
Combining Machine Learning
and Semantics for Anomaly Detection

Badre Belabbess1,2(B), Musab Bairat1, Jeremy Lhez2, and Olivier Curé2

1 ATOS, 95870 Bezons, France
{badre.belabbess,musab.bairat}@atos.net

2 LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM, 77454 Marne-la-Vallée, France
{jeremy.lhez,olivier.cure}@u-pem.fr

Abstract. The emergence of the Internet of Things and stream pro-
cessing forces large scale organizations to consider anomaly detection as
a key component of their business. Using machine learning to solve such
complex use cases is generally a cumbersome, costly, time-consuming
and error-prone process. It involves many tasks from data cleansing, to
dimension reduction, algorithm selection and fine tuning. It also requires
the involvement of various experts such as statisticians, programmers
and testers. With RAMSSES, we remove the burden of this pipeline and
demonstrate that these tasks can be automated. Our system leverages
on a Lambda architecture based on Apache Spark to analyze histori-
cal data, perform cleansing and deal with the curse of dimensionality.
Then, it identifies the most interesting attributes and uses a continuous
semantic query generator executed over streams. The sampled data are
processed by self-selected machine learning methods to detect anomalies,
an iterative process using end user annotations improves significantly the
accuracy of the system. After a description of RAMSSES’s main com-
ponents, the performance and relevancy of the system are demonstrated
via a thorough evaluation over real-world and synthetic datasets.

Keywords: Real time · Streaming · Machine learning
Knowledge extraction · Anomaly detection · Smart water management

1 Introduction

In a global context of smart cities and highly efficient business systems for large
companies, identifying potentially harmful singularities that could lead to envi-
ronmental or economic risks opened a new world of possibilities. Therefore, the
growing research domain of anomaly detection [1] reached multiple fields from
medicine (e.g., to identify malignant tumors in MRI images) to finance (e.g., to
discover cases of credit card transaction frauds) or information technology (e.g.,
to detect hacking situations in computer networks). Machine learning proposes a
powerful set of approaches that can help solving such use cases in an efficient way.
However, it represents a heavy process with strict rules that assumes an exten-
sive time-consuming list of tasks such as data analysis, data cleansing, dimension
c© Springer Nature Switzerland AG 2018
C. Faron Zucker et al. (Eds.): EKAW 2018, LNAI 11313, pp. 503–518, 2018.
https://doi.org/10.1007/978-3-030-03667-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03667-6_32&domain=pdf
https://doi.org/10.1007/978-3-030-03667-6_32


504 B. Belabbess et al.

reduction, sampling, proper algorithms selection, hyper-parameters fine-tuning
and so on. It also involves several experts that will work collectively to find
the right approaches. Therefore, any attempt to solve a use case with machine
learning methods rapidly becomes an important team effort that requires great
resources and top-notch skills. RAMSSES was specifically designed to remove
the burden of machine learning heavy process and ease the deployment of an effi-
cient solution for use cases related to detecting singularities related to Internet
of Things (IoT).

Within the scope of the Waves project1, RAMSSES aims at identifying irreg-
ularities in large potable water networks overseen by a worldwide company. The
actual volume of lost water in the world has peaked to 32 billions m3/year cor-
responding to a loss of US$ 14 billion/year with 90% of them being invisible
due to the underground nature of the network. Our project partner’s French
water network counts around 100.000 Km of pipelines outfitted with more than
3.000 sensors and delivers potable water to roughly 12 million customers. The
premise of this paper is to show that one can draw new knowledge and find
hidden patterns by mixing quantitative and semantic approaches leading to a
powerful system for supporting strategic business decisions. In summary, the
main contributions of the RAMSSES platform are: (i) An automatic method
to realize data pre-processing such as dimension reduction handled by a con-
tinuous query generator that leverages on semantic web technologies; (ii) An
automatic approach to select attributes in a multidimensional large dump by
analyzing the data profile; (iii) A complex set of rules to automatically select
the proper machine learning algorithm by carefully analyzing the profile of the
data ingested such as variables dependency or distribution type; and (iv) An
extensive evaluation on both real and synthetic datasets to assess the overall
performance of the platform.

2 Architecture

RAMSSESS was designed to process both massive dynamic and static data using
a fault-tolerant distributed architecture that can easily scale. Figure 1 gives a
general overview of the system’s architecture. The main goal is to face real-time
heavy throughputs of data as well as to compute intensive models for machine
learning purposes. To meet the needs of a robust, fault-tolerant system, able to
serve a wide range of workloads and use cases, and in which a low latency of
reads and writes is required, we adopted a Lambda architecture [2]. This type
of big data architecture solves the problem of heavily calculating functions on
real-time data by decomposing the problem into three layers: a batch layer that
manages an immutable append-only master dataset and pre-computes query
functions called batch views; a serving layer which indexes the batch views for
ad hoc low latency querying; and a speed layer that uses fast and incremental
algorithms over recent data only.

1 https://www.waves-rsp.org/.

https://www.waves-rsp.org/


Combining Machine Learning and Semantics for Anomaly Detection 505

Fig. 1. RAMSSES architecture

A general end to end scenario for RAMSSES starts with storing historical
time-series data of a use case for pre-analysis purpose. Caching heavy loads of
data needs a robust distributed file system for storing and retrieving files in
record time. Due to its massive capacity and reliability, Hadoop Distributed File
System (HDFS) [3] is a storage system well suited to Big Data requirements.
In combination with YARN [4], this system increases the data management
capabilities of the Hadoop cluster and therefore allows petabytes of data to be
processed efficiently. RAMSSES leverages on a distributed Spark cluster to take
care of the batch processing part during the first stage. However, in most cases,
raw data contains dirty records that need to be cleansed to increase the accuracy
of the main processing modules. Two steps occur here, the system will infer
missing data based on interpolation and expectation-maximization techniques.
Moreover, dimension reduction techniques such as graph-based kernel PCA [5]
will be attempted on the dataset to ease in decreasing the complexity of the
dataset. Due to space constraints, the data cleansing stage will not be detailed
in this paper.

Next, a distributed modelization unit will apply several time-series models
on the cleansed/sampled data to put it in the right structure. This unit aims at
finding specific outliers based on mathematical and statistical techniques that
will leverage on the generated time-series structure. The outliers found will be
used in ranking the features so that the system applies machine learning models
only on the required attributes, thus significantly reducing the processing time.
This method enforces a dynamic data allocation by optimizing the size in each
packet of transferred data between HDFS and the Apache Spark engine. The
extraction of the minimum required data for machine learning processing is
handled by the semantic unit. After converting the reduced data into RDF,
based on an ontology carefully designed to fit the use case, a query generator
will select the minimum size graph using top ranked features based on a SPARQL



506 B. Belabbess et al.

query. This sub-graph will be sent to the main processing unit that leverages on
Spark to run multiple anomaly detection algorithms in a distributed manner.

In order to select the right algorithm that fits the streams signature
RAMSSES uses a complex set of rules based on statistics such as variables depen-
dency or data distribution. After selecting the proper algorithm, we apply it on
the output generated from running the previously mentioned SPARQL query on
the RDF streams, resulting in finding anomalies in the streams. Finally, results
found will be written on a messaging system, namely Apache Kafka, that will
queue the messages in an ordered fashion to be used by a visualization tool.

3 Outlier Detection and Attribute Selection

Data processed by RAMSSES is associated with timestamps, making it a time-
series set of values. To identify outliers accurately, we propose a simple but yet
powerful pipeline based on a combination of time-series modelization and out-
liers detection models selected from established research papers [6,7]. RAMSSES
builds a specific model used in computing an expected value at time T , then a
number of errors E are computed by comparing the expected value with the
actual value at time T . The system will automatically determine thresholds on
E and outputs the most probable anomalies (Fig. 2).

Fig. 2. Outlier detection process

First, our system needs to model received data into a proper time series shape
based on a set of models such as the Simple Exponential Smoothing Model or
the Multiple Linear Regression Model. Then, RAMSSES should detect outliers
automatically using a set of algorithms selected amongst various libraries such
as Yahoo’s EGADS framework [8] such as the Adaptive Kernel Density Change
Point Detector or the K-Sigma Model. The complete list of models used for time
series modelization and outlier detection is available on github. The main criteria
used to select these algorithms are:

1. Genericity: Since we aim at solving different use cases, the applied models
should be able to adapt to various data shapes. Therefore, all selected models
have been able to generate a proper time series and detect outliers against
models that have been tested against 8 use cases (see datasets in Evaluation



Combining Machine Learning and Semantics for Anomaly Detection 507

Section). All the other models outputting errors or simply unable to produce
clean results were discarded.

2. Accuracy: The results computed by all the models for each evaluation dataset
were assessed using well know statistical functions [9] such as cross-amplitude
function (CAF), cross-correlation function (CCF) and coherency function
(COF). We discarded the models that showed abnormal or biased results
for the 3 functions.

3. Complexity: Our system targets low latency and high speed performance by
distributing the operations in a cluster of machines. Hence, for each model
applied to every dataset in the evaluation, we assessed the average running
time and selected the ones that produced the fastest results under 10 s (a
constraint set with the partner for his dashboards that can be changed as a
parameter).

Algorithm 1 illustrates the overall process of feature selection. After building
the new time-series structure based on the models available in our system, all
algorithms from the outlier detection module are run in order to obtain a list
of ranked features, i.e., the columns with the highest proportion of outliers.
Therefore, we generate a new abstract outlier object including its index, value,
and time-stamp. Finally, we count the number of common outliers obtained
from running all algorithm combinations on every time-series model. The result
of this process is a number of outliers for each of the features. The features are
ranked depending on these count values. Results are then aggregated in a file
and forwarded to the semantic query generator component that will use it as a
base in the WHERE clause of the SPARQL query.



508 B. Belabbess et al.

4 Query Generator

The query generation process creates relevant, precise SPARQL queries without
any end-user intervention. These queries are executed continuously on the speed
layer of our lambda architecture to detect anomalies automatically. The inputs
of this generator are: (i) A text file containing ranked features. (ii) data streams
which correspond to RDF graphs. It will be on such elements that the query will
be executed. (iii) The static knowledge base of the project, i.e., domain knowl-
edge. Since streams are generally very compact, redundant knowledge (e.g., geo-
graphical coordinates) are stored in a static way. (iv) The terminology (Tbox)
used by the static and dynamic graphs (i.e., concept and property hierarchies
used in the domain vocabulary).

Fig. 3. Continuous query generation process

Figure 3 presents an overview of the query generation system. The main part
of the query, the most difficult to build, is the WHERE clause. We initialize
it using the dynamic graph coming from the stream, and we replace all blank
nodes by variables. It is an easy operations, which gives us a valid clause, but
way too imprecise; we need to specify it much more. Our next step is to identify
what are the variables of the query SELECT clause. For this purpose, we parse
the ranked features file and identify the information that can be associated to
our graph URI. The matching looks for both properties and objects: the former
represents relevant links between concepts, the latter gives the variables to be
fetched by the SELECT part of the query. For the objects identified, we replace
the literal in the graph by a variable, and add it to the SELECT clause (it is
always a literal, since it is stored in a column of the input file).

At this stage we know there is a subgraph of our actual WHERE clause,
composed of the interlinked triples containing the URI of the elements matched



Combining Machine Learning and Semantics for Anomaly Detection 509

from the ranked features file, which is relevant. However, we still have to decide
which ones of the remaining triples are irrelevant. For each one linked to the
subgraph, we identify three possibilities: (i) the triple’s object is a leaf and has
a data type property, (ii) the triple’s object is a leaf and has an object property
and (iii) the triple’s object is not a leaf (it leads to a graph, and has an object
property).

Fig. 4. Query generation based on a stream

In the first two cases, we have to identify if the triple’s object is static or
dynamic, by querying the static database. If the object is stored in the static
base, we have a redundant information, and it is not required in the query. If
not, it is relevant for the query. When the triple leads to another graph, we need
to know if it is relevant for the query, or independent. Using the Tbox of the
project, we can verify if the initial properties (at the root of the subgraph) are
disjoint or inverse. In such cases, the whole subgraph can be discarded since
it is not relevant for the query. In case the Tbox is incomplete (i.e., missing
concepts, properties or individuals), such method can be problematic. Also, if
the properties are not disjoint, we have to deal with the whole subgraph, and
check every triple which is a costly operation. To specify the query even more,
it is possible to use mathematical methods to identify eventual schemes in the
ranked features file. A simple example is presented in Fig. 4, but the query can
be more complex.

5 Machine Learning

5.1 Clustering Algorithms and Configuration

RAMSSES aims at identifying unusual behaviors through monitoring sensor data
streams. Abnormal events refer to events which deviate from those considered
normal based on historical patterns. In this unsupervised context, i.e. data with
no predefined categories, RAMSSES has to detect anomalies which have not
been previously encountered. The process is based on estimating a model of
typical behaviors from past observations and comparing current observations
against this model. The system is meant to provide a list of efficient and generic
algorithms that can adapt to various use cases.

K-means: This algorithm is used to find groups in data based on a variable k.
It iteratively assigns data points to one of the k groups based on the features



510 B. Belabbess et al.

provided, and data points are clustered based on the features similarities. The
result is a list of centroids which can be used to categorize new data and label
it. Each centroid of a cluster is a collection of feature values which define the
resulting groups. In anomaly detection use cases, the model is used to cluster
new data based on euclidean distance between new data point and centroids of
the model clusters. If this distance is further than a certain threshold for all of
the available clusters, we consider this value to be an anomaly.

Bisecting K-means: It is a combination of k-means clustering and hierarchical
clustering. It splits one cluster into two sub-clusters at each step by using K-
means, instead of partitioning the data into clusters in each iteration, until k
clusters are obtained. This algorithm is based on K-means but has the main
advantage of being more efficient when k is large. Moreover, Bisecting K-means
produce clusters of similar sizes, while K-means is known to produce clusters
of widely different sizes. To detect an anomaly, the distance of incoming data
points from centroids is calculated, and a data point is considered an anomaly
if this distance was further than a certain threshold.

Gaussian Mixture Model (GMM): It is a probabilistic model that assumes
all the data points are generated from a mixture of a finite number of Gaussian
distributions with unknown parameters. One can think of mixture models as
generalizing K-means clustering to incorporate information about the covariance
structure of the data as well as the centers of the latent Gaussian. In anomaly
detection use cases, this algorithm is used to find the probability of an incoming
data point to belong to one of the model clusters, where the model was built
using clean data with no anomalies or labeled anomaly data. If the resulting
probability is less than 0.05% for all of the clusters of the model, the data point
is considered an anomaly, since there is not enough confidence that this data
point will be following one of the clusters.

5.2 Selecting Algorithms and Automation

We rely on historical batch data to select one of the aforementioned algorithms
and apply it to the streaming data for anomalies retrieval. To achieve this result,
multiple statistical data analysis are needed to choose automatically the proper
algorithm without human intervention. The process is organized into 4 main
steps:

Data Standardization: This concept arise when continuous independent vari-
ables are measured at different scales, which means that these variables do not
contribute equally to the analysis. The idea is to rescale the original variable to
have an equal range and/or variance. It is important to standardize variables
before running machine learning algorithms because cluster analysis techniques
depend on the concept of measuring the distance between the different obser-
vations we’re trying to cluster. There are different techniques for standardizing
data [10], our system uses Z-Score method since it is one of the most popular
methods among data scientists. In this case, we rescale an original variable to
have a mean of zero and standard deviation of one.



Combining Machine Learning and Semantics for Anomaly Detection 511

Distribution Type: Data distribution is a very important factor to decide
which clustering algorithm should be used. For example, there are some cluster-
ing algorithms that works very well with a normal distribution (e.g., Gaussian
Mixture Model) where other performs very well for multinomial distributed data
(e.g., Latent Dirichlet allocation). To decide which algorithm to use, a distribu-
tion test is done on the historical dataset to check if the data is following a normal
distribution or not. There are many methods to perform this test [11], the one
chosen was the D’Agostino’s K-squared test for its popular goodness-of-fit mea-
sure. It is based on transformations of the sample kurtosis and skewness, and
has power only against the alternatives that the distribution is skewed and/or
kurtic.

Variables Dependency: Finding the correlation is another important step
when deciding which clustering algorithm should be used on certain data. Some
models work well with dependent variables where other performs better with
independent variables. Several methods can be used to determine variables
dependency in a dataset, if it is a categorical variable, then Chi-Square test
can be used, if it’s a quantitative value, then the Simple Pearson Correlation
can be used. As this work is focusing on quantitative anomaly detection, we’ll
only focus on Pearson Correlation method. Pearson correlation is a linear mea-
sure between two variables X and Y. It results in a value between +1 and −1,
where 1 is a total positive linear correlation, 0 is no linear correlation, and −1
is a total negative linear correlation.

Dataset Complexity: A very useful statistic in deciding which clustering algo-
rithm to choose is having a sense of the complexity of the data that includes
data size and features space count. Some algorithms are really time-consuming
due to the complex mathematics used and don’t perform well with very large
datasets. To select the proper algorithm, we are following a straight forward
approach. Taking into consideration that Gaussian Mixture model will fail for
high-dimensionality data, if the dataset has high dimensions (i.e., larger than
50 dimensions) and larger than 50,000 records in terms of size, K-means based
algorithms will be suggested.

6 Evaluation

6.1 Methodology and Datasets

All of the datasets used in the evaluation are real datasets except one that is gen-
erated. All of them are labeled and can be found in well-known benchmarks [12]
except the auto-generated synthetic dataset and Yahoo production traffic dataset
that can be found in specific research papers [13]. In order to evaluate our sys-
tem, a cleaning process was performed by removing records that are labeled as
anomalies, the resulting dataset was used to estimate the number of clusters.
Then the model is built using the cleaned data with the following parameters: k
as being the estimated number of clusters, 1000 as being the maximum number



512 B. Belabbess et al.

of iterations, and 1e−9 the distance threshold above which clusters centroids
converge. Other parameters are default parameters of the Spark Machine Learn-
ing Library (Table 1).

Table 1. Evaluation datasets details [14]

Name Description Size Dimensions Anomalies

ALOI Color image collection 50,000 27 3.02%

Shuttle Space shuttle radiator positions 46,464 9 1.89%

Speech Recorded English language 3,686 400 1.65%

Pen 45 writers handwritten digits 809 16 11.1%

KDD Simulated IP attack traffic 620,089 38 0.17%

Thyroid UCI medical ML repo 6,916 21 3.61%

YahooS5 Yahoo services metrics 1,441 1 7.49%

Synthetic Artificially generated 4,000 2 3%

Finally, the original dataset that includes anomalies were run against the
model, and the number of detected anomalies are recorded. This approach for
evaluation was applied on a local machine and on a cluster for the sake of eval-
uating if the system is scalable and performs faster when it’s distributed.

6.2 Clustering Evaluation

In this evaluation, all datasets are real world measures from different sources,
each one is labeled to indicate clustering quality. Before discussing the results,
we will explain the key metrics. We assume the standards semantics for True
Positive, False Negative, True Negative and False Positive, resp. TP, FN, TN
and FP. We evaluated RAMSSES against all the datasets. For each one, the
system suggested an algorithm to use, but for the sake of critical comparison
of the results, we included the results when using other algorithms to see if the
suggested algorithm was the best choice or not. Table 2 lists the results obtained,
within each group. The bold Entries represents results with suggested algorithm
by the system.

As we can see in Table 2, some of the datasets had excellent results in terms
or both accuracy and precision by using the algorithm suggested by RAMSSES.
Shuttle, Yahoo S5, and Pen datasets recorded very good results for the clustering
task and most of the real anomalies were detected. We can note as well that in
datasets where the suggested algorithm is Gaussian Mixture, such as Thyroid
dataset, the results were reasonably good when we consider both accuracy and
precision, while in fact when using other algorithms, i.e., K-Means, we have
excellent accuracy result but very poor precision. Therefore, we can conclude
that for many datasets, the system achieved an optimum for both accuracy and
precision whenever an algorithm was suggested. The table highlights also the



Combining Machine Learning and Semantics for Anomaly Detection 513

Table 2. Clustering Results

Dataset Est K Algorithm Accuracy Precision Error Recall F-Measure

ALOI 10 K-Means 0.961 0.043 0.039 0.117 0.063

10 Bi.K-Means 0.961 0.032 0.039 0.093 0.047

10 Gaussian Mixture 0.969 0.003 0.030 0.285 0.008

YahooS5 15 K-Means 0.990 0.990 0.009 0.892 0.939

15 Bi.K-Means 0.965 0.660 0.034 0.847 0.742

15 Gaussian Mixture 0.212 0.990 0.782 0.087 0.160

Thyroid 5 Gaussian Mixture 0.605 0.632 0.394 0.056 0.104

5 K-Means 0.954 0.008 0.045 0.029 0.012

5 Bi.K-Means 0.955 0.004 0.044 0.016 0.006

Shuttle 5 K-Means 0.989 0.980 0.011 0.654 0.784

5 Bi.K-Means 0.989 0.981 0.010 0.655 0.786

5 Gaussian Mixture 0.981 0.019 0.782 0.5 0.013

Speech 3 K-Means 0.973 0.016 0.026 0.027 0.020

3 Bi.K-Means 0.974 0.016 0.026 0.027 0.020

NA NA NA NA NA NA NA

Synthetic 3 Gaussian Mixture 0.504 0.650 0.496 0.038 0.073

3 K-Means 0.982 0.725 0.018 0.696 0.710

3 Bi.K-Means 0.975 0.5 0.024 0.612 0.550

Pen 5 K-Means 0.954 0.667 0.045 0.895 0.764

5 Bi.K-Means 0.961 0.733 0.038 0.904 0.810

5 Gaussian Mixture 0.111 0.99 0.888 0.111 0.200

KDD 10 K-Means 0.989 0.476 0.011 0.075 0.129

10 Bi.K-Means 0.989 0.476 0.011 0.075 0.129

10 Gaussian Mixture 0.957 0.99 0.043 0.038 0.074

fact that RAMSSES adjusted remarkably well with the Synthetic datasets, even
though with less clustering quality. Finally, for ALOI and Speech datasets, we
had very poor results in terms of precision for all used algorithms. Spark failed
when trying to run the Speech dataset, explaining the absence of results on the
Gaussian Mixture algorithm.

6.3 Performance Evaluation

In this section, we will show and discuss the running time for using Spark MLLib
clustering algorithms. We first run on a local machine with maximum paral-
lelism. Then we move to an Amazon Web Services (AWS) cluster to observe if
RAMSSES can truly scale and perform better in a real distributed mode.

Local Evaluation: All of the clustering tasks using the three clustering algo-
rithms were first run on a local machine whose specifications are: (a) MacBook
Pro running macOS Sierra; (b) Intel Core i7 CPU 2,5 GHz with 4 cores; (c)
16 GB DDR3 RAM, (d) L2 Cache (per Core): 256 KB, L3 Cache: 6 MB; (e)
500 GB SSD; (f) Spark 2.0.0 with Java 8. Figure 5 shows the running time for dif-
ferent datasets using different algorithms. Please note that for the KDD dataset,



514 B. Belabbess et al.

when running Gaussian Mixture algorithm, the running time was 13146.025 s,
which is approximately 3.65 h. So it was excluded from the graph because it will
make other values unreadable due to graph scale.

Fig. 5. Running time for datasets using different algorithms

Generally speaking, Bisecting K-means takes more time than K-means.
Nonetheless, when the number of dimensions of the dataset gets higher, Gaus-
sian Mixture gets a lower running time performance, thus becoming the slowest
algorithm among the three for large datasets.

Cluster Evaluation: In this part, we will evaluate if RAMSSES truly performs
better in terms of running time due to it’s distributed nature. We used KDD
dataset as it’s the largest dataset we have, and we can notice running time
difference when distributing the clustering process. We will compare it with local
performance using the previously mentioned MacBook Pro with full utilization
of its 4 cores. Amazon AWS service was used to create a cluster with one master
node and four workers (machines), all of them of type EMR m3.xlarge, with
the following specifications: (a) Intel Xeon E5-2670 2.6 GHz Processors, 4 cores;

Fig. 6. Local vs cluster running time for ML algorithm



Combining Machine Learning and Semantics for Anomaly Detection 515

(b) 15 GB of RAM; (c) 2× 40 GB SSD; (d) Spark 2.0.0 with Java 8. As shown
by Fig. 6, we had 41.4%, 37.75% and 19.76% performance enhancements for K-
Means, Bisecting K-Means and Gaussian Mixture algorithms respectively. These
tests demonstrate that RAMSSES is able to scale and perform better when
distributed.

6.4 Continuous Query Generator Evaluation

We based our evaluation on two parameters: the relevance of the continuous
queries, and their impact on the processed streams. The tests have been realized
on sensor measures archived by our partner; due to their proprietary nature, the
dataset are not made public. They represent a year of measures over 3 different
geographical zones (2 French ones and one international). For each zone, we have
records for 15 different measure types, stored in RDF files and organized by year
of emission. In total, one million of each type of measure is archived per year,
for a size on disk of 3.4Go.

The validation of the query generator has been performed using panels of 5
domain experts from the partner company. Intuitively, we presented them a set
of about ten queries over the 3 zones, concerning different types of measures,
and asked them if the queries would retrieve information that could help in
detecting anomalies. For the simplest queries, the output was judged extremely
satisfying (95% of the queries were judged as relevant). With queries implying
more parameters, some imprecisions may occur, but after discussion we found
out that adjusting the relevant parameters in the input file solves most of the
problems. The general method consists in changing the labels of the columns,
so they can be identified as ontological concepts more easily. The main issue
remains with more complex queries, where some specifications such as aggregates
and additional parameters need to be added to the query.

We consider now a real-world Waves stream example. The inputs coming
from the stream (for example in Fig. 4a) are composed of RDF triples coming
from each sensor. We also have a file listing the relevant elements that need to
be conserved to build the query. We use this file to identify the triples that are
essential for the query building, generating a WHERE clause with a subgraph
including all of them (Fig. 4b). This list of elements can be built using tabular
files in our use case. We can associate the label of the columns to some of the
properties in our ontology (in red in the figure), and associate the values in
the columns to objects (in blue). These values will represent the variables in
our query, and the labels will only be triples to specify the WHERE clause. In
our example, we have three triples extracted that are linked, and thus we have
reduced the graph by half its original size. In this example it only represents
three triples, but with the number of sensors, the different measures types, and
the frequency of the measures, it can make a significant improvement. Other
use cases can get different gains depending on the stream triples and the list of
relevant elements.



516 B. Belabbess et al.

Table 3. Query generator performance improvement

Zones Measure Triples Size

Geographical zone 1 (France) 75% 50% 29%

Geographical zone 2 (France) 66% 52% 32%

Geographical zone 3 (Asia) 72% 46% 27%

Table 3 presents the gains for each zone with queries generated on the
archives: the first column gives the percentage of removed measure types, the
‘Triples’ column provides the number of triples from the stream retained for the
query processing. Finally, the last column represents the gain in size of retrieved
streams from our query (e.g., in zone 1, 29% of the 1 million triples streamed
were processed by our query). The validation of the generated query has been
performed with the help of domain experts for our use case. We generated and
executed our query using the data they gave us, and presented our results to
their appreciation. The results are presented in Table 4, for different queries.

Table 4. Domain experts evaluation

Evaluator Queries

1 2 3 4 5 6 7

1 � � � � � × �
2 � � � � × � ×
3 � � � × � × ×
4 � � � � � × ×
5 � � � � � � ×

The three first ones are variations of the example presented previously,
adapted to different kinds of measures, and were very satisfying. The two next
one were more specific queries, which is also very satisfying: one expert com-
plained about some missing parameter, but it could be added to the result by
adapting the input data to the tabular file. The last queries were the most tricky,
and aimed at obtaining a very specific result using some values from a specific
cell (thus needing some filtering). About half of the evaluators judged the pre-
cision satisfying, the other half evaluated it insufficient. As we mentioned, the
main difficulty for our query generation system is to build aggregates using the
input data, and this is our main focus for now.



Combining Machine Learning and Semantics for Anomaly Detection 517

7 Conclusion

In this paper, we presented RAMSSES, a scalable system enabling the detection
of anomalies on real time streams using a mix of machine learning techniques
and a semantic web approach. Leveraging on the statistical characteristics of
historical data, the system relies on a complex set of rules to select the best
algorithm that can be applied to find data singularities. The features identified
as potential support for anomaly detection then need to be retrieved from data
streams. The queries that are retrieving these information are automatically
generated in the form of SPARQL queries since streams are modeled as RDF
graphs. The answer sets of these are then processed by machine learning methods
to detect anomalies in close to real time.

To the best of our knowledge, RAMSSES is the first system aiming to autom-
atize the complete process of dimension reduction, feature selection, query gen-
eration and anomaly detection. A task that is generally performed manually
by end-users needing some expertise in both the domain of application and
machine learning. Computing on a distributed environment to handle massive
data, RAMSSES proposes the algorithm that could yield the best results, there-
fore we also evaluated its performance and scalability both locally and on a
real cluster. RAMSSES is being used in production at one of the Waves’s part-
ner. Some of our future works concern the integration of third party libraries
to support clustering algorithms that are not yet supported by Spark, support
for textual data (currently, RAMSSES only deals with numerical data), tackling
expressive ontologies (up to the OWLQL and OWLRL profiles) in our query
generator component.

References

1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41, 15:1–15:58 (2009)

2. Nathan Marz, J.W.: Big Data Principles and best practices of scalable realtime
data systems. Manning, 1st edn. (2015)

3. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file sys-
tem. In: Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), MSST 2010, Washington, DC, USA, pp. 1–10. IEEE
Computer Society (2010)

4. Vavilapalli, V.K.: Apache hadoop yarn: Yet another resource negotiator. In: Pro-
ceedings of the 4th Annual Symposium on Cloud Computing, SOCC 2013, New
York, NY, USA, pp. 5:1–5:16. ACM (2013)

5. Boutsidis, C., Mahoney, M.W., Drineas, P.: Unsupervised feature selection for
principal components analysis. In: Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD 2008, pp.
61–69. ACM (2008)

6. S. C. from the ITISE Conference, Time Series Analysis and Forecasting. Springer
(2016)

7. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications.
Chapman & Hall/CRC, 1st edn. (2013)



518 B. Belabbess et al.

8. Laptev, N., Amizadeh, S., Flint, I.: Generic and scalable framework for automated
time-series anomaly detection. In: Proceedings of the 21st ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1939–1947. ACM
(2015)

9. Box, G.E.P., Jenkins, G.: Time Series Analysis. Forecasting and Control. Holden-
Day, Incorporated (1990)

10. Trebuna, J.P., Fil’o, M.: The importance of normalization and standardization in
the process of clustering. In: Proceedings of IEEE 12th International Symposium
on Applied Machine Intelligence and Informatics, SAMI (2014)

11. Yazici, B., Asma, S.: A comparison of various tests of normality, vol. 77, pp. 175–
183, February 2007

12. Goldstein, M.: Unsupervised anomaly detection benchmark (2015)
13. YAHOO, S5 - a labeled anomaly detection dataset (2015)


	Combining Machine Learning and Semantics for Anomaly Detection
	1 Introduction
	2 Architecture
	3 Outlier Detection and Attribute Selection
	4 Query Generator
	5 Machine Learning
	5.1 Clustering Algorithms and Configuration
	5.2 Selecting Algorithms and Automation

	6 Evaluation
	6.1 Methodology and Datasets
	6.2 Clustering Evaluation
	6.3 Performance Evaluation
	6.4 Continuous Query Generator Evaluation

	7 Conclusion
	References




