
The Essence Theory of Software Engineering –

Large-Scale Classroom Experiences from 450+
Software Engineering BSc Students

Kai-Kristian Kemell1(&) , Anh Nguyen-Duc2 ,
Xiaofeng Wang3 , Juhani Risku1, and Pekka Abrahamsson1

1 University of Jyväskylä, 40014 Jyväskylä, Finland
{kai-kristian.o.kemell,juhani.risku,

pekka.abrahamsson}@jyu.fi
2 University of Southeast Norway, Notodden, Norway

angu@usn.no
3 Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy

xiaofeng.wang@unibz.it

Abstract. Software Engineering as an industry is highly diverse in terms of
development methods and practices. Practitioners employ a myriad of methods
and tend to further tailor them by e.g. omitting some practices or rules. This
diversity in development methods poses a challenge for software engineering
education, creating a gap between education and industry. General theories such
as the Essence Theory of Software Engineering can help bridge this gap by
presenting software engineering students with higher-level frameworks upon
which to build an understanding of software engineering methods and practical
project work. In this paper, we study Essence in an educational setting to
evaluate its usefulness for software engineering students while also investigating
barriers to its adoption in this context. To this end, we observe 102 student
teams utilize Essence in practical software engineering projects during a
semester long, project-based course.

Keywords: Software Engineering � Method � Practice � Essence
SEMAT � Education � Software process engineering

1 Introduction

Software Engineering (SE) work out in the field is diverse, with practitioners
employing a myriad of different methods and practices in equally diverse SE endeavors
[5, 10]. As little consensus exists in terms of best practices and methods, practitioners
have taken to using what they consider to be the best option(s) for their own SE
context, often tailoring them by omitting some suggested practices or rules [5]. Though
e.g. Agile methods are currently widely employed out on the field, the practices and
methods that are understood as being Agile are numerous [1]. Especially software
startups use a diverse mix of agile methods and practices, with some simply opting to
use ad hoc SE methods [17].

© Springer Nature Switzerland AG 2018
M. Kuhrmann et al. (Eds.): PROFES 2018, LNCS 11271, pp. 123–138, 2018.
https://doi.org/10.1007/978-3-030-03673-7_9

http://orcid.org/0000-0002-0225-4560
http://orcid.org/0000-0002-7063-9200
http://orcid.org/0000-0001-8424-419X
http://orcid.org/0000-0002-4360-2226
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03673-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03673-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03673-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-03673-7_9

This diversity in the SE industry has, alongside other factors such as technological
advances, resulted in a gap between education and practice in SE [2, 13]. As it is not
possible to teach university students all the methods and practices employed by
practitioners, curriculum-makers are faced with choices on what to focus on. General
theories and methods that can be taught to students to support them in the adoption of
new practices in the future are one option in attempting to tackle this gap. One such
theory is the Essence Theory of Software Engineering (Essence from here-on-out),
proposed by the SEMAT initiative1 [10].

Created to address the vast range of methods employed in the field, Essence is a
method-agnostic progress control tool for SE. Essence is modular in nature and can be
used to model any existing methods, practices, or combination of such [15]. Thus,
Essence is designed to suit any SE possible context [9], making it a potentially pow-
erful tool. However, its flexibility is also a potential a downside: in order to use
Essence, resources have to be devoted towards modeling the practices and methods
being used, as well as learning how to do specifically by using Essence.

Presently, Essence has yet to see widespread adoption among practitioners, although
it has seen some traction among the academia [21]. It is possible that its rather resource-
intensive adoption is one barrier for its adoption, as has been discussed in extant
research [8, 18]. For this purpose, some tools have been suggested to aid practitioners in
its adoption and in using it: e.g. [8] presented SematAcc to help users visually track the
alpha states while using Essence and [11] presented an Essence-themed board game to
make learning Essence easier. However, more tools and further studies specifically
focusing on its supposedly difficult adoption are also required to better understand the
barriers of its adoption and to consequently be able to tackle them. Additionally, an
educational perspective on Essence is interesting because Essence can help address the
gap between education and industry needs. For example, [2] report that SE graduates are
often perceived by the industry as lacking in e.g. the ability to follow processes and
project management skills, both of which Essence can help teach.

In this paper, we study Essence in a large-scale classroom setting. We observe over
one hundred project teams consisting of second year SE students employ Essence
during course projects mimicking a field SE endeavor. The teams carry out a complete
SE project, from requirements formulation to a finished software product, using
Essence to manage their project. Then, based on their projects, the students reflect on
their experiences with Essence in a written experience report. With the data collected
from these experience reports, we seek to understand:

RQ1: How useful do bachelor level students find Essence?
RQ2: What are the challenges in adopting Essence, specifically for inexperienced
software developers, and what could be done to make its adoption easier?

The rest of this paper is structured as follows. In the next section, we discuss the
Essence specification and extant research on it in further detail. In the third section, we
present and discuss the study design. In the fourth section, we analyze the data and
present our findings. We then discuss the practical and theoretical implications of our

1 semat.org.

124 K.-K. Kemell et al.

http://semat.org

findings in the fifth section, as well as the potential limitations of the study and
directions for future research. The sixth and final section concludes the paper.

2 The Essence Theory of Software Engineering

Essence is a modular, method-agnostic progress control tool for SE endeavors. Pro-
posed by the SEMAT initiative to address the myriad of methods and practices
employed by industry practitioners, Essence is a framework into which any combi-
nation of existing methods or practices can be inserted. In practice, Essence consists of
a kernel and a language. The kernel [14], its authors argue [10], contains all the
elements present in every SE endeavor, while the language can be used to extend the
kernel to fit any specific SE endeavor. I.e. Essence, in its base form, contains the
elements required to track progress in a generic SE endeavor, but it is intended to be
tailored for specific SE contexts.

The Essence kernel consists of three views: alphas, activity spaces, and compe-
tencies. In the kernel, there are seven alphas (Fig. 1), “things to work with”: oppor-
tunity, stakeholders, requirements, software system, work, team, and way of working
[10]. These alphas, Jacobson et al. [10] posit, are present in every SE endeavor. Alpha
is an acronym for an “Abstract-Level Progress Health Attribute” [14]. For the project to
progress, these alphas need to be worked on. To this end, the kernel contains activity
spaces. Activity spaces may contain 0 or n activities, or “things to do”. The activity
spaces in the kernel, much like the alphas, are elements Jacobson et al. [10] argue are
found in every SE endeavor. Finally, the kernel contains a set of competencies: skills
needed to carry out the endeavor [10]. These alphas, activity spaces, and competencies
are further split into three areas of concern: endeavor, solution, and customer.

The alphas of the kernel serve as a way of tracking project health. Alpha states offer
a way of tracking progress on the various areas of the endeavor. Each of the seven base
alphas has a set of states that describe the progress made on each individual alpha. For
example, the states for the requirements alpha range from conceived, where the
requirements have only just been formulated, to fulfilled, where they have been
implemented into the system in a manner satisfying the stakeholders.

Jacobson, Stimson and Hastie [9] suggest Essence as a solution to what they call
method prisons. In speaking of method prisons, they refer to the idea of organizations
being stuck following one method or set of methods regardless of their suitability in the
current context at any given time. However, they posit, the SE practitioners often
present methods as monolithic for example by using very varied presentation styles to
describe them. By presenting methods in a uniform manner, by e.g. using Essence, and
by simply promoting a method-agnostic idea, Jacobson et al. [9] argue that organiza-
tions could escape method prisons and potentially improve their work processes by
creating better methods specifically suited for their SE context.

Though its modular and extensible nature is the greatest strength of Essence, it can
also be its greatest weakness. Whereas it makes Essence a powerful tool, it also makes
it both resource-intensive and potentially difficult to adopt. Perhaps consequently,
Essence has not gained widespread recognition among practitioners, although it has
gained some traction among the academia [21]. Graziotin and Abrahamsson [8] suggest

The Essence Theory of Software Engineering – Large-Scale Classroom Experiences 125

that the modest attention Essence has received among practitioners may well stem from
the steep learning curve of the specification. Even though Jacobson et al. [9] make a
potentially interesting case in promoting the idea of tailoring methods more actively, it
may seem easier for practitioners to get started by simply using an existing method.

3 Research Design and Methodology

In this section, we describe the methodology of the classroom study on Essence in the
context of student SE projects. In the first sub-section, we discuss the course from
which the data was collected. The role of Essence in said course is then discussed in the
second sub-section. The third and final sub-section discusses our data collection and
analysis methodology in detail. The data is then analyzed in the following main section.

3.1 The Course

The study presented in this paper was conducted using data from the TDT4140 –

Software Engineering course at the Norwegian University of Science and Technology
(NTNU). More specifically, all data for this study was collected during the 2017 spring
iteration of the course during which the students utilized Essence in their projects. In
this instance of the course, each project team was to engineer a functional software by
carrying out a real SE project in a university setting. The theme of the projects was to
radically improve university education by means of software robots. The exact goal of
the projects was to “make a bot to replace Prof. Abrahamsson at his course on SE”.

Following the first lecture of the course, the students were instructed to form project
teams consisting of 4 to 5 students. The teams were formed by having the students give
a subjective evaluation of their own programming skills in terms of programming
confidence and then form teams with individuals with similar evaluations. This was
done to negate any potential internal issues (e.g. workload distribution issues) within
the teams arising from skill differences in programming. Starting from the first lecture,
these teams were to work on their projects until the end of the course. The teams were
first tasked with interviewing university teaching staff in order to discover tangible

Fig. 1. The essence kernel alphas

126 K.-K. Kemell et al.

needs that could be addressed through their software. Stakeholders were involved in
this fashion to make the project mimic a real SE endeavor more closely.

After gathering needs through the interviews and selecting the one(s) they wished
to address, the students were to plan their development methodology and start utilizing
it. During the course and the projects, weekly two-hour-lectures continued to offer
relevant information and to support the project teams. The project work itself was
carried out largely independently by each team.

3.2 The Role of Essence in the Course

Essence was introduced to the teams in the first lecture. The first lecture focused on
discussing SE work in practice, specifically from the point of view of projects. During
the lecture, Essence was discussed primarily in relation to its seven alphas, which were
underlined to present the essential elements of an SE endeavor. In terms of methods,
the students were instructed to initially work in whatever fashion they thought was best.
The reasoning behind this line of action was to create fertile ground for the later
adoption of Essence: by letting the teams first work in a rather unsystematic or even ad
hoc fashion, they would likely be more receptive to tools that could help them sys-
tematize their way of working. I.e. having experienced unsystematic SE project work,
they would better understand the need for more structured approaches to SE.

This approach, in practice, resulted in the teams largely working with various
“ScrumBut”2 approaches for the first three weeks. Their use of Scrum was likely to
have stemmed from a previous course at the university having introduced them to
Scrum. After three weeks of working as they saw fit without outside assistance from the
teaching team, the teams were introduced to the Ivar Jacobson Practice Library3. They
were tasked with using the practice cards (Fig. 2) from the library to re-construct their
way of working and to modify it as they saw fit based on their experiences so far.

Fig. 2. A project team showing their practice cards

2 ScrumBut refers to using Scrum while omitting some parts of it, “We use Scrum, but…” (refer to:
https://www.scrum.org/resources/what-scrumbut).

3 https://practicelibrary.ivarjacobson.com/start.

The Essence Theory of Software Engineering – Large-Scale Classroom Experiences 127

https://www.scrum.org/resources/what-scrumbut
https://practicelibrary.ivarjacobson.com/start

In this fashion, the teams were introduced to both the progress control aspect of
Essence and its method-agnostic philosophy during the course. After the introduction
of the practice cards, the use of Essence was not enforced during the project work and
there were no regular check-ups to confirm its utilization. Full and correct utilization of
Essence was not mandatory, and its utilization or lack thereof did not affect the grades
given to the teams. All teams were instructed to utilize it to what extent they felt they
could, but this was not supervised in practice. This approach was chosen to gather more
unbiased data on the possible barriers of adoption in the case of Essence.

3.3 Data Collection and Analysis Methodology

The data for this study was collected through written reflective reports provided by
each team at the end of their projects4. In their report, each team was instructed to
reflect on their experiences with Essence, along with other content unrelated to this
study. As for Essence, they were to describe how they utilized it and how they felt
about having done so. More specifically: (1) what they thought was good about
Essence, (2) what they thought was bad about Essence, and (3) how they utilized
Essence during their project.

Ultimately, 102 project teams of 4–5 students finished the course and delivered a
written project report. Our data analysis is based on these 102 reports. The teams were
not given a strict format to follow in the sections of their reports describing Essence,
which led to the data being somewhat diverse in presentation. Each report was to
discuss the afore-mentioned three topics related to their use of Essence, but past these
general guidelines the Essence sections of the reports were freeform. In practice, this
largely just meant that teams that had utilized Essence relatively little wrote little about
it whereas teams that had utilized it fully wrote far more about their experiences.

Thematic analysis was chosen as the method of analysis for this study due to the
large volume of the data, as well as the lack of pre-determined assumptions of how the
students possibly perceived the use of Essence in this context. Both the final themes
and the initial codes used to formulate them were generated from the data in an
inductive fashion. The analysis process was iterative and reflexive.

Initially, the author conducting the thematic analysis went through the data and
recorded key points for each report, both by directly quoting the reports and by making
summarizing remarks, in a separate text document. During this process, initial codes
were formulated based on recurring sentiments in the reports. E.g. many reports turned
out to describe various initial difficulties in adopting Essence. The analysis process was
iterative, and reports and the recorded key points and quotations were regularly re-read
as further codes were generated. This phase was concluded once all reports had been
analyzed and the final set of codes had been applied to each of them where applicable.

Finally, the themes were generated inductively from the coded data. Codes were
arranged into matching themes, with each theme encompassing one or more codes. In

4 A book showcasing the results of the projects can be found on Figshare: https://figshare.com/articles/
100_Open_Sourced_Software_Robots_for_Tomorrow_s_Education_Revolutionizing_the_University_
Learning_Experience_with_Bot_Technologies/5597983.

128 K.-K. Kemell et al.

https://figshare.com/articles/100_Open_Sourced_Software_Robots_for_Tomorrow_s_Education_Revolutionizing_the_University_Learning_Experience_with_Bot_Technologies/5597983
https://figshare.com/articles/100_Open_Sourced_Software_Robots_for_Tomorrow_s_Education_Revolutionizing_the_University_Learning_Experience_with_Bot_Technologies/5597983
https://figshare.com/articles/100_Open_Sourced_Software_Robots_for_Tomorrow_s_Education_Revolutionizing_the_University_Learning_Experience_with_Bot_Technologies/5597983

determining the themes, the research questions were used as a framework for orga-
nizing the data under the themes as well as determining the relevance of the codes and
what was to ultimately be included into the study. In presenting the results in the next
section, some of the direct quotations used in the analysis process were also included.

Additionally, in our first research question we speak of usefulness. Usefulness is a
construct often used in relation to evaluating software systems designed especially for
work-related use (e.g. [4]). In the context of this study, we define usefulness to be
related to either learning something new about SE or SE progress control (educational
usefulness) or providing help in SE project work (practical usefulness). These two
seemingly separate types of usefulness are nonetheless closely linked together, how-
ever. E.g. a learning experience related to SE project work may simultaneously result in
practical usefulness through the application the newly-learned information into prac-
tice, which may also take place at a later point in time. In our analysis, we thus speak of
usefulness while referring to usefulness in both senses.

4 Results

The reports showed a very varying degrees and success of utilization of Essence among
the 102 project teams. Whereas some of the teams had clearly utilized Essence in its
entirety and reflected upon it in depth, some of the teams had done the bare minimum
of selecting different practices to use while forgoing the progress control aspect of
Essence. However, despite the varying degree and success of Essence utilization
among the teams, the reports discussed similar themes across the spectrum.

4.1 Theme 1: Difficult or Resource-Intensive to Learn

The reports indicated that the majority of the teams considered Essence difficult to learn
to some extent. Even most of the teams that ultimately utilized Essence successfully
considered it to have been difficult to initially grasp. As the course involved only a
general introduction to Essence and its principles, the teams were to study and use
Essence on their own using what resources they would find on the SEMAT website or
the Internet in general. This resulted in most teams feeling that Essence was difficult to
learn, or “hard to get a grasp on when first introduced” (Report 048). The teams
generally considered to be a direct result of the types of resources available online:

…we felt that almost anywhere we went to read about SEMAT we were either drowned with
information (the Essence Kernel PDF has 308 pages) or the information was too abstract that
we felt left confused after reading. (Report 041)

The web page material, the articles and the academic resources about SEMAT are filled with
many new terms, but few clear definitions. It would be easier for the next years students to
grasp what SEMAT really is, if there existed some sort of document on blackboard explaining
the SEMAT terminology. (Report 016)

Largely in line with the quotation above, though Essence was considered difficult to
learn, the teams almost uniformly cited the lack of good tutorial resources as the main
reason for this. The existing ones were considered either too lengthy or to simply be

The Essence Theory of Software Engineering – Large-Scale Classroom Experiences 129

written in a needlessly complex manner, failing to offer a good initial touch to the
specification. This is also supported by some reports directly stating that past the initial
barrier of adoption, Essence was a useful tool. However, due to its resource-intensive
adoption, many felt that they wanted to focus on the practical SE work instead:

We just wanted to get on with the programming and it seemed like it was just one more
unnecessary thing we needed put effort into when we already had quite a lot with learning new
technologies and languages. (Report 044)

Past the self-reported issues related to learning Essence, it was also occasionally
possible to determine that a team had not managed to internalize Essence based on the
contents of their report. It was evident that some teams had only utilized the practice
cards, as they had been directly instructed to do, and ignored the kernel and its alphas
and other views, i.e. the progress control aspect of Essence. It is likely that this was
caused by the perceived difficulty of learning the specification: some of these teams
likely felt that they had understood Essence despite only grasping parts of it. Though
the difficulty of learning Essence was primarily blamed on the lack of good tutorial
resources, one of the teams did specifically state that they felt Essence itself was too
abstract for them.

Despite Essence being considered somewhat difficult to initially learn by the teams,
it was generally considered to have been a positive experience. Even the teams that
reported having particularly struggled with learning it, or having been unwilling to
initially devote resources towards doing so, felt that it had ultimately been useful:

In retrospective, perhaps we would have had even greater progress with our project and higher
learning outcome from the course if our understanding of SEMAT had improved at an earlier
stage (Report 062)

When we later, a bit too late probably, actually sat down and studied what it meant and how to
use it, it seemed kind of genius. (Report 044)

4.2 Theme 2: Inexperience

Another recurring theme present in the reports was inexperience in relation to SE. In
their reports, the teams often discussed their own perceived inexperience with SE in
relation to Essence. The inexperience of the teams evidently had a multifaceted sig-
nificance to their experiences with Essence.

On one hand, the teams felt that Essence was more useful because they were
inexperienced. They felt that, being inexperienced developers, Essence helped them
(1) structure their way of working, (2) learn about new methods and practices, and
(3) manage their projects better. In conjunction with the practice library, Essence was
perceived to have been very educational in relation to SE methods and practices.

While still being on our own and with little experience, SEMAT provided us guidelines that
allowed us to improve and learn while planning and working on the project. Resulting in a
much better experience with projects than before and a concept we are proud of. Knowledge we
absolutely will include in future projects and programming. (Report 078)

130 K.-K. Kemell et al.

…our experience with the ESSENCE kernel has been almost exclusively positive. Given that is
prevents overlooking parts of the software development cycle, we perceived it as more beginner
friendly than other competing, more fragmented approaches to software development
methodology. (Report 047)

On the other hand, some teams felt that their inexperience with SE might have also
had a negative impact on the usefulness of Essence. As Essence encourages one to
develop their own way of working, these teams felt they could not make the most of
Essence due to their lack of knowledge about practices:

A team of beginner developers such as ourselves might get locked up in the [practice] cards
already made, resulting in using methods that is ineffective for us since we wouldn’t make up
any new techniques that isn’t “available”. We think that with a little more experienced team
that hasn’t made their own method yet, this would be extremely helpful. (Report 013)

Not all teams considered this to be a negative situation, however. Some teams felt
that the way Essence encouraged them to experiment with new practices and to learn
by working as a team was helpful, even though they initially did not have a clear idea
of what practices might work for their team. Essence, they felt, challenged them to
actively think about what they were doing and why, and even though it did not provide
direct answers to those questions, it facilitated learning in a positive manner. Thus, the
general sentiment among the groups was that Essence, as well as the practice library
related to it, had been very useful for them as inexperienced developers. As a con-
cluding remark, it is worth noting that while not all of the teams comprised of indi-
viduals with little or no past experience with practical SE work, the resounding
majority of them nonetheless did, being comprised of second year SE students. This
was also evident in the way the teams actively reflected on their own inexperience in
various ways in their reports.

4.3 Theme 3: Way of Working and the Method Prison

One of the most discussed positive aspects of Essence perceived by the teams was its
method-agnostic approach. The ability to freely choose between methods and practices
was considered both new and highly positive, letting them, in the words of Jacobson
et al. (2017), escape the “method prison”:

Our team really liked the freedom SEMAT gives you in defining the way you develop something
and how you can customize it, choose the practices you want and not be forced to use practices
you don’t want to use (Report 036)

There were many positives of applying the kernel to our project, like choosing what we wanted
to implement in our regular work day allowed us to use only what we wanted and thought we
could benefit from. This level of freedom created a higher level of productivity than for example
Scrum, where we are forced to use all aspects of the framework that do not necessarily benefit
us. Not being forced to do things that we feel would slow us down and not benefit us really
made us appreciate the SEMAT Essence Kernel (Report 071)

As many of the students in the course had previously taken a course on Scrum,
many of the reports consequently also included reflections related to Scrum. These
teams discussed how they had initially started using Scrum or ScrumBut but had then

The Essence Theory of Software Engineering – Large-Scale Classroom Experiences 131

begun to reflect on what they were doing and why, resulting in them refining their own
way of working by using Essence. Used in conjunction with the practice card library,
Essence provided them with new alternative practices to utilize. This resulted in the
teams experimenting with different practices. On a more general level, they felt that the
method-agnostic approach of Essence prepared them for different ways of working in
the future.

Additionally, the teams reported positive experiences with actively reflecting on
their way of working. Aside from initially tailoring a method for themselves, some of
the teams reported having found Essence useful in facilitating the idea of continuously
improving their work processes based on their experiences. Furthermore, some teams
also noted that Essence had made it easier to communicate their way of working to the
team as well as to discuss it within the team:

This overview of all practices really benefited us when we put together our way of working and
made it easy to visualize our workflow. Whenever a team member was unhappy with any aspect
of our work methodology we reviewed the cards and added or removed any if needed. (Report
060)

Finally, the teams discussed having learned much about new methods and practices
simply by browsing through the practice cards available in the Ivar Jacobson practice
library. This serves to underline the importance of tools related to adopting Essence. In
this case, the practice cards helped teams of inexperienced developers tailor methods
using Essence despite not having any previous experience with different SE practices.

4.4 Theme 4: Progress Control

The Essence kernel provides a framework upon which to build a project-specific tool.
However, even without any modifications, the kernel already serves as a basic progress
control tool. This was also reflected in the reports. Most teams that had properly
utilized the kernel had positive experiences using Essence to manage and track
progress:

Selecting and using the alpha state cards that were relevant to our circumstances to assess our
progress proved extremely effective. When we used them for the first time we were surprised to
learn that we had not made as much progress as we thought. The cards were useful in seeing
where we wanted to be in terms of progress in the different alphas, and thus facilitated the
process of fixing our impediments. (Report 005)

The team then agreed to purchase a cork board and print out the Alpha State Cards in order to
quickly and easily get an overview over the team’s overall progress. This proved valuable, as
none of the team members had partaken in any projects of this scale previously. The clear
visualization the cards provided gave a much clearer picture of the project’s progression
overall than what the team found orally. (Report 055)

Although Essence did clearly facilitate the idea of tailoring methods and choosing
the methods that work best, this may not always be preferable. If the alternative to
being locked in a “method prison” is the use of ineffective ad hoc methods, following
an established method by the book may well be the more effective option. However, the
teams felt that Essence helped them formalize their way of working aside from also
facilitating the idea of tailoring it to suit their context-specific needs.

132 K.-K. Kemell et al.

In relation to the inexperience of the teams discussed in a preceding sub-section,
many of the teams felt that the Essence kernel provided a good overview of a software
engineering endeavor especially because they had little experience with SE project
work. Even though not all teams that utilized the kernel extended it, they nonetheless
felt the Essence kernel in its base form was already useful in tracking their progress –
except for one. One of the teams felt that they had a solid understanding of the state of
their project prior to using Essence and that “it didn’t help us anything to convert it into
cards and more complicated sentences” (Report 059). This is not surprising as tools are
just that: tools. Similarly, though formal methods and practices are typically preferred,
it is quite possible to carry out SE endeavors using ad hoc methods, as e.g. a notable
number of software startups chooses to do [17].

4.5 Summary of Findings

Having discussed the results through the themes present in the data set, we now turn
back to our formal research problem. Below, we provide summarizing answers for the
two research questions posed in the introduction before going into more detail:

RQ1: Do bachelor level students find Essence useful?
Results: Essence was considered useful by the students, for varying reasons
RQ2: What are the challenges in adopting Essence, specifically for inexperienced

software developers, and what could be done to make its adoption easier?
Results: The largest challenge in adopting Essence was the lack of good tutorial

resources, which consequently could be addressed by creating better such resources.
Though the student teams nearly universally considered Essence useful, there were

differences between the teams in terms of why they considered it useful, largely based
on the extent to which they had utilized it. Essence was considered useful for
(1) teaching new methods and practices, (2) teaching a method-agnostic approach to
SE, (3) helping the team properly structure their way of working, and (4) providing a
useful framework for managing an SE project, depending on the degree of its uti-
lization among each team. Few teams had anything negative to say about the speci-
fication itself, with most of the negative feedback relating to difficulties in adopting
Essence.

Indeed, though Essence was considered useful by the teams, it was nonetheless
evidently difficult for them to adopt. Many teams, even those that did utilize it the most,
considered it to have been difficult to initially learn. The reports that discussed the
reasons behind its perceived difficult adoption all cited the lack of good tutorial
resources as the main problem. The teams felt that the resources they could find online
were either hundreds of pages long or did simply not describe Essence simply enough
for beginners. This resulted in some teams opting to focus their efforts elsewhere by
e.g. focusing on learning to program and use programming tools, leaving Essence for
later.

Having discussed our findings in relation to our research questions, we present a
further, visual summary of how the themes discussed earlier in this section are inter-
linked (Fig. 3). It is organized in a manner similar to how Giardino et al. [6] sum-
marized their findings and depicts the adoption of Essence among students as a process.
The student teams, as developers, were inexperienced. This inexperience resulted in a

The Essence Theory of Software Engineering – Large-Scale Classroom Experiences 133

lack of resources as they had to divide their resources between e.g. learning to program,
learning to use the programming tools, and learning Essence. In this situation, Essence
often took on a lower priority, consequently becoming more difficult for the teams to
learn. However, once the teams began to understand and utilize Essence, they began to
work more systematically. All teams utilized Essence and the practice cards to work in
a more systematic fashion, and many, but not all, teams grasped the kernel and began to
use it as a progress control tool. For the teams that understood how to fully utilize
Essence, its use ultimately resulted in an escape from the so-called method prison [10].
These teams actively reflected on their way of working and saw Essence also as a tool
to facilitate learning in order to (attempt to) work in an efficient fashion in any given
context in the future.

Based on our findings, we therefore argue that SE students find Essence useful for
multiple reasons. Furthermore, we confirm that Essence is considered difficult to learn,
and our data suggests that the largest challenges in adopting Essence currently stem
from a lack of tutorials and guides aimed at beginners. The current resources available
online were considered too lengthy or advanced to be of use for new users of Essence.

5 Discussion

As extant literature has suggested [8], our findings confirm that Essence is indeed
considered difficult and resource-intensive to adopt. However, our findings indicate that
stems from a lack of good tutorial resources as opposed to Essence being difficult to use
as such. The current manuals and other resources available were considered by the
student teams to be too complex for beginners. Thus, the most direct solution to this
issue would simply be the creation of better tutorial resources specifically aimed at new
users of Essence.

As a solution to making Essence easier to adopt, [8] suggested the development of
tools that could be used to make the practical use of Essence easier. This was not
confirmed by our findings as none of the teams voiced explicit wishes for more tools to
help utilized Essence. However, given that the practice card library, an external tool as
well, was very positively received among the teams, it is likely that further tooling
would also make Essence either easier to adopt and possibly more useful.

Fig. 3. Adoption process of essence among SE students

134 K.-K. Kemell et al.

In terms of the usefulness of Essence for bachelor level students, our data indicates
that Essence was indeed considered useful by the resounding majority of the project
teams we studied. Less than ten teams out of 102 reported having found the use of
Essence an outright negative and useless experience. In this light, we argue that
Essence is useful for bachelor level students. More specifically, it was found useful in
terms of (1) teaching new methods and practices, (2) teaching a method-agnostic
approach to SE, (3) helping the team properly structure their way of working, and
(4) providing a useful framework for managing an SE project.

From the point of view of SE education in universities, Essence is interesting as,
based on our experiences, it can potentially provide a common ground for SE education
through its method-agnostic nature. Such common ground is currently missing. We
have showed that it can simultaneously teach students SE progress control as well as
practical SE work. It also prepares SE students for working with different methods and
practices out on the field. Essence could therefore be used to provide students with a
higher-level understanding of the way SE work is structured. Essence can serve as a
basis upon which SE students can build a general understanding of different SE
methods as opposed to learning about single methods one at a time.

Learning to construct a method out of practices is an important learning goal for
software engineering education. Based on our observations during the course, it was
noted that some teams also learned to include so called anti-patterns or bad practices
explicitly in their process description. This is a novel thought and should be further
elaborated in future studies. By labeling a practice as a bad-practice, the team in
question explicitly communicated about their improvement needs. Manual testing is an
example of such practice as it indicates lack of automated test suite, which slows down
the development and is thus not a sustainable solution.

Additionally, in terms of generalizing our findings, we suggest that our findings
could also be interesting for future research from the point of software startups. SE
students, like startup practitioners [3, 12], are often more inexperienced developers, and
it is also not uncommon for university students to participate in software startups
during their studies. Most software startups fail [7] for various reasons, and Kon et al.
[12] posited that specifically younger, more inexperienced startup practitioners are
considered more prone to failure among investors. Software startups face various
challenges across their life cycles [22], including challenges with “building product”,
“staying focused & disciplined”, and “over capacity/too much to do”, which Essence
could potentially be used to aid in solving. Finally, it has been established that software
startups, like mature organizations, should concern themselves with structuring their
work processes [19], which is something we found Essence to be useful for among SE
students. Relating these past studies to our findings here, we suggest that future studies
could investigate Essence from the point of view of software startups. Our findings,
however, do not offer direct support to this link between these two contexts. In possibly
pursuing this line of research, it could be useful to also evaluate the suitability of the
Essence kernel in the context of software startups, as software startups have been
shown to develop software in different ways than mature organizations [10], and their
business aspect is linked with their SE process in a unique fashion.

Finally, while we have studied perceived difficulties in adopting Essence in the
context of SE students, future studies may wish to study impediments to its adoption

The Essence Theory of Software Engineering – Large-Scale Classroom Experiences 135

among practitioner organizations. As Essence has yet to see widespread practitioner
adoption [21], the reasons behind this situation are worth investigating. Similarly, it is
likely that more experienced practitioners find Essence useful or not useful for different
reasons than the SE students studied in this paper.

5.1 Limitations of the Study

The primary limitations of the study are associated with the data collected during it. In
collecting the data, we chose to rely on self-reported use of Essence over observation
and regular check-ups. From this results that the validity of the reported utilization of
Essence among the teams cannot be directly confirmed. However, the student teams
seldom failed to report problems in utilizing Essence, with most teams that failed to
utilize Essence fully reporting so themselves. In other cases, it was also largely possible
to determine whether a team had understood the specification or not based on the way
they reported on its utilization. We thus argue that this does not present a major threat
to the validity of our data in such a large data set (102 teams).

Additionally, while the use of students as subjects for scientific studies is a long-
standing topic of discussion across disciplines, including SE, the aim of this study was
to study Essence specifically in relation to SE students and education. The use of
students as subjects in this context is therefore not an issue.

6 Conclusions

In this paper, we have studied the Essence Theory of Software Engineering in a large-
scale bachelor level course through experience reports. We introduced Essence to 102
project teams in a project-based SE course at a Norwegian university and observed its
use during the projects. Based on 102 project reports discussing, among other things,
the Essence use experiences of project teams of 4–5 individuals, we described the
barriers of adoption of Essence and its usefulness for SE students.

We discovered that while Essence was considered difficult to learn by the teams,
these difficulties largely stemmed from the lack of good tutorial resources. Some teams
failed to fully utilize Essence, forgoing its progress control aspect partially or entirely,
primarily due to its difficult adoption. There is thus a clear need for better introductory
guides to Essence that are specifically designed for new users.

Past its difficult adoption, Essence was nonetheless nearly universally considered
useful by the project teams. Even the teams that had not fully utilized Essence con-
sidered the method-agnostic approach and the practice cards to have been useful for
planning out and formalizing their way of working during their projects. Additionally,
the teams that had grasped the Essence kernel (except for two teams) also reported
Essence having been useful in tracking progress during their projects. They felt that
Essence gave them a good general understanding of SE project work through the alphas
and that the alpha states helped them keep track of progress on their endeavor.

We therefore argue in favour of using Essence in SE education. By helping SE
students gain a better understanding of SE project work and by preparing them for

136 K.-K. Kemell et al.

future adoption of various practices and methods, Essence can help tackle gaps [2, 13]
between SE education and practice. To summarize our findings:

(1) Essence can teach students new methods and practices by encouraging them to
study them in order to tailor their own methods using Essence

(2) Essence encourages students to adjust their way of working based on the SE
context at hand as opposed to following existing methods by the book

(3) Essence helps students structure their way of working in a practical setting
(4) Better tutorial resources for Essence are needed to make it easier to adopt.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development
Methods: Review and Analysis, p. 478. VTT Publications, Otamedia (2002)

2. Almi, N.E.A.M., Rahman, N.A., Purusothaman, D., Sulaiman, S.: Software engineering
education: the gap between industry’s requirements and graduates’ readiness. In: 2011 IEEE
Symposium on Computers & Informatics (ISCI) (2011)

3. Crowne, M.: Why software startups fail and what to do about it – evolution of software
product development in startup companies. In: Proceedings International Engineering
Management Conference (IEMC), pp. 338–343 (2002)

4. Davis Jr., F.D.: A Technology Acceptance Model for Empirically Testing New End-User
Information Systems: Theory and Results. Massachusetts Institute of Technology (1985)

5. Ghanbari, H.: Investigating the causal mechanisms underlying the customization of software
development methods. Jyväskylä Studies in Computing, vol. 258. Uni. of Jyväskylä (2017)

6. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:
Software development in startup companies: the greenfield startup model. IEEE Trans.
Softw. Eng. 42(6), 585–604 (2016)

7. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: a
behavioral framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP, vol.
182, pp. 27–41. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08738-2_3

8. Graziotin, D., Abrahamsson, P.: A web-based modeling tool for the SEMAT essence theory
of software engineering. J. Open Res. Softw. 1, e4 (2013)

9. Jacobson, I., Stimson, R., Hastie, S.: Escaping Method Prison (2017). https://www.infoq.
com/articles/escape-method-prson. Accessed 15 May 2018

10. Jacobson, I., Ng, P., McMahon, P.E., Spence, I., Lidman, S.: The essence of software
engineering: the SEMAT kernel. ACMQueue 10, 40–52 (2012)

11. Kemell, K.O., et al.: Gamifying the escape from the engineering method prison - an
innovative board game to teach the essence theory to future project managers and software
engineers (2018). (to be published in the proceedings of ICE 2018)

12. Kon, F., Cukier, D., Melo, C., Hazzan, O., Yuklea, H.: A Panorama of the Israeli Software
Startup Ecosystem. SSRN (2014). https://ssrn.com/abstract=2441157

13. Lethbridge, T.C., Díaz-Herrera, J., LeBlanc Jr., R.J., Thompson, J.B.: Improving software
practice through education: challenges and future trends. In: Proceedings: FOSE 2007 Future
of Software Engineering (2007)

14. Object Management Group: Essence – Kernel and Language for Software Engineering
Methods. Version 1.1. http://semat.org/essence-1.1. Accessed 28 May 2018

The Essence Theory of Software Engineering – Large-Scale Classroom Experiences 137

http://dx.doi.org/10.1007/978-3-319-08738-2_3
https://www.infoq.com/articles/escape-method-prson
https://www.infoq.com/articles/escape-method-prson
https://ssrn.com/abstract=2441157
http://semat.org/essence-1.1

15. Park, J.S., McMahon, P.E., Myburgh, B.: Scrum powered by essence. ACM SIGSOFT
Softw. Eng. Notes 41(1), 1–8 (2016)

16. Parnin, C., et al.: The top 10 adages in continuous deployment. IEEE Softw. 34(4), 86–95
(2017)

17. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:
Software development in startup companies: a systematic mapping study. Inf. Softw.
Technol. 56, 1200–1218 (2014)

18. Pieper, J.: Discovering the essence of software engineering – an integrated game-based
approach based on the SEMAT essence specification. In: Proceedings of the 2015 IEEE
Global Engineering Education Conference (EDUCON), pp. 939–947 (2015)

19. Ries, E.: The Lean Startups: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Books, New York (2011)

20. SEMAT: SEMAT and Essence –What is it and why should you care? http://semat.org/what-
is-it-and-why-should-you-care. Accessed 20 May 2018

21. SEMAT: Great pick up of Semat. http://semat.org/news/-/asset_publisher/eaHEtyeuE9wP/
content/great-pick-up-of-semat. Accessed 13 May 2018

22. Wang, X., Edison, H., Bajwa, S.S., Giardino, C., Abrahamsson, P.: Key challenges in
software startups across life cycle stages. In: Sharp, H., Hall, T. (eds.) XP 2016. LNBIP, vol.
251, pp. 169–182. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33515-5_14

138 K.-K. Kemell et al.

http://semat.org/what-is-it-and-why-should-you-care
http://semat.org/what-is-it-and-why-should-you-care
http://semat.org/news/-/asset_publisher/eaHEtyeuE9wP/content/great-pick-up-of-semat
http://semat.org/news/-/asset_publisher/eaHEtyeuE9wP/content/great-pick-up-of-semat
http://dx.doi.org/10.1007/978-3-319-33515-5_14

	The Essence Theory of Software Engineering – Large-Scale Classroom Experiences from 450+ Software Engineering BSc Students
	Abstract
	1 Introduction
	2 The Essence Theory of Software Engineering
	3 Research Design and Methodology
	3.1 The Course
	3.2 The Role of Essence in the Course
	3.3 Data Collection and Analysis Methodology

	4 Results
	4.1 Theme 1: Difficult or Resource-Intensive to Learn
	4.2 Theme 2: Inexperience
	4.3 Theme 3: Way of Working and the Method Prison
	4.4 Theme 4: Progress Control
	4.5 Summary of Findings

	5 Discussion
	5.1 Limitations of the Study

	6 Conclusions
	References

