind this model is a homogeneous
current distribution which is justified in many situations, since the individual strands
have diameters small than the skin depth and are therefore not affected by eddy
currents, i.e. Ωc and Ωs are disjoint. Other models, e.g. solid and foil conductors,
are not covered here. However, it can be shown that the various models can be
transformed into each other and thus have similar properties [84].
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2.2 Modelling of Excitations

The excitation has been given in (2.6) by the known source current density Js
which is typically either determined by given voltage drops uk : I → R or
lumped currents ik : I → R. The 3D-0D coupling is governed by so-called
conductormodels. Besides the solid and stranded models [12], also more elaborated
conductors have been proposed, e.g., foil-conductor models [35].

The source current density Js is not necessarily solenoidal, i.e.

∇ · Js 	= 0.

Divergence-freeness is only required for the total current density J in the absence of
charge variations due to the continuity equation (2.3). This has been exploited e.g.
in [86, Figure 3] to increase the sparsity of the coupling matrices. However, most
conductor models enforce this property such that the source current can be given
alternatively in terms of a source magnetic field strength

Js = ∇ × Hs.

In [86] the abstract framework of winding density functions was proposed. It
unifies the individual stranded, solid and foil conductor models and denotes them
abstractly by

χk : Ω → R3 (2.7)

with an superscript if needed to distinguish among models, e.g. (i) for stranded and
(u) solid conductors. In the simplest case they are characteristic functions with a
given orientation.

Example 2 If Ωs = Ωs,1 ∪ Ωs,2 ∪ Ωs,3 consists of two parts of a winding oriented
in z-direction, each with cross section Ak and made of Nk strands, and a massive
bar with length �3 aligned with the z-direction, the source current is given by

Js =
2∑

k=1

χ
(i)
k ik + σχ

(u)
3 u3 . (2.8)

The winding density functions for the stranded conductor model are

χ
(i)
k (r) =

{
Nk

Ak
nz r ∈ Ωs,k

0 otherwise
(2.9)

and the unit vector in z-direction is denoted by nz. The stranded conductor model
distributes an applied current in a homogeneous way such that the individual strands
are neither spatially resolved nor modelled as line currents which would cause a too
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high computational effort. There are many proposals in the literature on how to
construct them, most often a Laplace-type problem is solved on the subdomain Ωs ,
see e.g. [36, 41, 86]. The winding function for the solid conductor is

χ
(u)
3 (r) =

{
1
�3

nz r ∈ Ωs,3

0 otherwise .
(2.10)

The solid conductor model homogeneously distributes an applied voltage drop in
the massive-conductor’s volume.

The winding density functions allow to retrieve global quantities in a post-
processing step, i.e., the current through a solid conductor model is calculated by

ik =
∫

Ω

χ
(u)
k · J dV (2.11)

and the voltage induced along a stranded conductor model follows from

uk = −
∫

Ω

χ
(i)
k · E dV . (2.12)

The expressions (2.8), (2.11) and (2.12) can also be used to set up a field-circuit
coupled model [37].

An important property postulated in [86] is that winding functions should fulfil
a partition of unity property. The integration of χk(r) along a line �k between both
electrodes of a solid conductor gives always 1 and analogously, χ

(i)
k (r) integrated

over any cross-sectional plane Ak of a stranded conductor should equal the number
of turns Nk of the winding:

∫
�k

χ
(u)
k · ds = 1 , ∀�k and

∫
Ak

χ
(i)
k · dS = Nk, ∀Ak . (2.13)

Furthermore, conductor models should not intersect, i.e., [7]

χ i · χ j ≡ 0 for i 	= j (2.14)

where χ i and χ j are winding functions of any type.
For simplicity of notation, we will restrict us in the following to the case of non-

intersecting stranded conductors models, i.e.

Assumption 2.4 (Excitation) The source current density is given by nstr winding
functions that fulfil (2.13) and (2.14) such that the excitation is given by

Js =
nstr∑
k=1

χkik where χk ≡ χ
(i)
k .
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2.3 Static and Quasistatic Fields

Following the common classification of slowly varying electromagnetic fields, [39],
we introduce the following definition for quasistatic and static fields

Definition 3 (Simplifications) The fields in Eq. (2.2) are called

(a) static if the variation of the magnetic and electric flux densities is disregarded:

∂

∂t
B = 0 and

∂

∂t
D = 0 ;

(b) electroquasistatic if the variation of the magnetic flux density is disregarded:

∂

∂t
B = 0 ;

(c) magnetoquasistatic if the variation of the electric flux density is disregarded:

∂

∂t
D = 0 ;

(d) full wave if no simplifications are made.

In contrast to the full Maxwell’s equations, the classical quasistatic approxi-
mations above feature only first order derivatives w.r.t. to time. However, there is
another model for slowly varying fields that does not fit into this categorisation,
the so-called Darwin approximation, e.g. [61]. It considers the decomposition of
the electric field strength E = Eirr + Erem into an irrotational part Eirr and a
remainder part Erem. In contrast to (a)–(c) the Darwin approximation only neglects
the displacement currents related to Erem from the law of Ampère-Maxwell (2.2b).
It still considers second order time derivatives.

The various approximations neglect the influence of several transient phenomena
with respect to others, which implicitly categorises fields into primary and sec-
ondary ones. For example, let us consider a magnetoquasistatic situation, i.e., the
displacement current density ∂

∂t
D = 0 is disregarded. This still allows the electric

field ∂
∂t

E 	= 0 to vary. However, this variation implies that there is a secondary
displacement current density ∂

∂t
D = ∂

∂t
εE 	= 0 which is in the formulation not

further considered.

Remark 4 Depending on the application, an electrical engineer chooses the formu-
lation that is best suited for the problem at hand. Typically the physical dimensions,
the materials and the occurring frequency are used to estimate which simplification
is acceptable, see e.g. [49, 82, 89].
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2.4 Electromagnetic Potentials

Typically, one combines the relevant Maxwell equations into a formulation by
defining appropriate potentials. One possibility is the A–φ formulation [13, 20, 56],
where a magnetic vector potentialA : I ×Ω → R3 and an electric scalar potential
φ : I × Ω → R follow as integration constants from integrating the magnetic
Gauss law and Faraday-Lenz’ law in space, i.e.,

B = ∇ × A and E = −∂A
∂t

− ∇φ . (2.15)

The magnetic flux density B defines the magnetic vector potential A only up to
a gradient field. For a unique solution an additional gauging condition is required
[13, 30, 62].

A different approach can be taken with the T–Ω formulation in case of a
magnetoquasistatic approximation (Definition 3(c)) [15, 26, 95]. Here, an electric
vector potentialT : I ×Ω → R3 and a magnetic scalar potentialψ : I ×Ω → R
describe the fields as

Jc = ∇ × T and H = Hs + T − ∇ψ , (2.16)

with ∇ × Hs = Js. Again, to ensure uniqueness of solution, an additional gauge
condition is necessary for T. In contrast to the A–φ-formulation, the electric vector
potential T is only non-zero on Ωc.

Existence and uniqueness of the continuous solution will not be discussed in this
contributions, see for example [2, 42] for several formulations in the frequency
domain case with anisotropic materials and mixed boundary conditions.

The boundary conditions introduced in (2.4) can now be translated into expres-
sions involving only the potentials. This yields for the A–φ-formulation

{
n × A = 0, φ = 0 on Γebc ,

n × (ν∇ × A) = 0, on Γmbc
(2.17)

and the for the T–Ω one
{

μ
∂ψ
∂n = 0, on Γebc ,

n × ∇ψ = 0, on Γmbc .
(2.18)

For the electric vector potential T in the T–Ω formulation, boundary conditions
have to be set on the corresponding subdomain where it is defined Γc = ∂Ωc. This
leads to electric boundary conditions

nc × T = 0 on Γc ,

with, analogous to the cases before, nc being the outward normal unit vector of Γc.
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3 Spatial Discretisation

Starting from a differential formulation the Ritz-Galerkin the FE method can be
applied using the appropriate Whitney basis functions [67]. Alternatively, FIT or
similarly the Cell Method provide a spatial discretisation of Maxwell’s equations
based on the integral form [4, 97]. In the lowest order case FE and FIT only differ
by quadrature, i.e., FIT uses the midpoint rule [17]. We derive in the following the
discretisation of the partial differential operators in the terminology of FIT on an
hexahedral grid since this allows a simple and explicit construction of divergence,
curl and gradient matrices which will aid the following discussion.

3.1 Domain and Grid

The domain Ω is decomposed into an oriented simplicial complex that forms the
computational grid. For the explanation, it is considered to be a brick and the grid is
defined in cartesian coordinates as

G = {V (ix, iy, iz) ⊂ R3|V (ix, iy, iz) = [xix , xix+1] × [yiy , yiy+1] × [ziz , ziz+1],
for ix = 1, . . . , nx − 1; iy = 1, . . . , ny − 1; iz = 1, . . . , nz − 1}.

The elements V (ix, iy, iz) = V (n) are numbered consecutively with an index n:

n(ix, iy, iz) = ixkx + (iy − 1)ky + (iz − 1)kz,

with kx = 1, ky = nx and kz = nxny . Our discrete field quantities can be defined
on several geometrical objects such as points P(n), edges Lω(n) or facets Aω(n).
An edge Lω(n) connects points P(n) and P(n+ kω) in ω = {x, y, z} direction. The
facet Aω(n) is defined by its smallest possible point P(n) and directed such that its
normal vector points towards ω. There are N = nxnynz points and as each point
defines three edges and facets, there are in total Ndof = 3nxnynz edges and facets,
ordered in x, y and finally z-direction.

Nowadays, inspired by the notation of differential forms, it is well under-
stood that a consistent mimetic discretisation of Maxwell’s equations requires
a primal/dual mesh pair. Even the discretisation with Whitney FEs implicitly
constructs a dual mesh [20]. This can be traced back to the inherent structure of
Maxwell’s equations which are formed with quantities being dual to each other
(see [54, Section 6.11]) that are linked by material properties (hodge operators
in the terminology of differential forms). This concept is for example rigorously
introduced in [51].

In contrast to FEM, both FIT and the Cell Method define the second (dual) grid
G̃ explicitly. It is obtained by taking the centre of the cells in G as dual grid points
(see Fig. 3). Now the dual quantities can be defined on the dual points P̃ (n), edges
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Fig. 3 Primal and dual grid
cells

V

Ṽ

L̃ω(n), facets Ãω(n) and volumes Ṽn. Dual edges and facets are truncated at the
boundary [99].

3.2 Maxwell’s Grid Equations

To illustrate the construction of the operator matrices, Faraday-Lenz’s law in integral
form, i.e. Eq. (2.1a),

∫

∂A

E · ds = −
∫

A

∂B
∂t

· dA ,

is used as an example. The equality must be fulfilled for all areas A, in particular for
each facet Aω(i, j, k) of the computational grid G. For the case ω = z,

�ex(i, j, k) + �ey(i + 1, j, k) − �ex(i, j + 1, k) − �ey(i, j, k) = − d

dt

��
bz(i, j, k) ,

with

�eω(i, j, k) =
∫

Lω(i,j,k)

E · ds and
��
bz(i, j, k) = −

∫

Az(i,j,k)

B · dA .

This procedure is carried out for all the facets of G and the following matrix equation

⎡
⎢⎢⎣

...

· · · 1 · · · −1 · · · −1 1 · · ·
...

⎤
⎥⎥⎦

︸ ︷︷ ︸
C

�e = − d

dt

��
b

is obtained, which describes Faraday’s law in our grid. The matrix C applies the
curl operator on quantities integrated along edges. Similarly, the divergence matrix
S, acting on surface integrated degrees of freedom and the gradient matrix G are
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built. The same strategy is followed to obtain the matrices for the dual grid C̃, S̃
and G̃. It can be shown that the matrices mimic all classical identities of vector field
on the discrete level, e.g. [87] and [84, Appendix A]. With this, the semi-discrete
Maxwell’s Grid Equations

C�e = − d

dt

��
b , (3.1a)

C̃
�
h = d

dt

��
d + ��

j , (3.1b)

S
��
b = 0 , (3.1c)

S̃
��
d = q (3.1d)

are obtained which are closely resemble the system (2.2). The matrices C, C̃ ∈
{−1, 0, 1}Ndof×Ndof are the discrete curl operators, S, S̃ ∈ {−1, 0, 1}N×Ndof the
discrete divergence operators, which are all defined on the primal and dual grid,
respectively. The fields are semi-discretely given by �e,

�

h,
��
d,

��
j ,

��
b : I → R

Ndof

and q : I → R
N , and correspond to integrals of electric and magnetic voltages,

electric fluxes, electric currents, magnetic fluxes and electric charges, respectively.

Lemma 1 The operator matrices fulfil the following properties [99]

• divergence of the curl and curl of the gradient vanish on both grids

SC = 0 , S̃C̃ = 0 and CG = 0 , C̃G̃ = 0 (3.2)

• primal (dual) gradient and dual (primal) divergence fulfill

G = −S̃� and G̃ = −S� (3.3)

• curl and dual curl are related by

C̃ = C�. (3.4)

Furthermore, potentials can be introduced on the primal grid, i.e.

�e = − d

dt

�a − GΦ , (3.5)

where �a is the line-integrated magnetic vector potential and Φ the electric scalar
potential located on primary nodes. This is similar to the definition of the potentials
in the continuous case, i.e., (2.15). The properties stated in this Lemma have been
proven in [8, 24, 84].

The numbering scheme explained in Sect. 3.1 yields matrices with a simple
banded structure. The sparsity pattern is such that an efficient implementation may
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not construct those matrices explicitly but apply the corresponding operations as
such to vectors. However, the numbering scheme introduces superfluous objects
allocated outside of the domain Ω . For example in the case of the points located
at the boundary where ix = nx , an edge in x direction Lx(nx, iy, iz) /∈ Ω . Those
objects are called phantom objects. However, the homogeneous Dirichlet boundary
conditions explained in Sect. 2.1, as well as the deletion of the phantom objects
can be incorporated either by removing them with (truncated) projection matrices
or by setting the corresponding degrees of freedom to zero. For a more detailed
description of the process, see [8] and [84, Appendix A].

Assumption 3.2 (Boundary Conditions) The degrees of freedom and all the
operators are projected to an appropriate subspace considering the homogeneous
Dirichlet boundary (‘ebc’) conditions and disregarding any phantom objects in S̃,
S̃�, C and C̃. Therefore ker S̃� = 0.

This assumption imposes boundary conditions directly on the system matrices and
thus is a necessary condition to ensure uniqueness of solution. It is important to note
that the reduced matrices keep the properties described in Lemma 1, see for example
[8, Section 3.2.4].

Please note that identical operators (without phantom objects) are obtained when
applying the FE method with lowest-order Whitney basis functions using the same
primal grid [17, 24].

3.3 Material Matrices

The degrees of freedom have been introduced as integrals and thus the discretisation
did not yet introduce any approximation error. This however happens when applying
the matrices describing the material relations. In the FE case, the material matrices
are given by the integrals

[
Mξ

]
n,m

=
∫

Ω

wn · ξwm dΩ ,

where ξ ∈ {σ , ν, ε} and w are from an appropriate space, i.e., tangentially
continuous Nédélec vectorial shape functions [18, 71] related to the nth edge of
the grid for discretising ε and σ and normally continuous Raviart-Thomas vectorial
shape functions [18, 78] for discretizing ν.

In FIT, the matrix construction is derived from the Taylor expansion of the
material laws. In the following, only the construction of the conductivity matrix
is explained. For simplicity of notation, the conductivity σ(r) is assumed to be
isotropic and conforming to the primal grid, i.e. σ (n) = σ(rn) is constant on each
primal volume (rn ∈ V (n)). Consider a primal edge Lz(i, j, k) and its associated
dual facet Ãz(i, j, k) (Fig. 4). The tangential component Ez of the electric field
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σ(4)σ(3)
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Fig. 4 Sketch of dual facet Ãz(i, j, k) with its normal vector

strength is continuous along Lz(i, j, k) and is found by approximation from

�ez(i, j, k) =
∫

Lz(i,j,k)

E · ds ≈ Ez |Lz(i, j, k)| ,

where | · | denotes the length, area or volume depending on the object. The current
density integrated on the corresponding dual facet reads

��
j z(i, j, k) =

∫

Ãz(i,j,k)

J · dA =
∫

Ãz(i,j,k)

Jz dA =
4∑

q=1

∫

Ã
(q)
z (i,j,k)

σ (q)Ez dA

≈
4∑

q=1

σ (q)Ez|Ã(q)
z (i, j, k)| = Mσ,i,j,k

�ez(i, j, k) ,

where the conductances Mσ,i,j,k = σ̄ (i, j, k)
|Ãz(i,j,k)|
|Lz(i,j,k)| include the conductivities

σ̄ (i, j, k) =
4∑

q=1

σ (q) |Ã(q)
z (i, j, k)|

|Ãz(i, j, k)|

averaged according to the conductivities σ (q) of the primal grid cells V (q) sur-
rounding Lz(i, j, k) and the surface fractions Ã

(q)
z (i, j, k) = V (q) ∩ Ãz(i, j, k).

Analogously, material matrices for ε and ν are obtained, which lead to the
discretised material relations

��
d = Mε

�e ,
��
j c = Mσ

�e ,
�

h = Mν

��
b
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Fig. 5 Maxwell’s house after
spatial discretisation

˜S�

Me [F] −
d

dt
M [S]

�e [V]

�a [Wb] ��
j [A]

��d [C]

q [C]

˜C

M [H]

C −
d

dt
��b [Wb]

�h,
�t [A]

S S�

[A]
0 [Wb]

Primal Dual

and

��
j = ��

j c + ��
j s

with the source current density
��
j s, which may be given by the discretisation X of

the winding function (2.7), such that
��
j s = ∑

k Xk ik with currents ik .
For the material matrices, one can show the following result [84, Appendix A].

Lemma 2 (Material Matrices) The material matrices Mξ are symmetric for all
material properties ξ = {σ, ν, ε}. If Assumption 2.2 holds, then the matrices
Mν, Mε are positive definite whereas Mσ is only positive semidefinite.

Finally, the discretised version of Maxwell’s equations with its corresponding
material laws can be visualised by ‘Maxwell’s house’ shown in Fig. 5.

Remark 3 Both Lemmas 1 and 2, as well as Assumption 3.2 hold for Finite Element
discretisations with basis functions fulfilling a discrete de Rham sequence.

Remark 4 In many applications the material parameters, e.g. the reluctivity, in (2.5)
dependent nonlinearly on the fields. In these cases one may consider the linearised
system but since the differential material properties inherit the relevant properties,
e.g. [52], the characteristics of the DAE will also remain the same. In particular,
there will be no change of nullspaces, see e.g. [7]
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4 Differential Algebraic Equations

Starting from Maxwell’s grid equations, various discrete time-domain formulations
can be obtained. Depending on the choices made according to Definition 3, the
resulting system is either static, first or second-order in time. In the dynamic cases,
it can be written as a (linear) problem of the form

M
d

dt
x(t) + Kx(t) = r(t), and x(t0) = x0 (4.1)

where M, K ∈ Rn×n are matrices, x : [t0, T ] → Rn contains the time-dependent
degrees of freedom and r : [t0, T ] → Rn is an input.

Definition 1 (DAE) Equation (4.1) is called a system of differential-algebraic
equations (DAE) if M is singular.

There are many options how to perform time-discretisation (‘integration’) of a
DAE (4.1), see for example [47]. We suggest the simplest approach: implicit Euler’s
method, i.e.,

(M/Δt + K) xn+1 = r(tn+1) + M/Δt xn (4.2)

where xn
·= x(tn) and Δt = tn+1 − tn is the time step. DAEs are commonly

classified according to their index. Intuitively, it can be seen as a measure of the
equations’ sensitivity to perturbations of the input and the numerical difficulties
when integrating. There are several competing index concepts. They essentially
agree in the case of regular, linear problems, see [65] for detailed discussion.
Therefore, we employ the simplest concept

Definition 2 (Differential Index [25]) If solvable and the right-hand-side is
smooth enough, then the DAE (4.1) has differential index-ϑ if ϑ is the minimal
number of analytical differentiations with respect to the time t that are necessary
to obtain an ODE for dx/dt as a continuous function in x and t by algebraic
manipulations only.

For ϑ ≥ 2 the time-integration becomes difficult. Let us consider the classical
educational index-2 problem to motivate analytically the sensitivity with respect to
perturbations. The problem is described by

d

dt
x1 = x2 and x1 = sin(t) + δ(t) (4.3)

where δ(t) = 10−k sin(102kt) is a small perturbation with k � 1. The solution
x2 = cos(t) + 10k cos(102kt) is easily obtained by the product and chain rules. It
shows that a very small perturbation in an index-2 system (at a high frequency) can
have a serious impact (in the order of 10k) on the solution when compared to the
original solution x2 = cos(t) of the unperturbed problem where δ = 0.
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Remark 3 For the index analysis in the following sections we assume that the right-
hand sides are smooth enough.

Furthermore, DAEs are known for the fact that solutions have to fulfil certain
constraints. One of the difficult parts in solving DAEs numerically is to determine a
consistent set of initial conditions in order to start the integration [9, 43, 63].

Remark 4 ([60]) A vector x0 ∈ Rn is called a consistent initial value if there is a
solution of (4.1) through x0 at time t0.

The problems discussed in the following will have at most (linear) index-2
components. For this case it has be shown that if we are not interested in a consistent
initialisation at time t0 but accept a solution satisfying the DAE only after the first
step, then one may apply the implicit Euler method starting with an operating point
and still obtain the same solution after t > t0 that one would have obtained using a
particular consistent value [8, 9].

The aim of this paper is to study the index of the systems obtained with different
formulations and approximations according to Definition 3.

5 Full-Wave Formulation

On first sight it seems optimal to analyse high-frequency electromagnetic phenom-
ena, e.g. the radiation of antennas, in frequency domain. The right-hand-sides can
often be assumed to vary sinusoidally and for a given frequency, the equations
are linear as the materials are rather frequency than field-dependent. However,
the solution of problems in frequency domain requires the resolution of very
large systems of equations and becomes inconvenient if one is interested in many
frequencies (broadband solution). Therefore, often time-domain simulations are
carried out with right-hand-sides that excite a large frequency spectrum.

5.1 First-Order Formulation Time-Stepped by Leapfrog

When solving Maxwell’s grid equations for lossless (σ ≡ 0) wave propagation
problems in time domain, a problem formulation based on the electric and magnetic
field is commonly proposed. Assuming that the initial conditions fulfil the diver-
gence relations of System (2.2), one starts with Faraday’s and Ampère’s laws

∂B
∂t

+ ∇ × E = 0 and
∂D
∂t

− ∇ × H = Js .

After inserting the material laws, the system becomes

μ
∂H
∂t

+ ∇ × E = 0 and ε
∂E
∂t

− ∇ × H = Js ,
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with ν = μ−1. Using Maxwell’s grid equations (3.1), the semi-discrete initial value

problem (IVP) has the form of Eq. (4.1) with unknown voltages x� := [�

h
�
,

�e�],
right-hand-side r� := [0,

��
j
�
s ] and matrices

M :=
[

M−1
ν 0
0 Mε

]
and K :=

[
0 C

−C̃ 0

]
. (5.1)

If Assumptions 2.2 and 3.2 holds, all superfluous degrees of freedom are removed
and the material matrices Mν and Mε have full rank. With FIT the matrices are
furthermore diagonal and thus easily inverted. A transformation by the matrices
M−1/2

ν and M1/2
ε allows us to rewrite (4.1) as

d

dt
x̄(t) = K̄x̄(t) + r̄(t) x̄(t0) = x̄0 (5.2)

in the new unknowns x̄� = [(M−1/2
ν

�

h)�, (M1/2
ε

�e)�] with the skew-symmetric
stiffness matrix

K̄ =
[

0 −M1/2
ν CM−1/2

ε

M−1/2
ε C̃M1/2

ν 0

]
. (5.3)

and right-hand-side r̄� = [0, (M−1/2
ε

��
j s)

�]. Let us conclude this by the following
result.

Theorem 5.1 Let Assumptions 2.1, 2.2 and 3.2 hold. Then, the semidiscrete full-
wave Maxwell equations expressed in the field strengths, i.e., (5.2) are an explicit
system of ordinary differential equations.

The resulting IVP could be readily solved by the implicit Euler method (4.2)
or any method that is tailored for second order differential equations. However,
as explained above FIT allows to efficiently invert the mass matrix M and thus
explicit methods become interesting. Typically the leapfrog scheme (or equivalently
Störmer-Verlet) are used [91]. The restriction on the time step size related to the
Courant-Friedrichs-Lewy-condition (CFL) is tolerable if the dynamics of the right-
hand-side are in a similar order of magnitude. Leapfrog is second-order accurate
and symplectic, which is particularly interesting if there is no damping, i.e., no
conductors present (σ ≡ 0). Furthermore it can be shown that space and time errors
are well balanced when using the leapfrog scheme with the a time step size close to
the CFL limit (“magic time step”) [90, Chapters 2.4 and 4].

Let the initial conditions be

�e(0) = �e0 and
�

h
( 1

2 ) = �

h1/2,
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then the update equations for the leapfrog scheme read [90, 97, 99]

�e(m+1) = �e(m) + ΔtM−1
ε

(
C̃

�
h

(m+ 1
2 ) − ��

j
(m+ 1

2 )
)

,

�
h

(m+ 3
2 ) = �

h
(m+ 1

2 ) − ΔtMνC̃�e(m+1)

for the electric and magnetic voltages �e(m),
�

h
(m+ 1

2 )
at time instants tm and tm+ 1

2
with step size Δt . For equidistant grids, the resulting scheme is (up to scaling and
interpretation) equivalent to Yee’s FDTD scheme [100].

Remark 5.2 In practice, one may choose to violate Assumption 3.2. Instead one
imposes the boundary conditions by setting the corresponding entries in the material
matrices M−1

ε and Mν to zero. In this case the system (5.1) comes with additional
(trivial) equations when compared to a system that is projected to the lower
dimensional subspace containing the boundary conditions. However, this preserves
a simpler structure of the equation system and the topological grid operators, e.g.
the discrete curl matrix C, keep their banded structure.

Benchmark 5.2 In [11] a spiral inductor model with coplanar lines located on
a substrate layer with an air bridge was proposed as a benchmark example for
high-frequency problems. The CST Microwave tutorial discusses the same model
to advocate the usage of 3D field simulation instead of circuit models [34]. A
slightly simplified geometry is illustrated in Fig. 6. The dimensions of the layer are
7 · 10−4 m × 4.75 · 10−4 m × 2.5 · 10−5 m and Fig. 7 illustrates the dimensions of
the coil.

Fig. 6 Spiral inductor model with coplanar lines located on a substrate layer with an air bridge
(Benchmark 5.2)
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Fig. 7 Model of a spiral inductor of Benchmark 5.2. The distances are d0 = 1.15 · 10−4 m, d1 =
1.2 · 10−4 m, d2 = 2.5 · 10−5 m, d3 = 9 · 10−5 m, d4 = 2.05 · 10−4 m, d5 = 1.5 · 10−4 m,
d6 = 2.2 · 10−5 m, d7 = 9 · 10−6 m, d8 = 3 · 10−6 m, h0 = 8 · 10−6 m, h1 = 5 · 10−6 m and
h2 = 3 · 10−6 m. (a) x–y cross section of spiral inductor, (b) y–z cross section of spiral inductor

The bottom of the substrate layer is constrained by ebc and the other five
boundaries are by mbc. On each side of the bridge the coil is connected by a
straight line of perfect conductor with the ebc bottom plane. One side is excited
by a discrete port which is given by a current source i(t) = sin(2πf t)A with
f = 50 · 109 1/s. The coil (Ωpec) is assumed to be a perfect conductor, i.e.,
modelled by homogeneous electric boundary conditions, the substrate (Ωsub) is
given a relative permittivity of εr = 12, in the air region Ωair εr = 1 and vacuum
permeability μ = 4π ·1 · 10−7 H/m is assumed everywhere else.

The structure is discretised using FIT with 4,06,493 mesh cells and 1,283,040
degrees of freedom. Leapfrog is used with a time step of Δt = 3.4331 · 10−15 s
based on the CFL condition and zero initial condition, see Fig. 8. The performance
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Fig. 8 Time domain simulation results for the Benchmark 5.2. (a) Current through the spiral
inductor, (b) voltage drop at the ports

of leapfrog and exponential integrators for this model was recently discussed in
[66].

5.2 A–Φ Formulations

If there are small geometric features, slowly varying excitations, conducting or
semiconducting materials [27], the leapfrog scheme becomes inefficient. An
alternative formulation is obtained if one rewrites Maxwell’s equations as a second-
order partial differential equation by combining Faraday’s law, Ampère’s law and
the material equations complemented by Gauss’s law, i.e.,

ε
∂2

∂t2 E + σ
∂

∂t
E + ∇ × ν∇ × E = ∂

∂t
Js. (5.4)

−∇ · εE = ρ (5.5)

The inconvenience of a time-differentiated source current density can be mitigated
by exploiting the potentials as defined in (2.15)

ε
∂2

∂t2 A + ∂

∂t
ε∇φ + σ

∂

∂t
A + σ∇φ + ∇ × ν∇ × A = Js (5.6)

−∇ · ε
∂

∂t
A − ∇ · ε∇φ = ρ. (5.7)
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There is an ambiguity of the electromagnetic potentials since A is only fixed up to
a gradient field [54]. To this end, several gauging techniques have been introduced.
For example grad-div formulations that are based on the Coulomb gauge, have been
introduced for low frequencies [22, 30, 32] and high-frequency applications [46].

Let us define a regularisation of the electrodynamic potentials by the following
gauge condition

ξ1∇ · A + ξ2φ + ξ3
∂

∂t
φ = 0 (5.8)

which yields for ξ1 = 1, ξ2 = ξ3 = 0 the Coulomb gauge and for ξ1 = ν,
ξ2 = 0 and ξ3 = ε the Lorenz gauge if the considered materials are conducting,
uniform, isotropic and linear. In the case ξ1 = ν, ξ2 = σ and ξ3 = ε the curl-curl
equation (5.6) can be written as a pair of damped wave equations

[
Δ − μσ

∂

∂t
− με

∂2

∂t2

]
A = −μJs (5.9)

[
Δ − μσ

∂

∂t
− με

∂2

∂t2

]
φ = −ρ

ε
(5.10)

where Δ denotes the (scalar and vector) Laplace operators. In the undamped case
(σ = 0), this system reduces to the well-known d’Alembert equations [54]. The
right-hand-sides are still coupled via the continuity equation (2.3)

∇ · Js + σ

ε
ρ + ∂

∂t
ρ = 0 (5.11)

where we have again exploited isotropy and homogeneity of σ and ε to obtain
−∇ · σE = σ

ε
ρ. When solving the system (5.9)–(5.11) we have to ensure that

the (generalised) Lorenz gauge (5.8) is still fulfilled, which requires compatible
boundary conditions for A and φ [10].

Now, let us derive a similar semidiscrete formulation based on the spatial
discretisation introduced above. We start with the A–φ formulation (5.6) using the
discretised laws of Ampère (3.1b) and Gauss (3.1d):

C̃MνC�a+Mσ

[
d

dt

�a + GΦ

]
+Mε

[
d2

dt2
�a + G

d

dt
Φ

]
=��

j s (5.12)

−S̃Mε

d

dt

�a + LεΦ =q (5.13)

which contains the discrete Laplace operators

Lε := −S̃MεG and Lσ := −S̃Mσ G , (5.14)

for permittivity and conductivity, respectively.
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Lemma 5.3 (Discrete Laplacians) Let Assumptions 2.2 and 3.2 hold true, the
discrete Laplace operator Lε in (5.14) is symmetric positive definite and Lσ is
symmetric positive semidefinite.

Proof As we assume Dirichlet boundary conditions (ebc) in Assumption 3.2 and
G = −S̃� due to (3.3), the proof is straight forward. ��

Equations (5.12) and (5.13) are coupled by the potentials and right-hand-sides
via the continuity equation

S̃
��
j s + Lσ L−1

ε q + d

dt
q =

[
S̃Mσ − Lσ L−1

ε S̃Mε

] d

dt

�a , (5.15)

that is obtained by a left multiplication of Ampère’s law by S̃ and inserting Gauss’
law etc. The steps are the same as in the continuous case, e.g., applying the
divergence operator. Nonetheless, the discrete continuity equation (5.15) is more
general than its continuous counterpart (5.11) as it covers anisotropic and non-
homogeneous material distributions.

The ambiguity of the potentials is not yet fixed. The generalised discrete Lorenz
gauge (5.8) for a conductive domain in FIT notation is given by

MεGMNS̃Mε
�a + Mσ GΦ + MεG

d

dt
Φ = 0 (5.16)

with a scaling matrix MN which is mainly introduced to guarantee correct units. A
consistent but rather inconvenient choice is

MN := M−1/2
ε M1/2

ν L−1
ε M1/2

ν M−1/2
ε .

This regularisation is similar to the Lagrange-multiplier formulation for the eddy-
current problem [28]. Left-multiplication of (5.16) by M−1

N L−1
ε S̃ yields

S̃Mε
�a + M−1

N L−1
ε Lσ Φ + M−1

N
d

dt
Φ = 0. (5.17)

which simplifies to Coulomb’s gauge

S̃Mε
�a = 0 (5.18)

with respect to the permittivities if we set Φ = 0.
To obtain a discrete version of the damped wave equation (5.9)–(5.10), we utilise

(5.17). Now, using (5.16) and (5.17) the system (5.12)–(5.13) becomes two discrete
damped wave equations

Lν
�a + Mσ

d

dt

�a + Mε

d2

dt2
�a = ��

j s (5.19)
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LεΦ + M−1
N L−1

ε Lσ
d

dt
Φ + M−1

N
d2

dt2
Φ = q (5.20)

with Lν := C̃MνC − MεGMNS̃Mε and given right-hand-sides
��
j s and q that fulfil

the continuity equation (5.15). The resulting problem (5.19)–(5.20) is a system of
second-order ordinary differential equations:

Theorem 5.4 Let Assumptions 2.1, 2.2 and 3.2 hold. Then, the A–Φ-formulation
with Lorenz gauge (5.17) and known charges q leads to an ordinary differential
equation (ODE) system which is given in (5.19)–(5.20).

5.2.1 Full Maxwell with Lorenz Gauge

Let us now investigate the case where the charges q are not known. We start from
Lorenz’ gauge (5.16). Left-multiplication of the equation by −S̃ yields

LεMNS̃Mε
�a + Lσ Φ + Lε

d

dt
Φ = 0 .

Following the notation of Schoenmaker, e.g. [83], we denote the derivative of
the magnetic vector potential by �π := d�a/dt . Then, the Eqs. (5.12)–(5.13) can be
rearranged as the following system of DAEs

LεMNS̃Mε
�a + Lσ Φ + Lε

d

dt
Φ = 0 (5.21)

C̃MνC�a+Mσ [�π + GΦ]+Mε

[
d

dt

�π + G
d

dt
Φ

]
=��

j s (5.22)

S̃Mε
�π − LεΦ+q= 0 (5.23)

d

dt

�a − �π = 0 (5.24)

with x� = (q�,Φ�, �a�, �π�) such that we can write (5.21)–(5.24) in the form of
(4.1) with the definitions

M =

⎡
⎢⎢⎣

0 Lε 0 0
0 MεG 0 Mε

0 0 0 0
0 0 I 0

⎤
⎥⎥⎦ , K =

⎡
⎢⎢⎣

0 Lσ LεMNS̃Mε 0
0 Mσ G C̃MνC Mσ

I −Lε 0 S̃Mε

0 0 0 −I

⎤
⎥⎥⎦ and r =

⎡
⎢⎢⎢⎣

0
��
j s

0
0

⎤
⎥⎥⎥⎦ .

Now, any standard time integrator, e.g. the implicit Euler method (4.2), can be
applied.
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Next we determine the differential index of the system (5.21)–(5.24). Equa-
tion (5.21) is an ODE for Φ

d

dt
Φ = −MNS̃Mε

�a − L−1
ε Lσ Φ. (5.25)

Then, we deduce from (5.22) and (5.25) an ODE for �π :

d

dt

�π = −M−1
ε

[
Lν

�a+Mσ [�π + GΦ]−MεGL−1
ε Lσ Φ − ��

j s

]

Finally, only one differentiation with respect to time of (5.23) is needed to obtain an
ordinary differential equation for q:

d

dt
q = S̃Mσ

�π − Lσ Φ − S̃
��
j s .

Hence we conclude the following result [10]

Theorem 5.5 Let Assumptions 2.1, 2.2 and 3.2 hold. The system (5.21)–(5.24) has
differential index-1 and the initial vector x�

0 = (q�
0 ,Φ�

0 , �a�
0 , �π0

�) is a consistent

initial value if q0 = LεΦ0 − S̃Mε
�π0 is fulfilled.

5.2.2 Full Maxwell with Coulomb Gauge

Instead of augmenting the equations by a Lorenz gauge, one can choose the
Coulomb gauge (5.18). Starting by left-multiplying Coulomb’s gauge by MεGMN,
we obtain

MεGMNS̃Mε
�a = 0 . (5.26)

Using (5.18) and (5.26), the system (5.12)–(5.13) becomes a semi-discrete damped
wave equation accompanied by a Laplace equation, i.e.,

Lν
�a+Mσ

[
d

dt

�a + GΦ

]
+Mε

[
d2

dt2
�a + G

d

dt
Φ

]
=��

j s

LεΦ =q

with right-hand-sides that fulfil the continuity equation (5.15) and thus for given
��
j s the resulting semi-discrete problem is again a system of DAEs. The Coulomb-
gauged system reads

S̃Mε
�a = 0 (5.27)
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C̃MνC�a+Mσ [�π + GΦ]+Mε

[
d

dt

�π + G
d

dt
Φ

]
=��

j s (5.28)

S̃Mε
�π − LεΦ+q= 0 (5.29)

d

dt

�a − �π = 0 (5.30)

with x� = (q�,Φ�, �a�, �π�). Similarly as before we can identify a first order DAE
system of form (4.1) and apply for example the implicit Euler method.

Next, we determine the differential index of the system (5.27)–(5.30). Differen-
tiating (5.27) twice with respect to time and inserting (5.30) leads to

S̃Mε
d

dt

�π = 0 . (5.31)

This indicates already that the differential index is at least ϑ ≥ 2. Left-multiplying
(5.28) by S̃ and applying (5.31) yields:

d

dt
Φ = −L−1

ε

[
Lσ Φ − S̃Mσ

�π + S̃
��
j s

]

Furthermore, from (5.28), we obtain:

d

dt

�π = −M−1
ε

[
(Mσ G − MεGL−1

ε Lσ )Φ + C̃MνC�a

+(Mσ + MεGL−1
ε S̃Mσ )�π − (I + MεGL−1

ε S̃)
��
j s

]

Finally, one differentiation with respect to time of (5.29) results in

d

dt
q = S̃Mσ

�π − Lσ Φ − S̃
��
j s

and thus the overall problem has a differential index-2 [10].

Theorem 5.6 Let Assumptions 2.1, 2.2 and 3.2 hold. The system (5.27)–(5.30) has
differential index-2 and the initial vector x�

0 = (q�
0 ,Φ�

0 , �a�
0 , �π0

�) is a consistent

initial value if S̃Mε
�a0 = 0, S̃Mε

�π0 = 0 and q0 = LεΦ0 − S̃Mε
�π0 are fulfilled.

Lorenz’ and Coulomb’s gauge lead to systems that describe the same phenomena
and have eventually, i.e. in the mesh size limit, the same electromagnetic fields
(strengths or fluxes) as solutions. On the other hand, the structural properties are
different, i.e., the Lorenz gauge yields an index-1 problem whereas the Coulomb
gauge gives index-2. Hence, the latter formulation will be much more affected by
perturbations and the computation of consistent initial values is more cumbersome.
This has been observed in simulations [8, 10].
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Fig. 9 Copper bar in air, excited by sinusoidal source (Benchmark 5.7)
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Fig. 10 Copper bar with square cross-section surrounded by air. The distances are
lc = (1 + √

1.5)·10−3 m, l0 = (3 + √
1.5)·10−3 m, and h0 = hc =3 m. (a) Squared cross-section

of the copper bar at the z = 0 plane. (b) Cross-section of the copper bar at the x = 0 plane

Benchmark 5.7 The benchmark example Fig. 9 was proposed in [10] to numer-
ically analyse the DAE index of the two gauged A–φ formulations. The model
is a copper bar with a cross-sectional area of 0.25mm2 surrounded by air and
discretised by FIT. A detailed characterisation of the dimensions can be seen in
Fig. 10.

On the copper bar Ωc, a conductivity of σc =5.7 · 107 S/m is set and on the
air region σair = 0 S/m. Vacuum permeability μ = 4π ·10−7 H/m and relative
permittivity εr = 1 is assumed in the entire domain.
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Fig. 11 Time domain simulation results for the Benchmark 5.7 with Lorenz gauge Δt =
1 · 10−4 s. (a) Current through the bar, (b) voltage drop at the ports

One contact is excited by a sinusoidal voltage v = sin(2πt)V, the other contact
is grounded (ebc) and the remaining boundary is set to mbc.

The structure is discretised using FIT with 325 mesh cells and 845 degrees of
freedom. The implicit Euler method is applied with a time step of Δt =1 · 10−4 s
and zero initial condition, see Fig. 11.

6 Quasistatic Maxwell’s Equations

In the case of slowly time-varying fields, certain time-derivatives of Maxwell’s
equations can be disregarded with respect to other phenomena, see Definition 3. This
is convenient to simplify the numerical treatment. However, the resulting (quasi-)
static approximations have different structural properties and their differential
algebraic index is studied next.

6.1 Electroquasistatic Maxwell’s Equations

We start with the index study of the electroquasistatic approximation, that is given
in Definition 3(b). Maxwell’s equations can be rewritten as

∇ × E = 0 , ∇ × H = ∂D
∂t

+ J , ∇ · D = ρ , ∇ · B = 0 .
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As the curl of electric field E vanishes, it can be described as the gradient of the
electric scalar potential φ

E = −∇φ , (6.1)

i.e., the magnetic vector potential’s contribution to E in (2.15) is negligible.

6.1.1 Electric Scalar Potential φ-Formulation

Using Eq. (6.1), Maxwell’s equations for electroquasistatic fields and the material
laws, the following potential equation can be obtained to compute φ

∇ · σ∇φ + ∂

∂t
∇ · ε∇φ = 0 .

Eventually, spatial discretisation leads to a system of DAEs

S̃Mσ S̃�Φ + S̃MεS̃� d

dt
Φ = 0 , (6.2)

where Φ contains the degrees of freedom of our problem, i.e. the electric scalar
potential on the nodes of the primal grid. However, if boundary conditions are
properly set, then one can show

Theorem 6.1 The system (6.2) under Assumptions 2.1, 2.2 and 3.2 is an ODE.

Theorem 6.1 follows immediately from Lemma 2.

Benchmark 6.2 In a DC high-voltage cable, the insulation between the inner
high-voltage electrode and the outer shielding layer carries a large electric field
strength. At the end of the cable (Ωcbl), the voltage has to drop along the surface
of the insulation layer (Ωins) with a substantially smaller electric field strength.
This necessitates the design of a so-called cable termination with field-shaping
capability. A sketch of the domain and its distances can be seen in Fig. 12.

The computational domain is Ω = Ωair ∪ Ωins and the rest of the domain is
modelled via boundary conditions and thus not considered by the discretisation. In
the air region Ωair the conductivity σ is set to zero and the permittivity of vacuum
ε0 =8.85 · 10−12 F/m is assumed. The insulating domain Ωins has conductivity
1 S/m and permittivity 6ε0.

Due to symmetry reasons, only an axisymmetric cross-section (i.e. the right
half of the domain sketched in Fig. 12) is simulated. The cable endings Ωcbl are
modelled by zero Dirichlet boundary conditions (ebc) on the boundary Γcbl =
∂Ωcbl ∩ (

Ω ins ∪ Ωair
)
. Similarly, the domain Ωc is modelled by non-homogeneous

Dirichlet boundary conditions that set the potential φ to a time dependent value
f (t) on Γc = ∂Ωins ∩ Ωc, see Fig. 13a. At the rest of the boundary zero Neumann
boundary conditions (mbc) are set.
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Fig. 12 Sketch of electroquasistatic benchmark domain. The distances are l0 = 1.2 · 10−2 m, l1 =
2.5 · 10−2 m, l2 = 2 · 10−3 m, h0 = 4 · 10−2 m and h1 =1 · 10−2 m. To describe the arc segments,
points P0 = (12, 10), P1 = (12.03, 11), P2 = (14.24, 18.94), P3 = (17.3, 19.52), P4 =
(17.2, 16, 4) and P5 = (14, 10) are defined. The first arc segment from point P2 to P1 has
an angle of 25.06◦ and is described by straight segments with a grid spacing of 3.02◦. Both arc
segments from P3 to P2 as well as from P4 to P3 have 102.53◦ and 28.65◦ spacing. The last one
from P4 to P5 has 53.13◦ and 7.16◦ spacing

Using the Finite Element Method yields 2,892 number of nodes and 2,078
degrees of freedom. Time integration is carried out with the implicit Euler method
from time t0 =0 s to tend =2 · 10−3 s with step size Δt =1 · 10−5 s. The steady state
solution is set as initial condition. Figure 13 shows the excitation function f (t) and
the electric energy Eelec = 1

2

∫
Ω

E · D dΩ ≈ 1
2

�e�Mε
�e over time.

For the electroquasistatic problem other formulations are not common as (6.2)
has convenient properties, e.g. a low-number of degrees of freedom, since no
vectorial fields are needed and ordinary differential character. Rarely, a mixed
charge/potential formulation [74]

S̃Mσ S̃�Φ + d

dt
q = 0 ,

q − S̃MεS̃�Φ = 0 .

is employed which is a simple and easy to solve DAE index-1 system.
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Fig. 13 Electric energy and excitation function of benchmark 6.2. (a) Excitation function f (t).
(b) Electric energy

6.2 Magnetoquasistatic Maxwell’s Equations

Now the magnetoquasistatic case is studied. Following Definition 3(c) Maxwell’s
equations take the form

∇ × E = −∂B
∂t

, ∇ × H = J , ∇ · D = ρ , ∇ · B = 0 .

Due to the non-vanishing curl of the electric field strength, a scalar potential
formulation is no longer possible. Several competing vector potential formulations
are common, see e.g. [15].

6.2.1 Magnetic Vector Potential A-formulations

Using the definition of the magnetic vector and the electric scalar potentials A and
φ (see Eq. 2.15) and inserting the material laws and magnetoquasistatic equations
into each other, one finds the curl-curl equation

σ

(
∂A
∂t

+ ∇φ

)
+ ∇ × (ν∇ × A) = Js .

In a three dimensional domain, a gauge condition is necessary to ensure uniqueness
of solution, due to the kernel of the curl-operator (CS̃� = 0). The so-called A*
formulation exploits this freedom of choice and assumes that the gradient of the
electric scalar potential is zero (∇φ = 0). Applying it yields the spatially discretised
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magnetoquasistatic curl-curl equation

Mσ
d

dt

�a + C�MνC�a = ��
j s (6.3)

with
��
j s known and �a containing the degrees of freedom (the magnetic vector poten-

tial integrated on the edges of the primal grid). Alternatively, mixed formulations
incorporating a gauging conditions have been proposed, e.g. [28]

(
Mσ 0

0 0

)
d

dt

(
�a
Φ

)
+

(
C�MνC M1S̃�
−S̃M1 −M−1

N

) (
�a
Φ

)
=

(
��
j s
0

)

where M1 is a regularised version of Mσ and MN is a regular matrix to ensure
the correct physical units as in (5.16). Using the Schur complement, one derives a
grad-div regularisation, e.g. [30], where

Zσ = M1S̃�MNS̃M1.

can be used to finally arrive at

Assumption 6.3 Let us assume that system (6.3) is rewritten as

Mσ
d

dt

�a + Kν
�a = ��

j s, (6.4)

where Kν = C�MνC + Zσ , provided Zσ is a positive semidefinite matrix that
enforces the matrix pencil λMσ + Kν to be positive definite for λ > 0.

Theorem 6.4 Under Assumptions 2.1, 2.2, 3.2 and 6.3, system (6.4) has Kronecker
and tractability index 1.

The proof of the Kronecker index of system (6.4) has been originally given in [72].
More recently, [57] obtained the same result for the tractability index and [7] used
the tractability index concept to analyse the DAE index of this formulation with an
attached network description.

Instead of using Zσ , various gauging techniques have been proposed for this
formulation, such as the tree-cotree gauge [69] or the weak gauging property of
iterative linear solvers [29]. Due to the simple structure of Mσ and as long as the
gauge leads to a positive definite matrix pencil, the index can be derived analogously
as before.

Benchmark 6.5 A common benchmark for magnetoquasistatic models are induc-
tors with a metal core. The example in Fig. 14 from [33] features an aluminium
core, i.e. σ =35 · 106 S/m in Ωc with a copper coil Ωstr surrounded by air Ωair.
The coil is given by the stranded conductor model consisting of 120 turns with
conductivity σ =1 · 106 S/m. The conductivity inΩair is zero and disregarded inΩstr
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Fig. 14 Magnetoquasistatic
model of an inductor with
metal core. The distances are
l0 = 1.4 · 10−2 m,
lstr = 8 · 10−3 m
lc = 4 · 10−3 m,
dc = 1 · 10−3 m,
h0 = 1.8 · 10−2 m,
lstr = 1.2 · 10−2 m and
lc = 8 · 10−3 m. (a)
Cross-section of inductor at
the z = 0 plane. (b)
Cross-section of inductor at
the x = 0 plane
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in the construction of Mσ as eddy currents are assumed negligible in the windings.
Vacuum permeabilityμ = 4π ·1 · 10−7 H/m is assumed everywhere (Ω) and electric
boundary conditions are enforced Γ = Γebc, cf. (2.4). The FIT discretisation uses
an equidistant hexahedral grid with step size 10−3, which leads to 3,528 elements.

The discretisation of the winding function for the A* formulation can be
visualised in Fig. 15. As no gauging is performed, 9,958 degrees of freedom arise.
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Fig. 15 Simple magnetoquasistatic model of an inductor with metal core. Coil is given by the
stranded conductor model (Benchmark 6.5). (a) Iron core (red) with surrounding coil (transparent
grey). (b) Source current density given by winding function Js = χ sis
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Fig. 16 Magnetic energy of the inductor in Fig. 14 simulated with the A* formulation

For the simulation, the source current density is
��
j s = Xsis, where Xs is

the discretisation of the winding function in Fig. 15, is = sin(2πfst) is the
source current and the frequency fs is 500 Hz. Time integration is performed with
the implicit Euler method with step size Δt =2 · 10−5 s from time t0 =0 s to
tend =2 · 10−3 s and zero initial condition. Figure 16 shows the magnetic energy

Emag = 1
2

∫
Ω H · B dΩ ≈ 1

2

��
b

�
Mν

��
b over time.



158 I. Cortes Garcia et al.

6.2.2 Electric Vector Potential T–Ω-formulation

Maxwell’s equations and their material laws in magnetoquasistatics can also be
expressed in the T–Ω formulation. Using the electric vector and magnetic scalar
potentials from Eq. (2.16), the system reads

∇ × (ρ∇ × T) + μ
∂T
∂t

− μ∇ ∂ψ

∂t
= −μ

∂Hs

∂t
− ∇ × Es

∇ · (μT) − ∇ · (μ∇ψ) = −∇ · (μHs) ,

with Es being the source electric field strength when solid conductors are present.
Here, ρ is the electrical resistivity, which corresponds to the inverse of σ wherever
σ 	= 0. As in the case of the A–φ formulation, the gauge condition is set for the
spatially discretised version of our system

C�MρC
�
t + Mμ

d

dt

�
t + MμS̃� d

dt
Ψ = −Mμ

d

dt

�

hs − C�es

S̃Mμ
�
t + S̃MμS̃�Ψ = −S̃Mμ

�

hs,

with degrees of freedom
�
t , which contains the on the dual grid’s edges integrated

electric vector potential and Ψ , which consists of the magnetic scalar potential on
the dual grid’s nodes.

Definition 6.5 For gauging, a tree T is generated on the dual grid’s edges inside the
conducting region Ωc. We define a projector P̃t onto the cotree of T and truncate it
by deleting all the linearly dependent columns to obtain Pt. As gauging condition
we set Qt

�
t = 0, where Qt spans the kernel of P�

t . This corresponds to setting to
zero the values of the electric vector potential on the edges T .

P�
t C�MρCPt

�
t + P�

t MμPt
d

dt

�
t + P�

t MμS̃� d

dt
ψ = −P�

t Mμ
d

dt

�
hs − P�

t C�es

(6.5)

S̃MμPt
�
t + S̃MμS̃�ψ = −S̃Mμ

�
hs. (6.6)

Property 6.6 The matrix Pt fulfils

1. det
(
P�

t C�MρCPt
) 	= 0,

2. im Pt ∩ im S̃� = ∅.

Property 6.6(1) is a consequence of the tree-cotree gauge (see [69]) and Prop-
erty 6.6(2) follows from Property 6.6(1) and the fact that im S̃� ⊆ ker C (Lemma 1).

Property 6.7 ([33]) Every x ∈ R
n can be written as x = M1/2

μ S̃�x1+M−1/2
μ W�x2,

where n := rank Mμ and W is the matrix whose columns span ker S̃.
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Proof As Mμ has full rank and is symmetric, rank(M1/2
μ S̃�) = rank S̃� and

rank(M−1/2
μ W�) = rank W�. Using the rank-nullity theorem together with the fact

that both subspaces are orthogonal and thus linear independent, we obtain that their
direct sum spans Rn. ��
Theorem 6.8 ( [33]) Under Assumptions 2.1, 2.2 and 3.2, the system of DAEs
(6.5)–(6.6) has differential index-1.

Proof As the system has an algebraic constraint, it has at least index-1. Equa-
tion (6.6) is differentiated and d

dt
Ψ is extracted as

d

dt
Ψ = −(̃SMμS̃�)−1S̃MμPt

d

dt
t − (̃SMμS̃�)−1S̃Mμ

�

hs.

This can be inserted into Eq. (6.5) and now it is sufficient to see that det (PtZPt) 	= 0
for

Z = (Mμ − MμS̃� (̃SMμS̃�)−1S̃Mμ).

We can write M1/2
μ Ptx = M1/2

μ S̃�x1 + M−1/2
μ W�x2 (Property 6.7). As M1/2

μ

is invertible, Ptx = S̃�x1 + M−1
μ W�x2 and, as Ptx 	= S̃�x1 (Property 6.6),

M−1
μ W�x2 	= 0. Thus

x�P�
t ZPtx = x�

2 WM−1
μ W�x2 > 0,

as long as x 	= 0. We conclude that P�
t ZPt is positive definite. ��

Benchmark 6.9 The physical specifications and discretisation of the benchmark
example of the T–Ω formulation is equivalent to Benchmark 6.5.

The construction of the winding function is different and it is depicted in Fig. 17.
This time a tree-cotree gauge is performed, which yield only 4,610 degrees of
freedom.

Again for the simulation the source current is set to is = sin(2πfst) with
frequency fs = 500 Hz. The source magnetic field is

�
hs = Ysis, with Ys being

the discretisation of the winding function in Fig. 17. Like in Benchmark 6.5, time
integration is performed with implicit Euler with step size Δt =2 · 10−5 s from time
t0 =0 s to tend =2 · 10−3 s and with zero initial condition. The resulting magnetic
energy is depicted in Fig. 18.

Remark 6.9 Note that the magnetic energy obtained with the A* formulation in
Fig. 16 and the one obtained with the T–Ω one in Fig. 18 differ. Both formulations
are dual to each other, i.e., their degrees of freedom are on dual sides of Maxwell’s
House in Fig. 5. They converge to the unique physical solution from below and
above. This property can be used in order to study the error of the spatial
discretisation (see [1]).
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Fig. 17 Simple magnetoquasistatic model of an inductor with metal core. Coil is given by the
stranded conductor model (Benchmark 6.9). (a) Iron core (red) with surrounding coil (transparent
grey). (b) Source magnetic field strength Hs such that ∇ × Hs = χ sis
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Fig. 18 Magnetic energy of the inductor in Fig. 14 simulated with the T–Ω formulation

6.3 Darwin Model

In many situations, phenomena related to electric energy, magnetic energy and Joule
losses coincide, while at the same time, for the considered operating frequencies,
the wave lengths are much larger than the model size, which indicates that wave
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propagation effects can be neglected. An example thereof is a filter design with
concentrated elements, i.e., coils and capacitors connected by strip lines, arranged
on a printed circuit board [88]. In such models, resonances between the discrete
elements and Joule losses in all conducting parts need to be considered, whereas
for the considered frequency range, cross-talk due to electromagnetic radiation
is irrelevant. For such configurations, a combination of electroquasistatics and
magnetoquasistatics in the form of the Darwin approximation of the Maxwell
equations is the appropriate formulation.

The Darwin approximation starts from the decomposition of the electric field
strength E = Eirr + Erem into an irrotational part Eirr and a remainder part Erem.
This decomposition is not unique, in contrast to the Helmholtz decomposition,
which can be considered as a special case enforcing Erem to be solenoidal. In this
paper, the non-uniqueness of the decomposition will be resolved when choosing
a gauge condition below. The Darwin approximation consists of removing the
displacement currents related to Erem from the law of Ampère-Maxwell. This affects
the set of Maxwell equations in the sense that, in the formulations derived below,
second derivatives with respect to time vanish and the overall PDE looses its
hyperbolic character, which is equivalent to neglecting wave propagation effects.
The set of relevant equations is

∇ × Erem = −∂B
∂t

; (6.7)

∇ × (νB) = Js + σEirr + σErem + ∂

∂t
(εEirr) ; (6.8)

∇ · B = 0 ; (6.9)

∇ · (εEirr) + ∇ · (εErem) = ρ . (6.10)

Almost all publications on the Darwin approximation are limited to the case with
homogeneous materials. They choose the Helmholtz decomposition, i.e., ∇ ·Erem =
0, which causes the term ∇·(εErem) in (6.10) to vanish [39, 61]. In the more general
case considered here, however, this term is important as it models the charges
accumulating at material interfaces due to the induced electric field strength [59].

An ambiguity arises when expressing the continuity equation ∇ · J + ∂ρ
∂t

= 0.
When inserting Gauss law, the result reads

∇·Js+∇·(σEirr)+∇·(σErem)+ ∂

∂t
(∇ · εEirr)+ ∂

∂t
(∇ · εErem) = 0 , (6.11)

whereas when applying the divergence operator to (6.8), the last term in (6.11) is
missing. Hence, the Darwin model introduces an anomaly in the continuity equation,
which can only be alleviated by also neglecting the displacement currents due to
Erem in the continuity equation.
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6.3.1 φ–A–ψ Formulation of the Darwin Model

The irrotational part in of the electric field strength is represented by an electric
scalar potential φ, i.e., Eirr = −∇φ. The magnetic Gauss law (6.9) is resolved by
the definition of the magnetic vector potential A, i.e., B = ∇×A, whereas Faraday’s
law (6.7) is fulfilled by the definition of an additional scalar potential ψ such that
Erem = − ∂A

∂t
− ∇ψ . The law of Ampère-Darwin, Gauss’ law and the continuity

equation become

∇ × (ν∇ × A) + σ
∂A
∂t

+ σ∇ψ + σ∇φ + ε∇ ∂φ

∂t
= Js ; (6.12)

−∇ ·
(

ε
∂A
∂t

)
− ∇ · (ε∇ψ) − ∇ · (ε∇φ) = ρ ; (6.13)

−∇ ·
(

σ
∂A
∂t

)
− ∇ · (σ∇ψ) − ∇ · (σ∇φ) − ∇ ·

(
ε∇ ∂φ

∂t

)
= 0 . (6.14)

The introduced potentials φ, A and ψ lead to too many degrees of freedom. The
electric field strength is decomposed as

E =
Eφ︷ ︸︸ ︷

−∇φ︸ ︷︷ ︸
Eirr

EA︷ ︸︸ ︷
−∂A

∂t

Eψ︷ ︸︸ ︷
−∇ψ

︸ ︷︷ ︸
Erem

(6.15)

Irrotational parts of the electric field strength can be attributed to Eφ , EA or Eψ .
However, the splitting determines which displacement currents are considered in
the law of Ampère-Maxwell and which are only considered in the electric law of
Gauss. All components of E contribute to the Joule losses and contribute in the
electric Gauss law, whereas only Eφ contributes to the displacement currents. The
component Eψ can be fully integrated into EA.

The choice of ψ determines the fraction of the displacement currents which is
neglected in the Darwin model. In the case of a homogeneous material distribution,
the choice ψ = 0 implies a Helmholtz splitting of E into the irrotational part Eirr
and a solenoidal part Erem. Then, the Darwin approximation amounts to neglecting
the displacement currents related to the solenoidal part of the electric field strength.
Other choices for ψ lead to other Darwin models yielding different results. Hence,
Darwin’s approximation to the Maxwell equations is not gauge-invariant [61].

6.3.2 ψ–A∗-formulation of the Darwin Model

A straightforward choice for ψ is ψ = 0 in which case, it makes sense to combine
(6.12) and (6.13), i.e.,
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∇ × (ν∇ × A) + σ
∂A
∂t

+ σ∇φ + ε∇ ∂φ

∂t
= Js ; (6.16)

−∇ ·
(

ε
∂A
∂t

)
− ∇ · (ε∇φ) = ρ . (6.17)

The drawback of this formulation is that the charge density must be prescribed,
which may be cumbersome in the presence of metallic parts at floating potentials.

6.3.3 Alternative ψ–A∗-formulation of the Darwin Model

Another possible formulation [58] arises with ψ = 0, but by combining (6.12) and
(6.14), i.e.,

∇ × (ν∇ × A) + σ
∂A
∂t

+ σ∇φ + ε∇ ∂φ

∂t
= Js ; (6.18)

−∇ ·
(

σ
∂A
∂t

)
− ∇ · (σ∇φ) − ∇ ·

(
ε∇ ∂φ

∂t

)
= 0 . (6.19)

Here, however, the magnetic vector potential A is not uniquely defined in the non-
conductive model parts. Then, a gauge is necessary is fix the irrotational part of A
in the non-conductive model parts. During post-processing, one should discard the
irrotational part of A when calculating the electric field strength or displacement
current density in the non-conducting parts.

6.3.4 Discretisation of the Darwin Model

The discrete counterpart of (6.16) and (6.17) reads

C�MνC�a + Mσ

d

dt

�a − Mσ S̃�Φ − MεS̃� d

dt
Φ = ��

j s ; (6.20)

S̃Mε
d

dt

�a + S̃MεS̃�Φ = q , (6.21)

whereas the discrete counterpart of (6.18) and (6.19) reads

C�MνC�a + Mσ
d

dt

�a − Mσ S̃�Φ − MεS̃� d

dt
Φ = ��

j s ; (6.22)

S̃Mσ
d

dt

�a + S̃Mσ S̃�Φ + S̃MεS̃� d

dt
Φ = 0 , (6.23)

with all matrices defined as above. The second formulation needs a gauge for the
non-conducting model parts as previously discussed in Assumption 6.3.
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Fig. 19 Benchmark example for Darwin model, originally proposed in [59], see Benchmark 6.10

In [59], simulation results for the Darwin approximation, the electroquasistatic
approximation and the magnetoquasistatic approximation are compared to results
obtained by a full-wave solver, serving as a reference. This comparison clearly
shows the limitations (the neglected wave propagation effects) and the advantages
(more accurate than electroquasistatics and magnetoquasistatics and faster than a
full-wave solver) of the Darwin model.

A DAE index analysis of the systems (6.20)–(6.21) and (6.22)–(6.23) is an open
research question. Also, the following benchmark is merely a literature reference.

Benchmark 6.10 The Darwin benchmark example shown in Fig. 19 is taken from
[59]. It is axisymmetric and consists of conductive, dielectric and magnetic pieces.
A solid conductor is connected to two plates which form a capacitor in combination
with the dielectric material layer in between. Two solid ferrite rings surround
the conductor. The problem is excited by potentials φ1 and φ0 at the ends of the
conductor, the remaining boundaries are mbc. Geometry specifications and material
data can be found in [59]. Koch et al. propose to regularise the model by an
artificial conductivity.

7 Conclusions

This paper has discussed various formulation for low and high-frequency problems
in computational electromagnetics. In contrast to electric circuit simulation, e.g.
[92], most formulations are rather harmless, i.e., they lead to a systems of low
DAE index (≤2). More precisely, the only index-2 problem arises in the case of
considering Maxwell’s equations in A–φ-potential formulation with a Coulomb
gauge. It has been shown that this can be mitigated by a reformulation based on
Lorenz’ gauge. Obviously, when coupling various formulations with each other or
with electric circuits, the situation becomes more complex.
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Abstract The simulation of gas transportation networks becomes increasingly
more important as its use-cases broaden to more complex applications. Classically,
the purpose of the gas network was the transportation of predominantly natural gas
from a supplier to the consumer for long-term scheduled volumes. With the rise of
renewable energy sources, gas-fired power plants are often chosen to compensate for
the fluctuating nature of the renewables, due to their on-demand power generation
capability. Such an only short-term plannable supply and demand setting requires
sophisticated simulations of the gas network prior to the dispatch to ensure the
supply of all customers for a range of possible scenarios and to prevent damages to
the gas network. In this work we describe the modeling of gas networks and present
benchmark systems to test implementations and compare new or extended models.
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1 Introduction

The simulation of gas transport over large pipeline networks is essential to a safe
and timely dispatch and delivery of contracted denominations. The modeling and
verified implementation of gas transport is a prerequisite for the reliable simulation
of gas transportation scenarios. Beyond the basic network of pipelines, further
(active) components such as compressors have to be included into realistic models.
To this end, a modeling approach for gas networks including these components
is presented in this work together with four benchmark examples and associated
reference solutions allowing the test of gas network simulation implementations.

The basis for gas network models are the Euler equations as introduced in [25],
which describe the transient behavior in terms of conservation of momentum, con-
servation of mass and the gas state. Discretizations of this gas network model given
by partial differential algebraic equations have been investigated in [1, 6]. An index
reduction of this differential-algebraic to a purely differential model in a model
order reduction setting has been investigated in [10–12]. The modeling of complex
network elements such as compressors in the context of gas networks is described in
[7, 13], while verification of this model has been conducted for example in [2, 26].
Modeling based on practical engineering considerations can be found in [8, 21].

In this work, we will present a modular gas network model based on the
isothermal Euler equations. The modularity rests upon factor approximations which
in different regimes are chosen accordingly. The focus of the modeling effort is
hereby directed towards transient simulations of the gas transport. Beyond basic
pipeline networks, the following modeling approach includes gas network elements
like valves, resistors or compressors, and allows the extension with new elements.
Additionally, certain benchmark networks are outlined together with respective
scenarios, describing the transient boundary value behavior in order to provide
testable discretized model instances.

In Sect. 2 we describe the model for a single pipe, which is extended to a
network of pipes and additional components in Sect. 3. Section 4 details the partial
discretization of the network model and finally, Sect. 5 describes four benchmark
networks with increasing degree of complexity.

2 Pipe Physics

2.1 The Isothermal Euler Equations

The flow of (a real) gas is modeled by the Euler equations, which describe the
conservation of mass (2.1a), conservation of momentum (2.1b), and inherent state
of the gas (2.1c). In the following, we discuss the analytic modeling, assumptions
and simplifications of these partial differential equations (PDEs).
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First of all, we assume that the temperature variations throughout the network
have negligible effects on the dynamic behavior of the gas transport. This may
seem unrealistic, but for strictly on-shore gas networks this is actually a sensible
assumption [21, Ch. 45] and greatly reduces the complexity of the model. Hence,
we fix the temperature to a constant value T0.

For the transport of gas in a network of pipes, we first model a single pipe of
length L by the one-dimensional isothermal Euler equations over the spatial domain
x ∈ [0, L] and time t ∈ R+:

∂

∂t
ρ = − ∂

∂x
ϕ, (2.1a)

∂

∂t
ϕ = − ∂

∂x
p − ∂

∂x
(ρv2) − gρ

∂

∂x
h − λ̂(ϕ)

2D
ρv|v|, (2.1b)

p = γ (T )z(p, T )ρ. (2.1c)

This system of coupled (PDEs) in space and time consists of the variables: density
ρ = ρ(x, t), flow rate ϕ = ϕ(x, t), pressure p = p(x, t), velocity v = v(x, t) and
pipe elevation h = h(x). Note, that the Euler equations are nonlinear (2.1b) and of
hyperbolic nature [19].

The remaining components are: the gravity constant g, pipe diameter D, gas
state γ (T ), friction factor λ̂(ϕ) and the compressibility factor z(p, T ). The latter
two functions will be discussed in Sects. 2.2 and 2.3. Also, as the temperature T is
assumed constant, the temperature dependency of the gas state and compressibility
factor is fixed to T ≡ T0. See Table 1 for a list of all symbols and their associated
units.

Subsequently we will transform this model, based on physical laws, to a
representation which contains the measurable quantities as solution variables, to
a more convenient form with respect to the numerical simulation. To this end we
introduce the mass flow q = q(x, t) := mϕ(x, t) and the pipe’s cross-sectional area

Table 1 List of symbols

Symbol Meaning SI-unit Symbol Meaning SI-unit

ρ Density [ kg
m3 ] Rs Specific gas constant

[ m2

s2 K

]

p Pressure [ kg
s2 m

] γ Gas state [ m2

s2 ]
ϕ Flow-rate [ m3

s ] z Compressibility factor [1]
q Mass-flow [ kg

s ] S Cross-sectional area [m2]
v Velocity [ m

s ] D Pipe diameter [m]
g Gravity constant [ m

s2 ] L Pipe length [m]
h Pipe elevation [m] T Temperature [K]
λ Friction factor [1] c Speed of sound [ m

s ]
k Roughness of pipe wall [m] P Power [W]



174 P. Benner et al.

Pressure
(Continuity)

{ 1

0 t
p

z0(p)
=−1

S x
q,

Mass Flux
(Momentum)

{ 1
S t

q=−
x
p− 0

S2 x
q2

z0(p)
p

Inertia Term

− g

0

p
z0(p) x

h

Gravity Term

− (q) 0

2DS2
q|q|(
p

z0(p)

)

Friction Term

Fig. 1 Term-wise highlighted PDE model with respect to physical meaning

S := 1
4πD2, over which the gas flow in the pipe is averaged, to replace the velocity

by mass flux (mass flow per area) over density v = 1
S

q
ρ

and obtain:

∂

∂t
ρ = − 1

S

∂

∂x
q, (2.2a)

1

S

∂

∂t
q = − ∂

∂x
p − 1

S2

∂

∂x

q2

ρ
− gρ

∂

∂x
h − λ(q)

2DS2

q|q|
ρ

, (2.2b)

p = γ (T )z(p, T )ρ. (2.2c)

To match the change in variables, the friction factor is also adapted to the
representation λ(q) := λ̂(Sϕ).

Using Boyle’s Law and given the specific gas constant Rs , the gas state is
constant γ0 := γ (T0) = RsT0 and we define z0(p) := z(p, T0) due to
the isothermality assumption. Finally, we substitute the pressure relation (2.2c)
into (2.2a) and (2.2b) to obtain the following formulation of the isothermal Euler
equations:

1

γ0

∂

∂t

p

z0(p)
= − 1

S

∂

∂x
q, (2.3a)

1

S

∂

∂t
q = − ∂

∂x
p − γ0

S2

∂

∂x
q2 z0(p)

p
− g

γ0

p

z0(p)

∂

∂x
h − λ(q)γ0

2DS2

q|q|
(

p
z0(p)

) ;

(2.3b)

see also Fig. 1.
The inertia (or kinematic) term of the mass-flux equation in the pipe gas flow

model evolves on a much smaller scale compared to the other components [25].
This is justified by comparing the coupling term and the inertia term (first two right-
hand side components in (2.3b)) after factoring the spatial derivative operator ∂

∂x
:

∣
∣∣
γ0

S2

q2z0(p)

p

∣
∣∣ =

∣
∣∣p

v2

z0(p)γ0

∣
∣∣ � |p|, for z0(p)γ0 � v2,
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Table 2 Boundary values
and quantities of interest

Boundary QoI

Pressure p(0, t) p(L, t)

Mass-flux q(L, t) q(0, t)

based on the velocity-mass-flux relation used in (2.2b). Since the speed of sound (in
the medium) c ≈ √

z0(p)γ0 typically exceeds the transport velocity v, the inertia
term is discarded in several works, as i.e. [10–12, 14]. We will follow this approach
and similarly exclude the inertia term from the model, which then leads to:

∂

∂t

p

γ0z0(p)
= − 1

S

∂

∂x
q,

∂

∂t
q = −S

∂

∂x
p − Sg

p

γ0z0(p)

∂

∂x
h − λ(q)

2DS

q|q|
(

p
γ0z0(p)

) .
(2.4)

The nonlinearity in the friction term q|q|
p

may be treated as quadratic, i.e. q2

p
, only

if the flow does not change direction. Since not only pipelines, but cyclic networks
of pipes are considered, a flow direction may change throughout the course of a
simulation. Some works [1, 29] linearize the friction term around the steady state of
a given scenario, which is not considered in this work to preserve accuracy. Yet, the
linearized equations may be used to obtain an approximate steady state given some
boundary condition.

In terms of boundary conditions, the pressure and mass flow in the pipe at time
t = 0 as well as the pressure at the inflow boundary pl(t) := p(0, t) and mass
flow at the outflow qr(t) := q(L, t) are given. With this set up, the aim is the
computation of the pressure at the outflow boundary pr(t) := p(L, t) and the mass
flow at the inflow boundary ql(t) := q(0, t). Table 2 summarizes this relation of
given boundary quantities and sought quantities of interest (QoI).

It remains to be specified how the friction and compressibility factor are included
into the model. As these factors are typically derived from formulas determined by
experimental measurements, we will not specify which formula to use, but instead
keep the model modular in this regard and present different popular choices for the
aforementioned factors in the following.

2.2 Friction Factor

The friction factor λ(q) scales the (nonlinear) friction term and depends on the
Reynolds number Re(q), which in turn depends on the mass flow variable q for a
flow in a pipe, and, depending on the approximation method, on the pipe roughness
k and pipe diameter D. We will present two sets of approximation formulas for
the friction factor (for turbulent flows): The first is predominately used in European
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countries, while the second is preferably used in the Commonwealth of Independent
States (CIS) [21, Ch. 28]. In both regions, for a laminar flow (Reynolds numbers
Re < 2100), the well-known Hagen-Poisseuille formula is used to approximate
the friction factor:

λHP(q) := 64

Re(q)
.

For Reynolds numbers Re > 4000 a flow is considered turbulent. In the Euro-
pean region, the Colebrook-White formula [4], also known as Prandtl-Colebrook
formula, is the most accurate approximation of the friction factor [30]:

1√
λCW(q)

= −2 log10

( 2.51

Re(q)
√

λCW(q)
+ k

3.71D

)
,

yet of implicit nature. An explicit variant of the Colebrook-White formula is given
by the Hofer approximation [15]:

λH(q) :=
(

− 2 log10

( 4.518

Re(q)
log10

(Re(q)

7

)
+ k

3.71D

))−2
,

which is of sufficient accuracy for transient gas network simulations. The Nikuradse
formula [24] results from the Hofer formula for Re → ∞:

λN(q) :=
(

− 2 log10

( k

3.71D

))−2
.

In the CIS region, approximations based on the Altschul formula [23, Ch. 7.26]
are favored:

λA(q) := 0.11
( 68

Re(q)
+ k

D

) 1
4
.

Similarly, for Re → ∞, a simplified formula by Schifrinson [21] exists:

λS(q) := 0.11
( k

D

) 1
4
.

Lastly, a simple yet commonly used approximation [20] of the friction factor for
turbulent flows is given by the Chodanovich-Odischarija formula [3]:

λCO(q) := 0.067
( 158

Re(q)
+ 2k

D

)2
.
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2.3 Compressibility Factor

The inner state of the gas is described by (2.2c) and relates pressure, volume and
temperature. To account for medium specific behavior deviating from an ideal gas,
the compressibility factor z(p, T ) is utilized. For an ideal gas, the compressibility
factor is given independent from pressure and temperature by the unit constant:

z1(p, T ) := 1.

Typically, the compressibility factor is approximated using the Virial expansion:

z(p, T ) = 1 +
∞∑

k=1

Bkp
k,

for real gases. Usually, this expansion is truncated after the first terms, and
the associated coefficients Bk are estimated heuristically. The AGA8-DC92 and
SGERG [26] approximations are assembled in this fashion; see also [8]. Yet,
the partial derivatives of the compressibility factor in (2.4) induce a root-finding
problem due to the higher-order terms in the truncated series for these formulas. To
avoid this additional complexity, we allow coarser but explicit approximations to
the compressibility factor. Such explicit formulas for the compressibility factor are
given first, by the AGA88 formula [18]:

z2(p, T ) := 1 + 0.257
p

pc

− 0.533
pTc

pcT
,

which is valid for pressures p < 70 bar, and second, by the Papay formula [27]:

z3(p, T ) := 1 − 3.52
p

pc

e−2.26 T
Tc +0.274

( p

pc

)2
e−1.878 T

Tc .

The latter is valid up to p < 150 bar and hence should be preferred due to the
higher accuracy. The symbols pc and Tc refer to the critical pressure and critical
temperature, respectively. Since the temperature is assumed constant in this work,
the compressibility factor formula z2 is a linear and z3 is a quadratic polynomial.

3 Gas Network

The abstract gas transportation network is described by a directed graph:

G = (N ,E ),
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consisting of a tuple: A set of nodes N and a set of oriented edges E . The edges
embody a (possibly large) number of pipes (P), as well as short pipes (S), valves (V),
compressors (C), resistors (R), and controlled valves (CV). We introduce an index
set I = {P, S, V,C,R,CV } to represent these components. Similarly, the nodes
are divided into pressure nodes (p) and flux nodes (q), and we create an index set
for those as well J = {p, q}. In total this means we can write the set of edges as a
union over the different components by using the corresponding index set. Likewise,
this can be done for the set of nodes:

E = EP ∪ ES ∪ EV ∪ EC ∪ ER ∪ ECV =
⋃

i∈I
Ei ,

N = Np ∪ Nq =
⋃

j∈J
Nj .

In the following we will repeat the set of equations used on each pipe and introduce
the set of equations used for all other components.

3.1 Pipes

The Euler equation (2.4) for the pressure p and the mass flux q , depend on a set of
function and parameters that are listed again in Eq. (3.1) for an individual pipe:

{γ0, z0, h, λ,D, S}. (3.1)

As specified before, γ0 is the constant gas state, the function z0 is the compressibility
of the gas dependent on the pressure p, while the friction factor of the pipe λ

depends on the mass flux q . The diameter of the pipe D, is utilized for the cross-
sectional area S = 1

2Dπ2 of the pipe. Each pipe has furthermore a pipe elevation
function h, which depends on the local elevation, so ∂h/∂x = 0 for level pipes.

In the modeling of gas dynamics over an entire network we have a pressure
function p and a flux function q in each pipe, which we label by its pipe edge
indices e ∈ EP : pe(x, t) and qe(x, t). Similarly, the above parameters and functions
from (3.1) are indexed this way, as they vary for each pipe within a network. The
equations are then given by:

∂

∂t
dpipe,e(pe) = − 1

Se

∂

∂x
qe, ∀e ∈ EP

∂

∂t
qe = −Se

∂

∂x
pe + fpipe,e(pe, qe), ∀e ∈ EP

(3.2)



Gas Network Benchmark Models 179

where we also introduce the two nonlinear functions dpipe,e and fpipe,e for a
simplified notation:

dpipe,e(pe) := pe

γ e
0 ze

0(pe)
,

fpipe,e(pe, qe) := −Segedpipe,e(pe)
∂

∂x
he − λe(qe)

2DeSe

qe|qe|
dpipe,e(pe)

.

(3.3)

3.2 Non-pipe Edge Components

We will give a short description of all the components used in the given benchmark
models, namely the ones defined above: short pipe, valves, compressors, resistors
and controlled valves. For a comprehensive description of these and further gas
network components, such as reservoirs or heaters, see also [8] and [21]. In order
to describe these components we need four variables for each component, namely:
pe,r (t), pe,l (t), qe,r (t), qe,l(t), referring to the left and right pressure and the left
and right flux for the edge e ∈ E , meaning we work on a model that is discrete in
space. For the sake of readability we will drop the time dependency in our notation
(e.g. pe,l instead of pe,l(t)) for the remainder of this section.

3.2.1 Short Pipe

First, we introduce a short pipe element, which is an idealized network element with
neither friction nor pressure loss due to height differences. The model is simply
given by:

qe,r − qe,l = 0,

pe,l − pe,r = 0, ∀e ∈ ES.
(3.4)

3.2.2 Valves

Valves are gas network components, which connect two junctions and have two
modes of operation: open and close. The open state means that the valve component
acts as a short pipe, while the closed state of the valve causes a disconnection of the
junctions. Hence, the topology of the network can be changed if the valve is toggled
between its two states, and thus significantly alter the behavior of the network for
example by disconnecting a part of the graph or introducing cycles. A model for
valves is given as follows:

{
qe,r = qe,l, pe,r = pe,l open valve

qe,r = qe,l = 0 closed valve ∀e ∈ EV .
(3.5)
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According to this model, the adjacent nodes are topologically disconnected when
the valve is closed, this is formally written by having the flow zero at the left and
right end of the valve. The pressure at the left and right end of the valve is not
influenced at all by the closed valve. In case of the open valve we have exactly the
same two equations as for the short pipes.

3.2.3 Compressor/Ideal Compressor Unit

Compressors are complex gas network components which connect two junctions,
and increase the energy (pressure) along the selected path. A basic model is given
by the ideal compressor [7]:

qe,r = qe,l, (3.6a)

pe,r

pe,l
= αC,e(pe,l, pe,r , qe,l , qe,r , t), (3.6b)

where α : R5 → [1,∞[. The model of the idealized compressor unit coincides
with that of the short pipe whenever α ≡ 1. So this may also serve as the minimum
compression ratio provided by the idealized unit. We might also introduce more
technical limitations to the capabilities of the ideal unit, e.g. by choosing a maximum
compression ratio αcmp,max (e.g. αcmp,max = 80 bar/60 bar). A further possibility
might be a bound for power consumption. To this end, we solve the power equation
from [8, eq. (2.43)] for the compression ratio pe,r/pe,l ≡ α and substitute the power
P by the maximum consumption allowed Pmax :

αP,max ≡
[

η · Pmax

qe,r · RsT0 · z0(pe,l)
· γ − 1

γ
+ 1

] γ
γ−1

.

Here η ∈ ]0, 1[ is a unit specific efficiency factor and γ is the isentropic expansion
factor or isentropic exponent. The isentropic exponent corresponds to the ratio of
specific heats for constant pressure and volume, and is the basis for isentropic
processes such as idealized compression of (ideal) gas, which is based on the
relation of pressure and volume before and after the compression pe,lV

γ
e,l = pe,rV

γ
e,r

[8]1. By introducing target values pr,set and pl,set for the pressures, we can model
two modes for α:

αC,e(pe,l, pe,r , qe,l , qe,r , t)

≡

⎧
⎪⎪⎨

⎪⎪⎩

max

(
1, min

(
αcmp,max , αP,max ,

pr,set
pe,l

))
pr,set mode,

max

(
1, min

(
αcmp,max , αP,max ,

pe,r

pl,set

))
pl,set mode.

1In [8] an approximation of γ = 1.296 is used.
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In either mode the idealized unit will try to keep the corresponding pressure value
close to the target value (pr,set or pl,set) w.r.t. to the modeled technical limitations.

Sometimes compressors consume some of the gas from the network to power
themselves. Accordingly to [22, Chapter 4.2] and [5], the fuel consumption can be
modeled by replacing formula (3.6a) with:

qe,r = qe,l − dcz(pe,l) · qe,l

(
αC,e(pe,l, pe,r , qe,l, qe,r , t)

γ−1
γ − 1

)
, (3.7)

where dc is a compressor specific constant.

3.2.4 Resistor

There is no existing infrastructure with the intended purpose of generating resis-
tance. So resistors are virtual elements which resemble and substitute very local
microscopic structures in our macroscopic view on a gas network. The following
model of resistors is a simplified pipe model. This means we use some of the
parameters used for the pipe as well. Here the friction and length parameter is
replaced by a so called drag factor ξ . Height differences are neglected and time
derivatives are set to zero:

qe,r − qe,l = 0, pe,r − pe,l = −ξ
RsT0 · z0(pe,r )

2S2
e

qe,l|qe,l |
pe,r

. (3.8)

A very similar model is proposed in [8]. However the pressure on the right hand
side of (3.8) is evaluated at the right boundary instead of the left. The reason for
this subtle difference is that the resistor model (3.8) is derived in a way such that it
corresponds to the spatial discretization introduced later in Sect. 4.

3.2.5 Control Valve

Control valves can be derived from the model (3.8) of resistors, but with a variable
diameter. To that end we introduce a factor α : R5 → [0, 1]:

qe,r(t) − qe,l(t) = 0, (3.9a)

αCV,e(pe,l , pe,r , qe,l , qe,r , t) · (pe,r − pe,l) = −ξ
RsT0 · z0(pe,r )

2S2
e

qe,l |qe,l|
pe,r

.

(3.9b)
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Once again we may introduce target values for the in-going and out-going pressure
and so we can model two modes via the degree of openness α:

αCV,e(pe,l, pe,r , qe,l , qe,r , t)

≡
⎧
⎨

⎩

max
(

0, min
(

1,−ξ
RsT0·z0(pr,set)

2S2
e ·(pr,set−pe,l )

qe,l |qe,l |
pr,set

))
pr,set mode,

max
(

0, min
(

1,−ξ
RsT0·z0(pe,r )

2S2
e ·(pe,r−pl,set)

qe,l |qe,l |
pe,r

))
pl,set mode.

3.2.6 Summary of Non-pipe Components

For each i ∈ I \p we introduce a function fi,e , where e ∈ Ei :

fS,e(pe,l, pe,r , qe,l , t) = pe,r − pe,l,

fV,e(pe,l, pe,r , qe,l , t) = χe(t)(pe,r − pe,l) + (1 − χe(t))qe,l ,

fC,e(pe,l, pe,r , qe,l , t) = pe,r − αC,e(pe,l, pe,r , qe, t) · pe,l,

fR,e(pe,l, pe,r , qe,l , t) = Se(pe,r − pe,l) + ξ
RsT0z0(pe,r )

2Se

qe,l|qe,l|
pe,r

,

fCV,e(pe,l, pe,r , qe,l , t) = αCV,e(pe,l , pe,r , qe,l , qe,r , t) · (pe,r − pe,l)

+ ξ
RsT0 · z0(pe,r )

2S2
e

qe,l |qe,l|
pe,r

.

where χe(t) = 1 if the valve is open and χe(t) = 0 if the valve is closed. This means
that we can write the equations for the components as:

qe,r = qe,l,

0 = fi,e(pe,l, pe,r , qe,l , t) e ∈ Ei , i ∈ I \P.
(3.10)

Thus we have a simple way to describe the equation on all edges.

3.3 Node Conditions

We have a description of the pipe physics as a partial differential equation for the
functions qe(x, t) and pe(x, t) for all e ∈ EP . Furthermore, we have two algebraic
equations for the other components for the four variables qe,l, qe,r , pe,l , pe,r . Those
four variables exist also for each pipe, namely:

qe,l(t) = qe(0, t), qe,r (t) = qe(Le, t), pe,l(t) = pe(0, t), pe,r (t) = pe(Le, t),
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where Le is the length of the pipe e. We furthermore introduce the set of pressures
pu belonging to each node u ∈ N . Describing the graph we distinguish between
pressure nodes and flux nodes. At pressure nodes – as the name suggests – a pressure
function is given:

pu(t) = psetu(t), u ∈ Np.

At the other nodes u ∈ Nq we have algebraic constraints given by a set of
Kirchhoff-type balance equations:

∑

e∈δ−(u)

qe,r −
∑

e∈δ+(u)

qe,l(t) = qsetu(t), u ∈ Nq,

where δ+(u) and δ−(u) are sets of edges in which u is a right or left node,
respectively. The functions psetu(t) and qsetu(t) are given as time-dependent input
functions to the system and are typically encoded in a given scenario. At nodes with
neither in- nor outflow the function qsetu(t) is set to zero. Sometimes the mass flow
nodes are separated into ones with identically zero-set flow and those where that
is not the case. Besides having pressures at each end of each pipe, we also have
variables describing the pressure at each node. However, each end of each pipe is a
certain node. We therefore have to make sure that these pressures are the same:

pu = pe,l and pv = pe,r ∀e = (u, v) ∈ E .

In the following we will only work with the pressure variables on the nodes
and replace the others by the corresponding pressure node variable, such that we
eliminate this constraint.

3.4 Partial Differential Algebraic Equation

The overall so-called Partial Differential Algebraic Equation (PDAE) is given by:

∂

∂t
dpipe,e(pe) = − 1

Se

∂

∂x
qe ∀e ∈ EP , (3.11)

∂

∂t
qe = −Se

∂

∂x
pe + fpipe,e(pe, qe) ∀e ∈ EP , (3.12)

qe,l(t) = qe(0, t) qe,r = qe(Le, t) (3.13)

pe,l(t) = pe(0, t) pe,r = pe(Le, t) ∀e ∈ EP , (3.14)

qe,r (t) = qe,l(t), ∀e ∈ Ei , i ∈ I \P, (3.15)

0 = fi,e(pe,l, pe,r , qe,l , t) ∀e ∈ Ei , i ∈ I \P, (3.16)
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pu(t) = psetu(t), ∀u ∈ Np, (3.17)
∑

e∈δ−(u)

qe,r (t) −
∑

e∈δ+(u)

qe,l(t) = qsetu(t), ∀u ∈ Nq, (3.18)

pu(t) = pe,l(t) and pv(t) = pe,r (t) ∀e ∈ E , e = (u, v), u, v ∈ N
(3.19)

In the system above we have the two PDEs for each pipe, describing the flow
through a pipe ((3.11), (3.12)), the definition of the boundary values for each
pipe ((3.13), (3.14)), and two equations for the nonpipe components. The first
equation (3.15) is the same for each component and the second equation (3.16)
depends on the component specific function fi for i ∈ I \P . Equation (3.17)
defines the pressure at the pressure nodes and (3.18) the flow condition at the
nodes where no pressure is given. The last equation (3.19) ensures that the different
pressure variables at a given node do have the same value.

In order to be able to write this complex system in a concise form, we will first
need to introduce the incidence matrix of a graph. Given a directed graph with N

nodes and M edges, the associated incidence matrix A ∈ RN×M is defined as:

Aij :=

⎧
⎪⎪⎨

⎪⎪⎩

1 edge j connects to node i,

0 edge j does not connect to node i,

−1 edge j connects from node i.

If this graph has a tree structure, meaning it is connected and acyclic, then the
associated incidence matrix is of rank (N − 1) [11]. As we distinguish between
different type of nodes and different types of edge we can always take only certain
edges or nodes of the network and the incidence matrix that corresponds to the
subgraph spanned by just those. For example, if we are interested in the incidence
matrix for just pipes as edges and just the mass flow condition nodes we denote
that matrix by AP,q . Furthermore, we may only be interested in the negative part
of the matrix or just in the positive part of that matrix. We call the negative matrix
AL, and the positive matrix AR , since the negative part represents the node-to-edge
relationship for the left-hand-side connections, while the positive part corresponds
to the right-hand-side connections. We can create submatrices from AL and AR as
well. In particular we can use only the rows corresponding to nodes that have a mass
flow condition, which will then be denoted by AL

q and AR
q .

The mass balance Kirchhoff type equation (3.18) can now simply be written as:

AR
q qr + AL

q ql = qset(t), (3.20)

where qr and ql is a vector of all left and right fluxes for each edge. Equation (3.19)
for the pressure reads:

pl = (AL)ᵀp, pr = (AR)ᵀp, (3.21)
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where the vectors pr and pl are as above and p is the vector of all pressures at the
individual nodes.

Next, the spatial discretization for this partial differential algebraic equations is
described, which then leads to a Differential Algebraic Equation (DAE).

4 Discretization

To perform simulations of the partial differential algebraic equation modeling the
gas flow in a network of pipes, the Euler equations in (2.4) need to be discretized.
The considered model contains spatial ∂

∂x
and temporal ∂

∂t
derivative operators. We

follow the established approach of discretizing first in space to obtain a differential-
algebraic equation system, consisting of an ordinary differential equation system (in
time) and a set of algebraic constraints. This will lead to an overall representation
as an input-output system with the input-output quantities given in Table 2 for each
boundary (supply and demand) node.

4.1 Spatial Discretization

4.1.1 Spatial discretization of Pipes

We present a spatial discretization of the pipe model (3.2) yielding index-1 DAEs
if the pipes in the network are directed properly. Let e ∈ EP be an arbitrary edge
modeling a pipe. As before, we introduce the discrete variables qe,l(t) = qe(0, t),
qe,r(t) = qe(Le, t), pe,l(t) = pe(0, t), pe,r (t) = pe(Le, t) and discretize (3.2)
spatially as follows:

d

dt
dpipe,e(pe,r (t)) + 1

SeLe

(qe,r(t) − qe,l(t)) = 0, (4.1a)

d

dt
qe,l(t) + Se

Le

(pe,r (t) − pe,l(t)) = fpipe,e(pe,r (t), qe,l(t)), (4.1b)

with dpipe and fpipe defined by (3.3). The parameter Le is the length of the pipe e

and Se is its cross-sectional area. In practice it is often useful to apply a finer spatial
discretization by introducing artificial nodes and perform the spatial discretization
on the subpipes of shorter length. This will be demonstrated in Sect. 5.

4.1.2 Network DAE

We consider gas networks with network elements described in Sect. 3.2. Using the
pipe discretization, we obtain a differential algebraic equation (DAE) of the form:

E
d

dt
d(x(t)) + b(x(t), t) = 0.
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Let p = (pp, pq) with pp the pressure vector of the nodes with pressure conditions
and pq the ones without. Furthermore, qP,l and qP,r are the vectors of all pipe flows
at left and right nodes of the pipes. Since the left and right flows of all non-pipe
element models are equal, it is sufficient to consider only one flow per non-pipe
arc, which are collected in a vector qA. Then the DAE is derived from the PDAE by
replacing the first four Eqs. (3.11)–(3.14) with (4.1), removing (3.15) by introducing
a single variable for it and removing (3.19) by replacing pl and pr everywhere by
Eq. (3.21). Equations (3.16)–(3.18) are written more concisely to get the following
DAE:

d

dt
dpipe(A

�
P,rp(t)) = D−1

S D−1
L (qP,l(t) − qP,r(t)), (4.2a)

d

dt
qP,l(t) = −DSD−1

L (A�
P,r + A�

P,l)p(t) − fpipe(A
�
P,rp(t), qP,l(t)),

(4.2b)

0 = fA (p(t), qA(t), t), (4.2c)

0 = AP,rqP,r(t) + AP,lqP,l(t) + AAqA(t) − qset(t), (4.2d)

0 = pp(t) − pset(t). (4.2e)

where dpipe and fpipe are vector-valued functions defined component-wise: i.e.
(dpipe(x))e = (dpipe,e)(xe). For a concise notation we also introduce the constant
diagonal matrices DS and DL:

DS = diag{Se, e ∈ EP } DL = diag{Le, e ∈ EP }.

The algebraic element descriptions are given by:

fA(p, qA, t) = [fS, fV , fC, fR, fCV ]� (ALp,ARp, qA, t),

with edge-wise defined functions fi = (fi,e)e∈Ei
, i ∈ I \P .

In order to obtain a DAE system of index 1 for networks with a spatial pipe
discretization of the form (4.1), one has to adapt the direction of pipes in the network
to their topological location with respect to nodes with pressure and flow conditions.

Assumption 4.1 Let a gas network with pipes, resistors and compressors be given
and described by a graph G = (N ,E ) with the node set N and the arc set E .
Denote the set of nodes with pressure conditions by Np and the set of pipe arcs by
EP . Let NA be the set of nodes u ∈ N \Np that have an arc e ∈ E \EP directing
to u. The graph G shall fulfill the following conditions:

1. Each pipe eP is connected to a node of N \(Np ∪ NA).
2. Each connected component of GP := (N ,EP ) has at least one node in

Np ∪ NA .
3. For each node u ∈ N , there exists at most one arc in E \EP directing to u.
4. No arc of E \EP directs to a node of Np.
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In this assumption we consider nodes that are connected to an arc that is not a pipe
as special nodes and call the set of all these nodes by NA . We assume that a pipe
arc is always connected to at least one node that is not such a special node and also
not a supply node. The second point in the assumption is that in each connected
component of the network, we have a least one node that is either a supply node or
connected to a non-pipe arc. The third point is that every node is the end node for at
most one non-pipe arc and a non-pipe arc can never end in a supply node.

In [16] it has been shown that under these assumptions, the pipes of such gas
networks can be directed in such a way that the resulting DAE formed by (4.2) has
index 1 as the next theorem explains.

Theorem 4.1 Let G = (N ,E ) be a connected, directed graph describing a gas
network that fulfills Assumption 4.1. Then, the pipes in G can be directed in such a
way that:

1. No arc directs to a node ofNp,
2. for each node u ∈ N \Np, there exists an arc directed to u,
3. if an arc e ∈ E \EP directs to u ∈ N \Np then none of the arcs of EP is directed

to u

and the DAE formed by (4.2) has index 1.

Given a network, we set up the directions within the network in such a way
that, if a certain node is a supply node (it lies in Np) all edges connected to it are
leaving the node and no edge is entering that node. It is always placed as a left end,
meaning that the direction of the orientation of the oriented graph points away from
the supply node. This makes sense as normally we assume that a supply node is
an inlet into the network. All other nodes have at least one arc that ends in them,
meaning they are the right node of at least one edge. Furthermore, if an arc that is
not a pipe ends in a node than no other arc ends in that node. Under Assumption 4.1
this is always possible (Theorem 4.1) and creates a DAE of index 1.

5 Benchmark Networks

In this section we present four benchmark networks of different complexities. The
first benchmark describes a long pipeline, the second benchmark features a small
pipe network including a cycle, the third benchmark has compressor and resistor
elements, and the fourth benchmark models a real gas transport network.

5.1 Pipeline Benchmark Model

The first benchmark model is taken from [2] and represents a real pipeline. For
this pipeline model, with physical specifications given in Table 3, the single pipe
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Table 3 Pipeline benchmark
model attributes

Pipeline length 36,300 m

Pipeline diameter 1.422 m

Pipeline roughness 0.000015 m

Reynolds number 5,000.0

Isothermal speed of sound 300.0 m
s

Steady supply 84.0 bar

Steady demand 463.33 kg
s

Time horizon 200 h

model can be utilized together with the scenario, given in Fig. 2, to simulate outputs
from inputs. The inputs of the model are the pressure at the inlet of the pipe (the
supply node) and the mass-flux at the outlet (the demand node). The outputs are
then the mass-flux at the inlet and pressure at the outlet. Starting from a steady-
state, a scenario is given by the input time series at the inlet and outlet (boundary).
In the provided scenario the inlet-pressure is kept constant over time, and the outlet-
mass-flux varies over time; see Fig. 2.

We reduced the length of the pipeline to 36.3 km compared to [2] to allow an eas-
ier discretization. Practically, the pipeline simulation is realized using 1,000 virtual
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Fig. 2 Input-Output behavior for the pipeline benchmark from Sect. 5.1. Upper left: pressure at
inlet [bar], upper right: mass flow at outlet [kg/s], lower left: mass flow at inlet [kg/s], lower right:
pressure at outlet [bar]
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nodes subdividing the long pipeline into a cascade of shorter sequentially connected
pipes. The order of the differential equation is then 2,000. This refinement strategy,
also used in [14], relaxes the Courant-Friedrichs-Levy (CFL) number allowing a
stable time-stepping. Practically, the first order implicit-explicit method from [9]
is utilized to compute the solution. Using the parameters from Table 3 and the
aforementioned input scenario, the resulting output quantities over time are depicted
in Fig. 2. These results agree with the behavior described in [2].

5.2 Diamond Network

This small-scale network is made up of seven pipes, one entry node and five exit-
nodes. The topology is given by Fig. 3. Note that:

Np = {u0}, Nq = {u1, u2, u3, u4, u5}.

The gas network gas_diamond (see Fig. 3) contains six nodes and seven pipes.
The node u0 is considered to be a source and is modeled by a (constant) pressure
condition of 80 bar. The remaining nodes are modeled via flow balance equations,
but in our scenario, only at node u5, gas will exit the network (see Fig. 4). The
demand function is given by a piecewise linear function, with a demand between

0 5

4

3

2

1

Fig. 3 gas_diamond – gas transportation network with six nodes and seven arcs

Fig. 4 (Diamond) pressure boundary at the source node u0 and demand at sink node u5
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Fig. 5 (Diamond) simulation results for scenario in Fig. 4. Pressures at the nodes (left), mass flows
at positions x =  (middle) and x = 0 (right) for the pipes

80 and 200 kg
s . A graphical representation of a solution to the scenario described in

Fig. 4 can be seen in Fig. 5.

5.3 Gas Transportation Network – gas_N23_A24

The gas network gas_N23_A24 DAE (see Fig. 6) contains 23 nodes, which can be
defined as pressure conditions (mostly at sources) or flow conditions (representing
other sources, sinks and innodes) depending on a user definable behavior property.
Per default the nodes N and W are considered to be sources and initialized with
pressure conditions. Any other node is considered a flow node, where S, E1 and E2
are considered to be the only sinks. Details are listed in Table 4 and Fig. 6 shows the
topology. Furthermore, a compressor station belongs to the network in the middle
of the 100 km pipeline. The station consists of two resistors, a by-pass valve, a
short pipe and a single idealized compressor unit. The scenario including boundary

S0

N5

W

3

1
6

4
2 7 8 9 10 11

12

13

14

15
16171819

20

E1

21

E2

22

Fig. 6 gas_N23_A24 – gas transportation network with 23 nodes and 24 arcs. The dashed line
represents a short pipe. The node enumeration corresponds to that defined in the benchmark
function (for viewing results)
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Table 4 ids of adjacent
nodes and flows of edges
from gas_N23_A24 network,
see Fig. 6

Arc Type u v (Left) Flow Right flow

e0 Pipe 1 0 23 24

e1 Pipe 3 2 25 26

e2 Pipe 5 4 27 28

e3 Pipe 2 1 29 30

e4 Pipe 1 6 31 32

e5 Pipe 6 4 33 34

e6 Pipe 4 2 35 36

e7 Pipe 6 7 37 38

e8 Pipe 7 8 39 40

e9 Pipe 8 9 41 42

e10 Pipe 9 10 43 44

e11 Pipe 10 11 45 46

e12 Valve 11 14 47

e13 Short pipe 14 15 48

e14 Resistor 11 12 49

e15 Compressor 12 13 50

e16 Resistor 13 15 51

e17 Pipe 15 16 52 53

e18 Pipe 16 17 54 55

e19 Pipe 17 18 56 57

e20 Pipe 18 19 58 59

e21 Pipe 19 20 60 61

e22 Pipe 20 21 62 63

e23 Pipe 20 22 64 65

conditions and target values for the compressor unit is described in an extra file
N23_A24_bconditions.xml as well as implemented or contained within the
python script of this benchmark instance N23_A24.py.

Between hour 5 and 7, the compressor unit works at the maximum admissible
power and cannot sustain the desired compression ratio until the in-going pressure
increases again (Figs. 7, 8, and 9).

5.4 Gas Transportation Network – gas_N138_A139 (Derived
from GasLib-134)

The gas network gas_N138_A139 DAE (see Fig. 10) contains 138 nodes and is
derived from the stationary gas network instance GasLib-134 (see [17] and [28]).
Instead of a macro model for the compressor station and the control valve given
in the original network, here, a more detailed model including an in-going and
out-going resistor as well as a bypass valve is used. To that end four additional
nodes were introduced increasing the number from 134 up to 138. The rest of the
network remains unchanged. All nodes and arcs in the Python implementation of
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Fig. 7 gas_N23_A24 – pipe e2 (node 4 & source node N): flow and pressure curves

Fig. 8 gas_N23_A24 – pipe e22 (node 20 & exit node E1): flow and pressure curves

Fig. 9 gas_N23_A24 – idealized compressor unit (nodes 12 & 13): flow, pressures and
compression-factor (α)

this benchmark example are enumerated and do have a name property, too. This
example contains an idealized compressor unit and a control valve. The 6 h transient
scenario was created on the basis of the daily nominations from the GasLib-134
instance in that the nominated flows are interpolated piece-wise linear and switched
through every 2 h.
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Fig. 10 gaslib_134 – gas network from http://gaslib.zib.de [17, 28], with 134 nodes and 133 arcs.
The node Ids of all 45 sinks and the 3 sources are displayed

Fig. 11 gas_N138_A139 – pipe p_br1 (connecting the source node (name: node_1, idx: 0) with
innode (name: node_2, idx: 1): flow and pressure curves

Between hour 2 and 6 the source node with name node_1 stops providing gas
to the network (see Fig. 11). The adjacent pipe with name p_br1 is 14.56 km long
such that gas can still be drawn from the other side while the gas pressure and so the
gas density decreases It can be observed that the compressor station (see Fig. 13)

http://gaslib.zib.de
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Fig. 12 gas_N138_A139 – pipe node_72_ld42 (connecting the innode (name: node_72, idx: 108)
with sink node (name: node_ld42, idx: 107): flow and pressure curves

Fig. 13 gas_N138_A139 – idealised compressor unit (nodes 134 & 135): flow, pressures and
compression-factor (α)

Fig. 14 gas_N138_A139 – control valves (nodes 136 & 137): flow, pressures and degree of
openness (α)

increases its power or the compression ratio α respectively as a counter reaction
to preserve the out-going target pressure which is set to pr,set ≡ 70 bar (Figs. 11,
12, 13, and 14).

6 Concluding Remarks

Gas network modeling and numerical solution thereof is at the interface between
the real life application and differential algebraic equation research. In the scope of
the MathEnergy project, the presented models are used for research in large-scale

http://mathenergy.de
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simulations of gas network operation under the influence of volatile renewable
energy sources. Within the Modal GasLab configurations and recommendations
for network operations are solved. They have to satisfy nominations of gas supplies
and consumptions at entries and exits of gas networks which have to be announced
at least one day in advance. A suitable approach is a back and forth iteration
between optimization processes and simulations ranging from single elements
and subnetworks up to whole networks. From a numerical point of view, this is
also an interesting class of applications due to their manifold challenges, such as
nonlinearity or hyperbolicity. In this work we presented a modular gas network
model as well as four benchmarks, which enable testing of extensions of this basic
model as well as implementations of associated solvers.

7 Code and Data Availability

The code and data used in this work can be obtained as supplementary material.
The data is prepared in form of three XML-files for each benchmark example.
The net.xml-file containing the network topology, the bconditions.xml-file
providing the boundary conditions (i.e. the in- and out-going flows at sources and
sinks as well as fixed pressures and target values for compressors and control valves)
and the result.xml-file containing our reference solution. XML Schema or XSD
files for the validation and documentation will be provided alongside. These schema
files were created to store transient gas network scenarios and were kindly supplied
to us by the SFB Transregio 154 (http://trr154.fau.de). It should be noted, however
that the net.xml and the bconditions.xml files of both the gas_N23_A24
and the gas_N138_A139 will not completely validate against the schemes. The
formats were intended for a more detailed description of compressor units as so
called turbo compressors. In this paper we introduced an idealized description of
compressors which are not covered by the schema files. Besides this described
data the supplementary material also includes code that creates the differential
algebraic equation for each of this networks. For the pipeline this is implemented in
MATLAB, and for the others in Python.
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Topological Index Analysis Applied
to Coupled Flow Networks

Ann-Kristin Baum, Michael Kolmbauer, and Günter Offner

Abstract This work is devoted to the analysis of multi-physics dynamical systems
stemming from automated modeling processes in system simulation software.
The multi-physical model consists of (simple connected) networks of different
or the same physical type (liquid flow, electric, gas flow, heat flow) which are
connected via interfaces or coupling conditions. Since the individual networks result
in differential algebraic equations (DAEs), the combination of them gives rise to
a system of DAEs. While for the individual networks existence and uniqueness
results, including the formulation of index reduced systems, is available through
the techniques ofmodified nodal analysis or topological based index analysis, topo-
logical results for coupled system are not available so far. We present an approach
for the application of topological based index analysis for coupled systems of the
same physical type and give the outline of this approach for coupled liquid flow
networks. Exploring the network structure via graph theoretical approaches allows
to develop topological criteria for the existence of solutions of the coupled systems.
The conditions imposed on the coupled network are illustrated via various examples.
Those results can be interpreted as a natural extensions of the topological existence
and index criteria provided by the topological analysis for single connected circuits.
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1 Introduction

Increasingly demanding emissions legislation specifies the performance require-
ments for the next generation of products from vehicle manufacturers. Conversely,
the increasingly stringent emissions legislation is coupledwith the trend in increased
power, drivability and safety expectations from the consumer market. Promising
approaches to meet these requirements are downsizing the internal combustion
engines (ICE), the application of turbochargers, variable valve timing, advanced
combustion systems or comprehensive exhaust after treatment but also different
variants of combinations of the ICE with an electrical engine in terms of hybridiza-
tion or even a purely electric propulsion. The challenges in the development of
future powertrains do not only lie in the design of individual components but in
the assessment of the power train as a whole. On a system engineering level it is
required to optimize individual components globally and to balance the interaction
of different sub-systems. A typical system engineering model comprises several
sub-systems. For instance in case of a hybrid propulsion these can be the vehicle
chassis, the drive line, the air path of the ICE including combustion and exhaust
after treatment, the cooling and lubrication system of the ICE and battery packs,
the electrical propulsion system including the engine and a battery pack, the air
conditioning and passenger cabin models, waste heat recovery and finally according
control systems.

State-of-the-art modeling and simulation packages such as Dymola,1 Open-
Modelica,2 Matlab/Simulink,3 Flowmaster,4 Amesim,5 SimulationX,6 or Cruise
M7 offer many concepts for the automatic generation of dynamic system models.
Modeling is done in a modularized way, based on a network of subsystems which
again consists of simple standardized sub-components. The automated modeling
process allows the usage of various advanced libraries for different subcomponents
of the system from possibly different physical domains. The connections between
those subcomponents are typically based on physical coupling conditions or pre-
defined controller interfaces. Furthermore the network structure (topology) carries
the core information of the network properties and therefore is predestinated to be
exploited for the analysis and numerical simulation of those. In the application
of vehicle system simulation the equations of the subsystems are differential-
algebraic equations (DAEs) of higher index. Hence, this type of modeling leads
to systems of coupled large DAEs-systems. Consequently the analysis of existence

1http://www.dynasim.com.
2http://www.openmodelica.org.
3http://www.mathworks.com.
4http://www.mentor.com.
5http://www.plm.automation.siemens.com.
6http://www.iti.de.
7http://www.avl.com.

http://www.dynasim.com
http://www.openmodelica.org
http://www.mathworks.com
http://www.mentor.com
http://www.plm.automation.siemens.com
http://www.iti.de
http://www.avl.com
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and uniqueness of solutions for both, the individual physical subsystems and the full
coupled system of DAE-systems, is a delicate issue.

Topology based index analysis for networks connects the research fields of
Analysis for DAEs [25] and Graph Theory [7] in order to provide the appropriate
base to analyze DAEs stemming from automatic generated system models. So far
it has been established for various types of networks, including electric circuits
[28] (Modified Nodal Analysis), gas supply networks [9], thermal liquid flow
networks [1, 2] and water supply networks [10, 11, 26]. Although all those networks
share some similarities, an individual investigation is required due to their different
physical nature. Recently, a unified modeling approach for different types of flow
networks has been introduced in [12], aiming for a unified topology based index
analysis for the different physical domains on an abstract level. In the mentioned
approaches, the analysis of the different physical domains is always restricted to a
simple connected network of one physical type. Anyhow, all the approaches have
in common, that they provide an index reduced (differential-index 1 or strangeness-
index 0, cf. [20]) formulation of the original DAE, which is suitable for numerical
integration.

Due to the increasing complexity in vehicle system simulation the interchange-
ability of submodels is gaining increasing importance. Submodels are exchanged
between different simulation environments in terms of white-box or black-box
libraries describing a set of DAEs. The interconnection to the system of physical
based DAEs is again established by predefined controller interface or physical
coupling conditions. The individual subnetworks are assumed to be of index reduced
form (d-index 1 or s-index 0). This can be achieved by the Topological index
analysis or Modified Nodal Analysis. It is well known [24], that the combination
of d-index 1 DAEs may not form a d-index 1 DAE.

The artificial coupling of circles of the same physical type via (defined) physical
coupling conditions within one simulation package might appear superfluous,
since the circuit could be modeled all at once. Due to increasing complexity also
within one physical domain, the modeling of subcircuits is distributed among high
specialized teams and finally combined to the complete circuit. Using physical
coupling conditions allows to combine the subcircuits to a single circuit without
modifying the developed submodels. For the case of DAEs of higher index, this is
of special importance, since the set of feasible initial conditions is often defined by
structural properties (e.g. chord sets or spanning trees) and they might change in
a coupling process. Due to integrity of the overall modeling process, this type of
change should be avoided. Typically the physical coupling conditions are defined
to ensure that certain conservation laws are satisfied, e.g. conservation of mass in
liquid flow networks or conservation of charge in electric systems. Consequently an
appropriate treatment of those coupling conditions is a delicate issue.

In [10] a unified modeling approach for different types of flow networks
(electric circuits, water and gas networks) has been stated. One specific part of
this classifications are the boundary conditions, that prescribe a certain pressure
or potential for node elements and flow sources. In the case of electric networks,
those elements are voltage sources and current sources. In the case of gas and
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liquid flow networks, those are reservoirs and demand branches. Those boundary
conditions provide the starting point for defining appropriate coupling and interface
conditions. As an example we explore the coupling for the case of two liquid flow
networks via reservoirs and demand branches. Providing pressure controlled flow
sources and flow controlled pressure sources establishes a strong coupling of the
individual liquid flow networks.

The structure of this work is the following. In Sect. 2 we state a simple model for
an incompressible liquid flow network and summarize the existence and uniqueness
results as well as DAE index results, that have been obtained in [2], in Sect. 3.
Therein we especially focus on the methods, that are used to derive the index
and existence results and provide a descriptive explanation in the context of linear
algebra and graph theory. The red line of the analysis is accomplished by a
set of suitable examples. In Sect. 4 we state a coupled model of incompressible
flow networks. The challenges arising for these kind of models are described
via a set of characteristic examples. An analysis for the coupled flow network is
presented in Sect. 5. The analysis is specialized to some specific configurations,
where topological conditions for the coupled flow networks can be obtained. Finally,
Sect. 6 provides an overview of the addressed issues. Therein another major focus
is put on the description of open topics and further research requirements.

2 A Network Model for Incompressible Flow Networks

We consider a liquid flow network

N = {PI,PU,DE,J C,RE}, (2.1)

that is composed of pipes PI, pumps PU , demands DE , junctions J C and
reservoirsRE and that is filled with an incompressible fluid. The pipes and pumps
are connected by the junctions, where the fluid is split or merged. The connection to
the environment is modeled by the reservoirs and demands that impose a predefined
pressure or mass flow to the network.

To set up a mathematical model describing the mass flows in the pipes and pumps
and the pressures in the junctions, the network N is represented by a linear graph
GN . A linear graph G is a combination G = {V, E} of vertices V = {v1, . . . , vnV }
and edges E = {e1, . . . , enE }, such that each edge ej ∈ E corresponds to a pair
of vertices (vj1 , vj2) ∈ V × V , i.e., ej = (vj1 , vj2), cp. [7, p. 2]. For a detailed
introduction to graph theory, we refer the reader to, e.g., [3, 7, 27].

For the networkN , the pipes, pumps and demands correspond to the edges, i.e.,
E = {PI,PU,DE}, while the junctions and reservoirs correspond to the vertices,
i.e., V = {JC,RE}, cf. Fig. 1. To each junction Jci and reservoir Rei we assign
pressures pJci and pRei , respectively, and to each pipe Pij , pump Puj and demand
Dej mass flows qPij , qPuj and qDej . To assign a direction to the mass flows, we
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Fig. 1 Example of a graph GEx1 of a network NEx1

assign a direction to each edge element ej ∈ E , meaning that the pairs (vj1 , vj2)

with ej = (vj1 , vj2) are ordered. Then, the graph GN is oriented.
The connection structure of the network N is described by the incidence matrix

AN = (aij ), which is defined as, cp. e.g. [3, 7, 27],

aij =

⎧
⎪⎪⎨

⎪⎪⎩

1, if the branch j leaves the node i,

−1, if the branch j enters the node i,

0, else.

Sorting the rows and columns of AN according to the different element types, we
obtain the incidence matrix as

AN =
[
AJc,Pi AJc,Pu AJc,De

ARe,Pi ARe,Pu ARe,De

]

.

Accordingly, the flows and pressures are summarized as

q =
⎡

⎣
qPi

qPu

qDe

⎤

⎦ , p =
[
pJc

pRe

]

.

Besides the connection structure, each network element is equipped with a charac-
teristic equation describing the relation of the mass flow and pressure or pressure
difference. In a pipe Pij , j = 1, . . . , nPi, directed from node j1 to node j2, the mass
flow qPi,j is specified by the transient momentum equation

q̇Pi,j = c1,jΔpj + c2,j |qPi,j |qPi,j + c3,j , (Pij )

depending on the pressure difference Δpj = pj1 − pj2 between the adjacent nodes
j1, j2 and constants ci,j depending, e.g., on the pipe diameter, length, inclination
angle, and other physical properties, cp. Remark 2.1. Using the incidence matrix
AN , the pressure drop Δpj = pj1 − pj2 along an edge ej = (vj1 , vj2) is given by
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eT
j AT

Np = Δpj . Setting CI = diag
(
(cI,j )

)

j
, j = 1, . . . nPi, I = 1, 2, 3, we define

the pipe function of the full network by

fPi(qPi, pJc, pRe) := C1(A
T
Jc,PipJc + AT

Re,PipRe) + C2 diag
(|qPi,j |

)

j
qPi + C3.

with fPi ∈ C1(ΩPi,R
nPi). Then, the transient momentum equations (Pij ) can be

summarized for the whole network as

q̇Pi = fPi(qPi, pJc, pRe). (Pi)

In a pump Puj , j = 1, . . . , nPu, directed from node j1 to node j2, the mass flow
qPu,j is specified algebraically by the pressure drop Δpj = pj1 − pj2 , i.e.,

Δpj = fPuj
(qPu,j ). (Puj )

The function fPuj is given by specialized pump models, cp. Remark 2.2. Like for
the pipes, we use the incidence matrix AN to summarize the pump functions in the
function

fPu := [fPu,j ]j=1,...,nPu,

where we assume that fPu ∈ C1(ΩPu,R
nPu). Then, the pump equations (Puj ) can

be summarized for the whole network as

AT
Jc,PupJc + AT

Re,PupRe = fPu(qPu). (Pu)

In a junction Jci , i = 1, . . . , nJc, the amount of mass entering and leaving Jci

is equal due to mass conservation. Summarizing the indices of pipes, pumps and
demand branches that are incident to Jci in the set Ĵi , we thus get that

∑

j∈Ĵi

qj = 0. (Jci)

Using the incidence matrix, the sum of all mass flows entering or leaving a junction
Jci is given by eT

i Aq = ∑
ej ∈Einc(Jci ) qj , such that the junction equations (Jci ) can

be summarized as

AJc,PiqPi + AJc,PuqPu + AJc,DeqDe = 0. (Jc)

In a demand branch Dej , j = 1, . . . , nDe, the mass flow qDe,j is specified by a given
function q̄De,j , i.e.,

qj = q̄De,j . (Dej )
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Similarly, in a reservoir Rei , i = 1, . . . , nRe, the pressure pRe,i is specified by a
given function p̄Re,i , i.e.,

pi = p̄Re,i . (Rei)

Setting q̄De := [qDe,j ]j=1,...,nDe and p̄Re := [pRe,i]i=1,...,nRe , the boundary
conditions (Dej ) and (Rei) are summarized as

qDe = q̄De, (De)

pRe = p̄Re. (Re)

In conclusion, the dynamic of the networkN is modeled by the DAE

q̇Pi = C1(A
T
Jc,PipJc + AT

Re,PipRe) + C2 diag
(|qPi,j |

)
qPi + C3 (2.2a)

0 = AT
Jc,PupJc + AT

Re,PupRe − fPu(qPu) (2.2b)

0 = AJc,PiqPi + AJc,PuqPu + AJc,DeqDe (2.2c)

qDe = q̄De (2.2d)

pRe = p̄Re. (2.2e)

The unknowns are given by q(t) and p(t). The system is square with size nPi +
nPu + nDe + nRe + nJc.

Remark 2.1 (Specific Pipe Model) For the transient momentum balance equa-
tion (Pij ), we have used the reference [23] to obtain

q̇Pi = A

L
Δp + 1

ρ

φζ

2dhydA
|qPi|qPi + ρAGΔh,

where A is the cross section, L is the length, dhyd is the hydraulic diameter and φ is
a shape factor of the pipe. The density of the liquid in the pipe is denoted by ρ. Δp

and Δh are the pressure difference and the height difference across the pipe. g is
the gravitational force. The friction coefficient ζ can be described, e.g., by Haaland
formula [6]

ζ =

⎧
⎪⎨

⎪⎩

64
Re

, for laminar flow,
(

−1.81 log10

(
6.9
Re

+
(

ε
3.7dhyd

)1.11
))−0.5

for turbulent flow,

where Re is the Reynolds number and ε is the surface roughness. From this, we
define the constants directly from the geometry and the type of the liquid.

c1 = A

L
, c2 = 1

ρ

φζ

2dhydA
, c3 = ρAGΔh.
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Remark 2.2 (Specific Pump Model) In system simulation, the pump equation (Puj )
is typically characterized via pump curves. Pump curves provide information on
the relationship between the total head (or pressure difference) and the mass
flow rate. Examples for pump curves are given in Fig. 2. In our terminology
the pump curves determine the pump function fPu. The actual pump curves
differ from the theoretical pump curves, since they consider internal losses due
to slip through the operating clearance (positive displacement pump) or friction
and recirculation (centrifugal pump). In some cases the actual pump curves can
be represented by polynomials, e.g. [8]. In practical applications it is quite
difficult to determine the pump characteristics theoretically. Typically the pump
characteristic is determined experimentally and provided (e.g. by the original
pump manufacturer) in terms of a discrete data set of measurement points. Due
to this proceeding, the actual system simulation can be kept to the real counter-
parts as close as possible. In many cases, see e.g. [5], the experimental curves
differ from the theoretical models in terms of curve properties (e.g. invertibil-
ity, which is often determined in terms of strong monotonicity). Especially the
dropping effect for mass flows tending to zero (starting phase of a pumping
process) is a well observed phenomena and occurs frequently for experimental
measured pump curves (see Fig. 3) or specific pump constellations, cf. [21,
Figure 2.15].

In this constellation, there may exist more feasible mass flows q for a
given pressure drop Δp, and consequently the solution may be not unique
(serial pump constellations) or may oscillate between two feasible operation
points (parallel pump constellations). In practical vehicle system simulations
the pump characteristic is given by experimental data sets in almost all
constellations. Hence (strong) monotonicity of the pump curve cannot be
presupposed and has to be treated in an appropriate manner. An example
of a pump characteristic used in system simulation software is displayed in
Table 1.

Fig. 2 Theoretical (dotted
red) and actual (dashed blue)
curves of positive
displacement (right) and
centrifugal (left) pumps (cf.
[29])

q

Δp

q

Δp

Fig. 3 Comparison between
theoretical (dashed blue) and
experimental (dotted red)
curves, where the
experimental curves obtains a
dropping structure (cf. [5])

q

Δp
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Table 1 Example of a pump
characteristic for a dynamic
pump (pump speed =
5,000 rpm) used for an oil
cooling and lubrication
circuit in a vehicle system
simulation in Cruise M

Mass flow q (kg/min) Pressure rise Δp (bar)

0 3.7821

4.316 3.8123

8.632 3.8234

12.948 3.7756

17.264 3.7141

21.58 3.6407

25.896 3.5581

30.212 3.4611

34.528 3.3407

38.844 3.2662

Example 2.1 For the network NEx1 given in Fig. 1, the incidence matrix is com-
posed from the blocks

AJc1,Pi1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pi11 Pi12 Pi13 Pi14
J c11 0 0 0 0
J c12 0 0 −1 0
J c13 1 0 0 0
J c14 −1 1 0 1
J c15 0 −1 1 0
J c16 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

AJc,Pu =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pu11 Pu12 Pu13 Pu14 Pu15
J c11 1 0 1 0 0
J c12 −1 1 0 0 0
J c13 0 −1 −1 0 0
J c14 0 0 0 0 0
J c15 0 0 0 0 0
J c16 0 0 0 −1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ARe1,Pi1 =
⎡

⎣
Pi11 Pi12 Pi13 Pi14

Re11 0 0 0 0
Re12 0 0 0 0

⎤

⎦ ,

ARe1,Pu1 =
⎡

⎣
Pu11 Pu12 Pu13 Pu14 Pu15

Re1 0 0 0 1 0
Re2 0 0 0 0 1

⎤

⎦ ,

ARe1,De1 = 0, AJc1,De1 =
[

J c11 J c12 J c13 J c14 J c15 J c16
De11 1 0 0 0 0 0

]T

.
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The DAE (2.2) modeling the dynamics ofNEx1 is given by

q̇Pi11
= c11(pJc14

− pJc13
) + c21|qPi11 |qPi11 + c31 (Pi11)

q̇Pi12
= c12(pJc14

− pJc15
) + c22|qPi12 |qPi12 + c32 (Pi12)

q̇Pi13
= c13(pJc12

− pJc15
) + c23|qPi13 |qPi13 + c33 (Pi13)

q̇Pi14
= c14(pJc16

− pJc14
) + c24|qPi14 |qPi14 + c34 (Pi14)

pJc12
− pJc11

= fPu11
(qPu11

) (Pu11)

pJc13
− pJc12

= fPu12
(qPu12

) (Pu12)

pJc13
− pJc11

= fPu13
(qPu13

) (Pu13)

pJc6 − pRe11
= fPu14

(qPu14
) (Pu14)

pJc16
− pRe12

= fPu15
(qPu15

) (Pu15)

0 = qDe11
+ qPu11

+ qPu13
(Jc11)

0 = −qPi13
− qPu11

+ qPu12
(Jc12)

0 = qPi11
− qPu12

− qPu13
(Jc13)

0 = −qPi11
+ qPi12

+ qPi14
(Jc14)

0 = −qPi12
+ qPi13

(Jc15)

0 = −qPi14
− qPu14

− qPu15
(Jc16)

qDe1 = q̄De1, (De11)

pRe11
= p̄Re11

(Re11)

pRe12
= p̄Re12

. (Re12)

Choosing the geometries of the pipes and a friction coefficients, the constants cI,j ,
j = 1, . . . , 4, I = 1, 2, 3 and hence the pipe functions fPi1j

are fixed. Considering

the pump characteristic given, e.g., in Table 1 and interpolate it, e.g., with cubic
splines, the pump functions fPu1j

are fixed. Choosing an input mass flow q̄De11
as

well as input pressures p̄Re11
, p̄Re12

, the boundary conditions are fixed. In conclusion,
the mass flows and pressures in the network given in Fig. 1 are determined by the
DAE (Pi11) to (Re

1
2).
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3 Topology Based Index Analysis of a Single Network

To analyze the solvability of the DAE (2.2), we impose the following assumptions
on the connection structure of the networkN .

Assumption 3.1 Consider a networkN as in (2.1).

(N1) Two junctions are connected at most by one pipe or one pump.
(N2) Each pipe, pump and demand has an assigned direction.
(N3) The network is connected, i.e., every pair of junctions and/or reservoirs can

be reached by a sequence of pipes and pumps.
(N4) Every junction is adjacent to at most one demand branch. Every reservoir is

connected at most to one pipe or pump.

Under Assumption 3.1 the network graph is simple (N1), oriented (N2) and
connected (N3). Assigning a direction to each pipe, pump and demand, allows to
speak of a positive or negative mass flow. Note that this orientation of the pipes
and pumps is arbitrary and only serves as a reference condition, it is not necessarily
related with the true or expected direction of the fluid flow. As the reservoirs are end
vertices and the demands are connected to junctions only, cf. (N4), implies that no
reservoir is connected to a demand branch and hence the corresponding sub-matrix
of the incidence matrix is zero, i.e. ARe,De = 0.

3.1 Graphtheoretical Prerequisites

In the following, we use graph theoretical concepts like paths, spanning trees,
cycles, connected components, etc. A comprehensive introduction to this topic can
be found, e.g., in [3, 7, 27].

For our purposes, we need these concepts for subsets describing the connection
structure of two specific element types. Asking, e.g., for the solvability of the
pump equations (2.2b), we are interested in the connection structure of the junction
and pump subset {JC,PU}. This set is not necessarily a subgraph as it might
contain isolated pumps (corresponding to a pump connecting two reservoirs),
isolated junctions (corresponding to a junction connected to pipes and demands
only) or loose edges (corresponding to a pump connecting a junction and a
reservoir). Consequently, the connection matrix AJc,Pu does not have the usual
entry pattern of an incidence matrix. Still, the ideas of trees, cycles, etc. and their
correspondence to fundamental subspaces of the connection matrix can be easily
extended, see [2].

Looking at the junction and pump subset GJc,Pu := {JC,PU}, we are interested
in particular in the following substructures.
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Substructure 3.1 Substructure 1 of GJc,Pu.
a) Paths of pumps connecting two reservoirs.
b) Cycles of pumps.

On the substructures 1a) and 1b), the pressure difference is fixed. On a path
of pumps between two reservoirs, the pressure drop across the path is fixed by
the two reservoirs. On a cycle of pumps, the pressure difference vanishes as
the path is closed. Regarding the solvability of the DAE, this means that on
Substructure 3.1, the pumps have to work against their usual mode of operation.
Instead of returning a pressure drop for a given mass flow, they have to adjust
the mass flow to a given pressure. This means that the pump characteristic has
to be invertible. Mathematically, this is reflected in the sense that the pumps
of Substructure 3.1 correspond to the kernel of the connection matrix AJc,Pu of
the set GJc,Pu. If V2 ∈ RnPu×nV2 selects the paths of pumps between reser-
voirs as well as the cycles of pumps, then span(V2) = ker(AJc,Pu) [2]. An
example of Substructure 3.1 and the matrix V2 is given in Fig. 4 and Exam-
ple 2.1.

Substructure 3.2 Substructure 2 of GJc,Pu.
a) Connected components of junctions and pumps without loose pumps.

On a connected component of junctions and pumps without loose pumps, i.e.,
without a pump connection to a reservoir, the pumps only specify the pressure
difference. Its absolute value has to be determined from the pipes connecting
this connected component to a reservoir giving a reference value. Regarding the
solvability of the DAE, this means that on junctions of Substructure 3.2, only

Jc11

Jc12

Jc13

Jc14

Jc15

Jc16 Re11

Re12

GEx1

D
e
11

Pu 1
1

Pu13

Pu
1
2

Pi 11

Pi 13 Pi
1
2

Pi14

P
u
1 5

Pu14

Fig. 4 Example of Substructure 3.1 (dashed pumps) and Substructure 3.2 (dotted junctions). The
pumps Pu14,Pu

1
5 form a path of pumps between the two reservoirs Re11,Re

1
2, i.e., are of type 1a),

while the pumps Pu11,Pu
1
2,Pu

1
3 form a cycle of pumps, i.e., are of type 1b). Together with the

junctions Jc11, Jc
1
2, Jc

1
3, the pumps Pu11,Pu

1
2,Pu

1
3 form a connected component of GJc1,Pu1 without

loose pumps, i.e., belong to Substructure 3.2. The junctions Jc14, Jc
1
5 are isolated in GJc1,Pu1 as they

are not incident to any and also belong to Substructure 3.2. Junction Jc6 together with the pumps
Pu14,Pu

1
5 forms a connected component of GJc1,Pu1 , but as it is connected to reservoirs, it does not

belong to Substructure 3.2
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the pressure difference is specified by the pump equation. The absolute value
is obtained from an additional equation, the hidden constraint, arising from the
coupling of the pipe equation via the conservation of mass, see Theorem 3.3. Note
that isolated junctions, i.e, junctions connected to pipes only, also are connected
components in GJc,Pu without loose pumps and hence belong to Substructure 3.2.
Mathematically, this is reflected in the sense that the junctions of Substructure 3.2
correspond to the left kernel of the connection matrix AJc,Pu of the set GJc,Pu. If
U2 ∈ RnJc×nU2 is such that U2 selects the junctions belonging to the connected
components without loose pumps in GJc,Pu, then coker(AJc,Pu) = span(U2) [2].
An example of Substructure 3.2 and the matrix U2 are given in Fig. 4 and in
Example 2.1.

Graphically, the action of U2 on AJc,Pu corresponds to the vertex identification
of the connected components GJc,Pu;1, . . . ,GJc,Pu;nk

of GJc,Pu, i.e., we melt every
connected component of pumps and junctions into a single junction

Jck :=
⋃

i : Jci∈GJc,Pu;k

Jci , (3.1)

for k = 1, . . . , nk . We summarize the junctions Jc1, . . . , Jcnk arising from the vertex
identification (3.1) in the set

J C := {
Jc1, . . . , Jcnk

}

and consider the graph GJc,Pi := {JC,PI}. The connection matrix is given by

AJc,Pu = UT
2 AJc,Pu.

An example of the graph GJc,Pi and the connection matrix AJc,Pu is given in Fig. 5
and Example 2.1.

Jc11

Jc14

Jc15

GJc1,Pi1

Pi11
Pi 13

Pi
1
2

Pi14

Fig. 5 Example of the vertex identification (3.1). For the graph GEx1 of Fig. 4, the vertex
identification of the connected components {Pu11,Pu12,Pu13; Jc11, Jc12, Jc13}, Jc14, Jc15 yields the graph
G

Ex1,Jc
1
,Pi1

with junctions Jc
1
1 and Jc

1
4, Jc

1
5
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For the graph GJc,Pi, we consider the following substructures.
Substructure 3.3 Substructure 3 of GJc,Pi.
a) A spanning tree, i.e., the largest subgraph without cycles.
b) The chord set belonging to the spanning tree, i.e., pipes that close a cycle.

On a spanning tree, the pressure difference across the edges is well-defined.
The chord set refers to those edges that destroy this well-definiteness as
they close a cycle. Regarding the solvability of the DAE, this means that
on Substructure 3.3a), the pressure drop across the pipes is well-defined.
Mathematically, this is reflected in the sense Substructure 3.3 corresponds to a
permutation [Π1Π2], where Π1 selects the edges on the spanning tree and Π2
the edges on the chord set. Then, corange(AJc,Pi) = span(Π1) [2]. An example
of Substructure 3.3 and the permutation Π are given in Fig. 6 and Example 2.1
continued.

Example 2.1 (continued) We consider again the network NEx1 as given in Fig. 1.
For this example, the Substructures 3.1 and 3.2 are illustrated in Fig. 4. The
associated matrix V 1

2 ∈ R5×2 selecting the paths of pumps between reservoirs and
the cycles of pumps as well the matrix U1

2 ∈ R6×3 selecting the junctions belonging
to the connected components without loose edges and the isolated junctions in
GJc1,Pu1 are given by

V 1
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Pu11 1 0
Pu12 1 0
Pu13 −1 0
Pu14 0 1
Pu15 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, U1
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J c11 1 0 0
J c12 1 0 0
J c13 1 0 0
J c14 0 1 0
J c15 0 0 1
J c16 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the first column in V 1
2 selects the cycle of pumps Pu11,Pu

1
2,Pu

1
3 and the second

column in V 1
2 selects the path of pumps Pu14 and Pu15. Considering the connection

matrix AJc1,Pu1 , we verify that span(V 1
2 ) = ker(AJc1,Pu1) and span(U1

2 ) =
coker(AJc1,Pu1). The connection matrix A

Jc
1
,Pi1

of the graph G
Jc

1
,Pi1

arising from
the vertex identification is given by

A
Jc

1
,Pi1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Pi11 Pi12 Pi13 Pi14

J c
1
1 1 0 −1 0

J c
1
2 0 0 0 −1

J c4 −1 1 0 1
J c5 0 −1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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Jc11

Jc14

Jc15

Pi11
Pi 13

Pi
1
2

Pi14
chord set
spanning tree

Fig. 6 Example of Substructure 3.3. For the graph G
Ex1,Jc

1
,Pi1

of Fig. 5, a spanning tree is given

by the pipes Pi12,Pi
1
3 and Pi14. The associated chord set is given by Pi11

A choice of a spanning tree and chord set of the graph G
Jc

1
,Pi1

is illustrated in Fig. 6.

The associated permutation [Π1
1 ,Π1

2 ] is given by

Π1
1 =

⎡

⎢
⎢
⎣

Pi11 0 0 0
Pi12 1 0 0
Pi13 0 1 0
Pi14 0 0 1

⎤

⎥
⎥
⎦ , Π2 =

⎡

⎢
⎢
⎣

Pi11 1
Pi12 0
Pi13 0
Pi14 0

⎤

⎥
⎥
⎦

and we verify that span(Π1
1 ) = corange(A

Jc
1
,Pi1

).

3.2 Solvability Results

Now, we derive solvability conditions for the network DAE (2.2). We define the
network function FN : D → Rn, D ⊂ R × Rn × Rn with

FN ,1(qPi, pJc, pRe) = q̇Pi − fPi(qPi, pJc, pRe) (3.2a)

FN ,2(qPu, pJc, pRe) = AT
Jc,PupJc + AT

Re,PupRe − fPu(qPu) (3.2b)

FN ,3(qPi, qPu, qDe) = AJc,PiqPi + AJc,PuqPu + AJc,DeqDe (3.2c)

FN ,4(qDe) = qDe − q̄De (3.2d)

FN ,5(pRe) = pRe − p̄Re, (3.2e)

where

fPi(qPi, pJc, pRe) := C1(A
T
Jc,PipJc + AT

Re,PipRe) + C2 diag
(|qPi,j |

)
qPi + C3.

Furthermore, we define the set of consistent initial values

CIV := {(t0, q0, p0) ∈ I × RnE × RnV | ∃ q̇0, ṗ0 : FN (t0, q0, p0, q̇0, ṗ0) = 0}.
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Hence, the states q0 and p0 are consistent, if there exist vectors q̇0 and ṗ0, such that
the DAE (2.2) is algebraically satisfied. Usually, one needs more conditions on the
set CIV , see [18]. In our setting, however, the DAE (3.2) is of s-index μ = 1, see
Theorem 3.1.

Combining the concept of derivative arrays [4] and the strangeness index as
developed in [13, 15–17] with graph theoretical results, the unique solvability of
the DAE model (2.2) can be characterized.

Theorem 3.1 ( [2]) Let N be a network given by (2.1) that satisfies Assump-
tions 3.1 and let FN ∈ C2(D,Rn). Let nRe > 0 and let V T

2 DfPuV2 be pointwise
nonsingular for span(V2) = ker(AJc,Pu). Then,

1. The DAE (2.2) is regular and has strangeness index μ = 1 (d-index 2).
2. The DAE (2.2) is uniquely solvable for every (t0, q0, p0) ∈ CIV and the solution

is (q, p) ∈ C1(I,Rn).

Translated as conditions on the network structure and its elements, the solvability
conditions of Theorem 3.1 mean the following. As the transfer elements (the pipes
and pumps) only specify the pressure difference, at least one reservoir is needed
to specify a reference value for the pressure in the junctions. By construction, the
matrix V2 selects pumps lying on paths of pumps between reservoirs or cycles of
pumps, i.e., structures on which the pressure difference is fixed, cp. Substructure 3.1.
So instead of returning a pressure difference for given mass flow, pumps lying in
span(V2) must adjust their mass flow to a given pressure difference.Mathematically,
this means that the corresponding pump function must be invertible, i.e., the matrix
V T
2 DfPuV2 must be pointwise nonsingular.
As the solvability conditions of Theorem 3.1 are formulated on the connection

structure and the element functions, the plausibility of the network can be checked in
a preprocessing step before the DAE is actually handed to a solver. If the solvability
conditions are violated, the critical structures can be located in the network and
advice can be given how to modify the model to obtain a physically reasonable
system.

We can avoid the nonsingularity check of the matrix V T
2 DfPuV2 by assuming

that in every cycle of pumps and in every path of pumps between two reservoirs,
there is at least one pipe.

Lemma 3.2 ( [2]) LetN be a network given by (2.1) that satisfies Assumptions 3.1.
If on each path between two reservoirs and on each fundamental cycle there is at
least one pipe, then ker(AJc,Pu) = {0}.

Lemma 3.2 gives a structural condition on the pumps in the network that is
independent of the specific element functions. Stated as simple topological criteria,
the assumption of Lemma 3.2 provides a very cheap and reliable preprocessing test
for the solvability of the model under consideration.

So we can either impose a solvability condition on element level and check if
V T
2 DfPuV2 is pointwise nonsingular for a given pump specification or, to make sure
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that the model works for every kind of pump characteristics, impose the solvability
condition on the structural level via the assumptions stated in Lemma 3.2.

The condition on element level, i.e., the non-singularity of V T
2 DfPuV2, can

be easily checked for not-to complicated pump constellations, allowing to use a
broader class of pump functions. In some cases, the pump characteristic is a strictly
monotone function and hence invertible.

The condition on structural level, i.e., the assumptions of Lemma 3.2, are useful
for complex pump constellations and/or applications where the pump characteristics
often change.

So depending on the topology of the network and the specific characteristic of
the individual pumps, there are two options to ensure the global solvability.

Remark 3.1 Modeling single, smaller sized networks by hand, cycles of pumps
or paths of pumps between reservoirs typically occur if serial or parallel pump
constellations are considered. Furthermore, the characteristic pump equation (Puj )
is also representative for the class of quasi-stationary pipes. Quasi-stationary
pipes are used if the transient behavior is negligible and consequently (Pij )
reduces to

c1,jΔpj = c2,j |qPi,j |qPi,j + c3,j .

Hence, considering networks consisting of transient pipes, quasi-stationary pipes,
pumps, demand branches and reservoirs, the critical structures are paths of pumps
and quasi-stationary pipes between reservoirs as well as cycles of pumps and quasi-
stationary pipes. Indeed, this constellation occurs frequently in automatic modeling
procedures.

3.3 Surrogate Model

Since the DAE (2.2) is of higher index, it is not suitable for a numerical simulation.
Being assembled by simply gluing together the single elements, the DAE (2.2)
contains hidden constraints, i.e., equations that every solution has to satisfy but
which are not explicitly given in the representation (2.2). A simple example of such
a hidden equation is given below. The hidden constraints might reduce the order
of the method, might lead to drift of the numerical method and creates problems
in the initialization, see e.g., [14, 18, 22]. Exploiting again the topology, we can
locate these constraints in the network and assemble a surrogate model with better
numerical performance.

Theorem 3.3 ( [2]) Let N be a network given by (2.1) that satisfies Assump-
tions 3.1 and let FN ∈ C2(D,Rn). Let nRe > 0 and let V T

2 DfPuV2 be pointwise
nonsingular for span(V2) = ker(AJc,Pu). The strangeness-free model of N is
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given by

ΠT
2 q̇Pi = ΠT

2 fPi(qPi, pJc, pRe) (3.3a)

0 = UT
2 AJc,PifPi(qPi, pJc, pRe) + UT

2 AJc,De ˙̄qDe (3.3b)

0 = AT
Jc,PupJc + AT

Re,PupRe − fPu(qPu) (3.3c)

0 = AJc,PiqPi + AJc,PuqPu + AJc,DeqDe (3.3d)

qDe = q̄De (3.3e)

pRe = p̄Re (3.3f)

where U2 is such that span(U2) = coker(AJc,Pu) and [Π1,Π2] is a permutation
with Π1 such that corange(UT

2 AJc,Pu) = span(Π1).

1. The strangeness-free model is regular and has strangeness index μ = 0 (d-
index 1).

2. A function (q, p) ∈ C1(I,RnE × RnV ) solves (2.2) if and only if it solves (3.3).

The surrogate model (3.3) can be assembled based on network information only.
The matrix U2 selects the junctions of the connected components in GJc,Pu and
performs the vertex identification to construct the graph GJc,Pi of which Π1 selects
a spanning tree. Thus, the surrogate model (3.3) can be directly constructed from
the network information, there is no need to compute (3.3) from (2.2) by symbolic
or numerical manipulation, as it is necessary for example in a general modeling
language like Modelica. In a simulation, this saves computational time as the
system-to-solve (3.3) can be assembled directly from the network. Furthermore, the
physical meaning of the equations and the states is preserved, i.e., in the DAE (3.3),
each equation and each variable still has a physical counterpart. This is of special
importance for the freely choosable initial conditions. Due to Theorem 3.3, the set of
feasible initial conditions is determined by the chord set of GJc,Pi. This means, that
in a model assembled from a modular system simulation tool, only those elements
are allowed to accept user defined initial conditions. The remaining ones are derived
from the algebraic equations (3.3b)–(3.3f). At that point it is also clear that the set
of feasible initial condition is not unique, since the choice of a spanning tree may
not be unique. Thus, errors in the initialization or the simulation can be located in
the network, allowing constructive error detection and handling.

Example We consider two pipes Pi1,Pi2 that are coupled by a junction Jc1, cp.
Fig. 7. For simplicity, we assume that the pipes are connected to two reservoirs Re1
and Re2. Then, we obtain the network DAE

q̇Pi,1 = fPi,1(qPi,1, pRe,1 − pJc,1), qPi,1(t0) = qPi,1,0,

q̇Pi,2 = fPi,2(qPi,2, pJc,1 − pRe,2), qPi,2(t0) = qPi,2,0,

qPi,1 = qPi,2.

(3.4)
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Fig. 7 Graph of the network
associated with DAE (3.4) Re1 Jc1 Re2

Pi1 Pi2

The pipes specify the mass flows differentially, while the junction relates the
flows algebraically. Consequently, only one mass flow evolves dynamically, the
other one is fixed algebraically by the mass balance. In particular, only one
initial value can be chosen. The pressure only occurs implicitly in the differential
equations. Differentiating the algebraic equation and inserting the pipe equations
for the derivatives of the mass flows, however, we discover the algebraic equa-
tion

fPi,1(qPi,1, p̄Re,1 − pJc,1) = fPi,2(qPi,2, pJc,1 − p̄Re,2). (3.5)

As D2(fPi,2 − fPi,1) = c1,1 + c1,2 is nonsingular, (3.5) can be solved for
the pressure pJc,1 and (3.4) is uniquely solvable. Hence, coupling two pipes
by a junction, the network model (3.4) contains a hidden algebraic equation
that is needed to specify the pressure in the coupling junction. Also, (3.4)
does not correctly reflect the number of differential and algebraic variables
as only one mass flow evolves dynamically. Thus, we consider the surrogate
model

q̇Pi,1 = fPi,1(qPi,1, pRe,1 − pJc,1), qPi,1(t0) = qPi,1,0,

fPi,1(qPi,1, pRe,1 − pJc,1) = fPi,2(qPi,2, pJc,1 − pRe,2),

qPi,1 = qPi,2.

which corresponds to the strangeness free representation of Eq. (3.3).

Example 2.1 (continued) We consider again the network NEx1 as given in Fig. 1.
The DAE modeling the dynamics of NEx1 is given in Example 2.1. The matrices
V 1
2 , U1

2 ,Π1
2 selecting the relevant substructures are presented in Example 2.1.

Assuming, that the pump functions fPu11
, . . . , fPu15

are invertible, the surrogate
model of this DAE is given by

q̇Pi11
= c11(pJc14

− pJc13
) + c21|qPi11 |qPi11 + c31, (Pi11)

0 = q̇De11
+ fPi11

− fPi13
(Jc11)

0 = −fPi11
+ fPi12

+ fPi14
(Jc14)

0 = −fPi12
+ fPi13

, (Jc15)
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Fig. 8 Graph GEx2 of the
network NEx2

Re21

Jc21 Jc22

Jc23 Re22

Pu 21 Pu
2 2

Pi 22
Pi23

Pi
2 1

as well as Eqs. (Pu11)–(Pu
1
5), (Jc

1
1)–(Jc

1
6), (De

1
1), (Re

1
1), (Re

1
2). Hence, only the mass

flow of Pi11 is determined by a differential equation, the other mass flows are given

by the equations (Jc11)–(Jc
1
6) of the conservation of mass. Equations (Jc

1
1), (Jc

1
4),

(Jc
1
5) are the hidden constraints, which are needed to compute the pressures in these

junctions.

Example 3.1 We consider the networkNEx2 as given in Fig. 8.
The incidence matrix ofNEx2 is given by

AJc,Pi =

⎡

⎢
⎢
⎣

Pi1 Pi2 Pi3

J c1 0 0 1
J c2 −1 1 −1
J c3 0 −1 0

⎤

⎥
⎥
⎦ , AJc,Pu =

⎡

⎢
⎢
⎣

Pu1 Pu2

J c1 1 −1
J c2 0 0
J c3 0 1

⎤

⎥
⎥
⎦ ,

ARe,Pi =
⎡

⎣
Pi1 Pi2 Pi3

Re1 0 0 0
Re2 1 0 0

⎤

⎦ , ARe,Pu =
⎡

⎣
Pu1 Pu2

Re1 −1 0
Re2 0 0

⎤

⎦ ,

AJc,De = 0, ARe,De = 0.

Specifying the pipe and pump functions fPi, fPu according to Remarks 2.1 and 2.2
as well as input pressures p̄Re21

, p̄Re22
, the DAE describing the dynamics of NEx2 is

given by

q̇Pi21
= c11(pJc22

− pRe22
) + c21|qPi21 |qPi21 + c31 (Pi21)

q̇Pi22
= c12(pJc23

− pJc22
) + c22|qPi22 |qPi22 + c32 (Pi22)

q̇Pi23
= c13(pJc22

− pJc21
) + c23|qPi23 |qPi23 + c33 (Pi23)

pJc22
− pJc21

= fPu21
(qPu21

) (Pu21)

pJc23
− pJc22

= fPu22
(qPu22

) (Pu22)

0 = qPi23
+ qPu21

− qPu22
(Jc21)

0 = −qPi21
+ qPi22

− qPi23
(Jc22)
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0 = −qPi22
− qPu22

(Jc23)

pRe21
= p̄Re21

(Re21)

pRe22
= p̄Re22

. (Re22)

The pumps in network NEx2 neither form a cycle nor connect two reservoirs,
meaning that NEx2 does not contains elements belonging to Substructure 3.1.
Hence, ker(AJc,Pu) = {0} and the associated matrix V2 is of rank 0.

The connected components in GEx2;Jc,Pu are given by {Pu21,Pu22, Jc21, Jc22} and
Jc22. Since Pu

2
1 is connected to a reservoir, the component {Pu21,Pu22, Jc21, Jc22} does

not belong to Substructure 3.2, whereas the isolated junction Jc22 does, see Fig. 9.
Hence, the associated matrix U2 satisfying span(U2) = coker(AJc,Pu) is given by

U2 =
⎡

⎣
J c1 0
J c2 1
J c3 0

⎤

⎦ .

The graph GEx2,Jc,Pi arising from the vertex identification is illustrated in Fig. 10.
The associated connection matrix is given by

AJc,Pi =
[

Pi1 Pi2 Pi3

J c2 −1 1 −1

]

.

Re21

Jc21 Jc22

Jc23 Re22

Pu 21 Pu
2 2

Pi 22

Pi23

Pi
2 1

Fig. 9 Substructures 3.2 (dotted junctions) of the network NEx2. The junction Jc22 is isolated in
GJc2,Pu2 and thus belongs to Substructure 3.2

Jc22

Pi 22

Pi23

Pi
2 1

chord set
spanning tree

Fig. 10 Example of Substructure 3.3. For the graph GEx2,Jc,Pi of Fig. 9, a spanning tree is given

by the pipes Pi22,Pi
2
3 and Pi4. The associated chord set is given by Pi21
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A choice of a spanning tree and chord set of GEx2,Jc,Pi, i.e., of Substructure 3.3, is
given in Fig. 10. The associated permutation Π is given by

Π1 =
⎡

⎣
Pi1 1
Pi2 0
Pi3 0

⎤

⎦ , Π2 =
⎡

⎣
Pi1 0 0
Pi2 1 0
Pi3 0 1

⎤

⎦ .

As nRe = 2 and rank(V2) = 0, the DAE modeling the dynamics of NEx2 is
strangeness-free and uniquely solvable for every consistent initial value. With the
matrices U2,Π2, we obtain the surrogate model

q̇Pi22
= c12(pJc23

− pJc22
) + c22|qPi22 |qPi22 + c32 (Pi22)

q̇Pi23
= c13(pJc22

− pJc21
) + c23|qPi23 |qPi23 + c33 (Pi23)

0 = −fPi21
+ fPi22

− fPi23
(Jc22)

as well as Eqs. (Pu21), (Pu
2
2), (Jc

2
1)–(Jc

2
3) and (Re

2
1), (Re

2
2).

4 A Model for Coupled Flow Networks

In this section we consider multiple networks as defined in Sect. 2 and analyzed in
Sect. 3 and couple them via defined coupling conditions. All individual networks
are assumed to fulfill Assumption 3.1 and that Theorem 3.1 as well as Theorem 3.3
are applicable. An example of a coupled network is given in Fig. 11.

We start by presentation some examples of coupled liquid flow network in order
to point out the difficulties, that arise when dealing with such kind of problems. In
all the shown cases one of the assumptions imposed in Theorem 3.1 or Theorem 3.3
is not satisfied for the coupled system. Therein the coupling is represented based on
the network structure, cf. Fig. 12. The boundary condition imposed on the state ( )

p, q

p, q

p, q

P
i

Pi

P
i

De

P
i

Pi

P
i

Pi

Pi
Pi

De

Pi
De

Pi Pi
Pi

P
i

Pi Pi
Pi

Fig. 11 Example of a coupled network consisting of four liquid flow networks
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and the boundary condition imposed on the flow (De) are melt together to a junction
(•) via a cycling coupling of the flow q and the state p.

In practical applications the coupling as defined in Fig. 12 is realized via directed
information databusses, see Fig. 13. Eliminating the trivial relations leads to the
equivalent representation of Fig. 12. Hence for the analysis, the representation of
Fig. 12 is sufficient. At that point we also mention, that one important part of the
coupling in Fig. 13 is the availability of the derivatives of the coupling variables p

and q . This means, that not only p and q are communicated via databusses, but also
their derivatives with respect to time ṗ and q̇. This requirement is automatically
fulfilled via the representation in Fig. 12.

Example 4.1 (Missing Reference Pressure) Consider the network of coupled liquid
flow networks as displayed in Fig. 14. Clearly, both subnetworks are unique
solvable. But the coupled network is not uniquely solvable, since the reference
pressure is lost through the coupling procedure.

p, qPi De Pi Pi Pi

Fig. 12 Definition of the coupling of two networks (left) and the coupled equivalent network
(right)

q, q̇

p, ṗ

Pi De Pi

Fig. 13 Definition of the coupling of two networks via a directed databus connection

p, q

p, qP
i

P
i

De

Pi

P
i

P
i

Pi

De

P
i

P
i

P
i

P
i

Pi

Pi

Fig. 14 Example of a coupled network consisting of two liquid flow networks (left) and the
equivalent network (right). The coupled network is not uniquely solvable, since there remains no
reservoir in the coupled network
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Example 4.2 (Cycle of Pumps) Consider the network of coupled liquid flow net-
works as displayed in Fig. 15. In contrast to Example 4.1 we replace some pipes
by pumps and add an additional reservoir in one of the subnetworks. Clearly, both
subnetworks are uniquely solvable. But the coupled network may not be solvable
at all, since a cycle consisting solely of pumps is obtained through the coupling
procedure.

Example 4.3 (Spanning Tree) Consider the network of coupled liquid flow net-
works as displayed in Fig. 16. In contrast to Example 4.1 we add an additional
reservoir in one of the subnetworks. Clearly, both subnetworks are uniquely
solvable and also the coupled network is uniquely solvable. Determining the
spanning trees of the subnetworks and the combined networks, we observe, that
the spanning tree of the combined network does not form a proper spanning
tree of the new network (since it is not a tree). It can easily be seen, that
another choice of the spanning tree in the subnetworks leads to a valid combined
result.

p, q

p, qP
u

P
u

De

Pu P
u

P
u

Pu

De Pi P
u

P
u

P
u

P
u

Pu

Pu Pi

Fig. 15 Example of a coupled network consisting of two liquid flow networks (left) and the
equivalent network (right). In contrast to Example 4.1, there remains a reservoir in the coupled
network. Anyhow, the solvability of the coupled network cannot be guaranteed, since there arises
a cycle of pumps

p, q

p, qP
i

P
i

De

Pi

P
i

P
i

Pi

De Pi

P
i

P
i

P
i

P
i

Pi

Pi Pi

chord set
spanning tree

Fig. 16 Example of a coupled network consisting of two liquid flow networks (left) and the
equivalent network (right). Both subnetworks as well as the coupled network are uniquely solvable.
The surrogate model for the coupled network cannot be derived straight forward by combining
the surrogate models of the subnetworks. Indeed, the combination of the spanning trees of the
subnetworks does not form a proper spanning tree for the coupled network
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In the next section, the coupling addressed in Fig. 12 is defined algebraically.
Based on this definition an analysis is established, that gives answers to the issues
raised in Examples 4.1–4.3.

5 Topology Based Index Analysis for Coupled Flow Networks

We consider a set of networks N 1, . . . ,NK with graphs G1, . . . ,GK and network
functions F 1

N , . . . , FK
N . For k = 1, . . . ,K , we assume that N k satisfies the

Assumptions 3.1 as well as the solvability assumptions of Theorem 3.1. Then, the
DAE (2.2) modeling the dynamics of N k is regular, has strangeness index μ = 1
and is uniquely solvable for every consistent initial value.

These networks N 1, . . . ,NK are now connected to one large network N with
graph G and network function FN . The coupling of the networks is performed via
the boundary conditions, by the reservoirs and demands. Before we specify the
coupling procedure, we point out the issues we are interested in.

1. Under which conditions does the coupled network N satisfy the Assump-
tions 3.1?

2. Can we assemble the network function FN of the coupled network N from the
individual network functions Fk

N ?
3. Under which conditions does the coupled network N satisfy the solvability

assumptions of Theorem 3.1?
4. Can we construct the surrogate model (3.3) of the coupled system from the

surrogate models of the subsystems?
5. How do we specify the consistent initial values of the coupled system from the

consistent initial values of the subsystems?

For a network N k , we denote the boundary conditions that serve as coupling
points by Rek

c and De
k
c and summarize them in the sets REk

c and DEk
c , respectively.

The boundary conditions that are not coupled are denoted by Rek
c and Dek

c and
summarized in the sets REk

c and DEk
c , respectively. Then, REk = REk

c ∪ REk
c

and DEk = DEk
c ∪DEk

c . We call the elements ofREk
c and DEk

c coupling reservoirs
and coupling demands. Accordingly, we partition the junctions and edges incident
to a coupling demand or reservoir by Jck

c and Pikc , Pu
k
c and summarize them

in the sets J Ck
c and PIk

c , PUk
c , respectively. The junctions and edges that are

not incident to a coupling boundary condition are denoted by Jck
c and Pikc , Pu

k
c

and summarized in the sets J Ck
c and PIk

c , PUk
c . Then, JCk = J Ck

c ∪ J Ck
c

and PIk = PIk
c ∪ PIk

c , PUk = PUk
c ∪ PUk

c . We call the elements of
JCk

c and PIk
c , PUk

c coupling junctions and coupling edges. In the following,
we frequently summarize the set of pipes and pumps as P := PI ∪ PU and
denote its elements by P. The partitioning into coupling and non-coupling elements
straightforward extends to P and its elements. For the coupling edges, we indicate
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the incident nodes where necessary by P(Jci , Jcj ) if P is an edge incident to Jci and
Jcj .

As the considered networks satisfy Assumption 3.1, every reservoir is incident
to exactly one pipe or pump, and every junction is incident to at most one demand.
This one-to-one correspondence allows to number the coupling elements such that
the coupling reservoir Rek

c,l is incident to the coupling edge Pk
c,l and the coupling

demand Dek
c,m is incident to the coupling junction Jck

c,m.
With this notation, we define the coupling procedure of two networks.

Definition 5.1 Consider two networks N 1, N 2 as in (2.1). Let Re1c ∈ RE1 be
a coupling reservoir with coupling edge P1c(Jc

1,Re1c) ∈ P1
c for Jc1 ∈ J C1. Let

De2c ∈ DE2
c be a coupling demand with coupling junction Jc2c ∈ J C2. The coupling

ofN 1,N 2 via (Re1c,De
2
c) yields the network

N =
(
N 1 \ {Re1c,P1c(Jc1,Re1c)}

)
∪

{
P1c(Jc

1, Jc2c)
}

∪
(
N 2 \ {De2c}

)
.

Hence, the pair (Re1c,De
2
c) thus means that the coupling boundary conditions

Re1c,De
2
c are removed, while the coupling edge P1c is connected to the

coupling junction Jc2c . An example of the coupling procedure is given in
Fig. 17.

Jc11

Jc12

Jc13

Jc14

Jc15

Jc16 Re11

Re12

Jc22 Jc21

Jc23 Re21

P
i 21

Pi23

Pu 22Pi
2 2

Pu
2 1

Pu 1
1

Pu13

Pu
1
2

Pi 11

Pi 13 Pi
1
2

Pi14

P
u
1 5

Pu14

Fig. 17 Example of a coupled network. Coupling NEx1, NEx2 from Examples 2.1, 3.1 via the
boundary conditions De11,Re

2
2, we obtain the network NEx3 with graph GEx3
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The incidence matrix AN of the coupled network N reflects this coupling
procedure as follows. With AN given by

AN =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

AJc1,P1c
AJc1,P1c

0 0 AJc1,De1c
0

0 0 AJc2c ,P
2 0 0 AJc2c ,De

2
c

0 ARe1c ,P
1
c

0 AJc2c ,P
2 0 0

ARe1c ,P
1
c

0 0 0 0 0

0 0 0 ARe2c ,P
2 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.1)

we see that the coupling boundary conditions Re1c,De
2
c are removed, while the

connection information of the coupling reservoir, i.e., the block ARe1c ,P
1
c
, moves

to the row of the coupling junction Jc2c . If sgn(P
1
c) = sgn(De2c), then ARe1c ,P

1
c

=
AJc2c ,De

2
c
and we can equivalently move the connection information of the coupling

demand, i.e., the block AJc2c ,De
2
c
, to the column of the coupling edge P1c .

Considering several networks N 1, . . . ,NK , the coupling procedure of Defini-
tion 5.1 is successively applied to couple N 1, . . . ,NK into a single network. The
information how the subnetworks are connected is stored in the adjacency matrix
B ∈ RK×K defined by

Bkl =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, k = l,

1, k �= l and N k,N l are connected according to the coupling

procedure of Definition 5.1 via the coupling pair (Rek
c,De

l
c),

0, else.

The graph Gcoup associated with B is called the coupling graph.
In the following, we assume that two networks N k , N l are coupled at most

by one pair of boundary conditions. Coupling two networks via several boundary
conditions corresponds to coupling a network with itself, which would result in a
change of its internal structure. Hence, in the following, we assume that the coupling
graph Gcoup is simple. Coupling two networksN k ,N l by a coupling reservoir from
N k and a demand fromN l , we can thus number the elements such that the coupling
is performed by the pair (Rek

c,De
l
c).

With the adjacency matrixB, we specify the structure of the coupled networkN .

Lemma 5.1 Consider networks N 1, . . . ,NK as in (2.1). Let B ∈ RK×K be the
adjacency matrix of a simple coupling graph Gcoup. Coupling of N 1, . . . ,NK

according to the adjacency matrix B yields the networkN

N =
⋃

k,l∈{1,...,K}
s.t. Bkl=1

(
N k \ {Rek

c,P
k
c(Jc

k,Rek
c)}

)
∪

{
Pk

c(Jc
k, Jcl

c)
}

∪
(
N l \ {Delc}

)
.
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The incidence matrix ofN is given by

AN =
[
AJc,P AJc,De

ARe,P 0

]

,

with

AJc,De =

⎡

⎢
⎢
⎣

AJc1,De1c
. . .

AJcK,DeKc

⎤

⎥
⎥
⎦ , ARe,P =

⎡

⎢
⎢
⎣

ARe1c ,P
1

. . .

AReKc ,PK

⎤

⎥
⎥
⎦ ,

AJc,P =
⎡

⎢
⎣

AJc1,P1 Acoup,kl

. . .

Acoup,kl AJcK,PK

⎤

⎥
⎦ ,

with

AJc,P =
[
AJckc ,P

k
c

AJckc ,P
k
c

AJckc ,P
k
c

AJckc ,P
k
c

]

, Acoup,kl =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎣
0 0

0 ARekc,l ,P
k
c,l

⎤

⎦ , if Bkl = 1,

0, if Bkl = 0.

Proof The assertion follows from Definition 5.1 and the structure of the incidence
matrix (5.1). �	

If the coupling graph Gcoup is simple, then N satisfies Assumption 3.1 if the
subnetworksN 1, . . . ,NK do.

Lemma 5.2 Consider networks N 1, . . . ,NK as in (2.1). Let B ∈ RK×K be the
adjacency matrix of a simple coupling graph Gcoup and let N be the coupling
of N 1, . . . ,NK according to B. If N 1, . . . ,NK satisfy Assumption 3.1, then the
coupled network N satisfies Assumption 3.1.

Proof As the coupling graph Gcoup is simple, two networks N k,N l are connected
at most by one coupling edge. By assumption, N 1, . . . ,NK are simple and it
follows that also N satisfies Assumption 3.1 (N1). As the coupling edges keep
their orientation and the networks N 1, . . . ,NK are oriented, also N is oriented,
hence (N2) is satisfied. As N 1, . . . ,NK are connected, connecting them to a new
graph N , also N is connected, hence (N3) is satisfied. The coupling procedure of
Definition 5.1 only removes boundary conditions, it does not add any reservoirs or
demands. As N 1, . . . ,NK satisfy (N4), also N satisfies (N4). �	
Example 5.1 To illustrate the coupling procedure in Definition 5.1, we consider the
networksNEx1 andNEx2 from Examples 2.1 and 3.1. Coupling these networks via
the boundary conditions De11,Re

2
2, we obtain the network NEx3 with graph GEx3,
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see Fig. 17. The incidence matrix of the coupled networkNEx3 is given by

AJc,Pi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pi11 Pi12 Pi13 Pi14 Pi21 Pi22 Pi23
J c11 0 0 0 0 1 0 0
J c12 0 0 −1 0 0 0 0
J c13 1 0 0 0 0 0 0
J c14 −1 1 0 1 0 0 0
J c15 0 −1 1 0 0 0 0
J c16 0 0 0 −1 0 0 0
J c21 0 0 0 0 0 0 1
J c22 0 0 0 0 −1 1 −1
J c23 0 0 0 0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

AJc,Pu =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pu11 Pu12 Pu13 Pu14 Pu15 Pu21 Pu22
J c11 1 0 1 0 0 0 0
J c12 −1 1 0 0 0 0 0
J c13 0 −1 −1 0 0 0 0
J c14 0 0 0 0 0 0 0
J c15 0 0 0 0 0 0 0
J c16 0 0 0 −1 −1 0 0
J c21 0 0 0 0 0 1 −1
J c22 0 0 0 0 0 0 0
J c23 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ARe,Pi =

⎡

⎢
⎢
⎣

Pi11 Pi12 Pi13 Pi14 Pi21 Pi22 Pi23
Re11 0 0 0 0 0 0 0
Re12 0 0 0 0 0 0 0
Re21 0 0 0 0 0 0 0

⎤

⎥
⎥
⎦ ,

ARe,Pu =

⎡

⎢
⎢
⎣

Pu11 Pu12 Pu13 Pu14 Pu15 Pu21 Pu22
Re11 0 0 0 1 0 0 0
Re12 0 0 0 0 1 0 0
Re21 0 0 0 0 0 −1 0

⎤

⎥
⎥
⎦ .

To assemble the network function of the coupled network N , we partition the
network function FN k of the individual networks N k according to the coupling
elements, i.e.,

FN k ,1c(qPikc
, pJck , pRek

c
) = q̇Pikc

− fPikc
(qPikc

, pJck , pRek
c
) (5.2a)

FN k ,1c
(qPikc

, pJck , pRek
c
) = q̇Pikc

− fPikc
(qPikc

, pJck , pRek
c
) (5.2b)

FN k ,2c(qPuk
c
, pJck , pRek

c
) = AT

Jck ,Puk
c
pJck + AT

Rekc ,Puc
pRek

c
− fPuk

c
(qPuk

c
) (5.2c)
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FN k ,2c
(qPuk

c
, pJck , pRek

c
) = AT

Jck ,Puk
c
pJck + AT

Rekc ,Puc
pRek

c
− fPuk

c
(qPuk

c
) (5.2d)

FN k,3c(qPik , qPuk , qDekc
) = AJckc ,Pi

k qPik + AJckc ,Pu
k qPuk + AJckc ,De

k qDekc
(5.2e)

FN k,3c
(qPik , qPuk , qDekc

) = AJckc ,Pi
k qPik + AJckc ,Pu

k qPuk + AJckc ,De
k
c
qDekc

(5.2f)

FN k,4c(qDekc
) = qDekc

− q̄Dekc
(5.2g)

FN k,4c
(qDekc

) = qDekc
− q̄Dekc

(5.2h)

FN k,5c(pRekc
) = pRek

c
− p̄Rekc

(5.2i)

FN k,5c
(pRekc

) = pRek
c
− p̄Rekc

, (5.2j)

where fPikc
(qPikc

, pJck , pRek
c
) = [fPikc,l (qPikc,l , pJck , pRek

c
)
]

l=1,...,|PIc| and fPikc
(qPikc

,

pJck , pRekc
) = [fPikc,l (qPikc,j , pJck , pRek

c
)
]

l=1,...,|PIc| as well as fPuk
c
(qPuk

c
) =

[fPuk
c,l

(qPuk
c,l

)]l=1,...,|PU c|] and fPuk
c
(qPuk

c
) = [fPuk

c,l
(qPuk

c,l
)]l=1,...,|PU c|]. Further-

more, we set qPi = [qPik ]k=1,...,K , qPu = [qPuk ]k=1,...,K , qDe = [qDek ]k=1,...,K and
pJc = [pJck ]k=1,...,K , pRe = [pRek ]k=1,...,K .

Then, the DAE of the coupled system is given as follows.

Lemma 5.3 Consider networks N 1, . . . ,NK as in (2.1) that satisfy Assump-
tion 3.1. Let B ∈ RK×K be the adjacency matrix of a simple coupling graph Gcoup
and let N be the coupling of N 1, . . . ,NK according to B. The network function
FN ofN is given by

FN ,1(qPi, pJc, pRec) =
[
FN k,1c(qPikc

, pJck , pRekc
)

FN k,1c
(qPikc

, pJck , pJclc
)

]

k=1,...,K, l �=k∈{1,...,K}
(5.3a)

FN ,2(qPuc, pJc, pRec) =
[
FN k,2c(qPuk

c
, pJck , pRekc

)

FN k,2c
(qPuk

c
, pJck , pJclc

)

]

k=1,...,K, l �=k∈{1,...,K}
(5.3b)

FN ,3(qPi, qPu, qDec) =
[
FN k,3c(qPik , qPuk , qDekc

)

FN k,3c
(qPik , qPuk , qPl

c
)

]

k=1,...,K, l �=k∈{1,...,K}
(5.3c)

FN ,4(qDec) =
[
FN k ,4c(qDekc

)
]

k=1,...,K
(5.3d)

FN ,5(pRec) =
[
FN k ,5c(pRekc

)
]

k=1,...,K
, (5.3e)

If FN k ∈ C2(Dk,Rn) for k = 1, . . . ,K , then FN ∈ C2(D,Rn).

Proof The coupling procedure of Definition 5.1 does not change the internal
structure of the networksN 1, . . . ,NK , so the solution q, p of the coupled network



Topological Index Analysis Applied to Coupled Flow Networks 229

N must naturally satisfy the DAEs

FN k (qk, pk) = 0, k = 1, . . . ,K (5.4)

with FN k given by (5.2). By the coupling procedure, we obtain the additional
conditions

qDekc,l
= qPl

c,k
, pRekc,m

= pJcmc,k
(5.5)

for l = 1, . . . , |DEc|, m = 1, . . . , |REc| and k = 1, . . . ,K . With (5.5), we can
eliminate the coupling boundary conditions in (5.4) to obtain (5.3). The smoothness
of FN then follows directly from the smoothness of the subnetwork functions.
Alternatively, we can construct (5.3) in the samemanner as (3.2) using the incidence
matrix AN . �	

Hence, the dynamics of the coupled networkN are described by the DAE

FN (qPi, qPu, pJc, pRec, qDec) = 0 (5.6)

with FN given by (5.3). The set of initial values is defined as

CIV := {(t0, q0, p0) ∈ I × RnE × RnV | ∃ q̇0, ṗ0 : FN (t0, q0, p0, q̇0, ṗ0) = 0}.

Example 5.2 For the network NEx3 as given in Fig. 17, the DAE modeling the
dynamics of N is given by

0 = qPi21
+ qPu11

+ qPu13
(Jc31)

q̇Pi21
= c11(pJc22

− pJc11
) + c21|qPi21 |qPi21 + c31 (Pi31)

as well as Eqs. (Pi11)-(Pi
1
4), (Pi

1
2), (Pi

1
3), (Pu

1
1)-(Pu

1
5), (Pu

2
1),(Pu

2
2), (Jc

1
1)-(Jc

1
6), (Jc

2
1)-

(Jc23), (Re
1
1), (Re

1
2), (Re

2
1).

We characterize the solvability of the DAE (5.6).

Theorem 5.4 Consider networks N 1, . . . ,NK as in (2.1). Let B ∈ RK×K be the
adjacency matrix of a simple coupling graph Gcoup and let N be the coupling of
N 1, . . . ,NK according to B. Let nRekc

> 0 for at least one k ∈ {1, . . . ,K} and

let V T
2 DfPuV2 be pointwise nonsingular for span(V2) = ker(AJc,Pu). The following

assertions hold.

1. The DAE (5.6) is regular and has strangeness index μ = 1 (d-index 2).
2. The DAE (5.6) is uniquely solvable for every (t0, q0, p0) ∈ CIV and the solution

is (q, p) ∈ C1(I,Rn).
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Proof Considering the reservoir part (5.3e) of the coupled network function,
we find that nRe = ∑K

k=1 nRekc
. Hence, if nRekc

> 0 for at least one k ∈
{1, . . . ,K}, then nRe > 0. If, in addition, V T

2 DfPuV2 is pointwise nonsingular for
span(V2) = ker(AJc,Pu), then the network function (5.3) satisfies the assumptions of
Theorem 3.1 and the assertions (1) and (2) follow. As the DAE is strangeness-free,
the set of initial values corresponds to the consistent initial values. �	

Hence, coupling the networks N 1, . . . ,NK with a simple coupling graph, the
solvability and index result of Theorem 3.1 straightforward extend to the coupled
networkN .

The structural part of the solvability condition, i.e., nRe > 0, can be easily
verified. If there is at least one non-coupling reservoir in one of the subnetworks,
there is at least one reservoir in the coupled network. Under certain conditions,
the element part of the solvability condition, i.e., that V T

2 DfPuV2 is pointwise
nonsingular for span(V2) = ker(AJc,Pu), can be also deduced from the subnetworks,
cp. Lemma 5.6.

Regarding the simulation of the coupled network N , we consider the
strangeness-free surrogate model ofN .

Theorem 5.5 Consider networks N 1, . . . ,NK as in (2.1). Let B ∈ RK×K be the
adjacency matrix of a simple coupling graph Gcoup and let N be the coupling of
N 1, . . . ,NK according to B. Let nRekc

> 0 for at least one k ∈ {1, . . . ,K} and let

V T
2 DfPuV2 be pointwise nonsingular for span(V2) = ker(AJc,Pu). The strangeness-

free model ofN is given by

0 = ΠT
2 FN ,1(qPi, pJc, pRec) (5.7a)

0 = UT
2,cAJcc,PifPic(qPi, pJc, pRec) + UT

2,cAJcc,Dec q̇Dekc

+ UT
2,cAJcc,PifPic (qPi, pJc, pRec ) + UT

2,cAJcc,DecfPic (qPic , pJc, pJcc )

(5.7b)

0 = FN ,2(qPuc , pJc, pRec) (5.7c)

0 = FN ,3(qPi, qPu, qDec) (5.7d)

0 = FN ,4(qDec) (5.7e)

0 = FN ,5(pRec), (5.7f)

where fPi = [f T
Pic

, f T
Pic

]T , U2=[UT
2,c, U

T
2,c]T is such that span(U2)= coker(AJc,Pu)

and [Π1,Π2] is a permutation with Π1 such that corange(UT
2 AJc,Pu) =

span(Π1).

1. The strangeness-free model is regular and has strangeness index μ = 0 (d-
index 1).

2. A function (q, p) ∈ C1(I,RnE × RnV ) solves (5.6) if and only if it solves (5.7).
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Proof The surrogate model (5.7) as well the assertions 1. and 2. follow straight-
forward from Theorem 3.3. Note that in the hidden constraints (5.7b), the coupling
edges Pc play the role of the demands Dec as the coupling implies that qPc = qDec .
With q̇Pc = fPic (qPic , pJc, pJcc ), Eq. (5.7b) follows. �	

Having specified the solvability conditions as well as the surrogate model of
the coupled network, we ask how the knowledge about the Substructures 3.1–
3.3 can be exploited to assemble the corresponding substructures of the coupled
networkN .

Lemma 5.6 Consider networks N 1, . . . ,NK as in (2.1). Let B ∈ RK×K

be the adjacency matrix of a simple coupling graph Gcoup and let N be the
coupling of N 1, . . . ,NK according to B. For k = 1, . . . ,K , let V k

2 , Uk
2

be such that span(V k
2 ) = ker(AJck,Puk ), span(Uk

2 ) = coker(AJck,Puk ) and

let [Πk
1 ,Πk

2 ] be a permutation such that span(Πk
1 ) = corange(A

Jc
k
,Puk ). For

the coupled network N , let V2, U2 be such that span(V2) = ker(AJc,Pu),
span(U2) = coker(AJc,Pu) and let [Π1,Π2] be a permutation with span(Π1) =
corange(AJc,Pu).

1. For k = 1, . . . ,K , if PUk
c = ∅, then V2 = diag(V k

2 )k , U2 = diag(Uk
2 )k and

Π1 = diag(Πk
1 )k .

2. For k = 1, . . . ,K , if ker(AJck,Puk ) = {0}, then ker(AJc,Pu) = {0}.
3. For k = 1, . . . ,K , if the networkN k does not contain paths of pumps connecting

elements ofREk
c andREk

c , then V2 = diag(V k
2 )k .

Proof The connection matrix AJc,Pu of the junction and pump set GJc,Pu is given by,
cp. Lemma 5.1,

AJc,Pu =
⎡

⎢
⎣

AJc1,Pu1 Acoup,kl

. . .

Acoup,kl AJcK,PuK

⎤

⎥
⎦ ,

with

AJck,Puk =
[
AJckc ,Pu

k
c

AJckc ,Pu
k
c

AJckc ,Pu
k
c

AJckc ,Pu
k
c

]

, Acoup,kl =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎣
0 0

0 ARelc,k ,Pu
l
c,k

⎤

⎦ , if Bkl = 1,

0, if Bkl = 0.

1. If the coupling is performed by pipes only, then Acoup,kl = 0 for k, l =
1, . . . ,K , and AJc,Pu is block diagonal. It follows that ker(AJc,Pu) =
span(diag(V k

2 )k) with span(V k
2 ) = ker(AJck,Puk ) and U2 = diag(Uk

2 )k

with span(Uk
2 ) = coker(AJck,Puk ). From the latter, in particular, it follows

that AJc,Pu = diag(A
Jc

k
,Puk ). Hence, corange(UT

2 AJc,Pu) = span(Π1)
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for Π1 = diag(Πk
1 )k with span(Πk

1 ) = corange(Uk,T
2 AJck,Puk ) for k =

1, . . . ,K .
2. If the coupling graph Gcoup is a tree, then Gcoup is not strongly connected

and its adjacency matrix B is reducible cp. [19]. Hence, there exists a
permutation, such that AJc,Pu is block triangular. If ker(AJck,Puk ) = {0} for
k = 1, . . . ,K , then the triangular block structure of AJc,Pu implies that
ker(AJc,Pu) = {0}. In the same manner, we find that coker(AJc,Pu) = {0}
if coker(AJck,Puk ) = {0} for k = 1, . . . ,K . From the latter, in particu-

lar, we get that UT
2 AJc,Pu = diag(A

Jc
k
,Puk ). Hence, corange(U

T
2 AJc,Pu) =

span(Π1) for Π1 = diag(Πk
1 )k with span(Πk

1 ) = corange(A
Jc

k
,Puk ) for k =

1, . . . ,K .
3. WLOG, we assume that the matrix V k

2 with span(V k
2 ) = ker(AJck,Puk ) is sorted

such that V k
2 = [V k,T

2,1 , V
k,T
2,2 ]T , where V k

2,1 selects paths of pumps connecting

elements of REk
c and REk

c and cycles of pumps and V k
2,2 selects paths of pumps

connecting elements ofREk
c andREk

c . IfN k is free of paths of pumps connecting
elements ofREk

c andREk
c , then V k

2,2 = 0, implying that Acoup,klV
k
2 = 0. As the

coupling graph is simple, there is only one non-zero off-diagonal entry in each
column associated with a coupling pump. Hence, ker(AJc,Pu) = span(diag(V k

2 )k)

with span(V k
2 ) = ker(AJck,Puk ). �	

If the coupling of N 1, . . . ,NK is performed by pipes only, the Substruc-
tures 3.1–3.3 of the coupled network N are simply the union of the Substruc-
tures 3.1–3.3 of the individual networks N 1, . . . ,NK . Consequently, the selecting
matrices V2, U2, Π2 have block diagonal form.

If the coupling by pumps is allowed as well, we can still make the fol-
lowing observations. If the coupling graph Gcoup is a tree and the individual
networks N k do not contain cycles of pumps or paths of pumps connecting
two reservoirs for k = 1, . . . ,K , then the coupled network N neither contains
elements of Substructure 3.1. If, for k = 1, . . . ,K , the network N k does not
contain paths of pumps connecting elements of REk

c and REk
c , then V2 =

diag(V k
2 )k .

As the Jacobian of the pump function is given by DfPu = diag(DfPuk )k , it follows

that V T
2 DfPuV2 = diag(V k,T

2 DfPukV k
2 )k if V2 = diag(V k

2 )k. Hence, if one of the
assertions of Lemma 5.6 is satisfied, then V T

2 DfPuV2 is pointwise nonsingular if

V
k,T
2 DfPukV k

2 are pointwise nonsingular.

Corollary 5.7 Consider networks N 1, . . . ,NK as in (2.1). Let B ∈ RK×K be
the adjacency matrix of a simple coupling graph Gcoup and let N be the coupling

of N 1, . . . ,NK according to B. Let V
k,T
2 DfPukV k

2 be pointwise nonsingular for
k = 1, . . . ,K . If one of the assertions of Lemma 5.6 is satisfied, then V T

2 DfPuV2 is
pointwise nonsingular.



Topological Index Analysis Applied to Coupled Flow Networks 233

Hence, under one of the assertions of Lemma 5.6, the solvability of the coupled
networkN is characterized by the subnetworksN 1, . . . ,NK . There is no need for
an extra solvability analysis of the coupled system.

If the coupling is performed by pipes only, then not only the solvability
of the coupled network N is characterized by the subnetworks N 1, . . . ,NK ,
but also the surrogate model of the coupled network can be assembled directly
from the subnetworks. The hidden constraints of the coupled network corre-
spond to the hidden constraints of the subnetworks and the set of differential
equations of the coupled system corresponds to the differential equations of the
subnetworks. In particular, this implies that the set of consistent initial values
CIV of N corresponds to the union of the sets of consistent initial values Ck

IV

ofN k .

Example 4.1 (continued) We consider the coupled network NEx3 from Exam-
ple 5.1. As the coupling is performed by a coupling pipe, Lemma 5.6, 1. applies.
Hence, the Substructures 3.1–3.3 of the coupled network N are the union of
the Substructures 3.1–3.3 of the networks N 1,N 2 and the selecting matrices
V2, U2, Π2 have block diagonal form. Indeed, in N the elements belonging to
Substructure 3.1 are the cycle and the path of pumps between the reservoirs inNEx1,
see Fig. 18. NEx2 does not bring in elements of Substructure 3.1. The junctions
belonging to Substructure 3.2 in N are the isolated junctions of NEx1;Jc,Pu,
NEx2;Jc,Pu as well as junctions of the connected component without loose pumps
ofNEx1, see Fig. 18. Consequently, with rank(V 2

2 ) = 0, the associated matrices are

Jc11

Jc12

Jc13

Jc14

Jc15

Jc16 Re11

Re12

Jc22 Jc21

Jc23 Re21

P
i 21

Pi23

Pu 22Pi
2 2

Pu
2 1

Pu 1
1

Pu13

Pu
1
2

Pi 11

Pi 13 Pi
1
2

Pi14

P
u
1 5

Pu14

Fig. 18 Substructure 3.1 (dashed pumps) and Substructure 3.2 (dotted junctions) of the network
NEx3. The elements of Substructures 3.1 and 3.2 of the coupled graph NEx3 are the union of the
Substructures 3.1 and 3.2 of NEx1 and NEx2, see Figs. 4 and 9
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given by

V2 = diag
(
V 1
2 , V 2

2

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pu11 1 0
Pu12 1 0
Pu13 −1 0
Pu14 0 1
Pu15 0 −1
Pu21 0 0
Pu22 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U2 = diag
(
U1
2 , U2

2

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J c11 1 0 0 0
J c12 1 0 0 0
J c13 1 0 0 0
J c14 0 1 0 0
J c15 0 0 1 0
J c16 0 0 0 0
J c21 0 0 0 0
J c22 0 0 0 1
J c23 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Hence, as V
k,T
2 DfPukV k

2 are pointwise nonsingular for k = 1, 2, this implies that
the DAE modeling the dynamics ofNEx3 is strangeness-free and uniquely solvable
for every consistent initial value.

To construct the surrogate model for NEx3, we consider the graph GJc,Pi arising
from the vertex identification, see Fig. 19, whose connection matrix AJc,Pi is
given by

AJc,Pi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Pi11 Pi12 Pi13 Pi14 Pi21 Pi22 Pi23
J c1 1 0 −1 0 0 −1 1
J c14 −1 1 0 1 0 0 0
J c15 0 −1 1 0 0 0 0
J c22 0 0 0 0 −1 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

A spanning tree of GJc,Pi is given by the composition of the spanning trees of NEx1
andNEx2, see Fig. 19, and we obtain the permutation

Π1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pi11 0 0 0 0 0
Pi12 1 0 0 0 0
Pi13 0 1 0 0 0
Pi14 0 0 1 0 0
Pi21 0 0 0 1 0
Pi22 0 0 0 0 1
Pi23 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Π2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pi11 1 0
Pi12 0 0
Pi13 0 0
Pi14 0 0
Pi21 0 0
Pi22 0 0
Pi23 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then, the surrogate model (5.7) of the coupled network is obtained from the
surrogate models ofNEx1 and EEx2 by removing the coupling boundary conditions
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Jc11 Jc14

Jc15

GEx3,Jc,Pi

Jc22

P
i 21

Pi23

Pi
2
2

Pi11
Pi 13 Pi

1
2

Pi14

chord set
spanning tree

Fig. 19 The graph GEx3,Jc,Pu arising from the vertex identification of GEx3,Jc3,Pu3 . A spanning tree
of GEx3,Jc,Pu is given by the union of the spanning trees of the individual networks GEx1 and GEx2

Re12,De
1
1 and adding the coupling condition pJc11

= pRe12
and qPi21

= qDe11
. From

this, we get the system

q̇Pi11
= c11(pJc14

− pJc13
) + c21|qPi11 |qPi11 + c31, (Pi31)

q̇Pi22
= c12(pJc13

− pJc12
) + c22|qPi22 |qPi22 + c32 (Pi32)

q̇Pi23
= c13(pJc12

− pJc11
) + c23|qPi23 |qPi23 + c33 (Pi33)

0 = fPi21
+ fPi11

− fPi13
(Jc31)

0 = −fPi11
+ fPi12

+ fPi14
(Jc34)

0 = −fPi12
+ fPi13

(Jc35)

0 = −fPi21
+ fPi22

− fPi23
(Jc32)

together with (Pu11)-(Pu
1
5), (Pu21),(Pu

2
2), (Jc11)-(Jc

1
6), (Jc21)–(Jc

2
3), (Re11), (Re12),

(Re21).

Example 5.3 As a second example, we couple the networks NEx1 and NEx2 from
Examples 2.1 and 3.1 via a coupling pump, i.e., via the boundary conditions
De11,Re

2
1. The graph GEx4 of the resulting network NEx4 is illustrated in Fig. 20.
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Jc11

Jc12

Jc13

Jc14

Jc15

Jc16 Re11

Re12

Jc21 Jc22

Jc23 Re22

P
u2 1

Pu22

Pi 22Pi
2 3 Pi
2 1

Pu 1
1

Pu13

Pu
1
2

Pi 11

Pi 13 Pi
1
2

Pi14

P
u
1 5

Pu14

Fig. 20 Graph GEx4 of the network NEx4

The incidence matrix ofNEx4 is given by

AJc,Pi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pi11 Pi12 Pi13 Pi14 Pi21 Pi22 Pi23
J c11 0 0 0 0 0 0 0
J c12 0 0 −1 0 0 0 0
J c13 1 0 0 0 0 0 0
J c14 −1 1 0 1 0 0 0
J c15 0 −1 1 0 0 0 0
J c16 0 0 0 −1 0 0 0
J c21 0 0 0 0 0 0 1
J c22 0 0 0 0 −1 1 −1
J c23 0 0 0 0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

AJc,Pu =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pu11 Pu12 Pu13 Pu14 Pu15 Pu21 Pu22
J c11 1 0 1 0 0 −1 0
J c12 −1 1 0 0 0 0 0
J c13 0 −1 −1 0 0 0 0
J c14 0 0 0 0 0 0 0
J c15 0 0 0 0 0 0 0
J c16 0 0 0 −1 −1 0 0
J c21 0 0 0 0 0 1 −1
J c22 0 0 0 0 0 0 0
J c23 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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ARe,Pi =

⎡

⎢
⎢
⎣

Pi11 Pi12 Pi13 Pi14 Pi21 Pi22 Pi23
Re11 0 0 0 0 0 0 0
Re12 0 0 0 0 0 0 0
Re22 0 0 0 0 01 0 0

⎤

⎥
⎥
⎦ ,

ARe,Pu =

⎡

⎢
⎢
⎣

Pu11 Pu12 Pu13 Pu14 Pu15 Pu21 Pu22
Re11 0 0 0 1 0 0 0
Re12 0 0 0 0 1 0 0
Re22 0 0 0 0 0 0 0

⎤

⎥
⎥
⎦ .

The network function FNEx4 of NEx4 is again composed from the network
functions FNEx1 and FNEx2 . In detail, the DAE modeling the dynamics of N is
given by

0 = qPu21
+ qPu11

+ qPu13
(Jc11)

pJc11
− pJc21

= fPu21
(qPu21

) (Pu21)

as well as Eqs. (Pi11)–(Pi
1
4), (Pi

1
1)–(Pi

1
3), (Pu

1
1)–(Pu

1
5), (Pu

2
2), (Jc

1
1)–(Jc

1
6), (Jc

2
1)–(Jc

2
3),

(Re11), (Re
1
2), (Re

2
1).

To analyze the solvability of this DAE, we consider the Substructures 3.1–
3.3 of NEx4. As the coupling is performed by a coupling pump and NEx1
contains elements of Substructure 3.1, Lemma 5.6 (1) and (2) do not apply.
However, as neither NEx1 nor NEx2 contains a path of pumps connecting a
coupling and a non-coupling reservoir, Lemma 5.6 (3) applies. The Substruc-
ture 3.1 of the coupled network N is the union of the Substructure 3.1 of the
networks N 1,N 2, see Fig. 21, and the selecting matrix V2 has block diagonal
form. For the matrix U2, however, we note that the components belonging to
Substructure 3.2 are given by the isolated junctions Jc14, Jc

1
5, Jc

2
3 as well as by

{Jc11, Jc12, Jc13, Jc21, Jc22,Pu11,Pu12,Pu13,Pu21Pu12,Pu13}. Hence, for NEx3, Substruc-
ture 3.2 is not the union of the Substructure 3.2 of NEx1 and NEx2. In conclusion,
the associated matrices are given by

V2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pu11 1 0
Pu12 1 0
Pu13 −1 0
Pu14 0 1
Pu15 0 −1
Pu21 0 0
Pu22 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, U2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J c11 1 0 0 0
J c12 1 0 0 0
J c13 1 0 0 0
J c14 0 1 0 0
J c15 0 0 1 0
J c16 0 0 0 0
J c21 1 0 0 0
J c22 0 0 0 1
J c23 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Fig. 21 For NEx4, the elements belonging to Substructure 3.1 (dashed pumps) are the cycle and
the path of pumps between the reservoirs in NEx1, see Fig. 4, while NEx2 does not bring in
elements of Substructure 3.1. As the coupling edge is a pump, the elements of Substructure 3.2
(dotted junctions), however, are the isolated junctions Jc14, Jc

1
5, Jc

2
3 and the connected component

{Jc11, . . . , Jc13, Jc21, Jc22,Pu11, . . . ,Pu13,Pu21,Pu12}
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Fig. 22 The graph GEx3,Jc,Pu arising from the vertex identification of GEx3,Jc3,Pu3 . A spanning tree

of GEx3,Jc,Pu is given by the spanning tree of GEx1,Jc,Pu plus Pi
2
2 or Pi

2
3

The graph GJc,Pi arising from the vertex identification is illustrated in Fig. 22.
The associated connection matrix is given by

AJc,Pi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Pi11 Pi12 Pi13 Pi14 Pi21 Pi22 Pi23
J c1 1 0 −1 0 0 −1 1
J c14 −1 1 0 1 0 0 0
J c15 0 −1 1 0 0 0 0
J c22 0 0 0 0 −1 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
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A spanning tree of GJc,Pi is selected, e.g., by

Π1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pi11 0 0 0 0 0
Pi12 1 0 0 0 0
Pi13 0 1 0 0 0
Pi14 0 0 1 0 0
Pi21 0 0 0 1 0
Pi22 0 0 0 0 0
Pi23 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Π2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pi11 1 0 0
Pi12 0 0 0
Pi13 0 0 0
Pi14 0 0 0
Pi21 0 1 0
Pi22 0 0 1
Pi23 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

see Fig. 22. Hence, coupling two networks with a pump, the spanning tree of the
coupled network is not necessarily the union of the spanning trees of the individual
networks.

The surrogate model (5.7) ofNEx4 is given by

q̇Pi11
= c11(pJc14

− pJc13
) + c21|qPi11 |qPi11 + c31, (Pi31)

q̇Pi21
= c13(pJc12

− pJc11
) + c23|qPi21 |qPi21 + c33 (Pi31)

q̇Pi22
= c12(pJc13

− pJc12
) + c22|qPi22 |qPi22 + c32 (Pi32)

0 = fPi21
+ fPi11

− fPi13
(Jc31)

0 = −fPi11
+ fPi12

+ fPi14
(Jc34)

0 = −fPi12
+ fPi13

(Jc35)

0 = −fPi21
+ fPi22

− fPi23
(Jc32)

together with (Pu11)–(Pu
1
5), (Pu

2
2), (Jc

1
1)–(Jc

1
6), (Jc

2
1)–(Jc

2
3), (Re

1
1), (Re

1
2), (Re

2
2).

6 Conclusion and Discussion

So far physical networks have been considered mainly as isolated and stand alone,
but in many application they are not. The derivation of physical based topological
conditions is also required for coupled systems of physical DAEs. We have shown,
that it is very promising to derive additional topology based rules for coupled
system. Nevertheless they seem to be not sufficient for all type of constellations.
It is quite remarkable, that already the analysis of the uniform network has to
be done in an appropriate way to provide the basic framework for a constructive
analysis of the coupled networks. As a specific graph theoretical problem we have
identified the unique and good choice of the spanning trees of the graphs of the
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underlying network. Consequently, the existing tools for single networks (Modified
nodal analysis, Topological based index analysis) have to be re-evaluated against
the possibility to be used for the topological analysis in multi-network structures.

The main driving feature for the presented approach is the possibility to combine
assembled models without changing the models itself (or changing initial condi-
tions). Indeed this feature can not be guaranteed by using purely graph theoretical
approaches like Pantelides or the Σ-Method. Anyhow, those algorithms have their
right to exists in all applications, where a tight connection to the underlying physics
is not relevant or not available. For modular system simulation software the strong
connection to the physics increases the applicability in engineering approaches and
therefore has to preferred.

Furthermore, the analysis of multi-network structures provides the basic tools
for the treatment of black-box elements (which physical coupling conditions)
within physical networks. At that point it is required to marriage purely graph
theoretical approaches with physical based topological methods in order to extract
the advantages of both worlds. One very recent example in automotive applications
is the incorporation of Functional Mock-up Units (FMUs)8 in physical networks.
Therein FMUs with appropriate coupling conditions provide internal dependency
graphs, that can be re-interpreted as additional class of components. E.g. in liquid
flow networks those components can form an additional class next to pipes, pumps,
demands, junctions and reservoirs. In this case the topological criteria may be
extended to this new classes.

In this work we have considered liquid flow network as a representative example.
Indeed, those topics are also relevant for other physical domains like gas–dynamics
and electric networks. To the authors best knowledge, the coupling of electrical
network via defined interface and coupling conditions has not been considered so
far. For the Modified nodal analysis applied to networks of electric networks, the
challenge definitely is hidden in the identification and correct treatment of CV-loops
and IL-cutsets, that arise through the coupling procedure. At least the case of CV-
loops in electrical networks may be equivalent to the case of pump circles in liquid
flow networks.
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Nonsmooth DAEs with Applications
in Modeling Phase Changes

Peter Stechlinski, Michael Patrascu, and Paul I. Barton

Abstract A variety of engineering problems involve dynamic simulation and
optimization, but exhibit a mixture of continuous and discrete behavior. Such
hybrid continuous/discrete behavior can cause failure in traditional methods; the-
oretical and numerical treatments designed for smooth models may break down.
Recently it has been observed that, for a number of operational problems, such
hybrid continuous/discrete behavior can be accurately modeled using a nonsmooth
differential-algebraic equations (DAEs) framework, now possessing a foundational
well-posedness theory and a computationally relevant sensitivity theory. Numerical
implementations that scale efficiently for large-scale problems are possible for
nonsmooth DAEs. Moreover, this modeling approach avoids undesirable properties
typical in other frameworks (e.g., hybrid automata); in this modeling paradigm,
extraneous (unphysical) variables are often avoided, unphysical behaviors (e.g.,
Zeno phenomena) from modeling abstractions are not prevalent, and a priori
knowledge of the evolution of the physical system (e.g., phase changes experienced
in a flash process execution) is not needed. To illustrate this nonsmooth modeling
paradigm, thermodynamic phase changes in a simple, but widely applicable flash
process are modeled using nonsmooth DAEs.
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1 Introduction

The significant presence of discrete phenomena during a process operation is a
major challenge in dynamic simulation and optimization. “Discrete” phenomena
broadly refers to behavior that can be characterized by event-like transitions, such
as discontinuities in state variables or changes in functional form of the governing
equations at discrete events. Such discrete phenomena can be caused by (planned
or unplanned) discrete control actions or physiochemical switches, such as the
transition between flow regimes in a pipe or thermodynamic phase changes. The
mixture of such discrete behavior with “continuous” behavior (i.e., continuous
evolution of the dynamic system) is referred to as hybrid behavior. Prevalent
hybrid frameworks for modeling operational problems include hybrid automata
[5, 18, 38, 39, 64] and complementarity systems [23, 54, 65], though a variety of
formalisms for hybrid dynamic systems [19] exist.

Studies of physical problems modeled using hybrid automata are found in
[4, 5, 26, 39]. Of present interest, hybrid automata frameworks have been used
for handling thermodynamic phase changes in equation-oriented simulation and
optimization [3]; in this approach, the model is split into an invariant set of equa-
tions, which remains unchanged regardless of the thermodynamic phase regime,
and a variant set of equations specific to each phase regime. At each point in
time, the dynamic model is constructed as the union of the invariant set and the
active equations in the variant set. The mole fraction vector of a phase that is
not present is undefined, necessitating assignment of arbitrary constant values to
such mole fractions. This leads to discontinuous behavior when that phase appears
since the mole fractions jump to their physical values, and makes the model
unsuited for simulation, sensitivity analysis, and optimization. A detailed discussion
of theoretical limitations to the hybrid automata modeling framework, as well as
pathological (unphysical) behaviors they can introduce, is given in [60].

An alternate approach for modeling thermodynamic phase changes is determin-
ing the phase regime by solving a nonlinear optimization problem [10]. Here, the
vapor-liquid equilibrium (VLE) conditions appear in the form of constraints, and
are automatically “relaxed” when there is only one thermodynamic phase present
instead of a VLE. Such a relaxation allows for a continuous extension of the mole
fractions into the thermodynamic phase regimes where they are undefined, pre-
venting discontinuities at phase regime transitions. Moreover, this approach can be
modified to an equation-solving problem for the case of the two-phase equilibrium
by reformulating the optimization problem [22]. The resulting system of equations
contains complementarity conditions (i.e., a complementarity system) that represent
changes in the thermodynamic phase regime. Numerical issues associated with the
presence of complementarity conditions are circumvented by requiring additional
user-defined (unphysical) parameters, artificial variables and binary variables [1, 7]
(e.g., in smoothing methods and mixed-integer reformulations), which may not be
exact and may increase the running time of algorithms dramatically. For examples
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of relevant operational problems modeled as complementarity systems, the reader
is referred to [7, 48].

Recently, a nonsmooth formulation for modeling the appearance and disappear-
ance of phases has been suggested [52]. It was shown that a formulation with
complementarity conditions is equivalent to a nonsmooth model. The proposed
approach leads to a system of nonsmooth differential-algebraic equations (DAEs),
which can be solved using any DAE integrator with proper event-detection capa-
bilities. This approach was recently applied to plant-wide dynamic simulations and
optimization [43, 44]. It models phase changes in a compact way, and requires no
optimization nor does it introduce discontinuities in the model equations. In fact,
in general this nonsmooth framework naturally avoids many of the issues outlined
above, such as the need to add unphysical parameters and have a priori knowledge
of the system dynamics. Mirroring the classical theory for smooth DAEs (see, e.g.,
[2, 9, 34]), nonsmooth semi-explicit DAEs now possess a notion of generalized
differentiation index one, which implies regular mathematical properties such as
well-posedness [59] and sensitivity theory [57] that is computationally relevant
for existing nonsmooth methods (e.g., equation-solving [16, 46] and optimization
[33, 37]).

In this article, we demonstrate a nonsmooth DAEs model of thermodynamic
phase changes and analyze its mathematical properties; a model for a simple
constant volume flash process is introduced in Sect. 2 that includes a nonsmooth
algebraic equation that determines the thermodynamic phase regime. The math-
ematical foundation of the nonsmooth DAEs framework is presented in Sect. 3,
which includes a discussion of consistency, initial consistency and regularity of
nonsmooth DAEs (Sect. 3.1) suitable for generalizing the notion of differentiation
index one, followed by nonsmooth DAE well-posedness theory (Sect. 3.2). Next,
we analyze and simulate different formulations of the flash process model, given
common forms to express the phase thermodynamic properties. Specifically, we
point out the difficulties associated with the attempt to simulate all phase regimes
using simplified expressions for the thermodynamic properties. Conclusions and
future research directions are given in Sect. 5.

2 Modeling Flash Processes with Nonsmooth DAEs

A very simple and common unit operation in chemical engineering is modeled by
nonsmooth DAEs in this paper: in a flash process, a stream is split into two phases, a
liquid and a vapor phase, depending on the thermodynamic conditions. Usually the
purpose is to increase the concentration of a desired component (chemical species)
in one stream compared to the other (or decrease the concentration of an unwanted
species). To simplify the analysis we focus on a single component system, which
represents a simple evaporation or condensation process. Similar models have been
proposed to simulate multiple component systems [52].
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Fig. 1 A schematic of a flash
vessel, showing the dynamic
variables of interest. Q can be
positive (heating) or negative
(cooling)

Fin ,hin

FV ,hV
Pout

FL ,hL

Pout

ML ,vL

MV ,vV

V ,P,T

Q

The mass and energy balances of a constant volume flash process with a pure
component, as schematically illustrated in Fig. 1, are given by Eq. (2.1). It is
assumed that the temperature, T , and pressure, P , are uniform in space (point
variables), and that the phase properties are homogeneous.

dM

dt
(t) = Fin(t) − FV (t) − FL(t), (2.1a)

dU

dt
(t) = Fin(t)hin(t) − FL(t)hL(t) − FV (t)hV (t) + Q(t), (2.1b)

M(t) = ML(t) + MV (t), (2.1c)

U(t) = ML(t) (hL(t) − P(t)vL(t)) + MV (t) (hV (t) − P(t)vV (t)) , (2.1d)

V = ML(t)vL(t) + MV (t)vV (t), (2.1e)

where M , U and V are the total number of moles, total internal energy and
(constant) volume of the vessel, respectively. F is the flow rate in mol/s, h is
the specific enthalpy in kJ/mol and v is the specific volume in L/mol. Q is the
heat duty in kW, which can be positive (heating) or negative (cooling). Subscripts
L and V denote properties related to the liquid and vapor phase, respectively.
The existence of the vapor and/or liquid phase is determined from the nonsmooth
algebraic equation:

0 = mid
(
MV (t), P (t) − P sat(T (t)),−ML(t)

)
. (2.2)

The mid function selects the median value of its three arguments, such that in case
that the pressure in the vessel is higher than the saturation pressure, P − P sat > 0,
only a liquid phase exists, thus 0 = MV . Alternatively, if the pressure is lower than
the saturation pressure only the vapor phase exists, thus 0 = −ML is enforced.
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This formulation and its derivation from thermodynamic principles are extensively
discussed in [52]. Here, we will illustrate the use of this expression and elaborate
further in Sect. 4.2.3.

P sat depends on the temperature, T , and can be calculated from an equation of
state using the equilibrium condition (see Sect. 4.1) or from the empirical Antoine
expression:

P sat(T ) = 10

(
A− B

T +C

)

, (2.3)

where A,B,C are constants associated with a pure species, and the temperature,
T , is in Kelvin. Before proceeding with analyzing and simulating this model,
nonsmooth DAEs are formally introduced and their mathematical properties are
highlighted.

3 Nonsmooth Generalized Differentiation Index-One DAEs

The following initial value problem (IVP) in semi-explicit DAEs is the main focus
of this work:

ẋ(t,p) = f(t,p, x(t,p), y(t,p)), (3.1a)

0ny = g(t,p, x(t,p), y(t,p)), (3.1b)

x(t0,p) = f0(p), (3.1c)

where t is the independent variable, p is a vector of the problem parameters, x is the
differential state variable, y is the algebraic state variable, and the functions

f : Dt × Dp × Dx × Dy → R
nx ,

g : Dt × Dp × Dx × Dy → R
ny ,

f0 : Dp → Dx,

are not necessarily differentiable at all points on their respective domains (Dt ⊂ R,
Dp ⊂ R

np , Dy ⊂ R
ny , and Dx ⊂ R

nx are open and connected sets). Note that
Eqs. (2.1) and (2.2) fall into this framework.

The notational conventions chosen here are consistent with those laid out in
[29, 30, 57]: a set is denoted by an uppercase letter (e.g., H ), vector-valued functions
and vectors in R

n are denoted by lowercase boldface letters (e.g., h) and matrix-
valued functions and matrices in R

m×n are denoted by uppercase boldface letters
(e.g., H). A well-defined vertical block matrix (or vector)

[
H1

H2

]
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is often written as (H1,H2). The kth column vector of H ∈ R
m×n is denoted by

h(k) ∈ R
m and the kth row of H is denoted by Hk ∈ R

1×n. The ith component
of a vector h is denoted by hi . The Jacobian matrix of a differentiable function
h : Rn → R

m at x ∈ R
n is denoted by Jh(x) ∈ R

m×n. The n × n identity matrix,
n-dimensional zero vector and m × n zero matrix are denoted by In, 0n and 0m×n,
respectively. A neighborhood of h ∈ R

n is a set of points Bδ(h) (i.e., the open ball
of radius δ centered at h) for some δ > 0. A neighborhood of a set H ⊂ R

n is given
by Bδ(H) := ∪h∈HBδ(h) for some δ > 0.

3.1 Regularity and Consistency of Nonsmooth DAEs

Following the exposition in [59], the following assumptions are considered in
analyzing the IVP in DAEs (3.1).

Assumption 3.1 Suppose that the following conditions hold:

(i) f(·,p, ηx, ηy) is measurable on Dt for each (p, ηx, ηy) ∈ Dp × Dx × Dy ;
(ii) f(t, ·, ·, ·) is continuous on Dp × Dx × Dy for each t ∈ Dt \ Zf, where Zf is a

zero-measure subset;
(iii) there exists a Lebesgue integrable function mf : Dt → R+ ∪ {+∞} such that

‖f(t,p, ηx, ηy)‖ ≤ mf(t), ∀t ∈ Dt , ∀(p, ηx, ηy) ∈ Dp × Dx × Dy;

(iv) g is locally Lipschitz continuous on D := Dt × Dp × Dx × Dy ; and
(v) f0 is locally Lipschitz continuous on Dp .

Assumption 3.2 Suppose that there exists a Lebesgue integrable function kf :
Dt → R+∪{+∞} such that, for any t ∈ Dt and any (p1, ηx1

, ηy1
), (p2, ηx2

, ηy2
) ∈

Dp × Dx × Dy ,

‖f(t,p1, ηx1
, ηy1

) − f(t,p2, ηx2
, ηy2

)‖ ≤ kf(t)‖(p1, ηx1
, ηy1

) − (p2, ηx2
, ηy2

)‖.

The conditions in Assumptions 3.1(i)–(iii) and 3.2 need only hold on an open
subset N ⊂ Dt × Dp × Dx × Dy for the theory outlined in this section to hold
(see [59]). Such a relaxation matches the classical Carathéodory ODE existence and
uniqueness conditions [14, 17] (which are implied by local Lipschitz continuity of
f). The choice of presentation made here is for clarity of exposition.

Given a connected set T ⊂ Dt containing t0 and P ⊂ Dp, a mapping z ≡ (x, y) :
T ×P → Dx ×Dy is called a solution of (3.1) on T ×P if, for each p ∈ P , z(·,p)

is an absolutely continuous function satisfying (3.1a) for almost every t ∈ T , (3.1b)
for every t ∈ T , and (3.1c) at t = t0. Given a solution z̃ ≡ (̃x, ỹ) of (3.1) on
T × {p0}, for some reference parameter p0 ∈ Dp , the classical characterization of
differentiation index one is not viable in the setting of Assumption 3.1; since g may
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not be differentiable on its domain, the requirement that

∂g
∂y

(t,p0, x̃(t,p0), ỹ(t,p0)) (3.2)

be nonsingular for all t ∈ T must be generalized in a suitable way. This is
accomplished as follows: define the regularity set of (3.1) by

GR := {(t,p, ηx, ηy) ∈ D : (t∗,p∗, η∗
x, η∗

y) �→ (t∗,p∗, η∗
x, g(t∗,p∗, η∗

x, η∗
y))

is a Lipschitz homeomorphism on some neighborhood of (t,p, ηx, ηy)}.

Then z̃ is called a regular solution of (3.1) on T × {p0} if

{(t,p0, x̃(t,p0), ỹ(t,p0)) : t ∈ T } ⊂ GR,

and (3.1) is said to have generalized differentiation index one (a local characteristic
along a solution trajectory). If g is C1, then nonsingularity of the partial Jacobian
matrix in (3.2) for all t ∈ T implies

(t∗,p∗, η∗
x, η∗

y) �→ (t∗,p∗, η∗
x, g(t

∗,p∗, η∗
x, η∗

y))

is a C1-diffeomorphism, and the classical notion of differentiation index one is
recovered in this setting.

To verify regularity a priori based on the functional form of g in a global manner,
a sufficient condition for regularity is derived using generalized derivatives. The
B-subdifferential (sometimes called the limiting Jacobian) of g at (t,p, ηx, ηy) ∈
Dt × Dp × Dx × Dy is given by

∂Bg(t,p, ηx, ηy) :=
{

lim
i→∞ Jg(ω(i)) : lim

i→∞ ω(i) = (t,p,ηx , ηy), ω(i) ∈ D \ Zg,∀i ∈ N

}
,

where Zg ⊂ D is the zero (Lebesgue) measure subset for which g is not
differentiable (by Rademacher’s theorem). The Clarke (generalized) Jacobian [13]
of g at (t,p, ηx, ηy) is the convex hull of the B-subdifferential;

∂g(t,p, ηx, ηy) := conv ∂Bg(t,p, ηx, ηy).

If g is C1 at (t,p, ηx, ηy), then

∂g(t,p, ηx, ηy) = ∂Bg(t,p, ηx, ηy) = {Jg(t,p, ηx, ηy)}.

A nonsmooth extension of the partial Jacobian matrix in (3.2) is constructed as
follows: the projection of the Clarke Jacobian [13] with respect to y at (t,p, ηx, ηy)



250 P. Stechlinski et al.

is defined as

πy∂g(t,p, ηx, ηy) := {Y ∈ R
ny×ny : ∃[T P X Y] ∈ ∂g(t,p, ηx, ηy)},

(3.3)
and satisfies

πy∂g(t,p, ηx, ηy) =
{

∂g
∂y

(t,p, ηx, ηy)

}

if g is C1 at (t,p, ηx, ηy).
Said projection can be used to provide a sufficient condition for regularity of

solutions of the IVP in DAEs (3.1) (and thus generalized differentiation index one):
let

Gπ
R :={(t,p, ηx, ηy) ∈ D : πy∂g(t,p, ηx, ηy) contains no singular matrices}.

Then Gπ
R ⊂ GR since nonsingularity of every matrix in πy∂g(t,p, ηx, ηy) implies

the mapping (t∗,p∗, η∗
x, η∗

y) �→ (t∗,p∗, η∗
x, g(t

∗,p∗, η∗
x, η

∗
y)) is a homeomorphism

on a neighborhood of (t,p, ηx, ηy) [13]. Hence, the condition

{(t,p0, x̃(t,p0), ỹ(t,p0)) : t ∈ T } ⊂ Gπ
R,

implies z̃ is a regular solution of (3.1) on T × {p0} (and thus (3.1) is generalized
differentiation index one). Again, this condition corresponds to the classical notion
of differentiation index one when g is continuously differentiable.

If g is piecewise differentiable (PC1) in the sense of Scholtes [53], which is a
broad class of functions including all C1 functions, the absolute-value, min, max
and mid functions, and compositions thereof, then

∂Bg(t,p, ηx, ηy) = {
Jg(i)(t,p, ηx, ηy) : i = 1, . . . , ness

}
,

where Jg(i)(t,p, ηx, ηy) is the Jacobian matrix of g(i) evaluated at (t,p, ηx, ηy)

and ness is a positive integer corresponding to the number of (essentially active) C1

selection functions g(i). In this case, the PC1-regularity set of (3.1) is defined as

GPC
R := {(t,p, ηx, ηy) ∈ D : (t∗,p∗, η∗

x, η∗
y) �→ (t∗,p∗, η∗

x, g(t∗,p∗, η∗
x, η∗

y))

is a PC1-homeomorphism on some neighborhood of (t,p, ηx, ηy)}.

Clearly GPC
R ⊂ GR, implying regularity of a solution contained in this set (and

therefore the generalized differentiation index one property of (3.1)). Moreover, a
verifiable condition can be developed in the PC1 setting, using the theory in [49]:
let

GCCO
R :={(t,p, ηx, ηy) ∈ D : sign(det(Y)) = a ∀Y ∈ Λyg(t,p, ηx, ηy)},
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for some a = ±1, where Λyg(t,p, ηx, ηy) is the combinatorial partial Jacobian of
g with respect to y at (t,p, ηx, ηy), defined as

Λyg(t, p, ηx, ηy)

:=
{
Y ∈ R

ny×ny : Yi = ∂g(δi ),i

∂y
(t, p, ηx, ηy),∀i ∈ {1, . . . , ny}, δ ∈ {1, . . . , ness}ny

}
.

(That is, the ith row in Y is equal to the ith row of the partial Jacobian matrix of the
δi th selection function g(δi ).) If every matrix in GCCO

R has the same nonvanishing
determinant sign (i.e., sign(det(Y)) = 1 or −1), then g is called completely coher-
ently oriented (CCO) with respect to y at (t,p, ηx, ηy), which implies the mapping
(t∗,p∗, η∗

x, η∗
y) �→ (t∗,p∗, η∗

x, g(t
∗,p∗, η∗

x, η
∗
y)) is a PC1-homeomorphism on a

neighborhood of (t,p, ηx, ηy) [49, Corollary 20], and therefore GCCO
R ⊂ GPC

R ⊂
GR.

Of note, if g is scalar-valued, Λyg(t,p, ηx, ηy) = ∂B[g(t,p, ηx, ·)](ηy) (i.e.,
the partial B-subdifferential of g with respect to y at (t,p, ηx, ηy)). If g is vector-
valued but only has two selection functions at (t,p, ηx, ηy) and the partial Jacobian

matrices ∂g(1)

∂y (t,p, ηx, ηy) and ∂g(2)

∂y (t,p, ηx, ηy) only differ in one row, then

Λyg(t,p, ηx, ηy) =
{

∂g(1)

∂y
(t,p, ηx, ηy),

∂g(2)

∂y
(t,p, ηx, ηy)

}
.

Lastly, consistent initialization of (3.1) is characterized through the consistency
set and initial consistency set, which are defined as, respectively,

GC := {(t,p, ηx, ηy) ∈ D : g(t,p, ηx, ηy) = 0ny },
G0

C := {(t,p, ηx, ηy) ∈ GC : t = t0, ηx = f0(p)}.
Then z̃ is said to be a (regular) solution of (3.1) on T × {p0} through
{(t0,p0, x0, y0)} ⊂ G0

C if z̃ is a (regular) solution of (3.1) on T × {p0} and, in
addition, (̃x(t0,p0), ỹ(t0,p0)) = (x0, y0).

Example 3.3 Consider the following IVP in semi-explicit DAEs:

ẋ(t, p) = sign(t − 0.5),

1 = |x(t, p)| + |y(t, p)|,
x(t0, p) = min(0, p),

(3.4)

i.e., the right-hand side functions are given by

f : R4 → R : (t, p, ηx , ηy) �→ sign(t − 0.5),

g : R4 → R : (t, p, ηx , ηy) �→ |ηx | + |ηy | − 1,

f0 : R → R : p �→ min(0, p),
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which are PC1 on their domains. The function g has points of nondifferentiability

Zg = {(t, p, ηx, ηy) ∈ R
4 : ηx = 0 or ηy = 0}

and the following selection functions at (t, p, 0, 0):

g(1)(t, p, ηx, ηy) ≡ ηx + ηy − 1,

g(2)(t, p, ηx, ηy) ≡ −ηx + ηy − 1,

g(3)(t, p, ηx, ηy) ≡ −ηx − ηy − 1,

g(4)(t, p, ηx, ηy) ≡ ηx − ηy − 1.

Consequently,

∂Bg(t, p, 0, 0) = {Jg(i)(t, p, 0, 0)} =
{[

1
1

]T

,

[−1
1

]T

,

[−1
−1

]T

,

[
1

−1

]T
}

,

from which it follows that

∂g(t, p, 0, 0) = conv{Jg(i)(t, p, 0, 0)} = {[λ1 λ2] : −1 ≤ λ1 ≤ 1, −1 ≤ λ2 ≤ 1} .

Combining the above with the fact that the Clarke Jacobian is a singleton
(i.e., the Jacobian matrix) for (t, p, ηx , ηy) ∈ R

4 \ Zg, it follows that for any
(t, p, ηx, ηy) ∈ R

4,

πy∂g(t, p, ηx , ηy) =

⎧
⎪⎪⎨

⎪⎪⎩

{−1}, if ηy < 0,

[−1, 1], if ηy = 0,

{1}, if ηy > 0,

and

Λyg(t, p, ηx , ηy) =

⎧
⎪⎪⎨

⎪⎪⎩

{−1}, if ηy < 0,

{−1, 1}, if ηy = 0,

{1}, if ηy > 0.

The consistency, initial consistency, and regularity sets are therefore given by

GC = {(t, p, ηx, ηy) ∈ R
4 : |ηx | + |ηy | = 1},

G0
C = {(t, p, ηx, ηy) ∈ GC : t = t0, ηx = min(0, p)},

Gπ
R = GCCO

R = {(t, p, ηx, ηy) ∈ R
4 : ηy �= 0}.
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3.2 Existence and Uniqueness of Solutions of Nonsmooth
DAEs

The well-posedness theory in [59] is collected in the next result.

Theorem 3.4 Let Assumption 3.1 hold. Then the following statements hold:

(i) If (t0,p0, x0, y0) ∈ G0
C ∩ GR, then there exist α > 0 and a regular solution

of (3.1) on [t0 − α, t0 + α] × {p0} through {(t0,p0, x0, y0)}.
(ii) If z̃ is a regular solution of (3.1) on [t0, tf ] × {p0} ⊂ Dt × Dp through

{(t0,p0, x0, y0)} and Assumption 3.2 holds, then z̃ is a unique regular solution1

of (3.1) on [t0, tf ] × {p0} through {(t0,p0, x0, y0)}.
(iii) If z̃ is a regular solution of (3.1) on [t0, tf ] × {p0} ⊂ Dt × Dp through

{(t0,p0, x0, y0)}, then there exist β > 0 and a regular continuation2 of z̃ on
[t0 − β, tf + β]. Moreover, there exist tL ∈ R ∪ {−∞} and tU ∈ R ∪ {+∞}
satisfying tL < t0 < tf < tU and a maximal regular continuation of z̃ on
(tL, tU ).

Example 3.5 Considering again (3.4) in Example 3.3 with t0 = 0.5,

z̃ ≡ (̃x, ỹ) : [0.25, 0.75] × {−0.5} → R
2 : (t, p) �→

{
(−t, 1 − t), if t ∈ [0.25, 0.5],
(t − 1, t), if t ∈ (0.5, 0.75],

is a regular solution of (3.4) on [0.25, 0.75]×{−0.5} through {(0.5,−0.5,−0.5, 0.5)};
ỹ(t,−0.5) > 0 for all t ∈ [0.25, 0.75]. Since Assumption 3.2 holds on
Dt × Dp × Dx × Dy = R × (−1, 1) × (−1, 1) × (−2, 2), z̃ is unique. Moreover,
since Assumption 3.1 also holds on Dt × Dp × Dx × Dy , there exists a maximal
regular continuation, z̃max, of z̃ on (tL, tU ) = (−1, 2), given by

z̃max : (−1, 2) × {−0.5} → R
2 : (t, p) �→

{
(−t, 1 + t), if t ∈ (−1, 0],
(t − 1, t), if t ∈ (0, 2).

Note that z̃max has no regular continuation for any superset of (tL, tU ) by loss of
regularity;

lim
t→−1+(t,−0.5, z̃max(t,−0.5)) = (−1,−0.5, 1, 0) /∈ GR

1̃z is unique in the sense that, given any other solution z∗ of (3.1) on T × {p0} through
{(t0,p0, x0, y0)} satisfying T ∩ [t0, tf ] �= {t0}, z̃(t,p0) = z∗(t,p0) for all t ∈ T ∩ [t0, tf ].
2A (regular) continuation z∗ : T × {p0} of z̃ is a (regular) solution of (3.1) on T × {p0} through
{(t0,p0, x0, y0)} satisfying z∗(t,p0) = z̃(t,p0) for all t ∈ [t0, tf ] and T ⊂ Dt is a strict superset
of [t0, tf ]. z∗ is a maximal (regular) continuation of z̃ if it has no (regular) continuation for any
superset of T contained in Dt .
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and

lim
t→2−(t,−0.5, z̃max(t,−0.5)) = (2,−0.5, 1, 0) /∈ GR.

On the other hand, there exist two solutions of (3.4) on [0, 1] × {−0.5} through
{(0,−0.5,−0.5, 0.5)}:

z† ≡ (x†, y†) : [0, 1]×{−0.5} → R
2 : (t, p) �→

{
(−t − 0.5, 0.5 − t), if t ∈ [0, 0.5],
(t − 1.5, t − 0.5), if t ∈ (0.5, 1],

and

z† ≡ (x†, y†) : [0, 1]×{−0.5} → R
2 : (t, p) �→

{
(−t − 0.5, 0.5 − t), if t ∈ [0, 0.5],
(t − 1.5, 0.5 − t), if t ∈ (0.5, 1].

Non-uniqueness here is because of loss of regularity at t = 0.5; neither z† nor z†
are regular since y†(0.5,−0.5) = y†(0.5,−0.5) = 0.

The following remarks are in order before returning to the nonsmooth flash
model:

1. In summary, (3.1) is said to be generalized differentiation index one along a
solution trajectory if the participating functions satisfy Assumption 3.1 and said
solution is contained in GR (i.e., the solution is regular). The latter condition can
be checked in a global manner by evaluating the set Gπ

R ⊂ GR. If, in addition, g
is PC1 on its domain, then generalized differentiation index one corresponds to
a solution being contained in GPC

R , which can be verified by evaluating the set
GCCO

R ⊂ GPC
R .

2. Well-posedness results of the IVP in DAEs (3.1) in [59] rely crucially on a
nonsmooth extended implicit function theorem [59, Theorem 3.5]. This theorem
allows for analyzing nonsmooth semi-explicit generalized differentiation index-
one DAEs via nonsmooth ODE theory by providing an equivalence between said
dynamical systems [57, Proposition 4.1]; if Assumptions 3.1 and 3.2 hold and
z̃ ≡ (̃x, ỹ) is a regular solution of (3.1) on [t0, tf ]×{p0} through {(t0,p0, x0, y0)},
then there exist a neighborhood Np0 ⊂ Dp of p0, a set Ω0 ⊂ G0

C and a unique
regular solution z̃ of (3.1) on [t0, tf ] × Np0 through Ω0. Moreover, there exist
δ, ρ > 0 and a Lipschitz continuous function

r : Bδ({(t,p0, x̃(t,p0)) : t ∈ [t0, tf ]}) ⊂ Dt × Dp × Dx → R
ny

which satisfy

a. ỹ(t,p) = r(t,p, x̃(t,p)) for all (t,p) ∈ [t0, tf ] × Np0 ;
b. {(t,p, x̃(t,p)) : (t,p) ∈ [t0, tf ]×Np0} ⊂ Bδ({(t,p0, x̃(t,p0)) : t ∈ [t0, tf ]});
c. {(t,p, z̃(t,p) : (t,p) ∈ [t0, tf ] × Np0} ⊂ Bρ({(t,p0, z̃(t,p0)) : t ∈ [t0, tf ]}).
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Thus, the nonsmooth ODE

ẋ(t,p) = f(t,p, x(t,p), r(t,p, x(t,p))), (3.5a)

x(t0,p) = f0(p), (3.5b)

may be analyzed in a local neighborhood of {(t,p, x̃(t,p)) : (t,p) ∈ [t0, tf ] ×
Np0} to ascertain theoretical results for (3.1).

3. The regularity set in [59] is defined as Gπ
R (denoted GR in [59]), instead of

the superset GR, but the aforementioned Lipschitzian extended implicit function
theorem [59, Theorem 3.5] holds if the Clarke Jacobian projection is replaced
by the Lipschitz homeomorphism condition, allowing for such a generalization.
Moreover, the PC1 case is not considered in [59], but by the method of proof of
[59, Theorem 3.5], a PC1 extended implicit function theorem can be similarly
proved by using the PC1 local implicit function theorem [49, Corollary 20]
in place of Clarke’s locally Lipschitz implicit function theorem [13, Corollary
to Theorem 7.1.1]. The various regularity sets defined above are therefore all
suitable for guaranteeing (3.1) is generalized differentiation index one locally
along a solution trajectory.

4. The uniqueness result in Theorem 3.4 states that the regular solution of (3.1) is
unique in the sense that there cannot exist another solution, regular or not. Said
result also holds for a regular solution defined on a non-singleton set (i.e., P ⊂
Dp). The existence and uniqueness results in [59] include other generalizations;
the statement of the results here is motivated by facilitation of discussion.

5. Theorem 3.4 is applicable to nonlinear complementarity systems (NCSs) [23, 42,
54, 65]; the NCS

ẋ(t,p) = f(t,p, x(t,p),u(t,p)), (3.6a)

v(t,p) = h(t,p, x(t,p),u(t,p)), (3.6b)

vi(t,p)ui(t,p) = 0, ∀i ∈ {1, . . . , nv}, (3.6c)

v(t,p) ≥ 0nv ,u(t,p) ≥ 0nv , (3.6d)

can be recast as (3.1) by letting

g : (t,p, ηx, ηv, ηu) �→
[
h(t,p, ηx, ηu) − ηv

min(ηv, ηu)

]

where min(·, ·) is the component-wise vector-valued minimum function and the
algebraic variable is y ≡ (u, v). Mixed nonlinear complementarity systems can
be similarly recast.

6. Continuous and Lipschitzian dependence of regular solutions of (3.1) on initial
values and parameters is inherited from nonsmoothness of the right-hand side
functions f, g and f0 [59]; given a regular solution z̃ of (3.1) on [t0, tf ] × {p0}
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through {(t0,p0, x0, y0)}, Assumption 3.1 implies the existence of a neighbor-
hood Np0 ⊂ Dp of p0 and a regular solution z̃ of (3.1) on [t0, tf ] × Np0 through
Ω0 ⊂ G0

C such that, for each t ∈ [t0, tf ], the mapping z̃(t, ·) is continuous
at p0. If in addition Assumption 3.2 holds, then the mapping z̃(t, ·) is Lipschitz
continuous on a neighborhood of p0, with a Lipschitz constant that is independent
of t .

7. In the nonsmooth setting, the forward parametric sensitivity functions ∂ x̃
∂p (t,p0)

and ∂ ỹ
∂p (t,p0) may not be well-defined for all t . Instead, (local) sensitivity

information for (3.1) can be characterized via elements of the Clarke Jacobians
∂ [̃x(t, ·)](p0) and ∂ [̃y(t, ·)](p0) (i.e., fixed t and varying p). Such elements are
computationally relevant by providing sensitivity information for state variables
with respect to p at p = p0 for use in dedicated nonsmooth optimization [33, 36]
and equation-solving methods [16, 46], which exhibit attractive convergence
properties. However, Clarke Jacobian elements are generally difficult to compute
in an automatable way because the Clarke Jacobian satisfies calculus rules only
as inclusions, among other reasons.

A recent advancement in nonsmooth analysis provides a recourse here: the
lexicographic directional (LD-)derivative [30], which is defined using lexico-
graphic differentiation [41], is a new nonsmooth tool which provides an accurate,
automatable and computationally tractable method for generalized derivative
evaluation (e.g., via a nonsmooth vector forward mode of automatic differenti-
ation [30]). Consequently, the generalized differentiation index-one DAE (3.1)
now possesses a suitable sensitivity theory for use in, for example, dynamic
optimization (e.g., via sequential methods such as single and multiple shooting)
[58], in the form of a nonsmooth sensitivity DAE system [57, Theorem 4.1].
Mirroring the classical sensitivity theory, said nonsmooth sensitivity system
admits a unique solution that can be used to furnish a computationally relevant
generalized derivative element and simplifies to the classical sensitivity DAE
system when the participating functions are C1. (For a detailed account of theory
and application of LD-derivatives to different classes of nonsmooth dynamical
systems and optimization problems, the interested reader is directed to [6].)

4 Analysis and Simulation of Nonsmooth Flash Models

To solve the nonsmooth flash model introduced in Sect. 2, the thermodynamic
properties of the phases must be determined, i.e., the specific molar volume of the
vapor and liquid phases, vV and vL, respectively, and the molar enthalpy of the vapor
and liquid, hV and hL, respectively. In this section, we describe three approaches
to calculate such thermodynamic properties, and demonstrate their implications in
simulating the full dynamic behavior of a flash process.
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4.1 The Use of a Cubic Equation of State

A well-known approach to calculate the thermodynamic properties of both liquid
and vapor phases is the use of a cubic equation of state, relating the specific volume
v to the pressure, P , and the temperature, T , below the critical point. This algebraic
equation can have up to three real roots, two corresponding to each of the phases (the
smallest to the liquid phase and the largest to the vapor phase), and a third unphysical
(and meaningless) one. The simplest example is the van der Waals (VDW) equation
of state:

P = RT

v − b
− a

v2 , (4.1)

where R is the universal gas constant, and a and b are constants fitted to a specific
pure species. To facilitate numerical solution, this equation can be rewritten in two
different ways to solve for the vapor and liquid roots from an adequate initial guess;
multiplying Eq. (4.1) by fV (vV ) where

fV (v) ≡ v − b

P
, (4.2)

yields an equation suitable for calculating the vapor phase solution, while multiply-
ing Eq. (4.1) by fL(vL), where

fL(v) ≡ (v − b)v2

a
, (4.3)

yields an equation suitable for calculating the liquid phase solution. Dynamic
versions of said equations are given by

vV (t) = RT (t)

P (t)
+ b − a(vV (t) − b)

P (t)(vV (t))2 , (4.4a)

vL(t) = b + (vL(t))2 RT (t) + (b − vL(t))P (t)

a
. (4.4b)

Note that both fV and fL are positive when evaluated at values near the solutions
of the vapor and liquid roots of (4.1), respectively.

Defining the compressibility factor Z ≡ Pv/RT , q ≡ a/bRT and I ≡ b/v,
the following equation can be used to calculate the thermodynamically consistent
enthalpy from the VDW equation of state using the definition of the residual
enthalpy, hR [56]:

hR

RT
≡ h

RT
− hig

RT
= Z − 1 − qI,
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so the vapor and liquid enthalpies follow:

hV (t) = hig(T (t)) + P(t)vV (t) − RT (t) − a/vV (t), (4.5a)

hL(t) = hig(T (t)) + P(t)vL(t) − RT (t) − a/vL(t), (4.5b)

where hig is the ideal gas molar enthalpy given by:

hig(T ) = h
ig
0 +

∫ T

T0

Cp(s)ds, (4.6)

where h
ig
0 is the ideal gas molar enthalpy at the standard (reference) temperature

(T0 = 298 K), and Cp is the ideal gas heat capacity.
For a pure component system the saturation pressure is determined from the

condition for equilibrium of two phases:

GV (t) = GL(t),

where GV , GL are the molar Gibbs free energy of the vapor and liquid phases,
respectively. The residual Gibbs free energy, GR, based on a cubic equation of state
is given by:

GR

RT
≡ G

RT
− Gig

RT
= Z − 1 − ln

(
Z − bP

RT

)
− qI,

where Gig is the ideal gas Gibbs free energy of the pure component. Thus, the
equilibrium condition equation reduces to the following form for the VDW equation
of state:

P satvsat
V − a

vsat
V

− RT ln

(
P sat(vsat

V − b)

RT

)
= P satvsat

L − a

vsat
L

− RT ln

(
P sat(vsat

L − b)

RT

)
,

(4.7)

where vsat
V and vsat

L are the saturated vapor and liquid molar volumes, respectively.
It was not possible to get these equations to solve reliably with the typical DAE
solver used in this paper. It is well known that vapor-liquid equilibrium equations,
in particular with equations of state, are very difficult to converge with standard
approaches such as Newton’s method. This difficulty is often addressed by nesting
tailored algorithms for the flash equations in the overall equation solve (applying
the implicit function theorem). A class of these tailored algorithms has recently
been extended to the nonsmooth flash formulation presented here [69, 70], but these
have not yet been incorporated in the simulator used in this paper.
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Alternatively, we use the empirical Antoine expression, Eq. (2.3), to solve for
P sat (with A,B,C fitted to empirical data). In doing so, P sat has minor deviations
from the one obtained by Eq. (4.7) in the temperature range of interest. In Sect. 4.3
the heat of vaporization is derived from the Antoine expression using the Clapeyron
equation. This is not consistent with Eqs. (4.5a)–(4.5b), which will be replaced by
other equations in Sect. 4.3.

The outlet flow rates of the vapor and liquid streams depend on the pressure and
phase hold-up inside the vessel, expressed by the following nonsmooth equations:

FV (t) = Cv
V min

(
V min, VV (t)

)
max

(
P(t) − Pout√|P(t) − Pout| + ε

, 0

)
, (4.8a)

FL(t) = Cv
L min

(
V min, VL(t)

)
max

⎛

⎝ P(t) + Ph
L(t) − Pout√∣

∣P(t) + Ph
L(t) − Pout

∣
∣+ ε

, 0

⎞

⎠ ,

(4.8b)

where Cv
V and Cv

L are the valve constants, VV and VL are the total vapor phase and
liquid phase hold-up volumes, respectively, and thus satisfy

VV (t) = MV (t)vV (t), VL(t) = ML(t)vL(t).

P h
L is the hydrostatic pressure exerted by the liquid phase (this is assumed to only

affect the flow rate, otherwise the pressure is assumed to be uniform, as mentioned
above), expressed by:

Ph
L(t) = 10−5gML(t)mw/S,

where g is the gravitational constant, mw is the molecular weight, S is the cross-
sectional area of the vessel and the factor 10−5 converts the units from Pa to bar.
The first term in Eqs. (4.8a)–(4.8b) uses the nonsmooth min function to simulate
the closing of the valve when the respective phase disappears, enforcing that liquid
cannot flow through the vapor outlet and vice versa. The second term uses the
nonsmooth max function to simulate a nonreturn check-valve, to prevent back flow
when the pressure inside the vessel is lower than the downstream pressure, Pout. ε

is a small regularization parameter to guarantee Lipschitz continuity.

4.2 Analysis and Simulation of the Cubic Equation of State
Model

The simple flash model outlined thus far is thermodynamically consistent and is
capable of simulating a transition between all three thermodynamic regimes (i.e., the
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vapor-only, two-phase and liquid-only regimes). Observe that Eqs. (4.8), (2.3)
and (4.5) can be solved explicitly to eliminate the respective unknowns, P sat,
FV , FL, hV and hL. Also note that in this case after using (4.5a) and (4.5b),
the terms PvV and PvL in (2.1d) cancel out. The simple flash model falls into
the framework of the nonsmooth DAE system (3.1) with differential variables
x ≡ (M,U), algebraic variables y ≡ (ML,MV , P, T , vL, vV ), f corresponding
to Eqs. (2.1a)–(2.1b) and g corresponding to Eqs. (2.1c), (2.1d), (2.1e), (2.2), (4.4).
Note that f is C1 on its domain, but g is PC1 on its domain because the mid function
is PC1.

4.2.1 Structural Analysis

Structural analysis of the model can provide some insight into whether the problem
may be high index in each of the phase regimes, as determined by Eq. (2.2). The
occurrence matrices associated with the algebraic equations in each of the phase
regimes (i.e., corresponding to the three selection functions of (2.2)) are presented
below. In the liquid-only regime:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Eq. ML MV P T vL vV

(2.1c) X 0
(2.1d) X 0 X X X
(2.1e) X 0 X X
(2.2) 0
(4.4a) X X X
(4.4b) X X X

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

In the two-phase regime:

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

Eq. ML MV P T vL vV

(2.1c) X X
(2.1d) X X X X X
(2.1e) X X X X
(2.2) X X
(4.4a) X X X
(4.4b) X X X

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦
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In the vapor-only regime:

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

Eq. ML MV P T vL vV

(2.1c) 0 X
(2.1d) 0 X X X X
(2.1e) 0 X X X
(2.2) 0
(4.4a) X X X
(4.4b) X X X

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

The six unknowns are denoted above the matrices with the corresponding
equations listed on the left. Variables that are identically zero (by Eq. (2.2)) are
denoted by 0 in the matrices to emphasize that certain equations cannot be used
to solve for certain variables (e.g., Eq. (2.1d) cannot be used to solve for vV in
the liquid-only regime). The problem structure changes as the nonsmooth Eq. (2.2)
switches between three selection functions, where only the fourth component
differs:

g(1),4 ≡ MV , g(2),4 ≡ P − P sat(T ), g(3),4 ≡ −ML.

The equation used to solve for a particular unknown is denoted by a circle. When
only one phase exists Eq. (2.2) sets the corresponding phase hold-up to zero, leading
to a qualitative change in the structure of the problem. The main difference is that
the pressure has to be determined from Eq. (4.4a) or (4.4b) instead of from Eq. (2.2).

4.2.2 Regularity Analysis

Nevertheless, it is apparent that this model is structurally regular in each of the phase
regimes, thus it may be generalized differentiation index one in all three regimes. In
particular, the partial Jacobian matrices associated with each selection function (and
thus each of the three regimes), Y(i) ≡ ∂g(i)

∂y are given as follows: for the liquid-only
regime,

Y(1) =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

1 1 0 0 0 0
HL HV 0 A a ML

v2
L

a
MV

v2
V

vL vV 0 0 ML MV

0 1 0 0 0 0
0 0 TV RV 0 CV

0 0 TL RL CL 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,
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where

HL ≡ h
ig
0 + Cp(T − T0) − a

vL

− RT,

HV ≡ h
ig
0 + Cp(T − T0) − a

vV

− RT,

A ≡ (Cp − R)(ML + MV ),

CV ≡ −1 + a(vV − 2b)

Pv3
V

,

CL ≡ −1 + 2vL(RT + Pb − 1.5PvL)

a
,

RV ≡ R

P
,

RL≡ Rv2
L

a
,

TV ≡ a(vV − b)

P 2v2
V

− RT

P 2 ,

TL≡ −v2
L(vL − b)

a
.

For the two-phase regime,

Y(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

1 1 0 0 0 0
HL HV 0 A a ML

v2
L

a MV

v2
V

vL vV 0 0 ML MV

0 0 1 P 0 0
0 0 TV RV 0 CV

0 0 TL RL CL 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

,

where

P ≡ −10A−B/(C+T )B ln(10)

(C + T )2 .

For the vapor-only regime,

Y(3) =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0
HL HV 0 A a ML

v2
L

a MV

v2
V

vL vV 0 0 ML MV

−1 0 0 0 0 0
0 0 TV RV 0 CV

0 0 TL RL CL 0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

.
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As expected, only the fourth row of each matrix differs because of Eq. (2.2).
(i.e., g has three selection functions whose partial Jacobian matrices only differ in
the fourth row). Since at most two selection functions can be active at a domain
point of interest, it follows that

Λyg =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

{Yliquid-only
(1) } if (x, y) ∈ liquid-only regime,

{Yliquid-only
(1) ,Yliquid-only

(2) } if (x, y) ∈ liquid-only and two-phase transition,

{Ytwo-phase
(2) } if (x, y) ∈ two-phase regime,

{Yvapor-only
(2) ,Yvapor-only

(3) } if (x, y) ∈ vapor-only and two-phase transition,

{Yvapor-only
(3) } if (x, y) ∈ vapor-only regime,

where, for example, the notation Yliquid-only
(1)

denotes the matrix-valued function Y(1)

evaluated at realizable values of state variables in the liquid-only regime.
Recall that a solution trajectory (̃x, ỹ) associated with reference parameter p0

(see Table 1) is regular at time t if

(̃x(t,p0), ỹ(t,p0)) ∈ GCCO
R = {(x, y) : sign(det(Y)) = a ∀Y ∈ Λyg},

for some a = ±1, which is sufficient for generalized differentiation index one.
Regularity of solutions can therefore be shown by analyzing the signs of the
determinants ofY(1),Y(2),Y(3) at realizable values of state variables: since MV = 0
in the liquid-only regime, it follows that

det(Yliquid-only
(1) ) = −MLA CVTL.

Similarly, since ML = 0 in the vapor-only regime,

det(Yvapor-only
(3) ) = −MVA CLTV .

Table 1 Model parameters for condensation of n-Butane

Constant Value Units Constant Value Units

mw 0.0581 kg/mol A 6.83

Pout 1 bar B 945.8 K

a 13.93 barL2/mol2 C -33 K

b 0.1168 L/mol Cp 0.093 kJ/mol/K

V 9 L Cv
V 100 mol/s/L/

√
bar

V min 0.01 L Cv
L 50 mol/s/L/

√
bar

S 0.01 m2 Fin 1 mol/s

ε 10−6 hin -125 kJ/mol

h
ig
0 -125.6 kJ/mol
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Consider the two non-classical cases (i.e., at the two phase boundaries): for state
variable values in the liquid-only regime, ML > 0, A > 0 and TL < 0. Recall that

CV = ∂g(1),5

∂vV

where g(1),5 is the right-hand side function associated with the algebraic equa-
tion (4.4a) evaluated at the state variables of the system (and equals g(2),5 and
g(3),5 since said function is C1 on its domain). Equation (4.4a) was obtained by
multiplying the VDW equation of state (4.1) by fV (v), as defined in (4.2). That is,

0 =
(

RT

v − b
− a

v2
− P

)
fV (v).

The partial derivative of the right-hand side of this equation with respect to v, and
evaluated at a solution of the dynamic system, equals CV by definition. Therefore,

CV = ∂P

∂v
(vV )fV (vV ) + f ′

V (vV ) (P (vV ) − P) = ∂P

∂v
(vV )fV (vV ),

where the argument vV appearing above is understood to be the vapor root of the
equation of state and

P(v) ≡ RT

v − b
− a

v2
.

Moreover, since (P (vV ) − P) = 0 at points where Eq. (4.1) is satisfied, fV (vV ) >

0 (as mentioned at the beginning of Sect. 4.1), and the fact that ∂P
∂v

(vV ) < 0 holds
from physical consideration, it follows that CV < 0. From this it follows that

det(Yliquid-only
(1)

) = det

(
∂g(1)

∂y
(̃x(t,p0), ỹ(t,p0))

)
= −MLA CVTV < 0. (4.9)

Therefore, regularity holds at the transition between liquid-only and two-phase
regimes if

sign(det(Yliquid-only
(2) )) = −1.

Since MV > 0 and A > 0, a similar analysis as above can be used to show
that CL < 0 with state variables assuming values at the vapor-only and two-phase
boundary, so that

det(Yvapor-only
(3) ) = det

(
∂g(3)

∂y
(̃x(t,p0), ỹ(t,p0))

)
= −MVA CLTL < 0.

(4.10)



Nonsmooth DAEs with Applications in Modeling Phase Changes 265

Hence, regularity holds at the transition between vapor-only and two-phase
regimes if

sign(det(Yvapor-only
(2) )) = −1.

Away from the phase boundaries (i.e., where the model is C1), regularity implies
classical differentiation index one and holds for values of state variables in the
interior of the liquid-only and vapor-only regimes by Eqs. (4.9)–(4.10). Regularity
holds in the interior of the two-phase regime if

det(Ytwo-phase
(2) ) = det

(
∂g(2)

∂y
(̃x(t,p0), ỹ(t,p0))

)
�= 0.

Evaluation of det(Yliquid-only
(2) ), det(Ytwo-phase

(2) ) and det(Yvapor-only
(2) ) would therefore

yield definitive conclusions with respect to the model being of (generalized)
differentiation index one.

4.2.3 Simulation

A dynamic process of condensing n-Butane in a constant volume flash vessel is sim-
ulated by solving Eqs. (2.1)–(2.3) and (4.4)–(4.8). The simulation was performed in
Jacobian (Res Group Inc.) using DSL48SE [61, 62] as the solver, which is based on
DASSL [45]. The duty is assumed to follow:

Q(t) ≡ max(−10,−0.25t) kW.

The model parameters are given in Table 1. The Antoine expression constants A,
B, and C correspond to P sat in units of mmHg. The feed flow rate is constant
at constant conditions. Furthermore, Cp in Eq. (4.6) is assumed to be constant.
The model requires two initial conditions to be specified; assume that the vessel
is initially filled with vapor:

M(0) = 0.5 mol, and T (0) = 313.15 K.

Figure 2 shows the solution for the pressure, hold-up volumes of the phases and
the temperature in the flash vessel. The initial state of the system corresponds to the
vapor-only regime. As cooling starts the temperature, and thus also P sat, decrease,
while a slight increase in the pressure is observed due to the accumulation of moles
in the vessel. A transition to the two-phase regime occurs when P = P sat at t ≈ 6
s, Fig. 2a, leading to the formation of a liquid phase, Fig. 2b. Another transition
to the liquid-only regime occurs at t ≈ 191 s, when P increases above P sat. The
increase in P is very sharp because now liquid is forced into the vessel, which is
filled entirely with liquid, and the weak dependency of the liquid phase density on
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Fig. 2 Simulation results of a flash vessel fed by n-Butane modeled by nonsmooth DAEs. The
initial state is in the vapor-only regime. A transition to the two-phase regime occurs when P = P sat

at t ≈ 6 s (a). Another transition to the liquid-only regime occurs at t ≈ 191 s. The hold-up
volumes of the corresponding phases are depicted in (b), and the temperature in (c)

the pressure results in a rapid pressure increase (practically, this will only be feasible
if a high enough upstream pressure is applied).

Figure 3 illustrates the simulation results on a PV diagram (phase plane plot), and
highlights the reasoning behind Eq. (2.2). The vapor state, (P, vV , T ), is represented
by the rightmost red curve (large molar volume values), and the liquid state,
(P, vL, T ), is represented by the leftmost red curve (small molar volume values),
magnified to the right for clarity. The isotherms corresponding to the highest and
lowest temperatures obtained, 316.5 and 284.8 K, are marked by dashed black lines.
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Fig. 3 Simulation results on a PV diagram (red curves): the initial state is marked by red dots;
the isotherms for the lowest and highest temperatures are marked by dashed black lines; and the
saturation curve, P sat(T ), is marked by a blue line. The liquid molar volume curve is magnified
on the right for clarity. The molar volumes are calculated from the VDW equation of state for all
three regimes

These are the function P(v), according to Eq. (4.1), for constant temperatures. The
saturation curve, P sat(T ), calculated from Eqs. (2.3), (4.4a) and (4.4b) is depicted
by a blue curve.

Starting from the initial state in Fig. 3 (marked by red dots), the system is initial-
ized in the vapor-only regime: the vapor molar volume is to the right of the saturation
curve, below the saturation pressure at the system temperature (the intersection of
the saturation curve with the isotherm), implying that P(t) − P sat(T (t)) < 0. Since
ML and MV are always non-negative Eq. (2.2) sets ML(t) = 0 in this case. In this
state the liquid molar volume calculated by (4.4b) is below the saturation curve,
but is not used in the total hold-up and enthalpy calculation because ML(t) = 0
is enforced by Eq. (2.2). Eventually, the temperature of the system decreases, the
pressure increases and the state variables T , P, vL, vV realize values such that the
solution trajectory (red curves) intersect the saturation curve. This corresponds to
the system transitioning to the two-phase regime, where P(t) − P sat(T (t)) = 0
is enforced by Eq. (2.2), and neither MV (t) = 0 nor ML(t) = 0 are enforced.
The system remains in this regime until transitioning to the liquid-only regime,
corresponding to the left of the saturation curve where the pressure is above the
saturation pressure for this temperature, so that P(t)−P sat(T (t)) > 0 and Eq. (2.2)
enforces MV (t) = 0. It is clear from this diagram that it is possible to solve for
both the liquid and vapor phase molar volumes even when the system is in a single
phase regime. Extrapolations of the state equations might be necessary for extreme
conditions [67], where the equation of state has only one solution. However, this
was not necessary in this example.
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4.3 Unphysical Behavior from Common Modeling
Simplifications

Engineers often use simplifying assumptions when appropriate to make the problem
clearer, more readily solvable or require less empirical parameters. Here, we wish
to demonstrate problems that may arise when trying to simulate phase changes
modeled by nonsmooth DAEs using certain common simplifications.

A simplification of the model could make the acceptable assumption of an
incompressible liquid, i.e., its specific volume, vL, is constant, and an ideal gas
vapor phase, i.e., a and b in (4.1) are zero. In this case hL = uL (and Cp = Cv).
Thus, for this model equation (4.4a) is replaced with

vV (t) = RT (t)/P (t), (4.11)

and Eq. (4.5) are replaced with:

hV (t) = hig(T (t)), (4.12a)

hL(t) = hV (t) − Δhvap(T (t)), (4.12b)

where Δhvap is the heat of vaporization calculated from the Clapeyron equation
using Eq. (2.3)

Δhvap(T (t)) = −RΔZvap(t)
d ln P sat

d(1/T )
= RΔZvap(t) ln(10)

BT (t)2

(T (t) + C)2 ,

(4.13)

where ΔZvap = 1 − P sat(T )vL/RT .
Equation (2.1d) becomes:

U(t) = ML(t)hL(t) + MV (t) (hV (t) − P(t)vV (t)) , (4.14)

and vL becomes a parameter, thus the reduced system of algebraic equations has
five equations with five unknowns instead of six previously.

However, if we consider the liquid-only regime and analyze the model structure
as before we find that it has become structurally singular. Equation (2.2) enforces
MV (t) = 0, and the following occurrence matrix is obtained:

⎡

⎢
⎢
⎣

Eq. ML P T vV

(2.1c) X
(4.14) X X
(2.1e) X
(4.11) X X X

⎤

⎥
⎥
⎦
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Clearly, the model is ill-defined, as the pressure and the vapor specific volume
cannot be simultaneously determined. This issue would be alleviated if it were
possible to determine vV from Eq. (2.1e), because Eqs. (4.11) and (4.14) could
be used to solve for P and T . However, this is not possible because MV is
identically zero in the liquid-only regime. In other words, the fact that the liquid
is incompressible and there is no vapor phase makes it impossible to calculate the
pressure from this system of equations. This structural singularity indicates that
the model is not index one anywhere in the liquid-only regime where the model is
C1 (away from the phase boundary). An index reduction procedure is possible but
involves differentiating potentially very complex (and even nondifferentiable [67])
thermodynamic property models that are often implemented as complex libraries
of nested subroutines. Consequently, index reduction is not very practical in the
context of how these models might be implemented and used in practice. At the
phase boundary, the structural singularity implies that the determinant of one B-
subdifferential element is zero. This violates both given sufficient conditions to be
index one, but is not definitive proof that the model is not index one at such points.

To address the issue above, a different simplification of the model is to assume
that the liquid phase specific volume is a function of temperature but not a function
of pressure. In this case we replace Eqs. (4.4b) and (4.12b) with [56]:

vL(t) = v0
L exp (β(T (t) − T0)) , (4.15)

hL(t) = hV (t) − Δhvap(T (t)) + (1 − βT (t))vL(t)(P (t) − P sat(T (t))),

(4.16)

where v0
L is the liquid molar volume at some reference temperature T0 and β is the

volume expansivity of the liquid, defined by

β ≡ 1

V

(
∂V

∂T

)

P

,

where the subscript P denotes that P is held constant. It is apparent that this model
is not structurally singular in the liquid-only regime:

⎡

⎢
⎢⎢
⎢
⎣

Eq. ML P T vL vV

(2.1c) X
(2.1d) X X X X
(2.1e) X X
(4.15) X X
(4.11) X X X

⎤

⎥
⎥⎥
⎥
⎦

However, this is a thermodynamically inconsistent model because any real fluid
is characterized by a finite ratio of β/κ [56]. κ is the isothermal compressibility,
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defined by

κ ≡ 1

V

(
∂V

∂P

)

T

,

which is zero in this model for the liquid phase, from which it follows that
β/κ is infinite. Nevertheless, this approximation is adopted by some commercial
simulation packages such as ASPEN (Aspen Technology Inc.). Indeed, this model
behaves unphysically, as we explain hereafter.

Focusing on the liquid-only regime, we express the flow rates as:

FL(t) = Cv
L

√
P(t) + Ph

L(t) − Pout, (4.17)

Fin(t) = k
√

Pin − P(t). (4.18)

This allows the system to be expressed by the following DAEs, where x ≡ (M,U)

are the differential variables and y ≡ (T , P ) are the algebraic variables:

dM

dt
(t) = Fin(t) − FL(t) ≡ f1(y(t)) (4.19a)

dU

dt
(t) = Fin(t)hin − FL(t)hL(t) ≡ f2(y(t)), (4.19b)

M(t) = V/vL(t) ≡ g1(y(t)), (4.19c)

U(t) = (V /vL(t)) (hL(t) − P(t)vL(t)) ≡ g2(y(t)), (4.19d)

where hin is calculated from Eq. (4.16) based on the known inlet temperature and
pressure, Tin = 260 K and Pin = 10 bar. Other values used are as follows: T0 = 260
K, v0

L = 0.09455 L/mol, Cv
L = k = 4.5 mol/s/

√
bar and β = 0.0017 K−1. A steady-

state solution for this system, representing a vessel full of liquid only, is given by

xSS =
[
MSS

USS

]
=
[

94.66
−12, 354.57

]
, ySS =

[
TSS

PSS

]
=
[

263.24
5.47

]
.

However, this state is unstable as verified by linearizing the system [15, 27, 35, 47,
50]; Eq. (4.19) can be written as

ẋ(t) = f(y(t)), (4.20a)

x(t) = g(y(t)), (4.20b)

which can be linearized about the steady-state solution (xSS, ySS) to yield the linear
DAE system

dΔx
dt

(t) = Jf(ySS)Δy(t),

Δx(t) = Jg(ySS)Δy(t),
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which possesses the underlying ODE system

[ dΔx
dt

(t)
dΔy
dt

(t)

]
= D

[
Δx(t)
Δy(t)

]
, (4.22)

where

D =
[
02×2 Jf(ySS)

02×2 (Jg(ySS))
−1 Jf(ySS)

]
.

The eigenvalues of the right-hand side matrix D are 0, 0, 23.03 and −0.10, implying
instability of the steady-state solution, from which it follows that this model displays
unphysical behavior. The two zero eigenvalues are indicative of the decoupled
structure of the system (i.e., f and g do not depend on x explicitly).

The underlying ODEs associated with (4.20) are given by (4.20a) and

ẏ(t) = (Jg(y(t)))−1f(y(t)), (4.23)

which can be written as

Ṫ (t) = γ1(T (t), P (t)),

Ṗ (t) = γ2(T (t), P (t)),
(4.24)

since y ≡ (T , P ) (i.e., ODEs that are decoupled from (4.20a)). The instability is
illustrated in Fig. 4, where the vector field associated with Eq. (4.24) is plotted.
It is evident that the steady-state solution of this ODE system is unstable as a
small disturbance in pressure is amplified (i.e., the pressure continues increasing
or decreasing depending on the direction of the disturbance). Note that in Fig. 2 the
system appears to be approaching a steady state in the liquid-only regime.
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ar
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Fig. 4 A graph of the (normalized) vector field associated with Eq. (4.24) (black arrows). The
steady-state solution y(t) = ySS is also plotted (red dot)
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5 Conclusions

The interaction of continuous and discrete phenomena encountered in a variety
of chemical engineering problems is correctly captured by a nonsmooth modeling
framework. Process operations modeled as nonsmooth DAEs include phase equi-
librium problems, crystallization kinetics, and flow control devices (such as weirs),
among others [60]. Other examples include nonsmooth models used for dynamic
simulation of separation processes [52], with non-ideal mixtures considered in
[69]; modeling and design of multistream heat exchangers [66, 68]; and dynamic
flux balance analysis modeling of microbial consortia [20, 21, 24, 25]. Additional
complex nonsmooth models are expected to arise in the future.

Thanks to advanced simulation technology (e.g., event detection and discon-
tinuity locking), practically implementable dynamic simulation and optimization
methods are possible for nonsmooth DAEs; dynamic simulation only requires
extension of function libraries to include nonsmooth elemental functions (e.g.,
the absolute-value function, min, max, etc.). For example, the Jacobian software
(Res Group Inc.), used for the process simulations above, supports such elemental
functions. Extensions of sequential methods (e.g., single and multiple shooting
method) for dynamic optimization of nonsmooth DAE systems (see [58]) is enabled
by parametric regularity of nonsmooth generalized differentiation index-one DAEs
(i.e., the sensitivity analysis theory [57]). Numerical treatment for large optimization
problems with nonsmooth ODEs embedded is underway, based on the theory in [31]
and [28, Chapter 7].

Areas for future work include application of the nonsmooth theoretical tools
[57, 59] discussed in this article to “high-index” nonsmooth DAEs with special
structures, investigating the adjoint sensitivities case (i.e., extending [51]), and
extension of deterministic global optimization methods to nonsmooth DAEs (i.e.,
using McCormick’s framework [32, 40, 55, 63]). Other possible directions for
future work include the following: developing simultaneous methods [8] in this
setting, possibly by using moving finite elements [11, 12] to adjust mesh points as
dictated by the presence of nonsmoothness; establishing optimality conditions for
nonsmooth optimal control problems with nonsmooth DAEs embedded; and apply-
ing the newly developed theoretical tools to analyze sensitivities of discontinuous
dynamical systems.
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Continuous, Semi-discrete, and Fully
Discretised Navier-Stokes Equations

R. Altmann and J. Heiland

Abstract The Navier-Stokes equations are commonly used to model and to
simulate flow phenomena. We introduce the basic equations and discuss the standard
methods for the spatial and temporal discretisation. We analyse the semi-discrete
equations – a semi-explicit nonlinear DAE – in terms of the strangeness index and
quantify the numerical difficulties in the fully discrete schemes, that are induced by
the strangeness of the system. By analysing the Kronecker index of the difference-
algebraic equations, that represent commonly and successfully used time stepping
schemes for the Navier-Stokes equations, we show that those time-integration
schemes factually remove the strangeness. The theoretical considerations are backed
and illustrated by numerical examples.
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1 Introduction

The Navier-Stokes equations (NSE) are a system of nonlinear partial-differential
equations that have been commonly used to model fluid flows for more than
a century. The NSE are believed to describe all kinds of incompressible flows
sufficiently well as long as the setup supports the hypothesis that the fluid is a
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continuum. Indeed, comparisons of numerical simulations with experiments show
arbitrarily good agreement of the model with the observations over a long range
from slowly moving flows in small geometries like a pipe up to highly turbulent
flows over large spatial extensions like the flow around an airplane or even weather
phenomena. Nevertheless, the mere equations and the extent of their applicability
have not been fully deciphered by now and a substantial progress in this respect will
be eligible for a Clay price.1

Under the assumption of continuity of the observed quantities, the NSE can be
derived from fundamental laws of physics; see [41] and [12]. These considerations
are well backed for a macroscopic viewpoint, from which a fluid like water appears
as a continuum. On a microscopic level, where discrete molecular structures define
the states, the NSE cannot capture the physics right, as it is well-known, e.g., for
capillary flows.

On the molecular level, fluids are better described by the Boltzmann equations,
which model molecular interactions. This fact seems undisputed the more that the
NSE can also be interpreted and derived through a limiting process of the Boltzmann
equations in the sense of averaging the microscopic quantities for a macroscopic
description [54].

As a mathematical object the NSE have ever been subject to fundamental
investigations and led to its own research field and its own subject definitions in the
MSC classification scheme.2 The research on the NSE has focused on the analysis
of the equations and their numerical approximation. Early results on the existence of
solutions are due to Leray [43] (weak solutions) and Fujita and Kato [19] (smooth
solutions). The first textbooks on the functional and on the numerical analysis were
written by Ladyzhenskaya [40] and Temam [58], respectively.

For the numerical analysis of the spatial discretisation, one may distinguish two
lines of development. The mathematical line focuses on Galerkin methods in the
realm of variational formulations whereas the engineering orientated line has been
advancing finite volume methods (FVM) as they appear well-suited for simulations.
On the side of Galerkin methods, and in particular finite element methods (FEM),
there have been many efforts in designing stable elements like the famous Taylor-
Hood elements [59] as well as for general convergence results; see the textbooks [21,
40, 49] for the numerical analysis and [60] for an application oriented overview. On
the side of FVM that are the method of choice in most general purpose flow solvers,
there have been general developments in view of discretising conservation laws [44]
and particular progress in view of stable approximation of fluid flow [18].

A numerical analysis of approximations to the time-dependent NSE with FEM
semi-discretisations has been carried out by Heywood and Rannacher [33]; see also
the textbook [24], that covers implementation issues. For time marching schemes
for FVM formulations we refer to [18]. Strategies for the iterative solution of the
arising linear systems can be found in [15] (FEM) or [18] (FVM).

1See http://www.claymath.org/millennium-problems/navier-stokes-equation.
2See http://www.ams.org/mathscinet/msc/msc.html?t=35Q30&btn=Current and related.

http://www.claymath.org/millennium-problems/navier-stokes-equation
http://www.ams.org/mathscinet/msc/msc.html?t=35Q30&btn=Current
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In this work we revisit the NSE for incompressible flows from a differential-
algebraic equations (DAE) perspective. This includes the modelling where the
incompressibility is treated as an algebraic constraint in an abstract space and
the spatial semi-discretisation, that has to be handled with care to respect the
incompressibility constraint and to lead to a well-posed classical DAE. It also
includes the temporal discretisation, in which the DAE properties of the NSE
become evident and (hopefully not) problematic. Such a pure DAE perspective has
been taken on by Weickert [62] who analysed finite difference approximations and
certain time-stepping schemes for the NSE and by Emmrich and Mehrmann [16]
who provided conditions and solution representations for linearised NSE in abstract
spaces in line with linear time-invariant DAEs in finite-dimensional state-spaces.
In [31] the nonlinear NSE and its Galerkin approximations have been analysed in
view of consistency of reformulations of semi-discrete DAE approximations with
the infinite-dimensional model.

The paper is organized as follows. In Sect. 2 we derive the NSE from first
principles and formulate the weak form as an operator DAE. The direct connection
to DAEs is then made in Sect. 3, in which we report on several spatial discretisation
schemes and that commonly used FEM schemes lead to systems of strangeness
index one. In Sect. 4 we analyse the time approximation schemes in terms of the
index of the resulting difference-algebraic equations (�AE). We show that the
straight-forward temporal discretisation leads to a scheme of higher index than that
of well-established time-stepping schemes for incompressible flows. We further
confirm, that schemes with a �AE of lower index can also be obtained from a
standard time-discretisation applied to a reformulation of the DAE with lower index.
In the numerical examples in Sect. 5, we confirm the superiority of the lower index
�AE approximations of the NSE over the straight-forward time-discretisation. As a
benchmark for time-integration schemes for the considered class of nonlinear semi-
explicit DAEs of strangeness index 1, we provide reference trajectories and the
system coefficients and nonlinear inhomogeneities for direct realization in Python.
We conclude this paper with summarizing remarks in Sect. 6.

2 Continuous Model

2.1 Derivation of the Navier-Stokes Equations for
Incompressible Flows

The NSE provide a model of a flow as a continuum. The basic assumption for their
derivation and, thus, the validity of the model is that the flow under consideration
forms a continuous entity of flow particles in a spatial domain � ⊂ R3 and a time
interval I such that the functions

v : I × � → R3, p : I × � → R, and ρ : I × � → R, (2.1)
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describing the velocity, the pressure, and the density as measured at the position
x ∈ � at time t ∈ I are continuous functions. Here, continuous means that we
can apply differential calculus in order to derive basic partial differential equations.
Later, when we derive the weak formulation of the NSE, the needed continuity will
be specified further.

As mentioned in [12, p. 2], these assumptions lead to a model that is believed
to provide accurate descriptions of common macroscopic flow phenomena. In,
e.g., setups of small geometric scales like in capillary flows or under vacuum-
like conditions [35], the discrete microscopic molecular structure of the fluid that
constitutes the flow has to be taken into account.

The basic assumption of continuity of the matter allows for the consideration of
a possibly infinitesimal small control volume W ⊂ �, an open bounded domain
in R3 that contains a given agglomerate of fluid particles in the considered flow.
Continuity also implies that a fixed W is deformed and convected by the flow but
always consists of the same fluid particles.

Under this continuity assumption, one can call on the Reynolds Transport
Theorem, that relates the temporal change of an integral quantity over W to the
convection velocity v.

Theorem 2.1 (See [52], Eq.(16) and [12], p. 10) Let W : I → R3 describe a
smoothly moving control volume and let f : t × W(t) �→ R be a sufficiently smooth
function, then

d

dt

∫
W

f dV =
∫

W

∂f

∂t
+ div(fv) dV. (2.2)

2.1.1 Incompressibility and Mass Conservation

The Reynolds Transport Theorem can be used to show that a flow is incompressible,
which means that the volume of any agglomerate W is constant over time, if and
only if the velocity field v is divergence free. In fact, if (2.2) applies, then one has
that

d

dt

∫
W

dV = 0 if, and only if,
∫

W

divv dV = 0. (2.3)

With a well-defined density function ρ, the mass of a control volume is defined as
the integral over the (mass) density ρ and, with the assumption that in the flow there
are neither mass sinks nor mass sources, an application of (2.2) gives

d

dt

∫
W

ρ dV = 0 if, and only if,
∫

W

∂ρ

∂t
+ div(ρv) dV = 0. (2.4)

Remark 2.1 The conservation of mass and the incompressibility of a flow are
closely related and only equivalent in the case that the density ρ is constant in space
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and time. Flow models that assume incompressibility and varying density functions
ρ are applied, e.g., in oceanography [57].

Remark 2.2 If the volume of a fluid parcel changes over time, the flow is called
compressible. In this case, the mass density ρ is modelled as an unknown function
and related to the pressure p through constitutive or so-called state equations, like
the ideal gas law; see [17].

2.1.2 Balance of Momentum

Under the continuum assumption, the momentum of a fluid agglomerate W can be
expressed as the integral of the mass density times velocity and the temporal change
equated with volume and surface forces on W :

d

dt

∫
W

ρv dV =
∫

W

ρg dV +
∫

∂W

σn dS, (2.5)

where g : I × � → R3 is the density of a body force, and where σ : I × � → R3,3

is a tensor such that σn, where n is the normal field on the boundary ∂W of W ,
represents the density of the forces acting on the surface. Note that the expression
in (2.5) is vector valued and that integration and differentiation is performed
componentwise.

Applying the Divergence Theorem componentwise, one can write the term with
the surface forces as a volume integral

∫
∂W

σn dS =
∫

W

divσ dV, (2.6)

with the divergence of a tensor defined accordingly.
So far, all assumptions have based on first principles. For the mathematical mod-

elling of the tensor σ , however, ad hoc assumptions and heuristics are employed.
First of all, it is assumed that σ can be written as

σ = −pI + τ (2.7)

where p – the pressure – is a smooth scalar function and τ : I × � → R3,3 is
the tensor of shear stresses. It is assumed that τ (t, x) is symmetric and invariant
under rigid body rotation. Furthermore, τ is a linear function of the velocity
gradient ∇v := [ ∂vj

∂xi

]
i,j=1,2,3. Under the additional assumption that the fluid under

consideration is a Newtonian fluid, the tensor τ is defined by the velocity field and
two further parameters (see [12, Ch. 1.3]) and commonly written as

τ = μ
[∇v + ∇vT − 2

3
(divv)I

] + ζ(divv)I. (2.8)
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The parameter μ is the (first coefficient of the) viscosity and has been experimentally
determined and tabulated for many gases and fluids. The parameter ζ is called the
bulk viscosity and, in line with the Stokes Hypothesis, often set to zero.

As for the left hand side in (2.5), one proceeds as follows. Let vi denote the i-th
component of v, i = 1, 2, 3. Then, an application of (2.2) gives that

d

dt

∫
W

ρvi dV =
∫

W

∂ρvi

∂t
+ div(ρviv) dV =

∫
W

∂ρvi

∂ t
+ ρvidivv + ∇(ρvi) · v dV

(2.9)

where basic vector calculus has been applied. If one considers ∇ as the formal
column vector of the three space derivatives, relation (2.9) for all components of
v can be written in compact form as

d

dt

∫
W

ρv dV =
∫

W

∂ρv

∂t
+ ρvdivv + (v · ∇)(ρv) dV. (2.10)

2.1.3 The Navier-Stokes Equations for Incompressible Flows

In the preceding derivations, integral quantities over a flow agglomerate W were
considered. If the underlying continuity assumption includes that all relations hold
on arbitrary (small) control volumes W , instead of equating the integrals, one
can equate the integrands pointwise in space, which leads to partial-differential
equations.

Thus, putting together all assumptions and derivations, the balance of momen-
tum (2.5) for an isotropic Newtonian fluid under the Stokes Hypothesis defines the
(NSE) as

∂ρv

∂t
+ρvdivv+(v·∇)(ρv) = ρg−∇p+div

(
μ

[∇v+∇vT− 2

3
(divv)I

])
. (2.11)

In the case that the flow is incompressible with a constant density ρ ≡ ρ∗ and a
constant viscosity μ ≡ μ∗, the combination of (2.4) and (2.11) results in the system

ρ∗(∂v

∂t
+ (v · ∇)v

) + ∇p − μ∗�v = ρ∗g, (2.12a)

divv = 0. (2.12b)

Remark 2.3 Note that in the derivation, the pressure p is not a variable but a function
which is assumed to be known and to describe the normal forces on a fluid element,
cf. (2.7) and [12, Ch. 1.1.ii]. Thus, the NSE (2.11) has only the velocity v as an
unknown and the divergence free formulation (2.12) can be seen as an abstract
ODE for v with an invariant [29]. Nonetheless, since it turns out that the divergence
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constraint defines the function p, system (2.12) is commonly considered as an
abstract differential-algebraic equation with v and p as unknowns.

For the numerical treatment and for similarity considerations, one relates all
dependent and independent variables to a characteristic length L and characteristic
velocity V via

v′ = v

V
, p′ = p

ρ∗V 2 , x ′ = x

L
, and t ′ = tV

L
(2.13)

With this and with f ′ := V 2

L
g, Eq. (2.12) can be rewritten in dimensionless form

∂

∂t ′
v′ + (v′ · ∇)v′ − 1

Re
�v′ + ∇p′ = f ′, (2.14a)

divv′ = 0. (2.14b)

Thus, the system is completely parameterized by only one parameter Re := V Lρ∗
μ∗ ,

the Reynolds number. In what follows, we will always consider the dimensionless
NSE (2.14) but drop the dashes of the dimensionless variables.

2.1.4 Boundary Conditions

For the considered domain �, let 	 denote the boundary in the abstract and in the
physical sense. If the domain is bounded by nonpermeable walls, then the no-slip
condition

v = g on 	 (2.15)

applies, where g is the velocity of the wall. The no-slip conditions align well with
experiments and macroscopic considerations; see [42, Ch. 5.3] for references but
also for examples where no-slip conditions seem insufficient to describe the flow at
walls.

If the domain is not fully bounded by walls, typically because the computational
domain needs to be bounded whereas the physical domain of the flow is unbounded,
artificial boundary conditions are needed. If the direction of the flow is known, one
may decompose these artificial boundaries into a part 	i for the incoming flow and
	o for the part where the flow leaves the domain. On 	i we can prescribe a velocity
profile by

v = vi on 	i, (2.16)

whereas for 	o, there is no immediate physical insight into what should be the
mathematical conditions. Accordingly, outflow boundary conditions are motivated
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as being useful for the implementation of downstream boundary conditions (see,
e.g., [22, 49]) and equipped with the advice to put the outlet sufficiently far away
from the region of interest; see [18, Ch.8.10.2]. The most common outflow boundary
conditions are the no stress conditions:

σn = 0 on 	o,

where σ is the stress tensor as defined in its general form in (2.7), the do-nothing
conditions:

1

Re

∂v

∂n
− pn = 0 on 	o, (2.17)

that are formulated for the nondimensional NSE (2.14), or the no gradient condi-
tions:

∂v

∂n
= 0 and

∂p

∂n
= 0 on 	o.

Remark 2.4 The do-nothing conditions have been extended; see [7], to the case of
backflow, i.e., when some, possibly spurious, inflow occurs at the boundary 	o.

2.2 Formulation as Operator DAE

In this subsection we provide yet another formulation of the dimensionless
NSE (2.14), namely in the weak form as an operator DAE. This is a DAE in
an abstract setting, where the solution is an element of a Sobolev space instead
of a vector. We consider here homogeneous Dirichlet boundary conditions. More
general boundary conditions with in- and outflow may modeled in a similar way,
cf. [48]. We define the spaces

V := [H 1
0 (�)]n, H := [L2(�)]n, and Q := L2(�)/R.

By V ′ we denote the dual space of V . Note that the spaces V , H, V ′ form a Gelfand
or evolution triple [64, Ch. 23.4]. Furthermore, we define W(0, T ) as the space of
functions u ∈ L2(0, T ;V), which have a weak time derivative u̇ ∈ L2(0, T ;V ′).
Well-known embedding results then imply u ∈ C([0, T ];H), cf. [53, Lem. 7.3].

We now consider the weak formulation of (2.14) in operator form. This means
that for given right-hand sides F ∈ L2(0, T ;V ′), G ∈ L2(0, T ;Q′) and an initial
condition a ∈ H, we seek for a pair (v, p) ∈ W(0, T ) × L2(0, T ;Q) satisfying

v̇(t) + K(v(t)) − B′p(t) = F(t) in V ′, (2.18a)

Bv(t) = G(t) in Q′, (2.18b)



Continuous and Discrete Navier-Stokes Equations 285

v(0) = a in H (2.18c)

a.e. on (0, T ). The derivative of v should be understood in the weak sense. The
operators K : V → V ′ and B : V → Q′ are defined via

〈K(v),w〉 =
∫

�

(v · ∇)v · w dx + 1

Re

∫
�

∇v · ∇w dx (2.19)

and

〈Bv, q〉 =
∫

�

(divv)q dx = 〈v,B′q〉, (2.20)

respectively, for a given v ∈ V and for all test functions w ∈ V and q ∈ Q.
We emphasize that system (2.18) not only covers the NSE but also systems
with time-dependent Dirichlet boundary conditions, since we have introduced an
inhomogeneity G, see [6].

For results on the existence solutions to the weak formulation of the NSE, we
refer to [57]. For a compact summary that also considers nonzero G in (2.18b)
see [1, 2]. The differential-algebraic structure of (2.18) and the possible decoupling
of differential and algebraic parts and variables has been discussed in [31].

3 Semi-discrete Equations

In this section, we consider the DAE, which results from a spatial discretisation of
system (2.14) or (2.18):

Mv̇ + K(v) − BT p = f, (3.1a)

Bv = g. (3.1b)

Here, v and p denote the finite-dimensional approximations of v and p, respectively.
In view of solvability, we assume additionally a consistent initial condition of the
form v(0) = v0, i.e., we demand Bv0 = g(0).

The appearance of B and BT in (3.1) reflects the duality of the divergence and the
gradient in the infinite-dimensional model that is preserved by mixed finite element
discretisations of (2.18) (see [15]) and finite difference discretisations of (2.14)
(see [62]). If finite volumes are used for the spatial discretisation, typically, the
coefficients in (3.1) are not explicitly assembled; see [18].

There are many reasons to include a right-hand side g in Eq. (3.1b) rather than
a zero as it seems naturally for incompressible flows. Firstly, a nonzero g in the
continuous continuity equations (2.14b) may appear also in generalizations of the
NSE model to fluid-structure interactions (see, e.g., [50]) or in optimal control
setups; see, e.g., [34]. Secondly, a nonzero g maybe a numerical artifact from the
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semi-discretisation of flows with nonzero Dirichlet boundary conditions as in the
example we will provide below. Finally, in view of analysing the DAE, this inclusion
of a nonzero g leads to a better understanding as one can track where the derivatives
of the right-hand sides appear within the solution. This is of importance also in the
case g = 0, since inexact solves lead to errors in (3.1b) that act like a non-smooth
inhomogeneity.

3.1 Spatial Discretisation by Finite Elements

We recall the basic principles of a discretisation of the incompressible Navier-Stokes
equations by finite elements; see the text books [15] for examples and [21] for
the numerical analysis. Let Vh and Qh be finite-dimensional subspaces of V and
Q, respectively, that are associated with a (shape) regular triangulation T of the
polygonal Lipschitz domain �, cf. [13]. Given a basis {ϕ1, . . . , ϕn} of Vh, we can
identify the finite-dimensional approximation of the velocity v(t) by the coefficient
vector v(t) ∈ Rn. The discrete representative of the pressure p(t) is denoted by
p(t) ∈ Rm and corresponds to a basis {ψ1, . . . , ψm} of Qh.

With the basis functions of Vh we define the symmetric and positive definite mass
matrix M ∈ Rn,n by

M := [mjk] ∈ Rn×n, mjk :=
∫

�

ϕj · ϕk dx.

The discretisation of the nonlinearity of the Navier-Stokes equation, i.e., the
discretisation of the operator K in Sect. 2.2, is denoted by K : Rn → Rn. Note
that the given model also includes linearisations of the Navier-Stokes equation
such as the unsteady Stokes or Oseen equation. In this case, K can be written as
a n × n matrix. In view of the index analysis of system (3.1), however, this is
not of importance; see Appendix 1. We define for v ∈ Rn and its representative
ṽ = ∑n

j=1 vjϕj ∈ Vh,

Kj(v) :=
∫

�

(ṽ · ∇)ṽ · ϕj dx + 1

Re

∫
�

∇ṽ · ∇ϕj dx. (3.2)

Finally, we define the matrix B, which corresponds to the divergence operator B,
i.e.,

B := [bij ] ∈ Rm×n, bij := 〈Bϕj ,ψi 〉 =
∫

�

ψidivϕj dx.

By duality of the continuous operators, the discretisation of B′ corresponds to the
transpose BT . This yields the saddle point structure of system (3.1).
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Especially for the stable approximation of the pressure, it is necessary that the
chosen finite element spaces are compatible [9, Ch. VI.3]. Let Vh and Qh denote
again finite-dimensional (sub)spaces of V and Q, respectively, with

dim Vh = n, dim Qh = m < n.

The spaces Vh and Qh are compatible if they satisfy a so-called inf-sup or
Ladyzhenskaya-Babuška-Brezzi condition [9, Ch. VI.3]. This means that there exists
a constant β > 0, independent of the chosen mesh size, such that

inf
ph∈Qh

sup
vh∈Vh

|〈divvh, ph〉|
‖vh‖V‖ph‖Q ≥ β.

The inf-sup condition, with β independent of h, is a necessary condition for the
convergence of the FEM; see, e.g., [40] or [21]. For a fixed spatial discretisation,
this condition implies that the matrix B resulting from the discretisation scheme Vh,
Qh is of full rank.

Remark 3.1 In the case of an internal flow, i.e., if there are no inflow or outflow
boundaries, the pressure solution to (2.18) takes on values in L2(�)/R meaning
that p(t) is defined up to a constant. In a finite element discretisation that does not
fix this constant explicitly, this leads to a rank deficit of B; see [15, Ch. 5.3].

3.2 Finite Volumes and Finite Differences

In this section we briefly touch the spatial discretisation of the incompressible NSE
by the methods of finite volumes (FVM) and finite differences (FDM). If applied
to (2.14) in a straight forward manner, both approaches lead to a DAE of type (3.1).

Finite volume approximations base on the integral formulation of the conserva-
tion laws as it reads for the momentum equation

∫
W

∂ρv

∂t
dV +

∫
∂W

ρvv·n dS = −
∫

∂W

pn dS+
∫

∂W

τ ·n dS+
∫

W

ρg dV, (3.3)

cf. (2.5) and (2.7). Balances, like (3.3) in particular, hold for the whole domain of
computation. For the discretisation, the domain of the flow is subdivided into small
volumes often referred to as cells. The velocities and the pressure are assumed to
be, say, constant over the cells, and their approximated values are determined by
evaluating and equating the volume and surface integrals associated with every cell;
see [18, Ch. 8.6].

Because of its flexibility in the discretisation, because of its variants that
provide unconditional stability properties, and since typical models for the effective
treatment of turbulence are formulated as conservation laws too, the FVM is the
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method of choice in most general purpose solvers. As for the discussion in the
DAE context we note that, typically, the DAE (3.1) is never assembled but rather
decoupled during the time discretisation; see [18, Ch. 7] and Sect. 4.3.2 below.

Approximations of the NSE via FDM come with the known flaws of finite
difference approximations like high regularity requirements and confinement to
regular grids. Nonetheless, FDM discretisations have been successfully used in
flow discretisations and are probably still in use in certain specified, say, single-
purpose codes. Also, FDM are often well suited for teaching the fundamentals of
flow simulation of laminar and turbulent setups; see [25].

3.3 Index of the DAE

As argued in Remark 3.1, the coefficient matrix B may be rank-deficient and, thus,
the differentiation index may be not well-defined [61]. However, the strangeness
index [36, 37, 39] that applies to over- and underdetermined DAE systems and,
thus, also can be determined in the case of a rank-deficient coefficient matrix B. A
rough index analysis has been realized in [62] with the result that under general and
reasonable assumptions, system (3.1) has strangeness index 1. See also Appendix 1,
where the strangeness index has been determined in a rigorous way. This matches
the, say, observations in [27, Ch. VII.1] that the system is of differentiation index 2
if the matrix B is of full rank.

In the sequel we always assume that the discretisation scheme is chosen in such a
way that the matrix B is of full rank. Note that this can always be realized, choosing
linearly independent finite element basis functions with respect to the space Q,
i.e., keeping in mind that constant functions are in the same equivalence class as
the zero-function. If the ansatz functions form a partition of unity, then this means
nothing else than eliminating one of these ansatz functions. Numerical schemes used
in practice usually satisfy this condition as the discrete ansatz space for the pressure
Qh is chosen appropriately.

4 Fully Discrete Approximation Schemes

The final step of a numerical approximation of the infinite-dimensional NSE (2.14)
is the numerical time integration of the semi-discrete approximation (3.1). For this,
one discretises the time interval (0, T ) via the grid

t0 := 0 < t1 < t2 < · · · < tN = T

and computes a sequence (vk, pk)k∈N of values that are supposed to approximate
the solution of (3.1) at the discrete time instances, i.e., vk ≈ v(tk) and pk ≈ p(tk).
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On the one hand side, this approximating sequence can be defined via a numerical
time integration scheme applied to the DAE (3.1); see [39, Ch. 5] for a general
introduction and [3, 8] for so-called half-explicit methods as we will consider them
below. In this case, the resulting fully discrete scheme inherits the properties of the
associated time-continuous DAE. In particular, if the DAE was strangeness-free,
then suitable methods will deliver accurate and stable time-discrete approximations,
whereas certain difficulties arise if the DAE is of higher index; cp. [39, Introduction
to Ch. 6].

On the other hand side, the discrete sequence (vk, pk) may be defined as an
approximation to (3.1) on a time grid without resorting to a time-discretisation
scheme. In this case, the resulting fully-discrete scheme cannot be assessed in terms
of, say, the index of the associated time-continuous equations.

Therefore, to provide a qualitative analysis of fully discrete schemes without
resorting to the continuous-time system, we employ the Kronecker index for
discrete-time systems.

4.1 Index and Causality of Discrete Systems

For the analysis, we will restrict our considerations to a linear time-invariant setup.
This is no restriction, since in the particular semi-linear semi-explicit form, the DAE
structure is not affected by the nonlinearity. Further we assume that the time grid is
equidistantly spaced and of size τ = tk+1 − tk .

We will cast the fully-discrete schemes into the standard form

Exk+1 = Axk + hk, (4.1)

with coefficient matrices E and A and xk containing all variables like xk = [vk; pk].
We call such a fully discrete approximation scheme (4.1) a difference-algebraic
equation (�AE).

Remark 4.1 This recast of the scheme, which will basically amount to a shift of
the time indices for some variables, is needed to avoid ambiguities. In fact, for
continuous time DAEs with delays, one can deliberately apply the operations of
time-shift and differentiation to produce equivalent formulations of different indices
[26].

In what follows, we argue that the matrix pair
(
E,A

)
can be assumed to be regular

(cf. [39, Def. 2.5]) such that it can be brought into a particular Kronecker form

(
E,A

) ∼ ( [
I 0
0 N

]
,

[
J 0
0 I

] )
, (4.2)

where J is a matrix in Jordan form and N is a nilpotent matrix, cf. [39, Thm. 2.7].
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Definition 4.1 The index of nilpotency – that integer ν for which Nν = 0 while
Nν−1 �= 0 – is called the index of the matrix pair

(
E,A

)
; see [39, Def. 2.9], or the

Kronecker index of the �AE (4.1), cf. [51, p. 39].

Equivalently, we can classify the discrete schemes using the notion of causality that
attributes systems with states depending only on the past or current inputs.

Definition 4.2 ([14, Def. 8-1.1]) The sequence xk, k = 1, 2, . . . , defined
through (4.1) is called causal, if xk is determined completely by an initial condition
x0 and former (and the current) inputs h0, h1, . . . , hk .

Conversely, in a noncausal system, the current state xk depends on future
inputs like f k+1. We will analyse time-stepping schemes for causality, which in
the considered case is equivalent to being of Kronecker index 1 [14, Thm. 8-1.1]
and discuss how and why a noncausal system poses difficulties in the numerical
approximation.

To introduce the procedure, to fix the notation, and to have a benchmark for
further comparisons, we start with analysing an half-explicit Euler discretisation of
a linearised version of (3.1), namely

1
τ
Mvk+1 = ( 1

τ
M + A)vk + BT pk + f k, (4.3a)

Bvk+1 = gk+1. (4.3b)

This defines the difference equations for vk and pk , which approximate the velocity
and pressure at the discrete time instances tk , k = 1, 2, . . . . Similarly, f k and gk

stand for the approximations of f and g at the time instances.
The difference scheme is of the standard form (4.1) with xk = [vk; pk], hk =

[f k; gk], a shift of the index in (4.3b), and

(
E,A

) = ( [ 1
τ
M 0
0 0

]
,

[ 1
τ
M + A BT

B 0

] )
. (4.4)

In Appendix 2 it is shown that under standard conditions and for τ sufficiently small,
the pair (E,A) in (4.4) is regular and equivalent to

(
⎡
⎣I 0 0

0 0 0
0 I 0

⎤
⎦ ,

⎡
⎣∗ 0 0

0 I 0
0 0 I

⎤
⎦ )

.

This means that the difference scheme based on an half-explicit Euler discretisation
is of Kronecker index 2. In fact, a straight forward calculation reveals that in (4.3)
the state pk depends on gk+1.

Remark 4.2 The index k for the pressure p in (4.3) is consistent with f k , as can be
directly derived from the case that A = 0 and g = 0. A fully implicit scheme, i.e.,
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considering f k+1 and pk+1 in (4.3a), cannot be brought into the standard form (4.1),
since a shift in the index, k + 1 ← k, would lead to the appearance of vk−1.

4.2 Inherent Instabilities of �AEs of Higher Index

In this section, we illustrate a mechanism that leads to a numerical instability and,
thus, possibly to divergence of the approximation of a dynamical system through a
time discretisation, i.e. a �AE, with a Kronecker index greater than 1. Consider a
DAE in Kronecker form

Nẋ = x + g

with N �= 0 and N2 = 0 and it’s time discrete approximation through an Euler
scheme:

1

τ
Nxk+1 = (

1

τ
N + I)xk + gk. (4.5)

The �AE (4.5) is of Kronecker index 2, according to Definition 4.1 and as it can be
read off after a premultiplication by (I − N), and it has the solution

xk = −gk − 1

τ
(Ngk+1 − Ngk),

as it follows from an adaption of the arguments in [39, Lem. 2.8] to the discrete case.
From this solution representation one can conclude, that the solution to a �AE of
higher index that discretises a DAE may depend on numerical differentiations and
that any error in the computation may be amplified by the factor τ−1. Note that for
index-1 �AE s, where N = 0, this derivative is not present and that for even higher
indices higher (numerical) derivatives will appear in the solution. Also note, that
for systems that are not in Kronecker form such as (4.3), these derivations will be
realized implicitly; see [1].

4.3 Common Time-Stepping Schemes as Index-1 �AEs

In this subsection, we discuss the different strategies, which are used in practice, to
solve the spatially discretised NSE (3.1). In practical applications one typically uses
schemes that decouple pressure and velocity computations. Although, as we have
argued from a DAE perspective [1], this may lead to instabilities, the advantages
that

• one has to solve two smaller systems rather than one large and
• one basically solves Poisson equations and convection-diffusion rather than

saddle-point problems
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seem to prevail despite of the active research on iterative solvers for saddle-point
system. In particular, for the symmetric case of Stokes flow, theory provides efficient
and well-understood preconditioning approaches. These approaches serve as a
base for preconditioning techniques for coupled systems with highly non-normal
coefficient matrices as they appear in the case of Navier-Stokes flow with higher
Reynolds numbers; see, e.g., the numerical results in [15, Ch. 8] or [30] for the
scaling of the performance of iterative solvers with respect to the Reynolds number.

Another common feature of the schemes used in practice is their explicit
approach to the momentum equation which avoids the repeated assembling of
Jacobians. The error is then either controlled through a small time-step or through
some fixed point iterations.

We consider the schemes Projection as it was described in [23] and SIMPLE
and artificial compressibility; see [18]. We will use a description and formulation
general enough, to also accommodate numerous variants of the methods.

4.3.1 Projection

The principle of these methods is to solve for an intermediate velocity approxima-
tion that does not need to be divergence-free, and project it onto the divergence-free
constraint in a second step. As far as the velocity approximation is concerned,
Projection methods can be formulated both in infinite and finite dimensions. Since
the first work by Chorin [11], a number of variants have been developed mainly
proposing different approaches to the approximation of the pressure tackling or
circumventing the need of solving a Poisson equation for the pressure, which
requires certain regularity assumptions (cf. [24, p. 642]). Another problem is the
requirement of boundary conditions for the pressure update that do not have a physi-
cal motivation and may cause inaccuracies close to the boundary. Nonetheless, these
schemes have been extensively studied and certain heuristics ensure satisfactory
convergence behaviour; see, e.g, [23, 24].

As an example for a Projection scheme, we present the variant proposed in
[23]:

1. Solve for intermediate velocity with the old pressure

1
τ
Mṽk+1 = ( 1

τ
M + A)vk + BT pk + f k. (4.6)

2. Determine the new velocity vk+1 as the projection of the intermediate velocity
onto ker B by solving

Mvk+1 − BT φk+1 = Mṽk+1, (4.7a)

Bvk+1 = gk+1. (4.7b)
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3. Update the pressure via

pk+1 = pk + 2

τ
φk+1. (4.8)

Remark 4.3 Instead of solving the saddle-point problem (4.7) as a whole and in
order to avoid the division of a numerically computed quantity by τ in (4.8), one
can decouple the system. Then, one solves for φ̃k+1 := 2

τ
φk+1 through

−BM−1BT φk+1 = 2

τ
(Bṽk+1 − gk+1)

and obtains the updates via

vk+1 = ṽk+1 + τ

2
M−1BT φ̃k+1

and

pk+1 = pk + φ̃k+1.

Remark 4.4 The formula for the update of the pressure is derived from the relation

φ(t + τ ) = −τ 2

2
ṗ(t) + O(τ 3),

cf. [23, p. 595], that holds under certain regularity assumptions. Note also that, if
formulated for the space-continuous problem, this Projection 2 algorithm requires
a sophisticated treatment of the boundary conditions. The presented variant is a
simplification for spatially discretised equations; see [24, Ch. 3.16.6c].

As a single system, this projection scheme defines a �AE in the form of (4.1)
with xk := [ṽk; φk; vk; pk] and

(
E,A

) = (
⎡
⎢⎢⎣

1
τ
M 0 0 0
0 0 0 0

−M − τ
2 BT M 0

0 −I 0 I

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 1
τ
M + A 0 BT

− 2
τ
B −BM−1BT 0 0

0 0 0 0
0 0 0 I

⎤
⎥⎥⎦

)
, (4.9)

which is a matrix pair of Kronecker index 1; see Appendix 2.

4.3.2 SIMPLE Scheme: Implicit Pressure Correction

The SIMPLE scheme and its variants are based on the decomposition

vk+1 = ṽk+1 + vk+1
� and pk+1 = pk + pk+1

� , (4.10)
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where ṽk+1 is the tentative velocity computed by means of the old pressure. We
present the basic variant, in which the velocity correction vk+1

� is discarded when
solving for pk+1

� :

1. Solve for the intermediate velocity ṽk+1 with the old pressure as in (4.6).
2. Compute pk+1

� through

B( 1
τ
M + A)−1BT pk+1

� = −Bṽk+1 + gk+1 (4.11)

as the correction to pk such that the
3. updates of the velocity and pressure defined through

vk+1 = ṽk+1 + ( 1
τ
M + A)−1BT pk+1

� , (4.12a)

pk+1 = pk + pk+1
� . (4.12b)

jointly fulfill the time discrete momentum and the continuity equation.

Remark 4.5 Step (2) of the presented SIMPLE algorithm computes pk+1
� under the

temporary assumption that vk+1
� = 0. This is hardly justified and probably a reason

for slow convergence, when applied in a fixed-point iteration within fully implicit
schemes. Certain variants of the SIMPLE scheme try to approximate vk+1

� at this
step, e.g., through interpolation; see [18, Ch. 7.3.4].

As a single system, the SIMPLE scheme defines a �AE in the form of (4.1) with
xk := [ṽk; pk

�; vk; pk] and

(
E,A

) = (
⎡
⎢⎢⎣

1
τ
M 0 0 0
0 0 0 0
I ( 1

τ
M + A)−1BT −I 0

0 −I 0 I

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 1
τ
M + A 0 BT

−B −B( 1
τ
M + A)−1BT 0 0

0 0 0 0
0 0 0 I

⎤
⎥⎥⎦

)
,

(4.13)

which is a matrix pair of Kronecker index 1; see Appendix 2.

4.3.3 Artificial Compressibility

In this class of methods, the divergence-free constraint (2.14b) is relaxed by adding
a scaled time-derivative of the pressure, i.e.,

1

β

∂p

∂t
+ divv = 0. (4.14)
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The parameter is assumed to satisfy β � 1. The corresponding spatial semi-
discretisation (3.1) then reads

Mv̇ + K(v) − BT p = f, (4.15a)

Mpṗ + Bv = g (4.15b)

with Mp denoting the mass matrix of the pressure approximation.
In theory, system (4.15) is an ODE and could be solved by standard time-stepping

schemes. In practice, however, the common solution approaches to System (4.15)
decouple pressure and velocity computations through introducing auxiliary quan-
tities and, thus, a DAE structure. A possible method, that defines a pressure
update similar to the SIMPLE scheme (4.12), can be interpreted and implemented
as follows, cf. [18, Ch. 7.4.3]. As in the SIMPLE approach a first velocity
approximation ṽk+1 is computed via (4.6) on the base of the old pressure value
pk .

Next, one subtracts the contribution of the old pressure,

v̄k+1 := ṽk+1 − (
1

τ
M + A)−1BT pk (4.16)

and defines the new velocity vk+1 through the linear expansion of v̄k+1 in terms of
the pressure gradient, i.e.,

vk+1 = v̄k+1 + ∂(v̄k+1)

∂(BT p)
[BT pk+1 − BT pk] = v̄k+1 + (

1

τ
M + A)−1BT pk+1

� .

(4.17)

Note that one uses (4.16) to determine the Jacobian ∂(v̄k+1)

∂(BT p)
and that we have defined

pk+1
� = pk+1 − pk . Expression (4.17) is then inserted in a, e.g., implicit Euler

discretisation of (4.15b), which gives an equation for pk+1
� . Accordingly, the fully

discrete scheme using artificial compressibility reads

( 1
τ
M + A)ṽk+1 = 1

τ
Mvk + BT pk + f k, (4.18a)

v̄k+1 = ṽk+1 − ( 1
τ
M + A)−1BT pk,

(4.18b)

1

βτ
pk+1

� + Bv̄k+1 + B( 1
τ
M + A)−1BT pk+1

� = gk+1, (4.18c)

vk+1 = v̄k+1 − ( 1
τ
M + A)−1BT pk+1

� ,

(4.18d)

pk+1 = pk + pk+1
� . (4.18e)
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The corresponding �AE equals the �AE of the SIMPLE scheme up to a slight
modification of the equation for the pressure update such that we can use the
arguments laid out in Appendix 2 to conclude that it is of Kronecker index 1.

Remark 4.6 Note that in practice there may be nonlinear solves to determine, e.g.,
ṽk+1 such that, e.g., the correction v̄k+1 is possibly different from ṽk+1 computed
with pk = 0.

4.4 Time-Stepping Schemes Resulting from Index Reduction

Besides the presented schemes in Sect. 4.3, one may also apply an index reduction to
system (3.1) and then discretise in time. This then also leads to matrix pairs (E,A)

of Kronecker index 1.

4.4.1 Penalty Methods

Similar to Sect. 4.3.3, we may reduce the index of the DAE (3.1) by relaxing the
divergence-free constraint or, in other words, add a penalty term [55]. With the
penalty parameter β � 1 we replace the incompressibility condition by

p = −βdivv.

In the semi-discrete case this corresponds to the constraint equation Mpp+Bv = g.
It can be shown that this then leads to a DAE of differentiation index 1. However,
this approach changes the solution of the system. In order to keep this difference
of reasonable size, β should be choosen relatively large. On the other hand, the
condition number of the involved matrices increase with β and thus, lead to
numerical difficulties. The difficulty of a reasonable choice of β is one drawback
of this approach. A second disadvantage is that small velocities of order β−1 or less
cannot be resolved [32]. Further modifications of the penalty method, which are also
applicable for slightly compressible fluids (Newtonian fluids), are discussed, e.g., in
[32, Sect. 5].

4.4.2 Derivative of the Constraint

Another very simple possibility to reduce the index of the given DAE is to replace
the constraint by its derivative, the so-called hidden constraint. Instead of (3.1) we
then consider the system

M ˙̃v + K(ṽ) − BT p̃ = f, (4.19a)

B ˙̃v = ġ. (4.19b)
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The initial condition remains unchanged, i.e., ṽ(0) = v0. It is well-known that this
system has differentiation index 1. Nevertheless, numerical simulations, which rely
on this formulation, show a linear drift from the solution manifold given by Bv = g.
This can be seen as follows.

Although the two systems are equivalent, numerical errors are integrated over
time and thus amplified. Solving the constraints only up to a small error, i.e.,

Bv(t) = g(t) + ε, B ˙̃v(t) = ġ(t) + η

for small and constant ε and η, we calculate for ṽ that

Bṽ(t) = Bv0 +
∫ t

0
B ˙̃v(s) ds = Bv0 +

∫ t

0

(
ġ(s) + η

)
ds = g(t) + t η.

Note that the last step holds because of the assumed consistency condition Bv0 =
g(0). This shows that a constant error in the constraint of ṽ leads to an error which
grows linearly in time. Because of this, the method of replacing the constraint by its
derivative is – although it is of lower index – not advisable.

4.4.3 Minimal Extension

Finally, we present the index reduction technique of minimal extension [39, Ch. 6.4].
A general framework for an index reduction based on derivative arrays is given
in [39, Ch. 6]; see also [10]. Because of the special saddle point structure of
system (3.1), in which the constraint is explicitly given, this procedure can be
simplified by using so-called dummy variables, cf. [38, 46].

Since we assume that B is of full rank, there exists an invertible matrix Q ∈ Rn,n

such that BQ has the block structure BQ = [B1, B2] with an invertible matrix
B2 ∈ Rm,m. Note that the choice of Q is not unique. We then use this transformation
to partition the variable v, namely

[
v1

v2

]
:= Q−1v,

with according dimensions v1 ∈ Rn−m and v2 ∈ Rm. With this, the constraint and
its derivative may be written as

B2v2 = g − B1v1, B2v̇2 = ġ − B1v̇1.

Together with the differential equation (3.1a) this yields an overdetermined system.
Instead of an (expensive) search for projectors [39, Ch. 6.2] or selectors [56], which
would bring the system back to its original size, we introduce a dummy variable
w2 := v̇2 to get rid of the redundancy. Note, however, that this leads to a slightly
bigger system. More precisely, we extend the system dimensions from n + m to
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n+2m, which is still moderate, since we usually have m � n. The extended system
is again square and has the form

MQ

[
v̇1

w2

]
+ K(v1, v2) − BT p = f,

B2v2 = g − B1v1,

B2w2 = ġ − B1v̇1.

This DAE is of differentiation index 1 and has the same solution set as the original
system, cf. [1].

The drawback of this method is the need of a transformation matrix Q. With a
suitable reordering of the variables, however, we can choose Q to be the identity
matrix. In this case, the needed variable transformation is just a permutation and
thus, all variables keep their physical meaning. For some specific finite element
schemes an algorithm to find such a permutation (which leads to an invertible B2
block) is given in [1]. This paper also considers the half-explicit Euler scheme
applied to the minimally extended system, which leads to a pair (E,A) of Kronecker
index 1.

5 Numerical Experiments

To illustrate the performance and particular issues of the time-stepping schemes for
the NSE, we consider the numerical simulation of the flow passing a cylinder in two
space dimensions. This problem, also known as cylinder wake, is a popular flow
benchmark problem and a test field for flow control [5, 47, 63].

We consider the incompressible NSE (2.14) on the domain as illustrated in Fig. 1
with boundary 	 and boundary conditions as follows. At the inflow 	i, we prescribe
a parabolic velocity profile through the function

g(s) = 4
(
1 − s

0.41

) s

0.41
.

Γ
Γ

0 0.2 2.2
0

0.15

0.25

0.41

x0

x
1

Fig. 1 Illustration of the geometrical setup including the domains of distributed control and
observation and of the velocity magnitude for the cylinder wake. Figure taken from [4]
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At the outflow 	o, we impose do-nothing conditions, cf. (2.17). At the upper and
the lower wall of the channel and at the cylinder periphery, we employ no-slip, i.e.,
zero Dirichlet conditions. Thus, we set

γ (v, p) :

⎧⎪⎪⎨
⎪⎪⎩

v = [g(x1), 0]T on 	i,

p�n − 1
Re

∂v
∂ �n = [0, 0]T on 	o,

v = [0, 0]T elsewhere on the boundary.

We set Re = 60 and consider a P2 – P1 (Taylor-Hood) finite element
discretisation of (2.14) on the grid depicted in Fig. 1 with 9, 356 degrees of freedom
in the velocity and 1, 289 degrees of freedom in the pressure approximation. The
result of the semi-discretisation is a DAE of the form (3.1), which we write as

Mv̇ + Av + N(v) − BT p = f, (5.1a)

Bv = g (5.1b)

on the time interval (0, 1]. Here, A is the Laplacian or the linear part of K as defined
in (3.2) and N denotes the convection part. The right-hand sides f and g account for
the (static) boundary conditions. As initial value we take the corresponding steady-
state Stokes solution vS, which is part of the solution to

[
A −BT

B 0

] [
vS

pS

]
=

[
f

g

]
. (5.2)

For the schemes that need an initial value for the pressure, we provide it as pNS
solving (5.1) at t = 0 with v(0) = vS and v̇(0) = 0. Note that this gives a consistent
initial pressure, since g is constant, and thus, Bv̇ = 0.

We consider the time-discretisation of (5.1) by means of the half-explicit Euler
scheme and compare it to the time-discretisation via the SIMPLE scheme as
described in Sect. 4.3.2. Both schemes treat the nonlinearity explicitly. Comparing
the computed approximations to a reference, obtained by the time-discretisation
via the implicit trapezoidal rule on a fine grid, we show that both schemes are
convergent of order 1 as long as the resulting linear systems are solved with
sufficient precision. For inexact solves, we show that the pressure approximation
in the half-explicit Euler scheme diverges unlike for the SIMPLE approximation.
For snapshots of the approximate velocity solution, see Fig. 2.

The finite element implementation uses FEniCS, Version 2017.2 [45]. For the
iterative solutions of the linear system, we employ Krypy [20]. The code used for
the numerical investigations is freely available for reproducing the reported results
and as a benchmark for further developments in the time integration of semi-explicit
DAEs of strangeness index 1; see Fig. 3 for a stable link to the online repository.

https://github.com/andrenarchy/krypy
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Fig. 2 Snapshots of the velocity magnitude computed with SIMPLE with τ = 1/1,024 and exact
solves taken at t = 0 (top) and t = 1 (bottom)

Fig. 3 Link to code and data

5.1 Time Integration with Half-Explicit Euler

With the half-explicit Euler time discretisation, at every time step the linear system

[ 1
τ
M + A BT

B 0

] [
vk+1

−pk

]
= rhs :=

[ 1
τ
M − N(vk) + f

g

]
(5.3)

is solved for the velocity and the pressure approximations. For the approximate
solution of the linear systems, we use MinRes iterations, which are stopped as soon
as the relative residual drops below a given tolerance tol, i.e.,

‖
[ 1

τ
M + A BT

B 0

] [
vk+1

−pk

]
− rhs ‖

(M−1,M−1
Q )

≤ tol ‖rhs‖
(M−1,M−1

Q )
,

where we use the norm induced by the inverses of the mass matrix M and of the
mass matrix of the pressure approximation space MQ.

It can be seen from the error plots in Fig. 4, for exact solves, that the half-explicit
Euler converges linearly in the velocity and the pressure approximation, which is
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;

10−4 10−3 10−210−9

10−8

10−7

10−6

τ
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= 0 = 10−6 = 10−7 = 10−8

Fig. 4 Error in the velocity and the pressure approximation provided by the half-explicit Euler
algorithm for iterative solves with varying tolerances. The crosses are the errors obtained with
direct solves

in line with the theory; see [28, Tab. 2.3] and [8]. For inexact solves, however, for
smaller time-steps, the pressure approximation diverges linearly. As we have shown
in [1] this is an inherent instability of the index-2 formulation.

The reported residuals and errors are defined as follows:

ev
τ ;tol = trp(‖vτ ;tol − vref‖M)

where the subscript ref denotes the reference solution, the subscripts τ ;tol
denote the approximation that is computed on the grid of size τ with the linear
equations solved with tolerance tol, and where trp(s) denotes the approximation
to the integral

∫ tN
0 s(t) dt by means of the piecewise trapezoidal rule with step size

τ . Analogously, we define the error in the pressure approximation

e
p

τ ;tol = trp(‖pτ ;tol − pref‖MP )
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and the integrated residuals in the momentum equation rM
τ ;tol as the integral of the

function

tk �→ ‖( 1
τ
M + A)vk+1

τ ;tol − 1
τ
Mvk

τ ;tol − BT pk
τ ;tol + N(vk

τ ;tol) − f k‖M−1

and in the continuum equation as

rC
τ ;tol := trp(‖Bvτ ;tol − g‖

M−1
Q

).

5.2 Time Integration with SIMPLE

For this particular time discretisation, we have to solve three linear systems, namely

( 1
τ
M + A)ṽk+1 = rhs1 := 1

τ
Mvk + BT pk + f k, (5.4a)

B( 1
τ
M + A)−1BT pk+1

� = rhs2 := −Bṽk+1 + gk+1, (5.4b)

and

( 1
τ
M + A)vk+1

� = rhs3 := BT pk+1
� (5.4c)

to compute the updates as vk+1 = ṽk+1 + vk+1
� and pk+1 = pk + pk+1

� . For the
approximate solution, we use CG iterations until the relative residuals, measured in
the M−1 norm (or M−1

Q for (5.4b)), drop below a given tolerance tol.
As one can see from the error plots in Fig. 5, the inexact solves affect the

approximation only for a rough tolerance tol = 10−4, which is only one order
of magnitude smaller than the actual approximation error. Thus the breakdown in
the convergence observed in Fig. 5 is probably due to the accumulation of errors that
every single step scheme suffers from. For smaller tolerances, the approximations
almost achieve the accuracy of the direct solves. Interestingly, the continuity
equation (3.1b), which is only an implicit part of the SIMPLE scheme, is fulfilled at
much better accuracy than the choices of the tolerances suggest; see Fig. 5.

6 Conclusion

In this paper, we have discussed the incompressible NSE from a DAE point of view,
in which the incompressibility is interpreted as an algebraic constraint. Thus, a
spatial discretisation leads to a DAE. If the time is discretised as well, a �AE is
obtained – a sequence of equations, that define the numerical approximations.
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Fig. 5 Error in the velocity and the pressure approximation provided by the SIMPLE algorithm
for exact solves and iterative solves with varying tolerances tol

We have discussed suitable approaches to well-posed semi-discrete approxima-
tions and investigated the �AE stemming from different time-discretisations in
terms of the Kronecker index. By means of the Kronecker index it became possible
to qualitatively compare the time discretised schemes with established numerical
schemes that may not have time continuous counterpart. It turned out that commonly
and successfully used time integration schemes like the SIMPLE algorithm define a
�AE of index 1, whereas a time-discretisation of the semi-discrete NSE by an half-
explicit Euler scheme leads to a �AE of index 2. If, however, an index reduction
on the semi-discrete level was applied first, then the time marching schemes led to
a �AE of lower index.

The advantage of the discrete index-1 formulations is that they avoid implicit
derivations that amplify computational errors. This mechanism will likely lead to
larger errors, in particular if the equations are solved with limited accuracy. We have
illustrated the origin of this behavior in a small analytical example and verified it in
a numerical simulation. The code of the numerical test case, an implementation of
the 2D cylinder wake, is provided to serve as a benchmark for future developments
of time integration schemes for DAEs of Navier-Stokes type.
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Appendix 1: Strangeness Index of Eq. (3.1)

We analyse in detail the strangeness index of the DAE (3.1); see [39, Def. 4.4] for the
precise definition. Note that we do not ask for any assumptions on the nonlinearity
K and that we allow the matrix B to be rank-deficient. This then also implies that
the differentiation index of (3.1) equals 2 if it is well-defined, i.e., if B is of full
rank.

Linear Case

Considering any linearisation of the Navier-Stokes equations, i.e., K(u) = Ku

in (3.1), we deal with the matrix pair

(E,A) =
( [

M 0
0 0

]
,

[
K BT

B 0

] )
.

Following [39, Th. 3.11], we can construct a to (E,A) (globally) equivalent pair
(Ẽ, Ã) of the form

Ẽ =

⎡
⎢⎢⎣

Ib

In−b

0
0

⎤
⎥⎥⎦ , Ã =

⎡
⎢⎢⎣

0 A12 A13

0 0 A23

Ib 0
0 0

⎤
⎥⎥⎦

with A13 ∈ Rb,m being of full rank. Thus, the original system (3.1) is equivalent to
a system of the form

ẋ1 = A12x2 + A13x3 + f1, ẋ2 = A23x3 + f2, 0 = x1 + f3, 0 = f4

with dimensions x1(t) ∈ Rb, x2(t) ∈ Rn−b, x3(t) ∈ Rm. Since we have a
differential and an algebraic equation for x1 (this causes the ‘strangeness’), we use
the derivative of 0 = x1 + f3 in order to eliminate ẋ1 in the first equation. Hence,
we consider the pair (Emod, Amod) with

Emod =

⎡
⎢⎢⎣

0
In−b

0
0

⎤
⎥⎥⎦ , Amod =

⎡
⎢⎢⎣

0 A12 A13

0 0 A23

Ib 0
0 0

⎤
⎥⎥⎦ .
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Since A13 is of full rank, one can show that system (Emod, Amod) is strangeness-
free, cf. the calculation in [39, Th. 3.7]. Since we have obtained a strangeness-free
system with only one differentiation, system (3.1) has strangeness index one.

Nonlinear Case

The general form of a nonlinear DAE is given by

F(t, x, ẋ) = 0.

In regard of system (3.1) we set x := [qT , pT ]T and define

F(t, x, ẋ) :=
[
Mq̇ − K(q) − BT p − f

−Bq + g

]
= Eẋ − A(x) − h

with

E :=
[
M 0
0 0

]
, Ax := ∂A(x)

∂x
=

[
Kq BT

B 0

]
.

In the sequel we show that (3.1) has strangeness index 1 also in the nonlinear case.
For this, we assume that B has full rank such that there are no vanishing equations
and the pressure variable is uniquely defined. In the case rank B = b < m, we
consider the following transformation.

Let C0 ∈ Rm,m−b be the matrix of full rank satisfying BT C0 = 0. Furthermore,
C′ ∈ Rm,b defines any matrix such that C = [C0 C′] ∈ Rm,m is invertible. With
this, we obtain the relation

BT C = [
BT C0 BT C′] = [

0 B̃T
]

with B̃ ∈ Rb,n having full rank. With the matrix C in hand, we first introduce the
new pressure variable p̃ := C−1p. Thus, we consider the pair z := [qT , p̃T ]T . As
a second step, we multiply equation (3.1) by the block-diagonal matrix diag(In, CT)

from the left. In total, this yields the equivalent DAE

Mq̇ = K(q) + [
0 B̃T

]
p̃ + f,

[
0
B̃

]
q = CT g.

Note that the constraint contains (m − b) consistency equations of the form 0 = g1.
Assuming that system (3.1) is solvable, we suppose that these are in fact vanishing
equations. Thus, they have no influence on the index of the system. Furthermore,
the first (m − b) components of the transformed pressure p̃ do not influence the
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system. These components are underdetermined and may be omitted, again without
changing the index. Leaving out the underdetermined parts as well as the vanishing
equations, we obtain a system of the form (3.1) with a full rank matrix B.

In the sequel, we assume that rank B = m and show that [39, Hyp. 4.2] is satisfied
for μ = 1. Note that this hypothesis is not satisfied for μ = 0, i.e., the system is not
strangeness-free. We define the matrices

M1 :=
[

E 0
−Ax E

]
, N1 :=

[
Ax 0
0 0

]
.

We now pass through the list of points of the hypothesis in [39, Hyp. 4.2]:

1. First, we note that the rank of M1 equals 2n and we set a := 2(n + m) − 2n =
2m. Thus, the system contains 2m algebraic variables (the pressure and the part
of q , which is not divergence-free). Furthermore, we define Z2 ∈ R2(n+m),2m

by ZT
2 M1 = 0, i.e.,

Z2 =

⎡
⎢⎢⎣

0 M−1BT

Im 0
0 0
0 Im

⎤
⎥⎥⎦ .

2. As a second step we define Â2 := ZT
2 N1[In+m, 0]T , which yields

Â2 =
[

0 Im 0 0
BM−1 0 Im 0

]
⎡
⎢⎢⎣

Kq BT

B 0
0 0
0 0

⎤
⎥⎥⎦ =

[
B 0

BM−1Ku BM−1BT

]
.

This matrix has rank 2m, since the full-rank property of B implies that
BM−1BT is invertible. We define d := n − m as the number of differential
variables and T2 ∈ Rn+m,n−m by Â2T2 = 0. Let C ∈ Rn,n−m be a matrix of
full rank with BC = 0 and C2 := −(BM−1BT )−1BM−1KuC ∈ Rm,n−m.
Then, we set

T2 :=
[

C

C2

]
.

3. Finally, we compute the rank of ET2. Since C has full rank, this equals
rank MC = n − m = d . The matrix ZT

1 := [CT 0] ∈ Rn−m,n+m satisfies

rank ZT
1 ET2 = rank CT MC = n − m = d.
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Thus, the hypothesis in [39, Hyp. 4.2] is satisfied for μ = 1, which implies that the
nonlinear DAE (3.1) has strangeness index one.

Appendix 2: Difference-Algebraic Equation Index of the
Considered Systems

In this appendix, we derive the Kronecker index for the discrete schemes considered
in Sect. 4.3.

Half-Explicit Euler

We start with the half-explicit Euler discretisation, that gives a scheme Exk+1 =
Akxk + hk with the matrix pair

(
E,A

) = ( [ 1
τ
M 0
0 0

]
,

[ 1
τ
M + A BT

B 0

] )

as in (4.4). For sufficiently small τ , due to the definiteness of M and the full-rank
property of B, the matrix A is invertible and thus, the pair (E,A) is regular. Let S

denote the matrix BM−1BT . If one applies

[
M− 1

2 BT S

0 I

][
I 0

BM−1 I

]
→ (

E,A
) ←

[
M− 1

2 0
−S−1BM−1( 1

τ
M + A) I

]

from the left and the right, one finds that (E,A) is similar to

( [
1
τ
(I − M− 1

2 BT SBM− 1
2 ) 0

1
τ
B 0

]
,

[
(I − M− 1

2 BT SBM− 1
2 )( 1

τ
I + M− 1

2 AM− 1
2 ) − M− 1

2 BT SBM− 1
2 0

0 S

] )
.

Since B is of full rank, there exists an orthogonal matrix Q and an invertible matrix

R such that BM− 1
2 Q = [

0 R
]

and, in particular,

QT (I − M− 1
2 BT SBM− 1

2 )Q =
[
I 0
0 0

]
.
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Thus, the corresponding similarity transformation transforms (E,A) into

(
⎡
⎣

1
τ
I 0 0

0 0 0
0 1

τ
R 0

⎤
⎦ ,

⎡
⎣ã11 0 0

ã21 I 0
0 0 S

⎤
⎦)

,

where ã11 and ã21 stand for unspecified but possibly nonzero block matrix entries.
With another few regular row and column transformations, one can eliminate the
entry ã21 and read off the Kronecker index of

(
E,A

)
as the index of nilpotency of[

0 0
1
τ
R 0

]
which is 2.

Projection Scheme

The matrix coefficient pair of the Projection scheme (4.9) reads

(
E,A

) = (
⎡
⎢⎢⎣

1
τ
M 0 0 0
0 0 0 0

−M − τ
2BT M 0

0 −I 0 I

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 1
τ
M + A 0 BT

− 2
τ
B −BM−1BT 0 0

0 0 0 0
0 0 0 I

⎤
⎥⎥⎦

)
. (6.1)

If we define S := BM−1BT , if we move the second row and column to the left and
bottom, respectively, and if we rescale certain rows and columns, we find that the
pair is equivalent to

(
E,A

) ∼ (
⎡
⎢⎢⎣

I 0 0 0
ẽ21 I 0 ẽ24

0 0 I ẽ34

0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 ã13 ã14

0 0 0 0
0 0 ã33 0

ã41 0 0 −S

⎤
⎥⎥⎦

)
,

where the ẽ’s and ã’s stand for unspecified but possibly nonzero entries. Since, in
particular, S is invertible, one can eliminate the entries ẽ24, ẽ34, ã41, and ã14 by
regular row and column manipulations without affecting the invertibility of the left
upper 3 × 3 block in the transformed E and read off the Kronecker index of (4.9) as
the index of nilpotency of 0 which is 1.
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SIMPLE

The matrix coefficient pair of the SIMPLE scheme (4.13) reads

(
E,A

) = (
⎡
⎢⎢⎣

1
τ
M 0 0 0
0 0 0 0
I ( 1

τ
M + A)−1BT −I 0

0 −I 0 I

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 1
τ
M + A 0 BT

−B −B( 1
τ
M + A)−1BT 0 0

0 0 0 0
0 0 0 I

⎤
⎥⎥⎦

)
.

If we define SA := B( 1
τ
M−1 + A)−1BT , move the second row and column to the

left and bottom, respectively, and rescale certain rows and columns, then we find
that the pair is equivalent to

(
E,A

) ∼ (
⎡
⎢⎢⎣

I 0 0 0
ẽ21 I 0 ẽ24

0 0 I ẽ34

0 0 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 ã13 ã14

0 0 0 0
0 0 ã33 0

ã41 0 0 −SA

⎤
⎥⎥⎦

)
,

where, again, the ẽ’s and ã’s stand for unspecified but possibly nonzero entries.
Since SA is invertible for sufficiently small τ , we find that this matrix pair has the
very same structure as the one of the projection scheme (see section “Projection
Scheme” in Appendix) and, thus, is of index 1.
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boundary condition, 127, 132, 143, 156
charge density, 126, 163
circuit, 37, 124, 142, 161, 164, 201
current density, 126, 138, 144, 157, 163
field strength, 124, 126, 131, 141, 152, 154,

158, 161–163
flux density, 126, 131, 135, 149
scalar potential, 132, 135, 152–154, 162
vector potential, 132, 158–159

Electromagnetic potential, 125, 132, 145
Enthalpy, 246, 256

liquid, 258
molar, 256, 258
residual, 257
specific, 246
vapor, 258

Euler equations, 84, 178, 185
isothermal, 172–175

Euler scheme
half-explicit, 298, 299, 303, 307
implicit, 83, 94, 95, 98, 99, 107, 115–117,

121
Evolution triple, 284

Facet, 133, 134, 136, 137
Factor

compressibility, 173, 175, 177, 257
friction, 173–176, 178

FDTD, see Finite difference domain technique
Feedback

controller, 34, 64, 82, 84, 120
index-reducing, 5
loop, 84
matrix, 11
stabilizing, 22–24, 82
tracking, 11

FEM, see Finite element method
FEniCS, 299
Field

electroquasistatic, 131, 152
full wave, 131
magnetoquasistatic, 131
quasistatic, 131
static, 131

Finite difference domain technique, 124
Yee’s, 142

Finite element
discretisation, 138, 285

Taylor-Hood, 299
method, 124, 125, 153, 278, 298
moving, 272

Finite integration technique, 124, 125, 133,
136, 141, 143, 146, 150, 151, 156

Finite volume method, 278, 285, 287
FIT, see Finite integration technique (FIT)
Flat, 3, 63, 89, 97, 99, 110, 115, 121
Flow

incompressible, 202–208, 277, 279–280,
282–283, 283, 285

laminar, 176, 205, 288
macroscopic, 280
Navier-Stokes, 292
rate, 173, 206, 246, 265, 270

outlet, 259
Stokes, 292
turbulent, 175, 176, 205, 278, 288

Flowmaster, 200
Fluid, 202, 209, 269, 277, 278, 280

Newtonian, 281, 296
isotropic, 282

Fluid-structure interactions, 285
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FMU, see Functional Mock-up Unit
Force, 2, 5, 95, 101, 111, 118, 281

constraint, 40, 44, 54
contact, 43, 44, 72, 76
coupling, 73, 74
drag, 67
friction, 44
generalized, 69, 70, 72, 85, 95
gravitational, 205
reaction, 85–87, 97
rolling resistance, 67
tyre, 69
wheel, 66

Formula
AGA88, 177
Altschul, 176
Chodanovich-Odischarija, 176
Colebrook-White, 176
Hagen-Poisseuille, 176
Hofer, 176
papay, 177
Prandtl-Colebrook, 176
Schifrinson, 176

Frequency domain, 90, 124, 132, 140
Friction

coefficient, 205, 208
factor, 173–176, 178

Full-wave formulation, 140–151
Functional Mock-up Unit, 240
Funnel control, 34, 84
FVM, see Finite volume method

Gas, 171–195, 240
constant

specific, 173, 174
universal, 257

ideal, 177, 258, 268, 281
Gauge

condition, 124, 132, 145, 154, 158, 161
Coulomb, 145, 146, 148–151, 164
invariance, 162
Lorenz, 145–149, 151, 164
tree-cotree, 155, 158, 159

Gelfand triple, 284
GENDA, 15, 24, 25, 46
Gradient, 152, 154, 281, 285, 295

field, 132, 145
matrix, 133, 134

Graph, 202, 223
acyclic, 184
connected, 184
coupling, 225, 226, 228–232
directed, 177, 184, 187

simple, 209
simply connected, 126, 201

Gravitational constant, see Gravity constant
Gravity constant, 173, 259
Grid, 133–134, 299

dual, 133–135, 158
equidistant, 124, 142, 289
hexahedral, 133, 156
point, 54, 55, 58, 133
primal, 134–137, 152, 155
regular, 288

Grübler condition, 38, 45

Helmholtz
decomposition, 161
splitting, 162

Homeomorphism, 250
Lipschitz, 249, 255
PC1-, 250, 251

Homotopy, 31
method, 4

Hybrid automata, 244
Hysteresis, 128

Implicit function theorem, 14, 17, 45, 46, 254
Clarke’s locally Lipschitz, 255
Lipschitzian extended, 255
PC1, 255

Incidence matrix, 184, 203, 204, 207, 209, 218,
225–227, 229, 236

Incompressible, 277
Index

differential, 4, 25, 38, 45, 46, 63, 83, 86,
89–90, 95, 111, 113, 115, 116,
118–121, 125, 139, 148, 149, 159,
201, 214, 229, 245, 247–248, 261,
263, 265, 272, 288, 296–298, 304

generalized, 245, 247–256, 261, 263,
265, 272

differentiation, see Index, differential
Kronecker, 155, 289–291, 293, 294, 296,

298, 303, 307, 308
perturbation, 38
reduction, 2, 4, 5, 14, 24, 29, 83, 90–93,

99, 100, 116, 121, 172, 201, 269,
296–298, 303

by minimal extension, 83, 90, 297–298
strangeness, 3, 38, 46, 201, 214, 216, 223,

229, 230, 279, 288, 299, 304–307
structural, 38
tractability, 38, 155
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Initial value, 25, 38, 50, 54, 58, 63, 64, 70, 140,
141, 148, 149, 213, 217, 220, 223,
229, 230, 233, 234, 247, 255, 299

consistent, 63, 140, 148, 149, 213, 220,
223, 230, 233, 234

dynamic, 70
problem, 38, 141, 247, 248, 250, 251, 254

Inversion
dynamic, 45–70
model, 86
stable, 83
system, 3, 19

Isentropic
expansion, 180
exponent, 180

IVP, see Initial value problem

Jacobian, 5, 22, 46, 50, 57, 70, 73, 88, 91, 98,
117, 232, 248, 265, 272, 295

Clarke, 249, 252, 255, 256
combinatorial partial, 251
limiting, 249
output, 92
partial, 249, 251, 261, 263

Joint, 19, 39–43, 60
base, 21
coordinates, 41, 42
elastic, 19
flexible, 19, 20
inelastic, 19
kinematic, 39–44
loop-closing, 42
revolute, 43, 45
rigid, 40
spherical, 40, 42

Joule losses, 160–162
Junction, 179, 202, 209, 216, 223

isolated, 209, 211, 212, 219, 233, 237, 238

Karush-Kuhn-Tucker conditions, 54
Kinematic

car model, 63
constraint, 40
inverse, 86
joint, 39–44
loop, 84, 85
matrix, 85
model, 46, 49
singularity, 21, 24

Kirchhoff
current law, 126
-type balance equations, 183

KKT, see Karush-Kuhn-Tucker
Kronecker form, 289, 291
Krypy, 299

Ladyzhenskaya-Babuška-Brezzi, 287
Lagrange multiplier, 38, 41, 86, 87, 146
Laplacian, 299

discrete, 146
Law

Ampére’s, 140, 144, 146
Ampère-Darwin’s, 162
Ampère-Maxwell’s, 125, 126, 131, 161,

162
Boyle’s, 174
Faraday’s, 132, 134, 140, 144, 162
Faraday-Lenz’, 132, 134
Gauss’s, 132, 144, 161

electric, 162
magnetic, 132, 162

Kirchhoff’s current, 126
LD-derivative, see Lexicographic directional

derivative
Leapfrog, 140–144

scheme, 141, 142, 144
Lexicographic directional derivative, 256
Linearization, 22, 89

input-output, 89
input-state, 89

Liquid
enthalpy, 258
flow, 201, 202, 220–222, 240
molar volume, 258, 267, 269
only regime, 260, 261, 263–271
phase, 245, 246, 256–259, 265, 269, 270

Loop
closed, 41, 42, 64

kinematically, 41, 42
open, 10, 22, 32, 33, 81–121

Magnetic
boundary conditions, 127, 143

homogeneous, 127
field strength, 124, 126, 129, 160
flux density, 126, 131, 132
scalar potential, 132, 158
vector potential, 132, 135, 147, 152,

154–157, 162, 163
Manifold

constraint, 87, 88, 91, 120
solution, 11, 14, 16, 22, 297

Mass, 19, 82, 124, 172, 201, 246, 280
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conservation, 172, 201, 204, 211, 218,
280–281

flow, 173–175, 183, 184, 188, 190,
202–204, 206–210, 214, 217, 218

-spring system, 82
-spring-damper chain, 83, 95, 103, 108,

111–119, 121
Material

anisotropic, 132
conducting, 144
dielectric, 164
homogeneous, 161, 162
interface, 161
law, 136, 138, 140, 152, 154, 158
matrix, 136–138, 141, 142
relation, 125, 127–128, 136, 137
semiconducting, 144

Matlab, 4, 7, 22, 107, 195, 200
Matrix

adjacency, 225, 226, 228–232
connection, 209–212, 231, 234, 238
curl, 133, 142
divergence, 134
incidence, 184, 203, 204, 207, 209, 218,

225–227, 229, 236
kinematic, 85
material, 136–138, 141, 142

Maxwell’s
equations, 124

electroquasistatic, 131, 151
full-wave, 131, 140
magnetoquasistatic, 131, 154
semidiscrete, 141

grid equations, 134, 139–141
house, 126, 127, 138, 159

Mbc, see Magnetic boundary conditions
Mechanical system, 19, 39

constrained, 5
underactuated, 81–121

Method
boundary element, 124
cell, 124, 133
finite element, 124, 125, 153, 278, 298
finite volume, 278, 285, 287
Gauss-Newton, 25
homotopy, 4
Newton’s, 14, 94, 95, 117, 118, 258
of moments, 124
partial element equivalent circuit, 124
penalty, 296

Microbial consortium, 272
MIMO, see system, multi-input-multi-output
Minimal extension, 83, 90, 297
Model

conductor, 129
foil, 129
stranded, 129, 130, 155, 157, 160

Darwin, 160–164
inverse, 82–84, 86–90, 92, 95, 96, 98, 100,

102, 107, 109, 110, 113–121
kinematic, 46, 49
surrogate, 66, 215–220, 222, 223, 230, 231,

233, 234, 239
MODELICA, 38, 200, 216
Modified nodal analysis, 201, 240
MOM, see Method of moments
Multibody system, 37, 82

tree-structured, 41
underacted, 82, 120

Multistream heat exchanger, 272

Navier-Stokes equations, 277
incompressible, 279, 282, 286, 287, 298,

302
nondimensional, 284

NCS, see Nonlinear complementarity system
Network

cyclic, 175
diamond, 189
flow, 199

incompressible, 202
gas, 171, 201
simply connected, 126, 201
water supply, 201

Newton-Euler formalism, 102
Newton’s method, 14, 94, 95, 117, 118, 258
Node, 135, 178, 184

adjacent, 180, 191, 193, 203, 209
flux, 178, 183
pressure, 178, 183, 184

Nonlinear complementarity system, 255
Nonpermeable wall, 283
No-slip condition, 283
NSE, see Navier-Stokes equations

OCPID-DAE1, 52, 55, 58, 60, 76, 78
Operator

curl, 134, 135, 154
DAE, 279, 284
differential, 126, 133, 174, 185
diverence, 135, 146, 161, 286
grid, 142
Hodge, 133
Laplace, 145, 146

Oseen equation, 286
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Partial differential-algebraic equation, 144,
172, 182, 183, 186

Partial element equivalent circuit method, 124
Path, 209

constraints, 39, 45, 50, 65, 77
driving, 63
reference, 63
smooth, 63

PDAE, see Partial differential-algebraic
equation

PEEC, see Partial element equivalent circuit
method

Penalty
method, 296
term, 296

Permeability, 128
tensor, 128
vacuum, 143, 150, 156

Permittivity, 128, 145
relative, 143, 150
tensor, 128
vacuum, 152

Phase
change, 243–272

thermodynamic, 244, 245
liquid, 246, 256–259, 265, 269, 270
vapor, 245, 246, 257, 259, 267–269

Pipe, 172, 202, 209
diameter, 173, 175, 188, 203
elevation, 173, 178
length, 173
roughness, 173, 175, 188

Pipeline, 172, 175, 187–190, 195
Poisson equation, 291, 292
Pole, 11, 89, 90, 104, 110, 114

placement, 11
Pressure, 173, 179, 185, 190, 201, 246, 257,

280, 299
critical, 177
node, 178, 183, 184
saturation, 246, 258, 267

Pump, 202
centrifugal, 206
characteristic, 206–208, 210, 215
curve, 206
positive displacement, 206

Python, 191, 195, 279

Rank-nullity theorem, 159
Reduction

index, 2, 4, 5, 14, 24, 29, 83, 90–93, 99,
100, 116, 121, 172, 201, 269, 296,
303

by minimal extension, 83, 90, 297
stabilized, 25

Relative degree, 6, 34, 89–90, 96, 97, 103–105,
107, 109–111, 113–115, 119–121

Reluctivity, 128, 138
Reservoir, 179, 202, 205, 209, 210, 212,

214–216, 219, 221–226, 230, 232,
233, 237, 238, 240

Resistor, 172, 178, 179, 181, 186, 187, 190,
191

Reynolds
number, 175, 176, 188, 205, 283, 292
transport theorem, 280

Rigid body, 42, 281
Robotic arm, 2, 19, 20, 24, 29, 42, 47, 49, 51,

52, 55

S-index, see Index, strangeness
Saddle point, 30

problem, 291, 293
structure, 286, 297

Saturation
curve, 267
pressure, 246, 258, 267

Semiconductor, 125
Sequential-quadratic programming, 52
Servo constraints, 46, 81–121
SIMPACK, 38
Simply connected, 126, 201
SimulationX, 200
Singularity, 21, 98

kinematic, 21, 24
structural, 269

SISO, see System, single-input-single-output
Skin depth, 128
Sobolev space, 284
Speed of sound, 173, 175

isothermal, 188
Spring, 19, 26, 69, 82, 96, 102, 115

coefficient, 69
linear, 95, 101, 111, 113
torsional, 19, 26

SQP, see Sequential-quadratic programming
Stability

asymptotical, 11, 18, 34, 64, 83, 104
local exponential, 89

State variable
algebraic, 3, 12, 17, 247
differential, 2, 247

Stokes
equation, 277–309

unsteady, 286
flow, 292
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hypothesis, 282
solution, 299

Störmer-Verlet scheme, 141
Strangeness

free, 215–217, 220, 230, 234, 289, 305, 306
index, 3, 38, 46, 214, 216, 223, 229, 230,

279, 288, 299, 304–307
Subdifferential, 249, 251, 269
Subgraph, 184, 209, 212
Switch, 261

physiochemical, 244
System

causal, 289–291
complementarity, 244, 245, 255
differentially flat, 3, 63, 82, 89, 97, 110,

115, 121
discrete, 289
mechanical, 5, 19, 39, 82, 83, 90
minimum phase, 83
multibody, 37, 38, 41, 42, 46, 49, 69, 70,

82–84, 86, 89, 91, 93, 95, 120, 121
multi-input-multi-output, 87, 89
single-input-single-output, 89, 95, 101, 111

Taylor expansion, 136
Temperature, 2, 173, 177, 246, 247, 257–259,

265–267, 269, 270
TESIS DYNAware, 43
Time domain, 124, 125, 139, 140, 144, 151
Time integration, 83, 94, 124, 139, 153, 157,

159, 279, 288, 289, 299, 300, 302,
303

forward, 83, 94
Tonti diagram, 126
Torque, 19, 26
Tracking

approximate, 3, 6, 16
asymptotic, 3, 8, 18–19
error dynamics, 10
exact, 3, 4, 7, 9, 12, 15, 19, 21, 25, 26, 65

Trajectory

flight, 45, 46
output, 82, 86, 87, 89, 93, 107
reference, 2, 7, 63, 84

Transfer function, 90, 104, 110, 113, 114, 121
Transmission zero, 82, 89, 90, 104, 110, 114
Tree, 158, 184, 232

cotree gauge, 155, 158, 159
spanning, 201, 209, 212, 213, 216, 219,

220, 222, 234, 235, 238, 239
Turbulent, 288

Valve, 172, 178, 190, 200
constant, 259
control, 181, 191, 192

Van der Waals equation, 257
Vapor

enthalpy, 258
liquid equilibrium, 244, 258
molar volume, 258, 267
phase, 245, 246, 257, 259, 267–269

VDW equation, see Van der Waals equation
Velocity, 5, 38, 85, 173, 280

generalized, 38, 84, 85
redundant, 86

Vertex, 211, 212, 216, 219, 234, 235, 238
identification, 211, 212, 216, 219, 234, 235,

238
Vessel, 246, 259, 265, 270

flash, 246, 265, 266
Virial expansion, 177
VLE, see Vapor, liquid equilibrium

Wave propagation, 140, 161, 164
lossless, 140

Winding density function, 129, 130

Zero dynamics, 34, 82, 83, 89, 90, 92, 104,
105, 110, 121
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