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Abstract. A classical heuristic in software testing is to reward diver-
sity, which implies that a higher priority must be assigned to test cases
that differ the most from those already prioritized. This approach is com-
monly known as similarity-based test prioritization (SBTP) and can be
realized using a variety of techniques. The objective of our study is to
investigate whether SBTP is more effective at finding defects than ran-
dom permutation, as well as determine which SBTP implementations
lead to better results. To achieve our objective, we implemented five dif-
ferent techniques from the literature and conducted an experiment using
the defects4j dataset, which contains 395 real faults from six real-world
open-source Java programs. Findings indicate that running the most dis-
similar test cases early in the process is largely more effective than ran-
dom permutation (Vargha–Delaney A [VDA]: 0.76–0.99 observed using
normalized compression distance). No technique was found to be supe-
rior with respect to the effectiveness. Locality-sensitive hashing was, to
a small extent, less effective than other SBTP techniques (VDA: 0.38
observed in comparison to normalized compression distance), but its
speed largely outperformed the other techniques (i.e., it was approxi-
mately 5–111 times faster). Our results bring to mind the well-known
adage, “don’t put all your eggs in one basket”. To effectively consume
a limited testing budget, one should spread it evenly across different
parts of the system by running the most dissimilar test cases early in the
testing process.
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1 Introduction

The software industry is moving toward an agile, continuous delivery paradigm in
which software changes are released more frequently and considerably faster than
before [29]. This development paradigm has brought many benefits but posed
several challenges, particularly regarding software quality [25,29]. To ensure soft-
ware correctness, software developers employ regression testing (RT), which
involves running a dedicated regression test suite after each revision to verify
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that recent changes have not negatively impacted the software’s functionality [4].
Industrial software-intensive systems often comprise many test cases, and the
execution of these test cases require several hours or even days. For example,
the JOnAS Java EE middleware requires running 43,024 test cases to verify all
of its 16 configurations [21]. To improve RT processes, the software engineering
literature has proposed many solutions [34]. Test case prioritization (TCP) [30]
is one of these solutions; it is concerned with the ideal ordering of test cases to
maximize desirable properties (i.e., early fault detection). From the fault detec-
tion viewpoint, TCP seems to be a safe approach because it does not eliminate
test cases and simply permutes them within the test suite.

To increase the likelihood of detecting faults, one potential strategy is spread-
ing the testing budget evenly across different parts of the system [11,18,23], and
realizing this strategy involves utilizing a diverse set of test cases. To devise a
diverse test suite, one needs to measure similarities among the test cases. The
notion of similarity measurement is a subject of interest for many applications.
The degree to which two objects share characteristics is called similarity, and
the degree to which they differ is termed distance. In the software testing liter-
ature, a point of particular interest is quantifying similarities among test cases.
For example, in coverage-based testing, coverage information has been used as
a proxy to measure the similarities among test cases [18]. More recently, several
other properties have been described in the literature i.e., the overlap between
test paths and their coverage in model-based testing [3,12], as well as the source
code of test cases [23], test input and output [16], topic models extracted from
test scripts [32], and even English document of manual test cases [15].

The main intuition is that test cases that capture the same faults tend to be
more similar to each other, and test cases that capture different faults tend to be
more dissimilar [11,18,23]. The number of published empirical studies that sup-
port this intuition are growing (e.g., [1,5,7,13,15,32]). The implication for TCP
is that a higher priority must be assigned to test cases that are most dissimilar
to those already prioritized. This can be realized by maximizing the distances
among test cases ordered in the test suite. Similarity-based test prioritization
(SBTP) is a black-box static technique (i.e., it does not require the source code
and execution of the system under test) that can potentially be applied, for
example, where code instrumentation is too costly or impossible.

The natural question that arises is whether running the most dissimilar test
cases early in the testing process improves the test suite’s fault-detection capa-
bility. SBTP can be implemented in a variety of ways, such as applying different
similarity metrics. Thus, a follow-up question that arises is which implementa-
tion yields the best results. A similar objective was pursued by Ledru et al. [23]
in 2012. The authors conducted a comprehensive experiment on the Siemens test
suite and evaluated four classical string metrics using a pairwise algorithm. This
study extends prior research by investigating the effectiveness and performance
of five different SBTP techniques (4 additional in comparison to Ledru et al.).
These techniques rely on different similarity metrics and were selected from the
literature based on the results of recent experimental studies [5,6,14,23,26].
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The ultimate objective of our study is to detect regression faults early in
the testing process, allowing software developers to perform RT more frequently
and continuously. To achieve this objective, we conducted an experiment using
the defects4j dataset [20], which contains 395 real faults from 6 real-world open-
source Java programs. Findings from our study indicate that:

– When their average percentage of faults detected (APFD) are compared, test
suites ordered by SBTP are largely more effective than random permuta-
tion (VDA: 0.76–0.99 observed using normalized compression distance [NCD]
across all subjects), which means running the most dissimilar test cases early
in the testing process improves the test suite’s fault-detection capability.

– Of the 5 SBTP implementations investigated, no technique was found to be
superior with respect to the effectiveness. Locality-sensitive hashing (LSH)
was, to a limited extent, less effective than other SBTP techniques (VDA:
0.38 observed in comparison to NCD), but its speed largely outperformed the
other techniques (i.e., it was approximately 5–111 times faster).

Our findings yield important academic and practical implications. From the
academic perspective, we provide empirical evidence that supports test diversity
and its impact on TCP. From the of practitioners’ perspective, our results bring
to mind the well-known adage, “don’t put all your eggs in one basket”. To
effectively consume a limited testing budget, one should spread it evenly across
different parts of the system by running the most dissimilar test cases early in the
process. The remainder of the paper is organized as follows. Section 2 discusses
the background and related works. Section 3 describes the research methodology,
and Sect. 4 presents answers to the research questions. The findings are discussed
in Sect. 5, and conclusions are discussed in Sect. 6.

2 Background and Related Work

2.1 Background

Figure 1 presents a general model of RT techniques. Let P be a program, P ′ be
a modified version of the program, and T be a test suite developed for P . In the
transition from P to P ′, a previously verified behavior of P may have become
faulty in P ′. RT seeks to capture regressions in P ′ and verify that changes to the
system have not negatively impacted any previously verified functionalities. Dur-
ing RT, several techniques may be employed. One of the techniques is test suite
minimization; it seeks to identify and permanently eliminate obsolete or redun-
dant test cases from the test suite. Another technique, regression test selection,
aims to select only the subset of test cases affected by the recent changes. TCP is
concerned with the ideal ordering of test cases to maximize desirable properties
(i.e., early fault detection), while test suite augmentation aims to identify newly
added source code and generate new test cases accordingly.
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Fig. 1. General model of RT techniques

2.2 Related Work

A similarity metric, which is also known as similarity/distance function, is a
metric that measures the similarity or distance (i.e., inverse similarity) between
two objects. Similarity metrics have been widely applied in the literature (e.g.,
classification problems, plagiarism detection, sequence and image analysis).

In software engineering, particularly in software testing, similarity metrics
have been applied. For instance, Shahbazi and Miller [31] conducted a large
empirical study on black-box automated test-case generation using several string
metrics. Their results indicate that superior test cases can be generated by con-
trolling the diversity and length distribution of the string test cases. Hemmati et
al. [13] proposed a similarity-based test case selection technique that selects the
most diverse subset of test cases among those generated by applying a coverage
criterion on a test model. Feldt et al. [5] proposed the test set diameter (TSDm)
technique, which was developed based on NCD for multisets. Their results indi-
cate that test selection using TSDm leads to higher structural and fault coverage
than random selection. NCD multisets, which provides similarity measurement
at the level of entire sets of elements rather than between pairs, have also been
applied in the TCP literature recently [16].

To implement SBTP, the distances among test cases must be measured using
a specific metric, and this information must then be leveraged to perform TCP.
Ledru et al. [23] conducted a comprehensive experiment on the Siemens test suite
and evaluated four classical string metrics for TCP purposes (i.e., Cartesian,
Levenshtein, Hamming, and Manhattan distance). Their findings indicated that
TCP using string metrics is more effective than random prioritization, and on
average, Manhattan distance yields better results than the other investigated
metrics. To calculate the distance between a test case t and set of test cases T ′,
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Ledru et al. proposed the following function, which uses distance measure d:

distance(t, T ′, d) = min{d(t, ti)|ti ∈ T ′, ti �= t}
Ledru et al. used the min operation because an empirical study by Jiang et al.

[18] showed that maximize-minimum is more efficient than maximize-average and
maximize-maximum. Ledru et al. also proposed an algorithm (Algorithm1) that
iteratively picks the most dissimilar test case (i.e., having the greatest distance
from a set of already prioritized test cases).

Algorithm 1. Similarity-based TCP Using a Pairwise Algorithm
Data: Test Suite TS
Result: Prioritized Suite PS

1 Find t ∈ TS with the maximum distance(t, TS);
2 Append t to PS and remove from TS;
3 while TS is not empty do
4 Find t ∈ TS with the maximum distance(t, PS);
5 Append t to PS and remove from TS;

6 end

Using SBTP with a pairwise algorithm comes with the cost of pairwise com-
parison, and its performance becomes inefficient as the test suite becomes larger.
The underlying issue in SBTP can be defined as a similarity search problem,
which involves searching within a large set of objects for a subset of objects that
closely resemble a given query object. One popular approach to solving simi-
larity search problems is LSH, which was originally introduced by Indyk and
Motwani [17] in 1998. LSH hashes input items so that similar items map to the
same buckets with high probability [24]. LSH is widely used in the literature (see
the many references in Google Scholar to [17]) but is only occasionally applied
to software engineering problems (e.g., clone detection [19] and test generation
[31]). More recently, Miranda et al. [26] proposed an approach based on LSH,
which provides scalable SBTP in both white-box and black-box fashion.

The purpose of our study is to investigate whether SBTP is more effective
at finding defects than random permutation and which SBTP implementations
yield the best results. A similar objective was pursued by Ledru et al. [23] in 2012.
In comparison to their work, we have investigated five different techniques with
respect to their effectiveness and performance. These techniques rely on different
similarity metrics and were selected from the literature based on the results of
recent experimental studies [5,6,14,23,26]. The rationale behind their selection
and details about their implementation is described in Sect. 3.3. The Siemens
test suite, which was used by Ledru et al., is a classical dataset and widely used
in the software testing literature. However, its representative character has been
debated for several reasons (e.g., in [27], which was also acknowledged by Ledru
et al. in [23]). In this work, we report an experiment conducted on the defects4j
dataset [20], which contains 395 real faults from 6 open-source Java programs.
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3 Research Method

In this section, the study’s objective and research questions, study subject, study
design, and evaluation methods are discussed.

3.1 Objective and Research Questions

The main objective of our study is to catch regression faults early in the test-
ing process, allowing software developers to perform RT more frequently and
continuously. The research questions and their rationales are as follows:

RQ1: Is prioritization by similarity-based TCP more effective at
finding defects than random permutation? This research question is
designed to investigate whether running the most dissimilar test cases early
in the testing process improves the test suite’s fault-detection capability in com-
parison to random ordering.

RQ2: Which similarity-based TCP technique is the most effective
and has the best performance? This research question is designed to compare
the effectiveness and performance of investigated SBTP implementations. The
rationale behind the investigated techniques’ selection and details about their
implementation are described in Sect. 3.3.

3.2 Subjects Under Study

To answer our research questions, we conducted an experiment using the
defects4j dataset [20], which contains 395 real faults from 6 real-world open-
source Java programs. The subject’s characteristics are presented in Table 1.
Each analyzed subject’s name is presented in the first column, while the second
column shows the number of versions analyzed for each program. The third and
fourth columns present the median number of test classes and test cases, and
the range is in parentheses. The last two columns show the source’s size (kilo
line-of-code) and test code for the most recent version, as reported by SLOC-
Count1.

3.3 Study Design

To answer RQ1, we compared the effectiveness of SBTP with random permu-
tation. SBTP does not use a system under test; thus, it can hardly be more
effective than TCP techniques, which use code coverage criteria [23]. Thus, like
Ledru et al., we used random permutation as the baseline of our experiment.
For the sake of a sanity check, we also included a TCP approach in which we
minimize the diversity (i.e., maximize similarity among test cases). The ratio-
nale behind our sanity check is if diversity is valuable in TCP, then minimizing

1 SLOCCount is a suite of programs used to count lines of code: https://www.
dwheeler.com/sloccount/.

https://www.dwheeler.com/sloccount/
https://www.dwheeler.com/sloccount/
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Table 1. Subject characteristics

Project Versions Test classes Test cases S-LOC T-LOC

JFreeChart (Chart) 26 323 (301–356) 1789 (1591–2193) 123.527 37.396

Closure Compiler (Closure) 133 216 (118–235) 7389 (2595–8443) 251.855 85.138

Apache Lang (Lang) 65 89 (81–111) 1760 (1540–2291) 45.609 28.199

Apache Math (Math) 106 253 (91–385) 2319 (817–4378) 22.738 12.238

Mockito 38 237 (128–268) 1233 (704–1388) 38.914 10.638

Joda-Time (Time) 27 122 (120–123) 3906 (3749–4041) 176.965 41.536

diversity should, in turn, negatively affect the test suite’s fault-detection capa-
bility [16]. Effectiveness was measured using APFD, which is a commonly used
metric in the TCP literature and elaborated on in Sect. 3.4.

To answer RQ2, we presented the aggregated the investigated techniques’
performance and effectiveness within and across studied subjects. Using the
aggregated values, we can determine which technique achieved the best effec-
tiveness and performance on average. The five SBTP techniques presented in
Table 2 were selected from the literature and investigated in this experiment.
To calculate the distances, we automatically downloaded the source code for all
studied versions and used the source code behind the test classes at their exact
version.

Table 2. TCP techniques investigated

Name (Acronym) Objective Reference

Random Permutation (RND) Baseline -

Manhattan Distance (MNH) Maximize diversity Ledru et al. [23]

Jaccard Distance (JAC) Maximize diversity Hemmati and Briand [14]

Normalized Compression Distance (NCD) Maximize diversity Feldt et al. [6]

Sanity Check (SC) using NCD Maximize similarity -

NCD Multisets (NCD-MS) Maximize diversity Feldt et al. [5]

Locality Sensitive Hasing (LSH) Maximize diversity Miranda et al. [26]

We implemented the Manhattan, Jaccard, NCD, and NCD Multisets using
the pairwise algorithm proposed by Ledru et al. [23]. The Manhattan distance
between two objects is the sum of the differences of their corresponding com-
ponents. To calculate the Manhattan distance, the source code is converted to
a vector of numbers. In practice, each character should be replaced with their
ASCII code (or any other numerical coding). The Jaccard similarity between
two sets x and y is defined as JS(x, y) = |x ∩ y|/|x ∪ y|, and their distance is
JD(x, y) = 1 − JS(x, y). To calculate the Jaccard distance, the source code is
converted to a set of k-shingles (e.g., any substring of length k found within the
text). In our study, we used k = 5, which is commonly used in the analysis of
relatively short documents [24].
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NCD and NCD Multisets both rely on a compressor function C, which cal-
culates the approximate Kolmogorov complexity and returns the length of the
input string after its compression, using a chosen compression program. In this
study, we used LZ4, which is a high-speed lossless data compression algorithm2.
The difference between NCD and NCD Multisets is that the latter performs sim-
ilarity measurement at the level of entire sets of elements rather than between
pairs. For the NCD Multisets, we adapted the pairwise algorithm so that at
each iteration, we pick a test t ∈ TS that has maximum Kolmogorov complexity
when compressed with the entire set of the already prioritized suite PS. This
means that the candidate test has less mutual information with PS and is more
different than any other t ∈ TS.

Furthermore, we implemented LSH using the MinHash technique to rapidly
estimate Jaccard similarity. In our implementation, we followed the instructions
provided by [24], which are also described here. To estimate the Jaccard similar-
ity, we converted the source code to a set of 5-shingles. However, their size is often
large, and it is impractical to use them directly. Using MinHashing technique, we
replaced these sets with a much smaller representation (e.g., a signature) while
preserving the Jaccard similarity between them. Given a hash function h and
an input set S, we hashed all elements in the set using the hash function and
picked the minimum resulting value as MinHash of S. This process was repeated
P times (i.e., the number of permutations) using different hash functions to cal-
culate the signature of a set (e.g., a sequence of MinHashes). Thereafter, the
Jaccard similarity of two sets can be estimated using the fraction of common
MinHashes in their signature. Using MinHashing, we were able to compress large
sets into a small signature; similarity searches among large numbers of pairs is
inefficient.

LSH works with a signature matrix (e.g., MinHash signatures as column)
and divides it into b bands consisting of r rows each. For each band, LSH takes
vectors of numbers (e.g., the portion of one column within that band) and hashes
them to the buckets using a hash function. The more similar two columns are,
the more likely they collide into some bands. When two items fall into the same
bucket, it means a portion of their signature agrees, and they will be added to the
candidate set. The candidate set returned by an LSH query only contains a subset
of items that are more likely similar (e.g., having Jaccard similarity over a certain
threshold). An approximation of this threshold is defined as ST = (1/b)(1/r).

Typically, LSH is configured with a high ST so that the candidate set only
contains closely similar items. However, in our context, we are interested in items
with a maximum distance from the LSH query. Thus, like Miranda et al. [26], we
configured LSH so that we achieved an approximately 0.1 similarity threshold3,
and the candidate set CS would contain almost all test cases, and the distant set
DS would include a small number of remaining items with high Jaccard distance.

2 The LZ4 compression algorithm and details regarding its implementation are avail-
able at http://lz4.github.io/lz4/.

3 Permutations: 10; bands: 10; rows: 1.

http://lz4.github.io/lz4/
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To employ LSH for TCP purpose, we implemented an algorithm (Algorithm2)
proposed by Miranda et al. [26].

Algorithm 2. Similarity-based TCP Using Locality-Sensitive Hashing
Data: Test Suite TS
Result: Prioritized Suite PS

1 signatures ← MinHashSignature(TS);
2 LSH.Index (signatures);
3 query ← MinHashSignature(∅);
4 while signatures is not empty do
5 CS ← LSH.Search(query);
6 DS ← signatures − CS − PS;
7 Find i ∈ DS with the maximum JD (estimate) to PS;
8 Append i to PS and remove from signatures;
9 query ← Update cumulative MinHash signature of PS;

10 end

3.4 Evaluation

To compare the investigated TCP techniques, effectiveness and performance are
both important. Performance was measured using average method execution
time (AMET) in seconds. AMET includes both the preparation time (i.e., cal-
culating the distance matrix or LSH initialization) and the prioritization algo-
rithm itself. To assess effectiveness, we used an APFD metric that was originally
introduced by Rothermel et al. [30] and is widely used in the literature [22]. Let
T be an ordered test suite containing n test cases and F be a set of m faults
detected by T ; then TFi indicates the number of test cases executed in T before
capturing fault i. APFD indicates the average percentage of faults detected and
is defined as follows:

APFD = 100 ∗ (1 − TF1 + TF2 + ... + TFM

nm
+

1
2n

)

To properly compare the investigated TCP techniques, we performed statisti-
cal analyses. A Mann–Whitney U test [2], which is a non-parametric significance
test, was applied to determine whether the difference between two techniques
is statistically significant, using p < 0.05 as the significance threshold. The null
hypothesis of this test indicates that there is no significant difference between the
effectiveness of the techniques under evaluation. This test was selected because
the studied data may not follow a normal distribution. The Mann–Whitney U
test indicates whether there is any difference between techniques but does not
show the degree of difference between them. Thus, we used a VDA measure
[2], which is a non-parametric effect size. A VDA measure is a number between
0 and 1. When V DA(x, y) = 0.5, it indicates the two techniques are equal.
When V DA(x, y) > 0.5, it means x outperformed y and vice versa. To compare
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the investigated techniques across the subject programs, we presented the mean
for the analyzed variables, and a 95% non-parametric confidence interval (CI)
based on 1000 bias-corrected and accelerated bootstrap replicates. Furthermore,
when comparing TCP techniques, we also provided violin plots to visualize the
distribution of APFDs.

4 Findings

This section is structured to address the research questions and includes the
aggregated results of all execution rounds (see the number of versions presented
for each subject in Table 1). The experiments were conducted on a computer with
an Intel 2.7 GHz Xeon E5-2680 CPU and 16 GB installed RAM. To accelerate
the performance of investigated TCP techniques, we parallelized all techniques.

4.1 RQ1: Is Prioritization by Similarity-Based TCP More Effective
at Finding Defects Than Random Permutation?

Table 3 presents the effect sizes for differences between analyzed SBTP tech-
niques and random permutation. The analyzed SBTP techniques’ effectiveness
varies among subjects. However, one can observe that SBTP is largely more
effective in finding defects than random permutation (VDA 0.76–0.99 observed
using NCD across all subjects). These differences are also statistically signifi-
cant in nearly all cases, which indicates running the most dissimilar test cases
early in the testing process (maximizing the diversity) increases the test suite’s
fault-detection capability. This was also verified by our sanity check (SC) where
the inverse approach was employed. The sanity check indicated maximizing sim-
ilarities among tests would decrease the test suite’s fault-detection capability,
and as expected, it was less effective than random ordering (VDA: 0.03–0.34).
Figure 2 shows the violin plots for the investigated TCP techniques within the
studied subjects.

Table 3. VDA effect size - TCP technique vs. RND permutation

Project MNH JAC NCD NCD-MS LSH SC

Chart 0.87 0.81 0.81 0.91 0.76 0.21

Closure 0.89 0.8 0.87 0.87 0.71 0.12

Lang 0.79 0.75 0.77 0.76 0.69 0.25

Math 0.84 0.82 0.84 0.84 0.76 0.16

Mockito 0.58 0.74 0.76 0.6 0.67 0.34

Time 0.96 0.99 0.99 0.96 0.9 0.03

VDA range 0.58–0.96 0.74–0.99 0.76–0.99 0.60–0.96 0.67–0.90 0.03–0.34
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Fig. 2. Effectiveness (APFD) comparison - violin plots

4.2 RQ2: Which Similarity-Based TCP Technique Is the Most
Effective and Has the Best Performance?

For a TCP approach to be applicable in a real-world environment, effectiveness
(measured by APFD) and performance (measured by AMET) are both criti-
cal. Table 4 compares the effectiveness of the investigated techniques within and
across the studied subjects. However, Table 5 compares the investigated tech-
niques’ performance within and across the studied projects. One can observe
that all SBTP techniques except LSH achieved very close mean APFD scores
across all subjects (72.69–75.44). LSH achieved the lowest effectiveness (66.79),
but had the best performance and scored a very low AMET across all subjects
(1.24 s). Overall, on average and across all subjects, no technique was found
to be superior with respect to the effectiveness. LSH was, to a small extent,
less effective than other SBTP techniques (VDA: 0.38 observed in comparison
to NCD), but its speed largely outperformed the other techniques (i.e., it was
approximately 5–111 times faster).
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Table 4. Effectiveness (APFD) comparison

Project MNH JAC NCD NCD-MS LSH

Chart 81.89 75.72 77.3 84.32 69.94

Closure 77.47 68.24 74.41 74.84 63.65

Lang 74.26 72.14 73.16 72.69 66.85

Math 80.39 78.81 80.37 80.32 72.21

Mockito 51.69 67.09 67.58 53.82 59.52

Time 70.39 76.95 75.99 71.8 68.06

Mean APFD

(95% CI)

75.05

(72.90–76.87)

72.69

(70.84–74.47)

75.44

(73.83–77.28)

74.35

(72.51–76.26)

66.79

(64.64–68.81)

Table 5. Performance (AMET) comparison

Project MNH JAC NCD NCD-MS LSH

Chart 138.22 25.02 15.65 102.99 2.84

Closure 230.15 15.05 5.85 89.99 1.32

Lang 33.18 2.76 0.58 7.22 0.29

Math 142.64 17.22 10.01 97.69 1.62

Mockito 41.54 7.14 5.63 14.32 1.04

Time 56.78 5.88 1.27 18.24 0.39

Mean

AMET

(95% CI)

138.21

(130.50–146)

12.88

(12.14–13.57)

6.41

(5.87–6.95)

67.11

(61.85–73.29)

1.24

(1.15–1.33)

5 Discussion

5.1 Overview of Findings, Their Implications, and Future Works

The ultimate objective of our study was to detect regression faults early in
the testing process, allowing software developers to perform regression testing
more frequently and continuously. To achieve our objective, we conducted an
experiment using the defects4j dataset [20].

Test suites ordered by SBTP were largely more effective at finding defects
than random permutation (VDA: 0.76–0.99 observed using NCD across all sub-
jects). This indicates running the most dissimilar test cases early in the testing
process (maximizing the diversity) increases the test suite’s fault-detection capa-
bility. This is also verified by our sanity check where the reverse approach was
applied (VDA: 0.03–0.34). Of the 5 SBTP implementations investigated, no tech-
nique was found to be superior with respect to the effectiveness. LSH was, to a
small extent, less effective than other SBTP techniques (VDA: 0.38 observed
in comparison to NCD), but its speed largely outperformed the other tech-
niques (i.e., it was approximately 5–111 times faster). From practical perspec-
tive, NCD seems to be the best choice because it achieved high effectiveness with
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relatively low average method execution time. Yet, LSH is more practical when
the prioritization time is critical.

Findings from our study bring to mind the well-known adage “don’t put all
your eggs in one basket”. To effectively consume a limited testing budget, one
should spread it evenly across different parts of the system by running the most
dissimilar test cases early in the testing process. The underlying intuition is that
test cases that capture the same faults tend to be more similar to each other,
and test cases that capture different faults tend to be more different [11,18,23].
In comparison to other TCP techniques, SBTP requires minimal information
(i.e., only the required information is encoded in the test suite) and has poten-
tial applications. SBTP can be applied in different contexts and during initial
testing where no information about the system under test is available (e.g., code
coverage or historical data). SBTP is an especially interesting approach when
code instrumentation is too costly or impossible (e.g., in automotive system test-
ing where source-code is not always available [8,10]). SBPT can also be applied
in a complementary fashion and combined with other TCP techniques (e.g.,
history-based diversity proposed in our previous work [9]).

To realize SBTP in practice, one must measure the similarities among test
cases. This similarity measurement can be performed using string metrics and on
different properties (i.e., the source code, documentation, or any other informa-
tion about the test cases). As acknowledged by Ledru et al. [23], string metrics are
based on lexicographic information and do not necessarily capture the semantics
behind the test cases. Two test cases might consequently be considered similar,
although they are distant and correspond to different execution paths. Future
works are required to investigate possible approaches that precisely measure the
semantic similarities among test cases. The candidate approach should not come
with a high overhead; otherwise, its application remains in theory.

Once similarity measurement has been performed, this information should
be leveraged to perform TCP. One can argue that diversification is perhaps the
best strategy when no strong clues about fault-revealing test cases are available.
Test diversity is a classical heuristic in the literature and has been applied pre-
viously [1,5,7,11,13,15,18,23,32]. The opposite viewpoint is the intensification
strategy, where the testing budget is consumed by and around the most probable
fault-revealing test cases. Theoretically, both strategies can be applied simulta-
neously (i.e., intensify where it is necessary and diversify the remaining budget).
However, making decisions about when and how to apply these strategies, either
individually or combined, remains a challenge. To the best of our knowledge, the
application of these strategies, as well as their relevance and impact, have not
been widely investigated in the literature. The only exception we are aware of
is the recent study by Patrick and Jia [28] wherein the authors investigated the
trade-off between diversification and intensification in adaptive random testing.

Regardless of which strategy is chosen, a TCP algorithm needs to iteratively
find the most (dis)-similar item to the set of already prioritized test cases. This
can be done using different search techniques. TCP using a pairwise algorithm
does not scale, and its performance becomes inefficient as the test suite’s size
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increases. In this work, we have investigated LSH as one popular solution to
the similarity search problem. There are other solutions proposed in the litera-
ture. Future work should also investigate the effectiveness and performance of
candidate solutions.

5.2 Threats to Validity

In empirical software engineering, validity threats can be grouped into four dis-
tinct classes: construct validity, internal validity, external validity, and reliability
[33]. In the present context, construct validity relates to the use of right mea-
sures. To assess the investigated TCP techniques’ effectiveness, we used the
APFD metric, which is widely used in the literature (see the latest systematic
literature review on TCP by Khatibsyarbini et al. [22]). Internal validity concerns
the relationship between the constructs and the proposed explanation. This cor-
responds to the potential faults in our implementation. Our implementation was
piloted on a small sample before running the actual experiment. Furthermore,
the implementation and results were discussed and reviewed in regular meetings,
which were held among the co-authors of this study.

External validity relates to the generalizability of the study and whether the
subjects of our study are real-world projects. Our experiment was conducted on
the defects4j dataset [20], which contains 395 real faults from 6 real-world open-
source Java programs. Our conclusions are drawn based on ex-post analysis of
software artifacts. This motivates our future work to replicate our experiment
in industry and to larger systems. Reliability concerns the repeatability and
reproducibility of the research procedure and conclusions. This required access
to the analyzed subjects and a throughout report of the experiment. The data
that we used is publicly available, and detailed information about our experiment
and its implementation were presented in this paper.

6 Concluding Remarks

The ultimate objective of our study was to detect regression faults early in
the testing process, allowing software developers to perform regression testing
more frequently and continuously. To achieve this objective, we conducted an
experiment using the defects4j dataset, which contains 395 real faults from 6 real-
world open-source Java programs. In summary, the results from our experiments
suggest the following:

(1) Test suites ordered by SBTP were largely more effective at finding defects
than random permutation (VDA: 0.76–0.99 observed using NCD across all sub-
jects), which means running the most dissimilar test cases early in the testing
process improves the test suite’s fault-detection capability; (2) Of the 5 SBTP
implementations investigated, no technique was found to be superior with respect
to the effectiveness. LSH was, to a small extent, less effective than other SBTP
techniques (VDA: 0.38 observed in comparison to NCD), but its speed was faster
than the other techniques studied (approximately 5–111 times faster).
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Taken together, these results bring to mind the well-known adage “don’t put
all your eggs in one basket”. To effectively consume a limited testing budget, one
should spread it evenly across different parts of the system by running the most
dissimilar test cases early in the process. Our study contributes to the literature
by providing empirical evidence in support of test diversity and its impact on
TCP.
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